Skip to content
This repository has been archived by the owner on Apr 21, 2024. It is now read-only.

Latest commit

 

History

History
73 lines (73 loc) · 43.2 KB

20190826.md

File metadata and controls

73 lines (73 loc) · 43.2 KB

ArXiv cs.CV --Mon, 26 Aug 2019

1.Learning Filter Basis for Convolutional Neural Network Compression ⬇️

Convolutional neural networks (CNNs) based solutions have achieved state-of-the-art performances for many computer vision tasks, including classification and super-resolution of images. Usually the success of these methods comes with a cost of millions of parameters due to stacking deep convolutional layers. Moreover, quite a large number of filters are also used for a single convolutional layer, which exaggerates the parameter burden of current methods. Thus, in this paper, we try to reduce the number of parameters of CNNs by learning a basis of the filters in convolutional layers. For the forward pass, the learned basis is used to approximate the original filters and then used as parameters for the convolutional layers. We validate our proposed solution for multiple CNN architectures on image classification and image super-resolution benchmarks and compare favorably to the existing state-of-the-art in terms of reduction of parameters and preservation of accuracy.

2.Sparse Generative Adversarial Network ⬇️

We propose a new approach to Generative Adversarial Networks (GANs) to achieve an improved performance with additional robustness to its so-called and well recognized mode collapse. We first proceed by mapping the desired data onto a frame-based space for a sparse representation to lift any limitation of small support features prior to learning the structure. To that end we start by dividing an image into multiple patches and modifying the role of the generative network from producing an entire image, at once, to creating a sparse representation vector for each image patch. We synthesize an entire image by multiplying generated sparse representations to a pre-trained dictionary and assembling the resulting patches. This approach restricts the output of the generator to a particular structure, obtained by imposing a Union of Subspaces (UoS) model to the original training data, leading to more realistic images, while maintaining a desired diversity. To further regularize GANs in generating high-quality images and to avoid the notorious mode-collapse problem, we introduce a third player in GANs, called reconstructor. This player utilizes an auto-encoding scheme to ensure that first, the input-output relation in the generator is injective and second each real image corresponds to some input noise. We present a number of experiments, where the proposed algorithm shows a remarkably higher inception score compared to the equivalent conventional GANs.

3.Human activity recognition from skeleton poses ⬇️

Human Action Recognition is an important task of Human Robot Interaction as cooperation between robots and humans requires that artificial agents recognise complex cues from the environment. A promising approach is using trained classifiers to recognise human actions through sequences of skeleton poses extracted from images or RGB-D data from a sensor. However, with many different data-sets focused on slightly different sets of actions and different algorithms it is not clear which strategy produces highest accuracy for indoor activities performed in a home environment. This work discussed, tested and compared classic algorithms, namely, support vector machines and k-nearest neighbours, to 2 similar hierarchical neural gas approaches, the growing when required neural gas and the growing neural gas.

4.2D moment invariants from the point of view of the classical invariant theory ⬇️

We introduce the notions of the algebras of polynonial/rational $SO(2)$-invariants and prove that they are isomorphic to the algebras of moment invariants. Also, to simplify the calculating of invariants we pass from an action of Lie group $SO(2)$ to an action of its Lie algebra $\mathfrak{so}_2$. This allow us to reduce the problem to well known problems of the classical invariant theory.

5.Efficient Deep Neural Networks ⬇️

The success of deep neural networks (DNNs) is attributable to three factors: increased compute capacity, more complex models, and more data. These factors, however, are not always present, especially for edge applications such as autonomous driving, augmented reality, and internet-of-things. Training DNNs requires a large amount of data, which is difficult to obtain. Edge devices such as mobile phones have limited compute capacity, and therefore, require specialized and efficient DNNs. However, due to the enormous design space and prohibitive training costs, designing efficient DNNs for different target devices is challenging. So the question is, with limited data, compute capacity, and model complexity, can we still successfully apply deep neural networks?
This dissertation focuses on the above problems and improving the efficiency of deep neural networks at four levels. Model efficiency: we designed neural networks for various computer vision tasks and achieved more than 10x faster speed and lower energy. Data efficiency: we developed an advanced tool that enables 6.2x faster annotation of a LiDAR point cloud. We also leveraged domain adaptation to utilize simulated data, bypassing the need for real data. Hardware efficiency: we co-designed neural networks and hardware accelerators and achieved 11.6x faster inference. Design efficiency: the process of finding the optimal neural networks is time-consuming. Our automated neural architecture search algorithms discovered, using 421x lower computational cost than previous search methods, models with state-of-the-art accuracy and efficiency.

