-
Notifications
You must be signed in to change notification settings - Fork 1
/
datasets.py
373 lines (338 loc) · 12.9 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
"""
Data loading methods
"""
from collections import defaultdict
import csv
import math
import torch
import numpy as np
import os
import sys
import random
from torch.utils.data import TensorDataset
from constants import *
class Batch:
"""
This class and the data_generator could probably be replaced with a PyTorch DataLoader
"""
def __init__(self, desc_embed, max_seq_length=None):
self.docs = []
self.labels = []
self.hadm_ids = []
self.code_set = set()
self.length = 0
if max_seq_length is not None:
self.max_length = max_seq_length
else:
self.max_length = MAX_LENGTH
self.desc_embed = desc_embed
self.descs = []
def add_instance(self, row, ind2c, c2ind, w2ind, dv_dict, num_labels, bert_tokenizer):
"""
Makes an instance to add to this batch from given row data, with a bunch of lookups
"""
labels = set()
hadm_id = int(row[1])
text = row[2]
if bert_tokenizer is None:
length = int(row[4])
cur_code_set = set()
labels_idx = np.zeros(num_labels)
labelled = False
desc_vecs = []
#get codes as a multi-hot vector
for l in row[3].split(';'):
if l in c2ind.keys():
code = int(c2ind[l])
labels_idx[code] = 1
cur_code_set.add(code)
labelled = True
if not labelled:
return
if self.desc_embed:
for code in cur_code_set:
l = ind2c[code]
if l in dv_dict.keys():
#need to copy or description padding will get screwed up
desc_vecs.append(dv_dict[l][:])
else:
desc_vecs.append([len(w2ind)+1])
#OOV words are given a unique index at end of vocab lookup
if bert_tokenizer is not None:
# text = bert_tokenizer.convert_tokens_to_ids(text.lower().split())
text = bert_tokenizer.encode(text.lower(), add_special_tokens=True)
else:
text = [int(w2ind[w]) if w in w2ind else len(w2ind)+1 for w in text.split()]
# truncate long documents
if bert_tokenizer is not None:
# if len(text) > self.max_length - 2:
# text = text[:self.max_length - 2]
# text.append(bert_tokenizer.sep_token_id)
# text.insert(0, bert_tokenizer.cls_token_id)
if len(text) > self.max_length:
text = text[:self.max_length-1]
text.append(bert_tokenizer.sep_token_id)
length = len(text)
else:
if len(text) > self.max_length:
text = text[:self.max_length]
#build instance
self.docs.append(text)
self.labels.append(labels_idx)
self.hadm_ids.append(hadm_id)
self.code_set = self.code_set.union(cur_code_set)
if self.desc_embed:
self.descs.append(pad_desc_vecs(desc_vecs))
#reset length
if bert_tokenizer is None:
self.length = min(self.max_length, length)
else:
self.length = self.max_length
def pad_docs(self):
# pad all docs to have self.length
padded_docs = []
for doc in self.docs:
if len(doc) < self.length:
doc.extend([0] * (self.length - len(doc)))
padded_docs.append(doc)
self.docs = padded_docs
def to_ret(self):
return np.array(self.docs), np.array(self.labels), np.array(self.hadm_ids), self.code_set,\
np.array(self.descs)
def pad_desc_vecs(desc_vecs):
#pad all description vectors in a batch to have the same length
desc_len = max([len(dv) for dv in desc_vecs])
pad_vecs = []
for vec in desc_vecs:
if len(vec) < desc_len:
vec.extend([0] * (desc_len - len(vec)))
pad_vecs.append(vec)
return pad_vecs
def data_length(filename, version='mimic3'):
with open(filename, 'r') as infile:
lines = infile.readlines()
length = len(lines) - 1
return length
def data_generator(filename, dicts, batch_size, num_labels, desc_embed=False,
version='mimic3', bert_tokenizer=None, test=False, max_seq_length=None):
"""
Inputs:
filename: holds data sorted by sequence length, for best batching
dicts: holds all needed lookups
batch_size: the batch size for train iterations
num_labels: size of label output space
desc_embed: true if using DR-CAML (lambda > 0)
version: which (MIMIC) dataset
Yields:
np arrays with data for training loop.
