diff --git a/envs/environment-cpu.yml b/envs/environment-cpu.yml index 7dc4eae..1bbbb18 100644 --- a/envs/environment-cpu.yml +++ b/envs/environment-cpu.yml @@ -18,7 +18,8 @@ dependencies: - scikit-learn # Quantum chemistry - - psi4==1.8.* + - psi4==1.8.* # Remove for MacOS systems + - mopac # Interatomic forcefields - dscribe==2.1.* @@ -29,4 +30,5 @@ dependencies: - pip - pip: + - git+https://gitlab.com/ase/ase.git # Needed for MOPAC - -e ..[test] diff --git a/notebooks/proof-of-concept/0_get-exact-answer.ipynb b/notebooks/proof-of-concept/0_get-exact-answer.ipynb index 69f2d98..ecf7b28 100644 --- a/notebooks/proof-of-concept/0_get-exact-answer.ipynb +++ b/notebooks/proof-of-concept/0_get-exact-answer.ipynb @@ -21,13 +21,16 @@ "source": [ "from ase.thermochemistry import IdealGasThermo\n", "from ase.vibrations import VibrationsData, Vibrations\n", + "from ase.calculators.mopac import MOPAC\n", "from ase.calculators.psi4 import Psi4\n", "from ase.optimize import QuasiNewton\n", "from ase import Atoms, units\n", "from ase.io import write\n", + "from contextlib import redirect_stderr\n", "from time import perf_counter\n", "from platform import node\n", "from pathlib import Path\n", + "from os import devnull\n", "import numpy as np\n", "import shutil\n", "import json\n", @@ -53,10 +56,12 @@ }, "outputs": [], "source": [ - "molecule_name = 'caffeine'\n", - "method = 'hf'\n", - "basis = 'def2-svpd'\n", - "threads = min(os.cpu_count(), 12)" + "molecule_name = 'water'\n", + "method = 'pm7'\n", + "mopac_methods = ['pm7'] # Use MOPAC for these methods\n", + "basis = None # Set to None for MOPAC methods\n", + "threads = min(os.cpu_count(), 12)\n", + "assert (method in mopac_methods) == (basis is None), 'Use a basis of None for MOPAC computations'" ] }, { @@ -149,19 +154,12 @@ "metadata": { "tags": [] }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - " Memory set to 3.815 GiB by Python driver.\n", - " Threads set to 12 by Python driver.\n" - ] - } - ], + "outputs": [], "source": [ - "calc = Psi4(method=method, basis=basis, num_threads=threads, memory='4096MB')" + "if method not in mopac_methods:\n", + " calc = Psi4(method=method, basis=basis, num_threads=threads, memory='4096MB')\n", + "else:\n", + " calc = MOPAC(method=method, command='mopac PREFIX.mop > /dev/null')" ] }, { @@ -174,58 +172,24 @@ "name": "stdout", "output_type": "stream", "text": [ - "\n", - " Memory set to 3.815 GiB by Python driver.\n", - " Threads set to 12 by Python driver.\n", " Step[ FC] Time Energy fmax\n", - "BFGSLineSearch: 0[ 0] 15:25:31 -18390.794139 4.1661\n", - "BFGSLineSearch: 1[ 2] 15:26:05 -18391.020663 1.9419\n", - "BFGSLineSearch: 2[ 4] 15:26:41 -18391.134456 1.3043\n", - "BFGSLineSearch: 3[ 6] 15:27:16 -18391.190769 1.0587\n", - "BFGSLineSearch: 4[ 8] 15:27:51 -18391.215384 0.5746\n", - "BFGSLineSearch: 5[ 10] 15:28:27 -18391.226240 0.3911\n", - "BFGSLineSearch: 6[ 12] 15:29:02 -18391.233268 0.3498\n", - "BFGSLineSearch: 7[ 14] 15:29:37 -18391.239126 0.2511\n", - "BFGSLineSearch: 8[ 16] 15:30:12 -18391.244270 0.2340\n", - "BFGSLineSearch: 9[ 18] 15:30:46 -18391.247254 0.1998\n", - "BFGSLineSearch: 10[ 20] 15:31:21 -18391.249083 0.1269\n", - "BFGSLineSearch: 11[ 22] 15:31:56 -18391.249935 0.1215\n", - "BFGSLineSearch: 12[ 24] 15:32:31 -18391.251072 0.1065\n", - "BFGSLineSearch: 13[ 26] 15:33:06 -18391.251900 0.1094\n", - "BFGSLineSearch: 14[ 28] 15:33:41 -18391.252777 0.0838\n", - "BFGSLineSearch: 15[ 30] 15:34:15 -18391.253605 0.1189\n", - "BFGSLineSearch: 16[ 32] 15:34:50 -18391.254853 0.0854\n", - "BFGSLineSearch: 17[ 34] 15:35:24 -18391.255313 0.0749\n", - "BFGSLineSearch: 18[ 36] 15:35:59 -18391.256046 0.0943\n", - "BFGSLineSearch: 19[ 38] 15:36:34 -18391.256326 0.0431\n", - "BFGSLineSearch: 20[ 40] 15:37:09 -18391.256438 0.0387\n", - "BFGSLineSearch: 21[ 42] 15:37:44 -18391.256503 0.0240\n", - "BFGSLineSearch: 22[ 44] 15:38:18 -18391.256571 0.0296\n", - "BFGSLineSearch: 23[ 46] 15:38:53 -18391.256651 0.0230\n", - "BFGSLineSearch: 24[ 48] 15:39:28 -18391.256700 0.0238\n", - "BFGSLineSearch: 25[ 50] 15:40:02 -18391.256791 0.0237\n", - "BFGSLineSearch: 26[ 52] 15:40:37 -18391.256819 0.0183\n", - "BFGSLineSearch: 27[ 54] 15:41:12 -18391.256859 0.0086\n", - "CPU times: user 2h 50min 12s, sys: 5min 56s, total: 2h 56min 8s\n", - "Wall time: 15min 59s\n" + "*Force-consistent energies used in optimization.\n", + "BFGSLineSearch: 0[ 0] 13:34:20 3.054451* 39.6081\n", + "BFGSLineSearch: 1[ 1] 13:34:20 -2.442459* 1.4363\n", + "BFGSLineSearch: 2[ 3] 13:34:20 -2.504294* 0.3803\n", + "BFGSLineSearch: 3[ 5] 13:34:20 -2.506296* 0.0708\n", + "BFGSLineSearch: 4[ 6] 13:34:20 -2.506439* 0.0029\n", + "CPU times: user 35.5 ms, sys: 20.8 ms, total: 56.3 ms\n", + "Wall time: 342 ms\n" ] - }, - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" } ], "source": [ "%%time\n", "atoms.calc = calc\n", "dyn = QuasiNewton(atoms)\n", - "dyn.run(fmax=0.01)" + "with redirect_stderr(devnull):\n", + " dyn.run(fmax=0.01)" ] }, { @@ -295,8 +259,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 4h 37min 32s, sys: 9min 54s, total: 4h 47min 27s\n", - "Wall time: 26min 18s\n" + "CPU times: user 26.8 ms, sys: 42.5 ms, total: 69.4 ms\n", + "Wall time: 782 ms\n" ] } ], @@ -349,7 +313,7 @@ { "data": { "text/plain": [ - "5.5067174465850215" + "0.4429860245936006" ] }, "execution_count": 13, @@ -372,83 +336,27 @@ }, { "cell_type": "code", - "execution_count": null, - "id": "577cd427-7829-4f7b-8457-a6c709c3ea80", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "analytic_time = perf_counter()\n", - "calc.set_psi4(atoms)\n", - "hess = calc.psi4.hessian(f'{method}/{basis}')\n", - "analytic_time = perf_counter() - analytic_time" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "0d611176-e94d-44de-a57b-6750625463a1", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "analytic_hess = hess.to_array() * units.Hartree / units.Bohr / units.Bohr" - ] - }, - { - "cell_type": "markdown", - "id": "9567ec44-fda4-4052-87dc-c6c257adbc4e", - "metadata": {}, - "source": [ - "Convert it to an ASE object and save" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "8a767054-2b20-4a87-8f51-5e715d71d539", + "execution_count": 14, + "id": "da5a4aea-134d-4950-8dbd-df83338983a8", "metadata": { "tags": [] }, "outputs": [], "source": [ - "vib_data = VibrationsData.from_2d(atoms, analytic_hess)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "b5053fa4-e301-472a-8982-1b02c7727d90", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "vib_data = vib.get_vibrations()\n", - "with (out_dir / f'{run_name}-psi4.json').open('w') as fp:\n", - " vib_data.write(fp)" - ] - }, - { - "cell_type": "markdown", - "id": "36d8ad22-2ad6-45c0-ba9d-0aeed39cb41f", - "metadata": {}, - "source": [ - "Print the ZPE for reference" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "9e9422b7-a62d-49b7-af4a-b433d24804ae", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "vib_data.get_zero_point_energy()" + "if isinstance(calc, Psi4):\n", + " # Compute\n", + " analytic_time = perf_counter()\n", + " calc.set_psi4(atoms)\n", + " hess = calc.psi4.hessian(f'{method}/{basis}')\n", + " analytic_time = perf_counter() - analytic_time\n", + "\n", + " # Convert to ASE format\n", + " analytic_hess = hess.to_array() * units.Hartree / units.Bohr / units.Bohr\n", + " vib_data = VibrationsData.from_2d(atoms, analytic_hess)\n", + " with (out_dir / f'{run_name}-psi4.json').open('w') as fp:\n", + " vib_data.write(fp)\n", + "else:\n", + " analytic_time = None" ] }, { @@ -461,7 +369,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "id": "273b5116-06ec-4098-8b20-537d1f9d7e84", "metadata": { "tags": [] @@ -501,7 +409,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.12" + "version": "3.9.17" } }, "nbformat": 4, diff --git a/notebooks/proof-of-concept/1_compute-random-offsets.ipynb b/notebooks/proof-of-concept/1_compute-random-offsets.ipynb index 10ae373..d6ac780 100644 --- a/notebooks/proof-of-concept/1_compute-random-offsets.ipynb +++ b/notebooks/proof-of-concept/1_compute-random-offsets.ipynb @@ -18,6 +18,7 @@ }, "outputs": [], "source": [ + "from ase.calculators.mopac import MOPAC\n", "from ase.calculators.psi4 import Psi4\n", "from ase.io import write, read\n", "from ase.db import connect\n", @@ -48,10 +49,12 @@ "outputs": [], "source": [ "molecule_name = 'caffeine'\n", - "method = 'hf'\n", - "basis = 'def2-svpd'\n", + "method = 'pm7'\n", + "mopac_methods = ['pm7'] # Use MOPAC for these methods\n", + "basis = None # Set to None for MOPAC methods\n", "threads = min(os.cpu_count(), 12)\n", - "step_size: float = 0.01 # Perturbation amount, used as maximum L2 norm" + "step_size: float = 0.01 # Perturbation amount, used as maximum L2 norm\n", + "assert (method in mopac_methods) == (basis is None), 'Use a basis of None for MOPAC computations'" ] }, { @@ -184,19 +187,12 @@ "metadata": { "tags": [] }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - " Memory set to 3.815 GiB by Python driver.\n", - " Threads set to 12 by Python driver.\n" - ] - } - ], + "outputs": [], "source": [ - "calc = Psi4(method=method, basis=basis, num_threads=threads, memory='4096MB')" + "if method not in mopac_methods:\n", + " calc = Psi4(method=method, basis=basis, num_threads=threads, memory='4096MB')\n", + "else:\n", + " calc = MOPAC(method=method, command='mopac PREFIX.mop > /dev/null')" ] }, { @@ -241,7 +237,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Already done 427. 2274 left to do.\n" + "Already done 1. 2700 left to do.\n" ] } ], @@ -253,7 +249,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "id": "a6fa1b33-defc-4b35-895d-052eb64453fb", "metadata": {}, "outputs": [ @@ -261,23 +257,7 @@ "name": "stderr", "output_type": "stream", "text": [ - " 0%| | 0/2701 [00:00" ] @@ -296,7 +296,7 @@ { "data": { "text/plain": [ - "{'alpha': 1e-10, 'gamma': 2.1017480113324872e-05}" + "{'alpha': 1e-10, 'gamma': 9.284145445194744e-05}" ] }, "execution_count": 11, @@ -352,7 +352,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Maximum force: 8.96e-03 eV/Angstrom\n" + "Maximum force: 9.25e-03 eV/Angstrom\n" ] } ], @@ -370,7 +370,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAC+CAYAAADa6ROSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAATIklEQVR4nO3df2wb9f3H8ZftJBcnsV2a0IY2TqL1F999VX5MlbpWmgCxjShQoB1TmZgoHZoEncY0aUNCmmjFxqJ1K402aWzS+gPQtK3bAAFTq0E7GGNjP9pVbNpUCt/v2pS2pC0l56atE9uf7x9dPt+Zpuol9vWcu+dDOkW+2Of3x/mcXz7fJ5+LGWOMAACQFA+6AABA7SAUAAAWoQAAsAgFAIBFKAAALEIBAGARCgAAi1AAAFiEAgDAIhRCLBaL6dlnnw26DETY1q1bNW3atKDLmJCpWHM1EQpV8vvf/16JREI9PT0Telx3d7f6+/v9KQqYoHvuuUexWOy8xUu/Hq8vr1y5Um+++aZP1f6/qL+RV1Nd0AWExebNm/XFL35RP/rRj3Tw4EF1dnYGXRIwKT09PdqyZUvZOsdxJrWtZDKpZDJZjbJwiXCkUAXDw8Patm2b7r//ft1yyy3aunVr2e+fe+45LVq0SI2NjWpra9OKFSskSddff70OHDigL3/5y/YTmSStW7dO11xzTdk2+vv71d3dbW//+c9/1ic+8Qm1tbUpk8nouuuu0549e/xsJiLCcRy1t7eXLZdddpmkc32zs7NTjuNo1qxZeuCBByRduC9/8BP8WN/evHmzOjs71dLSovvvv1/FYlHr169Xe3u7ZsyYoUcffbSspscee0wLFy5Uc3Ozstms1qxZo1OnTkmSXn75Za1evVpDQ0P2udetWydJGhkZ0YMPPqjZs2erublZixcv1ssvv1y27a1bt6qzs1NNTU1avny5Tpw44cOrOnUQClXws5/9TAsWLNCCBQv02c9+Vlu2bNHY5LO/+tWvtGLFCt18883661//qp07d2rRokWSpKefflodHR165JFHdOTIER05csTzc+ZyOa1atUqvvvqqXn/9dc2bN0+9vb3K5XK+tBH4xS9+oY0bN+qHP/yh9u/fr2effVYLFy6UNLG+/Pbbb2v79u3asWOHfvKTn2jz5s26+eabdejQIb3yyiv61re+pa997Wt6/fXX7WPi8bi++93v6u9//7ueeOIJ7dq1Sw8++KAkaenSperv71c6nbbP/ZWvfEWStHr1ar322mv66U9/qjfeeEOf/vSn1dPTo/3790uS/vjHP+pzn/uc1qxZo7179+qGG27QN77xDb9ewqnBoGJLly41/f39xhhjRkdHTVtbm3nxxReNMcYsWbLE3HXXXRd8bFdXl9m4cWPZurVr15qrr766bN3GjRtNV1fXBbdTKBRMKpUyzz//vF0nyTzzzDMTaguibdWqVSaRSJjm5uay5ZFHHjEbNmww8+fPNyMjI+M+dry+vGXLFpPJZOzttWvXmqamJuO6rl130003me7ublMsFu26BQsWmL6+vgvWuW3bNtPa2nrB5zHGmLfeesvEYjHzzjvvlK2/8cYbzUMPPWSMMeYzn/mM6enpKfv9ypUrz9tWlHBOoUL79u3Tn/70Jz399NOSpLq6Oq1cuVKbN2/Wxz/+ce3du1ef//znq/68g4ODevjhh7Vr1y69++67KhaLOn36tA4ePFj150K03HDDDXr88cfL1k2fPl3Dw8Pq7+/Xhz70IfX09Ki3t1fLli1TXd3E3ka6u7uVSqXs7ZkzZyqRSCgej5etGxwctLd/85vf6Jvf/Kb+8Y9/yHVdFQoFnT17VsPDw2pubh73efbs2SNjjObPn1+2Pp/Pq7W1VZL0z3/+U8uXLy/7/ZIlS7Rjx44JtSlMCIUKbdq0SYVCQbNnz7brjDGqr6/XyZMnJ3WSLR6P26+fxoyOjpbdvueee3Ts2DH19/erq6tLjuNoyZIlGhkZmVxDgH9rbm7W3Llzz1s/ffp07du3Ty+++KJeeuklrVmzRt/+9rf1yiuvqL6+3vP2P3jfWCw27rpSqSRJOnDggHp7e3Xffffp61//uqZPn67f/e53uvfee8/bL/5TqVRSIpHQ7t27lUgkyn7X0tIiSeftZyAUKlIoFPTkk09qw4YN+uQnP1n2u0996lP68Y9/rKuuuko7d+7U6tWrx91GQ0ODisVi2brLL79cR48elTHGnrDbu3dv2X1effVVff/731dvb68kaWBgQMePH69Sy4DxJZNJ3Xrrrbr11lv1hS98QVdeeaX+9re/6SMf+ci4fbka/vKXv6hQKGjDhg32aGLbtm1l9xnvua+99loVi0UNDg7qYx/72Ljb/vCHP1x27kLSebejhlCowAsvvKCTJ0/q3nvvVSaTKfvdHXfcoU2bNmnjxo268cYbNWfOHN15550qFAravn27PUnW3d2t3/72t7rzzjvlOI7a2tp0/fXX69ixY1q/fr3uuOMO7dixQ9u3b1c6nbbbnzt3rp566iktWrRIruvqq1/9KkP/UBX5fF5Hjx4tW1dXV6cXXnhBxWJRixcvVlNTk5566iklk0l1dXVJGr8vV8OcOXNUKBT0ve99T8uWLdNrr72mH/zgB2X36e7u1qlTp7Rz505dffXVampq0vz583XXXXfp7rvv1oYNG3Tttdfq+PHj2rVrlxYuXKje3l498MADWrp0qdavX6/bb79dv/71ryP91ZEkTjRX4pZbbjG9vb3j/m737t1Gktm9e7f55S9/aa655hrT0NBg2trazIoVK+z9/vCHP5irrrrKOI5j/vPP8fjjj5tsNmuam5vN3XffbR599NGyE8179uwxixYtMo7jmHnz5pmf//zn553oEyeaMUGrVq0yks5bFixYYJ555hmzePFik06nTXNzs/noRz9qXnrpJfvY8fryeCeaPziIYtWqVea2224rW3fdddeZL33pS/b2Y489Zq644gqTTCbNTTfdZJ588kkjyZw8edLe57777jOtra1Gklm7dq0xxpiRkRHz8MMPm+7ublNfX2/a29vN8uXLzRtvvGEft2nTJtPR0WGSyaRZtmyZ+c53vhPpE80xY/hSDQBwDv+nAACwCAUAgDWlQiGfz2vdunXK5/NBl+KbKLRRik47qykqr1kU2lnLbZxS5xRc11Umk9HQ0FDZSJwwiUIbpei0s5qi8ppFoZ213MYpdaQAAPAXoQAAsCb9z2ulUkmHDx9WKpWy/3XrN9d1y36GURTaKF36dhpjlMvlNGvWrLI5diaL/u+fKLQziDZ63QcmfU7h0KFDymazky4QCMLAwIA6Ojoq3g79H1PVxfaBSR8pjM1yuO/N/WUzHobRe2erP59LrWlLJi5+pyksl8tp3rx5VeurY9vZvz/8/f+dUxeedC4sOlq8T+g3VeVyOc31sA94DoV8Pl82fGrsYi6pVKrmzp5X22h9+EMh3RTuUBgz2a96otz/h2LhD4V0KvyhMOZi+4DnL1f7+vqUyWTswqEzooT+j6jwfE7hg5+UXNdVNpvV4SNHQ/9J6cSZ8B8pXB7yIwXXddXe3j7pceEX6v9Hj4a//w/kwn+k0BmBIwXXdTXTwz7g+esjx3HkOE5VigOmGvo/oqLi6yk4Jw/KKbRUo5aaNbOlOvPC1zKjcP8N/Ro0Wv/eQdWPhvu162qeHnQJvjMm3EfKkiRT8nQ3/nkNAGARCgAAi1AAAFiEAgDAIhQAAFbFo4/ea+nQaCrc47QbE5dmwrMgMdhycqLQ/6fFR4IuwXcjJvyfj722MfyvBADAM0IBAGARCgAAi1AAAFiEAgDAqnj0UaohrnRDuLMlPnI66BJ8ZxJNQZcwJSVi55ZQKxaCrsB3DQlv8wJNZQ0x5j4CAEwQoQAAsAgFAIBFKAAALEIBAGBVPPoofjaneEM1Sqldo06457aRqtARIip9dlDp+jNBl+Gr95Mzgy7Bdw5zH1nhfyUAAJ4RCgAAi1AAAFiEAgDAIhQAAFbFg05ixihmTDVqqVn1oxGY+6iBuY8mw9Q1ydSH+7XLFHJBl+C7Ul0q6BJ8x9xHAIAJIxQAAJbnr4/y+bzy+by97bquLwUBtYj+j6jwfKTQ19enTCZjl2w262ddQE2h/yMqYsZ4O0s83ielbDarY//7ptLpcJ+kMYn6oEvwXdhPNLuuq5nt7RoaGlI6PfFpS6Lc/6Og1Bj+v6Hrupp5xayL7gOevz5yHEeO45y3vtTYEv4XNBb+Uy/hHj9Wefsu2P+TaZWS4Z4bKxaBKw96nRdoKmPuIwDAhBEKAACLUAAAWIQCAMAiFAAAFqEAALC4CqMXxttEUlNaBIbd+sKUQt8/TH1j0CX4rj4WdAX+q/e4i/NOAACwCAUAgEUoAAAsQgEAYBEKAACr4tFHR8+UNFwX7tEXHcVjQZfgu0L6iqBLmJL+lSuoRYWgy/DV3LrwX46z2NwadAk1gyMFAIBFKAAALEIBAGARCgAAi1AAAFgVjz5K1ceVagh3tgwWZwRdgu+mhfx6nCWf2tedblA63eDPxmuEO3pZ0CX4Lhny/i953wfC/W4OAJgQQgEAYBEKAACLUAAAWIQCAMCqePRRS+mMUqVwX8AtpXDP7SRJpVg66BJ8FffrylqlwrklxFoSQVfgPxOBKw963QfC/0oAADzz/BE/n88rn8/b267r+lIQUIvo/4gKz0cKfX19ymQydslms37WBdQU+j+iImaM8fR/buN9Uspmsxo88LbS6ZRvBdYEE4FzCo3hPqfguq7a29s1NDSkdHribb1Q/3/38KFJbQ+1xcTDfV5U8r4PeH4lHMeR4zhVKQ6Yauj/iIqK4zEXT0rxpmrUUrOK4T9Q0LSgC/CZX4OP8iahvAn38JyhfPh3gBnJ8Lcx5vEbD0YfAQAsQgEAYBEKAACLUAAAWIQCAMCqePTRcKGk+Gi4z9y3NwZdwaXA54PJOHamoDN14Z77qMsZDboE35lYuEdQSpI8zu/EOwEAwCIUAAAWoQAAsAgFAIBFKAAArIpHH80+fUjpREs1aqlZg/GuoEvw3fRIjLCqvq7CoNKF00GX4aujdbOCLsF3bUEXcAl4mg5bHCkAAP4DoQAAsAgFAIBFKAAALEIBAGBVPPrINDTKNCSrUUvNao2dCboE3xmFewQZJm9GfQTmPlK4r54neb/6IEcKAACLUAAAWIQCAMAiFAAAFqEAALAqHn30bt3lOl2frkYtNavNCf/IhMTwiaBL8FX8dM6X7R5vbFc+Ge7+P70uAv3fPRJ0Cb5L5LztAxwpAAAsz0cK+Xxe+Xze3nZd15eCgFpE/0dUeD5S6OvrUyaTsUs2m/WzLqCm0P8RFZ5D4aGHHtLQ0JBdBgYG/KwLqCn0f0SF56+PHMeR4zh+1gLULPo/oqLi0UcziieULoxUo5ba5c/AlZpSSs0MugRflYr1vmy31QwrbUI+XiN3NugKfFdMXxF0Cb4rqtnT/ULemwEAE0EoAAAsQgEAYBEKAACLUAAAWBWPPhpMtOpMXbjnfmlLhn/ul6F8KegSfJXzqX3vJ1pUTKR82XatyCQzQZfgu2NnikGX4LucxzZypAAAsAgFAIBFKAAALEIBAGARCgAAq+LRR63JhNIhH53z3tnwj0xobQz33zDu+PP5p7k+rpb6cH+2ej/kI9Mk6fKQv4dJkjPqrY3h7s0AgAkhFAAAFqEAALAIBQCARSgAACxCAQBgVTwkdbR0bgmzVicWdAm+iw+fCLoEX8VPR+Caqj5JNYT/s2P89MmgS/Bd/Iy3fSD8f20AgGeEAgDAIhQAABahAACwCAUAgFXx6COEw3t1lwVdgq9yCX8mPCuUjAol48u2a0VDIvyj707Whf+SozmPf0eOFAAAlucjhXw+r3w+b2+7rutLQUAtov8jKjwfKfT19SmTydglm836WRdQU+j/iIqYMcbTF6LjfVLKZrMaOHxU6XTatwJrQUMs5P+yLen9kaAr8FfOdTW/a5aGhoYm1V8v1P8PvnMk/P0/AucU3JHw7+M519W8zovvA56/PnIcR47jVKU4YKqh/yMqKh591BA/t4RasRB0Bb6b5jQEXYKv/Locp6NRORr1Zdu1IjYS/v6faWgKugTfxTy+UYf97RwAMAGEAgDAIhQAABahAACwCAUAgFX53EfFkXNLmCXCPTJHkuqOvRV0Cb6qy53yZ8Ox+LklxEwERubUHf+foEvwndd9INy9GQAwIYQCAMAiFAAAFqEAALAIBQCAxZXXIEn6V2NX0CX4Kjfqz/UPYqWCYqVwzw1k4uF/mzjU1Bl0Cb7LFb3tAxwpAAAsQgEAYBEKAACLUAAAWJM+gzR2Fc9cLle1YmpWBKa5yJ0K94ViTv27n3q8+uxFRan/m7qQT2MjKXcm3IMFJO/7wKRDYWxnmHvlf092E8All8vllMlkqrIdSZrzXwsr3hZwKV1sH4iZSX50KpVKOnz4sFKplGKxS3Nh77GLpQ8MDIT2YulRaKN06dtpjFEul9OsWbMUj1f+rSn93z9RaGcQbfS6D0z6SCEej6ujo2OyD69IOp0ObWcZE4U2Spe2ndU4QhhD//dfFNp5qdvoZR/gRDMAwCIUAADWlAoFx3G0du1aOY4TdCm+iUIbpei0s5qi8ppFoZ213MZJn2gGAITPlDpSAAD4i1AAAFiEAgDAIhQAABahAACwCAUAgEUoAAAsQgEAYP0fFL2r+ylNNmIAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAC+CAYAAADa6ROSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAATLklEQVR4nO3df4wUd/3H8dfu3u6wd7e7lLuWK9zeXVrgqt/QH4YEITFtU7WXa6mCNdTUlGJj0mKsMdEmTUwh1XoRpVw0sZrID9sYLdW20RqILdhaq/UHSKqpX0obv3AU6B0Ub5cD9m53P98/8D51yxHmbneYvZnnI5mQndudfX+W9+x7PjOf/UzEGGMEAICkqN8BAADqB0UBAGBRFAAAFkUBAGBRFAAAFkUBAGBRFAAAFkUBAGBRFAAAFkUhwCKRiJ599lm/w0CIbd26VTNnzvQ7jEmZjjHXEkWhRv7whz8oFoupp6dnUq/r6upSf3+/N0EBk3T33XcrEomcs7jJ64lyeeXKlXrjjTc8ivY9Yf8ir6UGvwMIis2bN+uLX/yifvSjH+ngwYPq6OjwOyRgSnp6erRly5aKdY7jTGlbyWRSyWSyFmHhIqGnUAMjIyPatm2b7rvvPt16663aunVrxd9/+ctfatGiRZoxY4ZaW1u1YsUKSdINN9ygAwcO6Mtf/rI9IpOkdevW6dprr63YRn9/v7q6uuzjv/zlL/rYxz6m1tZWZTIZXX/99dqzZ4+XzURIOI6jtra2iuWSSy6RdDY3Ozo65DiO5syZo/vvv1/S+XP5/Ufw47m9efNmdXR0qLm5Wffdd59KpZLWr1+vtrY2XXbZZXrkkUcqYnr00Ue1cOFCNTU1KZvNas2aNTp58qQk6cUXX9Tq1as1PDxs33vdunWSpNHRUT3wwAOaO3eumpqatHjxYr344osV2966das6OjrU2Nio5cuX6/jx4x58qtMHRaEGnnzySXV3d6u7u1uf/exntWXLFo1PPvvrX/9aK1as0C233KK//e1v2rlzpxYtWiRJevrpp9Xe3q6HH35YR44c0ZEjR1y/Zz6f16pVq/Tyyy/r1Vdf1fz589Xb26t8Pu9JG4Gf//zn2rhxo374wx9q//79evbZZ7Vw4UJJk8vlt956S9u3b9eOHTv005/+VJs3b9Ytt9yiQ4cO6aWXXtK3vvUtfe1rX9Orr75qXxONRvXd735X//jHP/TjH/9Yu3bt0gMPPCBJWrp0qfr7+5VOp+17f+UrX5EkrV69Wq+88op+9rOf6bXXXtOnP/1p9fT0aP/+/ZKkP/3pT/rc5z6nNWvWaO/evbrxxhv1jW98w6uPcHowqNrSpUtNf3+/McaYsbEx09raap5//nljjDFLliwxd95553lf29nZaTZu3Fixbu3ateaaa66pWLdx40bT2dl53u0Ui0WTSqXMr371K7tOknnmmWcm1RaE26pVq0wsFjNNTU0Vy8MPP2w2bNhgFixYYEZHRyd87US5vGXLFpPJZOzjtWvXmsbGRpPL5ey6m2++2XR1dZlSqWTXdXd3m76+vvPGuW3bNtPS0nLe9zHGmDfffNNEIhHz9ttvV6y/6aabzIMPPmiMMeYzn/mM6enpqfj7ypUrz9lWmHBNoUr79u3Tn//8Zz399NOSpIaGBq1cuVKbN2/WRz/6Ue3du1ef//zna/6+g4ODeuihh7Rr1y698847KpVKOnXqlA4ePFjz90K43HjjjXrssccq1s2aNUsjIyPq7+/XFVdcoZ6eHvX29mrZsmVqaJjc10hXV5dSqZR9PHv2bMViMUWj0Yp1g4OD9vFvf/tbffOb39Trr7+uXC6nYrGoM2fOaGRkRE1NTRO+z549e2SM0YIFCyrWFwoFtbS0SJL++c9/avny5RV/X7JkiXbs2DGpNgUJRaFKmzZtUrFY1Ny5c+06Y4zi8bhOnDgxpYts0WjUnn4aNzY2VvH47rvv1tDQkPr7+9XZ2SnHcbRkyRKNjo5OrSHAfzQ1NWnevHnnrJ81a5b27dun559/Xi+88ILWrFmjb3/723rppZcUj8ddb//9z41EIhOuK5fLkqQDBw6ot7dX9957r77+9a9r1qxZ+v3vf6977rnnnP3iv5XLZcViMe3evVuxWKzib83NzZJ0zn4GikJVisWiHn/8cW3YsEEf//jHK/72qU99Sj/5yU909dVXa+fOnVq9evWE20gkEiqVShXrLr30Uh09elTGGHvBbu/evRXPefnll/X9739fvb29kqSBgQEdO3asRi0DJpZMJnXbbbfptttu0xe+8AVdddVV+vvf/64PfehDE+ZyLfz1r39VsVjUhg0bbG9i27ZtFc+Z6L2vu+46lUolDQ4O6iMf+ciE2/7gBz9Yce1C0jmPw4aiUIXnnntOJ06c0D333KNMJlPxt9tvv12bNm3Sxo0bddNNN+nKK6/UHXfcoWKxqO3bt9uLZF1dXfrd736nO+64Q47jqLW1VTfccIOGhoa0fv163X777dqxY4e2b9+udDpttz9v3jw98cQTWrRokXK5nL761a8y9A81USgUdPTo0Yp1DQ0Neu6551QqlbR48WI1NjbqiSeeUDKZVGdnp6SJc7kWrrzyShWLRX3ve9/TsmXL9Morr+gHP/hBxXO6urp08uRJ7dy5U9dcc40aGxu1YMEC3Xnnnbrrrru0YcMGXXfddTp27Jh27dqlhQsXqre3V/fff7+WLl2q9evX65Of/KR+85vfhPrUkSQuNFfj1ltvNb29vRP+bffu3UaS2b17t/nFL35hrr32WpNIJExra6tZsWKFfd4f//hHc/XVVxvHccx//3c89thjJpvNmqamJnPXXXeZRx55pOJC8549e8yiRYuM4zhm/vz55qmnnjrnQp+40IxJWrVqlZF0ztLd3W2eeeYZs3jxYpNOp01TU5P58Ic/bF544QX72olyeaILze8fRLFq1SrziU98omLd9ddfb770pS/Zx48++qi5/PLLTTKZNDfffLN5/PHHjSRz4sQJ+5x7773XtLS0GElm7dq1xhhjRkdHzUMPPWS6urpMPB43bW1tZvny5ea1116zr9u0aZNpb283yWTSLFu2zHznO98J9YXmiDGcVAMAnMXvFAAAFkUBAGBNq6JQKBS0bt06FQoFv0PxTBjaKIWnnbUUls8sDO2s5zZOq2sKuVxOmUxGw8PDFSNxgiQMbZTC085aCstnFoZ21nMbp1VPAQDgLYoCAMCa8o/XyuWyDh8+rFQqZX9167VcLlfxbxCFoY3SxW+nMUb5fF5z5sypmGNnqsh/74ShnX600e0+MOVrCocOHVI2m51ygIAfBgYG1N7eXvV2yH9MVxfaB6bcUxif5XDfG/srZjwMonfP1H4+l3rTmoxd+EnTWD6f1/z582uWq+PbeX1f8PN/8NT5J50LivZm9xP6TVf5fF7zXOwDrotCoVCoGD41fjOXVCpVd1fPa20sHvyikG4MdlEYN9VTPWHO/1Ox4BeFdCr4RWHchfYB1ydX+/r6lMlk7ELXGWFC/iMsXF9TeP+RUi6XUzab1eEjRwN/pHT8dPB7CpcGvKeQy+XU1tY25XHh58v/gcPBz/+jI8HvKXSEoKeQy+U028U+4Pr0keM4chynJsEB0w35j7Co+n4KzomDcorNtYilbs1urs288PXMKNj/h14NGm0afF1Np4P92XVe0uF3CJ4zJtg9ZUmSKbt6Gj9eAwBYFAUAgEVRAABYFAUAgEVRAABYVY8+ere5XWOpYI/TnhG7OBOe+YnBllMz3PoBmYD/TiERgvwPg6LLPgA9BQCARVEAAFgUBQCARVEAAFgUBQCAVfXoo1QiqnQi2LUlOnrK7xA8Z2KNfocwLSVikcCPzokXgntbzHHGCfb8VZLUIOY+AgBMEkUBAGBRFAAAFkUBAGBRFAAAVtWjj6Jn8oomahFK/Rpzgj23jVSDRAipeCGveOHCz5vO8rHgj8xJhuD4uMTcRwCAyaIoAAAsigIAwKIoAAAsigIAwKp60EnEGEWMqUUsdSs+FoK5jxLMfTQl0YazS4ClSif9DsFzpiH4I6xizH0EAJgsigIAwHLd7y0UCioU3vuVTi4X/Ol0gXHkP8LCdU+hr69PmUzGLtls1su4gLpC/iMsIsa4u0o80ZFSNpvV0L/eUDqd8izAemBicb9D8FzQLzTncjnNbmvT8PCw0unJT1tyvvwfPPivwOe/ykW/I/BcGG6yk8vlNPvyORfcB1yfPnIcR47jnLO+PKNZ5RkB3ykiwb/0EuzxY9W373z5bxriMg3BnvwreibgkztJKpjg7+OjLtsY/E8CAOAaRQEAYFEUAAAWRQEAYFEUAAAWRQEAYAV7Jq9aMe4mkprWQjDs1hORaOA/u9HkJX6H4Ll4xO8IvBd3mabBzmYAwKRQFAAAFkUBAGBRFAAAFkUBAGBVPfro6OmyRhqCPTqnvTTkdwieK6Yv9zuEaSkM+T83mvc7BM+Vkxm/Q/Cc2wFW9BQAABZFAQBgURQAABZFAQBgURQAAFbVo49S8ahSiWDXlsHSZX6H4LmZAb8fZ9mj9rUmG5RuDPYUYrliwG+3KykZ8PyXpJLLNgb72xwAMCkUBQCARVEAAFgUBQCARVEAAFhVD5toLp9Wqhzs0RcpBXtuG0kqR9J+h+CpqEd31kqc+bcS8ZI3G68Tscbg33ktDNzuA/QUAACW60P8QqGgQqFgH+dyOU8CAuoR+Y+wcN1T6OvrUyaTsUs2m/UyLqCukP8Ii4gxxtXv3CY6Uspmsxo88JbS6YD/4tGE4JrCjGBfU8jlcmpra9Pw8LDS6cm39Xz5P/Sv/1U6Fez8L3FNIRDc7gOuTx85jiPHcWoSHDDdkP8Ii6qHDeWjSSnaWItY6lYp+B0FzfQ7AI95NPhI+Ya0FA92L+vUqWCPrpKky2YEf/KjSLno6nmMPgIAWBQFAIBFUQAAWBQFAIBFUQAAWFWPPhoplhUdC/bwnLYZfkdwMXB8MBXDo2WVC8HO/7nBHlx4VjTY87dJct1GvgkAABZFAQBgURQAABZFAQBgURQAAFbVl9znnjqkdKy5FrHUrcFop98heG5WKEZY1V62fEzpcuHCT5zGhkuz/Q7Bc00hODx2O7tTCD4KAIBbFAUAgEVRAABYFAUAgEVRAABYVY8+MokZMolkLWKpWy2R036H4DmjYI8g84qJJWRiCb/D8FS6mPc7BM+V4xm/Q/Cc27sP0lMAAFgUBQCARVEAAFgUBQCARVEAAFhVjz56p+FSnYqnaxFL3Wp1Yn6H4LnYyHG/Q/BU9JQ3I2gGIxmdjgY7/2fNCH7+x08O+R2C56Ij7vYBegoAAMt1T6FQKKhQeG82yFwu50lAQD0i/xEWrnsKfX19ymQydslms17GBdQV8h9h4booPPjggxoeHrbLwMCAl3EBdYX8R1i4Pn3kOI4cx/EyFqBukf8Ii6pHH11WOq50cbQWsdSv4E/9onIq2HfXKpfinmx3dnFI6bEznmy7boz5HYD3iunL/Q7Bc6Wyu4MaRh8BACyKAgDAoigAACyKAgDAoigAAKyqRx8Nxlp0uiHYc7+0JoM/98twoex3CJ7Ke9S+ofilOpMIdv7PDMHcX/8+U/I7BM/lXbaRngIAwKIoAAAsigIAwKIoAAAsigIAwKp69FFLMqZ0wEfnvBuCkQktAb+7VtTx5vinORFTKhHsz264EPz8D8Pd5RpG3bWRngIAwKIoAAAsigIAwKIoAAAsigIAwKIoAACsqoekjpXPLkHW4kT8DsFz0ZHjfofgqegpb+6pGoucXYJsVhjy/+SQ3yF4Ljbibh+gpwAAsCgKAACLogAAsCgKAACLogAAsKoefYRgeLfhEr9D8FQ+5s2EZ8WyUbFsPNl2vYiF4NDxWMMsv0PwXD7m7us+BP/dAAC3XPcUCoWCCoWCfZzL5TwJCKhH5D/CwnVPoa+vT5lMxi7ZbNbLuIC6Qv4jLCLGGFcnRCc6Uspmsxo4fFTpdNqzAOtBIhLwn2xL+veo3xF4K5/LaUHnHA0PD08pX8+X/wffPhL4/Heiwb5mIknvFoLfxnwup6u65l5wH3B9+shxHDmOU5PggOmG/EdYVD36KBE9uwRaqeh3BJ6b6ST8DsFTXt2OMxGLKBH0yY/cnUyY1rgd53uC/nUOAJgEigIAwKIoAAAsigIAwKIoAACs6uc+Ko2eXYIsFuyROZLUMPSm3yF4qiF/0pPtRkxZERPs37FEgr5/S4q9e9DvEDzndh+gpwAAsCgKAACLogAAsCgKAACLogAAsLjzGiRJ/zej0+8QPJUf8+j+B6Z8dgkwEw3+18SBxiv8DsFz+ZK7fYCeAgDAoigAACyKAgDAoigAAKwpX0Eav4tnPp+vWTB1KwTTXORPjvkdgqdO/idPXd599oJClf8hkD/tdwTec7sPTLkojO8M8676n6luArjo8vm8MplMTbYjSfO6P1D1toCL6UL7QMRM8dCpXC7r8OHDSqVSikQuzu0Ix2+WPjAwENibpYehjdLFb6cxRvl8XnPmzFE0Wv1ZU/LfO2Fopx9tdLsPTLmnEI1G1d7ePtWXVyWdTgc2WcaFoY3SxW1nLXoI48h/74WhnRe7jW72AS40AwAsigIAwJpWRcFxHK1du1aO4/gdimfC0EYpPO2spbB8ZmFoZz23ccoXmgEAwTOtegoAAG9RFAAAFkUBAGBRFAAAFkUBAGBRFAAAFkUBAGBRFAAA1v8DqhKkALY/QQEAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -411,8 +411,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 47.7 s, sys: 33.7 ms, total: 47.7 s\n", - "Wall time: 47.7 s\n" + "CPU times: user 40.6 s, sys: 15.1 ms, total: 40.6 s\n", + "Wall time: 40.6 s\n" ] } ], @@ -465,9 +465,9 @@ { "data": { "text/plain": [ - "array([[1.90039475e+01, 2.26533979e+01, 2.14746706e-02],\n", - " [2.26533979e+01, 8.32193023e+01, 1.32040896e-02],\n", - " [2.14746706e-02, 1.32040896e-02, 3.78143259e+00]])" + "array([[1.99647797e+01, 2.29521229e+01, 6.85504347e-03],\n", + " [2.29521229e+01, 8.39212309e+01, 1.31434717e-02],\n", + " [6.85504347e-03, 1.31434717e-02, 4.35586953e+00]])" ] }, "execution_count": 18, @@ -489,7 +489,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAADJCAYAAAA3tRlxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABHNUlEQVR4nO19e5hcxXXnr7unZzQzGo3e6IGQooiHBMgIhADFGGODjTFgb3AgCWsQdhw/1l7sPDbxxg4P7y67m+A43vUmBgOObb6NnYCd4MeCHzxkC4EFCAUjS7yEnqM30ug1M91d+0fVqa6uW1W3bnePNNNzft+nb9T31uvee27dU+f86pycEEKAwWAwGC2D/IkeAIPBYDCaC57YGQwGo8XAEzuDwWC0GHhiZzAYjBYDT+wMBoPRYuCJncFgMFoMPLEzGAxGi4EndgaDwWgx8MTOYDAYLQae2BkMxojAihUr8P73v/9ED6MlwBN7BqxYsQK5XC7x74orrjgu/d92220455xzjktfjNGLVatWoVAoHDe5bBb+9m//Fl//+teHvZ+x8AFpO9EDGG244oorcP/999cc6+joOEGjYTCSuO+++/CpT30KX/va17B582accsopw9rf0NAQisViw+309vY2YTQMAIBgROOmm24S73vf+5znHnvsMVEsFsWTTz6pj/31X/+1mDJliti+fbsQQogf/ehH4rd+67dEb2+vmDx5snjve98rXnnllZp2tmzZIq6//noxadIk0dXVJc477zyxevVqcf/99wsANf/uv//+4bpUxijFoUOHRE9Pj/j1r38trr/+enH77bfrc4899pgAIL7//e+LxYsXi46ODrFs2TKxbt06Xeb+++8Xvb294rvf/a449dRTRUdHh7jsssvE5s2bdZlbb71VvOUtbxH33nuv+I3f+A2Ry+VEpVIRb7zxhrjmmmtEd3e36OnpEb/zO78j+vr6hBBCrF+/XnR2dooHHnhAt/Pggw+Kjo4O3b/9fl1yySXik5/8pLjlllvExIkTxfTp08VXv/pVcejQIbFixQoxfvx4MX/+fPHDH/5Q1ymVSuJDH/qQmDdvnhg3bpw47bTTxJe+9KWasdvv0WOPPSaEEGLr1q3iuuuuExMnThSTJ08W11xzjXj99deb8lyON3hiz4DQxC6EEH/6p38q5s6dK958802xdu1a0dHRIR566CF9/p//+Z/Fgw8+KDZu3Cief/55cfXVV4uzzz5blMtlIYQQ/f39Yv78+eLiiy8WK1euFC+//LL49re/LVatWiWOHDki/viP/1iceeaZYseOHWLHjh3iyJEjw33JjFGGe++9VyxdulQIIcTDDz8s5s2bJyqVihCiOrEvXLhQPProo2LdunXiqquuEvPmzRODg4NCCDmxF4tFsXTpUrFq1SqxZs0asWzZMrF8+XLdx6233iq6u7vFu9/9bvHcc8+JF154QVQqFbFkyRLx1re+VaxZs0asXr1anHvuueKSSy7R9b7yla+I3t5esWnTJrFt2zYxefJk8Td/8zf6vGti7+npEV/4whfExo0bxRe+8AWRz+fFe97zHnH33XeLjRs3io9//ONiypQp4vDhw0IIIQYHB8Vf/uVfimeeeUa89tpr4lvf+pbo6uoS3/72t4UQ8h277rrrxBVXXKHfo4GBAXH48GFx6qmnig996ENi3bp14qWXXhK///u/L04//XQxMDAwHI9qWMETewbcdNNNolAoiO7u7pp/d9xxhxBCiIGBAbFkyRJx3XXXiTPPPFP8wR/8QbC9Xbt2CQDi3/7t34QQQnz1q18VPT09Yu/evc7ypCkxGD4sX75ca6hDQ0Ni6tSp4sc//rEQojqx/+M//qMuv3fvXtHZ2aknPloZrl69WpdZv369ACCefvppIYSUw2KxKHbt2qXLPProo6JQKNRo9r/61a8EAPHMM8/oY+9973vFxRdfLN75zneKyy+/XH90hHBP7G9961v171KpJLq7u8UHP/hBfWzHjh0CgHjqqae89+QTn/iEuPbaa739CCE/iKeffnrNeAYGBkRnZ6d45JFHvG2PVLCNPSMuvfRS/N3f/V3NscmTJwMA2tvb8a1vfQuLFy/G3Llz8aUvfamm3KuvvorPf/7zWL16Nfbs2YNKpQIA2Lx5M8466yysXbsWS5Ys0e0xGFmwYcMGPPPMM3jooYcAAG1tbbj++utx33334bLLLtPlLrroIv3/yZMn4/TTT8f69ev1sba2NixdulT/PuOMMzBx4kSsX78ey5YtAwDMnTsX06ZN02XWr1+POXPmYM6cOfrYokWLdL3zzz8fgLT/n3baacjn83jxxReRy+WC17R48WL9/0KhgClTpuDss8/Wx0466SQAwK5du/Sxv//7v8fXvvY1vPHGGzh69CgGBwdTSQfPPvssXnnlFfT09NQcP3bsGF599dVg3ZEIntgzoru7GwsWLPCeX7VqFQBg37592LdvH7q7u/W5q6++GnPmzME999yDWbNmoVKp4KyzzsLg4CAAoLOzc3gHz2hp3HvvvSiVSpg9e7Y+JoRAsVjE/v37g3XtCdY14ZrHTLmmflx17OMvvPACDh8+jHw+j76+PsyaNSs4Ltspm8vlao5R26Qkfec738FnPvMZ3HXXXbjooovQ09ODv/qrv8LTTz8d7KdSqeC8887DAw88kDhnfsBGC5ju2ES8+uqr+MxnPoN77rkHF154IW688UYtcHv37sX69evxuc99Du985zuxcOHCxMu2ePFirF27Fvv27XO2397ejnK5POzXwRh9KJVK+MY3voG77roLa9eu1f9eeOEFzJ07t2bCWr16tf7//v37sXHjRpxxxhk1ba1Zs0b/3rBhA958882aMjYWLVqEzZs3Y8uWLfrYSy+9hAMHDmDhwoUApLKzYsUK/MVf/AVuvvlm3HDDDTh69GhTrp+wcuVKLF++HJ/4xCewZMkSLFiwIKFxu96jc889Fy+//DKmT5+OBQsW1PwbjWwdntgzYmBgAH19fTX/9uzZg3K5jA9+8IN417vehZtvvhn3338/XnzxRdx1110AgEmTJmHKlCm4++678corr+BnP/sZ/uiP/qim7d/7vd/DjBkz8P73vx+/+MUv8Nprr+HBBx/EU089BQCYN28eXn/9daxduxZ79uzBwMDAcb9+xsjE97//fezfvx8f/vCHcdZZZ9X8+8AHPoB7771Xl73jjjvw05/+FC+++CJWrFiBqVOn1vC6i8UiPvWpT+Hpp5/Gc889h5tvvhkXXnihNsO4cNlll2Hx4sW44YYb8Nxzz+GZZ57BjTfeiEsuuUSbdT72sY9hzpw5+NznPocvfvGLEELgT/7kT5p6HxYsWIA1a9bgkUcewcaNG/H5z38ev/zlL2vKzJs3D+vWrcOGDRuwZ88eDA0N4YYbbsDUqVPxvve9DytXrsTrr7+OJ554Arfccgu2bt3a1DEeF5xYE//owk033ZSgSgEQp59+urj99tvFzJkzxZ49e3T5733ve6K9vV08//zzQgghfvzjH4uFCxeKjo4OsXjxYvH4448LAOK73/2urrNp0yZx7bXXigkTJoiuri6xdOlS7bQ6duyYuPbaa8XEiROZ7siowVVXXSWuvPJK57lnn31WABB33XWXACAefvhhceaZZ4r29nZx/vnni7Vr1+qyRHd88MEHxfz580V7e7t4xzveITZt2qTL+Jz4IbrjP/zDP4ju7m6xceNGXX7NmjWivb1d/OAHPxBCuJ2nt9xyS00fc+fOrWHSCCFq3qFjx46JFStWiN7eXjFx4kTx8Y9/XPz5n/95zXh37dolLr/8cjF+/PgauuOOHTvEjTfeKKZOnSo6OjrE/PnzxUc+8hFx4MAB530dycgJwcmsGYyxgMcffxyXXnop9u/fj4kTJzrLfP3rX8enP/1pvPnmm8d1bIzmgk0xDAaD0WLgiZ3BYDBaDA1N7AMDA7jtttua7sQbTe2OprFyu83FaLvmiy66CLfeemuQVrtixYrMZpjRdh/GwjzQkI394MGD6O3txYEDBzBhwoR6mxnV7Y6msXK7zcVou2Zud/jaHWljZVMMg8FgtBh4YmcwGIwWQ90hBSqVCrZt2wZALheaCWpvNLQ7msY62tsVQqC/vx+zZs1CPn9idRKWf253uNt0tRv7DkTb2AcGBmoM+Nu2bcOiRYsaGTODURe2bNmCk08++bj2yfLPGElIeweiNfY777wTt99+e+L4v6xah4/+zeMAgLX/6zp9PCcq6j/WV8V33EBZfWryKnZQ4Wj1KyiK7QCASts4+VeVLaiy9JUywxHlD8nIb5Xx0wEAJetTVjAKt+/aCAB4aoXc7r/0h9+vGZOvnuxcXpsIXBshUdVVpoH26kE9XnSzX1/9nON82vW72j3U348Fp56aiMB3POCT/39dvQ4f++JKAMBzX75WH7flX8tlpST/k0++er57kHfIv1Dyn3bPASB/eA8AoNI9taZO2Xp3gKr8r/rgZwAA5z/yg5qyeaOs/Vxtea04Bkf1XTKRuAZ1r4R1r1yykRhLoF0biftOzw5IPD/XGFLHotorG5Zve76y2/Xdl/7+fpwa8Q5ET+yf/exna2KbHDx4EHPmzEH3+B7ki5I+ZXptmzqxF6uXKYoyDV2miT0nAw1VeuT4ghP70fEAgO5CW8018cSe3u9wT+x0LC3U63AgKP/t6fLf0MTukP9ME3terjQq4yfU1HFO7CnyzxO7v/3jMbHrcinvQN10R6Lh9PX16Yd/zJj9xlmzXuhFruch2EIZ08agel7FwDxpt5M/tFv2N35a4nyaUDkna8+50ARZz70LvjApZeodS1p/WeBqt//gQZw0Y8aIoD665H/QkP/2xFdfIjQh+OCq45qUY9pytReS0/wRGYG00jUpUcY3ibqOx0yMvvpZ3pUQ0ib/0EchZgKOnZRd7fj6sXHw4EHMiHgHmBXDYDAYLQae2BkMBqPF0HAGpRyqNqRxhep34uRrvwgAeP6btwAApncVAAD5/p0AgMNd03VZMtv4lkr5oweSHXf2Buu4lkjtani2vdxczpasJW5FmWBWXfA2AMDFP/knXbbcc1JNO8GlXopvoWa8lk3OXm7Xs5yPKetqN8tyNc0sFGOXDI1rJIYhzYmKfl7thvzP/T2ZPvGZez8CAJjRJV81Mu0d7Zyqy/rMNrqPY1Xnaa4iE0QIZRpJ+B8c9e37Rr/JBm7azendaFPHyqqfXyy9GADwtscfqpZV74btW3LKhmUvD76vqmwp11YzFtf1ZDGD+u5DlnsXOl6Pvdw3hkZNPKyxMxgMRouh8ZynouLUQklTP1oiD7PU2A+Ok1/5cYaakPpFIiYBgMq4WppPjPaZYNmgUlNWGN830mLaUKuFXPzTB2UbA4er7Vp9Br+o1j0K6miqbCGmXV8TjrppjpoYh6tdtlFWTDNWBCcUHvknTX3AomAd7JgCAOguJOUfolYuqd2cwW+w5d+u62JQDalm261T1ffAod+p9nKqPdLUa+SfNHYaZ4DxYx8LvvO52pVqFo3Xbt9cnYeYc+ZxF5vH56QOafl2M2a7Njsopt2c57gLrLEzGAxGi6Fxjd3QEMyvCdnUSe88qj6d3cWkHW7Qo1FoamP3lES3QxZ1MWTfTnxtA7xwGoOwvnmknWgtBUBB+QsqHlt7CDG25TTNIrav2D5jtI8s9CyfFuVqL7R6GMk2duTbnOMimzphwJJ/E1XqopszXVb+JKB6L+z9G6EVYVHLtHXO0V/1Xak9R3JfMeVfUSHJDp/z2M9d12SP0zxv2+qz0B3t3yH3hU+mzTo+7TvUng/5iLGktR/7DrDGzmAwGC2GhjV2ATgZH8R+IZs6aSpnfELa6n71ld/WZbWmXh6Uf/Jy2zR9OQcMQ1lBffaoTq50DABQKsidePRVNG1rbYOHAACVDrmrLvf4N+Tf5R+Q19DepcvmBo/IPgtyNyExFtq3rwMAHDrp7Oq4laaulSbLzlncu0mXLffOkGNQOwYJMTblkPfeZ8fTG7cMu21uSN6rinG9Zh2X3S+LtpyFFZOmjdVocBF9nyiUhdu2TOwXbVNX8r/oP8oQFS986Spd1pb/XEGFDVCHBx3yr5kiqg5UHdf9yw/Uyj9WPiDLLnufLEvHAeSV/B9T8t+hBKm440V5PdPP1GXHkaZOB6z70GbKf49kwdmy59o0aO/azcKYslk9cMg/1Biojs2Ec8mbbbN3rQR8u+D1cdO3R3Ol5cvQfTt2v7KNncFgMMYwGg4psNPYUm02ROEFipaGQV/Hc//sEV123f98d019+6sU0r5Jm6HYCfTlJy3FLEsg22DhgAy7OjjzrERfdqiCI2rgPb/+SbXsWZfXjtvm85I2BaDt9TUAgKEFy2vadV6zJ85ICNQ39SmslUFN8546tJqIsfvrfgPnEmMMjSXQBp07OEJDCvQ6xkKrTJujTr6hCz//Y33suf/qliN6/qb8F48dAABUlN19IIP800jylvwPGfJvj5vq9KuBT9zwU122pOSfkPCpqNU0ALRt/TcAwOC882vKOp93PXGm6Jy1agj502z5t1f9zjp2t4FzrjK+9mJYNgCHFGAwGIwxC57YGQwGo8XQVFOMCXtp4aM0AsCuI3KrT5Ui6W7DPJagewXqEFyhR4HwstVu10TBinwXcyMLKjxC2RMSIYSo5ataipID2rWstB1BtvnJRfeqZ5np69fVbsgkM5JNMT5TJCHG6bbjsHxmM7truQwxy/MY+Ukrk0X+axzgqh45X7PIf8WgcPrq1uW4jwh1bZMFXKEVfGOox0wZmseyyD8Q/w6wxs5gMBgthubQHR2wvzw2pUsoehZQ1dTP/pP/BwB4/L9Ip8zkcfK4K8mF/rqSg5KoZuS4fPrB6hiX/TsA1Q0g2qlTUmMZV/3y5T30Sb1CEEZ4A6Wpt+1+BQDw5sT5AIDxjk0omo6lNBWiT5YnzZVtGRpM2pffpL8RHU07bNV9rV37uKFDLNg0L8PpmycNyErsEENBs+HSQmLac9UfSQiOS90/kj2X/JOmfs6fPQoA+Ont7wSQTf41XU69B/mnqsHqxEW/I8vAqkPyb5ALchbl2KYPF4eOVNtV9dr2vAYAeLN3HgBjE6JB2dPJN5ScF5X8lybLOhiX1D4TqxzV3kClKi2JAGoBiiTdRrtKItSAIf/6GmwygmNlYK8aQsmECLYVwbZImOdiqY4Aa+wMBoPRcmiKjb1bpZxz2WZ1R+pvyNa495i0tZ9zkwx5uvnbn0wO2GqftvWTxk7hB0wtp+PNLfLYpDnygLJD6w07hsZCNE1fBijXzTqoHAjj/9+X5VCu+XRNHRN63MrWWNj9KgBg6JRzE2VsJDQChG2JvjH4+rGfkQmtNRjaDAC9MUZWrD0nAptmYmyLdtmRamPvCYwlQYGlE44NKCT/S26+GwCw+f9+PNGefX/aDu6Qx0n+aeu/UbDdln+i+Sn5NzfoEd2xTT3wEPWP4JN/EwkqpApF3LZ/M4BayqVP/l0bfXzhB2LkyddfSFum1b4OP2xuSrPO6TkpsEEpq48q9h2INsXYWdoPHjwYKM1gtBZY/hmjCdEa+2233ebM0m7mfIzRDtMI+Ca29A8BAOb0FPWxNE+5K0Qplc0rLUFY9rxyyJ4V2Czku9784b2yXUfwMl9dM5lIGmMgZlNQFnucjdA12onAzfOm/wEAyipRQsyGjxhWx4HIzRnDgZD890awYrI8QzrnYovF+rRcsOU/Zrz1+D4oLIG5Ekhrz5R/H2PMdY0+dlyW8RJCTdi2cBeTJo2ZE/PMQwwaYBg2KH32s5/FgQMH9L8tW7bEVmUwRj1Y/hmjCdGmmI6ODnR0dCSO5wePonBUflNMTVN/gYlXrbRX24YHVL+29leRNPVzP/uoLvvcne8C4LeT6TC+Bje31K5s6EpT0UGbdED/6vet8NLPZJ1F76gpU9y1EQBwbNppiXHbX9uKutbQ6sT+MpuhWdv7XgIAHJy2UA7bUkdCtmpffybS6oT4tvY11/SlNHQ6R3c1GARJPYshJYp6pWUkVxlsQnTpRhGS/7xD/smGTEky6PkORsg//SZNfUlI/j0MjLyRTm+gXcp9O61UiRXj2HZvy79+r5T8Dxjyb69utWxbQbZcSNi1jXtHffVPORWAw99l+CcKHh9TkElE7SQGlbyXerUfsSLQ7z+ltFS/aZVrp/gDqj6rwZz0R2lCneGvGlLn2vPxK3FmxTAYDEaLgSd2BoPBaDE0THfc/dpL6JmajDWutw63y7jORH3TGx0Gk9uY08IEAMAFt8ml4tO3vaP2QqzxDVaQgDbTWJuazKUoLZW7974MAChNV0tP2miy4UldtnTG22v6zrT1OQCKJNm7Zz0AYGjGopr2Q6aSEEIOPNd5V9l6HLnaoS0MOqQVczw0lpHgPLWh5f/1X6Nniow1bkbUpAiKOkepkjValrcfSzrLfSEvTPzWf3sCALDqP19SU8feZOOK4a7NaMrMRbQ8szsa37jd0hyi5V+9M4WXV+myZSX/trOQ2jMd7V4TnsP8QfI/YV/tO1jP+5XFQdwsZ7LdN8l/R6Ua7dLOyxAj/wIc3ZHBYDDGLBrW2E26oysjOMGmIbooSz5NxaUV7jwitQ7KLRnz9a2HGpX3BC0CqlpZ2c4kExgDIYbepJ2QKf24+qqXemq3VY+G4qvralc7lipW9iyRdJ4e7j+IWTNHlsa+0yP/tiyHZC/tBXQ9g0YCh4XatcuSE7bi2PJvn2tk5RoiBNiBw+pZWbr6dPVtl6vn2cTAdu4mwhp4NiGyxs5gMBhjFE3hkbm0EfvLqe3batvtQK5KHevQfC+ptWkNVeUUdYE09Xd95WkAwPc+ugwA0OngFO1XW7UpqFLba6sBALtmnV9zHDBslkpjtLUE80tKQcDwk3tlu0tk8KbSlHnecWt6Y4Q9VY+JNPVKKXHO3NJstl/vasH1O4QY7T40Fnpc5IPRmkauel20PS3LSut4QcDQLHO1x4EkTZRkfADVTXe2/BfUBrfShJmqsarMldUdIk39yntkZq7vrJAhKSgAl3nPDwzI+r0dirr7irST7zz5AgDAlHHJkHE6FIKlqddos3TOI/+hFYwvU5k5dhqDXi2r33mDCki2at+qP6R9+3L9hqwJtgiGrBShzY32OBMWh4gAYiGwxs5gMBgthqZo7DF2Q21TVeFwcy41zgqe42rL/qqSpn7tvVJz+dFHz080OwWHAQAVSA1jp9LUp22QeSfLb7miei1wf2X1JTq+pMVzLpX/2b9ddTivto7nWnxlfBp1OZd8XAWrbD0Ok0bsslls+a6xZWHF1OUMGmb4rt+7gYgCoxmsLX0PrNC7LpmzdWvS1G/45loAwL986NyaNgFgklAJMZT875gtNfUZr6jNSEbu0npWa8W3SIYODvTJv0r+Q6vREPNNy7u10Ye0WJN9ZK+IEu+MY9Xgq6M3GAXqeFdijnOJwG8GfPKe5nOLfT6ssTMYDEaLoamsmBjtLQuISWPmrfB96eg4BU6a1pW0G7oChAFA/tBu/f+KCntK8PGETdhjovbKRltp9mdTSwhpM6G2Ysv6ymRhEmTpuxGGgolYRsDxQFrYXt+1D9fqg9o9pIQ8lOzFHkMoNV4Wrrf+nSEIWAx33NcPEA4DnoaYZ1MP0y2tffNcVp8Ys2IYDAZjjKJhG/tQJawV5qy/9IVtM3aeUootSmc3tOxaAFXN2gzoNVCUZR0KCYCqpn72H/1IH/vVf5c2wKLSICgtV6VTsk10AgIA7dteAADsmno2gCqTgODyglPAp/05ObaJSlMP3hdK9qHsqSGNo9laXtqqJ2QLT2srVCeLxhIqO5IwWMmudQFuLZnS2ZUulKnsyL5rBvQ6VpQ7WXVKRKtd0tQpzR4AvHDHcvkf1U9xx4uyX8W2KvXO1mXb1bndk+Vu54mW/A8ZvgH9fqrx7UU3AGDyuGQQsAS7hJJ9UIEACyR0f9M09ZD2nUUbz7IS9vZjstry7qk3ZoUdA9bYGQwGo8XAEzuDwWC0GBp2nm7b0Yep+aMAgIpjQ1FiI4Jagpp5Rm1qWOHNbQCAkjKRmOYPWtKRKYY2H2lKo9o0QVlcAGDm9V8BAGz77p/K9pVzs/Tkd2T/V/6H6nWp6GFT+9YCqOYi1UvoUjWQD9GuKODYuKPpmZMIvmzwQDbnURpiNhDZZbMsB0MbQOwyMYIWKjsSnafbd/RhSkGmzCtbjncgSQDIh+RfobBfJvEg+TfNHyQntLHrTbX5SFMaaXu/YeqZ/e/lBqIt/3SLbN+S/7wh/9TetL3SJDM0a7G8NjKhlgPyP3BAlnWE30hsYrTk30kb9MSarxu+/LN2v66qdXTnc0Cn9eUDO08ZDAZjDKMpdEfK+TjocKzEOOZ8AZJygQBEdh1q10WRJOx25JAEaumOZcvxGQoC5rtxMRSsZtAIQ2PIsnEo1F8W2l49Tt4YWh0di83QfjzgCgJWL3XP63Rz5OiNXRW52u9TgcNmWIHDXKtQ3a61wsgiVyHZqLcdu24jq8R65D+LwzW2P1f7vpV27DsQzYrhLO2MsQyWf8ZoQvTEfueddzqztOdERYdeNbVkrbXCsms9/g0AQH7Z1dXCFORKaQ60pVrYOUqBqh1ebc2mgF4UJoACGhGlEQDKKpjSdKWNT7/yDgDAy9/7HABggmEbPWxt8CBNnbSn/kLVNkoBl9qUTZRok9qfYARv0lvLiebkyWQO+L/sjWj5MWVsampM3RjtyW4/1PdIpTb65B+VUtS90OdWPgAAyJ93pT5HQd5gJ4CxcpQCSIQdoIBeFCZgWqeSf0VbBKrB9GYoOT/52i8CAF76v58GAPS2V7X0fiX/XW2ynzxRMZX8HzTkn96RtgPSJ1Y2aJMAnEHrfOFCzHuXGpzLfK/U/fCt4EPPJGZl7dOkXe9KWtkQmi3/0TZ2ztLOGMtg+WeMJjTFxt7dIzUL88tnZ6YnzZTYKm17X9NlB2eeJc/RRgzSSog5YH6h9chlmX2KFTNVBfSqqIBexCwAgKGn/lW2r7z/B5QzYOknJSvg5bt/tzoWSmM1WGvfpOMlY+8/hQg+qpYsQ+rchPbaawWAitocZW/UiglVEOOtj/rie1gB9dgh7f5DZbPYVV1t0bn+EWhj376jGlLAjBhtr1hJXslm3bZvky6r5Z+YLKSFksw4ki5QV3uV/E+3AnqRFg0AQ7/4nqyj5J+YX8s+LY9v+D+/XR2LxXChFSsdN6cL2iRFYQzoTE+x9loB6PACwtKwXeFwvat9WgEYq1xfe4ScQ7uncXrHELGRKAuDJudYnafZ6n0rgVgbO7NiGAwGo8XQsMbejCBIpKmQhm5/UUOhMe3jxNE1g3nZ52zmy8b9VRvmqZPag+3H2L5CSTSyaMlZPPFZvPWN8Mrr0brrXY3Y7Y5Ejd0MgudCDLMjZ8k/IeY522VDPHntw7KYL5RmD6gm8Ghk30I9aHTvRBa/UJYxpLVRb7/1soRYY2cwGIwxCp7YGQwGo8XQcHTH4q6NaD8ql31DJ52hjxMFkswpOhKcciiWitVYzRR1jjZKHFX5UMcpG0zhpZ/pokdOv1RWUedsRwuZYChKIwDsniYjNRKtkSiN7QU5KDK/AMDlX34KAPDdj0v6mHYEqfOFgzt0WaJRaiinS97OgIOMGxnUfaBsU440rglk2ahUz6aOLJs5fMhyPxrd+HS80G7I/6Ah/74s9ORQP1borLZBm3+sfKgdDvkfWPgOAEmZoJ9kgmk36I7VSI1SnojS2FGozZ8KAJcp+f/nj16g6qgX18pHDFRplHooqgzlr41x9rtov3mPycjnIHW1T3AVzWK2tM2qobq+YYVMyjbJhBy8NVFkDSdy7DvAGjuDwWC0GBp2nu5b9yTWffg/AQAueKKqWegvs/VFHlSfonbj82VTAENZw4u7NgIAStNPkwdsCpT6S8GMAGDazrUAqgG9dL+OLdukzcy+5FMAgAOrZAAx0rSGjJWGnWGdVilZNGzX19y32rHrmn27zqWhGZsi6qU71uNoHYkhBfatexIvrJDB5S78+WPJglYgq4EI+Se4NFOS/yEl/zmbCuySf09Ar+IxSWk0g3YdUPVOuVTK/0El/7TSHmiryr8dtiORoczYWEW5Xm2516cj5D8LKaEekoI+HqBI1qOxRzlPLTmpadeYQzkIGIPBYIxRNIXuSF8OV+7QRmy/IWK/HZzLt+kgVCcEau+5PqmpnDcjmRXGHl89G37qKVsv3SutT9f4s2ykyNpfbDsjne5IQfBq7M8UJkP9bhZdVFMXHavNtH58Ab1Cz/uVN6XWvWBie6Json3rd7Mot6E6jWygi5HltOfWLNkOyYnZB2vsDAaDMUbRMCsGqNq+hLEpaNUFbwMAXPxTmceUNgW1q+BcB6afrcvS1vyEvVlpwmRXBIDStAWyrKWpa9aK4/OotXkroNdAu/zimbZCrd0P1mrqE5bL7dg7V/7v6rgLtd9F++ttJkigcSVCEyeHq7dvayZFPcbvCMRoWM3YAJJlo5J9fDRA28YpmBeAXyy9GADwtscfkmWU/FNwrn1TF+myFEzLF5SqRv6nzAPgDmUNuO+btk1bAb1c8k