6.In-bed Pressure-based Pose Estimation using Image Space Representation Learning ⬇️

In-bed pose estimation has shown value in fields such as hospital patient monitoring, sleep studies, and smart homes. In this paper, we present a novel in-bed pressure-based pose estimation approach capable of accurately detecting body parts from highly ambiguous pressure data. We exploit the idea of using a learnable pre-processing step, which transforms the vague pressure maps to a representation close to the expected input space of common purpose pose identification modules, which fail if solely used on the pressure data. To this end, a fully convolutional network with multiple scales is used as the learnable pre-processing step to provide the pose-specific characteristics of the pressure maps to the pre-trained pose identification module. A combination of loss functions is used to model the constraints, ensuring that unclear body parts are reconstructed correctly while preventing the pre-processing block from generating arbitrary images. The evaluation results show high visual fidelity in the generated pre-processed images as well as high detection rates in pose estimation. Furthermore, we show that the trained pre-processing block can be effective for pose identification models for which it has not been trained as well.

7.DefSLAM: Tracking and Mapping of Deforming Scenes from Monocular Sequences ⬇️

We present the first monocular SLAM capable of operating in deforming scenes in real-time. Our DefSLAM approach fuses isometric Shape-from-Template (SfT) and Non-Rigid Structure-from-Motion (NRSfM) techniques to deal with the exploratory sequences typical of SLAM. A deformation tracking thread recovers the pose of the camera and the deformation of the observed map at frame rate by means of SfT. A deformation mapping thread runs in parallel to update the template at keyframe rate by means of NRSfM with a batch of covisible keyframes. In our experiments, DefSLAM processes sequences of deforming scenes both in a laboratory controlled experiment and in medical endoscopy sequences, being able to produce accurate 3D models of the scene with respect to the moving camera.

8.Cross-Enhancement Transform Two-Stream 3D ConvNets for Pedestrian Action Recognition of Autonomous Vehicles ⬇️

Action recognition is an important research topic in machine vision. It is widely used in many fields and is one of the key technologies in pedestrian behavior recognition and intention prediction in the field of autonomous driving. Based on the widely used 3D ConvNets algorithm, combined with Two-Stream Inflated algorithm and transfer learning algorithm, we construct a Cross-Enhancement Transform based Two-Stream 3D ConvNets algorithm. On the datasets with different data distribution characteristics, the performance of the algorithm is different, especially the performance of the RGB and optical flow stream in the two stream is different. For this case, we combine the data distribution characteristics on the specific dataset. As a teaching model, the stream with better performance in the two stream is used to assist in training another stream, and then two stream inference is made. We conducted experiments on the UCF-101, HMDB-51, and Kinetics data sets, and the experimental results confirmed the effectiveness of our algorithm.

9.Region Tracking in an Image Sequence: Preventing Driver Inattention ⬇️

Driver inattention is a large problem on the roads around the world. The objective of this project was to develop an eye tracking algorithm with sufficient computational efficiency and accuracy, to successfully realize when the driver was looking away from the road for an extended period. The method of tracking involved the minimization of a functional, using the gradient descent and level set methods. The algorithm was then discretized and implemented using C and MATLAB. Multiple synthetic images, grey-scale and colour images were tested using the final design, with a desired region coverage of 82%. Further work is needed to decrease the computation time, increase the robustness of the algorithm, develop a small device capable of running the algorithm, as well as physically implement this device into various vehicles.

10.Trajectory Prediction by Coupling Scene-LSTM with Human Movement LSTM ⬇️

We develop a novel human trajectory prediction system that incorporates the scene information (Scene-LSTM) as well as individual pedestrian movement (Pedestrian-LSTM) trained simultaneously within static crowded scenes. We superimpose a two-level grid structure (grid cells and subgrids) on the scene to encode spatial granularity plus common human movements. The Scene-LSTM captures the commonly traveled paths that can be used to significantly influence the accuracy of human trajectory prediction in local areas (i.e. grid cells). We further design scene data filters, consisting of a hard filter and a soft filter, to select the relevant scene information in a local region when necessary and combine it with Pedestrian-LSTM for forecasting a pedestrian's future locations. The experimental results on several publicly available datasets demonstrate that our method outperforms related works and can produce more accurate predicted trajectories in different scene contexts.

