1.Point-NeRF: Point-based Neural Radiance Fields ⬇️
Volumetric neural rendering methods like NeRF generate high-quality view synthesis results but are optimized per-scene leading to prohibitive reconstruction time. On the other hand, deep multi-view stereo methods can quickly reconstruct scene geometry via direct network inference. Point-NeRF combines the advantages of these two approaches by using neural 3D point clouds, with associated neural features, to model a radiance field. Point-NeRF can be rendered efficiently by aggregating neural point features near scene surfaces, in a ray marching-based rendering pipeline. Moreover, Point-NeRF can be initialized via direct inference of a pre-trained deep network to produce a neural point cloud; this point cloud can be finetuned to surpass the visual quality of NeRF with 30X faster training time. Point-NeRF can be combined with other 3D reconstruction methods and handles the errors and outliers in such methods via a novel pruning and growing mechanism.
2.Reliable Detection of Doppelgängers based on Deep Face Representations ⬇️
Doppelgängers (or lookalikes) usually yield an increased probability of false matches in a facial recognition system, as opposed to random face image pairs selected for non-mated comparison trials. In this work, we assess the impact of doppelgängers on the HDA Doppelgänger and Disguised Faces in The Wild databases using a state-of-the-art face recognition system. It is found that doppelgänger image pairs yield very high similarity scores resulting in a significant increase of false match rates. Further, we propose a doppelgänger detection method which distinguishes doppelgängers from mated comparison trials by analysing differences in deep representations obtained from face image pairs. The proposed detection system employs a machine learning-based classifier, which is trained with generated doppelgänger image pairs utilising face morphing techniques. Experimental evaluations conducted on the HDA Doppelgänger and Look-Alike Face databases reveal a detection equal error rate of approximately 2.7% for the task of separating mated authentication attempts from doppelgängers.
3.Skyline variations allow estimating distance to trees on landscape photos using semantic segmentation ⬇️
Approximate distance estimation can be used to determine fundamental landscape properties including complexity and openness. We show that variations in the skyline of landscape photos can be used to estimate distances to trees on the horizon. A methodology based on the variations of the skyline has been developed and used to investigate potential relationships with the distance to skyline objects. The skyline signal, defined by the skyline height expressed in pixels, was extracted for several Land Use/Cover Area frame Survey (LUCAS) landscape photos. Photos were semantically segmented with DeepLabV3+ trained with the Common Objects in Context (COCO) dataset. This provided pixel-level classification of the objects forming the skyline. A Conditional Random Fields (CRF) algorithm was also applied to increase the details of the skyline signal. Three metrics, able to capture the skyline signal variations, were then considered for the analysis. These metrics shows a functional relationship with distance for the class of trees, whose contours have a fractal nature. In particular, regression analysis was performed against 475 ortho-photo based distance measurements, and, in the best case, a R2 score equal to 0.47 was achieved. This is an encouraging result which shows the potential of skyline variation metrics for inferring distance related information.
4.Learning from One and Only One Shot ⬇️
Humans can generalize from only a few examples and from little pre-training on similar tasks. Yet, machine learning (ML) typically requires large data to learn or pre-learn to transfer. Inspired by nativism, we directly model basic human-innate priors in abstract visual tasks e.g., character/doodle recognition. This yields a white-box model that learns general-appearance similarity -- how any two images look in general -- by mimicking how humans naturally "distort" an object at first sight. Using simply the nearest-neighbor classifier on this similarity space, we achieve human-level character recognition using only 1--10 examples per class and nothing else (no pre-training). This differs from few-shot learning (FSL) using significant pre-training. On standard benchmarks MNIST/EMNIST and the Omniglot challenge, we outperform both neural-network-based and classical ML in the "tiny-data" regime, including FSL pre-trained on large data. Our model enables unsupervised learning too: by learning the non-Euclidean, general-appearance similarity space in a k-means style, we can generate human-intuitive archetypes as cluster ``centroids''.