"""
ind2w, w2ind, ind2c, c2ind, dv_dict = dicts['ind2w'], dicts['w2ind'], dicts['ind2c'], dicts['c2ind'], dicts['dv']
with open(filename, 'r') as infile:
# if bert_tokenizer is not None and not test:
# reader = csv.reader(infile)
# # header
# r = list(reader)[1:]
# random.shuffle(r)
# r = iter(r)
# next(r)
# else:
r = csv.reader(infile)
# header
next(r)
cur_inst = Batch(desc_embed, max_seq_length=max_seq_length)
for row in r:
# find the next `batch_size` instances
if len(cur_inst.docs) == batch_size:
cur_inst.pad_docs()
yield cur_inst.to_ret()
# clear
cur_inst = Batch(desc_embed, max_seq_length=max_seq_length)
cur_inst.add_instance(row, ind2c, c2ind, w2ind, dv_dict, num_labels, bert_tokenizer)
cur_inst.pad_docs()
yield cur_inst.to_ret()
def pretrain_data_generator(args, filename, batch_size, version='mimic3', bert_tokenizer=None):
"""
Inputs:
filename: holds data sorted by sequence length, for best batching
dicts: holds all needed lookups
batch_size: the batch size for train iterations
num_labels: size of label output space
desc_embed: true if using DR-CAML (lambda > 0)
version: which (MIMIC) dataset
Yields:
np arrays with data for training loop.
"""
def collect_all_context(args, filename, bert_tokenizer):
max_length = MAX_LENGTH
with open(filename, 'r') as infile:
r = csv.reader(infile)
next(r)
all_instances = []
for row in r:
text = row[2]
text = bert_tokenizer.encode(text.lower())
text_length = len(text)
for idx in range(0, text_length, MAX_LENGTH-2):
sub_text = text[idx:idx+MAX_LENGTH-2]
sub_text.append(bert_tokenizer.sep_token_id)
sub_text.insert(0, bert_tokenizer.cls_token_id)
sub_length = len(sub_text)
sub_pad_length = MAX_LENGTH - sub_length
sub_pad = [0 for i in range(sub_pad_length)]
sub_text += sub_pad
all_instances.append(sub_text)
all_instances = np.array(all_instances)
np.save(args.pretrain_datafile, all_instances)
return all_instances
if not os.path.isfile(args.pretrain_datafile + '.npy'):
all_instances = collect_all_context(args, filename, bert_tokenizer)
else:
all_instances = np.load(args.pretrain_datafile + '.npy')
all_instances = torch.LongTensor(all_instances)
return all_instances
def load_vocab_dict(args, vocab_file):
#reads vocab_file into two lookups (word:ind) and (ind:word)
vocab = set()
with open(vocab_file, 'r') as vocabfile:
for i,line in enumerate(vocabfile):
line = line.rstrip()
if line != '':
vocab.add(line.strip())
#hack because the vocabs were created differently for these models
if args.public_model and args.Y == 'full' and args.version == "mimic3" and args.model == 'conv_attn':
ind2w = {i:w for i,w in enumerate(sorted(vocab))}
else:
ind2w = {i+1:w for i,w in enumerate(sorted(vocab))}
w2ind = {w:i for i,w in ind2w.items()}
return ind2w, w2ind
def load_lookups(args, desc_embed=False):
"""
Inputs:
args: Input arguments
desc_embed: true if using DR-CAML
Outputs:
vocab lookups, ICD code lookups, description lookup, description one-hot vector lookup
"""
#get vocab lookups
ind2w, w2ind = load_vocab_dict(args, args.vocab)
#get code and description lookups
if args.Y == 'full':
ind2c, desc_dict = load_full_codes(args.data_path, version=args.version)
else:
codes = set()
with open("%s/TOP_%s_CODES.csv" % (MIMIC_3_DIR, str(args.Y)), 'r') as labelfile:
