diff --git a/citations.tsv b/citations.tsv index 009304bcf..a1c80fd28 100644 --- a/citations.tsv +++ b/citations.tsv @@ -1,4 +1,6 @@ input_id dealiased_id standard_id short_id +individual-pathogenesis arxiv:2102.01521 arxiv:2102.01521 r366f5T3 +individual-nutraceuticals arxiv:2102.02250 arxiv:2102.02250 1B22G6dja url:https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf url:https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf url:https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf Vb5KFWnO url:https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200128-sitrep-8-ncov-cleared.pdf url:https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200128-sitrep-8-ncov-cleared.pdf url:https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200128-sitrep-8-ncov-cleared.pdf fLTiwToY url:https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf url:https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf url:https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf x9975iBK @@ -365,7 +367,6 @@ doi:10.1007/s13246-020-00865-4 doi:10.1007/s13246-020-00865-4 doi:10.1007/s13246 url:https://www.cdc.gov/coronavirus/2019-nCoV/hcp/clinical-criteria.html url:https://www.cdc.gov/coronavirus/2019-nCoV/hcp/clinical-criteria.html url:https://www.cdc.gov/coronavirus/2019-nCoV/hcp/clinical-criteria.html OB8BJiwj url:https://www.governor.ny.gov/sites/governor.ny.gov/files/atoms/files/NYForwardReopeningGuide.pdf url:https://www.governor.ny.gov/sites/governor.ny.gov/files/atoms/files/NYForwardReopeningGuide.pdf url:https://www.governor.ny.gov/sites/governor.ny.gov/files/atoms/files/NYForwardReopeningGuide.pdf IldxlHwA doi:10.1001/jama.2020.8259 doi:10.1001/jama.2020.8259 doi:10.1001/jama.2020.8259 CC4sPeuO -individual-pathogenesis arxiv:2102.01521 arxiv:2102.01521 r366f5T3 https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_time_series https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_time_series url:https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_time_series MrwDDw9R doi:10.1056/NEJMoa1211721 doi:10.1056/NEJMoa1211721 doi:10.1056/nejmoa1211721 7Ee6Sz9l doi:10.1101/2020.06.15.20131540 doi:10.1101/2020.06.15.20131540 doi:10.1101/2020.06.15.20131540 xnPm1mx8 @@ -561,8 +562,8 @@ doi:10.1172/jci.insight.123158 doi:10.1172/jci.insight.123158 doi:10.1172/jci.in doi:10.1016/j.jcv.2003.11.013 doi:10.1016/j.jcv.2003.11.013 doi:10.1016/j.jcv.2003.11.013 LtFtUo2P doi:10.1016/j.virusres.2014.07.024 doi:10.1016/j.virusres.2014.07.024 doi:10.1016/j.virusres.2014.07.024 Nfu9kiae clinicaltrials:NCT04385095 clinicaltrials:NCT04385095 clinicaltrials:NCT04385095 5GxCGzrT -synairgen-SNG001 https://www.synairgen.com/wp-content/uploads/2020/03/200318-Synairgen-to-start-trial-of-SNG001-in-COVID-19-imminently-.pdf url:https://www.synairgen.com/wp-content/uploads/2020/03/200318-Synairgen-to-start-trial-of-SNG001-in-COVID-19-imminently-.pdf s9C2iFSR -url:https://www.synairgen.com/wp-content/uploads/2020/07/200720-Synairgen-announces-positive-results-from-trial-of-SNG001-in-hospitalised-COVID-19-patients.pdf url:https://www.synairgen.com/wp-content/uploads/2020/07/200720-Synairgen-announces-positive-results-from-trial-of-SNG001-in-hospitalised-COVID-19-patients.pdf url:https://www.synairgen.com/wp-content/uploads/2020/07/200720-Synairgen-announces-positive-results-from-trial-of-SNG001-in-hospitalised-COVID-19-patients.pdf 4Tx92JMv +synairgen-SNG001-March-2020 synairgen-SNG001-March-2020 synairgen-SNG001-March-2020 7k9Wp9or +synairgen-SNG001-July-2020 synairgen-SNG001-July-2020 synairgen-SNG001-July-2020 bD1bgfSb doi:10/ghjzm4 doi:10/ghjzm4 doi:10.1016/s2213-2600(20)30511-7 qFDbLzcP doi:10/ftmj doi:10/ftmj doi:10.1016/s2213-2600(20)30523-3 11hbhD5Rk 10.1001/jama.2019.22525 10.1001/jama.2019.22525 doi:10.1001/jama.2019.22525 B2urVDo5 diff --git a/manuscript.html b/manuscript.html index 79cf3df36..b6674c3d3 100644 --- a/manuscript.html +++ b/manuscript.html @@ -258,13 +258,13 @@ - - - + + + - - + + @@ -276,10 +276,11 @@
This manuscript -(permalink) +(permalink) was automatically generated -from greenelab/covid19-review@c416bb3 +from greenelab/covid19-review@b615abb on February 12, 2021. +Snapshots of individual sections are available as preprints [1,2].
@@ -617,14 +618,14 @@
We have established a community chat room on a service called Gitter: https://gitter.im/covid19-review/community
More information about how to contribute is available in a README document on GitHub: https://github.com/greenelab/covid19-review#sars-cov-2-and-covid-19-an-evolving-review-of-diagnostics-and-therapeutics
On January 21, 2020, the World Health Organization (WHO) released its first report concerning what is now known as the Coronavirus Disease 2019 (COVID-19) [1]. +
On January 21, 2020, the World Health Organization (WHO) released its first report concerning what is now known as the Coronavirus Disease 2019 (COVID-19) [3]. This infectious disease came to international attention on December 31, 2019 following an announcement by national officials in China describing 44 cases of a respiratory infection of unknown cause. The first known cases were located in Wuhan City within the Hubei province of China, but the disease spread rapidly throughout China and subsequently around the world. -At the time of the WHO’s first situation report [1], 282 confirmed cases had been identified. +At the time of the WHO’s first situation report [3], 282 confirmed cases had been identified. Most of these cases were in China, but one to two exported cases had also been identified in each of several neighboring countries (Thailand, Japan, and the Republic of Korea). -One week later, 4,593 confirmed cases had been identified, spanning not only Asia, but also Australia, North America, and Europe [2]. -On March 11, 2020, the WHO formally classified the situation as a pandemic [3]. -On April 4, 2020, the WHO reported that the global number of confirmed cases had surpassed one million [4]. +One week later, 4,593 confirmed cases had been identified, spanning not only Asia, but also Australia, North America, and Europe [4]. +On March 11, 2020, the WHO formally classified the situation as a pandemic [5]. +On April 4, 2020, the WHO reported that the global number of confirmed cases had surpassed one million [6]. , that automatically update using external data sources. -Our primary goal is to sort and distill informative content out of the overwhelming flood of information [5] and help the broader scientific community become more conversant on this critical subject. +Our primary goal is to sort and distill informative content out of the overwhelming flood of information [7] and help the broader scientific community become more conversant on this critical subject. Thus, our approach has been to develop a real-time, collaborative effort that welcomes submissions from scientists worldwide into this ongoing effort. This document represents the first snapshot, which aims to reflect the state of the field as of October, 2020. We plan to refine and expand this document until technologies to mitigate the pandemic are widely available.
@@ -649,56 +650,56 @@The first genome sequence of the virus was released on January 3, 2020 and revealed that the cluster of pneumonia cases seen in Wuhan were caused by a novel coronavirus [10]. -Multiple research groups have drafted the genome sequence of SARS-CoV-2 based on sequences developed from clinical samples collected from the lower respiratory tract, namely bronchoalveolar lavage fluid (BALF), and the upper respiratory tract, in the form of throat swabs [11,12,13]. -Analysis of the SARS-CoV-2 genome revealed significant sequence homology with two coronaviruses known to infect humans, with about 79% identity to SARS-CoV-1 and 50% to MERS-CoV [13]. -However, the highest degree of similarity was observed between SARS-CoV-2 and bat-derived SARS-like coronaviruses (bat-SL-CoVZC45 and bat-SL-CoVZXC21) [12,13], with identity between SARS-CoV-2 and RATG13 as high as 96.2% [12,14]. +
The first genome sequence of the virus was released on January 3, 2020 and revealed that the cluster of pneumonia cases seen in Wuhan were caused by a novel coronavirus [12]. +Multiple research groups have drafted the genome sequence of SARS-CoV-2 based on sequences developed from clinical samples collected from the lower respiratory tract, namely bronchoalveolar lavage fluid (BALF), and the upper respiratory tract, in the form of throat swabs [13,14,15]. +Analysis of the SARS-CoV-2 genome revealed significant sequence homology with two coronaviruses known to infect humans, with about 79% identity to SARS-CoV-1 and 50% to MERS-CoV [15]. +However, the highest degree of similarity was observed between SARS-CoV-2 and bat-derived SARS-like coronaviruses (bat-SL-CoVZC45 and bat-SL-CoVZXC21) [14,15], with identity between SARS-CoV-2 and RATG13 as high as 96.2% [14,16]. This evidence therefore suggests the SARS-CoV-2 virus is the result of zoonotic transfer of a virus from bats to humans. Nevertheless, some fragments between SARS-CoV-2 and RATG13 differ by up to 17%, suggesting a complex natural selection process during zoonotic transfer. -While the S region is highly similar to that of viruses found in pangolins [15], there is no consensus about the origin of S in SARS-CoV-2, as it could potentially be the result either of recombination or coevolution [14,16]. +While the S region is highly similar to that of viruses found in pangolins [17], there is no consensus about the origin of S in SARS-CoV-2, as it could potentially be the result either of recombination or coevolution [16,18]. Though the intermediate host serving as the source for the zoonotic introduction of SARS-CoV-2 to human populations has not yet been identified, the SARS-CoV-2 virus has been placed within the coronavirus phylogeny through comparative genomic analyses. -Genomic analyses and comparisons to other known coronaviruses suggest that SARS-CoV-2 is unlikely to have originated in a laboratory – either purposely engineered and released, or escaped – and instead evolved naturally in an animal host [17]. -While the position of the SARS-CoV-2 virus within the coronavirus phylogeny has been largely resolved, the functional consequences of molecular variation between this virus and other viruses, such as its bat and pangolin sister taxa or SARS-CoV-1, remain unknown [17]. +Genomic analyses and comparisons to other known coronaviruses suggest that SARS-CoV-2 is unlikely to have originated in a laboratory – either purposely engineered and released, or escaped – and instead evolved naturally in an animal host [19]. +While the position of the SARS-CoV-2 virus within the coronavirus phylogeny has been largely resolved, the functional consequences of molecular variation between this virus and other viruses, such as its bat and pangolin sister taxa or SARS-CoV-1, remain unknown [19]. Fortunately, the basic genome structure of coronaviruses is highly conserved, and insight into the mechanisms the virus uses to enter cells, replicate, and spread is likely to be available from prior research in coronaviruses.
Coronaviruses have long been known to infect animals and have been the subject of veterinary medical investigations and vaccine development efforts due to their effect on the health of companion and agricultural animals [18]. +
Coronaviruses have long been known to infect animals and have been the subject of veterinary medical investigations and vaccine development efforts due to their effect on the health of companion and agricultural animals [20]. Most coronaviruses show little to no transmission in humans. -However, today it is thought that approximately one-third of common cold infections are caused by four human coronaviruses (HCoV): Human coronavirus 229E (HCoV-229E), Human coronavirus NL63 (HCoV-NL63), Human coronavirus OC43 (HCoV-OC43), and Human coronavirus HKU1 (HCoV-HKU1) [19,20]. -The first HCoV were identified in the 1960s: HCoV-229E in 1965 [21] and HCoV-OC43 in 1967 [22]. -Both of these viruses cause cold-like symptoms [23,24]. -Two additional HCoV were subsequently identified [25,26]. -In 2003, HCoV-NL63 [25] was first identified in a 7-month-old infant and then in clinical specimens collected from seven additional patients, five of whom were infants younger than 1 year old and the remainder of whom were adults. -CoV-HKU1 was identified in samples collected from a 71-year-old pneumonia patient in 2004 and then found in samples collected from a second adult patient [26]. -These viruses are associated with respiratory diseases of varying severity, ranging from common cold to severe pneumonia, with severe symptoms mostly observed in immunocompromised individuals [27]. -In addition to these relatively mild HCoV, however, highly pathogenic human coronaviruses have been identified, including Severe acute respiratory syndrome-related coronavirus (SARS-CoV or SARS-CoV-1) and Middle East respiratory syndrome-related coronavirus (MERS-CoV) [19,28,29].
-At the time that SARS-CoV-1 emerged in the early 2000s, no HCoV had been identified in almost 40 years [28]. -The first case of SARS was reported in November 2002 in the Guangdong Province of China, and over the following month, the disease spread more widely within China and then into several countries across multiple continents [28,30]. -Unlike previously identified HCoV, SARS was much more severe, with an estimated death rate of 9.5% [30]. -It was also highly contagious via droplet transmission, with a basic reproduction number (R0) of 4 (i.e., each person infected was estimated to infect four other people) [30]. -However, the identity of the virus behind the infection remained unknown until April of 2003, when the SARS-CoV-1 virus was identified through a worldwide scientific effort spearheaded by the WHO [28]. -SARS-CoV-1 belonged to a distinct lineage from the two other HCoV known at the time [30]. -By July 2003, the SARS outbreak was officially determined to be under control, with the success credited to infection management practices [28]. +However, today it is thought that approximately one-third of common cold infections are caused by four human coronaviruses (HCoV): Human coronavirus 229E (HCoV-229E), Human coronavirus NL63 (HCoV-NL63), Human coronavirus OC43 (HCoV-OC43), and Human coronavirus HKU1 (HCoV-HKU1) [21,22]. +The first HCoV were identified in the 1960s: HCoV-229E in 1965 [23] and HCoV-OC43 in 1967 [24]. +Both of these viruses cause cold-like symptoms [25,26]. +Two additional HCoV were subsequently identified [27,28]. +In 2003, HCoV-NL63 [27] was first identified in a 7-month-old infant and then in clinical specimens collected from seven additional patients, five of whom were infants younger than 1 year old and the remainder of whom were adults. +CoV-HKU1 was identified in samples collected from a 71-year-old pneumonia patient in 2004 and then found in samples collected from a second adult patient [28]. +These viruses are associated with respiratory diseases of varying severity, ranging from common cold to severe pneumonia, with severe symptoms mostly observed in immunocompromised individuals [29]. +In addition to these relatively mild HCoV, however, highly pathogenic human coronaviruses have been identified, including Severe acute respiratory syndrome-related coronavirus (SARS-CoV or SARS-CoV-1) and Middle East respiratory syndrome-related coronavirus (MERS-CoV) [21,30,31].
+At the time that SARS-CoV-1 emerged in the early 2000s, no HCoV had been identified in almost 40 years [30]. +The first case of SARS was reported in November 2002 in the Guangdong Province of China, and over the following month, the disease spread more widely within China and then into several countries across multiple continents [30,32]. +Unlike previously identified HCoV, SARS was much more severe, with an estimated death rate of 9.5% [32]. +It was also highly contagious via droplet transmission, with a basic reproduction number (R0) of 4 (i.e., each person infected was estimated to infect four other people) [32]. +However, the identity of the virus behind the infection remained unknown until April of 2003, when the SARS-CoV-1 virus was identified through a worldwide scientific effort spearheaded by the WHO [30]. +SARS-CoV-1 belonged to a distinct lineage from the two other HCoV known at the time [32]. +By July 2003, the SARS outbreak was officially determined to be under control, with the success credited to infection management practices [30]. A decade later, a second outbreak of severe respiratory illness associated with a coronavirus emerged, this time in the Arabian Peninsula. This disease, known as Middle East respiratory syndrome (MERS), was linked to another novel coronavirus, MERS-CoV. -The fatality rate associated with MERS is much higher than that of SARS, at almost 35%, but the disease is much less easily transmitted, with an R0 of 1 [30]. -Although MERS is still circulating, its low reproduction number has allowed for its spread to be contained [30]. +The fatality rate associated with MERS is much higher than that of SARS, at almost 35%, but the disease is much less easily transmitted, with an R0 of 1 [32]. +Although MERS is still circulating, its low reproduction number has allowed for its spread to be contained [32]. The COVID-19 pandemic is thus associated with the seventh HCoV to be identified and the fifth since the turn of the millennium, though additional HCoVs may be in circulation but remain undetected.
-SARS-CoV-1 and MERS-CoV were ultimately managed largely through infection management practices (e.g., mask wearing) and properties of the virus itself (i.e., low rate of transmission), respectively [28,30]. -Vaccines were not used to control either virus, although vaccine development programs were established for SARS-CoV-1 [31]. -In general, care for SARS and MERS patients focuses on supportive care and symptom management [30]. +
SARS-CoV-1 and MERS-CoV were ultimately managed largely through infection management practices (e.g., mask wearing) and properties of the virus itself (i.e., low rate of transmission), respectively [30,32]. +Vaccines were not used to control either virus, although vaccine development programs were established for SARS-CoV-1 [33]. +In general, care for SARS and MERS patients focuses on supportive care and symptom management [32]. Clinical treatments for SARS and MERS developed during the outbreaks generally do not have strong evidence supporting their use. -Common treatments included Ribavirin, an antiviral, often in combination with corticosteroids or sometimes interferon (IFN) medications, which would both be expected to have immunomodulatory effects [28]. -However, retrospective and in vitro analyses have reported inconclusive results of these treatments on SARS and the SARS-CoV-1 virus, respectively [28]. -IFNs and Ribavirin have shown promise in in vitro analyses of MERS, but their clinical effectiveness remains unknown [28]. +Common treatments included Ribavirin, an antiviral, often in combination with corticosteroids or sometimes interferon (IFN) medications, which would both be expected to have immunomodulatory effects [30]. +However, retrospective and in vitro analyses have reported inconclusive results of these treatments on SARS and the SARS-CoV-1 virus, respectively [30]. +IFNs and Ribavirin have shown promise in in vitro analyses of MERS, but their clinical effectiveness remains unknown [30]. Therefore, only limited strategy for the pharmaceutical management of COVID-19 can be adopted from previous severe HCoV infections. Research in response to prior outbreaks of HCoV-borne infections, such as SARS and MERS, have, however, provided a strong foundation for hypotheses about the pathogenesis of SARS-CoV-2 as well as potential diagnostic and therapeutic approaches.
In the case of COVID-19, there is also concern about the immune system becoming over-active. One of the main immune responses contributing to the onset of acute respiratory distress syndrome (ARDS) in COVID-19 patients is cytokine storm syndrome (CSS), which causes an extreme inflammatory response due to a release of pro-inflammatory cytokines and chemokines by immune effector cells. -In addition to respiratory distress, this mechanism can lead to organ failure and death in severe COVID-19 cases [33]. +In addition to respiratory distress, this mechanism can lead to organ failure and death in severe COVID-19 cases [35]. Details of how the human body responds to SARS-CoV-2, both in healthy and pathological ways, and how these mechanisms can inform the identification of diagnostic, prophylactic, and therapeutic responses are explored in detail throughout this manuscript.
A great diversity of symptom profiles has been observed for COVID-19, although a large study from Wuhan, China suggests fever and cough as the two most common symptoms on admission [34]. -One early retrospective study in China described the clinical presentations of patients infected with SARS-CoV-2 as including lower respiratory tract infection with fever, dry cough, and dyspnea [35]. -This study [35] noted that upper respiratory tract symptoms were less common, which suggests that the virus targets cells located in the lower respiratory tract. -However, data from the New York City region [36,37] showed variable rates of fever as a presenting symptom, suggesting that symptoms may not be consistent across samples. +
A great diversity of symptom profiles has been observed for COVID-19, although a large study from Wuhan, China suggests fever and cough as the two most common symptoms on admission [36]. +One early retrospective study in China described the clinical presentations of patients infected with SARS-CoV-2 as including lower respiratory tract infection with fever, dry cough, and dyspnea [37]. +This study [37] noted that upper respiratory tract symptoms were less common, which suggests that the virus targets cells located in the lower respiratory tract. +However, data from the New York City region [38,39] showed variable rates of fever as a presenting symptom, suggesting that symptoms may not be consistent across samples. These differences are present when comparing both between institutions in similar locations and between different regions experiencing COVID-19 outbreaks, leading to conflicting reports of the frequency of fever as a presenting symptom for patients upon hospital admission. -For example, even within New York City, one study [36] identified low oxygen saturation (<90% without the use of supplemental oxygen or ventilation support) in a significant percentage of patients upon presentation, while another study [37] reported cough, fever, and dyspnea as the most common presenting symptoms. +For example, even within New York City, one study [38] identified low oxygen saturation (<90% without the use of supplemental oxygen or ventilation support) in a significant percentage of patients upon presentation, while another study [39] reported cough, fever, and dyspnea as the most common presenting symptoms. The variability of both which symptoms present and their severity makes it difficult for public health agencies to provide clear recommendations for citizens regarding what symptoms indicate SARS-CoV-2 infection and should prompt isolation.
Several review articles on aspects of COVID-19 have already been published. -These have included reviews on the disease epidemiology [38], immunological response [39], diagnostics [40], and pharmacological treatments [39,41]. -Others [42,43] provide narrative reviews of progress on some important ongoing COVID-19 research questions. +These have included reviews on the disease epidemiology [40], immunological response [41], diagnostics [42], and pharmacological treatments [41,43]. +Others [44,45] provide narrative reviews of progress on some important ongoing COVID-19 research questions. With the worldwide scientific community uniting during 2020 to investigate SARS-CoV-2 and COVID-19 from a wide range of perspectives, findings from many disciplines are relevant on a rapid timescale to a broad scientific audience. Additionally, many findings are published as preprints, which are available prior to going through the peer review process. As a result, centralizing, summarizing, and critiquing new literature broadly relevant to COVID-19 can help to expedite the interdisciplinary scientific process that is currently happening at an advanced pace. @@ -760,24 +761,24 @@
The current coronavirus disease 2019 (COVID-19) pandemic, caused by the Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) virus, represents an acute global health crisis. -Symptoms of the disease can range from mild to severe or fatal [44] and can affect a variety of organs and systems [45]. -Outcomes of infection can include acute respiratory distress (ARDS) and acute lung injury, as well as damage to other organ systems [45,46]. +Symptoms of the disease can range from mild to severe or fatal [46] and can affect a variety of organs and systems [47]. +Outcomes of infection can include acute respiratory distress (ARDS) and acute lung injury, as well as damage to other organ systems [47,48]. Understanding the progression of the disease, including these diverse symptoms, depends on understanding how the virus interacts with the host. Additionally, the fundamental biology of the virus can provide insights into how it is transmitted among people, which can, in turn, inform efforts to control its spread. As a result, a thorough understanding of the pathogenesis of SARS-CoV-2 is a critical foundation on which to build an understanding of COVID-19 and the pandemic as a whole.
-The rapid identification and release of the genomic sequence of the virus in January 2020 [10] provided early insight into the virus in a comparative genomic context. +
The rapid identification and release of the genomic sequence of the virus in January 2020 [12] provided early insight into the virus in a comparative genomic context. The viral genomic sequence clusters with known coronaviruses (order Nidovirales, family Coronaviridae, subfamily Orthocoronavirinae). Phylogenetic analysis of the coronaviruses reveals four major subclades, each corresponding to a genus: the alpha, beta, gamma, and delta coronaviruses. -Among them, alpha- and betacoronaviruses infect mammalian species, gammacoronaviruses infect avian species, and deltacoronaviruses infect both mammalian and avian species [47]. -The novel virus now known as SARS-CoV-2 was identified as a betacoronavirus belonging to the B lineage based on phylogenetic analysis of a polymerase chain reaction (PCR) amplicon fragment from five patients along with the full genomic sequence [48]. -This lineage also includes the Severe acute respiratory syndrome-related coronavirus (SARS-CoV-1) that caused the 2002-2003 outbreak of Severe Acute Respiratory Syndrome (SARS) in humans [48]. +Among them, alpha- and betacoronaviruses infect mammalian species, gammacoronaviruses infect avian species, and deltacoronaviruses infect both mammalian and avian species [49]. +The novel virus now known as SARS-CoV-2 was identified as a betacoronavirus belonging to the B lineage based on phylogenetic analysis of a polymerase chain reaction (PCR) amplicon fragment from five patients along with the full genomic sequence [50]. +This lineage also includes the Severe acute respiratory syndrome-related coronavirus (SARS-CoV-1) that caused the 2002-2003 outbreak of Severe Acute Respiratory Syndrome (SARS) in humans [50]. Because viral structure and mechanisms of pathogenicity are highly conserved within the order, this phylogenetic analysis provided a basis for forming hypotheses about how the virus interacts with hosts, including which tissues, organs, and systems would be most susceptible to SARS-CoV-2 infection. Coronaviruses that infect humans (HCoV) are not common, but prior research into other HCoV such as SARS-CoV-1 and Middle East respiratory syndrome-related coronavirus (MERS-CoV), as well as other viruses infecting humans such as a variety of influenza species, established a strong foundation that accelerated the pace of SARS-CoV-2 research.
Coronaviruses are large viruses that can be identified by their distinctive “crown-like” shape (Figure 1). -Their spherical virions are made from lipid envelopes ranging from 100 to 160 nanometers in which peplomers (protruding structures) of two to three spike (S) glycoproteins are anchored, creating the crown [49,50]. -These spikes, which are critical to both viral pathogenesis and to the response by the host immune response, have been visualized using cryo-electron microscopy [51]. +Their spherical virions are made from lipid envelopes ranging from 100 to 160 nanometers in which peplomers (protruding structures) of two to three spike (S) glycoproteins are anchored, creating the crown [51,52]. +These spikes, which are critical to both viral pathogenesis and to the response by the host immune response, have been visualized using cryo-electron microscopy [53]. Because they induce the human immune response, they are also the target of many proposed therapeutic agents. -Viral pathogenesis is typically broken down into three major components: entry, replication, and spread [52]. +Viral pathogenesis is typically broken down into three major components: entry, replication, and spread [54]. However, in order to draw a more complete picture of pathogenesis, it is also necessary to examine how infection manifests clinically, identify systems-level interactions between the virus and the human body, and consider the possible effects of variation or evolutionary change on pathogenesis and virulence. Thus, clinical medicine and traditional biology are both important pieces of the puzzle of SARS-CoV-2 presentation and pathogenesis.
While, like most viruses, it is possible that SARS-CoV-1 and SARS-CoV-2 can enter cells through endocytosis, coronaviruses are also able to target cells for entry through fusion with the plasma membrane [55,56]. +
While, like most viruses, it is possible that SARS-CoV-1 and SARS-CoV-2 can enter cells through endocytosis, coronaviruses are also able to target cells for entry through fusion with the plasma membrane [57,58]. This process is conserved among coronaviruses and is closely associated with the content of their genomes. Cell entry proceeds in three steps: binding, cleavage, and fusion. First, the viral spike protein binds to a host cell via a recognized receptor or entry point. -Coronaviruses can bind to a range of host receptors [57,58], with binding conserved only at the genus level [47]. -Viruses in the betacoronavirus genus, to which SARS-CoV-2 belongs, are known to bind to the CEACAM1 protein, 5-N-acetyl-9-O-acetyl neuraminic acid, and to the angiotensin-converting enzyme 2 (ACE2) [57]. -SARS-CoV-2 has a high affinity for human ACE2, which is expressed in the vascular epithelium, other epithelial cells, and cardiovascular and renal tissues [59,60], as well as many others [61]. -The binding process is guided by the molecular structure of the spike protein, which is structured in three segments: an ectodomain, a transmembrane anchor, and an intracellular tail [62]. -The ectodomain forms the crown-like structures on the viral membrane and contains two subdomains known as the S1 and S2 subunits [63]. -The S1 (N-terminal) domain forms the head of the crown and contains the receptor binding motif, and the S2 (C-terminal) domain forms the stalk that supports the head [63]. -The S1 subunit guides the binding of the virus to the host cell, and the S2 subunit guides the fusion process [62].
-After the binding of the S1 subunit to an entry point, the spike protein is often cleaved at the S1-S2 boundary by a host protease [64,65,66]. -Similar to SARS-CoV-1, SARS-CoV-2 exhibits redundancy in which host proteases can cleave the S protein [67]. -Specifically, both transmembrane protease serine protease-2 (TMPRSS2) and cathepsins B/L have been shown to mediate SARS-CoV-2 S protein proteolytic priming, and small molecule inhibition of these enzymes fully inhibited viral entry in vitro [67,68]. -Proteolytic priming prepares the S protein for fusion [65,66]. -The two subunits remain bound by van der Waals forces, with the S1 subunit stabilizing the S2 subunit during the membrane fusion process [64]. -Electron microscopy suggests that in some coronaviruses, including SARS-CoV-1 and MERS-CoV, a six-helix bundle separates the two subunits in the postfusion conformation, and the unusual length of this bundle facilitates membrane fusion through the release of additional energy [47]. -Cleavage at a second site within S2 by these same proteases activates S for fusion by inducing conformational changes [64]. +Coronaviruses can bind to a range of host receptors [59,60], with binding conserved only at the genus level [49]. +Viruses in the betacoronavirus genus, to which SARS-CoV-2 belongs, are known to bind to the CEACAM1 protein, 5-N-acetyl-9-O-acetyl neuraminic acid, and to the angiotensin-converting enzyme 2 (ACE2) [59]. +SARS-CoV-2 has a high affinity for human ACE2, which is expressed in the vascular epithelium, other epithelial cells, and cardiovascular and renal tissues [61,62], as well as many others [63]. +The binding process is guided by the molecular structure of the spike protein, which is structured in three segments: an ectodomain, a transmembrane anchor, and an intracellular tail [64]. +The ectodomain forms the crown-like structures on the viral membrane and contains two subdomains known as the S1 and S2 subunits [65]. +The S1 (N-terminal) domain forms the head of the crown and contains the receptor binding motif, and the S2 (C-terminal) domain forms the stalk that supports the head [65]. +The S1 subunit guides the binding of the virus to the host cell, and the S2 subunit guides the fusion process [64].
+After the binding of the S1 subunit to an entry point, the spike protein is often cleaved at the S1-S2 boundary by a host protease [66,67,68]. +Similar to SARS-CoV-1, SARS-CoV-2 exhibits redundancy in which host proteases can cleave the S protein [69]. +Specifically, both transmembrane protease serine protease-2 (TMPRSS2) and cathepsins B/L have been shown to mediate SARS-CoV-2 S protein proteolytic priming, and small molecule inhibition of these enzymes fully inhibited viral entry in vitro [69,70]. +Proteolytic priming prepares the S protein for fusion [67,68]. +The two subunits remain bound by van der Waals forces, with the S1 subunit stabilizing the S2 subunit during the membrane fusion process [66]. +Electron microscopy suggests that in some coronaviruses, including SARS-CoV-1 and MERS-CoV, a six-helix bundle separates the two subunits in the postfusion conformation, and the unusual length of this bundle facilitates membrane fusion through the release of additional energy [49]. +Cleavage at a second site within S2 by these same proteases activates S for fusion by inducing conformational changes [66]. The viral membrane can then fuse with the endosomal membrane to release the viral genome into the host cytoplasm. Once the virus enters a host cell, the replicase gene is translated and assembled into the viral replicase complex. This complex then synthesizes the double-stranded RNA (dsRNA) genome from the genomic ssRNA(+). -The dsRNA genome is transcribed and replicated to create viral mRNAs and new ssRNA(+) genomes [53,69]. +The dsRNA genome is transcribed and replicated to create viral mRNAs and new ssRNA(+) genomes [55,71]. From there, the virus can spread into other cells. In this way, the genome of SARS-CoV-2 provides insight into the pathogenic behavior of the virus.
Research in other HCoV provides some indication of how SARS-CoV-2 infection proceeds in spite of the human immune response. -By infecting the epithelium, viruses such as SARS-CoV-1 are known to bypass the physical barriers, such as skin and mucus, that comprise the immune system’s first line of defense [70]. +By infecting the epithelium, viruses such as SARS-CoV-1 are known to bypass the physical barriers, such as skin and mucus, that comprise the immune system’s first line of defense [72]. Once the virus infiltrates host cells, it is adept at evading detection. -CD163+ and CD68+ macrophage cells are especially crucial for the establishment of SARS-CoV-1 in the body [70]. +CD163+ and CD68+ macrophage cells are especially crucial for the establishment of SARS-CoV-1 in the body [72]. These cells most likely serve as viral reservoirs that help shield SARS-CoV-1 from the innate immune response. -According to a study on the viral dissemination of SARS-CoV-1 in Chinese macaques, viral RNA could be detected in some monocytes throughout the process of differentiation into dendritic cells [70]. -This lack of active viral replication allows SARS-CoV-1 to escape the innate immune response because reduced levels of detectable viral RNA allow the virus to avoid both natural killer cells and Toll-like receptors [70]. +According to a study on the viral dissemination of SARS-CoV-1 in Chinese macaques, viral RNA could be detected in some monocytes throughout the process of differentiation into dendritic cells [72]. +This lack of active viral replication allows SARS-CoV-1 to escape the innate immune response because reduced levels of detectable viral RNA allow the virus to avoid both natural killer cells and Toll-like receptors [72]. Even during replication, SARS-CoV-1 is able to mask its dsRNA genome from detection by the immune system. -Although dsRNA is a pathogen-associated molecular pattern that would typically initiate a response from the innate immune system [71], in vitro analysis of nidoviruses including SARS-CoV-1 suggests that these viruses can induce the development of double-membrane vesicles that protect the dsRNA signature from being detected by the host immune system [72]. -This protective envelope can therefore insulate these coronaviruses from the innate immune system’s detection mechanism [33].
+Although dsRNA is a pathogen-associated molecular pattern that would typically initiate a response from the innate immune system [73], in vitro analysis of nidoviruses including SARS-CoV-1 suggests that these viruses can induce the development of double-membrane vesicles that protect the dsRNA signature from being detected by the host immune system [74]. +This protective envelope can therefore insulate these coronaviruses from the innate immune system’s detection mechanism [35].HCoVs are also known to interfere with the host immune response, rather than just evade it. -For example, the virulence of SARS-CoV-2 is increased by nsp1, which can suppress host gene expression by stalling mRNA translation and inducing endonucleolytic cleavage and mRNA degradation [73]. +For example, the virulence of SARS-CoV-2 is increased by nsp1, which can suppress host gene expression by stalling mRNA translation and inducing endonucleolytic cleavage and mRNA degradation [75]. SARS-CoV-1 also evades the immune response by interfering with type I IFN induction signaling, which is a mechanism that leads to cellular resistance to viral infections. -SARS-CoV-1 employs methods such as ubiquitination and degradation of RNA sensor adaptor molecules MAVS and TRAF3/6 [74]. -Also, MERS-CoV downregulates antigen presentation via MHC class I and MHC class II, which leads to a reduction in T cell activation [74]. +SARS-CoV-1 employs methods such as ubiquitination and degradation of RNA sensor adaptor molecules MAVS and TRAF3/6 [76]. +Also, MERS-CoV downregulates antigen presentation via MHC class I and MHC class II, which leads to a reduction in T cell activation [76]. These evasion mechanisms, in turn, can facilitate systemic infection. -Coronaviruses such as SARS-CoV-1 are also able to evade the humoral immune response through other mechanisms, such as inhibiting certain cytokine pathways or down-regulating antigen presentation by the cells [72].
+Coronaviruses such as SARS-CoV-1 are also able to evade the humoral immune response through other mechanisms, such as inhibiting certain cytokine pathways or down-regulating antigen presentation by the cells [74].ACE2 and TMPRSS2 have been identified as the primary entry portal and as a critical protease, respectively, in facilitating the entry of SARS-CoV-1 and SARS-CoV-2 into a target cell [51,67,75,76,77]. +
ACE2 and TMPRSS2 have been identified as the primary entry portal and as a critical protease, respectively, in facilitating the entry of SARS-CoV-1 and SARS-CoV-2 into a target cell [53,69,77,78,79]. This finding has led to a hypothesized role for ACE2 and TMPRSS2 expression in determining which cells, tissues, and organs are most likely to be infected by SARS-CoV-2. -ACE2 is expressed in numerous organs, such as the heart, kidney, and intestine, but it is most prominently expressed in alveolar epithelial cells; this pattern of expression is expected to contribute to the virus’ association with lung pathology [59,78,79] as well as that of SARS [80]. -Clinical investigations of COVID-19 patients have detected SARS-CoV-2 transcripts in bronchoalveolar lavage fluid (BALF) (93% of specimens), sputum (72%), nasal swabs (63%), fibrobronchoscopy brush biopsies (46%), pharyngeal swabs (32%), feces (29%), and blood (1%) [81]. -Two studies reported that SARS-CoV-2 could not be detected in urine specimens [81,82]; however, a third study identified four urine samples (out of 58) that were positive for SARS-CoV-2 nucleic acids [83]. -Although respiratory failure remains the leading cause of death for COVID-19 patients [84], SARS-CoV-2 infection can damage many other organ systems including the heart [85], kidneys [86,87], liver [88], and gastrointestinal tract [89,90]. +ACE2 is expressed in numerous organs, such as the heart, kidney, and intestine, but it is most prominently expressed in alveolar epithelial cells; this pattern of expression is expected to contribute to the virus’ association with lung pathology [61,80,81] as well as that of SARS [82]. +Clinical investigations of COVID-19 patients have detected SARS-CoV-2 transcripts in bronchoalveolar lavage fluid (BALF) (93% of specimens), sputum (72%), nasal swabs (63%), fibrobronchoscopy brush biopsies (46%), pharyngeal swabs (32%), feces (29%), and blood (1%) [83]. +Two studies reported that SARS-CoV-2 could not be detected in urine specimens [83,84]; however, a third study identified four urine samples (out of 58) that were positive for SARS-CoV-2 nucleic acids [85]. +Although respiratory failure remains the leading cause of death for COVID-19 patients [86], SARS-CoV-2 infection can damage many other organ systems including the heart [87], kidneys [88,89], liver [90], and gastrointestinal tract [91,92]. As it becomes clear that SARS-CoV-2 infection can damage multiple organs, the scientific community is pursuing multiple avenues of investigation in order to build a consensus about how the virus affects the human body.
SARS-CoV-2 pathogenesis is closely linked with the clinical presentation of the COVID-19 disease. Reports have described diverse symptom profiles associated with COVID-19, with a great deal of variability both within and between institutions and regions. -A large study from Wuhan, China conducted early in the pandemic identified fever and cough as the two most common symptoms that patients reported at hospital admission [34], while a retrospective study in China described the clinical presentations of patients infected with SARS-CoV-2 as including lower respiratory tract infection with fever, dry cough, and dyspnea (shortness of breath) [35]. -This study [35] noted that upper respiratory tract symptoms were less common, suggesting that the virus preferentially targets cells located in the lower respiratory tract. -However, data from the New York City region [36,37] showed variable rates of fever as a presenting symptom, suggesting that symptoms may not be consistent across individuals. -For example, even within New York City, one study [36] identified low oxygen saturation (<90% without the use of supplemental oxygen or ventilation support) in 20.4% of patients upon presentation, with fever being present in 30.7%, while another study [51] reported cough (79.4%), fever (77.1%), and dyspnea (56.5%) as the as the most common presenting symptoms; both of these studies considered only hospitalized patients. -A later study reported radiographic findings such as ground-glass opacity and bilateral patchy shadowing in the lungs of many hospitalized patients, with most COVID-19 patients having lymphocytopenia, or low levels of lymphocytes (a type of white blood cell) [34]. +A large study from Wuhan, China conducted early in the pandemic identified fever and cough as the two most common symptoms that patients reported at hospital admission [36], while a retrospective study in China described the clinical presentations of patients infected with SARS-CoV-2 as including lower respiratory tract infection with fever, dry cough, and dyspnea (shortness of breath) [37]. +This study [37] noted that upper respiratory tract symptoms were less common, suggesting that the virus preferentially targets cells located in the lower respiratory tract. +However, data from the New York City region [38,39] showed variable rates of fever as a presenting symptom, suggesting that symptoms may not be consistent across individuals. +For example, even within New York City, one study [38] identified low oxygen saturation (<90% without the use of supplemental oxygen or ventilation support) in 20.4% of patients upon presentation, with fever being present in 30.7%, while another study [51] reported cough (79.4%), fever (77.1%), and dyspnea (56.5%) as the as the most common presenting symptoms; both of these studies considered only hospitalized patients. +A later study reported radiographic findings such as ground-glass opacity and bilateral patchy shadowing in the lungs of many hospitalized patients, with most COVID-19 patients having lymphocytopenia, or low levels of lymphocytes (a type of white blood cell) [36]. Patients may also experience loss of smell, myalgias (muscle aches), fatigue, or headache. -Gastrointestinal symptoms can also present [91], and the CDC includes nausea and vomiting, as well congestion and runny nose, on its list of symptoms consistent with COVID-19 [44]. -A preprint using data from an app-based survey of 500,000 individuals in the US found that among those tested for SARS-CoV-2, a loss of taste or smell, fever, and a cough were significant predictors of a positive test result [92]. +Gastrointestinal symptoms can also present [93], and the CDC includes nausea and vomiting, as well congestion and runny nose, on its list of symptoms consistent with COVID-19 [46]. +A preprint using data from an app-based survey of 500,000 individuals in the US found that among those tested for SARS-CoV-2, a loss of taste or smell, fever, and a cough were significant predictors of a positive test result [94]. It is important to note that in this study, the predictive value of symptoms may be underestimated if they are not specific to COVID-19. This underestimation could occur because the outcome measured was a positive, as opposed to a negative, COVID-19 test result, meaning an association would be more easily identified for symptoms that were primarily or exclusively found with COVID-19. At the time the surveys were conducted, due to limits in US testing infrastructure, respondents typically needed to have some symptoms known to be specific to COVID-19 in order to qualify for testing. Widespread testing of asymptomatic individuals may therefore provide additional insight into the range of symptoms associated with COVID-19.
-Consistent with the wide range of symptoms observed and the pathogenic mechanisms described above, COVID-19 can affect diverse body systems in addition to causing respiratory problems [93]. -For example, COVID-19 can lead to acute kidney injury, especially in patients with severe respiratory symptoms or certain preexisting conditions [94]. -It can also cause neurological complications [95,96], potentially including stroke, seizures or meningitis [97,98]. -In fact, autopsy samples suggest that SARS-CoV-2 may be able to enter the central nervous system via the neural–mucosal interface [99]. -COVID-19 has also been associated with an increased incidence of large vessel stroke, particularly in patients under the age of 40 [100], and other thrombotic events including pulmonary embolism and deep vein thrombosis [101]. -The mechanism behind these complications has been suggested to be related to coagulopathy, with reports indicating the presence of antiphospholipid antibodies [102] and elevated levels of d-dimer and fibrinogen degradation products in deceased patients [103]. -Other viral infections have been associated with coagulation defects and changes to the coagulation cascade; notably, SARS was also found to lead to disseminated intravascular coagulation and was associated with both pulmonary embolism and deep vein thrombosis [104]. -The mechanism behind these insults has been suggested to be related to inflammation-induced increases in the von Willebrand factor clotting protein, leading to a pro-coagulative state [104]. -Abnormal clotting (thromboinflammation or coagulopathy) has been increasingly discussed recently as a possible key mechanism in many cases of severe COVID-19, and may be associated with the high d-dimer levels often observed in severe cases [105,106,107]. -This excessive clotting in lung capillaries has been suggested to be related to a dysregulated activation of the complement system, part of the innate immune system [108,109].
+Consistent with the wide range of symptoms observed and the pathogenic mechanisms described above, COVID-19 can affect diverse body systems in addition to causing respiratory problems [95]. +For example, COVID-19 can lead to acute kidney injury, especially in patients with severe respiratory symptoms or certain preexisting conditions [96]. +It can also cause neurological complications [97,98], potentially including stroke, seizures or meningitis [99,100]. +In fact, autopsy samples suggest that SARS-CoV-2 may be able to enter the central nervous system via the neural–mucosal interface [101]. +COVID-19 has also been associated with an increased incidence of large vessel stroke, particularly in patients under the age of 40 [102], and other thrombotic events including pulmonary embolism and deep vein thrombosis [103]. +The mechanism behind these complications has been suggested to be related to coagulopathy, with reports indicating the presence of antiphospholipid antibodies [104] and elevated levels of d-dimer and fibrinogen degradation products in deceased patients [105]. +Other viral infections have been associated with coagulation defects and changes to the coagulation cascade; notably, SARS was also found to lead to disseminated intravascular coagulation and was associated with both pulmonary embolism and deep vein thrombosis [106]. +The mechanism behind these insults has been suggested to be related to inflammation-induced increases in the von Willebrand factor clotting protein, leading to a pro-coagulative state [106]. +Abnormal clotting (thromboinflammation or coagulopathy) has been increasingly discussed recently as a possible key mechanism in many cases of severe COVID-19, and may be associated with the high d-dimer levels often observed in severe cases [107,108,109]. +This excessive clotting in lung capillaries has been suggested to be related to a dysregulated activation of the complement system, part of the innate immune system [110,111].
Symptoms of a disease can be caused by a pathogen, but they can also be caused by the immune system’s reaction to the pathogen. -A dysregulated immune response can cause significant damage to the host [110,111,112]. +A dysregulated immune response can cause significant damage to the host [112,113,114]. The inflammatory response has received particular attention for its role in both a healthy response to infection and a pathogenic one. -Inflammation is one of the most visible components of the immune response, as it is responsible for the hallmarks of injury, such as pain, heat, and swelling [113]. -In response to injury or to signaling by pattern recognition receptors indicating the detection of a molecular pattern associated with a pathogen or foreign body, the immune system stimulates leukocytes that travel to the site of the threat, where they then produce cytokines [113]. -Cytokines are a diverse group of small proteins that play an important role in intercellular signaling [114]. -Cytokines can be both pro- and anti-inflammatory, which means they can either stimulate or inhibit the production of additional cytokines [114,115]. -Some notable pro-inflammatory cytokines include the interleukins IL-1β and IL-6 and tumor necrosis factor α (TNF-α) [115]. -Anti-inflammatory cytokines play an immunoregulatory role complementary to the cascading effect of pro-inflammatory cytokines [114,115]. -A number of interleukins and interferons play anti-inflammatory roles, and receptors or receptor antagonists for inflammatory cytokines are also important for regulating inflammation [115]. -IL-10 is an anti-inflammatory cytokine of particular note because it regulates the expression of TNF-α, IL-1, and IL-6 [115]. -When the pro- and anti-inflammatory responses are both commensurate with the threat posed, the immune system drives a shift back to homeostasis [116]. +Inflammation is one of the most visible components of the immune response, as it is responsible for the hallmarks of injury, such as pain, heat, and swelling [115]. +In response to injury or to signaling by pattern recognition receptors indicating the detection of a molecular pattern associated with a pathogen or foreign body, the immune system stimulates leukocytes that travel to the site of the threat, where they then produce cytokines [115]. +Cytokines are a diverse group of small proteins that play an important role in intercellular signaling [116]. +Cytokines can be both pro- and anti-inflammatory, which means they can either stimulate or inhibit the production of additional cytokines [116,117]. +Some notable pro-inflammatory cytokines include the interleukins IL-1β and IL-6 and tumor necrosis factor α (TNF-α) [117]. +Anti-inflammatory cytokines play an immunoregulatory role complementary to the cascading effect of pro-inflammatory cytokines [116,117]. +A number of interleukins and interferons play anti-inflammatory roles, and receptors or receptor antagonists for inflammatory cytokines are also important for regulating inflammation [117]. +IL-10 is an anti-inflammatory cytokine of particular note because it regulates the expression of TNF-α, IL-1, and IL-6 [117]. +When the pro- and anti-inflammatory responses are both commensurate with the threat posed, the immune system drives a shift back to homeostasis [118]. However, when the responses are disproportionate, the cytokine response can become dysregulated. -Too low of an inflammatory response will not eliminate the immune threat [116]. -In contrast, if the response is dysregulated towards excessive pro-inflammatory cytokine activity, inflammation can cascade [117] and cause cell damage, among other problems [113]. -Elevated levels of inflammation over the long-term are associated with many chronic health conditions, including type 2 diabetes, dementia and Alzheimer’s, and arthritis [118]. -On a shorter timescale, dysregulated systemic inflammation can cause sepsis, which can lead to multi-organ failure and death [114,119].
+Too low of an inflammatory response will not eliminate the immune threat [118]. +In contrast, if the response is dysregulated towards excessive pro-inflammatory cytokine activity, inflammation can cascade [119] and cause cell damage, among other problems [115]. +Elevated levels of inflammation over the long-term are associated with many chronic health conditions, including type 2 diabetes, dementia and Alzheimer’s, and arthritis [120]. +On a shorter timescale, dysregulated systemic inflammation can cause sepsis, which can lead to multi-organ failure and death [116,121].Cytokines have been investigated for their role in the immune response to lung infections long before the COVID-19 pandemic. -Dysregulation of the inflammatory response, including elevated levels of pro-inflammatory cytokines, is found in patients with ARDS, which is a severe condition that can arise from pneumonia, SARS, and COVID-19 [117]. -One study of patients with and at risk for ARDS, specifically those who were intubated for medical ventilation, found that shortly after the onset of ARDS, anti-inflammatory cytokine concentration in BALF increased relative to the concentration of pro-inflammatory cytokines [120]. -The results suggest that an increase in pro-inflammatory cytokines such as IL-6 may signal the onset of ARDS, but recovery depends on an increased anti-inflammatory response [120]. +Dysregulation of the inflammatory response, including elevated levels of pro-inflammatory cytokines, is found in patients with ARDS, which is a severe condition that can arise from pneumonia, SARS, and COVID-19 [119]. +One study of patients with and at risk for ARDS, specifically those who were intubated for medical ventilation, found that shortly after the onset of ARDS, anti-inflammatory cytokine concentration in BALF increased relative to the concentration of pro-inflammatory cytokines [122]. +The results suggest that an increase in pro-inflammatory cytokines such as IL-6 may signal the onset of ARDS, but recovery depends on an increased anti-inflammatory response [122]. However, patients with severe ARDS were excluded from this study. -Acute phase response to an infection can also cause damage to the capillary endothelium, allowing leaks that disrupt the balance between pro-inflammatory cytokines and their regulators [120]. -Hyperactivity of the pro-inflammatory response due to lung infection is commonly associated with acute lung injury and more rarely with the more severe manifestation, ARDS [114]. -The heightened inflammatory response in the lungs can also serve as a source for systemic inflammation, or sepsis, and potentially multi-organ failure [114]. -The shift from local to systemic inflammation is a phenomenon often referred to broadly as a cytokine storm [114] or, more precisely, as cytokine release syndrome [121]. -Sepsis is a known possible complication of pneumonia, and in an analysis of over 1,400 US pneumonia patients, IL-6, tumor necrosis factor (TNF), and IL-10 were found to be elevated at intake in patients who developed severe sepsis and/or ultimately deceased [122]. -However, unlike the study analyzing pro- and anti-inflammatory cytokines in ARDS patients [120], this study reported that unbalanced pro-/anti-inflammatory cytokine profiles were rare. +Acute phase response to an infection can also cause damage to the capillary endothelium, allowing leaks that disrupt the balance between pro-inflammatory cytokines and their regulators [122]. +Hyperactivity of the pro-inflammatory response due to lung infection is commonly associated with acute lung injury and more rarely with the more severe manifestation, ARDS [116]. +The heightened inflammatory response in the lungs can also serve as a source for systemic inflammation, or sepsis, and potentially multi-organ failure [116]. +The shift from local to systemic inflammation is a phenomenon often referred to broadly as a cytokine storm [116] or, more precisely, as cytokine release syndrome [123]. +Sepsis is a known possible complication of pneumonia, and in an analysis of over 1,400 US pneumonia patients, IL-6, tumor necrosis factor (TNF), and IL-10 were found to be elevated at intake in patients who developed severe sepsis and/or ultimately deceased [124]. +However, unlike the study analyzing pro- and anti-inflammatory cytokines in ARDS patients [122], this study reported that unbalanced pro-/anti-inflammatory cytokine profiles were rare. This discrepancy could be related to the fact that the sepsis study measured only three cytokines. Regardless of variation in the anti-inflammatory response, prior work has therefore made it clear that pulmonary infection and injury are associated with systemic inflammation and with sepsis. -While IL-6 is a biomarker sometimes used to assess cytokine storm activity in sepsis [114], the relationship between cytokine profiles and the risks associated with sepsis may be more complex. -In fact, although IL-6 has traditionally been considered pro-inflammatory, its pleiotropic effects via both classical and trans-signaling allow it to play an integral role in both the inflammatory and anti-inflammatory responses [123], leading it to be associated with both healthy and pathological responses to viral threat [124].
+While IL-6 is a biomarker sometimes used to assess cytokine storm activity in sepsis [116], the relationship between cytokine profiles and the risks associated with sepsis may be more complex. +In fact, although IL-6 has traditionally been considered pro-inflammatory, its pleiotropic effects via both classical and trans-signaling allow it to play an integral role in both the inflammatory and anti-inflammatory responses [125], leading it to be associated with both healthy and pathological responses to viral threat [126].The inflammatory response was identified early on as a potential driver of COVID-19 outcomes due to existing research in SARS and emerging research in COVID-19. -In addition to the known role of cytokines in ARDS and lung infection more broadly, immunohistological analysis at autopsy of patients deceased from SARS revealed that ACE2-expressing cells that were infected by SARS-CoV-1 showed elevated expression of IL-6, IL-1β, and TNF-α [125]. -Similarly, the introduction of the S protein from SARS-CoV-1 to mouse macrophages was found to increase production of IL-6 and TNF-α [126]. -For SARS-CoV-2 infection leading to COVID-19, early reports described a cytokine storm syndrome-like response in patients with particularly severe infections [78,127,128]. -Among patients hospitalized with COVID-19 in Wuhan, China, 112 out of 191 (59%) developed sepsis, including all 54 of the non-survivors [35]. -However, the argument has been made that while the cytokine levels observed in COVID-19 patients fall outside of the normal range, they are not as high as typically found in patients with ARDS [129]. -Regardless, inflammation has received significant interest both in regards to the pathology of COVID-19 as well as potential avenues for treatment, as the relationship between the cytokine storm and the pathophysiology of COVID-19 has led to the suggestion that a number of immunomodulatory pharmaceutical interventions could hold therapeutic value for the treatment of COVID-19 [130].
+In addition to the known role of cytokines in ARDS and lung infection more broadly, immunohistological analysis at autopsy of patients deceased from SARS revealed that ACE2-expressing cells that were infected by SARS-CoV-1 showed elevated expression of IL-6, IL-1β, and TNF-α [127]. +Similarly, the introduction of the S protein from SARS-CoV-1 to mouse macrophages was found to increase production of IL-6 and TNF-α [128]. +For SARS-CoV-2 infection leading to COVID-19, early reports described a cytokine storm syndrome-like response in patients with particularly severe infections [80,129,130]. +Among patients hospitalized with COVID-19 in Wuhan, China, 112 out of 191 (59%) developed sepsis, including all 54 of the non-survivors [37]. +However, the argument has been made that while the cytokine levels observed in COVID-19 patients fall outside of the normal range, they are not as high as typically found in patients with ARDS [131]. +Regardless, inflammation has received significant interest both in regards to the pathology of COVID-19 as well as potential avenues for treatment, as the relationship between the cytokine storm and the pathophysiology of COVID-19 has led to the suggestion that a number of immunomodulatory pharmaceutical interventions could hold therapeutic value for the treatment of COVID-19 [132].The presentation of COVID-19 infection can vary greatly among pediatric patients and, in some cases, manifests in distinct ways from COVID-19 in adults. -Evidence suggests that while children and adolescents tend to have mostly asymptomatic infections, those that are symptomatic typically exhibit a mild illness [131,132,133,134]. -One review examined symptoms reported in 17 studies of children infected with COVID-19 during the early months of the COVID-19 epidemic in China and one study from Singapore [135]. +Evidence suggests that while children and adolescents tend to have mostly asymptomatic infections, those that are symptomatic typically exhibit a mild illness [133,134,135,136]. +One review examined symptoms reported in 17 studies of children infected with COVID-19 during the early months of the COVID-19 epidemic in China and one study from Singapore [137]. In the more than a thousand cases described, the most common reports were for mild symptoms such as fever, dry cough, fatigue, nasal congestion and/or runny nose, while three children were reported to be asymptomatic. Severe lower respiratory infection was described in only one of the pediatric cases reviewed. Gastrointestinal symptoms such as vomiting or diarrhea were occasionally reported. -Radiologic findings were not always reported in the case studies reviewed, but when they were mentioned they included bronchial thickening, ground-glass opacities, and/or inflammatory lesions [135]. -Neurological symptoms have also been reported [136].
+Radiologic findings were not always reported in the case studies reviewed, but when they were mentioned they included bronchial thickening, ground-glass opacities, and/or inflammatory lesions [137]. +Neurological symptoms have also been reported [138].These analyses indicate that most pediatric cases of COVID-19 are not severe. -Indeed, it is estimated that less than 1% of pediatric cases result in critical illness [133,137]. -However, serious complications and, in rare cases, deaths have occurred [138]. +Indeed, it is estimated that less than 1% of pediatric cases result in critical illness [135,139]. +However, serious complications and, in rare cases, deaths have occurred [140]. Of particular interest, children have occasionally experienced a serious inflammatory syndrome, multisystem inflammatory syndrome in children (MIS-C), following COVID-19 infection. -This syndrome is similar in some respects to Kawasaki disease, including Kawasaki disease shock syndrome [139,140,141] and is thought to be a distinct clinical manifestation of SARS-CoV-2 due to its distinct cytokine profile and the presence of burr cells in peripheral blood smears [142,143]. -MIS-C has been associated with heart failure in some cases [144]. -One case study [145] described an adult who appeared to show symptoms similar to MIS-C after exposure to COVID-19, but cautioned against broad conclusions; a second possible adult case has also been reported [146]. +This syndrome is similar in some respects to Kawasaki disease, including Kawasaki disease shock syndrome [141,142,143] and is thought to be a distinct clinical manifestation of SARS-CoV-2 due to its distinct cytokine profile and the presence of burr cells in peripheral blood smears [144,145]. +MIS-C has been associated with heart failure in some cases [146]. +One case study [147] described an adult who appeared to show symptoms similar to MIS-C after exposure to COVID-19, but cautioned against broad conclusions; a second possible adult case has also been reported [148]. The presentation of SARS-CoV-2 infection is therefore likely to be largely distinct between adult and pediatric populations.
Systems biology provides a cross-disciplinary analytical paradigm through which the host response to an infection can be analyzed. This field integrates the “omics” fields (genomics, transcriptomics, proteomics, metabolomics, etc.) using bioinformatics and other computational approaches. -Over the last decade, systems biology approaches have been used widely to study the pathogenesis of diverse types of life-threatening acute and chronic infectious diseases [147]. -Omics-based studies have also provided meaningful information regarding host immune responses and surrogate protein markers in several viral, bacterial and protozoan infections [148]. +Over the last decade, systems biology approaches have been used widely to study the pathogenesis of diverse types of life-threatening acute and chronic infectious diseases [149]. +Omics-based studies have also provided meaningful information regarding host immune responses and surrogate protein markers in several viral, bacterial and protozoan infections [150]. Though the complex pathogenesis and clinical manifestations of SARS-CoV-2 infection are not yet fully understood, omics technologies offer the opportunity for discovery-driven analysis of biological changes associated with SARS-CoV-2 infection. For example, previous studies suggest that infection by coronaviruses, such as SARS-CoV-1 and MERS-CoV, as well as other viruses, is associated with the upregulation of ACE2. -In several preliminary assays and an analysis of microarray data, ACE2 expression was reported to be significantly upregulated following infection of human embryonic kidney cells and human airway epithelial cells [78]. -This study also reported that direct stimulation with inflammatory cytokines such as type I interferons (e.g., IFNβ) resulted in the upregulation of ACE2 in human bronchial epithelial cells, with treated groups showing four-fold higher ACE2 expression than control groups at 18 hours post-treatment [78]. +In several preliminary assays and an analysis of microarray data, ACE2 expression was reported to be significantly upregulated following infection of human embryonic kidney cells and human airway epithelial cells [80]. +This study also reported that direct stimulation with inflammatory cytokines such as type I interferons (e.g., IFNβ) resulted in the upregulation of ACE2 in human bronchial epithelial cells, with treated groups showing four-fold higher ACE2 expression than control groups at 18 hours post-treatment [80]. While it is still unclear whether SARS-CoV-2 facilitates the positive regulation of its own transmission between host cells, the host immune response itself likely plays a key role in mediating infection-associated pathologies. For this reason, the application of omics technologies to the process of characterizing the host response is expected to provide novel insights into how hosts respond to SARS-CoV-2 infection and how these changes might influence COVID-19 outcomes.
In addition to the study described above [78], two other studies have profiled expression following SARS-CoV-2 infection using human cell lines. -The first study [149] compared transcriptional responses to SARS-CoV-2 and to other respiratory viruses, including MERS-CoV, SARS-CoV, Human parainfluenza virus 3, Respiratory syncytial virus, and Influenza A virus. +
In addition to the study described above [80], two other studies have profiled expression following SARS-CoV-2 infection using human cell lines. +The first study [151] compared transcriptional responses to SARS-CoV-2 and to other respiratory viruses, including MERS-CoV, SARS-CoV, Human parainfluenza virus 3, Respiratory syncytial virus, and Influenza A virus. The responses of three human cell lines were analyzed: A549 (adenocarcinomic human alveolar basal epithelial cells), Calu-3 (human airway epithelial cells derived from human bronchial submucosal glands), and MRC-5 (human fetal lung fibroblast cells). As the viral entry portal ACE2 has low expression in A549 cells, these cells were supplemented with adenovirus-based vectors expressing either mCherry (a fluorescent protein used as a control) or ACE2 (A549-ACE2). The authors also measured host transcriptional responses to SARS-CoV-2 in primary normal human bronchial epithelial cells (HBEC or NHBE cells), nasal washes from an animal model (ferret), and lung samples from two COVID-19 patients. @@ -964,119 +965,119 @@
Another study [151] analyzed dynamic transcriptional responses to SARS-CoV-2 and SARS-CoV-1. +
Another study [153] analyzed dynamic transcriptional responses to SARS-CoV-2 and SARS-CoV-1. They characterized the response of three human cell lines, H1299 (human non-small cell lung carcinoma cell line), Calu-3, and Caco-2 (human epithelial colorectal adenocarcinoma cell line), at 4 to 36 hours post infection. Using poly(A) bulk RNA-seq, the authors found negligible susceptibility of H1299 cells (< 0.08 viral read percentage of total reads) compared to Caco-2 and Calu-3 cells (>10% of viral reads). This finding suggests that the risk of infection varies among cell types, and that cell type could influence which hosts are more or less susceptible. Based on visual inspection of microscopy images alongside transcriptional profiling, the authors also showed distinct responses among the host cell lines evaluated. In contrast to Caco-2, Calu-3 cells infected with SARS-CoV-2 showed signs of impaired growth and cell death at 24 hours post infection, as well as moderate IFN induction with a strong up-regulation of IFN-stimulated genes. -Interestingly, the results were similar to those reported in Calu-3 cells exposed to much higher levels of SARS-CoV-2 [149], as described above. +Interestingly, the results were similar to those reported in Calu-3 cells exposed to much higher levels of SARS-CoV-2 [151], as described above. This finding suggests that IFN induction in Calu-3 cells is not dependent on the level of exposure, in contrast to A549-ACE2 cells. -The discrepancy could be explained by the observations that Calu-3 cells are highly susceptible to SARS-CoV-2 and show rapid viral replication [68], whereas A549 cells are incompatible with SARS-CoV-2 infection [152]. +The discrepancy could be explained by the observations that Calu-3 cells are highly susceptible to SARS-CoV-2 and show rapid viral replication [70], whereas A549 cells are incompatible with SARS-CoV-2 infection [154]. This discrepancy raises the concern that in vitro models may vary in their similarity to the human response, underscoring the importance of follow-up studies in additional models.
One early proteomics study investigated changes associated with in vitro SARS-CoV-2 infection using Caco-2 cells [153]. +
One early proteomics study investigated changes associated with in vitro SARS-CoV-2 infection using Caco-2 cells [155]. This study reported that SARS-CoV-2 induced alterations in multiple vital physiological pathways, including translation, splicing, carbon metabolism and nucleic acid metabolism in the host cells. Another area of interest is whether SARS-CoV-2 is likely to induce similar changes to other HCoV. -For example, because of the high level of sequence homology between SARS-CoV-2 and SARS-CoV-1, it has been hypothesized that sera from convalescent SARS-CoV-1 patients might show some efficacy in cross-neutralizing SARS-CoV-2-S-driven entry [67]. -However, despite the high level of sequence homology, certain protein structures might be immunologically distinct, which would be likely to prohibit effective cross-neutralization across different SARS species [154]. -Consequently, proteomic analyses of SARS-CoV-1 might also provide some essential information regarding the new pathogen [155,156].
-Considering the paucity of omics-level big data sets for SARS-CoV-2 currently available, existing data hubs that contain information for other coronaviruses such as UniProt [157], NCBI Genome Database [158], The Immune Epitope Database and Analysis Resource [159], and The Virus Pathogen Resource [160] will serve as useful resources for comparative bioinformatics research of SARS-CoV-2. +For example, because of the high level of sequence homology between SARS-CoV-2 and SARS-CoV-1, it has been hypothesized that sera from convalescent SARS-CoV-1 patients might show some efficacy in cross-neutralizing SARS-CoV-2-S-driven entry [69]. +However, despite the high level of sequence homology, certain protein structures might be immunologically distinct, which would be likely to prohibit effective cross-neutralization across different SARS species [156]. +Consequently, proteomic analyses of SARS-CoV-1 might also provide some essential information regarding the new pathogen [157,158].
+Considering the paucity of omics-level big data sets for SARS-CoV-2 currently available, existing data hubs that contain information for other coronaviruses such as UniProt [159], NCBI Genome Database [160], The Immune Epitope Database and Analysis Resource [161], and The Virus Pathogen Resource [162] will serve as useful resources for comparative bioinformatics research of SARS-CoV-2. Using such databases, the systems-level reconstruction of protein-protein interaction networks will enable the generation of hypotheses about the mechanism of action of SARS-CoV-2 and suggest potential drug targets. -In an initial study [161], 26 of the 29 SARS-CoV-2 proteins were cloned and expressed in HEK293T kidney cells, allowing for the identification of 332 high-confidence human proteins interacting with them. +In an initial study [163], 26 of the 29 SARS-CoV-2 proteins were cloned and expressed in HEK293T kidney cells, allowing for the identification of 332 high-confidence human proteins interacting with them. Notably, this study suggested that SARS-CoV-2 interacts with innate immunity pathways. Ranking pathogens by the similarity between their interactomes and that of SARS-CoV-2 suggested West Nile virus, Mycobacterium tuberculosis, and human papillomavirus infections as the top three hits. Therefore, given the lung symptoms associated with COVID-19, the Mycobacterium tuberculosis host-pathogen interactome in particular might provide new insights to the mechanism of SARS-CoV-2 infection. -Additionally, it was suggested that the envelope protein, E, could disrupt host bromodomain-containing proteins, i.e., BRD2 and BRD4, that bind to histones, and the spike protein could likely intervene in viral fusion by modulating the GOLGA7-ZDHHC5 acyl-transferase complex to increase palmitoylation, which is a post-translational modification that affects how proteins interact with membranes [162].
-Another study [163] used patient-derived peripheral blood mononuclear cells to identify 251 host proteins targeted by SARS-CoV-2. +Additionally, it was suggested that the envelope protein, E, could disrupt host bromodomain-containing proteins, i.e., BRD2 and BRD4, that bind to histones, and the spike protein could likely intervene in viral fusion by modulating the GOLGA7-ZDHHC5 acyl-transferase complex to increase palmitoylation, which is a post-translational modification that affects how proteins interact with membranes [164].
+Another study [165] used patient-derived peripheral blood mononuclear cells to identify 251 host proteins targeted by SARS-CoV-2. This study also reported that more than 200 host proteins were disrupted following infection. In particular, a network analysis showed that nsp9 and nsp10 interacted with NF-Kappa-B-Repressing Factor, which encodes a transcriptional repressor that mediates repression of genes responsive to Nuclear Factor kappa-light-chain-enhancer of activated B-cells. -These genes are important to pro-, and potentially also anti-, inflammatory signaling [164]. +These genes are important to pro-, and potentially also anti-, inflammatory signaling [166]. This finding could explain the exacerbation of the immune response that shapes the pathology and the high cytokine levels characteristic of COVID-19, possibly due to the chemotaxis of neutrophils mediated by IL-8 and IL-6. -Finally, it was suggested [165] that the E protein of both SARS-CoV-1 and SARS-CoV-2 has a conserved Bcl-2 Homology 3-like motif, which could inhibit anti-apoptosis proteins, e.g., BCL2, and trigger the apoptosis of T cells. +Finally, it was suggested [167] that the E protein of both SARS-CoV-1 and SARS-CoV-2 has a conserved Bcl-2 Homology 3-like motif, which could inhibit anti-apoptosis proteins, e.g., BCL2, and trigger the apoptosis of T cells. Several compounds are known to disrupt the host-pathogen protein interactome, largely through the inhibition of host proteins. Therefore, this research identifies candidate targets for intervention and suggests that drugs modulating protein-level interactions between virus and host could be relevant to treating COVID-19. By revealing which genes are perturbed during SARS-CoV-2 infection, proteomics-based analyses can thus provide novel insights into host-virus interaction and serve to generate new avenues of investigation for therapeutics.
Like that of SARS-CoV-1, the entry of SARS-CoV-2 into host cells is mediated by interactions between the viral spike glycoprotein, S, and human ACE2 (hACE2) [64,67,166,167,168,169,170,171]. +
Like that of SARS-CoV-1, the entry of SARS-CoV-2 into host cells is mediated by interactions between the viral spike glycoprotein, S, and human ACE2 (hACE2) [66,69,168,169,170,171,172,173]. Differences in how the S proteins of the two viruses interact with hACE2 could partially account for the increased transmissibility of SARS-CoV-2. -Recent studies have reported conflicting binding constants for the S-hACE2 interaction, though they have agreed that the SARS-CoV-2 S protein binds with equal, if not greater, affinity than the SARS-CoV-1 S protein does [51,64,169]. -The C-terminal domain of the SARS-CoV-2 S protein in particular was identified as the key region of the virus that interacts with hACE2, and the crystal structure of the C-terminal domain of the SARS-CoV-2 S protein in complex with hACE2 reveals stronger interaction and a higher affinity for receptor binding than that of SARS-CoV-1 [170]. -Among the 14 key binding residues identified in the SARS-CoV-1 S protein, eight are conserved in SARS-CoV-2, and the remaining six are semi-conservatively substituted, potentially explaining variation in binding affinity [64,169]. -Recent crystal structures have shown that the receptor binding domain (RBD) of the SARS-CoV-2 S protein, like that of other coronaviruses, undergoes stochastic hinge-like movement that flips it from a “closed” conformation, in which key binding residues are hidden at the interface between protomers, to an “open” one [51,64]. +Recent studies have reported conflicting binding constants for the S-hACE2 interaction, though they have agreed that the SARS-CoV-2 S protein binds with equal, if not greater, affinity than the SARS-CoV-1 S protein does [53,66,171]. +The C-terminal domain of the SARS-CoV-2 S protein in particular was identified as the key region of the virus that interacts with hACE2, and the crystal structure of the C-terminal domain of the SARS-CoV-2 S protein in complex with hACE2 reveals stronger interaction and a higher affinity for receptor binding than that of SARS-CoV-1 [172]. +Among the 14 key binding residues identified in the SARS-CoV-1 S protein, eight are conserved in SARS-CoV-2, and the remaining six are semi-conservatively substituted, potentially explaining variation in binding affinity [66,171]. +Recent crystal structures have shown that the receptor binding domain (RBD) of the SARS-CoV-2 S protein, like that of other coronaviruses, undergoes stochastic hinge-like movement that flips it from a “closed” conformation, in which key binding residues are hidden at the interface between protomers, to an “open” one [53,66]. Because the RBD plays such a critical role in viral entry, blocking its interaction with ACE2 could represent a promising therapeutic approach. -Nevertheless, despite the high structural homology between the SARS-CoV-2 RBD and that of SARS-CoV-1, monoclonal antibodies targeting SARS-CoV-1 RBD failed to bind to SARS-CoV-2-RBD [51]. -However, in early research, sera from convalescent SARS patients were found to inhibit SARS-CoV-2 viral entry in vitro, albeit with lower efficiency than it inhibited SARS-CoV-1 [67].
+Nevertheless, despite the high structural homology between the SARS-CoV-2 RBD and that of SARS-CoV-1, monoclonal antibodies targeting SARS-CoV-1 RBD failed to bind to SARS-CoV-2-RBD [53]. +However, in early research, sera from convalescent SARS patients were found to inhibit SARS-CoV-2 viral entry in vitro, albeit with lower efficiency than it inhibited SARS-CoV-1 [69].Comparative genomic analysis reveals that several regions of the coronavirus genome are likely critical to virulence. -The S1 domain of the spike protein, which contains the receptor binding motif, evolves more rapidly than S’s S2 domain [57,58]. -However, even within the S1 domain, some regions are more conserved than others, with the receptors in S1’s N-terminal domain (S1-NTD) evolving more rapidly than those in its C-terminal domain (S1-CTD) [58]. -Both S1-NTD and S1-CTD are involved in receptor binding and can function as RBDs to bind proteins and sugars [57], but RBDs in the S1-NTD typically bind to sugars, while those in the S1-CTD recognize protein receptors [47]. -Viral receptors show higher affinity with protein receptors than sugar receptors [47], which suggests that positive selection on or relaxed conservation of the S1-NTD might reduce the risk of a deleterious mutation that would prevent binding. -The SARS-CoV-2 S protein also contains an RRAR furin recognition site at the S1/S2 junction [51,64], setting it apart from both bat coronavirus RaTG13, with which it shares 96% genome sequence identity, and SARS-CoV-1 [12]. -Such furin cleavage sites are commonly found in highly virulent influenza viruses, and as such may contribute to the heightened pathogenicity of SARS-CoV-2 [172,173]. +The S1 domain of the spike protein, which contains the receptor binding motif, evolves more rapidly than S’s S2 domain [59,60]. +However, even within the S1 domain, some regions are more conserved than others, with the receptors in S1’s N-terminal domain (S1-NTD) evolving more rapidly than those in its C-terminal domain (S1-CTD) [60]. +Both S1-NTD and S1-CTD are involved in receptor binding and can function as RBDs to bind proteins and sugars [59], but RBDs in the S1-NTD typically bind to sugars, while those in the S1-CTD recognize protein receptors [49]. +Viral receptors show higher affinity with protein receptors than sugar receptors [49], which suggests that positive selection on or relaxed conservation of the S1-NTD might reduce the risk of a deleterious mutation that would prevent binding. +The SARS-CoV-2 S protein also contains an RRAR furin recognition site at the S1/S2 junction [53,66], setting it apart from both bat coronavirus RaTG13, with which it shares 96% genome sequence identity, and SARS-CoV-1 [14]. +Such furin cleavage sites are commonly found in highly virulent influenza viruses, and as such may contribute to the heightened pathogenicity of SARS-CoV-2 [174,175]. The ongoing evolution of the spike protein can be seen from the genomic data. -For example, the mutation D614G became dominant by the end of May 2020, soon after its initial appearance in mid-March [174,175], and a variant carrying two mutations (N501Y and 69–70del) that was first observed in the UK in October 2020 [176] has quickly spread around the world [177,178]. +For example, the mutation D614G became dominant by the end of May 2020, soon after its initial appearance in mid-March [176,177], and a variant carrying two mutations (N501Y and 69–70del) that was first observed in the UK in October 2020 [178] has quickly spread around the world [179,180]. Effective cell entry is a critical component to pathogenesis and therefore an important process to understand when examining possible therapeutics.
Once a human host is infected with a virus, person-to-person viral transmission can occur through several possible mechanisms. -The primary mechanisms associated with respiratory viruses are contact, droplet, and aerosol transmission [179]. -Contact transmission can occur through either contact with a contagious person or contact with active viral particles on a contaminated surface [180]. -This latter mode of transmission is also called fomite transmission [181]. -Viral particles can enter the body if they then come in contact with the oral, nasal, eye, or other mucus membranes [180]. -Droplet transmission occurs when a contagious individual sneezes, coughs, or exhales and produces respiratory droplets that can contain a large number of viral particles [180]. -Contact with these droplets can occur through direct exposure to the droplets, such as breathing in droplets produced by a sneeze [180]. -The droplets can also potentially settle on a surface and contribute to fomite transmission [180]. -Aerosol transmission refers to much smaller particles (less than 5 micrometers) that are also produced by sneezing, coughing, or exhaling [179,180]. -The small size of these particles allows them to remain suspended over a longer period of time and potentially to be moved by air currents [180]. -Additionally, viral particles deposited on surfaces via large respiratory droplets can also later be aerosolized [180]. -Droplet and/or contact transmission are both well-accepted modes of transmission for many viruses associated with common human illnesses, including influenza and rhinovirus [180]. +The primary mechanisms associated with respiratory viruses are contact, droplet, and aerosol transmission [181]. +Contact transmission can occur through either contact with a contagious person or contact with active viral particles on a contaminated surface [182]. +This latter mode of transmission is also called fomite transmission [183]. +Viral particles can enter the body if they then come in contact with the oral, nasal, eye, or other mucus membranes [182]. +Droplet transmission occurs when a contagious individual sneezes, coughs, or exhales and produces respiratory droplets that can contain a large number of viral particles [182]. +Contact with these droplets can occur through direct exposure to the droplets, such as breathing in droplets produced by a sneeze [182]. +The droplets can also potentially settle on a surface and contribute to fomite transmission [182]. +Aerosol transmission refers to much smaller particles (less than 5 micrometers) that are also produced by sneezing, coughing, or exhaling [181,182]. +The small size of these particles allows them to remain suspended over a longer period of time and potentially to be moved by air currents [182]. +Additionally, viral particles deposited on surfaces via large respiratory droplets can also later be aerosolized [182]. +Droplet and/or contact transmission are both well-accepted modes of transmission for many viruses associated with common human illnesses, including influenza and rhinovirus [182]. The extent to which aerosol transmission contributes to the spread of respiratory viruses is less clear. -In influenza A, for example, viral particles can be detected in aerosols produced by infected individuals, but the extent to which these particles drive the spread of influenza A infection remains under debate [179,180,182,183,184]. -Regardless of its role in the spread of influenza A, however, aerosol transmission likely played a role in outbreaks such as the 1918 Spanish Influenza (H1N1) and 2009 “swine flu” (pH1N1) [184]. +In influenza A, for example, viral particles can be detected in aerosols produced by infected individuals, but the extent to which these particles drive the spread of influenza A infection remains under debate [181,182,184,185,186]. +Regardless of its role in the spread of influenza A, however, aerosol transmission likely played a role in outbreaks such as the 1918 Spanish Influenza (H1N1) and 2009 “swine flu” (pH1N1) [186]. Contact, droplet, and aerosol transmission are therefore all worth evaluating when considering possible modes of transmission for a respiratory virus like SARS-CoV-2.
-All three of these mechanisms have been identified as possible contributors to the transmission of HCoVs [180], including the highly pathogenic coronaviruses SARS-CoV-1 and MERS-CoV [28,185]. -Transmission of SARS-CoV-1 is thought to proceed primarily through droplet transmission, but aerosol transmission is also considered possible [180], and fomite transmission may have also played an important role in some outbreaks [186]. -Similarly, the primary mechanism of MERS transmission is thought to be droplets because inter-individual transmission appears to be associated with close interpersonal contact (e.g., household or healthcare settings), but aerosolized particles of the MERS virus have been reported to persist much more robustly than influenza A under a range of environmental conditions [187,188]. -While droplet-based and contact transmission were initially put forward as the greatest concern for the spread of SARS-CoV-2 [189], as additional information has emerged, the possibility of aerosol transmission has also been raised [190,191,192]. -For example, the detection of SARS-CoV-2 viral particles in air samples taken from hospitals treating COVID-19 patients led to the concern that the virus could be spreading via aerosols [193]. -The stability of the virus both in aerosols and on a variety of surfaces appeared similar to that of SARS-CoV-1 [191]. -However, while the possibility of aerosol transmission seems plausible, the evidence suggests that droplet transmission is the dominant mechanism driving the spread of the virus [194], and the risk of fomite transmission under real-world conditions is likely to be substantially lower than the conditions used for experimental analyses [195]. +
All three of these mechanisms have been identified as possible contributors to the transmission of HCoVs [182], including the highly pathogenic coronaviruses SARS-CoV-1 and MERS-CoV [30,187]. +Transmission of SARS-CoV-1 is thought to proceed primarily through droplet transmission, but aerosol transmission is also considered possible [182], and fomite transmission may have also played an important role in some outbreaks [188]. +Similarly, the primary mechanism of MERS transmission is thought to be droplets because inter-individual transmission appears to be associated with close interpersonal contact (e.g., household or healthcare settings), but aerosolized particles of the MERS virus have been reported to persist much more robustly than influenza A under a range of environmental conditions [189,190]. +While droplet-based and contact transmission were initially put forward as the greatest concern for the spread of SARS-CoV-2 [191], as additional information has emerged, the possibility of aerosol transmission has also been raised [192,193,194]. +For example, the detection of SARS-CoV-2 viral particles in air samples taken from hospitals treating COVID-19 patients led to the concern that the virus could be spreading via aerosols [195]. +The stability of the virus both in aerosols and on a variety of surfaces appeared similar to that of SARS-CoV-1 [193]. +However, while the possibility of aerosol transmission seems plausible, the evidence suggests that droplet transmission is the dominant mechanism driving the spread of the virus [196], and the risk of fomite transmission under real-world conditions is likely to be substantially lower than the conditions used for experimental analyses [197]. These mechanisms may differ in their relevance to different types of transmission events, such as transmission within households, nosocomial transmissions, and transmission in indoor versus outdoor spaces.
Other aspects of pathogenesis are also important to understanding how the virus spreads, especially the relationship between symptoms, viral shedding, and contagiousness. -Symptoms associated with reported cases of COVID-19 range from mild to severe [44], but some individuals who contract COVID-19 remain asymptomatic throughout the duration of the illness [196]. -The incubation period, or the time period between exposure and the onset of symptoms, has been estimated at five to eight days, with means of 4.91 (95% confidence interval (CI) 4.35-5.69) and 7.54 (95% CI 6.76-8.56) reported in two different Asian cities and a median of 5 (IQR 1 to 6) reported in a small number of patients in a Beijing hospital [197,198]. +Symptoms associated with reported cases of COVID-19 range from mild to severe [46], but some individuals who contract COVID-19 remain asymptomatic throughout the duration of the illness [198]. +The incubation period, or the time period between exposure and the onset of symptoms, has been estimated at five to eight days, with means of 4.91 (95% confidence interval (CI) 4.35-5.69) and 7.54 (95% CI 6.76-8.56) reported in two different Asian cities and a median of 5 (IQR 1 to 6) reported in a small number of patients in a Beijing hospital [199,200]. However, the exact relationship between contagiousness and viral shedding remains unclear. -Estimates suggest that viral shedding can, in some cases, begin as early as 12.3 days (95% CI 5.9-17.0) before the onset of symptoms, although this was found to be very rare, with less than 0.1% of transmission events occurring 7 or more days before symptom onset [199]. -Transmissibility appeared to peak around the onset of symptoms (95% CI -0.9 - 0.9 days), and only 44% (95% CI 30–57%) of transmission events were estimated to occur from presymptomatic contacts [199]. -As these trends became apparent, concerns arose due to the potential for individuals who did not yet show symptoms to transmit the virus [200]. +Estimates suggest that viral shedding can, in some cases, begin as early as 12.3 days (95% CI 5.9-17.0) before the onset of symptoms, although this was found to be very rare, with less than 0.1% of transmission events occurring 7 or more days before symptom onset [201]. +Transmissibility appeared to peak around the onset of symptoms (95% CI -0.9 - 0.9 days), and only 44% (95% CI 30–57%) of transmission events were estimated to occur from presymptomatic contacts [201]. +As these trends became apparent, concerns arose due to the potential for individuals who did not yet show symptoms to transmit the virus [202]. Recovered individuals may also be able to transmit the virus after their symptoms cease. -Estimates of the communicable period based on twenty-four individuals who tested positive for SARS-CoV-2 prior to or without developing symptoms estimated that individuals may be contagious for one to twenty-one days, but they note that this estimate may be low [196]. -In an early study, viral nucleic acids were reported to remain at observable levels in the respiratory specimens of recovering hospitalized COVID-19 patients for a median of 20 days and with a maximum observed duration through 37 days, when data collection for the study ceased [35]. +Estimates of the communicable period based on twenty-four individuals who tested positive for SARS-CoV-2 prior to or without developing symptoms estimated that individuals may be contagious for one to twenty-one days, but they note that this estimate may be low [198]. +In an early study, viral nucleic acids were reported to remain at observable levels in the respiratory specimens of recovering hospitalized COVID-19 patients for a median of 20 days and with a maximum observed duration through 37 days, when data collection for the study ceased [37]. As more estimates of the duration of viral shedding are released, they are beginning to converge around approximately three weeks from first positive PCR test and/or onset of symptoms (which, if present, are usually identified within three days of the initial PCR test). -For example, in later studies, viral shedding was reported for up to 28 days following symptom onset [201] and for one to 24 days from first positive PCR test, with a median of 12 days [82]. -On the other hand, almost 70% of patients were reported to still have symptoms at the time that viral shedding ceased, although all symptoms reduced in prevalence between onset and cessation of viral shedding [202]. -The median time that elapsed between the onset of symptoms and cessation of viral RNA shedding was 23 days and between first positive PCR test and cessation of viral shedding was 17 days [202]. +For example, in later studies, viral shedding was reported for up to 28 days following symptom onset [203] and for one to 24 days from first positive PCR test, with a median of 12 days [84]. +On the other hand, almost 70% of patients were reported to still have symptoms at the time that viral shedding ceased, although all symptoms reduced in prevalence between onset and cessation of viral shedding [204]. +The median time that elapsed between the onset of symptoms and cessation of viral RNA shedding was 23 days and between first positive PCR test and cessation of viral shedding was 17 days [204]. The fact that this study reported symptom onset to predate the first positive PCR test by an average of three days, however, suggests that there may be some methodological differences between it and related studies. -Furthermore, an analysis of residents of a nursing home with a known SARS-CoV-2 case measured similar viral load in residents who were asymptomatic regardless of whether they later developed symptoms, and the load in the asymptomatic residents was comparable to that of residents who displayed either typical of atypical symptoms [203]. -Taken together, these results suggest that the presence or absence of symptoms are not reliable predictors of viral shedding or of SARS-CoV-2 status (e.g, [204]). +Furthermore, an analysis of residents of a nursing home with a known SARS-CoV-2 case measured similar viral load in residents who were asymptomatic regardless of whether they later developed symptoms, and the load in the asymptomatic residents was comparable to that of residents who displayed either typical of atypical symptoms [205]. +Taken together, these results suggest that the presence or absence of symptoms are not reliable predictors of viral shedding or of SARS-CoV-2 status (e.g, [206]). However, it should be noted that viral shedding is not necessarily a robust indicator of contagiousness. -The risk of spreading the infection was low after ten days from the onset of symptoms, as viral load in sputum was found to be unlikely to pose a significant risk based on efforts to culture samples in vitro [201]. +The risk of spreading the infection was low after ten days from the onset of symptoms, as viral load in sputum was found to be unlikely to pose a significant risk based on efforts to culture samples in vitro [203]. The relationship between symptoms, detectable levels of the virus, and risk of viral spread is therefore complex.
The extent to which asymptomatic or presymptomatic individuals are able to transmit SARS-CoV-2 has been a question of high scientific and community interest. -Early reports (February and March 2020) described transmission from presymptomatic SARS-CoV-2-positive individuals to close family contacts [205,206]. -One of these reports [206] also included a description of an individual who tested positive for SARS-CoV-2 but never developed symptoms. -Later analyses also sought to estimate the proportion of infections that could be traced back to a presymptomatic or asymptomatic individual (e.g., [207]). +Early reports (February and March 2020) described transmission from presymptomatic SARS-CoV-2-positive individuals to close family contacts [207,208]. +One of these reports [208] also included a description of an individual who tested positive for SARS-CoV-2 but never developed symptoms. +Later analyses also sought to estimate the proportion of infections that could be traced back to a presymptomatic or asymptomatic individual (e.g., [209]). Estimates of the proportion of individuals with asymptomatic infections have varied widely. -The proportion of asymptomatic individuals on board the Diamond Princess cruise ship, which was the site of an early COVID-19 outbreak, was estimated at 17.9% [208]. -In contrast, a model using the prevalence of antibodies among residents of Wuhan, China estimated a much higher rate of asymptomatic cases, at approximately 7 in 8, or 87.5% [209]. -An analysis of the populations of care homes in London found that, among the residents (median age 85), the rate of asymptomatic infection was 43.8%, and among the caretakers (median age 47), the rate was 49.1% [210]. -The duration of viral shedding may also be longer in individuals with asymptomatic cases of COVID-19 compared to those who do show symptoms [211]. +The proportion of asymptomatic individuals on board the Diamond Princess cruise ship, which was the site of an early COVID-19 outbreak, was estimated at 17.9% [210]. +In contrast, a model using the prevalence of antibodies among residents of Wuhan, China estimated a much higher rate of asymptomatic cases, at approximately 7 in 8, or 87.5% [211]. +An analysis of the populations of care homes in London found that, among the residents (median age 85), the rate of asymptomatic infection was 43.8%, and among the caretakers (median age 47), the rate was 49.1% [212]. +The duration of viral shedding may also be longer in individuals with asymptomatic cases of COVID-19 compared to those who do show symptoms [213]. As a result, the potential for individuals who do not know they have COVID-19 to spread the virus raises significant concerns. -In Singapore and Tianjin, two cities studied to estimate incubation period, an estimated 40-50% and 60-80% of cases, respectively, were considered to be caused by contact with asymptomatic individuals [197]. -An analysis of viral spread in the Italian town of Vo’, which was the site of an early COVID-19 outbreak, revealed that 42.5% of cases were asymptomatic and that the rate was similar across age groups [212]. +In Singapore and Tianjin, two cities studied to estimate incubation period, an estimated 40-50% and 60-80% of cases, respectively, were considered to be caused by contact with asymptomatic individuals [199]. +An analysis of viral spread in the Italian town of Vo’, which was the site of an early COVID-19 outbreak, revealed that 42.5% of cases were asymptomatic and that the rate was similar across age groups [214]. The argument was thus made that the town’s lockdown was imperative for controlling the spread of COVID-19 because it isolated asymptomatic individuals. While more models are likely to emerge to better explore the effect of asymptomatic individuals on SARS-CoV-2 transmission, these results suggest that strategies for identifying and containing asymptomatic but contagious individuals are important for managing community spread.
Disease spread dynamics can be estimated using R0, the basic reproduction number, and Rt, the effective reproduction number. Accurate estimates of both are crucial to understanding the dynamics of infection and to predicting the effects of different interventions. -R0 is the average number of new (secondary) infections caused by one infected person, assuming a wholly susceptible population [218] and is one of the most important epidemiological parameters [219]. -A simple mechanistic model used to describe infectious disease dynamics is a susceptible-infected-recovered compartmental model [220,221]. -In this model, individuals move through three states: susceptible, infected, and recovered; two parameters, \(\gamma\) and \(\beta\), specify the rate at which the infectious recover, and the infection transmission rate, respectively, and R0 is estimated as the ratio of \(\beta\) and \(\gamma\) [219,222]. -A pathogen can invade a susceptible population only if R0 > 1 [219,223]. +R0 is the average number of new (secondary) infections caused by one infected person, assuming a wholly susceptible population [220] and is one of the most important epidemiological parameters [221]. +A simple mechanistic model used to describe infectious disease dynamics is a susceptible-infected-recovered compartmental model [222,223]. +In this model, individuals move through three states: susceptible, infected, and recovered; two parameters, \(\gamma\) and \(\beta\), specify the rate at which the infectious recover, and the infection transmission rate, respectively, and R0 is estimated as the ratio of \(\beta\) and \(\gamma\) [221,224]. +A pathogen can invade a susceptible population only if R0 > 1 [221,225]. The spread of an infectious disease at a particular time t can be quantified by Rt, the effective reproduction number, which assumes that part of the population has already recovered (and thus gained immunity to reinfection) or that mitigating interventions have been put into place. For example, if only a fraction St of the population is still susceptible, Rt = St x R0. When Rt is greater than 1, an epidemic grows (i.e., the proportion of the population that is infectious increases); when Rt is less than 1, the proportion of the population that is infectious decreases. R0 and Rt can be estimated directly from epidemiological data or inferred using susceptible-infected-recovered-type models. To accurately capture the dynamics of SARS-CoV-2, the addition of a fourth compartment, i.e. a susceptible-exposed-infectious-recovered model may be appropriate.
-Estimates of R0 for COVID-19 lie in the range R0=1.4-6.5 [224,225,226]. +
Estimates of R0 for COVID-19 lie in the range R0=1.4-6.5 [226,227,228]. Variation in R0 is expected between different populations, and the estimated values of R0 discussed below are for specific populations in specific environments. The different estimates of R0 should not necessarily be interpreted as a range of estimates of the same underlying parameter. -In one study of international cases, the predicted value was R0=1.7 [227]. -In China (both Hubei province and nationwide), the value was predicted to lie in the range R0=2.0-3.6 [224,228,229]. -Another estimate based on a cruise ship where an outbreak occurred predicted R0=2.28 [230]. -Susceptible-exposed-infectious-recovered model-derived estimates of R0 range from 2.0 - 6.5 in China [231,232,233,234] to R0=4.8 in France [235]. -Using the same model as for the French population, a study estimated R0=2.6 in South Korea [235], which is consistent with other studies [236]. -From a meta-analysis of studies estimating R0, [225] the median R0 was estimated to be 2.79 (IQR 1.16) based on twelve studies published between January 1 and February 7, 2020.
+In one study of international cases, the predicted value was R0=1.7 [229]. +In China (both Hubei province and nationwide), the value was predicted to lie in the range R0=2.0-3.6 [226,230,231]. +Another estimate based on a cruise ship where an outbreak occurred predicted R0=2.28 [232]. +Susceptible-exposed-infectious-recovered model-derived estimates of R0 range from 2.0 - 6.5 in China [233,234,235,236] to R0=4.8 in France [237]. +Using the same model as for the French population, a study estimated R0=2.6 in South Korea [237], which is consistent with other studies [238]. +From a meta-analysis of studies estimating R0, [227] the median R0 was estimated to be 2.79 (IQR 1.16) based on twelve studies published between January 1 and February 7, 2020.Inference of the effective reproduction number can provide insight into how populations respond to an infection and the effectiveness of interventions. -In China, Rt was predicted to lie in the range 1.6-2.6 in January 2020, before travel restrictions [237]. +In China, Rt was predicted to lie in the range 1.6-2.6 in January 2020, before travel restrictions [239]. Rt decreased from 2.35 one week before travel restrictions were imposed (January 23, 2020), to 1.05 one week after. Using their model, the authors also estimated the probability of new outbreaks occurring. Assuming individual-level variation in transmission comparable to that of MERS or SARS, the probability of a single individual exporting the virus and causing a large outbreak is 17-25%, and assuming variation like that of SARS and transmission patterns like those observed for COVID-19 in Wuhan, the probability of a large outbreak occurring after ≥4 infections exist at a new location is greater than 50%. -An independent study came to similar conclusions, finding Rt=2.38 in the two-week period before January 23 with a decrease to Rt = 1.34 (using data from January 24 to February 3) or Rt=0.98 (using data from January 24 to February 8) [226]. -In South Korea, Rt was inferred for February through March 2020 in two cities, Daegu (the center of the outbreak) and Seoul [236]. +An independent study came to similar conclusions, finding Rt=2.38 in the two-week period before January 23 with a decrease to Rt = 1.34 (using data from January 24 to February 3) or Rt=0.98 (using data from January 24 to February 8) [228]. +In South Korea, Rt was inferred for February through March 2020 in two cities, Daegu (the center of the outbreak) and Seoul [238]. Metro data was also analyzed to estimate the effects of social distancing measures. Rt decreased in Daegu from around 3 to <1 over the period that social distancing measures were introduced. In Seoul, Rt decreased slightly, but remained close to 1 (and larger than Rt in Daegu). These findings indicate that social distancing measures appeared to be effective in containing the infection in Daegu, but in Seoul, Rt remained above 1, meaning secondary outbreaks remained possible. The study also shows the importance of region-specific analysis: the large decline in case load nationwide was mainly due to the Daegu region and could mask persistence of the epidemic in other regions, such as Seoul and Gyeonggi-do. -In Iran, estimates of Rt declined from 4.86 in the first week to 2.1 by the fourth week after the first cases were reported [238]. -In Europe, analysis of 11 countries inferred the dynamics of Rt over a time range from the beginning of the outbreak until March 28, 2020, by which point most countries had implemented major interventions (such as stay-at-home orders, public gathering bans, and school closures) [239]. +In Iran, estimates of Rt declined from 4.86 in the first week to 2.1 by the fourth week after the first cases were reported [240]. +In Europe, analysis of 11 countries inferred the dynamics of Rt over a time range from the beginning of the outbreak until March 28, 2020, by which point most countries had implemented major interventions (such as stay-at-home orders, public gathering bans, and school closures) [241]. Across all countries, the mean Rt before interventions began was estimated as 3.87; Rt varied considerably, from below 3 in Norway to above 4.5 in Spain. After interventions, Rt decreased by an average of 64% across all countries, with mean Rt=1.43. The lowest predicted value was 0.97 for Norway and the highest was 2.64 for Sweden, which could be related to the fact that Sweden did not implement social distancing measures on the same scale as other countries. The study concludes that while large changes in Rt are observed, it is too early to tell whether the interventions put into place are sufficient to decrease Rt below 1.
-More generally, population-level epidemic dynamics can be both observed and modeled [222]. -Data and empirically determined biological mechanisms inform models, while models can be used to try to understand data and systems of interest or to make predictions about possible future dynamics, such as the estimation of capacity needs [240] or the comparison of predicted outcomes among prevention and control strategies [241,242]. -Many current efforts to model Rt have also led to tools that assist the visualization of estimates in real time or over recent intervals [243,244]. +
More generally, population-level epidemic dynamics can be both observed and modeled [224]. +Data and empirically determined biological mechanisms inform models, while models can be used to try to understand data and systems of interest or to make predictions about possible future dynamics, such as the estimation of capacity needs [242] or the comparison of predicted outcomes among prevention and control strategies [243,244]. +Many current efforts to model Rt have also led to tools that assist the visualization of estimates in real time or over recent intervals [245,246]. These are valuable resources, yet it is also important to note that the estimates arise from models containing many assumptions and are dependent on the quality of the data they use, which varies widely by region.
Genetic variation in SARS-CoV-2 has been used to elucidate patterns over time and space. -Mutations observed in individual SARS-CoV-2 genome sequences can be used to trace transmission patterns and have provided insights during outbreak investigations [14,245,246]. +Mutations observed in individual SARS-CoV-2 genome sequences can be used to trace transmission patterns and have provided insights during outbreak investigations [16,247,248]. Similar mutations observed in several patients may indicate that the patients belong to the same transmission group. The tracking of SARS-CoV-2 mutations is recognized as an essential tool for controlling future outbreaks and tracing the path of the spread of SARS-CoV-2. -Efforts vary widely by country: the UK has coordinated has coordinated a national database of viral genomes [247]; no such coordination has been achieved in the USA. -Several studies used phylogenetic analysis to determine the source of local COVID-19 outbreaks in Connecticut (USA), [248], the New York City area (USA) [249], and Iceland [250]. +Efforts vary widely by country: the UK has coordinated has coordinated a national database of viral genomes [249]; no such coordination has been achieved in the USA. +Several studies used phylogenetic analysis to determine the source of local COVID-19 outbreaks in Connecticut (USA), [250], the New York City area (USA) [251], and Iceland [252]. There is an ongoing effort to collect SARS-CoV-2 genomes throughout the COVID-19 outbreak, and as of January 18, 2021 more than 381,000 genome sequences have been collected from patients. -The sequencing data can be found at GISAID [251], NCBI [252], and COVID-19 data portal [253].
+The sequencing data can be found at GISAID [253], NCBI [254], and COVID-19 data portal [255].The novel coronavirus SARS-CoV-2 is the third HCoV to emerge in the 21st century, and research into previous HCoVs has provided a strong foundation for characterizing the pathogenesis and transmission of SARS-CoV-2. Critical insights into how the virus interacts with human cells have been gained from previous research into HCoVs and other viral infections. @@ -1154,10 +1155,10 @@
Even with the background obtained from research in SARS and MERS, COVID-19 has revealed itself to be a complex and difficult-to-characterize disease that has many possible presentations that vary with age. -Variability in presentation, including cases with no respiratory symptoms or with no symptoms altogether, were also reported during the SARS epidemic at the beginning of the 21st century [254]. +Variability in presentation, including cases with no respiratory symptoms or with no symptoms altogether, were also reported during the SARS epidemic at the beginning of the 21st century [256]. The variability of both which symptoms present and their severity have presented challenges for public health agencies seeking to provide clear recommendations regarding which symptoms indicate SARS-CoV-2 infection and should prompt isolation. Asymptomatic cases add complexity both to efforts to estimate statistics such as R0 and Rt, which are critical to understanding the transmission of the virus, and IFR, which is an important component of understanding its impact on a given population. The development of diagnostic technologies over the course of the pandemic has facilitated more accurate identification, including of asymptomatic cases. @@ -1165,13 +1166,13 @@
While the SARS-CoV-2 virus is very similar to other HCoV in several ways, including in its genomic structure and the structure of the virus itself, there are also some differences that may account for differences in the COVID-19 pandemic compared to the SARS and MERS epidemics of the past two decades. -The R0 of SARS-CoV-2 has been estimated to be similar to SARS-CoV-1 but much higher than that of MERS-CoV [30,30]. +The R0 of SARS-CoV-2 has been estimated to be similar to SARS-CoV-1 but much higher than that of MERS-CoV [32,32]. While the structures of the viruses are very similar, evolution among these species may account for differences in their transmissibility and virulence. For example, the acquisition of a furin cleavage site the S1/S2 boundary within the SARS-CoV-2 S protein may be associated with increased virulence. Additionally, concerns have been raised about the accumulation of mutations within the SARS-CoV-2 species itself, and whether these could influence virulence. The coming of age of genomic technologies has made these types of analyses feasible, and genomics research characterizing changes in SARS-CoV-2 along with temporal and spatial movement is likely to provide additional insights into whether within-species evolution influences the effect of the virus on the human host. Additionally, the rapid development of sequencing technologies over the past decade has made it possible to rapidly characterize the host response to the virus. -For example, proteomics analysis of patient-derived cells revealed candidate genes whose regulation is altered by SARS-CoV-2 infection, suggesting possible approaches for pharmaceutical invention and providing insight into which systems are likely to be disrupted in COVID-19 [163]. +For example, proteomics analysis of patient-derived cells revealed candidate genes whose regulation is altered by SARS-CoV-2 infection, suggesting possible approaches for pharmaceutical invention and providing insight into which systems are likely to be disrupted in COVID-19 [165]. As more patient data becomes available, the biotechnological advances of the 2000s are expected to allow for more rapid identification of potential drug targets than was feasible during the SARS, or even MERS, pandemic.
Thus, though the COVID-19 crisis is still evolving, the insights acquired over the past 20 years of HCoV research have provided a solid foundation for understanding the SARS-CoV-2 virus and the disease it causes. As the scientific community continues to respond to COVID-19 and to elucidate more of the relationships between viral pathogenesis, transmission, and symptomatology, and as more data about the regulatory shifts associated with COVID-19 become available, this understanding will no doubt continue to evolve and to reveal additional connections among virology, pathogenesis, and health. @@ -1182,52 +1183,52 @@
The first genome sequence of the virus was released on January 3, 2020. -It revealed that the cluster of pneumonia cases seen in Wuhan were caused by a novel coronavirus [10]. -Multiple research groups have drafted the genome sequence of SARS-CoV-2 based on sequences developed from clinical samples collected from the lower respiratory tract, namely bronchoalveolar lavage fluid (BALF), and the upper respiratory tract, in the form of throat and nasopharyngeal swabs [11,12,13]. -Analysis of the SARS-CoV-2 genome revealed significant sequence homology with two coronaviruses known to infect humans, with about 79% identity to SARS-CoV-1 and 50% to MERS-CoV [13]. -However, in this analysis, the highest degree of similarity was observed between SARS-CoV-2 and bat-derived SARS-like coronaviruses (bat-SL-CoVZC45 and bat-SL-CoVZXC21) [13]. -Other analyses have reported even greater similarity between SARS-CoV-2 and the bat coronavirus BatCoV-RaTG13, with identity as high as 96.2% [12,14], and the closely related pangolin coronavirus [15]. +It revealed that the cluster of pneumonia cases seen in Wuhan were caused by a novel coronavirus [12]. +Multiple research groups have drafted the genome sequence of SARS-CoV-2 based on sequences developed from clinical samples collected from the lower respiratory tract, namely bronchoalveolar lavage fluid (BALF), and the upper respiratory tract, in the form of throat and nasopharyngeal swabs [13,14,15]. +Analysis of the SARS-CoV-2 genome revealed significant sequence homology with two coronaviruses known to infect humans, with about 79% identity to SARS-CoV-1 and 50% to MERS-CoV [15]. +However, in this analysis, the highest degree of similarity was observed between SARS-CoV-2 and bat-derived SARS-like coronaviruses (bat-SL-CoVZC45 and bat-SL-CoVZXC21) [15]. +Other analyses have reported even greater similarity between SARS-CoV-2 and the bat coronavirus BatCoV-RaTG13, with identity as high as 96.2% [14,16], and the closely related pangolin coronavirus [17]. This evidence therefore suggests the SARS-CoV-2 virus is the result of zoonotic transfer of a virus from bats to humans. Nevertheless, some fragments between SARS-CoV-2 and RATG13 differ by up to 17%, suggesting a complex natural selection process during zoonotic transfer. -While the S region is highly similar to that of viruses found in pangolins [15], there is no consensus about the origin of S in SARS-CoV-2, as it could potentially be the result either of recombination or coevolution [14,16]. +While the S region is highly similar to that of viruses found in pangolins [17], there is no consensus about the origin of S in SARS-CoV-2, as it could potentially be the result either of recombination or coevolution [16,18]. Though the intermediate host serving as the source for the zoonotic introduction of SARS-CoV-2 to human populations has not yet been identified, the SARS-CoV-2 virus has been placed within the coronavirus phylogeny through comparative genomic analyses. -Genomic analyses and comparisons to other known coronaviruses suggest that SARS-CoV-2 is unlikely to have originated in a laboratory – either purposely engineered and released, or escaped – and instead evolved naturally in an animal host [17]. -Indeed, the World Health Organization (WHO) have published their intentions to thoroughly investigate the origins of SARS-CoV-2 [255]. -While the position of the SARS-CoV-2 virus within the coronavirus phylogeny has been largely resolved, the functional consequences of molecular variation between this virus and other viruses, such as its bat and pangolin sister taxa or SARS-CoV-1, remain unknown [17]. +Genomic analyses and comparisons to other known coronaviruses suggest that SARS-CoV-2 is unlikely to have originated in a laboratory – either purposely engineered and released, or escaped – and instead evolved naturally in an animal host [19]. +Indeed, the World Health Organization (WHO) have published their intentions to thoroughly investigate the origins of SARS-CoV-2 [257]. +While the position of the SARS-CoV-2 virus within the coronavirus phylogeny has been largely resolved, the functional consequences of molecular variation between this virus and other viruses, such as its bat and pangolin sister taxa or SARS-CoV-1, remain unknown [19]. Fortunately, the basic genome structure of coronaviruses is highly conserved, and insight into the mechanisms the virus uses to enter cells, replicate, and spread is available from prior research on coronaviruses, which has been instrumental in the mobilization of global research to understand the biology of SARS-CoV-2.
Additionally, worldwide sequencing of viral samples has provided some preliminary insights into possible mechanisms of adaptation in the virus and the detection of novel variants, and omics-based analysis of patient samples has elucidated some of the biological changes the virus induces in its human hosts.
Coronaviruses have long been known to infect animals and have been the subject of veterinary medical investigations and vaccine development efforts due to their effect on the health of companion and agricultural animals [18]. +
Coronaviruses have long been known to infect animals and have been the subject of veterinary medical investigations and vaccine development efforts due to their effect on the health of companion and agricultural animals [20].
Most coronaviruses show little to no transmission in humans. -However, it is thought that approximately one-third of common cold infections are caused by four seasonal human coronaviruses (HCoV): Human coronavirus 229E (HCoV-229E), Human coronavirus NL63 (HCoV-NL63), Human coronavirus OC43 (HCoV-OC43), and Human coronavirus HKU1 (HCoV-HKU1) [19,20,256]. -The first HCoV were identified in the 1960s: HCoV-229E in 1965 [21] and HCoV-OC43 in 1967 [22]. -Both of these viruses typically cause cold-like symptoms, including upper and lower respiratory infections [23,24,257], but they have also been associated with gastrointestinal symptoms [258]. -Two additional HCoV were subsequently identified [25,26]. -In 2003, HCoV-NL63 [25] was first identified in a 7-month-old infant and then in clinical specimens collected from seven additional patients, five of whom were infants younger than 1 year old and the remainder of whom were adults. -CoV-HKU1 was identified in samples collected from a 71-year-old pneumonia patient in 2004 and then found in samples collected from a second adult patient [26]. -These viruses are associated with respiratory diseases of varying severity, ranging from common cold to severe pneumonia, with severe symptoms mostly observed in immunocompromised individuals [27], and also have gastrointestinal involvement in some cases [258]. -In addition to these relatively mild HCoV, however, highly pathogenic human coronaviruses have been identified, including Severe acute respiratory syndrome-related coronavirus (SARS-CoV or SARS-CoV-1) and Middle East respiratory syndrome-related coronavirus (MERS-CoV) [19,28,29].
-At the time that SARS-CoV-1 emerged in the early 2000s, no HCoV had been identified in almost 40 years [28]. -The first case of SARS was reported in November 2002 in the Guangdong Province of China, and over the following month, the disease spread more widely within China and then into several countries across multiple continents [28,30]. -Unlike previously identified HCoV, SARS was much more severe, with an estimated death rate of 9.5% [30]. -It was also highly contagious via droplet transmission, with a basic reproduction number (R0) of 4 (i.e., each person infected was estimated to infect four other people) [30]. -However, the identity of the virus behind the infection remained unknown until April of 2003, when the SARS-CoV-1 virus was identified through a worldwide scientific effort spearheaded by the WHO [28]. -SARS-CoV-1 belonged to a distinct lineage from the two other HCoV known at the time [30]. -By July 2003, the SARS outbreak was officially determined to be under control, with the success credited to infection management practices [28]. +However, it is thought that approximately one-third of common cold infections are caused by four seasonal human coronaviruses (HCoV): Human coronavirus 229E (HCoV-229E), Human coronavirus NL63 (HCoV-NL63), Human coronavirus OC43 (HCoV-OC43), and Human coronavirus HKU1 (HCoV-HKU1) [21,22,258]. +The first HCoV were identified in the 1960s: HCoV-229E in 1965 [23] and HCoV-OC43 in 1967 [24]. +Both of these viruses typically cause cold-like symptoms, including upper and lower respiratory infections [25,26,259], but they have also been associated with gastrointestinal symptoms [260]. +Two additional HCoV were subsequently identified [27,28]. +In 2003, HCoV-NL63 [27] was first identified in a 7-month-old infant and then in clinical specimens collected from seven additional patients, five of whom were infants younger than 1 year old and the remainder of whom were adults. +CoV-HKU1 was identified in samples collected from a 71-year-old pneumonia patient in 2004 and then found in samples collected from a second adult patient [28]. +These viruses are associated with respiratory diseases of varying severity, ranging from common cold to severe pneumonia, with severe symptoms mostly observed in immunocompromised individuals [29], and also have gastrointestinal involvement in some cases [260]. +In addition to these relatively mild HCoV, however, highly pathogenic human coronaviruses have been identified, including Severe acute respiratory syndrome-related coronavirus (SARS-CoV or SARS-CoV-1) and Middle East respiratory syndrome-related coronavirus (MERS-CoV) [21,30,31].
+At the time that SARS-CoV-1 emerged in the early 2000s, no HCoV had been identified in almost 40 years [30]. +The first case of SARS was reported in November 2002 in the Guangdong Province of China, and over the following month, the disease spread more widely within China and then into several countries across multiple continents [30,32]. +Unlike previously identified HCoV, SARS was much more severe, with an estimated death rate of 9.5% [32]. +It was also highly contagious via droplet transmission, with a basic reproduction number (R0) of 4 (i.e., each person infected was estimated to infect four other people) [32]. +However, the identity of the virus behind the infection remained unknown until April of 2003, when the SARS-CoV-1 virus was identified through a worldwide scientific effort spearheaded by the WHO [30]. +SARS-CoV-1 belonged to a distinct lineage from the two other HCoV known at the time [32]. +By July 2003, the SARS outbreak was officially determined to be under control, with the success credited to infection management practices [30]. A decade later, a second outbreak of severe respiratory illness associated with a coronavirus emerged, this time in the Arabian Peninsula. This disease, known as Middle East respiratory syndrome (MERS), was linked to another novel coronavirus, MERS-CoV. -The fatality rate associated with MERS is much higher than that of SARS, at almost 35%, but the disease is much less easily transmitted, with an R0 of 1 [30]. -Although MERS is still circulating, its low reproduction number has allowed for its spread to be contained [30]. +The fatality rate associated with MERS is much higher than that of SARS, at almost 35%, but the disease is much less easily transmitted, with an R0 of 1 [32]. +Although MERS is still circulating, its low reproduction number has allowed for its spread to be contained [32]. The COVID-19 pandemic is thus associated with the seventh HCoV to be identified and the fifth since the turn of the millennium, though additional HCoVs may be in circulation but remain undetected.
-SARS-CoV-1 and MERS-CoV were ultimately managed largely through infection management practices (e.g., mask wearing) and properties of the virus itself (i.e., low rate of transmission), respectively [28,30]. -Vaccines were not used to control either outbreak, although vaccine development programs were established for SARS-CoV-1 [31]. -In general, care for SARS and MERS patients focuses on supportive care and symptom management [30]. +
SARS-CoV-1 and MERS-CoV were ultimately managed largely through infection management practices (e.g., mask wearing) and properties of the virus itself (i.e., low rate of transmission), respectively [30,32]. +Vaccines were not used to control either outbreak, although vaccine development programs were established for SARS-CoV-1 [33]. +In general, care for SARS and MERS patients focuses on supportive care and symptom management [32]. Clinical treatments for SARS and MERS developed during the outbreaks generally do not have strong evidence supporting their use. -Common treatments included Ribavirin, an antiviral, often in combination with corticosteroids or sometimes interferon (IFN) medications, which would both be expected to have immunomodulatory effects [28]. -However, retrospective and in vitro analyses have reported inconclusive results of these treatments on SARS and the SARS-CoV-1 virus, respectively [28]. -IFNs and Ribavirin have shown promise in in vitro analyses of MERS, but their clinical effectiveness remains unknown [28]. +Common treatments included Ribavirin, an antiviral, often in combination with corticosteroids or sometimes interferon (IFN) medications, which would both be expected to have immunomodulatory effects [30]. +However, retrospective and in vitro analyses have reported inconclusive results of these treatments on SARS and the SARS-CoV-1 virus, respectively [30]. +IFNs and Ribavirin have shown promise in in vitro analyses of MERS, but their clinical effectiveness remains unknown [30]. Therefore, only limited strategies can be adopted for the pharmaceutical management of COVID-19 from previous severe HCoV infections. Research in response to prior outbreaks of HCoV-borne infections, such as SARS and MERS, have, however, provided a strong foundation for hypotheses about the pathogenesis of SARS-CoV-2 as well as potential diagnostic and therapeutic approaches.
Evolution in SARS-CoV-2 has also been observed over a short timescale. -After zoonotic transfer, SARS-CoV-2 continued evolving in the human population [245]. -The SARS-CoV-2 mutation rate is moderate compared to other RNA viruses [246], which likely restricts the pace of evolution in SARS-CoV-2. +After zoonotic transfer, SARS-CoV-2 continued evolving in the human population [247]. +The SARS-CoV-2 mutation rate is moderate compared to other RNA viruses [248], which likely restricts the pace of evolution in SARS-CoV-2. Nevertheless, genomic analyses have yielded statistical evidence of ongoing evolution. -Initially, two known variants of the spike protein emerged that differed by a single amino acid at position 614 (G614 and D614), and there is evidence that G614 had become more prevalent than D614 by June 2020 [174]. -While there is a hypothesis that this genomic change increased the SARS-CoV-2 infectivity and virulence, this hypothesis has not yet been tested due to a lack of data [259]. -Another study [246] identified 198 recurrent mutations in a dataset of 7,666 curated sequences. +Initially, two known variants of the spike protein emerged that differed by a single amino acid at position 614 (G614 and D614), and there is evidence that G614 had become more prevalent than D614 by June 2020 [176]. +While there is a hypothesis that this genomic change increased the SARS-CoV-2 infectivity and virulence, this hypothesis has not yet been tested due to a lack of data [261]. +Another study [248] identified 198 recurrent mutations in a dataset of 7,666 curated sequences. This pattern of convergent evolution at some sites could indicate that certain mutations confer an adaptive advantage. While it is evident that SARS-CoV-2 exhibits moderate potential for ongoing and future evolution, the relationship between mutations and pathogenicity is not yet known. Additional data is needed in order to understand patterns of evolutionary change and whether they are likely to affect virulence.
Several factors could promote the evolution of SARS-CoV-2, including host immunodeficiency and transient exposure to antibodies directed against SARS-CoV-2 proteins. -A single case study of SARS-CoV-2 infection in an immunocompromised female with chronic lymphocytic leukemia and hypogammaglobulinemia [260] suggested that an accelerated evolution of the virus could occur in conditions of immunodeficiency. +A single case study of SARS-CoV-2 infection in an immunocompromised female with chronic lymphocytic leukemia and hypogammaglobulinemia [262] suggested that an accelerated evolution of the virus could occur in conditions of immunodeficiency. A first administration of convalescent plasma did not clear the virus, and an ensuing increase in the genomic diversity in the samples was observed, suggesting an accelerated evolution due to selection pressure. A second administration of convalescent plasma cleared the virus from the host 105 days after the initial diagnosis. However, throughout the duration of infection, the patient was asymptomatic but contagious. -A second single case study in a 45-year old male with antiphospholipid syndrome [261] confirmed the earlier results, providing evidence of persistent COVID-19 symptoms in an immunocompromised patient for 154 days following diagnosis, ultimately leading to the death of patient. +A second single case study in a 45-year old male with antiphospholipid syndrome [263] confirmed the earlier results, providing evidence of persistent COVID-19 symptoms in an immunocompromised patient for 154 days following diagnosis, ultimately leading to the death of patient. The treatments administered included remdesivir and the Regeneron anti-spike protein antibody cocktail. Genomic analyses of the patient’s nasopharyngeal swabs confirmed an accelerated evolution of the virus through mutations in the spike gene and the receptor-binding domain. In summary, these two case studies suggested an accelerated evolution and persistent shedding of the virus in conditions of immunodeficiency. In particular, the first case highlighted the role of convalescent plasma in creating escape variants. -In fact, one study [262] exposed the SARS-CoV-2 virus to convalescent plasma in vitro repeatedly to see how much plasma was required to neutralize the virus. +In fact, one study [264] exposed the SARS-CoV-2 virus to convalescent plasma in vitro repeatedly to see how much plasma was required to neutralize the virus. The results of the first six exposures were similar, but they reported that after the seventh exposure (on day 45), the amount of plasma required began to increase. In analyzing the viral variants present, they found that this viral escape was promoted by the sudden accumulation of mutations, especially in the receptor-binding domain (RBD) and N-terminal domain (NTD), that quickly rose in frequency. By the thirteenth exposure (day 85), the virus had evolved three mutations and could not longer be neutralized by the plasma used. Taken together, these observations suggest that evolutionary analyses of SARS-CoV-2 can provide crucial information about the conditions that promote resistance in SARS-CoV-2 and the kinetics of how resistance develops, information which will be important for understanding the implications of how vaccine regimens are designed and whether/when next-generation vaccines will be needed.
