Skip to content
This repository has been archived by the owner on Apr 21, 2024. It is now read-only.

Latest commit

 

History

History
105 lines (105 loc) · 63.7 KB

20190101.md

File metadata and controls

105 lines (105 loc) · 63.7 KB

ArXiv cs.CV --Tue, 1 Jan 2019

1.Mid-Level Visual Representations Improve Generalization and Sample Efficiency for Learning Active Tasks pdf

One of the ultimate promises of computer vision is to help robotic agents perform active tasks, like delivering packages or doing household chores. However, the conventional approach to solving "vision" is to define a set of offline recognition problems (e.g. object detection) and solve those first. This approach faces a challenge from the recent rise of Deep Reinforcement Learning frameworks that learn active tasks from scratch using images as input. This poses a set of fundamental questions: what is the role of computer vision if everything can be learned from scratch? Could intermediate vision tasks actually be useful for performing arbitrary downstream active tasks?
We show that proper use of mid-level perception confers significant advantages over training from scratch. We implement a perception module as a set of mid-level visual representations and demonstrate that learning active tasks with mid-level features is significantly more sample-efficient than scratch and able to generalize in situations where the from-scratch approach fails. However, we show that realizing these gains requires careful selection of the particular mid-level features for each downstream task. Finally, we put forth a simple and efficient perception module based on the results of our study, which can be adopted as a rather generic perception module for active frameworks.

2.The role of visual saliency in the automation of seismic interpretation pdf

In this paper, we propose a workflow based on SalSi for the detection and delineation of geological structures such as salt domes. SalSi is a seismic attribute designed based on the modeling of human visual system that detects the salient features and captures the spatial correlation within seismic volumes for delineating seismic structures. Using SalSi, we can not only highlight the neighboring regions of salt domes to assist a seismic interpreter but also delineate such structures using a region growing method and post-processing. The proposed delineation workflow detects the salt-dome boundary with very good precision and accuracy. Experimental results show the effectiveness of the proposed workflow on a real seismic dataset acquired from the North Sea, F3 block. For the subjective evaluation of the results of different salt-dome delineation algorithms, we have used a reference salt-dome boundary interpreted by a geophysicist. For the objective evaluation of results, we have used five different metrics based on pixels, shape, and curvedness to establish the effectiveness of the proposed workflow. The proposed workflow is not only fast but also yields better results as compared to other salt-dome delineation algorithms and shows a promising potential in seismic interpretation.

3.Image Super-Resolution via RL-CSC: When Residual Learning Meets Convolutional Sparse Coding pdf

We propose a simple yet effective model for Single Image Super-Resolution (SISR), by combining the merits of Residual Learning and Convolutional Sparse Coding (RL-CSC). Our model is inspired by the Learned Iterative Shrinkage-Threshold Algorithm (LISTA). We extend LISTA to its convolutional version and build the main part of our model by strictly following the convolutional form, which improves the network's interpretability. Specifically, the convolutional sparse codings of input feature maps are learned in a recursive manner, and high-frequency information can be recovered from these CSCs. More importantly, residual learning is applied to alleviate the training difficulty when the network goes deeper. Extensive experiments on benchmark datasets demonstrate the effectiveness of our method. RL-CSC (30 layers) outperforms several recent state-of-the-arts, e.g., DRRN (52 layers) and MemNet (80 layers) in both accuracy and visual qualities. Codes and more results are available at this https URL.

4.High Quality Monocular Depth Estimation via Transfer Learning pdf

Accurate depth estimation from images is a fundamental task in many applications including scene understanding and reconstruction. Existing solutions for depth estimation often produce blurry approximations of low resolution. This paper presents a convolutional neural network for computing a high-resolution depth map given a single RGB image with the help of transfer learning. Following a standard encoder-decoder architecture, we leverage features extracted using high performing pre-trained networks when initializing our encoder along with augmentation and training strategies that lead to more accurate results. We show how, even for a very simple decoder, our method is able to achieve detailed high-resolution depth maps. Our network, with fewer parameters and training iterations, outperforms state-of-the-art on two datasets and also produces qualitatively better results that capture object boundaries more faithfully. Code and corresponding pre-trained weights are made publicly available.

5.Large-Scale Object Detection of Images from Network Cameras in Variable Ambient Lighting Conditions pdf

Computer vision relies on labeled datasets for training and evaluation in detecting and recognizing objects. The popular computer vision program, YOLO ("You Only Look Once"), has been shown to accurately detect objects in many major image datasets. However, the images found in those datasets, are independent of one another and cannot be used to test YOLO's consistency at detecting the same object as its environment (e.g. ambient lighting) changes. This paper describes a novel effort to evaluate YOLO's consistency for large-scale applications. It does so by working (a) at large scale and (b) by using consecutive images from a curated network of public video cameras deployed in a variety of real-world situations, including traffic intersections, national parks, shopping malls, university campuses, etc. We specifically examine YOLO's ability to detect objects in different scenarios (e.g., daytime vs. night), leveraging the cameras' ability to rapidly retrieve many successive images for evaluating detection consistency. Using our camera network and advanced computing resources (supercomputers), we analyzed more than 5 million images captured by 140 network cameras in 24 hours. Compared with labels marked by humans (considered as "ground truth"), YOLO struggles to consistently detect the same humans and cars as their positions change from one frame to the next; it also struggles to detect objects at night time. Our findings suggest that state-of-the art vision solutions should be trained by data from network camera with contextual information before they can be deployed in applications that demand high consistency on object detection.

6.Accurate, Data-Efficient, Unconstrained Text Recognition with Convolutional Neural Networks pdf

Unconstrained text recognition is an important computer vision task, featuring a wide variety of different sub-tasks, each with its own set of challenges. One of the biggest promises of deep neural networks has been the convergence and automation of feature extractors from input raw signals, allowing for the highest possible performance with minimum required domain knowledge. To this end, we propose a data-efficient, end-to-end neural network model for generic, unconstrained text recognition. In our proposed architecture we strive for simplicity and efficiency without sacrificing recognition accuracy. Our proposed architecture is a fully convolutional network without any recurrent connections trained with the CTC loss function. Thus it operates on arbitrary input sizes and produces strings of arbitrary length in a very efficient and parallelizable manner. We show the generality and superiority of our proposed text recognition architecture by achieving state of the art results on seven public benchmark datasets, covering a wide spectrum of text recognition tasks, namely: Handwriting Recognition, CAPTCHA recognition, OCR, License Plate Recognition, and Scene Text Recognition. Our proposed architecture has won the ICFHR2018 Competition on Automated Text Recognition on a READ Dataset.