5.Active Predictive Coding Networks: A Neural Solution to the Problem of Learning Reference Frames and Part-Whole Hierarchies ⬇️
We introduce Active Predictive Coding Networks (APCNs), a new class of neural networks that solve a major problem posed by Hinton and others in the fields of artificial intelligence and brain modeling: how can neural networks learn intrinsic reference frames for objects and parse visual scenes into part-whole hierarchies by dynamically allocating nodes in a parse tree? APCNs address this problem by using a novel combination of ideas: (1) hypernetworks are used for dynamically generating recurrent neural networks that predict parts and their locations within intrinsic reference frames conditioned on higher object-level embedding vectors, and (2) reinforcement learning is used in conjunction with backpropagation for end-to-end learning of model parameters. The APCN architecture lends itself naturally to multi-level hierarchical learning and is closely related to predictive coding models of cortical function. Using the MNIST, Fashion-MNIST and Omniglot datasets, we demonstrate that APCNs can (a) learn to parse images into part-whole hierarchies, (b) learn compositional representations, and (c) transfer their knowledge to unseen classes of objects. With their ability to dynamically generate parse trees with part locations for objects, APCNs offer a new framework for explainable AI that leverages advances in deep learning while retaining interpretability and compositionality.
6.Realtime 3D Object Detection for Headsets ⬇️
Mobile headsets should be capable of understanding 3D physical environments to offer a truly immersive experience for augmented/mixed reality (AR/MR). However, their small form-factor and limited computation resources make it extremely challenging to execute in real-time 3D vision algorithms, which are known to be more compute-intensive than their 2D counterparts. In this paper, we propose DeepMix, a mobility-aware, lightweight, and hybrid3D object detection framework for improving the user experience of AR/MR on mobile headsets. Motivated by our analysis and evaluation of state-of-the-art 3D object detection models, DeepMix intelligently combines edge-assisted 2D object detection and novel, on-device 3D bounding box estimations that leverage depth data captured by headsets. This leads to low end-to-end latency and significantly boosts detection accuracy in mobile scenarios.
7.AiTLAS: Artificial Intelligence Toolbox for Earth Observation ⬇️
The AiTLAS toolbox (Artificial Intelligence Toolbox for Earth Observation) includes state-of-the-art machine learning methods for exploratory and predictive analysis of satellite imagery as well as repository of AI-ready Earth Observation (EO) datasets. It can be easily applied for a variety of Earth Observation tasks, such as land use and cover classification, crop type prediction, localization of specific objects (semantic segmentation), etc. The main goal of AiTLAS is to facilitate better usability and adoption of novel AI methods (and models) by EO experts, while offering easy access and standardized format of EO datasets to AI experts which further allows benchmarking of various existing and novel AI methods tailored for EO data.
8.Contrastive and Selective Hidden Embeddings for Medical Image Segmentation ⬇️
Medical image segmentation has been widely recognized as a pivot procedure for clinical diagnosis, analysis, and treatment planning. However, the laborious and expensive annotation process lags down the speed of further advances. Contrastive learning-based weight pre-training provides an alternative by leveraging unlabeled data to learn a good representation. In this paper, we investigate how contrastive learning benefits the general supervised medical segmentation tasks. To this end, patch-dragsaw contrastive regularization (PDCR) is proposed to perform patch-level tugging and repulsing with the extent controlled by a continuous affinity score. And a new structure dubbed uncertainty-aware feature selection block (UAFS) is designed to perform the feature selection process, which can handle the learning target shift caused by minority features with high uncertainty. By plugging the proposed 2 modules into the existing segmentation architecture, we achieve state-of-the-art results across 8 public datasets from 6 domains. Newly designed modules further decrease the amount of training data to a quarter while achieving comparable, if not better, performances. From this perspective, we take the opposite direction of the original self/un-supervised contrastive learning by further excavating information contained within the label.
9.Object Detection in Aerial Images: What Improves the Accuracy? ⬇️
Object detection is a challenging and popular computer vision problem. The problem is even more challenging in aerial images due to significant variation in scale and viewpoint in a diverse set of object categories. Recently, deep learning-based object detection approaches have been actively explored for the problem of object detection in aerial images. In this work, we investigate the impact of Faster R-CNN for aerial object detection and explore numerous strategies to improve its performance for aerial images. We conduct extensive experiments on the challenging iSAID dataset. The resulting adapted Faster R-CNN obtains a significant mAP gain of 4.96% over its vanilla baseline counterpart on the iSAID validation set, demonstrating the impact of different strategies investigated in this work.
