forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_sort_and_select.py
998 lines (872 loc) · 44.1 KB
/
test_sort_and_select.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
import torch
import numpy as np
import random
from torch._six import nan
from itertools import permutations, product
from torch.testing import all_types, all_types_and
from torch.testing._internal.common_utils import \
(TEST_WITH_ROCM, TestCase, run_tests, make_tensor, slowTest)
from torch.testing._internal.common_device_type import \
(instantiate_device_type_tests, dtypes, onlyOnCPUAndCUDA,
skipCUDAIfRocm, onlyCUDA, dtypesIfCUDA, onlyCPU, largeTensorTest)
# TODO: remove this
SIZE = 100
class TestSortAndSelect(TestCase):
def assertIsOrdered(self, order, x, mxx, ixx, task):
SIZE = x.size(1)
if order == 'descending':
def check_order(a, b):
# `a != a` because we put NaNs
# at the end of ascending sorted lists,
# and the beginning of descending ones.
return ((a != a) | (a >= b)).all().item()
elif order == 'ascending':
def check_order(a, b):
# see above
return ((b != b) | (a <= b)).all().item()
else:
error('unknown order "{}", must be "ascending" or "descending"'.format(order))
are_ordered = True
for k in range(1, SIZE):
self.assertTrue(check_order(mxx[:, k - 1], mxx[:, k]),
'torch.sort ({}) values unordered for {}'.format(order, task))
seen = set()
indicesCorrect = True
size0 = x.size(0)
size = x.size(x.dim() - 1)
x = x.tolist()
mxx = mxx.tolist()
ixx = ixx.tolist()
for k in range(size0):
seen.clear()
for j in range(size):
self.assertEqual(x[k][ixx[k][j]], mxx[k][j],
msg='torch.sort ({}) indices wrong for {}'.format(order, task))
seen.add(ixx[k][j])
self.assertEqual(len(seen), size)
def test_sort(self, device):
# on CUDA 2048 vs >2048 have different code path for the dim being sorted
for SIZE in (4, 2049):
x = torch.rand(4, SIZE, device=device)
res1val, res1ind = torch.sort(x)
# Test inplace
y = x.clone()
y_inds = torch.tensor((), dtype=torch.int64, device=device)
torch.sort(y, out=(y, y_inds))
x_vals, x_inds = torch.sort(x)
self.assertEqual(x_vals, y)
self.assertEqual(x_inds, y_inds)
# Test use of result tensor
res2val = torch.tensor((), device=device)
res2ind = torch.tensor((), device=device, dtype=torch.long)
torch.sort(x, out=(res2val, res2ind))
self.assertEqual(res1val, res2val, atol=0, rtol=0)
self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
self.assertEqual(torch.argsort(x), res1ind)
self.assertEqual(x.argsort(), res1ind)
# Test sorting of random numbers
self.assertIsOrdered('ascending', x, res2val, res2ind, 'random')
# Test simple sort
self.assertEqual(
torch.sort(torch.tensor((50, 40, 30, 20, 10), device=device))[0],
torch.tensor((10, 20, 30, 40, 50), device=device),
atol=0, rtol=0
)
# Test that we still have proper sorting with duplicate keys
x = torch.floor(torch.rand(4, SIZE, device=device) * 10)
torch.sort(x, out=(res2val, res2ind))
self.assertIsOrdered('ascending', x, res2val, res2ind, 'random with duplicate keys')
# DESCENDING SORT
x = torch.rand(4, SIZE, device=device)
res1val, res1ind = torch.sort(x, x.dim() - 1, True)
# Test use of result tensor
res2val = torch.tensor((), device=device)
res2ind = torch.tensor((), device=device, dtype=torch.long)
torch.sort(x, x.dim() - 1, True, out=(res2val, res2ind))
self.assertEqual(res1val, res2val, atol=0, rtol=0)
self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
self.assertEqual(torch.argsort(x, x.dim() - 1, True), res1ind)
self.assertEqual(x.argsort(x.dim() - 1, True), res1ind)
# Test sorting of random numbers
self.assertIsOrdered('descending', x, res2val, res2ind, 'random')
# Test simple sort task
self.assertEqual(
torch.sort(torch.tensor((10, 20, 30, 40, 50), device=device), 0, True)[0],
torch.tensor((50, 40, 30, 20, 10), device=device),
atol=0, rtol=0
)
# Test that we still have proper sorting with duplicate keys
self.assertIsOrdered('descending', x, res2val, res2ind, 'random with duplicate keys')
# Test sorting with NaNs
x = torch.rand(4, SIZE, device=device)