7.Fast Perceptual Image Enhancement pdf

The vast majority of photos taken today are by mobile phones. While their quality is rapidly growing, due to physical limitations and cost constraints, mobile phone cameras struggle to compare in quality with DSLR cameras. This motivates us to computationally enhance these images. We extend upon the results of Ignatov et al., where they are able to translate images from compact mobile cameras into images with comparable quality to high-resolution photos taken by DSLR cameras. However, the neural models employed require large amounts of computational resources and are not lightweight enough to run on mobile devices. We build upon the prior work and explore different network architectures targeting an increase in image quality and speed. With an efficient network architecture which does most of its processing in a lower spatial resolution, we achieve a significantly higher mean opinion score (MOS) than the baseline while speeding up the computation by 6.3 times on a consumer-grade CPU. This suggests a promising direction for neural-network-based photo enhancement using the phone hardware of the future.

8.Do GANs leave artificial fingerprints? pdf

In the last few years, generative adversarial networks (GAN) have shown tremendous potential for a number of applications in computer vision and related fields. With the current pace of progress, it is a sure bet they will soon be able to generate high-quality images and videos, virtually indistinguishable from real ones. Unfortunately, realistic GAN-generated images pose serious threats to security, to begin with a possible flood of fake multimedia, and multimedia forensic countermeasures are in urgent need. In this work, we show that each GAN leaves its specific fingerprint in the images it generates, just like real-world cameras mark acquired images with traces of their photo-response non-uniformity pattern. Source identification experiments with several popular GANs show such fingerprints to represent a precious asset for forensic analyses.

9.Sequential Gating Ensemble Network for Noise Robust Multi-Scale Face Restoration pdf

Face restoration from low resolution and noise is important for applications of face analysis recognition. However, most existing face restoration models omit the multiple scale issues in face restoration problem, which is still not well-solved in research area. In this paper, we propose a Sequential Gating Ensemble Network (SGEN) for multi-scale noise robust face restoration issue. To endow the network with multi-scale representation ability, we first employ the principle of ensemble learning for SGEN network architecture designing. The SGEN aggregates multi-level base-encoders and base-decoders into the network, which enables the network to contain multiple scales of receptive field. Instead of combining these base-en/decoders directly with non-sequential operations, the SGEN takes base-en/decoders from different levels as sequential data. Specifically, it is visualized that SGEN learns to sequentially extract high level information from base-encoders in bottom-up manner and restore low level information from base-decoders in top-down manner. Besides, we propose to realize bottom-up and top-down information combination and selection with Sequential Gating Unit (SGU). The SGU sequentially takes information from two different levels as inputs and decides the output based on one active input. Experiment results on benchmark dataset demonstrate that our SGEN is more effective at multi-scale human face restoration with more image details and less noise than state-of-the-art image restoration models. Further utilizing adversarial training scheme, SGEN also produces more visually preferred results than other models under subjective evaluation.

10.Pixel personality for dense object tracking in a 2D honeybee hive pdf

Tracking large numbers of densely-arranged, interacting objects is challenging due to occlusions and the resulting complexity of possible trajectory combinations, as well as the sparsity of relevant, labeled datasets. Here we describe a novel technique of collective tracking in the model environment of a 2D honeybee hive in which sample colonies consist of $N\sim10^3$ highly similar individuals, tightly packed, and in rapid, irregular motion. Such a system offers universal challenges for multi-object tracking, while being conveniently accessible for image recording. We first apply an accurate, segmentation-based object detection method to build initial short trajectory segments by matching object configurations based on class, position and orientation. We then join these tracks into full single object trajectories by creating an object recognition model which is adaptively trained to recognize honeybee individuals through their visual appearance across multiple frames, an attribute we denote as pixel personality. Overall, we reconstruct ~46% of the trajectories in 5 min recordings from two different hives and over 71% of the tracks for at least 2 min. We provide validated trajectories spanning 3000 video frames of 876 unmarked moving bees in two distinct colonies in different locations and filmed with different pixel resolutions, which we expect to be useful in the further development of general-purpose tracking solutions.

11.PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation pdf

This paper addresses the challenge of 6DoF pose estimation from a single RGB image under severe occlusion or truncation. Many recent works have shown that a two-stage approach, which first detects keypoints and then solves a Perspective-n-Point (PnP) problem for pose estimation, achieves remarkable performance. However, most of these methods only localize a set of sparse keypoints by regressing their image coordinates or heatmaps, which are sensitive to occlusion and truncation. Instead, we introduce a Pixel-wise Voting Network (PVNet) to regress pixel-wise unit vectors pointing to the keypoints and use these vectors to vote for keypoint locations using RANSAC. This creates a flexible representation for localizing occluded or truncated keypoints. Another important feature of this representation is that it provides uncertainties of keypoint locations that can be further leveraged by the PnP solver. Experiments show that the proposed approach outperforms the state of the art on the LINEMOD, Occlusion LINEMOD and YCB-Video datasets by a large margin, while being efficient for real-time pose estimation. We further create a Truncation LINEMOD dataset to validate the robustness of our approach against truncation. The code will be avaliable at this https URL.

12.Predicting Group Cohesiveness in Images pdf

Cohesiveness of a group is an essential indicator of emotional state, structure and success of a group of people. We study the factors that influence the perception of group level cohesion and propose methods for estimating the human-perceived cohesion on the Group Cohesiveness Scale (GCS). Image analysis is performed at a group level via a multi-task convolutional neural network. For analyzing the contribution of facial expressions of the group members for predicting GCS, capsule network is explored. In order to identify the visual cues (attributes) for cohesion, we conducted a user survey. Based on the Group Affect database, we add GCS and propose the `GAF-Cohesion database'. The proposed model performs well on the database and is able to achieve near human-level performance in predicting group's cohesion score. It is interesting to note that GCS as an attribute, when jointly trained for group level emotion prediction, helps in increasing the performance for the later task. This suggests that group level emotion and GCS are correlated.