11.A Review of Point Cloud Semantic Segmentation ⬇️

3D Point Cloud Semantic Segmentation (PCSS) is attracting increasing interest, due to its applicability in remote sensing, computer vision and robotics, and due to the new possibilities offered by deep learning techniques. In order to provide a needed up-to-date review of recent developments in PCSS, this article summarizes existing studies on this topic. Firstly, we outline the acquisition and evolution of the 3D point cloud from the perspective of remote sensing and computer vision, as well as the published benchmarks for PCSS studies. Then, traditional and advanced techniques used for Point Cloud Segmentation (PCS) and PCSS are reviewed and compared. Finally, important issues and open questions in PCSS studies are discussed.

12.Generating High-Resolution Fashion Model Images Wearing Custom Outfits ⬇️

Visualizing an outfit is an essential part of shopping for clothes. Due to the combinatorial aspect of combining fashion articles, the available images are limited to a pre-determined set of outfits. In this paper, we broaden these visualizations by generating high-resolution images of fashion models wearing a custom outfit under an input body pose. We show that our approach can not only transfer the style and the pose of one generated outfit to another, but also create realistic images of human bodies and garments.

13.Cephalometric Landmark Detection by AttentiveFeature Pyramid Fusion and Regression-Voting ⬇️

Marking anatomical landmarks in cephalometric radiography is a critical operation in cephalometric analysis. Automatically and accurately locating these landmarks is a challenging issue because different landmarks require different levels of resolution and semantics. Based on this observation, we propose a novel attentive feature pyramid fusion module (AFPF) to explicitly shape high-resolution and semantically enhanced fusion features to achieve significantly higher accuracy than existing deep learning-based methods. We also combine heat maps and offset maps to perform pixel-wise regression-voting to improve detection accuracy. By incorporating the AFPF and regression-voting, we develop an end-to-end deep learning framework that improves detection accuracy by 7%~11% for all the evaluation metrics over the state-of-the-art method. We present ablation studies to give more insights into different components of our method and demonstrate its generalization capability and stability for unseen data from diverse devices.

14.Feature Learning to Automatically Assess Radiographic Knee Osteoarthritis Severity ⬇️

This chapter presents the investigations and the results of feature learning using convolutional neural networks to automatically assess knee osteoarthritis (OA) severity and the associated clinical and diagnostic features of knee OA from X-ray images. Also, this chapter demonstrates that feature learning in a supervised manner is more effective than using conventional handcrafted features for automatic detection of knee joints and fine-grained knee OA image classification. In the general machine learning approach to automatically assess knee OA severity, the first step is to localize the region of interest that is to detect and extract the knee joint regions from the radiographs, and the next step is to classify the localized knee joints based on a radiographic classification scheme such as Kellgren and Lawrence grades. First, the existing approaches for detecting (or localizing) the knee joint regions based on handcrafted features are reviewed and outlined. Next, three new approaches are introduced: 1) to automatically detect the knee joint region using a fully convolutional network, 2) to automatically assess the radiographic knee OA using CNNs trained from scratch for classification and regression of knee joint images to predict KL grades in ordinal and continuous scales, and 3) to quantify the knee OA severity optimizing a weighted ratio of two loss functions: categorical cross entropy and mean-squared error using multi-objective convolutional learning and ordinal regression. Two public datasets: the OAI and the MOST are used to evaluate the approaches with promising results that outperform existing approaches. In summary, this work primarily contributes to the field of automated methods for localization (automatic detection) and quantification (image classification) of radiographic knee OA.