x[1][2] = float('NaN')
x[3][0] = float('NaN')
torch.sort(x, out=(res2val, res2ind))
self.assertIsOrdered('ascending', x, res2val, res2ind,
'random with NaNs')
torch.sort(x, out=(res2val, res2ind), descending=True)
self.assertIsOrdered('descending', x, res2val, res2ind,
'random with NaNs')
# FIXME: remove torch.bool from unsupported types once support is added for cub sort
@dtypes(*set(torch.testing.get_all_dtypes()) - {torch.bool, torch.complex64, torch.complex128})
def test_stable_sort(self, device, dtype):
if TEST_WITH_ROCM and dtype == torch.bfloat16:
return
sizes = (100, 1000, 10000)
for ncopies in sizes:
x = torch.tensor([0, 1] * ncopies, dtype=dtype, device=device)
_, idx = x.sort(stable=True)
self.assertEqual(
idx[:ncopies],
torch.arange(start=0, end=2 * ncopies, step=2, device=device)
)
self.assertEqual(
idx[ncopies:],
torch.arange(start=1, end=2 * ncopies, step=2, device=device)
)
@onlyCUDA
@dtypes(torch.uint8)
@largeTensorTest('200GB') # Unfortunately 80GB A100 is not large enough
def test_sort_large(self, device, dtype):
t0 = torch.randperm(8192, device=device).to(dtype)
t = t0.view(1, 8192).expand(2 ** 18 + 1, -1).contiguous()
v, i = t.sort()
del t
iv, im = i.var_mean(dim=0)
del i
vv, vm = v.var_mean(dim=0)
del v
self.assertEqual(vv, torch.zeros_like(vv))
self.assertEqual(iv, torch.zeros_like(iv))
self.assertEqual(vm, torch.arange(255, dtype=dtype, device=device))
self.assertEqual(im, t0.sort().indices)
def _test_sort_discontiguous(self, device, dtype):
# on CUDA 2048 vs >2048 have different code path for the dim being sorted
sizes = (5, 7, 2049)
for shape in permutations(sizes):
for perm in permutations((0, 1, 2)):
for dim in range(3):
t = torch.randn(shape, device=device, dtype=dtype).permute(perm)
r1 = t.sort(dim=dim)
r2 = t.contiguous().sort(dim=dim)
self.assertEqual(r1, r2)
n = t.size(dim)
# assert ordered
self.assertTrue((r1.values.narrow(dim, 1, n - 1) >= r1.values.narrow(dim, 0, n - 1)).all())
# assert that different segments does not mix, which can easily happen
# if the stride is not handled correctly
self.assertTrue((t.unsqueeze(-1).transpose(dim, -1) == r1.values.unsqueeze(-1)).any(dim=dim).any(dim=-1).all())
# assert stride is preserved
if self.device_type == 'cuda':
# FIXME: this behavior should be true for all cases, not
# just the one specified in if condition
self.assertEqual(r1.values.stride(), t.stride())
self.assertEqual(r1.indices.stride(), t.stride())
@onlyCUDA
@dtypes(torch.float32)
def test_sort_discontiguous(self, device, dtype):
self._test_sort_discontiguous(device, dtype)
@slowTest # this test is slow on CPU, but not on CUDA
@onlyCPU
@dtypes(torch.float32)
def test_sort_discontiguous_slow(self, device, dtype):
self._test_sort_discontiguous(device, dtype)
# FIXME: remove torch.bool from unsupported types once support is added for cub sort
@dtypes(*set(torch.testing.get_all_dtypes()) - {torch.bool, torch.complex64, torch.complex128})
def test_stable_sort_against_numpy(self, device, dtype):
if TEST_WITH_ROCM and dtype == torch.bfloat16:
return
if dtype in torch.testing.floating_types_and(torch.float16, torch.bfloat16):
inf = float('inf')
neg_inf = -float('inf')
nan = float('nan')
else:
if dtype != torch.bool:
# no torch.iinfo support for torch.bool
inf = torch.iinfo(dtype).max
neg_inf = torch.iinfo(dtype).min
else:
inf = True
neg_inf = ~inf
# no nan for integral types, we use inf instead for simplicity
nan = inf
def generate_samples():
from itertools import chain, combinations
for sizes in [(1025,), (10000,)]:
size = sizes[0]
# binary strings
yield (torch.tensor([0, 1] * size, dtype=dtype, device=device), 0)
if self.device_type == 'cuda':
return
yield (torch.tensor([0, 1] * 100, dtype=dtype, device=device), 0)
def repeated_index_fill(t, dim, idxs, vals):
res = t
for idx, val in zip(idxs, vals):
res = res.index_fill(dim, idx, val)
return res
for sizes in [(1, 10), (10, 1), (10, 10), (10, 10, 10)]:
size = min(*sizes)
x = (torch.randn(*sizes, device=device) * size).to(dtype)
yield (x, 0)
