Skip to content
This repository has been archived by the owner on Apr 21, 2024. It is now read-only.

Latest commit

 

History

History
85 lines (85 loc) · 55.2 KB

20190821.md

File metadata and controls

85 lines (85 loc) · 55.2 KB

ArXiv cs.CV --Wed, 21 Aug 2019

1.Image Synthesis From Reconfigurable Layout and Style ⬇️

Despite remarkable recent progress on both unconditional and conditional image synthesis, it remains a long-standing problem to learn generative models that are capable of synthesizing realistic and sharp images from reconfigurable spatial layout (i.e., bounding boxes + class labels in an image lattice) and style (i.e., structural and appearance variations encoded by latent vectors), especially at high resolution. By reconfigurable, it means that a model can preserve the intrinsic one-to-many mapping from a given layout to multiple plausible images with different styles, and is adaptive with respect to perturbations of a layout and style latent code. In this paper, we present a layout- and style-based architecture for generative adversarial networks (termed LostGANs) that can be trained end-to-end to generate images from reconfigurable layout and style. Inspired by the vanilla StyleGAN, the proposed LostGAN consists of two new components: (i) learning fine-grained mask maps in a weakly-supervised manner to bridge the gap between layouts and images, and (ii) learning object instance-specific layout-aware feature normalization (ISLA-Norm) in the generator to realize multi-object style generation. In experiments, the proposed method is tested on the COCO-Stuff dataset and the Visual Genome dataset with state-of-the-art performance obtained. The code and pretrained models are available at \url{this https URL}.

2.Probabilistic Reconstruction Networks for 3D Shape Inference from a Single Image ⬇️

We study end-to-end learning strategies for 3D shape inference from images, in particular from a single image. Several approaches in this direction have been investigated that explore different shape representations and suitable learning architectures. We focus instead on the underlying probabilistic mechanisms involved and contribute a more principled probabilistic inference-based reconstruction framework, which we coin Probabilistic Reconstruction Networks. This framework expresses image conditioned 3D shape inference through a family of latent variable models, and naturally decouples the choice of shape representations from the inference itself. Moreover, it suggests different options for the image conditioning and allows training in two regimes, using either Monte Carlo or variational approximation of the marginal likelihood. Using our Probabilistic Reconstruction Networks we obtain single image 3D reconstruction results that set a new state of the art on the ShapeNet dataset in terms of the intersection over union and earth mover's distance evaluation metrics. Interestingly, we obtain these results using a basic voxel grid representation, improving over recent work based on finer point cloud or mesh based representations.

3.Pix2Pose: Pixel-Wise Coordinate Regression of Objects for 6D Pose Estimation ⬇️

Estimating the 6D pose of objects using only RGB images remains challenging because of problems such as occlusion and symmetries. It is also difficult to construct 3D models with precise texture without expert knowledge or specialized scanning devices. To address these problems, we propose a novel pose estimation method, Pix2Pose, that predicts the 3D coordinates of each object pixel without textured models. An auto-encoder architecture is designed to estimate the 3D coordinates and expected errors per pixel. These pixel-wise predictions are then used in multiple stages to form 2D-3D correspondences to directly compute poses with the PnP algorithm with RANSAC iterations. Our method is robust to occlusion by leveraging recent achievements in generative adversarial training to precisely recover occluded parts. Furthermore, a novel loss function, the transformer loss, is proposed to handle symmetric objects by guiding predictions to the closest symmetric pose. Evaluations on three different benchmark datasets containing symmetric and occluded objects show our method outperforms the state of the art using only RGB images.

4.Learning to Sit: Synthesizing Human-Chair Interactions via Hierarchical Control ⬇️

Recent progress on physics-based character animation has shown impressive breakthroughs on human motion synthesis, through the imitation of motion capture data via deep reinforcement learning. However, results have mostly been demonstrated on imitating a single distinct motion pattern, and do not generalize to interactive tasks that require flexible motion patterns due to varying human-object spatial configurations. In this paper, we focus on one class of interactive task---sitting onto a chair. We propose a hierarchical reinforcement learning framework which relies on a collection of subtask controllers trained to imitate simple, reusable mocap motions, and a meta controller trained to execute the subtasks properly to complete the main task. We experimentally demonstrate the strength of our approach over different single level and hierarchical baselines. We also show that our approach can be applied to motion prediction given an image input. A video highlight can be found at this https URL.

5.Human Gait Symmetry Assessment using a Depth Camera and Mirrors ⬇️

This paper proposes a reliable approach for human gait symmetry assessment using a depth camera and two mirrors. The input of our system is a sequence of 3D point clouds which are formed from a setup including a Time-of-Flight (ToF) depth camera and two mirrors. A cylindrical histogram is estimated for describing the posture in each point cloud. The sequence of such histograms is then separated into two sequences of sub-histograms representing two half-bodies. A cross-correlation technique is finally applied to provide values describing gait symmetry indices. The evaluation was performed on 9 different gait types to demonstrate the ability of our approach in assessing gait symmetry. A comparison between our system and related methods, that employ different input data types, is also provided.