13.The meaning of "most" for visual question answering models pdf

The correct interpretation of quantifier statements in the context of a visual scene requires non-trivial inference mechanisms. For the example of "most", we discuss two strategies which rely on fundamentally different cognitive concepts. Our aim is to identify what strategy deep learning models for visual question answering learn when trained on such questions. To this end, we carefully design data to replicate experiments from psycholinguistics where the same question was investigated for humans. Focusing on the FiLM visual question answering model, our experiments indicate that a form of approximate number system emerges whose performance declines with more difficult scenes as predicted by Weber's law. Moreover, we identify confounding factors, like spatial arrangement of the scene, which impede the effectiveness of this system.

14.Total Variation with Overlapping Group Sparsity and Lp Quasinorm for Infrared Image Deblurring under Salt-and-Pepper Noise pdf

Because of the limitations of the infrared imaging principle and the properties of infrared imaging systems, infrared images have some drawbacks, including a lack of details, indistinct edges, and a large amount of salt-andpepper noise. To improve the sparse characteristics of the image while maintaining the image edges and weakening staircase artifacts, this paper proposes a method that uses the Lp quasinorm instead of the L1 norm and for infrared image deblurring with an overlapping group sparse total variation method. The Lp quasinorm introduces another degree of freedom, better describes image sparsity characteristics, and improves image restoration. Furthermore, we adopt the accelerated alternating direction method of multipliers and fast Fourier transform theory in the proposed method to improve the efficiency and robustness of our algorithm. Experiments show that under different conditions for blur and salt-and-pepper noise, the proposed method leads to excellent performance in terms of objective evaluation and subjective visual results.

15.SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks pdf

Siamese network based trackers formulate tracking as convolutional feature cross-correlation between target template and searching region. However, Siamese trackers still have accuracy gap compared with state-of-the-art algorithms and they cannot take advantage of feature from deep networks, such as ResNet-50 or deeper. In this work we prove the core reason comes from the lack of strict translation invariance. By comprehensive theoretical analysis and experimental validations, we break this restriction through a simple yet effective spatial aware sampling strategy and successfully train a ResNet-driven Siamese tracker with significant performance gain. Moreover, we propose a new model architecture to perform depth-wise and layer-wise aggregations, which not only further improves the accuracy but also reduces the model size. We conduct extensive ablation studies to demonstrate the effectiveness of the proposed tracker, which obtains currently the best results on four large tracking benchmarks, including OTB2015, VOT2018, UAV123, and LaSOT. Our model will be released to facilitate further studies based on this problem.

16.Sex-Classification from Cell-Phones Periocular Iris Images pdf

Selfie soft biometrics has great potential for various applications ranging from marketing, security and online banking. However, it faces many challenges since there is limited control in data acquisition conditions. This chapter presents a Super-Resolution-Convolutional Neural Networks (SRCNNs) approach that increases the resolution of low quality periocular iris images cropped from selfie images of subject's faces. This work shows that increasing image resolution (2x and 3x) can improve the sex-classification rate when using a Random Forest classifier. The best sex-classification rate was 90.15% for the right and 87.15% for the left eye. This was achieved when images were upscaled from 150x150 to 450x450 pixels. These results compare well with the state of the art and show that when improving image resolution with the SRCNN the sex-classification rate increases. Additionally, a novel selfie database captured from 150 subjects with an iPhone X was created (available upon request).

17.Unsupervised monocular stereo matching pdf

At present, deep learning has been applied more and more in monocular image depth estimation and has shown promising results. The current more ideal method for monocular depth estimation is the supervised learning based on ground truth depth, but this method requires an abundance of expensive ground truth depth as the supervised labels. Therefore, researchers began to work on unsupervised depth estimation methods. Although the accuracy of unsupervised depth estimation method is still lower than that of supervised method, it is a promising research direction.
In this paper, Based on the experimental results that the stereo matching models outperforms monocular depth estimation models under the same unsupervised depth estimation model, we proposed an unsupervised monocular vision stereo matching method. In order to achieve the monocular stereo matching, we constructed two unsupervised deep convolution network models, one was to reconstruct the right view from the left view, and the other was to estimate the depth map using the reconstructed right view and the original left view. The two network models are piped together during the test phase. The output results of this method outperforms the current mainstream unsupervised depth estimation method in the challenging KITTI dataset.

18.Path-Invariant Map Networks pdf

Optimizing a network of maps among a collection of objects/domains (or map synchronization) is a central problem across computer vision and many other relevant fields. Compared to optimizing pairwise maps in isolation, the benefit of map synchronization is that there are natural constraints among a map network that can improve the quality of individual maps. While such self-supervision constraints are well-understood for undirected map networks (e.g., the cycle-consistency constraint), they are under-explored for directed map networks, which naturally arise when maps are given by parametric maps (e.g., a feed-forward neural network). In this paper, we study a natural self-supervision constraint for directed map networks called path-invariance, which enforces that composite maps along different paths between a fixed pair of source and target domains are identical. We introduce path-invariance bases for efficient encoding of the path-invariance constraint and present an algorithm that outputs a path-variance basis with polynomial time and space complexities. We demonstrate the effectiveness of our formulation on optimizing object correspondences, estimating dense image maps via neural networks, and 3D scene segmentation via map networks of diverse 3D representations. In particular, our approach only requires 8% labeled data from ScanNet to achieve the same performance as training a single 3D segmentation network with 30% to 100% labeled data.