lr = csv.reader(labelfile)
for i,row in enumerate(lr):
codes.add(row[0])
ind2c = {i:c for i,c in enumerate(sorted(codes))}
desc_dict = load_code_descriptions()
c2ind = {c:i for i,c in ind2c.items()}
#get description one-hot vector lookup
if desc_embed:
dv_dict = load_description_vectors(args.Y, version=args.version)
else:
dv_dict = None
dicts = {'ind2w': ind2w, 'w2ind': w2ind, 'ind2c': ind2c, 'c2ind': c2ind, 'desc': desc_dict, 'dv': dv_dict}
return dicts
def load_full_codes(train_path, version='mimic3'):
"""
Inputs:
train_path: path to train dataset
version: which (MIMIC) dataset
Outputs:
code lookup, description lookup
"""
#get description lookup
desc_dict = load_code_descriptions(version=version)
#build code lookups from appropriate datasets
if version == 'mimic2':
ind2c = defaultdict(str)
codes = set()
with open('%s/proc_dsums.csv' % MIMIC_2_DIR, 'r') as f:
r = csv.reader(f)
#header
next(r)
for row in r:
codes.update(set(row[-1].split(';')))
codes = set([c for c in codes if c != ''])
ind2c = defaultdict(str, {i:c for i,c in enumerate(sorted(codes))})
else:
codes = set()
for split in ['train', 'dev', 'test']:
with open(train_path.replace('train', split), 'r') as f:
lr = csv.reader(f)
next(lr)
for row in lr:
for code in row[3].split(';'):
codes.add(code)
codes = set([c for c in codes if c != ''])
ind2c = defaultdict(str, {i:c for i,c in enumerate(sorted(codes))})
return ind2c, desc_dict
def reformat(code, is_diag):
"""
Put a period in the right place because the MIMIC-3 data files exclude them.
Generally, procedure codes have dots after the first two digits,
while diagnosis codes have dots after the first three digits.
"""
code = ''.join(code.split('.'))
if is_diag:
if code.startswith('E'):
if len(code) > 4:
code = code[:4] + '.' + code[4:]
else:
if len(code) > 3:
code = code[:3] + '.' + code[3:]
else:
code = code[:2] + '.' + code[2:]
return code
def load_code_descriptions(version='mimic3'):
#load description lookup from the appropriate data files
desc_dict = defaultdict(str)
if version == 'mimic2':
with open('%s/MIMIC_ICD9_mapping' % MIMIC_2_DIR, 'r') as f:
r = csv.reader(f)
#header
next(r)
for row in r:
desc_dict[str(row[1])] = str(row[2])
else:
with open("%s/D_ICD_DIAGNOSES.csv" % (DATA_DIR), 'r') as descfile:
r = csv.reader(descfile)
#header
next(r)
for row in r:
code = row[1]
desc = row[-1]
desc_dict[reformat(code, True)] = desc
with open("%s/D_ICD_PROCEDURES.csv" % (DATA_DIR), 'r') as descfile:
r = csv.reader(descfile)
#header
next(r)
for row in r:
code = row[1]
desc = row[-1]
if code not in desc_dict.keys():
desc_dict[reformat(code, False)] = desc
with open('%s/ICD9_descriptions' % DATA_DIR, 'r') as labelfile:
for i,row in enumerate(labelfile):
row = row.rstrip().split()
code = row[0]
if code not in desc_dict.keys():
desc_dict[code] = ' '.join(row[1:])
return desc_dict
def load_description_vectors(Y, version='mimic3'):
#load description one-hot vectors from file
dv_dict = {}
if version == 'mimic2':
data_dir = MIMIC_2_DIR
else:
data_dir = MIMIC_3_DIR
with open("%s/description_vectors.vocab" % (data_dir), 'r') as vfile:
r = csv.reader(vfile, delimiter=" ")
#header
next(r)
for row in r:
code = row[0]
vec = [int(x) for x in row[1:]]
dv_dict[code] = vec
return dv_dict