6.Assessment of gait normality using a depth camera and mirrors ⬇️

This paper presents an initial work on assessment of gait normality in which the human body motion is represented by a sequence of enhanced depth maps. The input data is provided by a system consisting of a Time-of-Flight (ToF) depth camera and two mirrors. This approach proposes two feature types to describe characteristics of localized points of interest and the level of posture symmetry. These two features are processed on a sequence of enhanced depth maps with the support of a sliding window to provide two corresponding scores. The gait assessment is finally performed based on a weighted combination of these two scores. The evaluation is performed by experimenting on 6 simulated abnormal gaits.

7.Skeleton-based Gait Index Estimation with LSTMs ⬇️

In this paper, we propose a method that estimates a gait index for a sequence of skeletons. Our system is a stack of an encoder and a decoder that are formed by Long Short-Term Memories (LSTMs). In the encoding stage, the characteristics of an input are automatically determined and are compressed into a latent space. The decoding stage then attempts to reconstruct the input according to such intermediate representation. The reconstruction error is thus considered as a weak gait index. By combining such weak indices over a long-time movement, our system can provide a good estimation for the gait index. Our experiments on a large dataset (nearly one hundred thousand skeletons) showed that the index given by the proposed method outperformed some recent works on gait analysis.

8.Estimating skeleton-based gait abnormality index by sparse deep auto-encoder ⬇️

This paper proposes an approach estimating a gait abnormality index based on skeletal information provided by a depth camera. Differently from related works where the extraction of hand-crafted features is required to describe gait characteristics, our method automatically performs that stage with the support of a deep auto-encoder. In order to get visually interpretable features, we embedded a constraint of sparsity into the model. Similarly to most gait-related studies, the temporal factor is also considered as a post-processing in our system. This method provided promising results when experimenting on a dataset containing nearly one hundred thousand skeleton samples.

9.ViSiL: Fine-grained Spatio-Temporal Video Similarity Learning ⬇️

In this paper we introduce ViSiL, a Video Similarity Learning architecture that considers fine-grained Spatio-Temporal relations between pairs of videos -- such relations are typically lost in previous video retrieval approaches that embed the whole frame or even the whole video into a vector descriptor before the similarity estimation. By contrast, our Convolutional Neural Network (CNN)-based approach is trained to calculate video-to-video similarity from refined frame-to-frame similarity matrices, so as to consider both intra- and inter-frame relations. In the proposed method, pairwise frame similarity is estimated by applying Tensor Dot (TD) followed by Chamfer Similarity (CS) on regional CNN frame features - this avoids feature aggregation before the similarity calculation between frames. Subsequently, the similarity matrix between all video frames is fed to a four-layer CNN, and then summarized using Chamfer Similarity (CS) into a video-to-video similarity score -- this avoids feature aggregation before the similarity calculation between videos and captures the temporal similarity patterns between matching frame sequences. We train the proposed network using a triplet loss scheme and evaluate it on five public benchmark datasets on four different video retrieval problems where we demonstrate large improvements in comparison to the state of the art. The implementation of ViSiL is publicly available.

10.Blind Image Deconvolution using Pretrained Generative Priors ⬇️

This paper proposes a novel approach to regularize the ill-posed blind image deconvolution (blind image deblurring) problem using deep generative networks. We employ two separate deep generative models - one trained to produce sharp images while the other trained to generate blur kernels from lower dimensional parameters. To deblur, we propose an alternating gradient descent scheme operating in the latent lower-dimensional space of each of the pretrained generative models. Our experiments show excellent deblurring results even under large blurs and heavy noise. To improve the performance on rich image datasets not well learned by the generative networks, we present a modification of the proposed scheme that governs the deblurring process under both generative and classical priors.

11.Learning Semantic-Specific Graph Representation for Multi-Label Image Recognition ⬇️

Recognizing multiple labels of images is a practical and challenging task, and significant progress has been made by searching semantic-aware regions and modeling label dependency. However, current methods cannot locate the semantic regions accurately due to the lack of part-level supervision or semantic guidance. Moreover, they cannot fully explore the mutual interactions among the semantic regions and do not explicitly model the label co-occurrence. To address these issues, we propose a Semantic-Specific Graph Representation Learning (SSGRL) framework that consists of two crucial modules: 1) a semantic decoupling module that incorporates category semantics to guide learning semantic-specific representations and 2) a semantic interaction module that correlates these representations with a graph built on the statistical label co-occurrence and explores their interactions via a graph propagation mechanism. Extensive experiments on public benchmarks show that our SSGRL framework outperforms current state-of-the-art methods by a sizable margin, e.g. with an mAP improvement of 2.5%, 2.6%, 6.7%, and 3.1% on the PASCAL VOC 2007 & 2012, Microsoft-COCO and Visual Genome benchmarks, respectively. Our codes and models are available at this https URL.

12.Consistent Scale Normalization for Object Recognition ⬇️

Scale variation remains a challenge problem for object detection. Common paradigms usually adopt multi-scale training & testing (image pyramid) or FPN (feature pyramid network) to process objects in wide scale range. However, multi-scale methods aggravate more variation of scale that even deep convolution neural networks with FPN cannot handle well. In this work, we propose an innovative paradigm called Consistent Scale Normalization (CSN) to resolve above problem. CSN compresses the scale space of objects into a consistent range (CSN range), in both training and testing phase. This reassures problem of scale variation fundamentally, and reduces the difficulty for network learning. Experiments show that CSN surpasses multi-scale counterpart significantly for object detection, instance segmentation and multi-task human pose estimation, on several architectures. On COCO test-dev, our single model based on CSN achieves 46.5 mAP with a ResNet-101 backbone, which is among the state-of-the-art (SOTA) candidates for object detection.

