forked from micropython/micropython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
modmath.c
440 lines (404 loc) · 16.1 KB
/
modmath.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2017 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/builtin.h"
#include "py/runtime.h"
#if MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH
#include <math.h>
// M_PI is not part of the math.h standard and may not be defined
// And by defining our own we can ensure it uses the correct const format.
#define MP_PI MICROPY_FLOAT_CONST(3.14159265358979323846)
#define MP_PI_4 MICROPY_FLOAT_CONST(0.78539816339744830962)
#define MP_3_PI_4 MICROPY_FLOAT_CONST(2.35619449019234492885)
static NORETURN void math_error(void) {
mp_raise_ValueError(MP_ERROR_TEXT("math domain error"));
}
static mp_obj_t math_generic_1(mp_obj_t x_obj, mp_float_t (*f)(mp_float_t)) {
mp_float_t x = mp_obj_get_float(x_obj);
mp_float_t ans = f(x);
if ((isnan(ans) && !isnan(x)) || (isinf(ans) && !isinf(x))) {
math_error();
}
return mp_obj_new_float(ans);
}
static mp_obj_t math_generic_2(mp_obj_t x_obj, mp_obj_t y_obj, mp_float_t (*f)(mp_float_t, mp_float_t)) {
mp_float_t x = mp_obj_get_float(x_obj);
mp_float_t y = mp_obj_get_float(y_obj);
mp_float_t ans = f(x, y);
if ((isnan(ans) && !isnan(x) && !isnan(y)) || (isinf(ans) && !isinf(x) && !isinf(y))) {
math_error();
}
return mp_obj_new_float(ans);
}
#define MATH_FUN_1(py_name, c_name) \
static mp_obj_t mp_math_##py_name(mp_obj_t x_obj) { \
return math_generic_1(x_obj, MICROPY_FLOAT_C_FUN(c_name)); \
} \
static MP_DEFINE_CONST_FUN_OBJ_1(mp_math_##py_name##_obj, mp_math_##py_name);
#define MATH_FUN_1_TO_BOOL(py_name, c_name) \
static mp_obj_t mp_math_##py_name(mp_obj_t x_obj) { return mp_obj_new_bool(c_name(mp_obj_get_float(x_obj))); } \
static MP_DEFINE_CONST_FUN_OBJ_1(mp_math_##py_name##_obj, mp_math_##py_name);
#define MATH_FUN_1_TO_INT(py_name, c_name) \
static mp_obj_t mp_math_##py_name(mp_obj_t x_obj) { return mp_obj_new_int_from_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj))); } \
static MP_DEFINE_CONST_FUN_OBJ_1(mp_math_##py_name##_obj, mp_math_##py_name);
#define MATH_FUN_2(py_name, c_name) \
static mp_obj_t mp_math_##py_name(mp_obj_t x_obj, mp_obj_t y_obj) { \
return math_generic_2(x_obj, y_obj, MICROPY_FLOAT_C_FUN(c_name)); \
} \
static MP_DEFINE_CONST_FUN_OBJ_2(mp_math_##py_name##_obj, mp_math_##py_name);
#define MATH_FUN_2_FLT_INT(py_name, c_name) \
static mp_obj_t mp_math_##py_name(mp_obj_t x_obj, mp_obj_t y_obj) { \
return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj), mp_obj_get_int(y_obj))); \
} \
static MP_DEFINE_CONST_FUN_OBJ_2(mp_math_##py_name##_obj, mp_math_##py_name);
#if MP_NEED_LOG2
#undef log2
#undef log2f
// 1.442695040888963407354163704 is 1/_M_LN2
mp_float_t MICROPY_FLOAT_C_FUN(log2)(mp_float_t x) {
return MICROPY_FLOAT_C_FUN(log)(x) * MICROPY_FLOAT_CONST(1.442695040888963407354163704);
}
