-
Notifications
You must be signed in to change notification settings - Fork 158
/
transformer_network_test_set_up.py
391 lines (356 loc) · 14.9 KB
/
transformer_network_test_set_up.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for networks."""
import copy
from typing import Optional, Tuple, Union
from absl.testing import parameterized
import numpy as np
from robotics_transformer import sequence_agent
from robotics_transformer import transformer_network
from tensor2robot.utils import tensorspec_utils
import tensorflow as tf
from tf_agents.specs import tensor_spec
from tf_agents.trajectories import time_step as ts
BATCH_SIZE = 2
TIME_SEQUENCE_LENGTH = 3
HEIGHT = 256
WIDTH = 320
NUM_IMAGE_TOKENS = 2
def spec_names_list() -> list[str]:
"""Lists the different types of specs accepted by the transformer."""
return ['default']
def state_spec_list() -> list[tensorspec_utils.TensorSpecStruct]:
"""Lists the different types of state spec accepted by the transformer."""
state_spec = tensorspec_utils.TensorSpecStruct()
state_spec.image = tensor_spec.BoundedTensorSpec([HEIGHT, WIDTH, 3],
dtype=tf.float32,
name='image',
minimum=0.,
maximum=1.)
state_spec.natural_language_embedding = tensor_spec.TensorSpec(
shape=[512], dtype=tf.float32, name='natural_language_embedding')
state_spec_mask = copy.deepcopy(state_spec)
state_spec_mask.initial_binary_mask = tensor_spec.BoundedTensorSpec(
[HEIGHT, WIDTH, 1],
dtype=tf.int32,
name='initial_binary_mask',
minimum=0,
maximum=255)
state_spec_tcl = copy.deepcopy(state_spec)
state_spec_tcl.original_image = tensor_spec.BoundedTensorSpec(
[HEIGHT, WIDTH, 3],
dtype=tf.float32,
name='original_image',
minimum=0.,
maximum=1.)
return [
state_spec,
state_spec_mask,
state_spec_tcl,
]
def observations_list(training: bool = True) -> list[dict[str, tf.Tensor]]:
"""Lists the different types of observations accepted by the transformer."""
if training:
image_shape = [BATCH_SIZE, TIME_SEQUENCE_LENGTH, HEIGHT, WIDTH, 3]
emb_shape = [BATCH_SIZE, TIME_SEQUENCE_LENGTH, 512]
mask_shape = [BATCH_SIZE, TIME_SEQUENCE_LENGTH, HEIGHT, WIDTH, 1]
else:
# inference currently only support batch size of 1
image_shape = [1, HEIGHT, WIDTH, 3]
emb_shape = [1, 512]
mask_shape = [1, HEIGHT, WIDTH, 1]
return [
{
'image': tf.constant(0.5, shape=image_shape),
'natural_language_embedding': tf.constant(1., shape=emb_shape),
},
{
'image': tf.constant(0.5, shape=image_shape),
'natural_language_embedding': tf.constant(1., shape=emb_shape),
'initial_binary_mask': tf.constant(192, shape=mask_shape),
},
{ # This is used for TCL.
'image': tf.constant(0.5, shape=image_shape),
'original_image': tf.constant(0.4, shape=image_shape),
'natural_language_embedding': tf.constant(1., shape=emb_shape),
},
]
NAME_TO_STATE_SPECS = dict(zip(spec_names_list(), state_spec_list()))
NAME_TO_OBSERVATIONS = dict(zip(spec_names_list(), observations_list()))
NAME_TO_INF_OBSERVATIONS = dict(
zip(spec_names_list(), observations_list(False)))
class FakeImageTokenizer(tf.keras.layers.Layer):
"""Fake Image Tokenizer for testing Transformer."""
def __init__(self,
encoder: ...,
position_embedding: ...,
embedding_output_dim: int,
patch_size: int,
use_token_learner: bool = False,
num_tokens: int = NUM_IMAGE_TOKENS,
use_initial_binary_mask: bool = False,
**kwargs):
del encoder, position_embedding, patch_size, use_token_learner
super().__init__(**kwargs)
self.tokens_per_context_image = num_tokens
if use_initial_binary_mask:
self.tokens_per_context_image += 1
self.embedding_output_dim = embedding_output_dim
self.use_initial_binary_mask = use_initial_binary_mask
def __call__(self,
image: tf.Tensor,
context: Optional[tf.Tensor] = None,
initial_binary_mask: Optional[tf.Tensor] = None,
training: bool = False) -> tf.Tensor:
if self.use_initial_binary_mask:
assert initial_binary_mask is not None
image_shape = tf.shape(image)
seq_size = image_shape[1]
batch_size = image_shape[0]
all_tokens = []
num_tokens = self.tokens_per_context_image
for t in range(seq_size):
tokens = tf.ones([batch_size, 1, num_tokens, self.embedding_output_dim
]) * image[0][t][0][0]
all_tokens.append(tokens)
return tf.concat(all_tokens, axis=1)
class TransformerNetworkTestUtils(tf.test.TestCase, parameterized.TestCase):
"""Defines specs, SequenceAgent, and various other testing utilities."""
