Skip to content
This repository has been archived by the owner on Apr 21, 2024. It is now read-only.

Latest commit

 

History

History
75 lines (75 loc) · 52.5 KB

20220221.md

File metadata and controls

75 lines (75 loc) · 52.5 KB

ArXiv cs.CV --Mon, 21 Feb 2022

1.A Machine Learning Paradigm for Studying Pictorial Realism: Are Constable's Clouds More Real than His Contemporaries? ⬇️

European artists have sought to create life-like images since the Renaissance. The techniques used by artists to impart realism to their paintings often rely on approaches based in mathematics, like linear perspective; yet the means used to assess the verisimilitude of realist paintings have remained subjective, even intuitive. An exploration of alternative and relatively objective methods for evaluating pictorial realism could enhance existing art historical research. We propose a machine-learning-based paradigm for studying pictorial realism in an explainable way. Unlike subjective evaluations made by art historians or computer-based painting analysis exploiting inexplicable learned features, our framework assesses realism by measuring the similarity between clouds painted by exceptionally skillful 19th-century landscape painters like John Constable and photographs of clouds. The experimental results of cloud classification show that Constable approximates more consistently than his contemporaries the formal features of actual clouds in his paintings. Our analyses suggest that artists working in the decades leading up to the invention of photography worked in a mode that anticipated some of the stylistic features of photography. The study is a springboard for deeper analyses of pictorial realism using computer vision and machine learning.

2.Exploring Adversarially Robust Training for Unsupervised Domain Adaptation ⬇️

Unsupervised Domain Adaptation (UDA) methods aim to transfer knowledge from a labeled source domain to an unlabeled target domain. UDA has been extensively studied in the computer vision literature. Deep networks have been shown to be vulnerable to adversarial attacks. However, very little focus is devoted to improving the adversarial robustness of deep UDA models, causing serious concerns about model reliability. Adversarial Training (AT) has been considered to be the most successful adversarial defense approach. Nevertheless, conventional AT requires ground-truth labels to generate adversarial examples and train models, which limits its effectiveness in the unlabeled target domain. In this paper, we aim to explore AT to robustify UDA models: How to enhance the unlabeled data robustness via AT while learning domain-invariant features for UDA? To answer this, we provide a systematic study into multiple AT variants that potentially apply to UDA. Moreover, we propose a novel Adversarially Robust Training method for UDA accordingly, referred to as ARTUDA. Extensive experiments on multiple attacks and benchmarks show that ARTUDA consistently improves the adversarial robustness of UDA models.

3.(2.5+1)D Spatio-Temporal Scene Graphs for Video Question Answering ⬇️

Spatio-temporal scene-graph approaches to video-based reasoning tasks such as video question-answering (QA) typically construct such graphs for every video frame. Such approaches often ignore the fact that videos are essentially sequences of 2D "views" of events happening in a 3D space, and that the semantics of the 3D scene can thus be carried over from frame to frame. Leveraging this insight, we propose a (2.5+1)D scene graph representation to better capture the spatio-temporal information flows inside the videos. Specifically, we first create a 2.5D (pseudo-3D) scene graph by transforming every 2D frame to have an inferred 3D structure using an off-the-shelf 2D-to-3D transformation module, following which we register the video frames into a shared (2.5+1)D spatio-temporal space and ground each 2D scene graph within it. Such a (2.5+1)D graph is then segregated into a static sub-graph and a dynamic sub-graph, corresponding to whether the objects within them usually move in the world. The nodes in the dynamic graph are enriched with motion features capturing their interactions with other graph nodes. Next, for the video QA task, we present a novel transformer-based reasoning pipeline that embeds the (2.5+1)D graph into a spatio-temporal hierarchical latent space, where the sub-graphs and their interactions are captured at varied granularity. To demonstrate the effectiveness of our approach, we present experiments on the NExT-QA and AVSD-QA datasets. Our results show that our proposed (2.5+1)D representation leads to faster training and inference, while our hierarchical model showcases superior performance on the video QA task versus the state of the art.

4.Spatio-Temporal Outdoor Lighting Aggregation on Image Sequences using Transformer Networks ⬇️

In this work, we focus on outdoor lighting estimation by aggregating individual noisy estimates from images, exploiting the rich image information from wide-angle cameras and/or temporal image sequences. Photographs inherently encode information about the scene's lighting in the form of shading and shadows. Recovering the lighting is an inverse rendering problem and as that ill-posed. Recent work based on deep neural networks has shown promising results for single image lighting estimation, but suffers from robustness. We tackle this problem by combining lighting estimates from several image views sampled in the angular and temporal domain of an image sequence. For this task, we introduce a transformer architecture that is trained in an end-2-end fashion without any statistical post-processing as required by previous work. Thereby, we propose a positional encoding that takes into account the camera calibration and ego-motion estimation to globally register the individual estimates when computing attention between visual words. We show that our method leads to improved lighting estimation while requiring less hyper-parameters compared to the state-of-the-art.

