Skip to content
This repository has been archived by the owner on Apr 21, 2024. It is now read-only.

Latest commit

 

History

History
75 lines (75 loc) · 45.7 KB

20190415.md

File metadata and controls

75 lines (75 loc) · 45.7 KB

ArXiv cs.CV --Mon, 15 Apr 2019

1.Big but Imperceptible Adversarial Perturbations via Semantic Manipulation pdf

Machine learning, especially deep learning, is widely applied to a range of applications including computer vision, robotics and natural language processing. However, it has been shown that machine learning models are vulnerable to adversarial examples, carefully crafted samples that deceive learning models. In-depth studies on adversarial examples can help better understand potential vulnerabilities and therefore improve model robustness. Recent works have introduced various methods which generate adversarial examples. However, all require the perturbation to be of small magnitude ($\mathcal{L}_p$ norm) for them to be imperceptible to humans, which is hard to deploy in practice. In this paper we propose two novel methods, tAdv and cAdv, which leverage texture transfer and colorization to generate natural perturbation with a large $\mathcal{L}_p$ norm. We conduct extensive experiments to show that the proposed methods are general enough to attack both image classification and image captioning tasks on ImageNet and MSCOCO dataset. In addition, we conduct comprehensive user studies under various conditions to show that our generated adversarial examples are imperceptible to humans even when the perturbations are large. We also evaluate the transferability and robustness of the proposed attacks against several state-of-the-art defenses.

2.Prior-aware Neural Network for Partially-Supervised Multi-Organ Segmentation pdf

Accurate multi-organ abdominal CT segmentation is essential to many clinical applications such as computer-aided intervention. As data annotation requires massive human labor from experienced radiologists, it is common that training data are partially labeled, e.g., pancreas datasets only have the pancreas labeled while leaving the rest marked as background. However, these background labels can be misleading in multi-organ segmentation since the "background" usually contains some other organs of interest. To address the background ambiguity in these partially-labeled datasets, we propose Prior-aware Neural Network (PaNN) via explicitly incorporating anatomical priors on abdominal organ sizes, guiding the training process with domain-specific knowledge. More specifically, PaNN assumes that the average organ size distributions in the abdomen should approximate their empirical distributions, a prior statistics obtained from the fully-labeled dataset. As our training objective is difficult to be directly optimized using stochastic gradient descent [20], we propose to reformulate it in a min-max form and optimize it via the stochastic primal-dual gradient algorithm. PaNN achieves state-of-the-art performance on the MICCAI2015 challenge "Multi-Atlas Labeling Beyond the Cranial Vault", a competition on organ segmentation in the abdomen. We report an average Dice score of 84.97%, surpassing the prior art by a large margin of 3.27%.

3.Incremental multi-domain learning with network latent tensor factorization pdf

The prominence of deep learning, large amount of annotated data and increasingly powerful hardware made it possible to reach remarkable performance for supervised classification tasks, in many cases saturating the training sets. However, adapting the learned classification to new domains remains a hard problem due to at least three reasons: (1) the domains and the tasks might be drastically different; (2) there might be very limited amount of annotated data on the new domain and (3) full training of a new model for each new task is prohibitive in terms of memory, due to the shear number of parameter of deep networks. Instead, new tasks should be learned incrementally, building on prior knowledge from already learned tasks, and without catastrophic forgetting, i.e. without hurting performance on prior tasks. To our knowledge this paper presents the first method for multi-domain/task learning without catastrophic forgetting using a fully tensorized architecture. Our main contribution is a method for multi-domain learning which models groups of identically structured blocks within a CNN as a high-order tensor. We show that this joint modelling naturally leverages correlations across different layers and results in more compact representations for each new task/domain over previous methods which have focused on adapting each layer separately. We apply the proposed method to 10 datasets of the Visual Decathlon Challenge and show that our method offers on average about 7.5x reduction in number of parameters and superior performance in terms of both classification accuracy and Decathlon score. In particular, our method outperforms all prior work on the Visual Decathlon Challenge.

4.GeoCapsNet: Aerial to Ground view Image Geo-localization using Capsule Network pdf

The task of cross-view image geo-localization aims to determine the geo-location (GPS coordinates) of a query ground-view image by matching it with the GPS-tagged aerial (satellite) images in a reference dataset. Due to the dramatic changes of viewpoint, matching the cross-view images is challenging. In this paper, we propose the GeoCapsNet based on the capsule network for ground-to-aerial image geo-localization. The network first extracts features from both ground-view and aerial images via standard convolution layers and the capsule layers further encode the features to model the spatial feature hierarchies and enhance the representation power. Moreover, we introduce a simple and effective weighted soft-margin triplet loss with online batch hard sample mining, which can greatly improve image retrieval accuracy. Experimental results show that our GeoCapsNet significantly outperforms the state-of-the-art approaches on two benchmark datasets.

