Skip to content
This repository has been archived by the owner on Apr 21, 2024. It is now read-only.

Latest commit

 

History

History
317 lines (317 loc) · 224 KB

20220322.md

File metadata and controls

317 lines (317 loc) · 224 KB

ArXiv cs.CV --Tue, 22 Mar 2022

1.Generating Fast and Slow: Scene Decomposition via Reconstruction ⬇️

We consider the problem of segmenting scenes into constituent entities, i.e. underlying objects and their parts. Current supervised visual detectors though impressive within their training distribution, often fail to segment out-of-distribution scenes into their constituent entities. Recent slot-centric generative models break such dependence on supervision, by attempting to segment scenes into entities unsupervised, by reconstructing pixels. However, they have been restricted thus far to toy scenes as they suffer from a reconstruction-segmentation trade-off: as the entity bottleneck gets wider, reconstruction improves but then the segmentation collapses. We propose GFS-Nets (Generating Fast and Slow Networks) that alleviate this issue with two ingredients: i) curriculum training in the form of primitives, often missing from current generative models and, ii) test-time adaptation per scene through gradient descent on the reconstruction objective, what we call slow inference, missing from current feed-forward detectors. We show the proposed curriculum suffices to break the reconstruction-segmentation trade-off, and slow inference greatly improves segmentation in out-of-distribution scenes. We evaluate GFS-Nets in 3D and 2D scene segmentation benchmarks of PartNet, CLEVR, Room Diverse++, and show large ( 50%) performance improvements against SOTA supervised feed-forward detectors and unsupervised object discovery methods

2.Transforming Model Prediction for Tracking ⬇️

Optimization based tracking methods have been widely successful by integrating a target model prediction module, providing effective global reasoning by minimizing an objective function. While this inductive bias integrates valuable domain knowledge, it limits the expressivity of the tracking network. In this work, we therefore propose a tracker architecture employing a Transformer-based model prediction module. Transformers capture global relations with little inductive bias, allowing it to learn the prediction of more powerful target models. We further extend the model predictor to estimate a second set of weights that are applied for accurate bounding box regression. The resulting tracker relies on training and on test frame information in order to predict all weights transductively. We train the proposed tracker end-to-end and validate its performance by conducting comprehensive experiments on multiple tracking datasets. Our tracker sets a new state of the art on three benchmarks, achieving an AUC of 68.5% on the challenging LaSOT dataset.

3.Robust Visual Tracking by Segmentation ⬇️

Estimating the target extent poses a fundamental challenge in visual object tracking. Typically, trackers are box-centric and fully rely on a bounding box to define the target in the scene. In practice, objects often have complex shapes and are not aligned with the image axis. In these cases, bounding boxes do not provide an accurate description of the target and often contain a majority of background pixels. We propose a segmentation-centric tracking pipeline that not only produces a highly accurate segmentation mask, but also works internally with segmentation masks instead of bounding boxes. Thus, our tracker is able to better learn a target representation that clearly differentiates the target in the scene from background content. In order to achieve the necessary robustness for the challenging tracking scenario, we propose a separate instance localization component that is used to condition the segmentation decoder when producing the output mask. We infer a bounding box from the segmentation mask and validate our tracker on challenging tracking datasets and achieve the new state of the art on LaSOT with a success AUC score of 69.7%. Since fully evaluating the predicted masks on tracking datasets is not possible due to the missing mask annotations, we further validate our segmentation quality on two popular video object segmentation datasets.

4.Masked Discrimination for Self-Supervised Learning on Point Clouds ⬇️

Masked autoencoding has achieved great success for self-supervised learning in the image and language domains. However, mask based pretraining has yet to show benefits for point cloud understanding, likely due to standard backbones like PointNet being unable to properly handle the training versus testing distribution mismatch introduced by masking during training. In this paper, we bridge this gap by proposing a discriminative mask pretraining Transformer framework, MaskPoint}, for point clouds. Our key idea is to represent the point cloud as discrete occupancy values (1 if part of the point cloud; 0 if not), and perform simple binary classification between masked object points and sampled noise points as the proxy task. In this way, our approach is robust to the point sampling variance in point clouds, and facilitates learning rich representations. We evaluate our pretrained models across several downstream tasks, including 3D shape classification, segmentation, and real-word object detection, and demonstrate state-of-the-art results while achieving a significant pretraining speedup (e.g., 4.1x on ScanNet) compared to the prior state-of-the-art Transformer baseline. Code will be publicly available at this https URL.

5.DiffPoseNet: Direct Differentiable Camera Pose Estimation ⬇️

Current deep neural network approaches for camera pose estimation rely on scene structure for 3D motion estimation, but this decreases the robustness and thereby makes cross-dataset generalization difficult. In contrast, classical approaches to structure from motion estimate 3D motion utilizing optical flow and then compute depth. Their accuracy, however, depends strongly on the quality of the optical flow. To avoid this issue, direct methods have been proposed, which separate 3D motion from depth estimation but compute 3D motion using only image gradients in the form of normal flow. In this paper, we introduce a network NFlowNet, for normal flow estimation which is used to enforce robust and direct constraints. In particular, normal flow is used to estimate relative camera pose based on the cheirality (depth positivity) constraint. We achieve this by formulating the optimization problem as a differentiable cheirality layer, which allows for end-to-end learning of camera pose. We perform extensive qualitative and quantitative evaluation of the proposed DiffPoseNet's sensitivity to noise and its generalization across datasets. We compare our approach to existing state-of-the-art methods on KITTI, TartanAir, and TUM-RGBD datasets.

6.Interpreting Class Conditional GANs with Channel Awareness ⬇️

Understanding the mechanism of generative adversarial networks (GANs) helps us better use GANs for downstream applications. Existing efforts mainly target interpreting unconditional models, leaving it less explored how a conditional GAN learns to render images regarding various categories. This work fills in this gap by investigating how a class conditional generator unifies the synthesis of multiple classes. For this purpose, we dive into the widely used class-conditional batch normalization (CCBN), and observe that each feature channel is activated at varying degrees given different categorical embeddings. To describe such a phenomenon, we propose channel awareness, which quantitatively characterizes how a single channel contributes to the final synthesis. Extensive evaluations and analyses on the BigGAN model pre-trained on ImageNet reveal that only a subset of channels is primarily responsible for the generation of a particular category, similar categories (e.g., cat and dog) usually get related to some same channels, and some channels turn out to share information across all classes. For good measure, our algorithm enables several novel applications with conditional GANs. Concretely, we achieve (1) versatile image editing via simply altering a single channel and manage to (2) harmoniously hybridize two different classes. We further verify that the proposed channel awareness shows promising potential in (3) segmenting the synthesized image and (4) evaluating the category-wise synthesis performance.

7.Drive&Segment: Unsupervised Semantic Segmentation of Urban Scenes via Cross-modal Distillation ⬇️

This work investigates learning pixel-wise semantic image segmentation in urban scenes without any manual annotation, just from the raw non-curated data collected by cars which, equipped with cameras and LiDAR sensors, drive around a city. Our contributions are threefold. First, we propose a novel method for cross-modal unsupervised learning of semantic image segmentation by leveraging synchronized LiDAR and image data. The key ingredient of our method is the use of an object proposal module that analyzes the LiDAR point cloud to obtain proposals for spatially consistent objects. Second, we show that these 3D object proposals can be aligned with the input images and reliably clustered into semantically meaningful pseudo-classes. Finally, we develop a cross-modal distillation approach that leverages image data partially annotated with the resulting pseudo-classes to train a transformer-based model for image semantic segmentation. We show the generalization capabilities of our method by testing on four different testing datasets (Cityscapes, Dark Zurich, Nighttime Driving and ACDC) without any finetuning, and demonstrate significant improvements compared to the current state of the art on this problem. See project webpage this https URL for the code and more.

8.Operator Sketching for Deep Unrolling Networks ⬇️

In this work we propose a new paradigm for designing efficient deep unrolling networks using operator sketching. The deep unrolling networks are currently the state-of-the-art solutions for imaging inverse problems. However, for high-dimensional imaging tasks, especially the 3D cone-beam X-ray CT and 4D MRI imaging, the deep unrolling schemes typically become inefficient both in terms of memory and computation, due to the need of computing multiple times the high-dimensional forward and adjoint operators. Recently researchers have found that such limitations can be partially addressed by stochastic unrolling with subsets of operators, inspired by the success of stochastic first-order optimization. In this work, we propose a further acceleration upon stochastic unrolling, using sketching techniques to approximate products in the high-dimensional image space. The operator sketching can be jointly applied with stochastic unrolling for the best acceleration and compression performance. Our numerical experiments on X-ray CT image reconstruction demonstrate the remarkable effectiveness of our sketched unrolling schemes.

9.Multispectral Satellite Data Classification using Soft Computing Approach ⬇️

A satellite image is a remotely sensed image data, where each pixel represents a specific location on earth. The pixel value recorded is the reflection radiation from the earth's surface at that location. Multispectral images are those that capture image data at specific frequencies across the electromagnetic spectrum as compared to Panchromatic images which are sensitive to all wavelength of visible light. Because of the high resolution and high dimensions of these images, they create difficulties for clustering techniques to efficiently detect clusters of different sizes, shapes and densities as a trade off for fast processing time. In this paper we propose a grid-density based clustering technique for identification of objects. We also introduce an approach to classify a satellite image data using a rule induction based machine learning algorithm. The object identification and classification methods have been validated using several synthetic and benchmark datasets.

10.Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds ⬇️

We study the problem of efficient object detection of 3D LiDAR point clouds. To reduce the memory and computational cost, existing point-based pipelines usually adopt task-agnostic random sampling or farthest point sampling to progressively downsample input point clouds, despite the fact that not all points are equally important to the task of object detection. In particular, the foreground points are inherently more important than background points for object detectors. Motivated by this, we propose a highly-efficient single-stage point-based 3D detector in this paper, termed IA-SSD. The key of our approach is to exploit two learnable, task-oriented, instance-aware downsampling strategies to hierarchically select the foreground points belonging to objects of interest. Additionally, we also introduce a contextual centroid perception module to further estimate precise instance centers. Finally, we build our IA-SSD following the encoder-only architecture for efficiency. Extensive experiments conducted on several large-scale detection benchmarks demonstrate the competitive performance of our IA-SSD. Thanks to the low memory footprint and a high degree of parallelism, it achieves a superior speed of 80+ frames-per-second on the KITTI dataset with a single RTX2080Ti GPU. The code is available at \url{this https URL}.

11.No Pain, Big Gain: Classify Dynamic Point Cloud Sequences with Static Models by Fitting Feature-level Space-time Surfaces ⬇️

Scene flow is a powerful tool for capturing the motion field of 3D point clouds. However, it is difficult to directly apply flow-based models to dynamic point cloud classification since the unstructured points make it hard or even impossible to efficiently and effectively trace point-wise correspondences. To capture 3D motions without explicitly tracking correspondences, we propose a kinematics-inspired neural network (Kinet) by generalizing the kinematic concept of ST-surfaces to the feature space. By unrolling the normal solver of ST-surfaces in the feature space, Kinet implicitly encodes feature-level dynamics and gains advantages from the use of mature backbones for static point cloud processing. With only minor changes in network structures and low computing overhead, it is painless to jointly train and deploy our framework with a given static model. Experiments on NvGesture, SHREC'17, MSRAction-3D, and NTU-RGBD demonstrate its efficacy in performance, efficiency in both the number of parameters and computational complexity, as well as its versatility to various static backbones. Noticeably, Kinet achieves the accuracy of 93.27% on MSRAction-3D with only 3.20M parameters and 10.35G FLOPS.

12.Facial Expression Analysis Using Decomposed Multiscale Spatiotemporal Networks ⬇️

Video-based analysis of facial expressions has been increasingly applied to infer health states of individuals, such as depression and pain. Among the existing approaches, deep learning models composed of structures for multiscale spatiotemporal processing have shown strong potential for encoding facial dynamics. However, such models have high computational complexity, making for a difficult deployment of these solutions. To address this issue, we introduce a new technique to decompose the extraction of multiscale spatiotemporal features. Particularly, a building block structure called Decomposed Multiscale Spatiotemporal Network (DMSN) is presented along with three variants: DMSN-A, DMSN-B, and DMSN-C blocks. The DMSN-A block generates multiscale representations by analyzing spatiotemporal features at multiple temporal ranges, while the DMSN-B block analyzes spatiotemporal features at multiple ranges, and the DMSN-C block analyzes spatiotemporal features at multiple spatial sizes. Using these variants, we design our DMSN architecture which has the ability to explore a variety of multiscale spatiotemporal features, favoring the adaptation to different facial behaviors. Our extensive experiments on challenging datasets show that the DMSN-C block is effective for depression detection, whereas the DMSN-A block is efficient for pain estimation. Results also indicate that our DMSN architecture provides a cost-effective solution for expressions that range from fewer facial variations over time, as in depression detection, to greater variations, as in pain estimation.

13.High-fidelity GAN Inversion with Padding Space ⬇️

Inverting a Generative Adversarial Network (GAN) facilitates a wide range of image editing tasks using pre-trained generators. Existing methods typically employ the latent space of GANs as the inversion space yet observe the insufficient recovery of spatial details. In this work, we propose to involve the padding space of the generator to complement the latent space with spatial information. Concretely, we replace the constant padding (e.g., usually zeros) used in convolution layers with some instance-aware coefficients. In this way, the inductive bias assumed in the pre-trained model can be appropriately adapted to fit each individual image. Through learning a carefully designed encoder, we manage to improve the inversion quality both qualitatively and quantitatively, outperforming existing alternatives. We then demonstrate that such a space extension barely affects the native GAN manifold, hence we can still reuse the prior knowledge learned by GANs for various downstream applications. Beyond the editing tasks explored in prior arts, our approach allows a more flexible image manipulation, such as the separate control of face contour and facial details, and enables a novel editing manner where users can customize their own manipulations highly efficiently.

14.CLIP meets GamePhysics: Towards bug identification in gameplay videos using zero-shot transfer learning ⬇️

Gameplay videos contain rich information about how players interact with the game and how the game responds. Sharing gameplay videos on social media platforms, such as Reddit, has become a common practice for many players. Often, players will share gameplay videos that showcase video game bugs. Such gameplay videos are software artifacts that can be utilized for game testing, as they provide insight for bug analysis. Although large repositories of gameplay videos exist, parsing and mining them in an effective and structured fashion has still remained a big challenge. In this paper, we propose a search method that accepts any English text query as input to retrieve relevant videos from large repositories of gameplay videos. Our approach does not rely on any external information (such as video metadata); it works solely based on the content of the video. By leveraging the zero-shot transfer capabilities of the Contrastive Language-Image Pre-Training (CLIP) model, our approach does not require any data labeling or training. To evaluate our approach, we present the $\texttt{GamePhysics}$ dataset consisting of 26,954 videos from 1,873 games, that were collected from the GamePhysics section on the Reddit website. Our approach shows promising results in our extensive analysis of simple queries, compound queries, and bug queries, indicating that our approach is useful for object and event detection in gameplay videos. An example application of our approach is as a gameplay video search engine to aid in reproducing video game bugs. Please visit the following link for the code and the data: this https URL

15.PersFormer: 3D Lane Detection via Perspective Transformer and the OpenLane Benchmark ⬇️

Methods for 3D lane detection have been recently proposed to address the issue of inaccurate lane layouts in many autonomous driving scenarios (uphill/downhill, bump, etc.). Previous work struggled in complex cases due to their simple designs of the spatial transformation between front view and bird's eye view (BEV) and the lack of a realistic dataset. Towards these issues, we present PersFormer: an end-to-end monocular 3D lane detector with a novel Transformer-based spatial feature transformation module. Our model generates BEV features by attending to related front-view local regions with camera parameters as a reference. PersFormer adopts a unified 2D/3D anchor design and an auxiliary task to detect 2D/3D lanes simultaneously, enhancing the feature consistency and sharing the benefits of multi-task learning. Moreover, we release one of the first large-scale real-world 3D lane datasets, which is called OpenLane, with high-quality annotation and scenario diversity. OpenLane contains 200,000 frames, over 880,000 instance-level lanes, 14 lane categories, along with scene tags and the closed-in-path object annotations to encourage the development of lane detection and more industrial-related autonomous driving methods. We show that PersFormer significantly outperforms competitive baselines in the 3D lane detection task on our new OpenLane dataset as well as Apollo 3D Lane Synthetic dataset, and is also on par with state-of-the-art algorithms in the 2D task on OpenLane. The project page is available at this https URL.

16.MixFormer: End-to-End Tracking with Iterative Mixed Attention ⬇️

Tracking often uses a multi-stage pipeline of feature extraction, target information integration, and bounding box estimation. To simplify this pipeline and unify the process of feature extraction and target information integration, we present a compact tracking framework, termed as {\em MixFormer}, built upon transformers. Our core design is to utilize the flexibility of attention operations, and propose a Mixed Attention Module (MAM) for simultaneous feature extraction and target information integration. This synchronous modeling scheme allows to extract target-specific discriminative features and perform extensive communication between target and search area. Based on MAM, we build our MixFormer tracking framework simply by stacking multiple MAMs with progressive patch embedding and placing a localization head on top. In addition, to handle multiple target templates during online tracking, we devise an asymmetric attention scheme in MAM to reduce computational cost, and propose an effective score prediction module to select high-quality templates. Our MixFormer sets a new state-of-the-art performance on five tracking benchmarks, including LaSOT, TrackingNet, VOT2020, GOT-10k, and UAV123. In particular, our MixFormer-L achieves NP score of 79.9 on LaSOT, 88.9 on TrackingNet and EAO of 0.555 on VOT2020. We also perform in-depth ablation studies to demonstrate the effectiveness of simultaneous feature extraction and information integration. Code and trained models are publicly available at \href{this https URL}{this https URL}.

17.Image Classification on Accelerated Neural Networks ⬇️

For image classification problems, various neural network models are commonly used due to their success in yielding high accuracies. Convolutional Neural Network (CNN) is one of the most frequently used deep learning methods for image classification applications. It may produce extraordinarily accurate results with regard to its complexity. However, the more complex the model is the longer it takes to train. In this paper, an acceleration design that uses the power of FPGA is given for a basic CNN model which consists of one convolutional layer and one fully connected layer for the training phase of the fully connected layer. Nonetheless, inference phase is also accelerated automatically due to the fact that training phase includes inference. In this design, the convolutional layer is calculated by the host computer and the fully connected layer is calculated by an FPGA board. It should be noted that the training of convolutional layer is not taken into account in this design and is left for future research. The results are quite encouraging as this FPGA design tops the performance of some of the state-of-the-art deep learning platforms such as Tensorflow on the host computer approximately 2 times in both training and inference.

18.Dense Siamese Network ⬇️

This paper presents Dense Siamese Network (DenseSiam), a simple unsupervised learning framework for dense prediction tasks. It learns visual representations by maximizing the similarity between two views of one image with two types of consistency, i.e., pixel consistency and region consistency. Concretely, DenseSiam first maximizes the pixel level spatial consistency according to the exact location correspondence in the overlapped area. It also extracts a batch of region embeddings that correspond to some sub-regions in the overlapped area to be contrasted for region consistency. In contrast to previous methods that require negative pixel pairs, momentum encoders, or heuristic masks, DenseSiam benefits from the simple Siamese network and optimizes the consistency of different granularities. It also proves that the simple location correspondence and interacted region embeddings are effective enough to learn the similarity. We apply DenseSiam on ImageNet and obtain competitive improvements on various downstream tasks. We also show that only with some extra task-specific losses, the simple framework can directly conduct dense prediction tasks. On an existing unsupervised semantic segmentation benchmark, it surpasses state-of-the-art segmentation methods by 2.1 mIoU with 28% training costs.

19.Learning Enriched Illuminants for Cross and Single Sensor Color Constancy ⬇️

Color constancy aims to restore the constant colors of a scene under different illuminants. However, due to the existence of camera spectral sensitivity, the network trained on a certain sensor, cannot work well on others. Also, since the training datasets are collected in certain environments, the diversity of illuminants is limited for complex real world prediction. In this paper, we tackle these problems via two aspects. First, we propose cross-sensor self-supervised training to train the network. In detail, we consider both the general sRGB images and the white-balanced RAW images from current available datasets as the white-balanced agents. Then, we train the network by randomly sampling the artificial illuminants in a sensor-independent manner for scene relighting and supervision. Second, we analyze a previous cascaded framework and present a more compact and accurate model by sharing the backbone parameters with learning attention specifically. Experiments show that our cross-sensor model and single-sensor model outperform other state-of-the-art methods by a large margin on cross and single sensor evaluations, respectively, with only 16% parameters of the previous best model.