def _define_specs(self,
train_batch_size=BATCH_SIZE,
inference_batch_size=1,
time_sequence_length=TIME_SEQUENCE_LENGTH,
inference_sequence_length=TIME_SEQUENCE_LENGTH,
token_embedding_size=512,
image_width=WIDTH,
image_height=HEIGHT):
"""Defines specs and observations (both training and inference)."""
self.train_batch_size = train_batch_size
self.inference_batch_size = inference_batch_size
self.time_sequence_length = time_sequence_length
self.inference_sequence_length = inference_sequence_length
self.token_embedding_size = token_embedding_size
action_spec = tensorspec_utils.TensorSpecStruct()
action_spec.world_vector = tensor_spec.BoundedTensorSpec(
(3,), dtype=tf.float32, minimum=-1., maximum=1., name='world_vector')
action_spec.rotation_delta = tensor_spec.BoundedTensorSpec(
(3,),
dtype=tf.float32,
minimum=-np.pi / 2,
maximum=np.pi / 2,
name='rotation_delta')
action_spec.gripper_closedness_action = tensor_spec.BoundedTensorSpec(
(1,),
dtype=tf.float32,
minimum=-1.,
maximum=1.,
name='gripper_closedness_action')
action_spec.terminate_episode = tensor_spec.BoundedTensorSpec(
(2,), dtype=tf.int32, minimum=0, maximum=1, name='terminate_episode')
state_spec = tensorspec_utils.TensorSpecStruct()
state_spec.image = tensor_spec.BoundedTensorSpec(
[image_height, image_width, 3],
dtype=tf.float32,
name='image',
minimum=0.,
maximum=1.)
state_spec.natural_language_embedding = tensor_spec.TensorSpec(
shape=[self.token_embedding_size],
dtype=tf.float32,
name='natural_language_embedding')
self._policy_info_spec = {
'return':
tensor_spec.BoundedTensorSpec((),
dtype=tf.float32,
minimum=0.0,
maximum=1.0,
name='return'),
'discounted_return':
tensor_spec.BoundedTensorSpec((),
dtype=tf.float32,
minimum=0.0,
maximum=1.0,
name='discounted_return'),
}
self._state_spec = state_spec
self._action_spec = action_spec
self._inference_observation = {
'image':
tf.constant(
1,
shape=[self.inference_batch_size, image_height, image_width, 3],
dtype=tf.dtypes.float32),
'natural_language_embedding':
tf.constant(
1.,
shape=[self.inference_batch_size, self.token_embedding_size],
dtype=tf.dtypes.float32),
}
self._train_observation = {
'image':
tf.constant(
0.5,
shape=[
self.train_batch_size, self.time_sequence_length,
image_height, image_width, 3
]),
'natural_language_embedding':
tf.constant(
1.,
shape=[
self.train_batch_size, self.time_sequence_length,
self.token_embedding_size
]),
}
self._inference_action = {
'world_vector':
tf.constant(0.5, shape=[self.inference_batch_size, 3]),
'rotation_delta':
tf.constant(0.5, shape=[self.inference_batch_size, 3]),
'terminate_episode':
tf.constant(
[0, 1] * self.inference_batch_size,
shape=[self.inference_batch_size, 2]),
'gripper_closedness_action':
tf.constant(0.5, shape=[self.inference_batch_size, 1]),
}
self._train_action = {
'world_vector':
tf.constant(
0.5,
shape=[self.train_batch_size, self.time_sequence_length, 3]),
'rotation_delta':
tf.constant(
0.5,
shape=[self.train_batch_size, self.time_sequence_length, 3]),
'terminate_episode':
tf.constant(
[0, 1] * self.train_batch_size * self.time_sequence_length,
shape=[self.train_batch_size, self.time_sequence_length, 2]),
'gripper_closedness_action':
tf.constant(
0.5,
shape=[self.train_batch_size, self.time_sequence_length, 1]),
}
def _create_agent(self, actor_network=None):
"""Creates SequenceAgent using custom actor_network."""