5.Incorporating Texture Information into Dimensionality Reduction for High-Dimensional Images ⬇️

High-dimensional imaging is becoming increasingly relevant in many fields from astronomy and cultural heritage to systems biology. Visual exploration of such high-dimensional data is commonly facilitated by dimensionality reduction. However, common dimensionality reduction methods do not include spatial information present in images, such as local texture features, into the construction of low-dimensional embeddings. Consequently, exploration of such data is typically split into a step focusing on the attribute space followed by a step focusing on spatial information, or vice versa. In this paper, we present a method for incorporating spatial neighborhood information into distance-based dimensionality reduction methods, such as t-Distributed Stochastic Neighbor Embedding (t-SNE). We achieve this by modifying the distance measure between high-dimensional attribute vectors associated with each pixel such that it takes the pixel's spatial neighborhood into account. Based on a classification of different methods for comparing image patches, we explore a number of different approaches. We compare these approaches from a theoretical and experimental point of view. Finally, we illustrate the value of the proposed methods by qualitative and quantitative evaluation on synthetic data and two real-world use cases.

6.MultiRes-NetVLAD: Augmenting Place Recognition Training with Low-Resolution Imagery ⬇️

Visual Place Recognition (VPR) is a crucial component of 6-DoF localization, visual SLAM and structure-from-motion pipelines, tasked to generate an initial list of place match hypotheses by matching global place descriptors. However, commonly-used CNN-based methods either process multiple image resolutions after training or use a single resolution and limit multi-scale feature extraction to the last convolutional layer during training. In this paper, we augment NetVLAD representation learning with low-resolution image pyramid encoding which leads to richer place representations. The resultant multi-resolution feature pyramid can be conveniently aggregated through VLAD into a single compact representation, avoiding the need for concatenation or summation of multiple patches in recent multi-scale approaches. Furthermore, we show that the underlying learnt feature tensor can be combined with existing multi-scale approaches to improve their baseline performance. Evaluation on 15 viewpoint-varying and viewpoint-consistent benchmarking datasets confirm that the proposed MultiRes-NetVLAD leads to state-of-the-art Recall@N performance for global descriptor based retrieval, compared against 11 existing techniques. Source code is publicly available at this https URL.

7.Towards Simple and Accurate Human Pose Estimation with Stair Network ⬇️

In this paper, we focus on tackling the precise keypoint coordinates regression task. Most existing approaches adopt complicated networks with a large number of parameters, leading to a heavy model with poor cost-effectiveness in practice. To overcome this limitation, we develop a small yet discrimicative model called STair Network, which can be simply stacked towards an accurate multi-stage pose estimation system. Specifically, to reduce computational cost, STair Network is composed of novel basic feature extraction blocks which focus on promoting feature diversity and obtaining rich local representations with fewer parameters, enabling a satisfactory balance on efficiency and performance. To further improve the performance, we introduce two mechanisms with negligible computational cost, focusing on feature fusion and replenish. We demonstrate the effectiveness of the STair Network on two standard datasets, e.g., 1-stage STair Network achieves a higher accuracy than HRNet by 5.5% on COCO test dataset with 80% fewer parameters and 68% fewer GFLOPs.

8.Iterative Learning for Instance Segmentation ⬇️

Instance segmentation is a computer vision task where separate objects in an image are detected and segmented. State-of-the-art deep neural network models require large amounts of labeled data in order to perform well in this task. Making these annotations is time-consuming. We propose for the first time, an iterative learning and annotation method that is able to detect, segment and annotate instances in datasets composed of multiple similar objects. The approach requires minimal human intervention and needs only a bootstrapping set containing very few annotations. Experiments on two different datasets show the validity of the approach in different applications related to visual inspection.

9.Lightweight Multi-Drone Detection and 3D-Localization via YOLO ⬇️

In this work, we present and evaluate a method to perform real-time multiple drone detection and three-dimensional localization using state-of-the-art tiny-YOLOv4 object detection algorithm and stereo triangulation. Our computer vision approach eliminates the need for computationally expensive stereo matching algorithms, thereby significantly reducing the memory footprint and making it deployable on embedded systems. Our drone detection system is highly modular (with support for various detection algorithms) and capable of identifying multiple drones in a system, with real-time detection accuracy of up to 77% with an average FPS of 332 (on Nvidia Titan Xp). We also test the complete pipeline in AirSim environment, detecting drones at a maximum distance of 8 meters, with a mean error of $23%$ of the distance. We also release the source code for the project, with pre-trained models and the curated synthetic stereo dataset.

10.VLP: A Survey on Vision-Language Pre-training ⬇️

In the past few years, the emergence of pre-training models has brought uni-modal fields such as computer vision (CV) and natural language processing (NLP) to a new era. Substantial works have shown they are beneficial for downstream uni-modal tasks and avoid training a new model from scratch. So can such pre-trained models be applied to multi-modal tasks? Researchers have explored this problem and made significant progress. This paper surveys recent advances and new frontiers in vision-language pre-training (VLP), including image-text and video-text pre-training. To give readers a better overall grasp of VLP, we first review its recent advances from five aspects: feature extraction, model architecture, pre-training objectives, pre-training datasets, and downstream tasks. Then, we summarize the specific VLP models in detail. Finally, we discuss the new frontiers in VLP. To the best of our knowledge, this is the first survey on VLP. We hope that this survey can shed light on future research in the VLP field.