13.Towards High-Resolution Salient Object Detection ⬇️

Deep neural network based methods have made a significant breakthrough in salient object detection. However, they are typically limited to input images with low resolutions ($400\times400$ pixels or less). Little effort has been made to train deep neural networks to directly handle salient object detection in very high-resolution images. This paper pushes forward high-resolution saliency detection, and contributes a new dataset, named High-Resolution Salient Object Detection (HRSOD). To our best knowledge, HRSOD is the first high-resolution saliency detection dataset to date. As another contribution, we also propose a novel approach, which incorporates both global semantic information and local high-resolution details, to address this challenging task. More specifically, our approach consists of a Global Semantic Network (GSN), a Local Refinement Network (LRN) and a Global-Local Fusion Network (GLFN). GSN extracts the global semantic information based on down-sampled entire image. Guided by the results of GSN, LRN focuses on some local regions and progressively produces high-resolution predictions. GLFN is further proposed to enforce spatial consistency and boost performance. Experiments illustrate that our method outperforms existing state-of-the-art methods on high-resolution saliency datasets by a large margin, and achieves comparable or even better performance than them on widely-used saliency benchmarks. The HRSOD dataset is available at this https URL.

14.RelGAN: Multi-Domain Image-to-Image Translation via Relative Attributes ⬇️

Multi-domain image-to-image translation has gained increasing attention recently. Previous methods take an image and some target attributes as inputs and generate an output image with the desired attributes. However, such methods have two limitations. First, these methods assume binary-valued attributes and thus cannot yield satisfactory results for fine-grained control. Second, these methods require specifying the entire set of target attributes, even if most of the attributes would not be changed. To address these limitations, we propose RelGAN, a new method for multi-domain image-to-image translation. The key idea is to use relative attributes, which describes the desired change on selected attributes. Our method is capable of modifying images by changing particular attributes of interest in a continuous manner while preserving the other attributes. Experimental results demonstrate both the quantitative and qualitative effectiveness of our method on the tasks of facial attribute transfer and interpolation.

15.A Neural Virtual Anchor Synthesizer based on Seq2Seq and GAN Models ⬇️

This paper presents a novel framework to generate realistic face video of an anchor, who is reading certain news. This task is also known as Virtual Anchor. Given some paragraphs of words, we first utilize a pretrained Word2Vec model to embed each word into a vector; then we utilize a Seq2Seq-based model to translate these word embeddings into action units and head poses of the target anchor; these action units and head poses will be concatenated with facial landmarks as well as the former $n$ synthesized frames, and the concatenation serves as input of a Pix2PixHD-based model to synthesize realistic facial images for the virtual anchor. The experimental results demonstrate our framework is feasible for the synthesis of virtual anchor.

16.Proposal-free Temporal Moment Localization of a Natural-Language Query in Video using Guided Attention ⬇️

This paper studies the problem of temporal moment localization in a long untrimmed video using natural language as the query. Given an untrimmed video and a sentence as the query, the goal is to determine the starting, and the ending, of the relevant visual moment in the video, that corresponds to the query sentence. While previous works have tackled this task by a propose-and-rank approach, we introduce a more efficient, end-to-end trainable, and {\em proposal-free approach} that relies on three key components: a dynamic filter to transfer language information to the visual domain, a new loss function to guide our model to attend the most relevant parts of the video, and soft labels to model annotation uncertainty. We evaluate our method on two benchmark datasets, Charades-STA and ActivityNet-Captions. Experimental results show that our approach outperforms state-of-the-art methods on both datasets.

17.SROBB: Targeted Perceptual Loss for Single Image Super-Resolution ⬇️

By benefiting from perceptual losses, recent studies have improved significantly the performance of the super-resolution task, where a high-resolution image is resolved from its low-resolution counterpart. Although such objective functions generate near-photorealistic results, their capability is limited, since they estimate the reconstruction error for an entire image in the same way, without considering any semantic information. In this paper, we propose a novel method to benefit from perceptual loss in a more objective way. We optimize a deep network-based decoder with a targeted objective function that penalizes images at different semantic levels using the corresponding terms. In particular, the proposed method leverages our proposed OBB (Object, Background and Boundary) labels, generated from segmentation labels, to estimate a suitable perceptual loss for boundaries, while considering texture similarity for backgrounds. We show that our proposed approach results in more realistic textures and sharper edges, and outperforms other state-of-the-art algorithms in terms of both qualitative results on standard benchmarks and results of extensive user studies.

