forked from BR-IDL/PaddleViT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_single_gpu.py
421 lines (378 loc) · 18.1 KB
/
main_single_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Swin training/validation using single GPU """
import sys
import os
import time
import logging
import argparse
import random
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from datasets import get_dataloader
from datasets import get_dataset
from utils import AverageMeter
from utils import WarmupCosineScheduler
from utils import get_exclude_from_weight_decay_fn
from config import get_config
from config import update_config
from mixup import Mixup
from losses import LabelSmoothingCrossEntropyLoss
from losses import SoftTargetCrossEntropyLoss
from losses import DistillationLoss
from swin_transformer import build_swin as build_model
def get_arguments():
"""return argumeents, this will overwrite the config after loading yaml file"""
parser = argparse.ArgumentParser('Swin')
parser.add_argument('-cfg', type=str, default=None)
parser.add_argument('-dataset', type=str, default=None)
parser.add_argument('-batch_size', type=int, default=None)
parser.add_argument('-image_size', type=int, default=None)
parser.add_argument('-data_path', type=str, default=None)
parser.add_argument('-ngpus', type=int, default=None)
parser.add_argument('-pretrained', type=str, default=None)
parser.add_argument('-resume', type=str, default=None)
parser.add_argument('-last_epoch', type=int, default=None)
parser.add_argument('-eval', action='store_true')
parser.add_argument('-amp', action='store_true')
arguments = parser.parse_args()
return arguments
def get_logger(filename, logger_name=None):
"""set logging file and format
Args:
filename: str, full path of the logger file to write
logger_name: str, the logger name, e.g., 'master_logger', 'local_logger'
Return:
logger: python logger
"""
log_format = "%(asctime)s %(message)s"
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt="%m%d %I:%M:%S %p")
# different name is needed when creating multiple logger in one process
logger = logging.getLogger(logger_name)
fh = logging.FileHandler(os.path.join(filename))
fh.setFormatter(logging.Formatter(log_format))
logger.addHandler(fh)
return logger
def train(dataloader,
model,
criterion,
optimizer,
epoch,
total_epochs,
total_batch,
debug_steps=100,
accum_iter=1,
mixup_fn=None,
amp=False,
logger=None):
"""Training for one epoch
Args:
dataloader: paddle.io.DataLoader, dataloader instance
model: nn.Layer, a ViT model
criterion: nn.criterion
epoch: int, current epoch
total_epochs: int, total num of epochs
total_batch: int, total num of batches for one epoch
debug_steps: int, num of iters to log info, default: 100
accum_iter: int, num of iters for accumulating gradients, default: 1
mixup_fn: Mixup, mixup instance, default: None
amp: bool, if True, use mix precision training, default: False
logger: logger for logging, default: None
Returns:
train_loss_meter.avg: float, average loss on current process/gpu
train_acc_meter.avg: float, average top1 accuracy on current process/gpu
train_time: float, training time
"""
model.train()
train_loss_meter = AverageMeter()
train_acc_meter = AverageMeter()
if amp is True:
scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
time_st = time.time()
for batch_id, data in enumerate(dataloader):
image = data[0]
label = data[1]
label_orig = label.clone()
if mixup_fn is not None:
image, label = mixup_fn(image, label_orig)
if amp is True: # mixed precision training
with paddle.amp.auto_cast():
output = model(image)
loss = criterion(image, output, label)
scaled = scaler.scale(loss)
scaled.backward()
