-
Notifications
You must be signed in to change notification settings - Fork 156
/
test.py
96 lines (82 loc) · 3.23 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
"""
#########################################################################
# Copyright (c) Davar Lab @ Hikvision Research Institute. All rights reserved.
# Filename : test.py
# Abstract : Script for inference and visualization
# Current Version: 1.0.0
# Date : 2020-05-31
#########################################################################
"""
import mmcv
from davarocr.davar_common.apis import inference_model, init_model
import cv2
import time
import json
import os
# =============== Settings for Total-Text ===================================
# config_file = './config/tp_det_r50_3stages_enlarge_tt.py'
# checkpoint_file = './log/checkpoint/tp_det_r50_3stages_enlarge_tt-45b1f5cf.pth'
# test_dataset= '../datalist/total_datalist.json'
# img_prefix = '/path/to//Total-Text/'
# =============== Settings for SCUT-CTW1500 ===================================
config_file = './config_det/tp_det_r50_3stages_enlarge_ctw.py'
checkpoint_file = './log/checkpoint/tp_det_r50_3stages_enlarge_ctw-c1bf44e7.pth'
test_dataset= '../datalist/ctw1500_test_datalist.json'
img_prefix = '/path/to/SCUT-CTW1500/'
out_put_dir = "./score/" # path to save final prediction in .txt format
if not os.path.exists(out_put_dir):
os.mkdir(out_put_dir)
vis_dir = "./vis/" # path to save visualization result.
if not os.path.exists(vis_dir):
os.mkdir(vis_dir)
model = init_model(config_file, checkpoint_file, device='cuda:0')
with open(test_dataset) as load_f:
test_file = json.load(load_f, encoding="utf-8" )
cnt = 0
time_sum = 0.0
out_dict = {}
for filename in test_file:
# Load images
img_path= img_prefix + filename
img = mmcv.imread(img_path)
img_copy = img.copy()
img_name = img_path.split("/")[-1]
# Inference
print('predicting {} - {}'.format(cnt, img_path))
time_start = time.time()
result = inference_model(model, img_path)
time_end = time.time()
time_sum += (time_end - time_start)
print(result)
# Save pred in txt format
txt = open(out_put_dir+"{}.txt".format(filename.split("/")[-1].split(".")[0]), "w")
bboxes = []
for i in range(len(result["points"])):
points2 = result["points"][i]
for j in range(0, len(points2), 2):
cv2.circle(img_copy, (points2[j], points2[(j+1)]), 5, (0, 255, 255),-1)
cv2.line(img_copy, (points2[j], points2[j+1]), (points2[(j+2)%len(points2)], points2[(j+3)%len(points2)]),
(0, 0, 255), 2)
txt.write("{},{}".format(points2[j], points2[j+1]))
if j != len(points2)-2:
txt.write(",")
elif i != len(result["points"])-1:
txt.write("\n")
points = list(map(int, points2))
bboxes.append(points)
txt.close()
# Save results to JSON
out_dict[filename]={
"height":test_file[filename]["height"],
"width":test_file[filename]["width"],
"content_ann":{
"bboxes":bboxes
}
}
# Results visualization
cv2.imwrite(vis_dir + img_name, img_copy)
cnt += 1
print('FPS: {}'.format(cnt / time_sum))
print('total time: {}'.format(time_sum))
with open("total_pred.json", "w") as write_f:
json.dump(out_dict, write_f, ensure_ascii=False, indent=4)