1.Audio-Visual Embodied Navigation ⬇️
Moving around in the world is naturally a multisensory experience, but today's embodied agents are deaf - restricted to solely their visual perception of the environment. We introduce audio-visual navigation for complex, acoustically and visually realistic 3D environments. By both seeing and hearing, the agent must learn to navigate to an audio-based target. We develop a multi-modal deep reinforcement learning pipeline to train navigation policies end-to-end from a stream of egocentric audio-visual observations, allowing the agent to (1) discover elements of the geometry of the physical space indicated by the reverberating audio and (2) detect and follow sound-emitting targets. We further introduce audio renderings based on geometrical acoustic simulations for a set of publicly available 3D assets and instrument AI-Habitat to support the new sensor, making it possible to insert arbitrary sound sources in an array of apartment, office, and hotel environments. Our results show that audio greatly benefits embodied visual navigation in 3D spaces.
2.Dense RepPoints: Representing Visual Objects with Dense Point Sets ⬇️
We present an object representation, called \textbf{Dense RepPoints}, for flexible and detailed modeling of object appearance and geometry. In contrast to the coarse geometric localization and feature extraction of bounding boxes, Dense RepPoints adaptively distributes a dense set of points to semantically and geometrically significant positions on an object, providing informative cues for object analysis. Techniques are developed to address challenges related to supervised training for dense point sets from image segments annotations and making this extensive representation computationally practical. In addition, the versatility of this representation is exploited to model object structure over multiple levels of granularity. Dense RepPoints significantly improves performance on geometrically-oriented visual understanding tasks, including a
$1.6$ AP gain in object detection on the challenging COCO benchmark.
3.FHDR: HDR Image Reconstruction from a Single LDR Image using Feedback Network ⬇️
High dynamic range (HDR) image generation from a single exposure low dynamic range (LDR) image has been made possible due to the recent advances in Deep Learning. Various feed-forward Convolutional Neural Networks (CNNs) have been proposed for learning LDR to HDR representations. To better utilize the power of CNNs, we exploit the idea of feedback, where the initial low level features are guided by the high level features using a hidden state of a Recurrent Neural Network. Unlike a single forward pass in a conventional feed-forward network, the reconstruction from LDR to HDR in a feedback network is learned over multiple iterations. This enables us to create a coarse-to-fine representation, leading to an improved reconstruction at every iteration. Various advantages over standard feed-forward networks include early reconstruction ability and better reconstruction quality with fewer network parameters. We design a dense feedback block and propose an end-to-end feedback network- FHDR for HDR image generation from a single exposure LDR image. Qualitative and quantitative evaluations show the superiority of our approach over the state-of-the-art methods.
4.Analyzing ImageNet with Spectral Relevance Analysis: Towards ImageNet un-Hans'ed ⬇️
Today's machine learning models for computer vision are typically trained on very large (benchmark) data sets with millions of samples. These may, however, contain biases, artifacts, or errors that have gone unnoticed and are exploited by the model. In the worst case, the trained model may become a 'Clever Hans' predictor that does not learn a valid and generalizable strategy to solve the problem it was trained for, but bases its decisions on spurious correlations in the training data. Recently developed techniques allow to explain individual model decisions and thus to gain deeper insights into the model's prediction strategies. In this paper, we contribute by providing a comprehensive analysis framework based on a scalable statistical analysis of attributions from explanation methods for large data corpora, here ImageNet. Based on a recent technique - Spectral Relevance Analysis (SpRAy) - we propose three technical contributions and resulting findings: (a) novel similarity metrics based on Wasserstein for comparing attributions to allow for the first time scale, translational, and rotational invariant comparisons of attributions, (b) a scalable quantification of artifactual and poisoned classes where the ML models under study exhibit Clever Hans behavior, (c) a cleaning procedure that allows to relief data of artifacts and biases in a systematic manner yielding significantly reduced Clever Hans behavior, i.e. we un-Hans the ImageNet data corpus. Using this novel method set, we provide qualitative and quantitative analyses of the biases and artifacts in ImageNet and demonstrate that the usage of these insights can give rise to improved models and functionally cleaned data corpora.
