-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
303 lines (257 loc) · 15.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import datetime
import os
import pickle
import sys
import time
import numpy as np
import tensorflow as tf
from tensorflow.contrib import learn
from TextCategorization.cnn_model import CNN_Categorizer_v2
from TextCategorization.load_dataset import create_batches, load_train_vali_test_sets
RESTORE_TRAINING = input("Train from start or restore the latest checkpoint: (T/R)\n")
while RESTORE_TRAINING.upper() not in ['T', 'R']:
RESTORE_TRAINING = input('Invalid input. (T) for train, (R) for restore:')
CHARACTER_EMBEDDING_SIZE = 128
USE_TF_EMBEDDING_LOOKUP = True
turkish_dataset_path = "D:/TWNERTC_All_Versions/TWNERTC_TC_Coarse Grained NER_No_NoiseReduction.DUMP"
train_path = "D:/PycharmProjects/TextCategorization/data/TWNERTC_TC_Coarse Grained NER_No_NoiseReduction.train"
vali_path = "D:/PycharmProjects/TextCategorization/data/TWNERTC_TC_Coarse Grained NER_No_NoiseReduction.vali"
test_path = "D:/PycharmProjects/TextCategorization/data/TWNERTC_TC_Coarse Grained NER_No_NoiseReduction.test"
fasttext_vocab_path = "D:/PycharmProjects/TextCategorization/fasttext_tr_vocab_cache.dat"
fasttext_model_path = "D:/PycharmProjects/TextCategorization/fasttext_tr_embedding_cache.npy"
tf.flags.DEFINE_string("train_or_restore", RESTORE_TRAINING, "Train or Restore.")
# Data sources
tf.flags.DEFINE_string("training_file", train_path, "Training data source")
tf.flags.DEFINE_string("validation_file", vali_path, "Validation data source")
tf.flags.DEFINE_string("test_file", test_path, "Test data source")
tf.flags.DEFINE_string("fasttext_vocab", fasttext_vocab_path, "Vocabulary source of FastText embeddings")
tf.flags.DEFINE_string("fasttext_model", fasttext_model_path, "FastText embeddings source")
# Model Parameters
tf.flags.DEFINE_float("learning_rate", 0.05, "Learning rate, default(0.01)")
tf.flags.DEFINE_float("dropout_keep_prob", 0.5, "Learning rate, default(0.5)")
tf.flags.DEFINE_string("filter_sizes", "3,4,5", "Filter size, default(3,4,5)")
tf.flags.DEFINE_integer("num_filters", 128, "Number of filters, default(128)")
tf.flags.DEFINE_integer("embedding_size", 300, "Embedding size, default(300)")
tf.flags.DEFINE_integer("num_classes", 25, "Number of tasks, default(25)")
tf.flags.DEFINE_integer("top_k_category", 5, "Number of categories to return as result, default(5)")
tf.flags.DEFINE_integer("epoch", 50, "Number of epochs, default(25)")
tf.flags.DEFINE_integer("save_step", 500, "Step to save the model, default(500)")
tf.flags.DEFINE_integer("evaluate_step", 10, "Step to evaluate the model, default(500)")
tf.flags.DEFINE_integer("train_batch_size", 512, "Training batch size, default(512)")
tf.flags.DEFINE_integer("validation_batch_size", 512, "Validation batch size, default(512)")
tf.flags.DEFINE_integer("max_sentence_length", 40, "Maximum sentence length, default(512)")
tf.flags.DEFINE_integer("decay_step", 250, "How many steps before decay learning rate, default(250)")
tf.flags.DEFINE_float("decay_rate", 0.1, "Rate of decay for learning rate, (default: 0.95)")
tf.flags.DEFINE_float("norm_ratio", 1.25,
"The ratio of the sum of gradients norms of trainable variable (default: 1.25)")
FLAGS = tf.flags.FLAGS
FLAGS(sys.argv)
def main():
print("Loading training/test data...")
train_sentences, y_train, vali_sentences, y_vali, _, _ = load_train_vali_test_sets(
FLAGS.training_file, FLAGS.validation_file, FLAGS.test_file)
vocabulary_processor = learn.preprocessing.VocabularyProcessor(FLAGS.max_sentence_length)
print("Loading pre-trained fasttext vectors")
with open(FLAGS.fasttext_vocab, 'rb') as f:
vocabulary = pickle.load(f)
embedding = np.load(FLAGS.fasttext_model)
if RESTORE_TRAINING.upper() == "R":
print("Restoring the model!")