20.Stereo Neural Vernier Caliper ⬇️

We propose a new object-centric framework for learning-based stereo 3D object detection. Previous studies build scene-centric representations that do not consider the significant variation among outdoor instances and thus lack the flexibility and functionalities that an instance-level model can offer. We build such an instance-level model by formulating and tackling a local update problem, i.e., how to predict a refined update given an initial 3D cuboid guess. We demonstrate how solving this problem can complement scene-centric approaches in (i) building a coarse-to-fine multi-resolution system, (ii) performing model-agnostic object location refinement, and (iii) conducting stereo 3D tracking-by-detection. Extensive experiments demonstrate the effectiveness of our approach, which achieves state-of-the-art performance on the KITTI benchmark. Code and pre-trained models are available at this https URL.

21.Online Skeleton-based Action Recognition with Continual Spatio-Temporal Graph Convolutional Networks ⬇️

Graph-based reasoning over skeleton data has emerged as a promising approach for human action recognition. However, the application of prior graph-based methods, which predominantly employ whole temporal sequences as their input, to the setting of online inference entails considerable computational redundancy. In this paper, we tackle this issue by reformulating the Spatio-Temporal Graph Convolutional Neural Network as a Continual Inference Network, which can perform step-by-step predictions in time without repeat frame processing. To evaluate our method, we create a continual version of ST-GCN, CoST-GCN, alongside two derived methods with different self-attention mechanisms, CoAGCN and CoS-TR. We investigate weight transfer strategies and architectural modifications for inference acceleration, and perform experiments on the NTU RGB+D 60, NTU RGB+D 120, and Kinetics Skeleton 400 datasets. Retaining similar predictive accuracy, we observe up to 109x reduction in time complexity, on-hardware accelerations of 26x, and reductions in maximum allocated memory of 52% during online inference.

22.Transformer-based HTR for Historical Documents ⬇️

We apply the TrOCR framework to real-world, historical manuscripts and show that TrOCR per se is a strong model, ideal for transfer learning. TrOCR has been trained on English only, but it can adapt to other languages that use the Latin alphabet fairly easily and with little training material. We compare TrOCR against a SOTA HTR framework (Transkribus) and show that it can beat such systems. This finding is essential since Transkribus performs best when it has access to baseline information, which is not needed at all to fine-tune TrOCR.

23.Underwater Light Field Retention : Neural Rendering for Underwater Imaging ⬇️

Underwater Image Rendering aims to generate a true-to-life underwater image from a given clean one, which could be applied to various practical applications such as underwater image enhancement, camera filter, and virtual gaming. We explore two less-touched but challenging problems in underwater image rendering, namely, i) how to render diverse underwater scenes by a single neural network? ii) how to adaptively learn the underwater light fields from natural exemplars, \textit{i,e.}, realistic underwater images? To this end, we propose a neural rendering method for underwater imaging, dubbed UWNR (Underwater Neural Rendering). Specifically, UWNR is a data-driven neural network that implicitly learns the natural degenerated model from authentic underwater images, avoiding introducing erroneous biases by hand-craft imaging models.
Compared with existing underwater image generation methods, UWNR utilizes the natural light field to simulate the main characteristics of the underwater scene. Thus, it is able to synthesize a wide variety of underwater images from one clean image with various realistic underwater images.
Extensive experiments demonstrate that our approach achieves better visual effects and quantitative metrics over previous methods. Moreover, we adopt UWNR to build an open Large Neural Rendering Underwater Dataset containing various types of water quality, dubbed LNRUD.

24.Self-Supervised Road Layout Parsing with Graph Auto-Encoding ⬇️

Aiming for higher-level scene understanding, this work presents a neural network approach that takes a road-layout map in bird's eye view as input, and predicts a human-interpretable graph that represents the road's topological layout. Our approach elevates the understanding of road layouts from pixel level to the level of graphs. To achieve this goal, an image-graph-image auto-encoder is utilized. The network is designed to learn to regress the graph representation at its auto-encoder bottleneck. This learning is self-supervised by an image reconstruction loss, without needing any external manual annotations. We create a synthetic dataset containing common road layout patterns and use it for training of the auto-encoder in addition to the real-world Argoverse dataset. By using this additional synthetic dataset, which conceptually captures human knowledge of road layouts and makes this available to the network for training, we are able to stabilize and further improve the performance of topological road layout understanding on the real-world Argoverse dataset. The evaluation shows that our approach exhibits comparable performance to a strong fully-supervised baseline.

25.MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer ⬇️

Monocular 3D object detection is an important yet challenging task in autonomous driving. Some existing methods leverage depth information from an off-the-shelf depth estimator to assist 3D detection, but suffer from the additional computational burden and achieve limited performance caused by inaccurate depth priors. To alleviate this, we propose MonoDTR, a novel end-to-end depth-aware transformer network for monocular 3D object detection. It mainly consists of two components: (1) the Depth-Aware Feature Enhancement (DFE) module that implicitly learns depth-aware features with auxiliary supervision without requiring extra computation, and (2) the Depth-Aware Transformer (DTR) module that globally integrates context- and depth-aware features. Moreover, different from conventional pixel-wise positional encodings, we introduce a novel depth positional encoding (DPE) to inject depth positional hints into transformers. Our proposed depth-aware modules can be easily plugged into existing image-only monocular 3D object detectors to improve the performance. Extensive experiments on the KITTI dataset demonstrate that our approach outperforms previous state-of-the-art monocular-based methods and achieves real-time detection. Code is available at this https URL

26.Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis ⬇️

Anatomical segmentation is a fundamental task in medical image computing, generally tackled with fully convolutional neural networks which produce dense segmentation masks. These models are often trained with loss functions such as cross-entropy or Dice, which assume pixels to be independent of each other, thus ignoring topological errors and anatomical inconsistencies. We address this limitation by moving from pixel-level to graph representations, which allow to naturally incorporate anatomical constraints by construction. To this end, we introduce HybridGNet, an encoder-decoder neural architecture that leverages standard convolutions for image feature encoding and graph convolutional neural networks (GCNNs) to decode plausible representations of anatomical structures. We also propose a novel image-to-graph skip connection layer which allows localized features to flow from standard convolutional blocks to GCNN blocks, and show that it improves segmentation accuracy. The proposed architecture is extensively evaluated in a variety of domain shift and image occlusion scenarios, and audited considering different types of demographic domain shift. Our comprehensive experimental setup compares HybridGNet with other landmark and pixel-based models for anatomical segmentation in chest x-ray images, and shows that it produces anatomically plausible results in challenging scenarios where other models tend to fail.

27.Towards Self-Supervised Gaze Estimation ⬇️

Recent joint embedding-based self-supervised methods have surpassed standard supervised approaches on various image recognition tasks such as image classification. These self-supervised methods aim at maximizing agreement between features extracted from two differently transformed views of the same image, which results in learning an invariant representation with respect to appearance and geometric image transformations. However, the effectiveness of these approaches remains unclear in the context of gaze estimation, a structured regression task that requires equivariance under geometric transformations (e.g., rotations, horizontal flip). In this work, we propose SwAT, an equivariant version of the online clustering-based self-supervised approach SwAV, to learn more informative representations for gaze estimation. We identify the most effective image transformations for self-supervised pretraining and demonstrate that SwAT, with ResNet-50 and supported with uncurated unlabeled face images, outperforms state-of-the-art gaze estimation methods and supervised baselines in various experiments. In particular, we achieve up to 57% and 25% improvements in cross-dataset and within-dataset evaluation tasks on existing benchmarks (ETH-XGaze, Gaze360, and MPIIFaceGaze).

28.SOLIS: Autonomous Solubility Screening using Deep Neural Networks ⬇️

Accelerating material discovery has tremendous societal and industrial impact, particularly for pharmaceuticals and clean energy production. Many experimental instruments have some degree of automation, facilitating continuous running and higher throughput. However, it is common that sample preparation is still carried out manually. This can result in researchers spending a significant amount of their time on repetitive tasks, which introduces errors and can prohibit production of statistically relevant data. Crystallisation experiments are common in many chemical fields, both for purification and in polymorph screening experiments. The initial step often involves a solubility screen of the molecule; that is, understanding whether molecular compounds have dissolved in a particular solvent. This usually can be time consuming and work intensive. Moreover, accurate knowledge of the precise solubility limit of the molecule is often not required, and simply measuring a threshold of solubility in each solvent would be sufficient. To address this, we propose a novel cascaded deep model that is inspired by how a human chemist would visually assess a sample to determine whether the solid has completely dissolved in the solution. In this paper, we design, develop, and evaluate the first fully autonomous solubility screening framework, which leverages state-of-the-art methods for image segmentation and convolutional neural networks for image classification. To realise that, we first create a dataset comprising different molecules and solvents, which is collected in a real-world chemistry laboratory. We then evaluated our method on the data recorded through an eye-in-hand camera mounted on a seven degree-of-freedom robotic manipulator, and show that our model can achieve 99.13% test accuracy across various setups.

29.Deep Learning Serves Traffic Safety Analysis: A Forward-looking Review ⬇️

This paper explores Deep Learning (DL) methods that are used or have the potential to be used for traffic video analysis, emphasizing driving safety for both Autonomous Vehicles (AVs) and human-operated vehicles. We present a typical processing pipeline, which can be used to understand and interpret traffic videos by extracting operational safety metrics and providing general hints and guidelines to improve traffic safety. This processing framework includes several steps, including video enhancement, video stabilization, semantic and incident segmentation, object detection and classification, trajectory extraction, speed estimation, event analysis, modeling and anomaly detection. Our main goal is to guide traffic analysts to develop their own custom-built processing frameworks by selecting the best choices for each step and offering new designs for the lacking modules by providing a comparative analysis of the most successful conventional and DL-based algorithms proposed for each step. We also review existing open-source tools and public datasets that can help train DL models. To be more specific, we review exemplary traffic problems and mentioned requires steps for each problem. Besides, we investigate connections to the closely related research areas of drivers' cognition evaluation, Crowd-sourcing-based monitoring systems, Edge Computing in roadside infrastructures, ADS-equipped AVs, and highlight the missing gaps. Finally, we review commercial implementations of traffic monitoring systems, their future outlook, and open problems and remaining challenges for widespread use of such systems.

30.Geolocation estimation of target vehicles using image processing and geometric computation ⬇️

Estimating vehicles' locations is one of the key components in intelligent traffic management systems (ITMSs) for increasing traffic scene awareness. Traditionally, stationary sensors have been employed in this regard. The development of advanced sensing and communication technologies on modern vehicles (MVs) makes it feasible to use such vehicles as mobile sensors to estimate the traffic data of observed vehicles. This study aims to explore the capabilities of a monocular camera mounted on an MV in order to estimate the geolocation of the observed vehicle in a global positioning system (GPS) coordinate system. We proposed a new methodology by integrating deep learning, image processing, and geometric computation to address the observed-vehicle localization problem. To evaluate our proposed methodology, we developed new algorithms and tested them using real-world traffic data. The results indicated that our proposed methodology and algorithms could effectively estimate the observed vehicle's latitude and longitude dynamically.

31.An integrated Auto Encoder-Block Switching defense approach to prevent adversarial attacks ⬇️

According to recent studies, the vulnerability of state-of-the-art Neural Networks to adversarial input samples has increased drastically. A neural network is an intermediate path or technique by which a computer learns to perform tasks using Machine learning algorithms. Machine Learning and Artificial Intelligence model has become a fundamental aspect of life, such as self-driving cars [1], smart home devices, so any vulnerability is a significant concern. The smallest input deviations can fool these extremely literal systems and deceive their users as well as administrator into precarious situations. This article proposes a defense algorithm that utilizes the combination of an auto-encoder [3] and block-switching architecture. Auto-coder is intended to remove any perturbations found in input images whereas the block switching method is used to make it more robust against White-box attacks. The attack is planned using FGSM [9] model, and the subsequent counter-attack by the proposed architecture will take place thereby demonstrating the feasibility and security delivered by the algorithm.

32.3D Multi-Object Tracking Using Graph Neural Networks with Cross-Edge Modality Attention ⬇️

Online 3D multi-object tracking (MOT) has witnessed significant research interest in recent years, largely driven by demand from the autonomous systems community. However, 3D offline MOT is relatively less explored. Labeling 3D trajectory scene data at a large scale while not relying on high-cost human experts is still an open research question. In this work, we propose Batch3DMOT that follows the tracking-by-detection paradigm and represents real-world scenes as directed, acyclic, and category-disjoint tracking graphs that are attributed using various modalities such as camera, LiDAR, and radar. We present a multi-modal graph neural network that uses a cross-edge attention mechanism mitigating modality intermittence, which translates into sparsity in the graph domain. Additionally, we present attention-weighted convolutions over frame-wise k-NN neighborhoods as suitable means to allow information exchange across disconnected graph components. We evaluate our approach using various sensor modalities and model configurations on the challenging nuScenes and KITTI datasets. Extensive experiments demonstrate that our proposed approach yields an overall improvement of 2.8% in the AMOTA score on nuScenes thereby setting a new benchmark for 3D tracking methods and successfully enhances false positive filtering.

33.Learning Occlusion-Aware Coarse-to-Fine Depth Map for Self-supervised Monocular Depth Estimation ⬇️

Self-supervised monocular depth estimation, aiming to learn scene depths from single images in a self-supervised manner, has received much attention recently. In spite of recent efforts in this field, how to learn accurate scene depths and alleviate the negative influence of occlusions for self-supervised depth estimation, still remains an open problem. Addressing this problem, we firstly empirically analyze the effects of both the continuous and discrete depth constraints which are widely used in the training process of many existing works. Then inspired by the above empirical analysis, we propose a novel network to learn an Occlusion-aware Coarse-to-Fine Depth map for self-supervised monocular depth estimation, called OCFD-Net. Given an arbitrary training set of stereo image pairs, the proposed OCFD-Net does not only employ a discrete depth constraint for learning a coarse-level depth map, but also employ a continuous depth constraint for learning a scene depth residual, resulting in a fine-level depth map. In addition, an occlusion-aware module is designed under the proposed OCFD-Net, which is able to improve the capability of the learnt fine-level depth map for handling occlusions. Extensive experimental results on the public KITTI and Make3D datasets demonstrate that the proposed method outperforms 20 existing state-of-the-art methods in most cases.

34.Depth Completion using Geometry-Aware Embedding ⬇️

Exploiting internal spatial geometric constraints of sparse LiDARs is beneficial to depth completion, however, has been not explored well. This paper proposes an efficient method to learn geometry-aware embedding, which encodes the local and global geometric structure information from 3D points, e.g., scene layout, object's sizes and shapes, to guide dense depth estimation. Specifically, we utilize the dynamic graph representation to model generalized geometric relationship from irregular point clouds in a flexible and efficient manner. Further, we joint this embedding and corresponded RGB appearance information to infer missing depths of the scene with well structure-preserved details. The key to our method is to integrate implicit 3D geometric representation into a 2D learning architecture, which leads to a better trade-off between the performance and efficiency. Extensive experiments demonstrate that the proposed method outperforms previous works and could reconstruct fine depths with crisp boundaries in regions that are over-smoothed by them. The ablation study gives more insights into our method that could achieve significant gains with a simple design, while having better generalization capability and stability. The code is available at this https URL.

35.Unified Multivariate Gaussian Mixture for Efficient Neural Image Compression ⬇️

Modeling latent variables with priors and hyperpriors is an essential problem in variational image compression. Formally, trade-off between rate and distortion is handled well if priors and hyperpriors precisely describe latent variables. Current practices only adopt univariate priors and process each variable individually. However, we find inter-correlations and intra-correlations exist when observing latent variables in a vectorized perspective. These findings reveal visual redundancies to improve rate-distortion performance and parallel processing ability to speed up compression. This encourages us to propose a novel vectorized prior. Specifically, a multivariate Gaussian mixture is proposed with means and covariances to be estimated. Then, a novel probabilistic vector quantization is utilized to effectively approximate means, and remaining covariances are further induced to a unified mixture and solved by cascaded estimation without context models involved. Furthermore, codebooks involved in quantization are extended to multi-codebooks for complexity reduction, which formulates an efficient compression procedure. Extensive experiments on benchmark datasets against state-of-the-art indicate our model has better rate-distortion performance and an impressive $3.18\times$ compression speed up, giving us the ability to perform real-time, high-quality variational image compression in practice. Our source code is publicly available at \url{this https URL}.

36.Revisiting Domain Generalized Stereo Matching Networks from a Feature Consistency Perspective ⬇️

Despite recent stereo matching networks achieving impressive performance given sufficient training data, they suffer from domain shifts and generalize poorly to unseen domains. We argue that maintaining feature consistency between matching pixels is a vital factor for promoting the generalization capability of stereo matching networks, which has not been adequately considered. Here we address this issue by proposing a simple pixel-wise contrastive learning across the viewpoints. The stereo contrastive feature loss function explicitly constrains the consistency between learned features of matching pixel pairs which are observations of the same 3D points. A stereo selective whitening loss is further introduced to better preserve the stereo feature consistency across domains, which decorrelates stereo features from stereo viewpoint-specific style information. Counter-intuitively, the generalization of feature consistency between two viewpoints in the same scene translates to the generalization of stereo matching performance to unseen domains. Our method is generic in nature as it can be easily embedded into existing stereo networks and does not require access to the samples in the target domain. When trained on synthetic data and generalized to four real-world testing sets, our method achieves superior performance over several state-of-the-art networks.

37.ELIC: Efficient Learned Image Compression with Unevenly Grouped Space-Channel Contextual Adaptive Coding ⬇️

Recently, learned image compression techniques have achieved remarkable performance, even surpassing the best manually designed lossy image coders. They are promising to be large-scale adopted. For the sake of practicality, a thorough investigation of the architecture design of learned image compression, regarding both compression performance and running speed, is essential. In this paper, we first propose uneven channel-conditional adaptive coding, motivated by the observation of energy compaction in learned image compression. Combining the proposed uneven grouping model with existing context models, we obtain a spatial-channel contextual adaptive model to improve the coding performance without damage to running speed. Then we study the structure of the main transform and propose an efficient model, ELIC, to achieve state-of-the-art speed and compression ability. With superior performance, the proposed model also supports extremely fast preview decoding and progressive decoding, which makes the coming application of learning-based image compression more promising.

38.Efficient Remote Photoplethysmography with Temporal Derivative Modules and Time-Shift Invariant Loss ⬇️

We present a lightweight neural model for remote heart rate estimation focused on the efficient spatio-temporal learning of facial photoplethysmography (PPG) based on i) modelling of PPG dynamics by combinations of multiple convolutional derivatives, and ii) increased flexibility of the model to learn possible offsets between the video facial PPG and the ground truth. PPG dynamics are modelled by a Temporal Derivative Module (TDM) constructed by the incremental aggregation of multiple convolutional derivatives, emulating a Taylor series expansion up to the desired order. Robustness to ground truth offsets is handled by the introduction of TALOS (Temporal Adaptive LOcation Shift), a new temporal loss to train learning-based models. We verify the effectiveness of our model by reporting accuracy and efficiency metrics on the public PURE and UBFC-rPPG datasets. Compared to existing models, our approach shows competitive heart rate estimation accuracy with a much lower number of parameters and lower computational cost.

39.RGB-Depth Fusion GAN for Indoor Depth Completion ⬇️

The raw depth image captured by the indoor depth sensor usually has an extensive range of missing depth values due to inherent limitations such as the inability to perceive transparent objects and limited distance range. The incomplete depth map burdens many downstream vision tasks, and a rising number of depth completion methods have been proposed to alleviate this issue. While most existing methods can generate accurate dense depth maps from sparse and uniformly sampled depth maps, they are not suitable for complementing the large contiguous regions of missing depth values, which is common and critical. In this paper, we design a novel two-branch end-to-end fusion network, which takes a pair of RGB and incomplete depth images as input to predict a dense and completed depth map. The first branch employs an encoder-decoder structure to regress the local dense depth values from the raw depth map, with the help of local guidance information extracted from the RGB image. In the other branch, we propose an RGB-depth fusion GAN to transfer the RGB image to the fine-grained textured depth map. We adopt adaptive fusion modules named W-AdaIN to propagate the features across the two branches, and we append a confidence fusion head to fuse the two outputs of the branches for the final depth map. Extensive experiments on NYU-Depth V2 and SUN RGB-D demonstrate that our proposed method clearly improves the depth completion performance, especially in a more realistic setting of indoor environments with the help of the pseudo depth map.