19.Actor Conditioned Attention Maps for Video Action Detection pdf

Interactions with surrounding objects and people contain important information towards understanding human actions. In order to model such interactions explicitly, we propose to generate attention maps that rank each spatio-temporal region's importance to a detected actor. We refer to these as Actor-Conditioned Attention Maps (ACAM), and these maps serve as weights to the features extracted from the whole scene. These resulting actor-conditioned features help focus the learned model on regions that are important/relevant to the conditioned actor. Another novelty of our approach is in the use of pre-trained object detectors, instead of region proposals, that generalize better to videos from different sources. Detailed experimental results on the AVA 2.1 datasets demonstrate the importance of interactions, with a performance improvement of 5 mAP with respect to state of the art published results.

20.Solar Potential Analysis of Rooftops Using Satellite Imagery pdf

Solar energy is one of the most important sources of renewable energy and the cleanest form of energy. In India, where solar energy could produce power around trillion kilowatt hours in a year, we are producing only power of around 20 Gigawatts. Many people are not aware of the solar potential of their rooftop and hence they always think that installing solar panels is very much expensive. Therefore, we proposed an approach through which we can provide the amount of solar potential of a building using only its latitude and longitude. We evaluated various types of rooftops to make our solution more robust. We also provide an approximate area of rooftop that can be used for solar panels placement and a visual analysis of how solar panels can be placed to maximize the output of solar power at a location.

21.Cascaded V-Net using ROI masks for brain tumor segmentation pdf

In this work we approach the brain tumor segmentation problem with a cascade of two CNNs inspired in the V-Net architecture \cite{VNet}, reformulating residual connections and making use of ROI masks to constrain the networks to train only on relevant voxels. This architecture allows dense training on problems with highly skewed class distributions, such as brain tumor segmentation, by focusing training only on the vecinity of the tumor area. We report results on BraTS2017 Training and Validation sets.

22.Leishmaniasis Parasite Segmentation and Classification using Deep Learning pdf

Leishmaniasis is considered a neglected disease that causes thousands of deaths annually in some tropical and subtropical countries. There are various techniques to diagnose leishmaniasis of which manual microscopy is considered to be the gold standard. There is a need for the development of automatic techniques that are able to detect parasites in a robust and unsupervised manner. In this paper we present a procedure for automatizing the detection process based on a deep learning approach. We train a U-net model that successfully segments leismania parasites and classifies them into promastigotes, amastigotes and adhered parasites.

23.Fingerprint Presentation Attack Detection: Generalization and Efficiency pdf

We study the problem of fingerprint presentation attack detection (PAD) under unknown PA materials not seen during PAD training. A dataset of 5,743 bonafide and 4,912 PA images of 12 different materials is used to evaluate a state-of-the-art PAD, namely Fingerprint Spoof Buster. We utilize 3D t-SNE visualization and clustering of material characteristics to identify a representative set of PA materials that cover most of PA feature space. We observe that a set of six PA materials, namely Silicone, 2D Paper, Play Doh, Gelatin, Latex Body Paint and Monster Liquid Latex provide a good representative set that should be included in training to achieve generalization of PAD. We also propose an optimized Android app of Fingerprint Spoof Buster that can run on a commodity smartphone (Xiaomi Redmi Note 4) without a significant drop in PAD performance (from TDR = 95.7% to 95.3% @ FDR = 0.2%) which can make a PA prediction in less than 300ms.

24.Monte-Carlo Sampling applied to Multiple Instance Learning for Histological Image Classification pdf

We propose a patch sampling strategy based on a sequential Monte-Carlo method for high resolution image classification in the context of Multiple Instance Learning. When compared with grid sampling and uniform sampling techniques, it achieves higher generalization performance. We validate the strategy on two artificial datasets and two histological datasets for breast cancer and sun exposure classification.

25.Linear solution to the minimal absolute pose rolling shutter problem pdf

This paper presents new efficient solutions to the rolling shutter camera absolute pose problem. Unlike the state-of-the-art polynomial solvers, we approach the problem using simple and fast linear solvers in an iterative scheme. We present several solutions based on fixing different sets of variables and investigate the performance of them thoroughly. We design a new alternation strategy that estimates all parameters in each iteration linearly by fixing just the non-linear terms. Our best 6-point solver, based on the new alternation technique, shows an identical or even better performance than the state-of-the-art R6P solver and is two orders of magnitude faster. In addition, a linear non-iterative solver is presented that requires a non-minimal number of 9 correspondences but provides even better results than the state-of-the-art R6P. Moreover, all proposed linear solvers provide a single solution while the state-of-the-art R6P provides up to 20 solutions which have to be pruned by expensive verification.

26.CoSpace: Common Subspace Learning from Hyperspectral-Multispectral Correspondences pdf

With a large amount of open satellite multispectral imagery (e.g., Sentinel-2 and Landsat-8), considerable attention has been paid to global multispectral land cover classification. However, its limited spectral information hinders further improving the classification performance. Hyperspectral imaging enables discrimination between spectrally similar classes but its swath width from space is narrow compared to multispectral ones. To achieve accurate land cover classification over a large coverage, we propose a cross-modality feature learning framework, called common subspace learning (CoSpace), by jointly considering subspace learning and supervised classification. By locally aligning the manifold structure of the two modalities, CoSpace linearly learns a shared latent subspace from hyperspectral-multispectral(HS-MS) correspondences. The multispectral out-of-samples can be then projected into the subspace, which are expected to take advantages of rich spectral information of the corresponding hyperspectral data used for learning, and thus leads to a better classification. Extensive experiments on two simulated HSMS datasets (University of Houston and Chikusei), where HS-MS data sets have trade-offs between coverage and spectral resolution, are performed to demonstrate the superiority and effectiveness of the proposed method in comparison with previous state-of-the-art methods.

27.A High-Performance CNN Method for Offline Handwritten Chinese Character Recognition and Visualization pdf

Recent researches introduced fast, compact and efficient convolutional neural networks (CNNs) for offline handwritten Chinese character recognition (HCCR). However, many of them did not address the problem of the network interpretability. We propose a new architecture of a deep CNN with a high recognition performance which is capable of learning deep features for visualization. A special characteristic of our model is the bottleneck layers which enable us to retain its expressiveness while reducing the number of multiply-accumulate operations and the required storage. We introduce a modification of global weighted average pooling (GWAP) - global weighted output average pooling (GWOAP). This paper demonstrates how they allow us to calculate class activation maps (CAMs) in order to indicate the most relevant input character image regions used by our CNN to identify a certain class. Evaluating on the ICDAR-2013 offline HCCR competition dataset, we show that our model enables a relative 0.83% error reduction having 49% fewer parameters and the same computational cost compared to the current state-of-the-art single-network method trained only on handwritten data. Our solution outperforms even recent residual learning approaches.

