Skip to content
This repository has been archived by the owner on Apr 21, 2024. It is now read-only.

Latest commit

 

History

History
65 lines (65 loc) · 42 KB

20190328.md

File metadata and controls

65 lines (65 loc) · 42 KB

ArXiv cs.CV --Thu, 28 Mar 2019

1.GAN-based Pose-aware Regulation for Video-based Person Re-identification pdf

Video-based person re-identification deals with the inherent difficulty of matching unregulated sequences with different length and with incomplete target pose/viewpoint structure. Common approaches operate either by reducing the problem to the still images case, facing a significant information loss, or by exploiting inter-sequence temporal dependencies as in Siamese Recurrent Neural Networks or in gait analysis. However, in all cases, the inter-sequences pose/viewpoint misalignment is not considered, and the existing spatial approaches are mostly limited to the still images context. To this end, we propose a novel approach that can exploit more effectively the rich video information, by accounting for the role that the changing pose/viewpoint factor plays in the sequences matching process. Specifically, our approach consists of two components. The first one attempts to complement the original pose-incomplete information carried by the sequences with synthetic GAN-generated images, and fuse their feature vectors into a more discriminative viewpoint-insensitive embedding, namely Weighted Fusion (WF). Another one performs an explicit pose-based alignment of sequence pairs to promote coherent feature matching, namely Weighted-Pose Regulation (WPR). Extensive experiments on two large video-based benchmark datasets show that our approach outperforms considerably existing methods.

2.Privacy Protection in Street-View Panoramas using Depth and Multi-View Imagery pdf

The current paradigm in privacy protection in street-view images is to detect and blur sensitive information. In this paper, we propose a framework that is an alternative to blurring, which automatically removes and inpaints moving objects (e.g. pedestrians, vehicles) in street-view imagery. We propose a novel moving object segmentation algorithm exploiting consistencies in depth across multiple street-view images that are later combined with the results of a segmentation network. The detected moving objects are removed and inpainted with information from other views, to obtain a realistic output image such that the moving object is not visible anymore. We evaluate our results on a dataset of 1000 images to obtain a peak noise-to-signal ratio (PSNR) and L1 loss of 27.2 dB and 2.5%, respectively. To ensure the subjective quality, To assess overall quality, we also report the results of a survey conducted on 35 professionals, asked to visually inspect the images whether object removal and inpainting had taken place. The inpainting dataset will be made publicly available for scientific benchmarking purposes at this https URL

3.Accurate Monocular 3D Object Detection via Color-Embedded 3D Reconstruction for Autonomous Driving pdf

In this paper, we propose a monocular 3D object detection framework in the domain of autonomous driving. Unlike previous image-based methods which focus on RGB feature extracted from 2D images, our method solves this problem in the reconstructed 3D space in order to exploit 3D contexts explicitly. To this end, we first leverage a stand-alone module to transform the input data from 2D image plane to 3D point clouds space for a better input representation, then we perform the 3D detection using PointNet backbone net to obtain objects 3D locations, dimensions and orientations. To enhance the discriminative capability of point clouds, we propose a multi-modal feature fusion module to embed the complementary RGB cue into the generated point clouds representation. We argue that it is more effective to infer the 3D bounding boxes from the generated 3D scene space (i.e., X,Y, Z space) compared to the image plane (i.e., R,G,B image plane). Evaluation on the challenging KITTI dataset shows that our approach boosts the performance of state-of-the-art monocular approach by a large margin, i.e., around 15% absolute AP on both 3D localization and detection tasks for Car category at 0.7 IoU threshold.

4.Social Behavioral Phenotyping of Drosophila with a2D-3D Hybrid CNN Framework pdf

Behavioural phenotyping of Drosophila is an important means in biological and medical research to identify genetic, pathologic or psychologic impact on animal behaviour.