40.Boost Test-Time Performance with Closed-Loop Inference ⬇️

Conventional deep models predict a test sample with a single forward propagation, which, however, may not be sufficient for predicting hard-classified samples. On the contrary, we human beings may need to carefully check the sample many times before making a final decision. During the recheck process, one may refine/adjust the prediction by referring to related samples. Motivated by this, we propose to predict those hard-classified test samples in a looped manner to boost the model performance. However, this idea may pose a critical challenge: how to construct looped inference, so that the original erroneous predictions on these hard test samples can be corrected with little additional effort. To address this, we propose a general Closed-Loop Inference (CLI) method. Specifically, we first devise a filtering criterion to identify those hard-classified test samples that need additional inference loops. For each hard sample, we construct an additional auxiliary learning task based on its original top-$K$ predictions to calibrate the model, and then use the calibrated model to obtain the final prediction. Promising results on ImageNet (in-distribution test samples) and ImageNet-C (out-of-distribution test samples) demonstrate the effectiveness of CLI in improving the performance of any pre-trained model.

41.Multi-modal learning for predicting the genotype of glioma ⬇️

The isocitrate dehydrogenase (IDH) gene mutation is an essential biomarker for the diagnosis and prognosis of glioma. It is promising to better predict glioma genotype by integrating focal tumor image and geometric features with brain network features derived from MRI. Convolutions neural networks show reasonable performance in predicting IDH mutation, which, however, cannot learn from non-Euclidean data, e.g., geometric and network data. In this study, we propose a multi-modal learning framework using three separate encoders to extract features of focal tumor image, tumor geometrics and global brain networks. To mitigate the limited availability of diffusion MRI, we develop a self-supervised approach to generate brain networks from anatomical multi-sequence MRI. Moreover, to extract tumor-related features from the brain network, we design a hierarchical attention module for the brain network encoder. Further, we design a bi-level multi-modal contrastive loss to align the multi-modal features and tackle the domain gap at the focal tumor and global brain. Finally, we propose a weighted population graph to integrate the multi-modal features for genotype prediction. Experimental results on the testing set show that the proposed model outperforms the baseline deep learning models. The ablation experiments validate the performance of different components of the framework. The visualized interpretation corresponds to clinical knowledge with further validation. In conclusion, the proposed learning framework provides a novel approach for predicting the genotype of glioma.

42.Hyperbolic Vision Transformers: Combining Improvements in Metric Learning ⬇️

Metric learning aims to learn a highly discriminative model encouraging the embeddings of similar classes to be close in the chosen metrics and pushed apart for dissimilar ones. The common recipe is to use an encoder to extract embeddings and a distance-based loss function to match the representations -- usually, the Euclidean distance is utilized. An emerging interest in learning hyperbolic data embeddings suggests that hyperbolic geometry can be beneficial for natural data. Following this line of work, we propose a new hyperbolic-based model for metric learning. At the core of our method is a vision transformer with output embeddings mapped to hyperbolic space. These embeddings are directly optimized using modified pairwise cross-entropy loss. We evaluate the proposed model with six different formulations on four datasets achieving the new state-of-the-art performance. The source code is available at this https URL.

43.Sem2NeRF: Converting Single-View Semantic Masks to Neural Radiance Fields ⬇️

Image translation and manipulation have gain increasing attention along with the rapid development of deep generative models. Although existing approaches have brought impressive results, they mainly operated in 2D space. In light of recent advances in NeRF-based 3D-aware generative models, we introduce a new task, Semantic-to-NeRF translation, that aims to reconstruct a 3D scene modelled by NeRF, conditioned on one single-view semantic mask as input. To kick-off this novel task, we propose the Sem2NeRF framework. In particular, Sem2NeRF addresses the highly challenging task by encoding the semantic mask into the latent code that controls the 3D scene representation of a pretrained decoder. To further improve the accuracy of the mapping, we integrate a new region-aware learning strategy into the design of both the encoder and the decoder. We verify the efficacy of the proposed Sem2NeRF and demonstrate that it outperforms several strong baselines on two benchmark datasets.

44.ARM: Any-Time Super-Resolution Method ⬇️

This paper proposes an Any-time super-Resolution Method (ARM) to tackle the over-parameterized single image super-resolution (SISR) models. Our ARM is motivated by three observations: (1) The performance of different image patches varies with SISR networks of different sizes. (2) There is a tradeoff between computation overhead and performance of the reconstructed image. (3) Given an input image, its edge information can be an effective option to estimate its PSNR. Subsequently, we train an ARM supernet containing SISR subnets of different sizes to deal with image patches of various complexity. To that effect, we construct an Edge-to-PSNR lookup table that maps the edge score of an image patch to the PSNR performance for each subnet, together with a set of computation costs for the subnets. In the inference, the image patches are individually distributed to different subnets for a better computation-performance tradeoff. Moreover, each SISR subnet shares weights of the ARM supernet, thus no extra parameters are introduced. The setting of multiple subnets can well adapt the computational cost of SISR model to the dynamically available hardware resources, allowing the SISR task to be in service at any time. Extensive experiments on resolution datasets of different sizes with popular SISR networks as backbones verify the effectiveness and the versatility of our ARM. The source code is available at \url{this https URL}.

45.AnoViT: Unsupervised Anomaly Detection and Localization with Vision Transformer-based Encoder-Decoder ⬇️

Image anomaly detection problems aim to determine whether an image is abnormal, and to detect anomalous areas. These methods are actively used in various fields such as manufacturing, medical care, and intelligent information. Encoder-decoder structures have been widely used in the field of anomaly detection because they can easily learn normal patterns in an unsupervised learning environment and calculate a score to identify abnormalities through a reconstruction error indicating the difference between input and reconstructed images. Therefore, current image anomaly detection methods have commonly used convolutional encoder-decoders to extract normal information through the local features of images. However, they are limited in that only local features of the image can be utilized when constructing a normal representation owing to the characteristics of convolution operations using a filter of fixed size. Therefore, we propose a vision transformer-based encoder-decoder model, named AnoViT, designed to reflect normal information by additionally learning the global relationship between image patches, which is capable of both image anomaly detection and localization. The proposed approach constructs a feature map that maintains the existing location information of individual patches by using the embeddings of all patches passed through multiple self-attention layers. The proposed AnoViT model performed better than the convolution-based model on three benchmark datasets. In MVTecAD, which is a representative benchmark dataset for anomaly localization, it showed improved results on 10 out of 15 classes compared with the baseline. Furthermore, the proposed method showed good performance regardless of the class and type of the anomalous area when localization results were evaluated qualitatively.

46.ViM: Out-Of-Distribution with Virtual-logit Matching ⬇️

Most of the existing Out-Of-Distribution (OOD) detection algorithms depend on single input source: the feature, the logit, or the softmax probability. However, the immense diversity of the OOD examples makes such methods fragile. There are OOD samples that are easy to identify in the feature space while hard to distinguish in the logit space and vice versa. Motivated by this observation, we propose a novel OOD scoring method named Virtual-logit Matching (ViM), which combines the class-agnostic score from feature space and the In-Distribution (ID) class-dependent logits. Specifically, an additional logit representing the virtual OOD class is generated from the residual of the feature against the principal space, and then matched with the original logits by a constant scaling. The probability of this virtual logit after softmax is the indicator of OOD-ness. To facilitate the evaluation of large-scale OOD detection in academia, we create a new OOD dataset for ImageNet-1K, which is human-annotated and is 8.8x the size of existing datasets. We conducted extensive experiments, including CNNs and vision transformers, to demonstrate the effectiveness of the proposed ViM score. In particular, using the BiT-S model, our method gets an average AUROC 90.91% on four difficult OOD benchmarks, which is 4% ahead of the best baseline. Code and dataset are available at this https URL.

47.ScalableViT: Rethinking the Context-oriented Generalization of Vision Transformer ⬇️

The vanilla self-attention mechanism inherently relies on pre-defined and steadfast computational dimensions. Such inflexibility restricts it from possessing context-oriented generalization that can bring more contextual cues and global representations. To mitigate this issue, we propose a Scalable Self-Attention (SSA) mechanism that leverages two scaling factors to release dimensions of query, key, and value matrix while unbinding them with the input. This scalability fetches context-oriented generalization and enhances object sensitivity, which pushes the whole network into a more effective trade-off state between accuracy and cost. Furthermore, we propose an Interactive Window-based Self-Attention (IWSA), which establishes interaction between non-overlapping regions by re-merging independent value tokens and aggregating spatial information from adjacent windows. By stacking the SSA and IWSA alternately, the Scalable Vision Transformer (ScalableViT) achieves state-of-the-art performance in general-purpose vision tasks. For example, ScalableViT-S outperforms Twins-SVT-S by 1.4% and Swin-T by 1.8% on ImageNet-1K classification.

48.GroupTransNet: Group Transformer Network for RGB-D Salient Object Detection ⬇️

Salient object detection on RGB-D images is an active topic in computer vision. Although the existing methods have achieved appreciable performance, there are still some challenges. The locality of convolutional neural network requires that the model has a sufficiently deep global receptive field, which always leads to the loss of local details. To address the challenge, we propose a novel Group Transformer Network (GroupTransNet) for RGB-D salient object detection. This method is good at learning the long-range dependencies of cross layer features to promote more perfect feature expression. At the beginning, the features of the slightly higher classes of the middle three levels and the latter three levels are soft grouped to absorb the advantages of the high-level features. The input features are repeatedly purified and enhanced by the attention mechanism to purify the cross modal features of color modal and depth modal. The features of the intermediate process are first fused by the features of different layers, and then processed by several transformers in multiple groups, which not only makes the size of the features of each scale unified and interrelated, but also achieves the effect of sharing the weight of the features within the group. The output features in different groups complete the clustering staggered by two owing to the level difference, and combine with the low-level features. Extensive experiments demonstrate that GroupTransNet outperforms the comparison models and achieves the new state-of-the-art performance.

49.Adaptive and Cascaded Compressive Sensing ⬇️

Scene-dependent adaptive compressive sensing (CS) has been a long pursuing goal which has huge potential in significantly improving the performance of CS. However, without accessing to the ground truth image, how to design the scene-dependent adaptive strategy is still an open-problem and the improvement in sampling efficiency is still quite limited. In this paper, a restricted isometry property (RIP) condition based error clamping is proposed, which could directly predict the reconstruction error, i.e. the difference between the currently-stage reconstructed image and the ground truth image, and adaptively allocate samples to different regions at the successive sampling stage. Furthermore, we propose a cascaded feature fusion reconstruction network that could efficiently utilize the information derived from different adaptive sampling stages. The effectiveness of the proposed adaptive and cascaded CS method is demonstrated with extensive quantitative and qualitative results, compared with the state-of-the-art CS algorithms.

50.Delving into the Estimation Shift of Batch Normalization in a Network ⬇️

Batch normalization (BN) is a milestone technique in deep learning. It normalizes the activation using mini-batch statistics during training but the estimated population statistics during inference. This paper focuses on investigating the estimation of population statistics. We define the estimation shift magnitude of BN to quantitatively measure the difference between its estimated population statistics and expected ones. Our primary observation is that the estimation shift can be accumulated due to the stack of BN in a network, which has detriment effects for the test performance. We further find a batch-free normalization (BFN) can block such an accumulation of estimation shift. These observations motivate our design of XBNBlock that replace one BN with BFN in the bottleneck block of residual-style networks. Experiments on the ImageNet and COCO benchmarks show that XBNBlock consistently improves the performance of different architectures, including ResNet and ResNeXt, by a significant margin and seems to be more robust to distribution shift.

51.K-space and Image Domain Collaborative Energy based Model for Parallel MRI Reconstruction ⬇️

Decreasing magnetic resonance (MR) image acquisition times can potentially make MR examinations more accessible. Prior arts including the deep learning models have been devoted to solving the problem of long MRI imaging time. Recently, deep generative models have exhibited great potentials in algorithm robustness and usage flexibility. Nevertheless, no existing such schemes that can be learned or employed directly to the k-space measurement. Furthermore, how do the deep generative models work well in hybrid domain is also worth to be investigated. In this work, by taking advantage of the deep en-ergy-based models, we propose a k-space and image domain collaborative generative model to comprehensively estimate the MR data from under-sampled measurement. Experimental comparisons with the state-of-the-arts demonstrated that the proposed hybrid method has less error in reconstruction and is more stable under different acceleration factors.

52.Slice Imputation: Intermediate Slice Interpolation for Anisotropic 3D Medical Image Segmentation ⬇️

We introduce a novel frame-interpolation-based method for slice imputation to improve segmentation accuracy for anisotropic 3D medical images, in which the number of slices and their corresponding segmentation labels can be increased between two consecutive slices in anisotropic 3D medical volumes. Unlike previous inter-slice imputation methods, which only focus on the smoothness in the axial direction, this study aims to improve the smoothness of the interpolated 3D medical volumes in all three directions: axial, sagittal, and coronal. The proposed multitask inter-slice imputation method, in particular, incorporates a smoothness loss function to evaluate the smoothness of the interpolated 3D medical volumes in the through-plane direction (sagittal and coronal). It not only improves the resolution of the interpolated 3D medical volumes in the through-plane direction but also transforms them into isotropic representations, which leads to better segmentation performances. Experiments on whole tumor segmentation in the brain, liver tumor segmentation, and prostate segmentation indicate that our method outperforms the competing slice imputation methods on both computed tomography and magnetic resonance images volumes in most cases.

53.Upsampling Autoencoder for Self-Supervised Point Cloud Learning ⬇️

In computer-aided design (CAD) community, the point cloud data is pervasively applied in reverse engineering, where the point cloud analysis plays an important role. While a large number of supervised learning methods have been proposed to handle the unordered point clouds and demonstrated their remarkable success, their performance and applicability are limited to the costly data annotation. In this work, we propose a novel self-supervised pretraining model for point cloud learning without human annotations, which relies solely on upsampling operation to perform feature learning of point cloud in an effective manner. The key premise of our approach is that upsampling operation encourages the network to capture both high-level semantic information and low-level geometric information of the point cloud, thus the downstream tasks such as classification and segmentation will benefit from the pre-trained model. Specifically, our method first conducts the random subsampling from the input point cloud at a low proportion e.g., 12.5%. Then, we feed them into an encoder-decoder architecture, where an encoder is devised to operate only on the subsampled points, along with a upsampling decoder is adopted to reconstruct the original point cloud based on the learned features. Finally, we design a novel joint loss function which enforces the upsampled points to be similar with the original point cloud and uniformly distributed on the underlying shape surface. By adopting the pre-trained encoder weights as initialisation of models for downstream tasks, we find that our UAE outperforms previous state-of-the-art methods in shape classification, part segmentation and point cloud upsampling tasks. Code will be made publicly available upon acceptance.

54.EAutoDet: Efficient Architecture Search for Object Detection ⬇️

Training CNN for detection is time-consuming due to the large dataset and complex network modules, making it hard to search architectures on detection datasets directly, which usually requires vast search costs (usually tens and even hundreds of GPU-days). In contrast, this paper introduces an efficient framework, named EAutoDet, that can discover practical backbone and FPN architectures for object detection in 1.4 GPU-days. Specifically, we construct a supernet for both backbone and FPN modules and adopt the differentiable method. To reduce the GPU memory requirement and computational cost, we propose a kernel reusing technique by sharing the weights of candidate operations on one edge and consolidating them into one convolution. A dynamic channel refinement strategy is also introduced to search channel numbers. Extensive experiments show significant efficacy and efficiency of our method. In particular, the discovered architectures surpass state-of-the-art object detection NAS methods and achieve 40.1 mAP with 120 FPS and 49.2 mAP with 41.3 FPS on COCO test-dev set. We also transfer the discovered architectures to rotation detection task, which achieve 77.05 mAP$_{\text{50}}$ on DOTA-v1.0 test set with 21.1M parameters.

55.Tree Energy Loss: Towards Sparsely Annotated Semantic Segmentation ⬇️

Sparsely annotated semantic segmentation (SASS) aims to train a segmentation network with coarse-grained (i.e., point-, scribble-, and block-wise) supervisions, where only a small proportion of pixels are labeled in each image. In this paper, we propose a novel tree energy loss for SASS by providing semantic guidance for unlabeled pixels. The tree energy loss represents images as minimum spanning trees to model both low-level and high-level pair-wise affinities. By sequentially applying these affinities to the network prediction, soft pseudo labels for unlabeled pixels are generated in a coarse-to-fine manner, achieving dynamic online self-training. The tree energy loss is effective and easy to be incorporated into existing frameworks by combining it with a traditional segmentation loss. Compared with previous SASS methods, our method requires no multistage training strategies, alternating optimization procedures, additional supervised data, or time-consuming post-processing while outperforming them in all SASS settings. Code is available at this https URL.

56.Semantic Segmentation with Active Semi-Supervised Learning ⬇️

Using deep learning, we now have the ability to create exceptionally good semantic segmentation systems; however, collecting the prerequisite pixel-wise annotations for training images remains expensive and time-consuming. Therefore, it would be ideal to minimize the number of human annotations needed when creating a new dataset. Here, we address this problem by proposing a novel algorithm that combines active learning and semi-supervised learning. Active learning is an approach for identifying the best unlabeled samples to annotate. While there has been work on active learning for segmentation, most methods require annotating all pixel objects in each image, rather than only the most informative regions. We argue that this is inefficient. Instead, our active learning approach aims to minimize the number of annotations per-image. Our method is enriched with semi-supervised learning, where we use pseudo labels generated with a teacher-student framework to identify image regions that help disambiguate confused classes. We also integrate mechanisms that enable better performance on imbalanced label distributions, which have not been studied previously for active learning in semantic segmentation. In experiments on the CamVid and CityScapes datasets, our method obtains over 95% of the network's performance on the full-training set using less than 19% of the training data, whereas the previous state of the art required 40% of the training data.

57.DSRRTracker: Dynamic Search Region Refinement for Attention-based Siamese Multi-Object Tracking ⬇️

Many multi-object tracking (MOT) methods follow the framework of "tracking by detection", which associates the target objects-of-interest based on the detection results. However, due to the separate models for detection and association, the tracking results are not optimal.Moreover, the speed is limited by some cumbersome association methods to achieve high tracking performance. In this work, we propose an end-to-end MOT method, with a Gaussian filter-inspired dynamic search region refinement module to dynamically filter and refine the search region by considering both the template information from the past frames and the detection results from the current frame with little computational burden, and a lightweight attention-based tracking head to achieve the effective fine-grained instance association. Extensive experiments and ablation study on MOT17 and MOT20 datasets demonstrate that our method can achieve the state-of-the-art performance with reasonable speed.

58.TransFusion: Multi-view Divergent Fusion for Medical Image Segmentation with Transformers ⬇️

Combining information from multi-view images is crucial to improve the performance and robustness of automated methods for disease diagnosis. However, due to the non-alignment characteristics of multi-view images, building correlation and data fusion across views largely remain an open problem. In this study, we present TransFusion, a Transformer-based architecture to merge divergent multi-view imaging information using convolutional layers and powerful attention mechanisms. In particular, the Divergent Fusion Attention (DiFA) module is proposed for rich cross-view context modeling and semantic dependency mining, addressing the critical issue of capturing long-range correlations between unaligned data from different image views. We further propose the Multi-Scale Attention (MSA) to collect global correspondence of multi-scale feature representations. We evaluate TransFusion on the Multi-Disease, Multi-View & Multi-Center Right Ventricular Segmentation in Cardiac MRI (M&Ms-2) challenge cohort. TransFusion demonstrates leading performance against the state-of-the-art methods and opens up new perspectives for multi-view imaging integration towards robust medical image segmentation.

59.An Intermediate-level Attack Framework on The Basis of Linear Regression ⬇️

This paper substantially extends our work published at ECCV, in which an intermediate-level attack was proposed to improve the transferability of some baseline adversarial examples. We advocate to establish a direct linear mapping from the intermediate-level discrepancies (between adversarial features and benign features) to classification prediction loss of the adversarial example. In this paper, we delve deep into the core components of such a framework by performing comprehensive studies and extensive experiments. We show that 1) a variety of linear regression models can all be considered in order to establish the mapping, 2) the magnitude of the finally obtained intermediate-level discrepancy is linearly correlated with adversarial transferability, 3) further boost of the performance can be achieved by performing multiple runs of the baseline attack with random initialization. By leveraging these findings, we achieve new state-of-the-arts on transfer-based $\ell_\infty$ and $\ell_2$ attacks.