15.DRFN: Deep Recurrent Fusion Network for Single-Image Super-Resolution with Large Factors ⬇️

Recently, single-image super-resolution has made great progress owing to the development of deep convolutional neural networks (CNNs). The vast majority of CNN-based models use a pre-defined upsampling operator, such as bicubic interpolation, to upscale input low-resolution images to the desired size and learn non-linear mapping between the interpolated image and ground truth high-resolution (HR) image. However, interpolation processing can lead to visual artifacts as details are over-smoothed, particularly when the super-resolution factor is high. In this paper, we propose a Deep Recurrent Fusion Network (DRFN), which utilizes transposed convolution instead of bicubic interpolation for upsampling and integrates different-level features extracted from recurrent residual blocks to reconstruct the final HR images. We adopt a deep recurrence learning strategy and thus have a larger receptive field, which is conducive to reconstructing an image more accurately. Furthermore, we show that the multi-level fusion structure is suitable for dealing with image super-resolution problems. Extensive benchmark evaluations demonstrate that the proposed DRFN performs better than most current deep learning methods in terms of accuracy and visual effects, especially for large-scale images, while using fewer parameters.

16.Multi-Spectral Visual Odometry without Explicit Stereo Matching ⬇️

Multi-spectral sensors consisting of a standard (visible-light) camera and a long-wave infrared camera can simultaneously provide both visible and thermal images. Since thermal images are independent from environmental illumination, they can help to overcome certain limitations of standard cameras under complicated illumination conditions. However, due to the difference in the information source of the two types of cameras, their images usually share very low texture similarity. Hence, traditional texture-based feature matching methods cannot be directly applied to obtain stereo correspondences. To tackle this problem, a multi-spectral visual odometry method without explicit stereo matching is proposed in this paper. Bundle adjustment of multi-view stereo is performed on the visible and the thermal images using direct image alignment. Scale drift can be avoided by additional temporal observations of map points with the fixed-baseline stereo. Experimental results indicate that the proposed method can provide accurate visual odometry results with recovered metric scale. Moreover, the proposed method can also provide a metric 3D reconstruction in semi-dense density with multi-spectral information, which is not available from existing multi-spectral methods.

17.Mutual information neural estimation in CNN-based end-to-end medical image registration ⬇️

Image registration is one of the most underlined processes in medical image analysis. Recently, convolutional neural networks (CNNs) have shown significant potential in both affine and deformable registration. However, the lack of voxel-wise ground truth challenges the training of an accurate CNN-based registration. In this work, we implement a CNN-based mutual information neural estimator for image registration that evaluates the registration outputs in an unsupervised manner. Based on the estimator, we propose an end-to-end registration framework, denoted as MIRegNet, to realize one-shot affine and deformable registration. Furthermore, we propose a weakly supervised network combining mutual information with the Dice similarity coefficients (DSC) loss. We employed a dataset consisting of 190 pairs of 3D pulmonary CT images for validation. Results showed that the MIRegNet obtained an average Dice score of 0.960 for registering the pulmonary images, and the Dice score was further improved to 0.963 when the DSC was included for a weakly supervised learning of image registration.

18.Onion-Peel Networks for Deep Video Completion ⬇️

We propose the onion-peel networks for video completion. Given a set of reference images and a target image with holes, our network fills the hole by referring the contents in the reference images. Our onion-peel network progressively fills the hole from the hole boundary enabling it to exploit richer contextual information for the missing regions every step. Given a sufficient number of recurrences, even a large hole can be inpainted successfully. To attend to the missing information visible in the reference images, we propose an asymmetric attention block that computes similarities between the hole boundary pixels in the target and the non-hole pixels in the references in a non-local manner. With our attention block, our network can have an unlimited spatial-temporal window size and fill the holes with globally coherent contents. In addition, our framework is applicable to the image completion guided by the reference images without any modification, which is difficult to do with the previous methods. We validate that our method produces visually pleasing image and video inpainting results in realistic test cases.

19.AdvHat: Real-world adversarial attack on ArcFace Face ID system ⬇️

In this paper we propose a novel easily reproducible technique to attack the best public Face ID system ArcFace in different shooting conditions. To create an attack, we print the rectangular paper sticker on a common color printer and put it on the hat. The adversarial sticker is prepared with a novel algorithm for off-plane transformations of the image which imitates sticker location on the hat. Such an approach confuses the state-of-the-art public Face ID model LResNet100E-IR, ArcFace@ms1m-refine-v2 and is transferable to other Face ID models.

