This repository has been archived by the owner on Jul 16, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 21
/
model.py
309 lines (280 loc) · 12.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# Copyright 2023 The medical_research_foundations Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Model specification for SimCLR."""
from absl import flags
from . import data_util
from . import model_util
from . import objective as obj_lib
from .lars_optimizer import LARSOptimizer
import tensorflow.compat.v1 as tf
import tensorflow.compat.v2 as tf2
from tensorflow_estimator.compat.v1 import estimator as tf_estimator # pylint: disable=g-deprecated-tf-checker
FLAGS = flags.FLAGS
def build_model_fn(model, num_classes, num_train_examples):
"""Build model function."""
def model_fn(features, labels, mode, params=None):
"""Build model and optimizer."""
is_training = mode == tf_estimator.ModeKeys.TRAIN
# Check training mode.
if FLAGS.train_mode == 'pretrain':
num_transforms = 2
if FLAGS.fine_tune_after_block > -1:
raise ValueError('Does not support layer freezing during pretraining,'
'should set fine_tune_after_block<=-1 for safety.')
elif FLAGS.train_mode == 'finetune':
num_transforms = 1
else:
raise ValueError('Unknown train_mode {}'.format(FLAGS.train_mode))
# Split channels, and optionally apply extra batched augmentation.
features_list = tf.split(
features, num_or_size_splits=num_transforms, axis=-1)
if FLAGS.use_blur and is_training and FLAGS.train_mode == 'pretrain':
features_list = data_util.batch_random_blur(
features_list, FLAGS.image_size, FLAGS.image_size)
features = tf.concat(features_list, 0) # (num_transforms * bsz, h, w, c)
# Base network forward pass.
with tf.variable_scope('base_model'):
if FLAGS.train_mode == 'finetune' and FLAGS.fine_tune_after_block >= 4:
# Finetune just supervised (linear) head will not update BN stats.
model_train_mode = False
else:
# Pretrain or finetune anything else will update BN stats.
model_train_mode = is_training
hiddens = model(features, is_training=model_train_mode)
# Add head and loss.
if FLAGS.train_mode == 'pretrain':
tpu_context = params['context'] if 'context' in params else None
hiddens_proj = model_util.projection_head(hiddens, is_training)
contrast_loss, logits_con, labels_con = obj_lib.add_contrastive_loss(
hiddens_proj,
hidden_norm=FLAGS.hidden_norm,
temperature=FLAGS.temperature,
tpu_context=tpu_context if is_training else None)
logits_sup = tf.zeros([params['batch_size'], num_classes])
else:
contrast_loss = tf.zeros([])
logits_con = tf.zeros([params['batch_size'], 10])
labels_con = tf.zeros([params['batch_size'], 10])
logits_sup = model_util.supervised_head(
hiddens, num_classes, is_training)
obj_lib.add_supervised_loss(
labels=labels['labels'],
logits=logits_sup,
weights=labels['mask'])
# Add weight decay to loss, for non-LARS optimizers.
model_util.add_weight_decay(adjust_per_optimizer=True)
loss = tf.losses.get_total_loss()
if FLAGS.train_mode == 'pretrain':
variables_to_train = tf.trainable_variables()
else:
collection_prefix = 'trainable_variables_inblock_'
variables_to_train = []
for j in range(FLAGS.fine_tune_after_block + 1, 6):
variables_to_train += tf.get_collection(collection_prefix + str(j))
assert variables_to_train, 'variables_to_train shouldn\'t be empty!'
tf.logging.info('===============Variables to train (begin)===============')
tf.logging.info(variables_to_train)
tf.logging.info('================Variables to train (end)================')
learning_rate = model_util.learning_rate_schedule(
FLAGS.learning_rate, num_train_examples)
if is_training:
if FLAGS.train_summary_steps > 0:
# Compute stats for the summary.
prob_con = tf.nn.softmax(logits_con)
entropy_con = - tf.reduce_mean(
tf.reduce_sum(prob_con * tf.math.log(prob_con + 1e-8), -1))
summary_writer = tf2.summary.create_file_writer(FLAGS.model_dir)