928VxZ+q4WTAzJf21v9vhD8u+zLZvt2HUJQdkIJeewzoWYOb6+Yt6HLAyyLCuXXEq/JlhjZzAYjBZDwzb2Ldv7MKk3GQQs379T/h2UafOGlKZBrJiu9T/RZSlwEQX5EVbgHfML3rHhcXnsjLfLAx5vslmnWK7lxVLQonxODrjLoLEQT32gZ2bNNR1TDb7rr3+uy678s4tr+rS1j1JgDDE3nVYNdgAxF7LY+rL4Pez2G2EFhHwDIY19JNvYt+2oyr85ZvI35QdkykbStI8qORpvyH+Z5N/zvE1ZblfyX1Ly73seprbcUamVPWJ+taulYIfx4tJ7e6xbctRJm88i/8LBxS4Oha/NXJXSyp3S8FXUuBu1VafVqQfNYsXEIAcOKcBgMBhjFjyxMxgMRouhqXTHUEMFtcRLbENGlSZWUc6nmE0GBasOAmXrMUGEnDuEVVslfWz5ybVRKV3t1rNUtOvGtBs6Xs+Dbgbd0VU3bUOJa9yxVK/jARfdMSj/Sl7LlrwC/uimWeiOWZ5Llk08ofZsKmQMmmEybLRuFlpmWrvHk+7LphgGg8EYw2iY7hi7WaBiaepmPdK623a/AgDY2zsfANDbbtGSDGjN5yf3AgCK51wKAChNlXVJowGStC7KUdrfczKAWuepfS0uChSBNHWigh36yX+pGVuIPqipnZXawElm34nfKl/s7gtu0Ocox6V3/K52PAhpFs3YCNWsFcxIg3Ps1krPt2EJqGrqbXtkVrG9E+YBqGbicrWr6Y4k/2+5BECVDuySf9qaT9mVDnRJgkC3wXdM03jN46Spa/n/6X+T10q0YmNrflnpkOSnLVvyj0JS60/IRkD+hV02MPZMDkubImlTIx3Z3dKyOpnj02MJUS5DFE4Poid2ztLOGMtg+WeMJkTb2G+77TZnlvadfX2Y0KNsg46t/wmtLfCFo3C6nT/6MgCgcM2nnW2Y7bft3ST/s387AKC0YDmA2iBIk0vKvtk9paYu5T7tNaNsKcplKSe/eaTMJ2zuxrjJfvqWL/wSAPD8ne9KXqM1bv2lJ4qnQ2O36+w6IvNbzhzq02VLKjN8lk0RMdRFG1loibF1fe3YZfXzOoE29hj5r8nFqf7qPJ1E4bV/G2Vt+c8r+XchIf8HpEyU5l8IoJoLGACmCmnD15q0Ok60x/Gmxq42KA3mpDzaAbh0eFlAXy+F6njLHU8DAJ5T8h8MpqXOUX92iN6asupvUP494T3geF/1kDxash2gDPDnJo6R/1CYEx9V1DVOqCBgTbWxc5Z2xlgGyz9jNKGpOU9DX68sWhuVKRzeCwCoKE3bPOfTUPOBnKe+LdvmFzoUMtju13fuZZVD1UzgkWpTrjNUqL2JKQuazaSJac/X7mhmxbjGkoVN5LvH9GyF49n67m3OUSftnQmtiENlfe/I9kNyVTJrvN/SG7NCi5J/R45X39iawUgLIU3+Q/6uWH8Us2IYDAZjjKKprJgYBkZR2QRLE2dV61kecb3d2LKJ+/qtqaM0dVcdnRiD7HtDcssyDO3GN27aom3ayWz7O4E09Yv/x0p97OefXgLAHzI157DP2nCybNTYaZ/A4a7pAIABFc9gwhNf02Url/+hLKs6z1t1uo/tk+WMFVIWLc8+F2PDb5RLfaJREe5kKTZsm3i5d4Y+R/Zl285Kz9a8N/aqM7El31FH90NjUXZ+kn9haLv6Eqw0dyH5t/1mpKlfelc1/MATnzynpq9Qyrk0nr1Zlt6nglqpH+6cCsCQ/8fu1mXL7/6YLEvyb9Uh+S8b8u/q0zUm17mYVehwyTRr7AwGg9Fi4ImdwWAwWgwNO0+9ziMPqT6nMpAXNj2njw0piqIuo/5mcebFbMnVZT1RJENjsCPOAdWocz6QYwcAVvzLJgDAfdedFT3eLA7nI2rp2XOkr+Z8ecLMallrG7pdp68oTTJTHZueGnGMhsbtq+N65iMxuuPOvj5096gMSiadzaI10jWQQ7Rt+6902cF559e0ncU85UOIsmfnCXbRlAkJ+VdRGoGqqcg2D+lrNeT/ww+/AQC45wNnOscb2twVI2sUfXL8wa1qMPK+lwz5z1vyf9Sq0zdOmodN+a/H4WyPN5Sr1dePz+nLGZQYDAZjjKIpGZQINV8dz/ZX0nIrhpZeUBscylZWJEIMZSmLlktaVIzjgspobcTQ0tPoUyYFizT1d39FbuJ49D9c4B1n2rhc5ynOvd6gsUVqhGJRVWOB0lRIcx9fHgIA7GqXmvqM154AAJQWvSN1LPVq6nbZBF3P0dZIdJqacGlivtUg0VJNLb3gycWbZRVq1wlthkFgpeprl+TfRav1bd4xnbKkqb/3njUAgB98ZKm335ylqceAnKXj82re2b5B/jU0dmHJf7eS/x0dUlOf+YYkO+hcDxnHkHbvstTxOVpj3wXW2BkMBqPFMOxhe7Ns9KF8qOVJcwEk85ra9YBAfkSyIwJVmx3RKtVvCkxUr+2LoOlu8GxrduA9X5XhBx75oMrh6gjn2sjmCFcbsaubwrMP6/9vX/geAMBJXVLLI+1ycJx8Nm0UxAnVbFl0ju4L7ViP2dwVGveJDClgwyX/JuqhsxWV/Jcmz5NtOELy+uQ/oRWaFER6Fyxascv2a9uFEzlKzS6oeUv+4cigZL9j779P+tge/t3fkG2Y8h/YXg/AGarAHpOznue4fW25X35Pn9tx5lUAqvJPdvqhDvlsTPkn+iido/tih2UA/KucEHiDEoPBYIxhNNXGHoKtHbq0ENLUC7tfBQBUTjm35rwJ7Xm3Njjor69hR6wGMFJlKHiXYywEO3CPawza/m58tQEgpzSjkLZMmvq7vylDFf/oo7XMCBdi/Af1bByy29+56Ep9bPagZMyUIYMtHeuQ2njXXhli9o1xp+iy07pqz4m8vMOlyXO9fYX8Kb46Iw2u++pbHam4czDibulzpKm37d8MABiaeZajs1qt2NbUXWMp56U82vLuXKlqbdgdtKts6IJUn+Rfb7BSfqjQSpg09fd/ZxMA4KEVVY1d9+F5B2OCDboQqx3vOutq/X9b/ikEslv+a8/p3Mcq321wA5uHCWSeE7l89DWwxs5gMBgthqZo7I3yzbWtTtnUSVPPW2wZs77v4+fa3u3THEJfvyw2sERIBApZEAiMTzZF0tQv+/JT+txP/uNFsn7EOH2skhj42jV5vOVOFRZV2RY72uS1bumUmsopbzypyx45/VLZrtLU0SdXXlAaeyOriZEK3zX5ViJFh0jossqmTpp63sWW8XC7E+MwZM/elRBk2/hWsxSi11XJWqHG8M5J/klTJ58TAPxQvROhVb7dXhak2dpD8t9elKsR0tRP2VoNm3D0tLerDtQz2r1J/lYae3CsISZQhgQbBNbYGQwGo8XAEzuDwWC0GI57SAGNQGYT3Yb6W+x7SR87MHUhAKDTylNazxLe6fRSIQ+GCnLJRSaZoYDTK619EzHjpGXpAzdJk9Skce68prHt+cYTQ+XMsgHMV7aw7w11oHrzSpPmAACKKs9nabJc2m5TO9bnHttcLavOHdn8a0xZtGzE0R17XPLv2bYfyiDmu7fFXRur/U4+FUA1T2+MCctuzw43YJotffIfDFEQ0W9iPghQjt/zd88AAL654jwAyRAXrixmNrLIaQi+dyRkZrLbb4uR/0ky//K2o7JMjfyrc21vbsfB/kNR7wBr7AwGg9FiaDiZdQ5w5uvTWcnV78SXLoND4OC0hfr/vbvXAwCGZiyqKZPlSwrrt/nlLilNRQc9IkqX+ktBnAAkMttkcXKGtGfS1P/9N58HAPwwsP3ah2Y6lVznMpVVi8LK62urB8+TGgtRwXIqYNRJ3VILKXXPq9ZX58wY/scboWTWibymqObM1TkAdGFHTkv11xejvH/KqbrshL0vAwCGpp8my0RstrO1Zd0+vbeGfkdUxQrt6bPacwXBi9mEmHAOas09WZY09Y9+W27YemjFkpq6MUHLnJq6Jy+qPT/UbCSyNl356rjOVfsNyL9ajVLmKy3/XVUaJZ0rTToZpUJcEvXo2fXOO+9Eb2+v/jdnzpzYqgzGqAfLP2M0IdrG7tJY5syZ4815SoixzaKOMvkj+wEAZUWbCn1J0y4wxk7d6MaZRjToy//3agDAjz95YaKtNG0pVDbLuGPs8WljMkFbs7eX5apnSqfUcDt//TNZYMZv6rLlXhnI6fCzj2Lq2687ITZ2n/yn5TxN82uYZTLJvydwWD024FA/9dSx+6sX1N6VVuAw17vdyPhi5o6Y+5Hl+kn+t5ak/J/ULeW/Y8Pjsq1p83RZsrEXNv4cBw8dwdS3fSD1HYg2xXR0dKCjoyO2OIPRUmD5Z4wmNJUVk8W+HaNJRnmtlX2zrGyaThtjylhCCGlcur3HvwEA2LXsBgDA9K6Cs64LWe7ZP63fAwD43VlVzbHUO9vZXha2RJZnYyNmZRTDUEgbEzByg4A5WTHqr1d+HMwO217uYp0k7k+K3Tg4FkfCmRBjxjuWCPmP1ZZD+JcNMifptdMP62PELrH70e0HWEi+sdmBBYH6g3bVjMUcQ2QdG5xog8FgMMYoGg4p4PsK1cP/pGQRHXn51xVwP03bzsLWsPuvt73dF0hNZaYKGFTCbE+N5Bc51Ld9jjT1HcVqhvvpnjpZbOwxduAY9kHaaiFmdRJjuxxJEAhfFyFRxsGOGajIUh35WraKK0wttZ8vywBcIiVNY80YhJvpASRXvDErP5/8B9+dQGheH3uFNHVKYQcAU6269n03g5YRw8X3DtJxc5VilwkFB7RZTVneRd/4TeQQ/y6wxs5gMBgtBp7YGQwGo8UwfDlPPedCS40OtQYSVktB+pFy/Pg33SfrxiDGTEHnpqktzyUVCY42MdkbmGL6C4Ecpab5heJ7U5aWepynoeONOGPr8crHUM5GEnIIO4V9y30X2i35r0YqDUQJtTYJeTMqmePMsDkw5p4n5F9tKDNz/ibaDTh7fY5gcpSa5hdXqA8TtffBHRlT9+sap3UulJ/Bl22qEQpmvWCNncFgMFoMTdHYY5xHiToRNCRXW2lOhyxfunqcXiGnHv2mTO6F/p363KFOqWeTg3hiR/w3NXQvSVPfd6wMAJiSlw7W/KB0NFXGT9NlSZujv4lcpA6HVppzx6VZZ6FGxqwIGlkBHA84tU7rXOK4If++uP1pQbaAZP6BLHWy9ENwPQP7mkhTLxzarcsc7pR69kCpVv6zUIJdZUmGDynVfYKQIQ9yAfm3YV9/vZaHemjUMQQDs07sO8AaO4PBYLQYjlvOU4IOrlWu5gnVNjVHrtA0xNAH02iOWTYJZcHhrqo1vOewpILRtVY6TsrcT4g2RZr69iGV3zIvd0lOM8qSfdC2E1Y1mdrAba7xNaph2chi5x+JNvayyLbxiu51GwUOA6rBwzzZkULt+qh1IYQ223hXZIGsYPrds86Rlg4A4w9ulX/zKg9oh58SnDYW17hJU99ZknJfzsn3YKZRxmcfT7TnoJdm8bl523XUyzrXMd2RwWAwxiiaqrHHaC5aWzA2VGhPfkpd17lGtPtGbbdpWhLZEwGA+AG5Lb+S/1l0Uub2Q4wRsqmTpv7KvqMAgOld4xNlCdX7rjQUvXGlKhb1aMkx2mOWDRoj1bYOSHnOYmPX+WGMbfw2C8SuUxNG1qNt17viSytbPeC3iUfJf0Fd7/YN8m9v/CY+eH7X1FHyT5r61oNyBTujOynL9rMJ+ZiGy7+TNgf5fFdsY2cwGIwxioY19rQvSOJL5EiZZ29jzsJEsdGovbyZtuQJT3xN/7/8rj+UZRfN9JT2I/R110wc5f0nmzpp6vetrTJzPnRO7Sqhqv0RPSa5xdxGI88mhlFUT7snEmlykuCVB7bS221mYW3Z/YSYZLaGigwaasimbF/bhMfu1qdKV3xM/mdCuvx7+7aCpAFG6j4l/9Q6aer3G/J/s5J/rzwF5D/L3EHQ99sRbC3NeuCTf7axMxgMxhgFT+wMBoPRYhh2umNiyTEkaUlZttubaNZGJNlYcimapa20TSiVy/9QHyuojCkYN8FZNnQsZhODL7KcaX7pV5s4etSuDl+OzRBCpodGHHoxx0eiE9W3TKaxJja/BOTfd30xOQaC5kxLzrXcBhyiiXYC74qub5kyyu/+mC5TVPIvIuRfN+fpUzv7AZBu6pPlmw35P6YKdaqHYtdJ9IukYzsUssF7Lp8+zca8V1nmPNbYGQwGo8UQrbH7srSnaSz2uYpDU8niELWdC16HhaOdBH3K4SzJQrFKa78mrrPSVHJKc6nQ7wzthhxbPu3DBGnqRxQNrSs3pAZauzEsZlXiQjMd21lodccDPvk3EUXVdMi/HRYg1F6WFY5uJyJUh91O4pwrbrqnrGu1Ysu/rbk7ZcPeHBTxvoaowaSp68B5udq493a/rvZ8gb6A5GrZN0ZX/djNTE2nO3KWdsZYBss/YzQhOuepL0v7TiPnaabNQoYdi+hLPjthiPoWQ8uyEfO1TKMjxfSVdwQBGz8g8zZWuqc4xxRqL6RR23Vd9j59rCLDOewbklvCKBzB3orc3DRpXEwQ5PSxhMr6ELrG2HyPw4EY+TeRugElYMf1teE65qM5hu61HQzLfO/SxhCkUVo28bwjCFj3sVr5j7nGGG02ZPuGXUbZ6PtVVAcKR0DyP9kh/82eM+w6MRCIfweiTTGcpZ0xlsHyzxhNGBFBwMp5GV6gmZnAs2jAWc/FwhUEbFe7PDa5jvZitAVbKzHth1ozUzb1KWWZEIQCh51ckmMsj6tu9/bd15CmEbuqcrUXo+WMJJhBwEIbSeg37bIvmvJfiJd/Hxsmy/3KEgSseiIZBCzNZ+UKArajQ+YrnYZ0ZPG/xKxYqvdKbaASUv4pcNjMge0AgLIZoIyDgDEYDAZjJKApIQWy2Jvoq1kxgoAVhLusrz9XmZBGmUUrrMe+7fvqkj0RAPqKUlOf8doTAIDSond4+6uHt1oNNZqv/R3w8O9TNkXS1Ff29wIAlvfGjylmZRTDUArhRLJh0mDap0P2ZwJplqVCVf59Wrdu2mGP9/WTRbYz+aEiwk3YqJH/cVJTn/nGSgBA+Yy3O/tzjc/3/vrqyRPpe1TIpk6a+upjch19fmBVUo/8xyDWdt90VgyDwWAwRgca1thDdsW08gTtyVZ2x3Je2nxdOyJtLTnGfp7FPpzFo+0D1TWZL2RtJE298OzDAICdi66U5zvTmSjBVUPOSpKhQu+6rpWOEfuFbOqkqX//lf267PumSTtk2QqzmsVuHrrvDWllIwA5JNkgJmyOum0br2nLkn/9XkRwyKmfmF2q+jgl+3DsjAxdkw/2tZYd8k+aeu6X3wMA7DrranneIf820yXEfLFXN64VRs46R+wXsqmTpv7Ia2/qOldOleGvyxHBy3yIYbOFgrjF7FGxwRo7g8FgtBh4YmcwGIwWQ1PjscdsJAo50vJmrkGEzSFZ2vfVyWI6yjKGGNPD9oXvAQDMHlQUw05/Rpkspows5ibfbzK/AMC2ogyiRKGUdM5ORwcl61w9FNQQRqQTVVSc5op6qG9kKrCX3CGzom2CiZF/3Z7DBFM1CaTnX9XtWo77GEdo35lXAQjLv4uya7efGFfAyet1AFvXSuYXoEp6IFOSbW6qOC7Wjr2fJftU2rvOdEcGg8EYozjuYXtDmzkoD6r9talHU4txuGXRJENl66GandQlb30ZUlOh4EhAMkBYDJXT148LaeM2HaWkqR+1AofZDm7A1F7SNZXYMY145PLB6/NtnHGudJX8ay6Bw2lm9+XT1GNWCC7Y1MuoFbDluI+pG5J/HSDM0rBdjkWf/AfnGU8dgukoJU19UD2Mjrz8WxbJMCha/iOyZNl9hlZc5nUz3ZHBYDDGKJqqsWfRJIOar6J9lWzaV6C9ZmwOcCF0HY1QIwtHDwAAjnVIjmFHW3vUeGz4VkSutnzjC2lYpDWSpt5fkSLTk5dayUC5WqtdP6jwJprQWLI8i5GArGOKCVaVK8mgVHljE58+Z/WbRfZi6qbRh53yH6Gh2sgrDX2gXWrn7cXqtaZdm2nXtjXd0H3w3fuQ/FNfpKkfrchSnQ75b1ODSYQbDozJ13ej/ijW2BkMBqPFMGw29nq02DT7dtb2fO0cL80vZGsfHCc19a69rwEAtnSeosvMaKstm4VhUQ9C2gIxXMimTpr6G/1lAMBvDm7RZUtT58uypBmJZHb2mD5HG0JML/u6Qpq6ts2q+xVkXHjGkMUP04x3E/Br6qH2hzqkpk7y/8a4qvzPHl9b3x6vK8xwzLXUE2SwujlKXiNp6lsPSfmfd+wNXXZo2gJVVv5uC6wmfO90SJaygDV2BoPBaDE0JaRADBski+03p8LK5hwNxvI+Q1++RlgmIdtXFlZMm0p2QZrKKW88qc9R2AFfGzHtE7KwI0JlSUsimyJp6k8eq4YmXp7STgzDIo3HO9KQtpqMeS762knzpUQVEf3G2OztPm22lW9cadD1I/jaNhLyv/Xn+pwOO+AZUxRTJ6JMjJ/C3idA8k+a+lOlKoNmqfpr89hj2DEh1qB5LPYdYI2dwWAwWgw8sTMYDEaLIdoU48vS7iPNpy2jgss1RXfU25pz/mHWszGjWXSvRsoUBuW25Wld0ol65PRLdRlfArbQMi3G/JG29HSNm8IE0JKUKI3kKF1ulO0fkkvPHnL+WtEDQ/c5y707EYiR/5BZhn7bW9LNc9pEouiOtGEvdN0xG6BsZDF3ZTGDZHpHhuQ1TuuSTtSjp71dlyla7djXZOZspeuPkWl7w1eM+Y+gM7+pyuQoXWqUOaY66FTUSKJtCwdtlZCF7uiba12I1tg5SztjLIPlnzGakBNCRH0EfFna+zxZ2uvR2PVXi/JBktPBoMtlcW6mYbg19pjNEuMU3Uvkq/GoS5PnOvuKWRnFOIbTNBXn/bAcZDT+GmokaqmQpE3N7inChxitic7FZmgfDoTkv1eNJUb2gk59usf2vTb0rxgnqa99ewzNXoX62nfBln8zkFppyjxn3/Ws2LI4iIO31nKEupzW9PyICkmh0U5R8u/Twl1j8I0x9h2INsVwlnbGWAbLP2M0YdiDgBGyKBpC0R011SiivUa+7o3S6GI2G9hl6Nq0pt73anU8SmP31Y2x5TZCF3S2b1G2aPNRTT1lUy/k5DVtPiA13JMjNJZGtLITjSw+Jtfz0f+36I7aHxOq3wClrlmwKYFZbNb6Wndv0ueE0tj1b6u9GF+N77eJKJnzZGTSYauNUONkU6+oJ7bzkPxNGnsWWnXmcVpgVgyDwWC0GJq6QclEjP021CZQ1QDMrdVk22rPu/upR3uKQYy2kEXzL6rxkz0dhpbetk9ufsgp98eQ0mCGa4NOjEaUKOMIE0C+kNk98idp6tsOJbX72eOtnKxK88m5NE8rActIQk5UnEGwfLIVyk3qK1MSyXMk/3Zo25jVYkjbT0vc4bou+z11bd23z9H4yZ4OQ0v3yX/MtdnQzCwgwc7y1a05bslj4j0wn7liv5yi5J809b4jKrSG0fDMbvX+WLJN/pQCkjKfg+GHSQFr7AwGg9FiaIqNPWQ3THB0I9qxYX69dGAptNeUyWKHjmKBWOfqYZnE2PecY1RaQOX1tfJ3QGPxteds1yrrqxNjw6+n7Lqdh/T/Z4+fWFvW0oxyjnPDtWJpBCKX11qWS0uyNWBXujf7uqryLsuYaQhzZcVxz7s57rqooanmXKsruO3yvkBZMavbkI3dXqHYrJIY+a/H1uxcWaYgZkUQGkNiHlAH1u+pppyc2a2YVJZs0xPxykdkaGTW2BkMBqPFwBM7g8FgtBiaYorJQtWpy9FqLj8o8mPKmLIslbI4Y2I2GcQ4cEP3ozRJ7Wo8T/6lbDOUCzVtXGa7mWimjmNptFJXWbsMOUpN88sR5RHsUGtxWpoX9VrUoJFVyPw28pBDOM53wknqWEonnl0gSiI56HxOTl0nIgZ+lncxS1n7vAuhjVZp8h8zlpj5Bp4yWd4DF+wxkKOUzC8AMKjE274P+nk6nKQiJb9uTTuR5RgMBoMxSjBsG5R8WnEWOqLLEUTOEDtLSYwWXo9mkRhLoN2YTQcxm0WKe+Q2a6KCbS93AQBmBurEtBvr5G3USRmjNZGmvrVf5lIlaiRd+8CU+bpsnlZplUMYaRCIc6xXT/hpnXaQKgJtfAGgN+/5UM+zc9ESE2NwlHXVN8u67kfMu6blf7KM1b61JOV/lqMN3/wSM9/YY3MhrWzUNTpopaSp7zgk5Z/CbhR3vwIAGJi6QJc1V2Wxz5c1dgaDwWgxDDvd0S7jOp9mYx8yhkn6CmVgER6be0iziNEofXVNpLVTryZAmkpuQGqoUzprbesxdsNQ2TT7ab229iwbYUg7JU39aEmWKUw6GYBnA08d1LXhRgxlFDDuV8B+7tOSB3NVLZ3+Z9v1s9h8Q3KrqZb6pH+89vPVPx2rEe/9sAKeAUBJyUBuUNIDT+r2+5Z8CMlnmh+h7LhYny8j5HOL8VOQpk4hf3NqlW7KgrmKYhs7g8FgjFE0rAJlYZEAbttXmsbY7vj8lPNSd7FPNWpTs8uEtPlmaurm8W1qHwNpKp3rfwagmgs1y2onhGYwIGKeo8ueTOwXsqeSpr5qh1yJLZtd1VI1c6CSDE1woiEQlmkfYypm1UW/iw75b4Z/xwnPFvoQQgHIUuFYEWw/Ko+R/HdseBxANReqWbYZ/jO7bCgJCqzfMfONawMbaeRkUydNfXWfDJx3wazq1GzmUOWQAgwGgzFG0dQgYPWyNVK/qg5WjA4bm0umXTP7TTsXO5Ysdvh62jcx99hmAECpe548MOM3a9rNstqJsQFm0fZij6eWVZoHsV9IgyFNfZtiywBGMLEjWfSv44cYf071RNKmTGW9AbgcrBg78FiMNh4jn770cXYbIdS74iNo+e9SvqZp87xl0+SyHonJ8n6F5hmCM4wEyb9iv9D9Jk3dlH+yw285VMahw+W04cv2okoxGAwGY9SAJ3YGg8FoMUSbYnxZ2oG4JVI9FEPCoIPuSMfsjOYxG3TQYBkfYpZ/Mddt0x3LvTNrzoecp1nuc4xjuylw0B0pTEDe2nBDjqKTjTypRIWc1uXPnTrc8Ml/ZhOVw1lIZW26o6b7OuiOtsMyZF5zbRiyyxBsumPIMZqgLHrG5htXTd0A3ZF+Z0GI7pj2zFx0R5LLZtMdfbHszTzBRIWcNb6Ig5W4dyBaY+cs7YyxDJZ/xmhCTggRpaD5srTv7OtzZsuux0GXVsdEKFuL3X49G5Hq3bTkG0OWftr2bgJQ1VQKv35S/lZ0R1cf9dAz63GE1eM8CpXVGW5o85H6vfVwtbXp3VJLeWLjDlxz7m+mZmgfDoTkvycwlhiHdRpVL+YeN2u12Ah5IKbdmFVD0Zb/jT+XvxXdMcvcEUMrzUL+8J0Plgk4zBPjVWU3H6o6SWeNl/K/ZsdhHO7vx1VL5qe+A9GmGDtLO30P+vv7neV5Ym9gYu+XJphSQS73C4fUktQwf9l9tNrE3m8wYMaVpWAfOSRlLVIXaSpC8h8zmfLE7m7HObGnyP9YmNhN9guZXw73H4l+B+qmO9KEvuDUU+ttgsGoC/39/ejt7T3hYwBY/hknBmnvQLQpxkalUsGGDRuwaNEibNmypalLY1rmjoZ2R9NYR3u7PT096O/vx6xZs5DPn1hCF8s/tzvcbbraFUJEvQN1a+z5fB6zZ88GAEyYMGFYbJ6jqd3RNNbR3O6J1tQJLP/c7vFq02435h1gHjuDwWC0GHhiZzAYjBZDQxN7R0cHbr311hq2QDMwmtodTWPldpuL0XbN3O7wtTvSxlq385TBYDAYIxNsimEwGIwWA0/sDAaD0WLgiZ3BYDBaDDyxMxgMRouBJ3YGg8FoMfDEzmAwGC0GntgZDAajxcATO4PBYLQY/j/IC29//OfmNAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAADJCAYAAAA3tRlxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABDTklEQVR4nO19eZwcxZXmV1V9qLvVah2tGyFZFiAJIS4hQAODsQFjzOFdbJgZFhB4PLZZvPjcGa/t4ZpdZneMrxn/PDaHbI/ZHR8Ye8BmANsc8giBBQgZEBKXDiQ1uqXulvqoqtg/Ml5UVFREZGRWtdRdet/v17/uzoyIjMz8MvPFe1+8yAghBBgMBoNRN8ge7g4wGAwGo7bgFzuDwWDUGfjFzmAwGHUGfrEzGAxGnYFf7AwGg1Fn4Bc7g8Fg1Bn4xc5gMBh1Bn6xMxgMRp2BX+wMBoNRZ+AXO4PBGBZYunQpPvShDx3ubtQF+MWeAEuXLkUmk6n4ufDCCw/J8W+55RacdNJJh+RYjJGLFStWIJfLHTJe1grf/OY38f3vf3/Ij3MkfEAaDncHRhouvPBCLFu2rGxbc3PzYeoNg1GJe++9F5/61Kdw9913Y9OmTTj66KOH9HiDg4NobGysup2Ojo4a9IYBABCMYFx77bXisssus+57/PHHRWNjo3jqqafUtq9+9atiwoQJYuvWrUIIIR5++GHxJ3/yJ6Kjo0OMHz9efPCDHxSvv/56WTubN28WV155pRg3bpxobW0Vp556qli5cqVYtmyZAFD2s2zZsqE6VcYIRU9Pj2hvbxevvvqquPLKK8Wtt96q9j3++OMCgHjooYfEwoULRXNzs1i8eLFYs2aNKrNs2TLR0dEhHnjgAXHMMceI5uZmcd5554lNmzapMjfffLM48cQTxT333CPe9a53iUwmI4rFoti4caO49NJLRVtbm2hvbxcf+chHRFdXlxBCiLVr14qWlhZx3333qXbuv/9+0dzcrI5vPl/nnHOOuPHGG8VNN90kxo4dKyZNmiS++93vip6eHrF06VIxevRoMXv2bPHrX/9a1cnn8+L6668Xs2bNEqNGjRLHHnus+MY3vlHWd/M5evzxx4UQQrz99tviiiuuEGPHjhXjx48Xl156qXjrrbdqcl8ONfjFngC+F7sQQnzhC18QM2fOFHv37hWrV68Wzc3N4uc//7na/7Of/Uzcf//9Yv369eKFF14Ql1xyiTjhhBNEoVAQQgjR3d0tZs+eLc4++2yxfPly8dprr4kf//jHYsWKFeLAgQPic5/7nDj++OPFtm3bxLZt28SBAweG+pQZIwz33HOPWLRokRBCiAcffFDMmjVLFItFIUTpxT5v3jzx6KOPijVr1oiLL75YzJo1SwwMDAghohd7Y2OjWLRokVixYoVYtWqVWLx4sViyZIk6xs033yza2trE+9//fvH888+LF198URSLRXHyySeLs846S6xatUqsXLlSnHLKKeKcc85R9b797W+Ljo4OsWHDBrFlyxYxfvx48fWvf13tt73Y29vbxe233y7Wr18vbr/9dpHNZsUHPvAB8b3vfU+sX79efPKTnxQTJkwQvb29QgghBgYGxN/+7d+KZ599Vrz55pviRz/6kWhtbRU//vGPhRDRM3bFFVeICy+8UD1H/f39ore3VxxzzDHi+uuvF2vWrBGvvPKK+Iu/+Atx3HHHif7+/qG4VUMKfrEnwLXXXityuZxoa2sr+7ntttuEEEL09/eLk08+WVxxxRXi+OOPF3/5l3/pbW/79u0CgPjjH/8ohBDiu9/9rmhvbxe7du2ylidLicFwYcmSJcpCHRwcFJ2dneKxxx4TQpRe7P/6r/+qyu/atUu0tLSoFx+NDFeuXKnKrF27VgAQzzzzjBAi4mFjY6PYvn27KvPoo4+KXC5XZtm//PLLAoB49tln1bYPfvCD4uyzzxbve9/7xPnnn68+OkLYX+xnnXWW+j+fz4u2tjZx9dVXq23btm0TAMTTTz/tvCY33HCDuPzyy53HESL6IB533HFl/env7xctLS3ikUcecbY9XME+9oQ499xz8Z3vfKds2/jx4wEATU1N+NGPfoSFCxdi5syZ+MY3vlFW7o033sBXvvIVrFy5Ejt37kSxWAQAbNq0CQsWLMDq1atx8sknq/YYjCRYt24dnn32Wfz85z8HADQ0NODKK6/Evffei/POO0+VO/PMM9Xf48ePx3HHHYe1a9eqbQ0NDVi0aJH6f+7cuRg7dizWrl2LxYsXAwBmzpyJiRMnqjJr167FjBkzMGPGDLVt/vz5qt5pp50GIPL/H3vsschms3jppZeQyWS857Rw4UL1dy6Xw4QJE3DCCSeobZMnTwYAbN++XW3753/+Z9x9993YuHEjDh48iIGBgVjRwXPPPYfXX38d7e3tZdv7+vrwxhtveOsOR/CLPSHa2towZ84c5/4VK1YAAHbv3o3du3ejra1N7bvkkkswY8YM3HXXXZg2bRqKxSIWLFiAgYEBAEBLS8vQdp5R17jnnnuQz+cxffp0tU0IgcbGRuzZs8db13zB2l64+jad13QcWx1z+4svvoje3l5ks1l0dXVh2rRp3n6ZQdlMJlO2jdomI+knP/kJPvOZz+DOO+/EmWeeifb2dvzDP/wDnnnmGe9xisUiTj31VNx3330V+/QP2EgByx1riDfeeAOf+cxncNddd+GMM87ANddcowi3a9curF27Fl/+8pfxvve9D/Pmzat42BYuXIjVq1dj9+7d1vabmppQKBSG/DwYIw/5fB4//OEPceedd2L16tXq58UXX8TMmTPLXlgrV65Uf+/Zswfr16/H3Llzy9patWqV+n/dunXYu3dvWRkT8+fPx6ZNm7B582a17ZVXXsG+ffswb948AJGxs3TpUnzpS1/Cddddh6uuugoHDx6syfkTli9fjiVLluCGG27AySefjDlz5lRY3Lbn6JRTTsFrr72GSZMmYc6cOWU/I1Gtwy/2hOjv70dXV1fZz86dO1EoFHD11VfjggsuwHXXXYdly5bhpZdewp133gkAGDduHCZMmIDvfe97eP311/G73/0On/3sZ8va/vM//3NMmTIFH/rQh/Af//EfePPNN3H//ffj6aefBgDMmjULb731FlavXo2dO3eiv7//kJ8/Y3jioYcewp49e/DRj34UCxYsKPv58Ic/jHvuuUeVve222/Db3/4WL730EpYuXYrOzs4yXXdjYyM+9alP4ZlnnsHzzz+P6667DmeccYZyw9hw3nnnYeHChbjqqqvw/PPP49lnn8U111yDc845R7l1PvGJT2DGjBn48pe/jK997WsQQuDzn/98Ta/DnDlzsGrVKjzyyCNYv349vvKVr+APf/hDWZlZs2ZhzZo1WLduHXbu3InBwUFcddVV6OzsxGWXXYbly5fjrbfewpNPPombbroJb7/9dk37eEhweF38IwvXXntthVQKgDjuuOPErbfeKqZOnSp27typyv/iF78QTU1N4oUXXhBCCPHYY4+JefPmiebmZrFw4ULxxBNPCADigQceUHU2bNggLr/8cjFmzBjR2toqFi1apIJWfX194vLLLxdjx45luSOjDBdffLG46KKLrPuee+45AUDceeedAoB48MEHxfHHHy+amprEaaedJlavXq3Kktzx/vvvF7NnzxZNTU3ive99r9iwYYMq4wri++SOP/jBD0RbW5tYv369Kr9q1SrR1NQkfvWrXwkh7MHTm266qewYM2fOLFPSCCHKnqG+vj6xdOlS0dHRIcaOHSs++clPir/5m78p6+/27dvF+eefL0aPHl0md9y2bZu45pprRGdnp2hubhazZ88WH/vYx8S+ffus13U4IyMEL2bNYBwJeOKJJ3Duuediz549GDt2rLXM97//fXz605/G3r17D2nfGLUFu2IYDAajzsAvdgaDwagzVPVi7+/vxy233FLzIN5Ianck9ZXbrS1G2jmfeeaZuPnmm72y2qVLlyZ2w4y063AkvAeq8rHv378fHR0d2LdvH8aMGZO2mRHd7kjqK7dbW4y0c+Z2h67d4dZXdsUwGAxGnYFf7AwGg1FnSJ1SoFgsYsuWLQCi4UItQe2NhHZHUl9HertCCHR3d2PatGnIZg+vTcL853aHuk1bu6HPQLCPvb+/v8yBv2XLFsyfP7+aPjMYqbB582YcddRRh/SYzH/GcELcMxBssd9xxx249dZbK7b/csUafPzrTwAAVv/jFWp7RhTlH8ZXxbVdQ0F+arIyd1DuYOkrKBqbAADFhlHRb1k2J8vSV0pPR5TtiTK/FUdPAgDkjU9ZTivctH09AODppdF0/0W/fqisT6560cGjcxOecyNUVLWVqaK9NEgTRdeP66qfseyPO39buz3d3ZhzzDEVGfgOBdLy37x3mWI++iPrfvRMDmct/BeS/4UQ/vfuBAAU2zoBhPF/xdWfAQCc9sivyo5jq6eOWSP+q2ca1bcX8lz4ysY9EzaemnxPwv+4PnR3d+OYgGcg+MX+xS9+sSy3yf79+zFjxgy0jW5HtjGST+lR25q+2BtLpyYao2XoEr3YM1GioWJ71D8vsQ+OBgC05RrKzolf7PHHHeoXO22LS/U6FEjL/5q82C38T/Riz0YjjeLooeE/v9jt7QzFi13Vj3kGUssdSYbT1dWlbn6fdvdHGW89341M8phSPZPQIW0MyG9Ko4cnZjvZnh3R8UZPrNif5Eaa7Ye8yFx9Crl2vpvq6181fYk7XhLY2u3evx+Tp0wZFtLHOP63SGImucZBH3v5O2/w39xv4wjVachUlnEdJw3/zTbi9plwlbVdpyQvXrNOkusd8mynQZLnKYOIdyHPAKtiGAwGo87AL3YGg8GoM1S9glIGJd/aqFzpO3HU5V8DALzwLzcBACa15gAA2e53AAC9rZNUWXLbuIY92YP7Kg/c0uGtYxuKNsnumf5CfThrDnGLcgi64vQ/BQCc/ZufqrKF9sll7fiGjHGxhbL+yrIF+d11Dbdd9eMQ4h5wbfP5AuPcQkmGxbZ2h2MaUp3/LTr/P/JNAMDzP7gRQBj/XchZ+J8z+O8DXTc6jMn/rNaI6eIsmPz/7f2lsqPLVxaq6AtxXt9n8N8XWyL+U/98nHNxw/YeCHEduZCEg0lcsiH8TwK22BkMBqPOUP2ap6JotULJUj+Yp692ZLHsHxV95UdpZkKsRUZKAgDFUeUynxDrs0Jlg2JZWaF93ygi32BE5MlSyfb3lto1jun9mpvqiICyuZB2XU1Y6sYFakKCaWbZalUxtRgRHFYU81bVBlnqvYPl/O9piSz15hrx34Tt+plWuMl/ePgPD/+Lo/1rgerXJe4+l527rGdeVfM5trVrbrdd0zjrvtZChtBj+Y6TFGyxMxgMRp2heovd8VUmnyJZKgfl57ZNag31siRDbDI+M0ra2Dah4rCDhnTR57MyXZg+XSz1QRjfPPIn6n7FnPSXFh2+dh9CfGshsqyhthKE8TupPMv1f5x8zHaOw9HH7tKju/jf0lAeTwLiZYg2/ptWOMF2rSpc+JL/tutZkgKXl7HyX0ohXZa7736nkTtmLZVcPEqiYw/xhcf1zVU/7phJ6ooEx2CLncFgMOoMVVvsArAqPij6Tz51stTn3vBzAMDL3/7Pqqyy1AsD0a9sNG2aLI1+LYyfk59tqpPJ9wEA8rloJh591fXIf8NADwCg2BzNqss88cPo95IPR+fQ1KrKZgYORMfMRbMJm2QnmrauAQD0TD6h1G9pqSsrxJh517hrgypb6JgS9UHOGCSE+JR91o75BTdn4mZ0ZcJgdK2K2vnqdWzqgyTWchJVTJwyQd8+LC11iYKAmk0qNOud+E8+dbLU5934SwDAS/94mSqrLGrJ/6LkP92PAQv/qU5W8jXf2Fq2vajzv18mkBolJ7RI/mcl/3U+ZPujZ6WvoQ0A0CwbbNz2UnQ+k45XZZulpa7ur/EeaND4nx87LSqba4IOk3tAdSNKk/+w8B/yfNVoxOhDiOVerYorjveueFToCJ0tdgaDwagzVJ1S4B1tSrXeEE2vbpSfQfIfkj/xlL9+RJVd83/eX1bf/Cr5rG+yZih3AvkIyfLQyxJyB/ZEv/dFaVcHpi6oOJaZquCA7Hj7q78plV1wfnm/DYs9Iy0wAGh4axUAYHDOkrJ2QzTvQdayrEPHFMbIoKx5Rx0aTaTxf4b002dxhfg5Q6dTHwrY+K+DfOpNhoVN/D/tfzyqyr5wxwUA3Javjf9Ccro/Af+Vr9rg/6DGf2qvyZhbYuN/XvKfUHF/df5vfD461uwzysr6dOwVeXYC6pj898VqXPz3IY023ae2CdGz68fav38/pnBKAQaDwTjywC92BoPBqDPU1BWjwxxauCSNALD9QDTVpyQRs7ehb6sIknjqEGwTHAD/sNVsVwe5dIqt45xlKurI6eEFR0oEH0KGojSZpWAE4Gzt0PWomMCi1YmTjaWVeMUNRW1D6OHuivENz81UFfq12NYb3bOpbQ3WdnxcNlPnhtQxOaGnLChKXoa4CijVh1nHh5xRh5DEtWGrp/ZZAtkmzICtSzoa0oeqn1tH+zb+A5zdkcFgMI5Y1EbuaIH55TEljbrsiSz1Ez7/7wCAJ/4uCsqMHxVttyX5V1YHBWjoC02By2dKyYrE4v8EAMjRPimRRF72ZVTpy5d1yCfVCEFo07ulpd6w43UAwN6xswEAoy0J35W0SloqJJ8sjJsZtaVZMHFSKF3+RnI0FbCV17V87GOHSrFgWn1a0CtLgSwjGBUi9zLhDWTF9nZ4yh5dlpW5v8Hgq85/stRP+usooPrbW98HoMR/fWEMJXOk9qSFmqFAexL+F6K6OvdoX0Hy35RP6vwnLjdK/u8f924AJWmnDXSsxgD+u7ihy58pyKvKeix1gsn3iu5q/Fcj4QSB1SRIEkRNArbYGQwGo85QEx97m1xyzuabVQeSv33+rF19ka/9pGu/AwDY9OMbKztstE/T+slip+nXupXfvHdztG3cjGgDWTk0YUeTQ5JM07UClO1i7ZcBhNH//q2oK5d+uqyODtVv6WvM7XgDADB49CkVZUyo9rRJF3HLhqWRLvpGSLqEEwCgTzgx9pFV6vMb1oPcsV32JU6qBlQu+waU7uFug/+bJf99183Ff32CUlMM/4XG/5BVxkz0yPwerQ+X898GNdmmL5o01bjrrei4009UZWLjBR7+h/A9jns6/2mfOYlMIQH/fai13DHYFWOu0r5//35PaQajvsD8Z4wkBFvst9xyi3WVdn3NxyRfS9s+E5u7BwEAM9ob1bY4FcmgRX1DZbN9xtRqCf0LXTGt3jNZyHW+2d5dUbuW5E2uulmLMkF1wVM31rpPAd85mgsh6/t1/ysAFDKR3WBT5pj1fSSkMvsCrZWhgI//HR5VjAu+e0j7tvRE13Pa6Hj7yxxt2a65qUgxFWa2ekl4ZI5Gk8SNbMocs66NKy51nO24cVzznattFAsYqRC0kQTgH02EjFTNegJDMEHpi1/8Ivbt26d+Nm/eHFqVwRjxYP4zRhKCXTHNzc1obm6u2J4dOIjcweh7o39plQVKumppvVJEu0H71JlLdtEustRP+WJp+vXzcvq1S0+q0vhq2vR8k/QhSkudkjapBS20L2vuld9Fdea/t6xM4/b1AIC+icdW9Nv86hblufpGJ+YXu6Bdu6auVwAA+yfOi7ptmCNJrJAQ7axrv62fNh22KistdNpHV9XmV1YJ4+S9GJRUVCMtbXGJgRpkl64WTv7n+5CV/NfvYc7B/wEP/02tO1nqp37pMVX2D1IxVpHkihanINWMxv9Byf8M9Y987HQOmpKkweC/eq6k8qWvc05FvytEJZZl+1zPaxr+63DNY/EhTotue75C5gu44l22UYX6k/ghnx11TS38b8qGj6BYFcNgMBh1Bn6xMxgMRp2harnjjjdfQXtnZa5xFUBpivKak/SH3C2NA5XT+OPSBADA6bdEQ8Vnbnlv+YkY/RsoogLKTWNMatKHUDRUbtv1GgAgP0m6XuSQN7fuKVU2P/c9ZcdOMwy0gTLpdexcCwAYnDK/rH2fq8SHOBlZaADH1UZsQFtocjDJB1f/bcPhwxk8NWHjv55RM5uA/yQ3dAXU9ODmWf/zCQDAii+/p6w/Ifw3JwnCyI0OlFylIfwvzC3vg0vaCdhz/bug+L9rHQBgcPLcsvaT8N/ninSV9blQQ54Zswxd02YMluoZ1z6E/0MSPGUwGAzGyEDVFrsud9QlQabVbcoQbZIllyzO9oV+50AUXJjSWp44yWc9x0mjbDATHZXtk0nACjK1QDUWsM8KiTuO7VhppadmW2nkbq66tnbVep9FY/UsURk86u3ej2lTh5fFricBs039J7jy/Ov7asF/H3wrZbmQNZLW6XAl9DL7akOohWo7ThpBgK9syLMY11ZS0D2n9htgrOWgBU912TBb7AwGg3GEoiY6Mp+cp0KGKJMM9WdK0rFmpXeMrDZloco1RW0gS+WCbz8DAPjFxxcDsCcg2iOnalNSpYY3VwIAtk87rWw7oFlWojxBkvqaa5MQKAkYfnNP1O7JUfKm/IRZzn6HTCQxoSz1Yr5in5meNOmEB/1/c38IQqx7X1/odpHPUVkamdJ50fS0JCOtQwUBe5oMs6vmGqV9ck1dQOO/vL9qghvxX1TKRIn/533raQDAv90QrUxk4/++/qj+2Ga5FmkI/6UFaVrjeuvq2ZD8b6wR/yt89aZMU78eRqzGdTy9jEveGEKvkJGGC3rZyjiiYWPr6+dq7bPckcFgMI5Q1MRit1lSLn8rpcPN2D6x9JUyrFCf/40s9cvvidYUffjjp1U0OwG9AIAiIp/UO9JSmbgumvhROPHC0rnAnkJAnaJlEkLjSedGf+zZKg84q7yO41xcZVwWdSFTebtyRtk0AZMQNYDZN9f/vnZtfUuiikkVDDoEcE1esSHf2AqgnP/qGhC3suUTvXTOmdeCLPUPL3sOAPDrjy2qOOY4IdcJTsJ/s2+Wc1GjcQf/dSQZbJnnqNRBxH+tsayjTkj7BN8EJVefMsZv276Qsi5Uy3W22BkMBqPOUFNVTIj1lgSkpNFTiLq+trSdltmb2Fq51IQtQRgAZHt2qL+LoyeW7YtbgszWJ2qvoLUV53/WNb9x06STXOckVngSzW+SY6fREtsQqgg4FAjlfxL9swmbWsx1TWn7XsOfriPN0nhm+zpc5xCnlvHV1Y8V0gdfGvA4JHmuQttIi1BlDqtiGAwG4whF1T72wWKYpWJGwxssM+9oOa/BxZcDKFnWekKv/saorGshALLUT/jsw2rby39/TlSnKfJv0rJcxZZIbaIWIADQtOVFAMD2zhMAAB2G5WPT6tOiAXsyUd/GSkvde10owp8tT/5jQ619zHGjHp8vPK4tX50Qf2RI2eEEnf8hvtliAP/zkv+2hF5x/CdLnZbZA4AXbz8LAJAz+S8Tk+U7pquyTdteAgDsGB/NdvbxX/VP8n8X2gAA4yxJwCreB0aKWz2O4OKGjQdxi9n7VCuu9n1lqokx+fbVmuNssTMYDEadgV/sDAaDUWeoOni6ZVsXOrMHAQBFy4SiiqnUcliprzOqhh+UaGjvFgBAXrpI9OEfDWVpKEqTj5SkUeZcp4kgADD1ym8DALY88IWofRnczD/1k+j4F/3X0nnJ7EmdXasBlNYipS5kaYV3QCV9ooRLow7Gr5xEoERkNIU+SYAsCdJMoEgSKAuRcKWRotnKDsfg6ZZtXejMRUvm6YF30/Viuu2K2ipe1fCfJh+RpJFWB8to/D/q6nsBlNYQzskJUPnlPwUAZC/8hCrbLRUGE7b/EUBpLVLlQi1Ux3/lipHPEcmfa8X/kKCsq0610l2XWyUuIBrSR6rDwVMGg8E4QlETuSOt+ainCjWTffm+dK7kXDbrxlWH2rVJJAk7pBRykiGF1OWOBSPw6UsC5rpwIRKsWsgIfX1IG9Qx24yznqqdSBRn5ejb9u/fj8nDzGKPSwIWcp9dfPFxzyXDtT1LtK+rVyYOayvXTFDwEyg9ayb/basimfD1wSxjIskoMQRJZL6+cnHBzbR9TCJg0MuGPgPBqhhepZ1xJIP5zxhJCH6x33HHHdZV2jOiqCwV3Uo2kwmpdJRP/BAAkF18SakwJbmSfjdKbCXMNUqBkh9SJv+hhEY0TXqCTGhEki4AKIyZCgCYJK3xSRfdBgB47RdfBgCM0XyjvdLkHy1PhqwlGj1050qxgTZZpmFPtLAxySaVtaZLuuhvSpcgyq+LDpclUY2VH1LGNvU5rm6SadK+skMl+6oVXPxHMV9KPax12uS/kvNZ+C8c/DeTX0U7o/ayDv6Pt/FfyhmnSN/31Mv+HgCw7qf/HQDQoY2IeyT/2yW3yVInq36/xn96Rhr2bSk7jvKXW/qdMRaY8Elrq/Gp29qIkzf6jlfL0aivnWqvByHYx86rtDOOZDD/GSMJNfGxt7VHX3zdp2auTE+WKalVGna9qcoOTF0Q7SNfHyXgIuWMOZlBK7NbqmI6ZUKjokxolNtTevAGn/63qH2pftkngwGLboxUMa99789KfZGHah6I+kKjBtqe1+b+U4rUg9JkG5T7xjSVnysAFOXkEHOiVkiqgppNdDBGCSFWSKiSxlc2ierA1hbt6x6GPvaa8l+biASUlGNlI1YjQZ7Jf0roRVY0AAw+/WDUjlS/7E/Af/K5E18Hdf7LEyYrn/aQta8rc4TkP8FMbxAyeS2V39zy7jBHyRXH0eqYz0oShDxXIb77ND52VsUwGAxGnaFqi/2dri60W74cSdQUZKmYi/r6IvyuLxxp1G2a4pyRnIvaWL+ntMjyMeOavO0nUTnYFhFIYiUnicQnidZXoytPY3WnHY2Y7Q5Xi93XlxBNtkv9YuNR3KgoZ1nKTsVO+spHoYQ395X4P7vDvsh4Ej9xyBKUafgZwiez/SQxIFdbtnZDyiY5buh1Zh07g8FgHKHgFzuDwWDUGarO7ti4fT2aDkYulMHJc9V2koDRsExlapQBFVpJBgAgXTA0Xf+gXA91lBzL5V75nSp64LhzoypyX8UajdLNQlkaAWDHxChTI8kaSdLYlIs6Re4XADhfriH5wCdPB6AFguT+3P5tqizJKBVozUpzBRwklEkZ060ty1hWoBYTP5IMdW1txXUzyfWoduLToUKTxv8Bjf8Fg/8kBSa3Y19DmyrbTJJaWg84O6qsTkMS/su2KEsjAOzujDI1jpYuGAp2Nkv+k/sFKK2hev8nIv53yAeXAoq57ndU2bzkv7qvtGaxZx1SU1JrlSUa/E8iMDCRhEdJgrM+LjrbtwRlXX2olv9ssTMYDEadoerg6e41T2HNR6OJDqc/WbIsTOkQfaEGpInRpEVWTAmgKYHSO9i4fT0AID/p2GgDScHoCyh/00oyADDxndUASgm91HEtwSRKgjT9nE8BAPatiBKIkUxtUBtpmNPGbRNVXPAFiF2jHbOufmzbvjjUYlJQWrljmsDYcEwpsOuPv8eaaz8HADjj94+r/RXSOcnLfgv/CbYVk0xU8N+Q89Fztk/j/6Sd5Qm9CLaUHSSFnPGeiP/7Jf8zNeK/yXuCfs4FY19DgMXuOo4PSfieVJYYVzdtYJjljgwGg3GEoiZyR/py2NYOrcqfZZl2T/VMiZhpCdgkYr6kSq6+PN8VWSqnTmmt6KPZvzQTftKU9U3mCEESH3tcf2st9/LVH65yxw4L/01JbZL75JIa6ttc/LfBrFMw+O/r0+p3opTcJ05ucbZroppRo6+Mr/00MaAQLsfdtzRSRts2ljsyGAwGw4uqVTFAyScmtElBK07/UwDA2b+N1nEkC6ZJJifaN+kEVZam5lf4m6UlTH5FAMhPnBOVNSwVpVqxfFqVNW8k9Opvir54evIyZd0MlFvqY5ZE6QjeWf5PpX7nyr+L5td7UHN/Ur8qUhNXdldN66ayPp9rNQixhNJYmq7jJFE1DNEp1xwZJON/o1Sr7Jt4vCpr8t+83407Xld/5ztnR+0lsLpV/4yEXoPNlakQaBSaGYyUKSdOjvjfYeV/VNF17/Q03nROIfGnQYP/PlVMBYyYRpAV7knIZ9Yh+E6j2lGZr93Q54ItdgaDwagzVO1j37y1C+M6Kr/8Wal3zQ5EPrrBCbMAlFQxrWt/o8rmF5wfdUYqXISR6EiPkjeveyLaNvc90QbjCy0sdRrlcl60lBfpeLOZqMOtmhlBOvX+9qll59QnG7zgq79XZZf/9dllxzQVEHlPH0IuOo0azARiNqT19dn2+9qvtSogxGIfzj52J/+lvz3bHy3Z6ON/QfIfBv9NtQlQ4n9e8t91zXX+NxjcI+VXgzSjW3I14r/8bVO+mH2AUdZ2v2vBf58SxVc2DiGjzyTxldDnl1UxDAaDcYSCX+wMBoNRZ6ip3NHXEE1FLrRPjg6s7cse2AMAKMqVZEICCzmjDjxl07ggXO4VHSvejqaHLzmqPCulrd00wzOzbki7vu1pbnQt5I62umnkXqFSr0MBm9zRx72skXVUL2vLyKjXrZXckZAkcJdECpnElZdGpmu25WsviTQ4zXNrKxuHkOvMckcGg8FgWFG13DEkeAYARcNS1+uR1d0gZV27OiJJl0pAZGmvQJb6b+