20.Sequential Adversarial Learning for Self-Supervised Deep Visual Odometry ⬇️

We propose a self-supervised learning framework for visual odometry (VO) that incorporates correlation of consecutive frames and takes advantage of adversarial learning. Previous methods tackle self-supervised VO as a local structure from motion (SfM) problem that recovers depth from single image and relative poses from image pairs by minimizing photometric loss between warped and captured images. As single-view depth estimation is an ill-posed problem, and photometric loss is incapable of discriminating distortion artifacts of warped images, the estimated depth is vague and pose is inaccurate. In contrast to previous methods, our framework learns a compact representation of frame-to-frame correlation, which is updated by incorporating sequential information. The updated representation is used for depth estimation. Besides, we tackle VO as a self-supervised image generation task and take advantage of Generative Adversarial Networks (GAN). The generator learns to estimate depth and pose to generate a warped target image. The discriminator evaluates the quality of generated image with high-level structural perception that overcomes the problem of pixel-wise loss in previous methods. Experiments on KITTI and Cityscapes datasets show that our method obtains more accurate depth with details preserved and predicted pose outperforms state-of-the-art self-supervised methods significantly.

21.Crowd Counting with Deep Structured Scale Integration Network ⬇️

Automatic estimation of the number of people in unconstrained crowded scenes is a challenging task and one major difficulty stems from the huge scale variation of people. In this paper, we propose a novel Deep Structured Scale Integration Network (DSSINet) for crowd counting, which addresses the scale variation of people by using structured feature representation learning and hierarchically structured loss function optimization. Unlike conventional methods which directly fuse multiple features with weighted average or concatenation, we first introduce a Structured Feature Enhancement Module based on conditional random fields (CRFs) to refine multiscale features mutually with a message passing mechanism. In this module, each scale-specific feature is considered as a continuous random variable and passes complementary information to refine the features at other scales. Second, we utilize a Dilated Multiscale Structural Similarity loss to enforce our DSSINet to learn the local correlation of people's scales within regions of various size, thus yielding high-quality density maps. Extensive experiments on four challenging benchmarks well demonstrate the effectiveness of our method. Specifically, our DSSINet achieves improvements of 9.5% error reduction on Shanghaitech dataset and 24.9% on UCF-QNRF dataset against the state-of-the-art methods.

22.A BLSTM Network for Printed Bengali OCR System with High Accuracy ⬇️

This paper presents a printed Bengali and English text OCR system developed by us using a single hidden BLSTM-CTC architecture having 128 units. Here, we did not use any peephole connection and dropout in the BLSTM, which helped us in getting better accuracy. This architecture was trained by 47,720 text lines that include English words also. When tested over 20 different Bengali fonts, it has produced character level accuracy of 99.32% and word level accuracy of 96.65%. A good Indic multi script OCR system is also developed by Google. It sometimes recognizes a character of Bengali into the same character of a non-Bengali script, especially Assamese, which has no distinction from Bengali, except for a few characters. For example, Bengali character for 'RA' is sometimes recognized as that of Assamese, mainly in conjunct consonant forms. Our OCR is free from such errors. This OCR system is available online at this https URL

23.Shadow Removal via Shadow Image Decomposition ⬇️

We propose a novel deep learning method for shadow removal. Inspired by physical models of shadow formation, we use a linear illumination transformation to model the shadow effects in the image that allows the shadow image to be expressed as a combination of the shadow-free image, the shadow parameters, and a matte layer. We use two deep networks, namely SP-Net and M-Net, to predict the shadow parameters and the shadow matte respectively. This system allows us to remove the shadow effects on the images. We train and test our framework on the most challenging shadow removal dataset (ISTD). Compared to the state-of-the-art method, our model achieves a 40% error reduction in terms of root mean square error (RMSE) for the shadow area, reducing RMSE from 13.3 to 7.9. Moreover, we create an augmented ISTD dataset based on an image decomposition system by modifying the shadow parameters to generate new synthetic shadow images. Training our model on this new augmented ISTD dataset further lowers the RMSE on the shadow area to 7.4.

