Skip to content

Latest commit

 

History

History
58 lines (47 loc) · 1.2 KB

README.md

File metadata and controls

58 lines (47 loc) · 1.2 KB

RAG Model with Llama and SHAP Interpretability

Prerequisites

  • Python 3.8+
  • pip (Python Package Manager)
  • Virtual Environment (recommended)

Setup Guide

1. Clone the Repository

git clone https://github.com/gober9/Rag-Creation-Python-Llama.git
cd Rag-Creation-Python-Llama

2. Create a Virtual Environment

# On Windows
python -m venv venv
venv\Scripts\activate

# On macOS/Linux
python3 -m venv venv
source venv/bin/activate

3. Install Dependencies

pip install -r requirements.txt

4. Download Llama Model

5. Run the RAG Model

python rag_model.py

Troubleshooting

  • Ensure all dependencies are installed
  • Check Python version compatibility
  • Verify model file paths

Project Structure

  • rag_model.py: Main RAG model implementation
  • requirements.txt: Project dependencies
  • models/: Directory for storing Llama models
  • data/: Directory for input/output data

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Commit your changes
  4. Push to the branch
  5. Create a Pull Request