-
Notifications
You must be signed in to change notification settings - Fork 426
/
train.py
executable file
·233 lines (215 loc) · 7.56 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#!/usr/bin/env python
import os
import numpy as np
import optparse
import itertools
from collections import OrderedDict
from utils import create_input
import loader
from utils import models_path, evaluate, eval_script, eval_temp
from loader import word_mapping, char_mapping, tag_mapping
from loader import update_tag_scheme, prepare_dataset
from loader import augment_with_pretrained
from model import Model
# Read parameters from command line
optparser = optparse.OptionParser()
optparser.add_option(
"-T", "--train", default="",
help="Train set location"
)
optparser.add_option(
"-d", "--dev", default="",
help="Dev set location"
)
optparser.add_option(
"-t", "--test", default="",
help="Test set location"
)
optparser.add_option(
"-s", "--tag_scheme", default="iobes",
help="Tagging scheme (IOB or IOBES)"
)
optparser.add_option(
"-l", "--lower", default="0",
type='int', help="Lowercase words (this will not affect character inputs)"
)
optparser.add_option(
"-z", "--zeros", default="0",
type='int', help="Replace digits with 0"
)
optparser.add_option(
"-c", "--char_dim", default="25",
type='int', help="Char embedding dimension"
)
optparser.add_option(
"-C", "--char_lstm_dim", default="25",
type='int', help="Char LSTM hidden layer size"
)
optparser.add_option(
"-b", "--char_bidirect", default="1",
type='int', help="Use a bidirectional LSTM for chars"
)
optparser.add_option(
"-w", "--word_dim", default="100",
type='int', help="Token embedding dimension"
)
optparser.add_option(
"-W", "--word_lstm_dim", default="100",
type='int', help="Token LSTM hidden layer size"
)
optparser.add_option(
"-B", "--word_bidirect", default="1",
type='int', help="Use a bidirectional LSTM for words"
)
optparser.add_option(
"-p", "--pre_emb", default="",
help="Location of pretrained embeddings"
)
optparser.add_option(
"-A", "--all_emb", default="0",
type='int', help="Load all embeddings"
)
optparser.add_option(
"-a", "--cap_dim", default="0",
type='int', help="Capitalization feature dimension (0 to disable)"
)
optparser.add_option(
"-f", "--crf", default="1",
type='int', help="Use CRF (0 to disable)"
)
optparser.add_option(
"-D", "--dropout", default="0.5",
type='float', help="Droupout on the input (0 = no dropout)"
)
optparser.add_option(
"-L", "--lr_method", default="sgd-lr_.005",
help="Learning method (SGD, Adadelta, Adam..)"
)
optparser.add_option(
"-r", "--reload", default="0",
type='int', help="Reload the last saved model"
)
opts = optparser.parse_args()[0]
# Parse parameters
parameters = OrderedDict()
parameters['tag_scheme'] = opts.tag_scheme
parameters['lower'] = opts.lower == 1
parameters['zeros'] = opts.zeros == 1
parameters['char_dim'] = opts.char_dim
parameters['char_lstm_dim'] = opts.char_lstm_dim
parameters['char_bidirect'] = opts.char_bidirect == 1
parameters['word_dim'] = opts.word_dim
parameters['word_lstm_dim'] = opts.word_lstm_dim
parameters['word_bidirect'] = opts.word_bidirect == 1
parameters['pre_emb'] = opts.pre_emb
parameters['all_emb'] = opts.all_emb == 1
parameters['cap_dim'] = opts.cap_dim
parameters['crf'] = opts.crf == 1
parameters['dropout'] = opts.dropout
parameters['lr_method'] = opts.lr_method
# Check parameters validity
assert os.path.isfile(opts.train)
assert os.path.isfile(opts.dev)
assert os.path.isfile(opts.test)
assert parameters['char_dim'] > 0 or parameters['word_dim'] > 0
assert 0. <= parameters['dropout'] < 1.0
assert parameters['tag_scheme'] in ['iob', 'iobes']
assert not parameters['all_emb'] or parameters['pre_emb']