11.Guide Local Feature Matching by Overlap Estimation ⬇️

Local image feature matching under large appearance, viewpoint, and distance changes is challenging yet important. Conventional methods detect and match tentative local features across the whole images, with heuristic consistency checks to guarantee reliable matches. In this paper, we introduce a novel Overlap Estimation method conditioned on image pairs with TRansformer, named OETR, to constrain local feature matching in the commonly visible region. OETR performs overlap estimation in a two-step process of feature correlation and then overlap regression. As a preprocessing module, OETR can be plugged into any existing local feature detection and matching pipeline, to mitigate potential view angle or scale variance. Intensive experiments show that OETR can boost state-of-the-art local feature matching performance substantially, especially for image pairs with small shared regions. The code will be publicly available at this https URL.

12.Task Specific Attention is one more thing you need for object detection ⬇️

Various models have been proposed to solve the object detection problem. However, most of them require many hand-designed components to demonstrate good performance. To mitigate these issues, Transformer based DETR and its variant Deformable DETR were suggested. They solved much of the complex issue of designing a head of object detection model but it has not been generally clear that the Transformer-based models could be considered as the state-of-the-art method in object detection without doubt. Furthermore, as DETR adapted Transformer method only for the detection head, but still with including CNN for the backbone body, it has not been certain that it would be possible to build the competent end-to-end pipeline with the combination of attention modules. In this paper, we propose that combining several attention modules with our new Task Specific Split Transformer(TSST) is a fairly good enough method to produce the best COCO results without traditionally hand-designed components. By splitting generally purposed attention module into two separated mission specific attention module, the proposed method addresses the way to design simpler object detection models than before. Extensive experiments on the COCO benchmark demonstrate the effectiveness of our approach. Code is released at this https URL

13.A Comprehensive Survey with Quantitative Comparison of Image Analysis Methods for Microorganism Biovolume Measurements ⬇️

With the acceleration of urbanization and living standards, microorganisms play increasingly important roles in industrial production, bio-technique, and food safety testing. Microorganism biovolume measurements are one of the essential parts of microbial analysis. However, traditional manual measurement methods are time-consuming and challenging to measure the characteristics precisely. With the development of digital image processing techniques, the characteristics of the microbial population can be detected and quantified. The changing trend can be adjusted in time and provided a basis for the improvement. The applications of the microorganism biovolume measurement method have developed since the 1980s. More than 60 articles are reviewed in this study, and the articles are grouped by digital image segmentation methods with periods. This study has high research significance and application value, which can be referred to microbial researchers to have a comprehensive understanding of microorganism biovolume measurements using digital image analysis methods and potential applications.

14.How Well Do Self-Supervised Methods Perform in Cross-Domain Few-Shot Learning? ⬇️

Cross-domain few-shot learning (CDFSL) remains a largely unsolved problem in the area of computer vision, while self-supervised learning presents a promising solution. Both learning methods attempt to alleviate the dependency of deep networks on the requirement of large-scale labeled data. Although self-supervised methods have recently advanced dramatically, their utility on CDFSL is relatively unexplored. In this paper, we investigate the role of self-supervised representation learning in the context of CDFSL via a thorough evaluation of existing methods. It comes as a surprise that even with shallow architectures or small training datasets, self-supervised methods can perform favorably compared to the existing SOTA methods. Nevertheless, no single self-supervised approach dominates all datasets indicating that existing self-supervised methods are not universally applicable. In addition, we find that representations extracted from self-supervised methods exhibit stronger robustness than the supervised method. Intriguingly, whether self-supervised representations perform well on the source domain has little correlation with their applicability on the target domain. As part of our study, we conduct an objective measurement of the performance for six kinds of representative classifiers. The results suggest Prototypical Classifier as the standard evaluation recipe for CDFSL.

15.LG-LSQ: Learned Gradient Linear Symmetric Quantization ⬇️

Deep neural networks with lower precision weights and operations at inference time have advantages in terms of the cost of memory space and accelerator power. The main challenge associated with the quantization algorithm is maintaining accuracy at low bit-widths. We propose learned gradient linear symmetric quantization (LG-LSQ) as a method for quantizing weights and activation functions to low bit-widths with high accuracy in integer neural network processors. First, we introduce the scaling simulated gradient (SSG) method for determining the appropriate gradient for the scaling factor of the linear quantizer during the training process. Second, we introduce the arctangent soft round (ASR) method, which differs from the straight-through estimator (STE) method in its ability to prevent the gradient from becoming zero, thereby solving the discrete problem caused by the rounding process. Finally, to bridge the gap between full-precision and low-bit quantization networks, we propose the minimize discretization error (MDE) method to determine an accurate gradient in backpropagation. The ASR+MDE method is a simple alternative to the STE method and is practical for use in different uniform quantization methods. In our evaluation, the proposed quantizer achieved full-precision baseline accuracy in various 3-bit networks, including ResNet18, ResNet34, and ResNet50, and an accuracy drop of less than 1% in the quantization of 4-bit weights and 4-bit activations in lightweight models such as MobileNetV2 and ShuffleNetV2.