10.ERS: a novel comprehensive endoscopy image dataset for machine learning, compliant with the MST 3.0 specification ⬇️
The article presents a new multi-label comprehensive image dataset from flexible endoscopy, colonoscopy and capsule endoscopy, named ERS. The collection has been labeled according to the full medical specification of 'Minimum Standard Terminology 3.0' (MST 3.0), describing all possible findings in the gastrointestinal tract (104 possible labels), extended with an additional 19 labels useful in common machine learning applications.
The dataset contains around 6000 precisely and 115,000 approximately labeled frames from endoscopy videos, 3600 precise and 22,600 approximate segmentation masks, and 1.23 million unlabeled frames from flexible and capsule endoscopy videos. The labeled data cover almost entirely the MST 3.0 standard. The data came from 1520 videos of 1135 patients.
Additionally, this paper proposes and describes four exemplary experiments in gastrointestinal image classification task performed using the created dataset. The obtained results indicate the high usefulness and flexibility of the dataset in training and testing machine learning algorithms in the field of endoscopic data analysis.
11.A Comprehensive Study of Vision Transformers on Dense Prediction Tasks ⬇️
Convolutional Neural Networks (CNNs), architectures consisting of convolutional layers, have been the standard choice in vision tasks. Recent studies have shown that Vision Transformers (VTs), architectures based on self-attention modules, achieve comparable performance in challenging tasks such as object detection and semantic segmentation. However, the image processing mechanism of VTs is different from that of conventional CNNs. This poses several questions about their generalizability, robustness, reliability, and texture bias when used to extract features for complex tasks. To address these questions, we study and compare VT and CNN architectures as feature extractors in object detection and semantic segmentation. Our extensive empirical results show that the features generated by VTs are more robust to distribution shifts, natural corruptions, and adversarial attacks in both tasks, whereas CNNs perform better at higher image resolutions in object detection. Furthermore, our results demonstrate that VTs in dense prediction tasks produce more reliable and less texture-biased predictions.
12.Exploring Fusion Strategies for Accurate RGBT Visual Object Tracking ⬇️
We address the problem of multi-modal object tracking in video and explore various options of fusing the complementary information conveyed by the visible (RGB) and thermal infrared (TIR) modalities including pixel-level, feature-level and decision-level fusion. Specifically, different from the existing methods, paradigm of image fusion task is heeded for fusion at pixel level. Feature-level fusion is fulfilled by attention mechanism with channels excited optionally. Besides, at decision level, a novel fusion strategy is put forward since an effortless averaging configuration has shown the superiority. The effectiveness of the proposed decision-level fusion strategy owes to a number of innovative contributions, including a dynamic weighting of the RGB and TIR contributions and a linear template update operation. A variant of which produced the winning tracker at the Visual Object Tracking Challenge 2020 (VOT-RGBT2020). The concurrent exploration of innovative pixel- and feature-level fusion strategies highlights the advantages of the proposed decision-level fusion method. Extensive experimental results on three challenging datasets, \textit{i.e.}, GTOT, VOT-RGBT2019, and VOT-RGBT2020, demonstrate the effectiveness and robustness of the proposed method, compared to the state-of-the-art approaches. Code will be shared at \textcolor{blue}{\emph{this https URL}.
13.Dynamic Deep Convolutional Candlestick Learner ⬇️
Candlestick pattern is one of the most fundamental and valuable graphical tools in financial trading that supports traders observing the current market conditions to make the proper decision. This task has a long history and, most of the time, human experts. Recently, efforts have been made to automatically classify these patterns with the deep learning models. The GAF-CNN model is a well-suited way to imitate how human traders capture the candlestick pattern by integrating spatial features visually. However, with the great potential of the GAF encoding, this classification task can be extended to a more complicated object detection level. This work presents an innovative integration of modern object detection techniques and GAF time-series encoding on candlestick pattern tasks. We make crucial modifications to the representative yet straightforward YOLO version 1 model based on our time-series encoding method and the property of such data type. Powered by the deep neural networks and the unique architectural design, the proposed model performs pretty well in candlestick classification and location recognition. The results show tremendous potential in applying modern object detection techniques on time-series tasks in a real-time manner.