60.LocATe: End-to-end Localization of Actions in 3D with Transformers ⬇️

Understanding a person's behavior from their 3D motion is a fundamental problem in computer vision with many applications. An important component of this problem is 3D Temporal Action Localization (3D-TAL), which involves recognizing what actions a person is performing, and when. State-of-the-art 3D-TAL methods employ a two-stage approach in which the action span detection task and the action recognition task are implemented as a cascade. This approach, however, limits the possibility of error-correction. In contrast, we propose LocATe, an end-to-end approach that jointly localizes and recognizes actions in a 3D sequence. Further, unlike existing autoregressive models that focus on modeling the local context in a sequence, LocATe's transformer model is capable of capturing long-term correlations between actions in a sequence. Unlike transformer-based object-detection and classification models which consider image or patch features as input, the input in 3D-TAL is a long sequence of highly correlated frames. To handle the high-dimensional input, we implement an effective input representation, and overcome the diffuse attention across long time horizons by introducing sparse attention in the model. LocATe outperforms previous approaches on the existing PKU-MMD 3D-TAL benchmark (mAP=93.2%). Finally, we argue that benchmark datasets are most useful where there is clear room for performance improvement. To that end, we introduce a new, challenging, and more realistic benchmark dataset, BABEL-TAL-20 (BT20), where the performance of state-of-the-art methods is significantly worse. The dataset and code for the method will be available for research purposes.

61.What Makes RAFT Better Than PWC-Net? ⬇️

How important are training details and datasets to recent optical flow models like RAFT? And do they generalize? To explore these questions, rather than develop a new model, we revisit three prominent models, PWC-Net, IRR-PWC and RAFT, with a common set of modern training techniques and datasets, and observe significant performance gains, demonstrating the importance and generality of these training details. Our newly trained PWC-Net and IRR-PWC models show surprisingly large improvements, up to 30% versus original published results on Sintel and KITTI 2015 benchmarks. They outperform the more recent Flow1D on KITTI 2015 while being 3x faster during inference. Our newly trained RAFT achieves an Fl-all score of 4.31% on KITTI 2015, more accurate than all published optical flow methods at the time of writing. Our results demonstrate the benefits of separating the contributions of models, training techniques and datasets when analyzing performance gains of optical flow methods. Our source code will be publicly available.

62.Monocular Vision-based Prediction of Cut-in Maneuvers with LSTM Networks ⬇️

Advanced driver assistance and automated driving systems should be capable of predicting and avoiding dangerous situations. This study proposes a method to predict potentially dangerous cut-in maneuvers happening in the ego lane. We follow a computer vision-based approach that only employs a single in-vehicle RGB camera, and we classify the target vehicle's maneuver based on the recent video frames. Our algorithm consists of a CNN-based vehicle detection and tracking step and an LSTM-based maneuver classification step. It is more computationally efficient than other vision-based methods since it exploits a small number of features for the classification step rather than feeding CNNs with RGB frames. We evaluated our approach on a publicly available driving dataset and a lane change detection dataset. We obtained 0.9585 accuracy with side-aware two-class (cut-in vs. lane-pass) classification models. Experiment results also reveal that our approach outperforms state-of-the-art approaches when used for lane change detection.

63.HP-Capsule: Unsupervised Face Part Discovery by Hierarchical Parsing Capsule Network ⬇️

Capsule networks are designed to present the objects by a set of parts and their relationships, which provide an insight into the procedure of visual perception. Although recent works have shown the success of capsule networks on simple objects like digits, the human faces with homologous structures, which are suitable for capsules to describe, have not been explored. In this paper, we propose a Hierarchical Parsing Capsule Network (HP-Capsule) for unsupervised face subpart-part discovery. When browsing large-scale face images without labels, the network first encodes the frequently observed patterns with a set of explainable subpart capsules. Then, the subpart capsules are assembled into part-level capsules through a Transformer-based Parsing Module (TPM) to learn the compositional relations between them. During training, as the face hierarchy is progressively built and refined, the part capsules adaptively encode the face parts with semantic consistency. HP-Capsule extends the application of capsule networks from digits to human faces and takes a step forward to show how the neural networks understand homologous objects without human intervention. Besides, HP-Capsule gives unsupervised face segmentation results by the covered regions of part capsules, enabling qualitative and quantitative evaluation. Experiments on BP4D and Multi-PIE datasets show the effectiveness of our method.

64.Fourier Disentangled Space-Time Attention for Aerial Video Recognition ⬇️

We present an algorithm, Fourier Activity Recognition (FAR), for UAV video activity recognition. Our formulation uses a novel Fourier object disentanglement method to innately separate out the human agent (which is typically small) from the background. Our disentanglement technique operates in the frequency domain to characterize the extent of temporal change of spatial pixels, and exploits convolution-multiplication properties of Fourier transform to map this representation to the corresponding object-background entangled features obtained from the network. To encapsulate contextual information and long-range space-time dependencies, we present a novel Fourier Attention algorithm, which emulates the benefits of self-attention by modeling the weighted outer product in the frequency domain. Our Fourier attention formulation uses much fewer computations than self-attention. We have evaluated our approach on multiple UAV datasets including UAV Human RGB, UAV Human Night, Drone Action, and NEC Drone. We demonstrate a relative improvement of 8.02% - 38.69% in top-1 accuracy and up to 3 times faster over prior works.

65.CNN Attention Guidance for Improved Orthopedics Radiographic Fracture Classification ⬇️

Convolutional neural networks (CNNs) have gained significant popularity in orthopedic imaging in recent years due to their ability to solve fracture classification problems. A common criticism of CNNs is their opaque learning and reasoning process, making it difficult to trust machine diagnosis and the subsequent adoption of such algorithms in clinical setting. This is especially true when the CNN is trained with limited amount of medical data, which is a common issue as curating sufficiently large amount of annotated medical imaging data is a long and costly process. While interest has been devoted to explaining CNN learnt knowledge by visualizing network attention, the utilization of the visualized attention to improve network learning has been rarely investigated. This paper explores the effectiveness of regularizing CNN network with human-provided attention guidance on where in the image the network should look for answering clues. On two orthopedics radiographic fracture classification datasets, through extensive experiments we demonstrate that explicit human-guided attention indeed can direct correct network attention and consequently significantly improve classification performance. The development code for the proposed attention guidance is publicly available on GitHub.

66.Lateral Ego-Vehicle Control without Supervision using Point Clouds ⬇️

Existing vision based supervised approaches to lateral vehicle control are capable of directly mapping RGB images to the appropriate steering commands. However, they are prone to suffering from inadequate robustness in real world scenarios due to a lack of failure cases in the training data. In this paper, a framework for training a more robust and scalable model for lateral vehicle control is proposed. The framework only requires an unlabeled sequence of RGB images. The trained model takes a point cloud as input and predicts the lateral offset to a subsequent frame from which the steering angle is inferred. The frame poses are in turn obtained from visual odometry. The point cloud is conceived by projecting dense depth maps into 3D. An arbitrary number of additional trajectories from this point cloud can be generated during training. This is to increase the robustness of the model. Online experiments show that the performance of our method is superior to that of the supervised model.

67.Breast Cancer Induced Bone Osteolysis Prediction Using Temporal Variational Auto-Encoders ⬇️

Objective and Impact Statement. We adopt a deep learning model for bone osteolysis prediction on computed tomography (CT) images of murine breast cancer bone metastases. Given the bone CT scans at previous time steps, the model incorporates the bone-cancer interactions learned from the sequential images and generates future CT images. Its ability of predicting the development of bone lesions in cancer-invading bones can assist in assessing the risk of impending fractures and choosing proper treatments in breast cancer bone metastasis. Introduction. Breast cancer often metastasizes to bone, causes osteolytic lesions, and results in skeletal related events (SREs) including severe pain and even fatal fractures. Although current imaging techniques can detect macroscopic bone lesions, predicting the occurrence and progression of bone lesions remains a challenge. Methods. We adopt a temporal variational auto-encoder (T-VAE) model that utilizes a combination of variational auto-encoders and long short-term memory networks to predict bone lesion emergence on our micro-CT dataset containing sequential images of murine tibiae. Given the CT scans of murine tibiae at early weeks, our model can learn the distribution of their future states from data. Results. We test our model against other deep learning-based prediction models on the bone lesion progression prediction task. Our model produces much more accurate predictions than existing models under various evaluation metrics. Conclusion. We develop a deep learning framework that can accurately predict and visualize the progression of osteolytic bone lesions. It will assist in planning and evaluating treatment strategies to prevent SREs in breast cancer patients.

68.FUTR3D: A Unified Sensor Fusion Framework for 3D Detection ⬇️

Sensor fusion is an essential topic in many perception systems, such as autonomous driving and robotics. Existing multi-modal 3D detection models usually involve customized designs depending on the sensor combinations or setups. In this work, we propose the first unified end-to-end sensor fusion framework for 3D detection, named FUTR3D, which can be used in (almost) any sensor configuration. FUTR3D employs a query-based Modality-Agnostic Feature Sampler (MAFS), together with a transformer decoder with a set-to-set loss for 3D detection, thus avoiding using late fusion heuristics and post-processing tricks. We validate the effectiveness of our framework on various combinations of cameras, low-resolution LiDARs, high-resolution LiDARs, and Radars. On NuScenes dataset, FUTR3D achieves better performance over specifically designed methods across different sensor combinations. Moreover, FUTR3D achieves great flexibility with different sensor configurations and enables low-cost autonomous driving. For example, only using a 4-beam LiDAR with cameras, FUTR3D (56.8 mAP) achieves on par performance with state-of-the-art 3D detection model CenterPoint (56.6 mAP) using a 32-beam LiDAR.

69.Multimodal learning-based inversion models for the space-time reconstruction of satellite-derived geophysical fields ⬇️

For numerous earth observation applications, one may benefit from various satellite sensors to address the reconstruction of some process or information of interest. A variety of satellite sensors deliver observation data with different sampling patterns due satellite orbits and/or their sensitivity to atmospheric conditions (e.g., clour cover, heavy rains,...). Beyond the ability to account for irregularly-sampled observations, the definition of model-driven inversion methods is often limited to specific case-studies where one can explicitly derive a physical model to relate the different observation sources. Here, we investigate how end-to-end learning schemes provide new means to address multimodal inversion problems. The proposed scheme combines a variational formulation with trainable observation operators, {\em a priori} terms and solvers. Through an application to space oceanography, we show how this scheme can successfully extract relevant information from satellite-derived sea surface temperature images and enhance the reconstruction of sea surface currents issued from satellite altimetry data.

70.V2X-ViT: Vehicle-to-Everything Cooperative Perception with Vision Transformer ⬇️

In this paper, we investigate the application of Vehicle-to-Everything (V2X) communication to improve the perception performance of autonomous vehicles. We present a robust cooperative perception framework with V2X communication using a novel vision Transformer. Specifically, we build a holistic attention model, namely V2X-ViT, to effectively fuse information across on-road agents (i.e., vehicles and infrastructure). V2X-ViT consists of alternating layers of heterogeneous multi-agent self-attention and multi-scale window self-attention, which captures inter-agent interaction and per-agent spatial relationships. These key modules are designed in a unified Transformer architecture to handle common V2X challenges, including asynchronous information sharing, pose errors, and heterogeneity of V2X components. To validate our approach, we create a large-scale V2X perception dataset using CARLA and OpenCDA. Extensive experimental results demonstrate that V2X-ViT sets new state-of-the-art performance for 3D object detection and achieves robust performance even under harsh, noisy environments. The dataset, source code, and trained models will be open-sourced.

71.Transform your Smartphone into a DSLR Camera: Learning the ISP in the Wild ⬇️

We propose a trainable Image Signal Processing (ISP) framework that produces DSLR quality images given RAW images captured by a smartphone. To address the color misalignments between training image pairs, we employ a color-conditional ISP network and optimize a novel parametric color mapping between each input RAW and reference DSLR image. During inference, we predict the target color image by designing a color prediction network with efficient Global Context Transformer modules. The latter effectively leverage global information to learn consistent color and tone mappings. We further propose a robust masked aligned loss to identify and discard regions with inaccurate motion estimation during training. Lastly, we introduce the ISP in the Wild (ISPW) dataset, consisting of weakly paired phone RAW and DSLR sRGB images. We extensively evaluate our method, setting a new state-of-the-art on two datasets.

72.VinDr-PCXR: An open, large-scale chest radiograph dataset for interpretation of common thoracic diseases in children ⬇️

Computer-aided diagnosis systems in adult chest radiography (CXR) have recently achieved great success thanks to the availability of large-scale, annotated datasets and the advent of high-performance supervised learning algorithms. However, the development of diagnostic models for detecting and diagnosing pediatric diseases in CXR scans is undertaken due to the lack of high-quality physician-annotated datasets. To overcome this challenge, we introduce and release VinDr-PCXR, a new pediatric CXR dataset of 9,125 studies retrospectively collected from a major pediatric hospital in Vietnam between 2020 and 2021. Each scan was manually annotated by a pediatric radiologist who has more than ten years of experience. The dataset was labeled for the presence of 36 critical findings and 15 diseases. In particular, each abnormal finding was identified via a rectangle bounding box on the image. To the best of our knowledge, this is the first and largest pediatric CXR dataset containing lesion-level annotations and image-level labels for the detection of multiple findings and diseases. For algorithm development, the dataset was divided into a training set of 7,728 and a test set of 1,397. To encourage new advances in pediatric CXR interpretation using data-driven approaches, we provide a detailed description of the VinDr-PCXR data sample and make the dataset publicly available on this https URL.

73.Learning from Multiple Expert Annotators for Enhancing Anomaly Detection in Medical Image Analysis ⬇️

Building an accurate computer-aided diagnosis system based on data-driven approaches requires a large amount of high-quality labeled data. In medical imaging analysis, multiple expert annotators often produce subjective estimates about "ground truth labels" during the annotation process, depending on their expertise and experience. As a result, the labeled data may contain a variety of human biases with a high rate of disagreement among annotators, which significantly affect the performance of supervised machine learning algorithms. To tackle this challenge, we propose a simple yet effective approach to combine annotations from multiple radiology experts for training a deep learning-based detector that aims to detect abnormalities on medical scans. The proposed method first estimates the ground truth annotations and confidence scores of training examples. The estimated annotations and their scores are then used to train a deep learning detector with a re-weighted loss function to localize abnormal findings. We conduct an extensive experimental evaluation of the proposed approach on both simulated and real-world medical imaging datasets. The experimental results show that our approach significantly outperforms baseline approaches that do not consider the disagreements among annotators, including methods in which all of the noisy annotations are treated equally as ground truth and the ensemble of different models trained on different label sets provided separately by annotators.

74.Transparency strategy-based data augmentation for BI-RADS classification of mammograms ⬇️

Image augmentation techniques have been widely investigated to improve the performance of deep learning (DL) algorithms on mammography classification tasks. Recent methods have proved the efficiency of image augmentation on data deficiency or data imbalance issues. In this paper, we propose a novel transparency strategy to boost the Breast Imaging Reporting and Data System (BI-RADS) scores of mammograms classifier. The proposed approach utilizes the Region of Interest (ROI) information to generate more high-risk training examples from original images. Our extensive experiments were conducted on our benchmark mammography dataset. The experiment results show that the proposed approach surpasses current state-of-the-art data augmentation techniques such as Upsampling or CutMix. The study highlights that the transparency method is more effective than other augmentation strategies for BI-RADS classification and can be widely applied for our computer vision tasks.

75.Open-Vocabulary One-Stage Detection with Hierarchical Visual-Language Knowledge Distillation ⬇️

Open-vocabulary object detection aims to detect novel object categories beyond the training set.
The advanced open-vocabulary two-stage detectors employ instance-level visual-to-visual knowledge distillation to align the visual space of the detector with the semantic space of the Pre-trained Visual-Language Model (PVLM).
However, in the more efficient one-stage detector, the absence of class-agnostic object proposals hinders the knowledge distillation on unseen objects, leading to severe performance degradation.
In this paper, we propose a hierarchical visual-language knowledge distillation method, i.e., HierKD, for open-vocabulary one-stage detection.
Specifically, a global-level knowledge distillation is explored to transfer the knowledge of unseen categories from the PVLM to the detector.
Moreover, we combine the proposed global-level knowledge distillation and the common instance-level knowledge distillation to learn the knowledge of seen and unseen categories simultaneously.
Extensive experiments on MS-COCO show that our method significantly surpasses the previous best one-stage detector with 11.9% and 6.7% $AP_{50}$ gains under the zero-shot detection and generalized zero-shot detection settings, and reduces the $AP_{50}$ performance gap from 14% to 7.3% compared to the best two-stage detector.

76.Point3D: tracking actions as moving points with 3D CNNs ⬇️

Spatio-temporal action recognition has been a challenging task that involves detecting where and when actions occur. Current state-of-the-art action detectors are mostly anchor-based, requiring sensitive anchor designs and huge computations due to calculating large numbers of anchor boxes. Motivated by nascent anchor-free approaches, we propose Point3D, a flexible and computationally efficient network with high precision for spatio-temporal action recognition. Our Point3D consists of a Point Head for action localization and a 3D Head for action classification. Firstly, Point Head is used to track center points and knot key points of humans to localize the bounding box of an action. These location features are then piped into a time-wise attention to learn long-range dependencies across frames. The 3D Head is later deployed for the final action classification. Our Point3D achieves state-of-the-art performance on the JHMDB, UCF101-24, and AVA benchmarks in terms of frame-mAP and video-mAP. Comprehensive ablation studies also demonstrate the effectiveness of each module proposed in our Point3D.

77.Self-supervised Point Cloud Completion on Real Traffic Scenes via Scene-concerned Bottom-up Mechanism ⬇️

Real scans always miss partial geometries of objects due to the self-occlusions, external-occlusions, and limited sensor resolutions. Point cloud completion aims to refer the complete shapes for incomplete 3D scans of objects. Current deep learning-based approaches rely on large-scale complete shapes in the training process, which are usually obtained from synthetic datasets. It is not applicable for real-world scans due to the domain gap. In this paper, we propose a self-supervised point cloud completion method (TraPCC) for vehicles in real traffic scenes without any complete data. Based on the symmetry and similarity of vehicles, we make use of consecutive point cloud frames to construct vehicle memory bank as reference. We design a bottom-up mechanism to focus on both local geometry details and global shape features of inputs. In addition, we design a scene-graph in the network to pay attention to the missing parts by the aid of neighboring vehicles. Experiments show that TraPCC achieve good performance for real-scan completion on KITTI and nuScenes traffic datasets even without any complete data in training. We also show a downstream application of 3D detection, which benefits from our completion approach.

78.CRISPnet: Color Rendition ISP Net ⬇️

Image signal processors (ISPs) are historically grown legacy software systems for reconstructing color images from noisy raw sensor measurements. They are usually composited of many heuristic blocks for denoising, demosaicking, and color restoration. Color reproduction in this context is of particular importance, since the raw colors are often severely distorted, and each smart phone manufacturer has developed their own characteristic heuristics for improving the color rendition, for example of skin tones and other visually important colors.
In recent years there has been strong interest in replacing the historically grown ISP systems with deep learned pipelines. Much progress has been made in approximating legacy ISPs with such learned models. However, so far the focus of these efforts has been on reproducing the structural features of the images, with less attention paid to color rendition.
Here we present CRISPnet, the first learned ISP model to specifically target color rendition accuracy relative to a complex, legacy smart phone ISP. We achieve this by utilizing both image metadata (like a legacy ISP would), as well as by learning simple global semantics based on image classification -- similar to what a legacy ISP does to determine the scene type. We also contribute a new ISP image dataset consisting of both high dynamic range monitor data, as well as real-world data, both captured with an actual cell phone ISP pipeline under a variety of lighting conditions, exposure times, and gain settings.

79.3D Human Pose Estimation Using Möbius Graph Convolutional Networks ⬇️

3D human pose estimation is fundamental to understanding human behavior. Recently, promising results have been achieved by graph convolutional networks (GCNs), which achieve state-of-the-art performance and provide rather light-weight architectures. However, a major limitation of GCNs is their inability to encode all the transformations between joints explicitly. To address this issue, we propose a novel spectral GCN using the Möbius transformation (MöbiusGCN). In particular, this allows us to directly and explicitly encode the transformation between joints, resulting in a significantly more compact representation. Compared to even the lightest architectures so far, our novel approach requires 90-98% fewer parameters, i.e. our lightest MöbiusGCN uses only 0.042M trainable parameters. Besides the drastic parameter reduction, explicitly encoding the transformation of joints also enables us to achieve state-of-the-art results. We evaluate our approach on the two challenging pose estimation benchmarks, Human3.6M and MPI-INF-3DHP, demonstrating both state-of-the-art results and the generalization capabilities of MöbiusGCN.