assert not parameters['pre_emb'] or parameters['word_dim'] > 0
assert not parameters['pre_emb'] or os.path.isfile(parameters['pre_emb'])
# Check evaluation script / folders
if not os.path.isfile(eval_script):
raise Exception('CoNLL evaluation script not found at "%s"' % eval_script)
if not os.path.exists(eval_temp):
os.makedirs(eval_temp)
if not os.path.exists(models_path):
os.makedirs(models_path)
# Initialize model
model = Model(parameters=parameters, models_path=models_path)
print "Model location: %s" % model.model_path
# Data parameters
lower = parameters['lower']
zeros = parameters['zeros']
tag_scheme = parameters['tag_scheme']
# Load sentences
train_sentences = loader.load_sentences(opts.train, lower, zeros)
dev_sentences = loader.load_sentences(opts.dev, lower, zeros)
test_sentences = loader.load_sentences(opts.test, lower, zeros)
# Use selected tagging scheme (IOB / IOBES)
update_tag_scheme(train_sentences, tag_scheme)
update_tag_scheme(dev_sentences, tag_scheme)
update_tag_scheme(test_sentences, tag_scheme)
# Create a dictionary / mapping of words
# If we use pretrained embeddings, we add them to the dictionary.
if parameters['pre_emb']:
dico_words_train = word_mapping(train_sentences, lower)[0]
dico_words, word_to_id, id_to_word = augment_with_pretrained(
dico_words_train.copy(),
parameters['pre_emb'],
list(itertools.chain.from_iterable(
[[w[0] for w in s] for s in dev_sentences + test_sentences])
) if not parameters['all_emb'] else None
)
else:
dico_words, word_to_id, id_to_word = word_mapping(train_sentences, lower)
dico_words_train = dico_words
# Create a dictionary and a mapping for words / POS tags / tags
dico_chars, char_to_id, id_to_char = char_mapping(train_sentences)
dico_tags, tag_to_id, id_to_tag = tag_mapping(train_sentences)
# Index data
train_data = prepare_dataset(
train_sentences, word_to_id, char_to_id, tag_to_id, lower
)
dev_data = prepare_dataset(
dev_sentences, word_to_id, char_to_id, tag_to_id, lower
)
test_data = prepare_dataset(
test_sentences, word_to_id, char_to_id, tag_to_id, lower
)
print "%i / %i / %i sentences in train / dev / test." % (
len(train_data), len(dev_data), len(test_data))
# Save the mappings to disk
print 'Saving the mappings to disk...'
model.save_mappings(id_to_word, id_to_char, id_to_tag)
# Build the model
f_train, f_eval = model.build(**parameters)
# Reload previous model values
if opts.reload:
print 'Reloading previous model...'
model.reload()
#
# Train network
#
singletons = set([word_to_id[k] for k, v
in dico_words_train.items() if v == 1])
n_epochs = 100 # number of epochs over the training set
freq_eval = 1000 # evaluate on dev every freq_eval steps
best_dev = -np.inf
best_test = -np.inf
count = 0
for epoch in xrange(n_epochs):
epoch_costs = []
print "Starting epoch %i..." % epoch
for i, index in enumerate(np.random.permutation(len(train_data))):
count += 1
input = create_input(train_data[index], parameters, True, singletons)
new_cost = f_train(*input)
epoch_costs.append(new_cost)
if i % 50 == 0 and i > 0 == 0:
print "%i, cost average: %f" % (i, np.mean(epoch_costs[-50:]))
if count % freq_eval == 0:
dev_score = evaluate(parameters, f_eval, dev_sentences,
dev_data, id_to_tag, dico_tags)
test_score = evaluate(parameters, f_eval, test_sentences,
test_data, id_to_tag, dico_tags)
print "Score on dev: %.5f" % dev_score
print "Score on test: %.5f" % test_score
if dev_score > best_dev:
best_dev = dev_score
print "New best score on dev."
print "Saving model to disk..."
model.save()
if test_score > best_test:
best_test = test_score
print "New best score on test."
print "Epoch %i done. Average cost: %f" % (epoch, np.mean(epoch_costs))