18.Three-D Safari: Learning to Estimate Zebra Pose, Shape, and Texture from Images "In the Wild" ⬇️

We present the first method to perform automatic 3D pose, shape and texture capture of animals from images acquired in-the-wild. In particular, we focus on the problem of capturing 3D information about Grevy's zebras from a collection of images. The Grevy's zebra is one of the most endangered species in Africa, with only a few thousand individuals left. Capturing the shape and pose of these animals can provide biologists and conservationists with information about animal health and behavior. In contrast to research on human pose, shape and texture estimation, training data for endangered species is limited, the animals are in complex natural scenes with occlusion, they are naturally camouflaged, travel in herds, and look similar to each other. To overcome these challenges, we integrate the recent SMAL animal model into a network-based regression pipeline, which we train end-to-end on synthetically generated images with pose, shape, and background variation. Going beyond state-of-the-art methods for human shape and pose estimation, our method learns a shape space for zebras during training. Learning such a shape space from images using only a photometric loss is novel, and the approach can be used to learn shape in other settings with limited 3D supervision. Moreover, we couple 3D pose and shape prediction with the task of texture synthesis, obtaining a full texture map of the animal from a single image. We show that the predicted texture map allows a novel per-instance unsupervised optimization over the network features. This method, SMALST (SMAL with learned Shape and Texture) goes beyond previous work, which assumed manual keypoints and/or segmentation, to regress directly from pixels to 3D animal shape, pose and texture. Code and data are available at this https URL.

19.Make a Face: Towards Arbitrary High Fidelity Face Manipulation ⬇️

Recent studies have shown remarkable success in face manipulation task with the advance of GANs and VAEs paradigms, but the outputs are sometimes limited to low-resolution and lack of diversity.
In this work, we propose Additive Focal Variational Auto-encoder (AF-VAE), a novel approach that can arbitrarily manipulate high-resolution face images using a simple yet effective model and only weak supervision of reconstruction and KL divergence losses. First, a novel additive Gaussian Mixture assumption is introduced with an unsupervised clustering mechanism in the structural latent space, which endows better disentanglement and boosts multi-modal representation with external memory. Second, to improve the perceptual quality of synthesized results, two simple strategies in architecture design are further tailored and discussed on the behavior of Human Visual System (HVS) for the first time, allowing for fine control over the model complexity and sample quality. Human opinion studies and new state-of-the-art Inception Score (IS) / Frechet Inception Distance (FID) demonstrate the superiority of our approach over existing algorithms, advancing both the fidelity and extremity of face manipulation task.

20.Human Mesh Recovery from Monocular Images via a Skeleton-disentangled Representation ⬇️

We describe an end-to-end method for recovering 3D human body mesh from single images and monocular videos. Different from the existing methods try to obtain all the complex 3D pose, shape, and camera parameters from one coupling feature, we propose a skeleton-disentangling based framework, which divides this task into multi-level spatial and temporal granularity in a decoupling manner. In spatial, we propose an effective and pluggable "disentangling the skeleton from the details" (DSD) module. It reduces the complexity and decouples the skeleton, which lays a good foundation for temporal modeling. In temporal, the self-attention based temporal convolution network is proposed to efficiently exploit the short and long-term temporal cues. Furthermore, an unsupervised adversarial training strategy, temporal shuffles and order recovery, is designed to promote the learning of motion dynamics. The proposed method outperforms the state-of-the-art 3D human mesh recovery methods by 15.4% MPJPE and 23.8% PA-MPJPE on Human3.6M. State-of-the-art results are also achieved on the 3D pose in the wild (3DPW) dataset without any fine-tuning. Especially, ablation studies demonstrate that skeleton-disentangled representation is crucial for better temporal modeling and generalization.

21.An End-to-end Video Text Detector with Online Tracking ⬇️

Video text detection is considered as one of the most difficult tasks in document analysis due to the following two challenges: 1) the difficulties caused by video scenes, i.e., motion blur, illumination changes, and occlusion; 2) the properties of text including variants of fonts, languages, orientations, and shapes. Most existing methods attempt to enhance the performance of video text detection by cooperating with video text tracking, but treat these two tasks separately. In this work, we propose an end-to-end video text detection model with online tracking to address these two challenges. Specifically, in the detection branch, we adopt ConvLSTM to capture spatial structure information and motion memory. In the tracking branch, we convert the tracking problem to text instance association, and an appearance-geometry descriptor with memory mechanism is proposed to generate robust representation of text instances. By integrating these two branches into one trainable framework, they can promote each other and the computational cost is significantly reduced. Experiments on existing video text benchmarks including ICDAR2013 Video, Minetto and YVT demonstrate that the proposed method significantly outperforms state-of-the-art methods. Our method improves F-score by about 2 on all datasets and it can run realtime with 24.36 fps on TITAN Xp.

22.Zero-Shot Grounding of Objects from Natural Language Queries ⬇️

A phrase grounding system localizes a particular object in an image referred to by a natural language query. In previous work, the phrases were restricted to have nouns that were encountered in training, we extend the task to Zero-Shot Grounding(ZSG) which can include novel, "unseen" nouns. Current phrase grounding systems use an explicit object detection network in a 2-stage framework where one stage generates sparse proposals and the other stage evaluates them. In the ZSG setting, generating appropriate proposals itself becomes an obstacle as the proposal generator is trained on the entities common in the detection and grounding datasets. We propose a new single-stage model called ZSGNet which combines the detector network and the grounding system and predicts classification scores and regression parameters. Evaluation of ZSG system brings additional subtleties due to the influence of the relationship between the query and learned categories; we define four distinct conditions that incorporate different levels of difficulty. We also introduce new datasets, sub-sampled from Flickr30k Entities and Visual Genome, that enable evaluations for the four conditions. Our experiments show that ZSGNet achieves state-of-the-art performance on Flickr30k and ReferIt under the usual "seen" settings and performs significantly better than baseline in the zero-shot setting.

23.Customizing Student Networks From Heterogeneous Teachers via Adaptive Knowledge Amalgamation ⬇️

A massive number of well-trained deep networks have been released by developers online. These networks may focus on different tasks and in many cases are optimized for different datasets. In this paper, we study how to exploit such heterogeneous pre-trained networks, known as teachers, so as to train a customized student network that tackles a set of selective tasks defined by the user. We assume no human annotations are available, and each teacher may be either single- or multi-task. To this end, we introduce a dual-step strategy that first extracts the task-specific knowledge from the heterogeneous teachers sharing the same sub-task, and then amalgamates the extracted knowledge to build the student network. To facilitate the training, we employ a selective learning scheme where, for each unlabelled sample, the student learns adaptively from only the teacher with the least prediction ambiguity. We evaluate the proposed approach on several datasets and experimental results demonstrate that the student, learned by such adaptive knowledge amalgamation, achieves performances even better than those of the teachers.

24.360-Degree Textures of People in Clothing from a Single Image ⬇️

In this paper we predict a full 3D avatar of a person from a single image. We infer texture and geometry in the UV-space of the SMPL model using an image-to-image translation method. Given partial texture and segmentation layout maps derived from the input view, our model predicts the complete segmentation map, the complete texture map, and a displacement map. The predicted maps can be applied to the SMPL model in order to naturally generalize to novel poses, shapes, and even new clothing. In order to learn our model in a common UV-space, we non-rigidly register the SMPL model to thousands of 3D scans, effectively encoding textures and geometries as images in correspondence. This turns a difficult 3D inference task into a simpler image-to-image translation one. Results on rendered scans of people and images from the DeepFashion dataset demonstrate that our method can reconstruct plausible 3D avatars from a single image. We further use our model to digitally change pose, shape, swap garments between people and edit clothing. To encourage research in this direction we will make the source code available for research purpose.

25.Unpaired Image-to-Speech Synthesis with Multimodal Information Bottleneck ⬇️

Deep generative models have led to significant advances in cross-modal generation such as text-to-image synthesis. Training these models typically requires paired data with direct correspondence between modalities. We introduce the novel problem of translating instances from one modality to another without paired data by leveraging an intermediate modality shared by the two other modalities. To demonstrate this, we take the problem of translating images to speech. In this case, one could leverage disjoint datasets with one shared modality, e.g., image-text pairs and text-speech pairs, with text as the shared modality. We call this problem "skip-modal generation" because the shared modality is skipped during the generation process. We propose a multimodal information bottleneck approach that learns the correspondence between modalities from unpaired data (image and speech) by leveraging the shared modality (text). We address fundamental challenges of skip-modal generation: 1) learning multimodal representations using a single model, 2) bridging the domain gap between two unrelated datasets, and 3) learning the correspondence between modalities from unpaired data. We show qualitative results on image-to-speech synthesis; this is the first time such results have been reported in the literature. We also show that our approach improves performance on traditional cross-modal generation, suggesting that it improves data efficiency in solving individual tasks.

26.Human uncertainty makes classification more robust ⬇️

The classification performance of deep neural networks has begun to asymptote at near-perfect levels. However, their ability to generalize outside the training set and their robustness to adversarial attacks have not. In this paper, we make progress on this problem by training with full label distributions that reflect human perceptual uncertainty. We first present a new benchmark dataset which we call CIFAR10H, containing a full distribution of human labels for each image of the CIFAR10 test set. We then show that, while contemporary classifiers fail to exhibit human-like uncertainty on their own, explicit training on our dataset closes this gap, supports improved generalization to increasingly out-of-training-distribution test datasets, and confers robustness to adversarial attacks.

27.BoxNet: A Deep Learning Method for 2D Bounding Box Estimation from Bird's-Eye View Point Cloud ⬇️

We present a learning-based method to estimate the object bounding box from its 2D bird's-eye view (BEV) LiDAR points. Our method, entitled BoxNet, exploits a simple deep neural network that can efficiently handle unordered points. The method takes as input the 2D coordinates of all the points and the output is a vector consisting of both the box pose (position and orientation in LiDAR coordinate system) and its size (width and length). In order to deal with the angle discontinuity problem, we propose to estimate the double-angle sinusoidal values rather than the angle itself. We also predict the center relative to the point cloud mean to boost the performance of estimating the location of the box. The proposed method does not rely on the ordering of points as in many existing approaches, and can accurately predict the actual size of the bounding box based on the prior information that is obtained from the training data. BoxNet is validated using the KITTI 3D object dataset, with significant improvement compared with the state-of-the-art non-learning based methods

28.UprightNet: Geometry-Aware Camera Orientation Estimation from Single Images ⬇️

We introduce UprightNet, a learning-based approach for estimating 2DoF camera orientation from a single RGB image of an indoor scene. Unlike recent methods that leverage deep learning to perform black-box regression from image to orientation parameters, we propose an end-to-end framework that incorporates explicit geometric reasoning. In particular, we design a network that predicts two representations of scene geometry, in both the local camera and global reference coordinate systems, and solves for the camera orientation as the rotation that best aligns these two predictions via a differentiable least squares module. This network can be trained end-to-end, and can be supervised with both ground truth camera poses and intermediate representations of surface geometry. We evaluate UprightNet on the single-image camera orientation task on synthetic and real datasets, and show significant improvements over prior state-of-the-art approaches.