if ((batch_id +1) % accum_iter == 0) or (batch_id + 1 == len(dataloader)):
scaler.minimize(optimizer, scaled)
optimizer.clear_grad()
else: # full precision training
output = model(image)
loss = criterion(output, label)
#NOTE: division may be needed depending on the loss function
# Here no division is needed:
# default 'reduction' param in nn.CrossEntropyLoss is set to 'mean'
#loss = loss / accum_iter
loss.backward()
if ((batch_id +1) % accum_iter == 0) or (batch_id + 1 == len(dataloader)):
optimizer.step()
optimizer.clear_grad()
pred = F.softmax(output)
if mixup_fn:
acc = paddle.metric.accuracy(pred, label_orig)
else:
acc = paddle.metric.accuracy(pred, label_orig.unsqueeze(1))
batch_size = image.shape[0]
train_loss_meter.update(loss.numpy()[0], batch_size)
train_acc_meter.update(acc.numpy()[0], batch_size)
if logger and batch_id % debug_steps == 0:
logger.info(
f"Epoch[{epoch:03d}/{total_epochs:03d}], " +
f"Step[{batch_id:04d}/{total_batch:04d}], " +
f"Avg Loss: {train_loss_meter.avg:.4f}, " +
f"Avg Acc: {train_acc_meter.avg:.4f}")
train_time = time.time() - time_st
return train_loss_meter.avg, train_acc_meter.avg, train_time
def validate(dataloader, model, criterion, total_batch, debug_steps=100, logger=None):
"""Validation for whole dataset
Args:
dataloader: paddle.io.DataLoader, dataloader instance
model: nn.Layer, a ViT model
criterion: nn.criterion
total_batch: int, total num of batches for one epoch
debug_steps: int, num of iters to log info, default: 100
logger: logger for logging, default: None
Returns:
val_loss_meter.avg: float, average loss on current process/gpu
val_acc1_meter.avg: float, average top1 accuracy on current process/gpu
val_acc5_meter.avg: float, average top5 accuracy on current process/gpu
val_time: float, valitaion time
"""
model.eval()
val_loss_meter = AverageMeter()
val_acc1_meter = AverageMeter()
val_acc5_meter = AverageMeter()
time_st = time.time()
with paddle.no_grad():
for batch_id, data in enumerate(dataloader):
image = data[0]
label = data[1]
output = model(image)
loss = criterion(output, label)
pred = F.softmax(output)
acc1 = paddle.metric.accuracy(pred, label.unsqueeze(1))
acc5 = paddle.metric.accuracy(pred, label.unsqueeze(1), k=5)
batch_size = image.shape[0]
val_loss_meter.update(loss.numpy()[0], batch_size)
val_acc1_meter.update(acc1.numpy()[0], batch_size)
val_acc5_meter.update(acc5.numpy()[0], batch_size)
if logger and batch_id % debug_steps == 0:
logger.info(
f"Val Step[{batch_id:04d}/{total_batch:04d}], " +
f"Avg Loss: {val_loss_meter.avg:.4f}, " +
f"Avg Acc@1: {val_acc1_meter.avg:.4f}, " +
f"Avg Acc@5: {val_acc5_meter.avg:.4f}")
val_time = time.time() - time_st
return val_loss_meter.avg, val_acc1_meter.avg, val_acc5_meter.avg, val_time
def main():
# STEP 0: Preparation
# config is updated by: (1) config.py, (2) yaml file, (3) arguments
arguments = get_arguments()
config = get_config()
config = update_config(config, arguments)
# set output folder
if not config.EVAL:
config.SAVE = '{}/train-{}'.format(config.SAVE, time.strftime('%Y%m%d-%H-%M-%S'))
else:
config.SAVE = '{}/eval-{}'.format(config.SAVE, time.strftime('%Y%m%d-%H-%M-%S'))
if not os.path.exists(config.SAVE):
os.makedirs(config.SAVE, exist_ok=True)
last_epoch = config.TRAIN.LAST_EPOCH
seed = config.SEED
paddle.seed(seed)
np.random.seed(seed)
random.seed(seed)
logger = get_logger(filename=os.path.join(config.SAVE, 'log.txt'))
logger.info(f'\n{config}')
# STEP 1: Create model
model = build_model(config)
# STEP 2: Create train and val dataloader
dataset_train = get_dataset(config, mode='train')
dataset_val = get_dataset(config, mode='val')
dataloader_train = get_dataloader(config, dataset_train, 'train', False)