When variants occur, they can rise in frequency by chance or through an adaptive process that confers a competitive advantage to the virus. Variants that had the D614G mutation in the spike glycoprotein seemed to spread faster. -However, it has been suggested that the mutation rose in frequency due to early chance events rather than by adaptive events [263]. +However, it has been suggested that the mutation rose in frequency due to early chance events rather than by adaptive events [265]. Another mutation, Y453F, that occurred in the receptor binding domain of S, was first detected in mink; however, the transmission to humans has been established. -In mink, this mutation conferred an advantage by increasing the affinity towards ACE2 [264]. -Similarly, N501Y mutation induces an increased affinity towards human ACE2 and has been involved in the dominance of B.1.1.7 by outcompeting other variants [265]. -Therefore, genomic surveillance is essential to prevent the emergence of super-spreaders [266].
+In mink, this mutation conferred an advantage by increasing the affinity towards ACE2 [266]. +Similarly, N501Y mutation induces an increased affinity towards human ACE2 and has been involved in the dominance of B.1.1.7 by outcompeting other variants [267]. +Therefore, genomic surveillance is essential to prevent the emergence of super-spreaders [268].Emerging methods are being applied to this problem in an effort to understand which mutations are most likely to be of significant concern. Novel machine learning methods were developed to predict the mutations in the sequence that promote viral escape. While they preserve the pathogenicity of the virus, escape mutations change the virus’s sequence to evade detection by the immune system. -By using tools from natural language processing (NLP), viral escape was modeled as an NLP problem [267] where a modification makes a sentence grammatically correct but semantically different. +By using tools from natural language processing (NLP), viral escape was modeled as an NLP problem [269] where a modification makes a sentence grammatically correct but semantically different. Therefore, language models of viruses could predict mutations that change the presentation of the virus to the immune system but preserve its infectivity.
Viral replication naturally leads to the occurrence of mutations, and thus to genetic variation [268]. +
Viral replication naturally leads to the occurrence of mutations, and thus to genetic variation [270]. The emergence of new genetic variants of SARS-CoV-2 has attracted significant media attention since the detection of a variant of concern (VOC), a distinct phylogenetic cluster referred to as B.1.1.7/VOC 202012/01. While the B.1.1.7 lineage garnered attention in November 2020, two genomes of the lineage were detected as early as September 20th, 2020 from routine genomic data sampled in Kent (U.K.) by the COVID-19 Genomics UK Consortium (COG-UK). -The following day, a second B.1.1.7 genome was reported in greater London [263,269,270,271] -Since then, B.1.1.7 has spread across the UK and internationally, and it has now been detected in at least 62 countries [272], despite several countries imposing travel restrictions on travelers from the UK. -Of the twenty-three mutations that define B.1.1.7 from the original strain isolated in Wuhan (lineage A), fourteen are lineage-specific and three appear to be biologically consequential mutations associated with the spike protein, namely N501Y, P681H, and 69-70del [269,270]. -The latter is a 6-bp deletion that leads to the loss of two amino acids and has consequences for immune recognition; it may, in conjunction with N501Y, be responsible for the increased transmissibility of the B.1.1.7 VOC due to changes in the RBD that increase binding affinity with ACE2 [269,273]. +The following day, a second B.1.1.7 genome was reported in greater London [265,271,272,273] +Since then, B.1.1.7 has spread across the UK and internationally, and it has now been detected in at least 62 countries [274], despite several countries imposing travel restrictions on travelers from the UK. +Of the twenty-three mutations that define B.1.1.7 from the original strain isolated in Wuhan (lineage A), fourteen are lineage-specific and three appear to be biologically consequential mutations associated with the spike protein, namely N501Y, P681H, and 69-70del [271,272]. +The latter is a 6-bp deletion that leads to the loss of two amino acids and has consequences for immune recognition; it may, in conjunction with N501Y, be responsible for the increased transmissibility of the B.1.1.7 VOC due to changes in the RBD that increase binding affinity with ACE2 [271,275]. B.1.1.7 has increased transmissibility by up to 56%, leading to an R0 of approximately 1.4. -While there is also the possibility that this VOC may be associated with increased disease severity, there is currently insufficient evidence to draw any conclusions [265,271,274,275]. -Other variants also express the 69-70del mutation [276,277], and public health officials in the United States and the UK have been able to use RT-PCR-based assays (ThermoFisher TaqPath COVID-19 assay) to identify sequences with this deletion because it occurs where the qPCR probe binds [271]. -In the UK, B.1.1.7 is present in more than 97% of diagnostic tests that return negative for S-gene targets and positive for the other targets; thus, the frequency of S-gene target failure can be used as a proxy for the detection of B.1.1.7 [269; https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/950823/Variant_of_Concern_VOC_202012_01_Technical_Briefing_3_-England.pdf]. -The FDA has highlighted that the performance of three diagnostic tests may be affected by the B.1.1.7 lineage because it could cause false negative tests [278].
-While B.1.1.7 is currently the main VOC, other genetic variants not designated VOCs have been detected, including B.1.351 (20H/501Y.V2) and P.1 (20J/501Y.V3), both of which emerged independently [279]. -B.1.351 was first detected in October 2020 in South Africa, was later detected in the EU on December 28th, 2020 and has now spread to at least 26 countries [280,281,282]. +While there is also the possibility that this VOC may be associated with increased disease severity, there is currently insufficient evidence to draw any conclusions [267,273,276,277]. +Other variants also express the 69-70del mutation [278,279], and public health officials in the United States and the UK have been able to use RT-PCR-based assays (ThermoFisher TaqPath COVID-19 assay) to identify sequences with this deletion because it occurs where the qPCR probe binds [273]. +In the UK, B.1.1.7 is present in more than 97% of diagnostic tests that return negative for S-gene targets and positive for the other targets; thus, the frequency of S-gene target failure can be used as a proxy for the detection of B.1.1.7 [271; https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/950823/Variant_of_Concern_VOC_202012_01_Technical_Briefing_3_-England.pdf]. +The FDA has highlighted that the performance of three diagnostic tests may be affected by the B.1.1.7 lineage because it could cause false negative tests [280].
+While B.1.1.7 is currently the main VOC, other genetic variants not designated VOCs have been detected, including B.1.351 (20H/501Y.V2) and P.1 (20J/501Y.V3), both of which emerged independently [281].
+B.1.351 was first detected in October 2020 in South Africa, was later detected in the EU on December 28th, 2020 and has now spread to at least 26 countries [282,283,284].
B.1.351 contains several mutations at the RBD including K417N, E484K, and N501Y.
-While the biological significance of these mutations are still under investigation, it does appear that this lineage may be associated with increased transmissibility [283] due to the N501Y mutation [270,273].
-The P.1 variant is a branch of the B.1.1.28 lineage that was first detected in Japan in samples obtained from four travelers from Brazil during a screening at a Tokyo airport on January 10, 2021 [284].
+While the biological significance of these mutations are still under investigation, it does appear that this lineage may be associated with increased transmissibility [285] due to the N501Y mutation [272,275].
+The P.1 variant is a branch of the B.1.1.28 lineage that was first detected in Japan in samples obtained from four travelers from Brazil during a screening at a Tokyo airport on January 10, 2021 [286].
Shortly thereafter, it was established that there was a concentration of cases of the P.1 variant in Manaus, in the Amazonas State, Brazil.
-In a small number of samples (n=31) sequenced in Manaus, 42% were identified as the P.1 variant as early as mid-December, but the variant seemed to be absent in genome surveillance testing prior to December [285].
-To date, at least eight countries have detected the P.1 lineage [286].
-While the majority of P.1 cases detected internationally have been linked to travel originating from Brazil, the UK has also reported evidence of community transmission detected via routine community sequencing [286,287].
-P.1 has eight lineage-specific mutations along with three concerning spike protein mutations in the RBD, including K417T, E484K, and N501Y [283].
There have been multiple different SARS-CoV-2 lineages detected that have mostly been of no more clinical concern than the original devastating lineage originating in Wuhan [288].
+In a small number of samples (n=31) sequenced in Manaus, 42% were identified as the P.1 variant as early as mid-December, but the variant seemed to be absent in genome surveillance testing prior to December [287].
+To date, at least eight countries have detected the P.1 lineage [288].
+While the majority of P.1 cases detected internationally have been linked to travel originating from Brazil, the UK has also reported evidence of community transmission detected via routine community sequencing [288,289].
+P.1 has eight lineage-specific mutations along with three concerning spike protein mutations in the RBD, including K417T, E484K, and N501Y [285].
There have been multiple different SARS-CoV-2 lineages detected that have mostly been of no more clinical concern than the original devastating lineage originating in Wuhan [290].
However, the spotlight has been cast on other variants of unknown clinical relevance due to the increase of cases observed that have been associated with B.1.1.7 in particular.
-Although early in its ascendency, CAL.20C (B.1.429) is a SARS-CoV-2 variant that was detected in California, USA [289].
+Although early in its ascendency, CAL.20C (B.1.429) is a SARS-CoV-2 variant that was detected in California, USA [291].
It was first detected in July 2020 but was not detected again until October 2020.
In December 2020, CAL.20C accounted for ~24% of the total cases in Southern California and ~36% of total cases in the Los Angeles area.
-CAL.20C has now been detected in New York and Washington, D.C., and some cases have been reported outside the USA in Oceania [289].
+CAL.20C has now been detected in New York and Washington, D.C., and some cases have been reported outside the USA in Oceania [291].
This variant is characterized by five lineage-specific mutations (ORF1a: I4205V, ORF1b:D1183Y, S: S13I;W152C;L452R).
-The latter spike mutation, L452R, is found in an area of the RBD known to resist monoclonal antibodies to the spike protein [290], and it is hypothesized that this mutation may resist polyclonal sera in convalescent patients or in individuals post-vaccination [289,291].
+The latter spike mutation, L452R, is found in an area of the RBD known to resist monoclonal antibodies to the spike protein [292], and it is hypothesized that this mutation may resist polyclonal sera in convalescent patients or in individuals post-vaccination [291,293].
CAL.20C is not a designated VOC; however, further research is required to determine the implications of the mutations encoded in this genetic variant.
-Another notable variant has recently been discovered in 35 patients in a Bavarian hospital in Germany; however, the sequencing data has not been published to date and it remains to be determined whether this variant is of any further concern [292].
There are several shared mutations and deletions between the three lineages, P.1, B.1.1.7, and B.1.315 and indeed other variants of SARS-CoV-2 that are under investigation [285]. +Another notable variant has recently been discovered in 35 patients in a Bavarian hospital in Germany; however, the sequencing data has not been published to date and it remains to be determined whether this variant is of any further concern [294].
+There are several shared mutations and deletions between the three lineages, P.1, B.1.1.7, and B.1.315 and indeed other variants of SARS-CoV-2 that are under investigation [287].
For example, N501Y, which appears to have occurred independently in each of the three lineages.
-E484K is present in both B.1.351 and P.1 [293].
-The mutations N501Y and E484K are found in the RBD within the receptor-binding motif responsible for forming an interface with the ACE2 receptor, which seems to be consequential for ACE2 binding affinity [294].
-Indeed, N501Y is associated with increased virulence and infectivity in mouse models [295].
-E484K has also been associated with evasion from neutralizing antibodies [262,291,296].
+E484K is present in both B.1.351 and P.1 [295].
+The mutations N501Y and E484K are found in the RBD within the receptor-binding motif responsible for forming an interface with the ACE2 receptor, which seems to be consequential for ACE2 binding affinity [296].
+Indeed, N501Y is associated with increased virulence and infectivity in mouse models [297].
+E484K has also been associated with evasion from neutralizing antibodies [264,293,298].
The del69-70 (del:11288:9) is also shared between P.1 and B.1.1.7 and happens to be a common deletion found in the N terminal mutation of the spike protein.
-This deletion has also been associated with several RBD mutations [270,273,297].
-There is concern that mutations in the spike protein of variants may lead to clinical consequences for transmissibility, disease severity, re-infection, therapeutics, and vaccinations [262,291,298,299,300,301,302].
Vaccine producers are working to determine whether the vaccines are still effective against the novel genetic variants. Moderna recently published data for their mRNA-1273 vaccine that showed no significant impact of neutralization against the B.1.1.7 variant upon vaccination in humans and non-human primates. -On the other hand, Moderna reported a reduced but significant neutralization against the B.1.351 variant upon vaccination [303]. -Indeed, Pfizer–BioNTech reported that sera from twenty participants vaccinated with the BNT162b COVID-19 vaccine in previous clinical trials [304,305] elicited equivalent neutralizing titers against isogenic Y501 SARS-CoV-2 on an N501Y genetic background in vitro [306]. -Another study has reported that the plasma neutralizing activity against SARS-CoV-2 variants encoding the combination of K417N:E484K:N501Y or E484K or N501Y was variably and significantly reduced in the sera of twenty participants who received either the Pfizer–BioNTech BNT162b (n = 6) vaccine or the Moderna’s mRNA-1273 vaccine (n =14) [307]. -For now, the consensus appears to be that the FDA approved vaccines still seem to be effective against the genetic variants of SARS-CoV-2 and their accompanying mutations, albeit with a slightly lower neutralizing capacity [303,306,307,308]. +On the other hand, Moderna reported a reduced but significant neutralization against the B.1.351 variant upon vaccination [305]. +Indeed, Pfizer–BioNTech reported that sera from twenty participants vaccinated with the BNT162b COVID-19 vaccine in previous clinical trials [306,307] elicited equivalent neutralizing titers against isogenic Y501 SARS-CoV-2 on an N501Y genetic background in vitro [308]. +Another study has reported that the plasma neutralizing activity against SARS-CoV-2 variants encoding the combination of K417N:E484K:N501Y or E484K or N501Y was variably and significantly reduced in the sera of twenty participants who received either the Pfizer–BioNTech BNT162b (n = 6) vaccine or the Moderna’s mRNA-1273 vaccine (n =14) [309]. +For now, the consensus appears to be that the FDA approved vaccines still seem to be effective against the genetic variants of SARS-CoV-2 and their accompanying mutations, albeit with a slightly lower neutralizing capacity [305,308,309,310]. Further research is required to discern the clinical, prophylactic, and therapeutic consequences of these genetic SARS-CoV-2 variants as the pandemic evolves.
As of October 2020 the SARS-CoV-2 virus remains a serious worldwide threat. @@ -1334,7 +1335,7 @@
Identifying individuals who have contracted COVID-19 is crucial to slowing down the global pandemic. Given the high transmissibility of SARS-CoV-2, the development of reliable assays to detect SARS-CoV-2 infection even in asymptomatic carriers is vitally important. For instance, the deployment of wide-scale diagnostic testing followed by the isolation of infected people has been a key factor in South Korea’s successful strategy for controlling the spread of the virus. -Following the first release of the genetic sequence of the virus by Chinese officials on January 10, 2020, the first test was released about 13 days later [309]. +Following the first release of the genetic sequence of the virus by Chinese officials on January 10, 2020, the first test was released about 13 days later [311]. Diagnostic approaches utilizing a variety of methods are currently or have been developed. There are two main classes of diagnostic tests: molecular tests, which can diagnose an active infection by identifying the presence of SARS-CoV-2, and serological tests, which can assess whether an individual was infected in the past via the presence or absence of antibodies against SARS-CoV-2. Molecular tests are essential for identifying individuals for treatment and alerting their contacts to quarantine and be alert for possible symptoms. @@ -1346,37 +1347,37 @@
In the case of COVID-19, there is also concern about the immune system becoming over-active. One of the main immune responses contributing to the onset of acute respiratory distress syndrome (ARDS) in COVID-19 patients is cytokine storm syndrome (CSS), which causes an extreme inflammatory response due to a release of pro-inflammatory cytokines and chemokines by immune effector cells. -In addition to respiratory distress, this mechanism can lead to organ failure and death in severe COVID-19 cases [33].
+In addition to respiratory distress, this mechanism can lead to organ failure and death in severe COVID-19 cases [35].Molecular tests are used to identify distinct genomic subsequences of a viral molecule in a sample and thus to diagnose an active viral infection. This first requires identifying which biospecimens are likely to contain the virus during infection and then acquiring these samples from the patient(s) to be tested. -Common sampling sources for molecular tests include nasopharyngeal cavity samples, such as throat wash and saliva [310], and stool samples [311]. +Common sampling sources for molecular tests include nasopharyngeal cavity samples, such as throat wash and saliva [312], and stool samples [313]. Once a sample is acquired from a patient, molecular testing will utilize a number of steps, described below, to analyze a sample and identify whether evidence of SARS-CoV-2 is present. When testing for RNA viruses like SARS-CoV-2, pre-processing is necessary in order to create DNA from the RNA sample. The DNA can then be amplified with PCR. Some tests use the results of the PCR itself to determine whether the pathogen is present, but in other cases, it may be necessary to sequence the amplified DNA. Sequencing requires an additional pre-processing step: library preparation. -Library preparation is the process of preparing the sample for sequencing, typically by fragmenting the sequences and adding adapters [312]. +Library preparation is the process of preparing the sample for sequencing, typically by fragmenting the sequences and adding adapters [314]. In some cases, library preparation can involve other modifications of the sample, such as adding “barcoding” to identify a particular sample in the sequence data, which is useful for pooling samples from multiple sources. -There are different reagents used for library preparation that are specific to identifying one or more target sections with PCR [313]. +There are different reagents used for library preparation that are specific to identifying one or more target sections with PCR [315]. Sequential pattern matching is then used to identify unique subsequences of the virus that identify it in specific. If sufficient subsequences are found, the test is considered positive.
Real-Time Polymerase Chain Reaction (RT-PCR) tests determine whether a target is present by measuring the rate of amplification during PCR compared to a standard. When the target is RNA, such as in the case of RNA viruses, the RNA must be converted into complementary DNA during pre-processing. The Drosten Lab, from Germany, was the first lab to establish and validate a diagnostic test to detect SARS-CoV-2. -This test uses RT-PCR with reverse transcription [309] to detect several regions of the viral genome: the ORF1b of the RNA-dependent RNA polymerase (RdRP), the Envelope protein gene (E), and the Nucleocapsid protein gene (N). +This test uses RT-PCR with reverse transcription [311] to detect several regions of the viral genome: the ORF1b of the RNA-dependent RNA polymerase (RdRP), the Envelope protein gene (E), and the Nucleocapsid protein gene (N). In collaboration with several other labs in Europe and in China, the researchers confirmed the specificity of this test with respect to other coronaviruses against specimens from 297 patients infected with a broad range of respiratory agents. -Specifically this test utilizes two probes against RdRP, one of which is specific to SARS-CoV-2 [309]. +Specifically this test utilizes two probes against RdRP, one of which is specific to SARS-CoV-2 [311]. Importantly, this assay was not found to return false positive results.
Chinese researchers developed a quantitative real-time reverse transcription PCR (qRT-PCR) test to identify two gene regions of the viral genome, ORF1b and N [314]. +
Chinese researchers developed a quantitative real-time reverse transcription PCR (qRT-PCR) test to identify two gene regions of the viral genome, ORF1b and N [316]. This assay was tested on samples coming two COVID-19 patients and a panel of positive and negative controls consisting of RNA extracted from several cultured viruses. -The assay uses the N gene to screen patients, while the ORF1b gene region is used to confirm the infection [314]. +The assay uses the N gene to screen patients, while the ORF1b gene region is used to confirm the infection [316]. In this case the test was designed to detect sequences conserved across sarbecoviruses, or viruses within the same subgenus as SARS-CoV-2. Considering that SARS-CoV-1 and SARS-CoV-2 are the only sarbecoviruses currently known to infect humans, a positive test can be assumed to indicate that the patient is infected with SARS-CoV-2. However, this test is not able to discriminate the genetics of viruses within the sarbecovirus clade.
@@ -1384,15 +1385,15 @@Digital PCR (dPCR) is a new generation of PCR technologies offering an alternative to traditional real-time quantitative PCR. In dPCR, a sample is partitioned into thousands of compartments, such as nanodroplets (droplet dPCR or ddPCR) or nanowells, and a PCR reaction takes place in each compartment. This design allows for a digital read-out where each partition is either positive or negative for the nucleic acid sequence being tested for, allowing for much higher throughput. -While dPCR equipment is not yet as common as that for RT-PCR, dPCR for DNA targets generally achieves higher sensitivity than other PCR technologies while maintaining high specificity, though sensitivity is slightly lower for RNA targets [315]. +While dPCR equipment is not yet as common as that for RT-PCR, dPCR for DNA targets generally achieves higher sensitivity than other PCR technologies while maintaining high specificity, though sensitivity is slightly lower for RNA targets [317]. High sensitivity is particularly relevant for SARS-CoV-2 detection, since low viral load in clinical samples can lead to false negatives. -Suo et al. [316] performed a double-blind evaluation of ddPCR for SARS-CoV-2 detection on 57 samples, comprised by 43 samples from suspected positive patients and 14 from supposed convalescents, that had all tested negative for SARS-CoV-2 using RT-PCR. +Suo et al. [318] performed a double-blind evaluation of ddPCR for SARS-CoV-2 detection on 57 samples, comprised by 43 samples from suspected positive patients and 14 from supposed convalescents, that had all tested negative for SARS-CoV-2 using RT-PCR. Despite the initial negative results, 33 out of 35 (94.3%) patients were later clinically confirmed positive. All of these individuals tested positive using ddPCR. Additionally, of 14 supposed convalescents who had received two consecutive negative RT-PCR tests, nine (64.2%) tested positive for SARS-CoV-2 using ddPCR. Two symptomatic patients tested negative with both RT-PCR and ddPCR, but were later clinically diagnosed positive, and 5 of the 14 suspected convalescents tested negative by ddPCR. While this study did not provide a complete head-to-head comparison to RT-PCR in all aspects, e.g., no samples testing positive using RT-PCR were evaluated by ddPCR, the study shows the potential of dPCR for viral detection even in highly diluted samples. -In a second study, Dong et al. [317] compared the results of qRT-PCR and ddPCR testing for SARS-CoV-2 in 194 samples, including 103 samples from suspected patients, 75 from contacts and close contacts, and 16 from suspected convalescents. +In a second study, Dong et al. [319] compared the results of qRT-PCR and ddPCR testing for SARS-CoV-2 in 194 samples, including 103 samples from suspected patients, 75 from contacts and close contacts, and 16 from suspected convalescents. Of the 103 suspected patient samples, 29 were reported as positive, 25 as negative, and 49 as suspected by qRT-PCR; all patients were later confirmed to be SARS-CoV-2 positive. Of the qRT-PCR negative or suspected samples, a total of 61 (17 negative and 44 suspected) were later confirmed to be positive by ddPCR, improving the overall detection rate among these patients from 28.2% to 87.4%. Of 75 patient samples from contacts and close contacts, 48 tested negative with both methods, and these patients were observed to remain healthy. @@ -1404,43 +1405,43 @@
Due to limited supplies and the need for more tests, several labs have found ways to pool or otherwise strategically design tests to increase throughput. -The first such result came from Yelin et al. [318], who found they could pool up to 32 samples in a single qPCR run. -This was followed by larger-scale pooling with slightly different methods [319]. +The first such result came from Yelin et al. [320], who found they could pool up to 32 samples in a single qPCR run. +This was followed by larger-scale pooling with slightly different methods [321]. Although these approaches are also PCR based, they allow for more rapid scaling and higher efficiency for testing than the initial PCR-based methods developed.
Two CRISPR-associated nucleases, Cas12 and Cas13, have been used for nucleic acid detection. Multiple assays exploiting these nucleases have emerged as potential diagnostic tools for the rapid detection of SARS-CoV-2 genetic material and therefore SARS-CoV-2 infection. -The SHERLOCK method (Specific High-sensitivity Enzymatic Reporter unLOCKing) from Sherlock Biosciences relies on Cas13a to discriminate between inputs that differ by a single nucleotide at very low concentrations [320]. +The SHERLOCK method (Specific High-sensitivity Enzymatic Reporter unLOCKing) from Sherlock Biosciences relies on Cas13a to discriminate between inputs that differ by a single nucleotide at very low concentrations [322]. The target RNA is amplified by RT-RPA and T7 transcription, and the amplified product activates Cas13a. The nuclease then cleaves a reporter RNA, which liberates a fluorescent dye from a quencher. Several groups have used the SHERLOCK method to detect SARS-CoV-2 viral RNA. -An early study reported that the method could detect 7.5 copies of viral RNA in all 10 replicates, 2.5 copies in 6 out of 10, and 1.25 copies in 2 out of 10 runs [321]. +An early study reported that the method could detect 7.5 copies of viral RNA in all 10 replicates, 2.5 copies in 6 out of 10, and 1.25 copies in 2 out of 10 runs [323]. It also reported 100% specificity and sensitivity on 114 RNA samples from clinical respiratory samples (61 suspected cases, among which 52 were confirmed and nine were ruled out by metagenomic next-generation sequencing, 17 nCoV-/HCoV+ cases and 36 samples from healthy subjects), and a reaction turnaround time of 40 minutes. A separate study screened four designs of SHERLOCK and extensively tested the best-performing assay. -They determined the limit of detection to be 10 copies/μl using both fluorescent and lateral flow detection [322]. +They determined the limit of detection to be 10 copies/μl using both fluorescent and lateral flow detection [324]. Lateral flow test strips are simple to use and read, but there are limitations in terms of availability and cost per test. -Another group therefore proposed the CREST protocol (Cas13-based, Rugged, Equitable, Scalable Testing), which uses a P51 cardboard fluorescence visualizer, powered by a 9V battery, for the detection of Cas13 activity instead of immunochromatography [323]. +Another group therefore proposed the CREST protocol (Cas13-based, Rugged, Equitable, Scalable Testing), which uses a P51 cardboard fluorescence visualizer, powered by a 9V battery, for the detection of Cas13 activity instead of immunochromatography [325]. CREST can be run, from RNA sample to result, with no need for AC power or a dedicated facility, with minimal handling in approximately 2 hours. Testing was performed on 14 nasopharyngeal swabs. CREST picked up the same positives as the CDC-recommended TaqMan assay with the exception of one borderline sample that displayed low-quality RNA.
The DETECTR method (DNA Endonuclease-Targeted CRISPR Trans Reporter) from Mammoth Biosciences involves purification of RNA extracted from patient specimens, amplification of extracted RNAs by loop-mediated amplification, which is a rapid, isothermal nucleic acid amplification technique, and application of their Cas12-based technology. -In their assay, guide RNAs were designed to recognize portions of sequences corresponding to the SARS-CoV-2 genome, specifically the N2 and E regions [324]. +In their assay, guide RNAs were designed to recognize portions of sequences corresponding to the SARS-CoV-2 genome, specifically the N2 and E regions [326]. In the presence of SARS-CoV-2 genetic material, sequence recognition by the guide RNAs results in double-stranded DNA cleavage by Cas12, as well as cleavage of a single-stranded DNA molecular beacon. The cleavage of this molecular beacon acts as a colorimetric reporter that is subsequently read out in a lateral flow assay and indicates the positive presence of SARS-CoV-2 genetic material and therefore SARS-CoV-2 infection. The 40-minute assay is considered positive if there is detection of both the E and N genes or presumptive positive if there is detection of either of them. The assay had 95% positive predictive agreement and 100% negative predictive agreement with the US Centers for Disease Control and Prevention SARS-CoV-2 real-time RT–PCR assay. The estimated limit of detection was 10 copies per μl reaction, versus 1 copy per μl reaction for the CDC assay. These results have been confirmed by other DETECTR approaches. -Using RTRPA for amplification, another group detected 10 copies of synthetic SARS-CoV-2 RNA per μl of input within 60 minutes of RNA sample preparation in a proof-of-principle evaluation [325]. +Using RTRPA for amplification, another group detected 10 copies of synthetic SARS-CoV-2 RNA per μl of input within 60 minutes of RNA sample preparation in a proof-of-principle evaluation [327]. The DETECTR protocol was improved by combining RT-RPA and CRISPR-based detection in a one-pot reaction that incubates at a single temperature, and by using dual crRNAs (which increases sensitivity). -This new assay, known as All-In-One Dual CRISPR-Cas12a (AIOD-CRISPR), detected 4.6 copies of SARS-CoV-2 RNA per μl of input in 40 minutes [326]. -Another single-tube, constant-temperature approach using Cas12b instead of Cas12a achieved a detection limit of 5 copies/μl in 40-60 minutes [327]. -It was also reported that electric field gradients can be used to control and accelerate CRISPR assays by co-focusing Cas12-gRNA, reporters, and target [328]. +This new assay, known as All-In-One Dual CRISPR-Cas12a (AIOD-CRISPR), detected 4.6 copies of SARS-CoV-2 RNA per μl of input in 40 minutes [328]. +Another single-tube, constant-temperature approach using Cas12b instead of Cas12a achieved a detection limit of 5 copies/μl in 40-60 minutes [329]. +It was also reported that electric field gradients can be used to control and accelerate CRISPR assays by co-focusing Cas12-gRNA, reporters, and target [330]. The authors generated an appropriate electric field gradient using a selective ionic focusing technique known as isotachophoresis (ITP) implemented on a microfluidic chip. They also used ITP for automated purification of target RNA from raw nasopharyngeal swab samples. Combining this ITP purification with loop-mediated isothermal amplification, their ITP-enhanced assay to achieved detection of SARS-CoV-2 RNA (from raw sample to result) in 30 minutes.
There is an increasing body of evidence that CRISPR-based assays offer a practical solution for rapid, low-barrier testing in areas that are at greater risk of infection, such as airports and local community hospitals. -In the largest study to date, DETECTR was compared to qRT-PCR on 378 patient samples [329]. +In the largest study to date, DETECTR was compared to qRT-PCR on 378 patient samples [331]. The authors reported a 95% reproducibility. Both techniques were equally sensitive in detecting SARS-CoV-2. Lateral flow strips showed a 100% correlation to the high-throughput DETECTR assay. @@ -1451,26 +1452,26 @@
Similarly, in tests that use CRISPR, false positives can occur due to the specificity of the technique, as the guide RNA can recognize other interspersed sequences on the patient’s genome. As noted above, false negatives are a significant concern for several reason. -Importantly, clinical reports indicate that it is imperative to exercise caution when interpreting the results of molecular tests for SARS-CoV-2 because negative results do not necessarily mean a patient is virus-free [333].
+Importantly, clinical reports indicate that it is imperative to exercise caution when interpreting the results of molecular tests for SARS-CoV-2 because negative results do not necessarily mean a patient is virus-free [335].Although diagnostic tests based on the detection of genetic material can be quite sensitive, they cannot provide information about the extent of the disease over time. Most importantly, they would not work on a patient who has fully recovered from the virus at the time of sample collection. In this context, serological tests, which use serum to test for the presence of antibodies against SARS-CoV-2, are significantly more informative. Additionally, serological tests can help scientists to understand why the disease has a different course among patients, as well as which strategies might work to manage the spread of the infection. Furthermore, serological tests hold significant interest because of the possibility that they could provide information relevant to advancing economic recovery and allowing reopenings. -For instance, people that had developed antibodies might be able to return to work, assuming (still-unproven) protective immunity [334]. +For instance, people that had developed antibodies might be able to return to work, assuming (still-unproven) protective immunity [336]. Some infectious agents can be controlled through “herd immunity”, which is when a critical mass within the population acquires immunity through vaccination and/or infection, preventing an infectious agent from spreading widely. -A simple SIR model predicts that to achieve the required level of exposure for herd immunity to be effective, at least (1-(1/R0)) fraction of the population must be immune or, equivalently, less than (1/R0) fraction of the population susceptible [223]. +A simple SIR model predicts that to achieve the required level of exposure for herd immunity to be effective, at least (1-(1/R0)) fraction of the population must be immune or, equivalently, less than (1/R0) fraction of the population susceptible [225]. However, for SARS-CoV-2 and COVID-19, the R0 and mortality rates that have been observed suggest that relying on herd immunity without some combination of vaccines, proven treatment options, and strong non-pharmaceutical measures of prevention and control would likely result in a significant loss of life.
In the process of mounting a response to a pathogen, the immune system produces antibodies specific to the pathogen. @@ -1478,19 +1479,19 @@
The persistence of antibodies to SARS-CoV-2 remains under investigation. -Circulating antibody titers to other coronaviruses have been reported to decline significantly after 1 year [337]. -Autopsies of lymph nodes and spleens from severe acute COVID-19 patients showed a loss of T follicular helper cells and germinal centers that may explain some of the impaired development of antibody responses [338]. -An early study (initially released on medRxiv on February 25, 2020) presented a chemiluminescence immunoassay to a synthetic peptide derived from the amino acid sequence of the SARS-CoV-2 S protein [339]. +Circulating antibody titers to other coronaviruses have been reported to decline significantly after 1 year [339]. +Autopsies of lymph nodes and spleens from severe acute COVID-19 patients showed a loss of T follicular helper cells and germinal centers that may explain some of the impaired development of antibody responses [340]. +An early study (initially released on medRxiv on February 25, 2020) presented a chemiluminescence immunoassay to a synthetic peptide derived from the amino acid sequence of the SARS-CoV-2 S protein [341]. This method was highly specific to SARS-CoV-2 and detected IgM in 57.2% and IgG in 71.4% and 57.2% of sera samples from 276 confirmed COVID-19 patients. They reported that they could detect IgG within two days of the onset of fever and were not able to detect IgM any earlier, a pattern they compared to findings in MERS. -Since then, several trials have reported the potential protective effect of antibodies in convalescent plasma obtained from recovered COVID-19 patients to treat critically ill COVID-19 patients [340,341,342].
+Since then, several trials have reported the potential protective effect of antibodies in convalescent plasma obtained from recovered COVID-19 patients to treat critically ill COVID-19 patients [342,343,344]. -Evidence to date suggests that sustained immunity to SARS-CoV-2 occurs for a period of at least 6-8 months [343,344,345]. -One study assessed sustained immunity using 245 blood samples from 188 COVID-19 positive patients [344]. +
Evidence to date suggests that sustained immunity to SARS-CoV-2 occurs for a period of at least 6-8 months [345,346,347]. +One study assessed sustained immunity using 245 blood samples from 188 COVID-19 positive patients [346]. The samples were collected at various time points between 6 and 240 days post-symptom onset, meaning some patients were assessed longitudinally. Of the samples, 43 were collected at least 6 months after symptom onset. After 1 month, 98% of patients were seropositive for Spike IgG. @@ -1498,54 +1499,54 @@
Several countries are now focused on implementing antibody tests, and in the United States, the FDA recently approved a serological test by Cellex for use under emergency conditions [356]. -Specifically, the Cellex qSARS-CoV-2 IgG/IgM Rapid Test is a chromatographic immunoassay designed to qualitatively detect IgM and IgG antibodies against SARS-CoV-2 in the plasma (from a blood sample) of patients suspected to have developed the SARS-CoV-2 infection [356]. +
Several countries are now focused on implementing antibody tests, and in the United States, the FDA recently approved a serological test by Cellex for use under emergency conditions [358]. +Specifically, the Cellex qSARS-CoV-2 IgG/IgM Rapid Test is a chromatographic immunoassay designed to qualitatively detect IgM and IgG antibodies against SARS-CoV-2 in the plasma (from a blood sample) of patients suspected to have developed the SARS-CoV-2 infection [358]. Such tests illuminate the progression of viral disease, as IgM are the first antibodies produced by the body and indicate that the infection is active. -Once the body has responded to the infection, IgG are produced and gradually replace IgM, indicating that the body has developed immunogenic memory [357]. -The test cassette contains a pad of SARS-CoV-2 antigens and a nitrocellulose strip with lines for each of IgG and IgM, as well as a control (goat IgG) [356]. -In a specimen that contains antibodies against the SARS-CoV-2 antigen, the antibodies will bind to the strip and be captured by the IgM and/or IgG line(s), resulting in a change of color [356]. -With this particular assay, results can be read within 15-20 minutes [356]. -Other research groups, such as the Krammer lab of the Icahn School of Medicine at Mount Sinai, proposed an ELISA test that detects IgG and IgM that react against the receptor binding domain (RBD) of the spike proteins (S) of the virus [358]. -The authors are now working to get the assay into clinical use [359].
+Once the body has responded to the infection, IgG are produced and gradually replace IgM, indicating that the body has developed immunogenic memory [359]. +The test cassette contains a pad of SARS-CoV-2 antigens and a nitrocellulose strip with lines for each of IgG and IgM, as well as a control (goat IgG) [358]. +In a specimen that contains antibodies against the SARS-CoV-2 antigen, the antibodies will bind to the strip and be captured by the IgM and/or IgG line(s), resulting in a change of color [358]. +With this particular assay, results can be read within 15-20 minutes [358]. +Other research groups, such as the Krammer lab of the Icahn School of Medicine at Mount Sinai, proposed an ELISA test that detects IgG and IgM that react against the receptor binding domain (RBD) of the spike proteins (S) of the virus [360]. +The authors are now working to get the assay into clinical use [361].Importantly, false-positives can occur due to the cross-reactivity with other antibodies according to the clinical condition of the patient [356]. -Therefore, this test should be used in combination with RNA detection tests [356]. +
Importantly, false-positives can occur due to the cross-reactivity with other antibodies according to the clinical condition of the patient [358]. +Therefore, this test should be used in combination with RNA detection tests [358]. Due to the long incubation times and delayed immune responses of infected patients, serological tests are insufficiently sensitive for a diagnosis in the early stages of an infection. The limitations due to timing make serological tests far less useful for enabling test-and-trace strategies.
Clinical symptoms are too similar to other types of pneumonia to be sufficient as a sole diagnostics criterion. In addition, as noted above, identifying asymptomatic cases is critical. -Even among mildly symptomatic patients, a predictive model based on clinical symptoms had a sensitivity of only 56% and a specificity of 91% [360]. +Even among mildly symptomatic patients, a predictive model based on clinical symptoms had a sensitivity of only 56% and a specificity of 91% [362]. More problematic is that clinical symptom-based tests are only able to identify already symptomatic cases, not presymptomatic or asymptomatic cases. They may still be important for clinical practice, and for reducing tests needed for patients deemed unlikely to have COVID-19.
-X-ray diagnostics have been reported to have high sensitivity but low specificity in some studies [361]. -Other studies have shown that specificity varies between radiologists [362], though the sensitivity reported here was lower than that published in the previous paper. -However, preliminary machine-learning results have shown far higher sensitivity and specificity from analyzing chest X-rays than was possible with clinical examination [363]. +
X-ray diagnostics have been reported to have high sensitivity but low specificity in some studies [363]. +Other studies have shown that specificity varies between radiologists [364], though the sensitivity reported here was lower than that published in the previous paper. +However, preliminary machine-learning results have shown far higher sensitivity and specificity from analyzing chest X-rays than was possible with clinical examination [365]. X-ray tests with machine learning can potentially detect asymptomatic or presymptomatic infections that show lung manifestations. This approach would still not recognize entirely asymptomatic cases. Given the above, the widespread use of X-ray tests on otherwise healthy adults is likely inadvisable.
Early in the COVID-19 pandemic, testing was typically limited to individuals considered high risk for developing serious illness [364]. +
Early in the COVID-19 pandemic, testing was typically limited to individuals considered high risk for developing serious illness [366]. This approach often involved limiting testing to people with severe symptoms and people showing mild symptoms that had been in contact with a person who had tested positive. Individuals who are asymptomatic (i.e., potential spreaders) and individuals who are able to recover at home are therefore often unaware of their status. However, this method of testing administration misses a high proportion of infections and does not allow for test-and-trace methods to be used. -For instance, a recent study from Imperial College estimates that in Italy, the true number of infections was around 5.9 million in a total population ~60 million, compared to the 70,000 detected as of March 28th [239]. -Another analysis, which examined New York state, indicated that as of May, 2020, approximately 300,000 cases had been reported in a total population of approximately 20 million [365]. -This corresponded to ~1.5% of the population, but ~12% of individuals sampled statewide were estimated as positive through antibody tests (along with indications of spatial heterogeneity at higher resolution) [365]. +For instance, a recent study from Imperial College estimates that in Italy, the true number of infections was around 5.9 million in a total population ~60 million, compared to the 70,000 detected as of March 28th [241]. +Another analysis, which examined New York state, indicated that as of May, 2020, approximately 300,000 cases had been reported in a total population of approximately 20 million [367]. +This corresponded to ~1.5% of the population, but ~12% of individuals sampled statewide were estimated as positive through antibody tests (along with indications of spatial heterogeneity at higher resolution) [367]. Technological advancements that facilitate widespread, rapid testing will therefore improve the potential to accurately assess the rate of infection and aid in controlling the virus’ spread.
Major advancements have been made in identifying diagnostic approaches. @@ -1553,11 +1554,11 @@
The novel coronavirus Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) emerged in late 2019 and quickly precipitated the worldwide spread of novel coronavirus disease 2019 (COVID-19). -COVID-19 is associated with symptoms ranging from none (asymptomatic) to mild to severe, with approximately 2% of patients dying from COVID-19-related complications, such as acute respiratory disease syndrome (ARDS) [367]. -The virus is likely spread between people primarily by droplets, with the role of contact and aerosol transmission still in question [194,195]. +COVID-19 is associated with symptoms ranging from none (asymptomatic) to mild to severe, with approximately 2% of patients dying from COVID-19-related complications, such as acute respiratory disease syndrome (ARDS) [1]. +The virus is likely spread between people primarily by droplets, with the role of contact and aerosol transmission still in question [196,197]. As a result, public health guidelines have been critical to efforts to control the spread of the virus. However, as of early 2021, COVID-19 remains a significant worldwide concern (Figure 2), with cases in some places surging far above the numbers reported during the initial outbreak in early 2020. Due to the continued threat of the virus and the severity of the disease, the identification and development of prophylactic and therapeutic interventions have emerged as significant international priorities. Both approaches hold valuable potential for controlling the impact of the disease. Prophylactics bolster immunity to prevent an individual from contracting a disease, whereas therapeutics treat a disease in individuals who have already been infected. While vaccine development programs have attracted significant attention and produced a number of promising candidates, there is also an immediate need for treatments that palliate symptoms and prevent the most severe outcomes from infection. -Fortunately, prior developments during other recent pandemics, especially those caused by human coronaviruses (HCoV), has provided a number of hypotheses guiding a biomedical approach to the novel coronavirus infection.
+Fortunately, prior developments during other recent pandemics, especially those caused by human coronaviruses (HCoV), have provided a number of hypotheses guiding a biomedical approach to the novel coronavirus infection.2,354,561 COVID-19 deaths had been reported worldwide as of February 10, 2021 (Figure 2).
SARS-CoV-2’s rapid shift from an unknown virus to a significant worldwide threat closely parallels the emergence of Severe acute respiratory syndrome-related coronavirus (SARS-CoV-1). The first documented case of COVID-19 was reported in Wuhan, China in November 2019, and the disease quickly spread worldwide during the early months of 2020. -Similarly, the first case of SARS was reported in November 2002 in the Guangdong Province of China, and it spread within China and then into several countries across continents over the following months [28,30]. -In fact, genome sequencing quickly revealed the virus causing COVID-19 to be a novel betacoronavirus closely related to SARS-CoV-1 [10].
+Similarly, the first case of SARS was reported in November 2002 in the Guangdong Province of China, and it spread within China and then into several countries across continents over the following months [30,32]. +In fact, genome sequencing quickly revealed the virus causing COVID-19 to be a novel betacoronavirus closely related to SARS-CoV-1 [12].There are many similarities but also some differences in the characteristics of the two viruses that determine how they spread. -SARS infection is severe, with an estimated death rate of 9.5% [30], while estimates of the death rate associated with COVID-19 are much lower, at approximately 2% [367]. -SARS-CoV-1 is highly contagious via droplet transmission and has a basic reproduction number (R0) of 4 (i.e., each person infected was estimated to infect four other people) [30]. -SARS-CoV-2 also appears to be spread primarily by droplet transmission [194,195], and most estimates of its R0 fall between 2.5 and 3 [367]. +SARS infection is severe, with an estimated death rate of 9.5% [32], while estimates of the death rate associated with COVID-19 are much lower, at approximately 2% [1]. +SARS-CoV-1 is highly contagious via droplet transmission and has a basic reproduction number (R0) of 4 (i.e., each person infected was estimated to infect four other people) [32]. +SARS-CoV-2 also appears to be spread primarily by droplet transmission [196,197], and most estimates of its R0 fall between 2.5 and 3 [1]. Furthermore, the 17-year difference in the timing of these two outbreaks has led to some major differences in the tools available for the international community’s response. -At the time that SARS-CoV-1 emerged, no new HCoV had been identified in almost 40 years [28]. -The identity of the virus underlying the SARS disease remained unknown until April of 2003, when the SARS-CoV-1 virus was characterized through a worldwide scientific effort spearheaded by the WHO [28]. -In contrast, the SARS-CoV-2 genomic sequence was released on January 3, 2020 [10], only days after the international community became aware of the novel pneumonia-like illness now known as COVID-19. -While SARS-CoV-1 belonged to a distinct lineage from the two other HCoV known at the time of its discovery [30], SARS-CoV-2 is closely related to SARS-CoV-1 and a more distant relative of another HCoV characterized in 2012, Middle East respiratory syndrome-related coronavirus [13,369].
-Thus, despite their phylogenetic similarity, SARS-CoV-2 emerged under very different circumstances than SARS-CoV-1 in terms of scientific knowledge about HCoV. +At the time that SARS-CoV-1 emerged, no new HCoV had been identified in almost 40 years [30]. +The identity of the virus underlying the SARS disease remained unknown until April of 2003, when the SARS-CoV-1 virus was characterized through a worldwide scientific effort spearheaded by the World Health Organization (WHO) [30]. +In contrast, the SARS-CoV-2 genomic sequence was released on January 3, 2020 [12], only days after the international community became aware of the novel pneumonia-like illness now known as COVID-19. +While SARS-CoV-1 belonged to a distinct lineage from the two other HCoV known at the time of its discovery [32], SARS-CoV-2 is closely related to SARS-CoV-1 and a more distant relative of another HCoV characterized in 2012, Middle East respiratory syndrome-related coronavirus [15,370].
+Despite their phylogenetic similarity, SARS-CoV-2 emerged under very different circumstances than SARS-CoV-1 in terms of scientific knowledge about HCoV. The trajectories of the pandemics associated with each of the viruses have also diverged significantly. -By July 2003, the SARS outbreak was officially determined to be under control, with the success credited to infection management practices such as mask wearing [28]. -In contrast, MERS is still circulating and remains a concern; although the fatality rate is very high at almost 35%, the disease is much less easily transmitted, as its R0 has been estimated to be 1 [30]. -The low R0 in combination with public health practices allowed for its spread to be contained [30]. +By July 2003, the SARS outbreak was officially determined to be under control, with the success credited to infection management practices such as mask wearing [30]. +In contrast, MERS is still circulating and remains a concern; although the fatality rate is very high at almost 35%, the disease is much less easily transmitted, as its R0 has been estimated to be 1 [32]. +The low R0 in combination with public health practices allowed for its spread to be contained [32]. Neither of these trajectories are comparable to that of SARS-CoV-2, which remains a serious threat worldwide more than a year after the first cases of COVID-19 emerged.
Early results suggest that pharmaceutical interventions for COVID-19 may be more successful than efforts to develop prophylactics and therapeutics for SARS and MERS were. -Care for SARS and MERS patients prioritized supportive care and symptom management [30]. +Care for SARS and MERS patients prioritized supportive care and symptom management [32]. To the extent that clinical treatments for SARS and MERS were explored, there is generally a lack of evidence supporting their efficacy. -For example, Ribavirin is an antiviral that was often used in combination with corticosteroids and sometimes interferon (IFN) medications to treat SARS and MERS [28], but its effects have been found to be inconclusive in retrospective and in vitro analyses of SARS and the SARS-CoV-1 virus, respectively [28]. -IFNs and Ribavirin have shown promise in in vitro analyses of MERS, but their clinical effectiveness remains unknown [28]. +For example, Ribavirin is an antiviral that was often used in combination with corticosteroids and sometimes interferon (IFN) medications to treat SARS and MERS [30], but its effects have been found to be inconclusive in retrospective and in vitro analyses of SARS and the SARS-CoV-1 virus, respectively [30]. +IFNs and Ribavirin have shown promise in in vitro analyses of MERS, but their clinical effectiveness remains unknown [30]. Therefore, only limited pharmaceutical advances from prior HCoV outbreaks can be adopted to COVID-19. Importantly, though, prior analyses of the virological and pathogenic properties of SARS-CoV-1 and MERS-CoV provide a strong foundation for the development of hypotheses about SARS-CoV-2 that have served to accelerated the development and identification of potential prophylactic and therapeutic approaches.
Therapeutic approaches to the current pandemic can utilize two potential avenues: they can reduce the symptoms that are harmful to COVID-19 patients, or they can directly target the virus to hinder the spread of infection. The goal of the former is to reduce the severity and risks of an active infection, while for the latter, it is to inhibit the replication of the virus once an individual is infected. A variety of symptom profiles with a range of severity are associated with COVID-19, many of which are not life-threatening. -A study of COVID-19 patients in a hospital in Berlin, Germany found that the symptoms associated with the highest risk of death included infection-related symptoms, such as sepsis, respiratory symptoms such as ARDS, and cardiovascular failure or pulmonary embolism [370]. +A study of COVID-19 patients in a hospital in Berlin, Germany found that the symptoms associated with the highest risk of death included infection-related symptoms, such as sepsis, respiratory symptoms such as ARDS, and cardiovascular failure or pulmonary embolism [371]. Therapeutics that reduce the risks associated with these severe outcomes hold particular potential to reduce the pandemic death toll. On the other hand, therapeutics that directly target the virus itself would hold the potential to prevent people infected with SARS-CoV-2 from developing potentially damaging symptoms. These treatments typically fall into the broad category of antivirals. @@ -1644,44 +1645,44 @@
Small molecules are synthesized compounds of low molecular weight, typically less than 1 kilodalton (kDa) [372]. -Small-molecule pharmaceutical agents have been a backbone of drug development since the discovery of penicillin in the early twentieth century [373]. -It and other antibiotics have long been among the best known applications of small molecules to therapeutics, but biotechnological developments such as the prediction of protein-protein interactions have facilitated advances in precise targeting of specific structures using small molecules [373]. +
Small molecules are synthesized compounds of low molecular weight, typically less than 1 kilodalton (kDa) [373]. +Small-molecule pharmaceutical agents have been a backbone of drug development since the discovery of penicillin in the early twentieth century [374]. +It and other antibiotics have long been among the best known applications of small molecules to therapeutics, but biotechnological developments such as the prediction of protein-protein interactions have facilitated advances in precise targeting of specific structures using small molecules [374]. Small molecule drugs today encompass a wide range of therapeutics beyond antibiotics, including antivirals, protein inhibitors, and many broad-spectrum pharmaceuticals.
Antiviral drugs against SARS-CoV-2 are designed to inhibit replication of a virus within an epithelial host cell. -This process requires inhibiting the replication cycle of a virus by disrupting one of six fundamental steps [374]. +This process requires inhibiting the replication cycle of a virus by disrupting one of six fundamental steps [375]. In the first of these steps, the virus attaches to and enters the host cell through endocytosis. Then the virus undergoes uncoating, which is classically defined as the release of viral contents into the host cell. Next, the viral genetic material enters the nucleus where it gets replicated during the biosynthesis stage. During the assembly stage, viral proteins are translated, allowing new viral particles to be assembled. In the final step new viruses are released into the extracellular environment. Many antiviral drugs are designed to inhibit the replication of viral genetic material during the biosynthesis step. -Unlike DNA viruses, which can use the host enzymes to propagate themselves, RNA viruses like SARS-CoV-2 depend on their own polymerase, the RNA-dependent RNA polymerase (RdRP), for replication [375,376]. -Targeting RdRP is therefore an effective strategy for antivirals against RNA viruses and is the proposed mechanism underlying the treatment of SARS and MERS with Ribavirin [377]. +Unlike DNA viruses, which can use the host enzymes to propagate themselves, RNA viruses like SARS-CoV-2 depend on their own polymerase, the RNA-dependent RNA polymerase (RdRP), for replication [376,377]. +Targeting RdRP is therefore an effective strategy for antivirals against RNA viruses and is the proposed mechanism underlying the treatment of SARS and MERS with Ribavirin [378]. However, although antivirals are designed to target a virus, they can also impact other processes in the host and may have unintended effects. Therefore, these therapeutics must be evaluated for both efficacy and safety.
Favipiravir (Avigan), also known as T-705, was discovered by Toyama Chemical Co., Ltd. [378]. -The drug was found to be effective at blocking viral amplification in several influenza subtypes as well as other RNA viruses, such as Flaviviridae and Picornaviridae, through a reduction in plaque formation [379] and viral replication in Madin-Darby canine kidney cells [380]. -Furthermore, inoculation of mice with favipiravir was shown to increase survival of influenza infections [379,380]. -In 2014, the drug was approved in Japan for the treatment of influenza that was resistant to conventional treatments like neuraminidase inhibitors [381]. -Favipiravir (6-fluoro-3-hydroxy-2-pyrazinecarboxamide) acts as a purine and purine nucleoside analogue that inhibits viral RNA polymerase in a dose-dependent manner across a range of RNA viruses, including influenza viruses [382,383,384,385,386]. +
Favipiravir (Avigan), also known as T-705, was discovered by Toyama Chemical Co., Ltd. [379]. +The drug was found to be effective at blocking viral amplification in several influenza subtypes as well as other RNA viruses, such as Flaviviridae and Picornaviridae, through a reduction in plaque formation [380] and viral replication in Madin-Darby canine kidney cells [381]. +Furthermore, inoculation of mice with favipiravir was shown to increase survival of influenza infections [380,381]. +In 2014, the drug was approved in Japan for the treatment of influenza that was resistant to conventional treatments like neuraminidase inhibitors [382]. +Favipiravir (6-fluoro-3-hydroxy-2-pyrazinecarboxamide) acts as a purine and purine nucleoside analogue that inhibits viral RNA polymerase in a dose-dependent manner across a range of RNA viruses, including influenza viruses [383,384,385,386,387]. Nucleotides and nucleosides are the natural building blocks for RNA synthesis. -Because of this, modifications to nucleotides and nucleosides can disrupt key processes including replication [387]. +Because of this, modifications to nucleotides and nucleosides can disrupt key processes including replication [388]. Biochemical experiments showed that favipiravir was recognized as a purine nucleoside analogue and incorporated into the viral RNA template. -A single incorporation does not influence RNA transcription; however, multiple events of incorporation lead to the arrest of RNA synthesis [388]. -Evidence for T-705 inhibiting viral RNA polymerase are based on time-of-drug addition studies that found that viral loads were reduced with the addition of favipiravir in early times post-infection [382,385,386].
+A single incorporation does not influence RNA transcription; however, multiple events of incorporation lead to the arrest of RNA synthesis [389]. +Evidence for T-705 inhibiting viral RNA polymerase are based on time-of-drug addition studies that found that viral loads were reduced with the addition of favipiravir in early times post-infection [383,386,387].The effectiveness of favipiravir for treating patients with COVID-19 is currently under investigation. -An open-label, nonrandomized, before-after controlled study was recently conducted [389]. +An open-label, nonrandomized, before-after controlled study was recently conducted [390]. The study included 80 COVID-19 patients (35 treated with favipiravir, 45 control) from the isolation ward of the National Clinical Research Center for Infectious Diseases (The Third People’s Hospital of Shenzhen), Shenzhen, China. The patients in the control group were treated with other antivirals, such as lopinavir and ritonavir. -It should be noted that although the control patients received antivirals, two subsequent large-scale analyses, the WHO Solidarity trial and the RECOVERY trial, identified no effect of lopinavir or of a lopinavir-ritonavir combination, respectively, on the metrics of COVID-19-related mortality that each assessed [390,391,392]. +It should be noted that although the control patients received antivirals, two subsequent large-scale analyses, the WHO Solidarity trial and the RECOVERY trial, identified no effect of lopinavir or of a lopinavir-ritonavir combination, respectively, on the metrics of COVID-19-related mortality that each assessed [391,392,393]. Treatment was applied on days 2-14; treatment stopped either when viral clearance was confirmed or at day 14. The efficacy of the treatment was measured by, first, the time until viral clearance using Kaplan-Meier survival curves, and, second, the improvement rate of chest computed tomography (CT) scans on day 14 after treatment. The study found that favipiravir increased the speed of recovery, measured as viral clearance from the patient by RT-PCR, with patients receiving favipiravir recovering in four days compared to 11 days for patients receiving antivirals such as lopinavir and ritonavir. @@ -1692,33 +1693,32 @@
In late 2020 and early 2021, the first randomized controlled trials of favipiravir for the treatment of COVID-19 released results [394,395,396]. -The first [394] used a randomized, controlled, open-label design to compare two drugs, favipiravir and baloxavir marboxil, to SOC alone. +Additionally, it should be noted that this study was temporarily retracted and then restored without an explanation [394].
+In late 2020 and early 2021, the first randomized controlled trials of favipiravir for the treatment of COVID-19 released results [395,396,397]. +The first [395] used a randomized, controlled, open-label design to compare two drugs, favipiravir and baloxavir marboxil, to standard of care (SOC) alone. Here, SOC included antivirals such as lopinavir/ritonavir and was administered to all patients. The primary endpoint analyzed was viral clearance at day 14. The sample size for this study was very small, with 29 total patients enrolled, and no significant effect of the treatments was found for the primary or any of the secondary outcomes analyzed, which included mortality. The second study was larger, with 96 patients enrolled, and also utilized a randomized design. -This study enrolled only patients with mild to moderate symptoms and randomized them into two groups: one receiving CQ in addition to SOC, and the other receiving favipiravir in addition to SOC. +This study enrolled only patients with mild to moderate symptoms and randomized them into two groups: one receiving chloroquine (CQ) in addition to SOC, and the other receiving favipiravir in addition to SOC. This study reported a non-significant trend for patients receiving favipiravir to have a shorter hospital stay and less likelihood of progressing to mechanical ventilation or to an oxygen saturation < 90%. However, given the fact that favipiravir was being compared to CQ, which is now widely understood to be ineffective for treating COVID-19, these results do not suggest that favipiravir was likely to have had a strong effect on these outcomes. -On the other hand, another trial of 60 patients reported a significant effect of favipiravir on viral clearance at four days (a secondary endpoint), but not at 10 days (the primary endpoint) [396]. -This study, as well as a prior study of favipiravir [397], also reported that the drug was generally well-tolerated. +On the other hand, another trial of 60 patients reported a significant effect of favipiravir on viral clearance at four days (a secondary endpoint), but not at 10 days (the primary endpoint) [397]. +This study, as well as a prior study of favipiravir [398], also reported that the drug was generally well-tolerated. Thus, in combination, these small studies suggest that the effects of favipiravir as a treatment for COVID-19 cannot be determined based on the available evidence, but additionally, none raise major concerns about the safety profile of the drug.
Remdesivir (GS-5734) is an intravenous antiviral that was developed by Gilead Sciences to treat Ebola Virus Disease (EVD). At the outset of the COVID-19 pandemic, it did not have any have any FDA-approved use. -However, on May 1, 2020, the FDA issued an Emergency Use Authorization (EUA) for remdesivir for the treatment of hospitalized COVID-19 patients [398]. -The EUA was based on information from two clinical trials, NCT04280705 and NCT04292899 [399,400,401,402]. -Remdesivir is metabolized to GS-441524, an adenosine analog that inhibits a broad range of polymerases and then evades exonuclease repair, causing chain termination [403,404,405]. -A clinical trial in the Democratic Republic of Congo found some evidence of effectiveness against EVD, but two antibody preparations were found to be more effective, and remdesivir was not pursued [406]. -Although it was developed against EVD, remdesivir also inhibits polymerase and replication of the coronaviruses MERS-CoV and SARS-CoV-1 in cell culture assays with submicromolar IC50s [407]. -It has also been found to inhibit SARS-CoV-2, showing synergy with chloroquine in vitro [405]. -The effectiveness of remdesivir for treating patients with COVID-19 is currently under investigation.
-Remdesivir was first used on some COVID-19 patients under compassionate use guidelines [408,409]. +However, on May 1, 2020, the FDA issued an Emergency Use Authorization (EUA) for remdesivir for the treatment of hospitalized COVID-19 patients [399]. +The EUA was based on information from two clinical trials, NCT04280705 and NCT04292899 [400,401,402,403]. +Remdesivir is metabolized to GS-441524, an adenosine analog that inhibits a broad range of polymerases and then evades exonuclease repair, causing chain termination [404,405,406]. +A clinical trial in the Democratic Republic of Congo found some evidence of effectiveness against EVD, but two antibody preparations were found to be more effective, and remdesivir was not pursued [407]. +Although it was developed against EVD, remdesivir also inhibits polymerase and replication of the coronaviruses MERS-CoV and SARS-CoV-1 in cell culture assays with submicromolar IC50s [408]. +It has also been found to inhibit SARS-CoV-2, showing synergy with CQ in vitro [406].
+Remdesivir was first used on some COVID-19 patients under compassionate use guidelines [409,410]. All were in late stages of COVID-19 infection, and initial reports were inconclusive about the drug’s efficacy. Gilead Sciences, the maker of remdesivir, led a recent publication that reported outcomes for compassionate use of the drug in 61 patients hospitalized with confirmed COVID-19. -Here, 200 mg of remdesivir was administered intravenously on day 1, followed by a further 100 mg/day for 9 days [402]. +Here, 200 mg of remdesivir was administered intravenously on day 1, followed by a further 100 mg/day for 9 days [403]. There were significant issues with the study design, or lack thereof. There was no randomized control group. The inclusion criteria were variable: some patients only required low doses of oxygen, while others required ventilation. @@ -1727,49 +1727,48 @@
Remdesivir was later tested in a double-blind placebo-controlled phase 3 clinical trial performed at 60 trial sites, 45 of which were in the United States [400,401]. +
Remdesivir was later tested in a double-blind placebo-controlled phase 3 clinical trial performed at 60 trial sites, 45 of which were in the United States [401,402]. The trial recruited 1,062 patients and randomly assigned them to placebo treatment or treatment with remdesivir. -Patients were stratified for randomization based on site and the severity of disease presentation at baseline [401]. +Patients were stratified for randomization based on site and the severity of disease presentation at baseline [402]. The treatment was 200 mg on day 1, followed by 100 mg on days 2 through 10. -Data was analyzed from a total of 1,059 patients who completed the 29-day course of the trial, with 517 assigned to remdesivir and 508 to placebo [401]. +Data was analyzed from a total of 1,059 patients who completed the 29-day course of the trial, with 517 assigned to remdesivir and 508 to placebo [402]. The two groups were well matched demographically and clinically at baseline. Those who received remdesivir had a median recovery time of 10 days, as compared with 15 days in those who received placebo (rate ratio for recovery, 1.29; 95% CI, 1.12 to 1.49; p < 0.001). The Kaplan-Meier estimates of mortality by 14 days were 6.7% with remdesivir and 11.9% with placebo, with a hazard ratio (HR) for death of 0.55 and a 95% CI of 0.36 to 0.83, and at day 29, remdesivir corresponded to 11.4% and the placebo to 15.2% (HR: 0.73; 95% CI: 0.52 to 1.03). Serious adverse events were reported in 131 of the 532 patients who received remdesivir (24.6%) and in 163 of the 516 patients in the placebo group (31.6%). -This study also reported an association between remdesivir administration and both clinical improvement and a lack of progression to more invasive respiratory intervention in patients receiving non-invasive and invasive ventilation at randomization [401]. -Largely on the results of this trial, the FDA reissued and expanded the EUA for remdesivir for the treatment of hospitalized COVID-19 patients ages twelve and older [398]. -Additional clinical trials are currently underway to evaluate the use of remdesivir to treat COVID-19 patients at both early and late stages of infection and in combination with other drugs (Figure 3). -These trials include [405,412,413,414,415]. -As of October 22, 2020, remdesivir received FDA approval based on three clinical trials [416].
-However, results suggesting no effect of remdesivir on survival were reported by the WHO Solidarity trial [390]. -This large-scale, open-label trial enrolled 11,330 adult in-patients at 405 hospitals in 30 countries around the world [390]. +This study also reported an association between remdesivir administration and both clinical improvement and a lack of progression to more invasive respiratory intervention in patients receiving non-invasive and invasive ventilation at randomization [402]. +Largely on the results of this trial, the FDA reissued and expanded the EUA for remdesivir for the treatment of hospitalized COVID-19 patients ages twelve and older [399]. +Additional clinical trials [406,413,414,415,416] are currently underway to evaluate the use of remdesivir to treat COVID-19 patients at both early and late stages of infection and in combination with other drugs (Figure 3). +As of October 22, 2020, remdesivir received FDA approval based on three clinical trials [417].
+However, results suggesting no effect of remdesivir on survival were reported by the WHO Solidarity trial [391]. +This large-scale, open-label trial enrolled 11,330 adult in-patients at 405 hospitals in 30 countries around the world [391]. Patients were randomized in equal proportions into four experimental and a control conditions, corresponding to four candidate treatments for COVID-19 and SOC, respectively; no placebo was administered. The 2,750 patients in the remdesivir group were administered 200 mg intravenously on the first day and 100 mg on each subsequent day until day 10 and assessed for in-hospital death (primary endpoint), duration of hospitalization, and progression to mechanical ventilation. There were also 2,708 control patients who would have been eligible and able to receive remdesivir were they not assigned to the control group. A total of 604 patients among these two cohorts deceased during initial hospitalization, with 301 in the remdesivir group and 303 in the control group. The rate ratio of death between these two groups was therefore not significant (p = 0.50), suggesting that the administration of remdesivir did not affect survival. The two secondary analyses similarly did not find any effect of remdesivir. -Additionally, the authors compared data from their study with data from three other studies of remdesivir (including [401]) stratified by supplemental oxygen status. +Additionally, the authors compared data from their study with data from three other studies of remdesivir (including [402]) stratified by supplemental oxygen status. The adjusted rate ratio for death based on this meta-analysis was 0.91. These results thus do not support the previous findings that remdesivir reduced median recovery time and mortality risk in COVID-19 patients.
-In response to the results of the Solidarity trial, Gilead, which manufactures remdesivir, released a statement pointing to the fact that the Solidarity trial was not placebo-controlled or double-blind and at the time of the statement had not been peer reviewed [417]; these sentiments have been echoed elsewhere [418]. -Other critiques of this study have noted that antivirals are not typically targeted at patients with severe illness, and therefore remdesivir could be more beneficial for patients with mild rather than severe cases [392,419]. -However, the publication associated with the trial sponsored by Gilead did purport an effect of remdesivir on patients with severe disease, identifying an 11 versus 18 day recovery period (rate ratio for recovery: 1.31, 95% CI 1.12 to 1.52), although the results of a significance test were not provided [401]. -Additionally, a smaller analysis of 598 patients, of whom two-thirds were randomized to receive remdesivir for either 5 or 10 days, reported a small effect of treatment with remdesivir for five days relative to standard of care in patients with moderate COVID-19 [420]. +
In response to the results of the Solidarity trial, Gilead, which manufactures remdesivir, released a statement pointing to the fact that the Solidarity trial was not placebo-controlled or double-blind and at the time of the statement had not been peer reviewed [418]; these sentiments have been echoed elsewhere [419]. +Other critiques of this study have noted that antivirals are not typically targeted at patients with severe illness, and therefore remdesivir could be more beneficial for patients with mild rather than severe cases [393,420]. +However, the publication associated with the trial sponsored by Gilead did purport an effect of remdesivir on patients with severe disease, identifying an 11 versus 18 day recovery period (rate ratio for recovery: 1.31, 95% CI 1.12 to 1.52), although the results of a significance test were not provided [402]. +Additionally, a smaller analysis of 598 patients, of whom two-thirds were randomized to receive remdesivir for either 5 or 10 days, reported a small effect of treatment with remdesivir for five days relative to standard of care in patients with moderate COVID-19 [421]. These results suggest that remdesivir could improve outcomes for patients with moderate COVID-19, but that additional information would be needed to understand the effects of different durations of treatment. -Therefore, the arguments put forward in defense of remdesivir do not necessarily seem robust in light of the large sample size used in the Solidarity trial, especially since the broad international nature of the Solidarity clinical trial, which included countries with a wide range of economic profiles and a variety of healthcare systems, provides a much-needed global perspective in a pandemic [392]. -On the other hand, only 62% of patients in the Solidarity trial were randomized on the day of admission or one day afterwards [390], and concerns have been raised that differences in disease progression could influence the effectiveness of remdesivir [392]. +Therefore, the arguments put forward in defense of remdesivir do not necessarily seem robust in light of the large sample size used in the Solidarity trial, especially since the broad international nature of the Solidarity clinical trial, which included countries with a wide range of economic profiles and a variety of healthcare systems, provides a much-needed global perspective in a pandemic [393]. +On the other hand, only 62% of patients in the Solidarity trial were randomized on the day of admission or one day afterwards [391], and concerns have been raised that differences in disease progression could influence the effectiveness of remdesivir [393]. Despite the findings of the Solidarity trial, remdesivir remains available for the treatment of COVID-19 in many places. -Follow-up studies are needed and, in many cases, are underway to further investigate remdesivir-related outcomes, with possibilities including combinations of remdesivir with other drugs such as baricitinib, which is an inhibitor of Janus kinase 1 and 2 [421].
+Follow-up studies are needed and, in many cases, are underway to further investigate remdesivir-related outcomes, with possibilities including combinations of remdesivir with other drugs such as baricitinib, which is an inhibitor of Janus kinase 1 and 2 [422].Similarly, the extent to which the remdesivir dosing regimen could influence outcomes continues to be under consideration. -In complement to the study that found that a 5-day course of remdesivir improved outcomes for patients with moderate COVID-19 but a 10-day course did not [420], a randomized, open-label trial compared the effect of remdesivir on 397 patients with severe COVID-19 over 5 versus 10 days [399,411]. +A randomized, open-label trial compared the effect of remdesivir on 397 patients with severe COVID-19 over 5 versus 10 days [400,412], complementing the study that found that a 5-day course of remdesivir improved outcomes for patients with moderate COVID-19 but a 10-day course did not [421]. Patients in the two groups were administered 200 mg of remdesivir intravenously on the first day, followed by 100 mg on the subsequent four or nine days, respectively. The two groups differed significantly in their clinical status, with patients assigned to the 10-day group having more severe illness. This study also differed from most because it included not only adults, but also pediatric patients as young as 12 years old. It reported no significant differences across several outcomes for patients receiving a 5-day or 10-day course, when correcting for baseline clinical status. -The data did suggest that the 10-day course might reduce mortality in the most severe patients at day 14, but the representation of this group in the study population was too low to justify any conclusions [411]. +The data did suggest that the 10-day course might reduce mortality in the most severe patients at day 14, but the representation of this group in the study population was too low to justify any conclusions [412]. Thus, additional research is also required to determine whether the dosage and duration of remdesivir administration influences outcomes.
In summary, remdesivir is a first in class drug due to its FDA approval. Early investigations of this drug established proof of principle that drugs targeting the virus can benefit COVID-19 patients. @@ -1781,43 +1780,43 @@
Several studies showed that viral proteases play an important role in the life cycle of viruses, including coronaviruses, by modulating the cleavage of viral polyprotein precursors [422]. +
Several studies showed that viral proteases play an important role in the life cycle of viruses, including coronaviruses, by modulating the cleavage of viral polyprotein precursors [423]. Several FDA-approved drugs target proteases, including lopinavir and ritonavir for HIV infection and simeprevir for hepatitis C virus infection. -In particular, serine protease inhibitors were suggested for the treatment of SARS and MERS viruses [423]. -Recently, a study [67] suggested that camostat mesylate, an FDA-approved protease inhibitor (PI) could block the entry of SARS-CoV-2 into lung cells in vitro. +In particular, serine protease inhibitors were suggested for the treatment of SARS and MERS viruses [424]. +Recently, a study [69] suggested that camostat mesylate, an FDA-approved protease inhibitor (PI) could block the entry of SARS-CoV-2 into lung cells in vitro. Thus far, investigation of possible PIs that could work against SARS-CoV-2 has been driven by computational predictions.
Computer-aided design allowed for the development of a Michael acceptor inhibitor, now known as N3, to target a protease critical to SARS-CoV-2 replication. -Discovery of the N3 mechanism arose from interest in the two polyproteins encoded by the SARS-CoV-2 replicase gene, pp1a and pp1ab, that are critical for viral replication and transcription [424]. +Discovery of the N3 mechanism arose from interest in the two polyproteins encoded by the SARS-CoV-2 replicase gene, pp1a and pp1ab, that are critical for viral replication and transcription [425]. These polyproteins must undergo proteolytic processing. This processing is usually conducted by Mpro, a 33.8-kDa SARS-CoV-2 protease that is therefore fundamental to viral replication and transcription. -N3 was designed computationally [425] to bind in the substrate binding pocket of the Mpro protease of SARS-like coronaviruses [426], therefore inhibiting proteolytic processing. -Subsequently, the structure of N3-bound SARS-CoV-2 Mpro was solved [424], confirming the computational prediction. -N3 was tested in vitro on SARS-CoV-2-infected Vero cells, which belong to a line of cells established from the kidney epithelial cells of an African green monkey, and was found to inhibit SARS-CoV-2 [424].
+N3 was designed computationally [426] to bind in the substrate binding pocket of the Mpro protease of SARS-like coronaviruses [427], therefore inhibiting proteolytic processing. +Subsequently, the structure of N3-bound SARS-CoV-2 Mpro was solved [425], confirming the computational prediction. +N3 was tested in vitro on SARS-CoV-2-infected Vero cells, which belong to a line of cells established from the kidney epithelial cells of an African green monkey, and was found to inhibit SARS-CoV-2 [425].Although N3 is a strong inhibitor of SARS-CoV-2 in vitro, its safety and efficacy still need to be tested in healthy volunteers and patients. -After the design and confirmation of N3 as a highly potent Michael acceptor inhibitor and the identification of Mpro’s structure [424,427], 10,000 compounds were screened for their in vitro anti-Mpro activity. +After the design and confirmation of N3 as a highly potent Michael acceptor inhibitor and the identification of Mpro’s structure [425,428], 10,000 compounds were screened for their in vitro anti-Mpro activity. The six leads that were identified were ebselen, disulfiram, tideglusib, carmofur, and PX-12. -In vitro analysis revealed that Ebselen had the strongest potency in reducing the viral load in SARS-CoV-2-infected Vero cells [424]. -Ebselen is an organoselenium compound with anti-inflammatory and antioxidant properties [428]. -It has been proposed as a possible treatment for conditions ranging from bipolar disorder to diabetes to heart disease [428], and a preliminary investigation of ebselen as a treatment for noise-induced hearing loss provided promising reports of its safety [429]. -For COVID-19, the NSP5 in SARS-CoV-2 contains a cysteine at the active site of Mpro, and ebselen is able to inactivate the protease by bonding covalently with this cysteine to form a selenosulfide [428,430]. -Interestingly there has been some argument that selenium deficiency may be associated with more severe COVID-19 outcomes [431,432,433], possibly indicating that its antioxidative properties are protective [430]. -On the other hand, ebselen and the other compounds identified are likely to be promiscuous binders, which could diminish their therapeutic potential [424]. +In vitro analysis revealed that ebselen had the strongest potency in reducing the viral load in SARS-CoV-2-infected Vero cells [425]. +Ebselen is an organoselenium compound with anti-inflammatory and antioxidant properties [429]. +It has been proposed as a possible treatment for conditions ranging from bipolar disorder to diabetes to heart disease [429], and a preliminary investigation of ebselen as a treatment for noise-induced hearing loss provided promising reports of its safety [430]. +For COVID-19, the NSP5 in SARS-CoV-2 contains a cysteine at the active site of Mpro, and ebselen is able to inactivate the protease by bonding covalently with this cysteine to form a selenosulfide [429,431]. +Interestingly there has been some argument that selenium deficiency may be associated with more severe COVID-19 outcomes [432,433,434], possibly indicating that its antioxidative properties are protective [431]. +On the other hand, ebselen and the other compounds identified are likely to be promiscuous binders, which could diminish their therapeutic potential [425]. While there is clear computational and in vitro support for ebselen’s potential as a COVID-19 therapeutic, results from clinical trials are not yet available for this compound. -However, as of July 2020, phase II clinical trials commenced to assess the effects of SPI-1005, an investigational drug from Sound Pharmaceuticals that contains ebselen [434], on 60 adults presenting with each of moderate [435] and severe [436] COVID-19.
+However, as of July 2020, phase II clinical trials commenced to assess the effects of SPI-1005, an investigational drug from Sound Pharmaceuticals that contains ebselen [435], on 60 adults presenting with each of moderate [436] and severe [437] COVID-19.In summary, N3 is a computationally designed molecule that inhibits the viral transcription through inhibiting Mpro. Ebselen is both a strong Mpro inhibitor and strong inhibitor of viral replication in vitro that was found to reduce SARS-CoV-2 viral load even more effectively than N3. -Ebselen is a very promising compound since its safety has been demonstrated in other indications. -However, ebselen may be a false positive, since it is a promiscuous compound that can have many targets [437]. +Ebselen is a promising compound since its safety has been demonstrated in other indications. +However, ebselen may be a false positive, since it is a promiscuous compound that can have many targets [438]. Therefore, the results of ongoing clinical trials are expected to help establish whether compounds with higher specificity are required.
When a virus enters a host, the host becomes the virus’ environment. +
When a virus enters a host, the host becomes the virus’s environment. Therefore, the state of the host can also influence the virus’s ability to replicate and spread. -Traditionally, viral targets have been favored for pharmaceutical interventions because altering host processes is likely to be less specific than targeting the virus directly [438]. -On the other hand, targeting the host offers potential for a complementary strategy to antivirals that could broadly limit the ability of viruses to replicate [438]. +Traditionally, viral targets have been favored for pharmaceutical interventions because altering host processes is likely to be less specific than targeting the virus directly [439]. +On the other hand, targeting the host offers potential for a complementary strategy to antivirals that could broadly limit the ability of viruses to replicate [439]. As a result, therapeutic approaches that target host proteins have become an area of interest for SARS-CoV-2. Viral entry receptors in particular have been identified as a potential target. -Entry of SARS-CoV-2 into the cell depends on binding to the angiotensin-converting enzyme 2 (ACE2) receptor, which is catalyzed by the enzyme encoded by TMPRSS2 [67]. +Entry of SARS-CoV-2 into the cell depends on binding to angiotensin-converting enzyme 2 (ACE2), which is catalyzed by the enzyme encoded by TMPRSS2 [69]. In principle, drugs that reduce the expression of these proteins or sterically hinder viral interactions with them might reduce viral entry into cells.
Due to the urgent nature of the COVID-19 pandemic, many of the pharmaceutical agents that have been widely publicized as having possible therapeutic or prophylactic effects are broad-spectrum pharmaceuticals that pre-date the COVID-19 pandemic. These treatments are not specifically targeted at the virus itself or at the host receptors it relies on, but rather induce broad shifts in host biology that are hypothesized to be potential inhibitors of the virus. @@ -1825,56 +1824,56 @@
Angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) are among today’s most commonly prescribed medications [439,440]. +
Angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) are among today’s most commonly prescribed medications [440,441]. In the United States, for example, they are prescribed well over 100,000,000 times annually. -Data from some animal models suggest that several, but not all, ACE inhibitors and several ARBs increase ACE2 expression in the cells of some organs [441]. -Clinical studies have not established whether plasma ACE2 expression is increased in humans treated with these medications [442]. +Data from some animal models suggest that several, but not all, ACE inhibitors and several ARBs increase ACE2 expression in the cells of some organs [442]. +Clinical studies have not established whether plasma ACE2 expression is increased in humans treated with these medications [443]. While randomized clinical trials are ongoing, a variety of observational studies have examined the relationship between exposure to ACE inhibitors or ARBs and outcomes in patients with COVID-19. -An observational study of the association of exposure to ACE inhibitors or ARB with outcomes in COVID-19 was retracted from the New England Journal of Medicine [443]. -Moreover, because observational studies are subject to confounding, randomized controlled trials are the standard means of assessing the effects of medications, and the findings of the various observational studies bearing on this topic cannot be interpreted as indicating a protective effect of the drug [444,445]. -Several clinical trials testing the effects of ACE inhibitors or ARBs on COVID-19 outcomes are ongoing [446,447,448,449,450,451]. +An observational study of the association of exposure to ACE inhibitors or ARB with outcomes in COVID-19 was retracted from the New England Journal of Medicine [444]. +Moreover, because observational studies are subject to confounding, randomized controlled trials are the standard means of assessing the effects of medications, and the findings of the various observational studies bearing on this topic cannot be interpreted as indicating a protective effect of the drug [445,446]. +Several clinical trials testing the effects of ACE inhibitors or ARBs on COVID-19 outcomes are ongoing [447,448,449,450,451,452]. These studies of randomized intervention will provide important data for understanding whether exposure to ACEis or ARBs is associated with COVID-19 outcomes. -Additional information about ACE2, observational studies of ACE inhibitors and ARBs in COVID-19, and clinical trials on this topic have been summarized [452]. +Additional information about ACE2, observational studies of ACE inhibitors and ARBs in COVID-19, and clinical trials on this topic have been summarized [453].
Chloroquine (CQ) and hydroxychloroquine (HCQ) are lysosomotropic agents, meaning they are weak bases that can pass through the plasma membrane. -Both drugs increase cellular pH by accumulating in their protonated form inside lysosomes [453,454]. -This shift in pH inhibits the breakdown of proteins and peptides by the lysosomes during the process of proteolysis [454]. +
CQ and hydroxychloroquine (HCQ) are lysosomotropic agents, meaning they are weak bases that can pass through the plasma membrane. +Both drugs increase cellular pH by accumulating in their protonated form inside lysosomes [454,455]. +This shift in pH inhibits the breakdown of proteins and peptides by the lysosomes during the process of proteolysis [455]. A number of mechanisms have been proposed through which these drugs could influence the immune response to pathogen challenge. -For example, CQ/HCQ can interfere with digestion of antigens within the lysosome and inhibit CD4 T-cell stimulation while promoting the stimulation of CD8 T-cells [454]. -CQ/HCQ can also decrease the production of certain key cytokines involved in the immune response, including interleukin-6 (IL-6), and inhibit the stimulation of Toll-like receptors (TLR) and TLR signaling [454]. -The drugs also have anti-inflammatory and photoprotective effects and may also affect rates of cell death, blood clotting, glucose tolerance, and cholesterol levels [454].
+For example, CQ/HCQ can interfere with digestion of antigens within the lysosome and inhibit CD4 T-cell stimulation while promoting the stimulation of CD8 T-cells [455]. +CQ/HCQ can also decrease the production of certain key cytokines involved in the immune response, including interleukin-6 (IL-6), and inhibit the stimulation of Toll-like receptors (TLR) and TLR signaling [455]. +The drugs also have anti-inflammatory and photoprotective effects and may also affect rates of cell death, blood clotting, glucose tolerance, and cholesterol levels [455].Interest in CQ and HCQ for treating COVID-19 was catalyzed by a mechanism observed in in vitro studies of both SARS-CoV-1 and SARS-CoV-2. -In one study, CQ inhibited viral entry of SARS-CoV-1 into Vero E6 cells, a cell line that was derived from Vero cells in 1968, through the elevation of endosomal pH and the terminal glycosylation of the cellular entry receptor, ACE2 [455]. +In one study, CQ inhibited viral entry of SARS-CoV-1 into Vero E6 cells, a cell line that was derived from Vero cells in 1968, through the elevation of endosomal pH and the terminal glycosylation of ACE2 [456]. Increased pH within the cell, as discussed above, inhibits proteolysis, and terminal glycosylation of ACE2 is thought to interfere with virus-receptor binding. -An in vitro study of SARS-CoV-2 infection of Vero cells found both HCQ and CQ to be effective in inhibiting viral replication, with HCQ being more potent [456]. -Additionally, an early case study of three COVID-19 patients reported the presence of antiphospholipid antibodies in all three patients [102]. -Antiphospholipid antibodies are central to the diagnosis of the antiphospholipid syndrome, a disorder that HCQ has often been used to treat [457,458,459]. -Because the 90% effective concentration (EC90) of CQ in Vero E6 cells (6.90 μM) can be achieved in and tolerated by rheumatoid arthritis (RA) patients, it was hypothesized that it might also be possible to achieve the effective concentration in COVID-19 patients [460]. -Additionally, HCQ has been found to be effective in treating HIV [461] and chronic Hepatitis C [462]. +An in vitro study of SARS-CoV-2 infection of Vero cells found both HCQ and CQ to be effective in inhibiting viral replication, with HCQ being more potent [457]. +Additionally, an early case study of three COVID-19 patients reported the presence of antiphospholipid antibodies in all three patients [104]. +Antiphospholipid antibodies are central to the diagnosis of the antiphospholipid syndrome, a disorder that HCQ has often been used to treat [458,459,460]. +Because the 90% effective concentration (EC90) of CQ in Vero E6 cells (6.90 μM) can be achieved in and tolerated by rheumatoid arthritis (RA) patients, it was hypothesized that it might also be possible to achieve the effective concentration in COVID-19 patients [461]. +Additionally, HCQ has been found to be effective in treating HIV [462] and chronic Hepatitis C [463]. Together, these studies triggered initial enthusiasm about the therapeutic potential for HCQ and CQ against COVID-19. HCQ/CQ has been proposed both as a treatment for COVID-19 and a prophylaxis against SARS-CoV-2 exposure, and trials often investigated these drugs in combination with azithromycin (AZ) and/or zinc supplementation. However, as more evidence has emerged, it has become clear that HCQ/CQ offer no benefits against SARS-CoV-2 or COVID-19.
The initial study evaluating HCQ as a treatment for COVID-19 patients was published on March 20, 2020 by Gautret et al. [463]. -This non-randomized, non-blinded, non-placebo clinical trial compared HCQ to standard of care (SOC) in 42 hospitalized patients in southern France. +
The initial study evaluating HCQ as a treatment for COVID-19 patients was published on March 20, 2020 by Gautret et al. [464]. +This non-randomized, non-blinded, non-placebo clinical trial compared HCQ to SOC in 42 hospitalized patients in southern France. It reported that patients who received HCQ showed higher rates of virological clearance by nasopharyngeal swab on days 3-6 when compared to SOC. This study also treated six patients with both HCQ + AZ and found this combination therapy to be more effective than HCQ alone. However, the design and analyses used showed weaknesses that severely limit interpretability of results, including the lack of randomization, lack of blinding, lack of placebo, lack of Intention-To-Treat analysis, lack of correction for sequential multiple comparisons, trial arms entirely confounded by hospital, false negatives in outcome measurements, lack of trial pre-registration, and small sample size. Two of these weaknesses are due to inappropriate data analysis and can therefore be corrected post hoc by recalculating the p-values (lack of Intention-To-Treat analysis and multiple comparisons). However, all other weaknesses are fundamental design flaws and cannot be corrected for. -Thus, conclusions cannot be generalized outside of the study. -The International Society of Antimicrobial Chemotherapy, the scientific organization that publishes the journal where the article appeared, subsequently announced that the article did not meet its expected standard for publications [464], although it has not been officially retracted.
+Thus, the conclusions cannot be generalized outside of the study. +The International Society of Antimicrobial Chemotherapy, the scientific organization that publishes the journal where the article appeared, subsequently announced that the article did not meet its expected standard for publications [465], although it has not been officially retracted.Because of the preliminary data presented in this study, HCQ treatment was subsequently explored by other researchers. -About one week later, a follow-up case study reported that 11 consecutive patients were treated with HCQ + AZ using the same dosing regimen [465]. +About one week later, a follow-up case study reported that 11 consecutive patients were treated with HCQ + AZ using the same dosing regimen [466]. One patient died, two were transferred to the intensive care unit (ICU), and one developed a prolonged QT interval, leading to discontinuation of HCQ + AZ administration. As in the Gautret et al. study, the outcome assessed was virological clearance at day 6 post-treatment, as measured from nasopharyngeal swabs. Of the ten living patients on day 6, eight remained positive for SARS-CoV-2 RNA. Like in the original study, interpretability was severely limited by the lack of a comparison group and the small sample size. However, these results stand in contrast to the claims by Gautret et al. that all six patients treated with HCQ + AZ tested negative for SARS-CoV-2 RNA by day 6 post-treatment. This case study illustrated the need for further investigation using robust study design to evaluate the efficacy of HCQ and/or CQ.
-On April 10, 2020, a randomized, non-placebo trial of 62 COVID-19 patients at the Renmin Hospital of Wuhan University was released [466]. -This study investigated whether HCQ decreased time to fever break or time to cough relief when compared to SOC [466]. +
On April 10, 2020, a randomized, non-placebo trial of 62 COVID-19 patients at the Renmin Hospital of Wuhan University was released [467]. +This study investigated whether HCQ decreased time to fever break or time to cough relief when compared to SOC [467]. This trial found HCQ decreased both average time to fever break and average time to cough relief, defined as mild or no cough. While this study improved on some of the methodological flaws in Gautret et al. by randomizing patients, it also had several flaws in trial design and data analysis that prevent generalization of the results. These weaknesses include the lack of placebo, lack of correction for multiple primary outcomes, inappropriate choice of outcomes, lack of sufficient detail to understand analysis, drastic disparities between pre-registration and published protocol, and small sample size. @@ -1883,67 +1882,67 @@
A second randomized trial, conducted by the Shanghai Public Health Clinical Center, analyzed whether HCQ increased rates of virological clearance at day 7 in respiratory pharyngeal swabs compared to SOC [469]. This trial was published in Chinese along with an abstract in English, and only the English abstract was read and interpreted for this review. The trial found comparable outcomes in virological clearance rate, time to virological clearance, and time to body temperature normalization between the treatment and control groups. -A known weakness is small sample size, with only 30 patients enrolled and 15 in each arm. +The small sample size is one weakness, with only 30 patients enrolled and 15 in each arm. This problem suggests the study is underpowered to detect potentially useful differences and precludes interpretation of results. Additionally, because only the abstract could be read, other design and analysis issues could be present. Thus, though these studies added randomization to their assessment of HCQ, their conclusions should be interpreted very cautiously. These two studies assessed different outcomes and reached differing conclusions about the efficacy of HCQ for treating COVID-19; the designs of both studies, especially with respect to sample size, meant that no general conclusions can be made about the efficacy of the drug.
Several widely reported studies on HCQ also have issues with data integrity and/or provenance. -A Letter to the Editor published in BioScience Trends on March 16, 2020 claimed that numerous clinical trials have shown that HCQ is superior to control treatment in inhibiting the exacerbation of COVID-19 pneumonia [469]. -This letter has been cited by numerous primary literature, review articles, and media alike [470,471]. +A Letter to the Editor published in BioScience Trends on March 16, 2020 claimed that numerous clinical trials have shown that HCQ is superior to control treatment in inhibiting the exacerbation of COVID-19 pneumonia [470]. +This letter has been cited by numerous primary literature, review articles, and media alike [471,472]. However, the letter referred to 15 pre-registration identifiers from the Chinese Clinical Trial Registry. When these identifiers are followed back to the registry, most trials claim they are not yet recruiting patients or are currently recruiting patients. For all of these 15 identifiers, no data uploads or links to publications could be located on the pre-registrations. At the very least, the lack of availability of the primary data means the claim that HCQ is efficacious against COVID-19 pneumonia cannot be verified. -Similarly, a recent multinational registry analysis [472] analyzed the efficacy of CQ and HCQ with and without a macrolide, which is a class of antibiotics that includes Azithromycin, for the treatment of COVID-19. +Similarly, a recent multinational registry analysis [473] analyzed the efficacy of CQ and HCQ with and without a macrolide, which is a class of antibiotics that includes Azithromycin, for the treatment of COVID-19. The study observed 96,032 patients split into a control and four treatment conditions (CQ with and without a macrolide; HCQ with and without a macrolide). They concluded that treatment with CQ and HCQ was associated with increased risk of de novo ventricular arrhythmia during hospitalization. -However, this study has since been retracted by The Lancet due to an inability to validate the data used [473]. -These studies demonstrate that increased skepticism in evaluation of the HCQ/CQ and COVID-19 literature may be warranted, possible because of the significant attention HCQ and CQ have received as possible treatments for COVID-19 and the politicization of these drugs.
+However, this study has since been retracted by The Lancet due to an inability to validate the data used [474]. +These studies demonstrate that increased skepticism in evaluation of the HCQ/CQ and COVID-19 literature may be warranted, possibly because of the significant attention HCQ and CQ have received as possible treatments for COVID-19 and the politicization of these drugs.Despite the fact that the study suggesting that CQ/HCQ increased risk of ventricular arrhythmia in COVID-19 patients has now been retracted, previous studies have identified risks associated with HCQ/CQ. -A patient with systemic lupus erythematosus developed a prolonged QT interval that was likely exacerbated by use of HCQ in combination with renal failure [474]. -A prolonged QT interval is associated with ventricular arrhythmia [475]. -Furthermore, a separate study [476] investigated the safety associated with the use of HCQ with and without macrolides between 2000 and 2020. +A patient with systemic lupus erythematosus developed a prolonged QT interval that was likely exacerbated by use of HCQ in combination with renal failure [475]. +A prolonged QT interval is associated with ventricular arrhythmia [476]. +Furthermore, a separate study [477] investigated the safety associated with the use of HCQ with and without macrolides between 2000 and 2020. The study involved 900,000 cases treated with HCQ and 300,000 cases treated with HCQ + AZ. The results indicated that short-term use of HCQ was not associated with additional risk, but that HCQ + AZ was associated with an enhanced risk of cardiovascular complications (15-20% increased risk of chest pain) and a two-fold increased risk of mortality. Therefore, whether studies utilize HCQ alone or HCQ in combination with a macrolide may be an important consideration in assessing risk. -As results from initial investigations of these drug combinations have emerged, concerns about the efficacy and risks of treating COVID-19 with HCQ and CQ has led to the removal of CQ/HCQ from SOC practices in several countries [477,478]. -As of May 25, 2020, WHO had suspended administration of HCQ as part of the worldwide Solidarity Trial [479], and later the final results of this large-scale trial that compared 947 patients administered HCQ to 906 controls revealed no effect on the primary outcome, mortality during hospitalization (rate ratio: 1.19; p = 0.23)
+As results from initial investigations of these drug combinations have emerged, concerns about the efficacy and risks of treating COVID-19 with HCQ and CQ has led to the removal of CQ/HCQ from SOC practices in several countries [478,479]. +As of May 25, 2020, WHO had suspended administration of HCQ as part of the worldwide Solidarity Trial [480], and later the final results of this large-scale trial that compared 947 patients administered HCQ to 906 controls revealed no effect on the primary outcome, mortality during hospitalization (rate ratio: 1.19; p = 0.23)Additional research has emerged largely identifying HCQ/CQ to be ineffective against COVID-19 while simultaneously revealing a number of significant side effects. -A randomized, open-label, non-placebo trial of 150 COVID-19 patients was conducted in parallel at 16 government-designated COVID-19 centers in China to assess the safety and efficacy of HCQ [480]. +A randomized, open-label, non-placebo trial of 150 COVID-19 patients was conducted in parallel at 16 government-designated COVID-19 centers in China to assess the safety and efficacy of HCQ [481]. The trial compared treatment with HCQ in conjunction with SOC to SOC alone in 150 infected patients who were assigned randomly to the two groups (75 per group). The primary endpoint of the study was the negative conversion rate of SARS-CoV-2 in 28 days, and the investigators found no difference in this parameter between the groups. The secondary endpoints were an amelioration of the symptoms of the disease such as axillary temperature ≤36.6°C, SpO2 >94% on room air, and disappearance of symptoms like shortness of breath, cough, and sore throat. -The median time to symptom alleviation was similar across different conditions (19 days in HCQ+SOC vs. 21 days in SOC). -Additionally, 30% of the patients receiving SOC+HCQ reported adverse outcomes compared to 8.8% of patients receiving only SOC, with the most common adverse outcome in the SOC+HCQ group being diarrhea (10% vs. 0% in the SOC group, p=0.004). +The median time to symptom alleviation was similar across different conditions (19 days in HCQ + SOC versus 21 days in SOC). +Additionally, 30% of the patients receiving SOC+HCQ reported adverse outcomes compared to 8.8% of patients receiving only SOC, with the most common adverse outcome in the SOC+HCQ group being diarrhea (10% versus 0% in the SOC group, p = 0.004). However, there are several factors that limit the interpretability of this study. Most of the enrolled patients had mild-to-moderate symptoms (98%), and the average age was 46. SOC in this study included the use of antivirals (Lopinavir-Ritonavir, Arbidol, Oseltamivir, Virazole, Entecavir, Ganciclovir, and Interferon alfa), which appeared to introduce confounding effects. Thus, to isolate the effect of HCQ, SOC would need to exclude the use of antivirals. -In this trial, the samples used to test for the presence of the SARS-CoV-2 virus were collected from the upper respiratory tract, and the authors indicated that the use of upper respiratory samples may have introduced false negatives (e.g., [81]). +In this trial, the samples used to test for the presence of the SARS-CoV-2 virus were collected from the upper respiratory tract, and the authors indicated that the use of upper respiratory samples may have introduced false negatives (e.g., [83]). Another limitation of the study that the authors acknowledge was that the HCQ treatment began, on average, at a 16-day delay from the symptom onset. The fact that this study was open-label and lacked a placebo limits interpretation, and additional analysis is required to determine whether HCQ reduces inflammatory response. Therefore, despite some potential areas of investigation identified in post hoc analysis, this study cannot be interpreted as providing support for HCQ as a therapeutic against COVID-19.
-Additional evidence comes from a retrospective analysis [481] that examined data from 368 COVID-19 patients across all United States Veteran Health Administration medical centers. +
Additional evidence comes from a retrospective analysis [482] that examined data from 368 COVID-19 patients across all United States Veteran Health Administration medical centers. The study retrospectively investigated the effect of the administration of HCQ (n=97), HCQ + AZ (n=113), and no HCQ (n=158) on 368 patients. The primary outcomes assessed were death and the need for mechanical ventilation. Standard supportive care was rendered to all patients. Due to the low representation of women (N=17) in the available data, the analysis included only men, and the median age was 65 years. The rate of death in the HCQ-only treatment condition was 27.8% and in the HCQ + AZ treatment condition, it was 22.1%. -In comparison to the 14.1% rate of death in the no-HCQ cohort, these data indicated a statistically significant elevation in the risk of death for the HCQ-only group compared to the no-HCQ group (adjusted HR: 2.61, p=0.03), but not for the HCQ + AZ group compared to the no-HCQ group (adjusted HR: 1.14; p=0.72). +In comparison to the 14.1% rate of death in the no-HCQ cohort, these data indicated a statistically significant elevation in the risk of death for the HCQ-only group compared to the no-HCQ group (adjusted HR: 2.61, p = 0.03), but not for the HCQ + AZ group compared to the no-HCQ group (adjusted HR: 1.14; p = 0.72). Further, the risk of ventilation was similar across all three groups (adjusted HR: 1.43, p = 0.48 (HCQ) and 0.43, p = 0.09 (HCQ + AZ) compared to no HCQ). The study thus showed evidence of an association between increased mortality and HCQ in this cohort of COVID-19 patients but no change in rates of mechanical ventilation among the treatment conditions. The study had a few limitations: it was not randomized, and the baseline vital signs, laboratory tests, and prescription drug use were significantly different among the three groups. All of these factors could potentially influence treatment outcome. Furthermore, the authors acknowledge that the effect of the drugs might be different in females and pediatric subjects, since these subjects were not part of the study. -The reported result that HCQ + AZ is safer than HCQ contradicts the findings of the previous large-scale analysis of twenty years of records that found HCQ + AZ to be more frequently associated with cardiac arrhythmia than HCQ alone [476]; whether this discrepancy is caused by the pathology of COVID-19, is influenced by age or sex, or is a statistical artifact is not presently known.
+The reported result that HCQ + AZ is safer than HCQ contradicts the findings of the previous large-scale analysis of twenty years of records that found HCQ + AZ to be more frequently associated with cardiac arrhythmia than HCQ alone [477]; whether this discrepancy is caused by the pathology of COVID-19, is influenced by age or sex, or is a statistical artifact is not presently known.Finally, findings from the Randomized Evaluation of COVID-19 Therapy (RECOVERY) trial were released on October 8, 2020. -This study used a randomized, open-label design to study the effects of HCQ compared to SOC at 176 hospitals in the United Kingdom [482]. +This study used a randomized, open-label design to study the effects of HCQ compared to SOC at 176 hospitals in the United Kingdom [483]. This large study enrolled 11,197 hospitalized patients whose physicians believed it would not harm them to participate. Patients were randomized into either the control group or one of the treatment arms, with twice as many patients enrolled in the control group as any treatment group. Of the patients eligible to receive HCQ, 1,561 were randomized into the HCQ arm, and 3,155 were randomized into the control arm. @@ -1958,14 +1957,14 @@
One additional possible therapeutic application of HCQ considered was the treatment of mild COVID-19 cases in otherwise healthy individuals. -This possibility was assessed in a randomized, open-label, multi-center analysis conducted in Catalonia (Spain) [483]. +This possibility was assessed in a randomized, open-label, multi-center analysis conducted in Catalonia (Spain) [484]. This analysis enrolled adults 18 and older who had been experiencing mild symptoms of COVID-19 for fewer than five days. Participants were randomized into an HCQ arm (N=136) and a control arm (N=157), and those in the treatment arm were administered 800 mg of HCQ on the first day of treatment followed by 400 mg on each of the subsequent six days. The primary outcome assessed was viral clearance at days 3 and 7 following the onset of treatment, and secondary outcomes were clinical progression and time to complete resolution of symptoms. They found no significant differences between the two groups. This study thus suggests that HCQ does not improve recovery from COVID-19, even in otherwise healthy adult patients with mild symptoms.
An initial study of the possible prophylactic application of HCQ utilized a randomized, double-blind, placebo-controlled design to analyze the administration of HCQ prophylactically [484]. +
An initial study of the possible prophylactic application of HCQ utilized a randomized, double-blind, placebo-controlled design to analyze the administration of HCQ prophylactically [485]. Asymptomatic adults in the United States and Canada who had been exposed to SARS-CoV-2 within the past four days were enrolled in an online study to evaluate whether administration of HCQ over five days influenced the probability of developing COVID-19 symptoms over a 14-day period. Of the participants, 414 received HCQ and 407 received a placebo. No significant difference in the rate of symptomatic illness was observed between the two groups (11.8% HCQ, 14.3% placebo, p = 0.35). @@ -1979,7 +1978,7 @@
A second study [485] examined the effect of administering HCQ to healthcare workers as a pre-exposure prophylactic. +
A second study [486] examined the effect of administering HCQ to healthcare workers as a pre-exposure prophylactic. The primary outcome assessed was the conversion from SARS-CoV-2 negative to SARS-CoV-2 positive status over the 8 week study period. This study was also randomized, double-blind, and placebo-controlled, and it sought to address some of the limitations of the first prophylactic study. They aimed to enroll 200 healthcare workers, preferentially those working with COVID-19 patients, at two hospitals within the University of Pennsylvania hospital system in Philadelphia, PA. @@ -1990,117 +1989,117 @@
Early in vitro evidence indicated that HCQ could be an effective therapeutic against SARS-CoV-2 and COVID-19, leading to significant media attention and public interest in its potential as both a therapeutic and prophylactic. -Initially it was hypothesized that CQ/HCQ might be effective against SARS-CoV-2 in part because CQ and HCQ have both been found to inhibit the expression of CD154 in T-cells and to reduce TLR signaling that leads to the production of pro-inflammatory cytokines [486]. +Initially it was hypothesized that CQ/HCQ might be effective against SARS-CoV-2 in part because CQ and HCQ have both been found to inhibit the expression of CD154 in T-cells and to reduce TLR signaling that leads to the production of pro-inflammatory cytokines [487]. Clinical trials for COVID-19 have more often used HCQ rather than CQ because it offers the advantages of being cheaper and having fewer side effects than CQ. However, research has not found support for a positive effect of HCQ on COVID-19 patients. Multiple clinical studies have already been carried out to assess HCQ as a therapeutic agent for COVID-19, and many more are in progress. To date, none of these studies have used randomized, double-blind, placebo-controlled designs with a large sample size, which would be the gold standard. Despite the design limitations (which would be more likely to produce false positives than false negatives), initial optimism about HCQ has largely dissipated. -The most methodologically rigorous analysis of HCQ as a prophylactic [484] found no significant differences between the treatment and control groups, and the WHO’s global Solidarity trial similarly reported no effect of HCQ on mortality [390]. +The most methodologically rigorous analysis of HCQ as a prophylactic [485] found no significant differences between the treatment and control groups, and the WHO’s global Solidarity trial similarly reported no effect of HCQ on mortality [391]. Thus, HCQ/CQ are not likely to be effective therapeutic or prophylactic agents against COVID-19. -Additionally, one study identified an increased risk of mortality in older men receiving HCQ, and administration of HCQ and HCQ+AZ did not decrease the use of mechanical ventilation in these patients [481]. +Additionally, one study identified an increased risk of mortality in older men receiving HCQ, and administration of HCQ and HCQ + AZ did not decrease the use of mechanical ventilation in these patients [482]. HCQ use for COVID-19 could also lead to shortages for anti-malarial or anti-rheumatic use, where it has documented efficacy. Despite significant early attention, these drugs appear to be ineffective against COVID-19. Several countries have now removed CQ/HCQ from their SOC for COVID-19 due to the lack of evidence of efficacy and the frequency of adverse effects.
Dexamethasone (9α-fluoro-16α-methylprednisolone) is a synthetic corticosteroid that binds to glucocorticoid receptors [487,488]. -It was first synthesized in the late 1950s as an anti-inflammatory and has been used to treat RA and other inflammatory conditions [489,490]. -Steroids such as dexamethasone are widely available and affordable, and they are often used to treat community-acquired pneumonia [491]. -A clinical trial that began in 2012 recently reported that dexamethasone may improve outcomes for patients with ARDS [492]. -However, a meta-analysis of a small amount of available data about dexamethasone as a treatment for SARS suggested that it may, in fact, be associated with patient harm [493]; however, these findings may have been biased by the fact that all of the studies examined were observational and a large number of inconclusive studies were not included [494]. -Dexamethasone works as an anti-inflammatory agent by binding to glucocorticoid receptors with higher affinity than endogenous cortisol [495]. +
Dexamethasone (9α-fluoro-16α-methylprednisolone) is a synthetic corticosteroid that binds to glucocorticoid receptors [488,489]. +It was first synthesized in the late 1950s as an anti-inflammatory and has been used to treat RA and other inflammatory conditions [490,491]. +Steroids such as dexamethasone are widely available and affordable, and they are often used to treat community-acquired pneumonia [492]. +A clinical trial that began in 2012 recently reported that dexamethasone may improve outcomes for patients with ARDS [493]. +However, a meta-analysis of a small amount of available data about dexamethasone as a treatment for SARS suggested that it may, in fact, be associated with patient harm [494]; however, these findings may have been biased by the fact that all of the studies examined were observational and a large number of inconclusive studies were not included [495].
+Dexamethasone works as an anti-inflammatory agent by binding to glucocorticoid receptors with higher affinity than endogenous cortisol [496]. In order to understand how dexamethasone reduces inflammation, it is necessary to consider the stress response broadly. -In response to stress, corticotropin‐releasing hormone stimulates the release of neurotransmitters known as catecholamines, such as epinephrine, and steroid hormones known as glucocorticoids, such as cortisol [496,497]. -While catecholamines are often associated with the fight-or-flight response, the specific role that glucocorticoids play is less clear, although they are thought to be important to restoring homeostasis [498]. +In response to stress, corticotropin‐releasing hormone stimulates the release of neurotransmitters known as catecholamines, such as epinephrine, and steroid hormones known as glucocorticoids, such as cortisol [497,498]. +While catecholamines are often associated with the fight-or-flight response, the specific role that glucocorticoids play is less clear, although they are thought to be important to restoring homeostasis [499]. Immune challenge is a stressor that is known to interact closely with the stress response. -The immune system can therefore interact with the central nervous system; for example, macrophages can both respond to and produce catecholamines [496]. -Additionally, the production of both catecholamines and glucocorticoids is associated with inhibition of proinflammatory cytokines such as IL-6, IL-12, and tumor necrosis factor-α (TNF‐α) and the stimulation of anti-inflammatory cytokines such as IL-10, meaning that the stress response can regulate inflammatory immune activity [497]. -Administration of dexamethasone has been found to correspond to dose-dependent inhibition of IL-12 production, but not to affect IL-10 [499]; the fact that this relationship could be disrupted by administration of a glucocorticoid-receptor antagonist suggests that it is regulated by the receptor itself [499]. +The immune system can therefore interact with the central nervous system; for example, macrophages can both respond to and produce catecholamines [497]. +Additionally, the production of both catecholamines and glucocorticoids is associated with inhibition of proinflammatory cytokines such as IL-6, IL-12, and tumor necrosis factor-α (TNF‐α) and the stimulation of anti-inflammatory cytokines such as IL-10, meaning that the stress response can regulate inflammatory immune activity [498]. +Administration of dexamethasone has been found to correspond to dose-dependent inhibition of IL-12 production, but not to affect IL-10 [500]; the fact that this relationship could be disrupted by administration of a glucocorticoid-receptor antagonist suggests that it is regulated by the receptor itself [500]. Thus, the administration of dexamethasone for COVID-19 is likely to simulate the release of glucocorticoids endogenously during stress, resulting in binding of the synthetic steroid to the glucocorticoid receptor and the associated inhibition of the production of proinflammatory cytokines. -In this model, dexamethasone reduces inflammation by stimulating the biological mechanism that reduces inflammation following a threat such as immune challenge. -Immunosuppressive drugs such as steroids are typically contraindicated in the setting of infection [500], but because COVID-19 results in hyperinflammation that appears to contribute to mortality via lung damage, immunosuppression may be a helpful approach to treatment [127]. -The decision of whether and/or when to counter hyperinflammation with immunosuppression in the setting of COVID-19 was an area of intense debate, as the risks of inhibiting antiviral immunity needed to be weighed against the beneficial anti-inflammatory effects [501]. -As a result, guidelines early in the pandemic typically recommended avoiding treating COVID-19 patients with corticosteroids such as dexamethasone [493].
-The application of dexamethasone for the treatment of COVID-19 was evaluated as part of the multi-site RECOVERY trial in the United Kingdom [502]. +In this model, dexamethasone reduces inflammation by stimulating the biological mechanism that reduces inflammation following a threat such as immune challenge.
+Immunosuppressive drugs such as steroids are typically contraindicated in the setting of infection [501], but because COVID-19 results in hyperinflammation that appears to contribute to mortality via lung damage, immunosuppression may be a helpful approach to treatment [129]. +The decision of whether and/or when to counter hyperinflammation with immunosuppression in the setting of COVID-19 was an area of intense debate, as the risks of inhibiting antiviral immunity needed to be weighed against the beneficial anti-inflammatory effects [502]. +As a result, guidelines early in the pandemic typically recommended avoiding treating COVID-19 patients with corticosteroids such as dexamethasone [494].
+The application of dexamethasone for the treatment of COVID-19 was evaluated as part of the multi-site RECOVERY trial in the United Kingdom [503]. Over 6,000 hospitalized COVID-19 patients were assigned into the SOC or treatment (dexamethasone) arms of the trial with a 2:1 ratio. At the time of randomization, some patients were ventilated (16%), others were on non-invasive oxygen (60%), and others were breathing independently (24%). Patients in the treatment arm were administered dexamethasone either orally or intravenously at 6 mg per day for up to 10 days. The primary end-point was the patient’s status at 28-days post-randomization (mortality, discharge, or continued hospitalization), and secondary outcomes analyzed included the progression to invasive mechanical ventilation over the same period. The 28-day mortality rate was found to be lower in the treatment group than in the SOC group (21.6% vs 24.6%, p < 0.001). However, this finding was driven by differences in mortality among patients who were receiving mechanical ventilation or supplementary oxygen at the start of the study. -The report indicated that dexamethasone reduced 28-day mortality relative to SOC in patients who were ventilated (29.3% vs. 41.4%) and among those who were receiving oxygen supplementation (23.3% vs. 26.2%) at randomization, but not in patients who were breathing independently (17.8% vs. 14.0%). +The report indicated that dexamethasone reduced 28-day mortality relative to SOC in patients who were ventilated (29.3% versus 41.4%) and among those who were receiving oxygen supplementation (23.3% versus 26.2%) at randomization, but not in patients who were breathing independently (17.8% versus 14.0%). One possible confounder is that patients receiving mechanical ventilation tended to be younger than patients who were not receiving respiratory support (by 10 years on average) and to have had symptoms for a longer period. However, adjusting for age did not change the conclusions, although the duration of symptoms was found to be significantly associated with the effect of dexamethasone administration. These findings also suggested that dexamethasone may have reduced progression to mechanical ventilation, especially among patients who were receiving oxygen support at randomization. Thus, this large, randomized, and multi-site, albeit not placebo-controlled, study suggests that administration of dexamethasone to patients who are unable to breathe independently may significantly improve survival outcomes. Additionally, dexamethasone is a widely available and affordable medication, raising the hope that it could be made available to COVID-19 patients globally.
-The results of the RECOVERY trial’s analysis of dexamethasone suggest that this therapeutic is effective primarily in patients who had been experiencing symptoms for at least seven days and patients who were not breathing independently [503]. -A meta-analysis that evaluated the results of the RECOVERY trial alongside trials of other corticosteroids, such as hydrocortisone, similarly concluded that corticosteroids may be beneficial to patients with severe COVID-19 who are receiving oxygen supplementation [504]. -Thus, it seems likely that dexamethasone is useful for treating inflammation associated with immunopathy or cytokine release syndrome. -In fact, corticosteroids such as dexamethasone are sometimes used to treat cytokine release syndrome (CRS) [505]. +
The results of the RECOVERY trial’s analysis of dexamethasone suggest that this therapeutic is effective primarily in patients who had been experiencing symptoms for at least seven days and patients who were not breathing independently [504]. +A meta-analysis that evaluated the results of the RECOVERY trial alongside trials of other corticosteroids, such as hydrocortisone, similarly concluded that corticosteroids may be beneficial to patients with severe COVID-19 who are receiving oxygen supplementation [505]. +Thus, it seems likely that dexamethasone is useful for treating inflammation associated with immunopathy or cytokine release syndrome (CRS). +In fact, corticosteroids such as dexamethasone are sometimes used to treat CRS [506]. It is not surprising that administration of an immunosuppressant would be most beneficial when the immune system was dysregulated towards inflammation. However, it is also unsurprising that care must be taken in administering an immunosuppressant to patients fighting a viral infection. -In particular, the concern has been raised that treatment with dexamethasone might increase patient susceptibility to concurrent (e.g., nosocomial) infections [506]. -Additionally, the drug could potentially slow viral clearance and inhibit patients’ ability to develop antibodies to SARS-CoV-2 [493,506], and the lack of data about viral clearance has been put forward as a major limitation of the RECOVERY trial [507]. -Furthermore, dexamethasone has been associated with side effects that include psychosis, glucocorticoid-induced diabetes, and avascular necrosis [493], and the RECOVERY trial did not report outcomes with enough detail to be able to determine whether they observed similar complications. -The effects of dexamethasone have also been found to differ among populations, especially in high-income versus middle- or low-income countries [508]. -However, since the RECOVERY trial’s results were released, strategies have been proposed for administering dexamethasone alongside more targeted treatments to minimize the likelihood of negative side effects [506]. +In particular, the concern has been raised that treatment with dexamethasone might increase patient susceptibility to concurrent (e.g., nosocomial) infections [507]. +Additionally, the drug could potentially slow viral clearance and inhibit patients’ ability to develop antibodies to SARS-CoV-2 [494,507], and the lack of data about viral clearance has been put forward as a major limitation of the RECOVERY trial [508]. +Furthermore, dexamethasone has been associated with side effects that include psychosis, glucocorticoid-induced diabetes, and avascular necrosis [494], and the RECOVERY trial did not report outcomes with enough detail to be able to determine whether they observed similar complications. +The effects of dexamethasone have also been found to differ among populations, especially in high-income versus middle- or low-income countries [509]. +However, since the RECOVERY trial’s results were released, strategies have been proposed for administering dexamethasone alongside more targeted treatments to minimize the likelihood of negative side effects [507]. Given the available evidence, dexamethasone is currently the most promising treatment for severe COVID-19.
Biologics are produced from components of living organisms or viruses. -They include treatments such as humanized monoclonal antibodies (mAb) tocilizumab (TCZ), and neutralizing antibodies (nAbs), and can also include prophylactics such as vaccines. -Historically produced from animal tissue, biologics have become increasingly feasible to produce as recombinant DNA technologies have advanced [509]. -Often, they are glycoproteins or peptides [510], but whole viruses can also be used therapeutically or prophylactically, not only for vaccines but also as vectors for gene therapy or therapeutic proteins or for oncolytic virotherapy [511]. -They are typically catabolized by the body to their amino acid components [510]. +They include treatments such as humanized monoclonal antibodies (mAb), tocilizumab (TCZ), and neutralizing antibodies (nAbs), and can also include prophylactics such as vaccines. +Historically produced from animal tissue, biologics have become increasingly feasible to produce as recombinant DNA technologies have advanced [510]. +Often, they are glycoproteins or peptides [511], but whole viruses can also be used therapeutically or prophylactically, not only for vaccines but also as vectors for gene therapy or therapeutic proteins or for oncolytic virotherapy [512]. +They are typically catabolized by the body to their amino acid components [511]. There are many differences on the development side between biologics and synthesized pharmaceuticals, such as small molecule drugs. -Biologics are typically orders of magnitude larger than small molecule drugs, and their physiochemical properties are often much less understood [510]. -They are often heat sensitive, and their toxicity can vary, as it is not directly associated with the primary effects of the drug [510]. +Biologics are typically orders of magnitude larger than small molecule drugs, and their physiochemical properties are often much less understood [511]. +They are often heat sensitive, and their toxicity can vary, as it is not directly associated with the primary effects of the drug [511]. However, this class includes some extremely significant medical breakthroughs, including insulin for the management of diabetes and the smallpox vaccine. As a result, biologics are another possible avenue through which the pharmacological management of SARS-CoV-2 infection can be approached.