5.ACE: Adapting to Changing Environments for Semantic Segmentation pdf

Deep neural networks exhibit exceptional accuracy when they are trained and tested on the same data distributions. However, neural classifiers are often extremely brittle when confronted with domain shift---changes in the input distribution that occur over time. We present ACE, a framework for semantic segmentation that dynamically adapts to changing environments over the time. By aligning the distribution of labeled training data from the original source domain with the distribution of incoming data in a shifted domain, ACE synthesizes labeled training data for environments as it sees them. This stylized data is then used to update a segmentation model so that it performs well in new environments. To avoid forgetting knowledge from past environments, we introduce a memory that stores feature statistics from previously seen domains. These statistics can be used to replay images in any of the previously observed domains, thus preventing catastrophic forgetting. In addition to standard batch training using stochastic gradient decent (SGD), we also experiment with fast adaptation methods based on adaptive meta-learning. Extensive experiments are conducted on two datasets from SYNTHIA, the results demonstrate the effectiveness of the proposed approach when adapting to a number of tasks.

6.MAANet: Multi-view Aware Attention Networks for Image Super-Resolution pdf

In most recent years, deep convolutional neural networks (DCNNs) based image super-resolution (SR) has gained increasing attention in multimedia and computer vision communities, focusing on restoring the high-resolution (HR) image from a low-resolution (LR) image. However, one nonnegligible flaw of DCNNs based methods is that most of them are not able to restore high-resolution images containing sufficient high-frequency information from low-resolution images with low-frequency information redundancy. Worse still, as the depth of DCNNs increases, the training easily encounters the problem of vanishing gradients, which makes the training more difficult. These problems hinder the effectiveness of DCNNs in image SR task. To solve these problems, we propose the Multi-view Aware Attention Networks (MAANet) for image SR task. Specifically, we propose the local aware (LA) and global aware (GA) attention to deal with LR features in unequal manners, which can highlight the high-frequency components and discriminate each feature from LR images in the local and the global views, respectively. Furthermore, we propose the local attentive residual-dense (LARD) block, which combines the LA attention with multiple residual and dense connections, to fit a deeper yet easy to train architecture. The experimental results show that our proposed approach can achieve remarkable performance compared with other state-of-the-art methods.

7.Generative Hybrid Representations for Activity Forecasting with No-Regret Learning pdf

Automatically reasoning about future human behaviors is a difficult problem with significant practical applications to assistive systems. Part of this difficulty stems from learning systems' inability to represent all kinds of behaviors. Some behaviors, such as motion, are best described with continuous representations, whereas others, such as picking up a cup, are best described with discrete representations. Furthermore, human behavior is generally not fixed: people can change their habits and routines. This suggests these systems must be able to learn and adapt continuously. In this work, we develop an efficient deep generative model to jointly forecast a person's future discrete actions and continuous motions. On a large-scale egocentric dataset, EPIC-KITCHENS, we observe our method generates high-quality and diverse samples while exhibiting better generalization than related generative models. Finally, we propose a variant to continually learn our model from streaming data, observe its practical effectiveness, and theoretically justify its learning efficiency.

8.Multimodal Machine Learning-based Knee Osteoarthritis Progression Prediction from Plain Radiographs and Clinical Data pdf

Knee osteoarthritis (OA) is the most common musculoskeletal disease without a cure, and current treatment options are limited to symptomatic relief. Prediction of OA progression is a very challenging and timely issue, and it could, if resolved, accelerate the disease modifying drug development and ultimately help to prevent millions of total joint replacement surgeries performed annually. Here, we present a multi-modal machine learning-based OA progression prediction model that utilizes raw radiographic data, clinical examination results and previous medical history of the patient. We validated this approach on an independent test set of 3,918 knee images from 2,129 subjects. Our method yielded area under the ROC curve (AUC) of 0.79 (0.78-0.81) and Average Precision (AP) of 0.68 (0.66-0.70). In contrast, a reference approach, based on logistic regression, yielded AUC of 0.75 (0.74-0.77) and AP of 0.62 (0.60-0.64). The proposed method could significantly improve the subject selection process for OA drug-development trials and help the development of personalized therapeutic plans.