# TODO: remove this control_dependencies in the future.
with tf.control_dependencies([summary_writer.init()]):
with summary_writer.as_default():
should_record = tf.math.equal(
tf.math.floormod(tf.train.get_global_step(),
FLAGS.train_summary_steps), 0)
with tf2.summary.record_if(should_record):
contrast_acc = tf.equal(
tf.argmax(labels_con, 1), tf.argmax(logits_con, axis=1))
contrast_acc = tf.reduce_mean(tf.cast(contrast_acc, tf.float32))
label_acc = tf.equal(
tf.argmax(labels['labels'], 1), tf.argmax(logits_sup, axis=1))
label_acc = tf.reduce_mean(tf.cast(label_acc, tf.float32))
tf2.summary.scalar(
'train_contrast_loss',
contrast_loss,
step=tf.train.get_global_step())
tf2.summary.scalar(
'train_contrast_acc',
contrast_acc,
step=tf.train.get_global_step())
tf2.summary.scalar(
'train_label_accuracy',
label_acc,
step=tf.train.get_global_step())
tf2.summary.scalar(
'contrast_entropy',
entropy_con,
step=tf.train.get_global_step())
tf2.summary.scalar(
'learning_rate', learning_rate,
step=tf.train.get_global_step())
tf2.summary.scalar(
'input_mean',
tf.reduce_mean(features),
step=tf.train.get_global_step(),
)
tf2.summary.scalar(
'input_max',
tf.reduce_max(features),
step=tf.train.get_global_step(),
)
tf2.summary.scalar(
'input_min',
tf.reduce_min(features),
step=tf.train.get_global_step(),
)
tf2.summary.scalar(
'num_labels',
tf.reduce_mean(tf.reduce_sum(labels['labels'], -1)),
step=tf.train.get_global_step(),
)
if FLAGS.verbose:
tf2.summary.image(
'input_image', features, step=tf.train.get_global_step()
)
if FLAGS.optimizer == 'momentum':
optimizer = tf.train.MomentumOptimizer(
learning_rate, FLAGS.momentum, use_nesterov=True
)
elif FLAGS.optimizer == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate)
elif FLAGS.optimizer == 'lars':
optimizer = LARSOptimizer(
learning_rate,
momentum=FLAGS.momentum,
weight_decay=FLAGS.weight_decay,
exclude_from_weight_decay=['batch_normalization', 'bias'],
)
else:
raise ValueError('Unknown optimizer {}'.format(FLAGS.optimizer))
if FLAGS.use_tpu:
optimizer = tf.tpu.CrossShardOptimizer(optimizer)
control_deps = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
if FLAGS.train_summary_steps > 0:
control_deps.extend(tf.summary.all_v2_summary_ops())
with tf.control_dependencies(control_deps):
train_op = optimizer.minimize(
loss, global_step=tf.train.get_or_create_global_step(),
var_list=variables_to_train)
# TODO: solve the conflict between zero init and scaling.
if FLAGS.checkpoint:
if FLAGS.rescale_at_init != 1.0 and FLAGS.zero_init_logits_layer:
raise ValueError(
'Zero init of logits layer along with rescaling is not supported.'
)
if FLAGS.rescale_at_init != 1.0 and not FLAGS.zero_init_logits_layer:
tf.logging.info('Rescaling output layer parameters ...')
def scaffold_fn():
"""Scaffold function to restore non-logits vars from checkpoint."""
tf.train.init_from_checkpoint(
FLAGS.checkpoint,
{
v.op.name: v.op.name
for v in tf.global_variables(FLAGS.variable_schema)
},
)
# TODO: remove the dependencies to the layer class
# Read and rescale the model's kernel weights.
kernels_list = [
var for var in tf.trainable_variables() if 'kernel' in var.name
]
tf.logging.info(
'Rescaling output layer parameters %s',
[x.op.name for x in kernels_list],
)
with tf.control_dependencies([tf.global_variables_initializer()]):
init_op = tf.group(
[
tf.assign(x, x * FLAGS.rescale_at_init)
for x in kernels_list
]
)
return tf.train.Scaffold(init_op=init_op)
else:
tf.logging.info('Head restoring ...')
def scaffold_fn():
"""Scaffold function to restore non-logits vars from checkpoint."""
tf.train.init_from_checkpoint(
FLAGS.checkpoint,
{
v.op.name: v.op.name
for v in tf.global_variables(FLAGS.variable_schema)
},
)
if FLAGS.zero_init_logits_layer:
# Init op that initializes output layer parameters to zeros.
output_layer_parameters = [
var
for var in tf.trainable_variables()
if var.name.startswith('head_supervised')
]
tf.logging.info(
'Initializing output layer parameters %s to zero',
[x.op.name for x in output_layer_parameters],
)
with tf.control_dependencies([tf.global_variables_initializer()]):
init_op = tf.group(
[
tf.assign(x, tf.zeros_like(x))
for x in output_layer_parameters
]
)
return tf.train.Scaffold(init_op=init_op)
else:
return tf.train.Scaffold()
else:
scaffold_fn = None
return tf_estimator.tpu.TPUEstimatorSpec(
mode=mode, train_op=train_op, loss=loss, scaffold_fn=scaffold_fn)
else:
def metric_fn(logits_sup, labels_sup, logits_con, labels_con, mask,
**kws):
"""Inner metric function."""
metrics = {k: tf.metrics.mean(v, weights=mask)
for k, v in kws.items()}
metrics['label_top_1_accuracy'] = tf.metrics.accuracy(
tf.argmax(labels_sup, 1), tf.argmax(logits_sup, axis=1),
weights=mask)
metrics['label_top_5_accuracy'] = tf.metrics.recall_at_k(
tf.argmax(labels_sup, 1), logits_sup, k=5, weights=mask)
metrics['contrastive_top_1_accuracy'] = tf.metrics.accuracy(
tf.argmax(labels_con, 1), tf.argmax(logits_con, axis=1),
weights=mask)
metrics['contrastive_top_5_accuracy'] = tf.metrics.recall_at_k(
tf.argmax(labels_con, 1), logits_con, k=5, weights=mask)
return metrics
metrics = {
'logits_sup': logits_sup,
'labels_sup': labels['labels'],
'logits_con': logits_con,
'labels_con': labels_con,
'mask': labels['mask'],
'contrast_loss': tf.fill((params['batch_size'],), contrast_loss),
'regularization_loss': tf.fill((params['batch_size'],),
tf.losses.get_regularization_loss()),
}
return tf_estimator.tpu.TPUEstimatorSpec(
mode=mode,
loss=loss,
eval_metrics=(metric_fn, metrics),
scaffold_fn=None)
return model_fn