5.Neural Shape Parsers for Constructive Solid Geometry ⬇️
Constructive Solid Geometry (CSG) is a geometric modeling technique that defines complex shapes by recursively applying boolean operations on primitives such as spheres and cylinders. We present CSGNe, a deep network architecture that takes as input a 2D or 3D shape and outputs a CSG program that models it. Parsing shapes into CSG programs is desirable as it yields a compact and interpretable generative model. However, the task is challenging since the space of primitives and their combinations can be prohibitively large. CSGNe uses a convolutional encoder and recurrent decoder based on deep networks to map shapes to modeling instructions in a feed-forward manner and is significantly faster than bottom-up approaches. We investigate two architectures for this task --- a vanilla encoder (CNN) - decoder (RNN) and another architecture that augments the encoder with an explicit memory module based on the program execution stack. The stack augmentation improves the reconstruction quality of the generated shape and learning efficiency. Our approach is also more effective as a shape primitive detector compared to a state-of-the-art object detector. Finally, we demonstrate CSGNet can be trained on novel datasets without program annotations through policy gradient techniques.
6.Large Scale Learning of General Visual Representations for Transfer ⬇️
Transfer of pre-trained representations improves sample efficiency and simplifies hyperparameter tuning when training deep neural networks for vision. We revisit the paradigm of pre-training on large supervised datasets and fine-tuning the weights on the target task. We scale up pre-training, and create a simple recipe that we call Big Transfer (BiT). By combining a few carefully selected components, and transferring using a simple heuristic, we achieve strong performance on over 20 datasets. BiT performs well across a surprisingly wide range of data regimes - from 10 to 1M labeled examples. BiT achieves 87.8% top-1 accuracy on ILSVRC-2012, 99.3% on CIFAR-10, and 76.7% on the Visual Task Adaptation Benchmark (which includes 19 tasks). On small datasets, BiT attains 86.4% on ILSVRC-2012 with 25 examples per class, and 97.6% on CIFAR-10 with 10 examples per class. We conduct detailed analysis of the main components that lead to high transfer performance.
7.Robust Visual Tracking via Implicit Low-Rank Constraints and Structural Color Histograms ⬇️
With the guaranteed discrimination and efficiency of spatial appearance model, Discriminative Correlation Filters (DCF-) based tracking methods have achieved outstanding performance recently. However, the construction of effective temporal appearance model is still challenging on account of filter degeneration becomes a significant factor that causes tracking failures in the DCF framework. To encourage temporal continuity and to explore the smooth variation of target appearance, we propose to enhance low-rank structure of the learned filters, which can be realized by constraining the successive filters within a
$\ell_2$ -norm ball. Moreover, we design a global descriptor, structural color histograms, to provide complementary support to the final response map, improving the stability and robustness to the DCF framework. The experimental results on standard benchmarks demonstrate that our Implicit Low-Rank Constraints and Structural Color Histograms (ILRCSCH) tracker outperforms state-of-the-art methods.
8.Adaptive Distraction Context Aware Tracking Based on Correlation Filter ⬇️
The Discriminative Correlation Filter (CF) uses a circulant convolution operation to provide several training samples for the design of a classifier that can distinguish the target from the background. The filter design may be interfered by objects close to the target during the tracking process, resulting in tracking failure. This paper proposes an adaptive distraction context aware tracking algorithm to solve this problem. In the response map obtained for the previous frame by the CF algorithm, we adaptively find the image blocks that are similar to the target and use them as negative samples. This diminishes the influence of similar image blocks on the classifier in the tracking process and its accuracy is improved. The tracking results on video sequences show that the algorithm can cope with rapid changes such as occlusion and rotation, and can adaptively use the distractive objects around the target as negative samples to improve the accuracy of target tracking.