dataloader_val = get_dataloader(config, dataset_val, 'val', False)
# STEP 3: Define Mixup function
mixup_fn = None
if config.TRAIN.MIXUP_PROB > 0 or config.TRAIN.CUTMIX_ALPHA > 0 or config.TRAIN.CUTMIX_MINMAX is not None:
mixup_fn = Mixup(mixup_alpha=config.TRAIN.MIXUP_ALPHA,
cutmix_alpha=config.TRAIN.CUTMIX_ALPHA,
cutmix_minmax=config.TRAIN.CUTMIX_MINMAX,
prob=config.TRAIN.MIXUP_PROB,
switch_prob=config.TRAIN.MIXUP_SWITCH_PROB,
mode=config.TRAIN.MIXUP_MODE,
label_smoothing=config.TRAIN.SMOOTHING)
# STEP 4: Define criterion
if config.TRAIN.MIXUP_PROB > 0.:
criterion = SoftTargetCrossEntropyLoss()
elif config.TRAIN.SMOOTHING:
criterion = LabelSmoothingCrossEntropyLoss()
else:
criterion = nn.CrossEntropyLoss()
# only use cross entropy for val
criterion_val = nn.CrossEntropyLoss()
# STEP 5: Define optimizer and lr_scheduler
# set lr according to batch size and world size (hacked from official code)
linear_scaled_lr = (config.TRAIN.BASE_LR * config.DATA.BATCH_SIZE) / 512.0
linear_scaled_warmup_start_lr = (config.TRAIN.WARMUP_START_LR * config.DATA.BATCH_SIZE) / 512.0
linear_scaled_end_lr = (config.TRAIN.END_LR * config.DATA.BATCH_SIZE) / 512.0
if config.TRAIN.ACCUM_ITER > 1:
linear_scaled_lr = linear_scaled_lr * config.TRAIN.ACCUM_ITER
linear_scaled_warmup_start_lr = linear_scaled_warmup_start_lr * config.TRAIN.ACCUM_ITER
linear_scaled_end_lr = linear_scaled_end_lr * config.TRAIN.ACCUM_ITER
config.TRAIN.BASE_LR = linear_scaled_lr
config.TRAIN.WARMUP_START_LR = linear_scaled_warmup_start_lr
config.TRAIN.END_LR = linear_scaled_end_lr
scheduler = None
if config.TRAIN.LR_SCHEDULER.NAME == "warmupcosine":
scheduler = WarmupCosineScheduler(learning_rate=config.TRAIN.BASE_LR,
warmup_start_lr=config.TRAIN.WARMUP_START_LR,
start_lr=config.TRAIN.BASE_LR,
end_lr=config.TRAIN.END_LR,
warmup_epochs=config.TRAIN.WARMUP_EPOCHS,
total_epochs=config.TRAIN.NUM_EPOCHS,
last_epoch=config.TRAIN.LAST_EPOCH,
)
elif config.TRAIN.LR_SCHEDULER.NAME == "cosine":
scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=config.TRAIN.BASE_LR,
T_max=config.TRAIN.NUM_EPOCHS,
last_epoch=last_epoch)
elif config.scheduler == "multi-step":
milestones = [int(v.strip()) for v in config.TRAIN.LR_SCHEDULER.MILESTONES.split(",")]
scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=config.TRAIN.BASE_LR,
milestones=milestones,
gamma=config.TRAIN.LR_SCHEDULER.DECAY_RATE,
last_epoch=last_epoch)
else:
logger.fatal(f"Unsupported Scheduler: {config.TRAIN.LR_SCHEDULER}.")
raise NotImplementedError(f"Unsupported Scheduler: {config.TRAIN.LR_SCHEDULER}.")
if config.TRAIN.OPTIMIZER.NAME == "SGD":
if config.TRAIN.GRAD_CLIP:
clip = paddle.nn.ClipGradByGlobalNorm(config.TRAIN.GRAD_CLIP)
else:
clip = None
optimizer = paddle.optimizer.Momentum(
parameters=model.parameters(),
learning_rate=scheduler if scheduler is not None else config.TRAIN.BASE_LR,
weight_decay=config.TRAIN.WEIGHT_DECAY,
momentum=config.TRAIN.OPTIMIZER.MOMENTUM,
grad_clip=clip)
elif config.TRAIN.OPTIMIZER.NAME == "AdamW":
if config.TRAIN.GRAD_CLIP:
clip = paddle.nn.ClipGradByGlobalNorm(config.TRAIN.GRAD_CLIP)
else:
clip = None
optimizer = paddle.optimizer.AdamW(
parameters=model.parameters(),
learning_rate=scheduler if scheduler is not None else config.TRAIN.BASE_LR,
beta1=config.TRAIN.OPTIMIZER.BETAS[0],
beta2=config.TRAIN.OPTIMIZER.BETAS[1],
weight_decay=config.TRAIN.WEIGHT_DECAY,
epsilon=config.TRAIN.OPTIMIZER.EPS,
grad_clip=clip,
apply_decay_param_fun=get_exclude_from_weight_decay_fn([
'absolute_pos_embed', 'relative_position_bias_table']),
)
else:
logger.fatal(f"Unsupported Optimizer: {config.TRAIN.OPTIMIZER.NAME}.")
raise NotImplementedError(f"Unsupported Optimizer: {config.TRAIN.OPTIMIZER.NAME}.")