5.Self-Supervised Learning via Conditional Motion Propagation pdf

Intelligent agent naturally learns from motion. Various self-supervised algorithms have leveraged motion cues to learn effective visual representations. The hurdle here is that motion is both ambiguous and complex, rendering previous works either suffer from degraded learning efficacy, or resort to strong assumptions on object motions. In this work, we design a new learning-from-motion paradigm to bridge these gaps. Instead of explicitly modeling the motion probabilities, we design the pretext task as a conditional motion propagation problem. Given an input image and several sparse flow guidance vectors on it, our framework seeks to recover the full-image motion. Compared to other alternatives, our framework has several appealing properties: (1) Using sparse flow guidance during training resolves the inherent motion ambiguity, and thus easing feature learning. (2) Solving the pretext task of conditional motion propagation encourages the emergence of kinematically-sound representations that poss greater expressive power. Extensive experiments demonstrate that our framework learns structural and coherent features; and achieves state-of-the-art self-supervision performance on several downstream tasks including semantic segmentation, instance segmentation, and human parsing. Furthermore, our framework is successfully extended to several useful applications such as semi-automatic pixel-level annotation. Project page: "this http URL".

6.Spatially-Adaptive Residual Networks for Efficient Image and Video Deblurring pdf

In this paper, we address the problem of dynamic scene deblurring in the presence of motion blur. Restoration of images affected by severe blur necessitates a network design with a large receptive field, which existing networks attempt to achieve through simple increment in the number of generic convolution layers, kernel-size, or the scales at which the image is processed. However, increasing the network capacity in this manner comes at the expense of increase in model size and inference speed, and ignoring the non-uniform nature of blur. We present a new architecture composed of spatially adaptive residual learning modules that implicitly discover the spatially varying shifts responsible for non-uniform blur in the input image and learn to modulate the filters. This capability is complemented by a self-attentive module which captures non-local relationships among the intermediate features and enhances the receptive field. We then incorporate a spatiotemporal recurrent module in the design to also facilitate efficient video deblurring. Our networks can implicitly model the spatially-varying deblurring process, while dispensing with multi-scale processing and large filters entirely. Extensive qualitative and quantitative comparisons with prior art on benchmark dynamic scene deblurring datasets clearly demonstrate the superiority of the proposed networks via reduction in model-size and significant improvements in accuracy and speed, enabling almost real-time deblurring.

7.Diversity with Cooperation: Ensemble Methods for Few-Shot Classification pdf

Few-shot classification consists of learning a predictive model that is able to effectively adapt to a new class, given only a few annotated samples. To solve this challenging problem, meta-learning has become a popular paradigm that advocates the ability to "learn to adapt". Recent works have shown, however, that simple learning strategies without meta-learning could be competitive. In this paper, we go a step further and show that by addressing the fundamental high-variance issue of few-shot learning classifiers, it is possible to significantly outperform current meta-learning techniques. Our approach consists of designing an ensemble of deep networks to leverage the variance of the classifiers, and introducing new strategies to encourage the networks to cooperate, while encouraging prediction diversity. Evaluation is conducted on the mini-ImageNet and CUB datasets, where we show that even a single network obtained by distillation yields state-of-the-art results.

8.Speed Invariant Time Surface for Learning to Detect Corner Points with Event-Based Cameras pdf

We propose a learning approach to corner detection for event-based cameras that is stable even under fast and abrupt motions. Event-based cameras offer high temporal resolution, power efficiency, and high dynamic range. However, the properties of event-based data are very different compared to standard intensity images, and simple extensions of corner detection methods designed for these images do not perform well on event-based data. We first introduce an efficient way to compute a time surface that is invariant to the speed of the objects. We then show that we can train a Random Forest to recognize events generated by a moving corner from our time surface. Random Forests are also extremely efficient, and therefore a good choice to deal with the high capture frequency of event-based cameras ---our implementation processes up to 1.6Mev/s on a single CPU. Thanks to our time surface formulation and this learning approach, our method is significantly more robust to abrupt changes of direction of the corners compared to previous ones. Our method also naturally assigns a confidence score for the corners, which can be useful for postprocessing. Moreover, we introduce a high-resolution dataset suitable for quantitative evaluation and comparison of corner detection methods for event-based cameras. We call our approach SILC, for Speed Invariant Learned Corners, and compare it to the state-of-the-art with extensive experiments, showing better performance.

