Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

IOError "No such file or directory: './evaluation/temp/eval.1181043.scores " #78

Open
Daisy-123 opened this issue Jun 13, 2018 · 3 comments

Comments

@Daisy-123
Copy link

Hi
I tried this code " time /tools/anaconda2/bin/python train.py --train dataset/train1400.iob --dev dataset/dev300.iob --test dataset/test284.iob --tag_scheme iob > test-output0611 "
, but I got the error message " IOError: [Errno 2] No such file or directory: './evaluation/temp/eval.1181043.scores "

How can I solve this problem ?

@glample
Copy link
Owner

glample commented Jun 13, 2018

What does the full log file contain?
Could you check this is not a problem with permissions and that the script is allowed to create this scores file in the temp directory? (Also, does the temp directory exist?)

@Daisy-123
Copy link
Author

  • Full log :
    WARNING (theano.tensor.blas): Using NumPy C-API based implementation for BLAS functions.
    Traceback (most recent call last):
    File "train.py", line 222, in
    test_data, id_to_tag, dico_tags)
    File "/mnt/Storage01/blue90211/tagger-master/utils.py", line 277, in evaluate
    eval_lines = [l.rstrip() for l in codecs.open(scores_path, 'r', 'utf8')]
    File "/tools/anaconda2/lib/python2.7/codecs.py", line 896, in open
    file = builtin.open(filename, mode, buffering)
    IOError: [Errno 2] No such file or directory: './evaluation/temp/eval.1181043.scores'
  • Temp directory is generated by script (not exited before).
  • I got eval.1181043.output file in temp directory ,but I can't find eval.1181043.scores.
  • The process seems on going ... as below (stopped in epoch 0) :
    "
    ..............
    27900, cost average: 0.028285
    27950, cost average: 0.456446
    processed 1307517 tokens with 3937 phrases; found: 324 phrases; correct: 192.
    accuracy: 99.30%; precision: 59.26%; recall: 4.88%; FB1: 9.01
    Claim: precision: 59.26%; recall: 15.79%; FB1: 24.94 324
    PriorArt: precision: 0.00%; recall: 0.00%; FB1: 0.00 0
    ID NE Total OI-ClaimB-PriorArtI-PriorArtB-Claim Percent
    0 O12952511294615 583 0 0 53 99.951
    1I-Claim 6480 2950 3530 0 0 0 54.475
    2B-PriorArt 2721 2655 65 0 0 1 0.000
    3I-PriorArt 1849 1839 10 0 0 0 0.000
    4B-Claim 1216 922 24 0 0 270 22.204
    1298415/1307517 (99.30387%)
    processed 1133259 tokens with 4170 phrases; found: 302 phrases; correct: 171.
    accuracy: 99.20%; precision: 56.62%; recall: 4.10%; FB1: 7.65
    Claim: precision: 56.90%; recall: 14.07%; FB1: 22.56 297
    PriorArt: precision: 40.00%; recall: 0.07%; FB1: 0.13 5
    ID NE Total OI-ClaimB-PriorArtI-PriorArtB-Claim Percent
    0 O11213951120900 443 2 0 50 99.956
    1I-Claim 5686 2610 3074 0 0 2 54.063
    2B-PriorArt 2969 2906 58 2 0 3 0.067
    3I-PriorArt 2008 1981 24 1 0 2 0.000
    4B-Claim 1201 926 40 0 0 235 19.567
    1124211/1133259 (99.20159%)
    Score on dev: 9.01000
    Score on test: 7.65000
    New best score on dev.
    Saving model to disk...
    New best score on test.
    28000, cost average: 0.016292
    28050, cost average: 0.545872
    28100, cost average: 0.665584
    28150, cost average: 0.817216
    28200, cost average: 0.029983
    28250, cost average: 0.342566
    28300, cost average: 0.429246
    28350, cost average: 0.035073
    28400, cost average: 0.009134
    28450, cost average: 0.274903
    28500, cost average: 0.448717
    28550, cost average: 0.014378
    28600, cost average: 0.342188
    28650, cost average: 0.033076
    28700, cost average: 0.010674
    28750, cost average: 0.009748
    28800, cost average: 0.018098
    28850, cost average: 0.020268
    28900, cost average: 0.022872
    28950, cost average: 0.271496
    processed 1307517 tokens with 3937 phrases; found: 534 phrases; correct: 30.
    accuracy: 99.24%; precision: 5.62%; recall: 0.76%; FB1: 1.34
    Claim: precision: 5.62%; recall: 2.47%; FB1: 3.43 534
    PriorArt: precision: 0.00%; recall: 0.00%; FB1: 0.00 0
    ID NE Total OI-ClaimB-PriorArtI-PriorArtB-Claim Percent
    0 O12952511292716 2424 0 0 111 99.804
    1I-Claim 6480 1968 4509 0 0 3 69.583
    2B-PriorArt 2721 2324 370 0 0 27 0.000
    3I-PriorArt 1849 1702 137 0 0 10 0.000
    4B-Claim 1216 749 88 0 0 379 31.168
    1297604/1307517 (99.24185%)
    ....................