29.Boundless: Generative Adversarial Networks for Image Extension ⬇️

Image extension models have broad applications in image editing, computational photography and computer graphics. While image inpainting has been extensively studied in the literature, it is challenging to directly apply the state-of-the-art inpainting methods to image extension as they tend to generate blurry or repetitive pixels with inconsistent semantics. We introduce semantic conditioning to the discriminator of a generative adversarial network (GAN), and achieve strong results on image extension with coherent semantics and visually pleasing colors and textures. We also show promising results in extreme extensions, such as panorama generation.

30.Joint Embedding of 3D Scan and CAD Objects ⬇️

3D scan geometry and CAD models often contain complementary information towards understanding environments, which could be leveraged through establishing a mapping between the two domains. However, this is a challenging task due to strong, lower-level differences between scan and CAD geometry. We propose a novel approach to learn a joint embedding space between scan and CAD geometry, where semantically similar objects from both domains lie close together. To achieve this, we introduce a new 3D CNN-based approach to learn a joint embedding space representing object similarities across these domains. To learn a shared space where scan objects and CAD models can interlace, we propose a stacked hourglass approach to separate foreground and background from a scan object, and transform it to a complete, CAD-like representation to produce a shared embedding space. This embedding space can then be used for CAD model retrieval; to further enable this task, we introduce a new dataset of ranked scan-CAD similarity annotations, enabling new, fine-grained evaluation of CAD model retrieval to cluttered, noisy, partial scans. Our learned joint embedding outperforms current state of the art for CAD model retrieval by 12% in instance retrieval accuracy.

31.Resolving 3D Human Pose Ambiguities with 3D Scene Constraints ⬇️

To understand and analyze human behavior, we need to capture humans moving in, and interacting with, the world. Most existing methods perform 3D human pose estimation without explicitly considering the scene. We observe however that the world constrains the body and vice-versa. To motivate this, we show that current 3D human pose estimation methods produce results that are not consistent with the 3D scene. Our key contribution is to exploit static 3D scene structure to better estimate human pose from monocular images. The method enforces Proximal Relationships with Object eXclusion and is called PROX. To test this, we collect a new dataset composed of 12 different 3D scenes and RGB sequences of 20 subjects moving in and interacting with the scenes. We represent human pose using the 3D human body model SMPL-X and extend SMPLify-X to estimate body pose using scene constraints. We make use of the 3D scene information by formulating two main constraints. The inter-penetration constraint penalizes intersection between the body model and the surrounding 3D scene. The contact constraint encourages specific parts of the body to be in contact with scene surfaces if they are close enough in distance and orientation. For quantitative evaluation we capture a separate dataset with 180 RGB frames in which the ground-truth body pose is estimated using a motion capture system. We show quantitatively that introducing scene constraints significantly reduces 3D joint error and vertex error. Our code and data are available for research at this https URL.

32.LXMERT: Learning Cross-Modality Encoder Representations from Transformers ⬇️

Vision-and-language reasoning requires an understanding of visual concepts, language semantics, and, most importantly, the alignment and relationships between these two modalities. We thus propose the LXMERT (Learning Cross-Modality Encoder Representations from Transformers) framework to learn these vision-and-language connections. In LXMERT, we build a large-scale Transformer model that consists of three encoders: an object relationship encoder, a language encoder, and a cross-modality encoder. Next, to endow our model with the capability of connecting vision and language semantics, we pre-train the model with large amounts of image-and-sentence pairs, via five diverse representative pre-training tasks: masked language modeling, masked object prediction (feature regression and label classification), cross-modality matching, and image question answering. These tasks help in learning both intra-modality and cross-modality relationships. After fine-tuning from our pre-trained parameters, our model achieves the state-of-the-art results on two visual question answering datasets (i.e., VQA and GQA). We also show the generalizability of our pre-trained cross-modality model by adapting it to a challenging visual-reasoning task, NLVR2, and improve the previous best result by 22% absolute (54% to 76%). Lastly, we demonstrate detailed ablation studies to prove that both our novel model components and pre-training strategies significantly contribute to our strong results. Code and pre-trained models publicly available at: this https URL

33.Playing magic tricks to deep neural networks untangles human deception ⬇️

Magic is the art of producing in the spectator an illusion of impossibility. Although the scientific study of magic is in its infancy, the advent of recent tracking algorithms based on deep learning allow now to quantify the skills of the magician in naturalistic conditions at unprecedented resolution and robustness. In this study, we deconstructed stage magic into purely motor maneuvers and trained an artificial neural network (DeepLabCut) to follow coins as a professional magician made them appear and disappear in a series of tricks. Rather than using AI as a mere tracking tool, we conceived it as an "artificial spectator". When the coins were not visible, the algorithm was trained to infer their location as a human spectator would (i.e. in the left fist). This created situations where the human was fooled while AI (as seen by a human) was not, and vice versa. Magic from the perspective of the machine reveals our own cognitive biases.