24.Sign Language Recognition, Generation, and Translation: An Interdisciplinary Perspective ⬇️

Developing successful sign language recognition, generation, and translation systems requires expertise in a wide range of fields, including computer vision, computer graphics, natural language processing, human-computer interaction, linguistics, and Deaf culture. Despite the need for deep interdisciplinary knowledge, existing research occurs in separate disciplinary silos, and tackles separate portions of the sign language processing pipeline. This leads to three key questions: 1) What does an interdisciplinary view of the current landscape reveal? 2) What are the biggest challenges facing the field? and 3) What are the calls to action for people working in the field? To help answer these questions, we brought together a diverse group of experts for a two-day workshop. This paper presents the results of that interdisciplinary workshop, providing key background that is often overlooked by computer scientists, a review of the state-of-the-art, a set of pressing challenges, and a call to action for the research community.

25.Learning Similarity Conditions Without Explicit Supervision ⬇️

Many real-world tasks require models to compare images along multiple similarity conditions (e.g. similarity in color, category or shape). Existing methods often reason about these complex similarity relationships by learning condition-aware embeddings. While such embeddings aid models in learning different notions of similarity, they also limit their capability to generalize to unseen categories since they require explicit labels at test time. To address this deficiency, we propose an approach that jointly learns representations for the different similarity conditions and their contributions as a latent variable without explicit supervision. Comprehensive experiments across three datasets, Polyvore-Outfits, Maryland-Polyvore and UT-Zappos50k, demonstrate the effectiveness of our approach: our model outperforms the state-of-the-art methods, even those that are strongly supervised with pre-defined similarity conditions, on fill-in-the-blank, outfit compatibility prediction and triplet prediction tasks. Finally, we show that our model learns different visually-relevant semantic sub-spaces that allow it to generalize well to unseen categories.

26.Predicting knee osteoarthritis severity: comparative modeling based on patient's data and plain X-ray images ⬇️

Knee osteoarthritis (KOA) is a disease that impairs knee function and causes pain. A radiologist reviews knee X-ray images and grades the severity level of the impairments according to the Kellgren and Lawrence grading scheme; a five-point ordinal scale (0--4). In this study, we used Elastic Net (EN) and Random Forests (RF) to build predictive models using patient assessment data (i.e. signs and symptoms of both knees and medication use) and a convolution neural network (CNN) trained using X-ray images only. Linear mixed effect models (LMM) were used to model the within subject correlation between the two knees. The root mean squared error for the CNN, EN, and RF models was 0.77, 0.97, and 0.94 respectively. The LMM shows similar overall prediction accuracy as the EN regression but correctly accounted for the hierarchical structure of the data resulting in more reliable inference. Useful explanatory variables were identified that could be used for patient monitoring before X-ray imaging. Our analyses suggest that the models trained for predicting the KOA severity levels achieve comparable results when modeling X-ray images and patient data. The subjectivity in the KL grade is still a primary concern.

27.Topology-preserving augmentation for CNN-based segmentation of congenital heart defects from 3D paediatric CMR ⬇️

Patient-specific 3D printing of congenital heart anatomy demands an accurate segmentation of the thin tissue interfaces which characterise these diagnoses. Even when a label set has a high spatial overlap with the ground truth, inaccurate delineation of these interfaces can result in topological errors. These compromise the clinical utility of such models due to the anomalous appearance of defects. CNNs have achieved state-of-the-art performance in segmentation tasks. Whilst data augmentation has often played an important role, we show that conventional image resampling schemes used therein can introduce topological changes in the ground truth labelling of augmented samples. We present a novel pipeline to correct for these changes, using a fast-marching algorithm to enforce the topology of the ground truth labels within their augmented representations. In so doing, we invoke the idea of cardiac contiguous topology to describe an arbitrary combination of congenital heart defects and develop an associated, clinically meaningful metric to measure the topological correctness of segmentations. In a series of five-fold cross-validations, we demonstrate the performance gain produced by this pipeline and the relevance of topological considerations to the segmentation of congenital heart defects. We speculate as to the applicability of this approach to any segmentation task involving morphologically complex targets.

28.Assessing Knee OA Severity with CNN attention-based end-to-end architectures ⬇️

This work proposes a novel end-to-end convolutional neural network (CNN) architecture to automatically quantify the severity of knee osteoarthritis (OA) using X-Ray images, which incorporates trainable attention modules acting as unsupervised fine-grained detectors of the region of interest (ROI). The proposed attention modules can be applied at different levels and scales across any CNN pipeline helping the network to learn relevant attention patterns over the most informative parts of the image at different resolutions. We test the proposed attention mechanism on existing state-of-the-art CNN architectures as our base models, achieving promising results on the benchmark knee OA datasets from the osteoarthritis initiative (OAI) and multicenter osteoarthritis study (MOST). All code from our experiments will be publicly available on the github repository: this https URL

29.Gaussian implementation of the multi-Bernoulli mixture filter ⬇️

This paper presents the Gaussian implementation of the multi-Bernoulli mixture (MBM) filter. The MBM filter provides the filtering (multi-target) density for the standard dynamic and radar measurement models when the birth model is multi-Bernoulli or multi-Bernoulli mixture. Under linear/Gaussian models, the single target densities of the MBM mixture admit Gaussian closed-form expressions. Murty's algorithm is used to select the global hypotheses with highest weights. The MBM filter is compared with other algorithms in the literature via numerical simulations.

30.Spooky effect in optimal OSPA estimation and how GOSPA solves it ⬇️

In this paper, we show the spooky effect at a distance that arises in optimal estimation of multiple targets with the optimal sub-pattern assignment (OSPA) metric. This effect refers to the fact that if we have several independent potential targets at distant locations, a change in the probability of existence of one of them can completely change the optimal estimation of the rest of the potential targets. As opposed to OSPA, the generalised OSPA (GOSPA) metric ($\alpha=2$) penalises localisation errors for properly detected targets, false targets and missed targets. As a consequence, optimal GOSPA estimation aims to lower the number of false and missed targets, as well as the localisation error for properly detected targets, and avoids the spooky effect.

31.Efficient Capon-Based Approach Exploiting Temporal Windowing For Electric Network Frequency Estimation ⬇️

Electric Network Frequency (ENF) fluctuations constitute a powerful tool in multimedia forensics. An efficient approach for ENF estimation is introduced with temporal windowing based on the filter-bank Capon spectral estimator. A type of Gohberg-Semencul factorization of the model covariance matrix is used due to the Toeplitz structure of the covariance matrix. Moreover, this approach uses, for the first time in the field of ENF, a temporal window, not necessarily the rectangular one, at the stage preceding spectral estimation. Krylov matrices are employed for fast implementation of matrix inversions. The proposed approach outperforms the state-of-the-art methods in ENF estimation, when a short time window of $1$ second is employed in power recordings. In speech recordings, the proposed approach yields highly accurate results with respect to both time complexity and accuracy. Moreover, the impact of different temporal windows is studied. The results show that even the most trivial methods for ENF estimation, such as the Short-Time Fourier Transform, can provide better results than the most recent state-of-the-art methods, when a temporal window is employed. The correlation coefficient is used to measure the ENF estimation accuracy.

32.Automatic Rodent Brain MRI Lesion Segmentation with Fully Convolutional Networks ⬇️

Manual segmentation of rodent brain lesions from magnetic resonance images (MRIs) is an arduous, time-consuming and subjective task that is highly important in pre-clinical research. Several automatic methods have been developed for different human brain MRI segmentation, but little research has targeted automatic rodent lesion segmentation. The existing tools for performing automatic lesion segmentation in rodents are constrained by strict assumptions about the data. Deep learning has been successfully used for medical image segmentation. However, there has not been any deep learning approach specifically designed for tackling rodent brain lesion segmentation. In this work, we propose a novel Fully Convolutional Network (FCN), RatLesNet, for the aforementioned task. Our dataset consists of 131 T2-weighted rat brain scans from 4 different studies in which ischemic stroke was induced by transient middle cerebral artery occlusion. We compare our method with two other 3D FCNs originally developed for anatomical segmentation (VoxResNet and 3D-U-Net) with 5-fold cross-validation on a single study and a generalization test, where the training was done on a single study and testing on three remaining studies. The labels generated by our method were quantitatively and qualitatively better than the predictions of the compared methods. The average Dice coefficient achieved in the 5-fold cross-validation experiment with the proposed approach was 0.88, between 3.7% and 38% higher than the compared architectures. The presented architecture also outperformed the other FCNs at generalizing on different studies, achieving the average Dice coefficient of 0.79.