14.Fast Differentiable Matrix Square Root ⬇️
Computing the matrix square root or its inverse in a differentiable manner is important in a variety of computer vision tasks. Previous methods either adopt the Singular Value Decomposition (SVD) to explicitly factorize the matrix or use the Newton-Schulz iteration (NS iteration) to derive the approximate solution. However, both methods are not computationally efficient enough in either the forward pass or in the backward pass. In this paper, we propose two more efficient variants to compute the differentiable matrix square root. For the forward propagation, one method is to use Matrix Taylor Polynomial (MTP), and the other method is to use Matrix Padé Approximants (MPA). The backward gradient is computed by iteratively solving the continuous-time Lyapunov equation using the matrix sign function. Both methods yield considerable speed-up compared with the SVD or the Newton-Schulz iteration. Experimental results on the de-correlated batch normalization and second-order vision transformer demonstrate that our methods can also achieve competitive and even slightly better performances. The code is available at \href{this https URL}{this https URL}.
15.Enhancing Pseudo Label Quality for Semi-SupervisedDomain-Generalized Medical Image Segmentation ⬇️
Generalizing the medical image segmentation algorithms tounseen domains is an important research topic for computer-aided diagnosis and surgery. Most existing methods requirea fully labeled dataset in each source domain. Although (Liuet al. 2021b) developed a semi-supervised domain general-ized method, it still requires the domain labels. This paperpresents a novel confidence-aware cross pseudo supervisionalgorithm for semi-supervised domain generalized medicalimage segmentation. The main goal is to enhance the pseudolabel quality for unlabeled images from unknown distribu-tions. To achieve it, we perform the Fourier transformationto learn low-level statistic information across domains andaugment the images to incorporate cross-domain information.With these augmentations as perturbations, we feed the inputto a confidence-aware cross pseudo supervision network tomeasure the variance of pseudo labels and regularize the net-work to learn with more confident pseudo labels. Our methodsets new records on public datasets,i.e., M&Ms and SCGM.Notably, without using domain labels, our method surpassesthe prior art that even uses domain labels by 11.67% on Diceon M&Ms dataset with 2% labeled data. Code will be avail-able after the conference.
16.Conceptor Learning for Class Activation Mapping ⬇️
Class Activation Mapping (CAM) has been widely adopted to generate saliency maps which provides visual explanations for deep neural networks (DNNs). The saliency maps are conventionally generated by fusing the channels of the target feature map using a weighted average scheme. It is a weak model for the inter-channel relation, in the sense that it only models the relation among channels in a contrastive way (i.e., channels that play key roles in the prediction are given higher weights for them to stand out in the fusion). The collaborative relation, which makes the channels work together to provide cross reference, has been ignored. Furthermore, the model has neglected the intra-channel relation this http URL this paper, we address this problem by introducing Conceptor learning into CAM generation. Conceptor leaning has been originally proposed to model the patterns of state changes in recurrent neural networks (RNNs). By relaxing the dependency of Conceptor learning to RNNs, we make Conceptor-CAM not only generalizable to more DNN architectures but also able to learn both the inter- and intra-channel relations for better saliency map generation. Moreover, we have enabled the use of Boolean operations to combine the positive and pseudo-negative evidences, which has made the CAM inference more robust and comprehensive. The effectiveness of Conceptor-CAM has been validated with both formal verifications and experiments on the dataset of the largest scale in literature. The experimental results show that Conceptor-CAM is compatible with and can bring significant improvement to all well recognized CAM-based methods, and has outperformed the state-of-the-art methods by 43.14%~72.79% (88.39%~168.15%) on ILSVRC2012 in Average Increase (Drop), 15.42%~42.55% (47.09%~372.09%) on VOC, and 17.43%~31.32% (47.54%~206.45%) on COCO, respectively.
