forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
AdaptiveMaxPoolKernel.cpp
342 lines (296 loc) · 12.3 KB
/
AdaptiveMaxPoolKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
#include <ATen/ATen.h>
#include <ATen/Dispatch.h>
#include <ATen/native/AdaptivePooling.h>
#include <ATen/Parallel.h>
#include <ATen/cpu/vec/vec.h>
#include <ATen/native/cpu/utils.h>
namespace at { namespace native {
namespace {
template <typename scalar_t>
void cpu_adaptive_max_pool(
const Tensor& output_,
const Tensor& indices_,
const Tensor& input_,
IntArrayRef output_size) {
auto input = input_.contiguous();
auto output = output_.contiguous();
auto indices = indices_.contiguous();
auto input_data = input.data_ptr<scalar_t>();
auto output_data = output.data_ptr<scalar_t>();
auto indices_data = indices.data_ptr<int64_t>();
int64_t ndim = input.ndimension();
// treat batch size and channels as one dimension
int64_t channels = ndim == 3 ? input.size(0) : input.size(0) * input.size(1);
int64_t input_height = input.size(-2);
int64_t input_width = input.size(-1);
int64_t output_height = output_size[0];
int64_t output_width = output_size[1];
// parallel on dim of N, C
at::parallel_for(0, channels, 0, [&](int64_t begin, int64_t end) {
for (int64_t c = begin; c < end; c++) {
scalar_t* input_ptr = input_data + c * input_height * input_width;
scalar_t* output_ptr = output_data + c * output_height * output_width;
int64_t* indices_ptr = indices_data + c * output_height * output_width;
for (int64_t oh = 0; oh < output_height; oh++) {
int64_t ih0 = start_index(oh, output_height, input_height);
int64_t ih1 = end_index(oh, output_height, input_height);
for (int64_t ow = 0; ow < output_width; ow++) {
int64_t iw0 = start_index(ow, output_width, input_width);
int64_t iw1 = end_index(ow, output_width, input_width);
// compute local max
int64_t maxindex = ih0 * input_width + iw0;
scalar_t maxval = -std::numeric_limits<scalar_t>::infinity();
for (int64_t ih = ih0; ih < ih1; ih ++) {
for (int64_t iw = iw0; iw < iw1; iw ++) {
int64_t index = ih * input_width + iw;
scalar_t val = input_ptr[index];
if ((val > maxval) || std::isnan(val)) {
maxval = val;
maxindex = index;
}
}
}
// set output to local max and store location of max
output_ptr[oh * output_width + ow] = maxval;
indices_ptr[oh * output_width + ow] = maxindex;
}
}
}
});
if (!output_.is_contiguous()) {
output_.copy_(output);
}
if (!indices_.is_contiguous()) {
indices_.copy_(indices);
}
}
template <typename scalar_t>
void cpu_adaptive_max_pool_channels_last(
const Tensor& output_,
const Tensor& indices_,
const Tensor& input_,
IntArrayRef output_size) {
TORCH_CHECK(input_.ndimension() == 4,
"adaptive max pooling with channels last format supports tensors with 4 dims");
auto memory_format = at::MemoryFormat::ChannelsLast;
auto input = input_.contiguous(memory_format);
auto output = output_.contiguous(memory_format);
auto indices = indices_.contiguous(memory_format);
auto input_data = input.data_ptr<scalar_t>();
auto output_data = output.data_ptr<scalar_t>();
auto indices_data = indices.data_ptr<int64_t>();
int64_t nbatch = input.size(0);
int64_t channels = input.size(1);
int64_t input_height = input.size(2);
int64_t input_width = input.size(3);
int64_t output_height = output_size[0];
int64_t output_width = output_size[1];
using Vec = vec::Vectorized<scalar_t>;
using integer_t = vec::int_same_size_t<scalar_t>;
using iVec = vec::Vectorized<integer_t>;
// for the convience of vectorization, use integer of the same size of scalar_t,
// e.g. int32_t for float, int64_t for double
// need to make sure doesn't overflow
TORCH_CHECK(input_height * input_width <= std::numeric_limits<integer_t>::max());
// parallel on dim of N, H, W
at::parallel_for(0, nbatch * output_height * output_width, 0, [&](int64_t begin, int64_t end) {