4BADSedC6Akhwso628bsoaaY3S7vajAJQHT81z8UmgyFInKWTPb/6urG8++aCSdhajxElCWwvS7I36X66XueP0q9S+iS05a9981p4LPouiFhOhajWCGW4I6btvwh5Z3SRr3DM24rCZgM5WRxj8H5T8z1r4T6kpaHWlfa1RgLStsXICoAlbv8lSJylkz2//F4DSyMM3Eg7hfwV/lt8HANi5qLTik8n/JFaxud3WRjX8rJWEN+P424fgFzuv0s44ksH8Z4wkBPvYb7nlFusq7e90dWFMu/QxW6b+V3y1PGsQUjrdloe/BQDIXfppaxt6+w27NkR/7NkKAMjPWQKgPAnY+Hzkjy/IVdqpLq192qFn2ZKSs3wm+uaZCYhsqTfJ33/i7X8AALxwxwWV52j0W8k0SeLmsVjo/+0HovUtpw52qbJ5uTJ8iKUVZ31Ua+2kmaBka8csq+7XYfSxp+V/BSwxGzpXWju3+dffBABkJf9tcPF/UPJ/j1wLFQA6C3sBVPKfZI+jdYtdpt7NZyM+VvDf0hfy95942zMAgOcl/33cyKTg/46D0TlN6duqyubHzbD0KGxiUpKY03Dgv8AQ+Nh5lXbGkQzmP2MkoaZrnnq/0I7tvjK53l0AgKK0NPR9LovIVB/oddSiBEZlfSKFL2WweVzXvtfkGqr6Ah6xPmV9JGNMtvJ9zc1JHElQayVNSHuudkeyKsbWl1qoJVxqGV/7rkRfQGXKAmqjEMB/X8zG7P9bcg3Vd2kLeJhIoqBx7QdKsYSisY5rrWI1teR/2njXkFrsDAaDwRgZqKkqJuSL1Ch9gvmx00r1cuVfdmVJGD5B13HL6hjpUnWohQGMREfQrF1XvykxkZ6gybUAAFnqZ//v5Wrb7z99MgCgKJcBrLCILD5XE1aVjew7zRPobZ0EAOiX/toxT96tyhbP/6uorDx41qjT1rc7KqeNkJKoJMx9IT78JP7O4aiYcSoWHCmdGyz8R85u2RYt6hJzMZqQOmoETBulXzuTH5CHb60oa8JMTKf/bXaFLPU/tfBfNJfP+Qi5pz5ukKWekyP13pZOAGH8N+sQ/wsW/tciLhWiCjPrmmVDnwG22BkMBqPOwC92BoPBqDNUHTx1Bo8cU/FpBfLchufVNpJoqTLyd5JgXkgwRpV1ZJH09YECT5SlDgCKRqY6E7QiPQAs/eUGAMC9VywI7m+SgPMBOfRsP9BVtr8gV5IHULHGq1mnqzFyyXRaJj1VExj19dtVx3bPh2N2R108oMPkv7peUk7YsFHj/+wzvMdKw3+f2wuyDzYXkIt75AJqTMn/jz64EQBw14ePt/bXhxA+UfbJ0T1SCkkZVjX+Zw3+HzTqdDVNARDG/xCkddOYdfV9nN2RwWAwjlDUZAUlQtlXxzEVn77yRc1KN2Vd5pcuZJJNoskHRr5rH6iMWsVFs1LivroUKAVKlvr7vx1N4nj0v57u7Gdcv2z7Kc+3CtZtfjn6f37JYoG0VMhyH10YBABsb4os9SlvPgkAyM9/b2xf0lrqZlmznTTSsGEJc6Qqf5NQQLfSc461eEOCzWnuT8YRrLW1T2gI4H/F8TT+k6VO/H9E8j9JH8z9ehniv7ruW9dFvzWLXRj8bytGE57IUp+yMQr2Uq77EPh4miTQapZxjdJCnzG22BkMBqPOMORpe5PIeWg91MK4mQDsKUnNr2DBaNiUdEUNkFarqez/gvyu+dYUDfnqqoRGsEvcbPjAd6P0A49cLddwNdIPu44V2k9bG6Gjm9xzD6q/t877AABgcms0yiHrcmBUdG8aZBInoLRaFu2j60Iz1n2+4hAf4+FMKWDCxn8bYiemaWiU/M+PnxWVHVX5XMXxX00w0ia8kV+fRsvmxCSd/659vhGAyX8zrqDXp20fvGsVAODfr3p31IaF/+ZxzLZCyobUM+9J5g+/UPu2HX8xgBL/zfVidf6TfJr2mfyvFhmwj53BYDCOWNTUx+6D+cW2fc3JUs/teAMAUDz6lLL9Oqi+cwq0pnhRqQSoDCXvsvSF4Jp+rUP537WvNlDyYfosFrLU3/8vUarWhz9+muUI9uOFTA7y7Yvzy74z/yK1bfpApJgpIEo21tccWeOtu94EAGwcdbQqO7G1fJ/IRlc4P36m81i+eIqrzkiAM+7is5Il/xt3vQUA6J9+orUNHb7RJiGfiyx1suLMZ0dHmpGUyX8aGfu6Rpb6Rf8v4spDHz01ti8+1LLs9gWXqL9N/lMKZOL45pYS/ye0lO8j/hcs/E/lJkkAttgZDAajzlATi71avbny1UmfOlnqtoRGGeO3CeXv0wq4rBrfV1OpYDxlVDtmSgRKWeBZpIN8imSpn/etp9W+3/y3M6P6Af2Mi8T74GpX1/EWWmRaYOlbbG6IzpUslaM3PqXKHjju3KhdaamgKxp5QVos1YwmhisEkmn6fVYy8X9AWuq2JGBBqi+gTJVDfyWJw2Qd/LeeoyMliA/Ef7LUL5BqGaCkGDNRKyWWqz3ab+M/vYuamqLFRYj/R2n8Pzg3UpOl4X/wfQ0EW+wMBoNRZ+AXO4PBYNQZDnlKAQXLSkQVbcjfjV2vqG37OucBAFqMdUqrmfKr16WUB4My4EQuGcruqEuX4o6ZZvIRUJJC3ndt5JIaN8q+rmloe67+hEg5k0wAc5XN7d4oN5QuHq1807gzCjTlx0dD2y1RennM7NtUKiv3Hdj0KibMXzzs5I5t7VFfygKirpQCVKBK/tM6vS43kE8i6eNBLfiflvcE4v+PJP/HS/4nccX4JrrFvfBC5JQhzwGBMnoqFw3c/N8WKYYx42Al/3N7t2B/dw86553GckcGg8E40lD1YtYZlKwT3fKgyT+mpFB9zTyBRRP7J85Tf3fsWAsAGJwyv6xMSADLFWjUv7okDVNJv2QhlcNcrlgEQOVCN49jQxKriSz1//IvLwAAfv2xRcHHSVLGhM9SSRKkrSgrB4XFt1aXNp4aWSz5CbOiMjJh1OS2yArJt80q1Zf7ynKYH2K4+C+gTUxDJf9dLA9ZH1gdS+f/zmiq/MDkueXtGXXSTgYj/pvw8T/NBCLfOZOlfv3/fREA8MvrT3G2FzcSSMJTnxQ7SXuu0ZnY8HKpsLTYyRrPyOs6sVXyX5NR0r7C2OkoZMMWUQ9+u95xxx3o6OhQPzNm2BeRZTDqEcx/xkhCsI/dZrHMmDHDueYpIeQLjRRlsgf2AAAKUjblm7JdjU8tpI1q68e1e/4/rQQAPHbjGRVtua5ZiI8xSb9D/PFxfdJBU7O3FiKrb0JLNHhsefV3UYEp71ZlCx1RIqfe5x5F53uuOCw+dhf/9RhTWis5TZmskTgsCb/SyGhtfYrjU7XSPWrvAiNxWJIRgQ9J+p3m2fG1R/x/Ox/xf3JbxP/mtRH/M5Nnq7L5cUcBAHKvPoX9PQeCnoFgV0xzczOam5tDizMYdQXmP2MkoaaqmCT+7ZAvf0jHaNGMQkYm6bF0opZfW5tVlnnihwCA7YuvAgBMas1Z69qQ5Jr9dO1OAMCfTStZjvmO6db2Qs41zb0xETIySqIg8PV7OCYBc6rC5O+QZFpJUHF9DP7bJtal4USiusvvAwDsWPRnAICJLeH8N4/j69PPPPxPM2qu9Sg0rk7akYZ+zP2BzwCrYhgMBqPOUHVKAZfFlsQSo32ULL85G/3OeNJ/hvQndF9a/znt23F6ZKlPlQmD8pjuqFH5FQ+ZZk8gS2Vb4xS1bZKjThIfe4iqIYmCIE6FZGsnY/xOcs+HC2z9DElnQUX6Df7b9O0V11jp5eP74kISDtr27ZSW+pS+aIm5fIs7sJzmXlIdG/8nBvTTdewQ3lcbJ9DbTTsiyDj+9oEtdgaDwagz8IudwWAw6gxDt+apY59vONIsIz/CaMkasKT/Zd5196T7yrohCHFT0D4KFuUpE5ycUGBOYAo5ng8UKNLdLwNyJN5krFKUJlBm215NACjNMNYnVx2OLpk4V2SI6422NRn8t2UqragvMyuShVaw1HEdz4Y0AcUS/yMXDEn5iqMqg3tpJIYE4v9EbZst1YGrjVpIUENk1SE8reYZCQFb7AwGg1FnqInFnibooK/JqOo40gyEyO/SWHUh/Q6RApr/F6Wlnut+R+3raYnsbAoQj20O/6b6riVZ6rv7ohXXJ2SjAFN2oDfqy+iSfUPWHP2uWIvUkhrCdZ0JNosliTQyZEQw1NZNtbD1L1Y2qPPfIhIA7FZ3nCjBZ6m74LsvSSx4AlnquZ4daltvSyeAEv87muznHNJPvQ5xeF9/dD3HIRotZwajbFo2/pvt0TWrRgbqq+8bpZnwcV146plgi53BYDDqDIdszVOCSq5VKK2TSBaiba3QOIT4MOO+pEkmCSVBb2vJG97eG0kh6VyLzZMTH8dnJZClvnUwuoa5bDRLUvdHkvTOnCxTsmTKE7fZ+pdEVhZSNomffzj62ENB52Plv4wT6ev02uoC4SPWNPI/LyxpuOOORVY6AIzu2VpWP980NfzQxvFsIEt9W0EmMctGv6doZVyWOfGfjqNnBE8iDU4jIw6RPev1We7IYDAYRyhqarGHWMtqynNDKT2oiuTH1LXtq8a6r9Z3G2dJ9OdLLY+msptl6s75kxO374vEk0+dLPXXd0c+xkmtoyvKEkrXXVpjyior0SKNlRxiYcVZnnHbhgvi/J7medr4H2LZJUUSS9J3zVU7lvhXXL/L+E/1t0ZphzHGbbG7Ylc+kE+dLPU3d0cLhkzW+E+oiGWIfPn+AP6HjPZDtiex7pOALXYGg8GoM1RtscdZUxVfIouvzpx2nUSJYqJaf3ktfcljnrxb/V244K+isvPDfYsEn8WllDgy+k8+dbLU711dUuZcf1L5KKGUMIrkMdmyNm2o5t6EKIrStHu4EeI79SmPXAgZvSRRYlTUkX3JBKig0sQ5dP7nJf99lrrrmD6Y/CefOlnqyzT+Xyf5X9GuEdtI6ylIY327nu1q+c8WO4PBYNQZ+MXOYDAYdYYhlztWBP4Go6BGkun2Omo1ESlqrNItlKQtV1+UtO38v1LbcnKaNYxp1mmG27bzMfN+Uxu6+6Vbzr9ul7M60uQK9w3x0wSAXGXSTHobTnCel+Q/NP7HuT9s+1z/+1wmcXzV94WUjauj879R8l9Y0gy4+uAqY3sGXakUrtP432PwP2/UScL/EJeMWcdWJu56m/V5ghKDwWAcoQi22F2rtOtfGNuX1NxXtFjqSQKizqBUzHZbn4QlWBgiBXOhQkalT3SQlkrGSJBUKyvBtL5tIEvlgDRVWjODsqPlE8NCRiU21DKwHWIJHUq4+K8jZCIRWer6dluyL72M6xlzlYmDOnaAhNG3Pc7a9PGf/q8mQGyDr0/E/4PyYWnJRGk4SN6Y5BzTyB19ZUKfr5pPUOJV2hlHMpj/jJGE4DVPXau0v6Ot+ZhospCWBKkgvy8u2aPP/+Y6ZhqJke/YSXxqhKwlCdjo/t0AgGLbBGuffO35LGqzrs3nqLYVo+nsuwejKWGUjmBXMZrcNG5USBLk+L74yrrgO8fQ9R6HAiH81xF7LTT+x0kfQ6zCEEsytG++9kJGJbQ9a0kC1ta/FwBQbB3n7G+cdWzrg8l3W7vkU2+QE5L2DkbXndIR7BItAIDxFv7HXW/zWL66NoTGPUKfgWBXDK/SzjiSwfxnjCQMiyRgBTkN2LbCehySfNVNJFF4pIEtCdj2pmjb+BTthYwazDQBApaJYNKnPqEQWSqUOOyofNTHwqjSmq1JfItmX8w2bHBNgBkpChiBZNekYOF/Phfxv8FowDdZxTehxfa/rX+JrrVFQRY3mrUlAetqiqYQdSIcISM9enco/lOaAG3ykXq/SJ/6OPQAKCUOm94f9bEwquRmizvHkJGGraxZx/W/2W7NfewMBoPBGBmoSUqBJD5qshqLWhKknLCXdR3PVsZnUSaxCtP4t10WT1vfbvV3V2NkqU9580kAQH7+e53HS6N0UBYVfasD0qzulj51stSXd3cAAJZ0hPcpZGSUVjkQ1+5wgG5F+fzP9NvKf6PNJIqLkNFoEkvdWTZAQWaijP/SUp+ycTkAoDD3Pc7+mtuSPNu+PpllyKdOlvry3sjvv2RcfBvm8W370vA2icfBB7bYGQwGo85QtcXu09jGlSco5Yb0OxaycoHeTGUd0wJKYrGkGRGk8fVSXV35Qj5FstRzzz0IAHhn/kXR/pZ4JYp31JAxFsmQfkTbudI2Ur+QT50s9Yde36PKXjYx8sMXOkp+d/24If30XXdXmSSW4XBGkniDyX/yuadVTLnKqLZSzLwuq+9ol1Cw8V9a6tk//AIAsH3BJdF+jf9x8QMf1DXz8J8wXvE/8qmTpe7jf4iPPQTVxKFCwBY7g8Fg1Bn4xc5gMBh1hprmYw+ZSOQLCGX1ldvhH+olad9VJ4nrKEkfQlwPW+d9AAAwfUBKDFumW0qHtxfqotLLuP6n4ScAbGmMkihRKiUl17McIG/sSyNB9WE4BlHj5I5JeEmukRCexg37fVxRbXgCoiGuSFdZn8uQsO34iwH4+e/qQ9r3TFwdgs7/bY1R0JfWOTD5r9d1PRtJ+pRE0OEDW+wMBoNRZzjkaXttXy9VRkrAzK9Nmi9WSCAjiSUZImlL8tWd3Bpd+gIiS4WSIwGVCcJC5F6u49gQ1289UEqW+kEjcZgZ4AZKk8+A8qBcmnsxHK1zG5IGz2wcUX9L/lMY0ZYWwnWMJME4W4DaRBJOx1nutmOZ/M8e3Kf2FVvK9bYhXEjCm7hnRuc/Wep9lDgsG/0uiMo0KOpPY5Wsat8zacAWO4PBYNQZamqxJ7EkvZavlH3lpVVopjO1tVeNhZdIImbZl+Yrm5MWSl9zZJ00NzQF9cdEnDQsxKL0WTtkNZKl3l2MKNOejayS/kKpVpO6UeX2gtdK9fTX1c/hBJcVFscN7z2mdAPZ8nTKtvZC5KImahX7qOYcs3KE2t8UjU6bmlqC2/UdI83z6jse8Z8s9W6ZqaC9IeL/QLHE9Sb1Zzn/Q3gbKvcNfQbYYmcwGIw6w5D52NNYsXF+p6Ttudo5VJafzy85MCqy1Ft3vQkA2NxytCozpaG8bJyKpVr4rB6K8JNPnSz1jd3RIgXvHtisyuY7Z0dlyTcsEzGJbCXNkviERwpqHddJgiQWug+usrV+dgabI0vdxv+pbeHHdvXX5+dPcj0U/6VPnSz1Ev83qLLEfzM9MCz8r2a0HwK22BkMBqPOUJOUAkki5+Z26z6ZVjZjaTBUtxqiKU6jMvFZWklUMQ1ysYuNoyJL5eiNT6l9lHbA1UYSrWs1/kkdFP0nnzpZ6k/1lVITL4lpJ4mO11Z2OCpl4vgfYh26+E9WV4ifOOT6JbkvSUYf5v8h1jLxnyz1ozz8T8ObNM+/731A/CefOlnqNv7HHfdQgC12BoPBqDPwi53BYDDqDMGuGNcq7QLpXDDeoZ6Ue+VogkvG3c00EzPSyL2SDKlDyuQGDgIAJrZGQdQDx52ryrgWYPMNFUOG2WnkaRQIoslHJGmkQJE+/OwejAJL7RT8LZYHj3zXOY3L4lAiKf8JSVyRapvkf4aumyf7YhJJYBohQxIJY8g9VK6SwT4AwISWKIh6cG7J/dIY0I7rmEn6G/I+ICEA7SNJYwj/YaRISYJDNkGJV2lnHMlg/jNGEjJCiKCPg2uV9i7HKu1pLHbTYlF5ojW5UJLgZhyG2mL39YUsgVFS7iWypXzU+fEzrccKGRmFBILiAm3W62Hk7qb+l0kjUS4Fo/lK09sb4UKSoF/oCu1DAR//O2Rf0twfW9nSBKVKiz3Oig0RBPjaCg0w2uonCRLmPfwvSP4numaOvtjKxvUzhP95ywFc/D/Kw3/zmHGB7NBnINgVw6u0M45kMP8ZIwlDngSMkETqI6Tci/y6Nn9RnLWQxnJPC9cEIp/VROemLJWuN0r9kRaLq66v3VrIBa3tG35etQq8Xk/61HOZ6Jw27YssXLJYQiaLHE4/elqksSS99zDXhKRw8UA/VhJppAsh0siQ0aKP/3CMWJP43JMgaDRu8L/Bwn+y6nOZqCUf/02EjkpC7xWrYhgMBqPOUNMJSjpC/Le+NgFtRXetEvl2KTqdxA/ns2pC++TzMSaxfBopuk7WuWalN+zeGLUnwx+DE2Ylbj8JQvyoFWUs06TJJzy9PfqXLJUtPZXWzfTRxpqUtMiETQFShbpgqOGaoBTHrRAeURmd/3n5T7ORGS8kthL6v6sds2wc/33XgPhfsPF/1wbZQHTfB6UCxXUc37GSXAcbnM+GRelFOMrBfz3F79Q24/kxfPgZz74QsMXOYDAYdYaa+NhtX3eXBZFGp5xDyWJTiaVQ7odM4odOYoUI43cSlUmIT83aR/llLr61OvpfWuxp/Oe+EYyrThIrJ0nZNe/0qL+njx5bXtawRjKWfUM1YqkKopjKrxvCT/qtG+c5DMq/ylP6VqvXVmUN6zDkfodoyM3nyETZaEf63cWGl6MN0mJP8lzVKsYW117I+4wsdZ3/U2ePLW/XsyiHbqmHnhdb7AwGg1Fn4Bc7g8Fg1Blq4opJMwzUERuo0YfplPkxpk++IYvPPZQm6BUSlDHL+q5Hfpyc1Xhq9JtWm6G1UOP6pbebSGZq2ZZkEorrXlOgVHe/HMiXBwEpKE5BNT1gSjLK4SiFFJlssqCzpayzbaMugAopMLlp0nDQGvR1uMRqLTTwXQfF/3Hl/BcW/ifpX2jZEFdnEjcrBUrJ/QIAByXhG6WfxhSMqHQcQMktxsFTBoPBOHIxZBOUXFZxEjmi+vJpXy+S2ZGF12BYLD4rPEmA0dVHW72Q4JG5zWexNO6MplnnZdB0a6EVADDVUyek3dAgWrVBypBRGlnqb3dHwUCShtG5908oSdyyNEor9mC4wTV5JI5zIZI9G/99MjtX+yEBSxdCgrPV9MEGxf/xUa72t/MR/6dbyrpGKiGjhjR9i2vLB/04ZKlvMfm/43UAQH/nHFVWWfGiWApux4AtdgaDwagzDLnc0Sxj2x/nYx/UukkiR1qBRTh87iGTLpJYI0ksYF8ds66tLFkqmf7IQqXUpq66vmOF+AtD+h3ia3feY2ll6D5CGnGRpXIwL6djjzsKQPlkDgXbpKhhgCT8TzNyLWhpqxvUb3lNEe4Tr2ZkFsKJNDJi237F/4EDAIDJbeVJ1kIkhiHy5Lg2bGWTxEhM/sOSzI343y8fiJwcpdv4LzLZYD87W+wMBoNRZ6jaBEqiIgGSRcwJTZbPTyFbvi6krz9JLGmzTIh1UAtLXd++JTJUlKXSsvZ3AEprQSYZ7fjgqptKueTZZ0sTQOoX8qeSpb5iWzQSWzy9NAFNTdApWhIvHWYIJFNmJFGH0f85h/WWtH2zjO3/NOdi1k1Sx7a9K1qDBhNbI/43S/4XJP9DnnFbu3FlQu5JqlGOZYIdWeTkUydLfcXWaAGS06ePVmV1/mcCnwG22BkMBqPOUNMkYGnVGrHWgUUVo9LGZuwqgSDfb4K+JLFG0rSvY2bfJgBAvm1WtGHKu8vaTTLaSaKtdrXp2ubbHltW+h1J/UIWDFnqpBYAtGRKB4afkj3u/NPEfirasPDftexgGks9ybOS1m8eEmMgzDgo+d8ife2TZ3tK+4/tO47vWXGVTTOCtz638v6R+oX4T5b62zb+9wr0BD4DbLEzGAxGnYFf7AwGg1FnCHbFuFZpB5JJodJMeBiwyB1pm7miecgEHVRZxoWQ4V/IeZtyx0LH1LL9viFukuucZviaCha5Iw1Fs8ZqQbZ1IkkKObE1fu3IoUK1/De3BwWd5W8b/0kCmUQ8EOKKS8L/uMBi2qCsKXfMy8B6mndHiJupVtfDLOOTO9LfpqzRxn+SQk4b3Yj9xbBnINhi51XaGUcymP+MkYSMECLIQHOt0v5OV5d1tew0AbokAZa4JEhpJiakLetCmkALUFpBhiyV3KtPRf9LuZftGGmCO4kmWTjq+CwiX1uqL0YQkALlb/eWWpvUFlkpT67fhktPeXfsCu1DAR//22Vf0l77aq5xNVJbX50QXtXiGbchJ1cQK4yNkgiY/E/brqu/qSSMAQjyEBijWXoeNmn8nzY64v+zW3rQ29Md9AwEu2LMVdrpe9Dd3W0tzy/2Kl7s3ZELJp+Lhvu5Hjkk1Yb/5jHq7cXerUX/RxUiYh/oibgWaIvUFD7+V3vt+cVejpzkfyFr5/+R8GLX1S/kfunt6Q1+BlLLHemFPueYY9I2wWCkQnd3Nzo6Og57HwDmP+PwIO4ZCHbFmCgWi1i3bh3mz5+PzZs313RoTMPckdDuSOrrSG+3vb0d3d3dmDZtGrLZwyvoYv5zu0Pdpq1dIUTQM5DaYs9ms5g+PfKBjRkzZkh8niOp3ZHU15Hc7uG21AnMf273ULVpthvyDLCOncFgMOoM/GJnMBiMOkNVL/bm5mbcfPPNZWqBWmAktTuS+srt1hYj7Zy53aFrd7j1NXXwlMFgMBjDE+yKYTAYjDoDv9gZDAajzsAvdgaDwagz8IudwWAw6gz8YmcwGIw6A7/YGQwGo87AL3YGg8GoM/CLncFgMOoM/x9BkuXBsVz2WQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -541,7 +541,7 @@ { "data": { "text/plain": [ - "5.132369908274389" + "5.41561627027977" ] }, "execution_count": 21, @@ -626,7 +626,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Plotting at 16 steps: 5, 101, 198, 295, 392, ...\n" + "Plotting at 16 steps: 5, 184, 364, 544, 723, ...