forked from PaddlePaddle/PaddleMIX
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_lvdm_short.py
124 lines (108 loc) · 4.36 KB
/
train_lvdm_short.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import math
import os
import paddle
from lvdm import LatentVideoDiffusion, LatentVideoDiffusionTrainer, VideoFrameDataset
from lvdm.lvdm_args_short import (
ModelArguments,
TrainerArguments,
VideoFrameDatasetArguments,
)
from paddlenlp.trainer import PdArgumentParser, TrainingArguments, get_last_checkpoint
from paddlenlp.utils.log import logger
def main():
parser = PdArgumentParser(
(
ModelArguments,
VideoFrameDatasetArguments,
TrainerArguments,
TrainingArguments,
)
)
(
model_args,
data_args,
trainer_args,
training_args,
) = parser.parse_args_into_dataclasses()
# report to custom_visualdl
training_args.report_to = ["custom_visualdl"]
training_args.resolution = data_args.resolution
training_args.image_logging_steps = trainer_args.image_logging_steps = (
(math.ceil(trainer_args.image_logging_steps / training_args.logging_steps) * training_args.logging_steps)
if trainer_args.image_logging_steps > 0
else -1
)
training_args.print_config(model_args, "Model")
training_args.print_config(trainer_args, "Trainer")
training_args.print_config(data_args, "Data")
paddle.set_device(training_args.device)
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
model = LatentVideoDiffusion(model_args)
train_dataset = VideoFrameDataset(
data_root=data_args.train_data_root,
resolution=data_args.resolution,
video_length=data_args.video_length,
dataset_name=data_args.dataset_name,
subset_split=data_args.train_subset_split,
spatial_transform=data_args.spatial_transform,
clip_step=data_args.clip_step,
temporal_transform=data_args.temporal_transform,
)
eval_dataset = VideoFrameDataset(
data_root=data_args.eval_data_root,
resolution=data_args.resolution,
video_length=data_args.video_length,
dataset_name=data_args.dataset_name,
subset_split=data_args.eval_subset_split,
spatial_transform=data_args.spatial_transform,
clip_step=data_args.clip_step,
temporal_transform=data_args.temporal_transform,
)
trainer = LatentVideoDiffusionTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
)
# must set recompute after trainer init
trainer.model.set_recompute(training_args.recompute)
params_to_train = itertools.chain(trainer.model.unet.parameters())
trainer.set_optimizer_grouped_parameters(params_to_train)
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
# Training
trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model()
trainer.save_state()
if __name__ == "__main__":
main()