9.Rethinking the Evaluation of Video Summaries pdf

Video summarization is a technique to create a short skim of the original video while preserving the main stories/content. There exists a substantial interest in automatizing this process due to the rapid growth of the available material. The recent progress has been facilitated by public benchmark datasets, which enable easy and fair comparison of methods. Currently the established evaluation protocol is to compare the generated summary with respect to a set of reference summaries provided by the dataset. In this paper, we will provide in-depth assessment of this pipeline using two popular benchmark datasets. Surprisingly, we observe that randomly generated summaries achieve comparable or better performance to the state-of-the-art. In some cases, the random summaries outperform even the human generated summaries in leave-one-out experiments. Moreover, it turns out that the video segmentation, which is often considered as a fixed pre-processing method, has the most significant impact on the performance measure. Based on our observations, we propose alternative approaches for assessing the importance scores as well as an intuitive visualization of correlation between the estimated scoring and human annotations.

10.Dense Intrinsic Appearance Flow for Human Pose Transfer pdf

We present a novel approach for the task of human pose transfer, which aims at synthesizing a new image of a person from an input image of that person and a target pose. We address the issues of limited correspondences identified between keypoints only and invisible pixels due to self-occlusion. Unlike existing methods, we propose to estimate dense and intrinsic 3D appearance flow to better guide the transfer of pixels between poses. In particular, we wish to generate the 3D flow from just the reference and target poses. Training a network for this purpose is non-trivial, especially when the annotations for 3D appearance flow are scarce by nature. We address this problem through a flow synthesis stage. This is achieved by fitting a 3D model to the given pose pair and project them back to the 2D plane to compute the dense appearance flow for training. The synthesized ground-truths are then used to train a feedforward network for efficient mapping from the input and target skeleton poses to the 3D appearance flow. With the appearance flow, we perform feature warping on the input image and generate a photorealistic image of the target pose. Extensive results on DeepFashion and Market-1501 datasets demonstrate the effectiveness of our approach over existing methods. Our code is available at this http URL

11.A novel framework for automatic detection of Autism: A study on Corpus Callosum and Intracranial Brain Volume pdf

Computer vision and machine learning are the linchpin of field of automation. The medicine industry has adopted numerous methods to discover the root causes of many diseases in order to automate detection process. But, the biomarkers of Autism Spectrum Disorder (ASD) are still unknown, let alone automating its detection, due to intense connectivity of neurological pattern in brain. Studies from the neuroscience domain highlighted the fact that corpus callosum and intracranial brain volume holds significant information for detection of ASD. Such results and studies are not tested and verified by scientists working in the domain of computer vision / machine learning. Thus, in this study we have applied machine learning algorithms on features extracted from corpus callosum and intracranial brain volume data. Corpus callosum and intracranial brain volume data is obtained from s-MRI (structural Magnetic Resonance Imaging) data-set known as ABIDE (Autism Brain Imaging Data Exchange). Our proposed framework for automatic detection of ASD showed potential of machine learning algorithms for development of neuroimaging data understanding and detection of ASD. Proposed framework enhanced achieved accuracy by calculating weights / importance of features extracted from corpus callosum and intracranial brain volume data.