9.Generalized Presentation Attack Detection: a face anti-spoofing evaluation proposal pdf

Over the past few years, Presentation Attack Detection (PAD) has become a fundamental part of facial recognition systems. Although much effort has been devoted to anti-spoofing research, generalization in real scenarios remains a challenge. In this paper we present a new open-source evaluation framework to study the generalization capacity of face PAD methods, coined here as face-GPAD. This framework facilitates the creation of new protocols focused on the generalization problem establishing fair procedures of evaluation and comparison between PAD solutions. We also introduce a large aggregated and categorized dataset to address the problem of incompatibility between publicly available datasets. Finally, we propose a benchmark adding two novel evaluation protocols: one for measuring the effect introduced by the variations in face resolution, and the second for evaluating the influence of adversarial operating conditions.

10.Topological signature for periodic motion recognition pdf

In this paper, we present an algorithm that computes the topological signature for a given periodic motion sequence. Such signature consists of a vector obtained by persistent homology which captures the topological and geometric changes of the object that models the motion. Two topological signatures are compared simply by the angle between the corresponding vectors. With respect to gait recognition, we have tested our method using only the lowest fourth part of the body's silhouette. In this way, the impact of variations in the upper part of the body, which are very frequent in real scenarios, decreases considerably. We have also tested our method using other periodic motions such as running or jumping. Finally, we formally prove that our method is robust to small perturbations in the input data and does not depend on the number of periods contained in the periodic motion sequence.

11.An Empirical Evaluation Study on the Training of SDC Features for Dense Pixel Matching pdf

Training a deep neural network is a non-trivial task. Not only the tuning of hyperparameters, but also the gathering and selection of training data, the design of the loss function, and the construction of training schedules is important to get the most out of a model. In this study, we perform a set of experiments all related to these issues. The model for which different training strategies are investigated is the recently presented SDC descriptor network (stacked dilated convolution). It is used to describe images on pixel-level for dense matching tasks. Our work analyzes SDC in more detail, validates some best practices for training deep neural networks, and provides insights into training with multiple domain data.

12.PWOC-3D: Deep Occlusion-Aware End-to-End Scene Flow Estimation pdf

In the last few years, convolutional neural networks (CNNs) have demonstrated increasing success at learning many computer vision tasks including dense estimation problems such as optical flow and stereo matching. However, the joint prediction of these tasks, called scene flow, has traditionally been tackled using slow classical methods based on primitive assumptions which fail to generalize. The work presented in this paper overcomes these drawbacks efficiently (in terms of speed and accuracy) by proposing PWOC-3D, a compact CNN architecture to predict scene flow from stereo image sequences in an end-to-end supervised setting. Further, large motion and occlusions are well-known problems in scene flow estimation. PWOC-3D employs specialized design decisions to explicitly model these challenges. In this regard, we propose a novel self-supervised strategy to predict occlusions from images (learned without any labeled occlusion data). Leveraging several such constructs, our network achieves competitive results on the KITTI benchmark and the challenging FlyingThings3D dataset. Especially on KITTI, PWOC-3D achieves the second place among end-to-end deep learning methods with 48 times fewer parameters than the top-performing method.

13.Face De-occlusion using 3D Morphable Model and Generative Adversarial Network pdf

In recent decades, 3D morphable model (3DMM) has been commonly used in image-based photorealistic 3D face reconstruction. However, face images are often corrupted by serious occlusion by non-face objects including eyeglasses, masks, and hands. Such objects block the correct capture of landmarks and shading information. Therefore, the reconstructed 3D face model is hardly reusable. In this paper, a novel method is proposed to restore de-occluded face images based on inverse use of 3DMM and generative adversarial network. We utilize the 3DMM prior to the proposed adversarial network and combine a global and local adversarial convolutional neural network to learn face de-occlusion model. The 3DMM serves not only as geometric prior but also proposes the face region for the local discriminator. Experiment results confirm the effectiveness and robustness of the proposed algorithm in removing challenging types of occlusions with various head poses and illumination. Furthermore, the proposed method reconstructs the correct 3D face model with de-occluded textures.