16.KINet: Keypoint Interaction Networks for Unsupervised Forward Modeling ⬇️

Object-centric representation is an essential abstraction for physical reasoning and forward prediction. Most existing approaches learn this representation through extensive supervision (e.g., object class and bounding box) although such ground-truth information is not readily accessible in reality. To address this, we introduce KINet (Keypoint Interaction Network) -- an end-to-end unsupervised framework to reason about object interactions in complex systems based on a keypoint representation. Using visual observations, our model learns to associate objects with keypoint coordinates and discovers a graph representation of the system as a set of keypoint embeddings and their relations. It then learns an action-conditioned forward model using contrastive estimation to predict future keypoint states. By learning to perform physical reasoning in the keypoint space, our model automatically generalizes to scenarios with a different number of objects, and novel object geometries. Experiments demonstrate the effectiveness of our model to accurately perform forward prediction and learn plannable object-centric representations which can also be used in downstream model-based control tasks.

17.An Active and Contrastive Learning Framework for Fine-Grained Off-Road Semantic Segmentation ⬇️

Off-road semantic segmentation with fine-grained labels is necessary for autonomous vehicles to understand driving scenes, as the coarse-grained road detection can not satisfy off-road vehicles with various mechanical properties. Fine-grained semantic segmentation in off-road scenes usually has no unified category definition due to ambiguous nature environments, and the cost of pixel-wise labeling is extremely high. Furthermore, semantic properties of off-road scenes can be very changeable due to various precipitations, temperature, defoliation, etc. To address these challenges, this research proposes an active and contrastive learning-based method that does not rely on pixel-wise labels, but only on patch-based weak annotations for model learning. There is no need for predefined semantic categories, the contrastive learning-based feature representation and adaptive clustering will discover the category model from scene data. In order to actively adapt to new scenes, a risk evaluation method is proposed to discover and select hard frames with high-risk predictions for supplemental labeling, so as to update the model efficiently. Experiments conducted on our self-developed off-road dataset and DeepScene dataset demonstrate that fine-grained semantic segmentation can be learned with only dozens of weakly labeled frames, and the model can efficiently adapt across scenes by weak supervision, while achieving almost the same level of performance as typical fully supervised baselines.

18.Joint Learning of Frequency and Spatial Domains for Dense Predictions ⬇️

Current artificial neural networks mainly conduct the learning process in the spatial domain but neglect the frequency domain learning. However, the learning course performed in the frequency domain can be more efficient than that in the spatial domain. In this paper, we fully explore frequency domain learning and propose a joint learning paradigm of frequency and spatial domains. This paradigm can take full advantage of the preponderances of frequency learning and spatial learning; specifically, frequency and spatial domain learning can effectively capture global and local information, respectively. Exhaustive experiments on two dense prediction tasks, i.e., self-supervised depth estimation and semantic segmentation, demonstrate that the proposed joint learning paradigm can 1) achieve performance competitive to those of state-of-the-art methods in both depth estimation and semantic segmentation tasks, even without pretraining; and 2) significantly reduce the number of parameters compared to other state-of-the-art methods, which provides more chance to develop real-world applications. We hope that the proposed method can encourage more research in cross-domain learning.

19.Cyclical Focal Loss ⬇️

The cross-entropy softmax loss is the primary loss function used to train deep neural networks. On the other hand, the focal loss function has been demonstrated to provide improved performance when there is an imbalance in the number of training samples in each class, such as in long-tailed datasets. In this paper, we introduce a novel cyclical focal loss and demonstrate that it is a more universal loss function than cross-entropy softmax loss or focal loss. We describe the intuition behind the cyclical focal loss and our experiments provide evidence that cyclical focal loss provides superior performance for balanced, imbalanced, or long-tailed datasets. We provide numerous experimental results for CIFAR-10/CIFAR-100, ImageNet, balanced and imbalanced 4,000 training sample versions of CIFAR-10/CIFAR-100, and ImageNet-LT and Places-LT from the Open Long-Tailed Recognition (OLTR) challenge. Implementing the cyclical focal loss function requires only a few lines of code and does not increase training time. In the spirit of reproducibility, our code is available at \url{this https URL}.