12.Linkage Based Face Clustering via Graph Convolution Network pdf

In this paper, we present an accurate and scalable approach to the face clustering task. We aim at grouping a set of faces by their potential identities. We formulate this task as a link prediction problem: a link exists between two faces if they are of the same identity. The key idea is that we find the local context in the feature space around an instance (face) contains rich information about the linkage relationship between this instance and its neighbors. By constructing sub-graphs around each instance as input data, which depict the local context, we utilize the graph convolution network (GCN) to perform reasoning and infer the likelihood of linkage between pairs in the sub-graphs. Experiments show that our method is more robust to the complex distribution of faces than conventional methods, yielding favorably comparable results to state-of-the-art methods on standard face clustering benchmarks, and is scalable to large datasets. Furthermore, we show that the proposed method does not need the number of clusters as prior, is aware of noises and outliers, and can be extended to a multi-view version for more accurate clustering accuracy.

13.3D Face Mask Presentation Attack Detection Based on Intrinsic Image Analysis pdf

Face presentation attacks have become a major threat to face recognition systems and many countermeasures have been proposed in the past decade. However, most of them are devoted to 2D face presentation attacks, rather than 3D face masks. Unlike the real face, the 3D face mask is usually made of resin materials and has a smooth surface, resulting in reflectance differences. So, we propose a novel detection method for 3D face mask presentation attack by modeling reflectance differences based on intrinsic image analysis. In the proposed method, the face image is first processed with intrinsic image decomposition to compute its reflectance image. Then, the intensity distribution histograms are extracted from three orthogonal planes to represent the intensity differences of reflectance images between the real face and 3D face mask. After that, the 1D convolutional network is further used to capture the information for describing different materials or surfaces react differently to changes in illumination. Extensive experiments on the 3DMAD database demonstrate the effectiveness of our proposed method in distinguishing a face mask from the real one and show that the detection performance outperforms other state-of-the-art methods.

14.Image search using multilingual texts: a cross-modal learning approach between image and text Maxime Portaz Qwant Research pdf

Multilingual (or cross-lingual) embeddings represent several languages in a unique vector space. Using a common embedding space enables for a shared semantic between words from different languages. In this paper, we propose to embed images and texts into a unique distributional vector space, enabling to search images by using text queries expressing information needs related to the (visual) content of images, as well as using image similarity. Our framework forces the representation of an image to be similar to the representation of the text that describes it. Moreover, by using multilingual embeddings we ensure that words from two different languages have close descriptors and thus are attached to similar images. We provide experimental evidence of the efficiency of our approach by experimenting it on two datasets: Common Objects in COntext (COCO) [19] and Multi30K [7].

15.Deformable kernel networks for guided depth map upsampling pdf

We address the problem of upsampling a low-resolution (LR) depth map using a registered high-resolution (HR) color image of the same scene. Previous methods based on convolutional neural networks (CNNs) combine nonlinear activations of spatially-invariant kernels to estimate structural details from LR depth and HR color images, and regress upsampling results directly from the networks. In this paper, we revisit the weighted averaging process that has been widely used to transfer structural details from hand-crafted visual features to LR depth maps. We instead learn explicitly sparse and spatially-variant kernels for this task. To this end, we propose a CNN architecture and its efficient implementation, called the deformable kernel network (DKN), that outputs sparse sets of neighbors and the corresponding weights adaptively for each pixel. We also propose a fast version of DKN (FDKN) that runs about 17 times faster (0.01 seconds for a HR image of size 640 x 480). Experimental results on standard benchmarks demonstrate the effectiveness of our approach. In particular, we show that the weighted averaging process with 3 x 3 kernels (i.e., aggregating 9 samples sparsely chosen) outperforms the state of the art by a significant margin.

16.Small Data Challenges in Big Data Era: A Survey of Recent Progress on Unsupervised and Semi-Supervised Methods pdf

Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.