    "

@junchenzhi
Copy link

  • Full log :
    WARNING (theano.tensor.blas): Using NumPy C-API based implementation for BLAS functions.
    Traceback (most recent call last):
    File "train.py", line 222, in
    test_data, id_to_tag, dico_tags)
    File "/mnt/Storage01/blue90211/tagger-master/utils.py", line 277, in evaluate
    eval_lines = [l.rstrip() for l in codecs.open(scores_path, 'r', 'utf8')]
    File "/tools/anaconda2/lib/python2.7/codecs.py", line 896, in open
    file = builtin.open(filename, mode, buffering)
    IOError: [Errno 2] No such file or directory: './evaluation/temp/eval.1181043.scores'
  • Temp directory is generated by script (not exited before).
  • I got eval.1181043.output file in temp directory ,but I can't find eval.1181043.scores.
  • The process seems on going ... as below (stopped in epoch 0) :
    "
    ..............
    27900, cost average: 0.028285
    27950, cost average: 0.456446
    processed 1307517 tokens with 3937 phrases; found: 324 phrases; correct: 192.
    accuracy: 99.30%; precision: 59.26%; recall: 4.88%; FB1: 9.01
    Claim: precision: 59.26%; recall: 15.79%; FB1: 24.94 324
    PriorArt: precision: 0.00%; recall: 0.00%; FB1: 0.00 0
    ID NE Total OI-ClaimB-PriorArtI-PriorArtB-Claim Percent
    0 O12952511294615 583 0 0 53 99.951
    1I-Claim 6480 2950 3530 0 0 0 54.475
    2B-PriorArt 2721 2655 65 0 0 1 0.000
    3I-PriorArt 1849 1839 10 0 0 0 0.000
    4B-Claim 1216 922 24 0 0 270 22.204
    1298415/1307517 (99.30387%)
    processed 1133259 tokens with 4170 phrases; found: 302 phrases; correct: 171.
    accuracy: 99.20%; precision: 56.62%; recall: 4.10%; FB1: 7.65
    Claim: precision: 56.90%; recall: 14.07%; FB1: 22.56 297
    PriorArt: precision: 40.00%; recall: 0.07%; FB1: 0.13 5
    ID NE Total OI-ClaimB-PriorArtI-PriorArtB-Claim Percent
    0 O11213951120900 443 2 0 50 99.956
    1I-Claim 5686 2610 3074 0 0 2 54.063
    2B-PriorArt 2969 2906 58 2 0 3 0.067
    3I-PriorArt 2008 1981 24 1 0 2 0.000
    4B-Claim 1201 926 40 0 0 235 19.567
    1124211/1133259 (99.20159%)
    Score on dev: 9.01000
    Score on test: 7.65000
    New best score on dev.
    Saving model to disk...
    New best score on test.
    28000, cost average: 0.016292
    28050, cost average: 0.545872
    28100, cost average: 0.665584
    28150, cost average: 0.817216
    28200, cost average: 0.029983
    28250, cost average: 0.342566
    28300, cost average: 0.429246
    28350, cost average: 0.035073
    28400, cost average: 0.009134
    28450, cost average: 0.274903
    28500, cost average: 0.448717
    28550, cost average: 0.014378
    28600, cost average: 0.342188
    28650, cost average: 0.033076
    28700, cost average: 0.010674
    28750, cost average: 0.009748
    28800, cost average: 0.018098
    28850, cost average: 0.020268
    28900, cost average: 0.022872
    28950, cost average: 0.271496
    processed 1307517 tokens with 3937 phrases; found: 534 phrases; correct: 30.
    accuracy: 99.24%; precision: 5.62%; recall: 0.76%; FB1: 1.34
    Claim: precision: 5.62%; recall: 2.47%; FB1: 3.43 534
    PriorArt: precision: 0.00%; recall: 0.00%; FB1: 0.00 0
    ID NE Total OI-ClaimB-PriorArtI-PriorArtB-Claim Percent
    0 O12952511292716 2424 0 0 111 99.804
    1I-Claim 6480 1968 4509 0 0 3 69.583
    2B-PriorArt 2721 2324 370 0 0 27 0.000
    3I-PriorArt 1849 1702 137 0 0 10 0.000
    4B-Claim 1216 749 88 0 0 379 31.168
    1297604/1307517 (99.24185%)
    ....................

    "

Hi, I have the same bug. Have you solved it? How did you solve it? Thanks~

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants