-
Notifications
You must be signed in to change notification settings - Fork 1
/
class_Spectrum.py
217 lines (187 loc) · 6.92 KB
/
class_Spectrum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import numpy as np
#Speed of light in km/s
C = 3E5
class Spectrum:
def __init__(self,
wavelength=[], #List of wavelengths
flux=[], #List of flux values at each wavelength
var=[], #List of variance for each flux value
std=[], #List of sigma for each flux value
date="", #Date of observation
mjd=0, #MJD of observation
mjd_t_peak = 0, #T_MAX MJD of SN
instrument='None', #Instrument observation
obj = "", #Object name
z=0, #Redshift of object
offset=0, #y-offset for spectrum when plotting
c='black', #Colour of plot
):
self.wl = np.array(wavelength)
self.fl = np.array(flux)
self.var = np.array(var)
self.std = np.array(std)
self.vel = np.zeros(len(self.wl))
self.date = date
self.mjd = mjd
self.mjd_t_peak = mjd_t_peak
self.days_from_t_peak = mjd - mjd_t_peak
self.instrument = instrument
self.offset = offset
self.object = obj
self.c = c
self.z = z
#Determines true value of redshift given an initial estimate
def DetermineRedshift(self,
initial_z=None, #Initial redshift guess
lam_rest=6564.61, #Wavelength to focus on in Angstrom (default Halpha)
window=200, #Range of values to analyse in Angstrom
deredshift=True, #Deredshift spectrum after calculation
):
if initial_z == None:
initial_z = self.z
#Estimate of redshifted wl given initial redshift value
est_lam_obs = lam_rest * (initial_z + 1)
#Find index of est_lam_obs
est_idx_lam_obs = np.searchsorted(self.wl, lam_rest)
#calculate index of window limits
min_window_idx = est_idx_lam_obs-window/2
max_window_idx = est_idx_lam_obs+window/2
#Find maxima in window around estimated central wl
idx_fl_obs = min_window_idx + np.argmax(self.fl[min_window_idx:max_window_idx])
idx_lam_obs = idx_fl_obs
lam_obs = self.wl[idx_lam_obs]
#Calculate actual redshift value
# self.z = lam_obs / (lam_rest * (initial_z + 1)) - 1
self.z = (lam_obs - lam_rest)/lam_rest
if deredshift == True:
self.Deredshift()
#Shifts wavelengths to rest frame
def Deredshift(self, z=None):
if z == None:
z = self.z
self.wl = np.array([x/(1+z) for x in self.wl])
#Plots spectrum with error bars
def PlotSpectrum(self, ax, c=None, sigma=1, vel=False, alpha=1, name=None, error=True):
#Calculate error bar size
if error:
error_bar = np.multiply(self.std, sigma)
else:
error_bar = np.zeros(len(self.wl))
#If colour not specified, use predefined colour
if c == None:
c = self.c
#Label for the line
if name == None:
name = self.object
#Offset flux values
flux = np.add(self.fl, self.offset)
#Plot spectrum
if vel == False:
ax.plot(self.wl, flux, color=c, alpha=alpha, linestyle='-')
#Plot error bars
ax.fill_between(self.wl, np.add(flux, error_bar), np.subtract(flux, error_bar), color=c, alpha=0.5*alpha)
ax.text(self.wl[-1] - 100, flux[-1] + 0.1, #Position of text
"{}".format(name),
color=c, #Formatting text
)
else:
ax.plot(self.vel, flux, color=c, alpha=alpha, linestyle=':')
#Plot error bars
ax.fill_between(self.vel, np.add(flux, error_bar), np.subtract(flux, error_bar), color=c, alpha=0.5*alpha)
ax.text(self.vel[-1] - 100, flux[-1] + 0.1, #Position of text
"{}".format(name),
color=c, #Formatting text
)
def SaveSpectrum(self, filename):
np.savetxt(filename, np.column_stack((self.wl, self.fl, self.std)), header="wavelength,flux,err", delimiter=',')