28.DART: Domain-Adversarial Residual-Transfer Networks for Unsupervised Cross-Domain Image Classification pdf

The accuracy of deep learning (e.g., convolutional neural networks) for an image classification task critically relies on the amount of labeled training data. Aiming to solve an image classification task on a new domain that lacks labeled data but gains access to cheaply available unlabeled data, unsupervised domain adaptation is a promising technique to boost the performance without incurring extra labeling cost, by assuming images from different domains share some invariant characteristics. In this paper, we propose a new unsupervised domain adaptation method named Domain-Adversarial Residual-Transfer (DART) learning of Deep Neural Networks to tackle cross-domain image classification tasks. In contrast to the existing unsupervised domain adaption approaches, the proposed DART not only learns domain-invariant features via adversarial training, but also achieves robust domain-adaptive classification via a residual-transfer strategy, all in an end-to-end training framework. We evaluate the performance of the proposed method for cross-domain image classification tasks on several well-known benchmark data sets, in which our method clearly outperforms the state-of-the-art approaches.

29.Brain MRI super-resolution using 3D generative adversarial networks pdf

In this work we propose an adversarial learning approach to generate high resolution MRI scans from low resolution images. The architecture, based on the SRGAN model, adopts 3D convolutions to exploit volumetric information. For the discriminator, the adversarial loss uses least squares in order to stabilize the training. For the generator, the loss function is a combination of a least squares adversarial loss and a content term based on mean square error and image gradients in order to improve the quality of the generated images. We explore different solutions for the upsampling phase. We present promising results that improve classical interpolation, showing the potential of the approach for 3D medical imaging super-resolution. Source code available at this https URL

30.Feature Preserving and Uniformity-controllable Point Cloud Simplification on Graph pdf

With the development of 3D sensing technologies, point clouds have attracted increasing attention in a variety of applications for 3D object representation, such as autonomous driving, 3D immersive tele-presence and heritage reconstruction. However, it is challenging to process large-scale point clouds in terms of both computation time and storage due to the tremendous amounts of data. Hence, we propose a point cloud simplification algorithm, aiming to strike a balance between preserving sharp features and keeping uniform density during resampling. In particular, leveraging on graph spectral processing, we represent irregular point clouds naturally on graphs, and propose concise formulations of feature preservation and density uniformity based on graph filters. The problem of point cloud simplification is finally formulated as a trade-off between the two factors and efficiently solved by our proposed algorithm. Experimental results demonstrate the superiority of our method, as well as its efficient application in point cloud registration.

31.EANet: Enhancing Alignment for Cross-Domain Person Re-identification pdf

Person re-identification (ReID) has achieved significant improvement under the single-domain setting. However, directly exploiting a model to new domains is always faced with huge performance drop, and adapting the model to new domains without target-domain identity labels is still challenging. In this paper, we address cross-domain ReID and make contributions for both model generalization and adaptation. First, we propose Part Aligned Pooling (PAP) that brings significant improvement for cross-domain testing. Second, we design a Part Segmentation (PS) constraint over ReID feature to enhance alignment and improve model generalization. Finally, we show that applying our PS constraint to unlabeled target domain images serves as effective domain adaptation. We conduct extensive experiments between three large datasets, Market1501, CUHK03 and DukeMTMC-reID. Our model achieves state-of-the-art performance under both source-domain and cross-domain settings. For completeness, we also demonstrate the complementarity of our model to existing domain adaptation methods. The code is available at this https URL.

32.Rendu basé image avec contraintes sur les gradients pdf

Multi-view image-based rendering consists in generating a novel view of a scene from a set of source views. In general, this works by first doing a coarse 3D reconstruction of the scene, and then using this reconstruction to establish correspondences between source and target views, followed by blending the warped views to get the final image. Unfortunately, discontinuities in the blending weights, due to scene geometry or camera placement, result in artifacts in the target view. In this paper, we show how to avoid these artifacts by imposing additional constraints on the image gradients of the novel view. We propose a variational framework in which an energy functional is derived and optimized by iteratively solving a linear system. We demonstrate this method on several structured and unstructured multi-view datasets, and show that it numerically outperforms state-of-the-art methods, and eliminates artifacts that result from visibility discontinuities

33.Skeleton Transformer Networks: 3D Human Pose and Skinned Mesh from Single RGB Image pdf

In this paper, we present Skeleton Transformer Networks (SkeletonNet), an end-to-end framework that can predict not only 3D joint positions but also 3D angular pose (bone rotations) of a human skeleton from a single color image. This in turn allows us to generate skinned mesh animations. Here, we propose a two-step regression approach. The first step regresses bone rotations in order to obtain an initial solution by considering skeleton structure. The second step performs refinement based on heatmap regressor using a 3D pose representation called cross heatmap which stacks heatmaps of xy and zy coordinates. By training the network using the proposed 3D human pose dataset that is comprised of images annotated with 3D skeletal angular poses, we showed that SkeletonNet can predict a full 3D human pose (joint positions and bone rotations) from a single image in-the-wild.

34.A Deep Learning based Framework to Detect and Recognize Humans using Contactless Palmprints in the Wild pdf

Contactless and online palmprint identfication offers improved user convenience, hygiene, user-security and is highly desirable in a range of applications. This technical report details an accurate and generalizable deep learning-based framework to detect and recognize humans using contactless palmprint images in the wild. Our network is based on fully convolutional network that generates deeply learned residual features. We design a soft-shifted triplet loss function to more effectively learn discriminative palmprint features. Online palmprint identification also requires a contactless palm detector, which is adapted and trained from faster-R-CNN architecture, to detect palmprint region under varying backgrounds. Our reproducible experimental results on publicly available contactless palmprint databases suggest that the proposed framework consistently outperforms several classical and state-of-the-art palmprint recognition methods. More importantly, the model presented in this report offers superior generalization capability, unlike other popular methods in the literature, as it does not essentially require database-specific parameter tuning, which is another key advantage over other methods in the literature.