17.Auto-Embedding Generative Adversarial Networks for High Resolution Image Synthesis pdf

Generating images via the generative adversarial network (GAN) has attracted much attention recently. However, most of the existing GAN-based methods can only produce low-resolution images of limited quality. Directly generating high-resolution images using GANs is nontrivial, and often produces problematic images with incomplete objects. To address this issue, we develop a novel GAN called Auto-Embedding Generative Adversarial Network (AEGAN), which simultaneously encodes the global structure features and captures the fine-grained details. In our network, we use an autoencoder to learn the intrinsic high-level structure of real images and design a novel denoiser network to provide photo-realistic details for the generated images. In the experiments, we are able to produce 512x512 images of promising quality directly from the input noise. The resultant images exhibit better perceptual photo-realism, i.e., with sharper structure and richer details, than other baselines on several datasets, including Oxford-102 Flowers, Caltech-UCSD Birds (CUB), High-Quality Large-scale CelebFaces Attributes (CelebA-HQ), Large-scale Scene Understanding (LSUN) and ImageNet.

18.W-Net: Reinforced U-Net for Density Map Estimation pdf

Crowd management is of paramount importance when it comes to preventing stampedes and saving lives, especially in a country like China and India where the combined population is a third of the global population. Millions of people convene annually all around the nation to celebrate a myriad of events and crowd count estimation is the linchpin of the crowd management system that could prevent stampedes and save lives. We present a network for crowd counting which reports state of the art results on crowd counting benchmarks. Our contributions are, first, a U-Net inspired model which affords us to report state of the art results. Second, we propose an independent decoding Reinforcement branch which helps the network converge much earlier and also enables the network to estimate density maps with high Structural Similarity Index (SSIM). Third, we discuss the drawbacks of the contemporary architectures and empirically show that even though our architecture achieves state of the art results, the merit may be due to the encoder-decoder pipeline instead. Finally, we report the error analysis which shows that the contemporary line of work is at saturation and leaves certain prominent problems unsolved.

19.Mimicking the In-Camera Color Pipeline for Camera-Aware Object Compositing pdf

We present a method for compositing virtual objects into a photograph such that the object colors appear to have been processed by the photo's camera imaging pipeline. Compositing in such a camera-aware manner is essential for high realism, and it requires the color transformation in the photo's pipeline to be inferred, which is challenging due to the inherent one-to-many mapping that exists from a scene to a photo. To address this problem for the case of a single photo taken from an unknown camera, we propose a dual-learning approach in which the reverse color transformation (from the photo to the scene) is jointly estimated. Learning of the reverse transformation is used to facilitate learning of the forward mapping, by enforcing cycle consistency of the two processes. We additionally employ a feature sharing schema to extract evidence from the target photo in the reverse mapping to guide the forward color transformation. Our dual-learning approach achieves object compositing results that surpass those of alternative techniques.

20.Training Quantized Network with Auxiliary Gradient Module pdf

In this paper, we seek to tackle two challenges in training low-precision networks: 1) the notorious difficulty in propagating gradient through a low-precision network due to the non-differentiable quantization function; 2) the requirement of a full-precision realization of skip connections in residual type network architectures. During training, we introduce an auxiliary gradient module which mimics the effect of skip connections to assist the optimization. We then expand the original low-precision network with the full-precision auxiliary gradient module to formulate a mixed-precision residual network and optimize it jointly with the low-precision model using weight sharing and separate batch normalization. This strategy ensures that the gradient back-propagates more easily, thus alleviating a major difficulty in training low-precision networks. Moreover, we find that when training a low-precision plain network with our method, the plain network can achieve performance similar to its counterpart with residual skip connections; i.e. the plain network without floating-point skip connections is just as effective to deploy at inference time. To further promote the gradient flow during backpropagation, we then employ a stochastic structured precision strategy to stochastically sample and quantize sub-networks while keeping other parts full-precision. We evaluate the proposed method on the image classification task over various quantization approaches and show consistent performance increases.

