-
Notifications
You must be signed in to change notification settings - Fork 14
/
synthgen.py
701 lines (589 loc) · 24.4 KB
/
synthgen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
# Author: Ankush Gupta
# Date: 2015
"""
Main script for synthetic text rendering.
"""
from __future__ import division
import copy
import cv2
import h5py
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import os.path as osp
import scipy.ndimage as sim
import scipy.spatial.distance as ssd
import synth_utils as su
import text_utils as tu
from colorize3_poisson import Colorize
from common import *
import traceback, itertools
import imageio
DEBUG = True
class TextRegions(object):
"""
Get region from segmentation which are good for placing
text.
"""
minWidth = 30 # px
minHeight = 30 # px
minAspect = 0.3 # w > 0.3*h
maxAspect = 7
minArea = 100 # number of pix
pArea = 0.60 # area_obj/area_minrect >= 0.6
# RANSAC planar fitting params:
dist_thresh = 0.10 # m
num_inlier = 90
ransac_fit_trials = 100
min_z_projection = 0.25
minW = 20
@staticmethod
def filter_rectified(mask):
"""
mask : 1 where "ON", 0 where "OFF"
"""
wx = np.median(np.sum(mask, axis=0))
wy = np.median(np.sum(mask, axis=1))
return wx > TextRegions.minW and wy > TextRegions.minW
@staticmethod
def get_hw(pt, return_rot=False):
pt = pt.copy()
R = su.unrotate2d(pt)
mu = np.median(pt, axis=0)
pt = (pt - mu[None, :]).dot(R.T) + mu[None, :]
h, w = np.max(pt, axis=0) - np.min(pt, axis=0)
if return_rot:
return h, w, R
return h, w
@staticmethod
def filter(seg, area, label):
"""
Apply the filter.
The final list is ranked by area.
"""
good = label[area > TextRegions.minArea]
area = area[area > TextRegions.minArea]
filt, R = [], []
for idx, i in enumerate(good):
mask = seg == i
xs, ys = np.where(mask)
coords = np.c_[xs, ys].astype('float32')
rect = cv2.minAreaRect(coords)
# box = np.array(cv2.cv.BoxPoints(rect))
box = np.array(cv2.boxPoints(rect))
h, w, rot = TextRegions.get_hw(box, return_rot=True)
f = (h > TextRegions.minHeight
and w > TextRegions.minWidth
and TextRegions.minAspect < w / h < TextRegions.maxAspect
and area[idx] / w * h > TextRegions.pArea)
filt.append(f)
R.append(rot)
# filter bad regions:
filt = np.array(filt)
area = area[filt]
R = [R[i] for i in range(len(R)) if filt[i]]
# sort the regions based on areas:
aidx = np.argsort(-area)
good = good[filt][aidx]
R = [R[i] for i in aidx]
filter_info = {'label': good, 'rot': R, 'area': area[aidx]}
return filter_info
@staticmethod
def sample_grid_neighbours(mask, nsample, step=3):
"""
Given a HxW binary mask, sample 4 neighbours on the grid,
in the cardinal directions, STEP pixels away.