\n" ] } ], @@ -647,7 +647,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 16/16 [15:54<00:00, 59.66s/it]\n" + "100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 16/16 [19:55<00:00, 74.72s/it]\n" ] } ], @@ -681,7 +681,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVQAAAC+CAYAAABqOvflAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAltElEQVR4nO3de1xUZf4H8M8wd4ZhQAaFUcQrkeINUNMspFKJ1NI1TS2xXF+1ibJr7lq5Ru7LVu1i7f4qc63QbdusLTPLsrDQvJWKN5BQVG6KiNwGhoG5Pr8/hjkycnFGD86F7/v1mhfMmWdmvucAH855zpnnETDGGAghhNwyP3cXQAghvoIClRBCeEKBSgghPKFAJYQQnlCgEkIITyhQCSGEJxSohBDCEwpUQgjhicjdBdwKq9WKsrIyKJVKCAQCd5dDCPFBjDHU19dDo9HAz6/jfVCvDtSysjJERES4uwxCSBdQWlqKXr16ddjGqwNVqVQCsK1oYGCgm6shhPiiuro6REREcHnTEa8OVPthfmBgIAUqIaRTOdOtSCelCCGEJ169h2rX0NAAoVDYarlQKIRMJnNo1x4/Pz/I5fKbaqvX69HeoF0CgQD+/v431baxsRFWq7XdOhQKxU21bWpqgsVi4aWtv78/95/bYDDAbDbz0lYul3MnAIxGI0wmEy9tZTIZ97viSluTyQSj0dhuW6lUCpFI5HJbs9kMg8HQbluJRAKxWOxyW4vFgqampnbbisViSCQSl9tarVY0Njby0lYkEkEqlQKwnfjR6/W8tHXl796Zth09vxXmxbRaLQPQ7i05Odmhvb+/f7ttExISHNqq1ep228bHxzu0jYyMbLftoEGDHNoOGjSo3baRkZEObePj49ttq1arHdomJCS029bf39+hbXJycofbraUZM2Z02Fan03FtU1JSOmxbUVHBtX322Wc7bFtYWMi1XbZsWYdtc3Nzubbp6ekdtj18+DDX9tVXX+2wbVZWFtf27bff7rDtN998w7XNyMjosO1nn33Gtf3ss886bJuRkcG1/eabbzps+/bbb3Nts7KyOmz76quvcm0PHz7cYdv09HSubW5ubodtly1bxrUtLCzssO2zzz7Lta2oqOiwbUpKCtdWp9N12HbGjBkOv8MdtXUlI7RaLbsROuQnhBCeCJoT3CvV1dVBpVKhrKyszZNSdMjfdls65KdDfjrkd75tXV0dNBoNtFrtDU9++0SgOrOihBByM1zJGTrkJ4QQnlCgEkIITyhQCSGEJxSohBDCEwpUQgjhCQUqIYTwhAKVEEJ44hOf5SeEEL5V6gzIuaTFkTOXnH4OBSohpMuzh2fuRS1yLtlul7W2T49ZDe1/Kut6FKiEkC6lo/BsSSAA+qoViAoOxEYnX5sClRDis64Pz9xLWpR1EJ5Deqq42+CeKgRIRairq8PGBc69HwUqIcQtGGOoN5hRWW9Apc6IKp0B1XojjGYrzBYGo8X21WSxwmS1wmRmMFuttvvNy6+1u7bMZLHCbGW4Wm/ocM+zrfC8VRSohBDeWKwM1Q1GVOoMqNLZvtpu9mXXwrOywRaenen68IzpqcJgTSCUMnGnvB8FKiHEgcliRX2TGXWNJtvXJhPqm0yoa7XMbFveaOZCtFpvhKvj1wVIRVAHSBASIEWwvwQysR/EQj+IhQKIhH6QCP0g8hNALPKD2E8AsdAPoubHbe38IBIKbO24ZQIoZWJEhyk7LTzbQoFKiA8zmq2o1Blwtd6Ainrb16v1BlzVNaFG3zIUrwVlk+nW9hoFAqCbvwQhARKoA6QICZBC3fy9uo1lMnHr6Yu8FQUqIV7GamWobTQ5hGNFnf37lqFpQK2+/QG0b0QhEUIpEyNQLoJSJoZSJkKg/avc9lUpEyNQJkI3hT0oJejmL4FI2DU/M0SB2gkYYyiva0JYoMypqWcJaQ9jDEVVeuw/V4kDBZU4ebEWV+sNMFudP64W+QkQqpSiu1KKUPstQIogfwkXjPagVDXfD5CKumwo3goK1E6w8ecLWPtdPh6MCcO6GUMReBv7cIj3u1pvwMHzlThwrhIHzlXhUm3b04gE+4ubg1LmEJSh1wWnSi6Gnx/9Y78dKFA7QWbeFQDAd7nlOF1Wh3fmxGJIL5WbqyKeqsFgxuHCatte6LlK5JfXOzwuEfohLjIY4waqMbpvN/QMliNEIYVERHuQnoYClWdNJgtyLmoBAKFKKUqq9fjdhoP46+Q78cRdkdQFQGCyWHHqYi32F1ThwLlKHCupaXUIP1gTiHED1Lh7gBoj+3SDXOI7J258GQUqz3IuaWG0WBGqlGL3nxKw7POTyMy7gpe+Oo1fL1Rjze+GUBdAF8MYw7kKHbcH+suFaugMjjO+9gqW456BtgAd0y8EIQFSN1VLbgUFKs+OFFUDAOIjg6HyF+NfT8ThwwNFWPPtb9iZcxm5ZVq8MycWMT2pC8CX1eqN2FdQiZ/PXsXPBVdxpc5x+ucgfzHu7m8L0HED1Ogd4t/OKxFvQoHKs+yiGgBAfJ9uAACBQIAF4/oitncQUv97HMVVekx/9yBWTr4Tj1MXgM+wWBlOXazF3rNXsffsVZwsrUXLo3ipyA+j+nbjAnRQeCCdKPJBFKg8sloZjhbbAnVkn2CHx0b0DsbOJeOw7H+nsPu3K1j51Wn8UliNtdOH3NZPchD+VNQ34eezldh79ir2FVxtdc3nHT2USLgjFPcODEV8n2CfuoCdtI0ClUfnruqgbTRBLhbizvDAVo8H+UuwaV4cPthfiLXf5WPnqcvIvURdAN7CZLEiu7jGthd65iryLtc5PK6UiXDPQDUSokJxb1QowlVyN1VK3IUClUf2/tMRvYMgbueiaIFAgN/f0w+xkcFY3LILYMogPD66N3UBeJjSaj1+LrAF6MHzVa1OJg3tpUJCVCgSokIxPCKILobv4lwKVK1Wiy+//BL79u1DUVER9Ho9QkNDMWLECEyaNAljx47trDq9wvX9px2J5boATmL3bxVYuT0Xv16owhrqArjtGo0WXNY2olzbhMvaJpTXNeFSbSN+vVCF81cbHNqGKCS4tzlAxw1UQ01n40kLTgXq5cuX8dJLL+Hjjz9GWFgYRo0aheHDh0Mul6O6uhpZWVl4/fXXERkZifT0dMyaNcvlQtasWYMXX3wRaWlpeOutt1x+vic4UmzbQ72+/7Q9ti6AeK4L4Bt7F8DcWAzWUBcAH+qbTNeCkgvMRof72sb2P+/uJ7D980uICkXCHaGI0ajoZBJpl1OBOmzYMMybNw+HDx9GTExMm20aGxuxfft2rF+/HqWlpVi2bJnTRRw5cgT/+te/MHToUKef42mu1DWhtLoRfgLbCShn2bsARvQOxuL/HkNRlR7T3j2I9CmDMGcUdQEAtus4DWbbkHI6gxm6JjPqDbbRkXT2ZQbbSEnVOiPK664F6PWH6O3xlwgRrpIhXCVHmEqGsEAZBmkCcXd/NVT+dMRAnONUoJ4+fRqhoaEdtpHL5Zg9ezZmz56Nq1evOl2ATqfD3LlzsWnTJqxevdrp53mao82H+3eGB97UyN9xkcH4Nu0ePPfZSfyYX4EVX+bilwvV+Pu0GLd3AdQ1mXC2vB5nrtRzX89V6GCyMIiFfpA0j1tpH59SIro2nqXYPp5li+/FQj+IRdfuQ4BrwdhkRr3B3ByeJm65yeLiIJstBMpEXFCGq2Qtvsq5+0qpiP55kVvm1F9+aGgotm/fjilTpkAovPGlHzcK35YWLVqEhx56CA888IBXB6r9hNRIJ/pP2xPkL8H7KfF4f18h1u3Kx9cny5B7SYu3Zg3HYE1gp5/waDJZcK5Ch7NXbKF5ptwWoG3NweMOAgEQIBEhoHk0JPvXQJmYux8kFyM86FpQhgXKoOBhagtCnOH0b9qMGTOgVquRkpKCJ598EtHR0bf85lu3bsWxY8dw5MgRp9obDAYYDNc+cVJXV9dB69vraHP/aVyk84f7bREIBFh4r/0qgGMorGzAw+8cAGC7LCfYX4JghQTB/mIE+0sQ1Pw12F+MIH/JtWXNbeRiYas9L7PFiuJqPc6UN4dmc4AWVTagvVHhwlUyRPVQIjpMiagetptcIrTN8WO2zetjcrhdm9+n5eP2OYBatrNaGReOtqHjmoeQk4mgbBGcComI+i+JR3M6UEtKSpCRkYEtW7bg9ddfx5gxY7BgwQLMnDkTCoXC5TcuLS1FWloafvjhB8hkMqees2bNGqxatcrl9+psOoMZeWW2cI938oTUjcRFBmPnknvwwrYcfJ9XDsbQPLq6GSXVzs8TLhX5OQSvttGEc1d17c7lE+Qvxh09lLijOTijw5QY2EMJlZz6EQm5EQFjrs4AA+zduxcffvghtm3bBoFAgJkzZ2LBggUYM2aM06+xfft2TJs2zaELwWKxQCAQwM/PDwaDoVX3Qlt7qBEREdBqtQgMbH0h/e2yv6ASj3/wK3oFy7F/+X28v77ZYoW20YQavQm1eiNq9CbU6I3c97V6I6objA6P1+qNHfY7ysVCRPUI4ILzjjAl7uihRKhSSn2JhLRQV1cHlUrlVM7cVOdSQkICEhIS8M4772Dr1q3IyMjAuHHjEB0djdOnTzv1Gvfffz9ycnIcltm7EpYvX95mX61UKoVU6nnX/bUcEKUziIR+CGmeh8dZjDE0GC2oaTCitjmAa/RGyMVCRIcFolewnA6fCeHZLfXWBwQEIDExEUVFRcjPz8fZs2edfq5SqWx1CZZCoUBISEi7l2Z5Knv/qTMX9N8uAoHAdqJGKkKE55RFiE+7qdPGer0eW7ZsQUJCAqKiovDpp59i6dKlKCoq4rk8z2e2WHG8pBbArZ3hJ4R4P5f2UA8cOIAPP/wQ//vf/2A2mzF9+nTs3r0biYmJvBSzZ88eXl7ndvrtcj30RgsCZSIM7B7g7nIIIW7kdKBGRUXh/PnzGDFiBNatW4c5c+ZApaKPR9r7T+Mig6lPkpAuzulATUpKwoIFCzBs2LDOrMfrZBc7PyAKIcS3OR2o//znP7nvzWYz9uzZg/Pnz2POnDlQKpUoKytDYGAgAgK6zmEvY4yXT0gRQnyDy2f5i4uLkZSUhJKSEhgMBkyYMAFKpRKvvvoqmpqa8N5773VGnR6ptLoRFfUGiIUCDKVpognp8lw+y5+Wlob4+HjU1NRALr82Ivm0adPw448/8lqcp7PvnQ7pqaLpLQghru+h7t+/HwcOHIBEInFYHhkZiUuXLvFWmDe4Nn8UHe4TQm5iD9VqtcJisbRafvHiRSiVSl6K8hZHi/gZEIUQ4htcDtQJEyY4jKgvEAig0+mQnp6O5ORkPmvzaLV6IwoqdAAoUAkhNi4f8r/55ptITEzEoEGD0NTUhDlz5qCgoABqtRqffPJJZ9TokeyXS/UPVbj0GXtCiO9yOVA1Gg1OnDiBrVu3Ijs7G1arFQsWLMDcuXMdTlL5uiP2Cfkiqf+UEGJzU4OjyOVyPPnkk3jyySf5rsdr2PtP+Rr/lBDi/ZzqQz106JDTL9jQ0OD0EH7eqslkwamLWgB0hp8Qco1TgTpv3jxMmDABn332GXQ6XZtt8vLy8OKLL2LAgAE4duwYr0V6mtxLWhgtVqgDpIgM8Xd3OYQQD+HUIX9eXh42btyIl156CXPnzkVUVBQ0Gg1kMhlqamqQn5+PhoYGTJ8+HZmZmV43nqmrrvWfBtPo9oQQjlOBKhaLkZqaitTUVBw7dgz79u1DUVERGhsbMWzYMPzpT39CYmIiunXrGoe/1H9KCGmLyyelYmNjERsb2xm1eAWrlSG7hD4hRQhprXMnevdB56/qUKs3QS4WYpDGfRMDEkI8DwWqi+z9p8MjgiAW0uYjhFxDieAi+4R8I6n/lBByHQpUFx1t3kONo/5TQsh1KFBdUFHXhJJqPfwEQGzvIHeXQwjxME4HanJyMrRaLXf/lVdeQW1tLXe/qqoKgwYN4rU4T2Mf/zQ6LBBKmdjN1RBCPI3Tgfr999/DYDBw99etW4fq6mruvtlsxpkzZ/itzsNcmz+K+k8JIa05HaiMsQ7vdwXUf0oI6Qj1oTqpwWBG3uU6ALSHSghpm9OBKhAIWn1uvSt9jv1EaS0sVoaeQXKEq7rOuK+EEOc5/dFTxhjmz58PqdQ2On1TUxOeeeYZKBQKAHDoX/VFR+jz+4SQG3A6UFNSUhzuP/74463azJs379Yr8lD2/tN46j8lhLTD6UDNyMjozDo8mtlixXFuQBTaQyWEtM2l0aaKi4vxww8/wGQyYfz48T5/3aldfnk9GowWKGUiRHXvWlNlE0Kc53Sg/vzzz0hOToZer7c9USTCli1bMHv27E4rzlPY+0/jIoPh59d1TsQRQlzj9Fn+lStXIjExERcvXkRVVRWeeuop/OUvf+nM2jyGvf+Uxj8lhHTE6UDNycnBmjVroNFoEBwcjDfeeANlZWWoqanpzPrcjjHGjTAVH0n9p4SQ9jkdqLW1tejevTt3X6FQwN/f3+Hz/L7oYk0jrtQZIBYKMCwiyN3lEEI8mEsnpfLy8lBeXs7dZ4zht99+Q319Pbds6NCh/FXnAez9pzE9VZCJhW6uhhDiyVwK1Pvvv7/VZ/gnT54MgUAAxhgEAgEsFguvBbqbfYQp6j8lhNyI04FaWFjI+5uvWbMG27ZtQ35+PuRyOcaOHYt169bhjjvu4P29btbRFmf4CSGkI04HamRkJO9vvnfvXixatAgjR46E2WzGihUrMHHiROTl5XEfaXWnWr0RZ6/oANAJKULIjTl9Uur+++/Htm3b2n28srIS/fr1c+nNd+3ahfnz52Pw4MEYNmwYMjIyUFJSguzsbJdep7Mca/50VL9QBUICpG6uhhDi6ZwO1KysLMycORPp6eltPm6xWFBcXHxLxdhnBOjWre3+SoPBgLq6OodbZ7LPcEp7p4QQZ7g0HuqGDRvwj3/8A9OmTYNOp+O1EMYYli5dinHjxiEmJqbNNmvWrIFKpeJuERERvNZwvaPcCFN0QooQcmMuBerDDz+MQ4cOIS8vD2PGjMGFCxd4KyQ1NRWnTp3CJ5980m6bF154AVqtlruVlpby9v7XM5gtOHnRtsdMZ/gJIc5wecT+O++8E4cPH0ZERARGjhyJ3bt333IRixcvxo4dO5CVlYVevXq1204qlSIwMNDh1llyL2lhNFuhDpCgT4h/p70PIcR33NQUKCqVCjt37sTChQuRnJyMN99886benDGG1NRUbNu2DT/99BP69u17U6/TGez9p3GRwV1qZgJCyM1z+rKptqY/Wbt2LUaMGIEFCxbgp59+cvnNFy1ahP/+97/46quvoFQquU9hqVQqyOXunWbkKDfDKR3uE0Kcc9OzntrNmjUL+/fvR05OjstvvmHDBmi1WowfPx7h4eHc7dNPP3X5tfhktTJkF9MI/YQQ1zi9h5qVldXu5UzDhw9HdnY2du7c6dKbe+pU1BcqdajRmyAT+2GwpvP6aQkhvsXpQE1ISOjw8ZCQEJ+ZU8refzo8IghiIc20TQhxDqVFG45Q/ykh5CZQoLbB3n9KA6IQQlxBgXqdiromFFfpIRAAsRSohBAXUKBexz7+aXRYIAJlYjdXQwjxJhSo17k2IR/tnRJCXEOBeh37hHzUf0oIcRUFagsNBjNOl9mGBKQz/IQQV1GgtnCytBYWK0PPIDk0Qe796CshxPtQoLbQckAUQghxFQVqC/b+UzohRQi5GRSozcwWK47RgCiEkFtAgdosu7gGDUYLlFIRonoo3V0OIcQLUaAC+Dz7Ip7cfAQAcPcANYR+NKA0IcR1To825Yt0BjNe2p6LbccvAQDG9AvB3x4Z7OaqCCHeqssGau4lLRZ/chyFlQ3wEwB/eiAKzyYOoL1TQshN63KByhjD5oNFWPNtPowWK8JVMvxz9gi6kJ8Qcsu6VKDWNBjx589PYvdvFQCACYN64LUZQxHkL3FzZYQQX9BlAvXXC1VI23oC5XVNkAj9sOKhOzFvTCTNaEoI4Y3PB6rFyvD2T+fwjx/PwsqAfmoF/m/OCAzWqNxdGiHEx/h0oJZrm5C29Th+LbR9Aup3sb3wt4cHQyH16dUmhLiJzybLT/lXsOx/p1DdYIS/RIjVj8Rgemwvd5dFCPFhPheoRrMVr+7Kx/v7CwEAgzWB+L/ZI9AvNMDNlRFCfJ1PBWpRZQMWf3IcOZe0AID5Y/vgheRoSEVCN1dGCOkKfCZQvzpxCSu+zIXOYEaQvxivzRiGCYN6uLssQkgX4hOBunJ7Dr7KqwUAjOrTDf+YPRzhKhogmhBye/lEoH55vAxCmT8W3zcQS+4bAJGQxnwhhNx+PhGo3ZUS/DNlNMb2V7u7FEJIF+YTgfr5M2PRR0NhSghxL584Nu4WIHV3CYQQ4huBSgghnoAClRBCeOLVfaiMMQBAXV2dmyshhPgqe77Y86YjXh2oVVVVAICIiAg3V0II8XX19fVQqToepc6rA7VbN9so+yUlJTdcUU9VV1eHiIgIlJaWIjAw0N3luIzqdz9vXwdPr58xhvr6emg0mhu29epA9fOzdQGrVCqP/EG4IjAw0KvXgep3P29fB0+u39kdNjopRQghPKFAJYQQnnh1oEqlUqSnp0Mq9d4L+719Hah+9/P2dfD2+lsSMGeuBSCEEHJDXr2HSgghnoQClRBCeEKBSgghPPHqQH333XfRt29fyGQyxMXFYd++fe4uCWvWrMHIkSOhVCrRvXt3PPLIIzhz5oxDm/nz50MgEDjc7rrrLoc2BoMBixcvhlqthkKhwNSpU3Hx4sXbsg4vv/xyq/rCwsK4xxljePnll6HRaCCXyzF+/HicPn3aY+rv06dPq/oFAgEWLVoEwPO2/88//4wpU6ZAo9FAIBBg+/btDo/ztb1ramrwxBNPQKVSQaVS4YknnkBtbW2nr4PJZMLy5csxZMgQKBQKaDQazJs3D2VlZQ6vMX78+FY/l8cee+y2rQMvmJfaunUrE4vFbNOmTSwvL4+lpaUxhULBiouL3VrXpEmTWEZGBsvNzWUnTpxgDz30EOvduzfT6XRcm5SUFJaUlMQuX77M3aqqqhxe55lnnmE9e/ZkmZmZ7NixYywxMZENGzaMmc3mTl+H9PR0NnjwYIf6KioquMfXrl3LlEol++KLL1hOTg6bNWsWCw8PZ3V1dR5Rf0VFhUPtmZmZDADLyspijHne9v/222/ZihUr2BdffMEAsC+//NLhcb62d1JSEouJiWEHDx5kBw8eZDExMWzy5Mmdvg61tbXsgQceYJ9++inLz89nhw4dYqNHj2ZxcXEOr5GQkMAWLlzo8HOpra11aNOZ68AHrw3UUaNGsWeeecZhWXR0NHv++efdVFHbKioqGAC2d+9ebllKSgp7+OGH231ObW0tE4vFbOvWrdyyS5cuMT8/P7Zr167OLJcxZgvUYcOGtfmY1WplYWFhbO3atdyypqYmplKp2HvvvccYc3/910tLS2P9+/dnVquVMebZ2//6MOJre+fl5TEA7JdffuHaHDp0iAFg+fn5nboObTl8+DAD4LADlJCQwNLS0tp9zu1ch5vllYf8RqMR2dnZmDhxosPyiRMn4uDBg26qqm1arW1Ka/u4A3Z79uxB9+7dERUVhYULF6KiooJ7LDs7GyaTyWH9NBoNYmJibtv6FRQUQKPRoG/fvnjsscdw4cIFAEBhYSHKy8sdapNKpUhISOBq84T67YxGI/7zn//gqaeegkAg4JZ7+va342t7Hzp0CCqVCqNHj+ba3HXXXVCpVG75m9FqtRAIBAgKCnJY/vHHH0OtVmPw4MFYtmwZ6uvrucc8bR3a4pWf5a+srITFYkGPHo7TRPfo0QPl5eVuqqo1xhiWLl2KcePGISYmhlv+4IMP4tFHH0VkZCQKCwuxcuVK3HfffcjOzoZUKkV5eTkkEgmCg4MdXu92rd/o0aPx73//G1FRUbhy5QpWr16NsWPH4vTp09z7t7Xti4uLAcDt9be0fft21NbWYv78+dwyT9/+LfG1vcvLy9G9e/dWr9+9e/fbvk5NTU14/vnnMWfOHIfP7s+dOxd9+/ZFWFgYcnNz8cILL+DkyZPIzMwE4Fnr0B6vDFS7lnscgC3Arl/mTqmpqTh16hT279/vsHzWrFnc9zExMYiPj0dkZCR27tyJ6dOnt/t6t2v9HnzwQe77IUOGYMyYMejfvz+2bNnCnby5mW3vjp/PBx98gAcffNBhpCBP3/5t4WN7t9X+dq+TyWTCY489BqvVinfffdfhsYULF3Lfx8TEYODAgYiPj8exY8cQGxsLwDPWoSNeecivVqshFApb/VeqqKho9Z/cXRYvXowdO3YgKysLvXr16rBteHg4IiMjUVBQAAAICwuD0WhETU2NQzt3rZ9CocCQIUNQUFDAne3vaNt7Sv3FxcXYvXs3fv/733fYzpO3P1/bOywsDFeuXGn1+levXr1t62QymTBz5kwUFhYiMzPzhiNLxcbGQiwWO/xc3L0ON+KVgSqRSBAXF8cdCthlZmZi7NixbqrKhjGG1NRUbNu2DT/99BP69u17w+dUVVWhtLQU4eHhAIC4uDiIxWKH9bt8+TJyc3Pdsn4GgwG//fYbwsPDuUOylrUZjUbs3buXq81T6s/IyED37t3x0EMPddjOk7c/X9t7zJgx0Gq1OHz4MNfm119/hVarvS3rZA/TgoIC7N69GyEhITd8zunTp2Eymbifi7vXwSluOhl2y+yXTX3wwQcsLy+P/fGPf2QKhYIVFRW5ta4//OEPTKVSsT179jhc/qHX6xljjNXX17PnnnuOHTx4kBUWFrKsrCw2ZswY1rNnz1aXwfTq1Yvt3r2bHTt2jN1333237bKj5557ju3Zs4dduHCB/fLLL2zy5MlMqVRy23bt2rVMpVKxbdu2sZycHDZ79uw2L+NxV/2MMWaxWFjv3r3Z8uXLHZZ74vavr69nx48fZ8ePH2cA2Pr169nx48e5M+B8be+kpCQ2dOhQdujQIXbo0CE2ZMgQ3i456mgdTCYTmzp1KuvVqxc7ceKEw9+FwWBgjDF27tw5tmrVKnbkyBFWWFjIdu7cyaKjo9mIESNu2zrwwWsDlTHG3nnnHRYZGckkEgmLjY11uDTJXQC0ecvIyGCMMabX69nEiRNZaGgoE4vFrHfv3iwlJYWVlJQ4vE5jYyNLTU1l3bp1Y3K5nE2ePLlVm85iv85RLBYzjUbDpk+fzk6fPs09brVaWXp6OgsLC2NSqZTde++9LCcnx2PqZ4yx77//ngFgZ86ccVjuids/Kyurzd+ZlJQUxhh/27uqqorNnTuXKZVKplQq2dy5c1lNTU2nr0NhYWG7fxf2a4NLSkrYvffey7p168YkEgnr378/W7JkSavrgztzHfhAo00RQghPvLIPlRBCPBEFKiGE8IQClRBCeEKBSgghPKFAJYQQnlCgEkIITyhQCSGEJxSohBDCEwpUQjqwefPmVmN2EtIeClTidm3N8SQQCJCUlOTu0jBr1iycPXvW3WUQL+HV46ES35GUlISMjAyHZVKptNPez2g0QiKR3LCdXC6HXC7vtDqIb6E9VOIRpFIpwsLCHG72EegFAgHef/99TJs2Df7+/hg4cCB27Njh8Py8vDwkJycjICAAPXr0wBNPPIHKykru8fHjxyM1NRVLly6FWq3GhAkTAAA7duzAwIEDIZfLkZiYiC1btkAgEHAzabZ1yP/1118jLi4OMpkM/fr1w6pVq2A2m7nHX375ZfTu3RtSqRQajQZLlizphC1GPBEFKvEKq1atwsyZM3Hq1CkkJydj7ty5qK6uBmAb+zMhIQHDhw/H0aNHsWvXLly5cgUzZ850eI0tW7ZAJBLhwIED2LhxI4qKijBjxgw88sgjOHHiBJ5++mmsWLGiwzq+//57PP7441iyZAny8vKwceNGbN68Ga+88goA4PPPP8ebb76JjRs3oqCgANu3b8eQIUM6Z6MQz+Pu4a4ISUlJYUKhkCkUCofb3/72N8aYbUjEv/71r1x7nU7HBAIB++677xhjjK1cuZJNnDjR4TVLS0sdhu9LSEhgw4cPd2izfPlyFhMT47BsxYoVDAA3JFxGRgZTqVTc4/fccw/7+9//7vCcjz76iIWHhzPGGHvjjTdYVFQUMxqNN7k1iDejPlTiERITE7FhwwaHZS1nih06dCj3vUKhgFKp5GYqzc7ORlZWFgICAlq97vnz5xEVFQUAiI+Pd3jszJkzGDlypMOyUaNGdVhndnY2jhw5wu2RAoDFYkFTUxP0ej0effRRvPXWW+jXrx+SkpKQnJyMKVOmQCSiP7WugH7KxCMoFAoMGDCg3cfFYrHDfYFAAKvVCgCwWq2YMmUK1q1b1+p59ukz7O/REmtjcjd2g+GBrVYrVq1a1eZkfjKZDBEREThz5gwyMzOxe/duPPvss3jttdewd+/eVutAfA8FKvF6sbGx+OKLL9CnTx+X9gSjo6Px7bffOiw7evToDd/rzJkzHYa/XC7H1KlTMXXqVCxatAjR0dHIycnhZu4kvosClXgEg8HQamZPkUgEtVp9w+cuWrQImzZtwuzZs/HnP/8ZarUa586dw9atW7Fp0yYIhcI2n/f0009j/fr1WL58ORYsWIATJ05g8+bNANqerhgAXnrpJUyePBkRERF49NFH4efnh1OnTiEnJwerV6/G5s2bYbFYMHr0aPj7++Ojjz6CXC5HZGSkaxuEeCU6y088wq5duxAeHu5wGzdunFPP1Wg0OHDgACwWCyZNmoSYmBikpaVBpVLBz6/9X/G+ffvi888/x7Zt2zB06FBs2LCBO8vf3jWwkyZNwjfffIPMzEyMHDkSd911F9avX88FZlBQEDZt2oS7774bQ4cOxY8//oivv/7aqVk+ifejOaUIaeGVV17Be++9h9LSUneXQrwQHfKTLu3dd9/FyJEjERISggMHDuC1115Damqqu8siXooClXRpBQUFWL16Naqrq9G7d28899xzeOGFF9xdFvFSdMhPCCE8oZNShBDCEwpUQgjhCQUqIYTwhAKVEEJ4QoFKCCE8oUAlhBCeUKASQghPKFAJIYQnFKiEEMKT/wc7mUGGCZVTNwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVQAAAC+CAYAAABqOvflAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjl0lEQVR4nO3dfXxT5dkH8N/Ja9M0TV8CfYG2lGktUN4KBUFmqQ6oFVR4EAYohfH4yARkH3RzyqToowN0otujAmNamHNWVGSIDgdSUKCOUmAUSkuFlhZpKX2haZI2aZL7+SPNgdC3pJw0L72+n08+Tc65klx3k14959z3uQ/HGGMghBBy20SeToAQQvwFFVRCCBEIFVRCCBEIFVRCCBEIFVRCCBEIFVRCCBEIFVRCCBEIFVRCCBGIxNMJ3A6r1YorV65ApVKB4zhPp0MI8UOMMTQ1NSE6OhoiUdfboD5dUK9cuYKYmBhPp0EI6QMqKysxcODALmN8uqCqVCoAtoYGBwd7OBtCiD/SarWIiYnh601XfLqg2nfzg4ODqaASQtzKmcOK1ClFCCEC8ektVDu9Xg+xWNxuuVgsRkBAgENcZ0QiERQKRY9iDQYDOpu0i+M4BAYG9ii2ubkZVqu10zyUSmWPYltaWmCxWASJDQwM5P9zG41GmM1mQWIVCgXfAWAymdDa2ipIbEBAAP9dcSW2tbUVJpOp01i5XA6JROJyrNlshtFo7DRWJpNBKpW6HGuxWNDS0tJprFQqhUwmcznWarWiublZkFiJRAK5XA7A1vFjMBgEiXXl796Z2K6e3w7zYY2NjQxAp7eMjAyH+MDAwE5jU1NTHWI1Gk2nsWPHjnWIjYuL6zR26NChDrFDhw7tNDYuLs4hduzYsZ3GajQah9jU1NROYwMDAx1iMzIyuvy93Wz27Nldxup0Oj42MzOzy9iamho+9qmnnuoytqysjI999tlnu4w9c+YMH5uVldVl7LFjx/jY1157rcvY3NxcPvbtt9/uMnbPnj18bHZ2dpexO3bs4GN37NjRZWx2djYfu2fPni5j3377bT42Nze3y9jXXnuNjz127FiXsVlZWXzsmTNnuox99tln+diysrIuY5966ik+tqampsvYzMxMPlan03UZO3v2bIfvcFexrtSIxsZG1h3a5SeEEIFwbRXcJ2m1WqjValy5cqXDTina5e84lnb5aZffk7v8ZosVhlYLTBYOZk4Mg9ECnbEV9Y1atJhsfxscB3BtPwEOEqkYcnkAbN8eBmOLARxsQbY4jo8XiyX8373ZyqDTNcFisd03MwaL1QqzhcFiZbCAg1gig9lqe6zX623rmNW23sqg1zXh9cw0NDY2dtv57RcF1ZmGEkJcYzJb0WyywNBqhsFksd03WaA3mfn7zSbbOtvNDL3JAoOx7afJDL3xxs/mVgv0RjOM5s7/8Xsjq9GAyrfmOFVn/KJTihDSXkurBfV6E+p0JtTpjajTmVCvN6FWb0S9zgRtS6tDoWxutRU/+zKz1b3bWhIRh0CZGEq5hP8ZIBHbNjkZwMDAGOwH9sEAWG0P2pbdFHNTHNrWAYBEzEEi4iAWcZCIRJCI7fc5iEUiSETcTTG2x2IxB6n9sZhDa7Mea99ysk1C/5IIIe5hNFvQoG9Frc5oK5RtRbJOb0K9vWi2FdB6vQk6Y+eHVFwhFXNQSMUIlNkKn0ImRqDM8bFSJkGgvO3nTUUyUCaBUiZGoPyWnzIJZBLf6MLRarVY62QsFVRCepnFytDY3IoGgwnXDa24bjChoe3ndcNNy5tNaNDfWN/c2vmx7M5IRBzCg2QIU8oRrpS13ZdBEyRHcIAEiraCp5B1UDClEihkYp8pfN6ACiohbqAzmnHiUgPyy+tx9ooWdXoTXzC1La3oac+FRMQhTGkriuFBMoQr5W0F0lY0b9yXIbytaNLEQb2HCiohAqjTGZFfXo9jZbYiWlSlhaWbY5CqAAlCAqUIDZQhJFCG0EApQhRS/n6oUga1wrY+NFCGEKUUKjkVSG9GBZUQFzHGcLmhGfnl9W1FtB4XrrUfZhcTpkDKoDAkx4YiIjigrXjaCqZaIYVUTLvS/oYKKiHdsFoZfrimw7/L6pFfZiuiVY3tx23eFaFCSnwoUgaFYVx8GKLUig5ejfgzKqiE3MJktuLslUZ+F/74pXpcNzieACARcUgaoMa4+DCkDArD2LhQhCplHsqYeAsqqKTPu6ptwYlLDThR0YCTFddR+GNju8HnCqkYo2NDkDIoDOPjwzAqNgSBMvrzIY7oG0H6FJPZiqIqrUMB/fF6+9MjQwKlGBsXym+BJg1Q0zFP0i0qqMSvObP1KeKAhAgVkuNCkRwbiuTYEMRrlNSbTlxGBfUmZosVEtoK8VmubH3aC+fo2FCMjAlBkJz+FMjto29Rm3cP/oD/++YHPJ+RiIUTBnk6HdKNa01GFFdrca5Ki3NVTThXpcWFazq0WhzHftLWJ+lNVFDb7PlPFZpbLVjzj7Moq9Xjdw8OhVhEf3SeZjJbceGaDueqtCiubuILaK2u42nsbt76TI4NxQja+iS9iL5psP3RltY08Y+zj5Sjos6AP80bDSX9Mfaam7c6i6uaUNTJVidgm/cyPlyJxCgVhkQGIzEqGEOiVBgQoqCtT+IxVC0AlNY0odXCEBwgwaszh+OZT/6Db4pr8OjmPLy3aCwN0HYDndGMgksNyC+rx38uX+9yq1MVIGkrmioMiQrGkKhgJEQE0bAl4nXoGwmg6IoWADA0OhgzRkZjQKgCT2w/jqIqLR555wjey0xB0gC1h7P0bbU6I463DZQ/Vl6Hoita3HqqO211El9HBRVAUVVbQY2yFc3k2FDsWnYPfrEtH6U1Ojy6OQ9/mjcaU4ZGeDJNn3K5wYBjZc6d6z4mLhRDo4JxV6SKtjqJT6NvL4CzN22h2sWEBeLTX07Esg9P4PAPtfifD47jdw8OxS/uGURbS7ewn+tuL6D5ZfW40sW57uPiwzFuUBgi1QEdvBohvqvPF1TGGM61FdRh0Y7Xi1ErpMhenII1/ziDj45V4n/3FKG8Vo+sGUP79HhVq5Wh8Efbue7/LqvH8fJ6NNC57oRQQb3c0IwmoxkysQg/6RfUbr1ULMLvZw5HvEaJdf8sxgffX0JFvQFvzx8NVYDUAxl7zlVtCz45Xomc/EpcbnAcMB8gFSE59sZMS6PpXHfSB/X5b/zZK40AgDsjgjq91APHcfife3+C2DAlfvXxSRw6f61tBEAKBoT49wgAi5Xh2/PX8PdjFThQXMNPmqySSzAu3lY8U+LDkBStpktlkD6vzxfUok529zuSnhSJHSETsGT7cRRXN+Hht4/gvcyxGBkT4uYse9+V683YcbwSO/IrHY6HpgwKxbxxscgYHoUAqdiDGRLifaig8j383RdUABgxMAS7lt2DJdvyUVzdhLl/zsNbc0chPSnKnWn2CrPFioMl1/DRsQrkltTww5pCAqX4r+SB+HlKDO6MUHk2SUK8WJ8vqDd6+J0fZzogRIFPlk7Aio9O4mDJNSz92wn89oFEPHnvYJ8cAXC5wYAd+ZX4+HglrmpvDK4fHx+G+eNjMW1YJG2NEuKEPl1Q6/Um/lIWQ6Jc2/JSBUjxl4Vj8fKeIvw17xLW/7MY5bV6/O8jST4xb2arxYpvztUgJ78Ch85f46/CGaaUYfaYgZibEtNhJx0hpHMuFdTGxkZ8/vnn+O6771BeXg6DwYB+/fph9OjRmDZtGiZOnOiuPN3iXNvuflx4YI967CViEV5+OAnxGiVe3lPE936/syAZaoV3jgCorDcgJ78CO45fxrWmG1uj99wRjnnjYjFlaATkEtoaJaQnnCqoVVVVWLNmDT788ENERkZi3LhxGDVqFBQKBerr65Gbm4s//OEPiIuLQ1ZWFubOnetyIuvWrcMLL7yAlStX4q233nL5+T3Bn3Lq5PHTziy+Jx4xoYF4OuckDv9Qi//adBTZi1IQExYoRJpOY4yhsbkVtToT6nRG20+97WetzoiL13T4/mI9H68JkmH2mBj8PCUGgzTKXs2VEH/kVEEdOXIkFi5ciGPHjiEpKanDmObmZuzatQsbN25EZWUlnn32WaeTyM/Px5///GeMGDHC6ecIwT5kypke/u78bGgEdjw5Af+9/Th+qNHhp6/lQiEVQymXIEguRlCABEqZBEFyCZRtN1XbMqVcjCC5xBYjb4uRta2XS2A0W1CnM+Gazog6vlja7tfqTahtMqJOb3ts7uZa8ADw0zs1mD8uFvcPiaChToQIyKmCevbsWfTr16/LGIVCgXnz5mHevHm4du2a0wnodDosWLAAW7duxSuvvOL084TA9/ALUFABIGmAGruW3YOlfyvAqcrraG61oLnVglqdIC/vNFWABP2C5AgPkiFcKYdGZf8px+SEfr2+5UxIX+FUQe3Xrx927dqFGTNmQCzu/vhad8X3ZsuWLcODDz6In/3sZ71aUFtaLfyEHfZJUYQQqQ7A509NRL3eBL3RAp3RDL3JDJ3RDF2LGXqj7b5tXSt0Rgu/zLbc7PC4pdUKiYjji2N4kOxGsQySQ9N2X9NWOMOUMjoGSoiHON0pNXv2bGg0GmRmZmLx4sVITEy87TfPycnBiRMnkJ+f71S80WiE0XijI0Wr1fb4vUuqm2CxMoQpZYgIlvf4dTrCcRzCg+QIF6CT3GyxQsRxENHVAwjxek4fQKuoqMCKFSvw+eefY9iwYZg0aRKys7Oh17efls0ZlZWVWLlyJf72t78hIMC5WYfWrVsHtVrN32JiYnr03sCN3f1h0cFePXZUIhZRMSXER3CMse57MW5x6NAhvP/++9i5cyc4jsOcOXOwZMkSTJgwwenX2LVrF2bOnOlwCMFisYDjOIhEIhiNxnaHFzraQo2JiUFjYyOCg107DvrirjP44PtLePLewXg+Y4hLzyWE9B1arRZqtdqpOtOjgf2pqalITU3FO++8g5ycHGRnZ2PSpElITEzE2bNnnXqN+++/H4WFhQ7L7IcSnnvuuQ6P1crlcsjlwuye23v4heqQIoSQ2zpTKigoCGlpaSgvL0dxcTHOnz/v9HNVKlW7IVhKpRLh4eGdDs0SisXKUFxtuyifEEOmCCEEcOEY6s0MBgO2b9+O1NRUJCQk4OOPP8aqVatQXl4ucHrucalOD4PJggCpCPEaOr2SECIMl7ZQjxw5gvfffx+ffPIJzGYzZs2ahf379yMtLU2QZA4ePCjI63THPiHKXZHBEFOHDyFEIE4X1ISEBFy4cAGjR4/Ghg0bMH/+fKjVvnkl0Jt7+AkhRChOF9T09HQsWbIEI0eOdGc+vUKoc/gJIeRmThfUP/3pT/x9s9mMgwcP4sKFC5g/fz5UKhWuXLmC4OBgBAV5/zFJoU85JYQQoAe9/JcuXUJ6ejoqKipgNBoxZcoUqFQqvPbaa2hpacHmzZvdkadgappacK3JCBEHDImkgkoIEY7LvfwrV67E2LFj0dDQAIXixgXqZs6ciW+++UbQ5NzBvrsfr1FCIaNz3gkhwnF5C/Xw4cM4cuQIZDLHa6zHxcXhxx9/FCwxd7mxu++bHWqEEO/l8haq1WqFxWJpt/zy5ctQqbz/Am5nqUOKEOImLhfUKVOmOMyoz3EcdDodsrKykJGRIWRubnHOhctGE0KIK1ze5X/zzTeRlpaGoUOHoqWlBfPnz0dpaSk0Gg0++ugjd+QoGL3RjLI62+xYQ2gLlRAiMJcLanR0NE6dOoWcnBwUFBTAarViyZIlWLBggUMnlTcqrtaCMaC/So5+KmHnQCWEkB5NjqJQKLB48WIsXrxY6Hzcqoh29wkhbuTUMdS8vDynX1Cv1zs9hV9vowH9hBB3cqqgLly4EFOmTMGOHTug03V8xbmioiK88MILuOOOO3DixAlBkxTKjVNOacgUIUR4Tu3yFxUVYcuWLVizZg0WLFiAhIQEREdHIyAgAA0NDSguLoZer8esWbOwb98+t89n2hNmi5XmQCWEuJXLl0A5ceIEvvvuO5SXl6O5uRkajQajR49GWloawsLC3JVnh1y5NMH5q02Y+ua3UMrEKFw7ja7TRAhxilsvgZKcnIzk5OQeJ+cp9t39IVHBVEwJIW7Roxn7fZH9GlK0u08IcZc+U1Cph58Q4m59oqAyxqiHnxDidn2ioFY1tqDB0AqJiMOdEd4/ATYhxDf1iYJq3zq9o38QAqQ0ByohxD2cLqgZGRlobGzkH7/66qu4fv06/7iurg5Dhw4VNDmh8MdPaUIUQogbOV1Qv/76axiNRv7xhg0bUF9fzz82m80oKSkRNjuB2Hv4qUOKEOJOThfUW8f/u3g+gEdRDz8hpDf4/THUxuZWVNY3A6BdfkKIezldUDmOA8dx7ZZ5u+K2rdMBIQqEBMq6iSaEkJ5z+tRTxhgWLVoEudw2MXNLSwuWLl0KpVIJAA7HV70Jfw0p2t0nhLiZ0wU1MzPT4fFjjz3WLmbhwoW3n5HAqIefENJbnC6o2dnZ7szDbYpoC5UQ0ktcmm3q0qVL+Ne//oXW1lZMnjzZa8ed2pnMVpTW0ByohJDe4XRB/fbbb5GRkQGDwWB7okSC7du3Y968eW5L7naV1jSh1cIQHCDBgBDvvoAgIcT3Od3L/+KLLyItLQ2XL19GXV0dfvGLX+A3v/mNO3O7bTfv7vvCiARCiG9zuqAWFhZi3bp1iI6ORmhoKN544w1cuXIFDQ0N7szvtpzlr3JKM0wRQtzP6YJ6/fp19O/fn3+sVCoRGBjocD6/t6EefkJIb3KpU6qoqAjV1dX8Y8YYzp07h6amJn7ZiBEjhMvuNjDGcI56+Akhvcilgnr//fe3O4d/+vTp4DgOjDFwHAeLxSJogj11uaEZTUYzZGIR7uhPc6ASQtzP6YJaVlYm+JuvW7cOO3fuRHFxMRQKBSZOnIgNGzbgrrvuuu3Xts8wlRAZBKnY76csIIR4AacLalxcnOBvfujQISxbtgwpKSkwm81YvXo1pk6diqKiIv6U1p66cckT2t0nhPQOpzfd7r//fuzcubPT9bW1tRg8eLBLb753714sWrQIw4YNw8iRI5GdnY2KigoUFBS49DodoQ4pQkhvc7qg5ubmYs6cOcjKyupwvcViwaVLl24rGfsVAcLCwjpcbzQaodVqHW6d4YdMDaAhU4SQ3uHSwcVNmzbhj3/8I2bOnAmdTidoIowxrFq1CpMmTUJSUlKHMevWrYNareZvMTExHcbV602oamwBACRGqgTNkxBCOuNSQX344YeRl5eHoqIiTJgwARcvXhQskeXLl+P06dP46KOPOo15/vnn0djYyN8qKys7jDvXtrsfFx4IVYBUsBwJIaQrLnd/DxkyBMeOHUNMTAxSUlKwf//+205ixYoV2L17N3JzczFw4MBO4+RyOYKDgx1uHbH38NOEKISQ3tSj8URqtRpffvklnnjiCWRkZODNN9/s0ZszxrB8+XLs3LkTBw4cQHx8fI9e51bUw08I8QSnh011dPmT9evXY/To0ViyZAkOHDjg8psvW7YMf//73/GPf/wDKpWKPwtLrVZDoej57FB0UT5CiCf0+KqndnPnzsXhw4dRWFjo8ptv2rQJjY2NmDx5MqKiovjbxx9/7PJr2bW0WnDhmh4ATYpCCOldTm+h5ubmdjqcadSoUSgoKMCXX37p0pu741LUJdVNsFgZwpUy9FfJBX99QgjpjNMFNTU1tcv14eHhXnFNqZt392kOVEJIb/K7k9ypQ4oQ4il+V1DtQ6aoQ4oQ0tv8qqBarAzF1XRRPkKIZ/hVQb1Up4fBZEGAVIR4Dc2BSgjpXX5VUO0ToiRGBkMsog4pQkjv8quCSgP6CSGe5F8FlXr4CSEe5FcF9cZlo6mgEkJ6n98U1JqmFtTqjBBxtmOohBDS2/ymoNp39+M1SihkYg9nQwjpi/ynoFbZd/dpQhRCiGf4TUG1Hz+lHn5CiKf4TUE9Rz38hBAP84uCqjeaUVZnmwOVtlAJIZ7iFwX1/FUtGAMiguXQBNEcqIQQz/CLglrSNiEK7e4TQjzJLwqqfYYp2t0nhHiSXxTUc1X2KftoyBQhxHP8oqCer9EBoF1+Qohn+UVBbTVbESSXIDYs0NOpEEL6ML8oqAAwJEoFEc2BSgjxIL8pqLS7TwjxNP8pqNTDTwjxML8pqNTDTwjxNL8oqBIRhzv600X5CCGe5RcFdXA/JQKkNAcqIcSz/KKg3hWp8nQKhBDiHwX1ufRET6dACCH+UVBDAmWeToEQQvyjoBJCiDeggkoIIQKReDqB28EYAwBotVoPZ0II8Vf2+mKvN13x6YJaV1cHAIiJifFwJoQQf9fU1AS1uusTiHy6oIaFhQEAKioqum2oL9BqtYiJiUFlZSWCg/3jVFp/axO1x7u5oz2MMTQ1NSE6OrrbWJ8uqCKR7RCwWq32iy+DXXBwsF+1B/C/NlF7vJvQ7XF2g406pQghRCBUUAkhRCA+XVDlcjmysrIgl/vHpaP9rT2A/7WJ2uPdPN0ejjkzFoAQQki3fHoLlRBCvAkVVEIIEQgVVEIIEYhPF9R3330X8fHxCAgIwJgxY/Ddd995OqV21q5dC47jHG6RkZH8esYY1q5di+joaCgUCkyePBlnz551eA2j0YgVK1ZAo9FAqVTioYcewuXLl3sl/2+//RYzZsxAdHQ0OI7Drl27HNYLlX9DQwMef/xxqNVqqNVqPP7447h+/Xqvt2fRokXtPq+7777ba9uzbt06pKSkQKVSoX///njkkUdQUlLiEONLn5Ez7fHqz4j5qJycHCaVStnWrVtZUVERW7lyJVMqlezSpUueTs1BVlYWGzZsGKuqquJvNTU1/Pr169czlUrFPvvsM1ZYWMjmzp3LoqKimFar5WOWLl3KBgwYwPbt28dOnDjB0tLS2MiRI5nZbHZ7/l999RVbvXo1++yzzxgA9vnnnzusFyr/9PR0lpSUxI4ePcqOHj3KkpKS2PTp03u9PZmZmSw9Pd3h86qrq3OI8ab2TJs2jWVnZ7MzZ86wU6dOsQcffJDFxsYynU7Hx/jSZ+RMe7z5M/LZgjpu3Di2dOlSh2WJiYnst7/9rYcy6lhWVhYbOXJkh+usViuLjIxk69ev55e1tLQwtVrNNm/ezBhj7Pr160wqlbKcnBw+5scff2QikYjt3bvXrbnf6tYCJFT+RUVFDAD7/vvv+Zi8vDwGgBUXF/daexiz/bE+/PDDnT7Hm9vDGGM1NTUMADt06BBjzPc/o1vbw5h3f0Y+uctvMplQUFCAqVOnOiyfOnUqjh496qGsOldaWoro6GjEx8fj5z//OS5evAgAKCsrQ3V1tUM75HI5UlNT+XYUFBSgtbXVISY6OhpJSUkeb6tQ+efl5UGtVmP8+PF8zN133w21Wu2RNh48eBD9+/dHQkICnnjiCdTU1PDrvL09jY2NAG7Mc+Hrn9Gt7bHz1s/IJwtqbW0tLBYLIiIiHJZHRESgurraQ1l1bPz48fjrX/+Kr7/+Glu3bkV1dTUmTpyIuro6Pteu2lFdXQ2ZTIbQ0NBOYzxFqPyrq6vRv3//dq/fv3//Xm/jAw88gA8//BAHDhzAG2+8gfz8fNx3330wGo18rt7aHsYYVq1ahUmTJiEpKYnPxZ5fV/l6Y5s6ag/g3Z+RT0+OwnGcw2PGWLtlnvbAAw/w94cPH44JEybgJz/5CbZv384fSO9JO7yprULk31G8J9o4d+5c/n5SUhLGjh2LuLg4fPnll5g1a1anz/OG9ixfvhynT5/G4cOH263zxc+os/Z482fkk1uoGo0GYrG43X+Smpqadv+JvY1SqcTw4cNRWlrK9/Z31Y7IyEiYTCY0NDR0GuMpQuUfGRmJq1evtnv9a9euebyNUVFRiIuLQ2lpKQDvbc+KFSuwe/du5ObmYuDAgfxyX/2MOmtPR7zpM/LJgiqTyTBmzBjs27fPYfm+ffswceJED2XlHKPRiHPnziEqKgrx8fGIjIx0aIfJZMKhQ4f4dowZMwZSqdQhpqqqCmfOnPF4W4XKf8KECWhsbMSxY8f4mH//+99obGz0eBvr6upQWVmJqKgoAN7XHsYYli9fjp07d+LAgQOIj493WO9rn1F37emIV31GPe7O8jD7sKn33nuPFRUVsV/96ldMqVSy8vJyT6fm4JlnnmEHDx5kFy9eZN9//z2bPn06U6lUfJ7r169narWa7dy5kxUWFrJ58+Z1OKRl4MCBbP/+/ezEiRPsvvvu67VhU01NTezkyZPs5MmTDADbuHEjO3nyJD88Taj809PT2YgRI1heXh7Ly8tjw4cPd8swo67a09TUxJ555hl29OhRVlZWxnJzc9mECRPYgAEDvLY9v/zlL5larWYHDx50GEZkMBj4GF/6jLprj7d/Rj5bUBlj7J133mFxcXFMJpOx5ORkh6EV3sI+5k8qlbLo6Gg2a9YsdvbsWX691WplWVlZLDIyksnlcnbvvfeywsJCh9dobm5my5cvZ2FhYUyhULDp06ezioqKXsk/NzeXAWh3y8zMFDT/uro6tmDBAqZSqZhKpWILFixgDQ0Nvdoeg8HApk6dyvr168ekUimLjY1lmZmZ7XL1pvZ01BYALDs7m4/xpc+ou/Z4+2dEs00RQohAfPIYKiGEeCMqqIQQIhAqqIQQIhAqqIQQIhAqqIQQIhAqqIQQIhAqqIQQIhAqqIQQIhAqqIR0Ydu2bQgJCfF0GsRHUEElHtfRNYI4jkN6erqnU8PcuXNx/vx5T6dBfIRPz4dK/Ed6ejqys7Mdlsnlcre9n8lkgkwm6zZOoVBAoVC4LQ/iX2gLlXgFuVyOyMhIh5t9xnWO4/CXv/wFM2fORGBgIO68807s3r3b4flFRUXIyMhAUFAQIiIi8Pjjj6O2tpZfP3nyZCxfvhyrVq2CRqPBlClTAAC7d+/GnXfeCYVCgbS0NGzfvh0cx/FXv+xol/+LL77AmDFjEBAQgMGDB+Oll16C2Wzm169duxaxsbGQy+WIjo7G008/7YbfGPFGVFCJT3jppZcwZ84cnD59GhkZGViwYAHq6+sB2Oa6TE1NxahRo3D8+HHs3bsXV69exZw5cxxeY/v27ZBIJDhy5Ai2bNmC8vJyzJ49G4888ghOnTqFJ598EqtXr+4yj6+//hqPPfYYnn76aRQVFWHLli3Ytm0bXn31VQDAp59+ijfffBNbtmxBaWkpdu3aheHDh7vnl0K8z23NVUWIADIzM5lYLGZKpdLh9vLLLzPGbFO6/e53v+PjdTod4ziO/fOf/2SMMfbiiy+yqVOnOrxmZWUlA8BKSkoYY4ylpqayUaNGOcQ899xzLCkpyWHZ6tWrGQB+Grfs7GymVqv59T/96U/Z73//e4fnfPDBBywqKooxxtgbb7zBEhISmMlk6uFvg/gyOoZKvEJaWho2bdrksOzmK12OGDGCv69UKqFSqfgrXRYUFCA3NxdBQUHtXvfChQtISEgAAIwdO9ZhXUlJCVJSUhyWjRs3rss8CwoKkJ+fz2+RAoDFYkFLSwsMBgMeffRRvPXWWxg8eDDS09ORkZGBGTNmQCKhP7W+gD5l4hWUSiXuuOOOTtdLpVKHxxzHwWq1AgCsVitmzJiBDRs2tHue/bIY9ve4Gevggmysm+mBrVYrXnrppQ4vBhcQEICYmBiUlJRg37592L9/P5566im8/vrrOHToULs2EP9DBZX4vOTkZHz22WcYNGiQS1uCiYmJ+OqrrxyWHT9+vNv3Kikp6bL4KxQKPPTQQ3jooYewbNkyJCYmorCwEMnJyU7nRnwTFVTiFYxGY7src0okEmg0mm6fu2zZMmzduhXz5s3Dr3/9a2g0Gvzwww/IycnB1q1bIRaLO3zek08+iY0bN+K5557DkiVLcOrUKWzbtg1Ax5cYBoA1a9Zg+vTpiImJwaOPPgqRSITTp0+jsLAQr7zyCrZt2waLxYLx48cjMDAQH3zwARQKBeLi4lz7hRCfRL38xCvs3bsXUVFRDrdJkyY59dzo6GgcOXIEFosF06ZNQ1JSElauXAm1Wg2RqPOveHx8PD799FPs3LkTI0aMwKZNm/he/s7GwE6bNg179uzBvn37kJKSgrvvvhsbN27kC2ZISAi2bt2Ke+65ByNGjMA333yDL774AuHh4S7+RogvomtKEXKTV199FZs3b0ZlZaWnUyE+iHb5SZ/27rvvIiUlBeHh4Thy5Ahef/11LF++3NNpER9FBZX0aaWlpXjllVdQX1+P2NhYPPPMM3j++ec9nRbxUbTLTwghAqFOKUIIEQgVVEIIEQgVVEIIEQgVVEIIEQgVVEIIEQgVVEIIEQgVVEIIEQgVVEIIEQgVVEIIEcj/A62yEhwsnkxGAAAAAElFTkSuQmCC", "text/plain": [ "
" ] diff --git a/pyproject.toml b/pyproject.toml index 03604e5..428d413 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -25,7 +25,7 @@ classifiers = [ dependencies = [ "colmena==0.5.*", "parsl>=2023.04", - "ase==3.22.*", + "ase>3.22", "tqdm" ]