From ce564f78e90b436b00a8ab923c639daae0e6a422 Mon Sep 17 00:00:00 2001 From: Ulises Javier Gonzalez Diaz Date: Mon, 17 Jun 2024 12:52:53 -0500 Subject: [PATCH] update --- README.md | 35 ++++++++++++++++++----------------- 1 file changed, 18 insertions(+), 17 deletions(-) diff --git a/README.md b/README.md index e4c4f31..d421ee6 100644 --- a/README.md +++ b/README.md @@ -1,5 +1,6 @@ ## Repositorio de curso sobre Data Analytics +Business Analytics (BA) consiste en explorar y analizar grandes cantidades de datos para obtener información sobre el desempeño empresarial pasado con el fin de guiar la planificación empresarial futura. Este curso presenta un conjunto de métodos avanzados centrados en datos que cubren las tres direcciones principales de BA: descriptivo (“¿qué pasó?”), predictivo (“¿qué pasará?”) y prescriptivo (“¿qué debería pasar?”). Los métodos se aplicarán a varios casos de negocios con el objetivo de demostrar cómo extraer valor comercial de los datos, brindar soporte para la toma de decisiones basada en datos junto con principios efectivos de gestión de datos. Materiales de soporte para la formación en Data Analytics **Instructor:** Ulises Gonzalez ([Rizoma](http://www.rizo.ma/), [Linkedin](https://www.linkedin.com/in/ulisesgonzalez/) @@ -20,19 +21,19 @@ Tuesday | Thursday 10/20: [Advanced scikit-learn, Clustering](#class-19-advanced-scikit-learn-and-clustering) | 10/22: [Regularization, Regex](#class-20-regularization-and-regular-expressions) 10/27: [Course Review](#class-21-course-review-and-final-project-presentation) | 10/29: [Final Project Presentation](#class-22-final-project-presentation) - + ### Python Resources * [Codecademy's Python course](http://www.codecademy.com/en/tracks/python): Good beginner material, including tons of in-browser exercises. @@ -64,19 +65,19 @@ Tuesday | Thursday ----- ### Class 1: Introducción al Business Analytics +* Bienvenida a la formación * Resumen del curso([slides](slides/01_course_overview.pdf)) -* Introducción a la ciencia de datos([slides](slides/01_intro_to_data_science.pdf)) +* Introducción al Business Analytics ([slides](slides/01_intro_to_data_science.pdf)) * Discuta el proyecto del curso: [requirements](project/README.md) and [example projects](https://github.com/justmarkham/DAT-project-examples) * Tipos de datos([slides](slides/01_types_of_data.pdf)) and [public data sources](project/public_data.md) -* Bienvenida a la formación -**Homework:** +**Asignación:** * Work through GA's friendly [command line tutorial](http://generalassembly.github.io/prework/command-line/#/) using Terminal (Linux/Mac) or Git Bash (Windows). * Read through this [command line reference](code/02_command_line.md), and complete the pre-class exercise at the bottom. (There's nothing you need to submit once you're done.) * Watch videos 1 through 8 (21 minutes) of [Introduction to Git and GitHub](https://www.youtube.com/playlist?list=PL5-da3qGB5IBLMp7LtN8Nc3Efd4hJq0kD), or read sections 1.1 through 2.2 of [Pro Git](http://git-scm.com/book/en/v2). * If your laptop has any setup issues, please work with us to resolve them by Thursday. If your laptop has not yet been checked, you should come early on Thursday, or just walk through the [setup checklist](other/setup_checklist.md) yourself (and let us know you have done so). -**Resources:** +**Recursos:** * For a useful look at the different types of data scientists, read [Analyzing the Analyzers](http://cdn.oreillystatic.com/oreilly/radarreport/0636920029014/Analyzing_the_Analyzers.pdf) (32 pages). * For some thoughts on what it's like to be a data scientist, read these short posts from [Win-Vector](http://www.win-vector.com/blog/2012/09/on-being-a-data-scientist/) and [Datascope Analytics](http://datascopeanalytics.com/what-we-think/2014/07/31/six-qualities-of-a-great-data-scientist). * Quora has a [data science topic FAQ](https://www.quora.com/Data-Science) with lots of interesting Q&A.