forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
split_complex_gemm.h
254 lines (214 loc) · 9.76 KB
/
split_complex_gemm.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/***************************************************************************************************
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Reference implementation for split-complex GEMM in device-side code.
*/
#pragma once
#include "cutlass/coord.h"
#include "cutlass/matrix_traits.h"
#include "cutlass/tensor_view.h"
#include "cutlass/gemm/gemm_coord.h"
#include "cutlass/util/complex.h"
namespace cutlass {
namespace reference {
namespace host {
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Computes a complex-valued GEMM whose operands are in the split-complex format.
template <
typename TensorRefA, /// concept: ZipTensorRef
typename TensorRefB, /// concept: ZipTensorRef
typename TensorRefC, /// concept: ZipTensorRef
typename ScalarType, /// real-valued type underlying complex scalars
typename AccumulatorType /// real-valued type underlying complex accumulators
>
void SplitComplexGemm(
gemm::GemmCoord problem_size,
platform::complex<ScalarType> alpha,
TensorRefA tensor_a,
TensorRefB tensor_b,
platform::complex<ScalarType> beta,
TensorRefC tensor_c,
platform::complex<AccumulatorType> initial_accum) {
typedef typename TensorRefA::First::Storage AType;
typedef typename TensorRefB::First::Storage BType;
typedef typename TensorRefC::First::Storage CType;
typedef platform::complex<AType> ComplexAType;
typedef platform::complex<BType> ComplexBType;
typedef platform::complex<CType> ComplexCType;
typedef platform::complex<ScalarType> ComplexScalarType;
typedef platform::complex<AccumulatorType> ComplexAccumulatorType;
static_assert(
TensorRefA::First::kRank == 2 && TensorRefA::Second::kRank == 2 &&
TensorRefB::First::kRank == 2 && TensorRefB::Second::kRank == 2 &&
TensorRefC::First::kRank == 2 && TensorRefC::Second::kRank == 2,
"Tensors must be of rank 2");
// Note: batch is ignored.
int const M = problem_size.m();
int const N = problem_size.n();
int const K = problem_size.k();
// Blocking necessary to speedup reference implementation
int const Mblock = 32;
int const Nblock = 32;
for (int row_block = 0; row_block < M; row_block += Mblock) {
for (int col_block = 0; col_block < N; col_block += Nblock) {
ComplexAccumulatorType accum[Mblock][Nblock];
for (int j = 0; j < Nblock; j++) {
for (int i = 0; i < Mblock; i++) {
accum[i][j] = initial_accum;
}
}
for (int k_block = 0; k_block < K; ++k_block) {
for (int j = 0; j < Nblock; j++) {
for (int i = 0; i < Mblock; i++) {
int row = row_block + i;
int col = col_block + j;
if (row < M && col < N) {
ComplexAType a(
tensor_a.first.at(MatrixCoord(row, k_block)),
tensor_a.second.at(MatrixCoord(row, k_block))
);
ComplexBType b(
tensor_b.first.at(MatrixCoord(k_block, col)),
tensor_b.second.at(MatrixCoord(k_block, col))
);
accum[i][j] = detail::inner_product(a, b, accum[i][j]);
}
}
}
}
for (int j = 0; j < Nblock; j++) {
for (int i = 0; i < Mblock; i++) {
int row = row_block + i;
int col = col_block + j;
MatrixCoord coord = MatrixCoord(row, col);
if (row < M && col < N) {
ComplexScalarType product(
detail::Cast<AccumulatorType, ScalarType>::apply(accum[i][j].real()),
detail::Cast<AccumulatorType, ScalarType>::apply(accum[i][j].imag())
);
ComplexScalarType source(
detail::Cast<CType, ScalarType>::apply(tensor_c.first.at(coord)),
detail::Cast<CType, ScalarType>::apply(tensor_c.second.at(coord))
);
ComplexScalarType result = alpha * product + beta * source;
tensor_c.first.at(coord) = detail::Cast<ScalarType, CType>::apply(result.real());
tensor_c.second.at(coord) = detail::Cast<ScalarType, CType>::apply(result.imag());
}
}
}
}
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Computes a complex-valued GEMM whose operands are in the split-complex format.