9.Deep Manifold Embedding for Hyperspectral Image Classification ⬇️
Deep learning methods have played a more and more important role in hyperspectral image classification. However, the general deep learning methods mainly take advantage of the information of sample itself or the pairwise information between samples while ignore the intrinsic data structure within the whole data. To tackle this problem, this work develops a novel deep manifold embedding method(DMEM) for hyperspectral image classification. First, each class in the image is modelled as a specific nonlinear manifold and the geodesic distance is used to measure the correlation between the samples. Then, based on the hierarchical clustering, the manifold structure of the data can be captured and each nonlinear data manifold can be divided into several sub-classes. Finally, considering the distribution of each sub-class and the correlation between different subclasses, the DMEM is constructed to preserve the estimated geodesic distances on the data manifold between the learned low dimensional features of different samples. Experiments over three real-world hyperspectral image datasets have demonstrated the effectiveness of the proposed method.
10.Multi-Graph Transformer for Free-Hand Sketch Recognition ⬇️
Learning meaningful representations of free-hand sketches remains a challenging task given the signal sparsity and the high-level abstraction of sketches. Existing techniques have focused on exploiting either the static nature of sketches with Convolutional Neural Networks (CNNs) or the temporal sequential property with Recurrent Neural Networks (RNNs). In this work, we propose a new representation of sketches as multiple sparsely connected graphs. We design a novel Graph Neural Network (GNN), the Multi-Graph Transformer (MGT), for learning representations of sketches from multiple graphs which simultaneously capture global and local geometric stroke structures, as well as temporal information. We report extensive numerical experiments on a sketch recognition task to demonstrate the performance of the proposed approach. Particularly, MGT applied on 414k sketches from Google QuickDraw: (i) achieves small recognition gap to the CNN-based performance upper bound (72.80% vs. 74.22%), and (ii) outperforms all RNN-based models by a significant margin. To the best of our knowledge, this is the first work proposing to represent sketches as graphs and apply GNNs for sketch recognition. Code and trained models are available at this https URL.
11.Ordered or Orderless: A Revisit for Video based Person Re-Identification ⬇️
Is recurrent network really necessary for learning a good visual representation for video based person re-identification (VPRe-id)? In this paper, we first show that the common practice of employing recurrent neural networks (RNNs) to aggregate temporal spatial features may not be optimal. Specifically, with a diagnostic analysis, we show that the recurrent structure may not be effective to learn temporal dependencies than what we expected and implicitly yields an orderless representation. Based on this observation, we then present a simple yet surprisingly powerful approach for VPRe-id, where we treat VPRe-id as an efficient orderless ensemble of image based person re-identification problem. More specifically, we divide videos into individual images and re-identify person with ensemble of image based rankers. Under the i.i.d. assumption, we provide an error bound that sheds light upon how could we improve VPRe-id. Our work also presents a promising way to bridge the gap between video and image based person re-identification. Comprehensive experimental evaluations demonstrate that the proposed solution achieves state-of-the-art performances on multiple widely used datasets (iLIDS-VID, PRID 2011, and MARS).
12.Computation Reallocation for Object Detection ⬇️
The allocation of computation resources in the backbone is a crucial issue in object detection. However, classification allocation pattern is usually adopted directly to object detector, which is proved to be sub-optimal. In order to reallocate the engaged computation resources in a more efficient way, we present CR-NAS (Computation Reallocation Neural Architecture Search) that can learn computation reallocation strategies across different feature resolution and spatial position diectly on the target detection dataset. A two-level reallocation space is proposed for both stage and spatial reallocation. A novel hierarchical search procedure is adopted to cope with the complex search space. We apply CR-NAS to multiple backbones and achieve consistent improvements. Our CR-ResNet50 and CR-MobileNetV2 outperforms the baseline by 1.9% and 1.7% COCO AP respectively without any additional computation budget. The models discovered by CR-NAS can be equiped to other powerful detection neck/head and be easily transferred to other dataset, e.g. PASCAL VOC, and other vision tasks, e.g. instance segmentation. Our CR-NAS can be used as a plugin to improve the performance of various networks, which is demanding.
