forked from PaddlePaddle/PaddleMIX
-
Notifications
You must be signed in to change notification settings - Fork 0
/
infer.py
186 lines (165 loc) · 8.26 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
"""
This script demonstrates how to generate a video using the CogVideoX model with the Hugging Face `diffusers` pipeline.
The script supports different types of video generation, including text-to-video (t2v), image-to-video (i2v),
and video-to-video (v2v), depending on the input data and different weight.
- text-to-video: THUDM/CogVideoX-5b or THUDM/CogVideoX-2b
- video-to-video: THUDM/CogVideoX-5b or THUDM/CogVideoX-2b
- image-to-video: THUDM/CogVideoX-5b-I2V
Running the Script:
To run the script, use the following command with appropriate arguments:
```bash
$ python cli_demo.py --prompt "A girl riding a bike." --model_path THUDM/CogVideoX-5b --generate_type "t2v"
```
Additional options are available to specify the model path, guidance scale, number of inference steps, video generation type, and output paths.
"""
import argparse
from typing import Literal
import paddle
from ppdiffusers import (
CogVideoXPipeline,
CogVideoXDDIMScheduler,
CogVideoXDPMScheduler,
# CogVideoXImageToVideoPipeline,
# CogVideoXVideoToVideoPipeline,
)
from ppdiffusers.utils import export_to_video_2
def generate_video(
prompt: str,
model_path: str,
lora_path: str = None,
lora_rank: int = 128,
output_path: str = "./output.mp4",
image_or_video_path: str = "",
num_inference_steps: int = 50,
guidance_scale: float = 6.0,
num_videos_per_prompt: int = 1,
dtype: paddle.dtype = paddle.bfloat16,
generate_type: str = Literal["t2v", "i2v", "v2v"], # i2v: image to video, v2v: video to video
seed: int = 42,
):
"""
Generates a video based on the given prompt and saves it to the specified path.
Parameters:
- prompt (str): The description of the video to be generated.
- model_path (str): The path of the pre-trained model to be used.
- lora_path (str): The path of the LoRA weights to be used.
- lora_rank (int): The rank of the LoRA weights.
- output_path (str): The path where the generated video will be saved.
- num_inference_steps (int): Number of steps for the inference process. More steps can result in better quality.
- guidance_scale (float): The scale for classifier-free guidance. Higher values can lead to better alignment with the prompt.
- num_videos_per_prompt (int): Number of videos to generate per prompt.
- dtype (paddle.dtype): The data type for computation (default is paddle.bfloat16).
- generate_type (str): The type of video generation (e.g., 't2v', 'i2v', 'v2v').·
- seed (int): The seed for reproducibility.
"""
# 1. Load the pre-trained CogVideoX pipeline with the specified precision (bfloat16).
# add device_map="balanced" in the from_pretrained function and remove the enable_model_cpu_offload()
# function to use Multi GPUs.
image = None
video = None
if generate_type == "i2v":
# pipe = CogVideoXImageToVideoPipeline.from_pretrained(model_path, dtype=dtype)
# image = load_image(image=image_or_video_path)
raise NotImplementedError
elif generate_type == "t2v":
pipe = CogVideoXPipeline.from_pretrained(model_path, paddle_dtype=dtype)
else:
# pipe = CogVideoXVideoToVideoPipeline.from_pretrained(model_path, dtype=dtype)
# video = load_video(image_or_video_path)
raise NotImplementedError
# If you're using with lora, add this code
if lora_path:
pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors", adapter_name="test_1")
pipe.fuse_lora(lora_scale=1 / lora_rank)
# 2. Set Scheduler.
# Can be changed to `CogVideoXDPMScheduler` or `CogVideoXDDIMScheduler`.
# We recommend using `CogVideoXDDIMScheduler` for CogVideoX-2B.
# using `CogVideoXDPMScheduler` for CogVideoX-5B / CogVideoX-5B-I2V.
pipe.scheduler = CogVideoXDDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
# pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
# 4. Generate the video frames based on the prompt.
# `num_frames` is the Number of frames to generate.
# This is the default value for 6 seconds video and 8 fps and will plus 1 frame for the first frame and 49 frames.
if generate_type == "i2v":
# video_generate = pipe(
# prompt=prompt,
# image=image, # The path of the image to be used as the background of the video
# num_videos_per_prompt=num_videos_per_prompt, # Number of videos to generate per prompt
# num_inference_steps=num_inference_steps, # Number of inference steps
# num_frames=49, # Number of frames to generate,changed to 49 for diffusers version `0.30.3` and after.
# use_dynamic_cfg=True, # This id used for DPM Sechduler, for DDIM scheduler, it should be False
# guidance_scale=guidance_scale,
# generator=paddle.seed(seed), # Set the seed for reproducibility
# ).frames[0]
raise NotImplementedError
elif generate_type == "t2v":
video_generate = pipe(
prompt=prompt,
num_videos_per_prompt=num_videos_per_prompt,
num_inference_steps=num_inference_steps,
num_frames=49,
use_dynamic_cfg=True,
guidance_scale=guidance_scale,
generator=paddle.Generator().manual_seed(seed),
).frames[0]
else:
# video_generate = pipe(
# prompt=prompt,
# video=video, # The path of the video to be used as the background of the video
# num_videos_per_prompt=num_videos_per_prompt,
# num_inference_steps=num_inference_steps,
# # num_frames=49,
# use_dynamic_cfg=True,
# guidance_scale=guidance_scale,
# generator=paddle.seed(seed), # Set the seed for reproducibility
# ).frames[0]
raise NotImplementedError
# 5. Export the generated frames to a video file. fps must be 8 for original video.
export_to_video_2(video_generate, output_path, fps=8)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Generate a video from a text prompt using CogVideoX")
parser.add_argument("--prompt", type=str, required=True, help="The description of the video to be generated")
parser.add_argument(
"--image_or_video_path",
type=str,
default=None,
help="The path of the image to be used as the background of the video",
)
parser.add_argument(
"--model_path", type=str, default="THUDM/CogVideoX-5b", help="The path of the pre-trained model to be used"
)
parser.add_argument("--lora_path", type=str, default=None, help="The path of the LoRA weights to be used")
parser.add_argument("--lora_rank", type=int, default=128, help="The rank of the LoRA weights")
parser.add_argument(
"--output_path", type=str, default="./output.mp4", help="The path where the generated video will be saved"
)
parser.add_argument("--guidance_scale", type=float, default=6.0, help="The scale for classifier-free guidance")
parser.add_argument(
"--num_inference_steps", type=int, default=50, help="Number of steps for the inference process"
)
parser.add_argument("--num_videos_per_prompt", type=int, default=1, help="Number of videos to generate per prompt")
parser.add_argument(
"--generate_type", type=str, default="t2v", help="The type of video generation (e.g., 't2v', 'i2v', 'v2v')"
)
parser.add_argument(
"--dtype", type=str, default="bfloat16", help="The data type for computation (e.g., 'float16' or 'bfloat16')"
)
parser.add_argument("--seed", type=int, default=42, help="The seed for reproducibility")
args = parser.parse_args()
dtype = paddle.float16 if args.dtype == "float16" else paddle.bfloat16
generate_video(
prompt=args.prompt,
model_path=args.model_path,
lora_path=args.lora_path,
lora_rank=args.lora_rank,
output_path=args.output_path,
image_or_video_path=args.image_or_video_path,
num_inference_steps=args.num_inference_steps,
guidance_scale=args.guidance_scale,
num_videos_per_prompt=args.num_videos_per_prompt,
dtype=dtype,
generate_type=args.generate_type,
seed=args.seed,
)