model_number = input("Enter the checkpoint number:")
while not model_number.isdigit() and len(model_number) == 10:
model_number = input("Invalid format. Re-enter:")
checkpoint_dir = "runs/" + model_number + "/checkpoints/"
outdir = os.path.abspath(os.path.join(os.path.curdir, "runs", model_number))
vocabulary_processor.restore(os.path.join(outdir, "vocab"))
else:
outdir = create_output_directory()
vocabulary_processor.fit(vocabulary.keys())
x_train = np.array(list(vocabulary_processor.transform(train_sentences)))
x_vali = np.array(list(vocabulary_processor.transform(vali_sentences)))
vocabulary_size = len(vocabulary)
print("Train size: ", len(x_train))
print("Validation size: ", len(x_vali))
print("Vocabulary size:", vocabulary_size)
print("Training phase starts...")
session_conf = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)
sess = tf.Session(config=session_conf)
cnn = CNN_Categorizer_v2(sentence_length=x_train.shape[1],
num_classes=FLAGS.num_classes,
vocabulary_size=vocabulary_size,
embedding_size=FLAGS.embedding_size,
filter_sizes=list(map(int, FLAGS.filter_sizes.split(","))),
num_filters=FLAGS.num_filters,
l2_reg_lambda=0,
embedding_type="static")
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
global_step = tf.Variable(0, name="global_step", trainable=False)
# learning_rate = tf.train.exponential_decay(learning_rate=FLAGS.learning_rate,
# global_step=global_step, decay_steps=FLAGS.decay_step,
# decay_rate=FLAGS.decay_rate, staircase=True)
optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate)
grads, vars = zip(*optimizer.compute_gradients(cnn.loss))
# grads, _ = tf.clip_by_global_norm(grads, clip_norm=FLAGS.norm_ratio)
train_op = optimizer.apply_gradients(zip(grads, vars), global_step=global_step, name="train_op")
grad_summaries = track_gradients(zip(grads, vars))
loss_summary, acc_summary, top2_summary, top3_summary, top4_summary, top5_summary = create_summaries(cnn)
train_summary_op = tf.summary.merge([loss_summary,
acc_summary,
top2_summary,
top3_summary,
top4_summary,
top5_summary,
grad_summaries])
train_summary_dir = os.path.join(outdir, "summaries", "train")
train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)
dev_summary_op = tf.summary.merge([loss_summary,
acc_summary,
top2_summary,
top3_summary,
top4_summary,
top5_summary,
grad_summaries])
dev_summary_dir = os.path.join(outdir, "summaries", "dev")
dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, sess.graph)
saver = tf.train.Saver(max_to_keep=1)
tf.add_to_collection('train_op', train_op)
if RESTORE_TRAINING.upper() == "R":
checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir)
saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
saver.restore(sess, checkpoint_file)
train_op = tf.get_collection('train_op')[0]
else:
checkpoint_dir = os.path.abspath(os.path.join(outdir, "checkpoints"))
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
if USE_TF_EMBEDDING_LOOKUP:
vocabulary_processor.save(os.path.join(outdir, "vocab"))
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
def train_step(x_batch, y_batch):
feed_dict = {cnn.input_x: x_batch,
cnn.input_y: y_batch,
cnn.keep_prob: FLAGS.dropout_keep_prob,
cnn.embedding_placeholder: embedding,
cnn.batch_norm: True}
_, step, summaries, loss, accuracy, top2, top3, top4, top5 = sess.run([train_op,
global_step,
train_summary_op,
cnn.loss,
cnn.accuracy,
cnn.pred_top_2,
cnn.pred_top_3,
cnn.pred_top_4,
cnn.pred_top_5], feed_dict=feed_dict)
train_summary_writer.add_summary(summaries, step)
return step, loss, accuracy, top2, top3, top4, top5
def validation_step(x_validation, y_validation, writer=None):
validation_batches = create_batches(list(zip(x_validation, y_validation)), FLAGS.validation_batch_size, 1)
vali_counter, vali_accuracy = 0, 0.0
for vali_batch in validation_batches:
x_vali_batch, y_vali_batch = zip(*vali_batch)
feed_dict_vali = {cnn.input_x: x_vali_batch,
cnn.input_y: y_vali_batch,
cnn.embedding_placeholder: embedding,
cnn.keep_prob: 1.0,
cnn.batch_norm: False}
step, summaries, current_accuracy, top2, top3, top4, top5 = sess.run([global_step,
dev_summary_op,
cnn.accuracy,
cnn.pred_top_2,
cnn.pred_top_3,
cnn.pred_top_4,
cnn.pred_top_5], feed_dict_vali)
vali_accuracy += current_accuracy
vali_counter += 1
print("Validation batch:", vali_counter, "- Batch accuracy", current_accuracy)
if writer is not None:
writer.add_summary(summaries, step)
vali_accuracy /= vali_counter
return vali_accuracy, top2, top3, top4, top5
def save_step(current_step):
print(datetime.datetime.now().isoformat(),
"Saving!")