int64_t n = 0;
int64_t oh = 0;
int64_t ow = 0;
data_index_init(begin, n, nbatch, oh, output_height, ow, output_width);
int64_t size = channels;
int64_t len = size - (size % Vec::size());
// temp buffer holding index with integer_t
std::unique_ptr<integer_t []> index_buffer(new integer_t[len]);
for (int64_t i = begin; i < end; i++) {
int64_t ih0 = start_index(oh, output_height, input_height);
int64_t ih1 = end_index(oh, output_height, input_height);
int64_t iw0 = start_index(ow, output_width, input_width);
int64_t iw1 = end_index(ow, output_width, input_width);
scalar_t* out = output_data + i * channels;
int64_t* ind = indices_data + i * channels;
// Pass I: init out lane
iVec index0_vec = iVec(ih0 * input_width + iw0);
Vec out_vec = Vec(-std::numeric_limits<scalar_t>::infinity());
int64_t d1 = 0;
for (; d1 < len; d1 += Vec::size()) {
index0_vec.store(index_buffer.get() + d1);
out_vec.store(out + d1);
}
for (; d1 < size; d1++) {
ind[d1] = ih0 * input_width + iw0;
out[d1] = -std::numeric_limits<scalar_t>::infinity();
}
// Pass II: compute local max
for (int64_t ih = ih0; ih < ih1; ih ++) {
for (int64_t iw = iw0; iw < iw1; iw ++) {
scalar_t* in = input_data + n * input_height * input_width * channels +
ih * input_width * channels + iw * channels;
int64_t d2 = 0;
for (; d2 < len; d2 += Vec::size()) {
iVec index_vec = iVec(ih * input_width + iw);
Vec val_vec = Vec::loadu(in + d2);
iVec maxindex_vec = iVec::loadu(index_buffer.get() + d2);
Vec maxval_vec = Vec::loadu(out + d2);
// true = all ones, false = all zeros
Vec mask = (val_vec > maxval_vec) | val_vec.isnan();
iVec imask = vec::cast<integer_t>(mask);
Vec out_vec = Vec::blendv(maxval_vec, val_vec, mask);
iVec ind_vec = iVec::blendv(maxindex_vec, index_vec, imask);
out_vec.store(out + d2);
ind_vec.store(index_buffer.get() + d2);
}
for (; d2 < size; d2++) {
int64_t index = ih * input_width + iw;
scalar_t val = in[d2];
int64_t maxindex = ind[d2];
scalar_t maxval = out[d2];
bool mask = (val > maxval) || std::isnan(val);
out[d2] = mask ? val : maxval;
ind[d2] = mask ? index : maxindex;
}
}
}
// convert indice data type
vec::convert<integer_t, int64_t>(index_buffer.get(), ind, len);
// move on to next output index
data_index_step(n, nbatch, oh, output_height, ow, output_width);
}
});
if (!output_.is_contiguous(memory_format)) {
output_.copy_(output);
}
if (!indices_.is_contiguous(memory_format)) {
indices_.copy_(indices);
}
}
template <typename scalar_t>
void cpu_adaptive_max_pool_backward(
const Tensor& grad_input_,
const Tensor& grad_output_,
const Tensor& indices_) {
auto grad_output = grad_output_.contiguous();
auto indices = indices_.contiguous();
auto grad_input = grad_input_.contiguous();
auto grad_output_data = grad_output.data_ptr<scalar_t>();
auto indices_data = indices.data_ptr<int64_t>();
auto grad_input_data = grad_input.data_ptr<scalar_t>();
int64_t ndim = grad_output.ndimension();
// treat batch size and channels as one dimension
int64_t channels = ndim == 3 ? grad_output.size(0) : grad_output.size(0) * grad_output.size(1);
int64_t input_height = grad_input.size(-2);
int64_t input_width = grad_input.size(-1);
int64_t output_height = grad_output.size(-2);
int64_t output_width = grad_output.size(-1);
// parallel on dim of N, C
at::parallel_for(0, channels, 0, [&](int64_t begin, int64_t end) {
for (int64_t c = begin; c < end; c++) {
scalar_t* grad_input_ptr = grad_input_data + c * input_height * input_width;
scalar_t* grad_output_ptr = grad_output_data + c * output_height * output_width;
int64_t* indices_ptr = indices_data + c * output_height * output_width;
for (int64_t oh = 0; oh < output_height; oh++) {
for (int64_t ow = 0; ow < output_width; ow++) {
// retrieve position of max
int64_t index = oh * output_width + ow;