"""
if 2 * step >= min(mask.shape[:2]):
return # None
y_m, x_m = np.where(mask)
mask_idx = np.zeros_like(mask, 'int32')
for i in range(len(y_m)):
mask_idx[y_m[i], x_m[i]] = i
xp, xn = np.zeros_like(mask), np.zeros_like(mask)
yp, yn = np.zeros_like(mask), np.zeros_like(mask)
xp[:, :-2 * step] = mask[:, 2 * step:]
xn[:, 2 * step:] = mask[:, :-2 * step]
yp[:-2 * step, :] = mask[2 * step:, :]
yn[2 * step:, :] = mask[:-2 * step, :]
valid = mask & xp & xn & yp & yn
ys, xs = np.where(valid)
N = len(ys)
if N == 0: # no valid pixels in mask:
return # None
nsample = min(nsample, N)
idx = np.random.choice(N, nsample, replace=False)
# generate neighborhood matrix:
# (1+4)x2xNsample (2 for y,x)
xs, ys = xs[idx], ys[idx]
s = step
X = np.transpose(np.c_[xs, xs + s, xs + s, xs - s, xs - s][:, :, None], (1, 2, 0))
Y = np.transpose(np.c_[ys, ys + s, ys - s, ys + s, ys - s][:, :, None], (1, 2, 0))
sample_idx = np.concatenate([Y, X], axis=1)
mask_nn_idx = np.zeros((5, sample_idx.shape[-1]), 'int32')
for i in range(sample_idx.shape[-1]):
mask_nn_idx[:, i] = mask_idx[sample_idx[:, :, i][:, 0], sample_idx[:, :, i][:, 1]]
return mask_nn_idx
@staticmethod
def filter_depth(xyz, seg, regions):
plane_info = {'label': [],
'coeff': [],
'support': [],
'rot': [],
'area': []}
for idx, l in enumerate(regions['label']):
mask = seg == l
pt_sample = TextRegions.sample_grid_neighbours(mask, TextRegions.ransac_fit_trials, step=3)
if pt_sample is None:
continue # not enough points for RANSAC
# get-depths
pt = xyz[mask]
plane_model = su.isplanar(pt, pt_sample,
TextRegions.dist_thresh,
TextRegions.num_inlier,
TextRegions.min_z_projection)
if plane_model is not None:
plane_coeff = plane_model[0]
if np.abs(plane_coeff[2]) > TextRegions.min_z_projection:
plane_info['label'].append(l)
plane_info['coeff'].append(plane_model[0])
plane_info['support'].append(plane_model[1])
plane_info['rot'].append(regions['rot'][idx])
plane_info['area'].append(regions['area'][idx])
return plane_info
@staticmethod
def get_regions(xyz, seg, area, label):
regions = TextRegions.filter(seg, area, label)
# fit plane to text-regions:
regions = TextRegions.filter_depth(xyz, seg, regions)
return regions
def rescale_frontoparallel(p_fp, box_fp, p_im):
"""
The fronto-parallel image region is rescaled to bring it in
the same approx. size as the target region size.
p_fp : nx2 coordinates of countour points in the fronto-parallel plane
box : 4x2 coordinates of bounding box of p_fp
p_im : nx2 coordinates of countour in the image
NOTE : p_fp and p are corresponding, i.e. : p_fp[i] ~ p[i]
Returns the scale 's' to scale the fronto-parallel points by.
"""
l1 = np.linalg.norm(box_fp[1, :] - box_fp[0, :])
l2 = np.linalg.norm(box_fp[1, :] - box_fp[2, :])
n0 = np.argmin(np.linalg.norm(p_fp - box_fp[0, :][None, :], axis=1))
n1 = np.argmin(np.linalg.norm(p_fp - box_fp[1, :][None, :], axis=1))
n2 = np.argmin(np.linalg.norm(p_fp - box_fp[2, :][None, :], axis=1))
lt1 = np.linalg.norm(p_im[n1, :] - p_im[n0, :])
lt2 = np.linalg.norm(p_im[n1, :] - p_im[n2, :])
s = max(lt1 / l1, lt2 / l2)
if not np.isfinite(s):
s = 1.0
return s
def get_text_placement_mask(xyz, mask, plane, pad=2, viz=False):
"""
Returns a binary mask in which text can be placed.
Also returns a homography from original image
to this rectified mask.