21.Deep Co-Training for Semi-Supervised Image Segmentation pdf

In this paper, we aim to improve the performance of semantic image segmentation in a semi-supervised setting in which training is effectuated with a reduced set of annotated images and additional non-annotated images. We present a method based on an ensemble of deep segmentation models. Each model is trained on a subset of the annotated data, and uses the non-annotated images to exchange information with the other models, similar to co-training. Even if each model learns on the same non-annotated images, diversity is preserved with the use of adversarial samples. Our results show that this ability to simultaneously train models, which exchange knowledge while preserving diversity, leads to state-of-the-art results on two challenging medical image datasets.

22.BAE-NET: Branched Autoencoder for Shape Co-Segmentation pdf

We treat shape co-segmentation as a representation learning problem and introduce BAE-NET, a branched autoencoder network, for the task. The unsupervised BAE-NET is trained with all shapes in an input collection using a shape reconstruction loss, without ground-truth segmentations. Specifically, the network takes an input shape and encodes it using a convolutional neural network, whereas the decoder concatenates the resulting feature code with a point coordinate and outputs a value indicating whether the point is inside/outside the shape. Importantly, the decoder is branched: each branch learns a compact representation for one commonly recurring part of the shape collection, e.g., airplane wings. By complementing the shape reconstruction loss with a label loss, BAE-NET is easily tuned for one-shot learning. We show unsupervised, weakly supervised, and one-shot learning results by BAE-NET, demonstrating that using only a couple of exemplars, our network can generally outperform state-of-the-art supervised methods trained on hundreds of segmented shapes.

23.Colorectal cancer diagnosis from histology images: A comparative study pdf

Computer-aided diagnosis (CAD) based on histopathological imaging has progressed rapidly in recent years with the rise of machine learning based methodologies. Traditional approaches consist of training a classification model using features extracted from the images, based on textures or morphological properties. Recently, deep-learning based methods have been applied directly to the raw (unprocessed) data. However, their usability is impacted by the paucity of annotated data in the biomedical sector. In order to leverage the learning capabilities of deep Convolutional Neural Nets (CNNs) within the confines of limited labelled data, in this study we shall investigate the transfer learning approaches that aim to apply the knowledge gained from solving a source (e.g., non-medical) problem, to learn better predictive models for the target (e.g., biomedical) task. As an alternative, we shall further propose a new adaptive and compact CNN based architecture that can be trained from scratch even on scarce and low-resolution data. Moreover, we conduct quantitative comparative evaluations among the traditional methods, transfer learning-based methods and the proposed adaptive approach for the particular task of cancer detection and identification from scarce and low-resolution histology images. Over the largest benchmark dataset formed for this purpose, the proposed adaptive approach achieved a higher cancer detection accuracy with a significant gap, whereas the deep CNNs with transfer learning achieved a superior cancer identification.

24.Information Maximizing Visual Question Generation pdf

Though image-to-sequence generation models have become overwhelmingly popular in human-computer communications, they suffer from strongly favoring safe generic questions ("What is in this picture?"). Generating uninformative but relevant questions is not sufficient or useful. We argue that a good question is one that has a tightly focused purpose --- one that is aimed at expecting a specific type of response. We build a model that maximizes mutual information between the image, the expected answer and the generated question. To overcome the non-differentiability of discrete natural language tokens, we introduce a variational continuous latent space onto which the expected answers project. We regularize this latent space with a second latent space that ensures clustering of similar answers. Even when we don't know the expected answer, this second latent space can generate goal-driven questions specifically aimed at extracting objects ("what is the person throwing"), attributes, ("What kind of shirt is the person wearing?"), color ("what color is the frisbee?"), material ("What material is the frisbee?"), etc. We quantitatively show that our model is able to retain information about an expected answer category, resulting in more diverse, goal-driven questions. We launch our model on a set of real world images and extract previously unseen visual concepts.