20.Energy-Efficient Parking Analytics System using Deep Reinforcement Learning ⬇️

Advances in deep vision techniques and ubiquity of smart cameras will drive the next generation of video analytics. However, video analytics applications consume vast amounts of energy as both deep learning techniques and cameras are power-hungry. In this paper, we focus on a parking video analytics platform and propose RL-CamSleep, a deep reinforcement learning-based technique, to actuate the cameras to reduce the energy footprint while retaining the system's utility. Our key insight is that many video-analytics applications do not always need to be operational, and we can design policies to activate video analytics only when necessary. Moreover, our work is complementary to existing work that focuses on improving hardware and software efficiency. We evaluate our approach on a city-scale parking dataset having 76 streets spread across the city. Our analysis demonstrates how streets have various parking patterns, highlighting the importance of an adaptive policy. Our approach can learn such an adaptive policy that can reduce the average energy consumption by 76.38% and achieve an average accuracy of more than 98% in performing video analytics.

21.R2-D2: Repetitive Reprediction Deep Decipher for Semi-Supervised Deep Learning ⬇️

Most recent semi-supervised deep learning (deep SSL) methods used a similar paradigm: use network predictions to update pseudo-labels and use pseudo-labels to update network parameters iteratively. However, they lack theoretical support and cannot explain why predictions are good candidates for pseudo-labels in the deep learning paradigm. In this paper, we propose a principled end-to-end framework named deep decipher (D2) for SSL. Within the D2 framework, we prove that pseudo-labels are related to network predictions by an exponential link function, which gives a theoretical support for using predictions as pseudo-labels. Furthermore, we demonstrate that updating pseudo-labels by network predictions will make them uncertain. To mitigate this problem, we propose a training strategy called repetitive reprediction (R2). Finally, the proposed R2-D2 method is tested on the large-scale ImageNet dataset and outperforms state-of-the-art methods by 5 percentage points.

22.Classification of ADHD Patients by Kernel Hierarchical Extreme Learning Machine ⬇️

These days, the diagnosis of neuropsychiatric diseases through brain imaging technology has received more and more attention. The exploration of interactions in brain functional connectivity based on functional magnetic resonance imaging (fMRI) data is critical for the study of mental illness. Because attention-deficit/hyperactivity disorder (ADHD) is a chronic disease that affects millions of children, it is difficult to diagnose, so there is still much space for improvement in the accuracy of the diagnosis of the disease. In this paper, we consider the dynamics of brain functional connectivity, modeling a functional brain dynamics model from medical imaging, which helps to find differences in brain function interactions between normal control (NC) children and ADHD children. In more detail, our method is used by Bayesian Connectivity Change Point Model for dynamic detection, Local Binary Encoding Method for local feature extraction, and Kernel Hierarchical Extreme Learning Machine implementation classification. To validate our approach, experimental comparisons of fMRI imaging data on 23 ADHD and 45 NC children were performed, and our experimental methods achieved better classification results than existing methods.

23.On Guiding Visual Attention with Language Specification ⬇️

While real world challenges typically define visual categories with language words or phrases, most visual classification methods define categories with numerical indices. However, the language specification of the classes provides an especially useful prior for biased and noisy datasets, where it can help disambiguate what features are task-relevant. Recently, large-scale multimodal models have been shown to recognize a wide variety of high-level concepts from a language specification even without additional image training data, but they are often unable to distinguish classes for more fine-grained tasks. CNNs, in contrast, can extract subtle image features that are required for fine-grained discrimination, but will overfit to any bias or noise in datasets. Our insight is to use high-level language specification as advice for constraining the classification evidence to task-relevant features, instead of distractors. To do this, we ground task-relevant words or phrases with attention maps from a pretrained large-scale model. We then use this grounding to supervise a classifier's spatial attention away from distracting context. We show that supervising spatial attention in this way improves performance on classification tasks with biased and noisy data, including about 3-15% worst-group accuracy improvements and 41-45% relative improvements on fairness metrics.

24.Developing Imperceptible Adversarial Patches to Camouflage Military Assets From Computer Vision Enabled Technologies ⬇️

Convolutional neural networks (CNNs) have demonstrated rapid progress and a high level of success in object detection. However, recent evidence has highlighted their vulnerability to adversarial attacks. These attacks are calculated image perturbations or adversarial patches that result in object misclassification or detection suppression. Traditional camouflage methods are impractical when applied to disguise aircraft and other large mobile assets from autonomous detection in intelligence, surveillance and reconnaissance technologies and fifth generation missiles. In this paper we present a unique method that produces imperceptible patches capable of camouflaging large military assets from computer vision-enabled technologies. We developed these patches by maximising object detection loss whilst limiting the patch's colour perceptibility. This work also aims to further the understanding of adversarial examples and their effects on object detection algorithms.

25.Deep Transfer Learning on Satellite Imagery Improves Air Quality Estimates in Developing Nations ⬇️

Urban air pollution is a public health challenge in low- and middle-income countries (LMICs). However, LMICs lack adequate air quality (AQ) monitoring infrastructure. A persistent challenge has been our inability to estimate AQ accurately in LMIC cities, which hinders emergency preparedness and risk mitigation. Deep learning-based models that map satellite imagery to AQ can be built for high-income countries (HICs) with adequate ground data. Here we demonstrate that a scalable approach that adapts deep transfer learning on satellite imagery for AQ can extract meaningful estimates and insights in LMIC cities based on spatiotemporal patterns learned in HIC cities. The approach is demonstrated for Accra in Ghana, Africa, with AQ patterns learned from two US cities, specifically Los Angeles and New York.

