Skip to content

Latest commit

 

History

History
331 lines (250 loc) · 12.1 KB

hlsl.adoc

File metadata and controls

331 lines (250 loc) · 12.1 KB

HLSL in Vulkan

Vulkan does not directly consume shaders in a human-readable text format, but instead uses SPIR-V as an intermediate representation. This opens the option to use shader languages other than e.g. GLSL, as long as they can target the Vulkan SPIR-V environment.

One such language is the High Level Shading Language (HLSL) by Microsoft, used by DirectX. Thanks to recent additions to Vulkan 1.2 it is now considered a first class shading language for Vulkan that can be used just as easily as GLSL.

With a few exceptions, all Vulkan features and shader stages available with GLSL can be used with HLSL too, including recent Vulkan additions like hardware accelerated ray tracing. On the other hand, HLSL to SPIR-V supports Vulkan exclusive features that are not (yet) available in DirectX.

what_is_spriv_dxc.png

From the application’s point-of-view

From the application’s point-of-view, using HLSL is exactly the same as using GLSL. As the application always consumes shaders in the SPIR-V format, the only difference is in the tooling to generate the SPIR-V shaders from the desired shading language.

HLSL to SPIR-V feature mapping manual

A great starting point on using HLSL in Vulkan via SPIR-V is the HLSL to SPIR-V feature mapping manual. It contains detailed information on semantics, syntax, supported features and extensions and much more and is a must-read. The decoder ring also has a translation table for concepts and terms used in Vulkan an DirectX.

The Vulkan HLSL namespace

To make HLSL compatible with Vulkan, an implicit namespace has been introduced that provides an interface for for Vulkan-specific features.

Syntax comparison

Similar to regular programming languages, HLSL and GLSL differ in their syntax. While GLSL is more procedural (like C), HLSL is more object-oriented (like C++).

Here is the same shader written in both languages to give quick comparison on how they basically differ, including the aforementioned namespace that e.g. adds explicit locations:

GLSL

#version 450

layout (location = 0) in vec3 inPosition;
layout (location = 1) in vec3 inColor;

layout (binding = 0) uniform UBO
{
	mat4 projectionMatrix;
	mat4 modelMatrix;
	mat4 viewMatrix;
} ubo;

layout (location = 0) out vec3 outColor;

void main()
{
	outColor = inColor * float(gl_VertexIndex);
	gl_Position = ubo.projectionMatrix * ubo.viewMatrix * ubo.modelMatrix * vec4(inPosition.xyz, 1.0);
}

HLSL

struct VSInput
{
[[vk::location(0)]] float3 Position : POSITION0;
[[vk::location(1)]] float3 Color : COLOR0;
};

struct UBO
{
	float4x4 projectionMatrix;
	float4x4 modelMatrix;
	float4x4 viewMatrix;
};

cbuffer ubo : register(b0, space0) { UBO ubo; }

struct VSOutput
{
	float4 Pos : SV_POSITION;
[[vk::location(0)]] float3 Color : COLOR0;
};

VSOutput main(VSInput input, uint VertexIndex : SV_VertexID)
{
	VSOutput output = (VSOutput)0;
	output.Color = input.Color * float(VertexIndex);
	output.Position = mul(ubo.projectionMatrix, mul(ubo.viewMatrix, mul(ubo.modelMatrix, float4(input.Position.xyz, 1.0))));
	return output;
}

Aside from the syntax differences, built-ins use HLSL names. E.g. gl_vertex becomes VertexIndex in HLSL. A list of GLSL to HLSL built-in mappings can be found here.

DirectXShaderCompiler (DXC)

As is the case with GLSL to SPIR-V, to use HLSL with Vulkan, a shader compiler is required. Whereas glslang is the reference GLSL to SPIR-V compiler, the DirectXShaderCompiler (DXC) is the reference HLSL to SPIR-V compiler. Thanks to open source contributions, the SPIR-V backend of DXC is now supported and enabled in official release builds and can be used out-of-the box. While other shader compiling tools like glslang also offer HLSL support, DXC has the most complete and up-to-date support and is the recommended way of generating SPIR-V from HLSL.