XYZ : (HxWx3) image xyz coordinates
MASK : (HxW) : non-zero pixels mark the object mask
REGION : DICT output of TextRegions.get_regions
PAD : number of pixels to pad the placement-mask by
"""
contour, hier = cv2.findContours(mask.copy().astype('uint8'),
mode=cv2.RETR_CCOMP,
method=cv2.CHAIN_APPROX_SIMPLE)
contour = [np.squeeze(c).astype('float') for c in contour]
# plane = np.array([plane[1],plane[0],plane[2],plane[3]])
H, W = mask.shape[:2]
# bring the contour 3d points to fronto-parallel config:
pts, pts_fp = [], []
center = np.array([W, H]) / 2
n_front = np.array([0.0, 0.0, -1.0])
for i in range(len(contour)):
cnt_ij = contour[i]
xyz = su.DepthCamera.plane2xyz(center, cnt_ij, plane)
R = su.rot3d(plane[:3], n_front)
xyz = xyz.dot(R.T)
pts_fp.append(xyz[:, :2])
pts.append(cnt_ij)
# unrotate in 2D plane:
rect = cv2.minAreaRect(pts_fp[0].copy().astype('float32'))
box = np.array(cv2.boxPoints(rect))
R2d = su.unrotate2d(box.copy())
box = np.vstack([box, box[0, :]]) # close the box for visualization
mu = np.median(pts_fp[0], axis=0)
pts_tmp = (pts_fp[0] - mu[None, :]).dot(R2d.T) + mu[None, :]
boxR = (box - mu[None, :]).dot(R2d.T) + mu[None, :]
# rescale the unrotated 2d points to approximately
# the same scale as the target region:
s = rescale_frontoparallel(pts_tmp, boxR, pts[0])
boxR *= s
for i in range(len(pts_fp)):
pts_fp[i] = s * ((pts_fp[i] - mu[None, :]).dot(R2d.T) + mu[None, :])
# paint the unrotated contour points:
minxy = -np.min(boxR, axis=0) + pad // 2
ROW = np.max(ssd.pdist(np.atleast_2d(boxR[:, 0]).T))
COL = np.max(ssd.pdist(np.atleast_2d(boxR[:, 1]).T))
place_mask = 255 * np.ones((int(np.ceil(COL)) + pad, int(np.ceil(ROW)) + pad), 'uint8')
pts_fp_i32 = [(pts_fp[i] + minxy[None, :]).astype('int32') for i in range(len(pts_fp))]
cv2.drawContours(place_mask, pts_fp_i32, -1, 0,
thickness=cv2.FILLED,
lineType=8, hierarchy=hier)
if not TextRegions.filter_rectified((~place_mask).astype('float') / 255):
return
# calculate the homography
H, _ = cv2.findHomography(pts[0].astype('float32').copy(),
pts_fp_i32[0].astype('float32').copy(),
method=0)
Hinv, _ = cv2.findHomography(pts_fp_i32[0].astype('float32').copy(),
pts[0].astype('float32').copy(),
method=0)
if viz:
plt.subplot(1, 2, 1)
plt.imshow(mask)
plt.subplot(1, 2, 2)
plt.imshow(~place_mask)
for i in range(len(pts_fp_i32)):
plt.scatter(pts_fp_i32[i][:, 0], pts_fp_i32[i][:, 1],
edgecolors='none', facecolor='g', alpha=0.5)
plt.show()
return place_mask, H, Hinv
def viz_masks(fignum, rgb, seg, depth, label):
"""
img,depth,seg are images of the same size.
visualizes depth masks for top NOBJ objects.
"""
def mean_seg(rgb, seg, label):
mim = np.zeros_like(rgb)
for i in np.unique(seg.flat):
mask = seg == i
col = np.mean(rgb[mask, :], axis=0)
mim[mask, :] = col[None, None, :]
mim[seg == 0, :] = 0
return mim
mim = mean_seg(rgb, seg, label)
img = rgb.copy()
for i, idx in enumerate(label):
mask = seg == idx
rgb_rand = (255 * np.random.rand(3)).astype('uint8')
img[mask] = rgb_rand[None, None, :]
# import scipy
# imageio.imwrite('seg.png', mim)
# imageio.imwrite('depth.png', depth)
# imageio.imwrite('txt.png', rgb)
# imageio.imwrite('reg.png', img)
plt.close(fignum)
plt.figure(fignum,figsize=(15,15))
ims = [rgb, mim, depth, img]
for i in range(len(ims)):
plt.subplot(2, 2, i + 1)
plt.imshow(ims[i])
plt.show(block=False)
def viz_regions(img, xyz, seg, planes, labels):
"""
img,depth,seg are images of the same size.
visualizes depth masks for top NOBJ objects.