#endif
// sqrt(x): returns the square root of x
MATH_FUN_1(sqrt, sqrt)
// pow(x, y): returns x to the power of y
#if MICROPY_PY_MATH_POW_FIX_NAN
mp_float_t pow_func(mp_float_t x, mp_float_t y) {
// pow(base, 0) returns 1 for any base, even when base is NaN
// pow(+1, exponent) returns 1 for any exponent, even when exponent is NaN
if (x == MICROPY_FLOAT_CONST(1.0) || y == MICROPY_FLOAT_CONST(0.0)) {
return MICROPY_FLOAT_CONST(1.0);
}
return MICROPY_FLOAT_C_FUN(pow)(x, y);
}
MATH_FUN_2(pow, pow_func)
#else
MATH_FUN_2(pow, pow)
#endif
// exp(x)
MATH_FUN_1(exp, exp)
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
// expm1(x)
MATH_FUN_1(expm1, expm1)
// log2(x)
MATH_FUN_1(log2, log2)
// log10(x)
MATH_FUN_1(log10, log10)
// cosh(x)
MATH_FUN_1(cosh, cosh)
// sinh(x)
MATH_FUN_1(sinh, sinh)
// tanh(x)
MATH_FUN_1(tanh, tanh)
// acosh(x)
MATH_FUN_1(acosh, acosh)
// asinh(x)
MATH_FUN_1(asinh, asinh)
// atanh(x)
MATH_FUN_1(atanh, atanh)
#endif
// cos(x)
MATH_FUN_1(cos, cos)
// sin(x)
MATH_FUN_1(sin, sin)
// tan(x)
MATH_FUN_1(tan, tan)
// acos(x)
MATH_FUN_1(acos, acos)
// asin(x)
MATH_FUN_1(asin, asin)
// atan(x)
MATH_FUN_1(atan, atan)
// atan2(y, x)
#if MICROPY_PY_MATH_ATAN2_FIX_INFNAN
mp_float_t atan2_func(mp_float_t x, mp_float_t y) {
if (isinf(x) && isinf(y)) {
return copysign(y < 0 ? MP_3_PI_4 : MP_PI_4, x);
}
return atan2(x, y);
}
MATH_FUN_2(atan2, atan2_func)
#else
MATH_FUN_2(atan2, atan2)
#endif
// ceil(x)
MATH_FUN_1_TO_INT(ceil, ceil)
// copysign(x, y)
static mp_float_t MICROPY_FLOAT_C_FUN(copysign_func)(mp_float_t x, mp_float_t y) {
return MICROPY_FLOAT_C_FUN(copysign)(x, y);
}
MATH_FUN_2(copysign, copysign_func)
// fabs(x)
static mp_float_t MICROPY_FLOAT_C_FUN(fabs_func)(mp_float_t x) {
return MICROPY_FLOAT_C_FUN(fabs)(x);
}
MATH_FUN_1(fabs, fabs_func)
// floor(x)
MATH_FUN_1_TO_INT(floor, floor) // TODO: delegate to x.__floor__() if x is not a float
// fmod(x, y)
#if MICROPY_PY_MATH_FMOD_FIX_INFNAN
mp_float_t fmod_func(mp_float_t x, mp_float_t y) {
return (!isinf(x) && isinf(y)) ? x : fmod(x, y);
}
MATH_FUN_2(fmod, fmod_func)
#else
MATH_FUN_2(fmod, fmod)
#endif
// isfinite(x)
MATH_FUN_1_TO_BOOL(isfinite, isfinite)
// isinf(x)
MATH_FUN_1_TO_BOOL(isinf, isinf)
// isnan(x)
MATH_FUN_1_TO_BOOL(isnan, isnan)
// trunc(x)
MATH_FUN_1_TO_INT(trunc, trunc)
// ldexp(x, exp)
MATH_FUN_2_FLT_INT(ldexp, ldexp)
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
// erf(x): return the error function of x
MATH_FUN_1(erf, erf)
// erfc(x): return the complementary error function of x
MATH_FUN_1(erfc, erfc)
// gamma(x): return the gamma function of x
MATH_FUN_1(gamma, tgamma)
// lgamma(x): return the natural logarithm of the gamma function of x
MATH_FUN_1(lgamma, lgamma)
#endif
// TODO: fsum
#if MICROPY_PY_MATH_ISCLOSE
static mp_obj_t mp_math_isclose(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_rel_tol, ARG_abs_tol };
static const mp_arg_t allowed_args[] = {