TCZ is a receptor antibody that was developed to manage chronic inflammation caused by the continuous synthesis of the cytokine IL-6 [512]. +
TCZ is a receptor antibody that was developed to manage chronic inflammation caused by the continuous synthesis of the cytokine IL-6 [513]. IL-6 is a pro-inflammatory cytokine belonging to the interleukin family, which is comprised by immune system regulators that are primarily responsible for immune cell differentiation. -Often used to treat conditions such as RA [512], TCZ has become a pharmaceutical of interest for the treatment of COVID-19 because of the role IL-6 plays in this disease. -While secretion of IL-6 can be associated with chronic conditions, it is a key player in the innate immune response and is secreted by macrophages in response to the detection of pathogen-associated molecular patterns and damage-associated molecular patterns [512]. +Often used to treat conditions such as RA [513], TCZ has become a pharmaceutical of interest for the treatment of COVID-19 because of the role IL-6 plays in this disease. +While secretion of IL-6 can be associated with chronic conditions, it is a key player in the innate immune response and is secreted by macrophages in response to the detection of pathogen-associated molecular patterns and damage-associated molecular patterns [513]. An analysis of 191 in-patients at two Wuhan hospitals revealed that blood concentrations of IL-6 differed between patients who did and did not recover from COVID-19. -Patients who ultimately deceased had higher IL-6 levels at admission than those who recovered [35]. -Additionally, IL-6 levels remained higher throughout the course of hospitalization in the patients who ultimately deceased [35]. -This finding provided some early evidence that COVID-19 deaths may be induced by the hyperactive immune response, often referred to as CRS or cytokine storm syndrome (CSS), as IL-6 plays a key role in this response [114]. +Patients who ultimately deceased had higher IL-6 levels at admission than those who recovered [37]. +Additionally, IL-6 levels remained higher throughout the course of hospitalization in the patients who ultimately deceased [37]. +This finding provided some early evidence that COVID-19 deaths may be induced by the hyperactive immune response, often referred to as CRS or cytokine storm syndrome (CSS), as IL-6 plays a key role in this response [116]. In this context, the observation of elevated IL-6 in patients who died may reflect an over-production of proinflammatory interleukins, suggesting that TCZ could potentially palliate some of the most severe symptoms of COVID-19 associated with increased cytokine production.
Human IL-6 is a 26-kDa glycoprotein that consists of 184 amino acids and contains two potential N-glycosylation sites and four cysteine residues. -It binds to a type I cytokine receptor (IL-6Rα or glycoprotein 80) that exists in both membrane-bound (IL-6Rα) and soluble (sIL-6Rα) forms [513]. -It is not the binding of IL-6 to the receptor that initiates pro- and/or anti-inflammatory signaling, but rather the binding of the complex to another subunit, known as IL-6Rβ or glycoprotein 130 (gp13) [513,514]. -Unlike membrane-bound IL-6Rα, which is only found on hepatocytes and some types of leukocytes, gp130 is found on most cells [515]. -When IL-6 binds to sIL-6Rα, the complex can then bind to a gp130 protein on any cell [515]. -The binding of IL-6 to IL-6Rα is termed classical signaling, while its binding to sIL-6Rα is termed trans-signaling [515,516,517]. +It binds to a type I cytokine receptor (IL-6Rα or glycoprotein 80) that exists in both membrane-bound (IL-6Rα) and soluble (sIL-6Rα) forms [514]. +It is not the binding of IL-6 to the receptor that initiates pro- and/or anti-inflammatory signaling, but rather the binding of the complex to another subunit, known as IL-6Rβ or glycoprotein 130 (gp13) [514,515]. +Unlike membrane-bound IL-6Rα, which is only found on hepatocytes and some types of leukocytes, gp130 is found on most cells [516]. +When IL-6 binds to sIL-6Rα, the complex can then bind to a gp130 protein on any cell [516]. +The binding of IL-6 to IL-6Rα is termed classical signaling, while its binding to sIL-6Rα is termed trans-signaling [516,517,518]. These two signaling processes are thought to play different roles in health and illness. -For example, trans-signaling may play a role in the proliferation of mucosal T-helper TH2 cells associated with asthma, while an earlier step in this proliferation process may be regulated by classical signaling [515]. -Similarly, IL-6 is known to play a role in Crohn’s Disease via trans-, but not classical, signaling [515]. -Both classical and trans-signaling can occur through three independent pathways: the Janus-activated kinase-STAT3 pathway, the Ras/Mitogen-Activated Protein Kinases (MAPK) pathway and the Phosphoinositol-3 Kinase/Akt pathway [513]. -These signaling pathways are involved in a variety of different functions, including cell type differentiation, immunoglobulin synthesis, and cellular survival signaling pathways, respectively [513]. -The ultimate result of the IL-6 cascade is to direct transcriptional activity of various promoters of pro-inflammatory cytokines, such as IL-1, TFN, and even IL-6 itself, through the activity of NF-κB [513]. -IL-6 synthesis is tightly regulated both transcriptionally and post-transcriptionally, and it has been shown that viral proteins can enhance transcription of the IL-6 gene by strengthening the DNA-binding activity between several transcription factors and IL-6 gene-cis-regulatory elements [518]. +For example, trans-signaling may play a role in the proliferation of mucosal T-helper TH2 cells associated with asthma, while an earlier step in this proliferation process may be regulated by classical signaling [516]. +Similarly, IL-6 is known to play a role in Crohn’s Disease via trans-, but not classical, signaling [516]. +Both classical and trans-signaling can occur through three independent pathways: the Janus-activated kinase-STAT3 pathway, the Ras/Mitogen-Activated Protein Kinases (MAPK) pathway and the Phosphoinositol-3 Kinase/Akt pathway [514]. +These signaling pathways are involved in a variety of different functions, including cell type differentiation, immunoglobulin synthesis, and cellular survival signaling pathways, respectively [514]. +The ultimate result of the IL-6 cascade is to direct transcriptional activity of various promoters of pro-inflammatory cytokines, such as IL-1, TFN, and even IL-6 itself, through the activity of NF-κB [514]. +IL-6 synthesis is tightly regulated both transcriptionally and post-transcriptionally, and it has been shown that viral proteins can enhance transcription of the IL-6 gene by strengthening the DNA-binding activity between several transcription factors and IL-6 gene-cis-regulatory elements [519]. Therefore, drugs inhibiting the binding of IL-6 to IL-6Rα or sIL-6Rα are of interest for combating the hyperactive inflammatory response characteristic of CRS and CSS. TCZ is a humanized monoclonal antibody that binds both to the insoluble and soluble receptor of IL-6, providing de facto inhibition of the IL-6 immune cascade.
Tocilizumab is being administered either as an intervention or as concomitant medication in 84 COVID-19 clinical trials (Figure 3). No randomized, placebo-controlled studies of TCZ have currently released results. Therefore, no conclusions can be drawn about its efficacy for the treatment of COVID-19. -However, early interest in TCZ as a possible treatment for COVID-19 emerged from a very small retrospective study in China that examined 20 patients with severe symptoms in early February 2020 and reported rapid improvement in symptoms following treatment with TCZ [519]. +However, early interest in TCZ as a possible treatment for COVID-19 emerged from a very small retrospective study in China that examined 20 patients with severe symptoms in early February 2020 and reported rapid improvement in symptoms following treatment with TCZ [520]. Subsequently, a number of retrospective studies have been conducted in several countries. Many studies use a retrospective, observational design, where they compare outcomes for COVID-19 patients who received TCZ to those who did not over a set period of time. -For example, one of the largest retrospective, observational analysis released to date [520] compared the rates at which patients who received TCZ deceased or progressed to invasive medical ventilation over a 14-day period compared to patients receiving only SOC. +For example, one of the largest retrospective, observational analysis released to date [521] compared the rates at which patients who received TCZ deceased or progressed to invasive medical ventilation over a 14-day period compared to patients receiving only SOC. Under this definition, SOC could include other drugs such as HCQ, azithromycin, lopinavir-ritonavir or darunavir-cobicistat, or heparin. While this study was not randomized, a subset of patients who were eligible to receive TCZ were unable to obtain it due to shortages; however, these groups were not directly compared in the analysis. After adjusting for variables such as age, sex, and SOFA (sequential organ failure assessment) score, they found that patients treated with TCZ were less likely to progress to invasive medical ventilation and/or death (adjusted HR = 0.61, CI 0.40-0.92, p = 0.020), although analysis of death and ventilation separately suggests that this effect may have been driven by differences in the death rate (20% of control versus 7% of TCZ-treated patients). They reported particular benefits for patients whose PaO2/FiO2 ratio, also known as the Horowitz Index for Lung Function, fell below a 150 mm Hg threshold. They found no differences between groups administered subcutaneous versus intravenous TCZ.
-Another retrospective observational analysis of interest examined the charts of patients at a hospital in Connecticut, USA where 64% of all 239 COVID-19 patients in the study period were administered TCZ based on assignment by a standardized algorithm [521]. +
Another retrospective observational analysis of interest examined the charts of patients at a hospital in Connecticut, USA where 64% of all 239 COVID-19 patients in the study period were administered TCZ based on assignment by a standardized algorithm [522]. They found that TCZ administration was associated with more similar rates of survivorship in patients with severe versus nonsevere COVID-19 at intake, defined based on the amount of supplemental oxygen needed. They therefore proposed that their algorithm was able to identify patients presenting with or likely to develop CRS as good candidates for TCZ. This study also reported higher survivorship in Black and Hispanic patients compared to white patients when adjusted for age. The major limitation with interpretation for these studies is that there may be clinical characteristics that influenced medical practitioners decisions to administer TCZ to some patients and not others. -One interesting example therefore comes from an analysis of patients at a single hospital in Brescia, Italy, where TCZ was not available for a period of time [522]. +One interesting example therefore comes from an analysis of patients at a single hospital in Brescia, Italy, where TCZ was not available for a period of time [523]. This study compared COVID-19 patients admitted to the hospital before and after March 13, 2020, when the hospital received TCZ. Therefore, patients who would have been eligible for TCZ prior to this arbitrary date did not receive it as treatment, making this retrospective analysis something of a natural experiment. Despite this design, demographic factors did not appear to be consistent between the two groups, and the average age of the control group was older than the TCZ group. @@ -2111,113 +2110,114 @@
In addition to the retrospective observational studies, other analysis have utilized a retrospective case-control design to match pairs of patients with similar baseline characteristics, only one of whom received TCZ for COVID-19. -In one such study, TCZ was significantly associated with a reduced risk of progression to ICU admission or death [523]. +In one such study, TCZ was significantly associated with a reduced risk of progression to ICU admission or death [524]. This study examined only 20 patients treated with TCZ (all but one of the patients treated with TCZ in the hospital during the study period) and compared them to 25 patients receiving SOC. For the combined primary endpoint of death and/or ICU admission, only 25% of patients receiving TCZ progressed to an endpoint compared to 72% in the SOC group (p = 0.002, presumably based on a chi-square test based on the information provided in the text). When the two endpoints were examined separately, progression to invasive medical ventilation remained significant (32% SOC compared to 0% TCZ, p = 0.006) but not for mortality (48% SOC compared to 25% TCZ, p = 0.066). -In contrast, a study that compared 96 patients treated with TCZ to 97 patients treated with SOC only in New York City found that differences in mortality did not differ between the two groups, but that this difference did become significant when intubated patients were excluded from the analysis [524]. +In contrast, a study that compared 96 patients treated with TCZ to 97 patients treated with SOC only in New York City found that differences in mortality did not differ between the two groups, but that this difference did become significant when intubated patients were excluded from the analysis [525]. Taken together, these findings suggest that future clinical trials of TCZ may want to include intubation as an endpoint. However, these studies should be approached with caution, not only because of the small number of patients enrolled and the retrospective design, but also because they performed a large number of statistical tests and did not account for multiple hypothesis testing. These last findings highlight the need to search for a balance between impairing a harmful immune response, such as the one generated during CRS and CSS, and preventing the worsening of the clinical picture of the patients by potential new viral infections.
Though data about TCZ for COVID-19 is still only just emerging, some meta-analyses and systematic reviews have investigated the available data. -One meta-analysis [525] evaluated 19 studies published or released as preprints prior to July 1, 2020 and found that the overall trends were supportive of the frequent conclusion that TCZ does improve survivorship, with a significant HR of 0.41 (p < 0.001). +One meta-analysis [526] evaluated 19 studies published or released as preprints prior to July 1, 2020 and found that the overall trends were supportive of the frequent conclusion that TCZ does improve survivorship, with a significant HR of 0.41 (p < 0.001). This trend improved when they excluded studies that administered a steroid alongside TCZ, with a significant HR of 0.04 (p < 0.001). They also found some evidence for reduced invasive ventilation or ICU admission, but only when excluding all studies except a small number whose estimates were adjusted for the possible bias introduced by the challenges of stringency during the enrollment process. -A systematic analysis of sixteen case-control studies of TCZ estimated an odds ratio of 0.453 (95% CI 0.376–0.547, p < 0.001), suggesting possible benefits associated with TCZ treatment [526]. +A systematic analysis of sixteen case-control studies of TCZ estimated an odds ratio of 0.453 (95% CI 0.376–0.547, p < 0.001), suggesting possible benefits associated with TCZ treatment [527]. Although these estimates are similar, it is important to note that they are drawing from the same literature and are therefore likely to be affected by the same biases in publication. -A second systematic review of studies investigating TCZ treatment for COVID-19 analyzed 31 studies that had been published or released as pre-prints and reported that none carried a low risk of bias (RoB) [527]. +A second systematic review of studies investigating TCZ treatment for COVID-19 analyzed 31 studies that had been published or released as pre-prints and reported that none carried a low risk of bias [528]. Therefore, the present evidence is not likely to be sufficient for conclusions about the efficacy of TCZ.
Additionally, there are possible risks associated with the administration of TCZ for COVID-19. -TCZ has been used for over a decade to treat RA [528], and a recent study found the drug to be safe for pregnant and breastfeeding women [529]. -However, TCZ may increase the risk of developing infections [528], and RA patients with chronic hepatitis B infections had a high risk of hepatitis B virus reactivation when TCZ was administered in combination with other RA drugs [530]. -As a result, TCZ is contraindicated in patients with active infections such as tuberculosis [531]. -Previous studies have investigated, with varying results, a possible increased risk of infection in RA patients administered TCZ [532,533], although another study reported that the incidence rate of infections was higher in clinical practice RA patients treated with TCZ than in the rates reported by clinical trials [534]. -In the investigation of 544 Italian COVID-19 patients, the group treated with TCZ was found to be more likely to develop secondary infections, with 24% compared to 4% in the control group [520]. +TCZ has been used for over a decade to treat RA [529], and a recent study found the drug to be safe for pregnant and breastfeeding women [530]. +However, TCZ may increase the risk of developing infections [529], and RA patients with chronic hepatitis B infections had a high risk of hepatitis B virus reactivation when TCZ was administered in combination with other RA drugs [531]. +As a result, TCZ is contraindicated in patients with active infections such as tuberculosis [532]. +Previous studies have investigated, with varying results, a possible increased risk of infection in RA patients administered TCZ [533,534], although another study reported that the incidence rate of infections was higher in clinical practice RA patients treated with TCZ than in the rates reported by clinical trials [535]. +In the investigation of 544 Italian COVID-19 patients, the group treated with TCZ was found to be more likely to develop secondary infections, with 24% compared to 4% in the control group [521]. Reactivation of hepatitis B and herpes simplex virus 1 was also reported in a small number of patients in this study, all of whom were receiving TCZ. -A July 2020 case report described negative outcomes of two COVID-19 patients after receiving TCZ, including one death; however, both patients were intubated and had entered septic shock prior to receiving TCZ [535], likely indicating a severe level of cytokine production. -Additionally, D-dimer and sIL2R levels were reported by one study to increase in patients treated with TCZ, which raised concerns because of the potential association between elevated D-dimer levels and thrombosis and between sIL2R and diseases where T-cell regulation is compromised [521]. -An increased risk of bacterial infection was also identified in a systematic review of the literature, based on the unadjusted estimates reported [525]. -In summary, TCZ administration to COVID-19 patients is not without risks, may introduce additional risk of developing secondary infections, and should be approached especially cautiously for patients who have latent viral infections.
-In summary, approximately 25% of coronavirus patients develop ARDS, which is caused by an excessive early response of the immune system which can be a component of cytokine release syndrome [521] and cytokine storm syndrome [531]. +A July 2020 case report described negative outcomes of two COVID-19 patients after receiving TCZ, including one death; however, both patients were intubated and had entered septic shock prior to receiving TCZ [536], likely indicating a severe level of cytokine production. +Additionally, D-dimer and sIL2R levels were reported by one study to increase in patients treated with TCZ, which raised concerns because of the potential association between elevated D-dimer levels and thrombosis and between sIL2R and diseases where T-cell regulation is compromised [522]. +An increased risk of bacterial infection was also identified in a systematic review of the literature, based on the unadjusted estimates reported [526]. +TCZ administration to COVID-19 patients is not without risks, may introduce additional risk of developing secondary infections, and should be approached especially cautiously for patients who have latent viral infections.
+In summary, approximately 25% of coronavirus patients develop ARDS, which is caused by an excessive early response of the immune system which can be a component of CRS [522] and CSS [532]. This overwhelming inflammation is triggered by IL-6. TCZ is an inhibitor of IL-6 and therefore may neutralize the inflammatory pathway that leads to the cytokine storm. While the mechanism suggests TCZ could be beneficial for the treatment of COVID-19 patients experiencing excessive immune activity, no randomized controlled trials are available assessing its effect. However, small initial studies have found preliminary indications that TCZ may reduce progression to invasive medical ventilation and/or death. It should be noted that SOC varied widely across retrospective studies, with one study administering HCQ, lopinavir-ritonavir, antibiotics, and/or heparin as part of SOC. -Interest in TCZ as a treatment for COVID-19 was supported by two meta-analyses [525,536], but a third meta-analysis found that all of the available literature carries a risk of bias, with even the largest available TCZ studies to date carrying a moderate risk of bias under the ROBINS-I criteria [527]. -Additionally, different studies used different dosages, number of doses, and methods of administration; ongoing research may be needed to optimize administration of TCZ [537], although similar results were reported by one study for intravenous and subcutaneous administration [520]. +Interest in TCZ as a treatment for COVID-19 was supported by two meta-analyses [526,537], but a third meta-analysis found that all of the available literature carries a risk of bias, with even the largest available TCZ studies to date carrying a moderate risk of bias under the ROBINS-I criteria [528]. +Additionally, different studies used different dosages, number of doses, and methods of administration. +Ongoing research may be needed to optimize administration of TCZ [538], although similar results were reported by one study for intravenous and subcutaneous administration [521]. Clinical trials that are in progress are likely to provide additional insight into the effectiveness of this drug for the treatment of COVID-19 along with how it should be administered.
Monoclonal antibodies have revolutionized the way we treat human diseases. -They have become some of the best-selling drugs in the pharmaceutical market in recent years [538]. -There are currently 79 FDA approved mAbs on the market, including antibodies for viral infections (e.g. Ibalizumab for HIV and Palivizumab for RSV) [538,539]. -Virus-specific neutralizing antibodies commonly target viral surface glycoproteins or host structures, thereby inhibiting viral entry through receptor binding interference [540,541]. -This section discusses current efforts in developing neutralizing antibodies against SARS-CoV-2 and how expertise gained from previous approaches for MERS-CoV and SARS-CoV-1 may benefit antibody development.
+They have become some of the best-selling drugs in the pharmaceutical market in recent years [539]. +There are currently 79 FDA approved mAbs on the market, including antibodies for viral infections (e.g. Ibalizumab for HIV and Palivizumab for RSV) [539,540]. +Virus-specific nAbs commonly target viral surface glycoproteins or host structures, thereby inhibiting viral entry through receptor binding interference [541,542]. +This section discusses current efforts in developing nAbs against SARS-CoV-2 and how expertise gained from previous approaches for MERS-CoV and SARS-CoV-1 may benefit antibody development.During the first SARS epidemic in 2002, nAbs were found in SARS-CoV-1-infected patients [542,543]. -Several studies following up on these findings identified various S-glycoprotein epitopes as the major targets of neutralizing antibodies against SARS-CoV-1 [544]. -The passive transfer of immune serum containing nAbs from SARS-CoV-1-infected mice resulted in protection of naïve mice from viral lower respiratory tract infection upon intranasal challenge [545]. -Similarly, a meta-analysis suggested that administration of plasma from recovered SARS-CoV-1 patients reduced mortality upon SARS-CoV-1 infection [546]. +
During the first SARS epidemic in 2002, nAbs were found in SARS-CoV-1-infected patients [543,544]. +Several studies following up on these findings identified various S-glycoprotein epitopes as the major targets of nAbs against SARS-CoV-1 [545]. +The passive transfer of immune serum containing nAbs from SARS-CoV-1-infected mice resulted in protection of naïve mice from viral lower respiratory tract infection upon intranasal challenge [546]. +Similarly, a meta-analysis suggested that administration of plasma from recovered SARS-CoV-1 patients reduced mortality upon SARS-CoV-1 infection [547]. Similar results were observed in MERS-CoV infection during the second coronavirus-related epidemic of the 21st century. -In these cases, neutralizing antibodies were identified against various epitopes of the receptor binding domain (RBD) of the S glycoprotein [547,548]. -Coronaviruses use trimeric spike (S) glycoproteins on their surface to bind to the host cell, allowing for cell entry [64,67]. +In these cases, nAbs were identified against various epitopes of the receptor binding domain (RBD) of the S glycoprotein [548,549]. +Coronaviruses use trimeric spike (S) glycoproteins on their surface to bind to the host cell, allowing for cell entry [66,69]. Each S glycoprotein protomer is comprised of an S1 domain, also called the RBD, and an S2 domain. -The S1 domain binds to the host cell while the S2 domain facilitates the fusion between the viral envelope and host cell membranes [544]. -Although targeting of the host cell enzyme ACE2 shows efficacy in inhibiting SARS-CoV-2 infection [75], given the physiological relevance of ACE2 [549], it would be favorable to target virus-specific structures rather than host receptors. -This concern underlies the rationale for developing neutralizing antibodies against the S glycoprotein, disrupting its interaction with ACE2 and other potential entry points and thereby inhibiting viral entry.
-The first human neutralizing antibody against SARS-CoV-2 targeting the S glycoproteins was developed using hybridoma technology [550], where antibody-producing B-cells developed by mice can be inserted into myeloma cells to produce a hybrid cell line (the hybridoma) that is grown in culture. +The S1 domain binds to the host cell while the S2 domain facilitates the fusion between the viral envelope and host cell membranes [545]. +Although targeting of the host cell enzyme ACE2 shows efficacy in inhibiting SARS-CoV-2 infection [77], given the physiological relevance of ACE2 [550], it would be favorable to target virus-specific structures rather than host receptors. +This concern underlies the rationale for developing nAbs against the S glycoprotein, disrupting its interaction with ACE2 and other potential entry points and thereby inhibiting viral entry.
+The first human nAb against SARS-CoV-2 targeting the S glycoproteins was developed using hybridoma technology [551], where antibody-producing B-cells developed by mice can be inserted into myeloma cells to produce a hybrid cell line (the hybridoma) that is grown in culture. The 47D11 clone was able to cross-neutralize SARS-CoV-1 and SARS-CoV-2 by a mechanism that is different from receptor binding interference. -The exact mechanism of how this clone neutralizes SARS-CoV-2 and inhibits infection in vitro remains unknown, but a potential mechanism might be antibody-induced destabilization of the membrane prefusion structure [550,551]. -The ability of this antibody to prevent infection at a feasible dose needs to be validated in vivo, especially since in vitro neutralization effects have been shown to not be reflective of in vivo efficacy [552]. -Only a week later, a different group successfully isolated multiple nAbs targeting the RBD of the S glycoprotein from blood samples taken from COVID-19 patients in China [154]. +The exact mechanism of how this clone neutralizes SARS-CoV-2 and inhibits infection in vitro remains unknown, but a potential mechanism might be antibody-induced destabilization of the membrane prefusion structure [551,552]. +The ability of this antibody to prevent infection at a feasible dose needs to be validated in vivo, especially since in vitro neutralization effects have been shown to not be reflective of in vivo efficacy [553]. +Only a week later, a different group successfully isolated multiple nAbs targeting the RBD of the S glycoprotein from blood samples taken from COVID-19 patients in China [156]. Interestingly, the patient-isolated antibodies did not cross-react with RBDs from SARS-CoV-1 and MERS-CoV, although cross-reactivity to the trimeric spike proteins of SARS-CoV-1 and MERS-CoV was observed. This finding suggests that the RBDs between the three coronavirus species are immunologically distinct and that the isolated nAbs targeting the RBD of SARS-CoV-2 are species specific. While this specificity is desirable, it also raises the question of whether these antibodies are more susceptible to viral escape mechanisms. -Viral escape is a common resistance mechanism to nAb therapy due to selective pressure from neutralizing antibodies [553,554]. -For HIV, broadly neutralizing antibodies (bnAbs) targeting the CD4 binding site (CD4bs) show greater neutralization breadth than monoclonal antibodies, which target only specific HIV strains [555]. -For MERS-CoV, a combination of multiple neutralizing antibodies targeting different antigenic sites prevented neutralization escape [556]. -It was found that the different antibody isolates did not target the same epitopes, suggesting that using them in combination might produce a synergistic effect that prevents viral escape [154]. +Viral escape is a common resistance mechanism to nAb therapy due to selective pressure from nAbs [554,555]. +For HIV, broadly neutralizing antibodies (bnAbs) targeting the CD4 binding site (CD4bs) show greater neutralization breadth than monoclonal antibodies, which target only specific HIV strains [556]. +For MERS-CoV, a combination of multiple nAbs targeting different antigenic sites prevented neutralization escape [557]. +It was found that the different antibody isolates did not target the same epitopes, suggesting that using them in combination might produce a synergistic effect that prevents viral escape [156]. It was also demonstrated that binding affinity of the antibodies does not reflect their capability to compete with ACE2 binding. -Furthermore, no conclusions about correlations between the severity of disease and the ability to produce neutralizing antibodies can be drawn at this point. -Rather, higher neutralizing antibody titers were more frequently found in patients with severe disease. -Correspondingly, higher levels of anti-spike IgG were observed in patients that deceased from infection compared to patient that recovered [557].
-Results from the SARS and MERS epidemics thus provide valuable lessons for the design of neutralizing antibodies for the current outbreak. +Furthermore, no conclusions about correlations between the severity of disease and the ability to produce nAbs can be drawn at this point. +Rather, higher nAb titers were more frequently found in patients with severe disease. +Correspondingly, higher levels of anti-spike IgG were observed in patients that deceased from infection compared to patient that recovered [558].
+Results from the SARS and MERS epidemics thus provide valuable lessons for the design of nAbs for the current outbreak. The findings for SARS-CoV-1 and MERS-CoV can aid in identifying which structures constitute suitable targets for nAbs, despite the fact that the RBD appears to be distinct between the three coronavirus species. -These studies also suggest that a combination of nAbs targeting distinct antigens might be necessary to provide protection [556]. +These studies also suggest that a combination of nAbs targeting distinct antigens might be necessary to provide protection [557]. The biggest challenge remains identifying antibodies that not only bind to their target, but also prove to be beneficial for disease management. -On that note, a recently published study indicates that anti-spike antibodies could make the disease worse rather than eliminating the virus [557]. +On that note, a recently published study indicates that anti-spike antibodies could make the disease worse rather than eliminating the virus [558]. These findings underscores our current lack of understanding the full immune response to SARS-CoV-2.
IFNs are a family of cytokines critical to activating the innate immune response against viral infections. -Interferons are classified into three categories based on their receptor specificity: types I, II and III [114]. -Specifically, IFNs I (IFN-𝛼 and 𝛽) and II (IFN-𝛾) induce the expression of antiviral proteins [558]. -Among these IFNs, IFN-𝛽 has already been found to strongly inhibit the replication of other coronaviruses, such as SARS-CoV-1, in cell culture, while IFN-𝛼 and 𝛾 were shown to be less effective in this context [558]. +Interferons are classified into three categories based on their receptor specificity: types I, II and III [116]. +Specifically, IFNs I (IFN-𝛼 and 𝛽) and II (IFN-𝛾) induce the expression of antiviral proteins [559]. +Among these IFNs, IFN-𝛽 has already been found to strongly inhibit the replication of other coronaviruses, such as SARS-CoV-1, in cell culture, while IFN-𝛼 and 𝛾 were shown to be less effective in this context [559]. There is evidence that patients with higher susceptibility to ARDS indeed show deficiency in IFN-𝛽. -For instance, infection with other coronaviruses impairs IFN-𝛽 expression and synthesis, allowing the virus to escape the innate immune response [559]. -On March 18 2020, Synairgen plc received approval to start a phase II trial for SNG001, an IFN-𝛽-1a formulation to be delivered to the lungs via inhalation [560]. -SNG001, which contains recombinant interferon beta-1a, was previously shown to be effective in reducing viral load in an in vivo model of swine flu and in vitro models of other coronavirus infections [561]. -In July, a press release from Synairgen stated that SNG001 reduced progression to ventilation in a double-blind, placebo-controlled, multi-center study of 101 patients with an average age in the late 50s [562]. -These results were subsequently published in November 2020 [563]. +For instance, infection with other coronaviruses impairs IFN-𝛽 expression and synthesis, allowing the virus to escape the innate immune response [560]. +On March 18 2020, Synairgen plc received approval to start a phase II trial for SNG001, an IFN-𝛽-1a formulation to be delivered to the lungs via inhalation [561]. +SNG001, which contains recombinant interferon beta-1a, was previously shown to be effective in reducing viral load in an in vivo model of swine flu and in vitro models of other coronavirus infections [562]. +In July, a press release from Synairgen stated that SNG001 reduced progression to ventilation in a double-blind, placebo-controlled, multi-center study of 101 patients with an average age in the late 50s [563]. +These results were subsequently published in November 2020 [564]. The study reports that the participants were assigned at a ratio of 1:1 to receive either SNG001 or a placebo that lacked the active compound, by inhalation for up to 14 days. The primary outcome they assessed was the change in patients’ score on the WHO Ordinal Scale for Clinical Improvement (OSCI) at trial day 15 or 16. SNG001 was associated with an odds ratio (OR) of 2.32 (95% CI 1.07 – 5.04, p = 0.033) in the intention-to-treat analysis and 2.80 (95% CI 1.21 – 6.52, p = 0.017) in the per-protocol analysis, corresponding to significant improvement in the SNG001 group on the OSCI at day 15/16. Some of the secondary endpoints analyzed also showed differences: at day 28, the OR for clinical improvement on the OSCI was 3.15 (95% CI 1.39 – 7.14, p = 0.006), and the odds of recovery at day 15/16 and at day 28 were also significant between the two groups. Thus, this study suggested that IFN-𝛽1 administered via SNG001 may improve clinical outcomes.
-In contrast, the WHO Solidarity trial reported no significant effect of IFN-𝛽1a on patient survival during hospitalization [390]. -Here, the primary outcome analyzed was in-hospital mortality, and the rate ratio for the two groups was 1.16 (95% CI, 0.96 to 1.39; p = 0.11) administering IFN-𝛽-1a to 2050 patients and comparing their response to 2050 controls.. +
In contrast, the WHO Solidarity trial reported no significant effect of IFN-𝛽1a on patient survival during hospitalization [391]. +Here, the primary outcome analyzed was in-hospital mortality, and the rate ratio for the two groups was 1.16 (95% CI, 0.96 to 1.39; p = 0.11) administering IFN-𝛽-1a to 2050 patients and comparing their response to 2,050 controls. However, there are a few reasons that the different findings of the two trials might not speak to the underlying efficacy of this treatment strategy. One important consideration is the stage of COVID-19 infection analyzed in each study. -The Synairgen trial enrolled only patients who were not receiving invasive ventilation, corresponding to a less severe stage of disease than many patients enrolled in the SOLIDARITY trial, as well as a lower overall rate of mortality [564]. -Additionally, the methods of administration differed between the two trials, with the SOLIDARITY trial administering IFN-𝛽-1a subcutaneously [564]. +The Synairgen trial enrolled only patients who were not receiving invasive ventilation, corresponding to a less severe stage of disease than many patients enrolled in the SOLIDARITY trial, as well as a lower overall rate of mortality [565]. +Additionally, the methods of administration differed between the two trials, with the SOLIDARITY trial administering IFN-𝛽-1a subcutaneously [565]. The differences in findings between the studies suggests that the method of administration might be relevant to outcomes, with nebulized IFN-𝛽-1a more directly targeting receptors in the lungs. -A trial that analyzed the effect of subcutaneously administered IFN-β-1a on patients with ARDS between 2015 and 2017 had also reported no effect on 28-day mortality [565], while a smaller study analyzing the effect of subcutaneous IFN administration did find a significant improvement in 28-day mortality for COVID-19 [566]. -At present, several ongoing clinical trials are investigating the potential effects of IFN-𝛽-1a, including in combination with therapeutics such as remdesivir [567] and administered via inhalation [560]. +A trial that analyzed the effect of subcutaneously administered IFN-β-1a on patients with ARDS between 2015 and 2017 had also reported no effect on 28-day mortality [566], while a smaller study analyzing the effect of subcutaneous IFN administration did find a significant improvement in 28-day mortality for COVID-19 [567]. +At present, several ongoing clinical trials are investigating the potential effects of IFN-𝛽-1a, including in combination with therapeutics such as remdesivir [568] and administered via inhalation [561]. Thus, as additional information becomes available, a more detailed understanding of whether and under which circumstances IFN-𝛽-1a is beneficial to COVID-19 patients should develop.
With the emergence of the COVID-19 pandemic caused by the coronavirus SARS-CoV-2, the development and/or identification of therapeutic and prophylactic interventions became an issue of international urgency. +
With the emergence of the COVID-19 pandemic caused by the coronavirus SARS-CoV-2, the development and identification of therapeutic and prophylactic interventions became issues of international urgency. In previous outbreaks of HCoV, namely SARS and MERS, the development of these interventions was very limited. -As research has progressed, several potential approaches to treatment have emerged (Figure 4).. +As research has progressed, several potential approaches to treatment have emerged (Figure 4). Most notably, remdesivir has been approved by the FDA for the treatment of COVID-19, and dexamethasone, which was approved by the FDA in 1958, has been found to improve outcomes for patients with severe COVID-19. Other potential therapies are being still being explored and require additional data (Figure 3). As more evidence becomes available, the potential for existing and novel therapies to improve outcomes for COVID-19 patients will become better understood.
@@ -2228,12 +2228,12 @@Insights into the pathogenesis of and immune response to SARS-CoV-2 (see [367]) have also guided the identification of potential prophylactics and therapeutics. +
Insights into the pathogenesis of and immune response to SARS-CoV-2 (see [1]) have also guided the identification of potential prophylactics and therapeutics. As cases have become better characterized, it has become evident that many patients experience an initial immune response to the virus that is typically characterized by fever, cough, dyspnea, and related symptoms. -However, the most serious concern is cytokine release syndrome, when the body’s immune response becomes dysregulated, resulting in an extreme inflammatory response. -The RECOVERY trial, a large-scale, multi-arm trial enrolling about 15% of all COVID-19 patients in the United Kingdom, was the first to identify that the widely available steroid dexamethasone seems to be beneficial for patients suffering from this immune dysregulation [502]. +However, the most serious concern is CRS, when the body’s immune response becomes dysregulated, resulting in an extreme inflammatory response. +The RECOVERY trial, a large-scale, multi-arm trial enrolling about 15% of all COVID-19 patients in the United Kingdom, was the first to identify that the widely available steroid dexamethasone seems to be beneficial for patients suffering from this immune dysregulation [503]. The results of efforts to identify therapeutic treatments to treat patients early in the course of infection have been more ambiguous. -Early interest in the drugs hydroxychloroquine and chloroquine yielded no promising results from studies with robust experimental designs. +Early interest in the drugs HCQ and CQ yielded no promising results from studies with robust experimental designs. On the other hand, the experimental drug remdesivir, which was developed as a candidate therapeutic for EVD, has received enough support from early analyses to receive FDA approval, although results have been mixed. The potential for other drugs, such as tocilizumab, to reduce recovery time remains unclear, but some early results were promising.
One additional concern is that the presentation of COVID-19 appears to be heterogeneous across the lifespan. @@ -2245,33 +2245,33 @@
In addition to immunosuppressive treatments, which are most beneficial late in disease progression, much research is focused on identifying therapeutics for early-stage patients. -For example, although studies of hydroxychloroquine have not supported the early theory-driven interest in this antiviral treatment, alternative compounds with related mechanisms may still have potential. -Hydroxyferroquine derivatives of HCQ have been described as a class of bioorganometallic compounds that exert antiviral effects with some selectivity for SARS-CoV-1 in vitro [577]. +For example, although studies of HCQ have not supported the early theory-driven interest in this antiviral treatment, alternative compounds with related mechanisms may still have potential. +Hydroxyferroquine derivatives of HCQ have been described as a class of bioorganometallic compounds that exert antiviral effects with some selectivity for SARS-CoV-1 in vitro [578]. Future work could explore whether such compounds exert antiviral effects against SARS-CoV-2 and whether they would be safer for use in COVID-19. Another potential approach is the development of antivirals, which could be broad-spectrum, specific to coronaviruses, or targeted to SARS-CoV-2. Development of new antivirals is complicated by the fact that none have yet been approved for human coronaviruses. Intriguing new options are emerging, however. -Beta-D-N4-hydroxycytidine (NHC) is an orally bioavailable ribonucleotide analog showing broad-spectrum activity against RNA viruses, which may inhibit SARS-CoV-2 replication in vitro and in vivo in mouse models of HCoVs [578]. +Beta-D-N4-hydroxycytidine (NHC) is an orally bioavailable ribonucleotide analog showing broad-spectrum activity against RNA viruses, which may inhibit SARS-CoV-2 replication in vitro and in vivo in mouse models of HCoVs [579]. A range of other antivirals are also in development. Development of antivirals will be further facilitated as research reveals more information about the interaction of SARS-CoV-2 with the host cell and host cell genome, mechanisms of viral replication, mechanisms of viral assembly, and mechanisms of viral release to other cells; this can allow researchers to target specific stages and structures of the viral life cycle. Finally, antibodies against viruses, also known as antiviral monoclonal antibodies, could be an alternative as well and are described in detail in an above section. -The goal of antiviral antibodies is to neutralize viruses through either cell-killing activity or blocking of viral replication [579]. +The goal of antiviral antibodies is to neutralize viruses through either cell-killing activity or blocking of viral replication [580]. They may also engage the host immune response, encouraging the immune system to hone in on the virus. -Given the cytokine storm that results from immune system activation in response to the virus, which has been implicated in worsening of the disease, a neutralizing antibody (nAb) may be preferable. +Given the cytokine storm that results from immune system activation in response to the virus, which has been implicated in worsening of the disease, an nAb may be preferable. Upcoming work may explore the specificity of nAbs for their target, mechanisms by which the nAbs impede the virus, and improvements to antibody structure that may enhance the ability of the antibody to block viral activity.
Some research is also investigating potential therapeutics and prophylactics that would interact with components of the innate immune response. -For example, TLRs are PRRs that recognize pathogen- and damage-associated molecular patterns and contribute to innate immune recognition and, more generally, promotion of both the innate and adaptive immune responses [110]. -In mouse models, poly(I:C) and CpG, which are agonists of Toll-like receptors TLR3 and TLR9, respectively, showed protective effects when administered prior to SARS-CoV-1 infection [580]. +For example, TLRs are pattern recognition receptors that recognize pathogen- and damage-associated molecular patterns and contribute to innate immune recognition and, more generally, promotion of both the innate and adaptive immune responses [112]. +In mouse models, poly(I:C) and CpG, which are agonists of Toll-like receptors TLR3 and TLR9, respectively, showed protective effects when administered prior to SARS-CoV-1 infection [581]. Therefore, TLR agonists hold some potential for broad-spectrum prophylaxis.
Given that a large number of clinical trials are currently in progress, more information about the potential of these and other therapeutics should become available over time. This information, combined with advances in understanding the molecular structure and viral pathogenesis of SARS-CoV-2, may lead to a more complete understanding of how the virus affects the human host and what strategies can improve outcomes. @@ -2280,11 +2280,12 @@
Due to the large number of clinical trials currently under examination (Figure 3), not all candidates are examined here. Instead, this review seeks to provide an overview of the range of mechanisms that have been explored and to examine some prominent candidates in the context of the pathogenesis of and immune response to SARS-CoV-2. As more research becomes available, this review will be updated to include additional therapeutics that emerge and to include new findings that are released about those discussed here. @@ -2315,140 +2316,140 @@
Due to the significant interest from the general public in dietary additives, whether and to what extent nutraceuticals or dietary supplements can provide any prophylactic or therapeutic benefit remains a topic of interest for the scientific community. Nutraceuticals and dietary supplements are related but distinct non-pharmaceutical products. -Nutraceuticals are classified as supplements with health benefits beyond their basic nutritional value [594,595]. -The key difference between a dietary supplement and a nutraceutical is that nutraceuticals should not only supplement the diet, but also aid in the prophylaxis and/or treatment of a disorder or disease [596]. +Nutraceuticals are classified as supplements with health benefits beyond their basic nutritional value [595,596]. +The key difference between a dietary supplement and a nutraceutical is that nutraceuticals should not only supplement the diet, but also aid in the prophylaxis and/or treatment of a disorder or disease [597]. However, dietary supplements and nutraceuticals, unlike pharmaceuticals, are not subject to the same regulatory protocols that protect consumers of medicines. -Indeed, nutraceuticals do not entirely fall under the responsibility of the Food and Drug Administration (FDA), but they are monitored as dietary supplements according to the Dietary Supplement, Health and Education Act 1994 (DSHEA) [597] and the Food and Drug Administration Modernization Act 1997 (FDAMA) [598]. +Indeed, nutraceuticals do not entirely fall under the responsibility of the Food and Drug Administration (FDA), but they are monitored as dietary supplements according to the Dietary Supplement, Health and Education Act 1994 (DSHEA) [598] and the Food and Drug Administration Modernization Act 1997 (FDAMA) [599]. Due to increases in sales of dietary supplements and nutraceuticals, in 1996 the FDA established the Office of Dietary Supplement Programs (ODSP) to increase surveillance. Novel products or nutraceuticals must now submit a new dietary ingredient notification to the ODSP for review. -There are significant concerns that these legislations do not adequately protect the consumer as they ascribe responsibility to the manufacturers to ensure the safety of the product before manufacturing or marketing [599]. +There are significant concerns that these legislations do not adequately protect the consumer as they ascribe responsibility to the manufacturers to ensure the safety of the product before manufacturing or marketing [600]. Manufacturers are not required to register or even seek approval from the FDA to produce or sell food supplements or nutraceuticals. -Health or nutrient content claims for labeling purposes are approved based on an authoritative statement from the Academy of Sciences or relevant federal authorities once the FDA has been notified and on the basis that the information is known to be true and not deceptive [599]. +Health or nutrient content claims for labeling purposes are approved based on an authoritative statement from the Academy of Sciences or relevant federal authorities once the FDA has been notified and on the basis that the information is known to be true and not deceptive [600]. Therefore, there is often a gap between perceptions by the American public about a nutraceutical or dietary supplement and the actual clinical evidence surrounding its effects.
Despite differences in regulations, similar challenges exist outside of the United States. -In Europe, where the safety of supplements are monitored by the European Union (EU) under Directive 2002/46/EC [600]. +In Europe, where the safety of supplements are monitored by the European Union (EU) under Directive 2002/46/EC [601]. However, nutraceuticals are not directly mentioned. -Consequently, nutraceuticals can be generally described as either a medicinal product under Directive 2004/27/EC [601] or as a ‘foodstuff’ under Directive 2002/46/EC of the European council. +Consequently, nutraceuticals can be generally described as either a medicinal product under Directive 2004/27/EC [602] or as a ‘foodstuff’ under Directive 2002/46/EC of the European council. In order to synchronize the various existing legislations, Regulation EC 1924/2006 on nutrition and health claims was put into effect to assure customers of safety and efficacy of products and to deliver understandable information to consumers. However, specific legislation for nutraceuticals is still elusive. -Health claims are permitted on a product label only following compliance and authorization according to the European Food Safety Authority (EFSA) guidelines on nutrition and health claims [602]. -EFSA does not currently distinguish between food supplements and nutraceuticals for health claim applications of new products, as claim authorization is dependent on the availability of clinical data in order to substantiate efficacy [603]. -These guidelines seem to provide more protection to consumers than the FDA regulations but potentially at the cost of innovation in the sector [604]. -The situation becomes even more complicated when comparing regulations at a global level, as countries such as China and India have existing regulatory frameworks for traditional medicines and phytomedicines not commonly consumed in Western society [605]. -Currently, there is debate among scientists and regulatory authorities surrounding the development of a widespread regulatory framework to deal with the challenges of safety and health claim substantiation for nutraceuticals [599,603], as these products do not necessarily follow the same rigorous clinical trial frameworks used to approve the use of pharmaceuticals. +Health claims are permitted on a product label only following compliance and authorization according to the European Food Safety Authority (EFSA) guidelines on nutrition and health claims [603]. +EFSA does not currently distinguish between food supplements and nutraceuticals for health claim applications of new products, as claim authorization is dependent on the availability of clinical data in order to substantiate efficacy [604]. +These guidelines seem to provide more protection to consumers than the FDA regulations but potentially at the cost of innovation in the sector [605]. +The situation becomes even more complicated when comparing regulations at a global level, as countries such as China and India have existing regulatory frameworks for traditional medicines and phytomedicines not commonly consumed in Western society [606]. +Currently, there is debate among scientists and regulatory authorities surrounding the development of a widespread regulatory framework to deal with the challenges of safety and health claim substantiation for nutraceuticals [600,604], as these products do not necessarily follow the same rigorous clinical trial frameworks used to approve the use of pharmaceuticals. Such regulatory disparities have been highlighted by the pandemic, as many individuals and companies have attempted to profit from the vulnerabilities of others by overstating claims in relation to the treatment of COVID-19 using supplements and nutraceuticals. -The FDA has written several letters to prevent companies marketing or selling products based on false hyperbolic promises about preventing SARS-CoV-2 infection or treating COVID-19 [606,607,608]. -These letters came in response to efforts to market nutraceutical prophylactics against COVID-19, some of which charged the consumer as much as $23,000 [609]. -There have even been some incidents highlighted in the media because of their potentially life threatening consequences; for example, the use of oleandrin was touted as a potential “cure” by individuals close to the former President of the United States despite its high toxicity [610]. +The FDA has written several letters to prevent companies marketing or selling products based on false hyperbolic promises about preventing SARS-CoV-2 infection or treating COVID-19 [607,608,609]. +These letters came in response to efforts to market nutraceutical prophylactics against COVID-19, some of which charged the consumer as much as $23,000 [610]. +There have even been some incidents highlighted in the media because of their potentially life threatening consequences; for example, the use of oleandrin was touted as a potential “cure” by individuals close to the former President of the United States despite its high toxicity [611]. Thus, heterogeneous and at times relaxed regulatory standards have permitted high-profile cases of the sale of nutraceuticals and dietary supplements that are purported to provide protection against COVID-19, despite a lack of research into these compounds.
Notwithstanding the issues of poor safety, efficacy, and regulatory oversight, some dietary supplements and nutraceuticals have exhibited therapeutic and prophylactic potential. -Some have been linked with reduced immunopathology, antiviral and anti-inflammatory activities, or even the prevention of acute respiratory distress syndrome (ARDS) [592,611,612]. +Some have been linked with reduced immunopathology, antiviral and anti-inflammatory activities, or even the prevention of acute respiratory distress syndrome (ARDS) [593,612,613]. A host of potential candidates have been highlighted in the literature that target various aspects of the COVID-19 viral pathology, while others are thought to prime the host immune system. -These candidates include vitamins and minerals along with extracts and omega-3 polyunsaturated fatty acids (n-3 PUFA) [613]. -In vitro and in vivo studies suggest that nutraceuticals containing phycocyanobilin, N-acetylcysteine, glucosamine, selenium or phase 2 inductive nutraceuticals (e.g. ferulic acid, lipoic acid, or sulforaphane) can prevent or modulate RNA virus infections via amplification of the signaling activity of mitochondrial antiviral-signaling protein (MAVS) and activation of Toll-like receptor 7 [614]. +These candidates include vitamins and minerals along with extracts and omega-3 polyunsaturated fatty acids (n-3 PUFA) [614]. +In vitro and in vivo studies suggest that nutraceuticals containing phycocyanobilin, N-acetylcysteine, glucosamine, selenium or phase 2 inductive nutraceuticals (e.g. ferulic acid, lipoic acid, or sulforaphane) can prevent or modulate RNA virus infections via amplification of the signaling activity of mitochondrial antiviral-signaling protein (MAVS) and activation of Toll-like receptor 7 [615]. While promising, further animal and human studies are required to assess the therapeutic potential of these various nutrients and nutraceuticals against COVID-19. For the purpose of this review, we have highlighted some of the main dietary supplements and nutraceuticals that are currently under investigation for their potential prophylactic and therapeutic applications. These include n-3 PUFA, zinc, vitamins C and D, and probiotics.
One category of supplements that has been explored for beneficial effects against various viral infections are the n-3 PUFAs [613], commonly referred to as omega-3 fatty acids, which include eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). -EPA and DHA intake can come from a diet high in fish or through dietary supplementation with fish oils or purified oils [615]. -Other, more sustainable sources of EPA and DHA include algae [616,617], which can also be exploited for their rich abundance of other bioactive compounds such as angiotensin converting enzyme inhibitor peptides and antiviral agents including phycobiliproteins, sulfated polysaccharides, and calcium-spirulan [618]. -n-3 PUFAs have been investigated for many years for their therapeutic potential [619]. -Supplementation with fish oils is generally well tolerated [619], and intake of n-3 PUFAs through dietary sources or supplementation is specifically encouraged for vulnerable groups such as pregnant and lactating women [620,621]. +
One category of supplements that has been explored for beneficial effects against various viral infections are the n-3 PUFAs [614], commonly referred to as omega-3 fatty acids, which include eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). +EPA and DHA intake can come from a diet high in fish or through dietary supplementation with fish oils or purified oils [616]. +Other, more sustainable sources of EPA and DHA include algae [617,618], which can also be exploited for their rich abundance of other bioactive compounds such as angiotensin converting enzyme inhibitor peptides and antiviral agents including phycobiliproteins, sulfated polysaccharides, and calcium-spirulan [619]. +n-3 PUFAs have been investigated for many years for their therapeutic potential [620]. +Supplementation with fish oils is generally well tolerated [620], and intake of n-3 PUFAs through dietary sources or supplementation is specifically encouraged for vulnerable groups such as pregnant and lactating women [621,622]. As a result, these well-established compounds have drawn significant interest for their potential immune effects and therapeutic potential.
Particular interest has arisen in n-3 PUFAs as potential therapeutics against diseases associated with inflammation. -n-3 PUFAs have been found to mediate inflammation by influencing processes such as leukocyte chemotaxis, adhesion molecule expression, and the production of eicosanoids [622,623]. -This and other evidence indicates that n-3 PUFAs may have the capacity to modulate the adaptive immune response [595,615,622]; for example, they have been found to influence antigen presentation and the production of CD4(+) Th1 cells, among other relevant effects [624]. -Certainly, preliminary evidence from banked blood samples from 100 COVID-19 patients suggests that patients with a higher omega-3 index, a measure of n-3 and n-6 fatty acids in red blood cells, had a lower risk of death due to COVID-19 [625]. -Interest has also arisen as to whether nutritional status related to n-3 PUFAs can also affect inflammation associated with severe disease, such as ARDS or sepsis [626,627]. -ARDS and sepsis hold particular concern in the treatment of severe COVID-19; an analysis of 82 deceased COVID-19 patients in Wuhan during January to February 2020 reported that respiratory failure (associated with ARDS) was the cause of death in 69.5% of cases, and sepsis or multi-organ failure accounted for 28.0% of deaths [628]. +n-3 PUFAs have been found to mediate inflammation by influencing processes such as leukocyte chemotaxis, adhesion molecule expression, and the production of eicosanoids [623,624]. +This and other evidence indicates that n-3 PUFAs may have the capacity to modulate the adaptive immune response [596,616,623]; for example, they have been found to influence antigen presentation and the production of CD4(+) Th1 cells, among other relevant effects [625]. +Certainly, preliminary evidence from banked blood samples from 100 COVID-19 patients suggests that patients with a higher omega-3 index, a measure of n-3 and n-6 fatty acids in red blood cells, had a lower risk of death due to COVID-19 [626]. +Interest has also arisen as to whether nutritional status related to n-3 PUFAs can also affect inflammation associated with severe disease, such as ARDS or sepsis [627,628]. +ARDS and sepsis hold particular concern in the treatment of severe COVID-19; an analysis of 82 deceased COVID-19 patients in Wuhan during January to February 2020 reported that respiratory failure (associated with ARDS) was the cause of death in 69.5% of cases, and sepsis or multi-organ failure accounted for 28.0% of deaths [629]. Research in ARDS prior to current pandemic suggests that n-3 PUFAs may hold some therapeutic potential. -One study randomized 16 consecutive ARDS patients to receive either a fish oil-enriched lipid emulsion or a control lipid emulsion (comprised of 100% long-chain triglycerides) under a double-blinded design [629]. +One study randomized 16 consecutive ARDS patients to receive either a fish oil-enriched lipid emulsion or a control lipid emulsion (comprised of 100% long-chain triglycerides) under a double-blinded design [630]. They reported a statistically significant reduction in leukotriene B4 levels in the group receiving the fish oil-enriched emulsion, suggesting that the fish oil supplementation may have reduced inflammation. However, they also reported that most of their tests were not statistically significant, and therefore it seems that additional research using larger sample sizes is required. -A recent meta-analysis of 10 randomized controlled trials (RCTs) examining the effects of n-3 PUFAs on ARDS patients did not find evidence of any effect on mortality, although the effect on secondary outcomes could not be determined due to a low quality of evidence [630]. -However, another meta-analysis that examined 24 RCTs studying the effects of n-3 fatty acids on sepsis, including ARDS-induced sepsis, did find support for an effect on mortality when n-3 fatty acids were administered via enteral nutrition, although a paucity of high-quality evidence again limited conclusions [631]. +A recent meta-analysis of 10 randomized controlled trials (RCTs) examining the effects of n-3 PUFAs on ARDS patients did not find evidence of any effect on mortality, although the effect on secondary outcomes could not be determined due to a low quality of evidence [631]. +However, another meta-analysis that examined 24 RCTs studying the effects of n-3 fatty acids on sepsis, including ARDS-induced sepsis, did find support for an effect on mortality when n-3 fatty acids were administered via enteral nutrition, although a paucity of high-quality evidence again limited conclusions [632]. Therefore, despite theoretical support for an immunomodulatory effect of n-3 PUFAs in COVID-19, evidence from existing RCTs is insufficient to determine whether supplementation offers an advantage in a clinical setting that would be relevant to COVID-19.
-Another potential mechanism that has led to interest in n-3 PUFAs as protective against viral infections including COVID-19 is its potential as a precursor molecule for the biosynthesis of endogenous specialized proresolving mediators (SPM), such as protectins and resolvins, that actively resolve inflammation and infection [632]. -SPM have exhibited beneficial effects against a variety of lung infections, including some caused by RNA viruses [633,634]. -Indeed, protectin D1 has been shown to increase survival from H1N1 viral infection in mice by affecting the viral replication machinery [635]. -Several mechanisms for SPM have been proposed, including preventing the release of pro-inflammatory cytokines and chemokines or increasing phagocytosis of cellular debris by macrophages [636]. -In influenza, SPM promote antiviral B lymphocytic activities [637], and protectin D1 has been shown to increase survival from H1N1 viral infection in mice by affecting the viral replication machinery [635]. -It has thus been hypothesized that SPM could aid in the resolution of the cytokine storm and pulmonary inflammation associated with COVID-19 [638,639]. -Another theory is that some comorbidities, such as obesity, could lead to deficiencies of SPM, which could in turn be related to the occurrence of adverse outcomes for COVID-19 [640]. -However, not all studies are in agreement that n-3 PUFAs or their resulting SPM are effective against infections [641]. -At a minimum, the effectiveness of n-3 PUFAs against infections would be dependent on the dosage, timing, and the specific pathogens responsible [642]. -On another level, there is still the question of whether fish oils can raise the levels of SPM levels upon ingestion and in response to acute inflammation in humans [643]. -Currently, Karolinska University Hospital is running a trial that will measure the levels of SPM as a secondary outcome following intravenous supplementation of n-3 PUFAs in hospitalized COVID-19 patients to determine whether n-3 PUFAs provides therapeutic value [644,645]. +
Another potential mechanism that has led to interest in n-3 PUFAs as protective against viral infections including COVID-19 is its potential as a precursor molecule for the biosynthesis of endogenous specialized proresolving mediators (SPM), such as protectins and resolvins, that actively resolve inflammation and infection [633]. +SPM have exhibited beneficial effects against a variety of lung infections, including some caused by RNA viruses [634,635]. +Indeed, protectin D1 has been shown to increase survival from H1N1 viral infection in mice by affecting the viral replication machinery [636]. +Several mechanisms for SPM have been proposed, including preventing the release of pro-inflammatory cytokines and chemokines or increasing phagocytosis of cellular debris by macrophages [637]. +In influenza, SPM promote antiviral B lymphocytic activities [638], and protectin D1 has been shown to increase survival from H1N1 viral infection in mice by affecting the viral replication machinery [636]. +It has thus been hypothesized that SPM could aid in the resolution of the cytokine storm and pulmonary inflammation associated with COVID-19 [639,640]. +Another theory is that some comorbidities, such as obesity, could lead to deficiencies of SPM, which could in turn be related to the occurrence of adverse outcomes for COVID-19 [641]. +However, not all studies are in agreement that n-3 PUFAs or their resulting SPM are effective against infections [642]. +At a minimum, the effectiveness of n-3 PUFAs against infections would be dependent on the dosage, timing, and the specific pathogens responsible [643]. +On another level, there is still the question of whether fish oils can raise the levels of SPM levels upon ingestion and in response to acute inflammation in humans [644]. +Currently, Karolinska University Hospital is running a trial that will measure the levels of SPM as a secondary outcome following intravenous supplementation of n-3 PUFAs in hospitalized COVID-19 patients to determine whether n-3 PUFAs provides therapeutic value [645,646]. Therefore, while this mechanism provides theoretical support for a role for n-3 PUFAs against COVID-19, experimental support is still needed.
-A third possible mechanism by which n-3 PUFAs could benefit COVID-19 patients arises from the fact that some COVID-19 patients, particularly those with comorbidities, are at a significant risk of thrombotic complications including arterial and venous thrombosis [107,646]. -Therefore, the use of prophylactic and therapeutic anticoagulants and antithrombotic agents is under consideration [647,648]. -Considering that there is significant evidence that n-3 fatty acids and other fish oil-derived lipids possess antithrombotic properties and anti-inflammatory properties [615,649,650], they may have therapeutic value against the prothrombotic complications of COVID-19. -In particular, concerns have been raised within the medical community about using investigational therapeutics on COVID-19 patients who are already on antiplatelet therapies due to pre-existing comorbidities because the introduction of such therapeutics could lead to issues with dosing and drug choice and/or negative drug-drug interactions [647]. +
A third possible mechanism by which n-3 PUFAs could benefit COVID-19 patients arises from the fact that some COVID-19 patients, particularly those with comorbidities, are at a significant risk of thrombotic complications including arterial and venous thrombosis [109,647]. +Therefore, the use of prophylactic and therapeutic anticoagulants and antithrombotic agents is under consideration [648,649]. +Considering that there is significant evidence that n-3 fatty acids and other fish oil-derived lipids possess antithrombotic properties and anti-inflammatory properties [616,650,651], they may have therapeutic value against the prothrombotic complications of COVID-19. +In particular, concerns have been raised within the medical community about using investigational therapeutics on COVID-19 patients who are already on antiplatelet therapies due to pre-existing comorbidities because the introduction of such therapeutics could lead to issues with dosing and drug choice and/or negative drug-drug interactions [648]. In such cases, dietary sources of n-3 fatty acids or other nutraceuticals with antiplatelet activities could hold particular value for reducing the risk of thrombotic complications in patients already receiving pharmaceutical antiplatelet therapies. -A new clinical trial [651] is currently recruiting COVID-19 positive patients to investigate the anti-inflammatory activity of a recently developed, highly purified nutraceutical derivative of EPA known as icosapent ethyl (VascepaTM) [652]. -Other randomized controlled trials that are in the preparatory stages intend to investigate the administration of EPA and other bioactive compounds to COVID-19 positive patients in order to observe whether anti-inflammatory effects or disease state improvements occur [653,654]. -Finally, while there have been studies investigating the therapeutic value of n-3 fatty acids against ARDS in humans, there is still limited evidence of their effectiveness [655]. +A new clinical trial [652] is currently recruiting COVID-19 positive patients to investigate the anti-inflammatory activity of a recently developed, highly purified nutraceutical derivative of EPA known as icosapent ethyl (VascepaTM) [653]. +Other randomized controlled trials that are in the preparatory stages intend to investigate the administration of EPA and other bioactive compounds to COVID-19 positive patients in order to observe whether anti-inflammatory effects or disease state improvements occur [654,655]. +Finally, while there have been studies investigating the therapeutic value of n-3 fatty acids against ARDS in humans, there is still limited evidence of their effectiveness [656]. It should be noted that the overall lack of human studies in this area means there is limited evidence as to whether these supplements could affect COVID-19 infection. Consequently, the clinical trials that are underway and those that have been proposed will provide valuable insight into whether the anti-inflammatory potential of n-3 PUFAs and their derivatives can be beneficial to the treatment of COVID-19. All the same, while the evidence is not present to draw conclusions about whether n-3 PUFAs will be useful in treating COVID-19, there is likely little harm associated with a diet rich in fish oils, and interest in n-3 PUFA supplementation by the general public is unlikely to have negative effects.
Zinc is nutrient supplement that may exhibit some benefits against RNA viral infections. -Zinc is a trace metal obtained from dietary sources or supplementation and is important for the maintenance of immune cells involved in adaptive and innate immunity [656]. +Zinc is a trace metal obtained from dietary sources or supplementation and is important for the maintenance of immune cells involved in adaptive and innate immunity [657]. Supplements can be administered orally as a tablet or as a lozenge and are available in many forms, such as zinc picolinate, zinc acetate, and zinc citrate. Zinc is also available from dietary sources including meat, seafood, nuts, seeds, legumes, and dairy. -The role of zinc in immune function has been extensively reviewed [656]. +The role of zinc in immune function has been extensively reviewed [657]. Zinc is an important signaling molecule, and zinc levels can alter host defense systems. -In inflammatory situations such as an infection, zinc can regulate leukocyte immune responses and activate the nuclear factor kappa-light-chain-enhancer of activated B cells, thus altering cytokine production [657,658]. -In particular, zinc supplementation can increase natural killer cell levels, which are important cells for host defense against viral infections [656,659]. +In inflammatory situations such as an infection, zinc can regulate leukocyte immune responses and activate the nuclear factor kappa-light-chain-enhancer of activated B cells, thus altering cytokine production [658,659]. +In particular, zinc supplementation can increase natural killer cell levels, which are important cells for host defense against viral infections [657,660]. As a result of these immune-related functions, zinc is also under consideration for possible benefits against COVID-19.
-Adequate zinc intake has been associated with reduced incidence of infection [660] and antiviral immunity [661]. -A randomized, double-blind, placebo-controlled trial that administered zinc supplementation to elderly subjects over the course of a year found zinc deficiency to be associated with increased susceptibility to infection and that zinc deficiency could be prevented through supplementation [660]. -Clinical trial data supports the utility of zinc to diminish the duration and severity of symptoms associated with common colds when it is provided within 24 hours of the onset of symptoms [662,663]. -An observational study showed that COVID-19 patients had significantly lower zinc levels in comparison to healthy controls and that zinc-deficient COVID-19 patients (those with levels less than 80 μg/dl) tended to have more complications (70.4% vs 30.0%, p = 0.009) and potentially prolonged hospital stays (7.9 vs 5.7 days, p = 0.048) relative to patients who were not zinc deficient [664]. -In coronaviruses specifically, in vitro evidence has demonstrated that the combination of zinc (Zn2+) and zinc ionophores (pyrithione) can interrupt the replication mechanisms of SARS-CoV-GFP (a fluorescently tagged SARS-CoV-1) and a variety of other RNA viruses [665,666]. +
Adequate zinc intake has been associated with reduced incidence of infection [661] and antiviral immunity [662]. +A randomized, double-blind, placebo-controlled trial that administered zinc supplementation to elderly subjects over the course of a year found zinc deficiency to be associated with increased susceptibility to infection and that zinc deficiency could be prevented through supplementation [661]. +Clinical trial data supports the utility of zinc to diminish the duration and severity of symptoms associated with common colds when it is provided within 24 hours of the onset of symptoms [663,664]. +An observational study showed that COVID-19 patients had significantly lower zinc levels in comparison to healthy controls and that zinc-deficient COVID-19 patients (those with levels less than 80 μg/dl) tended to have more complications (70.4% vs 30.0%, p = 0.009) and potentially prolonged hospital stays (7.9 vs 5.7 days, p = 0.048) relative to patients who were not zinc deficient [665]. +In coronaviruses specifically, in vitro evidence has demonstrated that the combination of zinc (Zn2+) and zinc ionophores (pyrithione) can interrupt the replication mechanisms of SARS-CoV-GFP (a fluorescently tagged SARS-CoV-1) and a variety of other RNA viruses [666,667]. Currently, there are over twenty clinical trials registered with the intention to use zinc in a preventative or therapeutic manner for COVID-19. -However, many of these trials proposed the use of zinc in conjunction with hydroxychloroquine and azithromycin [667,668,669,670], and it is not known how the lack of evidence supporting the use of hydroxychloroquine will affect investigation of zinc. +However, many of these trials proposed the use of zinc in conjunction with hydroxychloroquine and azithromycin [668,669,670,671], and it is not known how the lack of evidence supporting the use of hydroxychloroquine will affect investigation of zinc. One retrospective observational study of New York University Langone hospitals in New York compared outcomes among hospitalized COVID-19 patients administered hydroxychloroquine and azithromycin with zinc sulfate (n = 411) versus hydroxychloroquine and azithromycin alone (n = 521). -Notably, zinc is the only treatment that was used in this trial that is still under consideration as a therapeutic agent due to the lack of efficacy and potential adverse events associated with hydroxychloroquine and azithromycin against COVID-19 [671,672,673]. -While the addition of zinc sulfate did not affect the duration of hospitalization, the length of ICU stays or patient ventilation duration, univariate analyses indicated that zinc did increase the frequency of patients discharged and decreased the requirement for ventilation, referrals to the ICU, mortality [674]. -However, a smaller retrospective study at Hoboken University Medical Center New Jersey failed to find an association between zinc supplementation and survival of hospitalized patients [675]. +Notably, zinc is the only treatment that was used in this trial that is still under consideration as a therapeutic agent due to the lack of efficacy and potential adverse events associated with hydroxychloroquine and azithromycin against COVID-19 [672,673,674]. +While the addition of zinc sulfate did not affect the duration of hospitalization, the length of ICU stays or patient ventilation duration, univariate analyses indicated that zinc did increase the frequency of patients discharged and decreased the requirement for ventilation, referrals to the ICU, mortality [675]. +However, a smaller retrospective study at Hoboken University Medical Center New Jersey failed to find an association between zinc supplementation and survival of hospitalized patients [676]. Therefore, whether zinc contributes to COVID-19 recovery remains unclear. -Other trials are now investigating zinc in conjunction with other supplements such as vitamin C or n-3 PUFA [654,676]. +Other trials are now investigating zinc in conjunction with other supplements such as vitamin C or n-3 PUFA [655,677]. Though there is, overall, encouraging data for zinc supplementation against the common cold and viral infections, there is currently limited evidence to suggest zinc supplementation has any beneficial effects against the current novel COVID-19; thus, the clinical trials that are currently underway will provide vital information on the efficacious use of zinc in COVID-19 prevention and/or treatment. However, given the limited risk and the potential association between zinc deficiency and illness, maintaining a healthy diet to ensure an adequate zinc status may be advisable for individuals seeking to reduce their likelihood of infection.
Vitamins B, C, D, and E have also been suggested as potential nutrient supplement interventions for COVID-19 [613,677]. -In particular vitamin C has been proposed as a potential therapeutic agent against COVID-19 due to its long history of use against the common cold and other respiratory infections [678,679]. +
Vitamins B, C, D, and E have also been suggested as potential nutrient supplement interventions for COVID-19 [614,678]. +In particular vitamin C has been proposed as a potential therapeutic agent against COVID-19 due to its long history of use against the common cold and other respiratory infections [679,680]. Vitamin C can be obtained via dietary sources such as fruits and vegetables or via supplementation. Vitamin C plays a significant role in promoting immune function due to its effects on various immune cells. -It affects inflammation by modulating cytokine production, decreasing histamine levels, enhancing the differentiation and proliferation of T- and B-lymphocytes, increasing antibody levels, and protecting against the negative effects of reactive oxygen species, among other effects related to COVID-19 pathology [680,681,682]. +It affects inflammation by modulating cytokine production, decreasing histamine levels, enhancing the differentiation and proliferation of T- and B-lymphocytes, increasing antibody levels, and protecting against the negative effects of reactive oxygen species, among other effects related to COVID-19 pathology [681,682,683]. Vitamin C is utilized by the body during viral infections, as evinced by lower concentrations in leukocytes and lower concentrations of urinary vitamin C. -Post-infection, these levels return to baseline ranges [683,684,685,686,687]. -It has been shown that as little as 0.1 g/d of vitamin C can maintain normal plasma levels of vitamin C in healthy individuals, but higher doses of at least 1-3 g/d are required for critically ill patients in ICUs [688]. -Indeed, vitamin C deficiency appears to be common among COVID-19 patients [689,690]. -COVID-19 is also associated with the formation of microthrombi and coagulopathy [109] that contribute to its characteristic lung pathology [691], but these symptoms can be ameliorated by early infusions of vitamin C to inhibit endothelial surface P-selectin expression and platelet-endothelial adhesion [692]. -Intravenous vitamin C also reduced D-dimer levels, which are notably elevated in COVID-19 patients [105,106], in a case study of 17 COVID-19 patients [693]. +Post-infection, these levels return to baseline ranges [684,685,686,687,688]. +It has been shown that as little as 0.1 g/d of vitamin C can maintain normal plasma levels of vitamin C in healthy individuals, but higher doses of at least 1-3 g/d are required for critically ill patients in ICUs [689]. +Indeed, vitamin C deficiency appears to be common among COVID-19 patients [690,691]. +COVID-19 is also associated with the formation of microthrombi and coagulopathy [111] that contribute to its characteristic lung pathology [692], but these symptoms can be ameliorated by early infusions of vitamin C to inhibit endothelial surface P-selectin expression and platelet-endothelial adhesion [693]. +Intravenous vitamin C also reduced D-dimer levels, which are notably elevated in COVID-19 patients [107,108], in a case study of 17 COVID-19 patients [694]. There is therefore preliminary evidence suggesting that vitamin C status and vitamin C administration may be relevant to COVID-19 outcomes.
Larger-scale studies of vitamin C, however, have provided mixed results. -A recent meta-analysis found consistent support for regular vitamin C supplementation reducing the duration of the common cold, but that supplementation with vitamin C (> 200 mg) failed to reduce the incidence of colds [694]. -Individual studies have found Vitamin C to reduce the susceptibility of patients to lower respiratory tract infections, such as pneumonia [695]. +A recent meta-analysis found consistent support for regular vitamin C supplementation reducing the duration of the common cold, but that supplementation with vitamin C (> 200 mg) failed to reduce the incidence of colds [695]. +Individual studies have found Vitamin C to reduce the susceptibility of patients to lower respiratory tract infections, such as pneumonia [696]. Another meta-analysis demonstrated that in twelve trials, vitamin C supplementation reduced the length of stay of patients in intensive care units (ICUs) by 7.8% (95% CI: 4.2% to 11.2%; p = 0.00003). Furthermore, high doses (1-3 g/day) significantly reduced the length of an ICU stay by 8.6% in six trials (p = 0.003). -Vitamin C also shortened the duration of mechanical ventilation by 18.2% in three trials in which patients required intervention for over 24 hours (95% CI 7.7% to 27%; p = 0.001) [688]. -Despite these findings, an RCT of 167 patients known as CITRUS ALI failed to show a benefit of a 96-hour infusion of vitamin C to treat ARDS [696]. -Clinical trials specifically investigating vitamin C in the context of COVID-19 have now begun, as highlighted by Carr et al. [679]. +Vitamin C also shortened the duration of mechanical ventilation by 18.2% in three trials in which patients required intervention for over 24 hours (95% CI 7.7% to 27%; p = 0.001) [689]. +Despite these findings, an RCT of 167 patients known as CITRUS ALI failed to show a benefit of a 96-hour infusion of vitamin C to treat ARDS [697]. +Clinical trials specifically investigating vitamin C in the context of COVID-19 have now begun, as highlighted by Carr et al. [680]. These trials intend to investigate the use of intravenous vitamin C in hospitalized COVID-19 patients. -The first trial to report initial results took place in Wuhan, China [697]. -These initial results indicated that the administration of 12 g/12 hr of intravenous vitamin C for 7 days in 56 critically ill COVID-19 patients resulted in a promising reduction of 28-day mortality (p = 0.06) in univariate survival analysis [698]. -Indeed, the same study reported a significant decrease in IL-6 levels by day 7 of vitamin C infusion (p = 0.04) [699]. +The first trial to report initial results took place in Wuhan, China [698]. +These initial results indicated that the administration of 12 g/12 hr of intravenous vitamin C for 7 days in 56 critically ill COVID-19 patients resulted in a promising reduction of 28-day mortality (p = 0.06) in univariate survival analysis [699]. +Indeed, the same study reported a significant decrease in IL-6 levels by day 7 of vitamin C infusion (p = 0.04) [700]. Additional studies that are being conducted in Canada, China, Iran, and the USA will provide additional insight into whether vitamin C supplementation affects COVID-19 outcomes on a larger scale.
Even though evidence supporting the use of vitamin C is beginning to emerge, we will not know how effective vitamin C is as a therapeutic for quite some time. Currently (as of January 2021) over fifteen trials are registered with clinicaltrials.gov that are either recruiting, active or are currently in preparation. @@ -2456,166 +2457,166 @@
Of all of the supplements currently under investigation, vitamin D has become a leading prophylactic and therapeutic candidate against SARS-CoV-2. -Vitamin D can modulate both the adaptive and innate immune system and is associated with various aspects of immune health and antiviral defense [701,702,703,704,705]. +Vitamin D can modulate both the adaptive and innate immune system and is associated with various aspects of immune health and antiviral defense [702,703,704,705,706]. Vitamin D can be sourced through diet or supplementation, but it is mainly biosynthesized by the body on exposure to ultraviolet light (UVB) from sunlight. -Vitamin D deficiency is associated with an increased susceptibility to infection [706]. -In particular, vitamin D deficient patients are at risk of developing acute respiratory infections [707] and ARDS [707]. +Vitamin D deficiency is associated with an increased susceptibility to infection [707]. +In particular, vitamin D deficient patients are at risk of developing acute respiratory infections [708] and ARDS [708]. 1,25-dihydroxyvitamin D3 is the active form of vitamin D that is involved in adaptive and innate responses; however, due to its low concentration and a short half life of a few hours, vitamin D levels are typically measured by the longer lasting and more abundant precursor 25-hydroxyvitamin D. -The vitamin D receptor is expressed in various immune cells, and vitamin D is an immunomodulator of antigen presenting cells, dendritic cells, macrophages, monocytes, and T- and B-lymphocytes [706,708]. +The vitamin D receptor is expressed in various immune cells, and vitamin D is an immunomodulator of antigen presenting cells, dendritic cells, macrophages, monocytes, and T- and B-lymphocytes [707,709]. Due to its potential immunomodulating properties, vitamin D supplementation may be advantageous to maintain a healthy immune system.
-Early in the pandemic it was postulated that an individual’s vitamin D status could significantly affect their risk of developing COVID-19 [709]. +
Early in the pandemic it was postulated that an individual’s vitamin D status could significantly affect their risk of developing COVID-19 [710]. This hypothesis was derived from the fact that the current pandemic emerged in Wuhan China during winter, when 25-hydroxyvitamin D concentrations are at their lowest due to a lack of sunlight, whereas in the Southern Hemisphere, where it was nearing the end of the summer and higher 25-hydroxyvitamin D concentrations would be higher, the number of cases was low. -This led researchers to question whether there was a seasonal component to the SARS-CoV-2 pandemic and whether vitamin D levels might play a role [709,710,711,712]. +This led researchers to question whether there was a seasonal component to the SARS-CoV-2 pandemic and whether vitamin D levels might play a role [710,711,712,713]. Though it is assumed that COVID-19 is seasonal, multiple other factors that can affect vitamin D levels should also be considered. These factors include an individual’s nutritional status, their age, their occupation, skin pigmentation, potential comorbidities, and the variation of exposure to sunlight due to latitude amongst others. -Indeed, it has been estimated that each degree of latitude north of 28 degrees corresponded to a 4.4% increase of COVID-19 mortality, indirectly linking a persons vitamin D levels via exposure to UVB light to COVID-19 mortality [710].
-As the pandemic has evolved, additional research of varying quality has investigated some of the potential links identified early in the pandemic [709] between vitamin D and COVID-19. +Indeed, it has been estimated that each degree of latitude north of 28 degrees corresponded to a 4.4% increase of COVID-19 mortality, indirectly linking a persons vitamin D levels via exposure to UVB light to COVID-19 mortality [711].
+As the pandemic has evolved, additional research of varying quality has investigated some of the potential links identified early in the pandemic [710] between vitamin D and COVID-19. Indeed, studies are beginning to investigate whether there is any prophylactic and/or therapeutic relationship between vitamin D and COVID-19. -A study in Switzerland demonstrated that 27 SARS-CoV-2 positive patients exhibited 25-hydroxyvitamin D plasma concentrations that were significantly lower (11.1 ng/ml) than those of SARS-CoV-2 negative patients (24.6 ng/ml; p = 0.004), an association that held when stratifying patients greater than 70 years old [713]. -These findings seem to be supported by a Belgian observational study of 186 SARS-CoV-2 positive patients exhibiting symptoms of pneumonia, where 25-hydroxyvitamin D plasma concentrations were measured and CT scans of the lungs were obtained upon hospitalization [714]. +A study in Switzerland demonstrated that 27 SARS-CoV-2 positive patients exhibited 25-hydroxyvitamin D plasma concentrations that were significantly lower (11.1 ng/ml) than those of SARS-CoV-2 negative patients (24.6 ng/ml; p = 0.004), an association that held when stratifying patients greater than 70 years old [714]. +These findings seem to be supported by a Belgian observational study of 186 SARS-CoV-2 positive patients exhibiting symptoms of pneumonia, where 25-hydroxyvitamin D plasma concentrations were measured and CT scans of the lungs were obtained upon hospitalization [715]. A significant difference in 25-hydroxyvitamin D levels was observed between the SARS-CoV-2 patients and 2,717 season-matched diseased controls. Both female and male patients possessed lower median 25-hydroxyvitamin D concentrations than the control group as a whole (18.6 ng/ml versus 21.5 ng/ml; p = 0.0016) and a higher rate of vitamin D deficiency (58.6% versus 42.5%). However, when comparisons were stratified by sex, evidence of sexual dimorphism became apparent, as female patients had equivalent levels of 25-hydroxyvitamin D to females in the control group, whereas male patients were deficient in 25-hydroxyvitamin D relative to male controls (67% versus 49%; p = 0.0006). Notably, vitamin D deficiency was progressively lower in males with advancing radiological disease stages (p = 0.001). -These studies are supported by several others that indicate that vitamin D status may be an independent risk factor for the severity of COVID-19 [715,716,717,718] and in COVID-19 patients relative to population-based controls [719]. -Indeed, serum concentrations of 25-hydroxyvitamin D above 30 ng/ml, which indicate vitamin D sufficiency, seems to be associated with a reduction in serum C-reactive protein, an inflammatory marker, along with increased lymphocyte levels, which suggests that vitamin D levels may modulate the immune response by reducing risk for cytokine storm in response to SARS-CoV-2 infection [719]. -A study in India determined that COVID-19 fatality was higher in patients with severe COVID-19 and low serum 25-hydroxyvitamin D (mean level 6.2 ng/ml; 97% vitamin D deficient) levels versus asymptomatic non-severe patients with higher levels of vitamin D (mean level 27.9 ng/ml; 33% vitamin D deficient) [720]. +These studies are supported by several others that indicate that vitamin D status may be an independent risk factor for the severity of COVID-19 [716,717,718,719] and in COVID-19 patients relative to population-based controls [720]. +Indeed, serum concentrations of 25-hydroxyvitamin D above 30 ng/ml, which indicate vitamin D sufficiency, seems to be associated with a reduction in serum C-reactive protein, an inflammatory marker, along with increased lymphocyte levels, which suggests that vitamin D levels may modulate the immune response by reducing risk for cytokine storm in response to SARS-CoV-2 infection [720]. +A study in India determined that COVID-19 fatality was higher in patients with severe COVID-19 and low serum 25-hydroxyvitamin D (mean level 6.2 ng/ml; 97% vitamin D deficient) levels versus asymptomatic non-severe patients with higher levels of vitamin D (mean level 27.9 ng/ml; 33% vitamin D deficient) [721]. In the same study, vitamin D deficiency was associated with higher levels of inflammatory markers including IL-6, ferritin, and tumor necrosis factor α. -Collectively, these studies add to a multitude of observational studies reporting potential associations between low levels of 25-hydroxyvitamin D and COVID-19 incidence and severity [713,718,719,721,722,723,724,725,726,727].
-Despite the large number of studies establishing a link between vitamin D status and COVID-19 severity, an examination of data from the UK Biobank did not support this thesis [728,729]. +Collectively, these studies add to a multitude of observational studies reporting potential associations between low levels of 25-hydroxyvitamin D and COVID-19 incidence and severity [714,719,720,722,723,724,725,726,727,728].
+Despite the large number of studies establishing a link between vitamin D status and COVID-19 severity, an examination of data from the UK Biobank did not support this thesis [729,730]. These analyses examined 25-hydroxyvitamin D concentrations alongside SARS-CoV-2 positivity and COVID-19 mortality in over 340,000 UK Biobank participants. -However, these studies have caused considerable debate that will likely be settled following further studies [730,731]. -Overall, while the evidence suggests that there is likely an association between low serum 25-hydroxyvitamin D and COVID-19 incidence, these studies must be interpreted with caution, as there is the potential for reverse causality, bias, and other confounding factors including that vitamin D deficiency is also associated with numerous pre-existing conditions and risk factors that can increase the risk for severe COVID-19 [582,710,732,733].
+However, these studies have caused considerable debate that will likely be settled following further studies [731,732]. +Overall, while the evidence suggests that there is likely an association between low serum 25-hydroxyvitamin D and COVID-19 incidence, these studies must be interpreted with caution, as there is the potential for reverse causality, bias, and other confounding factors including that vitamin D deficiency is also associated with numerous pre-existing conditions and risk factors that can increase the risk for severe COVID-19 [583,711,733,734].While these studies inform us of the potential importance of vitamin D sufficiency and the risk of SARS-CoV-2 infection and severe COVID-19, they fail to conclusively determine whether vitamin D supplementation can therapeutically affect the clinical course of COVID-19. In one study, 40 vitamin D deficient asymptomatic or mildly symptomatic participants patients were either randomized to receive 60,000 IU of cholecalciferol daily for at least 7 days (n = 16) or a placebo (n = 24) with a target serum 25-hydroxyvitamin D level >50 ng/ml. At day 7, 10 patients achieved >50 ng/ml, followed by another 2 by day 14. -By the end of the study, the treatment group had a greater proportion of vitamin D-deficient participants that tested negative for SARS-CoV-2 RNA, and they had a significantly lower fibrinogen levels, potentially indicating a beneficial effect [734]. -A pilot study in Spain determined that early administration of high dose calcifediol (~21,000 IU days 1-2 and ~11,000 IU days 3-7 of hospital admission) with hydroxychloroquine and azithromycin to 50 hospitalized COVID-19 patients significantly reduced ICU admissions and may have reduced disease severity versus hydroxychloroquine and azithromycin alone [735]. -Although this study received significant criticism from the National Institute for Health and Care Excellence (NICE) in the UK [736], an independent follow-up statistical analysis supported the findings of the study with respect to the results of cholecalciferol treatment [737]. -Another trial of 986 patients hospitalized for COVID-19 in three UK hospitals administered cholecalciferol supplementation (≥ 280,000 IU in a time period of 7 weeks) to 151 patients and found an association with a reduced risk of COVID-19 mortality, regardless of baseline 25-hydroxyvitamin D levels [738]. +By the end of the study, the treatment group had a greater proportion of vitamin D-deficient participants that tested negative for SARS-CoV-2 RNA, and they had a significantly lower fibrinogen levels, potentially indicating a beneficial effect [735]. +A pilot study in Spain determined that early administration of high dose calcifediol (~21,000 IU days 1-2 and ~11,000 IU days 3-7 of hospital admission) with hydroxychloroquine and azithromycin to 50 hospitalized COVID-19 patients significantly reduced ICU admissions and may have reduced disease severity versus hydroxychloroquine and azithromycin alone [736]. +Although this study received significant criticism from the National Institute for Health and Care Excellence (NICE) in the UK [737], an independent follow-up statistical analysis supported the findings of the study with respect to the results of cholecalciferol treatment [738]. +Another trial of 986 patients hospitalized for COVID-19 in three UK hospitals administered cholecalciferol supplementation (≥ 280,000 IU in a time period of 7 weeks) to 151 patients and found an association with a reduced risk of COVID-19 mortality, regardless of baseline 25-hydroxyvitamin D levels [739]. However, a double-blind, randomized, placebo-controlled trial of 240 hospitalized COVID-19 patients in São Paulo, Brazil administered a single 200,000 IU oral dose of vitamin D. -While levels of 25-hydroxyvitamin D did increase from 21% to ~27% (p = 0.001) and the supplementation was well tolerated, there was no reduction in the length of hospital stay or mortality and no change to any other relevant secondary outcomes [739]. +While levels of 25-hydroxyvitamin D did increase from 21% to ~27% (p = 0.001) and the supplementation was well tolerated, there was no reduction in the length of hospital stay or mortality and no change to any other relevant secondary outcomes [740]. These early findings are thus still inconclusive with regards to the therapeutic value of vitamin D supplementation. -However, other trials are underway, including one trial that is investigating the utility of vitamin D as an immune-modulating agent by monitoring whether administration of vitamin D precipitates an improvement of health status in non-severe symptomatic COVID-19 patients and whether vitamin D prevents patient deterioration [740]. -Other trials are examining various factors including mortality, symptom recovery, severity of disease, rates of ventilation, inflammatory markers such as C-reactive protein and IL-6, blood cell counts, and the prophylactic capacity of vitamin D administration [740,741,742,743]. -Concomitant administration of vitamin D with pharmaceuticals such as aspirin [744] and bioactive molecules such as resveratrol [745] are also under investigation.
+However, other trials are underway, including one trial that is investigating the utility of vitamin D as an immune-modulating agent by monitoring whether administration of vitamin D precipitates an improvement of health status in non-severe symptomatic COVID-19 patients and whether vitamin D prevents patient deterioration [741]. +Other trials are examining various factors including mortality, symptom recovery, severity of disease, rates of ventilation, inflammatory markers such as C-reactive protein and IL-6, blood cell counts, and the prophylactic capacity of vitamin D administration [741,742,743,744]. +Concomitant administration of vitamin D with pharmaceuticals such as aspirin [745] and bioactive molecules such as resveratrol [746] are also under investigation.The effectiveness of vitamin D supplementation against COVID-19 remains open for debate. -All the same, there is no doubt that vitamin D deficiency is a widespread issue and should be addressed not only because of its potential link to SARS-CoV-2 incidence [746], but also due to its importance for overall health. +All the same, there is no doubt that vitamin D deficiency is a widespread issue and should be addressed not only because of its potential link to SARS-CoV-2 incidence [747], but also due to its importance for overall health. There is a possibility that safe exposure to sunlight could improve endogenous synthesis of vitamin D, potentially strengthening the immune system. However, sun exposure is not sufficient on its own, particularly in the winter months. Indeed, while the possible link between vitamin D status and COVID-19 is further investigated, preemptive supplementation of vitamin D and encouraging people to maintain a healthy diet for optimum vitamin D status is likely to raise serum levels of 25-hydroxyvitamin D while being unlikely to carry major health risks. These principles seem to be the basis of a number of guidelines issued by some countries and scientific organizations that have advised supplementation of vitamin D during the pandemic. The Académie Nationale de Médecine in France recommends rapid testing of 25-hydroxyvitamin D for people over 60 years old to identify those most at risk of vitamin D deficiency and advises them to obtain a bolus dose of 50,000 to 100,000 IU vitamin D to limit respiratory complications. -It has also recommended that those under 60 years old should take 800 to 1,000 IU daily if they receive a SARS-CoV-2 positive test [747]. -In Slovenia, doctors have been advised to provide nursing home patients with vitamin D [748]. -Both Public Health England and Public Health Scotland have advised members of the Black, Asian, and minority ethnic communities to supplement for vitamin D in light of evidence that they may be at higher risk for vitamin D deficiency along with other COVID-19 risk factors, a trend that has also been observed in the United States [749,750]. +It has also recommended that those under 60 years old should take 800 to 1,000 IU daily if they receive a SARS-CoV-2 positive test [748]. +In Slovenia, doctors have been advised to provide nursing home patients with vitamin D [749]. +Both Public Health England and Public Health Scotland have advised members of the Black, Asian, and minority ethnic communities to supplement for vitamin D in light of evidence that they may be at higher risk for vitamin D deficiency along with other COVID-19 risk factors, a trend that has also been observed in the United States [750,751]. However, other UK scientific bodies including the NICE recommend that individuals supplement for vitamin D as per usual UK government advice but warn that people should not supplement for vitamin D solely to prevent COVID-19. -All the same, the NICE has provided guidelines for research to investigate the supplementation of vitamin D in the context of COVID-19 [751]. -Despite vitamin D deficiency being a widespread issue in the United States [752], the National Institutes of Health have stated that there is “insufficient data to recommend either for or against the use of vitamin D for the prevention or treatment of COVID-19” [753]. +All the same, the NICE has provided guidelines for research to investigate the supplementation of vitamin D in the context of COVID-19 [752]. +Despite vitamin D deficiency being a widespread issue in the United States [753], the National Institutes of Health have stated that there is “insufficient data to recommend either for or against the use of vitamin D for the prevention or treatment of COVID-19” [754]. These are just some examples of how public health guidance has responded to the emerging evidence regarding vitamin D and COVID-19. -Outside of official recommendations, there is also evidence that individuals may be paying increased attention to their vitamin D levels, as a survey of Polish consumers showed that 56% of respondents used vitamin D during the pandemic [754]. -However, some companies have used the emerging evidence surrounding vitamin D to sell products that claim to prevent and treat COVID-19, which in one incident required a federal court to intervene and issue an injunction barring the sale of vitamin-D-related products due to the lack of clinical data supporting these claims [755]. +Outside of official recommendations, there is also evidence that individuals may be paying increased attention to their vitamin D levels, as a survey of Polish consumers showed that 56% of respondents used vitamin D during the pandemic [755]. +However, some companies have used the emerging evidence surrounding vitamin D to sell products that claim to prevent and treat COVID-19, which in one incident required a federal court to intervene and issue an injunction barring the sale of vitamin-D-related products due to the lack of clinical data supporting these claims [756]. It is clear that further studies and clinical trials are required to conclusively determine the prophylactic and therapeutic potential of vitamin D supplementation against COVID-19. Until such time that sufficient evidence emerges, individuals should follow their national guidelines surrounding vitamin D intake to achieve vitamin D sufficiency.
Probiotics are “live microorganisms that, when administered in adequate amounts, confer a health benefit on the host” [756]. -Some studies suggest that probiotics are beneficial against common viral infections, and there is modest evidence to suggest that they can modulate the immune response [757,758]. -As a result, it has been hypothesized that probiotics may have therapeutic value worthy of investigation against SARS-CoV-2 [759]. -Probiotics and next-generation probiotics, which are more akin to pharmacological-grade supplements, have been associated with multiple potential beneficial effects for allergies, digestive tract disorders, and even metabolic diseases through their anti-inflammatory and immunomodulatory effects [760,761]. -However, the mechanisms by which probiotics affect these various conditions would likely differ among strains, with the ultimate effect of the probiotic depending on the heterogeneous set of bacteria present [761]. -Some of the beneficial effects of probiotics include reducing inflammation by promoting the expression of anti-inflammatory mediators, inhibiting Toll-like receptors 2 and 4, competing directly with pathogens, synthesizing antimicrobial substances or other metabolites, improving intestinal barrier function, and/or favorably altering the gut microbiota and the brain-gut axis [761,762,763]. -It is also thought that lactobacilli such as Lactobacillus paracasei, Lactobacillus plantarum and Lactobacillus rhamnosus have the capacity to bind to and inactivate some viruses via adsorptive and/or trapping mechanisms [764]. -Other probiotic lactobacilli and even non-viable bacterium-like particles have been shown to reduce both viral attachment to host cells and viral titers, along with reducing cytokine synthesis, enhancing the antiviral IFN-α response, and inducing various other antiviral mechanisms [764,765,766,767,768,769,770,771,772]. -These antiviral and immunobiotic mechanisms and others have been reviewed in detail elsewhere [612,759,773]. -However, there is also a bi-directional relationship between the lungs and gut microbiota known as the gut-lung axis [774], whereby gut microbial metabolites and endotoxins may affect the lungs via the circulatory system and the lung microbiota in return may affect the gut [775]. -Therefore, the gut-lung axis may play role in our future understanding of COVID-19 pathogenesis and become a target for probiotic treatments [776]. -Moreover, as microbial dysbiosis of the respiratory tract and gut may play a role in some viral infections, it has been suggested that SARS-CoV-2 may interact with our commensal microbiota [612; 777; 10.3389/fmicb.2020.01840] and that the lung microbiome could play a role in developing immunity to viral infections [778]. +
Probiotics are “live microorganisms that, when administered in adequate amounts, confer a health benefit on the host” [757]. +Some studies suggest that probiotics are beneficial against common viral infections, and there is modest evidence to suggest that they can modulate the immune response [758,759]. +As a result, it has been hypothesized that probiotics may have therapeutic value worthy of investigation against SARS-CoV-2 [760]. +Probiotics and next-generation probiotics, which are more akin to pharmacological-grade supplements, have been associated with multiple potential beneficial effects for allergies, digestive tract disorders, and even metabolic diseases through their anti-inflammatory and immunomodulatory effects [761,762]. +However, the mechanisms by which probiotics affect these various conditions would likely differ among strains, with the ultimate effect of the probiotic depending on the heterogeneous set of bacteria present [762]. +Some of the beneficial effects of probiotics include reducing inflammation by promoting the expression of anti-inflammatory mediators, inhibiting Toll-like receptors 2 and 4, competing directly with pathogens, synthesizing antimicrobial substances or other metabolites, improving intestinal barrier function, and/or favorably altering the gut microbiota and the brain-gut axis [762,763,764]. +It is also thought that lactobacilli such as Lactobacillus paracasei, Lactobacillus plantarum and Lactobacillus rhamnosus have the capacity to bind to and inactivate some viruses via adsorptive and/or trapping mechanisms [765]. +Other probiotic lactobacilli and even non-viable bacterium-like particles have been shown to reduce both viral attachment to host cells and viral titers, along with reducing cytokine synthesis, enhancing the antiviral IFN-α response, and inducing various other antiviral mechanisms [765,766,767,768,769,770,771,772,773]. +These antiviral and immunobiotic mechanisms and others have been reviewed in detail elsewhere [613,760,774]. +However, there is also a bi-directional relationship between the lungs and gut microbiota known as the gut-lung axis [775], whereby gut microbial metabolites and endotoxins may affect the lungs via the circulatory system and the lung microbiota in return may affect the gut [776]. +Therefore, the gut-lung axis may play role in our future understanding of COVID-19 pathogenesis and become a target for probiotic treatments [777]. +Moreover, as microbial dysbiosis of the respiratory tract and gut may play a role in some viral infections, it has been suggested that SARS-CoV-2 may interact with our commensal microbiota [613; 778; 10.3389/fmicb.2020.01840] and that the lung microbiome could play a role in developing immunity to viral infections [779]. These postulations, if correct, could lead to the development of novel probiotic and prebiotic treatments. However, significant research is required to confirm these associations and their relevance to patient care, if any.
Probiotic therapies and prophylactics may also confer some advantages for managing symptoms of COVID-19 or risks associated with its treatment. -Probiotics have tentatively been associated with the reduction of risk and duration of viral upper respiratory tract infections [779,780,781]. -Some meta-analyses that have assessed the efficacy of probiotics in viral respiratory infections have reported moderate reductions in the incidence and duration of infection [780,782]. -Indeed, randomized controlled trials have shown that administering Bacillus subtilis and Enterococcus faecalis [783], Lactobacillus rhamnosus GG [784], or Lactobacillus casei and Bifidobacterium breve with galactooligosaccharides [785] via the nasogastric tube to ventilated patients reduced the occurrence of ventilator-associated pneumonia in comparison to the respective control groups in studies of viral infections and sepsis. -These findings were also supported by a recent meta-analysis [786]. -Additionally, COVID-19 patients carry a significant risk of ventilator-associated bacterial pneumonia [787], but it can be challenging for clinicians to diagnose this infection due to the fact that severe COVID-19 infection presents with the symptoms of pneumonia [788]. +Probiotics have tentatively been associated with the reduction of risk and duration of viral upper respiratory tract infections [780,781,782]. +Some meta-analyses that have assessed the efficacy of probiotics in viral respiratory infections have reported moderate reductions in the incidence and duration of infection [781,783]. +Indeed, randomized controlled trials have shown that administering Bacillus subtilis and Enterococcus faecalis [784], Lactobacillus rhamnosus GG [785], or Lactobacillus casei and Bifidobacterium breve with galactooligosaccharides [786] via the nasogastric tube to ventilated patients reduced the occurrence of ventilator-associated pneumonia in comparison to the respective control groups in studies of viral infections and sepsis. +These findings were also supported by a recent meta-analysis [787]. +Additionally, COVID-19 patients carry a significant risk of ventilator-associated bacterial pneumonia [788], but it can be challenging for clinicians to diagnose this infection due to the fact that severe COVID-19 infection presents with the symptoms of pneumonia [789]. Therefore, an effective prophylactic therapy for ventilator-associated pneumonia in severe COVID-19 patients would carry significant therapeutic value. -Additionally, in recent years, probiotics have become almost synonymous with the treatment of gastrointestinal issues due to their supposed anti-inflammatory and immunomodulatory effects [789]. -Notably, gastrointestinal symptoms commonly occur in COVID-19 patients [790], and angiotensin-converting enzyme 2, the portal by which SARS-CoV-2 enters human cells, is highly expressed in enterocytes of the ileum and colon, suggesting that these organs may be a potential route of infection [791,792]. -Indeed, SARS-CoV-2 viral RNA has been detected in human feces [89,793], and fecal-oral transmission of the virus has not yet been ruled out [794]. -Rectal swabs of some SARS-CoV-2 positive pediatric patients persistently tested positive for several days despite negative nasopharyngeal tests, indicating the potential for fecal viral shedding [795]. -However, there is conflicting evidence for the therapeutic value of various probiotics against the incidence or severity of gastrointestinal symptoms in viral or bacterial infections such as gastroenteritis [796,797]. -Nevertheless, it has been proposed that the administration of probiotics to COVID-19 patients and healthcare workers may prevent or ameliorate the gastrointestinal symptoms of COVID-19, a hypothesis that several clinical trials are now preparing to investigate [798,799]. -Other studies are investigating whether probiotics may affect patient outcomes following SARS-CoV-2 infection [800].
+Additionally, in recent years, probiotics have become almost synonymous with the treatment of gastrointestinal issues due to their supposed anti-inflammatory and immunomodulatory effects [790]. +Notably, gastrointestinal symptoms commonly occur in COVID-19 patients [791], and angiotensin-converting enzyme 2, the portal by which SARS-CoV-2 enters human cells, is highly expressed in enterocytes of the ileum and colon, suggesting that these organs may be a potential route of infection [792,793]. +Indeed, SARS-CoV-2 viral RNA has been detected in human feces [91,794], and fecal-oral transmission of the virus has not yet been ruled out [795]. +Rectal swabs of some SARS-CoV-2 positive pediatric patients persistently tested positive for several days despite negative nasopharyngeal tests, indicating the potential for fecal viral shedding [796]. +However, there is conflicting evidence for the therapeutic value of various probiotics against the incidence or severity of gastrointestinal symptoms in viral or bacterial infections such as gastroenteritis [797,798]. +Nevertheless, it has been proposed that the administration of probiotics to COVID-19 patients and healthcare workers may prevent or ameliorate the gastrointestinal symptoms of COVID-19, a hypothesis that several clinical trials are now preparing to investigate [799,800]. +Other studies are investigating whether probiotics may affect patient outcomes following SARS-CoV-2 infection [801].Generally, the efficacy of probiotic use is a controversial topic among scientists. -In Europe, EFSA has banned the term probiotics on products labels, which has elicited either criticism for EFSA or support for probiotics from researchers in the field [756,801,802]. +In Europe, EFSA has banned the term probiotics on products labels, which has elicited either criticism for EFSA or support for probiotics from researchers in the field [757,802,803]. This regulation is due to the hyperbolic claims placed on the labels of various probiotic products, which lack rigorous scientific data to support their efficacy. -Overall, the data supporting probiotics in the treatment or prevention of many different disorders and diseases is not conclusive, as the quality of the evidence is generally considered low [779]. +Overall, the data supporting probiotics in the treatment or prevention of many different disorders and diseases is not conclusive, as the quality of the evidence is generally considered low [780]. However, in the case of probiotics and respiratory infections, the evidence seems to be supportive of their potential therapeutic value. Consequently, several investigations are underway to investigate the prophylactic and therapeutic potential of probiotics for COVID-19. -The blind use of conventional probiotics for COVID-19 is currently cautioned against until the pathogenesis of SARS-CoV-2 can be further established [803]. +The blind use of conventional probiotics for COVID-19 is currently cautioned against until the pathogenesis of SARS-CoV-2 can be further established [804]. Until clinical trials investigating the prophylactic and therapeutic potential of probiotics for COVID-19 are complete, it is not possible to provide an evidence-based recommendation for their use. -Despite these concerns, complementary use of probiotics as an adjuvant therapeutic has been proposed by the Chinese National Health Commission and National Administration of Traditional Chinese Medicine [90]. -While supply issues prevented the probiotics market from showing the same rapid response to the COVID-19 as some other supplements, many suppliers are reporting growth during the pandemic [804]. +Despite these concerns, complementary use of probiotics as an adjuvant therapeutic has been proposed by the Chinese National Health Commission and National Administration of Traditional Chinese Medicine [92]. +While supply issues prevented the probiotics market from showing the same rapid response to the COVID-19 as some other supplements, many suppliers are reporting growth during the pandemic [805]. Therefore, the public response once again seems to have adopted supplements promoted as bolstering the immune response despite a lack of evidence suggesting they are beneficial for preventing or mitigating COVID-19.
In this review, we report the findings to date of analyses of several dietary supplements and nutraceuticals. While existing evidence suggests potential benefits of n-3 PUFA and probiotic supplementation for COVID-19 treatment and prophylaxis, clinical data is still lacking, although trials are underway. Both zinc and vitamin C supplementation in hospitalized patients seem to be associated with positive outcomes; however, further clinical trials are required. In any case, both vitamin C and zinc intake are part of a healthy diet and both likely presents minimal risk when supplemented for, though their potential prophylactic or therapeutic effects against COVID-19 are yet to be determined. -On the other hand, mounting evidence from observational studies indicates that there is an association between vitamin D deficiency and COVID-19 incidence has also been supported by meta-analysis [805]. +On the other hand, mounting evidence from observational studies indicates that there is an association between vitamin D deficiency and COVID-19 incidence has also been supported by meta-analysis [806]. Indeed, scientists are working to confirm these findings and to determine whether a patient’s serum 25-hydroxyvitamin D levels are also associated with COVID-19 severity. Clinical trials are required to determine whether preemptive vitamin D supplementation may mitigate against severe COVID-19. -In terms of the therapeutic potential of vitamin D, initial evidence from clinical trials are conflicting, but seem to indicate that vitamin D supplementation may reduce COVID-19 severity [735]. +In terms of the therapeutic potential of vitamin D, initial evidence from clinical trials are conflicting, but seem to indicate that vitamin D supplementation may reduce COVID-19 severity [736]. The various clinical trials currently underway will be imperative to provide information on the efficacious use of vitamin D supplementation for COVID-19 prevention and/or treatment.
The purported prophylactic and therapeutic benefits of dietary supplements and nutraceuticals for multiple disorders, diseases, and infections has been the subject of significant research and debate for the last few decades. Inevitably, scientists are also investigating the potential for these various products to treat or prevent COVID-19. This interest also extends to consumers, which led to a remarkable increase of sales of dietary supplements and nutraceuticals throughout the pandemic due to a desire to obtain additional protections from infection and disease. The nutraceuticals discussed in this review, namely vitamin C, vitamin D, n-3 PUFA, zinc, and probiotics, were selected because of potential biological mechanisms that could beneficially affect viral and respiratory infections and because they are currently under clinical investigation. Specifically, these compounds have all been found to influence cellular processes related to inflammation. -Inflammation is particularly relevant to COVID-19 because of the negative outcomes (often death) observed in a large number of patients whose immune response becomes hyperactive in response to SARS-CoV-2, leading to severe outcomes such as ARDS and sepsis [806]. -Additionally, there is a well-established link between diet and inflammation [807], potentially mediated in part by the microbiome [808]. +Inflammation is particularly relevant to COVID-19 because of the negative outcomes (often death) observed in a large number of patients whose immune response becomes hyperactive in response to SARS-CoV-2, leading to severe outcomes such as ARDS and sepsis [807]. +Additionally, there is a well-established link between diet and inflammation [808], potentially mediated in part by the microbiome [809]. Thus, the idea that dietary modifications or supplementation could be used to modify the inflammatory response is tied to a broader view of how diet and the immune system are interconnected. -The supplements and nutraceuticals discussed here therefore lie in sharp contrast to other alleged nutraceutical or dietary supplements that have attracted during the pandemic, such as colloidal silver [809], which have no known nutritional function and can be harmful. +The supplements and nutraceuticals discussed here therefore lie in sharp contrast to other alleged nutraceutical or dietary supplements that have attracted during the pandemic, such as colloidal silver [810], which have no known nutritional function and can be harmful. Importantly, while little clinical evidence is available about the effects of any supplements against COVID-19, the risks associated with those discussed above are likely to be low, and in some cases, they can be obtained from dietary sources alone.
There are various other products and molecules that have garnered scientific interest and could merit further investigation. -These include polyphenols, lipid extracts, and tomato-based nutraceuticals, all of which have been suggested for the potential prevention of cardiovascular complications of COVID-19 such as thrombosis [612,648]. -Melatonin is another supplement that has been identified as a potential antiviral agent against SARS-CoV-2 using computational methods [810], and it has also been highlighted as a potential therapeutic agent for COVID-19 due to its documented antioxidant, anti-apoptotic, immunomodulatory, and anti-inflammatory effects [648,811,812]. -Notably, melatonin, vitamin D and zinc have attracted public attention because they were included in the treatment plan of the former President of the United States upon his hospitalization due to COVID-19 [813]. +These include polyphenols, lipid extracts, and tomato-based nutraceuticals, all of which have been suggested for the potential prevention of cardiovascular complications of COVID-19 such as thrombosis [613,649]. +Melatonin is another supplement that has been identified as a potential antiviral agent against SARS-CoV-2 using computational methods [811], and it has also been highlighted as a potential therapeutic agent for COVID-19 due to its documented antioxidant, anti-apoptotic, immunomodulatory, and anti-inflammatory effects [649,812,813]. +Notably, melatonin, vitamin D and zinc have attracted public attention because they were included in the treatment plan of the former President of the United States upon his hospitalization due to COVID-19 [814]. These are just some of the many substances and supplements that are currently under investigation but as of yet lack evidence to support their use for the prevention or treatment of COVID-19. -While there is plenty of skepticism put forward by physicians and scientists surrounding the use of supplements, these statements have not stopped consumers from purchasing these products, with one study reporting that online searches for dietary supplements in Poland began trending with the start of the pandemic [754]. +While there is plenty of skepticism put forward by physicians and scientists surrounding the use of supplements, these statements have not stopped consumers from purchasing these products, with one study reporting that online searches for dietary supplements in Poland began trending with the start of the pandemic [755]. Additionally, supplement usage increased between the first and second wave of the pandemic. Participants reported various reasons for their use of supplements, including to improve immunity (60%), to improve overall health (57%), and to fill nutrient gaps in their diet (53%). Other efforts to collect large datasets regarding such behavior have also sought to explore a possible association between vitamin or supplement consumption and COVID-19. -An observational analysis of survey responses from 327,720 users of the COVID Symptom Study App found that the consumption of n-3 PUFA supplements, probiotics, multivitamins, and vitamin D was associated with a lower risk of SARS-CoV-2 infection in women but not men after adjusting for potential confounders [814]. -According to the authors, the sexual dimorphism observed may in part be because supplements may better support females due to known differences between the male and female immune systems, or it could be due to behavioral and health consciousness differences between the sexes [814]. +An observational analysis of survey responses from 327,720 users of the COVID Symptom Study App found that the consumption of n-3 PUFA supplements, probiotics, multivitamins, and vitamin D was associated with a lower risk of SARS-CoV-2 infection in women but not men after adjusting for potential confounders [815]. +According to the authors, the sexual dimorphism observed may in part be because supplements may better support females due to known differences between the male and female immune systems, or it could be due to behavioral and health consciousness differences between the sexes [815]. Certainly, randomized controlled trials are required to investigate these findings further.
-Finally, it is known that a patient’s nutritional status affects health outcomes in various infectious diseases [586], and COVID-19 is no different [584,815,816]. -Some of the main risk factors for severe COVID-19, which also happen to be linked to poor nutritional status, include obesity, hypertension, cardiovascular diseases, type II diabetes mellitus, and indeed age-related malnutrition [582,584,817]. +
Finally, it is known that a patient’s nutritional status affects health outcomes in various infectious diseases [587], and COVID-19 is no different [585,816,817]. +Some of the main risk factors for severe COVID-19, which also happen to be linked to poor nutritional status, include obesity, hypertension, cardiovascular diseases, type II diabetes mellitus, and indeed age-related malnutrition [583,585,818]. Although not the main focus of this review, it is important to consider the nutritional challenges associated with severe COVID-19 patients. -Hospitalized COVID-19 patients tend to report an unusually high loss of appetite preceding admission, some suffer diarrhea and gastrointestinal symptoms that result in significantly lower food intake, and patients with poorer nutritional status were more likely to have worse outcomes and require nutrition therapy [818]. -Dysphagia also seems to be a significant problem in pediatric patients that suffered multisystem inflammatory syndrome [819] and rehabilitating COVID-19 patients, potentially contributing to poor nutritional status [820]. -Almost two-thirds of discharged COVID-19 ICU patients exhibit significant weight loss, of which 26% had weight loss greater than 10% [816]. -As investigated in this review, hospitalized patients also tend to exhibit vitamin D deficiency or insufficiency, which may be associated with greater disease severity [805]. +Hospitalized COVID-19 patients tend to report an unusually high loss of appetite preceding admission, some suffer diarrhea and gastrointestinal symptoms that result in significantly lower food intake, and patients with poorer nutritional status were more likely to have worse outcomes and require nutrition therapy [819]. +Dysphagia also seems to be a significant problem in pediatric patients that suffered multisystem inflammatory syndrome [820] and rehabilitating COVID-19 patients, potentially contributing to poor nutritional status [821]. +Almost two-thirds of discharged COVID-19 ICU patients exhibit significant weight loss, of which 26% had weight loss greater than 10% [817]. +As investigated in this review, hospitalized patients also tend to exhibit vitamin D deficiency or insufficiency, which may be associated with greater disease severity [806]. Therefore, further research is required to determine how dietary supplements and nutraceuticals may contribute to the treatment of severely ill and rehabilitating patients, who often rely on enteral nutrition.
-Despite all the potential benefits of nutraceutical and dietary supplement interventions presented, currently there is a paucity of clinical evidence to support their use for the prevention or mitigation of COVID-19 infection. -Nevertheless, optimal nutritional status can prime an individual’s immune system to protect against the effects of acute respiratory viral infections by supporting normal maintenance of the immune system [582,586]. -Nutritional strategies can also play a role in the treatment of hospitalized patients, as malnutrition is a risk to COVID-19 patients [820]. +Nevertheless, optimal nutritional status can prime an individual’s immune system to protect against the effects of acute respiratory viral infections by supporting normal maintenance of the immune system [583,587]. +Nutritional strategies can also play a role in the treatment of hospitalized patients, as malnutrition is a risk to COVID-19 patients [821]. Overall, supplementation of vitamin C, vitamin D, and zinc may be an effective method of ensuring their adequate intake to maintain optimal immune function, which may also convey beneficial effects against viral infections due to their immunomodulatory effects. Individuals should pay attention to their nutritional status, particularly their intake of vitamin D, considering that vitamin D deficiency is widespread. -The prevailing evidence seems to indicate an association between vitamin D deficiency with COVID-19 incidence and, potentially, severity [710]. +The prevailing evidence seems to indicate an association between vitamin D deficiency with COVID-19 incidence and, potentially, severity [711]. As a result, some international authorities have advised the general public, particularly those at high risk of infection, to consider vitamin D supplementation. However, further well-controlled clinical trials are required to confirm these observations.
-Many supplements and nutraceuticals designed for various ailments that are available in the United States and beyond are not strictly regulated [821]. +
Many supplements and nutraceuticals designed for various ailments that are available in the United States and beyond are not strictly regulated [822]. Consequently, there can be safety and efficacy concerns associated with many of these products. Often, the vulnerable members of society can be exploited in this regard and, unfortunately, the COVID-19 pandemic has proven no different. -As mentioned above, the FDA has issued warnings to several companies for advertising falsified claims in relation to the preventative and therapeutic capabilities of their products against COVID-19 [822]. +As mentioned above, the FDA has issued warnings to several companies for advertising falsified claims in relation to the preventative and therapeutic capabilities of their products against COVID-19 [823]. Further intensive investigation is required to establish the effects of these nutraceuticals, if any, against COVID-19. -Until more effective therapeutics are established, the most effective mitigation strategies consist of encouraging standard public health practices such as regular hand washing with soap, wearing a face mask, and covering a cough with your elbow [823], along with following social distancing measures, “stay at home” guidelines, expansive testing, and contact tracing [824,825]. +Until more effective therapeutics are established, the most effective mitigation strategies consist of encouraging standard public health practices such as regular hand washing with soap, wearing a face mask, and covering a cough with your elbow [824], along with following social distancing measures, “stay at home” guidelines, expansive testing, and contact tracing [825,826]. Indeed, in light of this review, it would also be pertinent to adopt a healthy diet and lifestyle following national guidelines in order to maintain optimal immune health. Because of the broad public appeal of dietary supplements and nutraceuticals, it is important to evaluate the evidence regarding the use of such products. We will continue to update this review as more findings become available.
@@ -2624,21 +2625,21 @@For a highly infectious virus like SARS-CoV-2, a vaccine would hold particular value because it could bolster the immune response to the virus of the population broadly, thereby driving a lower rate of infection and likely significantly reducing fatalities. -However, the vaccine development process has historically been slow, and vaccines fail to provide immediate prophylactic protection or treat ongoing infections [826].
+However, the vaccine development process has historically been slow, and vaccines fail to provide immediate prophylactic protection or treat ongoing infections [827].Flu-like illnesses caused by viruses are a common target of vaccine development programs, and influenza vaccine technology in particular has made many strides. During the H1N1 influenza outbreak, vaccine development was accelerated because of the existing infrastructure, along with the fact that regulatory agencies had already decided that vaccines produced using egg- and cell-based platforms could be licensed under the regulations used for a strain change. Critiques of the production and distribution of the H1N1 vaccine have stressed the need for alternative development-and-manufacturing platforms that can be readily adapted to new pathogens. -Although a monovalent H1N1 vaccine was not available before the pandemic peaked in the United States and Europe, it was available soon afterward as a stand-alone vaccine that was eventually incorporated into commercially available seasonal influenza vaccines [827]. +Although a monovalent H1N1 vaccine was not available before the pandemic peaked in the United States and Europe, it was available soon afterward as a stand-alone vaccine that was eventually incorporated into commercially available seasonal influenza vaccines [828]. If H1N1 vaccine development provides any indication, considering developing and manufacturing platforms for promising COVID-19 vaccine trials early could hasten the emergence of an effective prophylactic vaccine against SARS-CoV-2.
-The first critical step towards developing a vaccine against SARS-CoV-2 was characterizing the target, which fortunately happened early in the COVID-19 outbreak with the sequencing and dissemination of the viral genome [828]. +
The first critical step towards developing a vaccine against SARS-CoV-2 was characterizing the target, which fortunately happened early in the COVID-19 outbreak with the sequencing and dissemination of the viral genome [829]. The Coalition for Epidemic Preparedness Innovations (CEPI) is coordinating global health agencies and pharmaceutical companies to develop vaccines against SARS-CoV-2. -As of September 2020, there were over 180 vaccine candidates against SARS-CoV-2 in development [829]. +As of September 2020, there were over 180 vaccine candidates against SARS-CoV-2 in development [830]. Unlike many global vaccine development programs previously, such as with H1N1, the vaccine development landscape for COVID-19 includes vaccines produced by a wide array of technologies. -Experience in the field of oncology is encouraging COVID-19 vaccine developers to use next-generation approaches to vaccine development, which have led to the great diversity of vaccine development programs [830]. +Experience in the field of oncology is encouraging COVID-19 vaccine developers to use next-generation approaches to vaccine development, which have led to the great diversity of vaccine development programs [831]. These diverse technology platforms include DNA, RNA, virus-like particle, recombinant protein, both replicating and non-replicating viral vectors, live attenuated virus, and inactivated virus approaches (Figure 5). Given the wide range of vaccines under development, it is possible that some vaccine products may eventually be shown to be more effective in certain subpopulations, such as children, pregnant women, immunocompromised patients, the elderly, etc. -The requirements for a successful vaccine trial and deployment are complex and may require coordination between government, industry, academia, and philanthropic entities [831]. -While little is currently known about immunity to SARS-CoV-2, vaccine development typically tests for serum neutralizing activity, as this has been established as a biomarker for adaptive immunity in other respiratory illnesses [832].
