forked from shelhamer/fcn.berkeleyvision.org
-
Notifications
You must be signed in to change notification settings - Fork 0
/
solve.py
35 lines (27 loc) · 902 Bytes
/
solve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import caffe
import surgery, score
import numpy as np
import os
import sys
try:
import setproctitle
setproctitle.setproctitle(os.path.basename(os.getcwd()))
except:
pass
weights = '../siftflow-fcn32s/siftflow-fcn32s.caffemodel'
# init
caffe.set_device(int(sys.argv[1]))
caffe.set_mode_gpu()
solver = caffe.SGDSolver('solver.prototxt')
solver.net.copy_from(weights)
# surgeries
interp_layers = [k for k in solver.net.params.keys() if 'up' in k]
surgery.interp(solver.net, interp_layers)
# scoring
test = np.loadtxt('../data/sift-flow/test.txt', dtype=str)
for _ in range(50):
solver.step(2000)
# N.B. metrics on the semantic labels are off b.c. of missing classes;
# score manually from the histogram instead for proper evaluation
score.seg_tests(solver, False, test, layer='score_sem', gt='sem')
score.seg_tests(solver, False, test, layer='score_geo', gt='geo')