"""
# plot the RGB-D point-cloud:
su.plot_xyzrgb(xyz.reshape(-1, 3), img.reshape(-1, 3))
# plot the RANSAC-planes at the text-regions:
for i, l in enumerate(labels):
mask = seg == l
xyz_region = xyz[mask, :]
su.visualize_plane(xyz_region, np.array(planes[i]))
mym.view(180, 180)
mym.orientation_axes()
mym.show(True)
def viz_textbb(fignum, text_im, bb_list, alpha=1.0):
"""
text_im : image containing text
bb_list : list of 2x4xn_i boundinb-box matrices
"""
plt.close(fignum)
plt.figure(fignum)
plt.imshow(text_im)
H, W = text_im.shape[:2]
for i in range(len(bb_list)):
bbs = bb_list[i]
ni = bbs.shape[-1]
for j in range(ni):
bb = bbs[:, :, j]
bb = np.c_[bb, bb[:, 0]]
plt.plot(bb[0, :], bb[1, :], 'r', linewidth=2, alpha=alpha)
plt.gca().set_xlim([0, W - 1])
plt.gca().set_ylim([H - 1, 0])
plt.show(block=False)
class RendererV3(object):
def __init__(self, data_dir, max_time=None):
self.text_renderer = tu.RenderFont(data_dir)
self.colorizer = Colorize(data_dir)
self.min_char_height = 8 # px
self.min_asp_ratio = 0.4 #
self.max_text_regions = 7
self.max_time = max_time
def filter_regions(self, regions, filt):
"""
filt : boolean list of regions to keep.
"""
idx = np.arange(len(filt))[filt]
for k in regions.keys():
regions[k] = [regions[k][i] for i in idx]
return regions
def filter_for_placement(self, xyz, seg, regions):
filt = np.zeros(len(regions['label'])).astype('bool')
masks, Hs, Hinvs = [], [], []
for idx, l in enumerate(regions['label']):
res = get_text_placement_mask(xyz, seg == l, regions['coeff'][idx], pad=2)
if res is not None:
mask, H, Hinv = res
masks.append(mask)
Hs.append(H)
Hinvs.append(Hinv)
filt[idx] = True
regions = self.filter_regions(regions, filt)
regions['place_mask'] = masks
regions['homography'] = Hs
regions['homography_inv'] = Hinvs
return regions
def warpHomography(self, src_mat, H, dst_size):
dst_mat = cv2.warpPerspective(src_mat, H, dst_size,
flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)
return dst_mat
def homographyBB(self, bbs, H, offset=None):
"""
Apply homography transform to bounding-boxes.
BBS: 2 x 4 x n matrix (2 coordinates, 4 points, n bbs).
Returns the transformed 2x4xn bb-array.
offset : a 2-tuple (dx,dy), added to points before transfomation.
"""
eps = 1e-16
# check the shape of the BB array:
t, f, n = bbs.shape
assert (t == 2) and (f == 4)
# append 1 for homogenous coordinates:
bbs_h = np.reshape(np.r_[bbs, np.ones((1, 4, n))], (3, 4 * n), order='F')
if offset != None:
bbs_h[:2, :] += np.array(offset)[:, None]
# perpective:
bbs_h = H.dot(bbs_h)
bbs_h /= (bbs_h[2, :] + eps)
bbs_h = np.reshape(bbs_h, (3, 4, n), order='F')
return bbs_h[:2, :, :]
def bb_filter(self, bb0, bb, text):
"""
Ensure that bounding-boxes are not too distorted
after perspective distortion.
bb0 : 2x4xn martrix of BB coordinates before perspective
bb : 2x4xn matrix of BB after perspective
text: string of text -- for excluding symbols/punctuations.