# Generate tensors which are being filled at random locations
# with values from the non-empty subsets of the set (inf, neg_inf, nan)
# for each dimension.
n_fill_vals = 3 # cardinality of (inf, neg_inf, nan)
for dim in range(len(sizes)):
idxs = (torch.randint(high=size, size=(size // 10,)) for i in range(n_fill_vals))
vals = (inf, neg_inf, nan)
subsets = chain.from_iterable(combinations(list(zip(idxs, vals)), r)
for r in range(1, n_fill_vals + 1))
for subset in subsets:
idxs_subset, vals_subset = zip(*subset)
yield (repeated_index_fill(x, dim, idxs_subset, vals_subset), dim)
for sample, dim in generate_samples():
_, idx_torch = sample.sort(dim=dim, stable=True)
if dtype is torch.bfloat16:
sample_numpy = sample.float().cpu().numpy()
else:
sample_numpy = sample.cpu().numpy()
idx_numpy = np.argsort(sample_numpy, axis=dim, kind='stable')
self.assertEqual(idx_torch, idx_numpy)
@dtypes(*(torch.testing.get_all_int_dtypes() + torch.testing.get_all_fp_dtypes()))
def test_msort(self, device, dtype):
if TEST_WITH_ROCM and dtype == torch.bfloat16:
return
def test(shape):
tensor = make_tensor(shape, device, dtype, low=-9, high=9)
if tensor.size() != torch.Size([]):
if dtype is torch.bfloat16:
expected = torch.from_numpy(np.msort(tensor.float().cpu().numpy())).bfloat16()
else:
expected = torch.from_numpy(np.msort(tensor.cpu().numpy()))
else:
expected = tensor # numpy.msort() does not support empty shapes tensor
result = torch.msort(tensor)
self.assertEqual(result, expected)
out = torch.empty_like(result)
torch.msort(tensor, out=out)
self.assertEqual(out, expected)
shapes = (
[],
[0, ],
[20, ],
[1, 20],
[30, 30],
[10, 20, 30]
)
for shape in shapes:
test(shape)
def test_topk(self, device):
def topKViaSort(t, k, dim, dir):
sorted, indices = t.sort(dim, dir)
return sorted.narrow(dim, 0, k), indices.narrow(dim, 0, k)
def compareTensors(t, res1, ind1, res2, ind2, dim):
# Values should be exactly equivalent
self.assertEqual(res1, res2, atol=0, rtol=0)
# Indices might differ based on the implementation, since there is
# no guarantee of the relative order of selection
if not ind1.eq(ind2).all():
# To verify that the indices represent equivalent elements,
# gather from the input using the topk indices and compare against
# the sort indices
vals = t.gather(dim, ind2)
self.assertEqual(res1, vals, atol=0, rtol=0)
def compare(t, k, dim, dir):
topKVal, topKInd = t.topk(k, dim, dir, True)
sortKVal, sortKInd = topKViaSort(t, k, dim, dir)
compareTensors(t, sortKVal, sortKInd, topKVal, topKInd, dim)
t = torch.rand(random.randint(1, SIZE),
random.randint(1, SIZE),
random.randint(1, SIZE), device=device)
for _kTries in range(3):
for _dimTries in range(3):
for transpose in (True, False):
for dir in (True, False):
testTensor = t
if transpose:
dim1 = random.randrange(t.ndimension())
dim2 = dim1
while dim1 == dim2:
dim2 = random.randrange(t.ndimension())
testTensor = t.transpose(dim1, dim2)
dim = random.randrange(testTensor.ndimension())
k = random.randint(1, testTensor.size(dim))
compare(testTensor, k, dim, dir)
def test_topk_arguments(self, device):
q = torch.randn(10, 2, 10, device=device)
# Make sure True isn't mistakenly taken as the 2nd dimension (interpreted as 1)
self.assertRaises(TypeError, lambda: q.topk(4, True))
@skipCUDAIfRocm
def test_unique_dim(self, device):
self.assertFalse(hasattr(torch, 'unique_dim'))
def run_test(device, dtype):
x = torch.tensor([[[1., 1.],
[0., 1.],
[2., 1.],
[0., 1.]],
[[1., 1.],
[0., 1.],
[2., 1.],
[0., 1.]]],
dtype=dtype,
device=device)
x_empty = torch.empty(5, 0, dtype=dtype, device=device)
x_ill_formed_empty = torch.empty(5, 0, 0, dtype=dtype, device=device)
x_ill_formed_empty_another = torch.empty(5, 0, 5, dtype=dtype, device=device)
expected_unique_dim0 = torch.tensor([[[1., 1.],
[0., 1.],
[2., 1.],
[0., 1.]]],
dtype=dtype,
device=device)
expected_inverse_dim0 = torch.tensor([0, 0])
expected_counts_dim0 = torch.tensor([2])
expected_unique_dim1 = torch.tensor([[[0., 1.],
[1., 1.],
[2., 1.]],
[[0., 1.],
[1., 1.],
[2., 1.]]],
dtype=dtype,
device=device)
expected_unique_dim1_bool = torch.tensor([[[False, True], [True, True]],
[[False, True], [True, True]]],
dtype=torch.bool,
device=device)
expected_inverse_dim1 = torch.tensor([1, 0, 2, 0])
expected_inverse_dim1_bool = torch.tensor([1, 0, 1, 0])
expected_counts_dim1 = torch.tensor([2, 1, 1])
expected_counts_dim1_bool = torch.tensor([2, 2])
expected_unique_dim2 = torch.tensor([[[1., 1.],
[0., 1.],
[2., 1.],
[0., 1.]],
[[1., 1.],
[0., 1.],
[2., 1.],
[0., 1.]]],
dtype=dtype,
device=device)
expected_inverse_dim2 = torch.tensor([0, 1])