17.Multi-view Monocular Depth and Uncertainty Prediction with Deep SfM in Dynamic Environments ⬇️
3D reconstruction of depth and motion from monocular video in dynamic environments is a highly ill-posed problem due to scale ambiguities when projecting to the 2D image domain. In this work, we investigate the performance of the current State-of-the-Art (SotA) deep multi-view systems in such environments. We find that current supervised methods work surprisingly well despite not modelling individual object motions, but make systematic errors due to a lack of dense ground truth data. To detect such errors during usage, we extend the cost volume based Deep Video to Depth (DeepV2D) framework \cite{teed2018deepv2d} with a learned uncertainty. Our Deep Video to certain Depth (DeepV2cD) model allows i) to perform en par or better with current SotA and ii) achieve a better uncertainty measure than the naive Shannon entropy. Our experiments show that a simple filter strategy based on the uncertainty can significantly reduce systematic errors. This results in cleaner reconstructions both on static and dynamic parts of the scene.
18.VIPriors 2: Visual Inductive Priors for Data-Efficient Deep Learning Challenges ⬇️
The second edition of the "VIPriors: Visual Inductive Priors for Data-Efficient Deep Learning" challenges featured five data-impaired challenges, where models are trained from scratch on a reduced number of training samples for various key computer vision tasks. To encourage new and creative ideas on incorporating relevant inductive biases to improve the data efficiency of deep learning models, we prohibited the use of pre-trained checkpoints and other transfer learning techniques. The provided baselines are outperformed by a large margin in all five challenges, mainly thanks to extensive data augmentation policies, model ensembling, and data efficient network architectures.
19.Dangerous Cloaking: Natural Trigger based Backdoor Attacks on Object Detectors in the Physical World ⬇️
Deep learning models have been shown to be vulnerable to recent backdoor attacks. A backdoored model behaves normally for inputs containing no attacker-secretly-chosen trigger and maliciously for inputs with the trigger. To date, backdoor attacks and countermeasures mainly focus on image classification tasks. And most of them are implemented in the digital world with digital triggers. Besides the classification tasks, object detection systems are also considered as one of the basic foundations of computer vision tasks. However, there is no investigation and understanding of the backdoor vulnerability of the object detector, even in the digital world with digital triggers. For the first time, this work demonstrates that existing object detectors are inherently susceptible to physical backdoor attacks. We use a natural T-shirt bought from a market as a trigger to enable the cloaking effect--the person bounding-box disappears in front of the object detector. We show that such a backdoor can be implanted from two exploitable attack scenarios into the object detector, which is outsourced or fine-tuned through a pretrained model. We have extensively evaluated three popular object detection algorithms: anchor-based Yolo-V3, Yolo-V4, and anchor-free CenterNet. Building upon 19 videos shot in real-world scenes, we confirm that the backdoor attack is robust against various factors: movement, distance, angle, non-rigid deformation, and lighting. Specifically, the attack success rate (ASR) in most videos is 100% or close to it, while the clean data accuracy of the backdoored model is the same as its clean counterpart. The latter implies that it is infeasible to detect the backdoor behavior merely through a validation set. The averaged ASR still remains sufficiently high to be 78% in the transfer learning attack scenarios evaluated on CenterNet. See the demo video on this https URL.
20.Pseudo-Labeled Auto-Curriculum Learning for Semi-Supervised Keypoint Localization ⬇️
Localizing keypoints of an object is a basic visual problem. However, supervised learning of a keypoint localization network often requires a large amount of data, which is expensive and time-consuming to obtain. To remedy this, there is an ever-growing interest in semi-supervised learning (SSL), which leverages a small set of labeled data along with a large set of unlabeled data. Among these SSL approaches, pseudo-labeling (PL) is one of the most popular. PL approaches apply pseudo-labels to unlabeled data, and then train the model with a combination of the labeled and pseudo-labeled data iteratively. The key to the success of PL is the selection of high-quality pseudo-labeled samples. Previous works mostly select training samples by manually setting a single confidence threshold. We propose to automatically select reliable pseudo-labeled samples with a series of dynamic thresholds, which constitutes a learning curriculum. Extensive experiments on six keypoint localization benchmark datasets demonstrate that the proposed approach significantly outperforms the previous state-of-the-art SSL approaches.