26.Unsupervised Multiple-Object Tracking with a Dynamical Variational Autoencoder ⬇️

In this paper, we present an unsupervised probabilistic model and associated estimation algorithm for multi-object tracking (MOT) based on a dynamical variational autoencoder (DVAE), called DVAE-UMOT. The DVAE is a latent-variable deep generative model that can be seen as an extension of the variational autoencoder for the modeling of temporal sequences. It is included in DVAE-UMOT to model the objects' dynamics, after being pre-trained on an unlabeled synthetic dataset of single-object trajectories. Then the distributions and parameters of DVAE-UMOT are estimated on each multi-object sequence to track using the principles of variational inference: Definition of an approximate posterior distribution of the latent variables and maximization of the corresponding evidence lower bound of the data likehood function. DVAE-UMOT is shown experimentally to compete well with and even surpass the performance of two state-of-the-art probabilistic MOT models. Code and data are publicly available.

27.Autoencoding Low-Resolution MRI for Semantically Smooth Interpolation of Anisotropic MRI ⬇️

High-resolution medical images are beneficial for analysis but their acquisition may not always be feasible. Alternatively, high-resolution images can be created from low-resolution acquisitions using conventional upsampling methods, but such methods cannot exploit high-level contextual information contained in the images. Recently, better performing deep-learning based super-resolution methods have been introduced. However, these methods are limited by their supervised character, i.e. they require high-resolution examples for training. Instead, we propose an unsupervised deep learning semantic interpolation approach that synthesizes new intermediate slices from encoded low-resolution examples. To achieve semantically smooth interpolation in through-plane direction, the method exploits the latent space generated by autoencoders. To generate new intermediate slices, latent space encodings of two spatially adjacent slices are combined using their convex combination. Subsequently, the combined encoding is decoded to an intermediate slice. To constrain the model, a notion of semantic similarity is defined for a given dataset. For this, a new loss is introduced that exploits the spatial relationship between slices of the same volume. During training, an existing in-between slice is generated using a convex combination of its neighboring slice encodings. The method was trained and evaluated using publicly available cardiac cine, neonatal brain and adult brain MRI scans. In all evaluations, the new method produces significantly better results in terms of Structural Similarity Index Measure and Peak Signal-to-Noise Ratio (p< 0.001 using one-sided Wilcoxon signed-rank test) than a cubic B-spline interpolation approach. Given the unsupervised nature of the method, high-resolution training data is not required and hence, the method can be readily applied in clinical settings.

28.Generalizing Aggregation Functions in GNNs:High-Capacity GNNs via Nonlinear Neighborhood Aggregators ⬇️

Graph neural networks (GNNs) have achieved great success in many graph learning tasks. The main aspect powering existing GNNs is the multi-layer network architecture to learn the nonlinear graph representations for the specific learning tasks. The core operation in GNNs is message propagation in which each node updates its representation by aggregating its neighbors' representations. Existing GNNs mainly adopt either linear neighborhood aggregation (mean,sum) or max aggregator in their message propagation. (1) For linear aggregators, the whole nonlinearity and network's capacity of GNNs are generally limited due to deeper GNNs usually suffer from over-smoothing issue. (2) For max aggregator, it usually fails to be aware of the detailed information of node representations within neighborhood. To overcome these issues, we re-think the message propagation mechanism in GNNs and aim to develop the general nonlinear aggregators for neighborhood information aggregation in GNNs. One main aspect of our proposed nonlinear aggregators is that they provide the optimally balanced aggregators between max and mean/sum aggregations. Thus, our aggregators can inherit both (i) high nonlinearity that increases network's capacity and (ii) detail-sensitivity that preserves the detailed information of representations together in GNNs' message propagation. Promising experiments on several datasets show the effectiveness of the proposed nonlinear aggregators.

29.VCVTS: Multi-speaker Video-to-Speech synthesis via cross-modal knowledge transfer from voice conversion ⬇️

Though significant progress has been made for speaker-dependent Video-to-Speech (VTS) synthesis, little attention is devoted to multi-speaker VTS that can map silent video to speech, while allowing flexible control of speaker identity, all in a single system. This paper proposes a novel multi-speaker VTS system based on cross-modal knowledge transfer from voice conversion (VC), where vector quantization with contrastive predictive coding (VQCPC) is used for the content encoder of VC to derive discrete phoneme-like acoustic units, which are transferred to a Lip-to-Index (Lip2Ind) network to infer the index sequence of acoustic units. The Lip2Ind network can then substitute the content encoder of VC to form a multi-speaker VTS system to convert silent video to acoustic units for reconstructing accurate spoken content. The VTS system also inherits the advantages of VC by using a speaker encoder to produce speaker representations to effectively control the speaker identity of generated speech. Extensive evaluations verify the effectiveness of proposed approach, which can be applied in both constrained vocabulary and open vocabulary conditions, achieving state-of-the-art performance in generating high-quality speech with high naturalness, intelligibility and speaker similarity. Our demo page is released here: this https URL