expected_counts_dim2 = torch.tensor([1, 1])
expected_unique_empty = torch.tensor([], dtype=dtype, device=device)
expected_inverse_empty = torch.tensor([], dtype=torch.long, device=device)
expected_counts_empty = torch.tensor([], dtype=torch.long, device=device)
# dim0
x_unique = torch.unique(x, dim=0)
self.assertEqual(expected_unique_dim0, x_unique)
x_unique, x_inverse = torch.unique(
x,
return_inverse=True,
dim=0)
self.assertEqual(expected_unique_dim0, x_unique)
self.assertEqual(expected_inverse_dim0, x_inverse)
x_unique, x_counts = torch.unique(
x,
return_inverse=False,
return_counts=True,
dim=0)
self.assertEqual(expected_unique_dim0, x_unique)
self.assertEqual(expected_counts_dim0, x_counts)
x_unique, x_inverse, x_counts = torch.unique(
x,
return_inverse=True,
return_counts=True,
dim=0)
self.assertEqual(expected_unique_dim0, x_unique)
self.assertEqual(expected_inverse_dim0, x_inverse)
self.assertEqual(expected_counts_dim0, x_counts)
# dim1
x_unique = torch.unique(x, dim=1)
if x.dtype == torch.bool:
self.assertEqual(expected_unique_dim1_bool, x_unique)
else:
self.assertEqual(expected_unique_dim1, x_unique)
x_unique, x_inverse = torch.unique(
x,
return_inverse=True,
dim=1)
if x.dtype == torch.bool:
self.assertEqual(expected_unique_dim1_bool, x_unique)
self.assertEqual(expected_inverse_dim1_bool, x_inverse)
else:
self.assertEqual(expected_unique_dim1, x_unique)
self.assertEqual(expected_inverse_dim1, x_inverse)
x_unique, x_counts = torch.unique(
x,
return_inverse=False,
return_counts=True,
dim=1)
if x.dtype == torch.bool:
self.assertEqual(expected_unique_dim1_bool, x_unique)
self.assertEqual(expected_counts_dim1_bool, x_counts)
else:
self.assertEqual(expected_unique_dim1, x_unique)
self.assertEqual(expected_counts_dim1, x_counts)
x_unique, x_inverse, x_counts = torch.unique(
x,
return_inverse=True,
return_counts=True,
dim=1)
if x.dtype == torch.bool:
self.assertEqual(expected_unique_dim1_bool, x_unique)
self.assertEqual(expected_inverse_dim1_bool, x_inverse)
self.assertEqual(expected_counts_dim1_bool, x_counts)
else:
self.assertEqual(expected_unique_dim1, x_unique)
self.assertEqual(expected_inverse_dim1, x_inverse)
self.assertEqual(expected_counts_dim1, x_counts)
# dim2
x_unique = torch.unique(x, dim=2)
self.assertEqual(expected_unique_dim2, x_unique)
x_unique, x_inverse = torch.unique(
x,
return_inverse=True,
dim=2)
self.assertEqual(expected_unique_dim2, x_unique)
self.assertEqual(expected_inverse_dim2, x_inverse)
x_unique, x_counts = torch.unique(
x,
return_inverse=False,
return_counts=True,
dim=2)
self.assertEqual(expected_unique_dim2, x_unique)
self.assertEqual(expected_counts_dim2, x_counts)
x_unique, x_inverse, x_counts = torch.unique(
x,
return_inverse=True,
return_counts=True,
dim=2)
self.assertEqual(expected_unique_dim2, x_unique)
self.assertEqual(expected_inverse_dim2, x_inverse)
self.assertEqual(expected_counts_dim2, x_counts)
# test empty tensor
x_unique, x_inverse, x_counts = torch.unique(
x_empty,
return_inverse=True,
return_counts=True,
dim=1)
self.assertEqual(expected_unique_empty, x_unique)
self.assertEqual(expected_inverse_empty, x_inverse)
self.assertEqual(expected_counts_empty, x_counts)
# test not a well formed tensor
# Checking for runtime error, as this is the expected behaviour
with self.assertRaises(RuntimeError):
torch.unique(
x_ill_formed_empty,
return_inverse=True,
return_counts=True,
dim=1)
# test along dim2
with self.assertRaises(RuntimeError):
torch.unique(
x_ill_formed_empty_another,
return_inverse=True,
return_counts=True,
dim=2)
# test consecutive version
y = torch.tensor(
[[0, 1],
[0, 1],
[0, 1],
[1, 2],
[1, 2],
[3, 4],
[0, 1],
[0, 1],
[3, 4],
[1, 2]],
dtype=dtype,
device=device
)
expected_y_unique = torch.tensor(
[[0, 1],
[1, 2],
[3, 4],
[0, 1],
[3, 4],
[1, 2]],
dtype=dtype,
device=device
)
expected_y_inverse = torch.tensor([0, 0, 0, 1, 1, 2, 3, 3, 4, 5], dtype=torch.int64, device=device)
expected_y_counts = torch.tensor([3, 2, 1, 2, 1, 1], dtype=torch.int64, device=device)
expected_y_inverse_bool = torch.tensor([0, 0, 0, 1, 1, 1, 2, 2, 3, 3], dtype=torch.int64, device=device)
expected_y_counts_bool = torch.tensor([3, 3, 2, 2], dtype=torch.int64, device=device)
y_unique, y_inverse, y_counts = torch.unique_consecutive(y, return_inverse=True, return_counts=True, dim=0)
if x.dtype == torch.bool:
self.assertEqual(expected_y_inverse_bool, y_inverse)
self.assertEqual(expected_y_counts_bool, y_counts)
else:
self.assertEqual(expected_y_inverse, y_inverse)
self.assertEqual(expected_y_counts, y_counts)
run_test(device, torch.float)
