diff --git a/notebooks/0_create-test-set/0_get-exact-answer.ipynb b/notebooks/0_create-test-set/0_get-exact-answer.ipynb
index f234bda..33021fa 100644
--- a/notebooks/0_create-test-set/0_get-exact-answer.ipynb
+++ b/notebooks/0_create-test-set/0_get-exact-answer.ipynb
@@ -23,7 +23,7 @@
"from ase.vibrations import VibrationsData, Vibrations\n",
"from ase.calculators.mopac import MOPAC\n",
"from ase.calculators.psi4 import Psi4\n",
- "from ase.optimize import QuasiNewton\n",
+ "from ase.optimize import BFGS\n",
"from ase import Atoms, units\n",
"from ase.io import write, read\n",
"from jitterbug.utils import make_calculator\n",
@@ -58,7 +58,8 @@
"outputs": [],
"source": [
"molecule_name = 'caffeine'\n",
- "method = 'pm7'\n",
+ "relax_method = 'pm7/None' # Method used to relax geometry \n",
+ "hess_method = None # Method used to perform Hessian computation, None to use same\n",
"basis = None # Set to None for MOPAC methods\n",
"threads = min(os.cpu_count(), 12)\n",
"delta = 0.01"
@@ -72,18 +73,37 @@
"Derived"
]
},
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "2f543fd2-ca4c-4d68-a523-14515f351c4b",
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "relax_method, relax_basis = relax_method.split(\"/\")\n",
+ "if hess_method is None:\n",
+ " hess_method, hess_basis = relax_method, relax_basis\n",
+ "else:\n",
+ " hess_method, hess_basis = hess_method.split(\"/\")"
+ ]
+ },
{
"cell_type": "code",
"execution_count": null,
"id": "aeebbc77-70e4-4709-90a0-b9aaf54d4cd9",
- "metadata": {},
+ "metadata": {
+ "tags": []
+ },
"outputs": [],
"source": [
- "run_name = f'{molecule_name}_{method}_{basis}'\n",
+ "run_name = f'{molecule_name}_{hess_method}_{hess_basis}_at_{relax_method}_{relax_basis}'\n",
"run_name_with_delta = f'{run_name}_d={delta:.3g}'\n",
"out_dir = Path('data') / 'exact'\n",
"if (out_dir / f'{run_name_with_delta}-times.json').exists():\n",
- " raise ValueError('Already done!')"
+ " raise ValueError('Already done!')\n",
+ "print(f'Run name: {run_name_with_delta}')"
]
},
{
@@ -160,7 +180,7 @@
},
"outputs": [],
"source": [
- "calc = make_calculator(method, basis, num_threads=threads)"
+ "calc = make_calculator(relax_method, relax_basis, num_threads=threads)"
]
},
{
@@ -180,14 +200,17 @@
},
"outputs": [],
"source": [
- "geom_path = out_dir / f'{run_name}.xyz'"
+ "geom_path = out_dir / f'{molecule_name}_{relax_method}_{relax_basis}.xyz'\n",
+ "print(f'Geometry path: {geom_path}')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ef903a43-5d6c-47fb-a500-837599c95f91",
- "metadata": {},
+ "metadata": {
+ "tags": []
+ },
"outputs": [],
"source": [
"%%time\n",
@@ -196,7 +219,7 @@
" atoms.calc = calc\n",
"else:\n",
" atoms.calc = calc\n",
- " dyn = QuasiNewton(atoms)\n",
+ " dyn = BFGS(atoms)\n",
" with redirect_stderr(devnull):\n",
" dyn.run(fmax=0.01)"
]
@@ -242,6 +265,35 @@
"ASE has a built-in method which uses finite displacements"
]
},
+ {
+ "cell_type": "markdown",
+ "id": "0e70265b-cefd-4d3c-925b-8b2cf13419e4",
+ "metadata": {},
+ "source": [
+ "Make the calculator for the hessian"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a144434b-e478-42e0-a2bd-5c43beab31d0",
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "calc = make_calculator(hess_method, hess_basis, num_threads=threads)\n",
+ "atoms.calc = calc"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "71949047-df5f-47a5-883f-c329b7ca12bf",
+ "metadata": {},
+ "source": [
+ "Perform the computation"
+ ]
+ },
{
"cell_type": "code",
"execution_count": null,
@@ -332,11 +384,11 @@
"outputs": [],
"source": [
"psi4_path = out_dir / f'{run_name}-psi4.json'\n",
- "if isinstance(calc, Psi4) and \"cc\" not in method and not psi4_path.exists():\n",
+ "if isinstance(calc, Psi4) and \"cc\" not in hess_method and not psi4_path.exists():\n",
" # Compute\n",
" analytic_time = perf_counter()\n",
" calc.set_psi4(atoms)\n",
- " hess = calc.psi4.hessian(f'{method}/{basis}')\n",
+ " hess = calc.psi4.hessian(f'{hess_method}/{hess_basis}')\n",
" analytic_time = perf_counter() - analytic_time\n",
"\n",
" # Convert to ASE format\n",
diff --git a/notebooks/0_create-test-set/1_compare-step-sizes-and-methods.ipynb b/notebooks/0_create-test-set/1_compare-step-sizes-and-methods.ipynb
index f1ed31c..bce4875 100644
--- a/notebooks/0_create-test-set/1_compare-step-sizes-and-methods.ipynb
+++ b/notebooks/0_create-test-set/1_compare-step-sizes-and-methods.ipynb
@@ -52,7 +52,8 @@
},
"outputs": [],
"source": [
- "molecule_name = 'water' # Which water molecule to evaluate\n",
+ "molecule_name = 'water'\n",
+ "relax_level = 'b3lyp_cc-pvtz' # Which water molecule to evaluate. Need both the molecule name and relaxation level\n",
"target_method = ('ccsd(t)', 'cc-pvtz')"
]
},
@@ -74,7 +75,7 @@
},
"outputs": [],
"source": [
- "hessian_paths = list(Path('data/exact/').glob(f'{molecule_name}_*-ase.json'))\n",
+ "hessian_paths = list(Path('data/exact/').glob(f'{molecule_name}_*_at_{relax_level}_d=*-ase.json'))\n",
"print(f'Found {len(hessian_paths)} hessians for {molecule_name}')"
]
},
@@ -87,7 +88,7 @@
},
"outputs": [],
"source": [
- "exact_path = Path(f'data/exact/{molecule_name}_{\"_\".join(target_method)}_d=0.005-ase.json')\n",
+ "exact_path = Path(f'data/exact/{molecule_name}_{\"_\".join(target_method)}_at_{relax_level}_d=0.005-ase.json')\n",
"assert exact_path.exists(), f'Missing reference calculation: {exact_path}'\n",
"exact_hess = VibrationsData.read(exact_path)"
]
@@ -105,7 +106,7 @@
" \"\"\"Load the Hessian and parse the metadata from the filename\n",
" \n",
" Args:\n",
- " path: Path to the Hessia\n",
+ " path: Path to the Hessian\n",
" Returns:\n",
" Dictionary the includes the metadata for the calculation and errors wrt true Hessian\n",
" \"\"\"\n",
@@ -113,7 +114,7 @@
" # Get some of the basic information\n",
" method_name, delta = path.name[:-9].rsplit(\"_d=\", 1)\n",
" delta = float(delta)\n",
- " _, method, basis = method_name.split(\"_\")\n",
+ " _, method, basis = method_name.split(\"_\")[:3]\n",
" \n",
" # Compare to reference\n",
" approx_hess = VibrationsData.read(path)\n",
diff --git a/notebooks/0_create-test-set/2_evaluate-effect-of-rotations.ipynb b/notebooks/0_create-test-set/2_evaluate-effect-of-rotations.ipynb
index 41a3aeb..f67c692 100644
--- a/notebooks/0_create-test-set/2_evaluate-effect-of-rotations.ipynb
+++ b/notebooks/0_create-test-set/2_evaluate-effect-of-rotations.ipynb
@@ -52,7 +52,7 @@
},
"outputs": [],
"source": [
- "molecule_path = 'data/exact/water_pm7_None.xyz'\n",
+ "molecule_path = 'data/exact/caffeine_pm7_None.xyz'\n",
"num_samples: int = 256"
]
},
@@ -152,8 +152,8 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "CPU times: user 22.3 ms, sys: 83.7 ms, total: 106 ms\n",
- "Wall time: 492 ms\n"
+ "CPU times: user 151 ms, sys: 696 ms, total: 847 ms\n",
+ "Wall time: 5.57 s\n"
]
}
],
@@ -185,7 +185,7 @@
"text": [
" 0%| | 0/256 [00:00, ?it/s]/home/lward/miniconda3/envs/jitterbug/lib/python3.9/site-packages/pmutt/statmech/vib.py:87: RuntimeWarning: overflow encountered in sinh\n",
" (0.5 * vib_dimless)**2 * (1. / np.sinh(vib_dimless / 2.))**2\n",
- "100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 256/256 [02:16<00:00, 1.87it/s]\n"
+ "100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 256/256 [30:09<00:00, 7.07s/it]\n"
]
}
],
@@ -258,38 +258,38 @@
" \n",
"
\n",
" mean | \n",
- " 0.015256 | \n",
- " 2.120676 | \n",
+ " 0.008504 | \n",
+ " 0.124474 | \n",
"
\n",
" \n",
" std | \n",
- " 0.011612 | \n",
- " 0.997429 | \n",
+ " 0.004583 | \n",
+ " 0.045956 | \n",
"
\n",
" \n",
" min | \n",
- " 0.000040 | \n",
- " 0.273227 | \n",
+ " 0.000007 | \n",
+ " 0.016011 | \n",
"
\n",
" \n",
" 25% | \n",
- " 0.006243 | \n",
- " 1.387332 | \n",
+ " 0.004681 | \n",
+ " 0.088121 | \n",
"
\n",
" \n",
" 50% | \n",
- " 0.012741 | \n",
- " 1.964503 | \n",
+ " 0.008094 | \n",
+ " 0.124565 | \n",
"
\n",
" \n",
" 75% | \n",
- " 0.022034 | \n",
- " 2.795209 | \n",
+ " 0.013257 | \n",
+ " 0.168693 | \n",
"
\n",
" \n",
" max | \n",
- " 0.044429 | \n",
- " 4.493064 | \n",
+ " 0.015370 | \n",
+ " 0.219113 | \n",
"
\n",
" \n",
"\n",
@@ -298,13 +298,13 @@
"text/plain": [
" zpe_error vib_mae\n",
"count 256.000000 256.000000\n",
- "mean 0.015256 2.120676\n",
- "std 0.011612 0.997429\n",
- "min 0.000040 0.273227\n",
- "25% 0.006243 1.387332\n",
- "50% 0.012741 1.964503\n",
- "75% 0.022034 2.795209\n",
- "max 0.044429 4.493064"
+ "mean 0.008504 0.124474\n",
+ "std 0.004583 0.045956\n",
+ "min 0.000007 0.016011\n",
+ "25% 0.004681 0.088121\n",
+ "50% 0.008094 0.124565\n",
+ "75% 0.013257 0.168693\n",
+ "max 0.015370 0.219113"
]
},
"execution_count": 9,
@@ -319,7 +319,7 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 10,
"id": "3e4ffe3f-b8c3-4112-ba7b-7e22119591ca",
"metadata": {
"tags": []
@@ -331,13 +331,13 @@
"Text(0, 0.5, 'Frequency')"
]
},
- "execution_count": 12,
+ "execution_count": 10,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAADeCAYAAAAQLVhMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAArZUlEQVR4nO3deVgT1/4/8HcMEBEREWSTzSpiEbS11AUtQqsoWuta7XUBlVqtG5Zar2itWFtQvKDWhVpFxOe5blVb7aZQF7Ro3anr11qvICpeXLisGkTO74/+SBsStpCQBN+v55nncc6cmflkzMmHmXNmRiKEECAiIiKD10TfARAREVHtMGkTEREZCSZtIiIiI8GkTUREZCSYtImIiIwEkzYREZGRYNImIiIyEib6DkDXysvLcffuXVhaWkIikeg7HCK9EEKgsLAQTk5OaNLEsP5WZxul511d2mejT9p3796Fi4uLvsMgMgjZ2dlwdnbWdxhK2EaJ/lSb9tnok7alpSWAPw9GixYt9BwNkX4UFBTAxcVF0R4MCdsoPe/q0j4bfdKuuNzWokUL/iDQc88QLz+zjRL9qTbt07A6t4iIiKhKTNpERERGgkmbiIjISDBpExERGYlGPxDNmLjP+0GlLHPpID1EQkREhohn2kREREaCSZuIiMhIMGkTEREZCSZtIiIiI8GkTUREZCSYtImIiIwEkzYREZGRYNImIiIyEkzaRERERoJJm4iIyEgwaRMRERkJJm0iIiIjwaRNRERkJJi0iYiIjASTNhERkZHQa9KOiYnBq6++CktLS9jZ2WHo0KG4du2aUh0hBKKiouDk5ARzc3MEBATg8uXLeoqYiIhIf/SatNPS0jB9+nT8+uuvSE1NRVlZGYKCglBcXKyoExsbi/j4eKxZswanT5+Gg4MD+vXrh8LCQj1GTkRE1PBM9Lnz/fv3K80nJSXBzs4OZ8+ehb+/P4QQWLlyJRYsWIDhw4cDAJKTk2Fvb4+tW7diypQp+gibiIhILwyqTzs/Px8A0KpVKwDAzZs3ce/ePQQFBSnqyGQy9OnTB8ePH1e7DblcjoKCAqWJiAwH2yiR5gwmaQshEBERgd69e8Pb2xsAcO/ePQCAvb29Ul17e3vFsspiYmJgZWWlmFxcXHQbOBHVCdsokeYMJmnPmDEDFy5cwLZt21SWSSQSpXkhhEpZhcjISOTn5yum7OxsncRLRJphGyXSnF77tCvMnDkT+/btw9GjR+Hs7Kwod3BwAPDnGbejo6OiPDc3V+Xsu4JMJoNMJtNtwESkMbZRIs3p9UxbCIEZM2Zgz549OHToENq2bau0vG3btnBwcEBqaqqirLS0FGlpafDz82vocImIiPRKr2fa06dPx9atW7F3715YWloq+qmtrKxgbm4OiUSC2bNnIzo6Gh4eHvDw8EB0dDSaNWuGMWPG6DN0IiKiBqfXpJ2QkAAACAgIUCpPSkrChAkTAABz587F48ePMW3aNOTl5aF79+5ISUmBpaVlA0dLRESkX3pN2kKIGutIJBJERUUhKipKp7G4z/tBpSxz6SCd7pOIni/8naH6MpjR40RERFQ9Jm0iIiIjwaRNRERkJJi0iYiIjASTNhERkZEwiCeiGSp1Iz0BjvYkIiL94Jk2ERGRkWDSJiIiMhJM2kREREaCSZuIiMhIMGkTEREZCY2S9s2bN7UdBxEREdVAo1u+2rdvD39/f4SFhWHkyJFo2rSptuMiInqu8eUipI5GZ9q//fYbXn75ZXz44YdwcHDAlClTcOrUKW3HRkRERH+jUdL29vZGfHw87ty5g6SkJNy7dw+9e/dGp06dEB8fj/v372s7TiIioudevQaimZiYYNiwYdi5cyeWLVuGGzduYM6cOXB2dkZISAhycnK0FScREdFzr15J+8yZM5g2bRocHR0RHx+POXPm4MaNGzh06BDu3LmDIUOGaCtOIiKi555GA9Hi4+ORlJSEa9euYeDAgdiyZQsGDhyIJk3+/Bugbdu2WL9+PTp27KjVYImIiJ5nGiXthIQETJo0CRMnToSDg4PaOq6urkhMTKxXcERERPQXjZL29evXa6xjZmaG0NBQTTZPREREamjUp52UlISvv/5apfzrr79GcnJyvYMiIiIiVRol7aVLl8LW1lal3M7ODtHR0bXeztGjRzF48GA4OTlBIpHg22+/VVo+YcIESCQSpalHjx6ahExERGT0NEraWVlZaNu2rUq5m5sbbt26VevtFBcXo0uXLlizZk2VdQYMGICcnBzF9OOPP2oSMhERkdHTqE/bzs4OFy5cgLu7u1L5b7/9Bhsbm1pvJzg4GMHBwdXWkclkVQ52U0cul0MulyvmCwoKar0uEeke2yiR5jRK2u+88w5mzZoFS0tL+Pv7AwDS0tIQHh6Od955R6sBHjlyBHZ2dmjZsiX69OmDzz//HHZ2dlXWj4mJweLFi7UaQ33w+cFEygytjT5v+Jtk3DS6PP7ZZ5+he/fueOONN2Bubg5zc3MEBQXh9ddfr1Ofdk2Cg4Px73//G4cOHUJcXBxOnz6N119/Xemv9MoiIyORn5+vmLKzs7UWDxHVH9sokeY0OtM2MzPDjh07sGTJEvz2228wNzeHj48P3NzctBrc6NGjFf/29vaGr68v3Nzc8MMPP2D48OFq15HJZJDJZFqNg4i0h22USHMaJe0KHTp0QIcOHbQVS40cHR3h5uZWq/vEiYiIGhuNkvazZ8+wefNmHDx4ELm5uSgvL1dafujQIa0EV9nDhw+RnZ0NR0dHnWyfiIjIkGmUtMPDw7F582YMGjQI3t7ekEgkGu28qKgIf/zxh2L+5s2byMjIQKtWrdCqVStERUVhxIgRcHR0RGZmJubPnw9bW1sMGzZMo/0REREZM42S9vbt27Fz504MHDiwXjs/c+YMAgMDFfMREREAgNDQUCQkJODixYvYsmUL/ve//8HR0RGBgYHYsWMHLC0t67VfIiIiY6TxQLT27dvXe+cBAQEQQlS5/MCBA/XehyFSd8sFERFRTTS65evDDz/EqlWrqk24REREpF0anWn/8ssvOHz4MH766Sd06tQJpqamSsv37NmjleCIiIjoLxol7ZYtW3IwGBERUQPTKGknJSVpOw4iIiKqgUZ92gBQVlaGn3/+GevXr0dhYSEA4O7duygqKtJacERERPQXjc60s7KyMGDAANy6dQtyuRz9+vWDpaUlYmNj8eTJE3z55ZfajtPgGcKI8Kpi4MsAiBq3hnwJCH9n9EujM+3w8HD4+voiLy8P5ubmivJhw4bh4MGDWguOiIiI/qLx6PH09HSYmZkplbu5ueHOnTtaCYyIiIiUaXSmXV5ejmfPnqmU3759m08rIyIi0hGNkna/fv2wcuVKxbxEIkFRUREWLVpU70ebEhERkXoaXR5fsWIFAgMD4eXlhSdPnmDMmDG4fv06bG1tsW3bNm3HSERERNAwaTs5OSEjIwPbtm3DuXPnUF5ejrCwMIwdO1ZpYBoRERFpj0ZJGwDMzc0xadIkTJo0SZvxEBEZlYa83YpIo6S9ZcuWapeHhIRoFAwRERFVTaOkHR4erjT/9OlTlJSUwMzMDM2aNWPSJiIi0gGNRo/n5eUpTUVFRbh27Rp69+7NgWhEREQ6ovGzxyvz8PDA0qVLVc7CiYiISDu0lrQBQCqV4u7du9rcJBEREf1/GvVp79u3T2leCIGcnBysWbMGvXr10kpgRES6VpeXX+jqpUB12a4hvJhIV/giktrRKGkPHTpUaV4ikaB169Z4/fXXERcXp424iIiIqBKNknZ5ebm24yAiIqIaaLVPu66OHj2KwYMHw8nJCRKJBN9++63SciEEoqKi4OTkBHNzcwQEBODy5cv6CZaIiEjPNDrTjoiIqHXd+Pj4KpcVFxejS5cumDhxIkaMGKGyPDY2FvHx8di8eTM6dOiAzz77DP369cO1a9f4NjEiInruaJS0z58/j3PnzqGsrAyenp4AgN9//x1SqRRdu3ZV1JNIJNVuJzg4GMHBwWqXCSGwcuVKLFiwAMOHDwcAJCcnw97eHlu3bsWUKVPUrieXyyGXyxXzBQUFdfpsRKRbbKNEmtMoaQ8ePBiWlpZITk6GtbU1gD8fuDJx4kS89tpr+PDDD+sd2M2bN3Hv3j0EBQUpymQyGfr06YPjx49XmbRjYmKwePHieu/f0NV3FKk2Rs1yVCdp4nloo415lDfpl0Z92nFxcYiJiVEkbACwtrbGZ599prXR4/fu3QMA2NvbK5Xb29srlqkTGRmJ/Px8xZSdna2VeIhIO9hGiTSn0Zl2QUEB/vvf/6JTp05K5bm5uSgsLNRKYBUqX2IXQlR72V0mk0Emk2k1BiLSHrZRIs1pdKY9bNgwTJw4Ebt27cLt27dx+/Zt7Nq1C2FhYYr+5/pycHAAAJWz6tzcXJWzbyIioueBRkn7yy+/xKBBgzBu3Di4ubnBzc0NY8eORXBwMNatW6eVwNq2bQsHBwekpqYqykpLS5GWlgY/Pz+t7IOIiMiYaHR5vFmzZli3bh2WL1+OGzduQAiB9u3bw8LCok7bKSoqwh9//KGYv3nzJjIyMtCqVSu4urpi9uzZiI6OhoeHBzw8PBAdHY1mzZphzJgxmoRNRERk1DRK2hVycnKQk5MDf39/mJub19jfXNmZM2cQGBiomK+4/zs0NBSbN2/G3Llz8fjxY0ybNg15eXno3r07UlJSeI82ERE9lzRK2g8fPsSoUaNw+PBhSCQSXL9+HS+88ALeffddtGzZstYjyAMCAiCEqHK5RCJBVFQUoqKiNAmTNFDflxfwNjAyVLwNq+HxdlHt06hP+4MPPoCpqSlu3bqFZs2aKcpHjx6N/fv3ay04IiIi+otGZ9opKSk4cOAAnJ2dlco9PDyQlZWllcCIiIhImUZn2sXFxUpn2BUePHjA+y+JiIh0RKOk7e/vjy1btijmJRIJysvLsXz5cqWBZURERKQ9Gl0eX758OQICAnDmzBmUlpZi7ty5uHz5Mh49eoT09HRtx0hERETQMGl7eXnhwoULSEhIgFQqRXFxMYYPH47p06fD0dFR2zEaHGMbhWps8RJR/TV0u+fvTMOoc9J++vQpgoKCsH79+kb/ph4iIiJDUuc+bVNTU1y6dKlOD1EhIiKi+tNoIFpISAgSExO1HQsRERFVQ6M+7dLSUmzcuBGpqanw9fVVeeZ4fHy8VoIjIiKiv9Qpaf/nP/+Bu7s7Ll26hK5duwIAfv/9d6U6vGxORESkG3VK2h4eHsjJycHhw4cB/PnY0i+++ILvt9YhYxuRqatnDfMZxkQNz9h+f+rLGH5n6tSnXfnlHj/99BOKi4u1GhARERGpp9FAtArVvaGLiIiItKtOSVsikaj0WbMPm4iIqGHUqU9bCIEJEyYoXgry5MkTTJ06VWX0+J49e7QXIREREQGoY9IODQ1Vmh83bpxWgyEiIqKq1SlpJyUl6SoOIiIiqoFGD1ch0iVDvc3EGG4HIe18fwz1O0jVU/f/1tjaZ71GjxMREVHDYdImIiIyEgadtKOiohS3mVVMDg4O+g6LiIhILwy+T7tTp074+eefFfNSqVSP0RAREemPwSdtExOTOp1dy+VyyOVyxXxBQYEuwiIiDbGNEmnO4JP29evX4eTkBJlMhu7duyM6OhovvPBClfVjYmKwePHiBoyQNKWrEboNPcr7eRixqk1so4bneRwtb6yf2aD7tLt3744tW7bgwIED2LBhA+7duwc/Pz88fPiwynUiIyORn5+vmLKzsxswYiKqCdsokeYM+kw7ODhY8W8fHx/07NkT7dq1Q3JyMiIiItSuI5PJFI9ZJSLDwzZKpDmDPtOuzMLCAj4+Prh+/bq+QyEiImpwRpW05XI5rl69CkdHR32HQkRE1OAMOmnPmTMHaWlpuHnzJk6ePImRI0eioKBA5cUlREREzwOD7tO+ffs2/vGPf+DBgwdo3bo1evTogV9//RVubm76Do2IiKjBGXTS3r59u75DIANX39s2jO22M760RJmx3rbzvGvI/7fG9h0x6MvjRERE9BcmbSIiIiPBpE1ERGQkmLSJiIiMBJM2ERGRkTDo0eNEzwOOCCeqG0MYEV6XGLTZlnmmTUREZCSYtImIiIwEkzYREZGRYNImIiIyEkzaRERERoKjx6lBGMJoT2PDY/YXHovnF//vlfFMm4iIyEgwaRMRERkJJm0iIiIjwaRNRERkJJi0iYiIjASTNhERkZHgLV/03DCEW0cMIQYiqhtDarc80yYiIjISTNpERERGwiiS9rp169C2bVs0bdoUr7zyCo4dO6bvkIiIiBqcwSftHTt2YPbs2ViwYAHOnz+P1157DcHBwbh165a+QyMiImpQBj8QLT4+HmFhYXj33XcBACtXrsSBAweQkJCAmJgYlfpyuRxyuVwxn5+fDwAoKCiodj/l8hItRk3UsGr6flcsF0I0RDjV0qSNsn2SMdNq+xQGTC6XC6lUKvbs2aNUPmvWLOHv7692nUWLFgkAnDhxUjNlZ2c3RNOtFtsoJ07qp9q0T4kQBvCndxXu3r2LNm3aID09HX5+fory6OhoJCcn49q1ayrrVP4rvry8HI8ePYKNjQ0kEona/RQUFMDFxQXZ2dlo0aKF9j9II8Zjp7mGPHZCCBQWFsLJyQlNmui3V0yTNkpVYxvULn0cz7q0T4O/PA5ApSELIaps3DKZDDKZTKmsZcuWtdpPixYt+KXXEI+d5hrq2FlZWel8H7VRnzZKVWMb1K6GPp61bZ8GPRDN1tYWUqkU9+7dUyrPzc2Fvb29nqIiIiLSD4NO2mZmZnjllVeQmpqqVJ6amqp0uZyIiOh5YPCXxyMiIjB+/Hj4+vqiZ8+e+Oqrr3Dr1i1MnTpVa/uQyWRYtGiRyiU7qhmPneZ47Egb+D3SLkM/ngY9EK3CunXrEBsbi5ycHHh7e2PFihXw9/fXd1hEREQNyiiSNhERERl4nzYRERH9hUmbiIjISDBpExERGQkmbSIiIiPRKJN2XV/lmZaWhldeeQVNmzbFCy+8gC+//FKlzu7du+Hl5QWZTAYvLy988803ugpfr7R97DZs2IDXXnsN1tbWsLa2Rt++fXHq1CldfgS90sV3r8L27dshkUgwdOhQLUdNxigmJgavvvoqLC0tYWdnh6FDh6p9tDPVXUxMDCQSCWbPnq3vUFTp7rUA+rF9+3ZhamoqNmzYIK5cuSLCw8OFhYWFyMrKUlv/P//5j2jWrJkIDw8XV65cERs2bBCmpqZi165dijrHjx8XUqlUREdHi6tXr4ro6GhhYmIifv3114b6WA1CF8duzJgxYu3ateL8+fPi6tWrYuLEicLKykrcvn27oT5Wg9HF8auQmZkp2rRpI1577TUxZMgQHX8SMgb9+/cXSUlJ4tKlSyIjI0MMGjRIuLq6iqKiIn2HZtROnTol3N3dRefOnUV4eLi+w1HR6JJ2t27dxNSpU5XKOnbsKObNm6e2/ty5c0XHjh2VyqZMmSJ69OihmB81apQYMGCAUp3+/fuLd955R0tRGwZdHLvKysrKhKWlpUhOTq5/wAZGV8evrKxM9OrVS2zcuFGEhoYyaZNaubm5AoBIS0vTdyhGq7CwUHh4eIjU1FTRp08fg0zajeryeGlpKc6ePYugoCCl8qCgIBw/flztOidOnFCp379/f5w5cwZPnz6ttk5V2zRGujp2lZWUlODp06do1aqVdgI3ELo8fp9++ilat26NsLAw7QdOjUbFe8kbW9tqSNOnT8egQYPQt29ffYdSJYN/jGldPHjwAM+ePVN5mYi9vb3KS0cq3Lt3T239srIyPHjwAI6OjlXWqWqbxkhXx66yefPmoU2bNgbdKDShq+OXnp6OxMREZGRk6Cp0agSEEIiIiEDv3r3h7e2t73CM0vbt23Hu3DmcPn1a36FUq1El7Qp1eZVnVfUrl9d1m8ZKF8euQmxsLLZt24YjR46gadOmWojW8Gjz+BUWFmLcuHHYsGEDbG1ttR8sNRozZszAhQsX8Msvv+g7FKOUnZ2N8PBwpKSkGPxvU6NK2pq8ytPBwUFtfRMTE9jY2FRbpzG9HlRXx67Cv/71L0RHR+Pnn39G586dtRu8AdDF8bt8+TIyMzMxePBgxfLy8nIAgImJCa5du4Z27dpp+ZOQsZk5cyb27duHo0ePwtnZWd/hGKWzZ88iNzcXr7zyiqLs2bNnOHr0KNasWQO5XA6pVKrHCP/SqPq0NXmVZ8+ePVXqp6SkwNfXF6amptXWaUyvB9XVsQOA5cuXY8mSJdi/fz98fX21H7wB0MXx69ixIy5evIiMjAzF9NZbbyEwMBAZGRlwcXHR2echwyeEwIwZM7Bnzx4cOnQIbdu21XdIRuuNN95QaWu+vr4YO3YsMjIyDCZhA2i8t3wlJiaKK1euiNmzZwsLCwuRmZkphBBi3rx5Yvz48Yr6FbfdfPDBB+LKlSsiMTFR5bab9PR0IZVKxdKlS8XVq1fF0qVLG/UtX9o8dsuWLRNmZmZi165dIicnRzEVFhY2+OfTNV0cv8o4epwqvP/++8LKykocOXJEqW2VlJToO7RGwVBHjze6pC2EEGvXrhVubm7CzMxMdO3aVekWiNDQUNGnTx+l+keOHBEvv/yyMDMzE+7u7iIhIUFlm19//bXw9PQUpqamomPHjmL37t26/hh6oe1j5+bmJgCoTIsWLWqAT9PwdPHd+zsmbaqgrl0BEElJSfoOrVEw1KTNV3MSEREZiUbVp01ERNSYMWkTEREZCSZtIiIiI8GkTUREZCSYtImIiIwEkzYREZGRYNImIiIyEkzaRERERoJJmxrUwoUL8d577ynmAwICMHv2bJ3tb/PmzWjZsqXOtl8dd3d3rFy5EgAgl8vh6uqKs2fP6iUWImocmLS17MiRI5BIJFVOgYGBAIDMzEylcmtra/j7+yMtLU2xrQkTJqjdxoABA6rcf1RUlNp1OnbsqPPPXpP//ve/WLVqFebPn6/vULB582b06NGjwfYnk8kwZ84c/POf/2ywfRKRZoYNGwZra2uMHDlS36GoYNLWMj8/P+Tk5KhM69evh0QiwbRp05Tq//zzz8jJyUFaWhpatGiBgQMH4ubNm4rlAwYMUNnWtm3bqo2hU6dOKutU957d0tJSlbJnz54pXgNZF9Wtl5iYiJ49e8Ld3b3O29W2ffv2YciQIQ26z7Fjx+LYsWO4evVqg+6XiOpm1qxZ2LJli77DUItJW8vMzMzg4OCgNOXl5eGjjz7C/Pnz8fbbbyvVt7GxgYODAzp37oz169ejpKQEKSkpiuUymUxle9bW1tXGYGJiorKOra2tYrm7uzs+++wzTJgwAVZWVpg8ebLiMvL3338PLy8vyGQyZGVlIS8vDyEhIbC2tkazZs0QHByM69evK7ZV1XrqbN++HW+99Va1se/fvx9WVlZKDWbTpk3o1KkTZDIZHB0dMWPGDMWy+Ph4+Pj4wMLCAi4uLpg2bRqKioqq3ceTJ0+QkpKiiKXieISEhKB58+Zwc3PD3r17cf/+fQwZMgTNmzeHj48Pzpw5o7Sd3bt3K+Jyd3dHXFxctfu1sbGBn59fjX90UcOo3DWj666amvZPwMOHD2FnZ4fMzEy9xhEYGAhLS0uV8pEjRyI+Pl4PEf2FSVvH/ve//2Ho0KHo06cPlixZUm3dZs2aAQCePn2q87iWL18Ob29vnD17FgsXLgQAlJSUICYmBhs3bsTly5dhZ2eHCRMm4MyZM9i3bx9OnDgBIQQGDhyoFKO69SrLy8vDpUuXqn2f9vbt2zFq1Chs2bIFISEhAICEhARMnz4d7733Hi5evIh9+/ahffv2inWaNGmCL774ApcuXUJycjIOHTqEuXPnVvvZDx48CAcHB3Tq1ElRtmLFCvTq1Qvnz5/HoEGDMH78eISEhGDcuHE4d+4c2rdvj5CQEFS8X+fs2bMYNWoU3nnnHVy8eBFRUVFYuHAhNm/eXO2+u3XrhmPHjlVbh+pn8ODB6Nu3r9plJ06cgEQiwblz57Bnz54a26S2qEvQDbn/qlR0wU2dOlVl2bRp0yCRSDBhwgSVZcePH4dUKq2yq06Trj0AiImJweDBgw3iapw6n3zyCT7//HMUFBToLwj9vmSscXv27JkIDg4WL774osjPz1dadvPmTQFAnD9/XgghRFFRkZgyZYqQSqXiwoULQog/X8MolUqFhYWF0vTpp59Wuc9FixaJJk2aqKwTFhamqOPm5iaGDh2qtF5SUpIAIDIyMhRlv//+uwAg0tPTFWUPHjwQ5ubmYufOnVWup8758+cFAHHr1i2l8orX361du1ZYWVmJQ4cOKS13cnISCxYsqHbbf7dz505hY2Oj9LmsrKyU6kyePFlEREQo5t3c3MS4ceMU8zk5OQKAWLhwoaLsxIkTAoDIyckRQggxZswY0a9fP6XtfvTRR8LLy0tpuytWrFCqs2rVKuHu7l7rz0N198033wiJRKJ4j/nfvfvuu+Kll15Su54mr2KUy+W1qmeor3kMDQ0VLi4uwsrKSuk93I8fPxYtW7YUrq6uIjQ0VGW9sLAwER4eLiwsLERWVpba7Q4YMEDpPd85OTni0aNHVcZSUlIiWrZsKY4fP66Vz1adrl27ik6dOqlMd+7cUdQ5fPiwGDFihNp1161bp/MYq8IzbR2aP38+Tpw4gb1796JFixZq6/j5+aF58+awtLTEd999h82bN8PHx0exPDAwEBkZGUrT9OnTq92vp6enyjqff/65Uh11Z7xmZmbo3LmzYv7q1aswMTFB9+7dFWU2Njbw9PRU6petvJ46jx8/BgA0bdpUZdnu3bsxe/ZspKSkKAbqAUBubi7u3r2LN954o8rtHj58GP369UObNm1gaWmJkJAQPHz4EMXFxWrrCyHw3XffqVym/3v89vb2AKD0/1BRlpubC+DPY9OrVy+lbfTq1QvXr1/Hs2fPqozX3NwcJSUlVS6n+nvzzTdhZ2enctWjpKQEO3bsQFhYGAD1Z79lZWWYMWMGWrZsCRsbG3z88ceKqysV68yYMQMRERGwtbVFv379sH//fvTu3VuxzptvvokbN24o1pkwYQLS0tKwatUqxRlnZmamyv7lcjlmzZoFOzs7NG3aFL1798bp06eV4gsICMCsWbMwd+5ctGrVCg4ODoiKilKqs2vXLvj4+MDc3Bw2Njbo27dvle0BALp27QpXV1fs2bNHUbZnzx64uLjg5ZdfVqlfXFyMnTt34v3338ebb75Z5dWlunbt/fTTTzAxMUHPnj0VZeXl5Vi2bBnat28PmUwGV1dXpd+ygIAAzJw5E7Nnz4a1tTXs7e3x1Vdfobi4GBMnToSlpSXatWuHn376SWlfZ8+exaVLl1QmJyenKuOr8NZbb+m1i4tJW0d27NiBf/3rX9i+fTs8PDyqrffbb7/h/v37uHPnDsaNG6e03MLCAu3bt1eaWrVqVe2+zczMVNapSDp/325l5ubmkEgkinlRxavWhRBK9Sqvp05Fn3peXp7KspdeegmtW7dGUlKS0j7Nzc2r3WZWVhYGDhwIb29v7N69G2fPnsXatWsBVN3FcOrUKZSWlqJ3795K5aampop/V3wWdWUVg+wqH4OKspo8evQIrVu3rrEeac7ExAQhISHYvHmz0v/J119/jdLSUowdO7bKdZOTk2FiYoKTJ0/iiy++wIoVK7Bx40a1ddLT07F+/XoUFxcjIiICp0+fxsGDB9GkSRMMGzZM8V1ZtWoVevbsicmTJysGhrq4uKjse+7cudi9ezeSk5MVXTL9+/fHo0ePVPZvYWGBkydPIjY2Fp9++ilSU1MBADk5OfjHP/6BSZMm4erVqzhy5AiGDx9e43dz4sSJSEpKUsxv2rQJkyZNUlt3x44d8PT0hKenJ8aNG6fSbjV19OhRlZOJyMhILFu2DAsXLsSVK1ewdetWld+y5ORk2Nra4tSpU5g5cybef/99vP322/Dz88O5c+fQv39/jB8/Xmt/LHfr1g2nTp2CXC7XyvbqiklbBzIyMjBp0iQsXboU/fv3r7aui4sL2rVrBxsbmwaKrva8vLxQVlaGkydPKsoePnyI33//HS+++GKdttWuXTu0aNECV65cUbvs8OHD2Lt3L2bOnKkot7S0hLu7Ow4ePKh2m2fOnEFZWRni4uLQo0cPdOjQAXfv3q02jr1792LQoEGQSqV1ir8yLy8vlRH5x48fR4cOHard9qVLl9SevZB2TZo0CZmZmThy5IiibNOmTRg+fHi1Z3suLi5YsWIFPD09MXbsWMycORMrVqxQqtO+fXvExsbC09MTHTt2xIgRIzB8+HB4eHjgpZdeQmJiIi5evKj4rltZWcHMzAzNmjVTnHFW/o4UFxcjISEBy5cvR3BwMLy8vLBhwwaYm5sjMTFRqW7nzp2xaNEieHh4ICQkBL6+voo2kpOTg7KyMgwfPhzu7u7w8fHBtGnT0Lx582qP1/jx4/HLL78gMzMTWVlZSE9PVzmBqJCYmKhYNmDAABQVFalto99//z2aN2+uNFXXh5+Zmal0pltYWIhVq1YhNjYWoaGhaNeuHXr37o13331Xab0uXbrg448/hoeHByIjI2Fubg5bW1tMnjwZHh4e+OSTT/Dw4UNcuHCh2mPwd/3798fbb7+NH3/8Ec7OzkpXPNq0aQO5XI579+7VenvaZKKXvTZiDx48wNChQxEQEIBx48ap/MdKpdI6nWmp+3KYmJgojQavrKysTGUdiUSi8hdqTTw8PDBkyBBMnjwZ69evh6WlJebNm4c2bdrU+XapJk2aoG/fvvjll18wdOhQleUdOnTA4cOHERAQABMTE8VDSaKiojB16lTY2dkhODgYhYWFSE9Px8yZM9GuXTuUlZVh9erVGDx4MNLT0/Hll19WG8e+ffuwePHiOsWuzocffohXX30VS5YswejRo3HixAmsWbMG69atq3a9Y8eO6X3w0fOgY8eO8PPzw6ZNmxAYGIgbN27g2LFjSndmqNOjRw+lKyg9e/ZEXFwcnj17pki0lc8Gb9y4gYULF+LXX3/FgwcPFGfYt27dgre3d63ivXHjBp4+farU5WJqaopu3bqp3CJYuSvK0dFR0W3TpUsXvPHGG/Dx8UH//v0RFBSEkSNH1njHia2tLQYNGoTk5GQIITBo0CC1vzHXrl3DqVOnFJfSTUxMMHr0aGzatEll8F9gYCASEhKUyqq7Svj48WOl7rOrV69CLpdX2z0GKB8PqVQKGxubaru2auPAgQNVLqu4Aqivbi4mbS374YcfkJWVhaysLDg6Oqosd3Nzq9PtDPv371fZjqenJ/7v//6vynUuX76sso5MJsOTJ09qvd8KSUlJCA8Px5tvvonS0lL4+/vjxx9/VLp0XFvvvfcewsLCEBsbiyZNVC/yeHp64tChQwgICIBUKkVcXBxCQ0Px5MkTrFixAnPmzIGtra3igQcvvfQS4uPjsWzZMkRGRsLf3x8xMTGKkeeV3bhxA3/88UeNVz9qo2vXrti5cyc++eQTLFmyBI6Ojvj000/VjrStcOLECeTn5xvkAxsao7CwMMyYMQNr165FUlIS3NzcakwAtVG5a2nw4MFwcXHBhg0b4OTkhPLycnh7e6t9/kFVKi4vq+tyqVxWue1JJBLFHwpSqRSpqak4fvw4UlJSsHr1aixYsAAnT55E27Ztq41h0qRJitspK7qZKktMTERZWRnatGmjFKOpqSny8vKU/jio6NqrLVtbW6Xus5q6xyqoOx7VdW3VV0V3hd66ufQx+o2eT+Xl5aJbt25i69atetl/XFycCA4O1su+hRBi5MiR4vPPP9fb/p83hYWFonnz5iIhIUE4OzuLxYsXKy2vPKK7T58+4sUXX1SqM2/ePKWyyus8ePBAABBHjx5VlB07dkwAEN98842irF+/fmLGjBlV7r+oqEiYmZmJf//734rlpaWlok2bNmL58uVV7l8IIYYMGaJ2hLcQQpSVlYk2bdqIuLg4tctDQ0PFkCFDFHWdnJyEk5OTKCsrU9n206dPhb29vYiLixMXL15Umjp06CBWr16tdru1tXz5ctGlSxfF/OPHj4W5ubnYsGFDleuoOx7q7tqo/P9RHxs3bhTOzs5a2ZYmeKZNDUYikeCrr76qU9+SNjk7OyMyMlIv+5bL5ejSpQs++OADvez/edS8eXOMHj0a8+fPR35+frVXQSpkZ2cjIiICU6ZMwblz57B69epqH5pjbW0NGxsbfPXVV3B0dMStW7cwb948lXru7u44efIkMjMz0bx5c5XLxBYWFnj//ffx0UcfoVWrVnB1dUVsbCxKSkoUo91r4+TJkzh48CCCgoJgZ2eHkydP4v79+7UagyKVShWX4tWNy/j++++Rl5eHsLAwWFlZKS0bOXIkEhMTlR58VNeuvf79+yMyMlJxxt60aVP885//xNy5c2FmZoZevXrh/v37uHz5cp2OibYdO3YMQUFBets/kzY1qC5duqBLly562feoUaP0sl/gz+6Jjz/+WG/7f16FhYUhMTERQUFBcHV1rbF+SEgIHj9+jG7dukEqlWLmzJlKL7iprEmTJti+fTtmzZoFb29veHp64osvvkBAQIBSvTlz5iA0NBReXl54/Pix0qOKKyxduhTl5eUYP348CgsL4evriwMHDtTYH/13LVq0wNGjR7Fy5UoUFBTAzc0NcXFxCA4OrvX6VUlMTETfvn1VEjYAjBgxAtHR0Th37hy6du0KoO5dez4+PvD19cXOnTsxZcoUAH++YMjExASffPIJ7t69C0dHR7UPgmkoT548wTfffFNtn7euSYTQwlh9IiKievrxxx8xZ84cXLp0Se24F31bu3Yt9u7dW+OARl3imTYRERmEgQMH4vr167hz547ae9n1zdTUFKtXr9ZrDDzTJiIiMhKGd/2BiIiI1GLSJiIiMhJM2kREREaCSZuIiMhIMGkTEREZCSZtIiIiI8GkTUREZCSYtImIiIwEkzYREZGRYNImIiIyEkzaRERERuL/ASCuuohuSOtWAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAADeCAYAAAAQLVhMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAArlUlEQVR4nO3dd1RU1/o38O9IGREBFaQpglHEUIIxXgt6ARNFsURFo14LqMRobBgkXtEYMQUsF9QYJcYg4FrXGs3Vm2KJBY01tlh/SowgUbg2QlMHkf3+4cskwwxlhqnw/ax11nL22efsZ8/M8eGcvc8ciRBCgIiIiIxeI0MHQERERLXDpE1ERGQimLSJiIhMBJM2ERGRiWDSJiIiMhFM2kRERCaCSZuIiMhEmBs6AF0rLy/H3bt3YWNjA4lEYuhwiAxCCIGioiK4urqiUSPj+ludxyg1dOocn/U+ad+9exdubm6GDoPIKOTk5KB169aGDkMBj1GiF2pzfNb7pG1jYwPgxZtha2tr4GiIDKOwsBBubm7y48GY8Bilhk6d47PeJ+2Ky222trb8D4EaPGO8/MxjlOiF2hyfxjW4RURERFVi0iYiIjIRTNpEREQmgkmbiIjIRNT7iWhERFS/eMz7TmV51pKBeo5E/3imTUREZCKYtImIiEwEkzYREZGJYNImIiIyEUzaREREJoJJm4iIyETwli8iPVJ1q0pDuE2FiLSDZ9pEREQmgkmbiIjIRDBpExERmQgmbSIiIhPBpE1ERGQiOHuciIjqhYZwdwbPtImIiEwEkzYREZGJMGjSTkhIwN/+9jfY2NjA0dERQ4cOxfXr1xXqCCEQFxcHV1dXWFlZITg4GFeuXDFQxERERIZj0KSdkZGB6dOn4+TJk9i/fz/KysoQEhKCkpISeZ1ly5YhKSkJn3/+OX7++Wc4Ozujb9++KCoqMmDkRERE+mfQiWh79uxReJ2amgpHR0ecPXsWgYGBEEJg5cqVWLBgAcLCwgAA6enpcHJywqZNmzBlyhRDhE1ERGQQRjWmXVBQAABo0aIFAODWrVvIy8tDSEiIvI5UKkVQUBCOHz+uch8ymQyFhYUKCxEZDx6jRJozmqQthEB0dDR69eoFX19fAEBeXh4AwMnJSaGuk5OTfF1lCQkJsLOzky9ubm66DZyI1MJjlEhzRpO0Z8yYgYsXL2Lz5s1K6yQSicJrIYRSWYXY2FgUFBTIl5ycHJ3ES0Sa4TFKpDmj+HGVmTNnYvfu3Thy5Ahat24tL3d2dgbw4ozbxcVFXn7v3j2ls+8KUqkUUqlUtwETkcZ4jBJpzqBn2kIIzJgxAzt37sTBgwfRtm1bhfVt27aFs7Mz9u/fLy8rLS1FRkYGAgIC9B0uERGRQRn0THv69OnYtGkTdu3aBRsbG/k4tZ2dHaysrCCRSDB79mzEx8fD09MTnp6eiI+PR5MmTTBmzBhDhk5ERKR3Bk3aycnJAIDg4GCF8tTUVEyYMAEAMHfuXDx58gTTpk1Dfn4+unXrhn379sHGxkbP0RIRERmWQZO2EKLGOhKJBHFxcYiLi9N9QEREREbMaGaPExERUfWYtImIiEwEkzYREZGJYNImIiIyEUzaREREJsIofhGNiJR5zPtOqSxryUADREJExoJn2kRERCaCSZuIiMhEMGkTERGZCCZtIiIiE8GkTUREZCI0Stq3bt3SdhxERERUA41u+Wrfvj0CAwMRGRmJESNGoHHjxtqOi4iIqM5U3ToJmO7tkxqdaf/yyy949dVXMWfOHDg7O2PKlCk4ffq0tmMjIiKiv9Aoafv6+iIpKQl37txBamoq8vLy0KtXL/j4+CApKQn379/XdpxEREQNXp0mopmbm2PYsGHYtm0bli5dips3byImJgatW7dGeHg4cnNztRUnERFRg1enpH3mzBlMmzYNLi4uSEpKQkxMDG7evImDBw/izp07GDJkiLbiJCIiavA0moiWlJSE1NRUXL9+HQMGDMDGjRsxYMAANGr04m+Atm3bYt26dejYsaNWgyUiImrINEraycnJmDRpEiZOnAhnZ2eVddq0aYOUlJQ6BUdERER/0ihpZ2Zm1ljH0tISERERmuyeiIiIVNBoTDs1NRXbt29XKt++fTvS09PrHBQREREp0yhpL1myBA4ODkrljo6OiI+Pr/V+jhw5gsGDB8PV1RUSiQT/+c9/FNZPmDABEolEYenevbsmIRMREZk8jZJ2dnY22rZtq1Tu7u6O27dv13o/JSUl8Pf3x+eff15lnf79+yM3N1e+fP/995qETEREZPI0GtN2dHTExYsX4eHhoVD+yy+/wN7evtb7CQ0NRWhoaLV1pFJplZPdVJHJZJDJZPLXhYWFtd6WiHSPxyiR5jRK2qNHj8asWbNgY2ODwMBAAEBGRgaioqIwevRorQZ4+PBhODo6olmzZggKCsKnn34KR0fHKusnJCRg8eLFWo2BSJeq+m3k+orHKKmjoR0fNdHo8vgnn3yCbt264Y033oCVlRWsrKwQEhKC119/Xa0x7ZqEhobi3//+Nw4ePIjExET8/PPPeP311xX+Sq8sNjYWBQUF8iUnJ0dr8RBR3fEYJdKcRmfalpaW2Lp1Kz7++GP88ssvsLKygp+fH9zd3bUa3KhRo+T/9vX1RZcuXeDu7o7vvvsOYWFhKreRSqWQSqVajYOItIfHKJHmNEraFTp06IAOHTpoK5Yaubi4wN3dvVb3iRMREdU3GiXt58+fIy0tDQcOHMC9e/dQXl6usP7gwYNaCa6yhw8fIicnBy4uLjrZPxERkTHTKGlHRUUhLS0NAwcOhK+vLyQSiUaNFxcX49dff5W/vnXrFi5cuIAWLVqgRYsWiIuLw/Dhw+Hi4oKsrCzMnz8fDg4OGDZsmEbtERERmTKNkvaWLVuwbds2DBgwoE6NnzlzBr1795a/jo6OBgBEREQgOTkZly5dwsaNG/HHH3/AxcUFvXv3xtatW2FjY1OndomIiEyRxhPR2rdvX+fGg4ODIYSocv3evXvr3AapR9XtFVlLBhogEqKGjcciqaLRLV9z5szBqlWrqk24REREpF0anWn/9NNPOHToEH744Qf4+PjAwsJCYf3OnTu1EhwRERH9SaOk3axZM04GIyIi0jONknZqaqq24yAiIqIaaDSmDQBlZWX48ccfsW7dOhQVFQEA7t69i+LiYq0FR0RERH/S6Ew7Ozsb/fv3x+3btyGTydC3b1/Y2Nhg2bJlePr0Kb744gttx0mVcGYpEVHDo9GZdlRUFLp06YL8/HxYWVnJy4cNG4YDBw5oLTgiIiL6k8azx48dOwZLS0uFcnd3d9y5c0crgREREZEijc60y8vL8fz5c6Xy33//nb9WRkREpCMaJe2+ffti5cqV8tcSiQTFxcVYtGhRnX/alIiIiFTT6PL4ihUr0Lt3b3h7e+Pp06cYM2YMMjMz4eDggM2bN2s7RiIiIoKGSdvV1RUXLlzA5s2bce7cOZSXlyMyMhJjx45VmJhGRERE2qNR0gYAKysrTJo0CZMmTdJmPGRCeNvZC3wfGgZVnzOg38+6qhhU4XewftIoaW/cuLHa9eHh4RoFQ0RERFXTKGlHRUUpvH727BkeP34MS0tLNGnShEmbiIhIBzSaPZ6fn6+wFBcX4/r16+jVqxcnohEREemIxr89XpmnpyeWLFmidBZORERE2qG1pA0AZmZmuHv3rjZ3SURERP+fRmPau3fvVngthEBubi4+//xz9OzZUyuBEREZijqztI2VMcx2J+3TKGkPHTpU4bVEIkHLli3x+uuvIzExURtxERERUSUaJe3y8nJtx0FEREQ10OqYtrqOHDmCwYMHw9XVFRKJBP/5z38U1gshEBcXB1dXV1hZWSE4OBhXrlwxTLBEREQGptGZdnR0dK3rJiUlVbmupKQE/v7+mDhxIoYPH660ftmyZUhKSkJaWho6dOiATz75BH379sX169f5NDEiImpwNEra58+fx7lz51BWVgYvLy8AwI0bN2BmZobOnTvL60kkkmr3ExoaitDQUJXrhBBYuXIlFixYgLCwMABAeno6nJycsGnTJkyZMkXldjKZDDKZTP66sLBQrb4RkW7xGCXSnEZJe/DgwbCxsUF6ejqaN28O4MUPrkycOBF///vfMWfOnDoHduvWLeTl5SEkJEReJpVKERQUhOPHj1eZtBMSErB48eI6t2+K1JktWh9mx5JpasjHqKnh7+obH43GtBMTE5GQkCBP2ADQvHlzfPLJJ1qbPZ6XlwcAcHJyUih3cnKSr1MlNjYWBQUF8iUnJ0cr8RCRdvAYJdKcRmfahYWF+N///gcfHx+F8nv37qGoqEgrgVWofIldCFHtZXepVAqpVKrVGIhIe3iMEmlOozPtYcOGYeLEifj666/x+++/4/fff8fXX3+NyMhI+fhzXTk7OwOA0ln1vXv3lM6+iYiIGgKNkvYXX3yBgQMHYty4cXB3d4e7uzvGjh2L0NBQrF27ViuBtW3bFs7Ozti/f7+8rLS0FBkZGQgICNBKG0RERKZEo8vjTZo0wdq1a7F8+XLcvHkTQgi0b98e1tbWau2nuLgYv/76q/z1rVu3cOHCBbRo0QJt2rTB7NmzER8fD09PT3h6eiI+Ph5NmjTBmDFjNAmbiIjIpGmUtCvk5uYiNzcXgYGBsLKyqnG8ubIzZ86gd+/e8tcV939HREQgLS0Nc+fOxZMnTzBt2jTk5+ejW7du2LdvH+/RJiKiBkmjpP3w4UOMHDkShw4dgkQiQWZmJl566SW8/fbbaNasWa1nkAcHB0MIUeV6iUSCuLg4xMXFaRKmWurzrQ28vYtIv0zt9kvGYDo0GtN+7733YGFhgdu3b6NJkyby8lGjRmHPnj1aC46IiIj+pNGZ9r59+7B37160bt1aodzT0xPZ2dlaCYyIiIgUaXSmXVJSonCGXeHBgwe8/5KIiEhHNEragYGB2Lhxo/y1RCJBeXk5li9frjCxjIiIiLRHo8vjy5cvR3BwMM6cOYPS0lLMnTsXV65cwaNHj3Ds2DFtx0hERETQMGl7e3vj4sWLSE5OhpmZGUpKShAWFobp06fDxcVF2zESGQV1ZrdyJiwZq7p+N9XZvr7cgWNM1E7az549Q0hICNatW8cn9RAREemR2mPaFhYWuHz5slo/okJERER1p9FEtPDwcKSkpGg7FiIiIqqGRmPapaWl+Oqrr7B//3506dJF6TfHk5KStBIcERER/UmtpP3bb7/Bw8MDly9fRufOnQEAN27cUKjDy+ZERES6oVbS9vT0RG5uLg4dOgTgxc+WfvbZZ3y+tQ6Z2ixkziwlopqY2v9rxkStMe3KD/f44YcfUFJSotWAiIiISDWNJqJVqO4JXURERKRdaiVtiUSiNGbNMWwiIiL9UGtMWwiBCRMmyB8K8vTpU0ydOlVp9vjOnTu1FyEREREBUDNpR0REKLweN26cVoMhIiKiqqmVtFNTU3UVBxEREdVAox9XodrjLVBV09V7U9V+G9r7S/rBB8lUraH1Vx/qNHuciIiI9IdJm4iIyEQYddKOi4uT32ZWsTg7Oxs6LCIiIoMw+jFtHx8f/Pjjj/LXZmZmBoyGiIjIcIw+aZubm6t1di2TySCTyeSvCwsLdREWEWmIxyiR5ow+aWdmZsLV1RVSqRTdunVDfHw8XnrppSrrJyQkYPHixTqNSdWMSM5M1i1tzAivDzP568PMeH0co0T1lVGPaXfr1g0bN27E3r17sX79euTl5SEgIAAPHz6scpvY2FgUFBTIl5ycHD1GTEQ14TFKpDmjPtMODQ2V/9vPzw89evRAu3btkJ6ejujoaJXbSKVS+c+sEpHx4TFKpDmjPtOuzNraGn5+fsjMzDR0KERERHpnUklbJpPh2rVrcHFxMXQoREREemfUSTsmJgYZGRm4desWTp06hREjRqCwsFDpwSVEREQNgVGPaf/+++/4xz/+gQcPHqBly5bo3r07Tp48CXd3d0OHRkREpHdGnbS3bNli0Pb5IACi+o3HLZkao748TkRERH9i0iYiIjIRTNpEREQmgkmbiIjIRDBpExERmQijnj3e0BjrTFZjjQvQXWzG3Gciarh4pk1ERGQimLSJiIhMBJM2ERGRiWDSJiIiMhFM2kRERCaCs8eJiKjBUXWHSNaSgUa73wo80yYiIjIRTNpEREQmgkmbiIjIRDBpExERmQgmbSIiIhPBpE1ERGQieMsXERm9qh7goupWGj7shTSlzndHm7dxqYNn2kRERCaCSZuIiMhEmETSXrt2Ldq2bYvGjRvjtddew9GjRw0dEhERkd4ZfdLeunUrZs+ejQULFuD8+fP4+9//jtDQUNy+fdvQoREREemV0U9ES0pKQmRkJN5++20AwMqVK7F3714kJycjISFBqb5MJoNMJpO/LigoAAAUFhZW20657LEWoybSr5q+3xXrhRD6CKdamhyjVR2fqrbhsUz6UNX3VdX3T6vHpzBiMplMmJmZiZ07dyqUz5o1SwQGBqrcZtGiRQIAFy5cVCw5OTn6OHSrxWOUCxfVS22OT4kQRvCndxXu3r2LVq1a4dixYwgICJCXx8fHIz09HdevX1fapvJf8eXl5Xj06BHs7e0hkUhUtlNYWAg3Nzfk5OTA1tZW+x0xAuxj/aFJP4UQKCoqgqurKxo1MuyomCbHKFWvoXz3DUEf7606x6fRXx4HoHQgCyGqPLilUimkUqlCWbNmzWrVjq2tbb3/wrOP9Ye6/bSzs9NhNLVXl2OUqtdQvvuGoOv3trbHp1FPRHNwcICZmRny8vIUyu/duwcnJycDRUVERGQYRp20LS0t8dprr2H//v0K5fv371e4XE5ERNQQGP3l8ejoaIwfPx5dunRBjx498OWXX+L27duYOnWq1tqQSqVYtGiR0iW7+oR9rD8aSj+p9vid0B1je2+NeiJahbVr12LZsmXIzc2Fr68vVqxYgcDAQEOHRUREpFcmkbSJiIjIyMe0iYiI6E9M2kRERCaCSZuIiMhEMGkTERGZiHqRtNV9dGdGRgZee+01NG7cGC+99BK++OILpTo7duyAt7c3pFIpvL298c0339S53bowRB/j4uIgkUgUFmdnZ63266+03ccrV65g+PDh8PDwgEQiwcqVK7XSbl0Zop/6/ixJ+9T53uTm5mLMmDHw8vJCo0aNMHv2bP0FaoLUeW937tyJvn37omXLlrC1tUWPHj2wd+9e/QWru8cC6MeWLVuEhYWFWL9+vbh69aqIiooS1tbWIjs7W2X93377TTRp0kRERUWJq1evivXr1wsLCwvx9ddfy+scP35cmJmZifj4eHHt2jURHx8vzM3NxcmTJzVu1xT7uGjRIuHj4yNyc3Ply71797TeP1318fTp0yImJkZs3rxZODs7ixUrVtS5XVPtpz4/S9I+db83t27dErNmzRLp6emiU6dOIioqSr8BmxB139uoqCixdOlScfr0aXHjxg0RGxsrLCwsxLlz5/QSr8kn7a5du4qpU6cqlHXs2FHMmzdPZf25c+eKjh07KpRNmTJFdO/eXf565MiRon///gp1+vXrJ0aPHq1xu3VhqD4uWrRI+Pv71zH62tFFH//K3d1dZTLT5+eoSXva6qc+P0vSvrp8T4OCgpi0q6GN/wO8vb3F4sWLtR2aSiZ9eby0tBRnz55FSEiIQnlISAiOHz+ucpsTJ04o1e/Xrx/OnDmDZ8+eVVunYp+atKspQ/WxQmZmJlxdXdG2bVuMHj0av/32W127pERXfdRFu3VhqH5W0MdnSdqn7+9pQ6KN97a8vBxFRUVo0aKFLkJUYtJJ+8GDB3j+/LnSw0OcnJyUHjJSIS8vT2X9srIyPHjwoNo6FfvUpF1NGaqPANCtWzds3LgRe/fuxfr165GXl4eAgAA8fPhQG12T01UfddFuXRiqn4D+PkvSPn1/TxsSbby3iYmJKCkpwciRI3URohKj/+3x2lDn0Z1V1a9cXpt9qttuXRiij6GhofJ/+/n5oUePHmjXrh3S09MRHR2tfidqoIs+6qLdujJEP/X9WZL26ft72pBo+t5u3rwZcXFx2LVrFxwdHXUVngKTTtqaPLrT2dlZZX1zc3PY29tXW6din/p8ZKih+qiKtbU1/Pz8kJmZqUlXqqSrPuqi3bowVD9V0dVnSdrHRxTrTl3e261btyIyMhLbt29Hnz59dBmmApO+PK7Jozt79OihVH/fvn3o0qULLCwsqq1TsU99PjLUUH1URSaT4dq1a3BxcdGkK1XSVR910W5dGKqfqujqsyTt4yOKdUfT93bz5s2YMGECNm3ahIEDB+o6TEV6me6mQxXT9VNSUsTVq1fF7NmzhbW1tcjKyhJCCDFv3jwxfvx4ef2KW2jee+89cfXqVZGSkqJ0C82xY8eEmZmZWLJkibh27ZpYsmRJlbd8VdVufejjnDlzxOHDh8Vvv/0mTp48KQYNGiRsbGxMpo8ymUycP39enD9/Xri4uIiYmBhx/vx5kZmZWet260s/9flZkvap+70RQsi/E6+99poYM2aMOH/+vLhy5Yohwjdq6r63mzZtEubm5mLNmjUKt1D+8ccfeonX5JO2EEKsWbNGuLu7C0tLS9G5c2eRkZEhXxcRESGCgoIU6h8+fFi8+uqrwtLSUnh4eIjk5GSlfW7fvl14eXkJCwsL0bFjR7Fjxw612tU2Q/Rx1KhRwsXFRVhYWAhXV1cRFham04Ne2328deuWAKC0VN6PPj/HmtrTVT/1/VmS9qn7vVH1nXB3d9dv0CZCnfc2KChI5XsbERGhl1j5aE4iIiITYdJj2kRERA0JkzYREZGJYNImIiIyEUzaREREJoJJm4iIyEQwaRMREZkIJm0iIiITwaRNRERkIpi0Sa8WLlyId955R/46ODgYs2fP1ll7aWlpaNasmc72Xx0PDw+sXLkSwIvf+m7Tpg3Onj1rkFiIqH5g0tayw4cPQyKRVLn07t0bAJCVlaVQ3rx5cwQGBiIjI0O+rwkTJqjcR//+/atsPy4uTuU2HTt21Hnfa/K///0Pq1atwvz58w0dCtLS0tC9e3e9tSeVShETE4N//vOfemuTiDQzbNgwNG/eHCNGjDB0KEqYtLUsICAAubm5Ssu6desgkUgwbdo0hfo//vgjcnNzkZGRAVtbWwwYMAC3bt2Sr+/fv7/SvjZv3lxtDD4+Pkrb/PTTT1XWLy0tVSp7/vw5ysvL1ex99dulpKSgR48e8PDwUHu/2rZ7924MGTJEr22OHTsWR48exbVr1/TaLhGpZ9asWdi4caOhw1CJSVvLLC0t4ezsrLDk5+fj/fffx/z58/HWW28p1Le3t4ezszNeeeUVrFu3Do8fP8a+ffvk66VSqdL+mjdvXm0M5ubmSts4ODjI13t4eOCTTz7BhAkTYGdnh8mTJ8svI3/77bfw9vaGVCpFdnY28vPzER4ejubNm6NJkyYIDQ1VeAZzVdupsmXLFrz55pvVxr5nzx7Y2dkpHDAbNmyAj48PpFIpXFxcMGPGDPm6pKQk+Pn5wdraGm5ubpg2bRqKi4urbePp06fYt2+fPJaK9yM8PBxNmzaFu7s7du3ahfv372PIkCFo2rQp/Pz8cObMGYX97NixQx6Xh4cHEhMTq23X3t4eAQEBNf7RRfpReWhG10M1NbVPwMOHD+Ho6IisrCyDxtG7d2/Y2NgolY8YMQJJSUkGiOhPTNo69scff2Do0KEICgrCxx9/XG3dJk2aAACePXum87iWL18OX19fnD17FgsXLgQAPH78GAkJCfjqq69w5coVODo6YsKECThz5gx2796NEydOQAiBAQMGKMSoarvK8vPzcfnyZXTp0qXKmLZs2YKRI0di48aNCA8PBwAkJydj+vTpeOedd3Dp0iXs3r0b7du3l2/TqFEjfPbZZ7h8+TLS09Nx8OBBzJ07t9q+HzhwAM7OzvDx8ZGXrVixAj179sT58+cxcOBAjB8/HuHh4Rg3bhzOnTuH9u3bIzw8HBXP1zl79ixGjhyJ0aNH49KlS4iLi8PChQuRlpZWbdtdu3bF0aNHq61DdTN48GD06dNH5boTJ05AIpHg3Llz2LlzZ43HpLaoStD6bL8qFUNwU6dOVVo3bdo0SCQSTJgwQWnd8ePHYWZmVuVQnSZDewCQkJCAwYMHG8XVOFU+/PBDfPrppygsLDRcEHp5llgD9fz5cxEaGipefvllUVBQoLCu4nGK58+fF0IIUVxcLKZMmSLMzMzExYsXhRAvHglnZmYmrK2tFZaPPvqoyjYXLVokGjVqpLRNZGSkvI67u7sYOnSownapqakCgLhw4YK87MaNGwKAOHbsmLzswYMHwsrKSmzbtq3K7VQ5f/68ACBu376tUB4UFCSioqLEmjVrhJ2dnTh48KDCeldXV7FgwYJq9/1X27ZtE/b29gr9srOzU6gzefJkER0dLX/t7u4uxo0bJ3+dm5srAIiFCxfKy06cOCEAiNzcXCGEEGPGjBF9+/ZV2O/7778vvL29Ffa7YsUKhTqrVq0SHh4ete4Pqe+bb74REolE5bPC3377bdGpUyeV21V8F9Uhk8lqVU+TfetDRESEcHNzE3Z2duLx48fy8idPnohmzZqJNm3aqHzkZGRkpIiKihLW1tYiOztb5X779++v8Lzp3Nxc8ejRoypjefz4sWjWrJk4fvy4VvpWnc6dOwsfHx+l5c6dO/I6hw4dEsOHD1e57dq1a3UeY1V4pq1D8+fPx4kTJ7Br1y7Y2tqqrBMQEICmTZvCxsYG//3vf5GWlgY/Pz/5+t69e+PChQsKy/Tp06tt18vLS2mbTz/9VKGOqjNeS0tLvPLKK/LX165dg7m5Obp16yYvs7e3h5eXl8K4bOXtVHny5AkAoHHjxkrrduzYgdmzZ2Pfvn3yiXoAcO/ePdy9exdvvPFGlfs9dOgQ+vbti1atWsHGxgbh4eF4+PAhSkpKVNYXQuC///2v0mX6v8bv5OQEAAqfQ0XZvXv3ALx4b3r27Kmwj549eyIzMxPPnz+vMl4rKys8fvy4yvVUd4MGDYKjo6PSVY/Hjx9j69atiIyMBKD67LesrAwzZsxAs2bNYG9vjw8++EB+daVimxkzZiA6OhoODg7o27cv9uzZg169esm3GTRoEG7evCnfZsKECcjIyMCqVavkZ5xZWVlK7ctkMsyaNQuOjo5o3LgxevXqhZ9//lkhvuDgYMyaNQtz585FixYt4OzsjLi4OIU6X3/9Nfz8/GBlZQV7e3v06dOnyuMBADp37ow2bdpg586d8rKdO3fCzc0Nr776qlL9kpISbNu2De+++y4GDRpU5dUldYf2fvjhB5ibm6NHjx7ysvLycixduhTt27eHVCpFmzZtFP4vCw4OxsyZMzF79mw0b94cTk5O+PLLL1FSUoKJEyfCxsYG7dq1ww8//KDQ1tmzZ3H58mWlxdXVtcr4Krz55psGHeJi0taRrVu34l//+he2bNkCT0/Pauv98ssvuH//Pu7cuYNx48YprLe2tkb79u0VlhYtWlTbtqWlpdI2FUnnr/utzMrKChKJRP5aVPGodSGEQr3K26lSMaaen5+vtK5Tp05o2bIlUlNTFdq0srKqdp/Z2dkYMGAAfH19sWPHDpw9exZr1qwBUPUQw+nTp1FaWopevXoplFtYWMj/XdEXVWUVk+wqvwcVZTV59OgRWrZsWWM90py5uTnCw8ORlpam8Jls374dpaWlGDt2bJXbpqenw9zcHKdOncJnn32GFStW4KuvvlJZ59ixY1i3bh1KSkoQHR2Nn3/+GQcOHECjRo0wbNgw+Xdl1apV6NGjByZPniyfGOrm5qbU9ty5c7Fjxw6kp6fLh2T69euHR48eKbVvbW2NU6dOYdmyZfjoo4+wf/9+AEBubi7+8Y9/YNKkSbh27RoOHz6MsLCwGr+bEydORGpqqvz1hg0bMGnSJJV1t27dCi8vL3h5eWHcuHFKx62mjhw5onQyERsbi6VLl2LhwoW4evUqNm3apPR/WXp6OhwcHHD69GnMnDkT7777Lt566y0EBATg3Llz6NevH8aPH6+1P5a7du2K06dPQyaTaWV/6mLS1oELFy5g0qRJWLJkCfr161dtXTc3N7Rr1w729vZ6iq72vL29UVZWhlOnTsnLHj58iBs3buDll19Wa1/t2rWDra0trl69qnLdoUOHsGvXLsycOVNebmNjAw8PDxw4cEDlPs+cOYOysjIkJiaie/fu6NChA+7evVttHLt27cLAgQNhZmamVvyVeXt7K83IP378ODp06FDtvi9fvqzy7IW0a9KkScjKysLhw4flZRs2bEBYWFi1Z3tubm5YsWIFvLy8MHbsWMycORMrVqxQqNO+fXssW7YMXl5e6NixI4YPH46wsDB4enqiU6dOSElJwaVLl+TfdTs7O1haWqJJkybyM87K35GSkhIkJydj+fLlCA0Nhbe3N9avXw8rKyukpKQo1H3llVewaNEieHp6Ijw8HF26dJEfI7m5uSgrK0NYWBg8PDzg5+eHadOmoWnTptW+X+PHj8dPP/2ErKwsZGdn49ixY0onEBVSUlLk6/r374/i4mKVx+i3336Lpk2bKizVjeFnZWUpnOkWFRVh1apVWLZsGSIiItCuXTv06tULb7/9tsJ2/v7++OCDD+Dp6YnY2FhYWVnBwcEBkydPhqenJz788EM8fPgQFy9erPY9+Kt+/frhrbfewvfff4/WrVsrXPFo1aoVZDIZ8vLyar0/bTI3SKv12IMHDzB06FAEBwdj3LhxSh+smZmZWmdaqr4c5ubmCrPBKysrK1PaRiKRKP2FWhNPT08MGTIEkydPxrp162BjY4N58+ahVatWat8u1ahRI/Tp0wc//fQThg4dqrS+Q4cOOHToEIKDg2Fubi7/UZK4uDhMnToVjo6OCA0NRVFREY4dO4aZM2eiXbt2KCsrw+rVqzF48GAcO3YMX3zxRbVx7N69G4sXL1YrdlXmzJmDv/3tb/j4448xatQonDhxAp9//jnWrl1b7XZHjx41+OSjhqBjx44ICAjAhg0b0Lt3b9y8eRNHjx5VuDNDle7duytcQenRowcSExPx/PlzeaKtfDZ48+ZNLFy4ECdPnsSDBw/kZ9i3b9+Gr69vreK9efMmnj17pjDkYmFhga5duyrdIlh5KMrFxUU+bOPv74833ngDfn5+6NevH0JCQjBixIga7zhxcHDAwIEDkZ6eDiEEBg4cqPL/mOvXr+P06dPyS+nm5uYYNWoUNmzYoDT5r3fv3khOTlYoq+4q4ZMnTxSGz65duwaZTFbt8Big+H6YmZnB3t6+2qGt2ti7d2+V6yquABpqmItJW8u+++47ZGdnIzs7Gy4uLkrr3d3d1bqdYc+ePUr78fLywv/93/9Vuc2VK1eUtpFKpXj69Gmt262QmpqKqKgoDBo0CKWlpQgMDMT333+vcOm4tt555x1ERkZi2bJlaNRI+SKPl5cXDh48iODgYJiZmSExMRERERF4+vQpVqxYgZiYGDg4OMh/8KBTp05ISkrC0qVLERsbi8DAQCQkJMhnnld28+ZN/PrrrzVe/aiNzp07Y9u2bfjwww/x8ccfw8XFBR999JHKmbYVTpw4gYKCAqP8wYb6KDIyEjNmzMCaNWuQmpoKd3f3GhNAbVQeWho8eDDc3Nywfv16uLq6ory8HL6+vip//6AqFZeXVQ25VC6rfOxJJBL5HwpmZmbYv38/jh8/jn379mH16tVYsGABTp06hbZt21Ybw6RJk+S3U1YMM1WWkpKCsrIytGrVSiFGCwsL5OfnK/xxUDG0V1sODg4Kw2c1DY9VUPV+VDe0VVcVwxUGG+YyxOw3apjKy8tF165dxaZNmwzSfmJioggNDTVI20IIMWLECPHpp58arP2GpqioSDRt2lQkJyeL1q1bi8WLFyusrzyjOygoSLz88ssKdebNm6dQVnmbBw8eCADiyJEj8rKjR48KAOKbb76Rl/Xt21fMmDGjyvaLi4uFpaWl+Pe//y1fX1paKlq1aiWWL19eZftCCDFkyBCVM7yFEKKsrEy0atVKJCYmqlwfEREhhgwZIq/r6uoqXF1dRVlZmdK+nz17JpycnERiYqK4dOmSwtKhQwexevVqlfutreXLlwt/f3/56ydPnggrKyuxfv36KrdR9X6oumuj8udRF1999ZVo3bq1VvalCZ5pk95IJBJ8+eWXao0taVPr1q0RGxtrkLZlMhn8/f3x3nvvGaT9hqhp06YYNWoU5s+fj4KCgmqvglTIyclBdHQ0pkyZgnPnzmH16tXV/mhO8+bNYW9vjy+//BIuLi64ffs25s2bp1TPw8MDp06dQlZWFpo2bap0mdja2hrvvvsu3n//fbRo0QJt2rTBsmXL8PjxY/ls99o4deoUDhw4gJCQEDg6OuLUqVO4f/9+reagmJmZyS/Fq5qX8e233yI/Px+RkZGws7NTWDdixAikpKQo/PCRukN7/fr1Q2xsrPyMvXHjxvjnP/+JuXPnwtLSEj179sT9+/dx5coVtd4TbTt69ChCQkIM1j6TNumVv78//P39DdL2yJEjDdIu8GJ44oMPPjBY+w1VZGQkUlJSEBISgjZt2tRYPzw8HE+ePEHXrl1hZmaGmTNnKjzgprJGjRphy5YtmDVrFnx9feHl5YXPPvsMwcHBCvViYmIQEREBb29vPHnyROGniissWbIE5eXlGD9+PIqKitClSxfs3bu3xvHov7K1tcWRI0ewcuVKFBYWwt3dHYmJiQgNDa319lVJSUlBnz59lBI2AAwfPhzx8fE4d+4cOnfuDED9oT0/Pz906dIF27Ztw5QpUwC8eMCQubk5PvzwQ9y9excuLi4qfwhGX54+fYpvvvmm2jFvXZMIoYW5+kRERHX0/fffIyYmBpcvX1Y578XQ1qxZg127dtU4oVGXeKZNRERGYcCAAcjMzMSdO3dU3stuaBYWFli9erVBY+CZNhERkYkwvusPREREpBKTNhERkYlg0iYiIjIRTNpEREQmgkmbiIjIRDBpExERmQgmbSIiIhPBpE1ERGQimLSJiIhMBJM2ERGRiWDSJiIiMhH/D8ucKSYxw5dxAAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -367,7 +367,7 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": 11,
"id": "f2151e7b-79d4-4c3d-95f4-45d4f61006a5",
"metadata": {},
"outputs": [],
diff --git a/notebooks/data/README.md b/notebooks/0_create-test-set/data/README.md
similarity index 100%
rename from notebooks/data/README.md
rename to notebooks/0_create-test-set/data/README.md
diff --git a/notebooks/data/structures/README.md b/notebooks/0_create-test-set/data/structures/README.md
similarity index 100%
rename from notebooks/data/structures/README.md
rename to notebooks/0_create-test-set/data/structures/README.md
diff --git a/notebooks/data/structures/butanol.json b/notebooks/0_create-test-set/data/structures/butanol.json
similarity index 100%
rename from notebooks/data/structures/butanol.json
rename to notebooks/0_create-test-set/data/structures/butanol.json
diff --git a/notebooks/data/structures/caffeine.json b/notebooks/0_create-test-set/data/structures/caffeine.json
similarity index 100%
rename from notebooks/data/structures/caffeine.json
rename to notebooks/0_create-test-set/data/structures/caffeine.json
diff --git a/notebooks/data/structures/water.json b/notebooks/0_create-test-set/data/structures/water.json
similarity index 100%
rename from notebooks/data/structures/water.json
rename to notebooks/0_create-test-set/data/structures/water.json
diff --git a/notebooks/0_create-test-set/run-all-methods.sh b/notebooks/0_create-test-set/run-all-methods.sh
index 497ba86..1b2d6f5 100644
--- a/notebooks/0_create-test-set/run-all-methods.sh
+++ b/notebooks/0_create-test-set/run-all-methods.sh
@@ -1,18 +1,17 @@
#! /bin/bash
-molecule=butanol
-methods="pm7//None xtb//None hf//cc-pvtz b3lyp//cc-pvtz wb97x-d//cc-pvtz m062x//cc-pvtz ccsd(t)//cc-pvdz"
+molecule=water
+relax_method="b3lyp/cc-pvtz"
+
+hess_methods="pm7/None xtb/None hf/cc-pvtz b3lyp/cc-pvtz wb97x-d/cc-pvtz m062x/cc-pvtz ccsd(t)/cc-pvdz"
deltas="0.04 0.02 0.01 0.005 0.0025"
-#methods="ccsd(t)//cc-pvtz"
+#hess_methods="ccsd(t)/cc-pvtz"
#deltas=0.005
notebook=0_get-exact-answer.ipynb
-for name in $methods; do
- echo $name
+for method in $hess_methods; do
for delta in $deltas; do
- method=$(echo $name | cut -d "/" -f 1)
- basis=$(echo $name | cut -d "/" -f 3)
- papermill -p method $method -p basis $basis -p delta $delta -p molecule_name $molecule $notebook live.ipynb
+ papermill -p hess_method $method -p relax_method $relax_method -p delta $delta -p molecule_name $molecule $notebook live.ipynb
done
done
diff --git a/notebooks/1_explore-sampling-methods/0_random-directions-same-distance.ipynb b/notebooks/1_explore-sampling-methods/0_random-directions-same-distance.ipynb
index ea8d7b8..5bbd580 100644
--- a/notebooks/1_explore-sampling-methods/0_random-directions-same-distance.ipynb
+++ b/notebooks/1_explore-sampling-methods/0_random-directions-same-distance.ipynb
@@ -47,9 +47,8 @@
},
"outputs": [],
"source": [
- "molecule_name = 'caffeine'\n",
- "method = 'hf'\n",
- "basis = 'def2-svpd'\n",
+ "starting_geometry = '../data/exact/caffeine_pm7_None.xyz'\n",
+ "method = 'hf/def2-svpd'\n",
"threads = min(os.cpu_count(), 12)\n",
"step_size: float = 0.005 # Perturbation amount, used as maximum L2 norm"
]
@@ -69,8 +68,11 @@
"metadata": {},
"outputs": [],
"source": [
- "run_name = Path(starting_geometry).name[:-4]\n",
- "name, method, basis = run_name.split(\"_\")"
+ "relax_name = Path(starting_geometry).name[:-4]\n",
+ "name, relax_method, relax_basis = relax_name.split(\"_\")\n",
+ "method, basis = method.split(\"/\")\n",
+ "run_name = f'{name}_{method}_{basis}_at_{relax_method}_{relax_basis}'\n",
+ "print(f'Run name: {run_name}')"
]
},
{
diff --git a/notebooks/1_explore-sampling-methods/1_random-directions-variable-distance.ipynb b/notebooks/1_explore-sampling-methods/1_random-directions-variable-distance.ipynb
index 4567a8c..d46d849 100644
--- a/notebooks/1_explore-sampling-methods/1_random-directions-variable-distance.ipynb
+++ b/notebooks/1_explore-sampling-methods/1_random-directions-variable-distance.ipynb
@@ -39,7 +39,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "52252ee2-315c-48bb-8cba-07620e6e2faa",
+ "id": "c61794ce-ca24-470f-903f-4fc5118af1d3",
"metadata": {
"tags": [
"parameters"
@@ -48,13 +48,14 @@
"outputs": [],
"source": [
"starting_geometry = '../data/exact/caffeine_pm7_None.xyz'\n",
+ "method = 'pm7/None'\n",
"threads = min(os.cpu_count(), 12)\n",
- "step_size: float = 0.005 # Lambda parameter for an expontential distribution for the Perturbation amount"
+ "step_size: float = 0.005 # Perturbation amount, used as maximum L2 norm"
]
},
{
"cell_type": "markdown",
- "id": "7010df09-73b2-4d58-be03-15a5f0d04b4c",
+ "id": "7ebb8a2a-b2f8-4647-9cd4-d9a05efc4790",
"metadata": {},
"source": [
"Derived"
@@ -63,12 +64,15 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0b6794cd-477f-45a1-b96f-2332804ddb20",
+ "id": "3177eaf6-7af7-4e7c-8440-e32c172f8669",
"metadata": {},
"outputs": [],
"source": [
- "run_name = Path(starting_geometry).name[:-4]\n",
- "name, method, basis = run_name.split(\"_\")"
+ "relax_name = Path(starting_geometry).name[:-4]\n",
+ "name, relax_method, relax_basis = relax_name.split(\"_\")\n",
+ "method, basis = method.split(\"/\")\n",
+ "run_name = f'{name}_{method}_{basis}_at_{relax_method}_{relax_basis}'\n",
+ "print(f'Run name: {run_name}')"
]
},
{
@@ -226,7 +230,8 @@
" # Sample a perturbation\n",
" disp = np.random.normal(0, 1, size=(n_atoms * 3))\n",
" disp /= np.linalg.norm(disp)\n",
- " my_step_dist = np.random.exponential(scale=step_size)\n",
+ " my_step_dist = np.random.uniform(0, step_size)\n",
+ " pbar.set_description(f'd={my_step_dist:.3e}')\n",
" disp *= my_step_dist * len(atoms)\n",
" disp = disp.reshape((-1, 3))\n",
" \n",
diff --git a/notebooks/1_explore-sampling-methods/2_displace-along-axes.ipynb b/notebooks/1_explore-sampling-methods/2_displace-along-axes.ipynb
index ef96e40..1589071 100644
--- a/notebooks/1_explore-sampling-methods/2_displace-along-axes.ipynb
+++ b/notebooks/1_explore-sampling-methods/2_displace-along-axes.ipynb
@@ -52,6 +52,7 @@
"outputs": [],
"source": [
"starting_geometry = '../data/exact/caffeine_pm7_None.xyz'\n",
+ "method = 'hf/def2-svpd'\n",
"threads = min(os.cpu_count(), 12)\n",
"step_size: float = 0.005 # Lambda parameter for an expontential distribution for the Perturbation amount\n",
"perturbs_per_evaluation: int = 2 # Number of perturbations to perform at once"
@@ -59,7 +60,7 @@
},
{
"cell_type": "markdown",
- "id": "7010df09-73b2-4d58-be03-15a5f0d04b4c",
+ "id": "134b0aa4-f7ef-415f-8334-7039bdf66152",
"metadata": {},
"source": [
"Derived"
@@ -68,12 +69,15 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0b6794cd-477f-45a1-b96f-2332804ddb20",
+ "id": "f47df53a-1b81-4504-a9db-2fcc583d7096",
"metadata": {},
"outputs": [],
"source": [
- "run_name = Path(starting_geometry).name[:-4]\n",
- "name, method, basis = run_name.split(\"_\")"
+ "relax_name = Path(starting_geometry).name[:-4]\n",
+ "name, relax_method, relax_basis = relax_name.split(\"_\")\n",
+ "method, basis = method.split(\"/\")\n",
+ "run_name = f'{name}_{method}_{basis}_at_{relax_method}_{relax_basis}'\n",
+ "print(f'Run name: {run_name}')"
]
},
{
diff --git a/notebooks/1_explore-sampling-methods/3_displace-along-vibrational-modes.ipynb b/notebooks/1_explore-sampling-methods/3_displace-along-vibrational-modes.ipynb
index b327b4d..1739a1e 100644
--- a/notebooks/1_explore-sampling-methods/3_displace-along-vibrational-modes.ipynb
+++ b/notebooks/1_explore-sampling-methods/3_displace-along-vibrational-modes.ipynb
@@ -29,6 +29,7 @@
"from pathlib import Path\n",
"from tqdm import tqdm \n",
"import numpy as np\n",
+ "import shutil\n",
"import os"
]
},
@@ -52,6 +53,7 @@
"outputs": [],
"source": [
"starting_geometry = '../data/exact/caffeine_pm7_None.xyz'\n",
+ "method = 'pm7/None'\n",
"threads = min(os.cpu_count(), 12)\n",
"step_size: float = 0.002 # Target energy increase (units: eV)\n",
"perturbs_per_evaluation: int = 16 # Number of perturbations to perform at once\n",
@@ -70,14 +72,17 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "0b6794cd-477f-45a1-b96f-2332804ddb20",
+ "id": "91cc7cb8-a620-4395-84fc-533c041c652e",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
- "run_name = Path(starting_geometry).name[:-4]\n",
- "name, method, basis = run_name.split(\"_\")"
+ "relax_name = Path(starting_geometry).name[:-4]\n",
+ "name, relax_method, relax_basis = relax_name.split(\"_\")\n",
+ "method, basis = method.split(\"/\")\n",
+ "run_name = f'{name}_{method}_{basis}_at_{relax_method}_{relax_basis}'\n",
+ "print(f'Run name: {run_name}')"
]
},
{
@@ -142,6 +147,8 @@
"source": [
"%%time\n",
"atoms.calc = lower_calc\n",
+ "if Path('vib').exists():\n",
+ " shutil.rmtree('vib')\n",
"vib = Vibrations(atoms)\n",
"vib.run()"
]
diff --git a/notebooks/1_explore-sampling-methods/run-all-methods.sh b/notebooks/1_explore-sampling-methods/run-all-methods.sh
index 42eea5d..8bcca29 100644
--- a/notebooks/1_explore-sampling-methods/run-all-methods.sh
+++ b/notebooks/1_explore-sampling-methods/run-all-methods.sh
@@ -1,23 +1,25 @@
#! /bin/bash
xyz=../data/exact/caffeine_pm7_None.xyz
+method='pm7/None'
+
for step_size in 0.02; do
# Do the randomized methods
- for method in 0_random-directions-same-distance.ipynb 1_random-directions-variable-distance.ipynb; do
- papermill -p starting_geometry $xyz -p step_size $step_size $method last.ipynb
+ for notebook in 0_random-directions-same-distance.ipynb 1_random-directions-variable-distance.ipynb; do
+ papermill -p starting_geometry $xyz -p method $method -p step_size $step_size $notebook last.ipynb
done
# Test with different reductions for "along axes"
notebook=2_displace-along-axes.ipynb
for n in 2 4 8; do
- papermill -p starting_geometry $xyz -p perturbs_per_evaluation $n -p step_size $step_size $notebook last.ipynb
+ papermill -p starting_geometry $xyz -p method $method -p perturbs_per_evaluation $n -p step_size $step_size $notebook last.ipynb
done
done
# Test with the vibrational modes
notebook=3_displace-along-vibrational-modes.ipynb
-for step_size in 0.001 0.002; do
+for step_size in 0.001 0.002; do # These step sizes are energy scales in eV, not distances in Angstrom as above
for n in 16 32 64; do
- papermill -p starting_geometry $xyz -p perturbs_per_evaluation $n -p step_size $step_size $notebook last.ipynb
+ papermill -p starting_geometry $xyz -p method $method -p perturbs_per_evaluation $n -p step_size $step_size $notebook last.ipynb
done
done
diff --git a/notebooks/2_testing-fitting-strategies/1_fit-forcefield-using-mbtr.ipynb b/notebooks/2_testing-fitting-strategies/1_fit-forcefield-using-mbtr.ipynb
index cb29ff0..11fd5c6 100644
--- a/notebooks/2_testing-fitting-strategies/1_fit-forcefield-using-mbtr.ipynb
+++ b/notebooks/2_testing-fitting-strategies/1_fit-forcefield-using-mbtr.ipynb
@@ -57,7 +57,7 @@
},
"outputs": [],
"source": [
- "db_path: str = '../1_explore-sampling-methods/data/along-axes/caffeine_pm7_None_d=5.00e-03-N=2.db'\n",
+ "db_path: str = '../1_explore-sampling-methods/data/along-axes/caffeine_pm7_None_at_pm7_None_d=2.00e-02-N=4.db'\n",
"overwrite: bool = False\n",
"max_size: int = 10000"
]
@@ -80,7 +80,7 @@
"outputs": [],
"source": [
"run_name, sampling_options = Path(db_path).name[:-3].rsplit(\"_\", 1)\n",
- "exact_path = Path('../data/exact/') / f'{run_name}-ase.json'\n",
+ "exact_path = Path('../0_create-test-set/data/exact/') / f'{run_name}_d=0.01-ase.json'\n",
"sampling_name = Path(db_path).parent.name\n",
"out_name = '_'.join([run_name, sampling_name, sampling_options])\n",
"out_dir = Path('data/mbtr/')"
diff --git a/notebooks/3_consolidate-results/0_compare-sampling-strategies-with-mbtr.ipynb b/notebooks/3_consolidate-results/0_compare-sampling-strategies-with-mbtr.ipynb
index c864dfc..7776ede 100644
--- a/notebooks/3_consolidate-results/0_compare-sampling-strategies-with-mbtr.ipynb
+++ b/notebooks/3_consolidate-results/0_compare-sampling-strategies-with-mbtr.ipynb
@@ -50,32 +50,38 @@
},
"outputs": [],
"source": [
- "target_mol = '../data/exact/caffeine_pm7_None.xyz'\n",
+ "target_result = '../0_create-test-set/data/exact/caffeine_pm7_None_at_pm7_None_d=0.01-ase.json'\n",
"target_method = '../2_testing-fitting-strategies/data/mbtr/'\n",
"target_size: int = 1500"
]
},
{
"cell_type": "markdown",
- "id": "8874ea91-b4f3-432a-bd28-0d33b50e24ee",
+ "id": "5af51ec8-7a05-4000-8194-998dd08ce315",
"metadata": {},
"source": [
- "## Load the Exact Result\n",
- "The target molecule filename determines which molecule we'll look for. The name includes both the molecule name and method used to evaluate the hessian"
+ "Derived"
]
},
{
"cell_type": "code",
"execution_count": 3,
- "id": "db22a33d-e70a-4e7b-aad7-39aa4e552804",
+ "id": "7094c318-9f4c-448c-b1cb-bf61b3678851",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
- "target_mol = Path(target_mol)\n",
- "mol_name = target_mol.name[:-4]\n",
- "atoms = read(target_mol)"
+ "mol_name, _ = Path(target_result).name.rsplit(\"_\", 1)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8874ea91-b4f3-432a-bd28-0d33b50e24ee",
+ "metadata": {},
+ "source": [
+ "## Load the Exact Result\n",
+ "The target molecule filename determines which molecule we'll look for. The name includes both the molecule name and method used to evaluate the hessian"
]
},
{
@@ -89,7 +95,7 @@
{
"data": {
"text/plain": [
- ""
+ ""
]
},
"execution_count": 4,
@@ -98,7 +104,7 @@
}
],
"source": [
- "exact_hess = VibrationsData.read(target_mol.parent / f'{mol_name}-ase.json')\n",
+ "exact_hess = VibrationsData.read(target_result)\n",
"exact_hess"
]
},
@@ -118,9 +124,18 @@
"metadata": {
"tags": []
},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Found 11 approximate Hessians\n"
+ ]
+ }
+ ],
"source": [
- "all_hessians = list(Path(target_method).glob(f\"{mol_name}_*-increment.json\"))"
+ "all_hessians = list(Path(target_method).glob(f\"{mol_name}_*-increment.json\"))\n",
+ "print(f'Found {len(all_hessians)} approximate Hessians')"
]
},
{
@@ -135,16 +150,16 @@
"name": "stderr",
"output_type": "stream",
"text": [
- " 0%| | 0/21 [00:00, ?it/s]/home/lward/miniconda3/envs/jitterbug/lib/python3.9/site-packages/pmutt/statmech/vib.py:87: RuntimeWarning: overflow encountered in sinh\n",
+ " 0%| | 0/11 [00:00, ?it/s]/home/lward/miniconda3/envs/jitterbug/lib/python3.9/site-packages/pmutt/statmech/vib.py:87: RuntimeWarning: overflow encountered in sinh\n",