30.Towards better understanding and better generalization of few-shot classification in histology images with contrastive learning ⬇️

Few-shot learning is an established topic in natural images for years, but few work is attended to histology images, which is of high clinical value since well-labeled datasets and rare abnormal samples are expensive to collect. Here, we facilitate the study of few-shot learning in histology images by setting up three cross-domain tasks that simulate real clinics problems. To enable label-efficient learning and better generalizability, we propose to incorporate contrastive learning (CL) with latent augmentation (LA) to build a few-shot system. CL learns useful representations without manual labels, while LA transfers semantic variations of the base dataset in an unsupervised way. These two components fully exploit unlabeled training data and can scale gracefully to other label-hungry problems. In experiments, we find i) models learned by CL generalize better than supervised learning for histology images in unseen classes, and ii) LA brings consistent gains over baselines. Prior studies of self-supervised learning mainly focus on ImageNet-like images, which only present a dominant object in their centers. Recent attention has been paid to images with multi-objects and multi-textures. Histology images are a natural choice for such a study. We show the superiority of CL over supervised learning in terms of generalization for such data and provide our empirical understanding for this observation. The findings in this work could contribute to understanding how the model generalizes in the context of both representation learning and histological image analysis. Code is available.

31.Critical Checkpoints for Evaluating Defence Models Against Adversarial Attack and Robustness ⬇️

From past couple of years there is a cycle of researchers proposing a defence model for adversaries in machine learning which is arguably defensible to most of the existing attacks in restricted condition (they evaluate on some bounded inputs or datasets). And then shortly another set of researcher finding the vulnerabilities in that defence model and breaking it by proposing a stronger attack model. Some common flaws are been noticed in the past defence models that were broken in very short time. Defence models being broken so easily is a point of concern as decision of many crucial activities are taken with the help of machine learning models. So there is an utter need of some defence checkpoints that any researcher should keep in mind while evaluating the soundness of technique and declaring it to be decent defence technique. In this paper, we have suggested few checkpoints that should be taken into consideration while building and evaluating the soundness of defence models. All these points are recommended after observing why some past defence models failed and how some model remained adamant and proved their soundness against some of the very strong attacks.

32.REFUGE2 Challenge: Treasure for Multi-Domain Learning in Glaucoma Assessment ⬇️

Glaucoma is the second leading cause of blindness and is the leading cause of irreversible blindness disease in the world. Early screening for glaucoma in the population is significant. Color fundus photography is the most cost effective imaging modality to screen for ocular diseases. Deep learning network is often used in color fundus image analysis due to its powful feature extraction capability. However, the model training of deep learning method needs a large amount of data, and the distribution of data should be abundant for the robustness of model performance. To promote the research of deep learning in color fundus photography and help researchers further explore the clinical application signification of AI technology, we held a REFUGE2 challenge. This challenge released 2,000 color fundus images of four models, including Zeiss, Canon, Kowa and Topcon, which can validate the stabilization and generalization of algorithms on multi-domain. Moreover, three sub-tasks were designed in the challenge, including glaucoma classification, cup/optic disc segmentation, and macular fovea localization. These sub-tasks technically cover the three main problems of computer vision and clinicly cover the main researchs of glaucoma diagnosis. Over 1,300 international competitors joined the REFUGE2 challenge, 134 teams submitted more than 3,000 valid preliminary results, and 22 teams reached the final. This article summarizes the methods of some of the finalists and analyzes their results. In particular, we observed that the teams using domain adaptation strategies had high and robust performance on the dataset with multi-domain. This indicates that UDA and other multi-domain related researches will be the trend of deep learning field in the future, and our REFUGE2 datasets will play an important role in these researches.

33.When, Why, and Which Pretrained GANs Are Useful? ⬇️

The literature has proposed several methods to finetune pretrained GANs on new datasets, which typically results in higher performance compared to training from scratch, especially in the limited-data regime. However, despite the apparent empirical benefits of GAN pretraining, its inner mechanisms were not analyzed in-depth, and understanding of its role is not entirely clear. Moreover, the essential practical details, e.g., selecting a proper pretrained GAN checkpoint, currently do not have rigorous grounding and are typically determined by trial and error.
This work aims to dissect the process of GAN finetuning. First, we show that initializing the GAN training process by a pretrained checkpoint primarily affects the model's coverage rather than the fidelity of individual samples. Second, we explicitly describe how pretrained generators and discriminators contribute to the finetuning process and explain the previous evidence on the importance of pretraining both of them. Finally, as an immediate practical benefit of our analysis, we describe a simple recipe to choose an appropriate GAN checkpoint that is the most suitable for finetuning to a particular target task. Importantly, for most of the target tasks, Imagenet-pretrained GAN, despite having poor visual quality, appears to be an excellent starting point for finetuning, resembling the typical pretraining scenario of discriminative computer vision models.