run_test(device, torch.double)
run_test(device, torch.long)
run_test(device, torch.uint8)
run_test(device, torch.bool)
@onlyCUDA
def test_topk_noncontiguous_gpu(self, device):
t = torch.randn(20, device=device)[::2]
top1, idx1 = t.topk(5)
top2, idx2 = t.contiguous().topk(5)
self.assertEqual(top1, top2)
self.assertEqual(idx1, idx2)
def _test_topk_dtype(self, device, dtype, integral, size):
if integral:
a = torch.randint(torch.iinfo(dtype).min, torch.iinfo(dtype).max,
size=(size,), dtype=dtype, device=device)
else:
a = torch.randn(size=(size,), dtype=dtype, device=device)
sort_topk = a.sort()[0][-(size // 2):].flip(0)
topk = a.topk(size // 2)
self.assertEqual(sort_topk, topk[0]) # check values
self.assertEqual(sort_topk, a[topk[1]]) # check indices
@dtypes(torch.int8, torch.uint8, torch.int16, torch.int32, torch.int64)
def test_topk_integral(self, device, dtype):
small = 10
large = 4096
for curr_size in (small, large):
self._test_topk_dtype(device, dtype, True, curr_size)
@onlyCUDA
@dtypes(torch.bfloat16)
@skipCUDAIfRocm
def test_topk_bfloat16(self, device, dtype):
small = 10
large = 8192
for curr_size in (small, large):
self._test_topk_dtype(device, dtype, False, curr_size)
@dtypesIfCUDA(*torch.testing.get_all_fp_dtypes())
@dtypes(torch.float, torch.double)
def test_topk_nonfinite(self, device, dtype):
if TEST_WITH_ROCM and dtype == torch.bfloat16:
return
x = torch.tensor([float('nan'), float('inf'), 1e4, 0, -1e4, -float('inf')], device=device, dtype=dtype)
val, idx = x.topk(4)
expect = torch.tensor([float('nan'), float('inf'), 1e4, 0], device=device, dtype=dtype)
self.assertEqual(val, expect)
self.assertEqual(idx, [0, 1, 2, 3])
val, idx = x.topk(4, largest=False)
expect = torch.tensor([-float('inf'), -1e4, 0, 1e4], device=device, dtype=dtype)
self.assertEqual(val, expect)
self.assertEqual(idx, [5, 4, 3, 2])
def test_topk_4d(self, device):
x = torch.ones(2, 3072, 2, 2, device=device)
x[:, 1, :, :] *= 2.
x[:, 10, :, :] *= 1.5
val, ind = torch.topk(x, k=2, dim=1)
expected_ind = torch.ones(2, 2, 2, 2, dtype=torch.long, device=device)
expected_ind[:, 1, :, :] = 10
expected_val = torch.ones(2, 2, 2, 2, device=device)
expected_val[:, 0, :, :] *= 2.
expected_val[:, 1, :, :] *= 1.5
self.assertEqual(val, expected_val, atol=0, rtol=0)
self.assertEqual(ind, expected_ind, atol=0, rtol=0)
@onlyOnCPUAndCUDA
@dtypesIfCUDA(*(torch.testing.get_all_dtypes(include_complex=False,
include_bool=False,
include_half=False,
include_bfloat16=True)))
@dtypes(*(torch.testing.get_all_dtypes(include_complex=False, include_bool=False, include_half=False, include_bfloat16=False)))
def test_topk_zero(self, device, dtype):
if TEST_WITH_ROCM and dtype == torch.bfloat16:
return
# https://github.com/pytorch/pytorch/issues/49205
t = torch.rand(2, 2, device=device).to(dtype=dtype)
val, idx = torch.topk(t, k=0, largest=False)
self.assertEqual(val.size(), torch.Size([2, 0]))
self.assertEqual(idx.size(), torch.Size([2, 0]))
def _test_unique_scalar_empty(self, dtype, device, f):
# test scalar
x = torch.tensor(0, dtype=dtype, device=device)
unique, inverse, counts = f(x, return_inverse=True, return_counts=True)
expected_unique = torch.tensor([0], dtype=dtype, device=device)
expected_inverse = torch.tensor(0, device=device)
expected_counts = torch.tensor([1], device=device)
self.assertEqual(unique, expected_unique)
self.assertEqual(inverse, expected_inverse)
self.assertEqual(counts, expected_counts)
# test zero sized tensor
x = torch.zeros((0, 0, 3), dtype=dtype, device=device)
unique, inverse, counts = f(x, return_inverse=True, return_counts=True)
expected_unique = torch.tensor([], dtype=dtype, device=device)
expected_inverse = torch.empty((0, 0, 3), dtype=torch.long, device=device)
expected_counts = torch.tensor([], dtype=torch.long, device=device)
self.assertEqual(unique, expected_unique)
self.assertEqual(inverse, expected_inverse)
self.assertEqual(counts, expected_counts)
def _test_unique_with_expects(self, device, dtype, f, x, expected_unique, expected_inverse, expected_counts, additional_shape):
def ensure_tuple(x):
if isinstance(x, torch.Tensor):
return (x,)
return x
for return_inverse in [True, False]:
for return_counts in [True, False]:
# test with expected
ret = ensure_tuple(f(x, return_inverse=return_inverse, return_counts=return_counts))
self.assertEqual(len(ret), 1 + int(return_inverse) + int(return_counts))
self.assertEqual(expected_unique, ret[0])
if return_inverse:
self.assertEqual(expected_inverse, ret[1])
if return_counts:
count_index = 1 + int(return_inverse)
self.assertEqual(expected_counts, ret[count_index])
