forked from BR-IDL/PaddleViT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
box_ops.py
180 lines (138 loc) · 5.25 KB
/
box_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
def box_xyxy_to_cxcywh_numpy(box):
"""convert box from top-left/bottom-right format:
[x0, y0, x1, y1]
to center-size format:
[center_x, center_y, width, height]
Args:
box: numpy array, last_dim=4, stop-left/bottom-right format boxes
Return:
numpy array, last_dim=4, center-size format boxes
"""
#x0, y0, x1, y1 = box.unbind(-1)
x0 = box[:, 0]
y0 = box[:, 1]
x1 = box[:, 2]
y1 = box[:, 3]
xc = x0 + (x1-x0)/2
yc = y0 + (y1-y0)/2
w = x1 - x0
h = y1 - y0
return np.stack([xc, yc, w, h], axis=-1)
def box_cxcywh_to_xyxy(box):
"""convert box from center-size format:
[center_x, center_y, width, height]
to top-left/bottom-right format:
[x0, y0, x1, y1]
Args:
box: paddle.Tensor, last_dim=4, stores center-size format boxes
Return:
paddle.Tensor, last_dim=4, top-left/bottom-right format boxes
"""
x_c, y_c, w, h = box.unbind(-1)
x0 = x_c - 0.5 * w
y0 = y_c - 0.5 * h
x1 = x_c + 0.5 * w
y1 = y_c + 0.5 * h
return paddle.stack([x0, y0, x1, y1], axis=-1)
def box_xyxy_to_cxcywh(box):
"""convert box from top-left/bottom-right format:
[x0, y0, x1, y1]
to center-size format:
[center_x, center_y, width, height]
Args:
box: paddle.Tensor, last_dim=4, stop-left/bottom-right format boxes
Return:
paddle.Tensor, last_dim=4, center-size format boxes
"""
x0, y0, x1, y1 = box.unbind(-1)
xc = x0 + (x1-x0)/2
yc = y0 + (y1-y0)/2
w = x1 - x0
h = y1 - y0
return paddle.stack([xc, yc, w, h], axis=-1)
def box_area(boxes):
""" compute area of a set of boxes in (x1, y1, x2, y2) format
Args:
boxes: paddle.Tensor, shape = Nx4, must in (x1, y1, x2, y2) format
Return:
areas: paddle.Tensor, N, areas of each box
"""
return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
def box_iou(boxes1, boxes2):
"""compute iou of 2 sets of boxes in (x1, y1, x2, y2) format
This method returns the iou between every pair of boxes
in two sets of boxes.
Args:
boxes1: paddle.Tensor, shape=N x 4, boxes are stored in (x1, y1, x2, y2) format
boxes2: paddle.Tensor, shape=N x 4, boxes are stored in (x1, y1, x2, y2) format
Return:
iou: iou ratios between each pair of boxes in boxes1 and boxes2
union: union areas between each pair of boxes in boxes1 and boxes2
"""
area1 = box_area(boxes1)
area2 = box_area(boxes2)
boxes1 = boxes1.unsqueeze(1) # N x 1 x 4
lt = paddle.maximum(boxes1[:, :, :2], boxes2[:, :2])
rb = paddle.minimum(boxes1[:, :, 2:], boxes2[:, 2:])
wh = (rb - lt).clip(min=0)
inter = wh[:, :, 0] * wh[:, :, 1]
union = area1.unsqueeze(1) + area2 - inter # broadcast
iou = inter / union
return iou, union
def generalized_box_iou(boxes1, boxes2):
"""Compute GIoU of each pais in boxes1 and boxes2
GIoU = IoU - |A_c - U| / |A_c|
where A_c is the smallest convex hull that encloses both boxes, U is the union of boxes
Details illustrations can be found in https://giou.stanford.edu/
Args:
boxes1: paddle.Tensor, shape=N x 4, boxes are stored in (x1, y1, x2, y2) format
boxes2: paddle.Tensor, shape=N x 4, boxes are stored in (x1, y1, x2, y2) format
Return:
giou: giou ratios between each pair of boxes in boxes1 and boxes2
"""
iou, union = box_iou(boxes1, boxes2)
boxes1 = boxes1.unsqueeze(1) # N x 1 x 4
lt = paddle.minimum(boxes1[:, :, :2], boxes2[:, :2])
rb = paddle.maximum(boxes1[:, :, 2:], boxes2[:, 2:])
wh = (rb - lt).clip(min=0)
area = wh[:, :, 0] * wh[:, :, 1]
return iou - (area-union) / area
def masks_to_boxes(masks):
"""convert masks to bboxes
Args:
masks: paddle.Tensor, NxHxW
Return:
boxes: paddle.Tensor, Nx4
"""
if masks.numel() == 0:
return paddle.zeros((0, 4))
h, w = masks.shape[-2:]
y = paddle.arange(0, h, dtype='float32')
x = paddle.arange(0, w, dtype='float32')
y, x = paddle.meshgrid(y, x)
x_mask = (masks * x.unsqueeze(0))
x_max = x_mask.flatten(1).max(-1)[0]
#x_min = x_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)
x_min = paddle.where(masks == 0, paddle.ones_like(x_mask)*float(1e8), x_mask)
x_min = x_min.flatten(1).min(-1)[0]
y_mask = (masks * y.unsqueeze(0))
y_max = y_mask.flatten(1).max(-1)[0]
#y_min = y_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]
y_min = paddle.where(masks == 0, paddle.ones_like(y_mask) * float(1e8), y_mask)
y_min = y_min.flatten(1).min(-1)[0]
return paddle.stack([x_min, y_min, x_max, y_max], 1)