33.Mish: A Self Regularized Non-Monotonic Neural Activation Function ⬇️

The concept of non-linearity in a Neural Network is introduced by an activation function which serves an integral role in the training and performance evaluation of the network. Over the years of theoretical research, many activation functions have been proposed, however, only a few are widely used in mostly all applications which include ReLU (Rectified Linear Unit), TanH (Tan Hyperbolic), Sigmoid, Leaky ReLU and Swish. In this work, a novel neural activation function called as Mish is proposed. The experiments show that Mish tends to work better than both ReLU and Swish along with other standard activation functions in many deep networks across challenging datasets. For instance, in Squeeze Excite Net- 18 for CIFAR 100 classification, the network with Mish had an increase in Top-1 test accuracy by 0.494% and 1.671% as compared to the same network with Swish and ReLU respectively. The similarity to Swish along with providing a boost in performance and its simplicity in implementation makes it easier for researchers and developers to use Mish in their Neural Network Models.

34.MTCNET: Multi-task Learning Paradigm for Crowd Count Estimation ⬇️

We propose a Multi-Task Learning (MTL) paradigm based deep neural network architecture, called MTCNet (Multi-Task Crowd Network) for crowd density and count estimation. Crowd count estimation is challenging due to the non-uniform scale variations and the arbitrary perspective of an individual image. The proposed model has two related tasks, with Crowd Density Estimation as the main task and Crowd-Count Group Classification as the auxiliary task. The auxiliary task helps in capturing the relevant scale-related information to improve the performance of the main task. The main task model comprises two blocks: VGG-16 front-end for feature extraction and a dilated Convolutional Neural Network for density map generation. The auxiliary task model shares the same front-end as the main task, followed by a CNN classifier. Our proposed network achieves 5.8% and 14.9% lower Mean Absolute Error (MAE) than the state-of-the-art methods on ShanghaiTech dataset without using any data augmentation. Our model also outperforms with 10.5% lower MAE on UCF_CC_50 dataset.

35.Image based cellular contractile force evaluation with small-world network inspired CNN: SW-UNet ⬇️

We propose an image-based cellular contractile force evaluation method using a machine learning technique. We use a special substrate that exhibits wrinkles when cells grab the substrate and contract, and the wrinkles can be used to visualize the force magnitude and direction. In order to extract wrinkles from the microscope images, we develop a new CNN (convolutional neural network) architecture SW-UNet (small-world U-Net), which is a CNN that reflects the concept of the small-world network. The SW-UNet shows better performance in wrinkle segmentation task compared to other methods: the error (Euclidean distance) of SW-UNet is 4.9 times smaller than 2D-FFT (fast Fourier transform) based segmentation approach, and is 2.9 times smaller than U-Net. As a demonstration, we compare the contractile force of U2OS (human osteosarcoma) cells and show that cells with a mutation in the KRAS oncogne show larger force compared to the wild-type cells. Our new machine learning based algorithm provides us an efficient, automated and accurate method to evaluate the cell contractile force.

36.A joint 3D UNet-Graph Neural Network-based method for Airway Segmentation from chest CTs ⬇️

We present an end-to-end deep learning segmentation method by combining a 3D UNet architecture with a graph neural network (GNN) model. In this approach, the convolutional layers at the deepest level of the UNet are replaced by a GNN-based module with a series of graph convolutions. The dense feature maps at this level are transformed into a graph input to the GNN module. The incorporation of graph convolutions in the UNet provides nodes in the graph with information that is based on node connectivity, in addition to the local features learnt through the downsampled paths. This information can help improve segmentation decisions. By stacking several graph convolution layers, the nodes can access higher order neighbourhood information without substantial increase in computational expense. We propose two types of node connectivity in the graph adjacency: i) one predefined and based on a regular node neighbourhood, and ii) one dynamically computed during training and using the nearest neighbour nodes in the feature space. We have applied this method to the task of segmenting the airway tree from chest CT scans. Experiments have been performed on 32 CTs from the Danish Lung Cancer Screening Trial dataset. We evaluate the performance of the UNet-GNN models with two types of graph adjacency and compare it with the baseline UNet.