+The requirements for a successful vaccine trial and deployment are complex and may require coordination between government, industry, academia, and philanthropic entities [832]. +While little is currently known about immunity to SARS-CoV-2, vaccine development typically tests for serum neutralizing activity, as this has been established as a biomarker for adaptive immunity in other respiratory illnesses [833].This vaccination method involves the direct introduction of a plasmid containing a DNA sequence encoding the antigen(s) against which an immune response is sought into appropriate tissues [833]. +
This vaccination method involves the direct introduction of a plasmid containing a DNA sequence encoding the antigen(s) against which an immune response is sought into appropriate tissues [834]. This approach may offer several advantages over traditional vaccination approaches, such as the stimulation of both B- as well as T-cell responses and the absence of any infectious agent. -Currently, a Phase I safety and immunogenicity clinical trial of INO-4800, a prophylactic vaccine against SARS-CoV-2, is underway [834]. +Currently, a Phase I safety and immunogenicity clinical trial of INO-4800, a prophylactic vaccine against SARS-CoV-2, is underway [835]. The vaccine developer Inovio Pharmaceuticals Technology is overseeing administration of INO-4800 by intradermal injection followed by electroporation with the CELLECTRA® device to healthy volunteers. Electroporation is the application of brief electric pulses to tissues in order to permeabilize cell membranes in a transient and reversible manner. -It has been shown that electroporation can enhance vaccine efficacy by up to 100-fold, as measured by increases in antigen-specific antibody titers [835]. -The safety of the CELLECTRA® device has been studied for over seven years, and these studies support the further development of electroporation as a safe vaccine delivery method [836]. +It has been shown that electroporation can enhance vaccine efficacy by up to 100-fold, as measured by increases in antigen-specific antibody titers [836]. +The safety of the CELLECTRA® device has been studied for over seven years, and these studies support the further development of electroporation as a safe vaccine delivery method [837]. The temporary formation of pores through electroporation facilitates the successful transportation of macromolecules into cells, allowing cells to robustly take up INO-4800 for the production of an antibody response. Approved by the U.S. FDA on April 6, 2020, the Phase I study is enrolling up to 40 healthy adult volunteers in Philadelphia, PA at the Perelman School of Medicine and at the Center for Pharmaceutical Research in Kansas City, MO. The trial has two experimental arms corresponding to the two locations. @@ -2664,98 +2665,98 @@
RNA vaccines are nucleic-acid based modalities that code for viral antigens against which the human body elicits a humoral and cellular immune response. -The mRNA technology is transcribed in vitro and delivered to cells via lipid nanoparticles (LNP) [837]. -They are recognized by ribosomes in vivo and then translated and modified into functional proteins [838]. -The resulting intracellular viral proteins are displayed on surface MHC proteins, provoking a strong CD8+ T cell response as well as a CD4+ T cell and B cell-associated antibody responses [838]. +The mRNA technology is transcribed in vitro and delivered to cells via lipid nanoparticles (LNP) [838]. +They are recognized by ribosomes in vivo and then translated and modified into functional proteins [839]. +The resulting intracellular viral proteins are displayed on surface MHC proteins, provoking a strong CD8+ T cell response as well as a CD4+ T cell and B cell-associated antibody responses [839]. Naturally, mRNA is not very stable and can degrade quickly in the extracellular environment or the cytoplasm. -The LNP covering protects the mRNA from enzymatic degradation outside of the cell [839]. +The LNP covering protects the mRNA from enzymatic degradation outside of the cell [840]. Codon optimization to prevent secondary structure formation and modifications of the poly-A tail as well as the 5’ untranslated region to promote ribosomal complex binding can increase mRNA expression in cells. -Furthermore, purifying out double-stranded RNA and immature RNA with FPLC (fast performance liquid chromatography) and HPLC (high performance liquid chromatography) technology will improve translation of the mRNA in the cell [838,840]. +Furthermore, purifying out double-stranded RNA and immature RNA with FPLC (fast performance liquid chromatography) and HPLC (high performance liquid chromatography) technology will improve translation of the mRNA in the cell [839,841]. Vaccines based on mRNA delivery confer many advantages over traditional viral vectored vaccines and DNA vaccines. -In comparison to live attenuated viruses, mRNA vaccines are non-infectious and can be synthetically produced in an egg-free, cell-free environment, thereby reducing the risk of a detrimental immune response in the host [841]. -Unlike DNA vaccines, mRNA technologies are naturally degradable and non-integrating, and they do not need to cross the nuclear membrane in addition to the plasma membrane for their effects to be seen [838]. +In comparison to live attenuated viruses, mRNA vaccines are non-infectious and can be synthetically produced in an egg-free, cell-free environment, thereby reducing the risk of a detrimental immune response in the host [842]. +Unlike DNA vaccines, mRNA technologies are naturally degradable and non-integrating, and they do not need to cross the nuclear membrane in addition to the plasma membrane for their effects to be seen [839]. Furthermore, mRNA vaccines are easily, affordably, and rapidly scalable.
Although mRNA vaccines have been developed for therapeutic and prophylactic purposes, none have previously been licensed or commercialized. -Nevertheless, they have shown promise in animal models and preliminary clinical trials for several indications, including rabies, coronavirus, influenza, and cytomegalovirus [842]. -Preclinical data previously identified effective antibody generation against full-length FPLC-purified influenza hemagglutinin stalk-encoding mRNA in mice, rabbits, and ferrets [843]. -Similar immunological responses for mRNA vaccines were observed in humans in Phase I and II clinical trials operated by the pharmaceutical-development companies Curevac and Moderna for rabies, flu, and zika [840]. -Positively charged bilayer LNPs carrying the mRNA attract negatively charged cell membranes, endocytose into the cytoplasm [839], and facilitate endosomal escape. -LNPs can be coated with modalities recognized and engulfed by specific cell types, and LNPs that are 150 nm or less effectively enter into lymphatic vessels [839,844]. +Nevertheless, they have shown promise in animal models and preliminary clinical trials for several indications, including rabies, coronavirus, influenza, and cytomegalovirus [843]. +Preclinical data previously identified effective antibody generation against full-length FPLC-purified influenza hemagglutinin stalk-encoding mRNA in mice, rabbits, and ferrets [844]. +Similar immunological responses for mRNA vaccines were observed in humans in Phase I and II clinical trials operated by the pharmaceutical-development companies Curevac and Moderna for rabies, flu, and zika [841]. +Positively charged bilayer LNPs carrying the mRNA attract negatively charged cell membranes, endocytose into the cytoplasm [840], and facilitate endosomal escape. +LNPs can be coated with modalities recognized and engulfed by specific cell types, and LNPs that are 150 nm or less effectively enter into lymphatic vessels [840,845]. Therefore, this technology holds great potential for targeted delivery of modified mRNA.
-There are three types of RNA vaccines: non-replicating, in vivo self-replicating, and in vitro dendritic cell non-replicating [845]. +
There are three types of RNA vaccines: non-replicating, in vivo self-replicating, and in vitro dendritic cell non-replicating [846]. Non-replicating mRNA vaccines consist of a simple open reading frame (ORF) for the viral antigen flanked by the 5’ UTR and 3’ poly-A tail. -In vivo self-replicating vaccines encode a modified viral genome derived from single-stranded, positive sense RNA alphaviruses [838,840]. +In vivo self-replicating vaccines encode a modified viral genome derived from single-stranded, positive sense RNA alphaviruses [839,841]. The RNA genome encodes the viral antigen along with proteins of the genome replication machinery, including an RNA polymerase. -Structural proteins required for viral assembly are not included in the engineered genome [838]. -Self-replicating vaccines produce more viral antigens over a longer period of time, thereby evoking a more robust immune response [845]. +Structural proteins required for viral assembly are not included in the engineered genome [839]. +Self-replicating vaccines produce more viral antigens over a longer period of time, thereby evoking a more robust immune response [846]. Finally, in vitro dendritic cell non-replicating RNA vaccines limit transfection to dendritic cells. Dendritic cells are potent antigen-presenting immune cells that easily take up mRNA and present fragments of the translated peptide on their MHC proteins, which can then interact with T cell receptors. -Ultimately, primed T follicular helper cells can stimulate germinal center B cells that also present the viral antigen to produce antibodies against the virus [846]. -These cells are isolated from the patient, grown and transfected ex vivo, and reintroduced to the patient [847].
+Ultimately, primed T follicular helper cells can stimulate germinal center B cells that also present the viral antigen to produce antibodies against the virus [847]. +These cells are isolated from the patient, grown and transfected ex vivo, and reintroduced to the patient [848].Given the potential for this technology to be quickly adapted for a new pathogen, it has held significant interest for the treatment of COVID-19. -In the vaccines developed under this approach, the spike protein, which is immunogenic [39], can be furnished to the immune system in order to train its response. -The vaccine candidates developed against SARS-CoV-2 using mRNA vectors utilize similar principles and technologies, although there are slight differences in implementation among candidates such as the formulation of the platform and the specific components of the spike protein encapsulated (e.g., the full Spike protein vs. the RBD alone) [848]. +In the vaccines developed under this approach, the spike protein, which is immunogenic [41], can be furnished to the immune system in order to train its response. +The vaccine candidates developed against SARS-CoV-2 using mRNA vectors utilize similar principles and technologies, although there are slight differences in implementation among candidates such as the formulation of the platform and the specific components of the spike protein encapsulated (e.g., the full Spike protein vs. the RBD alone) [849]. The results of the interim analyses of two mRNA vaccine candidates became available at the end of 2020 and provided strong support for this emerging approach to vaccination. Below we describe the results available as of February 2021 for two such candidates, mRNA-1273 produced by ModernaTX and BNT162b2 produced by Pfizer, Inc. and BioNTech.
ModernaTX’s mRNA-1273 vaccine, which is an was the first COVID-19 vaccine to enter a phase I clinical trial in the United States. -In this trial, Moderna spearheaded an investigation on the immunogenicity and reactogenicity of mRNA-1273, a conventional lipid nanoparticle encapsulated RNA encoding a full-length prefusion stabilized S protein for SARS-CoV-2 [849]. -An initial report described the results of enrolling forty-five participants who were administered intramuscular injections of mRNA-1273 in their deltoid muscle on day 1 and day 29, and then followed for the next twelve months [832]. +In this trial, Moderna spearheaded an investigation on the immunogenicity and reactogenicity of mRNA-1273, a conventional lipid nanoparticle encapsulated RNA encoding a full-length prefusion stabilized S protein for SARS-CoV-2 [850]. +An initial report described the results of enrolling forty-five participants who were administered intramuscular injections of mRNA-1273 in their deltoid muscle on day 1 and day 29, and then followed for the next twelve months [833]. Healthy males and non-pregnant females aged 18-55 years were recruited for this study and divided into three groups receiving 25, 100, or 250 micrograms (μg) of mRNA-1273. -IgG ELISA assays on patient serology samples were used to examine the immunogenicity of the vaccine [849]. +IgG ELISA assays on patient serology samples were used to examine the immunogenicity of the vaccine [850]. Binding antibodies were observed at two weeks after the first dose at all concentrations. At the time point one week after the second dose was administered on day 29, the pseudotyped lentivirus reporter single-round-of-infection neutralization assay (PsVNA), which was used to assess neutralizing activity, reached a median level similar to the median observed in convalescent plasma samples. Participants reported mild and moderate systemic adverse events after the day 1 injection, and one severe local event was observed in each of the two highest dose levels. The second injection led to severe systemic adverse events for three of the participants at the highest dose levels, with one participant in the group being evaluated at an urgent care center on the day after the second dose. The reported localized adverse events from the second dose were similar to those from the first.
-Several months later, a press release from ModernaTX described the results of the first interim analysis of the vaccine [850]. -On November 16, 2020, a report was released describing the initial results from Phase III testing, corresponding to the first 95 cases of COVID-19 in the 30,000 enrolled participants [850], with additional data released to the FDA on December 17, 2020 [851]. -These results were subsequently published in a peer-reviewed journal (The New England Journal of Medicine) on December 30, 2020 [852]. -The first group of 30,420 study participants were randomized to receive the vaccine or a placebo at a ratio of 1:1 [852]. -Administration occurred at 99 sites within the United States in two sessions, spaced 28 days apart [852,853]. -Patients reporting COVID-19 symptoms upon follow-up were tested for SARS-CoV-2 using a nasopharyngeal swab that was evaluated with RT-PCR [853]. +
Several months later, a press release from ModernaTX described the results of the first interim analysis of the vaccine [851]. +On November 16, 2020, a report was released describing the initial results from Phase III testing, corresponding to the first 95 cases of COVID-19 in the 30,000 enrolled participants [851], with additional data released to the FDA on December 17, 2020 [852]. +These results were subsequently published in a peer-reviewed journal (The New England Journal of Medicine) on December 30, 2020 [853]. +The first group of 30,420 study participants were randomized to receive the vaccine or a placebo at a ratio of 1:1 [853]. +Administration occurred at 99 sites within the United States in two sessions, spaced 28 days apart [853,854]. +Patients reporting COVID-19 symptoms upon follow-up were tested for SARS-CoV-2 using a nasopharyngeal swab that was evaluated with RT-PCR [854]. The initial preliminary analysis reported the results of the cases observed up until a cut-off date of November 11, 2020. -Of these first 95 cases reported, 90 occurred in participants receiving the placebo compared to 5 cases in the group receiving the vaccine [850]. +Of these first 95 cases reported, 90 occurred in participants receiving the placebo compared to 5 cases in the group receiving the vaccine [851]. These results suggested the vaccine is 94.5% effective in preventing COVID-19. Additionally, eleven severe cases of COVID-19 were observed, and all eleven occurred in participants receiving the placebo. -The publication reported the results through an extended cut-off date of November 21, 2020, corresponding to 196 cases [852]. +The publication reported the results through an extended cut-off date of November 21, 2020, corresponding to 196 cases [853]. Of these, 11 occurred in the vaccine group and 185 in the placebo group, corresponding to an efficacy of 94.1%. Once again, all of the severe cases of COVID-19 observed (n=30) occurred in the placebo group, including one death. Thus, as more cases are reported, the efficacy of the vaccine has remained above 90%, and no cases of severe COVID-19 have yet been reported in participants receiving the vaccine.
These findings suggest the possibility that the vaccine might bolster immune defenses even for subjects who do still develop a SARS-CoV-2 infection. -The study was designed with an explicit goal of including individuals at high risk for COVID-19, including older adults, people with underlying health conditions, and people of color [854]. -The Phase III trial population was comprised by approximately 25.3% adults over age 65 in the initial report and 24.8% in the publication [853]. -Among the cases reported by both interim analyses, 16-17% occurred in older adults [850,852].. -Additionally, approximately 10% of participants identified a Black or African-American background and 20% identified Hispanic or Latino ethnicity [852,853]. -Among the first 95 cases, 12.6% occurred in participants identifying a Hispanic or Latino background and 4% in participants reporting a Black or African-American background [850]; in the publication, they indicated only that 41 of the cases reported in the placebo group and 1 case in the treatment group occurred in “communities of color”, corresponding to 21.4% of all cases [852]. +The study was designed with an explicit goal of including individuals at high risk for COVID-19, including older adults, people with underlying health conditions, and people of color [855]. +The Phase III trial population was comprised by approximately 25.3% adults over age 65 in the initial report and 24.8% in the publication [854]. +Among the cases reported by both interim analyses, 16-17% occurred in older adults [851,853].. +Additionally, approximately 10% of participants identified a Black or African-American background and 20% identified Hispanic or Latino ethnicity [853,854]. +Among the first 95 cases, 12.6% occurred in participants identifying a Hispanic or Latino background and 4% in participants reporting a Black or African-American background [851]; in the publication, they indicated only that 41 of the cases reported in the placebo group and 1 case in the treatment group occurred in “communities of color”, corresponding to 21.4% of all cases [853]. While the sample size in both analyses is small relative to the study population of over 30,000, these results suggest that the vaccine is likely to be effective in people from a variety of backgrounds. By all indications, this vaccine is likely to be highly useful in mitigating the damage of SARS-CoV-2.
-In-depth safety data was released by ModernaTX as part of their application for an EUA from the FDA and summarized in the associated publication [852,853]. +
In-depth safety data was released by ModernaTX as part of their application for an EUA from the FDA and summarized in the associated publication [853,854]. Because the detail provided in the report is greater than that provided in the publication, here we emphasize the results observed at the time of the first analysis. -Overall, a large percentage of participants reported adverse effects when solicited, and these reports were higher in the vaccine group than in the placebo group (94.5% versus 59.5%, respectively, at the time of the initial analysis) [853]. -Some of these events met the criteria for grade 3 (local or systemic) or grade 4 (systemic only) toxicity [853], but most were grade 1 or grade 2 and lasted 2-3 days [852]. -The most common local adverse reaction was pain at the injection site, reported by 83.7% of participants receiving the first dose of the vaccine and 88.4% upon receiving the second dose, compared to 19.8% and 19.8% and 17.0%, respectively, of patients in the placebo condition [853]. +Overall, a large percentage of participants reported adverse effects when solicited, and these reports were higher in the vaccine group than in the placebo group (94.5% versus 59.5%, respectively, at the time of the initial analysis) [854]. +Some of these events met the criteria for grade 3 (local or systemic) or grade 4 (systemic only) toxicity [854], but most were grade 1 or grade 2 and lasted 2-3 days [853]. +The most common local adverse reaction was pain at the injection site, reported by 83.7% of participants receiving the first dose of the vaccine and 88.4% upon receiving the second dose, compared to 19.8% and 19.8% and 17.0%, respectively, of patients in the placebo condition [854]. Fewer than 5% of vaccine recipients reported grade 3 pain at either administration. -Other frequent local reactions included erythema, swelling, and lymphadenopathy [853]. -For systemic adverse reactions, fatigue was the most common [853]. -Among participants receiving either dose of the vaccine, 68.5% reported fatigue compared to 36.1% participants receiving the placebo [853]. -The level of fatigue experienced was usually fairly mild, with only 9.6% and 1.3% of participants in the vaccine and placebo conditions, respectively, reporting grade 3 fatigue [853], which corresponds to significant interference with daily activity [855]. -Based on the results of the report, an EUA was issued on December 18, 2020 to allow distribution of this vaccine in the United States [856], and it was shortly followed by an Interim Order authorizing distribution of the vaccine in Canada [857] and a conditional marketing authorization by the European Medicines Agency to facilitate distribution in the European Union [858].
+Other frequent local reactions included erythema, swelling, and lymphadenopathy [854]. +For systemic adverse reactions, fatigue was the most common [854]. +Among participants receiving either dose of the vaccine, 68.5% reported fatigue compared to 36.1% participants receiving the placebo [854]. +The level of fatigue experienced was usually fairly mild, with only 9.6% and 1.3% of participants in the vaccine and placebo conditions, respectively, reporting grade 3 fatigue [854], which corresponds to significant interference with daily activity [856]. +Based on the results of the report, an EUA was issued on December 18, 2020 to allow distribution of this vaccine in the United States [857], and it was shortly followed by an Interim Order authorizing distribution of the vaccine in Canada [858] and a conditional marketing authorization by the European Medicines Agency to facilitate distribution in the European Union [859].ModernaTX was, in fact, the second company to release news of a successful interim analysis of an mRNA vaccine and receive an EUA. -The first report came from Pfizer and BioNTech’s mRNA vaccine BNT162b2 on November 9, 2020 [859], and a preliminary report was published in the New England Journal of Medicine one month later [304]. -The vaccine candidate is contains the full prefusion stabilized, membrane-anchored SARS-CoV-2 spike protein in a vaccine formulation based on modified mRNA (modRNA) technology [860,861]. -This vaccine candidate should not be confused with a similar candidate from Pfizer/BioNTech, BNT162b1, that delivered only the RBD of the spike protein [862,863], which was not advanced to a stage III trial because of the improved reactogenicity/immunogenicity profile of BNT162b2 [305].
-During the Phase III trial of BNT162b2, 43,538 participants were enrolled 1:1 in the placebo and the vaccine candidate and received two 30-μg doses 21 days apart [304]. -Of these enrolled participants, 21,720 received BNT162b2 and 21,728 received a placebo [304]. +The first report came from Pfizer and BioNTech’s mRNA vaccine BNT162b2 on November 9, 2020 [860], and a preliminary report was published in the New England Journal of Medicine one month later [306]. +The vaccine candidate is contains the full prefusion stabilized, membrane-anchored SARS-CoV-2 spike protein in a vaccine formulation based on modified mRNA (modRNA) technology [861,862]. +This vaccine candidate should not be confused with a similar candidate from Pfizer/BioNTech, BNT162b1, that delivered only the RBD of the spike protein [863,864], which was not advanced to a stage III trial because of the improved reactogenicity/immunogenicity profile of BNT162b2 [307].
+During the Phase III trial of BNT162b2, 43,538 participants were enrolled 1:1 in the placebo and the vaccine candidate and received two 30-μg doses 21 days apart [306]. +Of these enrolled participants, 21,720 received BNT162b2 and 21,728 received a placebo [306]. Recruitment occurred at 135 sites across six countries: Argentina, Brazil, Germany, South Africa, Turkey, and the United States. -An initial press release described the first 94 cases, which were consistent with 90% efficacy of the vaccine at 7 days following the second dose [859]. +An initial press release described the first 94 cases, which were consistent with 90% efficacy of the vaccine at 7 days following the second dose [860]. The release of the full trial information covered a longer period and analyzed the first 170 cases occurring at least 7 days after the second dose, 8 of which occurred in patients who had received BNT162b2. -The press release characterized the study population as diverse, reporting that 42% of the participants worldwide came from non-white backgrounds, including 10% Black and 26% Hispanic or Latino [864]. -Within the United States, 10% and 13% of participants, respectively, identified themselves as having Black or Hispanic/Latino backgrounds [864]. -Additionally, 41% of participants worldwide were 56 years of age or older [864], and they reported that the efficacy of the vaccine in adults over 65 was 94% [865]. -The primary efficacy analysis of the Phase III study was concluded on November 18, 2020 [865], and the final results indicted 94.6% efficacy of the vaccine [304]v.
-The safety profile of the vaccine was also assessed [304]. +The press release characterized the study population as diverse, reporting that 42% of the participants worldwide came from non-white backgrounds, including 10% Black and 26% Hispanic or Latino [865]. +Within the United States, 10% and 13% of participants, respectively, identified themselves as having Black or Hispanic/Latino backgrounds [865]. +Additionally, 41% of participants worldwide were 56 years of age or older [865], and they reported that the efficacy of the vaccine in adults over 65 was 94% [866]. +The primary efficacy analysis of the Phase III study was concluded on November 18, 2020 [866], and the final results indicted 94.6% efficacy of the vaccine [306]v.
+The safety profile of the vaccine was also assessed [306]. A subset of patients were followed for reactogenicity using electronic diaries, with the data collected from these 8,183 participants comprising the solicited safety events analyzed. Much like those who received the ModernaTX vaccine candidate, a large proportion of participants reported experiencing site injection pain within 7 days of vaccination. While percentages are broken down by age group in the publication, these proportions correspond to approximately 78% and 73% of all participants after the first and second doses, respectively, overall. @@ -2764,8 +2765,8 @@
Another approach that is being investigated explores the potential for vaccines that are not made from the SARS-CoV-2 virus to confer what has been termed trained immunity. -In a recent review [873], trained immunity was defined as forms of memory that are temporary (e.g., months or years) and reversible. +In a recent review [874], trained immunity was defined as forms of memory that are temporary (e.g., months or years) and reversible. It is induced by exposure to whole-microorganism vaccines or other microbial stimuli that generates heterologous protective effects. Trained immunity can be displayed by innate immune cells or innate immune features of other cells, and it is characterized by alterations to immune responsiveness to future immune challenges due to epigenetic and metabolic mechanisms. These alterations can take the form of either an increased or decreased response to immune challenge by a pathogen. -Trained immunity elicited by non-SARS-CoV-2 whole-microorganism vaccines could potentially improve SARS-CoV-2 susceptibility or severity [874].
+Trained immunity elicited by non-SARS-CoV-2 whole-microorganism vaccines could potentially improve SARS-CoV-2 susceptibility or severity [875].One type of stimulus which research indicates can induce trained immunity is bacillus Calmette-Guerin (BCG) vaccination. BCG is an attenuated form of bacteria Mycobacterium bovis. The vaccine is most commonly administered for the prevention of tuberculosis in humans. Clinical trials in non-SARS-CoV-2-infected adults have been designed to assess whether BCG vaccination could have prophylactic effects against SARS-CoV-2 by reducing susceptibility, preventing infection, or reducing disease severity. -A number of trials are now evaluating the effects of the BCG vaccine or the related vaccine VPM1002 [874,875,876,877,878,879,880,881,882,883,884,885,886,887,888].
+A number of trials are now evaluating the effects of the BCG vaccine or the related vaccine VPM1002 [875,876,877,878,879,880,881,882,883,884,885,886,887,888,889].The ongoing trials are using a number of different approaches. Some trials enroll healthcare workers, other trials hospitalized elderly adults without immunosuppression who get vaccinated with placebo or BCG at hospital discharge, and yet another set of trials older adults (>50 years) under chronic care for conditions like hypertension and diabetes. One set of trials, for example, uses time until first infection as the primary study endpoint; more generally, outcomes measured in some of these trials are related to incidence of disease and disease severity or symptoms. -Some analyses have suggested a possible correlation at the country level between the frequency of BCG vaccination (or BCG vaccination policies) and the severity of COVID-19 [874]. +Some analyses have suggested a possible correlation at the country level between the frequency of BCG vaccination (or BCG vaccination policies) and the severity of COVID-19 [875]. Currently it is unclear whether this correlation has any connection to trained immunity. Many possible confounding factors are also likely to vary among countries, such as age distribution, detection efficiency, stochastic epidemic dynamic effects, differences in healthcare capacity over time in relation to epidemic dynamics, and these have not been adequately accounted for in current analyses. It is unclear whether there is an effect of the timing of BCG vaccination, both during an individual’s life cycle and relative to the COVID-19 pandemic. -Additionally, given that severe SARS-CoV-2 may be associated with a dysregulated immune response, it is unclear what alterations to the immune response would be most likely to be protective versus pathogenic (e.g., [112,874,889,890]). -The article [874] proposes that trained immunity might lead to an earlier and stronger response, which could in turn reduce viremia and the risk of later, detrimental immunopathology. +Additionally, given that severe SARS-CoV-2 may be associated with a dysregulated immune response, it is unclear what alterations to the immune response would be most likely to be protective versus pathogenic (e.g., [114,875,890,891]). +The article [875] proposes that trained immunity might lead to an earlier and stronger response, which could in turn reduce viremia and the risk of later, detrimental immunopathology. While trained immunity is an interesting possible avenue to complement vaccine development efforts through the use of an existing vaccine, additional research is required to assess whether the BCG vaccine is likely to confer trained immunity in the case of SARS-CoV-2.
Additionally, major advances in vaccines using mRNA and adenoviruses that have led to three vaccines becoming available or close to becoming available in late 2020 (Figure 4).
Though some concerns remain about the duration of sustained immunity for convalescents, vaccine development efforts are ongoing and show initial promising results. The Moderna trial, for example, reported that the neutralizing activity in participants who received two doses of the vaccine was similar to that observed in convalescent plasma.
-One of the two mRNA vaccines, Pfizer and BioNTech’s BNT162b2, has been issued an EUA for patients as young as 16 [891], while ModernaTX has begun a clinical trial to assess its mRNA vaccine in adolescents ages 12 to 18 [892].
+One of the two mRNA vaccines, Pfizer and BioNTech’s BNT162b2, has been issued an EUA for patients as young as 16 [892], while ModernaTX has begun a clinical trial to assess its mRNA vaccine in adolescents ages 12 to 18 [893].
In addition to understanding the fundamental biology of the SARS-CoV-2 virus and COVID-19, it is critical to consider how the broader environment can influence both COVID-19 outcomes and efforts to develop and implement treatments for the disease. The evidence clearly indicates that social environmental factors are critical determinants of individuals’ and communities’ risks related to COVID-19. There are distinct components to COVID-19 susceptibility, and an individual’s risk can be elevated at one or all stages from exposure to recovery/mortality: an individual may be more likely to be exposed to the virus, more likely to get infected once exposed, more likely to have serious complications once infected, and be less likely to receive adequate care once they are seriously ill. -The fact that differences in survival between Black and white patients were no longer significant after controlling for comorbidities and socioeconomic status (type of insurance, neighborhood deprivation score, and hospital where treatment was received) in addition to sex and age [893] underscores the relevance of social factors to understanding mortality differences between racial and ethnic groups. -Moreover, the Black patients were younger and more likely to be female than white patients, yet still had a higher mortality rate without correction for the other variables [893]. +The fact that differences in survival between Black and white patients were no longer significant after controlling for comorbidities and socioeconomic status (type of insurance, neighborhood deprivation score, and hospital where treatment was received) in addition to sex and age [894] underscores the relevance of social factors to understanding mortality differences between racial and ethnic groups. +Moreover, the Black patients were younger and more likely to be female than white patients, yet still had a higher mortality rate without correction for the other variables [894]. Here, we outline a few systemic reasons that may exacerbate the COVID-19 pandemic in communities of color.
As COVID-19 has spread into communities around the globe, it has become clear that the risks associated with this disease are not equally shared by all individuals or all communities. Significant disparities in outcomes have led to interest in the demographic, biomedical, and social factors that influence COVID-19 severity. Untangling the factors influencing COVID-19 susceptibility is a complex undertaking. -Among patients who are admitted to the hospital, outcomes have generally been poor, with rates of admission to the intensive care unit (ICU) upwards of 15% in both Wuhan, China and Italy [34,894,895]. -However, hospitalization rates vary by location [896]. +Among patients who are admitted to the hospital, outcomes have generally been poor, with rates of admission to the intensive care unit (ICU) upwards of 15% in both Wuhan, China and Italy [36,895,896]. +However, hospitalization rates vary by location [897]. This variation may be influenced by demographic (e.g., average age in the area), medical (e.g., the prevalence of comorbid conditions such as diabetes), and social (e.g., income or healthcare availability) factors that vary geographically. Additionally, some of the same factors may influence an individual’s probability of exposure to SARS-CoV-2, their risk of developing a more serious case of COVID-19 that would require hospitalization, and their access to medical support. As a result, quantifying or comparing susceptibility among individuals, communities, or other groups requires consideration of a number of complex phenomena that intersect across many disciplines of research. In this section, the term “risk factor” is used to refer to variables that are statistically associated with more severe COVID-19 outcomes. Some are intrinsic characteristics that have been observed to carry an association with variation in outcomes, whereas others may be more functionally linked to the pathophysiology of COVID-19.
Two traits that have been consistently associated with more severe COVID-19 outcomes are male sex and advanced age (typically defined as 60 or older, with the greatest risk among those 85 and older [897]). -In the United States, males and older individuals diagnosed with COVID-19 were found to be more likely to require hospitalization [898,899]. -A retrospective study of hospitalized Chinese patients [35] found that a higher probability of mortality was associated with older age, and world-wide, population age structure has been found to be an important variable for explaining differences in outbreak severity [900]. -The CFR for adults over 80 has been estimated upwards of 14% or even 20% [901]. -Male sex has also been identified as a risk factor for severe COVID-19 outcomes, including death [902,903,904]. -Early reports from China and Europe indicated that even though the case rates were similar across males and females, males were at elevated risk for hospital admission, ICU admission, and death [903], although data from some US states indicates more cases among females, potentially due to gender representation in care-taking professions [905]. -In older age groups (e.g., age 60 and older), comparable absolute numbers of male and female cases actually suggests a higher rate of occurrence in males, due to increased skew in the sex ratio [903]. -Current estimates based on worldwide data suggest that, compared to females, males may be 30% more likely to be hospitalized, 80% more likely to be admitted to the ICU, and 40% more likely to die as a result of COVID-19 [904]. -There also may be a compounding effect of advanced age and male sex, with differences time to recovery worst for males over 60 years old relative to female members of their age cohort [906].
+Two traits that have been consistently associated with more severe COVID-19 outcomes are male sex and advanced age (typically defined as 60 or older, with the greatest risk among those 85 and older [898]). +In the United States, males and older individuals diagnosed with COVID-19 were found to be more likely to require hospitalization [899,900]. +A retrospective study of hospitalized Chinese patients [37] found that a higher probability of mortality was associated with older age, and world-wide, population age structure has been found to be an important variable for explaining differences in outbreak severity [901]. +The CFR for adults over 80 has been estimated upwards of 14% or even 20% [902]. +Male sex has also been identified as a risk factor for severe COVID-19 outcomes, including death [903,904,905]. +Early reports from China and Europe indicated that even though the case rates were similar across males and females, males were at elevated risk for hospital admission, ICU admission, and death [904], although data from some US states indicates more cases among females, potentially due to gender representation in care-taking professions [906]. +In older age groups (e.g., age 60 and older), comparable absolute numbers of male and female cases actually suggests a higher rate of occurrence in males, due to increased skew in the sex ratio [904]. +Current estimates based on worldwide data suggest that, compared to females, males may be 30% more likely to be hospitalized, 80% more likely to be admitted to the ICU, and 40% more likely to die as a result of COVID-19 [905]. +There also may be a compounding effect of advanced age and male sex, with differences time to recovery worst for males over 60 years old relative to female members of their age cohort [907].
Both of these risk factors can be approached through the lens of biology. -The biological basis for greater susceptibility with age is likely linked to the prevalence of extenuating health conditions such as heart failure or diabetes [901]. +The biological basis for greater susceptibility with age is likely linked to the prevalence of extenuating health conditions such as heart failure or diabetes [902]. Several hypotheses have been proposed to account for differences in severity between males and females. -For example, some evidence suggests that female sex hormones may be protective [903,905]. -ACE2 expression in the kidneys of male mice was observed to be twice as high as that of females, and a regulatory effect of estradiol on ACE2 expression was demonstrated by removing the gonads and then supplementing with estradiol [905,907]. -Other work in mice has shown an inverse association between mortality due to SARS-CoV-1 and estradiol, suggesting a protective role for the sex hormone [905]. +For example, some evidence suggests that female sex hormones may be protective [904,906]. +ACE2 expression in the kidneys of male mice was observed to be twice as high as that of females, and a regulatory effect of estradiol on ACE2 expression was demonstrated by removing the gonads and then supplementing with estradiol [906,908]. +Other work in mice has shown an inverse association between mortality due to SARS-CoV-1 and estradiol, suggesting a protective role for the sex hormone [906]. Similarly, evidence suggests that similar patterns might be found in other tissues. -A preliminary analysis identified higher levels of ACE2 expression in the myocardium of male patients with aortic valve stenosis showed than female patients, although this pattern was not found in controls [903]. -Additionally, research has indicated that females respond to lower doses than males of heart medications that act on the Renin angiotensin aldosterone system (RAAS) pathway, which is shared with ACE2 [903]. -Additionally, several components of the immune response, including the inflammatory response, may differ in intensity and timing between males and females [905,907]. -This hypothesis is supported by some preliminary evidence showing that female patients who recovered from severe COVID-19 had higher antibody titers than males [905]. -Sex steroids can also bind to immune cell receptors to influence cytokine production [903]. -Additionally, social factors may influence risks related to both age and sex: for example, older adults are more likely to live in care facilities, which have been a source for a large number of outbreaks [908], and gender roles may also influence exposure and/or susceptibility due to differences in care-taking and/or risky behaviors (e.g., caring for elder relatives and smoking, respectively) [903] among men and women (however, it should be noted that both transgender men and women are suspected to be at heightened risk [909].)
+A preliminary analysis identified higher levels of ACE2 expression in the myocardium of male patients with aortic valve stenosis showed than female patients, although this pattern was not found in controls [904]. +Additionally, research has indicated that females respond to lower doses than males of heart medications that act on the Renin angiotensin aldosterone system (RAAS) pathway, which is shared with ACE2 [904]. +Additionally, several components of the immune response, including the inflammatory response, may differ in intensity and timing between males and females [906,908]. +This hypothesis is supported by some preliminary evidence showing that female patients who recovered from severe COVID-19 had higher antibody titers than males [906]. +Sex steroids can also bind to immune cell receptors to influence cytokine production [904]. +Additionally, social factors may influence risks related to both age and sex: for example, older adults are more likely to live in care facilities, which have been a source for a large number of outbreaks [909], and gender roles may also influence exposure and/or susceptibility due to differences in care-taking and/or risky behaviors (e.g., caring for elder relatives and smoking, respectively) [904] among men and women (however, it should be noted that both transgender men and women are suspected to be at heightened risk [910].)A number of pre-existing or comorbid conditions have repeatedly been identified as risk factors for more severe COVID-19 outcomes. -Several underlying health conditions were identified at high prevalence among hospitalized patients, including obesity, diabetes, hypertension, lung disease, and cardiovascular disease [896]. -Higher Sequential Organ Failure Assessment (SOFA) scores have been associated with a higher probability of mortality [35], and comorbid conditions such as cardiovascular and lung disease as well as obesity were also associated with an increased risk of hospitalization and death, even when correcting for age and sex [902]. -Diabetes may increase the risk of lengthy hospitalization [910] or of death [910,911]. -[912] and [913] discuss possible ways in which COVID-19 and diabetes may interact. -Obesity also appears to be associated with higher risk of severe outcomes from SARS-CoV-2 [914,915]. -Obesity is considered an underlying risk factor for other health problems, and the mechanism for its contributions to COVID-19 hospitalization or mortality is not yet clear [916]. -Dementia and cancer were also associated with the risk of death in an analysis of a large number (more than 20,000) COVID-19 patients in the United Kingdom [902]. -It should be noted that comorbid conditions are inextricably tied to age, as conditions tend to be accumulated over time, but that the prevalence of individual comorbidities or of population health overall can vary regionally [917]. -Several comorbidities that are highly prevalent in older adults, such as COPD, hypertension, cardiovascular disease, and diabetes, have been associated with CFRs upwards of 8% compared to an estimate of 1.4% in people without comorbidities [901,918]. -Therefore, both age and health are important considerations when predicting the impact of COVID-19 on a population [917]. -However, other associations may exist, such as patients with sepsis having higher SOFA scores – in fact, SOFA was developed for the assessment of organ failure in the context of sepsis, and the acronym originally stood for Sepsis-Related Organ Failure Assessment [919,920]. +Several underlying health conditions were identified at high prevalence among hospitalized patients, including obesity, diabetes, hypertension, lung disease, and cardiovascular disease [897]. +Higher Sequential Organ Failure Assessment (SOFA) scores have been associated with a higher probability of mortality [37], and comorbid conditions such as cardiovascular and lung disease as well as obesity were also associated with an increased risk of hospitalization and death, even when correcting for age and sex [903]. +Diabetes may increase the risk of lengthy hospitalization [911] or of death [911,912]. +[913] and [914] discuss possible ways in which COVID-19 and diabetes may interact. +Obesity also appears to be associated with higher risk of severe outcomes from SARS-CoV-2 [915,916]. +Obesity is considered an underlying risk factor for other health problems, and the mechanism for its contributions to COVID-19 hospitalization or mortality is not yet clear [917]. +Dementia and cancer were also associated with the risk of death in an analysis of a large number (more than 20,000) COVID-19 patients in the United Kingdom [903]. +It should be noted that comorbid conditions are inextricably tied to age, as conditions tend to be accumulated over time, but that the prevalence of individual comorbidities or of population health overall can vary regionally [918]. +Several comorbidities that are highly prevalent in older adults, such as COPD, hypertension, cardiovascular disease, and diabetes, have been associated with CFRs upwards of 8% compared to an estimate of 1.4% in people without comorbidities [902,919]. +Therefore, both age and health are important considerations when predicting the impact of COVID-19 on a population [918]. +However, other associations may exist, such as patients with sepsis having higher SOFA scores – in fact, SOFA was developed for the assessment of organ failure in the context of sepsis, and the acronym originally stood for Sepsis-Related Organ Failure Assessment [920,921]. Additionally, certain conditions are likely to be more prevalent under or exacerbated by social conditions, especially poverty, as is discussed further below.
A number of studies have suggested associations between individuals’ racial and ethnic backgrounds and their COVID-19 risk. -In particular, Black Americans are consistently identified as carrying a higher burden of COVID-19 than white Americans [898,899], with differences in the rates of kidney complications from COVID-19 particularly pronounced [94]. -Statistics from a number of cities indicate significant discrepancies between the proportion of COVID-19 cases and deaths in Black Americans relative to their representation in the general population [921]. -In addition to Black Americans, disproportionate harm and mortality from COVID-19 has also been noted in Latino/Hispanic Americans and in Native American and Alaskan Native communities, including the Navajo nation [922,923,924,925,926,927]. -In Brazil, indigenous communities likewise carry an increased burden of COVID-19 [928]. -In the United Kingdom, nonwhite ethnicity (principally Black or South Asian) was one of several factors found to be associated with a higher risk of death from COVID-19 [929].
+In particular, Black Americans are consistently identified as carrying a higher burden of COVID-19 than white Americans [899,900], with differences in the rates of kidney complications from COVID-19 particularly pronounced [96]. +Statistics from a number of cities indicate significant discrepancies between the proportion of COVID-19 cases and deaths in Black Americans relative to their representation in the general population [922]. +In addition to Black Americans, disproportionate harm and mortality from COVID-19 has also been noted in Latino/Hispanic Americans and in Native American and Alaskan Native communities, including the Navajo nation [923,924,925,926,927,928]. +In Brazil, indigenous communities likewise carry an increased burden of COVID-19 [929]. +In the United Kingdom, nonwhite ethnicity (principally Black or South Asian) was one of several factors found to be associated with a higher risk of death from COVID-19 [930].From a genetic standpoint, it is highly unlikely that ancestry itself predisposes individuals to contracting COVID-19 or to experiencing severe COVID-19 outcomes. -Examining human genetic diversity indicates variation over a geographic continuum, and that most human genetic variation is associated with the African continent [930]. -African-Americans are also a more genetically diverse group relative to European-Americans, with a large number of rare alleles and a much smaller fraction of common alleles identified in African-Americans [931]. -Therefore, the idea that African ancestry (at the continent level) might convey some sort of genetic risk for severe COVID-19 contrasts with what is known about worldwide human genetic diversity [932]. +Examining human genetic diversity indicates variation over a geographic continuum, and that most human genetic variation is associated with the African continent [931]. +African-Americans are also a more genetically diverse group relative to European-Americans, with a large number of rare alleles and a much smaller fraction of common alleles identified in African-Americans [932]. +Therefore, the idea that African ancestry (at the continent level) might convey some sort of genetic risk for severe COVID-19 contrasts with what is known about worldwide human genetic diversity [933]. The possibility for genetic variants that confer some risk or some protection remains possible, but has not been widely explored, especially at a global level. -Research in Beijing of a small number (n=80) hospitalized COVID-19 patients revealed an association between severe COVID-19 outcomes and homozygosity for an allele in the interferon-induced transmembrane protein 3 (IFITM3) gene, which was selected as a candidate because it was previously found to be associated with influenza outcomes in Chinese patients [933]. -Genetic factors may also play a role in the risk of respiratory failure for COVID-19 [934,935,936]. +Research in Beijing of a small number (n=80) hospitalized COVID-19 patients revealed an association between severe COVID-19 outcomes and homozygosity for an allele in the interferon-induced transmembrane protein 3 (IFITM3) gene, which was selected as a candidate because it was previously found to be associated with influenza outcomes in Chinese patients [934]. +Genetic factors may also play a role in the risk of respiratory failure for COVID-19 [935,936,937]. However, genetic variants associated with outcomes within ancestral groups are far less surprising than genetic variants explaining outcomes between groups. -Alleles in ACE2 and TMPRSS2 have been identified that vary in frequency among ancestral groups [937], but whether these variants are associated with COVID-19 susceptibility has not been explored.
+Alleles in ACE2 and TMPRSS2 have been identified that vary in frequency among ancestral groups [938], but whether these variants are associated with COVID-19 susceptibility has not been explored.Instead, examining patterns of COVID-19 susceptibility on a global scale that suggest that social factors are of primary importance in predicting mortality. Reports from several sub-Saharan African countries have indicated that the effects of the COVID-19 pandemic have been less severe than expected based on the outbreaks in China and Italy. -In Kenya, for example, estimates of national prevalence based on testing blood donors for SARS-CoV-2 antibodies were consistent with 5% of Kenyan adults having recovered from COVID-19 [938]. -This high seroprevalence of antibodies lies in sharp contrast to the low number of COVID-19 fatalities in Kenya, which at the time was 71 out of 2093 known cases [938]. -Likewise, a serosurvey of health care workers in Blantyre City, Malawi reported an adjusted antibody prevalence of 12.3%, suggesting that the virus had been circulating more widely than thought and that the death rate was up eight times lower than models had predicted [939]. -While several possible hypotheses for the apparent reduced impact of COVID-19 on the African continent are being explored, such as young demographics in many places [940], these reports present a stark contrast to the severity of COVID-19 in Americans and Europeans of African descent. -Additionally, ethnic minorities in the United Kingdom also tend to be younger than white British living in the same areas, yet the burden of COVID-19 is still more serious for minorities, especially people of Black Caribbean ancestry, both in absolute numbers and when controlling for age and location [941]. +In Kenya, for example, estimates of national prevalence based on testing blood donors for SARS-CoV-2 antibodies were consistent with 5% of Kenyan adults having recovered from COVID-19 [939]. +This high seroprevalence of antibodies lies in sharp contrast to the low number of COVID-19 fatalities in Kenya, which at the time was 71 out of 2093 known cases [939]. +Likewise, a serosurvey of health care workers in Blantyre City, Malawi reported an adjusted antibody prevalence of 12.3%, suggesting that the virus had been circulating more widely than thought and that the death rate was up eight times lower than models had predicted [940]. +While several possible hypotheses for the apparent reduced impact of COVID-19 on the African continent are being explored, such as young demographics in many places [941], these reports present a stark contrast to the severity of COVID-19 in Americans and Europeans of African descent. +Additionally, ethnic minorities in the United Kingdom also tend to be younger than white British living in the same areas, yet the burden of COVID-19 is still more serious for minorities, especially people of Black Caribbean ancestry, both in absolute numbers and when controlling for age and location [942]. Furthermore, the groups in the United States and United Kingdom that have been identified as carrying elevated COVID-19 burden, namely Black American, indigenous American, and Black and South Asian British, are quite distinct in their position on the human ancestral tree. What is shared across these groups is instead a history of disenfranchisement under colonialism and ongoing systematic racism. -A large analysis of over 11,000 COVID-19 patients hospitalized in 92 hospitals across U.S. states revealed that Black patients were younger, more often female, more likely to be on Medicaid, more likely to have comorbidities, and came from neighborhoods identified as more economically deprived than white patients [893]. +A large analysis of over 11,000 COVID-19 patients hospitalized in 92 hospitals across U.S. states revealed that Black patients were younger, more often female, more likely to be on Medicaid, more likely to have comorbidities, and came from neighborhoods identified as more economically deprived than white patients [894]. This study reported that when these factors were accounted for, the differences in mortality between Black and white patients were no longer significant. Thus, the current evidence suggests that the apparent correlations between ancestry and health outcomes must be examined in the appropriate social context.
Increased risk of exposure can also arise outside the workplace. -Nursing homes and skilled nursing facilities received attention early on as high-risk locations for COVID-19 outbreaks [954]. -Prisons and detention centers also confer a high risk of exposure or infection [955,956]. -Populations in care facilities are largely older adults, and in the United States, incarcerated people are more likely to be male and persons of color, especially Black [957]. -Additionally, multi-generational households are less common among non-Hispanic white Americans than people of other racial and ethnic backgrounds [958], increasing the risk of exposure for more susceptible family members. -Analysis suggests that household crowding may also be associated with increased risk of COVID-19 exposure [942], and household crowding is associated with poverty [959]. -Forms of economic insecurity like housing insecurity, which is associated with poverty and more pronounced in communities subjected to racism [960,961], would be likely to increase household crowding and other possible sources of exposure. +Nursing homes and skilled nursing facilities received attention early on as high-risk locations for COVID-19 outbreaks [955]. +Prisons and detention centers also confer a high risk of exposure or infection [956,957]. +Populations in care facilities are largely older adults, and in the United States, incarcerated people are more likely to be male and persons of color, especially Black [958]. +Additionally, multi-generational households are less common among non-Hispanic white Americans than people of other racial and ethnic backgrounds [959], increasing the risk of exposure for more susceptible family members. +Analysis suggests that household crowding may also be associated with increased risk of COVID-19 exposure [943], and household crowding is associated with poverty [960]. +Forms of economic insecurity like housing insecurity, which is associated with poverty and more pronounced in communities subjected to racism [961,962], would be likely to increase household crowding and other possible sources of exposure. As a result, facets of systemic inequality such as mass incarceration of Black Americans and poverty are likely to increase the risk of exposure outside of the workplace.
Following exposure to SARS-CoV-2, the likelihood that an individual develops COVID-19 and the severity of the disease presentation can be influenced by a number of social factors. As discussed above, a number of patient characteristics are associated with the likelihood of severe COVID-19 symptoms. -In some cases, these trends run counter to those expected given rates of exposure: for example, although women are more likely to be exposed, men are more likely to be diagnosed with, hospitalized from, or die from COVID-19 [905]. +In some cases, these trends run counter to those expected given rates of exposure: for example, although women are more likely to be exposed, men are more likely to be diagnosed with, hospitalized from, or die from COVID-19 [906]. In the case of comorbid conditions and racial/ethnic demographics, however, social factors are highly likely to modulate or at least influence the apparent association between these traits and the increased risk from COVID-19. In particular, the comorbidities and racial/ethnic correlates of severe COVID-19 outcomes suggest that poverty confers additional risk for COVID-19.
In order to explore the relationship between poverty and COVID-19 outcomes, it is necessary to consider how poverty impacts biology. In particular, we focus on the United States and the United Kingdom. -Comorbidities that increase risk for COVID-19, including obesity, type II diabetes, hypertension, and cardiovascular disease, are known to be intercorrelated [962]. -Metabolic conditions related to heightened inflammation, like obesity, type II diabetes, and hypertension, are more strongly associated with negative COVID-19 outcomes than other comorbid conditions, such as chronic heart disease [963]. +Comorbidities that increase risk for COVID-19, including obesity, type II diabetes, hypertension, and cardiovascular disease, are known to be intercorrelated [963]. +Metabolic conditions related to heightened inflammation, like obesity, type II diabetes, and hypertension, are more strongly associated with negative COVID-19 outcomes than other comorbid conditions, such as chronic heart disease [964]. As discussed above, dysregulated inflammation characteristic of cytokine release syndrome is one of the greatest concerns for COVID-19-related death. -Therefore, it is possible that chronic inflammation characteristic of these metabolic conditions predisposes patients to COVID-19-related death [963]. -The association between these diseases and severe COVID-19 outcomes is a concern from a health equity perspective because poverty exposes people to “obesogenic” conditions [964] and is therefore unsurprisingly associated with higher incidence of obesity and associated disorders [965]. -Furthermore, cell phone GPS data suggests that lower socioeconomic status may also be associated with decreased access to healthy food choices during the COVID-19 pandemic [966,967], suggesting that health-related risk factors for COVID-19 may be exacerbated as the pandemic continues [968]. -Chronic inflammation is a known outcome of chronic stress (e.g., [969,970,971,972]). -Therefore, the chronic stress of poverty is likely to influence health broadly (as summarized in [973]) and especially during the stress of the ongoing pandemic.
-A preprint [974] provided observational evidence that geographical areas in the United States that suffer from worse air pollution by fine particulate matter have also suffered more COVID-19 deaths per capita, after adjusting for demographic covariates. -Although lack of individual-level exposure data and the impossibility of randomization make it difficult to elucidate the exact causal mechanism, this finding would be consistent with similar findings for all-cause mortality (e.g., [975]). -Exposure to air pollution is associated with both poverty (e.g., [976]) and chronic inflammation [977]. -Other outcomes of environmental racism, such as the proximity of abandoned uranium mines to Navajo land, can also cause respiratory illnesses and other health issues [927]. -Similarly, preliminary findings indicate that nutritional status (e.g., vitamin D deficiency [719]) may be associated with COVID-19 outcomes, and reduced access to grocery stores and fresh food often co-occurs with environmental racism [927,978]. +Therefore, it is possible that chronic inflammation characteristic of these metabolic conditions predisposes patients to COVID-19-related death [964]. +The association between these diseases and severe COVID-19 outcomes is a concern from a health equity perspective because poverty exposes people to “obesogenic” conditions [965] and is therefore unsurprisingly associated with higher incidence of obesity and associated disorders [966]. +Furthermore, cell phone GPS data suggests that lower socioeconomic status may also be associated with decreased access to healthy food choices during the COVID-19 pandemic [967,968], suggesting that health-related risk factors for COVID-19 may be exacerbated as the pandemic continues [969]. +Chronic inflammation is a known outcome of chronic stress (e.g., [970,971,972,973]). +Therefore, the chronic stress of poverty is likely to influence health broadly (as summarized in [974]) and especially during the stress of the ongoing pandemic.
+A preprint [975] provided observational evidence that geographical areas in the United States that suffer from worse air pollution by fine particulate matter have also suffered more COVID-19 deaths per capita, after adjusting for demographic covariates. +Although lack of individual-level exposure data and the impossibility of randomization make it difficult to elucidate the exact causal mechanism, this finding would be consistent with similar findings for all-cause mortality (e.g., [976]). +Exposure to air pollution is associated with both poverty (e.g., [977]) and chronic inflammation [978]. +Other outcomes of environmental racism, such as the proximity of abandoned uranium mines to Navajo land, can also cause respiratory illnesses and other health issues [928]. +Similarly, preliminary findings indicate that nutritional status (e.g., vitamin D deficiency [720]) may be associated with COVID-19 outcomes, and reduced access to grocery stores and fresh food often co-occurs with environmental racism [928,979]. Taken together, the evidence suggests that low-income workers who face greater exposure to SARS-CoV-2 due to their home or work conditions are also more likely to face environmental and social stressors associated with increased inflammation, and therefore with increased risk from COVID-19. In particular, structural racism can play an important role on disease severity after SARS-CoV-2 exposure, due to consequences of racism which include an increased likelihood of poverty and its associated food and housing instability. -COVID-19 can thus be considered a “syndemic”, or a synergistic interaction between several epidemics [979]. +COVID-19 can thus be considered a “syndemic”, or a synergistic interaction between several epidemics [980]. As a result, it is not surprising that people from minoritized backgrounds and/or with certain pre-existing conditions are more likely to suffer severe effects of COVID-19, but these “risk factors” are likely to be causally linked to poverty.
Finally, COVID-19 outcomes can be influenced by access to healthcare. Receiving care for COVID-19 can, but does not always, include receiving a positive test for the SARS-CoV-2 virus. -For example, it is common to see treatment guidelines for suspected cases regardless of whether the presence of SARS-CoV-2 has been confirmed (e.g., [980]). +For example, it is common to see treatment guidelines for suspected cases regardless of whether the presence of SARS-CoV-2 has been confirmed (e.g., [981]). Whether and where a patient is diagnosed can depend on their access to testing, which can vary both between and within countries. -In the United States, it is not always clear whether an individual will have access to free testing [981,982]. -The concern has been raised that more economic privilege is likely to correspond to increased access to testing, at least within the United States [983]. -This is supported by the fact that African Americans seem to be more likely to be diagnosed in the hospital, while individuals from other groups were more likely to have been diagnosed in ambulatory settings in the community [898]. -Any delays in treatment are a cause for concern [983], which could potentially be increased by an inability to acquire testing because in the United States, insurance coverage for care received can depend on a positive test [984].
+In the United States, it is not always clear whether an individual will have access to free testing [982,983]. +The concern has been raised that more economic privilege is likely to correspond to increased access to testing, at least within the United States [984]. +This is supported by the fact that African Americans seem to be more likely to be diagnosed in the hospital, while individuals from other groups were more likely to have been diagnosed in ambulatory settings in the community [899]. +Any delays in treatment are a cause for concern [984], which could potentially be increased by an inability to acquire testing because in the United States, insurance coverage for care received can depend on a positive test [985].Another important question is whether patients with moderate to severe cases are able to access hospital facilities and treatments, to the extent that they have been identified. -Early findings from China as of February 2020 suggested the COVID-19 mortality rate to be much lower in the most developed regions of the country [985], although reported mortality is generally an estimate of CFR, which is dependent on rates of testing. -Efforts to make treatment accessible for all confirmed and suspected cases of COVID-19 in China are credited with expanding care to people with fewer economic resources [986]. -In the United States, access to healthcare varies widely, with certain sectors of the workforce less likely to have health insurance; many essential workers in transportation, food service, and other frontline fields are among those likely to be uninsured or underinsured [983]. -As of 2018, Hispanic Americans of all races were much less likely to have health insurance than people from non-Hispanic backgrounds [987]. +Early findings from China as of February 2020 suggested the COVID-19 mortality rate to be much lower in the most developed regions of the country [986], although reported mortality is generally an estimate of CFR, which is dependent on rates of testing. +Efforts to make treatment accessible for all confirmed and suspected cases of COVID-19 in China are credited with expanding care to people with fewer economic resources [987]. +In the United States, access to healthcare varies widely, with certain sectors of the workforce less likely to have health insurance; many essential workers in transportation, food service, and other frontline fields are among those likely to be uninsured or underinsured [984]. +As of 2018, Hispanic Americans of all races were much less likely to have health insurance than people from non-Hispanic backgrounds [988]. Therefore, access to diagnostics and care prior to the development of severe COVID-19 is likely to vary depending on socioeconomic and social factors, many of which overlap with the risks of exposure and of developing more severe COVID-19 symptoms. This discrepancy ties into concerns about broad infrastructural challenges imposed by COVID-19. -A major concern in many countries has been the saturation of healthcare systems due to the volume of COVID-19 hospitalizations (e.g., [240]). -Similarly, there have been shortages of supplies such as ventilators that are critical to the survival of many COVID-19 patients, leading to extensive ethical discussions about how to allocate limited resources among patients [988,989,990,991]. -Although it is generally considered unethical to consider demographic factors such as age, sex, race, or ethnicity while making such decisions, and ideally this information would not be shared with triage teams tasked with allocating limited resources among patients [992], there are substantial concerns about implicit and explicit biases against older adults [993], premature infants [994], and people with disabilities or comorbidities [992,995,996]. -Because of the greater burden of chronic disease in populations subjected to systemic racism, algorithms intended to be blind to race and ethnicity could, in fact, reinforce systemic inequalities caused by structural racism [997,998,999]. -Because of this inequality, it has been argued that groups facing health disparities should be prioritized by these algorithms [1000]. -This approach would carry its own ethical concerns, including the fact that many resources that need to be distributed do not have well-established risks and benefits [1000].
-As the pandemic has progressed, it has become clear that ICU beds and ventilators are not the only limited resources that needs to be allocated, and, in fact, the survival rate for patients who receive mechanical ventilation is lower than these discussions would suggest [1001]. -Allocation of interventions that may reduce suffering, including palliative care, has become critically important [1001,1002]. -The ambiguities surrounding the risks and benefits associated with therapeutics that have been approved under emergency use authorizations also present ethical concerns related to the distribution of resources [1000]. -For example, remdesivir, discussed above, is currently available for the treatment of COVID-19 under compassionate use guidelines and through expanded access programs, and in many cases has been donated to hospitals by Gilead [1003,1004]. -Regulations guiding the distribution of drugs in situations like these typically do not address how to determine which patients receive them [1004]. -Prioritizing marginalized groups for treatment with a drug like remdesivir would also be unethical because it would entail disproportionately exposing these groups to a therapeutic that may or not be beneficial [1000]. +A major concern in many countries has been the saturation of healthcare systems due to the volume of COVID-19 hospitalizations (e.g., [242]). +Similarly, there have been shortages of supplies such as ventilators that are critical to the survival of many COVID-19 patients, leading to extensive ethical discussions about how to allocate limited resources among patients [989,990,991,992]. +Although it is generally considered unethical to consider demographic factors such as age, sex, race, or ethnicity while making such decisions, and ideally this information would not be shared with triage teams tasked with allocating limited resources among patients [993], there are substantial concerns about implicit and explicit biases against older adults [994], premature infants [995], and people with disabilities or comorbidities [993,996,997]. +Because of the greater burden of chronic disease in populations subjected to systemic racism, algorithms intended to be blind to race and ethnicity could, in fact, reinforce systemic inequalities caused by structural racism [998,999,1000]. +Because of this inequality, it has been argued that groups facing health disparities should be prioritized by these algorithms [1001]. +This approach would carry its own ethical concerns, including the fact that many resources that need to be distributed do not have well-established risks and benefits [1001].
+As the pandemic has progressed, it has become clear that ICU beds and ventilators are not the only limited resources that needs to be allocated, and, in fact, the survival rate for patients who receive mechanical ventilation is lower than these discussions would suggest [1002]. +Allocation of interventions that may reduce suffering, including palliative care, has become critically important [1002,1003]. +The ambiguities surrounding the risks and benefits associated with therapeutics that have been approved under emergency use authorizations also present ethical concerns related to the distribution of resources [1001]. +For example, remdesivir, discussed above, is currently available for the treatment of COVID-19 under compassionate use guidelines and through expanded access programs, and in many cases has been donated to hospitals by Gilead [1004,1005]. +Regulations guiding the distribution of drugs in situations like these typically do not address how to determine which patients receive them [1005]. +Prioritizing marginalized groups for treatment with a drug like remdesivir would also be unethical because it would entail disproportionately exposing these groups to a therapeutic that may or not be beneficial [1001]. On the other hand, given that the drug is one of the most promising treatments available for many patients, using a framework that tacitly feeds into structural biases would also be unethical. -At present, the report prepared for the Director of the CDC by Ethics Subcommittee of the CDC fails to address the complexity of this ethical question given the state of structural racism in the United States, instead stating that “prioritizing individuals according to their chances for short-term survival also avoids ethically irrelevant considerations, such as race or socioeconomic status” [1005]. -In many cases, experimental therapeutics are made available only through participation in clinical trials [1006]. -However, given the history of medical trials abusing minority communities, especially Black Americans, there is a history of unequal representation in clinical trial enrollment [1006]. +At present, the report prepared for the Director of the CDC by Ethics Subcommittee of the CDC fails to address the complexity of this ethical question given the state of structural racism in the United States, instead stating that “prioritizing individuals according to their chances for short-term survival also avoids ethically irrelevant considerations, such as race or socioeconomic status” [1006]. +In many cases, experimental therapeutics are made available only through participation in clinical trials [1007]. +However, given the history of medical trials abusing minority communities, especially Black Americans, there is a history of unequal representation in clinical trial enrollment [1007]. As a result, the standard practice of requiring enrollment in a clinical trial in order to receive experimental treatment may also reinforce patterns established by systemic racism.
A few different concerns arise from this skewed geographic representation in clinical trial recruitment. First, treatments such as remdesivir that are promising but primarily available to clinical trial participants are unlikely to be accessible by people in many countries. Second, it raises the concern that the findings of clinical trials will be based on participants from many of the wealthiest countries, which may lead to ambiguity in whether the findings can be extrapolated to COVID-19 patients elsewhere. -Especially with the global nature of COVID-19, equitable access to therapeutics and vaccines has been a concern at the forefront of many discussions about policy (e.g., [1008], yet data like that shown in Figure 6 demonstrates that accessibility is likely to be a significant issue. -Another concern with the heterogeneous international distribution of clinical trials is that the governments of countries leading these clinical trials might prioritize their own populations once vaccines are developed, causing unequal health outcomes [1009]. -Additionally, even within a single state in the United States (Maryland), geography was found to influence the likelihood of being recruited into or enrolled in a clinical trial, with patients in under-served rural areas less likely to enroll [1010]. +Especially with the global nature of COVID-19, equitable access to therapeutics and vaccines has been a concern at the forefront of many discussions about policy (e.g., [1009], yet data like that shown in Figure 6 demonstrates that accessibility is likely to be a significant issue. +Another concern with the heterogeneous international distribution of clinical trials is that the governments of countries leading these clinical trials might prioritize their own populations once vaccines are developed, causing unequal health outcomes [1010]. +Additionally, even within a single state in the United States (Maryland), geography was found to influence the likelihood of being recruited into or enrolled in a clinical trial, with patients in under-served rural areas less likely to enroll [1011]. Thus, geography both on the global and local levels may influence when treatments and vaccines are available and who is able to access them. -Efforts such as the African Union’s efforts to coordinate and promote vaccine development [1011] are therefore critical to promoting equity in the COVID-19 response.
+Efforts such as the African Union’s efforts to coordinate and promote vaccine development [1012] are therefore critical to promoting equity in the COVID-19 response.Even when patients are located within the geographic recruitment area of clinical trials, however, there can still be demographic inequalities in enrollment. -When efforts are made to ensure equal opportunity to participate in clinical trials, there is no significant difference in participation among racial/ethnic groups [1012]. -However, within the United States, real clinical trial recruitment numbers have indicated for many years that racial minorities, especially African-Americans, tend to be under-represented (e.g., [1013,1014,1015,1016]). +When efforts are made to ensure equal opportunity to participate in clinical trials, there is no significant difference in participation among racial/ethnic groups [1013]. +However, within the United States, real clinical trial recruitment numbers have indicated for many years that racial minorities, especially African-Americans, tend to be under-represented (e.g., [1014,1015,1016,1017]). This trend is especially concerning given the disproportionate impact of COVID-19 on African-Americans. -Early evidence suggests that the proportion of Black, Latinx, and Native American participants in clinical trials for drugs such as remdesivir is much lower than the representation of these groups among COVID-19 patients [1017].
+Early evidence suggests that the proportion of Black, Latinx, and Native American participants in clinical trials for drugs such as remdesivir is much lower than the representation of these groups among COVID-19 patients [1018].One proposed explanation for differences among racial and ethnic groups in clinical trial enrollment refers to different experiences in healthcare settings. -While some plausible reasons for the disparity in communication between physicians and patients could be a lack of awareness and education, mistrust in healthcare professionals, and a lack of health insurance [1012], a major concern is that patients from certain racial and ethnic groups are marginalized even while seeking healthcare. -In the United States, many patients experience “othering” from physicians and other medical professionals due to their race or other external characteristics such as gender (e.g., [1018]). +While some plausible reasons for the disparity in communication between physicians and patients could be a lack of awareness and education, mistrust in healthcare professionals, and a lack of health insurance [1013], a major concern is that patients from certain racial and ethnic groups are marginalized even while seeking healthcare. +In the United States, many patients experience “othering” from physicians and other medical professionals due to their race or other external characteristics such as gender (e.g., [1019]). Many studies have sought to characterize implicit biases in healthcare providers and whether they affect their perceptions or treatment of patients. -A systematic review that examined 37 such studies reported that most (31) identified racial and/or ethnic biases in healthcare providers in many different roles, although the evidence about whether these biases translated to different attitudes towards patients was mixed [1019], with similar findings reported by a second systematic review [1020]. -However, data about real-world patient outcomes are very limited, with most studies relying on clinical vignette-based exercises [1019], and other analyses suggest that physician implicit bias could impact the patient’s perception of the negativity/positivity of the interaction regardless of the physician’s explicit behavior towards the patient [1021]. -Because racism is a common factor in both, negative patient experiences with medical professionals are likely to compound other issues of systemic inequality, such as a lack of access to adequate care, a lack of insurance, or increased exposure to SARS-CoV-2 [1022]. +A systematic review that examined 37 such studies reported that most (31) identified racial and/or ethnic biases in healthcare providers in many different roles, although the evidence about whether these biases translated to different attitudes towards patients was mixed [1020], with similar findings reported by a second systematic review [1021]. +However, data about real-world patient outcomes are very limited, with most studies relying on clinical vignette-based exercises [1020], and other analyses suggest that physician implicit bias could impact the patient’s perception of the negativity/positivity of the interaction regardless of the physician’s explicit behavior towards the patient [1022]. +Because racism is a common factor in both, negative patient experiences with medical professionals are likely to compound other issues of systemic inequality, such as a lack of access to adequate care, a lack of insurance, or increased exposure to SARS-CoV-2 [1023]. Furthermore, the experience of being othered is not only expected to impact patients’ trust in and comfort with their provider, but also may directly impact whether or not the patient is offered the opportunity to participate in a clinical trial at all. Some studies suggest communication between physicians and patients impacts whether or not a physician offers a patient participation in a clinical trial. -For example, researchers utilized a linguistic analysis to assess mean word count of phrases related to clinical trial enrollment, such as voluntary participation, clinical trial, etc. [1012]. +For example, researchers utilized a linguistic analysis to assess mean word count of phrases related to clinical trial enrollment, such as voluntary participation, clinical trial, etc. [1013]. The data indicated that the mean word count of the entire visit was 1.5 times more for white patients in comparison to Black patients. -In addition, the greatest disparity between white and Black patients’ experience was the discussion of risks, with over 2 times as many risk-related words spoken with white patients than Black patients [1012]. +In addition, the greatest disparity between white and Black patients’ experience was the discussion of risks, with over 2 times as many risk-related words spoken with white patients than Black patients [1013]. The trends observed for other clinical trials raise the concern that COVID-19 clinical trial information may not be discussed as thoroughly or as often with Black patients compared to white patients.
These discrepancies are especially concerning given that many COVID-19 treatments are being or are considered being made available to patients prior to FDA approval through Emergency Use Authorizations. -In the past, African-Americans have been over-represented relative to national demographics in use of the FDA’s Exception From Informed Consent (EFIC) pathway [1023]. +In the past, African-Americans have been over-represented relative to national demographics in use of the FDA’s Exception From Informed Consent (EFIC) pathway [1024]. Through this pathway, people who are incapacitated can receive an experimental treatment even if they are not able to consent and there is not sufficient time to seek approval from an authorized representative. -This pathway presents concerns, however, when it is considered in the context of a long history of systematic abuses in medical experimentation where informed consent was not obtained from people of color, such as the Tuskegee syphilis experiments [1024]. +This pathway presents concerns, however, when it is considered in the context of a long history of systematic abuses in medical experimentation where informed consent was not obtained from people of color, such as the Tuskegee syphilis experiments [1025]. While the goal of EFIC approval is to provide treatment to patients who urgently need it, the combination of the ongoing legacy of racism in medicine renders this trend concerning. -With COVID-19, efforts to prioritize people who suffer from systemic racism are often designed with the goal of righting some of these inequalities (e.g., [1025]), but particular attention to informed consent will be imperative in ensuring these trials are ethical given that the benefits and risks of emerging treatments are still poorly characterized. +With COVID-19, efforts to prioritize people who suffer from systemic racism are often designed with the goal of righting some of these inequalities (e.g., [1026]), but particular attention to informed consent will be imperative in ensuring these trials are ethical given that the benefits and risks of emerging treatments are still poorly characterized. Making a substantial effort to run inclusive clinical trials is also important because of the possibility that racism could impact how a patient responds to a treatment. For example, as discussed above, dexamethasone has been identified as a promising treatment for patients experiencing cytokine release syndrome, but the mechanism of action is tied to the stress response. -A study from 2005 reported that Black asthma patients showed reduced responsiveness to dexamethasone in comparison to white patients and suggested Black patients might therefore require higher doses of the drug [1026]. -In the context of chronic stress caused by systemic racism, this result is not surprising: chronic stress is associated with dysregulated production of glucocorticoids [1027] and glucocorticoid receptor resistance [1028]. +A study from 2005 reported that Black asthma patients showed reduced responsiveness to dexamethasone in comparison to white patients and suggested Black patients might therefore require higher doses of the drug [1027]. +In the context of chronic stress caused by systemic racism, this result is not surprising: chronic stress is associated with dysregulated production of glucocorticoids [1028] and glucocorticoid receptor resistance [1029]. However, it underscores the critical need for treatment guidelines to take into account differences in life experience, which would be facilitated by the recruitment of patients from a wide range of backgrounds. Attention to the social aspects of clinical trial enrollment must therefore be an essential component of the medical research community’s response to COVID-19.
-Our primary goal is to sort and distill informative content out of the overwhelming flood of information [5] and help the broader scientific community become more conversant on this critical subject. +Our primary goal is to sort and distill informative content out of the overwhelming flood of information [7] and help the broader scientific community become more conversant on this critical subject. Thus, our approach has been to develop a real-time, collaborative effort that welcomes submissions from scientists worldwide into this ongoing effort. This document represents the first snapshot, which aims to reflect the state of the field as of October, 2020. We plan to refine and expand this document until technologies to mitigate the pandemic are widely available. -In an effort to keep pace as new information about COVID-19 and SARS-CoV-2 becomes available, this project is an open, collaborative effort that invited contributions from the scientific community broadly, similar to previous efforts to develop collaborative reviews [1029,1030]. +
In an effort to keep pace as new information about COVID-19 and SARS-CoV-2 becomes available, this project is an open, collaborative effort that invited contributions from the scientific community broadly, similar to previous efforts to develop collaborative reviews [1030,1031]. Contributors were recruited by word of mouth and on Twitter. -Existing efforts to train early-career scientists were also integrated: Appendix A contains summaries written by the students, post-docs, and faculty of the Immunology Institute at the Mount Sinai School of Medicine [1031,1032], and two of the authors were recruited through the American Physician Scientist Association’s Virtual Summer Research Program [1033]. -The project was managed through GitHub [1034] using Manubot [6] to continuously generate a version of the manuscript online [1035]. +Existing efforts to train early-career scientists were also integrated: Appendix A contains summaries written by the students, post-docs, and faculty of the Immunology Institute at the Mount Sinai School of Medicine [1032,1033], and two of the authors were recruited through the American Physician Scientist Association’s Virtual Summer Research Program [1034]. +The project was managed through GitHub [1035] using Manubot [8] to continuously generate a version of the manuscript online [1036]. Contributors developed text that was proposed through GitHub’s pull request system and then reviewed and approved by at least one other author. While this document reflects the current version of record, the online version will continue to be developed as information about the pandemic emerges. Below, we will describe the processes used to synthesize the literature.
Manubot [6] is a collaborative framework developed to adapt open-source software development techniques and version control for manuscript writing. +
Manubot [8] is a collaborative framework developed to adapt open-source software development techniques and version control for manuscript writing.
Here, Manubot was used to generate a manuscript from text maintained using GitHub, a popular, online version control interface.
The GitHub implementation allowed users to contribute either using git on the command line or using the GitHub user interface, and we developed documentation for users with less experience with this platform.
Manubot also provides a functionality to create a bibliography using digital object identifiers (DOIs), website URLs, or other identifiers such as PubMed identifiers and arXiv IDs.
Due to the needs of this project, project contributors also implemented new features in Manubot and Zotero, which Manubot uses to extract metadata for some types of citations.
-These features support directly citing clinical trial identifiers such as clinicaltrials:NCT04292899
[399] and generating the complete review manuscript along with the individual manuscripts reviewing specific topics.
+These features support directly citing clinical trial identifiers such as clinicaltrials:NCT04292899
[400] and generating the complete review manuscript along with the individual manuscripts reviewing specific topics.
Finally, Manubot and GitHub Actions continuous integration allowed for scripted updates to be run each time the manuscript was generated.
These scripts were used to check that the manuscript was built correctly, run spellchecking, and cross-reference the manuscripts cited in this review, summarized in Appendix A, and discussed in the project’s issues and pull requests.
The combination of Manubot and GitHub Actions also made it possible to dynamically update information such as statistics and visualizations in the manuscript. -Data about worldwide cases and deaths from the COVID-19 Data Repository by the Center for Systems Science and Engineering at Johns Hopkins University [368] were read using a Python script. -Similarly, the clinical trials statistics and figure were generated based on data from the University of Oxford Evidence-Based Medicine Data Lab’s COVID-19 TrialsTracker [371]. -In both cases, frequency data were plotted using Matplotlib [1036] in Python. +Data about worldwide cases and deaths from the COVID-19 Data Repository by the Center for Systems Science and Engineering at Johns Hopkins University [369] were read using a Python script. +Similarly, the clinical trials statistics and figure were generated based on data from the University of Oxford Evidence-Based Medicine Data Lab’s COVID-19 TrialsTracker [372]. +In both cases, frequency data were plotted using Matplotlib [1037] in Python. The figure showing the geographic distribution of COVID-19 clinical trials was generated using the countries associated with the trials listed in the COVID-19 TrialsTracker, converting the country names to 3-letter ISO codes using pycountry or manual adjustment when necessary, and visualizing the geographic distribution of trial recruitment using geopandas.
GitHub Actions runs a nightly workflow to update these external data and regenerate the statistics and figures for the manuscript. The workflow uses the GitHub API to detect and save the latest commit of the external data sources, which are both GitHub repositories. @@ -3202,7 +3203,7 @@
Relevant articles were identified and submitted as issues on GitHub for review. Articles were classified as diagnostic, therapeutic, or other, and a template was developed to guide the review of papers and preprints in each category. -Following a framework often used for assessing medical literature, the review consisted of examining methods used in each relevant article, assignment (whether the study was observational or randomized), assessment, results, interpretation, and how well the study extrapolates [1037]. +Following a framework often used for assessing medical literature, the review consisted of examining methods used in each relevant article, assignment (whether the study was observational or randomized), assessment, results, interpretation, and how well the study extrapolates [1038]. For examples of each template, please see Appendices B-D.
Reviewers describe how the study may extrapolate to a different species or population.
-Several review articles on aspects of COVID-19 have already been published. -These have included reviews on the disease epidemiology [38], immunological response [39], diagnostics [40], and pharmacological treatments [39,41]. -Others [42,43] provide narrative reviews of progress on some important ongoing COVID-19 research questions. +These have included reviews on the disease epidemiology [40], immunological response [41], diagnostics [42], and pharmacological treatments [41,43]. +Others [44,45] provide narrative reviews of progress on some important ongoing COVID-19 research questions. With the worldwide scientific community uniting during 2020 to investigate SARS-CoV-2 and COVID-19 from a wide range of perspectives, findings from many disciplines are relevant on a rapid timescale to a broad scientific audience. Additionally, many findings are published as preprints, which are available prior to going through the peer review process. As a result, centralizing, summarizing, and critiquing new literature broadly relevant to COVID-19 can help to expedite the interdisciplinary scientific process that is currently happening at an advanced pace. @@ -3724,6631 +3725,6636 @@
1. Pathogenesis, Symptomatology, and Transmission of SARS-CoV-2 through analysis of Viral Genomics and Structure
+Halie M. Rando, Adam L. MacLean, Alexandra J. Lee, Sandipan Ray, Vikas Bansal, Ashwin N. Skelly, Elizabeth Sell, John J. Dziak, Lamonica Shinholster, Lucy D’Agostino McGowan, … Casey S. Greene
+arXiv (2021-02-03) https://arxiv.org/abs/2102.01521
2. Dietary Supplements and Nutraceuticals Under Investigation for COVID-19 Prevention and Treatment
+Ronan Lordan, Halie M. Rando, COVID-19 Review Consortium, Casey S. Greene
+arXiv (2021-02-05) https://arxiv.org/abs/2102.02250
1. Novel Coronavirus (2019-nCoV) SITUATION REPORT - 1
+
3. Novel Coronavirus (2019-nCoV) SITUATION REPORT - 1
World Health Organization
(2020-01-21) https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf
2. Novel Coronavirus (2019-nCoV) Situation Report - 8
+
4. Novel Coronavirus (2019-nCoV) Situation Report - 8
World Health Organization
(2020-01-28) https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200128-sitrep-8-ncov-cleared.pdf
3. Novel Coronavirus (2019-nCoV) Situation Report - 51
+
5. Novel Coronavirus (2019-nCoV) Situation Report - 51
World Health Organization
(2020-03-11) https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf
4. Novel Coronavirus (2019-nCoV) Situation Report - 75
+
6. Novel Coronavirus (2019-nCoV) Situation Report - 75
World Health Organization
(2020-04-04) https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200404-sitrep-75-covid-19.pdf
5. How you can help with COVID-19 modelling
+
7. How you can help with COVID-19 modelling
Julia R. Gog
Nature Reviews Physics (2020-04-08) https://doi.org/ggrsq3
DOI: 10.1038/s42254-020-0175-7 · PMCID: PMC7144181
6. Open collaborative writing with Manubot
+
8. Open collaborative writing with Manubot
Daniel S. Himmelstein, Vincent Rubinetti, David R. Slochower, Dongbo Hu, Venkat S. Malladi, Casey S. Greene, Anthony Gitter
PLOS Computational Biology (2019-06-24) https://doi.org/c7np
DOI: 10.1371/journal.pcbi.1007128 · PMID: 31233491 · PMCID: PMC6611653
7. Cases, Data, and Surveillance
+
9. Cases, Data, and Surveillance
CDC
Centers for Disease Control and Prevention (2020-02-11) https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/about-epidemiology/index.html
8. IHME | COVID-19 Projections
+
10. IHME | COVID-19 Projections
Institute for Health Metrics and Evaluation
https://covid19.healthdata.org/
9. Managing epidemics: key facts about major deadly diseases.
+
11. Managing epidemics: key facts about major deadly diseases.
World Health Organization
(2018)
ISBN: 9789241565530
10. A Novel Coronavirus Genome Identified in a Cluster of Pneumonia Cases — Wuhan, China 2019−2020
+
12. A Novel Coronavirus Genome Identified in a Cluster of Pneumonia Cases — Wuhan, China 2019−2020
Wenjie Tan, Xiang Zhao, Xuejun Ma, Wenling Wang, Peihua Niu, Wenbo Xu, George F. Gao, Guizhen Wu, MHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China
China CDC Weekly (2020) https://doi.org/gg8z47
DOI: 10.46234/ccdcw2020.017
11. A new coronavirus associated with human respiratory disease in China
+
13. A new coronavirus associated with human respiratory disease in China
Fan Wu, Su Zhao, Bin Yu, Yan-Mei Chen, Wen Wang, Zhi-Gang Song, Yi Hu, Zhao-Wu Tao, Jun-Hua Tian, Yuan-Yuan Pei, … Yong-Zhen Zhang
Nature (2020-02-03) https://doi.org/dk2w
DOI: 10.1038/s41586-020-2008-3 · PMID: 32015508 · PMCID: PMC7094943
12. A pneumonia outbreak associated with a new coronavirus of probable bat origin
+
14. A pneumonia outbreak associated with a new coronavirus of probable bat origin
Peng Zhou, Xing-Lou Yang, Xian-Guang Wang, Ben Hu, Lei Zhang, Wei Zhang, Hao-Rui Si, Yan Zhu, Bei Li, Chao-Lin Huang, … Zheng-Li Shi
Nature (2020-02-03) https://doi.org/ggj5cg
DOI: 10.1038/s41586-020-2012-7 · PMID: 32015507 · PMCID: PMC7095418
13. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding
+
15. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding
Roujian Lu, Xiang Zhao, Juan Li, Peihua Niu, Bo Yang, Honglong Wu, Wenling Wang, Hao Song, Baoying Huang, Na Zhu, … Wenjie Tan
The Lancet (2020-02) https://doi.org/ggjr43
DOI: 10.1016/s0140-6736(20)30251-8
14. On the origin and continuing evolution of SARS-CoV-2
+
16. On the origin and continuing evolution of SARS-CoV-2
Xiaolu Tang, Changcheng Wu, Xiang Li, Yuhe Song, Xinmin Yao, Xinkai Wu, Yuange Duan, Hong Zhang, Yirong Wang, Zhaohui Qian, … Jian Lu
National Science Review (2020-06) https://doi.org/ggndzn
DOI: 10.1093/nsr/nwaa036 · PMCID: PMC7107875
15. Pangolin homology associated with 2019-nCoV
+
17. Pangolin homology associated with 2019-nCoV
Tao Zhang, Qunfu Wu, Zhigang Zhang
Cold Spring Harbor Laboratory (2020-02-20) https://doi.org/ggpvpt
DOI: 10.1101/2020.02.19.950253
16. Emergence of SARS-CoV-2 through recombination and strong purifying selection
+
18. Emergence of SARS-CoV-2 through recombination and strong purifying selection
Xiaojun Li, Elena E. Giorgi, Manukumar Honnayakanahalli Marichannegowda, Brian Foley, Chuan Xiao, Xiang-Peng Kong, Yue Chen, S. Gnanakaran, Bette Korber, Feng Gao
Science Advances (2020-07) https://doi.org/gg6r93
DOI: 10.1126/sciadv.abb9153 · PMID: 32937441 · PMCID: PMC7458444
17. The proximal origin of SARS-CoV-2
+
19. The proximal origin of SARS-CoV-2
Kristian G. Andersen, Andrew Rambaut, W. Ian Lipkin, Edward C. Holmes, Robert F. Garry
Nature Medicine (2020-03-17) https://doi.org/ggn4dn
DOI: 10.1038/s41591-020-0820-9 · PMCID: PMC7095063
18. Coronavirus immunogens
+
20. Coronavirus immunogens
Linda J. Saif
Veterinary Microbiology (1993-11) https://doi.org/ckfn8b
DOI: 10.1016/0378-1135(93)90030-b · PMID: 8116187 · PMCID: PMC7117163
19. Origin and evolution of pathogenic coronaviruses
+
21. Origin and evolution of pathogenic coronaviruses
Jie Cui, Fang Li, Zheng-Li Shi
Nature Reviews Microbiology (2018-12-10) https://doi.org/ggh4vb
DOI: 10.1038/s41579-018-0118-9 · PMID: 30531947 · PMCID: PMC7097006
20. Human Coronaviruses: A Review of Virus–Host Interactions
+
22. Human Coronaviruses: A Review of Virus–Host Interactions
Yvonne Lim, Yan Ng, James Tam, Ding Liu
Diseases (2016-07-25) https://doi.org/ggjs23
DOI: 10.3390/diseases4030026 · PMID: 28933406 · PMCID: PMC5456285
21. A New Virus Isolated from the Human Respiratory Tract.
+
23. A New Virus Isolated from the Human Respiratory Tract.
D. Hamre, J. J. Procknow
Experimental Biology and Medicine (1966-01-01) https://doi.org/gg84fc
DOI: 10.3181/00379727-121-30734 · PMID: 4285768
22. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease.
+
24. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease.
K. McIntosh, J. H. Dees, W. B. Becker, A. Z. Kapikian, R. M. Chanock
Proceedings of the National Academy of Sciences (1967-04-01) https://doi.org/bhfd6w
DOI: 10.1073/pnas.57.4.933 · PMID: 5231356 · PMCID: PMC224637
23.:(unav)
+
25.:(unav)
Krzysztof Pyrc, Maarten F Jebbink, Ben Berkhout, Lia van der Hoek
Virology Journal (2004) https://doi.org/dnmj8m
DOI: 10.1186/1743-422x-1-7 · PMID: 15548333 · PMCID: PMC538260
24. Understanding Human Coronavirus HCoV-NL63.
+
26. Understanding Human Coronavirus HCoV-NL63.
Sahar Abdul-Rasool, Burtram C Fielding
The open virology journal (2010-05-25) https://www.ncbi.nlm.nih.gov/pubmed/20700397
DOI: 10.2174/1874357901004010076 · PMID: 20700397 · PMCID: PMC2918871
25. Identification of a new human coronavirus
+
27. Identification of a new human coronavirus
Lia van der Hoek, Krzysztof Pyrc, Maarten F Jebbink, Wilma Vermeulen-Oost, Ron JM Berkhout, Katja C Wolthers, Pauline ME Wertheim-van Dillen, Jos Kaandorp, Joke Spaargaren, Ben Berkhout
Nature Medicine (2004-03-21) https://doi.org/b5wtsn
DOI: 10.1038/nm1024 · PMID: 15034574 · PMCID: PMC7095789
26. Characterization and Complete Genome Sequence of a Novel Coronavirus, Coronavirus HKU1, from Patients with Pneumonia
+
28. Characterization and Complete Genome Sequence of a Novel Coronavirus, Coronavirus HKU1, from Patients with Pneumonia
Patrick C. Y. Woo, Susanna K. P. Lau, Chung-ming Chu, Kwok-hung Chan, Hoi-wah Tsoi, Yi Huang, Beatrice H. L. Wong, Rosana W. S. Poon, James J. Cai, Wei-kwang Luk, … Kwok-yung Yuen
Journal of Virology (2005-01-15) https://doi.org/bk7m7h
DOI: 10.1128/jvi.79.2.884-895.2005 · PMID: 15613317 · PMCID: PMC538593
27. Coronavirus 229E-Related Pneumonia in Immunocompromised Patients
+
29. Coronavirus 229E-Related Pneumonia in Immunocompromised Patients
F. Pene, A. Merlat, A. Vabret, F. Rozenberg, A. Buzyn, F. Dreyfus, A. Cariou, F. Freymuth, P. Lebon
Clinical Infectious Diseases (2003-10-01) https://doi.org/dcjk64
DOI: 10.1086/377612 · PMID: 13130404 · PMCID: PMC7107892
28. SARS and MERS: recent insights into emerging coronaviruses
+
30. SARS and MERS: recent insights into emerging coronaviruses
Emmie de Wit, Neeltje van Doremalen, Darryl Falzarano, Vincent J. Munster
Nature Reviews Microbiology (2016-06-27) https://doi.org/f8v5cv
DOI: 10.1038/nrmicro.2016.81 · PMID: 27344959 · PMCID: PMC7097822
29. Hosts and Sources of Endemic Human Coronaviruses
+
31. Hosts and Sources of Endemic Human Coronaviruses
Victor M. Corman, Doreen Muth, Daniela Niemeyer, Christian Drosten
Advances in Virus Research (2018) https://doi.org/ggwx4j
DOI: 10.1016/bs.aivir.2018.01.001 · PMID: 29551135 · PMCID: PMC7112090
30. Three Emerging Coronaviruses in Two Decades
+
32. Three Emerging Coronaviruses in Two Decades
Jeannette Guarner
American Journal of Clinical Pathology (2020-04) https://doi.org/ggppq3
DOI: 10.1093/ajcp/aqaa029 · PMID: 32053148 · PMCID: PMC7109697
31. From SARS to MERS, Thrusting Coronaviruses into the Spotlight
+
33. From SARS to MERS, Thrusting Coronaviruses into the Spotlight
Zhiqi Song, Yanfeng Xu, Linlin Bao, Ling Zhang, Pin Yu, Yajin Qu, Hua Zhu, Wenjie Zhao, Yunlin Han, Chuan Qin
Viruses (2019-01-14) https://doi.org/ggqp7h
DOI: 10.3390/v11010059 · PMID: 30646565 · PMCID: PMC6357155
32. 1. Overview of the human immune response
+
34. 1. Overview of the human immune response
D CHAPLIN
Journal of Allergy and Clinical Immunology (2006-02) https://doi.org/b6zghf
DOI: 10.1016/j.jaci.2005.09.034 · PMID: 16455341
33. Molecular immune pathogenesis and diagnosis of COVID-19
+
35. Molecular immune pathogenesis and diagnosis of COVID-19
Xiaowei Li, Manman Geng, Yizhao Peng, Liesu Meng, Shemin Lu
Journal of Pharmaceutical Analysis (2020-04) https://doi.org/ggppqg
DOI: 10.1016/j.jpha.2020.03.001 · PMID: 32282863 · PMCID: PMC7104082
34. Clinical Characteristics of Coronavirus Disease 2019 in China
+
36. Clinical Characteristics of Coronavirus Disease 2019 in China
Wei-jie Guan, Zheng-yi Ni, Yu Hu, Wen-hua Liang, Chun-quan Ou, Jian-xing He, Lei Liu, Hong Shan, Chun-liang Lei, David S. C. Hui, … Nan-shan Zhong
New England Journal of Medicine (2020-04-30) https://doi.org/ggm6dh
DOI: 10.1056/nejmoa2002032 · PMID: 32109013 · PMCID: PMC7092819
35. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study
+
37. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study
Fei Zhou, Ting Yu, Ronghui Du, Guohui Fan, Ying Liu, Zhibo Liu, Jie Xiang, Yeming Wang, Bin Song, Xiaoying Gu, … Bin Cao
The Lancet (2020-03) https://doi.org/ggnxb3
DOI: 10.1016/s0140-6736(20)30566-3
36. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area
+
38. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area
Safiya Richardson, Jamie S. Hirsch, Mangala Narasimhan, James M. Crawford, Thomas McGinn, Karina W. Davidson, Douglas P. Barnaby, Lance B. Becker, John D. Chelico, Stuart L. Cohen, … and the Northwell COVID-19 Research Consortium
JAMA (2020-05-26) https://doi.org/ggsrkd
DOI: 10.1001/jama.2020.6775 · PMID: 32320003 · PMCID: PMC7177629
37. Clinical Characteristics of Covid-19 in New York City
+
39. Clinical Characteristics of Covid-19 in New York City
Parag Goyal, Justin J. Choi, Laura C. Pinheiro, Edward J. Schenck, Ruijun Chen, Assem Jabri, Michael J. Satlin, Thomas R. Campion, Musarrat Nahid, Joanna B. Ringel, … Monika M. Safford
New England Journal of Medicine (2020-06-11) https://doi.org/ggtsjc
DOI: 10.1056/nejmc2010419 · PMID: 32302078 · PMCID: PMC7182018
38. COVID-19: Epidemiology, Evolution, and Cross-Disciplinary Perspectives
+
40. COVID-19: Epidemiology, Evolution, and Cross-Disciplinary Perspectives
Jiumeng Sun, Wan-Ting He, Lifang Wang, Alexander Lai, Xiang Ji, Xiaofeng Zhai, Gairu Li, Marc A. Suchard, Jin Tian, Jiyong Zhou, … Shuo Su
Trends in Molecular Medicine (2020-05) https://doi.org/ggqgwq
DOI: 10.1016/j.molmed.2020.02.008 · PMID: 32359479 · PMCID: PMC7118693
39. Immunology of COVID-19: Current State of the Science
+
41. Immunology of COVID-19: Current State of the Science
Nicolas Vabret, Graham J. Britton, Conor Gruber, Samarth Hegde, Joel Kim, Maria Kuksin, Rachel Levantovsky, Louise Malle, Alvaro Moreira, Matthew D. Park, … Uri Laserson
Immunity (2020-06) https://doi.org/ggt54g
DOI: 10.1016/j.immuni.2020.05.002 · PMID: 32505227 · PMCID: PMC7200337
40. COVID-19 diagnostics in context
+
42. COVID-19 diagnostics in context
Ralph Weissleder, Hakho Lee, Jina Ko, Mikael J. Pittet
Science Translational Medicine (2020-06-03) https://doi.org/gg339m
DOI: 10.1126/scitranslmed.abc1931 · PMID: 32493791
41. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19)
+
43. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19)
James M. Sanders, Marguerite L. Monogue, Tomasz Z. Jodlowski, James B. Cutrell
JAMA (2020-04-13) https://doi.org/ggr27x
DOI: 10.1001/jama.2020.6019 · PMID: 32282022
42. COVID-19 Research in Brief: December, 2019 to June, 2020
+
44. COVID-19 Research in Brief: December, 2019 to June, 2020
Thiago Carvalho
Nature Medicine (2020-06-26) https://doi.org/gg3kd2
DOI: 10.1038/d41591-020-00026-w · PMID: 32778824
43. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19)
+
45. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19)
W. Joost Wiersinga, Andrew Rhodes, Allen C. Cheng, Sharon J. Peacock, Hallie C. Prescott
JAMA (2020-08-25) https://doi.org/gg4ht4
DOI: 10.1001/jama.2020.12839 · PMID: 32648899
44. Coronavirus Disease 2019 (COVID-19) – Symptoms
+
46. Coronavirus Disease 2019 (COVID-19) – Symptoms
CDC
Centers for Disease Control and Prevention (2020-12-22) https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html
45. WHO Declares COVID-19 a Pandemic
+
47. WHO Declares COVID-19 a Pandemic
Domenico Cucinotta, Maurizio Vanelli
Acta Bio Medica Atenei Parmensis (2020-03-19) https://doi.org/ggq86h
DOI: 10.23750/abm.v91i1.9397 · PMID: 32191675 · PMCID: PMC7569573
46. Acute lung injury in patients with COVID‐19 infection
+
48. Acute lung injury in patients with COVID‐19 infection
Liyang Li, Qihong Huang, Diane C. Wang, David H. Ingbar, Xiangdong Wang
Clinical and Translational Medicine (2020-03-31) https://doi.org/ghqcrz
DOI: 10.1002/ctm2.16 · PMID: 32508022 · PMCID: PMC7240840
47. Structure, Function, and Evolution of Coronavirus Spike Proteins
+
49. Structure, Function, and Evolution of Coronavirus Spike Proteins
Fang Li
Annual Review of Virology (2016-09-29) https://doi.org/ggr7gv
DOI: 10.1146/annurev-virology-110615-042301 · PMID: 27578435 · PMCID: PMC5457962
48. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster
+
50. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster
Jasper Fuk-Woo Chan, Shuofeng Yuan, Kin-Hang Kok, Kelvin Kai-Wang To, Hin Chu, Jin Yang, Fanfan Xing, Jieling Liu, Cyril Chik-Yan Yip, Rosana Wing-Shan Poon, … Kwok-Yung Yuen
The Lancet (2020-02) https://doi.org/ggjs7j
DOI: 10.1016/s0140-6736(20)30154-9 · PMID: 31986261 · PMCID: PMC7159286
49. Fields virology
+
51. Fields virology
Bernard N. Fields, David M. Knipe, Peter M. Howley (editors)
Wolters Kluwer Health/Lippincott Williams & Wilkins (2007)
ISBN: 9780781760607
50. Important Role for the Transmembrane Domain of Severe Acute Respiratory Syndrome Coronavirus Spike Protein during Entry
+
52. Important Role for the Transmembrane Domain of Severe Acute Respiratory Syndrome Coronavirus Spike Protein during Entry
Rene Broer, Bertrand Boson, Willy Spaan, François-Loïc Cosset, Jeroen Corver
Journal of Virology (2006-02-01) https://doi.org/dvvg2h
DOI: 10.1128/jvi.80.3.1302-1310.2006 · PMID: 16415007 · PMCID: PMC1346921
51. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
+
53. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
Daniel Wrapp, Nianshuang Wang, Kizzmekia S. Corbett, Jory A. Goldsmith, Ching-Lin Hsieh, Olubukola Abiona, Barney S. Graham, Jason S. McLellan
Science (2020-03-13) https://doi.org/ggmtk2
DOI: 10.1126/science.abb2507 · PMID: 32075877
52. Medical microbiology
+
54. Medical microbiology
Samuel Baron (editor)
University of Texas Medical Branch at Galveston (1996)
ISBN: 9780963117212
53. Coronaviruses: An Overview of Their Replication and Pathogenesis
+
55. Coronaviruses: An Overview of Their Replication and Pathogenesis
Anthony R. Fehr, Stanley Perlman
Methods in Molecular Biology (2015) https://doi.org/ggpc6n
DOI: 10.1007/978-1-4939-2438-7_1 · PMID: 25720466 · PMCID: PMC4369385
54. Emerging coronaviruses: Genome structure, replication, and pathogenesis
+
56. Emerging coronaviruses: Genome structure, replication, and pathogenesis
Yu Chen, Qianyun Liu, Deyin Guo
Journal of Medical Virology (2020-02-07) https://doi.org/ggjvwj
DOI: 10.1002/jmv.25681 · PMID: 31967327
55. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway
+
57. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway
Hongliang Wang, Peng Yang, Kangtai Liu, Feng Guo, Yanli Zhang, Gongyi Zhang, Chengyu Jiang
Cell Research (2008-01-29) https://doi.org/bp9275
DOI: 10.1038/cr.2008.15 · PMID: 18227861 · PMCID: PMC7091891
56. Virus Entry by Endocytosis
+
58. Virus Entry by Endocytosis
Jason Mercer, Mario Schelhaas, Ari Helenius
Annual Review of Biochemistry (2010-06-07) https://doi.org/cw4dnb
DOI: 10.1146/annurev-biochem-060208-104626 · PMID: 20196649
57. Mechanisms of Coronavirus Cell Entry Mediated by the Viral Spike Protein
+
59. Mechanisms of Coronavirus Cell Entry Mediated by the Viral Spike Protein
Sandrine Belouzard, Jean K. Millet, Beth N. Licitra, Gary R. Whittaker
Viruses (2012-06-20) https://doi.org/gbbktb
DOI: 10.3390/v4061011 · PMID: 22816037 · PMCID: PMC3397359
58. Phylogenetic Analysis and Structural Modeling of SARS-CoV-2 Spike Protein Reveals an Evolutionary Distinct and Proteolytically Sensitive Activation Loop
+
60. Phylogenetic Analysis and Structural Modeling of SARS-CoV-2 Spike Protein Reveals an Evolutionary Distinct and Proteolytically Sensitive Activation Loop
Javier A. Jaimes, Nicole M. André, Joshua S. Chappie, Jean K. Millet, Gary R. Whittaker
Journal of Molecular Biology (2020-05) https://doi.org/ggtxhr
DOI: 10.1016/j.jmb.2020.04.009 · PMID: 32320687 · PMCID: PMC7166309
59. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target
+
61. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target
Haibo Zhang, Josef M. Penninger, Yimin Li, Nanshan Zhong, Arthur S. Slutsky
Intensive Care Medicine (2020-03-03) https://doi.org/ggpx6p
DOI: 10.1007/s00134-020-05985-9 · PMID: 32125455 · PMCID: PMC7079879
60. Infection of Human Airway Epithelia by Sars Coronavirus is Associated with ACE2 Expression and Localization
+
62. Infection of Human Airway Epithelia by Sars Coronavirus is Associated with ACE2 Expression and Localization
Hong Peng Jia, Dwight C. Look, Melissa Hickey, Lei Shi, Lecia Pewe, Jason Netland, Michael Farzan, Christine Wohlford-Lenane, Stanley Perlman, Paul B. McCray
Advances in Experimental Medicine and Biology (2006) https://doi.org/dhh5tp
DOI: 10.1007/978-0-387-33012-9_85 · PMID: 17037581 · PMCID: PMC7123641
61. The protein expression profile of ACE2 in human tissues
+
63. The protein expression profile of ACE2 in human tissues
Feria Hikmet, Loren Méar, Åsa Edvinsson, Patrick Micke, Mathias Uhlén, Cecilia Lindskog
Molecular Systems Biology (2020-07-26) https://doi.org/gg6mxv
DOI: 10.15252/msb.20209610 · PMID: 32715618 · PMCID: PMC7383091
62. Receptor Recognition Mechanisms of Coronaviruses: a Decade of Structural Studies
+
64. Receptor Recognition Mechanisms of Coronaviruses: a Decade of Structural Studies
Fang Li
Journal of Virology (2015-02-15) https://doi.org/f633jb
DOI: 10.1128/jvi.02615-14 · PMID: 25428871 · PMCID: PMC4338876
63. The spike protein of SARS-CoV — a target for vaccine and therapeutic development
+
65. The spike protein of SARS-CoV — a target for vaccine and therapeutic development
Lanying Du, Yuxian He, Yusen Zhou, Shuwen Liu, Bo-Jian Zheng, Shibo Jiang
Nature Reviews Microbiology (2009-02-09) https://doi.org/d4tq4t
DOI: 10.1038/nrmicro2090 · PMID: 19198616 · PMCID: PMC2750777
64. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein
+
66. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein
Alexandra C. Walls, Young-Jun Park, M. Alejandra Tortorici, Abigail Wall, Andrew T. McGuire, David Veesler
Cell (2020-04) https://doi.org/dpvh
DOI: 10.1016/j.cell.2020.02.058 · PMID: 32155444 · PMCID: PMC7102599
65. Molecular Interactions in the Assembly of Coronaviruses
+
67. Molecular Interactions in the Assembly of Coronaviruses
Cornelis A. M. de Haan, Peter J. M. Rottier
Advances in Virus Research (2005) https://doi.org/cf8chz
DOI: 10.1016/s0065-3527(05)64006-7 · PMID: 16139595 · PMCID: PMC7112327
66. Coronavirus membrane fusion mechanism offers a potential target for antiviral development
+
68. Coronavirus membrane fusion mechanism offers a potential target for antiviral development
Tiffany Tang, Miya Bidon, Javier A. Jaimes, Gary R. Whittaker, Susan Daniel
Antiviral Research (2020-06) https://doi.org/ggr23b
DOI: 10.1016/j.antiviral.2020.104792 · PMID: 32272173 · PMCID: PMC7194977
67. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor
+
69. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor
Markus Hoffmann, Hannah Kleine-Weber, Simon Schroeder, Nadine Krüger, Tanja Herrler, Sandra Erichsen, Tobias S. Schiergens, Georg Herrler, Nai-Huei Wu, Andreas Nitsche, … Stefan Pöhlmann
Cell (2020-04) https://doi.org/ggnq74
DOI: 10.1016/j.cell.2020.02.052 · PMID: 32142651 · PMCID: PMC7102627
68. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV
+
70. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV
Xiuyuan Ou, Yan Liu, Xiaobo Lei, Pei Li, Dan Mi, Lili Ren, Li Guo, Ruixuan Guo, Ting Chen, Jiaxin Hu, … Zhaohui Qian
Nature Communications (2020-03-27) https://doi.org/ggqsrf
DOI: 10.1038/s41467-020-15562-9 · PMID: 32221306 · PMCID: PMC7100515
69. Coronaviridae ~ ViralZone page https://viralzone.expasy.org/30?outline
+71. Coronaviridae ~ ViralZone page https://viralzone.expasy.org/30?outline
70. Spatiotemporal interplay of severe acute respiratory syndrome coronavirus and respiratory mucosal cells drives viral dissemination in rhesus macaques
+
72. Spatiotemporal interplay of severe acute respiratory syndrome coronavirus and respiratory mucosal cells drives viral dissemination in rhesus macaques
L Liu, Q Wei, K Nishiura, J Peng, H Wang, C Midkiff, X Alvarez, C Qin, A Lackner, Z Chen
Mucosal Immunology (2015-12-09) https://doi.org/f8r7dk
DOI: 10.1038/mi.2015.127 · PMID: 26647718 · PMCID: PMC4900951
71. Understanding Viral dsRNA-Mediated Innate Immune Responses at the Cellular Level Using a Rainbow Trout Model
+
73. Understanding Viral dsRNA-Mediated Innate Immune Responses at the Cellular Level Using a Rainbow Trout Model
Sarah J. Poynter, Stephanie J. DeWitte-Orr
Frontiers in Immunology (2018-04-23) https://doi.org/gdhpbs
DOI: 10.3389/fimmu.2018.00829 · PMID: 29740439 · PMCID: PMC5924774
72. Ultrastructure and Origin of Membrane Vesicles Associated with the Severe Acute Respiratory Syndrome Coronavirus Replication Complex
+
74. Ultrastructure and Origin of Membrane Vesicles Associated with the Severe Acute Respiratory Syndrome Coronavirus Replication Complex
Eric J. Snijder, Yvonne van der Meer, Jessika Zevenhoven-Dobbe, Jos J. M. Onderwater, Jannes van der Meulen, Henk K. Koerten, A. Mieke Mommaas
Journal of Virology (2006-06-15) https://doi.org/b2rh4r
DOI: 10.1128/jvi.02501-05 · PMID: 16731931 · PMCID: PMC1472606
73. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2
+
75. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2
Matthias Thoms, Robert Buschauer, Michael Ameismeier, Lennart Koepke, Timo Denk, Maximilian Hirschenberger, Hanna Kratzat, Manuel Hayn, Timur Mackens-Kiani, Jingdong Cheng, … Roland Beckmann
Science (2020-09-04) https://doi.org/gg69nq
DOI: 10.1126/science.abc8665 · PMID: 32680882 · PMCID: PMC7402621
74. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic
+
76. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic
Asian Pacific Journal of Allergy and Immunology
(2020) https://doi.org/ggpvxw
DOI: 10.12932/ap-200220-0772 · PMID: 32105090
75. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus
+
77. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus
Wenhui Li, Michael J. Moore, Natalya Vasilieva, Jianhua Sui, Swee Kee Wong, Michael A. Berne, Mohan Somasundaran, John L. Sullivan, Katherine Luzuriaga, Thomas C. Greenough, … Michael Farzan
Nature (2003-11) https://doi.org/bqvpjh
DOI: 10.1038/nature02145 · PMID: 14647384 · PMCID: PMC7095016
76. Efficient Activation of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein by the Transmembrane Protease TMPRSS2
+
78. Efficient Activation of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein by the Transmembrane Protease TMPRSS2
Shutoku Matsuyama, Noriyo Nagata, Kazuya Shirato, Miyuki Kawase, Makoto Takeda, Fumihiro Taguchi
Journal of Virology (2010-12-15) https://doi.org/d4hnfr
DOI: 10.1128/jvi.01542-10 · PMID: 20926566 · PMCID: PMC3004351
77. Evidence that TMPRSS2 Activates the Severe Acute Respiratory Syndrome Coronavirus Spike Protein for Membrane Fusion and Reduces Viral Control by the Humoral Immune Response
+
79. Evidence that TMPRSS2 Activates the Severe Acute Respiratory Syndrome Coronavirus Spike Protein for Membrane Fusion and Reduces Viral Control by the Humoral Immune Response
I. Glowacka, S. Bertram, M. A. Muller, P. Allen, E. Soilleux, S. Pfefferle, I. Steffen, T. S. Tsegaye, Y. He, K. Gnirss, … S. Pohlmann
Journal of Virology (2011-02-16) https://doi.org/bg97wb
DOI: 10.1128/jvi.02232-10 · PMID: 21325420 · PMCID: PMC3126222
78. Increasing Host Cellular Receptor—Angiotensin-Converting Enzyme 2 (ACE2) Expression by Coronavirus may Facilitate 2019-nCoV Infection
+
80. Increasing Host Cellular Receptor—Angiotensin-Converting Enzyme 2 (ACE2) Expression by Coronavirus may Facilitate 2019-nCoV Infection
Pei-Hui Wang, Yun Cheng
Cold Spring Harbor Laboratory (2020-02-27) https://doi.org/ggscwd
DOI: 10.1101/2020.02.24.963348
79. Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor
+
81. Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor
Yanwei Li, Wei Zhou, Li Yang, Ran You
Pharmacological Research (2020-07) https://doi.org/ggtxhs
DOI: 10.1016/j.phrs.2020.104833 · PMID: 32302706 · PMCID: PMC7194807
80. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis
+
82. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis
I Hamming, W Timens, MLC Bulthuis, AT Lely, GJ Navis, H van Goor
The Journal of Pathology (2004-06) https://doi.org/bhpzc3
DOI: 10.1002/path.1570 · PMID: 15141377
81. Detection of SARS-CoV-2 in Different Types of Clinical Specimens
+
83. Detection of SARS-CoV-2 in Different Types of Clinical Specimens
Wenling Wang, Yanli Xu, Ruqin Gao, Roujian Lu, Kai Han, Guizhen Wu, Wenjie Tan
JAMA (2020-03-11) https://doi.org/ggpp6h
DOI: 10.1001/jama.2020.3786 · PMID: 32159775 · PMCID: PMC7066521
82. Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore
+
84. Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore
Barnaby Edward Young, Sean Wei Xiang Ong, Shirin Kalimuddin, Jenny G. Low, Seow Yen Tan, Jiashen Loh, Oon-Tek Ng, Kalisvar Marimuthu, Li Wei Ang, Tze Minn Mak, … for the Singapore 2019 Novel Coronavirus Outbreak Research Team
JAMA (2020-04-21) https://doi.org/ggnb37
DOI: 10.1001/jama.2020.3204 · PMID: 32125362 · PMCID: PMC7054855
83. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients
+
85. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients
Yun Ling, Shui-Bao Xu, Yi-Xiao Lin, Di Tian, Zhao-Qin Zhu, Fa-Hui Dai, Fan Wu, Zhi-Gang Song, Wei Huang, Jun Chen, … Hong-Zhou Lu
Chinese Medical Journal (2020-05-05) https://doi.org/ggnnz8
DOI: 10.1097/cm9.0000000000000774 · PMID: 32118639 · PMCID: PMC7147278
84. Postmortem examination of COVID‐19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction
+
86. Postmortem examination of COVID‐19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction
Thomas Menter, Jasmin D Haslbauer, Ronny Nienhold, Spasenija Savic, Helmut Hopfer, Nikolaus Deigendesch, Stephan Frank, Daniel Turek, Niels Willi, Hans Pargger, … Alexandar Tzankov
Histopathology (2020-07-05) https://doi.org/ggwr32
DOI: 10.1111/his.14134 · PMID: 32364264 · PMCID: PMC7496150
85. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China
+
87. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China
Shaobo Shi, Mu Qin, Bo Shen, Yuli Cai, Tao Liu, Fan Yang, Wei Gong, Xu Liu, Jinjun Liang, Qinyan Zhao, … Congxin Huang
JAMA Cardiology (2020-07-01) https://doi.org/ggq8qf
DOI: 10.1001/jamacardio.2020.0950 · PMID: 32211816 · PMCID: PMC7097841
86. The need for urogenital tract monitoring in COVID-19
+
88. The need for urogenital tract monitoring in COVID-19
Shangqian Wang, Xiang Zhou, Tongtong Zhang, Zengjun Wang
Nature Reviews Urology (2020-04-20) https://doi.org/ggv4xb
DOI: 10.1038/s41585-020-0319-7 · PMID: 32313110 · PMCID: PMC7186932
87. Acute kidney injury in SARS-CoV-2 infected patients
+
89. Acute kidney injury in SARS-CoV-2 infected patients
Vito Fanelli, Marco Fiorentino, Vincenzo Cantaluppi, Loreto Gesualdo, Giovanni Stallone, Claudio Ronco, Giuseppe Castellano
Critical Care (2020-04-16) https://doi.org/ggv45f
DOI: 10.1186/s13054-020-02872-z · PMID: 32299479 · PMCID: PMC7161433
88. Liver injury in COVID-19: management and challenges
+
90. Liver injury in COVID-19: management and challenges
Chao Zhang, Lei Shi, Fu-Sheng Wang
The Lancet Gastroenterology & Hepatology (2020-05) https://doi.org/ggpx6s
DOI: 10.1016/s2468-1253(20)30057-1 · PMID: 32145190 · PMCID: PMC7129165
89. Evidence for Gastrointestinal Infection of SARS-CoV-2
+
91. Evidence for Gastrointestinal Infection of SARS-CoV-2
Fei Xiao, Meiwen Tang, Xiaobin Zheng, Ye Liu, Xiaofeng Li, Hong Shan
Gastroenterology (2020-05) https://doi.org/ggpx27
DOI: 10.1053/j.gastro.2020.02.055 · PMID: 32142773 · PMCID: PMC7130181
90. 2019 Novel coronavirus infection and gastrointestinal tract
+
92. 2019 Novel coronavirus infection and gastrointestinal tract
Qin Yan Gao, Ying Xuan Chen, Jing Yuan Fang
Journal of Digestive Diseases (2020-03) https://doi.org/ggqr86
DOI: 10.1111/1751-2980.12851 · PMID: 32096611 · PMCID: PMC7162053
91. Symptom Profiles of a Convenience Sample of Patients with COVID-19 — United States, January–April 2020
+
93. Symptom Profiles of a Convenience Sample of Patients with COVID-19 — United States, January–April 2020
Rachel M. Burke, Marie E. Killerby, Suzanne Newton, Candace E. Ashworth, Abby L. Berns, Skyler Brennan, Jonathan M. Bressler, Erica Bye, Richard Crawford, Laurel Harduar Morano, … Case Investigation Form Working Group
MMWR. Morbidity and Mortality Weekly Report (2020-07-17) https://doi.org/gg8r2m
DOI: 10.15585/mmwr.mm6928a2 · PMID: 32673296 · PMCID: PMC7366851
92. Population-scale Longitudinal Mapping of COVID-19 Symptoms, Behavior, and Testing Identifies Contributors to Continued Disease Spread in the United States
+
94. Population-scale Longitudinal Mapping of COVID-19 Symptoms, Behavior, and Testing Identifies Contributors to Continued Disease Spread in the United States
William E. Allen, Han Altae-Tran, James Briggs, Xin Jin, Glen McGee, Andy Shi, Rumya Raghavan, Mireille Kamariza, Nicole Nova, Albert Pereta, … Xihong Lin
Cold Spring Harbor Laboratory (2020-06-11) https://doi.org/gg8skn
DOI: 10.1101/2020.06.09.20126813 · PMID: 32577674 · PMCID: PMC7302230
93. Extrapulmonary manifestations of COVID-19
+
95. Extrapulmonary manifestations of COVID-19
Aakriti Gupta, Mahesh V. Madhavan, Kartik Sehgal, Nandini Nair, Shiwani Mahajan, Tejasav S. Sehrawat, Behnood Bikdeli, Neha Ahluwalia, John C. Ausiello, Elaine Y. Wan, … Donald W. Landry
Nature Medicine (2020-07-10) https://doi.org/gg4r37
DOI: 10.1038/s41591-020-0968-3 · PMID: 32651579
94. Acute kidney injury in patients hospitalized with COVID-19
+
96. Acute kidney injury in patients hospitalized with COVID-19
Jamie S. Hirsch, Jia H. Ng, Daniel W. Ross, Purva Sharma, Hitesh H. Shah, Richard L. Barnett, Azzour D. Hazzan, Steven Fishbane, Kenar D. Jhaveri, Mersema Abate, … Jia Hwei. Ng
Kidney International (2020-07) https://doi.org/ggx24k
DOI: 10.1016/j.kint.2020.05.006 · PMID: 32416116 · PMCID: PMC7229463
95. Nervous system involvement after infection with COVID-19 and other coronaviruses
+
97. Nervous system involvement after infection with COVID-19 and other coronaviruses
Yeshun Wu, Xiaolin Xu, Zijun Chen, Jiahao Duan, Kenji Hashimoto, Ling Yang, Cunming Liu, Chun Yang
Brain, Behavior, and Immunity (2020-07) https://doi.org/ggq7s2
DOI: 10.1016/j.bbi.2020.03.031 · PMID: 32240762 · PMCID: PMC7146689
96. Neurological associations of COVID-19
+
98. Neurological associations of COVID-19
Mark A Ellul, Laura Benjamin, Bhagteshwar Singh, Suzannah Lant, Benedict Daniel Michael, Ava Easton, Rachel Kneen, Sylviane Defres, Jim Sejvar, Tom Solomon
The Lancet Neurology (2020-09) https://doi.org/d259
DOI: 10.1016/s1474-4422(20)30221-0 · PMID: 32622375 · PMCID: PMC7332267
97. Update on the neurology of COVID‐19
+
99. Update on the neurology of COVID‐19
Josef Finsterer, Claudia Stollberger
Journal of Medical Virology (2020-06-02) https://doi.org/gg2qnn
DOI: 10.1002/jmv.26000 · PMID: 32401352 · PMCID: PMC7272942
98. ‐19: A Global Threat to the Nervous System
+
100. ‐19: A Global Threat to the Nervous System
Igor J. Koralnik, Kenneth L. Tyler
Annals of Neurology (2020-06-23) https://doi.org/gg3hzh
DOI: 10.1002/ana.25807 · PMID: 32506549 · PMCID: PMC7300753
99. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19
+
101. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19
Jenny Meinhardt, Josefine Radke, Carsten Dittmayer, Jonas Franz, Carolina Thomas, Ronja Mothes, Michael Laue, Julia Schneider, Sebastian Brünink, Selina Greuel, … Frank L. Heppner
Nature Neuroscience (2020-11-30) https://doi.org/fk46
DOI: 10.1038/s41593-020-00758-5 · PMID: 33257876
100. Large-Vessel Stroke as a Presenting Feature of Covid-19 in the Young
+
102. Large-Vessel Stroke as a Presenting Feature of Covid-19 in the Young
Thomas J. Oxley, J. Mocco, Shahram Majidi, Christopher P. Kellner, Hazem Shoirah, I. Paul Singh, Reade A. De Leacy, Tomoyoshi Shigematsu, Travis R. Ladner, Kurt A. Yaeger, … Johanna T. Fifi
New England Journal of Medicine (2020-05-14) https://doi.org/ggtsjg
DOI: 10.1056/nejmc2009787 · PMID: 32343504 · PMCID: PMC7207073
101. Incidence of thrombotic complications in critically ill ICU patients with COVID-19
+
103. Incidence of thrombotic complications in critically ill ICU patients with COVID-19
F. A. Klok, M. J. H. A. Kruip, N. J. M. van der Meer, M. S. Arbous, D. A. M. P. J. Gommers, K. M. Kant, F. H. J. Kaptein, J. van Paassen, M. A. M. Stals, M. V. Huisman, H. Endeman
Thrombosis Research (2020-07) https://doi.org/dt2q
DOI: 10.1016/j.thromres.2020.04.013 · PMID: 32291094 · PMCID: PMC7146714
102. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19
+
104. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19
Yan Zhang, Meng Xiao, Shulan Zhang, Peng Xia, Wei Cao, Wei Jiang, Huan Chen, Xin Ding, Hua Zhao, Hongmin Zhang, … Shuyang Zhang
New England Journal of Medicine (2020-04-23) https://doi.org/ggrgz7
DOI: 10.1056/nejmc2007575 · PMID: 32268022 · PMCID: PMC7161262
103. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia
+
105. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia
Ning Tang, Dengju Li, Xiong Wang, Ziyong Sun
Journal of Thrombosis and Haemostasis (2020-04) https://doi.org/ggqxf6
DOI: 10.1111/jth.14768 · PMID: 32073213 · PMCID: PMC7166509
104. Review: Viral infections and mechanisms of thrombosis and bleeding
+
106. Review: Viral infections and mechanisms of thrombosis and bleeding
M. Goeijenbier, M. van Wissen, C. van de Weg, E. Jong, V. E. A. Gerdes, J. C. M. Meijers, D. P. M. Brandjes, E. C. M. van Gorp
Journal of Medical Virology (2012-10) https://doi.org/f37tfr
DOI: 10.1002/jmv.23354 · PMID: 22930518 · PMCID: PMC7166625
105. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia
+
107. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia
Dennis McGonagle, James S O’Donnell, Kassem Sharif, Paul Emery, Charles Bridgewood
The Lancet Rheumatology (2020-07) https://doi.org/ggvd74
DOI: 10.1016/s2665-9913(20)30121-1 · PMID: 32835247 · PMCID: PMC7252093
106. “War to the knife” against thromboinflammation to protect endothelial function of COVID-19 patients
+
108. “War to the knife” against thromboinflammation to protect endothelial function of COVID-19 patients
Gabriele Guglielmetti, Marco Quaglia, Pier Paolo Sainaghi, Luigi Mario Castello, Rosanna Vaschetto, Mario Pirisi, Francesco Della Corte, Gian Carlo Avanzi, Piero Stratta, Vincenzo Cantaluppi
Critical Care (2020-06-19) https://doi.org/gg35w7
DOI: 10.1186/s13054-020-03060-9 · PMID: 32560665 · PMCID: PMC7303575
107. COVID-19 update: Covid-19-associated coagulopathy
+
109. COVID-19 update: Covid-19-associated coagulopathy
Richard C. Becker
Journal of Thrombosis and Thrombolysis (2020-05-15) https://doi.org/ggwpp5
DOI: 10.1007/s11239-020-02134-3 · PMID: 32415579 · PMCID: PMC7225095
108. The complement system in COVID-19: friend and foe?
+
110. The complement system in COVID-19: friend and foe?
Anuja Java, Anthony J. Apicelli, M. Kathryn Liszewski, Ariella Coler-Reilly, John P. Atkinson, Alfred H. J. Kim, Hrishikesh S. Kulkarni
JCI Insight (2020-08-06) https://doi.org/gg4b5b
DOI: 10.1172/jci.insight.140711 · PMID: 32554923 · PMCID: PMC7455060
109. COVID-19, microangiopathy, hemostatic activation, and complement
+
111. COVID-19, microangiopathy, hemostatic activation, and complement
Wen-Chao Song, Garret A. FitzGerald
Journal of Clinical Investigation (2020-06-22) https://doi.org/gg4b5c
DOI: 10.1172/jci140183 · PMID: 32459663 · PMCID: PMC7410042
110. Molecular biology of the cell
+
112. Molecular biology of the cell
Bruce Alberts (editor)
Garland Science (2002)
ISBN: 9780815332183
111. Vander’s human physiology: the mechanisms of body function
+
113. Vander’s human physiology: the mechanisms of body function
Eric P Widmaier, Hershel Raff, Kevin T Strang
McGraw-Hill Higher Education (2008)
ISBN: 9780071283663
112. The Innate Immune System: Fighting on the Front Lines or Fanning the Flames of COVID-19?
+
114. The Innate Immune System: Fighting on the Front Lines or Fanning the Flames of COVID-19?
Julia L. McKechnie, Catherine A. Blish
Cell Host & Microbe (2020-06) https://doi.org/gg28pq
DOI: 10.1016/j.chom.2020.05.009 · PMID: 32464098 · PMCID: PMC7237895
113. Inflammatory responses and inflammation-associated diseases in organs
+
115. Inflammatory responses and inflammation-associated diseases in organs
Linlin Chen, Huidan Deng, Hengmin Cui, Jing Fang, Zhicai Zuo, Junliang Deng, Yinglun Li, Xun Wang, Ling Zhao
Oncotarget (2017-12-14) https://doi.org/ggps2p
DOI: 10.18632/oncotarget.23208 · PMID: 29467962 · PMCID: PMC5805548
114. Into the Eye of the Cytokine Storm
+
116. Into the Eye of the Cytokine Storm
J. R. Tisoncik, M. J. Korth, C. P. Simmons, J. Farrar, T. R. Martin, M. G. Katze
Microbiology and Molecular Biology Reviews (2012-03-05) https://doi.org/f4n9h2
DOI: 10.1128/mmbr.05015-11 · PMID: 22390970 · PMCID: PMC3294426
115. Cytokines, Inflammation, and Pain
+
117. Cytokines, Inflammation, and Pain
Jun-Ming Zhang, Jianxiong An
International Anesthesiology Clinics (2007) https://doi.org/ft5b7h
DOI: 10.1097/aia.0b013e318034194e · PMID: 17426506 · PMCID: PMC2785020
116. Dynamic balance of pro- and anti-inflammatory signals controls disease and limits pathology
+
118. Dynamic balance of pro- and anti-inflammatory signals controls disease and limits pathology
Joseph M. Cicchese, Stephanie Evans, Caitlin Hult, Louis R. Joslyn, Timothy Wessler, Jess A. Millar, Simeone Marino, Nicholas A. Cilfone, Joshua T. Mattila, Jennifer J. Linderman, Denise E. Kirschner
Immunological Reviews (2018-09) https://doi.org/gd4g4p
DOI: 10.1111/imr.12671 · PMID: 30129209 · PMCID: PMC6292442
117. Cytokine Dysregulation, Inflammation and Well-Being
+
119. Cytokine Dysregulation, Inflammation and Well-Being
Ilia J. Elenkov, Domenic G. Iezzoni, Adrian Daly, Alan G. Harris, George P. Chrousos
Neuroimmunomodulation (2005) https://doi.org/bsn7kn
DOI: 10.1159/000087104 · PMID: 16166805
118. Chronic inflammation in the etiology of disease across the life span
+
120. Chronic inflammation in the etiology of disease across the life span
David Furman, Judith Campisi, Eric Verdin, Pedro Carrera-Bastos, Sasha Targ, Claudio Franceschi, Luigi Ferrucci, Derek W. Gilroy, Alessio Fasano, Gary W. Miller, … George M. Slavich
Nature Medicine (2019-12-05) https://doi.org/gghdcf
DOI: 10.1038/s41591-019-0675-0 · PMID: 31806905 · PMCID: PMC7147972
119. Inpatient care for septicemia or sepsis: a challenge for patients and hospitals.
+
121. Inpatient care for septicemia or sepsis: a challenge for patients and hospitals.
Margaret Jean Hall, Sonja N Williams, Carol J DeFrances, Aleksandr Golosinskiy
NCHS data brief (2011-06) https://www.ncbi.nlm.nih.gov/pubmed/22142805
PMID: 22142805
120. Cytokine Balance in the Lungs of Patients with Acute Respiratory Distress Syndrome
+
122. Cytokine Balance in the Lungs of Patients with Acute Respiratory Distress Syndrome
WILLIAM Y. PARK, RICHARD B. GOODMAN, KENNETH P. STEINBERG, JOHN T. RUZINSKI, FRANK RADELLA, DAVID R. PARK, JEROME PUGIN, SHAWN J. SKERRETT, LEONARD D. HUDSON, THOMAS R. MARTIN
American Journal of Respiratory and Critical Care Medicine (2001-11-15) https://doi.org/ggqfq7
DOI: 10.1164/ajrccm.164.10.2104013 · PMID: 11734443
121. Cytokine release syndrome
+
123. Cytokine release syndrome
Alexander Shimabukuro-Vornhagen, Philipp Gödel, Marion Subklewe, Hans Joachim Stemmler, Hans Anton Schlößer, Max Schlaak, Matthias Kochanek, Boris Böll, Michael S. von Bergwelt-Baildon
Journal for ImmunoTherapy of Cancer (2018-06-15) https://doi.org/ghbncj
DOI: 10.1186/s40425-018-0343-9 · PMID: 29907163 · PMCID: PMC6003181
122. Understanding the Inflammatory Cytokine Response in Pneumonia and Sepsis
+
124. Understanding the Inflammatory Cytokine Response in Pneumonia and Sepsis
John A. Kellum
Archives of Internal Medicine (2007-08-13) https://doi.org/dbxb66
DOI: 10.1001/archinte.167.15.1655 · PMID: 17698689 · PMCID: PMC4495652
123. The pro- and anti-inflammatory properties of the cytokine interleukin-6
+
125. The pro- and anti-inflammatory properties of the cytokine interleukin-6
Jürgen Scheller, Athena Chalaris, Dirk Schmidt-Arras, Stefan Rose-John
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research (2011-05) https://doi.org/cvn4nr
DOI: 10.1016/j.bbamcr.2011.01.034 · PMID: 21296109
124. The Role of Interleukin 6 During Viral Infections
+
126. The Role of Interleukin 6 During Viral Infections
Lauro Velazquez-Salinas, Antonio Verdugo-Rodriguez, Luis L. Rodriguez, Manuel V. Borca
Frontiers in Microbiology (2019-05-10) https://doi.org/ghbnck
DOI: 10.3389/fmicb.2019.01057 · PMID: 31134045 · PMCID: PMC6524401
125. Expression of elevated levels of pro-inflammatory cytokines in SARS-CoV-infected ACE2 + cells in SARS patients: relation to the acute lung injury and pathogenesis of SARS
+
127. Expression of elevated levels of pro-inflammatory cytokines in SARS-CoV-infected ACE2 + cells in SARS patients: relation to the acute lung injury and pathogenesis of SARS
L He, Y Ding, Q Zhang, X Che, Y He, H Shen, H Wang, Z Li, L Zhao, J Geng, … S Jiang
The Journal of Pathology (2006-11) https://doi.org/bwb8ns
DOI: 10.1002/path.2067 · PMID: 17031779
126. Up-regulation of IL-6 and TNF-α induced by SARS-coronavirus spike protein in murine macrophages via NF-κB pathway
+
128. Up-regulation of IL-6 and TNF-α induced by SARS-coronavirus spike protein in murine macrophages via NF-κB pathway
Wei Wang, Linbai Ye, Li Ye, Baozong Li, Bo Gao, Yingchun Zeng, Lingbao Kong, Xiaonan Fang, Hong Zheng, Zhenghui Wu, Yinglong She
Virus Research (2007-09) https://doi.org/bm7m55
DOI: 10.1016/j.virusres.2007.02.007 · PMID: 17532082 · PMCID: PMC7114322
127. COVID-19: consider cytokine storm syndromes and immunosuppression
+
129. COVID-19: consider cytokine storm syndromes and immunosuppression
Puja Mehta, Daniel F McAuley, Michael Brown, Emilie Sanchez, Rachel S Tattersall, Jessica J Manson
The Lancet (2020-03) https://doi.org/ggnzmc
DOI: 10.1016/s0140-6736(20)30628-0
128. Cytokine Storms: Understanding COVID-19
+
130. Cytokine Storms: Understanding COVID-19
Nilam Mangalmurti, Christopher A. Hunter
Immunity (2020-07) https://doi.org/gg4fd7
DOI: 10.1016/j.immuni.2020.06.017 · PMID: 32610079 · PMCID: PMC7321048
129. Is a “Cytokine Storm” Relevant to COVID-19?
+
131. Is a “Cytokine Storm” Relevant to COVID-19?
Pratik Sinha, Michael A. Matthay, Carolyn S. Calfee
JAMA Internal Medicine (2020-09-01) https://doi.org/gg3k6r
DOI: 10.1001/jamainternmed.2020.3313 · PMID: 32602883
130. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)?