35.Support Vector Guided Softmax Loss for Face Recognition pdf

Face recognition has witnessed significant progresses due to the advances of deep convolutional neural networks (CNNs), the central challenge of which, is feature discrimination. To address it, one group tries to exploit mining-based strategies (\textit{e.g.}, hard example mining and focal loss) to focus on the informative examples. The other group devotes to designing margin-based loss functions (\textit{e.g.}, angular, additive and additive angular margins) to increase the feature margin from the perspective of ground truth class. Both of them have been well-verified to learn discriminative features. However, they suffer from either the ambiguity of hard examples or the lack of discriminative power of other classes. In this paper, we design a novel loss function, namely support vector guided softmax loss (SV-Softmax), which adaptively emphasizes the mis-classified points (support vectors) to guide the discriminative features learning. So the developed SV-Softmax loss is able to eliminate the ambiguity of hard examples as well as absorb the discriminative power of other classes, and thus results in more discrimiantive features. To the best of our knowledge, this is the first attempt to inherit the advantages of mining-based and margin-based losses into one framework. Experimental results on several benchmarks have demonstrated the effectiveness of our approach over state-of-the-arts.

36.Fast and Globally Optimal Rigid Registration of 3D Point Sets by Transformation Decomposition pdf

The rigid registration of two 3D point sets is a fundamental problem in computer vision. The current trend is to solve this problem globally using the BnB optimization framework. However, the existing global methods are slow for two main reasons: the computational complexity of BnB is exponential to the problem dimensionality (which is six for 3D rigid registration), and the bound evaluation used in BnB is inefficient. In this paper, we propose two techniques to address these problems. First, we introduce the idea of translation invariant vectors, which allows us to decompose the search of a 6D rigid transformation into a search of 3D rotation followed by a search of 3D translation, each of which is solved by a separate BnB algorithm. This transformation decomposition reduces the problem dimensionality of BnB algorithms and substantially improves its efficiency. Then, we propose a new data structure, named 3D Integral Volume, to accelerate the bound evaluation in both BnB algorithms. By combining these two techniques, we implement an efficient algorithm for rigid registration of 3D point sets. Extensive experiments on both synthetic and real data show that the proposed algorithm is three orders of magnitude faster than the existing state-of-the-art global methods.

37.Annotation-cost Minimization for Medical Image Segmentation using Suggestive Mixed Supervision Fully Convolutional Networks pdf

For medical image segmentation, most fully convolutional networks (FCNs) need strong supervision through a large sample of high-quality dense segmentations, which is taxing in terms of costs, time and logistics involved. This burden of annotation can be alleviated by exploiting weak inexpensive annotations such as bounding boxes and anatomical landmarks. However, it is very difficult to \textit{a priori} estimate the optimal balance between the number of annotations needed for each supervision type that leads to maximum performance with the least annotation cost. To optimize this cost-performance trade off, we present a budget-based cost-minimization framework in a mixed-supervision setting via dense segmentations, bounding boxes, and landmarks. We propose a linear programming (LP) formulation combined with uncertainty and similarity based ranking strategy to judiciously select samples to be annotated next for optimal performance. In the results section, we show that our proposed method achieves comparable performance to state-of-the-art approaches with significantly reduced cost of annotations.

38.Monocular 3D Pose Recovery via Nonconvex Sparsity with Theoretical Analysis pdf

For recovering 3D object poses from 2D images, a prevalent method is to pre-train an over-complete dictionary $\mathcal D={B_i}i^D$ of 3D basis poses. During testing, the detected 2D pose $Y$ is matched to dictionary by $Y \approx \sum_i M_i B_i$ where ${M_i}i^D={c_i ΠR_i}$, by estimating the rotation $R_i$, projection $Π$ and sparse combination coefficients $c \in \mathbb R{+}^D$. In this paper, we propose non-convex regularization $H(c)$ to learn coefficients $c$, including novel leaky capped $\ell_1$-norm regularization (LCNR), \begin{align*} H(c)=α\sum{i } \min(|c_i|,τ)+ β\sum_{i } \max(| c_i|,τ), \end{align*} where $0\leq β\leq α$ and $0&lt;τ$ is a certain threshold, so the invalid components smaller than $τ$ are composed with larger regularization and other valid components with smaller regularization. We propose a multi-stage optimizer with convex relaxation and ADMM. We prove that the estimation error $\mathcal L(l)$ decays w.r.t. the stages $l$, \begin{align*} Pr\left(\mathcal L(l) < ρ^{l-1} \mathcal L(0) + δ\right) \geq 1- ε, \end{align*} where $0&lt; ρ &lt;1, 0&lt;δ, 0&lt;ε\ll 1$. Experiments on large 3D human datasets like H36M are conducted to support our improvement upon previous approaches. To the best of our knowledge, this is the first theoretical analysis in this line of research, to understand how the recovery error is affected by fundamental factors, e.g. dictionary size, observation noises, optimization times. We characterize the trade-off between speed and accuracy towards real-time inference in applications.

