forked from junxiaosong/AlphaZero_Gomoku
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
195 lines (183 loc) · 8.58 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# -*- coding: utf-8 -*-
"""
An implementation of the training pipeline of AlphaZero for Gomoku
@author: Junxiao Song
"""
from __future__ import print_function
import random
import numpy as np
from collections import defaultdict, deque
from game import Board, Game
from mcts_pure import MCTSPlayer as MCTS_Pure
from mcts_alphaZero import MCTSPlayer
from policy_value_net import PolicyValueNet # Theano and Lasagne
# from policy_value_net_pytorch import PolicyValueNet # Pytorch
# from policy_value_net_tensorflow import PolicyValueNet # Tensorflow
# from policy_value_net_keras import PolicyValueNet # Keras
class TrainPipeline():
def __init__(self, init_model=None):
# params of the board and the game
self.board_width = 6
self.board_height = 6
self.n_in_row = 4
self.board = Board(width=self.board_width,
height=self.board_height,
n_in_row=self.n_in_row)
self.game = Game(self.board)
# training params
self.learn_rate = 2e-3
self.lr_multiplier = 1.0 # adaptively adjust the learning rate based on KL
self.temp = 1.0 # the temperature param
self.n_playout = 400 # num of simulations for each move
self.c_puct = 5
self.buffer_size = 10000
self.batch_size = 512 # mini-batch size for training
self.data_buffer = deque(maxlen=self.buffer_size)
self.play_batch_size = 1
self.epochs = 5 # num of train_steps for each update
self.kl_targ = 0.02
self.check_freq = 50
self.game_batch_num = 1500
self.best_win_ratio = 0.0
# num of simulations used for the pure mcts, which is used as
# the opponent to evaluate the trained policy
self.pure_mcts_playout_num = 1000
if init_model:
# start training from an initial policy-value net
self.policy_value_net = PolicyValueNet(self.board_width,
self.board_height,
model_file=init_model)
else:
# start training from a new policy-value net
self.policy_value_net = PolicyValueNet(self.board_width,
self.board_height)
self.mcts_player = MCTSPlayer(self.policy_value_net.policy_value_fn,
c_puct=self.c_puct,
n_playout=self.n_playout,
is_selfplay=1)
def get_equi_data(self, play_data):
"""augment the data set by rotation and flipping
play_data: [(state, mcts_prob, winner_z), ..., ...]
"""
extend_data = []
for state, mcts_porb, winner in play_data:
for i in [1, 2, 3, 4]:
# rotate counterclockwise
equi_state = np.array([np.rot90(s, i) for s in state])
equi_mcts_prob = np.rot90(np.flipud(
mcts_porb.reshape(self.board_height, self.board_width)), i)
extend_data.append((equi_state,
np.flipud(equi_mcts_prob).flatten(),
winner))
# flip horizontally
equi_state = np.array([np.fliplr(s) for s in equi_state])
equi_mcts_prob = np.fliplr(equi_mcts_prob)
extend_data.append((equi_state,
np.flipud(equi_mcts_prob).flatten(),
winner))
return extend_data
def collect_selfplay_data(self, n_games=1):
"""collect self-play data for training"""
for i in range(n_games):
winner, play_data = self.game.start_self_play(self.mcts_player,
temp=self.temp)
play_data = list(play_data)[:]
self.episode_len = len(play_data)
# augment the data
play_data = self.get_equi_data(play_data)
self.data_buffer.extend(play_data)
def policy_update(self):
"""update the policy-value net"""
mini_batch = random.sample(self.data_buffer, self.batch_size)
state_batch = [data[0] for data in mini_batch]
mcts_probs_batch = [data[1] for data in mini_batch]
winner_batch = [data[2] for data in mini_batch]
old_probs, old_v = self.policy_value_net.policy_value(state_batch)
for i in range(self.epochs):
loss, entropy = self.policy_value_net.train_step(
state_batch,
mcts_probs_batch,
winner_batch,
self.learn_rate*self.lr_multiplier)
new_probs, new_v = self.policy_value_net.policy_value(state_batch)
kl = np.mean(np.sum(old_probs * (
np.log(old_probs + 1e-10) - np.log(new_probs + 1e-10)),
axis=1)
)
if kl > self.kl_targ * 4: # early stopping if D_KL diverges badly
break
# adaptively adjust the learning rate
if kl > self.kl_targ * 2 and self.lr_multiplier > 0.1:
self.lr_multiplier /= 1.5
elif kl < self.kl_targ / 2 and self.lr_multiplier < 10:
self.lr_multiplier *= 1.5
explained_var_old = (1 -
np.var(np.array(winner_batch) - old_v.flatten()) /
np.var(np.array(winner_batch)))
explained_var_new = (1 -
np.var(np.array(winner_batch) - new_v.flatten()) /
np.var(np.array(winner_batch)))
print(("kl:{:.5f},"
"lr_multiplier:{:.3f},"
"loss:{},"
"entropy:{},"
"explained_var_old:{:.3f},"
"explained_var_new:{:.3f}"
).format(kl,
self.lr_multiplier,
loss,
entropy,
explained_var_old,
explained_var_new))
return loss, entropy
def policy_evaluate(self, n_games=10):
"""
Evaluate the trained policy by playing against the pure MCTS player
Note: this is only for monitoring the progress of training
"""
current_mcts_player = MCTSPlayer(self.policy_value_net.policy_value_fn,
c_puct=self.c_puct,
n_playout=self.n_playout)
pure_mcts_player = MCTS_Pure(c_puct=5,
n_playout=self.pure_mcts_playout_num)
win_cnt = defaultdict(int)
for i in range(n_games):
winner = self.game.start_play(current_mcts_player,
pure_mcts_player,
start_player=i % 2,
is_shown=0)
win_cnt[winner] += 1
win_ratio = 1.0*(win_cnt[1] + 0.5*win_cnt[-1]) / n_games
print("num_playouts:{}, win: {}, lose: {}, tie:{}".format(
self.pure_mcts_playout_num,
win_cnt[1], win_cnt[2], win_cnt[-1]))
return win_ratio
def run(self):
"""run the training pipeline"""
try:
for i in range(self.game_batch_num):
self.collect_selfplay_data(self.play_batch_size)
print("batch i:{}, episode_len:{}".format(
i+1, self.episode_len))
if len(self.data_buffer) > self.batch_size:
loss, entropy = self.policy_update()
# check the performance of the current model,
# and save the model params
if (i+1) % self.check_freq == 0:
print("current self-play batch: {}".format(i+1))
win_ratio = self.policy_evaluate()
self.policy_value_net.save_model('./current_policy.model')
if win_ratio > self.best_win_ratio:
print("New best policy!!!!!!!!")
self.best_win_ratio = win_ratio
# update the best_policy
self.policy_value_net.save_model('./best_policy.model')
if (self.best_win_ratio == 1.0 and
self.pure_mcts_playout_num < 5000):
self.pure_mcts_playout_num += 1000
self.best_win_ratio = 0.0
except KeyboardInterrupt:
print('\n\rquit')
if __name__ == '__main__':
training_pipeline = TrainPipeline()
training_pipeline.run()