{MP_QSTR_rel_tol, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL}},
{MP_QSTR_abs_tol, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NEW_SMALL_INT(0)}},
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 2, pos_args + 2, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
const mp_float_t a = mp_obj_get_float(pos_args[0]);
const mp_float_t b = mp_obj_get_float(pos_args[1]);
const mp_float_t rel_tol = args[ARG_rel_tol].u_obj == MP_OBJ_NULL
? (mp_float_t)1e-9 : mp_obj_get_float(args[ARG_rel_tol].u_obj);
const mp_float_t abs_tol = mp_obj_get_float(args[ARG_abs_tol].u_obj);
if (rel_tol < (mp_float_t)0.0 || abs_tol < (mp_float_t)0.0) {
math_error();
}
if (a == b) {
return mp_const_true;
}
const mp_float_t difference = MICROPY_FLOAT_C_FUN(fabs)(a - b);
if (isinf(difference)) { // Either a or b is inf
return mp_const_false;
}
if ((difference <= abs_tol) ||
(difference <= MICROPY_FLOAT_C_FUN(fabs)(rel_tol * a)) ||
(difference <= MICROPY_FLOAT_C_FUN(fabs)(rel_tol * b))) {
return mp_const_true;
}
return mp_const_false;
}
MP_DEFINE_CONST_FUN_OBJ_KW(mp_math_isclose_obj, 2, mp_math_isclose);
#endif
// Function that takes a variable number of arguments
// log(x[, base])
static mp_obj_t mp_math_log(size_t n_args, const mp_obj_t *args) {
mp_float_t x = mp_obj_get_float(args[0]);
if (x <= (mp_float_t)0.0) {
math_error();
}
mp_float_t l = MICROPY_FLOAT_C_FUN(log)(x);
if (n_args == 1) {
return mp_obj_new_float(l);
} else {
mp_float_t base = mp_obj_get_float(args[1]);
if (base <= (mp_float_t)0.0) {
math_error();
} else if (base == (mp_float_t)1.0) {
mp_raise_msg(&mp_type_ZeroDivisionError, MP_ERROR_TEXT("divide by zero"));
}
return mp_obj_new_float(l / MICROPY_FLOAT_C_FUN(log)(base));
}
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_math_log_obj, 1, 2, mp_math_log);
// Functions that return a tuple
// frexp(x): converts a floating-point number to fractional and integral components
static mp_obj_t mp_math_frexp(mp_obj_t x_obj) {
int int_exponent = 0;
mp_float_t significand = MICROPY_FLOAT_C_FUN(frexp)(mp_obj_get_float(x_obj), &int_exponent);
mp_obj_t tuple[2];
tuple[0] = mp_obj_new_float(significand);
tuple[1] = mp_obj_new_int(int_exponent);
return mp_obj_new_tuple(2, tuple);
}
static MP_DEFINE_CONST_FUN_OBJ_1(mp_math_frexp_obj, mp_math_frexp);
// modf(x)
static mp_obj_t mp_math_modf(mp_obj_t x_obj) {
mp_float_t int_part = 0.0;
mp_float_t x = mp_obj_get_float(x_obj);
mp_float_t fractional_part = MICROPY_FLOAT_C_FUN(modf)(x, &int_part);
#if MICROPY_PY_MATH_MODF_FIX_NEGZERO
if (fractional_part == MICROPY_FLOAT_CONST(0.0)) {
fractional_part = copysign(fractional_part, x);
}
#endif
mp_obj_t tuple[2];
tuple[0] = mp_obj_new_float(fractional_part);
tuple[1] = mp_obj_new_float(int_part);
return mp_obj_new_tuple(2, tuple);
}
static MP_DEFINE_CONST_FUN_OBJ_1(mp_math_modf_obj, mp_math_modf);
// Angular conversions
// radians(x)
static mp_obj_t mp_math_radians(mp_obj_t x_obj) {