21.Classroom Slide Narration System ⬇️
Slide presentations are an effective and efficient tool used by the teaching community for classroom communication. However, this teaching model can be challenging for blind and visually impaired (VI) students. The VI student required personal human assistance for understand the presented slide. This shortcoming motivates us to design a Classroom Slide Narration System (CSNS) that generates audio descriptions corresponding to the slide content. This problem poses as an image-to-markup language generation task. The initial step is to extract logical regions such as title, text, equation, figure, and table from the slide image. In the classroom slide images, the logical regions are distributed based on the location of the image. To utilize the location of the logical regions for slide image segmentation, we propose the architecture, Classroom Slide Segmentation Network (CSSN). The unique attributes of this architecture differs from most other semantic segmentation networks. Publicly available benchmark datasets such as WiSe and SPaSe are used to validate the performance of our segmentation architecture. We obtained 9.54 segmentation accuracy improvement in WiSe dataset. We extract content (information) from the slide using four well-established modules such as optical character recognition (OCR), figure classification, equation description, and table structure recognizer. With this information, we build a Classroom Slide Narration System (CSNS) to help VI students understand the slide content. The users have given better feedback on the quality output of the proposed CSNS in comparison to existing systems like Facebooks Automatic Alt-Text (AAT) and Tesseract.
22.What Can Machine Vision Do for Lymphatic Histopathology Image Analysis: A Comprehensive Review ⬇️
In the past ten years, the computing power of machine vision (MV) has been continuously improved, and image analysis algorithms have developed rapidly. At the same time, histopathological slices can be stored as digital images. Therefore, MV algorithms can provide doctors with diagnostic references. In particular, the continuous improvement of deep learning algorithms has further improved the accuracy of MV in disease detection and diagnosis. This paper reviews the applications of image processing technology based on MV in lymphoma histopathological images in recent years, including segmentation, classification and detection. Finally, the current methods are analyzed, some more potential methods are proposed, and further prospects are made.
23.An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters ⬇️
We present first empirical results from our ongoing investigation of distribution shifts in image data used for various computer vision tasks. Instead of analyzing the original training and test data, we propose to study shifts in the learned weights of trained models. In this work, we focus on the properties of the distributions of dominantly used 3x3 convolution filter kernels. We collected and publicly provide a data set with over half a billion filters from hundreds of trained CNNs, using a wide range of data sets, architectures, and vision tasks. Our analysis shows interesting distribution shifts (or the lack thereof) between trained filters along different axes of meta-parameters, like data type, task, architecture, or layer depth. We argue, that the observed properties are a valuable source for further investigation into a better understanding of the impact of shifts in the input data to the generalization abilities of CNN models and novel methods for more robust transfer-learning in this domain. Data available at: this https URL.
24.FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction ⬇️
Occlusions often occur in face images in the wild, troubling face-related tasks such as landmark detection, 3D reconstruction, and face recognition. It is beneficial to extract face regions from unconstrained face images accurately. However, current face segmentation datasets suffer from small data volumes, few occlusion types, low resolution, and imprecise annotation, limiting the performance of data-driven-based algorithms. This paper proposes a novel face occlusion dataset with manually labeled face occlusions from the CelebA-HQ and the internet. The occlusion types cover sunglasses, spectacles, hands, masks, scarfs, microphones, etc. To the best of our knowledge, it is by far the largest and most comprehensive face occlusion dataset. Combining it with the attribute mask in CelebAMask-HQ, we trained a straightforward face segmentation model but obtained SOTA performance, convincingly demonstrating the effectiveness of the proposed dataset.
25.Improving Across-Dataset Brain Tissue Segmentation Using Transformer ⬇️
Brain tissue segmentation has demonstrated great utility in quantifying MRI data through Voxel-Based Morphometry and highlighting subtle structural changes associated with various conditions within the brain. However, manual segmentation is highly labor-intensive, and automated approaches have struggled due to properties inherent to MRI acquisition, leaving a great need for an effective segmentation tool. Despite the recent success of deep convolutional neural networks (CNNs) for brain tissue segmentation, many such solutions do not generalize well to new datasets, which is critical for a reliable solution. Transformers have demonstrated success in natural image segmentation and have recently been applied to 3D medical image segmentation tasks due to their ability to capture long-distance relationships in the input where the local receptive fields of CNNs struggle. This study introduces a novel CNN-Transformer hybrid architecture designed for brain tissue segmentation. We validate our model's performance across four multi-site T1w MRI datasets, covering different vendors, field strengths, scan parameters, time points, and neuropsychiatric conditions. In all situations, our model achieved the greatest generality and reliability. Out method is inherently robust and can serve as a valuable tool for brain-related T1w MRI studies. The code for the TABS network is available at: this https URL.