34.Cross-modal Zero-shot Hashing ⬇️

Hashing has been widely studied for big data retrieval due to its low storage cost and fast query speed. Zero-shot hashing (ZSH) aims to learn a hashing model that is trained using only samples from seen categories, but can generalize well to samples of unseen categories. ZSH generally uses category attributes to seek a semantic embedding space to transfer knowledge from seen categories to unseen ones. As a result, it may perform poorly when labeled data are insufficient. ZSH methods are mainly designed for single-modality data, which prevents their application to the widely spread multi-modal data. On the other hand, existing cross-modal hashing solutions assume that all the modalities share the same category labels, while in practice the labels of different data modalities may be different. To address these issues, we propose a general Cross-modal Zero-shot Hashing (CZHash) solution to effectively leverage unlabeled and labeled multi-modality data with different label spaces. CZHash first quantifies the composite similarity between instances using label and feature information. It then defines an objective function to achieve deep feature learning compatible with the composite similarity preserving, category attribute space learning, and hashing coding function learning. CZHash further introduces an alternative optimization procedure to jointly optimize these learning objectives. Experiments on benchmark multi-modal datasets show that CZHash significantly outperforms related representative hashing approaches both on effectiveness and adaptability.

35.A Novel method for IDC Prediction in Breast Cancer Histopathology images using Deep Residual Neural Networks ⬇️

Invasive ductal carcinoma (IDC), which is also sometimes known as the infiltrating ductal carcinoma, is the most regular form of breast cancer. It accounts for about 80% of all breast cancers. According to the American Cancer Society, more than 180,000 women in the United States are diagnosed with invasive breast cancer each year. The survival rate associated with this form of cancer is about 77% to 93% depending on the stage at which they are being diagnosed. The invasiveness and the frequency of the occurrence of these disease makes it one of the difficult cancers to be diagnosed. Our proposed methodology involves diagnosing the invasive ductal carcinoma with a deep residual convolution network to classify the IDC affected histopathological images from the normal images. The dataset for the purpose used is a benchmark dataset known as the Breast Histopathology Images. The microscopic RGB images are converted into a seven channel image matrix, which is then fed to the network. The proposed model produces a 99.29% accurate approach towards the prediction of IDC in the histopathology images with an AUROC score of 0.9996. Classification ability of the model is tested using standard performance metrics.

36.Unsupervised Multi-modal Style Transfer for Cardiac MR Segmentation ⬇️

In this work, we present a fully automatic method to segment cardiac structures from late-gadolinium enhanced (LGE) images without using labelled LGE data for training, but instead by transferring the anatomical knowledge and features learned on annotated balanced steady-state free precession (bSSFP) images, which are easier to acquire. Our framework mainly consists of two neural networks: a multi-modal image translation network for style transfer and a cascaded segmentation network for image segmentation. The multi-modal image translation network generates realistic and diverse synthetic LGE images conditioned on a single annotated bSSFP image, forming a synthetic LGE training set. This set is then utilized to fine-tune the segmentation network pre-trained on labelled bSSFP images, achieving the goal of unsupervised LGE image segmentation. In particular, the proposed cascaded segmentation network is able to produce accurate segmentation by taking both shape prior and image appearance into account, achieving an average Dice score of 0.92 for the left ventricle, 0.83 for the myocardium, and 0.88 for the right ventricle on the test set.

37.n-MeRCI: A new Metric to Evaluate the Correlation Between Predictive Uncertainty and True Error ⬇️

As deep learning applications are becoming more and more pervasive in robotics, the question of evaluating the reliability of inferences becomes a central question in the robotics community. This domain, known as predictive uncertainty, has come under the scrutiny of research groups developing Bayesian approaches adapted to deep learning such as Monte Carlo Dropout. Unfortunately, for the time being, the real goal of predictive uncertainty has been swept under the rug. Indeed, these approaches are solely evaluated in terms of raw performance of the network prediction, while the quality of their estimated uncertainty is not assessed. Evaluating such uncertainty prediction quality is especially important in robotics, as actions shall depend on the confidence in perceived information. In this context, the main contribution of this article is to propose a novel metric that is adapted to the evaluation of relative uncertainty assessment and directly applicable to regression with deep neural networks. To experimentally validate this metric, we evaluate it on a toy dataset and then apply it to the task of monocular depth estimation.

38.Endotracheal Tube Detection and Segmentation in Chest Radiographs using Synthetic Data ⬇️

Chest radiographs are frequently used to verify the correct intubation of patients in the emergency room. Fast and accurate identification and localization of the endotracheal (ET) tube is critical for the patient. In this study we propose a novel automated deep learning scheme for accurate detection and segmentation of the ET tubes. Development of automatic systems using deep learning networks for classification and segmentation require large annotated data which is not always available. Here we present an approach for synthesizing ET tubes in real X-ray images. We suggest a method for training the network, first with synthetic data and then with real X-ray images in a fine-tuning phase, which allows the network to train on thousands of cases without annotating any data. The proposed method was tested on 477 real chest radiographs from a public dataset and reached AUC of 0.99 in classifying the presence vs. absence of the ET tube, along with outputting high quality ET tube segmentation maps.