"""
h0 = np.linalg.norm(bb0[:, 3, :] - bb0[:, 0, :], axis=0)
w0 = np.linalg.norm(bb0[:, 1, :] - bb0[:, 0, :], axis=0)
hw0 = np.c_[h0, w0]
h = np.linalg.norm(bb[:, 3, :] - bb[:, 0, :], axis=0)
w = np.linalg.norm(bb[:, 1, :] - bb[:, 0, :], axis=0)
hw = np.c_[h, w]
# remove newlines and spaces:
text = ''.join(text.split())
assert len(text) == bb.shape[-1]
alnum = np.array([ch.isalnum() for ch in text])
hw0 = hw0[alnum, :]
hw = hw[alnum, :]
min_h0, min_h = np.min(hw0[:, 0]), np.min(hw[:, 0])
asp0, asp = hw0[:, 0] / hw0[:, 1], hw[:, 0] / hw[:, 1]
asp0, asp = np.median(asp0), np.median(asp)
asp_ratio = asp / asp0
is_good = (min_h > self.min_char_height
and asp_ratio > self.min_asp_ratio
and asp_ratio < 1.0 / self.min_asp_ratio)
return is_good
def get_min_h(selg, bb, text):
# find min-height:
h = np.linalg.norm(bb[:, 3, :] - bb[:, 0, :], axis=0)
# remove newlines and spaces:
text = ''.join(text.split())
assert len(text) == bb.shape[-1]
alnum = np.array([ch.isalnum() for ch in text])
h = h[alnum]
return np.min(h)
def feather(self, text_mask, min_h):
# determine the gaussian-blur std:
if min_h <= 15:
bsz = 0.25
ksz = 1
elif 15 < min_h < 30:
bsz = max(0.30, 0.5 + 0.1 * np.random.randn())
ksz = 3
else:
bsz = max(0.5, 1.5 + 0.5 * np.random.randn())
ksz = 5
return cv2.GaussianBlur(text_mask, (ksz, ksz), bsz)
def place_text(self, rgb, collision_mask, H, Hinv):
font = self.text_renderer.font_state.sample()
font = self.text_renderer.font_state.init_font(font)
render_res = self.text_renderer.render_sample(font, collision_mask)
if render_res is None: # rendering not successful
return # None
else:
text_mask, loc, bb, text = render_res
# update the collision mask with text:
collision_mask += (255 * (text_mask > 0)).astype('uint8')
# warp the object mask back onto the image:
# text_mask_orig = text_mask.copy()
bb_orig = bb.copy()
text_mask = self.warpHomography(text_mask, H, rgb.shape[:2][::-1])
bb = self.homographyBB(bb, Hinv)
if not self.bb_filter(bb_orig, bb, text):
# warn("bad charBB statistics")
return # None
# get the minimum height of the character-BB:
min_h = self.get_min_h(bb, text)
# feathering:
text_mask = self.feather(text_mask, min_h)
im_final = self.colorizer.color(rgb, [text_mask], np.array([min_h]))
return im_final, text, bb, text_mask
def get_num_text_regions(self, nregions):
# return nregions
nmax = min(self.max_text_regions, nregions)
if np.random.rand() < 0.10:
rnd = np.random.rand()
else:
rnd = np.random.beta(5.0, 1.0)
return int(np.ceil(nmax * rnd))
def char2wordBB(self, charBB, text):
"""
Converts character bounding-boxes to word-level
bounding-boxes.
charBB : 2x4xn matrix of BB coordinates
text : the text string
output : 2x4xm matrix of BB coordinates,
where, m == number of words.
"""
wrds = text.split()
bb_idx = np.r_[0, np.cumsum([len(w) for w in wrds])]
wordBB = np.zeros((2, 4, len(wrds)), 'float32')
for i in range(len(wrds)):
cc = charBB[:, :, bb_idx[i]:bb_idx[i + 1]]
# fit a rotated-rectangle:
# change shape from 2x4xn_i -> (4*n_i)x2
cc = np.squeeze(np.concatenate(np.dsplit(cc, cc.shape[-1]), axis=1)).T.astype('float32')
rect = cv2.minAreaRect(cc.copy())
box = np.array(cv2.boxPoints(rect))