13.BETANAS: BalancEd TrAining and selective drop for Neural Architecture Search ⬇️
Automatic neural architecture search techniques are becoming increasingly important in machine learning area. Especially, weight sharing methods have shown remarkable potentials on searching good network architectures with few computational resources. However, existing weight sharing methods mainly suffer limitations on searching strategies: these methods either uniformly train all network paths to convergence which introduces conflicts between branches and wastes a large amount of computation on unpromising candidates, or selectively train branches with different frequency which leads to unfair evaluation and comparison among paths. To address these issues, we propose a novel neural architecture search method with balanced training strategy to ensure fair comparisons and a selective drop mechanism to reduce conflicts among candidate paths. The experimental results show that our proposed method can achieve a leading performance of 79.0% on ImageNet under mobile settings, which outperforms other state-of-the-art methods in both accuracy and efficiency.
14.Adversarial AutoAugment ⬇️
Data augmentation (DA) has been widely utilized to improve generalization in training deep neural networks. Recently, human-designed data augmentation has been gradually replaced by automatically learned augmentation policy. Through finding the best policy in well-designed search space of data augmentation, AutoAugment can significantly improve validation accuracy on image classification tasks. However, this approach is not computationally practical for large-scale problems. In this paper, we develop an adversarial method to arrive at a computationally-affordable solution called Adversarial AutoAugment, which can simultaneously optimize target related object and augmentation policy search loss. The augmentation policy network attempts to increase the training loss of a target network through generating adversarial augmentation policies, while the target network can learn more robust features from harder examples to improve the generalization. In contrast to prior work, we reuse the computation in target network training for policy evaluation, and dispense with the retraining of the target network. Compared to AutoAugment, this leads to about 12x reduction in computing cost and 11x shortening in time overhead on ImageNet. We show experimental results of our approach on CIFAR-10/CIFAR-100, ImageNet, and demonstrate significant performance improvements over state-of-the-art. On CIFAR-10, we achieve a top-1 test error of 1.36%, which is the currently best performing single model. On ImageNet, we achieve a leading performance of top-1 accuracy 79.40% on ResNet-50 and 80.00% on ResNet-50-D without extra data.
15.A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains ⬇️
Recently proposed methods for weakly-supervised semantic segmentation have achieved impressive performance in predicting pixel classes despite being trained with only image labels which lack positional information. Because image annotations are cheaper and quicker to generate, weak supervision is more feasible for training segmentation algorithms in certain datasets. These methods have been predominantly developed on natural scene images and it is unclear whether they can be simply transferred to other domains with different characteristics, such as histopathology and satellite images, and still perform well. Little work has been conducted in the literature on applying weakly-supervised methods to these other image domains; it is unknown how to determine whether certain methods are more suitable for certain datasets, and how to determine the best method to use for a new dataset. This paper evaluates state-of-the-art weakly-supervised semantic segmentation methods on natural scene, histopathology, and satellite image datasets. We also analyze the compatibility of the methods for each dataset and present some principles for applying weakly-supervised semantic segmentation on an unseen image dataset.
16.Cascading Convolutional Color Constancy ⬇️
Regressing the illumination of a scene from the representations of object appearances is popularly adopted in computational color constancy. However, it's still challenging due to intrinsic appearance and label ambiguities caused by unknown illuminants, diverse reflection property of materials and extrinsic imaging factors (such as different camera sensors). In this paper, we introduce a novel algorithm by Cascading Convolutional Color Constancy (in short, C4) to improve robustness of regression learning and achieve stable generalization capability across datasets (different cameras and scenes) in a unique framework. The proposed C4 method ensembles a series of dependent illumination hypotheses from each cascade stage via introducing a weighted multiply-accumulate loss function, which can inherently capture different modes of illuminations and explicitly enforce coarse-to-fine network optimization. Experimental results on the public Color Checker and NUS 8-Camera benchmarks demonstrate superior performance of the proposed algorithm in comparison with the state-of-the-art methods, especially for more difficult scenes.