25.Improved Generalization of Heading Direction Estimation for Aerial Filming Using Semi-supervised Regression pdf

In the task of Autonomous aerial filming of a moving actor (e.g. a person or a vehicle), it is crucial to have a good heading direction estimation for the actor from the visual input. However, the models obtained in other similar tasks, such as pedestrian collision risk analysis and human-robot interaction, are very difficult to generalize to the aerial filming task, because of the difference in data distributions. Towards improving generalization with less amount of labeled data, this paper presents a semi-supervised algorithm for heading direction estimation problem. We utilize temporal continuity as the unsupervised signal to regularize the model and achieve better generalization ability. This semi-supervised algorithm is applied to both training and testing phases, which increases the testing performance by a large margin. We show that by leveraging unlabeled sequences, the amount of labeled data required can be significantly reduced. We also discuss several important details on improving the performance by balancing labeled and unlabeled loss, and making good combinations. Experimental results show that our approach robustly outputs the heading direction for different types of actor. The aesthetic value of the video is also improved in the aerial filming task.

26.Pix2Vex: Image-to-Geometry Reconstruction using a Smooth Differentiable Renderer pdf

We present a novel approach to 3D object reconstruction from its 2D projections. Our unique, GAN-inspired system employs a novel $C^\infty$ smooth differentiable renderer. Unlike the state-of-the-art, our renderer does not display any discontinuities at occlusions and dis-occlusions, facilitating training without 3D supervision and only minimal 2D supervision. Through domain adaptation and a novel training scheme, our network, the Reconstructive Adversarial Network (RAN), is able to train on different types of images. In contrast, previous work can only train on images of a similar appearance to those rendered by a differentiable renderer. We validate our reconstruction method through three shape classes from ShapeNet, and demonstrate that our method is robust to perturbations in view directions, different lighting conditions, and levels of texture details.

27.AlphaX: eXploring Neural Architectures with Deep Neural Networks and Monte Carlo Tree Search pdf

We present AlphaX, a fully automated agent that designs complex neural architectures from scratch. AlphaX explores the exponentially grown search space with a distributed Monte Carlo Tree Search (MCTS) and a Meta-Deep Neural Network (DNN). MCTS intrinsically improves the search efficiency by dynamically balancing the exploration and exploitation at fine-grained states, while Meta-DNN predicts the network accuracy to guide the search, and to provide an estimated reward to speed up the rollout. As the search progresses, AlphaX also generates the training data for Meta-DNN. So, the learning of Meta-DNN is end-to-end. In 14 days with only 16 GPUs (1832 samples), AlphaX found an architecture that reaches the state-of-the-art accuracies on both CIFAR-10(97.18%) and ImageNet(75.5% top-1 and 92.2% top-5). This demonstrates up to 10x speedup over the original searching for NASNet that used 500 GPUs in 4 days (20000 samples). On NASBench-101, AlphaX demonstrates 3x and 2.8x speedup over Random Search and Regularized Evolution. Finally, we show the searched architecture improves a variety of vision applications from Neural Style Transfer, to Image Captioning and Object Detection. Our implementation is available at this https URL.

28.Text Processing Like Humans Do: Visually Attacking and Shielding NLP Systems pdf

Visual modifications to text are often used to obfuscate offensive comments in social media (e.g., "!d10t") or as a writing style ("1337" in "leet speak"), among other scenarios. We consider this as a new type of adversarial attack in NLP, a setting to which humans are very robust, as our experiments with both simple and more difficult visual input perturbations demonstrate. We then investigate the impact of visual adversarial attacks on current NLP systems on character-, word-, and sentence-level tasks, showing that both neural and non-neural models are, in contrast to humans, extremely sensitive to such attacks, suffering performance decreases of up to 82%. We then explore three shielding methods---visual character embeddings, adversarial training, and rule-based recovery---which substantially improve the robustness of the models. However, the shielding methods still fall behind performances achieved in non-attack scenarios, which demonstrates the difficulty of dealing with visual attacks.