80.Towards 3D Scene Understanding by Referring Synthetic Models ⬇️

Promising performance has been achieved for visual perception on the point cloud. However, the current methods typically rely on labour-extensive annotations on the scene scans. In this paper, we explore how synthetic models alleviate the real scene annotation burden, i.e., taking the labelled 3D synthetic models as reference for supervision, the neural network aims to recognize specific categories of objects on a real scene scan (without scene annotation for supervision). The problem studies how to transfer knowledge from synthetic 3D models to real 3D scenes and is named Referring Transfer Learning (RTL). The main challenge is solving the model-to-scene (from a single model to the scene) and synthetic-to-real (from synthetic model to real scene's object) gap between the synthetic model and the real scene. To this end, we propose a simple yet effective framework to perform two alignment operations. First, physical data alignment aims to make the synthetic models cover the diversity of the scene's objects with data processing techniques. Then a novel \textbf{convex-hull regularized feature alignment} introduces learnable prototypes to project the point features of both synthetic models and real scenes to a unified feature space, which alleviates the domain gap. These operations ease the model-to-scene and synthetic-to-real difficulty for a network to recognize the target objects on a real unseen scene. Experiments show that our method achieves the average mAP of 46.08% and 55.49% on the ScanNet and S3DIS datasets by learning the synthetic models from the ModelNet dataset. Code will be publicly available.

81.Document Dewarping with Control Points ⬇️

Document images are now widely captured by handheld devices such as mobile phones. The OCR performance on these images are largely affected due to geometric distortion of the document paper, diverse camera positions and complex backgrounds. In this paper, we propose a simple yet effective approach to rectify distorted document image by estimating control points and reference points. After that, we use interpolation method between control points and reference points to convert sparse mappings to backward mapping, and remap the original distorted document image to the rectified image. Furthermore, control points are controllable to facilitate interaction or subsequent adjustment. We can flexibly select post-processing methods and the number of vertices according to different application scenarios. Experiments show that our approach can rectify document images with various distortion types, and yield state-of-the-art performance on real-world dataset. This paper also provides a training dataset based on control points for document dewarping. Both the code and the dataset are released at this https URL.

82.Unsupervised Domain Adaptation for Nighttime Aerial Tracking ⬇️

Previous advances in object tracking mostly reported on favorable illumination circumstances while neglecting performance at nighttime, which significantly impeded the development of related aerial robot applications. This work instead develops a novel unsupervised domain adaptation framework for nighttime aerial tracking (named UDAT). Specifically, a unique object discovery approach is provided to generate training patches from raw nighttime tracking videos. To tackle the domain discrepancy, we employ a Transformer-based bridging layer post to the feature extractor to align image features from both domains. With a Transformer day/night feature discriminator, the daytime tracking model is adversarially trained to track at night. Moreover, we construct a pioneering benchmark namely NAT2021 for unsupervised domain adaptive nighttime tracking, which comprises a test set of 180 manually annotated tracking sequences and a train set of over 276k unlabelled nighttime tracking frames. Exhaustive experiments demonstrate the robustness and domain adaptability of the proposed framework in nighttime aerial tracking. The code and benchmark are available at this https URL.

83.End-to-End Video Text Spotting with Transformer ⬇️

Recent video text spotting methods usually require the three-staged pipeline, i.e., detecting text in individual images, recognizing localized text, tracking text streams with post-processing to generate final results. These methods typically follow the tracking-by-match paradigm and develop sophisticated pipelines. In this paper, rooted in Transformer sequence modeling, we propose a simple, but effective end-to-end video text DEtection, Tracking, and Recognition framework (TransDETR). TransDETR mainly includes two advantages: 1) Different from the explicit match paradigm in the adjacent frame, TransDETR tracks and recognizes each text implicitly by the different query termed text query over long-range temporal sequence (more than 7 frames). 2) TransDETR is the first end-to-end trainable video text spotting framework, which simultaneously addresses the three sub-tasks (e.g., text detection, tracking, recognition). Extensive experiments in four video text datasets (i.e.,ICDAR2013 Video, ICDAR2015 Video, Minetto, and YouTube Video Text) are conducted to demonstrate that TransDETR achieves state-of-the-art performance with up to around 8.0% improvements on video text spotting tasks. The code of TransDETR can be found at this https URL.

84.Iwin: Human-Object Interaction Detection via Transformer with Irregular Windows ⬇️

This paper presents a new vision Transformer, named Iwin Transformer, which is specifically designed for human-object interaction (HOI) detection, a detailed scene understanding task involving a sequential process of human/object detection and interaction recognition. Iwin Transformer is a hierarchical Transformer which progressively performs token representation learning and token agglomeration within irregular windows. The irregular windows, achieved by augmenting regular grid locations with learned offsets, 1) eliminate redundancy in token representation learning, which leads to efficient human/object detection, and 2) enable the agglomerated tokens to align with humans/objects with different shapes, which facilitates the acquisition of highly-abstracted visual semantics for interaction recognition. The effectiveness and efficiency of Iwin Transformer are verified on the two standard HOI detection benchmark datasets, HICO-DET and V-COCO. Results show our method outperforms existing Transformers-based methods by large margins (3.7 mAP gain on HICO-DET and 2.0 mAP gain on V-COCO) with fewer training epochs ($0.5 \times$).

85.Stochastic Video Prediction with Structure and Motion ⬇️

While stochastic video prediction models enable future prediction under uncertainty, they mostly fail to model the complex dynamics of real-world scenes. For example, they cannot provide reliable predictions for scenes with a moving camera and independently moving foreground objects in driving scenarios. The existing methods fail to fully capture the dynamics of the structured world by only focusing on changes in pixels. In this paper, we assume that there is an underlying process creating observations in a video and propose to factorize it into static and dynamic components. We model the static part based on the scene structure and the ego-motion of the vehicle, and the dynamic part based on the remaining motion of the dynamic objects. By learning separate distributions of changes in foreground and background, we can decompose the scene into static and dynamic parts and separately model the change in each. Our experiments demonstrate that disentangling structure and motion helps stochastic video prediction, leading to better future predictions in complex driving scenarios on two real-world driving datasets, KITTI and Cityscapes.

86.Soft-CP: A Credible and Effective Data Augmentation for Semantic Segmentation of Medical Lesions ⬇️

The medical datasets are usually faced with the problem of scarcity and data imbalance. Moreover, annotating large datasets for semantic segmentation of medical lesions is domain-knowledge and time-consuming. In this paper, we propose a new object-blend method(short in soft-CP) that combines the Copy-Paste augmentation method for semantic segmentation of medical lesions offline, ensuring the correct edge information around the lession to solve the issue above-mentioned. We proved the method's validity with several datasets in different imaging modalities. In our experiments on the KiTS19[2] dataset, Soft-CP outperforms existing medical lesions synthesis approaches. The Soft-CP augementation provides gains of +26.5% DSC in the low data regime(10% of data) and +10.2% DSC in the high data regime(all of data), In offline training data, the ratio of real images to synthetic images is 3:1.

87.Single-image Human-body Reshaping with Deep Neural Networks ⬇️

In this paper, we present NeuralReshaper, a novel method for semantic reshaping of human bodies in single images using deep generative networks. To achieve globally coherent reshaping effects, our approach follows a fit-then-reshape pipeline, which first fits a parametric 3D human model to a source human image and then reshapes the fitted 3D model with respect to user-specified semantic attributes. Previous methods rely on image warping to transfer 3D reshaping effects to the entire image domain and thus often cause distortions in both foreground and background. Instead, to achieve more realistic reshaping results, we resort to generative adversarial nets conditioned on the source image and a 2D warping field induced by the reshaped 3D model. Specifically, we separately encode the foreground and background information in the source image using a two-headed U-net-like generator and guide the information flow from the foreground branch to the background branch via feature space warping. Furthermore, to deal with the lack-of-data problem that no paired data exist (i.e., the same human bodies in varying shapes), we introduce a novel weakly-supervised strategy to train our network. Besides, unlike previous methods that often require manual efforts to correct undesirable artifacts caused by incorrect body-to-image fitting, our method is fully automatic. Extensive experiments on both indoor and outdoor datasets demonstrate the superiority of our method over previous approaches.

88.Depth Estimation by Combining Binocular Stereo and Monocular Structured-Light ⬇️

It is well known that the passive stereo system cannot adapt well to weak texture objects, e.g., white walls. However, these weak texture targets are very common in indoor environments. In this paper, we present a novel stereo system, which consists of two cameras (an RGB camera and an IR camera) and an IR speckle projector. The RGB camera is used both for depth estimation and texture acquisition. The IR camera and the speckle projector can form a monocular structured-light (MSL) subsystem, while the two cameras can form a binocular stereo subsystem. The depth map generated by the MSL subsystem can provide external guidance for the stereo matching networks, which can improve the matching accuracy significantly. In order to verify the effectiveness of the proposed system, we build a prototype and collect a test dataset in indoor scenes. The evaluation results show that the Bad 2.0 error of the proposed system is 28.2% of the passive stereo system when the network RAFT is used. The dataset and trained models are available at this https URL.

89.SimAN: Exploring Self-Supervised Representation Learning of Scene Text via Similarity-Aware Normalization ⬇️

Recently self-supervised representation learning has drawn considerable attention from the scene text recognition community. Different from previous studies using contrastive learning, we tackle the issue from an alternative perspective, i.e., by formulating the representation learning scheme in a generative manner. Typically, the neighboring image patches among one text line tend to have similar styles, including the strokes, textures, colors, etc. Motivated by this common sense, we augment one image patch and use its neighboring patch as guidance to recover itself. Specifically, we propose a Similarity-Aware Normalization (SimAN) module to identify the different patterns and align the corresponding styles from the guiding patch. In this way, the network gains representation capability for distinguishing complex patterns such as messy strokes and cluttered backgrounds. Experiments show that the proposed SimAN significantly improves the representation quality and achieves promising performance. Moreover, we surprisingly find that our self-supervised generative network has impressive potential for data synthesis, text image editing, and font interpolation, which suggests that the proposed SimAN has a wide range of practical applications.

90.TVConv: Efficient Translation Variant Convolution for Layout-aware Visual Processing ⬇️

As convolution has empowered many smart applications, dynamic convolution further equips it with the ability to adapt to diverse inputs. However, the static and dynamic convolutions are either layout-agnostic or computation-heavy, making it inappropriate for layout-specific applications, e.g., face recognition and medical image segmentation. We observe that these applications naturally exhibit the characteristics of large intra-image (spatial) variance and small cross-image variance. This observation motivates our efficient translation variant convolution (TVConv) for layout-aware visual processing. Technically, TVConv is composed of affinity maps and a weight-generating block. While affinity maps depict pixel-paired relationships gracefully, the weight-generating block can be explicitly overparameterized for better training while maintaining efficient inference. Although conceptually simple, TVConv significantly improves the efficiency of the convolution and can be readily plugged into various network architectures. Extensive experiments on face recognition show that TVConv reduces the computational cost by up to 3.1x and improves the corresponding throughput by 2.3x while maintaining a high accuracy compared to the depthwise convolution. Moreover, for the same computation cost, we boost the mean accuracy by up to 4.21%. We also conduct experiments on the optic disc/cup segmentation task and obtain better generalization performance, which helps mitigate the critical data scarcity issue. Code is available at this https URL.

91.Optimizing Camera Placements for Overlapped Coverage with 3D Camera Projections ⬇️

This paper proposes a method to compute camera 6Dof poses to achieve a user defined coverage. The camera placement problem is modeled as a combinatorial optimization where given the maximum number of cameras, a camera set is selected from a larger pool of possible camera poses. We propose to minimize the squared error between the desired and the achieved coverage, and formulate the non-linear cost function as a mixed integer linear programming problem. A camera lens model is utilized to project the cameras view on a 3D voxel map to compute a coverage score which makes the optimization problem in real environments tractable. Experimental results in two real retail store environments demonstrate the better performance of the proposed formulation in terms of coverage and overlap for triangulation compared to existing methods.

92.Portrait Eyeglasses and Shadow Removal by Leveraging 3D Synthetic Data ⬇️

In portraits, eyeglasses may occlude facial regions and generate cast shadows on faces, which degrades the performance of many techniques like face verification and expression recognition. Portrait eyeglasses removal is critical in handling these problems. However, completely removing the eyeglasses is challenging because the lighting effects (e.g., cast shadows) caused by them are often complex. In this paper, we propose a novel framework to remove eyeglasses as well as their cast shadows from face images. The method works in a detect-then-remove manner, in which eyeglasses and cast shadows are both detected and then removed from images. Due to the lack of paired data for supervised training, we present a new synthetic portrait dataset with both intermediate and final supervisions for both the detection and removal tasks. Furthermore, we apply a cross-domain technique to fill the gap between the synthetic and real data. To the best of our knowledge, the proposed technique is the first to remove eyeglasses and their cast shadows simultaneously. The code and synthetic dataset are available at this https URL.

93.Unidirectional Thin Adapter for Efficient Adaptation of Deep Neural Networks ⬇️

In this paper, we propose a new adapter network for adapting a pre-trained deep neural network to a target domain with minimal computation. The proposed model, unidirectional thin adapter (UDTA), helps the classifier adapt to new data by providing auxiliary features that complement the backbone network. UDTA takes outputs from multiple layers of the backbone as input features but does not transmit any feature to the backbone. As a result, UDTA can learn without computing the gradient of the backbone, which saves computation for training significantly. In addition, since UDTA learns the target task without modifying the backbone, a single backbone can adapt to multiple tasks by learning only UDTAs separately. In experiments on five fine-grained classification datasets consisting of a small number of samples, UDTA significantly reduced computation and training time required for backpropagation while showing comparable or even improved accuracy compared with conventional adapter models.

94.Optical Flow for Video Super-Resolution: A Survey ⬇️

Video super-resolution is currently one of the most active research topics in computer vision as it plays an important role in many visual applications. Generally, video super-resolution contains a significant component, i.e., motion compensation, which is used to estimate the displacement between successive video frames for temporal alignment. Optical flow, which can supply dense and sub-pixel motion between consecutive frames, is among the most common ways for this task. To obtain a good understanding of the effect that optical flow acts in video super-resolution, in this work, we conduct a comprehensive review on this subject for the first time. This investigation covers the following major topics: the function of super-resolution (i.e., why we require super-resolution); the concept of video super-resolution (i.e., what is video super-resolution); the description of evaluation metrics (i.e., how (video) superresolution performs); the introduction of optical flow based video super-resolution; the investigation of using optical flow to capture temporal dependency for video super-resolution. Prominently, we give an in-depth study of the deep learning based video super-resolution method, where some representative algorithms are analyzed and compared. Additionally, we highlight some promising research directions and open issues that should be further addressed.

95.simCrossTrans: A Simple Cross-Modality Transfer Learning for Object Detection with ConvNets or Vision Transformers ⬇️

Transfer learning is widely used in computer vision (CV), natural language processing (NLP) and achieves great success. Most transfer learning systems are based on the same modality (e.g. RGB image in CV and text in NLP). However, the cross-modality transfer learning (CMTL) systems are scarce. In this work, we study CMTL from 2D to 3D sensor to explore the upper bound performance of 3D sensor only systems, which play critical roles in robotic navigation and perform well in low light scenarios. While most CMTL pipelines from 2D to 3D vision are complicated and based on Convolutional Neural Networks (ConvNets), ours is easy to implement, expand and based on both ConvNets and Vision transformers(ViTs): 1) By converting point clouds to pseudo-images, we can use an almost identical network from pre-trained models based on 2D images. This makes our system easy to implement and expand. 2) Recently ViTs have been showing good performance and robustness to occlusions, one of the key reasons for poor performance of 3D vision systems. We explored both ViT and ConvNet with similar model sizes to investigate the performance difference. We name our approach simCrossTrans: simple cross-modality transfer learning with ConvNets or ViTs. Experiments on SUN RGB-D dataset show: with simCrossTrans we achieve $13.2%$ and $16.1%$ absolute performance gain based on ConvNets and ViTs separately. We also observed the ViTs based performs $9.7%$ better than the ConvNets one, showing the power of simCrossTrans with ViT. simCrossTrans with ViTs surpasses the previous state-of-the-art (SOTA) by a large margin of $+15.4%$ mAP50. Compared with the previous 2D detection SOTA based RGB images, our depth image only system only has a $1%$ gap. The code, training/inference logs and models are publicly available at this https URL

96.Adversarial Mutual Leakage Network for Cell Image Segmentation ⬇️

We propose three segmentation methods using GAN and information leakage between generator and discriminator. First, we propose an Adversarial Training Attention Module (ATA-Module) that uses an attention mechanism from the discriminator to the generator to enhance and leak important information in the discriminator. ATA-Module transmits important information to the generator from the discriminator. Second, we propose a Top-Down Pixel-wise Difficulty Attention Module (Top-Down PDA-Module) that leaks an attention map based on pixel-wise difficulty in the generator to the discriminator. The generator trains to focus on pixel-wise difficulty, and the discriminator uses the difficulty information leaked from the generator for classification. Finally, we propose an Adversarial Mutual Leakage Network (AML-Net) that mutually leaks the information each other between the generator and the discriminator. By using the information of the other network, it is able to train more efficiently than ordinary segmentation models. Three proposed methods have been evaluated on two datasets for cell image segmentation. The experimental results show that the segmentation accuracy of AML-Net was much improved in comparison with conventional methods.

97.Partitioning Image Representation in Contrastive Learning ⬇️

In contrastive learning in the image domain, the anchor and positive samples are forced to have as close representations as possible. However, forcing the two samples to have the same representation could be misleading because the data augmentation techniques make the two samples different. In this paper, we introduce a new representation, partitioned representation, which can learn both common and unique features of the anchor and positive samples in contrastive learning. The partitioned representation consists of two parts: the content part and the style part. The content part represents common features of the class, and the style part represents the own features of each sample, which can lead to the representation of the data augmentation method. We can achieve the partitioned representation simply by decomposing a loss function of contrastive learning into two terms on the two separate representations, respectively. To evaluate our representation with two parts, we take two framework models: Variational AutoEncoder (VAE) and BootstrapYour Own Latent(BYOL) to show the separability of content and style, and to confirm the generalization ability in classification, respectively. Based on the experiments, we show that our approach can separate two types of information in the VAE framework and outperforms the conventional BYOL in linear separability and a few-shot learning task as downstream tasks.

98.VGSE: Visually-Grounded Semantic Embeddings for Zero-Shot Learning ⬇️

Human-annotated attributes serve as powerful semantic embeddings in zero-shot learning. However, their annotation process is labor-intensive and needs expert supervision. Current unsupervised semantic embeddings, i.e., word embeddings, enable knowledge transfer between classes. However, word embeddings do not always reflect visual similarities and result in inferior zero-shot performance. We propose to discover semantic embeddings containing discriminative visual properties for zero-shot learning, without requiring any human annotation. Our model visually divides a set of images from seen classes into clusters of local image regions according to their visual similarity, and further imposes their class discrimination and semantic relatedness. To associate these clusters with previously unseen classes, we use external knowledge, e.g., word embeddings and propose a novel class relation discovery module. Through quantitative and qualitative evaluation, we demonstrate that our model discovers semantic embeddings that model the visual properties of both seen and unseen classes. Furthermore, we demonstrate on three benchmarks that our visually-grounded semantic embeddings further improve performance over word embeddings across various ZSL models by a large margin.

99.Vision Transformer with Convolutions Architecture Search ⬇️

Transformers exhibit great advantages in handling computer vision tasks. They model image classification tasks by utilizing a multi-head attention mechanism to process a series of patches consisting of split images. However, for complex tasks, Transformer in computer vision not only requires inheriting a bit of dynamic attention and global context, but also needs to introduce features concerning noise reduction, shifting, and scaling invariance of objects. Therefore, here we take a step forward to study the structural characteristics of Transformer and convolution and propose an architecture search method-Vision Transformer with Convolutions Architecture Search (VTCAS). The high-performance backbone network searched by VTCAS introduces the desirable features of convolutional neural networks into the Transformer architecture while maintaining the benefits of the multi-head attention mechanism. The searched block-based backbone network can extract feature maps at different scales. These features are compatible with a wider range of visual tasks, such as image classification (32 M parameters, 82.0% Top-1 accuracy on ImageNet-1K) and object detection (50.4% mAP on COCO2017). The proposed topology based on the multi-head attention mechanism and CNN adaptively associates relational features of pixels with multi-scale features of objects. It enhances the robustness of the neural network for object recognition, especially in the low illumination indoor scene.