Where to get

The LunarG Vulkan SDK includes pre-compiled DXC binaries, libraries and headers to get you started. If you’re looking for the latest releases, check the official DXC repository.

Offline compilation using the stand-alone compiler

Compiling a shader offline via the pre-compiled dxc binary is similar to compiling with glslang:

dxc.exe -spirv -T vs_6_0 -E main .\triangle.vert -Fo .\triangle.vert.spv

-T selects the profile to compile the shader against (vs_6_0 = Vertex shader model 6, ps_6_0 = Pixel/fragment shader model 6, etc.).

-E selects the main entry point for the shader.

Extensions are implicitly enabled based on feature usage, but can also be explicitly specified:

dxc.exe -spirv -T vs_6_1 -E main .\input.vert -Fo .\output.vert.spv -fspv-extension=SPV_EXT_descriptor_indexing

The resulting SPIR-V can then be directly loaded, same as SPIR-V generated from GLSL.

Runtime compilation using the library

DXC can also be integrated into a Vulkan application using the DirectX Compiler API. This allows for runtime compilation of shaders. Doing so requires you to include the dxcapi.h header and link against the dxcompiler library. The easiest way is using the dynamic library and distributing it with your application (e.g. dxcompiler.dll on Windows).

Compiling HLSL to SPIR-V at runtime then is pretty straight-forward:

#include "include/dxc/dxcapi.h"

...

HRESULT hres;

// Initialize DXC library
CComPtr<IDxcLibrary> library;
hres = DxcCreateInstance(CLSID_DxcLibrary, IID_PPV_ARGS(&library));
if (FAILED(hres)) {
	throw std::runtime_error("Could not init DXC Library");
}

// Initialize the DXC compiler
CComPtr<IDxcCompiler3> compiler;
hres = DxcCreateInstance(CLSID_DxcCompiler, IID_PPV_ARGS(&compiler));
if (FAILED(hres)) {
	throw std::runtime_error("Could not init DXC Compiler");
}

// Load the HLSL text shader from disk
uint32_t codePage = CP_UTF8;
CComPtr<IDxcBlobEncoding> sourceBlob;
hres = library->CreateBlobFromFile(filename.c_str(), &codePage, &sourceBlob);
if (FAILED(hres)) {
	throw std::runtime_error("Could not load shader file");
}

// Set up arguments to be passed to the shader compiler

// Tell the compiler to output SPIR-V
std::vector<LPCWSTR> arguments;
arguments.push_back(L"-spirv");
// nVidia: This allows for the compiler to do a better job at optimizing texture accesses. We have seen frame rate improvements of > 1% when toggling this flag on.
arguments.push_back(L"-all-resources-bound");
// VK_KHR_shader_float16_int8
arguments.push_back(L"-enable-16bit-types");
// memory layout for resources
arguments.push_back(L"-fvk-use-dx-layout");
// Vulkan version
arguments.push_back(L"-fspv-target-env=vulkan1.1");
// useful extensions
arguments.push_back(L"-fspv-extension=SPV_GOOGLE_hlsl_functionality1");
arguments.push_back(L"-fspv-extension=SPV_GOOGLE_user_type");
arguments.push_back(L"-fspv-reflect");

// Select target profile based on shader file extension
LPCWSTR targetProfile{};
size_t idx = filename.rfind('.');
if (idx != std::string::npos) {
	std::wstring extension = filename.substr(idx + 1);
	if (extension == L"vert") {
		targetProfile = L"vs_6_1";
	}
	if (extension == L"frag") {
		targetProfile = L"ps_6_1";
	}
	// Mapping for other file types go here (cs_x_y, lib_x_y, etc.)
}