return mp_obj_new_float(mp_obj_get_float(x_obj) * (MP_PI / MICROPY_FLOAT_CONST(180.0)));
}
static MP_DEFINE_CONST_FUN_OBJ_1(mp_math_radians_obj, mp_math_radians);
// degrees(x)
static mp_obj_t mp_math_degrees(mp_obj_t x_obj) {
return mp_obj_new_float(mp_obj_get_float(x_obj) * (MICROPY_FLOAT_CONST(180.0) / MP_PI));
}
static MP_DEFINE_CONST_FUN_OBJ_1(mp_math_degrees_obj, mp_math_degrees);
#if MICROPY_PY_MATH_FACTORIAL
#if MICROPY_OPT_MATH_FACTORIAL
// factorial(x): slightly efficient recursive implementation
static mp_obj_t mp_math_factorial_inner(mp_uint_t start, mp_uint_t end) {
if (start == end) {
return mp_obj_new_int(start);
} else if (end - start == 1) {
return mp_binary_op(MP_BINARY_OP_MULTIPLY, MP_OBJ_NEW_SMALL_INT(start), MP_OBJ_NEW_SMALL_INT(end));
} else if (end - start == 2) {
mp_obj_t left = MP_OBJ_NEW_SMALL_INT(start);
mp_obj_t middle = MP_OBJ_NEW_SMALL_INT(start + 1);
mp_obj_t right = MP_OBJ_NEW_SMALL_INT(end);
mp_obj_t tmp = mp_binary_op(MP_BINARY_OP_MULTIPLY, left, middle);
return mp_binary_op(MP_BINARY_OP_MULTIPLY, tmp, right);
} else {
mp_uint_t middle = start + ((end - start) >> 1);
mp_obj_t left = mp_math_factorial_inner(start, middle);
mp_obj_t right = mp_math_factorial_inner(middle + 1, end);
return mp_binary_op(MP_BINARY_OP_MULTIPLY, left, right);
}
}
static mp_obj_t mp_math_factorial(mp_obj_t x_obj) {
mp_int_t max = mp_obj_get_int(x_obj);
if (max < 0) {
mp_raise_ValueError(MP_ERROR_TEXT("negative factorial"));
} else if (max == 0) {
return MP_OBJ_NEW_SMALL_INT(1);
}
return mp_math_factorial_inner(1, max);
}
#else
// factorial(x): squared difference implementation
// based on http://www.luschny.de/math/factorial/index.html
static mp_obj_t mp_math_factorial(mp_obj_t x_obj) {
mp_int_t max = mp_obj_get_int(x_obj);
if (max < 0) {
mp_raise_ValueError(MP_ERROR_TEXT("negative factorial"));
} else if (max <= 1) {
return MP_OBJ_NEW_SMALL_INT(1);
}
mp_int_t h = max >> 1;
mp_int_t q = h * h;
mp_int_t r = q << 1;
if (max & 1) {
r *= max;
}
mp_obj_t prod = MP_OBJ_NEW_SMALL_INT(r);
for (mp_int_t num = 1; num < max - 2; num += 2) {
q -= num;
prod = mp_binary_op(MP_BINARY_OP_MULTIPLY, prod, MP_OBJ_NEW_SMALL_INT(q));
}
return prod;
}
#endif
static MP_DEFINE_CONST_FUN_OBJ_1(mp_math_factorial_obj, mp_math_factorial);
#endif
static const mp_rom_map_elem_t mp_module_math_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_math) },
{ MP_ROM_QSTR(MP_QSTR_e), mp_const_float_e },
{ MP_ROM_QSTR(MP_QSTR_pi), mp_const_float_pi },
#if MICROPY_PY_MATH_CONSTANTS
{ MP_ROM_QSTR(MP_QSTR_tau), mp_const_float_tau },
{ MP_ROM_QSTR(MP_QSTR_inf), mp_const_float_inf },
{ MP_ROM_QSTR(MP_QSTR_nan), mp_const_float_nan },
#endif
{ MP_ROM_QSTR(MP_QSTR_sqrt), MP_ROM_PTR(&mp_math_sqrt_obj) },
{ MP_ROM_QSTR(MP_QSTR_pow), MP_ROM_PTR(&mp_math_pow_obj) },
{ MP_ROM_QSTR(MP_QSTR_exp), MP_ROM_PTR(&mp_math_exp_obj) },
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