17.Geometry-aware Generation of Adversarial and Cooperative Point Clouds ⬇️
Recent studies show that machine learning models are vulnerable to adversarial examples. In 2D image domain, these examples are obtained by adding imperceptible noises to natural images. This paper studies adversarial generation of point clouds by learning to deform those approximating object surfaces of certain categories. As 2D manifolds embedded in the 3D Euclidean space, object surfaces enjoy the general properties of smoothness and fairness. We thus argue that in order to achieve imperceptible surface shape deformations, adversarial point clouds should have the same properties with similar degrees of smoothness/fairness to the benign ones, while being close to the benign ones as well when measured under certain distance metrics of point clouds. To this end, we propose a novel loss function to account for imperceptible, geometry-aware deformations of point clouds, and use the proposed loss in an adversarial objective to attack representative models of point set classifiers. Experiments show that our proposed method achieves stronger attacks than existing methods, without introduction of noticeable outliers and surface irregularities. In this work, we also investigate an opposite direction that learns to deform point clouds of object surfaces in the same geometry-aware, but cooperative manner. Cooperatively generated point clouds are more favored by machine learning models in terms of improved classification confidence or accuracy. We present experiments verifying that our proposed objective succeeds in learning cooperative shape deformations.
18.Unsupervised Scene Adaptation with Memory Regularization in vivo ⬇️
We consider the unsupervised scene adaptation problem of learning from both labeled source data and unlabeled target data. Existing methods focus on minoring the inter-domain gap between the source and target domains. However, the intra-domain knowledge and inherent uncertainty learned by the network are under-explored. In this paper, we propose an orthogonal method, called memory regularization in vivo to exploit the intra-domain knowledge and regularize the model training. Specifically, we refer to the segmentation model itself as the memory module, and minor the discrepancy of the two classifiers, i.e., the primary classifier and the auxiliary classifier, to reduce the prediction inconsistency. Without extra parameters, the proposed method is complementary to the most existing domain adaptation methods and could generally improve the performance of existing methods. Albeit simple, we verify the effectiveness of memory regularization on two semantic segmentation datasets: GTA5 -> Cityscapes and SYNTHIA -> Cityscapes, yielding +11.1% and +11.3% mIoU improvement over the baseline model, respectively.
19.Learning to Navigate Using Mid-Level Visual Priors ⬇️
How much does having visual priors about the world (e.g. the fact that the world is 3D) assist in learning to perform downstream motor tasks (e.g. navigating a complex environment)? What are the consequences of not utilizing such visual priors in learning? We study these questions by integrating a generic perceptual skill set (a distance estimator, an edge detector, etc.) within a reinforcement learning framework (see Fig. 1). This skill set ("mid-level vision") provides the policy with a more processed state of the world compared to raw images.
Our large-scale study demonstrates that using mid-level vision results in policies that learn faster, generalize better, and achieve higher final performance, when compared to learning from scratch and/or using state-of-the-art visual and non-visual representation learning methods. We show that conventional computer vision objectives are particularly effective in this regard and can be conveniently integrated into reinforcement learning frameworks. Finally, we found that no single visual representation was universally useful for all downstream tasks, hence we computationally derive a task-agnostic set of representations optimized to support arbitrary downstream tasks.
20.Scalable Fine-grained Generated Image Classification Based on Deep Metric Learning ⬇️
Recently, generated images could reach very high quality, even human eyes could not tell them apart from real images. Although there are already some methods for detecting generated images in current forensic community, most of these methods are used to detect a single type of generated images. The new types of generated images are emerging one after another, and the existing detection methods cannot cope well. These problems prompted us to propose a scalable framework for multi-class classification based on deep metric learning, which aims to classify the generated images finer. In addition, we have increased the scalability of our framework to cope with the constant emergence of new types of generated images, and through fine-tuning to make the model obtain better detection performance on the new type of generated data.
21.FisheyeMultiNet: Real-time Multi-task Learning Architecture for Surround-view Automated Parking System ⬇️
Automated Parking is a low speed manoeuvring scenario which is quite unstructured and complex, requiring full 360° near-field sensing around the vehicle. In this paper, we discuss the design and implementation of an automated parking system from the perspective of camera based deep learning algorithms. We provide a holistic overview of an industrial system covering the embedded system, use cases and the deep learning architecture. We demonstrate a real-time multi-task deep learning network called FisheyeMultiNet, which detects all the necessary objects for parking on a low-power embedded system. FisheyeMultiNet runs at 15 fps for 4 cameras and it has three tasks namely object detection, semantic segmentation and soiling detection. To encourage further research, we release a partial dataset of 5,000 images containing semantic segmentation and bounding box detection ground truth via WoodScape project \cite{yogamani2019woodscape}.