# find the permutation of box-coordinates which
# are "aligned" appropriately with the character-bb.
# (exhaustive search over all possible assignments):
cc_tblr = np.c_[cc[0, :],
cc[-3, :],
cc[-2, :],
cc[3, :]].T
perm4 = np.array(list(itertools.permutations(np.arange(4))))
dists = []
for pidx in range(perm4.shape[0]):
d = np.sum(np.linalg.norm(box[perm4[pidx], :] - cc_tblr, axis=1))
dists.append(d)
wordBB[:, :, i] = box[perm4[np.argmin(dists)], :].T
return wordBB
def render_text(self, rgb, depth, seg, area, label, ninstance=1):
"""
This method is rendering and
Args:
rgb : HxWx3 image rgb values (uint8)
depth : HxW depth values (float)
seg : HxW segmentation region masks
area : number of pixels in each region
label : region labels == unique(seg) / {0}
i.e., indices of pixels in SEG which
constitute a region mask
ninstance : number of times image should be
used to place text.
Returns:
res : a list of dictionaries, one for each of
the image instances.
Each dictionary has the following structure:
'img' : rgb-image with text on it.
'bb' : 2x4xn matrix of bounding-boxes
for each character in the image.
'txt' : a list of strings.
'masks': a list of masks of text placed on the image.
Shape of each mask is the same as shape of original image.
The correspondence b/w bb and txt is that
i-th non-space white-character in txt is at bb[:,:,i].
If there's an error in pre-text placement, for e.g. if there's
no suitable region for text placement, an empty list is returned.
"""
try:
# depth -> xyz
xyz = su.DepthCamera.depth2xyz(depth)
# find text-regions:
regions = TextRegions.get_regions(xyz, seg, area, label)
# find the placement mask and homographies:
regions = self.filter_for_placement(xyz, seg, regions)
# finally place some text:
nregions = len(regions['place_mask'])
if nregions < 1: # no good region to place text on
return []
except:
# failure in pre-text placement
# import traceback
traceback.print_exc()
return []
res = []
for i in range(ninstance):
# place_masks - is a local copy of list of collision masks. it's updated, but is not really used.
place_masks = copy.deepcopy(regions['place_mask'])
print(colorize(Color.CYAN, " ** instance # : %d" % i))
idict = {'img': [], 'charBB': None, 'wordBB': None, 'txt': None}
m = self.get_num_text_regions(nregions)
reg_idx = np.arange(min(2 * m, nregions))
np.random.shuffle(reg_idx)
reg_idx = reg_idx[:m]
placed = False
img = rgb.copy()
itext = []
ibb = []
masks = []
# process regions:
num_txt_regions = len(reg_idx)
NUM_REP = 5 # re-use each region three times:
reg_range = np.arange(NUM_REP * num_txt_regions) % num_txt_regions
if DEBUG:
print(" ... try text rendering for %s regions", len(reg_range))
for idx in reg_range:
ireg = reg_idx[idx]
try:
if self.max_time is None:
txt_render_res = self.place_text(img, place_masks[ireg],
regions['homography'][ireg],
regions['homography_inv'][ireg])
else:
with time_limit(self.max_time):
txt_render_res = self.place_text(img, place_masks[ireg],
regions['homography'][ireg],
regions['homography_inv'][ireg])
except TimeoutException as msg:
print(msg)
continue
except:
traceback.print_exc()
# some error in placing text on the region
continue
if txt_render_res is not None:
if DEBUG:
print(" ... text rendering attempt finished successfully")
placed = True
img, text, bb, collision_mask = txt_render_res
# update the region collision mask:
# place_masks[ireg] = collision_mask # no point of doing that, already updated inside place_text method
masks.append(collision_mask)
# store the result:
itext.append(text)
ibb.append(bb)
if placed:
# at least 1 word was placed in this instance:
idict['img'] = img
idict['txt'] = itext
idict['charBB'] = np.concatenate(ibb, axis=2)
idict['wordBB'] = self.char2wordBB(idict['charBB'].copy(), ' '.join(itext))
idict['masks'] = masks
idict['labeled_region'] = regions['label']
res.append(idict.copy())
return res