{ MP_ROM_QSTR(MP_QSTR_expm1), MP_ROM_PTR(&mp_math_expm1_obj) },
#endif
{ MP_ROM_QSTR(MP_QSTR_log), MP_ROM_PTR(&mp_math_log_obj) },
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
{ MP_ROM_QSTR(MP_QSTR_log2), MP_ROM_PTR(&mp_math_log2_obj) },
{ MP_ROM_QSTR(MP_QSTR_log10), MP_ROM_PTR(&mp_math_log10_obj) },
{ MP_ROM_QSTR(MP_QSTR_cosh), MP_ROM_PTR(&mp_math_cosh_obj) },
{ MP_ROM_QSTR(MP_QSTR_sinh), MP_ROM_PTR(&mp_math_sinh_obj) },
{ MP_ROM_QSTR(MP_QSTR_tanh), MP_ROM_PTR(&mp_math_tanh_obj) },
{ MP_ROM_QSTR(MP_QSTR_acosh), MP_ROM_PTR(&mp_math_acosh_obj) },
{ MP_ROM_QSTR(MP_QSTR_asinh), MP_ROM_PTR(&mp_math_asinh_obj) },
{ MP_ROM_QSTR(MP_QSTR_atanh), MP_ROM_PTR(&mp_math_atanh_obj) },
#endif
{ MP_ROM_QSTR(MP_QSTR_cos), MP_ROM_PTR(&mp_math_cos_obj) },
{ MP_ROM_QSTR(MP_QSTR_sin), MP_ROM_PTR(&mp_math_sin_obj) },
{ MP_ROM_QSTR(MP_QSTR_tan), MP_ROM_PTR(&mp_math_tan_obj) },
{ MP_ROM_QSTR(MP_QSTR_acos), MP_ROM_PTR(&mp_math_acos_obj) },
{ MP_ROM_QSTR(MP_QSTR_asin), MP_ROM_PTR(&mp_math_asin_obj) },
{ MP_ROM_QSTR(MP_QSTR_atan), MP_ROM_PTR(&mp_math_atan_obj) },
{ MP_ROM_QSTR(MP_QSTR_atan2), MP_ROM_PTR(&mp_math_atan2_obj) },
{ MP_ROM_QSTR(MP_QSTR_ceil), MP_ROM_PTR(&mp_math_ceil_obj) },
{ MP_ROM_QSTR(MP_QSTR_copysign), MP_ROM_PTR(&mp_math_copysign_obj) },
{ MP_ROM_QSTR(MP_QSTR_fabs), MP_ROM_PTR(&mp_math_fabs_obj) },
{ MP_ROM_QSTR(MP_QSTR_floor), MP_ROM_PTR(&mp_math_floor_obj) },
{ MP_ROM_QSTR(MP_QSTR_fmod), MP_ROM_PTR(&mp_math_fmod_obj) },
{ MP_ROM_QSTR(MP_QSTR_frexp), MP_ROM_PTR(&mp_math_frexp_obj) },
{ MP_ROM_QSTR(MP_QSTR_ldexp), MP_ROM_PTR(&mp_math_ldexp_obj) },
{ MP_ROM_QSTR(MP_QSTR_modf), MP_ROM_PTR(&mp_math_modf_obj) },
{ MP_ROM_QSTR(MP_QSTR_isfinite), MP_ROM_PTR(&mp_math_isfinite_obj) },
{ MP_ROM_QSTR(MP_QSTR_isinf), MP_ROM_PTR(&mp_math_isinf_obj) },
{ MP_ROM_QSTR(MP_QSTR_isnan), MP_ROM_PTR(&mp_math_isnan_obj) },
#if MICROPY_PY_MATH_ISCLOSE
{ MP_ROM_QSTR(MP_QSTR_isclose), MP_ROM_PTR(&mp_math_isclose_obj) },
#endif
{ MP_ROM_QSTR(MP_QSTR_trunc), MP_ROM_PTR(&mp_math_trunc_obj) },
{ MP_ROM_QSTR(MP_QSTR_radians), MP_ROM_PTR(&mp_math_radians_obj) },
{ MP_ROM_QSTR(MP_QSTR_degrees), MP_ROM_PTR(&mp_math_degrees_obj) },
#if MICROPY_PY_MATH_FACTORIAL
{ MP_ROM_QSTR(MP_QSTR_factorial), MP_ROM_PTR(&mp_math_factorial_obj) },
#endif
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
{ MP_ROM_QSTR(MP_QSTR_erf), MP_ROM_PTR(&mp_math_erf_obj) },
{ MP_ROM_QSTR(MP_QSTR_erfc), MP_ROM_PTR(&mp_math_erfc_obj) },
{ MP_ROM_QSTR(MP_QSTR_gamma), MP_ROM_PTR(&mp_math_gamma_obj) },
{ MP_ROM_QSTR(MP_QSTR_lgamma), MP_ROM_PTR(&mp_math_lgamma_obj) },
#endif
};
static MP_DEFINE_CONST_DICT(mp_module_math_globals, mp_module_math_globals_table);
const mp_obj_module_t mp_module_math = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t *)&mp_module_math_globals,
};
MP_REGISTER_MODULE(MP_QSTR_math, mp_module_math);
#endif // MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH