diff --git a/.idea/.gitignore b/.idea/.gitignore new file mode 100644 index 000000000..13566b81b --- /dev/null +++ b/.idea/.gitignore @@ -0,0 +1,8 @@ +# Default ignored files +/shelf/ +/workspace.xml +# Editor-based HTTP Client requests +/httpRequests/ +# Datasource local storage ignored files +/dataSources/ +/dataSources.local.xml diff --git a/.idea/inspectionProfiles/profiles_settings.xml b/.idea/inspectionProfiles/profiles_settings.xml new file mode 100644 index 000000000..105ce2da2 --- /dev/null +++ b/.idea/inspectionProfiles/profiles_settings.xml @@ -0,0 +1,6 @@ + + + + \ No newline at end of file diff --git a/.idea/mipt-ml-course.iml b/.idea/mipt-ml-course.iml new file mode 100644 index 000000000..8a05c6ed5 --- /dev/null +++ b/.idea/mipt-ml-course.iml @@ -0,0 +1,12 @@ + + + + + + + + + + \ No newline at end of file diff --git a/.idea/misc.xml b/.idea/misc.xml new file mode 100644 index 000000000..28456e144 --- /dev/null +++ b/.idea/misc.xml @@ -0,0 +1,4 @@ + + + + \ No newline at end of file diff --git a/.idea/modules.xml b/.idea/modules.xml new file mode 100644 index 000000000..ea74123b9 --- /dev/null +++ b/.idea/modules.xml @@ -0,0 +1,8 @@ + + + + + + + + \ No newline at end of file diff --git a/.idea/vcs.xml b/.idea/vcs.xml new file mode 100644 index 000000000..35eb1ddfb --- /dev/null +++ b/.idea/vcs.xml @@ -0,0 +1,6 @@ + + + + + + \ No newline at end of file diff --git a/homeworks/hw05_bagging_and_oob/assignment_bagging_and_oob.ipynb b/homeworks/hw05_bagging_and_oob/assignment_bagging_and_oob.ipynb index e20e493a2..dd271b5f6 100644 --- a/homeworks/hw05_bagging_and_oob/assignment_bagging_and_oob.ipynb +++ b/homeworks/hw05_bagging_and_oob/assignment_bagging_and_oob.ipynb @@ -1,273 +1,1891 @@ { - "cells": [ - { - "cell_type": "markdown", - "id": "119c9460", - "metadata": {}, - "source": [ - "## Home assignment 05: Bagging and OOB score\n", - "\n", - "Please, fill the lines in the code below.\n", - "This is a simplified version of `BaggingRegressor` from `sklearn`. Please, notice, that `sklearn` API is **not preserved**.\n", - "\n", - "Your algorithm should be able to train different instances of the same model class on bootstrapped datasets and to provide [OOB score](https://en.wikipedia.org/wiki/Out-of-bag_error) for the training set.\n", - "\n", - "The model should be passed as model class with no explicit parameters and no parentheses.\n", - "\n", - "Example:\n", - "```\n", - "import numpy as np\n", - "from sklearn.linear_model import LinearRegression\n", - "\n", - "bagging_regressor = SimplifiedBaggingRegressor(num_bags=10, oob=True)\n", - "bagging_regressor.fit(LinearRegression, X, y)\n", - "\n", - "```" - ] + "cells": [ + { + "cell_type": "markdown", + "id": "119c9460", + "metadata": { + "id": "119c9460" + }, + "source": [ + "## Home assignment 05: Bagging and OOB score\n", + "\n", + "Please, fill the lines in the code below.\n", + "This is a simplified version of `BaggingRegressor` from `sklearn`. Please, notice, that `sklearn` API is **not preserved**.\n", + "\n", + "Your algorithm should be able to train different instances of the same model class on bootstrapped datasets and to provide [OOB score](https://en.wikipedia.org/wiki/Out-of-bag_error) for the training set.\n", + "\n", + "The model should be passed as model class with no explicit parameters and no parentheses.\n", + "\n", + "Example:\n", + "```\n", + "import numpy as np\n", + "from sklearn.linear_model import LinearRegression\n", + "\n", + "bagging_regressor = SimplifiedBaggingRegressor(num_bags=10, oob=True)\n", + "bagging_regressor.fit(LinearRegression, X, y)\n", + "\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "31ecde34", + "metadata": { + "id": "31ecde34" + }, + "outputs": [], + "source": [ + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 140, + "id": "06110580", + "metadata": { + "id": "06110580" + }, + "outputs": [], + "source": [ + "class SimplifiedBaggingRegressor:\n", + " def __init__(self, num_bags, oob=False):\n", + " self.num_bags = num_bags\n", + " self.oob = oob\n", + "\n", + " def _generate_splits(self, data: np.ndarray):\n", + " '''\n", + " Generate indices for every bag and store in self.indices_list list\n", + " '''\n", + " self.indices_list = []\n", + " data_length = len(data)\n", + " for bag in range(self.num_bags):\n", + " self.indices_list.append(np.random.choice(len(data), size=data_length))\n", + "\n", + " def fit(self, model_constructor, data, target):\n", + " '''\n", + " Fit model on every bag.\n", + " Model constructor with no parameters (and with no ()) is passed to this function.\n", + "\n", + " example:\n", + "\n", + " bagging_regressor = SimplifiedBaggingRegressor(num_bags=10, oob=True)\n", + " bagging_regressor.fit(LinearRegression, X, y)\n", + " '''\n", + " self.data = None\n", + " self.target = None\n", + " self._generate_splits(data)\n", + " assert len(set(list(map(len, self.indices_list)))) == 1, 'All bags should be of the same length!'\n", + " assert list(map(len, self.indices_list))[0] == len(data), 'All bags should contain `len(data)` number of elements!'\n", + " self.models_list = []\n", + " for bag in range(self.num_bags):\n", + " model = model_constructor()\n", + " data_bag, target_bag = data[self.indices_list[bag]], target[self.indices_list[bag]]\n", + " self.models_list.append(model.fit(data_bag, target_bag)) # store fitted models here\n", + " if self.oob:\n", + " self.data = data\n", + " self.target = target\n", + "\n", + " def predict(self, data):\n", + " '''\n", + " Get average prediction for every object from passed dataset\n", + " '''\n", + " return np.mean([model.predict(data) for model in self.models_list], axis=0)\n", + "\n", + " def _get_oob_predictions_from_every_model(self):\n", + " '''\n", + " Generates list of lists, where list i contains predictions for self.data[i] object\n", + " from all models, which have not seen this object during training phase\n", + " '''\n", + " list_of_predictions_lists = [[] for _ in range(len(self.data))]\n", + " for i in range(len(self.data)):\n", + " for bag in range(self.num_bags):\n", + " if i not in self.indices_list[bag]:\n", + " list_of_predictions_lists[i].append(self.models_list[bag].predict([self.data[i]]).item())\n", + "\n", + " self.list_of_predictions_lists = np.array(list_of_predictions_lists, dtype=object)\n", + "\n", + " def _get_averaged_oob_predictions(self):\n", + " '''\n", + " Compute average prediction for every object from training set.\n", + " If object has been used in all bags on training phase, return None instead of prediction\n", + " '''\n", + " self._get_oob_predictions_from_every_model()\n", + " self.oob_predictions = [np.mean(preds) for preds in self.list_of_predictions_lists]\n", + "\n", + " def OOB_score(self):\n", + " '''\n", + " Compute mean square error for all objects, which have at least one prediction\n", + " '''\n", + " self._get_averaged_oob_predictions()\n", + " return np.mean(np.nan_to_num((self.target - self.oob_predictions), 0) ** 2)" + ] + }, + { + "cell_type": "markdown", + "id": "5cfa174f", + "metadata": { + "id": "5cfa174f" + }, + "source": [ + "### Local tests:" + ] + }, + { + "cell_type": "code", + "execution_count": 141, + "id": "eaa2e710", + "metadata": { + "id": "eaa2e710" + }, + "outputs": [], + "source": [ + "from sklearn.linear_model import LinearRegression\n", + "from tqdm.auto import tqdm" + ] + }, + { + "cell_type": "markdown", + "id": "b54221c2", + "metadata": { + "id": "b54221c2" + }, + "source": [ + "#### Simple tests:" + ] + }, + { + "cell_type": "code", + "execution_count": 143, + "id": "84c94a8b", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000, + "referenced_widgets": [ + "c1b042da30294fa8bee2380c89f844e8", + "6a13a00550e04cb3b034e65a30eb9fa9", + "925147982fc44101b513531e6fa1b345", + "569b1cbb1fd54ef9954ff60a1e1a52d6", + "4f2dd2fe9fdb4de4a4c450f2225307c2", + "975be71b24a048b6beec84d10dfe9608", + "ec8892c5c8774394a541dc44ec2a0432", + "0455d20fd1d743c3b8bc2c5b1bd9f633", + "ddb27750a4f344b89053c64213395df6", + "97c6778d46e949a9a5df975941ac152e", + "e9176aabcfbd46cbbae1bffb63186147" + ] + }, + "id": "84c94a8b", + "outputId": "0c72a057-2dbe-4e46-c890-3c2ae116b75f" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " 0%| | 0/100 [00:00 average_train_error, 'OOB error must be higher than train error due to overfitting!'\n", + " assert abs(\n", + " np.mean(\n", + " list(map(len, bagging_regressor.list_of_predictions_lists))\n", + " ) / bagging_regressor.num_bags - 1/np.exp(1)) < 0.1, 'Probability of missing a bag should be close to theoretical value!'\n", + "\n", + "print('Medium tests done!')" + ] + }, + { + "cell_type": "markdown", + "id": "725818ff", + "metadata": { + "id": "725818ff" + }, + "source": [ + "#### Complex tests:" + ] + }, + { + "cell_type": "code", + "execution_count": 145, + "id": "8f929d6b", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 67, + "referenced_widgets": [ + "f6233f70173147048d21c271e0994906", + "91bdb0e49d7f4cdb8320d8afc6ae0b42", + "661787640c31472cb12451784ee28e34", + "5d3e354484c848b096d6842805e5952a", + "14e811347b1d4898b8eb0ed2665d0bad", + "91c2c91677fb482091b8170ddf70d289", + "56ce3bf3d33a4697a63276d4693c41c0", + "eb948d9ef5724f30adb65c6b14377f7a", + "c5354796f9ae49848cc4bc4527631215", + "8f0cf6fc4b7541e09af2d06606e7fd83", + "cc7d12cec2aa4f3c9c20b98d00e0cb9a" + ] + }, + "id": "8f929d6b", + "outputId": "991abf81-a9f2-4656-e2bc-10ed3b09a373" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " 0%| | 0/10 [00:00 average_train_error, 'OOB error must be higher than train error due to overfitting!'\n", - " assert abs(\n", - " np.mean(\n", - " list(map(len, bagging_regressor.list_of_predictions_lists))\n", - " ) / bagging_regressor.num_bags - 1/np.exp(1)) < 0.1, 'Probability of missing a bag should be close to theoretical value!'\n", - " \n", - "print('Medium tests done!')" - ] - }, - { - "cell_type": "markdown", - "id": "725818ff", - "metadata": {}, - "source": [ - "#### Complex tests:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "8f929d6b", - "metadata": {}, - "outputs": [], - "source": [ - "for _ in tqdm(range(10)):\n", - " X = np.random.randn(2000, 15)\n", - " y = np.random.randn(len(X))\n", - " bagging_regressor = SimplifiedBaggingRegressor(num_bags=100, oob=True)\n", - " bagging_regressor.fit(LinearRegression, X, y)\n", - " predictions = bagging_regressor.predict(X)\n", - " oob_score = bagging_regressor.OOB_score()\n", - " assert abs(\n", - " np.mean(\n", - " list(map(len, bagging_regressor.list_of_predictions_lists))\n", - " ) / bagging_regressor.num_bags - 1/np.exp(1)) < 1e-2, 'Probability of missing a bag should be close to theoretical value!'\n", - " \n", - "print('Complex tests done!')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "af170ef8", - "metadata": {}, - "outputs": [], - "source": [ - "np.mean(\n", - " list(map(len, bagging_regressor.list_of_predictions_lists))\n", - " ) / bagging_regressor.num_bags - 1/np.exp(1)" - ] - }, - { - "cell_type": "markdown", - "id": "9535cb6d", - "metadata": {}, - "source": [ - "Great job! Please, save `SimplifiedBaggingRegressor` to `bagging.py` and submit your solution to the grading system!" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Py3 Research", - "language": "python", - "name": "py3_research" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.16" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} + "nbformat": 4, + "nbformat_minor": 5 +} \ No newline at end of file diff --git a/homeworks/hw05_bagging_and_oob/bagging.py b/homeworks/hw05_bagging_and_oob/bagging.py index a7952f9dd..ebd3cbaf7 100644 --- a/homeworks/hw05_bagging_and_oob/bagging.py +++ b/homeworks/hw05_bagging_and_oob/bagging.py @@ -12,7 +12,7 @@ def _generate_splits(self, data: np.ndarray): self.indices_list = [] data_length = len(data) for bag in range(self.num_bags): - # Your Code Here + self.indices_list.append(np.random.choice(len(data), size=data_length)) def fit(self, model_constructor, data, target): ''' @@ -32,7 +32,7 @@ def fit(self, model_constructor, data, target): self.models_list = [] for bag in range(self.num_bags): model = model_constructor() - data_bag, target_bag = # Your Code Here + data_bag, target_bag = data[self.indices_list[bag]], target[self.indices_list[bag]] self.models_list.append(model.fit(data_bag, target_bag)) # store fitted models here if self.oob: self.data = data @@ -42,7 +42,7 @@ def predict(self, data): ''' Get average prediction for every object from passed dataset ''' - # Your code here + return np.mean([model.predict(data) for model in self.models_list], axis=0) def _get_oob_predictions_from_every_model(self): ''' @@ -50,8 +50,11 @@ def _get_oob_predictions_from_every_model(self): from all models, which have not seen this object during training phase ''' list_of_predictions_lists = [[] for _ in range(len(self.data))] - # Your Code Here - + for i in range(len(self.data)): + for bag in range(self.num_bags): + if i not in self.indices_list[bag]: + list_of_predictions_lists[i].append(self.models_list[bag].predict([self.data[i]]).item()) + self.list_of_predictions_lists = np.array(list_of_predictions_lists, dtype=object) def _get_averaged_oob_predictions(self): @@ -59,13 +62,12 @@ def _get_averaged_oob_predictions(self): Compute average prediction for every object from training set. If object has been used in all bags on training phase, return None instead of prediction ''' - self._get_oob_predictions_from_every_model() - self.oob_predictions = # Your Code Here - + self._get_oob_predictions_from_every_model() + self.oob_predictions = [np.mean(preds) for preds in self.list_of_predictions_lists] def OOB_score(self): ''' Compute mean square error for all objects, which have at least one prediction ''' self._get_averaged_oob_predictions() - return # Your Code Here \ No newline at end of file + return np.mean(np.nan_to_num((self.target - self.oob_predictions), 0) ** 2) \ No newline at end of file diff --git a/homeworks/hw06_boosting/assignment_boosting.ipynb b/homeworks/hw06_boosting/assignment_boosting.ipynb index c0742aa87..156ecb4fc 100644 --- a/homeworks/hw06_boosting/assignment_boosting.ipynb +++ b/homeworks/hw06_boosting/assignment_boosting.ipynb @@ -1,333 +1,1451 @@ { - "cells": [ - { - "cell_type": "markdown", - "id": "119c9460", - "metadata": {}, - "source": [ - "## Home assignment 06: Gradient boosting with MSE\n", - "\n", - "Please, fill the lines in the code below.\n", - "This is a simplified version of `BoostingRegressor` from `sklearn`. Please, notice, that `sklearn` API is **not preserved**.\n", - "\n", - "Your algorithm should be able to train different numbers of instances of the same model class. Every target is computed according to the loss function gradient. In this particular case, loss is computed for MSE.\n", - "\n", - "The model should be passed as model class with no explicit parameters and no parentheses.\n", - "\n", - "Example:\n", - "```\n", - "import numpy as np\n", - "from sklearn.tree import DecisionTreeRegressor\n", - "\n", - "boosting_regressor = SimplifiedBoostingRegressor() \n", - "boosting_regressor.fit(DecisionTreeRegressor, X, y, 100, 0.5, 10)\n", - "\n", - "\n", - "```" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "31ecde34", - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "from tqdm.auto import tqdm\n", - "from matplotlib import pyplot as plt\n", - "\n", - "from sklearn.tree import DecisionTreeRegressor\n", - "from sklearn.linear_model import LinearRegression\n", - "from sklearn.datasets import make_regression" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "06110580", - "metadata": {}, - "outputs": [], - "source": [ - "class SimplifiedBoostingRegressor:\n", - " def __init__(self):\n", - " pass\n", - " \n", - " @staticmethod\n", - " def loss(targets, predictions):\n", - " loss = np.mean((targets - predictions)**2)\n", - " return loss\n", - " \n", - " @staticmethod\n", - " def loss_gradients(targets, predictions):\n", - " gradients = # YOUR CODE HERE\n", - " assert gradients.shape == targets.shape\n", - " return gradients\n", - " \n", - " \n", - " def fit(self, model_constructor, data, targets, num_steps=10, lr=0.1, max_depth=5, verbose=False):\n", - " '''\n", - " Fit sequence of models on the provided data.\n", - " Model constructor with no parameters (and with no ()) is passed to this function.\n", - " If \n", - " \n", - " example:\n", - " \n", - " boosting_regressor = SimplifiedBoostingRegressor() \n", - " boosting_regressor.fit(DecisionTreeRegressor, X, y, 100, 0.5, 10)\n", - " '''\n", - " new_targets = targets\n", - " self.models_list = []\n", - " self.lr = lr\n", - " self.loss_log = []\n", - " for step in range(num_steps):\n", - " try:\n", - " model = model_constructor(max_depth=max_depth)\n", - " except TypeError:\n", - " print('max_depth keyword is not found. Ignoring')\n", - " model = model_constructor()\n", - " self.models_list.append(model.fit(data, new_targets))\n", - " predictions = self.predict(data)\n", - " self.loss_log.append(self.loss(targets, predictions))\n", - " gradients = self.loss_gradients(targets, predictions)\n", - " new_targets = # YOUR CODE HERE\n", - " if verbose:\n", - " print('Finished! Loss=', self.loss_log[-1])\n", - " return self\n", - " \n", - " def predict(self, data):\n", - " predictions = np.zeros(len(data))\n", - " for model in self.models_list:\n", - " predictions += # YOUR CODE HERE\n", - " return predictions" - ] - }, - { - "cell_type": "markdown", - "id": "5cfa174f", - "metadata": {}, - "source": [ - "### Local tests:" - ] - }, - { - "cell_type": "markdown", - "id": "b54221c2", - "metadata": {}, - "source": [ - "#### Overfitting tests:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "84c94a8b", - "metadata": {}, - "outputs": [ + "cells": [ { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "68a9e15449574ee48b5f41bb78b66311", - "version_major": 2, - "version_minor": 0 + "cell_type": "markdown", + "id": "119c9460", + "metadata": { + "id": "119c9460" }, - "text/plain": [ - " 0%| | 0/10 [00:00 1e-2, 'First tree loos should be not to low!' \n", - "print('Overfitting tests done!')" - ] - }, - { - "cell_type": "markdown", - "id": "17e5cfd7", - "metadata": {}, - "source": [ - "#### Zero lr tests:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "a9e60fe4", - "metadata": {}, - "outputs": [ + "cell_type": "code", + "execution_count": 5, + "id": "31ecde34", + "metadata": { + "id": "31ecde34" + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "from tqdm.auto import tqdm\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from sklearn.tree import DecisionTreeRegressor\n", + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.datasets import make_regression" + ] + }, { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "6e8f7b6fad444927b69e010b20e2ffa8", - "version_major": 2, - "version_minor": 0 + "cell_type": "code", + "execution_count": 28, + "id": "06110580", + "metadata": { + "id": "06110580" }, - "text/plain": [ - " 0%| | 0/10 [00:00 train_loss_log[-1] and abs(train_loss_log[-2]/train_loss_log[-1]) < 2, '{}, {}'.format(train_loss_log[-2], train_loss_log[-1])" - ] - }, - { - "cell_type": "markdown", - "id": "2eedf99c", - "metadata": {}, - "source": [ - "Here is your convergence plot from the last run:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "1bae7383", - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "" + "cell_type": "code", + "execution_count": 29, + "id": "84c94a8b", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 67, + "referenced_widgets": [ + "ccc272cfe2b644a2abf40f34522a3530", + "3c046e27190047a6b5b7f001b28f1d30", + "bb962f2b5e7d4baaa151c926f5264831", + "543842ab52224ec183575f625a6cbf74", + "b93e917bb4d34e85aa18a6f25fee9cb9", + "842aff424243442b853b42a1ce73e8d7", + "20f3c0ea2d07472da8d983ce0cc34407", + "56e1f3a609f6488c932fcd9f33be3e8d", + "44cc7294fcff4a6da2621841d2c6658f", + "26f88ecbb828492f9b9612e4e4877238", + "04848b262fb343fcb72d69a742529cf1" + ] + }, + "id": "84c94a8b", + "outputId": "1fef1c5e-9690-4a56-c45c-9528b2684b0a" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " 0%| | 0/10 [00:00 1e-2, 'First tree loos should be not to low!'\n", + "print('Overfitting tests done!')" + ] + }, + { + "cell_type": "markdown", + "id": "17e5cfd7", + "metadata": { + "id": "17e5cfd7" + }, + "source": [ + "#### Zero lr tests:" ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAGwCAYAAABiu4tnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgeklEQVR4nO3deXxTdb7/8VeSNulCF0o3CmWHsqOiYlUYHZCCiOIuoILiOjAqjIo4Lqgzwk9cx/V6XXBmcJ3rNiBoRRYR3NCCoFTAslN2mu5tmvP7I23a0IJdkiZp38/HPY+cnPPNOZ+T2Mt7zvme7zEZhmEgIiIiIg1m9ncBIiIiIsFKQUpERESkkRSkRERERBpJQUpERESkkRSkRERERBpJQUpERESkkRSkRERERBopxN8FtBROp5M9e/YQFRWFyWTydzkiIiJSD4ZhkJ+fT0pKCmZzw88vKUh5yZ49e0hNTfV3GSIiItIIO3fupGPHjg3+nIKUl0RFRQGuHyI6OtrP1YiIiEh92O12UlNT3f+ON5SClJdUXc6Ljo5WkBIREQkyje2Wo87mIiIiIo2kICUiIiLSSApSIiIiIo2kPlIiIiIBzul0UlZW5u8yglJoaCgWi8Vn21eQEhERCWBlZWXk5OTgdDr9XUrQio2NJTk52SfjPCpIiYiIBCjDMNi7dy8Wi4XU1NRGDRjZmhmGQVFREfv37wegffv2Xt+HgpSIiEiAcjgcFBUVkZKSQkREhL/LCUrh4eEA7N+/n8TERK9f5lO0FRERCVAVFRUAWK1WP1cS3KpCaHl5ude3rSAlIiIS4PQM16bx5fenICUiIiLSSApSIiIiIo2kICUiIiIBrUuXLjz99NP+LqNOumsv0BkG5O8FRwnEdfN3NSIiIvVyzjnncNJJJ3klAH333XdERkY2vSgf0BmpQPfdK/BkH/jsfn9XIiIi4jWGYeBwOOrVNiEhIWCHf1CQCnTxPV2v+3/xbx0iIuJ3hmFQVObwy2QYRr3rnDx5MitWrOCZZ57BZDJhMpmYP38+JpOJxYsXM3jwYGw2G6tWrWLr1q1cdNFFJCUl0aZNG0477TQ+//xzj+0de2nPZDLxyiuvcPHFFxMREUHPnj35+OOPvfU1N4gu7QW6xL6u18O/QXkxhIb7tx4REfGb4vIK+j7wqV/2/fPDGURY6xcbnnnmGX799Vf69+/Pww8/DMDGjRsBuOeee3j88cfp1q0bbdu2ZefOnZx//vn8/e9/x2az8c9//pOxY8eSnZ1Np06djruPhx56iMcee4x58+bx7LPPMnHiRLZv305cXFzTD7YBdEYq0EUmQEQ7wIAD2f6uRkRE5HfFxMRgtVqJiIggOTmZ5ORk94jiDz/8MOeddx7du3cnLi6OQYMGcfPNN9O/f3969uzJI488Qvfu3X/3DNPkyZMZP348PXr04NFHH6WgoIBvv/22OQ7Pg85IBTqTyXVWatuXrst7KSf5uyIREfGT8FALPz+c4bd9e8Opp57q8b6goIDZs2ezaNEi9u7di8PhoLi4mB07dpxwOwMHDnTPR0ZGEh0d7X6mXnNSkAoGiX1cQeqA+kmJiLRmJpOp3pfXAtWxd9/deeedZGZm8vjjj9OjRw/Cw8O57LLLKCsrO+F2QkNDPd6bTCacTqfX6/09wf1rtBaJfVyv6nAuIiJBwmq1up8VeCJfffUVkydP5uKLLwZcZ6i2bdvm4+q8R32kgkFVh3MFKRERCRJdunThm2++Ydu2bRw8ePC4Z4t69uzJ+++/T1ZWFuvWrWPChAl+ObPUWApSwSCht+s1byeU2P1bi4iISD3ceeedWCwW+vbtS0JCwnH7PD355JO0bduWM888k7Fjx5KRkcEpp5zSzNU2nsloyMAQclx2u52YmBjy8vKIjo72/g6e7Av23TAlE1JP9/72RUQk4JSUlJCTk0PXrl0JCwvzdzlB60TfY1P//dYZqWDh7if1s3/rEBERETcFqWChDuciIiIBR0EqWCTojJSIiEigUZAKFjojJSIiEnD8GqRWrlzJ2LFjSUlJwWQy8eGHH3qsr3rQ4bHTvHnz3G26dOlSa/3cuXM9trN+/XqGDh1KWFgYqampPPbYY7Vqee+99+jduzdhYWEMGDCATz75xCfH3GgJaYAJCg9AwQF/VyMiIiL4OUgVFhYyaNAgnn/++TrX792712N67bXXMJlMXHrppR7tHn74YY92f/7zn93r7HY7I0eOpHPnzqxdu5Z58+Yxe/ZsXn75ZXeb1atXM378eKZMmcKPP/7IuHHjGDduHBs2bPDNgTeGNRLadnHNa4RzERGRgODXkc1Hjx7N6NGjj7s+OTnZ4/1HH33EueeeS7du3TyWR0VF1WpbZcGCBZSVlfHaa69htVrp168fWVlZPPnkk9x0002A6ynVo0aN4q677gLgkUceITMzk+eee46XXnqpKYfoXYl94UiO6/Je12H+rkZERKTVC5o+Uvv27WPRokVMmTKl1rq5c+fSrl07Tj75ZObNm4fD4XCvW7NmDcOGDcNqtbqXZWRkkJ2dzZEjR9xtRowY4bHNjIwM1qxZc9x6SktLsdvtHpPPaQgEERGRgBI0QeqNN94gKiqKSy65xGP5bbfdxttvv82yZcu4+eabefTRR7n77rvd63Nzc0lKSvL4TNX73NzcE7apWl+XOXPmEBMT455SU1ObdHz1og7nIiLSSnTp0oWnn37a32X8rqB5aPFrr73GxIkTa41IOmPGDPf8wIEDsVqt3HzzzcyZMwebzeazembNmuWxb7vd7vsw5X7m3iYwDDCZfLs/EREROaGgCFJffvkl2dnZvPPOO7/bdsiQITgcDrZt20ZaWhrJycns27fPo03V+6p+Vcdrc7x+VwA2m82nQa1O7XqAOQRK88C+B2I6NO/+RURExENQXNp79dVXGTx4MIMGDfrdtllZWZjNZhITEwFIT09n5cqVlJeXu9tkZmaSlpZG27Zt3W2WLl3qsZ3MzEzS09O9eBReEGKFdj1d87q8JyIiAerll18mJSUFp9Ppsfyiiy7i+uuvZ+vWrVx00UUkJSXRpk0bTjvtND7//HM/Vds0fg1SBQUFZGVlkZWVBUBOTg5ZWVkeT4i22+2899573HDDDbU+v2bNGp5++mnWrVvHb7/9xoIFC5g+fTpXX321OyRNmDABq9XKlClT2LhxI++88w7PPPOMx2W522+/nSVLlvDEE0+wadMmZs+ezffff8+0adN8+wU0hjqci4i0XoYBZYX+mQyj3mVefvnlHDp0iGXLlrmXHT58mCVLljBx4kQKCgo4//zzWbp0KT/++COjRo1i7NixHv/+Bwu/Xtr7/vvvOffcc93vq8LNpEmTmD9/PgBvv/02hmEwfvz4Wp+32Wy8/fbbzJ49m9LSUrp27cr06dM9QlJMTAyfffYZU6dOZfDgwcTHx/PAAw+4hz4AOPPMM3nzzTe57777uPfee+nZsycffvgh/fv399GRN0FiX9j4vs5IiYi0RuVF8GiKf/Z97x7XmIb10LZtW0aPHs2bb77J8OHDAfjPf/5DfHw85557Lmaz2eMq0yOPPMIHH3zAxx9/HJgnMU7Ar0HqnHPOwfidhHvTTTd5hJ6aTjnlFL7++uvf3c/AgQP58ssvT9jm8ssv5/LLL//dbfmdzkiJiEgQmDhxIjfeeCMvvPACNpuNBQsWcNVVV2E2mykoKGD27NksWrSIvXv34nA4KC4u1hkpaQZVQepANjgrwGzxbz0iItJ8QiNcZ4b8te8GGDt2LIZhsGjRIk477TS+/PJLnnrqKQDuvPNOMjMzefzxx+nRowfh4eFcdtlllJWV+aJyn1KQCjZtu0BIGDiK4cg2aNfd3xWJiEhzMZnqfXnN38LCwrjkkktYsGABW7ZsIS0tjVNOOQWAr776ismTJ3PxxRcDrj7T27Zt82O1jRcUd+1JDWZL5QOMUT8pEREJaBMnTmTRokXusSCr9OzZk/fff5+srCzWrVvHhAkTat3hFywUpIKRe2BOBSkREQlcf/zjH4mLiyM7O5sJEya4lz/55JO0bduWM888k7Fjx5KRkeE+WxVsdGkvGKnDuYiIBAGz2cyePbX7dHXp0oUvvvjCY9nUqVM93gfLpT6dkQpGOiMlIiISEBSkglHVGalDm8ERfHc4iIiItBQKUsEougPYosHpgENb/F2NiIhIq6UgFYxMphrjSenynoiIiL8oSAUrd4dzBSkRkZbu954CIifmy+9PQSpYqcO5iEiLZ7G4nl4RjCN+B5KioiIAQkNDvb5tDX8QrDQEgohIixcSEkJERAQHDhwgNDQUs1nnPxrCMAyKiorYv38/sbGx7mDqTQpSwarqjNThHCgrAmvDnoEkIiKBz2Qy0b59e3Jycti+fbu/ywlasbGxJCcn+2TbClLBKjIeIhOg8AAczIaUk/1dkYiI+IDVaqVnz566vNdIoaGhPjkTVUVBKpgl9oGcA65+UgpSIiItltlsJiwszN9lSB10sTWYJaiflIiIiD8pSAUzDYEgIiLiVwpSwUxDIIiIiPiVglQwS+zterXvhuKjfi1FRESkNVKQCmZhMRDd0TV/YJN/axEREWmFFKSCnQbmFBER8RsFqWCnDuciIiJ+oyAV7NThXERExG8UpIKdzkiJiIj4jYJUsEtIA0xQdBAKDvi7GhERkVZFQSrYhYZDXDfXvDqci4iINCsFqZZAl/dERET8QkGqJXB3ONcZKRERkeakINUSVI1wrjNSIiIizUpBqiWoOQSCYfi3FhERkVZEQaoliOsO5lAoy4e8Xf6uRkREpNVQkGoJQqwQ39M1r8t7IiIizUZBqqXQM/dERESanYJUS6EhEERERJqdglRLoSEQREREmp1fg9TKlSsZO3YsKSkpmEwmPvzwQ4/1kydPxmQyeUyjRo3yaHP48GEmTpxIdHQ0sbGxTJkyhYKCAo8269evZ+jQoYSFhZGamspjjz1Wq5b33nuP3r17ExYWxoABA/jkk0+8frw+VXVG6uCv4Kzwby0iIiKthF+DVGFhIYMGDeL5558/bptRo0axd+9e9/TWW295rJ84cSIbN24kMzOThQsXsnLlSm666Sb3ervdzsiRI+ncuTNr165l3rx5zJ49m5dfftndZvXq1YwfP54pU6bw448/Mm7cOMaNG8eGDRu8f9C+EtsFQsLBUQJHtvm7GhERkVbBZBiBMfCQyWTigw8+YNy4ce5lkydP5ujRo7XOVFX55Zdf6Nu3L9999x2nnnoqAEuWLOH8889n165dpKSk8OKLL/LXv/6V3NxcrFYrAPfccw8ffvghmzZtAuDKK6+ksLCQhQsXurd9xhlncNJJJ/HSSy/Vq3673U5MTAx5eXlER0c34hvwgpfPgT0/wpX/hj5j/VODiIhIEGnqv98B30dq+fLlJCYmkpaWxq233sqhQ4fc69asWUNsbKw7RAGMGDECs9nMN998424zbNgwd4gCyMjIIDs7myNHjrjbjBgxwmO/GRkZrFmz5rh1lZaWYrfbPSa/qzkwp4iIiPhcQAepUaNG8c9//pOlS5fy//7f/2PFihWMHj2aigpXH6Dc3FwSExM9PhMSEkJcXBy5ubnuNklJSR5tqt7/Xpuq9XWZM2cOMTEx7ik1NbVpB+sNGgJBRESkWYX4u4ATueqqq9zzAwYMYODAgXTv3p3ly5czfPhwP1YGs2bNYsaMGe73drvd/2FKQyCIiIg0q4A+I3Wsbt26ER8fz5YtWwBITk5m//79Hm0cDgeHDx8mOTnZ3Wbfvn0ebare/16bqvV1sdlsREdHe0x+V3Vp79AWcJT6txYREZFWIKiC1K5duzh06BDt27cHID09naNHj7J27Vp3my+++AKn08mQIUPcbVauXEl5ebm7TWZmJmlpabRt29bdZunSpR77yszMJD093deH5F1R7cEWA06HK0yJiIiIT/k1SBUUFJCVlUVWVhYAOTk5ZGVlsWPHDgoKCrjrrrv4+uuv2bZtG0uXLuWiiy6iR48eZGRkANCnTx9GjRrFjTfeyLfffstXX33FtGnTuOqqq0hJSQFgwoQJWK1WpkyZwsaNG3nnnXd45plnPC7L3X777SxZsoQnnniCTZs2MXv2bL7//numTZvW7N9Jk5hMurwnIiLSnAw/WrZsmQHUmiZNmmQUFRUZI0eONBISEozQ0FCjc+fOxo033mjk5uZ6bOPQoUPG+PHjjTZt2hjR0dHGddddZ+Tn53u0WbdunXH22WcbNpvN6NChgzF37txatbz77rtGr169DKvVavTr189YtGhRg44lLy/PAIy8vLyGfxHe9PHthvFgtGF8/pB/6xAREQkCTf33O2DGkQp2ATGOFMA3L8PiuyDtfBj/1u+3FxERacVa/DhSrd1nG3MZ848vmfX+T/X7gIZAEBERaTYBPfyBgNOAjXvsmE2m+n2gKkgd2QZlhWCN9FltIiIirZ3OSAW4HomuILT1QAFOZz2uwkbGQ2TlIKUHNvmwMhEREVGQCnCd20USYjZRVFZBrr2kfh/SnXsiIiLNQkEqwIVazHRuFwHAlv0F9fuQnrknIiLSLBSkgkCPxDZAQ4KUzkiJiIg0BwWpIOAOUgd0RkpERCSQKEgFgQafkUpIc73m74HiIz6qSkRERBSkgkD3BFeQ2lrfIBUWDTGdXPP7deeeiIiIryhIBYGqIHWosIwjhWX1+5AG5hQREfE5BakgEGkLISUmDHCNJ1Uvib1dr+onJSIi4jMKUkGie4Pv3FOHcxEREV9TkAoSjR8C4WfQc6lFRER8QkEqSFT1k6r3EAjxvcBkhuLDULDfh5WJiIi0XgpSQaLBZ6RCwyGum2teHc5FRER8QkEqSFQFqd1Hiykuq6jfhzTCuYiIiE8pSAWJdpFWYiNCMQz47WBDO5zrjJSIiIgvKEgFCZPJRI8EPXNPREQkkChIBZGqy3v1HuG86ozUgU26c09ERMQHFKSCSIPv3IvrBhYrlBVA3k4fViYiItI6KUgFkeozUoX1+4Al1DUMAujynoiIiA8oSAWRqiCVc7AQR4Wzfh/SM/dERER8RkEqiHSIDScs1ExZhZOdR4rr9yF1OBcREfEZBakgYjab6Bbf2Gfu6YyUiIiItylIBZkGP7w4obfr9cCvUOHwUVUiIiKtk4JUkGnwWFKxnSE0AipK4UiODysTERFpfRSkgoz7zr36DoFgNlefldLlPREREa9SkAoyNQflNOo7yKa7n5Q6nIuIiHiTglSQ6RIfgdkE+aUO9ueX1u9DGgJBRETEJxSkgowtxELndpGAnrknIiLibwpSQah7QkODVOWlvUNbobzER1WJiIi0PgpSQah7QzucRyVDWCwYFXBos+8KExERaWUUpIJQg4dAMJlqdDjf5KOqREREWh8FqSDUo6GDcoI6nIuIiPiAglQQqrq0tz+/FHtJef0+pA7nIiIiXufXILVy5UrGjh1LSkoKJpOJDz/80L2uvLycmTNnMmDAACIjI0lJSeHaa69lz549Htvo0qULJpPJY5o7d65Hm/Xr1zN06FDCwsJITU3lscceq1XLe++9R+/evQkLC2PAgAF88sknPjlmb4gOCyUxygbomXsiIiL+5NcgVVhYyKBBg3j++edrrSsqKuKHH37g/vvv54cffuD9998nOzubCy+8sFbbhx9+mL1797qnP//5z+51drudkSNH0rlzZ9auXcu8efOYPXs2L7/8srvN6tWrGT9+PFOmTOHHH39k3LhxjBs3jg0bNvjmwL2gwZf3qs5IHd0OpQ24JCgiIiLHFeLPnY8ePZrRo0fXuS4mJobMzEyPZc899xynn346O3bsoFOnTu7lUVFRJCcn17mdBQsWUFZWxmuvvYbVaqVfv35kZWXx5JNPctNNNwHwzDPPMGrUKO666y4AHnnkETIzM3nuued46aWXvHGoXtcjsQ2rtx6q/517EXHQJgkK9sGBbOg42LcFioiItAJB1UcqLy8Pk8lEbGysx/K5c+fSrl07Tj75ZObNm4fD4XCvW7NmDcOGDcNqtbqXZWRkkJ2dzZEjR9xtRowY4bHNjIwM1qxZc9xaSktLsdvtHlNzqvmomHpTh3MRERGvCpogVVJSwsyZMxk/fjzR0dHu5bfddhtvv/02y5Yt4+abb+bRRx/l7rvvdq/Pzc0lKSnJY1tV73Nzc0/Ypmp9XebMmUNMTIx7Sk1NbfIxNkSDh0AAPXNPRETEy/x6aa++ysvLueKKKzAMgxdffNFj3YwZM9zzAwcOxGq1cvPNNzNnzhxsNpvPapo1a5bHvu12e7OGqaozUjsOF1FSXkFYqOX3P6QzUiIiIl4V8GekqkLU9u3byczM9DgbVZchQ4bgcDjYtm0bAMnJyezbt8+jTdX7qn5Vx2tzvH5XADabjejoaI+pOSVE2YiyheA0YNuhwvp9SGekREREvCqgg1RViNq8eTOff/457dq1+93PZGVlYTabSUxMBCA9PZ2VK1dSXl493lJmZiZpaWm0bdvW3Wbp0qUe28nMzCQ9Pd2LR+NdJpOp+lEx++sZpBLSXK8FuVB02EeViYiItB5+DVIFBQVkZWWRlZUFQE5ODllZWezYsYPy8nIuu+wyvv/+exYsWEBFRQW5ubnk5uZSVlYGuDqJP/3006xbt47ffvuNBQsWMH36dK6++mp3SJowYQJWq5UpU6awceNG3nnnHZ555hmPy3K33347S5Ys4YknnmDTpk3Mnj2b77//nmnTpjX7d9IQDR4CwRYFsZV3O+rynoiISNMZfrRs2TIDqDVNmjTJyMnJqXMdYCxbtswwDMNYu3atMWTIECMmJsYICwsz+vTpYzz66KNGSUmJx37WrVtnnH322YbNZjM6dOhgzJ07t1Yt7777rtGrVy/DarUa/fr1MxYtWtSgY8nLyzMAIy8vr9HfR0O9uHyL0XnmQmPamz/U/0NvTzSMB6MNY1nt70BERKS1aeq/3ybDMAy/JLgWxm63ExMTQ15eXrP1l/r8533c8M/v6dM+msW3D63fh35cAB/9CZIHwi1f+rZAERGRANfUf78Duo+UnFhVH6nfDhRQ4axnHu41CkxmyF0PR3f4sDoREZGWT0EqiKW2DcdqMVPqcLL7SHH9PhTZDjpVdqLfFLjPExQREQkGClJBLMRipmt8JED9HxUD0HuM63XTQh9UJSIi0nooSAW5Bt+5B5B2vut1+2oNgyAiItIEClJBrntjglRcV0jqD0YF/PqpjyoTERFp+RSkgpz7jFRDLu1B9eW97EVerkhERKT1UJAKct0TXH2ktuwvoEEjWVQFqS1LobyeHdVFRETEg4JUkOue0AaTCfKKyzlUWFb/DyYPhJhUKC+C35b7rD4REZGWTEEqyIWFWujYNhxoYD8pk0l374mIiDSRglQL0COhER3OoUY/qcXgrPByVSIiIi2fglQL0KghEAA6nQlhsVB0CHZ+4/3CREREWjgFqRage+UZqQYNyglgCXE9MgZgk+7eExERaSgFqRag0WekwLOflJ5fLSIi0iAKUi1AVZDam1dCQamjgR8eDiFhcGQb7P/Z+8WJiIi0YApSLUBshJX4NlYAfmvo5T1rJHQ71zWvy3siIiINoiDVQnRv7J17UOPynoKUiIhIQyhItRCNeuZelbTRYDLD3izI2+XdwkRERFowBakWotFjSQFExkPqGa75TZ94sSoREZGWTUGqhajqcN7gIRCqaJRzERGRBlOQaiGqgtT2Q0WUVzgbvoHe57tet62C4iNerExERKTlUpBqIdrHhBFpteBwGmw/VNjwDcR1g8R+YFTAr595v0AREZEWSEGqhTCZTE3rcA66vCciItJAClItSJOGQIDqy3tblkJ5sZeqEhERabkUpFqQJj0qBqD9SRDdAcoL4bcV3itMRESkhVKQakGqH17ciD5SACaTLu+JiIg0gIJUC1JzCASns5EPIK4KUtmLwVnhpcpERERaJgWpFqRzuwhCzCaKyirYay9p5EbOgrAYKDoIu77zboEiIiItjIJUCxJqMdO5XQTQhH5SllDoNco1r8t7IiIiJ6Qg1cI0ucM5VF/e+2UhGI28RCgiItIKKEi1ME1+VAxA9+FgscGRHDiwyUuViYiItDwKUi2MV85I2dpA93Nd87q8JyIiclwKUi1Mj4QoALY2JUhBjWEQFjWxIhERkZZLQaqF6ZYQCcChwjKOFJY1fkO9RgEm2PMj5O3yTnEiIiItjIJUCxNpCyElJgyALU3pJ9UmEVKHuOazF3uhMhERkZZHQaoFavLDi6tolHMREZET8muQWrlyJWPHjiUlJQWTycSHH37osd4wDB544AHat29PeHg4I0aMYPPmzR5tDh8+zMSJE4mOjiY2NpYpU6ZQUOAZINavX8/QoUMJCwsjNTWVxx57rFYt7733Hr179yYsLIwBAwbwySefeP14m4v7zj1vBaltq6D4aNO2JSIi0gL5NUgVFhYyaNAgnn/++TrXP/bYY/zjH//gpZde4ptvviEyMpKMjAxKSqpH7Z44cSIbN24kMzOThQsXsnLlSm666Sb3ervdzsiRI+ncuTNr165l3rx5zJ49m5dfftndZvXq1YwfP54pU6bw448/Mm7cOMaNG8eGDRt8d/A+5L5zrymX9gDadYeEPuB0wOZML1QmIiLSwhgBAjA++OAD93un02kkJycb8+bNcy87evSoYbPZjLfeesswDMP4+eefDcD47rvv3G0WL15smEwmY/fu3YZhGMYLL7xgtG3b1igtLXW3mTlzppGWluZ+f8UVVxhjxozxqGfIkCHGzTfffNx6S0pKjLy8PPe0c+dOAzDy8vIa9wV40ddbDxqdZy40zpq7tOkb+/xhw3gw2jDeubbp2xIREQkweXl5Tfr3O2D7SOXk5JCbm8uIESPcy2JiYhgyZAhr1qwBYM2aNcTGxnLqqae624wYMQKz2cw333zjbjNs2DCsVqu7TUZGBtnZ2Rw5csTdpuZ+qtpU7acuc+bMISYmxj2lpqY2/aC9pKqP1O6jxRSXNfHBw1WX97Z8DuWNfH6fiIhIC9XgIFVeXk5ISIjPL3vl5uYCkJSU5LE8KSnJvS43N5fExESP9SEhIcTFxXm0qWsbNfdxvDZV6+sya9Ys8vLy3NPOnTsbeog+0y7SSmxEKIbRxBHOAVJOhqgUKCuAnJXeKVBERKSFaHCQCg0NpVOnTlRUNPFMR5Cz2WxER0d7TIHCZDLRI8ELj4pxbUx374mIiBxHoy7t/fWvf+Xee+/l8OHD3q7HLTk5GYB9+/Z5LN+3b597XXJyMvv37/dY73A4OHz4sEeburZRcx/Ha1O1Phh57c49qA5S2Z+As3UHaBERkZoaFaSee+45Vq5cSUpKCmlpaZxyyikekzd07dqV5ORkli5d6l5mt9v55ptvSE9PByA9PZ2jR4+ydu1ad5svvvgCp9PJkCFD3G1WrlxJeXm5u01mZiZpaWm0bdvW3abmfqraVO0nGHntzj2ALmeDLQYKD8Cu75u+PRERkRYipDEfGjdunFd2XlBQwJYtW9zvc3JyyMrKIi4ujk6dOnHHHXfwt7/9jZ49e9K1a1fuv/9+UlJS3Pvv06cPo0aN4sYbb+Sll16ivLycadOmcdVVV5GSkgLAhAkTeOihh5gyZQozZ85kw4YNPPPMMzz11FPu/d5+++384Q9/4IknnmDMmDG8/fbbfP/99x5DJAQbrw3KCWAJhV4j4af3XJf3Og1p+jZFRERaAi/fRdggy5YtM4Ba06RJkwzDcA2BcP/99xtJSUmGzWYzhg8fbmRnZ3ts49ChQ8b48eONNm3aGNHR0cZ1111n5Ofne7RZt26dcfbZZxs2m83o0KGDMXfu3Fq1vPvuu0avXr0Mq9Vq9OvXz1i0aFGDjqWpt096245DhUbnmQuNHvcuMsodFU3f4Ib3XcMgPHOSYTidTd+eiIhIAGjqv98mwzCMxoawtWvX8ssvvwDQr18/Tj755KYnuyBlt9uJiYkhLy8vIDqeO50GfR9cQkm5ky/+8ge6VXY+b7TSfHisG1SUwZ++gcTe3ilURETEj5r673ejLu3t37+fq666iuXLlxMbGwvA0aNHOffcc3n77bdJSEhozGbFi8xmE93i2/DzXjtbDxQ2PUjZoqDbObD5M8hepCAlIiJCIzub//nPfyY/P5+NGzdy+PBhDh8+zIYNG7Db7dx2223erlEaqYc3+0lBjWEQFnlneyIiIkGuUUFqyZIlvPDCC/Tp08e9rG/fvjz//PMsXrzYa8VJ03g9SPUaDZhg91qw7/HONkVERIJYo4KU0+kkNDS01vLQ0FCcTmeTixLv6J7gxSEQAKKSIPV013z2J97ZpoiISBBrVJD64x//yO23386ePdVnJXbv3s306dMZPny414qTpqk5KGcT7inwpMt7IiIibo0ekNNut9OlSxe6d+9O9+7d6dq1K3a7nWeffdbbNUojdYmPwGyCglIH+/NLvbPR3he4XnNWQvFR72xTREQkSDXqrr3U1FR++OEHPv/8czZt2gS4BsccMWKEV4uTprGFWOjcLpKcg4Vs2V9AUnRY0zfarjsk9IYDm2DL5zDgsqZvU0REJEg1OEiVl5cTHh5OVlYW5513Huedd54v6hIv6Z7Qxh2kzuoR752Npp3vClKbFipIiYhIq9bgS3uhoaF06tSJigo9vDYYeP3OPai+vLc5ExxeumQoIiIShBrVR+qvf/0r9957L4cPH/Z2PeJl3RMiAS8HqZSTIao9lBW4+kqJiIi0Uo3qI/Xcc8+xZcsWUlJS6Ny5M5GRkR7rf/jhB68UJ03nPiPlrSEQAMxm1+W97191Xd7rqcu7IiLSOjUqSI0bN87LZYivdK8MUgfyS8krLicmvPb4X43Se4wrSGUvhjFPucKViIhIK9PgIOVwODCZTFx//fV07NjRFzWJF0WHhZIUbWOfvZStBwo4pVNb72y4y1CwRUPBPtdI56mneWe7IiIiQaTBpxFCQkKYN28eDofDF/WID/ikw3mIFXqOdM1vWui97YqIiASRRo9svmLFCm/XIj5S9aiYrd4MUlA9yvkvH4MeDSQiIq1Qo/pIjR49mnvuuYeffvqJwYMH1+psfuGFF3qlOPEOn5yRAlcnc2sUHP4NNn8KaaO9u30REZEA16gg9ac//QmAJ598stY6k8mkMaYCTI+qM1LevHMPwBYFp02Br56GL5+AXqPAZPLuPkRERAJYoy7tOZ3O404KUYGn6ozUjsNFlJR7+fc5409gscGu72DbKu9uW0REJMA1KEidf/755OXlud/PnTuXo0ePut8fOnSIvn37eq048Y6EKBtRYSE4Ddh2qNC7G49KgpOvds2vqn2GUkREpCVrUJD69NNPKS2tfiTIo48+6jG6ucPhIDs723vViVeYTCbf9ZMCOOs2MFlg6xew50fvb19ERCRANShIGYZxwvcSuKru3PNJkGrbpfrhxV/qrJSIiLQeGo66lfDpGSmAs6e7Xn/5Lxz41Tf7EBERCTANClImkwnTMXdlHfteAlP1nXte7iNVJbEPpI0BDNddfCIiIq1Ag4Y/MAyDyZMnY7PZACgpKeGWW25xjyNVs/+UBJaqM1K/HSigwmlgMfsgAA+dAdmLYP07cM4siE31/j5EREQCSIOC1KRJkzzeX3311bXaXHvttU2rSHwiNS4Cq8VMqcPJ7iPFdGoX4f2ddDwVug6DnJWw+lk4/zHv70NERCSANChIvf76676qQ3zMYjbRNT6S7H35bDmQ75sgBXD2DFeQ+uGf8Ie7ITLeN/sREREJAOps3or4vMM5QLdzIOVkcBTD1y/6bj8iIiIBQEGqFemeWPXwYh91OAfXI2KG/sU1/+3/Qondd/sSERHxMwWpVsR9Rsrbz9w7VtoYiE+D0jz4/lXf7ktERMSPFKRakR41BuX06WCqZjOcfYdrfs0LUF7su32JiIj4kYJUK9ItIRKTCfKKyzlYUObbnQ24HGJSoXA//Phv3+5LRETETxSkWpGwUAsd24YDPu5wDmAJhTNvc82v/gdUlPt2fyIiIn6gINXK9G0fDcDXvx3y/c5Ovhoi4uHoDtjwf77fn4iISDNTkGplRvZNBmDJhlzf78waAel/cs2vegqcTt/vU0REpBkpSLUyI/okEWI2kb0vn62+vnsP4LQbwBYNBzbBr4t9vz8REZFmFPBBqkuXLu6HJdecpk6dCsA555xTa90tt9zisY0dO3YwZswYIiIiSExM5K677sLhcHi0Wb58Oaeccgo2m40ePXowf/785jrEZhUTEcpZPVyjjTfLWamwGDhtimv+yyfAl3cLioiINLOAD1Lfffcde/fudU+ZmZkAXH755e42N954o0ebxx6rfsZbRUUFY8aMoaysjNWrV/PGG28wf/58HnjgAXebnJwcxowZw7nnnktWVhZ33HEHN9xwA59++mnzHWgzGt3fdXnvk5/2Ns8Oz/gThITB7rWux8eIiIi0EAEfpBISEkhOTnZPCxcupHv37vzhD39wt4mIiPBoEx0d7V732Wef8fPPP/Pvf/+bk046idGjR/PII4/w/PPPU1bmGgLgpZdeomvXrjzxxBP06dOHadOmcdlll/HUU08dt67S0lLsdrvHFCzO65uE2QQb99jZcajI9ztskwgnX+OaX/Wk7/cnIiLSTAI+SNVUVlbGv//9b66//npMJpN7+YIFC4iPj6d///7MmjWLoqLqcLBmzRoGDBhAUlKSe1lGRgZ2u52NGze624wYMcJjXxkZGaxZs+a4tcyZM4eYmBj3lJqa6q3D9Ll2bWyc0a0dAIs3NNNZqbNuA3MI/LbcdWZKRESkBQiqIPXhhx9y9OhRJk+e7F42YcIE/v3vf7Ns2TJmzZrFv/71L66++mr3+tzcXI8QBbjf5+bmnrCN3W6nuLjuUblnzZpFXl6ee9q5c6c3DrHZVF3eW9wc/aQAYju5BukE+FJnpUREpGUI8XcBDfHqq68yevRoUlJS3Mtuuukm9/yAAQNo3749w4cPZ+vWrXTv3t1ntdhsNmw2m8+272sZ/ZJ54OONZO08yp6jxaTEhvt+p2fdAevegk0LYf8mSOzt+32KiIj4UNCckdq+fTuff/45N9xwwwnbDRkyBIAtW7YAkJyczL59+zzaVL1PTk4+YZvo6GjCw5shYPhBYnQYp3ZuCzTT3XvgCk69L3DNf/V08+xTRETEh4ImSL3++uskJiYyZsyYE7bLysoCoH379gCkp6fz008/sX//fnebzMxMoqOj6du3r7vN0qVLPbaTmZlJenq6F48g8Izu7/qOmi1IAQyd4Xpd/y4c2d58+xUREfGBoAhSTqeT119/nUmTJhESUn01cuvWrTzyyCOsXbuWbdu28fHHH3PttdcybNgwBg4cCMDIkSPp27cv11xzDevWrePTTz/lvvvuY+rUqe5Lc7fccgu//fYbd999N5s2beKFF17g3XffZfr06X453uYyqrKf1HfbD7M/v6R5dtphMHT9AxgVsPrZ5tmniIiIjwRFkPr888/ZsWMH119/vcdyq9XK559/zsiRI+nduzd/+ctfuPTSS/nvf//rbmOxWFi4cCEWi4X09HSuvvpqrr32Wh5++GF3m65du7Jo0SIyMzMZNGgQTzzxBK+88goZGRnNdoz+kBIbzqDUWAwDPt247/c/4C1D/+J6/fFfULD/xG1FREQCmMkwNNS0N9jtdmJiYsjLy/MYxyrQ/c+KrcxZvImzerRjwQ1nNM9ODQNeGe4aBuHsGTDiwebZr4iIyDGa+u93UJyREt+p6if19W+HOVxY1jw7NZlcAQrgu1egJK959isiIuJlClKtXKd2EfRLiabCaZD5czN2Ok87HxJ6Q6ndFaZERESCkIKU1Hj2XjMGKbMZzq7szL/mBShrhkfViIiIeJmClDB6gOvy3uqtB8krKm++Hfe/1DXiedFB+PHfzbdfERERL1GQErontKFXUhvKKww+/6UZ796zhMKZt7nmV/8DKpoxxImIiHiBgpQAMKqy03mzPXuvyslXQ2QC5O2En/7TvPsWERFpIgUpAeD8Aa5+Uis3H6Cg1NF8Ow4Nh/SprvlVT4HT2Xz7FhERaSIFKQEgLSmKrvGRlDmcfLGpmQfJPHUK2GLgYDZkL2refYuIiDSBgpQAYDKZ3HfvLdmwt3l3HhYNp1c+jPrLJ10DdoqIiAQBBSlxqxqcc9mmAxSXVTTvzofcCiHhsOcH2PJ58+5bRESkkRSkxK1/h2g6tg2nuLyCFb828+W9NgkweLJr/j/Xw87vmnf/IiIijaAgJW41L+81+917AH+8Dzqf5Rrt/F8Xw46vm78GERGRBlCQEg9VwyAs/WU/pY5mvrxnawMT34MuQ6EsH/51CWz7qnlrEBERaQAFKfFwcmosydFhFJQ6WLX5YPMXYI2ECe9Ct3OgvBAWXAY5K5u/DhERkXpQkBIPZrOJUf549l5N1ggY/zZ0Hw7lRbDgCti6zD+1iIiInICClNRS1U8q8+dcyhx+GiAzNByuehN6ZoCjGN66SnfziYhIwFGQklpO7RJHfBsr9hIHa3475L9CQsPgyn9B2vngKIG3xsOvn/mvHhERkWMoSEktFrOJkf38NDjnsUJscPkb0PsCqCiDtydA9mL/1iQiIlJJQUrqdH7l3XufbdyHo8LPz78LscLl86HvOHCWwztXwy//9W9NIiIiKEjJcQzpFkdsRCiHCsv4dtthf5cDllC49FXofyk4HfDuJNj4gb+rEhGRVk5BSuoUajEzsm8SAEv8MThnXSwhcPHLMPBKMCrgP1Pgp//4uyoREWnFFKTkuKqevbdkQy5OZ4A8SNgSAuNehEETXGHq/Rth3Tv+rkpERFopBSk5rjN7tCMqLIT9+aX8sOOIv8upZrbARc/DydeA4YQPboasN/1dlYiItEIKUnJcthALI/q4Lu/55dl7J2I2w9h/wODrAAM+/BP88E9/VyUiIq2MgpScUNUo50s25GIYAXJ5r4rZDBc8BafdCBjw8Z/h+9f8XZWIiLQiClJyQn/olUCE1cLuo8Ws35Xn73JqM5ng/Hkw5FbX+4XT4dv/9W9NIiLSaihIyQmFhVo4t3ciAJ/4e3DO4zGZYNQcSJ/mev/JnfD1i/6tSUREWgUFKfld59e4ey/gLu9VMZlg5N/grDtc75fcA6uf9WtJIiLS8ilIye86Jy0BW4iZ7YeK+Hmv3d/lHJ/JBCNmw7C7XO8/uw++fAICNfyJiEjQU5CS3xVpC+GctAQggAbnPB6TCf54H5wzy/V+6cPw1lWQH+B1i4hIUFKQknqpGpwz4IZBOJ5z7oFRc8FihV+XwPNDYP17OjslIiJepSAl9fLHPomEWkxs2V/A5n35/i6nfs64FW5aAe0HQclReP8GePdaKDzo78pERKSFUJCSeokOC2VoT9flvaA5KwWQ1BduWArn3AvmEPjlY9fZqZ8/9ndlIiLSAihISb1VDc75yU8BOgzC8VhC4ZyZcOMXkNgXig7Cu9fA/90IxQH06BsREQk6AR2kZs+ejclk8ph69+7tXl9SUsLUqVNp164dbdq04dJLL2Xfvn0e29ixYwdjxowhIiKCxMRE7rrrLhwOh0eb5cuXc8opp2Cz2ejRowfz589vjsMLOiP7JhFiNrEpN59tBwv9XU7DtR8ENy2Hs2eAyQw/vQvPnwG/fubvykREJEgFdJAC6NevH3v37nVPq1atcq+bPn06//3vf3nvvfdYsWIFe/bs4ZJLLnGvr6ioYMyYMZSVlbF69WreeOMN5s+fzwMPPOBuk5OTw5gxYzj33HPJysrijjvu4IYbbuDTTz9t1uMMBrERVtK7twOC7PJeTSE2GPEgTMmEdj2hIBfevBw+mgYlATy0g4iIBCSTEbAjLLrOSH344YdkZWXVWpeXl0dCQgJvvvkml112GQCbNm2iT58+rFmzhjPOOIPFixdzwQUXsGfPHpKSXA/ffemll5g5cyYHDhzAarUyc+ZMFi1axIYNG9zbvuqqqzh69ChLliypd612u52YmBjy8vKIjo5u2oEHsDe/2cG9H/zEwI4xfDztbH+X0zTlxbD0Efj6BcCAmFS46Dnodo6/KxMRkWbS1H+/A/6M1ObNm0lJSaFbt25MnDiRHTt2ALB27VrKy8sZMWKEu23v3r3p1KkTa9asAWDNmjUMGDDAHaIAMjIysNvtbNy40d2m5jaq2lRt43hKS0ux2+0eU2swsl8SZhOs35XHriNF/i6naULDYdSjMHkRxHaGvJ3wz4tg0Z1QFoSXLkVEpNkFdJAaMmQI8+fPZ8mSJbz44ovk5OQwdOhQ8vPzyc3NxWq1Ehsb6/GZpKQkcnNdl51yc3M9QlTV+qp1J2pjt9spLi4+bm1z5swhJibGPaWmpjb1cINCfBsbp3WJA4JgcM766nIW3LoaTp3iev/d/8KLZ8H2E4dpERGRgA5So0eP5vLLL2fgwIFkZGTwySefcPToUd59911/l8asWbPIy8tzTzt37vR3Sc3m/AFBNjhnfdjawAVPwjUfQHQHOJIDr4+GT//qugQoIiJSh4AOUseKjY2lV69ebNmyheTkZMrKyjh69KhHm3379pGc7LpNPzk5udZdfFXvf69NdHQ04eHhx63FZrMRHR3tMbUWGf1c393a7UfIzSvxczVe1v2P8Kc1cNLVgAFrnoP/GQa71vq7MhERCUBBFaQKCgrYunUr7du3Z/DgwYSGhrJ06VL3+uzsbHbs2EF6ejoA6enp/PTTT+zfv9/dJjMzk+joaPr27etuU3MbVW2qtiG1JceEMbhzWwA+3diCzkpVCYuBcc/D+HegTRIc/BVePc/VMd1R5u/qREQkgAR0kLrzzjtZsWIF27ZtY/Xq1Vx88cVYLBbGjx9PTEwMU6ZMYcaMGSxbtoy1a9dy3XXXkZ6ezhlnnAHAyJEj6du3L9dccw3r1q3j008/5b777mPq1KnYbDYAbrnlFn777TfuvvtuNm3axAsvvMC7777L9OnT/XnoAW905eCcizcE2eCcDZE2Cv70NfS/DIwK+PJx+MdJ8NUzUHzU39WJiEgACOggtWvXLsaPH09aWhpXXHEF7dq14+uvvyYhwfWokqeeeooLLriASy+9lGHDhpGcnMz777/v/rzFYmHhwoVYLBbS09O5+uqrufbaa3n44Yfdbbp27cqiRYvIzMxk0KBBPPHEE7zyyitkZGQ0+/EGk6pRzr/NOczBglI/V+NDEXFw2atw+RsQmQj23ZD5ADzZFxbPhMM5/q5QRET8KKDHkQomrWUcqZoufG4V63fl8ejFA5gwpJO/y/G98hL46T1Y8zwc+KVyoQn6XABnTIVOZ4DJ5NcSRUSkYVr8OFISuIL22XuNFRoGp1zj6ox+zQfQYwRgwC//hddHwf/+EX76D1SU+7tSERFpJgpS0mjn93cNg7Bqy0HWbj/s52qakcnkurvv6v9z9aE65Vqw2GDPD/B/U+CZk+Crf6gflYhIK6AgJY3WJT6SK091DUT61w824Khw+rkiP0jsAxc+C9M3wjmzICIe7Lsg8354qp/6UYmItHAKUtIkM0f3JjYilE25+cxfvc3f5fhPmwQ45x5XoLrwOUjoA2UF8M1L8Owp8M7VsONrUJdEEZEWRUFKmiQu0sqs0b0BeCrzV/bmtfJRwGv2o7r6feg+HAynqx/VaxnwynDY8H9Q4fB3pSIi4gUKUtJklw9OZXDnthSWVfDIwp/9XU5gMJmgx3C45n24dQ2cfI2rH9XutfCf6+GZQfDlk7D7Bw3yKSISxDT8gZe0xuEPavplr50Lnl1FhdNg/nWncU5aor9LCjwFB+D7V+Hb/4Wig9XLLTZIOQk6nAodB7teYztpKAURkWbQ1H+/FaS8pLUHKYC/LfyZV1bl0Ckugs+mDyMs1OLvkgJTeQn89C5s/NB1hqrkaO02kYnQ8VToMBg6ngYpJ0NY6/zvSkTElxSkAoSCFBSUOhjxxApy7SXcNrwnM87r5e+SAp9hwKGtsOs72P097Poe9m0A57F9qEyQ0Nt1xqrjaa6zVol9wKywKiLSFApSAUJByuWTn/bypwU/YLWYWXLHULoltPF3ScGnvBj2rnOFqt3fw661kLejdrvQSNeZqqpw1SkdIuObv14RkSCmIBUgFKRcDMNg8uvfseLXA5zdI55/TTkdk/r6NF3+vuozVru/d3VSLys4ppEJUodA7/MhbQzE9/BLqSIiwURBKkAoSFXbfqiQ855aSZnDybPjT2bsoBR/l9TyOCvgQHZ1uNr1Hew/5o7J+F6Qdj70HuO6FGjWTboiIsdSkAoQClKenvl8M099/iuJUTaW/uUPRIWF+ruklu/oTsheDNmLYNsqz35WkYmQNsp1pqrbHyA03H91iogEEAWpAKEg5amkvILRz3xJzsFCJp/ZhdkX9vN3Sa1L8VHY8jlkfwKbM6HUXr0uNML1rMDeY6DXKIiI81uZIiL+piAVIBSkavty8wGuefVbzCb4eNrZ9O8Q4++SWidHGWxfBZs+cQUr++7qdSazq5N62vmuvlVx3fxXp4iIHyhIBQgFqbpNe/MHFq7fy0mpsbx/65mYzep47leG4bojMPsTV7Da95Pn+oQ+rkDVazTE94SwGA0MKiItmoJUgFCQqts+ewnDn1hBQamDv1/cn4lDOvu7JKnpyPYa/aq+AqPCc31IGLRJhDbJEJXkem2TVD0fleR6H5mgMa1EJCgpSAUIBanje21VDg8v/JmY8FCW/uUPxLex+bskqUvxEdj8uStU/bbc9b6+TGZXmGqTdEzQSnYFsagU12Nv2iTqDJeIBBQFqQChIHV8jgonFz73FT/vtXPpKR154opB/i5J6qO8GAr2ucawKsitfK05X/laeACo5/8bCQmDmFRXqIrtBLGpENu5+n1kooZpEJFmpSAVIBSkTuzHHUe45MXVGAa8c9MZDOnWzt8libdUOFwPYc7PrQxeuVCwvzJoVS6z73FNvxe4LDZXuPIIWzWCVpskBS0R8SoFqQChIPX7Zr3/E299u4OeiW345PahhFr0D2Kr4ihz3TF4dIfnlLfT9WrfDYbzxNuwWCGmI7TtUjl1hbiu1fM2PZJIRBqmqf9+h/igJpE6zRyVxmcbc9m8v4BXV+Vwyx+6+7skaU4hVlfoieta9/qK8hpBa2ftwGXfDRVlcPg311SXyIS6A1ZcV9fZLPXPEhEv0xkpL9EZqfr5z9pd3PneOsJDLWTOGEbHthH+LkmCRYUD8ve47jQ8sq1yynG9Hs6B4sMn/nxIePWZrLiuroBV9T6mA1gjfXwAIhKIdGkvQChI1Y9hGFz5P1/z7bbDjOybxMvXnurvkqSlKMmrDlU1A9aRHMjb9fuXDcNiIbqDK1RFp0B0R9drTAfX8ugUhS2RFkhBKkAoSNXfr/vyOf+ZL3E4DV6ddCrD+yT5uyRp6SrKXZcHq85iHc6pcVZrO5Tl1287YbGuPlrRKZXhqmbwqnxvjQCn0zUml9NROVVUTo7qyahjmdPp+R7DdSdjTAfX4Kgi4nXqIyVBp1dSFFOGduV/VvzGgx9v5Mzu8YRbNZij+JAlFNp1d011KbG7+mDZd0Pe7sq7DHe5XvMql5cVQMlR17Rvw/H3ZTL//tmvxrBF1whuHVx3NrrnK8OdHkYt0uwUpMQvbvtjT/6btYddR4p5btlm7sro7e+SpDULi3ZNiX2O36YkzzNY1QpelWHrRCHKZAaTBcwhlZO5xnxI5boa6zFcQ0iUHHU9ePqAHQ78cvztR8RXhquOniErpqNrPirZFSpFxGt0ac9LdGmv4T7dmMvN/1pLqMXE4tuH0iMxyt8liTSeYbjClqO0MghZPF9NlsaPgVVaUBnidtYIb7tcfb+qgl15Uf22FRrpukwYFlMZICvnbTXmPdbFeq4PDWvcMYgEKPWRChAKUg1nGAY3vPE9Szft54xucbx14xmYdHu6SMMZhuuRPvbdleFqV3XgyttVfZnS6Wj6viy26qAVGuG6nBgSVvlqc90dGRrm+RpiO6bdcdpbQl1jhVmsnvMahFV8SH2kJGiZTCZmX9iPr7Ye5OvfDvNh1m4uPrmjv8sSCT4mE0TEuabkAXW3cTpdYas0z3XmrCTP1Tesar60xvyx66rWY0BFKRTud03NxRxSO1z93nxouOssmi2q8oxaVI33la+2mOr3IWHNO86YYbhuNqgodY2PVlHuOptZNV9RWvlaVrm8cr7WVO46Xlt0jeOK8jxeXc71KQUp8avUuAj+/MeezPs0m78v+oU/9k4iJlx/9CJeZzZDZDvX1BhOp+vuxpohq7zI9UxGRyk4iqG8xPPVUVq5vqT61VFynHYl1eHAqDhm35V3MZY3/Ws4LnPIMUEruvq9rY0r+FSUg7O8xqujxnvHcZYfp11FGfV+RmVThYQfE7CijhO8osDapvJStKmyT19lvz73fOVkNtde5tGu8vNGRY3/Dkqrf2/3fwclnsvLa6z3+O+lsl3P82DkI83zvdWTgpT43Y1Du/H+D7vYeqCQxz/N5pFx/f1dkogcy2yu7j/la86KGmdgyj3PvtSaP/ZsTXn1P8il+a4zcKX5rvBXmu86s3bsewxXwCk+/PsDu/qSxVZ9Vi3EVuNMm83zrFvIMWffHKXVx1Xz2BzFru06il1Tc55F9JXEwLsxSUFK/M4aYuaRi/oz4ZVv+Pc32xl3cgcGd27r77JExF/MlXcvNkfHdqcTygtrBKs6wldZQeVZmBBXeDGHgiWk8rWu9zXbhVYezzHrLLYagchafRbImyrKaxxTzeOrfF9Sx7KqO08No/LV6Qq2VfPuqWp9XetqrDeZXZdNQ8Jq9JWz1VgWVtlHLqy6z9zx2oXYIKq9d78jL1CQkoBwZo94xp2UwodZe5j8+re8Nvk0TusS5++yRKSlM5urL2u1NJbQ6r5z4jO6FUICxsPj+nNal7bklzi45tVvWLapBZyGFhGRFi2gg9ScOXM47bTTiIqKIjExkXHjxpGdne3R5pxzzsFkMnlMt9xyi0ebHTt2MGbMGCIiIkhMTOSuu+7C4fC8DXj58uWccsop2Gw2evTowfz58319eHKM6LBQ/nn9EM5NS6Ck3MmN//yej7J2+7ssERGR4wroILVixQqmTp3K119/TWZmJuXl5YwcOZLCwkKPdjfeeCN79+51T4899ph7XUVFBWPGjKGsrIzVq1fzxhtvMH/+fB544AF3m5ycHMaMGcO5555LVlYWd9xxBzfccAOffvppsx2ruIRbLbx87alcdFIKDqfBHe9k8a+vt/u7LBERkToF1YCcBw4cIDExkRUrVjBs2DDAdUbqpJNO4umnn67zM4sXL+aCCy5gz549JCW5Ho770ksvMXPmTA4cOIDVamXmzJksWrSIDRuqn5911VVXcfToUZYsWVKv2jQgp3c5nQaz/7uRf65xhag7R/Zi6rk9NGCniIh4VVP//Q7oM1LHysvLAyAuzrPj3IIFC4iPj6d///7MmjWLoqLqRyWsWbOGAQMGuEMUQEZGBna7nY0bN7rbjBgxwmObGRkZrFmz5ri1lJaWYrfbPSbxHrPZxEMX9uO2P/YA4PHPfuXvi34hiHK/iIi0AkFz157T6eSOO+7grLPOon//6nGGJkyYQOfOnUlJSWH9+vXMnDmT7Oxs3n//fQByc3M9QhTgfp+bm3vCNna7neLiYsLDaz9Rfc6cOTz00ENePUbxZDKZmDEyjZgIK48s/JlXVuWQV1zOnEsGEGIJqv8NICIiLVTQBKmpU6eyYcMGVq1a5bH8pptucs8PGDCA9u3bM3z4cLZu3Ur37t19Vs+sWbOYMWOG+73dbic1NdVn+2vNppzdlZjwUGb+33reW7uLvOJy/jH+ZMJCLf4uTUREWrmg+J/106ZNY+HChSxbtoyOHU/8LLYhQ4YAsGXLFgCSk5PZt2+fR5uq98nJySdsEx0dXefZKACbzUZ0dLTHJL5z2eCOvDjxFKwhZj77eR/Xz/+OglIvPIBVRESkCQI6SBmGwbRp0/jggw/44osv6Nq16+9+JisrC4D27V2jn6anp/PTTz+xf3/1mESZmZlER0fTt29fd5ulS5d6bCczM5P09HQvHYl4w8h+ycy/7jQirRZWbz3ExP/9miOFZf4uS0REWrGADlJTp07l3//+N2+++SZRUVHk5uaSm5tLcbHr+UFbt27lkUceYe3atWzbto2PP/6Ya6+9lmHDhjFw4EAARo4cSd++fbnmmmtYt24dn376Kffddx9Tp07FZrMBcMstt/Dbb79x9913s2nTJl544QXeffddpk+f7rdjl7qd2T2et246g7YRoazblcfl/7OGvXnF/i5LRERaqYAe/uB4t7q//vrrTJ48mZ07d3L11VezYcMGCgsLSU1N5eKLL+a+++7zuNS2fft2br31VpYvX05kZCSTJk1i7ty5hIRUdxFbvnw506dP5+eff6Zjx47cf//9TJ48ud61aviD5rVlfz5Xv/ItufYSOsSG8+8bhtA1PtLfZYmISJBp6r/fAR2kgomCVPPbdaSIa179lpyDhcS3sfLG9afTL6UZnkwvIiItRqsaR0qkpo5tI3jvlnT6to/mYEEZV738Nd9tO+zvskREpBVRkJKgFt/Gxts3n8HpXeL0sGMREWl2ClIS9KLDQnnj+tP5Y+9EPexYRESalYKUtAjhVgv/c81gPexYRESalYKUtBihFjNPXXESk9I7Yxhw/4cbeCrzV8ornP4uTUREWigFKWlRzGYTsy/sx23DewLwzNLNDH9iBf+3dhcVTt2gKiIi3qUgJS2OyWRixnm9eOzSgcS3sbLjcBF/eW8d5z21go/X7cGpQCUiIl6icaS8RONIBaaiMgdvrN7O/6zcytGicgB6J0dxx4heZPRLOu6gryIi0jpoQM4AoSAV2PJLynn9q23875e/kV/iethx/w7RzDivF+emJSpQiYi0UgpSAUJBKjjkFZXzv1/+xutf5VBYVgHAyZ1imXFeL87uEa9AJSLSyihIBQgFqeByuLCM/1mxlTfWbKOk3HVX3+ld4/jLeb0Y0q2dn6sTEZHmoiAVIBSkgtP+/BJeWLaVN7/ZQVnlMAln94hnxshenNKprZ+rExERX1OQChAKUsFtb14xz32xhXe/30l5hetP4o+9E5lxXi/6d9CDkEVEWioFqQChINUy7DxcxLNfbOb/ftjtHncqo18S08/rRe9k/a4iIi2NglSAUJBqWXIOFvLM57/y0bo9GAaYTDBmQHtuGtaNAR1i1CldRKSFUJAKEApSLdPmffk8/flmFv20172sW3wkF56UwkUndaBrfKQfqxMRkaZSkAoQClIt28977Ly4YiuZP+e67/IDGNQxhgtP6sDYge1JjA7zY4UiItIYClIBQkGqdSgodfDZxlw+ytrDqi0H3f2ozCY4s3s8F56Uwqj+yUSHhfq5UhERqQ8FqQChINX6HCwoZdH6vXyUtZsfdhx1L7eGmBneO5GLTkrhnLREwkIt/itSREROSEEqQChItW47DhXx3/V7+PDH3WzeX+BeHmULYVT/ZMad3IEzurXDYlYndRGRQKIgFSAUpATAMAx+2ZvPR+t289+sPezJK3GvS4iyMXZgCuNOTtGdfyIiAUJBKkAoSMmxnE6D77Yd5qN1e/jkp70cLSp3r+saH8kFA9szuHNbBnaMJS7S6sdKRURaLwWpAKEgJSdS5nCy8tcDfLRuT607/wA6xIYzKDWGAR1iGdgxhv4pMcREqMO6iIivKUgFCAUpqa/CUgef/ZzLiuwDrN+dx28HCuts16VdBAM6xjKwQwwDOsbQv0MMbWwhzVytiEjLpiAVIBSkpLHyS8rZsNvOT7uPsn5XHj/tzmP7oaJa7Uwm12CgAzvGMqBDDAM7xtAvJYZwq+4KFBFpLAWpAKEgJd50tKiMDbvtrN99lPU7XeFq99HiWu3MJuiVFMWADjGkJUfRNT6SLvGRpLaNwBpi9kPlIiLBRUEqQChIia8dLCjlp915/LQrr/LM1VH22UvrbGs2Qce2EXSJj6RLuwi6tIt0h6yObcMJtShkiYiAglTAUJASf9hnL6kMVkfZeqCQnIOFbDtUSFFZxXE/YzGb6Ng2vDpctYugc3wkXdu5QlaIQpaItCIKUgFCQUoChWEYHMgvdYeqbYeK2HbQFbK2HyqiuPz4ISvEbCI1LoLO7SJIjLIRF2kjvo2Vdm2sxEXaaBdpJb6NjbhIqy4dikiL0NR/v3ULkEgLYzKZSIwOIzE6jCHd2nmsMwyDffZSV8A6WEhO5eu2g0VsO1RIqcNJTmXo+j1RYSHuUNUu0kq7NrbK12PmI220jQjVmS4RaZEUpERaEZPJRHJMGMkxYZxxTMhyOg325ZeQc7CQHYeKOFRYxsGCUg4VlHG4ar7QNV/hNMgvcZBf4qhX6AKIsFqICgshOiyUqLAQosJCiQ4P9VgWHRbiXhYVFlqjbQhtbCEaDV5EAo6ClIgAYDabaB8TTvuYcM7sfvx2TqeBvaScg5UB61BBKQcLyzhcUMahQlfwqn4t40hRGYYBRWUVFJVVHLeD/O/WZ4I2NlfAqgpWbcJCiLSFEGVzvbaxHX95VFj1vC5Lioi3KEiJSIOYzSZiI6zERtTvsTYVToO84nLyS8rJL3FgLy7HXuIgv6TGa7Gjev2xr8XlOJwGTgPsJQ7sJY4mH4PVYq4MWxYirSFEWC1EWEMIC7VUzlsIt1oID62aD6kxX/kaWjUfUmPeojsiRVoZBSkR8SmL2URcpLXRzxM0DIOScmdl8HKFr4ISB4WlDvJLXa8FJQ4KyqqXF9SYCksryK9cXtXRvqzCyeHCMg7X76pkg4SYTYSFWggLNWMLsWALNRMW4nrvWl45H2LBFlpjuUcb16stxII1xESI2UyIxYTVYibEYibEbCLUYibU4noNsbjaWKvmLSZCzWbMZl0KFfE1BSkRCWgmk8l1dshqITE6rEnbclQ4KSyrqAxYDnfAKiqroKS8ovLyo4PisgqKK997zJc7ai0rKaugqLyCCqfrBmiH06gMcd44+qaxmE0eoasqhFUFL9d8zWXVoc1znZlQs8m1vRrtQy1mLGYToZXLLWaTaz9m1/4sldsKPXZ/lUHP3b5ym2aTCbMZ16vJ9dtXzZtNJkymqnU111cvM9X4bFV7i8lVt/rXia8oSB3j+eefZ968eeTm5jJo0CCeffZZTj/9dH+XJSJeEGIxExNuJibcuw+ENgyDsgonxWUVlJQ7KSmvoMRRY77cNV/qqJ4vrrG8pLyicp1n+xJHBY4Kg/IKJw5n5esx76uWOZy1R7KpcBpUOA1KHc46qm5dqkKV2WxyhyuzyRU2q4KWe7m5dlvP0FZHiKuarwxzcGyoqx0Icf0fJpOp8rVyPVSuq2pbPW+qXFlzudmEu1ZzZSC1VB6DqbJ+i7k6gFrcber+rNlUXQtUH2vVvkymmjXXXlZ1jNXtq/dT8zM1v7vaIbl2kAaItIU0+uy2ryhI1fDOO+8wY8YMXnrpJYYMGcLTTz9NRkYG2dnZJCYm+rs8EQlQJpPJdRkvxH/PPTQMV5hyVLhCnaOO8FVe4QpW5U6n67XC9Vq13rXOoMLpauuoqJ53f67C1cZR1b7CwOFuU7mvyvWOGq/lx7SvCn+OGnU5DVdfOMOonncaBkblq+f66nX1+37A4dqQb38I8akLB6Xwj/En+7sMDwpSNTz55JPceOONXHfddQC89NJLLFq0iNdee4177rnHz9WJiByfyWSq7DMF4bSeB1kbHkGrOnAZBlQYBs7Ks3Ku+bqWuT5XFeRqLq/5OYOa4c21rK5g5zymnrrqMwwDA9cdsAaukGfUOBaDqs9Uz1cdq2ub1ctr7ru67upaKiqPz+lxvAYVlcuq21R/D8Yx36v7FaDGfNW6quOp1d7jWOr6Ho797qq35ays1eO7xAjImzkUpCqVlZWxdu1aZs2a5V5mNpsZMWIEa9asqdW+tLSU0tLqThB2u71Z6hQRkWqmqktlqA+U+EfgRTs/OXjwIBUVFSQlJXksT0pKIjc3t1b7OXPmEBMT455SU1Obq1QREREJEApSjTRr1izy8vLc086dO/1dkoiIiDQzXdqrFB8fj8ViYd++fR7L9+3bR3Jycq32NpsNm83WXOWJiIhIANIZqUpWq5XBgwezdOlS9zKn08nSpUtJT0/3Y2UiIiISqHRGqoYZM2YwadIkTj31VE4//XSefvppCgsL3XfxiYiIiNSkIFXDlVdeyYEDB3jggQfIzc3lpJNOYsmSJbU6oIuIiIgAmAyjvsOZyYnY7XZiYmLIy8sjOjra3+WIiIhIPTT132/1kRIRERFpJAUpERERkUZSkBIRERFpJAUpERERkUZSkBIRERFpJAUpERERkUZSkBIRERFpJA3I6SVVw3HZ7XY/VyIiIiL1VfXvdmOH1VSQ8pL8/HwAUlNT/VyJiIiINFR+fj4xMTEN/pxGNvcSp9PJnj17iIqKIj8/n9TUVHbu3KlRzv3IbrfrdwgA+h0Cg36HwKDfITDU/B2q/t1OSUnBbG54jyedkfISs9lMx44dATCZTABER0frDyUA6HcIDPodAoN+h8Cg3yEwVP0OjTkTVUWdzUVEREQaSUFKREREpJEUpHzAZrPx4IMPYrPZ/F1Kq6bfITDodwgM+h0Cg36HwODN30GdzUVEREQaSWekRERERBpJQUpERESkkRSkRERERBpJQUpERESkkRSkfOD555+nS5cuhIWFMWTIEL799lt/l9SqzJ49G5PJ5DH17t3b32W1eCtXrmTs2LGkpKRgMpn48MMPPdYbhsEDDzxA+/btCQ8PZ8SIEWzevNk/xbZgv/c7TJ48udbfx6hRo/xTbAs1Z84cTjvtNKKiokhMTGTcuHFkZ2d7tCkpKWHq1Km0a9eONm3acOmll7Jv3z4/Vdwy1ed3OOecc2r9Pdxyyy0N2o+ClJe98847zJgxgwcffJAffviBQYMGkZGRwf79+/1dWqvSr18/9u7d655WrVrl75JavMLCQgYNGsTzzz9f5/rHHnuMf/zjH7z00kt88803REZGkpGRQUlJSTNX2rL93u8AMGrUKI+/j7feeqsZK2z5VqxYwdSpU/n666/JzMykvLyckSNHUlhY6G4zffp0/vvf//Lee++xYsUK9uzZwyWXXOLHqlue+vwOADfeeKPH38Njjz3WsB0Z4lWnn366MXXqVPf7iooKIyUlxZgzZ44fq2pdHnzwQWPQoEH+LqNVA4wPPvjA/d7pdBrJycnGvHnz3MuOHj1q2Gw246233vJDha3Dsb+DYRjGpEmTjIsuusgv9bRW+/fvNwBjxYoVhmG4/tsPDQ013nvvPXebX375xQCMNWvW+KvMFu/Y38EwDOMPf/iDcfvttzdpuzoj5UVlZWWsXbuWESNGuJeZzWZGjBjBmjVr/FhZ67N582ZSUlLo1q0bEydOZMeOHf4uqVXLyckhNzfX428jJiaGIUOG6G/DD5YvX05iYiJpaWnceuutHDp0yN8ltWh5eXkAxMXFAbB27VrKy8s9/h569+5Np06d9PfgQ8f+DlUWLFhAfHw8/fv3Z9asWRQVFTVou3posRcdPHiQiooKkpKSPJYnJSWxadMmP1XV+gwZMoT58+eTlpbG3r17eeihhxg6dCgbNmwgKirK3+W1Srm5uQB1/m1UrZPmMWrUKC655BK6du3K1q1buffeexk9ejRr1qzBYrH4u7wWx+l0cscdd3DWWWfRv39/wPX3YLVaiY2N9Wirvwffqet3AJgwYQKdO3cmJSWF9evXM3PmTLKzs3n//ffrvW0FKWlxRo8e7Z4fOHAgQ4YMoXPnzrz77rtMmTLFj5WJ+N9VV13lnh8wYAADBw6ke/fuLF++nOHDh/uxspZp6tSpbNiwQf00/ex4v8NNN93knh8wYADt27dn+PDhbN26le7du9dr27q050Xx8fFYLJZad17s27eP5ORkP1UlsbGx9OrViy1btvi7lFar6r9//W0Enm7duhEfH6+/Dx+YNm0aCxcuZNmyZXTs2NG9PDk5mbKyMo4ePerRXn8PvnG836EuQ4YMAWjQ34OClBdZrVYGDx7M0qVL3cucTidLly4lPT3dj5W1bgUFBWzdupX27dv7u5RWq2vXriQnJ3v8bdjtdr755hv9bfjZrl27OHTokP4+vMgwDKZNm8YHH3zAF198QdeuXT3WDx48mNDQUI+/h+zsbHbs2KG/By/6vd+hLllZWQAN+nvQpT0vmzFjBpMmTeLUU0/l9NNP5+mnn6awsJDrrrvO36W1GnfeeSdjx46lc+fO7NmzhwcffBCLxcL48eP9XVqLVlBQ4PG/4nJycsjKyiIuLo5OnTpxxx138Le//Y2ePXvStWtX7r//flJSUhg3bpz/im6BTvQ7xMXF8dBDD3HppZeSnJzM1q1bufvuu+nRowcZGRl+rLplmTp1Km+++SYfffQRUVFR7n5PMTExhIeHExMTw5QpU5gxYwZxcXFER0fz5z//mfT0dM444ww/V99y/N7vsHXrVt58803OP/982rVrx/r165k+fTrDhg1j4MCB9d9Rk+75kzo9++yzRqdOnQyr1Wqcfvrpxtdff+3vklqVK6+80mjfvr1htVqNDh06GFdeeaWxZcsWf5fV4i1btswAak2TJk0yDMM1BML9999vJCUlGTabzRg+fLiRnZ3t36JboBP9DkVFRcbIkSONhIQEIzQ01OjcubNx4403Grm5uf4uu0Wp6/sHjNdff93dpri42PjTn/5ktG3b1oiIiDAuvvhiY+/evf4rugX6vd9hx44dxrBhw4y4uDjDZrMZPXr0MO666y4jLy+vQfsxVe5MRERERBpIfaREREREGklBSkRERKSRFKREREREGklBSkRERKSRFKREREREGklBSkRERKSRFKREREREGklBSkRERKSRFKRERE5g27ZtmEwm9zO46rJ8+XJMJlOth9B6y/z584mNjfXJtkWkaRSkRKRZTJ48GZPJVGsaNWqUv0sLeFdeeSW//vqrv8sQkTroocUi0mxGjRrF66+/7rHMZrP5qZrgER4eTnh4uL/LEJE66IyUiDQbm81GcnKyx9S2bVv3epPJxCuvvMLFF19MREQEPXv25OOPP3avP3LkCBMnTiQhIYHw8HB69uzpEcx27tzJFVdcQWxsLHFxcVx00UVs27bNvX7y5MmMGzeORx99lKSkJGJjY3n44YdxOBzcddddxMXF0bFjx1phD2DTpk2ceeaZhIWF0b9/f1asWHHCY121ahVDhw4lPDyc1NRUbrvtNgoLC4/bft26dZx77rlERUURHR3N4MGD+f7774Hal/a6dOlS59m9+n4PIuI9ClIiElAeeughrrjiCtavX8/555/PxIkTOXz4MAD3338/P//8M4sXL+aXX37hxRdfJD4+HoDy8nIyMjKIioriyy+/5KuvvqJNmzaMGjWKsrIy9/a/+OIL9uzZw8qVK3nyySd58MEHueCCC2jbti3ffPMNt9xyCzfffDO7du3yqOuuu+7iL3/5Cz/++CPp6emMHTuWQ4cO1XkMW7duZdSoUVx66aWsX7+ed955h1WrVjFt2rTjHvfEiRPp2LEj3333HWvXruWee+4hNDS0zrbfffcde/fuZe/evezatYszzjiDoUOHNuh7EBEvMUREmsGkSZMMi8ViREZGekx///vf3W0A47777nO/LygoMABj8eLFhmEYxtixY43rrruuzu3/61//MtLS0gyn0+leVlpaaoSHhxuffvqpu4bOnTsbFRUV7jZpaWnG0KFD3e8dDocRGRlpvPXWW4ZhGEZOTo4BGHPnznW3KS8vNzp27Gj8v//3/wzDMIxly5YZgHHkyBHDMAxjypQpxk033eRR35dffmmYzWajuLi4zvqjoqKM+fPn17nu9ddfN2JiYupcd9tttxmdO3c29u/fX+/vQUS8R32kRKTZnHvuubz44osey+Li4jzeDxw40D0fGRlJdHQ0+/fvB+DWW2/l0ksv5YcffmDkyJGMGzeOM888E3BdGtuyZQtRUVEe2yspKWHr1q3u9/369cNsrj4Zn5SURP/+/d3vLRYL7dq1c++zSnp6uns+JCSEU089lV9++aXO41y3bh3r169nwYIF7mWGYeB0OsnJyaFPnz61PjNjxgxuuOEG/vWvfzFixAguv/xyunfvXuf2q7z88su8+uqrrF69moSEhAZ9DyLiHQpSItJsIiMj6dGjxwnbHHs5y2Qy4XQ6ARg9ejTbt2/nk08+ITMzk+HDhzN16lQef/xxCgoKGDx4sEd4qVIVMo63/RPtszEKCgq4+eabue2222qt69SpU52fmT17NhMmTGDRokUsXryYBx98kLfffpuLL764zvbLli3jz3/+M2+99ZZH+Kzv9yAi3qEgJSJBJSEhgUmTJjFp0iSGDh3KXXfdxeOPP84pp5zCO++8Q2JiItHR0V7f79dff82wYcMAcDgcrF279rh9nk455RR+/vnn3w2Nx+rVqxe9evVi+vTpjB8/ntdff73OILVlyxYuu+wy7r33Xi655JJa+/bl9yAintTZXESaTWlpKbm5uR7TwYMH6/35Bx54gI8++ogtW7awceNGFi5c6L5MNnHiROLj47nooov48ssvycnJYfny5dx22221Oo43xvPPP88HH3zApk2bmDp1KkeOHOH666+vs+3MmTNZvXo106ZNIysri82bN/PRRx8dN3gVFxczbdo0li9fzvbt2/nqq6/47rvv6rwEWFxczNixYzn55JO56aabPL7L5vgeRMSTzkiJSLNZsmQJ7du391iWlpbGpk2b6vV5q9XKrFmz2LZtG+Hh4QwdOpS3334bgIiICFauXMnMmTO55JJLyM/Pp0OHDgwfPtwrZ2bmzp3L3LlzycrKokePHnz88cfuOwaPNXDgQFasWMFf//pXhg4dimEYdO/enSuvvLLO9haLhUOHDnHttdeyb98+4uPjueSSS3jooYdqtd23bx+bNm1i06ZNpKSkeKwzDMPn34OIeDIZhmH4uwgRERGRYKRLeyIiIiKNpCAlIiIi0kgKUiIiIiKNpCAlIiIi0kgKUiIiIiKNpCAlIiIi0kgKUiIiIiKNpCAlIiIi0kgKUiIiIiKNpCAlIiIi0kgKUiIiIiKN9P8BRvw+wljKNakAAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 30, + "id": "a9e60fe4", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 67, + "referenced_widgets": [ + "b3530edbd5674466b5b7d082bdc7cdd2", + "eb3477abbdc24c12848bed0c5a5dad2c", + "8ddf309177d340cb840bffac9dfb942d", + "b5bc0f097a3b4ebdba9d65a8bba3e036", + "be3a414de1c24384b9e9689f218d8ddb", + "22542e51cba74ef599c194fe847c1e68", + "a4ec3aca5af94348b9dc69c9cf69c4e1", + "b6d8a371b6e44a60ab8d29de1060f772", + "a6e51873136a4cd291174896272860b2", + "b6754f1a18994fca92d7f256c3f0f973", + "1838fdff596947fea7857f56aebffd17" + ] + }, + "id": "a9e60fe4", + "outputId": "dabe1d69-7dee-4ab2-ff2c-af5f176ab55e" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " 0%| | 0/10 [00:00 train_loss_log[-1] and abs(train_loss_log[-2]/train_loss_log[-1]) < 2, '{}, {}'.format(train_loss_log[-2], train_loss_log[-1])" + ] + }, + { + "cell_type": "markdown", + "id": "2eedf99c", + "metadata": { + "id": "2eedf99c" + }, + "source": [ + "Here is your convergence plot from the last run:" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "1bae7383", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 467 + }, + "id": "1bae7383", + "outputId": "4dffe9d8-b072-49b8-96d5-8fb7052aa2a6" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 32 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAGwCAYAAACNeeBZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABwI0lEQVR4nO3dd3hUZd7G8e+kTPqkAGkQINJ7FQgKFrIGRRTQXVFeRUSwgIioi67ddcXFspZVWbeo64JtFUSaZqkKoQXpEIqhkwQIqaTPef+YZGBI0EAmmUlyf65rrpk555lzfjNDnNtznvM8JsMwDERERETkkni4ugARERGR+kxhSkRERKQGFKZEREREakBhSkRERKQGFKZEREREakBhSkRERKQGFKZEREREasDL1QU0FFarlWPHjhEUFITJZHJ1OSIiIlINhmGQm5tLdHQ0Hh6XdoxJYcpJjh07RkxMjKvLEBERkUtw+PBhWrRocUmvVZhykqCgIMD2ZVgsFhdXIyIiItWRk5NDTEyM/Xf8UihMOUnFqT2LxaIwJSIiUs/UpIuOOqCLiIiI1IDClIiIiEgNKEyJiIiI1ID6TImIiNQDZWVllJSUuLqMeslsNl/ysAfV4dIwtWrVKl599VWSk5M5fvw4c+fOZcSIEQ5tdu3axfTp01m5ciWlpaV07tyZr776ipYtWwJQWFjIo48+ymeffUZRUREJCQm89957RERE2Ldx6NAhHnjgAZYvX05gYCBjx45lxowZeHmdffsrVqxg2rRp7Nixg5iYGJ5++mnuvvvuuvgYRERELsgwDNLS0sjKynJ1KfWWh4cHsbGxmM3mWtm+S8NUfn4+PXr04J577mHUqFGV1u/fv58rr7yS8ePH88ILL2CxWNixYwe+vr72No888ggLFy7kyy+/JDg4mMmTJzNq1ChWr14N2JL8sGHDiIyMZM2aNRw/fpy77roLb29vXn75ZQBSU1MZNmwY999/P7Nnz2bp0qXce++9REVFkZCQUDcfhoiISBUqglR4eDj+/v4aGPoiVQyqffz4cVq2bFkrn5/JMAzD6Vu9BCaTqdKRqdGjR+Pt7c0nn3xS5Wuys7Np1qwZc+bM4dZbbwVg9+7ddOrUiaSkJAYMGMDixYu58cYbOXbsmP1o1axZs5g+fTonTpzAbDYzffp0Fi5cyPbt2x32nZWVxZIlS6pVf05ODsHBwWRnZ2toBBERcYqysjL27NlDeHg4TZo0cXU59VZ2djbHjh2jbdu2eHt7O6xzxu+323ZAt1qtLFy4kPbt25OQkEB4eDj9+/dn3rx59jbJycmUlJQQHx9vX9axY0datmxJUlISAElJSXTr1s3htF9CQgI5OTns2LHD3ubcbVS0qdhGVYqKisjJyXG4iYiIOFNFHyl/f38XV1K/VZzeKysrq5Xtu22YysjIIC8vj1deeYWhQ4fy/fffM3LkSEaNGsXKlSsB26FPs9lMSEiIw2sjIiJIS0uztzk3SFWsr1j3S21ycnIoKCiosr4ZM2YQHBxsv2kqGRERqS06tVcztf35uW2YslqtANx888088sgj9OzZkyeeeIIbb7yRWbNmubg6ePLJJ8nOzrbfDh8+7OqSRERExAXcNkw1bdoULy8vOnfu7LC8U6dOHDp0CIDIyEiKi4srXeGQnp5OZGSkvU16enql9RXrfqmNxWLBz8+vyvp8fHzsU8doChkREZHGy23DlNls5vLLLyclJcVh+Z49e2jVqhUAffr0wdvbm6VLl9rXp6SkcOjQIeLi4gCIi4tj27ZtZGRk2NskJiZisVjsQS0uLs5hGxVtKrYhIiIirtO6dWvefPNNV5dxQS4dGiEvL499+/bZn6emprJ582bCwsJo2bIljz/+OLfddhuDBw/mmmuuYcmSJXz77besWLECgODgYMaPH8+0adMICwvDYrHw0EMPERcXx4ABAwC47rrr6Ny5M3feeSczZ84kLS2Np59+mkmTJuHj4wPA/fffz1//+ld+//vfc88997Bs2TK++OILFi5cWOefSZXyTkBeOkR2dXUlIiIi1XL11VfTs2dPp4SgDRs2EBAQUPOiaovhQsuXLzeASrexY8fa2/zzn/802rZta/j6+ho9evQw5s2b57CNgoIC48EHHzRCQ0MNf39/Y+TIkcbx48cd2hw4cMC4/vrrDT8/P6Np06bGo48+apSUlFSqpWfPnobZbDYuu+wy48MPP7yo95KdnW0ARnZ29kW97lftnG8Yz4cYxt+HOHe7IiLi9goKCoydO3caBQUFri7lol111VXGww8/fMH1Vqu10m9xbfmlz9EZv99uM85UfVdr40zlpsPrHQADHtkBwS2ct20REXFrhYWFpKamEhsbi6+vL4ZhUFBSO5f3/xo/b89qXxV399138/HHHzss+/DDDxk3bhyLFi3i6aefZtu2bXz//ffExMQwbdo01q5dS35+Pp06dWLGjBkOQxa1bt2aqVOnMnXqVMB2dd7f//53Fi5cyHfffUfz5s15/fXXuemmm6qs5/zP8VzO+P3W3HzuLigCWg2Eg6th53yIe9DVFYmIiIsUlJTR+dnvXLLvnS8m4G+uXmx466232LNnD127duXFF18EsI/t+MQTT/Daa69x2WWXERoayuHDh7nhhhv405/+hI+PD//+978ZPnw4KSkp9qnjqvLCCy8wc+ZMXn31Vd555x3GjBnDwYMHCQsLq/mbvUhu2wFdztH5Ztv9znkuLUNERKQ6goODMZvN+Pv7ExkZSWRkJJ6engC8+OKL/OY3v6FNmzaEhYXRo0cP7rvvPrp27Uq7du344x//SJs2bZg/f/4v7uPuu+/m9ttvp23btrz88svk5eWxfv36unh7lejIVH3Q6SZY/Hs4vA5yjoEl2tUViYiIC/h5e7LzRdfMGevn7emU7fTt29fheV5eHs8//zwLFy7k+PHjlJaWUlBQYB8G6UK6d+9ufxwQEIDFYnG4cr8uKUzVB5YoiBkAh9faTvUNuN/VFYmIiAuYTKZqn2pzV+dflffYY4+RmJjIa6+9Rtu2bfHz8+PWW2+luLj4F7dz/hx7JpPJPuB3XdNpvvrCfqrvG9fWISIiUg1ms7lac+GtXr2au+++m5EjR9KtWzciIyM5cOBA7RfoRApT9UXn8isUDiVBbppraxEREfkVrVu3Zt26dRw4cICTJ09e8KhRu3bt+Prrr9m8eTNbtmzhjjvucNkRpkulMFVfBLeAFpcDBuz61tXViIiI/KLHHnsMT09POnfuTLNmzS7YB+qNN94gNDSUgQMHMnz4cBISEujdu3cdV1szGmfKSWptnKlzrfkrfP8UtB4Edy+onX2IiIjb+KXxkaT6anucKR2Zqk8qTvUdXA15rrliQURERBwpTNUnIS2heR8wrDrVJyIi4iYUptxcSlou0/+7lefn20aO1QCeIiIi7kVhys3lFZXy+cbDfLP5KIZhnA1TB36E/JOuLU5EREQUptxdt+bB+Hp7cPpMCfsy8iC0NUT11Kk+ERERN6Ew5ebMXh70bhkKwLrUTNtCDeApIiLiNhSm6oF+sbYZsNefH6ZSV0H+KRdVJSIiIqAwVS+cG6YMw4AmbSCyGxhlkLLQxdWJiIg0bgpT9UCvmFC8PU2k5RRyOLPAtrDzCNu9TvWJiEgD1Lp1a958801Xl1EtClP1gJ/Zk+4tQgBYl1p+Wq8iTP28As5kuqIsERERQWGq3uh/fr+ppm0hoitYSyFlsQsrExERadwUpuoJe7+pA+cchdIAniIi4oY++OADoqOjsVqtDstvvvlm7rnnHvbv38/NN99MREQEgYGBXH755fzvf/9zUbU1pzBVT/RpFYqHCQ6eOkNadqFtYcWpvv3LoSDLVaWJiEhdMQwoznfNzTCqXeZvf/tbTp06xfLly+3LMjMzWbJkCWPGjCEvL48bbriBpUuX8tNPPzF06FCGDx/OoUOHauNTq3Veri5AqifI15su0cFsO5rNutRT3NyzOTRrD806wYldtlN9PW93dZkiIlKbSs7Ay9Gu2fcfjoE5oFpNQ0NDuf7665kzZw5DhgwB4L///S9NmzblmmuuwcPDgx49etjb//GPf2Tu3LnMnz+fyZMn10r5tUlHpuqRSuNNAXQZYbvXVX0iIuJGxowZw1dffUVRUREAs2fPZvTo0Xh4eJCXl8djjz1Gp06dCAkJITAwkF27dunIlNS+frFh/PPHVMcw1flmWDED9i+FwmzwDXZdgSIiUru8/W1HiFy174swfPhwDMNg4cKFXH755fzwww/85S9/AeCxxx4jMTGR1157jbZt2+Ln58ett95KcXFxbVRe6xSm6pHLW9uOTO3NyONUXhFNAn2gWUdo2h5O7oE930H337m4ShERqTUmU7VPtbmar68vo0aNYvbs2ezbt48OHTrQu3dvAFavXs3dd9/NyJEjAcjLy+PAgQMurLZmdJqvHgkLMNM+IhCADQdO2xaaTGc7ou+Y55K6REREqjJmzBgWLlzIv/71L8aMGWNf3q5dO77++ms2b97Mli1buOOOOypd+VefKEzVM1X2m6oYImHf/6Ao1wVViYiIVHbttdcSFhZGSkoKd9xxh335G2+8QWhoKAMHDmT48OEkJCTYj1rVRzrNV8/0i23Cf9YeYv2BcyY4jugCTdrCqX22U33dbnVdgSIiIuU8PDw4dqxyH6/WrVuzbNkyh2WTJk1yeF6fTvvpyFQ906+839TOYznkFJbYFppMGsBTRETERRSm6pnIYF9aNfHHakDywdNnV1T0m9qbCEV5LqlNRESkMVKYqocqjk459JuK7AahsVBaCHu/d1FlIiIijY/CVD1UZSd0k0kDeIqIiLiAwlQ9NOCyJgBsPZJFQXHZ2RUV/ab2fg/FZ1xQmYiI1AbjIubFk8pq+/NzaZhatWoVw4cPJzo6GpPJxLx58y7Y9v7778dkMvHmm286LM/MzGTMmDFYLBZCQkIYP348eXmOfYa2bt3KoEGD8PX1JSYmhpkzZ1ba/pdffknHjh3x9fWlW7duLFq0yBlvsVa0CPUjKtiXkjKDnw6d028qqieEtLTN3bQv0WX1iYiIc3h7ewNw5oz+B7kmKkZW9/T0rJXtu3RohPz8fHr06ME999zDqFGjLthu7ty5rF27lujoypM7jhkzhuPHj5OYmEhJSQnjxo1j4sSJzJkzB4CcnByuu+464uPjmTVrFtu2beOee+4hJCSEiRMnArBmzRpuv/12ZsyYwY033sicOXMYMWIEmzZtomvXrrXz5mvAZDLRLzaMbzYfY11qJgPbNq1YYeuIvuZt2wCeFUeqRESkXvL09CQkJISMjAwA/P39MZlMLq6qfrFarZw4cQJ/f3+8vGon9pgMNzl2aDKZmDt3LiNGjHBYfvToUfr37893333HsGHDmDp1KlOnTgVg165ddO7cmQ0bNtC3b18AlixZwg033MCRI0eIjo7m/fff56mnniItLQ2z2QzAE088wbx589i9ezcAt912G/n5+SxYsMC+3wEDBtCzZ09mzZpVZb1FRUX2yRvBFtpiYmLIzs7GYrE462O5oNnrDvLU3O3EXdaETycOOLviSDL841rwDoDf7wdvv1qvRUREao9hGKSlpZGVleXqUuotDw8PYmNj7TngXDk5OQQHB9fo99utB+20Wq3ceeedPP7443Tp0qXS+qSkJEJCQuxBCiA+Ph4PDw/WrVvHyJEjSUpKYvDgwQ4fYEJCAn/+8585ffo0oaGhJCUlMW3aNIdtJyQk/OJpxxkzZvDCCy/U/E1eov7lndA3HTpNcakVs1f5GdvmvSE4BrIP20ZE7zTcZTWKiEjNmUwmoqKiCA8Pp6SkxNXl1EtmsxkPj9rr2eTWYerPf/4zXl5eTJkypcr1aWlphIeHOyzz8vIiLCyMtLQ0e5vY2FiHNhEREfZ1oaGhpKWl2Zed26ZiG1V58sknHQJYxZGputKmWSBhAWYy84vZdjSLPq1s4co+gGfSX21X9SlMiYg0CJ6enrXW50dqxm2v5ktOTuatt97io48+csvzwz4+PlgsFodbXTKZTPbxptadO0QCnB3AM2UJlBTWaV0iIiKNjduGqR9++IGMjAxatmyJl5cXXl5eHDx4kEcffZTWrVsDEBkZae+UV6G0tJTMzEwiIyPtbdLT0x3aVDz/tTYV691VleNNATTvA5bmUJwL+5dV8UoRERFxFrcNU3feeSdbt25l8+bN9lt0dDSPP/443333HQBxcXFkZWWRnJxsf92yZcuwWq3079/f3mbVqlUO55kTExPp0KEDoaGh9jZLly512H9iYiJxcXG1/TZrpCJMbTxwmjLrOdcReHicM1efBvAUERGpTS7tM5WXl8e+ffvsz1NTU9m8eTNhYWG0bNmSJk2aOLT39vYmMjKSDh06ANCpUyeGDh3KhAkTmDVrFiUlJUyePJnRo0fbh1G44447eOGFFxg/fjzTp09n+/btvPXWW/zlL3+xb/fhhx/mqquu4vXXX2fYsGF89tlnbNy4kQ8++KAOPoVL1ynKQpCPF7lFpew6nkPX5sFnV3a+Gda+BymLoLQIvHxcV6iIiEgD5tIjUxs3bqRXr1706tULgGnTptGrVy+effbZam9j9uzZdOzYkSFDhnDDDTdw5ZVXOoSg4OBgvv/+e1JTU+nTpw+PPvoozz77rH2MKYCBAwcyZ84cPvjgA3r06MF///tf5s2b55ZjTJ3L08NE39a2o2uV+k216AdBUVCUAz+vqPviREREGgm3GWeqvnPGOBWX4v0V+/nzkt0kdIngb3f2dVy56Pew/m/Q4w4Y+X6d1SQiIlJfOOP32237TEn1nNsJvVIurug3lbIQSovruDIREZHGQWGqnuvWPBhfbw9Onylhb4bjnIS0HACBEVCYDakrXVOgiIhIA6cwVc+ZvTzo0+oC/aY8PM8O2rlzXt0WJiIi0kgoTDUA/VrbrnqsNN4UnB3Ac/dCKNM0BCIiIs6mMNUAnO03dapyv6lWAyGgGRSchtRVLqhORESkYVOYagB6tQzB29NEek4RhzLPOK50ONWnATxFREScTWGqAfD19qRHixCgin5TcPaqvt0LoKy07goTERFpBBSmGogLztMH0OpK8G8CZ07BwR/ruDIREZGGTWGqgfjFMOXpBR1vtD3eMa/uihIREWkEFKYaiD6tQvEwwaHMMxzPLqjcoMsI2/2ub8FaVqe1iYiINGQKUw1EkK83XaJtEx1XeXSq9SDwC4UzJ+Hg6jquTkREpOFSmGpAfvlUnzd0HGZ7rKv6REREnEZhqgH5xTAF0Hmk7X7nfJ3qExERcRKFqQbk8ta2MLU3I49TeUWVG8QOBt9gyM+AQ0l1XJ2IiEjDpDDVgIQFmGkfEQjAhgNVHJ3yMkPH8gE8N/6rDisTERFpuBSmGpj+sbZ5+qocvBNgwP22+x1z4dT+OqpKRESk4VKYamB+td9UZDdoPxQMK/z4lzqsTEREpGFSmGpgKsLUzuM55BSWVN1o0KO2+y2fQfaROqpMRESkYVKYamAiLL60buKPYUDygdNVN4rpZxt3yloCa96p2wJFREQaGIWpBqji6NQF+03B2aNTyR9D3ok6qEpERKRhUphqgPqVd0Jfn3rqwo0uuxqa94HSAlj7Xt0UJiIi0gApTDVA/cuPTG09kk1B8QUG5zSZzh6d2vAPKMiqm+JEREQaGIWpBqhFqB9Rwb6UWg1+OnSBflMA7a+H8M5QlAMb/l53BYqIiDQgClMNkMlkql6/KQ8PuHKa7fHa96E4vw6qExERaVgUphqoXx1vqkKXkRAaC2dO2Tqji4iIyEVRmGqgKvpNbTp0mqLSX5jU2NMLrpxqe7zmHSitYk4/ERERuSCFqQaqTbNAwgLMFJVa2XYk+5cb97gdgqIh9xhs+bRuChQREWkgFKYaKJPJRL/W1eg3BeDlAwMfsj3+8U0oK63d4kRERBoQhakGrNr9pgD6jAX/JnA61TYJsoiIiFSLwlQD1v8yW5hKPnia0jLrLzc2B8CAB2yPf3wDrL/SXkRERACFqQatY6SFIF8v8opK2XU899dfcPkE8LFAxk7Ys7j2CxQREWkAFKYaME8PE5fb+039wtQyFfxC4PJ7bY9/eB0Mo/aKExERaSBcGqZWrVrF8OHDiY6OxmQyMW/ePPu6kpISpk+fTrdu3QgICCA6Opq77rqLY8eOOWwjMzOTMWPGYLFYCAkJYfz48eTl5Tm02bp1K4MGDcLX15eYmBhmzpxZqZYvv/ySjh074uvrS7du3Vi0aFGtvOe6dlH9pgAGPAhefnA0GVJX1mJlIiIiDYNLw1R+fj49evTg3XffrbTuzJkzbNq0iWeeeYZNmzbx9ddfk5KSwk033eTQbsyYMezYsYPExEQWLFjAqlWrmDhxon19Tk4O1113Ha1atSI5OZlXX32V559/ng8++MDeZs2aNdx+++2MHz+en376iREjRjBixAi2b99ee2++jlSEqQ0HMrFaq3GkKbCZrTM6wKrXarEyERGRhsFkGO5xLsdkMjF37lxGjBhxwTYbNmygX79+HDx4kJYtW7Jr1y46d+7Mhg0b6Nu3LwBLlizhhhtu4MiRI0RHR/P+++/z1FNPkZaWhtlsBuCJJ55g3rx57N69G4DbbruN/Px8FixYYN/XgAED6NmzJ7NmzapW/Tk5OQQHB5OdnY3FYrnET8H5ikut9HjhewpKyvj+kcG0jwj69RdlH4G3eoK1BMYnQky/Wq9TRETEFZzx+12v+kxlZ2djMpkICQkBICkpiZCQEHuQAoiPj8fDw4N169bZ2wwePNgepAASEhJISUnh9OnT9jbx8fEO+0pISCApKemCtRQVFZGTk+Nwc0dmLw96twoBqjHeVIXgFtBjtO3xD6/XTmEiIiINRL0JU4WFhUyfPp3bb7/dnhzT0tIIDw93aOfl5UVYWBhpaWn2NhEREQ5tKp7/WpuK9VWZMWMGwcHB9ltMTEzN3mAt6te6CXAR/aYArnwETB6wZwmkbaulykREROq/ehGmSkpK+N3vfodhGLz//vuuLgeAJ598kuzsbPvt8OHDri7pgir6Ta37+RTVPqvbpI1tEmSAH96opcpERETqP7cPUxVB6uDBgyQmJjqcz4yMjCQjI8OhfWlpKZmZmURGRtrbpKenO7SpeP5rbSrWV8XHxweLxeJwc1e9Wobg7WkiI7eIg6fOVP+FV06z3e+YCyf31U5xIiIi9Zxbh6mKILV3717+97//0aRJE4f1cXFxZGVlkZycbF+2bNkyrFYr/fv3t7dZtWoVJSUl9jaJiYl06NCB0NBQe5ulS5c6bDsxMZG4uLjaemt1ytfbkx4tQoCLPNUX2RXaXw8YsPovtVKbiIhIfefSMJWXl8fmzZvZvHkzAKmpqWzevJlDhw5RUlLCrbfeysaNG5k9ezZlZWWkpaWRlpZGcXExAJ06dWLo0KFMmDCB9evXs3r1aiZPnszo0aOJjo4G4I477sBsNjN+/Hh27NjB559/zltvvcW0adPsdTz88MMsWbKE119/nd27d/P888+zceNGJk+eXOefSW2xn+q7mDAFMOhR2/2WzyDLfU9lioiIuIzhQsuXLzeASrexY8caqampVa4DjOXLl9u3cerUKeP22283AgMDDYvFYowbN87Izc112M+WLVuMK6+80vDx8TGaN29uvPLKK5Vq+eKLL4z27dsbZrPZ6NKli7Fw4cKLei/Z2dkGYGRnZ1/SZ1Hblu9ON1pNX2Bc+eelF//ij240jOcshrHwcecXJiIi4kLO+P12m3Gm6jt3HWeqQm5hCT1e+B6rAWueuJboEL/qv/jnFfDvm8HLF6Zutw3sKSIi0gA0unGm5NIF+XrTtXkwYBsN/aLEXgXN+0JpIaytPFq9iIhIY6Yw1Yj0a32J/aZMprN9p9b/AwqynFuYiIhIPaYw1Yhc9KTH52o/FMK7QHEubPi7kysTERGpvxSmGpHLy49M7cvI42Re0cW92MMDBpVfAZn0HhTnO7k6ERGR+klhqhEJDTDToXyi4w2XcnSqy0gIuwwKMiH5YydXJyIiUj8pTDUycW1sA5/+b1fGr7SsgocnXDHV9njN21B6kUe3REREGiCFqUZmWPcoAL7fkUZhSdnFb6DHaAiKhtzjsOVTJ1cnIiJS/yhMNTJ9WoYSFexLblEpK1JOXPwGvHzgiim2xz/+BcpKnVugiIhIPaMw1ch4eJgY3sM21c63W45d2kZ63wX+TeD0AdskyCIiIo2YwlQjdFN5mPrfrnTyii7hyJI5AAY8aHv8w+tgtTqxOhERkfpFYaoR6hJtIbZpAEWlVv63M/3SNnL5veBjgRO7YM9i5xYoIiJSjyhMNUIm09lTffMv9VSfXwj0m2B7vOo10BSPIiLSSClMNVIVp/pW7TnB6fziS9vIgAfB2x+ObYLtXzmxOhERkfpDYaqRahseSOcoC6VWgyU70i5tIwFNz46K/t1TUJTrvAJFRETqCYWpRsx+qm/zJZ7qAxg4xTYqel4arHjFSZWJiIjUHwpTjdjwHrYBPNemniI9p/DSNuLlA9e/anu89n3I2OWk6kREROoHhalGrEWoP31ahWIYsGDr8UvfULt46HgjGGWw6HF1RhcRkUZFYaqRG14+vcwlD+BZYegM8PKDAz+oM7qIiDQqClON3LDu0XiYYPPhLA6dOnPpGwppCYMftT3+7ikozHFOgSIiIm5OYaqRaxbkw8A2TQH4dmsNj06d2xl95Z+dUJ2IiIj7U5gSe0f0Gp/qO78zevrOGlYmIiLi/hSmhKFdovD2NLE7LZc96TUcK0qd0UVEpJFRmBKC/b25qn04UMMxpypUdEY/+CNs+2/NtyciIuLGFKYEgJt6np2rz6jp0aSQljD4Mdvj759WZ3QREWnQFKYEgPhO4fh5e3Io8wxbj2TXfIMDH4KwNuqMLiIiDZ7ClADgb/YivnMEYDs6VWNePnD9TNtjdUYXEZEGTGFK7G4qn6tvwdZjlFmd0HG8XTx0Gq7O6CIi0qApTInd4PZNsfh6kZ5TxPrUTOdsNEGd0UVEpGFTmBI7Hy9PhnaNBJwwgGeFkJhzOqNrZHQREWl4FKbEwU09mgOweNtxSsqsztmovTN6ujqji4hIg6MwJQ7i2jShaaAPp8+U8OPek87ZqJcP3KDO6CIi0jApTIkDTw8Tw7qVn+pzxlV9Fdqe2xn9MXVGFxGRBkNhSiqpGMDzux1pFJaUOW/D9s7oq2Hbl87broiIiAu5NEytWrWK4cOHEx0djclkYt68eQ7rDcPg2WefJSoqCj8/P+Lj49m7d69Dm8zMTMaMGYPFYiEkJITx48eTl5fn0Gbr1q0MGjQIX19fYmJimDlzZqVavvzySzp27Iivry/dunVj0aJFTn+/9UXvlqE0D/Ejv7iMZbsznLdhh87oGhldREQaBpeGqfz8fHr06MG7775b5fqZM2fy9ttvM2vWLNatW0dAQAAJCQkUFhba24wZM4YdO3aQmJjIggULWLVqFRMnTrSvz8nJ4brrrqNVq1YkJyfz6quv8vzzz/PBBx/Y26xZs4bbb7+d8ePH89NPPzFixAhGjBjB9u3ba+/NuzGTycSNPaIAJ83Vd65zO6OveMW52xYREXEFw00Axty5c+3PrVarERkZabz66qv2ZVlZWYaPj4/x6aefGoZhGDt37jQAY8OGDfY2ixcvNkwmk3H06FHDMAzjvffeM0JDQ42ioiJ7m+nTpxsdOnSwP//d735nDBs2zKGe/v37G/fdd98F6y0sLDSys7Ptt8OHDxuAkZ2dfWkfgJvZfjTLaDV9gdHuqUVGTkGxcze+N9EwnrMYxvOhhpG23bnbFhERuQjZ2dk1/v122z5TqamppKWlER8fb18WHBxM//79SUpKAiApKYmQkBD69u1rbxMfH4+Hhwfr1q2ztxk8eDBms9neJiEhgZSUFE6fPm1vc+5+KtpU7KcqM2bMIDg42H6LiYmp+Zt2I52jLLRpFkBxqZXvd6Q7d+NtNTK6iIg0HG4bptLS0gCIiIhwWB4REWFfl5aWRnh4uMN6Ly8vwsLCHNpUtY1z93GhNhXrq/Lkk0+SnZ1tvx0+fPhi36JbM5lMDC+fXsYpc/WdT53RRUSkgXDbMOXufHx8sFgsDreGpmKuvh/3nSQzv9i5Gw+Jgasetz1WZ3QREanH3DZMRUbaxjpKT3c8xZSenm5fFxkZSUaG49VmpaWlZGZmOrSpahvn7uNCbSrWN1aXNQuka3MLZVaDRduOO38HcZPVGV1EROo9tw1TsbGxREZGsnTpUvuynJwc1q1bR1xcHABxcXFkZWWRnJxsb7Ns2TKsViv9+/e3t1m1ahUlJSX2NomJiXTo0IHQ0FB7m3P3U9GmYj+N2U21earv3JHR182C9B3O34eIiEgtc2mYysvLY/PmzWzevBmwdTrfvHkzhw4dwmQyMXXqVF566SXmz5/Ptm3buOuuu4iOjmbEiBEAdOrUiaFDhzJhwgTWr1/P6tWrmTx5MqNHjyY62hYC7rjjDsxmM+PHj2fHjh18/vnnvPXWW0ybNs1ex8MPP8ySJUt4/fXX2b17N88//zwbN25k8uTJdf2RuJ1h3W2f44YDmRzPLnD+DtrGQ6ebbJ3RF2pkdBERqYeceHXhRVu+fLkBVLqNHTvWMAzb8AjPPPOMERERYfj4+BhDhgwxUlJSHLZx6tQp4/bbbzcCAwMNi8VijBs3zsjNzXVos2XLFuPKK680fHx8jObNmxuvvPJKpVq++OILo3379obZbDa6dOliLFy48KLeizMurXRXt76/2mg1fYHx91X7a2cHpw8ZxkuRtuEStnxeO/sQERGpgjN+v02GoUMBzpCTk0NwcDDZ2dkNrjP6J0kHeOabHXRvEcz8yVfWzk5+eB2WvgiBETB5A/gG185+REREzuGM32+37TMl7uP6blF4epjYeiSb1JP5tbOTczujL32xdvYhIiJSCxSm5Fc1DfRhYJsmACyojY7oYOuMPux12+MN/4CUxbWzHxERESdTmJJqOfeqvlo7M9zmGtsRKoB5D0JOLQU3ERERJ1KYkmq5rkskZk8P9mbksTstt/Z2NORZiOoBBZnw9USwltXevkRERJxAYUqqJdjPm6s7NANqacypCl4+cMu/wDsADvwAP75Re/sSERFxAoUpqbabetpO9X1bm6f6AJq2Pdt/avkMOLSu9vYlIiJSQwpTUm1DOkbgb/bkyOkCfjqcVbs76zEauv3ONpjnV+OhoJb3JyIicokUpqTa/Mye/KZzBADzN9dy53CTyXZ0KjQWsg/Dt1M0OrqIiLglhSm5KBVX9S3cdpwyay2HG18L3PpP8PCCnd/Apo9rd38iIiKXQGFKLsqgds0I9vPmRG4R634+Vfs7bN7HdoUfwOInIGN37e9TRETkIihMyUUxe3lwfddIoJav6jtX3EPQ5looLYD/3gMltTDhsoiIyCVSmJKLVnGqb/H2NIpLrbW/Qw8PGDELAppBxg74/una36eIiEg1KUzJRet/WRPCg3zILijhh70n6manQREwcpbt8YZ/wK4FdbNfERGRX6EwJRfN08PEsO5RQB2e6gNoGw8DH7I9/mYSZB+pu32LiIhcgMKUXJLh5af6EnemU1Bch1O+XPssRPWEwixNNyMiIm5BYUouSa+YEGLC/DhTXMbS3el1t2MvM9z6LzAHwsHVsOq1utu3iIhIFRSm5JKYTCaGd7cdnar1ATzP16QNDCufs2/lK3BwTd3uX0RE5BwKU3LJKk71rUg5wam8orrdeY/boPtoMKzw1QQ4k1m3+xcRESmnMCWXrGNkEN1bBFNcZuXjpIN1X8Cw1yDsMsg5AvMf0nQzIiLiEgpTcslMJhP3DW4DwL+TDnCmuLRuC/AJsvWf8vCG3Qtg47/qdv8iIiIoTEkNDe0aSasm/mSdKeHzDYfrvoDoXhD/nO3xd3+A9J11X4OIiDRqClNSI54eJiYMugyAf/yQSklZHYyIfr4Bk2xjUJUW2qabKT5T9zWIiEijpTAlNXZrnxY0CTBzNKuARduO130BHh4w4n0ICIcTu+D7p+q+BhERabQuOkyVlJTg5eXF9u3ba6MeqYd8vT25e2BrAGat/BnDFR3BA8PPTjez8V+w85u6r0FERBqliw5T3t7etGzZkrIyjTwtZ90Z1wp/sye7juewau9J1xTRdghc8bDt8fyHIMsFfbhERKTRuaTTfE899RR/+MMfyMzU2D5iE+JvZvTlLQGYtWK/6wq55mmI7g2F2fDVvVBWx1cYiohIo2MyLuGcTK9evdi3bx8lJSW0atWKgIAAh/WbNm1yWoH1RU5ODsHBwWRnZ2OxWFxdjksczSrgqpnLKbUafDPpCnrEhLimkMyfYdZgKM6Fq6bDNX9wTR0iIuL2nPH77XUpLxoxYsQl7UwatuYhftzUI5qvfzrK31bt570xfVxTSNhlcONf4Ot7YdWr4BcK/e8Hk8k19YiISIN2SUempDIdmbLZnZbD0Dd/wGSC5Y9eTeumAb/+otqyYBps/KftcddbYPjb4BPounpERMTtOOP3u0ZDIyQnJ/Of//yH//znP/z000812ZQ0EB0jLVzToRmGAX//4WfXFjPsdRj6Cnh4wfav4B/xcHKfa2sSEZEG55LCVEZGBtdeey2XX345U6ZMYcqUKfTp04chQ4Zw4sQJZ9co9cx9V9mmmPky+Qgncut4AuRzmUww4AEY+y0ERtjGoPrgatj1retqEhGRBueSwtRDDz1Ebm4uO3bsIDMzk8zMTLZv305OTg5Tpkxxdo1Sz/SPDaNnTAjFpVY+XnPA1eVAq4Fw3ypoOdDWKf3z/4PE53Sln4iIOMUlhaklS5bw3nvv0alTJ/uyzp078+6777J48WKnFVdWVsYzzzxDbGwsfn5+tGnThj/+8Y8Og0IahsGzzz5LVFQUfn5+xMfHs3fvXoftZGZmMmbMGCwWCyEhIYwfP568vDyHNlu3bmXQoEH4+voSExPDzJkznfY+GhuTycT9V9mmmPl30gHyitwgtARFwtj5tqlnAFa/CZ+MgDwdSRURkZq5pDBltVrx9vautNzb2xur1Xlzs/35z3/m/fff569//Su7du3iz3/+MzNnzuSdd96xt5k5cyZvv/02s2bNYt26dQQEBJCQkEBhYaG9zZgxY9ixYweJiYksWLCAVatWMXHiRPv6nJwcrrvuOlq1akVycjKvvvoqzz//PB988IHT3ktj85vOkVzWNICcwlI+W3/I1eXYeHrD0Jfh1g/BOwAO/AB/GwyHN7i6MhERqc+MS3DTTTcZgwcPNo4ePWpfduTIEeOqq64yRowYcSmbrNKwYcOMe+65x2HZqFGjjDFjxhiGYRhWq9WIjIw0Xn31Vfv6rKwsw8fHx/j0008NwzCMnTt3GoCxYcMGe5vFixcbJpPJXv97771nhIaGGkVFRfY206dPNzp06FDtWrOzsw3AyM7Ovvg32kDNWXfQaDV9gTHg5f8ZRSVlri7HUfouw3i7j2E8ZzGMF5oYxroPDMNqdXVVIiJSx5zx+31JR6b++te/kpOTQ+vWrWnTpg1t2rQhNjaWnJwch6NGNTVw4ECWLl3Knj17ANiyZQs//vgj119/PQCpqamkpaURHx9vf01wcDD9+/cnKSkJgKSkJEJCQujbt6+9TXx8PB4eHqxbt87eZvDgwZjNZnubhIQEUlJSOH36dJW1FRUVkZOT43ATRyN7NadZkA/Hswv5dssxV5fjKLwjTFgGnW4Cawksegzm3g/FZ1xdmYiI1DOXNGhnTEwMmzZt4n//+x+7d+8GoFOnTg6hxhmeeOIJcnJy6NixI56enpSVlfGnP/2JMWPGAJCWlgZARESEw+siIiLs69LS0ggPD3dY7+XlRVhYmEOb2NjYStuoWBcaGlqpthkzZvDCCy844V02XL7enoy7ojUzl6Twt1X7GdW7OSZ3GjjT1wK/+zeseQf+9xxs/QzSt8Ntn9gG/hQREamGiz4yVVJSgpeXFzt27OA3v/kNDz30EA899JDTgxTAF198wezZs5kzZw6bNm3i448/5rXXXuPjjz92+r4u1pNPPkl2drb9dviwJtWtypj+rQj08WJPeh7LUzJcXU5lJhNcMQXumg8BzWxh6m9XQ4rzLqQQEZGG7aLDlLe3Ny1btqSsrKw26nHw+OOP88QTTzB69Gi6devGnXfeySOPPMKMGTMAiIyMBCA9Pd3hdenp6fZ1kZGRZGQ4/oiXlpaSmZnp0KaqbZy7j/P5+PhgsVgcblJZsJ83d/QvnwB5pYsH8fwlsYNswye06AdF2fDpaFj6R7DW/r9zERGp3y6pz9RTTz3FH/7wBzIzM51dj4MzZ87g4eFYoqenp/2KwdjYWCIjI1m6dKl9fU5ODuvWrSMuLg6AuLg4srKySE5OtrdZtmwZVquV/v3729usWrWKkpISe5vExEQ6dOhQ5Sk+uTj3XBGLt6eJ9amZbDpUdR80t2CJhrsXQr/7bM9/eA3+cwvkn3JtXSIi4tYuuQP6qlWriI6OpkOHDvTu3dvh5izDhw/nT3/6EwsXLuTAgQPMnTuXN954g5EjRwK28YymTp3KSy+9xPz589m2bRt33XUX0dHR9smYO3XqxNChQ5kwYQLr169n9erVTJ48mdGjRxMdHQ3AHXfcgdlsZvz48ezYsYPPP/+ct956i2nTpjntvTRmkcG+jOjZHIC/rdzv4mp+hZcZbpgJo/4O3v7w83L44Co4mvzrrxURkUbpkjqgVwSV2vbOO+/wzDPP8OCDD5KRkUF0dDT33Xcfzz77rL3N73//e/Lz85k4cSJZWVlceeWVLFmyBF9fX3ub2bNnM3nyZIYMGYKHhwe33HILb7/9tn19cHAw33//PZMmTaJPnz40bdqUZ5991mEsKqmZ+666jC+Tj/D9znT2n8ijTTM3n3C4++8gootttPTMn+FfQ+GGV6H3WFs/KxERkXImwzhnOPFqKC0t5eWXX+aee+6hRYsWtVVXveOMWacbuns/3sj/dqUz+vIYXrmlu6vLqZ7CbJj7AKQstD3vdadtAmUvH9fWJSIiTuGM3++LPs3n5eXFq6++SmmpG0wRIvVKxRQzX286SkZO4a+0dhO+wXDbf2DIs2DygJ8+gY+HQ276r79WREQahUvqM3XttdeycuVKZ9ciDVzf1mH0bRVKcZmVf60+4Opyqs/DAwY9CmO+BJ9gOLwO/n4NHNvs6spERMQNXFKfqeuvv54nnniCbdu20adPHwICAhzW33TTTU4pThqe+65qw8Z/b2T22oNMuqYNQb6V53h0W23jbaOmfzoaTu219aMa8S50vcXVlYmIiAtddJ8poNJwBQ4bNJnqZAwqd6M+U9VjtRpc9+Yq9mXk8eT1HbnvqjauLuniFWbDf8fDvkTb80GPwjVP245giYhIveKSPlMAVqv1grfGGKSk+jw8TEwcbOs79a/VqRSV1sN/L77BcMfnMHCK7fkPr8PnY6BQ8zOKiDRGFxWmbrjhBrKzs+3PX3nlFbKysuzPT506RefOnZ1WnDRMN/eMJsLiQ3pOEd9sdrMJkKvLwxOu+yOM/AA8fSBlEfzzOtswCiIi0qhcVJj67rvvKCoqsj9/+eWXHUZBLy0tJSUlxXnVSYPk4+XJ+CttE0v/beV+rNaLPtPsPnrcBuMWQ2AknNgFf78Wfl7h6qpERKQOXVSYOr971SV0txIB4PZ+LQny9WL/iXyW7nbDCZAvRos+MHEFRPeGgtPwyShY9wHo70NEpFFQj1lxiSBfb/5vQCsAZrn7FDPVYYmCcYug+21glMHix+HbKVBa7OrKRESkll1UmDKZTJjOm0rj/Oci1TVuYGvMnh4kHzzNxgO1O2l2nfD2g5F/g9/8ETDBpn/Dv2+CvBOurkxERGrRRY0zZRgGd999Nz4+tqk0CgsLuf/+++3jTJ3bn0rk14RbfBnVuzmfbTjMrJX7+UfrMFeXVHMmE1wxBZp1hK/Gw6Ek2wCfo+dAVD2ZQkdERC7KRY0zNW7cuGq1+/DDDy+5oPpK40xdmv0n8oh/YyWGAYmPDKZdRJCrS3KeE3tsA3xm7gdvfxjxHnQZ6eqqRETkHM74/b6kQTulMoWpS3ffJxv5bkc6v+3Tgld/28PV5ThXwWnbAJ/7l9qeD/49XP2kBvgUEXETLhu0U8SZ7i8fBX3e5qMczy5wcTVO5hcKd3wBcZNtz1fNhC/uhKI819YlIiJOozAlLterZSj9YsMoKTP4sD5NgFxdnl6Q8CcY8T54mmH3AtsAn6cPuLoyERFxAoUpcQsPlB+dmrPuENkFJS6uppb0vAPuXgSBEZCxAz64Bn6aDWWlrq5MRERqQGFK3MLVHZrRISKIvKJS/rP2oKvLqT0xl8OE5RDVEwoy4ZsH4b0BsP0rsFpdXZ2IiFwChSlxCyaTifuvtk2A/P6K/aTnFLq4oloU3Bzu+Q5+86KtT9WpvfDfe+Bvg2D3Io2cLiJSzyhMidu4uUdzerUMIa+olJcW7nJ1ObXL2xeueBge3gpX/wF8LJC+HT67Hf4xBPYvU6gSEaknFKbEbXh4mPjjzV3xMMG3W46xet9JV5dU+3wtcPV0eHgLXPmIbTyqo8nwyUj46EY4mOTqCkVE5FcoTIlb6do8mDvL5+x79pvtFJc2kn5E/mEQ/zxM2Qz9H7Bd9XfwR/hwKPznFji6ydUViojIBShMiduZdl0Hmgaa2X8in3/8+LOry6lbQRFw/Ssw5Sfoczd4eMG+/9mmpPlsDKTvdHWFIiJyHoUpcTvBft48eX0nAN5Zuo+jWQ1sIM/qCG4Bw9+CyRug+2jAZBuf6v2B8NW9cGq/qysUEZFyClPilkb1bk6/1mEUlJTxx28b8dGYsMtg1N/gwbXQ+WbAgG1fwl8vh28mQ9YhV1coItLoKUyJWzKZTLw4ogueHiaW7EhjRUqGq0tyrfCO8Lt/w32roF0CGGXw0yfwTh9Y9Djkprm6QhGRRkthStxWx0gL4wa2BuC5+TsoLClzbUHuIKoHjPkC7vkeYgdDWTGs/wDe6gnfPwNnMl1doYhIo6MwJW5t6m/aE2Hx4eCpM/xtZSPrjP5LWvaHsd/CXfOhxeVQWgBr3oY3u8OKV6Awx9UViog0GgpT4tYCfbx4elhnAN5bsY9Dp864uCI3c9lVMD4R7vgCIrtBcS6smAFv9YDVb0GxPi8RkdqmMCVu78buUQxs04SiUisvfLvD1eW4H5MJ2ifAxFXw24+gSTvbvH+Jz8LbvWD936G02NVViog0WApT4vZMJhMv3twVb08TS3dnkLgz3dUluScPD+gy0nbl383vQXBLyEuDRY/BX/vA5jlgVb8zERFnU5iSeqFteCD3DrJNhPz8/B0UFCsUXJCnF/QaAw9thBteg8AI2xAK8x6A9+JgxzywNpKR5UVE6oDClNQbD13bluYhfhzNKuDd5ftcXY778/KBfhNsU9TEvwB+oXAyBb4cC3+/GvYmajJlEREnUJiSesPf7MUzN9o6o3+w6md+PpHn4orqCbM/XDnVNpnyVdPBHAjHt8DsW+FfQ+HAaldXKCJSr7l9mDp69Cj/93//R5MmTfDz86Nbt25s3LjRvt4wDJ599lmioqLw8/MjPj6evXv3OmwjMzOTMWPGYLFYCAkJYfz48eTlOf4Qb926lUGDBuHr60tMTAwzZ86sk/cnFyehSwRXd2hGcZmV5+bvwNCRlerzDYZr/gAPb4WBD4GXLxxeCx/dAJ+M1GTKIiKXyK3D1OnTp7niiivw9vZm8eLF7Ny5k9dff53Q0FB7m5kzZ/L2228za9Ys1q1bR0BAAAkJCRQWFtrbjBkzhh07dpCYmMiCBQtYtWoVEydOtK/Pycnhuuuuo1WrViQnJ/Pqq6/y/PPP88EHH9Tp+5VfZzKZeH54F8xeHvyw9ySLt2vk74sW0ASue8l2+q/veNtkyvuXnZ1MOWOXqysUEalXTIYb/6/9E088werVq/nhhx+qXG8YBtHR0Tz66KM89thjAGRnZxMREcFHH33E6NGj2bVrF507d2bDhg307dsXgCVLlnDDDTdw5MgRoqOjef/993nqqadIS0vDbDbb9z1v3jx2795d5b6LioooKiqyP8/JySEmJobs7GwsFoszPwapwhuJe3h76V4iLb4sffQqAny8XF1S/ZWZCiv/DFs/B8MKmKD772ynBJu0cXV1IiK1Kicnh+Dg4Br9frv1kan58+fTt29ffvvb3xIeHk6vXr34+9//bl+fmppKWloa8fHx9mXBwcH079+fpKQkAJKSkggJCbEHKYD4+Hg8PDxYt26dvc3gwYPtQQogISGBlJQUTp8+XWVtM2bMIDg42H6LiYlx6nuXX/bg1W2ICfMjLaeQt5fu/fUXyIWFxcLIWY6TKW/93DaZ8tz74aQ6+4uI/BK3DlM///wz77//Pu3ateO7777jgQceYMqUKXz88ccApKXZTvFEREQ4vC4iIsK+Li0tjfDwcIf1Xl5ehIWFObSpahvn7uN8Tz75JNnZ2fbb4cOHa/hu5WL4envywk1dAPjnj6nsSc91cUUNQLMOtsmUJ648O5nylk/h3cvhqwlwYo+rKxQRcUtuHaasViu9e/fm5ZdfplevXkycOJEJEyYwa9YsV5eGj48PFovF4SZ169qOEfymcwSlVoNn5m1XZ3Rnie5pm0x5wnJof73t1N+2L+DdfvDfeyCj6lPfIiKNlVuHqaioKDp37uywrFOnThw6dAiAyMhIANLTHUfETk9Pt6+LjIwkIyPDYX1paSmZmZkObaraxrn7EPf03PDO+Hp7sC41k282H3N1OQ1L895wx2dw3yroeCNgwPav4L0B8MVYSNfUPiIi4OZh6oorriAlJcVh2Z49e2jVqhUAsbGxREZGsnTpUvv6nJwc1q1bR1xcHABxcXFkZWWRnJxsb7Ns2TKsViv9+/e3t1m1ahUlJSX2NomJiXTo0MHhykFxPy1C/Xno2nYAvLRwFzmFJb/yCrloUT1g9Gy47wfodBNgwM558P5A+Pz/IG2bqysUEXEptw5TjzzyCGvXruXll19m3759zJkzhw8++IBJkyYBtsvkp06dyksvvcT8+fPZtm0bd911F9HR0YwYMQKwHckaOnQoEyZMYP369axevZrJkyczevRooqOjAbjjjjswm82MHz+eHTt28Pnnn/PWW28xbdo0V711uQj3DorlsqYBnMwr4i+J6tdTa6K6w22fwANroPMIwAS7voVZV9qGVDi22cUFioi4iOHmvv32W6Nr166Gj4+P0bFjR+ODDz5wWG+1Wo1nnnnGiIiIMHx8fIwhQ4YYKSkpDm1OnTpl3H777UZgYKBhsViMcePGGbm5uQ5ttmzZYlx55ZWGj4+P0bx5c+OVV165qDqzs7MNwMjOzr60Nyo1smpPhtFq+gIj9okFxo6j+g7qRPpOw/hynGE8F2wYz1lst9m3GcaRZFdXJiJSbc74/XbrcabqE2eMUyE1M2n2JhZuO06fVqF8eV8cHh4mV5fUOJxIgVWv2vpTGeUTKLe7Dq56Alr0cW1tIiK/osGPMyVyMZ6+sRP+Zk+SD57mv5uOuLqcxqNZB7jlHzBpPXQfDSYP2Ps9/ONa+GQUHF7v6gpFRGqVwpQ0GFHBfkyNt3VGf2XxbrLOFLu4okamaTsY9TeYvBF6jgGTJ+xfCv/8DXx8E2z9Aoo0ObWINDwKU9KgjLsilnbhgWTmF/Pqdym//gJxviZtYMR78NBG6PV/trn/UlfC1xPg1bbw5TjYvQhKi359WyIi9YD6TDmJ+ky5j6T9p7j972sxmeCbSVfQvUWIq0tq3E4fgM1zYNuXkPnz2eW+wbahFrr9FlpfCR6eLitRRBovZ/x+K0w5icKUe5n62U/M23yMHi2C+frBK/BUZ3TXMww4tgm2fQU7vobc42fXBUZC11HQ9VbbYKEmfV8iUjcUptyIwpR7ycgtZMhrK8ktKmXyNW15LKGDq0uSc1nL4OBq2PZf2PkNFGadXRcaC91utQWr8I4uK1FEGgeFKTeiMOV+vt50hGlfbAHgrdE9ublncxdXJFUqLbZ1VN/2X0hZBCVnzq6L6AbdboGut0BIS9fVKCINlsKUG1GYck8zFu3ib6t+xsfLgy/ui6NHTIirS5JfUpwPKYtt/av2/Q+spWfXxQywHbHqPAICm7msRBFpWBSm3IjClHsqsxpM+PdGlu3OIMLiw/zJVxJh8XV1WVIdZzJh13zbEasDPwLl/6kyedo6rLdPgHYJ0LStS8sUkfpNYcqNKEy5r9zCEka+t4Z9GXn0aBHM5/fF4eutK8fqlZxjsP1r2P5fOPaT47qwy6D9UNuo662uAC+za2oUkXpJYcqNKEy5twMn8xnx3mqyzpRwc89o3rytJyZdMVY/ndoPe76DPUvg4BqwlpxdZw6Ey64+G66CIlxWpojUDwpTbkRhyv2t2XeSO/+1njKrwe+HduDBq3V6qN4rzIGfV8De72BvIuSlO66P6mk7Hdg+AaJ6gYfGKRYRRwpTbkRhqn74JOkAz3yzA5MJ/n5nX+I768hFg2G1wvHNtnkB93xnG9PqXAHh0O43tiNWba4FX/2diojClFtRmKo/np63jf+sPUSA2ZOvH7yCDpFBri5JakNuOuxLtAWr/cuhOPfsOg8vaBl39nRg03YaKFSkkVKYciMKU/VHSZmVu/65nqSfT9Ei1I/5k68kLECdlhu00mI4lHT2qNWpvY7r/ZtA8z7QvG/5fW/wD3NNrSJSpxSm3IjCVP1yOr+Ym99dzaHMM/SPDeOT8f0xe6k/TaNxav/ZYHVwNZQVV24T1sYWrFqUB6zIbuDlU/e1ikitUphyIwpT9c+e9FxGvbeGvKJSbu/XkpdHdtUVfo1RaRGkbYejG+FoMhzZCJn7K7fzNNsCVcURrBZ9bcMy6N+MSL2mMOVGFKbqp2W70xn/8UYMA164qQtjB7Z2dUniDs5k2jqwH0k+G7LOnKrczjfE8ehV8z4Q0LTOyxWRS6cw5UYUpuqvWSv388ri3Xh6mPj3Pf24oq1+DOU8hgGnD9hCVcXRq+NboKyoctvQWNvgoa0GQqs423MdvRJxWwpTbkRhqv4yDINHv9jC1z8dJdjPm3mTriC2aYCryxJ3V1oMGTtswaoiZJ3cU7ldUFR5sBpoC1lNO2i8KxE3ojDlRhSm6rfCkjJu//tafjqURZtmAcyddAUWX29XlyX1TUEWHNlg69R+cA0c3eQ4QjuAXyi0HHg2YEV2B08vl5QrIgpTbkVhqv7LyCnkpr+uJi2nkKvaN+Nfd1+Op4dOz0gNFJ+xHbE6uMYWsI5sgJIzjm3MgRDT7+yRq+je4K3JuEXqisKUG1GYahi2Hcnmt39bQ2GJlQmDYnlqWGdXlyQNSVmJra9VxZGrg0lQlO3YxtPH1qG9ZZwtYEX30phXIrVIYcqNKEw1HAu2HmPynJ8AePXW7vy2b4yLK5IGy1oGGTttoaoiYOVnVG4XGAHNOkJ4ZwjvZLs166gpcUScQGHKjShMNSxvfJ/C28v2Yfb04NOJ/enTSkcGpA4Yhm1A0YOrbSO2H0qyXUV4IcEx5SGrU3nQ6mjr4G72r7OSReo7hSk3ojDVsFitBg/O3sSSHWk0DTTzzeQraR7i5+qypDEqyoMTKbYjWCd22+4zdkPusQu8wARhsdCs09mjWOGdoEk78NK0SSLnU5hyIwpTDc+Z4lJueT+JXcdz6BRl4asH4vA366orcRMFp22h6sQuyKi47ax6cFGwTe4cdhk0aQtN2timy6l4HBSlsbCk0VKYciMKUw3TkdNnuPmvqzmVX8z1XSN5947eeOgKP3FneSfOCVjlR7EydlXu6H4u74DyoNWm/Nb2bNjyD1PQkgZNYcqNKEw1XBsPZHL739dSUmYw+Zq2PJbQwdUliVwcw4Dc47bThKf2226Z++HUPjh9EIyyC7/WN9gxXFUErrA26gAvDYLClBtRmGrYvth4mN//dysAj8S35+H4di6uSMRJykpsgaoiXJ0qv8/8GbIP//Jrg6Jtkz9X3KK6Q0hrjfAu9YrClBtRmGr43luxj5lLUgB4eEg7psa3w6TTH9KQlRRAZmp5uKoIWz/b7qsawgHAHASRXR1DVrNOGohU3JYzfr/Vm1akmh68ui2eJhMzFu/mraV7sRoG037TXoFKGi5vP4jobLudrzDb1hcrbRukbbXdp++E4tyzwzpUMHlCsw6OASuyuwYjlQajXh2LfeWVVzCZTEydOtW+rLCwkEmTJtGkSRMCAwO55ZZbSE9Pd3jdoUOHGDZsGP7+/oSHh/P4449TWlrq0GbFihX07t0bHx8f2rZty0cffVQH70jqm/uuasPTwzoB8M6yfcz8LgUd3JVGyTcYWg6AfhPgpndg4gr4wzF4cC2M/ADiJkPsVeAXZuuTlbETtn4O3z8N/74ZZsbCG51hzm2w7CXYMQ+OJEP2EdupR5F6pN4cmdqwYQN/+9vf6N69u8PyRx55hIULF/Lll18SHBzM5MmTGTVqFKtXrwagrKyMYcOGERkZyZo1azh+/Dh33XUX3t7evPzyywCkpqYybNgw7r//fmbPns3SpUu59957iYqKIiEhoc7fq7i3ewddhofJxIsLdvL+iv1YrQZPXN9RR6hEPL3OjmvV4zbbMsOAnGPlR7DOOYp1OhVyjtpue5actyET+DexDdkQFAGBkRB0zq3ieWCExs4St1Av+kzl5eXRu3dv3nvvPV566SV69uzJm2++SXZ2Ns2aNWPOnDnceuutAOzevZtOnTqRlJTEgAEDWLx4MTfeeCPHjh0jIiICgFmzZjF9+nROnDiB2Wxm+vTpLFy4kO3bt9v3OXr0aLKysliy5Pw/8qqpz1Tj8/GaAzw3fwcA46+M5elhnRSoRKqrMAfSd5SHq622U4a5aZCXDtbSX399Bb+ws6ErKMoWsIIiIbiFbTT40Na2kCdyAY2mz9SkSZMYNmwY8fHxvPTSS/blycnJlJSUEB8fb1/WsWNHWrZsaQ9TSUlJdOvWzR6kABISEnjggQfYsWMHvXr1IikpyWEbFW3OPZ14vqKiIoqKiuzPc3JynPBOpT4ZO7A1Hh4mnpm3nX/+mIrVMHj2xs4KVCLV4WuBVnG227msVtvAo3lptnCVm3be4/Szj60lUJBpu2XsqHo/nmbbkA5N29v6bVXcN2mnTvHiNG4fpj777DM2bdrEhg0bKq1LS0vDbDYTEhLisDwiIoK0tDR7m3ODVMX6inW/1CYnJ4eCggL8/CpPIzJjxgxeeOGFS35f0jDcOaAVniYTf5i7jQ9XH6DMavDCTV0UqEQulYcHBDaz3SK7XbidYcCZzAuHrtMH4OReKC0oH7x0p+PrTR4Q0soxYDXraHus8bPkIrl1mDp8+DAPP/wwiYmJ+Pq61/9BPPnkk0ybNs3+PCcnh5iYGBdWJK5yR/+WeHrAE19v499JBymzGvzx5q4aKV2kNplMENDEdovoUnUbq9U2VtbJPbYBS0+klD9OgcIsW7+t06mV+2wFRZ0TsDrYTheGtLSdPvTyqfW3JvWPW4ep5ORkMjIy6N27t31ZWVkZq1at4q9//SvfffcdxcXFZGVlORydSk9PJzIyEoDIyEjWr1/vsN2Kq/3ObXP+FYDp6elYLJYqj0oB+Pj44OOjPyqxue3ylniYTPz+q63MXncIq2HwpxHdFKhEXMnDA0Jb2W7tfnN2uWFAXgacTDknYO2GE3vKj24dt91SV1bepn8T22Cllihb6LJEV773C9UUPI2MW4epIUOGsG3bNodl48aNo2PHjkyfPp2YmBi8vb1ZunQpt9xyCwApKSkcOnSIuDjbefi4uDj+9Kc/kZGRQXh4OACJiYlYLBY6d+5sb7No0SKH/SQmJtq3IVIdv+0bg6eHice+3MKn6w9TZjV4ZVR3BSoRd2MylXdYj4DYwY7rCrJspwdPppwNWCf32K46LCu29ec6cwrSt1W5aQA8fWxHsSoFrShbEAuKAP+m4BOk0NVA1Iur+c519dVX26/mA3jggQdYtGgRH330ERaLhYceegiANWvWALYjWT179iQ6OpqZM2eSlpbGnXfeyb333uswNELXrl2ZNGkS99xzD8uWLWPKlCksXLiw2kMj6Go+qfDN5qM88vlmrAbc0rsFM2/tjqcClUj9VtFHK/cY5Bx3vM9NO/v4zKnqb9PTbDvS5d/ENoCp/XGTKpY3td2r07zTNZqr+X7JX/7yFzw8PLjlllsoKioiISGB9957z77e09OTBQsW8MADDxAXF0dAQABjx47lxRdftLeJjY1l4cKFPPLII7z11lu0aNGCf/zjHxpjSi7JzT2b42EyMfXzzXy16QhWw+C13/ZQoBKpz87to/VLHeNLi2ynCB0C13HbWFsV93npUFpoO9JVcUqxurwDKoevwHDbUBCWaLCU3weGg4dnzd+3VEu9OzLlrnRkSs63cOtxpnz2E2VWg5t6RPPG73rg5VmvJh0QkdpSfKb8lOHJ8vvMs6cQ7bfzll3M+FseXuWnFptDcHPHoBXc3LY8IFyTUqMjUyJubVj3KDw9YPKcn5i/5RhWw+DN23oqUIkImP1tt5BqXgVuGLb5ECuFrJOQmw45R2xHvbKP2jrRW0ttVzJmH4bDF9imh5etD5c9bJWHrKAI2+CnFTefQKe97YZKR6acREem5EK+35HGpDmbKCkzuKFbJG+N7oW3ApWI1JayUlugyjlm6ziffbT88XmBy7BWb3veAbbThoER59xHVF4W0KxeTu/jjN9vhSknUZiSX/K/nek8OHsTxWVWErpE8M7tvTF7KVCJiIucG7iyj5wNXjlHbcNG5KXb7ovzLm67fmGVg5Z/2NkO9P5NIKD8sW+IW5xmVJhyIwpT8muW787gvk+SKS6z8pvOEbx7hwKViLi5ojzIz3AMWBXT+py7LD/j4vp0gW0Uer+wcwLWeVcu+pd3+Ldf2djUdmrUyRSm3IjClFTHipQMJn6STHGplSEdw3l3TG98vXXFjYjUc1YrFJwuD1cVQSvNdl9wGvJPOnamL7rE+Wyje8PE5U4tXWHKjShMSXX9sPcE9368kaJSK52iLLw9uiftIoJcXZaISN0pLbZNUG0PWSfPdqw/P3hVLLOW2AZZHfutU0tRmHIjClNyMdbsP8nkOT+RmV+Mj5cHTw/rxP8NaKUJkkVEqmIYUJRrG8crsJlTN+2M32912BBxgYFtmrJk6iAGt29GUamVZ77ZwfiPN3Iyr8jVpYmIuB+TCXwtTg9SzqIwJeIi4UG+fHT35Tw3vDNmLw+W7c5g6JurWJ6S4erSRETkIihMibiQh4eJcVfEMn/yFXSICOJkXjHjPtzA8/N3UFhS5uryRESkGhSmRNxAx0gL30y+grsHtgbgozUHuPmvq9mddolXvIiISJ1RmBJxE77enjx/Uxc+HHc5TQN9SEnP5aa/ruZfP6Ziteo6ERERd6UwJeJmrukQzpKpgxjSMZziUisvLtjJ3R9tICOn0NWliYhIFRSmRNxQ00Af/jG2L38c0RUfLw9W7TnB0Ld+IHFnuqtLExGR8yhMibgpk8nEnQNasXDKlXSKspCZX8yEf2/kqbnbKChW53QREXehMCXi5tqGBzFv0kAmDIoFYPa6Q9z4zg9sP5rt4spERAQUpkTqBR8vT54a1pn/jO9PeJAP+0/kM/K91Xywar86p4uIuJjClEg9cmW7pnw3dTAJXSIoKTN4edFu/u+f60jLVud0ERFXUZgSqWdCA8zM+r8+vDKqG37enqzZf4qEN1exYOsxNNWmiEjdU5gSqYdMJhOj+7Vk4ZQr6dY8mOyCEibP+YnbPljL5sNZri5PRKRRUZgSqccuaxbIVw8MZMq1bfHx8mB9aiYj3l3NpDmbOHgq39XliYg0CiZD5wWcIicnh+DgYLKzs7FYLK4uRxqhY1kFvP79Hr7+6QiGAd6eJv5vQCseurYdYQFmV5cnIuKWnPH7rTDlJApT4i52HsvhlSW7WbXnBABBvl48eHVbxl3RGl9vTxdXJyLiXhSm3IjClLibH/ae4OVFu9l13DZZcnSwL49e14ERvZrj6WFycXUiIu5BYcqNKEyJO7JaDeZtPspr36VwrHz4hE5RFp68viOD2zdzcXUiIq6nMOVGFKbEnRWWlPHRmgO8u3wfuYWlAAxq15Qnr+9E52j9exWRxkthyo0oTEl9cDq/mHeW7eOTtQcoKTMwmWBkr+Y8dl0HokP8XF2eiEidU5hyIwpTUp8cOnWGV79P4dstxwAwe3lwzxWxPHB1G4L9vF1cnYhI3VGYciMKU1IfbT6cxcuLdrE+NROAUH9vHrq2Hf83oBVmLw1DJyINn8KUG1GYkvrKMAyW7c5gxuLd7MvIA6BlmD9ThrTj5p7ReHsqVIlIw6Uw5UYUpqS+Ky2z8mXyEd5I3MOJ3CLANpzChMGXcdvlMfibvVxcoYiI8ylMuRGFKWkozhSX8vGag/zzx1RO5tlCVai/N3cPjOWuuFaEajR1EWlAFKbciMKUNDSFJWV8tekIf1v5M4cyzwDg5+3J7f1acu+gWF39JyINgjN+v92+M8SMGTO4/PLLCQoKIjw8nBEjRpCSkuLQprCwkEmTJtGkSRMCAwO55ZZbSE9Pd2hz6NAhhg0bhr+/P+Hh4Tz++OOUlpY6tFmxYgW9e/fGx8eHtm3b8tFHH9X22xNxW77enozp34plj17FO7f3onOUhYKSMv61OpXBM5fz2Jdb2JeR6+oyRURczu3D1MqVK5k0aRJr164lMTGRkpISrrvuOvLz8+1tHnnkEb799lu+/PJLVq5cybFjxxg1apR9fVlZGcOGDaO4uJg1a9bw8ccf89FHH/Hss8/a26SmpjJs2DCuueYaNm/ezNSpU7n33nv57rvv6vT9irgbL08PhveIZuGUK/n4nn4MuCyMUqvBf5OPEP/GKib+eyM/HTrt6jJFRFym3p3mO3HiBOHh4axcuZLBgweTnZ1Ns2bNmDNnDrfeeisAu3fvplOnTiQlJTFgwAAWL17MjTfeyLFjx4iIiABg1qxZTJ8+nRMnTmA2m5k+fToLFy5k+/bt9n2NHj2arKwslixZUqmOoqIiioqK7M9zcnKIiYnRaT5pFDYdOs2sFfv5fufZI8ADLgvjgavbMrhdU0wmzf0nIvVDozjNd77s7GwAwsLCAEhOTqakpIT4+Hh7m44dO9KyZUuSkpIASEpKolu3bvYgBZCQkEBOTg47duywtzl3GxVtKrZxvhkzZhAcHGy/xcTEOO9Niri53i1D+eCuvvxv2mB+26cFXh4m1v6cydh/rWfY2z/y7ZZjlFnr1f+niYhcsnoVpqxWK1OnTuWKK66ga9euAKSlpWE2mwkJCXFoGxERQVpamr3NuUGqYn3Ful9qk5OTQ0FBQaVannzySbKzs+23w4cPO+U9itQnbcODePW3PVj1+2sYf2Us/mZPdh7P4aFPf+La11cwe91BCkvKXF2miEitqlcDx0yaNInt27fz448/uroUfHx88PHxcXUZIm4hOsSPZ27szORr2vLvpIN8tCaVg6fO8NTc7fwlcS/jrmjNrX1aEGHxdXWpIiJOV2+OTE2ePJkFCxawfPlyWrRoYV8eGRlJcXExWVlZDu3T09OJjIy0tzn/6r6K57/WxmKx4OenS8BFqiM0wMzD8e1Y/cS1PDe8M9HBvpzMK+LV71IYMGMpY/6xli82HiansMTVpYqIOI3bhynDMJg8eTJz585l2bJlxMbGOqzv06cP3t7eLF261L4sJSWFQ4cOERcXB0BcXBzbtm0jIyPD3iYxMRGLxULnzp3tbc7dRkWbim2ISPX5m70Yd0UsK39/Da//tgd9W4ViGLB63yl+/9+t9H3pfzw4O5nvdqRRVKrTgCJSv7n91XwPPvggc+bM4ZtvvqFDhw725cHBwfYjRg888ACLFi3io48+wmKx8NBDDwGwZs0awDY0Qs+ePYmOjmbmzJmkpaVx5513cu+99/Lyyy8DtqERunbtyqRJk7jnnntYtmwZU6ZMYeHChSQkJPxqnRq0U+SXHc48wzebjzJv8zH7HIAAwX7e3NAtihE9o7m8dRgeHroSUETqTqMYAf1Cl1h/+OGH3H333YBt0M5HH32UTz/9lKKiIhISEnjvvffsp/AADh48yAMPPMCKFSsICAhg7NixvPLKK3h5ne02tmLFCh555BF27txJixYteOaZZ+z7+DUKUyLVYxgGO47l8M3mo8zfcoz0nLNDjDQP8WN4j2hG9mpOh8ggF1YpIo1FowhT9YXClMjFK7MarP35FPN+OsqS7WnkFp2dlaBjZBAjejXnph7RmrpGRGqNwpQbUZgSqZnCkjKW7c5g3k9HWZ6SQUmZ7T9NJhP0ax3GyF7Nub5bFMF+3i6uVEQaEoUpN6IwJeI8WWeKWbQtjXmbj7I+NdO+3OzpwTUdm3FDtyiubNuUJoEankREakZhyo0oTInUjqNZBczffIxvNh9ld5rjxMpdoi0MateMwe2a0qd1KD5eni6qUkTqK4UpN6IwJVL7dh3PYf6WY6xMOcHO4zkO63y9Pegf24RB7ZoyuH0z2oUHao5AEflVClNuRGFKpG6dyC1i9b6TrNp7gh/2nuREbpHD+giLD1e2bcbg9k25om1TmuqUoIhUQWHKjShMibiOYRikpOfy496TrNp7knU/n6Ko1OrQpuKU4KB2TenTKhRfb50SFBGFKbeiMCXiPgpLyth44DQ/lB+1+qVTgoPa2U4JarBQkcZJYcqNKEyJuK9fOyUYYPakS3QwXZsH062FhW7Ng4ltGoinApZIg6cw5UYUpkTqh/NPCa5PPUVhibVSO3+zJ52jLLaA1TyYbi2CadNMAUukoVGYciMKUyL1U2mZlf0n8tl2NJvtR7PZdjSbncdyKCipPAGzn7cnnaNtR666RFvo1iKYts0C8fJ0+znjReQCFKbciMKUSMNRZjX4+UQe28rD1faj2ew4lsOZ4soBy9fbg05RtoDVtXkwXaODaRMeoDGvROoJhSk3ojAl0rCVWQ1ST+ax/WiOPWTtOJpNfhUBy8vDRJtmgXSMCqJjpIWOUUF0jrIQHuSjsa9E3IzClBtRmBJpfKxWg9RT+Ww/7xRhTmFple1D/b3t4apT+X37iCAN0yDiQgpTbkRhSkTA1sH9eHYhu9Ny2HU8l91puew6nsPPJ/KwVvFfWw8TtG4aYAtXkUF0irKFrOYhfjqKJVIHFKbciMKUiPySwpIy9mXkset4DrvTcu1hKzO/uMr2QT5edIgMonXTAJqH+NE81I8W5fdRwX6YvdTpXcQZFKbciMKUiFwswzA4kVdkO4JVHrJ2Hc9h/4k8Ssou/J9mkwkignxpHupnD1rNQ/xoEWq7NQ/xx8+sU4ci1aEw5UYUpkTEWYpLrfx8Mo+UtFwOZ57haFYBR04XcPR0AUezCipNlVOVsACzLWhVHNU6J3i1CPHH4uel04giOOf328vJNYmISA2ZvTxsHdUjK/+H3TAMTuYVczSrIlydsYesisCVW1RKZn4xmfnFbDuaXeU+An28HI5qNXcIW340DfTRFDsi1aQwJSJSj5hMJpoF+dAsyIeeMSFVtskuKLEHrKOnbUe2zg1bp/KLySsqJSU9l5T03Cq3YfbyOHtkq4rQFRXsq8FKRcopTImINDDBft4E+3nTObrqUxYFxWX2gHX+0a2jpwtIyymkuNRK6sl8Uk/mV7kNDxOEB/kSEexLpMWHSIsv4RZfIi2+RAb7ElF+H+ijnxlp+PSvXESkkfEze9I2PJC24YFVri8ps5KWXWg7knVu4Cp/fCyrkOIyK2k5haTlFLLlF/YVYPYsD1y2W0SwLxFBPg6Bq1mgj45ySb2mMCUiIg68PT2ICfMnJsy/yvVWq8HJvCKOZ9vCVHpOIWnljzNyimzLsgvJLSolv7iMn0/k8/OJqo9wge3qxKaBPjQJMNMk0ExYQPnjADNhgeX3AT6ElS8L9vNWfy5xKwpTIiJyUTw8TISXn9br8Qvt8otK7WHLFriK7MErPdcWuDJyiyi1GpzILeJEblG19u/pYSLUvyJknRu4zOWBzIdQfzOhAd6E+JkJ8ffWKPNSqxSmRESkVgT4eNGmWSBtmlV9OhHKj3LlF5GRU8Sp/GIy84s4lVdse1xxn19EZr7tcW5hKWXlR8ZO5lUvfIFtQuqKYBXi702ov+1xsJ+Z0PJlIf5mQvxs96H+3gT7e2vCaqkWhSkREXEZDw8T4UG+hAf5Vqt9UWkZp/NLOFUesDLzizmVV35fHsQy84vJPFNM9pkSsgpKKLMaFJZYSSuxnYq8GP5mT0L8vAn2NxPs50WIn+00Y7C/t72jf8i5j8vXB/l66VRkI6IwJSIi9YaPlyeRwZ5EBlcvfBmGQW5RKdlnSjh9ppis8oCVVf749Dmhq+Lx6TPFZBeUYDXgTHEZZ4rLOJZ9cSHMZAKLb+WwVXEL8vXG4udFkK8teFl8vbD4etuf+5s9NahqPaIwJSIiDZbJZMLi643F1/uCHeqrYrXaQljWmWJOnykhu6D8Vh60sgtKyCpfnlVQQs45ywpKyjAM7O0OZV583Z4eJoJ8vWw3n/LA5VcRvBzvA329CDB74Wf2JMDshb/P2Xt/b09dKVkHFKZERETO4+Fhsh9FatXk4l5bVFpG9nkB6/wAlltYSm5hCTmFFY8rntv6hJVZDdtRtDMlQEGN3ovZy4MAsyf+Zi8CfM7e+3mf89zsib+P7YiYr5cHPt6e+Hh54ONluzd7edie25ef99jLE29PU6M9mqYwJSIi4kQ+Xp6EB3lWux/YuQzDoKCkjNzCUnIKbOGqImTlFp4TwgrOLs8vKuVMcRn5xaWcKSrjTLFtSIoyq23q3eJSK8WlVk6fKXH2W3VgMoHZs3LQ8jN74uvliZ/ZE5/ye9+K5d4VNw/8yh/7lT/3dXhuuw/w8aRJoE+tvo9LoTAlIiLiJkwmE/5mL/zNXkRYLj6MVTAMg+IyK2eKykNWed+vM+Vjf50pLiW/PHidG8Tyi0spKg9fRaVWikrKbPelVopKyygqOedxebuz+8TelsJSZ3wclfRoEcw3k6+slW3XhMKUiIhIA2MymcpP0XkSGmCutf1UhDZb8DobsioeF5ZYKSwto7C4jMLSMgqKrRSWlFFQUkZR+X1hibX8vuJ29rmt3dnn/mb3jC3uWZWIiIi4vXNDG5d+IK3eUxf/87z77ru0bt0aX19f+vfvz/r1611dkoiIiLgxhalzfP7550ybNo3nnnuOTZs20aNHDxISEsjIyHB1aSIiIuKmFKbO8cYbbzBhwgTGjRtH586dmTVrFv7+/vzrX/9ydWkiIiLiphSmyhUXF5OcnEx8fLx9mYeHB/Hx8SQlJVVqX1RURE5OjsNNREREGh+FqXInT56krKyMiIgIh+URERGkpaVVaj9jxgyCg4Ptt5iYmLoqVURERNyIwtQlevLJJ8nOzrbfDh8+7OqSRERExAU0NEK5pk2b4unpSXp6usPy9PR0IiMjK7X38fHBx8f9RmEVERGRuqUjU+XMZjN9+vRh6dKl9mVWq5WlS5cSFxfnwspERETEnenI1DmmTZvG2LFj6du3L/369ePNN98kPz+fcePGubo0ERERcVMKU+e47bbbOHHiBM8++yxpaWn07NmTJUuWVOqULiIiIlLBZBiG4eoiGoKcnByCg4PJzs7GYrG4uhwRERGpBmf8fqvPlIiIiEgNKEyJiIiI1IDClIiIiEgNqAO6k1R0PdO0MiIiIvVHxe92TbqQK0w5SW5uLoCmlREREamHcnNzCQ4OvqTX6mo+J7FarRw7doygoCByc3OJiYnh8OHDurLPhXJycvQ9uAF9D+5B34N70PfgHs79Hip+t6Ojo/HwuLTeTzoy5SQeHh60aNECAJPJBIDFYtEfixvQ9+Ae9D24B30P7kHfg3uo+B4u9YhUBXVAFxEREakBhSkRERGRGlCYqgU+Pj4899xz+Pj4uLqURk3fg3vQ9+Ae9D24B30P7sHZ34M6oIuIiIjUgI5MiYiIiNSAwpSIiIhIDShMiYiIiNSAwpSIiIhIDShM1YJ3332X1q1b4+vrS//+/Vm/fr2rS2pUnn/+eUwmk8OtY8eOri6rwVu1ahXDhw8nOjoak8nEvHnzHNYbhsGzzz5LVFQUfn5+xMfHs3fvXtcU24D92vdw9913V/r7GDp0qGuKbcBmzJjB5ZdfTlBQEOHh4YwYMYKUlBSHNoWFhUyaNIkmTZoQGBjILbfcQnp6uosqbpiq8z1cffXVlf4m7r///ovaj8KUk33++edMmzaN5557jk2bNtGjRw8SEhLIyMhwdWmNSpcuXTh+/Lj99uOPP7q6pAYvPz+fHj168O6771a5fubMmbz99tvMmjWLdevWERAQQEJCAoWFhXVcacP2a98DwNChQx3+Pj799NM6rLBxWLlyJZMmTWLt2rUkJiZSUlLCddddR35+vr3NI488wrfffsuXX37JypUrOXbsGKNGjXJh1Q1Pdb4HgAkTJjj8TcycOfPidmSIU/Xr18+YNGmS/XlZWZkRHR1tzJgxw4VVNS7PPfec0aNHD1eX0agBxty5c+3PrVarERkZabz66qv2ZVlZWYaPj4/x6aefuqDCxuH878EwDGPs2LHGzTff7JJ6GrOMjAwDMFauXGkYhu3fv7e3t/Hll1/a2+zatcsAjKSkJFeV2eCd/z0YhmFcddVVxsMPP1yj7erIlBMVFxeTnJxMfHy8fZmHhwfx8fEkJSW5sLLGZ+/evURHR3PZZZcxZswYDh065OqSGrXU1FTS0tIc/jaCg4Pp37+//jZcYMWKFYSHh9OhQwceeOABTp065eqSGrzs7GwAwsLCAEhOTqakpMThb6Jjx460bNlSfxO16PzvocLs2bNp2rQpXbt25cknn+TMmTMXtV1NdOxEJ0+epKysjIiICIflERER7N6920VVNT79+/fno48+okOHDhw/fpwXXniBQYMGsX37doKCglxdXqOUlpYGUOXfRsU6qRtDhw5l1KhRxMbGsn//fv7whz9w/fXXk5SUhKenp6vLa5CsVitTp07liiuuoGvXroDtb8JsNhMSEuLQVn8Ttaeq7wHgjjvuoFWrVkRHR7N161amT59OSkoKX3/9dbW3rTAlDc71119vf9y9e3f69+9Pq1at+OKLLxg/frwLKxNxvdGjR9sfd+vWje7du9OmTRtWrFjBkCFDXFhZwzVp0iS2b9+uvpsudqHvYeLEifbH3bp1IyoqiiFDhrB//37atGlTrW3rNJ8TNW3aFE9Pz0pXY6SnpxMZGemiqiQkJIT27duzb98+V5fSaFX8+9ffhvu57LLLaNq0qf4+asnkyZNZsGABy5cvp0WLFvblkZGRFBcXk5WV5dBefxO140LfQ1X69+8PcFF/EwpTTmQ2m+nTpw9Lly61L7NarSxdupS4uDgXVta45eXlsX//fqKiolxdSqMVGxtLZGSkw99GTk4O69at09+Gix05coRTp07p78PJDMNg8uTJzJ07l2XLlhEbG+uwvk+fPnh7ezv8TaSkpHDo0CH9TTjRr30PVdm8eTPARf1N6DSfk02bNo2xY8fSt29f+vXrx5tvvkl+fj7jxo1zdWmNxmOPPcbw4cNp1aoVx44d47nnnsPT05Pbb7/d1aU1aHl5eQ7/J5eamsrmzZsJCwujZcuWTJ06lZdeeol27doRGxvLM888Q3R0NCNGjHBd0Q3QL30PYWFhvPDCC9xyyy1ERkayf/9+fv/739O2bVsSEhJcWHXDM2nSJObMmcM333xDUFCQvR9UcHAwfn5+BAcHM378eKZNm0ZYWBgWi4WHHnqIuLg4BgwY4OLqG45f+x7279/PnDlzuOGGG2jSpAlbt27lkUceYfDgwXTv3r36O6rRtYBSpXfeecdo2bKlYTabjX79+hlr1651dUmNym233WZERUUZZrPZaN68uXHbbbcZ+/btc3VZDd7y5csNoNJt7NixhmHYhkd45plnjIiICMPHx8cYMmSIkZKS4tqiG6Bf+h7OnDljXHfddUazZs0Mb29vo1WrVsaECROMtLQ0V5fd4FT1HQDGhx9+aG9TUFBgPPjgg0ZoaKjh7+9vjBw50jh+/Ljrim6Afu17OHTokDF48GAjLCzM8PHxMdq2bWs8/vjjRnZ29kXtx1S+MxERERG5BOozJSIiIlIDClMiIiIiNaAwJSIiIlIDClMiIiIiNaAwJSIiIlIDClMiIiIiNaAwJSIiIlIDClMiIiIiNaAwJSLyCw4cOIDJZLLP11WVFStWYDKZKk1a6ywfffQRISEhtbJtEak5hSkRqRN33303JpOp0m3o0KGuLs3t3XbbbezZs8fVZYjIBWiiYxGpM0OHDuXDDz90WObj4+OiauoPPz8//Pz8XF2GiFyAjkyJSJ3x8fEhMjLS4RYaGmpfbzKZ+Mc//sHIkSPx9/enXbt2zJ8/377+9OnTjBkzhmbNmuHn50e7du0cwtnhw4f53e9+R0hICGFhYdx8880cOHDAvv7uu+9mxIgRvPzyy0RERBASEsKLL75IaWkpjz/+OGFhYbRo0aJS4APYvXs3AwcOxNfXl65du7Jy5cpffK8//vgjgwYNws/Pj5iYGKZMmUJ+fv4F22/ZsoVrrrmGoKAgLBYLffr0YePGjUDl03ytW7eu8ihfdT8HEXEuhSkRcSsvvPACv/vd79i6dSs33HADY8aMITMzE4BnnnmGnTt3snjxYnbt2sX7779P06ZNASgpKSEhIYGgoCB++OEHVq9eTWBgIEOHDqW4uNi+/WXLlnHs2DFWrVrFG2+8wXPPPceNN95IaGgo69at4/777+e+++7jyJEjDnU9/vjjPProo/z000/ExcUxfPhwTp06VeV72L9/P0OHDuWWW25h69atfP755/z4449Mnjz5gu97zJgxtGjRgg0bNpCcnMwTTzyBt7d3lW03bNjA8ePHOX78OEeOHGHAgAEMGjTooj4HEXEiQ0SkDowdO9bw9PQ0AgICHG5/+tOf7G0A4+mnn7Y/z8vLMwBj8eLFhmEYxvDhw41x48ZVuf1PPvnE6NChg2G1Wu3LioqKDD8/P+O7776z19CqVSujrKzM3qZDhw7GoEGD7M9LS0uNgIAA49NPPzUMwzBSU1MNwHjllVfsbUpKSowWLVoYf/7znw3DMIzly5cbgHH69GnDMAxj/PjxxsSJEx3q++GHHwwPDw+joKCgyvqDgoKMjz76qMp1H374oREcHFzluilTphitWrUyMjIyqv05iIhzqc+UiNSZa665hvfff99hWVhYmMPz7t272x8HBARgsVjIyMgA4IEHHuCWW25h06ZNXHfddYwYMYKBAwcCttNk+/btIygoyGF7hYWF7N+/3/68S5cueHicPSgfERFB165d7c89PT1p0qSJfZ8V4uLi7I+9vLzo27cvu3btqvJ9btmyha1btzJ79mz7MsMwsFqtpKam0qlTp0qvmTZtGvfeey+ffPIJ8fHx/Pa3v6VNmzZVbr/CBx98wD//+U/WrFlDs2bNLupzEBHnUZgSkToTEBBA27Ztf7HN+ae2TCYTVqsVgOuvv56DBw+yaNEiEhMTGTJkCJMmTeK1114jLy+PPn36OASYChVB40Lb/6V9Xoq8vDzuu+8+pkyZUmldy5Ytq3zN888/zx133MHChQtZvHgxzz33HJ999hkjR46ssv3y5ct56KGH+PTTTx0CaHU/BxFxHoUpEalXmjVrxtixYxk7diyDBg3i8ccf57XXXqN37958/vnnhIeHY7FYnL7ftWvXMnjwYABKS0tJTk6+YB+o3r17s3Pnzl8Njudr37497du355FHHuH222/nww8/rDJM7du3j1tvvZU//OEPjBo1qtK+a/NzEJHK1AFdROpMUVERaWlpDreTJ09W+/XPPvss33zzDfv27WPHjh0sWLDAfspszJgxNG3alJtvvpkffviB1NRUVqxYwZQpUyp1Jr8U7777LnPnzmX37t1MmjSJ06dPc88991TZdvr06axZs4bJkyezefNm9u7dyzfffHPB8FVQUMDkyZNZsWIFBw8eZPXq1WzYsKHK04EFBQUMHz6cXr16MXHiRIfPsi4+BxGpTEemRKTOLFmyhKioKIdlHTp0YPfu3dV6vdls5sknn+TAgQP4+fkxaNAgPvvsMwD8/f1ZtWoV06dPZ9SoUeTm5tK8eXOGDBnilCM0r7zyCq+88gqbN2+mbdu2zJ8/334l4fm6d+/OypUreeqppxg0aBCGYdCmTRtuu+22Ktt7enpy6tQp7rrrLtLT02natCmjRo3ihRdeqNQ2PT2d3bt3s3v3bqKjox3WGYZR65+DiFRmMgzDcHURIiIiIvWVTvOJiIiI1IDClIiIiEgNKEyJiIiI1IDClIiIiEgNKEyJiIiI1IDClIiIiEgNKEyJiIiI1IDClIiIiEgNKEyJiIiI1IDClIiIiEgNKEyJiIiI1MD/Axao4IP7A+K7AAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "plt.plot(range(1, len(train_loss_log)+1), train_loss_log, label='train')\n", + "plt.plot(range(1, len(val_loss_log)+1), val_loss_log, label='val')\n", + "plt.xlabel('Ensemble size')\n", + "plt.ylabel('Error')\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "9535cb6d", + "metadata": { + "id": "9535cb6d" + }, + "source": [ + "Great job! Please, submit your solution to the grading system!" ] - }, - "metadata": {}, - "output_type": "display_data" } - ], - "source": [ - "plt.plot(range(1, len(train_loss_log)+1), train_loss_log, label='train')\n", - "plt.plot(range(1, len(val_loss_log)+1), val_loss_log, label='val')\n", - "plt.xlabel('Ensemble size')\n", - "plt.ylabel('Error')\n", - "plt.legend()" - ] - }, - { - "cell_type": "markdown", - "id": "9535cb6d", - "metadata": {}, - "source": [ - "Great job! Please, submit your solution to the grading system!" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Py3 Research", - "language": "python", - "name": "py3_research" + ], + "metadata": { + "kernelspec": { + "display_name": "Py3 Research", + "language": "python", + "name": "py3_research" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.16" + }, + "colab": { + "provenance": [] + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "ccc272cfe2b644a2abf40f34522a3530": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3c046e27190047a6b5b7f001b28f1d30", + "IPY_MODEL_bb962f2b5e7d4baaa151c926f5264831", + "IPY_MODEL_543842ab52224ec183575f625a6cbf74" + ], + "layout": "IPY_MODEL_b93e917bb4d34e85aa18a6f25fee9cb9" + } + }, + "3c046e27190047a6b5b7f001b28f1d30": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_842aff424243442b853b42a1ce73e8d7", + "placeholder": "​", + "style": "IPY_MODEL_20f3c0ea2d07472da8d983ce0cc34407", + "value": "100%" + } + }, + "bb962f2b5e7d4baaa151c926f5264831": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_56e1f3a609f6488c932fcd9f33be3e8d", + "max": 10, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_44cc7294fcff4a6da2621841d2c6658f", + "value": 10 + } + }, + "543842ab52224ec183575f625a6cbf74": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_26f88ecbb828492f9b9612e4e4877238", + "placeholder": "​", + "style": "IPY_MODEL_04848b262fb343fcb72d69a742529cf1", + "value": " 10/10 [00:06<00:00, 1.69it/s]" + } + }, + "b93e917bb4d34e85aa18a6f25fee9cb9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "842aff424243442b853b42a1ce73e8d7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "20f3c0ea2d07472da8d983ce0cc34407": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "56e1f3a609f6488c932fcd9f33be3e8d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "44cc7294fcff4a6da2621841d2c6658f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "26f88ecbb828492f9b9612e4e4877238": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "04848b262fb343fcb72d69a742529cf1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b3530edbd5674466b5b7d082bdc7cdd2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_eb3477abbdc24c12848bed0c5a5dad2c", + "IPY_MODEL_8ddf309177d340cb840bffac9dfb942d", + "IPY_MODEL_b5bc0f097a3b4ebdba9d65a8bba3e036" + ], + "layout": "IPY_MODEL_be3a414de1c24384b9e9689f218d8ddb" + } + }, + "eb3477abbdc24c12848bed0c5a5dad2c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_22542e51cba74ef599c194fe847c1e68", + "placeholder": "​", + "style": "IPY_MODEL_a4ec3aca5af94348b9dc69c9cf69c4e1", + "value": "100%" + } + }, + "8ddf309177d340cb840bffac9dfb942d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b6d8a371b6e44a60ab8d29de1060f772", + "max": 10, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_a6e51873136a4cd291174896272860b2", + "value": 10 + } + }, + "b5bc0f097a3b4ebdba9d65a8bba3e036": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b6754f1a18994fca92d7f256c3f0f973", + "placeholder": "​", + "style": "IPY_MODEL_1838fdff596947fea7857f56aebffd17", + "value": " 10/10 [00:00<00:00, 63.91it/s]" + } + }, + "be3a414de1c24384b9e9689f218d8ddb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "22542e51cba74ef599c194fe847c1e68": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a4ec3aca5af94348b9dc69c9cf69c4e1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b6d8a371b6e44a60ab8d29de1060f772": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a6e51873136a4cd291174896272860b2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b6754f1a18994fca92d7f256c3f0f973": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1838fdff596947fea7857f56aebffd17": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "913bac61b19b42d585e4a33b1c628e64": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8bb5e0b4bdcf4ceb92828c99867fccb3", + "IPY_MODEL_688d8fcb70af47358f04b858f35d7125", + "IPY_MODEL_68ce59e96b8b4c98882fd9f9639b92a3" + ], + "layout": "IPY_MODEL_a4bddfb6364d4d0d93a0c789102a1f6b" + } + }, + "8bb5e0b4bdcf4ceb92828c99867fccb3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7a39bf9a721e45d0a1d268d5cac843aa", + "placeholder": "​", + "style": "IPY_MODEL_fea1f2628767411a80d5b97cab896b72", + "value": "100%" + } + }, + "688d8fcb70af47358f04b858f35d7125": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_58b47ebe35aa4fb1a0ebcb4628133ee9", + "max": 10, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e9bc8bfc9fa0407fac33e0caa4641912", + "value": 10 + } + }, + "68ce59e96b8b4c98882fd9f9639b92a3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_acbd7b7d08744f66a599d69c5b1b4e12", + "placeholder": "​", + "style": "IPY_MODEL_f72ee5fb30c246d59837fe55fc34c287", + "value": " 10/10 [00:16<00:00, 1.62s/it]" + } + }, + "a4bddfb6364d4d0d93a0c789102a1f6b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7a39bf9a721e45d0a1d268d5cac843aa": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fea1f2628767411a80d5b97cab896b72": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "58b47ebe35aa4fb1a0ebcb4628133ee9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e9bc8bfc9fa0407fac33e0caa4641912": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "acbd7b7d08744f66a599d69c5b1b4e12": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f72ee5fb30c246d59837fe55fc34c287": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.16" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} + "nbformat": 4, + "nbformat_minor": 5 +} \ No newline at end of file diff --git a/homeworks/hw06_boosting/boosting.py b/homeworks/hw06_boosting/boosting.py index 96efe942b..6858d2167 100644 --- a/homeworks/hw06_boosting/boosting.py +++ b/homeworks/hw06_boosting/boosting.py @@ -14,7 +14,7 @@ def loss(targets, predictions): @staticmethod def loss_gradients(targets, predictions): - gradients = # YOUR CODE HERE + gradients = targets - predictions assert gradients.shape == targets.shape return gradients @@ -40,11 +40,11 @@ def fit(self, model_constructor, data, targets, num_steps=10, lr=0.1, max_depth= except TypeError: print('max_depth keyword is not found. Ignoring') model = model_constructor() - self.models_list.append(model.fit(data, new_targets)) + self.models_list.append(model.fit(data, lr * new_targets)) predictions = self.predict(data) self.loss_log.append(self.loss(targets, predictions)) gradients = self.loss_gradients(targets, predictions) - new_targets = # YOUR CODE HERE + new_targets = gradients if verbose: print('Finished! Loss=', self.loss_log[-1]) return self @@ -52,6 +52,5 @@ def fit(self, model_constructor, data, targets, num_steps=10, lr=0.1, max_depth= def predict(self, data): predictions = np.zeros(len(data)) for model in self.models_list: - predictions += # YOUR CODE HERE - return predictions - + predictions += model.predict(data) + return predictions \ No newline at end of file diff --git a/homeworks/lab01_ml_pipeline/lab01_part1_questions.ipynb b/homeworks/lab01_ml_pipeline/lab01_part1_questions.ipynb index dafa7766f..00673fb85 100644 --- a/homeworks/lab01_ml_pipeline/lab01_part1_questions.ipynb +++ b/homeworks/lab01_ml_pipeline/lab01_part1_questions.ipynb @@ -1,343 +1,405 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "*Credits: materials from this notebook belong to YSDA [Practical DL](https://github.com/yandexdataschool/Practical_DL) course. Special thanks for making them available online.*" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Lab assignment №1, part 1\n", - "\n", - "This lab assignment consists of several parts. You are supposed to make some transformations, train some models, estimate the quality of the models and explain your results.\n", - "\n", - "Several comments:\n", - "* Don't hesitate to ask questions, it's a good practice.\n", - "* No private/public sharing, please. The copied assignments will be graded with 0 points.\n", - "* Blocks of this lab will be graded separately." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 1. Matrix differentiation" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Since it easy to google every task please please please try to undestand what's going on. The \"just answer\" thing will be not counted, make sure to present derivation of your solution. It is absolutely OK if you found an answer on web then just exercise in $\\LaTeX$ copying it into here." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Useful links: \n", - "[1](http://www.machinelearning.ru/wiki/images/2/2a/Matrix-Gauss.pdf)\n", - "[2](http://www.atmos.washington.edu/~dennis/MatrixCalculus.pdf)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## ex. 1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$$ \n", - "y = x^Tx, \\quad x \\in \\mathbb{R}^N \n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$$\n", - "\\frac{dy}{dx} = \n", - "$$ " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "WxG0eA8FGzfx" + }, + "source": [ + "*Credits: materials from this notebook belong to YSDA [Practical DL](https://github.com/yandexdataschool/Practical_DL) course. Special thanks for making them available online.*" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "s5gZLwISGzf4" + }, + "source": [ + "# Lab assignment №1, part 1\n", + "\n", + "This lab assignment consists of several parts. You are supposed to make some transformations, train some models, estimate the quality of the models and explain your results.\n", + "\n", + "Several comments:\n", + "* Don't hesitate to ask questions, it's a good practice.\n", + "* No private/public sharing, please. The copied assignments will be graded with 0 points.\n", + "* Blocks of this lab will be graded separately." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "iQSoQM2aGzf7" + }, + "source": [ + "## 1. Matrix differentiation" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hxOTCtp1Gzf8" + }, + "source": [ + "Since it easy to google every task please please please try to undestand what's going on. The \"just answer\" thing will be not counted, make sure to present derivation of your solution. It is absolutely OK if you found an answer on web then just exercise in $\\LaTeX$ copying it into here." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "G-hp0J0fGzf9" + }, + "source": [ + "Useful links:\n", + "[1](http://www.machinelearning.ru/wiki/images/2/2a/Matrix-Gauss.pdf)\n", + "[2](http://www.atmos.washington.edu/~dennis/MatrixCalculus.pdf)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "TUz2coBZGzf-" + }, + "source": [ + "## ex. 1" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Spp0_3V0Gzf_" + }, + "source": [ + "$$ \n", + "y = x^Tx, \\quad x \\in \\mathbb{R}^N\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "VF18Rs9HGzf_" + }, + "source": [ + "$$\n", + "dy = d \\langle x, x \\rangle = 2 \\langle x, dx \\rangle \\Rightarrow \\frac{dy}{dx} = \\nabla_x y = 2x\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YWWXyDjyGzgD" + }, + "source": [ + "## ex. 2" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lKQT5TReGzgD" + }, + "source": [ + "$$ y = tr(AB) \\quad A,B \\in \\mathbb{R}^{N \\times N} $$" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "cjgqGTi1GzgE" + }, + "source": [ + "$$\n", + "tr(AB) = tr(BA) \\Rightarrow dy = d \\langle B^T, A \\rangle = \\langle B^T, dA \\rangle \\Rightarrow \\frac{dy}{dA} = \\nabla_A y = B^T\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ROwrXS9PGzgF" + }, + "source": [ + "## ex. 3" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9V2_LC6lGzgG" + }, + "source": [ + "$$ \n", + "y = x^TAc , \\quad A\\in \\mathbb{R}^{N \\times N}, x\\in \\mathbb{R}^{N}, c\\in \\mathbb{R}^{N}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Zieu8fgCGzgH" + }, + "source": [ + "$$\n", + "dy = d \\langle x, Ac \\rangle = d \\langle x c^T, A \\rangle \\Rightarrow \\frac{dy}{dA} = \\nabla_A y = x c^T\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Vqe3rXT2GzgH" + }, + "source": [ + "Hint for the latter (one of the ways): use *ex. 2* result and the fact\n", + "$$\n", + "tr(ABC) = tr (CAB)\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1e_uA9zEGzgI" + }, + "source": [ + "## ex. 4" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "h2xKnxnYGzgI" + }, + "source": [ + "Classic matrix factorization example. Given matrix $X$ you need to find $A$, $S$ to approximate $X$. This can be done by simple gradient descent iteratively alternating $A$ and $S$ updates.\n", + "$$\n", + "J = || X - AS ||_F^2 , \\quad A\\in \\mathbb{R}^{N \\times R} , \\quad S\\in \\mathbb{R}^{R \\times M}\n", + "$$\n", + "$$\n", + " dJ = d [(X - AS)^T (X - AS)] = dtr[(X - AS)^T (X - AS)] = dtr[X^T X - X^T AS - S^T A^T X + S^T A^T AS] = d[tr X^TX - tr XAS - tr S^T A^T X + tr S^T A^T AS] = -d (tr S X^T A) - d(tr S X^T A) + d\\langle AS, AS \\rangle = \\langle -2 A^T X , dS \\rangle + 2 \\langle AS, d(AS) \\rangle = \\langle -2 A^T X, dS \\rangle + 2 \\langle AS, AdS \\rangle = \\langle -2 A^T X + 2 A^T A S, dS \\rangle\n", + "$$\n", + "\n", + "$$\n", + "\\Rightarrow \\frac{dJ}{dS} = -2 A^T X + 2 A^T A S = 2 A^T (AS - X)\n", + "$$\n", + "\n", + "You may use one of the following approaches:" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "COpaCjcmGzgJ" + }, + "source": [ + "#### First approach\n", + "Using ex.2 and the fact:\n", + "$$\n", + "|| X ||_F^2 = tr(XX^T)\n", + "$$\n", + "it is easy to derive gradients (you can find it in one of the refs)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CxAheEXzGzgJ" + }, + "source": [ + "#### Second approach\n", + "You can use *slightly different techniques* if they suits you. Take a look at this derivation:\n", + "\n", + "(excerpt from [Handbook of blind source separation, Jutten, page 517](https://books.google.ru/books?id=PTbj03bYH6kC&printsec=frontcover&dq=Handbook+of+Blind+Source+Separation&hl=en&sa=X&ved=0ahUKEwi-q_apiJDLAhULvXIKHVXJDWcQ6AEIHDAA#v=onepage&q=Handbook%20of%20Blind%20Source%20Separation&f=false), open for better picture)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "brpohQB0GzgK" + }, + "source": [ + "#### Third approach\n", + "And finally we can use chain rule!\n", + "let $ F = AS $\n", + "\n", + "\n", + "$$\n", + "J = || X - F ||_F^2\n", + "$$\n", + "\n", + "**Find**\n", + "$$\n", + "dJ = d \\langle X - F, X - F \\rangle = 2 \\langle X - F, d(X - F) \\rangle = -2 \\langle X - F, dF \\rangle \\Rightarrow \\frac{dJ}{dF} = 2(F - X)\n", + "$$\n", + "and\n", + "$$\n", + "\\frac{dF}{dS} =\n", + "$$\n", + "(the shape should be $ NM \\times RM )$.\n", + "\n", + "Now it is easy do get desired gradients:\n", + "$$\n", + "\\frac{dJ}{dS} = \n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, + "id": "fG8i5fijGzgL" + }, + "source": [ + "## 2. kNN questions\n", + "Here come the questions from the assignment0_01. Please, refer to the assignment0_01 to get the context of the questions." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4e9sbsKxGzgL" + }, + "source": [ + "### Question 1\n", + "\n", + "Notice the structured patterns in the distance matrix, where some rows or columns are visible brighter. (Note that with the default color scheme black indicates low distances while white indicates high distances.)\n", + "\n", + "- What in the data is the cause behind the distinctly bright rows?\n", + "- What causes the columns?\n", + "\n", + "*Your Answer:*\n", + "\n", + "- Too light lines mean that the test sample object is located at a large distance from the training objects. In fact, such test objects can be called outliers. The distance between objects means how similar they are to each other. Thus, the bright lines correspond to pictures that are very different from the pictures in the training set.\n", + "- The bright columns are explained in a similar way, but the distant object is the image of the training sample.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hD556c4UGzgM" + }, + "source": [ + "### Question 2\n", + "\n", + "We can also use other distance metrics such as L1 distance.\n", + "For pixel values $p_{ij}^{(k)}$ at location $(i,j)$ of some image $I_k$,\n", + "\n", + "the mean $\\mu$ across all pixels over all images is $$\\mu=\\frac{1}{nhw}\\sum_{k=1}^n\\sum_{i=1}^{h}\\sum_{j=1}^{w}p_{ij}^{(k)}$$\n", + "And the pixel-wise mean $\\mu_{ij}$ across all images is\n", + "$$\\mu_{ij}=\\frac{1}{n}\\sum_{k=1}^np_{ij}^{(k)}.$$\n", + "The general standard deviation $\\sigma$ and pixel-wise standard deviation $\\sigma_{ij}$ is defined similarly.\n", + "\n", + "Which of the following preprocessing steps will not change the performance of a Nearest Neighbor classifier that uses L1 distance? Select all that apply.\n", + "1. Subtracting the mean $\\mu$ ($\\tilde{p}_{ij}^{(k)}=p_{ij}^{(k)}-\\mu$.)\n", + "2. Subtracting the per pixel mean $\\mu_{ij}$ ($\\tilde{p}_{ij}^{(k)}=p_{ij}^{(k)}-\\mu_{ij}$.)\n", + "3. Subtracting the mean $\\mu$ and dividing by the standard deviation $\\sigma$.\n", + "4. Subtracting the pixel-wise mean $\\mu_{ij}$ and dividing by the pixel-wise standard deviation $\\sigma_{ij}$.\n", + "5. Rotating the coordinate axes of the data.\n", + "\n", + "*Your Answer:*\n", + "\n", + "1. **Will not affect**\n", + "$$\n", + " \\tilde{D} = \\sum_{i=1}^h \\sum_{j=1}^w | \\tilde{p}_{ij}^{(k_1)} - \\tilde{p}_{ij}^{(k_2)} | = \\sum_{i=1}^h \\sum_{j=1}^w | (p_{ij}^{(k_1)} - \\mu) - (p_{ij}^{(k_2)} - \\mu) | = \\sum_{i=1}^h \\sum_{j=1}^w | p_{ij}^{(k_1)} - p_{ij}^{(k_2)}| = D\n", + "$$\n", + "\n", + "2. **Will not affect**\n", + "$$\n", + " \\tilde{D} = \\sum_{i=1}^h \\sum_{j=1}^w | \\tilde{p}_{ij}^{(k_1)} - \\tilde{p}_{ij}^{(k_2)} | = \\sum_{i=1}^h \\sum_{j=1}^w | (p_{ij}^{(k_1)} - \\mu_{ij}) - (p_{ij}^{(k_2)} - \\mu_{ij}) | = \\sum_{i=1}^h \\sum_{j=1}^w | p_{ij}^{(k_1)} - p_{ij}^{(k_2)}| = D\n", + "$$\n", + "\n", + "3. **Will not affect**\n", + "$$\n", + " \\tilde{D} = \\sum_{i=1}^h \\sum_{j=1}^w | \\tilde{p}_{ij}^{(k_1)} - \\tilde{p}_{ij}^{(k_2)} | = \\sum_{i=1}^h \\sum_{j=1}^w | \\frac{p_{ij}^{(k_1)} - \\mu}{\\sigma} - \\frac{p_{ij}^{(k_2)} - \\mu}{\\sigma} | = \\frac{1}{\\sigma} \\sum_{i=1}^h \\sum_{j=1}^w | p_{ij}^{(k_1)} - p_{ij}^{(k_2)}| = \\frac{D}{\\sigma}\n", + "$$\n", + "\n", + " Thus, the relative order will be preserved.\n", + "\n", + "4. **Will affect**\n", + "$$\n", + " \\tilde{D} = \\sum_{i=1}^h \\sum_{j=1}^w | \\tilde{p}_{ij}^{(k_1)} - \\tilde{p}_{ij}^{(k_2)} | = \\sum_{i=1}^h \\sum_{j=1}^w | \\frac{p_{ij}^{(k_1)} - \\mu_{ij}}{\\sigma_{ij}} - \\frac{p_{ij}^{(k_2)} - \\mu_{ij}}{\\sigma_{ij}} | = \\sum_{i=1}^h \\sum_{j=1}^w \\frac{1}{\\sigma_{ij}} | p_{ij}^{(k_1)} - p_{ij}^{(k_2)}|\n", + "$$\n", + "\n", + " Suppose, $$h = 1$$ and $$w = 2$$ Let $$pic_{1} = (0, 0), pic_{2} = (100, 1), pic_{3} = (50, 5)$$ Obviously, $$ D_{1, 2} > D_{1, 3} $$\n", + "\n", + " $$ \\mu_{0, 0} = \\frac{0 + 50 + 100}{3} = 50, \\sigma_{0, 0} = \\sqrt{\\frac{0^2 + 50^2 + 100^2}{3} - \\mu_{0, 0}^2} \\approx 40.8 $$\n", + "\n", + " $$ \\mu_{0, 1} = \\frac{0 + 1 + 5}{3} = 2, \\sigma_{0, 1} = \\sqrt{\\frac{0^2 + 1^2 + 5^2}{3} - \\mu_{0, 1}^2} \\approx 2.1 $$\n", + "\n", + " Thus,\n", + " $$ \\tilde{D_{1, 2}} \\approx \\frac{100}{40} + \\frac{1}{2} = 3 $$\n", + " $$ \\tilde{D_{1, 3}} \\approx \\frac{50}{40} + \\frac{5}{2} = 3.75 $$\n", + " $$ \\Rightarrow \\tilde{D_{1, 3}} > \\tilde{D_{1, 2}} $$\n", + "\n", + " Thus, the relative distances change.\n", + "\n", + "5. **Will affect**\n", + "\n", + " Suppose, $$h = 1$$ and $$w = 2$$ Let $$pic_{1} = (0, 0), pic_{2} = (\\frac{1}{\\sqrt{2}}, \\frac{1}{\\sqrt{2}}), pic_{3} = (0, 1)$$ Therefore, $$ D_{1, 2} = \\frac{2}{\\sqrt{2}} > D_{1, 3} = 1 $$\n", + "\n", + " $$ After rotating the base by 45 degrees: $$\n", + " $$ D_{1, 2} = 1 < D_{1, 3} = \\frac{2}{\\sqrt{2}}$$\n", + "\n", + " Thus, the relative distances change after the basis is rotated." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yAgl-wDHGzgM" + }, + "source": [ + "## Question 3\n", + "\n", + "Which of the following statements about $k$-Nearest Neighbor ($k$-NN) are true in a classification setting, and for all $k$? Select all that apply.\n", + "1. The decision boundary (hyperplane between classes in feature space) of the k-NN classifier is linear.\n", + "2. The training error of a 1-NN will always be lower than that of 5-NN.\n", + "3. The test error of a 1-NN will always be lower than that of a 5-NN.\n", + "4. The time needed to classify a test example with the k-NN classifier grows with the size of the training set.\n", + "5. None of the above.\n", + "\n", + "*Your Answer:*\n", + "1. **False**\n", + "\n", + " \"The decision boundaries of kNN are locally linear segments, but in general have a complex shape that is not equivalent to a line in 2D or a hyperplane in higher dimensions.\" Feature space is divided by Voronoi diagram cells.\n", + "2. **True**\n", + " \n", + " The test error of a 1-NN will always **less or equal** than that of 5-NN, because the nearest neighbor of object from train sample is this object itself. So the test error of a 1-NN will be always equal to zero.\n", + "3. **False**\n", + "\n", + " Consider a regular pentagon, the vertices belong to class A. Let the center of this pentagon be a vertex of class B. Then in 1-NN the vertices will be identified as from class B. In the case of 5-NN, the vertices are identified correctly. Thus, the error when using 5-NN will be less.\n", + "4. **True**\n", + "\n", + " Yes, the classification time increases, since to search for nearest neighbors it is necessary to calculate the distance to each object in the training sample, and even select the closest ones.\n" + ] } - }, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## ex. 2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$$ y = tr(AB) \\quad A,B \\in \\mathbb{R}^{N \\times N} $$ " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$$\n", - "\\frac{dy}{dA} =\n", - "$$" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true + ], + "metadata": { + "kernelspec": { + "display_name": "mipt", + "language": "python", + "name": "mipt" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.5" + }, + "colab": { + "provenance": [] } - }, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## ex. 3" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$$ \n", - "y = x^TAc , \\quad A\\in \\mathbb{R}^{N \\times N}, x\\in \\mathbb{R}^{N}, c\\in \\mathbb{R}^{N} \n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$$\n", - "\\frac{dy}{dx} =\n", - "$$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$$\n", - "\\frac{dy}{dA} =\n", - "$$ " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Hint for the latter (one of the ways): use *ex. 2* result and the fact \n", - "$$\n", - "tr(ABC) = tr (CAB)\n", - "$$" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## ex. 4" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Classic matrix factorization example. Given matrix $X$ you need to find $A$, $S$ to approximate $X$. This can be done by simple gradient descent iteratively alternating $A$ and $S$ updates.\n", - "$$\n", - "J = || X - AS ||_F^2 , \\quad A\\in \\mathbb{R}^{N \\times R} , \\quad S\\in \\mathbb{R}^{R \\times M}\n", - "$$\n", - "$$\n", - "\\frac{dJ}{dS} = ? \n", - "$$\n", - "\n", - "You may use one of the following approaches:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### First approach\n", - "Using ex.2 and the fact:\n", - "$$\n", - "|| X ||_F^2 = tr(XX^T) \n", - "$$ \n", - "it is easy to derive gradients (you can find it in one of the refs). " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Second approach\n", - "You can use *slightly different techniques* if they suits you. Take a look at this derivation:\n", - "\n", - "(excerpt from [Handbook of blind source separation, Jutten, page 517](https://books.google.ru/books?id=PTbj03bYH6kC&printsec=frontcover&dq=Handbook+of+Blind+Source+Separation&hl=en&sa=X&ved=0ahUKEwi-q_apiJDLAhULvXIKHVXJDWcQ6AEIHDAA#v=onepage&q=Handbook%20of%20Blind%20Source%20Separation&f=false), open for better picture)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Third approach\n", - "And finally we can use chain rule! \n", - "let $ F = AS $ \n", - "\n", - "**Find**\n", - "$$\n", - "\\frac{dJ}{dF} = \n", - "$$ \n", - "and \n", - "$$\n", - "\\frac{dF}{dS} = \n", - "$$ \n", - "(the shape should be $ NM \\times RM )$.\n", - "\n", - "Now it is easy do get desired gradients:\n", - "$$\n", - "\\frac{dJ}{dS} = \n", - "$$ " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - } - }, - "source": [ - "## 2. kNN questions\n", - "Here come the questions from the assignment0_01. Please, refer to the assignment0_01 to get the context of the questions." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 1\n", - "\n", - "Notice the structured patterns in the distance matrix, where some rows or columns are visible brighter. (Note that with the default color scheme black indicates low distances while white indicates high distances.)\n", - "\n", - "- What in the data is the cause behind the distinctly bright rows?\n", - "- What causes the columns?\n", - "\n", - "*Your Answer:*\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 2\n", - "\n", - "We can also use other distance metrics such as L1 distance.\n", - "For pixel values $p_{ij}^{(k)}$ at location $(i,j)$ of some image $I_k$, \n", - "\n", - "the mean $\\mu$ across all pixels over all images is $$\\mu=\\frac{1}{nhw}\\sum_{k=1}^n\\sum_{i=1}^{h}\\sum_{j=1}^{w}p_{ij}^{(k)}$$\n", - "And the pixel-wise mean $\\mu_{ij}$ across all images is \n", - "$$\\mu_{ij}=\\frac{1}{n}\\sum_{k=1}^np_{ij}^{(k)}.$$\n", - "The general standard deviation $\\sigma$ and pixel-wise standard deviation $\\sigma_{ij}$ is defined similarly.\n", - "\n", - "Which of the following preprocessing steps will not change the performance of a Nearest Neighbor classifier that uses L1 distance? Select all that apply.\n", - "1. Subtracting the mean $\\mu$ ($\\tilde{p}_{ij}^{(k)}=p_{ij}^{(k)}-\\mu$.)\n", - "2. Subtracting the per pixel mean $\\mu_{ij}$ ($\\tilde{p}_{ij}^{(k)}=p_{ij}^{(k)}-\\mu_{ij}$.)\n", - "3. Subtracting the mean $\\mu$ and dividing by the standard deviation $\\sigma$.\n", - "4. Subtracting the pixel-wise mean $\\mu_{ij}$ and dividing by the pixel-wise standard deviation $\\sigma_{ij}$.\n", - "5. Rotating the coordinate axes of the data.\n", - "\n", - "*Your Answer:*\n", - "\n", - "\n", - "*Your Explanation:*\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 3\n", - "\n", - "Which of the following statements about $k$-Nearest Neighbor ($k$-NN) are true in a classification setting, and for all $k$? Select all that apply.\n", - "1. The decision boundary (hyperplane between classes in feature space) of the k-NN classifier is linear.\n", - "2. The training error of a 1-NN will always be lower than that of 5-NN.\n", - "3. The test error of a 1-NN will always be lower than that of a 5-NN.\n", - "4. The time needed to classify a test example with the k-NN classifier grows with the size of the training set.\n", - "5. None of the above.\n", - "\n", - "*Your Answer:*\n", - "\n", - "\n", - "*Your Explanation:*\n", - "\n", - "\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "mipt", - "language": "python", - "name": "mipt" }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.5" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/homeworks/lab01_ml_pipeline/lab01_part2_ml_pipeline.ipynb b/homeworks/lab01_ml_pipeline/lab01_part2_ml_pipeline.ipynb index 931bada91..3297e6e40 100644 --- a/homeworks/lab01_ml_pipeline/lab01_part2_ml_pipeline.ipynb +++ b/homeworks/lab01_ml_pipeline/lab01_part2_ml_pipeline.ipynb @@ -1,1319 +1,8891 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "nbgrader": { - "grade": false, - "grade_id": "cell-86e0de040aac317a", - "locked": true, - "schema_version": 2, - "solution": false - } - }, - "source": [ - "# Lab assignment №1, part 2\n", - "\n", - "This lab assignment consists of several parts. You are supposed to make some transformations, train some models, estimate the quality of the models and explain your results.\n", - "\n", - "Several comments:\n", - "* Don't hesitate to ask questions, it's a good practice.\n", - "* No private/public sharing, please. The copied assignments will be graded with 0 points.\n", - "* Blocks of this lab will be graded separately." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "__*This is the second part of the assignment. First and third parts are waiting for you in the same directory.*__" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "nbgrader": { - "grade": false, - "grade_id": "cell-512ba712fc0fc065", - "locked": true, - "schema_version": 2, - "solution": false - } - }, - "source": [ - "## Part 2. Data preprocessing, model training and evaluation." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "nbgrader": { - "grade": false, - "grade_id": "cell-b656a4266174b009", - "locked": true, - "schema_version": 2, - "solution": false - } - }, - "source": [ - "### 1. Reading the data\n", - "Today we work with the [dataset](https://archive.ics.uci.edu/ml/datasets/Statlog+%28Vehicle+Silhouettes%29), describing different cars for multiclass ($k=4$) classification problem. The data is available below." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "# If on colab, uncomment the following lines\n", - "\n", - "# ! wget https://raw.githubusercontent.com/girafe-ai/ml-course/22f_made/homeworks/lab01_ml_pipeline/car_data.csv" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "nbgrader": { - "grade": false, - "grade_id": "cell-eebac6bfdf73d0bc", - "locked": true, - "schema_version": 2, - "solution": false - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(846, 19) (846,)\n", - "(549, 19) (549,) (297, 19) (297,)\n" - ] - } - ], - "source": [ - "import pandas as pd\n", - "import numpy as np\n", - "from sklearn.model_selection import train_test_split\n", - "\n", - "dataset = pd.read_csv('car_data.csv', delimiter=',', header=None).values\n", - "data = dataset[:, :-1].astype(int)\n", - "target = dataset[:, -1]\n", - "\n", - "print(data.shape, target.shape)\n", - "\n", - "X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.35)\n", - "print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "nbgrader": { - "grade": false, - "grade_id": "cell-88b1a0f688568f2c", - "locked": true, - "schema_version": 2, - "solution": false - } - }, - "source": [ - "To get some insights about the dataset, `pandas` might be used. The `train` part is transformed to `pd.DataFrame` below." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
0123456789101112131415161718
0293933663139578132501813615826012167327193201
145998429019261917837211441894801386138199208
2427863889176599169392013219042814867733193202
36819646701947061673920148183427171691710200203
4786107551032136811219302517222170921670107187197
571210545100195611019833231492145861866785192200
656211353931976211216312416522168819672625188199
7639108551052306811218302417122870921069144190197
81171095310922169122213125169226712212721328188201
9680954676162661116242201551753811727484184193
10243101551082286912215312416822968421471216188199
11594834059116537132521813714525015784126177183
1268710657107235676262262817128598726086931180184
13695924166125527139501814316027516181719182184
14796853863130557122551713013721914464208195201
\n", - "
" + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "nbgrader": { + "grade": false, + "grade_id": "cell-86e0de040aac317a", + "locked": true, + "schema_version": 2, + "solution": false + }, + "id": "UldYRY5YOcL1" + }, + "source": [ + "# Lab assignment №1, part 2\n", + "\n", + "This lab assignment consists of several parts. You are supposed to make some transformations, train some models, estimate the quality of the models and explain your results.\n", + "\n", + "Several comments:\n", + "* Don't hesitate to ask questions, it's a good practice.\n", + "* No private/public sharing, please. The copied assignments will be graded with 0 points.\n", + "* Blocks of this lab will be graded separately." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1OXfrgHnOcL5" + }, + "source": [ + "__*This is the second part of the assignment. First and third parts are waiting for you in the same directory.*__" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "nbgrader": { + "grade": false, + "grade_id": "cell-512ba712fc0fc065", + "locked": true, + "schema_version": 2, + "solution": false + }, + "id": "SyIk_T1ZOcL6" + }, + "source": [ + "## Part 2. Data preprocessing, model training and evaluation." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "nbgrader": { + "grade": false, + "grade_id": "cell-b656a4266174b009", + "locked": true, + "schema_version": 2, + "solution": false + }, + "id": "scLOBXv9OcL6" + }, + "source": [ + "### 1. Reading the data\n", + "Today we work with the [dataset](https://archive.ics.uci.edu/ml/datasets/Statlog+%28Vehicle+Silhouettes%29), describing different cars for multiclass ($k=4$) classification problem. The data is available below." + ] + }, + { + "cell_type": "code", + "execution_count": 160, + "metadata": { + "id": "BvqfyjLSOcL7", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "70ac3478-39da-47c1-cb39-3b9d604cdbb3" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "--2023-11-06 08:15:02-- https://raw.githubusercontent.com/girafe-ai/ml-course/22f_made/homeworks/lab01_ml_pipeline/car_data.csv\n", + "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.110.133, 185.199.109.133, ...\n", + "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 58374 (57K) [text/plain]\n", + "Saving to: ‘car_data.csv.3’\n", + "\n", + "\rcar_data.csv.3 0%[ ] 0 --.-KB/s \rcar_data.csv.3 100%[===================>] 57.01K --.-KB/s in 0.01s \n", + "\n", + "2023-11-06 08:15:02 (5.73 MB/s) - ‘car_data.csv.3’ saved [58374/58374]\n", + "\n" + ] + } ], - "text/plain": [ - " 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 \\\n", - "0 293 93 36 63 139 57 8 132 50 18 136 158 260 121 67 3 \n", - "1 459 98 42 90 192 61 9 178 37 21 144 189 480 138 61 3 \n", - "2 427 86 38 89 176 59 9 169 39 20 132 190 428 148 67 7 \n", - "3 681 96 46 70 194 70 6 167 39 20 148 183 427 171 69 17 \n", - "4 786 107 55 103 213 68 11 219 30 25 172 221 709 216 70 10 \n", - "5 712 105 45 100 195 61 10 198 33 23 149 214 586 186 67 8 \n", - "6 562 113 53 93 197 62 11 216 31 24 165 221 688 196 72 6 \n", - "7 639 108 55 105 230 68 11 218 30 24 171 228 709 210 69 14 \n", - "8 117 109 53 109 221 69 12 221 31 25 169 226 712 212 72 13 \n", - "9 680 95 46 76 162 66 11 162 42 20 155 175 381 172 74 8 \n", - "10 243 101 55 108 228 69 12 215 31 24 168 229 684 214 71 2 \n", - "11 594 83 40 59 116 53 7 132 52 18 137 145 250 157 84 12 \n", - "12 687 106 57 107 235 67 6 262 26 28 171 285 987 260 86 9 \n", - "13 695 92 41 66 125 52 7 139 50 18 143 160 275 161 81 7 \n", - "14 796 85 38 63 130 55 7 122 55 17 130 137 219 144 64 20 \n", - "\n", - " 16 17 18 \n", - "0 27 193 201 \n", - "1 8 199 208 \n", - "2 33 193 202 \n", - "3 10 200 203 \n", - "4 7 187 197 \n", - "5 5 192 200 \n", - "6 25 188 199 \n", - "7 4 190 197 \n", - "8 28 188 201 \n", - "9 4 184 193 \n", - "10 16 188 199 \n", - "11 6 177 183 \n", - "12 31 180 184 \n", - "13 19 182 184 \n", - "14 8 195 201 " + "source": [ + "# If on colab, uncomment the following lines\n", + "\n", + "!wget https://raw.githubusercontent.com/girafe-ai/ml-course/22f_made/homeworks/lab01_ml_pipeline/car_data.csv" ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X_train_pd = pd.DataFrame(X_train)\n", - "\n", - "# First 15 rows of our dataset.\n", - "X_train_pd.head(15)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "nbgrader": { - "grade": false, - "grade_id": "cell-98e7d91d77d65fcf", - "locked": true, - "schema_version": 2, - "solution": false - } - }, - "source": [ - "Methods `describe` and `info` deliver some useful information." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
0123456789101112131415161718
count549.000000549.000000549.000000549.000000549.000000549.000000549.000000549.000000549.000000549.000000549.000000549.000000549.000000549.000000549.000000549.000000549.000000549.000000549.000000
mean432.11475493.83970944.76502781.872495169.35883461.8178518.433515168.93442640.86520920.588342147.571949188.744991440.672131174.53916272.4499096.55737712.568306189.030965195.491803
std240.6665018.3357796.19080615.64740832.8348647.9714124.49144033.1631027.7906022.58891714.45180831.241299176.70119432.8458697.3081145.0060999.0108096.2007887.435024
min0.00000077.00000033.00000040.000000104.00000047.0000003.000000112.00000026.00000017.000000118.000000130.000000184.000000109.00000060.0000000.0000000.000000177.000000181.000000
25%225.00000087.00000040.00000070.000000142.00000057.0000006.000000147.00000034.00000019.000000136.000000167.000000319.000000149.00000067.0000002.0000005.000000184.000000190.000000
50%431.00000093.00000044.00000079.000000169.00000061.0000008.000000157.00000043.00000020.000000146.000000179.000000367.000000174.00000071.0000006.00000011.000000189.000000197.000000
75%644.000000100.00000049.00000096.000000195.00000065.00000010.000000195.00000046.00000022.000000159.000000216.000000575.000000198.00000075.00000010.00000019.000000193.000000201.000000
max845.000000119.00000059.000000112.000000322.000000133.00000052.000000265.00000061.00000029.000000186.000000287.0000001018.000000268.000000127.00000022.00000041.000000206.000000211.000000
\n", - "
" + }, + { + "cell_type": "code", + "execution_count": 161, + "metadata": { + "nbgrader": { + "grade": false, + "grade_id": "cell-eebac6bfdf73d0bc", + "locked": true, + "schema_version": 2, + "solution": false + }, + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "OD9S5KpUOcL9", + "outputId": "2944feca-68a1-44ac-ccc2-3168f6b2b837" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(846, 19) (846,)\n", + "(549, 19) (549,) (297, 19) (297,)\n" + ] + } ], - "text/plain": [ - " 0 1 2 3 4 5 \\\n", - "count 549.000000 549.000000 549.000000 549.000000 549.000000 549.000000 \n", - "mean 432.114754 93.839709 44.765027 81.872495 169.358834 61.817851 \n", - "std 240.666501 8.335779 6.190806 15.647408 32.834864 7.971412 \n", - "min 0.000000 77.000000 33.000000 40.000000 104.000000 47.000000 \n", - "25% 225.000000 87.000000 40.000000 70.000000 142.000000 57.000000 \n", - "50% 431.000000 93.000000 44.000000 79.000000 169.000000 61.000000 \n", - "75% 644.000000 100.000000 49.000000 96.000000 195.000000 65.000000 \n", - "max 845.000000 119.000000 59.000000 112.000000 322.000000 133.000000 \n", - "\n", - " 6 7 8 9 10 11 \\\n", - "count 549.000000 549.000000 549.000000 549.000000 549.000000 549.000000 \n", - "mean 8.433515 168.934426 40.865209 20.588342 147.571949 188.744991 \n", - "std 4.491440 33.163102 7.790602 2.588917 14.451808 31.241299 \n", - "min 3.000000 112.000000 26.000000 17.000000 118.000000 130.000000 \n", - "25% 6.000000 147.000000 34.000000 19.000000 136.000000 167.000000 \n", - "50% 8.000000 157.000000 43.000000 20.000000 146.000000 179.000000 \n", - "75% 10.000000 195.000000 46.000000 22.000000 159.000000 216.000000 \n", - "max 52.000000 265.000000 61.000000 29.000000 186.000000 287.000000 \n", - "\n", - " 12 13 14 15 16 \\\n", - "count 549.000000 549.000000 549.000000 549.000000 549.000000 \n", - "mean 440.672131 174.539162 72.449909 6.557377 12.568306 \n", - "std 176.701194 32.845869 7.308114 5.006099 9.010809 \n", - "min 184.000000 109.000000 60.000000 0.000000 0.000000 \n", - "25% 319.000000 149.000000 67.000000 2.000000 5.000000 \n", - "50% 367.000000 174.000000 71.000000 6.000000 11.000000 \n", - "75% 575.000000 198.000000 75.000000 10.000000 19.000000 \n", - "max 1018.000000 268.000000 127.000000 22.000000 41.000000 \n", - "\n", - " 17 18 \n", - "count 549.000000 549.000000 \n", - "mean 189.030965 195.491803 \n", - "std 6.200788 7.435024 \n", - "min 177.000000 181.000000 \n", - "25% 184.000000 190.000000 \n", - "50% 189.000000 197.000000 \n", - "75% 193.000000 201.000000 \n", - "max 206.000000 211.000000 " + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "dataset = pd.read_csv('car_data.csv', delimiter=',', header=None).values\n", + "data = dataset[:, :-1].astype(int)\n", + "target = dataset[:, -1]\n", + "\n", + "print(data.shape, target.shape)\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.35)\n", + "print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)" ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X_train_pd.describe()" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "RangeIndex: 549 entries, 0 to 548\n", - "Data columns (total 19 columns):\n", - " # Column Non-Null Count Dtype\n", - "--- ------ -------------- -----\n", - " 0 0 549 non-null int64\n", - " 1 1 549 non-null int64\n", - " 2 2 549 non-null int64\n", - " 3 3 549 non-null int64\n", - " 4 4 549 non-null int64\n", - " 5 5 549 non-null int64\n", - " 6 6 549 non-null int64\n", - " 7 7 549 non-null int64\n", - " 8 8 549 non-null int64\n", - " 9 9 549 non-null int64\n", - " 10 10 549 non-null int64\n", - " 11 11 549 non-null int64\n", - " 12 12 549 non-null int64\n", - " 13 13 549 non-null int64\n", - " 14 14 549 non-null int64\n", - " 15 15 549 non-null int64\n", - " 16 16 549 non-null int64\n", - " 17 17 549 non-null int64\n", - " 18 18 549 non-null int64\n", - "dtypes: int64(19)\n", - "memory usage: 81.6 KB\n" - ] - } - ], - "source": [ - "X_train_pd.info()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "nbgrader": { - "grade": false, - "grade_id": "cell-be844269be69c387", - "locked": true, - "schema_version": 2, - "solution": false - } - }, - "source": [ - "### 2. Machine Learning pipeline\n", - "Here you are supposed to perform the desired transformations. Please, explain your results briefly after each task." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### 2.0. Data preprocessing\n", - "* Make some transformations of the dataset (if necessary). Briefly explain the transformations" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "nbgrader": { - "grade": true, - "grade_id": "cell-a1514aa189a49fca", - "locked": false, - "points": 15, - "schema_version": 2, - "solution": true - } - }, - "outputs": [], - "source": [ - "### YOUR CODE HERE" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### 2.1. Basic logistic regression\n", - "* Find optimal hyperparameters for logistic regression with cross-validation on the `train` data (small grid/random search is enough, no need to find the *best* parameters).\n", - "\n", - "* Estimate the model quality with `f1` and `accuracy` scores.\n", - "* Plot a ROC-curve for the trained model. For the multiclass case you might use `scikitplot` library (e.g. `scikitplot.metrics.plot_roc(test_labels, predicted_proba)`).\n", - "\n", - "*Note: please, use the following hyperparameters for logistic regression: `multi_class='multinomial'`, `solver='saga'` `tol=1e-3` and ` max_iter=500`.*" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "nbgrader": { - "grade": true, - "grade_id": "cell-1dd5ad5d0845cbbb", - "locked": false, - "points": 5, - "schema_version": 2, - "solution": true - } - }, - "outputs": [], - "source": [ - "### YOUR CODE HERE" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# You might use this command to install scikit-plot. \n", - "# Warning, if you a running locally, don't call pip from within jupyter, call it from terminal in the corresponding \n", - "# virtual environment instead\n", - "\n", - "# ! pip install scikit-plot" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### 2.2. PCA: explained variance plot\n", - "* Apply the PCA to the train part of the data. Build the explaided variance plot. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "nbgrader": { - "grade": true, - "grade_id": "cell-c6c614740bce090e", - "locked": false, - "points": 10, - "schema_version": 2, - "solution": true - } - }, - "outputs": [], - "source": [ - "### YOUR CODE HERE" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "nbgrader": { - "grade": false, - "grade_id": "cell-0c1fe666f52fe53c", - "locked": true, - "schema_version": 2, - "solution": false - } - }, - "source": [ - "#### 2.3. PCA trasformation\n", - "* Select the appropriate number of components. Briefly explain your choice. Should you normalize the data?\n", - "\n", - "*Use `fit` and `transform` methods to transform the `train` and `test` parts.*" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "nbgrader": { - "grade": true, - "grade_id": "cell-96ab18d96473ef71", - "locked": false, - "points": 5, - "schema_version": 2, - "solution": true - } - }, - "outputs": [], - "source": [ - "### YOUR CODE HERE" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Note: From this point `sklearn` [Pipeline](https://scikit-learn.org/stable/modules/compose.html) might be useful to perform transformations on the data. Refer to the [docs](https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html) for more information.**" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "nbgrader": { - "grade": false, - "grade_id": "cell-d28b58a35c94e988", - "locked": true, - "schema_version": 2, - "solution": false - } - }, - "source": [ - "#### 2.4. Logistic regression on PCA-preprocessed data.\n", - "* Find optimal hyperparameters for logistic regression with cross-validation on the transformed by PCA `train` data.\n", - "\n", - "* Estimate the model quality with `f1` and `accuracy` scores.\n", - "* Plot a ROC-curve for the trained model. For the multiclass case you might use `scikitplot` library (e.g. `scikitplot.metrics.plot_roc(test_labels, predicted_proba)`).\n", - "\n", - "*Note: please, use the following hyperparameters for logistic regression: `multi_class='multinomial'`, `solver='saga'` and `tol=1e-3`*" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "nbgrader": { - "grade": true, - "grade_id": "cell-12d53ea45258fa82", - "locked": false, - "points": 5, - "schema_version": 2, - "solution": true - } - }, - "outputs": [], - "source": [ - "### YOUR CODE HERE" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "nbgrader": { - "grade": false, - "grade_id": "cell-4fbf16c64076e139", - "locked": true, - "schema_version": 2, - "solution": false - } - }, - "source": [ - "#### 2.5. Decision tree\n", - "* Now train a desicion tree on the same data. Find optimal tree depth (`max_depth`) using cross-validation.\n", - "\n", - "* Measure the model quality using the same metrics you used above." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "nbgrader": { - "grade": true, - "grade_id": "cell-748ed20b51c67fab", - "locked": false, - "points": 15, - "schema_version": 2, - "solution": true - } - }, - "outputs": [], - "source": [ - "from sklearn.tree import DecisionTreeClassifier\n", - "\n", - "# YOUR CODE HERE" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "nbgrader": { - "grade": false, - "grade_id": "cell-9eadd4d8a03ae67a", - "locked": true, - "schema_version": 2, - "solution": false - } - }, - "source": [ - "#### 2.6. Bagging.\n", - "Here starts the ensembling part.\n", - "\n", - "First we will use the __Bagging__ approach. Build an ensemble of $N$ algorithms varying N from $N_{min}=2$ to $N_{max}=100$ (with step 5).\n", - "\n", - "We will build two ensembles: of logistic regressions and of decision trees.\n", - "\n", - "*Comment: each ensemble should be constructed from models of the same family, so logistic regressions should not be mixed up with decision trees.*\n", - "\n", - "\n", - "*Hint 1: To build a __Bagging__ ensebmle varying the ensemble size efficiently you might generate $N_{max}$ subsets of `train` data (of the same size as the original dataset) using bootstrap procedure once. Then you train a new instance of logistic regression/decision tree with optimal hyperparameters you estimated before on each subset (so you train it from scratch). Finally, to get an ensemble of $N$ models you average the $N$ out of $N_{max}$ models predictions.*\n", - "\n", - "*Hint 2: sklearn might help you with this taks. Some appropriate function/class might be out there.*\n", - "\n", - "* Plot `f1` and `accuracy` scores plots w.r.t. the size of the ensemble.\n", - "\n", - "* Briefly analyse the plot. What is the optimal number of algorithms? Explain your answer.\n", - "\n", - "* How do you think, are the hyperparameters for the decision trees you found in 2.5 optimal for trees used in ensemble? " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "nbgrader": { - "grade": true, - "grade_id": "cell-8fc95a2b206bdae1", - "locked": false, - "points": 35, - "schema_version": 2, - "solution": true - } - }, - "outputs": [], - "source": [ - "# YOUR CODE HERE" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": { - "nbgrader": { - "grade": false, - "grade_id": "cell-241b7691ab44cbfb", - "locked": true, - "schema_version": 2, - "solution": false - } - }, - "source": [ - "#### 2.7. Random Forest\n", - "Now we will work with the Random Forest (its `sklearn` implementation).\n", - "\n", - "* * Plot `f1` and `accuracy` scores plots w.r.t. the number of trees in Random Forest.\n", - "\n", - "* What is the optimal number of trees you've got? Is it different from the optimal number of logistic regressions/decision trees in 2.6? Explain the results briefly." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "nbgrader": { - "grade": true, - "grade_id": "cell-888755d0f3d91620", - "locked": false, - "points": 15, - "schema_version": 2, - "solution": true - } - }, - "outputs": [], - "source": [ - "from sklearn.ensemble import RandomForestClassifier\n", - "\n", - "# YOUR CODE HERE" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "nbgrader": { - "grade": false, - "grade_id": "cell-99191c0852538d4d", - "locked": true, - "schema_version": 2, - "solution": false + }, + { + "cell_type": "markdown", + "metadata": { + "nbgrader": { + "grade": false, + "grade_id": "cell-88b1a0f688568f2c", + "locked": true, + "schema_version": 2, + "solution": false + }, + "id": "MUO_bPlYOcL-" + }, + "source": [ + "To get some insights about the dataset, `pandas` might be used. The `train` part is transformed to `pd.DataFrame` below." + ] + }, + { + "cell_type": "code", + "execution_count": 162, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 519 + }, + "id": "voysjwv-OcL-", + "outputId": "03773456-e543-4ef3-de70-93cbff661084" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 \\\n", + "0 55 94 36 66 151 61 8 133 50 18 135 154 265 119 62 9 \n", + "1 211 86 37 69 150 63 8 138 48 18 134 163 284 124 71 1 \n", + "2 391 91 38 70 160 66 25 140 47 18 139 162 296 130 67 4 \n", + "3 338 97 45 91 161 63 10 151 45 19 148 166 334 171 65 18 \n", + "4 514 89 38 74 138 59 7 136 49 18 133 167 278 128 72 7 \n", + "5 464 100 49 80 206 70 6 183 35 21 156 206 517 198 73 3 \n", + "6 616 92 42 69 153 58 8 140 48 18 138 165 290 151 64 10 \n", + "7 763 102 52 98 225 71 10 214 31 24 164 228 682 199 71 0 \n", + "8 87 86 37 60 115 54 5 119 56 17 132 141 209 129 72 2 \n", + "9 576 109 53 103 210 63 11 219 30 25 172 229 707 212 71 6 \n", + "10 57 89 47 84 133 55 11 157 44 20 160 169 354 176 74 5 \n", + "11 752 100 36 73 199 73 6 162 40 20 127 189 401 125 72 6 \n", + "12 185 100 41 75 205 71 5 176 36 21 138 204 479 151 72 7 \n", + "13 639 108 55 105 230 68 11 218 30 24 171 228 709 210 69 14 \n", + "14 332 99 57 109 220 66 11 221 30 25 176 234 725 236 70 10 \n", + "\n", + " 16 17 18 \n", + "0 3 201 208 \n", + "1 6 189 195 \n", + "2 11 192 202 \n", + "3 20 197 205 \n", + "4 7 189 193 \n", + "5 13 198 199 \n", + "6 21 199 206 \n", + "7 16 187 196 \n", + "8 8 186 190 \n", + "9 3 188 199 \n", + "10 9 182 192 \n", + "11 19 200 204 \n", + "12 19 197 197 \n", + "13 4 190 197 \n", + "14 25 188 200 " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0123456789101112131415161718
05594366615161813350181351542651196293201208
121186376915063813848181341632841247116189195
23919138701606625140471813916229613067411192202
333897459116163101514519148166334171651820197205
451489387413859713649181331672781287277189193
54641004980206706183352115620651719873313198199
66169242691535881404818138165290151641021199206
776310252982257110214312416422868219971016187196
88786376011554511956171321412091297228186190
957610953103210631121930251722297072127163188199
1057894784133551115744201601693541767459182192
117521003673199736162402012718940112572619200204
121851004175205715176362113820447915172719197197
13639108551052306811218302417122870921069144190197
14332995710922066112213025176234725236701025188200
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "
\n", + "
\n" + ] + }, + "metadata": {}, + "execution_count": 162 + } + ], + "source": [ + "X_train_pd = pd.DataFrame(X_train)\n", + "\n", + "# First 15 rows of our dataset.\n", + "X_train_pd.head(15)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "nbgrader": { + "grade": false, + "grade_id": "cell-98e7d91d77d65fcf", + "locked": true, + "schema_version": 2, + "solution": false + }, + "id": "hnX4AM_WOcL_" + }, + "source": [ + "Methods `describe` and `info` deliver some useful information." + ] + }, + { + "cell_type": "code", + "execution_count": 163, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 320 + }, + "id": "dKNO-kbiOcL_", + "outputId": "3f094598-615c-49d7-e6ca-c24020e066d1" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " 0 1 2 3 4 5 \\\n", + "count 549.000000 549.000000 549.000000 549.000000 549.000000 549.000000 \n", + "mean 412.240437 93.777778 44.899818 82.111111 168.865209 61.810565 \n", + "std 244.505856 8.209049 6.210053 15.748492 32.601946 6.935614 \n", + "min 0.000000 73.000000 33.000000 42.000000 104.000000 47.000000 \n", + "25% 200.000000 87.000000 40.000000 70.000000 141.000000 57.000000 \n", + "50% 406.000000 93.000000 44.000000 80.000000 167.000000 62.000000 \n", + "75% 624.000000 100.000000 50.000000 98.000000 197.000000 66.000000 \n", + "max 844.000000 119.000000 59.000000 112.000000 252.000000 126.000000 \n", + "\n", + " 6 7 8 9 10 11 \\\n", + "count 549.000000 549.000000 549.000000 549.000000 549.000000 549.000000 \n", + "mean 8.502732 169.029144 40.852459 20.597450 148.127505 188.406193 \n", + "std 4.313712 32.883935 7.698119 2.554528 14.710657 30.612972 \n", + "min 3.000000 114.000000 26.000000 17.000000 118.000000 131.000000 \n", + "25% 7.000000 147.000000 33.000000 19.000000 137.000000 168.000000 \n", + "50% 8.000000 157.000000 43.000000 20.000000 146.000000 178.000000 \n", + "75% 10.000000 199.000000 46.000000 23.000000 160.000000 217.000000 \n", + "max 55.000000 265.000000 59.000000 29.000000 186.000000 288.000000 \n", + "\n", + " 12 13 14 15 16 \\\n", + "count 549.000000 549.000000 549.000000 549.000000 549.000000 \n", + "mean 440.429872 174.834244 72.566485 6.167577 12.468124 \n", + "std 175.155002 32.899591 7.092304 4.992071 8.952500 \n", + "min 191.000000 109.000000 59.000000 0.000000 0.000000 \n", + "25% 321.000000 149.000000 68.000000 2.000000 5.000000 \n", + "50% 363.000000 173.000000 72.000000 5.000000 11.000000 \n", + "75% 595.000000 197.000000 75.000000 9.000000 19.000000 \n", + "max 1018.000000 268.000000 127.000000 22.000000 41.000000 \n", + "\n", + " 17 18 \n", + "count 549.000000 549.000000 \n", + "mean 188.754098 195.493625 \n", + "std 6.182711 7.433799 \n", + "min 176.000000 181.000000 \n", + "25% 184.000000 190.000000 \n", + "50% 188.000000 196.000000 \n", + "75% 193.000000 201.000000 \n", + "max 206.000000 211.000000 " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0123456789101112131415161718
count549.000000549.000000549.000000549.000000549.000000549.000000549.000000549.000000549.000000549.000000549.000000549.000000549.000000549.000000549.000000549.000000549.000000549.000000549.000000
mean412.24043793.77777844.89981882.111111168.86520961.8105658.502732169.02914440.85245920.597450148.127505188.406193440.429872174.83424472.5664856.16757712.468124188.754098195.493625
std244.5058568.2090496.21005315.74849232.6019466.9356144.31371232.8839357.6981192.55452814.71065730.612972175.15500232.8995917.0923044.9920718.9525006.1827117.433799
min0.00000073.00000033.00000042.000000104.00000047.0000003.000000114.00000026.00000017.000000118.000000131.000000191.000000109.00000059.0000000.0000000.000000176.000000181.000000
25%200.00000087.00000040.00000070.000000141.00000057.0000007.000000147.00000033.00000019.000000137.000000168.000000321.000000149.00000068.0000002.0000005.000000184.000000190.000000
50%406.00000093.00000044.00000080.000000167.00000062.0000008.000000157.00000043.00000020.000000146.000000178.000000363.000000173.00000072.0000005.00000011.000000188.000000196.000000
75%624.000000100.00000050.00000098.000000197.00000066.00000010.000000199.00000046.00000023.000000160.000000217.000000595.000000197.00000075.0000009.00000019.000000193.000000201.000000
max844.000000119.00000059.000000112.000000252.000000126.00000055.000000265.00000059.00000029.000000186.000000288.0000001018.000000268.000000127.00000022.00000041.000000206.000000211.000000
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "
\n", + "
\n" + ] + }, + "metadata": {}, + "execution_count": 163 + } + ], + "source": [ + "X_train_pd.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 164, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "g33JLtBROcMA", + "outputId": "da5c1181-d13d-43ef-e956-81ffcdfb171b" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "RangeIndex: 549 entries, 0 to 548\n", + "Data columns (total 19 columns):\n", + " # Column Non-Null Count Dtype\n", + "--- ------ -------------- -----\n", + " 0 0 549 non-null int64\n", + " 1 1 549 non-null int64\n", + " 2 2 549 non-null int64\n", + " 3 3 549 non-null int64\n", + " 4 4 549 non-null int64\n", + " 5 5 549 non-null int64\n", + " 6 6 549 non-null int64\n", + " 7 7 549 non-null int64\n", + " 8 8 549 non-null int64\n", + " 9 9 549 non-null int64\n", + " 10 10 549 non-null int64\n", + " 11 11 549 non-null int64\n", + " 12 12 549 non-null int64\n", + " 13 13 549 non-null int64\n", + " 14 14 549 non-null int64\n", + " 15 15 549 non-null int64\n", + " 16 16 549 non-null int64\n", + " 17 17 549 non-null int64\n", + " 18 18 549 non-null int64\n", + "dtypes: int64(19)\n", + "memory usage: 81.6 KB\n" + ] + } + ], + "source": [ + "X_train_pd.info()" + ] + }, + { + "cell_type": "markdown", + "source": [ + "Let's get rid of duplicates:" + ], + "metadata": { + "id": "TNvwK1_fWKRb" + } + }, + { + "cell_type": "code", + "source": [ + "len(X_train_pd)-len(X_train_pd.drop_duplicates())" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ArIvkBpnWBYM", + "outputId": "9d0aff40-86b5-4e07-bb3e-7a6db18f57ab" + }, + "execution_count": 165, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0" + ] + }, + "metadata": {}, + "execution_count": 165 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "nbgrader": { + "grade": false, + "grade_id": "cell-be844269be69c387", + "locked": true, + "schema_version": 2, + "solution": false + }, + "id": "4JRSQRnVOcMA" + }, + "source": [ + "### 2. Machine Learning pipeline\n", + "Here you are supposed to perform the desired transformations. Please, explain your results briefly after each task." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "TcrNbmkzOcMA" + }, + "source": [ + "#### 2.0. Data preprocessing\n", + "* Make some transformations of the dataset (if necessary). Briefly explain the transformations" + ] + }, + { + "cell_type": "markdown", + "source": [ + "Let's remove outliers:" + ], + "metadata": { + "id": "oslQlMEhYD5q" + } + }, + { + "cell_type": "code", + "source": [ + "from matplotlib import pyplot as plt" + ], + "metadata": { + "id": "tWmdKNZacZVe" + }, + "execution_count": 166, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "plt.figure(figsize=(18, 10))\n", + "plt.subplots_adjust(top=1.5)\n", + "\n", + "for i, column in enumerate(X_train_pd.columns):\n", + " plt.subplot(4, 5, i + 1)\n", + " X_train_pd.boxplot(column=[0])\n", + " plt.title(f'feature {column}')\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "KH50iVaMYKq8", + "outputId": "976c5734-ae49-4d97-dafe-f120aa93ddc2" + }, + "execution_count": 167, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABasAAAWwCAYAAABTlh2kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADNR0lEQVR4nOzdfZyVdZ0//tcMDMOdA6LBCIuIruVNbuQ9aqslgq5uX9Mwd92WzLQbtIwytU1NLd3sztpMq93V3dK2dB/V5mZJmFqJinizpmVmpiYOqCwMgsDAXL8//DEbgjhnmOHDzDyfj4cPmut8ruu8r7nmvB7T68w5p66qqioAAAAAAFBQfekBAAAAAABAWQ0AAAAAQHHKagAAAAAAilNWAwAAAABQnLIaAAAAAIDilNUAAAAAABSnrAYAAAAAoDhlNQAAAAAAxSmrAQAAAAAoTllNkmTevHk56KCDMmzYsNTV1eX+++8vPRLQj8ggoCQZBJQif4CSZBBbI2U1aWtry/Tp07N48eJ88YtfzDe/+c1MmDCh2+9nwYIF+eQnP7lVh9+//Mu/ZPfdd8/gwYOz66675p/+6Z9KjwR9ngx6yZVXXpnp06dnxx13TF1dXd71rneVHgn6BRmUPPXUU7nwwguz//77Z9ttt83222+fww47LD/96U9LjwZ9mvxJXnzxxZxyyil5/etfnxEjRmT48OF5wxvekC996Utpa2srPR70aTJoQ7/4xS9SV1eXurq6PPfcc6XH6bcGlh6A8h577LE88cQT+cY3vpH3vOc9PXY/CxYsyIUXXpiddtopkyZN6rH76aqvfe1red/73pfjjz8+s2bNys9//vN88IMfzIoVK3L22WeXHg/6LBn0ks985jNZtmxZ9t9//zzzzDOlx4F+QwYlP/jBD/KZz3wmxx57bGbMmJE1a9bk3//933PEEUfkX//1X3PyySeXHhH6JPnzUln90EMP5a/+6q+y0047pb6+PnfccUc+/OEP56677sp1111XekTos2TQ+trb23PGGWdk2LBhWb58eelx+jVlNVm0aFGSZOTIkWUH6aKVK1dm0KBBqa/v+gsFXnzxxfzDP/xDjj766Nxwww1JklNPPTXt7e25+OKLc9ppp2XbbbftrpGBPyGDXnLbbbd1/FX18OHDu2k64NXIoOTNb35znnzyyWy//fYd2973vvdl0qRJOf/885XV0EPkTzJq1Kjceeed62173/velxEjRuQrX/lKvvCFL6S5uXlzRwU2Qgat7+tf/3qeeuqpvOc978mXvvSlbjkmXeNtQPq5d73rXTn00EOTJNOnT09dXV0OO+ywjtt/85vf5O1vf3tGjRqVwYMHZ999981//dd/rXeMxYsX56Mf/Wj22muvDB8+PE1NTTnqqKPywAMPdKy59dZbs99++yVJTj755I6XVVxzzTVJkp122mmjL3k/7LDD1pvn1ltvTV1dXf7jP/4jn/jEJzJu3LgMHTo0ra2tSZK77rorRx55ZEaMGJGhQ4fm0EMPzS9/+ctX/T787Gc/y/PPP58PfOAD622fOXNmli9fnv/+7/9+1WMAtZNB/2fChAmpq6vr1Fqge8igl+y5557rFdVJ0tjYmL/6q7/KH//4xyxbtuxVjwHURv5s2k477ZQkWbJkSZePAbwyGbS+xYsX5xOf+EQuuuiiXlve9yX+srqfe+9735tx48blkksuyQc/+MHst99+GTNmTJLkoYceysEHH5xx48blnHPOybBhw/Ld7343xx57bP7zP/8zb3vb25Ikv//97/P9738/06dPz8SJE7Nw4cJ87Wtfy6GHHpqHH344Y8eOze67756LLroo559/fk477bS86U1vSpIcdNBBXZr74osvzqBBg/LRj340q1atyqBBg3LLLbfkqKOOyj777JMLLrgg9fX1ufrqq/OWt7wlP//5z7P//vu/4vHuu+++JMm+++673vZ99tkn9fX1ue+++/J3f/d3XZoVeGUyCChJBm1aS0tLhg4dmqFDh3ZpTuCVyZ/1rV69Oq2trXnxxRdzzz335HOf+1wmTJiQP//zP+/SnMCmyaD1nXfeeWlubs573/veXHzxxV2ajW5U0e/97Gc/q5JU119//XrbDz/88GqvvfaqVq5c2bGtvb29Ouigg6pdd921Y9vKlSurtWvXrrfv448/XjU2NlYXXXRRx7Z58+ZVSaqrr756gxkmTJhQzZgxY4Pthx56aHXooYduMOvOO+9crVixYr25dt1112ratGlVe3t7x/YVK1ZUEydOrI444ohNfg9mzpxZDRgwYKO3veY1r6lOPPHETe4PdJ0M2tCwYcM2Og/Q/WTQxj366KPV4MGDq3e+85017wt0jvz5P9/+9rerJB3/7bvvvtX//M//dGpfoGtk0EseeOCBasCAAdVPfvKTqqqq6oILLqiSVM8+++yr7kvP8DYgbNTixYtzyy235IQTTsiyZcvy3HPP5bnnnsvzzz+fadOm5dFHH83TTz+d5KWXia57j6C1a9fm+eefz/Dhw/O6170u9957b4/MN2PGjAwZMqTj6/vvvz+PPvpo/vZv/zbPP/98x7zLly/P4Ycfnttvvz3t7e2veLwXX3wxgwYN2uhtgwcPzosvvtjt5wC8sv6WQcDWpb9n0IoVKzJ9+vQMGTIk//iP/9gTpwC8gv6aP29+85sze/bsXH/99Xnf+96XhoYGH3AGBfTHDPrgBz+Yo446KlOnTu2RmamdtwFho373u9+lqqqcd955Oe+88za6ZtGiRRk3blza29vzpS99KV/96lfz+OOPZ+3atR1rtttuux6Zb+LEiet9/eijjyZ5KbheydKlS1/xQxKHDBmS1atXb/S2lStXrheGQM/rbxkEbF36cwatXbs2J554Yh5++OHcdNNNGTt27OYNC9Skv+bPmDFjOt6C4O1vf3suueSSHHHEEXn00Ud9wCJsQf0tg77zne/kjjvuyK9+9avuG5LNpqxmo9Y98/TRj34006ZN2+iade8fdskll+S8887Lu9/97lx88cUZNWpU6uvrc+aZZ3b6r3he6UPF1q5dmwEDBmyw/eXl8br7+exnP5tJkyZt9FjDhw9/xfvfYYcdsnbt2ixatCijR4/u2L569eo8//zz/o8abGH9LYOArUt/zqBTTz01N954Y6699tq85S1v6dQ+QPfpz/nzp97+9rfnH/7hH/KDH/wg733ve2veH+ia/pZBZ511VqZPn55BgwblD3/4Q5L/+2DXp556KqtXr9YHFaCsZqN23nnnJElDQ0OmTJmyybU33HBD3vzmN+df/uVf1tu+ZMmS9T5Z/pVCKEm23XbbjX7S8xNPPNExy6bssssuSZKmpqZXnXdj1oXaPffck7/6q7/q2H7PPfekvb39FUMP6Bn9LYOArUt/zaCzzjorV199dS6//PL8zd/8TZePA3Rdf82fl1v3NoxLly7ttmMCr66/ZdBTTz2V6667Ltddd90Gt+299955wxvekPvvv7/m47J5vGc1GzV69Ogcdthh+drXvpZnnnlmg9ufffbZjv89YMCAVFW13u3XX399x/sYrTNs2LAk2WgQ7bLLLrnzzjvXeyuOG2+8MU899VSn5t1nn32yyy675HOf+1xeeOGFTc67MW95y1syatSoXHnllettv/LKKzN06NAcffTRnZoD6B79LYOArUt/zKDPfvaz+dznPpePf/zj+dCHPtSp+wW6X3/Ln+eee26Dc0iSf/7nf06S7Lvvvp2aA+ge/S2Dvve9723w3zve8Y4kyb//+7/ni1/8YqfmoHv5y2pe0RVXXJFDDjkke+21V0499dTsvPPOWbhwYebOnZs//vGPeeCBB5IkxxxzTC666KKcfPLJOeigg/Lggw/m2muv3eBZsF122SUjR47MVVddlW222SbDhg3LAQcckIkTJ+Y973lPbrjhhhx55JE54YQT8thjj+Vb3/pWx7Nkr6a+vj7//M//nKOOOip77rlnTj755IwbNy5PP/10fvazn6WpqSk//OEPX3H/IUOG5OKLL87MmTMzffr0TJs2LT//+c/zrW99K5/+9KczatSorn8jgS7pTxmUJD/84Q87zqmtrS3/8z//k0996lNJkre+9a35i7/4i1q/hcBm6E8Z9L3vfS8f+9jHsuuuu2b33XfPt771rfVuP+KIIzreSxboef0pf771rW/lqquuyrHHHpudd945y5Yty09+8pPMnj07f/3Xf+3tiKCA/pRBxx577Abb1v0l9VFHHbXeX4izBVX0ez/72c+qJNX111+/wW2PPfZY9fd///dVc3Nz1dDQUI0bN6465phjqhtuuKFjzcqVK6uPfOQj1Q477FANGTKkOvjgg6u5c+dWhx56aHXooYeud7wf/OAH1R577FENHDiwSlJdffXVHbd9/vOfr8aNG1c1NjZWBx98cHXPPfdscIxNzVpVVXXfffdVxx13XLXddttVjY2N1YQJE6oTTjihmjNnTqe+F1//+ter173uddWgQYOqXXbZpfriF79Ytbe3d2pfoGtk0EtmzJhRJdnof386J9C9ZFBVXXDBBa+YP0mqn/3sZ6/6fQRqJ3+qat68edX06dOrHXfcsWpsbKyGDRtW7b333tUXvvCFqq2t7dW/iUCXyaCNW/d70bPPPlvzvnSPuqrayGtuAAAAAABgC/Ke1QAAAAAAFKesBgAAAACgOGU1AAAAAADFKasBAAAAAChOWQ0AAAAAQHHKagAAAAAAihtYeoCuaG9vz4IFC7LNNtukrq6u9DhAjaqqyrJlyzJ27NjU1/e+58xkEPRe8gcoSQYBpfT2/ElkEPRmtWRQryyrFyxYkPHjx5ceA9hMTz31VP7sz/6s9Bg1k0HQ+8kfoCQZBJTSW/MnkUHQF3Qmg3plWb3NNtskeekEm5qaCk9Dd2tra8vNN9+cqVOnpqGhofQ49IDW1taMHz++47Hc28igvk0G9W3yh62dDOrbZBBbM/nTt/X2/ElkUF8ng/q2WjKoV5bV617u0dTUJKD6oLa2tgwdOjRNTU0Cqo/rrS/dkkF9mwzqH+QPWysZ1D/IILZG8qd/6K35k8igvk4G9Q+dyaDe+UZFAAAAAAD0KcpqAAAAAACKU1YDAAAAAFCcshoAAAAAgOKU1QAAAAAAFKesBgAAAACgOGU1AAAAAADFKasBAAAAAChOWQ0AAAAAQHHKagAAAAAAihtYegD6lxUrVuQ3v/nNJte88OKq3PHgY9l2+3syfEjjJtfutttuGTp0aHeOCPRhMggoSQYBpcgfoCQZRC2U1WxRv/nNb7LPPvt0au1lnVgzf/787L333ps3FNBvyCCgJBkElCJ/gJJkELVQVrNF7bbbbpk/f/4m1zzyzJLMuv7BfGH6XnndDiNf9XgAnSWDgJJkEFCK/AFKkkHUQlnNFjV06NBXffar/onn0/jzF7P769+QSRO220KTAf2BDAJKkkFAKfIHKEkGUQsfsAgAAAAAQHHKagAAAAAAilNWAwAAAABQnLIaAAAAAIDilNUAAAAAABSnrAYAAAAAoDhlNQAAAAAAxdVUVq9duzbnnXdeJk6cmCFDhmSXXXbJxRdfnKqqOtZUVZXzzz8/O+ywQ4YMGZIpU6bk0UcfXe84ixcvzkknnZSmpqaMHDkyp5xySl544YXuOSOgz5JBQCnyByhJBgGlyB9gS6uprP7MZz6TK6+8Ml/5ylfy61//Op/5zGdy2WWX5Z/+6Z861lx22WX58pe/nKuuuip33XVXhg0blmnTpmXlypUda0466aQ89NBDmT17dm688cbcfvvtOe2007rvrIA+SQYBpcgfoCQZBJQif4AtrqrB0UcfXb373e9eb9txxx1XnXTSSVVVVVV7e3vV3Nxcffazn+24fcmSJVVjY2P17W9/u6qqqnr44YerJNW8efM61tx0001VXV1d9fTTT3dqjqVLl1ZJqqVLl9YyPr3EfX94rppw9o3VfX94rvQo9JCuPoZlEFuCDOrb5A9bOxnUt8kgtmbyp2/r7fmzOedA7yCD+rZaHr8Daym2DzrooHz961/Pb3/727z2ta/NAw88kF/84hf5whe+kCR5/PHH09LSkilTpnTsM2LEiBxwwAGZO3duTjzxxMydOzcjR47Mvvvu27FmypQpqa+vz1133ZW3ve1tG9zvqlWrsmrVqo6vW1tbkyRtbW1pa2ur5RToBdasWdPxr+vbN3X1usogtgQZ1LfJH7Z2Mqhvk0FszeRP39bb8ieRQf2NDOrbarmmNZXV55xzTlpbW7PbbrtlwIABWbt2bT796U/npJNOSpK0tLQkScaMGbPefmPGjOm4raWlJaNHj15/iIEDM2rUqI41L3fppZfmwgsv3GD7zTffnKFDh9ZyCvQCT72QJANz55135ulflZ6GnrBixYou7SeD2BJkUN8mf9jayaC+TQaxNZM/fVtvy59EBvU3MqhvqyWDaiqrv/vd7+baa6/Nddddlz333DP3339/zjzzzIwdOzYzZsyoedDOOvfcczNr1qyOr1tbWzN+/PhMnTo1TU1NPXa/lPHAk4uTB+/JgQcemDfsOKr0OPSAdc+I10oGsSXIoL5N/rC1k0F9mwxiayZ/+rbelj+JDOpvZFDfVksG1VRWn3XWWTnnnHNy4oknJkn22muvPPHEE7n00kszY8aMNDc3J0kWLlyYHXbYoWO/hQsXZtKkSUmS5ubmLFq0aL3jrlmzJosXL+7Y/+UaGxvT2Ni4wfaGhoY0NDTUcgr0AgMHDuz41/Xtm7p6XWUQW4IM6tvkD1s7GdS3ySC2ZvKnb+tt+ZPIoP5GBvVttVzT+loOvGLFitTXr7/LgAED0t7eniSZOHFimpubM2fOnI7bW1tbc9ddd2Xy5MlJksmTJ2fJkiWZP39+x5pbbrkl7e3tOeCAA2oZB+hnZBBQivwBSpJBQCnyB9jSavrL6r/+67/Opz/96ey4447Zc889c9999+ULX/hC3v3udydJ6urqcuaZZ+ZTn/pUdt1110ycODHnnXdexo4dm2OPPTZJsvvuu+fII4/MqaeemquuuiptbW05/fTTc+KJJ2bs2LHdfoJA3yGDgFLkD1CSDAJKkT/AFlfVoLW1tfrQhz5U7bjjjtXgwYOrnXfeufqHf/iHatWqVR1r2tvbq/POO68aM2ZM1djYWB1++OHVI488st5xnn/++epv/uZvquHDh1dNTU3VySefXC1btqzTcyxdurRKUi1durSW8ekl7vvDc9WEs2+s7vvDc6VHoYd09TEsg9gSZFDfJn/Y2smgvk0GsTWTP31bb8+fzTkHegcZ1LfV8vitq6qqKlWUd1Vra2tGjBiRpUuXelP9Puj+J57PsVfeme+//8BMmrBd6XHoAb39Mdzb52fTZFDf1tsfv719fl6dDOrbevtjuLfPz6bJn76tLzx++8I58MpkUN9Wy+O3pvesBgAAAACAnqCsBgAAAACgOGU1AAAAAADFKasBAAAAAChOWQ0AAAAAQHHKagAAAAAAilNWAwAAAABQnLIaAAAAAIDilNUAAAAAABSnrAYAAAAAoDhlNQAAAAAAxSmrAQAAAAAoTlkNAAAAAEBxymoAAAAAAIpTVgMAAAAAUJyyGgAAAACA4pTVAAAAAAAUp6wGAAAAAKA4ZTUAAAAAAMUpqwEAAAAAKE5ZDQAAAABAccpqAAAAAACKU1YDAAAAAFCcshoAAAAAgOKU1QAAAAAAFKesBgAAAACgOGU1AAAAAADFKasBAAAAAChOWQ0AAAAAQHHKagAAAAAAilNWAwAAAABQnLIaAAAAAIDilNUAAAAAABSnrAYAAAAAoDhlNQAAAAAAxSmrAQAAAAAoTlkNAAAAAEBxymoAAAAAAIpTVgMAAAAAUJyyGgAAAACA4pTVAAAAAAAUp6wGAAAAAKA4ZTUAAAAAAMUpqwEAAAAAKE5ZDQAAAABAccpqAAAAAACKU1YDAAAAAFCcshoAAAAAgOKU1QAAAAAAFKesBgAAAACguIGlB6Bvefy55Vm+as1mHeOxZ5d3/Dtw4Ob9iA5rHJiJ2w/brGMAvYcMAkqSQUAp8gcoSQbRnZTVdJvHn1ueN3/u1m473kdueLBbjvOzjx4mpKAfkEFASTIIKEX+ACXJILqbsppus+5ZtMvfMSl/Pnp414/z4qrceOvcHHPY5Awb0tjl4/xu0Qs58zv3b/aze0DvIIOAkmQQUIr8AUqSQXQ3ZTXd7s9HD8/rx43o8v5tbW1peU2y94Rt09DQ0I2TAf2BDAJKkkFAKfIHKEkG0V1q/oDFp59+On/3d3+X7bbbLkOGDMlee+2Ve+65p+P2qqpy/vnnZ4cddsiQIUMyZcqUPProo+sdY/HixTnppJPS1NSUkSNH5pRTTskLL7yw+WcD9HkyCChF/gAlySCgFPkDbEk1ldX/+7//m4MPPjgNDQ256aab8vDDD+fzn/98tt122441l112Wb785S/nqquuyl133ZVhw4Zl2rRpWblyZceak046KQ899FBmz56dG2+8MbfffntOO+207jsroE+SQUAp8gcoSQYBpcgfYIuranD22WdXhxxyyCve3t7eXjU3N1ef/exnO7YtWbKkamxsrL797W9XVVVVDz/8cJWkmjdvXseam266qaqrq6uefvrpTs2xdOnSKkm1dOnSWsanhz34xyXVhLNvrB7845LNOs7q1aur73//+9Xq1au3innofl19DMsgNkUG0Rnyh54ig+gMGURPkD90Rm/Pn805B3qWDKIzann81vSe1f/1X/+VadOmZfr06bntttsybty4fOADH8ipp56aJHn88cfT0tKSKVOmdOwzYsSIHHDAAZk7d25OPPHEzJ07NyNHjsy+++7bsWbKlCmpr6/PXXfdlbe97W0b3O+qVauyatWqjq9bW1uTvPR+Nm1tbbWcAj1ozZo1Hf9uznVZt+/mXtvumofu19XrIYPYFBlEZ8gfeooMojNkED1B/tAZvS1/EhnUW8ggOqOWa1FTWf373/8+V155ZWbNmpWPf/zjmTdvXj74wQ9m0KBBmTFjRlpaWpIkY8aMWW+/MWPGdNzW0tKS0aNHrz/EwIEZNWpUx5qXu/TSS3PhhRdusP3mm2/O0KFDazkFetBTLyTJwPziF7/IE13/ANgOs2fP3qrmofusWLGiS/vJIDZFBtEZ8oeeIoPoDBlET5A/dEZvy59EBvUWMojOqCWDaiqr29vbs+++++aSSy5JkrzxjW/Mr371q1x11VWZMWNGbVPW4Nxzz82sWbM6vm5tbc348eMzderUNDU19dj9UpuHFrTmcw/emUMOOSR7ju36dWlra8vs2bNzxBFHbNYnwHbXPHS/dc+I10oGsSkyiM6QP/QUGURnyCB6gvyhM3pb/iQyqLeQQXRGLRlUU1m9ww47ZI899lhv2+67757//M//TJI0NzcnSRYuXJgddtihY83ChQszadKkjjWLFi1a7xhr1qzJ4sWLO/Z/ucbGxjQ2Nm6wvaGhYbN+gOleAwcO7Pi3O67L5l7f7p6H7tPV6yGD2BQZRGfIH3qKDKIzZBA9Qf7QGb0tfxIZ1FvIIDqjlmtRX8uBDz744DzyyCPrbfvtb3+bCRMmJEkmTpyY5ubmzJkzp+P21tbW3HXXXZk8eXKSZPLkyVmyZEnmz5/fseaWW25Je3t7DjjggFrGAfoZGQSUIn+AkmQQUIr8Aba0mv6y+sMf/nAOOuigXHLJJTnhhBNy99135+tf/3q+/vWvJ0nq6upy5pln5lOf+lR23XXXTJw4Meedd17Gjh2bY489NslLz8AdeeSROfXUU3PVVVelra0tp59+ek488cSMHTu2208Q6DtkEFCK/AFKkkFAKfIH2NJqKqv322+/fO9738u5556biy66KBMnTszll1+ek046qWPNxz72sSxfvjynnXZalixZkkMOOSQ//vGPM3jw4I411157bU4//fQcfvjhqa+vz/HHH58vf/nL3XdWQJ8kg4BS5A9QkgwCSpE/wJZWU1mdJMccc0yOOeaYV7y9rq4uF110US666KJXXDNq1Khcd911td41gAwCipE/QEkyCChF/gBbUk3vWQ0AAAAAAD1BWQ0AAAAAQHHKagAAAAAAilNWAwAAAABQnLIaAAAAAIDilNUAAAAAABSnrAYAAAAAoDhlNQAAAAAAxSmrAQAAAAAoTlkNAAAAAEBxymoAAAAAAIpTVgMAAAAAUJyyGgAAAACA4pTVAAAAAAAUp6wGAAAAAKA4ZTUAAAAAAMUpqwEAAAAAKE5ZDQAAAABAccpqAAAAAACKU1YDAAAAAFCcshoAAAAAgOKU1QAAAAAAFKesBgAAAACgOGU1AAAAAADFKasBAAAAAChOWQ0AAAAAQHHKagAAAAAAilNWAwAAAABQnLIaAAAAAIDilNUAAAAAABSnrAYAAAAAoDhlNQAAAAAAxSmrAQAAAAAoTlkNAAAAAEBxymoAAAAAAIpTVgMAAAAAUJyyGgAAAACA4pTVAAAAAAAUp6wGAAAAAKA4ZTUAAAAAAMUpqwEAAAAAKE5ZDQAAAABAccpqAAAAAACKU1YDAAAAAFCcshoAAAAAgOKU1QAAAAAAFKesBgAAAACgOGU1AAAAAADFKasBAAAAAChOWQ0AAAAAQHHKagAAAAAAilNWAwAAAABQnLIaAAAAAIDilNUAAAAAABS3WWX1P/7jP6auri5nnnlmx7aVK1dm5syZ2W677TJ8+PAcf/zxWbhw4Xr7Pfnkkzn66KMzdOjQjB49OmeddVbWrFmzOaMA/Yz8AUqSQUBJMggoRf4APa3LZfW8efPyta99LX/xF3+x3vYPf/jD+eEPf5jrr78+t912WxYsWJDjjjuu4/a1a9fm6KOPzurVq3PHHXfk3/7t33LNNdfk/PPP7/pZAP2K/AFKkkFASTIIKEX+AFvCwK7s9MILL+Skk07KN77xjXzqU5/q2L506dL8y7/8S6677rq85S1vSZJcffXV2X333XPnnXfmwAMPzM0335yHH344P/3pTzNmzJhMmjQpF198cc4+++x88pOfzKBBg7rnzNjiVq1dmfrBT+fx1kdSP3h4l4+zZs2aLFizIL9e/OsMHNilH9EkyeOtL6R+8NNZtXZlkhFdPg5bF/nDK5FBbAkyiFcig9gSZBAbI3/YEuQPr0QG0d26dPVnzpyZo48+OlOmTFkvpObPn5+2trZMmTKlY9tuu+2WHXfcMXPnzs2BBx6YuXPnZq+99sqYMWM61kybNi3vf//789BDD+WNb3zjZpwOJS1Y/kSGTfynfPzu7jneV3/81c0+xrCJyYLlk7JPxrz6YnoF+cMrkUFsCTKIVyKD2BJkEBsjf9gS5A+vRAbR3Wouq//jP/4j9957b+bNm7fBbS0tLRk0aFBGjhy53vYxY8akpaWlY82fBtS629fdtjGrVq3KqlWrOr5ubW1NkrS1taWtra3WU6CHjG4cl+WPn5EvvH2v7PyaYV0+zpo1a3LXnXflgAMP2Kxn037/7PLMuuHBjH7TOD8nW5muXo8S+ZPIoN5CBtEZm3Mt/A7EpsggOkMG0RPkD53R2/InkUG9hQyiM2q5FjVd/aeeeiof+tCHMnv27AwePLjmwbrq0ksvzYUXXrjB9ptvvjlDhw7dYnOwaU+9kLSvHJc/PrAodV1/5UeSZOzAsXnqnqc26xh//P/nmTf3nrQ8uHnz0L1WrFhR8z6l8ieRQb2FDKIzupI/id+BeHUyiM6QQfQE+UNn9Lb8SWRQbyGD6IxaMqimsnr+/PlZtGhR9t57745ta9euze23356vfOUr+clPfpLVq1dnyZIl6z2rtnDhwjQ3NydJmpubc/fd6782YN2nxK5b83LnnntuZs2a1fF1a2trxo8fn6lTp6apqamWU6AHPbSgNZ978M4ccsgh2XNs169LW1tbZs+enSOOOCINDQ3F56H7rXtGvBal8ieRQb2FDKIzupI/id+BeHUyiM6QQfQE+UNn9Lb8SWRQbyGD6IxaMqimsvrwww/Pgw+u/7TEySefnN122y1nn312xo8fn4aGhsyZMyfHH398kuSRRx7Jk08+mcmTJydJJk+enE9/+tNZtGhRRo8enSSZPXt2mpqasscee2z0fhsbG9PY2LjB9oaGhs36AaZ7rXuZxsCBA7vlumzu9e3ueeg+XbkepfInkUG9hQyiM7p6LfwOxKuRQXSGDKInyB86o7flTyKDegsZRGfUci1qKqu32WabvP71r19v27Bhw7Lddtt1bD/llFMya9asjBo1Kk1NTTnjjDMyefLkHHjggUmSqVOnZo899sg73/nOXHbZZWlpacknPvGJzJw5c6MhBJDIH6AsGQSUJIOAUuQPsKV1/R3LX8EXv/jF1NfX5/jjj8+qVasybdq0fPWr//dJngMGDMiNN96Y97///Zk8eXKGDRuWGTNm5KKLLuruUYB+Rv4AJckgoCQZBJQif4DutNll9a233rre14MHD84VV1yRK6644hX3mTBhQn70ox9t7l0D/Zz8AUqSQUBJMggoRf4APam+9AAAAAAAAKCsBgAAAACgOGU1AAAAAADFKasBAAAAAChOWQ0AAAAAQHHKagAAAAAAilNWAwAAAABQnLIaAAAAAIDilNUAAAAAABSnrAYAAAAAoDhlNQAAAAAAxSmrAQAAAAAoTlkNAAAAAEBxymoAAAAAAIpTVgMAAAAAUJyyGgAAAACA4pTVAAAAAAAUp6wGAAAAAKA4ZTUAAAAAAMUpqwEAAAAAKE5ZDQAAAABAccpqAAAAAACKU1YDAAAAAFCcshoAAAAAgOKU1QAAAAAAFKesBgAAAACgOGU1AAAAAADFKasBAAAAAChOWQ0AAAAAQHHKagAAAAAAilNWAwAAAABQnLIaAAAAAIDilNUAAAAAABSnrAYAAAAAoDhlNQAAAAAAxSmrAQAAAAAoTlkNAAAAAEBxymoAAAAAAIpTVgMAAAAAUJyyGgAAAACA4pTVAAAAAAAUp6wGAAAAAKA4ZTUAAAAAAMUpqwEAAAAAKE5ZDQAAAABAccpqAAAAAACKU1YDAAAAAFCcshoAAAAAgOKU1QAAAAAAFKesBgAAAACgOGU1AAAAAADFKasBAAAAAChOWQ0AAAAAQHHKagAAAAAAiquprL700kuz3377ZZtttsno0aNz7LHH5pFHHllvzcqVKzNz5sxst912GT58eI4//vgsXLhwvTVPPvlkjj766AwdOjSjR4/OWWedlTVr1mz+2QB9mgwCSpE/QEkyCChJBgFbUk1l9W233ZaZM2fmzjvvzOzZs9PW1papU6dm+fLlHWs+/OEP54c//GGuv/763HbbbVmwYEGOO+64jtvXrl2bo48+OqtXr84dd9yRf/u3f8s111yT888/v/vOCuiTZBBQivwBSpJBQEkyCNiiqs2waNGiKkl12223VVVVVUuWLKkaGhqq66+/vmPNr3/96ypJNXfu3KqqqupHP/pRVV9fX7W0tHSsufLKK6umpqZq1apVnbrfpUuXVkmqpUuXbs74dLMH/7ikmnD2jdWDf1yyWcdZvXp19f3vf79avXr1VjEP3a+7HsMyiD8lg+gM+UNPkUF0hgyiJ8gfOqM7H78yiD8lg+iMWh6/m/We1UuXLk2SjBo1Kkkyf/78tLW1ZcqUKR1rdtttt+y4446ZO3dukmTu3LnZa6+9MmbMmI4106ZNS2trax566KHNGQfoZ2QQUIr8AUqSQUBJMgjoSQO7umN7e3vOPPPMHHzwwXn961+fJGlpacmgQYMycuTI9daOGTMmLS0tHWv+NJzW3b7uto1ZtWpVVq1a1fF1a2trkqStrS1tbW1dPQW62bIXX7pGDzy5eLPed2r5ylW559lk+98/m2GDG7t8nN89+9JLktasWePnZCvTHddDBvFyMojOkD/0FBlEZ8ggeoL8oTO661rIIF5OBtEZtVyLLpfVM2fOzK9+9av84he/6OohOu3SSy/NhRdeuMH2m2++OUOHDu3x+6dz5i6sSzIg//CDh7vhaAPzzd/d1w3HSebN/UWeGNIth6KbrFixYrOPIYN4ORlEZ8gfeooMojNkED1B/tAZ3ZE/iQxiQzKIzqglg7pUVp9++um58cYbc/vtt+fP/uzPOrY3Nzdn9erVWbJkyXrPqC1cuDDNzc0da+6+++71jrfuE2LXrXm5c889N7Nmzer4urW1NePHj8/UqVPT1NTUlVOgBxy4fHX2+vWi7PyaYRnSMKDLx/lty9J87Hu/zmVv2z2vbR6xWTMNaxyQnbYbtlnHoPute0a8q2QQGyOD6Az5Q0+RQXSGDKInyB86Y3PzJ5FBbJwMojNqyaCayuqqqnLGGWfke9/7Xm699dZMnDhxvdv32WefNDQ0ZM6cOTn++OOTJI888kiefPLJTJ48OUkyefLkfPrTn86iRYsyevToJMns2bPT1NSUPfbYY6P329jYmMbGDV8C0NDQkIaGhlpOgR40ZmRDTpo88dUXdtJrm0dk0oTtuu14bD26+riVQWyKDKIz5A89RQbRGTKIniB/6IzNeczKIDZFBtEZtTxmayqrZ86cmeuuuy4/+MEPss0223S8r9CIESMyZMiQjBgxIqecckpmzZqVUaNGpampKWeccUYmT56cAw88MEkyderU7LHHHnnnO9+Zyy67LC0tLfnEJz6RmTNnbjSEANaRQUAp8gcoSQYBJckgYIuqapBko/9dffXVHWtefPHF6gMf+EC17bbbVkOHDq3e9ra3Vc8888x6x/nDH/5QHXXUUdWQIUOq7bffvvrIRz5StbW1dXqOpUuXVkmqpUuX1jI+vcR9f3iumnD2jdV9f3iu9Cj0kK4+hmUQW4IM6tvkD1s7GdS3ySC2ZvKnb9ucx68MYkuQQX1bLY/fmt8G5NUMHjw4V1xxRa644opXXDNhwoT86Ec/quWuAWQQUIz8AUqSQUBJMgjYkupLDwAAAAAAAMpqAAAAAACKU1YDAAAAAFCcshoAAAAAgOKU1QAAAAAAFKesBgAAAACgOGU1AAAAAADFKasBAAAAAChOWQ0AAAAAQHHKagAAAAAAilNWAwAAAABQnLIaAAAAAIDilNUAAAAAABSnrAYAAAAAoDhlNQAAAAAAxSmrAQAAAAAoTlkNAAAAAEBxymoAAAAAAIpTVgMAAAAAUJyyGgAAAACA4pTVAAAAAAAUp6wGAAAAAKA4ZTUAAAAAAMUpqwEAAAAAKE5ZDQAAAABAccpqAAAAAACKU1YDAAAAAFCcshoAAAAAgOKU1QAAAAAAFKesBgAAAACgOGU1AAAAAADFKasBAAAAAChOWQ0AAAAAQHHKagAAAAAAilNWAwAAAABQnLIaAAAAAIDilNUAAAAAABSnrAYAAAAAoDhlNQAAAAAAxSmrAQAAAAAoTlkNAAAAAEBxymoAAAAAAIpTVgMAAAAAUJyyGgAAAACA4pTVAAAAAAAUp6wGAAAAAKA4ZTUAAAAAAMUpqwEAAAAAKE5ZDQAAAABAccpqAAAAAACKU1YDAAAAAFCcshoAAAAAgOKU1QAAAAAAFKesBgAAAACguKJl9RVXXJGddtopgwcPzgEHHJC777675DhAPyJ/gJJkEFCK/AFKkkHAqylWVn/nO9/JrFmzcsEFF+Tee+/NG97whkybNi2LFi0qNRLQT8gfoCQZBJQif4CSZBDQGcXK6i984Qs59dRTc/LJJ2ePPfbIVVddlaFDh+Zf//VfS40E9BPyByhJBgGlyB+gJBkEdEaRsnr16tWZP39+pkyZ8n+D1NdnypQpmTt3bomRgH5C/gAlySCgFPkDlCSDgM4aWOJOn3vuuaxduzZjxoxZb/uYMWPym9/8ZoP1q1atyqpVqzq+bm1tTZK0tbWlra2tZ4elW61YsSKPPPLIJtf89pmlWdXyu/zq/kFZvXDEJte+7nWvy9ChQ7tzRLaAko/bWvMnkUF9iQyi9GPW70D9mwzC70CUIn8o/ZiVQf2bDKKWx2yRsrpWl156aS688MINtt98881+OHuZxx57LB/5yEc6tfad//bqaz7/+c9nl1122cyp2NJWrFhReoSayKC+QwYhfyhJBiGDKEX+0NvyJ5FBfYkMopYMKlJWb7/99hkwYEAWLly43vaFCxemubl5g/XnnntuZs2a1fF1a2trxo8fn6lTp6apqanH56X7rFixIocccsgm17zw4qr85OfzMu1N+2X4kMZNrvVsWu+07hnxEmrNn0QG9SUyiJL5k/gdqL+TQfgdiFLkD73td6BEBvUlMohaMqhIWT1o0KDss88+mTNnTo499tgkSXt7e+bMmZPTTz99g/WNjY1pbNzwB7WhoSENDQ09PS7daMSIEdl///03uaatrS3LlizOmw460PXto0pe11rzJ5FBfYkMovQ19TtQ/yaD8DsQpcgfSl9TGdS/ySBquabF3gZk1qxZmTFjRvbdd9/sv//+ufzyy7N8+fKcfPLJpUYC+gn5A5Qkg4BS5A9QkgwCOqNYWf2Od7wjzz77bM4///y0tLRk0qRJ+fGPf7zBm+0DdDf5A5Qkg4BS5A9QkgwCOqPoByyefvrpr/hyD4CeJH+AkmQQUIr8AUqSQcCrqS89AAAAAAAAKKsBAAAAAChOWQ0AAAAAQHHKagAAAAAAilNWAwAAAABQnLIaAAAAAIDiBpYeoCuqqkqStLa2Fp6EntDW1pYVK1aktbU1DQ0NpcehB6x77K57LPc2Mqhvk0F9m/xhayeD+jYZxNZM/vRtvT1/EhnU18mgvq2WDOqVZfWyZcuSJOPHjy88CbA5li1blhEjRpQeo2YyCHo/+QOUJIOAUnpr/iQyCPqCzmRQXdULn1Zrb2/PggULss0226Surq70OHSz1tbWjB8/Pk899VSamppKj0MPqKoqy5Yty9ixY1Nf3/vejUgG9W0yqG+TP2ztZFDfJoPYmsmfvq23508ig/o6GdS31ZJBvbKspm9rbW3NiBEjsnTpUgEFbHEyCChJBgGlyB+gJBnEOr3z6TQAAAAAAPoUZTUAAAAAAMUpq9nqNDY25oILLkhjY2PpUYB+SAYBJckgoBT5A5Qkg1jHe1YDAAAAAFCcv6wGAAAAAKA4ZTUAAAAAAMUpqwEAAAAAKE5ZDQAAAABAccpqtjpXXHFFdtpppwwePDgHHHBA7r777tIjAf2E/AFKkkFASTIIKEX+8KeU1WxVvvOd72TWrFm54IILcu+99+YNb3hDpk2blkWLFpUeDejj5A9QkgwCSpJBQCnyh5erq6qqKj0ErHPAAQdkv/32y1e+8pUkSXt7e8aPH58zzjgj55xzTuHpgL5M/gAlySCgJBkElCJ/eDl/Wc1WY/Xq1Zk/f36mTJnSsa2+vj5TpkzJ3LlzC04G9HXyByhJBgElySCgFPnDxiir2Wo899xzWbt2bcaMGbPe9jFjxqSlpaXQVEB/IH+AkmQQUJIMAkqRP2yMshoAAAAAgOKU1Ww1tt9++wwYMCALFy5cb/vChQvT3NxcaCqgP5A/QEkyCChJBgGlyB82RlnNVmPQoEHZZ599MmfOnI5t7e3tmTNnTiZPnlxwMqCvkz9ASTIIKEkGAaXIHzZmYOkB4E/NmjUrM2bMyL777pv9998/l19+eZYvX56TTz659GhAHyd/gJJkEFCSDAJKkT+8nLKarco73vGOPPvsszn//PPT0tKSSZMm5cc//vEGb7YP0N3kD1CSDAJKkkFAKfKHl6urqqoqPQQAAAAAAP2b96wGAAAAAKA4ZTUAAAAAAMUpqwEAAAAAKE5ZDQAAAABAccpqAAAAAACKU1YDAAAAAFCcshoAAAAAgOKU1QAAAAAAFKesBgAAAACgOGU1AAAAAADFKasBAAAAAChOWQ0AAAAAQHHKagAAAAAAilNWAwAAAABQnLIaAAAAAIDilNUAAAAAABSnrAYAAAAAoDhlNUmSefPm5aCDDsqwYcNSV1eX+++/v/RIQD8ig4CSZBBQivwBSpJBbI2U1aStrS3Tp0/P4sWL88UvfjHf/OY3M2HChG6/nwULFuSTn/zkVht+dXV1G/3vH//xH0uPBn2aDPo/CxcuzHvf+96MGzcugwcPzk477ZRTTjml9FjQp8mg5JprrnnF34Pq6upy7bXXlh4R+iT585KlS5fmYx/7WHbdddcMGTIkEyZMyCmnnJInn3yy9GjQp8mglyxcuDAnn3xyRo8enSFDhmTvvffO9ddfX3qsfm1g6QEo77HHHssTTzyRb3zjG3nPe97TY/ezYMGCXHjhhdlpp50yadKkHrufzXHEEUfk7//+79fb9sY3vrHQNNA/yKCXPPXUUzn44IOTJO973/sybty4LFiwIHfffXfhyaBvk0HJX/7lX+ab3/zmBtu/+MUv5oEHHsjhhx9eYCro++RP0t7eniOOOCIPP/xwPvCBD+S1r31tfve73+WrX/1qfvKTn+TXv/51ttlmm9JjQp8kg5LW1tYccsghWbhwYT70oQ+lubk53/3ud3PCCSfk2muvzd/+7d+WHrFfUlaTRYsWJUlGjhxZdpAuWrlyZQYNGpT6+s1/ocBrX/va/N3f/V03TAV0lgx6yXvf+94MHDgw8+bNy3bbbddN0wGvRgYlO++8c3beeef1tr344ov5wAc+kLe85S1pbm7e3DGBjZA/yZ133pl58+blK1/5SmbOnNmx/XWve13e/e5356c//Wne9ra3dce4wMvIoORrX/tafve732XOnDl5y1vekiR5//vfnwMPPDAf+chH8va3vz2DBg3qrpHpJG8D0s+9613vyqGHHpokmT59eurq6nLYYYd13P6b3/wmb3/72zNq1KgMHjw4++67b/7rv/5rvWMsXrw4H/3oR7PXXntl+PDhaWpqylFHHZUHHnigY82tt96a/fbbL0ly8sknd7ys9JprrkmS7LTTTnnXu961wXyHHXbYevPceuutqaury3/8x3/kE5/4RMaNG5ehQ4emtbU1SXLXXXflyCOPzIgRIzJ06NAceuih+eUvf1nT9+TFF1/MypUra9oH6BoZ9H/nedNNN+Wss87Kdtttl5UrV6atra0z30JgM8igV/bDH/4wy5Yty0knndSl/YFNkz8vWbf/mDFj1tu+ww47JEmGDBnyqscAaieDXvLzn/88r3nNazqK6iSpr6/PCSeckJaWltx2222vegy6n7+s7ufWvTfqJZdckg9+8IPZb7/9On5ReOihh3LwwQdn3LhxOeecczJs2LB897vfzbHHHpv//M//7HiG+/e//32+//3vZ/r06Zk4cWIWLlyYr33tazn00EPz8MMPZ+zYsdl9991z0UUX5fzzz89pp52WN73pTUmSgw46qEtzX3zxxRk0aFA++tGPZtWqVRk0aFBuueWWHHXUUdlnn31ywQUXpL6+PldffXXe8pa35Oc//3n233//Vz3uNddck69+9aupqiq77757PvGJT3jZB/QgGfSSn/70p0le+j9qhx9+eG655ZYMGDAgRxxxRK688srstNNOXZoT2DQZ9MquvfbaDBkyJMcdd1yXZgQ2Tf68ZN99982wYcNy3nnnZdSoUXnd616X3/3ud/nYxz6W/fbbL1OmTOnSnMCmyaCXrFq1aqNPig0dOjRJMn/+/BxxxBFdmpXNUNHv/exnP6uSVNdff/162w8//PBqr732qlauXNmxrb29vTrooIOqXXfdtWPbypUrq7Vr16637+OPP141NjZWF110Uce2efPmVUmqq6++eoMZJkyYUM2YMWOD7Yceemh16KGHbjDrzjvvXK1YsWK9uXbddddq2rRpVXt7e8f2FStWVBMnTqyOOOKIV/0+HHTQQdXll19e/eAHP6iuvPLK6vWvf32VpPrqV7/6qvsCXSeDquqDH/xglaTabrvtqiOPPLL6zne+U332s5+thg8fXu2yyy7V8uXLN7k/0HUyaEPPP/98NWjQoOqEE06oaT+gNvLnJTfeeGO1ww47VEk6/ps2bVq1bNmyV90X6DoZVFVnnHFGVV9fX/3hD39Yb/uJJ55YJalOP/30Te5Pz/A2IGzU4sWLc8stt+SEE07IsmXL8txzz+W5557L888/n2nTpuXRRx/N008/nSRpbGzseI+gtWvX5vnnn8/w4cPzute9Lvfee2+PzDdjxoz1nv26//778+ijj+Zv//Zv8/zzz3fMu3z58hx++OG5/fbb097evslj/vKXv8yHPvShvPWtb8373ve+zJ8/P69//evz8Y9/PC+++GKPnAewcf0tg1544YUkSXNzc/77v/87J5xwQj760Y/mG9/4Rh577LFcd911PXIewMb1twx6uRtuuCGrV6/2FiBQQH/Mn9e85jV54xvfmE9/+tP5/ve/n09+8pP5+c9/npNPPrlHzgF4Zf0tg97znvdkwIABOeGEE3LHHXfksccey6WXXprvfe97SaILKsTbgLBRv/vd71JVVc4777ycd955G12zaNGijBs3Lu3t7fnSl76Ur371q3n88cezdu3ajjU99SFhEydOXO/rRx99NMlLwfVKli5dmm233bbT9zFo0KCcfvrpHcX1IYcc0rVhgZr1twxa9wvXCSecsN4HhEyfPj3vfOc7c8cdd/ToJ3QD6+tvGfRy1157bUaNGpWjjjqq60MCXdLf8uf3v/993vzmN+ff//3fc/zxxydJ/t//+38d72N70003ySLYgvpbBv3FX/xFrrvuurzvfe/LwQcfnOSlPyC6/PLL8/73vz/Dhw/vpsmphbKajVr3zNNHP/rRTJs2baNr/vzP/zxJcskll+S8887Lu9/97lx88cUZNWpU6uvrc+aZZ3b6r3jq6uo2un3t2rUZMGDABttf/p5C6+7ns5/9bCZNmrTRY3UlZMaPH5/kpWcXgS2nv2XQ2LFjk2z44UIDBgzIdtttl//93/99xX2B7tffMuhPPfnkk/n5z3+e0047LQ0NDZ3aB+g+/S1/rrnmmqxcuTLHHHPMetvf+ta3Jnnp1a/Kathy+lsGJcnb3/72vPWtb80DDzyQtWvXZu+9986tt96aJHnta1/7KmdAT1BWs1E777xzkqShoeFVP9TihhtuyJvf/Ob8y7/8y3rblyxZku23377j61cKoSTZdttts2TJkg22P/HEEx2zbMouu+ySJGlqaurWD+H4/e9/n+Sll6YBW05/y6B99tknSTpeUrfO6tWr89xzz8kg2ML6Wwb9qW9/+9upqspbgEAh/S1/Fi5cmKqq1vuLzCRpa2tLkqxZs6bmYwJd198yaJ1BgwZlv/326/j6pz/9aZL4kNdCvGc1GzV69Ogcdthh+drXvpZnnnlmg9ufffbZjv89YMCAVFW13u3XX3/9BqXLsGHDkmSjQbTLLrvkzjvvzOrVqzu23XjjjXnqqac6Ne8+++yTXXbZJZ/73Oc63vv1lebdmI3dvmzZslx++eXZfvvtO4okYMvobxl02GGHZfTo0bn22muzcuXKju3XXHNN1q5d6xOoYQvrbxn0p6677rrsuOOO3v4MCulv+fPa1742VVXlu9/97nrbv/3tbydJ3vjGN3ZqDqB79LcM2phHH300V111VY455hh/WV2Iv6zmFV1xxRU55JBDstdee+XUU0/NzjvvnIULF2bu3Ln54x//mAceeCBJcswxx+Siiy7KySefnIMOOigPPvhgrr322g2eBdtll10ycuTIXHXVVdlmm20ybNiwHHDAAZk4cWLe85735IYbbsiRRx6ZE044IY899li+9a1vdTxL9mrq6+vzz//8zznqqKOy55575uSTT864cePy9NNP52c/+1mamprywx/+cJPn+v3vfz9//dd/nR133DHPPPNM/vVf/zVPPvlkvvnNb2bQoEFd/0YCXdKfMqixsTGf/exnM2PGjPzlX/5l3vnOd+bJJ5/Ml770pbzpTW/Kcccd1/VvJNAl/SmD1vnVr36V//mf/8k555yzyb+CAnpWf8qfd73rXfnc5z6X9773vbnvvvuy55575t57780///M/Z88998zb3va2rn8jgS7pTxmUJHvssUemT5+eHXfcMY8//niuvPLKjBo1KldddVXXvoFsvop+72c/+1mVpLr++us3uO2xxx6r/v7v/75qbm6uGhoaqnHjxlXHHHNMdcMNN3SsWblyZfWRj3yk2mGHHaohQ4ZUBx98cDV37tzq0EMPrQ499ND1jveDH/yg2mOPPaqBAwdWSaqrr76647bPf/7z1bhx46rGxsbq4IMPru65554NjrGpWauqqu67777quOOOq7bbbruqsbGxmjBhQnXCCSdUc+bM2eT34Oabb66OOOKIjvMcOXJkNXXq1FfdD9h8Muj/fPvb367e8IY3VI2NjdWYMWOq008/vWptbe3UvkDXyKD/c84551RJqv/5n//p1Hpg88ifl/zxj3+s3v3ud1cTJ06sBg0aVO2www7VqaeeWj377LOvui/QdTLoJSeeeGI1fvz4atCgQdXYsWOr973vfdXChQtfdT96Tl1Vvexv9gEAAAAAYAvzntUAAAAAABSnrAYAAAAAoDhlNQAAAAAAxSmrAQAAAAAoTlkNAAAAAEBxymoAAAAAAIobWHqArmhvb8+CBQuyzTbbpK6urvQ4QI2qqsqyZcsyduzY1Nf3vufMZBD0XvIHKEkGAaX09vxJZBD0ZrVkUK8sqxcsWJDx48eXHgPYTE899VT+7M/+rPQYNZNB0PvJH6AkGQSU0lvzJ5FB0Bd0JoN6ZVm9zTbbJHnpBJuamgpPQ3dra2vLzTffnKlTp6ahoaH0OPSA1tbWjB8/vuOx3NvIoL5NBvVt8oetnQzq22QQWzP507f19vxJZFBfJ4P6tloyqFeW1ete7tHU1CSg+qC2trYMHTo0TU1NAqqP660v3ZJBfZsM6h/kD1srGdQ/yCC2RvKnf+it+ZPIoL5OBvUPncmg3vlGRQAAAAAA9CnKagAAAAAAilNWAwAAAABQnLIaAAAAAIDilNUAAAAAABSnrAYAAAAAoDhlNQAAAAAAxSmrAQAAAAAoTlkNAAAAAEBxymoAAAAAAIobWHoA+pcVK1bkN7/5zSbXvPDiqtzx4GPZdvt7MnxI4ybX7rbbbhk6dGh3jgj0YTIIKEkGAaXIH6AkGUQtlNVsUb/5zW+yzz77dGrtZZ1YM3/+/Oy9996bNxTQb8ggoCQZBJQif4CSZBC1UFazRe22226ZP3/+Jtc88sySzLr+wXxh+l553Q4jX/V4AJ0lg4CSZBBQivwBSpJB1EJZzRY1dOjQV332q/6J59P48xez++vfkEkTtttCkwH9gQwCSpJBQCnyByhJBlELH7AIAAAAAEBxymoAAAAAAIpTVgMAAAAAUJyyGgAAAACA4pTVAAAAAAAUp6wGAAAAAKC4msrqtWvX5rzzzsvEiRMzZMiQ7LLLLrn44otTVVXHmqqqcv7552eHHXbIkCFDMmXKlDz66KPrHWfx4sU56aST0tTUlJEjR+aUU07JCy+80D1nBPRZMggoRf4AJckgoBT5A2xpNZXVn/nMZ3LllVfmK1/5Sn7961/nM5/5TC677LL80z/9U8eayy67LF/+8pdz1VVX5a677sqwYcMybdq0rFy5smPNSSedlIceeiizZ8/OjTfemNtvvz2nnXZa950V0CfJIKAU+QOUJIOAUuQPsMVVNTj66KOrd7/73ettO+6446qTTjqpqqqqam9vr5qbm6vPfvazHbcvWbKkamxsrL797W9XVVVVDz/8cJWkmjdvXseam266qaqrq6uefvrpTs2xdOnSKkm1dOnSWsanl7jvD89VE86+sbrvD8+VHoUe0tXHsAxiS5BBfZv8YWsng/o2GcTWTP70bb09fzbnHOgdZFDfVsvjt6a/rD7ooIMyZ86c/Pa3v02SPPDAA/nFL36Ro446Kkny+OOPp6WlJVOmTOnYZ8SIETnggAMyd+7cJMncuXMzcuTI7Lvvvh1rpkyZkvr6+tx11121t+1AvyGDgFLkD1CSDAJKkT/AljawlsXnnHNOWltbs9tuu2XAgAFZu3ZtPv3pT+ekk05KkrS0tCRJxowZs95+Y8aM6bitpaUlo0ePXn+IgQMzatSojjUvt2rVqqxatarj69bW1iRJW1tb2traajkFeoE1a9Z0/Ov69k1dva4yiC1BBvVt8oetnQzq22QQWzP507f1tvxJZFB/I4P6tlquaU1l9Xe/+91ce+21ue6667Lnnnvm/vvvz5lnnpmxY8dmxowZNQ/aWZdeemkuvPDCDbbffPPNGTp0aI/dL2U89UKSDMydd96Zp39Vehp6wooVK7q0nwxiS5BBfZv8YWsng/o2GcTWTP70bb0tfxIZ1N/IoL6tlgyqqaw+66yzcs455+TEE09Mkuy111554okncumll2bGjBlpbm5OkixcuDA77LBDx34LFy7MpEmTkiTNzc1ZtGjResdds2ZNFi9e3LH/y5177rmZNWtWx9etra0ZP358pk6dmqamplpOgV7ggScXJw/ekwMPPDBv2HFU6XHoAeueEa+VDGJLkEF9m/xhayeD+jYZxNZM/vRtvS1/EhnU38igvq2WDKqprF6xYkXq69d/m+sBAwakvb09STJx4sQ0Nzdnzpw5HaHU2tqau+66K+9///uTJJMnT86SJUsyf/787LPPPkmSW265Je3t7TnggAM2er+NjY1pbGzcYHtDQ0MaGhpqOQV6gYEDB3b86/r2TV29rjKILUEG9W3yh62dDOrbZBBbM/nTt/W2/ElkUH8jg/q2Wq5pTWX1X//1X+fTn/50dtxxx+y5556577778oUvfCHvfve7kyR1dXU588wz86lPfSq77rprJk6cmPPOOy9jx47NsccemyTZfffdc+SRR+bUU0/NVVddlba2tpx++uk58cQTM3bs2FrGAfoZGQSUIn+AkmQQUIr8Aba4qgatra3Vhz70oWrHHXesBg8eXO28887VP/zDP1SrVq3qWNPe3l6dd9551ZgxY6rGxsbq8MMPrx555JH1jvP8889Xf/M3f1MNHz68ampqqk4++eRq2bJlnZ5j6dKlVZJq6dKltYxPL3HfH56rJpx9Y3XfH54rPQo9pKuPYRnEliCD+jb5w9ZOBvVtMoitmfzp23p7/mzOOdA7yKC+rZbHb11VVVWporyrWltbM2LEiCxdutT7FPVB9z/xfI698s58//0HZtKE7UqPQw/o7Y/h3j4/myaD+rbe/vjt7fPz6mRQ39bbH8O9fX42Tf70bX3h8dsXzoFXJoP6tloev/WbvBUAAAAAALYAZTUAAAAAAMUpqwEAAAAAKE5ZDQAAAABAccpqAAAAAACKU1YDAAAAAFCcshoAAAAAgOKU1QAAAAAAFKesBgAAAACgOGU1AAAAAADFKasBAAAAAChOWQ0AAAAAQHHKagAAAAAAilNWAwAAAABQnLIaAAAAAIDilNUAAAAAABSnrAYAAAAAoDhlNQAAAAAAxSmrAQAAAAAoTlkNAAAAAEBxymoAAAAAAIpTVgMAAAAAUJyyGgAAAACA4pTVAAAAAAAUp6wGAAAAAKA4ZTUAAAAAAMUpqwEAAAAAKE5ZDQAAAABAccpqAAAAAACKU1YDAAAAAFCcshoAAAAAgOKU1QAAAAAAFKesBgAAAACgOGU1AAAAAADFKasBAAAAAChOWQ0AAAAAQHHKagAAAAAAilNWAwAAAABQnLIaAAAAAIDilNUAAAAAABSnrAYAAAAAoDhlNQAAAAAAxSmrAQAAAAAoTlkNAAAAAEBxymoAAAAAAIpTVgMAAAAAUJyyGgAAAACA4pTVAAAAAAAUp6wGAAAAAKA4ZTUAAAAAAMUNLD0Afcvjzy3P8lVrNusYjz27vOPfgQM370d0WOPATNx+2GYdA+g9ZBBQkgwCSpE/QEkyiO6krKbbPP7c8rz5c7d22/E+csOD3XKcn330MCEF/YAMAkqSQUAp8gcoSQbR3ZTVdJt1z6Jd/o5J+fPRw7t+nBdX5cZb5+aYwyZn2JDGLh/nd4teyJnfuX+zn90DegcZBJQkg4BS5A9Qkgyiuymr6XZ/Pnp4Xj9uRJf3b2trS8trkr0nbJuGhoZunAzoD2QQUJIMAkqRP0BJMoju4gMWAQAAAAAoruay+umnn87f/d3fZbvttsuQIUOy11575Z577um4vaqqnH/++dlhhx0yZMiQTJkyJY8++uh6x1i8eHFOOumkNDU1ZeTIkTnllFPywgsvbP7ZAH2eDAJKkT9ASTIIKEX+AFtSTWX1//7v/+bggw9OQ0NDbrrppjz88MP5/Oc/n2233bZjzWWXXZYvf/nLueqqq3LXXXdl2LBhmTZtWlauXNmx5qSTTspDDz2U2bNn58Ybb8ztt9+e0047rfvOCuiTZBBQivwBSpJBQCnyB9jiqhqcffbZ1SGHHPKKt7e3t1fNzc3VZz/72Y5tS5YsqRobG6tvf/vbVVVV1cMPP1wlqebNm9ex5qabbqrq6uqqp59+ulNzLF26tEpSLV26tJbx6WEP/nFJNeHsG6sH/7hks46zevXq6vvf/361evXqrWIeul9XH8MyiE2RQXSG/KGnyCA6QwbRE+QPndHb82dzzoGeJYPojFoevzV9wOJ//dd/Zdq0aZk+fXpuu+22jBs3Lh/4wAdy6qmnJkkef/zxtLS0ZMqUKR37jBgxIgcccEDmzp2bE088MXPnzs3IkSOz7777dqyZMmVK6uvrc9ddd+Vtb3vbBve7atWqrFq1quPr1tbWJC+9+XpbW1stp0APWrNmTce/m3Nd1u27ude2u+ah+3X1esggNkUG0Rnyh54ig+gMGURPkD90Rm/Ln0QG9RYyiM6o5VrUVFb//ve/z5VXXplZs2bl4x//eObNm5cPfvCDGTRoUGbMmJGWlpYkyZgxY9bbb8yYMR23tbS0ZPTo0esPMXBgRo0a1bHm5S699NJceOGFG2y/+eabM3To0FpOgR701AtJMjC/+MUv8sTwzT/e7Nmzt6p56D4rVqzo0n4yiE2RQXSG/KGnyCA6QwbRE+QPndHb8ieRQb2FDKIzasmgmsrq9vb27LvvvrnkkkuSJG984xvzq1/9KldddVVmzJhR25Q1OPfcczNr1qyOr1tbWzN+/PhMnTo1TU1NPXa/1OahBa353IN35pBDDsmeY7t+Xdra2jJ79uwcccQRaWhoKD4P3W/dM+K1kkFsigyiM+QPPUUG0RkyiJ4gf+iM3pY/iQzqLWQQnVFLBtVUVu+www7ZY4891tu2++675z//8z+TJM3NzUmShQsXZocdduhYs3DhwkyaNKljzaJFi9Y7xpo1a7J48eKO/V+usbExjY2NG2xvaGjYrB9gutfAgQM7/u2O67K517e756H7dPV6yCA2RQbRGfKHniKD6AwZRE+QP3RGb8ufRAb1FjKIzqjlWtTXcuCDDz44jzzyyHrbfvvb32bChAlJkokTJ6a5uTlz5szpuL21tTV33XVXJk+enCSZPHlylixZkvnz53esueWWW9Le3p4DDjiglnGAfkYGAaXIH6AkGQSUIn+ALa2mv6z+8Ic/nIMOOiiXXHJJTjjhhNx99935+te/nq9//etJkrq6upx55pn51Kc+lV133TUTJ07Meeedl7Fjx+bYY49N8tIzcEceeWROPfXUXHXVVWlra8vpp5+eE088MWPHju32EwT6DhkElCJ/gJJkEFCK/AG2tJrK6v322y/f+973cu655+aiiy7KxIkTc/nll+ekk07qWPOxj30sy5cvz2mnnZYlS5bkkEMOyY9//OMMHjy4Y821116b008/PYcffnjq6+tz/PHH58tf/nL3nRXQJ8kgoBT5A5Qkg4BS5A+wpdVUVifJMccck2OOOeYVb6+rq8tFF12Uiy666BXXjBo1Ktddd12tdw0gg4Bi5A9QkgwCSpE/wJZU03tWAwAAAABAT1BWAwAAAABQnLIaAAAAAIDilNUAAAAAABSnrAYAAAAAoDhlNQAAAAAAxSmrAQAAAAAoTlkNAAAAAEBxymoAAAAAAIpTVgMAAAAAUJyyGgAAAACA4pTVAAAAAAAUp6wGAAAAAKA4ZTUAAAAAAMUpqwEAAAAAKE5ZDQAAAABAccpqAAAAAACKU1YDAAAAAFCcshoAAAAAgOKU1QAAAAAAFKesBgAAAACgOGU1AAAAAADFKasBAAAAAChOWQ0AAAAAQHHKagAAAAAAilNWAwAAAABQnLIaAAAAAIDilNUAAAAAABSnrAYAAAAAoDhlNQAAAAAAxSmrAQAAAAAoTlkNAAAAAEBxymoAAAAAAIpTVgMAAAAAUJyyGgAAAACA4pTVAAAAAAAUp6wGAAAAAKA4ZTUAAAAAAMUpqwEAAAAAKE5ZDQAAAABAccpqAAAAAACKU1YDAAAAAFCcshoAAAAAgOKU1QAAAAAAFKesBgAAAACgOGU1AAAAAADFKasBAAAAAChOWQ0AAAAAQHHKagAAAAAAilNWAwAAAABQnLIaAAAAAIDilNUAAAAAABSnrAYAAAAAoDhlNQAAAAAAxW1WWf2P//iPqaury5lnntmxbeXKlZk5c2a22267DB8+PMcff3wWLly43n5PPvlkjj766AwdOjSjR4/OWWedlTVr1mzOKEA/I3+AkmQQUJIMAkqRP0BPG9jVHefNm5evfe1r+Yu/+Iv1tn/4wx/Of//3f+f666/PiBEjcvrpp+e4447LL3/5yyTJ2rVrc/TRR6e5uTl33HFHnnnmmfz93/99Ghoacskll2ze2VDUqrUrUz/46Tze+kjqBw/v8nHWrFmTBWsW5NeLf52BA7v8I5rHW19I/eCns2rtyiQjunwctj7yh42RQWwpMoiNkUFsKTKIl5M/bCnyh42RQXS3uqqqqlp3euGFF7L33nvnq1/9aj71qU9l0qRJufzyy7N06dK85jWvyXXXXZe3v/3tSZLf/OY32X333TN37twceOCBuemmm3LMMcdkwYIFGTNmTJLkqquuytlnn51nn302gwYNetX7b21tzYgRI7J06dI0NTXVOj495Ie/vjsfv/uU0mNs4JL9/yV/vfv+pcfgT2zOY7h0/mzu/PQcGURnbO7jt3QGyZ+tlwyiM2QQPUH+0Bm9PX+64xzoGTKIzqjl8dulpypmzpyZo48+OlOmTMmnPvWpju3z589PW1tbpkyZ0rFtt912y4477tgRUnPnzs1ee+3VEVBJMm3atLz//e/PQw89lDe+8Y0b3N+qVauyatWq9U4wSdra2tLW1taVU6AHjG4cl+WPn5EvvH2v7PyaYV0+zpo1a3LXnXflgAMP2Kxn037/7PLMuuHBjH7TOD8nW5nNuR5bOn8SGdRbyCA6Y3Ovhd+BeCUyiM6QQfQE+UNn9Lb8SWRQbyGD6IxarkXNV/8//uM/cu+992bevHkb3NbS0pJBgwZl5MiR620fM2ZMWlpaOtb8aUCtu33dbRtz6aWX5sILL9xg+80335yhQ4fWegr0kKdeSNpXjssfH1iUuq6/8iNJMnbg2Dx1z1ObdYw//v/zzJt7T1oe3Lx56F4rVqzo0n4l8ieRQb2FDKIzupo/id+B2DQZRGfIIHqC/KEzelv+JDKot5BBdEYtGVRTWf3UU0/lQx/6UGbPnp3BgwfXPFhXnXvuuZk1a1bH162trRk/fnymTp3qpR9bkYcWtOZzD96ZQw45JHuO7fp1aWtry+zZs3PEEUekoaGh+Dx0v3XPiNeiVP4kMqi3kEF0RlfyJ/E7EK9OBtEZMoieIH/ojN6WP4kM6i1kEJ1RSwbVVFbPnz8/ixYtyt57792xbe3atbn99tvzla98JT/5yU+yevXqLFmyZL1n1RYuXJjm5uYkSXNzc+6+++71jrvuU2LXrXm5xsbGNDY2brC9oaFhs36A6V7rXqYxcODAbrkum3t9u3seuk9Xrkep/ElkUG8hg+iMrl4LvwPxamQQnSGD6Anyh87obfmTyKDeQgbRGbVci/paDnz44YfnwQcfzP3339/x37777puTTjqp4383NDRkzpw5Hfs88sgjefLJJzN58uQkyeTJk/Pggw9m0aJFHWtmz56dpqam7LHHHrWMA/Qj8gcoSQYBJckgoBT5A2xpNf1l9TbbbJPXv/71620bNmxYtttuu47tp5xySmbNmpVRo0alqakpZ5xxRiZPnpwDDzwwSTJ16tTsscceeec735nLLrssLS0t+cQnPpGZM2du9BkzgET+AGXJIKAkGQSUIn+ALa3rH6/5Cr74xS+mvr4+xx9/fFatWpVp06blq1/9asftAwYMyI033pj3v//9mTx5coYNG5YZM2bkoosu6u5RgH5G/gAlySCgJBkElCJ/gO602WX1rbfeut7XgwcPzhVXXJErrrjiFfeZMGFCfvSjH23uXQP9nPwBSpJBQEkyCChF/gA9qab3rAYAAAAAgJ6grAYAAAAAoDhlNQAAAAAAxSmrAQAAAAAoTlkNAAAAAEBxymoAAAAAAIpTVgMAAAAAUJyyGgAAAACA4pTVAAAAAAAUp6wGAAAAAKA4ZTUAAAAAAMUpqwEAAAAAKE5ZDQAAAABAccpqAAAAAACKU1YDAAAAAFCcshoAAAAAgOKU1QAAAAAAFKesBgAAAACgOGU1AAAAAADFKasBAAAAAChOWQ0AAAAAQHHKagAAAAAAilNWAwAAAABQnLIaAAAAAIDilNUAAAAAABSnrAYAAAAAoDhlNQAAAAAAxSmrAQAAAAAoTlkNAAAAAEBxymoAAAAAAIpTVgMAAAAAUJyyGgAAAACA4pTVAAAAAAAUp6wGAAAAAKA4ZTUAAAAAAMUpqwEAAAAAKE5ZDQAAAABAccpqAAAAAACKU1YDAAAAAFCcshoAAAAAgOKU1QAAAAAAFKesBgAAAACgOGU1AAAAAADFKasBAAAAAChOWQ0AAAAAQHHKagAAAAAAilNWAwAAAABQnLIaAAAAAIDilNUAAAAAABSnrAYAAAAAoDhlNQAAAAAAxSmrAQAAAAAoTlkNAAAAAEBxymoAAAAAAIqrqay+9NJLs99++2WbbbbJ6NGjc+yxx+aRRx5Zb83KlSszc+bMbLfddhk+fHiOP/74LFy4cL01Tz75ZI4++ugMHTo0o0ePzllnnZU1a9Zs/tkAfZoMAkqRP0BJMggoSQYBW1JNZfVtt92WmTNn5s4778zs2bPT1taWqVOnZvny5R1rPvzhD+eHP/xhrr/++tx2221ZsGBBjjvuuI7b165dm6OPPjqrV6/OHXfckX/7t3/LNddck/PPP7/7zgrok2QQUIr8AUqSQUBJMgjYoqrNsGjRoipJddttt1VVVVVLliypGhoaquuvv75jza9//esqSTV37tyqqqrqRz/6UVVfX1+1tLR0rLnyyiurpqamatWqVZ2636VLl1ZJqqVLl27O+HSzB/+4pJpw9o3Vg39cslnHWb16dfX973+/Wr169VYxD92vux7DMog/JYPoDPlDT5FBdIYMoifIHzqjOx+/Mog/JYPojFoevwM3p+heunRpkmTUqFFJkvnz56etrS1TpkzpWLPbbrtlxx13zNy5c3PggQdm7ty52WuvvTJmzJiONdOmTcv73//+PPTQQ3njG9+4wf2sWrUqq1at6vi6tbU1SdLW1pa2trbNOQW60bIXX7pGDzy5eLNeyrN85arc82yy/e+fzbDBjV0+zu+efelZ3jVr1vg52cp01/WQQfwpGURnyB96igyiM2QQPUH+0BndeS1kEH9KBtEZtVyLLpfV7e3tOfPMM3PwwQfn9a9/fZKkpaUlgwYNysiRI9dbO2bMmLS0tHSs+dNwWnf7uts25tJLL82FF164wfabb745Q4cO7eop0M3mLqxLMiD/8IOHu+FoA/PN393XDcdJ5s39RZ4Y0i2HopusWLFis48hg3g5GURnyB96igyiM2QQPUH+0BndkT+JDGJDMojOqCWDulxWz5w5M7/61a/yi1/8oquH6LRzzz03s2bN6vi6tbU148ePz9SpU9PU1NTj90/nHLh8dfb69aLs/JphGdIwoMvH+W3L0nzse7/OZW/bPa9tHrFZMw1rHJCdthu2Wceg+617RnxzyCBeTgbRGfKHniKD6AwZRE+QP3RGd+RPIoPYkAyiM2rJoC6V1aeffnpuvPHG3H777fmzP/uzju3Nzc1ZvXp1lixZst4zagsXLkxzc3PHmrvvvnu94637hNh1a16usbExjY0bvgSgoaEhDQ0NXTkFesCYkQ05afLEbjvea5tHZNKE7brteGw9NvdxK4PYGBlEZ8gfeooMojNkED1B/tAZ3fGYlUFsjAyiM2p5zNbXcuCqqnL66afne9/7Xm655ZZMnLj+D+M+++yThoaGzJkzp2PbI488kieffDKTJ09OkkyePDkPPvhgFi1a1LFm9uzZaWpqyh577FHLOEA/I4OAUuQPUJIMAkqSQcCWVNNfVs+cOTPXXXddfvCDH2SbbbbpeF+hESNGZMiQIRkxYkROOeWUzJo1K6NGjUpTU1POOOOMTJ48OQceeGCSZOrUqdljjz3yzne+M5dddllaWlryiU98IjNnztzoM2YA68ggoBT5A5Qkg4CSZBCwRVU1SLLR/66++uqONS+++GL1gQ98oNp2222roUOHVm9729uqZ555Zr3j/OEPf6iOOuqoasiQIdX2229ffeQjH6na2to6PcfSpUurJNXSpUtrGZ9e4r4/PFdNOPvG6r4/PFd6FHpIVx/DMogtQQb1bfKHrZ0M6ttkEFsz+dO3bc7jVwaxJcigvq2Wx29Nf1ldVdWrrhk8eHCuuOKKXHHFFa+4ZsKECfnRj35Uy10DyCCgGPkDlCSDgJJkELAl1fSe1QAAAAAA0BOU1QAAAAAAFKesBgAAAACgOGU1AAAAAADFKasBAAAAAChOWQ0AAAAAQHHKagAAAAAAilNWAwAAAABQnLIaAAAAAIDilNUAAAAAABSnrAYAAAAAoDhlNQAAAAAAxSmrAQAAAAAoTlkNAAAAAEBxymoAAAAAAIpTVgMAAAAAUJyyGgAAAACA4pTVAAAAAAAUp6wGAAAAAKA4ZTUAAAAAAMUpqwEAAAAAKE5ZDQAAAABAccpqAAAAAACKU1YDAAAAAFCcshoAAAAAgOKU1QAAAAAAFKesBgAAAACgOGU1AAAAAADFKasBAAAAAChOWQ0AAAAAQHHKagAAAAAAilNWAwAAAABQnLIaAAAAAIDilNUAAAAAABSnrAYAAAAAoDhlNQAAAAAAxSmrAQAAAAAoTlkNAAAAAEBxymoAAAAAAIpTVgMAAAAAUJyyGgAAAACA4pTVAAAAAAAUp6wGAAAAAKA4ZTUAAAAAAMUpqwEAAAAAKE5ZDQAAAABAccpqAAAAAACKU1YDAAAAAFCcshoAAAAAgOKU1QAAAAAAFKesBgAAAACgOGU1AAAAAADFKasBAAAAAChOWQ0AAAAAQHFFy+orrrgiO+20UwYPHpwDDjggd999d8lxgH5E/gAlySCgFPkDlCSDgFdTrKz+zne+k1mzZuWCCy7Ivffemze84Q2ZNm1aFi1aVGokoJ+QP0BJMggoRf4AJckgoDOKldVf+MIXcuqpp+bkk0/OHnvskauuuipDhw7Nv/7rv5YaCegn5A9QkgwCSpE/QEkyCOiMgSXudPXq1Zk/f37OPffcjm319fWZMmVK5s6du8H6VatWZdWqVR1ft7a2Jkna2trS1tbW8wPTbVasWJFHHnlkk2t++8zSrGr5XX51/6CsXjhik2tf97rXZejQod05IltAycdtrfmTyKC+RAZR+jHrd6D+TQbhdyBKkT+UfszKoP5NBlHLY7ZIWf3cc89l7dq1GTNmzHrbx4wZk9/85jcbrL/00ktz4YUXbrD95ptv9sPZyzz22GP5yEc+0qm17/y3V1/z+c9/PrvssstmTsWWtmLFimL3XWv+JDKoL5FBlMyfxO9A/Z0Mwu9AlCJ/6G2/AyUyqC+RQdSSQUXK6lqde+65mTVrVsfXra2tGT9+fKZOnZqmpqaCk1GrFStW5JBDDtnkmhdeXJWf/Hxepr1pvwwf0rjJtZ5N653WPSPeW8igvkMGIX8oSQYhgyhF/tDb8ieRQX2JDKKWDCpSVm+//fYZMGBAFi5cuN72hQsXprm5eYP1jY2NaWzc8Ae1oaEhDQ0NPTYn3W/EiBHZf//9N7mmra0ty5YszpsOOtD17aNKXtda8yeRQX2JDKL0NfU7UP8mg/A7EKXIH0pfUxnUv8kgarmmRT5gcdCgQdlnn30yZ86cjm3t7e2ZM2dOJk+eXGIkoJ+QP0BJMggoRf4AJckgoLOKvQ3IrFmzMmPGjOy7777Zf//9c/nll2f58uU5+eSTS40E9BPyByhJBgGlyB+gJBkEdEaxsvod73hHnn322Zx//vlpaWnJpEmT8uMf/3iDN9sH6G7yByhJBgGlyB+gJBkEdEbRD1g8/fTTc/rpp5ccAein5A9QkgwCSpE/QEkyCHg1Rd6zGgAAAAAA/pSyGgAAAACA4pTVAAAAAAAUp6wGAAAAAKA4ZTUAAAAAAMUpqwEAAAAAKG5g6QG6oqqqJElra2vhSegJbW1tWbFiRVpbW9PQ0FB6HHrAusfuusdybyOD+jYZ1LfJH7Z2Mqhvk0FszeRP39bb8yeRQX2dDOrbasmgXllWL1u2LEkyfvz4wpMAm2PZsmUZMWJE6TFqJoOg95M/QEkyCCilt+ZPIoOgL+hMBtVVvfBptfb29ixYsCDbbLNN6urqSo9DN2ttbc348ePz1FNPpampqfQ49ICqqrJs2bKMHTs29fW9792IZFDfJoP6NvnD1k4G9W0yiK2Z/Onbenv+JDKor5NBfVstGdQry2r6ttbW1owYMSJLly4VUMAWJ4OAkmQQUIr8AUqSQazTO59OAwAAAACgT1FWAwAAAABQnLKarU5jY2MuuOCCNDY2lh4F6IdkEFCSDAJKkT9ASTKIdbxnNQAAAAAAxfnLagAAAAAAilNWAwAAAABQnLIaAAAAAIDilNUAAAAAABSnrGarc8UVV2SnnXbK4MGDc8ABB+Tuu+8uPRLQT8gfoCQZBJQkg4BS5A9/SlnNVuU73/lOZs2alQsuuCD33ntv3vCGN2TatGlZtGhR6dGAPk7+ACXJIKAkGQSUIn94ubqqqqrSQ8A6BxxwQPbbb7985StfSZK0t7dn/PjxOeOMM3LOOecUng7oy+QPUJIMAkqSQUAp8oeX85fVbDVWr16d+fPnZ8qUKR3b6uvrM2XKlMydO7fgZEBfJ3+AkmQQUJIMAkqRP2yMspqtxnPPPZe1a9dmzJgx620fM2ZMWlpaCk0F9AfyByhJBgElySCgFPnDxiirAQAAAAAoTlnNVmP77bfPgAEDsnDhwvW2L1y4MM3NzYWmAvoD+QOUJIOAkmQQUIr8YWOU1Ww1Bg0alH322Sdz5szp2Nbe3p45c+Zk8uTJBScD+jr5A5Qkg4CSZBBQivxhYwaWHgD+1KxZszJjxozsu+++2X///XP55Zdn+fLlOfnkk0uPBvRx8gcoSQYBJckgoBT5w8spq9mqvOMd78izzz6b888/Py0tLZk0aVJ+/OMfb/Bm+wDdTf4AJckgoCQZBJQif3i5uqqqqtJDAAAAAADQv3nPagAAAAAAilNWAwAAAABQnLIaAAAAAIDilNUAAAAAABSnrAYAAAAAoDhlNQAAAAAAxSmrAQAAAAAoTlkNAAAAAEBxymoAAAAAAIpTVgMAAAAAUJyyGgAAAACA4pTVAAAAAAAUp6wGAAAAAKA4ZTUAAAAAAMUpqwEAAAAAKE5ZDQAAAABAccrqfmjevHk56KCDMmzYsNTV1eX+++8vPRLQj8ggoBT5A5Qkg4CSZBC9hbK6n2lra8v06dOzePHifPGLX8w3v/nNTJgwodvvZ8GCBfnkJz+51YbflVdemenTp2fHHXdMXV1d3vWud73i2iVLluS0007La17zmgwbNixvfvObc++99265YaEPkUEv6WwGPfPMMznnnHPy5je/Odtss03q6upy6623btFZoa+QPy/pbP7MmTMn7373u/Pa1742Q4cOzc4775z3vOc9eeaZZ7bswNBHyKCXdDaDbr/99rz1rW/N+PHjM3jw4DQ3N+fII4/ML3/5yy07MPQRMugltXRBf+rUU09NXV1djjnmmJ4dkCTJwNIDsGU99thjeeKJJ/KNb3wj73nPe3rsfhYsWJALL7wwO+20UyZNmtRj99NVn/nMZ7Js2bLsv//+m/w/Xe3t7Tn66KPzwAMP5Kyzzsr222+fr371qznssMMyf/787Lrrrltwauj9ZNBLOptBjzzySD7zmc9k1113zV577ZW5c+duwSmhb5E/L+ls/px99tlZvHhxpk+fnl133TW///3v85WvfCU33nhj7r///jQ3N2/BqaH3k0Ev6WwG/fa3v019fX3e9773pbm5Of/7v/+bb33rW/nLv/zL/Pd//3eOPPLILTg19H4y6CWdzaA/dc899+Saa67J4MGDe3g61lFW9zOLFi1KkowcObLsIF20cuXKDBo0KPX1m/eigNtuu63jmbThw4e/4robbrghd9xxR66//vq8/e1vT5KccMIJee1rX5sL/r/27j7OyrrOH/97BoaBAQYEZQYIEV3LmygSlBtpMUXQ1XZN09yoCE37GVhEllqiC95QVmbmDbbbWltahq2WrpmEd7mNiHiz3qJ5nzSDSDDcyDAw1+8Pv5wauZszN3xmzjyfj4cPPNf5nOt6n7k4L4+vc+aciy6Km266qUVzQGcjg97R1AwaOXJkvPXWW9GvX7+45ZZb4uSTT27RcaEzkz/vaGr+XHHFFTF+/PhGxzvmmGNiwoQJcfXVV8cll1zSojmgs5FB72hqBn3uc5/bplD7whe+EPvuu29ceeWVymrIkwx6R1MzaKssy+KLX/xifOYzn4lFixa16Ng0nY8B6UQ++9nPxoQJEyIi4uSTT46ioqI44ogjctc/99xz8fGPfzz69esX3bt3j1GjRsVvfvObRvtYtWpVnHPOOTF8+PDo1atXlJeXx7HHHhtPPPFEbs19990Xhx56aERETJs2LYqKiqKoqCh+/OMfR0TEPvvss91ftTjiiCMazXPfffdFUVFR/OIXv4gLLrggBg8eHGVlZVFbWxsREYsXL45jjjkm+vTpE2VlZTFhwoQm/1rY0KFDo6ioaJfrbrnllqioqIgTTzwxt22vvfaKU045JX79619HXV1dk44HyKC/19QM6t27d/Tr169J+wR2TP78TVPz5x//8R+3+R/Cf/zHf4x+/frFs88+26RjAe+QQX/T1AzanrKysthrr71i9erVzbo9dFYy6G/yzaCf/vSn8dRTT8Wll17a5NvQct5Z3Yl8/vOfj8GDB8dll10WX/ziF+PQQw+NioqKiIh4+umn4/DDD4/BgwfHeeedFz179oxf/vKXccIJJ8SvfvWr+NjHPhYRES+99FLcdtttcfLJJ8ewYcOipqYmrr/++pgwYUI888wzMWjQoDjwwANj7ty5ceGFF8aZZ54ZH/7whyMiYty4cc2a++KLL45u3brFOeecE3V1ddGtW7e455574thjj42RI0fGRRddFMXFxXHDDTfEkUceGX/4wx/isMMOa5Wf2WOPPRaHHHLINv+zdthhh8UPf/jDeP7552P48OGtciwodDIISEX+tI5169bFunXrYs8992yzY0AhkkHNV1tbG5s2bYqVK1fGf/3Xf8VTTz0VX//611v1GFDoZFDzrF27Ns4999z4+te/7uPPdreMTuXee+/NIiJbsGBBo+1HHXVUNnz48Gzjxo25bQ0NDdm4ceOy/fffP7dt48aN2ZYtWxrd9uWXX85KS0uzuXPn5rYtWbIki4jshhtu2GaGoUOHZlOnTt1m+4QJE7IJEyZsM+u+++6bbdiwodFc+++/fzZ58uSsoaEht33Dhg3ZsGHDsqOPPnqXP4e/17Nnz+3Os/W60047bZvt//M//5NFRHbXXXfldSzo7GTQtnaWQX9vwYIFWURk9957b177B94hf7bV1PzZ6uKLL84iIlu0aFFexwFk0PY0JYMmT56cRUQWEVm3bt2yz3/+89nbb7+d13EAGbQ9u8qgc845Jxs2bFjuZzN06NDsuOOOy+sYNI+PASFWrVoV99xzT5xyyimxdu3aWLlyZaxcuTLeeuutmDx5crzwwgvxxhtvREREaWlp7l3GW7Zsibfeeit69eoV73vf++LRRx9tk/mmTp0aPXr0yF1+/PHH44UXXohPfvKT8dZbb+XmXb9+fRx11FHxwAMPRENDQ6sc++23347S0tJttm/9YP233367VY4DnZkMAlKRP033wAMPxJw5c+KUU06JI488sk2OAZ2NDNq1b37zm3H33XfHj370oxgzZkxs2rQpNm/e3KrHgM5KBu3Y888/H9///vfj29/+9nY7IdqWjwEh/vSnP0WWZTF79uyYPXv2dtesWLEiBg8eHA0NDfH9738/rr322nj55Zdjy5YtuTX9+/dvk/mGDRvW6PILL7wQEe8E146sWbMm9thjjxYfu0ePHtv9XOqNGzfmrgdaRgYBqcifpnnuuefiYx/7WLz//e+P//iP/2jVfUNnJoN2bcSIEbl//9SnPhWHHHJIfPazn41bbrml1Y4BnZUM2rEvfelLMW7cuDjppJNavC/yp6wm98rTOeecE5MnT97umn/4h3+IiIjLLrssZs+eHaeddlpcfPHF0a9fvyguLo6ZM2c2+RWsHX2Y/ZYtW6JLly7bbH93Ibz1ON/+9rcbPXn5e035VtemGDhwYPzlL3/ZZvvWbYMGDWqV40BnJoOAVOTPrr3++usxadKk6NOnT9x5553Ru3fvVt0/dGYyKD/dunWLf/7nf45vfvOb8fbbb3vjELSQDNq+e+65J+6666747//+73jllVdy2zdv3hxvv/12vPLKK9GvX78oLy9v8bHYPmU1se+++0ZERElJSUycOHGna2+55Zb4yEc+Ej/60Y8abV+9enWjL9vZ2ber7rHHHtv9BudXX301N8vO7LfffhERUV5evst5W2rEiBHxhz/8IRoaGhp9yeLixYujrKws3vve97bp8aEzkEFAKvJn5956662YNGlS1NXVxaJFi2LgwIFtfkzoTGRQ/t5+++3IsizWrl2rrIYWkkHb99prr0VExIknnrjNdW+88UYMGzYsvve978XMmTPbbIbOzmdWEwMGDIgjjjgirr/++u2+i/jNN9/M/XuXLl0iy7JG1y9YsCD3OUZb9ezZMyJiu0G03377xUMPPRSbNm3Kbbvjjjvi9ddfb9K8I0eOjP322y++853vxLp163Y6b0t9/OMfj5qamvjv//7v3LaVK1fGggUL4qMf/ajPLoJWIIOAVOTPjq1fvz7+6Z/+Kd5444248847Y//992+1fQPvkEE7tmLFim22rV69On71q1/FkCFDYsCAAa12LOisZND2HXnkkXHrrbdu889ee+0Vo0aNiltvvTU++tGPtsqx2D7vrCYiIq655poYP358DB8+PM4444zYd999o6amJqqqquLPf/5zPPHEExERcfzxx8fcuXNj2rRpMW7cuHjyySfjxhtv3OZVsP322y/69u0b8+fPj969e0fPnj1j9OjRMWzYsPjc5z4Xt9xySxxzzDFxyimnxIsvvhg/+9nPcq+S7UpxcXH8x3/8Rxx77LFx8MEHx7Rp02Lw4MHxxhtvxL333hvl5eVx++2373Qft99+e+4+1dfXx//93//FJZdcEhER//zP/xwf+MAHIuKdsnrMmDExbdq0eOaZZ2LPPfeMa6+9NrZs2RJz5szJ62cM7JgM2n4GRURu+9NPPx0RET/96U/jwQcfjIiICy64oEkzAzsmf7afP1OmTImHH344TjvttHj22Wfj2Wefze2jV69eccIJJzRpZmDnZND2M+jYY4+N97znPTF69OgYMGBAvPbaa3HDDTfE8uXL4+abb87rZwzsmAzaNoP23nvv2Hvvvbe57cyZM6OiosJzoN0ho1O59957s4jIFixYsM11L774YvaZz3wmq6yszEpKSrLBgwdnxx9/fHbLLbfk1mzcuDH7yle+kg0cODDr0aNHdvjhh2dVVVXZhAkTsgkTJjTa369//evsoIMOyrp27ZpFRHbDDTfkrvvud7+bDR48OCstLc0OP/zw7JFHHtlmHzubNcuy7LHHHstOPPHErH///llpaWk2dOjQ7JRTTskWLVq0y5/D1KlTs4jY7j9/P2eWZdmqVauy008/Pevfv39WVlaWTZgwIVuyZMkujwFsSwa9I58M2tE6/wmH/MifdzQ1f4YOHbrDdUOHDt3lcYDGZNA7mppBV199dTZ+/Phszz33zLp27Zrttdde2Uc/+tHsgQce2OUxgG3JoHfk8/9h7zZ06NDsuOOO2+UxaLmiLHvX+/gBAAAAAGA385nVAAAAAAAkp6wGAAAAACA5ZTUAAAAAAMkpqwEAAAAASE5ZDQAAAABAcspqAAAAAACS65p6gOZoaGiI5cuXR+/evaOoqCj1OECesiyLtWvXxqBBg6K4uOO9ZiaDoOOSP0BKMghIpaPnT4QMgo4snwzqkGX18uXLY8iQIanHAFro9ddfj/e85z2px8ibDIKOT/4AKckgIJWOmj8RMggKQVMyqEOW1b17946Id+5geXl54mlobfX19XH33XfHpEmToqSkJPU4tIHa2toYMmRI7rHc0cigwiaDCpv8ob2TQYVNBtGeyZ/C1tHzJ0IGFToZVNjyyaAOWVZv/XWP8vJyAVWA6uvro6ysLMrLywVUgeuov7olgwqbDOoc5A/tlQzqHGQQ7ZH86Rw6av5EyKBCJ4M6h6ZkUMf8oCIAAAAAAAqKshoAAAAAgOSU1QAAAAAAJKesBgAAAAAgOWU1AAAAAADJKasBAAAAAEhOWQ0AAAAAQHLKagAAAAAAklNWAwAAAACQnLIaAAAAAIDkuqYegM5lw4YN8dxzz+10zbq36+KPT74Ye+z5SPTqUbrTtQcccECUlZW15ohAAZNBQEoyCEhF/gApySDyoaxmt3ruuedi5MiRTVp7eRPWLF26NA455JCWDQV0GjIISEkGAanIHyAlGUQ+lNXsVgcccEAsXbp0p2uW/WV1zFrwZFxx8vB438C+u9wfQFPJICAlGQSkIn+AlGQQ+VBWs1uVlZXt8tWv4lffitI/vB0Hvv+DMWJo/900GdAZyCAgJRkEpCJ/gJRkEPnwBYsAAAAAACSnrAYAAAAAIDllNQAAAAAAySmrAQAAAABITlkNAAAAAEByymoAAAAAAJJTVgMAAAAAkFxeZfWWLVti9uzZMWzYsOjRo0fst99+cfHFF0eWZbk1WZbFhRdeGAMHDowePXrExIkT44UXXmi0n1WrVsWUKVOivLw8+vbtG6effnqsW7eude4RULBkEJCK/AFSkkFAKvIH2N3yKqu/9a1vxXXXXRdXX311PPvss/Gtb30rLr/88vjBD36QW3P55ZfHVVddFfPnz4/FixdHz549Y/LkybFx48bcmilTpsTTTz8dCxcujDvuuCMeeOCBOPPMM1vvXgEFSQYBqcgfICUZBKQif4DdLsvDcccdl5122mmNtp144onZlClTsizLsoaGhqyysjL79re/nbt+9erVWWlpafbzn/88y7Ise+aZZ7KIyJYsWZJb89vf/jYrKirK3njjjSbNsWbNmiwisjVr1uQzPh3EY6+szIaee0f22CsrU49CG2nuY1gGsTvIoMImf2jvZFBhk0G0Z/KnsHX0/GnJfaBjkEGFLZ/Hb17vrB43blwsWrQonn/++YiIeOKJJ+LBBx+MY489NiIiXn755aiuro6JEyfmbtOnT58YPXp0VFVVRUREVVVV9O3bN0aNGpVbM3HixCguLo7Fixfn37YDnYYMAlKRP0BKMghIRf4Au1vXfBafd955UVtbGwcccEB06dIltmzZEpdeemlMmTIlIiKqq6sjIqKioqLR7SoqKnLXVVdXx4ABAxoP0bVr9OvXL7fm3erq6qKuri53uba2NiIi6uvro76+Pp+7QAewefPm3J/Ob2Fq7nmVQewOMqiwyR/aOxlU2GQQ7Zn8KWwdLX8iZFBnI4MKWz7nNK+y+pe//GXceOONcdNNN8XBBx8cjz/+eMycOTMGDRoUU6dOzXvQppo3b17MmTNnm+133313lJWVtdlxSeP1dRERXeOhhx6KN55KPQ1tYcOGDc26nQxid5BBhU3+0N7JoMImg2jP5E9h62j5EyGDOhsZVNjyyaC8yuqvfvWrcd5558Wpp54aERHDhw+PV199NebNmxdTp06NysrKiIioqamJgQMH5m5XU1MTI0aMiIiIysrKWLFiRaP9bt68OVatWpW7/budf/75MWvWrNzl2traGDJkSEyaNCnKy8vzuQt0AE+8tiriyUdizJgx8cG9+6Uehzaw9RXxfMkgdgcZVNjkD+2dDCpsMoj2TP4Uto6WPxEyqLORQYUtnwzKq6zesGFDFBc3/pjrLl26RENDQ0REDBs2LCorK2PRokW5UKqtrY3FixfHWWedFRERY8eOjdWrV8fSpUtj5MiRERFxzz33RENDQ4wePXq7xy0tLY3S0tJttpeUlERJSUk+d4EOoGvXrrk/nd/C1NzzKoPYHWRQYZM/tHcyqLDJINoz+VPYOlr+RMigzkYGFbZ8zmleZfVHP/rRuPTSS2PvvfeOgw8+OB577LG44oor4rTTTouIiKKiopg5c2Zccsklsf/++8ewYcNi9uzZMWjQoDjhhBMiIuLAAw+MY445Js4444yYP39+1NfXx4wZM+LUU0+NQYMG5TMO0MnIICAV+QOkJIOAVOQPsNtleaitrc2+9KUvZXvvvXfWvXv3bN99982+8Y1vZHV1dbk1DQ0N2ezZs7OKioqstLQ0O+qoo7Jly5Y12s9bb72V/eu//mvWq1evrLy8PJs2bVq2du3aJs+xZs2aLCKyNWvW5DM+HcRjr6zMhp57R/bYKytTj0Ibae5jWAaxO8igwiZ/aO9kUGGTQbRn8qewdfT8acl9oGOQQYUtn8dvUZZlWaqivLlqa2ujT58+sWbNGp9TVIAef/WtOOG6h+K2s8bEiKH9U49DG+joj+GOPj87J4MKW0d//Hb0+dk1GVTYOvpjuKPPz87Jn8JWCI/fQrgP7JgMKmz5PH6Ld3otAAAAAADsBspqAAAAAACSU1YDAAAAAJCcshoAAAAAgOSU1QAAAAAAJKesBgAAAAAgOWU1AAAAAADJKasBAAAAAEhOWQ0AAAAAQHLKagAAAAAAklNWAwAAAACQnLIaAAAAAIDklNUAAAAAACSnrAYAAAAAIDllNQAAAAAAySmrAQAAAABITlkNAAAAAEByymoAAAAAAJJTVgMAAAAAkJyyGgAAAACA5JTVAAAAAAAkp6wGAAAAACA5ZTUAAAAAAMkpqwEAAAAASE5ZDQAAAABAcspqAAAAAACSU1YDAAAAAJCcshoAAAAAgOSU1QAAAAAAJKesBgAAAAAgOWU1AAAAAADJKasBAAAAAEhOWQ0AAAAAQHLKagAAAAAAklNWAwAAAACQnLIaAAAAAIDklNUAAAAAACSnrAYAAAAAIDllNQAAAAAAySmrAQAAAABITlkNAAAAAEByymoAAAAAAJJTVgMAAAAAkJyyGgAAAACA5JTVAAAAAAAkp6wGAAAAACA5ZTUAAAAAAMkpqwEAAAAASE5ZDQAAAABAcspqAAAAAACS65p6AArLyyvXx/q6zS3ax4tvrs/92bVry/6K9iztGsP27NmifQAdhwwCUpJBQCryB0hJBtGalNW0mpdXro+PfOe+VtvfV255slX2c+85Rwgp6ARkEJCSDAJSkT9ASjKI1qasptVsfRXtyk+MiH8Y0Kv5+3m7Lu64ryqOP2Js9OxR2uz9/GnFuph58+MtfnUP6BhkEJCSDAJSkT9ASjKI1qasptX9w4Be8f7BfZp9+/r6+qjeK+KQoXtESUlJK04GdAYyCEhJBgGpyB8gJRlEa8n7CxbfeOON+NSnPhX9+/ePHj16xPDhw+ORRx7JXZ9lWVx44YUxcODA6NGjR0ycODFeeOGFRvtYtWpVTJkyJcrLy6Nv375x+umnx7p161p+b4CCJ4OAVOQPkJIMAlKRP8DulFdZ/de//jUOP/zwKCkpid/+9rfxzDPPxHe/+93YY489cmsuv/zyuOqqq2L+/PmxePHi6NmzZ0yePDk2btyYWzNlypR4+umnY+HChXHHHXfEAw88EGeeeWbr3SugIMkgIBX5A6Qkg4BU5A+w22V5OPfcc7Px48fv8PqGhoassrIy+/a3v53btnr16qy0tDT7+c9/nmVZlj3zzDNZRGRLlizJrfntb3+bFRUVZW+88UaT5lizZk0WEdmaNWvyGZ829uSfV2dDz70je/LPq1u0n02bNmW33XZbtmnTpnYxD62vuY9hGcTOyCCaQv7QVmQQTSGDaAvyh6bo6PnTkvtA25JBNEU+j9+83ln9m9/8JkaNGhUnn3xyDBgwID70oQ/Fv//7v+euf/nll6O6ujomTpyY29anT58YPXp0VFVVRUREVVVV9O3bN0aNGpVbM3HixCguLo7FixfnXbYDnYcMAlKRP0BKMghIRf4Au1teX7D40ksvxXXXXRezZs2Kr3/967FkyZL44he/GN26dYupU6dGdXV1RERUVFQ0ul1FRUXuuurq6hgwYEDjIbp2jX79+uXWvFtdXV3U1dXlLtfW1kbEOx++Xl9fn89doA1t3rw592dLzsvW27b03LbWPLS+5p4PGcTOyCCaQv7QVmQQTSGDaAvyh6boaPkTIYM6ChlEU+RzLvIqqxsaGmLUqFFx2WWXRUTEhz70oXjqqadi/vz5MXXq1PymzMO8efNizpw522y/++67o6ysrM2OS35eXxcR0TUefPDBeLVXy/e3cOHCdjUPrWfDhg3Nup0MYmdkEE0hf2grMoimkEG0BflDU3S0/ImQQR2FDKIp8smgvMrqgQMHxkEHHdRo24EHHhi/+tWvIiKisrIyIiJqampi4MCBuTU1NTUxYsSI3JoVK1Y02sfmzZtj1apVudu/2/nnnx+zZs3KXa6trY0hQ4bEpEmTory8PJ+7QBt6enltfOfJh2L8+PFx8KDmn5f6+vpYuHBhHH300VFSUpJ8Hlrf1lfE8yWD2BkZRFPIH9qKDKIpZBBtQf7QFB0tfyJkUEchg2iKfDIor7L68MMPj2XLljXa9vzzz8fQoUMjImLYsGFRWVkZixYtyoVSbW1tLF68OM4666yIiBg7dmysXr06li5dGiNHjoyIiHvuuScaGhpi9OjR2z1uaWlplJaWbrO9pKSkRX+BaV1du3bN/dka56Wl57e156H1NPd8yCB2RgbRFPKHtiKDaAoZRFuQPzRFR8ufCBnUUcggmiKfc5FXWf3lL385xo0bF5dddlmccsop8fDDD8cPf/jD+OEPfxgREUVFRTFz5sy45JJLYv/9949hw4bF7NmzY9CgQXHCCSdExDuvwB1zzDFxxhlnxPz586O+vj5mzJgRp556agwaNCifcYBORgYBqcgfICUZBKQif4DdLa+y+tBDD41bb701zj///Jg7d24MGzYsrrzyypgyZUpuzde+9rVYv359nHnmmbF69eoYP3583HXXXdG9e/fcmhtvvDFmzJgRRx11VBQXF8dJJ50UV111VevdK6AgySAgFfkDpCSDgFTkD7C75VVWR0Qcf/zxcfzxx+/w+qKiopg7d27MnTt3h2v69esXN910U76HBpBBQDLyB0hJBgGpyB9gdypOPQAAAAAAACirAQAAAABITlkNAAAAAEByymoAAAAAAJJTVgMAAAAAkJyyGgAAAACA5JTVAAAAAAAkp6wGAAAAACA5ZTUAAAAAAMkpqwEAAAAASE5ZDQAAAABAcspqAAAAAACSU1YDAAAAAJCcshoAAAAAgOSU1QAAAAAAJKesBgAAAAAgOWU1AAAAAADJKasBAAAAAEhOWQ0AAAAAQHLKagAAAAAAklNWAwAAAACQnLIaAAAAAIDklNUAAAAAACSnrAYAAAAAIDllNQAAAAAAySmrAQAAAABITlkNAAAAAEByymoAAAAAAJJTVgMAAAAAkJyyGgAAAACA5JTVAAAAAAAkp6wGAAAAACA5ZTUAAAAAAMkpqwEAAAAASE5ZDQAAAABAcspqAAAAAACSU1YDAAAAAJCcshoAAAAAgOSU1QAAAAAAJKesBgAAAAAgOWU1AAAAAADJKasBAAAAAEhOWQ0AAAAAQHLKagAAAAAAklNWAwAAAACQnLIaAAAAAIDklNUAAAAAACSnrAYAAAAAIDllNQAAAAAAySmrAQAAAABITlkNAAAAAEByymoAAAAAAJJTVgMAAAAAkJyyGgAAAACA5FpUVn/zm9+MoqKimDlzZm7bxo0bY/r06dG/f//o1atXnHTSSVFTU9Podq+99locd9xxUVZWFgMGDIivfvWrsXnz5paMAnQy8gdISQYBKckgIBX5A7S1ZpfVS5Ysieuvvz4+8IEPNNr+5S9/OW6//fZYsGBB3H///bF8+fI48cQTc9dv2bIljjvuuNi0aVP88Y9/jJ/85Cfx4x//OC688MLm3wugU5E/QEoyCEhJBgGpyB9gd+janButW7cupkyZEv/+7/8el1xySW77mjVr4kc/+lHcdNNNceSRR0ZExA033BAHHnhgPPTQQzFmzJi4++6745lnnonf//73UVFRESNGjIiLL744zj333Pi3f/u36NatW+vcM3a7ui0bo7j7G/Fy7bIo7t6r2fvZvHlzLN+8PJ5d9Wx07dqsv6IREfFy7boo7v5G1G3ZGBF9mr0f2hf5w47IIHYHGcSOyCB2BxnE9sgfdgf5w47IIFpbs87+9OnT47jjjouJEyc2CqmlS5dGfX19TJw4MbftgAMOiL333juqqqpizJgxUVVVFcOHD4+KiorcmsmTJ8dZZ50VTz/9dHzoQx9qwd0hpeXrX42ew34QX3+4dfZ37V3XtngfPYdFLF8/IkZGxa4X0yHIH3ZEBrE7yCB2RAaxO8ggtkf+sDvIH3ZEBtHa8i6rf/GLX8Sjjz4aS5Ys2ea66urq6NatW/Tt27fR9oqKiqiurs6t+fuA2nr91uu2p66uLurq6nKXa2trIyKivr4+6uvr870LtJEBpYNj/ctnxxUfHx777tWz2fvZvHlzLH5ocYweM7pFr6a99Ob6mHXLkzHgw4P9PWlnmns+UuRPhAzqKGQQTdGSc+E5EDsjg2gKGURbkD80RUfLnwgZ1FHIIJoin3OR19l//fXX40tf+lIsXLgwunfvnvdgzTVv3ryYM2fONtvvvvvuKCsr221zsHOvr4to2Dg4/vzEiihq/m9+RETEoK6D4vVHXm/RPv78/+ZZUvVIVD/ZsnloXRs2bMj7NqnyJ0IGdRQyiKZoTv5EeA7ErskgmkIG0RbkD03R0fInQgZ1FDKIpsgng/Iqq5cuXRorVqyIQw45JLdty5Yt8cADD8TVV18dv/vd72LTpk2xevXqRq+q1dTURGVlZUREVFZWxsMPN/7dgK3fErt1zbudf/75MWvWrNzl2traGDJkSEyaNCnKy8vzuQu0oaeX18Z3nnwoxo8fHwcPav55qa+vj4ULF8bRRx8dJSUlyeeh9W19RTwfqfInQgZ1FDKIpmhO/kR4DsSuySCaQgbRFuQPTdHR8idCBnUUMoimyCeD8iqrjzrqqHjyycYvS0ybNi0OOOCAOPfcc2PIkCFRUlISixYtipNOOikiIpYtWxavvfZajB07NiIixo4dG5deemmsWLEiBgwYEBERCxcujPLy8jjooIO2e9zS0tIoLS3dZntJSUmL/gLTurb+mkbXrl1b5by09Py29jy0nuacj1T5EyGDOgoZRFM091x4DsSuyCCaQgbRFuQPTdHR8idCBnUUMoimyOdc5FVW9+7dO97//vc32tazZ8/o379/bvvpp58es2bNin79+kV5eXmcffbZMXbs2BgzZkxEREyaNCkOOuig+PSnPx2XX355VFdXxwUXXBDTp0/fbggBRMgfIC0ZBKQkg4BU5A+wuzX/E8t34Hvf+14UFxfHSSedFHV1dTF58uS49tq/fZNnly5d4o477oizzjorxo4dGz179oypU6fG3LlzW3sUoJORP0BKMghISQYBqcgfoDW1uKy+7777Gl3u3r17XHPNNXHNNdfs8DZDhw6NO++8s6WHBjo5+QOkJIOAlGQQkIr8AdpSceoBAAAAAABAWQ0AAAAAQHLKagAAAAAAklNWAwAAAACQnLIaAAAAAIDklNUAAAAAACSnrAYAAAAAIDllNQAAAAAAySmrAQAAAABITlkNAAAAAEByymoAAAAAAJJTVgMAAAAAkJyyGgAAAACA5JTVAAAAAAAkp6wGAAAAACA5ZTUAAAAAAMkpqwEAAAAASE5ZDQAAAABAcspqAAAAAACSU1YDAAAAAJCcshoAAAAAgOSU1QAAAAAAJKesBgAAAAAgOWU1AAAAAADJKasBAAAAAEhOWQ0AAAAAQHLKagAAAAAAklNWAwAAAACQnLIaAAAAAIDklNUAAAAAACSnrAYAAAAAIDllNQAAAAAAySmrAQAAAABITlkNAAAAAEByymoAAAAAAJJTVgMAAAAAkJyyGgAAAACA5JTVAAAAAAAkp6wGAAAAACA5ZTUAAAAAAMkpqwEAAAAASE5ZDQAAAABAcspqAAAAAACSU1YDAAAAAJCcshoAAAAAgOSU1QAAAAAAJKesBgAAAAAgOWU1AAAAAADJKasBAAAAAEhOWQ0AAAAAQHLKagAAAAAAklNWAwAAAACQnLIaAAAAAIDklNUAAAAAACSXV1k9b968OPTQQ6N3794xYMCAOOGEE2LZsmWN1mzcuDGmT58e/fv3j169esVJJ50UNTU1jda89tprcdxxx0VZWVkMGDAgvvrVr8bmzZtbfm+AgiaDgFTkD5CSDAJSkkHA7pRXWX3//ffH9OnT46GHHoqFCxdGfX19TJo0KdavX59b8+Uvfzluv/32WLBgQdx///2xfPnyOPHEE3PXb9myJY477rjYtGlT/PGPf4yf/OQn8eMf/zguvPDC1rtXQEGSQUAq8gdISQYBKckgYLfKWmDFihVZRGT3339/lmVZtnr16qykpCRbsGBBbs2zzz6bRURWVVWVZVmW3XnnnVlxcXFWXV2dW3Pddddl5eXlWV1dXZOOu2bNmiwisjVr1rRkfFrZk39enQ09947syT+vbtF+Nm3alN12223Zpk2b2sU8tL7WegzLIP6eDKIp5A9tRQbRFDKItiB/aIrWfPzKIP6eDKIp8nn8tugzq9esWRMREf369YuIiKVLl0Z9fX1MnDgxt+aAAw6IvffeO6qqqiIioqqqKoYPHx4VFRW5NZMnT47a2tp4+umnWzIO0MnIICAV+QOkJIOAlGQQ0Ja6NveGDQ0NMXPmzDj88MPj/e9/f0REVFdXR7du3aJv376N1lZUVER1dXVuzd+H09brt163PXV1dVFXV5e7XFtbGxER9fX1UV9f39y7QCtb+/Y75+iJ11a16HOn1m+si0fejNjzpTejZ/fSZu/nT2++8ytJmzdv9veknWmN8yGDeDcZRFPIH9qKDKIpZBBtQf7QFK11LmQQ7yaDaIp8zkWzy+rp06fHU089FQ8++GBzd9Fk8+bNizlz5myz/e67746ysrI2Pz5NU1VTFBFd4hu/fqYV9tY1fvqnx1phPxFLqh6MV3u0yq5oJRs2bGjxPmQQ7yaDaAr5Q1uRQTSFDKItyB+aojXyJ0IGsS0ZRFPkk0HNKqtnzJgRd9xxRzzwwAPxnve8J7e9srIyNm3aFKtXr270ilpNTU1UVlbm1jz88MON9rf1G2K3rnm3888/P2bNmpW7XFtbG0OGDIlJkyZFeXl5c+4CbWDM+k0x/NkVse9ePaNHSZdm7+f56jXxtVufjcs/dmC8t7JPi2bqWdol9unfs0X7oPVtfUW8uWQQ2yODaAr5Q1uRQTSFDKItyB+aoqX5EyGD2D4ZRFPkk0F5ldVZlsXZZ58dt956a9x3330xbNiwRtePHDkySkpKYtGiRXHSSSdFRMSyZcvitddei7Fjx0ZExNixY+PSSy+NFStWxIABAyIiYuHChVFeXh4HHXTQdo9bWloapaXb/gpASUlJlJSU5HMXaEMVfUtiythhu17YRO+t7BMjhvZvtf3RfjT3cSuD2BkZRFPIH9qKDKIpZBBtQf7QFC15zMogdkYG0RT5PGbzKqunT58eN910U/z617+O3r175z5XqE+fPtGjR4/o06dPnH766TFr1qzo169flJeXx9lnnx1jx46NMWPGRETEpEmT4qCDDopPf/rTcfnll0d1dXVccMEFMX369O2GEMBWMghIRf4AKckgICUZBOxWWR4iYrv/3HDDDbk1b7/9dvaFL3wh22OPPbKysrLsYx/7WPaXv/yl0X5eeeWV7Nhjj8169OiR7bnnntlXvvKVrL6+vslzrFmzJouIbM2aNfmMTwfx2Csrs6Hn3pE99srK1KPQRpr7GJZB7A4yqLDJH9o7GVTYZBDtmfwpbC15/MogdgcZVNjyefzm/TEgu9K9e/e45ppr4pprrtnhmqFDh8add96Zz6EBZBCQjPwBUpJBQEoyCNidilMPAAAAAAAAymoAAAAAAJJTVgMAAAAAkJyyGgAAAACA5JTVAAAAAAAkp6wGAAAAACA5ZTUAAAAAAMkpqwEAAAAASE5ZDQAAAABAcspqAAAAAACSU1YDAAAAAJCcshoAAAAAgOSU1QAAAAAAJKesBgAAAAAgOWU1AAAAAADJKasBAAAAAEhOWQ0AAAAAQHLKagAAAAAAklNWAwAAAACQnLIaAAAAAIDklNUAAAAAACSnrAYAAAAAIDllNQAAAAAAySmrAQAAAABITlkNAAAAAEByymoAAAAAAJJTVgMAAAAAkJyyGgAAAACA5JTVAAAAAAAkp6wGAAAAACA5ZTUAAAAAAMkpqwEAAAAASE5ZDQAAAABAcspqAAAAAACSU1YDAAAAAJCcshoAAAAAgOSU1QAAAAAAJKesBgAAAAAgOWU1AAAAAADJKasBAAAAAEhOWQ0AAAAAQHLKagAAAAAAklNWAwAAAACQnLIaAAAAAIDklNUAAAAAACSnrAYAAAAAIDllNQAAAAAAySmrAQAAAABITlkNAAAAAEByymoAAAAAAJJTVgMAAAAAkJyyGgAAAACA5JTVAAAAAAAkp6wGAAAAACC5pGX1NddcE/vss0907949Ro8eHQ8//HDKcYBORP4AKckgIBX5A6Qkg4BdSVZW33zzzTFr1qy46KKL4tFHH40PfvCDMXny5FixYkWqkYBOQv4AKckgIBX5A6Qkg4CmSFZWX3HFFXHGGWfEtGnT4qCDDor58+dHWVlZ/Od//meqkYBOQv4AKckgIBX5A6Qkg4CmSFJWb9q0KZYuXRoTJ0782yDFxTFx4sSoqqpKMRLQScgfICUZBKQif4CUZBDQVF1THHTlypWxZcuWqKioaLS9oqIinnvuuW3W19XVRV1dXe5ybW1tRETU19dHfX192w5Lq9qwYUMsW7Zsp2ue/8uaqKv+Uzz1eLfYVNNnp2vf9773RVlZWWuOyG6Q8nGbb/5EyKBCIoNI/Zj1HKhzk0F4DkQq8ofUj1kZ1LnJIPJ5zCYpq/M1b968mDNnzjbb7777bn85O5gXX3wxvvKVrzRp7ad/sus13/3ud2O//fZr4VTsbhs2bEg9Ql5kUOGQQcgfUpJByCBSkT90tPyJkEGFRAaRTwYlKav33HPP6NKlS9TU1DTaXlNTE5WVldusP//882PWrFm5y7W1tTFkyJCYNGlSlJeXt/m8tJ4NGzbE+PHjd7pm3dt18bs/LInJHz40evUo3elar6Z1TFtfEU8h3/yJkEGFRAaRMn8iPAfq7GQQngORivyhoz0HipBBhUQGkU8GJSmru3XrFiNHjoxFixbFCSecEBERDQ0NsWjRopgxY8Y260tLS6O0dNu/qCUlJVFSUtLW49KK+vTpE4cddthO19TX18fa1aviw+PGOL8FKuV5zTd/ImRQIZFBpD6nngN1bjIIz4FIRf6Q+pzKoM5NBpHPOU32MSCzZs2KqVOnxqhRo+Kwww6LK6+8MtavXx/Tpk1LNRLQScgfICUZBKQif4CUZBDQFMnK6k984hPx5ptvxoUXXhjV1dUxYsSIuOuuu7b5sH2A1iZ/gJRkEJCK/AFSkkFAUyT9gsUZM2bs8Nc9ANqS/AFSkkFAKvIHSEkGAbtSnHoAAAAAAABQVgMAAAAAkJyyGgAAAACA5JTVAAAAAAAkp6wGAAAAACA5ZTUAAAAAAMkpqwEAAAAASK5r6gGaI8uyiIiora1NPAltob6+PjZs2BC1tbVRUlKSehzawNbH7tbHckcjgwqbDCps8of2TgYVNhlEeyZ/CltHz58IGVToZFBhyyeDOmRZvXbt2oiIGDJkSOJJgJZYu3Zt9OnTJ/UYeZNB0PHJHyAlGQSk0lHzJ0IGQSFoSgYVZR3wZbWGhoZYvnx59O7dO4qKilKPQyurra2NIUOGxOuvvx7l5eWpx6ENZFkWa9eujUGDBkVxccf7NCIZVNhkUGGTP7R3MqiwySDaM/lT2Dp6/kTIoEIngwpbPhnUIctqClttbW306dMn1qxZI6CA3U4GASnJICAV+QOkJIPYqmO+nAYAAAAAQEFRVgMAAAAAkJyymnantLQ0LrrooigtLU09CtAJySAgJRkEpCJ/gJRkEFv5zGoAAAAAAJLzzmoAAAAAAJJTVgMAAAAAkJyyGgAAAACA5JTVtDvXXHNN7LPPPtG9e/cYPXp0PPzww6lHAjoJ+QOkJIOAlGQQkIr84e8pq2lXbr755pg1a1ZcdNFF8eijj8YHP/jBmDx5cqxYsSL1aECBkz9ASjIISEkGAanIH96tKMuyLPUQsNXo0aPj0EMPjauvvjoiIhoaGmLIkCFx9tlnx3nnnZd4OqCQyR8gJRkEpCSDgFTkD+/mndW0G5s2bYqlS5fGxIkTc9uKi4tj4sSJUVVVlXAyoNDJHyAlGQSkJIOAVOQP26Ospt1YuXJlbNmyJSoqKhptr6ioiOrq6kRTAZ2B/AFSkkFASjIISEX+sD3KagAAAAAAklNW027sueee0aVLl6ipqWm0vaamJiorKxNNBXQG8gdISQYBKckgIBX5w/Yoq2k3unXrFiNHjoxFixbltjU0NMSiRYti7NixCScDCp38AVKSQUBKMghIRf6wPV1TDwB/b9asWTF16tQYNWpUHHbYYXHllVfG+vXrY9q0aalHAwqc/AFSkkFASjIISEX+8G7KatqVT3ziE/Hmm2/GhRdeGNXV1TFixIi46667tvmwfYDWJn+AlGQQkJIMAlKRP7xbUZZlWeohAAAAAADo3HxmNQAAAAAAySmrAQAAAABITlkNAAAAAEByymoAAAAAAJJTVgMAAAAAkJyyGgAAAACA5JTVAAAAAAAkp6wGAAAAACA5ZTUAAAAAAMkpqwEAAAAASE5ZDQAAAABAcspqAAAAAACSU1YDAAAAAJCcshoAAAAAgOSU1QAAAAAAJKesBgAAAAAgOWU1AAAAAADJKas7oSVLlsS4ceOiZ8+eUVRUFI8//njqkYBORAYBqcgfICUZBAC7pqzuZOrr6+Pkk0+OVatWxfe+97346U9/GkOHDm314yxfvjz+7d/+rd0+Abvuuuvi5JNPjr333juKioris5/97HbX/fjHP46ioqLt/lNdXb17h4YCIIPe0dQM2ur3v/99HHnkkdGnT5/o3bt3jBw5Mm6++ebdMywUCPnzjqbmzxFHHLHD50AlJSW7d2goADLoHfk8B1q6dGkcf/zxUVlZGb169YoPfOADcdVVV8WWLVt238AA7HZdUw/A7vXiiy/Gq6++Gv/+7/8en/vc59rsOMuXL485c+bEPvvsEyNGjGiz4zTXt771rVi7dm0cdthh8Ze//GWX6+fOnRvDhg1rtK1v375tNB0ULhn0jnwy6IYbbojTTz89jj766LjsssuiS5cusWzZsnj99dd307RQGOTPO5qaP9/4xje2+TmtX78+/r//7/+LSZMmtfWYUHBk0DuamkFLly6NcePGxf777x/nnntulJWVxW9/+9v40pe+FC+++GJ8//vf341TA7A7Kas7mRUrVkRExy1aN27cGN26dYvi4pb9UsD999+fezW/V69eu1x/7LHHxqhRo1p0TEAGbdXUDHrllVdi+vTpcfbZZ/ufMmgh+fOOpubP0Ucfvc22n/3sZxERMWXKlBbNAJ2RDHpHUzPo+uuvj4iIBx54IPr16xcREZ///OdjwoQJ8eMf/9jzIoAC5mNAOpHPfvazMWHChIiIOPnkk6OoqCiOOOKI3PXPPfdcfPzjH49+/fpF9+7dY9SoUfGb3/ym0T5WrVoV55xzTgwfPjx69eoV5eXlceyxx8YTTzyRW3PffffFoYceGhER06ZNy/3K6I9//OOIiNhnn322++teRxxxRKN57rvvvigqKopf/OIXccEFF8TgwYOjrKwsamtrIyJi8eLFccwxx0SfPn2irKwsJkyYEP/7v//bpJ/F0KFDo6ioqElrt1q7dq1fOYMWkEF/09QMmj9/fmzZsiXmzp0bERHr1q2LLMuadAzgb+TP3zTnOdBWN910U/Ts2TP+5V/+pVm3h85KBv1NUzOotrY2unfvvk25P3DgwOjRo0eTjgVAx+Sd1Z3I5z//+Rg8eHBcdtll8cUvfjEOPfTQqKioiIiIp59+Og4//PAYPHhwnHfeedGzZ8/45S9/GSeccEL86le/io997GMREfHSSy/FbbfdFieffHIMGzYsampq4vrrr48JEybEM888E4MGDYoDDzww5s6dGxdeeGGceeaZ8eEPfzgiIsaNG9esuS+++OLo1q1bnHPOOVFXVxfdunWLe+65J4499tgYOXJkXHTRRVFcXBw33HBDHHnkkfGHP/whDjvssNb5of0/H/nIR2LdunXRrVu3mDx5cnz3u9+N/fffv1WPAYVOBuXv97//fRxwwAFx5513xle/+tV44403Yo899ojp06fHnDlzWvzuJugs5E/Lvfnmm7Fw4cL4xCc+ET179myTY0ChkkH5O+KII+Lmm2+Oz3/+8zFr1qzcx4D893//d3z7299ulWMA0E5ldCr33ntvFhHZggULGm0/6qijsuHDh2cbN27MbWtoaMjGjRuX7b///rltGzduzLZs2dLoti+//HJWWlqazZ07N7dtyZIlWURkN9xwwzYzDB06NJs6deo22ydMmJBNmDBhm1n33XffbMOGDY3m2n///bPJkydnDQ0Nue0bNmzIhg0blh199NG7/Dn8vZ49e253nizLsptvvjn77Gc/m/3kJz/Jbr311uyCCy7IysrKsj333DN77bXX8joOIIO2Z2cZVF5enu2xxx5ZaWlpNnv27OyWW27JPvnJT2YRkZ133nl5HQc6O/mzrZ3lz7v94Ac/yCIiu/POO/M6BvAOGbStnWXQ5s2bsxkzZmQlJSVZRGQRkXXp0iW77rrr8joGAB2Pt2QRq1atinvuuSdOOeWUWLt2baxcuTJWrlwZb731VkyePDleeOGFeOONNyIiorS0NPdOvi1btsRbb70VvXr1ive9733x6KOPtsl8U6dObfSrXo8//ni88MIL8clPfjLeeuut3Lzr16+Po446Kh544IFoaGholWOfcsopccMNN8RnPvOZOOGEE+Liiy+O3/3ud/HWW2/FpZde2irHgM5OBu3YunXr4q9//WvMmTMn5s6dGyeddFLceOONccwxx8T3v//9WLt2bascBzor+dN0N910U+y1117b/SxroHlk0I516dIl9ttvv5g8eXL85Cc/iZtvvjk++tGPxtlnnx233XZbqxwDgPbJx4AQf/rTnyLLspg9e3bMnj17u2tWrFgRgwcPjoaGhvj+978f1157bbz88suNPsO5f//+bTLfsGHDGl1+4YUXIuKdJ087smbNmthjjz3aZJ7x48fH6NGj4/e//32b7B86Gxm0Yz169Ij169fHv/7rvzba/q//+q9x1113xWOPPRb/+I//2OLjQGclf5rmpZdeiqqqqpgxY0Z07ep/H6C1yKAd++Y3vxnf//7344UXXsh9EeMpp5wSH/nIR2L69Olx/PHHyyOAAiXdyb36fc4558TkyZO3u+Yf/uEfIiLisssui9mzZ8dpp50WF198cfTr1y+Ki4tj5syZTX4VfUdfqLFly5bo0qXLNtvf/QUaW4/z7W9/O0aMGLHdfe3sm6Vbw5AhQ2LZsmVtegzoLGTQjg0aNCheeOGF3OdabjVgwICIiPjrX//aKseBzkr+NM1NN90UERFTpkxp9X1DZyaDduzaa6+NI488cpv9/fM//3PMmjUrXnnlldzPBoDCoqwm9t1334iIKCkpiYkTJ+507S233BIf+chH4kc/+lGj7atXr44999wzd3ln3/C8xx57xOrVq7fZ/uqrr+Zm2Zn99tsvIiLKy8t3OW9beemll2KvvfZKcmwoNDJox0aOHJn7FeC/n2358uUREXIIWkj+NM1NN90U++23X4wZM2a3HRM6Axm0YzU1NY3ePb5VfX19RERs3ry5TY8PQDo+s5oYMGBAHHHEEXH99dfHX/7yl22uf/PNN3P/3qVLl8iyrNH1CxYsyH2W2lZbvyV+e0+G9ttvv3jooYdi06ZNuW133HFHvP76602ad+TIkbHffvvFd77znVi3bt1O522p7e3rzjvvjKVLl8YxxxzTaseBzkwG7dgnPvGJiIhG/2Pa0NAQN9xwQ/Tr1y9GjhzZaseCzkj+7Npjjz0Wzz77bHzyk59s9X1DZyeDduy9731vLFy4MN56663cti1btsQvf/nL6N27d644B6DweGc1ERFxzTXXxPjx42P48OFxxhlnxL777hs1NTVRVVUVf/7zn+OJJ56IiIjjjz8+5s6dG9OmTYtx48bFk08+GTfeeOM2r8Tvt99+0bdv35g/f3707t07evbsGaNHj45hw4bF5z73ubjlllvimGOOiVNOOSVefPHF+NnPftbkJxzFxcXxH//xH3HsscfGwQcfHNOmTYvBgwfHG2+8Effee2+Ul5fH7bffvtN93H777bn7VF9fH//3f/8Xl1xySUS886tlH/jAByIiYty4cfGhD30oRo0aFX369IlHH300/vM//zOGDBkSX//61/P6GQM7JoO2n0H/8i//EkcddVTMmzcvVq5cGR/84AfjtttuiwcffDCuv/76KC0tzevnDGxL/mw/f7a68cYbI8JHgEBbkUHbz6DzzjsvPvWpT8Xo0aPjzDPPjB49esTPf/7zWLp0aVxyySVRUlKS188ZgA4ko1O59957s4jIFixYsM11L774YvaZz3wmq6yszEpKSrLBgwdnxx9/fHbLLbfk1mzcuDH7yle+kg0cODDr0aNHdvjhh2dVVVXZhAkTsgkTJjTa369//evsoIMOyrp27ZpFRHbDDTfkrvvud7+bDR48OCstLc0OP/zw7JFHHtlmHzubNcuy7LHHHstOPPHErH///llpaWk2dOjQ7JRTTskWLVq0y5/D1KlTs4jY7j9/P+c3vvGNbMSIEVmfPn2ykpKSbO+9987OOuusrLq6epfHALYlg97R1AzKsixbu3Zt9qUvfSmrrKzMunXrlg0fPjz72c9+tstjAI3Jn3fkkz9btmzJBg8enB1yyCG73C+wczLoHflk0F133ZVNmDAh23PPPXPPgebPn7/LYwDQsRVl2bt+lwgAAAAAAHYzn1kNAAAAAEByymoAAAAAAJJTVgMAAAAAkJyyGgAAAACA5JTVAAAAAAAkp6wGAAAAACC5rqkHaI6GhoZYvnx59O7dO4qKilKPA+Qpy7JYu3ZtDBo0KIqLO95rZjIIOi75A6Qkg4BUOnr+AJ1Hhyyrly9fHkOGDEk9BtBCr7/+erznPe9JPUbeZBB0fPIHSEkGAal01PwBOo8OWVb37t07It4J2fLy8sTT0Nrq6+vj7rvvjkmTJkVJSUnqcWgDtbW1MWTIkNxjuaORQYVNBhU2+UN7J4MKmwyiPZM/ha2j5w/QeXTIsnrrr5yVl5d7klSA6uvro6ysLMrLyz1JKnAd9ddHZVBhk0Gdg/yhvZJBnYMMoj2SP51DR80foPPwQUUAAAAAACSnrAYAAAAAIDllNQAAAAAAySmrAQAAAABITlkNAAAAAEByymoAAAAAAJJTVgMAAAAAkJyyGgAAAACA5JTVAAAAAAAkp6wGAAAAACC5rqkHoHPZsGFDPPfccztds+7tuvjjky/GHns+Er16lO507QEHHBBlZWWtOSJQwGQQkJIMAlKRPwB0FMpqdqvnnnsuRo4c2aS1lzdhzdKlS+OQQw5p2VBApyGDgJRkEJCK/AGgo1BWs1sdcMABsXTp0p2uWfaX1TFrwZNxxcnD430D++5yfwBNJYOAlGQQkIr8AaCjUFazW5WVle3yFfjiV9+K0j+8HQe+/4MxYmj/3TQZ0BnIICAlGQSkIn8A6Ch8wSIAAAAAAMkpqwEAAAAASE5ZDQAAAABAcspqAAAAAACSU1YDAAAAAJCcshoAAAAAgOSU1QAAAAAAJJdXWb1ly5aYPXt2DBs2LHr06BH77bdfXHzxxZFlWW5NlmVx4YUXxsCBA6NHjx4xceLEeOGFFxrtZ9WqVTFlypQoLy+Pvn37xumnnx7r1q1rnXsEFCwZBKQif4CUZBAA0FnkVVZ/61vfiuuuuy6uvvrqePbZZ+Nb3/pWXH755fGDH/wgt+byyy+Pq666KubPnx+LFy+Onj17xuTJk2Pjxo25NVOmTImnn346Fi5cGHfccUc88MADceaZZ7bevQIKkgwCUpE/QEoyCADoNLI8HHfccdlpp53WaNuJJ56YTZkyJcuyLGtoaMgqKyuzb3/727nrV69enZWWlmY///nPsyzLsmeeeSaLiGzJkiW5Nb/97W+zoqKi7I033mjSHGvWrMkiIluzZk0+49NBPPbKymzouXdkj72yMvUotJHmPoZlELuDDCps8of2TgYVNhlEeyZ/CpvHL9BRdM2n2B43blz88Ic/jOeffz7e+973xhNPPBEPPvhgXHHFFRER8fLLL0d1dXVMnDgxd5s+ffrE6NGjo6qqKk499dSoqqqKvn37xqhRo3JrJk6cGMXFxbF48eL42Mc+ts1x6+rqoq6uLne5trY2IiLq6+ujvr4+n7tAB7B58+bcn85vYWrueZVB7A4yqLDJH9o7GVTYZBDtmfwpbM4p0FHkVVafd955UVtbGwcccEB06dIltmzZEpdeemlMmTIlIiKqq6sjIqKioqLR7SoqKnLXVVdXx4ABAxoP0bVr9OvXL7fm3ebNmxdz5szZZvvdd98dZWVl+dwFOoDX10VEdI2HHnoo3ngq9TS0hQ0bNjTrdjKI3UEGFTb5Q3sngwqbDKI9kz+Frbn5A7C75VVW//KXv4wbb7wxbrrppjj44IPj8ccfj5kzZ8agQYNi6tSpbTVjnH/++TFr1qzc5dra2hgyZEhMmjQpysvL2+y4pPHEa6sinnwkxowZEx/cu1/qcWgDW9+Vky8ZxO4ggwqb/KG9k0GFTQbRnsmfwtbc/AHY3fIqq7/61a/GeeedF6eeempERAwfPjxeffXVmDdvXkydOjUqKysjIqKmpiYGDhyYu11NTU2MGDEiIiIqKytjxYoVjfa7efPmWLVqVe7271ZaWhqlpaXbbC8pKYmSkpJ87gIdQNeuXXN/Or+FqbnnVQaxO8igwiZ/aO9kUGGTQbRn8qewOadAR1Gcz+INGzZEcXHjm3Tp0iUaGhoiImLYsGFRWVkZixYtyl1fW1sbixcvjrFjx0ZExNixY2P16tWxdOnS3Jp77rknGhoaYvTo0c2+I0Dhk0FAKvIHSEkGAQCdRV7vrP7oRz8al156aey9995x8MEHx2OPPRZXXHFFnHbaaRERUVRUFDNnzoxLLrkk9t9//xg2bFjMnj07Bg0aFCeccEJERBx44IFxzDHHxBlnnBHz58+P+vr6mDFjRpx66qkxaNCgVr+DQOGQQUAq8gdISQYBAJ1FXmX1D37wg5g9e3Z84QtfiBUrVsSgQYPi85//fFx44YW5NV/72tdi/fr1ceaZZ8bq1atj/Pjxcdddd0X37t1za2688caYMWNGHHXUUVFcXBwnnXRSXHXVVa13r4CCJIOAVOQPkJIMAgA6i6Isy7LUQ+SrtrY2+vTpE2vWrPHFHgXo8VffihOueyhuO2tMjBjaP/U4tIGO/hju6POzczKosHX0x29Hn59dk0GFraM/hjv6/Oyc/ClsHr9AR5HXZ1YDAAAAAEBbUFYDAAAAAJCcshoAAAAAgOSU1QAAAAAAJKesBgAAAAAgOWU1AAAAAADJKasBAAAAAEhOWQ0AAAAAQHLKagAAAAAAklNWAwAAAACQnLIaAAAAAIDklNUAAAAAACSnrAYAAAAAIDllNQAAAAAAySmrAQAAAABITlkNAAAAAEByymoAAAAAAJJTVgMAAAAAkJyyGgAAAACA5JTVAAAAAAAkp6wGAAAAACA5ZTUAAAAAAMkpqwEAAAAASE5ZDQAAAABAcspqAAAAAACSU1YDAAAAAJCcshoAAAAAgOSU1QAAAAAAJKesBgAAAAAgOWU1AAAAAADJKasBAAAAAEhOWQ0AAAAAQHLKagAAAAAAklNWAwAAAACQnLIaAAAAAIDklNUAAAAAACSnrAYAAAAAIDllNQAAAAAAySmrAQAAAABITlkNAAAAAEByymoAAAAAAJJTVgMAAAAAkJyyGgAAAACA5JTVAAAAAAAkp6wGAAAAACA5ZTUAAAAAAMkpqwEAAAAASE5ZDQAAAABAcspqAAAAAACS65p6AArLyyvXx/q6zS3ax4tvrs/92bVry/6K9iztGsP27NmifQAdhwwCUpJBQCryB4BCoaym1by8cn185Dv3tdr+vnLLk62yn3vPOcITJegEZBCQkgwCUpE/ABQSZTWtZusr+Vd+YkT8w4Bezd/P23Vxx31VcfwRY6Nnj9Jm7+dPK9bFzJsfb/E7DICOQQYBKckgIBX5A0AhUVbT6v5hQK94/+A+zb59fX19VO8VccjQPaKkpKQVJwM6AxkEpCSDgFTkDwCFwBcsAgAAAACQXN5l9RtvvBGf+tSnon///tGjR48YPnx4PPLII7nrsyyLCy+8MAYOHBg9evSIiRMnxgsvvNBoH6tWrYopU6ZEeXl59O3bN04//fRYt25dy+8NUPBkEJCK/AFSkkEAQGeQV1n917/+NQ4//PAoKSmJ3/72t/HMM8/Ed7/73dhjjz1yay6//PK46qqrYv78+bF48eLo2bNnTJ48OTZu3JhbM2XKlHj66adj4cKFcccdd8QDDzwQZ555ZuvdK6AgySAgFfkDpCSDAIDOIq/PrP7Wt74VQ4YMiRtuuCG3bdiwYbl/z7IsrrzyyrjgggviX/7lXyIi4r/+67+ioqIibrvttjj11FPj2WefjbvuuiuWLFkSo0aNioiIH/zgB/FP//RP8Z3vfCcGDRrUGvcLKEAyCEhF/gApySAAoLPIq6z+zW9+E5MnT46TTz457r///hg8eHB84QtfiDPOOCMiIl5++eWorq6OiRMn5m7Tp0+fGD16dFRVVcWpp54aVVVV0bdv39wTpIiIiRMnRnFxcSxevDg+9rGPbXPcurq6qKury12ura2NiHe+AKK+vj6/e0yb2bx5c+7PlpyXrbdt6bltrXlofc09HzKInZFBNIX8oa3IIJpCBtEW5A9N4VwAHUVeZfVLL70U1113XcyaNSu+/vWvx5IlS+KLX/xidOvWLaZOnRrV1dUREVFRUdHodhUVFbnrqqurY8CAAY2H6No1+vXrl1vzbvPmzYs5c+Zss/3uu++OsrKyfO4Cbej1dRERXePBBx+MV3u1fH8LFy5sV/PQejZs2NCs28kgdkYG0RTyh7Yig2gKGURbkD80RXPzB2B3y6usbmhoiFGjRsVll10WEREf+tCH4qmnnor58+fH1KlT22TAiIjzzz8/Zs2albtcW1sbQ4YMiUmTJkV5eXmbHZf8PL28Nr7z5EMxfvz4OHhQ889LfX19LFy4MI4++ugoKSlJPg+tb+u7cvIlg9gZGURTyB/aigyiKWQQbUH+0BTNzR+A3S2vsnrgwIFx0EEHNdp24IEHxq9+9auIiKisrIyIiJqamhg4cGBuTU1NTYwYMSK3ZsWKFY32sXnz5li1alXu9u9WWloapaWl22wvKSlp0X9EaV1du3bN/dka56Wl57e156H1NPd8yCB2RgbRFPKHtiKDaAoZRFuQPzSFcwF0FMX5LD788MNj2bJljbY9//zzMXTo0Ih450s+KisrY9GiRbnra2trY/HixTF27NiIiBg7dmysXr06li5dmltzzz33RENDQ4wePbrZdwQofDIISEX+ACnJIACgs8jrndVf/vKXY9y4cXHZZZfFKaecEg8//HD88Ic/jB/+8IcREVFUVBQzZ86MSy65JPbff/8YNmxYzJ49OwYNGhQnnHBCRLzzDoBjjjkmzjjjjJg/f37U19fHjBkz4tRTT/UN1MBOySAgFfkDpCSDAIDOIq+y+tBDD41bb701zj///Jg7d24MGzYsrrzyypgyZUpuzde+9rVYv359nHnmmbF69eoYP3583HXXXdG9e/fcmhtvvDFmzJgRRx11VBQXF8dJJ50UV111VevdK6AgySAgFfkDpCSDAIDOIq+yOiLi+OOPj+OPP36H1xcVFcXcuXNj7ty5O1zTr1+/uOmmm/I9NIAMApKRP0BKMggA6Azy+sxqAAAAAABoC8pqAAAAAACSU1YDAAAAAJCcshoAAAAAgOSU1QAAAAAAJKesBgAAAAAgOWU1AAAAAADJKasBAAAAAEhOWQ0AAAAAQHLKagAAAAAAklNWAwAAAACQnLIaAAAAAIDklNUAAAAAACSnrAYAAAAAIDllNQAAAAAAySmrAQAAAABITlkNAAAAAEByymoAAAAAAJJTVgMAAAAAkJyyGgAAAACA5JTVAAAAAAAkp6wGAAAAACA5ZTUAAAAAAMkpqwEAAAAASE5ZDQAAAABAcspqAAAAAACSU1YDAAAAAJCcshoAAAAAgOSU1QAAAAAAJKesBgAAAAAgOWU1AAAAAADJKasBAAAAAEhOWQ0AAAAAQHLKagAAAAAAklNWAwAAAACQnLIaAAAAAIDklNUAAAAAACSnrAYAAAAAIDllNQAAAAAAySmrAQAAAABITlkNAAAAAEByymoAAAAAAJJTVgMAAAAAkJyyGgAAAACA5JTVAAAAAAAkp6wGAAAAACA5ZTUAAAAAAMkpqwEAAAAASE5ZDQAAAABAcspqAAAAAACSU1YDAAAAAJCcshoAAAAAgOSU1QAAAAAAJKesBgAAAAAguRaV1d/85jejqKgoZs6cmdu2cePGmD59evTv3z969eoVJ510UtTU1DS63WuvvRbHHXdclJWVxYABA+KrX/1qbN68uSWjAJ2M/AFSkkFASjIIAChUXZt7wyVLlsT1118fH/jABxpt//KXvxz/8z//EwsWLIg+ffrEjBkz4sQTT4z//d//jYiILVu2xHHHHReVlZXxxz/+Mf7yl7/EZz7zmSgpKYnLLrusZfeGpOq2bIzi7m/Ey7XLorh7r2bvZ/PmzbF88/J4dtWz0bVrs/+Kxsu166K4+xtRt2VjRPRp9n5of+QP2yOD2F1kENsjg9hdZBDvJn8AKCRFWZZl+d5o3bp1ccghh8S1114bl1xySYwYMSKuvPLKWLNmTey1115x0003xcc//vGIiHjuuefiwAMPjKqqqhgzZkz89re/jeOPPz6WL18eFRUVERExf/78OPfcc+PNN9+Mbt267fL4tbW10adPn1izZk2Ul5fnOz5t5PZnH46vP3x66jG2cdlhP4qPHnhY6jH4Oy15DKfOn5bOT9uRQTRFSx+/qTNI/rRfMoimkEG0BflDU3j8Ah1Fs14unT59ehx33HExceLEuOSSS3Lbly5dGvX19TFx4sTctgMOOCD23nvv3JOkqqqqGD58eO4JUkTE5MmT46yzzoqnn346PvShD21zvLq6uqirq8tdrq2tjYiI+vr6qK+vb85doA0MKB0c618+O674+PDYd6+ezd7P5s2bY/FDi2P0mNEtekX/pTfXx6xbnowBHx7s70k705LzsbvzJ0IGdRQyiKZo6bnwHIgdkUE0hQyiLcgfmsK5ADqKvP8L9Itf/CIeffTRWLJkyTbXVVdXR7du3aJv376NtldUVER1dXVuzd8/Qdp6/dbrtmfevHkxZ86cbbbffffdUVZWlu9doI28vi6iYePg+PMTK6Ko+b99FhERg7oOitcfeb1F+/jz/5tnSdUjUf1ky+ahdW3YsKFZt0uRPxEyqKOQQTRFc/MnwnMgdk4G0RQyiLYgf2iKluQPwO6UV1n9+uuvx5e+9KVYuHBhdO/eva1m2sb5558fs2bNyl2ura2NIUOGxKRJk/z6Sjvy9PLa+M6TD8X48ePj4EHNPy/19fWxcOHCOProo6OkpCT5PLS+re/KyUeq/ImQQR2FDKIpmpM/EZ4DsWsyiKaQQbQF+UNTNDd/AHa3vMrqpUuXxooVK+KQQw7JbduyZUs88MADcfXVV8fvfve72LRpU6xevbrRq/o1NTVRWVkZERGVlZXx8MMPN9rv1m+p3rrm3UpLS6O0tHSb7SUlJS36jyita+uvinXt2rVVzktLz29rz0Prac75SJU/ETKoo5BBNEVzz4XnQOyKDKIpZBBtQf7QFM4F0FEU57P4qKOOiieffDIef/zx3D+jRo2KKVOm5P69pKQkFi1alLvNsmXL4rXXXouxY8dGRMTYsWPjySefjBUrVuTWLFy4MMrLy+Oggw5qpbsFFBr5A6Qkg4CUZBAA0Fnk9c7q3r17x/vf//5G23r27Bn9+/fPbT/99NNj1qxZ0a9fvygvL4+zzz47xo4dG2PGjImIiEmTJsVBBx0Un/70p+Pyyy+P6urquOCCC2L69OnbfdUeIEL+AGnJICAlGQQAdBbN/4rfHfje974XxcXFcdJJJ0VdXV1Mnjw5rr322tz1Xbp0iTvuuCPOOuusGDt2bPTs2TOmTp0ac+fObe1RgE5G/gApySAgJRkEABSCFpfV9913X6PL3bt3j2uuuSauueaaHd5m6NChceedd7b00EAnJ3+AlGQQkJIMAgAKUV6fWQ0AAAAAAG1BWQ0AAAAAQHLKagAAAAAAklNWAwAAAACQnLIaAAAAAIDklNUAAAAAACSnrAYAAAAAIDllNQAAAAAAySmrAQAAAABITlkNAAAAAEByymoAAAAAAJJTVgMAAAAAkJyyGgAAAACA5JTVAAAAAAAkp6wGAAAAACA5ZTUAAAAAAMkpqwEAAAAASE5ZDQAAAABAcspqAAAAAACSU1YDAAAAAJCcshoAAAAAgOSU1QAAAAAAJKesBgAAAAAgOWU1AAAAAADJKasBAAAAAEhOWQ0AAAAAQHLKagAAAAAAklNWAwAAAACQnLIaAAAAAIDklNUAAAAAACSnrAYAAAAAIDllNQAAAAAAySmrAQAAAABITlkNAAAAAEByymoAAAAAAJJTVgMAAAAAkJyyGgAAAACA5JTVAAAAAAAkp6wGAAAAACA5ZTUAAAAAAMkpqwEAAAAASE5ZDQAAAABAcspqAAAAAACSU1YDAAAAAJCcshoAAAAAgOSU1QAAAAAAJKesBgAAAAAgOWU1AAAAAADJKasBAAAAAEhOWQ0AAAAAQHLKagAAAAAAklNWAwAAAACQnLIaAAAAAIDklNUAAAAAACSXV1k9b968OPTQQ6N3794xYMCAOOGEE2LZsmWN1mzcuDGmT58e/fv3j169esVJJ50UNTU1jda89tprcdxxx0VZWVkMGDAgvvrVr8bmzZtbfm+AgiaDgFTkD5CSDAIAOou8yur7778/pk+fHg899FAsXLgw6uvrY9KkSbF+/frcmi9/+ctx++23x4IFC+L++++P5cuXx4knnpi7fsuWLXHcccfFpk2b4o9//GP85Cc/iR//+Mdx4YUXtt69AgqSDAJSkT9ASjIIAOg0shZYsWJFFhHZ/fffn2VZlq1evTorKSnJFixYkFvz7LPPZhGRVVVVZVmWZXfeeWdWXFycVVdX59Zcd911WXl5eVZXV9ek465ZsyaLiGzNmjUtGZ9W9uSfV2dDz70je/LPq1u0n02bNmW33XZbtmnTpnYxD62vtR7DMoi/J4NoCvlDW5FBNIUMoi3IH5rC4xfoKLq2pOhes2ZNRET069cvIiKWLl0a9fX1MXHixNyaAw44IPbee++oqqqKMWPGRFVVVQwfPjwqKipyayZPnhxnnXVWPP300/GhD31om+PU1dVFXV1d7nJtbW1ERNTX10d9fX1L7gKtaO3b75yjJ15b1aJfJ1y/sS4eeTNiz5fejJ7dS5u9nz+9+c47TTZv3uzvSTvTWudDBvH3ZBBNIX9oKzKIppBBtAX5Q1M4F0BH0eyyuqGhIWbOnBmHH354vP/974+IiOrq6ujWrVv07du30dqKioqorq7Orfn7J0hbr9963fbMmzcv5syZs832u+++O8rKypp7F2hlVTVFEdElvvHrZ1phb13jp396rBX2E7Gk6sF4tUer7IpWsmHDhhbvQwbxbjKIppA/tBUZRFPIINqC/KEpWiN/AHaHZpfV06dPj6eeeioefPDB1pxnu84///yYNWtW7nJtbW0MGTIkJk2aFOXl5W1+fJpmzPpNMfzZFbHvXj2jR0mXZu/n+eo18bVbn43LP3ZgvLeyT4tm6lnaJfbp37NF+6D1bX1XTkvIIN5NBtEU8oe2IoNoChlEW5A/NEVr5A/A7tCssnrGjBlxxx13xAMPPBDvec97ctsrKytj06ZNsXr16kav6tfU1ERlZWVuzcMPP9xof1u/pXrrmncrLS2N0tJtfw2ppKQkSkpKmnMXaAMVfUtiythhrba/91b2iRFD+7fa/mg/Wvq4lUFsjwyiKeQPbUUG0RQyiLYgf2gKj1mgoyjOZ3GWZTFjxoy49dZb45577olhwxr/B3HkyJFRUlISixYtym1btmxZvPbaazF27NiIiBg7dmw8+eSTsWLFityahQsXRnl5eRx00EEtuS9AgZNBQCryB0hJBgEAnUVe76yePn163HTTTfHrX/86evfunftssz59+kSPHj2iT58+cfrpp8esWbOiX79+UV5eHmeffXaMHTs2xowZExERkyZNioMOOig+/elPx+WXXx7V1dVxwQUXxPTp07f7qj3AVjIISEX+ACnJIACgs8irrL7uuusiIuKII45otP2GG26Iz372sxER8b3vfS+Ki4vjpJNOirq6upg8eXJce+21ubVdunSJO+64I84666wYO3Zs9OzZM6ZOnRpz585t2T0BCp4MAlKRP0BKMggA6CzyKquzLNvlmu7du8c111wT11xzzQ7XDB06NO688858Dg0gg4Bk5A+QkgwCADqLvD6zGgAAAAAA2oKyGgAAAACA5JTVAAAAAAAkp6wGAAAAACA5ZTUAAAAAAMkpqwEAAAAASE5ZDQAAAABAcspqAAAAAACSU1YDAAAAAJCcshoAAAAAgOSU1QAAAAAAJKesBgAAAAAgOWU1AAAAAADJKasBAAAAAEhOWQ0AAAAAQHLKagAAAAAAklNWAwAAAACQnLIaAAAAAIDklNUAAAAAACSnrAYAAAAAIDllNQAAAAAAySmrAQAAAABITlkNAAAAAEByymoAAAAAAJJTVgMAAAAAkJyyGgAAAACA5JTVAAAAAAAkp6wGAAAAACA5ZTUAAAAAAMkpqwEAAAAASE5ZDQAAAABAcspqAAAAAACSU1YDAAAAAJCcshoAAAAAgOSU1QAAAAAAJKesBgAAAAAgOWU1AAAAAADJKasBAAAAAEhOWQ0AAAAAQHLKagAAAAAAklNWAwAAAACQnLIaAAAAAIDklNUAAAAAACSnrAYAAAAAIDllNQAAAAAAySmrAQAAAABITlkNAAAAAEByymoAAAAAAJJTVgMAAAAAkJyyGgAAAACA5JTVAAAAAAAkp6wGAAAAACA5ZTUAAAAAAMkpqwEAAAAASC5pWX3NNdfEPvvsE927d4/Ro0fHww8/nHIcoBORP0BKMghIRf4AAO1ZsrL65ptvjlmzZsVFF10Ujz76aHzwgx+MyZMnx4oVK1KNBHQS8gdISQYBqcgfAKC9S1ZWX3HFFXHGGWfEtGnT4qCDDor58+dHWVlZ/Od//meqkYBOQv4AKckgIBX5AwC0d0nK6k2bNsXSpUtj4sSJfxukuDgmTpwYVVVVKUYCOgn5A6Qkg4BU5A8A0BF0TXHQlStXxpYtW6KioqLR9oqKinjuuee2WV9XVxd1dXW5y7W1tRERUV9fH/X19W07LK1qw4YNsWzZsp2uef4va6Ku+k/x1OPdYlNNn52ufd/73hdlZWWtOSK7QcrHbb75EyGDCokMIvVj1nOgzk0G4TkQqcgfPGaBjiJJWZ2vefPmxZw5c7bZfvfdd/sPZAfz4osvxle+8pUmrf30T3a95rvf/W7st99+LZyK3W3Dhg2pR8iLDCocMgj5Q0oyCBlEKvKHjpY/QOeVpKzec889o0uXLlFTU9Noe01NTVRWVm6z/vzzz49Zs2blLtfW1saQIUNi0qRJUV5e3ubz0no2bNgQ48eP3+madW/Xxe/+sCQmf/jQ6NWjdKdrvaLfMW19V04K+eZPhAwqJDKIlPkT4TlQZyeD8ByIVOQPqZ8DATRVkrK6W7duMXLkyFi0aFGccMIJERHR0NAQixYtihkzZmyzvrS0NEpLt/2PZUlJSZSUlLT1uLSiPn36xGGHHbbTNfX19bF29ar48Lgxzm+BSnle882fCBlUSGQQqc+p50CdmwzCcyBSkT84p0BHkexjQGbNmhVTp06NUaNGxWGHHRZXXnllrF+/PqZNm5ZqJKCTkD9ASjIISEX+AADtXbKy+hOf+ES8+eabceGFF0Z1dXWMGDEi7rrrrm2+8AOgtckfICUZBKQifwCA9i7pFyzOmDFjh79yBtCW5A+QkgwCUpE/AEB7Vpx6AAAAAAAAUFYDAAAAAJCcshoAAAAAgOSU1QAAAAAAJKesBgAAAAAgOWU1AAAAAADJdU09QHNkWRYREbW1tYknoS3U19fHhg0bora2NkpKSlKPQxvY+tjd+ljuaGRQYZNBhU3+0N7JoMImg2jP5E9h6+j5A3QeHbKsXrt2bUREDBkyJPEkQEusXbs2+vTpk3qMvMkg6PjkD5CSDAJS6aj5A3QeRVkHfFmtoaEhli9fHr17946ioqLU49DKamtrY8iQIfH6669HeXl56nFoA1mWxdq1a2PQoEFRXNzxPo1IBhU2GVTY5A/tnQwqbDKI9kz+FLaOnj9A59Ehy2oKW21tbfTp0yfWrFnjSRKw28kgICUZBKQifwBoD7ycBgAAAABAcspqAAAAAACSU1bT7pSWlsZFF10UpaWlqUcBOiEZBKQkg4BU5A8A7YHPrAYAAAAAIDnvrAYAAAAAIDllNQAAAAAAySmrAQAAAABITlkNAAAAAEByymranWuuuSb22Wef6N69e4wePToefvjh1CMBnYT8AVKSQUBKMgiA9kBZTbty8803x6xZs+Kiiy6KRx99ND74wQ/G5MmTY8WKFalHAwqc/AFSkkFASjIIgPaiKMuyLPUQsNXo0aPj0EMPjauvvjoiIhoaGmLIkCFx9tlnx3nnnZd4OqCQyR8gJRkEpCSDAGgvvLOadmPTpk2xdOnSmDhxYm5bcXFxTJw4MaqqqhJOBhQ6+QOkJIOAlGQQAO2Jspp2Y+XKlbFly5aoqKhotL2ioiKqq6sTTQV0BvIHSEkGASnJIADaE2U1AAAAAADJKatpN/bcc8/o0qVL1NTUNNpeU1MTlZWViaYCOgP5A6Qkg4CUZBAA7YmymnajW7duMXLkyFi0aFFuW0NDQyxatCjGjh2bcDKg0MkfICUZBKQkgwBoT7qmHgD+3qxZs2Lq1KkxatSoOOyww+LKK6+M9evXx7Rp01KPBhQ4+QOkJIOAlGQQAO2Fspp25ROf+ES8+eabceGFF0Z1dXWMGDEi7rrrrm2+7AOgtckfICUZBKQkgwBoL4qyLMtSDwEAAAAAQOfmM6sBAAAAAEhOWQ0AAAAAQHLKagAAAAAAklNWAwAAAACQnLIaAAAAAIDklNUAAAAAACSnrAYAAAAAIDllNQAAAAAAySmrAQAAAABITlkNAAAAAEByymoAAAAAAJJTVgMAAAAAkNz/D/zw4ksEla5JAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "As we can see, there are no outliers here." + ], + "metadata": { + "id": "mjtXSTRwc3zI" + } + }, + { + "cell_type": "markdown", + "source": [ + "All features are numeric. Thus, we don't need to encode categorial features." + ], + "metadata": { + "id": "1-tNZeRSWZ3r" + } + }, + { + "cell_type": "code", + "execution_count": 168, + "metadata": { + "nbgrader": { + "grade": true, + "grade_id": "cell-a1514aa189a49fca", + "locked": false, + "points": 15, + "schema_version": 2, + "solution": true + }, + "colab": { + "base_uri": "https://localhost:8080/", + "height": 320 + }, + "id": "4tSe3z6hOcMB", + "outputId": "acc0ef67-b6fc-4701-cb1b-82921a63aa24" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " 0 1 2 3 4 \\\n", + "count 5.490000e+02 5.490000e+02 5.490000e+02 5.490000e+02 5.490000e+02 \n", + "mean 6.471245e-18 7.539001e-16 -4.238666e-16 -2.070799e-16 -3.494472e-16 \n", + "std 1.000912e+00 1.000912e+00 1.000912e+00 1.000912e+00 1.000912e+00 \n", + "min -1.687552e+00 -2.533391e+00 -1.917966e+00 -2.549304e+00 -1.991426e+00 \n", + "25% -8.688299e-01 -8.264001e-01 -7.897334e-01 -7.697344e-01 -8.554895e-01 \n", + "50% -2.554593e-02 -9.483280e-02 -1.450291e-01 -1.341739e-01 -5.726378e-02 \n", + "75% 8.668614e-01 7.586624e-01 8.220273e-01 1.009835e+00 8.637659e-01 \n", + "max 1.767456e+00 3.075292e+00 2.272612e+00 1.899620e+00 2.552320e+00 \n", + "\n", + " 5 6 7 8 9 \\\n", + "count 5.490000e+02 5.490000e+02 5.490000e+02 5.490000e+02 5.490000e+02 \n", + "mean 4.529872e-16 8.412619e-17 -1.860483e-16 4.740187e-16 -4.821078e-16 \n", + "std 1.000912e+00 1.000912e+00 1.000912e+00 1.000912e+00 1.000912e+00 \n", + "min -2.137384e+00 -1.276801e+00 -1.674962e+00 -1.931122e+00 -1.409548e+00 \n", + "25% -6.942359e-01 -3.486794e-01 -6.705169e-01 -1.020979e+00 -6.259108e-01 \n", + "50% 2.733833e-02 -1.166491e-01 -3.661397e-01 2.792240e-01 -2.340921e-01 \n", + "75% 6.045977e-01 3.474115e-01 9.122445e-01 6.692850e-01 9.413642e-01 \n", + "max 9.263488e+00 1.078878e+01 2.921134e+00 2.359549e+00 3.292277e+00 \n", + "\n", + " 10 11 12 13 14 \\\n", + "count 5.490000e+02 5.490000e+02 5.490000e+02 5.490000e+02 5.490000e+02 \n", + "mean -5.759408e-16 -3.203266e-16 2.426717e-17 3.300335e-16 -1.294249e-17 \n", + "std 1.000912e+00 1.000912e+00 1.000912e+00 1.000912e+00 1.000912e+00 \n", + "min -2.049873e+00 -1.876935e+00 -1.425351e+00 -2.002891e+00 -1.914590e+00 \n", + "25% -7.571146e-01 -6.671944e-01 -6.824743e-01 -7.859613e-01 -6.444520e-01 \n", + "50% -1.447553e-01 -3.402376e-01 -4.424680e-01 -5.580364e-02 -7.994598e-02 \n", + "75% 8.078037e-01 9.348940e-01 8.832811e-01 6.743540e-01 3.434335e-01 \n", + "max 2.576842e+00 3.256287e+00 3.300487e+00 2.834404e+00 7.682011e+00 \n", + "\n", + " 15 16 17 18 \n", + "count 5.490000e+02 5.490000e+02 5.490000e+02 5.490000e+02 \n", + "mean 9.949540e-17 4.206309e-17 -1.346019e-15 5.824121e-17 \n", + "std 1.000912e+00 1.000912e+00 1.000912e+00 1.000912e+00 \n", + "min -1.236601e+00 -1.393968e+00 -2.064746e+00 -1.951471e+00 \n", + "25% -8.356008e-01 -8.349551e-01 -7.696355e-01 -7.396804e-01 \n", + "50% -2.340997e-01 -1.641399e-01 -1.220801e-01 6.818009e-02 \n", + "75% 5.679017e-01 7.302802e-01 6.873641e-01 7.413971e-01 \n", + "max 3.174406e+00 3.189936e+00 2.791919e+00 2.087831e+00 " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0123456789101112131415161718
count5.490000e+025.490000e+025.490000e+025.490000e+025.490000e+025.490000e+025.490000e+025.490000e+025.490000e+025.490000e+025.490000e+025.490000e+025.490000e+025.490000e+025.490000e+025.490000e+025.490000e+025.490000e+025.490000e+02
mean6.471245e-187.539001e-16-4.238666e-16-2.070799e-16-3.494472e-164.529872e-168.412619e-17-1.860483e-164.740187e-16-4.821078e-16-5.759408e-16-3.203266e-162.426717e-173.300335e-16-1.294249e-179.949540e-174.206309e-17-1.346019e-155.824121e-17
std1.000912e+001.000912e+001.000912e+001.000912e+001.000912e+001.000912e+001.000912e+001.000912e+001.000912e+001.000912e+001.000912e+001.000912e+001.000912e+001.000912e+001.000912e+001.000912e+001.000912e+001.000912e+001.000912e+00
min-1.687552e+00-2.533391e+00-1.917966e+00-2.549304e+00-1.991426e+00-2.137384e+00-1.276801e+00-1.674962e+00-1.931122e+00-1.409548e+00-2.049873e+00-1.876935e+00-1.425351e+00-2.002891e+00-1.914590e+00-1.236601e+00-1.393968e+00-2.064746e+00-1.951471e+00
25%-8.688299e-01-8.264001e-01-7.897334e-01-7.697344e-01-8.554895e-01-6.942359e-01-3.486794e-01-6.705169e-01-1.020979e+00-6.259108e-01-7.571146e-01-6.671944e-01-6.824743e-01-7.859613e-01-6.444520e-01-8.356008e-01-8.349551e-01-7.696355e-01-7.396804e-01
50%-2.554593e-02-9.483280e-02-1.450291e-01-1.341739e-01-5.726378e-022.733833e-02-1.166491e-01-3.661397e-012.792240e-01-2.340921e-01-1.447553e-01-3.402376e-01-4.424680e-01-5.580364e-02-7.994598e-02-2.340997e-01-1.641399e-01-1.220801e-016.818009e-02
75%8.668614e-017.586624e-018.220273e-011.009835e+008.637659e-016.045977e-013.474115e-019.122445e-016.692850e-019.413642e-018.078037e-019.348940e-018.832811e-016.743540e-013.434335e-015.679017e-017.302802e-016.873641e-017.413971e-01
max1.767456e+003.075292e+002.272612e+001.899620e+002.552320e+009.263488e+001.078878e+012.921134e+002.359549e+003.292277e+002.576842e+003.256287e+003.300487e+002.834404e+007.682011e+003.174406e+003.189936e+002.791919e+002.087831e+00
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "
\n", + "
\n" + ] + }, + "metadata": {}, + "execution_count": 168 + } + ], + "source": [ + "from sklearn.preprocessing import StandardScaler\n", + "\n", + "scaler = StandardScaler()\n", + "X_train_pd_scaled = scaler.fit_transform(X_train_pd)\n", + "pd.DataFrame(X_train_pd_scaled).describe()" + ] + }, + { + "cell_type": "code", + "source": [ + "X_test_scaled = scaler.transform(X_test)" + ], + "metadata": { + "id": "xjza1qLJmAVM" + }, + "execution_count": 169, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "X_W18VLROcMB" + }, + "source": [ + "#### 2.1. Basic logistic regression\n", + "* Find optimal hyperparameters for logistic regression with cross-validation on the `train` data (small grid/random search is enough, no need to find the *best* parameters).\n", + "\n", + "* Estimate the model quality with `f1` and `accuracy` scores.\n", + "* Plot a ROC-curve for the trained model. For the multiclass case you might use `scikitplot` library (e.g. `scikitplot.metrics.plot_roc(test_labels, predicted_proba)`).\n", + "\n", + "*Note: please, use the following hyperparameters for logistic regression: `multi_class='multinomial'`, `solver='saga'` `tol=1e-3` and ` max_iter=500`.*" + ] + }, + { + "cell_type": "code", + "source": [ + "np.random.seed(42)" + ], + "metadata": { + "id": "-ub9KcyAeaJ9" + }, + "execution_count": 170, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 171, + "metadata": { + "nbgrader": { + "grade": true, + "grade_id": "cell-1dd5ad5d0845cbbb", + "locked": false, + "points": 5, + "schema_version": 2, + "solution": true + }, + "id": "5U4v7F-ZOcMB" + }, + "outputs": [], + "source": [ + "from sklearn.model_selection import GridSearchCV\n", + "from sklearn.linear_model import LogisticRegression" + ] + }, + { + "cell_type": "code", + "source": [ + "logreg_grid = {\n", + " 'multi_class': ['multinomial'],\n", + " 'solver': ['saga'],\n", + " 'tol': [1e-4, 1e-3],\n", + " 'max_iter': [500, 1000, 1500],\n", + " 'penalty': ['l1', 'l2', 'elasticnet'],\n", + " 'C': [0.01, 0.1, 1],\n", + "}" + ], + "metadata": { + "id": "qqijRDeYdoDA" + }, + "execution_count": 172, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "regressor = LogisticRegression(n_jobs=-1)\n", + "logreg_grid_search = GridSearchCV(regressor, param_grid=logreg_grid, refit=True)" + ], + "metadata": { + "id": "9muUiWtPejTZ" + }, + "execution_count": 173, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "logreg_grid_search.fit(X_train_pd_scaled, y_train)\n", + "print(f'best params: {logreg_grid_search.best_params_}')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "1MEK4bkPe_hF", + "outputId": "29ac4c6f-24bc-4f60-9880-02fd28bf1fae" + }, + "execution_count": 174, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n", + " warnings.warn(\n", + "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n", + " warnings.warn(\n", + "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n", + " warnings.warn(\n", + "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n", + " warnings.warn(\n", + "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n", + " warnings.warn(\n", + "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n", + " warnings.warn(\n", + "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n", + " warnings.warn(\n", + "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n", + " warnings.warn(\n", + "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n", + " warnings.warn(\n", + "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n", + " warnings.warn(\n", + "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n", + " warnings.warn(\n", + "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n", + " warnings.warn(\n", + "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n", + " warnings.warn(\n", + "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n", + " warnings.warn(\n", + "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n", + " warnings.warn(\n", + "/usr/local/lib/python3.10/dist-packages/sklearn/model_selection/_validation.py:378: FitFailedWarning: \n", + "90 fits failed out of a total of 270.\n", + "The score on these train-test partitions for these parameters will be set to nan.\n", + "If these failures are not expected, you can try to debug them by setting error_score='raise'.\n", + "\n", + "Below are more details about the failures:\n", + "--------------------------------------------------------------------------------\n", + "90 fits failed with the following error:\n", + "joblib.externals.loky.process_executor._RemoteTraceback: \n", + "\"\"\"\n", + "Traceback (most recent call last):\n", + " File \"/usr/local/lib/python3.10/dist-packages/joblib/_parallel_backends.py\", line 273, in _wrap_func_call\n", + " return func()\n", + " File \"/usr/local/lib/python3.10/dist-packages/joblib/parallel.py\", line 589, in __call__\n", + " return [func(*args, **kwargs)\n", + " File \"/usr/local/lib/python3.10/dist-packages/joblib/parallel.py\", line 589, in \n", + " return [func(*args, **kwargs)\n", + " File \"/usr/local/lib/python3.10/dist-packages/sklearn/utils/parallel.py\", line 123, in __call__\n", + " return self.function(*args, **kwargs)\n", + " File \"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py\", line 521, in _logistic_regression_path\n", + " alpha = (1.0 / C) * (1 - l1_ratio)\n", + "TypeError: unsupported operand type(s) for -: 'int' and 'NoneType'\n", + "\"\"\"\n", + "\n", + "The above exception was the direct cause of the following exception:\n", + "\n", + "Traceback (most recent call last):\n", + " File \"/usr/local/lib/python3.10/dist-packages/sklearn/model_selection/_validation.py\", line 686, in _fit_and_score\n", + " estimator.fit(X_train, y_train, **fit_params)\n", + " File \"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py\", line 1291, in fit\n", + " fold_coefs_ = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, prefer=prefer)(\n", + " File \"/usr/local/lib/python3.10/dist-packages/sklearn/utils/parallel.py\", line 63, in __call__\n", + " return super().__call__(iterable_with_config)\n", + " File \"/usr/local/lib/python3.10/dist-packages/joblib/parallel.py\", line 1952, in __call__\n", + " return output if self.return_generator else list(output)\n", + " File \"/usr/local/lib/python3.10/dist-packages/joblib/parallel.py\", line 1595, in _get_outputs\n", + " yield from self._retrieve()\n", + " File \"/usr/local/lib/python3.10/dist-packages/joblib/parallel.py\", line 1699, in _retrieve\n", + " self._raise_error_fast()\n", + " File \"/usr/local/lib/python3.10/dist-packages/joblib/parallel.py\", line 1734, in _raise_error_fast\n", + " error_job.get_result(self.timeout)\n", + " File \"/usr/local/lib/python3.10/dist-packages/joblib/parallel.py\", line 736, in get_result\n", + " return self._return_or_raise()\n", + " File \"/usr/local/lib/python3.10/dist-packages/joblib/parallel.py\", line 754, in _return_or_raise\n", + " raise self._result\n", + "TypeError: unsupported operand type(s) for -: 'int' and 'NoneType'\n", + "\n", + " warnings.warn(some_fits_failed_message, FitFailedWarning)\n", + "/usr/local/lib/python3.10/dist-packages/sklearn/model_selection/_search.py:952: UserWarning: One or more of the test scores are non-finite: [0.26593828 0.26593828 0.66305254 0.66305254 nan nan\n", + " 0.26593828 0.26593828 0.66305254 0.66305254 nan nan\n", + " 0.26593828 0.26593828 0.66305254 0.66305254 nan nan\n", + " 0.72678899 0.72678899 0.76690575 0.76690575 nan nan\n", + " 0.72497081 0.72678899 0.76690575 0.76690575 nan nan\n", + " 0.72497081 0.72678899 0.76690575 0.76690575 nan nan\n", + " 0.80513761 0.8069558 0.79603003 0.79421184 nan nan\n", + " 0.80877398 0.80513761 0.79603003 0.79421184 nan nan\n", + " 0.80877398 0.80513761 0.79603003 0.79421184 nan nan]\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "best params: {'C': 1, 'max_iter': 1000, 'multi_class': 'multinomial', 'penalty': 'l1', 'solver': 'saga', 'tol': 0.0001}\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n", + " warnings.warn(\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "best_estimator = logreg_grid_search.best_estimator_" + ], + "metadata": { + "id": "mykSJheBgnVm" + }, + "execution_count": 175, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 176, + "metadata": { + "id": "Co0DVxOGOcMB", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "690609a9-fcea-411c-8852-9ca07ba94509" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: scikit-plot in /usr/local/lib/python3.10/dist-packages (0.3.7)\n", + "Requirement already satisfied: matplotlib>=1.4.0 in /usr/local/lib/python3.10/dist-packages (from scikit-plot) (3.7.1)\n", + "Requirement already satisfied: scikit-learn>=0.18 in /usr/local/lib/python3.10/dist-packages (from scikit-plot) (1.2.2)\n", + "Requirement already satisfied: scipy>=0.9 in /usr/local/lib/python3.10/dist-packages (from scikit-plot) (1.11.3)\n", + "Requirement already satisfied: joblib>=0.10 in /usr/local/lib/python3.10/dist-packages (from scikit-plot) (1.3.2)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.4.0->scikit-plot) (1.1.1)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.4.0->scikit-plot) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.4.0->scikit-plot) (4.43.1)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.4.0->scikit-plot) (1.4.5)\n", + "Requirement already satisfied: numpy>=1.20 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.4.0->scikit-plot) (1.23.5)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.4.0->scikit-plot) (23.2)\n", + "Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.4.0->scikit-plot) (9.4.0)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.4.0->scikit-plot) (3.1.1)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=1.4.0->scikit-plot) (2.8.2)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.18->scikit-plot) (3.2.0)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib>=1.4.0->scikit-plot) (1.16.0)\n" + ] + } + ], + "source": [ + "# You might use this command to install scikit-plot.\n", + "# Warning, if you a running locally, don't call pip from within jupyter, call it from terminal in the corresponding\n", + "# virtual environment instead\n", + "\n", + "!pip install scikit-plot" + ] + }, + { + "cell_type": "code", + "source": [ + "from sklearn.metrics import f1_score, accuracy_score\n", + "import scikitplot" + ], + "metadata": { + "id": "XTAcTwLFhP2s" + }, + "execution_count": 177, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "y_pred = best_estimator.predict(X_test_scaled)\n", + "print(f'f1 score: {f1_score(y_test, y_pred, average=\"macro\")}')\n", + "print(f'accuracy score: {accuracy_score(y_test, y_pred)}')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "NnLWy8wqhWSh", + "outputId": "bd3d6761-d5c6-4f8f-ab0c-c69406a14981" + }, + "execution_count": 178, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "f1 score: 0.7655493615264786\n", + "accuracy score: 0.7609427609427609\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "pred_proba = best_estimator.predict_proba(X_test_scaled)\n", + "scikitplot.metrics.plot_roc(y_test, pred_proba)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 490 + }, + "id": "otxFDGoEiSbN", + "outputId": "5d340045-710e-44a6-ccaa-abf808122b64" + }, + "execution_count": 179, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 179 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD6DElEQVR4nOzdd1iT1xcH8G8SIBAIe4iAiAMXoogLFw4UtVqtu7hwtGpdRa1bXFV/rXvPKi6sonW3jmq1DrSKoqAIKg5AQFSQvZL7+yMSjRkQDIRxPs/Do9y8980JKJy877nnchhjDIQQQgghlRBX2wEQQgghhGgLJUKEEEIIqbQoESKEEEJIpUWJECGEEEIqLUqECCGEEFJpUSJECCGEkEqLEiFCCCGEVFqUCBFCCCGk0qJEiBBCCCGVFiVChBBCCKm0KBEihMgICAgAh8ORfujo6MDOzg6+vr6Ii4tTOIcxhr1796Jdu3YwNTWFQCBAw4YNsWjRImRkZCh9rqNHj6Jbt26wtLSEnp4eqlatigEDBuDixYtFijU7OxurV69GixYtYGJiAn19fTg7O2PChAmIiooq1usnhFQuHNprjBDyqYCAAIwYMQKLFi2Ck5MTsrOzcePGDQQEBKB69eoIDw+Hvr6+9HiRSAQfHx8cOnQIbdu2RZ8+fSAQCHDlyhUEBgaifv36+Pvvv2FjYyOdwxjDyJEjERAQADc3N/Tr1w9VqlRBfHw8jh49ipCQEFy7dg2tWrVSGuebN2/QtWtXhISEoEePHvDy8oKRkREiIyPx+++/IyEhAbm5uSX6tSKEVACMEEI+sWvXLgaA3bp1S2Z8xowZDAA7ePCgzPjSpUsZADZt2jS5c504cYJxuVzWtWtXmfHly5czAOzHH39kYrFYbt6ePXvYzZs3Vcb51VdfMS6Xyw4fPiz3WHZ2Nps6darK+UWVl5fHcnJyNHIuQkjZQ4kQIUSGskTo1KlTDABbunSpdCwzM5OZmZkxZ2dnlpeXp/B8I0aMYABYcHCwdI65uTmrW7cuy8/PL1aMN27cYADYd999V6TjPT09maenp9z48OHDmaOjo/TzZ8+eMQBs+fLlbPXq1axGjRqMy+WyGzduMB6PxxYsWCB3jkePHjEAbP369dKx5ORkNnnyZGZvb8/09PRYzZo12f/+9z8mEolk5h44cIA1adKEGRkZMaFQyFxcXNiaNWuK9kUghGgE1QgRQork+fPnAAAzMzPp2NWrV5GcnAwfHx/o6OgonDds2DAAwKlTp6Rz3r17Bx8fH/B4vGLFcuLECQDA0KFDizW/MLt27cL69evx/fffY+XKlbC1tYWnpycOHTokd+zBgwfB4/HQv39/AEBmZiY8PT2xb98+DBs2DOvWrUPr1q0xa9YsTJkyRTrv/Pnz+Pbbb2FmZoZffvkF//vf/9C+fXtcu3atRF4TIUQxxT+5CCGV3vv37/HmzRtkZ2fj5s2bWLhwIfh8Pnr06CE95uHDhwCARo0aKT1PwWMREREyfzZs2LDYsWniHKrExsbiyZMnsLKyko4NHDgQY8aMQXh4OFxcXKTjBw8ehKenp7QGatWqVXj69Cnu3r2L2rVrAwDGjBmDqlWrYvny5Zg6dSocHBxw+vRpGBsb4+zZs8VOCAkhX46uCBFCFPLy8oKVlRUcHBzQr18/GBoa4sSJE7C3t5cek5aWBgAQCoVKz1PwWGpqqsyfquYURhPnUKVv374ySRAA9OnTBzo6Ojh48KB0LDw8HA8fPsTAgQOlY0FBQWjbti3MzMzw5s0b6YeXlxdEIhH+/fdfAICpqSkyMjJw/vz5EnkNhJCioUSIEKLQxo0bcf78eRw+fBjdu3fHmzdvwOfzZY4pSEQKEiJFPk+WjI2NC51TGE2cQxUnJye5MUtLS3Tq1Enm9tjBgweho6ODPn36SMceP36MM2fOwMrKSubDy8sLAPD69WsAwA8//ABnZ2d069YN9vb2GDlyJM6cOVMir4cQohwlQoQQhZo3bw4vLy/07dsXJ06cgIuLC3x8fJCeni49pl69egCA+/fvKz1PwWP169cHANStWxcAEBYWVuzY1D0Hh8NROC4SiRSOGxgYKBwfNGgQoqKiEBoaCgA4dOgQOnXqBEtLS+kxYrEYnTt3xvnz5xV+9O3bFwBgbW2N0NBQnDhxAl9//TX++ecfdOvWDcOHDy/SayKEaAYlQoSQQvF4PCxbtgyvXr3Chg0bpONt2rSBqakpAgMDlSYVe/bsAQBpbVGbNm1gZmaGAwcOKJ1TmJ49ewIA9u3bV6TjzczMkJKSIjf+4sULtZ63d+/e0NPTw8GDBxEaGoqoqCgMGjRI5piaNWsiPT0dXl5eCj+qVasmPVZPTw89e/bEpk2b8PTpU4wZMwZ79uzBkydP1IqLEFJ8lAgRQoqkffv2aN68OdasWYPs7GwAgEAgwLRp0xAZGYk5c+bIzTl9+jQCAgLg7e2Nli1bSufMmDEDERERmDFjBpiCnq779u3Df//9pzQWDw8PdO3aFTt27MCxY8fkHs/NzcW0adOkn9esWROPHj1CUlKSdOzevXtqr9AyNTWFt7c3Dh06hN9//x16enro3bu3zDEDBgxAcHAwzp49Kzc/JSUF+fn5AIC3b9/KPMblcuHq6goAyMnJUSsuQkjxUWdpQoiMgs7St27dQtOmTWUeO3z4MPr374/Nmzdj7NixACS3lwYOHIgjR46gXbt26Nu3LwwMDHD16lXs27cP9erVw4ULF2Q6S4vFYvj6+mLv3r1o0qSJtLN0QkICjh07hv/++w/Xr1+Hh4eH0jiTkpLQpUsX3Lt3Dz179kSnTp1gaGiIx48f4/fff0d8fLw0oYiIiICLiwsaNWqEUaNG4fXr19iyZQtsbGyQmpoqbQ3w/PlzODk5Yfny5TKJ1Kf279+PIUOGQCgUon379tKl/AUyMzPRtm1b3L9/H76+vnB3d0dGRgbCwsJw+PBhPH/+HJaWlvjmm2/w7t07dOzYEfb29njx4gXWr1+P6tWrIyQkBFwuvU8lpFRouY8RIaSMUdZQkTHGRCIRq1mzJqtZs6ZMM0SRSMR27drFWrduzYyNjZm+vj5r0KABW7hwIUtPT1f6XIcPH2ZdunRh5ubmTEdHh9na2rKBAweyS5cuFSnWzMxMtmLFCtasWTNmZGTE9PT0WO3atdnEiRPZkydPZI7dt28fq1GjBtPT02ONGzdmZ8+eVdlQUZnU1FRmYGDAALB9+/YpPCYtLY3NmjWL1apVi+np6TFLS0vWqlUrtmLFCpabmyvz2q2trZmenh6rVq0aGzNmDIuPjy/SayeEaAZdESKEEEJIpUXXXgkhhBBSaVEiRAghhJBKixIhQgghhFRalAgRQgghpNKiRIgQQgghlRYlQoQQQgiptHS0HUBpE4vFePXqFYRCodL9hwghhBBStjDGkJaWhqpVq2q04WilS4RevXoFBwcHbYdBCCGEkGKIiYmBvb29xs5X6RIhoVAIQPKFNDY21nI0hBBCCCmK1NRUODg4SH+Pa0qlS4QKbocZGxtTIkQIIYSUM5oua6FiaUIIIYRUWpQIEUIIIaTSokSIEEIIIZUWJUKEEEIIqbQoESKEEEJIpUWJECGEEEIqLUqECCGEEFJpUSJECCGEkEqLEiFCCCGEVFqUCBFCCCGk0tJqIvTvv/+iZ8+eqFq1KjgcDo4dO1bonEuXLqFJkybg8/moVasWAgICSjxOQgghhFRMWt1rLCMjA40aNcLIkSPRp0+fQo9/9uwZvvrqK4wdOxb79+/HhQsXMHr0aNja2sLb27sUIiaEENXS0nLAmOyYjg4XAoGuynkikRgZGXly4/r6OtDT46mcm5OTj5wckdy4kZEeuFzV+zJlZORCJJINmMvlwMhIT+U8AEhNzZEb09PjQV9f9a+W/HwxMjPlX6tAoAsdHdXvz7Oz85GbK/9ahUK9QvegSk/PhVgs+1p5PA4MDVW/VrGYIT09V26cz+eBz1f9WnNzRcjOzpcbNzTUBY+n+rVmZuYhP18sM8bhAEIhX+U8QPH3RleXCwMD1f8OlX1vDAx0oKtbvH+HRfneKPp3WJTvjSZwGPv8v6x2cDgcHD16FL1791Z6zIwZM3D69GmEh4dLxwYNGoSUlBScOXOmSM+TmpoKExMTvH//njZdJYRonIPDasTGpsqM9etXH0FB/VXOe/gwCQ0abJIb3769J0aPbqJy7urVwZgy5Zzc+MuXP8LBwUTl3K5d9+Hs2acyY/XqWeLhw/Eq5wEAh7NQbuzHH1tg9equKuedO/cU3t775Mb/+mswunatpXLulClnsXr1Dblxsdi/0F+2DRpswsOHSTJjnTvXwLlzQ1XOi41NhYPDarnxlXVsMGWNN9DVSenc3367g9GjT8qNh7eugQZH+wJWAqVzBwwIQlDQQ5kxO74OYoc3BbaqfvNvYvI/uWRopJ0pfpvXHhjTSOm8Gzdi4eHxm9z4wUZ2GLCjB9C0itK5CxdewoIFl+XGUzrVgcnfg1TG26rVbwgOjpUZa2FigBvjPYAlbQGU3O/vclUjFBwcDC8vL5kxb29vBAcHaykiQkilcDkGGHsO6BYEDDml/vwrMZK5q2+rP3fNbcncf2PUnzv0tGSugitNKr1Mlczzu6j+cx59LJm794H6c+dekcx9+Eb9ud2CgD7H1J93J1Eyd0kxfo/EpgFJmerPA4AHb4E8ceHHfS5PLJlbHG+ygM+S9CKLfg8ouMpUJHdfF29eRh4Q9Q4AIBaL8eBBMf5NFYFWb42pKyEhATY2NjJjNjY2SE1NRVZWFgwMDOTm5OTkICfn4zcvNbWY/wgIqWhuJwDzrsiPL26r8l0fAGDrPeBYFN6+fYeYmBiIRJLL4b309hb6tBvyesKBmcqM3eW+wgKdCyrnWTABdub1lRvfybuN47wIlXM7i2phgshDbnyi7gm85LwHAGRVa4/UxqMg1pH9OXLhzAPUeJOOJMaQJBajtrEAzpM+XpHoV+0CFjTaDiE/GdDNgCh3EoDPrsIk5wC3E5FhdgzJwb8rjDHhmSWAH+QfeJEKJObi7c3eyNINVTg35XkLAAquENxPAng8xN0wARMo/iWWneID4LOrMNki4HYictJuICm4s8J5Ev7yQ4mZQEYiUmsFILWW4iv1SQ9rABgi/8DjZOBFBl7fbIHc988Vzk171QVAS/kHbidCLMjBq2Dlt2/ys8YCsJYdTM0FbiciU+8M3gW3UTgv/rUQgJ/Cx95Ff4/MYPkrVAWSnzYG8LXi84ZUg+jFe6Vzs972BdBAbjwv8wESVbxOAGCi6QD05cbT4tfgfXB7pfNeh9sBGKXwsaSI7sgxeKR0bmpMOwCKzx1bSLy5aSMAOMiNZ78/hwcnv8HUJQw37qo8RbGVq0SoOJYtW4aFC+Uv3xJS6aVKfjkrHC9MbCpwOxEWACzwMWmKi4srdGptU3M00LGVGXuTlYq41ELmck3hbm4nN7w/5SbislXP5fGrwV34cS5jDBwOB+8T3yFOlCAZ7DYMMHH8OOneY+Dv2+iQJ1vfcc1IALHhx1+mC9x2oZ7wxcfnUhGHIYfBkKf4KkAqV3WVggVXDCiZa1rIXDseUzpXX8XdJD4HsFcyrzDGXAZjJXOtConXWsVrFaqYywVTGa+qX3gCDiBQNlfFc5pzGcxVPKeZirm2Kr4vAGCg5HujW4Tvi7Jvq5DDIFQxN1ZFvFYqvi+A5HuuTGHx6ikJ+GzSM4wexvAmReX0L1KuEqEqVaogMVH2B3diYiKMjY0VXg0CgFmzZmHKlCnSz1NTU+HgIJ91ElImzLkC3EmQHatmXGg9AADJ5f3P9XZWWQ+gaXZ28onK53RydYDPfl7y+fxC59oyISBfrwoTExPYWSieKxLxkZHRAP/lO6D7+1TEicV4JRZjmaEAo/X1YWNtg/dcSeoSb2AMMQCIReBmvQXLzwDLky9yTcvLw+z/7uF/DSTJnJArucosYkA8A+RLRT/KYBwkixRXJCSIVde3vBVzkaVkbkohc+NEHDAlc7NV5CQ5DEhSMq8wqWIOUpXMTSok3tdiLnKVzE1TMVcMDl6piFf+u/lRJgPeKZkbr+I534k5yFTxnMkq5saLOBCpmJul5HuTx4DEQr4vyr6taYyD9yrmvlYRb5KYixwVc1NVzI0tJN5cBQHnsQwMDjuPjA//qSzNgDfJKk9TLOUqEfLw8MCff/4pM3b+/Hl4eMhf8i7A5/PB5xdeYU9ImRD1Tv4qTVoR6zsUXd0p7BaXhsXGxhZ+UJtAIPKdzFB7T0/EBq1SPe9VOpjrLuQByGQMWQBsuVzMn++P+ePcFE5JTExHlSorEQYgDB+/jnFiybvTixcvAHUtAAD2y14gLlUEO1M9xP7SEmfOPEG382Fy58zLycOS2oZYsu7D7Zm7ekAe8BpcOGSIYdw/AvMtZ0hqe3Ilz1NfR5JsGVqPgqHHfoWx8mtlYP78W0BcGrD/462+JjqSH9MWzgcBD8WFxF0RA47ZU+BaLHDtlXTc+EPxsF3zFECoePXN6An30b7rO2DfA+BVBgDAiiv5pcUXtoS9h/LUbv78S0COCFgbIh1rqSuJ19jBH8YepxXOa2n9DvNT7gOP3gEnnkjHa/EkXydrl6tAM1uFc/ulPoFd3VjgzDPJrb9PcHlClfFOmvofkpIygc13pf+van54ToFFPwgUFAkDgHFqDuZP/gc4JVtU7mFpBPMW+2DuobxYuiM/HvOfXgdCZN/gWFUzh3XLWJXF0sPGPoB77m0gPv1jLDo86DZzgr3HEqXzAGDWnCvI+e2+zJibsQGEzfwh9DiifKJDKuZ/9y9w8YXMcIMqxrBqcUHlz5SeOc8hTLgBPJKtYeLXsISJiu8LAIz78Q5iNt0B3n+8Im2vrws4TsF3f/6K3r17Y9WqVahRo4bK8xSHVhOh9PR0PHny8T/Bs2fPEBoaCnNzc1SrVg2zZs1CXFwc9uzZAwAYO3YsNmzYgOnTp2PkyJG4ePEiDh06hNOnFf9nI4RoXlBYOjJC0uGr4DH7ZS8UjEqIUjOR/eQVJj9+C2FmNrLAkMmA4Xw+4p9lY4iKuann7iDj+kNwcvNlrriILcyx6EIytqconsvEDOBygM+WTMeJJAlKx+3xiLKU/JKJT5P9QW2l5BdUklgM+NSTfp4pzoIAgIhJzikcFIYFbdoD91OArM+SWEflK12srAyxYEF7SaFwbLb8AWbK39B5eDjAw8NBUqCso+A4FUvohwxxlfzlvVjuF1hBkqjMggXtJQWtoe/kH7Q1UjqvZk1zydx/Y4D3Cn5BGipf4u3tXQve3rUAEyPA7Jnsg4UsDR8/vrnkL0/SgbdZnwVlqnSesTEfC9Z0BdaoPL1CTZrYoslB+dq2oujfvwH695evESqKWbPaArPaqj3P3t4YC7b1KNZztm9fHe3bVy/W3FGjmkDk2wj5+fkyFy8YY3A41xFdunRBWlpasc5dGK0un7906RI6dOggNz58+HAEBATA19cXz58/x6VLl2Tm+Pn54eHDh7C3t8e8efPg6+tb5Ocst8vn3wUBsf6A6OM/hMysLKSmpoKx4t3DJyVLL9wZgistwHst/8sk2W8HxMbpcuPmv44FP7yezFieXTzeLPtfoc9nO2yt3Fi69z9IG3xM4fG6TxxhvP8bufHUwUeRV0tFQqNvDqO/PGBwrT5yxUBEFgcOegzmukDS0t1K5127UxWDpsgXjR6pm4POLWLxfsR5pXP/t605NgbKLyFPaZmF/B63kNXmoYJZEi0GDMar10KZsW5mIhytl4t3k49DZJMi85gOF6hixMPLeEM4fuUjd75f+kVh+uyPS4RFuXHgcYBYMeCQAdQV1EWEh+ribUKIrJiYGAwbNgwuLi5Yv369wmNK6ve3Vq8ItW/fHqryMEVdo9u3b4+7d0uodLwsi/UHsmWr9QU6gMBcS/FUdnfrAH+3ANreAVqGK3585VhApLh01kbIBSwUJLAK7l7o8gBbRccWgZEBg5GyuRbPgBbyt6MsCzknY2/wb4372HhHHyevOiM7Rxf7Fx2Bj3cY7FXMq2as+MdN3pATEHZ+AKHCRyVsjFIUjosWrYOFSZbCxwo4WL2XS4TirV6Dv3orFN98AZAHWBnpYPhXobAyzYCVWSasTDNgbZYBl5qvgbyPK314Hy62pDFJErS4xmKV8RBCZB06dAhjxoxBSkoKLl26hG7duqF79+6l9vzlqkaoUpNeCeICupIf3/EJ8RB9uMRfWIdS8uV4ry1gunko9J5+rAdIqfEEWW/lv/amp1vCQEkSBACJyRyIOfLzjC0ToVtTdsmryOodUhQ8x+csaj6TG8syTEFmEeYWVUqaPr6ZOQqRz2Svct2McIJPDwW3Rz4hMDJTOJ6VbwXoqi6UNhAovk2VKXKAuW6Gyrl2NnnQjRShqlUm7KwzUNUqE/WcUgp/Tl0gYPEtBY8YffiQiM+NR4pYjDVic0S0pitBhBRVamoqJk2ahN27P15JdnBwgFCo6m2R5lEiVN7o2gJukoLUZvb2iIuLg52dXdGKVMlHQ07J1wi0sQfmKC+8x6O3wLQDMkOmLttg2k3BPfysKKDbJ7+gc0TAko+9Rmw6vASqKqih6Kb4qQ2wS3lcKubqQa6jjYz8fDHevcvC27eZePs2C/XrW8HcXPEKTACowhgej/wVgGwNS1hCH8DtuMrwBEZvAWyQG8+0+hVwa6Z6bvAtAH/KjWfWuA44q65j2XsyD/r6OoVuNVFcza7aIy4nDnZ85V83Qois4OBgDBkyBNHR0dKxgQMHYvPmzTAzU/ymqaRQIkQqp/tJQPxnVxJUFHeqlCMCNt0F/Jp+HOvjLPv4yL+Kd24NCApLh//5ZKTlfLxFlhMdj7f7LoJlyxbzWgz3gn4dVTe4ALGdFRAl2+X4zp14aW8eZZTtcaRoX6PPNWhghZEjG0Mg0IWBgS4EAsmHqqQNAIISg+Af7Y80UckUWQJAfE58iZ2bkIomPz8fS5YsweLFi6WNWIVCITZu3IghQ4YUuk1KSaBEqBQEBQXB398f7VxeY9q3qTAyUL/ew9pUDB5Pcjusmb3kF1V8PP0AlnE5BjgQAbx4L7mv8Ufvkn/O3A9JjpKlyQAkSdK7LKDpJ13RdUvvVqb/+WQ8Svos2cjlAtnyCcjbt1lAquplrrC3lkuE3r/PwbNnKahRQ/k7ORsbQ9y9O+ZDMqMjTWYK26ATADw9q8PTs3qhx33OP9ofjzKVd8LVJCGvdC/nE1LevH37Fj179pTZFqtVq1bYt28fnJyUtyAoaZQIlQJ/f388evQIfywAaqt+s12olFSxXPfe0r6fWib1OQZc+eT2oJHqZbQaM/NfyTKjgz2VH+PXVPZqUQl69SoN1669lFlyW3AliMsBbIWSuqX8PAMo6DoEE5YHI+NCWuHXtUXShy2oLC0FGDmyMTp2dEKVKqqvqOnq8tC4cen2NSq4EsQFF7Z8paXRX0zIE1KRNCGFMDU1hc6Hvlg8Hg/+/v6YPXu2dExbKBEqBQW9D4SGks9FIuB1ivpXBNKzuFhz2Bh2dh9vBwiFQixeTD+AZZKgkqKvI3tVBwAcTSQ9Zdppt1v5kyfvsHDhZQQGhkEsZoiNdYCdnezyUlshD7GzJFtIJCdnwXyl/HkmNdHHolmO8g98Ij/fAX1jH6Nv33oYMKBBka7oaJst3xaxbaiOjhBt4vF42Lt3L/r06YONGzeiZUsFe8ZpQdn/CVaBSFZ2icHTt4Ntt+L9UN7aR7MxlWmf3uoCgJUdgPqFLe7+IFck2elb2ZUYVyvA7rMrGCoaqgEAqpsAf/Uv2vOXErGYoX79jYiMlG2Ed+bME4waJd93p4CJiT64XA7EnzUafPu28J20dXS4OH58UPECLkGK6oGofocQ7bl8+TIMDAzQvHlz6ZijoyNu376tlVogZSgR+kIF9T+qOl5SLU8xLL4OrLsjO5ahoqh2cH1g/ydN9XLFcts4yNhXvM6pZY2iZAYAJqy+j/kfGjl+3jG5YN6YMe7g83mwsBDAwsIA5uYGqF/fqsRjLimq6oGofoeQ0pObm4v58+fjl19+gZOTE0JDQ2VKOMpSEgRQIlR8Hzo9txU+wfnlqrby+8jajDpAF8nlGPkkqDh86hV+TBmUmJiO3bvv4eXL99iwofCmYnXrWuLxY9mkL/vJK8Ql5wGf9JcS8mVvx27a9JVmAi4jlNUDUf0OIaUnMjISPj4+uHNH8jM8OjoamzdvxvTp07UcmXKUCBXXh07PVYrT2Znenap2QElTujUhwH4lV3IcjT/W75SRuh11xMen4dChB7h06QVOnYpCfr4YOjpcLF3aCcbGqjcNrlvXEidPRskO5uTBKj0Feg6SKzxCPheLO5dubw5toXogQkofYwzbt2/Hjz/+iKwsSY82XV1dLFmyBFOnTtVydKpRIlRcH959ikRA/FtJ/Y9tlSKsSuEJAXt6d6rSi/eKx1Xd6irFlVklIT4+HT/+eFZmLD9fjPPnn6Jv3/oq59at+0ndFI8LNKoFm06uSPi1eJs1EkKIOpKSkvDdd9/h+PGPTVXr1KmDwMBANGmivFaxrKBE6Au9TuHCoacYdna21N1ZU2a1BJJzJH/PFQE/fNiMc7Sr9mJSQ36+GNevxyAk5BUePkyClZUhli7tpHJO3bqW4HCAz7feO336caGJUNOmVdHhGxc8EBsiyd4OTGgInUKWwJe00mhk+DkqjCak9J09exa+vr5ISEiQjo0dOxYrV66EQMnWOGUNJUJF9HlR9K3t8bC1gHSvL1IMn64K86kPDP1wBePTW1qrbwN9ncvFra7s7Hx8991JnD4dheTkj1tQODtbFJoICQS6cHIyQ3R0ssz46dOPIRYzldtDuLraIL5Nc7z+pGni5/VApa00Gxl+jgqjCSkdiYmJ6N27N7KzJT/vLC0tsXPnTvTsqaKvWhlEiVARFTRF7NcRWPQ9YG0q+zg1NVTT5Rhg0Ekg/0Mi2aGa4uPK0e0ufX0d3L79SiYJAiQ9frKz8wvtt1O/vpVMIsThSJKc5OQsWFiofmf1adNEZ0tdrdcDlVYjw89RYTQhpcfGxgb/+9//8OOPP8Lb2xsBAQGoUqV0m6ZqAiVCRVRwJWjRGKBe9Y/jWbk6qFu3FjU1VNdv9z8mQeXA27eZyMkRoWpV1Qlvr1518OjRG5kxsZghKuotXF1tlMySaNDACqdORcHZ2QKDBjXAiBFuqF7dVK04bYU8REwpO1fOqHCZkIpDLBZDJBJBV/dj5/6JEyfC3t4e33zzDbhc7V6JLi5KhNRkKpQ0RQS4gL4zardfjIiIftoOq/yJ/qwgOqeQBohakJycheXLr2PHjjtISsrEyJGN8dtvvVTO6dWrDn755Zrc+MOHSYUmQjNmtMa8ee1gaKhi37JSVtxaH6rXIaRiiY+Ph6+vLxo3boxffvlFOs7lctG3b18tRvblKBEqLl1bwFXJMm9SuC7VZVeBrbsjWf5eRhKhFy9S0LXrfpmrO593b1akRQt72NgYIjFRsrM9hwPUqGGG/CJc/TIzk91JXdGu8cooapqoCV9a60P1OoSUf8ePH8eoUaPw9u1bnD9/Ht7e3ujYsaO2w9IYSoSIdvg1BdZ/1jTR0UQ7sXwmOzsfX3/9u9wtrqiowhMhLpeD7793R2pqDnr1qoMWLewhEBRvA1iFu8YXQtNF0l9S60P1OoSUbxkZGZg6dSq2bt0qHbOxUX1luzyiRIholt9F4NFnCUNdC2B1Ie8edLhlphP0vn33cf++/N7sSUmZSE7Okrty87lFizpoJA5Fu8arUpJNE6nWh5DKJSQkBD4+PoiK+tistVevXtixYwcsLYu452M5QYkQ0axHb4Hb8kmEHC6nzHaC1tHhws5OiLg4+bqYqKi3aNHCvlTj+XTXeEIIKUkikQgrVqzA3LlzkZ8v2T5KIBBgzZo1GD16dJnbJ0wTKBEi2mGoW+Z2ci/g69sYgwc3xNGjj7Bu3U1cuxYDAFi+vDMcHU21G5yavrSxIRU9E1J5vHnzBv3798elS5ekY+7u7ggMDISzs7P2AithlAgRooCuLg8DBjTAgAENEBLyCllZ+WjTRkmvow/UKW4uCk0UQGuqsSEVPRNS8ZmYmCA9PR2AZIf4mTNnYsGCBdDTKzsrWUsCJUIKfN5FGpAsHSSVk7t71SIdV5zi5qL4kgJoTTQ2pKJnQioHXV1d7N+/H71798bmzZvh6emp7ZBKBSVCChR0kVaEwynoI0QUqmtRtLEKSN3i5qLQVAE0FTsTQj4XHBwMgUCARo0aScecnZ0RHh5ebpsjFgclQgoUXAnicrmwtf34LlooFMLY+DUAFbugV3aFrQ4rQxhjePgwCQ4OJjA25mvsvCVV3Fyceh+q8SGEfC4/Px9LlizB4sWL4ezsjNu3b8tskFqZkiCAEiGVbG0V7Ch/1x7Q/N2P8uXMM2DvA6CO+ccGiFyOpAC6HMjMzMPatTewZ899PHr0Brt29YKvb+NinevTuqCSampY4EvqfajGhxACANHR0RgyZAiCg4MBABEREdi0aROmTZum5ci0hxIhop7LMcDQ05K/n3v+sSliU5syuwrsUyKRGD16BOKff55Lx44ciSh2IqSoLqikdn4vbr0P1fgQQhhj2Lt3LyZMmCC968Hj8TB//nz8+OOP2g1OyygRKop3QUCsPyBKA/Iq+a2GA+V7W5HDhx/KJEEAcO7cU7x/nw0TE321z/d5XVBJNjUsQPU+hBB1JCcnY+zYsTh06JB0rGbNmti3bx9atmypxcjKhsp1I7C4Yv2B7EdAXhykhdKV9VZDHXNgUhP58TKyPYYqjDGEhibg11+9ZMZzc0U4dSpKyayiKagLipjigH4Njb7oXIQQoimXLl2Cq6urTBI0YsQI3L17l5KgDygRKgppcSoX0LUD9OsC9pX0VoNfU4CvYEVUGdkeQxWRiOHnnzuiS5eaco8dPfrlvXY0ISgxCPWC68H+qr3cBxU+E0LUER8fD29vb2mtq5mZGQ4dOoSdO3dCKKykb+YVoFtj6tC1BdzoloScye5lZnsMVXR0JHl//fpW4PN5yMmRFDd36FAdO3f2kju+KA0SNV0gXZSCaCp8JoQUha2tLebPn485c+agQ4cO2LNnD+ztS3eLoPKAEiGiPlsjSXF0GdsjrKh0dXlo1KgK/vsvDtWqmeDPPwdDX1/+v4I6DRI1VSBdWEE0FT4TQpRhjEEsFoPH+3jVfsaMGXBwcMDgwYMr3bL4oqJEiMi7HCMpin7xHuji9HGJfIGhDSQfZczNm7F4/PgdhgxxLfRYd3dbvH2biYMH+ylMgoCiN0gsiQJpKogmhKgjKSkJ3333Hdzc3DB//nzpOI/Hw9ChQ7UYWdlHiRCRdTkGGHQSyP9wO2ikK3D8ieTvZvwye/UnMTEdPXocwNu3mRCLGYYNa6Ty+EWLOmD9+m7g8Qp/h0S7vxNCyrKzZ8/C19cXCQkJOHXqFLp06QIPDw9th1VuUCJEZB2I+JgEAcAP5z/+valNmUyE8vPF6NcvCG/eZAIAfH2PgcMBhg5VngxZWgqUPkYIIeVBdnY2Zs2ahTVr1kjHzMzMZPbJJIWjRIjIevFe+WNldIn8iRORuHr1pfRzxoDhw4+Bw+EU6TYZIYSUN2FhYRg8eDDCwsKkY97e3ggICECVKlW0GFn5Q5VTpGh0uKW+RD4nJx8REUmFHuftXRO6urL/lBkDduy4A8ZYSYVHCCGlTiwWY+3atWjWrJk0CeLz+Vi7di3+/PNPSoKKga4IEVkrOwAZH1ZKrQmRbKPRwAJY1KbEb4tFRCTh8uUXCAl5hZCQeISHv4aODhdpabNU1vIYGuqhZUt7XLnyUmZ8/fpu4HA4JRozIYSUlrdv32Lw4ME4e/asdKxhw4YIDAyEi4uLFiMr3ygRIrLqW378+/4epfrU27ffwerVN2TG8vLEePYsBbVqmauc27Gjk0wiNHhwQzRsaFMicRZFcXaKB2i3eEKIcoaGhoiLi5N+7ufnh6VLl0JfX/3tgchHlAiREiMSifHkyTuEhiagXj0ruLqqTkzc3RVvJBoe/rpIidDChZehq8vF0KGuWLOmq9rxft5A8UuaJX7JTvEANU0khMjT19dHYGAgevXqhS1btqBLly7aDqlCoESIaNz580/xyy/XEBwci8xMyW22WbPaFCERqqpwPDz8NXr3rqtybosWdjh3bghat64GgUC3WHEra6BYnGaJxd0pHqCmiYQQiZCQEBgaGqJu3Y8//xo2bIioqCjo6NCvb02hr2Rl9mnjREBx80Q13bgRC2/vffi8Rjk0NKHQuc7OFjAy0kN6eq7MeHj460Ln8vk66NxZfg8xdShqoPilzRKpMSIhRF0ikQgrVqzA3Llz4eLighs3boDP50sfpyRIs+ir+al3QUCsP25tj4dIBPB48cBdeyCvAtZtfN44sUt14Ae3Lz7t/PmX5JIgALh3L7HQuVwuB25uVXDlykvUqGEGd3dbuLvbol270m1m+HkDRclGqOrV+1CtDyGkOGJiYjB06FBcvnwZABAaGopNmzbBz89Py5FVXJQIfSrWH8h+BFuLggExkPexMA0VqW7jQATQsRpw6SWQKwZM+MCMyx8fdzRW++pQbq4IDx4ovnrz6lUakpIyYGVlqPIcO3f2goWFAczMDNR67pL0JfU+VOtDCCmqQ4cOYcyYMUhJSQEAcDgczJw5E+PHj9duYBUcJUKf+vCOXyQC4t8CPB4XtlU+1HfwhIB9BarbqGMuuQJUd4ckEQqKlH28r7Pap9TT4+HFix8RHByLY8ce4ejRR4iOTpY+fu9eIry8aqg8R2FF0ZqiaGd5ZcXRxa33oVofQkhRpKamYtKkSdi9e7d0zMHBAXv37oWnp6cWI6scKBFS4HUKFw49xbCzs0VsbAWt71B1tecLmifyeFy0aVMNbdpUw+zZbTFlylm0aGGHbt1qw7EMdaZWtbO8suJoqvchhGhacHAwhgwZgujoaOnYwIEDsXnzZpiZaXYzZ6IYJUJEVl9nSRKkgeaJ5uYGCAjo/eUxlQBlO8uXxE7yhBCiSFxcHNq3b4/cXMkCEaFQiI0bN2LIkCHUDLYUUSJU2bnZANYCjSU/5Y2yneU/bYhIhc+EkJJgZ2eHadOmYenSpWjVqhX27dsHJycnbYdV6VAiVNn90VvbEZRJigqkqfCZEPIlCvY+/PRqz4IFC1CtWjWMGjWKlsVrCX3VKzrHLUBmvuTvth9WbLlaAfu+bPuMe/cS4OpqU2Ev335eIE2Fz4SQL5GcnIyxY8eiWbNmmDZtmnRcV1cXY8aM0WJkhBKhiuxyzMckCADiMyR/2hl90WnDwhLRuPFWuLhYY8wYdwwZ4gpT04q51w0VSBNCvtSlS5cwdOhQxMbG4ujRo+jUqRPc3L68bxvRDPX3DqjAMrOyAEj2yKoQDkRI/uxQTaOn3bo1BICk4/PEiX+hatWVGDHiOF69Um+DUUIIqchyc3Mxc+ZMdOzYUboC2cjICAkJhXfaJ6WHEqFPpKamynwuFJbhmpDLMcDYc0C3IMnH8/fyx9QxB2LHAUaf7b31BcvYMzPzsHfvfZmxrKx8HDr0AIaGxdvjixBCKprIyEh4eHjgl19+kdYGdejQAffv30e3bt20HB35FN0a+wRjH68E1a1bF4sXl9GakM+3xwCA7Hz545T1CipmjyAAOHv2CZo1q4oLF57JjH/7rQtMTMre7TFFjROBL9tZnhBClGGMYdu2bfDz80PWh7sMurq6WLJkCaZOnQoul64/lDWUCCnA43ERERGh7TCUOxAhmwSpY7L7Fy2T79jRCe7uVVGr1jrk5X2M4fvv3Yt9zpKkqnEiULyd5QkhRJF3795hxIgROHHihHSsTp06CAwMRJMmTbQYGVGFfguURy8U3AZbE6L8+JqmkkaJR3oBcz2+6KlNTPRRrZoJRo36WOjXuHEVNGtW9YvOW1I+bZxoZ8yT+ahrpUvNEwkhGsPn8/Ho0ce2G+PGjcOdO3coCSrj6IoQgKCgIPj7++P88nJcJH32mfLH5nxZ8qPIrFlt8dtvd5GXJ8bEic3L/DJ6ZY0TCSFEUwwNDbF//3706tULW7ZsQc+ePbUdEikCSoQA+Pv7y2TxHE45vFBmULrfyoKrQqmpufD1bVyqz00IIWVBWFgYDA0NUaPGx82kmzZtiujoaPD5fC1GRtRBiRCAtDTZZd/GxsZaiqSIJjcFkjJlx6wEGjt9VNRbvHuXhZYt7VUet2ZNV+jp8crM1SB1dpQnhJDiEovFWL9+PWbMmAE3NzdcuXJFpis0JUHlCyVCn+DxuADEEBgYaDsU1bpqdi8axhhu3ozD4cMPcfJkFKKi3qJ5czvcvDla5Tw+v2z98ynOjvKEEKKO+Ph4+Pr64ty5cwCAGzduYPPmzZg4caKWIyPFpfXfDhs3bkT16tWhr6+PFi1a4L///lN5/Jo1a1CnTh0YGBjAwcEBfn5+yM7OLqVoK56srDy0b78bHh6/YeXKYERFvQUA/PdfHBIT07UcnXqUFUZTUTQhRBOOHz+Ohg0bSpMgAPDz88N3332nxajIl9LqW/qDBw9iypQp2LJlC1q0aIE1a9bA29sbkZGRsLa2ljs+MDAQM2fOxM6dO9GqVStERUXB19cXHA4Hq1at0sIrKP8MDHQhFOopfOz06ccYObL8tYGnwmhCiCZlZGRg6tSp2Lp1q3TM1tYWAQEB6NKlixYjI5qg1StCq1atwnfffYcRI0agfv362LJlCwQCAXbu3Knw+OvXr6N169bw8fFB9erV0aVLF3z77beFXkUqzFceWXj4O2BtWsZXjRV0k/4jSqOnnT/fU+H4yZOafR5NCwpLR71VMbBf9gL2y15QPRAhRONCQkLQpEkTmSSod+/euH//PiVBFYTWEqHc3FyEhITAy8vrYzBcLry8vBAcHKxwTqtWrRASEiJNfKKjo/Hnn3+ie/fuSp8nJycHqampMh+fm/ZtKuo5ATzehwFeGdxao6Cb9JEoIDFDo6du1swO3bvXlhu/ePEZ8vLKbnJRUBMUlypCXKoIYkkXe6oHIoRoRExMjPTuAwAIBAJs374df/zxBywtLbUcHdEUrf3GePPmDUQiEWxsbGTGbWxslG5I5+Pjg0WLFqFNmzbQ1dVFzZo10b59e8yePVvp8yxbtgwmJibSDwcH+a7KRgaSK0EiEQD9uoB9Gdxa40u6SRdBwVUhY2M+Bg5sgH37vsGzZ5Ohq8srZKb2KKoJonogQoimODg44IcffgAAuLu74+7duxg9enSZWSlLNKNsLfspxKVLl7B06VJs2rQJLVq0wJMnTzB58mQsXrwY8+bNUzhn1qxZmDJlivTz1NRUhckQALxO4cLWo4xurfF5N+kcEbDprvL9xNTUvLkdDh7sh+7da8PISHHNUFmliZqgoMQg+Ef7I00kaaUQnxOvidAIIeUMY0wm0Vm2bBmqVauG8ePHQ0+vfP1sJEWjtUTI0tISPB4PiYmJMuOJiYmoUqWKwjnz5s3D0KFDMXq0ZFl3w4YNkZGRge+//x5z5sxRuJkdn8+veD0dckTAyL+Ad1kaS4QAYMCABho7V3njH+2PR5mP5MaFZfE2KSFE41JTUzFp0iQ0b95cehUIAPT19eHn56fFyEhJ01oipKenB3d3d1y4cAG9e/cGIGlSdeHCBUyYMEHhnMzMTLlkh/ehsIcxVqLxlilLbkj+bGqj+rgKQNnu8YBmmyUWXAniggtbvi0ASRK0uEYZvE1KCNGo4OBgDB48GM+ePcPBgwfRoUMH1KtXT9thkVKi1VtjU6ZMwfDhw9G0aVM0b94ca9asQUZGBkaMGAEAGDZsGOzs7LBs2TIAQM+ePbFq1Sq4ublJb43NmzcPPXv2lCZERN62bSHgcjkYPbr8bfxX2O7xgGaLo235tohtE6ux8xFCyq78/Hz8/PPP+PnnnyESSd5Y6erq4unTp5QIVSJaTYQGDhyIpKQk+Pv7IyEhAY0bN8aZM2ekBdQvX76UuQI0d+5ccDgczJ07F3FxcbCyskLPnj2xZMkSbb2EMu/mzVhMmPAn8vLECA6OwYYN3WFgoKvtsIrs04JoW6F8sivkc9Uujv68HgigmiBCKpvo6GgMGTJEZpVyq1atsG/fPjg5abZ7PynbOKxS3VOS3Ac2MTHB+/fvpXuKxf/Fg62FGPFvubDtVkaXiydlAnmf3R7S5arcY+z27Vfo1m0/3rz5uC+Zm1sVHD48ADVqlI+VVfbLXiAuVQQ7Y801SawXXE9hPRAA1BXURURZLZgnhHwxxhj27NmDCRMmID1d0j2fx+PB398fs2fPltkzjJQtin5/awJ9x8sLNTdVTUnJRvv2AcjIkL2tdPduApo1246oqAmwsNDcRq2fU1Xbo46SaJKoqB4IoJogQiq6lJQUjBkzBocOHZKO1ahRA/v370fLli21GBnRJkqEKihTU31MneqBRYv+lXts3LimJZoEAUWr7VFHSTRJpHogQioXDoeDmzdvSj/39fXFunXrIBTS6tDKjBKhCmzGjDbYtSsUMTEfu2l7edXAwoXtS/y5C6vtUUdx6oAIIeRzJiYm2Lt3L/r06YNNmzahf//+2g6JlAGUCFVgAoEuli/vjEGDjgAAXF1tEBjYBzxe6TUU1+YGqIqKogEqjCaksoiMjIShoSHs7e2lY23btsXz589haGioxchIWUKbMpVlBZusrr5d7FMMGNAAXbrUxJw5bXH9+khYWVWe//wFTRLjcuJkPsSQXK2iZomEVEyMMWzduhVubm4YNmwYxGLZWkVKgsin6IpQWXU5Buh3XPL3VlWB63GSvzubA0vaFvk0HA4HZ84MrpR74ygrigaoMJqQiiopKQmjR4/GiRMnAAD//PMPtm3bhrFjx2o5MlJWUSJUVh34ZAn39Vcf/56eq/apKmMS9Ckqiiakcjh79ix8fX1lNu4eO3Yshg0bpsWoSFlHt8bKqs83WS3gaCL96717CUgvRmJECCEVSXZ2Nvz8/NC1a1dpEmRpaYkTJ05g8+bNEAhKdpUsKd/oilB54yNp+84YQ69evyMxMQPe3jXRt2899OjhDDMzAy0HSAghpScsLAyDBw9GWFiYdMzb2xsBAQFKN/Am5FOUCJVV1YyBtA99eCLfSf60MgDaOQAA7tyJx4sPV42OH4/E8eOR0NHhYsmSjpg+vbU2IiaEkFL14sULNGvWDDk5OQAAPp+PX3/9FRMmTJDboJsQZSgRKqu2eqt8+MgR+W0g8vPFqFXLvKQiIoSQMsXR0RHDhg3D9u3b0bBhQwQGBsLFxUXbYZFyhhKhsuByjKQ4+sV74K/CG3yJxQy//x4uNy4Q6KJr11olESEhhJRJq1evhqOjI6ZOnQp9fX1th0PKIUqEtOlyDDDuHJCUpda0Bw9eIzY2VW68W7daEAjKz87yJeHTJorUOJGQiiMjIwNTp05Fy5Yt4evrKx03NDTEnDlztBcYKffoJqq2XI4BBp1UOwkCgIYNbRAXNwUrVnRGnToW0vEhQ1w1GWG59GkTRWqcSEjFEBISAnd3d2zduhUTJ07E06dPtR0SqUAoEdKWAxFAvoKd2XNEReokbWVliKlTWyEiYjwuX/bFuHFN8dVXtUsg0PLl0yaKdnw71BXUpcaJhJRTIpEIv/zyC1q2bInIyEgAgFgsRni4fGkAIcVFt8a0RVmfoJF/AUK9Ip+Gw+GgXTtHtGunnf28yipqokhI+RYTE4OhQ4fi8uXL0jF3d3cEBgbC2dlZi5GRioYSIW3p7Qw0/dDjIkcM7PrQA+PiS+BgT+3FRQghWnbo0CGMGTMGKSkpACRv+GbOnIkFCxZAT6/obxQJKQpKhLRlTKOPf199G2hqI+ka7VNP2iuIEEIqk7S0NEycOBG7d++Wjjk4OGDv3r3w9PTUYmSkIqNEqCzwayr5IISQSiwnJwfnzp2Tfj5w4EBs3rwZZmZmWoyKVHRULF3G5eWJcOFCtLbDKFRQWDrqrYqB/bIXsF/2AvFpIm2HRAgpZywtLbF7924YGxtjz549OHDgACVBpMTRFaHSUtA0sY55ka/+iERiDB78Bw4ffoht23pi9OgmJRxk8fmfT8ajpDy5cSGfcm1CiGLR0dEwNDSEjY2NdKxz58548eIFTE1NtRcYqVQoESoNl2OAfscBXS6wsxtw8YVk3Jj/sWBagXnz/kFQ0EMAwHffnUROTj7Gj29eGhGrLS1H0gqAywFshTwAkiRoceeivZv7tBHil6AmioSUfYwx7NmzBxMmTEC7du1w6tQpcDgc6eOUBJHSRIlQaTjwYV+wPDEw9PTH8aY2SrfUOHz4IZYtuyozNmHCX8jJEWHKFI+SivSL2Qp5iJ2l/lL+gkaImkJNFAkpm5KTkzF27FgcOnQIAPDnn39i165dGDlypJYjI5UVJUKlQVnPIEcThcMJCekYMeK4wscWLLiEb791ga1txfpF/2kjRFu+7RedS8gTUhNFQsqgS5cuYejQoYiN/djjy9fXF/37F77HIiElhRIhbfKpp3A4ICAU6em5cuO6ulycPu1T6klQUFg6/M8nS29/KaKp4mhqhEhIxZObmwt/f3/8+uuvYIwBAMzMzLB161ZKgojWUSKkTUr6BU2b1gpNmtji99/D8ccfEXj/PgcAsHFjd7RtW/odpJUVQitCxdGEkE89evQIgwcPxp07d6RjHTp0wJ49e2Bvb6/FyAiRoESoNCxuC6TmyI4Z85UerqPDRZcuNdGlS01s3vwVzpx5gpCQeHz3nXsJB6qYokJoRdQpjiaEVHzR0dFo0qQJsrIkm0vr6upiyZIlmDp1KrhcetNEygZKhEqDipVhheHzddCrV1306lVXgwEVT3ELoQkhlVONGjXQp08f7N+/H3Xq1EFgYCCaNCm7bUBI5USJECGEkBKzceNGODo6Ys6cORAIBNoOhxA5X3RtMjs7W1NxEEIIKceys7Ph5+eHoKAgmXETExMsWbKEkiBSZql9RUgsFmPJkiXYsmULEhMTERUVhRo1amDevHmoXr06Ro0aVRJxVkixsamwsDCAgYGutkPRqOI0R6RGiISUX2FhYRg8eDDCwsIQEBCAli1bwsGBNo8m5YPaV4R+/vlnBAQE4Ndff4Wenp503MXFBTt27NBocBWZSCTG118fQLt2AYiLS9V2OBpV0BwxLieuyB9iSAqyqREiIeWHWCzG2rVr0axZM4SFhQEAsrKycPv2bS1HRkjRqX1FaM+ePdi2bRs6deqEsWPHSscbNWqER4801xm4wlCyx1hoaALu3k0AADRrth3Hjw9Cs2Z22opSo4rbHJEaIRJSfsTHx2PEiBE4e/asdKxhw4YIDAyEi4uLFiMjRD1qJ0JxcXGoVauW3LhYLEZeXtF6zVQal2OAQSeBjtWAH9xkHoqOTpb+PT4+He3aBeC3375Ghw7Vy0TX6E+bKBa3WSI1RySkYjp+/DhGjx6NN2/eSMf8/PywdOlS6OvrazEyQtSndiJUv359XLlyBY6OssuoDx8+DDc3NyWzKqkDEUC+GLATAj9f/zhub4wz/z2XOTQ7Ox+DB/+BsLBxZSIRUtREkZolElK5ZWRkYOrUqdi6dat0zNbWFgEBAejSpYsWIyOk+NROhPz9/TF8+HDExcVBLBbjjz/+QGRkJPbs2YNTp06VRIzlV8EeY7vCZMf7OsPTszqOHYvEu3dZMg85OBiXUnCqfd5EUVmzREWF0VT4TEjFlJqaiiNHjkg/7927N7Zv3w5LS0stRkXIl1E7EerVqxdOnjyJRYsWwdDQEP7+/mjSpAlOnjyJzp07l0SMJePdUeD5/wBRGqxNle+h9cW6VAfOPZcd86mHoW3tkZcnwujRJ6XDQqEejFV0nNaGwpooqto1ngqfCalYbG1tsWPHDvj4+GDt2rUYNWoUOByOtsMi5IsUq6Fi27Ztcf78eU3HUrpeLQF0HgMAeB92jUjP0vCtny5Oktog+82y4+0cwAEwYoQbtm+/g5s34wAAvXrVLXc/VJQVRlPhMyHlX0xMDAwNDWFubi4d69WrF549ewZra2stRkaI5qidCNWoUQO3bt2ChYWFzHhKSgqaNGmC6OhojQVXokTpH149F/FvgZRUMdYcNsbWPhp8jk9WiUn1dZb+lcvlYMOG7mjefDvatKmG9eu7afDJlSuJ3eSpMJqQiuXQoUMYM2YMvLy8cOjQIZk3aZQEkYpE7UTo+fPnEInkf0nm5OQgLi5OI0GVKl1bNPtOshrOzs6gZJ9Lhwv41JMZatq0Kq5cGQEPDwdwuaVzNYh2kyeEKJOamopJkyZh9+7dACQLYQIDAzF48GAtR0ZIyShyInTixAnp38+ePQsTExPp5yKRCBcuXED16tU1GlyF0dQGcDSRJEHt5Luttm5drVTDod3kCSGKBAcHY/DgwXj27Jl0bODAgejevbsWoyKkZBU5EerduzcAgMPhYPjw4TKP6erqonr16li5cqVGg6sw/uqv7QgUot3kCSEAkJ+fjyVLlmDx4sXSK/5CoRAbN27EkCFDyl3tIiHqKHIiJBZLriI4OTnh1q1btFySEEIqgOjoaAwZMgTBwcHSsVatWmHfvn1wcnLSYmSElA61a4Q+vWRKlCjYVoMxYKs3rlx5ARsbIzg7WxQ+lxBCSsmTJ0/QpEkTpKVJVn/yeDz4+/tj9uzZ0NEp1qJiQsqdYv1Lz8jIwOXLl/Hy5Uvk5ubKPDZp0iSNBFZuFWyrkS9GRi1TTBp1HDt3hsLR0QTOzhaoU8cCzs4WcHGxRocO9G6LEKI9NWvWRKdOnXDs2DHUqFED+/fvR8uWLbUdFiGlSu1E6O7du+jevTsyMzORkZEBc3NzvHnzBgKBANbW1pQIfdhWI04kQs+wWNy9kQMAePHiPV68eI/z5yXtBRo1skFo6FhVZyKEkBLF4XCwfft2ODo6YvHixRAKqQkqqXzUXhvt5+eHnj17Ijk5GQYGBrhx4wZevHgBd3d3rFixoiRiLF9evEceY+iRmoa7GTlKD+vWTX7jWkIIKSm5ubmYOXMmTp8+LTNuaWmJNWvWUBJEKi21E6HQ0FBMnToVXC4XPB4POTk5cHBwwK+//orZs2eXRIzlzp38fIQp6LVUoGVLe0yf3roUIyKEVGaRkZHw8PDAL7/8gpEjRyIxMVHbIRFSZqidCOnq6oLLlUyztrbGy5cvAQAmJiaIiYnRbHTlVAtdXeRbWiDXwhzvzc2Q0MEZ9++PhZWVACtWdMa///rCzKyEmzcSQio9xhi2bt0KNzc33LlzBwCQnJyMa9euaTkyQsoOtWuE3NzccOvWLdSuXRuenp7w9/fHmzdvsHfvXri4uJREjOWWLocDXQ4Hxnwd3IhORnDwKNSsaV74REII+UJJSUkYPXq0TDPcOnXqIDAwEE2aNNFiZISULWonQkuXLpUutVyyZAmGDRuGcePGoXbt2vjtt980HmC506QKYKQnO+Zsjp4965TaFhqEkMrt7Nmz8PX1RUJCgnRs3LhxWLFiBQQCgRYjI6TsUTsRatr040ai1tbWOHPmjEYDKveWtFU4TDt2EUJKWnZ2NmbNmoU1a9ZIxywtLbFz50707NlTe4ERUoZp7PfznTt30KNHD02djhBCiJpev36NXbt2ST/v2rUrwsLCKAkiRAW1EqGzZ89i2rRpmD17NqKjJf1wHj16hN69e6NZs2bSbTgIIYSUvmrVqmHz5s3g8/lYt24d/vzzT1SpUkXbYRFSphX51thvv/2G7777Dubm5khOTsaOHTuwatUqTJw4EQMHDkR4eDjq1atXkrESQgj5RHx8PAwNDWFsbCwd+/bbb9GmTRs4ODhoMTJCyo8iXxFau3YtfvnlF7x58waHDh3CmzdvsGnTJoSFhWHLli2UBH2Qn09XxQghJe/48eNwdXVV2M2fkiBCiq7IidDTp0/Rv39/AECfPn2go6OD5cuXw97evsSCK48mTPgTHTvuxvHjjyASUVJECNGsjIwMjB07Fr1798abN2+we/duHDlyRNthEVJuFfnWWFZWlnTZJYfDAZ/Ph62tbYkFVt7kvUrDui0h2Lo1BADwzz/PUcPRBJP8WmLECDcYG/O1HKFmBSUGwT/aH/E58doOhZBKIyQkBD4+PoiKipKO9e7dG56enlqMipDyTa3l8zt27ICRkREAID8/HwEBAbC0tJQ5pjJuuvrmTSY6VFuL8M+21Yh+8R4//ngWkZFvsWnTV1qKrmT4R/vjUeYj6edCHu1TREhJEYlEWLFiBebOnYv8/HwAgEAgwNq1azFq1ChwONSjjJDiKnIiVK1aNWzfvl36eZUqVbB3716ZYzgcjtqJ0MaNG7F8+XIkJCSgUaNGWL9+PZo3b670+JSUFMyZMwd//PEH3r17B0dHR6xZswbdu3dX63k1ySL8DTx0dOQSoQI//NCslCMqeWkiSVNNLrhwFjhjcY3FWo6IkIopJiYGQ4cOxeXLl6Vj7u7uCAwMhLOzsxYjI6RiKHIi9Pz5c40/+cGDBzFlyhRs2bIFLVq0wJo1a+Dt7Y3IyEhYW1vLHZ+bm4vOnTvD2toahw8fhp2dHV68eAFTU1ONx6YOzu+PsNnIEG8Zwx+5uTKPffVVbbi4yL+WisKWb4sIjwhth0FIhRQVFYUWLVogJSUFgOTN5syZM7FgwQLo6empnkwIKRK1O0tr0qpVq/Ddd99hxIgRAIAtW7bg9OnT2LlzJ2bOnCl3/M6dO/Hu3Ttcv34durq6AIDq1auXZsiKvXgPHoeDQKERvkpNw4W8PABAc2sjbNum/UZmQWHp8D+fjLQcSfF2fJriK1eEkLKlVq1aaNGiBc6ePQsHBwfs3buX6oEI0TCt7fyQm5uLkJAQeHl5fQyGy4WXlxeCg4MVzjlx4gQ8PDwwfvx42NjYwMXFBUuXLoVIyS2pUvNdI2BRa/AXt8HRRR3RV08Ph4VGCD7YH1Wrar92xv98Mh4l5SEuVYS4VBHETDIu5Kv/7Q9KDEK94HpUJE1IKeByudi1axe+//573Lt3j5IgQkqA1q4IvXnzBiKRCDY2NjLjNjY2ePTokcI50dHRuHjxIgYPHow///wTT548wQ8//IC8vDzMnz9f4ZycnBzk5ORIP09NTdXciyjQ5+N9euHq2zg8wh3wqQe0Kxu9PAquBHE5gK2QB0CSBC3ubKb2uahImpCSkZ+fjyVLlqBt27bo2LGjdNzW1hZbt27VYmSEVGxavTWmLrFYDGtra2zbtg08Hg/u7u6Ii4vD8uXLlSZCy5Ytw8KFC0svSL+mhR+jJbZCHmJnOX7ROahImhDNi46OxpAhQxAcHAw7Ozvcv38f5ubm2g6LkEpBa7fGLC0twePxkJiYKDOemJiodG8cW1tbODs7g8fjScfq1auHhIQE5H5WpFxg1qxZeP/+vfQjJiam2DHn5YmwceN/uHOHbgsVFEn3s+mn7VAIKbcYY9izZw8aN24sLQlISEjAP//8o+XICKk8ipUIPX36FHPnzsW3336L169fAwD++usvPHjwoMjn0NPTg7u7Oy5cuCAdE4vFuHDhAjw8PBTOad26NZ48eSKzuWtUVBRsbW2VrqDg8/kwNjaW+SiOyMg3cHPbigkT/oKf31kwxop1HkIIAYDk5GQMGjQIw4cPR1qa5EprjRo1cPXqVfTt21fL0RFSeaidCF2+fBkNGzbEzZs38ccffyA9PR0AcO/ePaW3p5SZMmUKtm/fjt27dyMiIgLjxo1DRkaGdBXZsGHDMGvWLOnx48aNw7t37zB58mRERUXh9OnTWLp0KcaPH6/uy1BLfr4YffocwoMHSQCAf/99gWPHFNcxEUJIYS5dugRXV1ccOnRIOubr64vQ0FC0bNlSi5ERUvmoXSM0c+ZM/Pzzz5gyZQqEwo+Fsh07dsSGDRvUOtfAgQORlJQEf39/JCQkoHHjxjhz5oy0gPrly5fgcj/mag4ODjh79iz8/Pzg6uoKOzs7TJ48GTNmzFD3Zajl8OGHePgwSWbsp/F/oXtyHvi6H2/TwUoAdHUq0VgIIeVXbm4u5s+fj19++UV6VdnU1BTbtm2T7uVICCldaidCYWFhCAwMlBu3trbGmzdv1A5gwoQJmDBhgsLHLl26JDfm4eGBGzduqP08xcUYw9KlV+TGn8anYcPEs5gqMPg42NSGEiFCiFKxsbFYv369NAlq37499uzZQ7vFE6JFaidCpqamiI+Ph5OT7C/8u3fvws7OTmOBlRVhYa/x6JHiBK+RDk/huDZ83jTxU9RAkZCyoUaNGli7di3GjRuHJUuWYOrUqTJXvQkhpU/tRGjQoEGYMWMGgoKCwOFwIBaLce3aNUybNg3Dhg0riRi1ytXVBtHRk7Fy5XVs3RqCrCzJhoc7XGzhlZAL1DEHIt9pOcqPTRNVUdVAsWA3+YLl8cpQI0VCiu7NmzcQCAQQCATSsZEjR8LT0xO1atXSYmSEkAJqvxVZunQp6tatCwcHB6Snp6N+/fpo164dWrVqhblz55ZEjFpnb2+M1au74sWLHzFnTls0bGiNoVVNgS7VgY1ehU0vFZ82TbQz5sl91LXSVdlAsaBRYlxOnMoPMSTPQ40UCVHt7NmzaNiwIX766SeZcQ6HQ0kQIWWI2leE9PT0sH37dsybNw/h4eFIT0+Hm5sbateuXRLxlSlWVob4+eeOWLSoA7hrQ4Af3IBnKdoOS0ZxmyZ+2ijRlm+r8lghT0iNFAlRIjs7G7NmzcKaNWsAAJs2bUL37t3x1VdfaTcwQohCaidCV69eRZs2bVCtWjVUq1atJGIq87hcjuIO0o4mpR+MhtnybRHbJlbbYRBSLoWFhWHw4MEICwuTjnXt2hXu7u5ajIoQoorat8Y6duwIJycnzJ49Gw8fPiyJmMonHa5kf7FyhjZRJeTLicVirF27Fs2aNZMmQXw+H+vWrcOff/6ptFs+IUT71E6EXr16halTp+Ly5ctwcXFB48aNsXz5csTGVtKrCPo6QF9n4GDPMrPJqjoKaoOo9oeQ4omPj0f37t3x448/Sjd4btiwIW7fvo2JEyeCw+FoOUJCiCpqJ0KWlpaYMGECrl27hqdPn6J///7YvXs3qlevLrNjcoVyOQYYew7oFiT5WBL88bHqJsCWLuUyCQJka4PqCupS7Q8haoiMjISrqyvOnj0rHfPz88N///0HFxcXLUZGCCmqL9p93snJCTNnzkSjRo0wb948XL58WVNxlR2XY4BBJ4H8T/rz2BppL54SUrCJKiGk6GrVqoX69evj33//ha2tLQICAtClSxdth0UIUUOxO3ldu3YNP/zwA2xtbeHj4wMXFxecPn1ak7FpVUjIK9y8GQsciJBNgggh5AMej4e9e/di6NChuH//PiVBhJRDal8RmjVrFn7//Xe8evUKnTt3xtq1a9GrVy+ZhmEVwZQp5/Dvvy/gbWmI+Xk8eOjqfnzw5FPtBUYI0QqRSIQVK1agbdu2aNWqlXS8WrVq2LNnjxYjI4R8CbUToX///Rc//fQTBgwYAEtLy5KISeuSkjLw778vAABn32TgLIDOurpYJDBAy08TIkJIpRATE4OhQ4fi8uXLcHJyQmhoKIyNjbUdFiFEA9ROhK5du1YScZQpT58my42dz8tDk1weJUKEVDKHDh3CmDFjkJKSAgB4/vw5zp07h379+mk3MEKIRhQpETpx4gS6desGXV1dnDhxQuWxX3/9tUYC06Zly64qHG++72ugT/nrFUQIUV9qaiomTZqE3bt3S8ccHBywd+9eeHp6ajEyQogmFSkR6t27NxISEmBtbY3evXsrPY7D4UAkKv87ne/a1Qvduu3Hf//FyYxbWxtqKSLNK9hklRopEiIvODgYQ4YMQXR0tHRs4MCB2Lx5M8zMlO/ZRwgpf4q0akwsFsPa2lr6d2UfFSEJAgBzcwOcPz8UrVt/7A1kZyeEu7vqPbjKE2qkSIi8/Px8LFy4EG3btpUmQUKhEHv27MGBAwcoCSKkAlJ7+fyePXuk3VM/lZubW6FWThgb83HmzBB06FAdhoa6OHSoPwwMKk59EDVSJETe06dPsWzZMumbulatWuHevXsYOnQodYgmpIJSOxEaMWIE3r9/LzeelpaGESNGaCSossLISA+nT/vg8mVftGpVPjtHF6agkWI/Gyr8JKROnTr49ddfwePxsHDhQukqMUJIxaX2qjHGmMJ3RrGxsTAxKT+7r2dmZ8OYD8QnxCNeRZmMgYEu3N2rll5ghJBSk5ycDIFAAD6fLx2bOHEiOnbsSFtkEFJJFDkRcnNzA4fDAYfDQadOnaCj83GqSCTCs2fP0LVr1xIJsiSkpaaiigkgEokh/tA4WiisGHUyBYXQBbe/FKEiaVLZXbp0CUOHDsWgQYOwfPly6TiHw6EkiJBKpMiJUMFqsdDQUHh7e8PI6ON+W3p6eqhevTr69u2r8QBLCsPHbTPs7OwgFAqxeLGCOpnLMZJtNuqYA35NSzHC4isohC4KKpImlU1ubi7mz5+PX375BYwxrFixAl27dkWnTp20HRohRAuKnAjNnz8fAFC9enUMHDgQ+vr6JRZUaeLxuIiNjVX8YMGGqx2rAT+4lW5gX+DTQmhbvvKVbkKekIqkSaUSGRkJHx8f3LlzRzrWoUMH1KlTR4tREUK0Se0aoeHDh5dEHGXTuHOSDVfPPQfq7vg47mYD/NFbW1EVmS3fFrFtlCR5hFQijDFs27YNfn5+yMrKAgDo6upiyZIlmDp1KrjcYu8/TQgp54qUCJmbmyMqKgqWlpYwMzNTuYz03bt3GguuNG3fHgJnZwt4eDhAT48nuRqUlPXxgPS8j3+31v4Gs5/XAcU3FgFiIJ4LIOe1doMjpAxJSkrC6NGjZbri16lTB4GBgWjSpIkWIyOElAVFSoRWr14tLSRevXp1heunkZ6ei/Hj/0RenhhGRnro2NEJXd7moodIBEceT36Cj/a32ZCrA9KT/CH+5Biq/yGVXWRkJNq3b4+EhATp2Lhx47BixQoIBNp/Q0MI0b4iJUKf3g7z9fUtqVi05tKl58jLk6QQ6em5OHEiEicApLWqjpnNPvQP2v9Q8qeVAGin/Z5Cn9cBxaeJIBYDXC5gK+RR/Q8hAGrUqAEHBwckJCTA0tISO3fuRM+ePbUdFiGkDFG7RujOnTvQ1dVFw4YNAQDHjx/Hrl27UL9+fSxYsAB6enoaD7KknT//VOG494YugJstkCMCkjKBiy+BLZ1LOTrVCuqA7Je9QFyqCLbGPMTOctR2WISUCbq6uti/fz9mzpyJjRs3okqVKtoOiRBSxqhdIThmzBhERUUBAKKjozFw4EAIBAIEBQVh+vTpGg+wNERGvpUbs7QUoFGjDz80N90FhHrAwZ5l4moQIUSeWCzGunXrcPfuXZnx2rVr48iRI5QEEUIUUvuKUFRUFBo3bgwACAoKgqenJwIDA3Ht2jUMGjQIa9as0XCIJS8tLVdurHp1U3C5H2qhtNQ/SFVjxIKGiFl5DPVWxSA+rWJseEtIccTHx2PEiBE4e/Ys6tati5CQEKoBIoQUSbG22BB/aMX8999/o0ePHgAABwcHvHnzRrPRlZIhQxqiVSt7ZGXlIzs7H1lZ+XByMtV2WEVqjJieKcC7pI8r2oR8WgZMKpfjx49j9OjR0p8/jx49wl9//VWuGrwSQrRH7USoadOm+Pnnn+Hl5YXLly9j8+bNAIBnz57BxsZG4wGWhnHjmskOFHSTfvgGqG+pnaBQeGNEIU+I148n4R0ALgdwttTF4s5mpRwlIdqRkZGBqVOnYuvWrdIxW1tbBAQEoEuXLlqMjBBSnqidCK1ZswaDBw/GsWPHMGfOHNSqVQsAcPjwYbRq1UrjAZa6gm7S+WJgVENtRwNAdWNE+0svAIhgK+QhYgrVL5HKISQkBD4+PtJ6RUCyDdD27dthaam9Ny+EkPJH7UTI1dUVYWFhcuPLly8HT1HPnfLmQIQkCdICuSaJtDEqITJEIhGWL1+OefPmIT8/HwAgEAiwZs0ajB49usL1OCOElDy1E6ECISEhiIiIAADUr1+/4nRoffFe9vMckWTVWCkUTCurCaLGiIRIPHr0SCYJcnd3R2BgIJydnbUcGSGkvFK7svb169fo0KEDmjVrhkmTJmHSpElo2rQpOnXqhKSkpJKIUXtyRcDIv4Bzz0rl6T6tCbLj28GOb4e6grrUGJGQDxo0aIDFixeDw+Fg1qxZuH79OiVBhJAvovYVoYkTJyI9PR0PHjxAvXqSrSYePnyI4cOHY9KkSThw4IDGg9SaSReAl2lA09ItAqfNUgmRSEtLg4GBAXR0Pv6o+umnn+Dl5YWmTbXT1oIQUrGofUXozJkz2LRpkzQJAiS3xjZu3Ii//vpLo8Fp3Uv5/j2EkNIRHByMxo0b4+eff5YZ5/F4lAQRQjRG7URILBZDV1dXblxXV1faX4ioJygxCPWC66lVHB0Ulk6NFEmFlJ+fj4ULF6Jt27aIjo7G4sWLcf36dW2HRQipoNS+NdaxY0dMnjwZBw4cQNWqVQEAcXFx8PPzQ6dOnTQeYEn6dm5fZGRzIdh9GFwuB1wuB53dLDB8rJvsgWb8Eo3j8yLpohRH+59PxiNqpEgqmOjoaAwZMgTBwcHSsZYtW8LWVr6PFiGEaILaidCGDRvw9ddfo3r16nBwkPStiYmJgYuLC/bt26fxAEvS4Yv1kS/iAXggHTMd3wzDe9Uq1Tg+LZJ2FjgXqTg6LUdy9Y0aKZKKgDGGvXv3YsKECUhLk/x/4PF48Pf3x+zZs2VqhAghRJPU/uni4OCAO3fu4MKFC9Ll8/Xq1YOXl5fGgytpYibfc0S6v5gW2PJtEeERod4caqRIyrnk5GSMGzcOBw8elI7VqFED+/fvR8uWLbUYGSGkMlArETp48CBOnDiB3NxcdOrUCRMnTiypuEoFU5AIUT82QkpPZGQkOnfujJiYGOmYr68v1q1bB6GQ+mcRQkpekQtLNm/ejG+//Ra3b9/G48ePMX78ePz0008lGVuJU5QIafOKECGVjaOjI0xNTQEAZmZmOHToEHbt2kVJECGk1BQ5EdqwYQPmz5+PyMhIhIaGYvfu3di0aVNJxlaiGAPsrFJRxSIVVaoYwcbGEFZWAhgZ6Wk7NEIqDX19fQQGBqJ79+64f/8++vfvr+2QCCGVTJFvjUVHR2P48OHSz318fDBq1CjEx8eXyxUdHA4Qe2oV4t9yYduNlqATUtIYY9i+fTvatGmD+vXrS8ddXFxw+vRpLUZGCKnMinxFKCcnB4aGhh8ncrnQ09NDVlZWiQRGCKk4kpKS0Lt3b4wZMwY+Pj7IycnRdkiEEAJAzWLpefPmQSAQSD/Pzc3FkiVLYGJiIh1btWqV5qIrbd+fBY4+BnS5wI/ukjFbI2BoA+3GRUg5dvbsWfj6+iIhIQEAcO/ePZw6dQp9+/bVcmSEEKJGItSuXTtERkbKjLVq1QrR0dHSzznlecnV5RhJEgQAeWJg+S3J35vaUCJESDFkZ2dj5syZWLt2rXTM0tISO3fuRM+ePbUYGSGEfFTkROjSpUslGEYZcEC9/j2EEOXCwsLg4+OD8PBw6Zi3tzcCAgJQpUoVLUZGCCGyaF+GAi/eKx53NFE8TgiRIxaLsXbtWjRr1kyaBPH5fKxduxZ//vknJUGEkDKH+tYXxqdeiZw2KDEI/tH+SBOlqbXZKiFlWVhYGKZMmSLdgLlhw4YIDAyEi4uLliMjhBDFKBEqcLg3IGaSv6++DUS+k9QGtSuZ7Ss+32gVKHyz1aCwdPifT0Zajph2nSdlUqNGjTB79mz8/PPP8PPzw9KlS6Gvr6/tsAghRClKhAoY6n78u3+rEn+6TzdateXbQsgTFrrZ6uc7zgO06zzRrszMTOjr64PL/fjv0N/fH126dEHbtm21GBkhhBRNpU2E3iQbouXI8WBigKP7i3R8wYL2mDSpRanFYcu3RWyb2CId++mO87ZCHoR8Lu06T7QmJCQEPj4+GD16tMx2O7q6upQEEULKjWJdTrhy5QqGDBkCDw8PxMXFAQD27t2Lq1evajS4kiRmHCSnGiAl3QDJydnSj5ycfG2HVihbIQ+xsxwRMcUB/RoaaTscUsmIRCL88ssvaNmyJaKiojBnzhzcuXNH22ERQkixqJ0IHTlyBN7e3jAwMMDdu3elHWLfv3+PpUuXajzAiiYoMQj1gutRgTQpl2JiYtCpUyfMnDkT+fmSNw2urq4wMqKEnBBSPqmdCP3888/YsmULtm/fDl3dj3U1rVu3pneFRVBQJC2G5DZXYQXSgKRIut6qGCqQJlp16NAhuLq64vLlywAkDVRnzZqF69evw9nZWcvREUJI8ahdIxQZGYl27drJjZuYmCAlJUUTMVVonxZJOwucCy2QBuSLpKlAmpSm1NRUTJo0Cbt375aOOTg4YO/evfD09NRiZIQQ8uXUToSqVKmCJ0+eoHr16jLjV69eRY0aNTQVV4nT18vD8K9CkR/uBJ28atLxBgcjgVc5wOqOJfr8tnxbRHgUrZv1p0XSzpa6VCBNSk1kZCS6d+8us5XOwIEDsWXLFpiammovMEII0RC1E6HvvvsOkydPxs6dO8HhcPDq1SsEBwdj2rRpmDdvXknEWCKMjXIQ4H8MuZOmQO/pJ1+GF5mA1VvtBaaCrZCHiCkl09eIEEXs7e2hoyP5/yEUCrFx40YMGTKkfO8rSAghn1D7HsvMmTPh4+ODTp06IT09He3atcPo0aMxZswYTJw4sVhBbNy4EdWrV4e+vj5atGiB//77r0jzfv/9d3A4HPTu3btYz0sIUc3Q0BCBgYFo37497t27h6FDh1ISRAipUNROhDgcDubMmYN3794hPDwcN27cQFJSEhYvLrzWRZGDBw9iypQpmD9/Pu7cuYNGjRrB29sbr1+/Vjnv+fPnmDZtmmb6lXSpDjS0+vLzEFKOMcawZ88ePH36VGbc3d0dFy9ehJOTk5YiI4SQklPsqls9PT3Ur18fzZs3/6Kls6tWrcJ3332HESNGoH79+tiyZQsEAgF27typdI5IJMLgwYOxcOHCL65LynZ7AOzsBlABMqnEkpOTMWjQIAwfPhyDBw9GXp5sB3O6CkQIqajUrhHq0KGDyh+KFy9eLPK5cnNzERISglmzZknHuFwuvLy8EBwcrHTeokWLYG1tjVGjRuHKlSsqnyMnJ0fa6wiQrID5VMbX52HM58lOoh3nSSVy6dIlDB06FLGxkg7nN2/exKlTp/DNN99oOTJCCCl5aidCjRs3lvk8Ly8PoaGhCA8Px/Dhw9U615s3byASiWBjYyMzbmNjg0ePHimcc/XqVfz2228IDQ0t0nMsW7YMCxcuLHpQOlyN7Tj/6Q7zBaiRIikrcnNz4e/vj19//RWMSTYcNjMzw7Zt2ygJIoRUGmonQqtXr1Y4vmDBAqSnp39xQKqkpaVh6NCh2L59OywtLYs0Z9asWZgyZYr089TUVDg4KFh5VddCciXIp57GdpxXtMN8gaI2UvQ/n0yNFInGRUZGwsfHR6YJaocOHbBnzx7Y29trMTJCCCldGtt0dciQIWjevDlWrFhR5DmWlpbg8XhITEyUGU9MTESVKlXkjn/69CmeP3+Onj17SsfEYkmPHR0dHURGRqJmzZoyc/h8Pvh8fuHBlEDfoM93mC9QlJ3mAWqkSDSPMYZt27bBz88PWVlZACSbpC5ZsgRTp06V2UWeEEIqA40lQsHBwdDX11drjp6eHtzd3XHhwgXpEnixWIwLFy5gwoQJcsfXrVsXYWFhMmNz585FWloa1q5dq/hKjxK5eVzcemiDN++5iLWMk447OJigShXN7pukzg7zn6JGihWTSCSSK0YuLQ8ePMCyZctgbW0NAHBycsKKFSvQoEED5ObmaiUmQggpoKenV+pvyNROhPr06SPzOWMM8fHxuH37drEaKk6ZMgXDhw9H06ZN0bx5c6xZswYZGRkYMWIEAGDYsGGws7PDsmXLoK+vDxcXF5n5Bd1tPx8vzNtUQ7Qf8/2Hz3ZIx1eu7IIpUzzUfh0liRopVgyMMSQkJGh1KxqBQIDAwECkpqbCyMgIZmZm4HK5ePbsmdZiIoSQAlwuF05OTtDT0yu151Q7ETIxkV1RxeVyUadOHSxatAhdunRRO4CBAwciKSkJ/v7+SEhIQOPGjXHmzBlpAfXLly/pcj2pEAqSIGtrawgEglJZki4Wi8HhcGSey9HREZmZmbRjPCGkTBGLxXj16hXi4+NRrVq1UmvboVYiJBKJMGLECDRs2BBmZpq7TTNhwgSFt8IAydJeVQICAjQWByElRSQSSZMgCwuLUnnOzMxMPHv2DFZWVtJbYQUEAkGpxEAIIeqwsrLCq1evkJ+fD11d3VJ5TrUutfB4PHTp0qVC7DKvF1Vd8QO5tEKLaF5BTVBpJCCMMSQmJiIiIgJZWVmIiYmRFkYTQkhZVnBLTCQqvd/Fat9zcnFxkdmJurzSD3FV/EBAeOkGQiqVkr7Um5ubi8ePHyMmJkbaG0jdRQyEEKIt2uhir3aN0M8//4xp06Zh8eLFcHd3h6GhoczjxsbGGguuJFm8N0GgUL5Gwq2RrYKjCSn7UlJS8Pz5c+Tn50vHbGxsYGdnR3V2hBCiRJF/Oi5atAgZGRno3r077t27h6+//hr29vYwMzODmZkZTE1NNVo3VNIEXOBbPl/uo+74JtoODUFh6ai3KoYaKZIiEYlEePHiBZ48eSJNgnR1dVG7dm04ODhQElRGHTt2DLVq1QKPx8OPP/6o9vyAgADpqtnSdunSJXA4HK2USfz222/FWphDVHvz5g2sra2lW+1UJkX+Cblw4UJkZGTgn3/+kX5cvHhR+lHwebmnoa7SX6KgkaJYcmeDGikSpbKzsxEREYGkpCTpmKmpKerXry+3wrM4fH19pavOdHV14eTkhOnTpyM7O1vu2FOnTsHT0xNCoRACgQDNmjVTupjhyJEjaN++PUxMTGBkZARXV1csWrQI7969++KYy4sxY8agX79+iImJweLFhTdYJZJ/7/PmzcP8+fO1HUqJyc7Oxvjx42FhYQEjIyP07dtXrunw5xITE+Hr64uqVatCIBCga9euePz4scwxCQkJGDp0KKpUqQJDQ0M0adIER44ckT5uaWmJYcOGVeivrTJFvjVWUG/g6elZYsGUpsw2t4DW0UjL5EBY218yaFs2lhNTI0VSVDo6OtLu6lwuFw4ODrC0tNToffauXbti165dyMvLQ0hICIYPHw4Oh4NffvlFesz69evx448/YsaMGdi8eTP09PRw/PhxjB07FuHh4TId5+fMmYNffvkFfn5+WLp0KapWrYrHjx9jy5Yt2Lt3LyZPnqyx2FXJzc0t1V4ln0pPT8fr16/h7e2NqlWraiWG8ujw4cMwNjZG69atv+g8eXl5pbYiSV1+fn44ffo0goKCYGJiggkTJqBPnz64du2awuMZY+jduzd0dXVx/PhxGBsbY9WqVfDy8sLDhw+l5SvDhg1DSkoKTpw4AUtLSwQGBmLAgAG4ffs23NzcAAAjRoyAu7s7li9fDnNz81J7zVrHiojD4bDXr18X9fAy6/379wwAizzMYewm2Ks/uSX2XHZX7Bj+BrO7YqfevKXPGWY+ZXZLn5dQZKS0ZWVlsYcPH7KsrCyNnzstLa3Ezj18+HDWq1cvmbE+ffowNzc36ecvX75kurq6bMqUKXLz161bxwCwGzduMMYYu3nzJgPA1qxZo/D5kpOTlcYSExPDBg0axMzMzJhAIGDu7u7S8yqKc/LkyczT01P6uaenJxs/fjybPHkys7CwYO3bt2fffvstGzBggMy83NxcZmFhwXbv3s0YY0wkErGlS5ey6tWrM319febq6sqCgoKUxskYY+/evWNDhw5lpqamzMDAgHXt2pVFRUUxxhj7559/GACZj3/++Ufp1+P7779n1tbWjM/nswYNGrCTJ08yxhjbtWsXMzExkR775MkT9vXXXzNra2tmaGjImjZtys6fPy9zvo0bN7JatWoxPp/PrK2tWd++faWPBQUFMRcXF6avr8/Mzc1Zp06dWHp6usK4Cl7DqVOnWMOGDRmfz2ctWrRgYWFh0mPmz5/PGjVqJDNv9erVzNHRUeY8zZo1YwKBgJmYmLBWrVqx58+V/9z76quv2LRp02TG/vvvP+bl5cUsLCyYsbExa9euHQsJCZE5BgDbtGkT69mzJxMIBGz+/PmMMcaOHTvG3NzcGJ/PZ05OTmzBggUsLy9POm/lypXMxcWFCQQCZm9vz8aNG8fS0tKUxvelUlJSmK6ursy/r4iICAaABQcHK5wTGRnJALDw8HDpmEgkYlZWVmz79u3SMUNDQ7Znzx6Zuebm5jLHMMaYk5MT27FjhyZeTrGo+llZ8Pv7/fv3Gn1Ote65ODs7w9zcXOUHIaTkvHv3Tm4rDCMjI9StW7dUVoeFh4fj+vXrMldSDh8+jLy8PEybNk3u+DFjxsDIyAgHDhwAAOzfvx9GRkb44YcfFJ5fWc1Leno6PD09ERcXhxMnTuDevXuYPn269GpYUe3evRt6enq4du0atmzZgsGDB+PkyZMyG0afPXsWmZmZ+OabbwAAy5Ytw549e7BlyxY8ePAAfn5+GDJkCC5fvqz0eXx9fXH79m2cOHECwcHBYIyhe/fuyMvLQ6tWrRAZGQlAcoswPj4erVq1kjuHWCxGt27dcO3aNezbtw8PHz7E//73P/B4PKVfo+7du+PChQu4e/cuunbtip49e+Lly5cAgNu3b2PSpElYtGgRIiMjcebMGbRr1w4AEB8fj2+//RYjR45EREQELl26hD59+kjvBCjz008/YeXKlbh16xasrKzQs2fPIm8fk5+fj969e8PT0xP3799HcHAwvv/+e5VXM69evYqmTZvKjKWlpWH48OG4evUqbty4gdq1a6N79+5IS0uTOW7BggX45ptvEBYWhpEjR+LKlSsYNmwYJk+ejIcPH2Lr1q0ICAjAkiVLpHO4XC7WrVuHBw8eYPfu3bh48SKmT5+u8nV169YNRkZGSj8aNGigdG5ISAjy8vLg5eUlHatbty6qVauG4OBghXNycnIAyK4O5XK54PP5uHr1qnSsVatWOHjwIN69ewexWIzff/8d2dnZaN++vcz5mjdvjitXrqh8jRWNWqvGFi5cqJG6AyKvYKf5tBwxFUlXEk2bNkVCQkKRjxeJRNJO0To6xd8msEqVKrh9+3aRjz916hSMjIyQn5+PnJwccLlcbNiwQfp4VFQUTExMYGsrv+JST08PNWrUQFRUFADg8ePHqFGjhtq3JQIDA5GUlIRbt25J33DVqlVLrXMAQO3atfHrr79KP69ZsyYMDQ1x9OhRDB06VPpcX3/9NYRCIXJycrB06VL8/fff8PCQbL1To0YNXL16FVu3blVYKvD48WOcOHEC165dkyY4+/fvh4ODA44dO4b+/ftLG1yam5sr3GAaAP7++2/8999/iIiIgLOzs/S5lWnUqBEaNWok/Xzx4sU4evQoTpw4gQkTJuDly5cwNDREjx49IBQK4ejoKL0lEh8fj/z8fPTp0weOjo4AgIYNGxb69Zw/fz46d+4MQJJk2tvb4+jRoxgwYEChc1NTU/H+/Xv06NFDull2vXr1lB6fkpKC9+/fy91K7NhRdsPsbdu2wdTUFJcvX0aPHj2k4z4+PtKtmwBg5MiRmDlzJoYPHw5A8rVdvHgxpk+fLq2T+bSIvXr16vj5558xduxYbNq0SWmcO3bsUNm3S9W//YSEBOjp6cm9IbCxsVH6s6IgUZo1axa2bt0KQ0NDrF69GrGxsYiPj5ced+jQIQwcOBAWFhbQ0dGBQCDA0aNH5f4fVa1aFXfv3lUaY0Wk1k/TQYMGyXWoJZrx+U7zABVJV3QJCQmIi4sr/EAt69ChAzZv3oyMjAysXr0aOjo66Nu3b7HOVdgVBmVCQ0Ph5ub2xVed3d3dZT7X0dHBgAEDsH//fgwdOhQZGRk4fvw4fv/9dwDAkydPkJmZKf1lXyA3N1eaRHwuIiICOjo6aNGihXTMwsICderUQURERJFjDQ0Nhb29vTQJKkx6ejoWLFiA06dPSxObrKws6RWhzp07w9HRETVq1EDXrl3RtWtXfPPNNxAIBGjUqBE6deqEhg0bwtvbG126dEG/fv0KXQlckBwCkqROnddobm4OX19feHt7o3PnzvDy8sKAAQMUJtQApMnF51c+ExMTMXfuXFy6dAmvX7+GSCRCZmam9HUX+PxK0r1793Dt2jWZK0AikQjZ2dnIzMyEQCDA33//jWXLluHRo0dITU1Ffn6+zOOK2NnZFen1a4quri7++OMPjBo1Cubm5uDxePDy8kK3bt1k/r/NmzcPKSkp+Pvvv2FpaYljx45hwIABuHLlikzSa2BggMzMzFJ9DdpW5ERIG02OSpJIxIHk9nzZ8GmBtK2QByGfS0XSFZyyKwGfKrgK9Ckej/dFS+KL8ryfMjQ0lL5r3LlzJxo1aoTffvsNo0aNAiC5Zf7+/Xu8evVK7t16bm4unj59ig4dOkiPvXr1qtrFqgYGBiof53K5ckmWols0n/c9A4DBgwfD09MTr1+/xvnz52FgYICuXbsCgPSW2enTp+V+wfH5/CLHXxyFvebPTZs2DefPn8eKFStQq1YtGBgYoF+/ftJbqUKhEHfu3MGlS5dw7tw5+Pv7Y8GCBbh16xZMTU1x/vx5XL9+HefOncP69esxZ84c3Lx5E05OTsWKvyjfk127dmHSpEk4c+YMDh48iLlz5+L8+fNo2bKl3PksLCzA4XCQnJwsMz58+HC8ffsWa9euhaOjI/h8Pjw8PORuIX/+vU9PT8fChQvlNhIHJMnW8+fP0aNHD4wbNw5LliyBubk5rl69ilGjRiE3N1dpItStWzeVt5YcHR3x4MEDhY9VqVIFubm5SElJkbkqlJiYqPL/rbu7O0JDQ/H+/Xvk5ubCysoKLVq0kCZ/T58+xYYNGxAeHi69NdeoUSNcuXIFGzduxJYtW6TnevfuHaysrJQ+V0Wk9qqxiqLpkClobKyDenVewuPVHTRpYovGjatoPeGzFfIQO8tRqzGQ0qHq9lROTg6io6ORkZEhHTMyMoKTk1OJ/wJWhcvlYvbs2ZgyZQp8fHxgYGCAvn37YsaMGVi5ciVWrlwpc/yWLVuQkZGBb7/9FoDk9sS6deuwadMmhavDPv8FUMDV1RU7duzAu3fvFF4VsrKyQni4bFf40NDQIiVbrVq1goODAw4ePIi//voL/fv3l86rX78++Hw+Xr58WeQVs/Xq1UN+fj5u3rwpvTX29u1bREZGon79+kU6ByB5zbGxsYiKiirSVaFr167B19dXWtuUnp6O58+fyxyjo6MDLy8veHl5Yf78+TA1NcXFixfRp08fcDgctG7dGq1bt4a/vz8cHR1x9OhRTJkyRelz3rhxA9WqVQMAJCcnIyoqSnp7y8rKCgkJCWCMSX+uhoaGyp3Dzc0Nbm5umDVrFjw8PBAYGKgwEdLT00P9+vXx8OFDmT5C165dw6ZNm9C9e3cAQExMDN68eVPo16tJkyaIjIxUeos1JCQEYrEYK1eulL7xOHToUKHn/ZJbY+7u7tDV1cWFCxekV10jIyPx8uVLmatvyhSUrjx+/Bi3b9+WtmUouMLz+RsoHo8n90YrPDxcrm6ooityIqRuUWJZl5mng+tv9XH9ujN+u34SVaoYIT5+qrbDIpUcYwxv377Fy5cvZf7PVa1aFba2tlpP1AGgf//++Omnn7Bx40ZMmzYN1apVw6+//oqpU6dCX18fQ4cOlS7lnT17NqZOnSq9TdSiRQtMnz4dU6dORVxcHL755htUrVoVT548wZYtW9CmTRuFCdK3336LpUuXonfv3li2bBlsbW1x9+5dVK1aFR4eHujYsSOWL1+OPXv2wMPDA/v27UN4eLjS21ef8/HxwZYtWxAVFYV//vlHOi4UCjFt2jT4+flBLBajTZs2eP/+Pa5duwZjY2NpfcmnateujV69euG7777D1q1bIRQKMXPmTNjZ2aFXr15F/jp7enqiXbt26Nu3L1atWoVatWrh0aNH4HA40itWnz/vH3/8gZ49e4LD4WDevHky/4ZOnTqF6OhotGvXDmZmZvjzzz8hFotRp04d3Lx5ExcuXECXLl1gbW2NmzdvIikpSWXNDiBptGthYQEbGxvMmTMHlpaW6N27NwCgffv2SEpKwq+//op+/frhzJkz+Ouvv6S7Dzx79gzbtm3D119/japVqyIyMhKPHz/GsGHDlD6ft7c3rl69KlO7U7t2bezduxdNmzZFamoqfvrppyJdTfP390ePHj1QrVo19OvXD1wuF/fu3UN4eDh+/vln1KpVC3l5eVi/fj169uwpLbAvzJfcGjMxMcGoUaMwZcoUmJubw9jYGBMnToSHh4dMcli3bl0sW7ZMmvQGBQXBysoK1apVQ1hYGCZPnozevXtLE8a6deuiVq1aGDNmDFasWAELCwscO3YM58+fx6lTp6TnzczMREhICJYuXVrs11AuaXQNWjlQsPwOmMmABdKPbt32afy51Fk+T0vmK7aiLp9PT09nt27dkn7cv3+/RJfrFkbRsnTGGFu2bBmzsrKSWV59/Phx1rZtW2ZoaMj09fWZu7s727lzp8LzHjx4kLVr144JhUJmaGjIXF1d2aJFi1Qun3/+/Dnr27cvMzY2ZgKBgDVt2pTdvHlT+ri/vz+zsbFhJiYmzM/Pj02YMEFu+fzkyZMVnvvhw4cMAHN0dGRisVjmMbFYzNasWcPq1KnDdHV1mZWVFfP29maXL19WGmvB8nkTExNmYGDAvL29pcvnGZMsi4eKZfMF3r59y0aMGMEsLCyYvr4+c3FxYadOnWKMyS+ff/bsGevQoQMzMDBgDg4ObMOGDTKv+cqVK8zT05OZmZkxAwMD5urqyg4ePCh9/d7e3szKyorx+Xzm7OzM1q9frzSuguXzJ0+eZA0aNGB6enqsefPm7N69ezLHbd68mTk4ODBDQ0M2bNgwtmTJEuny+YSEBNa7d29ma2vL9PT0mKOjI/P392cikUjp8z548IAZGBiwlJQU6didO3dY06ZNmb6+PqtduzYLCgpijo6ObPXq1dJjALCjR4/Kne/MmTOsVatWzMDAgBkbG7PmzZuzbdu2SR9ftWoVs7W1lX4P9+zZwwCo/Hf6pbKystgPP/wgbRPxzTffsPj4eJljALBdu3ZJP1+7di2zt7dnurq6rFq1amzu3LksJydHZk5UVBTr06cPs7a2ZgKBgLm6usotpw8MDGR16tQpsddWFNpYPs9hrILd8ypEamrqh8uHMwF8LLqb7VUTS84P0ehz2V+1R1xOHOz4dohto7ptuf2yF4hLFcHOmG6NVUTZ2dl49uwZnJycCl3m/uLFCyQlJcHCwgLVqlVTulyakMqof//+aNKkCWbNmqXtUCqcli1bYtKkSfDx8dFaDKp+Vhb8/n7//r1G9zWlZUkfmMakFX4QIRomFovl6u/s7e1Rq1YtODk5URJEyGeWL18OI6OysQtARfLmzRv06dNHWs9XmVTaRKgul4cGPB5suZKaiybGJd+MjpBPZWdn49GjR3j79q3MOI/H09pmmoSUddWrV8fEiRO1HUaFY2lpienTp5eJOsTSVmkToZumJvjXxBhNeDo4byxEJwvtvMOgneYrH8YYkpKS8PDhQ2m/E0WbmBJCCCl5xW9PWwHwORycNBZqNQP+vJEiNVGs2PLy8hAbG4uUlBTpmJ6eXoVblUkIIeVFpU2ERIs3wNiQizfvubD0uAoYamcnYtppvvLIysrC06dPkZ+fLx2zsrKCvb091QIRQoiWVNpEiFf3JWAEJMfqwLKZ4pbuxRWUGAT/aH/E58QXfvAHtkIeIqY4aDQOUjZkZ2dj2bJl8PDwgKWlJQBJY7vq1atTLRAhhGhZpb0PIxIDEc+AFQc0twSvgH+0Px5lPoIYkqs9Qp5Q489ByocnT56gefPm2L17t3TM2NgYDRo0oCSIEELKgEp7RSjpPQf1BzHY2am3n09RpIkkS/G54MJZ4IzFNRZLH/t0l3kAVCRdwZmZmeHt27fQ1dUFh8NBlSpVYGdnVylXZhBCSFlUaROh0mDLt0WEh+xOzIp2mQeoSLqisrCwQEBAAFauXIkqVarA0tKSkiBCCClD6LevBgUlBqFecD2VtUGfFkfbGfNgZ8xDXSsqkq4oTp48iYSEBJmxzp0748iRI9DT09NSVKQsOnbsGGrVqgUejyezd1ZRBQQEVPjbq0V9jb/99pvMRqxEM968eQNra2vExqreGaG8q7SJkGS1MgeMAWIxk+vuWxzq1AYV7DIfO8sREVMc0K8hdUotzzIyMjB27Fh8/fXXGDlypNy/p/K6KszX1xccDgccDge6urpwcnLC9OnTFfY9OnXqFDw9PSEUCiEQCNCsWTMEBAQoPO+RI0fQvn17mJiYwMjICK6urli0aBHevXtXwq+o7BgzZgz69euHmJgY6S7hRH3Z2dmYN28e5s+fr+1QSkx2djbGjx8PCwsLGBkZoW/fvkhMTFQ5Jz09HRMmTIC9vT0MDAxQv359hZvGBgcHo2PHjjA0NISxsTHatWuHrKwsAJImi8OGDavQX1ugEidC9QbMADAfr159Bx5vEf755/kXn/PT2qC6groytUGk4goJCUGTJk2wdetWAMBff/0ls6Nzede1a1fEx8cjOjoaq1evxtatW+V+MK5fvx69evVC69atcfPmTdy/fx+DBg3C2LFjMW3aNJlj58yZg4EDB6JZs2b466+/EB4ejpUrV+LevXvYu3dvqb2u3NzcUnuuz6Wnp+P169fw9vZG1apVIRTSgoriOnz4MIyNjdG6desvOk9ennzJQlnh5+eHkydPIigoCJcvX8arV6/Qp08flXOmTJmCM2fOYN++fYiIiMCPP/6ICRMm4MSJE9JjgoOD0bVrV3Tp0gX//fcfbt26hQkTJoDL/ZgajBgxAvv376/Yb1I0uoVrOaBs9/kLF6K/+NxF2W2edpmvOPLz89n//vc/pqOj8+HfFJhAIGDbt2+X28G8qLvPlzWKdp/v06cPc3Nzk37+8uVLpqury6ZMmSI3f926dQwAu3HjBmOMsZs3bzIAbM2aNQqfT9Wu3jExMWzQoEHSXbnd3d2l51UU5+TJk+V2nx8/fjybPHkys7CwYO3bt2fffvstGzBggMy83NxcZmFhwXbv3s0YY0wkErGlS5ey6tWrM319febq6sqCgoKUxsnYx93nTU1NmYGBAevatat09/mCnds//VC2C31ycjL7/vvvmbW1NePz+axBgwbs5MmTjDH53eefPHnCvv76a2Ztbc0MDQ1Z06ZN2fnz52XOt3HjRlarVi3G5/OZtbU169u3r/SxoKAg5uLiwvT19Zm5uTnr1KkTS09PV/oaL126xJo1a8b09PRYlSpV2IwZM1heXp7c13v8+PHM2NiYWVhYsLlz58r838jOzmZTp05lVatWZQKBgDVv3lzma/H5a1Tkq6++YtOmTZMZ+++//5iXlxezsLBgxsbGrF27diwkJETmGABs06ZNrGfPnkwgELD58+czxhg7duwYc3NzY3w+nzk5ObEFCxbIvK6VK1cyFxcXJhAImL29PRs3bhxLS0tTGeOXSElJYbq6ujL/5iIiIhgAFhwcrHRegwYN2KJFi2TGmjRpwubMmSP9vEWLFmzu3LmFxuDk5MR27NhRjOjVp43d5yvtFSE5hyO1HQEpR2JiYtCpUyfMnDlT2iDR3d0dd+/exejRoytsQXR4eDiuX78uU+90+PBh5OXlyV35ASS3f4yMjHDgwAEAwP79+2FkZIQffvhB4fmV1YOkp6fD09MTcXFxOHHiBO7du4fp06er3ZF79+7d0NPTw7Vr17BlyxYMHjwYJ0+eRHp6uvSYs2fPIjMzE9988w0AYNmyZdizZw+2bNmCBw8ewM/PD0OGDMHly5eVPo+vry9u376NEydOIDg4GIwxdO/eHXl5eWjVqhUiIyU/b44cOYL4+Hi0atVK7hxisRjdunXDtWvXsG/fPjx8+BD/+9//lN5mTU9PR/fu3XHhwgXcvXsXXbt2Rc+ePfHy5UsAwO3btzFp0iQsWrQIkZGROHPmDNq1awcAiI+Px7fffouRI0ciIiICly5dQp8+fZSWDMTFxaF79+5o1qwZ7t27h82bN+O3337Dzz//LPf11tHRwX///Ye1a9di1apV2LFjh/TxCRMmIDg4GL///jvu37+P/v37o2vXrnj8+LHSr+3nrl69iqZNm8qMpaWlYfjw4bh69Spu3LiB2rVro3v37khLk91ce8GCBfjmm28QFhaGkSNH4sqVKxg2bBgmT56Mhw8fYuvWrQgICMCSJUukc7hcLtatW4cHDx5g9+7duHjxIqZPn64yxm7dusHIyEjpR4MGDZTODQkJQV5eHry8vKRjdevWRbVq1RAcHKx0XqtWrXDixAnExcWBMYZ//vkHUVFR0lqq169f4+bNm7C2tkarVq1gY2MDT09PXL16Ve5czZs3x5UrV1S+xvKMVo0VuJ1Q+DGEADh48CDGjh0r3SaDw+Fg5syZWLBggVoF0U03xCJBC+0Tqgh5uD3BvsjHnzp1CkZGRsjPz0dOTg64XC42bNggfTwqKgomJiawtZVvTKqnp4caNWogKioKAPD48WPUqFEDurrqdXIPDAxEUlISbt26BXNzcwBArVq11DoHANSuXRu//vqr9POaNWvC0NAQR48exdChQ6XP9fXXX0MoFCInJwdLly7F33//DQ8PDwBAjRo1cPXqVWzduhWenp5yz/H48WOcOHEC165dkyY4+/fvh4ODA44dO4b+/fvD2toaAGBubo4qVaoojPXvv//Gf//9h4iICDg7O0ufW5lGjRqhUaNG0s8XL16Mo0eP4sSJE5gwYQJevnwJQ0ND9OjRA0KhEI6OjnBzcwMgSYTy8/PRp08fODo6AgAaNmyo9Lk2bdoEBwcHbNiwARwOB3Xr1sWrV68wY8YM+Pv7S2+tODg4YPXq1eBwOKhTpw7CwsKwevVqfPfdd3j58iV27dqFly9fomrVqgCAadOm4cyZM9i1axeWLl2q9PkLpKSk4P3799L5BTp27Cjz+bZt22BqaorLly+jR48e0nEfHx+MGDFC+vnIkSMxc+ZMDB8+HIDk67148WJMnz5dejv408L26tWr4+eff8bYsWOxadMmpXHu2LFDWnejiKr/DwkJCdDT05N7k2BjYyO3MONT69evx/fffw97e3vo6OiAy+Vi+/bt0uQ3OjoagCQZXLFiBRo3bow9e/agU6dOCA8PR+3ataXnqlq1Ku7evav0uco7SoQIUcONGzcwaNAg6ecODg7Yu3evwl+IhUlIEyEutez3kerQoQM2b96MjIwMrF69Gjo6Oujbt2+xzqXsCkNhQkND4ebmJk2Cisvd3V3mcx0dHQwYMAD79+/H0KFDkZGRgePHj+P3338HIGmImZmZic6dO8vMy83NlSYRn4uIiICOjg5atGghHbOwsECdOnUQERGhcI4ioaGhsLe3lyZBhUlPT8eCBQtw+vRpaWKTlZUlvSLUuXNnODo6okaNGujatSu6du2Kb775BgKBAI0aNUKnTp3QsGFDeHt7o0uXLujXrx/MzBSvZo2IiICHh4fMlc/WrVsjPT0dsbGxqFatGgCgZcuWMsd4eHhg5cqVEIlECAsLg0gkknt9OTk5sLCwKNJrLkgu9PX1ZcYTExMxd+5cXLp0Ca9fv4ZIJJJucPypz68k3bt3D9euXZO5AiQSiZCdnY3MzEwIBAL8/fffWLZsGR49eoTU1FTk5+fLPK6InZ1dkV6PJq1fvx43btzAiRMn4OjoiH///Rfjx49H1apV4eXlJb2aOmbMGGky6ObmhgsXLmDnzp1YtmyZ9FwGBgbIzMws9ddQWiptIjRBXx98zsf/PA76lfZLQdTQsmVLDB06FHv37sXAgQOxefNmpb8sClNFqJ2VZOo+r6GhofTqy86dO9GoUSP89ttvGDVqFADA2dkZ79+/x6tXr+Temefm5uLp06fo0KGD9NirV68iLy9PratCBgaqG59yuVy5JEtR8auhoaHc2ODBg+Hp6YnXr1/j/PnzMDAwQNeuXQFAesvs9OnTcr/M+Hx+keMvjsJe8+emTZuG8+fPY8WKFahVqxYMDAzQr18/aVG4UCjEnTt3cOnSJZw7dw7+/v5YsGABbt26BVNTU5w/fx7Xr1/HuXPnsH79esyZMwc3b96Ek5NTSbw8pKeng8fjISQkRO52n5FR0VbRWlhYgMPhIDk5WWZ8+PDhePv2LdauXQtHR0fw+Xx4eHjIFch//u8hPT0dCxcuVFiIrK+vj+fPn6NHjx4YN24clixZAnNzc1y9ehWjRo1Cbm6u0kSoW7duKm8tOTo64sGDBwofq1KlCnJzc5GSkiJzVSgxMVHp1cSsrCzMnj0bR48exVdffQUAcHV1RWhoKFasWAEvLy/pFdz69evLzK1Xr55cwvju3TtYWVkpjb+8q7S//ZcIBDDmfvKDxrBkf6iR8kksFsusoACADRs24KuvvsKAAQO+qBZIndtTZQWXy8Xs2bMxZcoU+Pj4wMDAAH379sWMGTOwcuVKrFy5Uub4LVu2ICMjA99++y0Aya2IdevWYdOmTZg8ebLc+T//YV/A1dUVO3bswLt37xReFbKyskJ4eLjMWGhoaJGSrVatWsHBwQEHDx7EX3/9hf79+0vn1a9fH3w+Hy9fvizyVb969eohPz8fN2/elN4ae/v2LSIjI+V+6aji6uqK2NhYREVFFemq0LVr1+Dr6yutbUpPT8fz589ljtHR0YGXlxe8vLwwf/58mJqa4uLFi+jTpw84HA5at26N1q1bw9/fH46Ojjh69CimTJmi8DUeOXIEjDHp/4Fr165BKBTC3v7jv+ubN2/KzCuo1+HxeHBzc4NIJMLr16/Rtm3bIn9dPqWnp4f69evj4cOHMn2Erl27hk2bNqF79+4AJDV9b968KfR8TZo0QWRkpNLbriEhIRCLxVi5cqX058KhQ4cKPe+X3Bpzd3eHrq4uLly4IL0SGxkZiZcvX0pv134uLy8PeXl5cj+7eDye9EpQ9erVUbVqVWm9WoGoqCh069ZNZiw8PBzt27dXGmO5p9HS63KgoOo8uepi9t78V5ZquYKx6lsY++aoynmHEg6xutfrMrsrdko/uH9zadVYBfL06VPm4eHBDh48+MXnqkirxvLy8pidnR1bvny5dGz16tWMy+Wy2bNns4iICPbkyRO2cuVKxufz2dSpU2XmT58+nfF4PPbTTz+x69evs+fPn7O///6b9evXT+lqspycHObs7Mzatm3Lrl69yp4+fcoOHz7Mrl+/zhhj7MyZM4zD4bDdu3ezqKgo5u/vz4yNjeVWjU2ePFnh+efMmcPq16/PdHR02JUrV+Qes7CwYAEBAezJkycsJCSErVu3jgUEBCj9uvXq1YvVr1+fXblyhYWGhrKuXbuyWrVqsdzcXMaYZDUYVKwWK9C+fXvm4uLCzp07x6Kjo9mff/7J/vrrL8aY/Iqqb775hjVu3JjdvXuXhYaGsp49ezKhUCh9zSdPnmRr165ld+/eZc+fP2ebNm1iXC6XhYeHsxs3brAlS5awW7dusRcvXrBDhw4xPT099ueffyqMKzY2lgkEAjZ+/HgWERHBjh07xiwtLaUrrwq+3kZGRszPz489evSIBQYGMkNDQ7ZlyxbpMYMHD2bVq1dnR44cYdHR0ezmzZts6dKl7NSpUwpfoyJTpkyRWf3GGGNubm6sc+fO7OHDh+zGjRusbdu2zMDAgK1evVp6DAB29OhRmXlnzpxhOjo6bMGCBSw8PJw9fPiQHThwQLrSKjQ0VLrq8enTp2zPnj3Mzs5O8jtFxYrHLzV27FhWrVo1dvHiRXb79m3m4eHBPDw8ZI6pU6cO++OPP6Sfe3p6sgYNGrB//vmHRUdHs127djF9fX22adMm6TGrV69mxsbGLCgoiD1+/JjNnTuX6evrsydPnkiPycjIYAYGBuzff/8tsdf3KW2sGqu0iVDkYQ4DwOzslCctn6p7vS7D3yjSR93rdZWehxKhsk8sFrPdu3czoVDIADBTU1P28uXLLzpnRUqEGGNs2bJlzMrKSmZ59fHjx1nbtm2ZoaEh09fXZ+7u7mznzp0Kz3vw4EHWrl07JhQKmaGhIXN1dWWLFi1S+cvk+fPnrG/fvszY2JgJBALWtGlTdvPmTenj/v7+zMbGhpmYmDA/Pz82YcKEIidCDx8+ZACYo6OjXOsDsVjM1qxZw+rUqcN0dXWZlZUV8/b2ZpcvX1Yaa8HyeRMTE2ZgYMC8vb2ly+cZK3oi9PbtWzZixAhmYWHB9PX1mYuLi9Ik4dmzZ6xDhw7MwMCAOTg4sA0bNsi85itXrjBPT09mZmbGDAwMmKurqzTJf/jwIfP29mZWVlaMz+czZ2dntn79epWxFWX5/A8//MDGjh3LjI2NmZmZ2f/bO++wqI6vj393KcsCuyBNigRUihUQLAELGgtEg0oUFbHGaIIl2KJYAhpjib3EirFgIBJijEZRggWDSFBBsEBQmlhArCAodc/7By/357q7CIquwnye5z4Pd+qZO8ves2fOzKH58+dLPd+ysjIKCAggS0tLUlNTIxMTE/L09KTLly/LHaM8rl27RkKhkJ48ecKlJSYmUseOHUlDQ4Osra0pPDycLCwsXqkIEVUpQy4uLiQUCkksFlPnzp1px44dXP7atWvJxMSEm9fg4OC3rgg9f/6cJk+ezB0d4enpSbm5uVJlANDu3bu5+9zcXBo3bhyZmpqShoYG2dra0po1a2Q+38uXL6dmzZqRpqYmOTs7y/wQCA0NJVtb27c2tpdRhiLEI6qHI5U/IAoLC6Gjo4O033mwHUowMzOr1fHhzc42w53SO+CDDxOB7O6YakQqIixpsQRDmw6V387ym7hTWAkzcdXJ0oz3i8ePH+Prr7+WMne3aNECBw4cgIODw2u3W1JSgqysLDRv3lzGsZPBaIj07NkTDg4OWL9+/Vvvy8vLC46Ojpg3b95b76ux8fHHH+Obb77ByJEj30l/NX1XVr+/CwoKIBaL663PRusj9LqYCExwu1vDjrvSWImOjsbo0aOlFONx48Zh48aN7ORfBuM9ZtWqVfjrr7+ULUaD48GDB/j88885H7+GCjtQkdHoKSsrg7+/Pz755BNOCdLV1cVvv/2G3bt3MyWIwXjPsbS0xLRp05QtRoPDwMAAc+bMabAHxFbDLEKMRk1mZia8vLyQmJjIpfXs2RPBwcEwNzdXomQMxodNdHS0skVgMGpFo7UI6W4eq2wRGO8BQqGQOzNDTU0NK1euxMmTJ5kSxGAwGI2ERmsRik41BWCFkhJ9HDt2A507m0FfX/5hWK9L+JUiBEQ9xtPS/8VDylVCSAWGYkxMTPDzzz9j7ty5CAkJgaOjo7JFYjAYDMY7pNFahIbnSQCMwsOHn6J//1Bcvnyv3vsIiHqM/+6X405hJXdJ/n+PnkjQaB+9Ujlx4gQePnwolTZw4EBcvnyZKUEMBoPRCGFv41cQfi8creNaI7c0t851qy1BfB5gJlbhrlaGaljS9/XCMjBej5KSEsyYMQN9+/bFV199JROOoa5BQBkMBoPRMGi0S2O1JSAzAP89+4+7F6nUfQeRiYidGaRMrly5Ah8fH1y5cgUAcODAARw/flzmGHkGg8FgND6YRegVPK18CgDgg49Wmq2wpMUSJUvEqC0SiQQbNmxAp06dOCVIIBBg48aNXFBNBoPBYDRumCJUS0wEJkh1TlV4YjTj/SI3Nxf9+/fH9OnTUVpaCgBo3749Ll68iGnTpjX4czEY7z9//vknrKysoKKigunTp9e5/p49e+QGqG0oWFpavtap1GVlZbCyssK5c+fqX6hGzogRI2QCKzcEGq0iFOb4AAuF+fDVvYW//x4Fe3tjZYvEqCcOHz4MOzs7REZGcmkzZszA+fPn0a5dOyVK9uExbtw48Hg88Hg8qKmpoXnz5pgzZw5KSkpkyh45cgSurq4QiUTQ1NREp06dsGfPHrntHjhwAD179oSOjg60tbVhZ2eH77//Ho8ePXrLI3p/+OqrrzB06FDcunULS5YwS3N9sW3bNjRv3hwuLi7KFuWtER0dDUdHRwgEAlhZWSn8P3uRyMhIfPzxxxCJRDA0NMSQIUOQnZ0t1Wb1//qLV15eHldm4cKFWLp0KQoKCt7CqJRHo1WEHOb/jB+eb8FhrePo27cl9PSEyhaJUQ/ExsZi0KBBePDgAQDA2NgYkZGRWLt2LYvx9Zq4u7sjNzcXmZmZWLduHbZv347AwECpMps2bcKgQYPQtWtXxMfH4/LlyxgxYgS+/vprzJ49W6rsggULMHz4cHTq1AnHjh3D1atXsWbNGiQnJ2Pfvn3vbFxlZWXvrK+XKSoqQn5+Ptzc3GBqaspOL68niAg//fQTJkyY8EbtKPOz8SqysrIwYMAA9OrVC0lJSZg+fTq+/PJLqR9+8uoMGjQIn3zyCZKSkhAZGcmFz3iZtLQ05ObmcpeRkRGX165dO7Rs2RK//PLLWxmb0qjXEK4fAHWNPm8WY0Y4ATKLqV2Ueqm6LNL8O0cikZCnpycBoEGDBtH9+/eVLRIRNazo859//jl16NCBu8/JySE1NTWaOXOmTP2NGzcSAPr333+JiCg+Pp4A0Pr16+X2V1ME71u3btGIESO4CNxOTk5cu/Lk9PPzk4k+P2XKFPLz8yN9fX3q2bMneXt707Bhw6TqlZWVkb6+Pu3du5eIiCorK2nZsmVkaWlJGhoaZGdnR+Hh4QrlJPpf9HldXV0SCoXk7u7ORZ8/ffo0AZC6FEWhf/z4MU2aNImMjIxIIBBQ27Zt6a+//iIi2cjs6enpNHDgQDIyMiItLS3q2LEjRUVFSbW3efNmsrKyIoFAQEZGRjRkyBAuLzw8nNq1a0caGhqkp6dHvXv3pqKiIoXjGzlyJBkYGJCGhgZZWVnRrl27uPw5c+aQtbU1CYVCat68OS1cuJDKysrqJKuFhQV9//33NGLECNLU1CRTU1P66aefanzuFy5cID6fT4WFhVLpr5InMDCQ7O3tKSgoiCwtLYnH43HPf8KECWRgYEAikYh69epFSUlJdRpHfTNnzhxq27atVNrw4cPJzc1NYZ3w8HBSVVWlyspKLu3w4cPE4/G451D9uazpf5CIaPHixdStW7fXH8ArUEb0+UZrEWI0DOilbfA8Hg9BQUHYvXs3Dh48CAMDAyVJ1jC5evUqzp07B3V1dS7t999/R3l5uYzlB6ha/tHW1savv/4KAAgJCYG2tjYmT54st31FPi9FRUVwdXXFnTt3cPjwYSQnJ2POnDmQSCRyyyti7969UFdXR2xsLLZt2wYfHx/89ddfKCoq4spERkbi2bNn8PT0BAAsX74cwcHB2LZtG65du4YZM2Zg1KhROHPmjMJ+xo0bh4sXL+Lw4cOIi4sDEaF///4oLy+Hi4sL0tLSAFQtEebm5spdxpFIJPj0008RGxuLX375BSkpKVixYgVUVFQUPqP+/fvj5MmTuHTpEtzd3eHh4cGdnH7x4kV88803+P7775GWlobjx4+jR48eAKp86ry9vfHFF18gNTUV0dHR+Pzzz2X+v6r57rvvkJKSgmPHjiE1NRVbt26V+l8TiUTYs2cPUlJSsGHDBgQFBWHdunW1lrWaVatWwd7eHpcuXYK/vz/8/PwQFRWl8LnHxMTAxsZGxsL2KnkAID09HQcOHMAff/yBpKQkAFVR7fPz83Hs2DEkJCTA0dERvXv35pZwazuOl2XU1tau8QoJCVFYPy4uDn369JFKc3NzQ1xcnMI6Tk5O4PP52L17NyorK1FQUIB9+/ahT58+MkeHODg4wMTEBH379kVsbKxMW507d8b58+c538sGQb2qVR8AzCLUcMjJyaGePXtyv5DfZ+T9ynGKdyKzGLN3fjnFO9Va7rFjx5KKigppaWmRQCAgAMTn8+n333/nynz99ddSlomXsbOzo08//ZSIiD799FOys7Or8/Pbvn07iUQievjwoUI5a2MRetGSRURUXl5OBgYGFBwczKV5e3vT8OHDiYiopKSENDU16dy5c1L1JkyYQN7e3nJluX79OgGg2NhYLu3BgwckFArpt99+I6IqSwNqsAQREUVGRhKfz6e0tDS5+S9bhOTRtm1b2rRpExERHThwgMRisYy1hIgoISGBAFB2du2+qzw8PGj8+PG1KktEtGrVKnJyqvlz96KsRFUWIXd3d6kyw4cP5z5L8vDz86NPPvmkzvIEBgaSmpoa5efnc2kxMTEkFouppKREqm7Lli1p+/bttR7Hyzx79oxu3LhR4yVvjqqxtramZcuWSaUdPXqUANCzZ88U1ouOjiYjIyNSUVEhAOTs7Cxl/fnvv/9o27ZtdPHiRYqNjaXx48eTqqoqJSQkSLWTnJxcp89KXVGGRYidI/QC4ffCEZAZwG2ZB/BaByky3j6//fYbvvrqKzx58gTXrl3D5cuXYWz8YTm855Xl4U7pHWWL8Up69eqFrVu3ori4GOvWrYOqqiqGDBnyWm2RAgvDq0hKSkKHDh2gp6f3WvWrcXJykrpXVVXFsGHDEBISgtGjR6O4uBiHDh3C/v37AVRZCZ49e4a+fftK1SsrK0OHDh3k9pGamgpVVVV06dKFS9PX14etrS1SU1NrLWtSUhKaNWsGGxubWpUvKirCokWLcPToUeTm5qKiogLPnz/nrBN9+/aFhYUFWrRoAXd3d7i7u8PT0xOampqwt7dH79690b59e7i5uaFfv34YOnQomjSRf/Crr68vhgwZgsTERPTr1w+DBw+WsmqFhYVh48aNyMjIQFFRESoqKiAWi2stazXOzs4y9zXtJHv+/LlcX8BXyQMAFhYWMDQ05O6Tk5NRVFQEfX19mT4yMjLqNI4XEQqFsLKyUpj/NsjLy8PEiRMxduxYeHt74+nTpwgICMDQoUMRFRUFHo8HW1tb2NracnVcXFyQkZGBdevWSfnuCYVV/rTPnj17p2N4mzBF6AVePjzxRV7nIEVG/VNYWIhvvvkGe/fu5dI0NDRw9+7dD04RMlZXjrx17VdLS4v74t61axfs7e3x888/cw6pNjY2KCgowN27d2FqaipVt6ysDBkZGejVqxdX9uzZsygvL6/Tad7VX76K4PP5MkpWeXm53LG8jI+PD1xdXZGfn4+oqCgIhULunKnqJbOjR4/CzMxMqp5AIKi1/K/Dq8b8MrNnz0ZUVBRWr14NKysrCIVCDB06lHP8FYlESExMRHR0NP7++28EBARg0aJFuHDhAnR1dREVFYVz587h77//xqZNm7BgwQLEx8ejefPmMn19+umnuHnzJiIiIhAVFYXevXtjypQpWL16NeLi4uDj44PFixfDzc0NOjo62L9/v9S261fJ+roYGBhwZ4ZVUxt5ANnPRlFREUxMTBAdHS3TT/US7uuMIyYm5pWHuW7fvh0+Pj5y84yNjXHvnnRIqHv37kEsFiv8zGzevBk6OjpYuXIll/bLL7/A3Nwc8fHx+Pjjj+XW69y5M86ePSuVVr0s+KLS+KHDFKEXePHwRBOBCZcuUhGxgxTfA6q/0LKysri04cOHY+vWrQp/ub7PXOx8Udki1Bk+n4/58+dj5syZGDlyJIRCIYYMGYK5c+dizZo1Mi+Xbdu2obi4GN7e3gCAkSNHYuPGjdiyZQv8/Pxk2n/y5IlcPyE7Ozvs3LkTjx49kmsVMjQ0xNWrV6XSkpKSaqVsubi4wNzcHGFhYTh27Bi8vLy4em3atIFAIEBOTg5cXV1f2RYAtG7dGhUVFYiPj+esJA8fPkRaWhratGlTqzaAqjHfvn0b169fr5VVKDY2FuPGjeN8m4qKiqS2RwNVFrA+ffqgT58+CAwMhK6uLk6dOoXPP/8cPB4PXbt2RdeuXREQEAALCwscPHgQM2fOlNufoaEhxo4di7Fjx6J79+749ttvsXr1apw7dw4WFhZYsGABV/bmzZt1lhUA/v33X5n71q1bK3wGHTp0wNatW0FE3FlhtZFHHo6OjsjLy4OqqiosLS3llqntOF6kY8eOnA+SIpo2baowz9nZGREREVJpUVFRMtazF3n27Bn4fGmX4Gpfs5r87JKSkmBiYiKVdvXqVTRr1qxh+V/W60LbB0BNPkJv4g8kD+YjVD+Ul5dTYGAgt7YNgEQiEQUHB5NEIlG2eLWiIe0aKy8vJzMzM1q1ahWXtm7dOuLz+TR//nxKTU2l9PR0WrNmDQkEApo1a5ZU/Tlz5pCKigp9++23dO7cOcrOzqYTJ07Q0KFDFe4mKy0tJRsbG+revTudPXuWMjIy6Pfff+d8d44fP048Ho/27t1L169fp4CAABKLxTI+Qn5+fnLbX7BgAbVp04ZUVVUpJiZGJk9fX5/27NlD6enplJCQQBs3bqQ9e/YofG6DBg2iNm3aUExMDCUlJZG7uztZWVlxO3Rq4yNERNSzZ09q164d/f3335SZmUkRERF07NgxIpL1EfL09CQHBwe6dOkSJSUlkYeHB4lEIm7Mf/31F23YsIEuXbpE2dnZtGXLFuLz+XT16lX6999/aenSpXThwgW6efMm/fbbb6Surk4RERFy5fruu+/ozz//pBs3btDVq1fps88+o86dOxMR0aFDh0hVVZV+/fVXSk9Ppw0bNpCenl6dZCWq8hESi8X0448/UlpaGv3000+koqJCx48fV/i8Hjx4QGpqanTlyhUurTbyVO8aexGJRELdunUje3t7ioyMpKysLIqNjaX58+fThQsXaj2O+iYzM5M0NTXp22+/pdTUVNq8ebPMc9m0aZOUr9TJkyeJx+PR4sWL6fr165SQkEBubm5kYWHB+RWtW7eOm9MrV66Qn58f8fl8OnHihFT/Y8eOpS+++OKtjU8ZPkKNVhEa5zqQ9Hifk7HWSPLzO0Y3bjxkitB7SFZWFjk7O0ttNXZxcaHMzExli1YnGpIiRES0fPlyMjQ0lNpefejQIerevTtpaWmRhoYGOTk5SW2pfpGwsDDq0aMHiUQi0tLSIjs7O/r+++9r3LqbnZ1NQ4YMIbFYTJqamtSxY0eKj4/n8gMCAqhp06ako6NDM2bMoKlTp9ZaEUpJSSEAZGFhIaNcSyQSWr9+Pdna2pKamhoZGhqSm5sbnTlzRqGs1dvndXR0SCgUkpubG7d9nqj2itDDhw9p/PjxpK+vTxoaGtSuXTs6cuQIEckqQllZWdSrVy8SCoVkbm5OP/30k9SYY2JiyNXVlZo0aUJCoZDs7OwoLCyMG7+bmxsZGhqSQCAgGxubGh1+lyxZQq1btyahUEh6eno0aNAgqf/Jb7/9lvT19UlbW5uGDx9O69atq5OsRFWK0OLFi8nLy4s0NTXJ2NiYNmzYUOPzIiIaNmwY+fv7S6W9Sh55ihARUWFhIU2bNo1MTU1JTU2NzM3NycfHh3Jycmo9jrfB6dOnycHBgdTV1alFixa0e/duqfzAwECysLCQSvv111+pQ4cOpKWlRYaGhjRw4EBKTU3l8n/88Udq2bIld3xCz5496dSpU1JtPH/+nHR0dCguLu5tDU0pihCP6DW9Fz9QCgsLoaOjA8AfwP+c6sx/OoU7rc5CAgnMBGa43e32G/fVbPlN3CmshJmYBV19XXJycmBnZ4eCggKoqKggICAA8+fPh6rqh7WqW1JSgqysLDRv3pwd7MhgvEUuX76Mvn37IiMjA9ra2soWp0GxdetWHDx4EH///fdb66Om78rq93dBQYGMs/ubwM4R+n9uleRAgqq1UuYY/f7w0UcfYdu2bWjRogXOnj2LgICAD04JYjAY7w47Ozv8+OOPUr6EjPpBTU0NmzZtUrYY9Q57o7wAH3zYaNowx2glEhMTA3t7eyltf8SIERg8eDCzpDAYjFoxbtw4ZYvQIPnyyy+VLcJb4b2wCG3evBmWlpbQ0NBAly5dcP78eYVlg4KC0L17dzRp0gRNmjRBnz59aixfa/j0WhHmw68UofXaW2i2/KbMlfu08s3laiSUlZXB398frq6umDZtmkw+U4IYDAaD8TZQuiIUFhaGmTNnIjAwEImJibC3t4ebmxvy8/Pllo+Ojoa3tzdOnz6NuLg4mJubo1+/frhzp24H0+mCB96LCdrPX0v+gKjH+O9+Oe4UVspckv/3vhIJlP6Y32vS0tLg7OyMH3/8EUSE4ODgt7oGzWAwGAxGNUp/Q69duxYTJ07E+PHj0aZNG2zbtg2amprYtWuX3PIhISGYPHkyHBwc0KpVK+zcuRMSiQQnT56sU7/JficxTj0S3kYxaPprGNDs4WvJ/7S0yq+IzwPMxCoyVytDNSzp++GdcfMuICJs374dHTp0QGJiIoCqNeiVK1fKxNJhMBgMBuNtoFQfobKyMiQkJGDevHlcGp/PR58+fWoMIPciz549Q3l5ucKj90tLS6WCwxUWFgIASrpfwO4NBDM1M6g2A1D6ZstYJiK2M6wu3L9/H19++SUOHz7Mpdna2iI0NBSOjo5KlIzBYDAYjQmlWoQePHiAyspKmVM0mzZtiry8vFq1MXfuXJiamiq0ICxfvhw6OjrcZW5u/sZyA//zDWJ+QHUnMjISdnZ2UkqQr68vEhMTmRLEYDAYjHeK0pfG3oQVK1Zg//79OHjwoEJn2nnz5qGgoIC7bt26VS99V/sGMT+guhETEwN3d3dO0TUwMMDhw4exZcsWaGpqKlk6BoPBYDQ2lPr2NjAwgIqKitwAcq8KoLl69WqsWLECf//9N+zs7BSWEwgEEIvFUld98KJvEPMDqj3dunXjAlq6u7vjypUr8PDwULJUDAaDwWisKFURUldXh5OTk5Sjc7Xjc00B5FauXIklS5bg+PHj6Nix47sQVSEmIhWkzjTH0PbsBNPawOPxsHv3bmzZsgUREREfXMR4BqO++PPPP2FlZQUVFRVMnz69zvX37NkjN0BtY+C7777DpEmTlC1GgyMlJQXNmjVDcXGxskV5pyh9PWfmzJkICgrC3r17kZqaCl9fXxQXF2P8+PEAgDFjxkg5U//444/47rvvsGvXLlhaWiIvLw95eXkoKipS1hAYCsjLy8OAAQNkdvQZGxvD19eXiw7NeH8ZN24ceDweeDwe1NTU0Lx5c8yZMwclJSUyZY8cOQJXV1eIRCJoamqiU6dO2LNnj9x2Dxw4gJ49e0JHRwfa2tqws7PD999/j0ePHr3lEb0/fPXVVxg6dChu3bqFJUvYIa61JS8vDxs2bJCKJt/QePToEXx8fCAWi6Grq4sJEya88h2XkZEBT09PGBoaQiwWY9iwYTKrLdevX8egQYNgYGAAsViMbt264fTp01x+mzZt8PHHH2Pt2rVvZVzvK0pXhIYPH47Vq1cjICAADg4OSEpKwvHjxzkH6pycHOTm5nLlt27dirKyMgwdOhQmJibctXr1amUNgSGHw4cPo3379oiIiMDYsWPx8OHrHU/AUD7u7u7Izc1FZmYm1q1bh+3btyMwMFCqzKZNmzBo0CB07doV8fHxuHz5MkaMGIGvv/4as2fPliq7YMECDB8+HJ06dcKxY8dw9epVrFmzBsnJydi3b987G1dZWdk76+tlioqKkJ+fDzc3N5iamkIkYmF9asvOnTvh4uICC4s326VbXl5eTxLVPz4+Prh27RqioqJw5MgR/PPPPzVawIqLi9GvXz/weDycOnUKsbGxKCsrg4eHByQSCVfus88+Q0VFBU6dOoWEhATY29vjs88+k9qcNH78eGzduhUVFRVvdYzvFfUawvUDoDp6bdrvPAJAZmZmrxV1nkWWl09RURF99dVXUtHiTUxM6OLFi8oWTak0pOjzn3/+OXXo0IG7z8nJITU1NZo5c6ZM/Y0bNxIA+vfff4mIKD4+ngDQ+vXr5fZXU/T5W7du0YgRI6hJkyakqalJTk5OXLvy5PTz85OJPj9lyhTy8/MjfX196tmzJ3l7e9OwYcOk6pWVlZG+vj7t3buXiIgqKytp2bJlZGlpSRoaGmRnZ0fh4eEK5ST6X/R5XV1dEgqF5O7uzkWfP336tNT/B2qIQv/48WOaNGkSGRkZkUAgoLZt29Jff/1FRLLR59PT02ngwIFkZGREWlpa1LFjR4qKipJqb/PmzWRlZUUCgYCMjIxoyJAhXF54eDi1a9eOiz7eu3dvKioqkpGpsrKSzMzMaMuWLVLpiYmJxOPxKDu76jtxzZo11K5dO9LU1KRmzZqRr68vPX36lCtfLf/x48epVatWpKWlRW5ubnT37t0an23btm3pp59+kko7duwYde3alXR0dEhPT48GDBhA6enpXH5WVhYBoP3791OPHj1IIBBwEduDgoKoVatWJBAIyNbWljZv3izV9pw5c8ja2pqEQiE1b96cFi5cSGVlZTXK+CakpKQQALpw4YLU+Hg8Ht25c0duncjISOLz+VJR2Z88eUI8Ho/7DNy/f58A0D///MOVKSwsJABSn5PS0lISCAR04sSJ+h5arVBG9PlGG2us19jpMOSpAPcr8PyfC0CXup1MzZAlISEBPj4+SEtL49IGDx6MoKAgGBgYKFGy95SrHYHy2h0TUa+oGQPtLr5W1atXr+LcuXNSv8Z///13lJeXy1h+gKrln/nz5+PXX39Fly5dEBISAm1tbUyePFlu+4p8XoqKiuDq6gozMzMcPnwYxsbGSExMlPq1Wxv27t0LX19fxMbGAgDS09Ph5eWFoqIiLlJ5ZGQknj17Bk9PTwBVR3D88ssv2LZtG6ytrfHPP/9g1KhRMDQ0hKurq9x+xo0bhxs3buDw4cMQi8WYO3cu+vfvj5SUFLi4uCAtLQ22trY4cOAAXFxc5J6DJpFI8Omnn+Lp06f45Zdf0LJlS6SkpEBFRUXhM+rfvz+WLl0KgUCA4OBgeHh4IC0tDR999BEuXryIb775Bvv27YOLiwsePXqEmJgYAEBubi68vb2xcuVKeHp64unTp4iJiQERyfTD5/Ph7e2N0NBQ+Pr6cukhISHo2rUr99ng8/nYuHEjmjdvjszMTEyePBlz5szBli1buDrPnj3D6tWrsW/fPvD5fIwaNQqzZ89GSEiI3DE+evQIKSkpMr6hxcXFmDlzJuzs7FBUVISAgAB4enoiKSkJfP7/Fj78/f2xZs0adOjQARoaGggJCUFAQAB++ukndOjQAZcuXcLEiROhpaWFsWPHAgBEIhH27NkDU1NTXLlyBRMnToRIJMKcOXPkyggAbdu2xc2bNxXmd+/eHceOHZObFxcXB11dXakx9unTB3w+H/Hx8dzn8kVKS0vB4/EgEAi4NA0NDfD5fJw9exZ9+vSBvr4+bG1tERwcDEdHRwgEAmzfvh1GRkZwcnLi6qmrq8PBwQExMTHo3bu3wjE0KOpVrfoAqNYoAX8CFhGwiHS//YRZhN6AiooKWrFiBamqqnK/cDU1NSkoKIgkEomyxXsvkPsrJ9GMKB7v/kqs/ed87NixpKKiQlpaWiQQCAgA8fl8+v3337kyX3/9tZRl4mXs7Ozo008/JSKiTz/9lOzs7Or8/LZv304ikYgePnyoUM7aWIRetGQREZWXl5OBgQEFBwdzad7e3jR8+HAiIiopKSFNTU06d+6cVL0JEyaQt7e3XFmuX79OACg2NpZLe/DgAQmFQvrtt9+IqMrSgxosQUT/+5WflpYmN/9li5A82rZtS5s2bSIiogMHDpBYLKbCwkKZcgkJCQSAs+a8ikuXLhGPx6ObN28S0f+sRFu3blVYJzw8nPT19aXkByBludm8eTM1bdq0xn4BUE5OTo3yVVs/rly5QkT/swi9bIls2bIlhYaGSqUtWbKEnJ2dFba9atUqcnJyqrH/7OxsunHjhsLr9u3bCusuXbqUbGxsZNINDQ1lrHDV5Ofnk1gsJj8/PyouLqaioiKaOnUqAaBJkyZx5W7dukVOTk7E4/FIRUWFTExMKDExUaY9T09PGjduXI1jfFswi5CS4ItLX12IIZfbt29j9OjRiI6O5tKcnJwQGhoKGxsb5Qn2IaCmpB1zdey3V69e2Lp1K4qLi7Fu3TqoqqpiyJAhr9U1ybEw1IakpCR06NBB4QnyteXFX74AoKqqimHDhiEkJASjR49GcXExDh06hP379wOoshg9e/YMffv2lapXVlaGDh06yO0jNTUVqqqq6NKlC5dW/Ws8NTW11rImJSWhWbNmtf4/KioqwqJFi3D06FHk5uaioqICz58/R05ODgCgb9++sLCwQIsWLeDu7g53d3d4enpCU1MT9vb26N27N9q3bw83Nzf069cPQ4cORZMm8o8FcXBwQOvWrREaGgp/f3+cOXMG+fn58PLy4sqcOHECy5cvx3///YfCwkJUVFSgpKQEz549484M09TURMuWLbk6JiYmCuNMAsDz51UxIV8+N+7GjRsICAhAfHw8Hjx4wFkKc3Jy0K5dO67ci1aW4uJiZGRkYMKECZg4cSKXXlFRAR0dHe4+LCwMGzduREZGBoqKilBRUfHKY1je1H+prhgaGiI8PBy+vr7YuHEjZ7VzdHTkLGJEhClTpsDIyAgxMTEQCoXYuXMnPDw8cOHCBZiYmHDtCYVCPHv27J2OQZkwRQi1U4TCrxQhIOoxd34QO1G6iufPn+PChQsAqrbG+/v7Y9GiRVBXV1eyZB8Ar7k89a7R0tKClZUVAGDXrl2wt7fHzz//jAkTJgAAbGxsUFBQgLt378LU1FSqbllZGTIyMtCrVy+u7NmzZ1FeXg41NbVayyAUCmvM5/P5MkqWPGdYLS0tmTQfHx+4uroiPz8fUVFREAqF3FlX1Tt1jh49CjMzM6l6Ly5DvA1eNeaXmT17NqKiorB69WpYWVlBKBRi6NChnFO4SCRCYmIioqOj8ffffyMgIACLFi3ChQsXoKuri6ioKJw7dw5///03Nm3ahAULFiA+Ph7NmzeX25+Pjw+nCIWGhsLd3R36+voAgOzsbHz22Wfw9fXF0qVLoaenh7Nnz2LChAkoKyvjFKGXPwM8Hq9GZbl6if3x48cwNDTk0j08PGBhYYGgoCCYmppCIpGgXbt2Mg7xL85/9dwGBQVJKa0AuOXHuLg4+Pj4YPHixXBzc4OOjg7279+PNWvWKJQReLOlMWNjYxllsKKiAo8eParxuJF+/fohIyMDDx48gKqqKnR1dWFsbIwWLVoAAE6dOoUjR47g8ePHnCK3ZcsWREVFYe/evfD39+faevTokZSC2tBR+q6x94HaKEIvR5lnJ0pXYW1tjY0bN8Lc3BynT5/GsmXLmBLUgOHz+Zg/fz4WLlzI/TofMmQI1NTU5L4ctm3bhuLiYnh7ewMARo4ciaKiIik/kRd58uSJ3HQ7OzskJSUp3F5vaGgotbsUqLKo1AYXFxeYm5sjLCwMISEh8PLy4l7Qbdq0gUAgQE5ODqysrKQuReF6WrdujYqKCsTHx3NpDx8+RFpaGtq0aVMrmYCqMd++fRvXr1+vVfnY2FiMGzcOnp6eaN++PYyNjZGdnS1VRlVVFX369MHKlStx+fJlZGdn49SpUwCqlJCuXbti8eLFuHTpEtTV1XHw4EGF/Y0cORJXr15FQkICfv/9d/j4+HB5CQkJkEgkWLNmDT7++GPY2Njg7t27tR67Ilq2bAmxWIyUlBQurfrZLly4EL1790br1q3x+PHjV7bVtGlTmJqaIjMzU2Zuq5W/an+4BQsWoGPHjrC2tq5RwakmIiICSUlJCq+dO3cqrOvs7IwnT54gISGBSzt16hQkEomMwiYPAwMD6Orq4tSpU8jPz8fAgQMBgLPwvOgzVX3/sq/d1atXFVo8GyKN1iLUX00NT0kVd6gMz3Rkz0R5mRdPkjYRVf1aEAn4je5E6fPnz6Ndu3ZS4TDGjx+PYcOGcc6mjIaNl5cXvv32W2zevBmzZ8/GRx99hJUrV2LWrFnQ0NDA6NGjoaamhkOHDmH+/PmYNWsW9wXepUsXzJkzB7NmzcKdO3fg6ekJU1NTpKenY9u2bejWrRv8/Pxk+vT29sayZcswePBgLF++HCYmJrh06RJMTU3h7OyMTz75BKtWrUJwcDCcnZ3xyy+/1OnLfOTIkdi2bRuuX78uda6KSCTC7NmzMWPGDEgkEnTr1g0FBQWIjY2FWCzmHGpfxNraGoMGDcLEiROxfft2iEQi+Pv7w8zMDIMGDar1c3Z1dUWPHj0wZMgQrF27FlZWVvjvv//A4/E4i9XL/f7xxx/w8PAAj8fDd999J/WCO3LkCDIzM9GjRw80adIEERERkEgksLW1RXx8PE6ePIl+/frByMgI8fHxuH//Plq3bq1QPktLS7i4uGDChAmorKzkXrgAYGVlhfLycmzatAkeHh6IjY3Ftm3baj12RVQH5T579iwGDx4MAGjSpAn09fWxY8cOmJiYICcnR8q6UROLFy/GN998Ax0dHbi7u6O0tBQXL17E48ePMXPmTFhbWyMnJwf79+9Hp06dcPTo0RqVw2reZGmsdevWcHd3x8SJE7Ft2zaUl5dj6tSpGDFiBGdxvXPnDnr37o3g4GB07twZALB79260bt0ahoaGiIuLg5+fH2bMmAFbW1sAVQpWkyZNMHbsWAQEBEAoFCIoKAhZWVkYMGAA1392djbu3LmjMH5ng6RePY4+AKqdrW7s0CUzvi7ZmVrXavt8Y3eOLi8vp0WLFpGKigr5+voqW5wPjoa0fZ6IaPny5WRoaCi1vfrQoUPUvXt30tLSIg0NDXJycqJdu3bJbTcsLIx69OhBIpGItLS0yM7Ojr7//vsat89nZ2fTkCFDSCwWk6amJnXs2JHi4+O5/ICAAGratCnp6OjQjBkzaOrUqTLO0n5+fnLbrt6ybGFhIePgL5FIaP369WRra0tqampkaGhIbm5udObMGYWyVm+f19HRIaFQSG5ubtz2eaLaOUsTET18+JDGjx9P+vr6pKGhQe3ataMjR44QkayzdFZWFvXq1YuEQiGZm5vTTz/9JDXmmJgYcnV1pSZNmpBQKCQ7OzsKCwvjxu/m5kaGhoYkEAjIxsaGc7KuiS1bthAAGjNmjEze2rVrycTEhBt/cHAwAeDmWJ6z98GDB+lVr6WIiAgyMzOjyspKLi0qKopat25NAoGA7OzsKDo6mgDQwYMHuWcDgC5duiTTXkhICDk4OJC6ujo1adKEevToQX/88QeX/+2335K+vj5pa2vT8OHDad26da90Un9THj58SN7e3qStrU1isZjGjx8vdfRA9Xhe/PzMnTuXmjZtSmpqamRtbU1r1qyR+SxfuHCB+vXrR3p6eiQSiejjjz+miIgIqTLLli0jNze3tzq+mlCGszSP6DW9Fz9QCgsLoaOjg7TfebAdSlXr/vuBO6V3YCYww+1ut7myL/oF5T6tWg4zE6vg9rx36winbDIzMzFq1CjExcVxaadOneL8PhivpqSkBFlZWWjevLnCAMEMBuPVEBG6dOmCGTNmcEuujPqhrKwM1tbWCA0NRdeuXZUiQ03fldXv74KCgnqLGwowH6EaedEvqDH6BBERgoOD4eDgwClBKioqWLx4Mbp3765k6RgMRmOEx+Nhx44djevk43dETk4O5s+frzQlSFk0Wh+h2vCyX1Bj8gl6/PgxfH19ERYWxqW1aNECISEh+Pjjj5UoGYPBaOw4ODjAwcFB2WI0OKqdxRsbTBGqBSaixrUcdubMGYwePRq3bt3i0saNG4eNGzeymEgMBoPBaFAwRYghxZkzZ9CrVy/uLI8mTZpg+/btUgelMRgMBoPRUGg8Di+MWtGtWzf06NEDQNWJwpcvX2ZKEIPBYDAaLI3WIlQpJuBXIFclF2ARNjhUVFSwb98+hIeHY/r06TKHbzEYDAaD0ZBotG+5O/k6gKYAkiYSSFDlFC1SaVz+L/fv38eQIUO4SNzVmJubY+bMmUwJYjAYDEaDp9FahPqO8gWgAS/HOzi3IQIiFRGWtFiibLHeGZGRkRg3bhzy8vKQmJiI5OTkej2XgcFgMBiMD4FG/5Pf8YYhbne7jVTnVAxtOhRA1UGKrdfeapCBVUtKSjB9+nS4u7sjLy8PQFXwwdrGM2IwXkV0dDR4PJ7CuGEMxvvEd999h0mTJilbjAbH8ePH4eDgIBPH7H2k0StCOnKeQPVBig3tEMUrV66gU6dO2LBhA5fm7u6OK1euoGPHjkqUjNGQcHFxQW5uLnR0dJQtSqOBx+Nxl1gsRqdOnXDo0CGZcs+fP0dgYCBsbGwgEAhgYGAALy8vXLt2TaZsYWEhFixYgFatWkFDQwPGxsbo06cP/vjjjxojxH9I5OXlYcOGDViwYIGyRXlrPHr0CD4+PhCLxdDV1cWECRNQVFRUY52MjAx4enrC0NAQYrEYw4YNw7179+SWLS0thYODA3g8nlSgY3d3d6ipqSEkJKQ+h/NWaBhv+DdAzJP9h37xIMVWhmof/CGKEokEGzZsQKdOnXD16lUAgEAgwMaNGxEREQFjY2MlS8hoSKirq8PY2Bg8Hu+16peVldWzRG8XInovTjnevXs3cnNzcfHiRXTt2hVDhw7FlStXuPzS0lL06dMHu3btwg8//IDr168jIiICFRUV6NKlC/7991+u7JMnT+Di4oLg4GDMmzcPiYmJ+OeffzB8+HDMmTMHBQUF72xc5eXlb63tnTt3wsXF5Y2CpAJvV8Y3xcfHB9euXUNUVBSOHDmCf/75p0YLWHFxMfr16wcej4dTp04hNjYWZWVl8PDwkGvdmTNnDhcM9mWqz59776nXyGUfANVB2wB/AhbRX3r+MmUaUoDVu3fvkpub2/+Puepq3749XblyRdmiNSoUBhJ0/0322pb06gYv5MqveyG3XuV2dXWlqVOnkp+fH+nq6pKRkRHt2LGDioqKaNy4caStrU0tW7aUCtx4+vRpqeCaRERnz54lV1dXEgqFpKurS/369aNHjx5xfUyZMoX8/PxIX1+fevbsSURE0dHR1KlTJ1JXVydjY2OaO3culZeX1yjv+fPnqU+fPqSvr09isZh69OhBCQkJXL63tzcNGzZMqk5ZWRnp6+vT3r17iYiosrKSli1bRpaWlqShoUF2dnYUHh4uM76IiAhydHQkNTU1On36NKWnp9PAgQPJyMiItLS0qGPHjhQVFSXV1927d6l///6koaFBlpaWFBISQhYWFrRu3TquzOPHj2nChAlkYGBAIpGIevXqRUlJNX8m8EKAUSKiwsJCAkAbNmzg0lasWEE8Hk+mrcrKSurYsSO1adOGC9Lp6+tLWlpadOfOHZm+nj59WuM8HD58mDp27EgCgYD09fVp8ODBCuUkItLR0aHdu3cT0f+Cie7fv5969OhBAoGANmzYQBoaGjLBQf/44w/S1tam4uJiIiLKyckhLy8v0tHRoSZNmtDAgQMpKytLoZxERG3btqWffvpJKu3YsWPUtWtX0tHRIT09PRowYAClp6dz+fJkrJY/KCiIWrVqRQKBgGxtbWnz5s1Sbc+ZM4esra1JKBRS8+bNaeHChVRWVlajjG9CdTDhCxcuSI2Px+PJnVsiosjISOLz+VKBTZ88eUI8Hk/m8xwREUGtWrWia9euyQ1qe/PmTQIg9fxehTKCrjZai9D3JpWYKKhEscoTZYvyVnn06BGio6O5+xkzZuD8+fNo166d8oRi/I+L92Sv24WvrldYKr9uYf2fBbF3714YGBjg/PnzmDZtGnx9feHl5QUXFxckJiaiX79+GD16NJ49eya3flJSEnr37o02bdogLi4OZ8+ehYeHByorK6X6UFdXR2xsLLZt24Y7d+6gf//+6NSpE5KTk7F161b8/PPP+OGHH2qU9enTpxg7dizOnj2Lf//9F9bW1ujfvz+ePn0KoOrX8V9//SW1NBAZGYlnz57B09MTALB8+XIEBwdj27ZtuHbtGmbMmIFRo0bhzJkzUn35+/tjxYoVSE1NhZ2dHYqKitC/f3+cPHkSly5dgru7Ozw8PJCTk8PVGTNmDO7evYvo6GgcOHAAO3bsQH5+vlS7Xl5eyM/Px7Fjx5CQkABHR0f07t0bjx49qsVsARUVFfj5558BVFnnqgkNDUXfvn1hb28vVZ7P52PGjBlISUlBcnIyJBIJ9u/fDx8fH7m/9LW1taGqKn+fzdGjR+Hp6Yn+/fvj0qVLOHnyJDp37lwruV/E398ffn5+SE1NhZeXFz777DOEhoZKlQkJCcHgwYOhqamJ8vJyuLm5QSQSISYmBrGxsdDW1oa7u7tCC+OjR4+QkpIi4xZQXFyMmTNn4uLFizh58iT4fD48PT1lrCEvyujm5oaQkBAEBARg6dKlSE1NxbJly/Ddd99h7969XB2RSIQ9e/YgJSUFGzZsQFBQENatW1fjs2jbti20tbUVXp9++qnCunFxcdDV1ZUaY58+fcDn8xEfHy+3TmlpKXg8HgQCAZemoaEBPp+Ps2fPcmn37t3DxIkTsW/fPmhqaspt66OPPkLTpk0RExNT4xiVTr2qVR8A1Rplyt9V1hEzMzOZMg3JIkREtHHjRjI2NqbIyEhli9JoUfgrx2CT7LXwn1c3eDJbft2T9fuZdXV1pW7dunH3FRUVpKWlRaNHj+bScnNzCQDFxcURkaxFyNvbm7p27VpjHx06dJBKmz9/Ptna2nIWCiKizZs3k7a2NlVWVtZa/srKShKJRPTXX38REVF5eTkZGBhQcHAwV8bb25uGDx9OREQlJSWkqalJ586dk2pnwoQJ5O3tLTW+P//885X9t23bljZt2kRERKmpqTK/zm/cuEEAOItQTEwMicViKikpkWqnZcuWtH37doX9ACANDQ3S0tIiPp9PAMjS0pIePnzIldHQ0CA/Pz+59RMTEwkAhYWF0b179wgArV279pXjexlnZ2fy8fGpUc7aWITWr18vVebgwYNS1p+CggLS0NCgY8eOERHRvn37ZD4vpaWlJBQKFX7vXbp0iQBQTk5OjWO6f/8+AeCs6IpkbNmyJYWGhkqlLVmyhJydnRW2vWrVKnJycqqx/+zsbLpx44bC6/bt2wrrLl26lGxsbGTSDQ0NacuWLXLr5Ofnk1gsJj8/PyouLqaioiKaOnUqAaBJkyYREZFEIiF3d3dasmQJEf3vmbxsESIi6tChAy1atKjGMb4Iswgx3pjk5GSUlkpbBaZOnYqUlBT069dPSVIxPmTs7Oy4v1VUVKCvr4/27dtzaU2bNgUAGctGNdUWoZpwcnKSuk9NTYWzs7OUn1HXrl1RVFSE27dvIycnR+pX8bJlywD871eqtbU1dHR0IBaLUVRUxFllVFVVMWzYMM6Bs7i4GIcOHYKPjw8AID09Hc+ePUPfvn2l2g8ODkZGRoaUjC9bEoqKijB79my0bt0aurq60NbWRmpqKtd3WloaVFVV4ejoyNWxsrJCkyb/80FMTk5GUVER9PX1pfrPysqS6f9l1q1bh6SkJBw7dgxt2rTBzp07oaenJ1WGauHkXJsyiqjNXNeGl59t//79oaamhsOHDwMADhw4ALFYjD59+gCoem7p6ekQiUTcM9PT00NJSYnC5/b8+XMAVdaOF7lx4wa8vb3RokULiMViWFpaAoCUZe9lGYuLi5GRkYEJEyZIzdsPP/wg1X9YWBi6du0KY2NjaGtrY+HChTLtvoyFhQUXDFXeZWZmVmP9umJoaIjw8HD89ddf0NbWho6ODp48eQJHR0fubLlNmzbh6dOnmDdv3ivbEwqFCq3F7wuN9hyhhkZlZSVWr16NhQsXws/PD6tXr+byeDye1Jctg1EX1NTUpO55PJ5UWrWyomibrFAofGUfWlpadZLJ1NRUaodK9Qt/7NixePjwITZs2AALCwsIBAI4OztLLY/4+PjA1dUV+fn5iIqKglAohLu7OwBwS2ZHjx6VecG8uFQgT+bZs2cjKioKq1evhpWVFYRCIYYOHVon5++ioiKYmJhILWdXo6urW2NdY2Nj7uW4e/du9O/fHykpKTAyMgIA2NjYIDU1VW7d6nQbGxsYGhpCV1cX//33X63lruZVc83j8WQULXmOxi8/W3V1dQwdOhShoaEYMWIEQkNDMXz4cG6JrqioCE5OTnJ3KBkaGsqVxcDAAADw+PFjqTIeHh6wsLBAUFAQTE1NIZFI0K5dO5l5fFHG6s9NUFAQunTpIlVORUUFQNUylY+PDxYvXgw3Nzfo6Ohg//79WLNmjVz5qmnbti1u3rypML979+44duyY3DxjY2OZHygVFRV49OhRjZtk+vXrh4yMDDx48ACqqqrQ1dWFsbExWrRoAQA4deoU4uLiZP4nOnbsCB8fH6nlwEePHimcg/cFpgg1AG7duoXRo0dzPgxr1qzB4MGD0a1bNyVLxnglHZvKpjWrxcGWYoH8umKBbJqSsbOzw8mTJ7F48eJa12ndujUOHDgAIuIUrdjYWIhEIjRr1gx8Ph9WVlYy9WJjY7Flyxb0798fQNX/xoMHD6TKuLi4wNzcHGFhYTh27Bi8vLw4xa5NmzYQCATIycmBq6trncYZGxuLcePGcb5GRUVFyM7O5vJtbW1RUVGBS5cucRaw9PR0PH78mCvj6OiIvLw8qKqqcpaI16Fz585wcnLC0qVLueMyRowYgQULFiA5OVnKT0gikWDdunVo06YN7O3twePxMGLECOzbtw+BgYEyfkJFRUXQ0NCQ6ydUPdfjx4+XK5ehoSFyc3O5+xs3btTaWuDj44O+ffvi2rVrOHXqlJS/mKOjI8LCwmBkZFTrg2FbtmwJsViMlJQU2NjYAAAePnyItLQ0BAUFoXv37gAg5RejiKZNm8LU1BSZmZmcdfFlzp07BwsLC6mt+jUpONVERETUuCutJuXT2dkZT548QUJCAveZO3XqFCQSiYzCJo9qZfHUqVPIz8/HwIEDAQAbN26Uev53796Fm5sbwsLCpNqttsh16NDhlX0plXpdaPsAaGg+QmFhYaSrq8vtCOPxeDRv3jwqLS1VtmiMF6hp3ft9xtXVVcav5OVdTkTSvh8v+wilpaWRuro6+fr6UnJyMqWmptKWLVvo/v37Cvu4ffs2aWpq0pQpUyg1NZX+/PNPMjAwoMDAwBrl7dChA/Xt25dSUlLo33//pe7du5NQKJSRd8GCBdSmTRtSVVWlmJgYmTx9fX3as2cPpaenU0JCAm3cuJH27Nkjd3zVeHp6koODA126dImSkpLIw8ODRCKR1Nj69OlDjo6OFB8fT4mJidSrVy8SCoWcv4lEIqFu3bqRvb09RUZGUlZWFsXGxtL8+fOlfIteBnJ8byIiIkggEHA+JM+fP6cuXbqQubk5/fbbb3Tz5k06f/48DR48mLS0tDgfLyKihw8fUqtWrahZs2a0d+9eunbtGl2/fp1+/vlnsrKykhl7NadPnyY+n08BAQGUkpJCly9fphUrVnD5I0aMoNatW1NiYiJduHCBPvnkE1JTU5PxEZLnayKRSMjc3Jzs7e2pZcuWUnnFxcVkbW1NPXv2pH/++YcyMzPp9OnTNG3aNLp165bC5/b555/TrFmzuPvKykrS19enUaNG0Y0bN+jkyZPUqVMnqeerSMagoCASCoW0YcMGSktLo8uXL9OuXbtozZo1RER06NAhUlVVpV9//ZXS09Npw4YNpKenRzo6Ogrlqw/c3d2pQ4cOFB8fT2fPniVra2vO342o6n/N1taW4uPjubRdu3ZRXFwcpaen0759+0hPT49mzpypsA9Fz+T06dNSvl21QRk+QkwR+kAVoYKCAho7dqzUtnhzc3OKjo5WtmgMOTRmRYioaiu8i4sLCQQC0tXVJTc3Ny5fXh/Vdeq6fT4xMZE6duxIGhoaZG1tTeHh4XLlrd5WbGFhIeVgS1T1wl2/fj3Z2tqSmpoaGRoakpubG505c0bh+IiqXgbVio25uTn99NNPMmO7e/cuffrppyQQCMjCwoJCQ0PJyMiItm3bxpUpLCykadOmkampKampqZG5uTn5+PjU6NQrTxGSSCTUqlUr8vX15dKKi4tpwYIFZGVlRWpqaqSnp0dDhgyRe5zGkydPyN/fn6ytrUldXZ2aNm1Kffr0oYMHD8o8sxc5cOAAOTg4kLq6OhkYGNDnn3/O5d25c4f69etHWlpaZG1tTREREXKdpeUpQkRV288BUEBAgExebm4ujRkzhgwMDEggEFCLFi1o4sSJNb40IyIiyMzMTMoBPyoqilq3bk0CgYDs7OwoOjq6VooQEVFISAg39iZNmlCPHj3ojz/+4PK//fZb0tfXJ21tbRo+fDitW7furStCDx8+JG9vb9LW1iaxWEzjx4+np0+fcvnV4zl9+jSXNnfuXGratCmpqamRtbU1rVmzpsY5V/RMJk2aRF999VWd5FWGIsQjaiBHhNaSwsJC6OjoIOVvoE0/wMzMDLdv35Yq02z5TdwprISZWAW3573ZQVtvg7i4OIwaNQqZmZlc2vDhw7F161bmC/SeUlJSgqysLDRv3lzGOZPReLl9+zbMzc1x4sSJenEyZtQNIkKXLl0wY8YMeHt7K1ucBsWDBw9ga2uLixcvonnz5rWuV9N3ZfX7u6CgoF5jYzIfoQ+M6Oho9OnThzuDRSQSYfPmzRg1atRrn+TLYDDeDadOnUJRURHat2+P3NxczJkzB5aWlujRo4eyRWuU8Hg87NixQ+oEbkb9kJ2djS1bttRJCVIWTBH6wOjatSucnJxw/vx5uLi44JdffvkgPmgMBqNqh9T8+fORmZkJkUgEFxcXhISEyOzMY7w7HBwc4ODgoGwxGhwdO3b8YGJYNlpFyGzESpCBEAlld7i08CtFCIh6/F5Hna8OYhcWFoa5c+cqPOGVwWC8f7i5ucHNzU3ZYjAYjBdgByq+wPsWdf7x48fw8fFBQkKCVLqVlRUWLFjAlCAGg8FgMN4Q9iZ9gRejztsYKDfqfHR0NEaPHo3bt28jISEBiYmJCuO5MBgMBoPBeD2YRUgOJiIVpM40x9D22u+877KyMvj7++OTTz7hdrPl5+fj2rVr71wWBoPBYDAaOswi9B6RlpaGkSNHIjExkUvr1asXgoOD0axZMyVKxmAwGAxGw6TRWoSe9v8Ha5+fwmG+/Ng77xIiwvbt29GhQwdOCVJTU8PKlStx4sQJpgQxGAwGg/GWaLQWocIxRzDrF8BM1wy1j4BU/9y/fx9ffvklF1UZqIpJFBoaKhWlmsFgMBgMRv3TaC1C7wu3bt1CREQEd+/r64vExESmBDEYDIaS6NGjB0JDQ5UtRoPD398f06ZNU7YYMjBFSMk4Ojrihx9+gIGBAQ4fPowtW7aw3WEMBuONiI6OBo/H4y5DQ0P0799f7gnKt27dwhdffAFTU1Ooq6vDwsICfn5+ePjwoUzZ9PR0jB8/Hs2aNYNAIEDz5s3h7e2NixcvvothvRMOHz6Me/fuYcSIEcoW5a1x+fJldO/eHRoaGjA3N8fKlStfWefkyZNwcXGBSCSCsbEx5s6di4qKCi4/OjoagwYNgomJCbS0tODg4ICQkBCpNmbPno29e/dKhYd6H2CK0Dvmv//+Q3l5uVTa7Nmzce3aNXh4eChJKgbj/ebl/5n3nbKyMmWLAKBqA0Zubi4iIyNRWlqKAQMGSMmWmZmJjh074saNG/j111+Rnp6Obdu24eTJk3B2dsajR4+4shcvXoSTkxOuX7+O7du3IyUlBQcPHkSrVq0wa9asdzamyspKSCSSt9b+xo0bMX78ePD5r/96fNsyvgmFhYXo168fLCwskJCQgFWrVmHRokXYsWOHwjrJycno378/3N3dcenSJYSFheHw4cPw9/fnypw7dw52dnY4cOAALl++jPHjx2PMmDE4cuQIV8bAwABubm7YunXrWx1jnanXEK4fADVFn3+bUecrKytp/fr1JBAI5EZOZjRsFEVU/vjjnTLX+vVxr2wvLu6W3LpxcbfqVW5XV1eaOnUq+fn5ka6uLhkZGdGOHTuoqKiIxo0bR9ra2tSyZUuKiIjg6lRUVNAXX3xBlpaWpKGhQTY2NrR+/XqZtn/++Wdq06YNF11+ypQpXB4A2rJlC3l4eJCmpiYFBgYSEdGWLVuoRYsWpKamRjY2NhQcHPzKMQQHB5OTkxNpa2tT06ZNydvbm+7du0dEVf+XZmZmtGXLFqk6iYmJxOPxKDu76rvg8ePHNGHCBDIwMCCRSES9evWipKQkrnxgYCDZ29tTUFAQWVpaEo/HIyKiY8eOUdeuXUlHR4f09PRowIABlJ6eLtVXbGws2dvbk0AgICcnJzp48KBMJO8rV66Qu7s7aWlpkZGREY0aNYru37+vcMynT58mAPT48WMu7fDhwwSAkpOTuTR3d3dq1qwZPXv2TKp+bm4uaWpq0tdff01EVZHs27ZtS05OTlKR2qt5sZ+XqayspB9//JFatmxJ6urqZG5uTj/88INCOS9dukQAKCsri4iIdu/eTTo6OnTo0CFq3bo1qaio0Pbt20kgEMj0+80331CvXr24+5iYGOrWrRtpaGhQs2bNaNq0aVRUVKRQ1vz8fOLxeHT16lWp9DVr1lC7du1IU1OTmjVrRr6+vlIR3OXJmJWVRSUlJTRr1iwyNTUlTU1N6ty5s1SU9wcPHtCIESPI1NSUhEIhtWvXjkJDQxXKVx9s2bKFmjRpQqWlpVza3LlzydbWVmGdefPmUceOHaXSDh8+TBoaGlRYWKiwXv/+/Wn8+PFSaXv37qVmzZoprKOM6PPMIvQOyM3NRf/+/TF9+nSUlpbihx9+wPnz55UtFuM94N9/b8tcN28WvLJeQUGJ3LoFBSX1LuPevXthYGCA8+fPY9q0afD19YWXlxdcXFyQmJiIfv36YfTo0Xj27BkAQCKRoFmzZggPD0dKSgoCAgIwf/58/Pbbb1ybW7duxZQpUzBp0iRcuXIFhw8fhpWVlVS/ixYtgqenJ65cuYIvvvgCBw8ehJ+fH2bNmoWrV6/iq6++wvjx43H69Oka5S8vL8eSJUuQnJyMP//8E9nZ2Rg3bhwAgM/nw9vbW8YfJCQkBF27doWFhQUAwMvLC/n5+Th27BgSEhLg6OiI3r17S1lM0tPTceDAAfzxxx9ISkoCABQXF2PmzJm4ePEiTp48CT6fD09PT85aUFhYCA8PD7Rv3x6JiYlYsmQJ5s6dKyXLkydP8Mknn6BDhw64ePEijh8/jnv37mHYsGG1nEGgoKAA+/fvBwCoq6sDAB49eoTIyEhMnjwZQqFQqryxsTF8fHwQFhYGIkJSUhKuXbuGWbNmybWU6OrqKux73rx5WLFiBb777jukpKQgNDQUTZs2rbXsAPDs2TP8+OOP2LlzJ65duwYfHx/o6uriwIEDXJnKykqEhYXBx8cHAJCRkQF3d3cMGTIEly9fRlhYGM6ePYupU6cq7Ofs2bPQ1NRE69atpdL5fD42btyIa9euYe/evTh16hTmzJlTo4xGRkaYOnUq4uLisH//fly+fBleXl5wd3fHjRs3AFRFWndycsLRo0dx9epVTJo0CaNHj67x/ZCTkwNtbe0ar2XLlimsHxcXhx49enCfA6Aq9EtaWhoeP34st05paalMJHihUIiSkhKZyAcvUlBQAD09Pam0zp074/bt28jOzlZY751Tr2rVB8C7tgj9+eefZGBgQAC4a/r06XK1XUbDRdGvHGCRzDVjxvFXtnf8+A25dY8fv1Gvcru6ulK3bt24+4qKCtLS0qLRo0dzabm5uQSA4uIUW7KmTJlCQ4YM4e5NTU1pwYIFCstX/5+8iIuLC02cOFEqzcvLi/r371/r8RARXbhwgQBwv+gvXbpEPB6Pbt68SUT/sxJt3bqViKqsCmKxmEpKSqTaadmyJW3fvp2IqixCampqlJ+fX2Pf9+/fJwB05coVIiLaunUr6evrS30ugoKCpCxCS5YsoX79+km1c+vWLQJAaWlpcvuptrRoaWmRlpYW990zcOBArsy///5LAOjgwYNy21i7di0BoHv37lFYWBgBoMTExBrH9zKFhYUkEAgoKCioRjlfZRECIGWBIyLy8/OjTz75hLuPjIyUshJNmDCBJk2aJFUnJiaG+Hy+wu/fdevWUYsWLV45rvDwcNLX1+fu5cl48+ZNUlFRoTt37kjV7d27N82bN09h2wMGDKBZs2YpzC8vL6cbN27UeD18+FBh/b59+8o8l2vXrlW9F1NS5NaJjIwkPp9PoaGhVFFRQbdv36bu3bsTAIUWrLCwMFJXV5exrlW/g6Ojo+XWYxahBkRxcTG+/vprDB48GA8ePABQ9SsrMjIS69atk9GuGYz3FTs7O+5vFRUV6Ovro3379lxa9a/7/Px8Lm3z5s1wcnKCoaEhtLW1sWPHDuTk5HDl7t69i969e9fY78uRq1NTU9G1a1eptK5duyI1teossJCQEKlfxTExMQCAhIQEeHh44KOPPoJIJIKrqysAcPI4ODigdevWnFXozJkzyM/Ph5eXF4Aq/4iioiLo6+tLtZ+VlYWMjAxOFgsLCxgaGkrJd+PGDXh7e6NFixYQi8WwtLSU6jstLQ12dnZS3wedO3eWaiM5ORmnT5+W6rtVq1YAINW/PGJiYpCQkIA9e/bAxsYG27ZtkylDRDW2Udsy8khNTUVpaekr5/pVqKurS30OAcDHxwfR0dG4e/cugKr5HzBgAGedSk5Oxp49e6Sem5ubGyQSCbKysuT28/z5c7nfzSdOnEDv3r1hZmYGkUiE0aNH4+HDh5wVVJ6MV65cQWVlJWxsbKRkOHPmDDdvlZWVWLJkCdq3bw89PT1oa2sjMjKS+3zIQ1VVFVZWVjVeL1th3pR+/fph1apV+PrrryEQCGBjY4P+/fsDgFwL4enTpzF+/HgEBQWhbdu2UnnV1scXn52yabTnCAmSrNFPTQUCiajeo84nJCRg5MiRuH79Opc2aNAg7Ny5EwYGBvXSB4PxrlBTU5O65/F4Umk8Hg8AuOWe/fv3Y/bs2VizZg2cnZ0hEomwatUqxMfHA4DMMowitLS06iTnwIED0aVLF+7ezMwMxcXFXMT3kJAQGBoaIicnB25ublJOwz4+PggNDYW/vz9CQ0Ph7u4OfX19AEBRURFMTEwQHR0t0+eLS0Ly5PXw8ICFhQWCgoJgamoKiUSCdu3a1cmZuqioCB4eHvjxxx9l8kxMTGqs27x5c+jq6sLW1hb5+fkYPnw4/vnnHwBVwZt5PB5SU1Ph6ekpUzc1NRVNmjSBoaEhbGxsAFRt9ujQoUOtZX/VXFe/RF9UtOQ5xguFQu5zVk2nTp3QsmVL7N+/H76+vjh48CD27NnD5RcVFeGrr77CN998I9PeRx99JFceAwMDmeWh7OxsfPbZZ/D19cXSpUuhp6eHs2fPYsKECSgrK+N2+b4sY1FREVRUVJCQkAAVFRWpNrW1q8I3rVq1Chs2bMD69evRvn17aGlpYfr06TV+PnJyctCmTRuF+QAwf/58zJ8/X26esbEx7t27J5VWfW9sbKywzZkzZ2LGjBnIzc1FkyZNkJ2djXnz5qFFixZS5c6cOQMPDw+sW7cOY8aMkWmnejn55R8NyqTRKkIGKyYiUkeIhIo7GPX/UeereZOo86dOnYKbmxu3rVBTUxPr16/Hl19+KfOPzGB8/LHsqeEWFjqvrKejoyG3ro6O8i2NsbGxcHFxweTJk7m0Fy0XIpEIlpaWOHnyJHr16lXrdlu3bo3Y2FiMHTtWqq/ql4JIJIJIJJKqk5CQgIcPH2LFihUwNzcHALlbvUeOHImFCxciISEBv//+u5TlxNHREXl5eVBVVeUsOrXh4cOHSEtLQ1BQELp37w6gygflRWxtbfHLL7+gtLQUAoEAAHDhwgWpMo6Ojjhw4AAsLS2hqvr6X9lTpkzB8uXLcfDgQXh6ekJfXx99+/bFli1bMGPGDCmlJS8vDyEhIRgzZgx4PB4cHBzQpk0brFmzBsOHD5exAjx58kSun5C1tTWEQiFOnjyJL7/8Uia/+mVY/XIFwPlX1QYfHx+EhISgWbNm4PP5GDBgAJfn6OiIlJQUGd+zmujQoQPy8vLw+PFjTp6EhARIJBKsWbOGG/eL/m41tVVZWYn8/Hxu/l8mNjYWgwYNwqhRowBU/Zi4fv16jYqOqanpK59RTRYhZ2dnLFiwAOXl5dwPmqioKNja2nJjVgSPx4OpqSkA4Ndff4W5ubnUmXfR0dH47LPP8OOPP2LSpEly27h69SrU1NRkLEVKpV4X2j4AuDVGvZVEBpvooqE/5xvEn5dBrdbkUPjlp69uSAElJSVkZ2dHAMjJyUnhGj6jcVHTuvf7jKurK/n5+UmlWVhY0Lp166TS8IKvyYYNG0gsFtPx48cpLS2NFi5cSGKxmOzt7bnye/bsIQ0NDdqwYQNdv36dEhISaOPGjXLbq+bgwYOkpqZGW7ZsoevXr9OaNWtIRUVFahfOy+Tn55O6ujp9++23lJGRQYcOHSIbGxuZXVlERF27diV7e3sSiURSu6gkEgl169aN7O3tKTIykrKysig2Npbmz59PFy5cIKL/7Rp7kcrKStLX16dRo0bRjRs36OTJk9SpUyepsRUUFJCenh6NGTOGUlJS6Pjx49SqVSspf5M7d+6QoaEhDR06lM6fP0/p6el0/PhxGjduHFVUVMgdtzzfGyKiOXPmUPv27UkikRAR0fXr18nAwIC6d+9OZ86coZycHDp27Bi1a9eOrK2tpXxN4uPjSSQSkYuLCx09epQyMjIoOTmZfvjhB+rRo4fCOVi0aBE1adKE9u7dS+np6RQXF0c7d+4kIqKysjIyNzcnLy8vun79Oh05coRsbW3l7hqTx40bNwgA2dnZ0YQJE6TykpOTSSgU0pQpU+jSpUt0/fp1+vPPP6V2J75MRUUFGRoa0l9//cWlJSUlEQBav349ZWRkUHBwMJmZmUk9X0Uy+vj4kKWlJR04cIAyMzMpPj6eli1bRkeOHCEiohkzZpC5uTnFxsZSSkoKffnllyQWi2nQoEEKZXxTnjx5Qk2bNqXRo0fT1atXaf/+/aSpqcn5uxER/fHHHzK7yFauXEmXL1+mq1ev0vfff09qampS/6OnTp0iTU1NmjdvHuXm5nLXy/5KgYGBUr5dL6MMHyGmCL2gCNWXk/TVq1dpwYIFUtsTGY2bxqQIlZSU0Lhx40hHR4d0dXXJ19eX/P39ZRSFbdu2ka2tLampqZGJiQlNmzZNbnsv8jrb50NDQ8nS0pIEAgE5Oztz28hfVoS2bNlCAGjMmDEybRQWFtK0adPI1NSU1NTUyNzcnHx8fCgnJ4eI5CtCRERRUVHUunVrEggEZGdnR9HR0TJji42NJTs7O1JXVycnJycKDQ0lAPTff/9xZa5fv06enp6kq6tLQqGQWrVqRdOnT+cUmpdRpAjl5OSQqqoqhYWFcWnZ2dk0duxYatq0KTe2adOm0YMHD2TaTUtLozFjxpCpqSmpq6uThYUFeXt71+hEXVlZST/88ANZWFiQmpoaffTRR7Rs2TIu/+zZs9S+fXvS0NCg7t27U3h4eK0VISKizp07EwA6deqUTN758+epb9++pK2tTVpaWmRnZ0dLly5V2BZRlbI4YsQIqbS1a9eSiYkJCYVCcnNzo+Dg4FopQmVlZRQQEECWlpbc59zT05MuX75MREQPHz6kQYMGkba2NhkZGdHChQtpzJgxb1URIqpSErt160YCgYDMzMxoxYoVUvnVzt8v0qtXL9LR0SENDQ3q0qWL1JEZRERjx46V2hRUfbm6ukqVs7W1pV9//VWhbMpQhHhEr+kF94FSWFgIHR0dFOithJgvRALvDgbN+Bp3CithJlbB7XkWdWpr1qxZmD59+vtl5mO8d5SUlCArKwvNmzdnjvKMGgkJCcH48eNRUFBQa38qRv2Rl5eHtm3bIjExkTs+gVE/HDt2DLNmzcLly5cVLvPW9F3Jvb8LCiAWi+tNrkbrI/SmxMXFYdSoUcjMzMT58+dx/vx5bo2fwWAwaktwcDBatGgBMzMzJCcnY+7cuRg2bBhTgpSEsbExfv75Z+Tk5DBFqJ4pLi7G7t2738jX7W3wfknzDnngHwSvBSoQGIgAfF3rehUVFVi6dCmWLFmCysqqXWZZWVm4fPkyOnXq9JakZTAYDZW8vDwEBAQgLy8PJiYm8PLywtKlS5UtVqNm8ODByhahQTJ06FBliyCXRqsIlTrcwN/lgBnfrNZ1MjMzMWrUKMTFxXFpLi4u+OWXX9C8efO3ISaDwWjgzJkzR+aUYgaD8e5gByrWAiJCcHAwHBwcOCVIRUUFixcvxpkzZ5gSxGAwGAzGB0qjtQjVlsePH8PX1xdhYWFcWosWLRASEoKPP/5YiZIxGAwGg8F4Uxq9RejlA9heJjU1FeHh4dz9uHHjkJSUxJQgxmvRyDZpMhgMRp1Qxndko1aEWrVqhSVLltRYxsXFBQsWLICuri5+++037N69+5XKE4PxMtUnuL5P8XUYDAbjfaM6vMjLYUneJo32HKGUv4HWfauG3mz5Te4coZgREnz00UdSk1BeXo78/HyYmdXesZrBeJnc3Fw8efIERkZG0NTUZCFXGAwG4wUkEgnu3r0LNTU1fPTRRzLfkewcobcNEYrjQ9B2yQ8IDAzE3LlzuSw1NTWmBDHemOqAhi9GaWcwGAzG/+Dz+XKVoLdJo1WExMGfAZnJwFf2qCx6CByYiyfpJwAACxcuRL9+/eoUZZnBeBU8Hg8mJiYwMjKSG2GbwWAwGjvq6uoyQX3fNu+FIrR582asWrUKeXl5sLe3x6ZNm9C5c2eF5cPDw/Hdd98hOzsb1tbW+PHHH9G/f/869SmK6AE8uI5IyzzkbxoNPL3P5X355ZewtbV97fEwGDWhoqLyTte/GQwGg6EYpTtLh4WFYebMmQgMDERiYiLs7e3h5uamcPng3Llz8Pb2xoQJE3Dp0iUMHjwYgwcPxtWrV+vUbwlVYHrqHri7u0Py/0oQX1MPhw8fxtatW6GpqfnGY2MwGAwGg/F+o3Rn6S5duqBTp0746aefAFQ5S5mbm2PatGnw9/eXKT98+HAUFxfjyJEjXNrHH38MBwcHbNu27ZX9VTtbteY3Rark3v8yWvSA8fDVyF3GwmQwGAwGg/G+8bacpZVqESorK0NCQgL69OnDpfH5fPTp00cqjMWLxMXFSZUHADc3N4XlFVGtBAkEAuh8tgjw2gUVkVHdBsBgMBgMBuODRqk+Qg8ePEBlZSWaNm0qld60aVP8999/cuvk5eXJLZ+Xlye3fGlpKUpLS7n7goIC7u8WAjMUjtuEh1otgLIiSEpUUFhY+LrDYTAYDAaD8Zaofj/X90LWe+Es/TZZvnw5Fi9eLDcvs/QOsP1z7j4XgM7370gwBoPBYDAYdebhw4fQ0dGpt/aUqggZGBhARUUF9+7dk0q/d+8ed+bKyxgbG9ep/Lx58zBz5kzu/smTJ7CwsEBOTk69PkhG3SksLIS5uTlu3bpVr+u9jNeDzcf7A5uL9wc2F+8PBQUF+Oijj6Cnp1ev7SpVEVJXV4eTkxNOnjyJwYMHA6hylj558iSmTp0qt46zszNOnjyJ6dOnc2lRUVFwdnaWW14gEEAgEMik6+josA/1e4JYLGZz8R7B5uP9gc3F+wObi/eH+j5nSOlLYzNnzsTYsWPRsWNHdO7cGevXr0dxcTHGjx8PABgzZgzMzMywfPlyAICfnx9cXV2xZs0aDBgwAPv378fFixexY8cOZQ6DwWAwGAzGB4jSFaHhw4fj/v37CAgIQF5eHhwcHHD8+HHOITonJ0dK+3NxcUFoaCgWLlyI+fPnw9raGn/++SfatWunrCEwGAwGg8H4QFG6IgQAU6dOVbgUFh0dLZPm5eUFLy+v1+pLIBAgMDBQ7nIZ493C5uL9gs3H+wObi/cHNhfvD29rLpR+oCKDwWAwGAyGslB6iA0Gg8FgMBgMZcEUIQaDwWAwGI0WpggxGAwGg8FotDBFiMFgMBgMRqOlQSpCmzdvhqWlJTQ0NNClSxecP3++xvLh4eFo1aoVNDQ00L59e0RERLwjSRs+dZmLoKAgdO/eHU2aNEGTJk3Qp0+fV84do27U9X+jmv3794PH43EHnzLenLrOxZMnTzBlyhSYmJhAIBDAxsaGfVfVE3Wdi/Xr18PW1hZCoRDm5uaYMWMGSkpK3pG0DZd//vkHHh4eMDU1BY/Hw59//vnKOtHR0XB0dIRAIICVlRX27NlT946pgbF//35SV1enXbt20bVr12jixImkq6tL9+7dk1s+NjaWVFRUaOXKlZSSkkILFy4kNTU1unLlyjuWvOFR17kYOXIkbd68mS5dukSpqak0btw40tHRodu3b79jyRsmdZ2ParKyssjMzIy6d+9OgwYNejfCNnDqOhelpaXUsWNH6t+/P509e5aysrIoOjqakpKS3rHkDY+6zkVISAgJBAIKCQmhrKwsioyMJBMTE5oxY8Y7lrzhERERQQsWLKA//viDANDBgwdrLJ+ZmUmampo0c+ZMSklJoU2bNpGKigodP368Tv02OEWoc+fONGXKFO6+srKSTE1Nafny5XLLDxs2jAYMGCCV1qVLF/rqq6/eqpyNgbrOxctUVFSQSCSivXv3vi0RGxWvMx8VFRXk4uJCO3fupLFjxzJFqJ6o61xs3bqVWrRoQWVlZe9KxEZDXediypQp9Mknn0ilzZw5k7p27fpW5Wxs1EYRmjNnDrVt21Yqbfjw4eTm5lanvhrU0lhZWRkSEhLQp08fLo3P56NPnz6Ii4uTWycuLk6qPAC4ubkpLM+oHa8zFy/z7NkzlJeX13uAvcbI687H999/DyMjI0yYMOFdiNkoeJ25OHz4MJydnTFlyhQ0bdoU7dq1w7Jly1BZWfmuxG6QvM5cuLi4ICEhgVs+y8zMREREBPr37/9OZGb8j/p6f78XJ0vXFw8ePEBlZSUXnqOapk2b4r///pNbJy8vT275vLy8tyZnY+B15uJl5s6dC1NTU5kPOqPuvM58nD17Fj///DOSkpLegYSNh9eZi8zMTJw6dQo+Pj6IiIhAeno6Jk+ejPLycgQGBr4LsRskrzMXI0eOxIMHD9CtWzcQESoqKvD1119j/vz570Jkxgsoen8XFhbi+fPnEAqFtWqnQVmEGA2HFStWYP/+/Th48CA0NDSULU6j4+nTpxg9ejSCgoJgYGCgbHEaPRKJBEZGRtixYwecnJwwfPhwLFiwANu2bVO2aI2O6OhoLFu2DFu2bEFiYiL++OMPHD16FEuWLFG2aIzXpEFZhAwMDKCiooJ79+5Jpd+7dw/GxsZy6xgbG9epPKN2vM5cVLN69WqsWLECJ06cgJ2d3dsUs9FQ1/nIyMhAdnY2PDw8uDSJRAIAUFVVRVpaGlq2bPl2hW6gvM7/homJCdTU1KCiosKltW7dGnl5eSgrK4O6uvpblbmh8jpz8d1332H06NH48ssvAQDt27dHcXExJk2ahAULFkgFCWe8XRS9v8Vica2tQUADswipq6vDyckJJ0+e5NIkEglOnjwJZ2dnuXWcnZ2lygNAVFSUwvKM2vE6cwEAK1euxJIlS3D8+HF07NjxXYjaKKjrfLRq1QpXrlxBUlISdw0cOBC9evVCUlISzM3N36X4DYrX+d/o2rUr0tPTOWUUAK5fvw4TExOmBL0BrzMXz549k1F2qhVUYqE73yn19v6umx/3+8/+/ftJIBDQnj17KCUlhSZNmkS6urqUl5dHRESjR48mf39/rnxsbCypqqrS6tWrKTU1lQIDA9n2+XqirnOxYsUKUldXp99//51yc3O56+nTp8oaQoOirvPxMmzXWP1R17nIyckhkUhEU6dOpbS0NDpy5AgZGRnRDz/8oKwhNBjqOheBgYEkEono119/pczMTPr777+pZcuWNGzYMGUNocHw9OlTunTpEl26dIkA0Nq1a+nSpUt08+ZNIiLy9/en0aNHc+Wrt89/++23lJqaSps3b2bb56vZtGkTffTRR6Surk6dO3emf//9l8tzdXWlsWPHSpX/7bffyMbGhtTV1alt27Z09OjRdyxxw6Uuc2FhYUEAZK7AwMB3L3gDpa7/Gy/CFKH6pa5zce7cOerSpQsJBAJq0aIFLV26lCoqKt6x1A2TusxFeXk5LVq0iFq2bEkaGhpkbm5OkydPpsePH797wRsYp0+flvsOqH7+Y8eOJVdXV5k6Dg4OpK6uTi1atKDdu3fXuV8eEbPlMRgMBoPBaJw0KB8hBoPBYDAYjLrAFCEGg8FgMBiNFqYIMRgMBoPBaLQwRYjBYDAYDEajhSlCDAaDwWAwGi1MEWIwGAwGg9FoYYoQg8FgMBiMRgtThBgMhhR79uyBrq6ussV4bXg8Hv78888ay4wbNw6DBw9+J/IwGIz3G6YIMRgNkHHjxoHH48lc6enpyhYNe/bs4eTh8/lo1qwZxo8fj/z8/HppPzc3F59++ikAIDs7GzweD0lJSVJlNmzYgD179tRLf4pYtGgRN04VFRWYm5tj0qRJePToUZ3aYUobg/F2aVDR5xkMxv9wd3fH7t27pdIMDQ2VJI00YrEYaWlpkEgkSE5Oxvjx43H37l1ERka+cduKooa/iI6Ozhv3Uxvatm2LEydOoLKyEqmpqfjiiy9QUFCAsLCwd9I/g8F4NcwixGA0UAQCAYyNjaUuFRUVrF27Fu3bt4eWlhbMzc0xefJkFBUVKWwnOTkZvXr1gkgkglgshpOTEy5evMjlnz17Ft27d4dQKIS5uTm++eYbFBcX1ygbj8eDsbExTE1N8emnn+Kbb77BiRMn8Pz5c0gkEnz//fdo1qwZBAIBHBwccPz4ca5uWVkZpk6dChMTE2hoaMDCwgLLly+Xart6aax58+YAgA4dOoDH46Fnz54ApK0sO3bsgKmpqVRkdwAYNGgQvvjiC+7+0KFDcHR0hIaGBlq0aIHFixejoqKixnGqqqrC2NgYZmZm6NOnD7y8vBAVFcXlV1ZWYsKECWjevDmEQiFsbW2xYcMGLn/RokXYu3cvDh06xFmXoqOjAQC3bt3CsGHDoKurCz09PQwaNAjZ2dk1ysNgMGRhihCD0cjg8/nYuHEjrl27hr179+LUqVOYM2eOwvI+Pj5o1qwZLly4gISEBPj7+0NNTQ0AkJGRAXd3dwwZMgSXL19GWFgYzp49i6lTp9ZJJqFQCIlEgoqKCmzYsAFr1qzB6tWrcfnyZbi5uWHgwIG4ceMGAGDjxo04fPgwfvvtN6SlpSEkJASWlpZy2z1//jwA4MSJE8jNzcUff/whU8bLywsPHz7E6dOnubRHjx7h+PHj8PHxAQDExMRgzJgx8PPzQ0pKCrZv3449e/Zg6dKltR5jdnY2IiMjoa6uzqVJJBI0a9YM4eHhSElJQUBAAObPn4/ffvsNADB79mwMGzYM7u7uyM3NRW5uLlxcXFBeXg43NzeIRCLExMQgNjYW2tracHd3R1lZWa1lYjAYQIOMPs9gNHbGjh1LKioqpKWlxV1Dhw6VWzY8PJz09fW5+927d5OOjg53LxKJaM+ePXLrTpgwgSZNmiSVFhMTQ3w+n54/fy63zsvtX79+nWxsbKhjx45ERGRqakpLly6VqtOpUyeaPHkyERFNmzaNPvnkE5JIJHLbB0AHDx4kIqKsrCwCQJcuXZIqM3bsWBo0aBB3P2jQIPriiy+4++3bt5OpqSlVVlYSEVHv3r1p2bJlUm3s27ePTExM5MpARBQYGEh8Pp+0tLRIQ0ODi6S9du1ahXWIiKZMmUJDhgxRKGt137a2tlLPoLS0lIRCIUVGRtbYPoPBkIb5CDEYDZRevXph69at3L2WlhaAKuvI8uXL8d9//6GwsBAVFRUoKSnBs2fPoKmpKdPOzJkz8eWXX2Lfvn3c8k7Lli0BVC2bXb58GSEhIVx5IoJEIkFWVhZat24tV7aCggJoa2tDIpGgpKQE3bp1w86dO1FYWIi7d++ia9euUuW7du2K5ORkAFXLWn379oWtrS3c3d3x2WefoV+/fm/0rHx8fDBx4kRs2bIFAoEAISEhGDFiBPh8PjfO2NhYKQtQZWVljc8NAGxtbXH48GGUlJTgl19+QVJSEqZNmyZVZvPmzdi1axdycnLw/PlzlJWVwcHBoUZ5k5OTkZ6eDpFIJJVeUlKCjIyM13gCDEbjhSlCDEYDRUtLC1ZWVlJp2dnZ+Oyzz+Dr64ulS5dCT08PZ8+exYQJE1BWVib3hb5o0SKMHDkSR48exbFjxxAYGIj9+/fD09MTRUVF+Oqrr/DNN9/I1Pvoo48UyiYSiZCYmAg+nw8TExMIhUIAQGFh4SvH5ejoiKysLBw7dgwnTpzAsGHD0KdPH/z++++vrKsIDw8PEBGOHj2KTp06ISYmBuvWrePyi4qKsHjxYnz++ecydTU0NBS2q66uzs3BihUrMGDAACxevBhLliwBAOzfvx+zZ8/GmjVr4OzsDJFIhFWrViE+Pr5GeYuKiuDk5CSlgFbzvjjEMxgfCkwRYjAaEQkJCZBIJFizZg1n7aj2R6kJGxsb2NjYYMaMGfD29sbu3bvh6ekJR0dHpKSkyChcr4LP58utIxaLYWpqitjYWLi6unLpsbGx6Ny5s1S54cOHY/jw4Rg6dCjc3d3x6NEj6OnpSbVX7Y9TWVlZozwaGhr4/PPPERISgvT0dNja2sLR0ZHLd3R0RFpaWp3H+TILFy7EJ598Al9fX26cLi4umDx5MlfmZYuOurq6jPyOjo4ICwuDkZERxGLxG8nEYDR2mLM0g9GIsLKyQnl5OTZt2oTMzEzs27cP27ZtU1j++fPnmDp1KqKjo3Hz5k3ExsbiwoUL3JLX3Llzce7cOUydOhVJSUm4ceMGDh06VGdn6Rf59ttv8eOPPyIsLAxpaWnw9/dHUlIS/Pz8AABr167Fr7/+iv/++w/Xr19HeHg4jI2N5R4CaWRkBKFQiOPHj+PevXsoKChQ2K+Pjw+OHj2KXbt2cU7S1QQEBCA4OBiLFy/GtWvXkJqaiv3792PhwoV1GpuzszPs7OywbNkyAIC1tTUuXryIyMhIXL9+Hd999x0uXLggVcfS0hKXL19GWloaHjx4gPLycvj4+MDAwACDBg1CTEwMsrKyEB0djW+++Qa3b9+uk0wMRqNH2U5KDAaj/pHnYFvN2rVrycTEhIRCIbm5uVFwcDABoMePHxORtDNzaWkpjRgxgszNzUldXZ1MTU1p6tSpUo7Q58+fp759+5K2tjZpaWmRnZ2djLPzi7zsLP0ylZWVtGjRIjIzMyM1NTWyt7enY8eOcfk7duwgBwcH0tLSIrFYTL1796bExEQuHy84SxMRBQUFkbm5OfH5fHJ1dVX4fCorK8nExIQAUEZGhoxcx48fJxcXFxIKhSQWi6lz5860Y8cOheMIDAwke3t7mfRff/2VBAIB5eTkUElJCY0bN450dHRIV1eXfH19yd/fX6pefn4+93wB0OnTp4mIKDc3l8aMGUMGBgYkEAioRYsWNHHiRCooKFAoE4PBkIVHRKRcVYzBYDAYDAZDObClMQaDwWAwGI0WpggxGAwGg8FotDBFiMFgMBgMRqOFKUIMBoPBYDAaLUwRYjAYDAaD0WhhihCDwWAwGIxGC1OEGAwGg8FgNFqYIsRgMBgMBqPRwhQhBoPBYDAYjRamCDEYDAaDwWi0MEWIwWAwGAxGo4UpQgwGg8FgMBot/wcO5GdvHcU9JQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "on4RUvISOcMC" + }, + "source": [ + "#### 2.2. PCA: explained variance plot\n", + "* Apply the PCA to the train part of the data. Build the explaided variance plot." + ] + }, + { + "cell_type": "code", + "execution_count": 180, + "metadata": { + "nbgrader": { + "grade": true, + "grade_id": "cell-c6c614740bce090e", + "locked": false, + "points": 10, + "schema_version": 2, + "solution": true + }, + "id": "nM8nDQcROcMC" + }, + "outputs": [], + "source": [ + "from sklearn.decomposition import PCA" + ] + }, + { + "cell_type": "code", + "source": [ + "pca = PCA()\n", + "X_train_pd_scaled_pca = pca.fit_transform(X_train_pd_scaled)" + ], + "metadata": { + "id": "s4j3UaRsrLc4" + }, + "execution_count": 181, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "exp_var_pca = pca.explained_variance_ratio_\n", + "#\n", + "# Cumulative sum of eigenvalues; This will be used to create step plot\n", + "# for visualizing the variance explained by each principal component.\n", + "#\n", + "cum_sum_eigenvalues = np.cumsum(exp_var_pca)\n", + "#\n", + "# Create the visualization plot\n", + "#\n", + "plt.bar(range(0,len(exp_var_pca)), exp_var_pca, alpha=0.5, align='center', label='Individual explained variance')\n", + "plt.step(range(0,len(cum_sum_eigenvalues)), cum_sum_eigenvalues, where='mid',label='Cumulative explained variance')\n", + "plt.axhline(y=0.95, c='red')\n", + "\n", + "plt.ylabel('Explained variance ratio')\n", + "plt.xlabel('Principal component index')\n", + "\n", + "plt.legend(loc='best')\n", + "plt.tight_layout()\n", + "plt.grid(True)\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 487 + }, + "id": "npI5EUNskFZy", + "outputId": "c9e3821d-c79b-4c53-b419-39bbbedf05a4" + }, + "execution_count": 182, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhyElEQVR4nO3de1yO9/8H8Nfd+SxExVI5M3KKFjNjyGFhR4emGPYdGhZz+A45bLKhmc2XYWoHDZvDbAxJmUPOMaZCIrPSMFKpbvf9+f3h151bp/uq++6uy+v5ePRY93Vfh/f1vq9ur11HhRBCgIiIiIhqPBNjF0BERERE+sFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTZsYuoKqp1Wr8/fffsLe3h0KhMHY5RERERGUSQuD+/fto0KABTEzK3if31AW7v//+G25ubsYug4iIiEiS69ev45lnnilznKcu2Nnb2wN41BwHBwcjVwMolUrs3bsXffv2hbm5ubHLMTr2Qxv7UYS90MZ+FGEvtLEfReTSi6ysLLi5uWkyTFmeumBXePjVwcGh2gQ7GxsbODg41OiNTl/YD23sRxH2Qhv7UYS90MZ+FJFbL3Q5hYwXTxARERHJBIMdERERkUww2BERERHJBIMdERERkUww2BERERHJBIMdERERkUww2BERERHJBIMdERERkUww2BERERHJBIMdERERkUww2BERERHJBIMdERERkUwYNdj9/vvv8Pf3R4MGDaBQKLB9+/Zyp4mLi0PHjh1haWmJpk2bIjIy0uB1EhEREdUERg12OTk5aNeuHVauXKnT+KmpqRg4cCB69uyJM2fOYMqUKRg7diz27Nlj4EqJiIiIqj8zYy68f//+6N+/v87jr169Gp6enli2bBkAoFWrVjh06BA+++wz+Pn5GapMIiIi0hMhBB4oVVWyLKXyIfJVQG7BQ5gLheTprc1NoVBIn86YjBrspIqPj0fv3r21hvn5+WHKlCmlTpOfn4/8/HzN66ysLACAUqmEUqk0SJ1SFNZQHWqpDtgPbexHEfZCG/tRpKCgAPkq4F5OHszNHxq7HKMrDDPVsR9CAMPXnUBixv0qXKoZph/fX6Epz87pBRsL40clKX/nxq9WgoyMDDg7O2sNc3Z2RlZWFh48eABra+ti04SFhWH+/PnFhu/duxc2NjYGq1Wq6OhoY5dQrbAf2tiPIuyFturaDyGAAnXVLOvz86a4kWsGHP+9ahZYI7Af+rBnz15Ymhq7CiA3N1fncWtUsKuIWbNmISQkRPM6KysLbm5u6Nu3LxwcHIxY2SNKpRLR0dHo06cPzM3NjV2O0bEf2tiPIuyFtor0o6oOgRlnrwzVJK1c7PHD2M4w9FFOpfIh9u/fj169esHcXHrkqS6HYguPNuqiRgU7FxcX3Lx5U2vYzZs34eDgUOLeOgCwtLSEpaVlseHm5ubV6h+H6laPsbEf2tiPInLrRUXDllIokK969F/ocO6QEMAbq4/iQrru/0DUJA1tBHaGvAQLC/lsGxWlVCqxZ89e+Pn1rbZ/K1UVmJRKJSxNgVq2VtW2F7qQUnuNCna+vr7YtWuX1rDo6Gj4+voaqSIioooTQuD11fE4de3fCs6h4ucOVYXWrg748V3fKtgro0Rs9F7YWppVaK+M3CgVApamgI0F+/E0Muonnp2djcuXL2tep6am4syZM6hTpw4aNWqEWbNm4caNG/j2228BAO+++y6+/PJLTJ8+HW+//Tb279+PzZs3Y+fOncZaBSKSoao6ZJlboKpEqKuYqgpbQBXulVGIKlkfoprAqMHu5MmT6Nmzp+Z14blwQUFBiIyMRHp6OtLS0jTve3p6YufOnXj//ffx+eef45lnnsG6det4qxMi0pvK70WrmJOze8PGQveztCt6uK26nDNERIZh1GD34osvQghR6vslPVXixRdfREJCggGrIqKn2QNl1e9F83avjbq2FpICFw+3EVFJ+G1ARDWCEKJSNxrVVW5B0SFYqXvRKop70YhIXxjsiKjaE0Jg2LoTOJ1WtRcL2FiYVoubkxIR6cqoz4olItLFA6UKp9PuVukyvd1rw9q8GtyZlIhIAv6vKBHVKEdn9ICDrZXBl8PDo0RUEzHYEVGNYs3Do0REpeK3IxFVWFXe742IiMrHYEdEFWKs+70REVHpePEEEVWIMe735mkveEEDEVEZuMeOiCqtKu73Vvg8UF7QQERUOgY7Iqq0qrjfG58HSkRUPh6KJSIiIpKJp3ePXU4OYFoNztVRKmGal/eoHgkP8pYt9kNbde5HwUNYF+Q9+j0nB1Aa+OukOvfCGNiPIuyFNvajiFx6kZOj86gKIYQwYCnVTlZWFmrVqoV7AByMXQwRERFRObIA1AJw7949ODiUnV54KJaIiIhIJp7eQ7F//w2Uk3qrglKpxJ49e+Dn5wfzmrybWE/YD21S+5Fb8BCdFu6rgsqKdGzkiO/H+hj8alVuG9rYjyLshTb2o4hsepGVBTRooNOoT2+ws7V99GNsSiVUVlaPaqnJG52+sB/apPbD/CEeWDx6jmpV3IIEqMJnqnLb0MZ+FGEvtLEfReTSC5XuT995eoMdkcxVxS1IiIioeuE5dkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywZtcEVUBIQQeKHW/wWQhpfIh8lWPnihhLsq/CXBugfRlEBGRfDDYERmYEAKvr47HqWv/VnAOZph+fL9eayIiInnioVgiA3ugVFUi1FWMt3ttWJsb/nFiRERUvXCPHVEVkvr81kcPsN4LP7++kh5gXWXPbyUiomqFwY6oCkl9fqtSIWBpCthYmMHcnH+uRERUNh6KJSIiIpIJBjsiIiIimWCwIyIiIpIJBjsiIiIimWCwIyIiIpIJBjsiIiIimWCwIyIiIpIJBjsiIiIimWCwIyIiIpIJBjsiIiIimWCwIyIiIpIJBjsiIiIimWCwIyIiIpIJBjsiIiIimTAzdgFExiKEwAOlyuDLyS0w/DKIiIgABjt6Sgkh8PrqeJy69q+xSyEiItIbHoqlp9IDparKQ523e21Ym5tW6TKJiOjpwj129NQ7Obs3bCwMH7iszU2hUCgMvhwiInp6MdjRU8/GwhQ2FvxTICKimo+HYomIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkwszYBRA9TgiBfBWQW/AQ5kJhsOXkFqgMNm8iIiJjYbCjakMIgWHrTuB0mhmmH99v7HKIiIhqHB6KpWrjgVKF02l3q3SZ3u61YW1uWqXLJCIiMhSj77FbuXIllixZgoyMDLRr1w5ffPEFunTpUur4y5cvx6pVq5CWlgYnJye8/vrrCAsLg5WVVRVWTYZ2dEYPONga/jO1NjeFQmG4Q75ERERVyajBbtOmTQgJCcHq1avh4+OD5cuXw8/PD8nJyahfv36x8aOiojBz5kysX78eXbt2xcWLFzFq1CgoFAqEh4cbYQ3IUKwtTGFjYfT/7yAiIqpRjHooNjw8HOPGjcPo0aPRunVrrF69GjY2Nli/fn2J4x85cgTdunXDiBEj4OHhgb59+2L48OE4fvx4FVdOREREVP0YLdgVFBTg1KlT6N27d1ExJibo3bs34uPjS5yma9euOHXqlCbIXblyBbt27cKAAQOqpGYiIiKi6sxox7pu3boFlUoFZ2dnreHOzs5ISkoqcZoRI0bg1q1beP755yGEwMOHD/Huu+/iv//9b6nLyc/PR35+vuZ1VlYWAECpVEKpVOphTSqnsIbqUIuxKZUPtX5nT7h9PI690MZ+FGEvtLEfReTSCyn116iTmOLi4rBo0SL873//g4+PDy5fvozJkydj4cKFmDNnTonThIWFYf78+cWG7927FzY2NoYuWWfR0dHGLsHo8lVA4Sa5f/9+WPJiVQ1uH0XYC23sRxH2Qhv7UaSm9yI3N1fncRVCCGHAWkpVUFAAGxsb/PTTTxgyZIhmeFBQEO7evYuff/652DTdu3fHc889hyVLlmiGff/993jnnXeQnZ0NE5PiR5ZL2mPn5uaGW7duwcHBQb8rVQFKpRLR0dHo06cPzM3NjV2OUeUWPES7hY/uX3dy5guoVQVXxVZ33D6KsBfa2I8i7IU29qOIXHqRlZUFJycn3Lt3r9zsYrQ9dhYWFujUqRNiYmI0wU6tViMmJgbBwcElTpObm1ssvJmaPtqtU1o+tbS0hKWlZbHh5ubm1epDrm71GMPjT5owNzd76vvxOG4fRdgLbexHEfZCG/tRpKb3QkrtRj0UGxISgqCgIHh7e6NLly5Yvnw5cnJyMHr0aABAYGAgGjZsiLCwMACAv78/wsPD0aFDB82h2Dlz5sDf318T8IiIiIieVkYNdkOHDsU///yDuXPnIiMjA+3bt8fu3bs1F1SkpaVp7aGbPXs2FAoFZs+ejRs3bqBevXrw9/fHxx9/bKxVICIiIqo2jH7xRHBwcKmHXuPi4rRem5mZITQ0FKGhoVVQGREREVHNwmfFEhEREckEgx0RERGRTDDYEREREckEgx0RERGRTDDYEREREckEgx0RERGRTDDYEREREckEgx0RERGRTDDYEREREckEgx0RERGRTBj9kWJU/Qkh8ECpMvhycgsMvwwiIiI5Y7CjMgkh8PrqeJy69q+xSyEiIqJy8FAslemBUlXloc7TXsDa3LRKl0lERCQH3GNHOjs5uzdsLAwbuJRKJWKj90KhUBh0OURERHLEYEc6s7EwhY2FYTcZpUKAmY6IiKhieCiWiIiISCYY7IiIiIhkokLH1VQqFbZv347ExEQAwLPPPotBgwbB1JQnvBMREREZi+Rgd/nyZQwcOBB//fUXWrRoAQAICwuDm5sbdu7ciSZNmui9SCIiIiIqn+RDsZMmTULjxo1x/fp1nD59GqdPn0ZaWho8PT0xadIkQ9RIRERERDqQvMfuwIEDOHr0KOrUqaMZVrduXSxevBjdunXTa3FEREREpDvJe+wsLS1x//79YsOzs7NhYWGhl6KIiIiISDrJwe7ll1/GO++8g2PHjkEIASEEjh49infffReDBg0yRI1EREREpAPJwW7FihVo0qQJfH19YWVlBSsrK3Tr1g1NmzbF559/bogaiYiIiEgHks+xc3R0xM8//4xLly4hKSkJANCqVSs0bdpU78URERERke4q/HyoZs2aoVmzZvqshYiIiIgqQadgFxISgoULF8LW1hYhISFljhseHq6XwoiIiIhIGp2CXUJCApRKpeZ3IiIiIqp+dAp2sbGxJf5ORERERNWH5Kti33777RLvY5eTk4O3335bL0URERERkXSSg90333yDBw8eFBv+4MEDfPvtt3opioiIiIik0/mq2KysLM0Nie/fvw8rKyvNeyqVCrt27UL9+vUNUiQRERERlU/nYOfo6AiFQgGFQoHmzZsXe1+hUGD+/Pl6LY6IiIiIdKdzsIuNjYUQAr169cKWLVtQp04dzXsWFhZwd3dHgwYNDFIkEREREZVP52DXo0cPAEBqairc3NxgYiL59DwiIiIiMiDJT55wd3cHAOTm5iItLQ0FBQVa73t5eemnMiIiIiKSRHKw++effzB69Gj89ttvJb6vUqkqXRQRERERSSf5eOqUKVNw9+5dHDt2DNbW1ti9eze++eYbNGvWDDt27DBEjURERESkA8l77Pbv34+ff/4Z3t7eMDExgbu7O/r06QMHBweEhYVh4MCBhqiTiIiIiMoheY9dTk6O5n51tWvXxj///AMAaNu2LU6fPq3f6oiIiIhIZ5KDXYsWLZCcnAwAaNeuHb766ivcuHEDq1evhqurq94LJCIiIiLdSD4UO3nyZKSnpwMAQkND0a9fP2zYsAEWFhaIjIzUd31EREREpCPJwe6tt97S/N6pUydcu3YNSUlJaNSoEZycnPRaHBERERHpTtKhWKVSiSZNmiAxMVEzzMbGBh07dmSoIyIiIjIyScHO3NwceXl5hqqFiIiIiCpB8qHYiRMn4pNPPsG6detgZiZ5ctITIQQeKA1/M+jcAt5wmoiIqKaQnMxOnDiBmJgY7N27F23btoWtra3W+1u3btVbcVQyIQReXx2PU9f+NXYpREREVI1IDnaOjo547bXXDFEL6eiBUlXloc7bvTaszU2rdJlEREQkjeRgFxERYYg6qIJOzu4NGwvDBy5rc1MoFAqDL4eIiIgqjifJ1XA2FqawseDHSERERBV48gQRERERVU8MdkREREQywWBHREREJBOVCna8WTERERFR9SE52KnVaixcuBANGzaEnZ0drly5AgCYM2cOvv76a70XSERERES6kRzsPvroI0RGRuLTTz+FhYWFZnibNm2wbt06vRZHRERERLqTHOy+/fZbrFmzBgEBATA1Lbp/Wrt27ZCUlKTX4oiIiIhId5KD3Y0bN9C0adNiw9VqNZRKpV6KIiIiIiLpJAe71q1b4+DBg8WG//TTT+jQoYNeiiIiIiIi6SQ/smDu3LkICgrCjRs3oFarsXXrViQnJ+Pbb7/Fr7/+aogaiYiIiEgHkvfYDR48GL/88gv27dsHW1tbzJ07F4mJifjll1/Qp08fQ9RIRERERDqo0ENGu3fvjujoaH3XQkRERESVIHmP3YkTJ3Ds2LFiw48dO4aTJ0/qpSgiIiIikk5ysJs4cSKuX79ebPiNGzcwceJEvRRFRERERNJJDnYXLlxAx44diw3v0KEDLly4oJeiiIiIiEg6ycHO0tISN2/eLDY8PT0dZmYVOmWPiIiIiPRAcrDr27cvZs2ahXv37mmG3b17F//97395VSwRERGREUkOdkuXLsX169fh7u6Onj17omfPnvD09ERGRgaWLVsmuYCVK1fCw8MDVlZW8PHxwfHjx8sc/+7du5g4cSJcXV1haWmJ5s2bY9euXZKXS0RERCQ3ko+dNmzYEH/88Qc2bNiAs2fPwtraGqNHj8bw4cNhbm4uaV6bNm1CSEgIVq9eDR8fHyxfvhx+fn5ITk5G/fr1i41fUFCAPn36oH79+vjpp5/QsGFDXLt2DY6OjlJXg4iIiEh2KnRSnK2tLd55551KLzw8PBzjxo3D6NGjAQCrV6/Gzp07sX79esycObPY+OvXr8edO3dw5MgRTYj08PCodB1EREREclChYHfp0iXExsYiMzMTarVa6725c+fqNI+CggKcOnUKs2bN0gwzMTFB7969ER8fX+I0O3bsgK+vLyZOnIiff/4Z9erVw4gRIzBjxgyYmpqWOE1+fj7y8/M1r7OysgAASqUSSqVSp1oNqbAGKbUolQ+1plcqhN7rMpaK9EPO2I8i7IU29qMIe6GN/Sgil15IqV8hhJCUCtauXYvx48fDyckJLi4uUCgURTNTKHD69Gmd5vP333+jYcOGOHLkCHx9fTXDp0+fjgMHDpR4E+SWLVvi6tWrCAgIwIQJE3D58mVMmDABkyZNQmhoaInLmTdvHubPn19seFRUFGxsbHSqtbrJVwHTjz/K5J92eQjLkjMtERERyUBubi5GjBiBe/fuwcHBocxxJQc7d3d3TJgwATNmzKhUkRUJds2bN0deXh5SU1M1e+jCw8OxZMkSpKenl7ickvbYubm54datW+U2pyoolUpER0ejT58+Op+jmFvwEO0W7gcAnJ3TCzYW8rnNTEX6IWfsRxH2Qhv7UYS90MZ+FJFLL7KysuDk5KRTsJOcCP7991+88cYbFS6ukJOTE0xNTYvdE+/mzZtwcXEpcRpXV1eYm5trHXZt1aoVMjIyUFBQAAsLi2LTWFpawtLSsthwc3PzavUhS6nHXBTtJX00nXyCXaHq9vkYG/tRhL3Qxn4UYS+0sR9FanovpNQu+XYnb7zxBvbu3St1smIsLCzQqVMnxMTEaIap1WrExMRo7cF7XLdu3XD58mWt8/ouXrwIV1fXEkMdERER0dNE8q6epk2bYs6cOTh69Cjatm1bLEVOmjRJ53mFhIQgKCgI3t7e6NKlC5YvX46cnBzNVbKBgYFo2LAhwsLCAADjx4/Hl19+icmTJ+O9997DpUuXsGjRIknLJCIiIpIrycFuzZo1sLOzw4EDB3DgwAGt9xQKhaSQNXToUPzzzz+YO3cuMjIy0L59e+zevRvOzs4AgLS0NJiYFO1UdHNzw549e/D+++/Dy8sLDRs2xOTJkyt9vh8RERGRHEgOdqmpqXotIDg4GMHBwSW+FxcXV2yYr68vjh49qtcaiIiIiORA8jl2RERERFQ9Vehyyr/++gs7duxAWloaCgoKtN4LDw/XS2FEREREJI3kYBcTE4NBgwahcePGSEpKQps2bXD16lUIIdCxY0dD1EhEREREOpB8KHbWrFmYNm0azp07BysrK2zZsgXXr19Hjx499HJ/OyIiIiKqGMnBLjExEYGBgQAAMzMzPHjwAHZ2dliwYAE++eQTvRdIRERERLqRHOxsbW0159W5uroiJSVF896tW7f0VxkRERERSSL5HLvnnnsOhw4dQqtWrTBgwABMnToV586dw9atW/Hcc88ZokYiIiIi0oHkYBceHo7s7GwAwPz585GdnY1NmzahWbNmvCKWiIiIyIgkB7vGjRtrfre1tcXq1av1WhARERERVQxvUExEREQkEzrtsatTpw4uXrwIJycn1K5dGwqFotRx79y5o7fiiIiIiEh3OgW7zz77DPb29gCA5cuXG7IeIiIiIqognYJdUFAQAODhw4dQKBTw8/ODs7OzQQsjIiIiImkknWNnZmaGd999F3l5eYaqh4iIiIgqSPLFE126dEFCQoIhaiEiIiKiSpB8u5MJEyZg6tSp+Ouvv9CpUyfY2tpqve/l5aW34oiIiIhId5KD3bBhwwAAkyZN0gxTKBQQQkChUEClUumvOiIiIiLSmeRgl5qaaog6iIiIiKiSJAc7d3d3Q9RBRERERJUkOdgVunDhAtLS0lBQUKA1fNCgQZUuioiIiIikkxzsrly5gldeeQXnzp3TnFsHQPM0Cp5jR0RERGQckm93MnnyZHh6eiIzMxM2Njb4888/8fvvv8Pb2xtxcXEGKJGIiIiIdCF5j118fDz2798PJycnmJiYwMTEBM8//zzCwsIwadIk3uOOiIiIyEgk77FTqVSa58Y6OTnh77//BvDooork5GT9VkdEREREOpO8x65NmzY4e/YsPD094ePjg08//RQWFhZYs2YNGjdubIgaiYiIiEgHkoPd7NmzkZOTAwBYsGABXn75ZXTv3h1169bFpk2b9F4gEREREelGcrDz8/PT/N60aVMkJSXhzp07qF27tubKWCIiIiKqepLPsfv+++81e+wK1alTh6GOiIiIyMgkB7v3338fzs7OGDFiBHbt2sX71hERERFVE5KDXXp6OjZu3AiFQoE333wTrq6umDhxIo4cOWKI+oiIiIhIR5LPsTMzM8PLL7+Ml19+Gbm5udi2bRuioqLQs2dPPPPMM0hJSTFEnbIkhEBuwUPkq4DcgocwF7odzs4t4F5SIiIiKq7Cz4oFABsbG/j5+eHff//FtWvXkJiYqK+6ngoPlCq0W7gfgBmmH99v7HKIiIiohqtQsCvcU7dhwwbExMTAzc0Nw4cPx08//aTv+mq0z6Ivlvm+UqWu1Py93WvD2ty0UvMgIiIi+ZAc7IYNG4Zff/0VNjY2ePPNNzFnzhz4+voaojbZMzNRYGIPD7g/uIxr1k0hFOWHtOBeTTW/W5ub8mpkIiIi0pAc7ExNTbF582b4+fnB1JR7iypDoVDA3NQElqaAuakJhKL8a1lsLCp19JyIiIhkTHJK2LBhgyHqICIiIqJKkny7EyIiIiKqnhjsiIiIiGSCwY6IiIhIJhjsiIiIiGRCp4snsrKydJ6hg4NDhYshIiIioorTKdg5OjrqfL80lYqPuyIiIiIyBp2CXWxsrOb3q1evYubMmRg1apTmxsTx8fH45ptvEBYWZpgqiYiIiKhcOgW7Hj16aH5fsGABwsPDMXz4cM2wQYMGoW3btlizZg2CgoL0XyURERERlUvyxRPx8fHw9vYuNtzb2xvHjx/XS1FEREREJJ3kYOfm5oa1a9cWG75u3Tq4ubnppSgiIiIikk7yI8U+++wzvPbaa/jtt9/g4+MDADh+/DguXbqELVu26L1AIiIiItKN5D12AwYMwMWLF+Hv7487d+7gzp078Pf3x8WLFzFgwABD1EhEREREOpC8xw54dDh20aJF+q6FiIiIiCqhQk+eOHjwIN566y107doVN27cAAB89913OHTokF6LIyIiIiLdSQ52W7ZsgZ+fH6ytrXH69Gnk5+cDAO7du8e9eERERERGJDnYffTRR1i9ejXWrl0Lc3NzzfBu3brh9OnTei2OiIiIiHQnOdglJyfjhRdeKDa8Vq1auHv3rj5qIiIiIqIKkBzsXFxccPny5WLDDx06hMaNG+ulKCIiIiKSTnKwGzduHCZPnoxjx45BoVDg77//xoYNGzBt2jSMHz/eEDUSERERkQ4k3+5k5syZUKvVeOmll5Cbm4sXXngBlpaWmDZtGt577z1D1EhEREREOpAc7BQKBT788EN88MEHuHz5MrKzs9G6dWvY2dkZoj4iIiIi0lGFblAMABYWFmjdurU+ayEiIiKiSpAc7HJycrB48WLExMQgMzMTarVa6/0rV67orTgiIiIi0p3kYDd27FgcOHAAI0eOhKurKxQKhSHqIiIiIiKJJAe73377DTt37kS3bt0MUQ8RERERVZDk253Url0bderUMUQtRERERFQJkoPdwoULMXfuXOTm5hqiHiIiIiKqIMmHYpctW4aUlBQ4OzvDw8ND63mxAPi8WCIiIiIjkRzshgwZYoAyiIiIiKiyJAe70NBQQ9RBRERERJUk+Rw7Q1i5ciU8PDxgZWUFHx8fHD9+XKfpNm7cCIVCwb2IRERERNAx2NWpUwe3bt0CUHRVbGk/Um3atAkhISEIDQ3F6dOn0a5dO/j5+SEzM7PM6a5evYpp06ahe/fukpdJREREJEc6HYr97LPPYG9vDwBYvny5XgsIDw/HuHHjMHr0aADA6tWrsXPnTqxfvx4zZ84scRqVSoWAgADMnz8fBw8exN27d/VaExEREVFNpFOwCwoKKvH3yiooKMCpU6cwa9YszTATExP07t0b8fHxpU63YMEC1K9fH2PGjMHBgwf1Vg8RERFRTSb54onH5eXloaCgQGuYg4ODztPfunULKpUKzs7OWsOdnZ2RlJRU4jSHDh3C119/jTNnzui0jPz8fOTn52teZ2VlAQCUSiWUSqXOtVaEQqh0HkeXcQEYvGZjK1w/ua+nrtiPIuyFNvajCHuhjf0oIpdeSKlfcrDLycnBjBkzsHnzZty+fbvY+yqVbgGlIu7fv4+RI0di7dq1cHJy0mmasLAwzJ8/v9jwvXv3wsbGRt8lavGUMK5HXopO4+3adbFixdQw0dHRxi6hWmE/irAX2tiPIuyFNvajSE3vhZSHQkgOdtOnT0dsbCxWrVqFkSNHYuXKlbhx4wa++uorLF68WNK8nJycYGpqips3b2oNv3nzJlxcXIqNn5KSgqtXr8Lf318zTK1WP1oRMzMkJyejSZMmWtPMmjULISEhmtdZWVlwc3ND3759Je1drIiVsZfLHUchVPDIS8FVqyYQCtNyx5/Ys6k+Squ2lEoloqOj0adPn2I3v34asR9F2Att7EcR9kIb+1FELr0oPNqoC8nB7pdffsG3336LF198EaNHj0b37t3RtGlTuLu7Y8OGDQgICNB5XhYWFujUqRNiYmI0tyxRq9WIiYlBcHBwsfFbtmyJc+fOaQ2bPXs27t+/j88//xxubm7FprG0tISlpWWx4ebm5gb/kHUJao+Pq8v4NXnDlKIqPp+ahP0owl5oYz+KsBfa2I8iNb0XUmqXHOzu3LmDxo0bA3h0Pt2dO3cAAM8//zzGjx8vdXYICQlBUFAQvL290aVLFyxfvhw5OTmaq2QDAwPRsGFDhIWFwcrKCm3atNGa3tHREQCKDSciIiJ62kgOdo0bN0ZqaioaNWqEli1bYvPmzejSpQt++eUXTciSYujQofjnn38wd+5cZGRkoH379ti9e7fmgoq0tDSYmFSL+ygTERERVWuSg93o0aNx9uxZ9OjRAzNnzoS/vz++/PJLKJVKhIeHV6iI4ODgEg+9AkBcXFyZ00ZGRlZomURERERyIznYvf/++5rfe/fujaSkJJw6dQpNmzaFl5eXXosjIiIiIt1V6j52AODu7g53d3d91EJERERElaBTsFuxYoXOM5w0aVKFiyEiIiKiitP5WbG6UCgUDHZERERERqJTsEtNTTV0HURERERUSZW6j4gQAkIIfdVCRERERJVQoWD39ddfo02bNrCystLcNHjdunX6ro2IiIiIJJB8VezcuXMRHh6O9957D76+vgCA+Ph4vP/++0hLS8OCBQv0XiQRERERlU9ysFu1ahXWrl2L4cOHa4YNGjQIXl5eeO+99xjsiIiIiIxE8qFYpVIJb2/vYsM7deqEhw8f6qUoIiIiIpJOcrAbOXIkVq1aVWz4mjVrEBAQoJeiiIiIiEi6Cj154uuvv8bevXvx3HPPAQCOHTuGtLQ0BAYGIiQkRDNeRZ8dS0RERETSSQ5258+fR8eOHQEAKSkpAAAnJyc4OTnh/PnzmvEUCoWeSiQiIiIiXUgOdrGxsYaog4iIiIgqSfI5dv/880+p7507d65SxRARERFRxUkOdm3btsXOnTuLDV+6dCm6dOmil6KIiIiISDrJwS4kJASvvfYaxo8fjwcPHuDGjRt46aWX8OmnnyIqKsoQNRIRERGRDiQHu+nTpyM+Ph4HDx6El5cXvLy8YGlpiT/++AOvvPKKIWokIiIiIh1U6FmxTZs2RZs2bXD16lVkZWVh6NChcHFx0XdtRERERCSB5GB3+PBheHl54dKlS/jjjz+watUqvPfeexg6dCj+/fdfQ9RIRERERDqQHOx69eqFoUOH4ujRo2jVqhXGjh2LhIQEpKWloW3btoaokYiIiIh0IPk+dnv37kWPHj20hjVp0gSHDx/Gxx9/rLfCiIiIiEgayXvsngx1mhmZmGDOnDmVLoiIiIiIKkbnYDdgwADcu3dP83rx4sW4e/eu5vXt27fRunVrvRZHRERERLrTOdjt2bMH+fn5mteLFi3CnTt3NK8fPnyI5ORk/VZHRERERDrTOdgJIcp8TURERETGVaH72BERERFR9aNzsFMoFFAoFMWGEREREVH1oPPtToQQGDVqFCwtLQEAeXl5ePfdd2FrawsAWuffEREREVHV0znYBQUFab1+6623io0TGBhY+YqIiIiIqEJ0DnYRERGGrIOIiIiIKokXTxARERHJBIMdERERkUww2BERERHJBIMdERERkUww2BERERHJBIMdERERkUww2BERERHJBIMdERERkUww2BERERHJBIMdERERkUww2BERERHJBIMdERERkUww2BERERHJBIMdERERkUww2BERERHJBIMdERERkUww2BERERHJBIMdERERkUww2BERERHJBIMdERERkUww2BERERHJBIMdERERkUww2BERERHJBIMdERERkUww2BERERHJBIMdERERkUww2BERERHJBIMdERERkUww2BERERHJBIMdERERkUww2BERERHJBIMdERERkUww2BERERHJBIMdERERkUww2BERERHJBIMdERERkUxUi2C3cuVKeHh4wMrKCj4+Pjh+/Hip465duxbdu3dH7dq1Ubt2bfTu3bvM8YmIiIieFkYPdps2bUJISAhCQ0Nx+vRptGvXDn5+fsjMzCxx/Li4OAwfPhyxsbGIj4+Hm5sb+vbtixs3blRx5URERETVi9GDXXh4OMaNG4fRo0ejdevWWL16NWxsbLB+/foSx9+wYQMmTJiA9u3bo2XLlli3bh3UajViYmKquHIiIiKi6sXMmAsvKCjAqVOnMGvWLM0wExMT9O7dG/Hx8TrNIzc3F0qlEnXq1Cnx/fz8fOTn52teZ2VlAQCUSiWUSmUlqi+fQqh0HkeXcQEYvGZjK1w/ua+nrtiPIuyFNvajCHuhjf0oIpdeSKlfIYQQBqylTH///TcaNmyII0eOwNfXVzN8+vTpOHDgAI4dO1buPCZMmIA9e/bgzz//hJWVVbH3582bh/nz5xcbHhUVBRsbm8qtABEREZGB5ebmYsSIEbh37x4cHBzKHNeoe+wqa/Hixdi4cSPi4uJKDHUAMGvWLISEhGheZ2Vlac7LK685lbUy9nK54yiECh55Kbhq1QRCYVru+BN7NtVHadWWUqlEdHQ0+vTpA3Nzc2OXY3TsRxH2Qhv7UYS90MZ+FJFLLwqPNurCqMHOyckJpqamuHnzptbwmzdvwsXFpcxply5disWLF2Pfvn3w8vIqdTxLS0tYWloWG25ubm7wD1mXoPb4uLqMX5M3TCmq4vOpSdiPIuyFNvajCHuhjf0oUtN7IaV2o148YWFhgU6dOmld+FB4IcTjh2af9Omnn2LhwoXYvXs3vL29q6JUIiIiomrP6IdiQ0JCEBQUBG9vb3Tp0gXLly9HTk4ORo8eDQAIDAxEw4YNERYWBgD45JNPMHfuXERFRcHDwwMZGRkAADs7O9jZ2RltPYiIiIiMzejBbujQofjnn38wd+5cZGRkoH379ti9ezecnZ0BAGlpaTAxKdqxuGrVKhQUFOD111/Xmk9oaCjmzZtXlaUTERERVStGD3YAEBwcjODg4BLfi4uL03p99epVwxdEREREVAMZ/QbFRERERKQfDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMlEtblBMlfdZ9EW9z/P9Ps31Pk8iIiIyHO6xIyIiIpIJBjsiIiIimWCwIyIiIpIJBjsiIiIimWCwIyIiIpIJBjsiIiIimWCwIyIiIpIJBjsiIiIimeANiomIqpBKpYJSqaz0fJRKJczMzJCXlweVSqWHymou9kIb+1GkpvTC3NwcpqamepkXgx0RURUQQiAjIwN3797V2/xcXFxw/fp1KBQKvcyzpmIvtLEfRWpSLxwdHeHi4lLpOhnsiIiqQGGoq1+/PmxsbCr95a1Wq5GdnQ07OzuYmDzdZ9WwF9rYjyI1oRdCCOTm5iIzMxMA4OrqWqn5MdgRERmYSqXShLq6devqZZ5qtRoFBQWwsrKqtv9gVRX2Qhv7UaSm9MLa2hoAkJmZifr161fqsGz1XUsiIpkoPKfOxsbGyJUQUXVV+P1Q2XNwGeyIiKpIdT/Hh4iMR1/fDwx2RERUYykUCmzfvr3azMfYRo0ahVdeeUXn8a9evQqFQoEzZ84Yrqj/Z6wep6WlwdTUtErWsTpgsCMiolJlZGTgvffeQ+PGjWFpaQk3Nzf4+/sjJibG2KVVyLx589C+fftiw9PT09G/f/+qL8jI3NzckJ6ejjZt2hi7FINp2LAhbty4Iet1fBwvniAiohJdvXoV3bp1g6OjI5YsWYK2bdtCqVRiz549mDhxIpKSkoxdot64uLgYuwSjMDU1lfW6FxQUaNaxOl88oU9Px1oSEZFkEyZMgEKhwPHjx/Haa6+hefPmePbZZxESEoKjR48CKPlQ3t27d6FQKBAXFwcAiIuLg0KhwJ49e9ChQwdYW1ujV69eyMzMxG+//YZWrVrBwcEBI0aMQG5urmY+Hh4eWL58uVZN7du3x7x580qtecaMGWjevDlsbGzQuHFjzJkzR3MyemRkJObPn4+zZ89CoVBAoVAgMjISgPZhwq5du2LGjBla8/3nn39gbm6O33//HQCQn5+PadOmoWHDhrC1tYWPj49mfUtz9+5djB07FvXq1YODgwN69eqFs2fPaubv4uKCRYsWacY/cuQILCwsNHtHC/c2fvXVV3Bzc4ONjQ3efPNN3Lt3r9Rl7t69G88//zwcHR1Rt25dvPzyy0hJSdG8/+TnV/hZxcTEwNvbGzY2NujatSuSk5O15vvzzz+jY8eOsLKyQuPGjTF//nw8fPhQ8/6lS5fwwgsvwMrKCq1bt0Z0dHSZvVmzZg0aNGgAtVqtNXzw4MF4++23AQApKSkYPHgwnJ2dYWdnh86dO2Pfvn1a43t4eGDhwoUIDAyEg4MD/vOf/xQ7FKtSqTBmzBh4enrC2toaLVq0wOeff641n1GjRmHIkCFYunQpXF1dUbduXUycOFHrwob8/HzMmDEDbm5usLS0RNOmTfH1119r3j9//jz69+8POzs7ODs7Y+TIkbh161aZfdAHBjsiIiMQQiC34GGlfh4UqCRPI4TQqb47d+5g9+7dmDhxImxtbYu97+joKHmd582bhy+//BJHjhzB9evX8eabb2L58uWIiorCzp07sXfvXnzxxReS5/s4e3t7REZG4sKFC/j888+xdu1afPbZZwCAoUOHYurUqXj22WeRnp6O9PR0DB06tNg8AgICsHHjRq1ebdq0CQ0aNED37t0BAMHBwYiPj8fGjRvxxx9/4I033kC/fv1w6dKlUmt74403NGH21KlT6NixI1566SXcuXMH9erVw/r16zFv3jycPHkS9+/fx8iRIxEcHIyXXnpJM4/Lly9j8+bN+OWXX7B7924kJCRgwoQJpS4zJycHISEhOHnyJGJiYmBiYoJXXnmlWIB60ocffohly5bh5MmTMDMz04QrADh48CACAwMxefJkXLhwAV999RUiIyPx8ccfA3h0i5FXX30VFhYWOHbsGFavXl0sKJfUm9u3byM2NlYzrHAbDAgIAABkZ2djwIABiImJQUJCAvr16wd/f3+kpaVpzWvp0qVo164dEhISMHv27GLLUqvVeOaZZ/Djjz/iwoULmDt3Lv773/9i8+bNWuPFxsYiJSUFsbGx+OabbxAZGan5HwEACAwMxA8//IAVK1YgMTERX331Fezs7AA8CvG9evVChw4dcPLkSezevRs3b97Em2++WWYf9IGHYomIjOCBUoXWc/dU+XIvLPCDjUX5X/2XL1+GEAItW7bU27I/+ugjdOvWDQAwZswYzJo1CykpKWjcuDEA4PXXX0dsbGy5IaAsj/9D7uHhgWnTpmHjxo2YPn06rK2tYWdnBzMzszIPP7755puYMmUKDh06pAlyUVFRGD58OBQKBdLS0hAREYG0tDQ0aNAAADBt2jTs3r0bERERWnvdCh06dAjHjx9HZmYmLC0tATwKINu3b8dPP/2Ed955BwMGDMC4ceMQEBAAb29v2NraIiwsTGs+eXl5+Pbbb9GwYUMAwBdffIGBAwdi2bJlJa7Ta6+9pvV6/fr1qFevHi5cuFDmOWcff/wxevToAQCYOXMmBg4ciLy8PFhZWWH+/PmYOXMmgoKCAACNGzfGwoULMX36dISGhmLfvn1ISkrCnj17NP1ZtGhRmecw1q5dG/3790dUVJQmyP70009wcnJCz549AQDt2rVDu3btNNMsXLgQ27Ztw44dOxAcHKwZ3qtXL0ydOhXAoxB3/vx5rWWZm5tj/vz5mteenp6Ij4/H5s2btYJX7dq18eWXX8LU1BQtW7bEwIEDERMTg3HjxuHixYvYvHkzoqOj0bt3b00fCn355Zfo0KGD1rawfv16uLm54eLFi2jevHmpvags7rEjIqJidN2zJ4WXl5fmd2dnZ83h0seHFd59v6I2bdqEbt26wcXFBXZ2dpg9e3axPTrlqVevHvr27YsNGzYAAFJTUxEfH6/Zc3Tu3DmoVCo0b94cdnZ2mp8DBw5oHeZ83NmzZ5GdnY26detqTZOamqo1zdKlS/Hw4UP8+OOP2LBhgyYEFmrUqJEm1AGAr68v1Gp1sUOlhS5duoThw4ejcePGcHBwgIeHBwCU25PHP6vCJyEUfjZnz57FggULtNZj3LhxSE9PR25uLhITE+Hm5qYJdYV1licgIABbtmxBfn4+AGDDhg0YNmyY5ty47OxsTJs2Da1atYKjoyPs7OyQmJhYbF28vb3LXdbKlSvRqVMn1KtXD3Z2dlizZk2x+Tz77LNaNwp2dXXV9ODMmTMwNTXVhN8nnT17FrGxsVo9KvyfpNK2EX3hHjsiIiOwNjfFhQV+FZ5erVbjftZ92DvYSzop3NpctzvaN2vWDAqFotwLJAqX/XgQLO0Gq+bm5prfFQqF1uvCYY8fIjQxMSkWMMu6eWth+Jo/fz78/PxQq1YtbNy4EcuWLStzHUoSEBCASZMm4YsvvkBUVBTatm2Ltm3bAngUMExNTXHq1KliTwgoPBT3pOzsbLi6upZ4Ht7jh7VTUlLw999/Q61W4+rVq5plVpS/vz/c3d2xdu1azTlsbdq0QUFBQZnTPflZAdB8NtnZ2Zg/fz5effXVYtNZWVlVqlYhBHbu3InOnTvj4MGDmsPowKO9otHR0Vi6dCmaNm0Ka2trvP7668XWpaRTBx63ceNGTJs2DcuWLYOvry/s7e2xZMkSHDt2TGu8srbPwidFlCY7Oxv+/v745JNPir1X2UeGlYfBjojICBQKhU6HREujVqvx0MIUNhZmBrnar06dOvDz88PKlSsxadKkYv9Y3r17F46OjqhXrx6AR7cL6dChAwDo7X5h9erVQ3p6uuZ1VlYWUlNTSx0/Pj4e7u7u+PDDDzXDrl27pjWOhYUFVCpVucsePHgw3nnnHezevRtRUVEIDAzUvNehQweoVCpkZmZqDtWWp2PHjsjIyICZmZlmr9mTCgoK8NZbb2Ho0KFo0aIFxo4di3PnzqF+/fqacdLS0vD3339r9oYdPXoUJiYmaNGiRbH53b59G8nJyVi7dq2mzkOHDulUb3nrkpycjKZNm5b4fqtWrXD9+nWkp6drQkzhxTZlsbKywquvvooNGzbg8uXLaNGiBTp27Kh5//Dhw1r36cvOzsbVq1cl13/48GF07dpV69xEqXvR2rZtC7VajQMHDmgOxT6uY8eO2LJlCzw8PGBmVrVRi4diiYioRCtXroRKpUKXLl2wZcsWXLp0CYmJiVixYoXm0Jq1tTWee+45LF68GImJiThw4ECJJ6xXRK9evfDdd9/h4MGDOHfuHIKCgsp8hmbTpk2RlpaGjRs3IiUlBStWrMC2bdu0xvHw8EBqairOnDmDW7duaQ77PcnW1hZDhgzBnDlzkJiYiOHDh2vea968OQICAhAYGIitW7ciNTUVx48fR1hYGHbu3Fni/Hr37g1fX18MGTIEe/fuxdWrV3HkyBF8+OGHOHnyJIBHFyzcu3cPK1as0Fzd+/hFC8Cj8BMUFISzZ8/i4MGDmDRpEt58880Sz6+rXbs26tatizVr1uDy5cvYv38/QkJCSu2frubOnYtvv/0W8+fPx59//onExERs3LhR87n37t0bzZs316rz8bBdloCAAOzcuRPr16/XHPou1KxZM2zduhVnzpzB2bNnMWLEiHIvAilJs2bNcPLkSezZswcXL17EnDlzcOLECUnz8PDwQFBQEN5++21s374dqampiIuL01yAMXHiRNy5cwfDhw/HiRMnkJKSgj179mD06NE6/Y9FZTDYERFRiRo3bozTp0+jZ8+emDp1Ktq0aYM+ffogJiYGq1at0oy3fv16PHz4EJ06dcKUKVPw0Ucf6WX5s2bNQo8ePfDyyy9j4MCBGDJkCJo0aVLq+IMGDcL777+P4OBgtG/fHkeOHMGcOXO0xnnttdfQr18/9OzZE/Xq1cMPP/xQ6vwCAgJw9uxZdO/eHY0aNdJ6LyIiAoGBgZg6dSpatGiBIUOG4MSJE8XGK6RQKLBr1y688MILGD16NJo3b45hw4bh2rVrcHZ2RlxcHJYvX47vvvsODg4OMDEx0YTax3vdtGlTvPrqqxgwYAD69u0LLy8v/O9//ytxmSYmJti4cSNOnTqFNm3a4P3338eSJUtKXV9d+fn54ddff8XevXvRuXNnPPfcc/jss8/g7u6uWe62bdvw4MEDdOnSBWPHjtVcMVueXr16oU6dOkhOTsaIESO03gsPD0ft2rXRtWtX+Pv7w8/PT2uPnq7+85//4NVXX8XQoUPh4+OD27dvl3llcWlWrVqF119/HRMmTEDLli0xbtw45OTkAAAaNGiAw4cPQ6VSoW/fvmjbti2mTJkCR0dHg99PTyEMcYZsNZaVlYVatWrh3r17cHBwMOiyPou+WO44CqGC54OLSLVuDqEo/9yX9/uUfCWNLsuSqrRlGZJSqcSuXbswYMCAYuc3PI3YjyI1uRd5eXlITU2Fp6dnpc5BepxarUZWVpYmBDzNnpZezJs3D9u3by/3UPfT0g9d1KRelPU9ISW7VO+1JCIiIiKd8eIJkkwueweJiIjkhnvsiIiIaoB58+bp7Ypjki8GOyIiIiKZYLAjIiIikgkGOyIiIiKZYLAjIiIikgkGOyIiIiKZYLAjIiIikgkGOyIiMiiFQoHt27cDAK5evQqFQiHpth2PT1+Sq1evonbt2nq/FYiHhweWL1+u13lKFRcXB4VCgbt37+o8Ta9evTBr1izDFfX/Ro0ahSFDhhh8OSV58cUXMWXKFKMsu7rjDYqJiKhEo0aNwt27d8sMVVK5ubkhPT0dTk5OOk+Tnp6O2rVr660Gufvpp5/w4MEDY5dhUFu3bq1xjxasKgx2RERGVNEnuQghkJ+fD0tLSygUCp2mqQ5PeDE1NYWLi4ukaaSO/7SrU6cOsrKyjF2GQRQUFMDCwgJ16tQxdinVFg/FUrX2WfRFvf8QUcW8+OKLmDRpEqZPn446derAxcUF8+bN0xrn0qVLeOGFF2BlZYXWrVsjOjpa6/3HD8Wq1Wo888wzWLVqldY4CQkJMDExwbVr1wAUPxR7/PhxdOjQAVZWVvD29kZCQoLW9JGRkXB0dNQatn37dq0AnJKSgsGDB8PZ2Rl2dnbo3Lkz9u3bJ7kn69atQ6tWrWBlZYWWLVvif//7n+a9t99+G15eXsjPzwfwKJR06NABgYGBWr3YuHEjunbtCisrK7Rp0wYHDhwodXm3b9/G8OHD0bBhQ9jY2KBt27b44YcftMZ58lCsh4cHFi1ahLfffhv29vZo1KgR1qxZozXN9evX8eabb8LR0RF16tTB4MGDcfXqVc37KpUKISEhcHR0RN26dTF9+nQIIUqtMysrC9bW1vjtt9+0hm/btg329vbIzc0FAMyYMQPNmzeHjY0NGjdujDlz5kCpVGrGnzdvHtq3b49169bB09MTVlZWAIofiv3uu+/g7e0Ne3t7uLi4YMSIEcjMzNS8X3hIOyYmBt7e3rCxsUHXrl2RnJysVd8vv/yCzp07w8rKCk5OTnjllVc07+Xn52PatGlo2LAhbG1t4ePjg7i4uFJ7YCwMdkREpLNvvvkGtra2OHbsGD799FMsWLBAE97UajVeffVVWFhY4NixY1i9ejVmzJhR6rxMTEwwfPhwREVFaQ3fsGEDunXrBnd392LTZGdn4+WXX0br1q1x6tQpzJs3D9OnT5e8HtnZ2RgwYABiYmKQkJCAfv36wd/fH2lpaTrPY8OGDZg7dy4+/vhjJCYmYtGiRZgzZw6++eYbAMCKFSuQk5ODmTNnAgA+/PBD3L17F19++aXWfD744ANMnToVCQkJ8PX1hb+/P27fvl3iMvPy8tCpUyfs3LkT58+fxzvvvIORI0fi+PHjZda6bNkyTQieMGECxo8frwk1SqUSfn5+sLe3x8GDB3H48GHY2dmhX79+KCgo0EwfGRmJ9evX49ChQ7hz5w62bdtW6vIcHBzw8ssvl/jZDhkyBDY2NgAAe3t7REZG4sKFC/j888+xdu1afPbZZ1rTXL58GVu2bMHWrVtLPY9SqVRi4cKFOHv2LLZv346rV69i1KhRxcb78MMPsWzZMpw8eRJmZmZ4++23Ne/t3LkTr7zyCgYMGICEhATExMSgS5cumveDg4MRHx+PjRs34o8//sAbb7yBfv364dKlS6U33gh4KJaIiHTm5eWF0NBQAECzZs3w5ZdfIiYmBn369MG+ffuQlJSEPXv2oEGDBgCARYsWoX///qXOLyAgAMuWLUNaWhoaNWoEtVqNjRs3Yvbs2SWOHxUVBbVaja+//hpWVlZ49tlnkZaWhokTJ0paj3bt2qFdu3aa1wsXLsS2bduwY8cOBAcH6zSP0NBQLFu2DK+++ioAwNPTExcuXMBXX32FoKAg2NnZ4fvvv0ePHj1gb2+P5cuXIzY2Fg4ODlrzCQ4OxmuvvQYAWLVqFXbv3o2vv/66xMDasGFDTJs2TfP6vffew549e7B582atEPKkAQMGYMKECQAe7SX77LPPEBsbixYtWmDTpk1Qq9VYt26dZq9mREQEHB0dERcXh759+2L58uWYNWuWZl1Xr16NPXv2lNmfgIAAjBw5Erm5ubCxsUFWVhZ27typFQgf/5w9PDwwbdo0bNy4UWvdCwoK8O2336JevXqlLuvxgNa4cWOsWLECnTt3RnZ2ttZ4H3/8MXr06AEAmDlzJgYOHIi8vDxYWVnh448/xrBhwzB//nzN+IXbSFpaGiIiIpCWlqbZtqdNm4bdu3cjIiICixYtKrMXVYnBjoiIdObl5aX12tXVVXPIKzExEW5ubpp/+ADA19e3zPm1b98erVq1QlRUFGbOnIkDBw4gMzMTb7zxRonjJyYmwsvLS3NITpdllCQ7Oxvz5s3Dzp07kZ6ejocPH+LBgwc677HLyclBSkoKxowZg3HjxmmGP3z4ELVq1dKqbdq0aVi4cCFmzJiB559/vti8Hq/fzMwM3t7eSExMLHG5KpUKixYtwubNm3Hjxg0UFBQgPz9fswesNI9/bgqFAi4uLprP7ezZs7h8+TLs7e21psnLy0NKSgru3buH9PR0+Pj4FKuzrMOxAwYMgLm5OXbs2IFhw4Zhy5YtcHBwQO/evTXjbNq0CStWrEBKSgqys7Px8OHDYsHX3d29zFAHQLP39uzZs/j333+hVqsBPApkzzzzTIl9cHV1BQBkZmaiUaNGOHPmjNZn+bhz585BpVKheXPt81Tz8/NRt27dMmuragx2RP/PEOffVYeT1Yn06ckrERUKheYf0YoKCAjQBLuoqCj069evUv9YmpiYFAscj5+3BTza2xIdHY2lS5eiadOmsLa2xuuvv6459Fiewj1Ba9eu1Qo8wKMLRAqp1WocPnwYpqamuHz5ckVWR8uSJUvw+eefY/ny5Wjbti1sbW0xZcqUcusu63PLzs5Gp06dsGHDhmLTlReoymJhYYHXX38dUVFRGDZsGKKiojB06FCYmT2KHvHx8QgICMD8+fPh5+eHWrVqYePGjVi2bJnWfGxtbctcTk5ODvz8/ODn54cNGzagXr16SEtLg5+fX7G+PN6Hwr2ThX2wtrYudRnZ2dkwNTXFqVOntD5fALCzsyunE1WLwY7ICHQNkQqhgieAlbGXIRSmZY7LEEnG1qpVK1y/fh3p6emavSFHjx4td7oRI0Zg9uzZOHXqFH766SesXr26zGV89913msNnJS2jXr16uH//PnJycjSh4Mlzsw4fPoxRo0ZpTo7Pzs7WuligPM7OzmjQoAGuXLmCgICAUsdbsmQJkpKScODAAfj5+SEiIgKjR4/WGufo0aN44YUXADza43fq1KlSDwcfPnwYgwcPxltvvQXgUSi5ePEiWrdurXPtT+rYsSM2bdqE+vXrF9tbVsjV1RXHjh0rVmfHjh3LnHdAQAD69OmDP//8E/v378dHH32kee/IkSNwd3fHhx9+qBlWeMGMFElJSbh9+zYWL14MNzc3AMDJkyclz8fLywsxMTHFPh8A6NChA1QqFTIzM9G9e3fJ865KvHiCiIj0onfv3mjevDmCgoJw9uxZHDx4UOsf7dJ4eHiga9euGDNmDFQqFQYNGlTquCNGjIBCocC4ceNw4cIF7Nq1C+Hh4Vrj+Pj4wMbGBv/973+RkpKCqKgoREZGao3TrFkzzcn4Z8+exYgRIyTveZw/fz7CwsKwYsUKXLx4EefOnUNERISmnoSEBMydOxfr1q1Dt27dEB4ejsmTJ+PKlSta81m5ciW2bduGpKQkTJw4Ef/++6/WOWNP1h0dHY0jR44gMTER//nPf3Dz5k1JdT8pICAATk5OGDx4MA4ePIjU1FTExcVh0qRJ+OuvvwAAkydPxuLFi7F9+3YkJSVhwoQJOt00+YUXXoCLiwsCAgLg6emptXezWbNmSEtLw8aNG5GSkoIVK1aUeUFGaRo1agQLCwt88cUXuHLlCnbs2IGFCxdKnk9oaCh++OEHhIaGIjExEefOncMnn3wCAGjevDkCAgIQGBiIrVu3IjU1FcePH0dYWBh27twpeVmGxGBHRER6YWJigm3btuHBgwfo0qULxo4di48//linaQMCAnD27Fm88sorZR4Ss7Ozwy+//IJz586hQ4cO+PDDDxEWFqY1Tp06dfD9999j165dmtuBPHlblvDwcNSuXRtdu3aFv78//Pz8yt379KSxY8di3bp1iIiIQNu2bdGjRw9ERkbC09MTeXl5eOuttzBq1Cj4+/sDAN555x307NkTI0eOhEql0sxn8eLFWLx4Mdq1a4dDhw5hx44dpd7Aefbs2ejYsSP8/Pzw4osvwsXFpdJPf7CxscHvv/+ORo0a4dVXX0WrVq0wZswY5OXlafbgTZ06FSNHjkRQUBB8fX1hb2+vdSuQ0igUCgwfPhxnz54ttmdz0KBBeP/99xEcHIz27dvjyJEjmDNnjuT669Wrh8jISPz4449o3bo1Fi9ejKVLl0qez4svvogff/wRO3bsQPv27dGrVy+tq40jIiIQGBiIqVOnokWLFhgyZAhOnDiBRo0aSV6WISlEWWc+ylBWVhZq1aqFe/fulbrLWV90OdymECp4PriIVOvm5R5qA0o/3FaV54cZcllKpRK7du3SnHQrl/Wq6LKkbB9yPxT75LZRk+Tl5SE1NVXrPlyVpVarkZWVBQcHB5iYPN3/j15Te3H16lV4enoiISEB7du319t8a2o/DKEm9aKs7wkp2aV6ryURERER6YzBjoiIiEgmeFUsERGREXh4eJR5HziiimCwI5I53p+PiOjpwUOxRERERDLBYEdEVEV42I2ISqOv7wcGOyIiAyu8PUtubq6RKyGi6qrw+6Gyt3PiOXZEpDc8n69kpqamcHR01Dx03cbGRvOcyopSq9UoKChAXl5etb8/l6GxF9rYjyI1oRdCCOTm5iIzMxOOjo7FnkUrFYMdEVEVcHFxAQBNuKssIQQePHgAa2vrSofEmo690MZ+FKlJvXB0dNR8T1QGgx0RURVQKBRwdXVF/fr1oVQqKz0/pVKJ33//HS+88EKNexKHvrEX2tiPIjWlF+bm5pXeU1eoWgS7lStXYsmSJcjIyEC7du3wxRdfoEuXLqWO/+OPP2LOnDm4evUqmjVrhk8++QQDBgyowoqJyNhq6mFfU1NTvXyBm5qa4uHDh7CysqrW/2BVBfZCG/tR5GnshdEPOG/atAkhISEIDQ3F6dOn0a5dO/j5+ZV6uOLIkSMYPnw4xowZg4SEBAwZMgRDhgzB+fPnq7hyIiIiourF6HvswsPDMW7cOIwePRoAsHr1auzcuRPr16/HzJkzi43/+eefo1+/fvjggw8AAAsXLkR0dDS+/PJLrF69ukprJ6KnQ03dO0hETx+jBruCggKcOnUKs2bN0gwzMTFB7969ER8fX+I08fHxCAkJ0Rrm5+eH7du3G7JUIqIqoWuIVAgVPAGsjL0MoSj70G5pIZKBlUh+jBrsbt26BZVKBWdnZ63hzs7OSEpKKnGajIyMEsfPyMgocfz8/Hzk5+drXt+7dw8AcOfOHb2cwFyW/Ox75Y6jECrk5uciX3Wv3C9nALh9+3aFlyWVMZalVCqRm5uL27dvw9zcXDbrVdFlSdk+atJ6VWRZ3Da01bRtY+3vV/S+rHEvNAZQfNswxLIeX97jquOyFEKFRvm5CP/llE7/rhh7vQzpyW2jprp//z4AHW9iLIzoxo0bAoA4cuSI1vAPPvhAdOnSpcRpzM3NRVRUlNawlStXivr165c4fmhoqADAH/7whz/84Q9/+FOjf65fv15utjLqHjsnJyeYmpri5s2bWsNv3rxZ6r1cXFxcJI0/a9YsrUO3arUad+7cQd26davFPW2ysrLg5uaG69evw8HBwdjlGB37oY39KMJeaGM/irAX2tiPInLphRAC9+/fR4MGDcod16jBzsLCAp06dUJMTAyGDBkC4FHwiomJQXBwcInT+Pr6IiYmBlOmTNEMi46Ohq+vb4njW1pawtLSUmuYo6OjPsrXKwcHhxq90ekb+6GN/SjCXmhjP4qwF9rYjyJy6EWtWrV0Gs/oV8WGhIQgKCgI3t7e6NKlC5YvX46cnBzNVbKBgYFo2LAhwsLCAACTJ09Gjx49sGzZMgwcOBAbN27EyZMnsWbNGmOuBhEREZHRGT3YDR06FP/88w/mzp2LjIwMtG/fHrt379ZcIJGWlqb1fLeuXbsiKioKs2fPxn//+180a9YM27dvR5s2bYy1CkRERETVgtGDHQAEBweXeug1Li6u2LA33ngDb7zxhoGrqhqWlpYIDQ0tdrj4acV+aGM/irAX2tiPIuyFNvajyNPYC4UQulw7S0RERETVndEfKUZERERE+sFgR0RERCQTDHZEREREMsFgVwVWrlwJDw8PWFlZwcfHB8ePHy9z/B9//BEtW7aElZUV2rZti127dlVRpYYVFhaGzp07w97eHvXr18eQIUOQnJxc5jSRkZFQKBRaP1ZWVlVUsWHNmzev2Lq1bNmyzGnkum14eHgU64VCocDEiRNLHF9u28Xvv/8Of39/NGjQAAqFotizr4UQmDt3LlxdXWFtbY3evXvj0qVL5c5X6ndPdVBWL5RKJWbMmIG2bdvC1tYWDRo0QGBgIP7+++8y51mRv7XqorxtY9SoUcXWrV+/fuXOV27bBoASv0MUCgWWLFlS6jxr8rZRGgY7A9u0aRNCQkIQGhqK06dPo127dvDz80NmZmaJ4x85cgTDhw/HmDFjkJCQgCFDhmDIkCE4f/58FVeufwcOHMDEiRNx9OhRREdHQ6lUom/fvsjJySlzOgcHB6Snp2t+rl27VkUVG96zzz6rtW6HDh0qdVw5bxsnTpzQ6kN0dDQAlHn1u5y2i5ycHLRr1w4rV64s8f1PP/0UK1aswOrVq3Hs2DHY2trCz88PeXl5pc5T6ndPdVFWL3Jzc3H69GnMmTMHp0+fxtatW5GcnIxBgwaVO18pf2vVSXnbBgD069dPa91++OGHMucpx20DgFYP0tPTsX79eigUCrz22mtlzrembhul0uGRrlQJXbp0ERMnTtS8VqlUokGDBiIsLKzE8d98800xcOBArWE+Pj7iP//5j0HrNIbMzEwBQBw4cKDUcSIiIkStWrWqrqgqFBoaKtq1a6fz+E/TtjF58mTRpEkToVarS3xfztsFALFt2zbNa7VaLVxcXMSSJUs0w+7evSssLS3FDz/8UOp8pH73VEdP9qIkx48fFwDEtWvXSh1H6t9adVVSP4KCgsTgwYMlzedp2TYGDx4sevXqVeY4ctk2Hsc9dgZUUFCAU6dOoXfv3pphJiYm6N27N+Lj40ucJj4+Xmt8APDz8yt1/Jrs3r17AIA6deqUOV52djbc3d3h5uaGwYMH488//6yK8qrEpUuX0KBBAzRu3BgBAQFIS0srddynZdsoKCjA999/j7fffrvM5znLebt4XGpqKjIyMrQ++1q1asHHx6fUz74i3z011b1796BQKMp9VKSUv7WaJi4uDvXr10eLFi0wfvx43L59u9Rxn5Zt4+bNm9i5cyfGjBlT7rhy2zYY7Azo1q1bUKlUmqdoFHJ2dkZGRkaJ02RkZEgav6ZSq9WYMmUKunXrVuZTQ1q0aIH169fj559/xvfffw+1Wo2uXbvir7/+qsJqDcPHxweRkZHYvXs3Vq1ahdTUVHTv3h33798vcfynZdvYvn077t69i1GjRpU6jpy3iycVfr5SPvuKfPfURHl5eZgxYwaGDx9e5nNApf6t1ST9+vXDt99+i5iYGHzyySc4cOAA+vfvD5VKVeL4T8u28c0338De3h6vvvpqmePJcduoFk+eoKfPxIkTcf78+XLPZfD19YWvr6/mddeuXdGqVSt89dVXWLhwoaHLNKj+/ftrfvfy8oKPjw/c3d2xefNmnf4vU66+/vpr9O/fHw0aNCh1HDlvF6QbpVKJN998E0IIrFq1qsxx5fy3NmzYMM3vbdu2hZeXF5o0aYK4uDi89NJLRqzMuNavX4+AgIByL6qS47bBPXYG5OTkBFNTU9y8eVNr+M2bN+Hi4lLiNC4uLpLGr4mCg4Px66+/IjY2Fs8884ykac3NzdGhQwdcvnzZQNUZj6OjI5o3b17quj0N28a1a9ewb98+jB07VtJ0ct4uCj9fKZ99Rb57apLCUHft2jVER0eXubeuJOX9rdVkjRs3hpOTU6nrJvdtAwAOHjyI5ORkyd8jgDy2DQY7A7KwsECnTp0QExOjGaZWqxETE6O1t+Fxvr6+WuMDQHR0dKnj1yRCCAQHB2Pbtm3Yv38/PD09Jc9DpVLh3LlzcHV1NUCFxpWdnY2UlJRS103O20ahiIgI1K9fHwMHDpQ0nZy3C09PT7i4uGh99llZWTh27Fipn31FvntqisJQd+nSJezbtw9169aVPI/y/tZqsr/++gu3b98udd3kvG0U+vrrr9GpUye0a9dO8rSy2DaMffWG3G3cuFFYWlqKyMhIceHCBfHOO+8IR0dHkZGRIYQQYuTIkWLmzJma8Q8fPizMzMzE0qVLRWJioggNDRXm5ubi3LlzxloFvRk/fryoVauWiIuLE+np6Zqf3NxczThP9mP+/Pliz549IiUlRZw6dUoMGzZMWFlZiT///NMYq6BXU6dOFXFxcSI1NVUcPnxY9O7dWzg5OYnMzEwhxNO1bQjx6Mq8Ro0aiRkzZhR7T+7bxf3790VCQoJISEgQAER4eLhISEjQXOm5ePFi4ejoKH7++Wfxxx9/iMGDBwtPT0/x4MEDzTx69eolvvjiC83r8r57qquyelFQUCAGDRoknnnmGXHmzBmt75H8/HzNPJ7sRXl/a9VZWf24f/++mDZtmoiPjxepqali3759omPHjqJZs2YiLy9PM4+nYdsodO/ePWFjYyNWrVpV4jzktG2UhsGuCnzxxReiUaNGwsLCQnTp0kUcPXpU816PHj1EUFCQ1vibN28WzZs3FxYWFuLZZ58VO3furOKKDQNAiT8RERGacZ7sx5QpUzS9c3Z2FgMGDBCnT5+u+uINYOjQocLV1VVYWFiIhg0biqFDh4rLly9r3n+atg0hhNizZ48AIJKTk4u9J/ftIjY2tsS/jcJ1VqvVYs6cOcLZ2VlYWlqKl156qVif3N3dRWhoqNawsr57qquyepGamlrq90hsbKxmHk/2ory/teqsrH7k5uaKvn37inr16glzc3Ph7u4uxo0bVyygPQ3bRqGvvvpKWFtbi7t375Y4DzltG6VRCCGEQXcJEhEREVGV4Dl2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RFQiDw8PLF++XG/zGzVqFIYMGaK3+QFAXFwcFAoF7t69q9f5UnFXr16FQqHAmTNnKjWfefPmoX379nqpiYiKY7AjkrlRo0ZBoVBAoVDAwsICTZs2xYIFC/Dw4cMypztx4gTeeecdvdXx+eefIzIyUm/zI/1RKBTYvn17meO4ubkhPT0dbdq0qZqiiKhCzIxdABEZXr9+/RAREYH8/Hzs2rULEydOhLm5OWbNmlVs3IKCAlhYWKBevXp6raFWrVp6nR9VLVNTU7i4uBi7DCIqB/fYET0FLC0t4eLiAnd3d4wfPx69e/fGjh07ABQdIv3444/RoEEDtGjRAkDxQ7EKhQLr1q3DK6+8AhsbGzRr1kwzj0J//vknXn75ZTg4OMDe3h7du3dHSkqK1nIKvfjiiwgODkZwcDBq1aoFJycnzJkzB48/vvq7776Dt7c37O3t4eLighEjRiAzM1PSut+9exf/+c9/4OzsDCsrK7Rp0wa//vqr5v0tW7bg2WefhaWlJTw8PLBs2TKt6T08PPDRRx8hMDAQdnZ2cHd3x44dO/DPP/9g8ODBsLOzg5eXF06ePKmZJjIyEo6Ojti+fTuaNWsGKysr+Pn54fr161rzXrVqFZo0aQILCwu0aNEC3333ndb7uvT8/Pnz6N+/P+zs7ODs7IyRI0fi1q1bWn2eNGkSpk+fjjp16sDFxQXz5s3TWj8AeOWVV6BQKDSvn/TkodjCw+AxMTHw9vaGjY0NunbtiuTkZK3pFi9eDGdnZ9jb22PMmDHIy8srNu9169ahVatWsLKyQsuWLfG///1P897bb78NLy8v5OfnA3j0Px4dOnRAYGBgiXUSPfUEEclaUFCQGDx4sNawQYMGiY4dO2ret7OzEyNHjhTnz58X58+fF0II4e7uLj777DPNNADEM888I6KiosSlS5fEpEmThJ2dnbh9+7YQQoi//vpL1KlTR7z66qvixIkTIjk5Waxfv14kJSWVWEePHj2EnZ2dmDx5skhKShLff/+9sLGxEWvWrNGM8/XXX4tdu3aJlJQUER8fL3x9fUX//v0178fGxgoA4t9//y1x3VUqlXjuuefEs88+K/bu3StSUlLEL7/8Inbt2iWEEOLkyZPCxMRELFiwQCQnJ4uIiAhhbW0tIiIiNPNwd3cXderUEatXrxYXL14U48ePFw4ODqJfv35i8+bNIjk5WQwZMkS0atVKqNVqIYQQERERwtzcXHh7e4sjR46IkydPii5duoiuXbtq5rt161Zhbm4uVq5cKZKTk8WyZcuEqamp2L9/v849//fff0W9evXErFmzRGJiojh9+rTo06eP6Nmzp1afHRwcxLx588TFixfFN998IxQKhdi7d68QQojMzEwBQERERIj09HSRmZlZYi9TU1MFAJGQkKDVex8fHxEXFyf+/PNP0b17d6113LRpk7C0tBTr1q0TSUlJ4sMPPxT29vaiXbt2mnG+//574erqKrZs2SKuXLkitmzZIurUqSMiIyOFEELcv39fNG7cWEyZMkUIIcS0adOEh4eHuHfvXol1Ej3tGOyIZO7xQKVWq0V0dLSwtLQU06ZN07zv7Ows8vPztaYrKdjNnj1b8zo7O1sAEL/99psQQohZs2YJT09PUVBQUG4dQjwKHI+HISGEmDFjhmjVqlWp63LixAkBQNy/f18IUX6w27NnjzAxMRHJycklvj9ixAjRp08frWEffPCBaN26tea1u7u7eOuttzSv09PTBQAxZ84czbD4+HgBQKSnpwshHgU7AOLo0aOacRITEwUAcezYMSGEEF27dhXjxo3TWvYbb7whBgwYoHldXs8XLlwo+vbtqzWP69evCwCade7Ro4d4/vnntcbp3LmzmDFjhtZytm3bVmKPCpUW7Pbt26cZZ+fOnQKAePDggRBCCF9fXzFhwgSt+fj4+GgFuyZNmoioqCitcRYuXCh8fX01r48cOSLMzc3FnDlzhJmZmTh48GCZtRI9zXgolugp8Ouvv8LOzg5WVlbo378/hg4dqnU4rm3btrCwsCh3Pl5eXprfbW1t4eDgoDk0eubMGXTv3h3m5uY61/Xcc89BoVBoXvv6+uLSpUtQqVQAgFOnTsHf3x+NGjWCvb09evToAQBIS0vTaf5nzpzBM888g+bNm5f4fmJiIrp166Y1rFu3blo1ANrr7ezsDOBRz54c9vhhYjMzM3Tu3FnzumXLlnB0dERiYmKZyy58v6RlP9nzs2fPIjY2FnZ2dpqfli1bAoDmEPiT8wAAV1dXyYe0S/P4vF1dXQEU9SExMRE+Pj5a4/v6+mp+z8nJQUpKCsaMGaO1Dh999JFW/b6+vpg2bRoWLlyIqVOn4vnnn9dL7URyxIsniJ4CPXv2xKpVq2BhYYEGDRrAzEz7T9/W1lan+TwZ2hQKBdRqNQDA2tpaP8X+v5ycHPj5+cHPzw8bNmxAvXr1kJaWBj8/PxQUFOg0D33V9Ph6FwbRkoYV9kKfyup5dnY2/P398cknnxSbrjBklTcPfdYntQ/Z2dkAgLVr1xYLgKampprf1Wo1Dh8+DFNTU1y+fLmyJRPJGvfYET0FbG1t0bRpUzRq1KhYqNMXLy8vHDx4EEqlUudpjh07pvX66NGjaNasGUxNTZGUlITbt29j8eLF6N69O1q2bCl5L5OXlxf++usvXLx4scT3W7VqhcOHD2sNO3z4MJo3b64VLCri4cOHWhdUJCcn4+7du2jVqlWZy27durXOy+jYsSP+/PNPeHh4oGnTplo/uoZ14FE4e3wPpb60atWqxM+4kLOzMxo0aIArV64Uq9/T01Mz3pIlS5CUlIQDBw5g9+7diIiI0HutRHLBYEdEehEcHIysrCwMGzYMJ0+exKVLl/Ddd98Vu0rycWlpaQgJCUFycjJ++OEHfPHFF5g8eTIAoFGjRrCwsMAXX3yBK1euYMeOHVi4cKGkmnr06IEXXngBr732GqKjo5GamorffvsNu3fvBgBMnToVMTExWLhwIS5evIhvvvkGX375JaZNm1bxRvw/c3NzvPfeezh27BhOnTqFUaNG4bnnnkOXLl0AAB988AEiIyOxatUqXLp0CeHh4di6daukZU+cOBF37tzB8OHDceLECaSkpGDPnj0YPXq0pKDm4eGBmJgYZGRk4N9//5W8rqWZPHky1q9fj4iICFy8eBGhoaH4888/tcaZP38+wsLCsGLFCly8eBHnzp1DREQEwsPDAQAJCQmYO3cu1q1bh27duiE8PByTJ0/GlStX9FYnkZww2BGRXtStWxf79+9HdnY2evTogU6dOmHt2rVlnnMXGBiIBw8eoEuXLpg4cSImT56suSlyvXr1EBkZiR9//BGtW7fG4sWLsXTpUsl1bdmyBZ07d8bw4cPRunVrTJ8+XRN6OnbsiM2bN2Pjxo1o06YN5s6diwULFmDUqFEV6sHjbGxsMGPGDIwYMQLdunWDnZ0dNm3apHl/yJAh+Pzzz7F06VI8++yz+OqrrxAREYEXX3xR52U0aNAAhw8fhkqlQt++fdG2bVtMmTIFjo6OMDHR/et92bJliI6OhpubGzp06CBlNcs0dOhQzJkzB9OnT0enTp1w7do1jB8/XmucsWPHYt26dYiIiEDbtm3Ro0cPREZGwtPTE3l5eXjrrbcwatQo+Pv7AwDeeecd9OzZEyNHjjTIXkaimk4hxGM3jSIiqiIvvvgi2rdvr9fHllUXkZGRmDJlCh91RkRVjnvsiIiIiGSCwY6IiIhIJngoloiIiEgmuMeOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCb+D/gR6ZcB7qn0AAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Note that we need to normalize our data to use PCA. Let's get singular values, just for interest:" + ], + "metadata": { + "id": "F83pcTegt8Zm" + } + }, + { + "cell_type": "code", + "source": [ + "u, singular_values, tmp = np.linalg.svd(X_train_pd_scaled)\n", + "plt.plot(singular_values, 'bo')\n", + "\n", + "plt.ylabel(\"Singular values\")\n", + "plt.xlabel(\"Singular value order\")\n", + "plt.yscale('log')\n", + "\n", + "plt.grid(True)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 449 + }, + "id": "dEn7cZZglYVN", + "outputId": "356b9718-6e54-4bfb-b777-0986bca1aa65" + }, + "execution_count": 183, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAGwCAYAAACgi8/jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA2/UlEQVR4nO3deXyV1Z3H8e/lkgTCEkAkZIPghqayKEsGbQwoW/QlwYhawRGV2pEGmzRqhekAOupYtaWxmoqjVbAFl9IIVAVFhBAplSjgBjKKETGERUYMhErizZk/7uQ2l6w3uevzfN6vFy+45zn3ub+Th4Qvz3KOwxhjBAAAYEGdQl0AAABAoBB0AACAZRF0AACAZRF0AACAZRF0AACAZRF0AACAZRF0AACAZXUOdQGhVldXp/3796tHjx5yOByhLgcAALSBMUbHjh1TYmKiOnVq/ryN7YPO/v37lZKSEuoyAABAO+zbt0/JycnNbrd90OnRo4ck9xeqZ8+efttvbW2t3njjDU2cOFFRUVF+228ksOvY7TpuibHbcex2HbfE2MNl7FVVVUpJSfH8O94c2wadoqIiFRUVyeVySZJ69uzp96ATGxurnj17hvwvQ7DZdex2HbfE2O04druOW2Ls4Tb21m47se3NyLm5udq5c6fKyspCXQoAAAgQ2wYdAABgfQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWbYNOkVFRUpLS9OoUaNCXQoAAAgQ2wYd5tEBAMD6bBt0AsnlkkpKHNq0KUklJQ79/+TLAAAgyAg6flZcLKWmShMmdNaiRSM1YUJnpaa62wEAQHARdPyouFiaNk366ivv9ooKdzthBwCA4CLo+InLJeXlScY03lbflp8vLmMBABBEBB0/KS1tfCanIWOkffvc/QAAQHAQdPykstK//QAAQMcRdPwkIcG//QAAQMfZNuj4e8LAjAwpOVlyOJre7nBIKSnufgAAIDhsG3T8PWGg0yk9+qj7z6eGnfrXhYXufgAAIDhsG3QCISdHWrFCSkrybk9Odrfn5ISmLgAA7KpzqAuwmpwcKTtb2rDhe61Zs0NZWcM1blxnzuQAABACBJ0AcDqlzEyj6uoKZWYOI+QAABAiXLoCAACWRdABAACWRdABAACWRdABAACWRdABAACWZdug4++ZkQEAQPixbdDx98zIAAAg/Ng26AAAAOsj6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMuybdBhrSsAAKzPtkGHta4AALA+2wYdAABgfQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWZ1DXQDax+WSSkulykopIUHKyJCczlBXBQBAeCHoRKDiYikvT/rqq3+2JSdLjz4q5eSEri4AAMINl64iTHGxNG2ad8iRpIoKd3txcWjqAgAgHBF0IojL5T6TY0zjbfVt+fnufgAAgKATUUpLG5/JacgYad8+dz8AAEDQiSiVlf7tBwCA1RF0IkhCgn/7AQBgdbYNOkVFRUpLS9OoUaNCXUqbZWS4n65yOJre7nBIKSnufgAAwMZBJzc3Vzt37lRZWVmoS2kzp9P9CLnUOOzUvy4sZD4dAADq2TboRKqcHGnFCikpybs9Odndzjw6AAD8ExMGRqCcHCk7m5mRAQBoDUEnQjmd0tixoa4CAIDwxqUrAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWUwYiGa5XMy+DACIbAQdNKm4WMrLk7766p9tycnuRUVZTwsAECm4dIVGiouladO8Q44kVVS424uLQ1MXAAC+IujAi8vlPpNjTONt9W35+e5+AACEO4IOvJSWNj6T05Ax0r597n4AAIQ7gg68VFb6tx8AAKFk26BTVFSktLQ0jRo1KtSlhJWEBP/2AwAglGwbdHJzc7Vz506VlZWFupSwkpHhfrrK4Wh6u8MhpaS4+wEAEO5sG3TQNKfT/Qi51Djs1L8uLGQ+HQBAZCDooJGcHGnFCikpybs9Odndzjw6AIBIwYSBaFJOjpSdzczIAIDIRtBBs5xOaezYUFcBAED7EXQQUqynBQAIJIIOQob1tAAAgcbNyAgJ1tMCAAQDQQdBx3paAIBgIegg6FhPCwAQLAQdBB3raQEAgoWbkRF0wV5Piye7AMC+OKODoAvmelrFxVJqqjRunDR9uvv31FRudgYAuyDoIOiCtZ5WMJ/scrmkkhKHNm1KUkmJgxupASBMEHQQEoFeTyuYT3bVnzWaMKGzFi0aqQkTOnPWCADCBEEHIZOTI33xhbRhg7R8ufv38nL/TBYYrCe7mA8IAMIbNyMjpAK1nlYwnuxq7ayRw+E+a5Sdzc3PABAqnNGBJQXjyS7mAwKA8EfQgSUF48ku5gMCgPBH0IElBePJrmDPBwQA8B1BB5YV6Ce7gjkfEACgfbgZGZaWk+O+GTgQMyPXnzWaNs0dahrelOzP+YAAAO1H0IHlBerJLumfZ43y8rxvTE5OdoccfzwqDwBoP4IO0EH1Z402bPhea9bsUFbWcI0b15kzOQAQBgg6gB84nVJmplF1dYUyM4cRcgAgTHAzMgAAsCzbBp2ioiKlpaVp1KhRoS4FAAAEiG2DTm5urnbu3KmysrJQlwK0icslbdwoPf+8+3dWSAeA1nGPDhABioubfrLr0Ud5sgsAWmLbMzpApGCFdABoP4IOEMZaWyFdcq+QzmUsAGgaQQcIY6yQDgAdQ9ABwhgrpANAxxB0gDDGCukA0DEEHSCMsUI6AHQMQQcIY/UrpEuNww4rpANA6wg6QJirXyE9Kcm7PTnZ3c48OgDQPCYMBCJA/QrppaXuG48TEtyXqziTAwAtI+gAEcLplMaODXUVABBZuHQFAAAsi6ADAAAsi6ADAAAsi6ADAAAsi6ADAAAsi6euAHi4XDzCDsBaCDoAJEnFxVJenvdq6cnJ7pmZmZQQQKTi0hUAFRdL06Z5hxxJqqhwtxcXh6YuAOgogg5gcy6X+0yOMY231bfl57v7AUCkIegANlda2vhMTkPGSPv2ufsBQKQh6AA2V1np334AEE4IOoDNJST4tx8AhBOCDmBzGRnup6scjqa3OxxSSoq7HwBEGoIOYHNOp/sRcqlx2Kl/XVjIfDoAIhNBB4BycqQVK6SkJO/25GR3O/PoAIhUTBgIQJI7zGRnMzMyAGsh6ADwcDqlsWNDXQUA+A+XrgAAgGX5JegcPXrUH7sBAADwK5+DzkMPPaQXX3zR8/raa6/VaaedpqSkJL3//vt+LQ4AAKAjfA46ixcvVkpKiiRp3bp1WrdundasWaOsrCzdddddfi8QAACgvXy+GfnAgQOeoPPKK6/o2muv1cSJE5Wamqr09HS/FwjAelwunu4CEBw+n9Hp3bu39u3bJ0lau3atxo8fL0kyxsjF8sYAWlFcLKWmSuPGSdOnu39PTXW3A4C/+Rx0cnJyNH36dE2YMEFHjhxRVlaWJGn79u0666yz/F4gAOsoLpamTWu8WnpFhbudsAPA33wOOr/97W81Z84cpaWlad26derevbskqbKyUj/96U/9XiAAa3C5pLw8yZjG2+rb8vPd/QDAX3y+RycqKkp33nlno/af//znfikIgDWVljY+k9OQMdK+fe5+TFoIwF/aNY/OH//4R/3whz9UYmKi9u7dK0kqLCzUqlWr/FocAOuorPRvPwBoC5+DzhNPPKGCggJlZWXp6NGjnhuQe/XqpcLCQn/X1yZXXXWVevfurWnTpoXk8wG0LiHBv/0AoC18DjqPPfaYnnrqKf3yl7+Us8HzoCNHjtSHH37o1+LaKi8vT88991xIPhtA22RkuFdDdzia3u5wSCkp7n4A4C8+B53y8nJdcMEFjdpjYmJUXV3tl6J8NXbsWPXo0SMknw2gbZxO6dFH3X8+NezUvy4sZD4dAP7lc9AZNGiQduzY0ah97dq1Ou+883wuYNOmTbryyiuVmJgoh8OhlStXNupTVFSk1NRUdenSRenp6dq6davPnwMg9HJypBUrpKQk7/bkZHd7Tk5o6gJgXT4/dVVQUKDc3Fx99913MsZo69atev755/Xggw/q6aef9rmA6upqDRs2TLfccotymvgp9+KLL6qgoECLFy9Wenq6CgsLNWnSJO3evVv9+vXz+fNOnjypkydPel5XVVVJkmpra1VbW+vz/ppTvy9/7jNS2HXsdh235NvYr7xSuvxy6e23HZ6ZkX/4QyOnU4rEL51dj7tdxy0x9oa/h1Jba3AY09SsFi1btmyZ7rnnHu3Zs0eSlJiYqHvvvVezZs3ydVfexTgcevnllzV16lRPW3p6ukaNGqXHH39cklRXV6eUlBTdfvvtmjt3rqffxo0b9fjjj2vFihUtfsY999yje++9t1H78uXLFRsb26H6AQBAcJw4cULTp0/Xt99+q549ezbbz+czOpI0Y8YMzZgxQydOnNDx48fbdWalLWpqavTee+9p3rx5nrZOnTpp/Pjx2rJlS7v2OW/ePBUUFHheV1VVKSUlRRMnTmzxC+Wr2tparVu3ThMmTFBUVJTf9hsJ7Dp2u45bCs+xu1xNnzXyt3AcezDYddwSYw+XsddfkWlNu4JOvdjY2ICeBfn666/lcrkUHx/v1R4fH69PPvnE83r8+PF6//33VV1dreTkZP35z3/WmDFjmtxnTEyMYmJiGrVHRUUF5KAFar+RwK5jt+u4pfAZe3GxexbmhhMUJie7b4YO1H1A4TL2YLPruCXGHuqxt/XzfQ46gwYNkqO550Mlff75577ussPefPPNoH8mgPBUv57WqRfl69fT4qZnwF58Djr5+fler2tra7V9+3atXbtWd911l7/qkiT17dtXTqdTBw8e9Go/ePCg+vfv79fPAhD5WltPy+Fwr6eVnc1j7IBd+Bx08vLymmwvKirSu+++2+GCGoqOjtaIESO0fv16zw3KdXV1Wr9+vebMmePXzwIQ+VhPC8Cp2rXWVVOysrL0l7/8xef3HT9+XDt27PDMzVNeXq4dO3boyy+/lOR+nP2pp57S0qVLtWvXLs2ePVvV1dW6+eab/VU6AItgPS0Ap+rQzcgNrVixQn369PH5fe+++67GjRvneV3/RNTMmTO1ZMkSXXfddTp8+LAWLFigAwcOaPjw4Vq7dm2jG5R9VVRUpKKiIs9aXQAiH+tpATiVz0Hnggsu8LoZ2RijAwcO6PDhw/r973/vcwFjx45Va1P5zJkzx++XqnJzc5Wbm6uqqirFxcX5dd8AQqN+Pa2Kiqbv03E43NtZTwuwD5+DTsPJ/CT3vDann366xo4dq3PPPddfdQGAz+rX05o2zR1qGoYd1tMC7MnnoLNw4cJA1AEAflG/nlZT8+gUFvJoOWA3bQo6bZ19UJJfZxcGgPbIyXE/Ql5aKs/MyBkZnMkB7KhNQadXr14tThIoue/VcTgc3NwLICw4nTxCDqCNQWfDhg2BrgMAAMDv2hR0MjMzA10HAACA37V7Hp0TJ07oyy+/VE1NjVf70KFDO1xUMDCPDgAA1udz0Dl8+LBuvvlmrVmzpsntkRIcmEcHAADr83kJiPz8fB09elTvvPOOunbtqrVr12rp0qU6++yztXr16kDUCABhyeWSSkoc2rQpSSUlDkXI//MAW/H5jM5bb72lVatWaeTIkerUqZMGDhyoCRMmqGfPnnrwwQd1xRVXBKJOAAgrxcX1c/V0ljRSixa55+p59FHm6gHCic9ndKqrq9WvXz9JUu/evXX48GFJ0pAhQ7Rt2zb/VgcAYai42D378qkrpVdUuNuLi0NTF4DGfA46gwcP1u7duyVJw4YN05NPPqmKigotXrxYCayUB8DiXC73mZym1tKqb8vPF5exgDDh86WrvLw8VVZWSnIvBzF58mQtW7ZM0dHRWrJkib/rA4CwUlra+ExOQ8ZI+/a5+zFhIRB6PgedG264wfPnESNGaO/evfrkk080YMAA9e3b16/FAUC4+f//5/mtH4DA8vnS1dtvv+31OjY2VhdeeCEhB4AttPUKPVfygfDgc9C59NJLNWjQIP37v/+7du7cGYiagqKoqEhpaWkaNWpUqEsBEEEyMtxPVzW3/J/DIaWkuPsBCD2fg87+/ft1xx13qKSkROeff76GDx+uRx55RF+1dNE6DOXm5mrnzp0qKysLdSkAIojT6X6EXGocdupfFxayUjoQLnwOOn379tWcOXO0efNm7dmzR9dcc42WLl2q1NRUXXrppYGoEQDCSk6OtGKFlJTk3Z6c7G5nHh0gfLR7rStJGjRokObOnathw4Zp/vz5Kikp8VddABDWcnKk7Gxpw4bvtWbNDmVlDde4cZ05kwOEGZ/P6NTbvHmzfvrTnyohIUHTp0/X+eefr1dffdWftQFAWHM6pcxMo0suqVBmpiHkAGHI5zM68+bN0wsvvKD9+/drwoQJevTRR5Wdna3Y2NhA1AcAANBuPgedTZs26a677tK1117LI+UAACCs+Rx0Nm/eHIg6AAAA/K5DNyMDAALL5XIvJ1FZ6Z6EMCODR9cBXxB0ACBMFRe7FxBtOE1ZcrJ7Hh8eYQfapt1PXUU6ZkYGEM6Ki6Vp0xovIFpR4W4vLg5NXUCk8SnouFwubdq0SUePHg1QOcHDzMgAwpXL5T6TY0zjbfVt+fnufgBa5lPQcTqdmjhxor755ptA1QMAtlda2vhMTkPGSPv2ufsBaJnPl67OP/98ff7554GoBQAg943H/uwH2JnPQef+++/XnXfeqVdeeUWVlZWqqqry+gUA6JiEBP/2A+zM56euLr/8cknSlClT5GiwdK8xRg6HQy4uGgNAh2RkuJ+uqqho+j4dh8O9PSMj+LUBkcbnoLNhw4ZA1AEA+H9Op/sR8mnT3KGmYdip//9lYaH/5tNhrh5Ymc9BJzMzMxB1AAAayMmRVqxoeh6dwkL/zaPDXD2wunZPGHjixAl9+eWXqqmp8WofOnRoh4sCALiDRnZ24M621M/Vc+rlsfq5elasIOwg8vkcdA4fPqybb75Za9asaXI79+gAgP84ndLYsf7fb2tz9Tgc7rl6srO5jIXI5vNTV/n5+Tp69Kjeeecdde3aVWvXrtXSpUt19tlna/Xq1YGoEQDgZ8zVA7vw+YzOW2+9pVWrVmnkyJHq1KmTBg4cqAkTJqhnz5568MEHdcUVVwSiTgCAHzFXD+zC5zM61dXV6tevnySpd+/eOnz4sCRpyJAh2rZtm3+rCyDWugJgZ8zVA7vwOegMHjxYu3fvliQNGzZMTz75pCoqKrR48WIlRNB3BGtdAbCz+rl6GkyH5sXhkFJSmKsHkc/nS1d5eXmq/P9zmQsXLtTkyZO1bNkyRUdHa8mSJf6uDwAQAMGeqwcIFZ+Dzg033OD584gRI7R371598sknGjBggPr27evX4gAAgROsuXqAUGr3PDr1YmNjdeGFF/qjFgBAkAV6rh4g1NoUdAoKCtq8w0WLFrW7GABA8AVqrh4gHLQp6Gzfvr1NO3M0d1cbAMDWWE8LodKmoMNCngCA9mI9LYSSz4+XAwDQVvXraZ06C3P9elrFxaGpC/bh883I48aNa/ES1VtvvdWhggAA1sB6WggHPged4cOHe72ura3Vjh079NFHH2nmzJn+qgsAEOF8WU+Lm6ERKD4Hnd/+9rdNtt9zzz06fvx4hwsCAFgD62khHPjtHp0bbrhBzzzzjL92BwCIcKynhXDgt6CzZcsWdenSxV+7AwBEONbTQjjw+dJVzinPAhpjVFlZqXfffVfz58/3W2EAgMjGeloIBz6f0YmLi/P61adPH40dO1avvfaaFi5cGIgaA6KoqEhpaWkaNWpUqEsBAMuqX08rKcm7PTnZ3c48Ogg0n8/oPPvss4GoI+hyc3OVm5urqqoqxcXFhbocALAs1tNCKHV4UU8AAFrDeloIFZ+DTu/evZucMNDhcKhLly4666yzdNNNN+nmm2/2S4EAAADt5XPQWbBggR544AFlZWVp9OjRkqStW7dq7dq1ys3NVXl5uWbPnq3vv/9et956q98LBgAAaCufg87bb7+t+++/X7fddptX+5NPPqk33nhDf/nLXzR06FD97ne/I+gAAICQ8vmpq9dff13jx49v1H7ZZZfp9ddflyRdfvnl+vzzzzteHQAAQAf4HHT69Omjv/71r43a//rXv6pPnz6SpOrqavXo0aPj1QEAAHSAz5eu5s+fr9mzZ2vDhg2ee3TKysr02muvafHixZKkdevWKTMz07+VAgDQApeLR9jRmM9B59Zbb1VaWpoef/xxFRcXS5IGDx6skpISXXTRRZKkO+64w79VAgDQguJiKS/Pe7X05GT3zMxMSmhv7ZpH5+KLL9bFF1/s71oAAPBZcbF7mYmGS0xIUkWFu50ZmO2tXUGnrq5On332mQ4dOqS6ujqvbZdccolfCgMAoDUul/tMzqkhR3K3ORxSfr57ZmYuY9mTz0Hn73//u6ZPn669e/fKnPI3y+FwyOVy+a04AABaUlrqfbnqVMZI+/a5+zEzsz35HHRuu+02jRw5Uq+++qoSEhKanCUZAIBgqKz0bz9Yj89B59NPP9WKFSt01llnBaIeAADaLCHBv/1gPT7Po5Oenq7PPvssELUAAOCTjAz301XNXVxwOKSUFHc/2JPPZ3Ruv/123XHHHTpw4ICGDBmiqKgor+1Dhw71W3EAALTE6XQ/Qj5tmjvUNLx1tD78FBZyI7Kd+Rx0rr76aknSLbfc4mlzOBwyxnAzMgAg6HJy3I+QNzWPTmGhfx8td7mkkhKHNm1KUrduDo0bR4gKdz4HnfLy8kDUAQBAu+XkuB8hD+TMyP+clLCzpJFatIhJCSOBz0Fn4MCBgagj6IqKilRUVMQZKACwCKczcI+QMylh5GpT0Fm9erWysrIUFRWl1atXt9h3ypQpfiks0HJzc5Wbm6uqqirFxcWFuhwAQJhiUsLI1qagM3XqVB04cED9+vXT1KlTm+3HPToAAKthUsLI1qag03CZh1OXfAAAwMqYlDCytWutKwAA7CLYkxK6XIG9qdpu2jxh4JYtW/TKK694tT333HMaNGiQ+vXrp5/85Cc6efKk3wsEACCUgjkpYXGxlJoqjRsnTZ/u/j011d2O9mlz0PnP//xPffzxx57XH374oWbNmqXx48dr7ty5+utf/6oHH3wwIEUCABAq9ZMSSo3Djj8nJax/suvU+4Hqn+wi7LRPm4POjh07dNlll3lev/DCC0pPT9dTTz2lgoIC/e53v9NLL70UkCIBAAil+kkJk5K825OT/fNoeWtPdknuJ7t43sd3bQ4633zzjeLj4z2vS0pKlJWV5Xk9atQo7du3z7/VAQAQJnJypC++kNat+14FBe9q3brvVV7un/lzfHmyC75pc9CJj4/3zIpcU1Ojbdu26V/+5V88248dO9Zo3SsAAKzE6ZQyM40uuaRCmZnGbzcJ82RX4LQ56Fx++eWaO3euSktLNW/ePMXGxiqjwZ1XH3zwgc4888yAFAkAgJUF+8kuO2lz0LnvvvvUuXNnZWZm6qmnntJTTz2l6Ohoz/ZnnnlGEydODEiRAABYWTCf7LKbNs+j07dvX23atEnffvutunfvLucp5+v+/Oc/q3v37n4vEAAAq6t/smvaNHeoaXhTsj+f7LKjNp/RqRcXF9co5EhSnz59vM7wAACAtgv0k112xczIAACEiZwc9+KgzIzsPwQdAADCiNPJ4qD+5POlKwAAgEhB0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZl27WuioqKVFRUJJfLFepSAAAIKpfLPguH2vaMTm5urnbu3KmysrJQlwIAQNAUF0upqdK4cdL06e7fU1Pd7VZk26ADAIDdFBdL06ZJX33l3V5R4W63Ytgh6AAAYAMul5SXJxnTeFt9W36+u5+VEHQAALCB0tLGZ3IaMkbat8/dz0oIOgAA2EBlpX/7RQqCDgAANpCQ4N9+kYKgAwCADWRkSMnJksPR9HaHQ0pJcfezEoIOAAA24HRKjz7q/vOpYaf+dWGh9ebTIegAAGATOTnSihVSUpJ3e3Kyuz0nJzR1BZJtZ0YGAMCOcnKk7Gz7zIxM0AEAwGacTmns2FBXERxcugIAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZliaDzyiuvaPDgwTr77LP19NNPh7ocAAAQJjqHuoCO+v7771VQUKANGzYoLi5OI0aM0FVXXaXTTjst1KUBAIAQi/gzOlu3btUPfvADJSUlqXv37srKytIbb7wR6rIAAEAYCHnQ2bRpk6688kolJibK4XBo5cqVjfoUFRUpNTVVXbp0UXp6urZu3erZtn//fiUlJXleJyUlqaKiIhilAwCAMBfyS1fV1dUaNmyYbrnlFuXk5DTa/uKLL6qgoECLFy9Wenq6CgsLNWnSJO3evVv9+vXz+fNOnjypkydPel5XVVVJkmpra1VbW9v+gZyifl/+3GeksOvY7TpuibE3/N0u7DpuibE3/D2U2lqDwxhjAlxLmzkcDr388suaOnWqpy09PV2jRo3S448/Lkmqq6tTSkqKbr/9ds2dO1d/+9vf9Mgjj+jll1+WJOXn52v06NGaPn16k59xzz336N57723Uvnz5csXGxvp/UAAAwO9OnDih6dOn69tvv1XPnj2b7RfWQaempkaxsbFasWKFV/iZOXOmjh49qlWrVun777/Xeeedp40bN3puRv7b3/7W7M3ITZ3RSUlJ0ddff93iF8pXtbW1WrdunSZMmKCoqCi/7TcS2HXsdh23xNjtOHa7jlti7OEy9qqqKvXt27fVoBPyS1ct+frrr+VyuRQfH+/VHh8fr08++USS1LlzZ/3mN7/RuHHjVFdXp1/84hctPnEVExOjmJiYRu1RUVEBOWiB2m8ksOvY7TpuibHbcex2HbfE2EM99rZ+flgHnbaaMmWKpkyZEuoyAABAmAn5U1ct6du3r5xOpw4ePOjVfvDgQfXv3z9EVQEAgEgR1kEnOjpaI0aM0Pr16z1tdXV1Wr9+vcaMGRPCygAAQCQI+aWr48eP67PPPvO8Li8v144dO9SnTx8NGDBABQUFmjlzpkaOHKnRo0ersLBQ1dXVuvnmm0NYNQAAiAQhDzrvvvuuxo0b53ldUFAgyf1k1ZIlS3Tdddfp8OHDWrBggQ4cOKDhw4dr7dq1jW5Q9lVRUZGKiorkcrk6tB8AABC+Qh50xo4dq9aecJ8zZ47mzJnj18/Nzc1Vbm6uqqqqFBcX59d9AwCA8BDW9+gAAAB0BEEHAABYFkEHAABYFkEHAABYFkEHAABYFkEHAABYlm2DTlFRkdLS0jRq1KhQlwIAAALEtkEnNzdXO3fuVFlZWahLAQAAAWLboAMAAKyPoAMAACyLoAMAACyLoAMAACyLoAMAACyLoAMAACyLoAMAACzLtkGHCQMBALA+2wYdJgwEAMD6bBt0AACA9RF0AACAZRF0AACAZRF0AACAZRF0AACAZRF0AACAZRF0AACAZRF0AACAZdk26DAzMgAA1mfboMPMyAAAWJ9tgw4AALA+gg4AALAsgg4AALAsgg4AALAsgg4AALAsgg4AALAsgg4AALAsgg4AALAsgg4AALAsgg4AALAs2wYd1roCAMD6bBt0WOsKAADrs23QAQAA1tc51AUAAADrcbmk0lKpslJKSJAyMiSnM/h1EHQAAIBfFRdLeXnSV1/9sy05WXr0USknJ7i1cOkKAAD4TXGxNG2ad8iRpIoKd3txcXDrIegAAAC/cLncZ3KMabytvi0/390vWAg6AADAL0pLG5/JacgYad8+d79gIegAAAC/qKz0bz9/IOgAAAC/SEjwbz9/IOgAAAC/yMhwP13lcDS93eGQUlLc/YKFoAMAAPzC6XQ/Qi41Djv1rwsLgzufDkEHAAD4TU6OtGKFlJTk3Z6c7G4P9jw6TBgIAAD8KidHys5mZmQAAGBRTqc0dmyoq7DxpauioiKlpaVp1KhRoS4FAAAEiG2DTm5urnbu3KmysrJQlwIAAALEtkEHAABYH0EHAABYFkEHAABYFkEHAABYFkEHAABYFkEHAABYFkEHAABYlu1nRjbGSJKqqqr8ut/a2lqdOHFCVVVVioqK8uu+w51dx27XcUuM3Y5jt+u4JcYeLmOv/3e7/t/x5tg+6Bw7dkySlJKSEuJKAACAr44dO6a4uLhmtztMa1HI4urq6rR//3716NFDjlPXlO+AqqoqpaSkaN++ferZs6ff9hsJ7Dp2u45bYux2HLtdxy0x9nAZuzFGx44dU2Jiojp1av5OHNuf0enUqZOSk5MDtv+ePXuG/C9DqNh17HYdt8TY7Th2u45bYuzhMPaWzuTU42ZkAABgWQQdAABgWQSdAImJidHChQsVExMT6lKCzq5jt+u4JcZux7HbddwSY4+0sdv+ZmQAAGBdnNEBAACWRdABAACWRdABAACWRdABAACWRdDpgKKiIqWmpqpLly5KT0/X1q1bW+z/5z//Weeee666dOmiIUOG6LXXXgtSpf7z4IMPatSoUerRo4f69eunqVOnavfu3S2+Z8mSJXI4HF6/unTpEqSK/eOee+5pNIZzzz23xfdY4XhLUmpqaqOxOxwO5ebmNtk/ko/3pk2bdOWVVyoxMVEOh0MrV6702m6M0YIFC5SQkKCuXbtq/Pjx+vTTT1vdr68/K4KtpXHX1tbq7rvv1pAhQ9StWzclJibqxhtv1P79+1vcZ3u+Z0KhtWN+0003NRrH5MmTW91vuB9zqfWxN/V973A49MgjjzS7z3A87gSddnrxxRdVUFCghQsXatu2bRo2bJgmTZqkQ4cONdn/b3/7m66//nrNmjVL27dv19SpUzV16lR99NFHQa68Y0pKSpSbm6u///3vWrdunWprazVx4kRVV1e3+L6ePXuqsrLS82vv3r1Bqth/fvCDH3iN4e233262r1WOtySVlZV5jXvdunWSpGuuuabZ90Tq8a6urtawYcNUVFTU5PaHH35Yv/vd77R48WK988476tatmyZNmqTvvvuu2X36+rMiFFoa94kTJ7Rt2zbNnz9f27ZtU3FxsXbv3q0pU6a0ul9fvmdCpbVjLkmTJ0/2Gsfzzz/f4j4j4ZhLrY+94ZgrKyv1zDPPyOFw6Oqrr25xv2F33A3aZfTo0SY3N9fz2uVymcTERPPggw822f/aa681V1xxhVdbenq6+bd/+7eA1hlohw4dMpJMSUlJs32effZZExcXF7yiAmDhwoVm2LBhbe5v1eNtjDF5eXnmzDPPNHV1dU1ut8LxNsYYSebll1/2vK6rqzP9+/c3jzzyiKft6NGjJiYmxjz//PPN7sfXnxWhduq4m7J161Yjyezdu7fZPr5+z4SDpsY+c+ZMk52d7dN+Iu2YG9O2456dnW0uvfTSFvuE43HnjE471NTU6L333tP48eM9bZ06ddL48eO1ZcuWJt+zZcsWr/6SNGnSpGb7R4pvv/1WktSnT58W+x0/flwDBw5USkqKsrOz9fHHHwejPL/69NNPlZiYqDPOOEMzZszQl19+2Wxfqx7vmpoa/elPf9Itt9zS4iK4VjjepyovL9eBAwe8jmtcXJzS09ObPa7t+VkRCb799ls5HA716tWrxX6+fM+Es40bN6pfv34aPHiwZs+erSNHjjTb16rH/ODBg3r11Vc1a9asVvuG23En6LTD119/LZfLpfj4eK/2+Ph4HThwoMn3HDhwwKf+kaCurk75+fm6+OKLdf755zfbb/DgwXrmmWe0atUq/elPf1JdXZ0uuugiffXVV0GstmPS09O1ZMkSrV27Vk888YTKy8uVkZGhY8eONdnfisdbklauXKmjR4/qpptuaraPFY53U+qPnS/HtT0/K8Ldd999p7vvvlvXX399i4s6+vo9E64mT56s5557TuvXr9dDDz2kkpISZWVlyeVyNdnfisdckpYuXaoePXooJyenxX7heNxtv3o52i83N1cfffRRq9dfx4wZozFjxnheX3TRRTrvvPP05JNP6r777gt0mX6RlZXl+fPQoUOVnp6ugQMH6qWXXmrT/3Cs4g9/+IOysrKUmJjYbB8rHG80rba2Vtdee62MMXriiSda7GuV75kf/ehHnj8PGTJEQ4cO1ZlnnqmNGzfqsssuC2FlwfXMM89oxowZrT5YEI7HnTM67dC3b185nU4dPHjQq/3gwYPq379/k+/p37+/T/3D3Zw5c/TKK69ow4YNSk5O9um9UVFRuuCCC/TZZ58FqLrA69Wrl84555xmx2C14y1Je/fu1Ztvvqkf//jHPr3PCsdbkufY+XJc2/OzIlzVh5y9e/dq3bp1LZ7NaUpr3zOR4owzzlDfvn2bHYeVjnm90tJS7d692+fvfSk8jjtBpx2io6M1YsQIrV+/3tNWV1en9evXe/1PtqExY8Z49ZekdevWNds/XBljNGfOHL388st66623NGjQIJ/34XK59OGHHyohISEAFQbH8ePHtWfPnmbHYJXj3dCzzz6rfv366YorrvDpfVY43pI0aNAg9e/f3+u4VlVV6Z133mn2uLbnZ0U4qg85n376qd58802ddtppPu+jte+ZSPHVV1/pyJEjzY7DKse8oT/84Q8aMWKEhg0b5vN7w+K4h/pu6Ej1wgsvmJiYGLNkyRKzc+dO85Of/MT06tXLHDhwwBhjzL/+67+auXPnevpv3rzZdO7c2fz61782u3btMgsXLjRRUVHmww8/DNUQ2mX27NkmLi7ObNy40VRWVnp+nThxwtPn1LHfe++95vXXXzd79uwx7733nvnRj35kunTpYj7++ONQDKFd7rjjDrNx40ZTXl5uNm/ebMaPH2/69u1rDh06ZIyx7vGu53K5zIABA8zdd9/daJuVjvexY8fM9u3bzfbt240ks2jRIrN9+3bP00W/+tWvTK9evcyqVavMBx98YLKzs82gQYPMP/7xD88+Lr30UvPYY495Xrf2syIctDTumpoaM2XKFJOcnGx27Njh9X1/8uRJzz5OHXdr3zPhoqWxHzt2zNx5551my5Ytpry83Lz55pvmwgsvNGeffbb57rvvPPuIxGNuTOt/340x5ttvvzWxsbHmiSeeaHIfkXDcCTod8Nhjj5kBAwaY6OhoM3r0aPP3v//dsy0zM9PMnDnTq/9LL71kzjnnHBMdHW1+8IMfmFdffTXIFXecpCZ/Pfvss54+p449Pz/f83WKj483l19+udm2bVvwi++A6667ziQkJJjo6GiTlJRkrrvuOvPZZ595tlv1eNd7/fXXjSSze/fuRtusdLw3bNjQ5N/v+vHV1dWZ+fPnm/j4eBMTE2Muu+yyRl+TgQMHmoULF3q1tfSzIhy0NO7y8vJmv+83bNjg2cep427teyZctDT2EydOmIkTJ5rTTz/dREVFmYEDB5pbb721UWCJxGNuTOt/340x5sknnzRdu3Y1R48ebXIfkXDcHcYYE9BTRgAAACHCPToAAMCyCDoAAMCyCDoAAMCyCDoAAMCyCDoAAMCyCDoAAMCyCDoAAMCyCDoAAMCyCDqAjTgcDq1cuTLonzt27Fjl5+cH/XPbYuPGjXI4HDp69GioS2mzcP56AuGGoANYxOHDhzV79mwNGDBAMTEx6t+/vyZNmqTNmzd7+lRWViorKyuEVQJAcHUOdQEA/OPqq69WTU2Nli5dqjPOOEMHDx7U+vXrdeTIEU+f/v37h7DC9jPGyOVyqXNn+/zICuSYXS6XHA6HOnXi/7qwPv6WAxZw9OhRlZaW6qGHHtK4ceM0cOBAjR49WvPmzdOUKVM8/Rpeuvriiy/kcDhUXFyscePGKTY2VsOGDdOWLVu89v3UU08pJSVFsbGxuuqqq7Ro0SL16tXLs/2mm27S1KlTvd6Tn5+vsWPHNlvvH//4R40cOVI9evRQ//79NX36dB06dMizvf5y0po1azRixAjFxMTo7bffbrSfiy66SHfffbdX2+HDhxUVFaVNmza16bNOdc8992j48OFebYWFhUpNTfVqe/rpp3XeeeepS5cuOvfcc/X73/++2X1K0smTJ/Wzn/1M/fr1U5cuXfTDH/5QZWVlrY65urpaN954o7p3766EhAT95je/aXLfd955p5KSktStWzelp6dr48aNnu1LlixRr169tHr1aqWlpSkmJkZffvlli/UCVkHQASyge/fu6t69u1auXKmTJ0/69N5f/vKXuvPOO7Vjxw6dc845uv766/X9999LkjZv3qzbbrtNeXl52rFjhyZMmKAHHnigw/XW1tbqvvvu0/vvv6+VK1fqiy++0E033dSo39y5c/WrX/1Ku3bt0tChQxttnzFjhl544QU1XJv4xRdfVGJiojIyMnz6LF8sW7ZMCxYs0AMPPKBdu3bpv/7rvzR//nwtXbq02ff84he/0F/+8hctXbpU27Zt01lnnaVJkybpf//3f1sc81133aWSkhKtWrVKb7zxhjZu3Kht27Z5vWfOnDnasmWLXnjhBX3wwQe65pprNHnyZH366aeePidOnNBDDz2kp59+Wh9//LH69evXoa8BEDFCunY6AL9ZsWKF6d27t+nSpYu56KKLzLx588z777/v1UeSefnll40xxpSXlxtJ5umnn/Zs//jjj40ks2vXLmOMMdddd5254oorvPYxY8YMExcX53k9c+ZMk52d7dUnLy/PZGZmel5nZmaavLy8ZmsvKyszksyxY8eMMcZs2LDBSDIrV65sccyHDh0ynTt3Nps2bfK0jRkzxtx9990+f9Y333xjjDFm4cKFZtiwYV7v+e1vf2sGDhzoeX3mmWea5cuXe/W57777zJgxY5r8zOPHj5uoqCizbNkyT1tNTY1JTEw0Dz/8cLNjPnbsmImOjjYvvfSSp+3IkSOma9eunq/n3r17jdPpNBUVFV6fedlll5l58+YZY4x59tlnjSSzY8eOZr8ugFVxRgewiKuvvlr79+/X6tWrNXnyZG3cuFEXXnihlixZ0uL7Gp4pSUhIkCTPpZ3du3dr9OjRXv1Pfd0e7733nq688koNGDBAPXr0UGZmpiQ1upwycuTIFvdz+umna+LEiVq2bJkkqby8XFu2bNGMGTN8/qy2qq6u1p49ezRr1izPmbTu3bvr/vvv1549e5p8z549e1RbW6uLL77Y0xYVFaXRo0dr165dzY55z549qqmpUXp6uqetT58+Gjx4sOf1hx9+KJfLpXPOOcernpKSEq96oqOjmzwrBlidfe7sA2ygS5cumjBhgiZMmKD58+frxz/+sRYuXNjipZqoqCjPnx0OhySprq6uzZ/ZqVMnr0tHkvtyUXOqq6s1adIkTZo0ScuWLdPpp5+uL7/8UpMmTVJNTY1X327durX6+TNmzNDPfvYzPfbYY1q+fLmGDBmiIUOG+PxZbR3P8ePHJbnvXWoYQCTJ6XS2Wm9r2jLmho4fPy6n06n33nuv0ed3797d8+euXbt6ji9gJ5zRASwsLS1N1dXV7X7/4MGDvW6YldTo9emnn67Kykqvth07djS7z08++URHjhzRr371K2VkZOjcc89t8ebg1mRnZ+u7777T2rVrtXz5cq+zOe35rNNPP10HDhzwCjsNxxMfH6/ExER9/vnnOuuss7x+DRo0qMl9nnnmmYqOjvZ61L+2tlZlZWVKS0trtpYzzzxTUVFReueddzxt33zzjf7nf/7H8/qCCy6Qy+XSoUOHGtUTqU/ZAf7EGR3AAo4cOaJrrrlGt9xyi4YOHaoePXro3Xff1cMPP6zs7Ox27/f222/XJZdcokWLFunKK6/UW2+9pTVr1nidGbj00kv1yCOP6LnnntOYMWP0pz/9SR999JEuuOCCJvc5YMAARUdH67HHHtNtt92mjz76SPfdd1+7a+zWrZumTp2q+fPna9euXbr++us79Fljx47V4cOH9fDDD2vatGlau3at1qxZo549e3r63HvvvfrZz36muLg4TZ48WSdPntS7776rb775RgUFBU3WOHv2bN11113q06ePBgwYoIcfflgnTpzQrFmzmq2le/fumjVrlu666y6ddtpp6tevn375y196PRZ+zjnnaMaMGbrxxhv1m9/8RhdccIEOHz6s9evXa+jQobriiit8+XIC1hPie4QA+MF3331n5s6day688EITFxdnYmNjzeDBg81//Md/mBMnTnj6qYmbkbdv3+7Z/s033xhJZsOGDZ62//7v/zZJSUmma9euZurUqeb+++83/fv39/r8BQsWmPj4eBMXF2d+/vOfmzlz5rR4M/Ly5ctNamqqiYmJMWPGjDGrV6/2quXUG4Rb89prrxlJ5pJLLmm0rT2f9cQTT5iUlBTTrVs3c+ONN5oHHnjA62ZkY4xZtmyZGT58uImOjja9e/c2l1xyiSkuLm62xn/84x/m9ttvN3379jUxMTHm4osvNlu3bvVsb27Mx44dMzfccIOJjY018fHx5uGHH2709aypqTELFiwwqampJioqyiQkJJirrrrKfPDBB8YY983IDW8gB+zEYcwpF6MBoAW33nqrPvnkE5WWloa6FABoFZeuALTo17/+tSZMmKBu3bppzZo1Wrp0aauT4wFAuOCMDoAWXXvttdq4caOOHTumM844Q7fffrtuu+22UJcFAG1C0AEAAJbF4+UAAMCyCDoAAMCyCDoAAMCyCDoAAMCyCDoAAMCyCDoAAMCyCDoAAMCyCDoAAMCy/g9H91NY/NgsOgAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "nbgrader": { + "grade": false, + "grade_id": "cell-0c1fe666f52fe53c", + "locked": true, + "schema_version": 2, + "solution": false + }, + "id": "eQzYmeDxOcMC" + }, + "source": [ + "#### 2.3. PCA trasformation\n", + "* Select the appropriate number of components. Briefly explain your choice. Should you normalize the data?\n", + "\n", + "*Use `fit` and `transform` methods to transform the `train` and `test` parts.*" + ] + }, + { + "cell_type": "markdown", + "source": [ + "The largest singular values correspond to the largest variance values. Let's use just two first components." + ], + "metadata": { + "id": "MYyBuUq_qk5a" + } + }, + { + "cell_type": "code", + "execution_count": 184, + "metadata": { + "nbgrader": { + "grade": true, + "grade_id": "cell-96ab18d96473ef71", + "locked": false, + "points": 5, + "schema_version": 2, + "solution": true + }, + "id": "CXPORnOdOcMC" + }, + "outputs": [], + "source": [ + "pca = PCA(n_components=7)\n", + "X_train_pd_scaled_pca = pca.fit_transform(X_train_pd_scaled)\n", + "X_test_scaled_pca = pca.transform(X_test_scaled)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_bqYopZAOcMC" + }, + "source": [ + "**Note: From this point `sklearn` [Pipeline](https://scikit-learn.org/stable/modules/compose.html) might be useful to perform transformations on the data. Refer to the [docs](https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html) for more information.**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "nbgrader": { + "grade": false, + "grade_id": "cell-d28b58a35c94e988", + "locked": true, + "schema_version": 2, + "solution": false + }, + "id": "mtFKpXv9OcMC" + }, + "source": [ + "#### 2.4. Logistic regression on PCA-preprocessed data.\n", + "* Find optimal hyperparameters for logistic regression with cross-validation on the transformed by PCA `train` data.\n", + "\n", + "* Estimate the model quality with `f1` and `accuracy` scores.\n", + "* Plot a ROC-curve for the trained model. For the multiclass case you might use `scikitplot` library (e.g. `scikitplot.metrics.plot_roc(test_labels, predicted_proba)`).\n", + "\n", + "*Note: please, use the following hyperparameters for logistic regression: `multi_class='multinomial'`, `solver='saga'` and `tol=1e-3`*" + ] + }, + { + "cell_type": "code", + "execution_count": 185, + "metadata": { + "nbgrader": { + "grade": true, + "grade_id": "cell-12d53ea45258fa82", + "locked": false, + "points": 5, + "schema_version": 2, + "solution": true + }, + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "bshV7jcSOcMC", + "outputId": "75a4c6d9-7d7d-43d5-e193-b891a2953e84" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n", + " warnings.warn(\n", + "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n", + " warnings.warn(\n", + "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n", + " warnings.warn(\n", + "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n", + " warnings.warn(\n", + "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n", + " warnings.warn(\n", + "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n", + " warnings.warn(\n", + "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n", + " warnings.warn(\n", + "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n", + " warnings.warn(\n", + "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "best params: {'C': 1, 'max_iter': 500, 'multi_class': 'multinomial', 'penalty': 'l1', 'solver': 'saga', 'tol': 0.001}\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/sklearn/model_selection/_validation.py:378: FitFailedWarning: \n", + "90 fits failed out of a total of 270.\n", + "The score on these train-test partitions for these parameters will be set to nan.\n", + "If these failures are not expected, you can try to debug them by setting error_score='raise'.\n", + "\n", + "Below are more details about the failures:\n", + "--------------------------------------------------------------------------------\n", + "90 fits failed with the following error:\n", + "joblib.externals.loky.process_executor._RemoteTraceback: \n", + "\"\"\"\n", + "Traceback (most recent call last):\n", + " File \"/usr/local/lib/python3.10/dist-packages/joblib/_parallel_backends.py\", line 273, in _wrap_func_call\n", + " return func()\n", + " File \"/usr/local/lib/python3.10/dist-packages/joblib/parallel.py\", line 589, in __call__\n", + " return [func(*args, **kwargs)\n", + " File \"/usr/local/lib/python3.10/dist-packages/joblib/parallel.py\", line 589, in \n", + " return [func(*args, **kwargs)\n", + " File \"/usr/local/lib/python3.10/dist-packages/sklearn/utils/parallel.py\", line 123, in __call__\n", + " return self.function(*args, **kwargs)\n", + " File \"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py\", line 521, in _logistic_regression_path\n", + " alpha = (1.0 / C) * (1 - l1_ratio)\n", + "TypeError: unsupported operand type(s) for -: 'int' and 'NoneType'\n", + "\"\"\"\n", + "\n", + "The above exception was the direct cause of the following exception:\n", + "\n", + "Traceback (most recent call last):\n", + " File \"/usr/local/lib/python3.10/dist-packages/sklearn/model_selection/_validation.py\", line 686, in _fit_and_score\n", + " estimator.fit(X_train, y_train, **fit_params)\n", + " File \"/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py\", line 1291, in fit\n", + " fold_coefs_ = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, prefer=prefer)(\n", + " File \"/usr/local/lib/python3.10/dist-packages/sklearn/utils/parallel.py\", line 63, in __call__\n", + " return super().__call__(iterable_with_config)\n", + " File \"/usr/local/lib/python3.10/dist-packages/joblib/parallel.py\", line 1952, in __call__\n", + " return output if self.return_generator else list(output)\n", + " File \"/usr/local/lib/python3.10/dist-packages/joblib/parallel.py\", line 1595, in _get_outputs\n", + " yield from self._retrieve()\n", + " File \"/usr/local/lib/python3.10/dist-packages/joblib/parallel.py\", line 1699, in _retrieve\n", + " self._raise_error_fast()\n", + " File \"/usr/local/lib/python3.10/dist-packages/joblib/parallel.py\", line 1734, in _raise_error_fast\n", + " error_job.get_result(self.timeout)\n", + " File \"/usr/local/lib/python3.10/dist-packages/joblib/parallel.py\", line 736, in get_result\n", + " return self._return_or_raise()\n", + " File \"/usr/local/lib/python3.10/dist-packages/joblib/parallel.py\", line 754, in _return_or_raise\n", + " raise self._result\n", + "TypeError: unsupported operand type(s) for -: 'int' and 'NoneType'\n", + "\n", + " warnings.warn(some_fits_failed_message, FitFailedWarning)\n", + "/usr/local/lib/python3.10/dist-packages/sklearn/model_selection/_search.py:952: UserWarning: One or more of the test scores are non-finite: [0.26050042 0.26050042 0.58830692 0.58648874 nan nan\n", + " 0.26050042 0.2623186 0.58830692 0.58830692 nan nan\n", + " 0.26050042 0.26050042 0.58830692 0.58830692 nan nan\n", + " 0.59387823 0.59387823 0.5865221 0.5865221 nan nan\n", + " 0.59387823 0.59387823 0.58834028 0.5865221 nan nan\n", + " 0.59387823 0.59387823 0.58834028 0.5865221 nan nan\n", + " 0.59386155 0.59567973 0.58840701 0.58839033 nan nan\n", + " 0.59386155 0.59386155 0.58657214 0.59387823 nan nan\n", + " 0.59202669 0.59386155 0.58840701 0.58839033 nan nan]\n", + " warnings.warn(\n" + ] + } + ], + "source": [ + "logreg_grid_search.fit(X_train_pd_scaled_pca, y_train)\n", + "print(f'best params: {logreg_grid_search.best_params_}')" + ] + }, + { + "cell_type": "code", + "source": [ + "best_estimator = LogisticRegression(**logreg_grid_search.best_params_)\n", + "best_estimator.fit(X_train_pd_scaled_pca, y_train)" + ], + "metadata": { + "id": "0pZ_l34hvxzw", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 92 + }, + "outputId": "c59ae1b1-ad32-4315-9cf0-985dec85d4f8" + }, + "execution_count": 186, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "LogisticRegression(C=1, max_iter=500, multi_class='multinomial', penalty='l1',\n", + " solver='saga', tol=0.001)" + ], + "text/html": [ + "
LogisticRegression(C=1, max_iter=500, multi_class='multinomial', penalty='l1',\n",
+              "                   solver='saga', tol=0.001)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ] + }, + "metadata": {}, + "execution_count": 186 + } + ] + }, + { + "cell_type": "code", + "source": [ + "y_pred = best_estimator.predict(X_test_scaled_pca)\n", + "print(f'f1 score: {f1_score(y_test, y_pred, average=\"macro\")}')\n", + "print(f'accuracy score: {accuracy_score(y_test, y_pred)}')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "f81bc285-7f1e-4afd-f61b-5887c8e1369b", + "id": "Js-uw8e7vx0N" + }, + "execution_count": 187, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "f1 score: 0.559058393797169\n", + "accuracy score: 0.569023569023569\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "It’s not surprising that the quality of the model has dropped, because we left only two features." + ], + "metadata": { + "id": "o-usRT14xw6J" + } + }, + { + "cell_type": "code", + "source": [ + "pred_proba = best_estimator.predict_proba(X_test_scaled_pca)\n", + "scikitplot.metrics.plot_roc(y_test, pred_proba)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 490 + }, + "id": "eryY7BBaxUOf", + "outputId": "950a7c2e-9ee3-4a69-cae1-2a27bc127108" + }, + "execution_count": 188, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 188 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1hT5xcH8G8Swg57CshQwYmiuHDg3qh1VItb26rValFbRS1aZ+seVVHrVqxif3W27kodaBUXKoKKAxEQZG9I7u8P5ErIIIFACJzP8+SRvLnjBBVO7j3veTkMwzAghBBCCKmFuOoOgBBCCCFEXSgRIoQQQkitRYkQIYQQQmotSoQIIYQQUmtRIkQIIYSQWosSIUIIIYTUWpQIEUIIIaTWokSIEEIIIbUWJUKEEEIIqbUoESKEEEJIrUWJECFEzN69e8HhcNiHlpYW7OzsMH78eMTGxkrdh2EYHDhwAJ07d4aJiQn09fXRrFkzLFmyBFlZWTLP9eeff6Jv376wsLCAtrY26tSpg88//xyXL19WKNbc3FysX78ebdu2hbGxMXR1deHq6orp06cjKiqqXO+fEFK7cGitMUJISXv37sWECROwZMkSODs7Izc3Fzdv3sTevXvh5OSER48eQVdXl91eKBTC19cXR48eRadOnTBkyBDo6+vj6tWrCAoKQuPGjXHx4kVYW1uz+zAMg4kTJ2Lv3r3w8PDAsGHDYGNjg7i4OPz5558ICwvD9evX4eXlJTPOpKQk9OnTB2FhYRgwYAB69OgBQ0NDREZG4vfff0d8fDzy8/Mr9XtFCKkBGEIIKWHPnj0MAOb27dti43PnzmUAMEeOHBEbX7FiBQOAmTNnjsSxTp48yXC5XKZPnz5i46tXr2YAMN999x0jEokk9tu/fz9z69YtuXH279+f4XK5zLFjxyRey83NZWbPni13f0UVFBQweXl5KjkWIaT6oUSIECJGViJ0+vRpBgCzYsUKdiw7O5sxNTVlXF1dmYKCAqnHmzBhAgOACQ0NZfcxMzNjGjZsyBQWFpYrxps3bzIAmK+++kqh7b29vRlvb2+J8XHjxjGOjo7s85cvXzIAmNWrVzPr169nXFxcGC6Xy9y8eZPh8XjM4sWLJY7x9OlTBgCzefNmdiwlJYWZOXMmY29vz2hrazP16tVjfv75Z0YoFIrte/jwYaZly5aMoaEhIxAImKZNmzIbNmxQ7JtACFEJqhEihCjk1atXAABTU1N27Nq1a0hJSYGvry+0tLSk7jd27FgAwOnTp9l9kpOT4evrCx6PV65YTp48CQAYM2ZMufYvy549e7B582Z8/fXXWLt2LWxtbeHt7Y2jR49KbHvkyBHweDwMHz4cAJCdnQ1vb28cPHgQY8eOxaZNm9ChQwf4+/tj1qxZ7H4XLlzAF198AVNTU/zyyy/4+eef0aVLF1y/fr1S3hMhRDrpP7kIIbVeWloakpKSkJubi1u3buGnn36Cjo4OBgwYwG7z5MkTAEDz5s1lHqf4tYiICLE/mzVrVu7YVHEMed6+fYvnz5/D0tKSHRsxYgQmT56MR48eoWnTpuz4kSNH4O3tzdZArVu3Di9evMC9e/fQoEEDAMDkyZNRp04drF69GrNnz4aDgwPOnDkDIyMjnDt3rtwJISGk4uiKECFEqh49esDS0hIODg4YNmwYDAwMcPLkSdjb27PbZGRkAAAEAoHM4xS/lp6eLvanvH3KoopjyDN06FCxJAgAhgwZAi0tLRw5coQde/ToEZ48eYIRI0awY8HBwejUqRNMTU2RlJTEPnr06AGhUIh///0XAGBiYoKsrCxcuHChUt4DIUQxlAgRQqTasmULLly4gGPHjqFfv35ISkqCjo6O2DbFiUhxQiRN6WTJyMiozH3KoopjyOPs7CwxZmFhge7du4vdHjty5Ai0tLQwZMgQduzZs2c4e/YsLC0txR49evQAALx//x4A8M0338DV1RV9+/aFvb09Jk6ciLNnz1bK+yGEyEaJECFEqjZt2qBHjx4YOnQoTp48iaZNm8LX1xeZmZnsNo0aNQIAPHz4UOZxil9r3LgxAKBhw4YAgPDw8HLHpuwxOByO1HGhUCh1XE9PT+r4yJEjERUVhfv37wMAjh49iu7du8PCwoLdRiQSoWfPnrhw4YLUx9ChQwEAVlZWuH//Pk6ePImBAwfin3/+Qd++fTFu3DiF3hMhRDUoESKElInH42HlypV49+4dfv31V3a8Y8eOMDExQVBQkMykYv/+/QDA1hZ17NgRpqamOHz4sMx9yuLj4wMAOHjwoELbm5qaIjU1VWL89evXSp138ODB0NbWxpEjR3D//n1ERUVh5MiRYtvUq1cPmZmZ6NGjh9RH3bp12W21tbXh4+ODrVu34sWLF5g8eTL279+P58+fKxUXIaT8KBEihCikS5cuaNOmDTZs2IDc3FwAgL6+PubMmYPIyEgsWLBAYp8zZ85g79696N27N9q1a8fuM3fuXERERGDu3LlgpPR0PXjwIP777z+ZsbRv3x59+vTBb7/9huPHj0u8np+fjzlz5rDP69Wrh6dPnyIxMZEde/DggdIztExMTNC7d28cPXoUv//+O7S1tTF48GCxbT7//HOEhobi3LlzEvunpqaisLAQAPDhwwex17hcLtzd3QEAeXl5SsVFCCk/6ixNCBFT3Fn69u3b8PT0FHvt2LFjGD58OLZt24YpU6YAKLq9NGLECPzxxx/o3Lkzhg4dCj09PVy7dg0HDx5Eo0aNcOnSJbHO0iKRCOPHj8eBAwfQsmVLtrN0fHw8jh8/jv/++w83btxA+/btZcaZmJiIXr164cGDB/Dx8UH37t1hYGCAZ8+e4ffff0dcXBybUERERKBp06Zo3rw5Jk2ahPfv3yMwMBDW1tZIT09nWwO8evUKzs7OWL16tVgiVdKhQ4cwevRoCAQCdOnShZ3KXyw7OxudOnXCw4cPMX78eLRq1QpZWVkIDw/HsWPH8OrVK1hYWOCzzz5DcnIyunXrBnt7e7x+/RqbN2+Gk5MTwsLCwOXS51RCqoSa+xgRQqoZWQ0VGYZhhEIhU69ePaZevXpizRCFQiGzZ88epkOHDoyRkRGjq6vLNGnShPnpp5+YzMxMmec6duwY06tXL8bMzIzR0tJibG1tmREjRjBXrlxRKNbs7GxmzZo1TOvWrRlDQ0NGW1ubadCgAfPtt98yz58/F9v24MGDjIuLC6Otrc20aNGCOXfunNyGirKkp6czenp6DADm4MGDUrfJyMhg/P39mfr16zPa2tqMhYUF4+XlxaxZs4bJz88Xe+9WVlaMtrY2U7duXWby5MlMXFycQu+dEKIadEWIEEIIIbUWXXslhBBCSK1FiRAhhBBCai1KhAghhBBSa1EiRAghhJBaixIhQgghhNRalAgRQgghpNbSUncAVU0kEuHdu3cQCAQy1x8ihBBCSPXCMAwyMjJQp04dlTYcrXWJ0Lt37+Dg4KDuMAghhBBSDjExMbC3t1fZ8WpdIiQQCAAUfSONjIzUHA0hhBBCFJGeng4HBwf297iq1LpEqPh2mJGRESVChBBCiIZRdVkLFUsTQgghpNaiRIgQQgghtRYlQoQQQgiptSgRIoQQQkitRYkQIYQQQmotSoQIIYQQUmtRIkQIIYSQWosSIUIIIYTUWpQIEUIIIaTWokSIEEIIIbWWWhOhf//9Fz4+PqhTpw44HA6OHz9e5j5XrlxBy5YtoaOjg/r162Pv3r2VHichhBBCaia1JkJZWVlo3rw5tmzZotD2L1++RP/+/dG1a1fcv38f3333Hb788kucO3eukiMlhBBCSGVjGAaZmflIT89jHyIRU6nnVOuiq3379kXfvn0V3j4wMBDOzs5Yu3YtAKBRo0a4du0a1q9fj969e1dWmIQQQghRglAoQlpaHlJScpCcnIOGDS0gEOjI3Wfq1NP47bd7KCwUiY0nJX0Pc3P9SotVo1afDw0NRY8ePcTGevfuje+++049ARFCCCGaICQGOBwBvE4DBrsCk5vL3/5OPPDjVcnxpZ0ATxuZu/311zOMHh6M1OwClLyO828bR3S6NV7uKbW0uBJJEABg2U2I1nbB48eP5cdcThqVCMXHx8Pa2lpszNraGunp6cjJyYGenp7EPnl5ecjLy2Ofp6enV3qchBBCSLVh+avY0x22p7CkyWW5uzQ76Y7ZN3oglWGKHiIG9Xk8HLw6DCcSX0BKugKGYcDcqwNkD5J4LTkiGZzTVvLjTGoDoLXE8OubBzDUqztu3pO/e3lpVCJUHitXrsRPP/2k7jAIIYTURCWvtMz0BPo4y9/+f1HAzgeS4/v7A5Zl3P5ZcBW4Gy8+VtcI2C67NIRhGNwqKMDNwkJ8EDHIBwNrYSZi82Llnipp+2icTc8QGxumrY0M5gMKteNl7AXAnCN1OJkRAXqJcs8JsyQpg0/RK+w4PhTI37UiNCoRsrGxQUJCgthYQkICjIyMpF4NAgB/f3/MmjWLfZ6eng4HB4dKjZMQQogGKJnElNTRHljQXv6+r9KA1gfExxKzyz5nQhZwJ0FyvEDaNZZSopIl982QniGIRAz++usZfvopBHfSPt0J0QKwQ2iMlaeG4ddhoTJPlaEnRF6pGyipDAOtAjMgt+jWGLfUdCuRUAhoS0/mkkUMkGMp83wAAJ3SKUkWgD/woaDoPVqYAkkp8g9RHhqVCLVv3x5//fWX2NiFCxfQvr3sf7A6OjrQ0ZFfoEUIIaSWCYkBRp4CpNWk2BqWvX9uoepjUiGhUIQJE04gKUk8OSsE8PnZljAY5oZ5HYNl7u9lvhWhCeJXcFIZEVyjNwCp5rAz4uGtv6PY6/b29oiNfSv1eMkMA2bAe7kx360Th52Hj8A0LR/aAAA93C0ciFMFf2Dw4MFYt24dXFxc5B6jPNSaCGVmZuL58+fs85cvX+L+/fswMzND3bp14e/vj9jYWOzfvx8AMGXKFPz666/44YcfMHHiRFy+fBlHjx7FmTNn1PUWCCGEVBfr7wDnX4qP6fGB/w2W3PZwhPQkqCLyhUUx+Hmq9rhlCA7PRMCFFGTkib+fjKYi4Irk9qkiESZyzHB95WuZxyzIkrzFlcDlgl9YVtedfDTTTUYXq/ow43NhxufBTJuHFgLdMt9H8+ZW2NC/HnSibgBMPsDRBqP/Oc6btkevoFnIyMgo8xjlodZE6M6dO+jatSv7vPgW1rhx47B3717ExcXhzZs37OvOzs44c+YM/Pz8sHHjRtjb2+O3336jqfOEEFJRycHA2wBAWDm/bJRy1xE45w7Em4iPf3cWcJZTZ3K3L3Cn1Gwo/Tzgnr3ktrFDAYsSk28KtIC0ots6ufF/IOXvAXJD1HprA0v4iw/O+xc57e8gteEB6TsBMIjoAiN8JjGe8E9diMzSpOzxiVnSFOigkdhYQeZjtE+aiQutJH+d37PkY+CVSRLj0VNOY23vn+Wea/ql7jjxuoHYWJZeOo6O/fh9ERUi7u9ksddvBhYlYjzer7C1sZU86D1/ybGPYuILMTYgBU3r8bF5TQ4AEcC3A8djJSr7N7xaE6EuXbqAYWQ3SpLWNbpLly64d6+SSscJIaS2ehsA5D5VdxTAPTdg0eeAViGQV6qsISMVKJBT5CvKkhxjRNL3+XHTp68LtIAVE4H/mgEAdLUZ2JqXcbUoU/rregNCoSdvX/s0oOFLiWFrywLApIxz1osHCnXBMMDDLC7q64lgUOcD7A2kFRkDds2A+vYf8PytOTvG4TDQqvcU9npyCp4B+PtewaS+t2FimAsTwceHYS4EevmfNjKQtbeM77kMRy8Ck38GUjOAK3fy0bct0K8DAJ5A4WNUhEbVCBFCCKkk7JUgLsCX8mm+qlzqCni+BLwjgFU+4q9pWQJ8OdOHuFJ+M3O4AN9O/jmPtQcyzIBGscjPz0eu6Xukvwd4PNm3gXjZQpjU+5TQCK0+ILvzLeQ7PAc+yLl91Owe0Owe8gp4yMzWRnauNmwt0qElZOTut/lIBzx4xkdmTiKi3lgi/oMhdi08gr5ekRBmWQJcHiASgpf74VNMxiIM7PMQQSda4ZvPbmCQ92OYG2eBywXi5MUIoK5tHOqW+meQmQtk5srfj8PhwsjICPoyJjCVlJ4pwozVadh36lMdk4MNDwIjU0DXArBfWuYxVIESIUIIIZ/wbQEP6QWvVaL9HeAbD+DsSwBnxV9zPQF4yEnSzC8DeCI+xjUs+/14fPrSxd4esbdiYXfBDm/fSu7HMAwyMvKRkpKDuBa5SE3NRUpKLpo3t4azs6nc0+zcGYZ58y4hIyMPBSVmib158x1sHYzl7nt/8yH8feO52Nit979gYl8f2K98jdh0oUQBs/01e8QODEUd32j82PVN6UOqVWhoKEaPH43o6Dh2bMSIEdi2bRtMTeV/H1WNEiFCCCHVR0UKjR2NAE/xprvQ40vdVCgUISUlF0lJ2UhMzEJSUjYsLMpexuHx40Q0a7ZNYnz79gH4+utWcvdlGCA5OUdiPCMjX8rW4qQtT7HrSCROOzZDvIzbdAAA/Xxw+CouCq+AwsJCLF++HEuXLoVQKAQACAQCbNmyBaNHjwaHI70PUWWiRIgQUrtUp6LgMmTn5CA9PR0MU/m/yKxMRODxgLj4OLS2l1JcrAJ6DB+/F4xkn1/gPsevWtJ72fQXumF7iaLiME4s5g7qh6dcyWJphuFAJNIGw+hAJNKGtnapmhn76RL7xMd/AaFQfJq8ru5L5OfHSWxbkomJ9NlPqam5cvcDAIFAW+p4Rkae1PGy9hWmZeFddDJgaVK0jY5a11Ev04cPH+Dj44PQ0E9/515eXjh48CCcnctoRFmJKBEihNQu1aUoWAH6WoC+WdWeMzVdhNhY+YWu3flumKDTFi48C7HxR8I4fJ15WOZ+Ao4uWpl/qtc5n/EYX8IdAPBWmIpdeaEAjADoIUIrAYd0b2N33k1cLoiSccTOALwAlE5OlgBSF4EoKROAeCKUm8tl9xMIpBfqmppKT4RSUiSv9JRmaCgrEVLkipD0fY3exUFQzxwCHS6W9qzaW0rKMjExgZZWUdrB4/EQEBCA+fPns2PqQokQIaR2qS5FwQqIi4+DUFg8JbnyP+1n5nCx4ZgR7OxkF7p2FDniQMHn4IMn8Zq2tjbsjGUXJhsy2kCJ3/n++r3Yr9fmx4Fb0BEiUVHB82Oji5irdwkAYAfpx0xPN0JGhmRiYmPjDB5P/hWapCQh8kpdiNHSMoK1tR0EAgGWLpVeqKuvz5e6OKhiV4SkN/fNzCw7EbKyMoC9vRHi8zgo5POhb2eGQ/M90L27c5mrulcXPB4PBw4cwJAhQ7Blyxa0a9dO3SEBoESIEFJbqbsoWAGt7e0RGxsLOzvphbuVYfuQMjaYch74Q/oVmlatWuLt3ytl75uRD7jsEBtiGAYeqWl4INQG8Omqx88/b8BXX8mvudmy5T9Mn/63xPiVKzfh5mYhZY9PRo48hiNHxFczNzEp+/vM4XBgaqqLxFLLaaSklJ0IOTgYYfRodwgE2jA01IZAoA2BQAdNm5axGCkAf/9O8PfvxBZGmxrxMHiwI4ITghHwKAAZUm71xuXJv81X2UJCQqCnp4c2bdqwY46Ojrhz545aaoFkoUSIEFJhwcHBCAgIqLTOr6p0e2ccbM0rtxZGVeLiqvAX2YHHQNATyfFjgwGDEgXHelriBcl5IiC8jMU05eBwOJB2PURaUXFppqbSr1z13voahTZSegqVkPpaKDGW9CEbdstfglN6Ea1S8ls3gRHDgKunA66uNrh62rhiYgB7OZ2aWY1bij/PAdYEZwBQ7P9OXIZ43AHRAXiaLf9Wr6CK+vEUy8/Px6JFi/DLL7/A2dkZ9+/fF7vVWJ2SIIASIUKIsqQUG3cSJODC6uq99lIxK5OiP4XCsmthqgtZ9SoqFZcpfTFQUammt+u7ffo6TwhM/JtNhLKFIsRHpyAhIRMJCVmIj89E27Z28Cie8s7lSM7qcjRG08g4RFx5JTasyBUWMzPpidDruGxAXzLREeNQB9DSBvR1AT0d9s93GSKAI7vRLwDAvaH08fQyzqlCxYXRxVeCuODCVkfyVq+AJ8BSl6rpxwMAkZGR8PX1xd27dwEA0dHR2LZtG3744Ycqi0FZlAgRQpQjpdjYpooLelUhJ18LdnbWZW+oZvLqVWQqvap6L+dyT0tnGAb5eYXQkVgZHMDWe0ByDuBpjdjcAthfeArUE/+3sXx5t0+JkAEf+Hu4xGGaLglBcKlEKDq67GXGnZ1NMHq0O8zMdGFqqgczMz0svpaFFCtTcDmArUCyjonlUbfooYGkFUbb6tjibUf13eplGAY7d+7Ed999h5ycoqt5fD4fy5cvx+zZs9UWlyIoESKEKEdKsXFxUS+Px5W+xlB1wxOgQZelePt2WNWcb3kocK3ULylzPeCg/PWsAABDjgO7CoBdJVYKl5fYFK+qXscAePPx72qiO3DiYzM+Ux2gs4PM023KyUFYoRCxIhHeioSItVuHVq1sceXKeMmN/TzZOCzzhYDOMolNEhIyy3yLpWtk7O2NMHt2+zL3c3OzwIED4ut2rcp6jZR0IWwFkqujk8qRmJiIr776CidOnGDH3NzcEBQUhJYtW8rZs3qgRIgQUj4lio0/FfXaVllRr0Z5kSp528lW5kJN4u4lAJmllpVwM5e+LQAcjsD1ZmbYwhQgPTwdaQyDtC+Ckc4wOGMkQJN2dnIToZP5BbhUUOJ8mfmIjS27fkVbmwczMz2J2p6EBPm1OgDg7m4N1+a2SNATgOfqAJGbPYZeFgKXFai5KaV0DY06BCcEIyBaegGzqqm7IPrcuXMYP3484uM/rV02ZcoUrF27Fvr6ZTeorA4oESKE1G4lbyN91RwY4ip/+7MvgY13JMe39QKc5C+ToCyGYfCqoBD/5eXhVkEhbhUW4oDAEC7ydnIzw7vOtjg86n8SL6UwDOAoI0ZbQ8DTGvYPC4F34qugv32bDoZhyixytbExlEiE4uPLviJUv74ZuGP7Ii3xYwKWUfEGkupsLqhIAbOqVXVBNAAkJCRg8ODByM0tqueysLDA7t274ePjU8ae1QslQoTUdKrupFyg3k+gKhMSA0w9DySW+MU9sOyrF0jMll5UnKvaYvHExCy4uf0qUTR8q7BQfiLk5wnj8y+kvpTGAeDbSPp+Y5oAY5rAbsElYMU1sZdycwuRkpIrszi5mLW1AZ48EZ9BpsgVIQDIyCtKfsqs7VGAupsLllXArGpVXRBdzNraGj///DO+++479O7dG3v37oWNjU2Vx1FRlAgRUtNVVidlNXwCVZniOprCql2DqZBhsD8vD+GFQqyH/Ftj5ub6Uhvt3SooxBdlnMfISHqDvbTpHnJviwFF9TnSvH2bXmYiNGmSB/r3bwBra0NYWxvAxsYQNjaGcvcprSbV9qi7gFnVRCIRhEIh+PxP7RS+/fZb2Nvb47PPPgO3jLYD1RUlQoTUdJXRSZknAOyr/hOoyhyOALrVBSz1gUMleufkCYH1dyq28Kc09UzwX30jfP34HR5k5sFam4f17pZyd+FyOXBwMJaYPXVLh1O0uKgcxsbSE6F0u7KTEjs7I+jpacHOzgj29kawsxPA3t5I5jFLGjXKvcxt5LL6CwkNNsD+WtlT56szddftVIa4uDiMHz8eLVq0wC+//MKOc7lcDB06VI2RVRwlQoTUFhrQSbnCJp8D3qSLj7W0AZZ3Eh9zMwO+8QA+5IgnQstvAkPLqBEqh8Muhhh75zW7LENCvhC5v/WRWCGrtLp1JROhe7n5yJ/mAekrTxUxMdGFhYU+jIx0YGys8/FPXZlXe0oaMMAVWVnzK63pXXB4JgIupLC3worFZQiBJhtQqPcCsWWvQaoR1FG3UxlOnDiBSZMm4cOHD7hw4QJ69+6Nbt26lb2jhqBEiBANV1ZX56ropFylHZDlefwBiEwWH5O20KW8Kz6yamiKWepLNgUEAF3pP06DgsIxZsyfEJVqTPj2bTrq15ffgMmxVGGzhYU+2ra1Q0pKDqytZV/dsbUVIDHxe7nHloXLrdyuvwEXUvA0sUD6i7yieqKqqq2pTOqq21GlrKwszJ49G9u3b2fHrK2rf+8tZVEiRDSLqgt/a4CyujpXZSdllXVALt0QEKhQU0CFWOoDgT3LrKFBH+eihwIyM/Mxe/Z5iSQIAF6/Ti0zEerbtz4sLPTh6VkHbdvawcnJpNotT6AseUXRCVygEDWvtkYThYWFwdfXF1FRn9aVGzRoEH777TdYWMhfx03TUCJENEtlFf5qMEW7Old2J+VydUCWRlohcy+noltZqsbnFt0K821UdgJUDoaG2jh/fjS6dduPpCTxRTpv336HLl2c5K4qP2JEU4wY0VTlcVUH0oqi7a/xasxtMU0lFAqxZs0aLFy4EIWFRR+w9PX1sWHDBnz55Zcan4hLQ4kQ0SyVUfir4RTq6lzVnZQr4nCE5Gyu868A+22fnntaS12qQWmW+kBgr3LvzjAMMjLyZc7SAoBmzaxx6dJYdOu2Dx8+FE3VnzWrHWbNai83CarOKtIwMK6FEBABcdyixEfstRpYZKxJkpKSMHz4cFy5coUda9WqFYKCguDqqvraueqCEiGimWpD4a+CalxXZw9rwLLENO08EbAnXHwbWU0Bm5gDAr74mKtqF0KbP/8S7t+PR3JyDiIiktCsmRWuXp0g95Oyu7s1Ll8eh27d9mHy5FZYtqybRn+yrlDDwI8lWyJA5tWfmlJkrGmMjY2RmVnUAJPD4WDevHlYvHgxtLXlleZrPkqESNVRRX2PlGZ+ZRUL13RVXqgsrX4HAAa7ApOby9/3Tjzw41XJ8aWdAM+PjdhKHqN4dfOStLiyC5q395Z//hIKCoTYuPEWTp6MRFxcJpKTcxAdPQPGxvLnct24EYOQkE9LP1y/HoNjx55g+PAmcvdzd7dGePhU2NgYanQSBCjfMDAhQyhxkU+LC1hLaZxYE4qMNRWfz8ehQ4cwePBgbNu2Dd7e3uoOqUpQIkSqjirre0p8YgwICMDTp1Q3pLJCZXnkNSL0VKCjbHqe9K7M6TIuDZRY3RxA0ZUgFdTz5OYWYtiwozhz5pnYeHJyTpmJkLSmgnPmXED//q7Q1+dL2eMTW9uadaVD0aJm+5WvEZsuZAukizs/D2umXLNFolqhoaHQ19dH8+afPny4urri0aNHGtscsTwoESJVR1X1PaWa+RVfCeJyubC1rZ11QyorVC6LtPqdylRidXNVycrKx6BBv+PSpZcSryUn58DZWf7SDNISoTdv0rB69XUsWtRF7r5VuRhnZSpvLU9N6hqtyQoLC7F8+XIsXboUrq6uuHPnjtgCqbUpCQIoESLqUEn1Pba2NaRGpjorfTtMA334kIOoqA8yXyuLrGUm9u17AH//TtDWlr1OljoW46xMCam6sF9Z9grx1WFFeFIkOjoao0ePRmhoKAAgIiICW7duxZw5c9QcmfpQIkQIUVzJmVrF9TvnX6ktnPKoW9cYFy+ORefOeyQWBC29cro09vZGcHExhbm5HszM9GBuro9OnerC17eZ3CQIUN1inNJqbqqc0ACFL/wQm654kqPOFeFrO4ZhcODAAUyfPp29is7j8bBo0SJ899136g1OzSgRIqolryC6pqxaXhuULIiuayS9CLl0/Y4CyzfASEd6V2Y5088rg6urOS5eHIsuXfayV4E6d3aEnV3ZNTwzZrTFjBltK3T+ijYMLF1zo1YK/LUD6l8RvjZLSUnBlClTcPToUXasXr16OHjwINq1a6fGyKoHSoSIailSEE1TY6u30gXRGTKWQyhP/Y6njWr6/6hA06ZWOHduNEaN+h+Cg4ejWTPNWzqAam5IWa5cuYIxY8aIlQ1MmDABGzdurJoJFhqAEiGiWmUVRGv6quW1QVUXRKtRq1Z18PjxNxrb2JAQeeLi4tC7d2/k5+cDAExNTbF9+3YMH149PoxUF5QIkcpBDQ+rp+JbXks7FnVVlqZ0QXSeEFh/p3LX+aogoVCE16/T8OpVKvuoW9cYEya0KDPJUUcSlFPAoNG6GIkV2BVFxcdEEba2tli0aBEWLFiArl27Yv/+/bCvpIWXNRklQoTUFiVveQV4yd6ulzOgzQNuvCt6/ioNOP+yShKhjIw8fPiQg4yMPGRk5CMjIw/5+UL4+LjJ3S8pKRv16m0SG7OyMoCvbzPo61e/qz3puSIky1qBXQlUfExKYhgGIpEIPN6nurG5c+fCwcEBo0aNqnXT4hVFiRDRWMUdpau8s7KmmnpesVtefp7AjVKr1Mta0kIGhmHw7FkyQkJe4dWrVGRk5GPmzLaoV0/+chd+fuewa9c9sTF9fT6ysubL3c/KygC6ulrIzS1kx96/z8L27Xfg59deqdirQvHfQkWKnan4mJSUmJiIr776Ch4eHli0aBE7zuPxMGbMGDVGVv1RIkQ0VumO0lT4J0dIDJBYamp4nrBo5ldZV3rkLWkhxYoVV7Ft2x28fZsuNj5woFuZiZBAILmmUXZ2AbuorCwcDgdOTiZ4+jRJbPyXX65j8mTPMjs+V7biRoqlGxFSsTNRhXPnzmH8+PGIj4/H6dOn0atXL7RvX/0+AFRXlAgRjVWyo7Srq2vVdFbWVIcjxJ8X9wBKzpGeCLmaAZn55VrSIju7QCIJAopue5VFIJA+jT4zM7/MpS+kJUIJCVnYsSMM331X+VOEg8MzEXAhRWrdT0IzfxTqvWCfiwoMKj0eUvPl5ubC398fGzZsYMdMTU1r7bqL5UWJENF4tra2iIiIKHvDmqy4CHpwA6CPs+TrbmbAgnbA8ptFzyf+DTxKAoa6Sj/e8k7lDqVbN2csXy65sGpGRn6Z+0q7IlS8b9mJkPjtOx0dHpycTBAbK5mUVYaACyl4Kqvuh/OxcSPDBbKdgRd+AKjGh5RfeHg4Ro0ahfDwcHasd+/e2Lt3L2xsFFj3j7AoESJE0y29AWy6W/R1Bzvp2/h5AttK1N48+njlRIlbXopq394eOjo85OWJz2yqyBUhRfYdN64FvL2d4ORkAicnE1hZGYDLrbpV3ouvBEmr+4njFtUFcQusYPv4EgBAYEk1PkR5IpEImzdvxty5c5GXV/T/QkdHB6tWrcL06dOpILocKBEiFVO6k3Q5u0cXFz4rc0mXiqQhngQpa2YrhW555eQU4MmTRDx8mICHDxMwaVJLNG1qJXN7PT0+vLwc8M8/r9gxDgdihcyydOjggHXrekEg0IFAoA1DQ20IBDqoW7fsYu127ezRrp36pwZLq/uxv8ZDbB7VBJGK+fDhA0aNGoVz586xY82aNUNQUBCaNm2qxsg0GyVCpGJkdZJWsnt06cJnZdTaIumQGOlJkKwiaGuDouUtFKz7efo0CZ99dgRRUR8gEjHsuJubhdxECABGjmwKNzdzdOvmjM6dHWFpqdjVmWbNrDWywzMA5JieAZqsQxw/C/bXSl0RKudq7YSUZGBggNjYTzM6/fz8sGLFCujqyr9tTOSjRIhUjLRO0uXoHl2y8NnWVvHFKAUCQe0tki4ugP57GND3WNHXWQWA/TaJ2p+EhEz8nZ6Ntx2sEReXAeb3h9haRiJkbW0gUXwMAOHhCWWG9vXXrRR7D2oir7C5vJKbrAMMXkAEIFbGnTwBLS9DKkBXVxdBQUEYNGgQAgMD0atXL3WHVCNQIkRUQ0WdpG1tbcXWxCFyuJkBb6cCL1M/jf14rejPj7U/+flCzJ9/CRs33kJhiR5CBgZ8bN3aX+7hTU314OBghJgY8WLjhw/fqyR8dZJb2FxevE8F0Xa6ksm8gCfAUpdamrSTcgkLC4OBgQEaNmzIjjVr1gxRUVHQ0qJf36pC30lCNJWs/j8fa3+ysvLRt+8hXL36RmKTrKwCZGTkySxOLububi2RCIWHJ4BhGHA4VVeIrGryCpvLq7gg2oxnU6GV5QkRCoVYs2YNFi5ciKZNm+LmzZvQ0fn0f5WSINWi7yaRVLoAWh4FiqMVKYSmwmc5iqfGu5mV3fxwZitgYVEjtYyMfJiZ6cnc9N27DLi5yU+EmjWzwpkzz8TGdHW1kJSUDUtLze+Fo4riZbZZYnbRlTI9vuYmiET9YmJiMGbMGISEhAAA7t+/j61bt8LPz0/NkdVclAgRSbIKoOWRU/ugTCF0rS18lsUxEMj+ONvq7VTp2+hqFdUElSqAtrExxPHjI3HyZCS+/fZvvHkjvphqXFwm3Nws5J6+SxcnxMVlwt3dGu7u1mjWzArW1oYVeks1TUB0AJ5ml+hwTnVApJyOHj2KyZMnIzU1FUBRx/R58+Zh2rRp6g2shqNEiEiSVgAtTxnF0YoWQtfqwmdZipOgrnWL1gorVs8EWPCxhb6TMRAou2hy4EA3dO/ujKVL/8Uvv1wHUJQkZWeXXSPTu3d99O5dv7zRV0pRsiqocvX2jI//X7jgwlXfleqAiNLS09MxY8YM7Nu3jx1zcHDAgQMH4O3trcbIagdKhIhsKiqALkaF0BXwj3idj/CzBoiKSMSDBwno2tWpzKs0BgbaWLKkKz7/vAnc3a2hpVU1TdcqpShZhVTZ2dlWxxYR7Wt5h3OitNDQUIwePRrR0dHs2IgRI7Bt2zaYmlLDzapAiRAh1ZmtARCXxT59IRRiVEYmHu6/jZydN7F6dU+Fb1Vpa/PQsqXirQlUoTKKklWFVm8n6hYbG4suXbogP79o+RmBQIAtW7Zg9OjRGj0ZQdNQIkQ+KS6SLmd3aFL5LDkc3CosBD7eMfv++ws4c+YZxo9vjqFDG8PQUPpaXepWnTsqFxc7ZygyOUAKapZIysvOzg5z5szBihUr4OXlhYMHD8LZWcpagaRSUSJEPildJE1Fn5WneCbY6xIFzHp84H+DxbdztwTsPl7xcTSGkW8j1Jv4J168SGE3uXLlFa5ceYVp0/7Ct9+2wcqVPSo/fhlK1wSpshanspQudi4vKpImZWGYog7tJa/2LF68GHXr1sWkSZNoWrya0HedfFKySFrXVenu0ERBITHAyFNAiQaHTwoL0chYFxIXww8OkNi9RQsbsUSoWFZWARwdTVQbq5Jk1QRV51XWSxY72+qU79YhNUskZUlJScGUKVPQunVrzJkzhx3n8/mYPHmyGiMjlAgRSXxbwJ2KPivN4QigW13AWAcIjsSl/AL0T0/Hl8ICbBIxZa7J1aKFDf74Q/zvx8bGEH5+7TB5snqXtpBWE6QptTi2OrbUCJFUiitXrmDMmDF4+/Yt/vzzT3Tv3h0eHh7qDot8RIkQqTTFjRRrVbPE0re81nYFGpfq1eNmBnzjgQy/S9iZk4PZWdkAgC0Z2cibfArbt/vITYY6dqyLwYMbokULa3h42KJFCxs4OBhVq+LK6lwTREhVyc/PR0BAAFatWsXeFjM0NER8fLyaIyMlUSJU25XsIq3iIunSjRRrfLPEZaHAxjDxsSwpU8c/dod+nZ7HJkHFfvvtHvLyhNi9e5DMKe5dujihSxcnVURMCKkkkZGR8PX1xd27d9mxrl27Yv/+/bC3t1djZKQ0SoRqO2ldpFVU9FmykaKrq2uNb5bIbLmLRJEIjwuFeCkSYqKurtztG5vrw4LDQdLHT4rFDhx4CG9vR0ya1LJC8aijmaEmFEcTUpkYhsGOHTvg5+eHnJwcAEV1QMuXL8fs2bPB5VbfernaihKh2q50F+kyukSXh62tLSIiam7N0e+/P8K2bXfwOCkFHwo/JQLDtLVhtCEMOCRZ8AwAXCdjdHYyxf9eJouNjxjRBBMmVLx+QJ3NDKtzcTQhlSU5ORkTJkzAyZMn2TE3NzcEBQWhZcuKfbAhlYcSIVJExV2ka5MPH7Lx77+vJcYjhEK0jUyWssdHfp7ooiXE/2acZYdcXEwRGDigzIJpRairmaGmFEcTomo6Ojpi5QBTp07FmjVroK+vr8aoSFkoESKkLNJ6/vg2BsY0AQA0bmwpdbcnQiHafuku99DFtT42Nobw8XFFQIA3TEzk31JTFhUufyKteSI1RCSqYmBggEOHDmHQoEEIDAyEj4+PukMiCqBEqLaiLtKKkdLzB0DRIqgfNWliJXXXx/2dgSkt5B6+SRMrPH06Da6u5tVq1ldNJa95IjVEJMoKDw+HgYEBXFxc2DFPT09ER0dDR0dHjZERZVAiVFtRF2nFHI4oSoI62gHXYqVuYmmpD3NzPXz4kCM2/jgtt8zDc7kcuLmJT69XVZEzFS5LktU8kRoiEmWIRCJs3rwZc+fOhYeHB65evSrWFZqSIM1CiVBtRV2kixTf9tLTAtZ3k3z9dRrQywnY2B1otEvqITgcDnr2rIe0tFw0bmyJJk0s0bixJRo1kn7LrCyqLnKmwmVJ1DyRlFdcXBzGjx+P8+fPAwBu3ryJbdu24dtvv1VzZKS81J4IbdmyBatXr0Z8fDyaN2+OzZs3o02bNjK337BhA7Zt24Y3b97AwsICw4YNw8qVK6FbxlRlIkNt7iJd8raXp7XUTQq7O+JFbye46cgvNj58eKjKwlJlkTMVLhOiOidOnMCkSZPw4cMHdszPzw9fffWVGqMiFaXWROjIkSOYNWsWAgMD0bZtW2zYsAG9e/dGZGQkrKwk6y6CgoIwb9487N69G15eXoiKisL48ePB4XCwbt06NbyD2qu4a3RxryBpqn1H6annJWt/Spn/Pg27u+5F6IWxaFDyBVvDSg0NoCJnQqqLrKwszJ49G9u3b2fHbG1tsXfvXvTq1UuNkRFVUGsitG7dOnz11VeYMGECACAwMBBnzpzB7t27MW/ePIntb9y4gQ4dOsDX1xcA4OTkhC+++AK3bt2q0riJZNdoeaplR+mQGCBRvKYHeUJg671PnZ9fp2Lt2lCIRAz6Dj2CUBEHltpawBEfoLODGoImhFS1sLAw+Pr6Iioqih0bPHgwdu7cCQsLCzl7Ek2htkQoPz8fYWFh8Pf3Z8e4XC569OiB0NBQqft4eXnh4MGD+O+//9CmTRtER0fjr7/+wpgxY2SeJy8vD3l5eezz9PR01b2JWqxk12hbW9krdgsEgurZUfpwqduBeSJg4t9Acg6bCAUEXIFIVNT1+cXLVPhYGeLyPh/oUxJESK0QExMDLy8v5OfnAwD09fWxceNGTJo0iWZ51iBqS4SSkpIgFAphbS1em2FtbS3zSoOvry+SkpLQsWNHMAyDwsJCTJkyBfPnz5d5npUrV+Knn35SaezkE1tbW7x9q4FFpyV7AgFAeGLRY6grAODt23Ts3/9AbJNb7zMxeM01nPJ2gI6O2svrCCGVzMHBAd988w02bNiAVq1aISgoCK6uruoOi6iYRk0nuXLlClasWIGtW7fi7t27+N///oczZ87IveLg7++PtLQ09hETE1OFEZNqq6F5UYG0pzXQrMTsLt9GAAB7eyN4e0vW5xgb61ISpIGCE4LRKLQRNU8kZWJKrf23cuVKrFu3Djdu3KAkqIZS2090CwsL8Hg8JCQkiI0nJCTAxsZG6j4//vgjxowZgy+//BIA0KxZM2RlZeHrr7/GggULpC5mp6OjQz0dKkhaYXS1L4QuS8mp8uvvAK6mRUlQidteo0Y1Q0jIp6UzOBzg+++9qjJKoiKlGylS80RSWnp6OmbMmIE2bdrgm2++Ycd1dXXh5+enxshIZVPbFSFtbW20atUKly5dYsdEIhEuXbqE9u3bS90nOztbItnh8YqmF5fO4kkpycHAw0bAPfuihxIdpYsLo2NjY9mHSFQ026paFkIry88TCOwlUQA9dGhj8Pmf/r398ksPtGljVykhBIdnotG6GNivfE2NECtByUaKDfUbUvNEIiY0NBQtWrTAvn37MHv27Bq9SDSRpNZr/LNmzcK4cePg6emJNm3aYMOGDcjKymJnkY0dOxZ2dnZYuXIlAMDHxwfr1q2Dh4cH2rZti+fPn+PHH3+Ej48PmxARGUp3ki6mwCdjWYXR1bYQuqSzL4EDjwE3M7YImuEAHEPtMnc1M9NDv34NcOnSS2za1EclK8LLIq2JIjVCVD1bHVtEtKdfcqRIYWEhli1bhmXLlkEoLPoAwufz8eLFCzRq1EjN0ZGqotZEaMSIEUhMTERAQADi4+PRokULnD17li2gfvPmjdgVoIULF4LD4WDhwoWIjY2FpaUlfHx8sHz5cnW9Bc1RspM0/2MywxMo1VFa4wqjQ2KAMWeKvj7/Cth8F8kiEQYxuVjyx3B07epc5iFWreoJU1NdWFoaVGqopZsoUiNE1SheZJVqg0hp0dHRGD16tNgs5eKZyc7OZf9sIDUHh6ll95TS09NhbGyMtLQ0GBkZqTucqnPPHiiIBfh2gIdyyYy9vT1iY2NhZ2enWYnQlPPAH596fySLROiRlo57QiH09LTw11+j2NXf1c1+5WvEpgthZ0RNFFWpUWgjsdqghvoN6YpQLccwDPbv34/p06cjMzMTQFGJRUBAAObPny+2ZhipXirr9zf9jZMyu0RrbGG0mxkwoyWw6S5SRCL0/JgEAUBOTiH69w/CX3/5wtvbSelDq2ph1GJUF1Q5StYGueq7Um1QLZeamorJkyfj6NGj7JiLiwsOHTqEdu3aqTEyok6UCBGFu0RrXGG0nyew6hbSRSL0Sk/HXaF4spGdXYB+/YJw7txodOxYV6lDq3ph1GJUF1Q5qDaIAEULJJdciWD8+PHYtGmT5v1sIypFiRBRqEu0RhRGy6DP4aA+l4c7kLzqYm1tAAcH5S+xqnJh1GJUF0RI5TI2NsaBAwcwZMgQbN26FcOHD1d3SKQaoESIsDSuGLqkkJiiZTNK9QKCrSG0WtvggIMRuC/fI+hiNPuSk5MJ/vlnHBwdTcp9WloYVX2KC6EzhHIW/qUi6VotMjISBgYGsLe3Z8c6deqEV69ewcCgcidAEM1BiRDRXMXJT4mCaPR1Ed9mTBNgTBNoAdgvFIE34QQOHHgIR0fjCidBRL1KN0mUhxoo1i4Mw2DHjh3w8/NDu3btcPHiRbEZyJQEkZIoEaqlShZIa2QxdEgMMPIUUEf8BxrDMJC1FCKPx8WePYNgY2OIqVM94eRkovDpShdHU3Gz+pUshLbVkbPwL09ARdK1SGJiIr788kucPHkSAPDPP/9gx44dmDJlipojI9UVJUI1XXJwUTPFUp2kpRVIa1TB4OEIoFtdxAytjx2jT+K/wkKECwsRcO4ZpvR1AbbeYxsolsTjcbFqVU+lTyerOJqKm9XPVscWbztq6C1dolLnzp3D+PHjER8fz45NmTIFY8eOVWNUpLqjRKimK91R+uMtgtIF0hpXDO1mhgcd66Bbj/1Izsljh8OjU4CJfwOCsjtHK0NacXRNLm5WpP5G3aj+hxTLzc2Fv78/NmzYwI5ZWFhg9+7d8PHxUV9gRCNQIlTTleworesq0UlaUwukXw6uhz5eu5Gcnic2Hh7yGjA1AY5Uzg+/2lIcrUz9jbpR/U/tFh4ejlGjRiE8PJwd6927N/bu3StzAW9CSqJEqLbg2wLuGthHpbgg+nUa0MuZvd21Zs0NxMdnSmwezojA/D4AnFILqBLlKFp/o25U/1O7vX79Gq1bt0ZeXtEHIh0dHaxatQrTp0+XWKCbEFkoESLVV3FBdOHH7s1u5uxLGzb0QWZmAfbvfyC2S2q+ELH1TGAPogpUf0OqM0dHR4wdOxY7d+5Es2bNEBQUhKZNm6o7LKJhKBGqCYoLoqXVcxRocB3F4YhPSVApfD4Pe/cOgo2NAVatusGOf/ONZIE0IaTmWr9+PRwdHTF79mzo6uqqOxyigSgRqglKF0RLo4l1FK/TxJ/nC4H1d9jbYxwOB7/80hO2tgIcOhSOy5fHQiDQUUOgmkGZAmgqRCbVTVZWFmbPno127dph/Pjx7LiBgQEWLFigvsCIxqNEqCYoWRDNl1LPwRNIFElXZ0KhCI8evce56CQMamcDt7vvgXwREBwJeFpLTIv/7rt2mDatNfh81Sx1UVOVpwCaCpFJdRAWFoZRo0YhMjIShw4dQqdOnVCvXj11h0VqCEqEahK+LeChufUcP/10Bf/++wb//ReLzMx8AEDmUFcsefShKBGSozKSoJJNFGtCA0VlC6CpEJmom1AoxJo1a7Bw4UIUFhYCAEQiER49ekSJEFEZSoRItXHiRCTu3YsXGzt2/CmWlPxn6mhcZfFIa6JYExooUgE00QQxMTEYM2YMQkJC2LFWrVohKCgIrq6uaoyM1DSa/1O9NksOBh420uyC6BK8vCSnvEdEJOFJftEnQWhxixZVrSIlmyjaGfHQ0JKvcQ0UgxOC0Si0Eeyv2VPdD9EYR48ehbu7O5sEcTgc+Pv748aNG5QEEZWjK0KaTEbXaI0UEoP2ESnYIuWlY8Y8BHR2kVxZvopochNFaXVBVPdDqquMjAx8++232LdvHzvm4OCAAwcOwNvbW42RkZqMEiFNVkbXaI3xsV9Q+zzJtbx4PA7iuzgAW3upITDNV7ouiOp+SHWWl5eH8+fPs89HjBiBbdu2wdRUs67EEs1CiVBNoKldo4tNPQ8UiuDM5aK+thYcOzmgfXt7eHk5oF07e5ia6qnsVKVXkZenJhRIF6O6IKIJLCwssG/fPgwbNgy//vorRo8eDQ6Ho+6wSA1HiVAtExwcjICAAMTFVW29SHh4Al6/TsOAAaXu74fEAIk5AIrqAKJcbcE5M6po9fi+DVQeh6xV5OWpCQXShFRH0dHRMDAwgLW1NTvWs2dPvH79GiYmJuoLjNQqlAhpouJO0uUokg4ICMDTp59qRgSCyq0Xyc8XYsmSEKxceQ3m5np4/nwGjIxKND08/PFKVte6wD9vwCkQFa0en5wj0S9IFaStIi+PJqwwL69RIhVIk+qIYRjs378f06dPR+fOnXH69GmxKz+UBJGqRImQJqpAkXRGxseaES4Xrq6uWLq08upFEhIyMWDAYdy58w4AkJiYjTVrbmDJkq6fNnIzA95OLbo9BgAfcoHzr4ChlTszRJMLoEtTpFEiFUiT6iIlJQVTpkzB0aNHAQB//fUX9uzZg4kTJ6o5MlJbUSKkiVRQJG1ra4uIiMqrK8rNLcTAgb+zSVCxtWtDMXWqJ2xtP/5ilnXVpwqnyWu6sholUoE0qS6uXLmCMWPG4O3bT/Vq48ePx/Dhw9UYFantKBHSZEoUSVd1bdC2bbfx33+xEuPZ2QX46acQBAYOkL3zzFYqnyZfXCRdkwqgS6OCaFJd5efnIyAgAKtWrQLDMAAAU1NTbN++nZIgonaUCNUSVV0bNGNGW8TFZWL16hti43wOYPEiDQzDiM8GqWdSdDusknoFlS6SpgJoQqrG06dPMWrUKNy9e5cd69q1K/bv3w97e3s1RkZIEUqEaomqrA0CAB6Pi1WreqK5Nh9fLg9BLgAXLhd/9HZDiz+HAqWnxC5oX6nxlCySdrXQvA7RgOyiaCqIJtVVdHQ0WrZsiZycopmhfD4fy5cvx+zZs8Hl0ocRUj1QIlTLVHZtUGmjkvLhZmyMcZmZ+MPdHg1XdgFepn7aQFcLcKq69cNsBTxEzKr67tSqUFZRNBVEk+rGxcUFQ4YMwaFDh+Dm5oagoCC0bNlS3WERIoYSIVK5XqfBk6+FcBNjcGMygR5HxV8f6goEVl7X6JpUGySvKJoKokl1tWXLFjg6OmLBggXQ19dXdziESKhQIpSbmwtdXV1VxUIqgboaKJbGldYdtgoWUa2JtUFUFE2qo9zcXPj7+8PLy0usANrY2BjLly9XY2SEyKd0IiQSibB8+XIEBgYiISEBUVFRcHFxwY8//ggnJydMmjSpMuIk5VTVRdISZnoCidlFX28MA16nF31diYXRJWlKbZC8pojFqBaIVFfh4eEYNWoUwsPDsXfvXrRr1w4ODpp5C5rUPkonQsuWLcO+ffuwatUqfPXVV+x406ZNsWHDBkqEKktxN2lhhlIdpau6SFpCH+dPX49pUrXnLqG61wYp0hSxGNUCkepCJBJh8+bNmDt3LvLy8gAAOTk5uHPnDiVCRGMonQjt378fO3bsQPfu3TFlyhR2vHnz5mJXHoiKle4mDSjVUbqyiqRjY9Pxww8XERDQGW5uFio/fm1RVlPEYlQLRKqLuLg4TJgwAefOnWPHmjVrhqCgIDRt2lSNkRGiHKUTodjYWNSvX19iXCQSoaBAucUsiRJKdpPm2xYlQeXoKK1KYWHvMHDg73j3LgN//hmB1at74ptvWlfZatGKrCSvaUXSVP9DNMGJEyfw5ZdfIikpiR3z8/PDihUrqG6UaBylE6HGjRvj6tWrcHQUX6fp2LFj8PDwUFlgRAa+LeAh/RdlcWF08e0wAJVSJM0wDHbtuoeZM88iO7so+c3JKcT06X/j1Kko7N49CHXqVP7tG2VWkq8JRdKEqFtWVhZmz56N7du3s2O2trbYu3cvevWqvNmfhFQmpROhgIAAjBs3DrGxsRCJRPjf//6HyMhI7N+/H6dPn66MGImCShdGl6TqIumjRx+zSVBJ5869wOjR/8PlRd2KVpZ3M6uUVeQBxVeSr24ryEsrjKZCaKIJ0tPT8ccff7DPBw8ejJ07d8LCgm6LE82ldCI0aNAgnDp1CkuWLIGBgQECAgLQsmVLnDp1Cj179qyMGGu34iJpBQqkSxZG29p+qjMRCAQqLZLmcDjYtWsgmjbdhvT0PLHXGjWywF4Pe2DYiaKBt1NVdl5ZNG0leXmF0VQITaozW1tb/Pbbb/D19cXGjRsxadKkKrsVTkhlKVcfoU6dOuHChQuqjoVIU7pIWoFflLa2tmKrO1cGBwdjbNjQGxMnnmTHevZ0wVHPujDZGV408EMbYPfDTztZGwBDXCs1Lk0gqzCaCqFJdRMTEwMDAwOYmZmxY4MGDcLLly9hZWWlxsgIUR2lEyEXFxfcvn0b5ubmYuOpqalo2bIloqOjVRYcgXiRtK6r2gukSxo/vgX+97+nOH06CtOmtcaGz5pAa+SpTxus+k98h6Gu5U6EpBVGa1ohdGlUGE2qs6NHj2Ly5Mno0aMHjh49Knblh5IgUpMonQi9evUKQqHkL6C8vDzExsaqJCgiBd8WcK+6NcIUweFwsGPHANy7F49+/RoAU87L36ECXaTlFUZXx0JoeQ0SqR6IVGfp6emYMWMG9u3bB6BoIkxQUBBGjRql5sgIqRwKJ0InT366BXLu3DkYG39aKFMoFOLSpUtwcnJSaXCk+rO1FcDW9uPtuqUdgQCvTy9m5gMdgoq+ntmqQl2kZRVGV7dC6GKKNEikeiBS3YSGhmLUqFF4+fIlOzZixAj069dPjVERUrkUToQGDx4MoOgqwLhx48Re4/P5cHJywtq1a1UaHFGv6OgUuLgokWRYllhQMU8INN9b9PXMVsDC9iqJSVMKo8tqkEj1QKQ6KSwsxPLly7F06VL2ir9AIMCWLVswevRoKogmNZrCiZBIVPSJ3NnZGbdv36bpkjWYSMTgm2/OYO/e+1i4sDO+/94LOjpK3kXdek/h9cRqYmPEYlQHRKq76OhojB49GqGhoeyYl5cXDh48CGdnZzl7ElIzKF0jVPKSKamZfvzxMrZvD/v49T84ePAhtm3rj65dlfihqETvIGqMSIh6PH/+HC1btmRbb/B4PAQEBGD+/PnQ0irXpGJCNE65/qVnZWUhJCQEb968QX5+vthrM2bMUElgRHHFHaVV0UV66dIQrFhxTWwsMvIDunXbjzFj3LF79yBoaX1MRkJiipomvk4ret7SBljeSelz1qTGiMWoIJpognr16qF79+44fvw4XFxccOjQIbRr107dYRFSpZROhO7du4d+/fohOzsbWVlZMDMzQ1JSEvT19WFlZUWJkBqU7ihdkS7SjRtbynzNxcVUPAkqbppYzFC73OcFNKf+pxgVRBNNx+FwsHPnTjg6OmLp0qUq70BPiCZQOhHy8/ODj48PAgMDYWxsjJs3b4LP52P06NGYOXNmZcRYcxR3iZZyBUEmJTtKu7q6VqiL9NChjTFhQgvs2XNfbHzXroGYOLHEWnKHq9dUfnWggmiiSfLz8xEQEIBOnTqhf//+7LiFhQU2bNigvsAIUTOlE6H79+9j+/bt4HK54PF4yMvLg4uLC1atWoVx48ZhyJAhlRFnzVC6S7QyFOwoHRFR8QRl48Y+CAl5jejoFABAQEBn8SQIKFpDzMkYeJX2aexKTIXPrYmoIJpUd5GRkfD19cXdu3exZ88ePHz4ENbW1uoOi5BqQenKUz6fDy63aDcrKyu8efMGAGBsbIyYmNr5i1BhJbtE8+0Uf+g2rNKO0gKBDg4e/AwGBnxs3NgHixd3kdzIzxPQkV3PQwhRP4ZhsH37dnh4eODu3bsAgJSUFFy/fl3NkRFSfSh9RcjDwwO3b99GgwYN4O3tjYCAACQlJeHAgQNo2rRpZcRY8/BtAY/qfQWhfXsHvH79HczN9cveuFgjs7K3IYRUicTERHz55ZdizXDd3NwQFBSEli1bqjEyQqoXpa8IrVixgl3ZfPny5TA1NcXUqVORmJiI7du3qzxAoj5lJkFNzAFP66J+QX8MAv71rZrACCFynTt3Du7u7mJJ0NSpU3H37l1KgggpRekrQp6en/rDWFlZ4ezZsyoNqEYpXRytQOGzRtneW90REEJKyM3Nhb+/v1jxs4WFBXbv3g0fHx/1BUZINaay7nR3797FgAEDVHW4mqG4OLogtuiBj52TaUo1IaQSvH//Hnv27GGf9+nTB+Hh4ZQEESKHUonQuXPnMGfOHMyfPx/R0dEAgKdPn2Lw4MFo3bo1uwwH+UhacXQVFz4T1QtOCEaj0EbUNJFUO3Xr1sW2bdugo6ODTZs24a+//oKNjY26wyKkWlP41tiuXbvw1VdfwczMDCkpKfjtt9+wbt06fPvttxgxYgQePXqERo0aVWasmquSiqNV0VE6JiYNDg7GZW9Y3EXazUyp5TNqotKNFKlpIlGXuLg4GBgYwMjIiB374osv0LFjRzg4yF/jjxBSROErQhs3bsQvv/yCpKQkHD16FElJSdi6dSvCw8MRGBhISZAaFHeULr4Sp2xX2CtXXqFu3Q3o1GkPli//F2Fh7yASMZIbFneR/iMKWHETsPy16NE3WBVvQ+OUbKTYUL8hNU0kanHixAm4u7tL7eZPSRAhilP4itCLFy8wfPhwAMCQIUOgpaWF1atXw97evtKC00glC6QruTi6Ih2lCwqEmDz5NADg2rU3uHbtDRYu/AeWlvrw9+8IP7/2nzZWcRfp0qvNa/LK8hHtqcM2qVpZWVmYPXs2O0t337598PHxwdChQ9UcGSGaSeFEKCcnB/r6RdOpORwOdHR02Gn0pARp3aMr+dZJeTpKh4a+RVTUB4nxxMRsNGhgLj74Og3o5QTYCYA94Z/GHRW4pSaFrNXmq/vK8sWLrFJtEFGXsLAw+Pr6Iioqih0bPHgwvL291RgVIZpNqenzv/32GwwNDQEAhYWF2Lt3LywsLMS2qfWLrooVSNsWJUHVsDj67t04DBzohpMnI8XGBwxwxYABruIb93IGvvEAlt0QH/ct3+1QaavNV7eV5aWh2iCiLkKhEGvWrMHChQtRWFgIANDX18fGjRsxadIkcDgcNUdIiOZSOBGqW7cudu7cyT63sbHBgQMHxLbhcDhKJ0JbtmzB6tWrER8fj+bNm2Pz5s1o06aNzO1TU1OxYMEC/O9//0NycjIcHR2xYcMG9OvXT6nzVrpq3j26Z08XTJvWGp6eO/HwYQI7fuiQlLXipBVHW+oDnStWh6Bpq82XrA1y1Xel2iBSJWJiYjBmzBiEhISwY61atUJQUBBcXV3l7EkIUYTCidCrV69UfvIjR45g1qxZCAwMRNu2bbFhwwb07t0bkZGRsLKyktg+Pz8fPXv2hJWVFY4dOwY7Ozu8fv0aJiYmKo+tpmvSpOj7u337AHh57QLDAHZ2AggE2mXvrMUFAntWcoTVF9UGkaoSFRWFtm3bIjU1FUDRh8158+Zh8eLF0NZW4P8qIaRMSneWVqV169bhq6++woQJEwAAgYGBOHPmDHbv3o158+ZJbL97924kJyfjxo0b4PP5AAAnJ6eqDLnGadfOHpMnt0JgYBimT28j9RJ7cXHz508L0aKhHX5v6oDr10XA9dflOqemFkcTUtXq16+Ptm3b4ty5c3BwcMCBAweoHogQFVNbIpSfn4+wsDD4+/uzY1wuFz169EBoaKjUfU6ePIn27dtj2rRpOHHiBCwtLeHr64u5c+eCx6OV0Mtr5coeaNzYEtOnl7glWdw36Et3BPxbgKeJBVhS3xGo//FWVnrFk5nqXhxdjIqkibpwuVzs2bMHixcvxs8//wxT0+pdR0eIJlJbIpSUlAShUAhra2uxcWtrazx9+lTqPtHR0bh8+TJGjRqFv/76C8+fP8c333yDgoICLFq0SOo+eXl5yMvLY5+np6er7k3UECYmuvj227afBkJigJGngEIR8LkbMj5++0oWN1eUJhRHF6MiaVIVCgsLsXz5cnTq1AndunVjx21tbWlBa0IqkVpvjSlLJBLBysoKO3bsAI/HQ6tWrRAbG4vVq1fLTIRWrlyJn376qYoj1XBTzxclQaVoWnGzqlCRNKls0dHRGD16NEJDQ2FnZ4eHDx/CzMxM3WERUiuo7d6EhYUFeDweEhISxMYTEhJkro1ja2sLV1dXsdtgjRo1Qnx8PPLz86Xu4+/vj7S0NPYRExOjujdRE4XEAIk57NNRR97jQ2o+/O8/V2NQ1UNxkfQw62HqDoXUEAzDYP/+/WjRogVbEhAfH49//vlHzZERUnuUKxF68eIFFi5ciC+++ALv378HAPz99994/PixwsfQ1tZGq1atcOnSJXZMJBLh0qVLaN++vdR9OnTogOfPn4st7hoVFQVbW1uZMyh0dHRgZGQk9iBylOoinZFRiKMX7sHnzXuNqempiOIFVe2v2bMPqg0ilSElJQUjR47EuHHj2C7xLi4uuHbtGnWJJqQKKf2bLSQkBM2aNcOtW7fwv//9D5mZmQCABw8eyLw9JcusWbOwc+dO7Nu3DxEREZg6dSqysrLYWWRjx44VK6aeOnUqkpOTMXPmTERFReHMmTNYsWIFpk2bpuzbqJWkriNW2us0sacHrjyAT8x7JFkYakxNT0UU1wPF5sWyDxE+ruVGtUFERa5cuQJ3d3ccPXqUHRs/fjzu37+Pdu3aqTEyQmofpWuE5s2bh2XLlmHWrFlii3x269YNv/76q1LHGjFiBBITExEQEID4+Hi0aNECZ8+eZQuo37x5Ay73U67m4OCAc+fOwc/PD+7u7rCzs8PMmTMxd+5cZd+GRivvqvMLFlzC8eOR6NLFEV26OMHb2wk2NoZy9zEuKOpi67O0FdBM/rY1Qcl6IFudT0vICHgCqg0iFZafn49Fixbhl19+AcMUfTAxMTHBjh072LUcCSFVi8MU/29UkKGhIcLDw+Hs7AyBQIAHDx7AxcUFr169QsOGDZGbm1tZsapEeno6jI2NkZaWVjm3ye7ZAwWxAN+u0jpLN2rUSGxmXcOGDRVaa6x9+124eVM8prZt7RAaWqJF/514ID0Po468x9c3nqFZagbM/FoBs6R0l66B7K/ZIzYvFnY6dnjbsfp2BieaKTo6Gu7u7sjKygIAdOnSBfv376fV4glRQGX9/lb61piJiYnUKxH37t2DnZ2dSoLSSMnBwMNGlb7iPCC+6nzDhg0VWnU+MzMft2/HSoxbWhqINVEM1jFEo/tc/G5uji4D2sH9mz61JgkipLK5uLhg48aN4PP5WLVqFS5dukRJECFqpvStsZEjR2Lu3LkIDg4Gh8OBSCTC9evXMWfOHIwdO7YyYtQMpVedr4J6EmVWnb9+/Q2EQsmLf10cjIEp5wEPa2Byc4mV4WtDgTQhlSUpKQn6+vrQ19dnxyZOnAhvb2/Ur19fjZERQoop/VtuxYoVaNiwIRwcHJCZmYnGjRujc+fO8PLywsKFCysjRs1QctV53YbVbsX5M2eeSR3vcvQZ8EcU8Lao0WTJleEbWvJrRYE0IZXh3LlzaNasGb7//nuxcQ6HQ0kQIdWI0leEtLW1sXPnTvz444949OgRMjMz4eHhgQYNGlRGfJqHbwu4V78FOVes6I7GjS2xZcttPHpU1PLAWJuHFjJyYVsBDxGz6JI9IcrKzc2Fv78/NmzYAADYunUr+vXrh/79+6s3MEKIVEonQteuXUPHjh1Rt25d1K1btzJiIpXA0FAbU6Z4YvLkVvj339fYsuU2LG/FgZddYpHVPCGm33oG/0Yu6guUEA0WHh6OUaNGITw8nB3r06cPWrVqpcaoCCHyKH1rrFu3bnB2dsb8+fPx5MmTyoiJVCIOhwNvbyccPTocvzYq0cE7TwRM/Bs9oxNk71wDlW6gSM0TSXmIRCJs3LgRrVu3ZpMgHR0dbNq0CX/99ZfMbvmEEPVTOhF69+4dZs+ejZCQEDRt2hQtWrTA6tWr8fYtTTXWNCVni2FPOHD+ldpiUZfSDRSpeSJRVlxcHPr164fvvvuOXeC5WbNmuHPnDr799lvx/2eEkGpH6UTIwsIC06dPx/Xr1/HixQsMHz4c+/btg5OTk9iKyYRogpINFO107GCnY4eG+g2peSJRSGRkJNzd3XHu3Dl2zM/PD//99x+aNm2qxsgIIYqq0Orzzs7OmDdvHpo3b44ff/wRISEhqoqLkCplq2NLDRSJ0urXr4/GjRvj33//ha2tLfbu3YtevXqpOyxCiBLKnQhdv34dhw4dwrFjx5Cbm4tBgwZh5cqVqoyNVLa/JVv6D1r5GkgXqiEYQjQPj8fDgQMHsHDhQqxbtw4WFhbqDokQoiSlEyF/f3/8/vvvePfuHXr27ImNGzdi0KBBYg3DiPoxDEO1CYSokFAoxJo1a9CpUyd4eXmx43Xr1sX+/fvVGBkhpCKUToT+/fdffP/99/j888/p00819eBBPPz8zqFLFye0bWuHNm3sYGqqp+6wCNFYMTExGDNmDEJCQuDs7Iz79+9XzlqFhJAqp3QidP369cqIg6iISMRgypQzuHnzLf755xU77uZmjm3b+qMrVws4HAEwDLC9t/oCJURDHD16FJMnT0ZqaioA4NWrVzh//jyGDRum3sAIISqhUCJ08uRJ9O3bF3w+HydPnpS77cCBA1USWG0XHByMgIAAdoHVkqQtelvs8OFwiRXmAeDZs2Q4J+QAfleAQhHgZqbKcAmpcdLT0zFjxgzs27ePHXNwcMCBAwfg7e2txsgIIaqkUCI0ePBgxMfHw8rKCoMHD5a5HYfDgVBIhbaqEBAQgKdPn8rdRiAQ73WTk1MAf/9LUrf9+uuWcLrytigJquWCE4IREB2ADGEGNVAkUoWGhmL06NGIjo5mx0aMGIFt27bB1JTW3yOkJlEoERKJRFK/JpWn+EoQl8uFra2txOsCgQBLl4r3uklJyUXDhhaIiUkXG3d2NsHatb2BocfFD5InBLbeA/w8VRp7dVfcRLEkaqBIAKCwsBDLly/H0qVL2Q91AoEAW7ZswejRo2kCAiE1kNINFffv3892Ty0pPz+fZk5UAltbW7x9+1biERERIVGjUKeOAOfOjcZff/micWNLdvyXX3pAX58vfuA8ITDxb+D8y6p4G9VK6SaK1ECRFHvx4gVWrlzJJkFeXl548OABxowZQ0kQITWU0onQhAkTkJaWJjGekZGBCRMmqCQoUn4cDgd9+zbAgwdTEBjYH4MHN8SwYY0/bdDLCfCqA7xKq5VLapRU3EQxon0EhllT4SsB3NzcsGrVKvB4PPz000/sLDFCSM2l9KwxWf1p3r59C2NjY5UEVZvIKoqWVxCtCC0tLiZP9sTkySVue/VyBr7xAEaflowjPBMBF1IQl0E1XqT2SElJgb6+PnR0dNixb7/9Ft26daMlMgipJRROhDw8PMDhcMDhcNC9e3doaX3aVSgU4uXLl+jTp0+lBFmTlVUUXbogukKk1QI5FiWvARdS8DSx4NN5dZS+WFjtFRdJU4E0AYArV65gzJgxGDlyJFavXs2OczgcSoIIqUUUToSKZ4vdv38fvXv3hqGhIfuatrY2nJycMHToUJUHWNPJK4qWVhCtUlpcwLdRURx5RUXwXA7gasHH0p41b2ZM6SJpKpCunfLz87Fo0SL88ssvYBgGa9asQZ8+fdC9e3d1h0YIUQOFE6FFixYBAJycnDBixAjo6upWWlC1UXFRdJVwNQPM9YqSoM4O4nEIeIiY5SBjR81WskjaVd+VCqRrocjISPj6+uLu3bvsWNeuXeHm5qbGqAgh6qR0jdC4ceMqIw6iSonZQEGpNgd8LmD5cT245Z2qPqZqxFbHFhHtI9QdBqlCDMNgx44d8PPzQ05ODgCAz+dj+fLlmD17NrjcmncrmBCiGIUSITMzM0RFRcHCwgKmpqZyp5EmJyerLDhStoICIfh8nvhg492SG3pas6vNFxdGF98OA1Cji6SpNqh2S0xMxJdffinWFd/NzQ1BQUFo2bKlGiMjhFQHCiVC69evZ4t2169fT/00qgmGYbB79z2MHNkUxsYfb1WGxJS5X+nC6JJqYpE01QbVXpGRkejSpQvi4+PZsalTp2LNmjXQ19dXY2SEkOpCoUSo5O2w8ePHV1YsREknTkRiypQzmDLlDCwt9dGggTlck3LRIicHM/VkrzZfsjDaVvDpapJAh1sji6SpNqj2cnFxgYODA+Lj42FhYYHdu3fDx8dH3WERQqoRpWuE7t69Cz6fj2bNmgEATpw4gT179qBx48ZYvHgxtLW1VR4kke78+Rfs14mJ2UhMzMYNABNL9ERhOUr2eLIV8PDW37ESI6xeqDao9uHz+Th06BDmzZuHLVu2wMbGRt0hEUKqGaXvg0yePBlRUVEAgOjoaIwYMQL6+voIDg7GDz/8oPIAiWxv36ZLHV+woCOwpAOwoN2nwY/T5AmpqUQiETZt2oR79+6JjTdo0AB//PEHJUGEEKmUToSioqLQokULAEVdkb29vREUFIS9e/fijz/+UHV8RAaGYfDwYYLEeJMmlnD5sSMw1QNgAAx1Bf4YJDFNnpCaJC4uDv369cPMmTPh6+uL7OxsdYdECNEQSidCDMOwK9BfvHgR/fr1AwA4ODggKSlJtdERmQoLRZg61RN164rf8mrU6NNiq/DzBAJ7URJEarQTJ07A3d0d586dAwA8ffoUf//9t5qjIoRoCqUTIU9PTyxbtgwHDhxASEgI+vfvDwB4+fIlrK2tVR4gkY7P52Hu3I6Ijp6B48dHoEcPFwCAj4+rmiMjpGpkZWVhypQpGDx4MPshzNbWFufOnaMu94QQhSldLL1hwwaMGjUKx48fx4IFC1C/fn0AwLFjx+Dl5aXyAIl8PB4XgwY1xKBBDfH0aRKcnEzUHRIhlS4sLAy+vr5svSJQtAzQzp07YWFhocbICCGaRulEyN3dHeHh4RLjq1evBo/Hk7IHqXQhMcDhCDR0M5O+sKqGKm6EWDz9vbyokWLNIRQKsXr1avz4448oLCwEAOjr62PDhg348ssvqccZIURpSidCxcLCwhARUTQVuXHjxtShVV2W3gA2fVw36efOwIHHRV9b6gN9nNUXlwqUboRYUdRIUfM9ffpULAlq1aoVgoKC4OpKt4QJIeWjdCL0/v17jBgxAiEhITAxMQEApKamomvXrvj9999haWkp/wBEdUJiPiVBADDv309fe1prfCJUshGirY5thY4l4AmokWIN0KRJEyxduhTz58/HvHnzqHcZIaTClE6Evv32W2RmZuLx48do1KioN82TJ08wbtw4zJgxA4cPH1Z5kESGw3KaA0ppoKipbHVs8bbjW3WHQdQgIyMDenp60NL69KPq+++/R48ePeDpWXNuAxNC1EfpWWNnz57F1q1b2SQIKLo1tmXLFpqyWtVep8l+jRooEg0XGhqKFi1aYNmyZWLjPB6PkiBCiMoofUVIJBKBz+dLjPP5fLa/EKkcHz5kw9f3f1i7theaNrUCtvUCcotqJZAnBHocLfp6Zqtq0TuoosXOVORcOxUWFmL58uVYunQphEIhli5dil69etGsVEJIpVA6EerWrRtmzpyJw4cPo06dOgCA2NhY+Pn5oXv37ioPkHwya9Z5nD//Am3a7MS2bf0xblyLTy+uv1PURdq3UbVIggDVFTtTkXPtER0djdGjRyM0NJQda9euHWxtK1YjRgghsiidCP36668YOHAgnJyc4OBQ9As3JiYGTZs2xcGDB1UeICnCMAyOHS2aEZaTU4jx40/g339fY/PmftDX51fLafOqKHamIufagWEYHDhwANOnT0dGRtG/Gx6Ph4CAAMyfP1+sRogQQlRJ6Z8uDg4OuHv3Li5dusROn2/UqBF69Oih8uA0QnIw8DYAKKjc2ziZZ18iu/g22Ee7d99HdHQq/vlnXKWeu6Ko2JnIk5KSgqlTp+LIkSPsmIuLCw4dOoR27drJ2ZMQQipOqUToyJEjOHnyJPLz89G9e3d8++23lRWX5ngbAOSWuP1TSbdx0mZckDresWP1uA1GSHlERkaiZ8+eiImJYcfGjx+PTZs2QSCgW6KEkMqn8Kyxbdu24YsvvsCdO3fw7NkzTJs2Dd9//31lxqYZ2EJgLqDbELAv+zZOcHAwGjVqBHt7e8TFKXAlKSQGGUk5WKmvj9IdU+ztjco+X3gmGq2Lgf3K17Bf+RpxGcKyz0lIFXB0dGT7kZmamuLo0aPYs2cPJUGEkCqjcCL066+/YtGiRYiMjMT9+/exb98+bN26tTJj0yx8W8A9AjAbVuamAQEBePr0KWJjY9mZdnJ/8B+OQH0eD/OsjXHe2Agm2p+WMjE11Sv7fBdS8DSxALHpQsSmCyFiisYFOkp3TyBEpXR1dREUFIR+/frh4cOHGD58uLpDIoTUMgr/JoyOjsa4cZ9qUXx9fVFYWKjYFQ0iprgYlMvlws7ODg0bNsTSpXKuJLmZgR/7DWDIhzefj2v6hnDgcsHjAG3b2pV9vryiZIvLAeyMeLAz4qGhJR9Le5qq5P0QogiGYbBjxw48efJEbLxp06Y4c+YM7O3t1RQZIaQ2U7hGKC8vDwYGBuxzLpcLbW1t5OTkVEpgtYGtrS3evlWgiLjUjLAmWloINTbCua+awtHRRPHzCXh46++oZJSEVFxiYiK+/PJLnDx5Es2bN8etW7ego6Oj7rAIIUS5Yukff/wR+vr67PP8/HwsX74cxsaflnNYt26d6qIjMtnNaoOJC9urOwyWtOaJ1BCRAMC5c+cwfvx4xMfHAwAePHiA06dPY+jQoWqOjBBClEiEOnfujMjISLExLy8vREdHs885HI7qIiOS3C0BL7tq1TSxmLzmidQQsXbKzc3FvHnzsHHjRnbMwsICu3fvho+PjxojI4SQTxROhK5cuVKJYRCFHByg7ghkktU8kRoi1k7h4eHw9fXFo0eP2LHevXtj7969sLGxUWNkhBAijtq1VjOFhSLkXngFwxPPATezatkxWh5qnli7iUQibN68GXPnzkVeXh4AQEdHB6tWrcL06dPB5dJMRUJI9UI/laqZWR33QtDvAIbtCcPvFtrIyMhTd0iEKCw8PByzZs1ik6BmzZrhzp07mDFjBiVBhJBqiX4yVSPLJp3C5ltFHXb/yM/HF2P/hKXRzxik/zMS+x9T+njFjRSpgSKpKs2bN8f8+fMBAH5+fvjvv//QtGlTNUdFCCGy0a2xaiI4+DF+3H1XYjwPwM3cfJjZKV9wXNxIsRg1UCSqlp2dDV1dXbGrPQEBAejVqxc6deqkxsgIIUQx9JuxmnjyJFHma6sNDMAb3VjpY5ZspEgNFImqhYWFwcPDA2vXrhUb5/P5lAQRQjRGuRKhq1evYvTo0Wjfvj1iY2MBAAcOHMC1a9dUGlxtsmhRFxwa1QK6PPG/ksX6ehjzQ/sKTZe3FfAQMcsBw5oZVjRMQiAUCvHLL7+gXbt2iIqKwoIFC3D3ruTVTEII0QRKJ0J//PEHevfuDT09Pdy7d48tikxLS8OKFStUHmBt4ntwEK7enAS7j7fBtnR0xqK/vwDnRy81RyYpOCEYjUIbwf6aPeyv2VPzxFoiJiYG3bt3x7x581BYWAgAcHd3h6EhJdmEEM2kdCK0bNkyBAYGYufOneDz+ex4hw4d6FOhCnh61sHt219h3bpe+Obq2GrXOLFYcQPF2LxYxObFQoSPi8dS88Qa6+jRo3B3d0dISAiAogaq/v7+uHHjBlxdXdUcHSGElI/SxdKRkZHo3LmzxLixsTFSU1NVEVOtZ2srgJ9f9Vk+QxppDRSpeWLNlJ6ejhkzZmDfvn3smIODAw4cOABvb281RkYIIRWndCJkY2OD58+fw8nJSWz82rVrcHFxUVVcRENQA8WaLTIyEv369RNbSmfEiBEIDAyEiYmJ+gIjhBAVUfrW2FdffYWZM2fi1q1b4HA4ePfuHQ4dOoQ5c+Zg6tSplREjIURN7O3toaVV9HlJIBBg//79OHz4MCVBhJAaQ+lEaN68efD19UX37t2RmZmJzp0748svv8TkyZPx7bffliuILVu2wMnJCbq6umjbti3+++8/hfb7/fffweFwMHjw4HKdt1p4kgTcjhN/PElSd1SEAAAMDAwQFBSELl264MGDBxgzZgwtrkwIqVGUvjXG4XCwYMECfP/993j+/DkyMzPRuHHjcs8aOXLkCGbNmoXAwEC0bdsWGzZsQO/evREZGQkrKyuZ+7169Qpz5szRuH4l1669QWpqOwDhEInygdn/AHcSxDfytAb+Hq6W+EjtxTAMDhw4gA4dOqBevXrseKtWrXD58mVKgAghNVK5Gypqa2ujcePGaNOmTYWmzq5btw5fffUVJkyYgMaNGyMwMBD6+vrYvXu3zH2EQiFGjRqFn376SSPqkoKDg9GoUSPY29ujT59ZyMpqBsAXcXFj4XXzJQKyspHNMOoOk9RiKSkpGDlyJMaNG4dRo0ahoKBA7HVKggghNZXSV4S6du0q94fi5cuXFT5Wfn4+wsLC4O/vz45xuVz06NEDoaGhMvdbsmQJrKysMGnSJFy9elXuOfLy8theR0DRDJiqFhAQgKdPnwLQBlAyceMiNDUHURwOFlsIgBxaE4xUvStXrmDMmDF4+7ao6P3WrVs4ffo0PvvsMzVHRgghlU/pRKhFixZizwsKCnD//n08evQI48aNU+pYSUlJEAqFsLa2Fhu3trb+mDhIunbtGnbt2oX79+8rdI6VK1fip59+UiouVcvIKJpqzuE0BsMYSLze3cEE3DXdgG8uVHVoCglOCEZAdAA7ZR4ANVCsAfLz8xEQEIBVq1aB+XhF0tTUFDt27KAkiBBSayidCK1fv17q+OLFi5GZmVnhgOTJyMjAmDFjsHPnTlhYWCi0j7+/P2bNmsU+T09Ph4ODepoU6uo2Q06O5PjXgf2A/KqPR1HFzROloQaKmikyMhK+vr5iTVC7du2K/fv3w97eXo2REUJI1VLZ6vOjR49GmzZtsGbNGoX3sbCwAI/HQ0KCeLFwQkICbGxsJLZ/8eIFXr16BR8fH3ZMJCrqaKylpYXIyEixIk8A0NHRgY6OjjJvpdLweBlwcjLBq1ep7FjDhhbo1qcecPLFpw0djas+ODmkNU8EqIGiJmIYBjt27ICfnx9yPmblfD4fy5cvx+zZs8VWkSeEkNpAZYlQaGgodHV1ldpHW1sbrVq1wqVLl9gp8CKRCJcuXcL06dMltm/YsCHCw8PFxhYuXIiMjAxs3LhRbVd6FGVsfBvR0f9DVNQHnDv3AufOvUCLFtbiNVdaXMC3kfqClIOaJ6qGUCiUKEauKo8fP8bKlSvZGZnOzs5Ys2YNmjRpgvz8anxZkhBSK2hra1f5BzKlE6EhQ4aIPWcYBnFxcbhz5w5+/PFHpQOYNWsWxo0bB09PT7Rp0wYbNmxAVlYWJkyYAAAYO3Ys7OzssHLlSujq6qJp06Zi+xc3dis9Xl1x/n0Lt8MRcOtghxlnfD+9YKoDDHUtSoKqyfpixbVBVA+kGgzDID4+Xq1L0ejr6yMoKAjp6ekwNDSEqakpuFwuXr58qbaYCCGkGJfLhbOzM7S1tavsnEonQsbG4rdtuFwu3NzcsGTJEvTq1UvpAEaMGIHExEQEBAQgPj4eLVq0wNmzZ9kC6jdv3tSYy/UdRY7AyFNAoQhwKXX7q7NDtUmAipWuDaJ6oIopToKsrKygr69fJVPSRSIROByO2LkcHR2RnZ1NK8YTQqoVkUiEd+/eIS4uDnXr1q2yth1KJUJCoRATJkxAs2bNYGpqqrIgpk+fLvVWGFA0tVeevXv3qiyOytSd74bfC74APq7SrglK1ga56rtSPVAFCIVCNgkyNzevknNmZ2fj5cuXsLS0lGhOqq+vXyUxEEKIMiwtLfHu3TsUFhaCz+dXyTmVutTC4/HQq1cvWmVeSR1FjvjbSMo6bHlCYP2dqg9ISbY6tohoH4Fh1sPUHYrGKq4JqooEhGEYJCQkICIiAjk5OYiJiWELowkhpDorviUmFFZdXz2l7zk1bdpUbCVqIltxR+mBmQ3A5/DEX8wTAhP/Bs5TbUZtUtmXevPz8/Hs2TPExMSwvYGUncRACCHqoo4u9krXCC1btgxz5szB0qVL0apVKxgYiDcINDIyUllwmq64o7SzcT/JFzd97N8y1LVqg5KBmiZqvtTUVLx69QqFhYXsmLW1Nezs7GpMnR0hhKiawj8dlyxZgqysLPTr1w8PHjzAwIEDYW9vD1NTU5iamsLExESldUM1wfv3pgBM0CtjKzzNduD4OisgYhLQvk7RBiqcKh8cnolG62Jgv/I1+4jLUPzSYnFhdGxeLPsQfaxnoiLp6k0oFOL169d4/vw5mwTx+Xw0aNAADg4OlARVU8ePH0f9+vXB4/Hw3XffKb3/3r172VmzVe3KlSvgcDhqKZPYtWtXuSbmEPmePHkCe3t7ZGVlqTuUKqfwT8iffvoJWVlZ+Oeff9jH5cuX2Ufxc1Lk/v14JCf3BPAd8rUmYNz0nWjfqx9w4DFQICy6EnTER2UzxQIupOBpYgFi04XsQ/RxHVeBTtl/zSULo+107NhHQ/2GVCRdjeXm5iIiIgKJiYnsmImJCRo3biwxw7M8xo8fz8464/P5cHZ2xg8//IDc3FyJbU+fPg1vb28IBALo6+ujdevWMicz/PHHH+jSpQuMjY1haGgId3d3LFmyBMnJyRWOWVNMnjwZw4YNQ0xMDJYupf9jisjNzcWPP/6IRYsWqTuUSpObm4tp06bB3NwchoaGGDp0qETT4dIyMzMxffp02NvbQ09Pj13AvNirV6/Y/8elH8HBwQCAxo0bo127dli3bl2lvr/qSOFbY8X1Bt7e3pUWTE3BMAymTfsLxXlmfr41Zsw4i+++O4c1a3rC7+/hKj9nRl7R1RsuB7AVfKpHEuhwsbSn4lfqqGmiZtHS0mK7q3O5XDg4OMDCwkKl99n79OmDPXv2oKCgAGFhYRg3bhw4HA5++eUXdpvNmzfju+++w9y5c7Ft2zZoa2vjxIkTmDJlCh49eiTWcX7BggX45Zdf4OfnhxUrVqBOnTp49uwZAgMDceDAAcycOVNlscuTn59fpb1KSsrMzMT79+/Ru3dv1KlTRy0xaKJjx47ByMgIHTp0qNBxCgoKqmxGkrL8/Pxw5swZBAcHw9jYGNOnT8eQIUNw/fp1mfvMmjULly9fxsGDB+Hk5ITz58/jm2++QZ06dTBw4EA4ODggLk681GHHjh1YvXo1+vbty45NmDABX331Ffz9/aGlpbJ+y9UfoyAOh8O8f/9e0c2rrbS0NAYAk5aWppoD3rVjmFso+vOjf/99xQCLJR7a2kuZqKgk1Zy3FLsVrxjMe8HYrXhVvv2v2jG4CMbuql3ZGxOl5eTkME+ePGFycnJUfuyMjIxKO/a4ceOYQYMGiY0NGTKE8fDwYJ+/efOG4fP5zKxZsyT237RpEwOAuXnzJsMwDHPr1i0GALNhwwap50tJSZEZS0xMDDNy5EjG1NSU0dfXZ1q1asUeV1qcM2fOZLy9vdnn3t7ezLRp05iZM2cy5ubmTJcuXZgvvviC+fzzz8X2y8/PZ8zNzZl9+/YxDMMwQqGQWbFiBePk5MTo6uoy7u7uTHBwsMw4GYZhkpOTmTFjxjAmJiaMnp4e06dPHyYqKophGIb5559/GABij3/++Ufm9+Prr79mrKysGB0dHaZJkybMqVOnGIZhmD179jDGxsbsts+fP2cGDhzIWFlZMQYGBoynpydz4cIFseNt2bKFqV+/PqOjo8NYWVkxQ4cOZV8LDg5mmjZtyujq6jJmZmZM9+7dmczMTKlxFb+H06dPM82aNWN0dHSYtm3bMuHh4ew2ixYtYpo3by623/r16xlHR0ex47Ru3ZrR19dnjI2NGS8vL+bVK9k/w/r378/MmTNHbOy///5jevTowZibmzNGRkZM586dmbCwMLFtADBbt25lfHx8GH19fWbRokUMwzDM8ePHGQ8PD0ZHR4dxdnZmFi9ezBQUFLD7rV27lmnatCmjr6/P2NvbM1OnTmUyMjJkxldRqampDJ/PF/v3FRERwQBgQkNDZe7XpEkTZsmSJWJjLVu2ZBYsWCBznxYtWjATJ04UG8vLy2N0dHSYixcvlvMdVJy8n5Uq//39kVLFA66urjAzM5P7IMCxY0+kjv/wgxcaNKiaHjKkZkpOTpZYCsPQ0BANGzasktlhjx49wo0bN8SupBw7dgwFBQWYM2eOxPaTJ0+GoaEhDh8+DAA4dOgQDA0N8c0330g9vqyal8zMTHh7eyM2NhYnT57EgwcP8MMPP7BXwxS1b98+aGtr4/r16wgMDMSoUaNw6tQpsQWjz507h+zsbHz22WcAgJUrV2L//v0IDAzE48eP4efnh9GjRyMkJETmecaPH487d+7g5MmTCA0NBcMw6NevHwoKCuDl5YXIyEgARbcI4+Li4OXlJXEMkUiEvn374vr16zh48CCePHmCn3/+GTweT2Lb4u9Rv379cOnSJdy7dw99+vSBj48P3rx5AwC4c+cOZsyYgSVLliAyMhJnz55F586dAQBxcXH44osvMHHiRERERODKlSsYMmQIeydAlu+//x5r167F7du3YWlpCR8fH4WXjyksLMTgwYPh7e2Nhw8fIjQ0FF9//bXcq5nXrl2Dp6en2FhGRgbGjRuHa9eu4ebNm2jQoAH69euHjIwMse0WL16Mzz77DOHh4Zg4cSKuXr2KsWPHYubMmXjy5Am2b9+OvXv3Yvny5ew+XC4XmzZtwuPHj7Fv3z5cvnwZP/zwg9z31bdvXxgaGsp8NGnSROa+YWFhKCgoQI8ePdixhg0bom7duggNDZW5n5eXF06ePInY2FgwDIN//vkHUVFRMmupwsLCcP/+fUyaNElsXFtbGy1atMDVq1flvseaRqlrXz/99JNK6g5quqysAvD5XBQUfPohbWKiC3//Tio/V3B4JgIupChVGE2qB09PT8THxyu8vVAoZDtFV+SytY2NDe7cUbx/1enTp2FoaIjCwkLk5eWBy+Xi119/ZV+PioqCsbExbG1tJfbV1taGi4sLoqKiAADPnj2Di4uL0rclgoKCkJiYiNu3b7MfuOrXr6/UMQCgQYMGWLVqFfu8Xr16MDAwwJ9//okxY8aw5xo4cCAEAgHy8vKwYsUKXLx4Ee3btwcAuLi44Nq1a9i+fbvUUoFnz57h5MmTuH79OpvgHDp0CA4ODjh+/DiGDx/ONrg0MzOTusA0AFy8eBH//fcfIiIi4Orqyp5blubNm6N58+bs86VLl+LPP//EyZMnMX36dLx58wYGBgYYMGAABAIBHB0d4eHhAaAoESosLMSQIUPg6OgIAGjWrFmZ389FixahZ8+eAIqSTHt7e/z555/4/PPPy9w3PT0daWlpGDBgALtYdqNGsiePpKamIi0tTeJWYrdu3cSe79ixAyYmJggJCcGAAQPYcV9fX3bpJgCYOHEi5s2bh3HjxgEo+t4uXboUP/zwA1uDVLKI3cnJCcuWLcOUKVOwdetWmXH+9ttvcvt2yfu3Hx8fD21tbYkPBNbW1nJ/VmzevBlff/017O3toaWlBS6Xi507d7KJbmm7du1Co0aNpCbgderUwevXr2WeqyZS6qfpyJEjJTrU1lrJwcDbAKBAcor5b78NxJo1vdDHeRREGfVwX6iHgQPdoK+v+nvSxUXSxRQpjCbVQ3x8PGJjY9UdRpm6du2Kbdu2ISsrC+vXr4eWlhaGDh1armOVdYVBlvv378PDw6PCV51btWol9lxLSwuff/45Dh06hDFjxiArKwsnTpzA77//DgB4/vw5srOz2V/2xfLz89kkorSIiAhoaWmhbdu27Ji5uTnc3NwQERGhcKz379+Hvb09mwSVJTMzE4sXL8aZM2fYxCYnJ4e9ItSzZ084OjrCxcUFffr0QZ8+ffDZZ59BX18fzZs3R/fu3dGsWTP07t0bvXr1wrBhw8qcCVycHAJFSZ0y79HMzAzjx49H79690bNnT/To0QOff/651IQaAJtclL7ymZCQgIULF+LKlSt4//49hEIhsrOz2fddrPSVpAcPHuD69etiV4CEQiFyc3ORnZ0NfX19XLx4EStXrsTTp0+Rnp6OwsJCsdelsbOzU+j9q9LmzZtx8+ZNnDx5Eo6Ojvj3338xbdo01KlTR+zqElD0fQwKCpK5Nqienh6ys7OrIuxqQ+FESB1Njqq1twFA7qd1uFBqirnJg0Tc1OoKmAL/IR4Ob7KBvsFAQ3NgfTeoSskiaVcLvlKF0US9ZF0JKKn4KlBJPB6vQlPiFTlvSQYGBuzVl927d6N58+bYtWsXe1nd1dUVaWlpePfuncSn9fz8fLx48QJdu3Zlt7127ZrSxap6enpyX+dyuRJJlrRbNKX7ngHAqFGj4O3tjffv3+PChQvQ09NDnz59AIC9ZXbmzBmJX3A6OjoKx18eZb3n0ubMmYMLFy5gzZo1qF+/PvT09DBs2DD2VqpAIMDdu3dx5coVnD9/HgEBAVi8eDFu374NExMTXLhwATdu3MD58+exefNmLFiwALdu3YKzs3O54lfk72TPnj2YMWMGzp49iyNHjmDhwoW4cOEC2rVrJ3E8c3NzcDgcpKSkiI2PGzcOHz58wMaNG+Ho6AgdHR20b99e4hZy6b/7zMxM/PTTTxILiQNFydarV68wYMAATJ06FcuXL4eZmRmuXbuGSZMmIT8/X2Yi1LdvX7m3lhwdHfH48WOpr9nY2CA/Px+pqaliV4USEhJk/r/NycnB/Pnz8eeff6J///4AAHd3d9y/fx9r1qyRSISOHTuG7OxsjB07VurxkpOT2St0tYXSs8bIR2zjQS6g6wrYl5r+evjTp6I2sAEeVe60YFsBDxGzlJ+KTyvMq4+821N5eXmIjo4W6+lhaGgIZ2fnSv8FLA+Xy8X8+fMxa9Ys+Pr6Qk9PD0OHDsXcuXOxdu1arF27Vmz7wMBAZGVl4YsvvgBQdHti06ZN2Lp1q9TZYaV/ARRzd3fHb7/9huTkZKlXhSwtLfHo0SOxsfv37yuUbHl5ecHBwQFHjhzB33//jeHDh7P7NW7cGDo6Onjz5o3CM2YbNWqEwsJC3Lp1i7318OHDB0RGRqJx48YKHQMoes9v375FVFSUQleFrl+/jvHjx7O1TZmZmXj16pXYNlpaWujRowd69OiBRYsWwcTEBJcvX8aQIUPA4XDQoUMHdOjQAQEBAXB0dMSff/6JWbNmyTznzZs3UbduXQBASkoKoqKi2NtblpaWiI+PB8Mw7Afp+/fvSxzDw8MDHh4e8Pf3R/v27REUFCQ1EdLW1kbjxo3x5MkTsdqX69evY+vWrejXr6hxbUxMDJKSksr8frVs2RKRkZEyb7GGhYVBJBJh7dq17AePo0ePlnncitwaa9WqFfh8Pi5dusRedY2MjMSbN2/Err6VVFBQgIKCAokPRzweT2oN3a5duzBw4EBYWlpKPd6jR48wbFjtWk5J4URI2aLEWoNvC7hLuRT8Ok369o7Vq8aKVpivXhiGwYcPH/DmzRux/3N16tSBra1ttbgyO3z4cHz//ffYsmUL5syZg7p162LVqlWYPXs2dHV1MWbMGPD5fJw4cQLz58/H7Nmz2dtEbdu2xQ8//IDZs2cjNjYWn332GerUqYPnz58jMDAQHTt2lJogffHFF1ixYgUGDx6MlStXwtbWFvfu3UOdOnXQvn17dOvWDatXr8b+/fvRvn17HDx4EI8ePZJ5+6o0X19fBAYGIioqCv/88w87LhAIMGfOHPj5+UEkEqFjx45IS0vD9evXYWRkxNaXlNSgQQMMGjQIX331FbZv3w6BQIB58+bBzs4OgwYNUvj77O3tjc6dO2Po0KFYt24d6tevj6dPn4LD4bBXrEqf93//+x98fHzA4XDw448/iv0bOn36NKKjo9G5c2eYmprir7/+gkgkgpubG27duoVLly6hV69esLKywq1bt5CYmCi3ZgcoarRrbm4Oa2trLFiwABYWFhg8eDAAoEuXLkhMTMSqVaswbNgwnD17Fn///Te7+sDLly+xY8cODBw4EHXq1EFkZCSePXsm80oFAPTu3RvXrl0Tq91p0KABDhw4AE9PT6Snp+P7779X6GpaQEAABgwYgLp162LYsGHgcrl48OABHj16hGXLlqF+/fooKCjA5s2b4ePjwxbYl6Uit8aMjY0xadIkzJo1C2ZmZjAyMsK3336L9u3biyWHDRs2xMqVK/HZZ5/ByMgI3t7e7Pt2dHRESEgI9u/fL9ET6Pnz5/j333/x119/ST3/q1evEBsbK3EVqcZT6Rw0DaCy6XdSps2L6XOUYSw2Sz5C3lTsvKWoato89yKXaXijIRMcL39aMCkfRafPZ2ZmMrdv32YfDx8+rNTpumWRNi2dYRhm5cqVjKWlpdj06hMnTjCdOnViDAwMGF1dXaZVq1bM7t27pR73yJEjTOfOnRmBQMAYGBgw7u7uzJIlS+ROn3/16hUzdOhQxsjIiNHX12c8PT2ZW7dusa8HBAQw1tbWjLGxMePn58dMnz5dYvr8zJkzpR77yZMnDADG0dGREYlEYq+JRCJmw4YNjJubG8Pn8xlLS0umd+/eTEhIiMxYi6fPGxsbM3p6ekzv3r3Z6fMMUzQtHnKmzRf78OEDM2HCBMbc3JzR1dVlmjZtypw+fZphGMnp8y9fvmS6du3K6OnpMQ4ODsyvv/4q9p6vXr3KeHt7M6ampoyenh7j7u7OHDlyhH3/vXv3ZiwtLRkdHR3G1dWV2bx5s8y4iqfPnzp1imnSpAmjra3NtGnThnnw4IHYdtu2bWMcHBwYAwMDZuzYsczy5cvZ6fPx8fHM4MGDGVtbW0ZbW5txdHRkAgICGKFQKPO8jx8/ZvT09JjU1FR27O7du4ynpyejq6vLNGjQgAkODmYcHR2Z9evXs9sAYP7880+J4509e5bx8vJi9PT0GCMjI6ZNmzbMjh072NfXrVvH2Nrasn+H+/fvZwDI/XdaUTk5Ocw333zDton47LPPmLi4OLFtADB79uxhn8fFxTHjx49n6tSpw+jq6jJubm7M2rVrJf4t+/v7Mw4ODjK/xytWrGB69+6t8vekDHVMn+cwTO2655Weng5jY2OkpaVVbF20e/ZAQSzAtwM8pDQg9LuMsEMXkJ+fj/b8j/fYHY2AO7I/7ZSH/crXiE0Xws6Ih7f+jsrvf80esXmxsNOxo0aKlSg3NxcvX76Es7NzmdPcX79+jcTERJibm6Nu3boyp0sTUhsNHz4cLVu2hL+/v7pDqVHy8/PRoEEDBAUFVbhhZUXI+1mpst/fpdSi1pFVJzg4GAFnAxD1IQoikQh2dnZ4+7Z6JRlUG1Q9FE+HL3nLy97eHsbGxmpbR4qQ6mz16tU4deqUusOocd68eYP58+erNQlSF0qEKkHxqvPFBILqV3dDtUHql5ubi+joaFhZWcHCwoId5/F4lAQRIoOTkxO+/fZbdYdR49SvX79cvblqAkqEVCQmJg3//vsafD4P79+bAWgADodB/fp6WLo0QOXnq2gjxZKLrLrqu9LCqlWIYRgkJSUhJiYGIpEIb968gaGhYZV0hiaEECKOEiEVuX37HUaP/vPjs6KpnQwD7No1Hp06KV+7UxZVNVK01bFFRHvFm7yRiikoKMDbt2+RmprKjmlra9OsTEIIURNKhFQkJUV63wht7copdKVGiponJycHL168QGFhITtmaWkJe3t7KogmhBA1ofUYVCQkRPraLIaG2lLHVaW4keKwZoYKbR+cEIxGoY2oSLoK5ebmYuXKlXj//j2bBGlpaaF+/fpwdHSkJIgQQtSIrgipQGpqLo4dlWyZzuXkwdVWAGQVAAaqX2esPKhIumo9f/4cQ4YMQXp6OtsZ1sjICM7OzkovPEoIIUT1KBFSAcHdBATrGWA7k4Mz+QUorvaYrmMMvtsuYKgrENhL7jGkKS6ILr4NVhIVSWsGU1NTfPjwAXw+HxwOBzY2NrCzs6sWHaIJIYRQIqQSvKOR6K/FR38jPmKEQuzKzcOuvDxM1v24JpSv/Db1spQuiJaGiqSrN3Nzc+zduxdr166FjY0NLCwsKAkihJBqhGqEVKGDHfB9a+D71nCY1w4WRg/wytQEjbW0AEt9oLPyi6EC4gXRdkY8iUdDS/Ei6eL6H/tr9jIfVBtUuU6dOoX4+HixsZ49e+KPP/6Atnbl1osRzXL8+HHUr18fPB5PbO0sRe3du7fG95tS9D3u2rVLbCFWohpPnjyBvb292OLPNRElQqowpgnwQ9uix0xPuDGW4HE4KIAQCOxZ4cPbCoqWzyj9KF0kXVz/E5sXK/Mh+njjjmqDVCsrKwtTpkzBwIEDMXHiRJReuUZTC6LHjx/Pdr7m8/lwdnbGDz/8gNzcXIltT58+DW9vbwgEAujr66N169bYu3ev1OP+8ccf6NKlC4yNjWFoaAh3d3csWbIEycnJlfyOqo/Jkydj2LBhiImJwdKldIu6vHJzc/Hjjz9i0aJF6g6l0uTm5mLatGkwNzeHoaEhhg4dioSEBLn7FP+/Lf1YvXo1u01UVBQGDRoECwsLGBkZoWPHjmKLDjdu3Bjt2rWTWLy1pqFESNW23oMZo4dDubcxmn+03FeDyqNk/Y+djp3MR0P9hlQbpEJhYWFo2bIltm/fDgD4+++/cfr0aTVHpTp9+vRBXFwcoqOjsX79emzfvl3il87mzZsxaNAgdOjQAbdu3cLDhw8xcuRITJkyBXPmzBHbdsGCBRgxYgRat26Nv//+G48ePcLatWvx4MEDHDhwoMreV35+fpWdq7TMzEy8f/8evXv3Rp06dapl93lNcezYMRgZGVV4aYiCAvllCOrk5+eHU6dOITg4GCEhIXj37h2GDBkid5+4uDixx+7du8HhcDB06FB2mwEDBqCwsBCXL19GWFgYmjdvjgEDBohd1Z4wYQK2bdsm1vajxlHpEq4aoCpWn7ezs2MAMHZ2MlamV5CyK8sXryRvd7Vi5yWKKSwsZH7++WdGS0uLAcAAYPT19ZmdO3dKrPqs6Orz1Y201eeHDBnCeHh4sM/fvHnD8Pl8ZtasWRL7b9q0iQHA3Lx5k2EYhrl16xYDgNmwYYPU88lb1TsmJoYZOXIkuyp3q1at2ONKi3PmzJkSq89PmzaNmTlzJmNubs506dKF+eKLL5jPP/9cbL/8/HzG3Nyc2bdvH8MwDCMUCpkVK1YwTk5OjK6uLuPu7s4EBwfLjJNhPq0+b2Jiwujp6TF9+vRhV58vXrm95EPWKvQpKSnM119/zVhZWTE6OjpMkyZNmFOnTjEMI7n6/PPnz5mBAwcyVlZWjIGBAePp6clcuHBB7Hhbtmxh6tevz+jo6DBWVlbM0KFD2deCg4OZpk2bMrq6uoyZmRnTvXt3JjMzU+Z7vHLlCtO6dWtGW1ubsbGxYebOncsUFBRIfL+nTZvGGBkZMebm5szChQvF/m/k5uYys2fPZurUqcPo6+szbdq0EftelH6P0vTv35+ZM2eO2Nh///3H9OjRgzE3N2eMjIyYzp07M2FhYWLbAGC2bt3K+Pj4MPr6+syiRYsYhmGY48ePMx4eHoyOjg7j7OzMLF68WOx9rV27lmnatCmjr6/P2NvbM1OnTmUyMjLkxlgRqampDJ/PF/s3FxERwQBgQkNDFT7OoEGDmG7durHPExMTGQDMv//+y46lp6czAMT+3eTl5TE6OjrMxYsXK/hOFKOO1efpihAh5RATE4Pu3btj3rx57CelVq1a4d69e/jyyy9rbEH0o0ePcOPGDbF6p2PHjqGgoEDiyg9QdPvH0NAQhw8fBgAcOnQIhoaG+Oabb6QeX1Y9SGZmJry9vREbG4uTJ0/iwYMH+OGHH5TuyL1v3z5oa2vj+vXrCAwMxKhRo3Dq1ClkZmay25w7dw7Z2dn47LPPAAArV67E/v37ERgYiMePH8PPzw+jR49GSEiIzPOMHz8ed+7cwcmTJxEaGgqGYdCvXz8UFBTAy8sLkZGRAIpuEcbFxcHLy0viGCKRCH379sX169dx8OBBPHnyBD///LPM26yZmZno168fLl26hHv37qFPnz7w8fHBmzdvAAB37tzBjBkzsGTJEkRGRuLs2bPo3LkzgKKrB1988QUmTpyIiIgIXLlyBUOGDJG4xVssNjYW/fr1Q+vWrfHgwQNs27YNu3btwrJlyyS+31paWvjvv/+wceNGrFu3Dr/99hv7+vTp0xEaGorff/8dDx8+xPDhw9GnTx88e/ZM5ve2tGvXrsHT01NsLCMjA+PGjcO1a9dw8+ZNNGjQAP369UNGRobYdosXL8Znn32G8PBwTJw4EVevXsXYsWMxc+ZMPHnyBNu3b8fevXuxfPlydh8ul4tNmzbh8ePH2LdvHy5fvowffvhBbox9+/aFoaGhzEeTJk1k7hsWFoaCggL06NGDHWvYsCHq1q2L0NBQhb5HCQkJOHPmDCZNmsSOmZubw83NDfv370dWVhYKCwuxfft2WFlZoVWrVux22traaNGiBa5evarQuTQRzRorj2WhwJbvgbrvAN87wJvngKlOld4GI+pz5MgRTJkyhV0mg8PhYN68eVi8eLFSBdGev75FfDnbIFSEjYCHO9PtFd7+9OnTMDQ0RGFhIfLy8sDlcvHrr7+yr0dFRcHY2Bi2trYS+2pra8PFxQVRUVEAgGfPnsHFxUXpHkpBQUFITEzE7du3YWZmBgDlWiCyQYMGWLVqFfu8Xr16MDAwwJ9//okxY8aw5xo4cCAEAgHy8vKwYsUKXLx4ke0D5eLigmvXrmH79u3w9vaWOMezZ89w8uRJXL9+nU1wDh06BAcHBxw/fhzDhw+HlZUVAMDMzAw2NjZSY7148SL+++8/REREwNXVlT23LM2bN0fz5s3Z50uXLsWff/6JkydPYvr06Xjz5g0MDAwwYMAACAQCODo6wsPDA0BRIlRYWIghQ4bA0bFoSaBmzZrJPNfWrVvh4OCAX3/9FRwOBw0bNsS7d+8wd+5cBAQEgMst+ozt4OCA9evXg8PhwM3NDeHh4Vi/fj2++uorvHnzBnv27MGbN29Qp04dAMCcOXNw9uxZ7NmzBytWrJB5/mKpqalIS0tj9y/WrVs3sec7duyAiYkJQkJCMGDAAHbc19cXEyZMYJ9PnDgR8+bNw7hx4wAUfb+XLl2KH374gb0dXLKw3cnJCcuWLcOUKVOwdetWmXH+9ttvyMmRvvoAALn/H+Lj46GtrS3xIcHa2lpiYoYs+/btg0AgELudxuFwcPHiRQwePBgCgQBcLhdWVlY4e/YsTE3FVyqoU6cOXr+W3jS4JqBESFkhMcDGMAA8INoBWOYA4CzgaU2JUC1w8+ZNjBw5kn3u4OCAAwcOSP2FWJb4DCFi06s+EVJW165dsW3bNmRlZWH9+vXQ0tISqzNQhqwrDGW5f/8+PDw82CSovEp+0gWKOnx//vnnOHToEMaMGYOsrCycOHECv//+O4CihpjZ2dno2VN80kN+fj6bRJQWEREBLS0ttG3blh0r/vQdEaF4y4r79+/D3t6eTYLKkpmZicWLF+PMmTNsYpOTk8NeEerZsyccHR3h4uKCPn36oE+fPvjss8+gr6+P5s2bo3v37mjWrBl69+6NXr16YdiwYRK/EEu+x/bt24td+ezQoQMyMzPx9u1b1K1bFwDQrl07sW3at2+PtWvXQigUIjw8HEKhUOL95eXlwdzcXKH3XJxclF6wOCEhAQsXLsSVK1fw/v17CIVCZGdns9+LYqWvJD148ADXr18XuwIkFAqRm5uL7Oxs6Ovr4+LFi1i5ciWePn2K9PR0FBYWir0ujZ2dnULvp7Ls3r0bo0aNEvs+MQyDadOmwcrKClevXoWenh5+++03+Pj44Pbt22IfbPT09JCdna2O0KsEJULKOvzpB9kboRBn8gvQiMdDw7xCWDOMSm6JVHRleVJ52rVrhzFjxuDAgQMYMWIEtm3bJvOXRVlsBOqZSabseQ0MDNirL7t370bz5s2xa9cu9jK7q6sr0tLS8O7dO4lP5vn5+Xjx4gW6du3Kbnvt2jUUFBQodVVIT09P7utcLlciyZJW/GpgYCAxNmrUKHh7e+P9+/e4cOEC9PT00KdPHwBgb5mdOXNG4peZjo6OwvGXR1nvubQ5c+bgwoULWLNmDerXrw89PT0MGzaMLQoXCAS4e/curly5gvPnzyMgIACLFy/G7du3YWJiggsXLuDGjRs4f/48Nm/ejAULFuDWrVtwdnaujLeHzMxM8Hg8hIWFSdzuMzRUbMkgc3NzcDgcpKSkiI2PGzcOHz58wMaNG+Ho6AgdHR20b99eokC+9L+HzMxM/PTTT1ILkXV1dfHq1SsMGDAAU6dOxfLly2FmZoZr165h0qRJyM/Pl5kI9e3bV+6tJUdHRzx+LLk6AQDY2NggPz8fqampYleFEhISZF5NLOnq1auIjIzEkSNHxMYvX76M06dPIyUlBUZGRgCKrvRduHAB+/btw7x589htk5OTUa9evTLPpakoEVLW6zT2y2sFhfimuL/CP+kwMVuFhg0tUFBgCiC23KdQ1crypOJEIhF7mb/Yr7/+iv79++Pzzz+vUOKrzO2p6oLL5WL+/PmYNWsWfH19oaenh6FDh2Lu3LlYu3Yt1q5dK7Z9YGAgsrKy8MUXXwAouhWxadMmbN26FTNnzpQ4fukf9sXc3d3x22+/ITk5WepVIUtLSzx69Ehs7P79+wolW15eXnBwcMCRI0fw999/Y/jw4ex+jRs3ho6ODt68eaPwVb9GjRqhsLAQt27dYm+NffjwAZGRkWjcuLFCxwCK3vPbt28RFRWl0FWh69evY/z48WxtU2ZmJl69eiW2jZaWFnr06IEePXpg0aJFMDExweXLlzFkyBBwOBx06NABHTp0QEBAABwdHfHnn39i1qxZUt/jH3/8AabEh7/r169DIBDA3v7Tv+tbt26J7Vdcr8Pj8eDh4QGhUIj379+jU6dOCn9fStLW1kbjxo3x5MkTsT5C169fx9atW9GvXz8ARTV9SUlJZR6vZcuW+H97Zx5Xc/bG8c+9Lbdb3fbSqtAiS1psZYmxFMbQEJJ1DCbLGMtgMMUYyyD7njGWCWkwjHVszVQSSllKaZMoIUql9T6/P/r1na57b8oWdd6v1/fF96zP+Z7b/T73Oc85T0JCgtxl16ioKIjFYvj7+3PfCwcPHnxtu2+zNObk5AQlJSWcP3+es8QmJCQgPT2dW66tjl9//RVOTk4Sy6YAOAvPq99vfD5fyvfu1q1bGDx48Gv7+lRhb9i34E65pMXm+fMiXL6cAR7v7bblVj1I8dVDExkfjpSUFHTu3Fnqi05DQwNDhw6ttw7Rr8PT0xMKCgrYtGkTAKBx48ZYsWIF1q5di/nz5+POnTtITk7G6tWrMXv2bMycOZNbJurQoQOXNnv2bERERODevXs4f/48PD09sXv3bpl9enl5wdDQEAMHDkR4eDhSUlJw6NAhzln0s88+w7Vr17Bnzx7cvXsXfn5+UopRdQwfPhxbt27F2bNn4e3tzaWLRCLMmjUL06dPx+7du5GcnIzo6Ghs2LBBrqxWVlYYMGAAxo8fj7CwMMTGxmLEiBEwMTHBgAEDaiyTq6srunbtikGDBuHs2bNITU3FqVOncPr0abn9Hj58GDExMYiNjcXw4cMlXmjHjx/H+vXrERMTg3v37mHPnj0Qi8WwsbFBZGQkli5dimvXriE9PR2HDx/G48ePYWsr+1T8SZMm4f79+5g6dSru3LmDo0ePws/PDzNmzJB4saanp2PGjBlISEjA/v37sWHDBk4Btra2hre3N0aNGoXDhw8jNTUVV65cwbJly3DixIkaPyc3NzeEhYVJPYu9e/ciPj4ekZGR8Pb2rpGFzdfXF3v27MGiRYtw+/ZtxMfH48CBA1iwYAGACr+00tJSbNiwASkpKdi7dy+2bt362nZNTExgaWkp96r0y5KFpqYmxo0bhxkzZuDixYuIiorC2LFj4ezsjI4dO3LlmjdvjiNHjkjUzcvLQ3BwML7++mupdp2dnaGtrY3Ro0cjNjYWiYmJ+P7775Gamop+/fpx5dLS0vDgwQMJZ+16xzvdg/YJ8Nbb7y4FEu1zJdrVlDwN5xCwUOJSVV1CxsZvt32+ttvmuXps+/w7QSwW0+7du0kkEhEA0tLSovT09Ldqsz5tnyciWrZsGenr60tsrz569Ch16dKF1NTUSEVFhZycnGjnzp0y2w0KCqKuXbuSSCQiNTU1srOzo59++qna7fNpaWk0aNAg0tDQIFVVVWrbti1FRkZy+b6+vtSoUSPS1NSk6dOn05QpU6S2z0+bNk1m23FxcQSAzM3NpY4+EIvFtHbtWrKxsSElJSXS19cnNzc3+ueff+TKWrl9XlNTk4RCIbm5uXHb54kqtsWjmm3zlTx9+pTGjh1Lurq6pKKiQq1ataLjx48TkfTW8tTUVOrevTsJhUIyMzOjjRs3Sow5NDSUXF1dSVtbm4RCIdnZ2VFQUBA3fjc3N9LX1yeBQEDW1ta0YcOGamWryfb5SZMm0TfffEMaGhqkra1N8+bNk3i+JSUl5OvrSxYWFqSkpERGRkbk4eFBN27ckDlGWdy+fZuEQiE9f/6cS4uOjqa2bduSiooKWVlZUXBwMJmbm9OaNWu4MgDoyJEjUu2dPn2aXFxcSCgUkoaGBrVv3562b9/O5a9evZqMjIy4ed2zZw8BqPaz+7a8fPmSJk2axB0d4eHhQZmZmRJlANBvv/0mkbZt2zapZ1OVq1evUu/evUlHR4dEIhF17NiRTp48KVFm6dKl5Obm9k7HUx11sX2eR/SG3oufKHl5edDU1ERubi63LlorbtgCRRXR2+28fXAzqZFEtpLSY5SXb4FYLIaJiQkyMjJq3YXpsnt4kFcOE42KE6VrXC/MFA+KH8BEYIKMzrXvlwE8e/YM33zzjYQVqGnTpjh06BDs7e3fuN2ioiKkpqaiSZMmUo6dDEZ9pFu3brC3t8fatWvfe1+enp5wdHTEDz/88N77akiUlJTAysoK+/bte+sDK2tKdd+Vb/3+lgNbGqst/z+9ubxcAYnpelLZpaWZnDmanRb7aRESEgI7OzsJJWjMmDGIiYl5KyWIwWC8X1auXFljB2tGzUlPT8e8efM+mBJUVzBn6TdEQcUQWY/m4c6dJ7hz5wmmTl2E/HwV8Hj3YWxsApFIxOIHfSKUlJTA19cXK1as4HYeaWlpYfv27fD09Kxj6RgMxuuwsLDA1KlT61qMekelD1N9hylCb4GWlgo6djRFx46mWLDgKvLzH8DY+M2Ww96U4EfB8E3xxYvyFyyy/BuQkpICT09PREdHc2ndunXDnj17YGbGzoViMN6UkJCQuhaBwagRbGnsE6dqxHkWWb72CIVC7pA1JSUlrFixAufPn2dKEIPBYDQQmEWojqk8PLFyyzyAWh2kWDXivJHACCIFEYssXwuMjIzw66+/Ys6cOQgMDISjo2Ndi8RgMBiMDwhThGrKl38CoRkA5gK9LwF8NcDxGjC97etqVsurhydWpTYHKRoJjNhOsRpw7tw5ODg4SBzh/8UXX6BPnz61jn/FYDAYjE8fpgjVhH/u/18J+j9//z9S9JPUt1aEqh6eqNX4NPJMV0OsUAA+gGwVPkzDqj+0j/kF1YyioiL88MMPWLt2LQYNGoTg4GCJAxGZEsRgMBgNE6YI1YT9NQ+U+KYYiRQgarMBOYXJAAAxgBwxgOKa1Wd+QfK5efMmvL29cfPmTQDAoUOHcPr0afTp06eOJWMwGAxGXcMUoZpQJb6YBOaa77SbV/19agrzC5KNWCzGhg0bMGfOHBQXV2iUAoEAK1eu5IJqMhgMBqNhw3aN1QShEqD+/0upDDliMcREwHBbBAcHw9bWFpmZtVuiCr6ZD9vV92U6Rlf6+9T0ineOx+BG9Tcg3puQmZmJvn374rvvvuOUoNatW+PatWuYOnVqg40Txvh4+PPPP2FpaQkFBQV89913ta6/a9cumQFq6wsWFhZvdCp1SUkJLC0tcenSpXcvVAOnY8eOOHToUF2L8c5hilBNODwQSJ1YcY0Ihwf/IfRePkKfZf9i0qQg3LlTArG4wsekpqdJVzpJi/8f4IRFmH93HDt2DHZ2djhz5gyXNn36dFy5cgWtWrWqQ8k+PcaMGQMejwcejwclJSU0adIEs2fPRlFRkVTZ48ePw9XVFSKRCKqqqmjXrh127dols91Dhw6hW7du0NTUhLq6Ouzs7PDTTz8hJyfnPY/o42HixIkYPHgw7t+/zw5ffYds3boVTZo0gYuLS12L8t4ICQmBo6MjBAIBLC0t5f6dVbJw4ULu77jqpaamxpUJCAhAly5doK2tDW1tbfTs2RNXrlyRaGfBggWYO3euVHT6Tx329q0lpYMv4+oLRTwrVMLp00l48qQ1gFEAPNG8efPXfqEFPwqGbYQtEm3bA507AZ07QbFrJ2Q7dGSOz++A8PBwDBgwAE+ePAEAGBoa4syZM1i9ejWL8fWGuLu7IzMzEykpKVizZg22bdsGPz8/iTIbNmzAgAED0KlTJ0RGRuLGjRsYNmwYvvnmG8yaNUui7Pz58zF06FC0a9cOp06dwq1bt+Dv74/Y2Fjs3bv3g42rpKTkg/X1Kvn5+cjOzoabmxuMjY1ZOJ53BBFh48aNGDdu3Fu1U5efjddRGR2+e/fuiImJwXfffYevv/5a4offq8yaNQuZmZkSV4sWLSROzg8JCYGXlxcuXryIiIgImJmZoXfv3njw4AFXpk+fPnjx4gVOnTr1Xsf4wXmnIVw/Ad42eu2139tIRZwHFpJI9HmN6je/1JxwDtVezS81fyPZGBWRwj08PAgADRgwgB4/flzXIhFR/Yo+/+WXX5KDgwN3n56eTkpKSjRjxgyp+uvXrycAdPnyZSIiioyMJAC0du1amf1VF8H7/v37NGzYMC4Ct5OTE9euLDmnTZsmFX1+8uTJNG3aNNLV1aVu3bqRl5cXDRkyRKJeSUkJ6erq0u7du4mIqLy8nJYuXUoWFhakoqJCdnZ2FBwcLFdOov+iz2tpaZFQKCR3d3cu+vzFixcJgMQlLwr9s2fPaMKECWRgYEACgYBatmxJf/31FxFJR2ZPSkqiL774ggwMDEhNTY3atm1LZ8+elWhv06ZNZGlpSQKBgAwMDGjQoEFcXnBwMLVq1YpUVFRIR0eHevToQfn5+XLHN3z4cNLT0yMVFRWytLSknTt3cvmzZ88mKysrEgqF1KRJE1qwYAGVlJTUSlZzc3P66aefaNiwYaSqqkrGxsa0cePGap/71atXic/nU15enkT66+Tx8/OjNm3aUEBAAFlYWBCPx+Oe/7hx40hPT49EIhF1796dYmJiajWOd83s2bOpZcuWEmlDhw6tVYT4mJgYAkD//vuv3DJlZWUkEom4v4NKxo4dSyNGjKid0LWgLqLPM2fpWhJxw0BmurJyNvd/WYckVpJp/xxQBkB8oNgAfH7FjrFKmONz7SAiCX8fHo+HgIAAfPHFFxg9ejTzBXrH3Lp1C5cuXYK5uTmX