" (0.5 * vib_dimless)**2 * (1. / np.sinh(vib_dimless / 2.))**2\n",
- "100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 21/21 [00:07<00:00, 2.64it/s]"
+ "100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 11/11 [00:02<00:00, 3.80it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "Loaded 336 approximate hessians\n"
+ "Loaded 176 approximate hessians\n"
]
},
{
@@ -194,6 +209,48 @@
"print(f'Loaded {len(all_results)} approximate hessians')"
]
},
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "c3aa94ce-1f23-4007-8766-3da998db628e",
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "path ../2_testing-fitting-strategies/data/mbtr/caff...\n",
+ "sampling_method along-axes\n",
+ "options d=2.00e-02-N=2\n",
+ "size 5\n",
+ "d 2.00e-02\n",
+ "N 2\n",
+ "scale_factor 1.0\n",
+ "zpe 5.058148\n",
+ "zpe_error -104.407702\n",
+ "cp [0.014146793803042134, 0.01771395512622287, 0....\n",
+ "cp_error [-0.010065824804868617, -0.01212553988407947, ...\n",
+ "h [5.072098696119492, 5.11863818857305, 5.175908...\n",
+ "h_error [104.39707523324437, 104.36530161384731, 104.3...\n",
+ "temps [1.0, 3.9291338582677167, 6.858267716535433, 9...\n",
+ "vib_freqs [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...\n",
+ "vib_errors [218.79974021444124, 187.1848443090143, 148.53...\n",
+ "vib_mae 1119.440878\n",
+ "maxstep NaN\n",
+ "lower NaN\n",
+ "Name: 0, dtype: object"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "all_results.iloc[0]"
+ ]
+ },
{
"cell_type": "markdown",
"id": "0f243a23-ed89-4f5e-aeac-f23722ef10af",
@@ -204,7 +261,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 8,
"id": "2d315d44-7564-468f-bd03-8bbedf8b424c",
"metadata": {
"tags": []
@@ -215,246 +272,6 @@
" all_results[col] = pd.to_numeric(all_results[col])"
]
},
- {
- "cell_type": "code",
- "execution_count": 8,
- "id": "eee03c3a-4a53-4e84-995a-c2191e6f6332",
- "metadata": {
- "tags": []
- },
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " path | \n",
- " sampling_method | \n",
- " options | \n",
- " size | \n",
- " d | \n",
- " N | \n",
- " zpe | \n",
- " zpe_error | \n",
- " cp | \n",
- " cp_error | \n",
- " h | \n",
- " h_error | \n",
- " temps | \n",
- " vib_freqs | \n",
- " vib_errors | \n",
- " vib_mae | \n",
- " maxstep | \n",
- " lower | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " ../2_testing-fitting-strategies/data/mbtr/caff... | \n",
- " along-axes | \n",
- " d=1.00e-02-N=8 | \n",
- " 5 | \n",
- " 0.01 | \n",
- " 8.0 | \n",
- " 14.200987 | \n",
- " -95.264864 | \n",
- " [0.000397593092606875, 0.002386964975551445, 0... | \n",
- " [0.0036833759055666425, 0.0032014502665919545,... | \n",
- " [14.201069696784895, 14.20544123215772, 14.216... | \n",
- " [95.26810423257896, 95.27849857026263, 95.2846... | \n",
- " [1.0, 3.9291338582677167, 6.858267716535433, 9... | \n",
- " [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... | \n",
- " [365.26521782818406, 345.1085529599917, 194.17... | \n",
- " 1027.154434 | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " ../2_testing-fitting-strategies/data/mbtr/caff... | \n",
- " along-axes | \n",
- " d=1.00e-02-N=8 | \n",
- " 91 | \n",
- " 0.01 | \n",
- " 8.0 | \n",
- " 5.163324 | \n",
- " -104.302527 | \n",
- " [0.0019348995359107907, 0.008929018823987386, ... | \n",
- " [0.002146069462262727, -0.0033406035818439863,... | \n",
- " [5.163950489872683, 5.179473698114745, 5.21578... | \n",
- " [104.30522343949119, 104.3044661043056, 104.28... | \n",
- " [1.0, 3.9291338582677167, 6.858267716535433, 9... | \n",
- " [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... | \n",
- " [136.3752974454976, 116.1372867519512, 97.3719... | \n",
- " 1113.227006 | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " ../2_testing-fitting-strategies/data/mbtr/caff... | \n",
- " along-axes | \n",
- " d=1.00e-02-N=8 | \n",
- " 177 | \n",
- " 0.01 | \n",
- " 8.0 | \n",
- " 6.876866 | \n",
- " -102.588985 | \n",
- " [0.0020382429986622493, 0.008341448274375083, ... | \n",
- " [0.0020427259995112685, -0.0027530330322316837... | \n",
- " [6.878002515584569, 6.8926516980488675, 6.9274... | \n",
- " [102.59117141377929, 102.59128810437149, 102.5... | \n",
- " [1.0, 3.9291338582677167, 6.858267716535433, 9... | \n",
- " [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... | \n",
- " [96.75265542338498, 90.41924803705203, 74.0875... | \n",
- " 1092.500033 | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " ../2_testing-fitting-strategies/data/mbtr/caff... | \n",
- " along-axes | \n",
- " d=1.00e-02-N=8 | \n",
- " 263 | \n",
- " 0.01 | \n",
- " 8.0 | \n",
- " 89.958157 | \n",
- " -19.507693 | \n",
- " [0.0014020270591578593, 0.0023843729911753324,... | \n",
- " [0.0026789419390156584, 0.003204042250968067, ... | \n",
- " [89.9587466410539, 89.96445676642922, 89.97267... | \n",
- " [19.510427288309955, 19.51948303599113, 19.528... | \n",
- " [1.0, 3.9291338582677167, 6.858267716535433, 9... | \n",
- " [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.446... | \n",
- " [111.37319602907411, 108.7601947486991, 66.937... | \n",
- " 263.944079 | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " ../2_testing-fitting-strategies/data/mbtr/caff... | \n",
- " along-axes | \n",
- " d=1.00e-02-N=8 | \n",
- " 350 | \n",
- " 0.01 | \n",
- " 8.0 | \n",
- " 93.839129 | \n",
- " -15.626722 | \n",
- " [1.6382310852832182e-08, 0.0004830509673205082... | \n",
- " [0.004080952615862665, 0.005105364274822891, 0... | \n",
- " [93.83912881523764, 93.83954779804499, 93.8423... | \n",
- " [15.630045114126219, 15.644392004375362, 15.65... | \n",
- " [1.0, 3.9291338582677167, 6.858267716535433, 9... | \n",
- " [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... | \n",
- " [118.00864162563397, 110.49254554846664, 100.8... | \n",
- " 237.597413 | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " path sampling_method \\\n",
- "0 ../2_testing-fitting-strategies/data/mbtr/caff... along-axes \n",
- "1 ../2_testing-fitting-strategies/data/mbtr/caff... along-axes \n",
- "2 ../2_testing-fitting-strategies/data/mbtr/caff... along-axes \n",
- "3 ../2_testing-fitting-strategies/data/mbtr/caff... along-axes \n",
- "4 ../2_testing-fitting-strategies/data/mbtr/caff... along-axes \n",
- "\n",
- " options size d N zpe zpe_error \\\n",
- "0 d=1.00e-02-N=8 5 0.01 8.0 14.200987 -95.264864 \n",
- "1 d=1.00e-02-N=8 91 0.01 8.0 5.163324 -104.302527 \n",
- "2 d=1.00e-02-N=8 177 0.01 8.0 6.876866 -102.588985 \n",
- "3 d=1.00e-02-N=8 263 0.01 8.0 89.958157 -19.507693 \n",
- "4 d=1.00e-02-N=8 350 0.01 8.0 93.839129 -15.626722 \n",
- "\n",
- " cp \\\n",
- "0 [0.000397593092606875, 0.002386964975551445, 0... \n",
- "1 [0.0019348995359107907, 0.008929018823987386, ... \n",
- "2 [0.0020382429986622493, 0.008341448274375083, ... \n",
- "3 [0.0014020270591578593, 0.0023843729911753324,... \n",
- "4 [1.6382310852832182e-08, 0.0004830509673205082... \n",
- "\n",
- " cp_error \\\n",
- "0 [0.0036833759055666425, 0.0032014502665919545,... \n",
- "1 [0.002146069462262727, -0.0033406035818439863,... \n",
- "2 [0.0020427259995112685, -0.0027530330322316837... \n",
- "3 [0.0026789419390156584, 0.003204042250968067, ... \n",
- "4 [0.004080952615862665, 0.005105364274822891, 0... \n",
- "\n",
- " h \\\n",
- "0 [14.201069696784895, 14.20544123215772, 14.216... \n",
- "1 [5.163950489872683, 5.179473698114745, 5.21578... \n",
- "2 [6.878002515584569, 6.8926516980488675, 6.9274... \n",
- "3 [89.9587466410539, 89.96445676642922, 89.97267... \n",
- "4 [93.83912881523764, 93.83954779804499, 93.8423... \n",
- "\n",
- " h_error \\\n",
- "0 [95.26810423257896, 95.27849857026263, 95.2846... \n",
- "1 [104.30522343949119, 104.3044661043056, 104.28... \n",
- "2 [102.59117141377929, 102.59128810437149, 102.5... \n",
- "3 [19.510427288309955, 19.51948303599113, 19.528... \n",
- "4 [15.630045114126219, 15.644392004375362, 15.65... \n",
- "\n",
- " temps \\\n",
- "0 [1.0, 3.9291338582677167, 6.858267716535433, 9... \n",
- "1 [1.0, 3.9291338582677167, 6.858267716535433, 9... \n",
- "2 [1.0, 3.9291338582677167, 6.858267716535433, 9... \n",
- "3 [1.0, 3.9291338582677167, 6.858267716535433, 9... \n",
- "4 [1.0, 3.9291338582677167, 6.858267716535433, 9... \n",
- "\n",
- " vib_freqs \\\n",
- "0 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... \n",
- "1 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... \n",
- "2 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... \n",
- "3 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.446... \n",
- "4 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... \n",
- "\n",
- " vib_errors vib_mae maxstep \\\n",
- "0 [365.26521782818406, 345.1085529599917, 194.17... 1027.154434 NaN \n",
- "1 [136.3752974454976, 116.1372867519512, 97.3719... 1113.227006 NaN \n",
- "2 [96.75265542338498, 90.41924803705203, 74.0875... 1092.500033 NaN \n",
- "3 [111.37319602907411, 108.7601947486991, 66.937... 263.944079 NaN \n",
- "4 [118.00864162563397, 110.49254554846664, 100.8... 237.597413 NaN \n",
- "\n",
- " lower \n",
- "0 NaN \n",
- "1 NaN \n",
- "2 NaN \n",
- "3 NaN \n",
- "4 NaN "
- ]
- },
- "execution_count": 8,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "all_results.head()"
- ]
- },
{
"cell_type": "code",
"execution_count": 9,
@@ -466,10 +283,10 @@
{
"data": {
"text/plain": [
- "along-axes 9\n",
"along-vibrational-modes 6\n",
- "random-dir-same-dist 3\n",
- "random-dir-variable-dist 3\n",
+ "along-axes 3\n",
+ "random-dir-same-dist 1\n",
+ "random-dir-variable-dist 1\n",
"Name: sampling_method, dtype: int64"
]
},
@@ -538,10 +355,10 @@
{
"data": {
"text/plain": [
- "{PosixPath('../2_testing-fitting-strategies/data/mbtr/caffeine_pm7_None_along-axes_d=2.00e-02-N=4-increment.json'),\n",
- " PosixPath('../2_testing-fitting-strategies/data/mbtr/caffeine_pm7_None_along-vibrational-modes_d=1.00e-03-N=64-maxstep=6.00e-02-lower=xtb+None-increment.json'),\n",
- " PosixPath('../2_testing-fitting-strategies/data/mbtr/caffeine_pm7_None_random-dir-same-dist_d=1.00e-02-increment.json'),\n",
- " PosixPath('../2_testing-fitting-strategies/data/mbtr/caffeine_pm7_None_random-dir-variable-dist_d=1.00e-02-increment.json')}"
+ "{PosixPath('../2_testing-fitting-strategies/data/mbtr/caffeine_pm7_None_at_pm7_None_along-axes_d=2.00e-02-N=4-increment.json'),\n",
+ " PosixPath('../2_testing-fitting-strategies/data/mbtr/caffeine_pm7_None_at_pm7_None_along-vibrational-modes_d=1.00e-03-N=32-maxstep=6.00e-02-lower=xtb+None-increment.json'),\n",
+ " PosixPath('../2_testing-fitting-strategies/data/mbtr/caffeine_pm7_None_at_pm7_None_random-dir-same-dist_d=2.00e-02-increment.json'),\n",
+ " PosixPath('../2_testing-fitting-strategies/data/mbtr/caffeine_pm7_None_at_pm7_None_random-dir-variable-dist_d=2.00e-02-increment.json')}"
]
},
"execution_count": 12,
@@ -583,7 +400,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVQAAADwCAYAAABfaJz5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAByWUlEQVR4nO2dd3wU1RbHv7ub3klPIAk9EEILTZoU6dIEBZEqRSkKCEpREbABSrMAItJUFHlSFEU6SG+hk9ADBEghCel1d+/7Y8mSTXaTTbJpON/32Sczc+fOmdnsmVvOPT+ZEEIgISEhIVFs5GVtgISEhMSzguRQJSQkJEyE5FAlJCQkTITkUCUkJCRMhORQJSQkJEyE5FAlJCQkTITkUCUkJCRMhORQJSQkJEyE5FAlJCQkTITkUCUkJCRMhFlZG1AeUavVPHz4EHt7e2QyWVmbIyEhUYYIIUhKSsLb2xu5PP826DPpUJOSkujYsSNZWVmoVComTpzImDFjjD7/4cOH+Pj4lKCFEhISFY3w8HCqVKmSbxnZs5gcRaVSkZGRgY2NDampqQQGBnL69GlcXFyMOj8hIQEnJyfCw8NxcHAoYWslJCTKM4mJifj4+BAfH4+jo2O+ZZ/JFqpCocDGxgaA9PR0VCoVhXlvZHfzHRwcJIcqISEBYNTwX7mclDp06BC9evXC29sbmUzGtm3b8pRZvnw51apVw8rKiiZNmnD48GGd4/Hx8TRs2JAqVaowbdo0XF1dS8RWlVpw/FYsf5x/wPFbsajUz1yDX0JCwkjKZQs1JSWFhg0b8vrrr9O/f/88x3/77TcmT57M8uXLad26NStXrqR79+6EhITg6+sLgJOTExcuXCAqKop+/frx8ssv4+Hhofd6GRkZZGRkaLcTExONsnPn5Qjmbg8hIiFdu8/L0YrZvQLoFuhVmFuWkJB4Bij3Y6gymYytW7fSt29f7b4WLVoQFBTEihUrtPvq1q1L3759mTdvXp46xo0bR8eOHXnllVf0XmPOnDnMnTs3z/6EhASDXf6dlyMY9/NZcj+87E7BiiFBklOVkHgGSExMxNHRMV9/kE25bKHmR2ZmJsHBwcyYMUNnf5cuXTh27BgAUVFRWFtb4+DgQGJiIocOHWLcuHEG65w5cyZTpkzRbmcPQhtCpRbM3R6Sx5kCCDROde72EDoHeKKQmybsSqVSkZWVZZK6JCQknmJubo5CoTBJXRXOocbExKBSqfJ03z08PIiMjATg/v37jBo1CiEEQgjeeustGjRoYLBOS0tLLC0tjbbhVFicTjc/NwKISEjnVFgcLWsYF1lgsC4hiIyMJD4+vlj1SEhIGMbJyQlPT89ix51XOIeaTe4bF0Jo9zVp0oTz58+X2LWjkww706KUy49sZ+ru7o6NjY200EBCwoQIIUhNTSU6OhoAL6/iDdNVOIfq6uqKQqHQtkaziY6ONjjpZGrc7a20/5YLNfVibuOckUScpT1XXKujlsnzlCsKKpVK60yNjaGVkJAoHNbW1oDGh7i7uxer+1/hHKqFhQVNmjRhz549vPTSS9r9e/bsoU+fPsWqe9myZSxbtgyVSpVvuebVnPFytKJ66GnevLgNt/QE7bFHVo6sbNCX23Wb0byac7HsyR4zzY6plZCQKBmyf2NZWVnPnkNNTk7m5s2b2u2wsDDOnz+Ps7Mzvr6+TJkyhaFDh9K0aVNatmzJ999/z7179xg7dmyxrjthwgQmTJigndUzhEIuY75bDG7r1+c55pKewAen1vPo+Womm5CSuvkSEiWLqX5j5dKhnjlzhg4dOmi3s2fghw8fzrp16xg4cCCxsbF8/PHHREREEBgYyI4dO/Dz8ysV+4RKhfO6pcDTMKls5IAacF6/FPH6y8hMNHsoISFR/imXDrV9+/YFLhUdP34848ePLyWLdEk+fQqzmHiDx+WA/FE8yadPYf9cy1Kzq6Jw584dqlWrxrlz52jUqFFZmyMhYTLK5dLT8s7NW6dNWq40kJbISkiUPCZpoWZlZREZGUlqaipubm44OxdvMqasMHZS6rEtGBNc8djWNHYVF2mJrIRE6VDkFmpycjIrV66kffv2ODo6UrVqVQICAnBzc8PPz48xY8Zw+nT5aaEZw4QJEwgJCSnQbvtmLYix14yV6kMNxNhrypU12Utkcy9EiExIZ9zPZ9l5OaJkrrtzJ23atMHJyQkXFxd69uzJrVu3DJb/999/ad68OZaWlnh5eTFjxgyUSqX2ePv27Zk4cSLTpk3D2dkZT09P5syZo1PH1atXadOmDVZWVgQEBLB3716DyXWyUalUjBo1imrVqmFtbY2/vz9fffWV9nh6ejr16tXjjTfe0O4LCwvD0dGRVatWAZpYxi+++ILq1atjbW1Nw4YN+f3337XlHz9+zODBg3Fzc8Pa2ppatWqxdu1aYx+lRAWiSA51yZIlVK1alVWrVtGxY0e2bNnC+fPnuXbtGsePH2f27NkolUo6d+5Mt27duHHjhqntLlOCvJqy7UVnZOR1qmo0E1XbXnQhyKtpidmQmqk0+EnP0rSwC1oiCzBne4hO919ffUUhJSWFKVOmcPr0afbt24dcLuell15Crc77Gnrw4AE9evSgWbNmXLhwgRUrVrB69Wo+/fRTnXLr16/H1taWkydP8sUXX/Dxxx+zZ88eQKOy0LdvX2xsbDh58iTff/89H3zwQYF2qtVqqlSpwqZNmwgJCeGjjz7i/fffZ9OmTQBYWVmxYcMG1q9fz7Zt21CpVAwdOpQOHTpok5Z/+OGHrF27lhUrVnDlyhXeeecdhgwZwr///gvArFmzCAkJ4Z9//iE0NJQVK1aUWPYzibKlSMlRXnnlFT766CPq16+fb7mMjAxWr16NhYUFo0ePLrKRpY0xyRD2HpnHxr9/ZvheNa5JT/fH2cLaLnJefXEIndrMLJYd6enphIWFadMU5qTqjL8NntfB3421rzfn+K1YBq06UeB1fh3znHaJbNAne4hLydQ5fmf+i0WwXpdHjx7h7u7OpUuXsLOz05mU+uCDD9i8eTOhoaHa8JXly5czffp0EhISkMvltG/fHpVKpZOmsXnz5nTs2JH58+ezc+dOevXqRXh4OJ6engDs3buXzp0750muUxATJkwgKipKp5X55Zdf8sUXXzBo0CD+97//cenSJVxdXUlJScHV1ZX9+/fTsuXTCcjRo0eTmprKL7/8Qu/evXF1dWXNmjXFfIoSJUV+v7UST47yv//9z6hylpaWZTYTX6KoVXQ69SNUeszHb1TCOULOmH/UVH4MO9vAgEqxdDr1E7SaBvKyC5sqzSWyubl16xazZs3ixIkTxMTEaFum9+7dIyAgQKdsaGgoLVu21IkFbN26NcnJydy/f1+bkjF3PgYvLy/tksFr167h4+Ojdaagcbg56d69u9Yh+/n5ceXKFQC+++47fvjhB+7evUtaWhqZmZl5og+mTp3KH3/8wTfffMM///yjbWGGhISQnp5O586ddcpnZmbSuHFjQJPtrH///pw9e5YuXbrQt29fWrVqZeSTlKhIlMuwqXLP3WOQ+JBOQIfUNE5YW/JvHVdeOi4Yej2N2pXSgAeactXalogJIR93NXhM/sQxGbv0NWe5I9M75FPSeHr16oWPjw+rVq3C29sbtVpNYGAgmZmZecrmzMOQcx/oBlybm5vrlJHJZFpHra+O3Pzwww+kpaXp1LVp0ybeeecdFi1aRMuWLbG3t+fLL7/k5MmTOudGR0dz7do1FAoFN27coFu3bgDa6//9999UrlxZ55zshDvdu3fn7t27/P333+zdu5cXXniBCRMmsHDhwnztlah4mMyhBgcH06RJE1NVVyYYO8tPcpT2nwqgdVoGv9dQssrBnK4OWdTWU87U2FgU/NVlL5GNTEjXO44qAzwdrXSWyBpTb0HExsYSGhrKypUradtW80I5cuSIwfIBAQFs3rxZxykeO3YMe3v7PE7KEHXq1OHevXtERUVpczrknlzUV9fhw4dp1aqVTk9K3+TZyJEjCQwMZMyYMYwaNYoXXniBgIAAAgICsLS05N69e7Rr186gfW5ubowYMYIRI0bQtm1b3nvvPcmhPoOYLA4157r6ioqxs/zY5U3CUtsujcw6GdjZKfMtV5oo5DJm99J0r3O33bK3Z/cKMNkS2WwqVaqEi4sL33//PTdv3mT//v06+WZzM378eMLDw3n77be5evUqf/zxB7Nnz2bKlCkFyvZm07lzZ2rUqMHw4cO5ePEiR48e1U5K5ddyrVmzJmfOnGHXrl1cv36dWbNm5fn+ly1bxvHjx/nxxx957bXXePnllxk8eDCZmZnY29vz7rvv8s4777B+/Xpu3brFuXPnWLZsGeufLE3+6KOP+OOPP7h58yZXrlzhr7/+om7dukbdl0TFolDNkQEDBujdL4QgLi7OJAZVCPxagYM3JEaQPV8+Lv6pbIpaQKzcFTe/sh8n6xboxYohQXniUD1LMA5VLpezceNGJk6cSGBgIP7+/nz99de0b99eb/nKlSuzY8cO3nvvPRo2bIizszOjRo3iww8/NPqaCoWCbdu2MXr0aJo1a0b16tX58ssv6dWrV55JhpyMHTuW8+fPM3DgQGQyGYMGDWL8+PH8888/gCYU67333mP16tXapOPLli2jYcOGzJo1iwULFvDJJ5/g7u7OvHnzuH37Nk5OTgQFBfH+++8DmoQ+M2fO5M6dO1hbW9O2bVs2btxo9L1JVBwKNcvv7OzMTz/9hJ2dnc5+IQQDBw4kKqrkuriliVGzeiF/wqZhTzY0j1CZJifxvjVCDR9UH8OCDz7E0cZc//lGkN/MY2FRqQWnwuKITkrH3V7TzTd1y7S8cfToUdq0acPNmzepUaNGWZsjUY4pk1n+9u3bY2dnp3esKHtG8z9DQG8Y8CPsnA6JDwHISDQjKtiRVGsrdvo2Y+C9x3So417GhmpQyGXFVg8o72zduhU7Oztq1arFzZs3mTRpEq1bt5acqUSpUSiHumXLFoPHdu7cWWxjKhwBvaHOi5rZ/H+mscgpkj6HwCYtnX0Dq1Hd362sLfxPkZSUxLRp0wgPD8fV1ZVOnTqxaNGisjZL4j9EsSalcmfN/08iV2hCowL746fO4nplTTfa+folKY9pKTNs2DBu3LhBeno69+/fZ926dZLSgUSpUiyH2qVLF1PZUS5YtmwZAQEBNGvWrPAnNx5Kg94rueKncaIpJ04WcIKEhMSzRrEcahFWrZZrjA6b0oe9BwHVOnG1qmYUJfbYMcb9dIajN2NMbKWEhER5pVgOVerS6mKpsMQ8sC6ZZmCRmMiV4xf49/qjsjZLQkKilJASTJuS+8EEJkVxtYoMtQyqJkZy4nZsWVslISFRSkhr+U2JKpMGEVdZ1M0FN8/aHD/fCPmDBJLSs7C3Kno8qoSERMWgWC1UCwsLU9nxbFA5iCCljE7yZF4P6I2vsw1qAWfuPC5ryyQkJEqBYjnUM2fOmMqOZwMzSzy8mzAj7jFdMpQ8V12TdOREmNTtz8mdO3eQyWScP3++rE0pkHXr1uHk5KTdnjNnTqkLC7Zv357JkyeX6jWBAtUOSpODBw8ik8mIj48va1PyxSRd/vT0dC5evEh0dHSejOy9e/c2xSUqDlXbQtgh4rduY+DFHaTY1OGEj1NZWwVqlWYBQnKUJmmLX6syzdVaURg4cCA9evQolWsdPHiQDh068PjxYx0nvmXLljypCyXKJ8V2qDt37mTYsGHExOQND5LJZAWnwitHGJ2+Lz+qtiFdJuPOgxvY3JTTxEtBtEKGSi3Kbu18yJ86S2QBTXKXbgs0q70kDGJtbY21tXWx6sjMzCzW8FhFFb38L1LsWf633nqLV155hYiICNRqtc6nIjlTKGYcajaVmxBibcdcf02LonXKPTa98VzZOtNNw3SdKWgyZW0apjleAlQEkb5du3ZhZWWVpxs5ceJEbb6K3F3+bFauXImPjw82Nja88sorOnWMGDGCvn37Mm/ePLy9valdW5Mh9+eff6Zp06bY29vj6enJa6+9plUcuHPnDh06aJJ7V6pUCZlMxogRI7T3nrPL//jxY4YNG0alSpWwsbGhe/fuOrpt2Tbv2rWLunXrYmdnR7du3YiIeCrIePr0aTp37oyrqyuOjo60a9eOs2fP6n1Ohsjuhu/atYvGjRtjbW1Nx44diY6O5p9//qFu3bo4ODgwaNAgUlNTtedlZGQwceJE3N3dsbKyok2bNnl+czt27KB27dpYW1vToUMH7ty5k+f6x44d4/nnn8fa2hofHx8mTpxISkqK9vjy5cupVasWVlZWeHh48PLLLxfq/opCsR1qdHQ0U6ZM0Sb1/c9jZkmAZ1PCPSDNAtSJiWRcu2b662SmGP5kPUnTp1ZpWqb5yfTtnK4pl1+9RaAiiPR16tQJJycnNm/erN2nUqnYtGkTgwcPNnjezZs32bRpE9u3b2fnzp2cP3+eCRMm6JTZt28foaGh7Nmzh7/++gvQtFQ/+eQTLly4wLZt2wgLC9M6TR8fH60d165dIyIiQkd9NScjRozgzJkz/Pnnnxw/fhwhBD169CArK0tbJjU1lYULF/LTTz9x6NAh7t27x7vvvqs9npSUxPDhwzl8+DAnTpygVq1a9OjRg6SkJH2XzJc5c+bw7bffcuzYMcLDwxkwYABLly7ll19+4e+//2bPnj1888032vLTpk1j8+bNrF+/nrNnz1KzZk26du2qTQEaHh5Ov3796NGjB+fPn2f06NHMmDFD55qXLl2ia9eu9OvXj4sXL/Lbb79x5MgR3nrrLUAzvzNx4kQ+/vhjrl27xs6dO3n++ecLfW+FRhST119/Xfzwww/FraZckZCQIACRkJBQtApUKvHq9lfFz93rihD/OiJm7VqRmqEsdDVpaWkiJCREpKWl5T0428Hw5+eXNWVuH8q/XPbn9qGn9S6olve4CYiOjhaAuHTpkggLCxOAOHfunBBCiPfff1/4+/sLtVqtLb9s2TJhZ2cnVCqVEEKIdu3aiTZt2ujU2axZMzF