14.Evaluating Robustness of Deep Image Super-Resolution against Adversarial Attacks pdf

Single-image super-resolution aims to generate a high-resolution version of a low-resolution image, which serves as an essential component in many computer vision applications. This paper investigates the robustness of deep learning-based super-resolution methods against adversarial attacks, which can significantly deteriorate the super-resolved images without noticeable distortion in the attacked low-resolution images. It is demonstrated that state-of-the-art deep super-resolution methods are highly vulnerable to adversarial attacks. Different levels of robustness of different methods are analyzed theoretically and experimentally. We also present analysis on transferability of attacks, and feasibility of targeted attacks and universal attacks.

15.Digging Deeper into Egocentric Gaze Prediction pdf

This paper digs deeper into factors that influence egocentric gaze. Instead of training deep models for this purpose in a blind manner, we propose to inspect factors that contribute to gaze guidance during daily tasks. Bottom-up saliency and optical flow are assessed versus strong spatial prior baselines. Task-specific cues such as vanishing point, manipulation point, and hand regions are analyzed as representatives of top-down information. We also look into the contribution of these factors by investigating a simple recurrent neural model for ego-centric gaze prediction. First, deep features are extracted for all input video frames. Then, a gated recurrent unit is employed to integrate information over time and to predict the next fixation. We also propose an integrated model that combines the recurrent model with several top-down and bottom-up cues. Extensive experiments over multiple datasets reveal that (1) spatial biases are strong in egocentric videos, (2) bottom-up saliency models perform poorly in predicting gaze and underperform spatial biases, (3) deep features perform better compared to traditional features, (4) as opposed to hand regions, the manipulation point is a strong influential cue for gaze prediction, (5) combining the proposed recurrent model with bottom-up cues, vanishing points and, in particular, manipulation point results in the best gaze prediction accuracy over egocentric videos, (6) the knowledge transfer works best for cases where the tasks or sequences are similar, and (7) task and activity recognition can benefit from gaze prediction. Our findings suggest that (1) there should be more emphasis on hand-object interaction and (2) the egocentric vision community should consider larger datasets including diverse stimuli and more subjects.

16.Multi-View Region Adaptive Multi-temporal DMM and RGB Action Recognition pdf

Human action recognition remains an important yet challenging task. This work proposes a novel action recognition system. It uses a novel Multiple View Region Adaptive Multi-resolution in time Depth Motion Map (MV-RAMDMM) formulation combined with appearance information. Multiple stream 3D Convolutional Neural Networks (CNNs) are trained on the different views and time resolutions of the region adaptive Depth Motion Maps. Multiple views are synthesised to enhance the view invariance. The region adaptive weights, based on localised motion, accentuate and differentiate parts of actions possessing faster motion. Dedicated 3D CNN streams for multi-time resolution appearance information (RGB) are also included. These help to identify and differentiate between small object interactions. A pre-trained 3D-CNN is used here with fine-tuning for each stream along with multiple class Support Vector Machines (SVM)s. Average score fusion is used on the output. The developed approach is capable of recognising both human action and human-object interaction. Three public domain datasets including: MSR 3D Action,Northwestern UCLA multi-view actions and MSR 3D daily activity are used to evaluate the proposed solution. The experimental results demonstrate the robustness of this approach compared with state-of-the-art algorithms.

17.Unifying Heterogeneous Classifiers with Distillation pdf

In this paper, we study the problem of unifying knowledge from a set of classifiers with different architectures and target classes into a single classifier, given only a generic set of unlabelled data. We call this problem Unifying Heterogeneous Classifiers (UHC). This problem is motivated by scenarios where data is collected from multiple sources, but the sources cannot share their data, e.g., due to privacy concerns, and only privately trained models can be shared. In addition, each source may not be able to gather data to train all classes due to data availability at each source, and may not be able to train the same classification model due to different computational resources. To tackle this problem, we propose a generalisation of knowledge distillation to merge HCs. We derive a probabilistic relation between the outputs of HCs and the probability over all classes. Based on this relation, we propose two classes of methods based on cross-entropy minimisation and matrix factorisation, which allow us to estimate soft labels over all classes from unlabelled samples and use them in lieu of ground truth labels to train a unified classifier. Our extensive experiments on ImageNet, LSUN, and Places365 datasets show that our approaches significantly outperform a naive extension of distillation and can achieve almost the same accuracy as classifiers that are trained in a centralised, supervised manner.