// Compile shader
CComPtr<IDxcOperationResult> resultOp;
hres = compiler->Compile(
	sourceBlob,
	nullptr,
	L"main",
	targetProfile,
	arguments.data(),
	(uint32_t)arguments.size(),
	nullptr,
	0,
	nullptr,
	&resultOp);

if (SUCCEEDED(hres)) {
	resultOp->GetStatus(&hres);
}

// Output error if compilation failed
if (FAILED(hres) && (resultOp)) {
	CComPtr<IDxcBlobEncoding> errorBlob;
	hres = resultOp->GetErrorBuffer(&errorBlob);
	if (SUCCEEDED(hres) && errorBlob) {
		std::cerr << "Shader compilation failed :\n\n" << (const char*)errorBlob->GetBufferPointer();
		throw std::runtime_error("Compilation failed");
	}
}

// Get compilation result
CComPtr<IDxcBlob> code;
resultOp->GetResult(&code);

// Create a Vulkan shader module from the compilation result
VkShaderModuleCreateInfo shaderModuleCI{};
shaderModuleCI.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
shaderModuleCI.codeSize = code->GetBufferSize();
shaderModuleCI.pCode = (uint32_t*)code->GetBufferPointer();
VkShaderModule shaderModule;
vkCreateShaderModule(device, &shaderModuleCI, nullptr, &shaderModule);

Vulkan shader stage to HLSL target shader profile mapping

When compiling HLSL with DXC you need to select a target shader profile. The name for a profile consists of the shader type and the desired shader model.

Vulkan shader stage HLSL target shader profile Remarks

VK_SHADER_STAGE_VERTEX_BIT

vs

VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT

hs

Hull shader in HLSL terminology

VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT

ds

Domain shader in HLSL terminology

VK_SHADER_STAGE_GEOMETRY_BIT

gs

VK_SHADER_STAGE_FRAGMENT_BIT

ps

Pixel shader in HLSL terminology

VK_SHADER_STAGE_COMPUTE_BIT

cs

VK_SHADER_STAGE_RAYGEN_BIT_KHR, VK_SHADER_STAGE_ANY_HIT_BIT_KHR, VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, VK_SHADER_STAGE_MISS_BIT_KHR, VK_SHADER_STAGE_INTERSECTION_BIT_KHR, VK_SHADER_STAGE_CALLABLE_BIT_KHR

lib

All raytracing related shaders are built using the lib shader target profile and must use at least shader model 6.3 (e.g. lib_6_3).

VK_SHADER_STAGE_TASK_BIT_NV

as

Amplification shader in HLSL terminology. Must use at least shader model 6.5 (e.g. as_6_5).

VK_SHADER_STAGE_MESH_BIT_NV

ms

Must use at least shader model 6.5 (e.g. ms_6_5).

So if you for example you want to compile a compute shader targeting shader model 6.6 features, the target shader profile would be cs_6_6. For a ray tracing any hit shader it would be lib_6_3.

Shader model coverage

DirectX and HLSL use a fixed shader model notion to describe the supported feature set. This is different from Vulkan and SPIR-V’s flexible extension based way of adding features to shaders. The following table tries to list Vulkan’s coverage for the HLSL shader models without guarantee of completeness:

Table 1. Shader models
Shader Model Supported Remarks

Shader Model 5.1 and below

Excluding features without Vulkan equivalent

Shader Model 6.0

Wave intrinsics, 64-bit integers

Shader Model 6.1

SV_ViewID, SV_Barycentrics

Shader Model 6.2

16-bit types, Denorm mode

Shader Model 6.3

Hardware accelerated ray tracing

Shader Model 6.4

Shader integer dot product, SV_ShadingRate

Shader Model 6.5

❌ (partially)

DXR1.1 (KHR ray tracing), Mesh and Amplification shaders, additional Wave intrinsics

Shader Model 6.6

❌ (partially)

VK_NV_compute_shader_derivatives, VK_KHR_shader_atomic_int64