checkpoint_prefix = os.path.join(checkpoint_dir, "model")
path = saver.save(sess, checkpoint_prefix, global_step=current_step)
print(datetime.datetime.now().isoformat(),
"Saved model at", current_step, "to", path)
print("-----------------------------------------------------")
train_batches = create_batches(list(zip(x_train, y_train)), FLAGS.train_batch_size, FLAGS.epoch)
num_batch = int((len(x_train) - 1) / FLAGS.train_batch_size) + 1
print("Number of batches (train):", num_batch)
best_validation_accuracy = -1
best_validation_top2 = -1
best_validation_top3 = -1
best_validation_top4 = -1
best_validation_top5 = -1
for train_batch in train_batches:
x_batch, y_batch = zip(*train_batch)
_, train_loss, train_accuracy, train_top2, train_top3, train_top4, train_top5 = train_step(x_batch, y_batch)
current_step = tf.train.global_step(sess, global_step)
print(datetime.datetime.now().isoformat(),
"Train Step:", current_step,
"Train Loss:", train_loss,
"Train Accuracy:", train_accuracy,
"Train Top-2 Accuracy:", train_top2,
"Train Top-3 Accuracy:", train_top3,
"Train Top-4 Accuracy:", train_top4,
"Train Top-5 Accuracy:", train_top5)
if current_step % FLAGS.evaluate_step == 0 or current_step // num_batch == FLAGS.epoch:
print("-----------------------------------------------------")
print(datetime.datetime.now().isoformat(),
"Evaluation!")
vali_acc, vali_top2, vali_top3, vali_top4, vali_top5 = validation_step(
x_vali, y_vali, writer=dev_summary_writer)
print(datetime.datetime.now().isoformat(),
"Total validation accuracy:", vali_acc,
"Total validation Top-2 accuracy:", vali_top2,
"Total validation Top-3 accuracy:", vali_top3,
"Total validation Top-4 accuracy:", vali_top4,
"Total validation Top-5 accuracy:", vali_top5)
print("-----------------------------------------------------")
if best_validation_accuracy < vali_acc:
best_validation_accuracy = vali_acc
best_validation_top2 = vali_top2
best_validation_top3 = vali_top3
best_validation_top4 = vali_top4
best_validation_top5 = vali_top5
print(datetime.datetime.now().isoformat(),
"Best validation accuracy:", best_validation_accuracy,
"Best validation Top-2 accuracy:", best_validation_top2,
"Best validation Top-3 accuracy:", best_validation_top3,
"Best validation Top-4 accuracy:", best_validation_top4,
"Best validation Top-5 accuracy:", best_validation_top5)
if current_step % FLAGS.save_step == 0 or current_step // num_batch == FLAGS.epoch:
if best_validation_accuracy == vali_acc:
save_step(current_step)
if current_step % num_batch == 0:
current_epoch = current_step // num_batch
print(datetime.datetime.now().isoformat(),
"Epoch", current_epoch, "has finished!")
print("Done!")
def track_gradients(grads_and_vars):
grad_summaries = list()
for g, v in grads_and_vars:
if g is not None:
grad_hist_summary = tf.summary.histogram(
"{}/grad/hist".format(v.name), g)
sparsity_summary = tf.summary.scalar(
"{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
grad_summaries.append(grad_hist_summary)
grad_summaries.append(sparsity_summary)
return tf.summary.merge(grad_summaries)
def create_summaries(cnn):
loss_summary = tf.summary.scalar("loss", cnn.loss)
acc_summary = tf.summary.scalar("accuracy", cnn.accuracy)
top2_summary = tf.summary.scalar("top2", cnn.pred_top_2)
top3_summary = tf.summary.scalar("top3", cnn.pred_top_3)
top4_summary = tf.summary.scalar("top4", cnn.pred_top_4)
top5_summary = tf.summary.scalar("top5", cnn.pred_top_5)
return loss_summary, acc_summary, top2_summary, top3_summary, top4_summary, top5_summary
def create_output_directory():
timestamp = str(int(time.time()))
outdir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp))
return outdir
if __name__ == '__main__':
main()