18.Unsupervised Method to Localize Masses in Mammograms pdf

Breast cancer is one of the most common and prevalent type of cancer that mainly affects the women population. chances of effective treatment increases with early diagnosis. Mammography is considered one of the effective and proven techniques for early diagnosis of breast cancer. Tissues around masses look identical in mammogram, which makes automatic detection process a very challenging task. They are indistinguishable from the surrounding parenchyma. In this paper, we present an efficient and automated approach to segment masses in mammograms. The proposed method uses hierarchical clustering to isolate the salient area, and then features are extracted to reject false detection. We applied our method on two popular publicly available datasets (mini-MIAS and DDSM). A total of 56 images from mini-mias database, and 76 images from DDSM were randomly selected. Results are explained in-terms of ROC (Receiver Operating Characteristics) curves and compared with the other techniques. Experimental results demonstrate the efficiency and advantages of the proposed system in automatic mass identification in mammograms.

19.Adaptive Weighting Multi-Field-of-View CNN for Semantic Segmentation in Pathology pdf

Automated digital histopathology image segmentation is an important task to help pathologists diagnose tumors and cancer subtypes. For pathological diagnosis of cancer subtypes, pathologists usually change the magnification of whole-slide images (WSI) viewers. A key assumption is that the importance of the magnifications depends on the characteristics of the input image, such as cancer subtypes. In this paper, we propose a novel semantic segmentation method, called Adaptive-Weighting-Multi-Field-of-View-CNN (AWMF-CNN), that can adaptively use image features from images with different magnifications to segment multiple cancer subtype regions in the input image. The proposed method aggregates several expert CNNs for images of different magnifications by adaptively changing the weight of each expert depending on the input image. It leverages information in the images with different magnifications that might be useful for identifying the subtypes. It outperformed other state-of-the-art methods in experiments.

20.EvalNorm: Estimating Batch Normalization Statistics for Evaluation pdf

Batch normalization (BN) has been very effective for deep learning and is widely used. However, when training with small minibatches, models using BN exhibit a significant degradation in performance. In this paper we study this peculiar behavior of BN to gain a better understanding of the problem, and identify a potential cause based on a statistical insight. We propose `EvalNorm' to address the issue by estimating corrected normalization statistics to use for BN during evaluation. EvalNorm supports online estimation of the corrected statistics while the model is being trained, and it does not affect the training scheme of the model. As a result, an added advantage of EvalNorm is that it can be used with existing pre-trained models allowing them to benefit from our method. EvalNorm yields large gains for models trained with smaller batches. Our experiments show that EvalNorm performs 6.18% (absolute) better than vanilla BN for a batchsize of 2 on ImageNet validation set and from 1.5 to 7.0 points (absolute) gain on the COCO object detection benchmark across a variety of setups.

21.Cycle-Consistent Adversarial GAN: the integration of adversarial attack and defense pdf

In image classification of deep learning, adversarial examples where inputs intended to add small magnitude perturbations may mislead deep neural networks (DNNs) to incorrect results, which means DNNs are vulnerable to them. Different attack and defense strategies have been proposed to better research the mechanism of deep learning. However, those research in these networks are only for one aspect, either an attack or a defense, not considering that attacks and defenses should be interdependent and mutually reinforcing, just like the relationship between spears and shields. In this paper, we propose Cycle-Consistent Adversarial GAN (CycleAdvGAN) to generate adversarial examples, which can learn and approximate the distribution of original instances and adversarial examples. For CycleAdvGAN, once the Generator and are trained, can generate adversarial perturbations efficiently for any instance, so as to make DNNs predict wrong, and recovery adversarial examples to clean instances, so as to make DNNs predict correct. We apply CycleAdvGAN under semi-white box and black-box settings on two public datasets MNIST and CIFAR10. Using the extensive experiments, we show that our method has achieved the state-of-the-art adversarial attack method and also efficiently improve the defense ability, which make the integration of adversarial attack and defense come true. In additional, it has improved attack effect only trained on the adversarial dataset generated by any kind of adversarial attack.

22.A Light Dual-Task Neural Network for Haze Removal pdf

Single-image dehazing is a challenging problem due to its ill-posed nature. Existing methods rely on a suboptimal two-step approach, where an intermediate product like a depth map is estimated, based on which the haze-free image is subsequently generated using an artificial prior formula. In this paper, we propose a light dual-task Neural Network called LDTNet that restores the haze-free image in one shot. We use transmission map estimation as an auxiliary task to assist the main task, haze removal, in feature extraction and to enhance the generalization of the network. In LDTNet, the haze-free image and the transmission map are produced simultaneously. As a result, the artificial prior is reduced to the smallest extent. Extensive experiments demonstrate that our algorithm achieves superior performance against the state-of-the-art methods on both synthetic and real-world images.