39.CamLoc: Pedestrian Location Detection from Pose Estimation on Resource-constrained Smart-cameras pdf

Recent advancements in energy-efficient hardware technology is driving the exponential growth we are experiencing in the Internet of Things (IoT) space, with more pervasive computations being performed near to data generation sources. A range of intelligent devices and applications performing local detection is emerging (activity recognition, fitness monitoring, etc.) bringing with them obvious advantages such as reducing detection latency for improved interaction with devices and safeguarding user data by not leaving the device. Video processing holds utility for many emerging applications and data labelling in the IoT space. However, performing this video processing with deep neural networks at the edge of the Internet is not trivial. In this paper we show that pedestrian location estimation using deep neural networks is achievable on fixed cameras with limited compute resources. Our approach uses pose estimation from key body points detection to extend pedestrian skeleton when whole body not in image (occluded by obstacles or partially outside of frame), which achieves better location estimation performance (infrence time and memory footprint) compared to fitting a bounding box over pedestrian and scaling. We collect a sizable dataset comprising of over 2100 frames in videos from one and two surveillance cameras pointing from different angles at the scene, and annotate each frame with the exact position of person in image, in 42 different scenarios of activity and occlusion. We compare our pose estimation based location detection with a popular detection algorithm, YOLOv2, for overlapping bounding-box generation, our solution achieving faster inference time (15x speedup) at half the memory footprint, within resource capabilities on embedded devices, which demonstrate that CamLoc is an efficient solution for location estimation in videos on smart-cameras.

40.CFA Bayer image sequence denoising and demosaicking chain pdf

The demosaicking provokes the spatial and color correlation of noise, which is afterwards enhanced by the imaging pipeline. The correct removal previous or simultaneously with the demosaicking process is not usually considered in the literature. We present a novel imaging chain including a denoising of the Bayer CFA and a demosaicking method for image sequences. The proposed algorithm uses a spatio-temporal patch method for the noise removal and demosaicking of the CFA. The experimentation, including real examples, illustrates the superior performance of the proposed chain, avoiding the creation of artifacts and colored spots in the final image.

41.Class-Aware Adversarial Lung Nodule Synthesis in CT Images pdf

Though large-scale datasets are essential for training deep learning systems, it is expensive to scale up the collection of medical imaging datasets. Synthesizing the objects of interests, such as lung nodules, in medical images based on the distribution of annotated datasets can be helpful for improving the supervised learning tasks, especially when the datasets are limited by size and class balance. In this paper, we propose the class-aware adversarial synthesis framework to synthesize lung nodules in CT images. The framework is built with a coarse-to-fine patch in-painter (generator) and two class-aware discriminators. By conditioning on the random latent variables and the target nodule labels, the trained networks are able to generate diverse nodules given the same context. By evaluating on the public LIDC-IDRI dataset, we demonstrate an example application of the proposed framework for improving the accuracy of the lung nodule malignancy estimation as a binary classification problem, which is important in the lung screening scenario. We show that combining the real image patches and the synthetic lung nodules in the training set can improve the mean AUC classification score across different network architectures by 2%.

42.Epipolar Geometry based Learning of Multi-view Depth and Ego-Motion from Monocular Sequences pdf

Deep approaches to predict monocular depth and ego-motion have grown in recent years due to their ability to produce dense depth from monocular images. The main idea behind them is to optimize the photometric consistency over image sequences by warping one view into another, similar to direct visual odometry methods. One major drawback is that these methods infer depth from a single view, which might not effectively capture the relation between pixels. Moreover, simply minimizing the photometric loss does not ensure proper pixel correspondences, which is a key factor for accurate depth and pose estimations.
In contrast, we propose a 2-view depth network to infer the scene depth from consecutive frames, thereby learning inter-pixel relationships. To ensure better correspondences, thereby better geometric understanding, we propose incorporating epipolar constraints to make the learning more geometrically sound. We use the Essential matrix obtained using Nist'er's Five Point Algorithm, to enforce meaningful geometric constraints, rather than using it as training labels. This allows us to use lesser no. of trainable parameters compared to state-of-the-art methods. The proposed method results in better depth images and pose estimates, which capture the scene structure and motion in a better way. Such a geometrically constrained learning performs successfully even in cases where simply minimizing the photometric error would fail.

43.Towards a topological-geometrical theory of group equivariant non-expansive operators for data analysis and machine learning pdf

The aim of this paper is to provide a general mathematical framework for group equivariance in the machine learning context. The framework builds on a synergy between persistent homology and the theory of group actions. We define group-equivariant non-expansive operators (GENEOs), which are maps between function spaces associated with groups of transformations. We study the topological and metric properties of the space of GENEOs to evaluate their approximating power and set the basis for general strategies to initialise and compose operators. We begin by defining suitable pseudo-metrics for the function spaces, the equivariance groups, and the set of non-expansive operators. Basing on these pseudo-metrics, we prove that the space of GENEOs is compact and convex, under the assumption that the function spaces are compact and convex. These results provide fundamental guarantees in a machine learning perspective. We show examples on the MNIST and fashion-MNIST datasets. By considering isometry-equivariant non-expansive operators, we describe a simple strategy to select and sample operators, and show how the selected and sampled operators can be used to perform both classical metric learning and an effective initialisation of the kernels of a convolutional neural network.

44.An introduction to domain adaptation and transfer learning pdf

In machine learning, if the training data is an unbiased sample of an underlying distribution, then the learned classification function will make accurate predictions for new samples. However, if the training data is not an unbiased sample, then there will be differences between how the training data is distributed and how the test data is distributed. Standard classifiers cannot cope with changes in data distributions between training and test phases, and will not perform well. Domain adaptation and transfer learning are sub-fields within machine learning that are concerned with accounting for these types of changes. Here, I present an introduction to these fields, guided by the question: when and how can a classifier generalize from a source to a target domain? I will start with a brief introduction into risk minimization, and how transfer learning and domain adaptation expand upon this framework. Following that, I discuss three special cases of data set shift, namely prior, covariate and concept shift. For more complex domain shifts, there are a wide variety of approaches. These are categorized into: importance-weighting, subspace mapping, domain-invariant spaces, feature augmentation, minimax estimators and robust algorithms. A number of points will arise, which I will discuss in the last section. I conclude with the remark that many open questions will have to be addressed before transfer learners and domain-adaptive classifiers become practical.