9+nQhhBD//POPMDMzExEREdrje/bsEYDYunWrQbsmTpwoOnbsqN3etWuXsLCwEHFxcUIIIdauXSscHR21x2fPni0UCoUIDw/X7vvnn3+EXC7XXnv48OHCw8NDZGRk5PtMTp06JQCRlJQkhBDiwIEDAhCPHz/WKdeuXTsxadIkIYQQ169fF4A4evSo9nhMTIywtrYWmzZt0toMiJs3b2rLLFu2THh4eBi0RalUCnt7e7F9+3btvoKeXba9e/fu1e6bN2+eAMStW7e0+958803RtWtXIYQQycnJwtzcXGzYsEF7PDMzU3h7e4svvvhCCCHEzJkzRd26dXX+HqZPn67zbIYOHSreeOMNHXsOHz4s5HK5SEtLE5s3bxYODg4iMTHRoP05ye+3Vhh/UOwW6rfffsuWLVsYMWIEixYt4uuvv9b5/CeRy2no3lC7rv/gxp00+nh3kSWZi4yxEiwlINVy69YtXnvtNapXr46DgwPVqlUDNCJ9uSlIpC8bU4j02dnZYWdnR7169QAYPHgwBw8e5OFDzZDIhg0b6NGjB5UqVTJ4b76+vlSpUkW73bJlS9RqNddy9ETq16+fZ9z03Llz9OnTBz8/P+zt7bUJt/U9E0OEhoZiZmZGixYttPtcXFzw9/cnNDRUu8/GxkYnbWHOZwWanuXYsWOpXbs2jo6OODo6kpycbNAWfc8um5zfi4eHBzY2NlSvXl1nX/a1b926RVZWFq1bt9YeNzc3p3nz5lr7Q0NDee6553T+HnIqyoJGcmndunVam+zs7OjatStqtZqwsDA6d+6Mn58f1atXZ+jQoWzYsEFn2KGkKPak1C+//MKuXbuwtrbWjqlkI5PJmDhxYnEvUSFp6NaQ7/x+BqDqg+tkNVQSfPcxbWuZKKXf+w8NH5M9mb03VoIlZ7nJl4puUw4qikhf8+bNqVGjBhs3bmTcuHFs3bqVtWvXFupes6+b8/q2trY6ZVJSUujSpQtdunTh559/xs3NjXv37tG1a1e9z8QQwkD+jNz3r+9Z5Tx3xIgRPHr0iKVLl+Ln54elpSUtW7Y0aIu+Z6fvWjKZrMDvKXufIfsN3WNO1Go1b775pl7/4uvri4WFBWfPnuXgwYPs3r2bjz76iDlz5nD69Gm9Y+KmotgO9cMPP+Tjjz9mxowZRuv//BdoeGErdzwgshKkeAVim5XGiduxpnOoFrYFl9Ej1aKLTHM8p1SLMfUWQEUS6QN47bXX2LBhA1WqVEEul/Piiy/me6179+7x8OFDvL29ATh+/DhyuVw7+aSPq1evEhMTw/z587VSKrnjuLNbtPlN5gYEBKBUKjl58qRWijo2Npbr168XSqfq8OHDLF++XBsSFh4erjdSJxtjv4eCqFmzJhYWFhw5coTXXnsNgKysLM6cOaOdeAsICMgzkXjixAmd7aCgIK5cuULNmjUNXsvMzIxOnTrRqVMnZs+ejZOTE/v376dfv34muRd9FNsDZmZmMnDgQMmZ5sLLoSouahUT31RwddIgkixsOXm7lHW35ApNaBRgUKav23yTx6NWJJE+0HT7z549y2effcbLL79coNyMlZUVw4cP58KFCxw+fJiJEycyYMAAneGG3GS3mr755htu377Nn3/+ySeffKJTxs/PD5lMxl9//cWjR49ITk7OU0+tWrXo06cPY8aM4ciRI1y4cIEhQ4ZQuXJl+vTpk6/dOalZsyY//fQToaGhnDx5ksGDBxc7PMwYbG1tGTduHO+99x47d+4kJCSEMWPGkJqayqhRowCNztetW7eYMmUK165d45dffmHdunU69UyfPp3jx48zYcIEzp8/z40bN/jzzz95++23Afjrr7/4+uuvOX/+PHfv3uXHH39ErVbj7+9fovdXbC84fPhwfvvtN1PY8kwhq9aW2TFx/JKg4qW6mvGfC/fjScss5VCybKkWh1xifA7emv0lEIeaLdIXHBxMYGAg77zzDl9++aXB8tkifadOnaJhw4aMHTu2yCJ9ycnJNGvWjNGjR2vPL8hB1qpVi2bNmnHx4sV8Z/ezqVmzpnYWukuXLgQGBrJ8+fJ8z3Fzc2PdunX873//IyAggPnz5+eRka5cuTJz585lxowZeHh4aGesc7N27VqaNGlCz549admyJUIIduzYUajg/zVr1vD48WMaN27M0KFDtWFMpcH8+fPp378/Q4cOJSgoiJs3b7Jr1y7tuLWvry+bN29m+/btNGzYkO+++47PP/9cp44GDRrw77//cuPGDdq2bUvjxo2ZNWsWXl6av3MnJye2bNlCx44dqVu3Lt999x2//vprnvFfU1MokT59TJw4kR9//JGGDRvSoEGDPF/q4sWLi2VgaZIzsP/69etGiXIZJCsN5vuCKhP1hDP0X3SaC2o7fnqjFa1ruhpVhSlF+v6LK6UkkT4JYykTkT59XLp0SSvQd/nyZZ1jFS1f6oQJE5gwYYL2ARYLc2uo0gzuHuXOa6P4PPwRk59/m5O3Y412qCYlW6rlGUYS6ZMoa4rtUA8cOGAKO55NqrZhe8w5rGySqAIMNIvGp4pTWVv1zCKJ9EmUNVI+1JLErzW/3FiHj08mr1+DThn38Q2QVpSVFMOGDWPYsGFlbYbEf5hiT0rNmzePNWvW5Nm/Zs0aFixYoOeM/xA+zWlo58flJwH+qWfPIgoRcyghIVGxKLZDXblyJXXq1Mmzv169enz33XfFrb5iY25Nw5ZTuO8GqTYKRFoaNw6f5kJ4fFlbJiEhUQIU26FGRkZqQxVy4ubmppPd5r9KQ7eGCJmMSz6aYIo13/7OZztCCzhLQkKiIlJsh+rj48PRo0fz7D969Kh2Jcl/GS8bT1wtnbjsp9luEHOL8+HxpGdVrNSGEhISBVPsSanRo0czefJksrKy6NixI6BJXTZt2jSmTp1abAMrOjJlOg0fR3K+miUPuwWyN7MtmUo15+7F07KGS1mbJyEhYUKK7VCnTZtGXFwc48eP1yZWsLKyYvr06cycObPYBlZ4LGxoaOnOPptEjtW0wja5LVx4yMmwWMmhSkg8YxS7yy+TyViwYAGPHj3ixIkTXLhwgbi4OD766CNT2PdM8FKVDvx79z6zsmxoUe2JcN9tSbjPVGRnyC8vVK1alaVLl2q3y5PYXWmRW2Ug9zN5VimSQ9WXM9HOzo5mzZoRGBiIpaWlzrEHDx4UzbpnBKcaL+CsVqO+dYTmsTfpducE5+6V7jiqSq3idORpdtzewenI06jU0hhuaREREUH37t3L2owy5fTp07zxxhtGla3IzrdIDrVZs2aMGTOGU6dOGSyTkJDAqlWrCAwMZMuWLUU28JnApznIzciKiEA19S3GXdyGOiOj1MKn9t7dS9fNXRm5ayTTD09n5K6RdN3clb1395bK9YFC5fx81vD09MzTyMhJTumSZxU3NzdsbGzK2owSp0gONTQ0FEdHR7p164aHhwcvvvgiY8aM4e2332bIkCEEBQXh7u7OunXr+PLLL7Uptco7y5YtIyAggGbNmpm2YgtbDlWpx4RaLmTYm2OhVrKuuTWBlYuZL8AI9t7dy5SDU4hK1c3KH50azZSDU0rMqbZv35633nqLKVOm4OrqSufOnVm8eDH169fH1tYWHx8fxo8fr5OizhhxOZVKxZQpU7Tif9OmTcuTkLggEbiiisvpIzo6ml69emFtbU21atXYsGFDnjI5u/x37txBJpOxadMm2rdvj5WVFT///HOec+7evUuvXr2oVKkStra21KtXjx07dmifwahRo6hWrRrW1tb4+/vn0Z/KHgb5/PPP8fDwwMnJiblz56JUKnnvvfdwdnamSpUqeRblPHjwgIEDB2pTMPbp00evQF5OUlJSGDZsGHZ2dnh5eeld7pu71Tlnzhx8fX2xtLTE29tbmyi6ffv23L17l3feeQeZTFbh8oEUyaE6OzuzcOFCHj58yIoVK6hduzYxMTFa5cXBgwcTHBzM0aNHK1RXxySqpwZIdq3FSRsrrvtqtmtHXMfWsuhzgqlZqQY/GaoMQNPNn39qPkJPcmnx5H/zT83X6f7rq6+orF+/HjMzM44ePcrKlSuRy+V8/fXXXL58mfXr17N//36mTZume18FiMstWrSINWvWsHr1ao4cOUJcXBxbt27VqaMgEbhsCisup48RI0Zw584d9u/fz++//87y5ct1pEYMMX36dCZOnEhoaChdu3bNc3zChAlkZGRw6NAhLl26xIIFC7CzswM02eqrVKnCpk2bCAkJ4aOPPuL9999n06ZNOnXs37+fhw8fcujQIRYvXsycOXPo2bMnlSpV4uTJk4wdO5axY8cSHh6uffYdOnTAzs6OQ4cOceTIEe1LLb8exnvvvceBAwfYunUru3fv5uDBgwQHBxss//vvv7NkyRJWrlzJjRs32LZtG/Xr1wdgy5YtVKlShY8//piIiIiKF8tulILVf4xii/Tp4f7dIyJwXaB4Z3KgCPGvI8IGDy7wnPyEwwLXBRr8jNszTgghxKmIU/mWy/6cijilrbftr23zHC8K7dq1E40aNcq3zKZNm4SLi4t22xhxOS8vLzF//nztdlZWlqhSpYro06ePEMI4EbiiiMvp49q1awIQJ06c0O4LDQ0VgFiyZIl2HznE7rIFCpcuXZrvs6lfv76YM2dOvmVyMn78eNG/f3/t9vDhw4Wfn59W5FAIIfz9/UXbtm2120qlUtja2opff/1VCCHE6tWr84glZmRkCGtra7Fr1y69101KShIWFhZi48aN2n2xsbHC2tpaKywohBB+fn7aZ7Jo0SJRu3ZtkZmZqbfOnGVLi3Ij0idhHN4+rXC1duWir6a1mHr+Agv/vMCVhwklds1HqY9MWq6wNG3aVGf7wIEDdO7cmcqVK2Nvb8+wYcOIjY3V0VLPT1wuISGBiIgIHcE2MzMznesYIwKXTWHE5TZs2KAjCHf48GGtYF7O69epU8cozaKc59SrV09bb3aPbuLEiXz66ae0bt2a2bNnc/HiRZ3zv/vuO5o2bYqbmxt2dnasWrUqz2RxvXr1dBQPPDw8tC1B0CTldnFx0d5jcHAwN2/exN7eXmuPs7Mz6enp3Lp1i8OHD+s8gw0bNnDr1i0yMzN1vhNnZ+d8M+O/8sorpKWlUb16dcaMGcPWrVtRKktZwLKEkLJNlRIymYyGbg3Zl7qXDGc7LOOSOfLHASxtX6Sed+HHUk++dtLgMcWTxNFuNsbpV+Ust7P/zkLbYoicQnV3796lR48ejB07lk8++QRnZ2eOHDnCqFGjdCZlChKXKwhhhAicvmsVJC7Xu3dvHaXRypUrs2vXLr3XMoacz2bHjh3aZ5AtQzJ69Gi6du3K33//ze7du5k3bx6LFi3i7bffZtOmTbzzzjssWrSIli1bYm9vz5dffsnJk7p/E/ruJ797VKvVNGnSRO84sJubGxYWFpw/f167z8PDg1u3bhX63n18fLh27Rp79uxh7969jB8/ni+//JJ///23UKoD5RGphVqKNLD2ApmMuxqNNgJiwzgZVjSdKRtzG4MfS4VmRjnIPQgPGw9kefSkNMiQ4WnjSZB7UL71moIzZ86gVCpZtGgRzz33HLVr19ZKNxuLo6MjXl5eOoJtSqVSZ7wupwhcNtkicIURscuNvb09NWvW1H6sra2pW7cuSqVSR2zv2rVrxMfHF6puPz8/bb05xfB8fHwYO3YsW7ZsYerUqaxatQrQCOy1atWK8ePH07hxY2rWrFkkx5aboKAgbty4gbu7u8691qxZE0dHR6ytrXX2ZT8Tc3Nzne/k8ePHXL9+Pd9rWVtb07t3b77++msOHjzI8ePHuXRJo7hrYWGRr1BheUZyqKVIQ3MnAH5rkgY//Myv/p04FRbHluD7HL8Vi0pdLDWaPCjkCmY0nwGQx6lmb09vPl3boi1JatSogVKp1IrU/fTTT0XKRjZp0iTmz5/P1q1buXr1KuPHj9dxYMaIwJkKf39/unXrxpgxYzh58iTBwcGMHj3aJGJ3kydPZteuXYSFhXH27Fn279+vfSHUrFmTM2fOsGvXLq5fv86sWbNMMpE6ePBgXF1d6dOnD4cPHyYsLIx///2XSZMmcf/+fb3n2NnZMWrUKN577z327dvH5cuXGTFiRL7iiuvWrWP16tVcvnxZ+7dgbW2Nn58m4UXVqlU5dOgQDx48yFeJtTwiOdRSpF6d/jirVDjYp3NHngZyOZkqNVP+d4FBq07QZsF+dl42blZTCEFyupL41EyS05UGu8Wd/DqxuP1i3G10Bdg8bDxY3H4xnfw6Ffu+jKFRo0YsXryYBQsWEBgYyIYNG5g3b16h65k6dSrDhg1jxIgR2u7uSy+9pFOmIBE4U7J27Vp8fHxo164d/fr144033jCJ2J1KpWLChAnUrVuXbt264e/vrxUCHDt2LP369WPgwIG0aNGC2NhYxo8fX+xr2tjYcOjQIXx9fenXrx9169Zl5MiRpKWl5aul9OWXX/L888/Tu3dvOnXqRJs2bWjSpInB8k5OTqxatYrWrVvToEED9u3bx/bt23Fx0SzF/vjjj7lz5w41atTAzc1EsuulRLFF+p5FCiPKVVjEqo7IHgQzNXMsm9XP6xzLbkOuGBJEt0Avg8JhCWmZPIxPJ0ul1u4zV8jxdrLC0dpC73VVahVno8/yKPURbjZuBLkHlUrLVEKiImAqkb4it1B79OhBQsLTGerPPvtMp+sVGxtLQEBAUat/ZhF+GqG8DrFnmRr8K/1vHHx67Ml/524PMdj9T0jL5G5sqo4zBchSqbkbm0pCmv54QYVcQTPPZvSo3oNmns0kZyohUQIU2aHu2rWLjIwM7faCBQt0AqeVSiXXrl0rnnXPINesNKE61dLv0ik8mDYPdcNhBBCRkE6zz/bw5k9niEnO4GF8Gg/j04hKTOfB4/R8638Yn17grLixwwUSEhKFo8hhU7l/hNKP0jgumfvxThVvlJXkfHNSTa34+1hnpZNmrtvNiEvJ4mZ0MulZNiSlZ5GsNC40J0ulJiVDiZ2V/vCTogwXSEhIGIcUh1rKVHGrSrLMjAQniLWzwiU5lcDYME576ob0fNo3EB8HM+yy4nCzt0JmZk5qpoqUjIIDoO/EpmJraYangxXWFk+79tnDBbnJHi7wc0FyqhISxaDIXX59iQsqWiKDsqBFdRcysjTOM9jbFYAX7p2h3f1z1H90E4VQ4+VoxaDmvrSo7oKNhRnOthZ4OVrjYW+VX9Va1EKQlJ6FPMfX8Tglk/C4tHzPM2a4QEJCwjDF6vKPGDFCm5YsPT2dsWPHaleA5BxflXiKQi6jY83W7HgQSoaVprXY7uEF2j28AMAjK0fEW++gkMvIndTN1lKBuUKeZ0IqJ+YKOb7ONqRnqbAwe/q+jEvNRF2As9QMF6iws5I6LhISRaHIv5zhw4frbA8ZMiRPmWHDhhW1+meaAfXbELP/e3pezBu07JqegGzRXBJ9K2HxfK6wKpkMbycrvd32bLydrLC1NMuTycrGQmHUcIFSbdhZS0hI5E+RHeratWsLLJNz3a/EU+o6+fP6Hv2OK7uXHvX5PKrkSPCRjaO1BX4uFHpiyd7SnEdJBfcazPJZ4SIhIZE/Ju/bJSQksGHDBlavXs358+cr7JrckkScD8ElKb8CAmVkJGmXr4CDfZ7DjtYWOFiZk5KhQqlWYyaXY2upyHcM29jhAltLKT5VQqKomKw5sn//foYMGYKXlxfffPMN3bt310kaUREosYz9uVA+Mi5dnirOcOIUmUyGnZUZTjYW2FmZFTghmD1ckB/eTlYoTZxPoDSQRPqMJ1sxoDC9R2Oeb25RPlMxZ84cGjVqVChbypJitVDv37/PunXrWLNmDSkpKQwYMICsrCw2b95cIVdJTZgwgQkTJmiXmpUUZkauT1Y4O5vsmkKlwuziedweRBBv7UBWQANQaFqj2cMFagHXIpPwdbbBwbpip1ErT0RERJRIHoGi4OPjQ0REBK6urmVtSpH46quvjI5EGTFiBPHx8aX6MiuyQ+3RowdHjhyhZ8+efPPNN3Tr1g2FQlGkDEL/NWyaNsHM0xNlZKT+AjIZZh4eWAfWAz0Ks4Ulcfduoj6fp3M9Kw8P7N+dhn3nLtpu/r24VNRCcDc2lSqVrKlka7qY1MzMTCws/psxrp6envkez8rKKpU8oNnfQUH2lGdKsqFjCorc5d+9ezejR49m7ty5vPjiiygU0tibscgUCjzenwmgV+8JIfB4fyYyEzzTxN27eTBpch7nrYqOJn7au6gP7dfGFPs621DJxgKBIPxxKjFGTGIZQhLpe0phRfpWrlxJ5cqVtYmfs+ndu7c2uubWrVv06dMHDw8PrYT73r26gotVq1bl008/ZcSIETg6OjJmzJg8XX5jBP+ymTt3Lu7u7jg4OPDmm2/mqzOVmZnJtGnTqFy5Mra2trRo0YKDBw/m9ygBTaYwDw8P7O3tGTVqFOnpukutc3f5f//9d+rXr4+1tTUuLi506tSJlJQU5syZw/r16/njjz+0f9/GXL+4FNmhHj58mKSkJJo2bUqLFi349ttveWTk2KAEOHTpwp6BbsTa5x37NHOvhH2HDvmer05NNfx5EgMsVCqiPp8H+rpIGqkjoj77HPFk4lAmk+FtKXBRqCEtjYeRcUREPi5ysL8k0meY/ET6XnnlFWJiYjhw4IB23+PHj9m1axeDBw8GIDk5mR49erB3717OnTtH165d6dWrVx4ZlC+//JLAwECCg4OZNWtWHjuMFfzbt28foaGhHDhwgF9//ZWtW7cyd+5cg/f3+uuvc/ToUTZu3MjFixd55ZVX6Natm1bIUx+bNm1i9uzZfPbZZ5w5cwYvLy9tykJ9REREMGjQIEaOHEloaCgHDx6kX79+CCF49913GTBggPaFHBERQatWrQzWZTKKK26VkpIiVq9eLVq3bi3Mzc2FXC4XS5cuFYmJicWtuswoCZG+PFz5Q6xeXEXUX1NPfPh+LXHwTR8RPNZbhAbWFiH+dcSjjyfnKxwW4l/H4OfuG28IIYRIPnEy33LZn+QTJ7X1XnuuZZ7j9+NSdYTbjEES6Vui3UcRRPp69+4tRo4cqd1euXKl8PT0FEql0uA5AQEB4ptvvtFu+/n5ib59++qUyb7+uXPnDNajT/DP2dlZpKSkaPetWLFC2NnZaUUA27VrpxXlu3nzppDJZOLBgwc69b7wwgti5syZBq/bsmVLMXbsWJ19LVq0EA0bNtSxJfu7Dg4OFoC4c+eO3vpyli2IciPSZ2Njw8iRIzly5AiXLl1i6tSpzJ8/H3d3d3r37l3c6p9N1CrYOZ1MGQi5jG21LXmrpSPDn3NmXWfNVxKzcSeZd+8U6zLGRhMUVE4uf7qsWBQiU5Uk0meYgkT6Bg8ezObNm7UrDjds2MCrr76qHVpLSUlh2rRpBAQE4OTkhJ2dHVevXs3TQs39HejDGMG/hg0bYmPzVA6nZcuWJCcnayWoc3L27FmEENSuXVvnmf37779aqZac+8eOHQtAaGioznebfR1DNGzYkBdeeIH69evzyiuvsGrVKh4/flzg/ZYkJo1D9ff354svvmDevHls376dNWvWmLL6Z4e7x9irfMwyd1dN1ztHyNOO+nIaXFXT+DbErfoWRk3QW4X/WcO659mz98ZGE+QsV3Of7jhcaqYSWwdNuFVhM1VJIn2GKUikr1evXqjVav7++2+aNWvG4cOHWbx4sfac9957j127drFw4UKtxtXLL7+cZ1wz53X0YazgnyH03btarUahUBAcHJxnbsXOzg7QXfRT1CTuCoWCPXv2cOzYMXbv3s0333zDBx98wMmTJ6lWrVqR6iwuJbJoW6FQ0Ldv33IdL1aWqJIimO/yJIwm9w9fLmdVVxh4Qs1rL7fhgYE65DYFi+dpowmiovSPoz6JJrBp+lSuIne9dk82i5upKqdIX7beUO5xuoLIKdL3/JNludkifUFBGqHBnCJ9r732msbGJyJ9xYmTtLe3x95ed5FFTpG+5s2bA0UX6cuNtbU1/fr1Y8OGDdy8eZPatWvryIocPnyYESNGaOVfkpOTuXPnTuFuCl3Bv2z0Cf5duHCBtLQ0rcM/ceIEdnZ2VKlSJU/Zxo0bo1KpiI6Opm3btnqvW7NmzTz76taty4kTJ3SWrOcU/9OHTCajdevWtG7dmo8++gg/Pz+2bt3KlClTykTsr8gOdeTIkQWWkclkrF69uqiXeGY5q0oiyszwo49xkrOsm5wmFkrsinGd7GiCB5Mmaxx3Tqf6xJEbE00ghOBhfMGJrR2szA221nKK9PXq1YujR48WS6SvVq1a1K1bl8WLFxsU6XN2dsbX15cvvviixEX6vv/+e8zMzJg8ebJJRPpA0+3v1asXV65cyZMro2bNmmzZsoVevXohk8mYNWtWnqgAY6hZsyY//vgju3btolq1avz000+cPn06TwsvMzOTUaNG8eGHH3L37l1mz57NW2+9pVeMr3bt2gwePJhhw4axaNEiGjduTExMDPv376d+/fr06NFDry2TJk1i+PDhNG3alDZt2rBhwwauXLmiMwyTk5MnT7Jv3z66dOmCu7s7J0+e5NGjR1oxw6pVq7Jr1y6uXbuGi4sLjo6OJR6eVuQx1HXr1nHgwAHi4+N5/Pix3k/uWVUJDY8cPIwqF2enES1TpaQUeabdoUsXKn+1FDMP3WuaeXhQ+aulOHTpUmAdKRmqfJeswtNMVYaQRPoKT8eOHXF2dubatWva1nY2S5YsoVKlSrRq1YpevXrRtWtXbSu9MBgr+PfCCy9Qq1Ytnn/+eQYMGECvXr2YM2eOwXrXrl3LsGHDmDp1Kv7+/vTu3ZuTJ0/i4+Nj8JyBAwfy0UcfMX36dJo0acLdu3cZN26cwfIODg4cOnSIHj16ULt2bT788EMWLVqkHYceM2YM/v7+2vHho0ePGv9gikiRRfrGjx/Pxo0b8fX1ZeTIkQwZMgRnE67sKUtKUqQP4HTkaUbuKriFv6bDaqzuZeLj4ICdry9mRkx2GEKoVKSeCUb56BFmbm7YNG1idJxrfGom9+Lyj8cE8HW2wcmm5IL3hRCFyl8gIWEsZS7St3z5ciIiIpg+fTrbt2/Hx8eHAQMGsGvXLilJcQEEuQfhYeOBIVcgAzxtPAlwrYfsyeoiZUQEQllw+j1DyBQKbFs0x7Hni9i2aF6oRQPGZqAqyUxVCWmZXI1M4nZMMvfiUrkdk8zVyCSDooQSEmVBsX4BlpaWDBo0iD179hASEkK9evUYP348fn5+OitgJHRRyBXMaD4DkCHL7VafvIymN5+OQq5AYWeH3NISoVKRlWPFUGmSnakqP3JmqjKk2FpUiqr0KiFR2pisSZG9vEsIUaTB8f8anfw6sbj9Ytxtco23yWSMsqlBJ79O2m3N+KcMVUICqsTEUrfV2ExV2d9/WEwKtx8l50loXZgY1pznGDMhJvWKJMoDxQqbysjIYMuWLaxZs0abKOXbb7+lW7duemf/JHTp5NeJDj4dOBt9lkepjzgQspGdsec4kHafCeqnzkhuZYXC1QVlTAxZDx8it7U1yTr/wmBsYusMpZq0TBUCQfKjZOytzPFwsCRLpS6S2mphJsQk6RaJsqbIf4E5J6Vef/11Nm7ciIuLiylt+0+gkCto5qnJv9rGuxXHt3TnVlYyf976kx4+mvASIQRm7u6oEhMRmZlkRUZiUblyqdtqTGJrK3MF/p52RCdm8Dg1i6R0zUcfOWNYHazMyVIJMpQq0rNUmCvkONlYGC3JIkm3SBQHU/VwijzLL5fL8fX1pXHjxvnOtG7ZsqXIxpUVJT3Lnx/rr6xn4ZmFuFu780efPwi/HY67uzsuLi6oUlJQPnyIWeXKKIwI7C9rMpSqJ441/zFOmUyGHFDl+FO0szSjupsdyelKbscUPB5f3dVOaqFKFJnY2Fiio6OpXbt2ntVdhfEHRf4LHDZsmBSyUgIMqjOIX0J/4WHKQzaeX86LvkO168ltbGygShWyZDKy0vMfVzQGIQRpyjRUQoVCpsDazNrk36mNQk2cMn+HKgA1mik6c4UcCzMZ1nI16enpKIRAoVbm2wJVyOUoRBbp6UWPgqhIlMb39l9BCEFqairR0dE4OTkVOw1pkVuozzJl2UIF+GvfDGbe/xs75Pw94AAZ8Rl6lzMKtRqRlQVqNcjlyC0s8ixlNUS6Mp2EjARU4mkwvkKmwNHSESuz/CegCkNqppK4FP1d/pw4WpthZ6lfyiUtU0VcisYp6/tjdbG1wNriv5GPt7S+t/8aTk5OeHp66v37K5UWqkTJ0SPgNX68tZUoMwVhEadpUr0r7u7u2gQaQgiiFy4k+cBBneWkMjdXXN94A7s2bfKt/9iDY8w/P9/g8RnNZ9CqsmlyR56795g5f10osNzCVxpS3dfwSqbD16NZduAWj5KfJr12s7NkfIcaBNTWREpEJ6bzxa6rjG9fk+puxVm0Wz4pze/tv4S5ubnJEuRLLVQ9lHULFeDOmk64hZ/B9vlp0OF9Xft27+bBxEl5T3ryds1vSalKraLr5q5EpUbpPS5DhoeNBzv770QhL/4fmUotaLNgP5EJ6XpblzLA09GKI9M7opDn37pWqQWnwuKITkrH3d6K5tWcdc55+9dzbL/wEDO5jDfbVeftjrWwMlcYdW55p7S/N4mnSC3UZ4CqzcfBvZEQvA7avgtmmtAibRZ+fTxJBRj1+TzsX3hBb2jV2eizBn+UoJFkiUyN5Gz0WW30QXFQyGXM7hXAuJ/PIkO3y57tzmb3CjDKuSnkMlrWMBxJ8kGPumQqVey6EsWyA7fYcSmSef3qE5+aydztIUQkPB139nK0YnavALoFehXtxkqZ0v7eJIqGFCxaXqnTC+w8EclR7Dw2j6txVwE06/ENifsBCIEyMpLUM/rzpT5KNS7ptLHljKFboBcrhgTh6ag7xufpaMWKIUEmc2qejlasHNqU74YE4W5vSVhMCq9+f4KxP5/VcaYAkQnpjPv5LDsvl83qs8JSFt+bROGRWqjlFTMLaPo6y88v57uw32mRHs6qzquKnYXfzca4pNPGljOWboFedA7wLJVud7dAL1rVdGXejlB+PZU3ozxoWsoyYO72EDoHeJb77n9ZfW8ShcMkDnXfvn3s27eP6OjoPMtOyyJrf3h4OEOHasKNzMzMmDVrFq+88kqp21Fsmoyg79HFrHZy4GTESY49PEajQmTh15elvrpDdcxkZiiF/hCj7LG4IPfCp4IriIK67KbEwcqc3g0rG3SooHGqEQnpnAqLKzW7ikp2Qp38uv2eNp4l8r1JGE+xu/xz586lS5cu7Nu3j5iYmDw5UcsCMzMzli5dSkhICHv37uWdd97R0S2qMNh7Urn/Ol6tPQCAJcFLsAxqhJmnp+HwKJkMM09PbJo2IfKjj4j4aDaZd+8CoBZqJh6YaNCZgmYsLjsxS0UnOsm4WF1jy5UlTxPqGOZZ+d4qMsVuoX733XesW7eOoUOHmsIek+Dl5YWXl2Zczt3dHWdnZ+Li4grU1ymX1OnBG+mt2HZnJ9ceX2PHvZ20NyILvzImlvgtW0GlIv7333Ho1hWX0aN5s+GbfHriU4YHDGfdpTU4X4ukUjI8toNrPgpqONd6mpilguNub1xcprHlypoAlwDkyFGjf5GDhaLkctFKGEexW6iZmZkm17s+dOgQvXr1wtvbG5lMxrZt2/KUWb58uTYZbJMmTTh8+LDeus6cOYNarc43U3h5x8nKiVH1NfId3577FssX2hWYhd/cwx2/H9dj164dqNUk7viHsH79qTrnJ/5XZQ69wt1YvlzFnF/UTPpTzZxf1Hy7PAunk1c5/vB4WdymyWlezRkvR6t88856OWrGcisCay+vRY2a5h7NWdN1DQvaLmBN1zUMC9BoMH15+kuyVAUvopAoOYrtUEePHs0vv/xiClu0pKSk0LBhQ7799lu9x3/77TcmT57MBx98wLlz52jbti3du3fPI30bGxvLsGHD+P777/O9XkZGBomJiTqfckXsLQaf/BUPNUSkRPBr6K84dOlCzX178V2/Hu+FC/Fdv56a+/bqxJ/aNGmCw9cL+O3951B07QByOSlHjvBwxCgeTJqkEe/LgXMSTN2iZtf6uahFxU82kh2yBeh1qgLjQ7bKA43dG1PVoSpvNnyTZp7N6FG9B808mzGu4ThcrFy4k3iHDaEbytrM/zTFDuyfNGkSP/74Iw0aNKBBgwZ5RLBySt8WyUCZjK1bt+ooqLZo0YKgoCBWrFih3Ve3bl369u2r1SnKyMigc+fOjBkzpsDhiDlz5jB37tw8+8sysF+HzBRYVJet5kp+qdqA91p/THOv5gWelpCRwBt73iAkNoS6znX5qeFCYlevJuF/v2uWq+pBDcTZQ8qvi+hWU7+YWkVj5+WIPHGoADYWCg682x4Ph4rR5QfNOLgMWZ7Jxm03tzHr6CxszGz466W/pNl+E1IqEijZXLx4kUaNGiGXy7l8+TLnzp3TfnJqb5uKzMxMgoOD6ZJrJVCXLl04duwYoFmaOWLECDp27GjU2O7MmTNJSEjQfsLDDc8MlwkWttB4CH2SU/gt3d4oZ5qYmcibe94kJDaESpaV+KzNZ1j6+uLY40WDzhQ0fxCuSfD3ti/JUj8b3cdugV4cmd6RX8c8x1evNuLnUc0J9HYgNVPFtN8vVqjk1HKZXO968941elPftT6pylS+Pvd1GVgmASaYlDpw4IAp7DCamJgYVCoVHrnGDz08PIh8EvB+9OhRfvvtNxo0aKAdf/3pp5+oX7++3jotLS2xtLQsUbuLTbNRyE8sg5t7IO42OOuX1oUnznT3m1yJvUIly0r80PUHalWqBRiOT81NVnQ0m69v5tU6r5rE/LImd8jWEgcrXvzmCP9ef8Svp8J5rYVvGVqXP7+E/oJMJuOlmi8ZTIAil8mZ2XwmKy+uZHT90aVsoUQ2FTawP/dbOmfMZZs2bZ49GRaXGlCzE9zcS+rJlfzkXZ3Y9Fjeb6G7zj8pM4mxe8ZyOfYyTpZOrOqyitqVamuPmxkZx/rYDm7G3zTpLZQnannYM62rP2uP3qGqa/nNLZucmcy3578lKTMJN2u3fCMw6rvV59sX9M87SJQOJnGo8fHxrF69mtDQUGQyGXXr1mXUqFE4OjqaonodXF1dUSgU2tZoNtHR0Xlarc8czcbAzb3cDtnEt9GabEr+lfyxNrPGzcaNIPcgFp5ZyKWYSzhZOvFDlx/wd/bXqcKmaRPMPD01E1IGurpmnp589OZX1PNoUOK3VJaMbF2Ngc18sLcyL7hwGbHx2kaSMpOo5liNjr4dC3VucmYydhbPXtat8kyxx1DPnDlDjRo1WLJkCXFxccTExLBkyRJq1KjB2bNnTWGjDhYWFjRp0oQ9e/bo7N+zZ0+xw7eWLVtGQEAAzZqV0+QStTqDkx+BSXE0stFIoMw5Pofph6czctdIum7uSpB7EM95PceqLqvyOFPQyEl7vD/zyYb+2W2P92c+884UQC6X6TjT1MzylaA6TZnGTyE/ATCm/hjkMuN+rsmZycw+Npte23qRlJlUkiZK5KLYDvWdd96hd+/e3Llzhy1btrB161bCwsLo2bMnkydPLlKdycnJnD9/XjupFRYWxvnz57VhUVOmTOGHH35gzZo1hIaG8s4773Dv3j3Gjh1brHuZMGECISEhnD59ulj1lBhyBXSey95O0zif+iDP4ejUaGYdncVA/4HUca5jsBqHLl30xrECoFBgVfvpEEFEcgQ7bu8wifnlFSEEv5y8R+v5+7keVX4c0Obrm4lLj6OyXWW6V+tu9HmWCkvORp0lJi2GlRdWlqCFErkpdtiUtbU1586do04d3R9wSEgITZs2JTU1tdB1Hjx4kA4dOuTZP3z4cNatWwdoAvu/+OILIiIiCAwMZMmSJTz//PNFuofclId8qIYwZV5MoVJpslc9eoSZmxsxq38g9dBh7Lt3o8qSJYQnhtP3j76oUbO973aq2FcpiVsqc4QQvL7uNAevPSKwsgNbx7fGXFG2idgyVZl039Jd85J8bhYD/AcU6vwjD44wbu84zGRmbO6zmeqOhicxJfKnVMOmHBwc8gTUgyZBib29fZHqbN++PUKIPJ9sZwoa1dU7d+6QkZFBcHCwyZxpeacweTELQqZQYNuiOY49X8S2RXM8Z8zE6ZWX8fzgAwB8HHwI8ghCqVby7flnd7JDJpOxoH8DHK3NufwgkW/3l/1k3J+3/iQ6NRp3a3f61uxb6PPbVG5DuyrtUAolC04tqFChYRWZYjvUgQMHMmrUKH777TfCw8O5f/8+GzduZPTo0QwaNMgUNkrkoCTzYlpWr4bXJ59g5uqq3Te5yWQAdtzeoc3J+izi4WDFJ30DAfj2wE0u3o83Sb0qteD4rVj+OP+A47diUamNc2wBLgG0r9Ke1wNfL/Ia/WnNpmEuN+fYw2McDD9YpDokCkexZ/kXLlyITCZj2LBhKJWaQX1zc3PGjRvH/PmG9W/KI8uWLWPZsmWoVKqCC5cRpZkXMysqmnoe9ehetTv/3PmHpWeX8l2n74pdb3mld0Nvdl2J5O+LEUzZdIG/3m6jlVApCvpWaBmrFBDgEsA3L3xTrJalr4MvwwKGsfryar44/QWtKrfCUlHO460rOCbTlEpNTeXWrVsIIahZs6ZG8riCUhHGUKNTowxqNHnYeBqnLaRWwd1jkBwFdh7g1wrkClTx8TycMZO0c+eosWsnD+VJ9N7WG6VQsrrLaqNWalVUHqdk0mXpIR4lZTC6TTU+7BlQpHp2Xo5g3M9n83xH2XEVplQqyI/UrFR6be1FpjqT7zt/T12XuiV+zWeNUh1DzcbGxob69evToEGDCu1MyzsKuYIZXi+AEMhyvQtlQoAQTPfqWLAzDfkTlgbC+p6weZTmv0sDIeRP5HZ2ZD14gCohgUffLsPHwYeXa78MwNKzS5/p8bhKthYs6F8fhVyGlbmiSPeqUgvmbg/R+8LL3jd3e4je7v+BeweYd3IekSn5yNwUAhtzG5Z2WMpfL/0lOdNSoEgt1ClTpvDJJ59ga2vLlClT8i1b3OQoZUF5bqGiVsHSQPYqHzPfpRJRZk9HbTyVSqbHxtPJrBJMvqQJs9JHyJ+waRh5Ve6ftJ8G/EhKghv3Xh8JCgXV/9hGUmUn+v/Zn/61+jOu4TjMFeU3GN4U3ItNxddF0zAorGLq0ZsxDP7hZIHX+HXMczrLYYUQDPxrIKFxobzR4A3ebvx28W9EotiUuOrpuXPntBrx586dM1hOXxIHiWJy9xgkPqQT0CE1jbNWljxSKHBTqQhKz0DjQlNh03BwrKxJrGJu8/S/5tawcyZ5nSlolZZ2zsB28iXsOr1A8t59RM2bj88Pq9j98u5nZgxOpVZxNvosj1IfaVeZ5WzVZzvTnZcjmPNnCJGJ+Y+DPoxP4/CNRxy6EcOBq9FG2ZBbKeDwg8OExoVibWbNkLpDinN7ehFCsPfeXjxsPGjg9uwv3CgLiuRQcyZEWb9+PVWqVEEu1x09EEKUv6xNzwLJT0OmFECz9Az95a7tAFGUyTUBiQ/g7jE8pk0j5d9DpBw9SvLBg9jriQ2uiOy9u5f5p+brhJ952Hgwo/kMnbXyOy9HMPbnvOFn2YqpOcdBZ227zD4jHWk2R2/E0KGOOw5W5gghWHVxFQADag+gklWlotxavvwY8iMLzyykTqU6TG06lbj0OL0vE4miU+xJKYVCQUREBO7u7jr7Y2NjcXd3L9cz5rnJOct//fr18tnlDzusGe8siMZDwNYdslIhMxkyUzX/jguDmGsFn99/NdR/meiFC4n9YTUWfn5U3/4nMgsLgqOC+fHKj8xrOw8b84o1Xr737l6mHJyCyNVClz0Z7ljcfjGd/DqhUgvaLNifJ4dqTtztLTk+8wUUchk/Hb/DlnMPaFvLjdY1XJi08TxRiel6+wE5cbAyY2SbajSsFcvEg29gIbdgZ/+duNm4FXqooSBi02Lptrkb6Srde9L3Mikqpra5PFCYLn+xHapcLicyMjKPQ7179y4BAQEVUhyvIoyhkhiB/m67DBy8DY+hGuuQX1wCzUaiSk7mVrfuyC0t8flhFQo/H3pu7cmD5Ae81egtgjyCDHabyxuFWWV2KiyeQatOFFhn7nHQbLJn+UH3W8p2La+3rsqhGzHcjE4GwN5vNdjcoH+tAcxpNatYIVeG2Ht3L+8cfCfP/twvk6JSEjaXB0rFoWZPRn311VeMGTNGZ2ZfpVJx8uRJFAoFR48eLUr1ZUq5dqiQY1IJ9P5cB/wIAb31n1ugQ85Bo8HQ9XPS70ZiUa0a8ic5Y/++/TczDs9AhkynpWfKlk5JcDryNCN3jSyw3Jqua3gY6c2kjecLLPvVq43o06iy3mMFORiVWvDP5QgWHtxDrONCEHK29/2Lq/fNTB5yZcoly/ooL2FiJUGJT0rB08koIQSXLl3CwuLpag4LCwsaNmzIu+++W9TqJfIjoLfGae6cDokPn+538IZu8w07U9C0WrsteOKQZeh1yH6t4O5RzQSYuTVWufI0mMs1M/y5u83RqdFMOTil2C2dkqIwq8zc7Y1b+56fYmq3QC86B3ga7AIr5DJ6NvCmRY0XmXPoDlnqLHwcqjBo+/78pgyZuz2EzgGehepKF2bJcjPPwmVbKyhMrKg2V0SK7FCzJ6Zef/11vvrqq/LZknuWCegNdV7UG5hv1LkFOeT7Z0CZDmZPZvVVSsT13cQFx7EhbhXoSXUrEMiQseDUAjr4dCjZ7r+BRQn5UZhVZkHuGsXUyAT946AywNMIxdTcSgF6r2fryrLuswE4fis233FbAUQkpHMqLK7AenNSkkuWT4XFlYjN+igoOqOsKfbS07Vr15rCDomiIFdAtbZFO7cgh1ylqW75M2uInvcJcVft6Okr4+xrcr35VIvT0jGakD8NvAwW5Ns6D3IPwsPGg+jU6Dyt62zM5eZ423lrFVPH/XzWUDu+WIqphhxD7lAqQxhbLpuSXLJsrC1n7z0ulkM1NjqjLDGZBEpISAj37t0jMzNTZ3/v3vl0PyXKlsI4ZGU6znWUxNwQBN6D5tcFp/wNO5OitHSMwtCihMQIzf58xo/lMjlvNnyTT45/kmf8N5ssdRZX465S2a4y3QK9WDEkKM84qKcJJocMOQZ3+8ZG1ZHfUIM+CnqZZI+hBrkHFarewtjy5a5r/HM5goFNfejbuLJepQRDUQKGojPK2zBTsR3q7du3eemll7h06RIymUy7VC87qL+ihk1J5KL1RMzr9UUZOxiLwzEM3a/mXA0ZWWb6nWpE8gMdnS+ToFZpWqYFLEqgzot6u//rr6znu4vfMaLeCHaE7dBxaJ42nowMHEmGKoMXfF/Q7u9azzPfcdDCUpBjWNhuUb5DDQDmChnNqhYuTlUhVzCj+QymHJyS52WSvT2l6ZRCd5/VasHpO7EFlrMyl6NUqbn8IJHLD67wXHWXPA7V0CTerJ7+LL46X++LoFSHmYyg2GFTvXr1QqFQsGrVKqpXr86pU6eIjY1l6tSpLFy4kLZti9glLUPK/Sx/GZJ1ZRdnhk/GKRl+fV7GtSoyKiVrRP1CfWSIbD8jk1HXuS6j64+mk18no+U78sXYkK/hf+VpeZ+KOMWYPWNQCzUftPiAV2q/UuBYXLaTm9F8BoGugcU239iZ9nfqrGXChguA/lfH9G51GNe+BgBZKjVmcpnRLy59rWNHC0fSlGm8Vvc1pjadavT9JKVnMWXTBfaEPK3L0PDIiiFBNK/mwtZzDwh5mMiiAQ21ZebtCCUiIY0/L0TkuYYMUNjcwtpvVYH2rOq8GpFWw+QxsKUyy5/N8ePH2b9/P25ubsjlcuRyOW3atGHevHlMnDgx36WpEhUPc3US6qAUOGTLq4cEshw/nxh7WNdJjrVPOqfsHAiNC2Xqv1Op5liNUYGj6FG9hzZCAAo5waBWw53Dxhl5ZQu4B4CtZrwuMiWS9w69h1qo6V2jNwP9ByITapqlpUNKKsj0jwEuDV7KhUcXGLpjKBMaT+D1eq8XqwX0y9VfjJppd3OL0DvUoC+m86u9Nwi++5i5fepR2+NpQndDXedOfp3o4NNB57knZSYx6cAk1l9Zzwu+L9DIvVGB93IzOok3fgrm9qMULBRyPulbD0dr8wKHR0a1qaZTT3xqJmuOhpGl0t+uE4DMLLFAewDe2nSQmMinQ01lEQNb7BZqpUqVCA4Opnr16tSoUYMffviBDh06cOvWLerXr18kCZSyRmqh5kPYYRI/fZn7RytpA8KzEU/+v0rrx6j8lGyoWp9f5CkkPVmZ423rzZftvqSBWwPjJxhUWXBwHlz8HyTkVYYwiEwOPi3IrN2F12OPcjH+Ov6V/Pmpx09YX99j1KRWQkYCHx//mN13dwPQzLMZn7f5HE9bT6NeBlnqLJ0XSL8/+nEj/kaBpi9ou4Ae1XsUuOooOUNJq3n7SExXYiaX8XrrqkzqVJsjNx4VOsD+gyMf8OetP/Fz8ON/vf6HtZm1QftO3o5l5LrTpGSq8HK0YsWQJjTycQKMWymV89k5Wjhz6KI9Kw/d0b2IIgVUtpp/2tzCxogWaurdMahSa2i3TRUDW6orpdq2bcvUqVPp27cvr732Go8fP+bDDz/k+++/Jzg4mMuXLxen+jJBcqiGEVmZ3HyuIcqU7AjDPCUws1FTs2cUMjkky2T85uzKj44OpMlk7Hp5D8HRZ5ly8B3NeHuOrqrsyfbi1vPoVPNJ114IWNEKokPA3A5Qa5bQGsLSHpz8IErzd/epSyV+c7DHQcDG55fgk55aYKatnE5VCMG2m9uYd2oeaco0HCwceKnmS+y8s1Pvy6Cld0sOPzjMvrv7OPLgCNv6bMPDViOG+PXZr1l1qWDHsKbrGqMjJMLjUvnkrxB2P+l2O1iZkZieV721IOeSmJnIS3+8RHRqNEPqDmF68+kGr/k4JZNe3x6hSiVrvn0tCFc74xPm6HuROpi7EhXWDVVaFcwcLmFufwm59QOSb7z/xKmqsa31KXIzA9+7ALXSkZSb05FbPMLK+3cyH7dAmdgQmTDH09GKI9M7opDLihR2VaoOddeuXaSmpvLSSy9x+/ZtevbsydWrV3FxceG3336jY8fCaYmXBySHapiUk6e4N3x4geV8v/4cW8VluPgbJISTLpMRUsmbhuPP03VTB6IyE/SGXcmEwEOlZufgEyisnjz7kD9BrQT/7nBjD2wahlBD6iNzlOkKzKxU2LhlIZPz1CHGh/Nv8Areur8dmRAsi46j7VuX4bvWui1T3asbXLZ7N/EuMw7N4HJs/g0EM5kZSvHUoc1uOVubS/ZpcvD8Z9qLslrpwLVoZv9xmXtxaQbLZMfOZjuX3GQL+wFMrb+USvI62lZmhlKFjcXTEcL7j1PxdLDCrBBihoYm5EDz3sz955AWPhRlcj0AzOwvY13l5zzlsr1X+oMhKJMCsfT4EwvnY5pjKiuy4puQGf8cvwzvRYrZuSKFXZWaQ83KyqJLly6sXLmS2jmkh+Pi4qhUqVKFTd8nOVTDJPz1Nw+NWAHn/cUXOPbupRn7vHsULmwE56qcrtmWkXvGFHj+mrpv0qz5W3qPJa75nKhlP6HMkSbCzBY8JgzFYeT72n1Z6iwWn1mMg8KScc5BgKzIk1oA6cp02m9qT0pW/vkpfOx86Fy1M518O1HPtZ7OhFy2UwHyzLRD8dbT/3s9muFrCpZAN5R/AGD039M4GfMP6kxnUm5PAmGJq50FQsC7Xf0Z1Ny3SLYVNCEHGueoSq2KMqkByqR6CKVm9Uj2i2DuIDULTi0gOu1pHXJ1JVIevogySTNpKFMkYe4UjLnTSeQWj7Xl3K38iE6/m+eaxjz3UpuUMjc35/Lly3kcp7Nz/qtHJCouZm7GBX5HffEFWVGROPXvj1m1tloH9ejk04TjMrWgbrjQjRJ40nJ6JDL11pu4ezcPvvw5T49dmSrT7K/SFIcuXQBNkP705tOfDi1c+l1bXtPCtcjRws1E6/cOztfrUC/FXCrQmQLMaTXHoExMJ79OLG6/WE9LyZ3pxQxQj0/NMqrc7D8v07K6CzXd7ajhbkctd3vc7C3ZeTmCfUdbYFPtFFkJDUFoWskxyZrv4qu9N3i5SZUiSWwXtPQVNF9RVkxnlHrGQWf3CqBLVS9e8O2o02XPTPZj8A9PXyJCZU9mbHsyY59HYXsDi0onUNiF6nWmYPqwq2LP8g8bNozVq1dXOEE+fUhxqAVj07QJZp6eKKOinva3ciOToYqJ4dGixcR8/Q2Vhg7FY9p7ALip1AA0v6ZmxB41rklPT4uxh3Wd5Zzyl1NJmdc5CJWKqM/n6b/uE6cZ9fk8dlaJ46U6/bUTQtoXvp1mLDMx3Iqos44o057+eMysVXgEJeDgk46OtxYCdn8IVZrySGGcw4pJi8n3eKeUVDqEP+BsZuzT5OAWShT1jJvAFSoVqWeCUT56hJmbGzZNmyBTKIwOsL8elcz1qGTtduuaLvw4soVmPb7aipTbk0HkDboXCORF7HUau9DDySGdmByPIXeUgEKu0BlfVqmFgbhdOaoUf9JT/HHxCCXDeb3Ba5pydV+xHWpmZiY//PADe/bsoWnTptja2uocr0gSKBMmTGDChAnaJr5EXmQKBR7vz+TBpMmaJkVO5/bkx+a98EtERiaPf/mF9MuXkds+zUTW2C2IHptXM/zvvHU7J8HULWqWvAQNWj1dsSOEQBUbS+I//6CMzEdrSQiUkZEc+/4TjnTcy1e9Vun2nvxakRjrzYOjeR2yMk3Og6OV4AUVDmM+fXog9iYc/xYANytL8PLI/wEBblb59NCerPRSIND56aYXvNILNC30qM/n6TwHM09PPN6fSfNOnQvMP+BsZ8F7Xf0Je5TCzehkbj5KpraHve56fB1nqgKZCoQFUYkZRVqPr1KrOHT/kFFlvx3QvlCxpMYsEe7fxJtfwgq+tilW9xXboV6+fJmgIM0f//Xr13WOVdQxVIn8cejSBb5amveH7eGBx/sztV1up34vkXbpEube3toyKTfTtc4091+HHFAD4/eosfm4HRFz55J28SKZd+8iko3Pq/vmTjXsPMqNBW2x8PPDun4gHjNnIgREnXUE4vVcXfNzjDrvgr1nw6dHFRbw3Hi4fZCg6BA8lEqiFQqEwQk1FUHH14DXGbByACvHpx+HKsVa6ZW4e7fmRZarha6MiuLBpMlU/mops3vVz9e5fNY3kG4B7pocDj6aHA7C158/L+XtjsstorDy3oQq3ZuMyP7Ak3X7hUhMk5CRwPRD0zn6MP80ntlqvc08m+Tf7dZz7YKWCLu43jfKoZpCer3YDjWnHIrEfweHLl2wf+EFvV3PnFjXr6+znfD7Fr3BVtnIAatkSD17noyQUDKuhAAgZDIUzs6oYwte5phpY45Fahaq2FjSYmM1E2OgsTU2Af3hXgAylLEJpJ4JxrbFkzHQSn7QbR4AilM/MOPgh0xxd0UmhI5TzVagnR77GEX4b3Dpt7zVPzchnwgDyCk/k3sM19jhjq779uaff0B+GpbqxuDKHLyp0/hDwEn3aShSUFg/QGH9AGVSIKoUf+o8PghLPzUqMc3VuKtMPjCZB8kPsFJY8bJrEBsiNY5V77MrSK03n6Q43QJ7G1wirFK7l1geg9yYLDkKkGcdv8SzjUyheOp4jMSxbx9SjEg6rnz0CJdxY1l88kuOm90l2gmaVPZnyufXEdExel2iGkhyMifo0CkUGVlk3r1H1r27yJ4kxlY+Mq5LZ7Ccmz+dUtNYHB2TR3HWQ6VieuxjOqWmgf+LGlHE9ATISNT8Nz2BAhN6Z3P6B43AovPTnKypZ4KNGu5IPRNMtxbN9TuXq9sNJpap/e8EXrV7j9+SG2mPqtKqkxnXGgvno1h5baZbVCdq//uV3vNzD1fsubuHmYdnkqHKoIpdFZa2X4z/+n400aPWq3l28XSK+wlaTdPf2jUiKY4ioLfe4YiC8hgATG8+3SR5AEziUFevXs2SJUu4cUOzCqRWrVpMnjyZ0aNHm6J6iWcIM/eCxyBBE01g26I577dtzbor61h5cSUnok6xpI2MyVs0zjPnXLMaTbszcezLWFhYgYUV1oH1sA6sp1OnsdfWi18rcPCmU2IE7ZMfcjHBlqQMM+wtlTRwTMFMLgOHyjDwJ8PyMyeWF2xAyDZoPFTrUEX0NVJ36Wnx6iFx506s6gWgsLN76lxUSk3L9++pgDAY4fCx/Hsi5WNIFjakYMVV4UNGdFfMbK8ht4zB3OV/yCINnZ9juCLiApUjr4JaSRtrb+ZbB+D490zj1Hr/nAjejcDGBWycwbclyM2KNVQC+UVXeDC9+XSTZaoqdmD/rFmzWLJkCW+//TYtW7YENOv7v/32WyZNmsSnn35aQA3lDykOteQQKhU3X+hkOEpAJsPMw4Oa+/bqDB+EJ4bzyYlPOB5xPN8IgXuNvQ0Gxhd4bUBRqRK1jhxGplCQfu060YsW4ti7D/YvdERubQ0hf5K46A2izjroiRJIxGHq90bJzwi10B+2ZeUE1TtA769RpipJ+ONP4tevIDPSuPXsADIzGbbVbHGoLrBzj0eRFUO2Myo4wuEpNdN/RIkZ7q4RpLt+hZDB9yficT1hrfd8a590zIf/BadWQuh2QizMqZOZReGDrHIwLQyirhQrfjgnJb1Sqtgt1BUrVrBq1SoGDRqk3de7d28aNGjA22+/XSEdqkTJYUyUgMf7M/OMxfo4+DC6/miORxznlL+c07Vk+mNY8wl/MebannPnaK+d8OcfpBw6TMqhw8htbLDv3Bmzyt7EHs2bOk+ZptBECQy0wiHAwM0/kZ/J3yF/o3XIjz6bRfz/nsTOKjSJaIRKhqElv3IzgcLenKzHKpJvJJN8A2RyM7yaWeFYLZ3EcEuNjXlsfxLh0PoxDoFuCIUFGRnpLOrbVDtcsHTNd4TcTsPxgB3KXC1FZZqc+0crsba3jOFRZwn0qA9p8QRYO4G1M1hXgrR4OLvOwIPJQa0umonAtMeQGqd5wSTnH7+q5fHdAh2qAgpMilMciu1QVSoVTZs2zbO/SZMmKJV51xRLSBgbJZCbnPGdQi4jxE//WH1+4S+FuXalV15BbmlJwp/bybp/n4Q//sj/xp5MDNm/8EKeF0I2ifetDDg1jUPOah2LyxOH7NS/P+lXr+HUvz8OVbNIWTX1ybm58yhoHJxXi3js+w0lI8mapItRJJ66Rub9aCwnbkE4ZBA14M1sQ3MbDgiizjlgP3MZsprtsAL65CgxocUHnPtupsHzBdD7ACxvdYzlfX8DcuUCUKvg5u6C1XoHbczbbbczbpgIpxyruMJPg0sNzbBBNkVUeigMxe7yv/3225ibm+eJN3333XdJS0tj2bJlxTKwNMkZ2H/9+nWpy1/CGApQN0RhVEsLCtAuzLWFEKSdO0/MD6tI2V9wVIvt822xrFkLhaMjCicnzNzdsO/Q4emQQz6TSzJra/zPnM5ry5NcsHq77DZKPBonarrsObq9Qggyb97EomZNUk+e4N6Igp+d77o12D6nGbp7OPN9Uo4dQ6hViLR01MnJBZwNHj+swLlNe/0Hi6rWa4xSr5UTTLutccZqNSyuAymPwKcF1O4GCkvYNVPP+QUrBZd4lz9bQho0M/o//PADu3fv5rnnngPgxIkThIeHM2zYMENVlEukwP7SpbBRAqaU8SjMtWUyGTZBjXHs8aJRDjV7mCAbi2rVsO/QoeCZekCkpemGbWXzZELMwScC+8pR+ieFHCpryuWw27JWLQCUMXFG3WvOcqr4eM14cyGQPU4yfLCoar3GKPX2/uZpyzblEdi6aYYK7h3XfAxi3KSWsRTJoeZOGt2kSRMAbt26BYCbmxtubm5cuXKlWMZJSOSkNMNf9GFslIBj//4oHBxQJSSgio/HzF1zXrHCtnI4FZlchq1HzlwHT5xKt/kGHUJRIhw8pk/DdcIEZGYKQo/9jdUXPxR4fpjZY/IVZymqWm9hnLG9B4w7CvH34PouOP8LPDybT+WG438LS5EcqhTML1FWlFb4iz4KzGPwJELB6+O5eocPih22VdQWXiFst2naRLvLompV7b8jFDexX6FZHmxo1l4AaefOIzoNQmaeNxeAlqKq9RbWGTv5QvMxmkmxzaMKrt/Yya98MGlgv4REaaBPxqM09NmLGqGQTVGcWh6K2MIrru1u9h5811nO1C3qPDHA2TXJAOcf/yHs9B28Pv0E63r18lZUXIrijI2d1DK2XD4UaVJqypQpfPLJJ9ja2uqMp+qjIiVHyUaKQ5XIj/wSlBiKUMh57oNJkzUbepxa5a+WFlhHcSiq7dn5TKuei2T4HlWeGOD1neS4yx0ZvleNOiEBFApcRo7EdcJ45FaFk7w2OQVOahlOLA6lkGC6Q4cObN26FScnJzp06GC4cpmM/fv3F7b6MkdyqBIFUdgIhZwUxyGbgqLanp0cW6YW1AlXa2OAr/rIEXIZi9svpr1tI6I+/5zEHf8AUOm1QXh+9JFJrl8sihphQCll7D9//jyNGjUqyqnlHsmhSpQ0ZeJUTIA+TShPG88849dJ+/YRvXgJvmtWY+7xtCtdpi8TvXGolQscfy4VhyqXy2ncuDGjR49m8ODBz5TjkRyqhIRhjF2+KdRqZPKno63hEyaQvE9Pj7UQwx3FfhEVIvVgNqXiUI8fP86aNWvYtGkTWVlZ9OvXj1GjRuU7BFBRkByqhIRpSTp8mPtj3jBcwEAOh5yUVeu2MP6gyHkLWrZsyapVq4iMjGTFihXcv3+fTp06UaNGDT777DPu379f1KolJCSeMQpM6Jkj/WBWZCSZd++iSkzUpgTNnszLvTAiO7l24u7dJWN4ISn20tOc3Lp1i7Vr1/Ljjz8SERFB586d2bFjh6mqLzWkFqqEhGkxWi134UJSz5wmfuOTdIVmZsidHFHHJ4Ch3CBGtG6LQ6m0UPVRo0YNZsyYwQcffICDgwO7du0yZfUSEhIVlMIuapDbPNEhUypRx8Qadqag07ota0zmUP/991+GDx+Op6cn06ZNo1+/fhw1IjN7eWLZsmUEBATQrFnxlA8lJCR0yV7UgCE1D5kMM09PbJo2wWvOHPzPBuN/4Tw1Dx7Abco7Rl0j60HZDzMWq8sfHh7OunXrWLduHWFhYbRq1YpRo0YxYMCAPOqnFQmpyy8hYXqKuqgh5eQp7g0fXmD9cgcH3CZOpNKAV5BZWJjCZKCUZvk7d+7MgQMHcHNzY9iwYYwcORJ/f/8iGVzekByqhETJUJSZemOUFlAoQKUCwLxyZVzfegvH3r1MMqZaKhn7ra2t2bx5Mz179kRRAQKSJSQkyh5j1XJzYkwegspffoEqIYGY5SvIevCAiJkzMfdwx7ZVK526SnpBhUln+Z8VpBaqhET5w5jWrTotjce//Erq2bNU+fYbrQJz5v0HpF+5QtS8wsexlkqX/1lGcqgSEuWTorQwVQkJ3GjXHpGuR0PKiFVapSrSJyEhIVFaFFblASD13Dn9zhQ0wwdGaIEZi0njUCUkJCTKG3Jrm/wLmDCOVXKoEhISzzTFkp4pJJJDlZCQeKYptvRMIZAcqoSExDNNYVZpFRfJoUpISDzTZMexajZyOVUj9LQKg+RQJSQknnkcunSh8ldLMfPQFeIz8/AwqY6XFDYlISHxn6Aoq7QKi+RQJSQk/jMUJY61MEgOVQ/aLOGJiWVsiYSERFmT7QeMWVQqOVQ9JCVpRMd9fHzK2BIJCYnyQlJSEo6OjvmWkdby60GtVvPw4UPs7e21yRUMkZiYiI+PD+Hh4RVi3b9kb8ki2VtylJWtQgiSkpLw9vZGLs9/Hl9qoepBLpdTpUqVQp3j4OBQ7v8gcyLZW7JI9pYcZWFrQS3TbKSwKQkJCQkTITlUCQkJCRMhOdRiYmlpyezZs7G0tCxrU4xCsrdkkewtOSqCrdKklISEhISJkFqoEhISEiZCcqgSEhISJkJyqBISEhImQnKoEhISEiZCcqjFZPny5VSrVg0rKyuaNGnC4cOHS92GOXPmIJPJdD6enp7a40II5syZg7e3N9bW1rRv354rV67o1JGRkcHbb7+Nq6srtra29O7dm/v375vEvkOHDtGrVy+8vb2RyWRs27ZN57ip7Hv8+DFDhw7F0dERR0dHhg4dSnx8vMntHTFiRJ7n/dxzz5WJvfPmzaNZs2bY29vj7u5O3759uXbtmk6Z8vR8jbG3PD3fQiMkiszGjRuFubm5WLVqlQgJCRGTJk0Stra24u7du6Vqx+zZs0W9evVERESE9hMdHa09Pn/+fGFvby82b94sLl26JAYOHCi8vLxEYmKitszYsWNF5cqVxZ49e8TZs2dFhw4dRMOGDYVSqSy2fTt27BAffPCB2Lx5swDE1q1bdY6byr5u3bqJwMBAcezYMXHs2DERGBgoevbsaXJ7hw8fLrp166bzvGNjY3XKlJa9Xbt2FWvXrhWXL18W58+fFy+++KLw9fUVycnJ2jLl6fkaY295er6FRXKoxaB58+Zi7NixOvvq1KkjZsyYUap2zJ49WzRs2FDvMbVaLTw9PcX8+fO1+9LT04Wjo6P47rvvhBBCxMfHC3Nzc7Fx40ZtmQcPHgi5XC527txpUltzOyhT2RcSEiIAceLECW2Z48ePC0BcvXrVZPYKofnB9+nTx+A5ZWlvdHS0AMS///4rhCj/zze3vUKU7+dbEFKXv4hkZmYSHBxMl1yZvrt06cKxY8dK3Z4bN27g7e1NtWrVePXVV7l9+zYAYWFhREZG6thpaWlJu3bttHYGBweTlZWlU8bb25vAwMASvxdT2Xf8+HEcHR1p0aKFtsxzzz2Ho6NjidzDwYMHcXd3p3bt2owZM4bo6GjtsbK0NyEhAQBnZ2eg/D/f3PZmU16fb0FIDrWIxMTEoFKp8MglqeDh4UFkZGSp2tKiRQt+/PFHdu3axapVq4iMjKRVq1bExsZqbcnPzsjISCwsLKhUqZLBMiWFqeyLjIzE3d09T/3u7u4mv4fu3buzYcMG9u/fz6JFizh9+jQdO3YkIyOjTO0VQjBlyhTatGlDYGCg9jrZ187PlvJiL5Tf52sMUrapYpI7vZ8QosCUf6ame/fu2n/Xr1+fli1bUqNGDdavX68dzC+KnaV5L6awT1/5kriHgQMHav8dGBhI06ZN8fPz4++//6Zfv35lZu9bb73FxYsXOXLkSJ5j5fH5GrK3vD5fY5BaqEXE1dUVhUKR520XHR2dpzVQ2tja2lK/fn1u3Lihne3Pz05PT08yMzN5/PixwTIlhans8/T0JCoqKk/9jx49KvF78PLyws/Pjxs3bpSZvW+//TZ//vknBw4c0Ek9WV6fryF79VEenq+xSA61iFhYWNCkSRP27Nmjs3/Pnj20atWqjKzSkJGRQWhoKF5eXlSrVg1PT08dOzMzM/n333+1djZp0gRzc3OdMhEREVy+fLnE78VU9rVs2ZKEhAROnTqlLXPy5EkSEhJK/B5iY2MJDw/Hy8ur1O0VQvDWW2+xZcsW9u/fT7Vq1XSOl7fnW5C9+ijL51toSmy66z9AdtjU6tWrRUhIiJg8ebKwtbUVd+7cKVU7pk6dKg4ePChu374tTpw4IXr27Cns7e21dsyfP184OjqKLVu2iEuXLolBgwbpDZupUqWK2Lt3rzh79qzo2LGjycKmkpKSxLlz58S5c+cEIBYvXizOnTunDS8zlX3dunUTDRo0EMePHxfHjx8X9evXL1KYTH72JiUlialTp4pjx46JsLAwceDAAdGyZUtRuXLlMrF33LhxwtHRURw8eFAnzCg1NVVbpjw934LsLW/Pt7BIDrWYLFu2TPj5+QkLCwsRFBSkE/5RWmTHFZqbmwtvb2/Rr18/ceXKFe1xtVotZs+eLTw9PYWlpaV4/vnnxaVLl3TqSEtLE2+99ZZwdnYW1tbWomfPnuLevXsmse/AgQMCyPMZPny4Se2LjY0VgwcPFvb29sLe3l4MHjxYPH782KT2pqamii5dugg3Nzdhbm4ufH19xfDhw/PYUlr26rMTEGvXrtWWKU/PtyB7y9vzLSxS+j4JCQkJEyGNoUpISEiYCMmhSkhISJgIyaFKSEhImAjJoUpISEiYCMmhSkhISJgIyaFKSEhImAjJoUpISEiYCMmhSkhISJgIyaFKPBO0b9+eyZMnG13+zp07yGQyzp8/X2I2GcucOXNo1KhRWZshYQKklVISpUpBqdOGDx/OunXrCl1vXFwc5ubm2NvbG1VepVLx6NEjXF1dMTMr2SyWmzdv5osvvuDq1auo1Wp8fX3p1q0bixYtAiA5OZmMjAxcXFxK1A6JkkfKhypRqkRERGj//dtvv/HRRx/piLRZW1vrlM/KysLc3LzAenNnfC8IhUKhI2RYUuzdu5dXX32Vzz//nN69eyOTyQgJCWHfvn3aMnZ2dtjZ2ZW4LRIlj9TllyhVPD09tR9HR0etQqunpyfp6ek4OTmxadMm2rdvj5WVFT///DOxsbEMGjSIKlWqYGNjQ/369fn111916s3d5a9atSqff/45I0eOxN7eHl9fX77//nvt8dxd/oMHDyKTydi3bx9NmzbFxsaGVq1a5VHk/PTTT3F3d8fe3p7Ro0czY8aMfLvrf/31F23atOG9997D39+f2rVr07dvX7755httmdxd/tyKnzKZjKpVq2qPh4SE0KNHD+zs7PDw8GDo0KHExMQY/yVIlBiSQ5Uod0yfPp2JEycSGhpK165dSU9Pp0mTJvz1119cvnyZN954g6FDh3Ly5Ml861m0aBFNmzbl3LlzjB8/nnHjxnH16tV8z/nggw9YtGgRZ86cwczMjJEjR2qPbdiwgc8++4wFCxYQHByMr68vK1asyLc+T09Prly5wuXLl42+/4iICO3n5s2b1KxZk+eff157rF27djRq1IgzZ86wc+dOoqKiGDBggNH1S5QgJZrLSkIiH9auXSscHR2122FhYQIQS5cuLfDcHj16iKlTp2q327VrJyZNmqTd9vPzE0OGDNFuq9Vq4e7uLlasWKFzrXPnzgkhnqbs27t3r/acv//+WwAiLS1NCCFEixYtxIQJE3TsaN26tUHFWSGESE5OFj169BCA8PPzEwMHDhSrV68W6enp2jKGVGvVarV46aWXRJMmTbT5QmfNmiW6dOmiUy48PFwA4tq1awbtkCgdpBaqRLmjadOmOtsqlYrPPvuMBg0a4OLigp2dHbt37+bevXv51tOgQQPtv7OHFnKqZxZ0TnaG+Oxzrl27RvPmzXXK597Oja2tLX///Tc3b97kww8/xM7OjqlTp9K8eXNSU1PzPff999/n+PHjbNu2TTu2HBwczIEDB7TjrnZ2dtSpUweAW7du5VufRMkjTUpJlDtsbW11thctWsSSJUtYunQp9evXx9bWlsmTJ5OZmZlvPbkns2QyGWq12uhzsiMScp6jT+zOGGrUqEGNGjUYPXo0H3zwAbVr1+a3337j9ddf11v+559/ZsmSJRw8eFBHc0mtVtOrVy8WLFiQ55zsF4BE2SE5VIlyz+HDh+nTpw9DhgwBNE7lxo0b1K1bt1Tt8Pf359SpUwwdOlS778yZM4Wup2rVqtjY2JCSkqL3+PHjxxk9ejQrV67UqtZmExQUxObNm6latWqJh3tJFB6pyy9R7qlZsyZ79uzh2LFjhIaG8uabb5aotroh3n77bVavXs369eu5ceMGn376KRcvXsw3tnbOnDlMmzaNgwcPEhYWxrlz5xg5ciRZWVl07tw5T/nIyEheeuklXn31Vbp27UpkZCSRkZE8evQIgAkTJhAXF8egQYM4deoUt2/fZvfu3YwcORKVSlVi9y5hHJJDlSj3zJo1i6CgILp27Ur79u3x9PSkb9++pW7H4MGDmTlzJu+++y5BQUGEhYUxYsQIrKysDJ7Trl07bt++zbBhw6hTpw7du3cnMjKS3bt34+/vn6f81atXiYqKYv369Xh5eWk/zZo1A8Db25ujR4+iUqno2rUrgYGBTJo0CUdHR+Ry6edc1kgrpSQkikHnzp3x9PTkp59+KmtTJMoB0iCMhISRpKam8t1339G1a1cUCgW//vore/fu1dGHl/hvI7VQJSSMJC0tjV69enH27FkyMjLw9/fnww8/pF+/fmVtmkQ5QXKoEhISEiZCGsWWkJCQMBGSQ5WQkJAwEZJDlZCQkDARkkOVkJCQMBGSQ5WQkJAwEZJDlZCQkDARkkOVkJCQMBGSQ5WQkJAwEf8HAzNRI+Mp+V4AAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVQAAADwCAYAAABfaJz5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABw50lEQVR4nO2dd3xT1fvH3zdJVzpp6aK0ZY9aVlmCbNkKIiqITBk/ERQQFFwIuAAVxAGIyFKR4RdwsffeG8qmQIEuCnSvJOf3R0ho2qRN23QA9+0rL7n3nnvOc2/bJ2c85/lIQgiBjIyMjEyRUZS2ATIyMjKPC7JDlZGRkbERskOVkZGRsRGyQ5WRkZGxEbJDlZGRkbERskOVkZGRsRGyQ5WRkZGxEbJDlZGRkbERqtI2oCyi0+m4ffs2rq6uSJJU2ubIyMiUIkIIkpKSqFChAgpF3n1Q2aGa4fbt2wQGBpa2GTIyMmWIyMhIKlasmGcZ2aGawdXVFdC/QDc3t1K2RkZGpjRJTEwkMDDQ6BfyQnaoZjAM893c3GSHKiMjA2DV9J/sUIuIVic4FHGX2KR0fFwdaVLZE6VCnneVkXkSkR1qEdhwJoop/4YTlZBuPOfv7sikbiF0DvUvRctkZGRKAzlsqpBsOBPFm78fM3GmANEJ6bz5+zE2nIkqJctkZGRKC7mHWgi0OsGUf8Mxl0hWABIw5d9wOoT42Wz4r9VqycrKskldMjIyD7Gzs0OpVNqkrsfSoSYlJdGuXTuysrLQarWMGjWKYcOG2az+QxF3c/VMsyOAqIR0DkXcpVlVryK1JYQgOjqa+/fvF6keGRkZy3h4eODn51fkuPPH0qGq1Wp27tyJWq0mNTWV0NBQevbsiZdX0Zybgdgky860MOXywuBMfXx8UKvV8kYDGRkbIoQgNTWV2NhYAPz9i7b28Vg6VKVSiVqtBiA9PR2tVostlV58XB1tWs4SWq3W6Ext9WUgIyNjipOTEwCxsbH4+PgUafhfJheldu3aRbdu3ahQoQKSJPHXX3/lKjNnzhwqV66Mo6MjDRs2ZPfu3SbX79+/T7169ahYsSLjx4+nfPnyNrOvSWVP/N0dsdRXlNCv9jep7FmkdgxzpoYvBxkZmeLB8DdW1HWKMulQU1JSqFevHj/++KPZ6ytWrGDMmDF89NFHHD9+nJYtW9KlSxdu3LhhLOPh4cHJkyeJiIjgjz/+ICYmxmb2KRUSk7qFACChQ6m+gsrtBEr1FSR0AEzqFmKzBSl5mC8jU7zY6m+sTA75u3TpQpcuXSxenzlzJkOGDGHo0KEAzJo1i40bNzJ37lymTp1qUtbX15e6deuya9cuXnnlFbP1ZWRkkJGRYTxOTEzM18bOof6MeC6V3y59j1DeN56XtB70rz5KjkOVkXkCKZM91LzIzMzk6NGjdOzY0eR8x44d2bdvHwAxMTFGp5iYmMiuXbuoWbOmxTqnTp2Ku7u78WNNYpQt17fw29XPTJwpgFDe57ern7Hl+pYCPtmTw7Vr15AkiRMnTpS2KTIyNuWRc6h37txBq9Xi6+trct7X15fo6GgAbt68SatWrahXrx4tWrTgrbfeom7duhbr/OCDD0hISDB+IiMj87RBq9My7dA0hNlIVD3TD01Hq9MW4MmKF61OsP9KPH+fuMX+K/FodbZbpJORkdFjkyF/VlYW0dHRpKam4u3tjadn0RZjrCHnnIcQwniuYcOGBer9ODg44ODgYHX5Y7HHiEm1PCcrEESnRnMs9hiN/RpbXW9xIW+RlZEpGQrdQ01OTmbevHm0adMGd3d3KlWqREhICN7e3gQHBzNs2DAOHz5sS1sBKF++PEql0tgbNRAbG5ur11pcxKXG2bRccVJaW2Q3bNhAixYt8PDwwMvLi+eff54rV65YLL9z506aNGmCg4MD/v7+vP/++2g0GuP1Nm3aMGrUKMaPH4+npyd+fn5MnjzZpI7z58/TokULHB0dCQkJYcuWLRajRAxotVqGDBlC5cqVcXJyombNmnz33XfG6+np6Tz11FP83//9n/FcREQE7u7uzJ8/H9B/mX/11VdUqVIFJycn6tWrx//+9z9j+Xv37tG3b1+8vb1xcnKievXqLFq0yNpXKfMIUSiH+u2331KpUiXmz59Pu3btWL16NSdOnODChQvs37+fSZMmodFo6NChA507d+bSpUs2M9je3p6GDRuyefNmk/ObN2+mefPmNmsnL7wdreuBW1uuMKRmaix+0rP0Uw35bZEFmPxvuMnw31x9hSElJYWxY8dy+PBhtm7dikKh4MUXX0Sn0+Uqe+vWLbp27Urjxo05efIkc+fOZcGCBXz++ecm5ZYsWYKzszMHDx7kq6++4tNPPzX+Huh0Onr06IFarebgwYP8/PPPfPTRR/naqdPpqFixIitXriQ8PJxPPvmEDz/8kJUrVwLg6OjI0qVLWbJkCX/99RdarZb+/fvTtm1b4+67jz/+mEWLFjF37lzOnj3LO++8Q79+/di5cycAEydOJDw8nPXr13Pu3Dnmzp1r0zA+mbJDoYb8+/btY/v27dSpU8fs9SZNmjB48GB++uknFixYwM6dO6levbrV9ScnJ3P58mXjcUREBCdOnMDT05OgoCDGjh1L//79adSoEc2aNePnn3/mxo0bDB8+vDCPY2T27NnMnj0brTbvuc+w9Ax8NRpilUqEmXALSQh8tVrC0jPM3G0bQj7ZaPFa25reLHq9iVVbZKNzbJFtMX07d1MyTcpdm/Zcge176aWXTI4XLFiAj48P4eHhuLi4mFybM2cOgYGB/Pjjj0iSRK1atbh9+zYTJkzgk08+McpO1K1bl0mTJgFQvXp1fvzxR7Zu3UqHDh3YtGkTV65cYceOHfj5+QHwxRdf0KFDhzzttLOzY8qUKcbjypUrs2/fPlauXEmvXr0AqF+/Pp9//jnDhg2jT58+XLlyxdjrTUlJYebMmWzbto1mzZoBUKVKFfbs2cO8efNo3bo1N27coEGDBjRq1AiASpUqFfh9yjwaFMqh/vnnn1aVc3BwYMSIEQWu/8iRI7Rt29Z4PHbsWAAGDhzI4sWL6d27N/Hx8Xz66adERUURGhrKunXrCA4OLnBb2Rk5ciQjR44kMTERd3d3i+WUKXG8H3+PsT7lkYQwcarSgx1ZE+LvoUwp3SF/SW6RzcmVK1eYOHEiBw4c4M6dO8ae6Y0bNwgJCTEpe+7cOZo1a2YyL/7MM8+QnJzMzZs3CQoKAsi1sOjv72/cMnjhwgUCAwONzhT0X+zZ6dKli3EDSHBwMGfPngXgp59+4pdffuH69eukpaWRmZlJ/fr1Te4dN24cf//9Nz/88APr16839jDDw8NJT0/P5bgzMzNp0KABAG+++SYvvfQSx44do2PHjvTo0aPERlMyJUuZjENt06ZNvltFR4wYUShnbRNcfGmfmsbM2DtM8ypHjOrhayyn1TEx/i7tU9PApfjmdMM/7WTxmuKBYyrMFtk9E9rmUdJ6unXrRmBgIPPnz6dChQrodDpCQ0PJzMzMVTb7gmL2c2C6+GhnZ2dSRpIko6M2V0dOfvnlF9LS0kzqWrlyJe+88w4zZsygWbNmuLq68vXXX3Pw4EGTe2NjY7lw4QJKpZJLly7RuXNnAGP7a9euJSAgwOQew0Jnly5duH79OmvXrmXLli08++yzjBw5km+++SZPe2UePWzmUI8ePUrDhg1tVV3ZJrg5uFWgfWIUbVNvc8zRgW/LuXPa0ZFeSUm0S00DtwB9uWJCbZ//j86wRTY6Id3sPKoE+OXYImtNvfkRHx/PuXPnmDdvHi1btgRgz549FsuHhISwatUqE6e4b98+XF1dczkpS9SqVYsbN24QExNjXJzMuShqrq7du3fTvHlzky9nc4tngwcPJjQ0lGHDhjFkyBCeffZZQkJCCAkJwcHBgRs3btC6dWuL9nl7ezNo0CAGDRpEy5Ytee+992SH+hhiszjUF1980VZVlX0USug8HQAlEo3TM+iZnALAIUdHEJDR/gt9uVLEdIusKYZjW26RNVCuXDm8vLz4+eefuXz5Mtu2bTNO25hjxIgRREZG8vbbb3P+/Hn+/vtvJk2axNixY/OV7TXQoUMHqlatysCBAzl16hR79+41Lkrl1XOtVq0aR44cYePGjVy8eJGJEyfmcsSzZ89m//79/Prrr7z22mu8/PLL9O3bl8zMTFxdXXn33Xd55513WLJkCVeuXOH48ePMnj2bJUuWAPDJJ5/w999/c/nyZc6ePct///1H7dq1rXoumUeLAnVHDJP0ORFCcPfuXZsYVJpYuygFQEh36PUrbJgAibdpk5pGuZg4KqWpeTNrDENcW9Mk/1qKnc6h/sztF5YrDtWvGONQFQoFy5cvZ9SoUYSGhlKzZk2+//572rRpY7Z8QEAA69at47333qNevXp4enoyZMgQPv74Y6vbVCqV/PXXXwwdOpTGjRtTpUoVvv76a7p164ajo+Wpj+HDh3PixAl69+6NJEn06dOHESNGsH79ekAfivXee++xYMEC4w662bNnU69ePSZOnMj06dP57LPP8PHxYerUqVy9ehUPDw/CwsL48MMPAX1kygcffMC1a9dwcnKiZcuWLF++3Opnk3l0kEQB8tp5enry22+/5VqlFULQu3dvmyYgKU0Mi1IJCQn5q57qtHByOfw9ApQODA/8iw3n7/FR19oMa1WlSHakp6cTERFhzKpVFJ5EMcG9e/fSokULLl++TNWqVUvbHJkyTF5/awXxBwXqobZp0wYXFxezc0WGFc0nDoUS6r0K696FrFRaeyez4TyciLxf2paZoFRIRVYPKOusWbMGFxcXqlevzuXLlxk9ejTPPPOM7ExlSowCOdTVq1dbvLZhw4YiG/PIolCCXx3u3b9GhLSeRo0zefPpL0vbqieOpKQkxo8fT2RkJOXLl6d9+/bMmDGjtM2SeYIo0pJudHS0SdzfE02/1SjQsmJFK3RCR3mPNMByLKuM7RkwYAADBgwobTNknmCKtMqfM4XeE42DC+4O7jzl9RQAB6MO5nODjIzM40aRHKotdZrKArNnzyYkJITGjQufIepp/6cBWHFmK1vCH49FOhkZGesokkN93KQ5Ro4cSXh4eOGzZP05iGa7ZwNwMv4wi/dH2NA6GRmZss4jl2C6TJNwi3r3onGQVChUyZyMPo9OTuQsI/PEIDtUW1KhPvZAI7tyAKTbnSciPqV0bZKRkSkxiuRQ7e3tbWXH44F/fQCapWehEGokScOJG/dL1aSyyKOkKbV48WI8PDyMx5MnT86Viaq4adOmDWPGjCnRNoF8k3OXJDt27ECSJO7fv1/apuRJkRzqkSNHbGXH44F/PQB6R0XQ03M+mfFtOXnzfunaJFMkevfuzcWLF0ukLUtOY/Xq1Xz22WclYoNM0bBJtqn09HROnTpFbGxsrozs3bt3t0UTJUKB9vKbw7sWqBxxzEyipWcSiyhDO6Z0Wri+D5Jj9GkFg5uXevKWRwEnJyecnJyKVEdmZmaRRnMlodEmYxuKPIe6YcMGgoKCePrpp+nevTs9evQwfh61DFRFXuVXqsA3FIC6quuA4FxMDBmaUlY/Df8HZoXCkudh1RD9/2eF6s8XE4+CptTGjRtxdHTM1SMcNWqUcXt1ziG/gXnz5hEYGIhareaVV14xqWPQoEH06NGDqVOnUqFCBWrUqAHA77//TqNGjXB1dcXPz4/XXnvNmCD72rVrxqTq5cqVQ5IkBg0aZHz27EP+e/fuMWDAAMqVK4daraZLly4mMkMGmzdu3Ejt2rVxcXGhc+fOREU91A87fPgwHTp0oHz58ri7u9O6dWuOHTtm9j1ZwtCj3rhxIw0aNMDJyYl27doRGxvL+vXrqV27Nm5ubvTp04fU1FTjfRkZGYwaNQofHx8cHR1p0aJFrr+5devWUaNGDZycnGjbti3Xrl3L1f6+ffto1aoVTk5OBAYGMmrUKFJSHq5ZzJkzh+rVq+Po6Iivry8vv/xygZ6vMBTZob711lu88sorREVFodPpTD6F7uk9ygQ3h8Cnua64S1C9b2nQ+E8cVKXYEwz/B1YOgMTbpucTo/Tni8mpPgqaUu3bt8fDw4NVq1YZz2m1WlauXEnfvn0t3nf58mVWrlzJv//+y4YNGzhx4gQjR440KbN161bOnTvH5s2b+e+//wB9T/Wzzz7j5MmT/PXXX0RERBidZmBgoNGOCxcuEBUVZSIWmJ1BgwZx5MgR/vnnH/bv348Qgq5du5KVlWUsk5qayjfffMNvv/3Grl27uHHjBu+++67xelJSEgMHDmT37t0cOHCA6tWr07VrV5KSkvJ8Z+aYPHkyP/74I/v27SMyMpJevXoxa9Ys/vjjD9auXcvmzZv54YcfjOXHjx/PqlWrWLJkCceOHaNatWp06tTJmLEuMjKSnj170rVrV06cOMHQoUN5//33Tdo8ffo0nTp1omfPnpw6dYoVK1awZ88e3nrrLUA/HTlq1Cg+/fRTLly4wIYNG2jVqlWBn63AiCLi6uoqLl++XNRqyhQJCQkCEAkJCYWuIyo5SoQuDhV1l9QV99PvF6qOtLQ0ER4eLtLS0nJfzEi2/Ml8UF6rEWJGLSEmuVn4uOuvazV512sDYmNjBSBOnz4tIiIiBCCOHz8uhBDiww8/FDVr1hQ6nc5Yfvbs2cLFxUVotVohhBCtW7cWLVq0MKmzcePGYsKECUIIIdavXy9UKpWIiooyXt+8ebMAxJo1ayzaNWrUKNGuXTvj8caNG4W9vb24e/euEEKIRYsWCXd3d+P1SZMmCaVSKSIjI43n1q9fLxQKhbHtgQMHCl9fX5GRkZHnOzl06JAARFJSkhBCiO3btwtA3Lt3z6Rc69atxejRo4UQQly8eFEAYu/evcbrd+7cEU5OTmLlypVGmwGTv8vZs2cLX19fi7ZoNBrh6uoq/v33X+O5/N6dwd4tW7YYz02dOlUA4sqVK8Zzb7zxhujUqZMQQojk5GRhZ2cnli5daryemZkpKlSoIL766ishhBAffPCBqF27tsnvw4QJE0zeTf/+/cX//d//mdize/duoVAoRFpamli1apVwc3MTiYmJFu3PTl5/awXxB0Xuob788svs2LGjqNU8dvg5+1HZvTI6oeNwtO3ltPmyguXPyv76Mtf35e6ZmiD016/ve3hqVp3c9RWCK1eu8Nprr1GlShXc3NyoXLkyoNeUykl+mlIGbKEp5eLigouLC089pd8i3LdvX3bs2MHt2/r3tHTpUrp27Uq5cuUsPltQUBAVK1Y0Hjdr1gydTseFCxeM5+rUqZNr3vT48eO88MILBAcH4+rqaswPa+6dWOLcuXOoVCqaNm1qPOfl5UXNmjU5d+6c8ZxarTbJspX9XYFe0mX48OHUqFEDd3d33N3dSU5OtmiLuXdnIPvPxdfXF7VaTZUqVUzOGdq+cuUKWVlZPPPMM8brdnZ2NGnSxGj/uXPnePrpp01+HwwCiAaOHj3K4sWLjTa5uLjQqVMndDodERERdOjQgeDgYKpUqUL//v1ZunSpybRDcVHkRakff/yRV155hd27d1OnTp1cuj+jRo0qahNlGqHVknrkKJq4OFTe3qgbNURSKiEjmfqeDYhIiGDG7v9oH9y+5I1LtnLrq7XlCsCjoinVpEkTqlatyvLly3nzzTdZs2YNixYtKtCzGtrN3r6zs7NJmZSUFDp27EjHjh35/fff8fb25saNG3Tq1MnsO7GEsLDdO+fzm3tX2e8dNGgQcXFxzJo1i+DgYBwcHGjWrJlFW8y9O3NtSZKU78/JcM6S/ZaeMTs6nY433njDrH8JCgrC3t6eY8eOsWPHDjZt2sQnn3zC5MmTOXz4sNk5cVtRZIf6xx9/sHHjRpycnIyT1AYkSXqsHWripk3EfDkVTXS08ZzKzw/fNq64sYtmrcexBriRdoJ7KZmUc7Zh3O6HefQ8pQdzttaKBGYvN+Z04W16wKOkKQXw2muvsXTpUipWrIhCoeC55/KWzb5x4wa3b9+mQgV9733//v0oFArj4pM5zp8/z507d5g2bZox83/OsENDjzavtYeQkBA0Gg0HDx40KqfGx8dz8eLFAsmq7N69mzlz5tC1a1dAP295584di+Wt/TnkR7Vq1bC3t2fPnj289tprAGRlZXHkyBHjwltISEiuhcQDBw6YHIeFhXH27FmqVatmsS2VSkX79u1p3749kyZNwsPDg23bttGzZ0+bPIs5ijzk//jjj/n0009JSEjg2rVrREREGD9Xr161hY1lksRNm7g1eoyJMwXQxMRwa/klEiMdaJmRAkKBwj6ebZfP29YAe2fLH7sHGccfiAnmVpQyIOUWEzRXXwF5lDSlQD/sP3bsGF988QUvv/xyvuoIjo6ODBw4kJMnT7J7925GjRpFr1698kxlaeg1/fDDD1y9epV//vknV2xpcHAwkiTx33//ERcXR3Jycq56qlevzgsvvMCwYcPYs2cPJ0+epF+/fgQEBPDCCy/kaXd2qlWrxm+//ca5c+c4ePAgffv2LXJ4mDU4Ozvz5ptv8t5777FhwwbCw8MZNmwYqampDBkyBNDL0ly5coWxY8dy4cIF/vjjDxYvXmxSz4QJE9i/fz8jR47kxIkTXLp0iX/++Ye3334bgP/++4/vv/+eEydOcP36dX799Vd0Oh01a9Ys1ucrskPNzMykd+/eVv/il2WszTYltFpivpwK5oYmD87FHHfDOeoM7gr9PNaWa5Z7aMVGNjFBizJ9nafZPB7VoCl19OhRQkNDeeedd/j6668tljdoSh06dIh69eoxfPjwQmtKJScn07hxY4YOHWq8Pz8HWb16dRo3bsypU6fyXN03UK1aNeMqdMeOHQkNDWXOnDl53uPt7c3ixYv5888/CQkJYdq0ablUTwMCApgyZQrvv/8+vr6+xhXrnCxatIiGDRvy/PPP06xZM4QQrFu3LtdQOy8WLlzIvXv3aNCgAf379zeGMZUE06ZN46WXXqJ///6EhYVx+fJlNm7caJy3DgoKYtWqVfz777/Uq1ePn376iS+/NE3YXrduXXbu3MmlS5do2bIlDRo0YOLEifj76zXSPDw8WL16Ne3ataN27dr89NNPLFu2LNf8r60pkKaUOd555x28vb2NgmSPA/lpyKQcPMSNgQPzrSeoUxofdxzPuounqOfRjpWvmxc5tITNNKXC/zGKCRpxC9A705BHZ+NFQZE1pWSspVQ0pcyh1Wr56quv2LhxI3Xr1s31LTlz5syiNlHm0MTFWVcuMZ1hlVqwZncwl5PtrVo4KRZCukOt5x77nVKyppRMaVNkh3r69GmjQN+ZM2dMrj1u+VINqLy9rSvnqKW69hL2SjV3UzKJvJtGkJe6mK2zgEIJlVuWTtslhKwpJVPaFNmhbt++3RZ2PFKoGzVE5eeHJibG/DyqJKFyt0ftnYkUc4paFdoSkXiWbdf2M8jr2ZI3+AlB1pSSKW0e/ZWkUkBSKvH98IMHB+Z74b7/1wsprC8ENqXbM9ehwk/sjV9eglbKyMiUNEV2qFOnTmXhwoW5zi9cuJDp06ebuePxwK1jRwK+m4XKN0esp50dAd/Nwm3wh9BjDtTqyrOV9EPtYzHHSNekl4K1MjIyJUGRHeq8efOoVatWrvNPPfUUP/30U1GrL9O4dexIta1bCFqyBL9Jk0CphKws7B8Ebhuo7F4ZH7UPmbpMjsceLyVrZWRkipsiO9To6Ghj7Fd2vL29TdKFPa5ISiXOTZtQrs+ruHXSy2rf//NP/UVtFkSfQbp/A4cs/ZfOvxd3lJKlMjIyxU2RF6UCAwPZu3evMfmFgb179xq35j0peA4ahLpxY9y6ddOfWPceHF0ELcYipdcA5S4ORh8sXSNlZGSKjSI71KFDhzJmzBiysrJo164doM8FOX78eMaNG1dkA0uSombsd6pbF6fsGZH86uj/H3WCZv7vcyP2F2IzrnAv/R7lHC1nM5KRkXk0KfKQf/z48QwZMoQRI0ZQpUoVqlSpwttvv82oUaP44IMPbGFjiVHkjP3ZEEIgHmhMcfsEzYKD0abr93ofij5U5PplHmLIkF9WqFSpErNmzTIelyWxu5Iip8pAznfyuFLkHqokSUyfPp2JEydy7tw5nJycqF69Og4ODraw75Hk/uo13P3tN/w+HI9aoYK0uzRwTyYjphvoHGnaq01pmyhTgkRFReWZX/VJ4PDhw7lSGlqiUqVKjBkzplSUXotKoXqo5pLQuri40LhxY0JDQ3M501u3bhXOukeU1CNHyDh3jvv/WwM++pRqngnh+DuEok0P4OytgstMFBWtTsvh6MOsu7qOw9GH0epKVp6mIDk/Hzf8/Pzy7GBkly55XPH29katLqVdgiVIoRxq48aNGTZsGIcOWR66JiQkMH/+fEJDQ1m9enWhDXwUKfdqbwAS129A4/Ygu03UCeoFegAlr4S65foWOq3qxOCNg5mwewKDNw6m06pObLm+pdjabNOmDW+99RZjx46lfPnydOjQgZkzZ1KnTh2cnZ0JDAxkxIgRJinqrBGX02q1jB071ij+N378+FwJifMTgSusuJw5YmNj6datG05OTlSuXJmlS5fmKpN9yH/t2jUkSWLlypW0adMGR0dHfv/991z3XL9+nW7dulGuXDmcnZ156qmnWLdunfEdDBkyhMqVK+Pk5ETNmjVz6U8ZpkG+/PJLfH198fDwYMqUKWg0Gt577z08PT2pWLFirhjyW7du0bt3b2MKxhdeeMGsQF52UlJSGDBgAC4uLvj7+5vd7ptzyD958mSCgoJwcHCgQoUKxrzJbdq04fr167zzzjtIkvTIbV8vlEM9d+4c7u7udO7cGV9fX5577jmGDRvG22+/Tb9+/QgLC8PHx4fFixfz9ddfG3MUPik41qmDY0gIIjOThEsPfiFun6BRcDmqBN5mz/0fWHt1bYnYsuX6FsbuGEtMqmlW/tjUWMbuGFusTnXJkiWoVCr27t3LvHnzUCgUfP/995w5c4YlS5awbds2xo8fb3JPfuJyM2bMYOHChSxYsIA9e/Zw9+5d1qxZY1JHfiJwBgoqLmeOQYMGce3aNbZt28b//vc/5syZYyI1YokJEyYwatQozp07R6dOnXJdHzlyJBkZGezatYvTp08zffp0XFxcAH22+ooVK7Jy5UrCw8P55JNP+PDDD1m5cqVJHdu2beP27dvs2rWLmTNnMnnyZJ5//nnKlSvHwYMHGT58OMOHDycyMtL47tu2bYuLiwu7du1iz549xi+1vEYY7733Htu3b2fNmjVs2rSJHTt2cPToUYvl//e///Htt98yb948Ll26xF9//UWdOvoF3NWrV1OxYkU+/fRToqKiHr3QS6sUrPIQtlq1apUYM2aM6NGjh+jUqZPo27ev+Oabb8Tp06eLUnWpYguRvrsrVojwmrXE5WfbCd226UJc3SmEEGLeyXkidHGoGL1tdL515CUclpKZYvGTrkkXQgih0WrEsyufFaGLQy1+nl35rNBkE+kzV19haN26tahfv36eZVauXCm8vLyMx9aIy/n7+4tp06YZj7OyskTFihXFCy+8IISwTgSuMOJy5rhw4YIAxIEDB4znzp07JwDx7bffGs+RTezOIFA4a9asPN9NnTp1xOTJk/Msk50RI0aIl156yXg8cOBAERwcbBQ5FEKImjVripYtWxqPNRqNcHZ2FsuWLRNCCLFgwYJcYokZGRnCyclJbNy40Wy7SUlJwt7eXixfvtx4Lj4+Xjg5ORmFBYUQIjg42PhOZsyYIWrUqCEyMzPN1pm9bElhK5G+Ii1KOTo60rNnz2KVFHhUcX/uOWKnf0XmzdukOrbEubJeZKyZfzN+OP4Dh6IOodFpUCkK9yNo+kdTi9daBrRkTvs5HIs9lqtnmpOY1BiOxR6jsZ8+qXbnVZ25l3HPpMzpgYWTRWnUqJHJ8fbt2/nyyy8JDw8nMTERjUZDeno6KSkpxgWLvMTlEhISiIqKMhFsU6lUNGrUyDjst0YEzoA14nKGaa2lS5fyxhtvGK+tX7+eu3fvGts3UKtWLas0i7Lf89RTT3H9+nUAWrZsyfr16xk1ahRvvvkmmzZton379rz00ksm9v7000/88ssvXL9+nbS0NDIzM6lfv75JG0899ZRJ4ndfX19CQ0ONx0qlEi8vL+P7PXr0KJcvX8bV1dWknvT0dK5cucLu3bvp0qWL8fy8efOMOmHZfyaenp55ZsZ/5ZVXmDVrFlWqVKFz58507dqVbt26oVIVeY281JGToxQTCmdn3B9IUtxb9jApSohXCK72riRlJREeH16sNsSlWpe31dpyBSX7qu7169fp2rUroaGhrFq1iqNHjzJ79mzAdFEmP3G5/BBWiMCZays/cbnu3btz4sQJ4ye7Ey/MPF/2d7Nu3Tpjvb/88gugj+++evUq/fv35/Tp0zRq1Mg4/bBy5UreeecdBg8ezKZNmzhx4gSvv/56rmG5uefJ6xl1Oh0NGzY0ec4TJ05w8eJFXnvtNRo1amRyvnv37gX62RgIDAzkwoULzJ49GycnJ0aMGEGrVq0ei8W5R/8roQzj8WpvMm/dxOO5Z/VZ8x1c+elGIPfjg1G6nmH/7f3U9a6bf0VmOPia5R1XygeJo73V1uVtzV5uw0sbCmVPfhw5cgSNRsOMGTOMvaacc3754e7ujr+/PwcOHKBVq1YAaDQajh49SlhYGGCdCFxhcHV1zdVzq127NhqNhiNHjhglqy9cuMD9+/cLVHdwcLDZ84GBgcZ5zg8++ID58+fz9ttvs3v3bpo3b86IESOMZa9cuVKwBzJDWFgYK1aswMfHx2Jm+pyieNWqVcPOzo4DBw4QFBQEwL1797h48SKtW7e22JaTkxPdu3ene/fujBw5klq1anH69GnCwsKwt7cv9Oaa0kbuoRYjjjVqEDRvHi7lYmBlfzgwB28XB7KS9b+U+6P2F7putZ3a4sdBqQ/RCfMJw1fti2RBpE9Cwk/tR5hPWJ712oKqVaui0WiMInW//fZboZLnjB49mmnTprFmzRrOnz/PiBEjTByYNSJwtqJmzZp07tyZYcOGcfDgQY4ePcrQoUNtInY3ZswYNm7cSEREBMeOHWPbtm1GVdNq1apx5MgRNm7cyMWLF5k4caJNNqP07duX8uXL88ILL7B7924iIiLYuXMno0eP5ubNm2bvcXFxYciQIbz33nts3bqVM2fOMGjQoDw15hYvXsyCBQs4c+aM8XfBycnJ+MVSqVIldu3axa1bt/JUYi2LyA61JPCvr///7RPUD3RHk1IdgJNxJ0nNyjsspygoFUreb/I+QC6najie0GSCsUdbnNSvX5+ZM2cyffp0QkNDWbp0KVOnTi1wPePGjWPAgAEMGjSIZs2a4erqyosvvmhSJj8ROFuyaNEiAgMDad26NT179uT//u//bCJ2p9VqGTlyJLVr16Zz587UrFnTKAQ4fPhwevbsSe/evWnatCnx8fEmvdXColar2bVrF0FBQfTs2ZPatWszePBg0tLS8tRS+vrrr2nVqhXdu3enffv2tGjRgoYNG1os7+Hhwfz583nmmWeoW7cuW7du5d9//8XLywuATz/9lGvXrlG1alW8rVTHKCsUWaTvcSL7Xv6LFy9aJcplDVk3rnLvndaovTNwmnacujNPQeA0KnmW44f2M6niXsXsfbYS6dtyfQvTDk0zWaDyU/sxockE2ge3L3S9MjKPC2VGpO9xYuTIkYwcOdL4Am3F3RWruHvWhXR/FUHRJ6lb0ZP9V8cwoH5DqrgH2awdS7QPbk/bwLYciz1GXGoc3mpvwnzCSqRnKiPzJFHoIX/Xrl1JSEgwHn/xxRcmc1nx8fGEhIQUybjHhXK99PLRKVEOZJ7ard8xJexLdMeUUqGksV9julbpSmO/xrIzlZEpBgrtUDdu3EhGRobxePr06SY7UTQaDRcuXCiadY8J9sHBOIcGARL3N+ylvnELagLpmnRZFkVG5jGh0A4159SrPBWbNx499TGp94/FUt9PTZdQP7yC1tL8j+bMOzmvwElLhBAkp2u4n5pJcrpGfv8yMmUAeQ61hHDt0Q/VD4vR3EvC6cBu5vZ7jtHbfiUrMYtfzvxiLOer9uX9Ju/nuViUkJbJ7fvpZGl1xnN2SgUVPBxxd7Iv1ueQkZGxTKF7qOYywTxqmWFKEknthsdres34+8uXs+X6FrZFbstVLr+kJQlpmVyPTzVxpgBZWh3X41NJSHty0+TJyJQ2he6hCiEYNGiQMc9jeno6w4cPN26pyz6/KqPH45WXufvbb9hVq8pX+83HYAoEEhLTD02n2XPNTK8Jwe37ec+33r6fjpujnfzlJiNTChTaoQ4cONDkuF+/frnKDBgwoLDVP5bYOWZRfXovjmpiibptOcWbQBCdGk14fDguuBjPp2Roc/VMc5Kl1ZGSocXFUZ7NkZEpaQr9V7do0aJ8y5w4caKw1T+eJN5CsfNT4rwqgFv+r/5u+l1ccEGrEySkZhKXbN1wXqPL2+nKyMgUDzbfepqQkMCcOXNo2LBhntvPnkj86gAS3snxVL8pqH0j75X5YzdiiE/O4EpcMtfvppKaqbGqGaXiyRruyyJ91mNQDChIZ8ea95tTlM9WTJ482SQtYVn7WefEZuPCbdu2sXDhQlavXk1wcDAvvfSSMRWZzAPsnaF8DaocjOSLw1ou+8OHg8z/CITGhe2xv9PE9SOQPLFXOeDmaMf91CyTHqikyABJB0KB0Onns6Pup6MoJ+Hs8LBuodWSeuQomrg4VN7eqBs1RFLKwf0lQVkS6QsMDCQqKory5cuXtimF4rvvvrM6RHDQoEHcv3+/RL/MiuRQb968yeLFi1m4cCEpKSn06tWLrKwsVq1aJe+SsoDOvx7uAZeIOipRLUpQOUoQ4f+wRykESEBWUgiob4OkQbJLQLJPw87eE397VyLvpiMp05BUCUiSNtu9SiSNB+kaR67Fp1DLzw2lQiJx0yZivpyKJjraWFbl54fvhx/g1rFjiTx3ZmYm9vZPZkiXn59fntezsrJy5SktDgw/g/zsKcvYckt4cVCkrachISGEh4fzww8/cPv27Xz1d2TgukMNVI460ivqe5Mdjpp+pwmNO2m3+vFlqyn82nURrvauqCQVGp2G2NRYotMiUDvfQ2F318SZAvpju3hcnLLwd3c0OtNbo8eYOFMATUwMt0aPIW79vyRkJJCSlWLTzQGySN9DCirSN2/ePAICAoyJnw10797duBh85coVXnjhBXx9fY2Kw1u2mIbaVapUic8//5xBgwbh7u7OsGHDcg35rRH8MzBlyhRjrtQ33ngjT52pzMxMxo8fT0BAAM7OzjRt2pQdO3bk9SoBfaYwX19fXF1dGTJkCOnpplEtOYf8//vf/6hTpw5OTk54eXnRvn17UlJSmDx5MkuWLOHvv/82hnha035RKbRD3bRpE0OHDmXKlCk899xzKOXho1XcdKwBgE81fR6EFme1hOztQOM9Tal6qCtpl95DkxSKSiHh4eCBq70rwe7BVHCpgIPKAZ3QkaFNhbR0i5+szBjKqe0RWi0xX07Vd3tzIgQIQdyX07h5/zrXEq5x8d5F7t+LQZeaavIpLLJIn2XyEul75ZVXuHPnDtu3bzeeu3fvHhs3bqRv374AJCcn07VrV7Zs2cLx48fp1KkT3bp1yyXx/vXXXxMaGsrRo0eZOHFiLjusFfzbunUr586dY/v27Sxbtow1a9YwZcoUi8/3+uuvs3fvXpYvX86pU6d45ZVX6Ny5M5cuXbJ4z8qVK5k0aRJffPEFR44cwd/f35iy0BxRUVH06dOHwYMHc+7cOXbs2EHPnj0RQvDuu+/Sq1cv4xdyVFQUzZs3t1iXzSisqNW+ffvE0KFDhZubm2jSpIn44YcfRGxsrFCpVOLs2bOFrbZMYAuRPkscOHdNaD9xFxkTy4ld9ZqI8Jq1TD476zUVffpPFfsu38klHKbT6URcapw4E3cm133ZP2cHvSbupt0Vifv35VnO8Dmzcbk4E3dGnIk7I842zW1TYZBF+r41nqMQIn3du3cXgwcPNh7PmzdP+Pn5CY1GY/GekJAQ8cMPPxiPg4ODRY8ePUzKGNo/fvy4xXrMCf55enqKlJSHgo1z584VLi4uRhHA1q1bG0X5Ll++LCRJErdu3TKp99lnnxUffPCBxXabNWsmhg8fbnKuadOmol69eia2GH7WR48eFYC4du2a2fqyl80PW4n0FbqH2qxZM+bPn09UVBRvvPEGy5cvNw5TNm/eTFJSUpGd/eNIoxpBDLCfwbBr7+CVnpjruld6Ah8fWkLty7lleCVJwk5h3Vzb7eTb3Ig4ZZ1R8fetK1dAzIn0dejQgYCAAFxdXRkwYADx8fGkpKQYyxRWpM+ArUX6DG0vXboUFxcX42f37t2cO3fOZiJ9hnoNInh9+/Zl1apVxg0yS5cu5dVXXzWOBFNSUhg/fjwhISF4eHjg4uLC+fPnc/VQc/4MzPHTTz/RqFEjvL29cXFxYf78+bnqqVevHmr1Q/WGZs2akZycbJSgzs6xY8cQQlCjRg2Td7Zz506jVEv288OHDwf08vTZf7aGdixRr149nn32WerUqcMrr7zC/PnzuXfvnsXyJUGRV/nVajWDBw9m8ODBXLhwgQULFjBt2jTef/99OnTowD///GMLO0uE7AmmiwulQqLf851Q//my2esKQABxU6dSscUzua4bVFJ1m3/Pde1hJQoUkgKdl4d1RmUrJ/6cgwCC3IJxLqL8iTmRvuHDh/PZZ5/h6enJnj17GDJkyCMj0te06UOl2YCAADZu3Gi2LWvIKdJneAcG+ZRu3bqh0+lYu3YtjRs3Zvfu3cycOdN4z3vvvcfGjRv55ptvqFatGk5OTrz88su55jWzt2MOg+DfjBkzjAoIX3/9NQcPWtYsy465Z9fpdCiVSo4ePZprKtDFRb9RJXvYVmGTuCuVSjZv3sy+ffvYtGkTP/zwAx999BEHDx6kcuXKhaqzqNg0DrVmzZp89dVX3Lx5k2XLltmy6hJh5MiRhIeH20SfJy9apt/GOz3BgtKTfpVfEx1N2pmzua6pVWq9U3VytPixc3KmlmctarXricrXFyz8wQtA+HhBvdoPTz6oQ+doh0KtRqG2jaZUdpG+p59+mho1anD79u0C1ZFdpM+AQaTPQHaRPgMGkT6DJlNhcHV1pVq1asaPk5OTiUifgcKK9BnqDQgIAPSOtWfPnixdupRly5ZRo0YNk7ju3bt3M2jQIF588UXq1KmDn58f165dK/BzZRf8a9CgAdWqVTMr+Hfy5EnS0tKMxwcOHMDFxYWKFSvmKtugQQO0Wi2xsbEm76xatWrGCIPs5wySMbVr1zb52RrayQtJknjmmWeYMmUKx48fx97e3jinXhpif8WiKaVUKunRo8cj1TstSTSRl60qp70bn+ucJEn4O/vneZ+fsx+SJKFU2eH70YeGG03KGPp8YvTrYGZBUSu0pGWl5TpfWGSRvoLTt29f1q5dy8KFC3Nt7a5WrRqrV6/mxIkTnDx5ktdeey1XVIA1WCv4l5mZyZAhQwgPD2f9+vVMmjSJt956y6wYX40aNejbty8DBgxg9erVREREcPjwYaZPn866dess2jJ69GgWLlzIwoULuXjxIpMmTeLs2dydCgMHDx7kyy+/5MiRI9y4cYPVq1cTFxdn/OKsVKkSp06d4sKFC9y5c6dEZKoLPeQfPHhwvmUkSWLBggWFbeKxReVrXRzg3WXL0Y0ZnWvI6+bgRiCBRKVEodE93D1lp7DDz9kPN4eHQyi3jh3hu1lEf/El2piHmlL4eOmdaeunzbSs5E7qPbJ0UTjZOeHl6IWbvZtx+J2SoUWj06FSSKDIRCs0qBQq1Cq1xeFvdpG+Dz74gFatWjF16tQC53sYN24cUVFRRmXNwYMH8+KLL5qoR0ybNg2dTkf//v1JSkqiUaNGxSrSN3ToUFq3bo2vry+ff/652dX0wtCuXTs8PT25cOGCURLbwLfffsvgwYNp3rw55cuXZ8KECSQm5p6Tz4/hw4dz4sQJevfujSRJ9OnThxEjRrB+/XqTcs8++yzVq1enVatWZGRk8OqrrzJ58mSL9S5atIjPP/+ccePGcevWLby8vGjWrBldu3a1eE/v3r25cuUKEyZMID09nZdeeok333zTOLWSEzc3N3bt2sWsWbNITEwkODiYGTNmGOehhw0bxo4dO2jUqBHJycls376dNm3aFPgdFYRCi/QpFAqCg4Np0KBBnnNcOUNaHgUKIspVGIRWy+UmoWhSBFgc+IPO3x/txx8RXKECzr6+KD08kLL1CIROR2rSXXRZmSjs7FG7eppcN6lLo+HC5t1o4uKQvF2RwgLM9kwBdFmeSIp0JOXDkCk7hR1qlTtJKQ5kaTG7sUClUOHv7G/i0E2e28QZK3B2UMpZsWTKBKUu0jd8+HCWL1/O1atXGTx4MP369cPT07Ow1T1RSEolvt1rcGuZGYmYBw7G//PPSIm7Q7wkIbKyyLp9G4VajfTgh61NSCArOhpFVpZx3ibDLh47Pz+UZnaTKFQqKrR5huvxqQhA0qUhKUwdolJS4efsh1bjyJ3kTDIyMpGUKSiUKWTpskjIvAN2EgqFk4mzNaDRaYhMiiSQwFxOVU6KLfMkUOg51Dlz5hAVFcWECRP4999/CQwMpFevXmzcuFGW47ACt/bPEvDMPVRupivLKl9fAr6bhcdLL+E1aCAqX19U3t4oy5VDkc2ZZkZGInLMCYmsLDIjI9FmG/5mx93JnmAvNXZKBULrhC7DD11meSStF96OFanpWQMPR3e8XByo4etCZS83XFRe6DL9kbTlEEIFCFDknZM1OiXa5HdAToot86RQpLApBwcH+vTpQ58+fbh+/TqLFy9mxIgRZGVlER4ebgyRkDFDhfq4BabjGqIjtcUSi0lLJIUCVbly2D9wpkIIsrJtxTRHVnQ0Cjc3s8Npdyd73Bztsg29XcwOvSVJwtXRDldHuwcOEUCNpExGYWfeYRvb12WRqknF2c6ZjCytnBRb5onBZtmmDPtlhRCFWm184vCvB4CUFIlznWqgbmLVbbqUVIQm7zR+IisLXUoqShfzMYiSJBUoAbXpgMO6LcaGxbKrd1LkpNgyTwxFCpvKyMhg2bJldOjQgZo1a3L69Gl+/PFHbty4IfdO88PRHTyrQrlKkGh9PKbQWBf6YW05a1BlX+iycnOdYQOCtbM/clJsmceBQncJRowYwfLlywkKCuL1119n+fLleHl52dK2x58394GdY77Fss9HSirrtp5aW84anB2U2CkVZGl1CJ2DPk2glHfAdFJmEk4qJ4I81Vy9k5xnWcjhtGVkShhbrfsU2qH+9NNPBAUFUblyZXbu3MnOnTvNllu9enWhjXvssXMEnRau74PkGHDxheDmoNAPqw1bIVNTU43B4gpnNZKdXa4FqexIdnYonG2zwwn0UwQVPBy5Hq9f2RcadyS7u3neE58Wj5u9G84OTkZnbAk7pQI7pYROJ1A8YWoDMmUDQ5rGoualLbRDHTBggLyIUFTC/4ENE0yH/G4VoPN0COmOUqnEw8PDmKBDrdYHzms9PfNcmLLz9LS56qyDBP4uCmITM9FolIgsV1Alm8ahSiq81d4AZGozUWgVZGgzKO8Et+9bXsn3cnbkavR9kMDfzQFHe3kuVaZkEEKQmppKbGwsHh4eRU5DWujA/seZ4g7sB/TOdOUAHm4CNfDgS6rXrxDSHSEE0dHRufaH69LS0CYk6nu4BhRKlO5uKGy09dEcQkCmRotWCJSSBAoNOqFDISmwV9ib/ZLV6DTEp8Wj0zqh1T7sASgV4OIISILkNC1anT7awM1RhYuDnaUUBDIyNsfDwwM/Pz+zv78lEtgvUwR0Wn3PNJcz5cE5CTa8D7WeQ1Io8ff3x8fHJ9deZKHVknbmLNq7d1F6euIU+hSSUknWnXjufP89XiPexL4MyF3MPDKTHZE7AKjj2YxmXi+ToL3Glqg/iE97mK/ADjeSYlqjTanOUxXcmdC5JgHlbDd1ISNjDjs7O5slyJd7qGYo9h5qxG5Y8nz+5Qb+B5VbFrj6yBEjSd62DYfatan0x9Ji7bFaQ5omjTkn5vBr+K/ohA5nlTMpmpRc5SQkBAIRPZDke7VR2yv5+LkQ+jQJ1E916ASHIu4Sm5SOj6sjTSp7PnEKrzIlT0H8gby0Whokx+RfpiDlcuD3yUSUXl5knDtH1KRJpb5zzUnlxLhG41jadSnVPKqZdaYAAoGEhE+lDTSt4kFqppZ1p6MQAjaciaLF9G30mX+A0ctP0Gf+AVpM38aGM3lvcpCRKUlkh1oauPjatlwO7Pz8CPh2JiiVJP7zL/d+zy0cVxqElg9lfKPxeZYRCOLSYxj7vB2fPB/C16/UZVN4NG/+foyoBNMdV9EJ6bz5+zHZqcqUGWSHWhoEN9ev5ueVYtotQF+ukDg3aYLv+PcAiJk+ndRsSZBLk3sZ1klUxKffYXCLyvi4OjLl33CLs80AU/4NR6uTZ65kSh+bLEpt3bqVrVu3Ehsbm2vb6cKFC23RxOOFQqkPjVo5AL1TNeMMOk8zxqMWlnIDBpB2+gyJ//3HzdFjqLx6FXa+hev12gpDWFV+HI45TLMKzTh/S5erZ5odAUQlpHMo4i7NqsobS2RKlyI71ClTpvDpp5/SqFEj/P395dhUawnprg+NyhWHGqB3piHdi9yEJEn4fzqFjEuXQKdF5KGjXlKE+YThq/YlNjUWYbbfqed/F//H35f/JsStBQqnWujSgjDt0etQqiOQVEkIjSvRiXUA2aHKlC5FXuX39/fnq6++on///rayqdQpkThUA3nslLIVWdHRKF1dUeQj2FZSbLm+hbE7xgKYOFXDKv+rNV/l1J1ThMeHG69lxrciI1af7V3legYH339Nsl6Vs/fmk+Yf0j64fQk9hcyTQkH8QZEdqpeXF4cOHTKR/n3UKVGHao6sNNg0Eaq1h5qdbV695s4dVOXL27zegrDl+hamHZpGTOrDSAY/tR8TmkwwOsUzd86w/PwK/r68ltTrr6NNq4LK9QyOAXrF1+yDIelB73Vmm5myU5WxKSXqUCdMmICLi4vNdHTKAqXuUPd8C1smg9pLn0DF1TbB+UII4n/5hTuz5xD86xKcsunSlwZanZZjsceIS43DW+1NmE8YSjO989UnLjJu+UVAoK42/YH0Su76JCR81b5seGmD2XpkZApDie6USk9P5+eff2bLli3UrVs3V3KB7FriJUVkZCT9+/cnNjYWlUrFxIkTeeWVV0rcjkLz9Ag4swqiT8OaN6DfGrBFNiYhSDtxEpGezs1Ro6m0cgWZEdcsJrcubpQKJY39Gudbrmf9GqhVrkzc+DfpeSS3FgiiU6M5FnvMqnplZGxNkXuobdu2tVy5JLFt27aiVF8ooqKiiImJoX79+sTGxhIWFsaFCxdwtnIOsdR7qABxF2FeK9CkQYfP4JlRNqlWm5TEtVd6kXntGpK9vclClcrPD98PP9ArpZZB/ruylg/2vJ9vuektp9O1imV1TRmZglCiPdTt27cXtQqb4+/vj7+/Xrvex8cHT09P7t69a7VDLRN414Au0+Df0bD1U/0W1AoNilyt0tWVcq/1IebLqblW/TUxMdwaPQa+m1Umnaqvs49V5awNzZKRsTVlMrB/165ddOvWjQoVKiBJEn/99VeuMnPmzDFKvjZs2JDdu3ebrevIkSPodDoCAwOL2epiIGwg1O4Guiz43xDIyD9Rc34IrZb4hYssXNQPVmK+nIrQ5p1AujQwhFxJeUhv+6n9CPMJK0GrZGQeYhOHev/+fWbMmMHQoUMZNmwYM2fOJMGC8qY1pKSkUK9ePX788Uez11esWMGYMWP46KOPOH78OC1btqRLly7cuHHDpFx8fDwDBgzg559/LrQtpYokQbfv9bGpqfEQZ0Z2uoCkHjmKJjracgEh0ERHk3rkaJHbsjVKhZL3m+iH/DmdqmHiakKTCfKClEypUeQ51CNHjtCpUyecnJxo0qQJQgiOHDlCWloamzZtIiysaL0FSZJYs2YNPXr0MJ5r2rQpYWFhzJ0713iudu3a9OjRg6lTpwJ6vasOHTowbNiwfGNkMzIyTBIyJyYmEhgYWLpzqNm5dQxcfMC9YpGrSvhvLbfffTffchW++Qb3558rcnvFgbmQK12WO5q47vw3+E2q+7qWonUyjxslOof6zjvv0L17d+bPn49Kpa9Oo9EwdOhQxowZw65du4rahAmZmZkcPXqU9983XZzo2LEj+/btA/ThQYMGDaJdu3ZWbTiYOnUqU6ZMsamdNiXAdkNYlbd184vWlisN2ge3p21gW2PIVXmn8szdKNiecIcJq06x7P+a4GBDTS0ZGWsp8pD/yJEjTJgwwehMAVQqFePHj+dIMSTkuHPnDlqtFt8ce9J9fX2JfjCU3bt3LytWrOCvv/6ifv361K9fn9OnT1us84MPPiAhIcH4iYyMtLndNuPCBljeF7R5S0lbQt2oISo/P/JKh6/y80PdqGFhLSwRDCFXXat0pYl/E77oURcXxyzOZiyh5+pBpZ6yUObJpMgO1c3NLdfcJehjQV1di2/olTNngBDCeK5FixbodDpOnDhh/NSpU8diXQ4ODri5uZl8yiSpd2H1MDj/H+yeUagqJKUS3w8/eHBg3qm6delSovGotqCChxNvtPPDzuMIN9JOseT0qtI2SeYJpMgOtXfv3gwZMoQVK1YQGRnJzZs3Wb58OUOHDqVPnz62sNGE8uXLo1Qqjb1RA7Gxsbl6rY8dak947oEj3TkNru3VZ/8//T/9/3XWrcy7dexIwHezUOV4X9KDsLJ7K1aQfvGiTU0vCUa2aIqPVq+EMOfktyRkFH5hVEamMBR5DvWbb75BkiQGDBiARqMfhtrZ2fHmm28ybdq0IhuYE3t7exo2bMjmzZt58cUXjec3b97MCy+8YPP2yhx1e8HlLXBqBSzpBiKbE82mmJofbh074vrss/pV/wc7pZzq1yNy+HBS9x/g5ltvU/nPlSjd3YvxYWyLQiExp9s7vL3zGNFp1/n26LdMbj65tM2SeYKwmaZUamoqV65cQQhBtWrVUKsLL66WnJzM5cuXAWjQoAEzZ86kbdu2eHp6EhQUxIoVK+jfvz8//fQTzZo14+eff2b+/PmcPXuW4ODgQrc7e/ZsZs+ejVar5eLFi2VnlT8nJ1fAmv8zc8FUMbUwaO7d49pLL5N1+zbOrVoSOHfuIzf8PxpzlEEbBgHwW5ffqO9Tv1TtkXm0KdHkKMXBjh07zG5pHThwIIsXLwb0gf1fffUVUVFRhIaG8u2339KqVSubtF8mtp5aQqeFWaGmOVRNkPQ91TGn808DaCF1YHp4ONf6vIbIyMBr+Bv4jBlj66codj7Z+wlrLq+hvH0wm3qvwU5R+FV/WRzwyabYHerYsWP57LPPcHZ2ZuzYsXmWLY3kKEWlTDtUqxVT/4XKeXzBhP9jJrn1wymDhH//5fZ747ELCKDy33+jdHmEtu0CNxJieW5VNwSC8fVmMaBh4eRkNpyJYsq/4SaqAf7ujkzqFkLnUH9bmStThin2ONTjx48bNeKPHz9usZycvb8YsFYJddlrENAAfEPBJwR8nwLvWmCv1jvTlQPIJb2SGKU/3+tX3Lt1R5eahmvHDo+cMwUIcvfhWc/x/H1Yw9yYNLrXzuRcVFKBepkbzkTx5u/HcukKGMQB5/YLk52qjAlFHvLfuHGDihUrosiRXk4IQWRkJEFBQUUysDR4LHqo5nDxg7HhhZ4yyB6a9iiQlqml83e7uB6fitpeSWrmwwW8/HqZWp2gxfRtFvWsJMDP3ZE9E9rJw//HnIL4gyKHTVWuXJk7d+7kOn/37l0qV65c1OpLlNmzZxMSEkLjxmU4l6ZViqkVYMgW6P6jPrdq5dagLg8+tfRzphadKYCAxFv6ctm4v2oVt0aPQeQQYSzLONkrebF+AAAZ9qdROj8MBcspQa3TCSLvprL9fCzzd13li7XhVosDysgYKHLYlKUObnJyMo6OjkWtvkQZOXIkI0eONH4jlUnyVEx94GQ7T4fAxvpPdjJT4cI669rJNrWQFRVF9KefITIyuPPjbLxHvV2UJygxtDrBiiORqNyP4lThT3RZ7qRcGQvCwfjW3llxgu+3XiLiTippWQ97sL5uDvnUrhcJ3HzjHirnmhbVBmSeLArtUA2LUZIk8cknn5iESWm1Wg4ePEj9+vWLbKCMGSwqplbIWzHVXq1fzbeGuPPGf9r5++P/6RRuT3ifO3Pm4BhSG9f2ZV+36VDEXX0vU6qDrvwWFPb3cPDeahT7A0jL0hEelQSAnVKiSnkXqvm44GyvZOXRm2brzS4S+OcN+PMG+Kp9eb/J+7Ke1RNOoR2qYTFKCMHp06ext7c3XrO3t6devXq8a0VWI5lCEtIdaj1XcMVUw5RBYhS5FqWyU8NUHND9hRdIO3uWe7/+xu0J71Np5QocyrgwY2zSgyG7sCc9+gXUQYux89xDVkIDdBkP506HtqjMa02DCPJUo1LqZ8G0OsHuy3eITkg3eUvZRQJN2kqNZeyOsbJI4BNOoR2qIVP/66+/znfffVf2Fm+eBBRKfSb/gt6T35RBu4+hYqOHpzd8AFlp+A57i4xz50k9fJibI98i+I/fydi9Bs3tG6gqBKHuOgDJzh6rKWYJbR/Xh1NO2pRaZCXWwc7tNI5+a0i9PhzDEsKztX2p4u1icq9SITGpWwhv/n4s21vS4eD7L5A7DYJAICEx/dB02ga2lYf/TyhlMrC/tHhkdkrZArNxqAG5pwxS7sDM2qDNBEmJpkoPIuZfQhN7B0lpuvNV5Qy+I/vjNvjDQrZv/dZZazCs1Bt6mZIqAecqM5CUmaRH9UBkeuPhls6PvdrQ2K+hWSeYPQ5Vqb6COnh+vu0u7LRQFgl8jCiVnVLh4eHcuHGDzBw6Rd272+aPoyQp02FTtsTaHuK1vbD7G7iiF1y8c86ZuJOG95K9q6b/VQoYPyBvp2opDtYGW2dzYoglNVhnV24Pjn7/IYRpLzOvOVCtTrDs5G6WXPyG6PSIfNuc1mIaz1UtvuTc1spvy9iGEnWoV69e5cUXX+T06dNIkmRc9TfEK2rLoDZRfjwxDrWg3DqK2P41l2ccQ5OmwHzolkDlLKg2fyKSyl5fRnrwqdEFVA622zprJdl7mSrXUzgG/KG3PJv5BkmVb1p/Q4BrAEeijxBaPpSGvvq8sMdjjzNg/QCr2quqfZefX+mNj6ujzbetmlMrkBfEipcSdajdunVDqVQyf/58qlSpwqFDh4iPj2fcuHF88803tGxZwDm+MoDsUC2T8vcv3JiQfy7WoLZ3cPY1Ha0w9hzEX7Fy6+x/BZ8fzgOtTnDgahzjD/UmMSt33LQBCQnxoOfcu2ZvPn76YwCytFksO7+MhWcWcjf9rrFMTkSWO8mXJ1DexZE+TYL439GbNtu2uuX6FsbuGJurbcOXgbwgVjyUaGD//v37+fTTT/H29kahUKBQKGjRogVTp05l1CjbaMnLlB00t3MnEzdbzj4IqrTRbyqo1BKCW4DSwfqts/eu5X1dpy1QLlilQsLe5XqezhT0i0uOSkdaVWxFXe+6xvN2SjsGPDXA6GBzigRKD/6b0HgCtfzcuZOcyQ/bLufaHJBzQ4G1aHVaph2aZtaRG85NPzQdrZU5cWWKhyIH9mu1Wlxc9Cuk5cuX5/bt29SsWZPg4GAuXCi6SqdM2UJVwbqtxOKpXjBgQu4L1sbBlsuWhvHOJfCs8nAKoJALWnGpcVY1/UmzT+hWtZvZa+2D2zOzzUyzw+7XQ1/nlRqd6VlLovEXW0y2uhoQ6GcapvwbTocQP6uH/8dij5m0l7teQXRqNMdij8kLYqVIkR1qaGgop06dokqVKjRt2pSvvvoKe3t7fv75Z6pUqWILG2XKEOquA1B9OgNNisE15ER/Puq738hMc6T8G2+gyL5jzpo4WLUXBD+j/7cmA+Y/q9+UEPqSXv1186Tc92ZL7GLJqXqrrRMe9HP2y/N6TpFAb7U3l+9d5psj35CQkUB9115mnamB7NtWm1X1ssoma78MrC0nUzwUecj/8ccfGxeiPv/8c65fv07Lli1Zt24d33//fZENLEkeib38pYxkZ4/vSIOSbE6HqD92rBoAWi3xc3/i3h/LTIsY4mD1teWsXf95ftbD3mjcBf3ppCjY/yNs/sRMu9ls2fC+xeF/mE8YvmrfvLIg4Kf2I8wnf5XZ7CKBjf0aU86xHJm6TH4+9TMnY8PzvR+ybTywAmu/DKwtJ1M8FMmhZmVlMW3aNJ566ikAqlSpQnh4OHfu3CE2NpZ27drZxMiSYuTIkYSHh3P48OHSNqVM4zb4QwLGD0DlbOqaVM4SAeMHUOm/zQT88D3qpk0p1/c143Xj+ueDrbPCxZ+UGHsSrjuREmOPcPHP3cP0rwvvXoJX/4BKLfKx7EFil7N/mXWqSoWS9/2fBSGQcqzFSkKAEEzwb1eoEKROlTrRPqg9GqHhn1szgfznMrNvPMgPw5dBXlj7ZSBTfBR5ld/b25t9+/ZRvXp1W9lU6sir/NYhsjJJXferVTulhEbDjaHDcOvSBY9XXiZpyxZivvgSTczDeUGVry++H32IW8eO5hs8/T9YNcQ64xQqcA/Uz8WWqwQewfDUi7C4K1s095jmVY6YbNLnfhoNE+Lv015VrtAhW3fS7tDj7x4kZCRgn9iFu7daW9zc62Sn5NjEDjjZW9+OYZUfMLs49W2bb+VV/mKgRMOmxo0bh52dXbEI8pUWskO1PfdXryHqQ32wv33lymRGmAmQfxC7HPDdLPNO1dpcsAoV6DS5z3f9Btbp80togWOODsQplXhrtYSlZ2B0bUUI2Vp3dR0Tdk9AKalIuvIWugw/i061RbXyzOkXhptj3vIsqVmp/HX5L16t9SrbbmzLtSDmp/ZjQpMJsjMtJoo9Y392MjMz+eWXX9i8eTONGjXC2dk0u/ujKIEiY3vcu3dDl5xE7LezzDtTwLB9KebLqbg++2xuccB8F7QebAoYdRJSYvWhV/euwf3r+v8rHv66K4HG6Rnm7bA2tMsMXSp3YcO1DWyP3E710P+4f/lNohOyjNf93R3pGRbAor3X2HP5Dq/M3c/C1xsT4OFktj6d0PHx3o/ZfH0zl+5fYlKzSbkWxAw7pYQQaIQGO4WdrINVShTZoZ45c4awMP28zcUcWu6PUnZ3meJFUqnwHDAApbcPt995x3JBIdBER5N65CjOTZuYXrMqF+w0UNmBe4D+U+mZh0UidltnrLWhXWaQJImJT0/k9J3TvFzrOfq/2JZj1xNzObYuof4MXnyYCzFJvDh7L38Me5pqPi656pt3ch6br29GpVDxQlW9TLphQSw7N5NuMvXQVAJcAghzfl3WwSoliuxQDVmnZGSswsqtyJq4WPMXDAta6yaQeuUOmnQlKkct6qrlkbrmk1jF2tSFEbuKtEvLW+3Nup7rcFLpe53mQqNCA9xZM/IZXl90CEc7JRU8ci9Qbb6+mTkn5wDwydOf5CmHfSv5Frtu7kJCwYKr5dFmBJhcfxJ0sMpCr7zIDjU7Offxy8jkROVtXVhPzFdfkx5+Dtf2z+JUvz5SNs2yxJuOxPzriybbyFwV7otvXUfcQvKoNN8e7oPjgKKvlBucKUCmNhOFpEClMP1zC/Bw4n9vNicjS4faXn/NoNt14e4FPtrzEQD9avfjxeov5tleU/+mdK7UmQ3XNuDg97dJekIo/IaCglJaTq2sqNPaJNvUggUL+Pbbb7l06RIA1atXZ8yYMQwdOrTIBpYkT1T6vlJCaLVcfra9fnXfyl89ZfnyuLZrh2v7Z9EmJ3N73Lu5781vQSs74f9Y7uF6VdUrxBq4sB7KVdbrcRWCs3fO8vHej3muynMMrZP/38P3Wy8Rnx7P/rRPiEqJorZHI14NmoK/m3O+zmnVybNMOjpAn57w9ktkJZiPp1427Ok8NxTk5xQtZbsqLadmSZ3WYHFRe+Uluso/ceJEvv32W95++22aNWsG6Pf3//jjj4wePZrPP/+8KNWXCvIqf/GSuGkTt0aP0R9k//V74BT9p09HYW9P0pYtJO/ciS4pyVhE6eGB9v598xVLEipfX6pt3ZJ7QStH+1aFbCXHwY8NITMFmr0FrceD/YNFVytTH/5z5R8+2vMRdgo7/uz2J1U9qlq8/0JsKp1m7ULpfAHnwN9A60HilRGg08sLGZ1TiA9c34dIiuZahivrkyqz49Jdjly7i7Lcbhx916LTqEm58q7x3uzU9nOlX7NgOtT2xcfNdKohP6doKdtVJ783mLNWXWxOzRIloU5bog61fPny/PDDD/Tp08fk/LJly3j77bfNKqKWdWSHWvwkbtpEzJdT0URHG8+p/Pzw/fADE6cmMjNJOXSYpC2bSd6+w8QJWsJ38mRc27ZB5eOTa/rJ6Myt6eEmRsHasQ+FDd2DoMt0fUiWlbkEhBC8te0tdt3cRZ3ydfi1y6+ozq+zeP+ajDDe/fMkwv4G6BzRZfo8NBHopDjE1y5/4Jr5cI75tvBkStYANuqaAFrUlb9H6RhD5r2mZERbnipoXcObJYMfLvzl19Mb8Vwqv139zGy2KyEEabf6oUkKzdVOcUpu778ST5/5B/Itl1+vPC9K1KGWK1eOQ4cO5Qrsv3jxIk2aNOG+pd5EGUZ2qCWD0GpJPXIUTVwcKm9v1I0a5tmzTPjvP26/+551lSsU1Dp9yljfnfnzybh2jeQNG9GlpJi/x1IP9/w6WD8eEiLzaNBycuyYlBhe/PtFkrKSGFuxM6/vno/QCVLj7B9OOXhnoVGA4pUlNF6t5m5KZq4WOikOMddulv7xsvklHXqnFtt5Pj22exKbGY660s/oMsqTEjEKhL3RwvKuDgxsHsyW8Fh6NQrktab6ZDeRd1Np880OtDrz7kBCh2uNrxDK+2avCwFC407K5QlY2oBZFKdmicX7Ipj8T/5bfb97tT4v1A/It5w5SjQOtV+/fsydOzdXvOnPP/9M3759i1q9zGOMpFTmDo3KA5W3T/6FAIWHBwq1k4lTTN65k7QjR/O+0VLIVq2uUKU17JgG+yzlp3iw7LN+PFRsDJIChA4Q+NqpGd9kPBP3TuTHyPW0iFLDIRc0aQ/t06m1LGmvpN+G8dxP+QZQIKHDh/sP1Kp0fGq3WP98OTp5Bvflu28Sk57fxJtL00m72Q9Nck0Q+k0Dhls+e+EpOof681bb6iYS8Av2RFh0pgAKdYRFZwoPcojbJaBUR6BNNS/eGJv4YFheRC0xIQTHbtxj4Z5rrLcyDWJBtvkWhUI5VIOENOhX9H/55Rc2bdrE008/DcCBAweIjIxkwADrMpzLyFiDulFDVH5+lhe0svUwUZj2kjz79SfRqzxJGzfm2076hfOomzQ2nS6wd4bqHfNwqABCn8RlZo4FrGZv8ULHz9kYvpzMA6fJ2umWO0FLqpJB/8DeLhqaOJ3ngC4Ed1I46PhWvvYa2068RWeXCOb2C2PKv45EiYfzin5mFoeyP19IhXyGsqqkPK9bU+6rjeexv7SWDjdmokrO5gizTZfktyB2NS6Zd1ae5GTkfeM5e6WCTK3OvD3on71JZU+r7C8qhXKoBglpAw0b6mUirly5Auj393t7e3P27Nkimicj8xBJqcT3ww/0c6CSZHZBy/fDD8xOG7h17oSyXDmrHGrczG+5v/QP3Hu8gFu37thXfDBUzLaDSujIMWTPRDLx4QbpFwVIEpIk8Yl/e65uPvnwejYU6Pfnt96p4Eyne8bzWUKJhECBztgzzbPtG/vp3KoFHUL8OBRxl6jEFM4nb2JYwxfxVlsebgeWy714lR2hzfu6sZzG1eK10MRddDo7S3+Q/fEfpF483uw7RhyrmGtBbOJzIXStq/8i8HVz5GpcMvYqBS/WD+D1FpW4difFRDfMgKGJSd1CSiweVVY9NYM8h1q2sXZBKyf5hmxJEkpPT7SpqZCWZjytbtIE9xdewLWWK8o/XyYx0pGYY+4mQ3aVkxbfsATcAtNz5QIQGg3xixaRvPk/0k6Z7iY0x79tOjHXo4OJc3haEc5y+8/zbxvAuzY06Ad1e/PB8Zn8d/U/elbvyZTmU/TXzQy5tShMFGJNXovdHZwC/kDpZEkH7EG1WW6kXn4fkW0O1eDGZrwSSufNHXBKjwEzXwgoJKKEJy0yvkNnZg52bt8wutTRO9Xdl+Ko7e9GeRcH4/XiDNkqFdXTxwnZoZZ9CrqgZSC/kK2A72bh8swzJG7eTMLff5N64KCxnOToSLka6dw9Zbgvt+KrV30JqcVIJJWK8sOHG69ebNkSbZx1ES86pZJYBzfOeVbirGclznlW4oa7L1vvjCV1ryGRihm12dYpuFXMAO2DHAUKFSeqtaR/ln7k+FuX36h/54bFCIMNusa5enoq15M4+q9GUmbgiD3pIkO/BSL7dMiDHAz+ynIk3nyP6Pv6+d8gKZannWMYUjOdGoEVYMOEfL8QXs38mAO63LszvFzsOfRhe5ToLM6/FtemgmJ3qGPHjuWzzz7D2dnZZD7VHI9SchQ5sP/JoCA93Kzbt0n49z8S/vqLzIgIlB4uaO8nYV6t4CEqHx+q79ppPL7z83xuXTiK/dqdedylR0gg5firTFXa4yA0KHVaC20LVF4eVNu4Fun833D8d7ilX4T7pLwna1xdqKX2Z9nZQ6jykO/eoGus7+klJuHg+y/25Q4BUNkllJ8jT3AmM3fqQ0+NllRJIl2poJpCzYwEJUH3rqLSPuzlU6MziVt3cGtvOdM2H9gOEPDMPe4HuPKRZgi7dXXJycZO96l5/PMCS98UlWJ3qG3btmXNmjV4eHjQtm1by5VLEtu2bSto9aWO3EN9/CloD1cIQcKaNUR9+FG+dTs/0xyXVq0o16+fSZ3rLv2H62vv4ZlkPrBIB9x1heRfPqNVSgVSjh4jev9hFOfOoExLteq5gpYseRihEHsOjv/O3YTrPK+9SlJmEh/cuctrScnmb1aXh4H/ofWuxZ7LUXx2bBixGTcYWq4BI3QuqE4sBcynPrxiZ8dwP2/iVCoqZGn4OTqWYFTgXRN8QhDuwVwetyhv+XG1lmrPx9JH87CXWk+6TD2Fvoc9xe5XpDy+DIrLqRZ72NT27ds5ceIE9evXl5OjyDySFDRkS5IkJHuH/AsC7i/2xP3553Kd93b15acOCsat1qHD1KnqY0lhcQcFw32DcfZrjHPz5vi8rXf+8QsXEjcj/9GeJi6bppRPbej0BZ7A6L1f8Pnl5fxYzoOOKamU15lZFU+9g9g8EWW//9G6RgUC3b8gelEnmkf8bVLMXOrDGllZ/BYVwxtBVUhXu2E/cCEENDEOx1MP7EeT9mselktoUlXMiOrJMa+HMe09lHt5XaVfSBRYWpCT9NI3tZ7LP/yqiCFb+VHoONSwsDAaNGjA0KFD6du3r9yTk3nssTaxi6VyYT5hXG/gz0yiGbhZS/lsEUZ3XWFJByU3GvjnkjGRlEqc6tazqu2Ev/7CoXp1HGvWMDn/smt1VmdkEO7gwExPD15MTjHpYWZIEl94lSOYe/zfg3uqeIVQpXIHUDlC2n24vDnPtgM0WpY0/ZREv9r4u1c2nhc6Hcm791plf9XTt3iu4j7CPStxxSOAcBHMaW0l6iivkZTn/OstuLQZanQyzofnopBquQWh0ItS+/fvZ+HChaxcuZKsrCx69uzJkCFD8pwCeFSQh/wy5rAmSiC/XAIGGRNJJ6gVqaNcMtxzgfOBCoRCYmabmWYz7xc0qYxz8+ZU/GkuCvsHkjQRuzm9rCcfeXuShAKfKIWx7Vh/fUhWrJ0KO0nFupfW51Z+1WlhVmj+yb1zyMdsurIB31HfYH/lVr425yRDoeJSuUAyvezooDxK/DlDvljz869uDatAwk3wCQG/UPA1fELg8lZYOcDsDjVJQZ5TBiW6yp+WlsbKlStZtGgRu3fvplKlSgwePJiBAwdSsWLFolRdasgOVcYS1kQJ5JftylyCEWtkTPJr2/udMaSHnyNp0yacmzcn6Jf5xiIiK5Ot8+qz/JbEwC06k97xHVf9VMP56hKzOi+gsX9T8waE//PAKUFqnJ1Fp6RNTETp5sb5u+d5be1rDPk3ndYX7VApVIhUC3PBkoTGvRxrKrcgMOoyte9ewz0zZ1nL0uUqtZZqvQVSmgUZbYUdideVFnq4ibg95WlRS6zUwqauXLnCokWL+PXXX4mKiqJDhw6sW7fOVtWXGLJDlcmLwsbBZsdSCjxbtJ158xYiPQ2HatUAyIqJ5VrvXhz0vEdYuD5HQHa3ZJi//eUVF76eciBPOxIXfknM7N/QZEuHoHIG35H9cWjzKncXLSbhn3+otOwP7GrV5IuDX7Dp+EoyVTCeLjz17Vr9TRa+jJzbd9CHPiWm4ZcYR/W4qyRv2kjKrvzVFpybP406pDL2blqcfdJRJl2EmLOQHENipGO+EQZuH//PbGLxUo1DTU5OZunSpXz44Yfcv38frZUZ2ssSskOVyY/CxsGWRtt35s4l7jv9lllLfTxDhIHjX4tpHGC+h2oxU5cZvN4cjs/o0Qgh+PHEj/x86mcABsXVotnKcMolPlwUu+euRDdqEC36vmu2roT/1nL7XfPXLFH5rzU41tJvAU6YPYGouX8hNBJ59nAXfoFUv1euqyWaHMXAzp07WbhwIatWrUKpVNKrVy+GDLFS8ldG5hGjoFECpdm219ChXIwJp9zyLRajZxVA+SS4u/AP7gadR+HigsLZGYWzCwoXZyRHR6I/+zxfZ+rcrh3lB7+O04Pt6JIk8XaDt/F09GTaoWks9j7Pkjclakcqss0fSwjNr8y8Xt/slIe1i4HuL/UEjYaMiGvYBwcbzycciEBozGfA0qOPMEi9nohzfauaskiRHGpkZCSLFy9m8eLFRERE0Lx5c3744Qd69eqVS/1URkamdJDs7HCqXh3Ykm9Z9/3niFm6qdBteQ0ciLpRo1znX635KnNPzCUhMwGhkAgPzunaBZP3TSYpUz+5qxM6dOjwdPSkdVhL7rkpcE80tylV37tOcFdSffIkVHb2ua471GlEyuHT+dquURRenNFAoR1qhw4d2L59O97e3gwYMIDBgwdTs2bNIhskIyNje6pVbcxN5uZbrlyjp6F2XXTJyWhTktGlpKJLTkZz9y7CUh7ZbJjEwWbjWOwxEjIT8rw3ITOBT/Z9YnKunnc93OzdWNAexq3GYvzugmcFdvEnc6nBAri0bsPdhYvytV3lU4oO1cnJiVWrVvH888+jLKG5IxkZmcLh0rgJmvIeKO7ct9jL03l7UGHSJLPzsSkHD3Fj4MB827E0PI9LtbD6noOa5Wri6+yLAgUKSUEl90rEpcZxqKaCGT1h0GZdrvjdxR0UHKqpoHHMUbMO1Zj2MdtCXi67/fxQN2polY15UWiH+s8//xS5cRkZmZJBUioJ/mQKN0eNzrUwZTgOnjjF4uKWtbloLTklb7V186ATmkzI5RQPRx8G4FBNBYerS9SOFMb513OBEuJBApRbSeZjXU3SPkKB0j4WlLxmap84Zs+eTUhICI0bm1eLlJF5lHHr2JGK33+Hna/p0NbOz4+K33+XZ8iXwSnpD3LMf1rhlMJ8wvBV+yJZWBaTkPBT++XaJZbzXv38q4K9TykID1YYnamTyonRYaON9+y/vZ+l55aSmpVqfPaA72ah8jFVfVD5+lqnlGslcvo+M8hhUzKPM0UJ+SpKDK5hlxhgIvRncLKWdokV5t6B6wdyLPYYbvZuvFLjFV6r/Rqn4k4x/cBUPC9EG3u4d2v6MeHpD/LeUCHnQy0askOVkbFMURxyYXeJFeRendDx54U/+e3cb1xPvA6AQlKgE7kTwljjzGWHWkRkhyojU3wUdpdYQe/V6rTsuLmDJWeWcDzuuNkyoHeqvmpfNry0wWxdpRLYLyMjI2MNSoXS7Gq8re9VKpQ8G/QsbvZuDN442GI5gSA6NZpjsccKbZcBeVFKRkbmscbakC1ry+WF7FBlZGQea6wN2bK2XF7IDlVGRuaxpighWwVFdqgyMjKPNUqFkvebvA+Qy6kajic0mWD1wlheyA5VRkbmsad9cHtmtpmJj9o0sN9X7ZtnyFRBkVf5ZWRkngjaB7enbWDbQodsWYPsUGVkZJ4YihKyZQ2yQzWDYa9DYmJiKVsiIyNT2hj8gDV7oGSHaoakJH1+sMDAwFK2REZGpqyQlJSEu7t7nmXkradm0Ol03L59G1dXVyRLGt8PSExMJDAwkMjIyEdim6psb/Ei21t8lJatQgiSkpKoUKECCkXe6/hyD9UMCoWiwBLYbm5uZf4XMjuyvcWLbG/xURq25tczNSCHTcnIyMjYCNmhysjIyNgI2aEWEQcHByZNmoSDg0Npm2IVsr3Fi2xv8fEo2CovSsnIyMjYCLmHKiMjI2MjZIcqIyMjYyNkhyojIyNjI2SHWkTmzJlD5cqVcXR0pGHDhuzevbvEbZg8eTKSJJl8/Pz8jNeFEEyePJkKFSrg5OREmzZtOHv2rEkdGRkZvP3225QvXx5nZ2e6d+/OzZs3bWLfrl276NatGxUqVECSJP766y+T67ay7969e/Tv3x93d3fc3d3p378/9+/ft7m9gwYNyvW+n3766VKxd+rUqTRu3BhXV1d8fHzo0aMHFy5cMClTlt6vNfaWpfdbYIRMoVm+fLmws7MT8+fPF+Hh4WL06NHC2dlZXL9+vUTtmDRpknjqqadEVFSU8RMbG2u8Pm3aNOHq6ipWrVolTp8+LXr37i38/f1FYmKisczw4cNFQECA2Lx5szh27Jho27atqFevntBoNEW2b926deKjjz4Sq1atEoBYs2aNyXVb2de5c2cRGhoq9u3bJ/bt2ydCQ0PF888/b3N7Bw4cKDp37mzyvuPj403KlJS9nTp1EosWLRJnzpwRJ06cEM8995wICgoSycnJxjJl6f1aY29Zer8FRXaoRaBJkyZi+PDhJudq1aol3n///RK1Y9KkSaJevXpmr+l0OuHn5yemTZtmPJeeni7c3d3FTz/9JIQQ4v79+8LOzk4sX77cWObWrVtCoVCIDRs22NTWnA7KVvaFh4cLQBw4cMBYZv/+/QIQ58+ft5m9Quj/4F944QWL95SmvbGxsQIQO3fuFEKU/feb014hyvb7zQ95yF9IMjMzOXr0KB07djQ537FjR/bt21fi9ly6dIkKFSpQuXJlXn31Va5evQpAREQE0dHRJnY6ODjQunVro51Hjx4lKyvLpEyFChUIDQ0t9mexlX379+/H3d2dpk2bGss8/fTTuLu7F8sz7NixAx8fH2rUqMGwYcOIjY01XitNexMSEgDw9PQEyv77zWmvgbL6fvNDdqiF5M6dO2i1Wnx9fU3O+/r6Eh0dXaK2NG3alF9//ZWNGzcyf/58oqOjad68OfHx8UZb8rIzOjoae3t7ypUrZ7FMcWEr+6Kjo/HxMc3GDuDj42PzZ+jSpQtLly5l27ZtzJgxg8OHD9OuXTsyMjJK1V4hBGPHjqVFixaEhoYa2zG0nZctZcVeKLvv1xrk5ChFJGc2KiFEvhmqbE2XLl2M/65Tpw7NmjWjatWqLFmyxDiZXxg7S/JZbGGfufLF8Qy9e/c2/js0NJRGjRoRHBzM2rVr6dmzZ6nZ+9Zbb3Hq1Cn27NmT61pZfL+W7C2r79ca5B5qISlfvjxKpTLXt11sbGyu3kBJ4+zsTJ06dbh06ZJxtT8vO/38/MjMzOTevXsWyxQXtrLPz8+PmJiYXPXHxcUV+zP4+/sTHBzMpUuXSs3et99+m3/++Yft27ebZEorq+/Xkr3mKAvv11pkh1pI7O3tadiwIZs3bzY5v3nzZpo3b15KVunJyMjg3Llz+Pv7U7lyZfz8/EzszMzMZOfOnUY7GzZsiJ2dnUmZqKgozpw5U+zPYiv7mjVrRkJCAocOHTKWOXjwIAkJCcX+DPHx8URGRuLv71/i9goheOutt1i9ejXbtm2jcuXKJtfL2vvNz15zlOb7LTDFttz1BGAIm1qwYIEIDw8XY8aMEc7OzuLatWslase4cePEjh07xNWrV8WBAwfE888/L1xdXY12TJs2Tbi7u4vVq1eL06dPiz59+pgNm6lYsaLYsmWLOHbsmGjXrp3NwqaSkpLE8ePHxfHjxwUgZs6cKY4fP24ML7OVfZ07dxZ169YV+/fvF/v37xd16tQpVJhMXvYmJSWJcePGiX379omIiAixfft20axZMxEQEFAq9r755pvC3d1d7NixwyTMKDU11VimLL3f/Owta++3oMgOtYjMnj1bBAcHC3t7exEWFmYS/lFSGOIK7ezsRIUKFUTPnj3F2bNnjdd1Op2YNGmS8PPzEw4ODqJVq1bi9OnTJnWkpaWJt956S3h6egonJyfx/PPPixs3btjEvu3btwsg12fgwIE2tS8+Pl707dtXuLq6CldXV9G3b19x7949m9qbmpoqOnbsKLy9vYWdnZ0ICgoSAwcOzGVLSdlrzk5ALFq0yFimLL3f/Owta++3oMjZpmRkZGRshDyHKiMjI2MjZIcqIyMjYyNkhyojIyNjI2SHKiMjI2MjZIcqIyMjYyNkhyojIyNjI2SHKiMjI2MjZIcqIyMjYyNkhyrzWNCmTRvGjBljdflr164hSRInTpwoNpusZfLkydSvX7+0zZCxAfJOKZkSJb/UaQMHDmTx4sUFrvfu3bvY2dnh6upqVXmtVktcXBzly5dHpSreLJarVq3iq6++4vz58+h0OoKCgujcuTMzZswAIDk5mYyMDLy8vIrVDpniR86HKlOiREVFGf+9YsUKPvnkExORNicnJ5PyWVlZ2NnZ5Vtvzozv+aFUKk2EDIuLLVu28Oqrr/Lll1/SvXt3JEkiPDycrVu3Gsu4uLjg4uJS7LbIFD/ykF+mRPHz8zN+3N3djQqtfn5+pKen4+HhwcqVK2nTpg2Ojo78/vvvxMfH06dPHypWrIharaZOnTosW7bMpN6cQ/5KlSrx5ZdfMnjwYFxdXQkKCuLnn382Xs855N+xYweSJLF161YaNWqEWq2mefPmuRQ5P//8c3x8fHB1dWXo0KG8//77eQ7X//vvP1q0aMF7771HzZo1qVGjBj169OCHH34wlsk55M+p+ClJEpUqVTJeDw8Pp2vXrri4uODr60v//v25c+eO9T8EmWJDdqgyZY4JEyYwatQozp07R6dOnUhPT6dhw4b8999/nDlzhv/7v/+jf//+HDx4MM96ZsyYQaNGjTh+/DgjRozgzTff5Pz583ne89FHHzFjxgyOHDmCSqVi8ODBxmtLly7liy++YPr06Rw9epSgoCDmzp2bZ31+fn6cPXuWM2fOWP38UVFRxs/ly5epVq0arVq1Ml5r3bo19evX58iRI2zYsIGYmBh69epldf0yxUix5rKSkcmDRYsWCXd3d+NxRESEAMSsWbPyvbdr165i3LhxxuPWrVuL0aNHG4+Dg4NFv379jMc6nU74+PiIuXPnmrR1/PhxIcTDlH1btmwx3rN27VoBiLS0NCGEEE2bNhUjR440seOZZ56xqDgrhBDJycmia9euAhDBwcGid+/eYsGCBSI9Pd1YxpJqrU6nEy+++KJo2LChMV/oxIkTRceOHU3KRUZGCkBcuHDBoh0yJYPcQ5UpczRq1MjkWKvV8sUXX1C3bl28vLxwcXFh06ZN3LhxI8966tata/y3YWohu3pmfvcYMsQb7rlw4QJNmjQxKZ/zOCfOzs6sXbuWy5cv8/HHH+Pi4sK4ceNo0qQJqamped774Ycfsn//fv766y/j3PLRo0fZvn27cd7VxcWFWrVqAXDlypU865MpfuRFKZkyh7Ozs8nxjBkz+Pbbb5k1axZ16tTB2dmZMWPGkJmZmWc9ORezJElCp9NZfY8hIiH7PebE7qyhatWqVK1alaFDh/LRRx9Ro0YNVqxYweuvv262/O+//863337Ljh07TDSXdDod3bp1Y/r06bnuMXwByJQeskOVKfPs3r2bF154gX79+gF6p3Lp0iVq165donbUrFmTQ4cO0b9/f+O5I0eOFLieSpUqoVarSUlJMXt9//79DB06lHnz5hlVaw2EhYWxatUqKlWqVOzhXjIFRx7yy5R5qlWrxubNm9m3bx/nzp3jjTfeKFZtdUu8/fbbLFiwgCVLlnDp0iU+//xzTp06lWds7eTJkxk/fjw7duwgIiKC48ePM3jwYLKysujQoUOu8tHR0bz44ou8+uqrdOrUiejoaKKjo4mLiwNg5MiR3L17lz59+nDo0CGuXr3Kpk2bGDx4MFqtttieXcY6ZIcqU+aZOHEiYWFhdOrUiTZt2uDn50ePHj1K3I6+ffvywQcf8O677xIWFkZERASDBg3C0dHR4j2tW7fm6tWrDBgwgFq1atGlSxeio6PZtGkTNWvWzFX+/PnzxMTEsGTJEvz9/Y2fxo0bA1ChQgX27t2LVqulU6dOhIaGMnr0aNzd3VEo5D/n0kbeKSUjUwQ6dOiAn58fv/32W2mbIlMGkCdhZGSsJDU1lZ9++olOnTqhVCpZtmwZW7ZsMdGHl3mykXuoMjJWkpaWRrdu3Th27BgZGRnUrFmTjz/+mJ49e5a2aTJlBNmhysjIyNgIeRZbRkZGxkbIDlVGRkbGRsgOVUZGRsZGyA5VRkZGxkbIDlVGRkbGRsgOVUZGRsZGyA5VRkZGxkbIDlVGRkbGRsgOVUZGRsZG/D/r7PsgRyCKqQAAAABJRU5ErkJggg==",
"text/plain": [
"