23.Real-Time Dense Stereo Embedded in A UAV for Road Inspection pdf

The condition assessment of road surfaces is essential to ensure their serviceability while still providing maximum road traffic safety. This paper presents a robust stereo vision system embedded in an unmanned aerial vehicle (UAV). The perspective view of the target image is first transformed into the reference view, and this not only improves the disparity accuracy, but also reduces the algorithm's computational complexity. The cost volumes generated from stereo matching are then filtered using a bilateral filter. The latter has been proved to be a feasible solution for the functional minimisation problem in a fully connected Markov random field model. Finally, the disparity maps are transformed by minimising an energy function with respect to the roll angle and disparity projection model. This makes the damaged road areas more distinguishable from the road surface. The proposed system is implemented on an NVIDIA Jetson TX2 GPU with CUDA for real-time purposes. It is demonstrated through experiments that the damaged road areas can be easily distinguished from the transformed disparity maps.

24.A New Loss Function for CNN Classifier Based on Pre-defined Evenly-Distributed Class Centroids pdf

With the development of convolutional neural networks (CNNs) in recent years, the network structure has become more and more complex and varied, and has achieved very good results in pattern recognition, image classification, object detection and tracking. For CNNs used for image classification, in addition to the network structure, more and more research is now focusing on the improvement of the loss function, so as to enlarge the inter-class feature differences, and reduce the intra-class feature variations as soon as possible. Besides the traditional Softmax, typical loss functions include L-Softmax, AM-Softmax, ArcFace, and Center loss, etc. Based on the concept of predefined evenly-distributed class centroids (PEDCC) in CSAE network, this paper proposes a PEDCC-based loss function called PEDCC-Loss, which can make the inter-class distance maximal and intra-class distance small enough in hidden feature space. Multiple experiments on image classification and face recognition have proved that our method achieve the best recognition accuracy, and network training is stable and easy to converge.

25.An Introduction to Person Re-identification with Generative Adversarial Networks pdf

Person re-identification is a basic subject in the field of computer vision. The traditional methods have several limitations in solving the problems of person illumination like occlusion, pose variation and feature variation under complex background. Fortunately, deep learning paradigm opens new ways of the person re-identification research and becomes a hot spot in this field. Generative Adversarial Nets (GANs) in the past few years attracted lots of attention in solving these problems. This paper reviews the GAN based methods for person re-identification focuses on the related papers about different GAN based frameworks and discusses their advantages and disadvantages. Finally, it proposes the direction of future research, especially the prospect of person re-identification methods based on GANs.

26.The iWildCam 2018 Challenge Dataset pdf

Camera traps are a valuable tool for studying biodiversity, but research using this data is limited by the speed of human annotation. With the vast amounts of data now available it is imperative that we develop automatic solutions for annotating camera trap data in order to allow this research to scale. A promising approach is based on deep networks trained on human-annotated images. We provide a challenge dataset to explore whether such solutions generalize to novel locations, since systems that are trained once and may be deployed to operate automatically in new locations would be most useful.

27.Cramnet: Layer-wise Deep Neural Network Compression with Knowledge Transfer from a Teacher Network pdf

Neural Networks accomplish amazing things, but they suffer from computational and memory bottlenecks that restrict their usage. Nowhere can this be better seen than in the mobile space, where specialized hardware is being created just to satisfy the demand for neural networks. Previous studies have shown that neural networks have vastly more connections than they actually need to do their work. This thesis develops a method that can compress networks to less than 10% of memory and less than 25% of computational power, without loss of accuracy, and without creating sparse networks that require special code to run.

28.The Sound of Motions pdf

Sounds originate from object motions and vibrations of surrounding air. Inspired by the fact that humans is capable of interpreting sound sources from how objects move visually, we propose a novel system that explicitly captures such motion cues for the task of sound localization and separation. Our system is composed of an end-to-end learnable model called Deep Dense Trajectory (DDT), and a curriculum learning scheme. It exploits the inherent coherence of audio-visual signals from a large quantities of unlabeled videos. Quantitative and qualitative evaluations show that comparing to previous models that rely on visual appearance cues, our motion based system improves performance in separating musical instrument sounds. Furthermore, it separates sound components from duets of the same category of instruments, a challenging problem that has not been addressed before.