29.Graph Convolution for Multimodal Information Extraction from Visually Rich Documents pdf

Visually rich documents (VRDs) are ubiquitous in daily business and life. Examples are purchase receipts, insurance policy documents, custom declaration forms and so on. In VRDs, visual and layout information is critical for document understanding, and texts in such documents cannot be serialized into the one-dimensional sequence without losing information. Classic information extraction models such as BiLSTM-CRF typically operate on text sequences and do not incorporate visual features. In this paper, we introduce a graph convolution based model to combine textual and visual information presented in VRDs. Graph embeddings are trained to summarize the context of a text segment in the document, and further combined with text embeddings for entity extraction. Extensive experiments have been conducted to show that our method outperforms BiLSTM-CRF baselines by significant margins, on two real-world datasets. Additionally, ablation studies are also performed to evaluate the effectiveness of each component of our model.

30.TossingBot: Learning to Throw Arbitrary Objects with Residual Physics pdf

We investigate whether a robot arm can learn to pick and throw arbitrary objects into selected boxes quickly and accurately. Throwing has the potential to increase the physical reachability and picking speed of a robot arm. However, precisely throwing arbitrary objects in unstructured settings presents many challenges: from acquiring reliable pre-throw conditions (e.g. initial pose of object in manipulator) to handling varying object-centric properties (e.g. mass distribution, friction, shape) and dynamics (e.g. aerodynamics). In this work, we propose an end-to-end formulation that jointly learns to infer control parameters for grasping and throwing motion primitives from visual observations (images of arbitrary objects in a bin) through trial and error. Within this formulation, we investigate the synergies between grasping and throwing (i.e., learning grasps that enable more accurate throws) and between simulation and deep learning (i.e., using deep networks to predict residuals on top of control parameters predicted by a physics simulator). The resulting system, TossingBot, is able to grasp and throw arbitrary objects into boxes located outside its maximum reach range at 500+ mean picks per hour (600+ grasps per hour with 85% throwing accuracy); and generalizes to new objects and target locations. Videos are available at this https URL

31.Neural-networks for geophysicists and their application to seismic data interpretation pdf

Neural-networks have seen a surge of interest for the interpretation of seismic images during the last few years. Network-based learning methods can provide fast and accurate automatic interpretation, provided there are sufficiently many training labels. We provide an introduction to the field aimed at geophysicists that are familiar with the framework of forward modeling and inversion. We explain the similarities and differences between deep networks to other geophysical inverse problems and show their utility in solving problems such as lithology interpolation between wells, horizon tracking and segmentation of seismic images. The benefits of our approach are demonstrated on field data from the Sea of Ireland and the North Sea.

32.SUSI: Supervised Self-Organizing Maps for Regression and Classification in Python pdf

In many research fields, the sizes of the existing datasets vary widely. Hence, there is a need for machine learning techniques which are well-suited for these different datasets. One possible technique is the self-organizing map (SOM), a type of artificial neural network which is, so far, weakly represented in the field of machine learning. The SOM's unique characteristic is the neighborhood relationship of the output neurons. This relationship improves the ability of generalization on small datasets. SOMs are mostly applied in unsupervised learning and few studies focus on using SOMs as supervised learning approach. Furthermore, no appropriate SOM package is available with respect to machine learning standards and in the widely used programming language Python. In this paper, we introduce the freely available SUpervised Self-organIzing maps (SUSI) Python package which performs supervised regression and classification. The implementation of SUSI is described with respect to the underlying mathematics. Then, we present first evaluations of the SOM for regression and classification datasets from two different domains of geospatial image analysis. Despite the early stage of its development, the SUSI framework performs well and is characterized by only small performance differences between the training and the test datasets. A comparison of the SUSI framework with existing Python and R packages demonstrates the importance of the SUSI framework. In future work, the SUSI framework will be extended, optimized and upgraded e.g. with tools to better understand and visualize the input data as well as the handling of missing and incomplete data.