34.Prior image-based medical image reconstruction using a style-based generative adversarial network ⬇️

Computed medical imaging systems require a computational reconstruction procedure for image formation. In order to recover a useful estimate of the object to-be-imaged when the recorded measurements are incomplete, prior knowledge about the nature of object must be utilized. In order to improve the conditioning of an ill-posed imaging inverse problem, deep learning approaches are being actively investigated for better representing object priors and constraints. This work proposes to use a style-based generative adversarial network (StyleGAN) to constrain an image reconstruction problem in the case where additional information in the form of a prior image of the sought-after object is available. An optimization problem is formulated in the intermediate latent-space of a StyleGAN, that is disentangled with respect to meaningful image attributes or "styles", such as the contrast used in magnetic resonance imaging (MRI). Discrepancy between the sought-after and prior images is measured in the disentangled latent-space, and is used to regularize the inverse problem in the form of constraints on specific styles of the disentangled latent-space. A stylized numerical study inspired by MR imaging is designed, where the sought-after and the prior image are structurally similar, but belong to different contrast mechanisms. The presented numerical studies demonstrate the superiority of the proposed approach as compared to classical approaches in the form of traditional metrics.

35.Graph Convolutional Networks for Multi-modality Medical Imaging: Methods, Architectures, and Clinical Applications ⬇️

Image-based characterization and disease understanding involve integrative analysis of morphological, spatial, and topological information across biological scales. The development of graph convolutional networks (GCNs) has created the opportunity to address this information complexity via graph-driven architectures, since GCNs can perform feature aggregation, interaction, and reasoning with remarkable flexibility and efficiency. These GCNs capabilities have spawned a new wave of research in medical imaging analysis with the overarching goal of improving quantitative disease understanding, monitoring, and diagnosis. Yet daunting challenges remain for designing the important image-to-graph transformation for multi-modality medical imaging and gaining insights into model interpretation and enhanced clinical decision support. In this review, we present recent GCNs developments in the context of medical image analysis including imaging data from radiology and histopathology. We discuss the fast-growing use of graph network architectures in medical image analysis to improve disease diagnosis and patient outcomes in clinical practice. To foster cross-disciplinary research, we present GCNs technical advancements, emerging medical applications, identify common challenges in the use of image-based GCNs and their extensions in model interpretation, large-scale benchmarks that promise to transform the scope of medical image studies and related graph-driven medical research.

36.Machine learning models and facial regions videos for estimating heart rate: a review on Patents, Datasets and Literature ⬇️

Estimating heart rate is important for monitoring users in various situations. Estimates based on facial videos are increasingly being researched because it makes it possible to monitor cardiac information in a non-invasive way and because the devices are simpler, requiring only cameras that capture the user's face. From these videos of the user's face, machine learning is able to estimate heart rate. This study investigates the benefits and challenges of using machine learning models to estimate heart rate from facial videos, through patents, datasets, and articles review. We searched Derwent Innovation, IEEE Xplore, Scopus, and Web of Science knowledge bases and identified 7 patent filings, 11 datasets, and 20 articles on heart rate, photoplethysmography, or electrocardiogram data. In terms of patents, we note the advantages of inventions related to heart rate estimation, as described by the authors. In terms of datasets, we discovered that most of them are for academic purposes and with different signs and annotations that allow coverage for subjects other than heartbeat estimation. In terms of articles, we discovered techniques, such as extracting regions of interest for heart rate reading and using Video Magnification for small motion extraction, and models such as EVM-CNN and VGG-16, that extract the observed individual's heart rate, the best regions of interest for signal extraction and ways to process them.

37.Continuous-Time vs. Discrete-Time Vision-based SLAM: A Comparative Study ⬇️

Robotic practitioners generally approach the vision-based SLAM problem through discrete-time formulations. This has the advantage of a consolidated theory and very good understanding of success and failure cases. However, discrete-time SLAM needs tailored algorithms and simplifying assumptions when high-rate and/or asynchronous measurements, coming from different sensors, are present in the estimation process. Conversely, continuous-time SLAM, often overlooked by practitioners, does not suffer from these limitations. Indeed, it allows integrating new sensor data asynchronously without adding a new optimization variable for each new measurement. In this way, the integration of asynchronous or continuous high-rate streams of sensor data does not require tailored and highly-engineered algorithms, enabling the fusion of multiple sensor modalities in an intuitive fashion. On the down side, continuous time introduces a prior that could worsen the trajectory estimates in some unfavorable situations. In this work, we aim at systematically comparing the advantages and limitations of the two formulations in vision-based SLAM. To do so, we perform an extensive experimental analysis, varying robot type, speed of motion, and sensor modalities. Our experimental analysis suggests that, independently of the trajectory type, continuous-time SLAM is superior to its discrete counterpart whenever the sensors are not time-synchronized. In the context of this work, we developed, and open source, a modular and efficient software architecture containing state-of-the-art algorithms to solve the SLAM problem in discrete and continuous time.