29.TAFE-Net: Task-Aware Feature Embeddings for Low Shot Learning pdf

Learning good feature embeddings for images often requires substantial training data. As a consequence, in settings where training data is limited (e.g., few-shot and zero-shot learning), we are typically forced to use a generic feature embedding across various tasks. Ideally, we want to construct feature embeddings that are tuned for the given task. In this work, we propose Task-Aware Feature Embedding Networks (TAFE-Nets) to learn how to adapt the image representation to a new task in a meta learning fashion. Our network is composed of a meta learner and a prediction network. Based on a task input, the meta learner generates parameters for the feature layers in the prediction network so that the feature embedding can be accurately adjusted for that task. We show that TAFE-Net is highly effective in generalizing to new tasks or concepts and evaluate the TAFE-Net on a range of benchmarks in zero-shot and few-shot learning. Our model matches or exceeds the state-of-the-art on all tasks. In particular, our approach improves the prediction accuracy of unseen attribute-object pairs by 4 to 15 points on the challenging visual attribute-object composition task.

30.Automatic Pulmonary Nodule Detection in CT Scans Using Convolutional Neural Networks Based on Maximum Intensity Projection pdf

Accurate pulmonary nodule detection in computed tomography scans is a crucial step in lung cancer screening. Computer-aided detection (CAD) systems are not routinely used by radiologists for pulmonary nodules detection in clinical practice despite their potential benefits. Maximum intensity projection (MIP) images improve the detection of pulmonary nodules in radiological evaluation with computed tomography (CT) scans. In this work, we aim to explore the feasibility of utilizing MIP images to improve the effectiveness of automatic detection of lung nodules by convolutional neural networks (CNNs). We propose a CNN based approach that takes MIP images of different slab thicknesses (5 mm, 10 mm, 15 mm) and 1mm plain multiplanar reconstruction (MPR) images as input. Such an approach augments the 2-D CT slice images with more representative spatial information that helps in the discriminating nodules from vessels through their morphologies. We use the public available LUNA16 set collected from seven academic centers to train and test our approach. Our proposed method achieves a sensitivity of 91.13% with 1 false positive per scan and a sensitivity of 94.13% with 4 false positives per scan for lung nodule detection in this dataset. Using the thick MIP images helps the detection of small pulmonary nodules (3mm-10mm) and acquires fewer false positives. Experimental results show that applying MIP images can increase the sensitivity and lower the number of false positive, which demonstrates the effectiveness and significance of the proposed maximum intensity projection based CNN framework for automatic pulmonary nodule detection in CT scans. Index Terms: Computer-aided detection (CAD), convolutional neural networks (CNNs), computed tomography scans, maximum intensity projection (MIP), pulmonary nodule detection

31.Absolute Human Pose Estimation with Depth Prediction Network pdf

The common approach to 3D human pose estimation is predicting the body joint coordinates relative to the hip. This works well for a single person but is insufficient in the case of multiple interacting people. Methods predicting absolute coordinates first estimate a root-relative pose then calculate the translation via a secondary optimization task. We propose a neural network that predicts joints in a camera centered coordinate system instead of a root-relative one. Unlike previous methods, our network works in a single step without any post-processing. Our network beats previous methods on the MuPoTS-3D dataset and achieves state-of-the-art results.

32.Learning Digital Camera Pipeline for Extreme Low-Light Imaging pdf

In low-light conditions, a conventional camera imaging pipeline produces sub-optimal images that are usually dark and noisy due to a low photon count and low signal-to-noise ratio (SNR). We present a data-driven approach that learns the desired properties of well-exposed images and reflects them in images that are captured in extremely low ambient light environments, thereby significantly improving the visual quality of these low-light images. We propose a new loss function that exploits the characteristics of both pixel-wise and perceptual metrics, enabling our deep neural network to learn the camera processing pipeline to transform the short-exposure, low-light RAW sensor data to well-exposed sRGB images. The results show that our method outperforms the state-of-the-art according to psychophysical tests as well as pixel-wise standard metrics and recent learning-based perceptual image quality measures.

33.Synthetic Examples Improve Generalization for Rare Classes pdf

The ability to detect and classify rare occurrences in images has important applications - for example, counting rare and endangered species when studying biodiversity, or detecting infrequent traffic scenarios that pose a danger to self-driving cars. Few-shot learning is an open problem: current computer vision systems struggle to categorize objects they have seen only rarely during training, and collecting a sufficient number of training examples of rare events is often challenging and expensive, and sometimes outright impossible. We explore in depth an approach to this problem: complementing the few available training images with ad-hoc simulated data.
Our testbed is animal species classification, which has a real-world long-tailed distribution. We analyze the effect of different axes of variation in simulation, such as pose, lighting, model, and simulation method, and we prescribe best practices for efficiently incorporating simulated data for real-world performance gain. Our experiments reveal that synthetic data can considerably reduce error rates for classes that are rare, that as the amount of simulated data is increased, accuracy on the target class improves, and that high variation of simulated data provides maximum performance gain.