# STEP 6: Load pretrained model or load resume model and optimizer states
if config.MODEL.PRETRAINED:
if (config.MODEL.PRETRAINED).endswith('.pdparams'):
raise ValueError(f'{config.MODEL.PRETRAINED} should not contain .pdparams')
assert os.path.isfile(config.MODEL.PRETRAINED + '.pdparams') is True
model_state = paddle.load(config.MODEL.PRETRAINED+'.pdparams')
model.set_dict(model_state)
logger.info(f"----- Pretrained: Load model state from {config.MODEL.PRETRAINED}")
if config.MODEL.RESUME:
assert os.path.isfile(config.MODEL.RESUME+'.pdparams') is True
assert os.path.isfile(config.MODEL.RESUME+'.pdopt') is True
model_state = paddle.load(config.MODEL.RESUME+'.pdparams')
model.set_dict(model_state)
opt_state = paddle.load(config.MODEL.RESUME+'.pdopt')
optimizer.set_state_dict(opt_state)
logger.info(
f"----- Resume: Load model and optmizer from {config.MODEL.RESUME}")
# STEP 7: Validation (eval mode)
if config.EVAL:
logger.info('----- Start Validating')
val_loss, val_acc1, val_acc5, val_time = validate(
dataloader=dataloader_val,
model=model,
criterion=criterion_val,
total_batch=len(dataloader_val),
debug_steps=config.REPORT_FREQ,
logger=logger)
logger.info(f"Validation Loss: {val_loss:.4f}, " +
f"Validation Acc@1: {val_acc1:.4f}, " +
f"Validation Acc@5: {val_acc5:.4f}, " +
f"time: {val_time:.2f}")
return
# STEP 8: Start training and validation (train mode)
logger.info(f"Start training from epoch {last_epoch+1}.")
for epoch in range(last_epoch+1, config.TRAIN.NUM_EPOCHS+1):
# train
logger.info(f"Now training epoch {epoch}. LR={optimizer.get_lr():.6f}")
train_loss, train_acc, train_time = train(dataloader=dataloader_train,
model=model,
criterion=criterion,
optimizer=optimizer,
epoch=epoch,
total_epochs=config.TRAIN.NUM_EPOCHS,
total_batch=len(dataloader_train),
debug_steps=config.REPORT_FREQ,
accum_iter=config.TRAIN.ACCUM_ITER,
mixup_fn=mixup_fn,
amp=config.AMP,
logger=logger)
scheduler.step()
logger.info(f"----- Epoch[{epoch:03d}/{config.TRAIN.NUM_EPOCHS:03d}], " +
f"Train Loss: {train_loss:.4f}, " +
f"Train Acc: {train_acc:.4f}, " +
f"time: {train_time:.2f}")
# validation
if epoch % config.VALIDATE_FREQ == 0 or epoch == config.TRAIN.NUM_EPOCHS:
logger.info(f'----- Validation after Epoch: {epoch}')
val_loss, val_acc1, val_acc5, val_time = validate(
dataloader=dataloader_val,
model=model,
criterion=criterion_val,
total_batch=len(dataloader_val),
debug_steps=config.REPORT_FREQ,
logger=logger)
logger.info(f"----- Epoch[{epoch:03d}/{config.TRAIN.NUM_EPOCHS:03d}], " +
f"Validation Loss: {val_loss:.4f}, " +
f"Validation Acc@1: {val_acc1:.4f}, " +
f"Validation Acc@5: {val_acc5:.4f}, " +
f"time: {val_time:.2f}")
# model save
if epoch % config.SAVE_FREQ == 0 or epoch == config.TRAIN.NUM_EPOCHS:
model_path = os.path.join(
config.SAVE, f"{config.MODEL.TYPE}-Epoch-{epoch}-Loss-{train_loss}")
paddle.save(model.state_dict(), model_path + '.pdparams')
paddle.save(optimizer.state_dict(), model_path + '.pdopt')
logger.info(f"----- Save model: {model_path}.pdparams")
logger.info(f"----- Save optim: {model_path}.pdopt")
if __name__ == "__main__":
main()