+
132. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)?
Bingwen Liu, Min Li, Zhiguang Zhou, Xuan Guan, Yufei Xiang
Journal of Autoimmunity (2020-07) https://doi.org/ggr79c
DOI: 10.1016/j.jaut.2020.102452 · PMID: 32291137 · PMCID: PMC7151347
131. SARS-CoV-2 infection in primary schools in northern France: A retrospective cohort study in an area of high transmission
+
133. SARS-CoV-2 infection in primary schools in northern France: A retrospective cohort study in an area of high transmission
Arnaud Fontanet, Rebecca Grant, Laura Tondeur, Yoann Madec, Ludivine Grzelak, Isabelle Cailleau, Marie-Noëlle Ungeheuer, Charlotte Renaudat, Sandrine Fernandes Pellerin, Lucie Kuhmel, … Bruno Hoen
Cold Spring Harbor Laboratory (2020-06-29) https://doi.org/gg87nn
DOI: 10.1101/2020.06.25.20140178
132. SARS-CoV-2 Infection in Children
+
134. SARS-CoV-2 Infection in Children
Xiaoxia Lu, Liqiong Zhang, Hui Du, Jingjing Zhang, Yuan Y. Li, Jingyu Qu, Wenxin Zhang, Youjie Wang, Shuangshuang Bao, Ying Li, … Gary W. K. Wong
New England Journal of Medicine (2020-04-23) https://doi.org/ggpt2q
DOI: 10.1056/nejmc2005073 · PMID: 32187458 · PMCID: PMC7121177
133. Systematic review of COVID‐19 in children shows milder cases and a better prognosis than adults
+
135. Systematic review of COVID‐19 in children shows milder cases and a better prognosis than adults
Jonas F. Ludvigsson
Acta Paediatrica (2020-04-14) https://doi.org/ggq8wr
DOI: 10.1111/apa.15270 · PMID: 32202343 · PMCID: PMC7228328
134. Reopening schools during COVID-19
+
136. Reopening schools during COVID-19
Ronan Lordan, Garret A. FitzGerald, Tilo Grosser
Science (2020-09-03) https://doi.org/ghsv9p
DOI: 10.1126/science.abe5765 · PMID: 32883837
135. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection in Children and Adolescents
+
137. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection in Children and Adolescents
Riccardo Castagnoli, Martina Votto, Amelia Licari, Ilaria Brambilla, Raffaele Bruno, Stefano Perlini, Francesca Rovida, Fausto Baldanti, Gian Luigi Marseglia
JAMA Pediatrics (2020-09-01) https://doi.org/dswz
DOI: 10.1001/jamapediatrics.2020.1467 · PMID: 32320004
136. Neurologic and Radiographic Findings Associated With COVID-19 Infection in Children
+
138. Neurologic and Radiographic Findings Associated With COVID-19 Infection in Children
Omar Abdel-Mannan, Michael Eyre, Ulrike Löbel, Alasdair Bamford, Christin Eltze, Biju Hameed, Cheryl Hemingway, Yael Hacohen
JAMA Neurology (2020-11-01) https://doi.org/gg339f
DOI: 10.1001/jamaneurol.2020.2687 · PMID: 32609336 · PMCID: PMC7330822
137. Children with Covid-19 in Pediatric Emergency Departments in Italy
+
139. Children with Covid-19 in Pediatric Emergency Departments in Italy
Niccolò Parri, Matteo Lenge, Danilo Buonsenso
New England Journal of Medicine (2020-07-09) https://doi.org/ggtp6z
DOI: 10.1056/nejmc2007617 · PMID: 32356945 · PMCID: PMC7206930
138. COVID-19 in 7780 pediatric patients: A systematic review
+
140. COVID-19 in 7780 pediatric patients: A systematic review
Ansel Hoang, Kevin Chorath, Axel Moreira, Mary Evans, Finn Burmeister-Morton, Fiona Burmeister, Rija Naqvi, Matthew Petershack, Alvaro Moreira
EClinicalMedicine (2020-07) https://doi.org/gg4hn2
DOI: 10.1016/j.eclinm.2020.100433 · PMID: 32766542 · PMCID: PMC7318942
139. Multisystem Inflammatory Syndrome in Children During the Coronavirus 2019 Pandemic: A Case Series
+
141. Multisystem Inflammatory Syndrome in Children During the Coronavirus 2019 Pandemic: A Case Series
Kathleen Chiotos, Hamid Bassiri, Edward M Behrens, Allison M Blatz, Joyce Chang, Caroline Diorio, Julie C Fitzgerald, Alexis Topjian, Audrey R Odom John
Journal of the Pediatric Infectious Diseases Society (2020-07) https://doi.org/ggx4pd
DOI: 10.1093/jpids/piaa069 · PMID: 32463092 · PMCID: PMC7313950
140. Clinical Characteristics of 58 Children With a Pediatric Inflammatory Multisystem Syndrome Temporally Associated With SARS-CoV-2
+
142. Clinical Characteristics of 58 Children With a Pediatric Inflammatory Multisystem Syndrome Temporally Associated With SARS-CoV-2
Elizabeth Whittaker, Alasdair Bamford, Julia Kenny, Myrsini Kaforou, Christine E. Jones, Priyen Shah, Padmanabhan Ramnarayan, Alain Fraisse, Owen Miller, Patrick Davies, … for the PIMS-TS Study Group and EUCLIDS and PERFORM Consortia
JAMA (2020-07-21) https://doi.org/gg2v75
DOI: 10.1001/jama.2020.10369 · PMID: 32511692 · PMCID: PMC7281356
141. Toxic shock-like syndrome and COVID-19: Multisystem inflammatory syndrome in children (MIS-C)
+
143. Toxic shock-like syndrome and COVID-19: Multisystem inflammatory syndrome in children (MIS-C)
Andrea G. Greene, Mona Saleh, Eric Roseman, Richard Sinert
The American Journal of Emergency Medicine (2020-11) https://doi.org/gg2586
DOI: 10.1016/j.ajem.2020.05.117 · PMID: 32532619 · PMCID: PMC7274960
142. Multisystem inflammatory syndrome in children and COVID-19 are distinct presentations of SARS–CoV-2
+
144. Multisystem inflammatory syndrome in children and COVID-19 are distinct presentations of SARS–CoV-2
Caroline Diorio, Sarah E. Henrickson, Laura A. Vella, Kevin O. McNerney, Julie Chase, Chakkapong Burudpakdee, Jessica H. Lee, Cristina Jasen, Fran Balamuth, David M. Barrett, … Hamid Bassiri
Journal of Clinical Investigation (2020-10-05) https://doi.org/gg7mz2
DOI: 10.1172/jci140970 · PMID: 32730233 · PMCID: PMC7598044
143. The Immunology of Multisystem Inflammatory Syndrome in Children with COVID-19
+
145. The Immunology of Multisystem Inflammatory Syndrome in Children with COVID-19
Camila Rosat Consiglio, Nicola Cotugno, Fabian Sardh, Christian Pou, Donato Amodio, Lucie Rodriguez, Ziyang Tan, Sonia Zicari, Alessandra Ruggiero, Giuseppe Rubens Pascucci, … Petter Brodin
Cell (2020-11) https://doi.org/d8fh
DOI: 10.1016/j.cell.2020.09.016 · PMID: 32966765 · PMCID: PMC7474869
144. Acute Heart Failure in Multisystem Inflammatory Syndrome in Children in the Context of Global SARS-CoV-2 Pandemic
+
146. Acute Heart Failure in Multisystem Inflammatory Syndrome in Children in the Context of Global SARS-CoV-2 Pandemic
Zahra Belhadjer, Mathilde Méot, Fanny Bajolle, Diala Khraiche, Antoine Legendre, Samya Abakka, Johanne Auriau, Marion Grimaud, Mehdi Oualha, Maurice Beghetti, … Damien Bonnet
Circulation (2020-08-04) https://doi.org/ggwkv6
DOI: 10.1161/circulationaha.120.048360 · PMID: 32418446
145. An adult with Kawasaki-like multisystem inflammatory syndrome associated with COVID-19
+
147. An adult with Kawasaki-like multisystem inflammatory syndrome associated with COVID-19
Sheila Shaigany, Marlis Gnirke, Allison Guttmann, Hong Chong, Shane Meehan, Vanessa Raabe, Eddie Louie, Bruce Solitar, Alisa Femia
The Lancet (2020-07) https://doi.org/gg4sd6
DOI: 10.1016/s0140-6736(20)31526-9 · PMID: 32659211 · PMCID: PMC7351414
146. COVID-19 associated Kawasaki-like multisystem inflammatory disease in an adult
+
148. COVID-19 associated Kawasaki-like multisystem inflammatory disease in an adult
Sabrina Sokolovsky, Parita Soni, Taryn Hoffman, Philip Kahn, Joshua Scheers-Masters
The American Journal of Emergency Medicine (2021-01) https://doi.org/gg5tf4
DOI: 10.1016/j.ajem.2020.06.053 · PMID: 32631771 · PMCID: PMC7315983
147. A systems approach to infectious disease
+
149. A systems approach to infectious disease
Manon Eckhardt, Judd F. Hultquist, Robyn M. Kaake, Ruth Hüttenhain, Nevan J. Krogan
Nature Reviews Genetics (2020-02-14) https://doi.org/ggnv63
DOI: 10.1038/s41576-020-0212-5 · PMID: 32060427
148. Differential expression of serum/plasma proteins in various infectious diseases: Specific or nonspecific signatures
+
150. Differential expression of serum/plasma proteins in various infectious diseases: Specific or nonspecific signatures
Sandipan Ray, Sandip K. Patel, Vipin Kumar, Jagruti Damahe, Sanjeeva Srivastava
PROTEOMICS - Clinical Applications (2014-02) https://doi.org/f2px3h
DOI: 10.1002/prca.201300074 · PMID: 24293340
149. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19
+
151. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19
Daniel Blanco-Melo, Benjamin E. Nilsson-Payant, Wen-Chun Liu, Skyler Uhl, Daisy Hoagland, Rasmus Møller, Tristan X. Jordan, Kohei Oishi, Maryline Panis, David Sachs, … Benjamin R. tenOever
Cell (2020-05) https://doi.org/ggw5tq
DOI: 10.1016/j.cell.2020.04.026 · PMID: 32416070 · PMCID: PMC7227586
150. SARS-CoV-2 ORF3b Is a Potent Interferon Antagonist Whose Activity Is Increased by a Naturally Occurring Elongation Variant
+
152. SARS-CoV-2 ORF3b Is a Potent Interferon Antagonist Whose Activity Is Increased by a Naturally Occurring Elongation Variant
Yoriyuki Konno, Izumi Kimura, Keiya Uriu, Masaya Fukushi, Takashi Irie, Yoshio Koyanagi, Daniel Sauter, Robert J. Gifford, So Nakagawa, Kei Sato
Cell Reports (2020-09) https://doi.org/ghvf8j
DOI: 10.1016/j.celrep.2020.108185 · PMID: 32941788 · PMCID: PMC7473339
151. Bulk and single-cell gene expression profiling of SARS-CoV-2 infected human cell lines identifies molecular targets for therapeutic intervention
+
153. Bulk and single-cell gene expression profiling of SARS-CoV-2 infected human cell lines identifies molecular targets for therapeutic intervention
Wyler Emanuel, Mösbauer Kirstin, Franke Vedran, Diag Asija, Gottula Lina Theresa, Arsie Roberto, Klironomos Filippos, Koppstein David, Ayoub Salah, Buccitelli Christopher, … Landthaler Markus
Cold Spring Harbor Laboratory (2020-05-05) https://doi.org/ggxd2g
DOI: 10.1101/2020.05.05.079194
152. Isolation and characterization of SARS-CoV-2 from the first US COVID-19 patient
+
154. Isolation and characterization of SARS-CoV-2 from the first US COVID-19 patient
Jennifer Harcourt, Azaibi Tamin, Xiaoyan Lu, Shifaq Kamili, Senthil Kumar. Sakthivel, Janna Murray, Krista Queen, Ying Tao, Clinton R. Paden, Jing Zhang, … Natalie J. Thornburg
Cold Spring Harbor Laboratory (2020-03-07) https://doi.org/gg2fkm
DOI: 10.1101/2020.03.02.972935 · PMID: 32511316 · PMCID: PMC7239045
153. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets
+
155. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets
Denisa Bojkova, Kevin Klann, Benjamin Koch, Marek Widera, David Krause, Sandra Ciesek, Jindrich Cinatl, Christian Münch
Nature (2020-05-14) https://doi.org/dw7s
DOI: 10.1038/s41586-020-2332-7 · PMID: 32408336
154. Potent human neutralizing antibodies elicited by SARS-CoV-2 infection
+
156. Potent human neutralizing antibodies elicited by SARS-CoV-2 infection
Bin Ju, Qi Zhang, Xiangyang Ge, Ruoke Wang, Jiazhen Yu, Sisi Shan, Bing Zhou, Shuo Song, Xian Tang, Jinfang Yu, … Linqi Zhang
Cold Spring Harbor Laboratory (2020-03-26) https://doi.org/ggp7t4
DOI: 10.1101/2020.03.21.990770
155. Plasma proteome of severe acute respiratory syndrome analyzed by two-dimensional gel electrophoresis and mass spectrometry
+
157. Plasma proteome of severe acute respiratory syndrome analyzed by two-dimensional gel electrophoresis and mass spectrometry
J.-H. Chen, Y.-W. Chang, C.-W. Yao, T.-S. Chiueh, S.-C. Huang, K.-Y. Chien, A. Chen, F.-Y. Chang, C.-H. Wong, Y.-J. Chen
Proceedings of the National Academy of Sciences (2004-11-30) https://doi.org/dtv8sx
DOI: 10.1073/pnas.0407992101 · PMID: 15572443 · PMCID: PMC535397
156. Analysis of multimerization of the SARS coronavirus nucleocapsid protein
+
158. Analysis of multimerization of the SARS coronavirus nucleocapsid protein
Runtao He, Frederick Dobie, Melissa Ballantine, Andrew Leeson, Yan Li, Nathalie Bastien, Todd Cutts, Anton Andonov, Jingxin Cao, Timothy F. Booth, … Xuguang Li
Biochemical and Biophysical Research Communications (2004-04) https://doi.org/dbfwr9
DOI: 10.1016/j.bbrc.2004.02.074 · PMID: 15020242 · PMCID: PMC7111152
157. UniProt: a worldwide hub of protein knowledge
+
159. UniProt: a worldwide hub of protein knowledge
The UniProt Consortium
Nucleic Acids Research (2019-01-08) https://doi.org/gfwqck
DOI: 10.1093/nar/gky1049 · PMID: 30395287 · PMCID: PMC6323992
158. Home - Genome - NCBI https://www.ncbi.nlm.nih.gov/genome
+160. Home - Genome - NCBI https://www.ncbi.nlm.nih.gov/genome
159. The Immune Epitope Database (IEDB): 2018 update
+
161. The Immune Epitope Database (IEDB): 2018 update
Randi Vita, Swapnil Mahajan, James A Overton, Sandeep Kumar Dhanda, Sheridan Martini, Jason R Cantrell, Daniel K Wheeler, Alessandro Sette, Bjoern Peters
Nucleic Acids Research (2019-01-08) https://doi.org/gfhz6n
DOI: 10.1093/nar/gky1006 · PMID: 30357391 · PMCID: PMC6324067
160. ViPR: an open bioinformatics database and analysis resource for virology research
+
162. ViPR: an open bioinformatics database and analysis resource for virology research
Brett E. Pickett, Eva L. Sadat, Yun Zhang, Jyothi M. Noronha, R. Burke Squires, Victoria Hunt, Mengya Liu, Sanjeev Kumar, Sam Zaremba, Zhiping Gu, … Richard H. Scheuermann
Nucleic Acids Research (2012-01) https://doi.org/c3tds5
DOI: 10.1093/nar/gkr859 · PMID: 22006842 · PMCID: PMC3245011
161. A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing
+
163. A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing
David E. Gordon, Gwendolyn M. Jang, Mehdi Bouhaddou, Jiewei Xu, Kirsten Obernier, Matthew J. O’Meara, Jeffrey Z. Guo, Danielle L. Swaney, Tia A. Tummino, Ruth Hüttenhain, … Nevan J. Krogan
Cold Spring Harbor Laboratory (2020-03-22) https://doi.org/ggpptg
DOI: 10.1101/2020.03.22.002386 · PMID: 32511329
162. Protein Palmitoylation and Its Role in Bacterial and Viral Infections
+
164. Protein Palmitoylation and Its Role in Bacterial and Viral Infections
Justyna Sobocińska, Paula Roszczenko-Jasińska, Anna Ciesielska, Katarzyna Kwiatkowska
Frontiers in Immunology (2018-01-19) https://doi.org/gcxpp2
DOI: 10.3389/fimmu.2017.02003 · PMID: 29403483 · PMCID: PMC5780409
163. Virus-host interactome and proteomic survey of PMBCs from COVID-19 patients reveal potential virulence factors influencing SARS-CoV-2 pathogenesis
+
165. Virus-host interactome and proteomic survey of PMBCs from COVID-19 patients reveal potential virulence factors influencing SARS-CoV-2 pathogenesis
Jingjiao Li, Mingquan Guo, Xiaoxu Tian, Chengrong Liu, Xin Wang, Xing Yang, Ping Wu, Zixuan Xiao, Yafei Qu, Yue Yin, … Qiming Liang
Cold Spring Harbor Laboratory (2020-04-02) https://doi.org/ggrgbv
DOI: 10.1101/2020.03.31.019216
164. The Nuclear Factor NF- B Pathway in Inflammation
+
166. The Nuclear Factor NF- B Pathway in Inflammation
T. Lawrence
Cold Spring Harbor Perspectives in Biology (2009-10-07) https://doi.org/fptfvp
DOI: 10.1101/cshperspect.a001651 · PMID: 20457564 · PMCID: PMC2882124
165. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) envelope (E) protein harbors a conserved BH3-like sequence
+
167. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) envelope (E) protein harbors a conserved BH3-like sequence
Vincent Navratil, Loïc Lionnard, Sonia Longhi, J. Marie Hardwick, Christophe Combet, Abdel Aouacheria
Cold Spring Harbor Laboratory (2020-06-09) https://doi.org/ggrp43
DOI: 10.1101/2020.04.09.033522
166. Structure of SARS Coronavirus Spike Receptor-Binding Domain Complexed with Receptor
+
168. Structure of SARS Coronavirus Spike Receptor-Binding Domain Complexed with Receptor
F. Li
Science (2005-09-16) https://doi.org/fww324
DOI: 10.1126/science.1116480 · PMID: 16166518
167. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2
+
169. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2
Renhong Yan, Yuanyuan Zhang, Yaning Li, Lu Xia, Yingying Guo, Qiang Zhou
Science (2020-03-27) https://doi.org/ggpxc8
DOI: 10.1126/science.abb2762 · PMID: 32132184 · PMCID: PMC7164635
168. Structural basis of receptor recognition by SARS-CoV-2
+
170. Structural basis of receptor recognition by SARS-CoV-2
Jian Shang, Gang Ye, Ke Shi, Yushun Wan, Chuming Luo, Hideki Aihara, Qibin Geng, Ashley Auerbach, Fang Li
Nature (2020-03-30) https://doi.org/ggqspv
DOI: 10.1038/s41586-020-2179-y · PMID: 32225175
169. Crystal structure of the 2019-nCoV spike receptor-binding domain bound with the ACE2 receptor
+
171. Crystal structure of the 2019-nCoV spike receptor-binding domain bound with the ACE2 receptor
Jun Lan, Jiwan Ge, Jinfang Yu, Sisi Shan, Huan Zhou, Shilong Fan, Qi Zhang, Xuanling Shi, Qisheng Wang, Linqi Zhang, Xinquan Wang
Cold Spring Harbor Laboratory (2020-02-20) https://doi.org/ggqzp5
DOI: 10.1101/2020.02.19.956235
170. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2
+
172. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2
Qihui Wang, Yanfang Zhang, Lili Wu, Sheng Niu, Chunli Song, Zengyuan Zhang, Guangwen Lu, Chengpeng Qiao, Yu Hu, Kwok-Yung Yuen, … Jianxun Qi
Cell (2020-05) https://doi.org/ggr2cz
DOI: 10.1016/j.cell.2020.03.045 · PMID: 32275855 · PMCID: PMC7144619
171. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus
+
173. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus
Yushun Wan, Jian Shang, Rachel Graham, Ralph S. Baric, Fang Li
Journal of Virology (2020-03-17) https://doi.org/ggjvwn
DOI: 10.1128/jvi.00127-20 · PMID: 31996437 · PMCID: PMC7081895
172. Structure of the Hemagglutinin Precursor Cleavage Site, a Determinant of Influenza Pathogenicity and the Origin of the Labile Conformation
+
174. Structure of the Hemagglutinin Precursor Cleavage Site, a Determinant of Influenza Pathogenicity and the Origin of the Labile Conformation
Jue Chen, Kon Ho Lee, David A Steinhauer, David J Stevens, John J Skehel, Don C Wiley
Cell (1998-10) https://doi.org/bvgh5b
DOI: 10.1016/s0092-8674(00)81771-7
173. Role of Hemagglutinin Cleavage for the Pathogenicity of Influenza Virus
+
175. Role of Hemagglutinin Cleavage for the Pathogenicity of Influenza Virus
David A. Steinhauer
Virology (1999-05) https://doi.org/fw3jz4
DOI: 10.1006/viro.1999.9716 · PMID: 10329563
174. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus
+
176. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus
Bette Korber, Will M. Fischer, Sandrasegaram Gnanakaran, Hyejin Yoon, James Theiler, Werner Abfalterer, Nick Hengartner, Elena E. Giorgi, Tanmoy Bhattacharya, Brian Foley, … Matthew D. Wyles
Cell (2020-08) https://doi.org/gg3wqn
DOI: 10.1016/j.cell.2020.06.043 · PMID: 32697968 · PMCID: PMC7332439
175. Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant
+
177. Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant
Leonid Yurkovetskiy, Xue Wang, Kristen E. Pascal, Christopher Tomkins-Tinch, Thomas P. Nyalile, Yetao Wang, Alina Baum, William E. Diehl, Ann Dauphin, Claudia Carbone, … Jeremy Luban
Cell (2020-10) https://doi.org/ghkt47
DOI: 10.1016/j.cell.2020.09.032 · PMID: 32991842 · PMCID: PMC7492024
176. Emergence of a new SARS-CoV-2 variant in the UK
+
178. Emergence of a new SARS-CoV-2 variant in the UK
Julian W Tang, Paul A Tambyah, David SC Hui
Journal of Infection (2020-12) https://doi.org/ghtg2k
DOI: 10.1016/j.jinf.2020.12.024 · PMID: 33383088 · PMCID: PMC7834693
177. WHO | SARS-CoV-2 Variant – United Kingdom of Great Britain and Northern Ireland
+
179. WHO | SARS-CoV-2 Variant – United Kingdom of Great Britain and Northern Ireland
WHO
http://www.who.int/csr/don/21-december-2020-sars-cov2-variant-united-kingdom/en/
178. SARS-CoV-2 Variant Under Investigation 202012/01 has more than twofold replicative advantage
+
180. SARS-CoV-2 Variant Under Investigation 202012/01 has more than twofold replicative advantage
Frederic Grabowski, Grzegorz Preibisch, Marek Kochańczyk, Tomasz Lipniacki
Cold Spring Harbor Laboratory (2021-01-04) https://doi.org/ghtzw3
DOI: 10.1101/2020.12.28.20248906
179. Controversy around airborne versus droplet transmission of respiratory viruses
+
181. Controversy around airborne versus droplet transmission of respiratory viruses
Eunice Y. C. Shiu, Nancy H. L. Leung, Benjamin J. Cowling
Current Opinion in Infectious Diseases (2019-08) https://doi.org/ggbwdb
DOI: 10.1097/qco.0000000000000563
180. Viral infections acquired indoors through airborne, droplet or contact transmission.
+
182. Viral infections acquired indoors through airborne, droplet or contact transmission.
Giuseppina La Rosa, Marta Fratini, Simonetta Della Libera, Marcello Iaconelli, Michele Muscillo
Annali dell’Istituto superiore di sanita (2013) https://www.ncbi.nlm.nih.gov/pubmed/23771256
DOI: 10.4415/ann_13_02_03 · PMID: 23771256
181. Transmission of SARS-CoV-2: implications for infection prevention precautions https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions
+183. Transmission of SARS-CoV-2: implications for infection prevention precautions https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions
182. Questioning Aerosol Transmission of Influenza
+
184. Questioning Aerosol Transmission of Influenza
Camille Lemieux, Gabrielle Brankston, Leah Gitterman, Zahir Hirji, Michael Gardam
Emerging Infectious Diseases (2007-01) https://doi.org/c2skj8
DOI: 10.3201/eid1301.061202 · PMID: 17370541 · PMCID: PMC2725811
183. Assessing the Dynamics and Control of Droplet- and Aerosol-Transmitted Influenza Using an Indoor Positioning System
+
185. Assessing the Dynamics and Control of Droplet- and Aerosol-Transmitted Influenza Using an Indoor Positioning System
Timo Smieszek, Gianrocco Lazzari, Marcel Salathé
Scientific Reports (2019-02-18) https://doi.org/ggnqbc
DOI: 10.1038/s41598-019-38825-y · PMID: 30778136 · PMCID: PMC6379436
184. Influenza A virus transmission via respiratory aerosols or droplets as it relates to pandemic potential
+
186. Influenza A virus transmission via respiratory aerosols or droplets as it relates to pandemic potential
Mathilde Richard, Ron A. M. Fouchier
FEMS Microbiology Reviews (2016-01) https://doi.org/f8cp4h
DOI: 10.1093/femsre/fuv039 · PMID: 26385895 · PMCID: PMC5006288
185. Coronavirus Pathogenesis
+
187. Coronavirus Pathogenesis
Susan R. Weiss, Julian L. Leibowitz
Advances in Virus Research (2011) https://doi.org/ggvvd7
DOI: 10.1016/b978-0-12-385885-6.00009-2 · PMID: 22094080 · PMCID: PMC7149603
186. Role of fomites in SARS transmission during the largest hospital outbreak in Hong Kong
+
188. Role of fomites in SARS transmission during the largest hospital outbreak in Hong Kong
Shenglan Xiao, Yuguo Li, Tze-wai Wong, David S. C. Hui
PLOS ONE (2017-07-20) https://doi.org/gbpgv7
DOI: 10.1371/journal.pone.0181558 · PMID: 28727803 · PMCID: PMC5519164
187. Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions
+
189. Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions
N van Doremalen, T Bushmaker, VJ Munster
Eurosurveillance (2013-09-19) https://doi.org/ggnnjt
DOI: 10.2807/1560-7917.es2013.18.38.20590 · PMID: 24084338
188. MERS coronavirus: diagnostics, epidemiology and transmission
+
190. MERS coronavirus: diagnostics, epidemiology and transmission
Ian M. Mackay, Katherine E. Arden
Virology Journal (2015-12-22) https://doi.org/f745px
DOI: 10.1186/s12985-015-0439-5 · PMID: 26695637 · PMCID: PMC4687373
189. Transmission routes of 2019-nCoV and controls in dental practice
+
191. Transmission routes of 2019-nCoV and controls in dental practice
Xian Peng, Xin Xu, Yuqing Li, Lei Cheng, Xuedong Zhou, Biao Ren
International Journal of Oral Science (2020-03-03) https://doi.org/ggnf47
DOI: 10.1038/s41368-020-0075-9 · PMID: 32127517 · PMCID: PMC7054527
190. Reducing transmission of SARS-CoV-2
+
192. Reducing transmission of SARS-CoV-2
Kimberly A. Prather, Chia C. Wang, Robert T. Schooley
Science (2020-06-26) https://doi.org/ggxp9w
DOI: 10.1126/science.abc6197 · PMID: 32461212
191. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1
+
193. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1
Neeltje van Doremalen, Trenton Bushmaker, Dylan H. Morris, Myndi G. Holbrook, Amandine Gamble, Brandi N. Williamson, Azaibi Tamin, Jennifer L. Harcourt, Natalie J. Thornburg, Susan I. Gerber, … Vincent J. Munster
New England Journal of Medicine (2020-04-16) https://doi.org/ggn88w
DOI: 10.1056/nejmc2004973 · PMID: 32182409 · PMCID: PMC7121658
192. It Is Time to Address Airborne Transmission of Coronavirus Disease 2019 (COVID-19)
+
194. It Is Time to Address Airborne Transmission of Coronavirus Disease 2019 (COVID-19)
Lidia Morawska, Donald K Milton
Clinical Infectious Diseases (2020-07-06) https://doi.org/gg34zn
DOI: 10.1093/cid/ciaa939 · PMID: 32628269 · PMCID: PMC7454469
193. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals
+
195. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals
Yuan Liu, Zhi Ning, Yu Chen, Ming Guo, Yingle Liu, Nirmal Kumar Gali, Li Sun, Yusen Duan, Jing Cai, Dane Westerdahl, … Ke Lan
Nature (2020-04-27) https://doi.org/ggtgng
DOI: 10.1038/s41586-020-2271-3 · PMID: 32340022
194. Airborne Transmission of SARS-CoV-2
+
196. Airborne Transmission of SARS-CoV-2
Michael Klompas, Meghan A. Baker, Chanu Rhee
JAMA (2020-08-04) https://doi.org/gg4ttq
DOI: 10.1001/jama.2020.12458
195. Exaggerated risk of transmission of COVID-19 by fomites
+
197. Exaggerated risk of transmission of COVID-19 by fomites
Emanuel Goldman
The Lancet Infectious Diseases (2020-08) https://doi.org/gg6br7
DOI: 10.1016/s1473-3099(20)30561-2 · PMID: 32628907 · PMCID: PMC7333993
196. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China
+
198. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China
Zhiliang Hu, Ci Song, Chuanjun Xu, Guangfu Jin, Yaling Chen, Xin Xu, Hongxia Ma, Wei Chen, Yuan Lin, Yishan Zheng, … Hongbing Shen
Science China Life Sciences (2020-03-04) https://doi.org/dqbn
DOI: 10.1007/s11427-020-1661-4 · PMID: 32146694 · PMCID: PMC7088568
197. Evidence for transmission of COVID-19 prior to symptom onset
+
199. Evidence for transmission of COVID-19 prior to symptom onset
Lauren C Tindale, Jessica E Stockdale, Michelle Coombe, Emma S Garlock, Wing Yin Venus Lau, Manu Saraswat, Louxin Zhang, Dongxuan Chen, Jacco Wallinga, Caroline Colijn
eLife (2020-06-22) https://doi.org/gg6dtw
DOI: 10.7554/elife.57149 · PMID: 32568070 · PMCID: PMC7386904
198. Time Kinetics of Viral Clearance and Resolution of Symptoms in Novel Coronavirus Infection
+
200. Time Kinetics of Viral Clearance and Resolution of Symptoms in Novel Coronavirus Infection
De Chang, Guoxin Mo, Xin Yuan, Yi Tao, Xiaohua Peng, Fu-Sheng Wang, Lixin Xie, Lokesh Sharma, Charles S. Dela Cruz, Enqiang Qin
American Journal of Respiratory and Critical Care Medicine (2020-05-01) https://doi.org/ggq8xs
DOI: 10.1164/rccm.202003-0524le · PMID: 32200654 · PMCID: PMC7193851
199. Temporal dynamics in viral shedding and transmissibility of COVID-19
+
201. Temporal dynamics in viral shedding and transmissibility of COVID-19
Xi He, Eric H. Y. Lau, Peng Wu, Xilong Deng, Jian Wang, Xinxin Hao, Yiu Chung Lau, Jessica Y. Wong, Yujuan Guan, Xinghua Tan, … Gabriel M. Leung
Nature Medicine (2020-04-15) https://doi.org/ggr99q
DOI: 10.1038/s41591-020-0869-5 · PMID: 32296168
200. COVID-19 and Your Health
+
202. COVID-19 and Your Health
CDC
Centers for Disease Control and Prevention (2020-10-28) https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html
201. Virological assessment of hospitalized patients with COVID-2019
+
203. Virological assessment of hospitalized patients with COVID-2019
Roman Wölfel, Victor M. Corman, Wolfgang Guggemos, Michael Seilmaier, Sabine Zange, Marcel A. Müller, Daniela Niemeyer, Terry C. Jones, Patrick Vollmar, Camilla Rothe, … Clemens Wendtner
Nature (2020-04-01) https://doi.org/ggqrv7
DOI: 10.1038/s41586-020-2196-x · PMID: 32235945
202. Clinical predictors and timing of cessation of viral RNA shedding in patients with COVID-19
+
204. Clinical predictors and timing of cessation of viral RNA shedding in patients with COVID-19
Cristina Corsini Campioli, Edison Cano Cevallos, Mariam Assi, Robin Patel, Matthew J. Binnicker, John C. O’Horo
Journal of Clinical Virology (2020-09) https://doi.org/gg7m96
DOI: 10.1016/j.jcv.2020.104577 · PMID: 32777762 · PMCID: PMC7405830
203. Presymptomatic SARS-CoV-2 Infections and Transmission in a Skilled Nursing Facility
+
205. Presymptomatic SARS-CoV-2 Infections and Transmission in a Skilled Nursing Facility
Melissa M. Arons, Kelly M. Hatfield, Sujan C. Reddy, Anne Kimball, Allison James, Jesica R. Jacobs, Joanne Taylor, Kevin Spicer, Ana C. Bardossy, Lisa P. Oakley, … John A. Jernigan
New England Journal of Medicine (2020-05-28) https://doi.org/ggszfg
DOI: 10.1056/nejmoa2008457 · PMID: 32329971 · PMCID: PMC7200056
204. Prevalence of SARS-CoV-2 Infection in Residents of a Large Homeless Shelter in Boston
+
206. Prevalence of SARS-CoV-2 Infection in Residents of a Large Homeless Shelter in Boston
Travis P. Baggett, Harrison Keyes, Nora Sporn, Jessie M. Gaeta
JAMA (2020-06-02) https://doi.org/ggtsh3
DOI: 10.1001/jama.2020.6887 · PMID: 32338732 · PMCID: PMC7186911
205. Presumed Asymptomatic Carrier Transmission of COVID-19
+
207. Presumed Asymptomatic Carrier Transmission of COVID-19
Yan Bai, Lingsheng Yao, Tao Wei, Fei Tian, Dong-Yan Jin, Lijuan Chen, Meiyun Wang
JAMA (2020-04-14) https://doi.org/ggmbs8
DOI: 10.1001/jama.2020.2565 · PMID: 32083643 · PMCID: PMC7042844
206. Transmission of COVID-19 in the terminal stages of the incubation period: A familial cluster
+
208. Transmission of COVID-19 in the terminal stages of the incubation period: A familial cluster
Peng Li, Ji-Bo Fu, Ke-Feng Li, Jie-Nan Liu, Hong-Ling Wang, Lei-Jie Liu, Yan Chen, Yong-Li Zhang, She-Lan Liu, An Tang, … Jian-Bo Yan
International Journal of Infectious Diseases (2020-07) https://doi.org/ggq844
DOI: 10.1016/j.ijid.2020.03.027 · PMID: 32194239 · PMCID: PMC7264481
207. A Cohort of SARS-CoV-2 Infected Asymptomatic and Pre-Symptomatic Contacts from COVID-19 Contact Tracing in Hubei Province, China: Short-Term Outcomes
+
209. A Cohort of SARS-CoV-2 Infected Asymptomatic and Pre-Symptomatic Contacts from COVID-19 Contact Tracing in Hubei Province, China: Short-Term Outcomes
Peng Zhang, Fei Tian, Yuan Wan, Jing Cai, Zhengmin Qian, Ran Wu, Yunquan Zhang, Shiyu Zhang, Huan Li, Mingyan Li, … Hualiang Lin
SSRN Electronic Journal (2020) https://doi.org/ghf3n2
DOI: 10.2139/ssrn.3678556
208. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020
+
210. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020
Kenji Mizumoto, Katsushi Kagaya, Alexander Zarebski, Gerardo Chowell
Eurosurveillance (2020-03-12) https://doi.org/ggn4bd
DOI: 10.2807/1560-7917.es.2020.25.10.2000180 · PMID: 32183930 · PMCID: PMC7078829
209. Estimated prevalence and viral transmissibility in subjects with asymptomatic SARS-CoV-2 infections in Wuhan, China
+
211. Estimated prevalence and viral transmissibility in subjects with asymptomatic SARS-CoV-2 infections in Wuhan, China
Kang Zhang, Weiwei Tong, Xinghuan Wang, Johnson Yiu-Nam Lau
Precision Clinical Medicine (2020-12) https://doi.org/ghjmks
DOI: 10.1093/pcmedi/pbaa032 · PMCID: PMC7499683
210. Investigation of SARS-CoV-2 outbreaks in six care homes in London, April 2020
+
212. Investigation of SARS-CoV-2 outbreaks in six care homes in London, April 2020
Shamez N Ladhani, J.Yimmy Chow, Roshni Janarthanan, Jonathan Fok, Emma Crawley-Boevey, Amoolya Vusirikala, Elena Fernandez, Marina Sanchez Perez, Suzanne Tang, Kate Dun-Campbell, … Maria Zambon
EClinicalMedicine (2020-09) https://doi.org/ghbj9v
DOI: 10.1016/j.eclinm.2020.100533 · PMID: 32923993 · PMCID: PMC7480335
211. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections
+
213. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections
Quan-Xin Long, Xiao-Jun Tang, Qiu-Lin Shi, Qin Li, Hai-Jun Deng, Jun Yuan, Jie-Li Hu, Wei Xu, Yong Zhang, Fa-Jin Lv, … Ai-Long Huang
Nature Medicine (2020-06-18) https://doi.org/gg26dx
DOI: 10.1038/s41591-020-0965-6 · PMID: 32555424
212. Suppression of a SARS-CoV-2 outbreak in the Italian municipality of Vo’
+
214. Suppression of a SARS-CoV-2 outbreak in the Italian municipality of Vo’
Enrico Lavezzo, Elisa Franchin, Constanze Ciavarella, Gina Cuomo-Dannenburg, Luisa Barzon, Claudia Del Vecchio, Lucia Rossi, Riccardo Manganelli, Arianna Loregian, Nicolò Navarin, … Imperial College COVID-19 Response Team
Nature (2020-06-30) https://doi.org/gg3w87
DOI: 10.1038/s41586-020-2488-1 · PMID: 32604404
213. A systematic review and meta-analysis of published research data on COVID-19 infection fatality rates
+
215. A systematic review and meta-analysis of published research data on COVID-19 infection fatality rates
Gideon Meyerowitz-Katz, Lea Merone
International Journal of Infectious Diseases (2020-12) https://doi.org/ghgjpw
DOI: 10.1016/j.ijid.2020.09.1464 · PMID: 33007452 · PMCID: PMC7524446
214. Global Covid-19 Case Fatality Rates
+
216. Global Covid-19 Case Fatality Rates
The Centre for Evidence-Based Medicine
https://www.cebm.net/covid-19/global-covid-19-case-fatality-rates/
215. Estimating the Global Infection Fatality Rate of COVID-19
+
217. Estimating the Global Infection Fatality Rate of COVID-19
Richard Grewelle, Giulio De Leo
Cold Spring Harbor Laboratory (2020-05-18) https://doi.org/ghbvcj
DOI: 10.1101/2020.05.11.20098780
216. Repeated cross-sectional sero-monitoring of SARS-CoV-2 in New York City
+
218. Repeated cross-sectional sero-monitoring of SARS-CoV-2 in New York City
Daniel Stadlbauer, Jessica Tan, Kaijun Jiang, Matthew M. Hernandez, Shelcie Fabre, Fatima Amanat, Catherine Teo, Guha Asthagiri Arunkumar, Meagan McMahon, Christina Capuano, … Florian Krammer
Nature (2020-11-03) https://doi.org/ghhtq9
DOI: 10.1038/s41586-020-2912-6 · PMID: 33142304
217. What do we know about the risk of dying from COVID-19?
+
219. What do we know about the risk of dying from COVID-19?
Our World in Data
https://ourworldindata.org/covid-mortality-risk
218. The concept of R o in epidemic theory
+
220. The concept of R o in epidemic theory
J. A. P. Heesterbeek, K. Dietz
Statistica Neerlandica (1996-03) https://doi.org/d29ch4
DOI: 10.1111/j.1467-9574.1996.tb01482.x
219. Modeling infectious diseases in humans and animals
+
221. Modeling infectious diseases in humans and animals
Matthew James Keeling, Pejman Rohani
Princeton University Press (2008)
ISBN: 9780691116174
220. A contribution to the mathematical theory of epidemics
+
222. A contribution to the mathematical theory of epidemics
Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character
(1997-01) https://doi.org/fwx2qw
DOI: 10.1098/rspa.1927.0118
221. Population biology of infectious diseases: Part I
+
223. Population biology of infectious diseases: Part I
Roy M. Anderson, Robert M. May
Nature (1979-08-01) https://doi.org/b6z9hc
DOI: 10.1038/280361a0 · PMID: 460412
222. Modeling infectious disease dynamics
+
224. Modeling infectious disease dynamics
Sarah Cobey
Science (2020-05-15) https://doi.org/ggsztw
DOI: 10.1126/science.abb5659 · PMID: 32332062
223. Theoretical ecology: principles and applications
+
225. Theoretical ecology: principles and applications
Robert M. May, Angela R. McLean (editors)
Oxford University Press (2007)
ISBN: 9780199209989
224. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study
+
226. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study
Joseph T Wu, Kathy Leung, Gabriel M Leung
The Lancet (2020-02) https://doi.org/ggjvr7
DOI: 10.1016/s0140-6736(20)30260-9
225. The reproductive number of COVID-19 is higher compared to SARS coronavirus
+
227. The reproductive number of COVID-19 is higher compared to SARS coronavirus
Ying Liu, Albert A Gayle, Annelies Wilder-Smith, Joacim Rocklöv
Journal of Travel Medicine (2020-03) https://doi.org/ggnntv
DOI: 10.1093/jtm/taaa021 · PMID: 32052846 · PMCID: PMC7074654
226. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2)
+
228. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2)
Ruiyun Li, Sen Pei, Bin Chen, Yimeng Song, Tao Zhang, Wan Yang, Jeffrey Shaman
Science (2020-05-01) https://doi.org/ggn6c2
DOI: 10.1126/science.abb3221 · PMID: 32179701
227. Epidemiological parameters of coronavirus disease 2019: a pooled analysis of publicly reported individual data of 1155 cases from seven countries
+
229. Epidemiological parameters of coronavirus disease 2019: a pooled analysis of publicly reported individual data of 1155 cases from seven countries
Shujuan Ma, Jiayue Zhang, Minyan Zeng, Qingping Yun, Wei Guo, Yixiang Zheng, Shi Zhao, Maggie H. Wang, Zuyao Yang
Cold Spring Harbor Laboratory (2020-03-24) https://doi.org/ggqhzz
DOI: 10.1101/2020.03.21.20040329
228. Early Transmissibility Assessment of a Novel Coronavirus in Wuhan, China
+
230. Early Transmissibility Assessment of a Novel Coronavirus in Wuhan, China
Maimuna Majumder, Kenneth D. Mandl
SSRN Electronic Journal (2020) https://doi.org/ggqhz3
DOI: 10.2139/ssrn.3524675 · PMID: 32714102
229. Time-varying transmission dynamics of Novel Coronavirus Pneumonia in China
+
231. Time-varying transmission dynamics of Novel Coronavirus Pneumonia in China
Tao Liu, Jianxiong Hu, Jianpeng Xiao, Guanhao He, Min Kang, Zuhua Rong, Lifeng Lin, Haojie Zhong, Qiong Huang, Aiping Deng, … Wenjun Ma
Cold Spring Harbor Laboratory (2020-02-13) https://doi.org/dkx9
DOI: 10.1101/2020.01.25.919787
230. Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: A data-driven analysis
+
232. Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: A data-driven analysis
Sheng Zhang, MengYuan Diao, Wenbo Yu, Lei Pei, Zhaofen Lin, Dechang Chen
International Journal of Infectious Diseases (2020-04) https://doi.org/ggpx56
DOI: 10.1016/j.ijid.2020.02.033 · PMID: 32097725 · PMCID: PMC7110591
231. Estimation of the Transmission Risk of the 2019-nCoV and Its Implication for Public Health Interventions
+
233. Estimation of the Transmission Risk of the 2019-nCoV and Its Implication for Public Health Interventions
Biao Tang, Xia Wang, Qian Li, Nicola Luigi Bragazzi, Sanyi Tang, Yanni Xiao, Jianhong Wu
Journal of Clinical Medicine (2020-02-07) https://doi.org/ggmkf4
DOI: 10.3390/jcm9020462 · PMID: 32046137 · PMCID: PMC7074281
232. Estimating the effective reproduction number of the 2019-nCoV in China
+
234. Estimating the effective reproduction number of the 2019-nCoV in China
Zhidong Cao, Qingpeng Zhang, Xin Lu, Dirk Pfeiffer, Zhongwei Jia, Hongbing Song, Daniel Dajun Zeng
medRxiv (2020-01) https://www.medrxiv.org/content/10.1101/2020.01.27.20018952v1
DOI: 10.1101/2020.01.27.20018952
233. Modelling the epidemic trend of the 2019 novel coronavirus outbreak in China
+
235. Modelling the epidemic trend of the 2019 novel coronavirus outbreak in China
Mingwang Shen, Zhihang Peng, Yanni Xiao, Lei Zhang
Cold Spring Harbor Laboratory (2020-01-25) https://doi.org/ggqhzw
DOI: 10.1101/2020.01.23.916726
234. Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions
+
236. Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions
Jonathan M. Read, Jessica R. E. Bridgen, Derek A. T. Cummings, Antonia Ho, Chris P. Jewell
Cold Spring Harbor Laboratory (2020-01-28) https://doi.org/dkzb
DOI: 10.1101/2020.01.23.20018549
235. Using early data to estimate the actual infection fatality ratio from COVID-19 in France
+
237. Using early data to estimate the actual infection fatality ratio from COVID-19 in France
Lionel Roques, Etienne Klein, Julien Papaïx, Antoine Sar, Samuel Soubeyrand
Cold Spring Harbor Laboratory (2020-05-07) https://doi.org/ggqhz2
DOI: 10.1101/2020.03.22.20040915
236. Potential roles of social distancing in mitigating the spread of coronavirus disease 2019 (COVID-19) in South Korea
+
238. Potential roles of social distancing in mitigating the spread of coronavirus disease 2019 (COVID-19) in South Korea
Sang Woo Park, Kaiyuan Sun, Cécile Viboud, Bryan T Grenfell, Jonathan Dushoff
GitHub (2020) https://github.com/parksw3/Korea-analysis/blob/master/v1/korea.pdf
237. Early dynamics of transmission and control of COVID-19: a mathematical modelling study
+
239. Early dynamics of transmission and control of COVID-19: a mathematical modelling study
Adam J Kucharski, Timothy W Russell, Charlie Diamond, Yang Liu, John Edmunds, Sebastian Funk, Rosalind M Eggo, Fiona Sun, Mark Jit, James D Munday, … Stefan Flasche
The Lancet Infectious Diseases (2020-05) https://doi.org/ggptcf
DOI: 10.1016/s1473-3099(20)30144-4
238. Estimating the reproduction number of COVID-19 in Iran using epidemic modeling
+
240. Estimating the reproduction number of COVID-19 in Iran using epidemic modeling
Ebrahim Sahafizadeh, Samaneh Sartoli
Cold Spring Harbor Laboratory (2020-04-23) https://doi.org/ggqhzx
DOI: 10.1101/2020.03.20.20038422
239. Report 13: Estimating the number of infections and the impact of non-pharmaceutical interventions on COVID-19 in 11 European countries
+
241. Report 13: Estimating the number of infections and the impact of non-pharmaceutical interventions on COVID-19 in 11 European countries
S Flaxman, S Mishra, A Gandy, H Unwin, H Coupland, T Mellan, H Zhu, T Berah, J Eaton, P Perez Guzman, … S Bhatt
Imperial College London (2020-03-30) https://doi.org/ggrbmf
DOI: 10.25561/77731
240. Projecting hospital utilization during the COVID-19 outbreaks in the United States
+
242. Projecting hospital utilization during the COVID-19 outbreaks in the United States
Seyed M. Moghadas, Affan Shoukat, Meagan C. Fitzpatrick, Chad R. Wells, Pratha Sah, Abhishek Pandey, Jeffrey D. Sachs, Zheng Wang, Lauren A. Meyers, Burton H. Singer, Alison P. Galvani
Proceedings of the National Academy of Sciences (2020-04-21) https://doi.org/ggq7jc
DOI: 10.1073/pnas.2004064117 · PMID: 32245814 · PMCID: PMC7183199
241. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study
+
243. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study
Kiesha Prem, Yang Liu, Timothy W Russell, Adam J Kucharski, Rosalind M Eggo, Nicholas Davies, Mark Jit, Petra Klepac, Stefan Flasche, Samuel Clifford, … Joel Hellewell
The Lancet Public Health (2020-05) https://doi.org/ggp3xq
DOI: 10.1016/s2468-2667(20)30073-6 · PMID: 32220655 · PMCID: PMC7158905
242. Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures
+
244. Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures
Marino Gatto, Enrico Bertuzzo, Lorenzo Mari, Stefano Miccoli, Luca Carraro, Renato Casagrandi, Andrea Rinaldo
Proceedings of the National Academy of Sciences (2020-05-12) https://doi.org/ggv4j6
DOI: 10.1073/pnas.2004978117 · PMID: 32327608 · PMCID: PMC7229754
243. Covid-19: Temporal variation in transmission during the COVID-19 outbreak
+
245. Covid-19: Temporal variation in transmission during the COVID-19 outbreak
EpiForecasts and the CMMID Covid working group
https://epiforecasts.io/covid/
244. Rt COVID-19
+
246. Rt COVID-19
Kevin Systrom, Thomas Vladeck, Mike Krieger
https://rt.live/
245. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant
+
247. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant
Maria Pachetti, Bruna Marini, Francesca Benedetti, Fabiola Giudici, Elisabetta Mauro, Paola Storici, Claudio Masciovecchio, Silvia Angeletti, Massimo Ciccozzi, Robert C. Gallo, … Rudy Ippodrino
Journal of Translational Medicine (2020-04-22) https://doi.org/ggtzrr
DOI: 10.1186/s12967-020-02344-6 · PMID: 32321524 · PMCID: PMC7174922
246. Emergence of genomic diversity and recurrent mutations in SARS-CoV-2
+
248. Emergence of genomic diversity and recurrent mutations in SARS-CoV-2
Lucy van Dorp, Mislav Acman, Damien Richard, Liam P. Shaw, Charlotte E. Ford, Louise Ormond, Christopher J. Owen, Juanita Pang, Cedric C. S. Tan, Florencia A. T. Boshier, … François Balloux
Infection, Genetics and Evolution (2020-09) https://doi.org/ggvz4h
DOI: 10.1016/j.meegid.2020.104351 · PMID: 32387564 · PMCID: PMC7199730
247. An integrated national scale SARS-CoV-2 genomic surveillance network
+
249. An integrated national scale SARS-CoV-2 genomic surveillance network
The Lancet Microbe
(2020-07) https://doi.org/d5mg
DOI: 10.1016/s2666-5247(20)30054-9 · PMID: 32835336 · PMCID: PMC7266609
248. Coast-to-Coast Spread of SARS-CoV-2 during the Early Epidemic in the United States
+
250. Coast-to-Coast Spread of SARS-CoV-2 during the Early Epidemic in the United States
Joseph R. Fauver, Mary E. Petrone, Emma B. Hodcroft, Kayoko Shioda, Hanna Y. Ehrlich, Alexander G. Watts, Chantal B. F. Vogels, Anderson F. Brito, Tara Alpert, Anthony Muyombwe, … Nathan D. Grubaugh
Cell (2020-05) https://doi.org/gg6r9x
DOI: 10.1016/j.cell.2020.04.021 · PMID: 32386545 · PMCID: PMC7204677
249. Introductions and early spread of SARS-CoV-2 in the New York City area
+
251. Introductions and early spread of SARS-CoV-2 in the New York City area
Ana S. Gonzalez-Reiche, Matthew M. Hernandez, Mitchell J. Sullivan, Brianne Ciferri, Hala Alshammary, Ajay Obla, Shelcie Fabre, Giulio Kleiner, Jose Polanco, Zenab Khan, … Harm van Bakel
Science (2020-05-29) https://doi.org/gg5gv7
DOI: 10.1126/science.abc1917 · PMID: 32471856 · PMCID: PMC7259823
250. Spread of SARS-CoV-2 in the Icelandic Population
+
252. Spread of SARS-CoV-2 in the Icelandic Population
Daniel F. Gudbjartsson, Agnar Helgason, Hakon Jonsson, Olafur T. Magnusson, Pall Melsted, Gudmundur L. Norddahl, Jona Saemundsdottir, Asgeir Sigurdsson, Patrick Sulem, Arna B. Agustsdottir, … Kari Stefansson
New England Journal of Medicine (2020-06-11) https://doi.org/ggr6wx
DOI: 10.1056/nejmoa2006100 · PMID: 32289214 · PMCID: PMC7175425
251. GISAID - Initiative https://www.gisaid.org/
+253. GISAID - Initiative https://www.gisaid.org/
252. NCBI SARS-CoV-2 Resources https://www.ncbi.nlm.nih.gov/sars-cov-2/
+254. NCBI SARS-CoV-2 Resources https://www.ncbi.nlm.nih.gov/sars-cov-2/
253. COVID-19 Data Portal - accelerating scientific research through data https://www.covid19dataportal.org/
+255. COVID-19 Data Portal - accelerating scientific research through data https://www.covid19dataportal.org/
254. Epidemiology, transmission dynamics and control of SARS: the 2002–2003 epidemic
+
256. Epidemiology, transmission dynamics and control of SARS: the 2002–2003 epidemic
Roy M. Anderson, Christophe Fraser, Azra C. Ghani, Christl A. Donnelly, Steven Riley, Neil M. Ferguson, Gabriel M. Leung, T. H. Lam, Anthony J. Hedley
Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences (2004-07-29) https://doi.org/c2n646
DOI: 10.1098/rstb.2004.1490 · PMID: 15306395 · PMCID: PMC1693389
255. WHO Global efforts to studying the origin origins of SARS-CoV-2:
+
257. WHO Global efforts to studying the origin origins of SARS-CoV-2:
LE POLAIN, Olivier
(2020-11-05) https://www.who.int/docs/default-source/coronaviruse/20200802-tors-chn-and-who-agreed-final-version.pdf?sfvrsn
256. Human coronavirus circulation in the United States 2014–2017
+
258. Human coronavirus circulation in the United States 2014–2017
Marie E. Killerby, Holly M. Biggs, Amber Haynes, Rebecca M. Dahl, Desiree Mustaquim, Susan I. Gerber, John T. Watson
Journal of Clinical Virology (2018-04) https://doi.org/gc7sf3
DOI: 10.1016/j.jcv.2018.01.019 · PMID: 29427907 · PMCID: PMC7106380
257. Coronaviruses and gastrointestinal diseases
+
259. Coronaviruses and gastrointestinal diseases
Xi Luo, Guan-Zhou Zhou, Yan Zhang, Li-Hua Peng, Li-Ping Zou, Yun-Sheng Yang
Military Medical Research (2020-10-14) https://doi.org/ghqfmj
DOI: 10.1186/s40779-020-00279-z · PMID: 33054860 · PMCID: PMC7556584
258. Human (non-severe acute respiratory syndrome) coronavirus infections in hospitalised children in France
+
260. Human (non-severe acute respiratory syndrome) coronavirus infections in hospitalised children in France
Astrid Vabret, Julia Dina, Stéphanie Gouarin, Joëlle Petitjean, Valérie Tripey, Jacques Brouard, François Freymuth
Journal of Paediatrics and Child Health (2008-04) https://doi.org/cxt434
DOI: 10.1111/j.1440-1754.2007.01246.x · PMID: 17999671 · PMCID: PMC7166728
259. Making Sense of Mutation: What D614G Means for the COVID-19 Pandemic Remains Unclear
+
261. Making Sense of Mutation: What D614G Means for the COVID-19 Pandemic Remains Unclear
Nathan D. Grubaugh, William P. Hanage, Angela L. Rasmussen
Cell (2020-08) https://doi.org/gg4gqt
DOI: 10.1016/j.cell.2020.06.040 · PMID: 32697970 · PMCID: PMC7332445
260. Case Study: Prolonged Infectious SARS-CoV-2 Shedding from an Asymptomatic Immunocompromised Individual with Cancer
+
262. Case Study: Prolonged Infectious SARS-CoV-2 Shedding from an Asymptomatic Immunocompromised Individual with Cancer
Victoria A. Avanzato, M. Jeremiah Matson, Stephanie N. Seifert, Rhys Pryce, Brandi N. Williamson, Sarah L. Anzick, Kent Barbian, Seth D. Judson, Elizabeth R. Fischer, Craig Martens, … Vincent J. Munster
Cell (2020-12) https://doi.org/ghhxkp
DOI: 10.1016/j.cell.2020.10.049 · PMID: 33248470 · PMCID: PMC7640888
261. Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host
+
263. Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host
Bina Choi, Manish C. Choudhary, James Regan, Jeffrey A. Sparks, Robert F. Padera, Xueting Qiu, Isaac H. Solomon, Hsiao-Hsuan Kuo, Julie Boucau, Kathryn Bowman, … Jonathan Z. Li
New England Journal of Medicine (2020-12-03) https://doi.org/fhv8
DOI: 10.1056/nejmc2031364 · PMID: 33176080 · PMCID: PMC7673303
262. SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma
+
264. SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma
Emanuele Andreano, Giulia Piccini, Danilo Licastro, Lorenzo Casalino, Nicole V. Johnson, Ida Paciello, Simeone Dal Monego, Elisa Pantano, Noemi Manganaro, Alessandro Manenti, … Rino Rappuoli
Cold Spring Harbor Laboratory (2020-12-28) https://doi.org/ghs97s
DOI: 10.1101/2020.12.28.424451 · PMID: 33398278 · PMCID: PMC7781313
263. Genetic Variants of SARS-CoV-2—What Do They Mean?
+
265. Genetic Variants of SARS-CoV-2—What Do They Mean?
Adam S. Lauring, Emma B. Hodcroft
JAMA (2021-01-06) https://doi.org/ghtbcr
DOI: 10.1001/jama.2020.27124 · PMID: 33404586
264. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans
+
266. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans
Bas B. Oude Munnink, Reina S. Sikkema, David F. Nieuwenhuijse, Robert Jan Molenaar, Emmanuelle Munger, Richard Molenkamp, Arco van der Spek, Paulien Tolsma, Ariene Rietveld, Miranda Brouwer, … Marion P. G. Koopmans
Science (2021-01-08) https://doi.org/ghssrq
DOI: 10.1126/science.abe5901 · PMID: 33172935
265. Estimated transmissibility and severity of novel SARS-CoV-2 Variant of Concern 202012/01 in England
+
267. Estimated transmissibility and severity of novel SARS-CoV-2 Variant of Concern 202012/01 in England
Nicholas G. Davies, Rosanna C. Barnard, Christopher I. Jarvis, Adam J. Kucharski, James Munday, Carl A. B. Pearson, Timothy W. Russell, Damien C. Tully, Sam Abbott, Amy Gimma, … CMMID COVID-19 Working Group
Cold Spring Harbor Laboratory (2020-12-26) https://doi.org/fp3v
DOI: 10.1101/2020.12.24.20248822
266. Establishment and lineage dynamics of the SARS-CoV-2 epidemic in the UK
+
268. Establishment and lineage dynamics of the SARS-CoV-2 epidemic in the UK
Louis du Plessis, John T. McCrone, Alexander E. Zarebski, Verity Hill, Christopher Ruis, Bernardo Gutierrez, Jayna Raghwani, Jordan Ashworth, Rachel Colquhoun, Thomas R. Connor, … COVID-19 Genomics UK (COG-UK) Consortium†
Science (2021-01-08) https://doi.org/ghsbdt
DOI: 10.1126/science.abf2946 · PMID: 33419936
267. Learning the language of viral evolution and escape
+
269. Learning the language of viral evolution and escape
Brian Hie, Ellen D. Zhong, Bonnie Berger, Bryan Bryson
Science (2021-01-14) https://doi.org/ghtbcv
DOI: 10.1126/science.abd7331 · PMID: 33446556
268. We shouldn’t worry when a virus mutates during disease outbreaks
+
270. We shouldn’t worry when a virus mutates during disease outbreaks
Nathan D. Grubaugh, Mary E. Petrone, Edward C. Holmes
Nature Microbiology (2020-02-18) https://doi.org/ggqsbc
DOI: 10.1038/s41564-020-0690-4 · PMID: 32071422 · PMCID: PMC7095397
269. PHE document
+
271. PHE document
Ed Collington
(2020-12-21) https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/947048/Technical_Briefing_VOC_SH_NJL2_SH2.pdf
270. Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations
+
272. Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations
Virological
(2020-12-18) https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563
271. Transmission of SARS-CoV-2 Lineage B.1.1.7 in England: Insights from linking epidemiological and genetic data
+
273. Transmission of SARS-CoV-2 Lineage B.1.1.7 in England: Insights from linking epidemiological and genetic data
Erik Volz, Swapnil Mishra, Meera Chand, Jeffrey C. Barrett, Robert Johnson, Lily Geidelberg, Wes R Hinsley, Daniel J Laydon, Gavin Dabrera, Áine O’Toole, … The COVID-19 Genomics UK (COG-UK) consortium
Cold Spring Harbor Laboratory (2021-01-04) https://doi.org/ghrqv8
DOI: 10.1101/2020.12.30.20249034
272. B.1.1.7 report https://cov-lineages.org/global_report_B.1.1.7.html
+274. B.1.1.7 report https://cov-lineages.org/global_report_B.1.1.7.html
273. Recurrent emergence and transmission of a SARS-CoV-2 Spike deletion H69/V70
+
275. Recurrent emergence and transmission of a SARS-CoV-2 Spike deletion H69/V70
Steven Kemp, William Harvey, Rawlings Datir, Dami Collier, Isabella Ferreira, Bo Meng, Alessandro Carabelii, David L Robertson, Ravindra K Gupta, COVID-19 Genomics UK (COG-UK) consortium
Cold Spring Harbor Laboratory (2021-01-13) https://doi.org/ghvq45
DOI: 10.1101/2020.12.14.422555
274. NERVTAG paper on COVID-19 variant of concern B.1.1.7 (2021-01-22) https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/955239/NERVTAG_paper_on_variant_of_concern__VOC__B.1.1.7.pdf
+276. NERVTAG paper on COVID-19 variant of concern B.1.1.7 (2021-01-22) https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/955239/NERVTAG_paper_on_variant_of_concern__VOC__B.1.1.7.pdf
275. Investigation of novel SARS-CoV-2 variant: Variant of Concern 202012/01
+
277. Investigation of novel SARS-CoV-2 variant: Variant of Concern 202012/01
Public Health England
(2021-01-14) https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/952490/Variant_of_Concern_VOC_202012_01_Technical_Briefing_4_England.pdf
276. Identification of a novel SARS-CoV-2 Spike 69-70 deletion lineage circulating in the United States
+
278. Identification of a novel SARS-CoV-2 Spike 69-70 deletion lineage circulating in the United States
Virological
(2020-12-31) https://virological.org/t/identification-of-a-novel-sars-cov-2-spike-69-70-deletion-lineage-circulating-in-the-united-states/577
277. S gene dropout patterns in SARS-CoV-2 tests suggest spread of the H69del/V70del mutation in the US
+
279. S gene dropout patterns in SARS-CoV-2 tests suggest spread of the H69del/V70del mutation in the US
Nicole L. Washington, Simon White, Kelly M. Schiabor Barrett, Elizabeth T. Cirulli, Alexandre Bolze, James T. Lu
Cold Spring Harbor Laboratory (2020-12-30) https://doi.org/ghvq46
DOI: 10.1101/2020.12.24.20248814
278. Genetic Variants of SARS-CoV-2 May Lead to False Negative Results with Molecular Tests for Detection of SARS-CoV-2 - Letter to Clinical Laboratory Staff and Health Care Providers
+
280. Genetic Variants of SARS-CoV-2 May Lead to False Negative Results with Molecular Tests for Detection of SARS-CoV-2 - Letter to Clinical Laboratory Staff and Health Care Providers
Center for Devices and Radiological Health
FDA (2021-01-08) https://www.fda.gov/medical-devices/letters-health-care-providers/genetic-variants-sars-cov-2-may-lead-false-negative-results-molecular-tests-detection-sars-cov-2
279. Coronavirus Disease 2019 (COVID-19)
+
281. Coronavirus Disease 2019 (COVID-19)
CDC
Centers for Disease Control and Prevention (2020-02-11) https://www.cdc.gov/coronavirus/2019-ncov/more/science-and-research/scientific-brief-emerging-variants.html
280. Minister Zweli Mkhize confirms 8 725 more cases of Coronavirus COVID-19 | South African Government https://www.gov.za/speeches/minister-zweli-mkhize-confirms-8-725-more-cases-coronavirus-covid-19-18-dec-2020-0000
+282. Minister Zweli Mkhize confirms 8 725 more cases of Coronavirus COVID-19 | South African Government https://www.gov.za/speeches/minister-zweli-mkhize-confirms-8-725-more-cases-coronavirus-covid-19-18-dec-2020-0000
281. B.1.351 report https://cov-lineages.org/global_report_B.1.351.html
+283. B.1.351 report https://cov-lineages.org/global_report_B.1.351.html
282. Tracking the international spread of SARS-CoV-2 lineages B.1.1.7 and B.1.351/501Y-V2
+
284. Tracking the international spread of SARS-CoV-2 lineages B.1.1.7 and B.1.351/501Y-V2
Virological
(2021-02-04) https://virological.org/t/tracking-the-international-spread-of-sars-cov-2-lineages-b-1-1-7-and-b-1-351-501y-v2/592
283. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa
+
285. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa
Houriiyah Tegally, Eduan Wilkinson, Marta Giovanetti, Arash Iranzadeh, Vagner Fonseca, Jennifer Giandhari, Deelan Doolabh, Sureshnee Pillay, Emmanuel James San, Nokukhanya Msomi, … Tulio de Oliveira
Cold Spring Harbor Laboratory (2020-12-22) https://doi.org/fqth
DOI: 10.1101/2020.12.21.20248640
284. Risk of spread of new SARS-CoV-2 variants of concern in the EU/EEA - first update
+
286. Risk of spread of new SARS-CoV-2 variants of concern in the EU/EEA - first update
ECDC
(2021-01-21) https://www.ecdc.europa.eu/sites/default/files/documents/COVID-19-risk-related-to-spread-of-new-SARS-CoV-2-variants-EU-EEA-first-update.pdf
285. Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: preliminary findings
+
287. Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: preliminary findings
Virological
(2021-01-12) https://virological.org/t/genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-manaus-preliminary-findings/586
286. P.1 report https://cov-lineages.org/global_report_P.1.html
+288. P.1 report https://cov-lineages.org/global_report_P.1.html
287. UK detects 77 cases of South African COVID variant, nine of Brazilian
+
289. UK detects 77 cases of South African COVID variant, nine of Brazilian
Reuters Staff
Reuters (2021-01-24) https://www.reuters.com/article/uk-health-coronavirus-britain-variants-idUSKBN29T07E
288. PANGO lineages https://cov-lineages.org/lineages.html
+290. PANGO lineages https://cov-lineages.org/lineages.html
289. Emergence of a novel SARS-CoV-2 strain in Southern California, USA
+
291. Emergence of a novel SARS-CoV-2 strain in Southern California, USA
Wenjuan Zhang, Brian D Davis, Stephanie S Chen, Jorge M Sincuir Martinez, Jasmine T Plummer, Eric Vail
Cold Spring Harbor Laboratory (2021-01-20) https://doi.org/ghvq48
DOI: 10.1101/2021.01.18.21249786
290. The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity
+
292. The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity
Qianqian Li, Jiajing Wu, Jianhui Nie, Li Zhang, Huan Hao, Shuo Liu, Chenyan Zhao, Qi Zhang, Huan Liu, Lingling Nie, … Youchun Wang
Cell (2020-09) https://doi.org/gg4665
DOI: 10.1016/j.cell.2020.07.012 · PMID: 32730807 · PMCID: PMC7366990
291. Comprehensive mapping of mutations to the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human serum antibodies
+
293. Comprehensive mapping of mutations to the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human serum antibodies
Allison J. Greaney, Andrea N. Loes, Katharine H. D. Crawford, Tyler N. Starr, Keara D. Malone, Helen Y. Chu, Jesse D. Bloom
Cold Spring Harbor Laboratory (2021-01-04) https://doi.org/ghr85d
DOI: 10.1101/2020.12.31.425021
292. Neue Corona-Variante: 35 Fälle in Garmisch-Partenkirchen
+
294. Neue Corona-Variante: 35 Fälle in Garmisch-Partenkirchen
BR24
(2021-01-18) https://www.br.de/nachrichten/bayern/neue-coronavirus-mutation-35-faelle-in-garmisch-partenkirchen,SMQ1V6u
293. PANGO lineages https://cov-lineages.org/global_report.html
+295. PANGO lineages https://cov-lineages.org/global_report.html
294. Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding
+
296. Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding
Tyler N. Starr, Allison J. Greaney, Sarah K. Hilton, Daniel Ellis, Katharine H. D. Crawford, Adam S. Dingens, Mary Jane Navarro, John E. Bowen, M. Alejandra Tortorici, Alexandra C. Walls, … Jesse D. Bloom
Cell (2020-09) https://doi.org/gg72tr
DOI: 10.1016/j.cell.2020.08.012 · PMID: 32841599 · PMCID: PMC7418704
295. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy
+
297. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy
Hongjing Gu, Qi Chen, Guan Yang, Lei He, Hang Fan, Yong-Qiang Deng, Yanxiao Wang, Yue Teng, Zhongpeng Zhao, Yujun Cui, … Yusen Zhou
Science (2020-07-30) https://doi.org/ghc5mn
DOI: 10.1126/science.abc4730 · PMID: 32732280 · PMCID: PMC7574913
296. Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition
+
298. Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition
Allison J. Greaney, Tyler N. Starr, Pavlo Gilchuk, Seth J. Zost, Elad Binshtein, Andrea N. Loes, Sarah K. Hilton, John Huddleston, Rachel Eguia, Katharine H. D. Crawford, … Jesse D. Bloom
Cell Host & Microbe (2021-01) https://doi.org/ghvq3m
DOI: 10.1016/j.chom.2020.11.007 · PMID: 33259788 · PMCID: PMC7676316
297. Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape
+
299. Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape
Kevin R. McCarthy, Linda J. Rennick, Sham Nambulli, Lindsey R. Robinson-McCarthy, William G. Bain, Ghady Haidar, W. Paul Duprex
Cold Spring Harbor Laboratory (2021-01-19) https://doi.org/ghvq44
DOI: 10.1101/2020.11.19.389916
298. Viral mutations may cause another “very, very bad” COVID-19 wave, scientists warn
+
300. Viral mutations may cause another “very, very bad” COVID-19 wave, scientists warn
Kai Kupferschmidt
Science (2021-01-05) https://doi.org/ghvq5b
DOI: 10.1126/science.abg4312
299. SARS-CoV-2 reinfection by the new Variant of Concern (VOC) P.1 in Amazonas, Brazil
+
301. SARS-CoV-2 reinfection by the new Variant of Concern (VOC) P.1 in Amazonas, Brazil
Virological
(2021-01-18) https://virological.org/t/sars-cov-2-reinfection-by-the-new-variant-of-concern-voc-p-1-in-amazonas-brazil/596
300. Fast-spreading COVID variant can elude immune responses
+
302. Fast-spreading COVID variant can elude immune responses
Ewen Callaway
Nature (2021-01-21) https://doi.org/ght924
DOI: 10.1038/d41586-021-00121-z · PMID: 33479534
301. Prospective mapping of viral mutations that escape antibodies used to treat COVID-19
+
303. Prospective mapping of viral mutations that escape antibodies used to treat COVID-19
Tyler N. Starr, Allison J. Greaney, Amin Addetia, William W. Hannon, Manish C. Choudhary, Adam S. Dingens, Jonathan Z. Li, Jesse D. Bloom
Science (2021-01-25) https://doi.org/ghvntq
DOI: 10.1126/science.abf9302 · PMID: 33495308
302. New mutations raise specter of “immune escape”
+
304. New mutations raise specter of “immune escape”
Kai Kupferschmidt
Science (2021-01-21) https://doi.org/ght923
DOI: 10.1126/science.371.6527.329 · PMID: 33479129
303. mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants
+
305. mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants
Kai Wu, Anne P. Werner, Juan I. Moliva, Matthew Koch, Angela Choi, Guillaume B. E. Stewart-Jones, Hamilton Bennett, Seyhan Boyoglu-Barnum, Wei Shi, Barney S. Graham, … Darin K. Edwards
Cold Spring Harbor Laboratory (2021-01-25) https://doi.org/fr2g
DOI: 10.1101/2021.01.25.427948 · PMID: 33501442 · PMCID: PMC7836112
304. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine
+
306. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine
Fernando P. Polack, Stephen J. Thomas, Nicholas Kitchin, Judith Absalon, Alejandra Gurtman, Stephen Lockhart, John L. Perez, Gonzalo Pérez Marc, Edson D. Moreira, Cristiano Zerbini, … William C. Gruber
New England Journal of Medicine (2020-12-31) https://doi.org/ghn625
DOI: 10.1056/nejmoa2034577 · PMID: 33301246 · PMCID: PMC7745181
305. Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates
+
307. Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates
Edward E. Walsh, Robert W. Frenck, Ann R. Falsey, Nicholas Kitchin, Judith Absalon, Alejandra Gurtman, Stephen Lockhart, Kathleen Neuzil, Mark J. Mulligan, Ruth Bailey, … William C. Gruber
New England Journal of Medicine (2020-12-17) https://doi.org/ghjktx
DOI: 10.1056/nejmoa2027906 · PMID: 33053279 · PMCID: PMC7583697
306. Neutralization of N501Y mutant SARS-CoV-2 by BNT162b2 vaccine-elicited sera
+
308. Neutralization of N501Y mutant SARS-CoV-2 by BNT162b2 vaccine-elicited sera
Xuping Xie, Jing Zou, Camila R. Fontes-Garfias, Hongjie Xia, Kena A. Swanson, Mark Cutler, David Cooper, Vineet D. Menachery, Scott Weaver, Philip R. Dormitzer, Pei-Yong Shi
Cold Spring Harbor Laboratory (2021-01-07) https://doi.org/ghvq47
DOI: 10.1101/2021.01.07.425740 · PMID: 33442691 · PMCID: PMC7805448
307. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants
+
309. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants
Zijun Wang, Fabian Schmidt, Yiska Weisblum, Frauke Muecksch, Christopher O. Barnes, Shlomo Finkin, Dennis Schaefer-Babajew, Melissa Cipolla, Christian Gaebler, Jenna A. Lieberman, … Michel C. Nussenzweig
Cold Spring Harbor Laboratory (2021-01-30) https://doi.org/frdn
DOI: 10.1101/2021.01.15.426911 · PMID: 33501451 · PMCID: PMC7836122
308. A SARS-CoV-2 vaccine candidate would likely match all currently circulating variants
+
310. A SARS-CoV-2 vaccine candidate would likely match all currently circulating variants
Bethany Dearlove, Eric Lewitus, Hongjun Bai, Yifan Li, Daniel B. Reeves, M. Gordon Joyce, Paul T. Scott, Mihret F. Amare, Sandhya Vasan, Nelson L. Michael, … Morgane Rolland
Proceedings of the National Academy of Sciences (2020-09-22) https://doi.org/fdkz
DOI: 10.1073/pnas.2008281117 · PMID: 32868447 · PMCID: PMC7519301
309. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR
+
311. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR
Victor M Corman, Olfert Landt, Marco Kaiser, Richard Molenkamp, Adam Meijer, Daniel KW Chu, Tobias Bleicker, Sebastian Brünink, Julia Schneider, Marie Luisa Schmidt, … Christian Drosten
Eurosurveillance (2020-01-23) https://doi.org/ggjs7g
DOI: 10.2807/1560-7917.es.2020.25.3.2000045 · PMID: 31992387 · PMCID: PMC6988269
310. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study
+
312. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study
Kelvin Kai-Wang To, Owen Tak-Yin Tsang, Wai-Shing Leung, Anthony Raymond Tam, Tak-Chiu Wu, David Christopher Lung, Cyril Chik-Yan Yip, Jian-Piao Cai, Jacky Man-Chun Chan, Thomas Shiu-Hong Chik, … Kwok-Yung Yuen
The Lancet Infectious Diseases (2020-05) https://doi.org/ggp4qx
DOI: 10.1016/s1473-3099(20)30196-1 · PMID: 32213337 · PMCID: PMC7158907
311. Fecal specimen diagnosis 2019 novel coronavirus–infected pneumonia
+
313. Fecal specimen diagnosis 2019 novel coronavirus–infected pneumonia
JingCheng Zhang, SaiBin Wang, YaDong Xue
Journal of Medical Virology (2020-03-12) https://doi.org/ggpx6d
DOI: 10.1002/jmv.25742 · PMID: 32124995
312. Library preparation for next generation sequencing: A review of automation strategies
+
314. Library preparation for next generation sequencing: A review of automation strategies
J. F. Hess, T. A. Kohl, M. Kotrová, K. Rönsch, T. Paprotka, V. Mohr, T. Hutzenlaub, M. Brüggemann, R. Zengerle, S. Niemann, N. Paust
Biotechnology Advances (2020-07) https://doi.org/ggth2v
DOI: 10.1016/j.biotechadv.2020.107537 · PMID: 32199980
313. Diagnosing COVID-19: The Disease and Tools for Detection
+
315. Diagnosing COVID-19: The Disease and Tools for Detection
Buddhisha Udugama, Pranav Kadhiresan, Hannah N. Kozlowski, Ayden Malekjahani, Matthew Osborne, Vanessa Y. C. Li, Hongmin Chen, Samira Mubareka, Jonathan B. Gubbay, Warren C. W. Chan
ACS Nano (2020-03-30) https://doi.org/ggq8ds
DOI: 10.1021/acsnano.0c02624 · PMID: 32223179 · PMCID: PMC7144809
314. Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an Outbreak of Pneumonia
+
316. Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an Outbreak of Pneumonia
Daniel KW Chu, Yang Pan, Samuel MS Cheng, Kenrie PY Hui, Pavithra Krishnan, Yingzhi Liu, Daisy YM Ng, Carrie KC Wan, Peng Yang, Quanyi Wang, … Leo LM Poon
Clinical Chemistry (2020-04) https://doi.org/ggnbpp
DOI: 10.1093/clinchem/hvaa029 · PMID: 32031583 · PMCID: PMC7108203
315. dPCR: A Technology Review
+
317. dPCR: A Technology Review
Phenix-Lan Quan, Martin Sauzade, Eric Brouzes
Sensors (2018-04-20) https://doi.org/ggr39c
DOI: 10.3390/s18041271 · PMID: 29677144 · PMCID: PMC5948698
316. ddPCR: a more accurate tool for SARS-CoV-2 detection in low viral load specimens
+
318. ddPCR: a more accurate tool for SARS-CoV-2 detection in low viral load specimens
Tao Suo, Xinjin Liu, Jiangpeng Feng, Ming Guo, Wenjia Hu, Dong Guo, Hafiz Ullah, Yang Yang, Qiuhan Zhang, Xin Wang, … Yu Chen
Emerging Microbes & Infections (2020-06-07) https://doi.org/ggx2t2
DOI: 10.1080/22221751.2020.1772678 · PMID: 32438868 · PMCID: PMC7448897
317. Highly accurate and sensitive diagnostic detection of SARS-CoV-2 by digital PCR
+
319. Highly accurate and sensitive diagnostic detection of SARS-CoV-2 by digital PCR
Lianhua Dong, Junbo Zhou, Chunyan Niu, Quanyi Wang, Yang Pan, Sitong Sheng, Xia Wang, Yongzhuo Zhang, Jiayi Yang, Manqing Liu, … Xiang Fang
Cold Spring Harbor Laboratory (2020-03-30) https://doi.org/ggqnqh
DOI: 10.1101/2020.03.14.20036129
318. Evaluation of COVID-19 RT-qPCR test in multi-sample pools
+
320. Evaluation of COVID-19 RT-qPCR test in multi-sample pools
Idan Yelin, Noga Aharony, Einat Shaer Tamar, Amir Argoetti, Esther Messer, Dina Berenbaum, Einat Shafran, Areen Kuzli, Nagam Gandali, Tamar Hashimshony, … Roy Kishony
Cold Spring Harbor Laboratory (2020-03-27) https://doi.org/ggrn74
DOI: 10.1101/2020.03.26.20039438
319. Analytical Validation of a COVID-19 qRT-PCR Detection Assay Using a 384-well Format and Three Extraction Methods
+
321. Analytical Validation of a COVID-19 qRT-PCR Detection Assay Using a 384-well Format and Three Extraction Methods
Andrew C. Nelson, Benjamin Auch, Matthew Schomaker, Daryl M. Gohl, Patrick Grady, Darrell Johnson, Robyn Kincaid, Kylene E. Karnuth, Jerry Daniel, Jessica K. Fiege, … Sophia Yohe
Cold Spring Harbor Laboratory (2020-04-05) https://doi.org/ggs45d
DOI: 10.1101/2020.04.02.022186
320. Nucleic acid detection with CRISPR-Cas13a/C2c2
+
322. Nucleic acid detection with CRISPR-Cas13a/C2c2
Jonathan S. Gootenberg, Omar O. Abudayyeh, Jeong Wook Lee, Patrick Essletzbichler, Aaron J. Dy, Julia Joung, Vanessa Verdine, Nina Donghia, Nichole M. Daringer, Catherine A. Freije, … Feng Zhang
Science (2017-04-28) https://doi.org/f93x8p
DOI: 10.1126/science.aam9321 · PMID: 28408723 · PMCID: PMC5526198
321. Development and Evaluation of A CRISPR-based Diagnostic For 2019-novel Coronavirus
+
323. Development and Evaluation of A CRISPR-based Diagnostic For 2019-novel Coronavirus
Tieying Hou, Weiqi Zeng, Minling Yang, Wenjing Chen, Lili Ren, Jingwen Ai, Ji Wu, Yalong Liao, Xuejing Gou, Yongjun Li, … Teng Xu
Cold Spring Harbor Laboratory (2020-02-25) https://doi.org/gg7km8
DOI: 10.1101/2020.02.22.20025460
322. CRISPR-based surveillance for COVID-19 using genomically-comprehensive machine learning design
+
324. CRISPR-based surveillance for COVID-19 using genomically-comprehensive machine learning design
Hayden C. Metsky, Catherine A. Freije, Tinna-Solveig F. Kosoko-Thoroddsen, Pardis C. Sabeti, Cameron Myhrvold
Cold Spring Harbor Laboratory (2020-03-02) https://doi.org/ggr3zf
DOI: 10.1101/2020.02.26.967026
323. A Scalable, Easy-to-Deploy, Protocol for Cas13-Based Detection of SARS-CoV-2 Genetic Material
+
325. A Scalable, Easy-to-Deploy, Protocol for Cas13-Based Detection of SARS-CoV-2 Genetic Material
Jennifer N. Rauch, Eric Valois, Sabrina C. Solley, Friederike Braig, Ryan S. Lach, Morgane Audouard, Jose Carlos Ponce-Rojas, Michael S. Costello, Naomi J. Baxter, Kenneth S. Kosik, … Maxwell Z. Wilson
Cold Spring Harbor Laboratory (2020-08-29) https://doi.org/gg7km7
DOI: 10.1101/2020.04.20.052159
324. CRISPR–Cas12-based detection of SARS-CoV-2
+
326. CRISPR–Cas12-based detection of SARS-CoV-2
James P. Broughton, Xianding Deng, Guixia Yu, Clare L. Fasching, Venice Servellita, Jasmeet Singh, Xin Miao, Jessica A. Streithorst, Andrea Granados, Alicia Sotomayor-Gonzalez, … Charles Y. Chiu
Nature Biotechnology (2020-04-16) https://doi.org/ggv47f
DOI: 10.1038/s41587-020-0513-4 · PMID: 32300245
325. An ultrasensitive, rapid, and portable coronavirus SARS-CoV-2 sequence detection method based on CRISPR-Cas12
+
327. An ultrasensitive, rapid, and portable coronavirus SARS-CoV-2 sequence detection method based on CRISPR-Cas12
Curti Lucia, Pereyra-Bonnet Federico, Gimenez Carla Alejandra
Cold Spring Harbor Laboratory (2020-03-02) https://doi.org/gg7km6
DOI: 10.1101/2020.02.29.971127
326. All-in-One Dual CRISPR-Cas12a (AIOD-CRISPR) Assay: A Case for Rapid, Ultrasensitive and Visual Detection of Novel Coronavirus SARS-CoV-2 and HIV virus
+
328. All-in-One Dual CRISPR-Cas12a (AIOD-CRISPR) Assay: A Case for Rapid, Ultrasensitive and Visual Detection of Novel Coronavirus SARS-CoV-2 and HIV virus
Xiong Ding, Kun Yin, Ziyue Li, Changchun Liu
Cold Spring Harbor Laboratory (2020-03-21) https://doi.org/gg7km5
DOI: 10.1101/2020.03.19.998724 · PMID: 32511323 · PMCID: PMC7239053
327. SARS-CoV-2 detection with CRISPR diagnostics
+
329. SARS-CoV-2 detection with CRISPR diagnostics
Lu Guo, Xuehan Sun, Xinge Wang, Chen Liang, Haiping Jiang, Qingqin Gao, Moyu Dai, Bin Qu, Sen Fang, Yihuan Mao, … Wei Li
Cold Spring Harbor Laboratory (2020-04-11) https://doi.org/gg7kns
DOI: 10.1101/2020.04.10.023358
328. Electric-field-driven microfluidics for rapid CRISPR-based diagnostics and its application to detection of SARS-CoV-2
+
330. Electric-field-driven microfluidics for rapid CRISPR-based diagnostics and its application to detection of SARS-CoV-2
Ashwin Ramachandran, Diego A. Huyke, Eesha Sharma, Malaya K. Sahoo, Niaz Banaei, Benjamin A. Pinsky, Juan G. Santiago
Cold Spring Harbor Laboratory (2020-05-22) https://doi.org/gg7knt
DOI: 10.1101/2020.05.21.109637
329. Rapid, sensitive and specific SARS coronavirus-2 detection: a multi-center comparison between standard qRT-PCR and CRISPR based DETECTR
+
331. Rapid, sensitive and specific SARS coronavirus-2 detection: a multi-center comparison between standard qRT-PCR and CRISPR based DETECTR
Eelke Brandsma, Han J. M. P. Verhagen, Thijs J. W. van de Laar, Eric C. J. Claas, Marion Cornelissen, Emile van den Akker
Cold Spring Harbor Laboratory (2020-07-29) https://doi.org/gg7km4
DOI: 10.1101/2020.07.27.20147249
330. Coronavirus and the race to distribute reliable diagnostics
+
332. Coronavirus and the race to distribute reliable diagnostics
Cormac Sheridan
Nature Biotechnology (2020-02-19) https://doi.org/ggm4nt
DOI: 10.1038/d41587-020-00002-2 · PMID: 32265548
331. The standard coronavirus test, if available, works well—but can new diagnostics help in this pandemic?
+
333. The standard coronavirus test, if available, works well—but can new diagnostics help in this pandemic?
Robert Service
Science (2020-03-22) https://doi.org/ggq9wm
DOI: 10.1126/science.abb8400
332. Laboratory Diagnosis of COVID-19: Current Issues and Challenges
+
334. Laboratory Diagnosis of COVID-19: Current Issues and Challenges
Yi-Wei Tang, Jonathan E. Schmitz, David H. Persing, Charles W. Stratton
Journal of Clinical Microbiology (2020-05-26) https://doi.org/ggq7h8
DOI: 10.1128/jcm.00512-20 · PMID: 32245835
333. Negative Nasopharyngeal and Oropharyngeal Swabs Do Not Rule Out COVID-19
+
335. Negative Nasopharyngeal and Oropharyngeal Swabs Do Not Rule Out COVID-19
Poramed Winichakoon, Romanee Chaiwarith, Chalerm Liwsrisakun, Parichat Salee, Aree Goonna, Atikun Limsukon, Quanhathai Kaewpoowat
Journal of Clinical Microbiology (2020-04-23) https://doi.org/ggpw9m
DOI: 10.1128/jcm.00297-20 · PMID: 32102856 · PMCID: PMC7180262
334. A systematic review of antibody mediated immunity to coronaviruses: antibody kinetics, correlates of protection, and association of antibody responses with severity of disease
+
336. A systematic review of antibody mediated immunity to coronaviruses: antibody kinetics, correlates of protection, and association of antibody responses with severity of disease
Angkana T. Huang, Bernardo Garcia-Carreras, Matt D. T. Hitchings, Bingyi Yang, Leah Katzelnick, Susan M Rattigan, Brooke Borgert, Carlos Moreno, Benjamin D. Solomon, Isabel Rodriguez-Barraquer, … Derek A. T. Cummings
Cold Spring Harbor Laboratory (2020-04-17) https://doi.org/ggsfmz
DOI: 10.1101/2020.04.14.20065771 · PMID: 32511434
335. Longitudinal profile of antibodies against SARS-coronavirus in SARS patients and their clinical significance
+
337. Longitudinal profile of antibodies against SARS-coronavirus in SARS patients and their clinical significance
Hongying MO, Guangqiao ZENG, Xiaolan REN, Hui LI, Changwen KE, Yaxia TAN, Chaoda CAI, Kefang LAI, Rongchang CHEN, Moira CHAN-YEUNG, Nanshan ZHONG
Respirology (2006-01) https://doi.org/dn23vj
DOI: 10.1111/j.1440-1843.2006.00783.x · PMID: 16423201 · PMCID: PMC7192223
336. Two‐Year Prospective Study of the Humoral Immune Response of Patients with Severe Acute Respiratory Syndrome
+
338. Two‐Year Prospective Study of the Humoral Immune Response of Patients with Severe Acute Respiratory Syndrome
Wei Liu, Arnaud Fontanet, Pan‐He Zhang, Lin Zhan, Zhong‐Tao Xin, Laurence Baril, Fang Tang, Hui Lv, Wu‐Chun Cao
The Journal of Infectious Diseases (2006-03-15) https://doi.org/cmzn2k
DOI: 10.1086/500469 · PMID: 16479513 · PMCID: PMC7109932
337. The time course of the immune response to experimental coronavirus infection of man
+
339. The time course of the immune response to experimental coronavirus infection of man
K. A. Callow, H. F. Parry, M. Sergeant, D. A. J. Tyrrell
Epidemiology and Infection (2009-05-15) https://doi.org/c9pnmg
DOI: 10.1017/s0950268800048019 · PMID: 2170159 · PMCID: PMC2271881
338. Loss of Bcl-6-Expressing T Follicular Helper Cells and Germinal Centers in COVID-19
+
340. Loss of Bcl-6-Expressing T Follicular Helper Cells and Germinal Centers in COVID-19
Naoki Kaneko, Hsiao-Hsuan Kuo, Julie Boucau, Jocelyn R. Farmer, Hugues Allard-Chamard, Vinay S. Mahajan, Alicja Piechocka-Trocha, Kristina Lefteri, Matthew Osborn, Julia Bals, … Shiv Pillai
Cell (2020-10) https://doi.org/gg9rdv
DOI: 10.1016/j.cell.2020.08.025 · PMID: 32877699 · PMCID: PMC7437499
339. A Peptide-Based Magnetic Chemiluminescence Enzyme Immunoassay for Serological Diagnosis of Coronavirus Disease 2019
+
341. A Peptide-Based Magnetic Chemiluminescence Enzyme Immunoassay for Serological Diagnosis of Coronavirus Disease 2019
Xue-fei Cai, Juan Chen, Jie- li Hu, Quan-xin Long, Hai-jun Deng, Ping Liu, Kai Fan, Pu Liao, Bei-zhong Liu, Gui-cheng Wu, … De-qiang Wang
The Journal of Infectious Diseases (2020-07-15) https://doi.org/ggv2fx
DOI: 10.1093/infdis/jiaa243 · PMID: 32382737 · PMCID: PMC7239108
340. Deployment of convalescent plasma for the prevention and treatment of COVID-19
+
342. Deployment of convalescent plasma for the prevention and treatment of COVID-19
Evan M. Bloch, Shmuel Shoham, Arturo Casadevall, Bruce S. Sachais, Beth Shaz, Jeffrey L. Winters, Camille van Buskirk, Brenda J. Grossman, Michael Joyner, Jeffrey P. Henderson, … Aaron A. R. Tobian
Journal of Clinical Investigation (2020-06-01) https://doi.org/ggr2w6
DOI: 10.1172/jci138745 · PMID: 32254064 · PMCID: PMC7259988
341. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma
+
343. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma
Chenguang Shen, Zhaoqin Wang, Fang Zhao, Yang Yang, Jinxiu Li, Jing Yuan, Fuxiang Wang, Delin Li, Minghui Yang, Li Xing, … Lei Liu
JAMA (2020-04-28) https://doi.org/dqn7
DOI: 10.1001/jama.2020.4783 · PMID: 32219428 · PMCID: PMC7101507
342. Convalescent Plasma Antibody Levels and the Risk of Death from Covid-19
+
344. Convalescent Plasma Antibody Levels and the Risk of Death from Covid-19
Michael J. Joyner, Rickey E. Carter, Jonathon W. Senefeld, Stephen A. Klassen, John R. Mills, Patrick W. Johnson, Elitza S. Theel, Chad C. Wiggins, Katelyn A. Bruno, Allan M. Klompas, … Arturo Casadevall
New England Journal of Medicine (2021-01-13) https://doi.org/ghs26g
DOI: 10.1056/nejmoa2031893 · PMID: 33523609 · PMCID: PMC7821984
343. Antibody Responses 8 Months after Asymptomatic or Mild SARS-CoV-2 Infection
+
345. Antibody Responses 8 Months after Asymptomatic or Mild SARS-CoV-2 Infection
Pyoeng Gyun Choe, Kye-Hyung Kim, Chang Kyung Kang, Hyeon Jeong Suh, EunKyo Kang, Sun Young Lee, Nam Joong Kim, Jongyoun Yi, Wan Beom Park, Myoung-don Oh
Emerging Infectious Diseases (2021-03) https://doi.org/ghs9kq
DOI: 10.3201/eid2703.204543 · PMID: 33350923
344. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection
+
346. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection
Jennifer M. Dan, Jose Mateus, Yu Kato, Kathryn M. Hastie, Esther Dawen Yu, Caterina E. Faliti, Alba Grifoni, Sydney I. Ramirez, Sonya Haupt, April Frazier, … Shane Crotty
Science (2021-01-06) https://doi.org/ghrv9b
DOI: 10.1126/science.abf4063 · PMID: 33408181
345. Rapid generation of durable B cell memory to SARS-CoV-2 spike and nucleocapsid proteins in COVID-19 and convalescence.
+
347. Rapid generation of durable B cell memory to SARS-CoV-2 spike and nucleocapsid proteins in COVID-19 and convalescence.