34.Boundary-Preserved Deep Denoising of the Stochastic Resonance Enhanced Multiphoton Images pdf

As the rapid growth of high-speed and deep-tissue imaging in biomedical research, it is urgent to find a robust and effective denoising method to retain morphological features for further texture analysis and segmentation. Conventional denoising filters and models can easily suppress perturbative noises in high contrast images. However, for low photon budget multi-photon images, high detector gain will not only boost signals, but also bring huge background noises. In such stochastic resonance regime of imaging, sub-threshold signals may be detectable with the help of noises. Therefore, a denoising filter that can smartly remove noises without sacrificing the important cellular features such as cell boundaries is highly desired. In this paper, we propose a convolutional neural network based autoencoder method, Fully Convolutional Deep Denoising Autoencoder (DDAE), to improve the quality of Three-Photon Fluorescence (3PF) and Third Harmonic Generation (THG) microscopy images. The average of the acquired 200 images of a given location served as the low-noise answer for DDAE training. Compared with other widely used denoising methods, our DDAE model shows better signal-to-noise ratio (26.6 and 29.9 for 3PF and THG, respectively), structure similarity (0.86 and 0.87 for 3PF and THG, respectively), and preservation of nuclear or cellular boundaries.

35.Compressing deep neural networks by matrix product operators pdf

A deep neural network is a parameterization of a multi-layer mapping of signals in terms of many alternatively arranged linear and nonlinear transformations. The linear transformations, which are generally used in the fully-connected as well as convolutional layers, contain most of the variational parameters that are trained and stored. Compressing a deep neural network to reduce its number of variational parameters but not its prediction power is an important but challenging problem towards the establishment of an optimized scheme in training efficiently these parameters and in lowering the risk of overfitting. Here we show that this problem can be effectively solved by representing linear transformations with matrix product operators (MPO). We have tested this approach in five main neural networks, including FC2, LeNet-5, VGG, ResNet, and DenseNet on two widely used datasets, namely MNIST and CIFAR-10, and found that this MPO representation indeed sets up a faithful and efficient mapping between input and output signals, which can keep or even improve the prediction accuracy with dramatically reduced number of parameters.

36.Towards Photographic Image Manipulation with Balanced Growing of Generative Autoencoders pdf

We build on recent advances in progressively growing generative autoencoder models. These models can encode and reconstruct existing images, and generate novel ones, at resolutions comparable to Generative Adversarial Networks (GANs), while consisting only of a single encoder and decoder network. The ability to reconstruct and arbitrarily modify existing samples such as images separates autoencoder models from GANs, but the output quality of image autoencoders has remained inferior. The recently proposed PIONEER autoencoder can reconstruct faces in the $256{\times}256$ CelebAHQ dataset, but like IntroVAE, another recent method, it often loses the identity of the person in the process. We propose an improved and simplified version of PIONEER and show significantly improved quality and preservation of the face identity in CelebAHQ, both visually and quantitatively. We also show evidence of state-of-the-art disentanglement of the latent space of the model, both quantitatively and via realistic image feature manipulations. On the LSUN Bedrooms dataset, our model also improves the results of the original PIONEER. Overall, our results indicate that the PIONEER networks provide a way to photorealistic face manipulation.

37.Evaluating the Representational Hub of Language and Vision Models pdf

The multimodal models used in the emerging field at the intersection of computational linguistics and computer vision implement the bottom-up processing of the `Hub and Spoke' architecture proposed in cognitive science to represent how the brain processes and combines multi-sensory inputs. In particular, the Hub is implemented as a neural network encoder. We investigate the effect on this encoder of various vision-and-language tasks proposed in the literature: visual question answering, visual reference resolution, and visually grounded dialogue. To measure the quality of the representations learned by the encoder, we use two kinds of analyses. First, we evaluate the encoder pre-trained on the different vision-and-language tasks on an existing diagnostic task designed to assess multimodal semantic understanding. Second, we carry out a battery of analyses aimed at studying how the encoder merges and exploits the two modalities.