26.SparseAlign: A Super-Resolution Algorithm for Automatic Marker Localization and Deformation Estimation in Cryo-Electron Tomography ⬇️
Tilt-series alignment is crucial to obtaining high-resolution reconstructions in cryo-electron tomography. Beam-induced local deformation of the sample is hard to estimate from the low-contrast sample alone, and often requires fiducial gold bead markers. The state-of-the-art approach for deformation estimation uses (semi-)manually labelled marker locations in projection data to fit the parameters of a polynomial deformation model. Manually-labelled marker locations are difficult to obtain when data are noisy or markers overlap in projection data. We propose an alternative mathematical approach for simultaneous marker localization and deformation estimation by extending a grid-free super-resolution algorithm first proposed in the context of single-molecule localization microscopy. Our approach does not require labelled marker locations; instead, we use an image-based loss where we compare the forward projection of markers with the observed data. We equip this marker localization scheme with an additional deformation estimation component and solve for a reduced number of deformation parameters. Using extensive numerical studies on marker-only samples, we show that our approach automatically finds markers and reliably estimates sample deformation without labelled marker data. We further demonstrate the applicability of our approach for a broad range of model mismatch scenarios, including experimental electron tomography data of gold markers on ice.
27.Distance-Ratio-Based Formulation for Metric Learning ⬇️
In metric learning, the goal is to learn an embedding so that data points with the same class are close to each other and data points with different classes are far apart. We propose a distance-ratio-based (DR) formulation for metric learning. Like softmax-based formulation for metric learning, it models
$p(y=c|x')$ , which is a probability that a query point$x'$ belongs to a class$c$ . The DR formulation has two useful properties. First, the corresponding loss is not affected by scale changes of an embedding. Second, it outputs the optimal (maximum or minimum) classification confidence scores on representing points for classes. To demonstrate the effectiveness of our formulation, we conduct few-shot classification experiments using softmax-based and DR formulations on CUB and mini-ImageNet datasets. The results show that DR formulation generally enables faster and more stable metric learning than the softmax-based formulation. As a result, using DR formulation achieves improved or comparable generalization performances.
28.SegTransVAE: Hybrid CNN -- Transformer with Regularization for medical image segmentation ⬇️
Current research on deep learning for medical image segmentation exposes their limitations in learning either global semantic information or local contextual information. To tackle these issues, a novel network named SegTransVAE is proposed in this paper. SegTransVAE is built upon encoder-decoder architecture, exploiting transformer with the variational autoencoder (VAE) branch to the network to reconstruct the input images jointly with segmentation. To the best of our knowledge, this is the first method combining the success of CNN, transformer, and VAE. Evaluation on various recently introduced datasets shows that SegTransVAE outperforms previous methods in Dice Score and
$95%$ -Haudorff Distance while having comparable inference time to a simple CNN-based architecture network. The source code is available at: this https URL.
29.Vertical Federated Edge Learning with Distributed Integrated Sensing and Communication ⬇️
This letter studies a vertical federated edge learning (FEEL) system for collaborative objects/human motion recognition by exploiting the distributed integrated sensing and communication (ISAC). In this system, distributed edge devices first send wireless signals to sense targeted objects/human, and then exchange intermediate computed vectors (instead of raw sensing data) for collaborative recognition while preserving data privacy. To boost the spectrum and hardware utilization efficiency for FEEL, we exploit ISAC for both target sensing and data exchange, by employing dedicated frequency-modulated continuous-wave (FMCW) signals at each edge device. Under this setup, we propose a vertical FEEL framework for realizing the recognition based on the collected multi-view wireless sensing data. In this framework, each edge device owns an individual local L-model to transform its sensing data into an intermediate vector with relatively low dimensions, which is then transmitted to a coordinating edge device for final output via a common downstream S-model. By considering a human motion recognition task, experimental results show that our vertical FEEL based approach achieves recognition accuracy up to 98% with an improvement up to 8% compared to the benchmarks, including on-device training and horizontal FEEL.