Gemma E Hartley, Emily SJ Edwards, Pei M Aui, Nirupama Varese, Stephanie Stojanovic, James McMahon, Anton Y Peleg, Irene Boo, Heidi E Drummer, P Mark Hogarth, … Menno C van Zelm
Science immunology (2020-12-22) https://www.ncbi.nlm.nih.gov/pubmed/33443036
DOI: 10.1126/sciimmunol.abf8891 · PMID: 33443036
346. Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19
+
348. Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19
Lauren B. Rodda, Jason Netland, Laila Shehata, Kurt B. Pruner, Peter A. Morawski, Christopher D. Thouvenel, Kennidy K. Takehara, Julie Eggenberger, Emily A. Hemann, Hayley R. Waterman, … Marion Pepper
Cell (2021-01) https://doi.org/ghs9kf
DOI: 10.1016/j.cell.2020.11.029 · PMID: 33296701 · PMCID: PMC7682481
347. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals
+
349. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals
Alba Grifoni, Daniela Weiskopf, Sydney I. Ramirez, Jose Mateus, Jennifer M. Dan, Carolyn Rydyznski Moderbacher, Stephen A. Rawlings, Aaron Sutherland, Lakshmanane Premkumar, Ramesh S. Jadi, … Alessandro Sette
Cell (2020-06) https://doi.org/ggzxz2
DOI: 10.1016/j.cell.2020.05.015 · PMID: 32473127 · PMCID: PMC7237901
348. Robust SARS-CoV-2-specific T-cell immunity is maintained at 6 months following primary infection
+
350. Robust SARS-CoV-2-specific T-cell immunity is maintained at 6 months following primary infection
J Zuo, A Dowell, H Pearce, K Verma, HM Long, J Begum, F Aiano, Z Amin-Chowdhury, B Hallis, L Stapley, … P Moss
Cold Spring Harbor Laboratory (2020-11-02) https://doi.org/ghhrps
DOI: 10.1101/2020.11.01.362319
349. Persistent Cellular Immunity to SARS-CoV-2 Infection
+
351. Persistent Cellular Immunity to SARS-CoV-2 Infection
Gaëlle Breton, Pilar Mendoza, Thomas Hagglof, Thiago Y. Oliveira, Dennis Schaefer-Babajew, Christian Gaebler, Martina Turroja, Arlene Hurley, Marina Caskey, Michel C. Nussenzweig
Cold Spring Harbor Laboratory (2020-12-09) https://doi.org/ghs9kk
DOI: 10.1101/2020.12.08.416636 · PMID: 33330867 · PMCID: PMC7743071
350. Genomic evidence for reinfection with SARS-CoV-2: a case study
+
352. Genomic evidence for reinfection with SARS-CoV-2: a case study
Richard L Tillett, Joel R Sevinsky, Paul D Hartley, Heather Kerwin, Natalie Crawford, Andrew Gorzalski, Chris Laverdure, Subhash C Verma, Cyprian C Rossetto, David Jackson, … Mark Pandori
The Lancet Infectious Diseases (2021-01) https://doi.org/ghfgkt
DOI: 10.1016/s1473-3099(20)30764-7 · PMID: 33058797 · PMCID: PMC7550103
351. Asymptomatic Reinfection in 2 Healthcare Workers From India With Genetically Distinct Severe Acute Respiratory Syndrome Coronavirus 2
+
353. Asymptomatic Reinfection in 2 Healthcare Workers From India With Genetically Distinct Severe Acute Respiratory Syndrome Coronavirus 2
Vivek Gupta, Rahul C Bhoyar, Abhinav Jain, Saurabh Srivastava, Rashmi Upadhayay, Mohamed Imran, Bani Jolly, Mohit Kumar Divakar, Disha Sharma, Paras Sehgal, … Sridhar Sivasubbu
Clinical Infectious Diseases (2020-09-23) https://doi.org/d97d
DOI: 10.1093/cid/ciaa1451 · PMID: 32964927 · PMCID: PMC7543380
352. Coronavirus Disease 2019 (COVID-19) Re-infection by a Phylogenetically Distinct Severe Acute Respiratory Syndrome Coronavirus 2 Strain Confirmed by Whole Genome Sequencing
+
354. Coronavirus Disease 2019 (COVID-19) Re-infection by a Phylogenetically Distinct Severe Acute Respiratory Syndrome Coronavirus 2 Strain Confirmed by Whole Genome Sequencing
Kelvin Kai-Wang To, Ivan Fan-Ngai Hung, Jonathan Daniel Ip, Allen Wing-Ho Chu, Wan-Mui Chan, Anthony Raymond Tam, Carol Ho-Yan Fong, Shuofeng Yuan, Hoi-Wah Tsoi, Anthony Chin-Ki Ng, … Kwok-Yung Yuen
Clinical Infectious Diseases (2020-08-25) https://doi.org/d7ds
DOI: 10.1093/cid/ciaa1275 · PMID: 32840608 · PMCID: PMC7499500
353. What reinfections mean for COVID-19
+
355. What reinfections mean for COVID-19
Akiko Iwasaki
The Lancet Infectious Diseases (2021-01) https://doi.org/fscx
DOI: 10.1016/s1473-3099(20)30783-0 · PMID: 33058796 · PMCID: PMC7550040
354. Understanding protection from SARS-CoV-2 by studying reinfection
+
356. Understanding protection from SARS-CoV-2 by studying reinfection
Julie Overbaugh
Nature Medicine (2020-10-22) https://doi.org/ghs9kg
DOI: 10.1038/s41591-020-1121-z · PMID: 33093682
355. Will SARS-CoV-2 Infection Elicit Long-Lasting Protective or Sterilising Immunity? Implications for Vaccine Strategies (2020)
+
357. Will SARS-CoV-2 Infection Elicit Long-Lasting Protective or Sterilising Immunity? Implications for Vaccine Strategies (2020)
David S. Kim, Sarah Rowland-Jones, Ester Gea-Mallorquí
Frontiers in Immunology (2020-12-09) https://doi.org/ghs9ks
DOI: 10.3389/fimmu.2020.571481 · PMID: 33362759 · PMCID: PMC7756008
356. Cellex qSARS-CoV-2 IgG/IgM Rapid Test
+
358. Cellex qSARS-CoV-2 IgG/IgM Rapid Test
Cellex
(2020-04-07) https://www.fda.gov/media/136625/download
357. Detection of antibodies against SARS‐CoV‐2 in patients with COVID‐19
+
359. Detection of antibodies against SARS‐CoV‐2 in patients with COVID‐19
Zhe Du, Fengxue Zhu, Fuzheng Guo, Bo Yang, Tianbing Wang
Journal of Medical Virology (2020-04-10) https://doi.org/ggq7m2
DOI: 10.1002/jmv.25820 · PMID: 32243608
358. A serological assay to detect SARS-CoV-2 seroconversion in humans
+
360. A serological assay to detect SARS-CoV-2 seroconversion in humans
Fatima Amanat, Daniel Stadlbauer, Shirin Strohmeier, Thi H. O. Nguyen, Veronika Chromikova, Meagan McMahon, Kaijun Jiang, Guha Asthagiri Arunkumar, Denise Jurczyszak, Jose Polanco, … Florian Krammer
Cold Spring Harbor Laboratory (2020-04-16) https://doi.org/ggpn83
DOI: 10.1101/2020.03.17.20037713 · PMID: 32511441
359. Coronavirus testing is ramping up. Here are the new tests and how they work.
+
361. Coronavirus testing is ramping up. Here are the new tests and how they work.
Stephanie Pappas-Live Science Contributor 31 March 2020
livescience.com https://www.livescience.com/coronavirus-tests-available.html
360. Strong associations and moderate predictive value of early symptoms for SARS-CoV-2 test positivity among healthcare workers, the Netherlands, March 2020
+
362. Strong associations and moderate predictive value of early symptoms for SARS-CoV-2 test positivity among healthcare workers, the Netherlands, March 2020
Alma Tostmann, John Bradley, Teun Bousema, Wing-Kee Yiek, Minke Holwerda, Chantal Bleeker-Rovers, Jaap ten Oever, Corianne Meijer, Janette Rahamat-Langendoen, Joost Hopman, … Heiman Wertheim
Eurosurveillance (2020-04-23) https://doi.org/ggthwx
DOI: 10.2807/1560-7917.es.2020.25.16.2000508 · PMID: 32347200 · PMCID: PMC7189649
361. Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases
+
363. Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases
Tao Ai, Zhenlu Yang, Hongyan Hou, Chenao Zhan, Chong Chen, Wenzhi Lv, Qian Tao, Ziyong Sun, Liming Xia
Radiology (2020-08) https://doi.org/ggmw6p
DOI: 10.1148/radiol.2020200642 · PMID: 32101510
362. Performance of Radiologists in Differentiating COVID-19 from Non-COVID-19 Viral Pneumonia at Chest CT
+
364. Performance of Radiologists in Differentiating COVID-19 from Non-COVID-19 Viral Pneumonia at Chest CT
Harrison X. Bai, Ben Hsieh, Zeng Xiong, Kasey Halsey, Ji Whae Choi, Thi My Linh Tran, Ian Pan, Lin-Bo Shi, Dong-Cui Wang, Ji Mei, … Wei-Hua Liao
Radiology (2020-08) https://doi.org/ggnqw4
DOI: 10.1148/radiol.2020200823 · PMID: 32155105
363. Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks
+
365. Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks
Ioannis D. Apostolopoulos, Tzani A. Mpesiana
Physical and Engineering Sciences in Medicine (2020-04-03) https://doi.org/ggs448
DOI: 10.1007/s13246-020-00865-4 · PMCID: PMC7118364
364. Healthcare Workers
+
366. Healthcare Workers
CDC
Centers for Disease Control and Prevention (2020-02-11) https://www.cdc.gov/coronavirus/2019-ncov/hcp/testing-overview.html
365. NY Forward: a guide to reopening New York & building back better (2020-05-15) https://www.governor.ny.gov/sites/governor.ny.gov/files/atoms/files/NYForwardReopeningGuide.pdf
+367. NY Forward: a guide to reopening New York & building back better (2020-05-15) https://www.governor.ny.gov/sites/governor.ny.gov/files/atoms/files/NYForwardReopeningGuide.pdf
366. Interpreting Diagnostic Tests for SARS-CoV-2
+
368. Interpreting Diagnostic Tests for SARS-CoV-2
Nandini Sethuraman, Sundararaj Stanleyraj Jeremiah, Akihide Ryo
JAMA (2020-06-09) https://doi.org/ggt6cw
DOI: 10.1001/jama.2020.8259 · PMID: 32374370
367. Pathogenesis, Symptomatology, and Transmission of SARS-CoV-2 through analysis of Viral Genomics and Structure
-Halie M. Rando, Adam L. MacLean, Alexandra J. Lee, Sandipan Ray, Vikas Bansal, Ashwin N. Skelly, Elizabeth Sell, John J. Dziak, Lamonica Shinholster, Lucy D’Agostino McGowan, … Casey S. Greene
-arXiv (2021-02-03) https://arxiv.org/abs/2102.01521
368. COVID-19 Data Repository
+
369. COVID-19 Data Repository
Center for Systems Science and Engineering at Johns Hopkins University
GitHub https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_time_series
369. Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia
+
370. Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia
Ali M. Zaki, Sander van Boheemen, Theo M. Bestebroer, Albert D. M. E. Osterhaus, Ron A. M. Fouchier
New England Journal of Medicine (2012-11-08) https://doi.org/f4czx5
DOI: 10.1056/nejmoa1211721 · PMID: 23075143
370. Causes of Death and Comorbidities in Patients with COVID-19
+
371. Causes of Death and Comorbidities in Patients with COVID-19
Sefer Elezkurtaj, Selina Greuel, Jana Ihlow, Edward Michaelis, Philip Bischoff, Catarina Alisa Kunze, Bruno Valentin Sinn, Manuela Gerhold, Kathrin Hauptmann, Barbara Ingold-Heppner, … David Horst
Cold Spring Harbor Laboratory (2020-06-17) https://doi.org/gg926j
DOI: 10.1101/2020.06.15.20131540
371. Evidence-Based Medicine Data Lab COVID-19 TrialsTracker
+
372. Evidence-Based Medicine Data Lab COVID-19 TrialsTracker
Nick DeVito, Peter Inglesby
GitHub (2020-03-29) https://github.com/ebmdatalab/covid_trials_tracker-covid
DOI: 10.5281/zenodo.3732709
372. Small Molecules vs Biologics | Drug Development Differences
+
373. Small Molecules vs Biologics | Drug Development Differences
Nuventra Pharma Sciences2525 Meridian Parkway, Suite 200 Durham
PK / PD and Clinical Pharmacology Consultants (2020-05-13) https://www.nuventra.com/resources/blog/small-molecules-versus-biologics/
373. Drug Discovery: A Historical Perspective
+
374. Drug Discovery: A Historical Perspective
J. Drews
Science (2000-03-17) https://doi.org/d6bvp7
DOI: 10.1126/science.287.5460.1960 · PMID: 10720314
374. Introduction to modern virology
+
375. Introduction to modern virology
N. J. Dimmock, A. J. Easton, K. N. Leppard
Blackwell Pub (2007)
ISBN: 9781405136457
375. Coronaviruses
+
376. Coronaviruses
Helena Jane Maier, Erica Bickerton, Paul Britton (editors)
Methods in Molecular Biology (2015) https://doi.org/ggqfqx
DOI: 10.1007/978-1-4939-2438-7 · PMID: 25870870 · ISBN: 9781493924370
376. The potential chemical structure of anti‐SARS‐CoV‐2 RNA‐dependent RNA polymerase
+
377. The potential chemical structure of anti‐SARS‐CoV‐2 RNA‐dependent RNA polymerase
Jrhau Lung, Yu‐Shih Lin, Yao‐Hsu Yang, Yu‐Lun Chou, Li‐Hsin Shu, Yu‐Ching Cheng, Hung Te Liu, Ching‐Yuan Wu
Journal of Medical Virology (2020-03-18) https://doi.org/ggp6fm
DOI: 10.1002/jmv.25761 · PMID: 32167173
377. Broad-spectrum coronavirus antiviral drug discovery
+
378. Broad-spectrum coronavirus antiviral drug discovery
Allison L. Totura, Sina Bavari
Expert Opinion on Drug Discovery (2019-03-08) https://doi.org/gg74z5
DOI: 10.1080/17460441.2019.1581171 · PMID: 30849247 · PMCID: PMC7103675
378. Favipiravir
+
379. Favipiravir
DrugBank
(2020-06-12) https://www.drugbank.ca/drugs/DB12466
379. In Vitro and In Vivo Activities of Anti-Influenza Virus Compound T-705
+
380. In Vitro and In Vivo Activities of Anti-Influenza Virus Compound T-705
Y. Furuta, K. Takahashi, Y. Fukuda, M. Kuno, T. Kamiyama, K. Kozaki, N. Nomura, H. Egawa, S. Minami, Y. Watanabe, … K. Shiraki
Antimicrobial Agents and Chemotherapy (2002-04) https://doi.org/cndw7n
DOI: 10.1128/aac.46.4.977-981.2002 · PMID: 11897578 · PMCID: PMC127093
380. Efficacy of Orally Administered T-705 on Lethal Avian Influenza A (H5N1) Virus Infections in Mice
+
381. Efficacy of Orally Administered T-705 on Lethal Avian Influenza A (H5N1) Virus Infections in Mice
Robert W. Sidwell, Dale L. Barnard, Craig W. Day, Donald F. Smee, Kevin W. Bailey, Min-Hui Wong, John D. Morrey, Yousuke Furuta
Antimicrobial Agents and Chemotherapy (2007-03) https://doi.org/dm9xr2
DOI: 10.1128/aac.01051-06 · PMID: 17194832 · PMCID: PMC1803113
381. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase
+
382. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase
Yousuke FURUTA, Takashi KOMENO, Takaaki NAKAMURA
Proceedings of the Japan Academy, Series B (2017) https://doi.org/gbxcxw
DOI: 10.2183/pjab.93.027 · PMID: 28769016 · PMCID: PMC5713175
382. Mechanism of Action of T-705 against Influenza Virus
+
383. Mechanism of Action of T-705 against Influenza Virus
Yousuke Furuta, Kazumi Takahashi, Masako Kuno-Maekawa, Hidehiro Sangawa, Sayuri Uehara, Kyo Kozaki, Nobuhiko Nomura, Hiroyuki Egawa, Kimiyasu Shiraki
Antimicrobial Agents and Chemotherapy (2005-03) https://doi.org/dgbwdh
DOI: 10.1128/aac.49.3.981-986.2005 · PMID: 15728892 · PMCID: PMC549233
383. Activity of T-705 in a Hamster Model of Yellow Fever Virus Infection in Comparison with That of a Chemically Related Compound, T-1106
+
384. Activity of T-705 in a Hamster Model of Yellow Fever Virus Infection in Comparison with That of a Chemically Related Compound, T-1106
Justin G. Julander, Kristiina Shafer, Donald F. Smee, John D. Morrey, Yousuke Furuta
Antimicrobial Agents and Chemotherapy (2009-01) https://doi.org/brknds
DOI: 10.1128/aac.01074-08 · PMID: 18955536 · PMCID: PMC2612161
384. In Vitro and In Vivo Activities of T-705 against Arenavirus and Bunyavirus Infections
+
385. In Vitro and In Vivo Activities of T-705 against Arenavirus and Bunyavirus Infections
Brian B. Gowen, Min-Hui Wong, Kie-Hoon Jung, Andrew B. Sanders, Michelle Mendenhall, Kevin W. Bailey, Yousuke Furuta, Robert W. Sidwell
Antimicrobial Agents and Chemotherapy (2007-09) https://doi.org/d98c87
DOI: 10.1128/aac.00356-07 · PMID: 17606691 · PMCID: PMC2043187
385. Favipiravir (T-705) inhibits in vitro norovirus replication
+
386. Favipiravir (T-705) inhibits in vitro norovirus replication
J. Rocha-Pereira, D. Jochmans, K. Dallmeier, P. Leyssen, M. S. J. Nascimento, J. Neyts
Biochemical and Biophysical Research Communications (2012-08) https://doi.org/f369j7
DOI: 10.1016/j.bbrc.2012.07.034 · PMID: 22809499
386. T-705 (Favipiravir) Inhibition of Arenavirus Replication in Cell Culture
+
387. T-705 (Favipiravir) Inhibition of Arenavirus Replication in Cell Culture
Michelle Mendenhall, Andrew Russell, Terry Juelich, Emily L. Messina, Donald F. Smee, Alexander N. Freiberg, Michael R. Holbrook, Yousuke Furuta, Juan-Carlos de la Torre, Jack H. Nunberg, Brian B. Gowen
Antimicrobial Agents and Chemotherapy (2011-02) https://doi.org/cppwsc
DOI: 10.1128/aac.01219-10 · PMID: 21115797 · PMCID: PMC3028760
387. The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold
+
388. The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold
Katherine L. Seley-Radtke, Mary K. Yates
Antiviral Research (2018-06) https://doi.org/gdpn35
DOI: 10.1016/j.antiviral.2018.04.004 · PMID: 29649496 · PMCID: PMC6396324
388. The Ambiguous Base-Pairing and High Substrate Efficiency of T-705 (Favipiravir) Ribofuranosyl 5′-Triphosphate towards Influenza A Virus Polymerase
+
389. The Ambiguous Base-Pairing and High Substrate Efficiency of T-705 (Favipiravir) Ribofuranosyl 5′-Triphosphate towards Influenza A Virus Polymerase
Zhinan Jin, Lucas K. Smith, Vivek K. Rajwanshi, Baek Kim, Jerome Deval
PLoS ONE (2013-07-10) https://doi.org/f5br92
DOI: 10.1371/journal.pone.0068347 · PMID: 23874596 · PMCID: PMC3707847
389. Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study
+
390. Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study
Qingxian Cai, Minghui Yang, Dongjing Liu, Jun Chen, Dan Shu, Junxia Xia, Xuejiao Liao, Yuanbo Gu, Qiue Cai, Yang Yang, … Lei Liu
Engineering (2020-10) https://doi.org/ggpprd
DOI: 10.1016/j.eng.2020.03.007 · PMID: 32346491
390. Repurposed Antiviral Drugs for Covid-19 — Interim WHO Solidarity Trial Results
+
391. Repurposed Antiviral Drugs for Covid-19 — Interim WHO Solidarity Trial Results
WHO Solidarity Trial Consortium
New England Journal of Medicine (2020-12-02) https://doi.org/ghnhnw
DOI: 10.1056/nejmoa2023184 · PMID: 33264556 · PMCID: PMC7727327
391. Lopinavir–ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial
+
392. Lopinavir–ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial
Peter W Horby, Marion Mafham, Jennifer L Bell, Louise Linsell, Natalie Staplin, Jonathan Emberson, Adrian Palfreeman, Jason Raw, Einas Elmahi, Benjamin Prudon, … Martin J Landray
The Lancet (2020-10) https://doi.org/fnx2
DOI: 10.1016/s0140-6736(20)32013-4 · PMID: 33031764 · PMCID: PMC7535623
392. A Large, Simple Trial Leading to Complex Questions
+
393. A Large, Simple Trial Leading to Complex Questions
David P. Harrington, Lindsey R. Baden, Joseph W. Hogan
New England Journal of Medicine (2020-12-02) https://doi.org/ghnhnx
DOI: 10.1056/nejme2034294 · PMID: 33264557 · PMCID: PMC7727323
393. Retracted coronavirus (COVID-19) papers
+
394. Retracted coronavirus (COVID-19) papers
Retraction Watch
(2020-04-29) https://retractionwatch.com/retracted-coronavirus-covid-19-papers/
394. Clinical Outcomes and Plasma Concentrations of Baloxavir Marboxil and Favipiravir in COVID-19 Patients: An Exploratory Randomized, Controlled Trial
+
395. Clinical Outcomes and Plasma Concentrations of Baloxavir Marboxil and Favipiravir in COVID-19 Patients: An Exploratory Randomized, Controlled Trial
Yan Lou, Lin Liu, Hangping Yao, Xingjiang Hu, Junwei Su, Kaijin Xu, Rui Luo, Xi Yang, Lingjuan He, Xiaoyang Lu, … Yunqing Qiu
European Journal of Pharmaceutical Sciences (2021-02) https://doi.org/ghx88n
DOI: 10.1016/j.ejps.2020.105631 · PMID: 33115675 · PMCID: PMC7585719
395. Efficacy of favipiravir in COVID-19 treatment: a multi-center randomized study
+
396. Efficacy of favipiravir in COVID-19 treatment: a multi-center randomized study
Hany M. Dabbous, Sherief Abd-Elsalam, Manal H. El-Sayed, Ahmed F. Sherief, Fatma F. S. Ebeid, Mohamed Samir Abd El Ghafar, Shaimaa Soliman, Mohamed Elbahnasawy, Rehab Badawi, Mohamed Awad Tageldin
Archives of Virology (2021-01-25) https://doi.org/ghx874
DOI: 10.1007/s00705-021-04956-9 · PMID: 33492523 · PMCID: PMC7829645
396. AVIFAVIR for Treatment of Patients With Moderate Coronavirus Disease 2019 (COVID-19): Interim Results of a Phase II/III Multicenter Randomized Clinical Trial
+
397. AVIFAVIR for Treatment of Patients With Moderate Coronavirus Disease 2019 (COVID-19): Interim Results of a Phase II/III Multicenter Randomized Clinical Trial
Andrey A Ivashchenko, Kirill A Dmitriev, Natalia V Vostokova, Valeria N Azarova, Andrew A Blinow, Alina N Egorova, Ivan G Gordeev, Alexey P Ilin, Ruben N Karapetian, Dmitry V Kravchenko, … Alexandre V Ivachtchenko
Clinical Infectious Diseases (2020-08-09) https://doi.org/ghx9c2
DOI: 10.1093/cid/ciaa1176 · PMID: 32770240 · PMCID: PMC7454388
397. A review of the safety of favipiravir – a potential treatment in the COVID-19 pandemic?
+
398. A review of the safety of favipiravir – a potential treatment in the COVID-19 pandemic?
Victoria Pilkington, Toby Pepperrell, Andrew Hill
Journal of Virus Eradication (2020-04) https://doi.org/ftgm
DOI: 10.1016/s2055-6640(20)30016-9 · PMID: 32405421 · PMCID: PMC7331506
398. Remdesivir EUA Letter of Authorization
+
399. Remdesivir EUA Letter of Authorization
Denise M Hinton
(2020-05-01) https://www.fda.gov/media/137564/download
399. A Phase 3 Randomized Study to Evaluate the Safety and Antiviral Activity of Remdesivir (GS-5734™) in Participants With Severe COVID-19
+
400. A Phase 3 Randomized Study to Evaluate the Safety and Antiviral Activity of Remdesivir (GS-5734™) in Participants With Severe COVID-19
Gilead Sciences
clinicaltrials.gov (2020-12-15) https://clinicaltrials.gov/ct2/show/NCT04292899
400. A Multicenter, Adaptive, Randomized Blinded Controlled Trial of the Safety and Efficacy of Investigational Therapeutics for the Treatment of COVID-19 in Hospitalized Adults
+
401. A Multicenter, Adaptive, Randomized Blinded Controlled Trial of the Safety and Efficacy of Investigational Therapeutics for the Treatment of COVID-19 in Hospitalized Adults
National Institute of Allergy and Infectious Diseases (NIAID)
clinicaltrials.gov (2020-12-05) https://clinicaltrials.gov/ct2/show/NCT04280705
401. Remdesivir for the Treatment of Covid-19 — Final Report
+
402. Remdesivir for the Treatment of Covid-19 — Final Report
John H. Beigel, Kay M. Tomashek, Lori E. Dodd, Aneesh K. Mehta, Barry S. Zingman, Andre C. Kalil, Elizabeth Hohmann, Helen Y. Chu, Annie Luetkemeyer, Susan Kline, … H. Clifford Lane
New England Journal of Medicine (2020-11-05) https://doi.org/dwkd
DOI: 10.1056/nejmoa2007764 · PMID: 32445440 · PMCID: PMC7262788
402. Compassionate Use of Remdesivir for Patients with Severe Covid-19
+
403. Compassionate Use of Remdesivir for Patients with Severe Covid-19
Jonathan Grein, Norio Ohmagari, Daniel Shin, George Diaz, Erika Asperges, Antonella Castagna, Torsten Feldt, Gary Green, Margaret L. Green, François-Xavier Lescure, … Timothy Flanigan
New England Journal of Medicine (2020-06-11) https://doi.org/ggrm99
DOI: 10.1056/nejmoa2007016 · PMID: 32275812 · PMCID: PMC7169476
403. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus
+
404. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus
Calvin J. Gordon, Egor P. Tchesnokov, Joy Y. Feng, Danielle P. Porter, Matthias Götte
Journal of Biological Chemistry (2020-04) https://doi.org/ggqm6x
DOI: 10.1074/jbc.ac120.013056 · PMID: 32094225
404. Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease
+
405. Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease
Maria L. Agostini, Erica L. Andres, Amy C. Sims, Rachel L. Graham, Timothy P. Sheahan, Xiaotao Lu, Everett Clinton Smith, James Brett Case, Joy Y. Feng, Robert Jordan, … Mark R. Denison
mBio (2018-03-06) https://doi.org/gc45v6
DOI: 10.1128/mbio.00221-18 · PMID: 29511076 · PMCID: PMC5844999
405. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro
+
406. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro
Manli Wang, Ruiyuan Cao, Leike Zhang, Xinglou Yang, Jia Liu, Mingyue Xu, Zhengli Shi, Zhihong Hu, Wu Zhong, Gengfu Xiao
Cell Research (2020-02-04) https://doi.org/ggkbsg
DOI: 10.1038/s41422-020-0282-0 · PMID: 32020029 · PMCID: PMC7054408
406. A Randomized, Controlled Trial of Ebola Virus Disease Therapeutics
+
407. A Randomized, Controlled Trial of Ebola Virus Disease Therapeutics
Sabue Mulangu, Lori E. Dodd, Richard T. Davey, Olivier Tshiani Mbaya, Michael Proschan, Daniel Mukadi, Mariano Lusakibanza Manzo, Didier Nzolo, Antoine Tshomba Oloma, Augustin Ibanda, … the PALM Writing Group
New England Journal of Medicine (2019-12-12) https://doi.org/ggqmx4
DOI: 10.1056/nejmoa1910993 · PMID: 31774950
407. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses
+
408. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses
Timothy P. Sheahan, Amy C. Sims, Rachel L. Graham, Vineet D. Menachery, Lisa E. Gralinski, James B. Case, Sarah R. Leist, Krzysztof Pyrc, Joy Y. Feng, Iva Trantcheva, … Ralph S. Baric
Science Translational Medicine (2017-06-28) https://doi.org/gc3grb
DOI: 10.1126/scitranslmed.aal3653 · PMID: 28659436 · PMCID: PMC5567817
408. Did an experimental drug help a U.S. coronavirus patient?
+
409. Did an experimental drug help a U.S. coronavirus patient?
Jon Cohen
Science (2020-03-13) https://doi.org/ggqm62
DOI: 10.1126/science.abb7243
409. First 12 patients with coronavirus disease 2019 (COVID-19) in the United States
+
410. First 12 patients with coronavirus disease 2019 (COVID-19) in the United States
Stephanie A. Kujawski, Karen K Wong, Jennifer P. Collins, Lauren Epstein, Marie E. Killerby, Claire M. Midgley, Glen R. Abedi, N. Seema Ahmed, Olivia Almendares, Francisco N. Alvarez, … The COVID-19 Investigation Team
Cold Spring Harbor Laboratory (2020-03-12) https://doi.org/ggqm6z
DOI: 10.1101/2020.03.09.20032896
410. First Case of 2019 Novel Coronavirus in the United States
+
411. First Case of 2019 Novel Coronavirus in the United States
Michelle L. Holshue, Chas DeBolt, Scott Lindquist, Kathy H. Lofy, John Wiesman, Hollianne Bruce, Christopher Spitters, Keith Ericson, Sara Wilkerson, Ahmet Tural, … Satish K. Pillai
New England Journal of Medicine (2020-03-05) https://doi.org/ggjvr6
DOI: 10.1056/nejmoa2001191 · PMID: 32004427 · PMCID: PMC7092802
411. Remdesivir for 5 or 10 Days in Patients with Severe Covid-19
+
412. Remdesivir for 5 or 10 Days in Patients with Severe Covid-19
Jason D. Goldman, David C. B. Lye, David S. Hui, Kristen M. Marks, Raffaele Bruno, Rocio Montejano, Christoph D. Spinner, Massimo Galli, Mi-Young Ahn, Ronald G. Nahass, … Aruna Subramanian
New England Journal of Medicine (2020-11-05) https://doi.org/ggz7qv
DOI: 10.1056/nejmoa2015301 · PMID: 32459919 · PMCID: PMC7377062
412. A Phase 3 Randomized Study to Evaluate the Safety and Antiviral Activity of Remdesivir (GS-5734™) in Participants With Moderate COVID-19 Compared to Standard of Care Treatment
+
413. A Phase 3 Randomized Study to Evaluate the Safety and Antiviral Activity of Remdesivir (GS-5734™) in Participants With Moderate COVID-19 Compared to Standard of Care Treatment
Gilead Sciences
clinicaltrials.gov (2021-01-21) https://clinicaltrials.gov/ct2/show/NCT04292730
413. Multi-centre, adaptive, randomized trial of the safety and efficacy of treatments of COVID-19 in hospitalized adults
+
414. Multi-centre, adaptive, randomized trial of the safety and efficacy of treatments of COVID-19 in hospitalized adults
EU Clinical Trials Register
(2020-03-09) https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-000936-23/FR
414. A Trial of Remdesivir in Adults With Mild and Moderate COVID-19 - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04252664
+415. A Trial of Remdesivir in Adults With Mild and Moderate COVID-19 - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04252664
415. A Phase 3 Randomized, Double-blind, Placebo-controlled, Multicenter Study to Evaluate the Efficacy and Safety of Remdesivir in Hospitalized Adult Patients With Severe COVID-19.
+
416. A Phase 3 Randomized, Double-blind, Placebo-controlled, Multicenter Study to Evaluate the Efficacy and Safety of Remdesivir in Hospitalized Adult Patients With Severe COVID-19.
Bin Cao
clinicaltrials.gov (2020-04-13) https://clinicaltrials.gov/ct2/show/NCT04257656
416. FDA Approves First Treatment for COVID-19
+
417. FDA Approves First Treatment for COVID-19
Office of the Commissioner
FDA (2020-10-22) https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-covid-19
417. Gilead Sciences Statement on the Solidarity Trial https://www.gilead.com/news-and-press/company-statements/gilead-sciences-statement-on-the-solidarity-trial
+418. Gilead Sciences Statement on the Solidarity Trial https://www.gilead.com/news-and-press/company-statements/gilead-sciences-statement-on-the-solidarity-trial
418. Conflicting results on the efficacy of remdesivir in hospitalized Covid-19 patients: comment on the Adaptive Covid-19 Treatment Trial
+
419. Conflicting results on the efficacy of remdesivir in hospitalized Covid-19 patients: comment on the Adaptive Covid-19 Treatment Trial
Leonarda Galiuto, Carlo Patrono
European Heart Journal (2020-12-07) https://doi.org/ghp4kw
DOI: 10.1093/eurheartj/ehaa934 · PMID: 33306101 · PMCID: PMC7799042
419. The “very, very bad look” of remdesivir, the first FDA-approved COVID-19 drug
+
420. The “very, very bad look” of remdesivir, the first FDA-approved COVID-19 drug
Jon Cohen, Kai KupferschmidtOct. 28, 2020, 7:05 Pm
Science | AAAS (2020-10-28) https://www.sciencemag.org/news/2020/10/very-very-bad-look-remdesivir-first-fda-approved-covid-19-drug
420. Effect of Remdesivir vs Standard Care on Clinical Status at 11 Days in Patients With Moderate COVID-19
+
421. Effect of Remdesivir vs Standard Care on Clinical Status at 11 Days in Patients With Moderate COVID-19
Christoph D. Spinner, Robert L. Gottlieb, Gerard J. Criner, José Ramón Arribas López, Anna Maria Cattelan, Alex Soriano Viladomiu, Onyema Ogbuagu, Prashant Malhotra, Kathleen M. Mullane, Antonella Castagna, … for the GS-US-540-5774 Investigators
JAMA (2020-09-15) https://doi.org/ghhz6g
DOI: 10.1001/jama.2020.16349 · PMID: 32821939 · PMCID: PMC7442954
421. Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19
+
422. Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19
Andre C. Kalil, Thomas F. Patterson, Aneesh K. Mehta, Kay M. Tomashek, Cameron R. Wolfe, Varduhi Ghazaryan, Vincent C. Marconi, Guillermo M. Ruiz-Palacios, Lanny Hsieh, Susan Kline, … John H. Beigel
New England Journal of Medicine (2020-12-11) https://doi.org/ghpbd2
DOI: 10.1056/nejmoa2031994 · PMID: 33306283 · PMCID: PMC7745180
422. Proteases Essential for Human Influenza Virus Entry into Cells and Their Inhibitors as Potential Therapeutic Agents
+
423. Proteases Essential for Human Influenza Virus Entry into Cells and Their Inhibitors as Potential Therapeutic Agents
Hiroshi Kido, Yuushi Okumura, Hiroshi Yamada, Trong Quang Le, Mihiro Yano
Current Pharmaceutical Design (2007-02-01) https://doi.org/bts3xp
DOI: 10.2174/138161207780162971 · PMID: 17311557
423. Protease inhibitors targeting coronavirus and filovirus entry
+
424. Protease inhibitors targeting coronavirus and filovirus entry
Yanchen Zhou, Punitha Vedantham, Kai Lu, Juliet Agudelo, Ricardo Carrion, Jerritt W. Nunneley, Dale Barnard, Stefan Pöhlmann, James H. McKerrow, Adam R. Renslo, Graham Simmons
Antiviral Research (2015-04) https://doi.org/ggr984
DOI: 10.1016/j.antiviral.2015.01.011 · PMID: 25666761 · PMCID: PMC4774534
424. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors
+
425. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors
Zhenming Jin, Xiaoyu Du, Yechun Xu, Yongqiang Deng, Meiqin Liu, Yao Zhao, Bing Zhang, Xiaofeng Li, Leike Zhang, Chao Peng, … Haitao Yang
Nature (2020-04-09) https://doi.org/ggrp42
DOI: 10.1038/s41586-020-2223-y · PMID: 32272481
425. Design of Wide-Spectrum Inhibitors Targeting Coronavirus Main Proteases
+
426. Design of Wide-Spectrum Inhibitors Targeting Coronavirus Main Proteases
Haitao Yang, Weiqing Xie, Xiaoyu Xue, Kailin Yang, Jing Ma, Wenxue Liang, Qi Zhao, Zhe Zhou, Duanqing Pei, John Ziebuhr, … Zihe Rao
PLoS Biology (2005-09-06) https://doi.org/bcm9k7
DOI: 10.1371/journal.pbio.0030324 · PMID: 16128623 · PMCID: PMC1197287
426. The newly emerged SARS-Like coronavirus HCoV-EMC also has an “Achilles’ heel”: current effective inhibitor targeting a 3C-like protease
+
427. The newly emerged SARS-Like coronavirus HCoV-EMC also has an “Achilles’ heel”: current effective inhibitor targeting a 3C-like protease
Zhilin Ren, Liming Yan, Ning Zhang, Yu Guo, Cheng Yang, Zhiyong Lou, Zihe Rao
Protein & Cell (2013-04-03) https://doi.org/ggr7vh
DOI: 10.1007/s13238-013-2841-3 · PMID: 23549610 · PMCID: PMC4875521
427. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors
+
428. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors
Linlin Zhang, Daizong Lin, Xinyuanyuan Sun, Ute Curth, Christian Drosten, Lucie Sauerhering, Stephan Becker, Katharina Rox, Rolf Hilgenfeld
Science (2020-04-24) https://doi.org/ggp9sb
DOI: 10.1126/science.abb3405 · PMID: 32198291 · PMCID: PMC7164518
428. Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways
+
429. Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways
Gajendra Kumar Azad, Raghuvir S. Tomar
Molecular Biology Reports (2014-05-28) https://doi.org/f6cnq3
DOI: 10.1007/s11033-014-3417-x · PMID: 24867080
429. Safety and efficacy of ebselen for the prevention of noise-induced hearing loss: a randomised, double-blind, placebo-controlled, phase 2 trial
+
430. Safety and efficacy of ebselen for the prevention of noise-induced hearing loss: a randomised, double-blind, placebo-controlled, phase 2 trial
Jonathan Kil, Edward Lobarinas, Christopher Spankovich, Scott K Griffiths, Patrick J Antonelli, Eric D Lynch, Colleen G Le Prell
The Lancet (2017-09) https://doi.org/gbwnbv
DOI: 10.1016/s0140-6736(17)31791-9
430. Potential therapeutic use of ebselen for COVID-19 and other respiratory viral infections
+
431. Potential therapeutic use of ebselen for COVID-19 and other respiratory viral infections
Helmut Sies, Michael J. Parnham
Free Radical Biology and Medicine (2020-08) https://doi.org/ghdx7s
DOI: 10.1016/j.freeradbiomed.2020.06.032 · PMID: 32598985 · PMCID: PMC7319625
431. Selenium Deficiency Is Associated with Mortality Risk from COVID-19
+
432. Selenium Deficiency Is Associated with Mortality Risk from COVID-19
Arash Moghaddam, Raban Arved Heller, Qian Sun, Julian Seelig, Asan Cherkezov, Linda Seibert, Julian Hackler, Petra Seemann, Joachim Diegmann, Maximilian Pilz, … Lutz Schomburg
Nutrients (2020-07-16) https://doi.org/gg5kbc
DOI: 10.3390/nu12072098 · PMID: 32708526 · PMCID: PMC7400921
432. Selenium and viral infection: are there lessons for COVID-19?
+
433. Selenium and viral infection: are there lessons for COVID-19?
Giovanna Bermano, Catherine Méplan, Derry K. Mercer, John E. Hesketh
British Journal of Nutrition (2020-08-06) https://doi.org/ghdx7w
DOI: 10.1017/s0007114520003128 · PMID: 32758306 · PMCID: PMC7503044
433. Selenium and selenoproteins in viral infection with potential relevance to COVID-19
+
434. Selenium and selenoproteins in viral infection with potential relevance to COVID-19
Jinsong Zhang, Ramy Saad, Ethan Will Taylor, Margaret P. Rayman
Redox Biology (2020-10) https://doi.org/ghdx7t
DOI: 10.1016/j.redox.2020.101715 · PMID: 32992282 · PMCID: PMC7481318
434. FDA Clears SPI’s Ebselen For Phase II COVID-19 Trials
+
435. FDA Clears SPI’s Ebselen For Phase II COVID-19 Trials
Contract Pharma
https://www.contractpharma.com/contents/view_breaking-news/2020-08-31/fda-clears-spis-ebselen-for-phase-ii-covid-19-trials/
435. A Phase 2, Randomized, Double-Blind, Placebo-Controlled, Dose Escalation Study to Evaluate the Safety and Efficacy of SPI-1005 in Moderate COVID-19 Patients
+
436. A Phase 2, Randomized, Double-Blind, Placebo-Controlled, Dose Escalation Study to Evaluate the Safety and Efficacy of SPI-1005 in Moderate COVID-19 Patients
Sound Pharmaceuticals, Incorporated
clinicaltrials.gov (2020-11-06) https://clinicaltrials.gov/ct2/show/NCT04484025
436. A Phase 2, Randomized, Double-Blind, Placebo-Controlled, Dose Escalation Study to Evaluate the Safety and Efficacy of SPI-1005 in Severe COVID-19 Patients
+
437. A Phase 2, Randomized, Double-Blind, Placebo-Controlled, Dose Escalation Study to Evaluate the Safety and Efficacy of SPI-1005 in Severe COVID-19 Patients
Sound Pharmaceuticals, Incorporated
clinicaltrials.gov (2020-11-06) https://clinicaltrials.gov/ct2/show/NCT04483973
437. Target discovery of ebselen with a biotinylated probe
+
438. Target discovery of ebselen with a biotinylated probe
Zhenzhen Chen, Zhongyao Jiang, Nan Chen, Qian Shi, Lili Tong, Fanpeng Kong, Xiufen Cheng, Hao Chen, Chu Wang, Bo Tang
Chemical Communications (2018) https://doi.org/ggrtcm
DOI: 10.1039/c8cc04258f · PMID: 30091742
438. Curing a viral infection by targeting the host: The example of cyclophilin inhibitors
+
439. Curing a viral infection by targeting the host: The example of cyclophilin inhibitors
Kai Lin, Philippe Gallay
Antiviral Research (2013-07) https://doi.org/f4237c
DOI: 10.1016/j.antiviral.2013.03.020 · PMID: 23578729 · PMCID: PMC4332838
439. Lisinopril - Drug Usage Statistics
+
440. Lisinopril - Drug Usage Statistics
ClinCalc DrugStats Database
https://clincalc.com/DrugStats/Drugs/Lisinopril
440. Hypertension Hot Potato — Anatomy of the Angiotensin-Receptor Blocker Recalls
+
441. Hypertension Hot Potato — Anatomy of the Angiotensin-Receptor Blocker Recalls
J. Brian Byrd, Glenn M. Chertow, Vivek Bhalla
New England Journal of Medicine (2019-04-25) https://doi.org/ggvc7g
DOI: 10.1056/nejmp1901657 · PMID: 30865819 · PMCID: PMC7066505
441. Hypertension, the renin–angiotensin system, and the risk of lower respiratory tract infections and lung injury: implications for COVID-19
+
442. Hypertension, the renin–angiotensin system, and the risk of lower respiratory tract infections and lung injury: implications for COVID-19
Reinhold Kreutz, Engi Abd El-Hady Algharably, Michel Azizi, Piotr Dobrowolski, Tomasz Guzik, Andrzej Januszewicz, Alexandre Persu, Aleksander Prejbisz, Thomas Günther Riemer, Ji-Guang Wang, Michel Burnier
Cardiovascular Research (2020-08-01) https://doi.org/ggtwpj
DOI: 10.1093/cvr/cvaa097 · PMID: 32293003 · PMCID: PMC7184480
442. Angiotensin converting enzyme 2 activity and human atrial fibrillation: increased plasma angiotensin converting enzyme 2 activity is associated with atrial fibrillation and more advanced left atrial structural remodelling
+
443. Angiotensin converting enzyme 2 activity and human atrial fibrillation: increased plasma angiotensin converting enzyme 2 activity is associated with atrial fibrillation and more advanced left atrial structural remodelling
Tomos E. Walters, Jonathan M. Kalman, Sheila K. Patel, Megan Mearns, Elena Velkoska, Louise M. Burrell
Europace (2016-10-12) https://doi.org/gbt2jw
DOI: 10.1093/europace/euw246 · PMID: 27738071
443. Cardiovascular Disease, Drug Therapy, and Mortality in Covid-19
+
444. Cardiovascular Disease, Drug Therapy, and Mortality in Covid-19
Mandeep R. Mehra, Sapan S. Desai, SreyRam Kuy, Timothy D. Henry, Amit N. Patel
New England Journal of Medicine (2020-06-18) https://doi.org/ggtp6v
DOI: 10.1056/nejmoa2007621 · PMID: 32356626 · PMCID: PMC7206931
444. Response by Cohen et al to Letter Regarding Article, “Association of Inpatient Use of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers With Mortality Among Patients With Hypertension Hospitalized With COVID-19”
+
445. Response by Cohen et al to Letter Regarding Article, “Association of Inpatient Use of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers With Mortality Among Patients With Hypertension Hospitalized With COVID-19”
Jordana B. Cohen, Thomas C. Hanff, Andrew M. South, Matthew A. Sparks, Swapnil Hiremath, Adam P. Bress, J. Brian Byrd, Julio A. Chirinos
Circulation Research (2020-06-05) https://doi.org/gg3xsg
DOI: 10.1161/circresaha.120.317205 · PMID: 32496917 · PMCID: PMC7265880
445. Sound Science before Quick Judgement Regarding RAS Blockade in COVID-19
+
446. Sound Science before Quick Judgement Regarding RAS Blockade in COVID-19
Matthew A. Sparks, Andrew South, Paul Welling, J. Matt Luther, Jordana Cohen, James Brian Byrd, Louise M. Burrell, Daniel Batlle, Laurie Tomlinson, Vivek Bhalla, … Swapnil Hiremath
Clinical Journal of the American Society of Nephrology (2020-05-07) https://doi.org/ggq8gn
DOI: 10.2215/cjn.03530320 · PMID: 32220930 · PMCID: PMC7269218
446. Elimination or Prolongation of ACE Inhibitors and ARB in Coronavirus Disease 2019 - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04338009
+447. Elimination or Prolongation of ACE Inhibitors and ARB in Coronavirus Disease 2019 - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04338009
447. Stopping ACE-inhibitors in COVID-19 - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04353596
+448. Stopping ACE-inhibitors in COVID-19 - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04353596
448. Losartan for Patients With COVID-19 Not Requiring Hospitalization - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04311177
+449. Losartan for Patients With COVID-19 Not Requiring Hospitalization - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04311177
449. Losartan for Patients With COVID-19 Requiring Hospitalization - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04312009
+450. Losartan for Patients With COVID-19 Requiring Hospitalization - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04312009
450. The CORONAvirus Disease 2019 Angiotensin Converting Enzyme Inhibitor/Angiotensin Receptor Blocker InvestigatiON (CORONACION) Randomized Clinical Trial
+
451. The CORONAvirus Disease 2019 Angiotensin Converting Enzyme Inhibitor/Angiotensin Receptor Blocker InvestigatiON (CORONACION) Randomized Clinical Trial
Prof John William McEvoy
clinicaltrials.gov (2020-06-26) https://clinicaltrials.gov/ct2/show/NCT04330300
451. Ramipril for the Treatment of COVID-19 - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04366050
+452. Ramipril for the Treatment of COVID-19 - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04366050
452. The Coronavirus Conundrum: ACE2 and Hypertension Edition
+
453. The Coronavirus Conundrum: ACE2 and Hypertension Edition
Matthew Sparks, Swapnil Hiremath
NephJC http://www.nephjc.com/news/covidace2
453. Lysosomotropic agents as HCV entry inhibitors
+
454. Lysosomotropic agents as HCV entry inhibitors
Usman A Ashfaq, Tariq Javed, Sidra Rehman, Zafar Nawaz, Sheikh Riazuddin
Virology Journal (2011-04-12) https://doi.org/dr5g4m
DOI: 10.1186/1743-422x-8-163 · PMID: 21481279 · PMCID: PMC3090357
454. New concepts in antimalarial use and mode of action in dermatology
+
455. New concepts in antimalarial use and mode of action in dermatology
Sunil Kalia, Jan P Dutz
Dermatologic Therapy (2007-07) https://doi.org/fv69cb
DOI: 10.1111/j.1529-8019.2007.00131.x · PMID: 17970883 · PMCID: PMC7163426
455. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread
+
456. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread
Martin J Vincent, Eric Bergeron, Suzanne Benjannet, Bobbie R Erickson, Pierre E Rollin, Thomas G Ksiazek, Nabil G Seidah, Stuart T Nichol
Virology Journal (2005) https://doi.org/dvbds4
DOI: 10.1186/1743-422x-2-69 · PMID: 16115318 · PMCID: PMC1232869
456. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
+
457. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
Xueting Yao, Fei Ye, Miao Zhang, Cheng Cui, Baoying Huang, Peihua Niu, Xu Liu, Li Zhao, Erdan Dong, Chunli Song, … Dongyang Liu
Clinical Infectious Diseases (2020-08-01) https://doi.org/ggpx7z
DOI: 10.1093/cid/ciaa237 · PMID: 32150618 · PMCID: PMC7108130
457. Mechanism of Action of Hydroxychloroquine in the Antiphospholipid Syndrome
+
458. Mechanism of Action of Hydroxychloroquine in the Antiphospholipid Syndrome
Nadine Müller-Calleja, Davit Manukyan, Wolfram Ruf, Karl Lackner
Blood (2016-12-02) https://doi.org/ggrm82
DOI: 10.1182/blood.v128.22.5023.5023
458. 14th International Congress on Antiphospholipid Antibodies Task Force Report on Antiphospholipid Syndrome Treatment Trends
+
459. 14th International Congress on Antiphospholipid Antibodies Task Force Report on Antiphospholipid Syndrome Treatment Trends
Doruk Erkan, Cassyanne L. Aguiar, Danieli Andrade, Hannah Cohen, Maria J. Cuadrado, Adriana Danowski, Roger A. Levy, Thomas L. Ortel, Anisur Rahman, Jane E. Salmon, … Michael D. Lockshin
Autoimmunity Reviews (2014-06) https://doi.org/ggp8r8
DOI: 10.1016/j.autrev.2014.01.053 · PMID: 24468415
459. What is the role of hydroxychloroquine in reducing thrombotic risk in patients with antiphospholipid antibodies?
+
460. What is the role of hydroxychloroquine in reducing thrombotic risk in patients with antiphospholipid antibodies?
Tzu-Fei Wang, Wendy Lim
Hematology (2016-12-02) https://doi.org/ggrn3k
DOI: 10.1182/asheducation-2016.1.714 · PMID: 27913551 · PMCID: PMC6142483
460. COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression
+
461. COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression
Dan Zhou, Sheng-Ming Dai, Qiang Tong
Journal of Antimicrobial Chemotherapy (2020-07) https://doi.org/ggq84c
DOI: 10.1093/jac/dkaa114 · PMID: 32196083 · PMCID: PMC7184499
461. Hydroxychloroquine treatment of patients with human immunodeficiency virus type 1
+
462. Hydroxychloroquine treatment of patients with human immunodeficiency virus type 1
Kirk Sperber, Michael Louie, Thomas Kraus, Jacqueline Proner, Erica Sapira, Su Lin, Vera Stecher, Lloyd Mayer
Clinical Therapeutics (1995-07) https://doi.org/cq2hx9
DOI: 10.1016/0149-2918(95)80039-5
462. Hydroxychloroquine augments early virological response to pegylated interferon plus ribavirin in genotype-4 chronic hepatitis C patients
+
463. Hydroxychloroquine augments early virological response to pegylated interferon plus ribavirin in genotype-4 chronic hepatitis C patients
Gouda Kamel Helal, Magdy Abdelmawgoud Gad, Mohamed Fahmy Abd-Ellah, Mahmoud Saied Eid
Journal of Medical Virology (2016-12) https://doi.org/f889nt
DOI: 10.1002/jmv.24575 · PMID: 27183377 · PMCID: PMC7167065
463. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial
+
464. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial
Philippe Gautret, Jean-Christophe Lagier, Philippe Parola, Van Thuan Hoang, Line Meddeb, Morgane Mailhe, Barbara Doudier, Johan Courjon, Valérie Giordanengo, Vera Esteves Vieira, … Didier Raoult
International Journal of Antimicrobial Agents (2020-07) https://doi.org/dp7d
DOI: 10.1016/j.ijantimicag.2020.105949 · PMID: 32205204 · PMCID: PMC7102549
464. Official Statement from International Society of Antimicrobial Chemotherapy
+
465. Official Statement from International Society of Antimicrobial Chemotherapy
Andreas Voss
(2020-04-03) https://www.isac.world/news-and-publications/official-isac-statement
465. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection
+
466. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection
J. M. Molina, C. Delaugerre, J. Le Goff, B. Mela-Lima, D. Ponscarme, L. Goldwirt, N. de Castro
Médecine et Maladies Infectieuses (2020-06) https://doi.org/ggqzrb
DOI: 10.1016/j.medmal.2020.03.006 · PMID: 32240719
466. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial
+
467. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial
Zhaowei Chen, Jijia Hu, Zongwei Zhang, Shan Jiang, Shoumeng Han, Dandan Yan, Ruhong Zhuang, Ben Hu, Zhan Zhang
Cold Spring Harbor Laboratory (2020-04-10) https://doi.org/ggqm4v
DOI: 10.1101/2020.03.22.20040758
467. The Extent and Consequences of P-Hacking in Science
+
468. The Extent and Consequences of P-Hacking in Science
Megan L. Head, Luke Holman, Rob Lanfear, Andrew T. Kahn, Michael D. Jennions
PLOS Biology (2015-03-13) https://doi.org/4z7
DOI: 10.1371/journal.pbio.1002106 · PMID: 25768323 · PMCID: PMC4359000
468. A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-19)
+
469. A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-19)
CHEN Jun, LIU Danping, LIU Li, LIU Ping, XU Qingnian, XIA Lu, LING Yun, HUANG Dan, SONG Shuli, ZHANG Dandan, … LU Hongzhou
Journal of Zhejiang University (Medical Sciences) (2020-03) https://doi.org/10.3785/j.issn.1008-9292.2020.03.03
DOI: 10.3785/j.issn.1008-9292.2020.03.03
469. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies
+
470. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies
Jianjun Gao, Zhenxue Tian, Xu Yang
BioScience Trends (2020-02-29) https://doi.org/ggm3mv
DOI: 10.5582/bst.2020.01047 · PMID: 32074550
470. Targeting the Endocytic Pathway and Autophagy Process as a Novel Therapeutic Strategy in COVID-19
+
471. Targeting the Endocytic Pathway and Autophagy Process as a Novel Therapeutic Strategy in COVID-19
Naidi Yang, Han-Ming Shen
International Journal of Biological Sciences (2020) https://doi.org/ggqspm
DOI: 10.7150/ijbs.45498 · PMID: 32226290 · PMCID: PMC7098027
471. SARS-CoV-2: an Emerging Coronavirus that Causes a Global Threat
+
472. SARS-CoV-2: an Emerging Coronavirus that Causes a Global Threat
Jun Zheng
International Journal of Biological Sciences (2020) https://doi.org/ggqspr
DOI: 10.7150/ijbs.45053 · PMID: 32226285 · PMCID: PMC7098030
472. RETRACTED: Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis
+
473. RETRACTED: Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis
Mandeep R Mehra, Sapan S Desai, Frank Ruschitzka, Amit N Patel
The Lancet (2020-05) https://doi.org/ggwzsb
DOI: 10.1016/s0140-6736(20)31180-6 · PMID: 32450107 · PMCID: PMC7255293
473. Retraction—Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis
+
474. Retraction—Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis
Mandeep R Mehra, Frank Ruschitzka, Amit N Patel
The Lancet (2020-06) https://doi.org/ggzqng
DOI: 10.1016/s0140-6736(20)31324-6 · PMID: 32511943 · PMCID: PMC7274621
474. Life Threatening Severe QTc Prolongation in Patient with Systemic Lupus Erythematosus due to Hydroxychloroquine
+
475. Life Threatening Severe QTc Prolongation in Patient with Systemic Lupus Erythematosus due to Hydroxychloroquine
John P. O’Laughlin, Parag H. Mehta, Brian C. Wong
Case Reports in Cardiology (2016) https://doi.org/ggqzrc
DOI: 10.1155/2016/4626279 · PMID: 27478650 · PMCID: PMC4960328
475. Keep the QT interval: It is a reliable predictor of ventricular arrhythmias
+
476. Keep the QT interval: It is a reliable predictor of ventricular arrhythmias
Dan M. Roden
Heart Rhythm (2008-08) https://doi.org/d5rchx
DOI: 10.1016/j.hrthm.2008.05.008 · PMID: 18675237 · PMCID: PMC3212752
476. Safety of hydroxychloroquine, alone and in combination with azithromycin, in light of rapid wide-spread use for COVID-19: a multinational, network cohort and self-controlled case series study
+
477. Safety of hydroxychloroquine, alone and in combination with azithromycin, in light of rapid wide-spread use for COVID-19: a multinational, network cohort and self-controlled case series study
Jennifer C.E.Lane, James Weaver, Kristin Kostka, Talita Duarte-Salles, Maria Tereza F. Abrahao, Heba Alghoul, Osaid Alser, Thamir M Alshammari, Patricia Biedermann, Edward Burn, … Daniel Prieto-Alhambra
Cold Spring Harbor Laboratory (2020-04-10) https://doi.org/ggrn7s
DOI: 10.1101/2020.04.08.20054551
477. Chloroquine diphosphate in two different dosages as adjunctive therapy of hospitalized patients with severe respiratory syndrome in the context of coronavirus (SARS-CoV-2) infection: Preliminary safety results of a randomized, double-blinded, phase IIb clinical trial ( CloroCovid-19 Study )
+
478. Chloroquine diphosphate in two different dosages as adjunctive therapy of hospitalized patients with severe respiratory syndrome in the context of coronavirus (SARS-CoV-2) infection: Preliminary safety results of a randomized, double-blinded, phase IIb clinical trial ( CloroCovid-19 Study )
Mayla Gabriela Silva Borba, Fernando Fonseca Almeida Val, Vanderson Souza Sampaio, Marcia Almeida Araújo Alexandre, Gisely Cardoso Melo, Marcelo Brito, Maria Paula Gomes Mourão, José Diego Brito-Sousa, Djane Baía-da-Silva, Marcus Vinitius Farias Guerra, … CloroCovid-19 Team
Cold Spring Harbor Laboratory (2020-04-16) https://doi.org/ggr3nj
DOI: 10.1101/2020.04.07.20056424
478. Heart risk concerns mount around use of chloroquine and hydroxychloroquine for Covid-19 treatment
+
479. Heart risk concerns mount around use of chloroquine and hydroxychloroquine for Covid-19 treatment
Jacqueline Howard, Elizabeth Cohen, Nadia Kounang, Per Nyberg
CNN (2020-04-14) https://www.cnn.com/2020/04/13/health/chloroquine-risks-coronavirus-treatment-trials-study/index.html
479. WHO Director-General’s opening remarks at the media briefing on COVID-19
+
480. WHO Director-General’s opening remarks at the media briefing on COVID-19
World Health Organization
(2020-05-25) https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---25-may-2020
480. Hydroxychloroquine in patients mainly with mild to moderate COVID–19: an open–label, randomized, controlled trial
+
481. Hydroxychloroquine in patients mainly with mild to moderate COVID–19: an open–label, randomized, controlled trial
Wei Tang, Zhujun Cao, Mingfeng Han, Zhengyan Wang, Junwen Chen, Wenjin Sun, Yaojie Wu, Wei Xiao, Shengyong Liu, Erzhen Chen, … Qing Xie
Cold Spring Harbor Laboratory (2020-05-07) https://doi.org/ggr68m
DOI: 10.1101/2020.04.10.20060558
481. Outcomes of hydroxychloroquine usage in United States veterans hospitalized with Covid-19
+
482. Outcomes of hydroxychloroquine usage in United States veterans hospitalized with Covid-19
Joseph Magagnoli, Siddharth Narendran, Felipe Pereira, Tammy Cummings, James W. Hardin, S. Scott Sutton, Jayakrishna Ambati
Cold Spring Harbor Laboratory (2020-04-21) https://doi.org/ggspt6
DOI: 10.1101/2020.04.16.20065920 · PMID: 32511622 · PMCID: PMC7276049
482. Effect of Hydroxychloroquine in Hospitalized Patients with Covid-19
+
483. Effect of Hydroxychloroquine in Hospitalized Patients with Covid-19
The RECOVERY Collaborative Group
New England Journal of Medicine (2020-11-19) https://doi.org/ghd8c7
DOI: 10.1056/nejmoa2022926 · PMID: 33031652 · PMCID: PMC7556338
483. Hydroxychloroquine for Early Treatment of Adults With Mild Coronavirus Disease 2019: A Randomized, Controlled Trial
+
484. Hydroxychloroquine for Early Treatment of Adults With Mild Coronavirus Disease 2019: A Randomized, Controlled Trial
Oriol Mitjà, Marc Corbacho-Monné, Maria Ubals, Cristian Tebé, Judith Peñafiel, Aurelio Tobias, Ester Ballana, Andrea Alemany, Núria Riera-Martí, Carla A Pérez, … Martí Vall-Mayans
Clinical Infectious Diseases (2020-07-16) https://doi.org/gg5f9x
DOI: 10.1093/cid/ciaa1009 · PMID: 32674126 · PMCID: PMC7454406
484. A Randomized Trial of Hydroxychloroquine as Postexposure Prophylaxis for Covid-19
+
485. A Randomized Trial of Hydroxychloroquine as Postexposure Prophylaxis for Covid-19
David R. Boulware, Matthew F. Pullen, Ananta S. Bangdiwala, Katelyn A. Pastick, Sarah M. Lofgren, Elizabeth C. Okafor, Caleb P. Skipper, Alanna A. Nascene, Melanie R. Nicol, Mahsa Abassi, … Kathy H. Hullsiek
New England Journal of Medicine (2020-08-06) https://doi.org/dxkv
DOI: 10.1056/nejmoa2016638 · PMID: 32492293 · PMCID: PMC7289276
485. Efficacy and Safety of Hydroxychloroquine vs Placebo for Pre-exposure SARS-CoV-2 Prophylaxis Among Health Care Workers
+
486. Efficacy and Safety of Hydroxychloroquine vs Placebo for Pre-exposure SARS-CoV-2 Prophylaxis Among Health Care Workers
Benjamin S. Abella, Eliana L. Jolkovsky, Barbara T. Biney, Julie E. Uspal, Matthew C. Hyman, Ian Frank, Scott E. Hensley, Saar Gill, Dan T. Vogl, Ivan Maillard, … Prevention and Treatment of COVID-19 With Hydroxychloroquine (PATCH) Investigators
JAMA Internal Medicine (2021-02-01) https://doi.org/ghd6nj
DOI: 10.1001/jamainternmed.2020.6319 · PMID: 33001138 · PMCID: PMC7527945
486. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology
+
487. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology
Eva Schrezenmeier, Thomas Dörner
Nature Reviews Rheumatology (2020-02-07) https://doi.org/ggzjnh
DOI: 10.1038/s41584-020-0372-x · PMID: 32034323
487. Synthesis and Pharmacology of Anti-Inflammatory Steroidal Antedrugs
+
488. Synthesis and Pharmacology of Anti-Inflammatory Steroidal Antedrugs
M. Omar F. Khan, Henry J. Lee
Chemical Reviews (2008-12-10) https://doi.org/cmkrtc
DOI: 10.1021/cr068203e · PMID: 19035773 · PMCID: PMC2650492
488. Drug vignettes: Dexamethasone
+
489. Drug vignettes: Dexamethasone
The Centre for Evidence-Based Medicine
https://www.cebm.net/covid-19/dexamethasone/
489. 16-METHYLATED STEROIDS. I. 16α-METHYLATED ANALOGS OF CORTISONE, A NEW GROUP OF ANTI-INFLAMMATORY STEROIDS
+
490. 16-METHYLATED STEROIDS. I. 16α-METHYLATED ANALOGS OF CORTISONE, A NEW GROUP OF ANTI-INFLAMMATORY STEROIDS
Glen E. Arth, David B. R. Johnston, John Fried, William W. Spooncer, Dale R. Hoff, Lewis H. Sarett
Journal of the American Chemical Society (2002-05-01) https://doi.org/cj5c82
DOI: 10.1021/ja01545a061
490. Treatment of Rheumatoid Arthritis with Dexamethasone
+
491. Treatment of Rheumatoid Arthritis with Dexamethasone
Abraham Cohen
JAMA (1960-10-15) https://doi.org/csfmhc
DOI: 10.1001/jama.1960.03030070009002 · PMID: 13694317
491. Potential benefits of precise corticosteroids therapy for severe 2019-nCoV pneumonia
+
492. Potential benefits of precise corticosteroids therapy for severe 2019-nCoV pneumonia
Wei Zhou, Yisi Liu, Dongdong Tian, Cheng Wang, Sa Wang, Jing Cheng, Ming Hu, Minghao Fang, Yue Gao
Signal Transduction and Targeted Therapy (2020-02-21) https://doi.org/ggqr84
DOI: 10.1038/s41392-020-0127-9 · PMID: 32296012 · PMCID: PMC7035340
492. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial
+
493. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial
Jesús Villar, Carlos Ferrando, Domingo Martínez, Alfonso Ambrós, Tomás Muñoz, Juan A Soler, Gerardo Aguilar, Francisco Alba, Elena González-Higueras, Luís A Conesa, … Jesús Villar
The Lancet Respiratory Medicine (2020-03) https://doi.org/ggpxzc
DOI: 10.1016/s2213-2600(19)30417-5
493. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury
+
494. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury
Clark D Russell, Jonathan E Millar, J Kenneth Baillie
The Lancet (2020-02) https://doi.org/ggks86
DOI: 10.1016/s0140-6736(20)30317-2 · PMID: 32043983 · PMCID: PMC7134694
494. On the use of corticosteroids for 2019-nCoV pneumonia
+
495. On the use of corticosteroids for 2019-nCoV pneumonia
Lianhan Shang, Jianping Zhao, Yi Hu, Ronghui Du, Bin Cao
The Lancet (2020-02) https://doi.org/ggq356
DOI: 10.1016/s0140-6736(20)30361-5 · PMID: 32122468 · PMCID: PMC7159292
495. Pharmacology of Postoperative Nausea and Vomiting
+
496. Pharmacology of Postoperative Nausea and Vomiting
Eric S. Zabirowicz, Tong J. Gan
Elsevier BV (2019) https://doi.org/ghfkjw
DOI: 10.1016/b978-0-323-48110-6.00034-x
496. Non-traditional cytokines: How catecholamines and adipokines influence macrophages in immunity, metabolism and the central nervous system
+
497. Non-traditional cytokines: How catecholamines and adipokines influence macrophages in immunity, metabolism and the central nervous system
Mark A. Barnes, Monica J. Carson, Meera G. Nair
Cytokine (2015-04) https://doi.org/f65c59
DOI: 10.1016/j.cyto.2015.01.008 · PMID: 25703786 · PMCID: PMC4590987
497. Stress Hormones, Proinflammatory and Antiinflammatory Cytokines, and Autoimmunity
+
498. Stress Hormones, Proinflammatory and Antiinflammatory Cytokines, and Autoimmunity
ILIA J. ELENKOV, GEORGE P. CHROUSOS
Annals of the New York Academy of Sciences (2002-06) https://doi.org/fmwpx2
DOI: 10.1111/j.1749-6632.2002.tb04229.x · PMID: 12114286
498. Recovery of the Hypothalamic-Pituitary-Adrenal Response to Stress
+
499. Recovery of the Hypothalamic-Pituitary-Adrenal Response to Stress
Arantxa García, Octavi Martí, Astrid Vallès, Silvina Dal-Zotto, Antonio Armario
Neuroendocrinology (2000) https://doi.org/b2cq8n
DOI: 10.1159/000054578 · PMID: 10971146
499. Modulatory effects of glucocorticoids and catecholamines on human interleukin-12 and interleukin-10 production: clinical implications.
+
500. Modulatory effects of glucocorticoids and catecholamines on human interleukin-12 and interleukin-10 production: clinical implications.
IJ Elenkov, DA Papanicolaou, RL Wilder, GP Chrousos
Proceedings of the Association of American Physicians (1996-09) https://www.ncbi.nlm.nih.gov/pubmed/8902882
PMID: 8902882
500. Prevention of infection caused by immunosuppressive drugs in gastroenterology
+
501. Prevention of infection caused by immunosuppressive drugs in gastroenterology
Katarzyna Orlicka, Eleanor Barnes, Emma L. Culver
Therapeutic Advances in Chronic Disease (2013-04-22) https://doi.org/ggrqd3
DOI: 10.1177/2040622313485275 · PMID: 23819020 · PMCID: PMC3697844
501. Immunosuppression for hyperinflammation in COVID-19: a double-edged sword?
+
502. Immunosuppression for hyperinflammation in COVID-19: a double-edged sword?
Andrew I Ritchie, Aran Singanayagam
The Lancet (2020-04) https://doi.org/ggq8hs
DOI: 10.1016/s0140-6736(20)30691-7 · PMID: 32220278 · PMCID: PMC7138169
502. Effect of Dexamethasone in Hospitalized Patients with COVID-19 – Preliminary Report
+
503. Effect of Dexamethasone in Hospitalized Patients with COVID-19 – Preliminary Report
Peter Horby, Wei Shen Lim, Jonathan Emberson, Marion Mafham, Jennifer Bell, Louise Linsell, Natalie Staplin, Christopher Brightling, Andrew Ustianowski, Einas Elmahi, … RECOVERY Collaborative Group
Cold Spring Harbor Laboratory (2020-06-22) https://doi.org/dz5x
DOI: 10.1101/2020.06.22.20137273
503. Dexamethasone in Hospitalized Patients with Covid-19 — Preliminary Report
+
504. Dexamethasone in Hospitalized Patients with Covid-19 — Preliminary Report
The RECOVERY Collaborative Group
New England Journal of Medicine (2020-07-17) https://doi.org/gg5c8p
DOI: 10.1056/nejmoa2021436 · PMID: 32678530 · PMCID: PMC7383595
504. Corticosteroids for Patients With Coronavirus Disease 2019 (COVID-19) With Different Disease Severity: A Meta-Analysis of Randomized Clinical Trials
+
505. Corticosteroids for Patients With Coronavirus Disease 2019 (COVID-19) With Different Disease Severity: A Meta-Analysis of Randomized Clinical Trials
Laura Pasin, Paolo Navalesi, Alberto Zangrillo, Artem Kuzovlev, Valery Likhvantsev, Ludhmila Abrahão Hajjar, Stefano Fresilli, Marcus Vinicius Guimaraes Lacerda, Giovanni Landoni
Journal of Cardiothoracic and Vascular Anesthesia (2021-02) https://doi.org/ghzkp9
DOI: 10.1053/j.jvca.2020.11.057 · PMID: 33298370 · PMCID: PMC7698829
505. Current concepts in the diagnosis and management of cytokine release syndrome
+
506. Current concepts in the diagnosis and management of cytokine release syndrome
Daniel W. Lee, Rebecca Gardner, David L. Porter, Chrystal U. Louis, Nabil Ahmed, Michael Jensen, Stephan A. Grupp, Crystal L. Mackall
Blood (2014-07-10) https://doi.org/ggsrwk
DOI: 10.1182/blood-2014-05-552729 · PMID: 24876563 · PMCID: PMC4093680
506. Dexamethasone for COVID-19? Not so fast.
+
507. Dexamethasone for COVID-19? Not so fast.
T. C. Theoharides
JOURNAL OF BIOLOGICAL REGULATORS AND HOMEOSTATIC AGENTS (2020-08-31) https://doi.org/ghfkjx
DOI: 10.23812/20-editorial_1-5 · PMID: 32551464
507. Dexamethasone in hospitalised patients with COVID-19: addressing uncertainties
+
508. Dexamethasone in hospitalised patients with COVID-19: addressing uncertainties
Michael A Matthay, B Taylor Thompson
The Lancet Respiratory Medicine (2020-12) https://doi.org/ftk4
DOI: 10.1016/s2213-2600(20)30503-8 · PMID: 33129421 · PMCID: PMC7598750
508. Dexamethasone for COVID-19: data needed from randomised clinical trials in Africa
+
509. Dexamethasone for COVID-19: data needed from randomised clinical trials in Africa
Helen Brotherton, Effua Usuf, Behzad Nadjm, Karen Forrest, Kalifa Bojang, Ahmadou Lamin Samateh, Mustapha Bittaye, Charles AP Roberts, Umberto d’Alessandro, Anna Roca
The Lancet Global Health (2020-09) https://doi.org/gg42kx
DOI: 10.1016/s2214-109x(20)30318-1 · PMID: 32679038 · PMCID: PMC7833918
509. Formulation and manufacturability of biologics
+
510. Formulation and manufacturability of biologics
Steven J Shire
Current Opinion in Biotechnology (2009-12) https://doi.org/cjk8p6
DOI: 10.1016/j.copbio.2009.10.006 · PMID: 19880308
510. Early Development of Therapeutic Biologics - Pharmacokinetics
+
511. Early Development of Therapeutic Biologics - Pharmacokinetics
A. Baumann
Current Drug Metabolism (2006-01-01) https://doi.org/bhcz79
DOI: 10.2174/138920006774832604 · PMID: 16454690
511. Deriving Immune Modulating Drugs from Viruses—A New Class of Biologics
+
512. Deriving Immune Modulating Drugs from Viruses—A New Class of Biologics
Jordan R. Yaron, Liqiang Zhang, Qiuyun Guo, Michelle Burgin, Lauren N. Schutz, Enkidia Awo, Lyn Wise, Kurt L. Krause, Cristhian J. Ildefonso, Jacek M. Kwiecien, … Alexandra R. Lucas
Journal of Clinical Medicine (2020-03-31) https://doi.org/ghdx73
DOI: 10.3390/jcm9040972 · PMID: 32244484 · PMCID: PMC7230489
512. IL-6 in Inflammation, Immunity, and Disease
+
513. IL-6 in Inflammation, Immunity, and Disease
T. Tanaka, M. Narazaki, T. Kishimoto
Cold Spring Harbor Perspectives in Biology (2014-09-04) https://doi.org/gftpjs
DOI: 10.1101/cshperspect.a016295 · PMID: 25190079 · PMCID: PMC4176007
513. Hall of Fame among Pro-inflammatory Cytokines: Interleukin-6 Gene and Its Transcriptional Regulation Mechanisms
+
514. Hall of Fame among Pro-inflammatory Cytokines: Interleukin-6 Gene and Its Transcriptional Regulation Mechanisms
Yang Luo, Song Guo Zheng
Frontiers in Immunology (2016-12-19) https://doi.org/ggqmgv
DOI: 10.3389/fimmu.2016.00604 · PMID: 28066415 · PMCID: PMC5165036
514. IL-6 Trans-Signaling via the Soluble IL-6 Receptor: Importance for the Pro-Inflammatory Activities of IL-6
+
515. IL-6 Trans-Signaling via the Soluble IL-6 Receptor: Importance for the Pro-Inflammatory Activities of IL-6
Stefan Rose-John
International Journal of Biological Sciences (2012) https://doi.org/f4c4hf
DOI: 10.7150/ijbs.4989 · PMID: 23136552 · PMCID: PMC3491447
515. Interleukin-6 and its receptor: from bench to bedside
+
516. Interleukin-6 and its receptor: from bench to bedside
Jürgen Scheller, Stefan Rose-John
Medical Microbiology and Immunology (2006-05-31) https://doi.org/ck8xch
DOI: 10.1007/s00430-006-0019-9 · PMID: 16741736
516. Plasticity and cross-talk of Interleukin 6-type cytokines
+
517. Plasticity and cross-talk of Interleukin 6-type cytokines
Christoph Garbers, Heike M. Hermanns, Fred Schaper, Gerhard Müller-Newen, Joachim Grötzinger, Stefan Rose-John, Jürgen Scheller
Cytokine & Growth Factor Reviews (2012-06) https://doi.org/f3z743
DOI: 10.1016/j.cytogfr.2012.04.001 · PMID: 22595692
517. Soluble receptors for cytokines and growth factors: generation and biological function
+
518. Soluble receptors for cytokines and growth factors: generation and biological function
S Rose-John, PC Heinrich
Biochemical Journal (1994-06-01) https://doi.org/ggqmgd
DOI: 10.1042/bj3000281 · PMID: 8002928 · PMCID: PMC1138158
518. Interleukin-6; pathogenesis and treatment of autoimmune inflammatory diseases
+
519. Interleukin-6; pathogenesis and treatment of autoimmune inflammatory diseases
Toshio Tanaka, Masashi Narazaki, Kazuya Masuda, Tadamitsu Kishimoto
Inflammation and Regeneration (2013) https://doi.org/ggqmgt
DOI: 10.2492/inflammregen.33.054
519. Effective treatment of severe COVID-19 patients with tocilizumab
+
520. Effective treatment of severe COVID-19 patients with tocilizumab
Xiaoling Xu, Mingfeng Han, Tiantian Li, Wei Sun, Dongsheng Wang, Binqing Fu, Yonggang Zhou, Xiaohu Zheng, Yun Yang, Xiuyong Li, … Haiming Wei
Proceedings of the National Academy of Sciences (2020-05-19) https://doi.org/ggv3r3
DOI: 10.1073/pnas.2005615117 · PMID: 32350134 · PMCID: PMC7245089
520. Tocilizumab in patients with severe COVID-19: a retrospective cohort study
+
521. Tocilizumab in patients with severe COVID-19: a retrospective cohort study
Giovanni Guaraldi, Marianna Meschiari, Alessandro Cozzi-Lepri, Jovana Milic, Roberto Tonelli, Marianna Menozzi, Erica Franceschini, Gianluca Cuomo, Gabriella Orlando, Vanni Borghi, … Cristina Mussini
The Lancet Rheumatology (2020-08) https://doi.org/d2pk
DOI: 10.1016/s2665-9913(20)30173-9 · PMID: 32835257 · PMCID: PMC7314456
521. Tocilizumab Treatment for Cytokine Release Syndrome in Hospitalized Patients With Coronavirus Disease 2019
+
522. Tocilizumab Treatment for Cytokine Release Syndrome in Hospitalized Patients With Coronavirus Disease 2019
Christina C. Price, Frederick L. Altice, Yu Shyr, Alan Koff, Lauren Pischel, George Goshua, Marwan M. Azar, Dayna Mcmanus, Sheau-Chiann Chen, Shana E. Gleeson, … Maricar Malinis
Chest (2020-10) https://doi.org/gg2789
DOI: 10.1016/j.chest.2020.06.006 · PMID: 32553536 · PMCID: PMC7831876
522. Impact of low dose tocilizumab on mortality rate in patients with COVID-19 related pneumonia
+
523. Impact of low dose tocilizumab on mortality rate in patients with COVID-19 related pneumonia
Ruggero Capra, Nicola De Rossi, Flavia Mattioli, Giuseppe Romanelli, Cristina Scarpazza, Maria Pia Sormani, Stefania Cossi
European Journal of Internal Medicine (2020-06) https://doi.org/ggx4fm
DOI: 10.1016/j.ejim.2020.05.009 · PMID: 32405160 · PMCID: PMC7219361
523. Tocilizumab therapy reduced intensive care unit admissions and/or mortality in COVID-19 patients
+
524. Tocilizumab therapy reduced intensive care unit admissions and/or mortality in COVID-19 patients
T. Klopfenstein, S. Zayet, A. Lohse, J.-C. Balblanc, J. Badie, P.-Y. Royer, L. Toko, C. Mezher, N. J. Kadiane-Oussou, M. Bossert, … T. Conrozier
Médecine et Maladies Infectieuses (2020-08) https://doi.org/ggvz45
DOI: 10.1016/j.medmal.2020.05.001 · PMID: 32387320 · PMCID: PMC7202806
524. Outcomes in patients with severe COVID-19 disease treated with tocilizumab: a case–controlled study
+
525. Outcomes in patients with severe COVID-19 disease treated with tocilizumab: a case–controlled study
G Rojas-Marte, M Khalid, O Mukhtar, AT Hashmi, MA Waheed, S Ehrlich, A Aslam, S Siddiqui, C Agarwal, Y Malyshev, … J Shani
QJM: An International Journal of Medicine (2020-08) https://doi.org/gg496t
DOI: 10.1093/qjmed/hcaa206 · PMID: 32569363 · PMCID: PMC7337835
525. Systematic Review and Meta-Analysis of Case-Control Studies from 7,000 COVID-19 Pneumonia Patients Suggests a Beneficial Impact of Tocilizumab with Benefit Most Evident in Non-Corticosteroid Exposed Subjects.
+
526. Systematic Review and Meta-Analysis of Case-Control Studies from 7,000 COVID-19 Pneumonia Patients Suggests a Beneficial Impact of Tocilizumab with Benefit Most Evident in Non-Corticosteroid Exposed Subjects.
Abdulla Watad, Nicola Luigi Bragazzi, Charlie Bridgewood, Muhammad Mansour, Naim Mahroum, Matteo Riccò, Ahmed Nasr, Amr Hussein, Omer Gendelman, Yehuda Shoenfeld, … Dennis McGonagle
SSRN Electronic Journal (2020) https://doi.org/gg62hz
DOI: 10.2139/ssrn.3642653
526. The efficacy of IL-6 inhibitor Tocilizumab in reducing severe COVID-19 mortality: a systematic review
+
527. The efficacy of IL-6 inhibitor Tocilizumab in reducing severe COVID-19 mortality: a systematic review
Avi Gurion Kaye, Robert Siegel
PeerJ (2020-11-02) https://doi.org/ghx8r4
DOI: 10.7717/peerj.10322 · PMID: 33194450 · PMCID: PMC7643559
527. Rationale and evidence on the use of tocilizumab in COVID-19: a systematic review
+
528. Rationale and evidence on the use of tocilizumab in COVID-19: a systematic review
A. Cortegiani, M. Ippolito, M. Greco, V. Granone, A. Protti, C. Gregoretti, A. Giarratano, S. Einav, M. Cecconi
Pulmonology (2021-01) https://doi.org/gg5xv3
DOI: 10.1016/j.pulmoe.2020.07.003 · PMID: 32713784 · PMCID: PMC7369580
528. New insights and long-term safety of tocilizumab in rheumatoid arthritis
+
529. New insights and long-term safety of tocilizumab in rheumatoid arthritis
Graeme Jones, Elena Panova
Therapeutic Advances in Musculoskeletal Disease (2018-10-07) https://doi.org/gffsdt
DOI: 10.1177/1759720x18798462 · PMID: 30327685 · PMCID: PMC6178374
529. Tocilizumab during pregnancy and lactation: drug levels in maternal serum, cord blood, breast milk and infant serum
+
530. Tocilizumab during pregnancy and lactation: drug levels in maternal serum, cord blood, breast milk and infant serum
Jumpei Saito, Naho Yakuwa, Kayoko Kaneko, Chinatsu Takai, Mikako Goto, Ken Nakajima, Akimasa Yamatani, Atsuko Murashima
Rheumatology (2019-08) https://doi.org/ggzhks
DOI: 10.1093/rheumatology/kez100 · PMID: 30945743
530. Short-course tocilizumab increases risk of hepatitis B virus reactivation in patients with rheumatoid arthritis: a prospective clinical observation
+
531. Short-course tocilizumab increases risk of hepatitis B virus reactivation in patients with rheumatoid arthritis: a prospective clinical observation
Le-Feng Chen, Ying-Qian Mo, Jun Jing, Jian-Da Ma, Dong-Hui Zheng, Lie Dai
International Journal of Rheumatic Diseases (2017-07) https://doi.org/f9pbc5
DOI: 10.1111/1756-185x.13010 · PMID: 28160426
531. Why tocilizumab could be an effective treatment for severe COVID-19?
+
532. Why tocilizumab could be an effective treatment for severe COVID-19?
Binqing Fu, Xiaoling Xu, Haiming Wei
Journal of Translational Medicine (2020-04-14) https://doi.org/ggv5c8
DOI: 10.1186/s12967-020-02339-3 · PMID: 32290839 · PMCID: PMC7154566
532. Risk of adverse events including serious infections in rheumatoid arthritis patients treated with tocilizumab: a systematic literature review and meta-analysis of randomized controlled trials
+
533. Risk of adverse events including serious infections in rheumatoid arthritis patients treated with tocilizumab: a systematic literature review and meta-analysis of randomized controlled trials
L. Campbell, C. Chen, S. S. Bhagat, R. A. Parker, A. J. K. Ostor
Rheumatology (2010-11-14) https://doi.org/crqn7c
DOI: 10.1093/rheumatology/keq343 · PMID: 21078627
533. Risk of serious infections in tocilizumab versus other biologic drugs in patients with rheumatoid arthritis: a multidatabase cohort study
+
534. Risk of serious infections in tocilizumab versus other biologic drugs in patients with rheumatoid arthritis: a multidatabase cohort study
Ajinkya Pawar, Rishi J Desai, Daniel H Solomon, Adrian J Santiago Ortiz, Sara Gale, Min Bao, Khaled Sarsour, Sebastian Schneeweiss, Seoyoung C Kim
Annals of the Rheumatic Diseases (2019-04) https://doi.org/gg62hx
DOI: 10.1136/annrheumdis-2018-214367 · PMID: 30679153
534. Risk of infections in rheumatoid arthritis patients treated with tocilizumab
+
535. Risk of infections in rheumatoid arthritis patients treated with tocilizumab
Veronika R. Lang, Matthias Englbrecht, Jürgen Rech, Hubert Nüsslein, Karin Manger, Florian Schuch, Hans-Peter Tony, Martin Fleck, Bernhard Manger, Georg Schett, Jochen Zwerina
Rheumatology (2012-05) https://doi.org/d3b3rh
DOI: 10.1093/rheumatology/ker223 · PMID: 21865281
535. Use of Tocilizumab for COVID-19-Induced Cytokine Release Syndrome
+
536. Use of Tocilizumab for COVID-19-Induced Cytokine Release Syndrome
Jared Radbel, Navaneeth Narayanan, Pinki J. Bhatt
Chest (2020-07) https://doi.org/ggtxvs
DOI: 10.1016/j.chest.2020.04.024 · PMID: 32343968 · PMCID: PMC7195070
536. The Efficacy of IL-6 Inhibitor Tocilizumab in Reducing Severe COVID-19 Mortality: A Systematic Review
+
537. The Efficacy of IL-6 Inhibitor Tocilizumab in Reducing Severe COVID-19 Mortality: A Systematic Review
Avi Kaye, Robert Siegel
Cold Spring Harbor Laboratory (2020-07-14) https://doi.org/gg62hv
DOI: 10.1101/2020.07.10.20150938
537. Utilizing tocilizumab for the treatment of cytokine release syndrome in COVID-19
+
538. Utilizing tocilizumab for the treatment of cytokine release syndrome in COVID-19
Ali Hassoun, Elizabeth Dilip Thottacherry, Justin Muklewicz, Qurrat-ul-ain Aziz, Jonathan Edwards
Journal of Clinical Virology (2020-07) https://doi.org/ggx359
DOI: 10.1016/j.jcv.2020.104443 · PMID: 32425661 · PMCID: PMC7229471
538. Development of therapeutic antibodies for the treatment of diseases
+
539. Development of therapeutic antibodies for the treatment of diseases
Ruei-Min Lu, Yu-Chyi Hwang, I-Ju Liu, Chi-Chiu Lee, Han-Zen Tsai, Hsin-Jung Li, Han-Chung Wu
Journal of Biomedical Science (2020-01-02) https://doi.org/ggqbpx
DOI: 10.1186/s12929-019-0592-z · PMID: 31894001 · PMCID: PMC6939334
539. Broadly Neutralizing Antiviral Antibodies
+
540. Broadly Neutralizing Antiviral Antibodies
Davide Corti, Antonio Lanzavecchia
Annual Review of Immunology (2013-03-21) https://doi.org/gf25g8
DOI: 10.1146/annurev-immunol-032712-095916 · PMID: 23330954
540. Ibalizumab Targeting CD4 Receptors, An Emerging Molecule in HIV Therapy
+
541. Ibalizumab Targeting CD4 Receptors, An Emerging Molecule in HIV Therapy
Simona A. Iacob, Diana G. Iacob
Frontiers in Microbiology (2017-11-27) https://doi.org/gcn3kh
DOI: 10.3389/fmicb.2017.02323 · PMID: 29230203 · PMCID: PMC5711820
541. Product review on the monoclonal antibody palivizumab for prevention of respiratory syncytial virus infection
+
542. Product review on the monoclonal antibody palivizumab for prevention of respiratory syncytial virus infection
Bernhard Resch
Human Vaccines & Immunotherapeutics (2017-06-12) https://doi.org/ggqbps
DOI: 10.1080/21645515.2017.1337614 · PMID: 28605249 · PMCID: PMC5612471
542. Chronological evolution of IgM, IgA, IgG and neutralisation antibodies after infection with SARS-associated coronavirus
+
543. Chronological evolution of IgM, IgA, IgG and neutralisation antibodies after infection with SARS-associated coronavirus
P.-R. Hsueh, L.-M. Huang, P.-J. Chen, C.-L. Kao, P.-C. Yang
Clinical Microbiology and Infection (2004-12) https://doi.org/cwwg87
DOI: 10.1111/j.1469-0691.2004.01009.x · PMID: 15606632
543. Neutralizing Antibodies in Patients with Severe Acute Respiratory Syndrome-Associated Coronavirus Infection
+
544. Neutralizing Antibodies in Patients with Severe Acute Respiratory Syndrome-Associated Coronavirus Infection
Nie Yuchun, Wang Guangwen, Shi Xuanling, Zhang Hong, Qiu Yan, He Zhongping, Wang Wei, Lian Gewei, Yin Xiaolei, Du Liying, … Ding Mingxiao
The Journal of Infectious Diseases (2004-09) https://doi.org/cgqj5b
DOI: 10.1086/423286 · PMID: 15319862
544. Potent human monoclonal antibodies against SARS CoV, Nipah and Hendra viruses
+
545. Potent human monoclonal antibodies against SARS CoV, Nipah and Hendra viruses
Ponraj Prabakaran, Zhongyu Zhu, Xiaodong Xiao, Arya Biragyn, Antony S Dimitrov, Christopher C Broder, Dimiter S Dimitrov
Expert Opinion on Biological Therapy (2009-04-08) https://doi.org/b88kw8
DOI: 10.1517/14712590902763755 · PMID: 19216624 · PMCID: PMC2705284
545. Prior Infection and Passive Transfer of Neutralizing Antibody Prevent Replication of Severe Acute Respiratory Syndrome Coronavirus in the Respiratory Tract of Mice
+
546. Prior Infection and Passive Transfer of Neutralizing Antibody Prevent Replication of Severe Acute Respiratory Syndrome Coronavirus in the Respiratory Tract of Mice
Kanta Subbarao, Josephine McAuliffe, Leatrice Vogel, Gary Fahle, Steven Fischer, Kathleen Tatti, Michelle Packard, Wun-Ju Shieh, Sherif Zaki, Brian Murphy
Journal of Virology (2004-04-01) https://doi.org/b8wr7c
DOI: 10.1128/jvi.78.7.3572-3577.2004 · PMID: 15016880 · PMCID: PMC371090
546. The Effectiveness of Convalescent Plasma and Hyperimmune Immunoglobulin for the Treatment of Severe Acute Respiratory Infections of Viral Etiology: A Systematic Review and Exploratory Meta-analysis
+
547. The Effectiveness of Convalescent Plasma and Hyperimmune Immunoglobulin for the Treatment of Severe Acute Respiratory Infections of Viral Etiology: A Systematic Review and Exploratory Meta-analysis
John Mair-Jenkins, Maria Saavedra-Campos, J. Kenneth Baillie, Paul Cleary, Fu-Meng Khaw, Wei Shen Lim, Sophia Makki, Kevin D. Rooney, Jonathan S. Nguyen-Van-Tam, Charles R. Beck, Convalescent Plasma Study Group
Journal of Infectious Diseases (2015-01-01) https://doi.org/f632n7
DOI: 10.1093/infdis/jiu396 · PMID: 25030060 · PMCID: PMC4264590
547. Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution
+
548. Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution
X.-C. Tang, S. S. Agnihothram, Y. Jiao, J. Stanhope, R. L. Graham, E. C. Peterson, Y. Avnir, A. S. C. Tallarico, J. Sheehan, Q. Zhu, … W. A. Marasco
Proceedings of the National Academy of Sciences (2014-04-28) https://doi.org/smr
DOI: 10.1073/pnas.1402074111 · PMID: 24778221 · PMCID: PMC4024880
548. Exceptionally Potent Neutralization of Middle East Respiratory Syndrome Coronavirus by Human Monoclonal Antibodies
+
549. Exceptionally Potent Neutralization of Middle East Respiratory Syndrome Coronavirus by Human Monoclonal Antibodies
Tianlei Ying, Lanying Du, Tina W. Ju, Ponraj Prabakaran, Candy C. Y. Lau, Lu Lu, Qi Liu, Lili Wang, Yang Feng, Yanping Wang, … Dimiter S. Dimitrov
Journal of Virology (2014-07-15) https://doi.org/ggzf5p
DOI: 10.1128/jvi.00912-14 · PMID: 24789777 · PMCID: PMC4097770
549. The Role of ACE2 in Cardiovascular Physiology
+
550. The Role of ACE2 in Cardiovascular Physiology
Gavin Y. Oudit, Michael A. Crackower, Peter H. Backx, Josef M. Penninger
Trends in Cardiovascular Medicine (2003-04) https://doi.org/bsbp49
DOI: 10.1016/s1050-1738(02)00233-5
550. A human monoclonal antibody blocking SARS-CoV-2 infection
+
551. A human monoclonal antibody blocking SARS-CoV-2 infection
Chunyan Wang, Wentao Li, Dubravka Drabek, Nisreen M. A. Okba, Rien van Haperen, Albert D. M. E. Osterhaus, Frank J. M. van Kuppeveld, Bart L. Haagmans, Frank Grosveld, Berend-Jan Bosch
Cold Spring Harbor Laboratory (2020-03-12) https://doi.org/ggnw4t
DOI: 10.1101/2020.03.11.987958
551. Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion
+
552. Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion
Alexandra C. Walls, Xiaoli Xiong, Young-Jun Park, M. Alejandra Tortorici, Joost Snijder, Joel Quispe, Elisabetta Cameroni, Robin Gopal, Mian Dai, Antonio Lanzavecchia, … David Veesler
Cell (2019-02) https://doi.org/gft3jg
DOI: 10.1016/j.cell.2018.12.028 · PMID: 30712865 · PMCID: PMC6751136
552. In Vitro Neutralization Is Not Predictive of Prophylactic Efficacy of Broadly Neutralizing Monoclonal Antibodies CR6261 and CR9114 against Lethal H2 Influenza Virus Challenge in Mice
+
553. In Vitro Neutralization Is Not Predictive of Prophylactic Efficacy of Broadly Neutralizing Monoclonal Antibodies CR6261 and CR9114 against Lethal H2 Influenza Virus Challenge in Mice
Troy C. Sutton, Elaine W. Lamirande, Kevin W. Bock, Ian N. Moore, Wouter Koudstaal, Muniza Rehman, Gerrit Jan Weverling, Jaap Goudsmit, Kanta Subbarao
Journal of Virology (2017-10-18) https://doi.org/ggqbpt
DOI: 10.1128/jvi.01603-17 · PMID: 29046448 · PMCID: PMC5709608
553. Human neutralizing antibodies against MERS coronavirus: implications for future immunotherapy
+
554. Human neutralizing antibodies against MERS coronavirus: implications for future immunotherapy
Xian-Chun Tang, Wayne A Marasco
Immunotherapy (2015-07) https://doi.org/ggqbpz
DOI: 10.2217/imt.15.33 · PMID: 26098703 · PMCID: PMC5068219
554. A Potent and Broad Neutralizing Antibody Recognizes and Penetrates the HIV Glycan Shield
+
555. A Potent and Broad Neutralizing Antibody Recognizes and Penetrates the HIV Glycan Shield
R. Pejchal, K. J. Doores, L. M. Walker, R. Khayat, P.-S. Huang, S.-K. Wang, R. L. Stanfield, J.-P. Julien, A. Ramos, M. Crispin, … I. A. Wilson
Science (2011-10-13) https://doi.org/bzqv8c
DOI: 10.1126/science.1213256 · PMID: 21998254 · PMCID: PMC3280215
555. Broadly Neutralizing Antibodies against HIV: Back to Blood
+
556. Broadly Neutralizing Antibodies against HIV: Back to Blood
Amir Dashti, Anthony L. DeVico, George K. Lewis, Mohammad M. Sajadi
Trends in Molecular Medicine (2019-03) https://doi.org/ggqbpr
DOI: 10.1016/j.molmed.2019.01.007 · PMID: 30792120 · PMCID: PMC6401214
556. Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein To Avoid Neutralization Escape
+
557. Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein To Avoid Neutralization Escape
Lingshu Wang, Wei Shi, James D. Chappell, M. Gordon Joyce, Yi Zhang, Masaru Kanekiyo, Michelle M. Becker, Neeltje van Doremalen, Robert Fischer, Nianshuang Wang, … Barney S. Graham
Journal of Virology (2018-04-27) https://doi.org/ggqbpv
DOI: 10.1128/jvi.02002-17 · PMID: 29514901 · PMCID: PMC5923077
557. Anti–spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection
+
558. Anti–spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection
Li Liu, Qiang Wei, Qingqing Lin, Jun Fang, Haibo Wang, Hauyee Kwok, Hangying Tang, Kenji Nishiura, Jie Peng, Zhiwu Tan, … Zhiwei Chen
JCI Insight (2019-02-21) https://doi.org/ggqbpw
DOI: 10.1172/jci.insight.123158 · PMID: 30830861 · PMCID: PMC6478436
558. The antiviral effect of interferon-beta against SARS-Coronavirus is not mediated by MxA protein
+
559. The antiviral effect of interferon-beta against SARS-Coronavirus is not mediated by MxA protein
Martin Spiegel, Andreas Pichlmair, Elke Mühlberger, Otto Haller, Friedemann Weber
Journal of Clinical Virology (2004-07) https://doi.org/cmc3ds
DOI: 10.1016/j.jcv.2003.11.013 · PMID: 15135736
559. Coronavirus virulence genes with main focus on SARS-CoV envelope gene
+
560. Coronavirus virulence genes with main focus on SARS-CoV envelope gene
Marta L. DeDiego, Jose L. Nieto-Torres, Jose M. Jimenez-Guardeño, Jose A. Regla-Nava, Carlos Castaño-Rodriguez, Raul Fernandez-Delgado, Fernando Usera, Luis Enjuanes
Virus Research (2014-12) https://doi.org/f6wm24
DOI: 10.1016/j.virusres.2014.07.024 · PMID: 25093995 · PMCID: PMC4261026
560. A Randomised Double-blind Placebo-controlled Trial to Determine the Safety and Efficacy of Inhaled SNG001 (IFN-β1a for Nebulisation) for the Treatment of Patients With Confirmed SARS-CoV-2 Infection
+
561. A Randomised Double-blind Placebo-controlled Trial to Determine the Safety and Efficacy of Inhaled SNG001 (IFN-β1a for Nebulisation) for the Treatment of Patients With Confirmed SARS-CoV-2 Infection
Synairgen Research Ltd.
clinicaltrials.gov (2020-08-25) https://clinicaltrials.gov/ct2/show/NCT04385095
561. people
-Richard marsden
-(2020-03) https://www.synairgen.com/wp-content/uploads/2020/03/200318-Synairgen-to-start-trial-of-SNG001-in-COVID-19-imminently-.pdf
562. Synairgen to start trial of SNG001 in COVID-19 imminently
+Synairgen plc press release
+(2020-03-18) http://synairgen.web01.hosting.bdci.co.uk/umbraco/Surface/Download/GetFile?cid=23c9b12c-508b-48c3-9081-36605c5a9ccd
562. people
-Richard marsden
-(2020-07) https://www.synairgen.com/wp-content/uploads/2020/07/200720-Synairgen-announces-positive-results-from-trial-of-SNG001-in-hospitalised-COVID-19-patients.pdf
563. Synairgen announces positive results from trial of SNG001 in hospitalised COVID-19 patients
+Synairgen plc press release
+(2020-07-20) http://synairgen.web01.hosting.bdci.co.uk/umbraco/Surface/Download/GetFile?cid=1130026e-0983-4338-b648-4ac7928b9a37
563. Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for treatment of SARS-CoV-2 infection: a randomised, double-blind, placebo-controlled, phase 2 trial
+
564. Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for treatment of SARS-CoV-2 infection: a randomised, double-blind, placebo-controlled, phase 2 trial
Phillip D Monk, Richard J Marsden, Victoria J Tear, Jody Brookes, Toby N Batten, Marcin Mankowski, Felicity J Gabbay, Donna E Davies, Stephen T Holgate, Ling-Pei Ho, … Pedro MB Rodrigues
The Lancet Respiratory Medicine (2021-02) https://doi.org/ghjzm4
DOI: 10.1016/s2213-2600(20)30511-7 · PMID: 33189161 · PMCID: PMC7836724
564. Nebulised interferon beta-1a for patients with COVID-19
+
565. Nebulised interferon beta-1a for patients with COVID-19
Nathan Peiffer-Smadja, Yazdan Yazdanpanah
The Lancet Respiratory Medicine (2021-02) https://doi.org/ftmj
DOI: 10.1016/s2213-2600(20)30523-3 · PMID: 33189160 · PMCID: PMC7833737
565. Effect of Intravenous Interferon β-1a on Death and Days Free From Mechanical Ventilation Among Patients With Moderate to Severe Acute Respiratory Distress Syndrome
+
566. Effect of Intravenous Interferon β-1a on Death and Days Free From Mechanical Ventilation Among Patients With Moderate to Severe Acute Respiratory Distress Syndrome
V. Marco Ranieri, Ville Pettilä, Matti K. Karvonen, Juho Jalkanen, Peter Nightingale, David Brealey, Jordi Mancebo, Ricard Ferrer, Alain Mercat, Nicolò Patroniti, … for the INTEREST Study Group
JAMA (2020-02-25) https://doi.org/ghzkww
DOI: 10.1001/jama.2019.22525 · PMID: 32065831
566. A Randomized Clinical Trial of the Efficacy and Safety of Interferon β-1a in Treatment of Severe COVID-19
+
567. A Randomized Clinical Trial of the Efficacy and Safety of Interferon β-1a in Treatment of Severe COVID-19
Effat Davoudi-Monfared, Hamid Rahmani, Hossein Khalili, Mahboubeh Hajiabdolbaghi, Mohamadreza Salehi, Ladan Abbasian, Hossein Kazemzadeh, Mir Saeed Yekaninejad
Antimicrobial Agents and Chemotherapy (2020-08-20) https://doi.org/gg5xvm
DOI: 10.1128/aac.01061-20 · PMID: 32661006 · PMCID: PMC7449227
567. A Multicenter, Adaptive, Randomized Blinded Controlled Trial of the Safety and Efficacy of Investigational Therapeutics for the Treatment of COVID-19 in Hospitalized Adults (ACTT-3)
+
568. A Multicenter, Adaptive, Randomized Blinded Controlled Trial of the Safety and Efficacy of Investigational Therapeutics for the Treatment of COVID-19 in Hospitalized Adults (ACTT-3)
National Institute of Allergy and Infectious Diseases (NIAID)
clinicaltrials.gov (2021-02-04) https://clinicaltrials.gov/ct2/show/NCT04492475
568. Table 1, Cost-Comparison Table for Biologic Disease-Modifying Drugs for Rheumatoid Arthritis
+
569. Table 1, Cost-Comparison Table for Biologic Disease-Modifying Drugs for Rheumatoid Arthritis
National Center for Biotechnology Information, U. S. National Library of Medicine 8600 Rockville Pike, Bethesda MD, 20894 Usa
(2015-08) https://www.ncbi.nlm.nih.gov/books/NBK349513/table/T43/
569. A Cost Comparison of Treatments of Moderate to Severe Psoriasis
+
570. A Cost Comparison of Treatments of Moderate to Severe Psoriasis
Cheryl Hankin, Steven Feldman, Andy Szczotka, Randolph Stinger, Leslie Fish, David Hankin
Drug Benefit Trends (2005-05) https://escholarship.umassmed.edu/meyers_pp/385
570. TNF-α inhibition for potential therapeutic modulation of SARS coronavirus infection
+
571. TNF-α inhibition for potential therapeutic modulation of SARS coronavirus infection
Edward Tobinick
Current Medical Research and Opinion (2008-09-22) https://doi.org/bq4cx2
DOI: 10.1185/030079903125002757 · PMID: 14741070
571. Sanofi and Regeneron begin global Kevzara® (sarilumab) clinical trial program in patients with severe COVID-19
+
572. Sanofi and Regeneron begin global Kevzara® (sarilumab) clinical trial program in patients with severe COVID-19
Sanofi
(2020-03-16) http://www.news.sanofi.us/2020-03-16-Sanofi-and-Regeneron-begin-global-Kevzara-R-sarilumab-clinical-trial-program-in-patients-with-severe-COVID-19
572. Sarilumab COVID-19 - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04327388
+573. Sarilumab COVID-19 - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04327388
573. COVID-19: combining antiviral and anti-inflammatory treatments
+
574. COVID-19: combining antiviral and anti-inflammatory treatments
Justin Stebbing, Anne Phelan, Ivan Griffin, Catherine Tucker, Olly Oechsle, Dan Smith, Peter Richardson
The Lancet Infectious Diseases (2020-04) https://doi.org/dph5
DOI: 10.1016/s1473-3099(20)30132-8 · PMID: 32113509 · PMCID: PMC7158903
574. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease
+
575. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease
Peter Richardson, Ivan Griffin, Catherine Tucker, Dan Smith, Olly Oechsle, Anne Phelan, Michael Rawling, Edward Savory, Justin Stebbing
The Lancet (2020-02) https://doi.org/ggnrsx
DOI: 10.1016/s0140-6736(20)30304-4 · PMID: 32032529 · PMCID: PMC7137985
575. Lilly Begins Clinical Testing of Therapies for COVID-19 | Eli Lilly and Company https://investor.lilly.com/news-releases/news-release-details/lilly-begins-clinical-testing-therapies-covid-19
+576. Lilly Begins Clinical Testing of Therapies for COVID-19 | Eli Lilly and Company https://investor.lilly.com/news-releases/news-release-details/lilly-begins-clinical-testing-therapies-covid-19
576. Baricitinib Combined With Antiviral Therapy in Symptomatic Patients Infected by COVID-19: an Open-label, Pilot Study
+
577. Baricitinib Combined With Antiviral Therapy in Symptomatic Patients Infected by COVID-19: an Open-label, Pilot Study
Fabrizio Cantini
clinicaltrials.gov (2020-04-19) https://clinicaltrials.gov/ct2/show/NCT04320277
577. Design and Synthesis of Hydroxyferroquine Derivatives with Antimalarial and Antiviral Activities
+
578. Design and Synthesis of Hydroxyferroquine Derivatives with Antimalarial and Antiviral Activities
Christophe Biot, Wassim Daher, Natascha Chavain, Thierry Fandeur, Jamal Khalife, Daniel Dive, Erik De Clercq
Journal of Medicinal Chemistry (2006-05) https://doi.org/db4n83
DOI: 10.1021/jm0601856 · PMID: 16640347
578. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice
+
579. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice
Timothy P. Sheahan, Amy C. Sims, Shuntai Zhou, Rachel L. Graham, Andrea J. Pruijssers, Maria L. Agostini, Sarah R. Leist, Alexandra Schäfer, Kenneth H. Dinnon, Laura J. Stevens, … Ralph S. Baric
Science Translational Medicine (2020-04-29) https://doi.org/ggrqd2
DOI: 10.1126/scitranslmed.abb5883 · PMID: 32253226 · PMCID: PMC7164393
579. Antiviral Monoclonal Antibodies: Can They Be More Than Simple Neutralizing Agents?
+
580. Antiviral Monoclonal Antibodies: Can They Be More Than Simple Neutralizing Agents?
Mireia Pelegrin, Mar Naranjo-Gomez, Marc Piechaczyk
Trends in Microbiology (2015-10) https://doi.org/f7vzrf
DOI: 10.1016/j.tim.2015.07.005 · PMID: 26433697 · PMCID: PMC7127033
580. Intranasal Treatment with Poly(I{middle dot}C) Protects Aged Mice from Lethal Respiratory Virus Infections
+
581. Intranasal Treatment with Poly(I{middle dot}C) Protects Aged Mice from Lethal Respiratory Virus Infections
J. Zhao, C. Wohlford-Lenane, J. Zhao, E. Fleming, T. E. Lane, P. B. McCray, S. Perlman
Journal of Virology (2012-08-22) https://doi.org/f4bzfp
DOI: 10.1128/jvi.01410-12 · PMID: 22915814 · PMCID: PMC3486278
581. Main protease structure and XChem fragment screen
+
582. Main protease structure and XChem fragment screen
Diamond
(2020-05-05) https://www.diamond.ac.uk/covid-19/for-scientists/Main-protease-structure-and-XChem.html
582. COVID-19: The Inflammation Link and the Role of Nutrition in Potential Mitigation
+
583. COVID-19: The Inflammation Link and the Role of Nutrition in Potential Mitigation
Ioannis Zabetakis, Ronan Lordan, Catherine Norton, Alexandros Tsoupras
Nutrients (2020-05-19) https://doi.org/ggxdq3
DOI: 10.3390/nu12051466 · PMID: 32438620 · PMCID: PMC7284818
583. Could nutrition modulate COVID-19 susceptibility and severity of disease? A systematic review
+
584. Could nutrition modulate COVID-19 susceptibility and severity of disease? A systematic review
Philip T. James, Zakari Ali, Andrew E. Armitage, Ana Bonell, Carla Cerami, Hal Drakesmith, Modou Jobe, Kerry S. Jones, Zara Liew, Sophie E. Moore, … Andrew M. Prentice
Cold Spring Harbor Laboratory (2020-10-21) https://doi.org/ghr94g
DOI: 10.1101/2020.10.19.20214395
584. Coronavirus Disease 2019 (COVID-19) and Nutritional Status: The Missing Link?
+
585. Coronavirus Disease 2019 (COVID-19) and Nutritional Status: The Missing Link?
Renata Silverio, Daniela Caetano Gonçalves, Márcia Fábia Andrade, Marilia Seelaender
Advances in Nutrition (2020-09-25) https://doi.org/ghhqjd
DOI: 10.1093/advances/nmaa125 · PMID: 32975565 · PMCID: PMC7543263
585. Nutritional status of patients with COVID-19
+
586. Nutritional status of patients with COVID-19
Jae Hyoung Im, Young Soo Je, Jihyeon Baek, Moon-Hyun Chung, Hea Yoon Kwon, Jin-Soo Lee
International Journal of Infectious Diseases (2020-11) https://doi.org/gg7t5t
DOI: 10.1016/j.ijid.2020.08.018 · PMID: 32795605 · PMCID: PMC7418699
586. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections
+
587. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections
Philip Calder, Anitra Carr, Adrian Gombart, Manfred Eggersdorfer
Nutrients (2020-04-23) https://doi.org/gg29hh
DOI: 10.3390/nu12041181 · PMID: 32340216 · PMCID: PMC7230749
587. Peak dietary supplement sales leveling off during COVID-19 pandemic, but growth still remains strong over last year, market researchers report during webcast
+
588. Peak dietary supplement sales leveling off during COVID-19 pandemic, but growth still remains strong over last year, market researchers report during webcast
Nutritional Outlook
https://www.nutritionaloutlook.com/view/peak-dietary-supplement-sales-leveling-during-covid-19-pandemic-growth-still-remains-strong
588. Dietary Diversity among Chinese Residents during the COVID-19 Outbreak and Its Associated Factors
+
589. Dietary Diversity among Chinese Residents during the COVID-19 Outbreak and Its Associated Factors
Ai Zhao, Zhongyu Li, Yalei Ke, Shanshan Huo, Yidi Ma, Yumei Zhang, Jian Zhang, Zhongxia Ren
Nutrients (2020-06-06) https://doi.org/ghc6d9
DOI: 10.3390/nu12061699 · PMID: 32517210 · PMCID: PMC7352896
589. Lockdown impact: Grocery stores bolstered NZ supplements sales as pharmacies slumped
+
590. Lockdown impact: Grocery stores bolstered NZ supplements sales as pharmacies slumped
nutraingredients-asia.com
nutraingredients-asia.com https://www.nutraingredients-asia.com/Article/2020/07/06/Lockdown-impact-Grocery-stores-bolstered-NZ-supplements-sales-as-pharmacies-slumped
590. COVID-19 temporarily bolsters European interest in supplements
+
591. COVID-19 temporarily bolsters European interest in supplements
.nutritioninsight.com/
https://ni.cnsmedia.com/a/EHHJsDOG2oc=
591. India’s immune health surge: Nation leads APAC in number of new product launches – new data
+
592. India’s immune health surge: Nation leads APAC in number of new product launches – new data
nutraingredients.com
nutraingredients.com https://www.nutraingredients.com/Article/2020/07/21/India-s-immune-health-surge-Nation-leads-APAC-in-number-of-new-product-launches-new-data
592. Food policy, nutrition and nutraceuticals in the prevention and management of COVID-19: Advice for healthcare professionals
+
593. Food policy, nutrition and nutraceuticals in the prevention and management of COVID-19: Advice for healthcare professionals
Yasemin Ipek Ayseli, Nazli Aytekin, Derya Buyukkayhan, Ismail Aslan, Mehmet Turan Ayseli
Trends in Food Science & Technology (2020-11) https://doi.org/ghjtcp
DOI: 10.1016/j.tifs.2020.09.001 · PMID: 33519086 · PMCID: PMC7834257
593. 5 Food and Beverage Trends in Europe During COVID-19 https://kerry.com/insights/kerrydigest/2020/5-food-and-beverage-trends-in-europe-during-covid-19
+594. 5 Food and Beverage Trends in Europe During COVID-19 https://kerry.com/insights/kerrydigest/2020/5-food-and-beverage-trends-in-europe-during-covid-19
594. Structural Design Principles for Delivery of Bioactive Components in Nutraceuticals and Functional Foods
+
595. Structural Design Principles for Delivery of Bioactive Components in Nutraceuticals and Functional Foods
David Julian McClements, Eric Andrew Decker, Yeonhwa Park, Jochen Weiss
Critical Reviews in Food Science and Nutrition (2009-06-16) https://doi.org/dt68m4
DOI: 10.1080/10408390902841529 · PMID: 19484636
595. Nutraceutical therapies for atherosclerosis
+
596. Nutraceutical therapies for atherosclerosis
Joe W. E. Moss, Dipak P. Ramji
Nature Reviews Cardiology (2016-07-07) https://doi.org/f9g389
DOI: 10.1038/nrcardio.2016.103 · PMID: 27383080 · PMCID: PMC5228762
596. Nutraceutical-definition and introduction
+
597. Nutraceutical-definition and introduction
Ekta K. Kalra
AAPS PharmSci (2015-07-10) https://doi.org/cg5wc9
DOI: 10.1208/ps050325 · PMID: 14621960 · PMCID: PMC2750935
597. Dietary Supplement Health and Education Act of 1994
+
598. Dietary Supplement Health and Education Act of 1994
National Institutes of Health Office of Dietary Supplements
https://ods.od.nih.gov/About/DSHEA_Wording.aspx
598. Food and Drug Administration Modernization Act (FDAMA) of 1997
+
599. Food and Drug Administration Modernization Act (FDAMA) of 1997
Office of the Commissioner
FDA (2018-11-03) https://www.fda.gov/regulatory-information/selected-amendments-fdc-act/food-and-drug-administration-modernization-act-fdama-1997
599. Nutraceuticals - shedding light on the grey area between pharmaceuticals and food
+
600. Nutraceuticals - shedding light on the grey area between pharmaceuticals and food
Antonello Santini, Ettore Novellino
Expert Review of Clinical Pharmacology (2018-04-23) https://doi.org/ggwztk
DOI: 10.1080/17512433.2018.1464911 · PMID: 29667442
602. EU Register of nutrition and health claims made on foods (v.3.5) https://ec.europa.eu/food/safety/labelling_nutrition/claims/register/public/
+603. EU Register of nutrition and health claims made on foods (v.3.5) https://ec.europa.eu/food/safety/labelling_nutrition/claims/register/public/
603. Nutraceuticals: opening the debate for a regulatory framework
+
604. Nutraceuticals: opening the debate for a regulatory framework
Antonello Santini, Silvia Miriam Cammarata, Giacomo Capone, Angela Ianaro, Gian Carlo Tenore, Luca Pani, Ettore Novellino
British Journal of Clinical Pharmacology (2018-04) https://doi.org/ggwztm
DOI: 10.1111/bcp.13496 · PMID: 29433155 · PMCID: PMC5867125
604. Reviewing the Nutrition and Health Claims Regulation (EC) No. 1924/2006: What do we know about its challenges and potential impact on innovation?
+
605. Reviewing the Nutrition and Health Claims Regulation (EC) No. 1924/2006: What do we know about its challenges and potential impact on innovation?
Stefanie Bröring, Sukhada Khedkar, Stefano Ciliberti
International Journal of Food Sciences and Nutrition (2016-08-02) https://doi.org/ghr936
DOI: 10.1080/09637486.2016.1212816 · PMID: 27484163
605. Dietary Supplements: Regulatory Challenges and Research Resources
+
606. Dietary Supplements: Regulatory Challenges and Research Resources
Johanna Dwyer, Paul Coates, Michael Smith
Nutrients (2018-01-04) https://doi.org/ghr949
DOI: 10.3390/nu10010041 · PMID: 29300341 · PMCID: PMC5793269
606. Noetic Nutraceuticals - 607572 - 05/15/2020
+
607. Noetic Nutraceuticals - 607572 - 05/15/2020
Center for Drug Evaluation and Research
Center for Drug Evaluation and Research (2020-05-18) https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/warning-letters/noetic-nutraceuticals-607572-05152020
607. Regulations.gov https://beta.regulations.gov/document/FDA-2020-S-0023-0068
+608. Regulations.gov https://beta.regulations.gov/document/FDA-2020-S-0023-0068
608. Spartan Enterprises Inc. dba Watershed Wellness Center - 610876 - 10/30/2020
+
609. Spartan Enterprises Inc. dba Watershed Wellness Center - 610876 - 10/30/2020
Center for Drug Evaluation and Research
Center for Drug Evaluation and Research (2020-11-02) https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/warning-letters/spartan-enterprises-inc-dba-watershed-wellness-center-610876-10302020
609. FTC Sues California Marketer of $23,000 COVID-19 “Treatment” Plan
+
610. FTC Sues California Marketer of $23,000 COVID-19 “Treatment” Plan
Federal Trade Commission
(2020-07-31) https://www.ftc.gov/news-events/press-releases/2020/07/ftc-sues-california-marketer-23000-covid-19-treatment-plan
611. Reducing mortality from 2019-nCoV: host-directed therapies should be an option
+
612. Reducing mortality from 2019-nCoV: host-directed therapies should be an option
Alimuddin Zumla, David S Hui, Esam I Azhar, Ziad A Memish, Markus Maeurer
The Lancet (2020-02) https://doi.org/ggkd3b
DOI: 10.1016/s0140-6736(20)30305-6
612. Diet Supplementation, Probiotics, and Nutraceuticals in SARS-CoV-2 Infection: A Scoping Review
+
613. Diet Supplementation, Probiotics, and Nutraceuticals in SARS-CoV-2 Infection: A Scoping Review
Fabio Infusino, Massimiliano Marazzato, Massimo Mancone, Francesco Fedele, Claudio Maria Mastroianni, Paolo Severino, Giancarlo Ceccarelli, Letizia Santinelli, Elena Cavarretta, Antonino G. M. Marullo, … Gabriella d’Ettorre
Nutrients (2020-06-08) https://doi.org/gg8k58
DOI: 10.3390/nu12061718 · PMID: 32521760 · PMCID: PMC7352781
613. Potential interventions for novel coronavirus in China: A systematic review
+
614. Potential interventions for novel coronavirus in China: A systematic review
Lei Zhang, Yunhui Liu
Journal of Medical Virology (2020-03-03) https://doi.org/ggpx57
DOI: 10.1002/jmv.25707 · PMID: 32052466
614. Nutraceuticals have potential for boosting the type 1 interferon response to RNA viruses including influenza and coronavirus
+
615. Nutraceuticals have potential for boosting the type 1 interferon response to RNA viruses including influenza and coronavirus
Mark F. McCarty, James J. DiNicolantonio
Progress in Cardiovascular Diseases (2020-05) https://doi.org/ggpwx2
DOI: 10.1016/j.pcad.2020.02.007 · PMID: 32061635
615. Inflammation and cardiovascular disease: are marine phospholipids the answer?
+
616. Inflammation and cardiovascular disease: are marine phospholipids the answer?
Ronan Lordan, Shane Redfern, Alexandros Tsoupras, Ioannis Zabetakis
Food & Function (2020) https://doi.org/gg29hg
DOI: 10.1039/c9fo01742a · PMID: 32270798
616. The Potential Beneficial Effect of EPA and DHA Supplementation Managing Cytokine Storm in Coronavirus Disease
+
617. The Potential Beneficial Effect of EPA and DHA Supplementation Managing Cytokine Storm in Coronavirus Disease
Zoltán Szabó, Tamás Marosvölgyi, Éva Szabó, Péter Bai, Mária Figler, Zsófia Verzár
Frontiers in Physiology (2020-06-19) https://doi.org/gg4hz4
DOI: 10.3389/fphys.2020.00752 · PMID: 32636763 · PMCID: PMC7318894
617. Exploitation of Microalgae Species for Nutraceutical Purposes: Cultivation Aspects
+
618. Exploitation of Microalgae Species for Nutraceutical Purposes: Cultivation Aspects
Sushanta Saha, Patrick Murray
Fermentation (2018-06-14) https://doi.org/ghv64j
DOI: 10.3390/fermentation4020046
618. Prospective options of algae-derived nutraceuticals as supplements to combat COVID-19 and human coronavirus diseases
+
619. Prospective options of algae-derived nutraceuticals as supplements to combat COVID-19 and human coronavirus diseases
Sachitra K. Ratha, Nirmal Renuka, Ismail Rawat, Faizal Bux
Nutrition (2021-03) https://doi.org/ghr93z
DOI: 10.1016/j.nut.2020.111089 · PMID: 33412367 · PMCID: PMC7680017
619. Safety Aspects of Fish Oils
+
620. Safety Aspects of Fish Oils
Erik Berg Schmidt, Jørn Munkhof Møller, Niels Svaneborg, Jørn Dyerberg
Drug Investigation (2012-10-14) https://doi.org/ghvqm8
DOI: 10.1007/bf03257413
620. Update on Seafood Consumption During Pregnancy https://www.acog.org/en/Clinical/Clinical Guidance/Practice Advisory/Articles/2017/01/Update on Seafood Consumption During Pregnancy
+621. Update on Seafood Consumption During Pregnancy https://www.acog.org/en/Clinical/Clinical Guidance/Practice Advisory/Articles/2017/01/Update on Seafood Consumption During Pregnancy
621. Omega-3 Fatty Acid supplementation during pregnancy
+
622. Omega-3 Fatty Acid supplementation during pregnancy
James A Greenberg, Stacey J Bell, Wendy Van Ausdal
Reviews in obstetrics & gynecology (2008) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2621042/
PMID: 19173020 · PMCID: PMC2621042
622. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology?
+
623. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology?
Philip C. Calder
British Journal of Clinical Pharmacology (2013-03) https://doi.org/ggqmgg
DOI: 10.1111/j.1365-2125.2012.04374.x · PMID: 22765297 · PMCID: PMC3575932
623. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance
+
624. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance
Philip C. Calder
Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids (2015-04) https://doi.org/gf8pc6
DOI: 10.1016/j.bbalip.2014.08.010 · PMID: 25149823
624. N-3 polyunsaturated fatty acids modulate B cell activity in pre-clinical models: Implications for the immune response to infections
+
625. N-3 polyunsaturated fatty acids modulate B cell activity in pre-clinical models: Implications for the immune response to infections
Jarrett Whelan, Kymberly M. Gowdy, Saame Raza Shaikh
European Journal of Pharmacology (2016-08) https://doi.org/f8xn7q
DOI: 10.1016/j.ejphar.2015.03.100 · PMID: 26022530 · PMCID: PMC4662641
625. Blood omega-3 fatty acids and death from COVID-19: A pilot study
+
626. Blood omega-3 fatty acids and death from COVID-19: A pilot study
Arash Asher, Nathan L. Tintle, Michael Myers, Laura Lockshon, Heribert Bacareza, William S. Harris
Prostaglandins, Leukotrienes and Essential Fatty Acids (2021-03) https://doi.org/ghv63m
DOI: 10.1016/j.plefa.2021.102250 · PMID: 33516093 · PMCID: PMC7816864
626. n-3 Polyunsaturated Fatty Acids Improve Inflammation via Inhibiting Sphingosine Kinase 1 in a Rat Model of Parenteral Nutrition and CLP-Induced Sepsis
+
627. n-3 Polyunsaturated Fatty Acids Improve Inflammation via Inhibiting Sphingosine Kinase 1 in a Rat Model of Parenteral Nutrition and CLP-Induced Sepsis
Tao Tian, Yunzhao Zhao, Qian Huang, Jieshou Li
Lipids (2016-02-08) https://doi.org/ghvqm9
DOI: 10.1007/s11745-016-4129-x · PMID: 26856322
627. Polyunsaturated fatty acids and sepsis
+
628. Polyunsaturated fatty acids and sepsis
Undurti N. Das
Nutrition (2019-09) https://doi.org/ghvqnb
DOI: 10.1016/j.nut.2019.02.016 · PMID: 31029920
628. Clinical characteristics of 82 cases of death from COVID-19
+
629. Clinical characteristics of 82 cases of death from COVID-19
Bicheng Zhang, Xiaoyang Zhou, Yanru Qiu, Yuxiao Song, Fan Feng, Jia Feng, Qibin Song, Qingzhu Jia, Jun Wang
PLOS ONE (2020-07-09) https://doi.org/gg4sgx
DOI: 10.1371/journal.pone.0235458 · PMID: 32645044 · PMCID: PMC7347130
629. Effects of an omega-3 fatty acid-enriched lipid emulsion on eicosanoid synthesis in acute respiratory distress syndrome (ARDS): A prospective, randomized, double-blind, parallel group study
+
630. Effects of an omega-3 fatty acid-enriched lipid emulsion on eicosanoid synthesis in acute respiratory distress syndrome (ARDS): A prospective, randomized, double-blind, parallel group study
Joan Sabater, Joan Masclans, Judit Sacanell, Pilar Chacon, Pilar Sabin, Mercè Planas
Nutrition & Metabolism (2011) https://doi.org/bg2kpp
DOI: 10.1186/1743-7075-8-22 · PMID: 21477318 · PMCID: PMC3080285
630. Immunonutrition for Adults With ARDS: Results From a Cochrane Systematic Review and Meta-Analysis
+
631. Immunonutrition for Adults With ARDS: Results From a Cochrane Systematic Review and Meta-Analysis
Ahilanandan Dushianthan, Rebecca Cusack, Victoria A Burgess, Michael PW Grocott, Philip Calder
Respiratory Care (2020-01) https://doi.org/fj2p
DOI: 10.4187/respcare.06965 · PMID: 31506339
631. Correlation analysis of omega-3 fatty acids and mortality of sepsis and sepsis-induced ARDS in adults: data from previous randomized controlled trials
+
632. Correlation analysis of omega-3 fatty acids and mortality of sepsis and sepsis-induced ARDS in adults: data from previous randomized controlled trials
HuaiSheng Chen, Su Wang, Ying Zhao, YuTian Luo, HuaSheng Tong, Lei Su
Nutrition Journal (2018-05-31) https://doi.org/gdpjtq
DOI: 10.1186/s12937-018-0356-8 · PMID: 29859104 · PMCID: PMC5984323
632. Proresolving Lipid Mediators and Mechanisms in the Resolution of Acute Inflammation
+
633. Proresolving Lipid Mediators and Mechanisms in the Resolution of Acute Inflammation
Christopher D. Buckley, Derek W. Gilroy, Charles N. Serhan
Immunity (2014-03) https://doi.org/f5wntr
DOI: 10.1016/j.immuni.2014.02.009 · PMID: 24656045 · PMCID: PMC4004957
633. Specialized pro-resolving mediators: endogenous regulators of infection and inflammation
+
634. Specialized pro-resolving mediators: endogenous regulators of infection and inflammation
Maria C. Basil, Bruce D. Levy
Nature Reviews Immunology (2015-12-21) https://doi.org/f9fgtd
DOI: 10.1038/nri.2015.4 · PMID: 26688348 · PMCID: PMC5242505
634. Specialized mediators in infection and lung injury
+
635. Specialized mediators in infection and lung injury
Shayna Sandhaus, Andrew G. Swick
BioFactors (2020-11-28) https://doi.org/ghr93m
DOI: 10.1002/biof.1691 · PMID: 33249673 · PMCID: PMC7744833
635. The Lipid Mediator Protectin D1 Inhibits Influenza Virus Replication and Improves Severe Influenza
+
636. The Lipid Mediator Protectin D1 Inhibits Influenza Virus Replication and Improves Severe Influenza
Masayuki Morita, Keiji Kuba, Akihiko Ichikawa, Mizuho Nakayama, Jun Katahira, Ryo Iwamoto, Tokiko Watanebe, Saori Sakabe, Tomo Daidoji, Shota Nakamura, … Yumiko Imai
Cell (2013-03) https://doi.org/f4rbgb
DOI: 10.1016/j.cell.2013.02.027 · PMID: 23477864
636. Pro-resolving lipid mediators are leads for resolution physiology
+
637. Pro-resolving lipid mediators are leads for resolution physiology
Charles N. Serhan
Nature (2014-06-04) https://doi.org/ggv53d
DOI: 10.1038/nature13479 · PMID: 24899309 · PMCID: PMC4263681
637. The Specialized Proresolving Mediator 17-HDHA Enhances the Antibody-Mediated Immune Response against Influenza Virus: A New Class of Adjuvant?
+
638. The Specialized Proresolving Mediator 17-HDHA Enhances the Antibody-Mediated Immune Response against Influenza Virus: A New Class of Adjuvant?