# tests per-element unique on a higher rank tensor.
y = x.view(additional_shape)
y_unique, y_inverse, y_counts = f(y, return_inverse=True, return_counts=True)
self.assertEqual(expected_unique, y_unique)
self.assertEqual(expected_inverse.view(additional_shape), y_inverse)
self.assertEqual(expected_counts, y_counts)
@dtypes(*set(torch.testing.get_all_dtypes()) - {torch.bfloat16, torch.complex64, torch.complex128})
def test_unique(self, device, dtype):
if dtype is torch.half and self.device_type == 'cpu':
return # CPU does not have half support
def ensure_tuple(x):
if isinstance(x, torch.Tensor):
return (x,)
return x
if dtype is torch.bool:
x = torch.tensor([True, False, False, False, True, False, True, False], dtype=torch.bool, device=device)
expected_unique = torch.tensor([False, True], dtype=torch.bool, device=device)
expected_inverse = torch.tensor([1, 0, 0, 0, 1, 0, 1, 0], dtype=torch.long, device=device)
expected_counts = torch.tensor([5, 3], dtype=torch.long, device=device)
else:
x = torch.tensor([1, 2, 3, 2, 8, 5, 2, 3], dtype=dtype, device=device)
expected_unique = torch.tensor([1, 2, 3, 5, 8], dtype=dtype, device=device)
expected_inverse = torch.tensor([0, 1, 2, 1, 4, 3, 1, 2], device=device)
expected_counts = torch.tensor([1, 3, 2, 1, 1], device=device)
# test sorted unique
fs = (
lambda x, **kwargs: torch.unique(x, sorted=True, **kwargs),
lambda x, **kwargs: x.unique(sorted=True, **kwargs),
)
x_sliced = torch.empty(x.size(0) * 2, dtype=dtype, device=device)[::2].copy_(x)
xs = (x, x_sliced)
for f, x in product(fs, xs):
self._test_unique_with_expects(device, dtype, f, x, expected_unique, expected_inverse, expected_counts, (2, 2, 2))
self._test_unique_scalar_empty(dtype, device, f)
# test unsorted unique
fs = (
lambda x, **kwargs: torch.unique(x, sorted=False, **kwargs),
lambda x, **kwargs: x.unique(sorted=False, **kwargs)
)
for f, x in product(fs, xs):
self._test_unique_scalar_empty(dtype, device, f)
for return_inverse, return_counts in product((True, False), repeat=2):
ret = ensure_tuple(f(x, return_inverse=return_inverse, return_counts=return_counts))
self.assertEqual(len(ret), 1 + int(return_inverse) + int(return_counts))
x_list = x.tolist()
x_unique_list = ret[0].tolist()
self.assertEqual(expected_unique.tolist(), sorted(x_unique_list))
if return_inverse:
x_inverse_list = ret[1].tolist()
for i, j in enumerate(x_inverse_list):
self.assertEqual(x_list[i], x_unique_list[j])
if return_counts:
count_index = 1 + int(return_inverse)
x_counts_list = ret[count_index].tolist()
for i, j in zip(x_unique_list, x_counts_list):
count = 0
for k in x_list:
if k == i:
count += 1
self.assertEqual(j, count)
@dtypes(*set(torch.testing.get_all_dtypes()) - {torch.bfloat16, torch.complex64, torch.complex128})
def test_unique_consecutive(self, device, dtype):
if dtype is torch.half and self.device_type == 'cpu':
return # CPU does not have half support
if dtype is torch.bool:
x = torch.tensor([True, False, False, False, True, True, False, False, False], dtype=torch.bool, device=device)
expected_unique = torch.tensor([True, False, True, False], dtype=torch.bool, device=device)
expected_inverse = torch.tensor([0, 1, 1, 1, 2, 2, 3, 3, 3], dtype=torch.long, device=device)
expected_counts = torch.tensor([1, 3, 2, 3], dtype=torch.long, device=device)
else:
x = torch.tensor([1, 2, 2, 2, 5, 5, 2, 2, 3], dtype=dtype, device=device)
expected_unique = torch.tensor([1, 2, 5, 2, 3], dtype=dtype, device=device)
expected_inverse = torch.tensor([0, 1, 1, 1, 2, 2, 3, 3, 4], device=device)
expected_counts = torch.tensor([1, 3, 2, 2, 1], device=device)
for f in [torch.unique_consecutive, lambda x, **kwargs: x.unique_consecutive(**kwargs)]:
self._test_unique_with_expects(device, dtype, f, x, expected_unique, expected_inverse, expected_counts, (3, 3))
