-
Notifications
You must be signed in to change notification settings - Fork 1
/
inject_strcut_anomaly_new_approach.py
156 lines (126 loc) · 5.69 KB
/
inject_strcut_anomaly_new_approach.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import numpy as np
import scipy.sparse as sp
import random
import scipy.io as sio
import argparse
import pickle as pkl
import networkx as nx
import sys
import os
import os.path as osp
from sklearn import preprocessing
from scipy.spatial.distance import euclidean,cosine
def dense_to_sparse(dense_matrix):
shape = dense_matrix.shape
row = []
col = []
data = []
for i, r in enumerate(dense_matrix):
for j in np.where(r > 0)[0]:
row.append(i)
col.append(j)
data.append(dense_matrix[i,j])
sparse_matrix = sp.coo_matrix((data, (row, col)), shape=shape).tocsc()
return sparse_matrix
def parse_index_file(filename):
"""Parse index file."""
index = []
for line in open(filename):
index.append(int(line.strip()))
return index
def load_citation_datadet(dataset_str):
names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph']
objects = []
for i in range(len(names)):
with open("raw_dataset/{}/ind.{}.{}".format(dataset_str, dataset_str, names[i]), 'rb') as f:
if sys.version_info > (3, 0):
objects.append(pkl.load(f, encoding='latin1'))
else:
objects.append(pkl.load(f))
x, y, tx, ty, allx, ally, graph = tuple(objects)
test_idx_reorder = parse_index_file("raw_dataset/{}/ind.{}.test.index".format(dataset_str, dataset_str))
test_idx_range = np.sort(test_idx_reorder)
if dataset_str == 'citeseer':
# Fix citeseer dataset (there are some isolated nodes in the graph)
# Find isolated nodes, add them as zero-vecs into the right position
test_idx_range_full = range(min(test_idx_reorder), max(test_idx_reorder)+1)
tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
tx_extended[test_idx_range-min(test_idx_range), :] = tx
tx = tx_extended
ty_extended = np.zeros((len(test_idx_range_full), y.shape[1]))
ty_extended[test_idx_range-min(test_idx_range), :] = ty
ty = ty_extended
features = sp.vstack((allx, tx)).tolil()
features[test_idx_reorder, :] = features[test_idx_range, :]
adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph))
labels = np.vstack((ally, ty))
labels[test_idx_reorder, :] = labels[test_idx_range, :]
adj_dense = np.array(adj.todense(), dtype=np.float64)
attribute_dense = np.array(features.todense(), dtype=np.float64)
cat_labels = np.array(np.argmax(labels, axis = 1).reshape(-1,1), dtype=np.uint8)
return attribute_dense, adj_dense, cat_labels
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='cora') #'BlogCatalog' 'Flickr' 'cora' 'citeseer' 'pubmed'
parser.add_argument('--seed', type=int, default=100) #random seed
parser.add_argument('--k', type=int, default=50) #num of clusters
args = parser.parse_args()
AD_dataset_list = ['BlogCatalog', 'Flickr']
Citation_dataset_list = ['cora', 'citeseer', 'pubmed']
# Set hyperparameters of disturbing
dataset_str = args.dataset #'BlogCatalog' 'Flickr' 'cora' 'citeseer' 'pubmed'
seed = args.seed
k = args.k
if __name__ == "__main__":
# Set seed
datas = ['cora','citeseer','pubmed','Flickr']
# Load data
for dataset_str in datas:
print('Random seed: {:d}. \n'.format(seed))
np.random.seed(seed)
random.seed(seed)
print('Loading data: {}...'.format(dataset_str))
if dataset_str in AD_dataset_list:
data = sio.loadmat('./raw_dataset/{}/{}.mat'.format(dataset_str, dataset_str))
attribute_dense = np.array(data['Attributes'].todense())
# attribute_dense = preprocessing.normalize(attribute_dense, axis=0)
attribute_dense = preprocessing.scale(attribute_dense,axis=0)
adj_dense = np.array(data['Network'].todense())
cat_labels = data['Label']
elif dataset_str in Citation_dataset_list:
attribute_dense, adj_dense, cat_labels = load_citation_datadet(dataset_str)
ori_num_edge = np.sum(adj_dense)
num_node = adj_dense.shape[0]
print('Done. \n')
# Random pick anomaly nodes
all_idx = list(range(num_node))
random.shuffle(all_idx)
ano_cnt = int(num_node * 0.1)
anomaly_idx = all_idx[:ano_cnt]
structure_anomaly_idx = anomaly_idx
# attr_noise_idx = anomaly_idx[part_cnt:]
# attribute_anomaly_idx = anomaly_idx[m*n:]
label = np.zeros((num_node,1),dtype=np.uint8)
label[anomaly_idx,0] = 1
str_anomaly_label = label
# Disturb structure
print('Constructing structured anomaly nodes...')
for node_id in structure_anomaly_idx:
cat_y = cat_labels[node_id]
all_other_label_nodes = (cat_labels.reshape(-1)!=cat_y).nonzero()[0]
ori_deg = int(np.sum(adj_dense[node_id]))
new_neibors = np.random.choice(all_other_label_nodes,ori_deg,replace=False)
adj_dense[node_id]= 0
adj_dense[node_id,new_neibors] = 1
adj_dense[new_neibors,node_id] = adj_dense[node_id,new_neibors].copy()
# Pack & save them into .mat
print('Saving mat file...')
attribute = dense_to_sparse(attribute_dense)
adj = dense_to_sparse(adj_dense)
savedir = './NovelStr_datasets/'
if not os.path.exists(savedir):
os.makedirs(savedir)
sio.savemat(f'{savedir}/{dataset_str}_novelstr.mat', \
{'Network': adj, 'Label': str_anomaly_label, 'Attributes': attribute, \
'Class':cat_labels, 'str_anomaly_label':str_anomaly_label, 'attr_anomaly_label':str_anomaly_label,
})
print('Done. The file is save as: dataset/{}.mat \n'.format(dataset_str))