def SubtractSpectrum(self, spectrum):
self.fl = np.subtract(self.fl, spectrum.fl)
self.std = np.add(self.std, spectrum.std)
self.var = np.add(self.var, spectrum.var)
def rmNegative(self, cutoff=None):
if cutoff != None:
for i,f in enumerate(self.fl):
if f < cutoff:
self.fl[i] = np.nan
#Normalise spectrum between norm_min and norm_max
def Normalise(self, curr_min = None, curr_max = None, norm_min=0, norm_max=1, norm_factor=None, ignore_range=None):
#Remove values from normalisation
if ignore_range != None:
orig_fl = self.fl
orig_wl = self.wl
orig_var = self.var
orig_std = self.std
#Cut out unwanted region
for r in ignore_range:
min_wl = r[0]
max_wl = r[1]
min_idx = np.searchsorted(self.wl, min_wl)
max_idx = np.searchsorted(self.wl, max_wl)
self.wl = np.append(self.wl[:min_idx], self.wl[max_idx:])
self.fl = np.append(self.fl[:min_idx], self.fl[max_idx:])
self.var = np.append(self.var[:min_idx], self.var[max_idx:])
self.std = np.append(self.std[:min_idx], self.std[max_idx:])
#If not set, normalise all spectrum values
if curr_min == None:
curr_min = np.nanmin(self.fl)
if curr_max == None:
curr_max = np.nanmax(self.fl)
#If not ignoring anything, set to default
if ignore_range != None:
self.fl = orig_fl
self.wl = orig_wl
self.var = orig_var
self.std = orig_std
#Set min to 0
flux = np.subtract(self.fl, curr_min)
#Calculate a normalisation factor
if norm_factor == None:
norm_factor = np.divide(norm_max - norm_min, curr_max - curr_min)
#Normalise
flux = np.multiply(flux,norm_factor)
#Add floor value
self.fl = np.add(flux, norm_min)
#Calculate what happens to errors
std_factor = (norm_max - norm_min)/(curr_max - curr_min)
var_factor = std_factor ** 2
self.std = np.multiply(self.std, std_factor)
self.var = np.multiply(self.var, var_factor)
#Output normalisation factor
return norm_factor
def Scale(self, factor=1):
self.fl = np.multiply(self.fl, factor)
self.std = np.multiply(self.std, factor)
self.var = np.multiply(self.var, np.power(factor,2))
#Trim wavelengths to within specified range
def TrimWL(self,min_wl=0, max_wl=10000):
i_min = np.searchsorted(self.wl, min_wl, side='left')
i_max = np.searchsorted(self.wl, max_wl, side='left')
self.wl = self.wl[i_min:i_max]
self.fl = self.fl[i_min:i_max]
self.vel = self.vel[i_min:i_max]
self.std = self.std[i_min:i_max]
self.var = self.var[i_min:i_max]
#Trim velocities to within specified range
def TrimVel(self,min_vel=-1000, max_vel=1000):
i_min = np.searchsorted(self.vel, min_vel, side='left')
i_max = np.searchsorted(self.vel, max_vel, side='left')
self.wl = self.wl[i_min:i_max]
self.fl = self.fl[i_min:i_max]
self.vel = self.vel[i_min:i_max]
self.std = self.std[i_min:i_max]
self.var = self.var[i_min:i_max]
#
def wl2vel(self, centre=6564.5377):
# wl = np.subtract(wl, centre)
self.vel = np.multiply(np.divide(np.subtract(self.wl,centre), centre), C)
#Remove a wavelength range from the data
def rmWL(self, min_wl, max_wl):
#Find the index of these values
min_idx = np.searchsorted(self.wl, min_wl)
max_idx = np.searchsorted(self.wl, max_wl)
#Remove from data
self.wl = np.append(self.wl[:min_idx], self.wl[max_idx:])
self.fl = np.append(self.fl[:min_idx], self.fl[max_idx:])
self.vel = np.append(self.vel[:min_idx], self.vel[max_idx:])
self.std = np.append(self.std[:min_idx], self.std[max_idx:])
self.var = np.append(self.var[:min_idx], self.var[max_idx:])