45.BNN+: Improved Binary Network Training pdf

Deep neural networks (DNN) are widely used in many applications. However, their deployment on edge devices has been difficult because they are resource hungry. Binary neural networks (BNN) help to alleviate the prohibitive resource requirements of DNN, where both activations and weights are limited to $1$-bit. We propose an improved binary training method (BNN+), by introducing a regularization function that encourages training weights around binary values. In addition to this, to enhance model performance we add trainable scaling factors to our regularization functions. Furthermore, we use an improved approximation of the derivative of the sign activation function in the backward computation. These additions are based on linear operations that are easily implementable into the binary training framework. We show experimental results on CIFAR-10 obtaining an accuracy of $86.7%$, on AlexNet and $91.3%$ with VGG network. On ImageNet, our method also outperforms the traditional BNN method and XNOR-net, using AlexNet by a margin of $4%$ and $2%$ top-$1$ accuracy respectively.

46.Cluster-Based Active Learning pdf

In this work, we introduce Cluster-Based Active Learning, a novel framework that employs clustering to boost active learning by reducing the number of human interactions required to train deep neural networks. Instead of annotating single samples individually, humans can also label clusters, producing a higher number of annotated samples with the cost of a small label error. Our experiments show that the proposed framework requires 82% and 87% less human interactions for CIFAR-10 and EuroSAT datasets respectively when compared with the fully-supervised training while maintaining similar performance on the test set.

47.Deep Residual Learning in the JPEG Transform Domain pdf

We introduce a general method of performing Residual Network inference and learning in the JPEG transform domain that allows the network to consume compressed images as input. Our formulation leverages the linearity of the JPEG transform to redefine convolution and batch normalization with a tune-able numerical approximation for ReLu. The result is mathematically equivalent to the spatial domain network up to the ReLu approximation accuracy. A formulation for image classification and a model conversion algorithm for spatial domain networks are given as examples of the method. We show that the sparsity of the JPEG format allows for faster processing of images with little to no penalty in the network accuracy.

48.ADMM-NN: An Algorithm-Hardware Co-Design Framework of DNNs Using Alternating Direction Method of Multipliers pdf

To facilitate efficient embedded and hardware implementations of deep neural networks (DNNs), two important categories of DNN model compression techniques: weight pruning and weight quantization are investigated. The former leverages the redundancy in the number of weights, whereas the latter leverages the redundancy in bit representation of weights. However, there lacks a systematic framework of joint weight pruning and quantization of DNNs, thereby limiting the available model compression ratio. Moreover, the computation reduction, energy efficiency improvement, and hardware performance overhead need to be accounted for besides simply model size reduction.
To address these limitations, we present ADMM-NN, the first algorithm-hardware co-optimization framework of DNNs using Alternating Direction Method of Multipliers (ADMM), a powerful technique to deal with non-convex optimization problems with possibly combinatorial constraints. The first part of ADMM-NN is a systematic, joint framework of DNN weight pruning and quantization using ADMM. It can be understood as a smart regularization technique with regularization target dynamically updated in each ADMM iteration, thereby resulting in higher performance in model compression than prior work. The second part is hardware-aware DNN optimizations to facilitate hardware-level implementations.
Without accuracy loss, we can achieve 85$\times$ and 24$\times$ pruning on LeNet-5 and AlexNet models, respectively, significantly higher than prior work. The improvement becomes more significant when focusing on computation reductions. Combining weight pruning and quantization, we achieve 1,910$\times$ and 231$\times$ reductions in overall model size on these two benchmarks, when focusing on data storage. Highly promising results are also observed on other representative DNNs such as VGGNet and ResNet-50.

49.Machine learning in resting-state fMRI analysis pdf

Machine learning techniques have gained prominence for the analysis of resting-state functional Magnetic Resonance Imaging (rs-fMRI) data. Here, we present an overview of various unsupervised and supervised machine learning applications to rs-fMRI. We present a methodical taxonomy of machine learning methods in resting-state fMRI. We identify three major divisions of unsupervised learning methods with regard to their applications to rs-fMRI, based on whether they discover principal modes of variation across space, time or population. Next, we survey the algorithms and rs-fMRI feature representations that have driven the success of supervised subject-level predictions. The goal is to provide a high-level overview of the burgeoning field of rs-fMRI from the perspective of machine learning applications.

50.Quantized Guided Pruning for Efficient Hardware Implementations of Convolutional Neural Networks pdf

Convolutional Neural Networks (CNNs) are state-of-the-art in numerous computer vision tasks such as object classification and detection. However, the large amount of parameters they contain leads to a high computational complexity and strongly limits their usability in budget-constrained devices such as embedded devices. In this paper, we propose a combination of a new pruning technique and a quantization scheme that effectively reduce the complexity and memory usage of convolutional layers of CNNs, and replace the complex convolutional operation by a low-cost multiplexer. We perform experiments on the CIFAR10, CIFAR100 and SVHN and show that the proposed method achieves almost state-of-the-art accuracy, while drastically reducing the computational and memory footprints. We also propose an efficient hardware architecture to accelerate CNN operations. The proposed hardware architecture is a pipeline and accommodates multiple layers working at the same time to speed up the inference process.

51.3D Convolution on RGB-D Point Clouds for Accurate Model-free Object Pose Estimation pdf

The conventional pose estimation of a 3D object usually requires the knowledge of the 3D model of the object. Even with the recent development in convolutional neural networks (CNNs), a 3D model is often necessary in the final estimation. In this paper, we propose a two-stage pipeline that takes in raw colored point cloud data and estimates an object's translation and rotation by running 3D convolutions on voxels. The pipeline is simple yet highly accurate: translation error is reduced to the voxel resolution (around 1 cm) and rotation error is around 5 degrees. The pipeline is also put to actual robotic grasping tests where it achieves above 90% success rate for test objects. Another innovation is that a motion capture system is used to automatically label the point cloud samples which makes it possible to rapidly collect a large amount of highly accurate real data for training the neural networks.

52.Kymatio: Scattering Transforms in Python pdf

The wavelet scattering transform is an invariant signal representation suitable for many signal processing and machine learning applications. We present the Kymatio software package, an easy-to-use, high-performance Python implementation of the scattering transform in 1D, 2D, and 3D that is compatible with modern deep learning frameworks. All transforms may be executed on a GPU (in addition to CPU), offering a considerable speed up over CPU implementations. The package also has a small memory footprint, resulting inefficient memory usage. The source code, documentation, and examples are available undera BSD license at this https URL