int64_t maxindex = indices_ptr[index];
// update gradient
grad_input_ptr[maxindex] += grad_output_ptr[index];
}
}
}
});
if (!grad_input_.is_contiguous()) {
grad_input_.copy_(grad_input);
}
}
template <typename scalar_t>
void cpu_adaptive_max_pool_backward_channels_last(
const Tensor& grad_input_,
const Tensor& grad_output_,
const Tensor& indices_) {
TORCH_CHECK(grad_output_.ndimension() == 4,
"adaptive max pooling backward with channels last format supports tensors with 4 dims.");
auto memory_format = at::MemoryFormat::ChannelsLast;
auto grad_input = grad_input_.contiguous(memory_format);
auto grad_output = grad_output_.contiguous(memory_format);
auto indices = indices_.contiguous(memory_format);
auto grad_input_data = grad_input.data_ptr<scalar_t>();
auto grad_output_data = grad_output.data_ptr<scalar_t>();
auto indices_data = indices.data_ptr<int64_t>();
int64_t nbatch = grad_input.size(0);
int64_t channels = grad_input.size(1);
int64_t input_height = grad_input.size(2);
int64_t input_width = grad_input.size(3);
int64_t output_height = grad_output.size(2);
int64_t output_width = grad_output.size(3);
// parallel on dim N
at::parallel_for(0, nbatch, 0, [&](int64_t begin, int64_t end) {
for (int64_t n = begin; n < end; n++) {
scalar_t* grad_input_ptr = grad_input_data + n * input_height * input_width * channels;
scalar_t* grad_output_ptr = grad_output_data + n * output_height * output_width * channels;
int64_t* indices_ptr = indices_data + n * output_height * output_width * channels;
for (int64_t oh = 0; oh < output_height; oh++) {
for (int64_t ow = 0; ow < output_width; ow++) {
scalar_t* gout = grad_output_ptr + oh * output_width * channels + ow * channels;
int64_t* ind = indices_ptr + oh * output_width * channels + ow * channels;
// TODO: gcc vectorization
for (int64_t c = 0; c < channels; c++) {
int64_t maxindex = ind[c];
grad_input_ptr[maxindex * channels + c] += gout[c];
}
}
}
}
});
if (!grad_input_.is_contiguous(memory_format)) {
grad_input_.copy_(grad_input);
}
}
void adaptive_max_pool2d_kernel_impl(
const Tensor& output,
const Tensor& indices,
const Tensor& input,
IntArrayRef output_size) {
switch (input.suggest_memory_format()) {
case at::MemoryFormat::Contiguous: {
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "adaptive_max_pool2d", [&] {
cpu_adaptive_max_pool<scalar_t>(output, indices, input, output_size);
});
break;
}
case at::MemoryFormat::ChannelsLast: {
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "adaptive_max_pool2d_channels_last", [&]{
cpu_adaptive_max_pool_channels_last<scalar_t>(output, indices, input, output_size);
});
break;
}
default:
TORCH_CHECK(false, "Unsupported memory format. Supports only ChannelsLast, Contiguous");
}
}
void adaptive_max_pool2d_backward_kernel_impl(
const Tensor& grad_input,
const Tensor& grad_output,
const Tensor& indices) {
// can't use grad_output memory format to switch here since grad_output might be NC11
switch (grad_input.suggest_memory_format()) {
case at::MemoryFormat::Contiguous: {
AT_DISPATCH_FLOATING_TYPES(grad_output.scalar_type(), "adaptive_max_pool2d_backward", [&] {
cpu_adaptive_max_pool_backward<scalar_t>(grad_input, grad_output, indices);
});
break;
}
case at::MemoryFormat::ChannelsLast: {
AT_DISPATCH_FLOATING_TYPES(grad_output.scalar_type(), "adaptive_max_pool2d_backward_channels_last", [&]{
cpu_adaptive_max_pool_backward_channels_last<scalar_t>(grad_input, grad_output, indices);
});
break;
}
default:
TORCH_CHECK(false, "Unsupported memory format. Supports only ChannelsLast, Contiguous");
}
}
} // anonymous namespace
REGISTER_DISPATCH(adaptive_max_pool2d_kernel, &adaptive_max_pool2d_kernel_impl);
REGISTER_DISPATCH(adaptive_max_pool2d_backward_kernel, &adaptive_max_pool2d_backward_kernel_impl);
}} // at::native