100.End-to-End Human-Gaze-Target Detection with Transformers ⬇️

In this paper, we propose an effective and efficient method for Human-Gaze-Target (HGT) detection, i.e., gaze following. Current approaches decouple the HGT detection task into separate branches of salient object detection and human gaze prediction, employing a two-stage framework where human head locations must first be detected and then be fed into the next gaze target prediction sub-network. In contrast, we redefine the HGT detection task as detecting human head locations and their gaze targets, simultaneously. By this way, our method, named Human-Gaze-Target detection TRansformer or HGTTR, streamlines the HGT detection pipeline by eliminating all other additional components. HGTTR reasons about the relations of salient objects and human gaze from the global image context. Moreover, unlike existing two-stage methods that require human head locations as input and can predict only one human's gaze target at a time, HGTTR can directly predict the locations of all people and their gaze targets at one time in an end-to-end manner. The effectiveness and robustness of our proposed method are verified with extensive experiments on the two standard benchmark datasets, GazeFollowing and VideoAttentionTarget. Without bells and whistles, HGTTR outperforms existing state-of-the-art methods by large margins (6.4 mAP gain on GazeFollowing and 10.3 mAP gain on VideoAttentionTarget) with a much simpler architecture.

101.CLIP on Wheels: Zero-Shot Object Navigation as Object Localization and Exploration ⬇️

Households across the world contain arbitrary objects: from mate gourds and coffee mugs to sitars and guitars. Considering this diversity, robot perception must handle a large variety of semantic objects without additional fine-tuning to be broadly applicable in homes. Recently, zero-shot models have demonstrated impressive performance in image classification of arbitrary objects (i.e., classifying images at inference with categories not explicitly seen during training). In this paper, we translate the success of zero-shot vision models (e.g., CLIP) to the popular embodied AI task of object navigation. In our setting, an agent must find an arbitrary goal object, specified via text, in unseen environments coming from different datasets. Our key insight is to modularize the task into zero-shot object localization and exploration. Employing this philosophy, we design CLIP on Wheels (CoW) baselines for the task and evaluate each zero-shot model in both Habitat and RoboTHOR simulators. We find that a straightforward CoW, with CLIP-based object localization plus classical exploration, and no additional training, often outperforms learnable approaches in terms of success, efficiency, and robustness to dataset distribution shift. This CoW achieves 6.3% SPL in Habitat and 10.0% SPL in RoboTHOR, when tested zero-shot on all categories. On a subset of four RoboTHOR categories considered in prior work, the same CoW shows a 16.1 percentage point improvement in Success over the learnable state-of-the-art baseline.

102.Attri-VAE: attribute-based, disentangled and interpretable representations of medical images with variational autoencoders ⬇️

Deep learning (DL) methods where interpretability is intrinsically considered as part of the model are required to better understand the relationship of clinical and imaging-based attributes with DL outcomes, thus facilitating their use in reasoning medical decisions. Latent space representations built with variational autoencoders (VAE) do not ensure individual control of data attributes. Attribute-based methods enforcing attribute disentanglement have been proposed in the literature for classical computer vision tasks in benchmark data. In this paper, we propose a VAE approach, the Attri-VAE, that includes an attribute regularization term to associate clinical and medical imaging attributes with different regularized dimensions in the generated latent space, enabling a better disentangled interpretation of the attributes. Furthermore, the generated attention maps explained the attribute encoding in the regularized latent space dimensions. The Attri-VAE approach analyzed healthy and myocardial infarction patients with clinical, cardiac morphology, and radiomics attributes. The proposed model provided an excellent trade-off between reconstruction fidelity, disentanglement, and interpretability, outperforming state-of-the-art VAE approaches according to several quantitative metrics. The resulting latent space allowed the generation of realistic synthetic data in the trajectory between two distinct input samples or along a specific attribute dimension to better interpret changes between different cardiac conditions.

103.Towards Robust Semantic Segmentation of Accident Scenes via Multi-Source Mixed Sampling and Meta-Learning ⬇️

Autonomous vehicles utilize urban scene segmentation to understand the real world like a human and react accordingly. Semantic segmentation of normal scenes has experienced a remarkable rise in accuracy on conventional benchmarks. However, a significant portion of real-life accidents features abnormal scenes, such as those with object deformations, overturns, and unexpected traffic behaviors. Since even small mis-segmentation of driving scenes can lead to serious threats to human lives, the robustness of such models in accident scenarios is an extremely important factor in ensuring safety of intelligent transportation systems.
In this paper, we propose a Multi-source Meta-learning Unsupervised Domain Adaptation (MMUDA) framework, to improve the generalization of segmentation transformers to extreme accident scenes. In MMUDA, we make use of Multi-Domain Mixed Sampling to augment the images of multiple-source domains (normal scenes) with the target data appearances (abnormal scenes). To train our model, we intertwine and study a meta-learning strategy in the multi-source setting for robustifying the segmentation results. We further enhance the segmentation backbone (SegFormer) with a HybridASPP decoder design, featuring large window attention spatial pyramid pooling and strip pooling, to efficiently aggregate long-range contextual dependencies. Our approach achieves a mIoU score of 46.97% on the DADA-seg benchmark, surpassing the previous state-of-the-art model by more than 7.50%. Code will be made publicly available at this https URL.

104.PressureVision: Estimating Hand Pressure from a Single RGB Image ⬇️

People often interact with their surroundings by applying pressure with their hands. Machine perception of hand pressure has been limited by the challenges of placing sensors between the hand and the contact surface. We explore the possibility of using a conventional RGB camera to infer hand pressure. The central insight is that the application of pressure by a hand results in informative appearance changes. Hands share biomechanical properties that result in similar observable phenomena, such as soft-tissue deformation, blood distribution, hand pose, and cast shadows. We collected videos of 36 participants with diverse skin tone applying pressure to an instrumented planar surface. We then trained a deep model (PressureVisionNet) to infer a pressure image from a single RGB image. Our model infers pressure for participants outside of the training data and outperforms baselines. We also show that the output of our model depends on the appearance of the hand and cast shadows near contact regions. Overall, our results suggest the appearance of a previously unobserved human hand can be used to accurately infer applied pressure.

105.A naive method to discover directions in the StyleGAN2 latent space ⬇️

Several research groups have shown that Generative Adversarial Networks (GANs) can generate photo-realistic images in recent years. Using the GANs, a map is created between a latent code and a photo-realistic image. This process can also be reversed: given a photo as input, it is possible to obtain the corresponding latent code. In this paper, we will show how the inversion process can be easily exploited to interpret the latent space and control the output of StyleGAN2, a GAN architecture capable of generating photo-realistic faces. From a biological perspective, facial features such as nose size depend on important genetic factors, and we explore the latent spaces that correspond to such biological features, including masculinity and eye colour. We show the results obtained by applying the proposed method to a set of photos extracted from the CelebA-HQ database. We quantify some of these measures by utilizing two landmarking protocols, and evaluate their robustness through statistical analysis. Finally we correlate these measures with the input parameters used to perturb the latent spaces along those interpretable directions. Our results contribute towards building the groundwork of using such GAN architecture in forensics to generate photo-realistic faces that satisfy certain biological attributes.

106.ALAP-AE: As-Lite-as-Possible Auto-Encoder ⬇️

We present a novel algorithm to reduce tensor compute required by a conditional image generation autoencoder and make it as-lite-as-possible, without sacrificing quality of photo-realistic image generation. Our method is device agnostic, and can optimize an autoencoder for a given CPU-only, GPU compute device(s) in about normal time it takes to train an autoencoder on a generic workstation. We achieve this via a two-stage novel strategy where, first, we condense the channel weights, such that, as few as possible channels are used. Then, we prune the nearly zeroed out weight activations, and fine-tune this lite autoencoder. To maintain image quality, fine-tuning is done via student-teacher training, where we reuse the condensed autoencoder as the teacher. We show performance gains for various conditional image generation tasks: segmentation mask to face images, face images to cartoonization, and finally CycleGAN-based model on horse to zebra dataset over multiple compute devices. We perform various ablation studies to justify the claims and design choices, and achieve real-time versions of various autoencoders on CPU-only devices while maintaining image quality, thus enabling at-scale deployment of such autoencoders.

107.Multi-Domain Multi-Definition Landmark Localization for Small Datasets ⬇️

We present a novel method for multi image domain and multi-landmark definition learning for small dataset facial localization. Training a small dataset alongside a large(r) dataset helps with robust learning for the former, and provides a universal mechanism for facial landmark localization for new and/or smaller standard datasets. To this end, we propose a Vision Transformer encoder with a novel decoder with a definition agnostic shared landmark semantic group structured prior, that is learnt, as we train on more than one dataset concurrently. Due to our novel definition agnostic group prior the datasets may vary in landmark definitions and domains. During the decoder stage we use cross- and self-attention, whose output is later fed into domain/definition specific heads that minimize a Laplacian-log-likelihood loss. We achieve state-of-the-art performance on standard landmark localization datasets such as COFW and WFLW, when trained with a bigger dataset. We also show state-of-the-art performance on several varied image domain small datasets for animals, caricatures, and facial portrait paintings. Further, we contribute a small dataset (150 images) of pareidolias to show efficacy of our method. Finally, we provide several analysis and ablation studies to justify our claims.

108.CLRNet: Cross Layer Refinement Network for Lane Detection ⬇️

Lane is critical in the vision navigation system of the intelligent vehicle. Naturally, lane is a traffic sign with high-level semantics, whereas it owns the specific local pattern which needs detailed low-level features to localize accurately. Using different feature levels is of great importance for accurate lane detection, but it is still under-explored. In this work, we present Cross Layer Refinement Network (CLRNet) aiming at fully utilizing both high-level and low-level features in lane detection. In particular, it first detects lanes with high-level semantic features then performs refinement based on low-level features. In this way, we can exploit more contextual information to detect lanes while leveraging local detailed lane features to improve localization accuracy. We present ROIGather to gather global context, which further enhances the feature representation of lanes. In addition to our novel network design, we introduce Line IoU loss which regresses the lane line as a whole unit to improve the localization accuracy. Experiments demonstrate that the proposed method greatly outperforms the state-of-the-art lane detection approaches.

109.Font Generation with Missing Impression Labels ⬇️

Our goal is to generate fonts with specific impressions, by training a generative adversarial network with a font dataset with impression labels. The main difficulty is that font impression is ambiguous and the absence of an impression label does not always mean that the font does not have the impression. This paper proposes a font generation model that is robust against missing impression labels. The key ideas of the proposed method are (1)a co-occurrence-based missing label estimator and (2)an impression label space compressor. The first is to interpolate missing impression labels based on the co-occurrence of labels in the dataset and use them for training the model as completed label conditions. The second is an encoder-decoder module to compress the high-dimensional impression space into low-dimensional. We proved that the proposed model generates high-quality font images using multi-label data with missing labels through qualitative and quantitative evaluations.

110.No Shifted Augmentations (NSA): compact distributions for robust self-supervised Anomaly Detection ⬇️

Unsupervised Anomaly detection (AD) requires building a notion of normalcy, distinguishing in-distribution (ID) and out-of-distribution (OOD) data, using only available ID samples. Recently, large gains were made on this task for the domain of natural images using self-supervised contrastive feature learning as a first step followed by kNN or traditional one-class classifiers for feature scoring. Learned representations that are non-uniformly distributed on the unit hypersphere have been shown to be beneficial for this task. We go a step further and investigate how the \emph {geometrical compactness} of the ID feature distribution makes isolating and detecting outliers easier, especially in the realistic situation when ID training data is polluted (i.e. ID data contains some OOD data that is used for learning the feature extractor parameters). We propose novel architectural modifications to the self-supervised feature learning step, that enable such compact distributions for ID data to be learned. We show that the proposed modifications can be effectively applied to most existing self-supervised objectives, with large gains in performance. Furthermore, this improved OOD performance is obtained without resorting to tricks such as using strongly augmented ID images (e.g. by 90 degree rotations) as proxies for the unseen OOD data, as these impose overly prescriptive assumptions about ID data and its invariances. We perform extensive studies on benchmark datasets for one-class OOD detection and show state-of-the-art performance in the presence of pollution in the ID data, and comparable performance otherwise. We also propose and extensively evaluate a novel feature scoring technique based on the angular Mahalanobis distance, and propose a simple and novel technique for feature ensembling during evaluation that enables a big boost in performance at nearly zero run-time cost.

111.Occlusion-Aware Self-Supervised Monocular 6D Object Pose Estimation ⬇️

6D object pose estimation is a fundamental yet challenging problem in computer vision. Convolutional Neural Networks (CNNs) have recently proven to be capable of predicting reliable 6D pose estimates even under monocular settings. Nonetheless, CNNs are identified as being extremely data-driven, and acquiring adequate annotations is oftentimes very time-consuming and labor intensive. To overcome this limitation, we propose a novel monocular 6D pose estimation approach by means of self-supervised learning, removing the need for real annotations. After training our proposed network fully supervised with synthetic RGB data, we leverage current trends in noisy student training and differentiable rendering to further self-supervise the model on these unsupervised real RGB(-D) samples, seeking for a visually and geometrically optimal alignment. Moreover, employing both visible and amodal mask information, our self-supervision becomes very robust towards challenging scenarios such as occlusion. Extensive evaluations demonstrate that our proposed self-supervision outperforms all other methods relying on synthetic data or employing elaborate techniques from the domain adaptation realm. Noteworthy, our self-supervised approach consistently improves over its synthetically trained baseline and often almost closes the gap towards its fully supervised counterpart. The code and models are publicly available at this https URL.

112.TO-FLOW: Efficient Continuous Normalizing Flows with Temporal Optimization adjoint with Moving Speed ⬇️

Continuous normalizing flows (CNFs) construct invertible mappings between an arbitrary complex distribution and an isotropic Gaussian distribution using Neural Ordinary Differential Equations (neural ODEs). It has not been tractable on large datasets due to the incremental complexity of the neural ODE training. Optimal Transport theory has been applied to regularize the dynamics of the ODE to speed up training in recent works. In this paper, a temporal optimization is proposed by optimizing the evolutionary time for forward propagation of the neural ODE training. In this appoach, we optimize the network weights of the CNF alternately with evolutionary time by coordinate descent. Further with temporal regularization, stability of the evolution is ensured. This approach can be used in conjunction with the original regularization approach. We have experimentally demonstrated that the proposed approach can significantly accelerate training without sacrifying performance over baseline models.

113.Domain Adaptation Meets Zero-Shot Learning: An Annotation-Efficient Approach to Multi-Modality Medical Image Segmentation ⬇️

Due to the lack of properly annotated medical data, exploring the generalization capability of the deep model is becoming a public concern. Zero-shot learning (ZSL) has emerged in recent years to equip the deep model with the ability to recognize unseen classes. However, existing studies mainly focus on natural images, which utilize linguistic models to extract auxiliary information for ZSL. It is impractical to apply the natural image ZSL solutions directly to medical images, since the medical terminology is very domain-specific, and it is not easy to acquire linguistic models for the medical terminology. In this work, we propose a new paradigm of ZSL specifically for medical images utilizing cross-modality information. We make three main contributions with the proposed paradigm. First, we extract the prior knowledge about the segmentation targets, called relation prototypes, from the prior model and then propose a cross-modality adaptation module to inherit the prototypes to the zero-shot model. Second, we propose a relation prototype awareness module to make the zero-shot model aware of information contained in the prototypes. Last but not least, we develop an inheritance attention module to recalibrate the relation prototypes to enhance the inheritance process. The proposed framework is evaluated on two public cross-modality datasets including a cardiac dataset and an abdominal dataset. Extensive experiments show that the proposed framework significantly outperforms the state of the arts.

114.Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds ⬇️

Transformer has demonstrated promising performance in many 2D vision tasks. However, it is cumbersome to compute the self-attention on large-scale point cloud data because point cloud is a long sequence and unevenly distributed in 3D space. To solve this issue, existing methods usually compute self-attention locally by grouping the points into clusters of the same size, or perform convolutional self-attention on a discretized representation. However, the former results in stochastic point dropout, while the latter typically has narrow attention fields. In this paper, we propose a novel voxel-based architecture, namely Voxel Set Transformer (VoxSeT), to detect 3D objects from point clouds by means of set-to-set translation. VoxSeT is built upon a voxel-based set attention (VSA) module, which reduces the self-attention in each voxel by two cross-attentions and models features in a hidden space induced by a group of latent codes. With the VSA module, VoxSeT can manage voxelized point clusters with arbitrary size in a wide range, and process them in parallel with linear complexity. The proposed VoxSeT integrates the high performance of transformer with the efficiency of voxel-based model, which can be used as a good alternative to the convolutional and point-based backbones. VoxSeT reports competitive results on the KITTI and Waymo detection benchmarks. The source codes can be found at \url{this https URL}.

115.Modelling nonlinear dependencies in the latent space of inverse scattering ⬇️

The problem of inverse scattering proposed by Angles and Mallat in 2018, concerns training a deep neural network to invert the scattering transform applied to an image. After such a network is trained, it can be used as a generative model given that we can sample from the distribution of principal components of scattering coefficients. For this purpose, Angles and Mallat simply use samples from independent Gaussians. However, as shown in this paper, the distribution of interest can actually be very far from normal and non-negligible dependencies might exist between different coefficients. This motivates using models for this distribution that allow for non-linear dependencies between variables. Within this paper, two such models are explored, namely a Variational AutoEncoder and a Generative Adversarial Network. We demonstrate the results obtained can be extremely realistic on some datasets and look better than those produced by Angles and Mallat. The conducted meta-analysis also shows a clear practical advantage of such constructed generative models in terms of the efficiency of their training process compared to existing generative models for images.

116.Incremental Few-Shot Learning via Implanting and Compressing ⬇️

This work focuses on tackling the challenging but realistic visual task of Incremental Few-Shot Learning (IFSL), which requires a model to continually learn novel classes from only a few examples while not forgetting the base classes on which it was pre-trained. Our study reveals that the challenges of IFSL lie in both inter-class separation and novel-class representation. Dur to intra-class variation, a novel class may implicitly leverage the knowledge from multiple base classes to construct its feature representation. Hence, simply reusing the pre-trained embedding space could lead to a scattered feature distribution and result in category confusion. To address such issues, we propose a two-step learning strategy referred to as \textbf{Im}planting and \textbf{Co}mpressing (\textbf{IMCO}), which optimizes both feature space partition and novel class reconstruction in a systematic manner. Specifically, in the \textbf{Implanting} step, we propose to mimic the data distribution of novel classes with the assistance of data-abundant base set, so that a model could learn semantically-rich features that are beneficial for discriminating between the base and other unseen classes. In the \textbf{Compressing} step, we adapt the feature extractor to precisely represent each novel class for enhancing intra-class compactness, together with a regularized parameter updating rule for preventing aggressive model updating. Finally, we demonstrate that IMCO outperforms competing baselines with a significant margin, both in image classification task and more challenging object detection task.

117.Exploring Motion Ambiguity and Alignment for High-Quality Video Frame Interpolation ⬇️

For video frame interpolation (VFI), existing deep-learning-based approaches strongly rely on the ground-truth (GT) intermediate frames, which sometimes ignore the non-unique nature of motion judging from the given adjacent frames. As a result, these methods tend to produce averaged solutions that are not clear enough. To alleviate this issue, we propose to relax the requirement of reconstructing an intermediate frame as close to the GT as possible. Towards this end, we develop a texture consistency loss (TCL) upon the assumption that the interpolated content should maintain similar structures with their counterparts in the given frames. Predictions satisfying this constraint are encouraged, though they may differ from the pre-defined GT. Without the bells and whistles, our plug-and-play TCL is capable of improving the performance of existing VFI frameworks. On the other hand, previous methods usually adopt the cost volume or correlation map to achieve more accurate image/feature warping. However, the O(N^2) ({N refers to the pixel count}) computational complexity makes it infeasible for high-resolution cases. In this work, we design a simple, efficient (O(N)) yet powerful cross-scale pyramid alignment (CSPA) module, where multi-scale information is highly exploited. Extensive experiments justify the efficiency and effectiveness of the proposed strategy.

