forked from BR-IDL/PaddleViT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
swin_det.py
67 lines (54 loc) · 2.18 KB
/
swin_det.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Swin Transformer Object Detection"""
import paddle
import paddle.nn as nn
from config import get_config
from swin_backbone import SwinTransformer
from det_necks.fpn import FPN, LastLevelMaxPool
from det_heads.maskrcnn_head.rpn_head import RPNHead
from det_heads.maskrcnn_head.roi_head import RoIHead
cfg = get_config()
class SwinTransformerDet(nn.Layer):
def __init__(self, config):
super(SwinTransformerDet, self).__init__()
self.backbone = SwinTransformer(config)
self.neck = FPN(
in_channels=config.FPN.IN_CHANNELS,
out_channel=config.FPN.OUT_CHANNELS,
strides=config.FPN.STRIDES,
use_c5=config.FPN.USE_C5,
top_block=LastLevelMaxPool()
)
self.rpnhead = RPNHead(config)
self.roihead = RoIHead(config)
self.config = config
def forward(self, x, gt=None):
feats = self.neck(self.backbone(x.tensors))
rpn_out = self.rpnhead(feats, gt)
if self.training and self.config.ROI.PAT_GT_AS_PRO:
proposals = []
for proposal, gt_box in zip(rpn_out[0], gt["gt_boxes"]):
proposals.append(paddle.concat([proposal, gt_box]))
else:
proposals = rpn_out[0]
final_out = self.roihead(feats, proposals, gt)
if self.training:
rpn_losses = rpn_out[2]
# if training, final_out returns losses, now we combine the losses dicts
final_out.update(rpn_losses)
return final_out
def build_swin_det(config):
model = SwinTransformerDet(config)
return model