Sesquile Ramon, Steven F. Baker, Julie M. Sahler, Nina Kim, Eric A. Feldsott, Charles N. Serhan, Luis Martínez-Sobrido, David J. Topham, Richard P. Phipps
The Journal of Immunology (2014-12-15) https://doi.org/f6spr8
DOI: 10.4049/jimmunol.1302795 · PMID: 25392529 · PMCID: PMC4258475
638. Inflammation resolution: a dual-pronged approach to averting cytokine storms in COVID-19?
+
639. Inflammation resolution: a dual-pronged approach to averting cytokine storms in COVID-19?
Dipak Panigrahy, Molly M. Gilligan, Sui Huang, Allison Gartung, Irene Cortés-Puch, Patricia J. Sime, Richard P. Phipps, Charles N. Serhan, Bruce D. Hammock
Cancer and Metastasis Reviews (2020-05-08) https://doi.org/ggvv7w
DOI: 10.1007/s10555-020-09889-4 · PMID: 32385712 · PMCID: PMC7207990
639. Pro resolving inflammatory effects of the lipid mediators of omega 3 fatty acids and its implication in SARS COVID-19
+
640. Pro resolving inflammatory effects of the lipid mediators of omega 3 fatty acids and its implication in SARS COVID-19
Pedro-Antonio Regidor, Fernando Gonzalez Santos, Jose Miguel Rizo, Fernando Moreno Egea
Medical Hypotheses (2020-12) https://doi.org/ghr93x
DOI: 10.1016/j.mehy.2020.110340 · PMID: 33069094 · PMCID: PMC7543931
640. Obesity-Driven Deficiencies of Specialized Pro-resolving Mediators May Drive Adverse Outcomes During SARS-CoV-2 Infection
+
641. Obesity-Driven Deficiencies of Specialized Pro-resolving Mediators May Drive Adverse Outcomes During SARS-CoV-2 Infection
Anandita Pal, Kymberly M. Gowdy, Kenneth J. Oestreich, Melinda Beck, Saame Raza Shaikh
Frontiers in Immunology (2020-08-11) https://doi.org/ght38j
DOI: 10.3389/fimmu.2020.01997 · PMID: 32983141 · PMCID: PMC7438933
641. Fish Oil-Fed Mice Have Impaired Resistance to Influenza Infection
+
642. Fish Oil-Fed Mice Have Impaired Resistance to Influenza Infection
Nicole M. J. Schwerbrock, Erik A. Karlsson, Qing Shi, Patricia A. Sheridan, Melinda A. Beck
The Journal of Nutrition (2009-08) https://doi.org/dv45f4
DOI: 10.3945/jn.109.108027 · PMID: 19549756 · PMCID: PMC2709305
642. Modulation of host defence against bacterial and viral infections by omega-3 polyunsaturated fatty acids
+
643. Modulation of host defence against bacterial and viral infections by omega-3 polyunsaturated fatty acids
Marie-Odile Husson, Delphine Ley, Céline Portal, Madeleine Gottrand, Thomas Hueso, Jean-Luc Desseyn, Frédéric Gottrand
Journal of Infection (2016-12) https://doi.org/f9pp2h
DOI: 10.1016/j.jinf.2016.10.001 · PMID: 27746159
643. Bioactive products formed in humans from fish oils
+
644. Bioactive products formed in humans from fish oils
Carsten Skarke, Naji Alamuddin, John A. Lawson, Xuanwen Li, Jane F. Ferguson, Muredach P. Reilly, Garret A. FitzGerald
Journal of Lipid Research (2015-09) https://doi.org/f7pm5g
DOI: 10.1194/jlr.m060392 · PMID: 26180051 · PMCID: PMC4548785
644. Resolving Inflammatory Storm in COVID-19 Patients by Omega-3 Polyunsaturated Fatty Acids - A Single-blind, Randomized, Placebo-controlled Feasibility Study
+
645. Resolving Inflammatory Storm in COVID-19 Patients by Omega-3 Polyunsaturated Fatty Acids - A Single-blind, Randomized, Placebo-controlled Feasibility Study
Magnus Bäck
clinicaltrials.gov (2020-11-27) https://clinicaltrials.gov/ct2/show/NCT04647604
645. Stimulating the Resolution of Inflammation Through Omega-3 Polyunsaturated Fatty Acids in COVID-19: Rationale for the COVID-Omega-F Trial
+
646. Stimulating the Resolution of Inflammation Through Omega-3 Polyunsaturated Fatty Acids in COVID-19: Rationale for the COVID-Omega-F Trial
Hildur Arnardottir, Sven-Christian Pawelzik, Ulf Öhlund Wistbacka, Gonzalo Artiach, Robin Hofmann, Ingalill Reinholdsson, Frieder Braunschweig, Per Tornvall, Dorota Religa, Magnus Bäck
Frontiers in Physiology (2021-01-11) https://doi.org/ghv64h
DOI: 10.3389/fphys.2020.624657 · PMID: 33505321 · PMCID: PMC7830247
646. COVID-19 and its implications for thrombosis and anticoagulation
+
647. COVID-19 and its implications for thrombosis and anticoagulation
Jean M. Connors, Jerrold H. Levy
Blood (2020-06-04) https://doi.org/ggv35b
DOI: 10.1182/blood.2020006000 · PMID: 32339221 · PMCID: PMC7273827
647. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up
+
648. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up
Behnood Bikdeli, Mahesh V. Madhavan, David Jimenez, Taylor Chuich, Isaac Dreyfus, Elissa Driggin, Caroline Der Nigoghossian, Walter Ageno, Mohammad Madjid, Yutao Guo, … Gregory Y. H. Lip
Journal of the American College of Cardiology (2020-06) https://doi.org/ggsppk
DOI: 10.1016/j.jacc.2020.04.031 · PMID: 32311448 · PMCID: PMC7164881
648. Thrombosis and COVID-19: The Potential Role of Nutrition
+
649. Thrombosis and COVID-19: The Potential Role of Nutrition
Alexandros Tsoupras, Ronan Lordan, Ioannis Zabetakis
Frontiers in Nutrition (2020-09-25) https://doi.org/ghr945
DOI: 10.3389/fnut.2020.583080 · PMID: 33102511 · PMCID: PMC7545367
649. Regulation of platelet function and thrombosis by omega-3 and omega-6 polyunsaturated fatty acids
+
650. Regulation of platelet function and thrombosis by omega-3 and omega-6 polyunsaturated fatty acids
Reheman Adili, Megan Hawley, Michael Holinstat
Prostaglandins & Other Lipid Mediators (2018-11) https://doi.org/ggvv73
DOI: 10.1016/j.prostaglandins.2018.09.005 · PMID: 30266534 · PMCID: PMC6242736
650. Platelet activation and prothrombotic mediators at the nexus of inflammation and atherosclerosis: Potential role of antiplatelet agents
+
651. Platelet activation and prothrombotic mediators at the nexus of inflammation and atherosclerosis: Potential role of antiplatelet agents
Ronan Lordan, Alexandros Tsoupras, Ioannis Zabetakis
Blood Reviews (2020-04) https://doi.org/ggvv7x
DOI: 10.1016/j.blre.2020.100694 · PMID: 32340775
651. An Investigation on the Effects of Icosapent Ethyl (VascepaTM) on Inflammatory Biomarkers in Individuals With COVID-19 - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04412018
+652. An Investigation on the Effects of Icosapent Ethyl (VascepaTM) on Inflammatory Biomarkers in Individuals With COVID-19 - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04412018
652. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia
+
653. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia
Deepak L. Bhatt, P. Gabriel Steg, Michael Miller, Eliot A. Brinton, Terry A. Jacobson, Steven B. Ketchum, Ralph T. Doyle, Rebecca A. Juliano, Lixia Jiao, Craig Granowitz, … Christie M. Ballantyne
New England Journal of Medicine (2019-01-03) https://doi.org/gfj3w9
DOI: 10.1056/nejmoa1812792 · PMID: 30415628
653. A Randomised, Double-blind, Placebo Controlled Study of Eicosapentaenoic Acid (EPA-FFA) Gastro-resistant Capsules to Treat Hospitalised Subjects With Confirmed SARS-CoV-2
+
654. A Randomised, Double-blind, Placebo Controlled Study of Eicosapentaenoic Acid (EPA-FFA) Gastro-resistant Capsules to Treat Hospitalised Subjects With Confirmed SARS-CoV-2
S.L.A. Pharma AG
clinicaltrials.gov (2020-10-29) https://clinicaltrials.gov/ct2/show/NCT04335032
654. Anti-inflammatory/Antioxidant Oral Nutrition Supplementation on the Cytokine Storm and Progression of COVID-19: A Randomized Controlled Trial
+
655. Anti-inflammatory/Antioxidant Oral Nutrition Supplementation on the Cytokine Storm and Progression of COVID-19: A Randomized Controlled Trial
Mahmoud Abulmeaty FACN M. D.
clinicaltrials.gov (2020-09-18) https://clinicaltrials.gov/ct2/show/NCT04323228
655. Functional Role of Dietary Intervention to Improve the Outcome of COVID-19: A Hypothesis of Work
+
656. Functional Role of Dietary Intervention to Improve the Outcome of COVID-19: A Hypothesis of Work
Giovanni Messina, Rita Polito, Vincenzo Monda, Luigi Cipolloni, Nunzio Di Nunno, Giulio Di Mizio, Paolo Murabito, Marco Carotenuto, Antonietta Messina, Daniela Pisanelli, … Francesco Sessa
International Journal of Molecular Sciences (2020-04-28) https://doi.org/ggvb88
DOI: 10.3390/ijms21093104 · PMID: 32354030 · PMCID: PMC7247152
656. Zinc and immunity: An essential interrelation
+
657. Zinc and immunity: An essential interrelation
Maria Maares, Hajo Haase
Archives of Biochemistry and Biophysics (2016-12) https://doi.org/f9c9b5
DOI: 10.1016/j.abb.2016.03.022 · PMID: 27021581
657. Zinc-Dependent Suppression of TNF-α Production Is Mediated by Protein Kinase A-Induced Inhibition of Raf-1, IκB Kinase β, and NF-κB
+
658. Zinc-Dependent Suppression of TNF-α Production Is Mediated by Protein Kinase A-Induced Inhibition of Raf-1, IκB Kinase β, and NF-κB
Verena von Bülow, Svenja Dubben, Gabriela Engelhardt, Silke Hebel, Birgit Plümäkers, Holger Heine, Lothar Rink, Hajo Haase
The Journal of Immunology (2007-09-15) https://doi.org/f3vs45
DOI: 10.4049/jimmunol.179.6.4180 · PMID: 17785857
658. Zinc activates NF-κB in HUT-78 cells
+
659. Zinc activates NF-κB in HUT-78 cells
Ananda S. Prasad, Bin Bao, Frances W. J. Beck, Fazlul H. Sarkar
Journal of Laboratory and Clinical Medicine (2001-10) https://doi.org/cnc6fr
DOI: 10.1067/mlc.2001.118108 · PMID: 11574819
659. Innate or Adaptive Immunity? The Example of Natural Killer Cells
+
660. Innate or Adaptive Immunity? The Example of Natural Killer Cells
E. Vivier, D. H. Raulet, A. Moretta, M. A. Caligiuri, L. Zitvogel, L. L. Lanier, W. M. Yokoyama, S. Ugolini
Science (2011-01-06) https://doi.org/ckzg9g
DOI: 10.1126/science.1198687 · PMID: 21212348 · PMCID: PMC3089969
660. Zinc supplementation decreases incidence of infections in the elderly: effect of zinc on generation of cytokines and oxidative stress
+
661. Zinc supplementation decreases incidence of infections in the elderly: effect of zinc on generation of cytokines and oxidative stress
Ananda S Prasad, Frances WJ Beck, Bin Bao, James T Fitzgerald, Diane C Snell, Joel D Steinberg, Lavoisier J Cardozo
The American Journal of Clinical Nutrition (2007-03) https://doi.org/ggqmgs
DOI: 10.1093/ajcn/85.3.837 · PMID: 17344507
661. The Role of Zinc in Antiviral Immunity
+
662. The Role of Zinc in Antiviral Immunity
Scott A Read, Stephanie Obeid, Chantelle Ahlenstiel, Golo Ahlenstiel
Advances in Nutrition (2019-07) https://doi.org/ggqmgr
DOI: 10.1093/advances/nmz013 · PMID: 31305906 · PMCID: PMC6628855
662. Efficacy of Zinc Against Common Cold Viruses: An Overview
+
663. Efficacy of Zinc Against Common Cold Viruses: An Overview
Darrell Hulisz
Journal of the American Pharmacists Association (2004-09) https://doi.org/cf6pmt
DOI: 10.1331/1544-3191.44.5.594.hulisz · PMID: 15496046
663. Zinc Lozenges May Shorten the Duration of Colds: A Systematic Review
+
664. Zinc Lozenges May Shorten the Duration of Colds: A Systematic Review
Harri Hemilä
The Open Respiratory Medicine Journal (2011-06-23) https://doi.org/bndmfq
DOI: 10.2174/1874306401105010051 · PMID: 21769305 · PMCID: PMC3136969
664. COVID-19: Poor outcomes in patients with zinc deficiency
+
665. COVID-19: Poor outcomes in patients with zinc deficiency
Dinesh Jothimani, Ezhilarasan Kailasam, Silas Danielraj, Balaji Nallathambi, Hemalatha Ramachandran, Padmini Sekar, Shruthi Manoharan, Vidyalakshmi Ramani, Gomathy Narasimhan, Ilankumaran Kaliamoorthy, Mohamed Rela
International Journal of Infectious Diseases (2020-11) https://doi.org/ghr93t
DOI: 10.1016/j.ijid.2020.09.014 · PMID: 32920234 · PMCID: PMC7482607
665. Zn2+ Inhibits Coronavirus and Arterivirus RNA Polymerase Activity In Vitro and Zinc Ionophores Block the Replication of These Viruses in Cell Culture
+
666. Zn2+ Inhibits Coronavirus and Arterivirus RNA Polymerase Activity In Vitro and Zinc Ionophores Block the Replication of These Viruses in Cell Culture
Aartjan J. W. te Velthuis, Sjoerd H. E. van den Worm, Amy C. Sims, Ralph S. Baric, Eric J. Snijder, Martijn J. van Hemert
PLoS Pathogens (2010-11-04) https://doi.org/d95x4g
DOI: 10.1371/journal.ppat.1001176 · PMID: 21079686 · PMCID: PMC2973827
666. The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds
+
667. The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds
Yahira M. Báez-Santos, Sarah E. St. John, Andrew D. Mesecar
Antiviral Research (2015-03) https://doi.org/f63hjp
DOI: 10.1016/j.antiviral.2014.12.015 · PMID: 25554382 · PMCID: PMC5896749
667. A Randomized Study Evaluating the Safety and Efficacy of Hydroxychloroquine and Zinc in Combination With Either Azithromycin or Doxycycline for the Treatment of COVID-19 in the Outpatient Setting
+
668. A Randomized Study Evaluating the Safety and Efficacy of Hydroxychloroquine and Zinc in Combination With Either Azithromycin or Doxycycline for the Treatment of COVID-19 in the Outpatient Setting
Avni Thakore MD
clinicaltrials.gov (2020-12-08) https://clinicaltrials.gov/ct2/show/NCT04370782
668. A Study of Hydroxychloroquine and Zinc in the Prevention of COVID-19 Infection in Military Healthcare Workers - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04377646
+669. A Study of Hydroxychloroquine and Zinc in the Prevention of COVID-19 Infection in Military Healthcare Workers - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04377646
669. Therapies to Prevent Progression of COVID-19, Including Hydroxychloroquine, Azithromycin, Zinc, Vitamin D, Vitamin B12 With or Without Vitamin C, a Multi-centre, International, Randomized Trial: The International ALLIANCE Study
+
670. Therapies to Prevent Progression of COVID-19, Including Hydroxychloroquine, Azithromycin, Zinc, Vitamin D, Vitamin B12 With or Without Vitamin C, a Multi-centre, International, Randomized Trial: The International ALLIANCE Study
National Institute of Integrative Medicine, Australia
clinicaltrials.gov (2020-09-09) https://clinicaltrials.gov/ct2/show/NCT04395768
670. Early Intervention in COVID-19: Favipiravir Verses Standard Care - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04373733
+671. Early Intervention in COVID-19: Favipiravir Verses Standard Care - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04373733
671. Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19
+
672. Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19
Alexandre B. Cavalcanti, Fernando G. Zampieri, Regis G. Rosa, Luciano C. P. Azevedo, Viviane C. Veiga, Alvaro Avezum, Lucas P. Damiani, Aline Marcadenti, Letícia Kawano-Dourado, Thiago Lisboa, … Otavio Berwanger
New England Journal of Medicine (2020-11-19) https://doi.org/gg5343
DOI: 10.1056/nejmoa2019014 · PMID: 32706953 · PMCID: PMC7397242
672. The efficacy and safety of hydroxychloroquine for COVID-19 prophylaxis: A systematic review and meta-analysis of randomized trials
+
673. The efficacy and safety of hydroxychloroquine for COVID-19 prophylaxis: A systematic review and meta-analysis of randomized trials
Kimberley Lewis, Dipayan Chaudhuri, Fayez Alshamsi, Laiya Carayannopoulos, Karin Dearness, Zain Chagla, Waleed Alhazzani, for the GUIDE Group
PLOS ONE (2021-01-06) https://doi.org/ghsv36
DOI: 10.1371/journal.pone.0244778 · PMID: 33406138 · PMCID: PMC7787432
673. Effect of hydroxychloroquine with or without azithromycin on the mortality of coronavirus disease 2019 (COVID-19) patients: a systematic review and meta-analysis
+
674. Effect of hydroxychloroquine with or without azithromycin on the mortality of coronavirus disease 2019 (COVID-19) patients: a systematic review and meta-analysis
Thibault Fiolet, Anthony Guihur, Mathieu Edouard Rebeaud, Matthieu Mulot, Nathan Peiffer-Smadja, Yahya Mahamat-Saleh
Clinical Microbiology and Infection (2021-01) https://doi.org/gg9jk2
DOI: 10.1016/j.cmi.2020.08.022 · PMID: 32860962 · PMCID: PMC7449662
674. Zinc sulfate in combination with a zinc ionophore may improve outcomes in hospitalized COVID-19 patients
+
675. Zinc sulfate in combination with a zinc ionophore may improve outcomes in hospitalized COVID-19 patients
Philip M. Carlucci, Tania Ahuja, Christopher Petrilli, Harish Rajagopalan, Simon Jones, Joseph Rahimian
Journal of Medical Microbiology (2020-10-01) https://doi.org/ghnws7
DOI: 10.1099/jmm.0.001250 · PMID: 32930657 · PMCID: PMC7660893
675. The Minimal Effect of Zinc on the Survival of Hospitalized Patients With COVID-19
+
676. The Minimal Effect of Zinc on the Survival of Hospitalized Patients With COVID-19
Jasper Seth Yao, Joseph Alexander Paguio, Edward Christopher Dee, Hanna Clementine Tan, Achintya Moulick, Carmelo Milazzo, Jerry Jurado, Nicolás Della Penna, Leo Anthony Celi
Chest (2021-01) https://doi.org/gg5w36
DOI: 10.1016/j.chest.2020.06.082 · PMID: 32710890 · PMCID: PMC7375307
676. Coronavirus Disease 2019- Using Ascorbic Acid and Zinc Supplementation (COVIDAtoZ) Research Study A Randomized, Open Label Single Center Study
+
677. Coronavirus Disease 2019- Using Ascorbic Acid and Zinc Supplementation (COVIDAtoZ) Research Study A Randomized, Open Label Single Center Study
Milind Desai
clinicaltrials.gov (2021-01-28) https://clinicaltrials.gov/ct2/show/NCT04342728
677. Vitamin B12 May Inhibit RNA-Dependent-RNA Polymerase Activity of nsp12 from the COVID-19 Virus
+
678. Vitamin B12 May Inhibit RNA-Dependent-RNA Polymerase Activity of nsp12 from the COVID-19 Virus
Naveen Narayanan, Deepak T. Nair
Preprints (2020-03-22) https://doi.org/ggqmjc
DOI: 10.20944/preprints202003.0347.v1
678. The Long History of Vitamin C: From Prevention of the Common Cold to Potential Aid in the Treatment of COVID-19
+
679. The Long History of Vitamin C: From Prevention of the Common Cold to Potential Aid in the Treatment of COVID-19
Giuseppe Cerullo, Massimo Negro, Mauro Parimbelli, Michela Pecoraro, Simone Perna, Giorgio Liguori, Mariangela Rondanelli, Hellas Cena, Giuseppe D’Antona
Frontiers in Immunology (2020-10-28) https://doi.org/ghr943
DOI: 10.3389/fimmu.2020.574029 · PMID: 33193359 · PMCID: PMC7655735
679. The Emerging Role of Vitamin C in the Prevention and Treatment of COVID-19
+
680. The Emerging Role of Vitamin C in the Prevention and Treatment of COVID-19
Anitra C. Carr, Sam Rowe
Nutrients (2020-10-27) https://doi.org/ghr95c
DOI: 10.3390/nu12113286 · PMID: 33121019 · PMCID: PMC7693980
680. Vitamin C Mitigates Oxidative Stress and Tumor Necrosis Factor-Alpha in Severe Community-Acquired Pneumonia and LPS-Induced Macrophages
+
681. Vitamin C Mitigates Oxidative Stress and Tumor Necrosis Factor-Alpha in Severe Community-Acquired Pneumonia and LPS-Induced Macrophages
Yuanyuan Chen, Guangyan Luo, Jiao Yuan, Yuanyuan Wang, Xiaoqiong Yang, Xiaoyun Wang, Guoping Li, Zhiguang Liu, Nanshan Zhong
Mediators of Inflammation (2014) https://doi.org/f6nb5f
DOI: 10.1155/2014/426740 · PMID: 25253919 · PMCID: PMC4165740
681. Intravenous infusion of ascorbic acid decreases serum histamine concentrations in patients with allergic and non-allergic diseases
+
682. Intravenous infusion of ascorbic acid decreases serum histamine concentrations in patients with allergic and non-allergic diseases
Alexander F. Hagel, Christian M. Layritz, Wolfgang H. Hagel, Hans-Jürgen Hagel, Edith Hagel, Wolfgang Dauth, Jürgen Kressel, Tanja Regnet, Andreas Rosenberg, Markus F. Neurath, … Martin Raithel
Naunyn-Schmiedeberg’s Archives of Pharmacology (2013-05-11) https://doi.org/f48jsb
DOI: 10.1007/s00210-013-0880-1 · PMID: 23666445
682. Vitamin C and Immune Function
+
683. Vitamin C and Immune Function
Anitra Carr, Silvia Maggini
Nutrients (2017-11-03) https://doi.org/gfzrjs
DOI: 10.3390/nu9111211 · PMID: 29099763 · PMCID: PMC5707683
683. Changes in Leucocyte Ascorbic Acid during the Common Cold
+
684. Changes in Leucocyte Ascorbic Acid during the Common Cold
R. Hume, Elspeth Weyers
Scottish Medical Journal (2016-06-25) https://doi.org/ggqrfj
DOI: 10.1177/003693307301800102 · PMID: 4717661
684. ASCORBIC ACID FUNCTION AND METABOLISM DURING COLDS
+
685. ASCORBIC ACID FUNCTION AND METABOLISM DURING COLDS
C. W. M. Wilson
Annals of the New York Academy of Sciences (1975-09) https://doi.org/bjfdtb
DOI: 10.1111/j.1749-6632.1975.tb29312.x · PMID: 1106304
685. Metabolism of ascorbic acid (vitamin C) in subjects infected with common cold viruses
+
686. Metabolism of ascorbic acid (vitamin C) in subjects infected with common cold viruses
J. E. W. Davies, R. E. Hughes, Eleri Jones, Sylvia E. Reed, J. W. Craig, D. A. J. Tyrrell
Biochemical Medicine (1979-02) https://doi.org/fd22sv
DOI: 10.1016/0006-2944(79)90058-9
686. Vitamin C and Infections
+
687. Vitamin C and Infections
Harri Hemilä
Nutrients (2017-03-29) https://doi.org/gfkb9n
DOI: 10.3390/nu9040339 · PMID: 28353648 · PMCID: PMC5409678
687. Vitamin C and the common cold
+
688. Vitamin C and the common cold
Harri Hemilä
British Journal of Nutrition (2007-03-09) https://doi.org/fszhc6
DOI: 10.1079/bjn19920004 · PMID: 1547201
688. Vitamin C Can Shorten the Length of Stay in the ICU: A Meta-Analysis
+
689. Vitamin C Can Shorten the Length of Stay in the ICU: A Meta-Analysis
Harri Hemilä, Elizabeth Chalker
Nutrients (2019-03-27) https://doi.org/gfzscg
DOI: 10.3390/nu11040708 · PMID: 30934660 · PMCID: PMC6521194
689. Serum Levels of Vitamin C and Vitamin D in a Cohort of Critically Ill COVID-19 Patients of a North American Community Hospital Intensive Care Unit in May 2020: A Pilot Study
+
690. Serum Levels of Vitamin C and Vitamin D in a Cohort of Critically Ill COVID-19 Patients of a North American Community Hospital Intensive Care Unit in May 2020: A Pilot Study
Cristian Arvinte, Maharaj Singh, Paul E. Marik
Medicine in Drug Discovery (2020-12) https://doi.org/ghnwqt
DOI: 10.1016/j.medidd.2020.100064 · PMID: 32964205 · PMCID: PMC7499070
690. Vitamin C levels in patients with SARS-CoV-2-associated acute respiratory distress syndrome
+
691. Vitamin C levels in patients with SARS-CoV-2-associated acute respiratory distress syndrome
Luis Chiscano-Camón, Juan Carlos Ruiz-Rodriguez, Adolf Ruiz-Sanmartin, Oriol Roca, Ricard Ferrer
Critical Care (2020-08-26) https://doi.org/ghbr97
DOI: 10.1186/s13054-020-03249-y · PMID: 32847620 · PMCID: PMC7447967
691. Targeting coagulation activation in severe COVID-19 pneumonia: lessons from bacterial pneumonia and sepsis
+
692. Targeting coagulation activation in severe COVID-19 pneumonia: lessons from bacterial pneumonia and sepsis
Ricardo J. José, Andrew Williams, Ari Manuel, Jeremy S. Brown, Rachel C. Chambers
European Respiratory Review (2020-10-01) https://doi.org/ghr94s
DOI: 10.1183/16000617.0240-2020 · PMID: 33004529 · PMCID: PMC7537941
692. Vitamin C and Microvascular Dysfunction in Systemic Inflammation
+
693. Vitamin C and Microvascular Dysfunction in Systemic Inflammation
Karel Tyml
Antioxidants (2017-06-29) https://doi.org/ghr947
DOI: 10.3390/antiox6030049 · PMID: 28661424 · PMCID: PMC5618077
693. The use of IV vitamin C for patients with COVID-19: a case series
+
694. The use of IV vitamin C for patients with COVID-19: a case series
Raul Hiedra, Kevin Bryan Lo, Mohammad Elbashabsheh, Fahad Gul, Robert Matthew Wright, Jeri Albano, Zurab Azmaiparashvili, Gabriel Patarroyo Aponte
Expert Review of Anti-infective Therapy (2020-08-01) https://doi.org/ghr938
DOI: 10.1080/14787210.2020.1794819 · PMID: 32662690 · PMCID: PMC7441798
694. Vitamin C for preventing and treating the common cold
+
695. Vitamin C for preventing and treating the common cold
Harri Hemilä, Elizabeth Chalker
Cochrane Database of Systematic Reviews (2013-01-31) https://doi.org/xz5
DOI: 10.1002/14651858.cd000980.pub4 · PMID: 23440782
695. Vitamin C intake and susceptibility to pneumonia
+
696. Vitamin C intake and susceptibility to pneumonia
HARRI HEMILÄ
The Pediatric Infectious Disease Journal (1997-09) https://doi.org/fkvs9d
DOI: 10.1097/00006454-199709000-00003 · PMID: 9306475
696. Effect of Vitamin C Infusion on Organ Failure and Biomarkers of Inflammation and Vascular Injury in Patients With Sepsis and Severe Acute Respiratory Failure
+
697. Effect of Vitamin C Infusion on Organ Failure and Biomarkers of Inflammation and Vascular Injury in Patients With Sepsis and Severe Acute Respiratory Failure
Alpha A. Fowler, Jonathon D. Truwit, R. Duncan Hite, Peter E. Morris, Christine DeWilde, Anna Priday, Bernard Fisher, Leroy R. Thacker, Ramesh Natarajan, Donald F. Brophy, … Matthew Halquist
JAMA (2019-10-01) https://doi.org/ggqmh8
DOI: 10.1001/jama.2019.11825 · PMID: 31573637 · PMCID: PMC6777268
697. Intravenous high-dose vitamin C for the treatment of severe COVID-19: study protocol for a multicentre randomised controlled trial
+
698. Intravenous high-dose vitamin C for the treatment of severe COVID-19: study protocol for a multicentre randomised controlled trial
Fang Liu, Yuan Zhu, Jing Zhang, Yiming Li, Zhiyong Peng
BMJ Open (2020-07-08) https://doi.org/gg4sgj
DOI: 10.1136/bmjopen-2020-039519 · PMID: 32641343 · PMCID: PMC7348463
698. Pilot Trial of High-dose vitamin C in critically ill COVID-19 patients
+
699. Pilot Trial of High-dose vitamin C in critically ill COVID-19 patients
Jing Zhang, Xin Rao, Yiming Li, Yuan Zhu, Fang Liu, Guangling Guo, Guoshi Luo, Zhongji Meng, Daniel De Backer, Hui Xiang, Zhi-Yong Peng
Research Square (2020-08-03) https://doi.org/ghr94x
DOI: 10.21203/rs.3.rs-52778/v2
699. High-dose vitamin C infusion for the treatment of critically ill COVID-19
+
700. High-dose vitamin C infusion for the treatment of critically ill COVID-19
Jing Zhang, Xin Rao, Yiming Li, Yuan Zhu, Fang Liu, Guangling Guo, Guoshi Luo, Zhongji Meng, Daniel De Backer, Hui Xiang, Zhi-Yong Peng
Research Square (2020-08-03) https://doi.org/ghr94v
DOI: 10.21203/rs.3.rs-52778/v1
700. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids
+
701. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids
Panel on Dietary Antioxidants and Related Compounds, Subcommittee on Upper Reference Levels of Nutrients, Subcommittee on Interpretation and Uses of Dietary Reference Intakes, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Food and Nutrition Board, Institute of Medicine
The National Academies Press (2000-07-27) https://doi.org/ghtvqx
DOI: 10.17226/9810 · PMID: 25077263
701. Vitamin D and Infectious Diseases: Simple Bystander or Contributing Factor?
+
702. Vitamin D and Infectious Diseases: Simple Bystander or Contributing Factor?
Pedro Gois, Daniela Ferreira, Simon Olenski, Antonio Seguro
Nutrients (2017-06-24) https://doi.org/ggpcwr
DOI: 10.3390/nu9070651 · PMID: 28672783 · PMCID: PMC5537771
702. Vitamin D and Influenza—Prevention or Therapy?
+
703. Vitamin D and Influenza—Prevention or Therapy?
Beata M. Gruber–Bzura
International Journal of Molecular Sciences (2018-08-16) https://doi.org/ggndrj
DOI: 10.3390/ijms19082419 · PMID: 30115864 · PMCID: PMC6121423
703. Immunologic Effects of Vitamin D on Human Health and Disease
+
704. Immunologic Effects of Vitamin D on Human Health and Disease
Nipith Charoenngam, Michael F. Holick
Nutrients (2020-07-15) https://doi.org/gg45fp
DOI: 10.3390/nu12072097 · PMID: 32679784 · PMCID: PMC7400911
704. Vitamin D and respiratory health
+
705. Vitamin D and respiratory health
D. A. Hughes, R. Norton
Clinical & Experimental Immunology (2009-10) https://doi.org/b3n6wc
DOI: 10.1111/j.1365-2249.2009.04001.x · PMID: 19737226 · PMCID: PMC2759054
705. Regulation of Immune Function by Vitamin D and Its Use in Diseases of Immunity
+
706. Regulation of Immune Function by Vitamin D and Its Use in Diseases of Immunity
An-Sofie Vanherwegen, Conny Gysemans, Chantal Mathieu
Endocrinology and Metabolism Clinics of North America (2017-12) https://doi.org/gcm7h9
DOI: 10.1016/j.ecl.2017.07.010 · PMID: 29080635
706. Vitamin D and the Immune System
+
707. Vitamin D and the Immune System
Cynthia Aranow
Journal of Investigative Medicine (2015-12-15) https://doi.org/f3wh87
DOI: 10.2310/jim.0b013e31821b8755 · PMID: 21527855
707. Vitamin D in the prevention of acute respiratory infection: Systematic review of clinical studies
+
708. Vitamin D in the prevention of acute respiratory infection: Systematic review of clinical studies
David A. Jolliffe, Christopher J. Griffiths, Adrian R. Martineau
The Journal of Steroid Biochemistry and Molecular Biology (2013-07) https://doi.org/ggqmh9
DOI: 10.1016/j.jsbmb.2012.11.017 · PMID: 23220552
708. Vitamin D: modulator of the immune system
+
709. Vitamin D: modulator of the immune system
Femke Baeke, Tatiana Takiishi, Hannelie Korf, Conny Gysemans, Chantal Mathieu
Current Opinion in Pharmacology (2010-08) https://doi.org/d43qtf
DOI: 10.1016/j.coph.2010.04.001 · PMID: 20427238
709. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths
+
710. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths
William B. Grant, Henry Lahore, Sharon L. McDonnell, Carole A. Baggerly, Christine B. French, Jennifer L. Aliano, Harjit P. Bhattoa
Nutrients (2020-04-02) https://doi.org/ggr2v5
DOI: 10.3390/nu12040988 · PMID: 32252338 · PMCID: PMC7231123
710. Perspective: Vitamin D deficiency and COVID‐19 severity – plausibly linked by latitude, ethnicity, impacts on cytokines, ACE2 and thrombosis
+
711. Perspective: Vitamin D deficiency and COVID‐19 severity – plausibly linked by latitude, ethnicity, impacts on cytokines, ACE2 and thrombosis
J. M. Rhodes, S. Subramanian, E. Laird, G. Griffin, R. A. Kenny
Journal of Internal Medicine (2020-07-22) https://doi.org/ghc7dh
DOI: 10.1111/joim.13149 · PMID: 32613681 · PMCID: PMC7361294
711. COVID-19 fatalities, latitude, sunlight, and vitamin D
+
712. COVID-19 fatalities, latitude, sunlight, and vitamin D
Paul B. Whittemore
American Journal of Infection Control (2020-09) https://doi.org/ghr93r
DOI: 10.1016/j.ajic.2020.06.193 · PMID: 32599103 · PMCID: PMC7319635
712. Editorial: low population mortality from COVID-19 in countries south of latitude 35 degrees North supports vitamin D as a factor determining severity
+
713. Editorial: low population mortality from COVID-19 in countries south of latitude 35 degrees North supports vitamin D as a factor determining severity
Jonathan M. Rhodes, Sreedhar Subramanian, Eamon Laird, Rose A. Kenny
Alimentary Pharmacology & Therapeutics (2020-06) https://doi.org/ggtw4b
DOI: 10.1111/apt.15777 · PMID: 32311755 · PMCID: PMC7264531
713. 25-Hydroxyvitamin D Concentrations Are Lower in Patients with Positive PCR for SARS-CoV-2
+
714. 25-Hydroxyvitamin D Concentrations Are Lower in Patients with Positive PCR for SARS-CoV-2
Antonio D’Avolio, Valeria Avataneo, Alessandra Manca, Jessica Cusato, Amedeo De Nicolò, Renzo Lucchini, Franco Keller, Marco Cantù
Nutrients (2020-05-09) https://doi.org/ggvv76
DOI: 10.3390/nu12051359 · PMID: 32397511 · PMCID: PMC7285131
714. Vitamin D deficiency as risk factor for severe COVID-19: a convergence of two pandemics
+
715. Vitamin D deficiency as risk factor for severe COVID-19: a convergence of two pandemics
D. De Smet, K. De Smet, P. Herroelen, S. Gryspeerdt, G. A. Martens
Cold Spring Harbor Laboratory (2020-05-05) https://doi.org/ggvv75
DOI: 10.1101/2020.05.01.20079376
715. Vitamin D sufficiency, a serum 25-hydroxyvitamin D at least 30 ng/mL reduced risk for adverse clinical outcomes in patients with COVID-19 infection
+
716. Vitamin D sufficiency, a serum 25-hydroxyvitamin D at least 30 ng/mL reduced risk for adverse clinical outcomes in patients with COVID-19 infection
Zhila Maghbooli, Mohammad Ali Sahraian, Mehdi Ebrahimi, Marzieh Pazoki, Samira Kafan, Hedieh Moradi Tabriz, Azar Hadadi, Mahnaz Montazeri, Mehrad Nasiri, Arash Shirvani, Michael F. Holick
PLOS ONE (2020-09-25) https://doi.org/ghdzx8
DOI: 10.1371/journal.pone.0239799 · PMID: 32976513 · PMCID: PMC7518605
716. Role of vitamin D in preventing of COVID-19 infection, progression and severity
+
717. Role of vitamin D in preventing of COVID-19 infection, progression and severity
Nurshad Ali
Journal of Infection and Public Health (2020-10) https://doi.org/ghdzw9
DOI: 10.1016/j.jiph.2020.06.021 · PMID: 32605780 · PMCID: PMC7305922
717. Low plasma 25(OH) vitamin D level is associated with increased risk of COVID‐19 infection: an Israeli population‐based study
+
718. Low plasma 25(OH) vitamin D level is associated with increased risk of COVID‐19 infection: an Israeli population‐based study
Eugene Merzon, Dmitry Tworowski, Alessandro Gorohovski, Shlomo Vinker, Avivit Golan Cohen, Ilan Green, Milana Frenkel‐Morgenstern
The FEBS Journal (2020-08-28) https://doi.org/gg7b5c
DOI: 10.1111/febs.15495 · PMID: 32700398 · PMCID: PMC7404739
718. Association of Vitamin D Status and Other Clinical Characteristics With COVID-19 Test Results
+
719. Association of Vitamin D Status and Other Clinical Characteristics With COVID-19 Test Results
David O. Meltzer, Thomas J. Best, Hui Zhang, Tamara Vokes, Vineet Arora, Julian Solway
JAMA Network Open (2020-09-03) https://doi.org/ghdzw6
DOI: 10.1001/jamanetworkopen.2020.19722 · PMID: 32880651 · PMCID: PMC7489852
719. Vitamin D Status in Hospitalized Patients with SARS-CoV-2 Infection
+
720. Vitamin D Status in Hospitalized Patients with SARS-CoV-2 Infection
José L Hernández, Daniel Nan, Marta Fernandez-Ayala, Mayte García-Unzueta, Miguel A Hernández-Hernández, Marcos López-Hoyos, Pedro Muñoz-Cacho, José M Olmos, Manuel Gutiérrez-Cuadra, Juan J Ruiz-Cubillán, … Víctor M Martínez-Taboada
The Journal of Clinical Endocrinology & Metabolism (2020-10-27) https://doi.org/ghh737
DOI: 10.1210/clinem/dgaa733 · PMID: 33159440 · PMCID: PMC7797757
720. Analysis of vitamin D level among asymptomatic and critically ill COVID-19 patients and its correlation with inflammatory markers
+
721. Analysis of vitamin D level among asymptomatic and critically ill COVID-19 patients and its correlation with inflammatory markers
Anshul Jain, Rachna Chaurasia, Narendra Singh Sengar, Mayank Singh, Sachin Mahor, Sumit Narain
Scientific Reports (2020-11-19) https://doi.org/ghm3zn
DOI: 10.1038/s41598-020-77093-z · PMID: 33214648 · PMCID: PMC7677378
721. Low 25-Hydroxyvitamin D Levels on Admission to the Intensive Care Unit May Predispose COVID-19 Pneumonia Patients to a Higher 28-Day Mortality Risk: A Pilot Study on a Greek ICU Cohort
+
722. Low 25-Hydroxyvitamin D Levels on Admission to the Intensive Care Unit May Predispose COVID-19 Pneumonia Patients to a Higher 28-Day Mortality Risk: A Pilot Study on a Greek ICU Cohort
Alice G. Vassiliou, Edison Jahaj, Maria Pratikaki, Stylianos E. Orfanos, Ioanna Dimopoulou, Anastasia Kotanidou
Nutrients (2020-12-09) https://doi.org/ghr95d
DOI: 10.3390/nu12123773 · PMID: 33316914 · PMCID: PMC7764169
722. Vitamin D deficiency as a predictor of poor prognosis in patients with acute respiratory failure due to COVID-19
+
723. Vitamin D deficiency as a predictor of poor prognosis in patients with acute respiratory failure due to COVID-19
G. E. Carpagnano, V. Di Lecce, V. N. Quaranta, A. Zito, E. Buonamico, E. Capozza, A. Palumbo, G. Di Gioia, V. N. Valerio, O. Resta
Journal of Endocrinological Investigation (2020-08-09) https://doi.org/gg7kqp
DOI: 10.1007/s40618-020-01370-x · PMID: 32772324 · PMCID: PMC7415009
723. Vitamin D Deficiency and Outcome of COVID-19 Patients
+
724. Vitamin D Deficiency and Outcome of COVID-19 Patients
Aleksandar Radujkovic, Theresa Hippchen, Shilpa Tiwari-Heckler, Saida Dreher, Monica Boxberger, Uta Merle
Nutrients (2020-09-10) https://doi.org/ghgfmp
DOI: 10.3390/nu12092757 · PMID: 32927735 · PMCID: PMC7551780
724. Impact of Vitamin D Deficiency on COVID-19—A Prospective Analysis from the CovILD Registry
+
725. Impact of Vitamin D Deficiency on COVID-19—A Prospective Analysis from the CovILD Registry
Alex Pizzini, Magdalena Aichner, Sabina Sahanic, Anna Böhm, Alexander Egger, Gregor Hoermann, Katharina Kurz, Gerlig Widmann, Rosa Bellmann-Weiler, Günter Weiss, … Judith Löffler-Ragg
Nutrients (2020-09-11) https://doi.org/ghr95b
DOI: 10.3390/nu12092775 · PMID: 32932831 · PMCID: PMC7551662
725. Does Serum Vitamin D Level Affect COVID-19 Infection and Its Severity?-A Case-Control Study
+
726. Does Serum Vitamin D Level Affect COVID-19 Infection and Its Severity?-A Case-Control Study
Kun Ye, Fen Tang, Xin Liao, Benjamin A. Shaw, Meiqiu Deng, Guangyi Huang, Zhiqiang Qin, Xiaomei Peng, Hewei Xiao, Chunxia Chen, … Jianrong Yang
Journal of the American College of Nutrition (2020-10-13) https://doi.org/ghr935
DOI: 10.1080/07315724.2020.1826005 · PMID: 33048028
726. Lower levels of vitamin D are associated with SARS-CoV-2 infection and mortality in the Indian population: An observational study
+
727. Lower levels of vitamin D are associated with SARS-CoV-2 infection and mortality in the Indian population: An observational study
Sunali Padhi, Subham Suvankar, Venketesh K. Panda, Abhijit Pati, Aditya K. Panda
International Immunopharmacology (2020-11) https://doi.org/ghr93w
DOI: 10.1016/j.intimp.2020.107001 · PMID: 33182040 · PMCID: PMC7489890
727. Vitamin D Deficiency Is Associated with COVID-19 Incidence and Disease Severity in Chinese People
+
728. Vitamin D Deficiency Is Associated with COVID-19 Incidence and Disease Severity in Chinese People
Xia Luo, Qing Liao, Ying Shen, Huijun Li, Liming Cheng
The Journal of Nutrition (2021-01) https://doi.org/ghr939
DOI: 10.1093/jn/nxaa332 · PMID: 33188401
728. Vitamin D concentrations and COVID-19 infection in UK Biobank
+
729. Vitamin D concentrations and COVID-19 infection in UK Biobank
Claire E. Hastie, Daniel F. Mackay, Frederick Ho, Carlos A. Celis-Morales, Srinivasa Vittal Katikireddi, Claire L. Niedzwiedz, Bhautesh D. Jani, Paul Welsh, Frances S. Mair, Stuart R. Gray, … Jill P. Pell
Diabetes & Metabolic Syndrome: Clinical Research & Reviews (2020-07) https://doi.org/ggvv72
DOI: 10.1016/j.dsx.2020.04.050 · PMID: 32413819 · PMCID: PMC7204679
729. Vitamin D and COVID-19 infection and mortality in UK Biobank
+
730. Vitamin D and COVID-19 infection and mortality in UK Biobank
Claire E. Hastie, Jill P. Pell, Naveed Sattar
European Journal of Nutrition (2020-08-26) https://doi.org/ghr93p
DOI: 10.1007/s00394-020-02372-4 · PMID: 32851419 · PMCID: PMC7449523
730. Low serum 25‐hydroxyvitamin D (25[OH]D) levels in patients hospitalized with COVID‐19 are associated with greater disease severity
+
731. Low serum 25‐hydroxyvitamin D (25[OH]D) levels in patients hospitalized with COVID‐19 are associated with greater disease severity
Grigorios Panagiotou, Su Ann Tee, Yasir Ihsan, Waseem Athar, Gabriella Marchitelli, Donna Kelly, Christopher S. Boot, Nadia Stock, James Macfarlane, Adrian R. Martineau, … Richard Quinton
Clinical Endocrinology (2020-08-06) https://doi.org/gg5gbj
DOI: 10.1111/cen.14276 · PMID: 32621392 · PMCID: PMC7361912
731. Letter in response to the article: Vitamin D concentrations and COVID-19 infection in UK biobank (Hastie et al.)
+
732. Letter in response to the article: Vitamin D concentrations and COVID-19 infection in UK biobank (Hastie et al.)
W. B. Grant, S. L. McDonnell
Diabetes & Metabolic Syndrome: Clinical Research & Reviews (2020-09) https://doi.org/ghc7p4
DOI: 10.1016/j.dsx.2020.05.046 · PMID: 32563941 · PMCID: PMC7293469
732. Vitamin D deficiency in African Americans is associated with a high risk of severe disease and mortality by SARS-CoV-2
+
733. Vitamin D deficiency in African Americans is associated with a high risk of severe disease and mortality by SARS-CoV-2
Virna Margarita Martín Giménez, Felipe Inserra, León Ferder, Joxel García, Walter Manucha
Journal of Human Hypertension (2020-08-13) https://doi.org/ghr933
DOI: 10.1038/s41371-020-00398-z · PMID: 32792611 · PMCID: PMC7425793
733. Evidence for possible association of vitamin D status with cytokine storm and unregulated inflammation in COVID-19 patients
+
734. Evidence for possible association of vitamin D status with cytokine storm and unregulated inflammation in COVID-19 patients
Ali Daneshkhah, Vasundhara Agrawal, Adam Eshein, Hariharan Subramanian, Hemant Kumar Roy, Vadim Backman
Aging Clinical and Experimental Research (2020-09-02) https://doi.org/ghr93q
DOI: 10.1007/s40520-020-01677-y · PMID: 32876941 · PMCID: PMC7465887
734. Short term, high-dose vitamin D supplementation for COVID-19 disease: a randomised, placebo-controlled, study (SHADE study)
+
735. Short term, high-dose vitamin D supplementation for COVID-19 disease: a randomised, placebo-controlled, study (SHADE study)
Ashu Rastogi, Anil Bhansali, Niranjan Khare, Vikas Suri, Narayana Yaddanapudi, Naresh Sachdeva, GD Puri, Pankaj Malhotra
Postgraduate Medical Journal (2020-11-12) https://doi.org/ghnhpq
DOI: 10.1136/postgradmedj-2020-139065 · PMID: 33184146
735. “Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study”
+
736. “Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study”
Marta Entrenas Castillo, Luis Manuel Entrenas Costa, José Manuel Vaquero Barrios, Juan Francisco Alcalá Díaz, José López Miranda, Roger Bouillon, José Manuel Quesada Gomez
The Journal of Steroid Biochemistry and Molecular Biology (2020-10) https://doi.org/ghd79r
DOI: 10.1016/j.jsbmb.2020.105751 · PMID: 32871238 · PMCID: PMC7456194
736. COVID-19 rapid evidence summary: vitamin D for COVID-19 | Advice | NICE https://www.nice.org.uk/advice/es28
+737. COVID-19 rapid evidence summary: vitamin D for COVID-19 | Advice | NICE https://www.nice.org.uk/advice/es28
737. Mathematical analysis of Córdoba calcifediol trial suggests strong role for Vitamin D in reducing ICU admissions of hospitalized COVID-19 patients
+
738. Mathematical analysis of Córdoba calcifediol trial suggests strong role for Vitamin D in reducing ICU admissions of hospitalized COVID-19 patients
Irwin Jungreis, Manolis Kellis
Cold Spring Harbor Laboratory (2020-12-21) https://doi.org/ghr94h
DOI: 10.1101/2020.11.08.20222638
738. High-Dose Cholecalciferol Booster Therapy is Associated with a Reduced Risk of Mortality in Patients with COVID-19: A Cross-Sectional Multi-Centre Observational Study
+
739. High-Dose Cholecalciferol Booster Therapy is Associated with a Reduced Risk of Mortality in Patients with COVID-19: A Cross-Sectional Multi-Centre Observational Study
Stephanie F. Ling, Eleanor Broad, Rebecca Murphy, Joseph M. Pappachan, Satveer Pardesi-Newton, Marie-France Kong, Edward B. Jude
Nutrients (2020-12-11) https://doi.org/ghr95f
DOI: 10.3390/nu12123799 · PMID: 33322317 · PMCID: PMC7763301
739. Effect of Vitamin D 3 Supplementation vs Placebo on Hospital Length of Stay in Patients with Severe COVID-19: A Multicenter, Double-blind, Randomized Controlled Trial
+
740. Effect of Vitamin D 3 Supplementation vs Placebo on Hospital Length of Stay in Patients with Severe COVID-19: A Multicenter, Double-blind, Randomized Controlled Trial
Igor H. Murai, Alan L. Fernandes, Lucas P. Sales, Ana J. Pinto, Karla F. Goessler, Camila S. C. Duran, Carla B. R. Silva, André S. Franco, Marina B. Macedo, Henrique H. H. Dalmolin, … Rosa M. R. Pereira
Cold Spring Harbor Laboratory (2020-11-17) https://doi.org/ghr94j
DOI: 10.1101/2020.11.16.20232397
740. Effect of Vitamin D Administration on Prevention and Treatment of Mild Forms of Suspected Covid-19
+
741. Effect of Vitamin D Administration on Prevention and Treatment of Mild Forms of Suspected Covid-19
Manuel Castillo Garzón
clinicaltrials.gov (2020-04-03) https://clinicaltrials.gov/ct2/show/NCT04334005
741. Improving Vitamin D Status in the Management of COVID-19
+
742. Improving Vitamin D Status in the Management of COVID-19
Aldo Montano-Loza
clinicaltrials.gov (2020-06-03) https://clinicaltrials.gov/ct2/show/NCT04385940
742. Cholecalciferol to Improve the Outcomes of COVID-19 Patients - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04411446
+743. Cholecalciferol to Improve the Outcomes of COVID-19 Patients - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04411446
743. COvid-19 and Vitamin D Supplementation: a Multicenter Randomized Controlled Trial of High Dose Versus Standard Dose Vitamin D3 in High-risk COVID-19 Patients (CoVitTrial) - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04344041
+744. COvid-19 and Vitamin D Supplementation: a Multicenter Randomized Controlled Trial of High Dose Versus Standard Dose Vitamin D3 in High-risk COVID-19 Patients (CoVitTrial) - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04344041
744. The LEAD COVID-19 Trial: Low-risk, Early Aspirin and Vitamin D to Reduce COVID-19 Hospitalizations
+
745. The LEAD COVID-19 Trial: Low-risk, Early Aspirin and Vitamin D to Reduce COVID-19 Hospitalizations
Louisiana State University Health Sciences Center in New Orleans
clinicaltrials.gov (2020-04-24) https://clinicaltrials.gov/ct2/show/NCT04363840
745. Randomized Double-Blind Placebo-Controlled Proof-of-Concept Trial of a Plant Polyphenol for the Outpatient Treatment of Mild Coronavirus Disease (COVID-19)
+
746. Randomized Double-Blind Placebo-Controlled Proof-of-Concept Trial of a Plant Polyphenol for the Outpatient Treatment of Mild Coronavirus Disease (COVID-19)
Marvin McCreary MD
clinicaltrials.gov (2020-09-22) https://clinicaltrials.gov/ct2/show/NCT04400890
746. Current vitamin D status in European and Middle East countries and strategies to prevent vitamin D deficiency: a position statement of the European Calcified Tissue Society
+
747. Current vitamin D status in European and Middle East countries and strategies to prevent vitamin D deficiency: a position statement of the European Calcified Tissue Society
Paul Lips, Kevin D Cashman, Christel Lamberg-Allardt, Heike Annette Bischoff-Ferrari, Barbara Obermayer-Pietsch, Maria Luisa Bianchi, Jan Stepan, Ghada El-Hajj Fuleihan, Roger Bouillon
European Journal of Endocrinology (2019-04) https://doi.org/ggr42p
DOI: 10.1530/eje-18-0736 · PMID: 30721133
747. Communiqué de l’Académie nationale de Médecine : Vitamine D et Covid-19 – Académie nationale de médecine | Une institution dans son temps https://www.academie-medecine.fr/communique-de-lacademie-nationale-de-medecine-vitamine-d-et-covid-19/
+748. Communiqué de l’Académie nationale de Médecine : Vitamine D et Covid-19 – Académie nationale de médecine | Une institution dans son temps https://www.academie-medecine.fr/communique-de-lacademie-nationale-de-medecine-vitamine-d-et-covid-19/
748. Covid-19: NHS bosses told to assess risk to ethnic minority staff who may be at greater risk
+
749. Covid-19: NHS bosses told to assess risk to ethnic minority staff who may be at greater risk
Gareth Iacobucci
BMJ (2020-05-04) https://doi.org/ggv2zq
DOI: 10.1136/bmj.m1820 · PMID: 32366503
749. Covid-19: Public health agencies review whether vitamin D supplements could reduce risk
+
750. Covid-19: Public health agencies review whether vitamin D supplements could reduce risk
Ingrid Torjesen
BMJ (2020-06-19) https://doi.org/ghr94p
DOI: 10.1136/bmj.m2475 · PMID: 32561509
750. Avoidance of vitamin D deficiency to slow the COVID-19 pandemic
+
751. Avoidance of vitamin D deficiency to slow the COVID-19 pandemic
Martin Kohlmeier
BMJ Nutrition, Prevention & Health (2020-06) https://doi.org/ghr94q
DOI: 10.1136/bmjnph-2020-000096 · PMID: 33230496 · PMCID: PMC7295862
751. COVID-19 rapid guideline: vitamin D
+
752. COVID-19 rapid guideline: vitamin D
National Institute for Health and Care Excellence (NICE)
https://www.nice.org.uk/guidance/ng187/resources/covid19-rapid-guideline-vitamin-d-pdf-66142026720709
752. Prevalence of Vitamin D Deficiency and Associated Risk Factors in the US Population (2011-2012)
+
753. Prevalence of Vitamin D Deficiency and Associated Risk Factors in the US Population (2011-2012)
Naveen R Parva, Satish Tadepalli, Pratiksha Singh, Andrew Qian, Rajat Joshi, Hyndavi Kandala, Vinod K Nookala, Pramil Cheriyath
Cureus (2018-06-05) https://doi.org/gg7kqq
DOI: 10.7759/cureus.2741 · PMID: 30087817 · PMCID: PMC6075634
753. Vitamin D
+
754. Vitamin D
COVID-19 Treatment Guidelines
https://www.covid19treatmentguidelines.nih.gov/adjunctive-therapy/vitamin-d/
754. Dietary Supplements during COVID-19 Outbreak. Results of Google Trends Analysis Supported by PLifeCOVID-19 Online Studies
+
755. Dietary Supplements during COVID-19 Outbreak. Results of Google Trends Analysis Supported by PLifeCOVID-19 Online Studies
Jadwiga Hamulka, Marta Jeruszka-Bielak, Magdalena Górnicka, Małgorzata E. Drywień, Monika A. Zielinska-Pukos
Nutrients (2020-12-27) https://doi.org/ghtvq3
DOI: 10.3390/nu13010054 · PMID: 33375422 · PMCID: PMC7823317
755. Court Orders Georgia Defendants to Stop Selling Vitamin D Products as Treatments for Covid-19 and Other Diseases (2021-01-08) https://www.justice.gov/opa/pr/court-orders-georgia-defendants-stop-selling-vitamin-d-products-treatments-covid-19-and-other
+756. Court Orders Georgia Defendants to Stop Selling Vitamin D Products as Treatments for Covid-19 and Other Diseases (2021-01-08) https://www.justice.gov/opa/pr/court-orders-georgia-defendants-stop-selling-vitamin-d-products-treatments-covid-19-and-other
756. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic
+
757. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic
Colin Hill, Francisco Guarner, Gregor Reid, Glenn R. Gibson, Daniel J. Merenstein, Bruno Pot, Lorenzo Morelli, Roberto Berni Canani, Harry J. Flint, Seppo Salminen, … Mary Ellen Sanders
Nature Reviews Gastroenterology & Hepatology (2014-06-10) https://doi.org/f6ndv7
DOI: 10.1038/nrgastro.2014.66 · PMID: 24912386
757. The Effect of Probiotics on Prevention of Common Cold: A Meta-Analysis of Randomized Controlled Trial Studies
+
758. The Effect of Probiotics on Prevention of Common Cold: A Meta-Analysis of Randomized Controlled Trial Studies
En-Jin Kang, Soo Young Kim, In-Hong Hwang, Yun-Jeong Ji
Korean Journal of Family Medicine (2013) https://doi.org/gg3knf
DOI: 10.4082/kjfm.2013.34.1.2 · PMID: 23372900 · PMCID: PMC3560336
758. Probiotics and Paraprobiotics in Viral Infection: Clinical Application and Effects on the Innate and Acquired Immune Systems
+
759. Probiotics and Paraprobiotics in Viral Infection: Clinical Application and Effects on the Innate and Acquired Immune Systems
Osamu Kanauchi, Akira Andoh, Sazaly AbuBakar, Naoki Yamamoto
Current Pharmaceutical Design (2018-05-10) https://doi.org/gdjnpk
DOI: 10.2174/1381612824666180116163411 · PMID: 29345577 · PMCID: PMC6006794
759. Using Probiotics to Flatten the Curve of Coronavirus Disease COVID-2019 Pandemic
+
760. Using Probiotics to Flatten the Curve of Coronavirus Disease COVID-2019 Pandemic
David Baud, Varvara Dimopoulou Agri, Glenn R. Gibson, Gregor Reid, Eric Giannoni
Frontiers in Public Health (2020-05-08) https://doi.org/gg3knd
DOI: 10.3389/fpubh.2020.00186 · PMID: 32574290 · PMCID: PMC7227397
760. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics
+
761. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics
Paul W. O’Toole, Julian R. Marchesi, Colin Hill
Nature Microbiology (2017-04-25) https://doi.org/ggzggv
DOI: 10.1038/nmicrobiol.2017.57 · PMID: 28440276
761. Mechanisms of Action of Probiotics
+
762. Mechanisms of Action of Probiotics
Julio Plaza-Diaz, Francisco Javier Ruiz-Ojeda, Mercedes Gil-Campos, Angel Gil
Advances in Nutrition (2019-01) https://doi.org/gft8sh
DOI: 10.1093/advances/nmy063 · PMID: 30721959 · PMCID: PMC6363529
762. Probiotic mechanisms of action
+
763. Probiotic mechanisms of action
Katrina Halloran, Mark A. Underwood
Early Human Development (2019-08) https://doi.org/gg3jc4
DOI: 10.1016/j.earlhumdev.2019.05.010 · PMID: 31174927
763. Probiotic Mechanisms of Action
+
764. Probiotic Mechanisms of Action
Miriam Bermudez-Brito, Julio Plaza-Díaz, Sergio Muñoz-Quezada, Carolina Gómez-Llorente, Angel Gil
Annals of Nutrition and Metabolism (2012) https://doi.org/gg3knb
DOI: 10.1159/000342079 · PMID: 23037511
764. A novel eukaryotic cell culture model to study antiviral activity of potential probiotic bacteria
+
765. A novel eukaryotic cell culture model to study antiviral activity of potential probiotic bacteria
T BOTIC, T KLINGBERG, H WEINGARTL, A CENCIC
International Journal of Food Microbiology (2007-04-30) https://doi.org/fks5cz
DOI: 10.1016/j.ijfoodmicro.2006.10.044 · PMID: 17261339
765. Oral administration of Lactobacillus brevis KB290 to mice alleviates clinical symptoms following influenza virus infection
+
766. Oral administration of Lactobacillus brevis KB290 to mice alleviates clinical symptoms following influenza virus infection
N. Waki, N. Yajima, H. Suganuma, B. M. Buddle, D. Luo, A. Heiser, T. Zheng
Letters in Applied Microbiology (2014-01) https://doi.org/f5j37w
DOI: 10.1111/lam.12160 · PMID: 24329975
766. Antiviral activity of Lactobacillus brevis towards herpes simplex virus type 2: Role of cell wall associated components
+
767. Antiviral activity of Lactobacillus brevis towards herpes simplex virus type 2: Role of cell wall associated components
Paola Mastromarino, Fatima Cacciotti, Alessandra Masci, Luciana Mosca
Anaerobe (2011-12) https://doi.org/bcpvm5
DOI: 10.1016/j.anaerobe.2011.04.022 · PMID: 21621625
767. Critical Adverse Impact of IL-6 in Acute Pneumovirus Infection
+
768. Critical Adverse Impact of IL-6 in Acute Pneumovirus Infection
Caroline M. Percopo, Michelle Ma, Todd A. Brenner, Julia O. Krumholz, Timothy J. Break, Karen Laky, Helene F. Rosenberg
The Journal of Immunology (2019-02-01) https://doi.org/ghr95h
DOI: 10.4049/jimmunol.1800927 · PMID: 30578308 · PMCID: PMC6365009
768. Antiviral Activity of Exopolysaccharides Produced by Lactic Acid Bacteria of the Genera Pediococcus, Leuconostoc and Lactobacillus against Human Adenovirus Type 5
+
769. Antiviral Activity of Exopolysaccharides Produced by Lactic Acid Bacteria of the Genera Pediococcus, Leuconostoc and Lactobacillus against Human Adenovirus Type 5
Biliavska, Pankivska, Povnitsa, Zagorodnya
Medicina (2019-08-22) https://doi.org/ghr948
DOI: 10.3390/medicina55090519 · PMID: 31443536 · PMCID: PMC6780409
769. Prevention of respiratory syncytial virus infection with probiotic lactic acid bacterium Lactobacillus gasseri SBT2055
+
770. Prevention of respiratory syncytial virus infection with probiotic lactic acid bacterium Lactobacillus gasseri SBT2055
Kei Eguchi, Naoki Fujitani, Hisako Nakagawa, Tadaaki Miyazaki
Scientific Reports (2019-03-18) https://doi.org/ghr934
DOI: 10.1038/s41598-019-39602-7 · PMID: 30886158 · PMCID: PMC6423325
770. Effect of probiotic on innate inflammatory response and viral shedding in experimental rhinovirus infection – a randomised controlled trial
+
771. Effect of probiotic on innate inflammatory response and viral shedding in experimental rhinovirus infection – a randomised controlled trial
R. B. Turner, J. A. Woodfolk, L. Borish, J. W. Steinke, J. T. Patrie, L. M. Muehling, S. Lahtinen, M. J. Lehtinen
Beneficial Microbes (2017-04-26) https://doi.org/f955fh
DOI: 10.3920/bm2016.0160 · PMID: 28343401 · PMCID: PMC5797652
771. Immunobiotic lactobacilli reduce viral-associated pulmonary damage through the modulation of inflammation–coagulation interactions
+
772. Immunobiotic lactobacilli reduce viral-associated pulmonary damage through the modulation of inflammation–coagulation interactions
Hortensia Zelaya, Kohichiro Tsukida, Eriko Chiba, Gabriela Marranzino, Susana Alvarez, Haruki Kitazawa, Graciela Agüero, Julio Villena
International Immunopharmacology (2014-03) https://doi.org/f5wd93
DOI: 10.1016/j.intimp.2013.12.020 · PMID: 24394565
772. Nasal priming with immunobiotic lactobacilli improves the adaptive immune response against influenza virus
+
773. Nasal priming with immunobiotic lactobacilli improves the adaptive immune response against influenza virus
Fernanda Raya Tonetti, Md. Aminul Islam, Maria Guadalupe Vizoso-Pinto, Hideki Takahashi, Haruki Kitazawa, Julio Villena
International Immunopharmacology (2020-01) https://doi.org/ghr93v
DOI: 10.1016/j.intimp.2019.106115 · PMID: 31841753
773. The potential application of probiotics and prebiotics for the prevention and treatment of COVID-19
+
774. The potential application of probiotics and prebiotics for the prevention and treatment of COVID-19
Amin N. Olaimat, Iman Aolymat, Murad Al-Holy, Mutamed Ayyash, Mahmoud Abu Ghoush, Anas A. Al-Nabulsi, Tareq Osaili, Vasso Apostolopoulos, Shao-Quan Liu, Nagendra P. Shah
npj Science of Food (2020-10-05) https://doi.org/ghggq4
DOI: 10.1038/s41538-020-00078-9 · PMID: 33083549 · PMCID: PMC7536434
774. Pulmonary-intestinal cross-talk in mucosal inflammatory disease
+
775. Pulmonary-intestinal cross-talk in mucosal inflammatory disease
S Keely, NJ Talley, PM Hansbro
Mucosal Immunology (2011-11-16) https://doi.org/b5knk2
DOI: 10.1038/mi.2011.55 · PMID: 22089028 · PMCID: PMC3243663
775. The role of the lung microbiota and the gut-lung axis in respiratory infectious diseases
+
776. The role of the lung microbiota and the gut-lung axis in respiratory infectious diseases
Alexia Dumas, Lucie Bernard, Yannick Poquet, Geanncarlo Lugo-Villarino, Olivier Neyrolles
Cellular Microbiology (2018-12) https://doi.org/gfjds9
DOI: 10.1111/cmi.12966 · PMID: 30329198
776. Gut microbiota and Covid-19- possible link and implications
+
777. Gut microbiota and Covid-19- possible link and implications
Debojyoti Dhar, Abhishek Mohanty
Virus Research (2020-08) https://doi.org/gg3jc5
DOI: 10.1016/j.virusres.2020.198018 · PMID: 32430279 · PMCID: PMC7217790
777. Oral Microbiome and SARS-CoV-2: Beware of Lung Co-infection
+
778. Oral Microbiome and SARS-CoV-2: Beware of Lung Co-infection
Lirong Bao, Cheng Zhang, Jiajia Dong, Lei Zhao, Yan Li, Jianxun Sun
Frontiers in Microbiology (2020-07-31) https://doi.org/ghr944
DOI: 10.3389/fmicb.2020.01840 · PMID: 32849438 · PMCID: PMC7411080
778. Lung microbiome and coronavirus disease 2019 (COVID-19): Possible link and implications
+
779. Lung microbiome and coronavirus disease 2019 (COVID-19): Possible link and implications
Saroj Khatiwada, Astha Subedi
Human Microbiome Journal (2020-08) https://doi.org/gg7m83
DOI: 10.1016/j.humic.2020.100073 · PMID: 32835135 · PMCID: PMC7405772
779. Probiotics in respiratory virus infections
+
780. Probiotics in respiratory virus infections
L. Lehtoranta, A. Pitkäranta, R. Korpela
European Journal of Clinical Microbiology & Infectious Diseases (2014-03-18) https://doi.org/f583jr
DOI: 10.1007/s10096-014-2086-y · PMID: 24638909 · PMCID: PMC7088122
780. Probiotics for preventing acute upper respiratory tract infections
+
781. Probiotics for preventing acute upper respiratory tract infections
Qiukui Hao, Bi Rong Dong, Taixiang Wu
Cochrane Database of Systematic Reviews (2015-02-03) https://doi.org/gg3jc3
DOI: 10.1002/14651858.cd006895.pub3 · PMID: 25927096
781. Probiotics for the prevention of respiratory tract infections: a systematic review
+
782. Probiotics for the prevention of respiratory tract infections: a systematic review
Evridiki K. Vouloumanou, Gregory C. Makris, Drosos E. Karageorgopoulos, Matthew E. Falagas
International Journal of Antimicrobial Agents (2009-09) https://doi.org/dn8kw8
DOI: 10.1016/j.ijantimicag.2008.11.005 · PMID: 19179052
782. Effectiveness of probiotics on the duration of illness in healthy children and adults who develop common acute respiratory infectious conditions: a systematic review and meta-analysis
+
783. Effectiveness of probiotics on the duration of illness in healthy children and adults who develop common acute respiratory infectious conditions: a systematic review and meta-analysis
Sarah King, Julie Glanville, Mary Ellen Sanders, Anita Fitzgerald, Danielle Varley
British Journal of Nutrition (2014-04-29) https://doi.org/f57hq5
DOI: 10.1017/s0007114514000075 · PMID: 24780623 · PMCID: PMC4054664
783. Effect of probiotics on the incidence of ventilator-associated pneumonia in critically ill patients: a randomized controlled multicenter trial
+
784. Effect of probiotics on the incidence of ventilator-associated pneumonia in critically ill patients: a randomized controlled multicenter trial
Juan Zeng, Chun-Ting Wang, Fu-Shen Zhang, Feng Qi, Shi-Fu Wang, Shuang Ma, Tie-Jun Wu, Hui Tian, Zhao-Tao Tian, Shu-Liu Zhang, … Yu-Ping Wang
Intensive Care Medicine (2016-04-04) https://doi.org/f8jnrt
DOI: 10.1007/s00134-016-4303-x · PMID: 27043237
784. Probiotic Prophylaxis of Ventilator-associated Pneumonia
+
785. Probiotic Prophylaxis of Ventilator-associated Pneumonia
Lee E. Morrow, Marin H. Kollef, Thomas B. Casale
American Journal of Respiratory and Critical Care Medicine (2010-10-15) https://doi.org/d5hh4t
DOI: 10.1164/rccm.200912-1853oc · PMID: 20522788 · PMCID: PMC2970846
785. Synbiotics modulate gut microbiota and reduce enteritis and ventilator-associated pneumonia in patients with sepsis: a randomized controlled trial
+
786. Synbiotics modulate gut microbiota and reduce enteritis and ventilator-associated pneumonia in patients with sepsis: a randomized controlled trial
Kentaro Shimizu, Tomoki Yamada, Hiroshi Ogura, Tomoyoshi Mohri, Takeyuki Kiguchi, Satoshi Fujimi, Takashi Asahara, Tomomi Yamada, Masahiro Ojima, Mitsunori Ikeda, Takeshi Shimazu
Critical Care (2018-09-27) https://doi.org/gfdggj
DOI: 10.1186/s13054-018-2167-x · PMID: 30261905 · PMCID: PMC6161427
786. Probiotics for the Prevention of Ventilator-Associated Pneumonia: A Meta-Analysis of Randomized Controlled Trials
+
787. Probiotics for the Prevention of Ventilator-Associated Pneumonia: A Meta-Analysis of Randomized Controlled Trials
Minmin Su, Ying Jia, Yan Li, Dianyou Zhou, Jinsheng Jia
Respiratory Care (2020-05) https://doi.org/gg3kng
DOI: 10.4187/respcare.07097 · PMID: 32127415
787. COVID-19: An Alert to Ventilator-Associated Bacterial Pneumonia
+
788. COVID-19: An Alert to Ventilator-Associated Bacterial Pneumonia
Helvécio Cardoso Corrêa Póvoa, Gabriela Ceccon Chianca, Natalia Lopes Pontes Póvoa Iorio
Adis Journals (2020) https://doi.org/gg3knh
DOI: 10.6084/m9.figshare.12340496
788. The challenge of ventilator-associated pneumonia diagnosis in COVID-19 patients
+
789. The challenge of ventilator-associated pneumonia diagnosis in COVID-19 patients
Bruno François, Pierre-François Laterre, Charles-Edouard Luyt, Jean Chastre
Critical Care (2020-06-05) https://doi.org/gg3knc
DOI: 10.1186/s13054-020-03013-2 · PMID: 32503590 · PMCID: PMC7273812
789. Prophylactic use of probiotics for gastrointestinal disorders in children
+
790. Prophylactic use of probiotics for gastrointestinal disorders in children
Celine Perceval, Hania Szajewska, Flavia Indrio, Zvi Weizman, Yvan Vandenplas
The Lancet Child & Adolescent Health (2019-09) https://doi.org/d2qp
DOI: 10.1016/s2352-4642(19)30182-8
790. Effect of Gastrointestinal Symptoms in Patients With COVID-19
+
791. Effect of Gastrointestinal Symptoms in Patients With COVID-19
Zili Zhou, Ning Zhao, Yan Shu, Shengbo Han, Bin Chen, Xiaogang Shu
Gastroenterology (2020-06) https://doi.org/ggq8x8
DOI: 10.1053/j.gastro.2020.03.020 · PMID: 32199880 · PMCID: PMC7270807
791. The digestive system is a potential route of 2019-nCov infection: a bioinformatics analysis based on single-cell transcriptomes
+
792. The digestive system is a potential route of 2019-nCov infection: a bioinformatics analysis based on single-cell transcriptomes
Hao Zhang, Zijian Kang, Haiyi Gong, Da Xu, Jing Wang, Zifu Li, Xingang Cui, Jianru Xiao, Tong Meng, Wang Zhou, … Huji Xu
Cold Spring Harbor Laboratory (2020-01-31) https://doi.org/ggjvx2
DOI: 10.1101/2020.01.30.927806
792. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding
+
793. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding
Miao Gui, Wenfei Song, Haixia Zhou, Jingwei Xu, Silian Chen, Ye Xiang, Xinquan Wang
Cell Research (2016-12-23) https://doi.org/f9m247
DOI: 10.1038/cr.2016.152 · PMID: 28008928 · PMCID: PMC5223232
793. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples
+
794. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples
Yongjian Wu, Cheng Guo, Lantian Tang, Zhongsi Hong, Jianhui Zhou, Xin Dong, Huan Yin, Qiang Xiao, Yanping Tang, Xiujuan Qu, … Xi Huang
The Lancet Gastroenterology & Hepatology (2020-05) https://doi.org/ggq8zp
DOI: 10.1016/s2468-1253(20)30083-2 · PMID: 32199469 · PMCID: PMC7158584
794. Enteric involvement of coronaviruses: is faecal–oral transmission of SARS-CoV-2 possible?
+
795. Enteric involvement of coronaviruses: is faecal–oral transmission of SARS-CoV-2 possible?
Charleen Yeo, Sanghvi Kaushal, Danson Yeo
The Lancet Gastroenterology & Hepatology (2020-04) https://doi.org/ggpx7s
DOI: 10.1016/s2468-1253(20)30048-0 · PMID: 32087098 · PMCID: PMC7130008
795. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding
+
796. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding
Yi Xu, Xufang Li, Bing Zhu, Huiying Liang, Chunxiao Fang, Yu Gong, Qiaozhi Guo, Xin Sun, Danyang Zhao, Jun Shen, … Sitang Gong
Nature Medicine (2020-03-13) https://doi.org/ggpwx5
DOI: 10.1038/s41591-020-0817-4 · PMID: 32284613 · PMCID: PMC7095102
796. Modulation of rotavirus severe gastroenteritis by the combination of probiotics and prebiotics
+
797. Modulation of rotavirus severe gastroenteritis by the combination of probiotics and prebiotics
Guadalupe Gonzalez-Ochoa, Lilian K. Flores-Mendoza, Ramona Icedo-Garcia, Ricardo Gomez-Flores, Patricia Tamez-Guerra
Archives of Microbiology (2017-06-20) https://doi.org/gbsb4d
DOI: 10.1007/s00203-017-1400-3 · PMID: 28634691 · PMCID: PMC5548957
797. Multicenter Trial of a Combination Probiotic for Children with Gastroenteritis
+
798. Multicenter Trial of a Combination Probiotic for Children with Gastroenteritis
Stephen B. Freedman, Sarah Williamson-Urquhart, Ken J. Farion, Serge Gouin, Andrew R. Willan, Naveen Poonai, Katrina Hurley, Philip M. Sherman, Yaron Finkelstein, Bonita E. Lee, … Suzanne Schuh
New England Journal of Medicine (2018-11-22) https://doi.org/gfkbsf
DOI: 10.1056/nejmoa1802597 · PMID: 30462939
798. Synbiotic Therapy of Gastrointestinal Symptoms During Covid-19 Infection: A Randomized, Double-blind, Placebo Controlled, Telemedicine Study (SynCov Study)
+
799. Synbiotic Therapy of Gastrointestinal Symptoms During Covid-19 Infection: A Randomized, Double-blind, Placebo Controlled, Telemedicine Study (SynCov Study)
Medical University of Graz
clinicaltrials.gov (2021-01-14) https://clinicaltrials.gov/ct2/show/NCT04420676
799. Multicentric Study to Assess the Effect of Consumption of Lactobacillus Coryniformis K8 on Healthcare Personnel Exposed to COVID-19
+
800. Multicentric Study to Assess the Effect of Consumption of Lactobacillus Coryniformis K8 on Healthcare Personnel Exposed to COVID-19
Biosearch S.A.
clinicaltrials.gov (2020-04-28) https://clinicaltrials.gov/ct2/show/NCT04366180
800. The Intestinal Microbiota as a Therapeutic Target in Hospitalized Patients With COVID-19 Infection
+
801. The Intestinal Microbiota as a Therapeutic Target in Hospitalized Patients With COVID-19 Infection
Bioithas SL
clinicaltrials.gov (2021-01-26) https://clinicaltrials.gov/ct2/show/NCT04390477
801. Probiotics: definition, scope and mechanisms of action
+
802. Probiotics: definition, scope and mechanisms of action
Gregor Reid
Best Practice & Research Clinical Gastroenterology (2016-02) https://doi.org/f8m79k
DOI: 10.1016/j.bpg.2015.12.001 · PMID: 27048893
802. Health benefits and health claims of probiotics: bridging science and marketing
+
803. Health benefits and health claims of probiotics: bridging science and marketing
Ger T. Rijkers, Willem M. de Vos, Robert-Jan Brummer, Lorenzo Morelli, Gerard Corthier, Philippe Marteau
British Journal of Nutrition (2011-08-24) https://doi.org/cb78rx
DOI: 10.1017/s000711451100287x · PMID: 21861940
803. Probiotics and COVID-19: one size does not fit all
+
804. Probiotics and COVID-19: one size does not fit all
Joyce WY Mak, Francis KL Chan, Siew C Ng
The Lancet Gastroenterology & Hepatology (2020-07) https://doi.org/d2qq
DOI: 10.1016/s2468-1253(20)30122-9 · PMID: 32339473 · PMCID: PMC7182525
804. Bloomberg - Are you a robot? https://www.bloomberg.com/tosv2.html?vid=&uuid=b91b9b90-6a34-11eb-a07d-15fd64b6d7f0&url=L3ByZXNzLXJlbGVhc2VzLzIwMjAtMDgtMDMvcHJvYmlvdGljcy1tYXJrZXQtd29ydGgtNzYtNy1iaWxsaW9uLWJ5LTIwMjctZXhjbHVzaXZlLXJlcG9ydC1jb3ZlcmluZy1wcmUtYW5kLXBvc3QtY292aWQtMTktbWFya2V0LWFuYWx5c2lzLWJ5LW1ldGljdWxvdXM=
+805. Bloomberg - Are you a robot? https://www.bloomberg.com/tosv2.html?vid=&uuid=b91b9b90-6a34-11eb-a07d-15fd64b6d7f0&url=L3ByZXNzLXJlbGVhc2VzLzIwMjAtMDgtMDMvcHJvYmlvdGljcy1tYXJrZXQtd29ydGgtNzYtNy1iaWxsaW9uLWJ5LTIwMjctZXhjbHVzaXZlLXJlcG9ydC1jb3ZlcmluZy1wcmUtYW5kLXBvc3QtY292aWQtMTktbWFya2V0LWFuYWx5c2lzLWJ5LW1ldGljdWxvdXM=
805. Vitamin D deficiency aggravates COVID-19: systematic review and meta-analysis
+
806. Vitamin D deficiency aggravates COVID-19: systematic review and meta-analysis
Marcos Pereira, Alialdo Dantas Damascena, Laylla Mirella Galvão Azevedo, Tarcio de Almeida Oliveira, Jerusa da Mota Santana
Critical Reviews in Food Science and Nutrition (2020-11-04) https://doi.org/ghr937
DOI: 10.1080/10408398.2020.1841090 · PMID: 33146028
806. Cytokine Storm
+
807. Cytokine Storm
David C. Fajgenbaum, Carl H. June
New England Journal of Medicine (2020-12-03) https://doi.org/ghnhm7
DOI: 10.1056/nejmra2026131 · PMID: 33264547 · PMCID: PMC7727315
807. Diet and Inflammation
+
808. Diet and Inflammation
Leo Galland
Nutrition in Clinical Practice (2010-12-07) https://doi.org/b7qgx7
DOI: 10.1177/0884533610385703 · PMID: 21139128
808. Obesogenic diet in aging mice disrupts gut microbe composition and alters neutrophi:lymphocyte ratio, leading to inflamed milieu in acute heart failure
+
809. Obesogenic diet in aging mice disrupts gut microbe composition and alters neutrophi:lymphocyte ratio, leading to inflamed milieu in acute heart failure
Vasundhara Kain, William Van Der Pol, Nithya Mariappan, Aftab Ahmad, Peter Eipers, Deanna L. Gibson, Cecile Gladine, Claire Vigor, Thierry Durand, Casey Morrow, Ganesh V. Halade
The FASEB Journal (2019-02-15) https://doi.org/ghwfq8
DOI: 10.1096/fj.201802477r · PMID: 30768364 · PMCID: PMC6463911
809. Colloidal Silver
+
810. Colloidal Silver
NCCIH
https://www.nccih.nih.gov/health/colloidal-silver
810. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2
+
811. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2
Yadi Zhou, Yuan Hou, Jiayu Shen, Yin Huang, William Martin, Feixiong Cheng
Cell Discovery (2020-03-16) https://doi.org/ggq84x
DOI: 10.1038/s41421-020-0153-3 · PMID: 32194980 · PMCID: PMC7073332
811. Role of Melatonin on Virus-Induced Neuropathogenesis—A Concomitant Therapeutic Strategy to Understand SARS-CoV-2 Infection
+
812. Role of Melatonin on Virus-Induced Neuropathogenesis—A Concomitant Therapeutic Strategy to Understand SARS-CoV-2 Infection
Prapimpun Wongchitrat, Mayuri Shukla, Ramaswamy Sharma, Piyarat Govitrapong, Russel J. Reiter
Antioxidants (2021-01-02) https://doi.org/ghr946
DOI: 10.3390/antiox10010047 · PMID: 33401749 · PMCID: PMC7823793
812. Nutraceutical Strategies for Suppressing NLRP3 Inflammasome Activation: Pertinence to the Management of COVID-19 and Beyond
+
813. Nutraceutical Strategies for Suppressing NLRP3 Inflammasome Activation: Pertinence to the Management of COVID-19 and Beyond
Mark F. McCarty, Simon Bernard Iloki Assanga, Lidianys Lewis Luján, James H. O’Keefe, James J. DiNicolantonio
Nutrients (2020-12-25) https://doi.org/ghr95g
DOI: 10.3390/nu13010047 · PMID: 33375692 · PMCID: PMC7823562
813. Update: Here’s what is known about Trump’s COVID-19 treatment
+
814. Update: Here’s what is known about Trump’s COVID-19 treatment
Jon Cohen
Science (2020-10-05) https://doi.org/ghr94n
DOI: 10.1126/science.abf0974
814. Dietary supplements during the COVID-19 pandemic: insights from 1.4M users of the COVID Symptom Study app - a longitudinal app-based community survey
+
815. Dietary supplements during the COVID-19 pandemic: insights from 1.4M users of the COVID Symptom Study app - a longitudinal app-based community survey
Panayiotis Louca, Benjamin Murray, Kerstin Klaser, Mark S Graham, Mohsen Mazidi, Emily R Leeming, Ellen Thompson, Ruth Bowyer, David A Drew, Long H Nguyen, … Cristina Menni
Cold Spring Harbor Laboratory (2020-11-30) https://doi.org/ghr94k
DOI: 10.1101/2020.11.27.20239087
815. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection
+
816. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection
Rocco Barazzoni, Stephan C. Bischoff, Joao Breda, Kremlin Wickramasinghe, Zeljko Krznaric, Dorit Nitzan, Matthias Pirlich, Pierre Singer
Clinical Nutrition (2020-06) https://doi.org/ggtzjq
DOI: 10.1016/j.clnu.2020.03.022 · PMID: 32305181 · PMCID: PMC7138149
816. Nutritional status assessment in patients with Covid-19 after discharge from the intensive care unit
+
817. Nutritional status assessment in patients with Covid-19 after discharge from the intensive care unit
Nassim Essabah Haraj, Siham El Aziz, Asma Chadli, Asma Dafir, Amal Mjabber, Ouissal Aissaoui, Lhoucine Barrou, Chafik El Kettani El Hamidi, Afak Nsiri, Rachid AL Harrar, … Moulay Hicham Afif
Clinical Nutrition ESPEN (2021-02) https://doi.org/ghjhdq
DOI: 10.1016/j.clnesp.2020.09.214 · PMID: 33487301 · PMCID: PMC7552965
817. Nutrition Status Affects COVID‐19 Patient Outcomes
+
818. Nutrition Status Affects COVID‐19 Patient Outcomes
Mette M Berger
Journal of Parenteral and Enteral Nutrition (2020-07-15) https://doi.org/gg5qv4
DOI: 10.1002/jpen.1954 · PMID: 32613691 · PMCID: PMC7361441
818. Evaluation of Nutrition Risk and Its Association With Mortality Risk in Severely and Critically Ill COVID‐19 Patients
+
819. Evaluation of Nutrition Risk and Its Association With Mortality Risk in Severely and Critically Ill COVID‐19 Patients
Xiaobo Zhao, Yan Li, Yanyan Ge, Yuxin Shi, Ping Lv, Jianchu Zhang, Gui Fu, Yanfen Zhou, Ke Jiang, Nengxing Lin, … Xin Li
Journal of Parenteral and Enteral Nutrition (2020-07-20) https://doi.org/ghr93n
DOI: 10.1002/jpen.1953 · PMID: 32613660 · PMCID: PMC7361906
819. Multisystem inflammatory syndrome in children: A systematic review
+
820. Multisystem inflammatory syndrome in children: A systematic review
Mubbasheer Ahmed, Shailesh Advani, Axel Moreira, Sarah Zoretic, John Martinez, Kevin Chorath, Sebastian Acosta, Rija Naqvi, Finn Burmeister-Morton, Fiona Burmeister, … Alvaro Moreira
EClinicalMedicine (2020-09) https://doi.org/ghsv27
DOI: 10.1016/j.eclinm.2020.100527 · PMID: 32923992 · PMCID: PMC7473262
820. Nutritional management of COVID-19 patients in a rehabilitation unit
+
821. Nutritional management of COVID-19 patients in a rehabilitation unit
Luigia Brugliera, Alfio Spina, Paola Castellazzi, Paolo Cimino, Pietro Arcuri, Alessandra Negro, Elise Houdayer, Federica Alemanno, Alessandra Giordani, Pietro Mortini, Sandro Iannaccone
European Journal of Clinical Nutrition (2020-05-20) https://doi.org/gg29hf
DOI: 10.1038/s41430-020-0664-x · PMID: 32433599 · PMCID: PMC7237874
821. The frontier between nutrition and pharma: The international regulatory framework of functional foods, food supplements and nutraceuticals
+
822. The frontier between nutrition and pharma: The international regulatory framework of functional foods, food supplements and nutraceuticals
Laura Domínguez Díaz, Virginia Fernández-Ruiz, Montaña Cámara
Critical Reviews in Food Science and Nutrition (2019-03-29) https://doi.org/ggqs3w
DOI: 10.1080/10408398.2019.1592107 · PMID: 30924346
822. Coronavirus Update: FDA and FTC Warn Seven Companies Selling Fraudulent Products that Claim to Treat or Prevent COVID-19
+
823. Coronavirus Update: FDA and FTC Warn Seven Companies Selling Fraudulent Products that Claim to Treat or Prevent COVID-19
Office of the Commissioner
FDA (2020-03-27) https://www.fda.gov/news-events/press-announcements/coronavirus-update-fda-and-ftc-warn-seven-companies-selling-fraudulent-products-claim-treat-or
823. COVID-19 and Your Health
+
824. COVID-19 and Your Health
CDC
Centers for Disease Control and Prevention (2021-02-04) https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/prevention.html
824. Potential roles of social distancing in mitigating the spread of coronavirus disease 2019 (COVID-19) in South Korea
+
825. Potential roles of social distancing in mitigating the spread of coronavirus disease 2019 (COVID-19) in South Korea
Sang Woo Park, Kaiyuan Sun, Cécile Viboud, Bryan T. Grenfell, Jonathan Dushoff
Cold Spring Harbor Laboratory (2020-03-30) https://doi.org/gg3mhg
DOI: 10.1101/2020.03.27.20045815 · PMID: 32511429 · PMCID: PMC7217070
825. Evaluating the Effectiveness of Social Distancing Interventions to Delay or Flatten the Epidemic Curve of Coronavirus Disease
+
826. Evaluating the Effectiveness of Social Distancing Interventions to Delay or Flatten the Epidemic Curve of Coronavirus Disease
Laura Matrajt, Tiffany Leung
Emerging Infectious Diseases (2020-08) https://doi.org/ggtx3k
DOI: 10.3201/eid2608.201093 · PMID: 32343222 · PMCID: PMC7392458
826. Neutralizing Monoclonal Antibodies as Promising Therapeutics against Middle East Respiratory Syndrome Coronavirus Infection
+
827. Neutralizing Monoclonal Antibodies as Promising Therapeutics against Middle East Respiratory Syndrome Coronavirus Infection
Hui-Ju Han, Jian-Wei Liu, Hao Yu, Xue-Jie Yu
Viruses (2018-11-30) https://doi.org/ggp87v
DOI: 10.3390/v10120680 · PMID: 30513619 · PMCID: PMC6315345
827. Developing Covid-19 Vaccines at Pandemic Speed
+
828. Developing Covid-19 Vaccines at Pandemic Speed
Nicole Lurie, Melanie Saville, Richard Hatchett, Jane Halton
New England Journal of Medicine (2020-05-21) https://doi.org/ggq8bc
DOI: 10.1056/nejmp2005630 · PMID: 32227757
828. WHO | Novel Coronavirus – China
+
829. WHO | Novel Coronavirus – China
WHO
http://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/
829. SARS-CoV-2 vaccines in development
+
830. SARS-CoV-2 vaccines in development
Florian Krammer
Nature (2020-09-23) https://doi.org/ghdprn
DOI: 10.1038/s41586-020-2798-3 · PMID: 32967006
830. Newer Vaccine Technologies Deployed to Develop COVID-19 Shot
+
831. Newer Vaccine Technologies Deployed to Develop COVID-19 Shot
Abby Olena
The Scientist Magazine (2020-02-21) https://www.the-scientist.com/news-opinion/newer-vaccine-technologies-deployed-to-develop-covid-19-shot-67152
831. A strategic approach to COVID-19 vaccine R&D
+
832. A strategic approach to COVID-19 vaccine R&D
Lawrence Corey, John R. Mascola, Anthony S. Fauci, Francis S. Collins
Science (2020-05-29) https://doi.org/ggwfck
DOI: 10.1126/science.abc5312 · PMID: 32393526
832. An mRNA Vaccine against SARS-CoV-2 — Preliminary Report
+
833. An mRNA Vaccine against SARS-CoV-2 — Preliminary Report
Lisa A. Jackson, Evan J. Anderson, Nadine G. Rouphael, Paul C. Roberts, Mamodikoe Makhene, Rhea N. Coler, Michele P. McCullough, James D. Chappell, Mark R. Denison, Laura J. Stevens, … John H. Beigel
New England Journal of Medicine (2020-11-12) https://doi.org/d3tt
DOI: 10.1056/nejmoa2022483 · PMID: 32663912 · PMCID: PMC7377258
834. Safety, Tolerability and Immunogenicity of INO-4800 for COVID-19 in Healthy Volunteers - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04336410
+835. Safety, Tolerability and Immunogenicity of INO-4800 for COVID-19 in Healthy Volunteers - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04336410
835. Electroporation delivery of DNA vaccines: prospects for success
+
836. Electroporation delivery of DNA vaccines: prospects for success
Niranjan Y Sardesai, David B Weiner
Current Opinion in Immunology (2011-06) https://doi.org/cq8b4p
DOI: 10.1016/j.coi.2011.03.008 · PMID: 21530212 · PMCID: PMC3109217
836. Tolerability of intramuscular and intradermal delivery by CELLECTRA ® adaptive constant current electroporation device in healthy volunteers
+
837. Tolerability of intramuscular and intradermal delivery by CELLECTRA ® adaptive constant current electroporation device in healthy volunteers
Malissa C Diehl, Jessica C Lee, Stephen E Daniels, Pablo Tebas, Amir S Khan, Mary Giffear, Niranjan Y Sardesai, Mark L Bagarazzi
Human Vaccines & Immunotherapeutics (2014-10-27) https://doi.org/ggrj7h
DOI: 10.4161/hv.24702 · PMID: 24051434 · PMCID: PMC3906411
837. Induction of virus-specific cytotoxic T lymphocytesin vivo by liposome-entrapped mRNA
+
838. Induction of virus-specific cytotoxic T lymphocytesin vivo by liposome-entrapped mRNA
Frédéric Martinon, Sivadasan Krishnan, Gerlinde Lenzen, Rémy Magné, Elisabeth Gomard, Jean-Gérard Guillet, Jean-Paul Lévy, Pierre Meulien
European Journal of Immunology (1993-07) https://doi.org/b6jb3z
DOI: 10.1002/eji.1830230749 · PMID: 8325342
838. Advances in mRNA Vaccines for Infectious Diseases
+
839. Advances in mRNA Vaccines for Infectious Diseases
Cuiling Zhang, Giulietta Maruggi, Hu Shan, Junwei Li
Frontiers in Immunology (2019-03-27) https://doi.org/ggsnm7
DOI: 10.3389/fimmu.2019.00594 · PMID: 30972078 · PMCID: PMC6446947
839. mRNA vaccine delivery using lipid nanoparticles
+
840. mRNA vaccine delivery using lipid nanoparticles
Andreas M Reichmuth, Matthias A Oberli, Ana Jaklenec, Robert Langer, Daniel Blankschtein
Therapeutic Delivery (2016-05) https://doi.org/f8xfzc
DOI: 10.4155/tde-2016-0006 · PMID: 27075952 · PMCID: PMC5439223
840. Mechanism of action of mRNA-based vaccines
+
841. Mechanism of action of mRNA-based vaccines
Carlo Iavarone, Derek T. O’hagan, Dong Yu, Nicolas F. Delahaye, Jeffrey B. Ulmer
Expert Review of Vaccines (2017-07-28) https://doi.org/ggsnm6
DOI: 10.1080/14760584.2017.1355245 · PMID: 28701102
841. SARS-CoV-2 Vaccines: Status Report
+
842. SARS-CoV-2 Vaccines: Status Report
Fatima Amanat, Florian Krammer
Immunity (2020-04) https://doi.org/ggrdj4
DOI: 10.1016/j.immuni.2020.03.007 · PMID: 32259480 · PMCID: PMC7136867
842. Study in Healthy Adults to Evaluate Gene Activation After Vaccination With GlaxoSmithKline (GSK) Biologicals’ Candidate Tuberculosis (TB) Vaccine GSK 692342 - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01669096
+843. Study in Healthy Adults to Evaluate Gene Activation After Vaccination With GlaxoSmithKline (GSK) Biologicals’ Candidate Tuberculosis (TB) Vaccine GSK 692342 - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01669096
843. Nucleoside-modified mRNA immunization elicits influenza virus hemagglutinin stalk-specific antibodies
+
844. Nucleoside-modified mRNA immunization elicits influenza virus hemagglutinin stalk-specific antibodies
Norbert Pardi, Kaela Parkhouse, Ericka Kirkpatrick, Meagan McMahon, Seth J. Zost, Barbara L. Mui, Ying K. Tam, Katalin Karikó, Christopher J. Barbosa, Thomas D. Madden, … Drew Weissman
Nature Communications (2018-08-22) https://doi.org/gd49qt
DOI: 10.1038/s41467-018-05482-0 · PMID: 30135514 · PMCID: PMC6105651
844. Cell specific delivery of modified mRNA expressing therapeutic proteins to leukocytes
+
845. Cell specific delivery of modified mRNA expressing therapeutic proteins to leukocytes
Nuphar Veiga, Meir Goldsmith, Yasmin Granot, Daniel Rosenblum, Niels Dammes, Ranit Kedmi, Srinivas Ramishetti, Dan Peer
Nature Communications (2018-10-29) https://doi.org/gfmcrt
DOI: 10.1038/s41467-018-06936-1 · PMID: 30374059 · PMCID: PMC6206083
845. RNA vaccines: an introduction
+
846. RNA vaccines: an introduction
PHG Foundation
https://www.phgfoundation.org/briefing/rna-vaccines
846. T Follicular Helper Cell Differentiation, Function, and Roles in Disease
+
847. T Follicular Helper Cell Differentiation, Function, and Roles in Disease
Shane Crotty
Immunity (2014-10) https://doi.org/ggsp64
DOI: 10.1016/j.immuni.2014.10.004 · PMID: 25367570 · PMCID: PMC4223692
847. mRNA vaccines — a new era in vaccinology
+
848. mRNA vaccines — a new era in vaccinology
Norbert Pardi, Michael J. Hogan, Frederick W. Porter, Drew Weissman
Nature Reviews Drug Discovery (2018-01-12) https://doi.org/gcsmgr
DOI: 10.1038/nrd.2017.243 · PMID: 29326426 · PMCID: PMC5906799
848. A Snapshot of the Global Race for Vaccines Targeting SARS-CoV-2 and the COVID-19 Pandemic
+
849. A Snapshot of the Global Race for Vaccines Targeting SARS-CoV-2 and the COVID-19 Pandemic
Colin D. Funk, Craig Laferrière, Ali Ardakani
Frontiers in Pharmacology (2020-06-19) https://doi.org/gg4hxd
DOI: 10.3389/fphar.2020.00937 · PMID: 32636754 · PMCID: PMC7317023
849. Phase I, Open-Label, Dose-Ranging Study of the Safety and Immunogenicity of 2019-nCoV Vaccine (mRNA-1273) in Healthy Adults
+
850. Phase I, Open-Label, Dose-Ranging Study of the Safety and Immunogenicity of 2019-nCoV Vaccine (mRNA-1273) in Healthy Adults
National Institute of Allergy and Infectious Diseases (NIAID)
clinicaltrials.gov (2020-12-17) https://clinicaltrials.gov/ct2/show/NCT04283461
850. Moderna’s COVID-19 Vaccine Candidate Meets its Primary Efficacy Endpoint in the First Interim Analysis of the Phase 3 COVE Study | Moderna, Inc. https://investors.modernatx.com/news-releases/news-release-details/modernas-covid-19-vaccine-candidate-meets-its-primary-efficacy/
+851. Moderna’s COVID-19 Vaccine Candidate Meets its Primary Efficacy Endpoint in the First Interim Analysis of the Phase 3 COVE Study | Moderna, Inc. https://investors.modernatx.com/news-releases/news-release-details/modernas-covid-19-vaccine-candidate-meets-its-primary-efficacy/
851. Vaccines and Related Biological Products Advisory Committee December 17, 2020 Meeting Announcement - 12/17/2020 - 12/17/2020
+
852. Vaccines and Related Biological Products Advisory Committee December 17, 2020 Meeting Announcement - 12/17/2020 - 12/17/2020
FDA
(2021-01-27) https://www.fda.gov/advisory-committees/advisory-committee-calendar/vaccines-and-related-biological-products-advisory-committee-december-17-2020-meeting-announcement
852. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine
+
853. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine
Lindsey R. Baden, Hana M. El Sahly, Brandon Essink, Karen Kotloff, Sharon Frey, Rick Novak, David Diemert, Stephen A. Spector, Nadine Rouphael, C. Buddy Creech, … Tal Zaks
New England Journal of Medicine (2020-12-30) https://doi.org/ghrg8m
DOI: 10.1056/nejmoa2035389 · PMID: 33378609 · PMCID: PMC7787219
853. Vaccines and Related Biological Products Advisory Committee December 17, 2020 Meeting Briefing Document - FDA
+
854. Vaccines and Related Biological Products Advisory Committee December 17, 2020 Meeting Briefing Document - FDA
FDA/CBER
(2020-12-15) https://www.fda.gov/media/144434/download
854. Moderna Has Completed Case Accrual for First Planned Interim Analysis of its mRNA Vaccine Against COVID-19 (mRNA-1273) | Moderna, Inc. https://investors.modernatx.com/news-releases/news-release-details/moderna-has-completed-case-accrual-first-planned-interim/
+855. Moderna Has Completed Case Accrual for First Planned Interim Analysis of its mRNA Vaccine Against COVID-19 (mRNA-1273) | Moderna, Inc. https://investors.modernatx.com/news-releases/news-release-details/moderna-has-completed-case-accrual-first-planned-interim/
855. Guidance for Industry: Toxicity Grading Scale for Healthy Adult and Adolescent Volunteers Enrolled in Preventive Vaccine Clinical Trials
+
856. Guidance for Industry: Toxicity Grading Scale for Healthy Adult and Adolescent Volunteers Enrolled in Preventive Vaccine Clinical Trials
CBER
(2018-10-08) https://www.fda.gov/media/73679/download
856. The Advisory Committee on Immunization Practices’ Interim Recommendation for Use of Moderna COVID-19 Vaccine — United States, December 2020
+
857. The Advisory Committee on Immunization Practices’ Interim Recommendation for Use of Moderna COVID-19 Vaccine — United States, December 2020
Sara E. Oliver
MMWR. Morbidity and Mortality Weekly Report (2021) https://www.cdc.gov/mmwr/volumes/69/wr/mm695152e1.htm
DOI: 10.15585/mmwr.mm695152e1
857. Health Canada Authorizes Moderna COVID-19 Vaccine in Canada | Moderna, Inc. https://investors.modernatx.com/news-releases/news-release-details/health-canada-authorizes-moderna-covid-19-vaccine-canada/
+858. Health Canada Authorizes Moderna COVID-19 Vaccine in Canada | Moderna, Inc. https://investors.modernatx.com/news-releases/news-release-details/health-canada-authorizes-moderna-covid-19-vaccine-canada/
858. EMA recommends COVID-19 Vaccine Moderna for authorisation in the EU
+
859. EMA recommends COVID-19 Vaccine Moderna for authorisation in the EU
Daniel GLANVILLE
European Medicines Agency (2021-01-06) https://www.ema.europa.eu/en/news/ema-recommends-covid-19-vaccine-moderna-authorisation-eu
859. Pfizer and BioNTech Announce Vaccine Candidate Against COVID-19 Achieved Success in First Interim Analysis from Phase 3 Study | Pfizer https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-announce-vaccine-candidate-against
+860. Pfizer and BioNTech Announce Vaccine Candidate Against COVID-19 Achieved Success in First Interim Analysis from Phase 3 Study | Pfizer https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-announce-vaccine-candidate-against
860. Synthetic Chemically Modified mRNA (modRNA): Toward a New Technology Platform for Cardiovascular Biology and Medicine
+
861. Synthetic Chemically Modified mRNA (modRNA): Toward a New Technology Platform for Cardiovascular Biology and Medicine
K. R. Chien, L. Zangi, K. O. Lui
Cold Spring Harbor Perspectives in Medicine (2014-10-09) https://doi.org/f3pvsr
DOI: 10.1101/cshperspect.a014035 · PMID: 25301935 · PMCID: PMC4292072
861. Pfizer and BioNTech Announce Early Positive Data from an Ongoing Phase 1/2 study of mRNA-based Vaccine Candidate Against SARS-CoV-2 | Pfizer https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-announce-early-positive-data-ongoing-0
+862. Pfizer and BioNTech Announce Early Positive Data from an Ongoing Phase 1/2 study of mRNA-based Vaccine Candidate Against SARS-CoV-2 | Pfizer https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-announce-early-positive-data-ongoing-0
862. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults
+
863. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults
Mark J. Mulligan, Kirsten E. Lyke, Nicholas Kitchin, Judith Absalon, Alejandra Gurtman, Stephen Lockhart, Kathleen Neuzil, Vanessa Raabe, Ruth Bailey, Kena A. Swanson, … Kathrin U. Jansen
Nature (2020-08-12) https://doi.org/gg7ww9
DOI: 10.1038/s41586-020-2639-4 · PMID: 32785213
863. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses
+
864. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses
Ugur Sahin, Alexander Muik, Evelyna Derhovanessian, Isabel Vogler, Lena M. Kranz, Mathias Vormehr, Alina Baum, Kristen Pascal, Jasmin Quandt, Daniel Maurus, … Özlem Türeci
Nature (2020-09-30) https://doi.org/ghfmb2
DOI: 10.1038/s41586-020-2814-7 · PMID: 32998157
864. Coronavirus COVID-19 Vaccine Update: Latest Developments | Pfizer https://www.pfizer.com/science/coronavirus/vaccine
+865. Coronavirus COVID-19 Vaccine Update: Latest Developments | Pfizer https://www.pfizer.com/science/coronavirus/vaccine
865. Pfizer and BioNTech Conclude Phase 3 Study of COVID-19 Vaccine Candidate, Meeting All Primary Efficacy Endpoints | Pfizer https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-conclude-phase-3-study-covid-19-vaccine
+866. Pfizer and BioNTech Conclude Phase 3 Study of COVID-19 Vaccine Candidate, Meeting All Primary Efficacy Endpoints | Pfizer https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-conclude-phase-3-study-covid-19-vaccine
866. Covid-19: UK approves Pfizer and BioNTech vaccine with rollout due to start next week
+
867. Covid-19: UK approves Pfizer and BioNTech vaccine with rollout due to start next week
Elisabeth Mahase
BMJ (2020-12-02) https://doi.org/ghpnhg
DOI: 10.1136/bmj.m4714 · PMID: 33268330
867. Covid-19 vaccine: First person receives Pfizer jab in UK
+
868. Covid-19 vaccine: First person receives Pfizer jab in UK
BBC News
(2020-12-08) https://www.bbc.com/news/uk-55227325
868. FDA Takes Key Action in Fight Against COVID-19 By Issuing Emergency Use Authorization for First COVID-19 Vaccine
+
869. FDA Takes Key Action in Fight Against COVID-19 By Issuing Emergency Use Authorization for First COVID-19 Vaccine
Office of the Commissioner
FDA (2020-12-14) https://www.fda.gov/news-events/press-announcements/fda-takes-key-action-fight-against-covid-19-issuing-emergency-use-authorization-first-covid-19
869. Progress and Prospects on Vaccine Development against SARS-CoV-2
+
870. Progress and Prospects on Vaccine Development against SARS-CoV-2
Jinyong Zhang, Hao Zeng, Jiang Gu, Haibo Li, Lixin Zheng, Quanming Zou
Vaccines (2020-03-29) https://doi.org/ggq726
DOI: 10.3390/vaccines8020153 · PMID: 32235387 · PMCID: PMC7349596
870. Towards an understanding of the adjuvant action of aluminium
+
871. Towards an understanding of the adjuvant action of aluminium
Philippa Marrack, Amy S. McKee, Michael W. Munks
Nature Reviews Immunology (2009-04) https://doi.org/drcwvf
DOI: 10.1038/nri2510 · PMID: 19247370 · PMCID: PMC3147301
871. DAMP-Inducing Adjuvant and PAMP Adjuvants Parallelly Enhance Protective Type-2 and Type-1 Immune Responses to Influenza Split Vaccination
+
872. DAMP-Inducing Adjuvant and PAMP Adjuvants Parallelly Enhance Protective Type-2 and Type-1 Immune Responses to Influenza Split Vaccination
Tomoya Hayashi, Masatoshi Momota, Etsushi Kuroda, Takato Kusakabe, Shingo Kobari, Kotaro Makisaka, Yoshitaka Ohno, Yusuke Suzuki, Fumika Nakagawa, Michelle S. J. Lee, … Hidetoshi Arima
Frontiers in Immunology (2018-11-20) https://doi.org/gfqq89
DOI: 10.3389/fimmu.2018.02619 · PMID: 30515151 · PMCID: PMC6255964
872. Better Adjuvants for Better Vaccines: Progress in Adjuvant Delivery Systems, Modifications, and Adjuvant–Antigen Codelivery
+
873. Better Adjuvants for Better Vaccines: Progress in Adjuvant Delivery Systems, Modifications, and Adjuvant–Antigen Codelivery
Zhi-Biao Wang, Jing Xu
Vaccines (2020-03-13) https://doi.org/gg35vj
DOI: 10.3390/vaccines8010128 · PMID: 32183209 · PMCID: PMC7157724
873. Defining trained immunity and its role in health and disease
+
874. Defining trained immunity and its role in health and disease
Mihai G. Netea, Jorge Domínguez-Andrés, Luis B. Barreiro, Triantafyllos Chavakis, Maziar Divangahi, Elaine Fuchs, Leo A. B. Joosten, Jos W. M. van der Meer, Musa M. Mhlanga, Willem J. M. Mulder, … Eicke Latz
Nature Reviews Immunology (2020-03-04) https://doi.org/gg28pr
DOI: 10.1038/s41577-020-0285-6 · PMID: 32132681 · PMCID: PMC7186935
874. Trained Immunity: a Tool for Reducing Susceptibility to and the Severity of SARS-CoV-2 Infection
+
875. Trained Immunity: a Tool for Reducing Susceptibility to and the Severity of SARS-CoV-2 Infection
Mihai G. Netea, Evangelos J. Giamarellos-Bourboulis, Jorge Domínguez-Andrés, Nigel Curtis, Reinout van Crevel, Frank L. van de Veerdonk, Marc Bonten
Cell (2020-05) https://doi.org/gg2584
DOI: 10.1016/j.cell.2020.04.042 · PMID: 32437659 · PMCID: PMC7196902
875. BCG Vaccination to Protect Healthcare Workers Against COVID-19 - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04327206
+876. BCG Vaccination to Protect Healthcare Workers Against COVID-19 - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04327206
876. Reducing Health Care Workers Absenteeism in Covid-19 Pandemic Through BCG Vaccine - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04328441
+877. Reducing Health Care Workers Absenteeism in Covid-19 Pandemic Through BCG Vaccine - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04328441
877. BCG Vaccine for Health Care Workers as Defense Against COVID 19 - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04348370
+878. BCG Vaccine for Health Care Workers as Defense Against COVID 19 - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04348370
878. Application of BCG Vaccine for Immune-prophylaxis Among Egyptian Healthcare Workers During the Pandemic of COVID-19
+
879. Application of BCG Vaccine for Immune-prophylaxis Among Egyptian Healthcare Workers During the Pandemic of COVID-19
Adel Khattab
clinicaltrials.gov (2020-04-17) https://clinicaltrials.gov/ct2/show/NCT04350931
879. Performance Evaluation of BCG Vaccination in Healthcare Personnel to Reduce the Severity of SARS-COV-2 Infection in Medellín, Colombia, 2020
+
880. Performance Evaluation of BCG Vaccination in Healthcare Personnel to Reduce the Severity of SARS-COV-2 Infection in Medellín, Colombia, 2020
Universidad de Antioquia
clinicaltrials.gov (2020-11-24) https://clinicaltrials.gov/ct2/show/NCT04362124
880. COVID-19: BCG As Therapeutic Vaccine, Transmission Limitation, and Immunoglobulin Enhancement - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04369794
+881. COVID-19: BCG As Therapeutic Vaccine, Transmission Limitation, and Immunoglobulin Enhancement - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04369794
881. Using BCG Vaccine to Protect Health Care Workers in the COVID-19 Pandemic - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04373291
+882. Using BCG Vaccine to Protect Health Care Workers in the COVID-19 Pandemic - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04373291
882. Reducing Morbidity and Mortality in Health Care Workers Exposed to SARS-CoV-2 by Enhancing Non-specific Immune Responses Through Bacillus Calmette-Guérin Vaccination, a Randomized Controlled Trial
+
883. Reducing Morbidity and Mortality in Health Care Workers Exposed to SARS-CoV-2 by Enhancing Non-specific Immune Responses Through Bacillus Calmette-Guérin Vaccination, a Randomized Controlled Trial
TASK Applied Science
clinicaltrials.gov (2020-05-06) https://clinicaltrials.gov/ct2/show/NCT04379336
883. Randomized Controlled Trial Evaluating the Efficacy of Vaccination With Bacillus Calmette and Guérin (BCG) in the Prevention of COVID-19 Via the Strengthening of Innate Immunity in Health Care Workers
+
884. Randomized Controlled Trial Evaluating the Efficacy of Vaccination With Bacillus Calmette and Guérin (BCG) in the Prevention of COVID-19 Via the Strengthening of Innate Immunity in Health Care Workers
Assistance Publique - Hôpitaux de Paris
clinicaltrials.gov (2020-08-17) https://clinicaltrials.gov/ct2/show/NCT04384549
884. Study to Assess VPM1002 in Reducing Healthcare Professionals’ Absenteeism in COVID-19 Pandemic - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04387409
+885. Study to Assess VPM1002 in Reducing Healthcare Professionals’ Absenteeism in COVID-19 Pandemic - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04387409
885. A Randomized Clinical Trial for Enhanced Trained Immune Responses Through Bacillus Calmette-Guérin Vaccination to Prevent Infections by COVID-19: The ACTIVATE II Trial
+
886. A Randomized Clinical Trial for Enhanced Trained Immune Responses Through Bacillus Calmette-Guérin Vaccination to Prevent Infections by COVID-19: The ACTIVATE II Trial
Hellenic Institute for the Study of Sepsis
clinicaltrials.gov (2020-07-10) https://clinicaltrials.gov/ct2/show/NCT04414267
886. Reducing Hospital Admission of Elderly in SARS-CoV-2 Pandemic Via the Induction of Trained Immunity by Bacillus Calmette-Guérin Vaccination, a Randomized Controlled Trial
+
887. Reducing Hospital Admission of Elderly in SARS-CoV-2 Pandemic Via the Induction of Trained Immunity by Bacillus Calmette-Guérin Vaccination, a Randomized Controlled Trial
Radboud University
clinicaltrials.gov (2020-06-03) https://clinicaltrials.gov/ct2/show/NCT04417335
887. Study to Assess VPM1002 in Reducing Hospital Admissions and/or Severe Respiratory Infectious Diseases in Elderly in COVID-19 Pandemic - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04435379
+888. Study to Assess VPM1002 in Reducing Hospital Admissions and/or Severe Respiratory Infectious Diseases in Elderly in COVID-19 Pandemic - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04435379
888. Efficacy and Safety of VPM1002 in Reducing SARS-CoV-2 (COVID-19) Infection Rate and Severity - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04439045
+889. Efficacy and Safety of VPM1002 in Reducing SARS-CoV-2 (COVID-19) Infection Rate and Severity - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04439045
889. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure
+
890. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure
Evangelos J. Giamarellos-Bourboulis, Mihai G. Netea, Nikoletta Rovina, Karolina Akinosoglou, Anastasia Antoniadou, Nikolaos Antonakos, Georgia Damoraki, Theologia Gkavogianni, Maria-Evangelia Adami, Paraskevi Katsaounou, … Antonia Koutsoukou
Cell Host & Microbe (2020-06) https://doi.org/ggthxs
DOI: 10.1016/j.chom.2020.04.009 · PMID: 32320677 · PMCID: PMC7172841
890. Type I and Type III Interferons – Induction, Signaling, Evasion, and Application to Combat COVID-19
+
891. Type I and Type III Interferons – Induction, Signaling, Evasion, and Application to Combat COVID-19
Annsea Park, Akiko Iwasaki
Cell Host & Microbe (2020-06) https://doi.org/gg2ccp
DOI: 10.1016/j.chom.2020.05.008 · PMID: 32464097 · PMCID: PMC7255347
891. Pfizer and BioNTech to Submit Emergency Use Authorization Request Today to the U.S. FDA for COVID-19 Vaccine | Pfizer https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-submit-emergency-use-authorization
+892. Pfizer and BioNTech to Submit Emergency Use Authorization Request Today to the U.S. FDA for COVID-19 Vaccine | Pfizer https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-submit-emergency-use-authorization
892. Moderna Announces First Participants Dosed in Phase 2/3 Study of COVID-19 Vaccine Candidate in Adolescents | Moderna, Inc. https://investors.modernatx.com/news-releases/news-release-details/moderna-announces-first-participants-dosed-phase-23-study-covid/
+893. Moderna Announces First Participants Dosed in Phase 2/3 Study of COVID-19 Vaccine Candidate in Adolescents | Moderna, Inc. https://investors.modernatx.com/news-releases/news-release-details/moderna-announces-first-participants-dosed-phase-23-study-covid/
893. Association of Race With Mortality Among Patients Hospitalized With Coronavirus Disease 2019 (COVID-19) at 92 US Hospitals
+
894. Association of Race With Mortality Among Patients Hospitalized With Coronavirus Disease 2019 (COVID-19) at 92 US Hospitals
Baligh R. Yehia, Angela Winegar, Richard Fogel, Mohamad Fakih, Allison Ottenbacher, Christine Jesser, Angelo Bufalino, Ren-Huai Huang, Joseph Cacchione
JAMA Network Open (2020-08-18) https://doi.org/ghcspt
DOI: 10.1001/jamanetworkopen.2020.18039 · PMID: 32809033 · PMCID: PMC7435340
894. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China
+
895. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China
Zunyou Wu, Jennifer M. McGoogan
JAMA (2020-04-07) https://doi.org/ggmq43
DOI: 10.1001/jama.2020.2648 · PMID: 32091533
895. Critical Care Utilization for the COVID-19 Outbreak in Lombardy, Italy
+
896. Critical Care Utilization for the COVID-19 Outbreak in Lombardy, Italy
Giacomo Grasselli, Antonio Pesenti, Maurizio Cecconi
JAMA (2020-04-28) https://doi.org/ggqf6g
DOI: 10.1001/jama.2020.4031 · PMID: 32167538
896. Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-Confirmed Coronavirus Disease 2019 — COVID-NET, 14 States, March 1–30, 2020
+
897. Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-Confirmed Coronavirus Disease 2019 — COVID-NET, 14 States, March 1–30, 2020
Shikha Garg, Lindsay Kim, Michael Whitaker, Alissa O’Halloran, Charisse Cummings, Rachel Holstein, Mila Prill, Shua J. Chai, Pam D. Kirley, Nisha B. Alden, … Alicia Fry
MMWR. Morbidity and Mortality Weekly Report (2020-04-17) https://doi.org/ggsppz
DOI: 10.15585/mmwr.mm6915e3 · PMID: 32298251 · PMCID: PMC7755063
897. COVID-19 and Your Health
+
898. COVID-19 and Your Health
CDC
Centers for Disease Control and Prevention (2020-02-11) https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/older-adults.html
898. Disparities In Outcomes Among COVID-19 Patients In A Large Health Care System In California
+
899. Disparities In Outcomes Among COVID-19 Patients In A Large Health Care System In California
Kristen M. J. Azar, Zijun Shen, Robert J. Romanelli, Stephen H. Lockhart, Kelly Smits, Sarah Robinson, Stephanie Brown, Alice R. Pressman
Health Affairs (2020-07-01) https://doi.org/ggx4mf
DOI: 10.1377/hlthaff.2020.00598 · PMID: 32437224
899. Characteristics Associated with Hospitalization Among Patients with COVID-19 — Metropolitan Atlanta, Georgia, March–April 2020
+
900. Characteristics Associated with Hospitalization Among Patients with COVID-19 — Metropolitan Atlanta, Georgia, March–April 2020
Marie E. Killerby, Ruth Link-Gelles, Sarah C. Haight, Caroline A. Schrodt, Lucinda England, Danica J. Gomes, Mays Shamout, Kristen Pettrone, Kevin O’Laughlin, Anne Kimball, … CDC COVID-19 Response Clinical Team
MMWR. Morbidity and Mortality Weekly Report (2020-06-26) https://doi.org/gg3k6h
DOI: 10.15585/mmwr.mm6925e1 · PMID: 32584797 · PMCID: PMC7316317
900. Demographic science aids in understanding the spread and fatality rates of COVID-19
+
901. Demographic science aids in understanding the spread and fatality rates of COVID-19
Jennifer Beam Dowd, Liliana Andriano, David M. Brazel, Valentina Rotondi, Per Block, Xuejie Ding, Yan Liu, Melinda C. Mills
Proceedings of the National Academy of Sciences (2020-05-05) https://doi.org/ggsd5b
DOI: 10.1073/pnas.2004911117 · PMID: 32300018 · PMCID: PMC7211934
901. ‐19 and Older Adults: What We Know
+
902. ‐19 and Older Adults: What We Know
Zainab Shahid, Ricci Kalayanamitra, Brendan McClafferty, Douglas Kepko, Devyani Ramgobin, Ravi Patel, Chander Shekher Aggarwal, Ramarao Vunnam, Nitasa Sahu, Dhirisha Bhatt, … Rohit Jain
Journal of the American Geriatrics Society (2020-04-20) https://doi.org/ggxgsb
DOI: 10.1111/jgs.16472 · PMID: 32255507 · PMCID: PMC7262251
902. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study
+
903. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study
Annemarie B Docherty, Ewen M Harrison, Christopher A Green, Hayley E Hardwick, Riinu Pius, Lisa Norman, Karl A Holden, Jonathan M Read, Frank Dondelinger, Gail Carson, … Malcolm G Semple
BMJ (2020-05-22) https://doi.org/ggw4nh
DOI: 10.1136/bmj.m1985 · PMID: 32444460 · PMCID: PMC7243036
903. Impact of sex and gender on COVID-19 outcomes in Europe
+
904. Impact of sex and gender on COVID-19 outcomes in Europe
Catherine Gebhard, Vera Regitz-Zagrosek, Hannelore K. Neuhauser, Rosemary Morgan, Sabra L. Klein
Biology of Sex Differences (2020-05-25) https://doi.org/ghbvck
DOI: 10.1186/s13293-020-00304-9 · PMID: 32450906 · PMCID: PMC7247289
904. The Sex, Gender and COVID-19 Project | Global Health 50/50 https://globalhealth5050.org/the-sex-gender-and-covid-19-project/
+905. The Sex, Gender and COVID-19 Project | Global Health 50/50 https://globalhealth5050.org/the-sex-gender-and-covid-19-project/
905. Biological sex impacts COVID-19 outcomes
+
906. Biological sex impacts COVID-19 outcomes
Sabra L. Klein, Santosh Dhakal, Rebecca L. Ursin, Sharvari Deshpande, Kathryn Sandberg, Franck Mauvais-Jarvis
PLOS Pathogens (2020-06-22) https://doi.org/gg3hwv
DOI: 10.1371/journal.ppat.1008570 · PMID: 32569293 · PMCID: PMC7307725
906. Sex-specific clinical characteristics and prognosis of coronavirus disease-19 infection in Wuhan, China: A retrospective study of 168 severe patients
+
907. Sex-specific clinical characteristics and prognosis of coronavirus disease-19 infection in Wuhan, China: A retrospective study of 168 severe patients
Yifan Meng, Ping Wu, Wanrong Lu, Kui Liu, Ke Ma, Liang Huang, Jiaojiao Cai, Hong Zhang, Yu Qin, Haiying Sun, … Peng Wu
PLOS Pathogens (2020-04-28) https://doi.org/ggv3zn
DOI: 10.1371/journal.ppat.1008520 · PMID: 32343745 · PMCID: PMC7209966
907. Sex differences in renal angiotensin converting enzyme 2 (ACE2) activity are 17β-oestradiol-dependent and sex chromosome-independent
+
908. Sex differences in renal angiotensin converting enzyme 2 (ACE2) activity are 17β-oestradiol-dependent and sex chromosome-independent
Jun Liu, Hong Ji, Wei Zheng, Xie Wu, Janet J Zhu, Arthur P Arnold, Kathryn Sandberg