template <
typename TensorRefA, /// concept: ZipTensorRef
typename TensorRefB, /// concept: ZipTensorRef
typename TensorRefC, /// concept: ZipTensorRef
typename ScalarType, /// real-valued type underlying complex scalars
typename AccumulatorType /// real-valued type underlying complex accumulators
>
void SplitComplexGemm(
gemm::GemmCoord problem_size,
platform::complex<ScalarType> alpha,
TensorRefA tensor_a,
TensorRefB tensor_b,
platform::complex<ScalarType> beta,
TensorRefC tensor_c) {
return SplitComplexGemm(problem_size, alpha, tensor_a, tensor_b,beta, tensor_c, ScalarType(0));
}
////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Batched Split-Complex GEMM
//
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Computes a complex-valued GEMM whose operands are in the split-complex format.
template <
typename TensorRefCollectionA, /// concept: Pair<TensorRefCollection, TensorRefCollection>
typename TensorRefCollectionB, /// concept: Pair<TensorRefCollection, TensorRefCollection>
typename TensorRefCollectionC, /// concept: Pair<TensorRefCollection, TensorRefCollection>
typename ScalarType, /// real-valued type underlying complex scalars
typename AccumulatorType /// real-valued type underlying complex accumulators
>
void BatchedSplitComplexGemm(
gemm::GemmCoord problem_size,
platform::complex<ScalarType> alpha,
TensorRefCollectionA tensor_a,
TensorRefCollectionB tensor_b,
platform::complex<ScalarType> beta,
TensorRefCollectionC tensor_c,
platform::complex<AccumulatorType> initial_accum) {
typename TensorRefCollectionA::ConstIterator tensor_a_real = tensor_a.first.begin();
typename TensorRefCollectionA::ConstIterator tensor_a_imag = tensor_a.second.begin();
typename TensorRefCollectionB::ConstIterator tensor_b_real = tensor_b.first.begin();
typename TensorRefCollectionB::ConstIterator tensor_b_imag = tensor_b.second.begin();
typename TensorRefCollectionC::ConstIterator tensor_c_real = tensor_c.first.begin();
typename TensorRefCollectionC::ConstIterator tensor_c_imag = tensor_c.second.begin();
for (int batch = 0; batch < problem_size.batch(); ++batch) {
SplitComplexGemm(
problem_size,
alpha,
make_ZipTensorRef(*tensor_a_real, *tensor_a_imag),
make_ZipTensorRef(*tensor_b_real, *tensor_b_imag),
beta,
make_ZipTensorRef(*tensor_c_real, *tensor_c_imag),
initial_accum);
++tensor_a_real;
++tensor_a_imag;
++tensor_b_real;
++tensor_b_imag;
++tensor_c_real;
++tensor_c_imag;
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Computes a complex-valued GEMM whose operands are in the split-complex format.
template <
typename TensorRefCollectionA, /// concept: pair<TensorRefCollection, TensorRefCollection>
typename TensorRefCollectionB, /// concept: pair<TensorRefCollection, TensorRefCollection>
typename TensorRefCollectionC, /// concept: pair<TensorRefCollection, TensorRefCollection>
typename ScalarType, /// real-valued type underlying complex scalars
typename AccumulatorType /// real-valued type underlying complex accumulators
>
void BatchedSplitComplexGemm(
gemm::GemmCoord problem_size,
platform::complex<ScalarType> alpha,
TensorRefCollectionA tensor_a,
TensorRefCollectionB tensor_b,
platform::complex<ScalarType> beta,
TensorRefCollectionC tensor_c) {
BatchedSplitComplexGemm(
problem_size,
alpha,
tensor_a,
tensor_b,
beta,
tensor_c,
platform::complex<ScalarType>(0, 0));
}
////////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace host
} // namespace reference
} // namespace cutlass