-
Notifications
You must be signed in to change notification settings - Fork 119
/
run_checkpoint.py
54 lines (42 loc) · 2.02 KB
/
run_checkpoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import argparse
import logging
import os
import tensorflow as tf
from tf_pose.networks import get_network, model_wh, _get_base_path
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s')
config = tf.ConfigProto()
config.gpu_options.allocator_type = 'BFC'
config.gpu_options.per_process_gpu_memory_fraction = 0.95
config.gpu_options.allow_growth = True
if __name__ == '__main__':
"""
Use this script to just save graph and checkpoint.
While training, checkpoints are saved. You can test them with this python code.
"""
parser = argparse.ArgumentParser(description='Tensorflow Pose Estimation Graph Extractor')
parser.add_argument('--model', type=str, default='cmu', help='cmu / mobilenet / mobilenet_thin / mobilenet_v2_large / mobilenet_v2_small')
parser.add_argument('--resize', type=str, default='0x0')
parser.add_argument('--quantize', action='store_true')
args = parser.parse_args()
w, h = model_wh(args.resize)
if w <= 0 or h <= 0:
w = h = None
print(w, h)
input_node = tf.placeholder(tf.float32, shape=(None, h, w, 3), name='image')
net, pretrain_path, last_layer = get_network(args.model, input_node, None, trainable=False)
if args.quantize:
g = tf.get_default_graph()
tf.contrib.quantize.create_eval_graph(input_graph=g)
with tf.Session(config=config) as sess:
loader = tf.train.Saver(net.restorable_variables())
loader.restore(sess, pretrain_path)
tf.train.write_graph(sess.graph_def, './tmp', 'graph.pb', as_text=True)
flops = tf.profiler.profile(None, cmd='graph', options=tf.profiler.ProfileOptionBuilder.float_operation())
print('FLOP = ', flops.total_float_ops / float(1e6))
# graph = tf.get_default_graph()
# for n in tf.get_default_graph().as_graph_def().node:
# if 'concat_stage' not in n.name:
# continue
# print(n.name)
# saver = tf.train.Saver(max_to_keep=100)
# saver.save(sess, './tmp/chk', global_step=1)