39.StateLens: A Reverse Engineering Solution for Making Existing Dynamic Touchscreens Accessible ⬇️

Blind people frequently encounter inaccessible dynamic touchscreens in their everyday lives that are difficult, frustrating, and often impossible to use independently. Touchscreens are often the only way to control everything from coffee machines and payment terminals, to subway ticket machines and in-flight entertainment systems. Interacting with dynamic touchscreens is difficult non-visually because the visual user interfaces change, interactions often occur over multiple different screens, and it is easy to accidentally trigger interface actions while exploring the screen. To solve these problems, we introduce StateLens - a three-part reverse engineering solution that makes existing dynamic touchscreens accessible. First, StateLens reverse engineers the underlying state diagrams of existing interfaces using point-of-view videos found online or taken by users using a hybrid crowd-computer vision pipeline. Second, using the state diagrams, StateLens automatically generates conversational agents to guide blind users through specifying the tasks that the interface can perform, allowing the StateLens iOS application to provide interactive guidance and feedback so that blind users can access the interface. Finally, a set of 3D-printed accessories enable blind people to explore capacitive touchscreens without the risk of triggering accidental touches on the interface. Our technical evaluation shows that StateLens can accurately reconstruct interfaces from stationary, hand-held, and web videos; and, a user study of the complete system demonstrates that StateLens successfully enables blind users to access otherwise inaccessible dynamic touchscreens.

40.Protecting Neural Networks with Hierarchical Random Switching: Towards Better Robustness-Accuracy Trade-off for Stochastic Defenses ⬇️

Despite achieving remarkable success in various domains, recent studies have uncovered the vulnerability of deep neural networks to adversarial perturbations, creating concerns on model generalizability and new threats such as prediction-evasive misclassification or stealthy reprogramming. Among different defense proposals, stochastic network defenses such as random neuron activation pruning or random perturbation to layer inputs are shown to be promising for attack mitigation. However, one critical drawback of current defenses is that the robustness enhancement is at the cost of noticeable performance degradation on legitimate data, e.g., large drop in test accuracy. This paper is motivated by pursuing for a better trade-off between adversarial robustness and test accuracy for stochastic network defenses. We propose Defense Efficiency Score (DES), a comprehensive metric that measures the gain in unsuccessful attack attempts at the cost of drop in test accuracy of any defense. To achieve a better DES, we propose hierarchical random switching (HRS), which protects neural networks through a novel randomization scheme. A HRS-protected model contains several blocks of randomly switching channels to prevent adversaries from exploiting fixed model structures and parameters for their malicious purposes. Extensive experiments show that HRS is superior in defending against state-of-the-art white-box and adaptive adversarial misclassification attacks. We also demonstrate the effectiveness of HRS in defending adversarial reprogramming, which is the first defense against adversarial programs. Moreover, in most settings the average DES of HRS is at least 5X higher than current stochastic network defenses, validating its significantly improved robustness-accuracy trade-off.

41.Autonomous, Monocular, Vision-Based Snake Robot Navigation and Traversal of Cluttered Environments using Rectilinear Gait Motion ⬇️

Rectilinear forms of snake-like robotic locomotion are anticipated to be an advantage in obstacle-strewn scenarios characterizing urban disaster zones, subterranean collapses, and other natural environments. The elongated, laterally-narrow footprint associated with these motion strategies is well-suited to traversal of confined spaces and narrow pathways. Navigation and path planning in the absence of global sensing, however, remains a pivotal challenge to be addressed prior to practical deployment of these robotic mechanisms. Several challenges related to visual processing and localization need to be resolved to to enable navigation. As a first pass in this direction, we equip a wireless, monocular color camera to the head of a robotic snake. Visiual odometry and mapping from ORB-SLAM permits self-localization in planar, obstacle-strewn environments. Ground plane traversability segmentation in conjunction with perception-space collision detection permits path planning for navigation. A previously presented dynamical reduction of rectilinear snake locomotion to a non-holonomic kinematic vehicle informs both SLAM and planning. The simplified motion model is then applied to track planned trajectories through an obstacle configuration. This navigational framework enables a snake-like robotic platform to autonomously navigate and traverse unknown scenarios with only monocular vision.

42.Learning Fixed Points in Generative Adversarial Networks: From Image-to-Image Translation to Disease Detection and Localization ⬇️

Generative adversarial networks (GANs) have ushered in a revolution in image-to-image translation. The development and proliferation of GANs raises an interesting question: can we train a GAN to remove an object, if present, from an image while otherwise preserving the image? Specifically, can a GAN "virtually heal" anyone by turning his medical image, with an unknown health status (diseased or healthy), into a healthy one, so that diseased regions could be revealed by subtracting those two images? Such a task requires a GAN to identify a minimal subset of target pixels for domain translation, an ability that we call fixed-point translation, which no GAN is equipped with yet. Therefore, we propose a new GAN, called Fixed-Point GAN, trained by (1) supervising same-domain translation through a conditional identity loss, and (2) regularizing cross-domain translation through revised adversarial, domain classification, and cycle consistency loss. Based on fixed-point translation, we further derive a novel framework for disease detection and localization using only image-level annotation. Qualitative and quantitative evaluations demonstrate that the proposed method outperforms the state of the art in multi-domain image-to-image translation and that it surpasses predominant weakly-supervised localization methods in both disease detection and localization. Implementation is available at this https URL.