-
Notifications
You must be signed in to change notification settings - Fork 1
/
test_batch.py
118 lines (96 loc) · 3.89 KB
/
test_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# -*- coding: utf-8 -*-
import json
import tensorflow as tf
import numpy as np
import time
from PIL import Image
import random
import os
from cnnlib.network import CNN
class TestError(Exception):
pass
class TestBatch(CNN):
def __init__(self, img_path, char_set, model_save_dir, total):
# Caminho do modelo
self.model_save_dir = model_save_dir
# Ordem aleatória dos arquivos
self.img_path = img_path
self.img_list = os.listdir(img_path)
random.seed(time.time())
random.shuffle(self.img_list)
# 获得图片宽高和字符长度基本信息
label, captcha_array = self.gen_captcha_text_image()
captcha_shape = captcha_array.shape
captcha_shape_len = len(captcha_shape)
if captcha_shape_len == 3:
image_height, image_width, channel = captcha_shape
self.channel = channel
elif captcha_shape_len == 2:
image_height, image_width = captcha_shape
else:
raise TestError("图片转换为矩阵时出错,请检查图片格式")
# 初始化变量
super(TestBatch, self).__init__(image_height, image_width, len(label), char_set, model_save_dir)
self.total = total
# 相关信息打印
print("-->图片尺寸: {} X {}".format(image_height, image_width))
print("-->验证码长度: {}".format(self.max_captcha))
print("-->验证码共{}类 {}".format(self.char_set_len, char_set))
print("-->使用测试集为 {}".format(img_path))
def gen_captcha_text_image(self):
"""
返回一个验证码的array形式和对应的字符串标签
:return:tuple (str, numpy.array)
"""
img_name = random.choice(self.img_list)
# 标签
label = img_name.split("_")[0]
# 文件
img_file = os.path.join(self.img_path, img_name)
captcha_image = Image.open(img_file)
captcha_array = np.array(captcha_image) # 向量化
return label, captcha_array
def test_batch(self):
y_predict = self.model()
total = self.total
right = 0
saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, self.model_save_dir)
s = time.time()
for i in range(total):
# test_text, test_image = gen_special_num_image(i)
test_text, test_image = self.gen_captcha_text_image() # 随机
test_image = self.convert2gray(test_image)
test_image = test_image.flatten() / 255
predict = tf.argmax(tf.reshape(y_predict, [-1, self.max_captcha, self.char_set_len]), 2)
text_list = sess.run(predict, feed_dict={self.X: [test_image], self.keep_prob: 1.})
predict_text = text_list[0].tolist()
p_text = ""
for p in predict_text:
p_text += str(self.char_set[p])
print("origin: {} predict: {}".format(test_text, p_text))
if test_text == p_text:
right += 1
else:
pass
e = time.time()
rate = str(right/total * 100) + "%"
print("测试结果: {}/{}".format(right, total))
print("{}个样本识别耗时{}秒,准确率{}".format(total, e-s, rate))
def main():
with open("conf/sample_config.json", "r") as f:
sample_conf = json.load(f)
test_image_dir = sample_conf["test_image_dir"]
model_save_dir = sample_conf["model_save_dir"]
use_labels_json_file = sample_conf['use_labels_json_file']
if use_labels_json_file:
with open("tools/labels.json", "r") as f:
char_set = f.read().strip()
else:
char_set = sample_conf["char_set"]
total = 100
tb = TestBatch(test_image_dir, char_set, model_save_dir, total)
tb.test_batch()
if __name__ == '__main__':
main()