30.A Visual Analytics Approach to Building Logistic Regression Models and its Application to Health Records ⬇️
Multidimensional data analysis has become increasingly important in many fields, mainly due to current vast data availability and the increasing demand to extract knowledge from it. In most applications, the role of the final user is crucial to build proper machine learning models and to explain the patterns found in data. In this paper, we present an open unified approach for generating, evaluating, and applying regression models in high-dimensional data sets within a user-guided process. The approach is based on exposing a broad correlation panorama for attributes, by which the user can select relevant attributes to build and evaluate prediction models for one or more contexts. We name the approach UCReg (User-Centered Regression). We demonstrate effectiveness and efficiency of UCReg through the application of our framework to the analysis of Covid-19 and other synthetic and real health records data.
31.SoftDropConnect (SDC) -- Effective and Efficient Quantification of the Network Uncertainty in Deep MR Image Analysis ⬇️
Recently, deep learning has achieved remarkable successes in medical image analysis. Although deep neural networks generate clinically important predictions, they have inherent uncertainty. Such uncertainty is a major barrier to report these predictions with confidence. In this paper, we propose a novel yet simple Bayesian inference approach called SoftDropConnect (SDC) to quantify the network uncertainty in medical imaging tasks with gliomas segmentation and metastases classification as initial examples. Our key idea is that during training and testing SDC modulates network parameters continuously so as to allow affected information processing channels still in operation, instead of disabling them as Dropout or DropConnet does. When compared with three popular Bayesian inference methods including Bayes By Backprop, Dropout, and DropConnect, our SDC method (SDC-W after optimization) outperforms the three competing methods with a substantial margin. Quantitatively, our proposed method generates results withsubstantially improved prediction accuracy (by 10.0%, 5.4% and 3.7% respectively for segmentation in terms of dice score; by 11.7%, 3.9%, 8.7% on classification in terms of test accuracy) and greatly reduced uncertainty in terms of mutual information (by 64%, 33% and 70% on segmentation; 98%, 88%, and 88% on classification). Our approach promises to deliver better diagnostic performance and make medical AI imaging more explainable and trustworthy.
32.Steerable Pyramid Transform Enables Robust Left Ventricle Quantification ⬇️
Although multifarious variants of convolutional neural networks (CNNs) have proved successful in cardiac index quantification, they seem vulnerable to mild input perturbations, e.g., spatial transformations, image distortions, and adversarial attacks. Such brittleness erodes our trust in CNN-based automated diagnosis of various cardiovascular diseases. In this work, we describe a simple and effective method to learn robust CNNs for left ventricle (LV) quantification, including cavity and myocardium areas, directional dimensions, and regional wall thicknesses. The key to the success of our approach is the use of the biologically-inspired steerable pyramid transform (SPT) as fixed front-end processing, which brings three computational advantages to LV quantification. First, the basis functions of SPT match the anatomical structure of the LV as well as the geometric characteristics of the estimated indices. Second, SPT enables sharing a CNN across different orientations as a form of parameter regularization, and explicitly captures the scale variations of the LV in a natural way. Third, the residual highpass subband can be conveniently discarded to further encourage robust feature learning. A concise and effective metric, named Robustness Ratio, is proposed to evaluate the robustness under various input perturbations. Extensive experiments on 145 cardiac sequences show that our SPT-augmented method performs favorably against state-of-the-art algorithms in terms of prediction accuracy, but is significantly more robust under input perturbations.
33.Improving Specificity in Mammography Using Cross-correlation between Wavelet and Fourier Transform ⬇️
Breast cancer is in the most common malignant tumor in women. It accounted for 30% of new malignant tumor cases. Although the incidence of breast cancer remains high around the world, the mortality rate has been continuously reduced. This is mainly due to recent developments in molecular biology technology and improved level of comprehensive diagnosis and standard treatment. Early detection by mammography is an integral part of that. The most common breast abnormalities that may indicate breast cancer are masses and calcifications. Previous detection approaches usually obtain relatively high sensitivity but unsatisfactory specificity. We will investigate an approach that applies the discrete wavelet transform and Fourier transform to parse the images and extracts statistical features that characterize an image's content, such as the mean intensity and the skewness of the intensity. A naive Bayesian classifier uses these features to classify the images. We expect to achieve an optimal high specificity.