22.Characterizing the Decision Boundary of Deep Neural Networks ⬇️
Deep neural networks and in particular, deep neural classifiers have become an integral part of many modern applications. Despite their practical success, we still have limited knowledge of how they work and the demand for such an understanding is evergrowing. In this regard, one crucial aspect of deep neural network classifiers that can help us deepen our knowledge about their decision-making behavior is to investigate their decision boundaries. Nevertheless, this is contingent upon having access to samples populating the areas near the decision boundary. To achieve this, we propose a novel approach we call Deep Decision boundary Instance Generation (DeepDIG). DeepDIG utilizes a method based on adversarial example generation as an effective way of generating samples near the decision boundary of any deep neural network model. Then, we introduce a set of important principled characteristics that take advantage of the generated instances near the decision boundary to provide multifaceted understandings of deep neural networks. We have performed extensive experiments on multiple representative datasets across various deep neural network models and characterized their decision boundaries.
23.Atmospheric turbulence removal using convolutional neural network ⬇️
This paper describes a novel deep learning-based method for mitigating the effects of atmospheric distortion. We have built an end-to-end supervised convolutional neural network (CNN) to reconstruct turbulence-corrupted video sequence. Our framework has been developed on the residual learning concept, where the spatio-temporal distortions are learnt and predicted. Our experiments demonstrate that the proposed method can deblur, remove ripple effect and enhance contrast of the video sequences simultaneously. Our model was trained and tested with both simulated and real distortions. Experimental results of the real distortions show that our method outperforms the existing ones by up to 3.8% in term of the quality of restored images, and it achieves faster speed than the state-of-the-art methods by up to 23 times with GPU implementation.
24.TRADI: Tracking deep neural network weight distributions ⬇️
During training, the weights of a Deep Neural Network (DNN) are optimized from a random initialization towards a nearly optimum value minimizing a loss function. Only this final state of the weights is typically kept for testing, while the wealth of information on the geometry of the weight space, accumulated over the descent towards the minimum is discarded. In this work we propose to make use of this knowledge and leverage it for computing the distributions of the weights of the DNN. This can be further used for estimating the epistemic uncertainty of the DNN by sampling an ensemble of networks from these distributions. To this end we introduce a method for tracking the trajectory of the weights during optimization, that does not require any changes in the architecture nor on the training procedure. We evaluate our method on standard classification and regression benchmarks, and on out-of-distribution detection for classification and semantic segmentation. We achieve competitive results, while preserving computational efficiency in comparison to other popular approaches.
25.Robustness of Brain Tumor Segmentation ⬇️
We address the generalization behavior of deep neural networks in the context of brain tumor segmentation. While current topologies show an increasingly complex structure, the overall benchmark performance does improve negligibly. In our experiments, we demonstrate that a well trained U-Net shows the best generalization behavior and is sufficient to solve this segmentation problem. We illustrate why extensions of this model cannot only be pointless but even harmful in a realistic scenario. Also, we suggest two simple modifications (that do not alter the topology) to further improve its generalization performance.
26.a simple and effective framework for pairwise deep metric learning ⬇️
Deep metric learning (DML) has received much attention in deep learning due to its wide applications in computer vision. Previous studies have focused on designing complicated losses and hard example mining methods, which are mostly heuristic and lack of theoretical understanding. In this paper, we cast DML as a simple pairwise binary classification problem that classifies a pair of examples as similar or dissimilar. It identifies the most critical issue in this problem--imbalanced data pairs. To tackle this issue, we propose a simple and effective framework to sample pairs in a batch of data for updating the model. The key to this framework is to define a robust loss for all pairs over a mini-batch of data, which is formulated by distributionally robust optimization. The flexibility in constructing the uncertainty decision set of the dual variable allows us to recover state-of-the-art complicated losses and also to induce novel variants. Empirical studies on several benchmark data sets demonstrate that our simple and effective method outperforms the state-of-the-art results.