-
Notifications
You must be signed in to change notification settings - Fork 35
/
pca.py
66 lines (50 loc) · 1.65 KB
/
pca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import numpy as np
class PCA:
def __init__(self, n_components):
self.n_components = n_components
self.components = None
self.mean = None
def fit(self, X):
# Mean centering
self.mean = np.mean(X, axis=0)
X = X - self.mean
# covariance, function needs samples as columns
cov = np.cov(X.T)
# eigenvalues, eigenvectors
eigenvalues, eigenvectors = np.linalg.eig(cov)
# -> eigenvector v = [:,i] column vector, transpose for easier calculations
# sort eigenvectors
eigenvectors = eigenvectors.T
idxs = np.argsort(eigenvalues)[::-1]
eigenvalues = eigenvalues[idxs]
eigenvectors = eigenvectors[idxs]
# store first n eigenvectors
self.components = eigenvectors[0 : self.n_components]
def transform(self, X):
# project data
X = X - self.mean
return np.dot(X, self.components.T)
# Testing
if __name__ == "__main__":
# Imports
import matplotlib.pyplot as plt
from sklearn import datasets
# data = datasets.load_digits()
data = datasets.load_iris()
X = data.data
y = data.target
# Project the data onto the 2 primary principal components
pca = PCA(2)
pca.fit(X)
X_projected = pca.transform(X)
print("Shape of X:", X.shape)
print("Shape of transformed X:", X_projected.shape)
x1 = X_projected[:, 0]
x2 = X_projected[:, 1]
plt.scatter(
x1, x2, c=y, edgecolor="none", alpha=0.8, cmap=plt.cm.get_cmap("viridis", 3)
)
plt.xlabel("Principal Component 1")
plt.ylabel("Principal Component 2")
plt.colorbar()
plt.show()