self._test_unique_scalar_empty(dtype, device, f)
@dtypes(torch.double)
def test_kthvalue(self, device, dtype):
SIZE = 50
x = torch.rand(SIZE, SIZE, SIZE, dtype=dtype, device=device)
x0 = x.clone()
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(x, k, keepdim=False)
res2val, res2ind = torch.sort(x)
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], atol=0, rtol=0)
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], atol=0, rtol=0)
# test use of result tensors
k = random.randint(1, SIZE)
res1val = torch.tensor([], dtype=dtype, device=device)
res1ind = torch.tensor([], dtype=torch.long, device=device)
torch.kthvalue(x, k, keepdim=False, out=(res1val, res1ind))
res2val, res2ind = torch.sort(x)
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], atol=0, rtol=0)
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], atol=0, rtol=0)
# test non-default dim
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(x, k, 0, keepdim=False)
res2val, res2ind = torch.sort(x, 0)
self.assertEqual(res1val, res2val[k - 1], atol=0, rtol=0)
self.assertEqual(res1ind, res2ind[k - 1], atol=0, rtol=0)
# non-contiguous
y = x.narrow(1, 0, 1)
y0 = y.contiguous()
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(y, k)
res2val, res2ind = torch.kthvalue(y0, k)
self.assertEqual(res1val, res2val, atol=0, rtol=0)
self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
# non-contiguous [Reference: https://github.com/pytorch/pytorch/issues/45721]
non_contig_t = torch.tensor([0, -1, 1, -2, 2], dtype=dtype, device=device)[::2]
expected_val, expected_ind = non_contig_t.contiguous().kthvalue(2)
non_contig_cpu_t = non_contig_t.cpu()
expected_val_cpu, expected_ind_cpu = non_contig_cpu_t.kthvalue(2)
out_val, out_ind = non_contig_t.kthvalue(2)
self.assertEqual(expected_val, out_val, atol=0, rtol=0)
self.assertEqual(expected_ind, out_ind, atol=0, rtol=0)
self.assertEqual(expected_val_cpu, out_val, atol=0, rtol=0)
self.assertEqual(expected_ind_cpu, out_ind, atol=0, rtol=0)
# check that the input wasn't modified
self.assertEqual(x, x0, atol=0, rtol=0)
# simple test case (with repetitions)
y = torch.tensor((3., 5, 4, 1, 1, 5), dtype=dtype, device=device)
self.assertEqual(torch.kthvalue(y, 3)[0], 3, atol=0, rtol=0)
self.assertEqual(torch.kthvalue(y, 2)[0], 1, atol=0, rtol=0)
# simple test case (with NaN)
SIZE = 50
x = torch.rand(SIZE, SIZE, SIZE, dtype=dtype, device=device)
x[torch.arange(SIZE), :, torch.randint(50, (50,))] = nan
ks = [random.randint(1, SIZE), 1, SIZE, SIZE - 1]
res2val, res2ind = torch.sort(x)
for k in ks:
res1val, res1ind = torch.kthvalue(x, k, keepdim=False)
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], atol=0, rtol=0)
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], atol=0, rtol=0)
# test overlapping output
@dtypes(torch.double)
@onlyOnCPUAndCUDA # Fails on XLA
def test_kthvalue_overlap(self, device, dtype):
S = 10
k = 5
a = torch.randn(S, device=device)
indices = torch.empty((), device=device, dtype=torch.long)
with self.assertRaisesRegex(RuntimeError, "unsupported operation:"):
torch.kthvalue(a, k, out=(a, indices))
@dtypes(torch.float)
@onlyOnCPUAndCUDA # Fails on XLA
def test_kthvalue_scalar(self, device, dtype):
# Test scalar input (test case from https://github.com/pytorch/pytorch/issues/30818)
# Tests that passing a scalar tensor or 1D tensor with 1 element work either way
res = torch.tensor(2, device=device, dtype=dtype).kthvalue(1)
ref = torch.tensor([2], device=device, dtype=dtype).kthvalue(1)
self.assertEqual(res[0], ref[0].squeeze())
self.assertEqual(res[1], ref[1].squeeze())
@dtypes(*all_types())
@dtypesIfCUDA(*all_types_and(torch.half))
def test_isin(self, device, dtype):
def assert_isin_equal(a, b):