118.Learning Self-Supervised Low-Rank Network for Single-Stage Weakly and Semi-Supervised Semantic Segmentation ⬇️

Semantic segmentation with limited annotations, such as weakly supervised semantic segmentation (WSSS) and semi-supervised semantic segmentation (SSSS), is a challenging task that has attracted much attention recently. Most leading WSSS methods employ a sophisticated multi-stage training strategy to estimate pseudo-labels as precise as possible, but they suffer from high model complexity. In contrast, there exists another research line that trains a single network with image-level labels in one training cycle. However, such a single-stage strategy often performs poorly because of the compounding effect caused by inaccurate pseudo-label estimation. To address this issue, this paper presents a Self-supervised Low-Rank Network (SLRNet) for single-stage WSSS and SSSS. The SLRNet uses cross-view self-supervision, that is, it simultaneously predicts several complementary attentive LR representations from different views of an image to learn precise pseudo-labels. Specifically, we reformulate the LR representation learning as a collective matrix factorization problem and optimize it jointly with the network learning in an end-to-end manner. The resulting LR representation deprecates noisy information while capturing stable semantics across different views, making it robust to the input variations, thereby reducing overfitting to self-supervision errors. The SLRNet can provide a unified single-stage framework for various label-efficient semantic segmentation settings: 1) WSSS with image-level labeled data, 2) SSSS with a few pixel-level labeled data, and 3) SSSS with a few pixel-level labeled data and many image-level labeled data. Extensive experiments on the Pascal VOC 2012, COCO, and L2ID datasets demonstrate that our SLRNet outperforms both state-of-the-art WSSS and SSSS methods with a variety of different settings, proving its good generalizability and efficacy.

119.Representation-Agnostic Shape Fields ⬇️

3D shape analysis has been widely explored in the era of deep learning. Numerous models have been developed for various 3D data representation formats, e.g., MeshCNN for meshes, PointNet for point clouds and VoxNet for voxels. In this study, we present Representation-Agnostic Shape Fields (RASF), a generalizable and computation-efficient shape embedding module for 3D deep learning. RASF is implemented with a learnable 3D grid with multiple channels to store local geometry. Based on RASF, shape embeddings for various 3D shape representations (point clouds, meshes and voxels) are retrieved by coordinate indexing. While there are multiple ways to optimize the learnable parameters of RASF, we provide two effective schemes among all in this paper for RASF pre-training: shape reconstruction and normal estimation. Once trained, RASF becomes a plug-and-play performance booster with negligible cost. Extensive experiments on diverse 3D representation formats, networks and applications, validate the universal effectiveness of the proposed RASF. Code and pre-trained models are publicly available this https URL

120.HIPA: Hierarchical Patch Transformer for Single Image Super Resolution ⬇️

Transformer-based architectures start to emerge in single image super resolution (SISR) and have achieved promising performance. Most existing Vision Transformers divide images into the same number of patches with a fixed size, which may not be optimal for restoring patches with different levels of texture richness. This paper presents HIPA, a novel Transformer architecture that progressively recovers the high resolution image using a hierarchical patch partition. Specifically, we build a cascaded model that processes an input image in multiple stages, where we start with tokens with small patch sizes and gradually merge to the full resolution. Such a hierarchical patch mechanism not only explicitly enables feature aggregation at multiple resolutions but also adaptively learns patch-aware features for different image regions, e.g., using a smaller patch for areas with fine details and a larger patch for textureless regions. Meanwhile, a new attention-based position encoding scheme for Transformer is proposed to let the network focus on which tokens should be paid more attention by assigning different weights to different tokens, which is the first time to our best knowledge. Furthermore, we also propose a new multi-reception field attention module to enlarge the convolution reception field from different branches. The experimental results on several public datasets demonstrate the superior performance of the proposed HIPA over previous methods quantitatively and qualitatively.

121.DirecFormer: A Directed Attention in Transformer Approach to Robust Action Recognition ⬇️

Human action recognition has recently become one of the popular research topics in the computer vision community. Various 3D-CNN based methods have been presented to tackle both the spatial and temporal dimensions in the task of video action recognition with competitive results. However, these methods have suffered some fundamental limitations such as lack of robustness and generalization, e.g., how does the temporal ordering of video frames affect the recognition results? This work presents a novel end-to-end Transformer-based Directed Attention (DirecFormer) framework for robust action recognition. The method takes a simple but novel perspective of Transformer-based approach to understand the right order of sequence actions. Therefore, the contributions of this work are three-fold. Firstly, we introduce the problem of ordered temporal learning issues to the action recognition problem. Secondly, a new Directed Attention mechanism is introduced to understand and provide attentions to human actions in the right order. Thirdly, we introduce the conditional dependency in action sequence modeling that includes orders and classes. The proposed approach consistently achieves the state-of-the-art (SOTA) results compared with the recent action recognition methods, on three standard large-scale benchmarks, i.e. Jester, Kinetics-400 and Something-Something-V2.

122.Volkit: A Performance-Portable Computer Vision Library for 3D Volumetric Data ⬇️

We present volkit, an open source library with high performance implementations of image manipulation and computer vision algorithms that focus on 3D volumetric representations. Volkit implements a cross-platform, performance-portable API targeting both CPUs and GPUs that defers data and resource movement and hides them from the application developer using a managed API. We use volkit to process medical and simulation data that is rendered in VR and consequently integrated the library into the C++ virtual reality software CalVR. The paper presents case studies and performance results and by that demonstrates the library's effectiveness and the efficiency of this approach.

123.Unsupervised Learning of 3D Semantic Keypoints with Mutual Reconstruction ⬇️

Semantic 3D keypoints are category-level semantic consistent points on 3D objects. Detecting 3D semantic keypoints is a foundation for a number of 3D vision tasks but remains challenging, due to the ambiguity of semantic information, especially when the objects are represented by unordered 3D point clouds. Existing unsupervised methods tend to generate category-level keypoints in implicit manners, making it difficult to extract high-level information, such as semantic labels and topology. From a novel mutual reconstruction perspective, we present an unsupervised method to generate consistent semantic keypoints from point clouds explicitly. To achieve this, the proposed model predicts keypoints that not only reconstruct the object itself but also reconstruct other instances in the same category. To the best of our knowledge, the proposed method is the first to mine 3D semantic consistent keypoints from a mutual reconstruction view. Experiments under various evaluation metrics as well as comparisons with the state-of-the-arts demonstrate the efficacy of our new solution to mining semantic consistent keypoints with mutual reconstruction.

124.SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text Recognition ⬇️

End-to-end scene text spotting has attracted great attention in recent years due to the success of excavating the intrinsic synergy of the scene text detection and recognition. However, recent state-of-the-art methods usually incorporate detection and recognition simply by sharing the backbone, which does not directly take advantage of the feature interaction between the two tasks. In this paper, we propose a new end-to-end scene text spotting framework termed SwinTextSpotter. Using a transformer encoder with dynamic head as the detector, we unify the two tasks with a novel Recognition Conversion mechanism to explicitly guide text localization through recognition loss. The straightforward design results in a concise framework that requires neither additional rectification module nor character-level annotation for the arbitrarily-shaped text. Qualitative and quantitative experiments on multi-oriented datasets RoIC13 and ICDAR 2015, arbitrarily-shaped datasets Total-Text and CTW1500, and multi-lingual datasets ReCTS (Chinese) and VinText (Vietnamese) demonstrate SwinTextSpotter significantly outperforms existing methods. Code is available at this https URL.

125.Relationformer: A Unified Framework for Image-to-Graph Generation ⬇️

A comprehensive representation of an image requires understanding objects and their mutual relationship, especially in image-to-graph generation, e.g., road network extraction, blood-vessel network extraction, or scene graph generation. Traditionally, image-to-graph generation is addressed with a two-stage approach consisting of object detection followed by a separate relation prediction, which prevents simultaneous object-relation interaction. This work proposes a unified one-stage transformer-based framework, namely Relationformer, that jointly predicts objects and their relations. We leverage direct set-based object prediction and incorporate the interaction among the objects to learn an object-relation representation jointly. In addition to existing [obj]-tokens, we propose a novel learnable token, namely [rln]-token. Together with [obj]-tokens, [rln]-token exploits local and global semantic reasoning in an image through a series of mutual associations. In combination with the pair-wise [obj]-token, the [rln]-token contributes to a computationally efficient relation prediction. We achieve state-of-the-art performance on multiple, diverse and multi-domain datasets that demonstrate our approach's effectiveness and generalizability.

126.Learning Morphological Feature Perturbations for Calibrated Semi-Supervised Segmentation ⬇️

We propose MisMatch, a novel consistency-driven semi-supervised segmentation framework which produces predictions that are invariant to learnt feature perturbations. MisMatch consists of an encoder and a two-head decoders. One decoder learns positive attention to the foreground regions of interest (RoI) on unlabelled images thereby generating dilated features. The other decoder learns negative attention to the foreground on the same unlabelled images thereby generating eroded features. We then apply a consistency regularisation on the paired predictions. MisMatch outperforms state-of-the-art semi-supervised methods on a CT-based pulmonary vessel segmentation task and a MRI-based brain tumour segmentation task. In addition, we show that the effectiveness of MisMatch comes from better model calibration than its supervised learning counterpart.

127.Analysis and Adaptation of YOLOv4 for Object Detection in Aerial Images ⬇️

The recent and rapid growth in Unmanned Aerial Vehicles (UAVs) deployment for various computer vision tasks has paved the path for numerous opportunities to make them more effective and valuable. Object detection in aerial images is challenging due to variations in appearance, pose, and scale. Autonomous aerial flight systems with their inherited limited memory and computational power demand accurate and computationally efficient detection algorithms for real-time applications. Our work shows the adaptation of the popular YOLOv4 framework for predicting the objects and their locations in aerial images with high accuracy and inference speed. We utilized transfer learning for faster convergence of the model on the VisDrone DET aerial object detection dataset. The trained model resulted in a mean average precision (mAP) of 45.64% with an inference speed reaching 8.7 FPS on the Tesla K80 GPU and was highly accurate in detecting truncated and occluded objects. We experimentally evaluated the impact of varying network resolution sizes and training epochs on the performance. A comparative study with several contemporary aerial object detectors proved that YOLOv4 performed better, implying a more suitable detection algorithm to incorporate on aerial platforms.

128.Conditional-Flow NeRF: Accurate 3D Modelling with Reliable Uncertainty Quantification ⬇️

A critical limitation of current methods based on Neural Radiance Fields (NeRF) is that they are unable to quantify the uncertainty associated with the learned appearance and geometry of the scene. This information is paramount in real applications such as medical diagnosis or autonomous driving where, to reduce potentially catastrophic failures, the confidence on the model outputs must be included into the decision-making process. In this context, we introduce Conditional-Flow NeRF (CF-NeRF), a novel probabilistic framework to incorporate uncertainty quantification into NeRF-based approaches. For this purpose, our method learns a distribution over all possible radiance fields modelling which is used to quantify the uncertainty associated with the modelled scene. In contrast to previous approaches enforcing strong constraints over the radiance field distribution, CF-NeRF learns it in a flexible and fully data-driven manner by coupling Latent Variable Modelling and Conditional Normalizing Flows. This strategy allows to obtain reliable uncertainty estimation while preserving model expressivity. Compared to previous state-of-the-art methods proposed for uncertainty quantification in NeRF, our experiments show that the proposed method achieves significantly lower prediction errors and more reliable uncertainty values for synthetic novel view and depth-map estimation.

129.Adversarial Attacks on Deep Learning-based Video Compression and Classification Systems ⬇️

Video compression plays a crucial role in enabling video streaming and classification systems and maximizing the end-user quality of experience (QoE) at a given bandwidth budget. In this paper, we conduct the first systematic study for adversarial attacks on deep learning based video compression and downstream classification systems. We propose an adaptive adversarial attack that can manipulate the Rate-Distortion (R-D) relationship of a video compression model to achieve two adversarial goals: (1) increasing the network bandwidth or (2) degrading the video quality for end-users. We further devise novel objectives for targeted and untargeted attacks to a downstream video classification service. Finally, we design an input-invariant perturbation that universally disrupts video compression and classification systems in real time. Unlike previously proposed attacks on video classification, our adversarial perturbations are the first to withstand compression. We empirically show the resilience of our attacks against various defenses, i.e., adversarial training, video denoising, and JPEG compression. Our extensive experimental results on various video datasets demonstrate the effectiveness of our attacks. Our video quality and bandwidth attacks deteriorate peak signal-to-noise ratio by up to 5.4dB and the bit-rate by up to 2.4 times on the standard video compression datasets while achieving over 90% attack success rate on a downstream classifier.

130.Evaluation of April Tag and WhyCode Fiducial Systems for Autonomous Precision Drone Landing with a Gimbal-Mounted Camera ⬇️

Fiducial markers provide a computationally cheap way for drones to determine their location with respect to a landing pad and execute precision landings. However, most existing work in this field uses a fixed, downward facing camera that does not leverage the common gimbal-mounted camera setup found on many drones. Such rigid systems cannot easily track detected markers, and may lose sight of the markers in non-ideal conditions (e.g. wind gusts). This paper evaluates April Tag and WhyCode fiducial systems for drone landing with a gimbal-mounted, monocular camera, with the advantage that the drone system can track the marker over time. However, since the orientation of the camera changes, we must know the orientation of the marker, which is unreliable in monocular fiducial systems. Additionally, the system must be fast. We propose 2 methods for mitigating the orientation ambiguity of WhyCode, and 1 method for increasing the runtime detection rate of April Tag. We evaluate our 3 systems against 2 default systems in terms of marker orientation ambiguity, and detection rate. We test rates of marker detection in a ROS framework on a Raspberry Pi 4, and we rank the systems in terms of their performance. Our first WhyCode variant significantly reduces orientation ambiguity with an insignificant reduction in detection rate. Our second WhyCode variant does not show significantly different orientation ambiguity from the default WhyCode system, but does provide additional functionality in terms of multi-marker WhyCode bundle arrangements. Our April Tag variant does not show performance improvements on a Raspberry Pi 4.

131.Discovering Objects that Can Move ⬇️

This paper studies the problem of object discovery -- separating objects from the background without manual labels. Existing approaches utilize appearance cues, such as color, texture, and location, to group pixels into object-like regions. However, by relying on appearance alone, these methods fail to separate objects from the background in cluttered scenes. This is a fundamental limitation since the definition of an object is inherently ambiguous and context-dependent. To resolve this ambiguity, we choose to focus on dynamic objects -- entities that can move independently in the world. We then scale the recent auto-encoder based frameworks for unsupervised object discovery from toy synthetic images to complex real-world scenes. To this end, we simplify their architecture, and augment the resulting model with a weak learning signal from general motion segmentation algorithms. Our experiments demonstrate that, despite only capturing a small subset of the objects that move, this signal is enough to generalize to segment both moving and static instances of dynamic objects. We show that our model scales to a newly collected, photo-realistic synthetic dataset with street driving scenarios. Additionally, we leverage ground truth segmentation and flow annotations in this dataset for thorough ablation and evaluation. Finally, our experiments on the real-world KITTI benchmark demonstrate that the proposed approach outperforms both heuristic- and learning-based methods by capitalizing on motion cues.

132.ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers ⬇️

Novel view synthesis is a long-standing problem. In this work, we consider a variant of the problem where we are given only a few context views sparsely covering a scene or an object. The goal is to predict novel viewpoints in the scene, which requires learning priors. The current state of the art is based on Neural Radiance Fields (NeRFs), and while achieving impressive results, the methods suffer from long training times as they require evaluating thousands of 3D point samples via a deep neural network for each image. We propose a 2D-only method that maps multiple context views and a query pose to a new image in a single pass of a neural network. Our model uses a two-stage architecture consisting of a codebook and a transformer model. The codebook is used to embed individual images into a smaller latent space, and the transformer solves the view synthesis task in this more compact space. To train our model efficiently, we introduce a novel branching attention mechanism that allows us to use the same model not only for neural rendering but also for camera pose estimation. Experimental results on real-world scenes show that our approach is competitive compared to NeRF-based methods while not reasoning in 3D, and it is faster to train.

133.Closing the Generalization Gap of Cross-silo Federated Medical Image Segmentation ⬇️

Cross-silo federated learning (FL) has attracted much attention in medical imaging analysis with deep learning in recent years as it can resolve the critical issues of insufficient data, data privacy, and training efficiency. However, there can be a generalization gap between the model trained from FL and the one from centralized training. This important issue comes from the non-iid data distribution of the local data in the participating clients and is well-known as client drift. In this work, we propose a novel training framework FedSM to avoid the client drift issue and successfully close the generalization gap compared with the centralized training for medical image segmentation tasks for the first time. We also propose a novel personalized FL objective formulation and a new method SoftPull to solve it in our proposed framework FedSM. We conduct rigorous theoretical analysis to guarantee its convergence for optimizing the non-convex smooth objective function. Real-world medical image segmentation experiments using deep FL validate the motivations and effectiveness of our proposed method.

134.FaceMap: Towards Unsupervised Face Clustering via Map Equation ⬇️

Face clustering is an essential task in computer vision due to the explosion of related applications such as augmented reality or photo album management. The main challenge of this task lies in the imperfectness of similarities among image feature representations. Given an existing feature extraction model, it is still an unresolved problem that how can the inherent characteristics of similarities of unlabelled images be leveraged to improve the clustering performance. Motivated by answering the question, we develop an effective unsupervised method, named as FaceMap, by formulating face clustering as a process of non-overlapping community detection, and minimizing the entropy of information flows on a network of images. The entropy is denoted by the map equation and its minimum represents the least description of paths among images in expectation. Inspired by observations on the ranked transition probabilities in the affinity graph constructed from facial images, we develop an outlier detection strategy to adaptively adjust transition probabilities among images. Experiments with ablation studies demonstrate that FaceMap significantly outperforms existing methods and achieves new state-of-the-arts on three popular large-scale datasets for face clustering, e.g., an absolute improvement of more than $10%$ and $4%$ comparing with prior unsupervised and supervised methods respectively in terms of average of Pairwise F-score. Our code is publicly available on github.

135.Review of Disentanglement Approaches for Medical Applications -- Towards Solving the Gordian Knot of Generative Models in Healthcare ⬇️

Deep neural networks are commonly used for medical purposes such as image generation, segmentation, or classification. Besides this, they are often criticized as black boxes as their decision process is often not human interpretable. Encouraging the latent representation of a generative model to be disentangled offers new perspectives of control and interpretability. Understanding the data generation process could help to create artificial medical data sets without violating patient privacy, synthesizing different data modalities, or discovering data generating characteristics. These characteristics might unravel novel relationships that can be related to genetic traits or patient outcomes. In this paper, we give a comprehensive overview of popular generative models, like Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Flow-based Models. Furthermore, we summarize the different notions of disentanglement, review approaches to disentangle latent space representations and metrics to evaluate the degree of disentanglement. After introducing the theoretical frameworks, we give an overview of recent medical applications and discuss the impact and importance of disentanglement approaches for medical applications.

136.PACS: A Dataset for Physical Audiovisual CommonSense Reasoning ⬇️

In order for AI to be safely deployed in real-world scenarios such as hospitals, schools, and the workplace, they should be able to reason about the physical world by understanding the physical properties and affordances of available objects, how they can be manipulated, and how they interact with other physical objects. This research field of physical commonsense reasoning is fundamentally a multi-sensory task since physical properties are manifested through multiple modalities, two of them being vision and acoustics. Our paper takes a step towards real-world physical commonsense reasoning by contributing PACS: the first audiovisual benchmark annotated for physical commonsense attributes. PACS contains a total of 13,400 question-answer pairs, involving 1,377 unique physical commonsense questions and 1,526 videos. Our dataset provides new opportunities to advance the research field of physical reasoning by bringing audio as a core component of this multimodal problem. Using PACS, we evaluate multiple state-of-the-art models on this new challenging task. While some models show promising results (70% accuracy), they all fall short of human performance (95% accuracy). We conclude the paper by demonstrating the importance of multimodal reasoning and providing possible avenues for future research.

137.MTBF-33: A multi-temporal building footprint dataset for 33 counties in the United States (1900-2015) ⬇️

Despite abundant data on the spatial distribution of contemporary human settlements, historical data on the long-term evolution of human settlements at fine spatial and temporal granularity is scarce, limiting our quantitative understanding of long-term changes of built-up areas. This is because commonly used mapping methods (e.g., image classification) and suitable data sources (i.e., aerial imagery, multi-spectral remote sensing data, LiDAR) have only been available in recent decades. However, there are alternative data sources such as cadastral records that are digitally available, containing relevant information such as building age information, allowing for an approximate, digital reconstruction of past building distributions. We conducted a non-exhaustive search of open and publicly available data resources from administrative institutions in the United States and gathered, integrated, and harmonized cadastral parcel data, tax assessment data, and building footprint data for 33 counties, wherever building footprint geometries and building construction year information was available. The result of this effort is a unique dataset which we call the Multi-Temporal Building Footprint Dataset for 33 U.S. Counties (MTBF-33). MTBF-33 contains over 6.2 million building footprints including their construction year, and can be used to derive retrospective depictions of built-up areas from 1900 to 2015, at fine spatial and temporal grain and can be used for data validation purposes, or to train statistical learning approaches aiming to extract historical information on human settlements from remote sensing data, historical maps, or similar data sources. MTBF-33 is available at this http URL.