time_step_spec = ts.time_step_spec(observation_spec=self._state_spec)
if actor_network is None:
actor_network = transformer_network.TransformerNetwork
self._agent = sequence_agent.SequenceAgent(
time_step_spec=time_step_spec,
action_spec=self._action_spec,
actor_network=actor_network,
actor_optimizer=tf.keras.optimizers.Adam(),
train_step_counter=tf.compat.v1.train.get_or_create_global_step(),
time_sequence_length=TIME_SEQUENCE_LENGTH)
self._num_action_tokens = (
# pylint:disable=protected-access
self._agent._actor_network._action_tokenizer._tokens_per_action)
# pylint:enable=protected-access
def setUp(self):
self._define_specs()
super().setUp()
def get_image_value(self, step_idx: int) -> float:
return float(step_idx) / self.time_sequence_length
def get_action_logits(self, batch_size: int, value: int,
vocab_size: int) -> tf.Tensor:
return tf.broadcast_to(
tf.one_hot(value % vocab_size, vocab_size)[tf.newaxis, tf.newaxis, :],
[batch_size, 1, vocab_size])
def create_obs(self, value) -> dict[str, tf.Tensor]:
observations = {}
observations['image'] = value * self._inference_observation['image']
observations[
'natural_language_embedding'] = value * self._inference_observation[
'natural_language_embedding']
return observations
def fake_action_token_emb(self, action_tokens) -> tf.Tensor:
"""Just pad with zeros."""
shape = action_tokens.shape
assert self.vocab_size > self.token_embedding_size
assert len(shape) == 4
return action_tokens[:, :, :, :self.token_embedding_size]
def fake_transformer(
self, all_tokens, training,
attention_mask) -> Union[tf.Tensor, Tuple[tf.Tensor, list[tf.Tensor]]]:
"""Fakes the call to TransformerNetwork._transformer."""
del training
del attention_mask
# We expect ST00 ST01 A00 A01...
# Where:
# * ST01 is token 1 of state 0.
# * A01 is token 1 of action 0.
shape = all_tokens.shape.as_list()
batch_size = shape[0]
self.assertEqual(batch_size, 1)
emb_size = self.token_embedding_size
# transform to [batch_size, num_tokens, token_size]
all_tokens = tf.reshape(all_tokens, [batch_size, -1, emb_size])
# Pads tokens to be of vocab_size.
self.assertGreater(self.vocab_size, self.token_embedding_size)
all_shape = all_tokens.shape
self.assertLen(all_shape.as_list(), 3)
output_tokens = tf.concat([
all_tokens,
tf.zeros([
all_shape[0], all_shape[1],
self.vocab_size - self.token_embedding_size
])
],
axis=-1)
num_tokens_per_step = NUM_IMAGE_TOKENS + self._num_action_tokens
# Check state/action alignment.
window_range = min(self._step_idx + 1, self.time_sequence_length)
for j in range(window_range):
# The index step that is stored in j = 0.
first_step_idx = max(0, self._step_idx + 1 - self.time_sequence_length)
image_idx = j * num_tokens_per_step
action_start_index = image_idx + NUM_IMAGE_TOKENS
for t in range(NUM_IMAGE_TOKENS):
self.assertAllEqual(
self.get_image_value(first_step_idx + j) *
tf.ones_like(all_tokens[0][image_idx][:self.token_embedding_size]),
all_tokens[0][image_idx + t][:self.token_embedding_size])
# if j is not the current step in the window, all action dimensions
# from previous steps are already infered and thus can be checked.
action_dims_range = self.action_inf_idx if j == window_range - 1 else self._num_action_tokens
for t in range(action_dims_range):
token_idx = action_start_index + t
action_value = (first_step_idx + j) * self._num_action_tokens + t
self.assertAllEqual(
self.get_action_logits(
batch_size=batch_size,
value=action_value,
vocab_size=self.vocab_size)[0][0][:self.token_embedding_size],
all_tokens[0][token_idx][:self.token_embedding_size])
# Output the right action dimension value.
image_token_index = (
min(self._step_idx, self.time_sequence_length - 1) *
num_tokens_per_step)
transformer_shift = -1
action_index = (
image_token_index + NUM_IMAGE_TOKENS + self.action_inf_idx +
transformer_shift)
action_value = self._step_idx * self._num_action_tokens + self.action_inf_idx
action_logits = self.get_action_logits(
batch_size=batch_size, value=action_value, vocab_size=self.vocab_size)
output_tokens = tf.concat([
output_tokens[:, :action_index, :], action_logits[:, :, :],
output_tokens[:, action_index + 1:, :]
],
axis=1)
self.action_inf_idx = (self.action_inf_idx + 1) % self._num_action_tokens
attention_scores = []
return output_tokens, attention_scores