# Compare to the numpy reference implementation.
x = torch.isin(a, b)
a = a.cpu().numpy() if torch.is_tensor(a) else np.array(a)
b = b.cpu().numpy() if torch.is_tensor(b) else np.array(b)
y = np.isin(a, b)
self.assertEqual(x, y)
# multi-dim tensor, multi-dim tensor
a = torch.arange(24, device=device, dtype=dtype).reshape([2, 3, 4])
b = torch.tensor([[10, 20, 30], [0, 1, 3], [11, 22, 33]], device=device, dtype=dtype)
assert_isin_equal(a, b)
# zero-dim tensor
zero_d = torch.tensor(3, device=device, dtype=dtype)
assert_isin_equal(zero_d, b)
assert_isin_equal(a, zero_d)
assert_isin_equal(zero_d, zero_d)
# empty tensor
empty = torch.tensor([], device=device, dtype=dtype)
assert_isin_equal(empty, b)
assert_isin_equal(a, empty)
assert_isin_equal(empty, empty)
# scalar
assert_isin_equal(a, 6)
assert_isin_equal(5, b)
def define_expected(lst, invert=False):
expected = torch.tensor(lst, device=device)
if invert:
expected = expected.logical_not()
return expected
# Adapted from numpy's in1d tests
for mult in [1, 10]:
for invert in [False, True]:
a = torch.tensor([5, 7, 1, 2], device=device, dtype=dtype)
b = torch.tensor([2, 4, 3, 1, 5] * mult, device=device, dtype=dtype)
ec = define_expected([True, False, True, True], invert=invert)
c = torch.isin(a, b, assume_unique=True, invert=invert)
self.assertEqual(c, ec)
a[0] = 8
ec = define_expected([False, False, True, True], invert=invert)
c = torch.isin(a, b, assume_unique=True, invert=invert)
self.assertEqual(c, ec)
a[0], a[3] = 4, 8
ec = define_expected([True, False, True, False], invert=invert)
c = torch.isin(a, b, assume_unique=True, invert=invert)
self.assertEqual(c, ec)
a = torch.tensor([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5], device=device, dtype=dtype)
b = torch.tensor([2, 3, 4] * mult, device=device, dtype=dtype)
ec = define_expected([False, True, False, True, True, True, True, True, True,
False, True, False, False, False], invert=invert)
c = torch.isin(a, b, invert=invert)
self.assertEqual(c, ec)
b = torch.tensor([2, 3, 4] * mult + [5, 5, 4] * mult, device=device, dtype=dtype)
ec = define_expected([True, True, True, True, True, True, True, True, True, True,
True, False, True, True], invert=invert)
c = torch.isin(a, b, invert=invert)
self.assertEqual(c, ec)
a = torch.tensor([5, 7, 1, 2], device=device, dtype=dtype)
b = torch.tensor([2, 4, 3, 1, 5] * mult, device=device, dtype=dtype)
ec = define_expected([True, False, True, True], invert=invert)
c = torch.isin(a, b, invert=invert)
self.assertEqual(c, ec)
a = torch.tensor([5, 7, 1, 1, 2], device=device, dtype=dtype)
b = torch.tensor([2, 4, 3, 3, 1, 5] * mult, device=device, dtype=dtype)
ec = define_expected([True, False, True, True, True], invert=invert)
c = torch.isin(a, b, invert=invert)
self.assertEqual(c, ec)
a = torch.tensor([5, 5], device=device, dtype=dtype)
b = torch.tensor([2, 2] * mult, device=device, dtype=dtype)
ec = define_expected([False, False], invert=invert)
c = torch.isin(a, b, invert=invert)
self.assertEqual(c, ec)
# multi-dimensional input case using sort-based algo
for assume_unique in [False, True]:
a = torch.arange(6, device=device, dtype=dtype).reshape([2, 3])
b = torch.arange(3, 30, device=device, dtype=dtype)
ec = define_expected([[False, False, False], [True, True, True]], invert=invert)
c = torch.isin(a, b, invert=invert, assume_unique=assume_unique)
self.assertEqual(c, ec)
def test_isin_different_dtypes(self, device):
supported_types = all_types() if device == 'cpu' else all_types_and(torch.half)
for mult in [1, 10]:
for assume_unique in [False, True]:
for dtype1, dtype2 in product(supported_types, supported_types):
a = torch.tensor([1, 2, 3], device=device, dtype=dtype1)
b = torch.tensor([3, 4, 5] * mult, device=device, dtype=dtype2)
ec = torch.tensor([False, False, True], device=device)
c = torch.isin(a, b, assume_unique=assume_unique)
self.assertEqual(c, ec)
@onlyCUDA
@dtypes(*all_types())
def test_isin_different_devices(self, device, dtype):
a = torch.arange(6, device=device, dtype=dtype).reshape([2, 3])
b = torch.arange(3, 30, device='cpu', dtype=dtype)
with self.assertRaises(RuntimeError):
torch.isin(a, b)
c = torch.arange(6, device='cpu', dtype=dtype).reshape([2, 3])
d = torch.arange(3, 30, device=device, dtype=dtype)
with self.assertRaises(RuntimeError):
torch.isin(c, d)
instantiate_device_type_tests(TestSortAndSelect, globals())
if __name__ == '__main__':
run_tests()