138.Computational ergonomics for task delegation in Human-Robot Collaboration: spatiotemporal adaptation of the robot to the human through contactless gesture recognition ⬇️

The high prevalence of work-related musculoskeletal disorders (WMSDs) could be addressed by optimizing Human-Robot Collaboration (HRC) frameworks for manufacturing applications. In this context, this paper proposes two hypotheses for ergonomically effective task delegation and HRC. The first hypothesis states that it is possible to quantify ergonomically professional tasks using motion data from a reduced set of sensors. Then, the most dangerous tasks can be delegated to a collaborative robot. The second hypothesis is that by including gesture recognition and spatial adaptation, the ergonomics of an HRC scenario can be improved by avoiding needless motions that could expose operators to ergonomic risks and by lowering the physical effort required of operators. An HRC scenario for a television manufacturing process is optimized to test both hypotheses. For the ergonomic evaluation, motion primitives with known ergonomic risks were modeled for their detection in professional tasks and to estimate a risk score based on the European Assembly Worksheet (EAWS). A Deep Learning gesture recognition module trained with egocentric television assembly data was used to complement the collaboration between the human operator and the robot. Additionally, a skeleton-tracking algorithm provided the robot with information about the operator's pose, allowing it to spatially adapt its motion to the operator's anthropometrics. Three experiments were conducted to determine the effect of gesture recognition and spatial adaptation on the operator's range of motion. The rate of spatial adaptation was used as a key performance indicator (KPI), and a new KPI for measuring the reduction in the operator's motion is presented in this paper.

139.Longitudinal Self-Supervision for COVID-19 Pathology Quantification ⬇️

Quantifying COVID-19 infection over time is an important task to manage the hospitalization of patients during a global pandemic. Recently, deep learning-based approaches have been proposed to help radiologists automatically quantify COVID-19 pathologies on longitudinal CT scans. However, the learning process of deep learning methods demands extensive training data to learn the complex characteristics of infected regions over longitudinal scans. It is challenging to collect a large-scale dataset, especially for longitudinal training. In this study, we want to address this problem by proposing a new self-supervised learning method to effectively train longitudinal networks for the quantification of COVID-19 infections. For this purpose, longitudinal self-supervision schemes are explored on clinical longitudinal COVID-19 CT scans. Experimental results show that the proposed method is effective, helping the model better exploit the semantics of longitudinal data and improve two COVID-19 quantification tasks.

140.Domain Generalization by Mutual-Information Regularization with Pre-trained Models ⬇️

Domain generalization (DG) aims to learn a generalized model to an unseen target domain using only limited source domains. Previous attempts to DG fail to learn domain-invariant representations only from the source domains due to the significant domain shifts between training and test domains. Instead, we re-formulate the DG objective using mutual information with the oracle model, a model generalized to any possible domain. We derive a tractable variational lower bound via approximating the oracle model by a pre-trained model, called Mutual Information Regularization with Oracle (MIRO). Our extensive experiments show that MIRO significantly improves the out-of-distribution performance. Furthermore, our scaling experiments show that the larger the scale of the pre-trained model, the greater the performance improvement of MIRO. Source code is available at this https URL.

141.Classifications of Skull Fractures using CT Scan Images via CNN with Lazy Learning Approach ⬇️

Classification of skull fracture is a challenging task for both radiologists and researchers. Skull fractures result in broken pieces of bone, which can cut into the brain and cause bleeding and other injury types. So it is vital to detect and classify the fracture very early. In real world, often fractures occur at multiple sites. This makes it harder to detect the fracture type where many fracture types might summarize a skull fracture. Unfortunately, manual detection of skull fracture and the classification process is time-consuming, threatening a patient's life. Because of the emergence of deep learning, this process could be automated. Convolutional Neural Networks (CNNs) are the most widely used deep learning models for image categorization because they deliver high accuracy and outstanding outcomes compared to other models. We propose a new model called SkullNetV1 comprising a novel CNN by taking advantage of CNN for feature extraction and lazy learning approach which acts as a classifier for classification of skull fractures from brain CT images to classify five fracture types. Our suggested model achieved a subset accuracy of 88%, an F1 score of 93%, the Area Under the Curve (AUC) of 0.89 to 0.98, a Hamming score of 92% and a Hamming loss of 0.04 for this seven-class multi-labeled classification.

142.Decoupled Mixup for Data-efficient Learning ⬇️

Mixup is an efficient data augmentation approach that improves the generalization of neural networks by smoothing the decision boundary with mixed data. Recently, dynamic mixup methods improve previous static policies (e.g., linear interpolation) by maximizing discriminative regions or maintaining the salient objects in mixed samples. We notice that The mixed samples from dynamic policies are more separable than the static ones while preventing models from overfitting. Inspired by this finding, we first argue that there exists an over-smoothing issue in the mixup objective, which focuses on regression the mixing ratio instead of identifying discriminative features. We are therefore prompted to propose a decoupled mixup (DM) loss that can adaptively mine discriminative features without losing smoothness. DM enables static mixup methods to achieve comparable performance with dynamic methods while avoiding heavy computational overhead. This also leads to an interesting objective design problem for mixup training that we need to focus not only on smoothing the decision boundaries but also on identifying discriminative features. Extensive experiments on supervised and semi-supervised learning benchmarks across seven classification datasets validate the effectiveness of DM by equipping with various mixup methods.

143.Compression of Generative Pre-trained Language Models via Quantization ⬇️

The increasing size of generative Pre-trained Language Models (PLMs) has greatly increased the demand for model compression. Despite various methods to compress BERT or its variants, there are few attempts to compress generative PLMs, and the underlying difficulty remains unclear. In this paper, we compress generative PLMs by quantization. We find that previous quantization methods fail on generative tasks due to the \textit{homogeneous word embeddings} caused by reduced capacity, and \textit{varied distribution of weights}. Correspondingly, we propose a token-level contrastive distillation to learn distinguishable word embeddings, and a module-wise dynamic scaling to make quantizers adaptive to different modules. Empirical results on various tasks show that our proposed method outperforms the state-of-the-art compression methods on generative PLMs by a clear margin. With comparable performance with the full-precision models, we achieve 14.4x and 13.4x compression rates on GPT-2 and BART, respectively.

144.A direct geometry processing cartilage generation method using segmented bone models from datasets with poor cartilage visibility ⬇️

We present a method to generate subject-specific cartilage for the hip joint. Given bone geometry, our approach is agnostic to image modality, creates conforming interfaces, and is well suited for finite element analysis. We demonstrate our method on ten hip joints showing anatomical shape consistency and well-behaved stress patterns. Our method is fast and may assist in large-scale biomechanical population studies of the hip joint when manual segmentation or training data is not feasible.

145.Automated Detection of Acute Promyelocytic Leukemia in Blood Films and Bone Marrow Aspirates with Annotation-free Deep Learning ⬇️

While optical microscopy inspection of blood films and bone marrow aspirates by a hematologist is a crucial step in establishing diagnosis of acute leukemia, especially in low-resource settings where other diagnostic modalities might not be available, the task remains time-consuming and prone to human inconsistencies. This has an impact especially in cases of Acute Promyelocytic Leukemia (APL) that require urgent treatment. Integration of automated computational hematopathology into clinical workflows can improve the throughput of these services and reduce cognitive human error. However, a major bottleneck in deploying such systems is a lack of sufficient cell morphological object-labels annotations to train deep learning models. We overcome this by leveraging patient diagnostic labels to train weakly-supervised models that detect different types of acute leukemia. We introduce a deep learning approach, Multiple Instance Learning for Leukocyte Identification (MILLIE), able to perform automated reliable analysis of blood films with minimal supervision. Without being trained to classify individual cells, MILLIE differentiates between acute lymphoblastic and myeloblastic leukemia in blood films. More importantly, MILLIE detects APL in blood films (AUC 0.94+/-0.04) and in bone marrow aspirates (AUC 0.99+/-0.01). MILLIE is a viable solution to augment the throughput of clinical pathways that require assessment of blood film microscopy.

146.Multi-Modal Learning Using Physicians Diagnostics for Optical Coherence Tomography Classification ⬇️

In this paper, we propose a framework that incorporates experts diagnostics and insights into the analysis of Optical Coherence Tomography (OCT) using multi-modal learning. To demonstrate the effectiveness of this approach, we create a medical diagnostic attribute dataset to improve disease classification using OCT. Although there have been successful attempts to deploy machine learning for disease classification in OCT, such methodologies lack the experts insights. We argue that injecting ophthalmological assessments as another supervision in a learning framework is of great importance for the machine learning process to perform accurate and interpretable classification. We demonstrate the proposed framework through comprehensive experiments that compare the effectiveness of combining diagnostic attribute features with latent visual representations and show that they surpass the state-of-the-art approach. Finally, we analyze the proposed dual-stream architecture and provide an insight that determine the components that contribute most to classification performance.

147.Towards Clinical Practice: Design and Implementation of Convolutional Neural Network-Based Assistive Diagnosis System for COVID-19 Case Detection from Chest X-Ray Images ⬇️

One of the critical tools for early detection and subsequent evaluation of the incidence of lung diseases is chest radiography. This study presents a real-world implementation of a convolutional neural network (CNN) based Carebot Covid app to detect COVID-19 from chest X-ray (CXR) images. Our proposed model takes the form of a simple and intuitive application. Used CNN can be deployed as a STOW-RS prediction endpoint for direct implementation into DICOM viewers. The results of this study show that the deep learning model based on DenseNet and ResNet architecture can detect SARS-CoV-2 from CXR images with precision of 0.981, recall of 0.962 and AP of 0.993.

148.Accelerating Integrated Task and Motion Planning with Neural Feasibility Checking ⬇️

As robots play an increasingly important role in the industrial, the expectations about their applications for everyday living tasks are getting higher. Robots need to perform long-horizon tasks that consist of several sub-tasks that need to be accomplished. Task and Motion Planning (TAMP) provides a hierarchical framework to handle the sequential nature of manipulation tasks by interleaving a symbolic task planner that generates a possible action sequence, with a motion planner that checks the kinematic feasibility in the geometric world, generating robot trajectories if several constraints are satisfied, e.g., a collision-free trajectory from one state to another. Hence, the reasoning about the task plan's geometric grounding is taken over by the motion planner. However, motion planning is computationally intense and is usability as feasibility checker casts TAMP methods inapplicable to real-world scenarios. In this paper, we introduce neural feasibility classifier (NFC), a simple yet effective visual heuristic for classifying the feasibility of proposed actions in TAMP. Namely, NFC will identify infeasible actions of the task planner without the need for costly motion planning, hence reducing planning time in multi-step manipulation tasks. NFC encodes the image of the robot's workspace into a feature map thanks to convolutional neural network (CNN). We train NFC using simulated data from TAMP problems and label the instances based on IK feasibility checking. Our empirical results in different simulated manipulation tasks show that our NFC generalizes to the entire robot workspace and has high prediction accuracy even in scenes with multiple obstructions. When combined with state-of-the-art integrated TAMP, our NFC enhances its performance while reducing its planning time.

149.Learning Whole Heart Mesh Generation From Patient Images For Computational Simulations ⬇️

Patient-specific cardiac modeling combines geometries of the heart derived from medical images and biophysical simulations to predict various aspects of cardiac function. However, generating simulation-suitable models of the heart from patient image data often requires complicated procedures and significant human effort. We present a fast and automated deep-learning method to construct simulation-suitable models of the heart from medical images. The approach constructs meshes from 3D patient images by learning to deform a small set of deformation handles on a whole heart template. For both 3D CT and MR data, this method achieves promising accuracy for whole heart reconstruction, consistently outperforming prior methods in constructing simulation-suitable meshes of the heart. When evaluated on time-series CT data, this method produced more anatomically and temporally consistent geometries than prior methods, and was able to produce geometries that better satisfy modeling requirements for cardiac flow simulations. Our source code will be available on GitHub.

150.Inferring Articulated Rigid Body Dynamics from RGBD Video ⬇️

Being able to reproduce physical phenomena ranging from light interaction to contact mechanics, simulators are becoming increasingly useful in more and more application domains where real-world interaction or labeled data are difficult to obtain. Despite recent progress, significant human effort is needed to configure simulators to accurately reproduce real-world behavior. We introduce a pipeline that combines inverse rendering with differentiable simulation to create digital twins of real-world articulated mechanisms from depth or RGB videos. Our approach automatically discovers joint types and estimates their kinematic parameters, while the dynamic properties of the overall mechanism are tuned to attain physically accurate simulations. Control policies optimized in our derived simulation transfer successfully back to the original system, as we demonstrate on a simulated system. Further, our approach accurately reconstructs the kinematic tree of an articulated mechanism being manipulated by a robot, and highly nonlinear dynamics of a real-world coupled pendulum mechanism.
Website: this https URL

151.Inferring topological transitions in pattern-forming processes with self-supervised learning ⬇️

The identification and classification of transitions in topological and microstructural regimes in pattern-forming processes is critical for understanding and fabricating microstructurally precise novel materials in many application domains. Unfortunately, relevant microstructure transitions may depend on process parameters in subtle and complex ways that are not captured by the classic theory of phase transition. While supervised machine learning methods may be useful for identifying transition regimes, they need labels which require prior knowledge of order parameters or relevant structures. Motivated by the universality principle for dynamical systems, we instead use a self-supervised approach to solve the inverse problem of predicting process parameters from observed microstructures using neural networks. This approach does not require labeled data about the target task of predicting microstructure transitions. We show that the difficulty of performing this prediction task is related to the goal of discovering microstructure regimes, because qualitative changes in microstructural patterns correspond to changes in uncertainty for our self-supervised prediction problem. We demonstrate the value of our approach by automatically discovering transitions in microstructural regimes in two distinct pattern-forming processes: the spinodal decomposition of a two-phase mixture and the formation of concentration modulations of binary alloys during physical vapor deposition of thin films. This approach opens a promising path forward for discovering and understanding unseen or hard-to-detect transition regimes, and ultimately for controlling complex pattern-forming processes.

152.Concept-based Adversarial Attacks: Tricking Humans and Classifiers Alike ⬇️

We propose to generate adversarial samples by modifying activations of upper layers encoding semantically meaningful concepts. The original sample is shifted towards a target sample, yielding an adversarial sample, by using the modified activations to reconstruct the original sample. A human might (and possibly should) notice differences between the original and the adversarial sample. Depending on the attacker-provided constraints, an adversarial sample can exhibit subtle differences or appear like a "forged" sample from another class. Our approach and goal are in stark contrast to common attacks involving perturbations of single pixels that are not recognizable by humans. Our approach is relevant in, e.g., multi-stage processing of inputs, where both humans and machines are involved in decision-making because invisible perturbations will not fool a human. Our evaluation focuses on deep neural networks. We also show the transferability of our adversarial examples among networks.

153.A Closer Look at Knowledge Distillation with Features, Logits, and Gradients ⬇️

Knowledge distillation (KD) is a substantial strategy for transferring learned knowledge from one neural network model to another. A vast number of methods have been developed for this strategy. While most method designs a more efficient way to facilitate knowledge transfer, less attention has been put on comparing the effect of knowledge sources such as features, logits, and gradients. This work provides a new perspective to motivate a set of knowledge distillation strategies by approximating the classical KL-divergence criteria with different knowledge sources, making a systematic comparison possible in model compression and incremental learning. Our analysis indicates that logits are generally a more efficient knowledge source and suggests that having sufficient feature dimensions is crucial for the model design, providing a practical guideline for effective KD-based transfer learning.

154.AI system for fetal ultrasound in low-resource settings ⬇️

Despite considerable progress in maternal healthcare, maternal and perinatal deaths remain high in low-to-middle income countries. Fetal ultrasound is an important component of antenatal care, but shortage of adequately trained healthcare workers has limited its adoption. We developed and validated an artificial intelligence (AI) system that uses novice-acquired "blind sweep" ultrasound videos to estimate gestational age (GA) and fetal malpresentation. We further addressed obstacles that may be encountered in low-resourced settings. Using a simplified sweep protocol with real-time AI feedback on sweep quality, we have demonstrated the generalization of model performance to minimally trained novice ultrasound operators using low cost ultrasound devices with on-device AI integration. The GA model was non-inferior to standard fetal biometry estimates with as few as two sweeps, and the fetal malpresentation model had high AUC-ROCs across operators and devices. Our AI models have the potential to assist in upleveling the capabilities of lightly trained ultrasound operators in low resource settings.

155.Towards a Perceptual Model for Estimating the Quality of Visual Speech ⬇️

Generating realistic lip motions to simulate speech production is key for driving natural character animations from audio. Previous research has shown that traditional metrics used to optimize and assess models for generating lip motions from speech are not a good indicator of subjective opinion of animation quality. Yet, running repetitive subjective studies for assessing the quality of animations can be time-consuming and difficult to replicate. In this work, we seek to understand the relationship between perturbed lip motion and subjective opinion of lip motion quality. Specifically, we adjust the degree of articulation for lip motion sequences and run a user-study to examine how this adjustment impacts the perceived quality of lip motion. We then train a model using the scores collected from our user-study to automatically predict the subjective quality of an animated sequence. Our results show that (1) users score lip motions with slight over-articulation the highest in terms of perceptual quality; (2) under-articulation had a more detrimental effect on perceived quality of lip motion compared to the effect of over-articulation; and (3) we can automatically estimate the subjective perceptual score for a given lip motion sequences with low error rates.

156.AlignTransformer: Hierarchical Alignment of Visual Regions and Disease Tags for Medical Report Generation ⬇️

Recently, medical report generation, which aims to automatically generate a long and coherent descriptive paragraph of a given medical image, has received growing research interests. Different from the general image captioning tasks, medical report generation is more challenging for data-driven neural models. This is mainly due to 1) the serious data bias: the normal visual regions dominate the dataset over the abnormal visual regions, and 2) the very long sequence. To alleviate above two problems, we propose an AlignTransformer framework, which includes the Align Hierarchical Attention (AHA) and the Multi-Grained Transformer (MGT) modules: 1) AHA module first predicts the disease tags from the input image and then learns the multi-grained visual features by hierarchically aligning the visual regions and disease tags. The acquired disease-grounded visual features can better represent the abnormal regions of the input image, which could alleviate data bias problem; 2) MGT module effectively uses the multi-grained features and Transformer framework to generate the long medical report. The experiments on the public IU-Xray and MIMIC-CXR datasets show that the AlignTransformer can achieve results competitive with state-of-the-art methods on the two datasets. Moreover, the human evaluation conducted by professional radiologists further proves the effectiveness of our approach.

157.Selection of entropy based features for the analysis of the Archimedes' spiral applied to essential tremor ⬇️

Biomedical systems are regulated by interacting mechanisms that operate across multiple spatial and temporal scales and produce biosignals with linear and non-linear information inside. In this sense entropy could provide a useful measure about disorder in the system, lack of information in time-series and/or irregularity of the signals. Essential tremor (ET) is the most common movement disorder, being 20 times more common than Parkinson's disease, and 50-70% of this disease cases are estimated to be genetic in origin. Archimedes spiral drawing is one of the most used standard tests for clinical diagnosis. This work, on selection of nonlinear biomarkers from drawings and handwriting, is part of a wide-ranging cross study for the diagnosis of essential tremor in BioDonostia Health Institute. Several entropy algorithms are used to generate nonlinear feayures. The automatic analysis system consists of several Machine Learning paradigms.

158.Label conditioned segmentation ⬇️

Semantic segmentation is an important task in computer vision that is often tackled with convolutional neural networks (CNNs). A CNN learns to produce pixel-level predictions through training on pairs of images and their corresponding ground-truth segmentation labels. For segmentation tasks with multiple classes, the standard approach is to use a network that computes a multi-channel probabilistic segmentation map, with each channel representing one class. In applications where the image grid size (e.g., when it is a 3D volume) and/or the number of labels is relatively large, the standard (baseline) approach can become prohibitively expensive for our computational resources. In this paper, we propose a simple yet effective method to address this challenge. In our approach, the segmentation network produces a single-channel output, while being conditioned on a single class label, which determines the output class of the network. Our method, called label conditioned segmentation (LCS), can be used to segment images with a very large number of classes, which might be infeasible for the baseline approach. We also demonstrate in the experiments that label conditioning can improve the accuracy of a given backbone architecture, likely, thanks to its parameter efficiency. Finally, as we show in our results, an LCS model can produce previously unseen fine-grained labels during inference time, when only coarse labels were available during training. We provide all of our code here: this https URL