Biology of Sex Differences (2010) https://doi.org/bbx3r6
DOI: 10.1186/2042-6410-1-6 · PMID: 21208466 · PMCID: PMC3010099
908. COVID-19 in nursing homes
+
909. COVID-19 in nursing homes
A Fallon, T Dukelow, SP Kennelly, D O’Neill
QJM: An International Journal of Medicine (2020-06) https://doi.org/ggv4xx
DOI: 10.1093/qjmed/hcaa136 · PMID: 32311049 · PMCID: PMC7188176
909. Vulnerabilities to COVID-19 Among Transgender Adults in the U.S.
+
910. Vulnerabilities to COVID-19 Among Transgender Adults in the U.S.
Jody L. Herman, Kathryn O’Neill
(2020-04-01) https://escholarship.org/uc/item/55t297mc
910. Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes
+
911. Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes
Lihua Zhu, Zhi-Gang She, Xu Cheng, Juan-Juan Qin, Xiao-Jing Zhang, Jingjing Cai, Fang Lei, Haitao Wang, Jing Xie, Wenxin Wang, … Hongliang Li
Cell Metabolism (2020-06) https://doi.org/ggvcc9
DOI: 10.1016/j.cmet.2020.04.021 · PMID: 32369736 · PMCID: PMC7252168
911. Diabetes increases the mortality of patients with COVID-19: a meta-analysis
+
912. Diabetes increases the mortality of patients with COVID-19: a meta-analysis
Zeng-hong Wu, Yun Tang, Qing Cheng
Acta Diabetologica (2020-06-24) https://doi.org/gg3k55
DOI: 10.1007/s00592-020-01546-0 · PMID: 32583078 · PMCID: PMC7311595
912. COVID-19 infection may cause ketosis and ketoacidosis
+
913. COVID-19 infection may cause ketosis and ketoacidosis
Juyi Li, Xiufang Wang, Jian Chen, Xiuran Zuo, Hongmei Zhang, Aiping Deng
Diabetes, Obesity and Metabolism (2020-05-18) https://doi.org/ggv4tm
DOI: 10.1111/dom.14057 · PMID: 32314455 · PMCID: PMC7264681
913. COVID-19 pandemic, coronaviruses, and diabetes mellitus
+
914. COVID-19 pandemic, coronaviruses, and diabetes mellitus
Ranganath Muniyappa, Sriram Gubbi
American Journal of Physiology-Endocrinology and Metabolism (2020-05-01) https://doi.org/ggq79v
DOI: 10.1152/ajpendo.00124.2020 · PMID: 32228322 · PMCID: PMC7191633
914. Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York
+
915. Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York
Leonidas Palaiodimos, Damianos G. Kokkinidis, Weijia Li, Dimitrios Karamanis, Jennifer Ognibene, Shitij Arora, William N. Southern, Christos S. Mantzoros
Metabolism (2020-07) https://doi.org/ggx229
DOI: 10.1016/j.metabol.2020.154262 · PMID: 32422233 · PMCID: PMC7228874
915. Features of 16,749 hospitalised UK patients with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol
+
916. Features of 16,749 hospitalised UK patients with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol
AB Docherty, EM Harrison, CA Green, H Hardwick, R Pius, L Norman, KA Holden, JM Read, F Dondelinger, G Carson, … ISARIC4C Investigators
Cold Spring Harbor Laboratory (2020-04-28) https://doi.org/ggtdtb
DOI: 10.1101/2020.04.23.20076042
916. When Two Pandemics Meet: Why Is Obesity Associated with Increased COVID-19 Mortality?
+
917. When Two Pandemics Meet: Why Is Obesity Associated with Increased COVID-19 Mortality?
Sam M. Lockhart, Stephen O’Rahilly
Med (2020-12) https://doi.org/gg3k57
DOI: 10.1016/j.medj.2020.06.005 · PMID: 32838359 · PMCID: PMC7323660
917. Besides population age structure, health and other demographic factors can contribute to understanding the COVID-19 burden
+
918. Besides population age structure, health and other demographic factors can contribute to understanding the COVID-19 burden
Marília R. Nepomuceno, Enrique Acosta, Diego Alburez-Gutierrez, José Manuel Aburto, Alain Gagnon, Cássio M. Turra
Proceedings of the National Academy of Sciences (2020-06-23) https://doi.org/gg33qx
DOI: 10.1073/pnas.2008760117 · PMID: 32576710 · PMCID: PMC7322063
919. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure
+
920. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure
J. -L. Vincent, R. Moreno, J. Takala, S. Willatts, A. De Mendonça, H. Bruining, C. K. Reinhart, P. M. Suter, L. G. Thijs
Intensive Care Medicine (1996-07) https://doi.org/bpkxdw
DOI: 10.1007/bf01709751 · PMID: 8844239
920. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)
+
921. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)
Mervyn Singer, Clifford S. Deutschman, Christopher Warren Seymour, Manu Shankar-Hari, Djillali Annane, Michael Bauer, Rinaldo Bellomo, Gordon R. Bernard, Jean-Daniel Chiche, Craig M. Coopersmith, … Derek C. Angus
JAMA (2016-02-23) https://doi.org/gdrcdh
DOI: 10.1001/jama.2016.0287 · PMID: 26903338 · PMCID: PMC4968574
921. COVID-19 and African Americans
+
922. COVID-19 and African Americans
Clyde W. Yancy
JAMA (2020-05-19) https://doi.org/ggv494
DOI: 10.1001/jama.2020.6548 · PMID: 32293639
922. COVID-19 and Racial/Ethnic Disparities
+
923. COVID-19 and Racial/Ethnic Disparities
Monica Webb Hooper, Anna María Nápoles, Eliseo J. Pérez-Stable
JAMA (2020-06-23) https://doi.org/ggvzqn
DOI: 10.1001/jama.2020.8598 · PMID: 32391864
923. Covid-19: Black people and other minorities are hardest hit in US
+
924. Covid-19: Black people and other minorities are hardest hit in US
Owen Dyer
BMJ (2020-04-14) https://doi.org/ggv5br
DOI: 10.1136/bmj.m1483 · PMID: 32291262
924. Susceptibility of Southwestern American Indian Tribes to Coronavirus Disease 2019 (COVID‐19)
+
925. Susceptibility of Southwestern American Indian Tribes to Coronavirus Disease 2019 (COVID‐19)
Monika Kakol, Dona Upson, Akshay Sood
The Journal of Rural Health (2020-06) https://doi.org/ggtzkq
DOI: 10.1111/jrh.12451 · PMID: 32304251 · PMCID: PMC7264672
925. The Fullest Look Yet at the Racial Inequity of Coronavirus
+
926. The Fullest Look Yet at the Racial Inequity of Coronavirus
Richard A. Oppel Jr, Robert Gebeloff, K. K. Rebecca Lai, Will Wright, Mitch Smith
The New York Times (2020-07-05) https://www.nytimes.com/interactive/2020/07/05/us/coronavirus-latinos-african-americans-cdc-data.html
926. Addressing inequities in COVID-19 morbidity and mortality: research and policy recommendations
+
927. Addressing inequities in COVID-19 morbidity and mortality: research and policy recommendations
Monica L Wang, Pamela Behrman, Akilah Dulin, Monica L Baskin, Joanna Buscemi, Kassandra I Alcaraz, Carly M Goldstein, Tiffany L Carson, Megan Shen, Marian Fitzgibbon
Translational Behavioral Medicine (2020-06) https://doi.org/gg3389
DOI: 10.1093/tbm/ibaa055 · PMID: 32542349 · PMCID: PMC7337775
927. Historical Environmental Racism, Structural Inequalities, and Dik’os Ntsaaígíí-19 (COVID-19) on Navajo Nation
+
928. Historical Environmental Racism, Structural Inequalities, and Dik’os Ntsaaígíí-19 (COVID-19) on Navajo Nation
Nicholet A. Deschine Parkhurst, Kimberly R. Huyser, Aggie J. Yellow Horse
Journal of Indigenous Social Development (2020-11-02) https://journalhosting.ucalgary.ca/index.php/jisd/article/view/70753
928. Protect Indigenous peoples from COVID-19
+
929. Protect Indigenous peoples from COVID-19
Lucas Ferrante, Philip M. Fearnside
Science (2020-04-16) https://doi.org/gg3k6f
DOI: 10.1126/science.abc0073 · PMID: 32299940
929. Factors associated with COVID-19-related death using OpenSAFELY
+
930. Factors associated with COVID-19-related death using OpenSAFELY
Elizabeth J. Williamson, Alex J. Walker, Krishnan Bhaskaran, Seb Bacon, Chris Bates, Caroline E. Morton, Helen J. Curtis, Amir Mehrkar, David Evans, Peter Inglesby, … Ben Goldacre
Nature (2020-07-08) https://doi.org/gg39n7
DOI: 10.1038/s41586-020-2521-4 · PMID: 32640463
930. Implications of biogeography of human populations for “race” and medicine
+
931. Implications of biogeography of human populations for “race” and medicine
Sarah A Tishkoff, Kenneth K Kidd
Nature Genetics (2004-10-26) https://doi.org/d2xq92
DOI: 10.1038/ng1438 · PMID: 15507999
931. African Genetic Diversity: Implications for Human Demographic History, Modern Human Origins, and Complex Disease Mapping
+
932. African Genetic Diversity: Implications for Human Demographic History, Modern Human Origins, and Complex Disease Mapping
Michael C. Campbell, Sarah A. Tishkoff
Annual Review of Genomics and Human Genetics (2008-09) https://doi.org/cphggp
DOI: 10.1146/annurev.genom.9.081307.164258 · PMID: 18593304 · PMCID: PMC2953791
932. NIH must confront the use of race in science
+
933. NIH must confront the use of race in science
Michael Yudell, Dorothy Roberts, Rob DeSalle, Sarah Tishkoff, 70 signatories
Science (2020-09-10) https://doi.org/ghcm7s
DOI: 10.1126/science.abd4842 · PMID: 32913094
933. Interferon-Induced Transmembrane Protein 3 Genetic Variant rs12252-C Associated With Disease Severity in Coronavirus Disease 2019
+
934. Interferon-Induced Transmembrane Protein 3 Genetic Variant rs12252-C Associated With Disease Severity in Coronavirus Disease 2019
Yonghong Zhang, Ling Qin, Yan Zhao, Ping Zhang, Bin Xu, Kang Li, Lianchun Liang, Chi Zhang, Yanchao Dai, Yingmei Feng, … Ronghua Jin
The Journal of Infectious Diseases (2020-07-01) https://doi.org/ggv3tj
DOI: 10.1093/infdis/jiaa224 · PMID: 32348495 · PMCID: PMC7197559
934. Genomewide Association Study of Severe Covid-19 with Respiratory Failure
+
935. Genomewide Association Study of Severe Covid-19 with Respiratory Failure
The Severe Covid-19 GWAS Group
New England Journal of Medicine (2020-10-15) https://doi.org/gg2pqx
DOI: 10.1056/nejmoa2020283 · PMID: 32558485 · PMCID: PMC7315890
935. APOE e4 Genotype Predicts Severe COVID-19 in the UK Biobank Community Cohort
+
936. APOE e4 Genotype Predicts Severe COVID-19 in the UK Biobank Community Cohort
Chia-Ling Kuo, Luke C Pilling, Janice L Atkins, Jane AH Masoli, João Delgado, George A Kuchel, David Melzer
The Journals of Gerontology: Series A (2020-11) https://doi.org/ggx4ng
DOI: 10.1093/gerona/glaa131 · PMID: 32451547 · PMCID: PMC7314139
936. Genome-wide CRISPR screen reveals host genes that regulate SARS-CoV-2 infection
+
937. Genome-wide CRISPR screen reveals host genes that regulate SARS-CoV-2 infection
Jin Wei, Mia Madel Alfajaro, Ruth E. Hanna, Peter C. DeWeirdt, Madison S. Strine, William J. Lu-Culligan, Shang-Min Zhang, Vincent R. Graziano, Cameron O. Schmitz, Jennifer S. Chen, … Craig B. Wilen
Cold Spring Harbor Laboratory (2020-06-17) https://doi.org/dzz3
DOI: 10.1101/2020.06.16.155101 · PMID: 32869025 · PMCID: PMC7457610
937. New insights into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism analysis
+
938. New insights into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism analysis
Yuan Hou, Junfei Zhao, William Martin, Asha Kallianpur, Mina K. Chung, Lara Jehi, Nima Sharifi, Serpil Erzurum, Charis Eng, Feixiong Cheng
BMC Medicine (2020-07-15) https://doi.org/gg445n
DOI: 10.1186/s12916-020-01673-z · PMID: 32664879 · PMCID: PMC7360473
938. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Kenyan blood donors
+
939. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Kenyan blood donors
Sophie Uyoga, Ifedayo M.O. Adetifa, Henry K. Karanja, James Nyagwange, James Tuju, Perpetual Wanjiku, Rashid Aman, Mercy Mwangangi, Patrick Amoth, Kadondi Kasera, … George M. Warimwe
Cold Spring Harbor Laboratory (2020-07-29) https://doi.org/ghcm7p
DOI: 10.1101/2020.07.27.20162693
939. High SARS-CoV-2 seroprevalence in Health Care Workers but relatively low numbers of deaths in urban Malawi
+
940. High SARS-CoV-2 seroprevalence in Health Care Workers but relatively low numbers of deaths in urban Malawi
Marah G. Chibwana, Khuzwayo C. Jere, Raphael Kamn’gona, Jonathan Mandolo, Vincent Katunga-Phiri, Dumizulu Tembo, Ndaona Mitole, Samantha Musasa, Simon Sichone, Agness Lakudzala, … Kondwani C. Jambo
Cold Spring Harbor Laboratory (2020-08-01) https://doi.org/ghcm7q
DOI: 10.1101/2020.07.30.20164970 · PMID: 32766597 · PMCID: PMC7402052
940. Africa’s pandemic puzzle: why so few cases and deaths?
+
941. Africa’s pandemic puzzle: why so few cases and deaths?
Linda Nordling
Science (2020-08-13) https://doi.org/ghcm7r
DOI: 10.1126/science.369.6505.756 · PMID: 32792376
941. Are some ethnic groups more vulnerable to COVID-19 than others? https://www.ifs.org.uk/inequality/chapter/are-some-ethnic-groups-more-vulnerable-to-covid-19-than-others/
+942. Are some ethnic groups more vulnerable to COVID-19 than others? https://www.ifs.org.uk/inequality/chapter/are-some-ethnic-groups-more-vulnerable-to-covid-19-than-others/
942. Quantifying the social distancing privilege gap: a longitudinal study of smartphone movement
+
943. Quantifying the social distancing privilege gap: a longitudinal study of smartphone movement
Nabarun Dasgupta, Michele Jonsson Funk, Allison Lazard, Benjamin Eugene White, Stephen W. Marshall
Cold Spring Harbor Laboratory (2020-05-08) https://doi.org/gg79qk
DOI: 10.1101/2020.05.03.20084624
943. Uncovering socioeconomic gaps in mobility reduction during the COVID-19 pandemic using location data
+
944. Uncovering socioeconomic gaps in mobility reduction during the COVID-19 pandemic using location data
Samuel P. Fraiberger, Pablo Astudillo, Lorenzo Candeago, Alex Chunet, Nicholas K. W. Jones, Maham Faisal Khan, Bruno Lepri, Nancy Lozano Gracia, Lorenzo Lucchini, Emanuele Massaro, Aleister Montfort
arXiv (2020-07-28) https://arxiv.org/abs/2006.15195
944. Mobility network models of COVID-19 explain inequities and inform reopening
+
945. Mobility network models of COVID-19 explain inequities and inform reopening
Serina Chang, Emma Pierson, Pang Wei Koh, Jaline Gerardin, Beth Redbird, David Grusky, Jure Leskovec
Nature (2020-11-10) https://doi.org/ghjmt2
DOI: 10.1038/s41586-020-2923-3 · PMID: 33171481
945. A Basic Demographic Profile of Workers in Frontline Industries
+
946. A Basic Demographic Profile of Workers in Frontline Industries
Hye Jin Rho;Shawn Fremstad;Hayley Brown
(2020-06) https://mronline.org/wp-content/uploads/2020/06/2020-04-Frontline-Workers.pdf
946. Differential occupational risk for COVID‐19 and other infection exposure according to race and ethnicity
+
947. Differential occupational risk for COVID‐19 and other infection exposure according to race and ethnicity
Devan Hawkins
American Journal of Industrial Medicine (2020-06-15) https://doi.org/gg3rb2
DOI: 10.1002/ajim.23145 · PMID: 32539166 · PMCID: PMC7323065
947. Estimating the burden of United States workers exposed to infection or disease: A key factor in containing risk of COVID-19 infection
+
948. Estimating the burden of United States workers exposed to infection or disease: A key factor in containing risk of COVID-19 infection
Marissa G. Baker, Trevor K. Peckham, Noah S. Seixas
PLOS ONE (2020-04-28) https://doi.org/ggtx7c
DOI: 10.1371/journal.pone.0232452 · PMID: 32343747 · PMCID: PMC7188235
948. Coronavirus (COVID-19) related deaths by occupation, England and Wales: deaths registered up to and including 20 April 2020
+
949. Coronavirus (COVID-19) related deaths by occupation, England and Wales: deaths registered up to and including 20 April 2020
Ben Windsor-Shellard, Jasveer Kaur
(2020-05-11) https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/causesofdeath/bulletins/coronaviruscovid19relateddeathsbyoccupationenglandandwales/deathsregistereduptoandincluding20april2020
949. Which occupations have the highest potential exposure to the coronavirus (COVID-19)?
+
950. Which occupations have the highest potential exposure to the coronavirus (COVID-19)?
Office for National Statistics
(2020-05-11) https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/articles/whichoccupationshavethehighestpotentialexposuretothecoronaviruscovid19/2020-05-11
950. Disparities in the risk and outcomes from COVID-19
+
951. Disparities in the risk and outcomes from COVID-19
Public Health England
(2020-06-12) https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/892085/disparities_review.pdf
951. Exclusive: deaths of NHS staff from covid-19 analysed
+
952. Exclusive: deaths of NHS staff from covid-19 analysed
Tim Cook, Emira Kursumovic, Simon Lennane2020-04-22T12:42:00+01:00
Health Service Journal https://www.hsj.co.uk/exclusive-deaths-of-nhs-staff-from-covid-19-analysed/7027471.article
953. Racial Disparity in COVID-19 Deaths: Seeking Economic Roots with Census data.
+
954. Racial Disparity in COVID-19 Deaths: Seeking Economic Roots with Census data.
John McLaren
National Bureau of Economic Research (2020-06-22) https://www.nber.org/papers/w27407
954. Mortality, Admissions, and Patient Census at SNFs in 3 US Cities During the COVID-19 Pandemic
+
955. Mortality, Admissions, and Patient Census at SNFs in 3 US Cities During the COVID-19 Pandemic
Michael L. Barnett, Lissy Hu, Thomas Martin, David C. Grabowski
JAMA (2020-08-04) https://doi.org/gg3387
DOI: 10.1001/jama.2020.11642 · PMID: 32579161 · PMCID: PMC7315390
955. COVID-19 in Prisons and Jails in the United States
+
956. COVID-19 in Prisons and Jails in the United States
Laura Hawks, Steffie Woolhandler, Danny McCormick
JAMA Internal Medicine (2020-08-01) https://doi.org/ggtxw6
DOI: 10.1001/jamainternmed.2020.1856 · PMID: 32343355
956. COVID-19 Cases and Deaths in Federal and State Prisons
+
957. COVID-19 Cases and Deaths in Federal and State Prisons
Brendan Saloner, Kalind Parish, Julie A. Ward, Grace DiLaura, Sharon Dolovich
JAMA (2020-08-11) https://doi.org/gg4dcv
DOI: 10.1001/jama.2020.12528 · PMID: 32639537 · PMCID: PMC7344796
957. State Rates of Incarceration Race & Ethnicity_updated2
+
958. State Rates of Incarceration Race & Ethnicity_updated2
nlizanna
(2018-03-24) https://www.issuelab.org/resources/695/695.pdf
958. Under One Roof: A Review of Research on Intergenerational Coresidence and Multigenerational Households in the United States
+
959. Under One Roof: A Review of Research on Intergenerational Coresidence and Multigenerational Households in the United States
Jennifer Reid Keene, Christie D. Batson
Sociology Compass (2010-08) https://doi.org/fsrcr7
DOI: 10.1111/j.1751-9020.2010.00306.x
959. Chaos and the macrosetting: The role of poverty and socioeconomic status.
+
960. Chaos and the macrosetting: The role of poverty and socioeconomic status.
Gary W. Evans, John Eckenrode, Lyscha A. Marcynyszyn
American Psychological Association (APA) (2010-01-12) https://doi.org/c76n3g
DOI: 10.1037/12057-014
960. Housing insecurity among urban fathers
+
961. Housing insecurity among urban fathers
Marah A. Curtis, Amanda B. Geller
Columbia University (2010) https://doi.org/ghdjn2
DOI: 10.7916/d8wh2w9t
961. Housing and Employment Insecurity among the Working Poor
+
962. Housing and Employment Insecurity among the Working Poor
Matthew Desmond, Carl Gershenson
Social Problems (2016-02) https://doi.org/f8crm2
DOI: 10.1093/socpro/spv025
962. Obesity and its comorbid conditions
+
963. Obesity and its comorbid conditions
Lalita Khaodhiar, Karen C. McCowen, George L. Blackburn
Clinical Cornerstone (1999-01) https://doi.org/bpp37d
DOI: 10.1016/s1098-3597(99)90002-9
963. Aging, Male Sex, Obesity, and Metabolic Inflammation Create the Perfect Storm for COVID-19
+
964. Aging, Male Sex, Obesity, and Metabolic Inflammation Create the Perfect Storm for COVID-19
Franck Mauvais-Jarvis
Diabetes (2020-09) https://doi.org/gg47zk
DOI: 10.2337/dbi19-0023 · PMID: 32669390 · PMCID: PMC7458034
964. Non-communicable disease syndemics: poverty, depression, and diabetes among low-income populations
+
965. Non-communicable disease syndemics: poverty, depression, and diabetes among low-income populations
Emily Mendenhall, Brandon A Kohrt, Shane A Norris, David Ndetei, Dorairaj Prabhakaran
The Lancet (2017-03) https://doi.org/gddg84
DOI: 10.1016/s0140-6736(17)30402-6 · PMID: 28271846 · PMCID: PMC5491333
965. Obesity and poverty paradox in developed countries
+
966. Obesity and poverty paradox in developed countries
Wioletta Żukiewicz-Sobczak, Paula Wróblewska, Jacek Zwoliński, Jolanta Chmielewska-Badora, Piotr Adamczuk, Ewelina Krasowska, Jerzy Zagórski, Anna Oniszczuk, Jacek Piątek, Wojciech Silny
Annals of Agricultural and Environmental Medicine (2014-09-04) https://doi.org/f6jhzc
DOI: 10.5604/12321966.1120608 · PMID: 25292135
966. Impact of the COVID‐19 Pandemic on Unhealthy Eating in Populations with Obesity
+
967. Impact of the COVID‐19 Pandemic on Unhealthy Eating in Populations with Obesity
Nathaniel J. S. Ashby
Obesity (2020-08-20) https://doi.org/ghd6qc
DOI: 10.1002/oby.22940 · PMID: 32589788 · PMCID: PMC7361200
967. Fast Food Patronage and Obesity Prevalence During the COVID‐19 Pandemic: An Alternative Explanation
+
968. Fast Food Patronage and Obesity Prevalence During the COVID‐19 Pandemic: An Alternative Explanation
Candice A. Myers, Stephanie T. Broyles
Obesity (2020-09-03) https://doi.org/gg6v84
DOI: 10.1002/oby.22993 · PMID: 32741130 · PMCID: PMC7435526
968. The global food syndemic: The impact of food insecurity, Malnutrition and obesity on the healthspan amid the COVID-19 pandemic
+
969. The global food syndemic: The impact of food insecurity, Malnutrition and obesity on the healthspan amid the COVID-19 pandemic
Martha I. Huizar, Ross Arena, Deepika R. Laddu
Progress in Cardiovascular Diseases (2020-07) https://doi.org/gg4r3h
DOI: 10.1016/j.pcad.2020.07.002 · PMID: 32653438 · PMCID: PMC7347484
969. Stress, chronic inflammation, and emotional and physical well-being: Concurrent effects and chronic sequelae
+
970. Stress, chronic inflammation, and emotional and physical well-being: Concurrent effects and chronic sequelae
George P. Chrousos
Journal of Allergy and Clinical Immunology (2000-11) https://doi.org/bgx7hn
DOI: 10.1067/mai.2000.110163 · PMID: 11080744
970. Chronic psychological stress and the regulation of pro-inflammatory cytokines: A glucocorticoid-resistance model.
+
971. Chronic psychological stress and the regulation of pro-inflammatory cytokines: A glucocorticoid-resistance model.
Gregory E. Miller, Sheldon Cohen, A. Kim Ritchey
Health Psychology (2002) https://doi.org/dj5r8b
DOI: 10.1037/0278-6133.21.6.531
971. Chronic stress, daily stressors, and circulating inflammatory markers.
+
972. Chronic stress, daily stressors, and circulating inflammatory markers.
Jean-Philippe Gouin, Ronald Glaser, William B. Malarkey, David Beversdorf, Janice Kiecolt-Glaser
Health Psychology (2012-03) https://doi.org/dkz9tr
DOI: 10.1037/a0025536 · PMID: 21928900 · PMCID: PMC3253267
972. Turning Up the Heat
+
973. Turning Up the Heat
Gregory E. Miller, Ekin Blackwell
Current Directions in Psychological Science (2016-06-24) https://doi.org/bft9mv
DOI: 10.1111/j.1467-8721.2006.00450.x
973. Sick of Poverty
+
974. Sick of Poverty
Robert Sapolsky
Scientific American (2005-12) https://doi.org/fxf5kp
DOI: 10.1038/scientificamerican1205-92 · PMID: 16323696
974. Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study
+
975. Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study
Xiao Wu, Rachel C Nethery, M Benjamin Sabath, Danielle Braun, Francesca Dominici
Cold Spring Harbor Laboratory (2020-04-27) https://doi.org/ggrpcj
DOI: 10.1101/2020.04.05.20054502 · PMID: 32511651 · PMCID: PMC7277007
975. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter
+
976. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter
Richard Burnett, Hong Chen, Mieczysław Szyszkowicz, Neal Fann, Bryan Hubbell, C. Arden Pope, Joshua S. Apte, Michael Brauer, Aaron Cohen, Scott Weichenthal, … Joseph V. Spadaro
Proceedings of the National Academy of Sciences (2018-09-18) https://doi.org/gfgbcx
DOI: 10.1073/pnas.1803222115 · PMID: 30181279 · PMCID: PMC6156628
976. Early-Life Air Pollution Exposure, Neighborhood Poverty, and Childhood Asthma in the United States, 1990–2014
+
977. Early-Life Air Pollution Exposure, Neighborhood Poverty, and Childhood Asthma in the United States, 1990–2014
Nicole Kravitz-Wirtz, Samantha Teixeira, Anjum Hajat, Bongki Woo, Kyle Crowder, David Takeuchi
International Journal of Environmental Research and Public Health (2018-05-30) https://doi.org/gdvwp9
DOI: 10.3390/ijerph15061114 · PMID: 29848979 · PMCID: PMC6025399
977. Early life stress, air pollution, inflammation, and disease: An integrative review and immunologic model of social-environmental adversity and lifespan health
+
978. Early life stress, air pollution, inflammation, and disease: An integrative review and immunologic model of social-environmental adversity and lifespan health
Hector A. Olvera Alvarez, Laura D. Kubzansky, Matthew J. Campen, George M. Slavich
Neuroscience & Biobehavioral Reviews (2018-09) https://doi.org/gd46bm
DOI: 10.1016/j.neubiorev.2018.06.002 · PMID: 29874545 · PMCID: PMC6082389
978. Covid-19 and Disparities in Nutrition and Obesity
+
979. Covid-19 and Disparities in Nutrition and Obesity
Matthew J. Belanger, Michael A. Hill, Angeliki M. Angelidi, Maria Dalamaga, James R. Sowers, Christos S. Mantzoros
New England Journal of Medicine (2020-09-10) https://doi.org/gg475x
DOI: 10.1056/nejmp2021264 · PMID: 32668105
979. Systemic racism, chronic health inequities, and ‐19: A syndemic in the making?
+
980. Systemic racism, chronic health inequities, and ‐19: A syndemic in the making?
Clarence C. Gravlee
American Journal of Human Biology (2020-08-04) https://doi.org/ghcxwk
DOI: 10.1002/ajhb.23482 · PMID: 32754945 · PMCID: PMC7441277
980. Coronavirus Disease (COVID-19): A primer for emergency physicians
+
981. Coronavirus Disease (COVID-19): A primer for emergency physicians
Summer Chavez, Brit Long, Alex Koyfman, Stephen Y. Liang
The American Journal of Emergency Medicine (2020-03) https://doi.org/ggr22z
DOI: 10.1016/j.ajem.2020.03.036 · PMID: 32265065 · PMCID: PMC7102516
981. Insurers May Only Pay For Coronavirus Tests When They’re “Medically Necessary”
+
982. Insurers May Only Pay For Coronavirus Tests When They’re “Medically Necessary”
NPR.org
https://www.npr.org/sections/health-shots/2020/06/19/880543755/insurers-may-only-pay-for-coronavirus-tests-when-theyre-medically-necessary
982. Private Health Insurance Coverage in the COVID-19 Public Health Emergency | Commonwealth Fund https://www.commonwealthfund.org/blog/2020/private-health-insurance-coverage-covid-19-public-health-emergency
+983. Private Health Insurance Coverage in the COVID-19 Public Health Emergency | Commonwealth Fund https://www.commonwealthfund.org/blog/2020/private-health-insurance-coverage-covid-19-public-health-emergency
983. COVID-19 and racial disparities
+
984. COVID-19 and racial disparities
Monica Shah, Muskaan Sachdeva, Roni P. Dodiuk-Gad
Journal of the American Academy of Dermatology (2020-07) https://doi.org/ggtwm7
DOI: 10.1016/j.jaad.2020.04.046 · PMID: 32305444 · PMCID: PMC7162783
984. FAQs for COVID-19 Claims Reimbursement to Health Care Providers and Facilities for Testing, Treatment and Vaccine Administration
+
985. FAQs for COVID-19 Claims Reimbursement to Health Care Providers and Facilities for Testing, Treatment and Vaccine Administration
Official web site of the U.S. Health Resources & Services Administration
https://www.hrsa.gov/coviduninsuredclaim/frequently-asked-questions
985. Potential association between COVID-19 mortality and health-care resource availability
+
986. Potential association between COVID-19 mortality and health-care resource availability
Yunpeng Ji, Zhongren Ma, Maikel P Peppelenbosch, Qiuwei Pan
The Lancet Global Health (2020-04) https://doi.org/ggqscd
DOI: 10.1016/s2214-109x(20)30068-1 · PMID: 32109372 · PMCID: PMC7128131
986. Combating COVID-19: health equity matters
+
987. Combating COVID-19: health equity matters
Zhicheng Wang, Kun Tang
Nature Medicine (2020-03-26) https://doi.org/ggs4p6
DOI: 10.1038/s41591-020-0823-6 · PMID: 32284617
987. lockup black
+
988. lockup black
chen0307
(2020-10-14) https://www.census.gov/content/dam/Census/library/publications/2019/demo/p60-267.pdf
988. An Ethical Dilemma in SARS-Cov-2 Pandemic : Who Gets the Ventilator?
+
989. An Ethical Dilemma in SARS-Cov-2 Pandemic : Who Gets the Ventilator?
Dumache Raluca, Ciocan Veronica, Muresan Camelia Oana, Enache Alexandra
European Scientific Journal ESJ (2020-07-31) https://doi.org/ghfprk
DOI: 10.19044/esj.2020.v16n21p24
989. Planning Hospital Needs for Ventilators and Respiratory Therapists in the COVID-19 Crisis
+
990. Planning Hospital Needs for Ventilators and Respiratory Therapists in the COVID-19 Crisis
John Raffensperger, Marygail Brauner, R. Briggs
Rand Corporation (2020) https://doi.org/ghfprp
DOI: 10.7249/pea228-1
990. Fair Allocation of Vaccines, Ventilators and Antiviral Treatments: Leaving No Ethical Value Behind in Health Care Rationing
+
991. Fair Allocation of Vaccines, Ventilators and Antiviral Treatments: Leaving No Ethical Value Behind in Health Care Rationing
Parag A. Pathak, Tayfun Sönmez, M. Utku Ünver, M. Bumin Yenmez
arXiv (2021-01-21) https://arxiv.org/abs/2008.00374
991. Reallocating ventilators during the coronavirus disease 2019 pandemic: Is it ethical?
+
992. Reallocating ventilators during the coronavirus disease 2019 pandemic: Is it ethical?
Quyen Chu, Ricardo Correa, Tracey L. Henry, Kyle A. McGregor, Hanni Stoklosa, Loren Robinson, Sachin Jha, Alagappan Annamalai, Benson S. Hsu, Rohit Gupta, … SreyRam Kuy
Surgery (2020-09) https://doi.org/ghfprb
DOI: 10.1016/j.surg.2020.04.044 · PMID: 32616345 · PMCID: PMC7205622
992. Ethics Lessons From Seattle’s Early Experience With COVID-19
+
993. Ethics Lessons From Seattle’s Early Experience With COVID-19
Denise M. Dudzinski, Benjamin Y. Hoisington, Crystal E. Brown
The American Journal of Bioethics (2020-06-18) https://doi.org/ghfprc
DOI: 10.1080/15265161.2020.1764137 · PMID: 32552455
993. Rationing Limited Healthcare Resources in the COVID‐19 Era and Beyond: Ethical Considerations Regarding Older Adults
+
994. Rationing Limited Healthcare Resources in the COVID‐19 Era and Beyond: Ethical Considerations Regarding Older Adults
Timothy W. Farrell, Leslie Francis, Teneille Brown, Lauren E. Ferrante, Eric Widera, Ramona Rhodes, Tony Rosen, Ula Hwang, Leah J. Witt, Niranjan Thothala, … Debra Saliba
Journal of the American Geriatrics Society (2020-06-14) https://doi.org/ggvt7z
DOI: 10.1111/jgs.16539 · PMID: 32374466 · PMCID: PMC7267288
994. Paediatric ethical issues during the COVID‐19 pandemic are not just about ventilator triage
+
995. Paediatric ethical issues during the COVID‐19 pandemic are not just about ventilator triage
Marlyse F. Haward, Gregory P. Moore, John Lantos, Annie Janvier
Acta Paediatrica (2020-05-20) https://doi.org/ggv24n
DOI: 10.1111/apa.15334 · PMID: 32364256 · PMCID: PMC7267437
995. Ethical Challenges Arising in the COVID-19 Pandemic: An Overview from the Association of Bioethics Program Directors (ABPD) Task Force
+
996. Ethical Challenges Arising in the COVID-19 Pandemic: An Overview from the Association of Bioethics Program Directors (ABPD) Task Force
Amy L. McGuire, Mark P. Aulisio, F. Daniel Davis, Cheryl Erwin, Thomas D. Harter, Reshma Jagsi, Robert Klitzman, Robert Macauley, Eric Racine, Susan M. Wolf, … The COVID-19 Task Force of the Association of Bioethics Program Directors (ABPD)
The American Journal of Bioethics (2020-06-08) https://doi.org/gg6c5k
DOI: 10.1080/15265161.2020.1764138 · PMID: 32511078
996. Disability, Ethics, and Health Care in the COVID-19 Pandemic
+
997. Disability, Ethics, and Health Care in the COVID-19 Pandemic
Maya Sabatello, Teresa Blankmeyer Burke, Katherine E. McDonald, Paul S. Appelbaum
American Journal of Public Health (2020-10) https://doi.org/ghfprm
DOI: 10.2105/ajph.2020.305837 · PMID: 32816541 · PMCID: PMC7483109
997. Allocating Ventilators During the COVID-19 Pandemic and Conscientious Objection
+
998. Allocating Ventilators During the COVID-19 Pandemic and Conscientious Objection
Mark Wicclair
The American Journal of Bioethics (2020-07-27) https://doi.org/gg6nk4
DOI: 10.1080/15265161.2020.1777347 · PMID: 32716798
998. Colorblind Algorithms: Racism in the Era of COVID-19
+
999. Colorblind Algorithms: Racism in the Era of COVID-19
J. Corey Williams, Nientara Anderson, Myra Mathis, Ezelle Sanford, Jeffrey Eugene, Jessica Isom
Journal of the National Medical Association (2020-10) https://doi.org/ghfpq8
DOI: 10.1016/j.jnma.2020.05.010 · PMID: 32563687
999. Structural Racism, Social Risk Factors, and Covid-19 — A Dangerous Convergence for Black Americans
+
1000. Structural Racism, Social Risk Factors, and Covid-19 — A Dangerous Convergence for Black Americans
Leonard E. Egede, Rebekah J. Walker
New England Journal of Medicine (2020-09-17) https://doi.org/gg56nc
DOI: 10.1056/nejmp2023616 · PMID: 32706952 · PMCID: PMC7747672
1000. Allocating Remdesivir Under Scarcity: Social Justice or More Systemic Racism
+
1001. Allocating Remdesivir Under Scarcity: Social Justice or More Systemic Racism
Eli Weber, Mark J. Bliton
The American Journal of Bioethics (2020-08-25) https://doi.org/ghfprf
DOI: 10.1080/15265161.2020.1795538 · PMID: 32840451
1001. Revisiting the equity debate in COVID-19: ICU is no panacea
+
1002. Revisiting the equity debate in COVID-19: ICU is no panacea
Angela Ballantyne, Wendy A Rogers, Vikki Entwistle, Cindy Towns
Journal of Medical Ethics (2020-10) https://doi.org/gg33nq
DOI: 10.1136/medethics-2020-106460 · PMID: 32571847 · PMCID: PMC7335695
1002. Ethical Dilemmas in Covid-19 Medical Care: Is a Problematic Triage Protocol Better or Worse than No Protocol at All?
+
1003. Ethical Dilemmas in Covid-19 Medical Care: Is a Problematic Triage Protocol Better or Worse than No Protocol at All?
Sheri Fink
The American Journal of Bioethics (2020-07-27) https://doi.org/gg6nqn
DOI: 10.1080/15265161.2020.1788663 · PMID: 32716771
1003. Developing an Ethics Framework for Allocating Remdesivir in the COVID-19 Pandemic
+
1004. Developing an Ethics Framework for Allocating Remdesivir in the COVID-19 Pandemic
Sarah Lim, Debra A. DeBruin, Jonathon P. Leider, Nneka Sederstrom, Ruth Lynfield, Jason V. Baker, Susan Kline, Sarah Kesler, Stacey Rizza, Joel Wu, … Susan M. Wolf
Mayo Clinic Proceedings (2020-09) https://doi.org/ghfpq9
DOI: 10.1016/j.mayocp.2020.06.016 · PMID: 32861338 · PMCID: PMC7305893
1004. Ethically Allocating COVID-19 Drugs Via Pre-approval Access and Emergency Use Authorization
+
1005. Ethically Allocating COVID-19 Drugs Via Pre-approval Access and Emergency Use Authorization
Jamie Webb, Lesha D. Shah, Holly Fernandez Lynch
The American Journal of Bioethics (2020-08-25) https://doi.org/ghfprd
DOI: 10.1080/15265161.2020.1795529
1005. (2011-07-27) https://www.cdc.gov/about/advisory/pdf/VentDocument_Release.pdf
+1006. (2011-07-27) https://www.cdc.gov/about/advisory/pdf/VentDocument_Release.pdf
1006. Adopting an Anti-Racist Model of COVID-19 Drug Allocation and Prioritization
+
1007. Adopting an Anti-Racist Model of COVID-19 Drug Allocation and Prioritization
Akilah A. Jefferson
The American Journal of Bioethics (2020-08-25) https://doi.org/ghggz5
DOI: 10.1080/15265161.2020.1795541
1007. Equitably Sharing the Benefits and Burdens of Research: Covid‐19 Raises the Stakes
+
1008. Equitably Sharing the Benefits and Burdens of Research: Covid‐19 Raises the Stakes
Carl H. Coleman
Ethics & Human Research (2020-05-14) https://doi.org/ghgg2q
DOI: 10.1002/eahr.500055 · PMID: 32410347 · PMCID: PMC7272984
1008. Ensuring global access to COVID-19 vaccines
+
1009. Ensuring global access to COVID-19 vaccines
Gavin Yamey, Marco Schäferhoff, Richard Hatchett, Muhammad Pate, Feng Zhao, Kaci Kennedy McDade
The Lancet (2020-05) https://doi.org/ggq7mf
DOI: 10.1016/s0140-6736(20)30763-7 · PMID: 32243778 · PMCID: PMC7271264
1009. The Equitable Distribution of COVID-19 Therapeutics and Vaccines
+
1010. The Equitable Distribution of COVID-19 Therapeutics and Vaccines
Thomas J. Bollyky, Lawrence O. Gostin, Margaret A. Hamburg
JAMA (2020-06-23) https://doi.org/ggvcvt
DOI: 10.1001/jama.2020.6641 · PMID: 32379268
1010. Recruitment and participation in clinical trials: Socio-demographic, rural/urban, and health care access predictors
+
1011. Recruitment and participation in clinical trials: Socio-demographic, rural/urban, and health care access predictors
Claudia R. Baquet, Patricia Commiskey, C. Daniel Mullins, Shiraz I. Mishra
Cancer Detection and Prevention (2006-01) https://doi.org/bk2k4g
DOI: 10.1016/j.cdp.2005.12.001 · PMID: 16495020 · PMCID: PMC3276312
1011. COVID-19 vaccine trials in Africa
+
1012. COVID-19 vaccine trials in Africa
Munyaradzi Makoni
The Lancet Respiratory Medicine (2020-11) https://doi.org/fgzk
DOI: 10.1016/s2213-2600(20)30401-x · PMID: 32896275 · PMCID: PMC7831818
1012. Racial/ethnic differences in clinical trial enrollment, refusal rates, ineligibility, and reasons for decline among patients at sites in the National Cancer Institute’s Community Cancer Centers Program
+
1013. Racial/ethnic differences in clinical trial enrollment, refusal rates, ineligibility, and reasons for decline among patients at sites in the National Cancer Institute’s Community Cancer Centers Program
Aisha T. Langford, Ken Resnicow, Eileen P. Dimond, Andrea M. Denicoff, Diane St. Germain, Worta McCaskill-Stevens, Rebecca A. Enos, Angela Carrigan, Kathy Wilkinson, Ronald S. Go
Cancer (2014-03-15) https://doi.org/ghgg2p
DOI: 10.1002/cncr.28483 · PMID: 24327389 · PMCID: PMC3947654
1013. Participation in Cancer Clinical Trials
+
1014. Participation in Cancer Clinical Trials
Vivek H. Murthy, Harlan M. Krumholz, Cary P. Gross
JAMA (2004-06-09) https://doi.org/bbh8h7
DOI: 10.1001/jama.291.22.2720 · PMID: 15187053
1014. Participation in Surgical Oncology Clinical Trials: Gender-, Race/Ethnicity-, and Age-based Disparities
+
1015. Participation in Surgical Oncology Clinical Trials: Gender-, Race/Ethnicity-, and Age-based Disparities
John H. Stewart, Alain G. Bertoni, Jennifer L. Staten, Edward A. Levine, Cary P. Gross
Annals of Surgical Oncology (2007-08-08) https://doi.org/cq7wqs
DOI: 10.1245/s10434-007-9500-y · PMID: 17682824
1015. Inclusion, Analysis, and Reporting of Sex and Race/Ethnicity in Clinical Trials: Have We Made Progress?
+
1016. Inclusion, Analysis, and Reporting of Sex and Race/Ethnicity in Clinical Trials: Have We Made Progress?
Stacie E. Geller, Abby Koch, Beth Pellettieri, Molly Carnes
Journal of Women’s Health (2011-03) https://doi.org/dhzxk7
DOI: 10.1089/jwh.2010.2469 · PMID: 21351877 · PMCID: PMC3058895
1016. The Representation of Gender and Race/Ethnic Groups in Randomized Clinical Trials of Individuals with Systemic Lupus Erythematosus
+
1017. The Representation of Gender and Race/Ethnic Groups in Randomized Clinical Trials of Individuals with Systemic Lupus Erythematosus
Titilola Falasinnu, Yashaar Chaichian, Michelle B. Bass, Julia F. Simard
Current Rheumatology Reports (2018-03-17) https://doi.org/ghjmpz
DOI: 10.1007/s11926-018-0728-2 · PMID: 29550947 · PMCID: PMC5857270
1017. Racial Disproportionality in Covid Clinical Trials
+
1018. Racial Disproportionality in Covid Clinical Trials
Daniel B. Chastain, Sharmon P. Osae, Andrés F. Henao-Martínez, Carlos Franco-Paredes, Joeanna S. Chastain, Henry N. Young
New England Journal of Medicine (2020-08-27) https://doi.org/gg7vcf
DOI: 10.1056/nejmp2021971 · PMID: 32780573
1018. Othering and Being Othered in the Context of Health Care Services
+
1019. Othering and Being Othered in the Context of Health Care Services
Joy L. Johnson, Joan L. Bottorff, Annette J. Browne, Sukhdev Grewal, B. Ann Hilton, Heather Clarke
Health Communication (2004-04) https://doi.org/cvxqm4
DOI: 10.1207/s15327027hc1602_7 · PMID: 15090288
1019. A decade of studying implicit racial/ethnic bias in healthcare providers using the implicit association test
+
1020. A decade of studying implicit racial/ethnic bias in healthcare providers using the implicit association test
Ivy W. Maina, Tanisha D. Belton, Sara Ginzberg, Ajit Singh, Tiffani J. Johnson
Social Science & Medicine (2018-02) https://doi.org/gdfwd9
DOI: 10.1016/j.socscimed.2017.05.009 · PMID: 28532892
1020. A Systematic Review of the Impact of Physician Implicit Racial Bias on Clinical Decision Making
+
1021. A Systematic Review of the Impact of Physician Implicit Racial Bias on Clinical Decision Making
Erin Dehon, Nicole Weiss, Jonathan Jones, Whitney Faulconer, Elizabeth Hinton, Sarah Sterling
Academic Emergency Medicine (2017-08) https://doi.org/gbw5pk
DOI: 10.1111/acem.13214 · PMID: 28472533
1021. Aversive racism and medical interactions with Black patients: A field study
+
1022. Aversive racism and medical interactions with Black patients: A field study
Louis A. Penner, John F. Dovidio, Tessa V. West, Samuel L. Gaertner, Terrance L. Albrecht, Rhonda K. Dailey, Tsveti Markova
Journal of Experimental Social Psychology (2010-03) https://doi.org/dc5342
DOI: 10.1016/j.jesp.2009.11.004 · PMID: 20228874 · PMCID: PMC2835170
1022. Intersection of Bias, Structural Racism, and Social Determinants With Health Care Inequities
+
1023. Intersection of Bias, Structural Racism, and Social Determinants With Health Care Inequities
Tiffani J. Johnson
Pediatrics (2020-08) https://doi.org/ghjmqz
DOI: 10.1542/peds.2020-003657 · PMID: 32690807
1023. A Systematic Review Of The Food And Drug Administration’s “Exception From Informed Consent” Pathway
+
1024. A Systematic Review Of The Food And Drug Administration’s “Exception From Informed Consent” Pathway
William B. Feldman, Spencer Phillips Hey, Aaron S. Kesselheim
Health Affairs (2018-10) https://doi.org/ghjmqw
DOI: 10.1377/hlthaff.2018.0501 · PMID: 30273035
1024. The legacy of the tuskegee syphilis experiments for emergency exception from informed consent
+
1025. The legacy of the tuskegee syphilis experiments for emergency exception from informed consent
Terri A. Schmidt
Annals of Emergency Medicine (2003-01) https://doi.org/fw3kvs
DOI: 10.1067/mem.2003.17 · PMID: 12514686
1025. CDC officials are considering a plan to distribute COVID-19 vaccines to the most vulnerable first — including people of color
+
1026. CDC officials are considering a plan to distribute COVID-19 vaccines to the most vulnerable first — including people of color
Sarah Al-Arshani
Business Insider https://www.businessinsider.com/cdc-official-considering-giving-covid-19-vaccine-most-vulnerable-first-2020-10
1026. Racial Differences in T-Lymphocyte Response to Glucocorticoids
+
1027. Racial Differences in T-Lymphocyte Response to Glucocorticoids
Monica J. Federico, Ronina A. Covar, Eleanor E. Brown, Donald Y. M. Leung, Joseph D. Spahn
Chest (2005-02) https://doi.org/bjfcf6
DOI: 10.1378/chest.127.2.571 · PMID: 15705998
1027. ENDOCRINOLOGY OF THE STRESS RESPONSE
+
1028. ENDOCRINOLOGY OF THE STRESS RESPONSE
Evangelia Charmandari, Constantine Tsigos, George Chrousos
Annual Review of Physiology (2005-03-17) https://doi.org/brcm9n
DOI: 10.1146/annurev.physiol.67.040403.120816 · PMID: 15709959
1028. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk
+
1029. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk
S. Cohen, D. Janicki-Deverts, W. J. Doyle, G. E. Miller, E. Frank, B. S. Rabin, R. B. Turner
Proceedings of the National Academy of Sciences (2012-04-02) https://doi.org/f4n6r8
DOI: 10.1073/pnas.1118355109 · PMID: 22474371 · PMCID: PMC3341031
1029. Opportunities and obstacles for deep learning in biology and medicine
+
1030. Opportunities and obstacles for deep learning in biology and medicine
Travers Ching, Daniel S. Himmelstein, Brett K. Beaulieu-Jones, Alexandr A. Kalinin, Brian T. Do, Gregory P. Way, Enrico Ferrero, Paul-Michael Agapow, Michael Zietz, Michael M. Hoffman, … Casey S. Greene
Journal of The Royal Society Interface (2018-04-04) https://doi.org/gddkhn
DOI: 10.1098/rsif.2017.0387 · PMID: 29618526 · PMCID: PMC5938574
1030. Opportunities and obstacles for deep learning in biology and medicine [update in progress]
+
1031. Opportunities and obstacles for deep learning in biology and medicine [update in progress]
Casey S. Greene, Daniel S. Himmelstein, Daniel C. Elton, Brock C. Christensen, Anthony Gitter, Alexander J. Titus, Joshua J. Levy
Manubot (2020-11-10) https://greenelab.github.io/deep-review/
1031. ismms-himc/covid-19_sinai_reviews
+
1032. ismms-himc/covid-19_sinai_reviews
Human Immune Monitoring Center at Mount Sinai
(2020-07-09) https://github.com/ismms-himc/covid-19_sinai_reviews
1032. Advancing scientific knowledge in times of pandemics
+
1033. Advancing scientific knowledge in times of pandemics
Nicolas Vabret, Robert Samstein, Nicolas Fernandez, Miriam Merad, The Sinai Immunology Review Project, Trainees, Faculty
Nature Reviews Immunology (2020-04-23) https://doi.org/ghjs79
DOI: 10.1038/s41577-020-0319-0 · PMID: 32327718 · PMCID: PMC7187143
1033. Undergraduate Mentoring - American Physician Scientists Association https://www.physicianscientists.org/page/summer-research-pilot-program
+1034. Undergraduate Mentoring - American Physician Scientists Association https://www.physicianscientists.org/page/summer-research-pilot-program
1034. greenelab/covid19-review
+
1035. greenelab/covid19-review
Greene Laboratory
(2021-02-08) https://github.com/greenelab/covid19-review
1035. SARS-CoV-2 and COVID-19: An Evolving Review of Diagnostics and Therapeutics
+
1036. SARS-CoV-2 and COVID-19: An Evolving Review of Diagnostics and Therapeutics
Halie M. Rando, Casey S. Greene, Michael P. Robson, Simina M. Boca, Nils Wellhausen, Ronan Lordan, Christian Brueffer, Sandipan Ray, Lucy D\’Agostino McGowan, Anthony Gitter, … Rishi Raj Goel
Manubot (2021-02-08) https://greenelab.github.io/covid19-review/
1036. Matplotlib: A 2D Graphics Environment
+
1037. Matplotlib: A 2D Graphics Environment
John D. Hunter
Computing in Science & Engineering (2007) https://doi.org/drbjhg
DOI: 10.1109/mcse.2007.55
1037. Using the MAARIE Framework To Read the Research Literature
+
1038. Using the MAARIE Framework To Read the Research Literature
M. Corcoran
American Journal of Occupational Therapy (2006-07-01) https://doi.org/bqh97x
DOI: 10.5014/ajot.60.4.367 · PMID: 16915865
1038. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody
+
1039. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody
Xiaolong Tian, Cheng Li, Ailing Huang, Shuai Xia, Sicong Lu, Zhengli Shi, Lu Lu, Shibo Jiang, Zhenlin Yang, Yanling Wu, Tianlei Ying
Cold Spring Harbor Laboratory (2020-01-28) https://doi.org/ggjqfd
DOI: 10.1101/2020.01.28.923011
1039. Integrative Bioinformatics Analysis Provides Insight into the Molecular Mechanisms of 2019-nCoV
+
1040. Integrative Bioinformatics Analysis Provides Insight into the Molecular Mechanisms of 2019-nCoV
Xiang He, Lei Zhang, Qin Ran, Junyi Wang, Anying Xiong, Dehong Wu, Feng Chen, Guoping Li
Cold Spring Harbor Laboratory (2020-02-05) https://doi.org/ggrbd8
DOI: 10.1101/2020.02.03.20020206
1040. Diarrhea may be underestimated: a missing link in 2019 novel coronavirus
+
1041. Diarrhea may be underestimated: a missing link in 2019 novel coronavirus
Weicheng Liang, Zhijie Feng, Shitao Rao, Cuicui Xiao, Ze-Xiao Lin, Qi Zhang, Qi Wei
Cold Spring Harbor Laboratory (2020-02-17) https://doi.org/ggrbdw
DOI: 10.1101/2020.02.03.20020289
1041. Specific ACE2 Expression in Cholangiocytes May Cause Liver Damage After 2019-nCoV Infection
+
1042. Specific ACE2 Expression in Cholangiocytes May Cause Liver Damage After 2019-nCoV Infection
Xiaoqiang Chai, Longfei Hu, Yan Zhang, Weiyu Han, Zhou Lu, Aiwu Ke, Jian Zhou, Guoming Shi, Nan Fang, Jia Fan, … Fei Lan
Cold Spring Harbor Laboratory (2020-02-04) https://doi.org/ggq626
DOI: 10.1101/2020.02.03.931766
1042. Recapitulation of SARS-CoV-2 Infection and Cholangiocyte Damage with Human Liver Organoids
+
1043. Recapitulation of SARS-CoV-2 Infection and Cholangiocyte Damage with Human Liver Organoids
Bing Zhao, Chao Ni, Ran Gao, Yuyan Wang, Li Yang, Jinsong Wei, Ting Lv, Jianqing Liang, Qisheng Zhang, Wei Xu, … Xinhua Lin
Cold Spring Harbor Laboratory (2020-03-17) https://doi.org/ggq648
DOI: 10.1101/2020.03.16.990317
1043. ACE2 expression by colonic epithelial cells is associated with viral infection, immunity and energy metabolism
+
1044. ACE2 expression by colonic epithelial cells is associated with viral infection, immunity and energy metabolism
Jun Wang, Shanmeizi Zhao, Ming Liu, Zhiyao Zhao, Yiping Xu, Ping Wang, Meng Lin, Yanhui Xu, Bing Huang, Xiaoyu Zuo, … Yuxia Zhang
Cold Spring Harbor Laboratory (2020-02-07) https://doi.org/ggrfbx
DOI: 10.1101/2020.02.05.20020545
1044. The Pathogenicity of SARS-CoV-2 in hACE2 Transgenic Mice
+
1045. The Pathogenicity of SARS-CoV-2 in hACE2 Transgenic Mice
Linlin Bao, Wei Deng, Baoying Huang, Hong Gao, Jiangning Liu, Lili Ren, Qiang Wei, Pin Yu, Yanfeng Xu, Feifei Qi, … Chuan Qin
Cold Spring Harbor Laboratory (2020-02-28) https://doi.org/dph2
DOI: 10.1101/2020.02.07.939389
1045. Caution on Kidney Dysfunctions of COVID-19 Patients
+
1046. Caution on Kidney Dysfunctions of COVID-19 Patients
Zhen Li, Ming Wu, Jiwei Yao, Jie Guo, Xiang Liao, Siji Song, Jiali Li, Guangjie Duan, Yuanxiu Zhou, Xiaojun Wu, … Junan Yan
Cold Spring Harbor Laboratory (2020-03-27) https://doi.org/ggq627
DOI: 10.1101/2020.02.08.20021212
1046. Acute renal impairment in coronavirus-associated severe acute respiratory syndrome
+
1047. Acute renal impairment in coronavirus-associated severe acute respiratory syndrome
Kwok Hong Chu, Wai Kay Tsang, Colin S. Tang, Man Fai Lam, Fernand M. Lai, Ka Fai To, Ka Shun Fung, Hon Lok Tang, Wing Wa Yan, Hilda W. H. Chan, … Kar Neng Lai
Kidney International (2005-02) https://doi.org/b7tgtx
DOI: 10.1111/j.1523-1755.2005.67130.x · PMID: 15673319 · PMCID: PMC7112337
1047. Single-cell Analysis of ACE2 Expression in Human Kidneys and Bladders Reveals a Potential Route of 2019-nCoV Infection
+
1048. Single-cell Analysis of ACE2 Expression in Human Kidneys and Bladders Reveals a Potential Route of 2019-nCoV Infection
Wei Lin, Longfei Hu, Yan Zhang, Joshua D. Ooi, Ting Meng, Peng Jin, Xiang Ding, Longkai Peng, Lei Song, Zhou Xiao, … Yong Zhong
Cold Spring Harbor Laboratory (2020-02-18) https://doi.org/ggq629
DOI: 10.1101/2020.02.08.939892
1048. The immune vulnerability landscape of the 2019 Novel Coronavirus, SARS-CoV-2
+
1049. The immune vulnerability landscape of the 2019 Novel Coronavirus, SARS-CoV-2
James Zhu, Jiwoong Kim, Xue Xiao, Yunguan Wang, Danni Luo, Shuang Jiang, Ran Chen, Lin Xu, He Zhang, Lenny Moise, … Yang Xie
Cold Spring Harbor Laboratory (2020-09-04) https://doi.org/ggq628
DOI: 10.1101/2020.02.08.939553 · PMID: 32908981
1049. Clinical Course and Outcomes of Critically Ill Patients With Middle East Respiratory Syndrome Coronavirus Infection
+
1050. Clinical Course and Outcomes of Critically Ill Patients With Middle East Respiratory Syndrome Coronavirus Infection
Yaseen M. Arabi, Ahmed A. Arifi, Hanan H. Balkhy, Hani Najm, Abdulaziz S. Aldawood, Alaa Ghabashi, Hassan Hawa, Adel Alothman, Abdulaziz Khaldi, Basel Al Raiy
Annals of Internal Medicine (2014-03-18) https://doi.org/ggptxw
DOI: 10.7326/m13-2486 · PMID: 24474051
1050. Neutrophil-to-Lymphocyte Ratio Predicts Severe Illness Patients with 2019 Novel Coronavirus in the Early Stage
+
1051. Neutrophil-to-Lymphocyte Ratio Predicts Severe Illness Patients with 2019 Novel Coronavirus in the Early Stage
Jingyuan Liu, Yao Liu, Pan Xiang, Lin Pu, Haofeng Xiong, Chuansheng Li, Ming Zhang, Jianbo Tan, Yanli Xu, Rui Song, … Xianbo Wang
Cold Spring Harbor Laboratory (2020-02-12) https://doi.org/ggrbdx
DOI: 10.1101/2020.02.10.20021584
1051. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China
+
1052. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China
Chuan Qin, Luoqi Zhou, Ziwei Hu, Shuoqi Zhang, Sheng Yang, Yu Tao, Cuihong Xie, Ke Ma, Ke Shang, Wei Wang, Dai-Shi Tian
Clinical Infectious Diseases (2020-08-01) https://doi.org/ggpxcf
DOI: 10.1093/cid/ciaa248 · PMID: 32161940 · PMCID: PMC7108125
1052. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP)
+
1053. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP)
Suxin Wan, Qingjie Yi, Shibing Fan, Jinglong Lv, Xianxiang Zhang, Lian Guo, Chunhui Lang, Qing Xiao, Kaihu Xiao, Zhengjun Yi, … Yongping Chen
Cold Spring Harbor Laboratory (2020-02-12) https://doi.org/ggq63b
DOI: 10.1101/2020.02.10.20021832
1053. Longitudinal Characteristics of Lymphocyte Responses and Cytokine Profiles in the Peripheral Blood of SARS-CoV-2 Infected Patients
+
1054. Longitudinal Characteristics of Lymphocyte Responses and Cytokine Profiles in the Peripheral Blood of SARS-CoV-2 Infected Patients
Jing Liu, Sumeng Li, Jia Liu, Boyun Liang, Xiaobei Wang, Wei Li, Hua Wang, Qiaoxia Tong, Jianhua Yi, Lei Zhao, … Xin Zheng
SSRN Electronic Journal (2020) https://doi.org/ggq655
DOI: 10.2139/ssrn.3539682
1054. Epidemiological and Clinical Characteristics of 17 Hospitalized Patients with 2019 Novel Coronavirus Infections Outside Wuhan, China
+
1055. Epidemiological and Clinical Characteristics of 17 Hospitalized Patients with 2019 Novel Coronavirus Infections Outside Wuhan, China
Jie Li, Shilin Li, Yurui Cai, Qin Liu, Xue Li, Zhaoping Zeng, Yanpeng Chu, Fangcheng Zhu, Fanxin Zeng
Cold Spring Harbor Laboratory (2020-02-12) https://doi.org/ggq63c
DOI: 10.1101/2020.02.11.20022053
1055. ACE2 Expression in Kidney and Testis May Cause Kidney and Testis Damage After 2019-nCoV Infection
+
1056. ACE2 Expression in Kidney and Testis May Cause Kidney and Testis Damage After 2019-nCoV Infection
Caibin Fan, Kai Li, Yanhong Ding, Wei Lu, Jianqing Wang
Cold Spring Harbor Laboratory (2020-02-13) https://doi.org/ggq63d
DOI: 10.1101/2020.02.12.20022418
1056. Aberrant pathogenic GM-CSF + T cells and inflammatory CD14 + CD16 + monocytes in severe pulmonary syndrome patients of a new coronavirus
+
1057. Aberrant pathogenic GM-CSF + T cells and inflammatory CD14 + CD16 + monocytes in severe pulmonary syndrome patients of a new coronavirus
Yonggang Zhou, Binqing Fu, Xiaohu Zheng, Dongsheng Wang, Changcheng Zhao, Yingjie qi, Rui Sun, Zhigang Tian, Xiaoling Xu, Haiming Wei
Cold Spring Harbor Laboratory (2020-02-20) https://doi.org/ggq63f
DOI: 10.1101/2020.02.12.945576
1057. Clinical Characteristics of 2019 Novel Infected Coronavirus Pneumonia: A Systemic Review and Meta-analysis
+
1058. Clinical Characteristics of 2019 Novel Infected Coronavirus Pneumonia: A Systemic Review and Meta-analysis
Kai Qian, Yi Deng, Yong-Hang Tai, Jun Peng, Hao Peng, Li-Hong Jiang
Cold Spring Harbor Laboratory (2020-02-17) https://doi.org/ggrgbq
DOI: 10.1101/2020.02.14.20021535
1058. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients
+
1059. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients
Jing Liu, Sumeng Li, Jia Liu, Boyun Liang, Xiaobei Wang, Hua Wang, Wei Li, Qiaoxia Tong, Jianhua Yi, Lei Zhao, … Xin Zheng
Cold Spring Harbor Laboratory (2020-02-22) https://doi.org/ggq63g
DOI: 10.1101/2020.02.16.20023671
1059. Clinical and immunologic features in severe and moderate forms of Coronavirus Disease 2019
+
1060. Clinical and immunologic features in severe and moderate forms of Coronavirus Disease 2019
Guang Chen, Di Wu, Wei Guo, Yong Cao, Da Huang, Hongwu Wang, Tao Wang, Xiaoyun Zhang, Huilong Chen, Haijing Yu, … Qin Ning
Cold Spring Harbor Laboratory (2020-02-19) https://doi.org/ggq63h
DOI: 10.1101/2020.02.16.20023903
1060. SARS-CoV-2 and SARS-CoV Spike-RBD Structure and Receptor Binding Comparison and Potential Implications on Neutralizing Antibody and Vaccine Development
+
1061. SARS-CoV-2 and SARS-CoV Spike-RBD Structure and Receptor Binding Comparison and Potential Implications on Neutralizing Antibody and Vaccine Development
Chunyun Sun, Long Chen, Ji Yang, Chunxia Luo, Yanjing Zhang, Jing Li, Jiahui Yang, Jie Zhang, Liangzhi Xie
Cold Spring Harbor Laboratory (2020-02-20) https://doi.org/ggq63j
DOI: 10.1101/2020.02.16.951723
1061. Protection of Rhesus Macaque from SARS-Coronavirus challenge by recombinant adenovirus vaccine
+
1062. Protection of Rhesus Macaque from SARS-Coronavirus challenge by recombinant adenovirus vaccine
Yiyou Chen, Qiang Wei, Ruobing Li, Hong Gao, Hua Zhu, Wei Deng, Linlin Bao, Wei Tong, Zhe Cong, Hong Jiang, Chuan Qin
Cold Spring Harbor Laboratory (2020-02-21) https://doi.org/ggq63k
DOI: 10.1101/2020.02.17.951939
1062. Reduction and Functional Exhaustion of T Cells in Patients with Coronavirus Disease 2019 (COVID-19)
+
1063. Reduction and Functional Exhaustion of T Cells in Patients with Coronavirus Disease 2019 (COVID-19)
Bo Diao, Chenhui Wang, Yingjun Tan, Xiewan Chen, Ying Liu, Lifen Ning, Li Chen, Min Li, Yueping Liu, Gang Wang, … Yongwen Chen
Cold Spring Harbor Laboratory (2020-02-20) https://doi.org/ggq63m
DOI: 10.1101/2020.02.18.20024364
1063. Clinical characteristics of 25 death cases with COVID-19: a retrospective review of medical records in a single medical center, Wuhan, China
+
1064. Clinical characteristics of 25 death cases with COVID-19: a retrospective review of medical records in a single medical center, Wuhan, China
Xun Li, Luwen Wang, Shaonan Yan, Fan Yang, Longkui Xiang, Jiling Zhu, Bo Shen, Zuojiong Gong
Cold Spring Harbor Laboratory (2020-02-25) https://doi.org/ggq63n
DOI: 10.1101/2020.02.19.20025239
1064. SARS-CoV-2 infection does not significantly cause acute renal injury: an analysis of 116 hospitalized patients with COVID-19 in a single hospital, Wuhan, China
+
1065. SARS-CoV-2 infection does not significantly cause acute renal injury: an analysis of 116 hospitalized patients with COVID-19 in a single hospital, Wuhan, China
Luwen Wang, Xun Li, Hui Chen, Shaonan Yan, Yan Li, Dong Li, Zuojiong Gong
Cold Spring Harbor Laboratory (2020-02-23) https://doi.org/ggq63p
DOI: 10.1101/2020.02.19.20025288
1065. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China
+
1066. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China
Dawei Wang, Bo Hu, Chang Hu, Fangfang Zhu, Xing Liu, Jing Zhang, Binbin Wang, Hui Xiang, Zhenshun Cheng, Yong Xiong, … Zhiyong Peng
JAMA (2020-03-17) https://doi.org/ggkh48
DOI: 10.1001/jama.2020.1585 · PMID: 32031570 · PMCID: PMC7042881
1066. Clinical characteristics of 2019 novel coronavirus infection in China
+
1067. Clinical characteristics of 2019 novel coronavirus infection in China
Wei-jie Guan, Zheng-yi Ni, Yu Hu, Wen-hua Liang, Chun-quan Ou, Jian-xing He, Lei Liu, Hong Shan, Chun-liang Lei, David S. C. Hui, … Nan-shan Zhong
Cold Spring Harbor Laboratory (2020-02-09) https://doi.org/ggkj9s
DOI: 10.1101/2020.02.06.20020974
1067. Potential T-cell and B-cell Epitopes of 2019-nCoV
+
1068. Potential T-cell and B-cell Epitopes of 2019-nCoV
Ethan Fast, Russ B. Altman, Binbin Chen
Cold Spring Harbor Laboratory (2020-03-18) https://doi.org/ggq63q
DOI: 10.1101/2020.02.19.955484
1068. Structure, function and antigenicity of the SARS-CoV-2 spike glycoprotein
+
1069. Structure, function and antigenicity of the SARS-CoV-2 spike glycoprotein
Alexandra C. Walls, Young-Jun Park, M. Alexandra Tortorici, Abigail Wall, Andrew T. McGuire, David Veesler
Cold Spring Harbor Laboratory (2020-02-20) https://doi.org/ggrgbr
DOI: 10.1101/2020.02.19.956581
1069. Breadth of concomitant immune responses underpinning viral clearance and patient recovery in a non-severe case of COVID-19
+
1070. Breadth of concomitant immune responses underpinning viral clearance and patient recovery in a non-severe case of COVID-19
Irani Thevarajan, Thi HO Nguyen, Marios Koutsakos, Julian Druce, Leon Caly, Carolien E van de Sandt, Xiaoxiao Jia, Suellen Nicholson, Mike Catton, Benjamin Cowie, … Katherine Kedzierska
Cold Spring Harbor Laboratory (2020-02-23) https://doi.org/ggq63r
DOI: 10.1101/2020.02.20.20025841
1070. The landscape of lung bronchoalveolar immune cells in COVID-19 revealed by single-cell RNA sequencing
+
1071. The landscape of lung bronchoalveolar immune cells in COVID-19 revealed by single-cell RNA sequencing
Minfeng Liao, Yang Liu, Jin Yuan, Yanling Wen, Gang Xu, Juanjuan Zhao, Lin Chen, Jinxiu Li, Xin Wang, Fuxiang Wang, … Zheng Zhang
Cold Spring Harbor Laboratory (2020-02-26) https://doi.org/ggq63s
DOI: 10.1101/2020.02.23.20026690
1071. Influenza A Virus Infection Induces Hyperresponsiveness in Human Lung Tissue-Resident and Peripheral Blood NK Cells
+
1072. Influenza A Virus Infection Induces Hyperresponsiveness in Human Lung Tissue-Resident and Peripheral Blood NK Cells
Marlena Scharenberg, Sindhu Vangeti, Eliisa Kekäläinen, Per Bergman, Mamdoh Al-Ameri, Niclas Johansson, Klara Sondén, Sara Falck-Jones, Anna Färnert, Hans-Gustaf Ljunggren, … Nicole Marquardt
Frontiers in Immunology (2019-05-17) https://doi.org/ggq656
DOI: 10.3389/fimmu.2019.01116 · PMID: 31156653 · PMCID: PMC6534051
1072. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
+
1073. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
Chaolin Huang, Yeming Wang, Xingwang Li, Lili Ren, Jianping Zhao, Yi Hu, Li Zhang, Guohui Fan, Jiuyang Xu, Xiaoying Gu, … Bin Cao
The Lancet (2020-02) https://doi.org/ggjfnn
DOI: 10.1016/s0140-6736(20)30183-5
1073. Alveolar Macrophages in the Resolution of Inflammation, Tissue Repair, and Tolerance to Infection
+
1074. Alveolar Macrophages in the Resolution of Inflammation, Tissue Repair, and Tolerance to Infection
Benoit Allard, Alice Panariti, James G. Martin
Frontiers in Immunology (2018-07-31) https://doi.org/gd3bnz
DOI: 10.3389/fimmu.2018.01777 · PMID: 30108592 · PMCID: PMC6079255
1074. PPAR-γ in Macrophages Limits Pulmonary Inflammation and Promotes Host Recovery following Respiratory Viral Infection
+
1075. PPAR-γ in Macrophages Limits Pulmonary Inflammation and Promotes Host Recovery following Respiratory Viral Infection
Su Huang, Bibo Zhu, In Su Cheon, Nick P. Goplen, Li Jiang, Ruixuan Zhang, R. Stokes Peebles, Matthias Mack, Mark H. Kaplan, Andrew H. Limper, Jie Sun
Journal of Virology (2019-04-17) https://doi.org/ggq652
DOI: 10.1128/jvi.00030-19 · PMID: 30787149 · PMCID: PMC6475778
1075. Can routine laboratory tests discriminate 2019 novel coronavirus infected pneumonia from other community-acquired pneumonia?
+
1076. Can routine laboratory tests discriminate 2019 novel coronavirus infected pneumonia from other community-acquired pneumonia?
Yunbao Pan, Guangming Ye, Xiantao Zeng, Guohong Liu, Xiaojiao Zeng, Xianghu Jiang, Jin Zhao, Liangjun Chen, Shuang Guo, Qiaoling Deng, … Xinghuan Wang
Cold Spring Harbor Laboratory (2020-02-25) https://doi.org/ggq63t
DOI: 10.1101/2020.02.25.20024711
1076. Correlation Analysis Between Disease Severity and Inflammation-related Parameters in Patients with COVID-19 Pneumonia
+
1077. Correlation Analysis Between Disease Severity and Inflammation-related Parameters in Patients with COVID-19 Pneumonia
Jing Gong, Hui Dong, Qingsong Xia, Zhaoyi Huang, Dingkun Wang, Yan Zhao, Wenhua Liu, Shenghao Tu, Mingmin Zhang, Qi Wang, Fuer Lu
Cold Spring Harbor Laboratory (2020-02-26) https://doi.org/ggq63v
DOI: 10.1101/2020.02.25.20025643
1077. An Effective CTL Peptide Vaccine for Ebola Zaire Based on Survivors’ CD8+ Targeting of a Particular Nucleocapsid Protein Epitope with Potential Implications for COVID-19 Vaccine Design
+
1078. An Effective CTL Peptide Vaccine for Ebola Zaire Based on Survivors’ CD8+ Targeting of a Particular Nucleocapsid Protein Epitope with Potential Implications for COVID-19 Vaccine Design
CV Herst, S Burkholz, J Sidney, A Sette, PE Harris, S Massey, T Brasel, E Cunha-Neto, DS Rosa, WCH Chao, … R Rubsamen
Cold Spring Harbor Laboratory (2020-04-06) https://doi.org/ggq63x
DOI: 10.1101/2020.02.25.963546
1078. Epitope-based peptide vaccine design and target site characterization against novel coronavirus disease caused by SARS-CoV-2
+
1079. Epitope-based peptide vaccine design and target site characterization against novel coronavirus disease caused by SARS-CoV-2
Lin Li, Ting Sun, Yufei He, Wendong Li, Yubo Fan, Jing Zhang
Cold Spring Harbor Laboratory (2020-02-27) https://doi.org/ggnqwt
DOI: 10.1101/2020.02.25.965434
1079. The definition and risks of Cytokine Release Syndrome-Like in 11 COVID-19-Infected Pneumonia critically ill patients: Disease Characteristics and Retrospective Analysis
+
1080. The definition and risks of Cytokine Release Syndrome-Like in 11 COVID-19-Infected Pneumonia critically ill patients: Disease Characteristics and Retrospective Analysis
Wang Wenjun, Liu Xiaoqing, Wu Sipei, Lie Puyi, Huang Liyan, Li Yimin, Cheng Linling, Chen Sibei, Nong Lingbo, Lin Yongping, He Jianxing
Cold Spring Harbor Laboratory (2020-02-27) https://doi.org/ggrgbs
DOI: 10.1101/2020.02.26.20026989
1080. Clinical characteristics of 36 non-survivors with COVID-19 in Wuhan, China
+
1081. Clinical characteristics of 36 non-survivors with COVID-19 in Wuhan, China
Ying Huang, Rui Yang, Ying Xu, Ping Gong
Cold Spring Harbor Laboratory (2020-03-05) https://doi.org/ggq63z
DOI: 10.1101/2020.02.27.20029009
1081. Risk factors related to hepatic injury in patients with corona virus disease 2019
+
1082. Risk factors related to hepatic injury in patients with corona virus disease 2019
Lu Li, Shuang Li, Manman Xu, Pengfei Yu, Sujun Zheng, Zhongping Duan, Jing Liu, Yu Chen, Junfeng Li
Cold Spring Harbor Laboratory (2020-03-10) https://doi.org/ggq632
DOI: 10.1101/2020.02.28.20028514
1082. Detectable serum SARS-CoV-2 viral load (RNAaemia) is closely associated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients
+
1083. Detectable serum SARS-CoV-2 viral load (RNAaemia) is closely associated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients
Xiaohua Chen, Binghong Zhao, Yueming Qu, Yurou Chen, Jie Xiong, Yong Feng, Dong Men, Qianchuan Huang, Ying Liu, Bo Yang, … Feng Li
Cold Spring Harbor Laboratory (2020-03-03) https://doi.org/ggq633
DOI: 10.1101/2020.02.29.20029520
1083. Prognostic factors in the acute respiratory distress syndrome
+
1084. Prognostic factors in the acute respiratory distress syndrome
Wei Chen, Lorraine B Ware
Clinical and Translational Medicine (2015-07-02) https://doi.org/ggq653
DOI: 10.1186/s40169-015-0065-2 · PMID: 26162279 · PMCID: PMC4534483
1084. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study
+
1085. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study
Li Tan, Qi Wang, Duanyang Zhang, Jinya Ding, Qianchuan Huang, Yi-Quan Tang, Qiongshu Wang, Hongming Miao
Cold Spring Harbor Laboratory (2020-03-03) https://doi.org/ggq634
DOI: 10.1101/2020.03.01.20029074
1085. The potential role of IL-6 in monitoring severe case of coronavirus disease 2019
+
1086. The potential role of IL-6 in monitoring severe case of coronavirus disease 2019
Tao Liu, Jieying Zhang, Yuhui Yang, Hong Ma, Zhengyu Li, Jiaoyu Zhang, Ji Cheng, Xiaoyun Zhang, Yanxia Zhao, Zihan Xia, … Jianhua Yi
Cold Spring Harbor Laboratory (2020-03-10) https://doi.org/ggq635
DOI: 10.1101/2020.03.01.20029769
1086. Clinical and Laboratory Profiles of 75 Hospitalized Patients with Novel Coronavirus Disease 2019 in Hefei, China
+
1087. Clinical and Laboratory Profiles of 75 Hospitalized Patients with Novel Coronavirus Disease 2019 in Hefei, China
Zonghao Zhao, Jiajia Xie, Ming Yin, Yun Yang, Hongliang He, Tengchuan Jin, Wenting Li, Xiaowu Zhu, Jing Xu, Changcheng Zhao, … Xiaoling Ma
Cold Spring Harbor Laboratory (2020-03-06) https://doi.org/ggq636
DOI: 10.1101/2020.03.01.20029785
1087. Exuberant elevation of IP-10, MCP-3 and IL-1ra during SARS-CoV-2 infection is associated with disease severity and fatal outcome
+
1088. Exuberant elevation of IP-10, MCP-3 and IL-1ra during SARS-CoV-2 infection is associated with disease severity and fatal outcome
Yang Yang, Chenguang Shen, Jinxiu Li, Jing Yuan, Minghui Yang, Fuxiang Wang, Guobao Li, Yanjie Li, Li Xing, Ling Peng, … Yingxia Liu
Cold Spring Harbor Laboratory (2020-03-06) https://doi.org/ggq637
DOI: 10.1101/2020.03.02.20029975
1088. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019
+
1089. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019
Juanjuan Zhao, Quan Yuan, Haiyan Wang, Wei Liu, Xuejiao Liao, Yingying Su, Xin Wang, Jing Yuan, Tingdong Li, Jinxiu Li, … Zheng Zhang
Cold Spring Harbor Laboratory (2020-03-02) https://doi.org/ggrbj6
DOI: 10.1101/2020.03.02.20030189
1089. Restoration of leukomonocyte counts is associated with viral clearance in COVID-19 hospitalized patients
+
1090. Restoration of leukomonocyte counts is associated with viral clearance in COVID-19 hospitalized patients
Xiaoping Chen, Jiaxin Ling, Pingzheng Mo, Yongxi Zhang, Qunqun Jiang, Zhiyong Ma, Qian Cao, Wenjia Hu, Shi Zou, Liangjun Chen, … Yong Xiong
Cold Spring Harbor Laboratory (2020-03-06) https://doi.org/ggq639
DOI: 10.1101/2020.03.03.20030437
1090. Effects of Systemically Administered Hydrocortisone on the Human Immunome
+
1091. Effects of Systemically Administered Hydrocortisone on the Human Immunome
Matthew J. Olnes, Yuri Kotliarov, Angélique Biancotto, Foo Cheung, Jinguo Chen, Rongye Shi, Huizhi Zhou, Ena Wang, John S. Tsang, Robert Nussenblatt, The CHI Consortium
Scientific Reports (2016-03-14) https://doi.org/f8dmvw
DOI: 10.1038/srep23002 · PMID: 26972611 · PMCID: PMC4789739
1091. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis
+
1092. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis
Giuseppe Lippi, Mario Plebani
Clinica Chimica Acta (2020-06) https://doi.org/ggpxp7
DOI: 10.1016/j.cca.2020.03.004 · PMID: 32145275 · PMCID: PMC7094472
1092. Clinical findings in critically ill patients infected with SARS-CoV-2 in Guangdong Province, China: a multi-center, retrospective, observational study
+
1093. Clinical findings in critically ill patients infected with SARS-CoV-2 in Guangdong Province, China: a multi-center, retrospective, observational study
Yonghao Xu, Zhiheng Xu, Xuesong Liu, Lihua Cai, Haichong Zheng, Yongbo Huang, Lixin Zhou, Linxi Huang, Yun Lin, Liehua Deng, … Yimin Li
Cold Spring Harbor Laboratory (2020-03-06) https://doi.org/ggq64b
DOI: 10.1101/2020.03.03.20030668
1093. Multi-epitope vaccine design using an immunoinformatics approach for 2019 novel coronavirus (SARS-CoV-2)
+
1094. Multi-epitope vaccine design using an immunoinformatics approach for 2019 novel coronavirus (SARS-CoV-2)
Ye Feng, Min Qiu, Liang Liu, Shengmei Zou, Yun Li, Kai Luo, Qianpeng Guo, Ning Han, Yingqiang Sun, Kui Wang, … Fan Mo
Cold Spring Harbor Laboratory (2020-06-30) https://doi.org/ggq64c
DOI: 10.1101/2020.03.03.962332
1094. Clinical Features of Patients Infected with the 2019 Novel Coronavirus (COVID-19) in Shanghai, China
+
1095. Clinical Features of Patients Infected with the 2019 Novel Coronavirus (COVID-19) in Shanghai, China
Min Cao, Dandan Zhang, Youhua Wang, Yunfei Lu, Xiangdong Zhu, Ying Li, Honghao Xue, Yunxiao Lin, Min Zhang, Yiguo Sun, … Hongzhou Lu
Cold Spring Harbor Laboratory (2020-03-06) https://doi.org/ggq64d
DOI: 10.1101/2020.03.04.20030395 · PMID: 32511465
1095. Serological detection of 2019-nCoV respond to the epidemic: A useful complement to nucleic acid testing
+
1096. Serological detection of 2019-nCoV respond to the epidemic: A useful complement to nucleic acid testing
Jin Zhang, Jianhua Liu, Na Li, Yong Liu, Rui Ye, Xiaosong Qin, Rui Zheng
Cold Spring Harbor Laboratory (2020-03-06) https://doi.org/ggq64f
DOI: 10.1101/2020.03.04.20030916
1096. Human Kidney is a Target for Novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection
+
1097. Human Kidney is a Target for Novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection
Bo Diao, Chenhui Wang, Rongshuai Wang, Zeqing Feng, Yingjun Tan, Huiming Wang, Changsong Wang, Liang Liu, Ying Liu, Yueping Liu, … Yongwen Chen
Cold Spring Harbor Laboratory (2020-04-10) https://doi.org/ggq64g
DOI: 10.1101/2020.03.04.20031120
1097. COVID-19 early warning score: a multi-parameter screening tool to identify highly suspected patients
+
1098. COVID-19 early warning score: a multi-parameter screening tool to identify highly suspected patients
Cong-Ying Song, Jia Xu, Jian-Qin He, Yuan-Qiang Lu
Cold Spring Harbor Laboratory (2020-03-08) https://doi.org/ggq64h
DOI: 10.1101/2020.03.05.20031906
1098. LY6E impairs coronavirus fusion and confers immune control of viral disease
+
1099. LY6E impairs coronavirus fusion and confers immune control of viral disease
Stephanie Pfaender, Katrina B. Mar, Eleftherios Michailidis, Annika Kratzel, Dagny Hirt, Philip V’kovski, Wenchun Fan, Nadine Ebert, Hanspeter Stalder, Hannah Kleine-Weber, … Volker Thiel
Cold Spring Harbor Laboratory (2020-03-07) https://doi.org/dpvn
DOI: 10.1101/2020.03.05.979260 · PMID: 32511345
1099. A preliminary study on serological assay for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 238 admitted hospital patients
+
1100. A preliminary study on serological assay for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 238 admitted hospital patients
Lei Liu, Wanbing Liu, Yaqiong Zheng, Xiaojing Jiang, Guomei Kou, Jinya Ding, Qiongshu Wang, Qianchuan Huang, Yinjuan Ding, Wenxu Ni, … Shangen Zheng
Cold Spring Harbor Laboratory (2020-03-08) https://doi.org/ggq64j
DOI: 10.1101/2020.03.06.20031856
1100. Monoclonal antibodies for the S2 subunit of spike of SARS-CoV cross-react with the newly-emerged SARS-CoV-2
+
1101. Monoclonal antibodies for the S2 subunit of spike of SARS-CoV cross-react with the newly-emerged SARS-CoV-2
Zhiqiang Zheng, Vanessa M. Monteil, Sebastian Maurer-Stroh, Chow Wenn Yew, Carol Leong, Nur Khairiah Mohd-Ismail, Suganya Cheyyatraivendran Arularasu, Vincent Tak Kwong Chow, Raymond Lin Tzer Pin, Ali Mirazimi, … Yee-Joo Tan
Cold Spring Harbor Laboratory (2020-03-07) https://doi.org/ggrbj7
DOI: 10.1101/2020.03.06.980037
1101. Mortality of COVID-19 is Associated with Cellular Immune Function Compared to Immune Function in Chinese Han Population
+
1102. Mortality of COVID-19 is Associated with Cellular Immune Function Compared to Immune Function in Chinese Han Population
Qiang Zeng, Yong-zhe Li, Gang Huang, Wei Wu, Sheng-yong Dong, Yang Xu
Cold Spring Harbor Laboratory (2020-03-13) https://doi.org/ggq64k
DOI: 10.1101/2020.03.08.20031229
1102. Retrospective Analysis of Clinical Features in 101 Death Cases with COVID-19
+
1103. Retrospective Analysis of Clinical Features in 101 Death Cases with COVID-19
Hua Fan, Lin Zhang, Bin Huang, Muxin Zhu, Yong Zhou, Huan Zhang, Xiaogen Tao, Shaohui Cheng, Wenhu Yu, Liping Zhu, Jian Chen
Cold Spring Harbor Laboratory (2020-03-17) https://doi.org/ggq64n
DOI: 10.1101/2020.03.09.20033068
1103. Relationship between the ABO Blood Group and the COVID-19 Susceptibility
+
1104. Relationship between the ABO Blood Group and the COVID-19 Susceptibility
Jiao Zhao, Yan Yang, Hanping Huang, Dong Li, Dongfeng Gu, Xiangfeng Lu, Zheng Zhang, Lei Liu, Ting Liu, Yukun Liu, … Peng George Wang
Cold Spring Harbor Laboratory (2020-03-27) https://doi.org/ggpn3d
DOI: 10.1101/2020.03.11.20031096
1104. The inhaled corticosteroid ciclesonide blocks coronavirus RNA replication by targeting viral NSP15
+
1105. The inhaled corticosteroid ciclesonide blocks coronavirus RNA replication by targeting viral NSP15
Shutoku Matsuyama, Miyuki Kawase, Naganori Nao, Kazuya Shirato, Makoto Ujike, Wataru Kamitani, Masayuki Shimojima, Shuetsu Fukushi
Cold Spring Harbor Laboratory (2020-03-12) https://doi.org/ggq64p
DOI: 10.1101/2020.03.11.987016
1105. Immune phenotyping based on neutrophil-to-lymphocyte ratio and IgG predicts disease severity and outcome for patients with COVID-19
+
1106. Immune phenotyping based on neutrophil-to-lymphocyte ratio and IgG predicts disease severity and outcome for patients with COVID-19
Bicheng Zhang, Xiaoyang Zhou, Chengliang Zhu, Fan Feng, Yanru Qiu, Jia Feng, Qingzhu Jia, Qibin Song, Bo Zhu, Jun Wang
Cold Spring Harbor Laboratory (2020-03-16) https://doi.org/ggq64q
DOI: 10.1101/2020.03.12.20035048
1106. Lack of Reinfection in Rhesus Macaques Infected with SARS-CoV-2
+
1107. Lack of Reinfection in Rhesus Macaques Infected with SARS-CoV-2
Linlin Bao, Wei Deng, Hong Gao, Chong Xiao, Jiayi Liu, Jing Xue, Qi Lv, Jiangning Liu, Pin Yu, Yanfeng Xu, … Chuan Qin
Cold Spring Harbor Laboratory (2020-05-01) https://doi.org/ggn8r8
DOI: 10.1101/2020.03.13.990226
1107. A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV
+
1108. A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV
Meng Yuan, Nicholas C. Wu, Xueyong Zhu, Chang-Chun D. Lee, Ray T. Y. So, Huibin Lv, Chris K. P. Mok, Ian A. Wilson
Cold Spring Harbor Laboratory (2020-03-14) https://doi.org/ggq64s
DOI: 10.1101/2020.03.13.991570
1108. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein
+
1109. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein
Ke Wang, Wei Chen, Yu-Sen Zhou, Jian-Qi Lian, Zheng Zhang, Peng Du, Li Gong, Yang Zhang, Hong-Yong Cui, Jie-Jie Geng, … Zhi-Nan Chen
Cold Spring Harbor Laboratory (2020-03-14) https://doi.org/ggq64t
DOI: 10.1101/2020.03.14.988345
1109. CD147 (EMMPRIN/Basigin) in kidney diseases: from an inflammation and immune system viewpoint
+
1110. CD147 (EMMPRIN/Basigin) in kidney diseases: from an inflammation and immune system viewpoint
Tomoki Kosugi, Kayaho Maeda, Waichi Sato, Shoichi Maruyama, Kenji Kadomatsu
Nephrology Dialysis Transplantation (2015-07) https://doi.org/ggq624
DOI: 10.1093/ndt/gfu302 · PMID: 25248362
1110. The roles of CyPA and CD147 in cardiac remodelling
+
1111. The roles of CyPA and CD147 in cardiac remodelling
Hongyan Su, Yi Yang
Experimental and Molecular Pathology (2018-06) https://doi.org/ggq622
DOI: 10.1016/j.yexmp.2018.05.001 · PMID: 29772453
1111. Cancer-related issues of CD147.
+
1112. Cancer-related issues of CD147.
Ulrich H Weidle, Werner Scheuer, Daniela Eggle, Stefan Klostermann, Hannes Stockinger
Cancer genomics & proteomics https://www.ncbi.nlm.nih.gov/pubmed/20551248
PMID: 20551248
1112. Blood single cell immune profiling reveals the interferon-MAPK pathway mediated adaptive immune response for COVID-19
+
1113. Blood single cell immune profiling reveals the interferon-MAPK pathway mediated adaptive immune response for COVID-19
Lulin Huang, Yi Shi, Bo Gong, Li Jiang, Xiaoqi Liu, Jialiang Yang, Juan Tang, Chunfang You, Qi Jiang, Bo Long, … Zhenglin Yang
Cold Spring Harbor Laboratory (2020-03-17) https://doi.org/ggq64v
DOI: 10.1101/2020.03.15.20033472
1113. Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV infections
+
1114. Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV infections
Huibin Lv, Nicholas C. Wu, Owen Tak-Yin Tsang, Meng Yuan, Ranawaka A. P. M. Perera, Wai Shing Leung, Ray T. Y. So, Jacky Man Chun Chan, Garrick K. Yip, Thomas Shiu Hong Chik, … Chris K. P. Mok
Cold Spring Harbor Laboratory (2020-03-17) https://doi.org/ggq64w
DOI: 10.1101/2020.03.15.993097 · PMID: 32511317
1114. The feasibility of convalescent plasma therapy in severe COVID- 19 patients: a pilot study
+
1115. The feasibility of convalescent plasma therapy in severe COVID- 19 patients: a pilot study
Kai Duan, Bende Liu, Cesheng Li, Huajun Zhang, Ting Yu, Jieming Qu, Min Zhou, Li Chen, Shengli Meng, Yong Hu, … Xiaoming Yang
Cold Spring Harbor Laboratory (2020-03-23) https://doi.org/dqrs
DOI: 10.1101/2020.03.16.20036145
1115. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial
+
1116. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial
Philippe Gautret, Jean-Christophe Lagier, Philippe Parola, Van Thuan Hoang, Line Meddeb, Morgane Mailhe, Barbara Doudier, Johan Courjon, Valérie Giordanengo, Vera Esteves Vieira, … Didier Raoult
Cold Spring Harbor Laboratory (2020-03-20) https://doi.org/dqbv
DOI: 10.1101/2020.03.16.20037135
1116. Chloroquine: Modes of action of an undervalued drug
+
1117. Chloroquine: Modes of action of an undervalued drug
Rodolfo Thomé, Stefanie Costa Pinto Lopes, Fabio Trindade Maranhão Costa, Liana Verinaud
Immunology Letters (2013-06) https://doi.org/f5b5cr
DOI: 10.1016/j.imlet.2013.07.004 · PMID: 23891850
1117. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy
+
1118. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy
B. Lo, K. Zhang, W. Lu, L. Zheng, Q. Zhang, C. Kanellopoulou, Y. Zhang, Z. Liu, J. M. Fritz, R. Marsh, … M. B. Jordan
Science (2015-07-23) https://doi.org/f7kc8d
DOI: 10.1126/science.aaa1663 · PMID: 26206937
1118. The sequence of human ACE2 is suboptimal for binding the S spike protein of SARS coronavirus 2
+
1119. The sequence of human ACE2 is suboptimal for binding the S spike protein of SARS coronavirus 2
Erik Procko
Cold Spring Harbor Laboratory (2020-05-11) https://doi.org/ggrbj8
DOI: 10.1101/2020.03.16.994236 · PMID: 32511321
1119. Comparative Pathogenesis Of COVID-19, MERS And SARS In A Non-Human Primate Model
+
1120. Comparative Pathogenesis Of COVID-19, MERS And SARS In A Non-Human Primate Model
Barry Rockx, Thijs Kuiken, Sander Herfst, Theo Bestebroer, Mart M. Lamers, Dennis de Meulder, Geert van Amerongen, Judith van den Brand, Nisreen M. A. Okba, Debby Schipper, … Bart L. Haagmans
Cold Spring Harbor Laboratory (2020-03-17) https://doi.org/ggq649
DOI: 10.1101/2020.03.17.995639
1120. Lethal Infection of K18-hACE2 Mice Infected with Severe Acute Respiratory Syndrome Coronavirus
+
1121. Lethal Infection of K18-hACE2 Mice Infected with Severe Acute Respiratory Syndrome Coronavirus
Paul B. McCray, Lecia Pewe, Christine Wohlford-Lenane, Melissa Hickey, Lori Manzel, Lei Shi, Jason Netland, Hong Peng Jia, Carmen Halabi, Curt D. Sigmund, … Stanley Perlman
Journal of Virology (2007-01-15) https://doi.org/b2dr3s
DOI: 10.1128/jvi.02012-06 · PMID: 17079315 · PMCID: PMC1797474
1121. Modeling the Impact of Asymptomatic Carriers on COVID-19 Transmission Dynamics During Lockdown
+
1122. Modeling the Impact of Asymptomatic Carriers on COVID-19 Transmission Dynamics During Lockdown
Jacob B. Aguilar, Jeremy Samuel Faust, Lauren M. Westafer, Juan B. Gutierrez
Cold Spring Harbor Laboratory (2020-08-11) https://doi.org/ggqnvp
DOI: 10.1101/2020.03.18.20037994
1122. Antibody responses to SARS-CoV-2 in COVID-19 patients: the perspective application of serological tests in clinical practice
+
1123. Antibody responses to SARS-CoV-2 in COVID-19 patients: the perspective application of serological tests in clinical practice
Quan-xin Long, Hai-jun Deng, Juan Chen, Jie-li Hu, Bei-zhong Liu, Pu Liao, Yong Lin, Li-hua Yu, Zhan Mo, Yin-yin Xu, … Ai-long Huang
Cold Spring Harbor Laboratory (2020-03-20) https://doi.org/ggpvz3
DOI: 10.1101/2020.03.18.20038018
1123. Heat inactivation of serum interferes with the immunoanalysis of antibodies to SARS-CoV-2
+
1124. Heat inactivation of serum interferes with the immunoanalysis of antibodies to SARS-CoV-2
Xiumei Hu, Taixue An, Bo Situ, Yuhai Hu, Zihao Ou, Qiang Li, Xiaojing He, Ye Zhang, Peifu Tian, Dehua Sun, … Lei Zheng
Cold Spring Harbor Laboratory (2020-03-16) https://doi.org/ggq646
DOI: 10.1101/2020.03.12.20034231
1124. SARS-CoV-2 specific antibody responses in COVID-19 patients
+
1125. SARS-CoV-2 specific antibody responses in COVID-19 patients
Nisreen M. A. Okba, Marcel A. Müller, Wentao Li, Chunyan Wang, Corine H. GeurtsvanKessel, Victor M. Corman, Mart M. Lamers, Reina S. Sikkema, Erwin de Bruin, Felicity D. Chandler, … Bart L. Haagmans
Cold Spring Harbor Laboratory (2020-03-20) https://doi.org/ggpvz2
DOI: 10.1101/2020.03.18.20038059
1125. A brief review of antiviral drugs evaluated in registered clinical trials for COVID-19
+
1126. A brief review of antiviral drugs evaluated in registered clinical trials for COVID-19
Drifa Belhadi, Nathan Peiffer-Smadja, François-Xavier Lescure, Yazdan Yazdanpanah, France Mentré, Cédric Laouénan
Cold Spring Harbor Laboratory (2020-03-27) https://doi.org/ggq65b
DOI: 10.1101/2020.03.18.20038190
1126. ACE-2 Expression in the Small Airway Epithelia of Smokers and COPD Patients: Implications for COVID-19
+
1127. ACE-2 Expression in the Small Airway Epithelia of Smokers and COPD Patients: Implications for COVID-19
Janice M. Leung, Chen X. Yang, Anthony Tam, Tawimas Shaipanich, Tillie-Louise Hackett, Gurpreet K. Singhera, Delbert R. Dorscheid, Don D. Sin
Cold Spring Harbor Laboratory (2020-03-23) https://doi.org/dqx2
DOI: 10.1101/2020.03.18.20038455
1127. Dynamic profile of severe or critical COVID-19 cases
+
1128. Dynamic profile of severe or critical COVID-19 cases
Yang Xu
Cold Spring Harbor Laboratory (2020-03-20) https://doi.org/ggrbj9
DOI: 10.1101/2020.03.18.20038513
1128. Association between Clinical, Laboratory and CT Characteristics and RT-PCR Results in the Follow-up of COVID-19 patients
+
1129. Association between Clinical, Laboratory and CT Characteristics and RT-PCR Results in the Follow-up of COVID-19 patients
Hang Fu, Huayan Xu, Na Zhang, Hong Xu, Zhenlin Li, Huizhu Chen, Rong Xu, Ran Sun, Lingyi Wen, Linjun Xie, … Yingkun Guo
Cold Spring Harbor Laboratory (2020-03-23) https://doi.org/ggq65c
DOI: 10.1101/2020.03.19.20038315
1129. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 and multiple endemic, epidemic and bat coronavirus
+
1130. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 and multiple endemic, epidemic and bat coronavirus
Timothy P. Sheahan, Amy C. Sims, Shuntai Zhou, Rachel L. Graham, Collin S. Hill, Sarah R. Leist, Alexandra Schäfer, Kenneth H. Dinnon, Stephanie A. Montgomery, Maria L. Agostini, … Ralph S. Baric
Cold Spring Harbor Laboratory (2020-03-20) https://doi.org/ggrbkb
DOI: 10.1101/2020.03.19.997890
1130. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs
+
1131. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs
Sangeun Jeon, Meehyun Ko, Jihye Lee, Inhee Choi, Soo Young Byun, Soonju Park, David Shum, Seungtaek Kim
Cold Spring Harbor Laboratory (2020-03-28) https://doi.org/ggq65h
DOI: 10.1101/2020.03.20.999730
1131. Respiratory disease and virus shedding in rhesus macaques inoculated with SARS-CoV-2
+
1132. Respiratory disease and virus shedding in rhesus macaques inoculated with SARS-CoV-2
Vincent J. Munster, Friederike Feldmann, Brandi N. Williamson, Neeltje van Doremalen, Lizzette Pérez-Pérez, Jonathan Schulz, Kimberly Meade-White, Atsushi Okumura, Julie Callison, Beniah Brumbaugh, … Emmie de Wit
Cold Spring Harbor Laboratory (2020-03-21) https://doi.org/ggq65j
DOI: 10.1101/2020.03.21.001628 · PMID: 32511299
1132. Ocular conjunctival inoculation of SARS-CoV-2 can cause mild COVID-19 in Rhesus macaques
+
1133. Ocular conjunctival inoculation of SARS-CoV-2 can cause mild COVID-19 in Rhesus macaques
Wei Deng, Linlin Bao, Hong Gao, Zhiguang Xiang, Yajin Qu, Zhiqi Song, Shunran Gong, Jiayi Liu, Jiangning Liu, Pin Yu, … Chuan Qin
Cold Spring Harbor Laboratory (2020-03-30) https://doi.org/ggq64r
DOI: 10.1101/2020.03.13.990036
1133. ACE2 Expression is Increased in the Lungs of Patients with Comorbidities Associated with Severe COVID-19
+
1134. ACE2 Expression is Increased in the Lungs of Patients with Comorbidities Associated with Severe COVID-19
Bruna G. G. Pinto, Antonio E. R. Oliveira, Youvika Singh, Leandro Jimenez, Andre N A. Gonçalves, Rodrigo L. T. Ogava, Rachel Creighton, Jean Pierre Schatzmann Peron, Helder I. Nakaya
Cold Spring Harbor Laboratory (2020-03-27) https://doi.org/ggq65k
DOI: 10.1101/2020.03.21.20040261 · PMID: 32511627
1134. Meplazumab treats COVID-19 pneumonia: an open-labelled, concurrent controlled add-on clinical trial
+
1135. Meplazumab treats COVID-19 pneumonia: an open-labelled, concurrent controlled add-on clinical trial
Huijie Bian, Zhao-Hui Zheng, Ding Wei, Zheng Zhang, Wen-Zhen Kang, Chun-Qiu Hao, Ke Dong, Wen Kang, Jie-Lai Xia, Jin-Lin Miao, … Ping Zhu
Cold Spring Harbor Laboratory (2020-07-15) https://doi.org/ggq65m
DOI: 10.1101/2020.03.21.20040691
1135. CD147 facilitates HIV-1 infection by interacting with virus-associated cyclophilin A
+
1136. CD147 facilitates HIV-1 infection by interacting with virus-associated cyclophilin A
T. Pushkarsky, G. Zybarth, L. Dubrovsky, V. Yurchenko, H. Tang, H. Guo, B. Toole, B. Sherry, M. Bukrinsky
Proceedings of the National Academy of Sciences (2001-05-15) https://doi.org/cc4c7p
DOI: 10.1073/pnas.111583198 · PMID: 11353871 · PMCID: PMC33473
1136. CD147/EMMPRIN Acts as a Functional Entry Receptor for Measles Virus on Epithelial Cells
+
1137. CD147/EMMPRIN Acts as a Functional Entry Receptor for Measles Virus on Epithelial Cells
Akira Watanabe, Misako Yoneda, Fusako Ikeda, Yuri Terao-Muto, Hiroki Sato, Chieko Kai
Journal of Virology (2010-05-01) https://doi.org/dpcsqg
DOI: 10.1128/jvi.02168-09 · PMID: 20147391 · PMCID: PMC2863760
1137. Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum
+
1138. Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum
Cécile Crosnier, Leyla Y. Bustamante, S. Josefin Bartholdson, Amy K. Bei, Michel Theron, Makoto Uchikawa, Souleymane Mboup, Omar Ndir, Dominic P. Kwiatkowski, Manoj T. Duraisingh, … Gavin J. Wright
Nature (2011-11-09) https://doi.org/dm59hf
DOI: 10.1038/nature10606 · PMID: 22080952 · PMCID: PMC3245779
1138. Function of HAb18G/CD147 in Invasion of Host Cells by Severe Acute Respiratory Syndrome Coronavirus
+
1139. Function of HAb18G/CD147 in Invasion of Host Cells by Severe Acute Respiratory Syndrome Coronavirus
Zhinan Chen, Li Mi, Jing Xu, Jiyun Yu, Xianhui Wang, Jianli Jiang, Jinliang Xing, Peng Shang, Airong Qian, Yu Li, … Ping Zhu
The Journal of Infectious Diseases (2005-03) https://doi.org/cd8snd
DOI: 10.1086/427811 · PMID: 15688292 · PMCID: PMC7110046
1139. CD147 mediates intrahepatic leukocyte aggregation and determines the extent of liver injury
+
1140. CD147 mediates intrahepatic leukocyte aggregation and determines the extent of liver injury
Christine Yee, Nathan M. Main, Alexandra Terry, Igor Stevanovski, Annette Maczurek, Alison J. Morgan, Sarah Calabro, Alison J. Potter, Tina L. Iemma, David G. Bowen, … Nicholas A. Shackel
PLOS ONE (2019-07-10) https://doi.org/ggq654
DOI: 10.1371/journal.pone.0215557 · PMID: 31291257 · PMCID: PMC6619953
1140. Characterisation of the transcriptome and proteome of SARS-CoV-2 using direct RNA sequencing and tandem mass spectrometry reveals evidence for a cell passage induced in-frame deletion in the spike glycoprotein that removes the furin-like cleavage site
+
1141. Characterisation of the transcriptome and proteome of SARS-CoV-2 using direct RNA sequencing and tandem mass spectrometry reveals evidence for a cell passage induced in-frame deletion in the spike glycoprotein that removes the furin-like cleavage site
Andrew D. Davidson, Maia Kavanagh Williamson, Sebastian Lewis, Deborah Shoemark, Miles W. Carroll, Kate Heesom, Maria Zambon, Joanna Ellis, Phillip A. Lewis, Julian A. Hiscox, David A. Matthews
Cold Spring Harbor Laboratory (2020-03-24) https://doi.org/ggq65n
DOI: 10.1101/2020.03.22.002204
1141. Modifications to the Hemagglutinin Cleavage Site Control the Virulence of a Neurotropic H1N1 Influenza Virus
+
1142. Modifications to the Hemagglutinin Cleavage Site Control the Virulence of a Neurotropic H1N1 Influenza Virus
Xiangjie Sun, Longping V. Tse, A Damon Ferguson, Gary R. Whittaker
Journal of Virology (2010-09-01) https://doi.org/drs2zt
DOI: 10.1128/jvi.00797-10 · PMID: 20554779 · PMCID: PMC2919019
1142. The architecture of SARS-CoV-2 transcriptome
+
1143. The architecture of SARS-CoV-2 transcriptome
Dongwan Kim, Joo-Yeon Lee, Jeong-Sun Yang, Jun Won Kim, V. Narry Kim, Hyeshik Chang
Cold Spring Harbor Laboratory (2020-03-14) https://doi.org/ggpx9q
DOI: 10.1101/2020.03.12.988865
1143. First Clinical Study Using HCV Protease Inhibitor Danoprevir to Treat Naïve and Experienced COVID-19 Patients
+
1144. First Clinical Study Using HCV Protease Inhibitor Danoprevir to Treat Naïve and Experienced COVID-19 Patients
Hongyi Chen, Zhicheng Zhang, Li Wang, Zhihua Huang, Fanghua Gong, Xiaodong Li, Yahong Chen, Jinzi J. Wu
Cold Spring Harbor Laboratory (2020-03-24) https://doi.org/ggrgbt
DOI: 10.1101/2020.03.22.20034041
1144. Preclinical Characteristics of the Hepatitis C Virus NS3/4A Protease Inhibitor ITMN-191 (R7227)
+
1145. Preclinical Characteristics of the Hepatitis C Virus NS3/4A Protease Inhibitor ITMN-191 (R7227)
Scott D. Seiwert, Steven W. Andrews, Yutong Jiang, Vladimir Serebryany, Hua Tan, Karl Kossen, P. T. Ravi Rajagopalan, Shawn Misialek, Sarah K. Stevens, Antitsa Stoycheva, … Lawrence M. Blatt
Antimicrobial Agents and Chemotherapy (2008-12) https://doi.org/btpg52
DOI: 10.1128/aac.00699-08 · PMID: 18824605 · PMCID: PMC2592891
1145. Efficacy and Safety of All-oral, 12-week Ravidasvir Plus Ritonavir-boosted Danoprevir and Ribavirin in Treatment-naïve Noncirrhotic HCV Genotype 1 Patients: Results from a Phase 2/3 Clinical Trial in China
+
1146. Efficacy and Safety of All-oral, 12-week Ravidasvir Plus Ritonavir-boosted Danoprevir and Ribavirin in Treatment-naïve Noncirrhotic HCV Genotype 1 Patients: Results from a Phase 2/3 Clinical Trial in China
Xiaoyuan Xu, Bo Feng, Yujuan Guan, Sujun Zheng, Jifang Sheng, Xingxiang Yang, Yuanji Ma, Yan Huang, Yi Kang, Xiaofeng Wen, … Lai Wei
Journal of Clinical and Translational Hepatology (2019-09-30) https://doi.org/ggrbkd
DOI: 10.14218/jcth.2019.00033 · PMID: 31608212 · PMCID: PMC6783683
1146. Potentially highly potent drugs for 2019-nCoV
+
1147. Potentially highly potent drugs for 2019-nCoV
Duc Duy Nguyen, Kaifu Gao, Jiahui Chen, Rui Wang, Guo-Wei Wei
Cold Spring Harbor Laboratory (2020-02-13) https://doi.org/ggrbj5
DOI: 10.1101/2020.02.05.936013 · PMID: 32511344
1147. Serology characteristics of SARS-CoV-2 infection since the exposure and post symptoms onset
+
1148. Serology characteristics of SARS-CoV-2 infection since the exposure and post symptoms onset
Bin Lou, Ting-Dong Li, Shu-Fa Zheng, Ying-Ying Su, Zhi-Yong Li, Wei Liu, Fei Yu, Sheng-Xiang Ge, Qian-Da Zou, Quan Yuan, … Yu Chen
Cold Spring Harbor Laboratory (2020-03-27) https://doi.org/ggrbkc
DOI: 10.1101/2020.03.23.20041707
1148. SARS-CoV-2 launches a unique transcriptional signature from in vitro, ex vivo, and in vivo systems
+
1149. SARS-CoV-2 launches a unique transcriptional signature from in vitro, ex vivo, and in vivo systems
Daniel Blanco-Melo, Benjamin E. Nilsson-Payant, Wen-Chun Liu, Rasmus Møller, Maryline Panis, David Sachs, Randy A. Albrecht, Benjamin R. tenOever
Cold Spring Harbor Laboratory (2020-03-24) https://doi.org/ggq65q
DOI: 10.1101/2020.03.24.004655
1149. A New Predictor of Disease Severity in Patients with COVID-19 in Wuhan, China
+
1150. A New Predictor of Disease Severity in Patients with COVID-19 in Wuhan, China
Ying Zhou, Zhen Yang, Yanan Guo, Shuang Geng, Shan Gao, Shenglan Ye, Yi Hu, Yafei Wang
Cold Spring Harbor Laboratory (2020-03-27) https://doi.org/ggq65r
DOI: 10.1101/2020.03.24.20042119
1150. Metabolic disturbances and inflammatory dysfunction predict severity of coronavirus disease 2019 (COVID-19): a retrospective study
+
1151. Metabolic disturbances and inflammatory dysfunction predict severity of coronavirus disease 2019 (COVID-19): a retrospective study
Shuke Nie, Xueqing Zhao, Kang Zhao, Zhaohui Zhang, Zhentao Zhang, Zhan Zhang
Cold Spring Harbor Laboratory (2020-03-26) https://doi.org/ggq65s
DOI: 10.1101/2020.03.24.20042283
1151. Viral Kinetics and Antibody Responses in Patients with COVID-19
+
1152. Viral Kinetics and Antibody Responses in Patients with COVID-19
Wenting Tan, Yanqiu Lu, Juan Zhang, Jing Wang, Yunjie Dan, Zhaoxia Tan, Xiaoqing He, Chunfang Qian, Qiangzhong Sun, Qingli Hu, … Guohong Deng
Cold Spring Harbor Laboratory (2020-03-26) https://doi.org/ggq65t
DOI: 10.1101/2020.03.24.20042382
1152. Global profiling of SARS-CoV-2 specific IgG/ IgM responses of convalescents using a proteome microarray
+
1153. Global profiling of SARS-CoV-2 specific IgG/ IgM responses of convalescents using a proteome microarray
He-wei Jiang, Yang Li, Hai-nan Zhang, Wei Wang, Dong Men, Xiao Yang, Huan Qi, Jie Zhou, Sheng-ce Tao
Cold Spring Harbor Laboratory (2020-03-27) https://doi.org/ggq65g
DOI: 10.1101/2020.03.20.20039495
1153. COVID-19 infection induces readily detectable morphological and inflammation-related phenotypic changes in peripheral blood monocytes, the severity of which correlate with patient outcome
+
1154. COVID-19 infection induces readily detectable morphological and inflammation-related phenotypic changes in peripheral blood monocytes, the severity of which correlate with patient outcome
Dan Zhang, Rui Guo, Lei Lei, Hongjuan Liu, Yawen Wang, Yili Wang, Hongbo Qian, Tongxin Dai, Tianxiao Zhang, Yanjun Lai, … Jinsong Hu
Cold Spring Harbor Laboratory (2020-03-26) https://doi.org/ggq65v
DOI: 10.1101/2020.03.24.20042655
1154. Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study
+
1155. Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study
Aaron Miller, Mac Josh Reandelar, Kimberly Fasciglione, Violeta Roumenova, Yan Li, Gonzalo H. Otazu
Cold Spring Harbor Laboratory (2020-03-28) https://doi.org/ggq65w
DOI: 10.1101/2020.03.24.20042937
1155. Non-specific effects of BCG vaccine on viral infections
+
1156. Non-specific effects of BCG vaccine on viral infections
S. J. C. F. M. Moorlag, R. J. W. Arts, R. van Crevel, M. G. Netea
Clinical Microbiology and Infection (2019-12) https://doi.org/ggq62z
DOI: 10.1016/j.cmi.2019.04.020 · PMID: 31055165
1156. BCG vaccination to reduce the impact of COVID-19 in healthcare workers (The BRACE Trial)
+
1157. BCG vaccination to reduce the impact of COVID-19 in healthcare workers (The BRACE Trial)
Murdoch Children’s Research Institute
https://www.mcri.edu.au/BRACE
1157. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia
+
1158. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia
David H. Brann, Tatsuya Tsukahara, Caleb Weinreb, Marcela Lipovsek, Koen Van den Berge, Boying Gong, Rebecca Chance, Iain C. Macaulay, Hsin-jung Chou, Russell Fletcher, … Sandeep Robert Datta
Cold Spring Harbor Laboratory (2020-05-18) https://doi.org/ggqr4m
DOI: 10.1101/2020.03.25.009084
1158. Cigarette smoke exposure and inflammatory signaling increase the expression of the SARS-CoV-2 receptor ACE2 in the respiratory tract
+
1159. Cigarette smoke exposure and inflammatory signaling increase the expression of the SARS-CoV-2 receptor ACE2 in the respiratory tract
Joan C. Smith, Erin L. Sausville, Vishruth Girish, Monet Lou Yuan, Kristen M. John, Jason M. Sheltzer
Cold Spring Harbor Laboratory (2020-04-26) https://doi.org/ggq65x
DOI: 10.1101/2020.03.28.013672
1159. The comparative superiority of IgM-IgG antibody test to real-time reverse transcriptase PCR detection for SARS-CoV-2 infection diagnosis
+
1160. The comparative superiority of IgM-IgG antibody test to real-time reverse transcriptase PCR detection for SARS-CoV-2 infection diagnosis
Rui Liu, Xinghui Liu, Huan Han, Muhammad Adnan Shereen, Zhili Niu, Dong Li, Fang Liu, Kailang Wu, Zhen Luo, Chengliang Zhu
Cold Spring Harbor Laboratory (2020-03-30) https://doi.org/ggqtp5
DOI: 10.1101/2020.03.28.20045765