A work in progress implementaion of the YOLO object detection in javascript running on top of Tensorflow.js
this Readme is outdated and i will edit it soon
detections with yolo-v2-light with 416x416 input size on a GTX 1050ti/Chrome/Win10x64 ± 25 FPS 💨
detections with yolo-v3 pretrained weights with 224x224 input size on a GTX 1050ti/Chrome/Win10x64 ± 9 FPS
Video source source: https://www.youtube.com/watch?v=u68EWmtKZw0
> git clone ...
> npm install
> webpack
if everything went sucessfully, you should see a yolo.js
in the /dist
folder
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/[email protected]/dist/tf.min.js"></script>
<script src="path/to/yolo/yolo.js">
const config = {
// Model URL
modelURL: '',
// Model version : this is important as there is some post processing changes between yolov2 and yolov3
// 'v2' ||'v3'
version: 'v2',
// this is the size of the model input image : you can lower this to gain more performance
modelSize: 416,
// Intersection over inion Threshold and Class probability Threshold
// we use these to filter the output of the neuralnet
iouThreshold: 0.5,
classProbThreshold: 0.5,
// max detection output
maxOutput: 20,
// class labels
labels: COCO_CLASSES,
// more info see: https://arxiv.org/pdf/1612.08242.pdf
anchors: [
[0.57273, 0.677385],
[1.87446, 2.06253],
[3.33843, 5.47434],
[7.88282, 3.52778],
[9.77052, 9.16828],
],
masks: [[0, 1, 2, 3, 4]],
// this is just more customization options concerning the preprocessing phase
preProcessingOptions: {
// 'NearestNeighbor' - this output a more accurate image but but take a bit longer
// 'Bilinear' - this faster but scrifices image quality
ResizeOption: 'Bilinear',
AlignCorners: true,
},
}
// Or you can use one of the pre made configs but you need to specify the model url yourself //
const config = {
...YOLO.tinyYOLOLiteConfig,
// you can also edit them here
modelSize: 224,
modelURL: '',
}
const detector = new YOLO.Detector(config);
detector.load().then(() => {
detector.detectAsync(img).then((dets) => {
console.log(dets)
});
});
// OR
await detector.load()
const detections = await detector.detectAsync()
console.log(detections)
WIP