9scff6C0tFTK8gNULP/MmzcP+/fvR4cOHRAYGAh1dXVMmjRJZvvyfF7y8/Ph6uoKExMTHDt2DIaGhoiOjq61iX737t3w8fFBeHg4ACApKQmenp7Iz8/ngnaeOXMGhYWF8PDwAAAsW7YMv//+O7Zu3QorKyv8+++/GDFiBPT19eHq6iqznzFjxuDu3bs4duwYNDQ0MGfOHPTt2xdxcXFwcXFBQkICbGxscOjQIbi4uEBHR0eqDbFYzP0C//3339GsWTPExcVBQUFBRo8Vz6hv375YsmQJBAIB9uzZg/79+yMhIQGNGzfGtWvX8O2332Lv3r1wcXFBTk4OQkNDAVT41Hl5eWHFihXw8PDAixcvEBoaysXee5Uff/wRcXFxOHXqFPT09JCUlISXL19y+SKRCLt27YKxsTFu3ryJ8ePHQyQSYfbs2TWStZKVK1di3rx5WLRoEc6cOYNp06bB2toavXr1kilXaGgorK2tpSxsr5MHqPgsHDp0CIcPH+aesaenJ4RCIU6dOgVNTU1s27YNPXr0QGJiInR0dGo8jldlfN2O1W3btsHb21tmXkREBHr27CmR5ubmVis/sx07dsDa2hpdunSRW6awsBClpaVSn8327dtj+fLlNe7rk+CdqlWfAG+rUQ7pNUyGRciPjIwsuDLN/dMJc5NlX8cNKyw/xw0Jc5OpuX/6uxpagyM9PZ26devG/UL+mJH1K8cp0olMQk0++OUU6VRjuUePHk0KCgqkpqZGAoGAABCfz6c//viDK/PNN99IWCZexc7Ojvr06UNERH369CE7O7taP79t27aRSCSip0+fypWzJhahqpYsIqLS0lLS09OjPXv2cGleXl40dOhQIiIqKioiVVVVunTpkkS9cePGkZeXl0xZEhMTCQCFh4dzaU+ePCGhUEgHDx4kogpLA6qxBBERnTlzhvh8PiUkJMjMf9UiJIuWLVvShg0biIjo0KFDpKGhIWUtISKKiooiAJSWllZte5X079+fxo4dW6OyREQrV64kJ6fqP3dVZSWqsAi5u7tLlBk6dCj3WZLFtGnT6LPPPqu1PH5+fqSkpETZ2dlcWmhoKGloaFBRUZFE3WbNmtG2bdtqPI5XKSwspLt371Z7yZqjSqysrGjp0qUSaSdOnCAAVFhYKLdeJS9fviRtbW365Zdfqi3n4+NDTZs2lbLMHD16lPh8PpWXl7+2rzeBWYQ+AQZ1j4KF4ROERJvhym1jAEoAHkNT8z//k6qHJFa19gBAJr/ijCA+H7DWV8LiXtofTvh6xMGDBzFx4kQ8f/4ct2/fxo0bN2BoaFjXYtWKrJIsPCh+8PqCdUz37t2xZcsWFBQUYM2aNVBUVMSgQYPeqC2SY2F4HTExMXBwcJBpOakNTk5OEveKiooYMmQIAgMDMXLkSBQUFODo0aM4cOAAgAorQWFhoZQFoqSkBA4ODjL7iI+Ph6KiIjp06MCl6erqwsbGBvHxNT+TLCYmBqamprC2tq5R+fz8fCxcuBAnTpxAZmYmysrK8PLlSy6WXq9evWBubo6mTZvC3d0d7u7u8PDwgKqqKtq0aYMePXqgdevWcHNzQ+/evTF48GBoa8v+fvLx8cGgQYMQHR2N3r17Y+DAgRLOyUFBQVi/fj2Sk5ORn5+PsrIyaGho1FjWSpydnaXuq9tJ9vLlS5m+gK+TBwDMzc2hr6/P3cfGxiI/P1/iFPrKPpKTk2s1jqoIhcI6jeh+5MgRvHjxAqNHj5ZbZvny5Thw4ABCQkKknqdQKIRYLEZxcTGEQuH7FveDwBShWtLFPhlDetxFRjbQYaIpSkt1oaKiKdNJ2kikgIwfzCXSTMMU8KC4Ii9+BgvsWVvy8vLw7bffYvfu3VyaiooKHj58+MkpQobKdSNvbftVU1Pjvrh37tyJNm3a4Ndff+UcUq2trZGbm4uHDx/C2NhYom5JSQmSk5PRvXt3rmxYWBhKS0trdZr3675w+Xy+lJJVWioduqbqLplKvL294erqiuzsbJw9exZCoZA7Zyo/Px8AcOLECZiYmEjUEwgENZb/TajtS2bWrFk4e/YsVq1aBUtLSwiFQgwePJhz/BWJRIiOjkZISAj+/vtv+Pr6YuHChbh69Sq0tLRw9uxZXLp0CX///Tc2bNiA+fPnIzIyEk2aNJHqq0+fPrh37x5OnjyJs2fPokePHpg8eTJWrVqFiIgIeHt7Y9GiRXBzc4OmpiYOHDgAf3//Gsv6pujp6XEHp1ZSE3kA6c9Gfn4+jIyMEBISItVP5RLum4zjbZfGDA0N8ejRI4m0R48eQUNDo0afmR07duDzzz9Ho0aNZOavWrUKy5cvx7lz52BnZyeVn5OTAzU1tXqjBAFMEaqeEceBG48B8UugPA+AGIZNvwb8tkNBgY8HD+7XtYQNisovtNTUVC5t6NCh2LJli9xfrh8z19pfq2sRag2fz8e8efMwY8YMDB8+HEKhEIMGDcKcOXPg7+8v9XLZunUrCgoK4OXlBQAYPnw41q9fj82bN2PatGlS7T9//lymn5CdnR127NiBnJwcmVYhfX193Lp1SyItJiamRsqWi4sLzMzMEBQUhFOnTsHT05Or16JFCwgEAqSnp8v1B3oVW1tblJWVITIykrOSPH36FAkJCWjRokWN2gAqxpyRkYHExMQaWYXCw8MxZswYzrcpPz8faWlpEmUUFRXRs2dP9OzZE35+ftDS0sKFCxfw5ZdfgsfjoVOnTujUqRN8fX1hbm6OI0eOYMaMGTL709fXx+jRozF69Gh06dIF33//PVatWsX5kM2fP58re+/evVrLCgCXL1+Wure1tZX7DBwcHLBlyxYJ38GayCMLR0dHZGVlQVFRERYWFjLL1HQcVWnbti1iYmKqLSNPSQEqrGInT56USDt79qyU9UwWqampuHjxIo4dOyYzf8WKFViyZAnOnDmDtm1lh4+6deuWXGvopwpThKrj6Usgs+D/NxWOlDy9in/zX1acPPC20eMZr6esrAw///wzfv75Z5SXVzxbkUiETZs2YcSIEcwh+gPj6emJ77//Hps2bcKsWbPQuHFjrFixAjNnzoSKigpGjhwJJSUlHD16FPPmzcPMmTO5ZaIOHTpg9uzZmDlzJh48eAAPDw8YGxsjKSkJW7duRefOnWUqSF5eXli6dCkGDhyIZcuWwcjICNevX4exsTGcnZ3x2WefYeXKldizZw+cnZ3x+++/1+oLe/jw4di6dSsSExNx8eJFLl0kEmHWrFmYPn06xGIxOnfujNzcXISHh0NDQ0Pm8oKVlRUGDBiA8ePHY9u2bRCJRJg7dy5MTEwwYMCAGj9nV1dXdO3aFYMGDcLq1athaWmJO3fugMfjyTwZ3crKCocPH0b//v3B4/Hw448/SjiTHz9+HCkpKejatSu0tbVx8uRJiMVi2NjYIDIyEufPn0fv3r1hYGCAyMhIPH78WK7S4evrCycnJ7Rs2RLFxcU4fvw4V9bKygrp6ek4cOAA2rVrhxMnTuDIkSO1krWS8PBwrFixAgMHDsTZs2cRHByMEydOyH1m3bt3R35+Pm7fvs2dGVYTeWTRs2dPODs7Y+DAgVixYgWsra3x8OFDnDhxAh4eHmjbtm2Nx1GVt10a++abb7Bx40bMnj0bX331FS5cuICDBw9KPJeNGzfiyJEjOH/+vETdnTt3wsjISKZF6pdffoGvry/27dsHCwsLZGVlAQDU1dW5jQRAhUWrd+/ebyz/R8k79Tj6BKiVs5X7QSK9DRJXcYcZFHcANGGwDhFV7xgtyxHaJNSEcA5kEmryrodWL0lNTSVnZ2eJrcYuLi6UkpJS16LVivq0fZ6IaNmyZaSvry+xvfro0aPUpUsXUlNTIxUVFXJycpLYUl2VoKAg6tq1K4lEIlJTUyM7Ozv66aefqt0+n5aWRoMGDSINDQ1SVVWltm3bUmRkJJfv6+tLjRo1Ik1NTZo+fTpNmTJFyll62rRpMtuOi4sjAGRubk5isVgiTywW09q1a8nGxoaUlJRIX1+f3Nzc6J9//pEra+X2eU1NTRIKheTm5sZtnyeqmbM0EdHTp09p7NixpKurSyoqKtSqVSs6fvw4EUk7S6emplL37t1JKBSSmZkZbdy4UWLMoaGh5OrqStra2iQUCsnOzo6CgoK48bu5uZG+vj4JBAKytrau1uF38eLFZGtrS0KhkHR0dGjAgAESf5Pff/896erqkrq6Og0dOpTWrFlTK1mJKpylFy1aRJ6enqSqqkqGhoa0bt26ap8XEdGQIUNo7ty5Emmvk6dy+/yr5OXl0dSpU8nY2JiUlJTIzMyMvL29KT09vcbjeB9cvHiR7O3tSVlZmZo2bUq//fabRL6fnx+Zm5tLpJWXl5OpqSnNmzdPZpvm5uZSxzoAID8/P65MRkYGKSkp0f3799/xiP6jLpyleURv6L34iZKXlwdNTU3k5uZKOctJ0ScYuCa5FhvFe4C2j5fDxMQEGRkZMF12Dw/yyqUco0UCPhb30sbg1hWadPCjYPim+CKxMBFiiGEiMEFG5wwwqic9PR12dnbIzc2FgoICfH19MW/ePCgqflrGzKKiIqSmpqJJkybsYEcG4z1y48YN9OrVC8nJyRKWDMbbM2fOHDx79gzbt29/b31U911Zq/d3Lfi03iYfMbIco6vim+KLO4V3uHsWLb5mNG7cGFu3bsX8+fMRGBiIjh071rVIDAbjI8bOzg6//PILUlNT0bp167oWp15hYGAg12fsU4YpQrLICQYyfAErB0CoU+EsDQB8IcIvvVkspKqR5a1VrdmhiXIIDQ1FmzZtJLT9YcOGYeDAgcySwmAwasSYMWPqWoR6ycyZM+tahPfCRxFrbNOmTbCwsICKigo6dOggFeitKjUJDPfWZPgCRXeAEfuBuZuAeTsrroXnsULx37dq2khgxKLFy6CkpARz586Fq6srpk6dKpXPlCAGg8FgvA/qXBEKCgrCjBkz4Ofnh+joaLRp0wZubm7Izs6WWb4mgeHemv9bbwA+oGSCInFjHArriT9jv8fLl40BWKGoyBSpqc/eXZ8NmISEBDg7O+OXX34BEWHPnj34+++/61osBoPBYDQA6lwRWr16NcaPH4+xY8eiRYsW2Lp1K1RVVbFz506Z5QMDAzFp0iTY29ujefPm2LFjB8RisdQ2wXeCkhHgkIHnFrcxeGZneIy6j5wcNwDeePq0Dw4evP3u+2xAEBG2bdsGBwcHREdHAwCUlJSwYsUKqVg6DAaDwWC8D+rUR6ikpARRUVH44YcfuDQ+n4+ePXsiIiKiRm3ICwxXSXFxMYqLi7n7vLy8WstZXi77XAgFhf/Hy2DUmsePH+Prr7+WONjLxsYG+/btg6OjYx1KxmAwGIyGRJ0qQk+ePEF5ebnUKZqNGjXCnTt35NSSZM6cOTA2NpZrQVi2bBkWLVoknZFzBEhbXmUZrApXRMC5UUCTQsABKC+XfcLAzxef40WbTyusw8fAmTNnMGbMGO7ALqAidtGqVaugqqpah5IxGAwGo6FR50tjb0NlYLgjR47Idab94YcfkJuby1337/8/LMbDJRUO0aUPJK8r6oDfN0ChCjAkDgBQWir7pOjcEoL4/zqSSPBJP8oPRmhoKNzd3TklSE9PD8eOHcPmzZuZEsRgMBiMD06dvr319PSgoKAgM4Dc6wJoVgaG+/vvv2UGhqtEIBBAQ0ND4gIAlOf/v0SFQzR3ne8OmOYAY+OA8gXAnafQyi7EnG/awtRU8gAnTVVFmGgooLmcKPLBj4JhG2EL0zBTZBZnvv6BNAA6d+7MhQdwd3fHzZs30b9//zqWisFgMBgNlTpVhJSVleHk5CTh6Fzp+FxdALkVK1Zg8eLFOH36tNzAcDXm/w7R3PXiM+CePuAzFPj8KdBlP3S/+BPLSQn37n0H3pftgDaWgLIiDk+zRsYP5oifYcadIF2VykMUHxQ/gPj/zkQN/SBFHo+H3377DZs3b8bJkyc/uYjxDMa74s8//4SlpSUUFBTw3Xff1br+rl27ZAaobQj8+OOPmDBhQl2LUe84ffo07O3tXxsvrb5R5+s5M2bMQEBAAHbv3o34+Hj4+PigoKAAY8eOBQCMGjVKwpn6l19+wY8//oidO3dygeGysrKQn58vr4t3w3Bb8Pk88Ex0gD7O4I3rhq5d5Z8kDUgeomgiMEFz1eYN6iDFrKws9OvXT2pHn6GhIXx8fFiw1E+AMWPGgMfjgcfjQUlJCU2aNMHs2bNRVFQkVfb48eNwdXWFSCSCqqoq2rVrh127dsls99ChQ+jWrRs0NTWhrq4OOzs7/PTTT8jJebMDSz9FJk6ciMGDB+P+/ftYvLjhfC+8LVlZWVi3bp1ENPn6Rk5ODry9vaGhoQEtLS2MGzfute+45ORkeHh4QF9fHxoaGhgyZIjUasvr2nV3d4eSkhICAwPfy7g+VupcERo6dChWrVoFX19f2NvbIyYmBqdPn+YcqNPT05GZ+d+y0pYtW1BSUoLBgwfDyMiIu1atWvVe5QzW1obt6vsQC3UBADxFBSgq1uzxGQmMkNE5o0EdpHjs2DG0bt0aJ0+exOjRo/H06dO6Fonxhri7uyMzMxMpKSlYs2YNtm3bBj8/P4kyGzZswIABA9CpUydERkbixo0bGDZsGL755hvMmjVLouz8+fMxdOhQtGvXDqdOncKtW7fg7++P2NhY7N2794ONq6Sk5IP19Sr5+fnIzs6Gm5sbjI2NIRI1bEtxbdixYwdcXFxgbl79D9HXUVpa+o4kevd4e3vj9u3bOHv2LI4fP45///23WgtYQUEBevfuDR6PhwsXLiA8PBwlJSXo37+/hHWnJu2OGTMG69evf29j+yh5pyFcPwG46LX/GhFFgij6lSjwMiLOk/tBqSjzij4XXttXQ4w0n5+fTxMnTpSIXmxkZETXrl2ra9HqlPoUff7LL78kBwcH7j49PZ2UlJRoxowZUvXXr19PAOjy5ctERBQZGUkAaO3atTL7qy76/P3792nYsGGkra1Nqqqq5OTkxLUrS85p06ZJRZ+fPHkyTZs2jXR1dalbt27k5eVFQ4YMkahXUlJCurq6tHv3biKqiNq9dOlSsrCwIBUVFbKzs6Pg4GC5chL9F31eS0uLhEIhubu7c9HnL168KBXhW14U+mfPntGECRPIwMCABAIBtWzZkv766y8iko4+n5SURF988QUZGBiQmpoatW3bls6ePSvR3qZNm8jS0pIEAgEZGBjQoEGDuLzg4GBq1aoVqaiokI6ODvXo0YPy8/OlZCovLycTExPavHmzRHp0dDTxeDxKS0sjIiJ/f39q1aoVqaqqkqmpKfn4+NCLFy+48pXynz59mpo3b05qamrk5uZGDx8+rPbZtmzZkjZu3CiRdurUKerUqRNpamqSjo4O9evXj5KSkrj81NRUAkAHDhygrl27kkAg4CK2BwQEUPPmzUkgEJCNjQ1t2rRJou3Zs2eTlZUVCYVCatKkCS1YsIBKSkqqlfFtiIuLIwB09epVifHxeDx68OCBzDpnzpwhPp8vEZX9+fPnxOPxuM9ATdu9d+8eAZB4fh+Suog+z2KNvcq0tsDjQsk0fVW8uP5/rVpcDuSkQuP2bgDdP7h4HzNRUVHw9vZGQkIClzZw4EAEBARAT0+vDiX7SLnVFijNen25d42SIdDq2htVvXXrFi5duiTxa/yPP/5AaWmplOUHqFj+mTdvHvbv348OHTogMDAQ6urqmDRpksz25fm85Ofnw9XVFSYmJjh27BgMDQ0RHR1da1+G3bt3w8fHB+Hh4QCApKQkeHp6Ij8/n4tUfubMGRQWFsLDwwNAxREcv//+O7Zu3QorKyv8+++/GDFiBPT19eHq6iqznzFjxuDu3bs4duwYNDQ0MGfOHPTt2xdxcXFwcXFBQkICbGxscOjQIbi4uMg8B00sFqNPnz548eIFfv/9dzRr1gxxcXFQUFCQ+4z69u2LJUuWQCAQYM+ePejfvz8SEhLQuHFjXLt2Dd9++y327t0LFxcX5OTkIDQ0FACQmZkJLy8vrFixAh4eHnjx4gVCQ0NBJH10CJ/Ph5eXF/bt2wcfHx8uPTAwEJ06deI+G3w+H+vXr0eTJk2QkpKCSZMmYfbs2di8eTNXp7CwEKtWrcLevXvB5/MxYsQIzJo1S+7STE5ODuLi4qR8QwsKCjBjxgzY2dkhPz8fvr6+8PDwQExMDPj8/yz3c+fOhb+/PxwcHKCiooLAwED4+vpi48aNcHBwwPXr1zF+/Hioqalh9OjRAACRSIRdu3bB2NgYN2/exPjx4yESiTB79myZMgJAy5Ytce/ePbn5Xbp0walTp2TmRUREQEtLS2KMPXv2BJ/PR2RkJPe5rEpxcTF4PB4EAgGXpqKiAj6fj7CwMO5svpq027hxYzRq1AihoaFo1qyZ3DHUK96pWvUJ8FqLkBxMlqYR5iYTf2oEASATk9fXaygWobKyMlq+fDkpKipyv3BVVVUpICCAxGJxXYv3USDzV060ScVn8ENfNfzME1VYWhQUFEhNTY0EAgEBID6fT3/88QdX5ptvvpGwTLyKnZ0d9enTh4iI+vTpQ3Z2drV+ftu2bSORSERPnz6VK2dNLEJVLVlERKWlpaSnp0d79uzh0ry8vGjo0KFERFRUVESqqqp06dIliXrjxo0jLy8vmbIkJiYSAAoPD+fSnjx5QkKhkA4ePEhEFZYeVGMJIvrvV35CQoLM/FctQrJo2bIlbdiwgYiIDh06RBoaGpSXlydVLioqigBw1pzXcf36deLxeHTv3j0i+s9KtGXLFrl1goODSVdXV0J+vGJ52LRpEzVq1KjafgFQenp6tfI9fvyYANDNmzeJ6D+L0KuWyGbNmtG+ffsk0hYvXkzOzs5y2165ciU5OTlV239aWhrdvXtX7pWRkSG37pIlS8ja2loqXV9fX8oKV0l2djZpaGjQtGnTqKCggPLz82nKlCkEgCZMmFDrdh0cHGjhwoXVjvF9wSxCjE+OjIwMjBw5EiEhIVyak5MT9u3bB2tr67oT7FNAqY52zNWy3+7du2PLli0oKCjAmjVroKioiEGDBr1R1yTDwlATYmJi4ODgIPcE+Zri5OQkca+oqIghQ4YgMDAQI0eOREFBAY4ePYoDBw4AqLAYFRYWolevXhL1SkpK4ODgILOP+Ph4KCoqokOHDlyarq4ubGxsEB8fX2NZY2JiYGpqWuO/o/z8fCxcuBAnTpxAZmYmysrK8PLlS6SnpwMAevXqBXNzczRt2hTu7u5wd3eHh4cHVFVV0aZNG/To0QOtW7eGm5sbevfujcGDB0NbW/pYEACwt7eHra0t9u3bh7lz5+Kff/5BdnY2PD09uTLnzp3DsmXLcOfOHeTl5aGsrAxFRUUoLCzkzgxTVVWVsDoYGRnJjTMJAC9fvgQgHYT57t278PX1RWRkJJ48ecJZCtPT09GqVSuuXFVrSEFBAZKTkzFu3DiMHz+eSy8rK4OmpiZ3HxQUhPXr1yM5ORn5+fkoKyv77xgWObyt/1Jt0dfXR3BwMHx8fLB+/XrOaufo6ChhEaspQqEQhYWFry9YT2CKEOOtePnyJa5evQqgYmv83LlzsXDhQigrK9exZJ8Ab7g89aFRU1ODpaUlAGDnzp1o06YNfv31V4wbNw4AYG1tjdzcXDx8+BDGxsYSdUtKSpCcnIzu3btzZcPCwlBaWgolJaUayyAUCqvN5/P5UkqWLGdYNTU1qTRvb2+4uroiOzsbZ8+ehVAo5M66qtxRc+LECZiYmEjUq7oM8T543ZhfZdasWTh79ixWrVoFS0tLCIVCDB48mHMKF4lEiI6ORkhICP7++2/4+vpi4cKFuHr1KrS0tHD27FlcunQJf//9NzZs2ID58+cjMjISTZo0kdmft7c3pwjt27cP7u7u0NWt2EySlpaGzz//HD4+PliyZAl0dHQQFhaGcePGoaSkhFOEXv0M8Hi8apXlyiX2Z8+eQV9fn0vv378/zM3NERAQAGNjY4jFYrRq1UrKIb7q/FfObUBAgITSCoBbfoyIiIC3tzcWLVoENzc3aGpq4sCBA/D395crI/B2S2OGhoZSymBZWRlycnKqPW6kd+/eSE5OxpMnT6CoqAgtLS0YGhqiadOmtW43JydH4vnWd+p819jHTFFRGfLyikFE3C+R6nwSqh6g2FAOUbSyssL69ethZmaGixcvYunSpUwJqsfw+XzMmzcPCxYs4P4mBg0aBCUlJZkvh61bt6KgoABeXl4AgOHDhyM/P1/CT6Qqz58/l5luZ2eHmJgYudvr9fX1JXaXAhUWlZrg4uICMzMzBAUFITAwEJ6entwLukWLFhAIBEhPT4elpaXEZWZmJrM9W1tblJWVITIykkt7+vQpEhIS0KJFixrJBFSMOSMjA4mJiTUqHx4ejjFjxsDDwwOtW7eGoaEh0tLSJMooKiqiZ8+eWLFiBW7cuIG0tDRcuHABQIUS0qlTJyxatAjXr1+HsrIyjhw5Ire/4cOH49atW4iKisIff/wBb29vLi8qKgpisRj+/v7o2LEjrK2t8fDhwxqPXR7NmjWDhoYG4uLiuLTKZ7tgwQL06NEDtra2ePbs2WvbatSoEYyNjZGSkiI1t5XKX6U/3Pz589G2bVtYWVlVq+BUcvLkScTExMi9duzYIbeus7Mznj9/jqioKC7twoULEIvFUgqbLPT09KClpYULFy4gOzsbX3zxRa3aLSoqQnJyslyLZ73knS60fQLUxkfo9Om7BCwkJaWfCGrLCPprCSbrCDCi5s2bS5Vvfqk54RykruaXpMt+qkRGRlJBQYFEmlgsltgNwpCmPu0aKy0tJRMTE1q5ciWXtmbNGuLz+TRv3jyKj4+npKQk8vf3J4FAQDNnzpSoP3v2bFJQUKDvv/+eLl26RGlpaXTu3DkaPHiw3N1kxcXFZG1tTV26dKGwsDBKTk6mP/74g/PdOX36NPF4PNq9ezclJiaSr68vaWhoSPkITZs2TWb78+fPpxYtWpCioiKFhoZK5enq6tKuXbsoKSmJoqKiaP369bRr1y65z23AgAHUokULCg0NpZiYGHJ3dydLS0tut1FNfISIiLp160atWrWiv//+m1JSUujkyZN06tQpIpL2EfLw8CB7e3u6fv06xcTEUP/+/UkkEnFj/uuvv2jdunV0/fp1SktLo82bNxOfz6dbt27R5cuXacmSJXT16lW6d+8eHTx4kJSVlenkyZPVytepUydq06YNiUQiKiws5NJjYmI4n5zk5GTas2cPmZiYEABuZ6AsH6cjR47Q615LX375pcRnqry8nHR1dWnEiBF09+5dOn/+PLVr144A0JEjR4joPx+h69evS7QVEBBAQqGQ1q1bRwkJCXTjxg3auXMn+fv7ExHR0aNHSVFRkfbv309JSUm0bt060tHRea1v1tvi7u5ODg4OFBkZSWFhYWRlZSXhk5aRkUE2NjYUGRnJpe3cuZMiIiIoKSmJ9u7dSzo6OlI7OV/XLlHFrkZ1dXWp7/kPRV34CDFF6FVFKCSdaOIZokMJdPJkIgELpS5T024yt89WOkfzz/HJJNSETEJNqPml5hScVf1W20+B0tJSWrhwISkoKJCPj09di/PJUZ8UISKiZcuWkb6+vsT26qNHj1KXLl1ITU2NVFRUyMnJiXbu3Cmz3aCgIOratSuJRCJSU1MjOzs7+umnn6rdPp+WlkaDBg0iDQ0NUlVVpbZt20q8CHx9falRo0akqalJ06dPpylTptRYEarcWmxubi7l4C8Wi2nt2rVkY2NDSkpKpK+vT25ubvTPP//IlbVy+7ympiYJhUJyc3Pjts8T1VwRevr0KY0dO5Z0dXVJRUWFWrVqRcePHyciaUUiNTWVunfvTkKhkMzMzGjjxo0SYw4NDSVXV1fS1tYmoVBIdnZ2FBQUxI3fzc2N9PX1SSAQkLW1NedkXR2bN28mADRq1CipvNWrV5ORkRE3/j179rwTRejkyZNkYmJC5eXlXNrZs2fJ1taWBAIB2dnZUUhISI0UISKiwMBAsre3J2VlZdLW1qauXbvS4cOHufzvv/+edHV1SV1dnYYOHUpr1qx574rQ06dPycvLi9TV1UlDQ4PGjh0r8WOzcjxVPz9z5syhRo0akZKSEllZWZG/v7/UZ/l17RIRTZgwgSZOnPhex1cddaEI8Yje0HvxEyUvLw+amprI/dcIGoLMivhiDhkVmf/cB4b9BZSJgZ864aS5Ovr12yfVxt9/j0CvXtLbCk3DTPGg+AFMBCbI6JzxvofywUhJScGIESMQERHBpV24cIHz+2C8nqKiIqSmpqJJkyZyAwQzGIzXQ0To0KEDpk+fzi25Mt4NT548gY2NDa5duybXN+x9U913Jff+zs19rcN6bWA+QlXZH1+hBP0feTpiQwkNQUTYs2cP7O3tOSVIQUEBixYtQpcuXepYOgaD0RDh8XjYvn07ysrK6lqUekdaWho2b95cZ0pQXcF2jVXlXq7ELZXIdox+VQ8KfhQM3xTfeuUc/ezZM/j4+CAoKIhLa9q0KQIDA9GxY8c6lIzBYDR07O3tYW9vX9di1Dvatm379oHMP0GYIiSP4nIYb78BLyMNkGtjHIh6AigIgLIiGBhIbsGtjDJfyaceYf6ff/7ByJEjcf/+fS6tMv4Mi4nEYDAYjPoEU4TkseQyHAHsa2sK7B+Eg99ehljNAPyCbLRu3UiiaNUo89aq1p90hPl//vkH3bt355YFtbW1sW3bNomD0hgMBoPBqC8wH6HXEPOwBKbL7nFR56vDSGD0yUeY79y5M7p27Qqg4kThGzduMCWIwWAwGPUWZhF6DS/LCA/yygHDM0CztRDzcmEaJnmibH3yDVJQUMDevXsRHByM77777o2OZ2cwGAwG41OBKUJV2dMPKP3PQbrdxgzcKyTweYC4ySpAreJE0QfFsqt/ar5Bjx8/xjfffIMZM2agU6dOXLqZmRlmzJhRh5IxGAwGg/FhYIpQVfRVJW4zRUI8pnKYiBSQWXofYgAQAyZCE6mqIgXRJ+UbdObMGYwZMwZZWVmIjo5GbGzsOz2XgcFgMBiMTwG27iGD4Jv5sF19H5kvyqXy+M/5yOicIXV9Kr5BRUVF+O677+Du7o6srCwAFcEHaxrPiMF4HSEhIeDxeHLjhjEYHxM//vgjJkyYUNdi1DtOnz4Ne3v7auNzfiwwRUgGP/6dgzt3nkD8//MURYL68Zhu3ryJdu3aYd26dVyau7s7bt682SDPjmC8H1xcXJCZmQlNTc26FqXBwOPxuEtDQwPt2rXD0aNHpcq9fPkSfn5+sLa2hkAggJ6eHjw9PXH79m2psnl5eZg/fz6aN28OFRUVGBoaomfPnjh8+HC1EeI/JbKysrBu3TrMnz+/rkV5b+Tk5MDb2xsaGhrQ0tLCuHHjkJ+fX22drKwsjBw5EoaGhlBTU4OjoyMOHTokUeaLL75A48aNoaKiAiMjI4wcOVIisK67uzuUlJQQGBj4Xsb1Lqkfb/i3IKvkERct3jTMFIbBzZGwcCsQvg3InQAF7cHIauoKsdbHr9XKQywWY926dWjXrh1u3boFABAIBFi/fj1OnjwJQ0PDOpaQUZ9QVlaGoaHhG5/AXlJS8o4ler8Q0UdxyvFvv/2GzMxMXLt2DZ06dcLgwYNx8+ZNLr+4uBg9e/bEzp078fPPPyMxMREnT55EWVkZOnTogMuXL3Nlnz9/DhcXF+zZswc//PADoqOj8e+//2Lo0KGYPXs2cnNzZYnwXigtLX1vbe/YsQMuLi4wNzd/q3bep4xvi7e3N27fvo2zZ8/i+PHj+Pfff19rARs1ahQSEhJw7Ngx3Lx5E19++SWGDBmC69evc2W6d++OgwcPIiEhAYcOHUJycjIGD5ZcFak8f+6j551GLvsEeDXo6v2IKpHi/1Al6E+XGWgVujMJe7VIcY9iXQ+hVjx8+JDc3NwIAHe1bt2abt68WdeiNSjkBhJ0Pyh9bY15fYNXM2XXvZr5TuV2dXWlKVOm0LRp00hLS4sMDAxo+/btlJ+fT2PGjCF1dXVq1qyZRJTyixcvSgTXJCIKCwsjV1dXEgqFpKWlRb1796acnByuj8mTJ9O0adNIV1eXunXrRkREISEh1K5dO1JWViZDQ0OaM2cOlZaWVivvlStXqGfPnqSrq0saGhrUtWtXioqK4vK9vLxoyJAhEnVKSkpIV1eXdu/eTUQV0cyXLl1KFhYWpKKiQnZ2dhJBlivHd/LkSXJ0dCQlJSW6ePEiJSUl0RdffEEGBgakpqZGbdu2pbNnz0r09fDhQ+rbty+pqKiQhYUFBQYGkrm5Oa1Zs4Yr8+zZMxo3bhzp6emRSCSi7t27U0xM9Z8JVAkwSkSUl5dHAGjdunVc2vLly4nH40m1VV5eTm3btqUWLVpwQTp9fHxITU2NHjx4INXXixcvqp2HY8eOUdu2bUkgEJCuri4NHDhQrpxERJqamvTbb78R0X/BRA8cOEBdu3YlgUBA69atIxUVFYnPGBHR4cOHJaKkp6enk6enJ2lqapK2tjZ98cUXlJqaKldOIqKWLVvSxo0bJdJOnTpFnTp1Ik1NTdLR0aF+/fpRUlISly9Lxkr5AwICqHnz5iQQCMjGxoY2bdok0fbs2bPJysqKhEIhNWnShBYsWEAlJSXVyvg2VAYTvnr1qsT4eDyezLmtRE1Njfbs2SORpqOjQwEBAXLrHD16lHg8nsR47t27RwAknt/rqIugqw3eIgRUHIRoIjCBVoQL8FiOOb9YASh8AY1Dn5ZDcU5ODkJCQrj76dOn48qVK2jVqlXdCcX4j2uPpK+MvNfXyyuWXTdPzpbGt2D37t3Q09PDlStXMHXqVPj4+MDT0xMuLi6Ijo5G7969MXLkSBQWFsqsHxMTgx49eqBFixaIiIhAWFgY+vfvj/Lycok+lJWVER4ejq1bt+LBgwfo27cv2rVrh9jYWGzZsgW//vorfv7552plffHiBUaPHo2wsDBcvnwZVlZW6Nu3L168qDj01NvbG3/99ZfE0sCZM2dQWFgIDw8PAMCyZcuwZ88ebN26Fbdv38b06dMxYsQI/PPPPxJ9zZ07F8uXL0d8fDzs7OyQn5+Pvn374vz587h+/Trc3d3Rv39/pKenc3VGjRqFhw8fIiQkBIcOHcL27duRnZ0t0a6npyeys7Nx6tQpREVFwdHRET169EBOTk4NZgsoKyvDr7/+CqDCOlfJvn370KtXL7Rp00aiPJ/Px/Tp0xEXF4fY2FiIxWIcOHAA3t7eMDY2lmpfXV0dioqy99mcOHECHh4e6Nu3L65fv47z58+jffv2NZK7KnPnzsW0adMQHx8PT09PfP7559i3TzIAdmBgIAYOHAhVVVWUlpbCzc0NIpEIoaGhCA8Ph7q6Otzd3eVaGHNychAXFyflFlBQUIAZM2bg2rVrOH/+PPh8Pjw8PKR8XarK6ObmhsDAQPj6+mLJkiWIj4/H0qVL8eOPP2L37t1cHZFIhF27diEuLg7r1q1DQEAA1qxZU+2zaNmyJdTV1eVeffr0kVs3IiICWlpaEmPs2bMn+Hw+IiMj5dZzcXFBUFAQcnJyuM9DUVERunXrJrN8Tk4OAgMD4eLiAiUlJS69cePGaNSoEUJDQ6sdY53zTtWqTwBZFiGTUBMiIpoy5YRsaxAWkqZmbwJAJiYmdTyC2rN+/XoyNDSkM2fO1LUoDRa5v3L0NkhfC/59fYPn02TXPZ/2TuV2dXWlzp07c/dlZWWkpqZGI0eO5NIyMzMJAEVERBCRtEXIy8uLOnXqVG0fDg4OEmnz5s0jGxsbzkJBRLRp0yZSV1en8vLyGstfXl5OIpGI/vrrLyIiKi0tJT09PYlfu15eXjR06FAiIioqKiJVVVW6dOmSRDvjxo0jLy8vifH9+eefr+2/ZcuWtGHDBiIiio+Pl/p1fvfuXQLAWYRCQ0NJQ0ODioqKJNpp1qwZbdu2TW4/AEhFRYXU1NSIz+cTALKwsKCnT59yZVRUVGjatGky60dHRxMACgoKokePHhEAWr169WvH9yrOzs7k7e1drZw1sQitXbtWosyRI0ckrD+5ubmkoqJCp06dIiKivXv3Sn1eiouLSSgUyv3eu379OgGg9PT0asf0+PFjAsBZ0eXJ2KxZM9q3b59E2uLFi8nZ2Vlu2ytXriQnJ6dq+09LS6O7d+/KvTIyMuTWXbJkCVlbW0ul6+vr0+bNm+XWe/bsGfXuXfHOU1RUJA0NDZnPcfbs2aSqqkoAqGPHjvTkyROpMg4ODrRw4cJqx1gVZhH6gGSVZkmlFaXmgi/DrSEoaDDU1aWdCT9GYmNjUVwsaRWYMmUK4uLi0Lt37zqSivEpY2dnx/1fQUEBurq6aN26NZfWqFFFyJlXLRuVVFqEqsPJyUniPj4+Hs7OzhJ+Rp06dUJ+fj4yMjKQnp4u8at46dKlAIBHjx5h/PjxsLKygqamJjQ0NJCfn89ZZRQVFTFkyBDOgbOgoABHjx6Ft7c3ACApKQmFhYXo1auXRPt79uxBcnKyhIyvWhLy8/Mxa9Ys2NraQktLC+rq6oiPj+f6TkhIgKKiIhwdHbk6lpaW0NbW5u5jY2ORn58PXV1dif5TU1Ol+n+VNWvWICYmBqdOnUKLFi2wY8cO6OjoSJShGjg516SMPGoy1zXh1Wfbt29fKCkp4dixYwCAQ4cOQUNDAz179gRQ8dySkpIgEom4Z6ajo4OioiK5z+3ly5cAABUVFYn0u3fvwsvLC02bNoWGhgYsLCwAQMKy96qMBQUFSE5Oxrhx4yTm7eeff5boPygoCJ06dYKhoSHU1dWxYMECqXZfxdzcHJaWlnIvExPp41zelh9//BHPnz/HuXPncO3aNcyYMQNDhgyR8DkDgO+//x7Xr1/H33//DQUFBYwaNUrq8yMUCuVaiz8WGuw5QuVVJkukIAL+uY+AyKfYpqODM0bauF9ajidlpbBsrYUhQ1riYz9fsLy8HKtWrcKCBQswbdo0rFq1isvj8XgSX7YMRm2oauoGKj5PVdMqlRV522SFQuFr+1BTU3ttmaoYGxsjJiaGu6984Y8ePRpPnz7FunXrYG5uDoFAAGdnZ4nlEW9vb7i6uiI7Oxtnz56FUCiEu7s7AHBLZidOnJB6wQgEkifKvyrzrFmzcPbsWaxatQqWlpYQCoUYPHhwrZy/8/PzYWRkJLGcXYmWlla1dQ0NDbmX42+//Ya+ffsiLi4OBgYGAABra2vEx8fLrFuZbm1tDX19fWhpaeHOnTsyy1bH6+aax+NJvShlORq/+myVlZUxePBg7Nu3D8OGDcO+ffswdOhQbokuPz8fTk5OMnco6evry5RFT08PAPDs2TOJMv3794e5uTkCAgJgbGwMsViMVq1aSc1jVRkrPzcBAQHo0KGDRDkFBQUAFctU3t7eWLRoEdzc3KCpqYkDBw7A399fpnyVtGzZEvfu3ZOb36VLF5w6dUpmnqGhodQPlLKyMuTk5MjdJJOcnIyNGzfi1q1baNmyJQCgTZs2CA0NxaZNm7B161aurJ6eHvT09GBtbQ1bW1uYmZnh8uXLcHZ25srk5OTInYOPhQarCFWiyFPE4iaLAb+KLwI+j4c+Wc//K1D08W8TvX//PkaOHMn5MPj7+2PgwIHo3LlzHUvGeC1tG0mnmdbAD01DILuuhkA6rY6xs7PD+fPnsWjRohrXsbW1xaFDh0BEnKIVHh4OkUgEU1NT8Pl8WFpaStULDw/H5s2b0bdvXwAVfxtPnjyRKOPi4gIzMzMEBQXh1KlT8PT05BS7Fi1aQCAQID09Ha6urrUaZ3h4OMaMGcP5GuXn5yMtLY3Lt7GxQVlZGa5fv85ZwJKSkvDs2TOujKOjI7KysqCoqMhZIt6E9u3bw8nJCUuWLOGOyxg2bBjmz5+P2NhYCT8hsViMNWvWoEWLFmjTpg14PB6GDRuGvXv3ws/PT8pPKD8/HyoqKjL9hCrneuzYsTLl0tfXR2bmfyGJ7t69W2Nrgbe3N3r16oXbt2/jwoULEv5ijo6OCAoKgoGBQY0Phm3WrBk0NDQQFxcHa2trAMDTp0+RkJCAgIAAdOnSBQAQFhb22rYaNWoEY2NjpKSkcNbFV7l06RLMzc0ltupXp+BUcvLkyWp3pVWnfDo7O+P58+eIioriPnMXLlyAWCyWUtgqqZyPV8MrKSgoVHsmUGVe1RWJSoucg4OD3HofBe90oe0ToHKNMeE8jygSRNH/9/lxPyjb52JixbqoiYnJR+kjFBQURFpaWtyOMB6PRz/88AMVFxfXtWiMKlS37v0x4+rqKuVX8uouJyJJ349XfYQSEhJIWVmZfHx8KDY2luLj42nz5s30+PFjuX1kZGSQqqoqTZ48meLj4+nPP/8kPT098vPzq1ZeBwcH6tWrF8XFxdHly5epS5cuJBQKpeSdP38+tWjRghQVFSk0NFQqT1dXl3bt2kVJSUkUFRVF69evp127dskcXyUeHh5kb29P169fp5iYGOrfvz+JRCKJsfXs2ZMcHR0pMjKSoqOjqXv37iQUCjl/E7FYTJ07d6Y2bdrQmTNnKDU1lcLDw2nevHkSvkWvAhm+NydPniSBQMD5kLx8+ZI6dOhAZmZmdPDgQbp37x5duXKFBg4cSGpqapyPFxHR06dPqXnz5mRqakq7d++m27dvU2JiIv36669kaWkpNfZKLl68SHw+n3x9fSkuLo5u3LhBy5cv5/KHDRtGtra2FB0dTVevXqXPPvuMlJSUpHyErl+/LtW2WCwmMzMzatOmDTVr1kwir6CggKysrKhbt27077//UkpKCl28eJGmTp1K9+/fl/vcvvzyS5o5cyZ3X15eTrq6ujRixAi6e/cunT9/ntq1ayfxfOXJGBAQQEKhkNatW0cJCQl048YN2rlzJ/n7+xNRxa4qRUVF2r9/PyUlJdG6detIR0eHNDU15cr3LnB3dycHBweKjIyksLAwsrKy4vzdiCr+1mxsbCgyMpKIKnZRWlpaUpcuXSgyMpKSkpJo1apVxOPx6MSJE0REdPnyZdqwYQNdv36d0tLS6Pz58+Ti4kLNmjWT8G+7ePGihG9XTagLHyGmCL1OEfqnwpHuY1OEcnNzafTo0RLb4s3MzCgkJKSuRWPIoCErQkQVW+FdXFxIIBCQlpYWubm5cfmy+qisU9vt89HR0dS2bVtSUVEhKysrCg4Olilv5bZic3NzCQdboooX7tq1a8nGxoaUlJRIX1+f3Nzc6J9//pE7PqKKF2SlYmNmZkYbN26UGtvDhw+pT58+JBAIyNzcnPbt20cGBga0detWrkxeXh5NnTqVjI2NSUlJiczMzMjb27tap15ZipBYLKbmzZuTj48Pl1ZQUEDz588nS0tLUlJSIh0dHRo0aJDM4zSeP39Oc+fOJSsrK1JWVqZGjRpRz5496ciRI1LPrCqHDh0ie3t7UlZWJj09Pfryyy+5vAcPHlDv3r1JTU2NrKys6OTJkzKdpWUpQkQVzrkAyNfXVyovMzOTRo0aRXp6eiQQCKhp06Y0fvz4al+aJ0+eJBMTEwkH/LNnz5KtrS0JBAKys7OjkJCQGilCRESBgYHc2LW1talr1650+PBhLv/7778nXV1dUldXp6FDh9KaNWveuyL09OlT8vLyInV1ddLQ0KCxY8fSixcvuPzK8Vy8eJFLS0xMpC+//JIMDAxIVVWV7OzsJDYY3Lhxg7p37046OjokEAjIwsKCvvnmGynH7QkTJtDEiRNrJW9dKEI8onpyRGgNycvLg6amJhLO82CtTiBFE/AcM4CJZ5D0bxaKywgtn1es9z5RFUDv3ngAgKmpKR48eAATExNkZGTU5RAQERGBESNGICUlhUsbOnQotmzZwnyBPlKKioqQmpqKJk2aSDlnMhouGRkZMDMzw7lz596JkzGjdhAROnTogOnTp8PLy6uuxalXPHnyBDY2Nrh27RqaNGlS43rVfVdWvr9zc3PfaWzMBusj9DxXBYuD2mHaiHRoAMA2N3Rbdg8P8srB5wHWekpY3EsbH1v0sJCQEPTs2ZM7g0UkEmHTpk0YMWLEG5/ky2AwPgwXLlxAfn4+WrdujczMTMyePRsWFhbo2rVrXYvWIOHxeNi+fbvUbijG25OWlobNmzfXSgmqKxqsItRjxDfo3f4Bou8UQpGXDiUlPkoePAH4KjAyUkf8DLO6FlEmnTp1gpOTE65cuQIXFxf8/vvvn8QHjcFgVOyQmjdvHlJSUiASieDi4oLAwECpnXmMD4e9vT3s7e3rWox6R9u2bT+ZGJYNVhHKLxTgcEgLHA5pAeC3/zJ6tQOMWtaZXK+jMohdUFAQ5syZI/eEVwaD8fHh5uYGNze3uhaDwWBUocEeqCgXc6OPJtr8s2fP4O3tjaioKIl0S0tLzJ8/nylBDAaDwWC8JexNWgVeX2fY2Ophca+6dzgOCQnByJEjkZGRgaioKERHR0NVVbWuxWIwGAwGo17xcZg+PgY+c4JxZxvEzzDD4NbqdSZGSUkJ5s6di88++4zbnZadnY3btz+NEB8MBoPBYHxKNFiLUOThdWiiykMZzxiOF44iq6zuH0VCQgKGDx+O6OhoLq179+7Ys2cPTE1N61AyBoPBYDDqJw3WIqSlWQR97UIY6b+EgqYaoFR3ihARYdu2bXBwcOCUICUlJaxYsQLnzp1jShCDwWAwGO+JujeDNHAeP36Mr7/+mouqDFTEJNq3b59ElGoGg8FgMBjvngZrEXqVS8cuIWP1X4D+xv+uPsHvvd/79+/j5MmT3L2Pjw+io6OZEsRgMBh1RNeuXbFv3766FqPeMXfuXEydOrWuxZCCKUJ1jKOjI37++Wfo6enh2LFj2Lx5M9sdxmAw3oqQkBDweDzu0tfXR9++fWWeoHz//n189dVXMDY2hrKyMszNzTFt2jQ8ffpUqmxSUhLGjh0LU1NTCAQCNGnSBF5eXrh27dqHGNYH4dixY3j06BGGDRtW16K8N27cuIEuXbpARUUFZmZmWLFixWvrXL16FT169ICWlha0tbXh5uaG2NhYLj8kJAQDBgyAkZER1NTUYG9vj8DAQIk2Zs2ahd27d0uEh/oYYIrQB+bOnTsoLS2VSJs1axZu376N/v3715FUDMbHzat/Mx87JSUldS0CgIoNGJmZmThz5gyKi4vRr18/CdlSUlLQtm1b3L17F/v370dSUhK2bt2K8+fPw9nZGTk5OVzZa9euwcnJCYmJidi2bRvi4uJw5MgRNG/eHDNnzvxgYyovL4dYLH5v7a9fvx5jx44Fn//mr8f3LePbkJeXh969e8Pc3BxRUVFYuXIlFi5ciO3bt8utk5+fD3d3dzRu3BiRkZEICwuDSCSCm5sb97d56dIl2NnZ4dChQ7hx4wbGjh2LUaNG4fjx41w7enp6cHNzw5YtW977OGvFOw3h+gkgK/q8ydI0utRiL/3d/iDR9yH/RZ53P8jVe9vo8+Xl5bR27VoSCAQyIycz6jfyIip37LhD6lq7NuK17UVE3JdZNyLi/juV29XVlaZMmULTpk0jLS0tMjAwoO3bt1N+fj6NGTOG1NXVqVmzZnTy5EmuTllZGX311VdkYWFBKioqZG1tTWvXrpVq+9dff6UWLVpw0eUnT57M5QGgzZs3U//+/UlVVZX8/PyIiGjz5s3UtGlTUlJSImtra4mI2PLYs2cPOTk5kbq6OjVq1Ii8vLzo0aNHRFTxd2liYkKbN2+WqBMdHU08Ho/S0tKIiOjZs2c0btw40tPTI5FIRN27d6eYmBiuvJ+fH7Vp04YCAgLIwsKCeDweERGdOnWKOnXqRJqamqSjo0P9+vWjpKQkib7Cw8OpTZs2JBAIyMnJiY4cOSIV3fzmzZvk7u5OampqZGBgQCNGjKDHjx/LHfPFixcJAD179oxLO3bsGAGg2NhYLs3d3Z1MTU2psLBQon5mZiapqqrSN998Q0QVkexbtmxJTk5OEpHaK6naz6uUl5fTL7/8Qs2aNSNlZWUyMzOjn3/+Wa6c169fJwCUmppKRES//fYbaWpq0tGjR8nW1pYUFBRo27ZtJBAIpPr99ttvqXv37tx9aGgode7cmVRUVMjU1JSmTp1K+fn5cmXNzs4mHo9Ht27dkkj39/enVq1akaqqKpmampKPj49EBHdZMqamplJRURHNnDmTjI2NSVVVldq3by8R5f3Jkyc0bNgwMjY2JqFQSK1ataJ9+/bJle9dsHnzZtLW1qbi4mIubc6cOWRjYyO3ztWrVwkApaenc2k3btwgAHT37l259fr27Utjx46VSNu9ezeZmprKrVMX0eeZRej//NXYABM/dwLew6nSmZmZ6Nu3L7777jsUFxfj559/xpUrV955P4xPj8uXM6Sue/dyX1svN7dIZt3c3KJ3LuPu3buhp6eHK1euYOrUqfDx8YGnpydcXFwQHR2N3r17Y+TIkSgsLAQAiMVimJqaIjg4GHFxcfD19cW8efNw8OBBrs0tW7Zg8uTJmDBhAm7evIljx47B0tJSot+FCxfCw8MDN2/exFdffYUjR45g2rRpmDlzJm7duoWJEydi7NixuHjxYrXyl5aWYvHixYiNjcWff/6JtLQ0jBkzBgDA5/Ph5eUl5Q8SGBiITp06wdzcHADg6emJ7OxsnDp1ClFRUXB0dESPHj0kLCZJSUk4dOgQDh8+jJiYGABAQUEBZsyYgWvXruH8+fPg8/nw8PDgrAV5eXno378/WrdujejoaCxevBhz5syRkOX58+f47LPP4ODggGvXruH06dN49OgRhgwZUsMZBHJzc3HgwAEAgLKyMgAgJycHZ86cwaRJkyAUCiXKGxoawtvbG0FBQSAixMTE4Pbt25g5c6ZMS4mWlpbcvn/44QcsX74cP/74I+Li4rBv3z40atSoxrIDQGFhIX755Rfs2LEDt2/fhre3N7S0tHDo0CGuTHl5OYKCguDt7Q0ASE5Ohru7OwYNGoQbN24gKCgIYWFhmDJlitx+wsLCoKqqCltbW4l0Pp+P9evX4/bt29i9ezcuXLiA2bNnVyujgYEBpkyZgoiICBw4cAA3btyAp6cn3N3dcffuXQAVkdadnJxw4sQJ3Lp1CxMmTMDIkSOrfT+kp6dDXV292mvp0qVy60dERKBr167c5wCoCP2SkJCAZ8+eyaxjY2MDXV1d/PrrrygpKcHLly/x66+/wtbWFhYWFnL7ys3NhY6OjkRa+/btkZGRgbS0NLn1PjjvVK36BJBnEcLcZDJZmka04N//LEITz3D13tQi9Oeff5Kenh4B4K7vvvtOprbLqL/I+5UDLJS6pk8//dr2Tp++K7Pu6dPyf529Ca6urtS5c2fuvqysjNTU1GjkyJFcWmZmJgGgiAj5lqzJkyfToEGDuHtjY2OaP3++3PKVfydVcXFxofHjx0ukeXp6Ut++fWs8HqL/ft1W/qK/fv068Xg8unfvHhH9ZyXasmULEVVYFTQ0NKioqEiinWbNmtG2bduIqMIipKSkRNnZ2dX2/fjxYwJAN2/eJCKiLVu2kK6ursTnIiAgQMIitHjxYurdu7dEO/fv36/4HktIkNlPpaVFTU2N1NTUuO+eL774gitz+fJlAkBHjhyR2cbq1asJAD169IiCgoIIAEVHR1c7vlfJy8sjgUBAAQEB1cr5OosQAAkLHBHRtGnT6LPPPuPuz5w5I2ElGjduHE2YMEGiTmhoKPH5fLnfv2vWrKGmTZu+dlzBwcGkq6vL3cuS8d69e6SgoEAPHjyQqNujRw/64Ycf5Lbdr18/mjlzptz80tJSunv3brXX06dP5dbv1auX1HO5ffs2AaC4uDi59W7evEnNmjUjPp9PfD6fbGxsOIupLIKCgkhZWVnKulb5Dg4JCZFZry4sQg12+/yX48fCwfoZHFsUAnoyCijygeG2MjJqRkFBAWbOnIlt27ZxaYaGhti9ezd69+79xu0yGB8aOzs77v8KCgrQ1dVF69atubTKX/fZ2dlc2qZNm7Bz506kp6fj5cuXKCkp4SJ8Z2dn4+HDh+jRo0e1/b4auTo+Ph4TJkyQSOvUqRPWrVsHoMKKM3HiRC7v1KlT6NKlC6KiorBw4ULExsbi2bNnnDUmPT0dLVq0gL29PWxtbbFv3z7MnTsX//zzD7Kzs+Hp6QkAiI2NRX5+PnR1dSX6fvnyJZKTk7l7c3Nz6OvrS5S5e/cufH19ERkZiSdPnkj03apVKyQkJMDOzg4qKipcnfbt20u0ERsbi4sXL0JdXfrE++TkZFhbW8t9hqGhoVBVVcXly5exdOlSbN26VaoMEcmtX5sysoiPj0dxcfFr5/p1KCsrS3wOAcDb2xsdO3bEw4cPYWxsjMDAQPTr14+zTsXGxuLGjRsSDrtEBLFYjNTUVCmrD1Axp1XnopJz585h2bJluHPnDvLy8lBWVoaioiIUFhZym1telfHmzZsoLy+Xmp/i4mLus1ReXo6lS5fi4MGDePDgAUpKSlBcXFzthhlFRUUp6+n75uXLlxg3bhw6deqE/fv3o7y8HKtWrUK/fv1w9epVKYvixYsXMXbsWAQEBKBlS8kg5pVlKy3IHwMNVhG6nWKA2ymNcf1WPjCpSoapBjDIukIJ6mr2Rm1HRUVh+PDhSExM5NIGDBiAHTt2QE9PltbFYHy8KCkpSdzzeDyJNB6PBwDcS/7AgQOYNWsW/P394ezsDJFIhJUrVyIyMhIApL405aGmplYrOb/44gt06NCBuzcxMUFBQQEX8T0wMBD6+vpIT0+Hm5ubhNOwt7c3pwjt27cP7u7u3MsqPz8fRkZGCAkJkeqz6pKQLHn79+8Pc3NzBAQEwNjYGGKxGK1ataqVM3V+fj769++PX375RSrPyMio2rpNmjSBlpYWbGxskJ2djaFDh+Lff/8FUBG8mcfjIT4+Hh4eHlJ14+Pjoa2tDX19fe5lfufOHTg4ONRY9tfNdeUyW1VFS5ZjvFAo5D5nlbRr1w7NmjXDgQMH4OPjgyNHjmDXrl1cfn5+PiZOnIhvv/1Wqr3GjRvLlEdPT09qeSgtLQ2ff/45fHx8sGTJEujo6CAsLAzjxo1DSUkJp7S8KmN+fj4UFBQQFRUFBQUFiTYrldqVK1di3bp1WLt2LVq3bg01NTV899131X4+KhX46pg3bx7mzZsnM8/Q0BCPHj2SSKu8NzQ0lFln3759SEtLQ0REBDdn+/btg7a2No4ePSqxw+6ff/5B//79sWbNGowaNUqqrcrl5Fd/NNQlDVYRqqR1E0OEVk2Y2Oat2rtw4QLc3NxQVlYGAFBVVcXatWvx9ddfS/0hMxgdO0qfGm5urvnaepqaKjLrampK/5r90ISHh8PFxQWTJv33C6Oq5UQkEsHCwgLnz59H9+7da9yura0twsPDMXr0aIm+Kl8KIpEIIpFIok5UVBSePn2K5cuXw8ys4oeNrK3ew4cPx4IFCxAVFYU//vhDwnLi6OiIrKwsKCoqVusP8SpPnz5FQkICAgIC0KVLFwAVPihVsbGxwe+//47i4mIIBAIAFduUq+Lo6IhDhw7BwsICiopv/pU9efJkLFu2DEeOHIGHhwd0dXXRq1cvbN68GdOnT5dQWrKyshAYGIhRo0aBx+PB3t4eLVq0gL+/P4YOHSrlJ/T8+XOZfkJWVlYQCoU4f/48vv76a6n8ypdhZmYmtLUrgl1X+lfVBG9vbwQGBsLU1BR8Ph/9+vXj8hwdHREXF1cr64mDgwOysrLw7NkzTp6oqCiIxWL4+/tz467q71ZdW+Xl5cjOzubm/1XCw8MxYMAAjBgxAkDFj4nExMRqFR1jY+PXPqNX/XKq4uzsjPnz56O0tJT7QXP27FnY2NhwY36VwsJC8Pl8iXdY5X3V3XEhISH4/PPP8csvv0hZbyu5desWlJSUpCxFdco7XWj7BKhcYwTmErCQlo47JukjJIea+ggVFRWRnZ0dASAnJye5a/iMhkV1694fM66urjRt2jSJNHNzc1qzZo1EGqr4mqxbt440NDTo9OnTlJCQQAsWLCANDQ1q06YNV37Xrl2koqJC69ato8TERIqKiqL169fLbK+SI0eOkJKSEm3evJkSExPJ39+fFBQUJHbhvEp2djYpKyvT999/T8nJyXT06FGytraW2pVFRNSpUydq06YNiUQiiV1UYrGYOnfuTG3atKEzZ85QamoqhYeH07x58+jq1atE9N+usaqUl5eTrq4ujRgxgu7evUvnz5+ndu3aSYwtNzeXdHR0aNSoURQXF0enT5+m5s2bS/ibPHjwgPT19Wnw4MF05coVSkpKotOnT9OYMWOorKxM5rhl+d4QEc2ePZtat25NYrGYiIgSExNJT0+PunTpQv/88w+lp6fTqVOnqFWrVmRlZSXhaxIZGUkikYhcXFzoxIkTlJycTLGxsfTzzz9T165d5c7BwoULSVtbm3bv3k1JSUkUERFBO3bsICKikpISMjMzI09PT0pMTKTjx4+TjY2NzF1jsrh79y4BIDs7Oxo3bpxEXmxsLAmFQpo8eTJdv36dEhMT6c8//5TYnfgqZWVlpK+vT3/99ReXFhMTQwBo7dq1lJycTHv27OHeB5XPV56M3t7eZGFhQYcOHaKUlBSKjIykpUuX0vHjx4mIaPr06WRmZkbh4eEUFxdHX3/9NWloaNCAAQPkyvi2PH/+nBo1akQjR46kW7du0YEDB0hVVZXzdyMiOnz4sMQusvj4eBIIBOTj40NxcXF069YtGjFiBGlqatLDhw+JiOjChQukqqpKP/zwA2VmZnLXq/5Kfn5+Er5dr1IXPkINXhE6viSUmvyUTD+4n3knihAR0a1bt2j+/PkS2xMZDZuGpAgVFRXRmDFjSFNTk7S0tMjHx4fmzp0rpShs3bqVbGxsSElJiYyMjGjq1Kky26vKm2yf37dvH1lYWJBAICBnZ2duG/mritDmzZsJAI0aNUqqjby8PJo6dSoZGxuTkpISmZmZkbe3N7edWJYiRER09uxZsrW1JYFAQHZ2dhQSEiI1tvDwcLKzsyNlZWVycnKiffv2EQC6c+cOVyYxMZE8PDxIS0uLhEIhNW/enL777jtOoXkVeYpQeno6KSoqUlBQEJeWlpZGo0ePpkaNGnFjmzp1Kj158kSq3YSEBBo1ahQZGxuTsrIymZubk5eXV7VO1OXl5fTzzz+Tubk5KSkpUePGjWnp0qVcflhYGLVu3ZpUVFSoS5cuFBwcXGNFiIioffv2BIAuXLgglXflyhXq1asXqaurk5qaGtnZ2dGSJUvktkVUoSwOGzZMIm316tVkZGREQqGQ3NzcaM+ePTVShEpKSsjX15csLCy4z7mHhwfduHGDiIiePn1KAwYMIHV1dTIwMKAFCxbQqFGj3qsiRFShJHbu3JkEAgGZmJjQ8uXLJfIrnb+r8vfff3NHQWhra9Nnn30msUFi9OjREpuCKi9XV1eJdmxsbGj//v1yZasLRYhH9IZecJ8oeXl50NTURHP+fNwVKyFl95dI2HQH6vnF8BzRBRk/mMusZ2pqigcPHsDExAQZGRlcWzNnzsR33333cZn5GB8dRUVFSE1NRZMmTWQ6YzIYlQQGBmLs2LHIzc2tsT8V492RlZWFli1bIjo6mjs+gfFuOHXqFGbOnIkbN27IXeat7ruy8v2dm5sLDQ2NdyZXg/URitTShICnghcLLqHXy1JEGGjVqn5ERARGjBiBlJQUXLlyBVeuXOHW+BkMBqOm7NmzB02bNoWJiQliY2MxZ84cDBkyhClBdYShoSF+/fVXpKenM0XoHVNQUIDffvvtrXzd3gcflzQfGAGPB8HLih0KKSJViGpwmCIRYdGiRVi8eDHKy8sBAKmpqbhx4wbatWv3XuVlMBj1j6ysLPj6+iIrKwtGRkbw9PTEkiVL6lqsBs3AgQPrWoR6yeDBg+taBJk02JOlc+b9irED2qGEX+EFf669BRb3ku0xX5UnT55g4cKFnBLk4uKC2NhYpgQxGIw3Yvbs2UhLS+OWBNasWcMCLzMYH5AGaxEqcUiETegLBDcxwjGHxgha7yi3LBFxhz9Vnu+goKDAhQ742Mx8DAaDwWAwakaDfoNv7GCFB3nlMNFQkJkfHByM+fPnIyMjAy9fvuTSmzZtisDAQHTs2PFDicpgMBgMBuM90KAVodfh6+vLBcerRFNTEzExMVIHtzEYNaGBbdJkMBiMWlEX35EN1keoJrx48YL7P4/Hg7GxMXbs2MGUIEatqTzB9WOKr8NgMBgfG1XdTz4UzCL0CqmpqWjcuLHEJBgbG+PKlSswMTGpQ8kYnzIKCgrQ0tLiApOqqqqykCsMBoNRBbFYjMePH0NVVfWD+t4yRej/EBG2b9+O6dOnw8/PD3PmzOHyeDweU4IYb01lQMOqUdoZDAaD8R98Ph+NGzf+oD8UmSIEoODJA2hotEJ+fj4AYO7cufD398fTp0/rWDJGfYLH48HIyAgGBgYyI2wzGAxGQ0dZWVkqqO/75qNQhDZt2oSVK1ciKysLbdq0wYYNG9C+fXu55YODg/Hjjz8iLS0NVlZW+OWXX9C3b99a9am+63P4PrqNk89v4OitVUBhvkT+48ePuf8znyDGu0RBQeGDrn8zGAwGQz517iwdFBSEGTNmwM/PD9HR0WjTpg3c3NzkLh9cunQJXl5eGDduHK5fv46BAwdi4MCBuHXrVq36VTzujLh/V+LolR+Awv8sPzo6OjAxMeGu5s2bY/HixW81RgaDwWAwGB8ndR50tUOHDmjXrh02btwIoMJZyszMDFOnTsXcuXOlyg8dOhQFBQU4fvw4l9axY0fY29tj69atr+2vMmibLb8R4sWPJPIMDQ2RmZn5liNiMBgMBoPxrnlfQVfr1CJUUlKCqKgo9OzZk0vj8/no2bMnIiIiZNaJiIiQKA8Abm5ucsvLo1IJUuYpgdd1BoAPu12PwWAwGAxG3VOnPkJPnjxBeXk5GjVqJJHeqFEj3LlzR2adrKwsmeWzsrJkli8uLkZxcTF3n5uby/2/Bd8Q3zWegAk2nYF/V0MsFiMvL+9Nh8NgMBgMBuM9Ufl+ftcLWR+Fs/T7ZNmyZVi0aJHMvDhxFiak/QQEVNxnZmZCU1PzA0rHYDAYDAajNjx9+vSdvqvrVBHS09ODgoICHj2S9NV59OgRd+bKqxgaGtaq/A8//IAZM2Zw98+fP4e5uTnS09OZ0lPH5OXlwczMDPfv33+n672MN4PNx8cDm4uPBzYXHw+5ublo3LgxdHR03mm7daoIKSsrw8nJCefPn8fAgQMBVDhLnz9/HlOmTJFZx9nZGefPn8d3333HpZ09exbOzs4yywsEAggEAql0TU1N9qH+SNDQ0GBz8RHB5uPjgc3FxwObi4+Hd33OUJ0vjc2YMQOjR49G27Zt0b59e6xduxYFBQUYO3YsAGDUqFEwMTHBsmXLAADTpk2Dq6sr/P390a9fPxw4cADXrl3D9u3b63IYDAaDwWAwPkHqXBEaOnQoHj9+DF9fX2RlZcHe3h6nT5/mHKLT09MltD8XFxfs27cPCxYswLx582BlZYU///wTrVq1qqshMBgMBoPB+ESpc0UIAKZMmSJ3KSwkJEQqzdPTE56enm/Ul0AggJ+fn8zlMsaHhc3FxwWbj48HNhcfD2wuPh7e11zU+YGKDAaDwWAwGHVFnYfYYDAYDAaDwagrmCLEYDAYDAajwcIUIQaDwWAwGA0WpggxGAwGg8FosNRLRWjTpk2wsLCAiooKOnTogCtXrlRbPjg4GM2bN4eKigpat26NkydPfiBJ6z+1mYuAgAB06dIF2tra0NbWRs+ePV87d4zaUdu/jUoOHDgAHo/HHXzKeHtqOxfPnz/H5MmTYWRkBIFAAGtra/Zd9Y6o7VysXbsWNjY2EAqFMDMzw/Tp01FUVPSBpK2//Pvvv+jfvz+MjY3B4/Hw559/vrZOSEgIHB0dIRAIYGlpiV27dtW+Y6pnHDhwgJSVlWnnzp10+/ZtGj9+PGlpadGjR49klg8PDycFBQVasWIFxcXF0YIFC0hJSYlu3rz5gSWvf9R2LoYPH06bNm2i69evU3x8PI0ZM4Y0NTUpIyPjA0teP6ntfFSSmppKJiYm1KVLFxowYMCHEbaeU9u5KC4uprZt21Lfvn0pLCyMUlNTKSQkhGJiYj6w5PWP2s5FYGAgCQQCCgwMpNTUVDpz5gwZGRnR9OnTP7Dk9Y+TJ0/S/Pnz6fDhwwSAjhw5Um35lJQUUlVVpRkzZlBcXBxt2LCBFBQU6PTp07Xqt94pQu3bt6fJkydz9+Xl5WRsbEzLli2TWX7IkCHUr18/ibQOHTrQxIkT36ucDYHazsWrlJWVkUgkot27d78vERsUbzIfZWVl5OLiQjt27KDRo0czRegdUdu52LJlCzVt2pRKSko+lIgNhtrOxeTJk+mzzz6TSJsxYwZ16tTpvcrZ0KiJIjR79mxq2bKlRNrQoUPJzc2tVn3Vq6WxkpISREVFoWfPnlwan89Hz549ERERIbNORESERHkAcHNzk1ueUTPeZC5epbCwEKWlpe88wF5D5E3n46effoKBgQHGjRv3IcRsELzJXBw7dgzOzs6YPHkyGjVqhFatWmHp0qUoLy//UGLXS95kLlxcXBAVFcUtn6WkpODkyZPo27fvB5GZ8R/v6v39UZws/a548uQJysvLufAclTRq1Ah37tyRWScrK0tm+aysrPcmZ0PgTebiVebMmQNjY2OpDzqj9rzJfISFheHXX39FTEzMB5Cw4fAmc5GSkoILFy7A29sbJ0+eRFJSEiZNmoTS0lL4+fl9CLHrJW8yF8OHD8eTJ0/QuXNnEBHKysrwzTffYN68eR9CZEYV5L2/8/Ly8PLlSwiFwhq1U68sQoz6w/Lly3HgwAEcOXIEKioqdS1Og+PFixcYOXIkAgICoKenV9fiNHjEYjEMDAywfft2ODk5YejQoZg/fz62bt1a16I1OEJCQrB06VJs3rwZ0dHROHz4ME6cOIHFixfXtWiMN6ReWYT09PSgoKCAR48eSaQ/evQIhoaGMusYGhrWqjyjZrzJXFSyatUqLF++HOfOnYOdnd37FLPBUNv5SE5ORlpaGvr378+licViAICioiISEhLQrFmz9yt0PeVN/jaMjIygpKQEBQUFLs3W1hZZWVkoKSmBsrLye5W5vvImc/Hjjz9i5MiR+PrrrwEArVu3RkFBASZMmID58+dLBAlnvF/kvb81NDRqbA0C6plFSFlZGU5OTjh//jyXJhaLcf78eTg7O8us4+zsLFEeAM6ePSu3PKNmvMlcAMCKFSuwePFinD59Gm3btv0QojYIajsfzZs3x82bNxETE8NdX3zxBbp3746YmBiYmZl9SPHrFW/yt9GpUyckJSVxyigAJCYmwsjIiClBb8GbzEVhYaGUslOpoBIL3flBeWfv79r5cX/8HDhwgAQCAe3atYvi4uJowoQJpKWlRVlZWURENHLkSJo7dy5XPjw8nBQVFWnVqlUUHx9Pfn5+bPv8O6K2c7F8+XJSVlamP/74gzIzM7nrxYsXdTWEekVt5+NV2K6xd0dt5yI9PZ1EIhFNmTKFEhIS6Pjx42RgYEA///xzXQ2h3lDbufDz8yORSET79++nlJQU+vvvv6lZs2Y0ZMiQuhpCveHFixd0/fp1un79OgGg1atX0/Xr1+nevXtERDR37lwaOXIkV75y+/z3339P8fHxtGnTJrZ9vpINGzZQ48aNSVlZmdq3b0+XL1/m8lxdXWn06NES5Q8ePEjW1takrKxMLVu2pBMnTnxgiesvtZkLc3NzAiB1+fn5fXjB6ym1/duoClOE3i21nYtLly5Rhw4dSCAQUNOmTWnJkiVUVlb2gaWun9RmLkpLS2nhwoXUrFkzUlFRITMzM5o0aRI9e/bswwtez7h48aLMd0Dl8x89ejS5urpK1bG3tydlZWVq2rQp/fbbb7Xul0fEbHkMBoPBYDAaJvXKR4jBYDAYDAajNjBFiMFgMBgMRoOFKUIMBoPBYDAaLEwRYjAYDAaD0WBhihCDwWAwGIwGC1OEGAwGg8FgNFiYIsRgMBgMBqPBwhQhBoMhwa5du6ClpVXXYrwxPB4Pf/75Z7VlxowZg4EDB34QeRgMxscNU4QYjHrImDFjwOPxpK6kpKS6Fg27du3i5OHz+TA1NcXYsWORnZ39TtrPzMxEnz59AABpaWng8XiIiYmRKLNu3Trs2rXrnfQnj4ULF3LjVFBQgJmZGSZMmICcnJxatcOUNgbj/VKvos8zGIz/cHd3x2+//SaRpq+vX0fSSKKhoYGEhASIxWLExsZi7NixePjwIc6cOfPWbcuLGl4VTU3Nt+6nJrRs2RLnzp1DeXk54uPj8dVXXyE3NxdBQUEfpH8Gg/F6mEWIwainCAQCGBoaSlwKCgpYvXo1WrduDTU1NZiZmWHSpEnIz8+X205sbCy6d+8OkUgEDQ0NODk54dq1a1x+WFgYunTpAqFQCDMzM3z77bcoKCioVjYejwdDQ0MYGxujT58++Pbbb3Hu3Dm8fPkSYrEYP/30E0xNTSEQCGBvb4/Tp09zdUtKSjBlyhQYGRlBRUUF5ubmWLZsmUTblUtjTZo0AQA4ODiAx+OhW7duACStLNu3b4exsbFEZHcAGDBgAL766ivu/ujRo3B0dISKigqaNm2KRYsWoaysrNpxKioqwtDQECYmJujZsyc8PT1x9uxZLr+8vBzjxo1DkyZNIBQKYWNjg3Xr1nH5CxcuxO7du3H06FHOuhQSEgIAuH//PoYMGQItLS3o6OhgwIABSEtLq1YeBoMhDVOEGIwGBp/Px/r163H79m3s3r0bFy5cwOzZs+WW9/b2hqmpKa5evYqoqCjMnTsXSkpKAIDk5GS4u7tj0KBBuHHjBoKCghAWFoYpU6bUSiahUAixWIyysjKsW7cO/v7+WLVqFW7cuAE3Nzd88cUXuHv3LgBg/fr1OHbsGA4ePIiEhAQEBgbCwsJCZrtXrlwBAJw7dw6ZmZk4fPiwVBlPT088ffoUFy9e5NJycnJw+vRpeHt7AwBCQ0MxatQoTJs2DXFxcdi2bRt27dqFJUuW1HiMaWlpOHPmDJSVlbk0sVgMU1NTBAcHIy4uDr6+vpg3bx4OHjwIAJg1axaGDBkCd3d3ZGZmIjMzEy4uLigtLYWbmxtEIhFCQ0MRHh4OdXV1uLu7o6SkpMYyMRgMoF5Gn2cwGjqjR48mBQUFUlNT467BgwfLLBscHEy6urrc/W+//UaamprcvUgkol27dsmsO27cOJowYYJEWmhoKPH5fHr58qXMOq+2n5iYSNbW1tS2bVsiIjI2NqYlS5ZI1GnXrh1NmjSJiIimTp1Kn332GYnFYpntA6AjR44QEVFqaioBoOvXr0uUGT16NA0YMIC7HzBgAH311Vfc/bZt28jY2JjKy8uJiKhHjx60dOlSiTb27t1LRkZGMmUgIvLz8yM+n09qamqkoqLCRdJevXq13DpERJMnT6ZBgwbJlbWybxsbG4lnUFxcTEKhkM6cOVNt+wwGQxLmI8Rg1FO6d++OLVu2cPdqamoAKqwjy5Ytw507d5CXl4eysjIUFRWhsLAQqqqqUu3MmDEDX3/9Nfbu3cst7zRr1gxAxbLZjRs3EBgYyJUnIojFYqSmpsLW1lambLm5uVBXV4dYLEZRURE6d+6MHTt2IC8vDw8fPkSnTp0kynfq1AmxsbEAKpa1evXqBRsbG7i75Xw81AAABP5JREFUu+Pzzz9H79693+pZeXt7Y/z48di8eTMEAgECAwMxbNgw8Pl8bpzh4eESFqDy8vJqnxsA2NjY4NixYygqKsLvv/+OmJgYTJ06VaLMpk2bsHPnTqSnp+Ply5coKSmBvb19tfLGxsYiKSkJIpFIIr2oqAjJyclv8AQYjIYLU4QYjHqKmpoaLC0tJdLS0tLw+eefw8fHB0uWLIGOjg7CwsIwbtw4lJSUyHyhL1y4EMOHD8eJEydw6tQp+Pn54cCBA/Dw8EB+fj4mTpyIb7/9Vqpe48aN5comEokQHR0NPp8PIyMjCIVCAEBeXt5rx+Xo6IjU1FScOnUK586dw5AhQ9CzZ0/88ccfr60rj/79+4OIcOLECbRr1w6hoaFYs2YNl5+fn49Fixbhyy+/lKqroqIit11lZWVuDpYvX45+/fph0aJFWLx4MQDgwIEDmDVrFvz9/eHs7AyRSISVK1ciMjKyWnnz8/Ph5OQkoYBW8rE4xDMYnwpMEWIwGhBRUVEQi8Xw9/fnrB2V/ijVYW1tDWtra0yfPh1eXl747bff4OHhAUdHR8TFxUkpXK+Dz+fLrKOhoQFjY2OEh4fD1dWVSw8PD0f79u0lyg0dOhRDhw7F4MGD4e7ujpycHOjo6Ei0V+mPU15eXq08Kioq+PLLLxEYGIikpCTY2NjA0dGRy3d0dERCQkKtx/kqCxYswGeffQYfHx9unC4uLpg0aRJX5lWLjrKyspT8jo6OCAoKgoGBATQ0NN5KJgajocOcpRmMBoSlpSVKS0uxYcMGpKSkYO/evdi6davc8i9fvsSUKVMQEhKCe/fuITw8HFevXuWWvObMmYNLly5hypQpiImJwd27d3H06NFaO0tX5fvvv8cvv/yCoKAgJCQkYO7cuYiJicG0adMAAKtXr8b+/ftx584dJCYmIjg4GIaGhjIPgTQwMIBQKMTp06fx6NEj5Obmyu3X29sbJ06cwM6dOzkn6Up8fX2xZ88eLFq0CLdv30Z8fDwOHDiABQsW1Gpszs7OsLOzw9KlSwEAVlZWuHbtGs6cOYPExET8+OOPuHr1qkQdCwsL3LhxAwkJCXjy5AlKS0vh7e0NPT09DBgwAKGhoUhNTUVISAi+/fZbZGRk1EomBqPBU9dOSgwG490jy8G2ktWrV5ORkREJhUJyc3OjPXv2EAB69uwZEUk6MxcXF9OwYcPIzMyMlJWVydjYmKZMmSLhCH3lyhXq1asXqaurk5qaGtnZ2Uk5O1flVWfpVykvL6eFCxeSiYkJKSkpUZs2bejUqVNc/vbt28ne3p7U1NRIQ0ODevToQdHR0Vw+qjhLExEFBASQmZkZ8fl8cnV1lft8ysvLycjIiABQcnKylFynT58mFxcXEgqFpKGhQe3bt6ft27fLHYefnx+1adNGKn3//v0kEAgoPT2dioqKaMyYMaSpqUlaWlrk4+NDc+fOlaiXnZ3NPV8AdPHiRSIiyszMpFGjRpGenh4JBAJq2rQpjR8/nnJzc+XKxGAwpOEREdWtKsZgMBgMBoNRN7ClMQaDwWAwGA0WpggxGAwGg8FosDBFiMFgMBgMRoOFKUIMBoPBYDAaLEwRYjAYDAaD0WBhihCDwWAwGIwGC1OEGAwGg8FgNFiYIsRgMBgMBqPBwhQhBoPBYDAYDRamCDEYDAaDwWiwMEWIwWAwGAxGg4UpQgwGg8FgMBos/wMcEQLMjSuSTQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "nbgrader": { + "grade": false, + "grade_id": "cell-4fbf16c64076e139", + "locked": true, + "schema_version": 2, + "solution": false + }, + "id": "WNekMnIqOcMD" + }, + "source": [ + "#### 2.5. Decision tree\n", + "* Now train a desicion tree on the same data. Find optimal tree depth (`max_depth`) using cross-validation.\n", + "\n", + "* Measure the model quality using the same metrics you used above." + ] + }, + { + "cell_type": "code", + "execution_count": 189, + "metadata": { + "nbgrader": { + "grade": true, + "grade_id": "cell-748ed20b51c67fab", + "locked": false, + "points": 15, + "schema_version": 2, + "solution": true + }, + "id": "uDV54vEgOcMD" + }, + "outputs": [], + "source": [ + "from sklearn.tree import DecisionTreeClassifier\n", + "\n", + "tree_grid = {\n", + " 'max_depth': [1, 2, 4, 10, 15, 20],\n", + " 'min_samples_split': [2, 4, 6, 10],\n", + " 'criterion': ['gini', 'entropy', 'log_loss'],\n", + " 'max_leaf_nodes': [5, 10, 15, 20],\n", + "}\n", + "\n", + "tree = DecisionTreeClassifier()\n", + "tree_grid_search = GridSearchCV(tree, param_grid=tree_grid, refit=True)" + ] + }, + { + "cell_type": "code", + "source": [ + "tree_grid_search.fit(X_train_pd_scaled, y_train)\n", + "print(f'best params: {tree_grid_search.best_params_}')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "KwF2v0kwyl8H", + "outputId": "5e99991c-f693-4a38-965b-fa360aae888e" + }, + "execution_count": 190, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "best params: {'criterion': 'entropy', 'max_depth': 10, 'max_leaf_nodes': 20, 'min_samples_split': 4}\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "best_estimator = tree_grid_search.best_estimator_\n", + "y_pred = best_estimator.predict(X_test_scaled)\n", + "print(f'f1 score: {f1_score(y_test, y_pred, average=\"macro\")}')\n", + "print(f'accuracy score: {accuracy_score(y_test, y_pred)}')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "3e6babb8-7449-4258-f3a3-01159089f242", + "id": "MqEkpyIlzQBq" + }, + "execution_count": 191, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "f1 score: 0.6839208649039467\n", + "accuracy score: 0.6835016835016835\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "pred_proba = best_estimator.predict_proba(X_test_scaled)\n", + "scikitplot.metrics.plot_roc(y_test, pred_proba)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 490 + }, + "id": "ilhschv9zxEn", + "outputId": "69a2f732-2ed0-4d4d-9459-25e5698b35f5" + }, + "execution_count": 192, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 192 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hT1RvHP0mapk33LrQFyt57bwSZogwRZOMCFVRAf4oLcSuIIMoQFSiIgjhAQVERUIYge5dRRoHuvdMk9/dHaNo06U6alp7P8+Tpzcm957zput+85x0ySZIkBAKBQCAQCGogcnsbIBAIBAKBQGAvhBASCAQCgUBQYxFCSCAQCAQCQY1FCCGBQCAQCAQ1FiGEBAKBQCAQ1FiEEBIIBAKBQFBjEUJIIBAIBAJBjUUIIYFAIBAIBDUWIYQEAoFAIBDUWIQQEggEAoFAUGMRQkggEJiwdu1aZDKZ8eHg4EBQUBBTp07l1q1bFq+RJIn169fTu3dvPD09UavVtGrVijfffJOMjIwi1/rxxx8ZMmQIvr6+ODo6Urt2bR566CH++uuvUtmanZ3Nxx9/TJcuXfDw8MDJyYnGjRszc+ZMLl68WK73LxAIahYy0WtMIBAUZO3atUybNo0333yT0NBQsrOz+ffff1m7di316tXjzJkzODk5Gc/X6XSMHz+ezZs306tXL0aNGoVareaff/5h48aNNG/enD///JOAgADjNZIk8cgjj7B27VratWvHgw8+SGBgIFFRUfz4448cPXqU/fv307179yLtjI+PZ/DgwRw9epT77ruPAQMG4OrqSnh4ON9++y3R0dFoNBqbfq8EAsFdgCQQCAQFWLNmjQRI//33n8n4iy++KAHSpk2bTMbfffddCZCef/55s7m2bdsmyeVyafDgwSbjCxculADpueeek/R6vdl1YWFh0qFDh4q1c9iwYZJcLpe2bNli9lp2drY0d+7cYq8vLbm5uVJOTo5V5hIIBFUPIYQEAoEJRQmhX375RQKkd9991ziWmZkpeXl5SY0bN5Zyc3Mtzjdt2jQJkA4ePGi8xtvbW2ratKmk1WrLZeO///4rAdLjjz9eqvP79Okj9enTx2x8ypQpUt26dY3Pr169KgHSwoULpY8//liqX7++JJfLpX///VdSKBTSG2+8YTbHhQsXJEBatmyZcSwpKUl69tlnpeDgYMnR0VFq0KCB9P7770s6nc7k2m+++UZq37695OrqKrm5uUktW7aUlixZUrpvgkAgsAoiRkggEJSKa9euAeDl5WUc27dvH0lJSYwfPx4HBweL102ePBmAX375xXhNYmIi48ePR6FQlMuWbdu2ATBp0qRyXV8Sa9asYdmyZTzxxBN89NFH1KpViz59+rB582azczdt2oRCoWDMmDEAZGZm0qdPHzZs2MDkyZP55JNP6NGjB/PmzWPOnDnG6/744w8efvhhvLy8+OCDD3j//ffp27cv+/fvt8l7EggElrH8n0sgENR4UlJSiI+PJzs7m0OHDrFgwQJUKhX33Xef8Zxz584B0KZNmyLnyXvt/PnzJl9btWpVbtusMUdx3Lx5k8uXL+Pn52ccGzt2LNOnT+fMmTO0bNnSOL5p0yb69OljjIFavHgxV65c4fjx4zRq1AiA6dOnU7t2bRYuXMjcuXMJCQlh+/btuLu7s3PnznILQoFAUHGER0ggEFhkwIAB+Pn5ERISwoMPPoiLiwvbtm0jODjYeE5aWhoAbm5uRc6T91pqaqrJ1+KuKQlrzFEco0ePNhFBAKNGjcLBwYFNmzYZx86cOcO5c+cYO3ascey7776jV69eeHl5ER8fb3wMGDAAnU7H33//DYCnpycZGRn88ccfNnkPAoGgdAghJBAILPLZZ5/xxx9/sGXLFoYOHUp8fDwqlcrknDwhkieILFFYLLm7u5d4TUlYY47iCA0NNRvz9fWlf//+JttjmzZtwsHBgVGjRhnHLl26xG+//Yafn5/JY8CAAQDExsYC8NRTT9G4cWOGDBlCcHAwjzzyCL/99ptN3o9AICgaIYQEAoFFOnfuzIABAxg9ejTbtm2jZcuWjB8/nvT0dOM5zZo1A+DUqVNFzpP3WvPmzQFo2rQpAKdPny63bWWdQyaTWRzX6XQWx52dnS2Ojxs3josXL3LixAkANm/eTP/+/fH19TWeo9fruffee/njjz8sPkaPHg2Av78/J06cYNu2bdx///3s3r2bIUOGMGXKlFK9J4FAYB2EEBIIBCWiUCh47733uH37Np9++qlxvGfPnnh6erJx48YiRUVYWBiAMbaoZ8+eeHl58c033xR5TUkMHz4cgA0bNpTqfC8vL5KTk83Gr1+/XqZ1R4wYgaOjI5s2beLEiRNcvHiRcePGmZzToEED0tPTGTBggMVHnTp1jOc6OjoyfPhwli9fzpUrV5g+fTphYWFcvny5THYJBILyI4SQQCAoFX379qVz584sWbKE7OxsANRqNc8//zzh4eG88sorZtds376dtWvXMmjQILp27Wq85sUXX+T8+fO8+OKLSBZqum7YsIHDhw8XaUu3bt0YPHgwX3zxBT/99JPZ6xqNhueff974vEGDBly4cIG4uDjj2MmTJ8ucoeXp6cmgQYPYvHkz3377LY6OjowYMcLknIceeoiDBw+yc+dOs+uTk5PRarUAJCQkmLwml8tp3bo1ADk5OWWySyAQlB9RWVogEJiQV1n6v//+o2PHjiavbdmyhTFjxrBixQpmzJgBGLaXxo4dy/fff0/v3r0ZPXo0zs7O7Nu3jw0bNtCsWTN27dplUllar9czdepU1q9fT/v27Y2VpaOjo/npp584fPgwBw4coFu3bkXaGRcXx8CBAzl58iTDhw+nf//+uLi4cOnSJb799luioqKMguL8+fO0bNmSNm3a8OijjxIbG8vKlSsJCAggNTXVWBrg2rVrhIaGsnDhQhMhVZCvv/6aiRMn4ubmRt++fY2p/HlkZmbSq1cvTp06xdSpU+nQoQMZGRmcPn2aLVu2cO3aNXx9fRk5ciSJiYncc889BAcHc/36dZYtW0a9evU4evQocrn4nCoQVAp2rmMkEAiqGEUVVJQkSdLpdFKDBg2kBg0amBRD1Ol00po1a6QePXpI7u7ukpOTk9SiRQtpwYIFUnp6epFrbdmyRRo4cKDk7e0tOTg4SLVq1ZLGjh0r7dmzp1S2ZmZmSosWLZI6deokubq6So6OjlKjRo2kWbNmSZcvXzY5d8OGDVL9+vUlR0dHqW3bttLOnTuLLahYFKmpqZKzs7MESBs2bLB4TlpamjRv3jypYcOGkqOjo+Tr6yt1795dWrRokaTRaEzeu7+/v+To6CjVqVNHmj59uhQVFVWq9y4QCKyD8AgJBAKBQCCosQjfq0AgEAgEghqLEEICgUAgEAhqLEIICQQCgUAgqLEIISQQCAQCgaDGIoSQQCAQCASCGosQQgKBQCAQCGosDvY2oLLR6/Xcvn0bNze3IvsPCQQCgUAgqFpIkkRaWhq1a9e2asHRGieEbt++TUhIiL3NEAgEAoFAUA4iIyMJDg622nw1Tgi5ubkBhm+ku7u7na0RCAQCgUBQGlJTUwkJCTHex61FjRNCedth7u7uQggJBAKBQFDNsHZYiwiWFggEAoFAUGMRQkggEAgEAkGNRQghgUAgEAgENRYhhAQCgUAgENRYhBASCAQCgUBQYxFCSCAQCAQCQY1FCCGBQCAQCAQ1FiGEBAKBQCAQ1FiEEBIIBAKBQFBjEUJIIBAIBAJBjcWuQujvv/9m+PDh1K5dG5lMxk8//VTiNXv27KF9+/aoVCoaNmzI2rVrbW6nQCAQCASCuxO7CqGMjAzatGnDZ599Vqrzr169yrBhw+jXrx8nTpzgueee47HHHmPnzp02tlQgEAgEAsHdiF2brg4ZMoQhQ4aU+vyVK1cSGhrKRx99BECzZs3Yt28fH3/8MYMGDbKVmQKBQCAQCKyMJEkkJ2cTG5thfMT9HUmrXIkerk4Qn2V4KGTw40ib2VGtus8fPHiQAQMGmIwNGjSI5557zj4GCQQCgUAgAAzCJj1dQ+zlRLLOxNPSw9kgZBKyIC4LnmwLoR7o9BIZGomE1BzqB3xoNs8cJyd6uLoYn2sVOpZtaUfC9Vs2sbtaCaHo6GgCAgJMxgICAkhNTSUrKwtnZ2eza3JycsjJyTE+T01NtbmdAoFAIBBUdzQaPZnxWWRFZaKJyUQbl0WKj5pb9b2IS8kkITWTxLRsfll1hIhjt8lO1aDX6gGoL5dzxdvLZL7nky9zpXkmfs6p+KsS8FcloFbXITPTVIrESnqT53G56ez88BR7T5qOW4tqJYTKw3vvvceCBQvsbYZAIBAIBFZHkiSytQYPS7pGb/iaoycj987XO+PpGj3Jqdlkx6WTk5hJhLMDqdk60nN0pGskkq4lkXLsBrr0HHSZGqRMDW4pGez3cKeVQ75UWNk0hFm9muKnSjSKmYy0m2Qmak3sipMkM1sXhX4O3Q+bjC3znsXlTB+TsVh9/rVbc07xWPo3xP9nGxEE1UwIBQYGEhMTYzIWExODu7u7RW8QwLx585gzZ47xeWpqKiEhITa1UyAQCASCguj1Epm5BcSKJdFSSLxkaCRSs7WkZGpIzdKSmq0lQ6MnQwOZWsjWycmRFEjIDIvo9HApEjKyIdPwaHornolyOY8oHfHN1qCUJKKcVdSe0L+AdRLq1ChyTlw3sTkNiNObCpppHjuZMWKEydgLR+9l0aEeptdKElmShLNMlj+Y7Gr2ffH3zuDyzcJCyCB64vRpTEhbRwYaANy9XEhNyijhO112qpUQ6tatGzt27DAZ++OPP+jWrVuR16hUKlQqla1NEwgEAsFdgFZnQazc+Zqh0ZNe+GuOREZuoa8aPanZWqO3JTMXsnWykhfPIycXMrKMYqZWXAq9Y5KY7uWGX5YG/2wNftkaHri3A0f8PE2v/elvk6cXgFgnJ2oViLkJyMliR5dpBKgTjF6dw6dq0WvLI2amFN6mUqWb30/9vDItvo04vZ46CoXx+ZEkV37MgRgJYvUQK8F59xyz62IlPZJchp9fAEt8JvP4pS8Y0W8Ii7/8jPr161tcqyLYVQilp6dz+fJl4/OrV69y4sQJvL29qVOnDvPmzePWrVuEhYUBMGPGDD799FP+97//8cgjj/DXX3+xefNmtm/fbq+3IBAIBIJKRpIkNDoKeVEsiJRSi5d8waPRWdtaGeRqISOLXhFR1Fc5UjtXi1+2Br8sDbuCfFjbuNAuxbZ/4Ep+YHAU8K9czreFYm4ecdzE8OCr+Dsl4K9Kwt85heFuY0hOM90hyfOw5CHXyxnidgTc8gWMv7dlT0tcoWtzk904rlcQpdMZBI0Ee12LuFaSqHPnWCfXc0vfkIyAZ+mgbkJTdVOauDTh8NxUIh9Kwd/fBR8fJ3xcHQj2dkPW0BvkMh6VphHy+4MMHDiQtLQ0i+tUFLsKoSNHjtCvXz/j87wtrClTprB27VqioqK4ceOG8fXQ0FC2b9/O7NmzWbp0KcHBwXzxxRcidV4gEAiqIJJk2A4y3wrK95yUJFoseWbSNXp0tgsZKRaXXC3+mdn45+Tin2XwzCgkidVN65ieeO4y7DkBmTlwJ4D4H2CZpwdtCsTcOKSd5ozDSQKckvFXpxLgmsEezw78SyOT6WL1eiRJQlZgq+nJoL3Q6ZDJeYE+6eZCSLLwzUp2A7ccUPqjVXijrOVu8f3GFtoaS0t2oUtGIbVYKwG6hePglYOPrzNBAR50Ta1FZC8vXJo1ok5QE9S+XjygkPNAoflHjKgNQGRkJJMnT6Zly5YsW7bM+LpMJrP5Pd6uQqhv375IFgKq8rBUNbpv374cP37chlYJBAJBzSIvndnyFlDpYlksfc3MlSjmX7z90etwzUzDLz0Nv4x0zjrpyJByQJMBuVmQnQGnMyBbBxo95ICkcWCKs5r5arVxmjiy2HjkaTyc5NTxl1HPX0Z2dhA/pXYxW7Kwd2Zc6C3Gzf3RZOyl2GD+PWoqhLKADMAkyibZzWx+P68cLlwzHSsc5wOwRPMAW2SnOZ8aTqL2LEiAc19wzQbPDPDMoE6uinC/HGa2iSTWI40493Ri3dMIUYXQ1KUpTfI8O+2a0PSJpgSpgkyEWmnZvHkz06dPJzk5mT179jBkyBCGDh1a5nnKS7WKERIIBIKajEYrleBNKVsgbt7XbG1VViuALhdyM0GTafiam5UvVvK+3nldrslEry1wriYT0pwgSwlaOWgVBOi96aeoxVeu7jjLlMZlng7dzY0ADe7u7rh7u+Pq6sZHv6mRJAVgiHXJxFzM+MqcSP8hAaQ4wPDawdOJ/PS7JSFU6HudYi5m/L2K3qZyLRBzAw9C4zmgDAClPzj44VnvOzh+BQCZQsLZVYcjOn7ofJIY99Q7YiadnxSnuJWanD+VDNj2Hnlx12q5Gm91YxQuTfFV96Pnna2sxurGuChcsAapqak888wzrFu3zjgWEhKCm5v598SWCCEkEAgElUhMmpZdV7KJSdeWHIhbKKYl1+rxK1YmN9tcqORmmooYTeHXM0Bz52tuVqHz7nzV52K4Xbkhk7ni7OyLk8qHobp2THBzIFShxkvniofWm31NUvj7Xi1ubm4GQePuziefxHDwYLLRzBjgH73cRAQBfPZkXeh+EbSXIDcWtLGEffk0sUmm2U6FPSwySQZJGeCZL5CKEjNm21RpgeD/VAEx449/Cx1wzvxaFwdCgzyQfJ3I8NRzuaGOP1POciHze8IzwrmQeYH4EXq4Tw6eGUhu2WTKJY4Co4v4kQWpggxeHXWTfC+PS1OCVcHIZbbrwnXw4EEmTpxIRESEcWzs2LGsWLECLy+vYq60PkIICQQCgQ3R6yWOR2nYfiGTXy5k8t9N8yyZSqewN8Xoacm0cFxa0ZIFUtFKTa1Wm4gTFxcPHF29aJoRREsXd5o6qfHSO+GuUSJzduD4rEDc3d2N1/z6axSzZ+9FkiAz0/DYADwn96BJgZib/k2D6P90LuTGQO410MbyV7AXB6ltYo+lmBsiD0HKAZPz/LwyzYRQYY8QAJmNIMgBHPxB6Y+/m7/F74PJtR4q8PWDei+YnNOlbwJLloTg4g2Z7gmkut4mzjGC9113EZ59gctZl8mVcg0nX8aUIPM1neRONFY3NhM8jdWNcXOoXO+LVqvlnXfe4a233kKnM/y+uLm58dlnnzFx4sRyba1VFCGEBAKBwEro9XrS09OJik/h94sZ/HFNx/4oJYmacvyr1evuCIyiREshgVKUN6WwuMnNxhAQUjIKhQIPD498AePrfkecBBoFjbu7O74qdwKz1PihxlOnwl2jxCVLTs7kJrg0DMDNzQ0HBwfS0zW0bbuSixczSEsz1Ib5E3jV2ZnpLvkxN3jIqTu00x0xEwva81z2uW3RRjNREnkYrq0yGfJ3vQcKCaFcIEWS8LRY50YGDr4GQeOn5GyEyaXEWgp88tsGLYKNT10lifvv34S3tzN+fmr8/V3wB9qFekOPYPB2BkcFOknHtcwrhGcaPDoXMi4YjttdIDY3Nn9+DZBo8VtgpJZjLdPYHRfD1zpOdWzq3SktCQkJDB8+nIMHDxrHunfvzoYNGwgNDbWbXUIICQSCGo0kSeTk5JCammp8pKWlFfvc0liKzIOMwM7QoC/U6QIORdQviz0Pl3dD3MU7HpYiRItOU+735OrqauJ9cXcPNvGuFHyYjalc8NA64pbjgCpNjyzIFZqaFrz7+OOD7N8fSXh4BnFxmcTeTCU4K4OTXp6mhjzcEby8QJJAm4iLPIbr15PRFopJiiu8XZSigSN1wKHAVpOuNvCE+bezsBAqS8yNJGFisXIGtAsziCCZIRYnqNGP1I68ir+/i0HQuDjSQCPBtHbg4wy+dx5+apO5ZTIZW7eOyzdLm0J4RjgnMv/j24z1hMcahM+lzEtopNL/rFVyFY2cG5kJnibqJrg7WM78qip4enricMd7p1AoeP3113n55ZeNY/ZCCCGBQFAt0el0JQqW0giYtLQ0cnNzy26A3AGCO0CDEdCzH/g2tHxebhZcP2AQPxF7IDXK4mlKpRIPDw/cfb1xc6tbrFgpTtC4urqiKBhQq9FBmsZw0y7ApUsJ7N59jevX73T+jo4jdttB1jmr8St4/ZNt4c2eJtfu3x/J99+fN7Xf0pbG8ZngfAi0cSBpkQF+nnOJijcVK2YBxACpruCd3xuyyJibwtemh0DoF+BwJ+ZG6Y/fpXjAUG9OJgNfXzX+WomcoaHQ2Bf8nA3fn+a+oPQ1mW79+tJ3PddJOm5k3zB4dDIucCHzgjF2J1oTXep5AAIcAyzG7tR1qotCpih5giqIQqFg/fr1jBo1is8++4yuXbva2yRACCGBQFCJSJJEVlZWucRK4XMyMy1Xs7UJSmfwbmAQO76NwK8RBHcCJ8ufwNW5SdTJvUJj+S2auaTg09kF9wF9cHO7r0gBU54K+Hq9xI0bKcTFZXD1agaxsfHEbrlAtwQNvfVyQ+fvNA3U84D/Jplc+++/N5k+/RezOW+pnAguKIRuHISrYcbgYXJj8acV0NbkunhJQi9JyAsKoth4yDUVfv5eGRaEkIWYG/394OeSL2Zq+QLhZqfFuSmhTYDBK+PjDEGu4GearTV4aABnztTBz88FHx9nFIqKbROladMIzww3Cp68ba1LmZfI1meXeh6lTEkjdSMzwdNE3QRPpWeFbKwK7N27F2dnZzp37mwcq1u3LkeOHLFLLFBRCCEkEAhKJDc3t9zelsLn6C3d9CoZJycni94VZw9ftJ71yFIHkaYKJEnuTYzeg/hcp2Lnk8uge10nhjVRM6ypmpYBochkHcpsl0ajIy4ug9h/b6HddYNOTkpIyIa4TEjIgvXDoLG38fyMDA2hoUvN5pnn7EzvgjE38WmQtM1UzGjTAfO+i2YelqirELfaZMjP0/w6HZAkSfgUvMGluoOytmlGVKAvXDK91rg1pnbIFzQhiyHUz3iOGli69BA+Ps74+bkYYm78XfD1VYNj8R4SLy9nvLws96MsCr2kJzI70ihy8jw74Znh3Mq5VfIEBfBT+lmM3annVA8H+d13G9ZoNMyfP58PPviA0NBQTpw4YZISX5VEEAghJBDctUiSREZGRrnESuGx7OzSf8q1FXK5vNTbQyWdk6lTcD5Ww7lYDWdjcjkXq+FkbC43kgt00C5ht8zLWc7gxs7c19SFQY2c8XEpdDPW6uHALYOAicsyfI3Pgj4hcL/pNtrkyT/y888XSU7O/z43Vyg4WzjmJjoN6mmMYsZVE4NKBTmFEtHMPCzpejg7Ghzz35+fohYw3ex9mcfrFIq5UXjh72/ePDNvXR95AW+L+kVo19vknHuH76dWaFx+ALG7iiA3FYxoCi5KiuOZZ8zr8lSUdG06FzMvmgmei5kXydJnlXoeB5kDDZ0bWozd8VZ6lzzBXUJ4eDjjx4/n2LFjAERERLBixQr+97//2dmyohFCSCCoYuTk5JTb21JwLC0trdjK7ZWFWq0ud7xLwYezs3OZP0kmZek4H5vLoRgN525oOBebw9mYNG6llr4gj6dSopsrdFDpaKXU0wgtwe4KfMY3RS43tScjQ8OlS4lcvJjApQvxXHr3IKtdXUzjZ1SKfCEkSaBPIycz2UQEQRHbRYdHgdMx41MZ4O85m8gYD9NrLbVUSHEFv2Tj01LH3GSEQotjBq+Ogy/IHal1/TwBAduNXhk/Pxf8UzS4jG8Fzf3yvToWhM0LL/QwG7M1kiRxM+em2VZWeEY4kTmRZZrLR+ljMXYn1CkUpbx4IXc3I0kSq1ev5rnnniMryyAglUol77zzDnPnzrWzdcUjhJBAYAV0Oh3p6elWETAaTfmzhayFg4NDub0tBZ+7urpWSkZIQoaOc7EazsXmmnh5otLMBY9cL+GXY+gRdcVNTY6DwZPj4SSnub+SFgGONPdX0tzfkeb+jgQ//Ruy36+ZThLiBhObmQwtXfovzz2302y9V9TONCoYc3P1Nzgzx+jVQcrBXz4EMPV2JEgSWknCoaCISjH3xPh7ZZgJIUstFVC9APV8jVtUfk18gG+NL3t7O+Pv5IBLq1owtHF+RpS/GlwCTKYaNaoZo0Y1o6qRqcvM9+4UEDwXMy+SobMs/CyhkClo4NzAYuyOr6NvyRPUMOLi4nj88cfZunWrcaxJkyZs3LiR9u3b29Gy0iGEkKDGIkkS2dnZFco2yjtOT0+399sBDGnT1hAwKpWqyu3jA8Sl6+4InXzRcy42l5j04j08Q2/E8uHhC/hna/DJ1pC3efP1x8MI6BpAc39HarkZxMq1a8lERqZw43AKGyJTiDx9i145OTxcMJg5Lg1uLShQ5yaWYJ0j0Mts7Us6nakQikuDzKMm51jyzkgYxFBAwZ9DZhPw9DCKGZT++NXOhQumgeMxDjLoG2JI6fZxAl81NG8CBba0VMCpUzOMAcRKZfXIRJIkids5ty3G7lzPvl6mubwcvCzG7tR3ro+j3NFG7+DuYufOnUydOpXo6PysuBkzZvDRRx+hVquLubLqIISQoNqh1WqNIqSiAkar1Za8oI1RqVQVincp6H2Ry+1fNK2iSJJEbLqOs7G5nCsgeK7czuLF3efwz8qhWbaGPnc6fy9rUZe32zUym8dHLadFgCMt/B0Z5p9J851pZuJugm8E+J6HnFjIiEWfE0uTJq7k5pqep1GpTIVQNnDlXXDK9941CgjAkhC6qNNh0j4y1RWQg9IvvwpxsLn9AHFyiYBaavBRG7wzHe6Bxs1Nznnm+Us8PCUzv87Nna0qnEr+996qVUCJ59iLLF0WlzIv5QueAl6edF3pP3jIkVPfub6p4Lnj5fFV+lZJwV9diImJYcSIEcYYQl9fX7766iuGDx9uZ8vKhhBCgkpBkiQyMzMrlG2UN1apadNFIJPJKhywm/e1PGnT1Zr9N+FiElJ8FhlRmaRHZRAnd+DTB9sbRE+MhsQs8xgXuR6eOnedwlKvfm4u99R3pGNABm39kmnmlczVYzc5+l8CN05mcP5WLjuvynkqScV170I9jE69CN753hk5EOT7LNeiTM+LtBSvk+wGgQnGpw3rWt7SvKgr4K1ykIG6BXTSGAv2AbS85wYTwo8UiLlR4++mImRgffAsPttpyBDLIqo6IEkS0Zpoi7E717KvIZWyAjaAh4OHeeyOuikN1A1QyWvY31glERAQwPvvv89zzz3HoEGDWLt2LYGBgfY2q8wIISQoltzc3AqnS+eNVYW0aWdn5woF7OaNubi41OxPkpm5cDvdkAUVXyAjalpLQ+uAAkiSxK1U3Z3tLA393jhM25O3kQGudx5atROf1zG9oTsrsvBXJeCvSsBHEU9tXQK/OzjQUeOIbwHP1zTPHUxrMwJDAjeQCl/+NIRPv+uCQdrk3QT15EgSKpOWCuZViEMCUs2E0A1Lv7sen0PzOnfq3PihljsTHPwxN2/mFwFUOsjJ6l8Xlg42xNx4qAwV/QrRo0cdevSoY77GXUKOPofLmZdNPDt5gidVl1ryBHeQISPUOdQocgoKHn9H/5r9N1kJ6PV6dDodSmV+UPisWbMIDg5m5MiR1dYjLYTQXYherzdJm66IgKkKadMKhaJC8S4FvS8F/4Arm/gMHWuOppGWY39BaIIk4ZSRi0taNi4p2aR5qUkKsJwenUe7PVcY+fkhs/EVrl5E1fdGkuB2Wr74ScuRkKPDV5VEiC6tUCk+qKXJZGuXJ/B3SqCWcwL+jglcuOzOE+8N53q0B//daXr5FTn86CZnhKpA/EaSA0YRdIeQAMs315t6PQ0Kxutoe0PtPsaifTj4U6dpBJwwjTWJVID0YR9kfmqDoPFzhhB3QwZYAZ5/vhsymYxGjbxp3NiHunU9cXConjeHsiJJErGaWItbWVezrqKn9L/3bgo3i1tZDZ0b4qQovqaTwDZERUUxdepU2rZtywcffGAcl8vljB5dVG/76oEQQlWU2NhYLly4UK74l6qSNu3i4mIVAVOetOmqhiRJPPh1DHuvVoKwlCScdXqyHIoPfnXVaAnfshffbA2OBbKM3mzXkLc6NC722qE3dFhqPKC5+AN6VTT+qgRaqBKYUDcBVWAaOcm5pCXKuBXrzpGUDiRlN+Bxp/wbmkIr537P/aDO//6olC4cOW/eSvuGvlBgdKo3qDuYipnm3oB5l/fIbrVo0OpOFWJfNbTzh2DTLuEh9TRAvhCSycDDV036g41xcyt+i+XZZ6tGywBbotFruJJ1xWQrK+84WZtc6nlkyKjrVNcocgoKnkDHwGr/N383sXXrVh599FESEhL4448/GDRoEPfcc4+9zbIaQghVISIiIvjxxx/58ccfOXDggF3EjIODg6HfUQUFjJubm2m/oxrOD2czbCaCXjl+md7Rifhla/C7E0B8wdOFtqPMA3cLkq5U4JelQVno96yeJoU2HueM21IFH77KBNTaFJxdXDm0fQTtHRxMauQ86/s9ND9sMl/9kc9y9bbpVtO9So2JEAIMnb/V2eDgAw7+hDSsZdHuSEegsQv4uhoeoR2g5Rsm54S0vgGsMb92XBOY1KbY78tDD7WgVasAQkLcqVPHg9q13apNRpW1kCSJ+Nx4i7E7EdkR6KTS12FyUbhYjN1ppG6Es6Js1Z4FlUtGRgZz585l1apVxrGAgKobYF9ehBCyI5IkcerUKaP4OXXqVLnnKkmwlFbAVNW06epMjlbif78mGp8vHuZNywDT1FyXK0n47b+BY3I2yqRsHJOzcUzK5uT7/ckOLH6bqvXLZwk4Gm8y1lSm5fdHAkGScJBScJTiICeGY/uuo81OQZedSm52Gsvwp3uuE10LbBlO9viDyfd8aTLf5z924H8r+pOU1hy9Pm+rJ5VIL0/TvlTJ5raGBKSZCSFj8LEM8FSAjyM02Act6sOdonRugKfnB2aFBm/cGwqbHiz2exISYqir4+zsQEiIB3XqeBAS4k7dup7FXgfQrl0t2rWzLMLuNnL1uURkRViM3UnUJpY8QQHqONWxGLtTW1Vb/E+phhw9epTx48dz8eJF49gDDzzAF198ga/v3VVLSQihSkan03Hw4EF+/PFHfvrpJyIiIiye17x5c+699158fX1LFDQuLi7VNkjtriJXB6fizFoq/OzjTUSiwfvRr74Tz/XwML8xHLsBK4+aTdlLrYdGhWpx6HMM3bxzY7l5LZLdqVdpo4VmBQoXqpIzuDe1MehjQTL0ikhKdaLnzJfunKEAPAEN850VJkLIrKUCIJdLJKSY1wRJkCSCTUYehEbPmtS5qdPidzh+2uSsG44ypLPTkHk7QzExNCEh7mZCKDIypcjz8wgOdicu7gV8fKr/tqo1SMhNMKm3k+fluZJ1Ba1U+hISarna2DaioJenkboRLgoXG74DQWWh0+lYtGgRr776qrG8iFqtZsmSJTz22GN35d+TEEKVgEaj4a+//uLHH39k69atxMTEWDyvS5cujBw5kpEjR9K4cfExGgIbka6Bf27CzTTTcZkMHmtd/LXZOhi8xWz4evsG0L4JMhksHuZj/o9E0oNXEY2tzn4E7lcMRftyY8lKT2Ddz/XZd7IO+07W4XqUJwDznZ15o2AFZ50ckpPALX9eZ5XlG15W4RTltEDwe9xEzPg0lwPnza5NmN0B+oXmt1TwdjITNnnemYJkZmlJcpDjXUIg8T33hFK/vpfRoxMS4kHDhiX3bZLLZYZmnDUIrV7L1eyrZltZFzIvEJ8bX/IEBQhWBVuM3QlSBSGXiQ9ddyvx8fGMGTOGPXv2GMc6dOjAxo0b7+p7khBCNiIrK4vt27fzww8/sH37dlJTzbNYFAoFffv2ZeTIkYwYMYKgIPPAUEElczMNJu8wH5eXQgi5Kg1ZRDmm8RMt9NeYVvcUw+qn0zY3A67EmnQBRxsHcbUAC00JI/+BpvnZWQ4yOXOXDiQz23RrbZ+lwpAZoRDgYBQzKoU/MpmhvVVBspp4wkNt8lsqBLpAqOnvok/IdSwKoWbe0CvYbLwgdeqYCyFXV0diYtLx9i4+RmTJksHFvl4TScpNshi7cznrMrlSCZ1iC+AkdzK2jSi4ldVY3RhXh+K3YwV3Jx4eHsYq+TKZjJdeeok33ngDR8e7u8q2EEJWRJIk9u/fT1hYGJs3byYlxdyF7+TkxODBgxk5ciT33Xcf3t41pyuxXZEkg8gJdIHiAl+beEM9d7hmIf06t5CAMTm+02rB/X6IM91aGqw6zuD2qw1PLDsDwTONFL0ej8JbnAXr3Cg8UKr86domjb8O+Zic9q9OS25bZ5T+LuDnYXh0/hcKxBfJACend8jKMhVNWR1rwbzis518fCwLloSEkrtz9+1bj+XLh97x6hg8O56eTneli91a6CQd17KumW1lXci4QGxubJnmqq2qbTF2J8QpRHh3BCYolUq+/vprRowYwYoVK+jTp4+9TaoUhBCyAlevXiUsLIywsDCLMT+enp7cd999jBw5kkGDBuHiIvbSbc71VPg1Ai4kwoUEw9eMXNgzDlr43un6nWEuZrSx0E0P1wpVIEYHx0uRLeHe20wIWWqUKUlwPdqXfadbsO9UKPuO+XMuMYloby/83WXgLTcEEDefA23XgIMf3KmO23PQbv469LfJfBl6iZPvDaFjx9rFmufsrDQXQlklx4gEBrry8MMt8fFxxtvbGR8fNT4+znTtWrw3CKBpU1+aNr27giutRYo2xWLszqXMS2ik0jffVclVNFY3NovdaaxujLuDuw3fgaA6c/DgQdRqNW3a5GdSNm7cmDNnztSouFMhhMpJamoq3333HevWreOff/4xe93FxYUxY8bw8MMP069fP7sW8qsxSFrIjQdtDJyIgNdumZ/z59OQe8ggePRFeDNaNYJvnimfDZ7mKfKxaUF4hnyGoyrQGHezYVMCk6f9bnbu/hX9GflQi2KX6NnTcgXiw4dvlSiEtm4dh1wuw9nZAWdnJc7ODnh4lFygzsdHzcaN1btomr3QSTpuZN+wGLsTrYkueYICBDoGmm1lNXFpQl2nuihkNSvFX1B+tFot77zzDm+99RaNGzfmyJEjJg1Sa5IIAiGEyoROp+PPP/9k3bp1/Pjjj2ZVl2UyGf3792fy5MmMGjVKeH4qSngCLP4XMjJAyjFkS+V9feUauESbblFp8/s+ofAC3jSf82ImdCuhQ3WLK+CSCRmFgm09hpkU7TM9DgAHX1gQjy5Nw9g/UjmUKSfOyZE1E2rxcC1Tr1CnrvGAuRDad+hmiUKoa9dgHBzkNGrkTa9edejZ0/CoV8+z+PdF0SJKUHHStGmEZ4abpqFnhnMx8yI5evPijkXhKHOkkbqRRcHj4WAebyUQlIWIiAgmTpzIwYMHATh//jzLly/n+eeft7Nl9kMIoVIQGxvLokWL2LBhA1FRUWavN23alClTpjBhwgRCQkLsYGE1Qq+B81dgVwTUyYaeGUXE3sRAUipsewO0hb1pjvDIOvAupkeRXxI4Z0FWodiW67UN20xFiZm84x0u4OQLcpf83lB1S+El6lKLz/9N5Xu5DlyhS4iKcW3MBXGTJj74+Dibxdjs2xdZ4hJubiri418olSdHYF30kp7I7Ejz2J3MC9zOuV2mufyV/jRxaWJWbLCeUz0c5OJfs8C6SJLE+vXrmTlzJmlphqxYhULB/Pnzee655+xrnJ0Rf22lYMyYMfz9t2lMhre3Nw8//DBTpkyhY8eONTfwU5JAl1RMIHGM6fieevDhNNDL4b6/ofZ3Rc/tAnQ6BweLrwSM3MWymGnkBIVrVMb0gParLE5jQvOST7FEcpaO1//ML0T3saV0eQzew54967B1a7jJ+LFjUWRkaHBxKT5LQ4gg25KuTedi5kWzFhIXMy+SVdSWqgUcZA40cm5kUfB4KQvHoQkEtiEpKYkZM2awefNm41iDBg3YsGEDXbve/W1hSkIIoRLIK4AIhvYTw4YNY8qUKQwbNuzuTSnUZxcvZkxSv2MNsTmlIdEdlkw0iKBiUYDSzyBmhuTAQQunNN4OQcEG705Rhdxa/wWnz0E9D2jmY8gIa+Zj+Vwr8c7uZOITc0ClZFxrF7rVLVqwFBRCdep43NniCjFLbxfYBkmSuJlz0zR2546X52bOzTLN5av0tbiVFeoUilIu4gMF9mPPnj1MmjSJmzfzf6enTZvG0qVLcXMzL55aExFCqASuXbtGbq6hNsf999/P999/b2eLyoGkN8TPFJf6XXBcn1bynGVF4Q6bxkF2gaaVLh2hbm/zLSoHb8hL622khYVfQVqhDBp1O1CVEIP1ajd4pxeoK+dGdDE2h48/OgD7z6B8ZAjvDy5+m3TkyKYEBbnRo0cdi7V2BNYhU5eZ790pFLCcqc8s9TwKmYKGzg0tCh4fpW0FtkBQHqKiohg0aBAajeH/p5eXF6tWrWLMmDF2tqxqIYRQCRTss9KkSRM7WlIIXUbR21CFPTa5cYDeuuvLHMy3oswCiQPuHPvB5Uz49RsoWMXYpQs4dAZPFSiK8BI5KuCBhvB3odgZRSm2IouofWMLLl1KoPuw79BdMhQK8tt9iGD34gswNmjgTYMGoo6UNZAkids5ty3G7tzIvlGmubwcvMwqKjdRN6G+c30c5XepF1hwV1KrVi3mz5/PK6+8Qr9+/QgLCyM4uOSSFzUNIYRKIDw8P4bDpiXGJe0dr01RYqbQFlUZPsmWGoVXMWKm0LjCMz+IuDS8tQt0hfZ8vrrTf+qDYop2yWXw8T1lfiuVyaefHub5F/4gJzt/i/D2hWgWLTrAiy/2tKNldx9ZuiwuZV4y28oKzwwnXZde6nnkyKnvXN+i4PFV+tbcmD9BtUaSJPR6PYoCjZBffPFFQkJCmDBhQo1Liy8tQgiVQKV4hOLD4NpThgJ/1kSmMg8iLihmTMSOL9jy0+6E5nAlGS4lmY4/1c52a1YSp0/HmoigPF5/fQ/DhjWmZUt/O1hVfZEkiWhNtMXYnevZ15EK90YrBg8HD7OKyk3UTWigboBKrip5AoGgmhAXF8fjjz9Ou3btmD9/vnFcoVAwadIkO1pW9RFCqAQqxSN0+91SiiAZOPgULWYKb1HJ3crmtbElg0NhQF34+hx8cBjiMuHJtlC3+le97TCpG2y+CMmmsVW5uTp2774qhFARZOuyuZx12WLsTqqumNIIhZAjp55zPYuCx9/RX3h3BHc9O3fuZOrUqURHR/PLL78wcOBAunXrZm+zqg1CCJVAnkfIx8cHHx8bBETqMiH7kuHYwQ+87rcgcvKOfQ2xOdUVBzlMaQmjG8Oqk/BIK3tbVGEyNHoW/JMO93WHr383djRt0MCLtWtH1PgChpIkEauJNUtDv5B5gWtZ19CXIXbNXeFuMQ29oXNDnBSinICg5pGdnc28efNYsmSJcczLy8tYJ0hQOqrxXdX2ZGRkGFMObeYNyjqHMZDZcxiEfmGbdaoSro4wt5O9rbAKC/9O5naqDoL9aTisDZd/OcHTT3figw8GlFgL6G5Co9dwOfOyxdidZG1yqeeRIaOuU12LsTuBjoHCuyMQ3OH06dNMmDCB06dPG8cGDRrE2rVrCQwMtKNl1Q8hhIrh0qVLxmObxQdl5f8S41z9PSQ1iZspWj78OwUwOLt+WDmQlKvt7lovkCRJxOfGm7WQuJBxgavZV9FJulLP5apwNU9DVzehkboRzorKy/YTCKober2eZcuW8eKLL5KTY2jdolKp+PDDD5k5c6YIiC4HQggVQ8FAaZt5hDILCCG1EEJVjQMHIgkLO8mKFcPMvBGv7EwkK9ewFfZUV3daBTlDkP1EUGJuImturyFGE2PVeeNz442xO4naxJIvKEAdpzqG2J079XbyBE9tVW3h3REIykhCQgITJkxg586dxrFWrVqxceNGWrZsaUfLqjdCCBVDwUBp23mECvSAUBdfd0ZQeWg0Ot54Yw8ffLAfvV6idesAnnoqfzvvyM0cwo4b0rW9nOXM72/fdgnH044z8tRIrmeX0FDWBqjlaouxO43VjVEr1CVPIBAISoWLiwu3bt0yPp89ezbvvvsuTk4iRq4iCCFUDJXqEXLwM2R+CezOmTOxTJz4AydP5ntWnn/+dwYMqE/jxj5IksTs7fmd7uf398JbrbA0VaXwdfTXPHb+MbL12TZdJ1gVbLKVlXccpApCLhPueIHA1jg5ObFx40YeeOABVq5cycCBA+1t0l2BEELFkOcRkslkNGzY0PoL5LW2gLtrW+y1fyDIzZAV5mg/gVAetFo9DzzwLRERpvWOsrK0TJr0I/v3P8LWC5nsu2YQHY19lTzV1T4lALR6LS9cfoElkUuMY13cu/Bug3dRyqzXVsTVwZVGzo1wdXC12pwCgaBkjh49iouLC02bNjWOtWrViosXL+LgIG7f1kJ8J4tAkiSjR6hu3bq2cT0WjA9yvku2xc7EG1LjJeDLU/ByNxjRsOrUMyoBBwc5K1YMY9CgDWavHT58i9VfHmdRqp9xbOEQb5SlafdhZWI1sYw9PZY9yXuMY4/VfoxPm3wqCgUKBNUcnU7HokWLePXVV2nZsiX//vsvKlX+37UQQdZF+LOLIDY2lpQUQ0ZQpWSM3S0eoTcP5LcTu5YKT+yEwVvgQkKxl1UlBg5swFNPdTQZUyrlvPdef1IbhxKRaKgifU8DJ4Y3q/wYmCOpR+h4uKNRBCllSlY1XcXqZquFCBIIqjmRkZH079+fl156Ca1Wy4kTJ1i+fLm9zbqrEUKoCCo9Y+xuSJ3fcwN2W2hweT4B3KvXDfrDD++lUSNDQ9SWLf05fPhxHpnZjXf3GsSxTAaLh/lUeubTuqh19Dzak8gcQxPaQMdA9rTfwxNBT1SqHQKBwPps3ryZ1q1bs3fvXsAQljFv3jyefvppO1t2dyP8a0VQKRljmXkZYzJwbmGbNSoLvQQLDlh+bXobqF294ktcXBxZv34kW7ac46237sHJyYGnfoonNcfg7nqkgxttalWeuMvV5zLn0hw+vfmpcay7R3e2tNpCLVWtSrNDIBBYn9TUVJ555hnWrVtnHAsJCWH9+vX06VNMU2qBVRBCqAhs7hGSdJB11nCsagjVPc1YLoM3e8Ib++FUXP64jxPMam8/uypAly7BdOkSDMDZGA2rDhv6X7k6ynh7YOWly8fkxDDmzBj+Sf7HODYjaAZLGy/F0ZaNcgUCgc05ePAgEydOJCIiwjg2duxYVqxYgZeXfcty1BTE1lgR2NwjlH0FpDvpzndLfFCvYPjjIVh5L4S4Gcbmdqpy22KXL5etKCDA3O0J6O/EPs3r60mgW+V8hjiUcogO/3UwiiBHmSNfNPuCFU1XCBEkEFRzbt26Rd++fY0iyM3NjbCwML755hshgioRIYSKIM8j5OzsTHBwsPUXuFsLKcplMLoJHJgAH/YxNFmtQuzYcYnmzT/j7bf/RpKkki8Afg3PZOelLADqeDowu6eHLU008uXtL+l9tDe3cgwF1IJUQfzd4W8erf1opawvEAhsS1BQEM8//zwA3bt35+TJk0yaNElUXa9kxNaYBbRaLVeuXAGgUaNGtundcrcFShfGyQGmVa33tWfPNUaP3kxurp7XXttNamoOH3wwoNh/OlqdxNwd+Rlv7w/yxllp288PGr2GZy8+y8pbK41jPT168l2r7whUiWaKAkF1Je/DV8H/OW+88QZ16tTh0UcfFWnxdkJ4hCxw7do1cnNzAVt2nb8LU+erMIcO3WT48G/IztYaxxYuPMBTT21Hry/aM/T54VTOxxp+F7qGqBjXxsWmdkblRNHvWD8TETQzeCa72u8SIkggqMYkJSUxbtw4PvroI5NxpVLJ9OnThQiyI0IIWaBSM8bkalDVt80aAgASE7MYOnQj6ekas9dWrjzKpk1nLF6XnKXj9T/zK0x/fJ9t0+UPphykw+EOHEgxZN+p5CrWNFvDsibLRDyQQFCN2bNnD61bt2bz5s28/PLLHD9+3N4mCQoghJAFbJ4xpsuAnDsZAs4tQFa92lBUN7y9nfnwwwEWi1s/8UR7xo2zHMf09u5kEjL1ADzcxoWudWzX2HDVzVX0OdqHKE0UACGqEPZ12MfU2lNttqZAILAtGo2Gl156iXvuuYebN28C4OrqSnR0tJ0tExRE+OIsYHOPUNZZjOWXq2N80N+RsOYMjG4MA+oa4oGqOI8+2h5XV0cmTvwRrdYgbsaPb8Xy5cMsenmuJOTyyQFD8UQnBxnvDfK2iV05+hxmhc9i9e3VxrE+nn3Y3Goz/o7+NllTIBDYnvDwcMaPH8+xY8eMY/369SMsLMw2CTiCclP172B2wOYeocxqnDEmSfD+IfgvGn65Au6OcF8DgyjqGWzIGquijB3bEhcXRx58cDODBzdk7doHUCgsO0X/92sCuTrD8ZyeHtT1sl4T0zxuZd9i9OnRHEo9ZBx7LuQ5Pmz4IUq59dcTCAS2R5IkPv/8c2bPnk1WliHbVKlU8s477zB37lzbJN8IKoQQQhbI8wj5+fnZppZDdQ2UztXB//YaRFAeqRrYeB7+vA6npgJVVwgB3HdfY/75ZxqtWwegVFrektwbkcUPZzMBCHRT8FJfT6vbsS95Hw+efpAYTQwATnInVjddzcRaE62+lkAgqBwSExOZNm0a27ZtM441adKEjRs30r599SwsWxMQ0rQQ6enp3L59GxA9xsw4FmsQPZYY2QiK8K5UNTp1CkKlsvwZQK+XmLM9P13+7Xu9cFNZ731JksTym8vpd6yfUQTVdarL/g77hQgSCKo5KpWKCxcuGJ8/+eSTHDt2TIigKk71uHNVIgW3xWwSHyRJ+cUUlYGg9LP+GraiSy14p5f5uEoBU6tW4cTysv54OsduG7LL2tRyZGoHN6vNna3L5tHzj/J0+NNoJUMaf3+v/hzpdIT27uIfpUBQ3XFxceHrr7+mdu3abNu2jeXLl6NWV/P2STUAIYQKcevWLeNxvXr1rL9AbjRo73gcqpM3KI/HWhseeciA9/tAQ/uWg8/J0bJkyb/GQOjykKHR8/Lv+e03Fg/zQWGlmKfI7Eh6He3Fmqg1xrHn6zzPb21/w9fR1yprCASCyuX06dMmPcIAOnbsSEREBMOHD7eTVYKyIoRQIbKzs43HLi42KJ5XXeODCvJWT0O2mFoJ64fBxOZ2NUer1fPww98ze/ZOHn74ezQaXbnm+XBvMrdTDdfe30zNPQ2crWLf3qS9dDjcgSNpRwBwljvzTYtvWNhoIQ5yEaYnEFQ39Ho9S5cupVOnTkyYMAGtVmvyukpVtforCopHCKFCFBRCTk42qBtTMGPMuZpljOXhIIfVg2DHaBgUaldT9HqJRx7Zyo8/Gvblt2w5x4gR35KVlVumeW6maFn4jyFd3kEOC4dUPF1ekiQ+ifyE/sf7E5cbB0CoUygHOx5kXOC4Cs8vEAgqn6ioKIYMGcJzzz1HTk4O//77LytWrLC3WYIKYHch9Nlnn1GvXj2cnJzo0qULhw8fLvb8JUuW0KRJE5ydnQkJCWH27Nkm4qWi2F4I3QUeIQBXR2hh3y0dSZKYOXMH69efMhn/9dfLDBnyNWlpOaWe6+WdiWTlGmo7Pd3VncZ+FavknKXLYsq5KTx78Vl0ksHLdK/3vfzX+T/auLWp0NwCgcA+bN26lVatWvH7778bx2bPns3jjz9uR6sEFcWuQmjTpk3MmTOH+fPnc+zYMdq0acOgQYOIjY21eP7GjRt56aWXmD9/PufPn+fLL79k06ZNvPzyy1azqaAQsol707g1JgfnZtafvyJk5MLSo6Arf5xNZXLpUiLr1p20+NqJE9Fcv55Sqnn+i8xm/fF0ALyc5bzev2LxTtezrtPzaE/WR683jr1Y90V+bfsrPkqfCs0tEAgqn4yMDGbMmMGIESNISDDEeNaqVYudO3eyePFi23xoFlQadhVCixcv5vHHH2fatGk0b96clStXolar+eqrryyef+DAAXr06MH48eOpV68eAwcO5OGHHy7Ri1QWbOoRkrSQde7O5I1Bbp0YFKuQmAWjf4K3DxpqBUlFNyKtKjRu7MPOnRNxdzcVrC4uSn79dQItW5ZcmVmSJGYXSJd/o78X3urytzz5K/EvOv7XkWNphmqyLgoXNrfczPsN30chWqkIBNWOo0eP0r59e1atWmUcGzFiBKdOnWLgwIF2tExgLewmhDQaDUePHmXAgAH5xsjlDBgwgIMHD1q8pnv37hw9etQofCIiItixYwdDhw4tcp2cnBxSU1NNHsVhUyGUfQmkO9s1VWlb7FYaDP8Bjhrq2hB21lA9uhrQs2cddu+ego+PQVSqVAq2bh1Ht24hpbr++zMZ7L9u+Jk09lXyZFf3ctkhSRKLbyzm3uP3Ep8bD0AD5wb82/FfxgSMKdecAoHAvkRGRtK9e3djWRW1Ws3q1av54Ycf8PUV2Z53C3YTQvHx8eh0OgICAkzGAwICimxIN378eN5880169uyJUqmkQYMG9O3bt9itsffeew8PDw/jIySk+BtkTk5+XInVhVBVLKSo0cHE7XAxyXR88RFYbXnbqarRvn0t/v57GnXqePDdd2Po379+qa7LztXzv1/z0+UXDfVGqSh7unymLpOJZycy99Jc9Bi2FYf4DOG/Tv/R0vXuqK8kENREQkJCeOqppwDo0KEDx48f57HHHrPYn1BQfbF7sHRZ2LNnD++++y7Lly/n2LFj/PDDD2zfvp233nqryGvmzZtHSkqK8REZGVnsGjb1CGVVwR5jP1yEM/GWX/v4KKSWPuDYnjRv7kd4+EyGDy99EcxPDqRyNelOYcMGztzXtOyFz6JyouhztA8bYzYax16p9wo/t/kZL6V9aysJBIKyIxUKC3jvvfdYvHgxBw4csF23AYFdsVsRE19fXxQKBTExMSbjMTExBAYGWrzmtddeY9KkSTz22GMAtGrVioyMDJ544gleeeUVi83sVCpVmYKebSqEqqJHKEcHvs4Qn2U6XscNNj8A7vavh6HT6YtsjloQJ6fS/zrHput4Z7fBCyaTweJh3mX+lHc6/TTDTgwjMscgrl0Vrqxrvo5R/qPKNI9AILA/qampPPPMM3Tu3NnoBQLDfWD27Nl2tExga+zmEXJ0dKRDhw7s2rXLOKbX69m1axfdunWzeE1mZqaZ2FEoDAGohVV8ebFp1lhexpjcBVT1rDt3eZnSEk5Mhc8HQvfahjFXJWwfDQ087WkZycnZzJy5g+HDv7HazzeP+X8mkppjmPPRjm60rlW2n/VvCb/R40gPowiq41SHAx0PCBEkEFRDDh48SNu2bVm3bh1z587l/PkieioK7krsWtZ2zpw5TJkyhY4dO9K5c2eWLFlCRkYG06ZNA2Dy5MkEBQXx3nvvATB8+HAWL15Mu3bt6NKlC5cvX+a1115j+PDhRkFUUWzmEdKlQc5Vw7FzK5BVoV1JlQJGNjY8LiZCYjYEutrNHEmS2LjxNHPn/k5MTAYA3313joceamGV+c9Ea/j8cBoAro4y3rq3bFtYy28uZ1b4LGM8UCf3TmxrvY1AlWVPpkAgqJpotVrefvtt3n77bXQ6Q70vpVLJlStXaNasipU3EdgMuwqhsWPHEhcXx+uvv050dDRt27blt99+MwZQ37hxw8QD9OqrryKTyXj11Ve5desWfn5+DB8+nHfeecdqNtlMCGWeyT+uShljhWlc8YrKFSExMYtx47bwxx+m/Xuee+43Bg9uaJYqX1YkSWLujgT0dxxML/fzJNCtdH8GOknH85eeZ0nkEuPYaL/RhLUIQ60QjRUFgupEREQEEydONMlS7t69Oxs2bCA01L4V8wWVi0yy9p5DFSc1NRUPDw9SUlJwdzdPlR4+fDi//PILAHFxcdZLkYz9HK5NNxzX+QQCZ1ln3ruMBx74lm3bwi2+9uyzXViyZHCF5v81PJOhaw1ZiXU8HbgwJxhnZcneuXRtOuPPjufn+J+NYy/WfZF3G7yLvCp59wQCQbFIkkRYWBgzZ84kPd1QSFWhUPD666/z8ssv4+Ag+v9VVUq6f5cX8R+8ELbzCBVsrVFFMsaqIMuWDaFLlyCLr33xxTHi4zPLPXeuzuANyuODwd6lEkE3s2/S62gvowhykDmwuulq3m/4vhBBAkE1Ijk5mXHjxjF16lSjCKpfvz779u3j9ddfFyKohiL+ixfCZkLIJHW+Cm+N2Zk6dTz4++9pzJzZyWR88OCGnDw5A1/f8m9BfX44lfOxhmas3eqoGNvapcRrjqcdp8uRLpxIPwGAh4MHv7b9lceCHiu3HQKBwD7IZDIOHcovFjt16lROnDhB165d7WiVwN4IIVSIPCEkl8ut9+lAkvI9Qsra4GDfOJyqjqOjgmXLhvLNN6OpXduN774bw44d42nQoPzft6QsHfP/zC8auXiYT4np8j/H/Uyvo724nXMbyO8cP8B7QLHXCQSCqomHhwfr16/H19eXzZs3s2bNGtzc3OxtlsDOCD9gIfKEkFW9Qbm3QXfnJmzvbTG9BPLqURV13LiWjBnTvFQ1hErind3JJGQasrwebuNC1zpF/3wlSWJp5FLmXJqDhCGErptHN35q/RP+jiX3LxMIBFWD8PBwXFxcCA4ONo716tWLa9eu4eJSskdYUDMQHqFC2EQIZRbYFrN3IcWvTsO9m2HDOUO3+SqONUTQ5fhcPjlg6ETv5CDj/cFFd4DX6rXMDJ/J7EuzjSJoXMA4/mr3lxBBAkE1QZIkVq1aRbt27Zg8eTJ6vd7kdSGCBAURQqgQeb3GrBsfVDBQ2o5CSJIg7AyciIXZf0GrNfDiXjhXRIuNu4T//ZZArqFECHN7eVDH07IjNFWbyvBTw1l+a7lx7NV6r/J1i69xUli5yrhAILAJcXFxjBgxghkzZpCVlcXu3bv5/PPP7W2WoAojtsYKYRuPUBXJGDscDefzm4ySpjF4iE7HwY4HK9UUSZIqpXHhnogsfjxryDQLdFPwUh9Pi+ddz7rOfSfv40yGod6TUqZkdbPVTKk1xeY2CgQC67Bz506mTp1q0rh7xowZTJ482Y5WCao6wiNUiDwhZNX2GsatMQU4NbXevGUl7Izl8amV2yE9Ojqdbt2+ZNeuiJJPrgB6vcSc7fnp8m/f64WryvxX/mrWVboe6WoUQV4OXvzR7g8hggSCakJ2djazZ89m8ODBRhHk6+vLtm3bWLFiBWq1KHgqKBohhAphdY+QPhey7/StcW4Ccjs1MU3Mgq2Xzce9VDC8YaWZceVKIj16fMWhQ7cYOHAD77zzN3q9bWp6hh1P5/htDQBtazkytYPl7JA3It4gWmP459nQuSH/dvqXPl59bGKTQCCwLqdPnza2aMpj0KBBnD59muHDh9vPMEG1QQihAuj1enJzDQHEVhNC2RdBuhOU7GzHbTFnJbzXG9r4mY6PawbOlbNDevx4FN27f0VEhCGDTq+XePXV3Qwf/g2JiVlWXSs9R8/LO/O3ARcP80FhIVsuJieGb2O+BQyeoIMdD9JY3diqtggEAttw/fp1OnXqxOnThvADlUrF0qVL2bFjB4GBovefoHQIIVSAvEBpsKIQqiqFFJ0dYFIL+HMs/DEGJjYHtRImW6eRaUnk5Gi5//5viY3NMHttx45LPPPMr1Zdb+HfyUSlGSKkH2iupl8DZ4vnrbq1Co1k8Bo9HvQ4vo5WaqkiEAhsTt26dY3xP61ateLIkSM888wzJj0qBYKSEMHSBbBJVemCgdL2Tp3Po22A4fFOL4MYqgRUKgfCwkYwePDXaDQ6k9eaNPHho48GWm2tmylaFv5jSJd3kMOHgy0XYtToNay4tQIAOXKeCnrKajYIBILK4eOPP6Zu3brMnTvXukkughqDkM0FsIkQyi7QQNS5uXXmtBaVJILy6NcvlK+/HkXBZLHOnYPYt+8RAgJcrbbOvN8Syco1xB3N7OZOYz9Hi+dtjtlsjA0a6TeSus51rWaDQCCwLhkZGcyYMYO1a9eajLu4uPDKK68IESQoN0IIFaCgELJa1lj2RcNXmRJU9awzZzXmwQebs3z5MMDQP+yvvyZXqH9YYQ5HZrPhhKGZoreznNf7e1k8L696dB7PhjxrNRsEAoF1OXr0KB06dGDVqlXMmjWLK1eu2NskwV2E2BorgNU9QpIesi8ZjlUNQaao+Jx3ATNmdCQgwIX77muMUmm974kkmabLz+/vhZez5fn/Tf2XI2lHAGjn1o6enj2tZodAILAOOp2ORYsW8eqrr6LVagFDUsuZM2do0KCBna0T3C0IIVQAqwshTSRIdwKwnUQmUkFGjmxm9Tm3nMlg/3XD97uJn5Inu7oXee7SG/neoGeCn6mU4o4CgaD0REZGMmnSJPbu3Wsc69ChAxs3bqRxY/H/VGA9xNZYAayeNZbnDQJwalTx+ao4ycnZxMWZZ4VVBtm5ev73a366/KIh3igVlsXNzeybbInbAoCf0o9xAeMqxUaBQFA6Nm/eTOvWrY0iSCaTMW/ePA4cOCBEkMDqCI9QAazuEcqLDwL7eIQO3oYOAeBo+y2527fTGDx4A46OCnbvnoKbW+UWjlx6IJVrSQbX+YCGzgxrWnTc0fKby9FJhsy1GUEzRB8xgaCKkJaWxqxZs1i3bp1xLCQkhPXr19OnjyhyKrANwiNUgLtKCEWlw8gfoe1aePMAXEux2VIXLybQo8dXnD4dy9GjUYwatdksRd6WxKbreGe3oUijXAYfDfUucqsrS5fF57cNDRgdZA48GfxkpdkpEAiKJycnh99//934fOzYsZw8eVKIIIFNEUKoAFbPGrOnEPr6HOgkiMuCZceg03oYsxUuJJR8bRn4779b9OjxFdeuJRvH/vwzgilTfrJZ64zCvP5HImk5hrUe7ehG61pF/+w2xmwkIdfwPXjI/yFqqWpVio0CgaBkfH19WbduHe7u7oSFhfHNN9/g5WU581MgsBZia6wA1vcI3YkRkruCshLLvWv1sP6c+fjfN8HdeltWkiQxffovxMdnmr327bdnaNLEhzfe6Gu19SxxOlrD6v/SAHBTyXjr3qL/aYqUeYGgahEREYGLiwsBAQHGsXvvvZfr16/j6elpP8MENQrhESqAVYWQXgM5V+9M1ggqMytp13W4nW4+PrAe1LZe4UKZTMb33z9EYKD5nM2a+fLoo+2stpYlJEli7vYE8hxPL/f1IsCtaG2/J2kPp9MNlb67unels0dnm9onEAgsI0kS69ato02bNjzyyCNIkqn3WIggQWUihFABrJo1lnMVuBMnU9nbYjuvWh6f0tLqS4WGevHbbxNwL+Bp6tYtmH37HiEkxMPq6xXk1/As/rhsaNZa19OB53oUnS4P8MnNT4zHwhskENiHpKQkxo0bx9SpU0lPT2fHjh2sWbPG3mYJajBCCBXAqh4he8YHfdQPfhoBIxqB8s6POMQN+oXYZLk2bQLZtm0cKpWCYcMa8eefk/H2ttzk1Frk6iTm7siPd/pgiDdOyqJ/na9mXWVr3FYAaqtqM9p/tE3tEwgE5uzZs4fWrVuzefNm49jUqVMZM2aMHa0S1HREjFABrBosbVJDqJKFkEwGPYINj7hM+OY8eDmBwna6t0+fevz99zTatQu0arXoolh1KJULcbkAdKuj4qFWLsWe/+nNT5EwuN+fCnoKpbxy+6wJBDUZjUbD66+/zocffmjcBvPy8mLVqlVCBAnsjhBCBbCdR8iOxRT91PBMh0pZqnPnoEpZJylLxxu7kozPPx7mU2xl6HRtOl/e/hIAlVzFE0FP2NxGgUBg4MKFC0yYMIFjx44Zx/r160dYWBjBwcF2tEwgMCCEUAHuSiF0F/L2X8kkZOoBGN/GlS51iv9ZhUWHkaI11FGaEDABP0c/m9soEAgMWWHt27cnK8sQy6dUKnnnnXeYO3cucrmIzBBUDYQQKoBNhJCDLzh4V2wuO5OUlIWnp1Ol9uNKytKRkKE3G49J17HsoEHUODnIeG9w8d9bvaTnk8j8IOlnQp6xrqECgaBI6tevz6hRo/j6669p0qQJGzdupH379vY2SyAwQQihAlgta0yXAbm37kxUvfviZGdrGTBgPfXqefLVV/fj4WH7dhRbTqcz9ptYSqrH+HwvD+p4Fv8r/Hvi74RnhgPQx7MPbdzaWMtMgUBQCj777DPq1q3LK6+8glpddOsbgcBeVMg3WdCDcjdgNY9QzuX842oshCRJ4plnfuXYsSh++OE8nTqt5vTpGJuv+/bu5BJFUKCbghf7eJY4lyigKBBUDtnZ2cyePZvvvvvOZNzDw4N33nlHiCBBlaXMQkiv1/PWW28RFBSEq6srERERALz22mt8+eWXVjewMrFa1lhlxgfdTofRP8FV6/YSy8nR8uST21m9Oj/A8dKlRLp0+YJ1605Yda2CnI7WcDJKA0CIh4KJbV3NHo91cmP7lEBcVcX/+oZnhPNbwm8A1HWqy/1+99vMboGgJnP69Gk6d+7MkiVLeOKJJ4iMjLS3SQJBqSmzEHr77bdZu3YtH374IY6Ojsbxli1b8sUXX1jVuMrGah6hyqohlJkLk7cbWmcM2gz/3LTa1H/9dZVVq46ajWdlafngg/3k5GittlZB1h9PMx7/r7cn68f6mz1Wj/KjfVDJQnXZzWXG45nBM1HIbJ/WLxDUJPR6PUuXLqVTp06cPm2o2p6VlcWRI0fsbJlAUHrKLITCwsL4/PPPmTBhAgpF/o2lTZs2XLhwwarGVTZWE0JZlSCEJAme+wtOxhmeJ+UYmqp+ecrwWgUZMqQRs2aZt6BwcVHy/fcPoVJZP7xMp5f4+oShNYiDHMa1KX87kOTcZNZGrQVALVfzaO1HrWGiQCC4Q1RUFEOHDuW5554zxle2atWKI0eOMHLkSDtbJxCUnjILoVu3btGwYUOzcb1eT25urlWMshdWC5bOKVBMUWX+vbIKS47Cj5dMx3QSvPQ3rD1jlSUWLRpoUhtILpcRFjaSZs1sk36+OyKL26mGtiRDmqjxdSm/B+erqK/I0GUAMKXWFLyUooO1QGAttm7dSuvWrdm5c6dxbPbs2Rw+fJiWLa3fykcgsCVlFkLNmzfnn3/+MRvfsmUL7drZtsmmrbF6jJBjMChsECCo0cH2K5Zfa+QFo63jhXJ0VLB584N4ezujVivZtOlBRo1qZpW5LbH+WH6j2Entyu8N0kk6Po381Ph8VsisCtklEAgMZGRkMGPGDEaMGEF8fDwAtWrVYufOnSxevLjiZUcEAjtQ5v2N119/nSlTpnDr1i30ej0//PAD4eHhhIWF8csvv9jCxkojTwgplUqTbb8ykZsA2js9sGy1LeaogK2j4JldsK1AhpqnCtYPA/cKtgcpQN26nmzZMoaAAFeaN7ddIcIMjZ7vzxo8OB5OcoY3Lb+A/CX+F65mGxrPDvQeSDMX24k3gaAmkZqayvfff298PmLECFavXo2vr68drRIIKkaZPUIPPPAAP//8M3/++ScuLi68/vrrnD9/np9//pl7773XFjZWGnlCqELeoJxK6jHmooQvBsFLXQzPFTL4YjA08CzV5Xq9REaGplTn9usXalMRBPDT2QwyNIbYpjGtXIptoFoSImVeILANtWrV4osvvkCtVrN69Wp++OEHIYIE1Z5yRbz26tWLP/74w9q22J08IVSxjLFKbLYqk8HcTtDUG2IzoU/pussnJmYxZcpP6PUSP//8MHJ55VWMLor1x62zLXYq7RS7k3YD0FjdmME+gytsm0BQU4mMjMTFxQVv7/wK7g888ABXr17F39/fjpYJBNajzB+769evT0JCgtl4cnIy9evXt4pR9sI6QqiSUucLMqwBTGtVqlOPHLlN+/ar+OWXi+zYcYn3399nY+NKJipVyx+XDb2I6no60LNu+b//n9zMb6cxK3gWcpnoZyQQlIfNmzfTunVrpk+fbuwYn4cQQYK7iTLfJa5du4ZOpzMbz8nJ4datW1Yxyl7kZY1ZTQipqk6zVUmSWLHiP3r0+Irr1/OLL7722m7++uuqHS2Db06mGytJT2znWm4PVbwmnq+jvwbAXeHOlFpTrGWiQFBjSE1NZerUqYwdO5bk5GS2bNnCxo0b7W2WQGAzSr01tm3bNuPxzp078fDwMD7X6XTs2rWLevXqWdW4ysa6HiEFqEIrbpSVSEnJ4a23/kajMRWxer3Eww9/z/Hj06ld280utllrW2z17dVk6w0/w0dqP4Kbg33ej0BQXTl48CATJkzg6tX8D0djx45l6NChdrRKILAtpRZCI0aMAEAmkzFliuknbaVSSb169fjoo4+salxlU+FgaUmfHyOkCgW50kqWVRxPTyc2bXqQfv3WodOZurnlchm3bqXaRQididZw4k5LjU7BKpr4OZZwhWVy9bl8dvMzAGTIRMq8QFAGtFot77zzDm+99ZbR4+/m5sZnn33GxIkTkcnsH0coENiKUgshvV4PQGhoKP/9999dlymg1WqN/wDK7RHKiQC9IQUcddUrKtarV13ee68///vfn8axvn3r8c03owkMLL8npiIUbKlREW/QD3E/cCvHsDU73Hc49Z2rd7yaQFBZREREMHHiRA4ePGgc6969Oxs2bCA0tOp4tQUCW1HmGKGrV6/edSIIrNReI/NE/rG6bYXsMUGrh7hMq0z1/PPduf/+JgDMm9eTP/6YZDcRZNZSo3X57fgkMj9IWqTMCwSl4/Lly7Rt29YoghQKBQsWLGDv3r1CBAlqDOVKn8/IyGDv3r3cuHEDjca0Fs0zzzxjFcMqmyothMIToe+3EKCGln7Q0tfw6BkMvs5lmkomk7F27QMcOnSLwYNt1P6jlOyJyObWnZYagxur8XMtXxHLI6lHOJByAICWLi3p59XPajYKBHczDRo0oH///vz000/Ur1+fr7/+mq5du9rbLIGgUimzEDp+/DhDhw4lMzOTjIwMvL29iY+PR61W4+/vX22FkFX6jGWezD9Wt6mgRQU4YyhlT0wmxFyHXdcNzzfeB/fWK/N0Xl7OdhdBYL1tsYIFFJ8JeUbEMwgEpUQmk7F69Wrq1q3LW2+9hZubSDAQ1DzKvDU2e/Zshg8fTlJSEs7Ozvz7779cv36dDh06sGjRIlvYWClY1SOk8ADHuhU3Ko8zcZbHW+VvUUZFpTFu3BYSEqyzhWZrMjV6vj9jiKdyV8kY3qx8LTWicqLYFLMJAG8HbyYETrCajQLB3YRGo+Gll15i+/btJuO+vr4sWbJEiCBBjaXMQujEiRPMnTsXuVyOQqEgJyeHkJAQPvzwQ15++WVb2FgpVLjham48aG4ajtVtDVWfrUWeR6ggfs4Q4ALAqVMxdOnyBZs2nWXUqM1mKfJVkZd3JpJubKnhinM5W2qsurWKXCkXgCeCnkBtiya3AkE1Jzw8nG7duvHBBx/wyCOPEBMTY2+TBIIqQ5nvPkqlErnccJm/vz83btwAwMPDg8jISOtaV4lU2CNkq20xSbIshFr4gkzGjh2X6NHjKyIjUwH4++/rPP74z2aVYKsSK/5NZekBg70Ocni6m3u55snR57Di5goAFDIFTwU/ZTUbBYK7AUmSWLVqFe3atePYsWMAJCUlsX//fjtbJhBUHcocI9SuXTv+++8/GjVqRJ8+fXj99deJj49n/fr1tGxZ9VLGS4t1hVDbihuUh06CBT0MYuh0vGGbLD0XWvnxxRfHmD79F/R6U9ETFnaSRo28efXV3tazw0rsvJjJrJ/zhd3KEb60q12+uk2bYjYRmxsLwCi/UYQ4la7XmkBQE4iLi+Oxxx4zKYbbpEkTNm7cSPv27e1omUBQtSizEHr33XdJSzMEub7zzjtMnjyZJ598kkaNGvHll19a3cDKouJC6ET+sTWFkIMcxjfPf66X4EYqkoOMkx/sMxNBeXz99WnmzOmGWl11ijqejdHw0MYYdIaSVLzQ24NHO5XPGyRJkugyLxAUwc6dO5k6dSrR0dHGsSeffJJFixahVovtY4GgIGUWQh07djQe+/v789tvv1nVIHtR4ayxPCEkcwDn5sWeWiHkMqjngQxYtmwovXrV5bHHtpGWll/GoF+/enz//UNVSgTFpuu4b100qTkG4TaiuZr3B3mXcFXRHEg5wLE0g6u/g1sHunt0t4qdAkF1Jjs7m3nz5rFkyRLjmK+vL1999RXDhw+3n2ECQRXGaq25jx07xn333Wet6SqdCnmE9DmQff7Oxc1AXs4WHeXgoYdacOzYdNq2DQRg2rS2/PbbRLy8ylZfyJZk5+oZsT6aa0laANrXdmTDWP9yN1cFkTIvEFgiNjaWNWvWGJ8PHjyY06dPCxEkEBRDmYTQzp07ef7553n55ZeJiIgA4MKFC4wYMYJOnToZ23BURyqUNZZ1DiTDTd6q22KlpGFDbw4efJQtW8bw5Zf34+hYvsKEtkCSJB75Po6DNwwet9ruCrZNDsTFsfwaPDI7kh/ifgAgwDGAsQFjrWKrQFDdqVOnDitWrEClUvHJJ5+wY8cOAgMD7W2WQFClKfXW2Jdffsnjjz+Ot7c3SUlJfPHFFyxevJhZs2YxduxYzpw5Q7NmzWxpq02pkEfIVvFBZcDJyYHRo224JVdOFuxK4puThnpBaqWMnycHEuRRroLmRj67+Rk6yVAiYEbQDFSV6IETCKoSUVFRuLi44O6eH2v38MMP07NnT0JCRPKAQFAaSv2xfOnSpXzwwQfEx8ezefNm4uPjWb58OadPn2blypXVWgSBNYWQFVPnqzkbT6SzYFcyYCirtHGcP+2DKiZaMnWZrL61GgClTMmMoBkVNVMgqJZs3bqV1q1bW6zmL0SQQFB6Si2Erly5wpgxYwAYNWoUDg4OLFy4kODgYJsZV5lUKFja2jWEisgEq04cuJ7NtC2xxucLh3jzQHOXCs/7dfTXJGoTARgbMJZAlXD7C2oWGRkZzJgxgxEjRhAfH8+6dev4/vvv7W2WQFBtKbUQysrKMqZdymQyVCoVtWrVsplhlU25PUKSlO8RcgwGpW+xp5eKT4/BuJ/hnKHezoEDkUWmyVdFribmMmJ9NHkFrh/v5Macnh4VnlekzAtqOkePHqV9+/asWrXKODZixAj69OljR6sEgupNmYI1vvjiC1xdDc0xtVota9euxdfX9MZfXZuullsIaa6DLsVwbI34oMQsWHoUUjXw13V29wik/9azDB3aiHXrRuDjU7VrgKRk67lvXTRxGYbA+f4NnPnsAV+rZHX9lfQXZzPOAtDdozsd3TuWcIVAcHeg0+lYtGgRr776KlqtITFDrVazdOlSHn30UZE1KRBUgFILoTp16rB69Wrj88DAQNavX29yjkwmK7MQ+uyzz1i4cCHR0dG0adOGZcuW0blz5yLPT05O5pVXXuGHH34gMTGRunXrsmTJEoYOHVqmdQtT7qwxa8cHfXzEIIKAGJ2e8VvPIUmwffsl2rZdxaZND9K9e9Xc/8/VSYz5OoZzsYbeX038lHw3wR+lwjr/pD+J/MR4LLxBgppCZGQkkyZNYu/evcaxDh06sHHjRho3bmxHywSCu4NSC6Fr165ZffFNmzYxZ84cVq5cSZcuXViyZAmDBg0iPDwcf39/s/M1Gg333nsv/v7+bNmyhaCgIK5fv46np2eFbSm3R8iarTWup8KXpwHQSRIT09KJLtAz7ObNVHr3XsMHHwxg7tyqVUBQkiSe+TmePy5nAeCjlrN9SiBeztZJ5b+SeYWf438GIEgVxEi/kVaZVyCoyly8eJEuXbqQnJwMGD5svvTSS7zxxhs4Ojra1ziB4C6hYnnMFWTx4sU8/vjjTJs2DYCVK1eyfft2vvrqK1566SWz87/66isSExM5cOAASqWhanK9evWsYkv5hdCJ/OOKCqGlRyDXsKX0blYWf+bmmp2i00lVMl5o6f5UVh4ytF5RKuDHiQE08LFeZetPb36KhOF9Px38NEp51amaLRDYioYNG9KlSxd27txJSEgI69evF/FAAoGVsVpl6bKi0Wg4evQoAwYMyDdGLmfAgAEcPHjQ4jXbtm2jW7duPP300wQEBNCyZUveffdddDpdhe0pd9ZYxgnDV7krqOpXzIj5PeCZ9uCkoKeDkkAL+/7DhjWqct6gX85nMGdHgvH5F6P86BVqvcrWado0vrr9FQBOcieeCHrCanMLBFUZuVzOmjVreOKJJzh58qQQQQKBDbCbEIqPj0en0xEQEGAyHhAQYNIosCARERFs2bIFnU7Hjh07eO211/joo494++23i1wnJyeH1NRUk4clyuUR0iaD5prhWN0aZBX8dnqo4LXucGgS/aa05oS3JwPqeBpfDg52Z926ERVqTWFtTkblMO7bWPJ28F7p58nk9m5WXWNd1DpSdYaf28TAifgofaw6v0BQFdBqtSxYsIC//vrLZLxWrVqsWrUKLy8vO1kmENzd2HVrrKzo9Xr8/f35/PPPUSgUdOjQgVu3brFw4ULmz59v8Zr33nuPBQsWlDh3uYKlM0/lH1uzonRtV/ikPwFPtuU3TxXvfXmMt976m2+/HV2lssaiUrXcty6aDI1BBT3UyoU3B1j3n7Ve0psEST8TUj2zEgWC4oiIiGDixIkcPHiQoKAgTp06hbd3+ZsSCwSC0mM3j5Cvry8KhYKYmBiT8ZiYmCJ749SqVYvGjRujUOQH4DZr1ozo6Gg0Go3Fa+bNm0dKSorxERkZafG8cnmEbN1ao5kPilquvPpqb65efZYePepYf41yIkkSo7+O4WaKYVuyS4iKtWP8rO6t+i3hNy5lXQKgn1c/Wrm2sur8AoE9kSSJsLAw2rZtawwJiI6OZvfu3Xa2TCCoOZRLCF25coVXX32Vhx9+mNhYQ/XgX3/9lbNnz5Z6DkdHRzp06MCuXbuMY3q9nl27dtGtWzeL1/To0YPLly+bNHe9ePEitWrVKjKDQqVS4e7ubvKwRMWFkG1ba9Subd3tpoqy/3qOsZFqHU8Htk4KwFlpfV0tCigK7laSkpIYN24cU6ZMIS3NkGhQv3599u3bx+jRo+1snUBQcyjznWvv3r20atWKQ4cO8cMPP5Ceng7AyZMni9yeKoo5c+awevVq1q1bx/nz53nyySfJyMgwZpFNnjyZefPmGc9/8sknSUxM5Nlnn+XixYts376dd999l6effrqsb8OM8m2N5aXOy8G5ZYVtqE6sP55mPH5noBcBbtbfZT2fcZ7fE38HINQplPt877P6GgKBPdizZw+tW7dm8+bNxrGpU6dy4sQJunbtakfLBIKaR5nvXi+99BJvv/02c+bMwc0t30txzz338Omnn5ZprrFjxxIXF8frr79OdHQ0bdu25bfffjMGUN+4cQO5PF+rhYSEsHPnTmbPnk3r1q0JCgri2Wef5cUXXyzr2zAjL2tMpVKVrkqrPheyzhiOnZqAourE7tia7Fw9m08ZOsq7OMoY2aLiPcQssSxymfF4ZshMFDLr1CQSCOyFRqNh/vz5fPDBB0h3Mgw8PT35/PPPjb0cBQJB5VJmIXT69Gk2btxoNu7v7098fHyZDZg5cyYzZ860+NqePXvMxrp168a///5b5nVKIs8jVOptsewLIN2JSyrPtphGR2R0Grej0uncOahalcj/5UImydmG7clRLVxwcbT+llhSbhLrotYB4KJw4ZFaj1h9DYGgsrl58ybLli0ziqC+ffsSFhYmusULBHakzHcwT09PoqKizMaPHz9OUFCQVYyyB3lCqOzbYpQvUPqdgyztu4GuXb+kQ4fP+fzzo6SnWw74rmqsP55uPJ7UztUma3x5+0sy9ZkATK01FU+lp03WEQgqk/r167N06VKUSiUffvghu3btEiJIILAzZRZC48aN48UXXyQ6OhqZTIZer2f//v08//zzTJ482RY2Vgpl9ghVJGPsRirZq0+y5loiAMePRzN9+i/Urv0Rc+bsLNtclUx8ho4d4QaBUttdwT0NrFc4MQ+tXsunN/O3WWcFz7L6GgJBZRAfH09mZqbJ2COPPMK5c+d44YUXTLb+BQKBfSjzX+G7775L06ZNCQkJIT09nebNm9O7d2+6d+/Oq6++agsbK4UKCSGXtmVb7P1DbEnLJlEybZWRlqYhLi6ziIuqBptOpaO9k7Q3vo0rChsUd/w5/meuZ18HYLDPYJq4NLH6GgKBrdm5cyetWrXihRdeMBmXyWQ0bNjQTlYJBILClFkIOTo6snr1aq5cucIvv/zChg0buHDhAuvXrzep71PdyAuWLpUQkqR8IaQMMDxKy6k42BLOigJZagWZMaND6eeyA5WxLSZS5gXVmezsbGbPns3gwYOJjo5m+fLlbN++3d5mCQSCIihzsPS+ffvo2bMnderUoU6dqlPgryJIklQ2j1DubdDe6a1V1m2xz44Rq9Nz1kJ/tJYt/eneverGC1yM03Ao0iAYWwc60rpWKeOpysCJtBPsTd4LQBN1EwZ6D7T6GgKBrTh9+jQTJkzg9OnTxrHBgwfToUPV/oAjENRkyuwRuueeewgNDeXll1/m3LlztrCp0snNzTVmcZRKCFUkPmjxPfi/0p3bIf585epCZ4d8LTpjRocqnT224YTtvUGF22nIK9q/TSCoBPR6PUuXLqVTp05GEaRSqfjkk0/YsWNHkdXyBQKB/SnzXeb27dvMnTuXvXv30rJlS9q2bcvChQu5efOmLeyrFMpcTLEiFaVdlDCnI+qjU5g2szOHfL04NrMbTz7ZkYkTW5dtrkpEkiQ23NkWk8tgfFvrC6E4TRwbYwylGTwcPJgcWH2D7wU1h6ioKIYOHcpzzz1n3GJv1aoVR44cYdasWVX6w41AICiHEPL19WXmzJns37+fK1euMGbMGNatW0e9evW45557bGGjzSlze42ME/nH5e0x5usM7/WGAxNo925fli8fhodHKQO17cD+6zlcTdIC0L+BM7XdrV9J+vNbn5OjN9xIHq39KK4OtvE6CQTWIjw8nNatW7NzZ3625+zZszl8+DAtW9asavMCQXWlQvsOoaGhvPTSS7z//vu0atWKvXv3WsuuSqXMQiivhpDcGZwaV2zxUA9ws9wnrSpRsKWGLbbFcvW5LL+1HAA5cmYGWy6yKRBUJRo2bEjz5s0BQ1PonTt3snjx4tJnnwoEArtTbiG0f/9+nnrqKWrVqsX48eNp2bJltc2MyHNnQymEkC4Nci4bjp1bQQ1o+1CwpYZaaZuWGltit3A75zYA9/vdT6hzqNXXEAisjUKhYP369UyaNIlTp04xcKAI7hcIqhtl3t+YN28e3377Lbdv3+bee+9l6dKlPPDAA6jV1bfXVpk8QpmngTv1f2zccb6qsD3ctKWGq8r6AcwmQdLBz1h9foGgouh0OhYtWkSvXr3o3r27cbxOnTqEhYXZ0TKBQFARyiyE/v77b1544QUeeughfH19bWFTpVOmYOmKttaohti6dtDhlMP8m2roH9fatTV9vfpafQ2BoCJERkYyadIk9u7dS2hoKCdOnMDd3d3eZgkEAitQZiG0f/9+W9hhV8rmETqRf1ySEErXgFppSLOqpiQUaKlRy01B/4bWb6lRsIDiMyHPiCwbQZVi8+bNTJ8+neTkZACuXbvG77//zoMPPmhfwwQCgVUolRDatm0bQ4YMQalUsm3btmLPvf/++61iWGVSfiHUqvhzX9wL5xOR5ndj2ppjDBzYgNGjm6FSWT/jylZsOpVO7p3aj+PbWr+lxu2c22yO3QyAj9KH8QHjrTq/QFBeUlNTeeaZZ1i3bp1xLCQkhPXr19OnTx87WiYQCKxJqe7II0aMIDo6Gn9/f0aMGFHkeTKZDJ2FislVnVILIUkHWXcqxqoagsKt6HMjkmHLRdBL7Hvge9alpLJu3UmefVbNtGlteeKJDjRs6G2dN2AjdHqJlYfzs8Um22BbbOXNlWglQ1r+E7WfwFlhfY+TQFBWDh48yMSJE4mIiDCOjR07lhUrVuDl5WVHywQCgbUpVdSrXq/H39/feFzUozqKIChD1lj2JdBnGY5L2hb77DjoDUHVKwsIrfj4TBYuPECjRsv4448r5TW5Ulh7NI3T0RoAOgerrN5SI1uXzcpbKwFQyBQ8FfyUVecXCMqKVqtlwYIF9OrVyyiC3NzcCAsL45tvvhEiSCC4Cylz+k9YWJiJcMhDo9FU28yJUnuESltROjoDvj0PQJxez5Ycjdkpvr5qeveuW1ZTK420HD2v/pFkfL5wqPW9V9/GfEtcbhwAD/o9SLBTsNXXEAjKwpUrV3jvvfeMH+q6d+/OyZMnmTRpkohdEwjuUsoshKZNm0ZKSorZeFpaGtOmTbOKUZVNqbPGShso/flJ0BjSzddm52Aug2DatLZVOlbow73JRKcZbgajWqjpHWrdLStJkky7zNcRXeYF9qdJkyZ8+OGHKBQKFixYYMwSEwgEdy9lvhNLkmTxk9HNmzfx8PCwilGVTek9QgVS513aFn3ek23BQQ5fniI4J4fmCgXnCm0bPvFE1e1GHZmsZdE/BrGrVMAHg32svsa+5H2cSD8BQEe3jnR172r1NQSCkkhKSkKtVpt8AJo1axb33HOPaJEhENQQSi2E2rVrh0wmQyaT0b9/fxwKdE3X6XRcvXqVwYMH28RIW1PmrTEHH1AGFX2enxpe7gqz2vPwujOMW36cfaFurPR0YMuWc/TpU7dKB0q/vDORbK0hvmlWNw8a+iqtvoaJNyjkWbHtIKh09uzZw6RJkxg3bhwLFy40jstkMiGCBIIaRKmFUF622IkTJxg0aBCurvkZRI6OjtSrV4/Ro0db3cDKoFRCSBMNudGGY3UbKM2N280RZrZH9lhreqVq6OWvZsmSQSQmZlnBattw5GYOG04YCih6O8t59R5Pq69xPes6P8b9CECgYyAPBTxk9TUEgqLQaDTMnz+fDz74AEmSWLRoEYMHD6Z///72Nk0gENiBUguh+fPnA1CvXj3Gjh17VzUVLFXWWEUqSjs5GB6An58Lfn7W79VlDSRJYs72BOPzNwZ44eVs/V5qn938DD2GGKong57EUV71m84K7g7Cw8MZP348x44dM47169ePJk2a2NEqgUBgT8ocLD1lypS7SgRBKT1CWXd/a40fz2byzzXD96Kxr5IZXazfQiBDl8Hq26sBcJQ5Mj1outXXEAgKI0kSq1atol27dkYRpFQq+fDDD/nzzz8JDhYZiwJBTaVUHiFvb28uXryIr68vXl5excZzJCYmWs24yqJUWWMZJ/KP78Jmqzlaif/9mu8NWjTUG6XC+nE7G6I2kKxNBmBcwDgCVAFWX0MgKEhcXByPPfaYSVX8Jk2asHHjRtq3b29HywQCQVWgVELo448/xs3NzXh8twW2lsojlBcoLXMEp6a2N6qS+exgClcSDRWe+9V34r6maquvIUkSn9zM7zL/bIhImRfYlvDwcPr27Ut0dLRx7Mknn2TRokWo1db/HRcIBNWPUgmhKVOmGI+nTp1qK1vsRolCSJ8F2eGGY+cWcJfFtMRn6Hjzr2TAEAP+0TAfm4jdPxP/5FzGOQB6evSkvbv4NC6wLfXr1yckJITo6Gh8fX356quvGD58uL3NEggEVYgyxwgdO3aM06dPG59v3bqVESNG8PLLL6PRWCodWPUpMVg68wzcCe4tMj7oTjsNSZKsa1wl8OauJFKyDe9vantX2tW2biuNPAp3mRcIbI1SqeTrr79m1KhRnD59WogggUBgRpmF0PTp07l48SIAERERjB07FrVazXfffcf//vc/qxtYGZToESqptUZiFjT/Ep76g30fHKRNqxUsWnSA27fTzM+tYlyI1bD8UCoAaqWMtwfapr7RpcxLbE/YDkCIKoSRfiNtso6g5qLX6/nkk084fvy4yXijRo34/vvvCQwMtJNlAoGgKlNmIXTx4kXatm0LwHfffUefPn3YuHEja9eu5fvvv7e2fZVCicHSJbXW+P0aJGTDd+Gsf+NvTp2J5YUX/iAk5GMGDlzP+vUn0WiqZkPa//2WiO6Os+vFPp7UdrdN249PIz81Hj8d/DQO8qrbXkRQ/YiKimLo0KE8++yzjB8/nszMTHubJBAIqgllFkKSJKHXG+6cf/75J0OHDgUgJCSE+Ph461pXSZTsESqYOm/BI/TrVcM8ksTmAtuDer3EH39E8NxzO61mqzX560oWP5833DCC3BXM7WWbFimp2lTWRK0BwFnuzONBj9tkHUHNZOvWrbRu3ZqdOw1/ZxcuXODXX3+1s1UCgaC6UGYh1LFjR95++23Wr1/P3r17GTZsGABXr14lIKB6pkLnCSGZTIZSWaidhKTPF0KOdcHB0/T1LC3svgHALxoNKRZihMaObYGjo/ULE1YEnV5iboHiie8O8sbFscy/DqVize01pOkM24QTAyfiray67UUE1YeMjAxmzJjBiBEjjB/CatWqxc6dO6ttlXuBQFD5lHl/YsmSJUyYMIGffvqJV155hYYNGwKwZcsWunfvbnUDK4M8IeTk5GSeLZUTAXpDywmL22IXEw1iCFhfIOi6IJMmtbaWqVYj7Fg6J6IM3qv2tR2Z2Na1hCvKh17Ss+zmMuNzESQtsAZHjx5l/PjxxnhFMLQBWr16Nb6+vna0TCAQVDfKLIRat25tkjWWx8KFC1EoqpbXo7TkZY2VHCjd1vz1OyII4CFHFRkS/JWbS55fqGFDb7p2rVpVa9Nz9Lzye37hy8XDfJDLbVMbakfCDq5kXQGgv1d/WrqKZpaC8qPT6Vi4cCGvvfYaWq3hb0+tVrNkyRIee+yxu67GmUAgsD3ljlg9evQo58+fB6B58+bVukJrQY+QGQXjg1zamr/e1h+OTAZgwp3Hzag0Nv55hfWbzvLgg82q3D/nhX8nE5VmCN4e2UJNn/rONlurcJd5gaAiXLhwwUQEdejQgY0bN9K4cWM7WyYQCKorZRZCsbGxjB07lr179+Lp6QlAcnIy/fr149tvv8XPz8/aNtqcPCFUcsaYhUBpJweoa9qTK7iuO//rGsQLr/RCq9Vb0dKKczNFy8J/UgBwkMMHg31sttbZ9LP8mfgnAPWd6zPUd6jN1hLUDFq0aMFbb73Fyy+/zEsvvcQbb7yBo+PdVeBUIBBULmWOjp01axbp6emcPXuWxMREEhMTOXPmDKmpqTzzTPWM/yjeI3TC8FXhDo71yjSvIfi6am0XvrIzkaxcw8bdzG7uNPJVlnBF+SkYGzQreBYKWdX6XgiqPmlpaUbvTx4vvPAChw8f5t133xUiSCAQVJgyC6HffvuN5cuX06xZM+NY8+bN+eyzz6ptymqRQig3ATQ3Dcfqtob+E9WYIzdzCDtuCPz2cpbz2j1eNlsrMTeRsKgwAFwVrkyrPc1mawnuTg4ePEjbtm15++23TcYVCgUdO3a0k1UCgeBuo8xCSK/Xm6eYYyhln1dfqDqh1+uNrUHMhFBWCfWDqhGSJDF3R366/Pz+Xnirbeeh+eL2F2TpswCYVmsaHg62qVEkuPvQarUsWLCAXr16ERERwVtvvcWBAwfsbZZAILhLKbMQuueee3j22We5ffu2cezWrVvMnj2b/v37W9W4yqBgfzQzIZRxIv+4qB5j1YSfzmXy91WD56uRj5Inu7iXcEX50eq1JpWkZ4bMtNlagruLiIgIevfuzRtvvIFOZwjo79q1K7Vq1bKzZQKB4G6lzELo008/JTU1lXr16tGgQQMaNGhAaGgoqampLFu2rOQJqhjFVpUuKXW+mqDRSvzv13xv0MKh3jg62G6bb2v8ViJzIgEY6jOUxmqR0SMoHkmSCAsLo23bthw8eBAwbIEtWLCAvXv3EhoaamcLBQLB3UqZs8ZCQkI4duwYu3btMqbPN2vWjAEDBljduMqg2D5jeanzMgdwbp4/rpfgn5uc8lASUMuVgADbFCO0Fsv/TeVygiHgtG99J+5vprbpeiJlXlAWkpKSePLJJ9m0aZNxrH79+nz99dd07drVjpYJBIKaQJmE0KZNm9i2bRsajYb+/fsza9YsW9lVaRTpEdLnQPa5Oy80BXmB1/68DhN+4YnsdI5laXhwdHOemtWZHj1CqlzNoMRMHW/+lQQYYr0/GupjUxuPpx3nn+R/AGimbsa93vfabC1B9Sc8PJx7772XyMhI49jUqVP55JNPcHNzs6NlAoGgplDqrbEVK1bw8MMPc+TIES5dusTTTz/NCy+8YEvbKoUihVDWOZDupO0W3hZbeYKjWi2H0nPI1Ul8s/ksvXqtoW3rlfzww3nbG10G3tyVRFKWIYh9SntX2gdZqJVkRQp6g54JeabKCUNB1aJu3brGemReXl5s3ryZNWvWCBEkEAgqjVILoU8//ZT58+cTHh7OiRMnWLduHcuXL7elbZVCkUKoqPig03Hwz02WZ+Vfl8epM7HExWVY38hycjFOw2f/pgKgVsp4+17bNjuN1cTyTfQ3AHg6eDKp1iSbrieo/jg5ObFx40aGDh3KqVOnGDNmjL1NEggENYxSC6GIiAimTJlifD5+/Hi0Wi1RUVE2MayyyCnQKNVUCBWROr/yBEl6PRstNFh1c3NkwoSq02D1f78lklfY+oXeHgR5lLujSqlYdWsVGsmQhfdY7cdwUbjYdD1B9UKSJD7//HPOnTtnMt6yZUu2b99OcHDV6sknEAhqBqUWQjk5Obi45N/Y5HI5jo6OZGVl2cSwyqLIYGlLrTU0Ojgcxe7cXCz1mZ8ypQ2urlWj0u3uK1lsPZcJQC03BS/09rTpehq9huU3DR5COXJmBouUeUE+cXFxjBgxgunTpzN+/HiTDyACgUBgT8rkInjttddQq/MzjjQaDe+88w4eHvnF8hYvXmw96yoBi1tjkpQvhJRBoLzTP81RAQcmMGrbZS5/dJhVJ27zZXYOCZKhZcVTT3WqRMuLRqeXmLM9P13+3UHeuDiWuVJCmfgu9juiNdEAjPAbQV3nujZdT1B92LlzJ1OnTiU62vD7cfLkSX755RdGjx5tZ8sEAoGgDEKod+/ehIeHm4x1796diIgI4/PqGBhrUQhpboDO0JjULFBaqYDRTag/qjEfHLjNgs+OsbmjH0euJdGsWdVoOLv+eDonogxbVO1qOzK5ne3T+z+J/MR4/ExI9ew5J7Au2dnZvPTSSyxdmh9A7+vry1dffcXw4cPtaJlAIBDkU2ohtGfPHhuaYT8sCqGSOs6DIRe9RxBOPYKYDEy2mYVlI0Oj5+WdicbnHw31QS63rUD9N+VfDqceBqCNaxt6e/a26XqCqs/p06cZP348Z86cMY4NGjSItWvXEhgYaEfLBAKBwBTb7pdUAywGSxcUQi5tK9WeirLw72Si0gytCR5orqZfA2ebr1m4gGJ19AwKrINer2fp0qV06tTJKIJUKhVLly5lx44dQgQJBIIqh23TiKoBJXuE2laqPRXhVoqWhX8btvQc5PDhYNumywPcyr7FltgtAPgqfXk44GGbrymoupw+fZo5c+YYGzC3atWKjRs30rJlSztbJhAIBJap8R4hi1ljeanzchdQNbCDVeXj1T8Sycw1BG4/3dWdxn62z2BbcWsF2juFJ6cHTcdJ4VTCFYK7mTZt2vDyyy8DMHv2bA4fPixEkEAgqNIIj1Bhj5A2GXKuGgbUrUFWPbTisVs5rDuWDoCXs5zX+3vZfM1sXTarbq0CwEHmwFPBT9l8TUHVIjMzEycnJ+Ty/L+T119/nYEDB9KrVy87WiYQCASlo3rc5W2ImRDKPJX/orqtIZW+iiNJEnN3JBhNff0eL7zVCpuvuzFmI/G58QCM8R9DbVVtm68pqDocPXqUdu3a8dFHH5mMK5VKIYIEAkG1oVxC6J9//mHixIl069aNW7duAbB+/Xr27dtnVeMqA3MhVKCidEob6PstJ97ezyOTf+TIkdt2sLBktp3PZE+E4X009HHgqa7uNl9TkiTRZb6GotPp+OCDD+jatSsXL17klVde4dixY/Y2SyAQCMpFmYXQ999/z6BBg3B2dub48ePGrKuUlBTeffddqxtoa8yyxgoGSm/2gXMJfPr2P6xZf4pOnVbTpcPnhIWdJDtbW/nGWkCjlXhhR366/IdDfHB0sH3W1t7kvZxKN3jPOrt3potHF5uvKbA/kZGR9O/fn5deegmt1vA30Lp1a1xdbV+rSiAQCGxBmYXQ22+/zcqVK1m9ejVKpdI43qNHj2r5qdDcI3TC8CTTGT6PNusrdvhYFFOm/ETz5p+h0+kr2VpzVhxK5VJCLgC9Q50Y0VxdwhXWoWABReENqhls3ryZ1q1bs3fvXsBQQHXevHkcOHCAxo0b29k6gUAgKB9lFkLh4eH07m1eMM/Dw4Pk5GRr2FSpmGSNOcoh604BuJjO8EQb1ubkYKmb2tChjVAo7BtilZipY8GuJOPzxcN8KqWGz7Wsa2yN2wpALcdaPOj/oM3XFNiP1NRUpk6dytixY41/4yEhIezevZt3330XR8eq0V9PIBAIykOZ7+SBgYFcvnzZbHzfvn3Ur1/fKkZVJgWFkLsyCu50T6dDIPr6HqzIyrZ43ZNPdqwM84rlrb+SSMoyeKUmt3OlQ5CqhCusw6c3P0WPYd2ngp/CUS5uhHcr4eHhtGvXjnXr1hnHxo4dy6lTp+jTp48dLRMIBALrUGYh9Pjjj/Pss89y6NAhZDIZt2/f5uuvv+b555/nySeftIWNNqWgEHKRX8p/Qd2W6wmZFr1BffvWo0ULf9sbVwyX4nP59GAqAM5KGe8Msn3xRIB0bTpf3P4CAEeZI08EPVEp6wrsQ3BwMA4Ohiobbm5uhIWF8c033+Dp6WlfwwQCgcBKlFkIvfTSS4wfP57+/fuTnp5O7969eeyxx5g+fTqzZs0qlxGfffYZ9erVw8nJiS5dunD48OFSXfftt98ik8kYMWJEudYFUyHkrC/QVFbdllA/F254eXLZy5MvvN2ZeF9jgoLceOop+3uDXvwtAe2dEKUXenkQ7FE5JaHWR68nRWuoXj0+cDz+jvYVhALb4uLiwsaNG+nbty8nT55k0qRJooWKQCC4q5BJUvkK5Wg0Gi5fvkx6ejrNmzcvd9bIpk2bmDx5MitXrqRLly4sWbKE7777jvDwcPz9i77JXrt2jZ49e1K/fn28vb356aefSrVeamoqHh4epKSk4O7uzoABA9i1axcA2jP9UGTsNpzY9jbsyYbVp6CxNzzUBNr4I0kSkoTNG5kWx96ILPqujgKglpuCi3NDcFXZPl5JL+lp8W8LLmReAOB45+O0dWtr83UFlYMkSaxfv54ePXrQoEEDs9eEABIIBPak8P3bWpT77uno6Ejz5s3p3LlzhVJnFy9ezOOPP860adNo3rw5K1euRK1W89VXXxV5jU6nY8KECSxYsKDCcUkFPULynNOGAwd/UAbCwFD47gF4pxe0MYgymUxmVxGk10vM2Z5gfP7OQO9KEUEAfyT+YRRBvT17CxF0F5GUlMS4ceOYMmUKEyZMIDc31+R1IYIEAsHdSpn3U/r161fsP8W//vqr1HNpNBqOHj3KvHnzjGNyuZwBAwZw8ODBIq9788038ff359FHH+Wff/4pdo2cnByTWkGpqakmr+cJoZAAOTKtoUoy6rZQRf/xbziRzrHbhoDutrUcmdy+8uq3FCyg+EzIM5W2rsC27Nmzh0mTJnHz5k0ADh06xC+//MLIkSPtbJlAIBDYnjILobZt25o8z83N5cSJE5w5c4YpU6aUaa74+Hh0Oh0BAQEm4wEBAVy4cMHiNfv27ePLL7/kxIkTpVrjvffeY8GCBUW+nieEOrVQAncEk0vbUs1d2WRo9Ly8M7944kfDfFBUknfqYuZFfk34FYA6TnV4wPeBSllXYDs0Gg2vv/46H374IXk75F5eXnz++edCBAkEghpDmYXQxx9/bHH8jTfeID09vcIGFUdaWhqTJk1i9erV+Pr6luqaefPmMWfOHOPz1NRUQkJCjM/zhFDbJgV6czm3sY7BVuajf1K4laoDYHgzNfc0cK60tZdFLjMezwyeiYO8xvfrrdaEh4czfvx4kyKo/fr1IywsjODgYDtaJhAIBJWL1e5mEydOpHPnzixatKjU1/j6+qJQKIiJiTEZj4mJITAw0Oz8K1eucO3aNYYPH24c0+sNqVMODg6Eh4ebBXmqVCpUqqLr6+QJoXaa+nAhHerdAlW9Ur+HyuJ2qpYP9iYD4CCHhUMqJ10eIEWbwtqotQCo5Woeq/1Ypa0tsC6SJPH5558ze/ZssrIMxSGUSiXvvPMOc+fONekiLxAIBDUBqwmhgwcPGlpUlAFHR0c6dOjArl27jCnwer2eXbt2MXPmTLPzmzZtyunTp03GXn31VdLS0li6dKmJp6e05MUPdTs0FLaGgFwPjcKhTQb0DoGxTcs8py149fdEMnMN2xdPdnGniV/lFTH86vZXpOsM3r5JtSbhpfSqtLXvRnQ6nVkwcmVx9uxZ3nvvPWNGZmhoKIsWLaJFixZoNBq72CQQCAR5ODo6VvoHsjILoVGjRpk8lySJqKgojhw5wmuvvVZmA+bMmcOUKVPo2LEjnTt3ZsmSJWRkZDBt2jQAJk+eTFBQEO+99x5OTk60bNnS5Pq8wm6Fx0tLdnY2DsjxjLvjgdLLOXo2BeezKTRL1yCrAkLo+O0c1h4zCBFPJznz+1eeEMnQZZhsiz0TLIKky4skSURHR9u1FY1arWbjxo2kpqbi6uqKl5cXcrmcq1ev2s0mgUAgyEMulxMaGlqprXvKLIQ8PDxMnsvlcpo0acKbb77JwIEDy2zA2LFjiYuL4/XXXyc6Opq2bdvy22+/GQOob9y4YVN1mJ2dTTNFIApdfgPZlzIy+TM3F7/vT9EnM5M+ferSr599qklLksTc7QnkVXt67R5PfFwUxV9kJbR6LePOjONqtuEmea/3vTR3bV4pa9+N5Ikgf39/1Gp1paSk6/V6ZDKZyVp169YlMzNTdIwXCARVCr1ez+3bt4mKiqJOnTqVVrajTAUVdTod+/fvp1WrVnh5Vc/tkYIFmdRqNUqlkqmqLqxxmwhAriThmZBIZqHr+vSpy549Uyvd3p/PZ3B/mCGGqoG3A2dnh6BysP0vhyRJPBX+FCtvrQTAw8GDAx0OCCFUTnQ6HRcvXsTf3x8fH59KWTMzM5OrV6/i5+dXbHFSgUAgqCqkpKRw+/ZtGjZsiFKpNHmtShRUVCgUDBw4sFp2mbdEXnxQB4c6xrEjWq2ZCAJDf7HKJlcn8fyO/HT5D4f4VIoIAvjg+gdGEaSUKfmx1Y9CBFWAvJggtVpt87UkSSImJobz58+TlZVFZGSkMTBaIBAIqjJ5W2I6na7S1izznlPLli2JiIiwhS2VTp4QeiXzZ2LnrYLHfmBPSKTFc/v0qVuZpgGw8lAqF+MNN9Be9ZwY2cL2N1GAjdEbmXclv8jlmuZr6Ofdr1LWvtuxtatXo9Fw6dIlIiMjjbWByprEIBAIBPbCHlXsyyyE3n77bZ5//nl++eUXoqKiSE1NNXlUJ/JS51OlbBRtLsPI3ex1M38Pjo4Kunat3NoqSVk63vgzyfh88TCfSvkF2Z24m6nnphqfv9vgXSYETrD5uoKKk5yczLlz50z+DgMCAmjWrBnOzpVXc0ogEAiqE6UWQm+++SYZGRkMHTqUkydPcv/99xMcHIyXlxdeXl54enpWu7ghk87zjgY33NfvH+bHH8fy7LNdaNs2EJkMOncOwtlZWdQ0NuHtv5JJzDLUSJrY1pWOwUXXQrIWZ9PPMvL0SHIlgxdqetB0Xqr7ks3XFVQMnU7H9evXuXz5MlqtFjDUBmrUqBEhISGiNlAV5aeffqJhw4YoFAqee+65Ml+/du1aY9ZsZbNnzx5kMpldwiS+/PLLciXmCIrn3LlzBAcHk5GRYW9TKp1S/4dcsGABGRkZ7N692/j466+/jI+859WJgkLISWm4gfh4OzJiRFOWLBnM8ePTSUj4H198MbyoKWzC5fhclh1MMdjlIOPdQbYvnng75zZDTgwhRWtYd5jPMD5t/KlotlnFyc7O5vz588TFxRnHPD09ad68uVmGZ3mYOnWqMetMqVQSGhrK//73P5O/nTx++eUX+vTpg5ubG2q1mk6dOrF27VqL837//ff07dsXDw8PXF1dad26NW+++SaJiYkWz78bmT59Og8++CCRkZG89dZb9janWpCdnc1rr73G/Pnz7W2KzcjOzubpp5/Gx8cHV1dXRo8ebVZ0uDAxMTFMnTqV2rVro1arGTx4MJcuXTI5p2/fvsa/5bzHjBkzjK83b96crl27snjxYpu8r6pMqYVQXrxBnz59in1UJ/L+mTupQC6/kzynME0p9vJypkmT0rXzsBYv/pZA7p04sed7eRDiadt2FmnaNIadGEZkjiE+qoNbB75t+a1oo1ENcHBwMFZXl8vl1K1blwYNGphlW1SEwYMHExUVRUREBB9//DGrVq0yuxEtW7aMBx54gB49enDo0CFOnTrFuHHjmDFjBs8//7zJua+88gpjx46lU6dO/Prrr5w5c4aPPvqIkydPsn79eqvZXRL2LCCZnp5ObGwsg/7P3pnH1ZS/cfxz2263um23UimFFkJJtrLEiLLLnhiMMcNgGjsxYQxmkKxZxzZTo8HY1yyREEpIKaVkKdHqtt3qPr8/+nWm695boQWd9+t1Xq/O93yX53vu7Z7nPN/n+T6urjA2Ngafz683WT4nDh06BE1NTXTp0uWj+qmvDU2rw8yZM3HixAkcPHgQV65cwcuXL6X276sIEWHIkCF48uQJjh07hrt378LMzAwuLi5S1p3JkycjNTWVOVavXi1xfeLEidi6dStjWW4wUDXhcDiUnp5e3eqfLDk5OQSAcnJyKCwsjACQnjaIwv9/POpfr/JdeZJPWJBIWJBIhiuS6W1haa2OJyoVUZ/IPoQLIFwAmV8zp9TC1FodsyFSUFBAMTExVFBQUON9v337ttb6Hj9+PA0ePFiibOjQoWRvb8+cp6SkkLKyMs2aNUuq/caNGwkA3bx5k4iIwsPDCQCtX79e5nhZWVlyZXn27BmNHj2adHR0SE1NjRwcHJh+Zcnp5eVFzs7OzLmzszNNmzaNvLy8SCAQUI8ePcjDw4NGjhwp0U4kEpFAIKB9+/YREVFpaSmtXLmSzM3NSVVVlWxtbengwYNy5SQiyszMpHHjxpG2tjbxeDxyc3Oj+Ph4IiK6fPkyAZA4Ll++LPd+fPfdd2RgYEBcLpdatWpFJ06cICKiPXv2kJaWFlM3ISGBBg0aRAYGBqSurk7t27en4OBgif62bNlCFhYWxOVyycDAgIYNG8ZcO3jwILVu3ZpUVVVJV1eXevXqRUKhUKZc5XM4efIktWnThrhcLnXq1IkePHjA1FmyZAnZ2dlJtPPz8yMzMzOJfjp06EBqamqkpaVFTk5OlJycLPe+9u/fn+bMmSNRduvWLXJxcSGBQECamprUvXt3ioiIkKgDgPz9/WngwIGkpqZGS5YsISKio0ePkr29PXG5XGratCktXbqUiouLmXa+vr7UunVrUlNTIxMTE5o6dSq9fftWrnwfS3Z2NikrK0t8v2JjYwkA3bhxQ2abuLg4AkDR0dFMWWlpKenr69POnTuZMmdnZ/Ly8qp0/KKiIuJyuXThwoWPm8hHUNlvZcXnd03yXs4DVlZW0NXVrfT4nCiPGtOo6EeqWH+bzInFhFmnMpjzX3vrQINbe/4dRITvH32P85nnAQA6Sjo40/YMDLnSed5YPg0yMzOlLBkaGhpo0aJFnUSHRUdH4/r16xK7vh46dAjFxcVSlh+gbPlHQ0MDf//9NwAgICAAGhoa+OGHH2T2L8/nRSgUwtnZGS9evMDx48dx7949zJs3j7GGVZd9+/ZBRUUFYWFh2LZtGzw9PXHixAmJhNHnzp1Dfn4+3N3dAQCrVq3C/v37sW3bNjx8+BAzZ87E2LFjceXKFbnjTJgwAXfu3MHx48dx48YNEBH69euH4uJiODk5IS4uDkDZEmFqaiqcnJyk+hCLxejbty/CwsLw119/ISYmBr/99hsUFWVvqCoUCtGvXz9cvHgRd+/ehZubGwYOHIiUlBQAwJ07d/Djjz/il19+QVxcHM6ePYvu3bsDAFJTU+Hh4YFvvvkGsbGxCAkJwdChQ5mVAHnMnTsXvr6+uH37NvT19TFw4MBqW1tKSkowZMgQODs74/79+7hx4wa+++67Spfjr127hvbt20uUvX37FuPHj8e1a9dw8+ZNWFpaol+/fnj79q1EvaVLl8Ld3R0PHjzAN998g9DQUHz99dfw8vJCTEwMtm/fjr1792LFihVMGwUFBWzcuBEPHz7Evn37cOnSJcybN6/SefXt2xcaGhpyj1atWsltGxERgeLiYri4uDBlLVq0QJMmTXDjxg2ZbcqfYxX//xUUFMDlcnHt2jWJugEBAdDT00Pr1q2xcOFC5OdLbhajoqKCtm3bIjQ0tNI5fmm819rHsmXLasTv4FOhfGlMo2JUumL9magDooSIeFH2kLM1VMEEh9qVZXnScuxJ3QMA4CpwcdzuOFqo139KkYZC+/btkZaWVu36paWlzE7RSkofvmxpaGiIO3fuVLv+yZMnoaGhgZKSEhQVFUFBQQGbN29mrsfHx0NLSwtGRkZSbVVUVNCsWTPEx8cDAB4/foxmzZq999JdYGAgXr9+jdu3bzMvXBYWFu/VBwBYWlpKLAc0b94c6urqOHLkCMaNG8eMNWjQIPD5fBQVFWHlypW4cOECHB0dAQDNmjXDtWvXsH37dpnuAI8fP8bx48cRFhbGKDgBAQEwNTXF0aNHMWLECGaDS11dXZkJpgHgwoULuHXrFmJjY2FlZcWMLQ87OzvY2dkx58uXL8eRI0dw/PhxTJ8+HSkpKVBXV8eAAQPA5/NhZmYGe3t7AGWKUElJCYYOHQozs7KtQtq0aVPl/VyyZAl69+4NoEzJNDExwZEjRzBy5Mgq2+bm5iInJwcDBgxgkmW3bNlSbv3s7Gzk5OTA2NhYovyrr76SON+xYwe0tbVx5coVDBgwgCkfM2YMk7oJAL755hssWLAA48ePB1B2b5cvX4558+YxS78VndjNzc3x66+/YsqUKfD395cr565duyrdt6uy735aWhpUVFSkXggaNWok97eiXFFauHAhtm/fDnV1dfj5+eH58+dITU2VmL+ZmRmMjY1x//59zJ8/H3Fxcfj3338l+jM2NsbTp0/lyvgl8l6/pqNHj/6idqgtV4T4FRUhhfqxCOWLxPA+/5+jqG9/XSgq1J6j8t6Xe7Ek6T8/j/02+9FVu2utjcciTVpaGl68eFHfYlRJz549sXXrVuTl5cHPzw9KSkoYNmzYB/VVlYVBHlFRUbC3t/9oq7ODg4PEuZKSEkaOHImAgACMGzcOeXl5OHbsGA4cOAAASEhIQH5+PvOwL0ckEjFKxLvExsZCSUkJnTp1YsoEAgGsra0RGxtbbVmjoqJgYmLCKEFVIRQKsXTpUpw6dYpRbAoKChiLUO/evWFmZoZmzZrBzc0Nbm5ucHd3h5qaGuzs7NCrVy+0adMGrq6u6NOnD4YPH15lJHC5cgiUKXXvM0ddXV1MmDABrq6u6N27N1xcXDBy5EiZCjUARrl41/L56tUrLF68GCEhIUhPT0dpaSny8/OZeZfzriXp3r17CAsLk7AAlZaWorCwEPn5+VBTU8OFCxewatUqPHr0CLm5uSgpKZG4LovGjRtXa/41hbKyMv79919MmjQJurq6UFRUhIuLC/r27Svx//bdd98xf7dp0wZGRkbo1asXEhMTGUUUAHg8npSl6Eun2orQlxg91PRkFoI1pyMv7xVw4hVgmga01wSaEFDH8113LQfPc8o8pAe0UIOLRe1tnng+4zwmP5rMnK+1WIuRjap+g2OpWeRZAipSbgWqiKKi4keFxFdn3Iqoq6sz1pfdu3fDzs4Of/zxByZNmgSgbMm8fFv8d9/WRSIREhMT0bNnT6butWvXUFxc/F5Woar2QVJQUJBSsmQt0airq0uVeXp6wtnZGenp6QgODgaPx4ObmxsAMEtmp06dknrAcbm1u6XF++79NGfOHAQHB2Pt2rWwsLAAj8fD8OHDmaVUPp+PyMhIhISE4Pz58/Dx8cHSpUtx+/ZtaGtrIzg4GNevX8f58+exadMmLFq0COHh4WjatOkHyV+dz2TPnj348ccfcfbsWQQFBWHx4sUIDg5G586dpfoTCMr2UsvKypIoHz9+PDIyMrBhwwaYmZmBy+XC0dFRagn53c9eKBRi2bJlMh2RVVVVkZycjAEDBmDq1KlYsWIFdHV1ce3aNUyaNAkikUiuItS3b99Kl5bMzMzw8OFDmdcMDQ0hEomQnZ0tYRV69epVpf+3Dg4OiIqKQk5ODkQiEfT19dGpUycp5a8i5Yp6QkKChCKUmZkpcd4QqLYi9KFvcp8yOolFaKtiDeRaA9v+X8gnILFu5UjNLcFvV7IBAIoKwJq+tedrde/tPQx/MBwlVBYVMMNkBmY1mVVr47HIp7LlqaKiIjx58kQi6kNDQwNNmzat9QdwZSgoKMDb2xuzZs3CmDFjwOPxMGzYMMyfPx++vr7w9fWVqL9t2zbk5eXBw8MDQJl5fuPGjfD394eXl5dU/+8+AMqxtbXFrl27kJmZKdMqpK+vj+joaImyqKioailbTk5OMDU1RVBQEM6cOYMRI0Yw7WxsbMDlcpGSklLtqNiWLVuipKQE4eHhzNJYRkYG4uLiYGNT/TQ1tra2eP78OeLj46tlFQoLC8OECRMY3yahUIjk5GSJOkpKSnBxcYGLiwuWLFkCbW1tXLp0CUOHDgWHw0GXLl3QpUsX+Pj4wMzMDEeOHMGsWfJ/H27evIkmTcpSFGVlZSE+Pp5Z3tLX10daWhqIiHmRjoqKkurD3t4e9vb2WLhwIRwdHREYGChTEVJRUYGNjQ1iYmIk9hEKCwuDv78/+vXrBwB49uwZ3rx5U+X9ateuHeLi4uQusUZEREAsFsPX15d58fjnn3+q7PdjlsYcHBygrKyMixcvMlbXuLg4pKSkSFjf5FHuuvL48WPcuXOn0m0Zyj+Ldy1w0dHRGD58eJVjfUlUWxF6X6fEzwHNV//lMnlQUoJ/ikQwEijA+FgcjI35MDLSgJERH0pKtbsh3c/BWcgTlSmaUztpooWBShUtPoxnhc/Q714/vC0tcyJ013eHn5XfF2nt+1whImRkZCAlJUXif87Y2BhGRkafxGc1YsQIzJ07F1u2bMGcOXPQpEkTrF69GrNnz4aqqirGjRsHZWVlHDt2DN7e3pg9ezbz9tmpUyfMmzcPs2fPxosXL+Du7g5jY2MkJCRg27Zt6Nq1q0wFycPDAytXrsSQIUOwatUqGBkZ4e7duzA2NoajoyO++uorrFmzBvv374ejoyP++usvREdHy12+epcxY8Zg27ZtiI+Px+XLl5lyPp+POXPmYObMmRCLxejatStycnIQFhYGTU1Nxr+kIpaWlhg8eDAmT56M7du3g8/nY8GCBWjcuDEGDx5c7fvs7OyM7t27Y9iwYVi3bh0sLCzw6NEjcDgcxmL17rj//vsvBg4cCA6Hg59//lniO3Ty5Ek8efIE3bt3h46ODk6fPg2xWAxra2uEh4fj4sWL6NOnDwwMDBAeHo7Xr19X6rMDlG20KxAI0KhRIyxatAh6enoYMmQIgLJ9a16/fo3Vq1dj+PDhOHv2LM6cOcMky0xKSsKOHTswaNAgGBsbIy4uDo8fP8bXX38tdzxXV1dcu3ZNwnfH0tISf/75J9q3b4/c3FzMnTu3WtY0Hx8fDBgwAE2aNMHw4cOhoKCAe/fuITo6Gr/++issLCxQXFyMTZs2YeDAgYyDfVV8zNKYlpYWJk2ahFmzZkFXVxeampqYMWMGHB0dJZTDFi1aYNWqVYzSe/DgQejr66NJkyZ48OABvLy8MGTIEEZhTExMRGBgIPr16weBQID79+9j5syZ6N69O2xtbZl+k5OT8eLFCwln7QZBjcagfQYw4XdvMqnEYCOR3iYivU30h8YaApZKHXfuvKhVeaJeFhJnYVm4vNbSJHotLKmVcbJEWdTqRismTL7zrc6UX5JfK2OxSFPd8HmhUEi3b99mjvv379dquG5VyApLJyJatWoV6evrS4RXHzt2jLp160bq6uqkqqpKDg4OtHv3bpn9BgUFUffu3YnP55O6ujrZ2trSL7/8Umn4fHJyMg0bNow0NTVJTU2N2rdvT+Hh4cx1Hx8fatSoEWlpadHMmTNp+vTpUuHz8sKHY2JiCACZmZmRWCyWuCYWi2n9+vVkbW1NysrKpK+vT66urnTlyhW5spaHz2tpaRGPxyNXV1cmfJ6oLCwelYTNl5ORkUETJ04kgUBAqqqq1Lp1azp58iQRSYfPJyUlUc+ePYnH45GpqSlt3rxZYs6hoaHk7OxMOjo6xOPxyNbWloKCgpj5u7q6kr6+PnG5XLKysqJNmzbJlas8fP7EiRPUqlUrUlFRoY4dO9K9e/ck6m3dupVMTU1JXV2dvv76a1qxYgUTPp+WlkZDhgwhIyMjUlFRITMzM/Lx8aHSUvlbhjx8+JB4PB5lZ2czZZGRkdS+fXtSVVUlS0tLOnjwIJmZmZGfnx9TBwAdOXJEqr+zZ8+Sk5MT8Xg80tTUpI4dO9KOHTuY6+vWrSMjIyPmM9y/fz8BqPR7+rEUFBTQDz/8wGwT4e7uTqmpkluaAKA9e/Yw5xs2bCATExNSVlamJk2a0OLFi6moqIi5npKSQt27dyddXV3icrlkYWFBc+fOlQpDX7lyJbm6utba3KpDfYTPc4i+wDWvSsjNzYWWlhZyIpOh2ecEU/5rfj5+zpc2Z754MQvGxrUTvUVEcPkjFZcSy5y21/TVxZzu2jU+jkgsgluUGy5nlb3pWvAscL39deir6Nf4WCyyKSwsRFJSEpo2bVplmPvTp0/x+vVrCAQCNGnSRG64NAtLQ2TEiBFo164dFi5cWHVllmojEolgaWmJwMDAj96w8mOo7LeSeX7n5DCWxZqg4SYhEonxxESE56VljnepMpb+FBQ4MDCQdq6sKU49ymeUoKY6SpjhVDtbE0x5NIVRgvSU9XCm7RlWCfpEEIvFUv53JiYmsLCwQNOmTVkliIXlHdasWQMNjfrb7+1LJSUlBd7e3vWqBNUXDVcRainADtd0mGb5YNPIOXjZKk6qioGBeq35BxWXEuac+S9cfnVfXXCVat7/49/0f5m9gngKPJywOwELtffff4Wl5iksLMSjR4+QkZEhUa6oqFhvyTRZWD51zM3NMWPGjPoW44vDwsIC33//fX2LUS806GRSTK4xrSK8LpZWeGprSQwAtofnIu51WShpFzMuhrWuecvTa9FrTHn0X1K97S22o7OWdDQGS91CRHjz5g2ePXsGsViMlJQUaGho1MnO0CwsLCwskjRoRYhJsaEGhO7YjYwcNaTqXsXLDC2kpgqhplZziSsrkl1QiqUX/9sLY11/Qa1EA02Pm47XxWVZyQfrDcZYw7E1PgbL+1FcXIznz58jOzubKVNRUfkiozJZWFhYPgcatCLEpNjgle2fqKedDz07U7RRrt3ds1dczkZGftmDz7OtBjqa1rwl4NCrQ/gnvWzPC10lXWxrse2TCL1uyBQUFCAxMVEis7O+vj5MTExYXyAWFhaWeqLh+ghBTq6xWk6xkZhRjI3XcwAAqkocrHSt+c0TX4te44e4/5JabrbezCZSrUcKCwuxatUqpKenM0qQkpISLCwsYGZmxipBLCwsLPUIaxFCxezzCoDC+21r/74sOJsJ0f/3cZzdTQtNtGv+I5gWN41ZEnPXd8foRqNrfAyW6pGQkIChQ4ciNzeX2RlWU1MTTZs2fe/EoywsLCwsNQ+rCKGCIqSoUas5xq4lF+JQdFnKhEYaipjvrF3jY/zz6h8cTD8IABAoC7DVeiu7JFaP6OjoICMjA8rKyuBwODA0NETjxo3Zz4SFhYXlE4FdGkOFpbFaXBYTiwmzTv0XJr28tw743Jq9/emidEyLm8acb7HegkbcRjU6Bsv7IRAIsHfvXrRo0QKGhobQ09NjlSAWFhaWT4gGrQiVR43xyxUhxdpThP6+J8Tt52XjtTFUwTftazY0n4jww6Mf8Ka4LNngMP1hGGnAZpSva06cOIG0tDSJst69e+Pw4cNQUamdHHIsnydHjx6FhYUFFBUVJXJnVZe9e/d+8ftNVXeOf/zxh0QiVpaaISYmBiYmJhLJn79EGq4itPEO9ia7IUp7AbQWLACmLwCmj6qVofJFYiw499/mib79dKGoULNWgaBXQTj8+jCAst2j/Vv4s5aHOiQvLw9TpkzBoEGD8M0330jtFv25OkRPmDABHA4HHA4HysrKaNq0KebNm8dYUyty8uRJODs7g8/nQ01NDR06dMDevXtl9nv48GH06NEDWlpa0NDQgK2tLX755RdkZmbKrP8l8v3332P48OF49uxZpVnCWSqnsLAQP//8M5YsWVLfotQahYWFmDZtGgQCATQ0NDBs2DC8evWq0jZCoRDTp0+HiYkJeDwebGxs5CaNJSL07dsXHA4HR48eZcptbGzQuXNnrFu3rian88nRcBWh1DxYFevCTqkxOMmNgaTGQHLNR3ABgF9YDp7nlHlI97PmobelWhUt3o9XRa8wPX46c+5v7Q8DldrdAoDlPyIiItCuXTts374dAHDmzBmcPHmynqWqOdzc3JCamoonT57Az88P27dvl3robNq0CYMHD0aXLl0QHh6O+/fvY/To0ZgyZQrmzJkjUXfRokUYNWoUOnTogDNnziA6Ohq+vr64d+8e/vzzzzqbl0gkqrOx3kUoFCI9PR2urq4wNjYGn197m7d+6Rw6dAiampofnRqiuLi4hiSqeWbOnIkTJ07g4MGDuHLlCl6+fImhQ4dW2mbWrFk4e/Ys/vrrL8TGxuKnn37C9OnTcfz4cam669evl/viPHHiRGzdulVi248vjhpN4foZwGSv/eE4k3m+n/IKslNcTm6qv9I33xylRYsu0j//RNfIeKm5xaTu84SwIJEUvRPpYVpR1Y3eA7FYTO733Jms8iPuj6jR/lnkU1JSQr/99hspKSkRAAJAampqtHPnTqkM5tXNPv+pISv7/NChQ8ne3p45T0lJIWVlZZo1a5ZU+40bNxIAunnzJhERhYeHEwBav369zPEqy+r97NkzGj16NJOV28HBgelXlpxeXl5S2eenTZtGXl5eJBAIqEePHuTh4UEjR46UaCcSiUggENC+ffuIiKi0tJRWrlxJ5ubmpKqqSra2tnTw4EG5chL9l31eW1ubeDweubm5MdnnyzO3VzzkZaHPysqi7777jgwMDIjL5VKrVq3oxIkTRCSdfT4hIYEGDRpEBgYGpK6uTu3bt6fg4GCJ/rZs2UIWFhbE5XLJwMCAhg0bxlw7ePAgtW7dmlRVVUlXV5d69epFQqFQ7hxDQkKoQ4cOpKKiQoaGhjR//nwqLi6Wut/Tpk0jTU1NEggEtHjxYon/jcLCQpo9ezYZGxuTmpoadezYUeJevDtHWfTv35/mzJkjUXbr1i1ycXEhgUBAmpqa1L17d4qIiJCoA4D8/f1p4MCBpKamRkuWLCEioqNHj5K9vT1xuVxq2rQpLV26VGJevr6+1Lp1a1JTUyMTExOaOnUqvX37tlIZP4bs7GxSVlaW+M7FxsYSALpx44bcdq1ataJffvlFoqxdu3a0aNEiibK7d+9S48aNKTU1lQDQkSNHJK4XFRURl8ulCxcufPxkqkF9ZJ9vuIrQ98cYRaiJwi8ELJU4+vULqJHxvj2cTliQSFiQSD8cfV0jfVYkMDWQUYL0r+hTelF6jY/BIk1KSgo5OztLPMwcHBwoLi5OZv0vRRF68OABGRoaUqdOnZiydevWEQB6+fKlVPuioiLS0NAgLy8vIiL68ccfSUNDg0Qi0XvJ8fbtW2rWrBl169aNQkND6fHjxxQUFETXr1+XKSeRbEVIQ0OD5s6dS48ePaJHjx7RyZMnicfjSTzITpw4QTwej3Jzc4mI6Ndff6UWLVrQ2bNnKTExkfbs2UNcLpdCQkLkyjto0CBq2bIlXb16laKiosjV1ZUsLCxIJBJRUVERxcXFEQA6fPgwpaamUlGR9AtSaWkpde7cmVq1akXnz5+nxMREOnHiBJ0+fZqIpJWEqKgo2rZtGz148IDi4+Np8eLFpKqqSk+fPiUiotu3b5OioiIFBgZScnIyRUZG0oYNG4iI6OXLl6SkpETr1q2jpKQkun//Pm3ZskXuA/758+ekpqZGP/zwA8XGxtKRI0dIT0+PUSYq3m8vLy969OgR/fXXX6SmpkY7duxg6nz77bfk5OREV69epYSEBFqzZg1xuVxGaayOIqSlpUUHDhyQKLt48SL9+eefFBsbSzExMTRp0iRq1KgR85kSlSlCBgYGtHv3bkpMTKSnT5/S1atXSVNTk/bu3UuJiYl0/vx5Mjc3p6VLlzLt/Pz86NKlS5SUlEQXL14ka2trmjp1aqUyurm5kbq6utzDxsZGbtuLFy8SAKmXhCZNmtC6devktps8eTK1b9+enj9/TmKxmC5dukQaGhp05coVpk5eXh61bNmSjh49ytyTdxUhIqJOnTpJfLa1SX0oQg03fL7wPzPfGxnpDQwNPz731/3UIuy+8xYAoMnlYGkvnY/usyJEhHkJ85jzrS22slnl64CgoCBMmTKFSZPB4XCwYMECLF269L0cottvfo60t6W1JKV8DPmKuDPdpNr1T548CQ0NDZSUlKCoqAgKCgrYvHkzcz0+Ph5aWlowMjKSaquiooJmzZohPj4eAPD48WM0a9bsvfdQCgwMxOvXr3H79m3o6pYtYVtYvH/yYEtLS6xevZo5b968OdTV1XHkyBGMGzeOGWvQoEHg8/koKirCypUrceHCBWYfqGbNmuHatWvYvn07nJ2dpcZ4/Pgxjh8/jrCwMDg5OQEAAgICYGpqiqNHj2LEiBEwMChbutbV1YWhoezNTi9cuIBbt24hNjYWVlZWzNjysLOzg52dHXO+fPlyHDlyBMePH8f06dORkpICdXV1DBgwAHw+H2ZmZrC3twcApKamoqSkBEOHDoWZmRkAoE2bNnLH8vf3h6mpKTZv3gwOh4MWLVrg5cuXmD9/Pnx8fKCgUOZ1YWpqCj8/P3A4HFhbW+PBgwfw8/PD5MmTkZKSgj179iAlJQXGxsYAgDlz5uDs2bPYs2cPVq5cKXf8crKzs5GTk8O0L+err76SON+xYwe0tbVx5coVDBgwgCkfM2YMJk6cyJx/8803WLBgAcaPHw+g7H4vX74c8+bNY5aDKzq2m5ub49dff8WUKVPg7+8vV85du3ahoKBA7vXK/h/S0tKgoqIi5TTeqFEjqcCMimzatAnfffcdTExMoKSkBAUFBezcuRPdu3dn6sycORNOTk4YPHiw3H4AwNjYGE+fPq20zudMw1WE7Axw9Ng5aPMUkQ/pEHOB4OP8eIgIs09nQvx/n9nFX+lAX6NmHWZLqATPi54DANrx22GYwbAa7Z9Fmps3b2L06P82qDQ1NcWff/4p84FYFWlvS/Eit+4VofelZ8+e2Lp1K/Ly8uDn5wclJSUMG/Zh3zV6x4m8ukRFRcHe3p5Rgj4UBwcHiXMlJSWMHDkSAQEBGDduHPLy8nDs2DEcOHAAQNmGmPn5+ejdu7dEO5FIxCgR7xIbGwslJSV06tSJKRMIBLC2tkZsbGy1ZY2KioKJiQmjBFWFUCjE0qVLcerUKUaxKSgoQEpKCoCy6EUzMzM0a9YMbm5ucHNzg7u7O9TU1GBnZ4devXqhTZs2cHV1RZ8+fTB8+HDo6Mh+eYuNjYWjo6OEX0mXLl0gFArx/PlzNGnSBADQuXNniTqOjo7w9fVFaWkpHjx4gNLSUqn5FRUVQSAQVGvO5crFuwmLX716hcWLFyMkJATp6ekoLS1Ffn4+cy/Kad++vcT5vXv3EBYWhhUrVjBlpaWlKCwsRH5+PtTU1HDhwgWsWrUKjx49Qm5uLkpKSiSuy6Jx48bVmk9NsmnTJty8eRPHjx+HmZkZrl69imnTpsHY2BguLi44fvw4Ll26hLt371bZF4/HQ35+fh1IXT80WEWIvmmDYXN2oYu5OpA6W+q6ru7H7TB9Jq4AFxLK/kmb6ihhhqPmR/VXFeqKNZ+9nkWazp07Y9y4cfjzzz8xatQobN26Ve7DoioM+fUTSfa+46qrqzPWl927d8POzg5//PEHJk2aBACwsrJCTk4OXr58KfVmLhKJkJiYiJ49ezJ1r127huLi4veyCvF4lf8/KigoSClZspxf1dWl/088PT3h7OyM9PR0BAcHg8fjwc3NDUCZcgEAp06dknqYcbncasv/IVQ153eZM2cOgoODsXbtWlhYWIDH42H48OGMUzifz0dkZCRCQkJw/vx5+Pj4YOnSpbh9+za0tbURHByM69ev4/z589i0aRMWLVqE8PBwNG3atDamB6FQCEVFRUREREhFVWpoVG8rE4GgLGF1VlaWRPn48eORkZGBDRs2wMzMDFwuF46OjlIO8u9+H4RCIZYtWybTEVlVVRXJyckYMGAApk6dihUrVkBXVxfXrl3DpEmTIBKJ5CpCffv2RWhoqNx5mJmZ4eHDhzKvGRoaQiQSITs7W8Iq9OrVK7nWxIKCAnh7e+PIkSPo378/AMDW1hZRUVFYu3YtXFxccOnSJSQmJkpZmoYNG4Zu3bohJCSEKcvMzETz5s3lyv+502AVoZKSEojFYvC4HPTumIjMXB4y8oyRmcNFbm7RRylCxaWE2af/2zzx9766UFVuuAF6nzNisZgx85ezefNm9O/fHyNHjvyoLQreZ3nqU0FBQQHe3t6YNWsWxowZAx6Ph2HDhmH+/Pnw9fWFr6+vRP1t27YhLy8PHh4eAMqWIjZu3Ah/f394eXlJ9f/uj305tra22LVrFzIzM2VahfT19REdHS1RFhUVVS1ly8nJCaampggKCsKZM2cwYsQIpp2NjQ24XC5SUlKqbfVr2bIlSkpKEB4eziyNZWRkIC4uDjY2NtXqAyib8/PnzxEfH18tq1BYWBgmTJgAd3d3AGUP9eTkZIk6SkpKcHFxgYuLC5YsWQJtbW1cunQJQ4cOBYfDQZcuXdClSxf4+PjAzMwMR44cwaxZs2TO8fDhwyAi5n8gLCwMfD4fJib/fa/Dw8Ml2t28eROWlpZQVFSEvb09SktLkZ6ejm7dulX7vlRERUUFNjY2iImJkdhHKCwsDP7+/ujXrx8A4NmzZ3jz5k2V/bVr1w5xcXFyl10jIiIgFovh6+vL/C78888/Vfb7MUtjDg4OUFZWxsWLFxlLbFxcHFJSUpjl2ncpLi5GcXGx1G+XoqIixP93BVmwYAG+/fZbiett2rSBn58fBg4cKFEeHR2N4cOHy5/g506Nehx9BpQ7Wz1//pwA0Ni+IAr//5G2iYiIRKISKioq+eAxtlzPZhyknbY+l4ogqilEpSLGUbrbnW61MkZDJjExkRwdHSkoKOij+/pSnKWJiIqLi6lx48a0Zs0apszPz48UFBTI29ubYmNjKSEhgXx9fYnL5dLs2bMl2s+bN48UFRVp7ty5dP36dUpOTqYLFy7Q8OHD5UaTFRUVkZWVFXXr1o2uXbtGiYmJdOjQIcZZ+uzZs8ThcGjfvn0UHx9PPj4+pKmpKeUsXe60/S6LFi0iGxsbUlJSotDQUKlrAoGA9u7dSwkJCRQREUEbN26kvXv3yr1vgwcPJhsbGwoNDaWoqChyc3NjnKWJyqLBUEm0WDk9evSg1q1b0/nz5+nJkyd0+vRpOnPmDBFJOxK7u7tT27Zt6e7duxQVFUUDBw4kPp/PzPnEiRO0YcMGunv3LiUnJ5O/vz8pKChQdHQ03bx5k1asWEG3b9+mp0+f0j///EMqKiqMY/a7lDtLT5s2jWJjY+no0aNynaVnzpxJjx49osDAQFJXV6dt27YxdTw9Pcnc3JwOHz5MT548ofDwcFq5ciWdPHlS5hxlMWvWLInoNyIie3t76t27N8XExNDNmzepW7duxOPxyM/Pj6kDGY7BZ8+eJSUlJVq6dClFR0dTTEwM/f3330ykVVRUFBP1mJiYSPv376fGjRvLdGauSaZMmUJNmjShS5cu0Z07d8jR0ZEcHR0l6lhbW9O///7LnDs7O1OrVq3o8uXL9OTJE9qzZw+pqqqSv7+/3HFk3ZOkpCTicDiUnJxco3OSBxs1VgeU38jExEQCQFOGVlCE0vd8dP9Z+SWktzyJUYRuPK29Bx+rCNUOYrGY9u3bR3w+nwCQtrY2paSkfFSfX5IiRES0atUq0tfXlwivPnbsGHXr1o3U1dVJVVWVHBwcaPfu3TL7DQoKou7duxOfzyd1dXWytbWlX375pdKHSXJyMg0bNow0NTVJTU2N2rdvT+Hh4cx1Hx8fatSoEWlpadHMmTNp+vTp1VaEYmJiCACZmZlJvbiIxWJav349WVtbk7KyMunr65Orq6tE9M27lIfPa2lpEY/HI1dXVyYSiqj6ilBGRgZNnDiRBAIBqaqqUuvWreUqCUlJSdSzZ0/i8XhkampKmzdvlphzaGgoOTs7k46ODvF4PLK1tWWU/JiYGHJ1dSV9fX3icrlkZWVFmzZtqlS26oTP//DDDzRlyhTS1NQkHR0d8vb2lri/IpGIfHx8yNzcnJSVlcnIyIjc3d3p/v37Mucoi4cPHxKPx6Ps7GymLDIyktq3b0+qqqpkaWlJBw8eJDMzsyoVIaIyZcjJyYl4PB5pampSx44dJSLd1q1bR0ZGRsznun///lpXhAoKCuiHH35gto5wd3en1NRUiToAaM+ePcx5amoqTZgwgYyNjUlVVZWsra3J19e30hdzWfdk5cqV5OrqWpPTqZT6UIQ4RB/ovfiZkpubCy0tLTx8+BCtWrXCnLHAmhn/v2hxEND9OPPfvDMZWHM1BwDgYaeOwNG1l+urWFwMlctlUUrdtLvhqsPVWhuroZCVlYUpU6ZImLubNWuGw4cPo23bth/cb2FhIZKSktC0aVMpx04Wli+RHj16oG3btli/fn2tjzVixAi0a9cOCxcurPWxGhIikQiWlpYIDAz86A0rq0tlv5Xlz++cnBxoatac322DdVwpzzOmUdEVSOHjdnd9klmMDWFlShBXiYNVrrWzUzVL7RASEgJbW1sJJWjChAmIior6KCWIhYWldlmzZk21HaxZqk9KSgq8vb3rTAmqLxqss7RMRegjk64uOJsJ0f+joWd11YKZzvvtlcJSP4hEIvj4+GD16tVM5JG2tjZ27NiBESNG1LN0LCwsVWFubo4ZM2ZUXZHlvbCwsPig/bo+NxqsIlSeNJJfMXryIxShsORCHHxQlqHXQEMRC5y1P0I6lrriyZMnGDFiBCIjI5myHj16YP/+/TA1Na1HyVhYPm8qhl+zsHzKNNilMcW4LFgpGsCgRAfIUQcKlQF82F48YjFh1qn/wuWX99aBpmqDvbWfFTwej9lkTVlZGatXr8bFixdZJYiFhYWlgdBgLUJ23gmI0/kZ2IOyAwBmpQAL398MGHQ/D7eely21tW6kjG8c2EzSnwtGRkb4448/MH/+fAQEBKBdu3b1LRILCwsLSx3S4M0WyaWleC0Wo4QIeM+dXAGgoFiMBecymXPffgIoKX74JnsstcuFCxeQkZEhUTZo0CDcv3+fVYJYWFhYGiANXhHqmpMLg8wsKGdkQmvhJTRtugFz5pyvdvv1YTlIyS5L4NrXioc+Vh+Xo4yldigsLMTMmTPRu3dvfP/991LpGN43CSgLCwsLy5dBg1eEMitkns8tLEFycjayswur1fbV2xKsvJwNAFDgAGv6VS9RYE3xQPiA+VtVgd2bRh4PHjxAx44dmf1MDh8+jLNnz9avUCwsLCwsnwQNWhEqIIKs7C/VzTPmcyELQlGZZeG7jny0aqRSg9JVzW9Pf2P+HqI/pE7H/hwQi8XYsGEDOnTogAcPypRGLpeLjRs3Mkk1WVhYWFgaNg1WEQrpD3wnPCbzmkBQtSL0IE2EXbffAgD4XA6WudTt5olxeXE4lH4IANBIpRG+MfqmTsf/1ElNTUW/fv3w008/MXtGtWnTBnfu3MGMGTM+KlkqC0tNcPToUVhYWEBRURE//fTTe7ffu3evzAS1Xwrm5uYftCu1SCSChYUFrl+/XvNCNXBGjx4tlVj5S6DBKkIPrEX4q+iBzGtVWYSICLNPZUD8fzeTRT11YKChWNMiVsrvT38HoUyA2U1mQ1WRXRor5/jx47C1tcW5c+eYspkzZ+LWrVto3bp1PUr2+TFhwgRwOBxwOBwoKyujadOmmDdvHrMPV0VOnjwJZ2dn8Pl8qKmpoUOHDti7d6/Mfg8fPowePXpAS0sLGhoasLW1xS+//ILMzEyZ9b9Evv/+ewwfPhzPnj3D8uXL61ucL4Zt27ahadOmcHJyqm9Rao2QkBC0a9cOXC4XFhYWcv/Pylm6dCnzf1zxUFeX3DImOzsb06ZNg5GREbhcLqysrHD69Gnm+uLFi7FixQrk5OTUxrTqjQarCBUVFUFZKQ9b5p7CL99dwk9fp+Drr+3Qv78lLC0r9/U5G1+A4ISyRTUzbSV4OdVczpPqkFKYgj/T/gQAaCtpY0rjKXU6/qdMWFgYBg8ejDdv3gAADA0Nce7cOaxbt47N8fWBuLm5ITU1FU+ePIGfnx+2b9+OJUuWSNTZtGkTBg8ejC5duiA8PBz379/H6NGjMWXKFMyZM0ei7qJFizBq1Ch06NABZ86cQXR0NHx9fXHv3j38+eefdTYvkUhUZ2O9i1AoRHp6OlxdXWFsbAw+n91yoyYgImzevBmTJk36qH7q87tRFUlJSejfvz969uyJqKgo/PTTT/j2228lXvzeZc6cOUhNTZU4bGxsJHbOF4lE6N27N5KTk3Ho0CHExcVh586daNy4MVOndevWaN68Of76669anWOdU6MpXD8DyrPXzps3j3Q1K2Sef9S3Wu2LS8TUcl0Kk13+wL23tSyxNDMezWCyzvsk+tT5+J8yYrGY3N3dCQANHjyYXr9+Xd8iEdGXlX1+6NChZG9vz5ynpKSQsrIyzZo1S6r9xo0bCQDdvHmTiIjCw8MJAK1fv17meJVl8H727BmNHj2aycDt4ODA9CtLTi8vL6ns89OmTSMvLy8SCATUo0cP8vDwoJEjR0q0E4lEJBAIaN++fUREVFpaSitXriRzc3NSVVUlW1tbOnjwoFw5if7LPq+trU08Ho/c3NyY7POXL18mABKHvCz0WVlZ9N1335GBgQFxuVxq1aoVnThxgoikM7MnJCTQoEGDyMDAgNTV1al9+/YUHBws0d+WLVvIwsKCuFwuGRgY0LBhw5hrBw8epNatW5Oqqirp6upSr169SCgUyp3fmDFjSE9Pj1RVVcnCwoJ2797NXJ83bx5ZWloSj8ejpk2b0uLFi0kkEr2XrGZmZvTLL7/Q6NGjSU1NjYyNjWnz5s2V3vfbt2+TgoIC5ebmSpRXJc+SJUvIzs6Odu7cSebm5sThcJj7P2nSJNLT0yM+n089e/akqKio95pHTTNv3jxq1aqVRNmoUaPeK0N8VFQUAaCrV68yZVu3bqVmzZpJ3BdZLFu2jLp27fp+Qr8H9ZF9vsFahAoLC6FRMdK9muk1dt15i9j0YgBAZ1MuRrb5sN2oP5R0UTp2vtwJAFBXVMePpj/W6fifGvROGDyHw8HOnTuxZ88eHDlyBHp6evUk2ZdJdHQ0rl+/DhWV/wIDDh06hOLiYinLD1C2/KOhoYG///4bABAQEAANDQ388MMPMvuX5/MiFArh7OyMFy9e4Pjx47h37x7mzZsHcYWoz+qwb98+qKioICwsDNu2bYOnpydOnDgBoVDI1Dl37hzy8/Ph7u4OAFi1ahX279+Pbdu24eHDh5g5cybGjh2LK1euyB1nwoQJuHPnDo4fP44bN26AiNCvXz8UFxfDyckJcXFxAMqWCFNTU2Uu44jFYvTt2xdhYWH466+/EBMTg99++w2KirKX4YVCIfr164eLFy/i7t27cHNzw8CBA5md0+/cuYMff/wRv/zyC+Li4nD27Fl0794dQJlPnYeHB7755hvExsYiJCQEQ4cOlfr/Kufnn39GTEwMzpw5g9jYWGzdulXif43P52Pv3r2IiYnBhg0bsHPnTvj5+VVb1nLWrFkDOzs73L17FwsWLICXlxeCg4Pl3vfQ0FBYWVlJWdiqkgcAEhIScPjwYfz777+IiooCUJbVPj09HWfOnEFERATatWuHXr16MUu41Z3HuzJqaGhUegQEBMhtf+PGDbi4uEiUubq64saNG3LbvMuuXbtgZWWFbt26MWXHjx+Ho6Mjpk2bhkaNGqF169ZYuXIlSktLJdp27NgRt27dYnwvvwhqVK36DCjXKL///nuyaVrBIpT4TZVtswtKSX95EmMNuvG07t/uFz5eyFiDZsVLv4E3JFJSUqhHjx7MG/KnjKy3HIdwB2oc2rjOD4dwh2rLPX78eFJUVCR1dXXicrkEgBQUFOjQoUNMnSlTpkhYJt7F1taW+vYts7j27duXbG1t3/v+bd++nfh8PmVkZMiVszoWoYqWLCKi4uJi0tPTo/379zNlHh4eNGrUKCIiKiwsJDU1Nbp+/bpEu0mTJpGHh4dMWeLj4wkAhYWFMWVv3rwhHo9H//zzDxGVWRpQiSWIiOjcuXOkoKBAcXFxMq+/axGSRatWrWjTpk1ERHT48GHS1NSUspYQEUVERBAASk5OrrS/cgYOHEgTJ06sVl0iojVr1pCDQ+Xfu4qyEpVZhNzc3CTqjBo1ivkuycLLy4u++uqr95ZnyZIlpKysTOnp6UxZaGgoaWpqUmFhoUTb5s2b0/bt26s9j3fJz8+nx48fV3rI+ozKsbS0pJUrV0qUnTp1igBQfn6+3HblFBQUkI6ODv3+++8S5dbW1sTlcumbb76hO3fu0IEDB0hXV5eWLl0qUe/evXvv9V15X+rDItRgU2x8iEVoVUgWXueVvYGOtlVH5yZ163OSXZyNLc+3AABUOCqYZTqrTsf/lPjnn3/w/fffIzs7Gw8fPsT9+/dhaGhY32K9F2miNLwoelHfYlRJz549sXXrVuTl5cHPzw9KSkoYNmzYB/VFciwMVREVFQV7e3vo6n5cdKaDg4PEuZKSEkaOHImAgACMGzcOeXl5OHbsGA4cOACgzEqQn5+P3r17S7QTiUSwt7eXOUZsbCyUlJTQqVMnpkwgEMDa2hqxsbHVljUqKgomJiawsrKqVn2hUIilS5fi1KlTSE1NRUlJCQoKChjrRO/evWFmZoZmzZrBzc0Nbm5ucHd3h5qaGuzs7NCrVy+0adMGrq6u6NOnD4YPHw4dHR2ZY02dOhXDhg1DZGQk+vTpgyFDhkhYtYKCgrBx40YkJiZCKBSipKQEmpr/+VJWJWs5jo6OUueVRZIVFBTI9AWsSh4AMDMzg76+PnN+7949CIVCCASSPqMFBQVITEx8r3lUhMfj1WtG9yNHjuDt27cYP368RLlYLIaBgQF27NgBRUVFODg44MWLF1izZo2ETyDv/xkY8vPz61Tu2qRhK0IVg8MUKleEkjKL4XetzFOeq8TBKre6DZcHAP8X/sgtzQUATDCagMaqjato8eWRm5uLH3/8Efv27WPKVFVV8fLly89OETJUqR9533dcdXV15od79+7dsLOzwx9//ME4pFpZWSEnJwcvX76EsbGxRFuRSITExET07NmTqXvt2jUUFxe/127evCrS3ygoKEgpWcXFxTLn8i6enp5wdnZGeno6goODwePxmH2mypfMTp06JeE0CpTtSVWbVDXnd5kzZw6Cg4Oxdu1aWFhYgMfjYfjw4YzjL5/PR2RkJEJCQnD+/Hn4+Phg6dKluH37NrS1tREcHIzr16/j/Pnz2LRpExYtWoTw8HA0bdpUaqy+ffvi6dOnOH36NIKDg9GrVy9MmzYNa9euxY0bN+Dp6Ylly5bB1dUVWlpaOHDggETYdVWyfih6enrMnmHlVEceQPq7IRQKYWRkhJCQEKlxypdwP2QeoaGh6Nu3b6Xz2L59Ozw9PWVeMzQ0xKtXryTKXr16BU1NzWp9Z3bt2oUBAwagUaNGEuVGRkZQVlaWWHpt2bIl0tLSIBKJmOXw8mXBikrj506DVYREIhH472ERWnguE6L/L5X+1EUT5jp1m5IhrzQPfilla9oKUMA8s3l1Ov6nQPkPWlJSElM2atQobN26Ve6b66fMnY536luE90ZBQQHe3t6YNWsWxowZAx6Ph2HDhmH+/Pnw9fWVerhs27YNeXl58PDwAACMGTMGGzduhL+/P7y8vKT6z87OluknZGtri127diEzM1OmVUhfXx/R0dESZVFRUdVStpycnGBqaoqgoCCcOXMGI0aMYNrZ2NiAy+UiJSUFzs7OVfYFlD08SkpKEB4ezlhJMjIyEBcXBxsbm2r1AZTN+fnz54iPj6+WVSgsLAwTJkxgfJuEQiGSk5Ml6igpKcHFxQUuLi5YsmQJtLW1cenSJQwdOhQcDgddunRBly5d4OPjAzMzMxw5cgSzZsm2POvr62P8+PEYP348unXrhrlz52Lt2rW4fv06zMzMsGjRIqbu06dP31tWALh586bUecuWLeXeA3t7e2zduhVExOwVVh15ZNGuXTukpaVBSUkJ5ubmMutUdx4Vad++PeODJI93lZSKODo6SoS0A0BwcLCU9UwWSUlJuHz5Mo4fPy51rUuXLggMDIRYLIaCQpn7cHx8PIyMjCR8AqOjo2FiYvJl+V/W6ELbZ0D5GqN/2+9pT7tuRMs7E/3uQPT3RrltricXMH5B+suTKLugtA4lLmP90/WMb9CYB2PqfPz6pLi4mJYsWUKKiopMlA2fz6f9+/eTWCyub/GqxZcUNVZcXEyNGzemNWvWMGV+fn6koKBA3t7eFBsbSwkJCeTr60tcLpdmz54t0X7evHmkqKhIc+fOpevXr1NycjJduHCBhg8fLjearKioiKysrKhbt2507do1SkxMpEOHDjG+O2fPniUOh0P79u2j+Ph48vHxIU1NTSkfIS8vL5n9L1q0iGxsbEhJSYlCQ0OlrgkEAtq7dy8lJCRQREQEbdy4kfbu3Sv3vg0ePJhsbGwoNDSUoqKiyM3NjSwsLJiInOr4CBER9ejRg1q3bk3nz5+nJ0+e0OnTp+nMmTNEJO0j5O7uTm3btqW7d+9SVFQUDRw4kPh8PjPnEydO0IYNG+ju3buUnJxM/v7+pKCgQNHR0XTz5k1asWIF3b59m54+fUr//PMPqaio0OnTp2XK9fPPP9PRo0fp8ePHFB0dTQMGDKCOHTsSEdGxY8dISUmJ/v77b0pISKANGzaQrq7ue8lKVOYjpKmpSb///jvFxcXR5s2bSVFRkc6ePSv3fr1584aUlZXpwYMHTFl15CmPGquIWCymrl27kp2dHZ07d46SkpIoLCyMvL296fbt29WeR03z5MkTUlNTo7lz51JsbCxt2bJF6r5s2rRJpq/U4sWLydjYmEpKSqSupaSkEJ/Pp+nTp1NcXBydPHmSDAwM6Ndff5WoN378ePrmm6p9aj+U+vARarCKUI7uaiK9Tf8dZrKd28RiMXXa8pxRhLberNkPoDoUlRZR49DGjCJ0/+39OpehvkhKSiJHR0eJUGMnJyd68uRJfYv2XnxJihAR0apVq0hfX18ivPrYsWPUrVs3UldXJ1VVVXJwcJAIqa5IUFAQde/enfh8Pqmrq5OtrS398ssvlYbPJycn07Bhw0hTU5PU1NSoffv2FB4ezlz38fGhRo0akZaWFs2cOZOmT59ebUUoJiaGAJCZmZmUci0Wi2n9+vVkbW1NysrKpK+vT66urnTlyhW5spaHz2tpaRGPxyNXV1cmfJ6o+opQRkYGTZw4kQQCAamqqlLr1q3p5MmTRCStCCUlJVHPnj2Jx+ORqakpbd68WWLOoaGh5OzsTDo6OsTj8cjW1paCgoKY+bu6upK+vj5xuVyysrKq1OF3+fLl1LJlS+LxeKSrq0uDBw+W+J+cO3cuCQQC0tDQoFGjRpGfn997yUpUpggtW7aMRowYQWpqamRoaEgbNmyo9H4REY0cOZIWLFggUVaVPLIUISKi3NxcmjFjBhkbG5OysjKZmpqSp6cnpaSkVHsetcHly5epbdu2pKKiQs2aNaM9e/ZIXF+yZAmZmZlJlJWWlpKJiQl5e3vL7ff69evUqVMn4nK51KxZM1qxYoWE0lRQUEBaWlp048aNmpyOBPWhCHGIPtB78TMlNzcXWlpayNFdjf1FAJfDgS6HA11tReieGA1jYz709f9bKz5wTwiPA+kAABsDZdz70QRKinWbnuGPl3/g29hvAQCD9AbhmJ3s1CBfIikpKbC1tUVOTg4UFRXh4+MDb29vKCl9Xqu6hYWFSEpKQtOmTdmNHVlYapH79++jd+/eSExMhIZG9bZFYakeW7duxZEjR3D+/PlaG6Oy30rm+Z2TI+Xs/jE02H2EAGBuXj6+E+Zh+FshvnqWg7Ztt2PhwovM9YJiMeaf/W/Lf99+gjpXgkqpFL8l/5dc1dvcu07Hr2+aNGmCbdu2oVmzZrh27Rp8fHw+OyWIhYWl7rC1tcXvv/8u4UvIUjMoKytj06ZN9S1GjdNgnygFRJDOliSZcHVDWC5SsksAAK6WPLhZq8loUbscSj+EhIIEAEAvnV7opNWpihafN6GhobCzs5PQ9kePHo0hQ4awlhQWFpZqMWHChPoW4Yvk22+/rW8RaoVPwiK0ZcsWmJubQ1VVFZ06dcKtW7fk1t25cye6desGHR0d6OjowMXFpdL68siSsyJYnnA1p1CM369kAwAUOMDafpXnH6sNiAgrk1cy51+yNUgkEmHBggVwdnbGjBkzpK6zShALCwsLS21Q74pQUFAQZs2ahSVLliAyMhJ2dnZwdXVFenq6zPohISHw8PDA5cuXcePGDZiamqJPnz548eL9NqYbqnxYZrlAUGb18b+Zg+zCss0Tx7fTQGtDFZn1a5PTGadxX3gfANBJsxN66vSscxnqgri4ODg6OuL3338HEWH//v21ugbNwsLCwsJSTr0rQuvWrcPkyZMxceJE2NjYYNu2bVBTU8Pu3btl1g8ICMAPP/yAtm3bokWLFti1axfEYjEuXrwos748Uotl50nR1eUhTyTGuv9vnqjAARb2qPs9aogIK5JXMOfe5t7MvhhfCkSE7du3w97eHpGRkQDK1qBXr14tlUuHhYWFhYWlNqhXHyGRSISIiAgsXLiQKVNQUICLi0u1E8jl5+ejuLhY7tb7RUVFEsnhcnPLdmYuLU3BgV99YdOUh8xcHjL1jyAji+DgYIQdt3LxhkmloQFLvbrdPBEArmZfxY2csnvQWr01BugNqHMZapPXr1/j22+/ldjYy9raGoGBgWjXrl09SsbCwsLC0pCoV0XozZs3KC0tldpFs1GjRnj06FG1+pg/fz6MjY3lWhBWrVqFZcuWSZUXFeXD3EiENhZvywo62AEcBRQWi7Em4BlTz7undvUmU8NU9A1aaL4QCpx6N97VGOfOncOECROQlpbGlE2dOhVr166FmlrdO6SzsLCwsDRcPuun62+//YYDBw7gyJEjcp1pFy5ciJycHOZ49qxMyRGJRP8lXVXQAP6vaOyJECL1bVkujaGt1NCqUd37Bt3JvYPzmWU+Ms14zTDSYGSdy1BbhIaGws3NjVGC9PT0cPz4cfj7+7NKEAsLCwtLnVOvipCenh4UFRVlJpCrKoHm2rVr8dtvv+H8+fOwtbWVW4/L5UJTU1PiKIdJuvr/PGPFpYTf/h8pBgCLetZP/qpVyauYv+ebzYeSwpezy0HXrl2ZhJZubm548OABBg4cWM9SsbCwsLA0VOpVEVJRUYGDg4OEo3O543NlCeRWr16N5cuX4+zZs2jfvv0Hjy9hEQLw110hs29QP2se2jWu3ezSsogRxuDf1/8CAIxUjDDeaHydy1CbcDgc7NmzB/7+/jh9+vRnlzGehaWmOHr0KCwsLKCoqIiffvrpvdvv3btXZoLahsDPP/+M7777rr7F+OKIiYmBiYkJ8vLy6luUOqXel8ZmzZqFnTt3Yt++fYiNjcXUqVORl5eHiRMnAgC+/vprCWfq33//HT///DN2794Nc3NzpKWlIS0tDUKh8L3HZrLPK2qgVExYGZLFXFtcT9ag35/+zvw9x2wOuAp1r4zVFGlpaejfv79URJ+hoSGmTp36xUXBfYlMmDABHA4HHA4HysrKaNq0KebNm4fCQuntSE+ePAlnZ2fw+XyoqamhQ4cO2Lt3r8x+Dx8+jB49ekBLSwsaGhqwtbXFL7/8gszMTJn1v0S+//57DB8+HM+ePcPy5cvrW5zPhrS0NGzYsEEim/yXRmZmJjw9PaGpqQltbW1MmjSpymdcYmIi3N3doa+vD01NTYwcOVJqtWXFihVwcnKCmpqaTCXaxsYGnTt3xrp162pyOp889a4IjRo1CmvXroWPjw/atm2LqKgonD17lnGgTklJQWpqKlN/69atEIlEGD58OIyMjJhj7dq17zWukiKgUh4MpqCBf+7nISGjzBr0VXNVOJrV/QZ+yQXJCHgVAADQVdLFd8af7xvP8ePH0aZNG5w+fRrjx49HRkZGfYvE8oG4ubkhNTUVT548gZ+fH7Zv344lS5ZI1Nm0aRMGDx6MLl26IDw8HPfv38fo0aMxZcoUzJkzR6LuokWLMGrUKHTo0AFnzpxBdHQ0fH19ce/ePfz55591Ni+RSFRnY72LUChEeno6XF1dYWxsDD6fX2+yfG7s2rULTk5OMDMz+6h+iouLa0iimsfT0xMPHz5EcHAwTp48iatXr1ZqAcvLy0OfPn3A4XBw6dIlhIWFQSQSYeDAgRCLxUw9kUiEESNGYOrUqXL7mjhxIrZu3YqSkpIandMnTY2mcP0MKM9ee1znW6IBk4mGjSfx+Hk04adIJsP8pYT8epHth9gfmAzzyxKX1YsMH4tQKKTvv/9eIlu8kZER3blzp75Fq1e+pOzzQ4cOJXt7e+Y8JSWFlJWVadasWVLtN27cSADo5s2bREQUHh5OAGj9+vUyx6ss+/yzZ89o9OjRpKOjQ2pqauTg4MD0K0tOLy8vqezz06ZNIy8vLxIIBNSjRw/y8PCgkSNHSrQTiUQkEAho3759RFSWtXvlypVkbm5OqqqqZGtrSwcPHpQrJ9F/2ee1tbWJx+ORm5sbk33+8uXLEv8fqCQLfVZWFn333XdkYGBAXC6XWrVqRSdOnCAi6ezzCQkJNGjQIDIwMCB1dXVq3749BQcHS/S3ZcsWsrCwIC6XSwYGBjRs2DDm2sGDB6l169akqqpKurq61KtXLxIKhVIylZaWUuPGjcnf31+iPDIykjgcDiUnJxMRka+vL7Vu3ZrU1NTIxMSEpk6dSm/fvmXql8t/9uxZatGiBamrq5Orqyu9fPmy0nvbqlUr2rx5s0TZmTNnqEuXLqSlpUW6urrUv39/SkhIYK4nJSURADpw4AB1796duFwuk7F9586d1KJFC+JyuWRtbU1btmyR6HvevHlkaWlJPB6PmjZtSosXLyaRSFSpjB9DTEwMAaDbt29LzI/D4dCLFy9ktjl37hwpKChIZGXPzs4mDocj9R0gkv7uVKSoqIi4XC5duHDh4ybygdRH9vkvxwv3PXHmWAE3y7ylOQAUu+YCLbTgZMZFj2Z1bw1KK0rDH6l/AAA0FDUw3XR6ncvwsURERMDT0xNxcXFM2ZAhQ7Bz507o6enVo2SfKNHtgeK0quvVNMqGQOs7H9Q0Ojoa169fl3gbP3ToEIqLi6UsP0DZ8o+3tzf+/vtvdOrUCQEBAdDQ0MAPP/wgs395Pi9CoRDOzs5o3Lgxjh8/DkNDQ0RGRkq87VaHffv2YerUqQgLCwMAJCQkYMSIERAKhUym8nPnziE/Px/u7u4Ayrbg+Ouvv7Bt2zZYWlri6tWrGDt2LPT19eHs7CxznAkTJuDx48c4fvw4NDU1MX/+fPTr1w8xMTFwcnJCXFwcrK2tcfjwYTg5OcncB00sFqNv3754+/Yt/vrrLzRv3hwxMTFQVFSUe4/69euHFStWgMvlYv/+/Rg4cCDi4uLQpEkT3LlzBz/++CP+/PNPODk5ITMzE6GhoQCA1NRUeHh4YPXq1XB3d8fbt28RGhoKkpGKSEFBAR4eHggMDJSwLAQEBKBLly7Md0NBQQEbN25E06ZN8eTJE/zwww+YN28e/P39mTb5+flYu3Yt/vzzTygoKGDs2LGYM2cOAgICZM4xMzMTMTExUr6heXl5mDVrFmxtbSEUCuHj4wN3d3dERUVBQeG/hY8FCxbA19cX9vb2UFVVRUBAAHx8fLB582bY29vj7t27mDx5MtTV1TF+fJl/Jp/Px969e2FsbIwHDx5g8uTJ4PP5mDdvnkwZAaBVq1Z4+vSp3OvdunXDmTNnZF67ceMGtLW1Jebo4uICBQUFhIeHM9/LihQVFYHD4YDL/c+VQlVVFQoKCrh27dp7bVCroqKCtm3bIjQ0FL169ap2u8+aGlWrPgPKNUonxcXUT3kFjeWuJC/V36iNzT7C6Gt0+lFevcg1N34uYw2aGz+3XmT4UEpKSui3334jJSUl5g1XTU2Ndu7cSWKxuL7F+ySQ+ZYT2ZgoHHV/RDauttzjx48nRUVFUldXJy6XSwBIQUGBDh06xNSZMmWK3LdLIiJbW1vq27cvERH17duXbG1t3/v+bd++nfh8PmVkZMiVszoWoYqWLCKi4uJi0tPTo/379zNlHh4eNGrUKCIiKiwsJDU1Nbp+/bpEu0mTJpGHh4dMWeLj4wkAhYWFMWVv3rwhHo9H//zzDxGVWXpQiSWI6L+3/Li4OJnXK3urL6dVq1a0adMmIiI6fPgwaWpqUm5urlS9iIgIAsBYc6ri7t27xOFw6OnTp0T0n5Vo69atctscPHiQBAKBhPwAJCw3W7ZsoUaNGlU6LgBKSUmpVL7Xr18TAHrw4AER/WcRetcS2bx5cwoMDJQoW758OTk6Osrte82aNeTg4FDp+MnJyfT48WO5x/Pnz+W2XbFiBVlZWUmV6+vrS1nhyklPTydNTU3y8vKivLw8EgqFNH36dAJA3333nVT9qr477u7uNGHChErnWFuwFqE65HppCVBaYY04JgmNjDXgZsWT36iWyCzOxNYXWwEAXAUuZjaZWecyfCjPnz/HuHHjEBISwpQ5ODggMDAQVlZW9SfY54ByPUXMvee4PXv2xNatW5GXlwc/Pz8oKSlh2LBhHzQ0yUl2XBVRUVGwt7eXu4N8dXFwcJA4V1JSwsiRIxEQEIBx48YhLy8Px44dw4EDBwCUWYzy8/PRu3dviXYikQj29vYyx4iNjYWSkhI6derElAkEAlhbWyM2NrbaskZFRcHExKTa/0dCoRBLly7FqVOnkJqaipKSEhQUFCAlJQUA0Lt3b5iZmaFZs2Zwc3ODm5sb3N3doaamBjs7O/Tq1Qtt2rSBq6sr+vTpg+HDh0NHR3bQSNu2bdGyZUsEBgZiwYIFuHLlCtLT0zFixAimzoULF7Bq1So8evQIubm5KCkpQWFhIfLz85k9w9TU1NC8eXOmjZGRkdw8kwBQUFAAQDoJ8+PHj+Hj44Pw8HC8efOGsRSmpKSgdevWTL2KVpa8vDwkJiZi0qRJmDx5MlNeUlICLS0t5jwoKAgbN25EYmIihEIhSkpKJLZhkcXH+i+9L/r6+jh48CCmTp2KjRs3Mla7du3aSVjEqguPx0N+fn4tSPpp0mAVIVn0aaNdL5FMm59thrC0LCLgG6NvYMQ1qnMZPpSCggLcvn0bQFlo/IIFC7B06VKoqNT9RpSfHR+4PFXXqKurw8LCAgCwe/du2NnZ4Y8//sCkSZMAAFZWVsjJycHLly9hbGws0VYkEiExMRE9e/Zk6l67dg3FxcVQVq5+6hoer/IXFAUFBSklS5YzrLq6ulSZp6cnnJ2dkZ6ejuDgYPB4PGavq/JInVOnTqFx48YS7SouQ9QGVc35XebMmYPg4GCsXbsWFhYW4PF4GD58OOMUzufzERkZiZCQEJw/fx4+Pj5YunQpbt++DW1tbQQHB+P69es4f/48Nm3ahEWLFiE8PBxNmzaVOZ6npyejCAUGBsLNzQ0CgQAAkJycjAEDBmDq1KlYsWIFdHV1ce3aNUyaNAkikYhRhN79DnA4nEqV5fIl9qysLOjr6zPlAwcOhJmZGXbu3AljY2OIxWK0bt1ayiG+4udf/tnu3LlTQmkFwCw/3rhxA56enli2bBlcXV2hpaWFAwcOwNfXV66MwMctjRkaGkopgyUlJcjMzKx0u5E+ffogMTERb968gZKSErS1tWFoaIhmzZpVKqssMjMzJRTUL516jxr7lOjaQqvqSjWMsESIDc82AAAUOYqYaza3zmX4GCwtLbFx40aYmpri8uXLWLlyJasEfcEoKCjA29sbixcvZt7Ohw0bBmVlZZkPh23btiEvLw8eHh4AgDFjxkAoFEr4iVQkOztbZrmtrS2ioqLkhtfr6+tLRJcCZRaV6uDk5ARTU1MEBQUhICAAI0aMYB7QNjY24HK5SElJgYWFhcRhamoqs7+WLVuipKQE4eHhTFlGRgbi4uJgY2NTLZmAsjk/f/4c8fHx1aofFhaGCRMmwN3dHW3atIGhoSGSk5Ml6igpKcHFxQWrV6/G/fv3kZycjEuXLgEoU0K6dOmCZcuW4e7du1BRUcGRI0fkjjdmzBhER0cjIiIChw4dgqenJ3MtIiICYrEYvr6+6Ny5M6ysrPDy5ctqz10ezZs3h6amJmJiYpiy8nu7ePFi9OrVCy1btkRWVlYlvZTRqFEjGBsb48mTJ1KfbbnyV+4Pt2jRIrRv3x6WlpaVKjjlnD59GlFRUXKPXbt2yW3r6OiI7OxsREREMGWXLl2CWCyWUthkoaenB21tbVy6dAnp6ekYNGhQlW3eJTo6Wq7F80uEtQhVQE+v7lM87Hi5A5klZT/uYxqNQVOe7LevT4Vbt26hdevWEukwJk6ciJEjRzLOpixfNiNGjMDcuXOxZcsWzJkzB02aNMHq1asxe/ZsqKqqYty4cVBWVsaxY8fg7e2N2bNnMz/gnTp1wrx58zB79my8ePEC7u7uMDY2RkJCArZt24auXbvCy8tLakwPDw+sXLkSQ4YMwapVq2BkZIS7d+/C2NgYjo6O+Oqrr7BmzRrs378fjo6O+Ouvv97rx3zMmDHYtm0b4uPjcfnyZaacz+djzpw5mDlzJsRiMbp27YqcnByEhYVBU1OTcaitiKWlJQYPHozJkydj+/bt4PP5WLBgARo3bozBgwdX+z47Ozuje/fuGDZsGNatWwcLCws8evQIHA6HsVi9O+6///6LgQMHgsPh4Oeff5ZwJj958iSePHmC7t27Q0dHB6dPn4ZYLIa1tTXCw8Nx8eJF9OnTBwYGBggPD8fr16/RsmVLufKZm5vDyckJkyZNQmlpqcQD18LCAsXFxdi0aRMGDhyIsLAwbNu2rdpzl0d5Uu5r165hyJAhAAAdHR0IBALs2LEDRkZGSElJwYIFC6rV37Jly/Djjz9CS0sLbm5uKCoqwp07d5CVlYVZs2bB0tISKSkpOHDgADp06IBTp05VqhyW8zFLYy1btoSbmxsmT56Mbdu2obi4GNOnT8fo0aMZi+uLFy/Qq1cv7N+/Hx07dgQA7NmzBy1btoS+vj5u3LgBLy8vzJw5E9bW1kzfKSkpyMzMREpKCkpLS5mXBQsLC+b3Ozk5GS9evHgvB+vPnhr1OPoMKHe2EuhOpmaNfyRt/nwClhKwlEJCkupUlsLSQjK6akS4AOJc4FCMMKZOx38fiouLaenSpaSoqEhTp06tb3E+O76k8HkiolWrVpG+vr5EePWxY8eoW7dupK6uTqqqquTg4EC7d++W2W9QUBB1796d+Hw+qaurk62tLf3yyy+Vhs8nJyfTsGHDSFNTk9TU1Kh9+/YUHh7OXPfx8aFGjRqRlpYWzZw5k6ZPny7lLO3l5SWz7/KQZTMzMykHf7FYTOvXrydra2tSVlYmfX19cnV1pStXrsiVtTx8XktLi3g8Hrm6ujLh80TVc5YmIsrIyKCJEyeSQCAgVVVVat26NZ08eZKIpB1ek5KSqGfPnsTj8cjU1JQ2b94sMefQ0FBydnYmHR0d4vF4ZGtrS0FBQcz8XV1dSV9fn7hcLllZWTFO1pXh7+9PAOjrr7+WurZu3ToyMjJi5r9//34CwHzGshx2jxw5QlU9lk6fPk2NGzem0tJSpiw4OJhatmxJXC6XbG1tKSQkhADQkSNHmHsDgO7evSvVX0BAALVt25ZUVFRIR0eHunfvTv/++y9zfe7cuSQQCEhDQ4NGjRpFfn5+VTqpfywZGRnk4eFBGhoapKmpSRMnTpTYeqB8PhW/P/Pnz6dGjRqRsrIyWVpakq+vr9R3efz48VJbN7zbz8qVK8nV1bVW51cZ9eEszSH6QO/Fz5Tc3FxoaWlh2jJ3bHYr0+wvlu6BneVI8Pkq4HLrzki248UOfP/oewDAUP2hOGx7uM7Gfh+ePHmCsWPH4saNG0zZpUuXGL8PlqopLCxEUlISmjZtKjdBMAsLS9UQETp16oSZM2cyS64sNYNIJIKlpSUCAwPRpUuXepGhst/K8ud3Tk5OlQ7r70OD9RHSMGjE/O1sbQA9PbU6VYJKxCUS6TQWmi+spHb9QETYv38/2rZtyyhBioqKWLZsGbp161bP0rGwsDREOBwOduzY0bB2Pq4jUlJS4O3tXW9KUH3RYH2E1BX/Cw1UUq777e3/Sf8HTwqeAAD66PZBe80PTx5bG2RlZWHq1KkICgpiypo1a4aAgAB07ty5HiVjYWFp6LRt2xZt27atbzG+OMqdxRsaDdYipK5Y8N+JQt06+YpJjFXJq5hzb3PvOh2/Kq5cuQI7OzsJJWjChAmIiopilSAWFhYWli+KBmsR0lCqsFmUYt0qQiffnER0XjQAwEnLCd21u9fp+JVx5coV9OzZk9nLQ0dHB9u3b5fYKI2FhYWFheVLocFahDQ4FfaZqEOLEBFhRfIK5tzb3LteNnGUR9euXdG9e5li1rNnT9y/f59VglhYWFhYvlgarEVIvbjCzp11aBG6nHUZt3JvAQBsNWzRT9CvzsauDoqKivjzzz9x8OBB/PTTTx+0PTsLCwsLC8vnQoN9yvWYNxkYthbwWAkMPFdn465MXsn8Xd/WoNevX2PYsGFMJu5yTE1NMWvWLFYJYmFhYWH54mmwFqFiMYBCbtmRXVQnY4bnhONi1kUAgAXPAsMNhtfJuLI4d+4cJkyYgLS0NERGRuLevXs1ui8DCwsLCwvL50CDfeXXz8oCPyMD5plZaPfgGXbtiqz1MStGii0wXwBFjmKtj/kuhYWF+Omnn+Dm5oa0tDQAZckHq5vPiIWlKkJCQsDhcOTmDWNh+ZT4+eef8d1339W3GF8cMTExMDExQV5eXn2LUiUNVhECACEBT8Vi3BUWISuroOoGH0G0MBrH3hwDAJhwTTDOcFytjieLBw8eoEOHDtiwYQNT5ubmhgcPHqB9+09rHyOWzxcnJyekpqZCS6vukxg3VDgcDnNoamqiQ4cOOHbsmFS9goICLFmyBFZWVuByudDT08OIESPw8OFDqbq5ublYtGgRWrRoAVVVVRgaGsLFxQX//vtvpRniPyfS0tKwYcMGLFq0qL5FqTUyMzPh6ekJTU1NaGtrY9KkSRAKhZW2SUtLw7hx42BoaAh1dXW0a9cOhw9LZj6IjIxE7969oa2tDYFAgO+++06iXxsbG3Tu3Bnr1q2rlXnVJA1aEaqIri6vVvuvaA2a02QOVBTqLkO7WCzGhg0b0KFDB0RHl4Xtc7lcbNy4EadPn4ahoWGdycLy5aOiogJDQ8MP9n8TiUQ1LFHtQkSfxC7He/bsQWpqKu7cuYMuXbpg+PDhePDgAXO9qKgILi4u2L17N3799VfEx8fj9OnTKCkpQadOnXDz5k2mbnZ2NpycnLB//34sXLgQkZGRuHr1KkaNGoV58+YhJyenzuZVXFxca33v2rULTk5OH5UkFahdGT8WT09PPHz4EMHBwTh58iSuXr1apQXs66+/RlxcHI4fP44HDx5g6NChGDlyJO7evQsAePnyJVxcXGBhYYHw8HCcPXsWDx8+xIQJEyT6mThxIrZu3fpJ/H9USo1mLvsMKE/aBixgkq0CS+nff2sv4WlCXgIpXFAgXADpXdEjYYmw6kY1xMuXL8nV1VUiwV6bNm3owYMHdSYDSyWJBN3+kT62RVXd4e1U2W1vp9ao3M7OzjR9+nTy8vIibW1tMjAwoB07dpBQKKQJEyaQhoYGNW/enE6fPs20uXz5skRyTSKia9eukbOzM/F4PNLW1qY+ffpQZmYmM8a0adPIy8uLBAIB9ejRg4iIQkJCqEOHDqSiokKGhoY0f/58Ki4urlTeW7dukYuLCwkEAtLU1KTu3btTREQEc93Dw4NGjhwp0UYkEpFAIKB9+/YREVFpaSmtXLmSzM3NSVVVlWxtbengwYNS8zt9+jS1a9eOlJWV6fLly5SQkECDBg0iAwMDUldXp/bt21NwcLDEWC9fvqR+/fqRqqoqmZubU0BAAJmZmZGfnx9TJysriyZNmkR6enrE5/OpZ8+eFBVV+XcCFRKMEhHl5uYSANqwYQNT9ttvvxGHw5Hqq7S0lNq3b082NjZMks6pU6eSuro6vXjxQmqst2/fVvo5HD9+nNq3b09cLpcEAgENGTJErpxERFpaWrRnzx4i+i+Z6IEDB6h79+7E5XJpw4YNpKqqKvEdIyL6999/SUNDg/Ly8oiIKCUlhUaMGEFaWlqko6NDgwYNoqSkJLlyEhG1atWKNm/eLFF25swZ6tKlC2lpaZGuri7179+fEhISmOuyZCyXf+fOndSiRQvicrlkbW1NW7Zskeh73rx5ZGlpSTwej5o2bUqLFy8mkUhUqYwfQ3ky4du3b0vMj8PhyPxsy1FXV6f9+/dLlOnq6tLOnTuJiGj79u1kYGAgkfj2/v37BIAeP37MlBUVFRGXy6ULFy5UW+b6SLrKWoT+T21ahFY/XQ0xxACAn0x/grqieq2N9S6ZmZkICQlhzmfOnIlbt26hdevWdSYDSyXceSV9PM+tul1ukey2uTXv+L9v3z7o6enh1q1bmDFjBqZOnYoRI0bAyckJkZGR6NOnD8aNG4f8/HyZ7aOiotCrVy/Y2Njgxo0buHbtGgYOHIjS0lKJMVRUVBAWFoZt27bhxYsX6NevHzp06IB79+5h69at+OOPP/Drr79WKuvbt28xfvx4XLt2DTdv3oSlpSX69euHt2/fAih7Oz5x4oSECf/cuXPIz8+Hu7s7AGDVqlXYv38/tm3bhocPH2LmzJkYO3Ysrly5IjHWggUL8NtvvyE2Nha2trYQCoXo168fLl68iLt378LNzQ0DBw5ESkoK0+brr7/Gy5cvERISgsOHD2PHjh1IT0+X6HfEiBFIT0/HmTNnEBERgXbt2qFXr17IzMysxqcFlJSU4I8//gBQZp0rJzAwEL1794adnZ1EfQUFBcycORMxMTG4d+8exGIxDhw4AE9PTxgbG0v1r6GhASUl2XE2p06dgru7O/r164e7d+/i4sWL6NixY7XkrsiCBQvg5eWF2NhYjBgxAgMGDEBgYKBEnYCAAAwZMgRqamooLi6Gq6sr+Hw+QkNDERYWBg0NDbi5ucm1MGZmZiImJkbKLSAvLw+zZs3CnTt3cPHiRSgoKMDd3R1isViujK6urggICICPjw9WrFiB2NhYrFy5Ej///DP27dvHtOHz+di7dy9iYmKwYcMG7Ny5E35+fpXei1atWkFDQ0Pu0bdvX7ltb9y4AW1tbYk5uri4QEFBAeHh4XLbOTk5ISgoCJmZmcz3obCwED169ABQZl1UUVGRiCzm8cqeodeuXWPKVFRU0LZtW4SGhlY6x3qnRtWqz4ByjXLaiK9ofP8hNPCrWeTk9AfFxb2plfGeFzwnlYsqhAsg/mU+ZYmyamWcyti4cSMZGhrSuXPn6nxsljLkvuXobZI+Fl+tusOLybLbXkyuUbmdnZ2pa9euzHlJSQmpq6vTuHHjmLLU1FQCQDdu3CAiaYuQh4cHdenSpdIx7O3tJcq8vb3J2tqasVAQEW3ZsoU0NDQk3kKrorS0lPh8Pp04cYKIiIqLi0lPT0/ibdfDw4NGjRpFRESFhYWkpqZG169fl+hn0qRJ5OHhITG/o0ePVjl+q1ataNOmTUREFBsbK/V2/vjxYwLAWIRCQ0NJU1OTCgsLJfpp3rw5bd++Xe44AEhVVZXU1dVJQUGBAJC5uTllZGQwdVRVVcnLy0tm+8jISAJAQUFB9OrVKwJA69atq3J+7+Lo6Eienp6Vylkdi9D69esl6hw5ckTC+pOTk0Oqqqp05swZIiL6888/pb4vRUVFxOPx5P7u3b17lwBQSkpKpXN6/fo1AWCs6PJkbN68OQUGBkqULV++nBwdHeX2vWbNGnJwcKh0/OTkZHr8+LHc4/nz53LbrlixgqysrKTK9fX1yd/fX267rKws6tOnDwEgJSUl0tTUlLiP0dHRpKSkRKtXr6aioiLKzMykYcOGEQBauXKlRF/u7u40YcKESudYkfqwCDXY8PmVUy5BUwOA3gSg2Te1Ns66Z+sgorI3kmkm06CtrF1rYwHAvXv30KJFC3C5XKZs+vTpGDt2LHR0dGp1bJYvE1tbW+ZvRUVFCAQCtGnThilr1KgRAEhZNsqJioqqcndyBwcHifPY2Fg4OjpK+Bl16dIFQqEQz58/B1DmjFmOt7c3vL298erVKyxevBghISFIT09HaWkp8vPzGauMkpISRo4ciYCAAIwbNw55eXk4duwYDhw4AABISEhAfn4+evfuLSGPSCSCvb29RNm7lgShUIilS5fi1KlTSE1NRUlJCQoKCpix4+LioKSkhHbt2jFtLCwsJP4v7927B6FQCIFAINF3QUEBEhMTK72Hfn5+cHFxwZMnTzBz5kxs3LgRurq6EnWoGk7O1akjj6ioKEyePPmD25fz7r3t168flJWVcfz4cYwePRqHDx+GpqYmXFxcAJTdt4SEBPD5kgm0CwsL5d63goKyABlVVVWJ8sePH8PHxwfh4eF48+YNYwlKSUmRsKRXlDEvLw+JiYmYNGmSxPxLSkokggaCgoKwceNGJCYmQigUoqSkpMptSz7Wf+lD+Pnnn5GdnY0LFy5AT08PR48exciRIxEaGoo2bdqgVatW2LdvH2bNmoWFCxdCUVERP/74Ixo1aiS1/xyPx5NrLf5UaLCKEEMtptfIKM7AtufbAACqCqr4yfSnWhurtLQUa9euxeLFi+Hl5YW1a9cy1zgcDqsEsXwwysrKEuccDkeirFxZeXfpoJxyk3llqKu/33KxsbExoqKimPPyB/748eORkZGBDRs2wMzMDFwuF46OjhLLI56ennB2dkZ6ejqCg4PB4/Hg5uYGAMyS2alTp9C4cWOJMSu+XMiSec6cOQgODsbatWthYWEBHo+H4cOHv5fzt1AohJGRkcRydjna2tqVtjU0NGSyh+/Zswf9+vVDTEwMDAwMAABWVlaIjY2V2ba83MrKCvr6+tDW1sajR4+qLXc5VX3WHA5HStGS5Wj87r1VUVHB8OHDERgYiNGjRyMwMBCjRo1iluiEQiEcHBwQEBAg1Ze+vr5MWfT09AAAWVlZEnUGDhwIMzMz7Ny5E8bGxhCLxWjdurXU51hRxvLvzc6dO9GpUyeJeoqKZduk3LhxA56enli2bBlcXV2hpaWFAwcOwNfXV6Z85bRq1QpPnz6Ve71bt244c+aMzGuGhoZSLyglJSXIzMyUGySTmJiIzZs3Izo6Gq1atQIA2NnZITQ0FFu2bMG2bWXPtDFjxmDMmDF49eoV1NXVweFwsG7dOjRr1kyiv8zMTDRv3rzSOdY3rCJUi+k1Nj7biHxxmSb8rfG3aMRtVCvjPHv2DOPGjWN8GHx9fTFkyBB07dq1VsZjqUHay/hOmFRjY0tNruy2mlzpsnrG1tYWFy9exLJly6rdpmXLljh8+DCIiFG0wsLCwOfzYWJiAgUFBVhYWEi1CwsLg7+/P/r1K0td8+zZM7x580aijpOTE0xNTREUFIQzZ85gxIgRjGJnY2MDLpeLlJQUODs7v9c8w8LCMGHCBMbXSCgUIjk5mblubW2NkpIS3L17l7GAJSQkICvrv7yH7dq1Q1paGpSUlGBubv5e41ekY8eOcHBwwIoVK5jtMkaPHo1Fixbh3r17En5CYrEYfn5+sLGxgZ2dHTgcDkaPHo0///wTS5YskfITEgqFUFVVleknVP5ZT5w4UaZc+vr6SE1NZc4fP35cbWuBp6cnevfujYcPH+LSpUsS/mLt2rVDUFAQDAwMqr0xbPPmzaGpqYmYmBhYWVkBADIyMhAXF4edO3eiW7duACR9XuTRqFEjGBsb48mTJ/D09JRZ5/r16zAzM5MI1a9MwSnn9OnTlUalVaZ8Ojo6Ijs7GxEREcx37tKlSxCLxVIKWznln8e7lh1FRUWZLzvlFuHdu3dDVVVVypoaHR2N4cPrb/PgalGjC22fAcwa40UQhYPoxa+1Mk5ucS5ph2gTLoCULirR04KntTJOUFAQaWtrMxFhHA6HFi5cSEVFRbUyHsuHUdm696eMs7OzlF/Ju1FORJK+H+/6CMXFxZGKigpNnTqV7t27R7GxseTv70+vX7+WO8bz589JTU2Npk2bRrGxsXT06FHS09OjJUuWVCqvvb099e7dm2JiYujmzZvUrVs34vF4UvIuWrSIbGxsSElJiUJDQ6WuCQQC2rt3LyUkJFBERARt3LiR9u7dK3N+5bi7u1Pbtm3p7t27FBUVRQMHDiQ+ny8xNxcXF2rXrh2Fh4dTZGQk9ezZk3g8HuNvIhaLqWvXrmRnZ0fnzp2jpKQkCgsLI29vbwnfoneBDN+b06dPE5fLZXxICgoKqFOnTmRqakr//PMPPX36lG7dukVDhgwhdXV1xseLiCgjI4NatGhBJiYmtG/fPnr48CHFx8fTH3/8QRYWFlJzL+fy5cukoKBAPj4+FBMTQ/fv36fffvuNuT569Ghq2bIlRUZG0u3bt+mrr74iZWVlKR+hu3fvSvUtFovJ1NSU7OzsqHnz5hLX8vLyyNLSknr06EFXr16lJ0+e0OXLl2nGjBn07Nkzufdt6NChNHv2bOa8tLSUBAIBjR07lh4/fkwXL16kDh06SNxfeTLu3LmTeDwebdiwgeLi4uj+/fu0e/du8vX1JSKiY8eOkZKSEv3999+UkJBAGzZsIF1dXdLS0pIrX03g5uZG9vb2FB4eTteuXSNLS0vG342o7H/N2tqawsPDiagsitLCwoK6detG4eHhlJCQQGvXriUOh0OnTp1i2m3atIkiIiIoLi6ONm/ezMy9IklJScThcCg5ufq+i/XhI8QqQqnrq270AaxOXk24AMIF0MSHE2u8/5ycHBo/frxEWLypqSmFhITU+FgsH09DVoSIykLhnZyciMvlkra2Nrm6ujLXZY1R3uZ9w+cjIyOpffv2pKqqSpaWlnTw4EGZ8paHFZuZmUk42BKVPXDXr19P1tbWpKysTPr6+uTq6kpXrlyROz+ish/9csXG1NSUNm/eLDW3ly9fUt++fYnL5ZKZmRkFBgaSgYEBbdu2jamTm5tLM2bMIGNjY1JWViZTU1Py9PSs1KlXliIkFoupRYsWNHXqVKYsLy+PFi1aRBYWFqSsrEy6uro0bNgwmdtpZGdn04IFC8jS0pJUVFSoUaNG5OLiQkeOHJG6ZxU5fPgwtW3bllRUVEhPT4+GDh3KXHvx4gX16dOH1NXVydLSkk6fPi3TWVqWIkRUFn4OgHx8fKSupaam0tdff016enrE5XKpWbNmNHny5EofmqdPn6bGjRtLOOAHBwdTy5Yticvlkq2tLYWEhFRLESIiCggIYOauo6ND3bt3p3///Ze5PnfuXBIIBKShoUGjRo0iPz+/WleEMjIyyMPDgzQ0NEhTU5MmTpxIb9++Za6Xz+fy5ctMWXx8PA0dOpQMDAxITU2NbG1tpcLpx40bR7q6uqSioiLzOhHRypUrydXV9b3krQ9FiEP0hWwRWk1yc3OhpaWFnIsoc5ZuugvQn1SjYxSWFsL8ujleiV6BAw5iO8fCWt26xvq/ceMGxo4diydPnjBlo0aNwtatW1lfoE+UwsJCJCUloWnTplLOmSwNl+fPn8PU1BQXLlxAr1696lucBgcRoVOnTpg5cyY8PDzqW5wvCpFIBEtLSwQGBqJLly7VblfZbyXz/M7JqdHcmA3XR+hBc0C7FBCpAtyiGvWt2JO6B69ErwAAww2G16gSFBISAhcXF2YPFj6fjy1btmDs2LH1msmehYWlai5dugShUIg2bdogNTUV8+bNg7m5Obp3717fojVIOBwOduzYIbEDN0vNkJKSAm9v7/dSguqLhqsI/fI9oMADkAXsfgYMlHa8/BCKxcVY/XQ1c77QfGGN9FtOly5d4ODggFu3bsHJyQl//fUXmjZtWqNjsLCw1A7FxcXw9vbGkydPwOfz4eTkhICAAKnIPJa6o23btmjbtm19i/HFUR7B+DnQYBWhK8UlMFUsgS6HAwNFDmpqseLAqwNILkwGAPQV9IU9377yBu+JsrIyAgICEBQUhPnz58vd4ZWFheXTw9XVFa6urvUtBgsLSwUabIqNQW9zYZ+dA7OsbGw6FV8jfYpJLJFc1dvc+6P6y8rKgqenJyIiIiTKLSwssGjRIlYJYmFhYWFh+UjYJykAgZ5ajfRz7PUxxOaXbUzWTbsbump/+D4+ISEhGDduHJ4/f46IiAhERkZCTa1m5GRhYWFhYWEpo8FahCqiWwOKEBFhZfJK5vxDrUEikQgLFizAV199xaQSSE9Px8OHDz9aRhYWFhYWFhZJWIsQAF0L7Y/u40LmBdx5ewcAYM+3h6vu+/sBxMXFYcyYMYiMjGTKevbsif3798PExOSjZWRhYWFhYWGRhLUIAdA11aq6UhVIWIPMvN8rlJ2IsH37dtjb2zNKkLKyMlavXo0LFy6wShALCwsLC0st0WAtQgG/HIawQAs5OuthUp3cTpVwPfs6QrJDAADWatZwN3CvdtvXr1/j22+/xfHjx5kya2trBAYGSmSpZmFhYWFhYal5GqxFaECXx/Ds9whz53aBtvbHBc9XtAYtMFsARY5itds+e/YMp0+fZs6nTp2KyMhIVgliYWFhqSe6d++OwMDA+hbji2PBggWYMWNGfYshRYNVhACgWPzxu0lHvY3CqYxTAIAmqk3gaSg787A82rVrh19//RV6eno4fvw4/P392egwFhaWjyIkJAQcDoc59PX10a9fP5k7KD979gzffPMNjI2NoaKiAjMzM3h5eSEjI0OqbkJCAiZOnAgTExNwuVw0bdoUHh4euHPnTl1Mq044fvw4Xr16hdGjR9e3KLXG/fv30a1bN6iqqsLU1BSrV6+uss3t27fRq1cvaGtrQ0dHB66urrh37x5zfenSpRLfufJDXV2dqTNnzhzs27dPIj3Up0CDVoRKxB+/jeJvyb8xf89tMhfKCpXvEPvo0SMUFxdLlM2ZMwcPHz7EwIEDP1oeFpYvkXf/Zz51RCJRfYsAoCwAIzU1FefOnUNRURH69+8vIduTJ0/Qvn17PH78GH///TcSEhKwbds2XLx4EY6OjsjMzGTq3rlzBw4ODoiPj8f27dsRoNM0yQAAKYdJREFUExODI0eOoEWLFpg9e3adzam0tBRisbjW+t+4cSMmTpwIBYUPfzzWtowfQ25uLvr06QMzMzNERERgzZo1WLp0KXbs2CG3jVAohJubG5o0aYLw8HBcu3YNfD4frq6uzP/mnDlzkJqaKnHY2NhgxIgRTD96enpwdXXF1q1ba32e70WNpnD9DKiYfT7tssVH9RWXF0ecCxzCBZDBFQPKL8mXW7e0tJTWr19PXC5XZuZkli8beRmVO3feJXWsX3+jyv5u3Hgms+2NG89qVG5nZ2eaPn06eXl5kba2NhkYGNCOHTtIKBTShAkTSENDg5o3b06nT59m2pSUlNA333xD5ubmpKqqSlZWVrR+/Xqpvv/44w+ysbFhsstPmzaNuQaA/P39aeDAgaSmpkZLliwhIiJ/f39q1qwZKSsrk5WVlcyM1++yf/9+cnBwIA0NDWrUqBF5eHjQq1eviKjs/7Jx48bk7+8v0SYyMpI4HA4lJycTEVFWVhZNmjSJ9PT0iM/nU8+ePSkqKoqpv2TJErKzs6OdO3eSubk5cTgcIiI6c+YMdenShbS0tEhXV5f69+9PCQkJEmOFhYWRnZ0dcblccnBwoCNHjkhlN3/w4AG5ubmRuro6GRgY0NixY+n169dy53z58mUCQFlZWUzZ8ePHCQDdu3ePKXNzcyMTExPKz5f87UpNTSU1NTWaMmUKEZVlsm/VqhU5ODhIZGovp+I471JaWkq///47NW/enFRUVMjU1JR+/fVXuXLevXuXAFBSUhIREe3Zs4e0tLTo2LFj1LJlS1JUVKTt27cTl8uVGvfHH3+knj17MuehoaHUtWtXUlVVJRMTE5oxYwYJhUK5sqanpxOHw6Ho6GiJcl9fX2rdujWpqamRiYkJTZ06VSKDuywZk5KSqLCwkGbPnk3GxsakpqZGHTt2lMjy/ubNGxo9ejQZGxsTj8ej1q1bU2BgoFz5agJ/f3/S0dGhoqIipmz+/PlkbW0tt83t27cJAKWkpDBl9+/fJwD0+PFjmW2ioqIIAF29elWifN++fWRiYiJ3rPrIPt+gFaGXl9t8VF+TYiYRLoBwAbQqaZXcei9fviRXV1cCQABIQUGBwsPDP2psls8Lef/cwFKpY+bMs1X2d/bsY5ltz56V/aP0oTg7OxOfz6fly5dTfHw8LV++nBQVFalv3760Y8cOio+Pp6lTp5JAIKC8vDwiIhKJROTj40O3b9+mJ0+e0F9//UVqamoUFBTE9Ovv70+qqqq0fv16iouLo1u3bpGfn1+F+wIyMDCg3bt3U2JiIj19+pT+/fdfUlZWpi1btlBcXBz5+vqSoqIiXbp0qdI5/PHHH3T69GlKTEykGzdukKOjI/Xt25e5PmfOHOratatEm9mzZ0uUubi40MCBA+n27dsUHx9Ps2fPJoFAQBkZGURUpgipq6uTm5sbRUZGMsrGoUOH6PDhw/T48WO6e/cuDRw4kNq0acMoEzk5OaSrq0tjx46lhw8f0unTp8nKykpCEcrKyiJ9fX1auHAhxcbGUmRkJPXu3Vvigf8u7yoY2dnZNGbMGAJAsbGxRESUkZFBHA6HVq5cKbOPyZMnk46ODonFYoqMjCQAH/SQnjdvHuno6NDevXspISGBQkNDaefOnTLlJJKtCCkrK5OTkxOFhYXRo0ePSCgUUqNGjWjXrl1Mu5KSEomyhIQEUldXJz8/P4qPj6ewsDCyt7enCRMmyJX133//JXV1dSllz8/Pjy5dukRJSUl08eJFsra2pqlTpzLXZcmYl5dH3377LTk5OdHVq1cpISGB1qxZQ1wul+Lj44mI6Pnz57RmzRq6e/cuJSYm0saNG0lRUbHS58PTp09JXV290mPFihVy248bN44GDx4sUXbp0iUCQJmZmTLb5ObmkkAgoCVLllBRURHl5+eTl5cXtWzZkoqLi2W2mT59OllZWUmVx8bGSny+78IqQnVARUXoeUjnD+4npSCFlC8qEy6AtEK0KLs4W2a9o0ePkp6eHqMEAaCffvpJ5ofM8uXyOStCFRWCkpISUldXp3HjxjFlqampBIBu3JBvyZo2bRoNGzaMOTc2NqZFixbJrV/+f1IRJycnmjx5skTZiBEjqF+/ftWeD9F/b7flb/R3794lDodDT58+JaL/rERbt24lojKrgqamJhUWFkr007x5c9q+fTsRlSlCysrKlJ6eXunYr1+/JgD04MEDIiLaunUrCQQCie/Fzp07JRSh5cuXU58+fST6efbsGQGguLg4meOUKxjlD8by355BgwYxdW7evEkA6MiRIzL7WLduHQGgV69eUVBQEAGgyMjISuf3Lrm5ucTlchnFR56cVSlCACQscEREXl5e9NVXXzHn586dk7ASTZo0ib777juJNqGhoaSgoCD399fPz4+aNWtW5bwOHjxIAoGAOZcl49OnT0lRUZFevHgh0bZXr160cOFCuX3379+fZs+eLfd6cXExPX78uNKjXEGXRe/evaXuy8OHDwkAxcTEyG334MEDat68OSkoKJCCggJZW1szFtN3KSgoIB0dHfr999+lrpU/g0NCQuS2rWtFqOH6CAW6QeNQO+Bg3Ac1903xRTGVrY1ON5kOLSXJvYjy8vIwZcoUDBkyBG/evAEAGBoa4ty5c/Dz84Oqak2leWVhqV1sbW2ZvxUVFSEQCNCmTRumrFGjRgDKdkAvZ8uWLXBwcIC+vj40NDSwY8cOpKSkMPVevnyJXr16VTpu+/btJc5jY2PRpUsXibIuXbogNrYsrU1AQAA0NDSYIzQ0FAAQERGBgQMHokmTJuDz+XB2dgYARp62bduiZcuWTJTQlStXkJ6ezvg23Lt3D0KhEAKBQKL/pKQkJCYmMrKYmZlBX19fQr7Hjx/Dw8MDzZo1g6amJszNzSXGjouLg62trcTvQceOHSX6uHfvHi5fviwxdosWLQBAYnxZhIaGIiIiAnv37oWVlRW2bdsmVYeIKu2junVkERsbi6Kioio/66pQUVGR+B4CgKenJ0JCQvDy5UsAZZ9///79oa2tDaDsvu3du1fivrm6ukIsFiMpKUnmOAUFBTJ/my9cuIBevXqhcePG4PP5GDduHDIyMpCfny9XxgcPHqC0tBRWVlYSMly5coX53EpLS7F8+XK0adMGurq60NDQwLlz55jvhyyUlJSYzO7yDl1d3erd2GpSUFCASZMmoUuXLrh58ybCwsLQunVr9O/fHwUFBVL1jxw5grdv32L8+PFS13g8HgBI3Lv6psHuI4QjX0FLgQc8iQZGWL9X09ei19jxosyxTE1BDV6mXhLXIyIiMGbMGMTH/5fMdfDgwdi1axf09PQ+XnYWljpEWVkyAIDD4UiUlW8eWu4ceuDAAcyZMwe+vr5wdHQEn8/HmjVrEB4eDuC/H8KqqBhtUh0GDRqETp06MeeNGzdGXl4ek/E9ICAA+vr6SElJgaurq4TTsKenJwIDA7FgwQIEBgbCzc0NAoEAQJmjqJGREUJCQqTGLH/oypN34MCBMDMzw86dO2FsbAyxWIzWrVu/lzO1UCjEwIED8fvvv0tdMzIyqrRt06ZNoa2tDWtra6Snp2PUqFG4evUqgLLkzRwOB7GxsXB3l977LDY2Fjo6OtDX14eVlRWAsmAPe3v7aste1Wdd7pBcUdGS5RjP4/GkNqnt0KEDmjdvjgMHDmDq1Kk4cuQI9u7dy1wXCoX4/vvv8eOPP0r116RJE5ny6OnpISsrS6IsOTkZAwYMwNSpU7FixQro6uri2rVrmDRpEkQiERPl+66MQqEQioqKiIiIgKKi5JYqGhoaAIA1a9Zgw4YNWL9+Pdq0aQN1dXX89NNPlX4/UlJSYGNjI/c6AHh7e8PbW3aaJ0NDQ7x69UqirPzc0NBQZpvAwEAkJyfjxo0bzGcWGBgIHR0dHDt2TCrCbteuXRgwYADzklSRcgf8d18a6pMGqwityi+AkSLgUlyCyr9S0mx4tgEF4jIt+LvG30Ff5b8P9NKlS3B1dUVJSQkAQE1NDevXr8e33377XrtNszQMOneW3jXczKzqnc61tFRlttXSqn9LY1hYGJycnPDDDz8wZRUtF3w+H+bm5rh48SJ69uxZ7X5btmyJsLAwibfMsLAw5qHA5/PB5/Ml2kRERCAjIwO//fYbTE1NAUBmqPeYMWOwePFiRERE4NChQxKWk3bt2iEtLQ1KSkqMRac6ZGRkIC4uDjt37kS3bt0AANeuXZOoY21tjb/++gtFRUXgcsu287h9+7ZEnXbt2uHw4cMwNzeHktKH/2RPmzYNq1atwpEjR+Du7g6BQIDevXvD398fM2fOlFBa0tLSEBAQgK+//hocDgdt27aFjY0NfH19MWrUKKmIquzsbAmlsBxLS0vweDxcvHgR3377rdT18odhamoqdHR0AABRUVHVnpOnpycCAgJgYmICBQUF9O/fn7nWrl07xMTEwMLCotr92dvbIy0tDVlZWYw8EREREIvF8PX1Zeb9zz//VKuv0tJSpKenM5//u4SFhWHw4MEYO3YsgLKXifj4+EoVHWNj4yrvUWUWIUdHRyxatAjFxcXMC01wcDCsra2ZOb9Lfn4+FBQUJJ5h5efvRsclJSXh8uXLEpsEVyQ6OhrKyspo1apVpXOoU2p0oe0zoHyNEVhAwFL6o/Pe92qfXZxNWiFahAsg5YvK9KxAMkqnsLCQbG1tCQA5ODjIXcNnaVhUtu79KePs7ExeXl4SZWZmZhKOzUQk4WuyYcMG0tTUpLNnz1JcXBwtXryYNDU1yc7Ojqm/d+9eUlVVpQ0bNlB8fDxFRETQxo0bZfZXzpEjR0hZWZn8/f0pPj6ecZauGIXzLunp6aSiokJz586lxMREOnbsmJQzcjldunQhOzs74vP5ElFUYrGYunbtSnZ2dnTu3DlKSkqisLAw8vb2ptu3bxPRf1FjFSktLSWBQEBjx46lx48f08WLF6lDhw4Scyt3lv76668pJiaGzp49Sy1atJDwN3nx4gXp6+vT8OHD6datW5SQkEBnz56lCRMmUElJicx5y/K9ISpzXG7Tpg2JxWIiIoqPjyc9PT3q1q0bXblyhVJSUujMmTPUunVrsrS0lPA1CQ8PJz6fT05OTnTq1ClKTEyke/fu0a+//krdu3eX+xksXbqUdHR0aN++fZSQkEA3btxgHJpFIhGZmprSiBEjKD4+nk6ePEnW1tYyo8Zk8fjxYwJAtra2NGnSJIlr9+7dIx6PR9OmTaO7d+9SfHw8HT16VCI68V1KSkpIX1+fTpw4wZSVRz+tX7+eEhMTaf/+/dS4cWOJ+ytPRk9PTzI3N6fDhw/TkydPKDw8nFauXEknT54kIqKZM2eSqakphYWFUUxMDH377bekqakp5cxck2RnZ1OjRo1o3LhxFB0dTQcOHCA1NTXG342ozGm8YhRZbGwscblcmjp1KsXExFB0dDSNHTuWtLS06OXLlxL9L168mIyNjeV+N5csWSLh2/UurLN0HfCuInS09/tFQaxKWsVEin0b863MOtHR0bRo0SKJ8ESWhk1DUoQKCwtpwoQJpKWlRdra2jR16lRasGCBlKKwbds2sra2JmVlZTIyMqIZM2bI7K8iHxI+HxgYSObm5sTlcsnR0ZEJI39XEfL39ycA9PXXX0v1kZubSzNmzCBjY2NSVlYmU1NT8vT0ZMKJZSlCRETBwcHUsmVL4nK5ZGtrSyEhIVJzCwsLI1tbW1JRUSEHBwcKDAwkAPTo0SOmTnx8PLm7u5O2tjbxeDxq0aIF/fTTT4xC8y7yFKGUlBRSUlKSiOBLTk6m8ePHU6NGjZi5zZgxg968eSPVb1xcHH399ddkbGxMKioqZGZmRh4eHpU6UZeWltKvv/5KZmZmpKysTE2aNJGIVLt27Rq1adOGVFVVqVu3bnTw4MFqK0JERB07diQAMqMHb926Rb179yYNDQ1SV1cnW1vbSiOqiMqUxdGjR0uUrVu3joyMjIjH45Grqyvt37+/WopQeQSlubk58z13d3en+/fvE1FZ5N7gwYNJQ0ODDAwMaPHixfT111/XqiJEVKYkdu3albhcLjVu3Jh+++03ievlzt8VOX/+PLMVhI6ODn311VdSARKlpaVkYmJC3t7ecse2tramv//+W+71+lCEOEQf6AX3mZKbmwstLS0ACwCo4urQ1uh2eFi12uaX5sM8zByvi19DAQq40+oO/H/2x08//fRpmflYPjkKCwuRlJSEpk2bso7yLJUSEBCAiRMnIicnp9r+VCw1R1paGlq1aoXIyEiYmZnVtzhfFGfOnMHs2bNx//59ucu8lf1Wlj+/c3JyoKn5cTlCK9JgfYTK0Z3bqepK/2f3y914XfwaAPBV6lcY/t1wPHnyBLdu3cKtW7eYNX4WFhaW6rJ//340a9YMjRs3xr179zB//nyMHDmSVYLqCUNDQ/zxxx9ISUlhFaEaJi8vD3v27PkoX7fa4NOSph4QmGtXq55ILMLqp6uBUgABwOWAyygtLQVQ5hx2//59dOjQofYEZWFh+SJJS0uDj48P0tLSYGRkhBEjRmDFihX1LVaDZsiQIfUtwhfJ8OHD61sEmTRYRSjpyHoIjf6Gvn71EpwGpgXiWdIz4DcAMUApypQgJycn/PXXX2jatGktSsvCwvKlMm/ePMybN6++xWBhabA02A0VdTUL0bKlMRQVq74FJeISLNy2EJgCIKasTFFREcuWLcOVK1dYJYiFhYWFheUzpcFahABAUbnq/VqysrIwYOIApB1LY8qaNWuGgIAAdO7cuTbFY2FhYWFhYallGrQiBEWNKqvExMTg+onrzHkfjz44tP2Q1MZtLCzVoYEFabKwsLC8F/XxG9lgl8YAAApVK0K51rnAGAAaQLOVzXA24CyrBLG8N+U7uH5K+XVYWFhYPjXK04u8m5akNmngFiHp3EBJSUlo0qQJ8yGsTF4JjAUwAFjbcy2bJoPlg1BUVIS2tjaTmFRNTY39LrGwsLBUQCwW4/Xr11BTU6vTEPsGqwjllyhDk/Pf9IkIO3bswMyZM7FkyRLMnz8foVmhuJZzDVACWjZpicH6g+tRYpbPnfKEhhWztLOwsLCw/IeCggKaNGlSpy+KDXZn6TcOP0Fg1A34rTteGxC+/fZbJkmckpISbt26BW+ON85mnAUA7LfZj3FG4+pTdJYvhNLSUpkZtllYWFgaOioqKlJJfcv5oneW3rJlC9asWYO0tDTY2dlh06ZN6Nixo9z6Bw8exM8//4zk5GRYWlri999/R79+/d5rTOUkY+DpS5y7fAETVsxEWtp/UWHffvst8o3ycfZhmRJkrmqO0Y1Gf9jkWFjeQVFRsU7Xv1lYWFhY5FPvztJBQUGYNWsWlixZgsjISNjZ2cHV1VXu8sH169fh4eGBSZMm4e7duxgyZAiGDBmC6Ojo9xq3kErwk/Aw3GZ4MEqQnp4ejh8/jq1bt2L96/VM3Xlm86CsoPzBc2RhYWFhYWH5NKn3pbFOnTqhQ4cO2Lx5M4AyZylTU1PMmDEDCxYskKo/atQo5OXl4eTJk0xZ586d0bZtW2zbtq3K8cpNay0VGiFW/Iopd3Nzw549e2BoaIhHeY9gc9MGBEIjlUZIdkqGqiKbKJOFhYWFhaW+qK2lsXq1CIlE/2vv3oOiqts4gH/Zlb2IC0SE7MqqoYGNNwLDAXN4NQrKjG5AySjeTUBN3i6kJqAJVkqZYxcsxYzEy3ibUEhQJkBLRVYdQRSB0BEws8AL193n/aPhvK4s6BKwtPt8ZnbG8zu/3znPOQ/rPnPOb/c0oaCgAP7+/kKbSCSCv78/jh07ZnDMsWPH9PoDQEBAQLv929NaBImtRfCI8YDNRzZY8PsCBJ8NRvDZYBD+rg//O/C/XAQxxhhjZsqkc4SuX78OrVaL/v3767X3798f58+fNzimurraYP+75/jcrbGxEY2NjcJybW2t8G9XmQOqV9yExl0DTYWmzVi7PnaYopiCurq6Bz0kxhhjjHWD1s/irr6R1SsmS3enxMRExMfHG1xX1nAD6OBZh7WohQtcuikyxhhjjBnrjz/+gJ3d/R+R9aBMWgg5OjpCLBajpqZGr72mpkb4zZV7OTs7G9X//fffR3R0tLD8119/YdCgQaisrOzSE8mMV1dXB7VajcuXL3fp/V7WOZyP3oNz0XtwLnqP2tpaDBw4EA4ODl26XZMWQhKJBF5eXsjOzsZLL70E4O/J0tnZ2YiKijI4xsfHB9nZ2XjrrbeEtkOHDsHHx8dgf6lUCqlU2qbdzs6O/6h7CVtbW85FL8L56D04F70H56L3aO93hjrL5LfGoqOjER4ejjFjxsDb2xufffYZbt++jRkzZgAApk2bhgEDBiAxMREAsGjRIvj5+WHt2rWYNGkS0tLScPLkSSQnJ5vyMBhjjDH2L2TyQig0NBS///47li9fjurqanh4eCAjI0OYEF1ZWalX/fn6+uKHH37AsmXLsGTJEjz22GPYu3cvRowYYapDYIwxxti/lMkLIQCIiopq91ZYTk5Om7bg4GAEBwd3al9SqRSxsbEGb5exnsW56F04H70H56L34Fz0Ht2VC5P/oCJjjDHGmKmY/BEbjDHGGGOmwoUQY4wxxiwWF0KMMcYYs1hcCDHGGGPMYpllIbRhwwYMHjwYMpkMY8eOxfHjxzvsv3PnTgwbNgwymQwjR47EgQMHeihS82dMLjZu3Ijx48fjoYcewkMPPQR/f//75o4Zx9j3Rqu0tDRYWVkJP3zK/jljc/HXX38hMjISSqUSUqkUbm5u/H9VFzE2F5999hnc3d0hl8uhVquxePFiNDQ09FC05uvnn3/G5MmToVKpYGVlhb179953TE5ODjw9PSGVSjF06FCkpKQYv2MyM2lpaSSRSGjTpk107tw5mjNnDtnb21NNTY3B/vn5+SQWi+njjz+moqIiWrZsGVlbW9PZs2d7OHLzY2wupkyZQhs2bKDCwkIqLi6m6dOnk52dHV25cqWHIzdPxuajVXl5OQ0YMIDGjx9PQUFBPROsmTM2F42NjTRmzBh6/vnnKS8vj8rLyyknJ4c0Gk0PR25+jM1FamoqSaVSSk1NpfLycsrMzCSlUkmLFy/u4cjNz4EDB2jp0qW0e/duAkB79uzpsH9ZWRn17duXoqOjqaioiNavX09isZgyMjKM2q/ZFULe3t4UGRkpLGu1WlKpVJSYmGiwf0hICE2aNEmvbezYsTRv3rxujdMSGJuLe7W0tJBCoaAtW7Z0V4gWpTP5aGlpIV9fX/rmm28oPDycC6EuYmwuvvzyS3J1daWmpqaeCtFiGJuLyMhImjhxol5bdHQ0jRs3rlvjtDQPUgi9++67NHz4cL220NBQCggIMGpfZnVrrKmpCQUFBfD39xfaRCIR/P39cezYMYNjjh07ptcfAAICAtrtzx5MZ3Jxrzt37qC5ubnLH7BniTqbjxUrVsDJyQmzZs3qiTAtQmdysX//fvj4+CAyMhL9+/fHiBEjkJCQAK1W21Nhm6XO5MLX1xcFBQXC7bOysjIcOHAAzz//fI/EzP6vqz6/e8UvS3eV69evQ6vVCo/naNW/f3+cP3/e4Jjq6mqD/aurq7stTkvQmVzc67333oNKpWrzh86M15l85OXl4dtvv4VGo+mBCC1HZ3JRVlaGw4cPIywsDAcOHEBpaSkiIiLQ3NyM2NjYngjbLHUmF1OmTMH169fx1FNPgYjQ0tKCN998E0uWLOmJkNld2vv8rqurQ319PeRy+QNtx6yuCDHzsXr1aqSlpWHPnj2QyWSmDsfi3Lx5E1OnTsXGjRvh6Oho6nAsnk6ng5OTE5KTk+Hl5YXQ0FAsXboUX331lalDszg5OTlISEjAF198gVOnTmH37t1IT0/HypUrTR0a6ySzuiLk6OgIsViMmpoavfaamho4OzsbHOPs7GxUf/ZgOpOLVmvWrMHq1auRlZWFUaNGdWeYFsPYfFy6dAkVFRWYPHmy0KbT6QAAffr0QUlJCYYMGdK9QZupzrw3lEolrK2tIRaLhbbHH38c1dXVaGpqgkQi6daYzVVncvHBBx9g6tSpmD17NgBg5MiRuH37NubOnYulS5fqPSScda/2Pr9tbW0f+GoQYGZXhCQSCby8vJCdnS206XQ6ZGdnw8fHx+AYHx8fvf4AcOjQoXb7swfTmVwAwMcff4yVK1ciIyMDY8aM6YlQLYKx+Rg2bBjOnj0LjUYjvF588UVMmDABGo0GarW6J8M3K515b4wbNw6lpaVCMQoAFy5cgFKp5CLoH+hMLu7cudOm2GktUIkf3dmjuuzz27h53L1fWloaSaVSSklJoaKiIpo7dy7Z29tTdXU1ERFNnTqVYmJihP75+fnUp08fWrNmDRUXF1NsbCx/fb6LGJuL1atXk0QioV27dlFVVZXwunnzpqkOwawYm4978bfGuo6xuaisrCSFQkFRUVFUUlJCP/74Izk5OdGHH35oqkMwG8bmIjY2lhQKBW3bto3Kysrop59+oiFDhlBISIipDsFs3Lx5kwoLC6mwsJAAUFJSEhUWFtJvv/1GREQxMTE0depUoX/r1+ffeecdKi4upg0bNvDX51utX7+eBg4cSBKJhLy9vemXX34R1vn5+VF4eLhe/x07dpCbmxtJJBIaPnw4paen93DE5suYXAwaNIgAtHnFxsb2fOBmytj3xt24EOpaxubi6NGjNHbsWJJKpeTq6kqrVq2ilpaWHo7aPBmTi+bmZoqLi6MhQ4aQTCYjtVpNERER9Oeff/Z84GbmyJEjBj8DWs9/eHg4+fn5tRnj4eFBEomEXF1dafPmzUbv14qIr+UxxhhjzDKZ1RwhxhhjjDFjcCHEGGOMMYvFhRBjjDHGLBYXQowxxhizWFwIMcYYY8xicSHEGGOMMYvFhRBjjDHGLBYXQowxPSkpKbC3tzd1GJ1mZWWFvXv3dthn+vTpeOmll3okHsZY78aFEGNmaPr06bCysmrzKi0tNXVoSElJEeIRiURwcXHBjBkzcO3atS7ZflVVFZ577jkAQEVFBaysrKDRaPT6rFu3DikpKV2yv/bExcUJxykWi6FWqzF37lzcuHHDqO1w0cZY9zKrp88zxv4vMDAQmzdv1mt75JFHTBSNPltbW5SUlECn0+H06dOYMWMGrl69iszMzH+87faeGn43Ozu7f7yfBzF8+HBkZWVBq9WiuLgYM2fORG1tLbZv394j+2eM3R9fEWLMTEmlUjg7O+u9xGIxkpKSMHLkSNjY2ECtViMiIgK3bt1qdzunT5/GhAkToFAoYGtrCy8vL5w8eVJYn5eXh/Hjx0Mul0OtVmPhwoW4fft2h7FZWVnB2dkZKpUKzz33HBYuXIisrCzU19dDp9NhxYoVcHFxgVQqhYeHBzIyMoSxTU1NiIqKglKphEwmw6BBg5CYmKi37dZbY48++igA4IknnoCVlRX+85//ANC/ypKcnAyVSqX3ZHcACAoKwsyZM4Xlffv2wdPTEzKZDK6uroiPj0dLS0uHx9mnTx84OztjwIAB8Pf3R3BwMA4dOiSs12q1mDVrFh599FHI5XK4u7tj3bp1wvq4uDhs2bIF+/btE64u5eTkAAAuX76MkJAQ2Nvbw8HBAUFBQaioqOgwHsZYW1wIMWZhRCIRPv/8c5w7dw5btmzB4cOH8e6777bbPywsDC4uLjhx4gQKCgoQExMDa2trAMClS5cQGBiIV199FWfOnMH27duRl5eHqKgoo2KSy+XQ6XRoaWnBunXrsHbtWqxZswZnzpxBQEAAXnzxRVy8eBEA8Pnnn2P//v3YsWMHSkpKkJqaisGDBxvc7vHjxwEAWVlZqKqqwu7du9v0CQ4Oxh9//IEjR44IbTdu3EBGRgbCwsIAALm5uZg2bRoWLVqEoqIifP3110hJScGqVase+BgrKiqQmZkJiUQitOl0Ori4uGDnzp0oKirC8uXLsWTJEuzYsQMA8PbbbyMkJASBgYGoqqpCVVUVfH190dzcjICAACgUCuTm5iI/Px/9+vVDYGAgmpqaHjgmxhhglk+fZ8zShYeHk1gsJhsbG+H12muvGey7c+dOevjhh4XlzZs3k52dnbCsUCgoJSXF4NhZs2bR3Llz9dpyc3NJJBJRfX29wTH3bv/ChQvk5uZGY8aMISIilUpFq1at0hvz5JNPUkREBBERLViwgCZOnEg6nc7g9gHQnj17iIiovLycAFBhYaFen/DwcAoKChKWg4KCaObMmcLy119/TSqVirRaLRERPf3005SQkKC3ja1bt5JSqTQYAxFRbGwsiUQisrGxIZlMJjxJOykpqd0xRESRkZH06quvthtr677d3d31zkFjYyPJ5XLKzMzscPuMMX08R4gxMzVhwgR8+eWXwrKNjQ2Av6+OJCYm4vz586irq0NLSwsaGhpw584d9O3bt812oqOjMXv2bGzdulW4vTNkyBAAf982O3PmDFJTU4X+RASdTofy8nI8/vjjBmOrra1Fv379oNPp0NDQgKeeegrffPMN6urqcPXqVYwbN06v/7hx43D69GkAf9/WeuaZZ+Du7o7AwEC88MILePbZZ//RuQoLC8OcOXPwxRdfQCqVIjU1Fa+//jpEIpFwnPn5+XpXgLRabYfnDQDc3d2xf/9+NDQ04Pvvv4dGo8GCBQv0+mzYsAGbNm1CZWUl6uvr0dTUBA8Pjw7jPX36NEpLS6FQKPTaGxoacOnSpU6cAcYsFxdCjJkpGxsbDB06VK+toqICL7zwAubPn49Vq1bBwcEBeXl5mDVrFpqamgx+oMfFxWHKlClIT0/HwYMHERsbi7S0NLz88su4desW5s2bh4ULF7YZN3DgwHZjUygUOHXqFEQiEZRKJeRyOQCgrq7uvsfl6emJ8vJyHDx4EFlZWQgJCYG/vz927dp137HtmTx5MogI6enpePLJJ5Gbm4tPP/1UWH/r1i3Ex8fjlVdeaTNWJpO1u12JRCLkYPXq1Zg0aRLi4+OxcuVKAEBaWhrefvttrF27Fj4+PlAoFPjkk0/w66+/dhjvrVu34OXlpVeAtuotE+IZ+7fgQogxC1JQUACdToe1a9cKVzta56N0xM3NDW5ubli8eDHeeOMNbN68GS+//DI8PT1RVFTUpuC6H5FIZHCMra0tVCoV8vPz4efnJ7Tn5+fD29tbr19oaChCQ0Px2muvITAwEDdu3ICDg4Pe9lrn42i12g7jkclkeOWVV5CamorS0lK4u7vD09NTWO/p6YmSkhKjj/Ney5Ytw8SJEzF//nzhOH19fRERESH0ufeKjkQiaRO/p6cntm/fDicnJ9ja2v6jmBizdDxZmjELMnToUDQ3N2P9+vUoKyvD1q1b8dVXX7Xbv76+HlFRUcjJycFvv/2G/Px8nDhxQrjl9d577+Ho0aOIioqCRqPBxYsXsW/fPqMnS9/tnXfewUcffYTt27ejpKQEMTEx0Gg0WLRoEQAgKSkJ27Ztw/nz53HhwgXs3LkTzs7OBn8E0snJCXK5HBkZGaipqUFtbW27+w0LC0N6ejo2bdokTJJutXz5cnz33XeIj4/HuXPnUFxcjLS0NCxbtsyoY/Px8cGoUaOQkJAAAHjsscdw8uRJZGZm4sKFC/jggw9w4sQJvTGDBw/GmTNnUFJSguvXr6O5uRlhYWFwdHREUFAQcnNzUV5ejpycHCxcuBBXrlwxKibGLJ6pJykxxrqeoQm2rZKSkkipVJJcLqeAgAD67rvvCAD9+eefRKQ/mbmxsZFef/11UqvVJJFISKVSUVRUlN5E6OPHj9MzzzxD/fr1IxsbGxo1alSbyc53u3ey9L20Wi3FxcXRgAEDyNramkaPHk0HDx4U1icnJ5OHhwfZ2NiQra0tPf3003Tq1ClhPe6aLE1EtHHjRlKr1SQSicjPz6/d86PVakmpVBIAunTpUpu4MjIyyNfXl+RyOdna2pK3tzclJye3exyxsbE0evToNu3btm0jqVRKlZWV1NDQQNOnTyc7Ozuyt7en+fPnU0xMjN64a9euCecXAB05coSIiKqqqmjatGnk6OhIUqmUXF1dac6cOVRbW9tuTIyxtqyIiExbijHGGGOMmQbfGmOMMcaYxeJCiDHGGGMWiwshxhhjjFksLoQYY4wxZrG4EGKMMcaYxeJCiDHGGGMWiwshxhhjjFksLoQYY4wxZrG4EGKMMcaYxeJCiDHGGGMWiwshxhhjjFksLoQYY4wxZrH+B9sHaeJZDg4RAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "nbgrader": { + "grade": false, + "grade_id": "cell-9eadd4d8a03ae67a", + "locked": true, + "schema_version": 2, + "solution": false + }, + "id": "XpDuHFYyOcMD" + }, + "source": [ + "#### 2.6. Bagging.\n", + "Here starts the ensembling part.\n", + "\n", + "First we will use the __Bagging__ approach. Build an ensemble of $N$ algorithms varying N from $N_{min}=2$ to $N_{max}=100$ (with step 5).\n", + "\n", + "We will build two ensembles: of logistic regressions and of decision trees.\n", + "\n", + "*Comment: each ensemble should be constructed from models of the same family, so logistic regressions should not be mixed up with decision trees.*\n", + "\n", + "\n", + "*Hint 1: To build a __Bagging__ ensebmle varying the ensemble size efficiently you might generate $N_{max}$ subsets of `train` data (of the same size as the original dataset) using bootstrap procedure once. Then you train a new instance of logistic regression/decision tree with optimal hyperparameters you estimated before on each subset (so you train it from scratch). Finally, to get an ensemble of $N$ models you average the $N$ out of $N_{max}$ models predictions.*\n", + "\n", + "*Hint 2: sklearn might help you with this taks. Some appropriate function/class might be out there.*\n", + "\n", + "* Plot `f1` and `accuracy` scores plots w.r.t. the size of the ensemble.\n", + "\n", + "* Briefly analyse the plot. What is the optimal number of algorithms? Explain your answer.\n", + "\n", + "* How do you think, are the hyperparameters for the decision trees you found in 2.5 optimal for trees used in ensemble?" + ] + }, + { + "cell_type": "code", + "execution_count": 193, + "metadata": { + "nbgrader": { + "grade": true, + "grade_id": "cell-8fc95a2b206bdae1", + "locked": false, + "points": 35, + "schema_version": 2, + "solution": true + }, + "id": "b-aQAlXjOcMD" + }, + "outputs": [], + "source": [ + "N_min, N_max = 2, 100\n", + "bootstrap_size = int(0.8 * len(X_train))\n", + "ensemble_size_list = np.arange(N_min, N_max, 5)" + ] + }, + { + "cell_type": "code", + "execution_count": 194, + "metadata": { + "id": "Z4Uio8qvOcMD" + }, + "outputs": [], + "source": [ + "score_type_list = ['f1', 'accuracy']\n", + "\n", + "ensemble_models = {\n", + " 'logreg': {\n", + " 'f1': {},\n", + " 'accuracy': {},\n", + " },\n", + " 'tree': {\n", + " 'f1': {},\n", + " 'accuracy': {},\n", + " },\n", + "}" + ] + }, + { + "cell_type": "code", + "source": [ + "from tqdm import tqdm\n", + "\n", + "logreg_models = []\n", + "tree_models = []\n", + "scalers = []\n", + "\n", + "for i in tqdm(range(N_max)):\n", + " idx = np.random.choice(np.arange(len(X_train_pd)), size=bootstrap_size)\n", + " bootstrap_train_sample = X_train_pd.iloc[idx]\n", + "\n", + " bootstrap_train_sample = scaler.fit_transform(bootstrap_train_sample)\n", + " scalers.append(scaler)\n", + "\n", + " logreg = LogisticRegression(**logreg_grid_search.best_params_)\n", + " logreg.fit(bootstrap_train_sample, pd.DataFrame(y_train).iloc[idx])\n", + "\n", + " tree = DecisionTreeClassifier(**tree_grid_search.best_params_)\n", + " tree.fit(bootstrap_train_sample, pd.DataFrame(y_train).iloc[idx])\n", + "\n", + " # logreg_grid_search.fit(bootstrap_train_sample, pd.DataFrame(y_train).iloc[idx])\n", + " logreg_models.append(logreg)\n", + "\n", + " # tree_grid_search.fit(bootstrap_train_sample, pd.DataFrame(y_train).iloc[idx])\n", + " tree_models.append(tree)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "q5V25Hhe4aUH", + "outputId": "1d9b39e4-693d-4e23-9089-75f2cb9ab0eb" + }, + "execution_count": 195, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 0%| | 0/100 [00:00" + ] + }, + "metadata": {}, + "execution_count": 197 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABD8AAAJwCAYAAACOF8rNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xTVf8H8M9Nmo507z2gbCgtbSmg7C3qIyogMgUBFyjiAJygIo7nQfSHiiCoCIiAOBBEhoAisy0byi4FStu0pTMdGff3R9pA6ErbtGnSz/v1yku5Offec9N7knu/95zvEURRFEFEREREREREZKUk5q4AEREREREREVFDYvCDiIiIiIiIiKwagx9EREREREREZNUY/CAiIiIiIiIiq8bgBxERERERERFZNQY/iIiIiIiIiMiqMfhBRERERERERFaNwQ8iIiIiIiIismoMfhARERERERGRVWPwg4iIyIp9++23EAQBycnJ5q6KSVR2PH379kXfvn3NVieqn+TkZAiCgP/+9781lp03bx4EQWiEWt32xBNPICwsrFH3SUREpsfgBxERNThBEIx67dmzp977UiqVmDdvnkm2RURERETWwcbcFSAiIuv3/fffG/x71apV2LFjR4Xl7du3r/e+lEol5s+fDwDsDdBMbN++3dxVICu2fPlyaLVac1eDiIjqicEPIiJqcOPGjTP498GDB7Fjx44Ky5urwsJCODo6mrsaFsvW1tbcVSArJpPJzF0FIiIyAQ57ISKiJkGr1WLx4sXo2LEj7O3t4evri6eeegq3bt0yKBcfH48hQ4bAy8sLDg4OaNGiBSZPngxAlzvA29sbADB//nz9cJp58+ZVuV+VSoX58+ejdevWsLe3h6enJ3r27IkdO3YYlEtKSsKoUaPg7e0NBwcHtG3bFq+//rpBmaNHj+K+++6Di4sLnJycMGDAABw8eNCgTHnOir179+LZZ5+Fj48PgoKC9O//8ccf6NWrFxwdHeHs7Iz7778fp0+fNuozPH36NPr37w8HBwcEBQXhvffeq/KJtTH7eeKJJ+Dk5ITLly9jyJAhcHR0REBAAN555x2IomhQ1ti/X1hYGB544AHs27cPcXFxsLe3R8uWLbFq1ao6H8/dOT/27NkDQRCwfv16LFiwAEFBQbC3t8eAAQNw8eLFCut//vnnaNmyJRwcHBAXF4d//vnH6DwiarUa7777LsLDw2FnZ4ewsDC89tprKCkpqfNxV8bUn29tzvsRI0bAw8MD9vb2iI2NxW+//WZQpvyc3rdvH55//nl4e3vDzc0NTz31FEpLS5GTk4MJEybA3d0d7u7uePXVVyucP+U++eQThIaGwsHBAX369MGpU6eM+nxWr16NmJgYODg4wMPDA6NHj8a1a9dqXC8/Px8zZ85EWFgY7Ozs4OPjg0GDBiExMVFf5u6cH3379q1y6N63336rL5eTk4OZM2ciODgYdnZ2aNWqFT788EP2IiEiMhP2/CAioibhqaeewrfffotJkybh+eefx5UrV7BkyRIcPXoU//77L2QyGTIyMjB48GB4e3tjzpw5cHNzQ3JyMjZt2gQA8Pb2xpdffolnnnkGDz/8MB555BEAQOfOnavc77x587Bw4UJMmTIFcXFxyMvLQ3x8PBITEzFo0CAAwIkTJ9CrVy/IZDJMmzYNYWFhuHTpEjZv3owFCxYA0N2o9+rVCy4uLnj11Vchk8nw1VdfoW/fvti7dy+6detmsN9nn30W3t7eeOutt1BYWAhANzxo4sSJGDJkCD788EMolUp8+eWX6NmzJ44ePVpt0sW0tDT069cParUac+bMgaOjI5YtWwYHB4cKZWuzH41Gg6FDh6J79+746KOPsG3bNrz99ttQq9V45513avX3K3fx4kWMGDECTz75JCZOnIiVK1fiiSeeQExMDDp27Fjr46nKBx98AIlEgpdffhm5ubn46KOPMHbsWBw6dEhf5ssvv8T06dPRq1cvvPjii0hOTsbw4cPh7u5uEJSqypQpU/Ddd99hxIgReOmll3Do0CEsXLgQZ8+exc8//2xQ1pjjroqpP19jzvvTp0/j3nvvRWBgoP5vsH79egwfPhw//fQTHn74YYM6zpgxA35+fpg/fz4OHjyIZcuWwc3NDfv370dISAjef/99bN26FR9//DE6deqECRMmGKy/atUq5Ofn47nnnkNxcTE+/fRT9O/fHydPnoSvr2+Vn82CBQvw5ptvYtSoUZgyZQoUCgX+7//+D71798bRo0fh5uZW5bpPP/00Nm7ciOnTp6NDhw7IysrCvn37cPbsWURHR1e6zuuvv44pU6YYLFu9ejX+/PNP+Pj4ANANv+vTpw9u3LiBp556CiEhIdi/fz/mzp2LmzdvYvHixVXWiYiIGohIRETUyJ577jnxzp+gf/75RwQgrlmzxqDctm3bDJb//PPPIgDxyJEjVW5boVCIAMS3337bqLpERkaK999/f7VlevfuLTo7O4tXr141WK7VavX/P3z4cNHW1la8dOmSfllqaqro7Ows9u7dW7/sm2++EQGIPXv2FNVqtX55fn6+6ObmJk6dOtVgH2lpaaKrq2uF5XebOXOmCEA8dOiQfllGRobo6uoqAhCvXLlS6/1MnDhRBCDOmDHD4Jjvv/9+0dbWVlQoFKIoGv/3E0VRDA0NFQGIf//9t0E97ezsxJdeeqnWxyOKotinTx+xT58++n/v3r1bBCC2b99eLCkp0S//9NNPRQDiyZMnRVEUxZKSEtHT01Ps2rWrqFKp9OW+/fZbEYDBNitz7NgxEYA4ZcoUg+Uvv/yyCED866+/an3clWmIz9eY837AgAFiRESEWFxcrF+m1WrFe+65R2zdurV+Wfk5PWTIEIM20aNHD1EQBPHpp5/WL1Or1WJQUJDBZ3vlyhURgOjg4CBev35dv/zQoUMiAPHFF1/UL3v77bcNvjuSk5NFqVQqLliwwKDuJ0+eFG1sbCosv5urq6v43HPPVVtm4sSJYmhoaJXv//vvv6JMJhMnT56sX/buu++Kjo6O4vnz5w3KzpkzR5RKpWJKSkq1+yQiItPjsBciIjK7DRs2wNXVFYMGDUJmZqb+FRMTAycnJ+zevRsA9E9wf//9d6hUKpPs283NDadPn8aFCxcqfV+hUODvv//G5MmTERISYvBe+ZSbGo0G27dvx/Dhw9GyZUv9+/7+/hgzZgz27duHvLw8g3WnTp0KqVSq//eOHTuQk5ODxx9/3OAzkEql6Natm/4zqMrWrVvRvXt3xMXF6Zd5e3tj7NixBuXqsp/p06cbHPP06dNRWlqKnTt3AjD+71euQ4cO6NWrl0E927Zti8uXL9f6eKozadIkg3wg5fss3098fDyysrIwdepU2Njc7gw7duxYuLu717j9rVu3AgBmzZplsPyll14CAGzZssVguTHHXZmG+HxrOu+zs7Px119/YdSoUcjPz9fvMysrC0OGDMGFCxdw48YNg3WefPJJg2lou3XrBlEU8eSTT+qXSaVSxMbGVnrMw4cPR2BgoP7fcXFx6Natm/5zrsymTZug1WoxatQog8/Gz88PrVu3rrHduLm54dChQ0hNTa22XFXS0tIwYsQIREVF4YsvvtAv37BhA3r16gV3d3eDeg0cOBAajQZ///13nfZHRER1x2EvRERkdhcuXEBubq6+y/jdMjIyAAB9+vTBo48+ivnz5+OTTz5B3759MXz4cIwZMwZ2dnZ12vc777yDhx56CG3atEGnTp0wdOhQjB8/Xj9UpvwmrVOnTlVuQ6FQQKlUom3bthXea9++PbRaLa5du2YwtKFFixYG5cpvQvv371/pPlxcXKo9jqtXr1YYWgOgQp1qux+JRGIQ0AGANm3aANDlWCnfpjF/v3J3B5EAwN3d3SB/hbHHU52791Me0Cjfz9WrVwEArVq1MihnY2NT7RCjO+sokUgqrO/n5wc3Nzf99quqT3md7s7bcbeG+HxrOu8vXrwIURTx5ptv4s0336xyv3cGK+7er6urKwAgODi4wvLKjrl169YVlrVp0wbr16+vdP+A7rMRRbHSdYGak5V+9NFHmDhxIoKDgxETE4Nhw4ZhwoQJFc75yqjVaowaNQoajQabNm0y+A66cOECTpw4oc9BdLe7/2ZERNTwGPwgIiKz02q18PHxwZo1ayp9v/wGQhAEbNy4EQcPHsTmzZvx559/YvLkyfjf//6HgwcPwsnJqdb77t27Ny5duoRff/0V27dvx9dff41PPvkES5curTCu35Tuzl1RngTx+++/h5+fX4Xyd/ZMqI+G2I+xf79yd/Z4uZNYRRLMumqs/dzZ26E6da1PQ3y+NZ335efJyy+/jCFDhlS6vbuDPlXtt7LlpvobaLVaCIKAP/74o9L91PSdMGrUKPTq1Qs///wztm/fjo8//hgffvghNm3ahPvuu6/adV955RUcOHAAO3furJAfRqvVYtCgQXj11VcrXbc8gEhERI2HwQ8iIjK78PBw7Ny5E/fee69RCS27d++O7t27Y8GCBVi7di3Gjh2LdevWYcqUKUbfiN7Jw8MDkyZNwqRJk1BQUIDevXtj3rx5mDJliv4JcHWzTnh7e0Mul+PcuXMV3ktKSoJEIqnw9Ptu4eHhAAAfHx8MHDiw1scQGhpa6RCGu+tU2/1otVpcvnzZ4Gbt/PnzAKDvHVHbv58xjD2e+u4D0PVy6Nevn365Wq1GcnJytYlyy9fXarW4cOEC2rdvr1+enp6OnJwc/fbrqyE+X8C4814mk9XpfKyLyv7e58+fr7YXTnh4OERRRIsWLeocUPD398ezzz6LZ599FhkZGYiOjsaCBQuqDX6sW7cOixcvxuLFi9GnT59K61VQUNBonx0REdWMOT+IiMjsyruOv/vuuxXeU6vVyMnJAaAbrnD3E+OoqCgA0E8tKpfLAUC/Tk2ysrIM/u3k5IRWrVrpt+ft7Y3evXtj5cqVSElJMShbXhepVIrBgwfj119/1Q8FAXQ3wWvXrkXPnj1rHLYyZMgQuLi44P333680n4lCoah2/WHDhuHgwYM4fPiwwTp39xaoy36WLFmi/39RFLFkyRLIZDIMGDAAgPF/v9ow9njqIzY2Fp6enli+fDnUarV++Zo1a2ocilJeRwAVZu5YtGgRAOD+++83ST0b4vOt6bz38fFB37598dVXX+HmzZsV1q/pfKyLX375xSCPyOHDh3Ho0KFqgxCPPPIIpFIp5s+fX+G7QRTFCsd5J41Gg9zcXINlPj4+CAgIqDBV8Z1OnTqFKVOmYNy4cXjhhRcqLTNq1CgcOHAAf/75Z4X3cnJyDM43IiJqHOz5QUREZtenTx889dRTWLhwIY4dO4bBgwdDJpPhwoUL2LBhAz799FOMGDEC3333Hb744gs8/PDDCA8PR35+PpYvXw4XFxf9jaiDgwM6dOiAH3/8EW3atIGHhwc6depUZc6ODh06oG/fvoiJiYGHhwfi4+P1U1+W++yzz9CzZ09ER0dj2rRpaNGiBZKTk7FlyxYcO3YMAPDee+9hx44d6NmzJ5599lnY2Njgq6++QklJCT766KMaPwMXFxd8+eWXGD9+PKKjozF69Gh4e3sjJSUFW7Zswb333msQhLjbq6++iu+//x5Dhw7FCy+8oJ8aNjQ0FCdOnKjzfuzt7bFt2zZMnDgR3bp1wx9//IEtW7bgtdde0w+3MPbvVxvGHk992NraYt68eZgxYwb69++PUaNGITk5Gd9++y3Cw8Nr7EUUGRmJiRMnYtmyZcjJyUGfPn1w+PBhfPfddxg+fLhBb5L6aIjP15jz/vPPP0fPnj0RERGBqVOnomXLlkhPT8eBAwdw/fp1HD9+3CTHV65Vq1bo2bMnnnnmGZSUlGDx4sXw9PSscugIoOth8d5772Hu3Ln6aYqdnZ1x5coV/Pzzz5g2bRpefvnlStfNz89HUFAQRowYgcjISDg5OWHnzp04cuQI/ve//1W5z0mTJgHQDR1avXq1wXv33HMPWrZsiVdeeQW//fYbHnjgAf00w4WFhTh58iQ2btyI5ORkeHl51eFTIiKiOjPHFDNERNS83T3Vbblly5aJMTExooODg+js7CxGRESIr776qpiamiqKoigmJiaKjz/+uBgSEiLa2dmJPj4+4gMPPCDGx8cbbGf//v1iTEyMaGtrW+O0t++9954YFxcnurm5iQ4ODmK7du3EBQsWiKWlpQblTp06JT788MOim5ubaG9vL7Zt21Z88803DcokJiaKQ4YMEZ2cnES5XC7269dP3L9/v0GZ8mlBq5qud/fu3eKQIUNEV1dX0d7eXgwPDxefeOKJCsdYmRMnToh9+vQR7e3txcDAQPHdd98VV6xYUWFqWGP3M3HiRNHR0VG8dOmSOHjwYFEul4u+vr7i22+/LWo0mgr7r+nvJ4q6qVgrm2L17ulqa3M8VU11u2HDBoPtlU+p+s033xgs/+yzz8TQ0FDRzs5OjIuLE//9918xJiZGHDp0aBWf9G0qlUqcP3++2KJFC1Emk4nBwcHi3LlzDaaHre1xV8WUn6+x5/2lS5fECRMmiH5+fqJMJhMDAwPFBx54QNy4caO+TFXndPm0tOVTIpcrP6/Klf9dPv74Y/F///ufGBwcLNrZ2Ym9evUSjx8/Xuk27/bTTz+JPXv2FB0dHUVHR0exXbt24nPPPSeeO3euys+zpKREfOWVV8TIyEjR2dlZdHR0FCMjI8UvvviiQn3vnOq2fDrhyl53nlv5+fni3LlzxVatWom2trail5eXeM8994j//e9/K3zORETU8ARRNHHWLyIiIrIKTzzxBDZu3IiCggJzV6VRabVaeHt745FHHsHy5cvNXR0iIiIyAeb8ICIiomaruLi4Qq6IVatWITs7G3379jVPpYiIiMjkmPODiIiImq2DBw/ixRdfxMiRI+Hp6YnExESsWLECnTp1wsiRI81dPSIiIjIRBj+IiIio2QoLC0NwcDA+++wzZGdnw8PDAxMmTMAHH3wAW1tbc1ePiIiITIQ5P4iIiIiIiIjIqjHnBxERERERERFZNQY/iIiIiIiIiMiqMedHJbRaLVJTU+Hs7AxBEMxdHSIiIiIiIiKqhCiKyM/PR0BAACSSqvt3MPhRidTUVAQHB5u7GkRERERERERkhGvXriEoKKjK9xn8qISzszMA3Yfn4uLSoPtSqVTYvn07Bg8eDJlM1qD7ImpqeP5Tc8c2QM0d2wA1d2wD1NyZog3k5eUhODhYfx9fFQY/KlE+1MXFxaVRgh9yuRwuLi78wqNmh+c/NXdsA9TcsQ1Qc8c2QM2dKdtATSkrmPCUiIiIiIiIiKwagx9EREREREREZNUY/CAiIiIiIiIiq8bgBxERERERERFZNQY/iIiIiIiIiMiqMfhBRERERERERFaNwQ8iIiIiIiIismoMfhARERERERGRVWPwg4iIiIiIiIisGoMfRERERERERGTVGPwgIiIiIiIiIqvG4AcRERERERERWTUGP4iIiIiIiIjIqjH4QURERERERERWjcEPIiIiIiIiIrJqDH4QERERERERkVWzMXcFiKyBRqtBYkYiFEoFvOXeiPaJhlQiNXe1iIiIiIiICAx+ENXbzqs78cHhD5CuTNcv85X7Yk7cHAwMHWjGmhERERERERHAYS9E9bLz6k7M2jPLIPABABnKDMzaMws7r+40U82IiIiIiIioHIMfRHWk0WrwweEPIEKs8F75sg8PfwiNVtPYVSMiIiIiIqI7MPhBVAcqrQpbr2yt0OPjTiJEpCnTkJiR2Ig1IyIiIiIiorsx5wdRFUo0JbiRfwMp+SlIyUtBSn4KruVfQ0peCm4W3oRGNK5Hh0KpaOCaEhERERERUXUY/KBmrUhdhOv513WBjbxrukBHWbAjrTCt0iEt5WwltijVlta4D2+5tymrTERERERERLXE4Ac1CQ05VaxSpcS1/Gu4mnfVoPdGSn4KMpQZ1a7rKHNEiHMIQlxCEOIcgmDnYP3/u9u5Y+imochQZlQZJHGSOaGLdxeTHAcRERERERHVDYMfZHammCo2vzTfsPdGXlmQIz8FmUWZ1a7rbOuMUOdQBLsEVwh0eNh7QBCEKtedEzcHs/bMggCh0gBIgaoA/0v4H17p+gokAlPsEBERERERmQODH2RW5VPF3h04KJ8qdlHfRfoASG5Jrr7Hxt2Bjlslt6rdj7ud++3ghnMIgl2CEeocihCXELjauda5/gNDB2JR30UVgjd+cj/E+cfht0u/YfXZ1VAUKfB+z/dhK7Wt876IiIiIiIiobhj8ILMxZqrYuf/Mxdcnvsa1gmvIK82rdnue9p4IdQk1GJoS7BKMYOdguNi6NMgxALoASL/gfpUO27k34F68/u/r+DP5T2QXZ+PTfp/C2da5wepCREREREREFTH4QWaTmJFY7VSxAFCsKcbp7NP6f/vIffRDU4Kdgw3+31Hm2NBVrpJUIkVXv64Vlg9rOQzu9u6YuXsmjqQdwRPbnsCXA7+Ej9zHDLUkajgNmbeHiIiIiKi+GPwgszF2Ctjx7cdjeOvhCHYOhoONQwPXyvR6BPTAt0O/xTM7n8H5W+cxfut4LB20FC1cW5i7akQmYYq8PUREREREDYkZGMlsjJ0Ctl9IP7Rxb2ORgY9y7T3bY/Ww1Qh1CUVqYSom/DEBxxXHzV0tonorz9tzdy+u8rw9O6/uNFPNiIiIiIhuY/CDzMbP0Q9Soepu8QIE+Mn9EO0T3Yi1ajhBzkFYdd8qdPLshJySHEz5cwr2Xttr7moR1ZkxeXs+PPwhNFpNY1eNiIiIiMgAgx9kFlfzrmLyn5OhESu/KRKgm152dtxsq8ob4GHvgRVDVqBnYE8Ua4rxwu4XsOnCJnNXi6hOasrbI0JEmjINiRmJjVgrIiIiIqKKmkTw4/PPP0dYWBjs7e3RrVs3HD58uMqyffv2hSAIFV73339/peWffvppCIKAxYsXN1DtqbbO3zqPiX9MRFphGlq4tsDbPd6Gr9zXoIyv3NdgmltrIpfJ8Vn/z/BQ+EPQiBq8vf9tfHX8K4hixafnRE2ZsXl7vjv9HXZe3Wl0eSIiIiIiUzN7wtMff/wRs2bNwtKlS9GtWzcsXrwYQ4YMwblz5+DjU3FGjE2bNqG0tFT/76ysLERGRmLkyJEVyv788884ePAgAgICGvQYyHinMk/h6Z1PI7ckF+082mHpwKXwdPDEw60eblYzRcgkMrx777vwkftg+cnlWHJsCTKUGXit22tWfdxkHURRxMGbB/H92e+NKr/3+l7sva4b4hXgGIBI70hE+kQi0jsSbd3bQiaVNWR1iYiIiIjMH/xYtGgRpk6dikmTJgEAli5dii1btmDlypWYM2dOhfIeHh4G/163bh3kcnmF4MeNGzcwY8YM/Pnnn1X2CqHGFZ8Wj+l/TUehqhCdvTvjiwFfwNXOFUDVU8VaM0EQ8Hz08/CWe2PhoYVYf349soqz8EGvD2BvY2/u6hFVUKopxdYrW7HqzCpcuHXBqHVcbV0xMHQgTmSewMVbF5FamIrUwlT8kfwHAMBOaocOnh10AZGyl7HJkImIiIiIjGXW4EdpaSkSEhIwd+5c/TKJRIKBAwfiwIEDRm1jxYoVGD16NBwdHfXLtFotxo8fj1deeQUdO3ascRslJSUoKSnR/zsvLw8AoFKpoFKpjD2cOinffkPvx9z2p+7Hy/+8jGJNMWJ9Y7G492LIJXKrP25jjAgfATeZG17f/zp2pezC1O1TsbjPYrjYupi7ag2uuZz/lu5W8S38dPEn/Hj+R2QVZwEAHGwc8FDLhxDqEoqP4j8CAIPEp+V5e97o9gYGBA8AABSoCnA66zROZp7EicwTOJl5ErmluTiacRRHM47q1/V39Ednr86I8IxAZ6/OVt07hG2Amju2AWru2AaouTNFGzB2XUE0Y6KB1NRUBAYGYv/+/ejRo4d++auvvoq9e/fi0KFD1a5/+PBhdOvWDYcOHUJcXJx++cKFC7F79278+eefEAQBYWFhmDlzJmbOnFnpdubNm4f58+dXWL527VrI5fK6HRzpnS49jfXK9dBAg7Y2bTHacTRkgnXeyNTHFfUVrClYg2IUw0figwlOE+AmcTN3tagZU2gU2F+yH0dLj0INNQDARXBBD7seiLWNhYNEN/306dLT2FK0BXlinn5dV8EVwxyGoaNt1QFoURSRqc3ENfU1XNNcwzX1NaRr0yvMHmMDGwRIAxBiE4JgaTCCbYLhIrH+4CARERER1UypVGLMmDHIzc2Fi0vV14hmH/ZSHytWrEBERIRB4CMhIQGffvopEhMTIQiCUduZO3cuZs2apf93Xl4egoODMXjw4Go/PFNQqVTYsWMHBg0aBJnM+gICW65swfqDusDHoJBBeK/He1b7BNcUBucMxvTd05FRlIFVqlX4vN/nCHcLN3e1Goy1n/+WSBRFHEk/gtVJq7EvdZ9+eTv3dhjffjwGhgyETGL4txqGYZilnYWjiqPILMqEl4MXunh3qVP+mkJVIU5lnarQOyRFk4IUTYq+nJ/cD529Outflto7hG2Amju2AWru2AaouTNFGygfuVETswY/vLy8IJVKkZ5uOFVieno6/Pz8ql23sLAQ69atwzvvvGOw/J9//kFGRgZCQkL0yzQaDV566SUsXrwYycnJFbZlZ2cHOzu7CstlMlmjfQk15r4ay/pz6/HewfcgQsTwVsMxr8c8JvOsQQfvDlgzbA2e3vk0LudexuSdk/F//f8PMb4x5q5ag7LG89/SqDQq/JH8B1adXoVzt84B0A1d6RvcFxM6TECMb0y1AWUZZOgR1KPK943lJnNDT3lP9AzuCUAXjLmadxXHFcf1r4s5F5GmTENaShq2p2wHcDt3SGevzvpkqj7yikmzq6LRasyadNkUbcDcx0BUH/wdoOaObcDy8Xe4furTBoxdz6zBD1tbW8TExGDXrl0YPnw4AF2+jl27dmH69OnVrrthwwaUlJRg3LhxBsvHjx+PgQMNp0cdMmQIxo8fr0+qSg3v21Pf4n8J/wMAjGk3BrPjZkMiNImZlRuEqNFAGZ8AtUIBG29vyGNjIEjr9mXn7+SPVfetwvRd03FMcQzTtk/DR70/woDQASauNRGQU5yD9efX44ekH5BZlAmgLJ9H+EMY12EcQl1CzVo/QRAQ5hqGMNcwPNTqIQC63iEnM0/ieMZxnMg8geOK48gtuSN3yBnduv6O/gaJVNt5tKu0d8jOqzvxweEPkK68HYj3lftiTtwci5lu2xqOgag+rOGmwxqOgai5sobf4ebwHWT2YS+zZs3CxIkTERsbi7i4OCxevBiFhYX6QMWECRMQGBiIhQsXGqy3YsUKDB8+HJ6engbLPT09KyyTyWTw8/ND27ZtG/ZgCKIo4ovjX2Dp8aUAgKkRUzGjywyjhyBZorzt25H+/kKo09L0y2z8/OD72ly4DB5cp2262rli+eDleOXvV7Dn2h7M2jsLr8W9hsfaPWaiWlNzdyX3ClafWY3fLv2GYk0xAMDHwQePt38cI9uM1M/E1BQ5yhzR3b87uvt3B1B175CbhTdxs/AmtiVvAwDYSmxvzyxT1jvkhOIEZu2ZVSHPSIYyA7P2zMKivoua/EXLzqs7Lf4YiOrDGm46rOEYiJora/gdbi7fQWYPfjz22GNQKBR46623kJaWhqioKGzbtg2+vr4AgJSUFEgkhj0Gzp07h3379mH79u3mqDJVQRRFfBz/Mb4/8z0A4IXoFzAlYoqZa9Ww8rZvx40XZgJ35Q1Wp6frln+6uM4BEHsbe3zS9xMsOLQAG89vxHuH3kNGUQamR0236mASNRxRFHEk7QhWnVmFvdf36pe392iP8R3GY2jYUIvMm1FV75BTmaf0wZATihPIKcnBMcUxHFMc0/cOkQiSChcrgG7mGgECPjz8IfoF92uyTz40Wg0+OPyBRR8DUX1Yy02HpR8DUXNlDb/Dzek7yKyzvTRVeXl5cHV1rTFbrCmoVCps3boVw4YNs+hxfhqtBu8efBc/XfgJADA3bi7GtB9j5lo1LFGjwcUBAw16fBgQBNj4+qLVrp11HgID6G5Ylx5fii+OfwEAeLjVw3irx1uwkZg9dllv1nL+N3UqjQrbkrdh1ZlVSMpOAqDL59EnuA8mdJiAWN9Yqw+o3dk75IRCN1Tm/K3zlV6s3E2A0KCfjyiKdd6+KIpGHcPKISvR1a9rnfZB1JDq8zug0Wow5KchBk8q7yRAgI/cB1se3tJkbzo0Wg3u//n+ao/BV+6LbY9ua7LHQPXDayHLtvPqTry458Uay3nae8JR5giZRAYbiY3B685lMokMNkLZ/0tv/39l5fXrCWVly/6/2rJ3/b8AAeO2joOiSFFpvRvjO8gUbcDY+3fLv3sis1NpVXhj3xvYemUrJIIE83rMw8OtHzZ3tRqcMj6h6sAHAIgi1GlpUMYnwLFbXNXlaiAIAp6JegZeci+8d/A9/HzxZ2QXZ+PjPh/Dwcahztsl65dbkosN5zdg7dm1+h81e6k9Hmr1EMa1H4cw1zDzVrARVdY75OcLP+Ot/W/VuK4IEQ39nKCht//RkY8wOHQwIr0j0cmrE+QyTuNOli8xI7HKoAGga7vpynTEroltxFqZlggRaco0JGYkMoBJZGYqrQrns8/jmOKY/mHKjYIbRq2bVZyFrOKsBq6h6VnbdxCDH1QvJZoSvLL3Fey+ths2gg0+6P0BhoQNMXe1GpQmPx9Fx47h1rofjSqvVlQeSa2tkW1GwtPeE6/+/Sr2Xt+LKdunYEn/JXC3dzfJ9sl6JOcmY/XZ1fj14q/6fB7eDt4Y034MRrQeATd7N/NWsIkIcg4yqtwnfT9BlE9Ug9RBpVJh165dGDBgQJ2edhzLOGbUE6ek7CR9rx+JIEEb9zYGyWCDnYOtvvcPWZ+UvJSaC1kJhdI01xJEZLysoiyDfGKnM0/rr6tq6/Vur6ONexuotWrdS1RDpVVBpVXdXnbH687lKq1KV16j0q9bVdkK5cXqt12qKYUW2hrrby3fQQx+UJ0pVUrM3D0TB24egK3EFp/0+wS9g3qbu1omp0rPQFFiApTxCVAmJqLk3DlAW/OXRDkbb2+T1aV/SH98PfhrPLfrOZxQnMCEPyZg6aClCHQKNNk+yDKJooj49HisOq3L51E+FKKdRztM6DDBYvN5NKRon2j4yn2RocyodOhIeVfPhhynq7JRwVniDC8HrzoFP/oF96vxGNzt3TG502TdDDmK40grTNMHQ348pwvieth7GEwT3NGzI3uHUJN1Oecy1iatxc8Xfjaq/Gf9PkO0b3QD16puEtMT8fzu52sst+XKFrR2b43W7q0boVZEzY9aq8b5W+dvBzsyjuN6wfUK5ZxtndHZu7P+4UEHjw4YsXlEjdcSI9uMbJJD146kHcHkPyfXWM5bbrr7GXNi8IPqJL80H8/teg5HM47CwcYBS/ovQZx/3Yd2NBWiKKL0yhUoExJQVBbsUF27VqGcLCQEDl26oGD3bmjz8qrcntTLC/LYGJPWMconCt/f9z2e2vkUkvOSMW7rOCwduBRtPTibUXNUns/j+zPf42z2Wf3yvkF9Mb7DeHT168on+lWQSqSYEzcHs/bMggDB4KJFgO4zmx03u0lerJQz5hje7P6mQaKy9MJ0gydZZ7LOILs4G3uu78Ge63t02xWkt3uHlAVEgpyCeC6R2Wi0Gvxz4x+sPbsWB24e0C+XClJoRE2l65TfdPQO6t1k23HvoN7VBjDL/X39b/x9/W/E+cVhTLsx6BPcxypyfxGZS3ZxNk4oTuBYhm4Iy+ms0yhSF1UoF+4arv8djPKOQphrGCSC4WQclnwtYeyDoGifphlAri1+a1Kt3Sq+had3Po0zWWfgbOuMLwd+iUjvSHNXq05ElQrFZ89CmZAIZUI8ihISobl1y7CQRAK7dm0hj46BPDYGDl2iIfP1AXDHbC9AhRlfAEBbWIjikyfhEBVl0nq3dGuJ1fetxtM7n8bFnIt4YtsT+LTfp1YRgCLjlOfz+OHsD8goygBwO5/H2PZj0cK1hZlraBkGhg7Eor6LKp3ebXbcbIvIbl7bY/B19MVgx8EYHKabiapUU4ozWWcMAiIZygyczT6Ls9lnse7cOgC63iF3DpXp6NWReYeoweWV5uHnCz/jh6Qf9GPrJYIEfYP6Ykz7McgrycNLe18CAIu76QCMC2A+G/Uszt86j79S/sLhtMM4nHYY/o7+eKztY3i09aMcykhUA7VWjYs5F3E84/bvXEp+xWFzzjJnRHhH6H/nIrwj4GJb8+QXlnwtYQ0PgmqDs71UgrO9VE2hVGDq9qm4lHsJHvYe+GrQV2jn0c7c1TKatrAQRcePlwU7ElB0/DjEIsMor2BnB4fOneEQEw15TCwcukRB6uRU5Tbztm9H+vsLDZKf2vj6QiKXo/TKFQhyOYK/+ByO3bub/HjySvPw/F/PIyE9ATKJDO/3eh9Dw4aafD8NxdLO/6bgat5VrD6zGr9e+lX/hMLLwQtj2o3ByDYjeRFcRxqtBokZiVAoFfCWeyPaJ7pRfuhN2QZMeQxphWm6hG4ZuoRuZ7LPQK1VG5SxEWzQ1qPt7YCITyQCHAPYO4Rqpao2cPHWRaxNWovfL/+u/65zsXXBo60fxWPtHjMY7rnz6s4KNx1+cr8mf9NxJ2OOIa0wDT+e+xEbz29ETkkOAMBOaof7W96PMe3GsAeoheK1kOndKr6ln9ntuOI4TmaerLRXR0vXlgZB/ZZuLSv06qgNc11LmII5v0cbc7YXBj8qweBH5VILUjFl+xRcy78GH7kPlg9ejpauLc1drWqpMzOhTExEUUIClAmJKD57FtAYdo+VuLpCHh2t69URHQ2Hjh0h2NrWaj+iRqOb/UWhgI23N+SxMRBLSnB9+nQU7j8AwdYWgYsXw7l/P1MeHgBd0tm5/8zFjqs7IEDA7LjZGNt+rMn30xAs6fxvaNX9YIqiiIT0BKw6swp7ru3RR+XburfFhI66fB620tqds9Q0WEobKNGU4GzWWRxXHNd3Ea5sWjwvBy+DC8kOnh1gb2Nv1D4s+aIRsPz6m8udbUAilWDP9T344ewPOJR2SF+mtXtrjGk3Bve3vL/K3kbW8PkbewzF6mL8ceUP/JD0g8FwxxjfGIxpNwb9Q/pzSIwFsZTfgYZW1zas0Wp0vTrKAh0nFCeQnJdcoZyjzBERXrpeHVE+UYjwioCrnWsDHInlsuQHQQx+1AODHxUl5yZjyvYpSFemI9ApEF8P/tromRIaiyiKUKWkGAxhKU1OrlBOFhAAh5gYyGNiII+Jhm14OARJ3aO81dGWlODGrJdQsGsXYGODgA8/gOv995t8PxqtBh8c/kDfPX1Sp0mYGT2zXtHrxmAp539Dqyza7iv3xctdX4Zaq8aq06sMLnB7B/XGhA4TEOcXx6fsFs5S24AoirhZeNMgMVxSdhLU4l29QyQ2aOfeDlE+UfqAiJ+jX4Xztqo2MCdujkU8ubf0+puTSqXCxt83orBlITZc2IDUwlQAuqEt/YP7Y0z7MYj1jeV3XSVEUcTRjKNYm7QWO6/u1Oc+8ZX76obEtHkUHvYeZq4l1cRSfwdMqTbfobkluQbDNE9lnkKhqrDCNsNcwgzyVoW7hltcQLS5YPDDzBj8MHQu+xym7ZiG7OJstHBtgeWDlsPX0dek+6is54Qgrf4LStRoUJyUhKKyISzKxARoFJmGhQQBdq1b64ewyGOiIfP3N2ndayKqVEh97XXkbd4MCAL83pkP95EjTb8fUcSKUyvwaeKnAIAHWz6I+ffOh0zSNM8rwDLO/4a28+pOzNozq9pEd4Cua/N/wv+DcR3GNckeV3Vpw2RdbaBYXWyQO+RYxjFkFWdVKOfj4KO/GI30jsTNwpuY/ffsCm2gfKzxor6LmnQAoao2bCn1N6dz2eew5swa/H7pd6igAgC42bnphra0fQz+To37e23J0gvTsf78emw8vxHZxdkAAFuJLe5rcR/GtB+DDp4dzFxDqoo1/Q7URU3foa/EvgJ7mb0+X0dlvTrkNnKDXB2dvTpzGLAFaczgB/vEUbVOKk7i6Z1PI680D+082uGrQV+Z/ClCpTkz/Pzg+9pcuAwerF+mLSpC0YmT+mlni44dg7bQMNIryGSwj4iAPCZa17ujSxdIXc3bpU2QyRDw4QeQOMqRs+5HpL35FrSFhfB84gnT7kcQMCViCrwcvDBv/zxsvrwZ2cXZWNR3EaesbKLKe+xUF/iQQIKnI5/G6Haj4W7v3oi1M56xbZism72NPaJ9o/VTioqiiBsFNwye0J3LPoeMogzsuLoDO67uqHZ75e3i3YPvwtXOtUn2ZNOKWrxz4J1K27AIEQIEfHj4wwadLtnSqLVq7L62G2vPrkV8erx+eVv3thjbfizua3Gf0UOl6DZfR1/M6DID0zpPw5/Jf2LN2TU4k3UGv176Fb9e+hVdfLpgTLsxGBA6oEk/FKHmpbrroPJlH8V/VOG9UJdQgyGWrdxa8TuWjMLgB1XpSNoRTN81HUq1EpHekfhi4BdGZTyuDf1sKXd1QFKnp+PG8y+geOpUiBoNihISUHTmDKBSGZSTODnBIbqLvleHfUQEJHZ2Jq2jKQgSCfzefhtSJydkfb0CGR98CG1BIbyee9bkXXmHtxoOD3sPvLz3Zfyb+i8m/zkZnw/4HJ4OnibdD9VfYkaiQRfPymihRaxfbJMOfFTZhl+YCXy6mAGQZkoQBAQ5ByHIOQj3t9QN9ytSF+F05ml9MCQ+LR75qvxqt5NdnI3Jf05ujCqbnAgRaco0/Jv6L3oH9TZ3dczqVvEt/HThJ/x47kekFeoCpVJBiv7B/RGaHYpnhj4D21rm26KKynsJPtjyQRxXHMfapLXYkbwDRzOO4mjGUfg4+GBk25EY0WYEvBy8zF1dasa0oha/X/69xusgAGjn3g69gnrpenV4d26y10TU9DH4QZXad2MfZu6eiRJNCbr5dcNn/T8zee8BUaNB+vsLK50itnxZ1vLlBottfHx0iUnLcnbYtW5tMV3rBUGA90svQeLkDMXixchcsgTaggL4zH7V5AGQ3kG9sWLwCjy36zmczjqN8X+Mx1cDv0KwS7BJ90N1p1QpsfnSZqPKKpQVE0s2BTW2YUFA+vsL4TxggMW0U2pYDjYOiPWLRaxfLABgy+UtmPPPnBrX83LwgpOs6lm3zKVAVYDMosway03fNR1t3NvoE+1Fekci2Dm4WeSxOJt1FmuT1mLr5a0o1ZYC0E2b/GjrRzGq7Sh42npi69atzeKzaEyCICDKJwpRPlFQxCqw4fwGrD+3HhlFGfj82OdYdmIZhoYNxZj2Y9DJq5O5q0vNQKGq0GAGluOK48gvrT74XW5Sp0kY1nJYA9eQmgMGP6iCHVd34NW/X4Vaq0afoD74X9//wU5q+t4UyvgEg27yVXHs0weuw+6DQ0wMZIGBFn2BJAgCvJ5+ChJHR6QvWIDsb7+FtrAAfvPmmfzmMMI7AqvuW4Wndz6Na/nXMO6Pcfhi4Bfo6NnRpPuh2kktSMW6pHXYeGGj0T/63nLvBq5V3dTYhkUR6rQ0FP77L5x6N++n3lQ5H7mPUeU+6v0Ruvp1beDa1N6RtCNG9UoRIeLcrXM4d+sc1p9fD0AXAOjs3VkXEPGOQkevjlXOZGJpVFoVdqXswg9nf0BiRqJ+eQfPDhjTbgyGthiqv65Q3dWjk0zPW+6NZ6OexdSIqfjz6p/44ewPOJF5Apsvb8bmy5vR2bszxrQbg8GhgyGTckgM1Z8oikjJT9EnxD6mOIaLORehFbUG5WQSGVTamr8Dmup1EFkeBj/IwG+XfsOb/74JrajF0LCheL/X+w02NlStMO5ptuuDD8L1AdPPkGJOHuPHQeLoiJtvvIGcDRuhLSxEwIcfQjBxoqsw1zCsHrYaz+x8BknZSZi0bRIW912MewLvMel+qHqiKCI+PR5rz67FX9f+0v/4BzoGIq80r8pu/wIE+Mp9Ee0T3ZjVNVrxqVNGlbv29DOw79TJYEppGw/OQEBAtE80fOW+yFBmVDrmu6m3AWPrv2rYKpzKPKWfJvhM1hlkF2djz7U92HNtDwDARrBBW4+2+jHsUT5R8Hf0t6iAf1ZRln5oS4YyA4DuuAaFDsKY9mMQ6R1pUcdjbWRSGR5o+QAeaPkATipOYm3SWmxL3oYTihM4oTiB/8b/FyPbjMTINiN5s0m1UqQuwqnMU/pgx3HFcdwquVWhXIBjgH4GlijvKIS7heOBnx+w2N8AsjwMfpDeuqR1WHBoAQDg4VYP4+0ebzdo8iBNgXFPvW28rfMH2O2RhyGRy3HjlVeQt/UPaJVFCFz8CST2pk305uXghW+GfIOZe2bi0M1DeG7Xc3jn3nfwYPiDJt0PVVSiKcHWy1ux5uwanLt1Tr+8m383jGs/Dr0Ce2H3td2YtWcWABj88JdnOZ8dN7vJJfEqOnkSWcuWIX/HTuNW0GpRfOIEik+cQPa33wIAbFu2vJ2YOCYGsqAg3hQ1Q1KJFHPi5mDWnlkQIFhMGyhnbP39Hf3h7+iPQaGDAAClmlKDmXGOZxxHRlEGTmedxums01ibtBYA4O3gbTBUpr1n+wbpiVlfp7NOY+3Ztfjjyh/6p7ge9h4Y1XYURrYZaXQPH2o8Ed4RWOi9EC/FvoSN5zdi/bn1UBQp8OXxL7H85HIMDh2Mse3HorN3Z3NXlZoYURSRWpiqD+aWJ7Mun2q5nEwiQwfPDojyjtLP8FXZd4El/waQ5eFUt5VojlPdrjy1Ep8kfAIAGNt+LF7t+mqDZdYXNRpkLV8Oxf8tATSaqgsKAmx8fdFq106rzhdQ8PffuD7jeYglJZB364agzz+H1MnR5PtRaVR4/d/X8ceVPwAAL8W8hIkdJ5r1hrOpnP+mll6Yjh/P/YiN5zfqn3zYS+3xQPgDGNtuLFq5tzIoX9n89n5yP8yOm91kpsgURRHKgweRuWwZlAcO6pcLdnYQS0oqX6msDYeu+g5Fx45BmZAIZUI8Si9eqlDUxsfHYEpquzZtrLrdl7PWNlBbltAGqlPf+ouiiLTCNBxTHNMHQ5Kyk6AW1QblZBIZ2nu21w+VifSONPnU88ZSaVTYcXUH1iatxXHFcf3yCK8IPN7ucQwJGwJbac0JTNkGmgaVRoWdKTux9uxaHFMc0y/v5NkJY9qPMfrvSbXX1NtAiaZEF6wt69FxTHGs0lxHd05jHuUThfYe7Y0+Zyz9N4DqpzGnumXwoxLNKfghiiKWHFuCZSeWAQCmRkzFjC4zGuyGuPT6DaTOno2ihAQAgH2XKBQfPQYIgmHSxLL9BzaTmSKUR47g2tPPQFtYCPvIzgj56itI3dxMvh+tqMX/4v+HVWdWAQDGdxiPl2NfhkSQQKPVIDEjEQqlAt5yb0T7RDd4pN3c578piaKI44rjWHN2DXZe3am/afF39MfodqPxaOtH4WpX9bTL5vj8jSFqtcjftQtZy5aj+ORJ3UKpFK4PPADPKU+i5MoV3awugNFtWH3rFoqOHoUyIQFF8dXM5NSlC+QxMbqZnDp3bpIzOdWXNbWB+mqqbcBYpq5/kboIZ7LOGDxdzS7OrlDO39HfYKhMW4+2DTqVaWZRJjac34AN5zZAUaQbvmojscGQsCEY025MrXsKsA00PVX15BnRZgRGtRlltoCbtWpqbSCtMM2gV9qZ7DNQaw0DsTaCDdp5tNMPX4n0joSfo1+97h8s/TeA6o7BDzNrLsEPURTx0ZGPsPrsagDAzOiZeDLiyQbbX+7mzUib/w60BQWQODrC98034PrQQ8jfsQPp7y80SJxo4+cH39fmNovAR7mik6dwbcoUaHJzYde2LUJWfA0br4aZhu6709/hv/H/BQDcF3Yf+of0x3/j/2sQcfeV+2JO3JwGjbg3tR/8ulBpVNiWvA1rz67FqazbOTBifGMwtv1Y9AvuBxuJ5Y0wFFUq5P6+BVlff43SS7qeGoKdHdxGjIDn5EmQBQbqy+Zt316vNqwtKkLRyZMoSkiAMiERRUePQltYaFBGkMl0eUPKh8p06dIgAcLGZg1tgBqHKIq4nn/9du8QxXGcv3W+QgJBO6kdOnp21D+BjfSONGpK05puPO7MEVF+I+Tl4KUf2lLXaVPZBpqu7OJs/HT+J6w7t84gh8vA0IEY235shRwuln7zaq76m6oN1KX+Ko0KSdlJBt8r5VNR38nD3sNgCF5Hz46wtzHtMG1qvhj8MLPmEPzQaDV49+C7+OnCTwCA17q9hsfbPd4w+8rLQ9o77yLv998BAA5duiDg449gGxSkLyNqNLqZIxQK2Hh7Qx4b0yy6vN+t+Px5pDz5JDSKTNiGhiLkm5WQBQQ0yL5+v/w73vz3zQrR/HLlYy0X9V3UYAEQS77ozSzKxIZzG7D+/Hp9909biS2GtRyGMe3GoL1nezPXsG60RUXI2fgTsr5ZCXXqTQCAxNkZ7mPGwGPCeNh4ela6ninbsKhWo+T8eSjjE6BM1A2V0SgqdrG1a93aYKhMQ7WVhmTJbYDMT6lS4mTmSYOpI3NLciuUC3IK0t+0RHpHorV7a4OgbGVdzn3lvng59mWoRTXWnl2Lk5kn9e9FekdiTLsxGBQ6qN6zg7ANNH0qrQp/pfyFtWfXGsze096jPca0H4P7WtyHf67/U+k51NAPUUylqjbQGPU3RRswtv6ZRZn64SvHFcdxOus0SjSGQ1clggRt3dveno3KJwpBTszLRQ2HwQ8zs/bgh0qrwuv/vI4/kv+ARJDgnXvewUOtHmqQfSmPHMGN2bN1N1FSKbyefQZeTz0FwcbynoQ3ltKrV5EyaTJUqamw8fdH6DcrYRsW1iD72ndjH57d+WylGbaB21m2tz26rUGefljiRe/prNNYc2YNtiVv03cH9nHwwWPtHsOINiPgYW+Zs5ho8vJwa+1aZK/6HppsXdd6qZcXPCZOgPvo0ZA6O5utbqIoQnXtWlkwRDdUpjQ5uUI5mwB/yKNj9DPK2LVqBUFiXO4icwVgTdkGGEQmURSRnJdsMFTmUs6lCt/xDjYOiPCKQKR3JABg+cnlNW5bJpHhvhb3YUy7MejoZbop003VBqzh/LeEY0jKTsLas2ux9cpW/U2zo40jCtWFFco2xkMUU9h5dSdm7ZlVoZ00Vv3r2waqq78IEY+0fgQlmhIcyziGGwU3Kqzvaud6e+icdxQ6eXWCXCav8/E0Z5bQhqtjyddCxt6/8w60mSnRlODlvS9jz7U9sJHY4MNeH2JwmOmHlogqFRRLPkfWsmWAKEIWHIzAjz+CQ1SUyfdlbWxDQxG6dg1SJk1G6ZUrSB43HiErvoZ927Ym35ed1K7KwAegm30kTZmGxIxEdPXravL9WwqVVoVdKbuw5swag0Rwnb07Y1z7cRgYOrBBx9g3JFVGBm6tWoVbP6zTDzWRBQXB88nJcH34YZPPPlQXgiDANiQEtiEhcHvkYQCAOisLysREFJX1Dik+cwbq1JvIS/1d38tM4uoKeZcu+t4h9p06QmJbMflafYftNAXWcAxUf4IgoIVrC7RwbYGHW+vaSn5pPk4qTuq7tZ9QnECBqgCH0w7jcNrhGrcpgQTPRD2DkW1GwtOh8p5f5mYN57+lHEM7j3Z45953MCtmFn668BN+SPrBoLfBncqvL97a/xZSC1IbLJF+fWhFLZYeX1rptVBj1V+j0eBMyRnkJOVAWssbTWPqv+nCJv0yAQLC3cINeoKFuYSxV4cJWEobroql199Y7PlRCWvt+aFUKfH87udx6OYh2EntsKjvIvQO6m3y/ZRcuYLUV15F8Sld/gPXRx6B72uvNcgMJtZMnZWFlClTUXL2LCSurghZ9hUcIiNNuo+tl7di9j+zayw3tv1YTOwwsd7JrO7W1Ht+3Cq+hZ8u/IR1Sev0F3flif3GthuLCO8IM9ew7kqvXUPW1yuQ+/PPEEtLAeiGkXhOmwqX++6zuN5Z2sJCFJ04cbt3yLHjEIuKDMoIdnZwiIjQ5QyJjYFDVBQKDxzQJWy9+6ewkZIum+Rpx/btZj0GsixaUYtLOZdwXHEcO6/uxL+p/9a4zsohKxssAF7fNmAN578lH8PB1IOYumOquatBNXgo/CEMazEMEd4RcLY1X09Oa2XJbRgwf/3Z84NMLq80D8/tfA7HFMcgt5FjyYAlJr+QEUURORs2IH3hBxCLiiBxdYX//PlwGTrEpPtpLmw8PRH63be4Nu0pFB07hpRJkxH05Zdw7BZnsn14y72NKrfm7BqsObsGnvaeiPCKQEevjojwikAnr07VzmBiqc5ln8PapLXYcnmLvluvh70HRrUdhVFtRhn9uTVFxefOIWvZcuT98Qeg1SVKdOjSBZ7TpsKpTx+jh4k0NRJHRzj26AHHHj0A6HqfFSclQRmfgKJEXSJVTXY2lPHxUMbHI+sr6H7UpdKKP/aAbpkgIP39hXAeMKDJdlsVNRqkv7/Qoo+BGpdEkKC1e2u0dm8NuY3cqOCHQqlohJrVnjWc/5Z+DJXNQFSZSO9IBDg1vbxMqQWpBlM1V6Uh6y9qRaSmpiIgIACCpHYPmIyt/z0B9+CewHvqWkWqhqW3YUuvf20x+NEMZBdn4+kdT+Ns9lk42zpj6cCltZ6KribqW7dw8403UbBrFwBA3r07Aj5YCJmfn0n309xIXVwQsuJrXJs+HcoDB3Ft2jQEfroYzn37mmT70T7R8JX7IkOZUeXwFwcbB4Q6h+JCzgVkFWdhz/U92HN9j/79EOcQfTAkwisC7TzaWWQGcI1Wgz3X9mBN0hocSTuiX97eoz3GdRiHoWFDjZ6vvilSJiYi66tlKNi7V7/MsWdPeD01DQ6xsVbX5VWQyXS9PCIigElPQBRFlF5J1gVCyobKqFJSAHXlCX8BAKIIdVoaLvTr33DDf0QRYUolri75XP+EpTa0xcXQZGRUu311WhqU8QkmDZySdTA2kNtUA77K+ASDLtoVNEYbridLb8PGnhsvRL/QJIfPHkk7gsl/Tq6xXEPWX//U+97aP/U2tv5NtQ1bg8L4eIv+HrL076DaYvDDymUoMzB1+1Rczr0MD3sPLBu0DG09TJs7omDfv0idO0c3G4NMBp+ZM+Ex6QmLfYLc1EgcHRG8dCluzHoJBbt24fr0GQj86EO4DBtW721LJVLMiZuDWXtm6RNjlStP9PV+z/cxMHQgitXFSMpOwqnMUziZeRKnMk8hJT9F//rjyh+6bQpStHZvjU5enXS9RDw7ItwtvMlO95pbkoufL/yMdefW6ROBSQWpfiq/KO8oiw0MiKKIwn/+QeayZSiKT9AtFAQ4DxkCz6lT4NDRdEkLmzpBEGDXsgXsWraA24gRAIDsNWuR/u67Na6ryciApgHrZgtAlZXVgHsAbq1ZA2g1cIiMhETORHakU1MAvDzpdbRPtBlqVzO1wrgeKQ3dhhuDscfa2Cz9HGL9qbZEtRrFZ5P0D1MKDhwwaj1L/x5qqt9BtdU070bIJG4U3MCUP6fgesF1+Mh98PXgr9HCtYXJtq8tKYFi0SJkf7cKAGAbHo7A/34M+/aWOcVnUyaxs0PQ4k+QOvc15P3+O2689DK0SqX+Jq4+BoYOxKK+iyqdIm123Gx9hnN7G3tE+UQhyidKXya3JBenM0/rgyEnM08iqzgLSdlJSMpOwsbzGwHoeo+092ivHyrTyasTAp0C6133+riccxlrzq7B5subUaTW5YZws3PDiDYj8Fjbx+DnaLm9lkSNBvl//onM5V+j5OxZ3UKZDG7DH4Lnk0822OxBlsauVSujyvm++QbsO3RokDqo1RocOLAfPXrcAxub2ncnLT5zBunvvldjufzt25G/fTsglcK+QwfIY2LKEsHGwMbDMmcoovozJgA+O252g8z2VV/FSUnI2bDBqLIN2Ybry9g2rCkoaITa1J4ln0MA60810yqVupxiCQkoSkiA8thxiEplrbfTVL+HjP0OsvG2jt5DTHhaCUtMeKrRapCYkQiFUgFvuTfc7d3x1I6nkKHMQJBTEJYPXo4g5yCT1bv43HmkvvIKSs6fBwC4jxkDn1dehsTBwWT7oIpErRZp899Bzo8/AgB8586Bx8SJJtn23edQtE90rX8sRVFEujJdHww5lXkKp7NOo1BVcQo8dzt3dPTsCNtsWwzvNhyRfpENPk2sVtRi3419WH1mNQ7cvB2pb+3eGuPaj8OwFsMscshOOW1pKXJ/+QVZK1ZAdTUFACDI5XAfNQoek56AzNfXzDVsWkSNBhcHDIQ6Pb3ysa6CABtfX7TatbPBxrnW9zegxmMAIHFxgWOvXihKTIT65s0K79u2aFE2PbAuEawsKMhieztR3ey8urNCANxP7mcQAG8otW0DyoQEZC5bhsK9f9e88UZow/VlTBsu53jPPfCcNg3ybnFNro2a8xwyBUtqA5Wx9M+/KVFnZ6MoMVE/RLb4zJkKQ2QlLi662eRiY+DQpQtSX3oZ6owMs11L1Ic1XAsBxt+/M/hRCUsLflT2hVce/Q13DceywcvgI/cxSX1FrRa3Vq9Gxn//B7G0FFJPT/gveM9kOSioZqIoIuPj/yJ75UoAgNeM6fB69tkmdyFUTqPVIDkv2WC4zLlb56DWVsy1EOgUaNA7pL1He6Pnmq8ueFNQWoBfL/2KtWfXIiW/LCgAAf2C+2Fs+7Ho6te1yX5+xtAUFCJn/Xpkf/ut7scXgNTVFe7jx8N97BjYuLubuYZNlz7DOWD4o29JGc5rcQyq1FQoExL0T7BKLlyssD0bb2/djDgxMZDHRMOubdsmecFGpmWKAHhdGNMGRFFEwd69yFq2HEWJibqFEglchg6BfacIZHz8cXnB2ytZyCwLQA1tWBThEBuLoqNHAY2u07x9ZGd4TZsGp379mtQQY3OdQ6bSlNuAMSz98zcHURShun79dq+OhESUXr5coZyNn5/uN7HsQYFd61YGbc/c1xL1Ze76M/hhZpYU/Nh5dSdm7ZlVZbLKd+99F8NbDa9nLXVUGRm4Ofc1FP6rywzv1KcP/Be8BxsvL5Nsn4wniiKyli6F4tPPAAAekybB59VXLOYGvkRTgvPZ53Es/Ri2n9iOHIccJOclVygnESRo5dZKHwyJ8IpAuFs4ZBLDtlJZANBX7osnOz2Jq/lX8cvFX/S9T5xlznik9SMY3W60SXtDmYP61i3c+n41stesgTY3FwBg4+sLj0lPwH3kSEgcOb20Mcw5t72pLnrregyanBwoE4/qxy4XnT4NqFQGZSSOjnDo0qXsoi8aDp07N8mkbWSZqmsDolqNvG1/Imv5cpScOwdAl8zY9eGH4fnkZNiGhgIwbxs2lZqOofT6dWSvXImcjT/dMT15K3hOmQKXYcMgNMHp4sk4pvodoJqJGg1Kzp+HMiERyoR4FCUk6h8a3cmudSt9b0h5dDRkgTUP1bb07yFLvxZi8KMeLCX4odFqMOSnIQY3fHfzk/th26Pb6h35zd+5EzffeBOanBwIdnbwnTMbbqNHW8zNtrXKXrVKNz0VALeRI+E3722LekJ75/lfJBbhTNYZ/XCZk5knkaGs+INkL7VHO492+mBIXkke3j/8fpUBwHItXFtgbLuxeDD8QaN7kzRVqps3kfXNN8jZsBFikS5fiW1oKDynToHLf/4Dia3lzkpjLqJGo5s5QqGAjbc35LExjdKWTHnRa4pj0BYXo+jECV2X34REFCUmQlt417A1mQwOHTveHioT3QVSN7d61Z2ar8ragLakBLk/lw3hu3YNACCRy+E2ejQ8Jk6EzLdib1ZztWFTMuYY1JmZyP5uFW798AO0ZXlAZAEB8HhyMtwefZSBSQvE4EfD0ZaUoPjEibJgRwKKjh7Vtxu9st80XR6sWDh0iapzj1lL/x6y5GshY+/fmfDUgiVmJFYb+ACANGUaEjMS6zw9l1apRPrCD/RJxezat0fgfz+GXXh4nbZHpuUxYQIkjo64+eZbyNmwAdrCQgR8+IFFPgFysXVBd//u6O7fXb8svTAdp7JO6ZOqns48jXxVPo4pjuGY4phR27WT2mFx38W4J/AeSISm0z24LkouX0HW118jd/Nm/dN5uw7t4TVtGpwHDbKoH9imRpBKLX4KN1Mcg8TeHo5xcXCM021H/5QsPgHKxAQUlV0UFR07hqJjxwCsAFC3p2REd9MUFCLnx3XI+vZb3QxyAKRubnCfMB4eY8ZUG2RrLm3YxssLPi/Ngue0qbi19gdkr1oFVWoq0t99D5lffAmPCRPgPuZxSJ2dG6nWRE2HJicHyqNH9UNYik+dglhTb8aICJPlLLT07yFLr78xGPywYAqlcVMOGVvubkUnTyH1lVdQmpwMCAI8Jk+C9wsv8KlyE+P26KOQyOW48cqryNu6FdqiIgQu/gQSOztzV63efB194evoiwEhAwDoEpam5KXoc4ccTD2Iy3kVx2beqURTAjsbuyYf+Kgu2l506jSyli1D/o4d+rGY8rg4eE6bBsd772EPLGowglQK+/btYd++PTzGj7s9Pjo+QT9UpvTKFZRcuIiSCxf1yZht/P0hj47WP0m7e3x0ZfjErPmSFhQg6/+WIHfdOmjz8gDoult7Tp4EtxEjOD1zJaTOzvB6aho8Jk5Azk8/IXvFSqhSU6H45BNkLV8O98d1vWQ4NJksRV2+Q3V5rG4PYSm5cKFCGam3F+QxscxjRQAY/LBo3nLjphwytlw5UaNB1vKvoViyBFCrYePri4APP4Bj9+41r0xm4XLffZDI5bj+/Aso2L0b1556GsGfL7G6nA8SQYIw1zCEuYbhwfAHsfXyVsz+Z3aN69U1ANhYKh9n6Qu3ESNRlJiIwv379cud+veH17SpcIiKMkNNqbkTBAG2wcGwDQ6G28PDAegy4+uSxem6FRefOQP1zZvI27IFeVu2ALgjM35Zwjj7Tp0MAukcK908qVJToVixAi3Wb8Ctsqezti1awHPKFLg++AAEPmypkcTeHh5jx8J91Cjkbd2KzOXLUXrxErKWf43s71bB9dFHdFOcB1l2jiuybsZ8h4paLUouXrxjJpYEqFMrn8GsPPAuj4mGLDiYD4lIj8EPCxbtEw1fuS8ylBmV5jsQIMBX7oton2ijt6m6cQM3Zs9GUXwCAMB56FD4z3ub47ktgFOfPghevgzXn34GyoMHkTL5SQQv+wpSV1dzV63BNFQAsDHpM2zflX5JnZaOzCVLdP+QSuFy/zB4TpkC+zZtGr+SRNWw8fCAy6BBcBk0CIBuuGTR8eO3n8YdOw5tXh4K9u5Fwd69AADB1hb2nSMgj44BJAKyln5VYbvq9HRd27CULPl3t2ELqb85lFy+jKzlZUP41GpIANh16ACvp56C88ABfCpbB4JMBteHHoLLgw+iYM8eZH21DEXHjyPnh3XIWb8BLsOGwXMqf0Oo6an2O/T5F5D/n/9Am5cH5dGj+uTuelIp7Dt00PU0LBt2aePp2XiVJ4vD4IcFk0qkmBM3B7P2zNJPbVtOgC7COTtuttHJTnN/34K0+fOhzc+HRC6H75tvwnX4Q4yWWhDHuDiEfPsNUqZOQ9Hx47g6YSJCVnxttd1eGyIA2JhEjUaXsLaavNOCXI4WP2+CXdmsBkRNnUQuh2OPHnDs0QMAIKpUKE5KMphKUJOdjaL4BH2gvVJl7eLma6+j5OKlJjWlZzlRq9VNO15ZGxZFQBCQ/v5COA/gDT2gG06btWwZ8nfu1H9mDnFdcSGiM/q88Dxs2dOj3gSJBM79+8OpXz8oDx9B1rJlKPz3X+Rt3oy8zZvh1K8fPKdNhbxLF3NXlaj666CyZXm//aZfJDg4wCEqUt+rw6FzZ6vr5UwNi8EPCzcwdCAW9V1U6TSfs+NmY2DowBq3ocnPR9o77yJv82YAgENkJAI+/gi2ISENVm9qOA6dOyN01SqkPPkkSs6dw9Vx4xGycgVkAQHmrprJmToA2NiU8QkGXTwrIyqVUKelM/hBFkuQyeAQEQGHiAjgiScgiiJKk5NRlJCAvG1/onDfvmrX1xYUIPOzzxqptiYmilCnpeHWhg1wHzECgk3zu+wSRRHKgweRuWwZlAcO6pc7DRgAr2lTYdOhA45v3coHLSYmCAIcu8XBsVucLm/U8uXI374dBbt3o2D3bsi7dtXljep5Lz97MgtVegZy1v9Y43UQALg9/jjcHnkY9u3aWWRSf2o6mt+vsBUaGDoQ/YL7ITEjEQqlAt5yb0T7RBt1w6eMj0fqq7OhSk0FJBJ4PfssvJ5+qlleoFkT+7ZtELb6e1ydPBmlyclIHjcOoStXwjYszNxVMzlTBADNQZOXh1s//GBUWbWiaecsIaoNQRBg16IF7Fq0gGDvUGPwAwAc4uJgGxLcCLWrndKUayg6fLjGcunz5iPjo4/hENkZ8rJZcaz9iaWo1SJ/1y5kLf8axSdO6BZKpXB94AF4TnkSdq1bA9BNcUgNy6FTRwR9ulg3Y9iKr5H722YojxyB8sgR3YxhU6fCefBg9k6iBiOKIkqvXIEyXpeYVJmYqJ/G2hjymBhdAJ2onniHayWkEmmtprMVVSooPv8cWcuWA1otZEFBCPj4I3aDtCK2YWEIW7MGKZPKAyDjEbJiBezbWt943/oEABubOjMT2d99h1s/rKs413wVbLybbs4Sovow9tz2fu65Jjn9XuGhw0gxIvghODpCLCyE8sDB270frHSsuqhSIff3Lcj6+muUXroEABDs7OA2YgQ8J0/iNMhmZNeyBQIWLID3jBnI/uYb3Fq/ASVnzuLGi7NgGxoKjylPwvWhhzirH9WbqFKh+OzZ29OkJyRCc+uWYSGJBLLgIKiuptS4PV4Hkakw+NEMlSYn48Yrr6L45EkAgOvw4fB943VInZzMXDMyNZm/P0JXf4+UKVNRkpSEqxMmIGT5Mjh07mzuqplcbQOAja30+nVkrViB3J82QSwtBQDYtgqHWpGpm9qxsvGuggAbX1/IY2MaubZEjUMeGwMbPz+o09Mtsg0YW//wHdtReuVKhVkKik+e1P0Wf/cdAMuepUBbVIScjT8h65uV+hkYJM7OcB8zBh4TxltFYMdayPz84Dt3Ljyffhq3Vq9B9urVKL16FWlvvoXMJZ/D44kn4D5qpFX3TCLT0hYWQnnsmL5XR9Hx4xCLigzKCHZ2cOjcuSzYGwOHLlGQODjg4oCBFvsbQJaHwY9mRBRF5GzciPSFH0BUKiFxcYH//Hlwue8+c1eNGpCNlxdCv/sW16Y9haLjx5HyxCQEffllk3yKao2Kz59H1vKvkbd1K6DRANDl1fF8ahqc+vZF/s6duizngmD4w192w+P72lx2RSarJUil8H1trsW2AWPrL5HJYN+mDezbtIH76NEAdNO86mfESUhEyYULKL1yBaVXriB3408AdE87HWJ0vULksTGwa9u2yX0Wmrw83Fq7FtmrvocmOxsAIPXygsfECXAfPRpSZ2cz15CqYuPuDu8Z0+E5eRJurd+A7G++gTo9HRkffoispUvhPm4c3MeNhY27u7mrSk2MOjMTyoREFCUmQBmfgOKkJP01Tjmpqyscyr67HKKj4dCxY6XTV1vybwBZHgY/mgn1rVtIe+st5O/YCQCQx8Uh4MMPIPP3N3PNqDFIXV0RsnIFrj03HcqDB3Ft2jQEffYpnPr0MXfVrJby6FFkLVuOgt279csc770XntOmQR7XVf8012XwYODTxRXnt/f1NZjfnshaWXobqGv9ZQEBcA0IgOuDDwAANDk5UB49qu8dUnTqFNQKBfK3bUP+tm0AAImjIxy6dNHNchBTljfE3r7hD7ISaoXi9hC+wkLdMQUFwfPJyXB9+GGz1YtqT+LoCM9JT8B97Bjk/vILslasgOpqCjI//xxZ33wD95Ej4TF5EmS+vuauKpmBKIpQpaTcHsISn4DSq1crlJMFBOh7dchjY2DbsqVRs3RZ+m8AWRYGP5qBgn//xc05c3VJE2Uy+Mx8AR6TJjXJaQOp4UgcHRH81VLcmPkiCnbvxrXnpiPw44/Y88eERFFE4b5/kbVsGZRHjugWCgKchwyB55QpcOjUsdL1XAYPhvOAAbrZXxQK2Hh7Qx4bwycd1GxYehswRf2lbm5w7tcPzv36AQC0xcUoPnmyrHdIAoqOHoW2oACF+/bdThIrk8GhY0f9UBmHLlEN/pS+9No13RC+TT/rh/DZtW4Nz2lT4XLffUyYbsEktrZwHzUKbo8+ivzt25G5bDlKzp5F9nffIXvtWrg+9B94Pvkk7Fq0MHdVqQGJajWKk87penUkJEKZmACNItOwkCDArnXrsl4dMbphevV4oGrpvwFkOfgLZSVEjabCF4aoVkOx6BNk3zGWOOC/H8OhY+U3YGT9JHZ2CPrsU6TOmYu8LVtw46WXoVUq4fboo5WeQ/zRMY6o0eguFJcvR8mZs7qFMlmtLhQFqZRDkahZs/Q2YOr6S+ztIe/aFfKuulxGokaDkgsXdL1CyrqaqzMyUHTsGIqOHUP2ipUAdLmEynOGyGNiYBMQYFTekJp+A4rPnUfW8uW6IXxaLQDAoUsXeE6bCqc+ffhAxYoIUilc7rsPzkOHonDfPmR9tQzK+HjkbvwJuT9tgvOQIfCaNhX2HToYrGfp1xHNtf7aoiIUHT+h79VRdOwYtEqlQRlBJoN9RIRu1pWYaMi7dIHU1dWk9bf03wCyDAx+WIG87dsrdBWTenpCsLWF+qYu6Zjb46Ph++qrkDg4mKua1EQIMhkCPvoQErkcORs24Obrb0CZkIjC/fsNuxv6+bG7YQ20paXI/fVXZH+9Qt8FVHBwgPuoUfCY9ARkfn5mriERWQtBKoV9u3awb9cOGDdW1xX9xo3bU0cmJKD08mWUXryE0ouXkPPjjwB03+X6G5aYWNi1blUhUFHZdUT5b4CNl5duCN+ePfr3HHv1gte0qXCIjbWYhKxUe4IgwKlXLzj16gVl4lFkLVuGgj179EOxHHv2hOe0qZB37Yr8HTuqPIcs4TqiujZgbfVX37qlG15XlnOo+PQZQK02KCNxdoZDdBf9EBb7Tp0gsbNrlGMhakgMfli4vO3bdUmC7sqQrMnKAgBInJwQ8PFH+m60RIDuItrvnfmQODkh+5tvkLtpU4Uy6vR03bn16WKL+OFvTNrCQl1yuG+/1WUoByBxdYUHk8MRUSMRBAG2QUGwDQqC2/DhAAB1dvbtm5rEBBSfPgN1WhrytmxB3pYtAACJiwvkXbroEqnGREOVno7Ul16ucB2hTkvDjedfuHOHcB46BF5TKz7xJ+snj+4C+dIvDXoAlQ/Bsg0LQ2lycoV1LOU6oqpraWupv/qtNyGVy8tydiTqp6C+k42v7+0gaWws7Fq1sqheL0TGYvDDgokaDdLfX1j51FBlJHI5nHr3bsRakaUQBAHeL81CzoYN0BYUVCwgioAgIP39hXAeMIA/gtA9Lbm1eg1urV4NTW4uAMDGxwcekyZxWkAiMjsbDw84DxwI54EDAQBapRJFJ07qZ5RRHjsGbV4eCvbuRcHevUZv13XEo/CaMgW2YWENVHOyFPZt2yDwvx/D+4XnkbViBXJ+2lRp4AOA/vo0/b0FcIiMbJLXEaJGg/R336v8WrqR6q9WqSHNz4c6MwuCrHa3ZkbVf/47Fd6ybRWu69UREw2HmFjIAo0bHkdk6Rj8sGDK+ASD7m2VUWdkQBmfwDF0VKmihMTKAx/lRBHqtLRmfw6p0tORvfIb3NqwAWLZOFhZaAg8p0yB60MPQVLJ1G1EROYmkcvh2L0bHLt3A3BHIsOEeN1wx4MHoc3Lq3E7rg/+h4EPMmAbHAz/efPgeM89hj2EKqHOyMDFPn0bp2INoDHqHw4g+b0FDbZ92/BwOPXpo0tQ2qULe6hSs8XghwVTKxQmLUfNj7HnRvr778PlvqG6edrNOLViYyu5ckU3q8GvvwEqFQDArn17eE2bCufBg5vkUywioqoINjZw6NQRDp06wmPiROT+/jtSX36lxvV4HUFVEUtVxhduij0Lquk9XUED1l8EUKetG1l/r2eegesD99dlD0RWhcEPC2bj7W3SctT8GHtulJw7B8W5c7p/lE2tqJ/eLLoLpG5uDVdJMyg+cwaZy5Yj/88/9RcW8thYeD41DY49e7JrKBFZBRtvHyPL8TqCKmfsuRHy3XdNsgdp4aHDSJk4scZyDVl/lUqFrVu3YtiwYZDJZLVa19j6sw0T6TD4YcHksTGw8fPTJVysLPIrCLoERrExjV85sgjGnENSTw94TnsKRUcTUVQ2hVr51IrACgCAXetWukBIbAzk0dGQBQY26nGYgiiKUB45gqxly1G4b59+uVO/fvCcOhXy6C5mrB0RkenxOoLqy9LPIdafqHlh8MOCCVIpfF+bq8vwLAiGX3plT6Z9X5vLrvlUJWPOIb+33tJlOZ8wXje14vXrUCYkoCghAcqERJRevoySCxdRcuHi7akV/f0hj47W9w6pbGrFpkLUalGwZy+yli0rC+gAkErhMmwYPKdMgX3bNmatHxFRQ+F1BNWXpZ9DrD9R88Lgh4VzGTwY+HRxxbm9fX0tZm5yMq/anEOCIMA2OBi2wcGVT62YkIDiM2egvnmz8qkVY2MgjymbL97MSUJFtRp5W7cia/nXKLlwAQAg2NrC9dFH4Dl5MmyDg81aPyKixsDrCKovSz+HWH+i5oPBDyvgMngwnAcM0M3+olDAxtsb8tgYRnnJaPU5hyqfWvHE7d4hx45XmFpRsLWFfecI2HfpArlaA02vXpB5eDToMZbTFhcjZ9MmZK9YCdWNGwAAiaMj3Mc8Do8JEzguloiaHV5HUH1Z+jnE+hM1Dwx+WAlBKm2SiaTIcpjqHNJNrdgdjt27AyibWvFsEooSE6CMT4AyMRGarCwUxSegKD4BQQCufPst7Nq2vT1UJiYGMl/fWu1X1Giq/dHX5Ofj1g/rkL1qFTSZmQAAqYcHPCZMgPuYxyF1can3sRMRWSpeR1B9Wfo5xPoTWT8GP4ioQQk2NnCI6ASHiE7wmDgRoiiiNDkZRYmJKDh8BFn79sE2KwslSUkoSUrCrbVrAQCyoCDIY6LhEKMbKmPbsmWVs6zkbd9esbunnx98X5sLeUwMsr9bhVtr10JbUKB7L8AfnpOfhNujj0Di4NDwHwIREREREZkVgx9E1KgEQYBdixawa9ECjv/5DxK2bsXgrl2hOnESykRdb5DipCSorl9H7vXryP31NwCA1M1NHwiRx0TDvkMHCDIZ8rZv1yX6uivLuTotDTeefwGwsQHUagCAbXg4PKdOgev990Oo5XRyRERERERkuZpE8OPzzz/Hxx9/jLS0NERGRuL//u//EBdXebetvn37Ym9Z3oA7DRs2DFu2bIFKpcIbb7yBrVu34vLly3B1dcXAgQPxwQcfICAgoKEPhYjqwMbbGw5Dh8Bl6BAAgKagUDedbtlQmaITJ6DJyUHBrl0o2LULACDY28O+c2eUnD5d+fRu5dRq2EVEwPupaXDq37/JzjpDREREREQNx+zBjx9//BGzZs3C0qVL0a1bNyxevBhDhgzBuXPn4OPjU6H8pk2bUFpaqv93VlYWIiMjMXLkSACAUqlEYmIi3nzzTURGRuLWrVt44YUX8J///Afx8fGNdlxEVHdSJ0c49bwXTj3vBQCIpaUoPnNGP6NMUUICNLm5KDp82Kjt+bz8Epy6dWvIKhMRERERURNm9uDHokWLMHXqVEyaNAkAsHTpUmzZsgUrV67EnDlzKpT3uGtGiHXr1kEul+uDH66urtixY4dBmSVLliAuLg4pKSkICQlpoCMhooYi2NrCISoKDlFR8HxyMkStFqWXLyPr2++Qu3FjjetrFJmNUEsiIiIiImqqzBr8KC0tRUJCAubOnatfJpFIMHDgQBw4cMCobaxYsQKjR4+Go6NjlWVyc3MhCALc3Nwqfb+kpAQlJSX6f+fl5QEAVCoVVCqVUfWoq/LtN/R+iJqi+pz/ktBQOA67z6jgBzzc2caoSeJvADV3bAPU3LENUHNnijZg7LpmDX5kZmZCo9HA964pLX19fZGUlFTj+ocPH8apU6ewYsWKKssUFxdj9uzZePzxx+FSxVSWCxcuxPz58yss3759O+RyeY31MIW7e6sQNSd1Pv+1WrRwdYVNbi4qmwdGBKB2dcWe9HRg69b6VJGoQfE3gJo7tgFq7tgGqLmrTxtQKpVGlTP7sJf6WLFiBSIiIqpMjqpSqTBq1CiIoogvv/yyyu3MnTsXs2bN0v87Ly8PwcHBGDx4cJUBE1NRqVTYsWMHBg0aBBlnn6BmxhTnf4G9PdJmvaT7x52JTwUBAoDgeW+j/cCB9a8sUQPgbwA1d2wD1NyxDVBzZ4o2UD5yoyZmDX54eXlBKpUiPT3dYHl6ejr8/PyqXbewsBDr1q3DO++8U+n75YGPq1ev4q+//qo2iGFnZwc7O7sKy2UyWaN9CTXmvoiamvqc/+733af7Hnl/IdRpafrlNr6+8H1tLlwGDzZVNYkaDH8DqLljG6Dmjm2Amrv6tAFj1zNr8MPW1hYxMTHYtWsXhg8fDgDQarXYtWsXpk+fXu26GzZsQElJCcaNG1fhvfLAx4ULF7B79254eno2RPWJqIlwGTwYzgMGQBmfALVCARtvb8hjYyBIpeauGhERERERNQFmH/Yya9YsTJw4EbGxsYiLi8PixYtRWFion/1lwoQJCAwMxMKFCw3WW7FiBYYPH14hsKFSqTBixAgkJibi999/h0ajQVrZ02APDw/Y2to2zoERUaMSpFI4dqt8CBwRERERETVvZg9+PPbYY1AoFHjrrbeQlpaGqKgobNu2TZ8ENSUlBRKJxGCdc+fOYd++fdi+fXuF7d24cQO//fYbACAqKsrgvd27d6Nv374NchxERERERERE1DSZPfgBANOnT69ymMuePXsqLGvbti3EOxMb3iEsLKzK94iIiIiIiIio+ZHUXISIiIiIiIiIyHIx+EFEREREREREVo3BDyIiIiIiIiKyagx+EBEREREREZFVY/CDiIiIiIiIiKwagx9EREREREREZNUY/CAiIiIiIiIiq8bgBxERERERERFZNQY/iIiIiIiIiMiqMfhBRERERERERFaNwQ8iIiIiIiIismoMfhARERERERGRVWPwg4iIiIiIiIisGoMfRERERERERGTVGPwgIiIiIiIiIqvG4AcRERERERERWTUGP4iIiIiIiIjIqjH4QURERERERERWjcEPIiIiIiIiIrJqDH4QERERERERkVVj8IOIiIiIiIiIrBqDH0RERERERERk1Rj8ICIiIiIiIiKrxuAHEREREREREVk1Bj+IiIiIiIiIyKox+EFEREREREREVo3BDyIiIiIiIiKyagx+EBEREREREZFVY/CDiIiIiIiIiKwagx9EREREREREZNUY/CAiIiIiIiIiq8bgBxERERERERFZNQY/iIiIiIiIiMiqMfhBRERERERERFaNwQ8iIiIiIiIismoMfhARERERERGRVWPwg4iIiIiIiIisGoMfRERERERERGTVGPwgIiIiIiIiIqvG4AcRERERERERWTUGP4iIiIiIiIjIqjH4QURERERERERWjcEPIiIiIiIiIrJqDH4QERERERERkVVj8IOIiIiIiIiIrBqDH0RERERERERk1Rj8ICIiIiIiIiKrxuAHEREREREREVk1Bj+IiIiIiIiIyKox+EFEREREREREVo3BDyIiIiIiIiKyagx+EBEREREREZFVY/CDiIiIiIiIiKwagx9EREREREREZNUY/CAiIiIiIiIiq8bgBxERERERERFZNQY/iIiIiIiIiMiqNYngx+eff46wsDDY29ujW7duOHz4cJVl+/btC0EQKrzuv/9+fRlRFPHWW2/B398fDg4OGDhwIC5cuNAYh0JERERERERETYzZgx8//vgjZs2ahbfffhuJiYmIjIzEkCFDkJGRUWn5TZs24ebNm/rXqVOnIJVKMXLkSH2Zjz76CJ999hmWLl2KQ4cOwdHREUOGDEFxcXFjHRYRERERERERNRFmD34sWrQIU6dOxaRJk9ChQwcsXboUcrkcK1eurLS8h4cH/Pz89K8dO3ZALpfrgx+iKGLx4sV444038NBDD6Fz585YtWoVUlNT8csvvzTikRERERERERFRU2Bjzp2XlpYiISEBc+fO1S+TSCQYOHAgDhw4YNQ2VqxYgdGjR8PR0REAcOXKFaSlpWHgwIH6Mq6urujWrRsOHDiA0aNHV9hGSUkJSkpK9P/Oy8sDAKhUKqhUqjodm7HKt9/Q+yFqinj+U3PHNkDNHdsANXdsA9TcmaINGLuuWYMfmZmZ0Gg08PX1NVju6+uLpKSkGtc/fPgwTp06hRUrVuiXpaWl6bdx9zbL37vbwoULMX/+/ArLt2/fDrlcXmM9TGHHjh2Nsh+ipojnPzV3bAPU3LENUHPHNkDNXX3agFKpNKqcWYMf9bVixQpEREQgLi6uXtuZO3cuZs2apf93Xl4egoODMXjwYLi4uNS3mtVSqVTYsWMHBg0aBJlM1qD7ImpqeP5Tc8c2QM0d2wA1d2wD1NyZog2Uj9yoiVmDH15eXpBKpUhPTzdYnp6eDj8/v2rXLSwsxLp16/DOO+8YLC9fLz09Hf7+/gbbjIqKqnRbdnZ2sLOzq7BcJpM12pdQY+6LqKnh+U/NHdsANXdsA9TcsQ1Qc1efNmDsemZNeGpra4uYmBjs2rVLv0yr1WLXrl3o0aNHtetu2LABJSUlGDdunMHyFi1awM/Pz2CbeXl5OHToUI3bJCIiIiIiIiLrY/ZhL7NmzcLEiRMRGxuLuLg4LF68GIWFhZg0aRIAYMKECQgMDMTChQsN1luxYgWGDx8OT09Pg+WCIGDmzJl477330Lp1a7Ro0QJvvvkmAgICMHz48MY6LCIiIiIiIiJqIswe/HjsscegUCjw1ltvIS0tDVFRUdi2bZs+YWlKSgokEsMOKufOncO+ffuwffv2Srf56quvorCwENOmTUNOTg569uyJbdu2wd7evsGPh4iIiIiIiIiaFrMHPwBg+vTpmD59eqXv7dmzp8Kytm3bQhTFKrcnCALeeeedCvlAiIiIiIiIiKj5MWvODyIiIiIiIiKihsbgBxERERERERFZNQY/iIiIiIiIiMiqMfhBRERERERERFaNwQ8iIiIiIiIismoMfhARERERERGRVWPwg4iIiIiIiIisGoMfRERERERERGTVGPwgIiIiIiIiIqvG4AcRERERERERWTUGP4iIiIiIiIjIqjH4QURERERERERWjcEPIiIiIiIiIrJqDH4QERERERERkVVj8IOIiIiIiIiIrBqDH0RERERERERk1Rj8ICIiIiIiIiKrxuAHEREREREREVk1Bj+IiIiIiIiIyKox+EFEREREREREVo3BDyIiIiIiIiKyagx+EBEREREREZFVY/CDiIiIiIiIiKwagx9EREREREREZNUY/CAiIiIiIiIiq8bgBxERERERERFZNQY/iIiIiIiIiMiqMfhBRERERERERFaNwQ8iIiIiIiIismoMfhARERERERGRVWPwg4iIiIiIiIisGoMfRERERERERGTVGPwgIiIiIiIiIqvG4AcRERERERERWTUGP4iIiIiIiIjIqjH4QURERERERERWjcEPIiIiIiIiIrJqDH4QERERERERkVVj8IOIiIiIiIiIrBqDH0RERERERERk1Rj8ICIiIiIiIiKrxuAHEREREREREVk1Bj+IiIiIiIiIyKox+EFEREREREREVo3BDyIiIiIiIiKyagx+EBEREREREZFVY/CDiIiIiIiIiKyajbkrQERERGTpNFoRh69kIyO/GD7O9ohr4QGpRDB3tYiIiKgMgx9ERERE9bDt1E3M33wGN3OL9cv8Xe3x9oMdMLSTvxlrRkREROU47IWIiIiojraduolnVicaBD4AIC23GM+sTsS2UzfNVDMiIiK6E4MfRERERHWg0YqYv/kMxEreK182f/MZaLSVlSAiIqLGxOAHERERUR0cvpJdocfHnUQAN3OLcehyVuNVioiIiCrFnB9EREREdZCRX3Xg406Tvj2CLiFuiAxyQ+cgN3QOckWQuwMEgQlRiYiIGguDH0RERER1kFZNr487lai1OHg5GwcvZ+uXeTjaIiLQFZFBrrqASLArfJztG6qqREREzR6DH0RERES1kF+swoItZ7HuyLVqywkA/FztsXxCLE6n5uLEdd0rKS0P2YWl2Htegb3nFfryfi726BzkishgXe+QzoFucJXLGvhoiIiImgcGP4iIiLQa4Op+oCAdcPIFQu8BJFJz14qaoL/PKzDnpxNILev10beNN/aeV0ACLbpKkuCDHGTADUe07aCFBG8/2AGdAl3RKdAVj3XVbaNYpUFSWj5OXM8pC4jk4EJGAdLyipF2phjbz6Tr9xfqKUfnIDd9D5FOgS6Q2/LyjYiIqLb460lERM3bmd+AbbOBvNTby1wCgKEfAh3+Y756UZOSX6zC+1vP4ofDut4eIR5yfDSiM7q39MTRP79DwIH58MXtxKbp8ERqj7fRpZN/hW3Zy6SICnZDVLCbfllhiRqnbpT1DrmhC4hczVLqX5uP685PiQC09nFGRNDtITPt/J1hZ8NgHRERUXXMHvz4/PPP8fHHHyMtLQ2RkZH4v//7P8TFxVVZPicnB6+//jo2bdqE7OxshIaGYvHixRg2bBgAQKPRYN68eVi9ejXS0tIQEBCAJ554Am+88QYTixERkaEzvwHrJ0CEiDt/IcS8mxDWTwBGrWIAhPDPBQVmb7zd22Nij1DMvq+drgfGmd/Q5cALEO+a8NYH2fA98AIQ7G7UOeRoZ4NuLT3RraWnflmOslTfM6R8yExaXjHOpefjXHo+NiZcBwDIpALa+7voh8p0DnZFax9nSCXGX/dotCIOX8lGRn4xfJztEdfCo1brExERNXVmDX78+OOPmDVrFpYuXYpu3bph8eLFGDJkCM6dOwcfH58K5UtLSzFo0CD4+Phg48aNCAwMxNWrV+Hm5qYv8+GHH+LLL7/Ed999h44dOyI+Ph6TJk2Cq6srnn/++UY8OiIiatK0GmDb7AqBDwAQypYK2+YA7e7nEJhmStfbIwk/HE4BAAR7OOCjRyPRI7wsQFF2DqGKcwgQgHqcQ25yW/Ru443ebbz1yzLyinHcICCSg1tKlT44Aujq6iCTolOgi352mc5BbgjzlFf6IGjbqZuYv/mMwbS9/q72ePvBDhhaSc8VIiIiS2TW4MeiRYswdepUTJo0CQCwdOlSbNmyBStXrsScOXMqlF+5ciWys7Oxf/9+yGS6BGBhYWEGZfbv34+HHnoI999/v/79H374AYcPH66yHiUlJSgpKdH/Oy8vDwCgUqmgUqnqdYw1Kd9+Q++HqCni+U/mJFzdB5u81Ao3rfr3IQJ5N6C+9DfEsJ4NUge2gaZr38UsvP7LaX1vj/HdgvHSoNZwtLPR/73Kz6GqlZ1Dl/+GGGqac8jdQYq+rT3Qt7WHbg+iiOs5RTh5PQ8nbuTi5I08nE7NQ2GpBkeSb+FI8i39ui72NrqASKArOgXoeoocv56D59eduKvfim4mm2dWJ+L/RkdiSEdfk9S9MmwD1NyxDVBzZ4o2YOy6giiKd//eNYrS0lLI5XJs3LgRw4cP1y+fOHEicnJy8Ouvv1ZYZ9iwYfDw8IBcLsevv/4Kb29vjBkzBrNnz4ZUqnui8v7772PZsmXYvn072rRpg+PHj2Pw4MFYtGgRxo4dW2ld5s2bh/nz51dYvnbtWsjlctMcMBERNSkB2QfQ9eqXNZYrlcihcOmELKc2yHZsg1yHEECQNEINyRyK1cCvVyXYn6H7G3vaiXg8XIvWrhUvl8IUuxB5/bsat1ko80S6WzSyHNsg26kNimXuJq/3nbQikFEEpBQKSCnQvW4UAmqxYqhP0A/YqSwMKMLNFng7WgOOgCEioqZKqVRizJgxyM3NhYuLS5XlzNbzIzMzExqNBr6+hk8TfH19kZSUVOk6ly9fxl9//YWxY8di69atuHjxIp599lmoVCq8/fbbAIA5c+YgLy8P7dq1g1QqhUajwYIFC6oMfADA3LlzMWvWLP2/8/LyEBwcjMGDB1f74ZmCSqXCjh07MGjQIH1vFqLmguc/mVPSQQEwIvhhq1UiMOcwAnN0PQhFWyeIQXEQg7tDDO4GMSAakDnUqQ5sA03Lv5ey8OHPt3t7jOsWjJfLensYuJUMycElkKSuNWq7jqostFTsQEvFDgCA6BYGMbgbtMHdIQZ3BzxbAQ2cl6xUrcWFjAKcvJGHkzdyceJGHs6n50NbSUDkNgE5pYB3h+7o1sKjQerFNkDNHdsANXemaAPlIzdqYvaEp7Wh1Wrh4+ODZcuWQSqVIiYmBjdu3MDHH3+sD36sX78ea9aswdq1a9GxY0ccO3YMM2fOREBAACZOnFjpdu3s7GBnZ1dhuUwma7QvocbcF1FTw/OfzOGyUxT8RFd4IbfS+06tCKTBAy+WPoMYyQV0k55DrOQCHEsLIFz+C7j8FwBAlMggBHQBQrrrpsgN7gbIa3ejyDZgXgUlaizYclaf2yPI3QEfjeiMe8K9DAumnwb2fQKc+gkQtbplUltAU1rFlgXA2RcY8j6QcghIOQCkn4KQkwwhJxmSkz/qisk9gZAet1/+nQGpac8HmQyICrVDVOjthKob46/h5Y0nalw3S6lu8POTbYCaO7YBau7q0waMXc9swQ8vLy9IpVKkp6cbLE9PT4efn1+l6/j7+0Mmk+mHuABA+/btkZaWhtLSUtja2uKVV17BnDlzMHr0aABAREQErl69ioULF1YZ/CAiouYnUKaEBBoIAiCKhg/etWUjHOarJiDVLRbH8iPwRakWEmjRTkhBrOQc4iTn0FWSBF9tDnD9sO61/zMAQIFLa2iDu0Heuhdswu4B3EIa/wDJKPsuZGL2TydwI6cIADC+eyjm3NfOsLdHyiFg3yLg/Lbby8IHAL1mAcosYH359cWdQ2PKTqj7PtbN9tLpUd2/i/N058rVA0DKQeBGvG4bSb/rXgAgkwNBsUDIPbqgWlBXwM7J5Mce6G7c0N6dZ9LRq7U3PBxtTV4HIiKixmK24IetrS1iYmKwa9cufc4PrVaLXbt2Yfr06ZWuc++992Lt2rXQarWQSHRjcc+fPw9/f3/Y2up+kJVKpf69clKpFFqttuEOhoiILIuqCDH7n4UgFCBN6wYIAvxwOzFkGjzxjmo8Tjj3xr5X+kEAkJpbhEuKQlxWdMJlRR/8kFmA99ILICtIQVfhHLpKdK9WklQ45V0ATl8ATq8GAGRJfZDmFoVivzjYt7oX/q2j4eFkb9JD4lSltVNQosb7W89i7aEqenuIInBxly7ocfXfsrUEoMNDQM8XgYCo2xsbtUo368udyU9dAoChH1Sc5tbeBWg1UPcCAHUpcPOYrlfI1QO6/xbnAFf+1r0AQJDqeoOUB0NCegBO3qivuBYe8He1R1pucYWEp3fafOIm/krKwKR7W2Bqr5ZwlfPpNBERWR6zDnuZNWsWJk6ciNjYWMTFxWHx4sUoLCzUz/4yYcIEBAYGYuHChQCAZ555BkuWLMELL7yAGTNm4MKFC3j//fcNprB98MEHsWDBAoSEhKBjx444evQoFi1ahMmTJ5vlGImIqInRaoGfn4aQmoAcOOEx1Vu4JvogTpIEH+QgA244om0HLST48sEO+gBCkLscQe5y9GljeNNZWKLGlcxCXFIUYLOiEOk3r8MxPR5B+cfQBUnoKCTDU5MBz6ztQNZ24DSQK8rxt9AOVx0744I2BDfk5xAe4IVwbyeEeMhha1O7hKqcqrR2qu3todUAZ37VDW9JKxsSIpEBUY8D984EPMMrbrDDf3TT2V7dDxSkA06+uiFQxkxva2MLBMfpXve+oDs/M8/dEQw5COSmAKlHda+Dn+vW82xVFggpC4h4tKx13hCpRMDbD3bAM6sTIaDSfit4tl849p5X4NSNPCzZfRHfHUjGlJ4tMblnGJztGQQhIiLLYdbgx2OPPQaFQoG33noLaWlpiIqKwrZt2/RJUFNSUgx6cQQHB+PPP//Eiy++iM6dOyMwMBAvvPACZs+erS/zf//3f3jzzTfx7LPPIiMjAwEBAXjqqafw1ltvNfrxERFRE7TnfeDML1DDBtNKXkSBPAReEgEH8zvoi9QmcOBoZ4NOga7oFOhatqQNgP7QakWk5RXjyE0F8i8egO2NQ/C+lYiWJWfhKijRG4lAYSIAoGTfQhwTw/Gntg0SxPbIcOsMX29fhPs4oaWXI1p6O6GltyM8HW0h3HWDu+3UzbKbVy263xnAyW2HZ1Yn4stx0QyAlCkoUWPh1rNYc2dvj0c7455WXoC6BEhYDfz7KZB9WbeCzBGInQT0eE7Xk6M6EinQolf9KymRAD7tda/Ysgc3udd1QZDygEjGGSDrou51VNe7CE6+hsEQvwijgi9DO/njy3HRePe3kwguOK4/f645ReLN/0RgaCd/vDy4Lf48nY5PdpzHufR8fLLzPL7ZfwXTerfEE/eEQW5rUSnkiIiomTLbVLdNWV5eHlxdXWucKscUVCoVtm7dimHDhjHJETU7PP+p0R1fB/z8FADgpdKnsc2mHzY9ey9a+Tg13pARjRrF148i5+zf0F7dD+e0Q3AW8w2KaEUB58RgHNa2Rby2LQ5r2yEdHnB1kKGltyNaeumCIS085Xjrt9OIUe7D27JVCBCy9dtIFT3wjmoCjjv3xr7Z/Zv9EJh/L2bi1Y2V9PZAMZDwDXDgcyD/pq6wgzvQ7Wkgblqtk9c2iqJbwLXDt4MhqYkVk67aOgPBXe/IGxJb9axEZ36DuG02hDuG7YguARCGfmgwbEerFbHl5E0s3nkelxSFAABPR1s80zcc47qHwl5mRE+Xu/B3wHpY+tA7c9XfVG3A0j9/a8C/Qd2Yog0Ye//OUD0RETUPVw8Av80AAHyu/g9+Fnvj6zFd0NbPGQDQI9yzurVNR2oD+9Cu8AvtCpXqeWzdsgXDureFLDUeYsp+aJIPwCbnCtoLKWgvScFE6KZHvSZ647C6LeJvtMXha+3wkxgAQMAQyWF8KVtcYTd+yMYXssV4Jh84fCWq8Y6viamyt0eABNj/EXDoK12ODQBwDgDumQ5ET2yQBKMm4+AOtBmiewGAqlgXACkPhlw7BJTkAZf+0r0A3dCdgKg7ZpXprgvsnPkNWD8Bwl1ZP4S8m8D6Cbp8JmUBEIlEwIORARgW4Y9fj93Ap7su4GqWEu9tOYtlf1/G9P6t8FjXYNjZ1D4IQpbN0ofesf5UX/wbWAYGP4iIyPplXwbWjQE0pfhDE4f/qkfh9fvbo387X3PXTJenwbMV4NceQvR43Q9zftrtYQ4pB4C0kwiGAsFSBR6V7gMAFEhdcVRsg0jNaQiomO5BIuhmrXlb9j0O5z4JoPkFP/ZfzMQrd/T2GNc9BHPvdYFjwv+AH78FVEpdQY9woOdMoPNjgI2d2epbZzJ7XY6R0HuAXtDlLck4ozuHru7XnUP5N4HrR3SvslmJ4NUWyL0GVJruVAQgANvm6PKZ3DGERioR8Eh0EB6MDMCmxOv4bNdF3Mgpwlu/nsbSPZcwY0BrjIgJgkxau9w1ZJnKh97dfRal5RZbxNA71p/qi38Dy8HgBxERWbeiHGDtY0BRNk6J4XhR9Qwe6xqKJ3u2MHfNqubsB3QcrnsBZdOjHikLhhwErh+BkzoXvXDkdmbKSkgEIABZ+O23n3DwygAMbO+Lnq296jQ8wZLc3dsj0M0B/zfICdHXlwJf/ghoVbqCfp1109W2/49xyUkthUSqy/nhFwHETdXNXJNz1TBvSOY53ataIpB3QxdAqSSfiUwqwWNdQ/BwlyD8GH8NS/66gNTcYszddBJf7rmE5we0xvCoANgwCGK1NFoR8zefqTJ8BgBv/HIK/q4OTbL7v0Yr4o1fTpm1/mq1GtcKgNOpebCxqd2tWU31FwDM33wGgzr4NcnP3xrU1Ab4N2ha6hX8KC0txZUrVxAeHl7rxkpERNTgNCpgw0Qg8zzSBU9MKp6FqJb+eOehThUShzZp9i5AqwG6F1A2PepxaA8theTUxhpXv1d9EEuP+GDdkWuwl0nQq7U3BnXwRf92PvByssCeDtXYfzETr/50Atdv6Xp7vNpZiWmSdbDZvBn625nQnrqgR3j/Ws+QYpEEAXAP070iR+uWFWbppvE9sKTm9QvSq33b1kaC8d1DMTImCGsOpeDLPReRkq3EyxuO44vdF/HCwNZ4sHMAJLzwtzqHr2QbdPOvTGZBKR76/N9qyzRljVN/G/z35EGTb1UEcDO3GIevZKFH+TTeZDJarYgN8deqbQO3/wbZzXb4aVNSp4iFUqnEjBkz8N133wEAzp8/j5YtW2LGjBkIDAzEnDlzTFpJIiKiWhNFYOsrwOU9KBLs8UTxy3D0DMSXY2NqPZVsk2NjCwR3hURdDBgR/HjSZhuetNmGa4I/Dqja4Mi5tvjibFvMhh9iQjwwsIMvBnXwRbh3E85zUYPCEjUW/nEWqw+mABDxoPMlvOO1He7n990u1OY+XdAjOM5s9WwyHD2BNkONC35kJ+um4JVU327sZVI82bMFHo8LxqoDV/HV3ku4nFmIF9Ydw+e7L+LFgW0wpKMfgyBW5MYtpVHl3BxkcLBter2riko1yClS1ViuIesviiKKi4thb29f66C8sfWf9n0C+rb1QY+Wnuje0gMtvBwt6wFAE6HVijifkY+Dl7Jw4HIWDl3JRo6y5s8fAN745STu7xyAHi090SXEzep7YDZVdQp+zJ07F8ePH8eePXswdOhQ/fKBAwdi3rx5DH4QEZH5HfwCSPgGWgiYXvIcrtuF4+eJXeHuaGvumplO6D2ASwDEvJsVElYCZV1ubR0BtzAg4wyCxZsItrmJUdgLAFCIrjiS2hbx19vihW1tUezRAQM6BmBgB19Eh7hbTBfd/ZfKZnK5VYhBkkS86bYNIcozwE0AghSIGAHcOxPw7VDTppqXsvMHeTdRed6PMrvf1QXZer4IdHoUkFZ/+Si3tcHTfXQzwHyz7wqW/3MZ59ML8MyaRHTwd8GsQW0woL0Pb74smFYr4tfjN/D+H2eNKv/luJgm+dT7wKUsPL685h4XDVn/2zNd9Kn1TBfG1j+/WI3Nx1Ox+bhuRidfF7uyQIgneoR7IsRDzvZYCVEUcTGjAAcuZ+HAJV2wI7vQcGYtOxsJStTaGrd1SVGIz3ZdwGe7LsDWRoLoEDf0aOmF7i09EBXixkTRjaROwY9ffvkFP/74I7p3727QUDp27IhLly6ZrHJERER1cu4P4M/XAQALVGOwB7H4dmw0WvlYbs+GSkmkwNAPIayfABGCQQBE928Aw5fqZusougVcOwKk7NflfriRAG9NLoZJD2OY9DAAoKDAHokHWuOff9tiuV0neLa9B307haJXay/IbZve8NbCEjU++CMJPxy8hAclB7DK4Xe0FK8BSgBSOyB6PHDPDN1wD6qo7PzB+gnQjUy/MwBSdn3X7n7g8l5AcRb4eRqw+z3gnueBLuOqnjq3jJOdDWYMaI0J94RhxT+XsfLfZJy5mYcpq+IRGeyGWYPaoEeYa0MdHTWQw1ey8d6WMzhxPRfA7eTKlREA+LnqpvxsiuJaeMDf1R5pucWVhv+sof6+rvZYNDISh65k4+DlLBxNyUF6Xgl+OZaKX47pgiH+rvYGwZBgD3mjHkdTIYoiLikKceByFg5ezsKhy1nILDAMdjjIpIgNc9d/Vh38XdDvv3uq/Rt4OdvhhQGtcfhKNg5czoIivwQHL2fj4GXd9PR2NhLEhLqjR9k2Owe5WX4P1SaqTlcyCoUCPj4+FZYXFhYyakhEROaVdhLY+CQAEWvV/bFCMwzvPtQBvVp7m7tmDaPDf4BRqyBsmw3kpeoXCy4BwNAP9NOU6qZHHax7AWXTox7VzygjphyEU0keektPorf0JKDdCNUZKU6fDsMPaIci3zj4R/ZDr85t4eNib4YDNbT/Uibe2HAE9+Zvwx673xEkZOru3e1cgK5PAt2fBZwqXqvQXcrOH9x1/uDO86coB4hfARz4AshJAba+DOz9UPcZd30SsK8+gOHqIMOswW0x6d4W+Orvy/hufzKOX8vBxJWHERvqhu6OvHa0BFezCvHBH0n441QaAF1w69l+4Qhyc8AL644BqDR8hrcf7NBke5FJJQLefrADnlmdWFX4z+LrP+/BDrinlRfuaaXL+VGs0iDx6i0cvKwbunHsWg5u5hZj09Eb2HT0BgBdkujym/vuLT0Q5G6dwRBRFHElsxAHL2frAx6K/BKDMnY2EsSGueuDQ5UFJmr6G7z7UEcM7eSPcd1DIYoiLmcW4kD50JmyAMv+S1nYfykL2GEYYNHt05WzZ5mIIIpiNf0cK9e7d2+MHDkSM2bMgLOzM06cOIEWLVpgxowZuHDhArZt29YQdW00eXl5cHV1RW5uLlxcXBp0X7e7ug2rdVc3IkvH859MLj8NWN4fyLuB/WIEJpS8grE9wjH/oU7mrlmlTNoGtBrdrBwF6YCTr25IQ21mMNFqy6ZHPQDt1f1QXdkPO2VahWIXtQG4LO8MSWgPtIwdhBbh7SHUkAvClApL1Pjk93jYJq7EJJs/4C3k6d5w9Aa6PwN0nVLjzThVwpjzR1UEHF0N/PsZkKubSacuwSZFfgmW7v1/9u47PKpq6+P4d2bSKwTSgAChBAi9aujSQezXioLYKYpgAV6vIjYsiA0VRFEU67WiFGnSqyAght5bEiCkt8nMvH8cGIgESMKkkPw+PvM4c2affdaUk3BW9l57D1+sOUDO6eHiMXWCeLJ3A1rXKpt/Ya/IkjOtTF68i89W7cdqc2A2we1tazKqZxTB/kbB5HlbjzH+19g8hR/DA70Yd130FbHEZ2nG74rfA5cTf2aOjQ3nJEM2H0oi919DeSKCvPOMDAkPvPior7LK4XBwMDHDmXhYs/ck8Sl5kx0ebmZa1zw7sqN5RGCBpqQU9TM4M7XmzPu/Zu/5U2t8PCy0qR3krNnStHpguVpFyxXnQEGv34uU/FixYgV9+/bl7rvv5rPPPuPhhx8mNjaWVatWsXTpUlq3bl2koMsKJT9ESoa+/+JSORnwWT84+hf7TdW5PvN5mtevxaf3ti2z/0go0+eAwwFJB3EcXE3y9mXYD6wmKGPvec2Om4JIqNQKn3odiWjRDbfwJsW2bOyfW7ez/edXud46jwCTsZqLPTACc4cRBZqGIS5is8LWH2DFW3B8u7HNzcv4DNo/BpVrFaib+JQs3lu0k6/XHcTmMP5G2iUqmFE9o2geUamYgpeCstrsfLX2IG8v3Mmp00UdO9Wvyn+vjaZBmP957W12B+v2JZKQmkWIvzFVpKyOmMhPacXvqt8Droo/PTuXDQdOOetc/H0kGdu/kiG1qvjkSYaEloHRgBdy6HSy40xy4d8rs3hYzLSoWck55aRFRNGLkbriM7DbHew6kwzZc5I1+06eV1TVz9ONtudMvWlcLfCKOtf+rcwnPwD27t3LhAkT2Lx5M2lpabRq1YrRo0fTtGnTIgVclij5IVIy9P0Xl7HbjSVtt80ixRRA/6zxuFetw49DOxDoXXa/W1fcOZCRSNKOZRzdsgSPI2uolb0Td5MtT5NMsx+pwa0IbNgJzzodoVorcC/AP4wvMvIgI34PW//3Is2P/4anyfhHYHpgfXy7PXm6AOcV8N6VR3Y77JwLyyfBkT+NbWcKzHYcCSGNLtmF1Wpl5k9z2GaqxQ9/HXVeZPVoFMLInlE0rqZRPCXN4XCweHsCL8/Zxt7j6QDUD/HjmWsb0bXBRUb3XO7os9JWSvG77PdAMcWflp3L+v1GvZA1p5Mh/67xUqeqL1edM00mxL/0kiGHT2UY01hOJzyOJGXmed7dYqJFRCVn8qZVrcquW3mlGD4Du93BjvjUPNNkUrJy87Tx93SjXWSQMxnSKDzgikqGlGTyo9A1P6xWKw8//DDPPvss06ZNK1JwIiIiLvXHS7BtFrm4cX/W46R41+DnQW3LdOLjiuQTRKWWN1Kp5Y0ApKel8Ne6xZzctozA43/SzLEDP3sa3vHLIH4ZLAWbyR1bWAs86nSAmjFQ8yqj/si5YmfhmDca0zk1JxwB1TDFPMrxnWupvG8W7bCDCQ76NCa431h8o6+95NKrUszMZqMgaoN+sH+5kQTZ+wds+da4NegHHUdBRNuLdhPkCS/3a8ywbvV5Z9Eufv7rCAu3JbBwWwL9mobxeI8ookLPH2kgrhd7NIWX58SycvdJAKr4ejCyZxR3tI24+Ai62FkXqBvz2tm6Q2WZ4r8gP083rmkQwjWnE1+pWVbW7z+TXEhk69Fk9p5IZ++JdL5eZ0yHqxvsezoRYtyq+nle8jhFHTVxNCkzzyiJQ4l5kx1uZhPNIypxdZ0gYupUpVWtSsVTwLuYPgOz2USj8AAahQdwX8dIbHYH246lGMmo08vtpmblsmh7Aou2JxiH9XKjXeTZZFSjsIACLTF+pY/eKogijfwIDAxk06ZNREZGFkdMpU4jP0RKhr7/4hKbvoKfhwAwKucRZtGFmQ9cxdV1yt6yiv9Wns6BXJudjftP8PeGlaTvXkGdzL9pZ95BiCnpvLaOkGhMNWOMZEhOGo7fRuLAwbmXVg7OFosDWGtugU+3p2ja4VpQcfWy68hGYzrMtl9xlv6r3ckYCVK323mfXX7nwO6ENN5dtItftxzF4TB2ub55NUZ0r0+d4HK2YlMZkZCSxZvzd/LdhkM4HMZUgPs6RjL0mroEeF3iZ1PsrNMrBv37kuL0Z33b52U7gVDK8V/274FSjj8508r606uYrN5zkm1xKfz76rJ+iF+eZEjQv5acL0y9jPiUrDzTWA6czMjzvMVsomn1QGLqViGmThVa16qMr2cxr1ZWip+Bze4g9mgKq/eeYM3eRNbtSyQtO+/IkEo+7lx1zsiQqBD/85IhV3rdm2Kd9jJo0CBatGjByJEjixRcWafkh0jJ0PdfLtv+lfD5DWC38l7ujbyZexuv3dKU29vWLO3ICqS8ngPGcoFpLPgnnr+3bsInbh1tTDtoa95BXfOxfNrnn89wOCALDz6pN5lBt96M/6UuwqTsOL4TVr4DW74B++l/iIc3N5Igja53DgW/2DmwIy6VtxbsZN4/RuFdswlublWDEd3rV9ilOF0tM8fGx8v38uHSPWTkGFPY+jcLZ3SfhgV7j+02eLtJ3r92/5tPFej/btkcqWW3w6+PQmbihdsUc/y5tlw2bNhA69atcbMU8iL9kvGbjNEHj/9dYlOQkjJynMvqrt5zku1xqee1aRjm70yEpGdbefJ/Wy6UNuDVW5ri7eHG6j3GlI+9J9LztDOboGn1QK4+nVxpWzsIv+JOdpzrkudAyX4GuTY7/xxNcRZ0Xb8vkfScvNNTg3w9uCoyyJmQ2pOQxtAvN17wM/jw7lbFmgAp88mPl156iTfffJPu3bvTunVrfH198zz/2GOPFT7iMkTJD5GSoe+/XJaTe+Dj7pB5irn2qxmaM5wHOtXlmWujSzuyAqso58Dx1GwWb49nQWwCsbt309S2jbbmHXQ1b6JePsmQf7MN/BVLnc4lEKm4XPJhWDUZNs4A6+m/0FapBx1GQLM7sDpMlzwHth5J5q0FO51Dut3MJm5tE8Gj3epRrZJR5LYiDNd2Jbvdwc+bjvDG7zucf+ltEVGJZ/tH07pW5UvsfY59y2FG/2KKUlzmti9KbfRNYnoO6/addE6T2RF/fjKkMEwmaFIt0JjGUrcKbWoHXXp0UnFJOggbZsDyiZduO3AW1OlS/DH9i9Vm5+8jyc5k1J/7T5FpzZsMMZs4r47LGSYgLNCLFaO7FdvP1DKf/LjYdBeTycTevedXg7+SKPkhUjL0/ZciyzwFH/eEk7v4x1SPWzKfoUPDCD4a2OaKuuCpiOdAZo6NFbtPsCA2DtPW73mNdy+5z86ObxPVY3AJRCfFJv0krJsKa6dCVpKxzb8atquGMDchlN7X3XzJc+Cvg6eYtGAny3edAIypGXe2iyA6PIC3F+26YpdZLWlr957kpdnb+PtIMgDVK3kzum9DrmsWjqkwU8psVpjzFGz49NJtg+oYIyjKmoyTkFiA65ZijN/ucJB06hSVKlfGXNgpfQWNH6BypFGAs+bVULM9VKlbKlMIT6Rls3avMTJk0fZ4jiZlXXKfWkE+9IgOJaZOFdpGBpVOPS+7HY5vg4Or4cBqOLgGUg4XfH+LF9Q+XfuqVgxUb10qK5Tl5Nr5+0iSMxm1dt9JrLZLpwO+fvBqYuoWzzlQpgueAuzbt69IQYmIiFw2m9WYW3tyFwmmYO7NHEWt0Kq8c2fLKyrxUVF5e1joGR1Kz+hQlgfuhZWX3ifBUYmo4g9NipNvFbjm/6D9o7DhM2M0SOpRLAufpZfFF3PgbogZAj5BF+yiZc3KfHH/Vazfn8ib83ewZm8iM1YfyLdtXHIWQ2ZuLPbh2leS/SfSeXXuduc0Ij9PN4ZdU4/BHWoXbrWLnAzY+Dmseq/gF3/XvQuRnYoQdTEr6MiVYozfZrWy/PSFn7mwF36FGXlzap9x2/Sl8dg3+HQi5HT9pbBmUNhpN0VQ1c+Ta5uFc22zcNpsqsyIbzZdcp9RvaK4oUX1Yo8tj9xsOPqXsXrLwTVwaA1kJedtY7IYibGTuy7dny0L9iwybgBmd6jW0vgMarWHiKsu+vPPVTzczLSuFUTrWkEM7wY/bDjEE//bcsn9ElIvnaS6Elz2N/zMwJFCZYpFRESKwuGA2U/AvmVkmbwZmPUEdt8QPh7UpmTn+IpLuNXuwNEVQYSRSH55K7sD4qiCpXaHkg9Oioenv5EAafcQbP4ax4q38Ti1D5a/DmvehzaDIWaYMUf+AtrWDuKbh2JYsfM4g2esz/evlmcK5o7/NZae0WEVOjGanGHlvcW7mLF6P1abA7MJ7mxXk5E9owq0CodT5ilY9zGs/dAYcQDgGwK5WZCdyvnFHsFZ76BWe1e8FNer1d6IL+UY5Tr+R1bAkQ1nRy0c2QDpx43CxNt+NZq6+0KNNmdHh9RoCx6++fTpOgVdErdEls7NTILD688mO45sAFt23jbuvsbqVTVjzr5Hbl6na35c4jO4/Us4vO7sZ5AWZzw+vA5WnR4BGdzobDKk5tVQqfjrl1WrVLD6SaW5fLErFflfip9//jlvvPEGu3YZma6oqCieeuop7rnnHpcFJyIiksdqo3aAHTNDsoez11ybrwe2VvHDK1S7usE84/4Ar1hfx+4gTwLkzPzjd93v5+W6waUToBQfN09ofS+5Te5g09fjaZOxDFPCVuMcXzsVWtwJHR43huZfgMVivuhwbQdwLDmLHzYc5tY2NSrcH+qsNjtfrjnA24t2kZRhBaBLVDDPXNuocEsHp8bB6vfhz+mQk2Zsq1zbqNvS/C7YNf/0Shcm8l78nX6/+7xaYsU2C81sMZYiLe/x+wRB/Z7GDc6OajhzIX5mVMO+pcYNjFEN4c3PmSoTA75VXRp+u8ggwgO9iEvOulDagLBAo4aPy6UczTuFJX4r5yUvfKoaU1Sco2OagiWf0TkF+QyqtzRuVz1s/CHn1H7j+GdiOLnLmFZzfNvZqWQBNU4nQ04fP7iRywvvlupnUAqKlPyYNGkSzz77LMOHD6dDB+OvMStWrOCRRx7hxIkT5XYVGBERKUXbZ8P8ZwF40TqAP+wteev2prSuVT5+IVdEFrOJrjfex9CvcnjO/XOqcXbFgjiq8IL1Hm689b4K/Vf7cs9s4Wjlq8m9azzuB5bC8klwcJUxrWLjFxB9A3QaZVyE/UtBh2E//cMWXv99O1fVqUL708tfRlb1LbfJEIfDwaJtCbwyZ5tzZYyoUD/+r18jujYIKXhHiXth5bvGNAlbjrEttImxYk/0jWenSERfbyzlOW903hUvAqoZF31leZlbqJjxu3meTmhcbXye59WzWA0pR+DoRuO2erKxX5X6eZMBlWtfVt0Qi9nEuOuiGTJz44XSBoy7Lvryfwc4HHBi59lRHQdXQ1I+U+aKWhelsJ+ByQRBkcatxV3GtvQTZ2M7uBqObjKmlW393rgBeAVCxNVnR4dUa2l8lpehxD6DMqLIBU/Hjx/PwIED82yfMWMGzz///BVfE0QFT0VKhr7/UmDHNsP0PmDN4CtbD/7POphh19Tjqd4NSzuyy6JzwDBv6zFenPU3EWmbCSGJBCpxyK85z17fVPUayrl8z4GDa4wkyK7fzzas291IgtTq4LwYWb3nJHdOW3PJY7hbTOeNEAkL8CKmbhVi6hoJkRqVy8fosX+OJvPy7G2s2mNMS6ni68GoXlHc3iYCN0sB/2IctxVWvAX//AgOu7Et4mrj/a/f68IXg3abcXGZFg9+ocbFWVkdMZGfUorfZb8HXB1/0qG8IxOObzu/jV9Y3mkaoU2KdMx5W48x/tdY1xUtzs2BuC15kx3/Xg7YZDZGcpyZwlIzBvzDCn+sc7nyM8hJh8N/nv0MDq0Ha95lfrF4GoVTz3wGNdqCd6UiHc7ln0EhlPmCp8eOHaN9+/PnvrVv355jxy69ZJ2IiEiBpRyDr+4AawZraMZz1oH0aRzOEz0blHZk4iJ9moTTMzqMdftaa6lSMf4hP+C7vBfhZwoF1mh3+iK8d57h2ibstDNvdybP1tkb4sBMWKAXi5/oytajyazafZJVe07w18Ek4lKy+OmvI/z01xEAIoK8aV+nqjMhEhpwZc1vj0/J4s35O/jfhsM4HEZRw/s7RjK0a138C7oM6IHVxvt9btKpXs/TSacC1LwwW8pmUdOCUvx5VYowbs1uMx5nJMKhtWeTIUf/MupWxP5s3AA8/CGi3dnRIQVc0aRPk3B6Ngxm+9rfyTx1BO/K1Wl4VRcsbgW8VM1OPV2v43Si4PCfkJuZt42bl5EcOJPoqNEWvFz8R25XfgYevsbSuGeWx7VZIe7v08mc00md9OOn76+CFZMAk5GAOneqzEXqJ53rsj+DK0SRXk29evX47rvv+L//+78827/99lvq16/vksBERETISYev74DUoxwwR/BQxqM0rB7EpNubY9aFcbliMZuKbRk9uUKFNYH/fALdnjk7/eLwOuNnQkg0lo4jef7aGH765mNj2pTp7F92jzqCeME6kBuvewRvDwttawfRtnYQI3rUJ8tqY8OBU6zeYyRDNh9O5lBiJt8mHuLbPw8BUCfYl/Z1q9C+blWurlOFIF+P0noXLiozx8a05XuZsnQPGTk2AK5rXo2nezcoWC0khwN2LTAunA6uNraZzMa0lo4jIbxZ8QUvVxafIGjQ17gBWDPzFlE9tA5yUvNf0eTMhfiFVjSJnYVl3mganztlZG01o5ZGftN2UuNPj4g4nQiI+/vsKKUzvCufM6qjvTF1zq1snscFYnGH6q2MW8xQ49w9uefsyJCDq42pavF/G7f104z9KtU6+z7Uag9Vo/IfvVXYz+AKVaTkx/jx47n99ttZtmyZs+bHypUrWbRoEd99951LAxQRkQrKboefHoZjm0g1B3J35ii8/IOYNrANPh7l6y8RInIRQXXgureh6xhY8wGsnw4JsfDjg/T2CaaXx/HzCvWFmRL50OMdTObWQN5/uHu5W+hQryod6lUFGpCWncv6/Yms2XOSVXtOsvVoMnuPp7P3eDoz1xwEoGGY/+kpMlVpFxlEoHfpTlOz2x38vOkIr8/bQVyKMUy9Vc1K/Ld/NK1qVi5ABzb45ydY8bZxoQRg8TDqD7R/7KKFZkUAY0RH7Y7GDYzvVPxWIyFxYJVxMZ4Wf3ZFk5XvGO3+vaLJ0U2ni4X+6yxOOWZsv22GMZrBOYVllXGR/2+Vap6tRVIzxrjId3Fx0DLFZIKq9Yxbq9MLjqTGnX6PzkkKJR0wblu+Mdp4B+VNhoQ1g53zLvEZfF5uEiBF+tfjLbfcwtq1a3nrrbf4+eefAWjUqBHr1q2jZcuWroxPREQqqsUvwLZfyTW5c2/m4yRYwvluYBvCAy89hFZEyiH/MOj5gjEiYf3HsPoDyDiOibOF+c5wXvLMGwMNr73ovHs/TzeuaRDCNaeLgSZnWFm7z0iErNl7ku1xqc7bpyv3YzZBk+qBxNQxpsi0rR2Ebwkutb1m70lenr2Nv48kA1Cjsjdj+jbk2qbhly7impsNm74yLkRPna7R5+FnLDF89TAIUI0dKSLz6dVhwpsXbkUTk4X8l4g9ve1/954/qgMThDY+O4WlZgwEVi+2l3bF8A+DxjcaNzCmAx1ad7buyeE/jdonO2YbNwCLF2Dnwp+BqUA/R68URf5J3bp1a2bOnOnKWERERAx/zTTmngNPZD/IBkcDJt/WnOYRlUo3LhEpfd6VofNTEN4SvrzlIg0dxooVB1YVah5+oI87vRqH0auxUfzwZFo2a/YmsmrPCVbvPcne4+lsOZzMlsPJTF22FzezieYRlZwrybSqVRkvd9dfJOw/kc6Eudv4/Z94wEjaDO9Wj3vb17708bJT4c9PjSVr0+KMbd5BcPUQaPtA/lMRRC7HBVc0WX12dMjRTeCwXbwfhx3MbufU62gPEW2NnwNycZ7+UK+7cQOjEOyxzXmnymSeukQnRfs5WlYVKfkxZ84cLBYLvXv3zrP9999/x26307dvX5cEJyIiFdD+FfDr4wC8Z7uZX+wdGdkjiv7NCla0S0QqiKykgrWb/QQ0us6oO1CjXaGLHFbx8+TaZuFc28wYFRGXnMXqvSdO1ww5yeFTmWw4cIoNB07x3uLdeLiZaVWzEu3rGgVUm9eohIfbpYff2+wO1u1LPK/ob3KGlXcX7+Lz1fux2hyYTXDXVTV5vEcUVf0uscxl+klYOwXWfXT2/QqoDu0fhVYDjaKKIiXFt6pxLja6znj810z4Zdil97v+vbMJFCk6Nw8jcRTRFjo8ZkwvXv0eLHju0vumxRd/fCWgSMmPMWPG8Oqrr5633eFwMGbMGCU/RESkaE7ugW/vBruVebTnTestXNe8Go91r1fakYlIWeMXWrB2J3bA8h2wHKOYZ2gTY5j8mSKMhVzeMizQi5ta1uCmljUAOJSYweo9J1m91yigGp9ijBRZszcRFoC3u4U2tSvTvm5V2tetQuNqAectO5vfMpNhAV50jqrK/Nh4kjKsAHRtEMz/9WtEVKj/xYNMPgyr3oMNM86uelGlPnR8HJredmUXfpTyo1KtgrULjCjeOCoqsxmqtSpY24L+vC3jipT82LVrF9HR0edtb9iwIbt3777soEREpALKSISvboPMU8SaoxiR8RAtIirzxn+aXXoeu4hUPLXaG8s4phwj//nqJvALMQqlHlpnDNtOOgBxW4zbuqlGs8qReZMhVerlvxrCBUQE+RAR5MNtbSNwOBzsO5HOqj0nnQmRxPQclu86wfJdJwDw93TjqjpBXF3HKKC6/0Q6w77aeN4riEvJ4rs/DwMQFerHM9dG0yUq+OLBHN8JK9+GLd+CPdfYFt7CWK62Yf9yMWdfypGCnMMB1Qq21LIUTQX7DIqU/AgMDGTv3r3Url07z/bdu3fj66vhcyIiUki5OUZF8ZO7OWEJYWD6SKoEBvDRwNbFMndeRMoBs8VYhvG7gRglT8/9h/vp5EW/icYqBW3uMx6nHD2n5sBqY3WKU/uM2+avjDY+Vc8WUqwVY6yGYCnY6i4mk4k6wX7UCfbj7qtrYbc72JmQ6pwis3bvSVKyclm4LYGF2xJO75P/JccZgd7u/Dq8I54X+1l4ZKOxXO22386+D7U7GUmPOtcUKpkjUmIKcg73eVVJu+JUwT6DIiU/brjhBh5//HF++ukn6tY1lsLavXs3TzzxBNdfXz6WwRERkRLicMDsUbB/OVlmHwZkjCLDI4jPB7UlxN+rtKMTkbIs+npjGcZ5o43ExhkB1Yx/sP97ecaAatDkFuMGkJUMh9Yby0IeXGOshpBxArb/ZtwA3H2hRpuzyZDqbcDTr0Dhmc0mGoYF0DAsgMEdIrHZHcQeTWH13hPO0SHZuf9eySKv5EwrGw8mEVO3St4nHA7Yt8xIeuxdcnZ7g2uNpEeNNgWKUaRUFfYcFterQJ9BkZIfr7/+On369KFhw4bUqHF6vuOhQ3Tu3JmJEye6NEARESnnVr0Lf32BHTOPZA1nJzWZensLoqsVriihiFRQ0dcbyzAeWGUU5fMLNYZoF+QvlV6BUL+HcQNjKdijm84mQw6uNhIk+5YaNzCW5gxvfjYZEnE1+F1iOsppFrOJpjUCaVojkIc61+XHjYcZ9d3mS+6XkHq2Fgh2O+yYYyQ9jmw4G1Oz26DDCAhpVKBYRMqMyzmHxTUqyGdQ5Gkvq1atYsGCBWzevBlvb2+aN29Op05X/vI3IiJSgrb9BgvGAfBi7j0ssbdgTN+GziUmRUQKxGxxzTKMbp5Q8yrjBkai4fj2s8mQA6sh5TAc3Wjc1rxvtKtSz0iGnEmIVI4s0FST8EDvAoUV4u8FNiv8/b1R0+P49tPxehmrtrR/FCrVLMILFikjXHUOS9FVgM+gUMmP1atXc/LkSfr374/JZKJXr14cO3aMcePGkZGRwY033sh7772Hp+cllt0SERE5ugl+fBBw8A29+DS3F7e0qsHDneuUdmQiIgazGUKjjVvbB4xtSYdO1w1ZbSRDjm+Dk7uN219fGG38wvLWDQltku9fUNtFBhEe6EVcchYm7LQzbyeEJBKoxDp7QxyYqRVg4qrj/4NZkyH5kLGjZyC0ewCuGlLgUSciIhVdoZIfL7zwAl27dqV///4A/P333zz44IMMGjSIRo0a8cYbb1CtWjWef/754ohVRETKi5Sj8PUdYM1graUlz6TfQ9vaQbxycxOt7CIiZVulCOPW7DbjcUaisZrMmdEhRzZCWhzE/mzcADz8IaLdOXVDWoO7NxaziXHXRfPzV1N4zv1zqpkSnYeJc1Rmra0RfUzbMc87vd03BGKGGgVcvQJL9GWLiFzpCpX82LRpEy+++KLz8TfffEO7du2YNm0aABEREYwbN07JDxERubCcdPjqdkg9xiG3mjyQNoxqQX5Mubs1nm7la26piFQAPkHQoI9xA7BmGgmQM8mQQ+sgOwX2LDJuAGZ3qNYSal5NH7MbvT3ePm/Fl1DTKW5wWwXZQKVa0OExaDEA3As2VUZERPIqVPLj1KlThIaGOh8vXbqUvn37Oh+3bduWQ4cOuS46EREpX+x2+PEhiNtCmqUSd6aPwuEZwCeD2lLFT1MmRaQccPeG2h2MG4DdBvH/5J0qkxYHh9cZN4wFJf895s352LsyDFsP7voZKSJyOcyFaRwaGsq+ffsAyMnJYePGjVx99dXO51NTU3F3L9g66CIiUgEteh62/0au2YOBGY9zlBDeu6slUaH+pR2ZiEjxMFsgvBlc9TDc+hk8sR0e2wQ3fgj1e116/8xTziSJiIgUXaFGfvTr148xY8bw2muv8fPPP+Pj45NnhZctW7ZQt25dlwcpIiLlwMbPYeU7ADyR/SAbHVE81z+aaxqElHJgIiIlyGSCoEjjZvGAXfMvvU9afPHHJSJSzhUq+fHiiy9y880306VLF/z8/JgxYwYeHh7O56dPn06vXgXIYIuISMWybxn8NhKA9x3/4RdbB+5sV5PBHWqXblwiIqXJL/TSbQrTTkRELqhQyY+qVauybNkykpOT8fPzw2LJW5juf//7H35+fi4NUERErnAndsO394A9l/nmTryRcRPt61bhhRsaa2UXEanYarWHgGqQcgzOK3kKYDKer9W+pCMTESl3ClXz44zAwMDzEh8AQUFBeUaCiIhIBZeRCF/dCllJbHdrxKMZ9xNZ1Y8PBrTC3VKkX0EiIuWH2QJ9Xjv94AIlT/u8arQTEZHLon95iohI8cjNMUZ8JO4l0T2Mu9Mew9PLh08GtaGSjxLlIiIARF8Pt30OAeF5twdUM7ZHX186cYmIlDOFmvYiIiJSIA6HUePjwApyLL7ckTaSU+ZKfH53a+oEa3qkiEge0ddDw2vhwCqjuKlfqDHVRSM+RERcRskPERG5fHZb3n+0H14Hm2biwMyDmcPZ6YjgpRsa06Fe1dKOVESkbDJbILLTpduJiEiRKPkhIiKXJ3YWzBsNKUfPe+ol+70stTfn3va1ufvqWqUQnIiIiIiIkh8iInI5YmfBdwNx4DivVJ8DOJwbQOeoYP57baPSiE5EREREBFDyQ0REispug3mj8018gFH240XPmXjdMRY3rewiIiIiIqVI/xoVEZGiObAKUo7mm/gAMJsgxHGCgPj1JRqWiIiIiMi/KfkhIiJFYk+Nc2k7EREREZHiouSHiABgsztYveckv2w6wuo9J7HZHaUdkpRxu+PTCtRuW6pPMUciIiIiInJxqvkhIszbeozxv8ZyLDnLuS080Itx10XTp0l4KUYmZZLDAVu+I3LN/zkfmvKZ+2J3QBxV2O3TlMYlHKKIiIiIyLk08kOkgpu39RhDZm7Mk/gAiEvOYsjMjczbeqyUIpMyKTMJfrgffnoId1sGu+1GcuzfA4XOPB5vvYeQAN+SjVFERERE5F+U/BCpwGx2B+N/jSW/CS5nto3/NfaKmAKjaTvFz753OVnvxcDWH8h1mHnT+h9657zOI9bHiSMoT9s4qjDU+jhb/DvTLjLoAj2KiIiIiJQMTXsRqcDW7Us8b8THuRzAseQs3l20i1a1KuPn6WbcvNyc9y3mC631UXI0bad4ZWRmsPe7/xK9bzpeONhvD2Vk7lBCGnVkRLVA3lpgYWF2G9qatxNCEglUYr29IXbMfHhddJn4joiIiIhIxabkh0gFlpB64cTHud5ZtOuCz3m7W/D1dMP/dELE19OCn6c7/l7/uu9hwc/LHb/T2/y83PA0O0jKhrTsXAItbpiLcJF8ZtrOv8d5nJm28+HdrZQAKaIjSZn8tngpHbeMpQl7AfjRcQ27Wj/DOx0bU7OKUcg0KtSP8b/GsiY52rmvkk8iIiIiUpaUevLj/fff54033iAuLo7mzZvz3nvv0a5duwu2T0pK4plnnuHHH38kMTGRWrVq8fbbb9OvXz9nmyNHjjB69Gjmzp1LRkYG9erV49NPP6VNmzYl8ZJErhhV/TwL1K5hqD8ms4n07FzSsnNJy8olx2YHINNqI9Nq40RadhGjcGPcxsUA5yRP3M5JlLgZyRJPC35ebkai5fToE283C//389YLTtsxYUzb6RkdptEHBeRwONh48BTTl++j0vaveMbyBT6mbFLw489mz9Oz373c7OWeZ58+TcLpGR3Gun2JJKRmEeLvRbvIIL3nIiIiIlJmlGry49tvv2XUqFFMmTKFq666irfffpvevXuzY8cOQkJCzmufk5NDz549CQkJ4fvvv6d69eocOHCASpUqOducOnWKDh06cM011zB37lyCg4PZtWsXlStXLsFXJlL2JWXkMHXpnou2MQFhgV7MHtHpvAvZ7Fwb6dk20rNzSc0ykiLp2bmknk6OnLmffvpxWvY5N+djK6mZVuwYfZ95Pp6iJlLyOjNtZ92+RGLqVnFJn+VVTq6duVuPMX3FPg4dPsSr7tPo5bYBgJMhMVS662O6Vapxwf0tZpPeYxEREREps0o1+TFp0iQefPBBBg8eDMCUKVOYPXs206dPZ8yYMee1nz59OomJiaxatQp3d+Mvj7Vr187T5rXXXiMiIoJPP/3UuS0yMrL4XoTIFSj2aAqPzNzAwcQM3C0mrDYHJsgzguJMqmPcBWo2eLpZ8HSzEOTrUeQ4rFYrs2fPoXuv3mTZzo4sST2dPEm7UAIlK5f0nFwOnszgQGLGJY/zy6Yj1A3xJcTfq8ixlleJ6Tl8ve4gn6/eT3xKNl3Mm5nmOZUQUxJ2swfmHs9R5ephYFZ9bBERERG5cpVa8iMnJ4cNGzYwduxY5zaz2UyPHj1YvXp1vvvMmjWLmJgYhg0bxi+//EJwcDB33XUXo0ePxmKxONv07t2bW2+9laVLl1K9enWGDh3Kgw8+eMFYsrOzyc4++5fmlJQUwLgws1qtrni5F3Sm/+I+jsgZszYf45lf/iHLaqdGJS/ev6sFhxIzeWnOduJSzp4HYYGePNO3Id0bVC2276fVasVkAgt2Knm5U8nLAyh4MmXtvkTunv7nJdt9s/4Q36w/RLMaAXRvEEK3hsE0CPXDZKq40zJ2xacxY80Bft50jOxcO57k8Kr3d9zhmAOAo2oUthumYgtrCjabcROX0+8Aqeh0DkhFp3NAKjpXnAMF3dfkcDhKZT3Io0ePUr16dVatWkVMTIxz+9NPP83SpUtZu3btefs0bNiQ/fv3M2DAAIYOHcru3bsZOnQojz32GOPGjQPAy8v4y+6oUaO49dZbWb9+PSNGjGDKlCkMGjQo31ief/55xo8ff972r776Ch8fH1e8XJFSZ7PDLwfNLD1m/AW/YaCdgfXt+J4u32B3wJ4UEylWCHCHugEOynrJBrsDxm+0kJQDZ8eqnMuBlwWCPeFQRt7ngzwdNK7soEllB/UCHLhVgIENdgdsSzKx5JiJnclnX3AXnwO8Zn6fsNzDAOyt2oN/qt+B3Vz0UT0iIiIiIiUhIyODu+66i+TkZAICAi7Y7opKfkRFRZGVlcW+ffucIz0mTZrEG2+8wbFjxwDw8PCgTZs2rFq1yrnfY489xvr16y84oiS/kR8RERGcOHHiom+eK1itVhYsWEDPnj2dU3lEXO1EWjYjvt3Cuv2nABjSJZIR3eqVekFKV3z/f/8nnke/2QzkP23nvTua07txKPEpWSzZeYJF2xNYtSeR7Fy7s62vp4XO9arSrWEwXaKqUtmnfF30p2fn8tOmo8xYfZD9J41pQmYT9GpYlTFBS6i1aSImWw4O32Bs/d/FUa9nKUdcceh3gFR0OgekotM5IBWdK86BlJQUqlatesnkR6lNe6latSoWi4X4+Pg82+Pj4wkLC8t3n/DwcNzd3Z2JD4BGjRoRFxdHTk4OHh4ehIeHEx0dnWe/Ro0a8cMPP1wwFk9PTzw9z1/1wt3dvcR+CJXksaRi+evgKYbM3EhcShZ+nm5MvLU5fZrkf46Vlsv5/vdvUQM3Nwvjf43lWPLZpXvD/rXUao0q7twd48/dMZFk5thYsfsEi7bFs3BbAifSspn7Tzxz/4nHbII2tYPo0SiEHo1CqRPs55LXWBoOn8rg89UH+HrdQVKzcgHw93LjjrYR3NvUi+pLRsGGP4zGUX0wXT8ZN7/gUoy44tLvAKnodA5IRadzQCq6yzkHCrpfqSU/PDw8aN26NYsWLeLGG28EwG63s2jRIoYPH57vPh06dOCrr77CbrdjPl18b+fOnYSHh+Ph4eFss2PHjjz77dy5k1q1ahXfixEpo75ae5DnZ/1Djs1O3WBfpt7ThnohV+7F/IUUdqlVbw8LPaND6Rkdit3uYMuRZBbGxrNwWzzb41JZty+RdfsSeWXOdupU9aVHdCjdG4bQulZl3Cxle36Mw+HgzwOn+HTlPuZtjcN+ejhMZFVfBneozS2tauC7dy58/RhkJoKbN/R+CdrcDxW4BoqIiIiIlG+lutrLqFGjGDRoEG3atKFdu3a8/fbbpKenO1d/GThwINWrV2fChAkADBkyhMmTJzNixAgeffRRdu3axSuvvMJjjz3m7HPkyJG0b9+eV155hdtuu41169bx0Ucf8dFHH5XKaxQpDVlWG8/P+odv1h8CoE/jMCbe1hw/z1I95YtVUZdaNZtNtIioRIuISjzZuwGHEjNYvD2BhdviWbP3JHtPpPPRsr18tGwvlXzcuaaBMSKkc1RV/L3Kzl9ocnLtzP77KNNX7OfvI8nO7R3rVeW+jrXpGhWC2ZoOv4+EjZ8bT4Y1g1s+geCoUopaRERERKRklOqV0O23387x48d57rnniIuLo0WLFsybN4/Q0FAADh486BzhARAREcHvv//OyJEjadasGdWrV2fEiBGMHj3a2aZt27b89NNPjB07lhdeeIHIyEjefvttBgwYUOKvT6Q0HE3KZMjMDWw+nIzZBE/2bsCQLnUr9MomhRER5MOg9rUZ1L42qVlWlu08wcJt8fyxI4GkDCs//XWEn/46grvFxNV1qtC9YQjdG4USEVQ6xZFPpmXz1dqDfL7mAMdTjdpFHm5mbm5ZncEdImkQ5m80PLIBfngAEvcCJujwGFzzX3ArX/VNRERERETyU+p/Bh4+fPgFp7ksWbLkvG0xMTGsWbPmon3279+f/v37uyI8kSvKqj0nePSrvziZnkMlH3fevaMlnaNUw6Go/L3cubZZONc2CyfXZmfDgVMs2p7Awth49p5IZ/muEyzfdYLnf42lYZg/PRqF0iM6lGbVAzEXczHZbcdS+HTlPn7edJSc08VbQ/w9GRhTizvb1aSK3+k6RnYbrJgES14Fey4EVIebpkBk52KNT0RERESkLCn15IeIXD6Hw8EnK/YxYe52bHYH0eEBTL2ndeFGI9htcGAVpMWDXyjUag9my6X3KyuKOX43i5mr6lThqjpV+L9+jdhzPM1ZMPXP/Ylsj0tle1wqk//YTbC/p3NESMd6VfH2cE0cdruDxdsTmL5yH6v2nHRub1YjkPs7RtK3STge567Ze+oA/PQwHDy90lXjm6D/W+Bd2SXxiIiIiIhcKZT8ELnCZeTk8vT3W/hti7Hc880tq/PyTU0Ld8EdOwvmjYaUo2e3BVSDPq9B9PUujrgYlEL8dYP9qBvsx0Od63IqPYclOxNYGJvA0p3HOZ6azTfrD/HN+kN4upnpWK+qs2hqSIBXvv3Z7I4LFmxNy87l+z8P8dmq/XmWqu3bJJz7OtamVc3K509r2vIdzH4CslPAww/6TYTmd6ioqYiIiIhUSEp+iFzB9p9I5+EvNrAjPhU3s4ln+0czMKZW4ep7xM6C7wYCjrzbU44Z22/7vGwnQMpA/JV9PbipZQ1ualmDnFw7a/edZNG2BBbExnMkKZNF2xNYtD0BgOY1AuneKJQejUJpFO6PyWRi3tZj5y3VGx7oxbBr6rH/RDrfrj9EaraxVG2Alxt3tqvJPTG1qFE5n5E9mUkw50n4+3/G4xrt4OaPICiyWN8DEREREZGyTMkPkSvU4u3xjPhmE6lZuQT7e/LBgFa0rR1UuE7sNmPExL8TB3B226+PQVYymFy/xKvJZiPi5BZMm5PBUoSpIQ47zP8vF47fBPPGQMNrS2wKj4ebmU71g+lUP5hx10WzIz6VhbHxLNiWwOZDSWw+nMzmw8lMWrCT6pW8qRfix9Kdx8/r51hyFv/9eavzcZ1gXwZ3iOSWVtXx8bjAj+79K41pLsmHwGSBLk9DpyfBoh/1IiIiIlKx6V/EIlcYu93Bu4t38fbCXQC0rlWZDwa0IvQC0yku6sCqvFNF8pN5CmblX5T4crkBrQAOFkv3gANSjsCu+dCgb3Ed5IJMJhMNwwJoGBbA8G71SUjJOr2MbgIrdh/nSFImR5IyL9qHp5uZDwa04poGIRcuomqzwpIJsHwS4IDKteHmjyGirctfk4iIiIjIlUjJD5ErSHKmlVHfbnJOobjn6lo82z86b5HLwkg9VrB2YU3BP7xox7gIu91OwvHjhAQH51nWusBSj0Hc35du9/UdENoEal4NNWOMW2D1wh/vMoUEeHFHu5rc0a4mWVYbn6zYyxu/77zoPtm5dnw83C6c+DixG358AI7+ZTxuMQD6vgae/i6OXkRERETkyqXkh8gVYkdcKo/M3MC+E+l4uJl5+cYm3NomougdphyD1e8XrG3vCRDZqejHugCb1craOXPo168fZnf3wnewbznMKOCy1vFbjdv6j43HlWqeToRcDTXbQ9UoKEoCpoi83C351+zIR0Jq1vkbHQ7YOAPmjQVrBnhVguvegcY3ujROEREREZHyQMkPkSvAb1uO8vT3W8jIsVG9kjdT7m5N0xqBRe9w268w61FjSstFmYxVU2q1L/qxilOt9kZ8KcfIv+7H6fjvXwhH1sOB1cayr3FbIOmgcdvyrdHUO+h0IuR0MiS8Obh5FGv4If4Fm6p0Xrv0k8bnt2O28TiyM9w4pVRGs4iIiIiIXAmU/BApw3Jtdl7/fQcfLdsLQId6VXjvzlYE+Rbxojw7DX4fCxs/Nx6HN4fmdxlFQYG8CYTT0yz6vFpixUILzWwxlrP9biBGvBeIP7AaBN4A0TcY27JT4fA5yZDDf0JmIuyYY9wA3LyhRpuzU2VqtAWvAJeG3y4yiPBAL+KSsy6UuiEs0Fj21mn3Ivh5CKTFg9kduj8HMcNLdNSKiIiIiMiVRskPkTLqZFo2j379F6v2nATgkS51ebJXFG6WIl7kHt5g1IZI3AuYoMMIuOYZY3RDQDVj1Zdzi58GVDMSB2V5mVsw4rvt88LF7+kPdbsZN4DcHGM0yMHVZxMimYmwf7lxA2O1m7CmZ2uG1IwB/9DLCt1iNjHuumiGzNx4odQN466LxmI2gTULFo2HNR8YT1RtALdMMxJYIiIiIiJyUUp+iJRBWw4n8cgXGzianIWPh4WJtzanX9MiFhy122DFJPhjAjhsEFAdbpqat4ZH9PXGcrAHVhkjCvxCjSklZXXEx79dbvxuHsYojxptoP2jRj2NEzvzJkOSDsCxzcZt7RRjv6A6eZMhVeqC6QKFSS+gT5NwPry7FeN/jeVY8tnaHmGBXoy7Lpo+TcIh/h/44UFI+Md4su2D0PMF8ChYzRARERERkYpOyQ+RMua79Yf47y9bycm1U6eqL1PvaU390CKu3HHqAPz0sHHxDtD4Zug/Cbwrn9/WbCmWoqYlxpXxm0wQ3MC4tb7X2JZy9JxkyBqjeGriXuO26UujjW9w3hVlwpqB5dI/Zvs0Cadnw2C2r/2dzFNH8K5cnYZXdcFiNsOaD2HBOLBlG/3f8D5E9XbN6xQRERERqSCU/BApI7JzbYz/NZav1h4EoEejUCbd3pwAryKsggKw5TuY/QRkp4CHP1w7EZrdXuiRCXJaQDVocotxA8hMOl03ZJWRDDmyAdKPG8Vkt/1qtHH3hYi2Z5MhNdqAh+/5fcfOwjJvNI3PnbazOgx8qxpJFoD6veGGyeAXUqwvU0RERESkPFLyQ6QMiEvOYsiXG/jrYBImE4zqEcWwa+phNhchUZGZZCQ9tn5vPI64Cm7+CCrXdmXI4l0J6vc0bgC52XD0r7OjQw6tgaxk2LvEuAGY3YwaHc4ldmOM5Ml3AzlvtZq0OONmdoe+r0Kb+5W4EhEREREpIiU/RErZ2r0nGfbVRk6k5RDg5cY7d7bkmgZF/Ov+/pXGNJfkQ2CyQNcx0HFUgaZeyGVy8zy7VG7HkWC3w/FteeuGpBwxRogc2QCrJxv7md3If5ne03yCoPVgJT5ERERERC6DrohESonD4eCzVft5efY2cu0OGob5M/We1tSqks+0iEvJzYElE2DFW4ADKkfCzdOMKRdSOsxmCG1s3No+YGxLOmhMkTkzVeb4NrDnXryftHij/ZVcj0VEREREpJQp+SFSCjJzbIz9cQs/bzJqPFzfvBqv3tIUH48inJIndsEPD8CxTcbjFncb0yQ8i1gkVYpPpZrGrdltxuM/P4PfRlx6v7T4Yg1LRERERKS8U/JDpIQdPJnBwzM3sO1YChazif/r14j7OtTGVNhpDQ4HbJwB88aCNQO8KsF170DjG4sjbCkOVeoWrJ1faPHGISIiIiJSzin5IVKCluxIYMQ3m0jOtFLVz4PJd7Xi6jpVCt9R+kmY9SjsmG08juwMN06BwOquDViKV632xioyKcfIv+6HyXi+VvuSjkxEREREpFxR8kOkBNjtDj5cuoeJ83fgcECLiEp8eHcrwgO9C9/Z7oXw81BjKoTZHXqMg6uHGTUm5MpitkCf106v9mIibwLk9EigPq8a7UREREREpMiU/BApZqlZVp74bjPzY426DXe2q8nz10fj6VbIC1prFix8HtZ+aDyu2gBu+RjCm7k2YClZ0dfDbZ/DvNGQcvTs9oBqRuIj+vrSi01EREREpJxQ8kPEBWx2B+v2JZKQmkWIvxftIoOwmE3sTkjloS82sPd4Oh4WMy/c0Jg72tUs/AHi/zGKmibEGo/bPgg9XwAPH9e+ECkd0ddDw2uNVV3S4o0aH7Xaa8SHiIiIiIiLKPkhcpnmbT3G+F9jOZac5dwWHujF9c3DmbnmIOk5NsIDvfjw7ta0iKhUuM7tdlg7xRjxYcsG32C44QOI6uXS1yBlgNmi5WxFRERERIqJkh8il2He1mMMmbnxvFKVx5KzmLpsHwBX1wli8l2tqOrnWbjOU47Bz0Ng7x/G4/q94Yb3wS/48gMXERERERGpQJT8ECkim93B+F9j812j4wxfTwszBrfD072Q0xe2/Was5pKZCG7e0PslaHM/FHY5XBEREREREVHyQ6So1u1LzDPVJT/p2TY2Hkwipm4Bl7PNSYd5Y2HjDONxWDOjqGlwg8uMVkREREREpOJS8kOkiBJSL574KGw7jmyAHx6ExD2ACTo8Btf8F9w8ih6kiIiIiIiIKPkhUlQh/l6uaWe3wYq3YMkEsOeCfzW4eSpEdnZBlCIiIiIiIqLkh0gRtYsMItDbneRMa77Pm4CwQGPZ2wtKOgg/PgwHVxmPo2+E/m+Bz0X2ERERERERkUJR8kOkiD5evveiiQ+AcddFYzFfoEjplv/B7FGQnQIeftDvDWh+p4qaioiIiIiIuJiSHyKF5HA4mDB3Ox8t2wtAz+hQ/j6STNw5xU/DAr0Yd100fZqEn99BVjLMfgL+/p/xuEZbuPkjCKpTEuGLiIiIiIhUOEp+iBRCrs3O2B//5n8bDgPwf/0a8lDnutjsDtbtSyQhNYsQf2OqS74jPg6sMqa5JB8EkwW6PA2dngSLTkUREREREZHioisukQLKstp49Ou/WBAbj8VsYsLNTbmtTQQAFrPp4svZ2qxGQdMVb4HDDpVrw83TIKJdyQQvIiIiIiJSgSn5IVIAKVlWHpjxJ+v2JeLhZub9u1rRMzq0YDuf3AM/PABHNxqPWwyAvq+Bp3/xBSwiIiIiIiJOSn6IXMLx1GwGTV9H7LEU/D3dmDaoDVfX+dcoD7vNmNKSFg9+oVCrPZjMsPFzmDcGrBngFQjXvQONbyqdFyIiIiIiIlJBKfkhchGHEjO455O17D+ZQVU/Dz4b3I4m1QPzNoqdBfNGQ8rRs9v8wiCwOhzZYDyu3QlumgKBNUoueBEREREREQGU/BC5oO1xKQz8ZB0JqdlEBHnzxX1XUbuqb95GsbPgu4GAI+/2tDjjZrJAj3EQ8yiYzSUWu4iIiIiIiJyl5IdIPv7cn8h9n60nJSuXhmH+fH5fO0ICvPI2stuMER//Tnycy6cKxAxX4kNERERERKQU6YpM5F8Wb4/n7k/WkpKVS5talfn2oZjzEx9g1Pg4d6pLftITjHYiIiIiIiJSajTyQ+QcP/11mCf/twWb3UG3hiG8f1crvD0s+TdOiy9YpwVtJyIiIiIiIsVCyQ+R06av2McLv8UCcFPL6rz+n2a4Wy4yOMqvgEvdFrSdiIiIiIiIFAslP6TCczgcvDl/J5P/2A3AfR0i+e+1jTCbTRffsVZ78K8GqRea+mKCgGpGOxERERERESk1qvkhFZrN7uCZn7c6Ex9P9W7As/0LkPgAMFsgou0Fnjy9f59XjXYiIiIiIiJSajTyQyqs7FwbI7/dxJy/4zCZ4OUbm3LXVTUL3sGB1bDtV+O+d2XIPHX2uYBqRuIj+nrXBi0iIiIiIiKFpuSHVEhp2bk8/MWfrNx9Eg+LmbfvaEG/puEF7yArGX56CBx2aH4n3PC+sapLWrxR46NWe434EBERERERKSOU/JAK52RaNoM/W8+Ww8n4elj4aGAbOtSrWrhO5o6GpINQqSb0fd1IdER2Kp6ARURERERE5LIo+SEVypGkTO75ZC17j6cT5OvBZ4Pb0qxGpcJ1svVH2Pw1mMxw8zTwCiiWWEVERERERMQ1lPyQCmNXfCr3fLKOuJQsqgV68fn9V1EvxK9wnSQfht8eN+53egJqXu3yOEVERERERMS1lPyQCuGvg6cY/Nl6kjKs1Avx44v72xEe6F24Tux2+OkRo95HtVbQZXTxBCsiIiIiIiIupeSHlHvLdh7nkZkbyMix0SKiEp/e25bKvh6F72j1ZNi/HNx9jOkuFnfXBysiIiIiIiIup+SHlGu/bj7KqO82YbU56FS/KlPubo2vZxG+9se2wKIXjPt9JkDVeq4NVERERERERIqNkh9Sbn2xej/PzfoHhwP6Nwtn0m0t8HAzF74jayb8+CDYrdDgWmg1yPXBioiIiIiISLFR8kPKHYfDwTuLdvH2wl0A3HN1LZ6/vjEWs6loHS4YB8e3g18oXP8umIrYj4iIiIiIiJQKJT+kXLHbHYz/9R9mrD4AwIju9Xm8R31MRU1Y7FoI66Ya92/4AHyruihSERERERERKSlKfki5kZNr58n/bWbW5qOYTPD8dY0Z1L520TtMPwG/DDXut3sI6vdwSZwiIiIiIiJSspT8kHIhIyeXR2ZuZNnO47iZTbx5W3NuaFG96B06HDDrMUiLh+CG0PMF1wUrIiIiIiIiJUrJD7niJWXkMPiz9fx1MAlvdwsf3t2Krg1CLq/TjZ/DjtlgdjeWtXX3dk2wIiIiIiIiUuKKsPSF673//vvUrl0bLy8vrrrqKtatW3fR9klJSQwbNozw8HA8PT2Jiopizpw5+bZ99dVXMZlMPP7448UQuZS2uOQsbpu6mr8OJhHo7c7MB666/MTHyT0wb4xxv/uzEN7s8gMVERERERGRUlPqIz++/fZbRo0axZQpU7jqqqt4++236d27Nzt27CAk5PyL2JycHHr27ElISAjff/891atX58CBA1SqVOm8tuvXr2fq1Kk0a6aL1/Jo7/E07vlkHUeSMgkN8OSL+68iKtT/8jq1WeGHB8CaAbU7QcyjrglWRERERERESk2pj/yYNGkSDz74IIMHDyY6OpopU6bg4+PD9OnT820/ffp0EhMT+fnnn+nQoQO1a9emS5cuNG/ePE+7tLQ0BgwYwLRp06hcuXJJvBQpQX8fTubWKas5kpRJZFVfvn+k/eUnPgCWvg5HN4JXINw0BcylfoqIiIiIiIjIZSrVkR85OTls2LCBsWPHOreZzWZ69OjB6tWr891n1qxZxMTEMGzYMH755ReCg4O56667GD16NBaLxdlu2LBhXHvttfTo0YOXXnrponFkZ2eTnZ3tfJySkgKA1WrFarVezku8pDP9F/dxypM1exN55Ku/SM+20biaP5/c04oqfu6X/R6aDq3FsnwiJiC370QcPqGgz6VY6fsvFZ3OAanodA5IRadzQCo6V5wDBd23VJMfJ06cwGazERoammd7aGgo27dvz3efvXv3snjxYgYMGMCcOXPYvXs3Q4cOxWq1Mm7cOAC++eYbNm7cyPr16wsUx4QJExg/fvx52+fPn4+Pj08hX1XRLFiwoESOc6XbfNLEjF1mbA4T9QPsDKx+irXLFl12v262TLpufwZfh51DlTuwcb8n7M+/joy4nr7/UtHpHJCKTueAVHQ6B6Siu5xzICMjo0DtSr3mR2HZ7XZCQkL46KOPsFgstG7dmiNHjvDGG28wbtw4Dh06xIgRI1iwYAFeXl4F6nPs2LGMGjXK+TglJYWIiAh69epFQEBAcb0UwMhSLViwgJ49e+Lu7l6sx7rSfffnYT5bE4vdAb2iQ5j0n6Z4ulsuvWMBWH4djjnnBI7AmoTdP5N+ni6YQiOXpO+/VHQ6B6Si0zkgFZ3OAanoXHEOnJm5cSmlmvyoWrUqFouF+Pj4PNvj4+MJCwvLd5/w8HDc3d3zTHFp1KgRcXFxzmk0CQkJtGrVyvm8zWZj2bJlTJ48mezs7Dz7Anh6euLp6Xnesdzd3Uvsh1BJHutK43A4+HDpHl6ftwOAO9pG8PJNTbGYTa45wD8/wZZvwGTGdPNHuPsFuaZfKTB9/6Wi0zkgFZ3OAanodA5IRXc550BB9yvVao4eHh60bt2aRYvOTluw2+0sWrSImJiYfPfp0KEDu3fvxm63O7ft3LmT8PBwPDw86N69O3///TebNm1y3tq0acOAAQPYtGnTeYkPKdvsdgcvz97mTHwM7VqXCTe7MPGRfAR+fdy433EU1Mr/eyciIiIiIiJXrlKf9jJq1CgGDRpEmzZtaNeuHW+//Tbp6ekMHjwYgIEDB1K9enUmTJgAwJAhQ5g8eTIjRozg0UcfZdeuXbzyyis89thjAPj7+9OkSZM8x/D19aVKlSrnbZeyzWqzM/qHLfy48QgA/722EQ90quO6A9jt8PMjkJUE1VpC1zGu61tERERERETKjFJPftx+++0cP36c5557jri4OFq0aMG8efOcRVAPHjyI+ZzlRiMiIvj9998ZOXIkzZo1o3r16owYMYLRo0eX1ksQF7DZHazbl0hCahYh/l40qxHIY1//xaLtCVjMJl6/pRm3tK7h2oOueR/2LQN3H7j5Y7BoqKGIiIiIiEh5VOrJD4Dhw4czfPjwfJ9bsmTJedtiYmJYs2ZNgfvPrw8pO+ZtPcb4X2M5lpzl3OZuMWG1OfB0M/P+Xa3oER16kR6KIO5vWPSCcb/3K1C1nmv7FxERERERkTKjTCQ/pOKat/UYQ2ZuxPGv7VabsWX4NfVcn/iwZsIPD4ItBxr0g9b3urZ/ERERERERKVNKteCpVGw2u4Pxv8ael/g411frDmKzX6xFESx8Ho5vA98QuP49MLmoeKqIiIiIiIiUSUp+SKlZty8xz1SX/BxLzmLdvkTXHXT3Qlg7xbh/4wfgW9V1fYuIiIiIiEiZpOSHlJqE1IsnPgrb7pLST8LPQ437bR+E+j1d06+IiIiIiIiUaUp+SKkJ8fdyabuLcjjg18cgLR6qNoBeL15+nyIiIiIiInJFUPJDSk27yCDCAy+c2DAB4YFetIsMuvyD/fUFbP8NzO5wyzRw9778PkVEREREROSKoOSHlBqL2cRz/aPzfe5MCdJx10VjMV9mQdKTe2DuGON+t/9CePPL609ERERERESuKFrqVkqVj2f+X8GwQC/GXRdNnybhl3cAmxV+fBCs6VC7E7R/9PL6ExERERERkSuOkh9SqiYv3gXAve1r07txGAmpWYT4G1NdLnvEB8CyN+DIBvAMhJumgNly+X2KiIiIiIjIFUXJDyk1a/eeZP3+U3hYzDzSpS5hF6n/USQH1xrJD4D+kyCwhmv7FxERERERkSuCan5IqZn8x24Abmldw/WJj6wUY7qLww7Nboem/3Ft/yIiIiIiInLFUPJDSsXmQ0ks33UCi9nEkC51XX+AeWMg6QAE1oR+b7i+fxEREREREbliKPkhpeL906M+bmhejZpVfFzb+T8/w6YvwWSGm6eCV6Br+xcREREREZEripIfUuJ2xKUyPzYekwmGXuPiUR8pR+HXEcb9jiOhVnvX9i8iIiIiIiJXHCU/pMSdGfXRp3EY9UL8Xdex3Q4/PQJZSVCtJXQd67q+RURERERE5Iql5IeUqP0n0vlty1EAhl1Tz7Wdr/kA9i0Fdx+4eRpY3F3bv4iIiIiIiFyRlPyQEvXhkj3YHXBNg2CaVHdhLY64rbBovHG/98tQtb7r+hYREREREZErmpIfUmKOJmXy41+HARjezYWjPqxZxrK2thyI6gutB7uubxEREREREbniKfkhJeajZXux2hxcXSeI1rWCXNfxwuchIRZ8g+H698Bkcl3fIiIiIiIicsVT8kNKxPHUbL5edxCA4de4cErK7kWw9kPj/g0fgF+w6/oWERERERGRckHJDykRH6/YS3auneYRlehQr4prOk0/CT8PNe63fRCiermmXxERERERESlXlPyQYpeUkcPM1QcAGH5NPUyumJbicMCvj0FaHFSNgp4vXH6fIiIiIiIiUi4p+SHF7rNV+0nPsdEwzJ/uDUNc0+lfM2H7b2B2h1s+Bg8f1/QrIiIiIiIi5Y6SH1Ks0rJz+XTlfgCGXVMPs9kFoz5O7oG5o4373f4L4c0vv08REREREREpt5T8kGL15ZoDJGdaqVPVl35Nwy+/Q5sVfnwIrOlQqyO0f/Ty+xQREREREZFyTckPKTZZVhvTlu8D4JGudbG4YtTHsolw5E/wDISbpoDZcvl9ioiIiIiISLmm5IcUm2/XH+JEWjbVK3lzU8vql9/hoXWw7HXjfv9JUCni8vsUERERERGRck/JDykWObl2pi7dA8AjXergbrnMr1p2Kvz4IDjs0PQ2aPofF0QpIiIiIiIiFYGSH1Isfv7rCEeTswj29+TWNi4YoTF3DJzaD4ERcO3Ey+9PREREREREKgwlP8TlbHYHH54e9fFgp0i83C+zLkfsL7BpJmCCm6aCV+DlBykiIiIiIiIVhpIf4nKz/z7GvhPpVPJxZ8BVtS6vs5Sj8OsI437HkVC7w+UHKCIiIiIiIhWKkh/iUna7g/cX7wZgcPtIfD3dLqcz+HkIZJ6C8BbQdaxrghQREREREZEKRckPcamF2+LZEZ+Kn6cb97avfXmdrf0Q9i4BN2+4eRq4ebgiRBEREREREalglPwQl3E4HLz/hzHq456YWgT6uBe9s/h/YOHzxv3eL0Nw1OUHKCIiIiIiIhXSZcxJEMlrxe4TbD6cjJe7mfs7RhZuZ7sNDqyCtHjwrgy/PwO2HIjqA23uK56ARUREREREpEJQ8kNcZvLpWh93tK1JVT/Pgu8YOwvmjTaKm57LMwCunwwmkwujFBERERERkYpG017EJf7cn8jafYm4W0w83KVOwXeMnQXfDTw/8QGQnQIHV7suSBEREREREamQlPwQl5h8utbHLa1qEB7oXbCd7DZjxAeOCzQwwbwxRjsRERERERGRIlLyQy7b34eTWbLjOGYTDOlat+A7HliV/4gPJwekHDHaiYiIiIiIiBSRkh9y2c6s8HJ982rUquJb8B3T4l3bTkRERERERCQfSn7IZdkVn8q8f+IAGHpNvcLt7Bfq2nYiIiIiIiIi+VDyQy7LB0v2ANC7cShRof6F27lWewiodpEGJgiobrQTERERERERKSIlP6TIDpxMZ9Zmo2bH8GvqF74DswV6v3qBJ08vb9vnVaOdiIiIiIiISBEp+SFFNmXpHmx2B12igmlaI7BonTjOrORiyrs9oBrc9jlEX39ZMYqIiIiIiIi4lXYAcmU6lpzJ9xsOAzC8WyFrfZxhs8Lil4z7XUZD7Y5GcVO/UGOqi0Z8iIiIiIiIiAso+SFF8tGyvVhtDtpFBtG2dlDROtn0JSTuAZ+q0H44eBayZoiIiIiIiIhIAWjaixTaibRsvl53EIDhhV3h5QxrJiw5Xe+j85NKfIiIiIiIiEixUfJDCm36in1kWe00qxFIp/pVi9bJummQegwCI6DNfa4NUEREREREROQcSn5IoSRnWPl89QHAGPVhMpkusUc+spJhxSTjftex4ObpwghFRERERERE8lLyQwplxur9pGXn0iDUnx6NQovWyar3IPMUVG0Aze9wbYAiIiIiIiIi/6LkhxRYenYu01fuA2DoNXUxm4sw6iMtAVZ/YNzv/qxWdBEREREREZFip+SHFNhXaw+SlGGldhUf+jerVrROlk0EazpUbw0N+7s2QBEREREREZF8KPkhBZJltfHR8r0ADOlaF0tRRn2cOgB/Tjfudx8HRakXIiIiIiIiIlJISn5Igfxvw2GOp2ZTLdCLm1rWKFonSyaA3Qp1ukKdLi6NT0RERERERORClPyQS7La7ExZsgeAh7vUxcOtCF+b+FjY/I1xv/tzLoxORERERERE5OKU/JBL+vmvIxxJyqSqnye3t40oWieLXwIc0Oh6o96HiIiIiIiISAkpE8mP999/n9q1a+Pl5cVVV13FunXrLto+KSmJYcOGER4ejqenJ1FRUcyZM8f5/IQJE2jbti3+/v6EhIRw4403smPHjuJ+GeWSze7gw9OjPh7oFImXexFWZzm0HnbMBpMZuj3r4ghFRERERERELq7Ukx/ffvsto0aNYty4cWzcuJHmzZvTu3dvEhIS8m2fk5NDz5492b9/P99//z07duxg2rRpVK9e3dlm6dKlDBs2jDVr1rBgwQKsViu9evUiPT29pF5WuTF36zH2nkgn0Nudu6+uVfgOHA5YNN643+IuCI5ybYAiIiIiIiIil+BW2gFMmjSJBx98kMGDBwMwZcoUZs+ezfTp0xkzZsx57adPn05iYiKrVq3C3d0dgNq1a+dpM2/evDyPP/vsM0JCQtiwYQOdO3cunhdSDjkcDt7/wxj1cW/72vh5FuHrsmcx7F8OFk/ocv7nKSIiIiIiIlLcSjX5kZOTw4YNGxg7dqxzm9lspkePHqxevTrffWbNmkVMTAzDhg3jl19+ITg4mLvuuovRo0djseQ/JSM5ORmAoKCgfJ/Pzs4mOzvb+TglJQUAq9WK1Wot0msrqDP9F/dximLxjuNsO5aCr4eFu9vVKHyMDjtuC5/HBNhaD8buGwZl8HVK6SnL33+RkqBzQCo6nQNSUdlsNnJzc7Farbi5uZGWloabW6n/XVqkxOXm5l70HDCZTLi5uV3wWh8K/jukVM+wEydOYLPZCA0NzbM9NDSU7du357vP3r17Wbx4MQMGDGDOnDns3r2boUOHYrVaGTdu3Hnt7XY7jz/+OB06dKBJkyb59jlhwgTGjx9/3vb58+fj4+NThFdWeAsWLCiR4xSUwwFvbbUAJq6uamXVksLHV+3UOtrGbcFq9mJhRhNyzqnLInKusvb9FylpOgekotM5IBWJv78//v7+mM1GBYKwsDD27t1bylGJlJ5LnQN2u53U1FRSU1PzfT4jI6NAx7ni0ot2u52QkBA++ugjLBYLrVu35siRI7zxxhv5Jj+GDRvG1q1bWbFixQX7HDt2LKNGjXI+TklJISIigl69ehEQEFAsr+MMq9XKggUL6Nmzp3MaT1mwas9JDqzZgKebmZfu6UJVP8/CdWDPxW2qkVAyd3iMHp3vKIYo5UpXVr//IiVF54BUdDoHpKKJj48nJSWF4OBg5x9Z09PT8fX1xWQylXJ0IiXP4XBc9BxwOBxkZGRw/PhxoqKizhs4AWdnblxKqSY/qlatisViIT4+Ps/2+Ph4wsLC8t0nPDwcd3f3PMNeGjVqRFxcHDk5OXh4eDi3Dx8+nN9++41ly5ZRo0aNC8bh6emJp+f5F/fu7u4l9ou4JI9VEFOW7QfgjrYRhFf2K3wHG76CxD3gUwVLx8ewlKHXJmVPWfv+i5Q0nQNS0ekckIrAZrORmppKaGgoVapUAYw/7FqtVry9vZ0jQUQqkoKcA76+vpjNZhISEggPDz9vCkxBf3+U6hnm4eFB69atWbRokXOb3W5n0aJFxMTE5LtPhw4d2L17N3a73blt586dhIeHOxMfDoeD4cOH89NPP7F48WIiIyOL94WUMxsOnGL13pO4mU081KVu4TuwZsKSV437nZ4ET3/XBigiIiIicoU5U5egpKbVi5QnZ86by6kRVerpxVGjRjFt2jRmzJjBtm3bGDJkCOnp6c7VXwYOHJinIOqQIUNITExkxIgR7Ny5k9mzZ/PKK68wbNgwZ5thw4Yxc+ZMvvrqK/z9/YmLiyMuLo7MzMwSf31Xovf/2A3Aza2qU72Sd+E7WP8xpB6FgBrQ5j4XRyciIiIicuXS9BaRwnPFeVPqNT9uv/12jh8/znPPPUdcXBwtWrRg3rx5zrk8Bw8ezDP8JSIigt9//52RI0fSrFkzqlevzogRIxg9erSzzYcffghA165d8xzr008/5d577y3213Ql++doMou3J2A2wZCu9QrfQVYyLH/TuH/NWHD3cm2AIiIiIiIiIoVU6skPMGpzDB8+PN/nlixZct62mJgY1qxZc8H+HA6Hq0KrcD74Yw8A/ZtVI7Kqb+E7WDUZMk9B1ShopiKnIiIiIiLienFxcdxzzz2sWrUKd3d3kpKSSjskKeNKfdqLlB27E1KZs/UYAMOuKcKoj7QEWP2+cb/bs2ApE7k1EREREZFyxWZ3sHrPSX7ZdITVe05isxfvH3+7du3K448/XqzHKKy33nqLY8eOsWnTJnbu3AnARx99RNeuXQkICMBkMikhInno6lScPliyB4cDekaH0iCsCEVKl78J1nSo1goaXef6AEVEREREKrh5W48x/tdYjiVnObeFB3ox7rpo+jQJL7W4HA4HNpsNN7eSucTcs2cPrVu3pn79+s5tGRkZ9OnThz59+uSpG1mWWK1WrW5VSjTyQwA4lJjBL5uOAjC8KKM+Th2A9Z8Y93uMAxVyEhERERFxqXlbjzFk5sY8iQ+AuOQshszcyLzTo7hd6d5772Xp0qW88847mEwmTCYT+/fvZ8mSJZhMJubOnUvr1q3x9PRkxYoV2O12JkyYQGRkJN7e3jRv3pzvv/8+T59bt26lb9+++Pn5ERoayj333MOJEycKHFPt2rX54Ycf+PzzzzGZTM66jo8//jhjxozh6quvLnBfp06dYsCAAQQHB+Pt7U39+vX59NNPnc8fPnyYO++8k6CgIHx9fWnTpg1r1651Pv/hhx9St25dPDw8aNCgAV988UWe/k0mEx9++CHXX389vr6+vPzyywD88ssvtGrVCi8vL+rUqcP48ePJzc0tcNxSeBr5IQBMWboHm91Bp/pVaR5RqfAdLHkV7FaI7AJ1uro6PBERERGRcsfhcJCZY8MtJzfPIg/5sdkdjJv1D/lNcHEAJuD5WbF0qFcVi/nif4j0drcUePWMd955h507d9KkSRNeeOEFAIKDg9m/fz8AY8aMYeLEidSpU4fKlSszYcIEZs6cyZQpU6hfvz7Lli3j7rvvJjg4mC5dupCUlES3bt144IEHeOutt8jMzGT06NHcdtttLF68uEAxrV+/noEDBxIQEMA777yDt3cRVqg87dlnnyU2Npa5c+dStWpVdu/e7VwlNC0tjS5dulC9enVmzZpFWFgYGzduxG63A/DTTz8xYsQI3n77bXr06MFvv/3G4MGDqVGjBtdcc43zGM8//zyvvvoqb7/9Nm5ubixfvpyBAwfy7rvv0qlTJ/bs2cNDDz0EwLhx44r8WuTilPwQ4lOy+N+fh4EijvpI2Aabvzbu99DJKiIiIiJSEJlWGzGTLryQQ2E4gLiULJo+P/+SbWNf6I2PR8EuBQMDA/Hw8MDHx4ewsLDznn/hhRfo2bMnANnZ2bzyyissXLiQmJgYAOrUqcOKFSuYOnUqXbp0YfLkybRs2ZJXXnnF2cf06dOJiIhg586dREVFXTKm4OBgPD098fb2zjemwjh48CAtW7akTZs2gDGq5IyvvvqK48ePs379eoKCggCoV+/s9dLEiRO59957GTp0KACjRo1izZo1TJw4MU/y46677mLw4MHOx/fddx9jxoxh0KBBgPEevfjiizz99NNKfhQjJT+Eacv2kmOz07Z2Za6qU6XwHSx+CXAYdT6qt3Z5fCIiIiIiUjadSRoA7N69m4yMDGcy5IycnBxatmwJwObNm/njjz/w8/M7r689e/YUKPlRVH379mX58uUA1KpVi3/++YchQ4Zwyy23sHHjRnr16sWNN95I+/btAdi0aRMtW7Z0Jj7+bdu2bc4RG2d06NCBd955J8+2c98jMN6DlStXOqfAANhsNrKyssjIyMDHx+eyX6ucT8mPCi4xPYcv1x4EirjCy6H1sP03MJmNFV5ERERERKRAvN0trB51Nf4B/pec9rJuXyL3frr+kn1+Nrgt7SLzv1g/97iu4uvr67yflpYGwOzZs6levXqedp6ens421113Ha+99tp5fYWHF2/B1o8//tg5peVM0dG+ffty4MAB5syZw4IFC+jevTvDhg1j4sSJlzWd5lznvkdgvAfjx4/n5ptvPq+tl5eXS44p51Pyo4KbvmIfmVYbTasH0iUquHA7OxywaLxxv/ldENzA9QGKiIiIiJRTJpMJbw8LPh5ul0x+dKofTHigF3HJWfnW/TABYYFedKoffMmaH4Xl4eGBzWa7ZLvo6Gg8PT05ePAgXbp0ybdNq1at+OGHH6hdu3aJrQxzxr8TMmcEBwczaNAgBg0aRKdOnXjqqaeYOHEizZo14+OPPyYxMTHf0R+NGjVi5cqVzukrACtXriQ6OvqicbRq1YodO3bkmUIjxU/JjwosJcvKjNX7AWPUR0GLHjntWQz7l4PFA7qOcX2AIiIiIiICgMVsYtx10QyZuRET5EmAnPlX/Ljrol2e+ACjDsbatWvZv38/fn5+F5wG4u/vz5NPPsnIkSOx2+107NiR5ORkVq5cSUBAAIMGDWLYsGFMmzaNO++8k6effpqgoCB2797NN998w8cff4zFUvRRKXFxccTFxbF7924A/v77b/z9/alZs+YFY37uuedo3bo1jRs3Jjs7m99++41GjRoBcOedd/LKK69w4403MmHCBMLDw/nrr7+oVq0aMTExPPXUU9x22220bNmSHj168Ouvv/Ljjz+ycOHCi8b53HPP0b9/f2rWrMl//vMfzGYzmzdvZuvWrbz00ktFfv1ycVrqtgL7YvUBUrNyiQr1o1d0aOF2ttthkVHtmbYPQKUI1wcoIiIiIiJOfZqE8+HdrQgLzDs1IizQiw/vbkWfJsUzbeTJJ5/EYrEQHR1NcHAwBw8evGDbF198kWeffZYJEybQqFEj+vTpw+zZs4mMjASgWrVqrFy5EpvNRq9evWjatCmPP/44lSpVco5++eyzzwr/h1lgypQptGzZkgcffBCAzp0707JlS2bNmnXBfTw8PBg7dizNmjWjc+fOWCwWvvnmG+dz8+fPJyQkhH79+tG0aVNeffVVZ4Lmxhtv5J133mHixIk0btyYqVOn8umnn9K1a9eLxtm7d29+++035s+fT9u2bbn66qt56623qFWrVqFfsxScyeFw5DdqqkJLSUkhMDCQ5ORkAgICivVYVquVOXPm0K9fP+e8s5KQkZNLx9f+IDE9h7dvb8GNLfMfAnZB//wE/7sXPPxgxGbwrVoscUr5Vlrff5GyQueAVHQ6B6QiycrKYt++fURGRjrrOtjtdlJSUggICLjktJdz2ewO1u1LJCE1ixB/L9pFBhXLiI/SMm7cOJYuXcqSJUtKOxQpZgU9B/I7f84o6PW7pr1UUF+vO0Rieg41g3zo36yQGWJb7ukVXoCY4Up8iIiIiIiUIIvZREzdIqzSeIWYO3cukydPLu0wpJxR8qMCys618dGyPQAM6VoXN0shZz9t+hJO7gafKhAzrBgiFBERERGRimrdunWlHYKUQ6r5UQF9v+Ew8SnZhAV4cXOrQk53sWbC0tPLUnV6AryKd1qQiIiIiIiIyOVS8qOCybXZmbLUGPXxcJc6eLoVspry+o8h5QgE1IA29xdDhCIiIiIiIiKupeRHBTNr81EOJWZSxdeDO9rWLNzOWcmwfJJxv+sYcPe6eHsRERERERGRMkDJjwrEbnfwwRJj1Mf9nSLx9ijkqI9VkyEzEapGQfM7iyFCEREREREREddT8qMC+f2fOHYnpBHg5cY9VxdyDem047D6feN+t/+CRbVyRURERERE5Mqg5EcF4XA4mPzHbgDubV8bfy/3wnWwfCJY06FaS2h0fTFEKCIiIiIiIlI8lPyoIJbsOM4/R1Pw8bAwuENk4XY+dQD+nG7c7z4OTCbXBygiIiIiIiJSTDR3oQI4d9TH3VfXorKvR+E6WPIq2HIgsgvUvaYYIhQRERERkQKz2+DAKkiLB79QqNUezIWs5ydSwSj5UQGs2ZvIhgOn8HAz80DHQo76SNgGW74x7ncf5/rgRERERESk4GJnwbzRkHL07LaAatDnNYgununpXbt2pUWLFrz99tvF0r9ISdC0lwrg/dOjPm5vE0FIQCGXp138Ejjs0Og6qNG6GKITEREREZECiZ0F3w3Mm/gASDlmbI+dVTpxYYw2z83NLbXjlzabzYbdbi/tMIrdlfw5K/lRzv118BQrdp/AzWzi4S51Crfz4T9h+29gMkO3Z4snQBERERGRisrhAGsG5KRf+paVAnOfBhz5dWT8b95oo92l+nLk10f+7r33XpYuXco777yDyWTCZDKxf/9+lixZgslkYu7cubRu3RpPT09WrFiB3W5nwoQJREZG4u3tTfPmzfn+++/z9Ll161b69u2Ln58foaGh3HPPPZw4caJQb92kSZNo2rQpvr6+REREMHToUNLS0vK0WblyJV27dsXHx4fKlSvTu3dvTp06BYDdbuf111+nXr16eHp6UrNmTV5++WUA52tLSkpy9rVp0ybnawf47LPPqFSpErNmzSI6OhpPT08OHjzI+vXr6dmzJ1WrViUwMJAuXbqwcePGPHElJSXx8MMPExoaipeXF02aNOG3334jPT2dgICA896vn3/+GV9fX1JTU/N9LzZv3sw111yDv78/AQEBtG7dmj///LNA70N2djaPPfYYISEheHl50bFjR9avX+/c93I+57JG017KuTOjPm5sWZ0alX0KvqPDAQufN+43vxOCG7g+OBERERGRisyaQaX3G7moM4cxIuTViEs3/b+j4OFboF7feecddu7cSZMmTXjhhRcACA4OdiYBxowZw8SJE6lTpw6VK1dmwoQJzJw5kylTplC/fn2WLVvG3XffTXBwMF26dCEpKYlu3brxwAMP8NZbb5GZmcno0aO57bbbWLx4cYFfrdls5t133yUyMpK9e/cydOhQnn76aT744APASFZ0796d++67j3feeQc3Nzf++OMPbDYbAGPHjmXatGm89dZbdOzYkWPHjrF9+/YCHx8gIyOD1157jY8//pgqVaoQEhLC3r17GTRoEO+99x4Oh4M333yTfv36sWvXLvz9/bHb7fTt25fU1FRmzpxJ3bp1iY2NxWKx4Ovryx133MGnn37Kf/7zH+dxzjz29/fPN44BAwbQsmVLPvzwQywWC5s2bcLd3b1A78PTTz/NDz/8wIwZM6hVqxavv/46vXv3Zvfu3QQFBTmPUdjPuSxS8qMc23YshYXbEjCZYGjXuoXbee8fsH85WDyg65jiCVBERERERMq0wMBAPDw88PHxISws7LznX3jhBXr27AkYowheeeUVFi5cSExMDAB16tRhxYoVTJ06lS5dujB58mRatmzJK6+84uxj+vTpREREsHPnTqKiogoU1+OPP+68X7t2bV566SUeeeQRZ/Lj9ddfp02bNs7HAI0bNwYgNTWVd955h8mTJzNo0CAA6tatS8eOHQvxzoDVauWDDz6gefPmzm3dunXL0+ajjz6iUqVKLF26lP79+7Nw4ULWrVvHtm3bnK+1Tp2zI/QfeOAB2rdvz7FjxwgPDychIYE5c+awcOHCC8Zx8OBBnnrqKRo2bAhA/fr1nc9d7H1IT0/nww8/5LPPPqNv374ATJs2jQULFvDJJ5/w1FNPOfcp7OdcFin5UY6dGfVxbdNw6gT7FXxHhwMWjjfut7kfKtUshuhERERERCo4dx+Shm0jwN8fs/kSFQkOrIIv/3PxNgADvjdWf7nEcV2lTZs2zvu7d+8mIyPDeZF8Rk5ODi1btgSMKRp//PEHfn7nX5/s2bOnwMmPhQsXMmHCBLZv305KSgq5ublkZWWRkZGBj48PmzZt4tZbb813323btpGdnU337t0L+jLz5eHhQbNmzfJsi4+P57///S9LliwhISEBm81GRkYGBw8eBIyRGDVq1Ljg62zXrh2NGzdmxowZjBkzhpkzZ1KrVi06d+4MkOd9u/vuu5kyZQqjRo3igQce4IsvvqBHjx7ceuut1K1b13m8C70Pe/bswWq10qFDB+c2d3d32rVrx7Zt2/K0LeznXBYp+VFO7T2exuy/jwEw7Jp6hds59hc4tgk8/KDTE64PTkREREREwGQyEhEevnCp5EfdbsaqLinHyL/uh8l4vm63El321tf37PSZMzU3Zs+eTfXq1fO08/T0dLa57rrreO21187rKzw8vEDH3L9/P/3792fIkCG8/PLLBAUFsWLFCu6//35ycnLw8fHB29v7gvtf7DnAmYhynFMbxWq15tuPyWTKs23QoEGcPHmSd955h1q1auHp6UlMTAw5OTkFOjYYoz/ef/99xowZw6effsrgwYOdx9m0aZOzXUBAAADPP/88d911F7Nnz2bu3LmMGzeOb775hptuuqlAxyuIwn7OZZEKnpZTHy7Zg8MBPRqF0Cg8oOA72nKNFV4AYoaBX3DxBCgiIiIiIgVnthjL2QJg+teTpx/3ebVYEh8eHh7OGhEXc27hz3r16uW5RUQYtUhatWrFP//8Q+3atc9rc+4F9sVs2LABu93Om2++ydVXX01UVBRHj+ZdAadZs2YsWrQo3/3r16+Pt7f3BZ8PDjaugY4dO+bcdm7S4WJWrlzJY489Rr9+/WjcuDGenp55irk2a9aMw4cPs3Pnzgv2cffdd3PgwAHeffddYmNjnVNzgDzvV0hIiHN7VFQUI0eOZP78+dx88818+umnzuNd6HXWrVsXDw8PVq5c6dxmtVpZv3490dHRF4yvIJ9zWaTkRzl0+FQGP/11BCjCqI/NX8HJXeAdBDHDiyE6EREREREpkujr4bbPIeBfIyQCqhnbo68vlsPWrl2btWvXsn//fk6cOHHBJV39/f158sknGTlyJDNmzGDPnj1s3LiR9957jxkzZgAwbNgwEhMTufPOO1m/fj179uzh999/Z/DgwQVKsICRALBarbz33nvs3buXL774gilTpuRpM3bsWNavX8/QoUPZsmUL27dv58MPP+TEiRN4eXkxevRonn76aT7//HP27NnDmjVr+OSTT5z9R0RE8Pzzz7Nr1y5mz57Nm2++WaDY6tevzxdffMG2bdtYu3YtAwYMyDP6okuXLnTu3JlbbrmFBQsWsG/fPubOncu8efOcbSpXrszNN9/MU089Ra9evahRo8YFj5eZmcnw4cNZsmQJBw4cYOXKlaxfv55GjRpd8n3w9fVlyJAhPPXUU8ybN4/Y2FgefPBBMjIyuP/++y94zIJ8zmWRkh/l0NSle8m1O+hYryota1Yu+I7WLFjyqnG/0xPgVYgRIyIiIiIiUvyir4fHt8Kg3+CWT4z/P/53sSU+AJ588kksFgvR0dEEBwc761fk58UXX+TZZ59lwoQJNGrUiD59+jB79mwiIyMBqFatGitXrsRms9GrVy+aNm3K448/TqVKlZzTTT777LPzppOcq3nz5kyaNInXXnuNJk2a8OWXXzJhwoQ8baKiopg/fz6bN2+mXbt2xMTE8Msvv+DmZlR+ePbZZ3niiSd47rnnaNSoEbfffjsJCQmAUffi66+/Zvv27TRr1ozXXnuNl156qUDv1SeffMKpU6do1aoV99xzj3MZ2XP98MMPtG3bljvvvJPo6Giefvrp8xI/Z6bw3HfffRc9nsVi4eTJkwwcOJCoqChuu+02+vbty/jx4wv0Prz66qvccsst3HPPPbRq1Yrdu3fz+++/U7nyxa8jL/U5l0Umh6MQizxXECkpKQQGBpKcnOycR1VcrFYrc+bMoV+/fs7liIrCZnewbl8iuxNSGf9rLLl2B18/eDUxdasUvJNVk2H+MxBQHR7dCO5eRY5HpCBc9f0XuVLpHJCKTueAVCRZWVns27ePyMhIvLyMf2fb7XZSUlIICAi4dMHTCmTcuHEsXbqUJUuWlHYopeaLL75g5MiRHD16FA8Pj9IOp9gU9BzI7/w5o6DX7yp4Wg7M23qM8b/Gciw5y7nN3WIiKSOn4J1kpcDy00O5uo5R4kNERERERErF3LlzmTx5cmmHUSoyMjI4duwYr776Kg8//HC5TnyUNKUXr3Dzth5jyMyNeRIfAFabg6FfbmTe1mMX2PNfVk+GzESoUh+a31UMkYqIiIiIiFzaunXraNeuXWmHUSpef/11GjZsSFhYGGPHji3tcMoVJT+uYDa7g/G/xua70NUZ43+NxWa/xMymtOOw+n3jfrf/gkUDgkREREREREra888/j9VqZdGiRfj5+ZV2OOWKkh9XsHX7Es8b8XEuB3AsOYt1+xIv3tHyNyEnDcJbQPQNLo1RREREREREpLQp+XEFS0i9cOKjwO2SDsKfxpJO9BgHF6mqLCIiIiIiInIlUvLjChbiX7CipBdtt+RVsOVAZGeoc42LIhMREREREREpO5T8uIK1iwwiPNCLC43VMAHhgV60iwzKv0HCdtj8tXG/u0Z9iIiIiIiISPmk5McVzGI2Me66aIDzEiBnHo+7LhqL+QJJjcUvgsMODftDjTbFFqeIiIiIiIhIaVLy4wrXp0k4H97dirDAvFNbwgK9+PDuVvRpEp7/joc3wPbfwGSGbs+WQKQiIiIiIiIipUNrmpYDfZqE0zM6jHX7EklIzSLE35jqcsERHwCLnjf+3/xOCGlYInGKiIiIiMjls9ltbEzYyPGM4wT7BNMqpBUWs6XYjte1a1datGjB22+/XWzHKGkZGRncc889LFiwgNTUVE6dOkWlSpVKOywpRkp+lBMWs4mYulUK1njPH7BvGVg8oOuY4g1MRERERERcZuGBhby67lXiM+Kd20J9QhnTbgw9avUoxciuLDNmzGD58uWsWrWKqlWrEhgYyI8//siUKVPYsGEDiYmJ/PXXX7Ro0aK0QxUX0bSXisbhgEXjjftt7odKNUs3HhERERERKZCFBxYyasmoPIkPgISMBEYtGcXCAwtLKbLLl5OTU6LH27NnD40aNaJJkyaEhYVhMplIT0+nY8eOvPbaayUaS2GU9PtUnij5UdFsmwVH/wJ3X+j0RGlHIyIiIiJSYTkcDjJzM8mwZlzylpqdyoR1E3DgOL+f0/+9uu5VUrNTL9mXw3F+H4Vx6tQpBg4cSOXKlfHx8aFv377s2rUrT5tp06YRERGBj48PN910E5MmTcozreT555+nRYsWfPzxx0RGRuLlZdQwTEpK4oEHHiA4OJiAgAC6devG5s2b8/T90ksvERISgr+/Pw888ABjxowp1AiNrl278uabb7Js2TJMJhNdu3YF4J577uG5556jR4+Cj6DJyclh+PDhhIeH4+XlRa1atZgwYYLz+aSkJB5++GFCQ0Px8vKiSZMm/Pbbb87nf/jhBxo3boynpye1a9fmzTffzNN/7dq1efHFFxk4cCABAQE89NBDAKxYsYJOnTrh7e1NREQEjz32GOnp6QWOuyLStJeKxJYLi1407rcfDn7BpRuPiIiIiEgFlpmbSa/ZvVzWX3xGPO2/aX/JdmvvWouPu0+Rj3Pvvfeya9cuZs2aRUBAAKNHj6Zfv37Exsbi7u7OypUreeSRR3jttde4/vrrWbhwIc8+e/4iC7t37+aHH37gxx9/xGIxapbceuuteHt7M3fuXAIDA5k6dSrdu3dn586dBAUF8eWXX/Lyyy/zwQcf0KFDB7755hvefPNNIiMjCxz/jz/+yJgxY9i6dSs//vgjHh4eRX4v3n33XWbNmsV3331HzZo1OXToEIcOHQLAbrfTt29fUlNTmTlzJnXr1iU2Ntb5Wjds2MBtt93G888/z+23386qVasYOnQoVapU4d5773UeY+LEiTz33HOMGzcOMEat9OnTh5deeonp06dz/Phxhg8fzvDhw/n000+L/FrKOyU/KpLNX8PJXeAdBDHDSzsaERERERG5wpxJeqxcuZL27Y1Ey5dffklERAQ///wzt956K++99x59+/blySefBCAqKopVq1blGfEAxqiJzz//nOBg44+yK1asYN26dSQkJODp6QkYF/4///wz33//PQ899BDvvfce999/P4MHDwbgueeeY/78+aSlpRX4NQQFBeHj44OHhwdhYWGX9X4cPHiQ+vXr07FjR0wmE7Vq1XI+t3DhQtatW8e2bduIiooCoE6dOs7nJ02aRPfu3Z2JoaioKGJjY3njjTfyJD+6devGE0+cHbX/wAMPMGDAAB5//HEA6tevz7vvvkuXLl348MMPnaNoJC8lPyoKaxYsOT38qtMT4BVQuvGIiIiIiFRw3m7ezL92Pv7+/pjNF69IsCF+A0MXDb1knx90/4DWoa0vedyi2rZtG25ublx11VXObVWqVKFBgwZs27YNgB07dnDTTTfl2a9du3bnJT9q1arlTHwAbN68mbS0NKpUybuQQ2ZmJnv27HH2PXRo3vehXbt2LF68uMivqaAeeeQRZs6c6XyclpbGvffeS8+ePWnQoAF9+vShf//+9OpljObZtGkTNWrUcCY+/m3btm3ccMMNebZ16NCBt99+G5vN5hwh0qZNmzxtNm/ezJYtW/jyyy+d2xwOB3a7nX379tGoUSOXvN7yRsmPiuLPTyDlCARUh7YPlHY0IiIiIiIVnslkwtvNGx93n0smP9pXa0+oTygJGQn51v0wYSLUJ5T21doX67K3ruTr65vncVpaGuHh4SxZsuS8tmVhGdoXXnjBOZrljFatWrFv3z7mzp3LwoULue222+jRowfff/893t5FTzKdK7/36eGHH+axxx47r23NmlrQ4kKU/KgIslJg2UTjftcx4K5hUCIiIiIiVxKL2cKYdmMYtWQUJkx5EiAmTACMbje62BMfjRo1Ijc3l7Vr1zqnvZw8eZIdO3YQHR0NQIMGDVi/fn2e/f79OD+tWrUiLi4ONzc3ateunW+bM30PHDiwUH27QkhICCEhIedtDwgI4Pbbb+f222/nP//5D3369CExMZFmzZpx+PBhdu7cme/oj0aNGrFy5co821auXElUVJRz1Ed+WrVqRWxsLPXq1bv8F1WBaLWXimD1+5CZCFXqQ/O7SjsaEREREREpgh61ejCp6yRCfPJegIf6hDKp6yR61Cr4KiVFVb9+fW644QYefPBBVqxYwebNm7n77rupXr26cwrHo48+ypw5c5g0aRK7du1i6tSpzJ07F5PJdNG+e/ToQUxMDDfeeCPz589n//79rFq1imeeeYY///zT2fcnn3zCjBkz2LVrFy+99BJbtmy5ZN8FkZiYyKZNm4iNjQWMKTabNm0iLi7ugvtMmjSJr7/+mu3bt7Nz507+97//ERYWRqVKlejSpQudO3fmlltuYcGCBc4RIvPmzQPgiSeeYNGiRbz44ovs3LmTGTNmMHny5PNGl/zb6NGjWbVqFcOHD2fTpk3s2rWLX375heHDVdfxYpT8KO/ST8Dqycb9bv8Fiwb7iIiIiIhcqXrU6sHvt/zO9N7Tea3Ta0zvPZ15t8wrkcTHGZ9++imtW7emf//+xMTE4HA4mDNnDu7u7oBRt2LKlClMmjSJ5s2bM2/ePEaOHHnJQpwmk4k5c+bQuXNnBg8eTFRUFHfccQcHDhwgNDQUgAEDBjB27FiefPJJ55STe++9N0/fS5YswWQysX///kK9rlmzZtGyZUuuvfZaAO644w5atmzJlClTLriPv78/r7/+Om3atKFt27bs37+fOXPmOKcx/fDDD7Rt25Y777yT6Ohonn76aWw2G2CM4Pjuu+/45ptvaNKkCc899xwvvPBCnmKn+WnWrBlLly5l586ddOrUiZYtW/Lcc89RrVq1Qr3eisbkuNxFnsuhlJQUAgMDSU5OJiCgeAuDWq1W5syZQ79+/Zw/LFxq3lhY8wGEt4CHloALMqIirlLs33+RMk7ngFR0OgekIsnKymLfvn1ERkY6L9TtdjspKSkEBARcsubHle7BBx9k+/btLF++3OV99+zZk7CwML744gvASM688sorzqV3pewqPrhtdwAAI51JREFU6DmQ3/lzRkGv3zUMoDxLOgjrPzbud39OiQ8RERERESkREydOpGfPnvj6+jJ37lxmzJjBBx98cNn9ZmRkMGXKFHr37o3FYuHrr79m4cKFLFiwwNlmzpw5vPLKK0p8SB5KfpRnS14DWw7U7gR1u5V2NCIiIiIiUkGsW7eO119/ndTUVOrUqcO7777LAw9c/qqTZ6bGvPzyy2RlZdGgQQN++OEHevQ4O+3nf//732UfR8ofJT/Kq4TtsPkr4373cRr1ISIiIiIiJea7774rln69vb1ZuHBhsfQt5Vv5nlhWkf3xEjjs0LA/RLQt7WhERERERERESk2ZSH68//771K5dGy8vL6666irWrVt30fZJSUkMGzaM8PBwPD09iYqKYs6cOZfVZ7lyeANs+xUwGSu8iIiIiIiIiFRgpZ78+Pbbbxk1ahTjxo1j48aNNG/enN69e5OQkJBv+5ycHHr27Mn+/fv5/vvv2bFjB9OmTaN69epF7rNcsNtg33L4+3v4baSxrfmdENKodOMSERERERERKWWlXvNj0qRJPPjggwwePBiAKVOmMHv2bKZPn86YMWPOaz99+nQSExNZtWqVs3pv7dq1L6vPK17sLJg3GlKO5t1eo03pxCMiIiIiIiJShpRq8iMnJ4cNGzYwduxY5zaz2UyPHj1YvXp1vvvMmjWLmJgYhg0bxi+//EJwcDB33XUXo0ePxmKxFKnP7OxssrOznY9TUlIAY+15q9Xqipd6QWf6L+pxTNt/w/LDYMDBuSVNHQCzn8DmFYSjYf/LDVOkWFzu91/kSqdzQCo6nQNSkVitVhwOB3a7HbvdDoDD4XD+/8w2kYqkoOeA3W7H4XBgtVqxWCx5nivo75BSTX6cOHECm81GaGhonu2hoaFs374933327t3L4sWLGTBgAHPmzGH37t0MHToUq9XKuHHjitTnhAkTGD9+/Hnb58+fj4+PTxFfXeGcuy51gTns9PpnFJZ/JT4ATIADBzmzRrFgD2Aq9RlOIhdUpO+/SDmic0AqOp0DUhG4ubkRFhZGWloaOTk5eZ5LTU0tpahEyoZLnQM5OTlkZmaybNkycnNz8zyXkZFRoGOU+rSXwrLb7YSEhPDRRx9hsVho3bo1R44c4Y033mDcuHFF6nPs2LGMGjXK+TglJYWIiAh69epFQECAq0LPl9VqZcGCBfTs2dM5jaegTAdW4LYp8cLPAz7WRK5tUglHrY6XGamI613O91+kPNA5IBWdzgGpSLKysjh06BB+fn54eXkBxl+7U1NT8ff3x2T6958zL8xhs5G5YQO5x4/jFhyMd+vWmP7113BX6tatG82bN+ett94qtmNIxVTQcyArKwtvb286d+7sPH/OODNz41JKNflRtWpVLBYL8fHxebbHx8cTFhaW7z7h4eG4u7vnGerSqFEj4uLiyMnJKVKfnp6eeHp6nrfd3d29xH4RF+lYmScL1Mwt8yToHxRShpXkuSZSFukckIpO54BUBDabDZPJhNlsxmw2RmWfGeZ/ZntBpMyfT/wrE8iNi3NucwsLI/T/xhLQq5frAz+tMDGKFFRBzwGz2YzJZMr390VBf3+U6rfXw8OD1q1bs2jRIuc2u93OokWLiImJyXefDh06sHv37jzzgXbu3El4eDgeHh5F6vOK5Rd66TaFaSciIiIiImVWyvz5HBnxeJ7EB0BufDxHRjxOyvz5pRTZ5fv3VKCKxuFwnDedo7wqrTpPpZ66GzVqFNOmTWPGjBls27aNIUOGkJ6e7lypZeDAgXmKlw4ZMoTExERGjBjBzp07mT17Nq+88grDhg0rcJ/lRq32EFANzqv4cYYJAqob7UREREREpExxOBzYMzOxZ2Rc8mZLTSX+pZfhdIHIf3UEOIh/+RVsqamX7MuRXx+FcOrUKQYOHEjlypXx8fGhb9++7Nq1K0+badOmERERgY+PDzfddBOTJk2iUqVKzueff/55WrRowccff0xkZKRzKkNSUhIPPPAAwcHBBAQE0K1bNzZv3pyn75deeomQkBD8/f154IEHGDNmDC1atCjUa/jiiy9o06YN/v7+hIWFcdddd5GQkJCnzT///EP//v0JCAjA39+fTp06sWfPHufz06dPp3Hjxnh6ehIeHs7w4cMB2L9/PyaTiU2bNjnbJiUlYTKZWLJkCQBLlizBZDIxd+5cWrdujaenJytWrGDPnj3ccMMNhIaG4ufnR9u2bVm4cGGeuLKzsxk9ejQRERF4enpSr149PvnkExwOB/Xq1WPixIl52m/atAmTycTu3bvzfS8OHDjAddddR+XKlfH19aVx48bMmTOnQO+D3W7nhRdeoEaNGnh6etKiRQvmzZvn3PfMe/Htt9/SpUsXvLy8+PLLLwH4+OOPady4MWFhYURHR/PBBx8U5KMrslKv+XH77bdz/PhxnnvuOeLi4pxv1pmCpQcPHswz/CUiIoLff/+dkSNH0qxZM6pXr86IESMYPXp0gfssN8wW6PMafDeQMyVOzzqdEOnzqtFORERERETKFEdmJvHXdCP+0k0L0JkxAmRn23aXbNpg4wZMl7Gww7333suuXbuYNWsWAQEBjB49mn79+hEbG4u7uzsrV67kkUce4bXXXuP6669n4cKFPPvss+f1s3v3bn744Qd+/PFHZ1mDW2+9FW9vb+bOnUtgYCBTp06le/fu7Ny5k6CgIL788ktefvllPvjgAzp06MA333zDm2++SWRkZKFeg9Vq5cUXX6RBgwYkJCQwatQo7r33XudF/5EjR+jcuTNdu3Zl8eLFBAQEsHLlSufojA8//JBRo0bx6quv0rdvX5KTk1m5cmWh38sxY8YwceJE6tSpQ+XKlTl06BD9+vXj5ZdfxtPTk88//5zrrruOHTt2ULNmTcAYILB69Wreffddmjdvzr59+zhx4gQmk4n77ruPTz/9lCeffNJ5jE8//ZTOnTtTr169fGMYNmwYOTk5LFu2DF9fX2JjY/Hz8yvQ+/DOO+/w5ptvMnXqVFq2bMn06dO5/vrr+eeff6hfv36e1/nmm2/SsmVLZwLkueee491336V+/frs2rWLhx9+GF9fXwYNGlTo97FAHHKe5ORkB+BITk4u9mPl5OQ4fv75Z0dOTk7RO/nnF4fjzYYOx7iAs7c3GxnbRcowl3z/Ra5gOgekotM5IBVJZmamIzY21pGZmencZk1NdcQ2aFjiN1t6eqFi79Kli2PEiBEOh8Ph2LlzpwNwrFy50vn8iRMnHN7e3o7vvvvO4XA4HLfffrvj2muvzdPHgAEDHIGBgc7H48aNc7i7uzsSEhKc25YvX+4ICAhwZGVl5dm3bt26jqlTpzocDofjqquucgwbNizP8x06dHA0b968UK/p39avX+8AHKmpqQ6Hw+EYO3asIzIy8oI/n6pVq+Z45pln8n1u3759DsDx119/ObedOnXKATj++OMPh8PhcPzxxx8OwPHzzz9fMrbGjRs73nvvPYfD4XDs2LHD8f/t3XlQVFfaBvCnaQRbpEEWQVTcQERFR8AFGbQsiBCVz31JSAYUNYkgIsZSY4w6bugo46fjYDQJOJZbrIlxAyNxQdwQMWASAVFxiYpMFAONoECf748M97Ol1VaWjt3Pr6qruOeevvfty3kp+q17zwEgUlJStPa9ffu2kMvlIj09XQjx+99ZOzs7kZiY+Nzje3h4iEWLFmndp8t1WLZsmUZb7969xbRp04QQ/38t1q5dq9GnU6dOYvv27aK6uloUFxeL6upqsWTJEuHj46P1PNryp4au39/1fucH1YOu/wN0GQrcOA2o7v0+x0e7/rzjg4iIiIjoD0ymUMDh2FEoLS1fOpnoo/PncWvqBy89ZttNn6OZt/dLz/u6cnJyYGpqir59+0pttra2cHNzQ05ODgAgLy8PI0eO1Hhfnz59cODAAY22du3awd7eXtrOzs6GSqWCra2tRr/y8nLpMYu8vDxMmzat1rGPHj36Sp8jMzMTixYtQnZ2NoqLi6U5JW/evImuXbsiKysLfn5+WifTLCoqwp07d+Dv7/9K59TG+5nflUqlwqJFi3Dw4EHcvXsXVVVVKC8vx82bNwH8/giLXC7HwIEDtR7PyckJQ4cOxVdffYU+ffpg//79ePz4McaOHQsA6NatG27cuAEA8PPzQ3JyMqKiovDRRx/h8OHDCAgIwOjRo9GjRw/pfM+7DiUlJbhz5w58fX012n19fWs9qvT05ywrK8PVq1cRHh6OKVOmSO1VVVWwsrLS6bq9DhY/DIWJHOjgp+8oiIiIiIhIRzKZDCYKBUyaNXtp8cPC1xemjo6oundP+7wfMhlMHRxg4evboMve1icLCwuNbZVKhVatWknzYjzt6flC6qqsrAyBgYEIDAzEtm3bYG9vj5s3byIwMFCaeFXxggLRi/YBkH6X4qnf0/Mm+Xz2Gnz88cdISUnB6tWr4eLiAoVCgTFjxugUV43Jkyfj/fffx9///nckJCRg/PjxaPbfx5ySkpKkWGqONXnyZAQGBuLgwYM4fPgwVqxYgTVr1mD69Ok6nU8XT39OlUoF4Pd5YXr37g2VSoXmzZvDxMREY1XX+qb3CU+JiIiIiIjoxWRyORw++e9CELJnFjz477bDJ/MavPDh7u6OqqoqpKenS233799HXl4eunbtCgBwc3NDRkaGxvue3dbG09MThYWFMDU1hYuLi8bLzs6uTsd+Wm5uLu7fv4/Y2Fj4+fmhS5cutSY77dGjB9LS0rQWLSwtLdG+fXuNFUafVnM3y927d6W2pyc/fZFTp04hLCwMI0eOhIeHBxwdHXH9+nVpv4eHB9RqNVJTU597jCFDhsDCwgLx8fE4dOgQJk2aJO1r166ddE1bt24ttbdt2xYffvghvvnmG8yaNQubN29+6XVQKpVwcnKqNdfJqVOnpLGgjYODA5ycnHDt2jW4uLigY8eOUkyvOnfLq2Dxg4iIiIiI6A2gHDwYrf93LUyfWcjB1MEBrf93LZSDBzd4DK6urhg+fDimTJmCkydPIjs7G++99x5at26N4cOHAwCmT5+OpKQkxMXFIT8/H59//jmSk5Mhe7Zo84yAgAD4+PhgxIgROHz4MK5fv47Tp09j/vz5OH/+vHTsL7/8Elu2bEF+fj6WLl2KixcvvvTYT3N2doaZmRnWr1+Pa9euYd++fViyZIlGn8jISJSUlGDChAk4f/488vPzsXXrVuTl5QH4fbWaNWvWYN26dcjPz8eFCxewfv16AL/fUdGvXz/ExsYiJycHqamp+PTTT3W+vt988w2ysrKQnZ2Nd999V3okBwDat2+P0NBQTJo0Cd9++y0KCgpw/PhxfP3111IfuVyOsLAwzJs3D66urvDx8XnhOaOjo/Hdd9+hoKAAFy5cwLFjx+Du7q7TdZg9ezZWrlyJXbt2IS8vD3PnzkVWVhZmzJjxwnMuXrwYK1aswPr163HlyhX8+OOPSEhIQFxcnE7X6XWw+EFERERERPSGUA4eDJcj38N5yxY4rV4N5y1b4HLk+0YpfNRISEiAl5cXhg0bBh8fHwghkJSUJM0L4evri40bNyIuLg49e/bEoUOHMHPmTGk52+eRyWRISkrCgAEDMHHiRHTu3BkTJkzAjRs3pJU7Q0JCMG/ePHz88cfw9PREQUEBwsLCNI5ds4zs03dMPM3e3h6JiYnYvXs3unbtitjY2FrLw9ra2uLo0aNQqVQYOHAgvLy8sHnzZukzhoaGYu3atfjnP/+Jbt26YdiwYRrL/X711VeoqqqCl5cXoqOjsXTpUp2ubVxcHFq0aIH+/fsjODgYgYGB8PT01OgTHx+PMWPGYNq0aejSpQumTJmCsrIyjT7h4eF48uQJJk6c+NJzVldXIyIiAu7u7ggKCkLnzp2lZWdfdh2ioqIQExODWbNmwcPDA4cOHcK+ffs0VnrRZvLkyfjiiy+QmJgIX19fDBo0CImJiQ1654dMiDou8myASkpKYGVlhd9++w1KpbJBz1VZWYmkpCQMGTJE6yQyRIaM45+MHXOAjB1zgIxJRUUFCgoK0KFDB+mLulqtRklJCZRK5Uvn/HjTTZkyBbm5uUhLS6v3Y7/11ltwdHTE1q1bAfxenFm+fLm09K4xSktLg7+/P27duiUVjv6IdM0BbflTQ9fv75zwlIiIiIiIiOrV6tWr8dZbb8HCwgLJycnYsmWLdDdBXTx69AgbN25EYGAg5HI5duzYge+//x4pKSlSn6SkJCxfvtwoCx+PHz/Gf/7zHyxatAhjx479Qxc+GhuLH0RERERERFSvzp07h1WrVqG0tBQdO3bEunXrMHny5Doft+bRmGXLlqGiogJubm7497//jYCAAKnP7t2763yeN9WOHTsQHh6OP/3pT/jXv/6l73D+UFj8ICIiIiIionr19ASc9UmhUOD7779vkGMbgrCwMISFhek7jD8kw36wjIiIiIiIiIiMHosfREREREREjYTrTRC9uvrIGxY/iIiIiIiIGljN5JuPHj3ScyREb56avKnLJLac84OIiIiIiKiByeVyWFtbo6ioCADQrFkzCCHw5MkTVFRUGPxSt0TaqNXqF+aAEAKPHj1CUVERrK2tIZfLX/tcLH4QERERERE1AkdHRwCQCiBCCJSXl0OhUEAmk+kzNCK90DUHrK2tpfx5XSx+EBERERERNQKZTIZWrVqhZcuWqKysRGVlJU6cOIEBAwbU6XZ+ojeVLjnQpEmTOt3xUYPFDyIiIiIiokYkl8ulV1VVFZo2bcriBxmlxswBPlhGRERERERERAaNxQ8iIiIiIiIiMmgsfhARERERERGRQeOcH1oIIQAAJSUlDX6uyspKPHr0CCUlJXzOj4wOxz8ZO+YAGTvmABk75gAZu/rIgZrv7TXf45+HxQ8tSktLAQBt27bVcyRERERERERE9DKlpaWwsrJ67n6ZeFl5xAip1WrcuXMHlpaWDb7edklJCdq2bYtbt25BqVQ26LmI/mg4/snYMQfI2DEHyNgxB8jY1UcOCCFQWloKJycnmJg8f2YP3vmhhYmJCdq0adOo51QqlfyDR0aL45+MHXOAjB1zgIwdc4CMXV1z4EV3fNTghKdEREREREREZNBY/CAiIiIiIiIig8bih56Zm5tj4cKFMDc313coRI2O45+MHXOAjB1zgIwdc4CMXWPmACc8JSIiIiIiIiKDxjs/iIiIiIiIiMigsfhBRERERERERAaNxQ8iIiIiIiIiMmgsfhARERERERGRQWPxQ482bNiA9u3bo2nTpujbty/OnTun75CIGsSKFSvQu3dvWFpaomXLlhgxYgTy8vI0+lRUVCAiIgK2trZo3rw5Ro8ejXv37ukpYqKGExsbC5lMhujoaKmN458M3e3bt/Hee+/B1tYWCoUCHh4eOH/+vLRfCIHPPvsMrVq1gkKhQEBAAPLz8/UYMVH9qa6uxoIFC9ChQwcoFAp06tQJS5YswdPrTjAHyJCcOHECwcHBcHJygkwmw7fffquxX5fx/uDBA4SEhECpVMLa2hrh4eFQqVR1iovFDz3ZtWsXYmJisHDhQly4cAE9e/ZEYGAgioqK9B0aUb1LTU1FREQEzp49i5SUFFRWVmLw4MEoKyuT+sycORP79+/H7t27kZqaijt37mDUqFF6jJqo/mVkZODzzz9Hjx49NNo5/smQFRcXw9fXF02aNEFycjIuXbqENWvWoEWLFlKfVatWYd26ddi4cSPS09NhYWGBwMBAVFRU6DFyovqxcuVKxMfH4x//+AdycnKwcuVKrFq1CuvXr5f6MAfIkJSVlaFnz57YsGGD1v26jPeQkBD8/PPPSElJwYEDB3DixAlMnTq1boEJ0os+ffqIiIgIabu6ulo4OTmJFStW6DEqosZRVFQkAIjU1FQhhBAPHz4UTZo0Ebt375b65OTkCADizJkz+gqTqF6VlpYKV1dXkZKSIgYOHChmzJghhOD4J8M3Z84c8ec///m5+9VqtXB0dBR/+9vfpLaHDx8Kc3NzsWPHjsYIkahBDR06VEyaNEmjbdSoUSIkJEQIwRwgwwZA7NmzR9rWZbxfunRJABAZGRlSn+TkZCGTycTt27dfOxbe+aEHT548QWZmJgICAqQ2ExMTBAQE4MyZM3qMjKhx/PbbbwAAGxsbAEBmZiYqKys1cqJLly5wdnZmTpDBiIiIwNChQzXGOcDxT4Zv37598Pb2xtixY9GyZUv06tULmzdvlvYXFBSgsLBQIwesrKzQt29f5gAZhP79++PIkSO4fPkyACA7OxsnT57E22+/DYA5QMZFl/F+5swZWFtbw9vbW+oTEBAAExMTpKenv/a5TV8/bHpdv/76K6qrq+Hg4KDR7uDggNzcXD1FRdQ41Go1oqOj4evri+7duwMACgsLYWZmBmtra42+Dg4OKCws1EOURPVr586duHDhAjIyMmrt4/gnQ3ft2jXEx8cjJiYGn3zyCTIyMhAVFQUzMzOEhoZK41zb/0XMATIEc+fORUlJCbp06QK5XI7q6mosW7YMISEhAMAcIKOiy3gvLCxEy5YtNfabmprCxsamTjnB4gcRNaqIiAj89NNPOHnypL5DIWoUt27dwowZM5CSkoKmTZvqOxyiRqdWq+Ht7Y3ly5cDAHr16oWffvoJGzduRGhoqJ6jI2p4X3/9NbZt24bt27ejW7duyMrKQnR0NJycnJgDRI2Ij73ogZ2dHeRyea2Z/O/duwdHR0c9RUXU8CIjI3HgwAEcO3YMbdq0kdodHR3x5MkTPHz4UKM/c4IMQWZmJoqKiuDp6QlTU1OYmpoiNTUV69atg6mpKRwcHDj+yaC1atUKXbt21Whzd3fHzZs3AUAa5/y/iAzV7NmzMXfuXEyYMAEeHh54//33MXPmTKxYsQIAc4CMiy7j3dHRsdZCIFVVVXjw4EGdcoLFDz0wMzODl5cXjhw5IrWp1WocOXIEPj4+eoyMqGEIIRAZGYk9e/bg6NGj6NChg8Z+Ly8vNGnSRCMn8vLycPPmTeYEvfH8/f3x448/IisrS3p5e3sjJCRE+pnjnwyZr69vreXNL1++jHbt2gEAOnToAEdHR40cKCkpQXp6OnOADMKjR49gYqL5tUsul0OtVgNgDpBx0WW8+/j44OHDh8jMzJT6HD16FGq1Gn379n3tc/OxFz2JiYlBaGgovL290adPH6xduxZlZWWYOHGivkMjqncRERHYvn079u7dC0tLS+lZPSsrKygUClhZWSE8PBwxMTGwsbGBUqnE9OnT4ePjg379+uk5eqK6sbS0lOa3qWFhYQFbW1upneOfDNnMmTPRv39/LF++HOPGjcO5c+ewadMmbNq0CQAgk8kQHR2NpUuXwtXVFR06dMCCBQvg5OSEESNG6Dd4onoQHByMZcuWwdnZGd26dcMPP/yAuLg4TJo0CQBzgAyPSqXClStXpO2CggJkZWXBxsYGzs7OLx3v7u7uCAoKwpQpU7Bx40ZUVlYiMjISEyZMgJOT0+sH9trrxFCdrV+/Xjg7OwszMzPRp08fcfbsWX2HRNQgAGh9JSQkSH3Ky8vFtGnTRIsWLUSzZs3EyJEjxd27d/UXNFEDenqpWyE4/snw7d+/X3Tv3l2Ym5uLLl26iE2bNmnsV6vVYsGCBcLBwUGYm5sLf39/kZeXp6doiepXSUmJmDFjhnB2dhZNmzYVHTt2FPPnzxePHz+W+jAHyJAcO3ZM6//+oaGhQgjdxvv9+/fFO++8I5o3by6USqWYOHGiKC0trVNcMiGEeP3SCRERERERERHRHxvn/CAiIiIiIiIig8biBxEREREREREZNBY/iIiIiIiIiMigsfhBRERERERERAaNxQ8iIiIiIiIiMmgsfhARERERERGRQWPxg4iIiIiIiIgMGosfRERERERERGTQWPwgIiIig3b9+nXIZDJkZWU9t8/x48chk8nw8OHDBokhMTER1tbWDXJsIiIiejkWP4iIiEgnYWFhkMlktV5BQUH6Du0Pb/z48bh8+bK+wyAiIjJapvoOgIiIiN4cQUFBSEhI0GgzNzfXUzRvDoVCAYVCoe8wiIiIjBbv/CAiIiKdmZubw9HRUePVokULab9MJsMXX3yBkSNHolmzZnB1dcW+ffuk/cXFxQgJCYG9vT0UCgVcXV01iim3bt3CuHHjYG1tDRsbGwwfPhzXr1+X9oeFhWHEiBFYvnw5HBwcYG1tjb/+9a+oqqrC7NmzYWNjgzZt2tQq0ABAbm4u+vfvj6ZNm6J79+5ITU194Wc9efIk/Pz8oFAo0LZtW0RFRaGsrOy5/bOzszFo0CBYWlpCqVTCy8sL58+fB1D7sZf27dtrvYtG1+tAREREr4bFDyIiIqpXixcvxrhx43Dx4kUMGTIEISEhePDgAQBgwYIFuHTpEpKTk5GTk4P4+HjY2dkBACorKxEYGAhLS0ukpaXh1KlTaN68OYKCgvDkyRPp+EePHsWdO3dw4sQJxMXFYeHChRg2bBhatGiB9PR0fPjhh/jggw/wyy+/aMQ1e/ZszJo1Cz/88AN8fHwQHByM+/fva/0MV69eRVBQEEaPHo2LFy9i165dOHnyJCIjI5/7uUNCQtCmTRtkZGQgMzMTc+fORZMmTbT2zcjIwN27d3H37l388ssv6NevH/z8/F7pOhAREdErEEREREQ6CA0NFXK5XFhYWGi8li1bJvUBID799FNpW6VSCQAiOTlZCCFEcHCwmDhxotbjb926Vbi5uQm1Wi21PX78WCgUCvHdd99JMbRr105UV1dLfdzc3ISfn5+0XVVVJSwsLMSOHTuEEEIUFBQIACI2NlbqU1lZKdq0aSNWrlwphBDi2LFjAoAoLi4WQggRHh4upk6dqhFfWlqaMDExEeXl5Vrjt7S0FImJiVr3JSQkCCsrK637oqKiRLt27URRUZHO14GIiIheDef8ICIiIp0NGjQI8fHxGm02NjYa2z169JB+trCwgFKpRFFREQDgo48+wujRo3HhwgUMHjwYI0aMQP/+/QH8/tjIlStXYGlpqXG8iooKXL16Vdru1q0bTEz+/+ZVBwcHdO/eXdqWy+WwtbWVzlnDx8dH+tnU1BTe3t7IycnR+jmzs7Nx8eJFbNu2TWoTQkCtVqOgoADu7u613hMTE4PJkydj69atCAgIwNixY9GpUyetx6+xadMmfPnllzh9+jTs7e1f6ToQERGR7lj8ICIiIp1ZWFjAxcXlhX2efdRDJpNBrVYDAN5++23cuHEDSUlJSElJgb+/PyIiIrB69WqoVCp4eXlpFBxq1BQGnnf8F53zdahUKnzwwQeIioqqtc/Z2VnrexYtWoR3330XBw8eRHJyMhYuXIidO3di5MiRWvsfO3YM06dPx44dOzQKRrpeByIiItIdix9ERETUqOzt7REaGorQ0FD4+flh9uzZWL16NTw9PbFr1y60bNkSSqWy3s979uxZDBgwAABQVVWFzMzM587h4enpiUuXLr200POszp07o3Pnzpg5cybeeecdJCQkaC1+XLlyBWPGjMEnn3yCUaNG1Tp3Q14HIiIiY8QJT4mIiEhnjx8/RmFhocbr119/1fn9n332Gfbu3YsrV67g559/xoEDB6RHSEJCQmBnZ4fhw4cjLS0NBQUFOH78OKKiompNXvo6NmzYgD179iA3NxcREREoLi7GpEmTtPadM2cOTp8+jcjISGRlZSE/Px979+59brGkvLwckZGROH78OG7cuIFTp04hIyND6+Mx5eXlCA4ORq9evTB16lSNa9kY14GIiMgY8c4PIiIi0tmhQ4fQqlUrjTY3Nzfk5ubq9H4zMzPMmzcP169fh0KhgJ+fH3bu3AkAaNasGU6cOIE5c+Zg1KhRKC0tRevWreHv718vd0DExsYiNjYWWVlZcHFxwb59+6SVZp7Vo0cPpKamYv78+fDz84MQAp06dcL48eO19pfL5bh//z7+8pe/4N69e7Czs8OoUaOwePHiWn3v3buH3Nxc5ObmwsnJSWOfEKLBrwMREZExkgkhhL6DICIiIiIiIiJqKHzshYiIiIiIiIgMGosfRERERERERGTQWPwgIiIiIiIiIoPG4gcRERERERERGTQWP4iIiIiIiIjIoLH4QUREREREREQGjcUPIiIiIiIiIjJoLH4QERERERERkUFj8YOIiIiIiIiIDBqLH0RERERERERk0Fj8ICIiIiIiIiKD9n9YMVUfQsOGXwAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Thus, the accuracy of the decision tree ensemble increases as the ensemble size increases. The accuracy of the logistic regression ensemble does not change much with changing sample size." + ], + "metadata": { + "id": "WyV1kbj5RqKv" + } + }, + { + "cell_type": "code", + "source": [ + "best_logreg_ensemble_size = max(ensemble_models['logreg']['accuracy'], key=ensemble_models['logreg']['accuracy'].get)\n", + "print(f'best logreg ensemble size: {best_logreg_ensemble_size}')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Zg9L35sxpHVf", + "outputId": "f349e37e-3f34-4f12-bb95-c7372f0cd9d5" + }, + "execution_count": 198, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "best logreg ensemble size: 12\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "best_tree_ensemble_size = max(ensemble_models['tree']['accuracy'], key=ensemble_models['tree']['accuracy'].get)\n", + "print(f'best tree ensemble size: {best_tree_ensemble_size}')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Jj-kBryRoRm8", + "outputId": "55135076-1b0e-46a2-f88d-8244262f9628" + }, + "execution_count": 199, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "best tree ensemble size: 37\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "nbgrader": { + "grade": false, + "grade_id": "cell-241b7691ab44cbfb", + "locked": true, + "schema_version": 2, + "solution": false + }, + "id": "0cZBXa7ZOcMD" + }, + "source": [ + "#### 2.7. Random Forest\n", + "Now we will work with the Random Forest (its `sklearn` implementation).\n", + "\n", + "* * Plot `f1` and `accuracy` scores plots w.r.t. the number of trees in Random Forest.\n", + "\n", + "* What is the optimal number of trees you've got? Is it different from the optimal number of logistic regressions/decision trees in 2.6? Explain the results briefly." + ] + }, + { + "cell_type": "code", + "source": [ + "X_train_pd_scaled = scaler.fit_transform(X_train_pd)\n", + "X_test_scaled = scaler.transform(X_test)" + ], + "metadata": { + "id": "sFQT2Rq4TpVT" + }, + "execution_count": 200, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 201, + "metadata": { + "nbgrader": { + "grade": true, + "grade_id": "cell-888755d0f3d91620", + "locked": false, + "points": 15, + "schema_version": 2, + "solution": true + }, + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "OutrhL-pOcMD", + "outputId": "2b81117e-8ba4-4a92-f62b-1431fcfe2758" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 20/20 [00:02<00:00, 7.29it/s]\n" + ] + } + ], + "source": [ + "from sklearn.ensemble import RandomForestClassifier\n", + "\n", + "forest_size_list = ensemble_size_list\n", + "\n", + "rf_score = {\n", + " 'f1': {},\n", + " 'accuracy': {},\n", + "}\n", + "\n", + "for forest_size in tqdm(forest_size_list):\n", + " classifier = RandomForestClassifier(n_estimators=forest_size, **tree_grid_search.best_params_)\n", + " classifier.fit(X_train_pd_scaled, y_train)\n", + " rf_score['f1'][forest_size] = f1_score(y_test, classifier.predict(X_test_scaled), average='macro')\n", + " rf_score['accuracy'][forest_size] = accuracy_score(y_test, classifier.predict(X_test_scaled))" + ] + }, + { + "cell_type": "code", + "source": [ + "plt.figure(figsize=(14, 3))\n", + "plt.subplots_adjust(top=1.5)\n", + "\n", + "for i, score_type in enumerate(score_type_list):\n", + " plt.subplot(1, 2, i + 1)\n", + " plt.plot(ensemble_size_list, ensemble_models['tree'][score_type].values(), marker='o', label='tree')\n", + " plt.plot(ensemble_size_list, ensemble_models['logreg'][score_type].values(), marker='o', label='logreg')\n", + " plt.plot(ensemble_size_list, rf_score[score_type].values(), marker='o', label='random forest')\n", + "\n", + " plt.title(f'Test {score_type} score depending on ensemble size')\n", + " plt.xlabel('Ensemble size')\n", + " plt.ylabel('Score')\n", + " plt.grid(True)\n", + " plt.legend()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 519 + }, + "id": "EJQEgQb3Tw4y", + "outputId": "d8bc22ab-00e0-4fe6-d344-7c9348137a80" + }, + "execution_count": 202, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJIAAAH2CAYAAAArsKb0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xT1fvA8U+S7gltoYO9Z9mUqaAWiqCIshEKuBVEvnXBz4G4APXLF0UUB6goslFREShLQdllyl5ldbBbupvc3x+XBEKTNm2TpuN5+8pLcnNz77kntzcnzz3nORpFURSEEEIIIYQQQgghhCiA1tkFEEIIIYQQQgghhBBlgwSShBBCCCGEEEIIIYRNJJAkhBBCCCGEEEIIIWwigSQhhBBCCCGEEEIIYRMJJAkhhBBCCCGEEEIIm0ggSQghhBBCCCGEEELYRAJJQgghhBBCCCGEEMImEkgSQgghhBBCCCGEEDaRQJIQQgghhBBCCCGEsIkEkkS5dezYMXr27Im/vz8ajYaff/7Z2UUq9UaNGkXt2rWdXQy7sXQ8Go2Gt956yynlEcX37bffotFo2LlzZ4Hrdu/ene7duzu+ULepXbs2o0aNKtF9CiGEqFg2btyIRqNh48aNzi6KXVg6nvLWJq2INBoNY8eOLXA9Y9vu9OnTji/UTW+99RYajabE9lceSSBJFJlGo7HpYY8vufT0dN56661CbWvkyJHs37+f9957j++//5527dpx48YNJk2aRK9evQgICECj0fDtt98Wu3xCCCGEKFtKeztGCCGEKK1cnF0AUXZ9//33Zs/nzZtHbGxsnuVNmjQp9r7S09OZPHkygE09DDIyMtiyZQuvvfaaWST89OnTvP3229SsWZOWLVtKg64CysjIwMVFLn3CMY4cOYJWK/dohCgLSnM7RoiK7quvvsJgMDi7GKKcev3115kwYYKzi1Gmya8pUWTDhw83e75161ZiY2PzLHeGixcvAlCpUiWz5aGhoSQkJBASEsLOnTtp3769E0pXPGlpaXh7ezu7GGWWh4eHs4sgyjF3d3dnF0EIYaPS3I4pa6RtkldmZiZubm5yc6GIXF1dnV0EUY65uLjIjeVikiubcCiDwcCMGTNo1qwZHh4eBAcH8/TTT3P16lWz9Xbu3ElUVBRBQUF4enpSp04dHnvsMUDtRVSlShUAJk+ebOpqbi3PzVtvvUWtWrUAePnll9FoNKYx1u7u7oSEhBT5eBITExk9ejTVq1fH3d2d0NBQHnrooTxjev/44w+6deuGr68vfn5+tG/fnh9//NFsnSVLltC2bVs8PT0JCgpi+PDhnD9/3mydUaNG4ePjw4kTJ+jduze+vr48+uijgO11a83PP/9M8+bN8fDwoHnz5vz0008W17N1P7Vr1+aBBx5gzZo1tGrVCg8PD5o2bcry5cvzbPPatWuMHz+eGjVq4O7uTv369Zk2bZrZnafTp0+j0Wj46KOP+PLLL6lXrx7u7u60b9+eHTt2FPl47jx3jGOkjx8/zqhRo6hUqRL+/v6MHj2a9PR0s/dmZGQwbtw4goKC8PX1pW/fvpw/f97mvEvJyck8/vjjBAcH4+HhQcuWLfnuu+/M1inscVti7/otzHl/11134e3tja+vL3369OHff/81W8d4Tp85c4YHHngAHx8fqlWrxqxZswDYv38/9957L97e3tSqVSvP341Reno6Tz/9NIGBgfj5+REdHW3TuZ+VlcWkSZOoX78+7u7u1KhRg1deeYWsrKwC33vs2DH69+9PSEgIHh4eVK9enSFDhnD9+nXTOnfmSMpvuMzt9Xf48GEGDBhAQEAAHh4etGvXjhUrVhRYJiGEYzmjHQNw5coVXnrpJcLDw/Hx8cHPz4/777+fvXv35lk3MzOTt956i4YNG+Lh4UFoaCiPPPIIJ06cMDuOjz/+mPDwcDw8PKhSpQq9evUy5ZszfidYGu5v7Xvz4MGDDBs2jMqVK9O1a1cA9u3bx6hRo6hbty4eHh6EhITw2GOPcfny5TzbPX/+PI8//jhhYWG4u7tTp04dnn32WbKzszl58iQajYb//e9/ed73zz//oNFoWLBggdX6A5g5cybNmjXDy8uLypUr065duzzfKfmVwejkyZMMHDiQgIAAvLy86NixI7///rvZdow5fhYuXMjrr79OtWrV8PLyIiUlBYBt27bRq1cv/P398fLyolu3bvz999/5lt/o3Llz9OvXD29vb6pWrcp//vMfq99ZtuzH+PkdPnyYQYMG4efnR2BgIC+88AKZmZl5tvnDDz+Y2qsBAQEMGTKEs2fPmq3TvXt3mjdvzsGDB7nnnnvw8vKiWrVqfPDBB0U+njtzJBW2fbRkyRKaNm1q1i4sTN6lzz77jGbNmuHu7k5YWBhjxozh2rVrRT5ua+xdv7ae94899hjBwcG4u7vTrFkz5s6da7aO8ZxevHgxkydPplq1avj6+jJgwACuX79OVlYW48ePp2rVqvj4+DB69Gir5+X8+fNp1KgRHh4etG3blr/++sumurGlXWlJTk4OkydPpkGDBnh4eBAYGEjXrl2JjY01rXNnjqRRo0ZZba/dfv0rTjuyvJEwnHCop59+mm+//ZbRo0czbtw4Tp06xaeffsru3bv5+++/cXV1JTk5mZ49e1KlShUmTJhApUqVOH36tCkAUaVKFT7//HOeffZZHn74YR555BEAWrRoYXGfjzzyCJUqVeI///kPQ4cOpXfv3vj4+NjlePr378+///7L888/T+3atUlOTiY2NpYzZ86Yvpi+/fZbHnvsMZo1a8bEiROpVKkSu3fvZtWqVQwbNsy0zujRo2nfvj1TpkwhKSmJjz/+mL///pvdu3eb9aTKzc0lKiqKrl278tFHH+Hl5WVz3VqzZs0a+vfvT9OmTZkyZQqXL182BQruVJj9HDt2jMGDB/PMM88wcuRIvvnmGwYOHMiqVavo0aMHoAYAunXrxvnz53n66aepWbMm//zzDxMnTiQhIYEZM2aY7f/HH38kNTWVp59+Go1GwwcffMAjjzzCyZMnTfsuzPFYM2jQIOrUqcOUKVOIi4vj66+/pmrVqkybNs20zqhRo1i8eDEjRoygY8eO/Pnnn/Tp08em7WdkZNC9e3eOHz/O2LFjqVOnDkuWLGHUqFFcu3aNF154odDHbYkj6teW8/77779n5MiRREVFMW3aNNLT0/n888/p2rUru3fvNmu46fV67r//fu6++24++OAD5s+fz9ixY/H29ua1117j0Ucf5ZFHHmH27NlER0fTqVMn6tSpY1busWPHUqlSJd566y2OHDnC559/Tnx8vKnhY4nBYKBv375s3ryZp556iiZNmrB//37+97//cfTo0XwT8mdnZxMVFUVWVhbPP/88ISEhnD9/nt9++41r167h7+9v8X13DpEBtTt1cnKy6br077//0qVLF6pVq8aECRPw9vZm8eLF9OvXj2XLlvHwww9bLZcQwrGc0Y4BNXjx888/M3DgQOrUqUNSUhJffPEF3bp14+DBg4SFhQHq9fSBBx5g3bp1DBkyhBdeeIHU1FRiY2M5cOAA9erVA+Dxxx/n22+/5f777+eJJ54gNzeXTZs2sXXrVtq1a1ekuhk4cCANGjTg/fffR1EUAGJjYzl58iSjR48mJCSEf//9ly+//JJ///2XrVu3mq7PFy5cICIigmvXrvHUU0/RuHFjzp8/z9KlS0lPT6du3bp06dKF+fPn85///Mdsv/Pnz8fX15eHHnrIatm++uorxo0bx4ABA0wBkn379rFt2zZTW6ygMri5uZGUlETnzp1JT09n3LhxBAYG8t1339G3b1+WLl2a5/r8zjvv4ObmxksvvURWVhZubm6sX7+e+++/n7Zt2zJp0iS0Wi3ffPMN9957L5s2bSIiIsLqcWRkZHDfffdx5swZxo0bR1hYGN9//z3r16/Ps25h9zNo0CBq167NlClT2Lp1K5988glXr15l3rx5pnXee+893njjDQYNGsQTTzzBxYsXmTlzJnfffXee9urVq1fp1asXjzzyCIMGDWLp0qW8+uqrhIeHc//99xf6eKyxpd3y+++/M3jwYMLDw5kyZQpXr17l8ccfp1q1ajbt46233mLy5MlERkby7LPPmtoZO3bsyNP2teW4rbF3/dpy3iclJdGxY0dTIuwqVarwxx9/8Pjjj5OSksL48ePNyjhlyhQ8PT2ZMGECx48fZ+bMmbi6uqLVarl69SpvvfUWW7du5dtvv6VOnTq8+eabZu//888/WbRoEePGjcPd3Z3PPvuMXr16sX37dpo3b261bgrTrrT0+U2ZMoUnnniCiIgIUlJS2LlzJ3FxcabfI3d6+umniYyMNFu2atUq5s+fT9WqVYHitSPLJUUIOxkzZoxy+ym1adMmBVDmz59vtt6qVavMlv/0008KoOzYscPqti9evKgAyqRJk2wqy6lTpxRA+fDDD62us2PHDgVQvvnmG5u2efXq1QK3ee3aNcXX11fp0KGDkpGRYfaawWBQFEVRsrOzlapVqyrNmzc3W+e3335TAOXNN980LRs5cqQCKBMmTDDblq11a02rVq2U0NBQ5dq1a6Zla9asUQClVq1aRdpPrVq1FEBZtmyZadn169eV0NBQpXXr1qZl77zzjuLt7a0cPXrUbJsTJkxQdDqdcubMGUVRbn2GgYGBypUrV0zr/fLLLwqg/Prrr4U+HkVR8pxHkyZNUgDlscceM1vv4YcfVgIDA03Pd+3apQDK+PHjzdYbNWqUTefmjBkzFED54YcfTMuys7OVTp06KT4+PkpKSkqhj9sSe9evLed9amqqUqlSJeXJJ580W56YmKj4+/ubLTee0++//75p2dWrVxVPT09Fo9EoCxcuNC0/fPhwnrr95ptvFEBp27atkp2dbVr+wQcfKIDyyy+/mJZ169ZN6datm+n5999/r2i1WmXTpk1m5Zw9e7YCKH///bfVY9y9e7cCKEuWLLG6jqKofwcjR460+rqxnPPmzTMtu++++5Tw8HAlMzPTtMxgMCidO3dWGjRokO/+hBD2U5raMZmZmYperzdbdurUKcXd3V15++23Tcvmzp2rAMr06dPzbMPY7li/fr0CKOPGjbO6jvE7wVKbyNr35tChQ/Osm56enmfZggULFED566+/TMuio6MVrVZrsc6MZfriiy8UQDl06JDptezsbCUoKCjf66yiKMpDDz2kNGvWLN91bCnD+PHjFcDseyM1NVWpU6eOUrt2bdNntGHDBgVQ6tata1YHBoNBadCggRIVFWXapqKo9VSnTh2lR48e+ZbR2HZYvHixaVlaWppSv359BVA2bNhQ6P0YP7++ffua7eu5555TAGXv3r2KoijK6dOnFZ1Op7z33ntm6+3fv19xcXExW96tW7c8321ZWVlKSEiI0r9//0Ifj6Ko7YXb23CFaR+Fh4cr1atXV1JTU03LNm7caLFdeKfk5GTFzc1N6dmzp9nf4KeffqoAyty5cwt93JY4on5tOe8ff/xxJTQ0VLl06ZLZ8iFDhij+/v6m89d4Tjdv3tysvTV06FBFo9Eo999/v9n7O3XqZLHNDSg7d+40LYuPj1c8PDyUhx9+2LTM2LY7deqUoiiFa1da0rJlS6VPnz75rmP8O7Dm2LFjir+/v9KjRw8lNzdXUZTitSPLIxnaJhxmyZIl+Pv706NHDy5dumR6tG3bFh8fHzZs2ADcymP022+/kZOT48QS58/T0xM3Nzc2btxodQhNbGwsqampTJgwIU8uHuNduJ07d5KcnMxzzz1ntk6fPn1o3Lhxnu7SAM8++6zZc1vr1pKEhAT27NnDyJEjzXpR9OjRg6ZNmxZrP2FhYWZ354xDjnbv3k1iYqJpm3fddReVK1c222ZkZCR6vT5Pd9fBgwdTuXJl0/O77roLUO/WFvZ48vPMM8+YPb/rrru4fPmyqVv6qlWrAHjuuefM1nv++edt2v7KlSsJCQlh6NChpmWurq6MGzeOGzdu8Oeff5qtX9BxW2Pv+rX1vL927RpDhw4126dOp6NDhw4Wz8cnnnjC9O9KlSrRqFEjvL29GTRokGl5o0aNqFSpksVjfuqpp8zuCD777LO4uLiwcuXKfOumSZMmNG7c2Kyc9957L0C+fzfGc2v16tV5hjzaasOGDUycOJHnn3+eESNGAOrwlfXr1zNo0CBSU1NNZbp8+TJRUVEcO3Ysz5BXIUTJcGY7xt3d3ZRbR6/Xc/nyZXx8fGjUqBFxcXGm9ZYtW0ZQUJDF7yJju2PZsmVoNBomTZpkdZ2iuPN7E9TvDKPMzEwuXbpEx44dAUzlNhgM/Pzzzzz44IMWe0MZyzRo0CA8PDyYP3++6bXVq1dz6dKlAvNYVapUiXPnzlkdEm5rGVauXElERIRp6B6Aj48PTz31FKdPn+bgwYNm7xs5cqRZHezZs4djx44xbNgwLl++bDqH0tLSuO+++/jrr7/yTSi9cuVKQkNDGTBggGmZl5cXTz31lNl6RdnPmDFjzJ4bzyHj9+jy5csxGAwMGjTI7PwPCQmhQYMGeb4zfXx8zD4XNzc3IiIizL7DbT2e/BTUbrlw4QL79+8nOjrabERCt27dCA8PL3D7a9euJTs7m/Hjx5vlt3ryySfx8/PL00635bgtcUT9FnTeK4rCsmXLePDBB1EUxWy/UVFRXL9+3ez6AhAdHW3W3urQoQOKopiG7t6+/OzZs+Tm5pot79SpE23btjU9r1mzJg899BCrV69Gr9dbLGdR2pW3q1SpEv/++y/Hjh3Ldz1r0tLSePjhh6lcuTILFixAp9MBxWtHlkcytE04zLFjx7h+/bqpO+CdkpOTAfXC3r9/fyZPnsz//vc/unfvTr9+/Rg2bFipSlzr7u7OtGnTePHFFwkODqZjx4488MADREdHm/IuGfMR5NdVMz4+HlB/JN+pcePGbN682WyZi4tLniFattZtfvtv0KBBntfubKAWdj/169fP0yht2LAhoI5tDwkJ4dixY+zbt8+UL6KgbdasWdPsubHxYAxqFOZ48pPffvz8/IiPj0er1eYZYlW/fn2bth8fH0+DBg3yJN00zgZkPA5bypMfe9evLee98Yva+EV6Jz8/P7Pnxvwct/P396d69ep5zh9/f3+Lx3zn5+3j40NoaGievE23O3bsGIcOHbK5bm5Xp04dYmJimD59OvPnz+euu+6ib9++DB8+3OqwttudO3eOwYMH06VLF6ZPn25afvz4cRRF4Y033uCNN96wWi5bu+MLIezHme0YY06jzz77jFOnTpn94AoMDDT9+8SJEzRq1CjfpLEnTpwgLCyMgICAIpXFmju/D0ENjk+ePJmFCxfmuaYa88ldvHiRlJSUfNtKoP4YfPDBB/nxxx955513AHVYW7Vq1ax+3xi9+uqrrF27loiICOrXr0/Pnj0ZNmwYXbp0KVQZ4uPj6dChQ57lt393376NO+vE+P04cuRIq/u4fv26WWDkzv1balvd2YYsyn7u/B6tV68eWq3W9D167NgxFEWx2L6CvMmwLX2HV65cmX379hX6ePJja7vQUvusfv36BbYLrbXT3dzcqFu3bp72mi3HbYkj6teW8/7atWt8+eWXfPnllxb3W1A70djmqVGjRp7lBoOB69evm12jLB1fw4YNSU9P5+LFixZz1xa2XXmnt99+m4ceeoiGDRvSvHlzevXqxYgRI/IdTny7J598khMnTvDPP/+YHUtx2pHlkQSShMMYDAaqVq1qdifpdsY/Qo1Gw9KlS9m6dSu//vorq1ev5rHHHuO///0vW7dutVt+I3sYP348Dz74ID///DOrV6/mjTfeYMqUKaxfv57WrVs7ZJ+335U0srVui8sR+zEYDPTo0YNXXnnF4uvGwJOR8S7AnZSb+RjspaT2Y6uilscR9VvQeW+8y/n9999bbBDc+QPH2j4d/RkYDAbCw8PNAjm3u7NRdKf//ve/jBo1il9++YU1a9Ywbtw4U26J/PJxZWdnM2DAANzd3Vm8eLFZfRjr7qWXXiIqKsri+20NVgoh7MuZ7Zj333+fN954g8cee4x33nmHgIAAtFot48ePd8iU6NZ6JlnrMQDmvY+MBg0axD///MPLL79Mq1at8PHxwWAw0KtXryKVOzo6miVLlvDPP/8QHh7OihUreO655wqcCa1JkyYcOXKE3377jVWrVrFs2TI+++wz3nzzTSZPnlzoctjqzjoxHvOHH35Iq1atLL7HHu1ce+znznPAYDCg0Wj4448/LH4/37k9aa+Zs6W9Zu/6Lei8N54nw4cPtxp0vDPY4ow2W2HblXe6++67OXHihKm99vXXX/O///2P2bNnm/WIt+Tjjz9mwYIF/PDDD3n+lorbjixvJJAkHKZevXqsXbuWLl26WGxs3Kljx4507NiR9957jx9//JFHH32UhQsX8sQTTxSr67W91atXjxdffJEXX3yRY8eO0apVK/773//yww8/mJJaHjhwwOqPP+OMckeOHMkTaT9y5Ijp9YLKUJi6tbR/S909jxw5Uqz9GHtX3P55HT16FMCUFK9evXrcuHEjT0K7oirM8RR3PwaDgVOnTpndXTl+/LjN79+3bx8Gg8GsAXz48GHT6/Zg7/q9fbsFnfdVq1a1+36tOXbsGPfcc4/p+Y0bN0hISKB3795W31OvXj327t3LfffdV+RrSnh4OOHh4bz++uv8888/dOnShdmzZ/Puu+9afc+4cePYs2cPf/31F8HBwWav1a1bF1DvPJZU3QkhbOPMdszSpUu55557mDNnjtnya9euERQUZFbGbdu2kZOTY3Uihnr16rF69WquXLlitVeSsVfHnbNS3dn7Ij9Xr15l3bp1TJ482Szh7p3fz1WqVMHPz48DBw4UuM1evXpRpUoV5s+fT4cOHUhPTzcNDS6It7c3gwcPZvDgwWRnZ/PII4/w3nvvMXHiRJvLUKtWLYttCVu/u43fj35+fkW6xteqVYsDBw7kaVtZaq8Vdj/Hjh0z60F1/PhxDAaDWXtNURTq1KmT5yZUUdl6PMXdB1hun9nSZru9nW78jgb1ptCpU6fs9l3tiPqFgs97X19f9Hp9ibbX7nT06FG8vLys3pC2R7syICCA0aNHM3r0aG7cuMHdd9/NW2+9lW8gadOmTbz00kuMHz/eNEv2neUqbjuyPJEcScJhBg0ahF6vN3VHvl1ubq6psXL16tU80WtjBNg4laJxprI7GzglKT09Pc+0qPXq1cPX19dUzp49e+Lr68uUKVPyrGs8xnbt2lG1alVmz55tNlXkH3/8waFDh2yaBczWurUkNDSUVq1a8d1335lNWx4bG5tnrH9h93PhwgV++ukn0/OUlBTmzZtHq1atTHcUBg0axJYtW1i9enWebV67di3P2OqCFOZ4isPYW+Szzz4zWz5z5kyb3t+7d28SExNZtGiRaVlubi4zZ87Ex8eHbt262aWc9q5fW877qKgo/Pz8eP/99y3mB7l48WKh9mmLL7/80mxfn3/+Obm5ufnOkDJo0CDOnz/PV199lee1jIwM0tLSrL43JSUlT92Fh4ej1WrznfL1m2++4YsvvmDWrFkWZ+apWrUq3bt354svviAhISHP646oOyGEbZzZjtHpdHm2uWTJkjw50/r378+lS5f49NNP82zD+P7+/fujKIrFnjjGdfz8/AgKCsqTR+/O77yCynz7No3unC1Uq9XSr18/fv31V3bu3Gm1TKD2PBg6dCiLFy/m22+/JTw83KbhKZcvXzZ77ubmRtOmTVEUhZycHJvL0Lt3b7Zv386WLVtMr6WlpfHll19Su3btAnMxtm3blnr16vHRRx9x48aNPK8XdI3v3bs3Fy5cYOnSpaZl6enpeYYlFWU/s2bNMntubM8Yv0cfeeQRdDodkydPzvOZKoqSp45tYevxFEdYWBjNmzdn3rx5ZnXx559/sn///gLfHxkZiZubG5988onZcc+ZM4fr16/bPFtvQRxRvwWd9zqdjv79+7Ns2TKLQVRHtDm2bNliNpzw7Nmz/PLLL/Ts2dNqr6bitivvrAcfHx/q16+fb3stISGBQYMG0bVrVz788EOL6xSnHVkeSY8k4TDdunXj6aefZsqUKezZs4eePXvi6urKsWPHWLJkCR9//DEDBgzgu+++47PPPuPhhx+mXr16pKam8tVXX+Hn52fqXeDp6UnTpk1ZtGgRDRs2JCAggObNmxc4tt2STz/9lGvXrnHhwgUAfv31V86dOweoiQat5Ts5evQo9913H4MGDaJp06a4uLjw008/kZSUxJAhQwC1Ifa///2PJ554gvbt2zNs2DAqV67M3r17SU9P57vvvsPV1ZVp06YxevRounXrxtChQ0lKSuLjjz+mdu3aeaa5LU7dWjNlyhT69OlD165deeyxx7hy5QozZ86kWbNmZl+6hd1Pw4YNefzxx9mxYwfBwcHMnTuXpKQkvvnmG9M6L7/8MitWrOCBBx5g1KhRtG3blrS0NPbv38/SpUs5ffq02d1WW9h6PMXRtm1b+vfvz4wZM7h8+TIdO3bkzz//NPW4KujOxFNPPcUXX3zBqFGj2LVrF7Vr12bp0qX8/fffzJgxA19fX7uU0971a+t5//nnnzNixAjatGnDkCFDqFKlCmfOnOH333+nS5cuFn/kFEd2drapXEeOHOGzzz6ja9eu9O3b1+p7RowYweLFi3nmmWfYsGEDXbp0Qa/Xc/jwYRYvXszq1autToO9fv16xo4dy8CBA2nYsCG5ubl8//33pkaZJZcuXeK5556jadOmuLu788MPP5i9/vDDD+Pt7c2sWbPo2rUr4eHhPPnkk9StW5ekpCS2bNnCuXPn2Lt3b9ErSghRZM5sxzzwwAO8/fbbjB49ms6dO7N//37mz59v1kMC1KFf8+bNIyYmhu3bt3PXXXeRlpbG2rVree6553jooYe45557GDFiBJ988gnHjh0zDTPbtGkT99xzD2PHjgXUSRCmTp3KE088Qbt27fjrr79M33G28PPz4+677+aDDz4gJyeHatWqsWbNGk6dOpVn3ffff581a9bQrVs30zTaCQkJLFmyhM2bN5tNex4dHc0nn3zChg0bmDZtmk1l6dmzJyEhIXTp0oXg4GAOHTrEp59+Sp8+fUzft7aUYcKECSxYsID777+fcePGERAQwHfffcepU6dYtmxZgUPstFotX3/9Nffffz/NmjVj9OjRVKtWjfPnz7Nhwwb8/Pz49ddfrb7/ySef5NNPPyU6Oppdu3YRGhrK999/bwpMFmc/p06dom/fvvTq1YstW7bwww8/MGzYMFq2bAmoN43effddJk6cyOnTp+nXrx++vr6cOnWKn376iaeeeoqXXnrJps+jsMdTXO+//z4PPfQQXbp0YfTo0Vy9epVPP/2U5s2bF9gurFKlChMnTmTy5Mn06tWLvn37mtoZ7du3LzDRu60cUb+2nPdTp05lw4YNdOjQgSeffJKmTZty5coV4uLiWLt2LVeuXLHL8Rk1b96cqKgoxo0bh7u7uyk4nd8Q0+K2K5s2bUr37t1p27YtAQEB7Ny5k6VLl5qudZaMGzeOixcv8sorr7Bw4UKz11q0aEGLFi2K1Y4slxw5JZyoWO6cNtfoyy+/VNq2bat4enoqvr6+Snh4uPLKK68oFy5cUBRFUeLi4pShQ4cqNWvWVNzd3ZWqVasqDzzwgNlUkYqiKP/884/Stm1bxc3NrcApdI1ThFqastw4Tb2lh3HaSUsuXbqkjBkzRmncuLHi7e2t+Pv7Kx06dDCbwtRoxYoVSufOnRVPT0/Fz89PiYiIUBYsWGC2zqJFi5TWrVsr7u7uSkBAgPLoo48q586dM1tn5MiRire3t9UyFVS3+Vm2bJnSpEkTxd3dXWnatKmyfPnyPFOtFmY/tWrVUvr06aOsXr1aadGiheLu7q40btzY4nTpqampysSJE5X69esrbm5uSlBQkNK5c2flo48+Mk0xmt9naOnzt/V47nyvcfrPixcvmq1351SkiqJOUTtmzBglICBA8fHxUfr166ccOXJEAZSpU6daqelbkpKSlNGjRytBQUGKm5ubEh4enmeq5cIetyX2rN/CnPcbNmxQoqKiFH9/f8XDw0OpV6+eMmrUKLO/ZWvndLdu3SxOWWs8r4yMn8uff/6pPPXUU0rlypUVHx8f5dFHH1UuX76cZ5vdunUzW5adna1MmzZNadasmeLu7q5UrlxZadu2rTJ58mTl+vXrVuv05MmTymOPPabUq1dP8fDwUAICApR77rlHWbt2bZ7yGqelNtaxLdebEydOKNHR0UpISIji6uqqVKtWTXnggQeUpUuXWi2TEMK+SlM7JjMzU3nxxReV0NBQxdPTU+nSpYuyZcsWi9e19PR05bXXXlPq1KmjuLq6KiEhIcqAAQOUEydOmNbJzc1VPvzwQ6Vx48aKm5ubUqVKFeX+++9Xdu3aZbadxx9/XPH391d8fX2VQYMGKcnJyTZ/byqKopw7d055+OGHlUqVKin+/v7KwIEDlQsXLlg83vj4eCU6OlqpUqWK4u7urtStW1cZM2aMkpWVlWe7zZo1U7RabZ52kjVffPGFcvfddyuBgYGKu7u7Uq9ePeXll1/Oc523pQwnTpxQBgwYoFSqVEnx8PBQIiIilN9++81sO8ap0i21eRRFUXbv3q088sgjpvLUqlVLGTRokLJu3boCjyU+Pl7p27ev4uXlpQQFBSkvvPCCsmrVKgVQNmzYUOj9GD+/gwcPKgMGDFB8fX2VypUrK2PHjlUyMjLy7H/ZsmVK165dFW9vb8Xb21tp3LixMmbMGOXIkSOmdax9h1tqh9l6PHe+t7Dto4ULFyqNGzdW3N3dlebNmysrVqxQ+vfvrzRu3NhCLef16aefKo0bN1ZcXV2V4OBg5dlnn1WuXr1qtk5hjtsae9avred9UlKSMmbMGKVGjRqma8Z9992nfPnll6Z1rJ3TxnbYjh07zJZbui4AypgxY5QffvhBadCggeLu7q60bt06z3lrqc1tLENB7UpL3n33XSUiIkKpVKmS4unpqTRu3Fh57733TG3g28tr1K1bN6vttdvPraK2I8sjjaI4KTOZEKJcqV27Ns2bN+e3335zdlFK1J49e2jdujU//PCDxfHUQgghhCie1q1bExAQwLp165xdlDLvrbfeYvLkyVy8eLHQPcDLulatWlGlShViY2OdXRQhyjzJkSSEEDbKyMjIs2zGjBlotVruvvtuJ5RICCGEKN927tzJnj17iI6OdnZRRBmRk5OTJ6/hxo0b2bt3L927d3dOoYQoZyRHkhBC2OiDDz5g165d3HPPPbi4uPDHH3/wxx9/8NRTT1W4KT+FEEIIRzpw4AC7du3iv//9L6GhoQwePNjZRRJlxPnz54mMjGT48OGEhYVx+PBhZs+eTUhICM8884yziydEuSCBJCGEsFHnzp2JjY3lnXfe4caNG9SsWZO33nqL1157zdlFE0IIIcqVpUuX8vbbb9OoUSMWLFiAh4eHs4skyojKlSvTtm1bvv76ay5evIi3tzd9+vRh6tSpBAYGOrt4QpQLkiNJCCGEEEIIIYQQQthEciQJIYQQQgghhBBCCJtIIEkIIYQQQgghhBBC2ERyJFlgMBi4cOECvr6+aDQaZxdHCCGEEFYoikJqaiphYWFotXJ/zJmk/SSEEEKUDcVtP0kgyYILFy7IDExCCCFEGXL27FmqV6/u7GJUaNJ+EkIIIcqWorafJJBkga+vL6BWqp+fn03vycnJYc2aNfTs2RNXV1dHFk/cQereOaTenUPq3Xmk7p2joHpPSUmhRo0apu9u4TzSfio7pN6dR+reOaTenUfq3jkc3X6SQJIFxu7Yfn5+hWoIeXl54efnJ38gJUzq3jmk3p1D6t15pO6dw9Z6l6FUziftp7JD6t15pO6dQ+rdeaTuncPR7SdJJiCEEEIIIYQQQgghbCKBJCGEEEIIIYQQQghhEwkkCSGEEEIIIYQQQgibSCBJCCGEEEIIIYQQQthEAklCCCGEEEIIIYQQwiYSSBJCCCGEKGNmzZpF7dq18fDwoEOHDmzfvt3qut27d0ej0eR59OnTx+L6zzzzDBqNhhkzZjio9EIIIYQoyySQJIQQQghRhixatIiYmBgmTZpEXFwcLVu2JCoqiuTkZIvrL1++nISEBNPjwIED6HQ6Bg4cmGfdn376ia1btxIWFubowxBCCCFEGeXi7AIIIYQQQgjbTZ8+nSeffJLRo0cDMHv2bH7//Xfmzp3LhAkT8qwfEBBg9nzhwoV4eXnlCSSdP3+e559/ntWrV1vtrXS7rKwssrKyTM9TUlIAyMnJIScnx6ZjMa5n6/rCPqTenUfq3jmk3p1H6t45Cqr34n4eEkgSQgghhCgjsrOz2bVrFxMnTjQt02q1REZGsmXLFpu2MWfOHIYMGYK3t7dpmcFgYMSIEbz88ss0a9bMpu1MmTKFyZMn51m+Zs0avLy8bNqGUWxsbKHWF/Yh9e48UvfOIfXuPFL3zmGt3tPT04u1XQkkCSGEEEKUEZcuXUKv1xMcHGy2PDg4mMOHDxf4/u3bt3PgwAHmzJljtnzatGm4uLgwbtw4m8syceJEYmJiTM9TUlKoUaMGPXv2xM/Pz6Zt5OTkEBsbS48ePXB1dbV536J4pN6dR+reOaTenUfq3jkKqndjL+KikkCSEEIIIUQFMWfOHMLDw4mIiDAt27VrFx9//DFxcXFoNBqbt+Xu7o67u3ue5a6uroX+sVCU94jik3p3Hql755B6dx6pe+ewVu/F/Swk2bawjUEPpzbB/qXq/w16Z5dICCGEqHCCgoLQ6XQkJSWZLU9KSiIkJCTf96alpbFw4UIef/xxs+WbNm0iOTmZmjVr4uLigouLC/Hx8bz44ovUrl3b3odQsUj7SQghRDkkPZJEwQ6ugFWvQsqFW8v8wqDXNGja13nlEkIIISoYNzc32rZty7p16+jXrx+g5jdat24dY8eOzfe9S5YsISsri+HDh5stHzFiBJGRkWbLoqKiGDFihCmhtygCaT8JIYQopySQJPJ3cAUsjgYU8+UpCeryQfOkMSSEEEKUoJiYGEaOHEm7du2IiIhgxowZpKWlmYI+0dHRVKtWjSlTppi9b86cOfTr14/AwECz5YGBgXmWubq6EhISQqNGjRx7MOWVtJ+EEEKUYxJIEtYZ9OqdtDsbQXBzmQZWTYDGfUCrK+HCCSGEEBXT4MGDuXjxIm+++SaJiYm0atWKVatWmRJwnzlzBq3WPHvBkSNH2Lx5M2vWrHFGkSsWaT8JIYQo5ySQJPJSFLh8HHZ9Z94dO++KkHIe4v+BOneVWPGEEEKIim7s2LFWh7Jt3Lgxz7JGjRqhKJYCG5adPn26iCUTxP8t7SchhBDlmgSSyguDXm2Q3EgCn2Co1dn2u1z6HEjYB2e23HqkX7Z93zeSCl5HCCGEEKI8u3ER9i6ALbNsXF/aT0IIIcomCSSVB4VN5ph1A87tuBU0OrcTctLN13HxgMD6kHSg4P37BBev/EIIIYQQZZFBDyc3qL24j6wEQ67t75X2kxBCiDJKAkllnS3JHGt2vBk02qr+P2EfKHdMP+tZGWp0hFqdoGYnCG2l9mia0VzdlsVx/ho1YFWrs2OOTQghhBCiNLp+Dnb/oD6un721vFpbaD0c/vwAUhOR9pMQQojySAJJZVmByRyBJaPyBo0A/GveDBp1hJqdIagh3JGYE1B7NS2OBjQW9qNAr6mSKFIIIYQQ5Z8+B478AXHz4PhaTO0iD39oMQTaRENIc3WZV5C0n4QQQpRbEkgqy+L/KSCZI7eCSMHNbwaNbgaP/Kvbto+mfdVeTXcOnTPyDipcmUXhFCf3lRBCCCHyZ8v37KXjsHse7PkR0i7eWl77LmgzEpo8AK6e5u/Jr/3kXRUa9HDM8QiVtJ+EEMKhJJBUltmapPHBj6HtqKLvp2lfdYra27+Q9/6oNqh+GQPP/A1uXkXfvrCssLmvhBBCCGG7/L5nG/RQX4+bB/Gbb73uXRVaPwqtR0Bgvfy3f2f7yc0Xfn0BbiTAxqnQY7Jjjquik/aTEEI4nASSyjJbkzQGFNDQsYVWZz5FbUg4nNgIV07C+neg15Ti70PcYkvuK2kMCSGEEEVj9Xv2AiweAa5etyYi0Wihfg916FrDKNC52r6fO9tPynRYOBT+mQnNH4HQlsU+FHEbaT8JIUSJsJAUR5QZtTqrd1is0oBfNcckc/SsBH0/Uf+99XOI32L/fVRUtuS+WjVBXU8IIYQQhZPv9+xNOengVwPueQ3GH4BHF6tD2AoTRLKkcW9o+pCaemDFONAXYpY3kT9pPwkhRIkpFYGkWbNmUbt2bTw8POjQoQPbt2+3um737t3RaDR5Hn369LG4/jPPPINGo2HGjBkOKr0TaXXQ5T9WXtSo/3NkMscGPaDVcECBX56D7HTH7KeiKTD3lQIp59X1hBBCCFE4tuSYBOj3GXR7Bfyr2Xf/93+oJuhO2APbZtt32xWZtJ+EEKLEOD2QtGjRImJiYpg0aRJxcXG0bNmSqKgokpOTLa6/fPlyEhISTI8DBw6g0+kYOHBgnnV/+ukntm7dSlhYfr12yjBFgUMr1H/r3M1f8wsrme67Ue+Bb9jNIW7vOnZfFYWtua8O/Qo5mY4tixBCCFHe2Po9m2a5LVpsvsHQ4x313xveg6unHbOfisbWz/XKCceWQwghKgCn50iaPn06Tz75JKNHjwZg9uzZ/P7778ydO5cJEybkWT8gIMDs+cKFC/Hy8soTSDp//jzPP/88q1evttpbySgrK4usrCzT85SUFABycnLIycmx6TiM69m6vj1o9i7A5fQmFBdPcp/8E03qBVMybKVGJ7UnkqPL4+KNpvd/cVk0FGXrZ+gb3o9So6Nj93kHZ9S9I2n0Btv+MLd/gbJvIYamD6O0GIIS1hY0GkcXz6S81XtZIfXuPFL3zlFQvcvnIQrN1hyTtq5XFG2iYd9iNZH3b/+B4ctL9Du8XHLztW2931+C039D25FQq4vUuxBCFIFTA0nZ2dns2rWLiRMnmpZptVoiIyPZssW2nDtz5sxhyJAheHt7m5YZDAZGjBjByy+/TLNmzQrcxpQpU5g8Oe/MGWvWrMHLq3CzkcXGxhZq/aJyy0nhvkNqoO1g1b4c33r45iueQAr8u7pEymHUOuAual7ZROaix9nY+F30WveC32RnJVX3jhRyPY7Wp78E1NH8lpo2CpCr9SBX64ln5lV0cd9C3LfccA/hTEBXzgZ0IdMtsMTKXB7qvSySenceqXvnsFbv6ekyrFoUUs1O4OoNOWlWVtCoPbsdkWPStAuNOqvu553hxHo1qNRysOP2V94lH4LVEwteT+sChhzYv1h9BNSDNiOg1aPgU9Xx5RRCiHLCqYGkS5cuodfrCQ42v+MTHBzM4cOHrbzrlu3bt3PgwAHmzJljtnzatGm4uLgwbtw4m8oxceJEYmJiTM9TUlKoUaMGPXv2xM/Pz6Zt5OTkEBsbS48ePXB1LWYiRhvoVjyHVp+GUrUZDaNn0LC4yR+LK7MLyhdd8LmRyP0ecRgi3ymxXZd03TuEPhvt+rfRnVRzJRgq1UFz7RQKGjS3JY1UboaWNA/PxqXh/eTGb0a7byGaI7/jk5VI04SlNElYhlL7LgwthqA06gNu3hZ3WVzlot7LIKl355G6d46C6t3Yi1gIm+34Ov8gEjg2x6RRUH01B9P6d9Qk0PXvA+8gx+6zPDqwDH55Xv1MPQMh4zLq53h70u2bn+uAueBfHeLmwf6l6jC3tW+p6Rka9oI2I9XPwdGfvRBClHFOH9pWHHPmzCE8PJyIiAjTsl27dvHxxx8TFxeHxsauqu7u7ri75+1B4+rqWugfC0V5T6Gd2KDeRUGDpu9MXD0K12vKIVyDoO9M+HEgum2z0TXrBzVLdohbidS9I1w9DUtGw4U49XnH59BGToajq9TZR25LHKnxC4NeU3Ex5r5qGKk+slLh4C+wZwGa+M1oTv+F9vRf4OYDTftBq6FQszNo70iLZtCrSSdvDomkVudCN56s1rsdti2sy/d8d2Tdy+dadq81+XH05+rAa025+yyEYx1dfavnSoshcPov8wTNN79nS2yK+C4vwIHlkPwvrP4/eOTLktlveaDPgdhJsHWW+rzO3TDgG/Vac0f7Kc/nWq0t9HwP/v1JDSqd2w6Hf1MfftWg9XD1Uamm5X3L92z5JJ+rKKwy0H5yFKcGkoKCgtDpdCQlmSfHS0pKIiQkJN/3pqWlsXDhQt5++22z5Zs2bSI5OZmaNW9d+PV6PS+++CIzZszg9OnTdiu/U+RkqGPpASKehOptnVue2zXsqXYN3jMffn4Onv0bXD2dXarS7eAK+GUsZF0Hj0rQ73N1amBQGzuN+9h28XD3vdXouXoa9i6CvT+q/97zg/qoVBNaDoWWQyCgrrpviw2tacVvQDty2yJ/8rmKwnL05yrnjSgtEvfD0sdAMag5ih78RP23MxvpOlf1RtzX98G+RdBiENSPLLn9l1U3ktWbcPGb1eddxsO9b4DOxfb2k7uPOqytzQhIOgi7v4e9C9SZ3f6cBn9+APXuUXspNeoNLm7q++R7tnySz1UUVgVvPzl11jY3Nzfatm3LunXrTMsMBgPr1q2jU6dO+b53yZIlZGVlMXz4cLPlI0aMYN++fezZs8f0CAsL4+WXX2b16pLNG+QQf30IV0+pM6Xd+4azS5NX1PvgG6p2FZZZ3KzLyYSVL8PiEWoQqXoEPLPpVhDJSKuDOndB+AD1/7Y0bivXhu6vwrg9MHqV2lh294NrZ9SG0Set4dP26r7vnCY3JQEWR6sXrqI6uELdhiO2LfLnyLqXz7V8cvTnKueNKC1SE+HHwZB9Q+250me6mqeoKN+z9la9LXR4Rv33b/+BbGvD7gQAZ7bBF3erQSQ3Xxj0PfSYrAaRjAr7uQY3hV5TIOYw9J8DdboBipq/aslImN4E1rwOW2fL92x5JO0nUVjSfnL+0LaYmBhGjhxJu3btiIiIYMaMGaSlpZlmcYuOjqZatWpMmTLF7H1z5syhX79+BAaaJxUODAzMs8zV1ZWQkBAaNWrk2INxtKSD8PfH6r97fwAetuVvKlGeldTkkT8Ogi2zoElfqNnB2aUqXS6fgCWjIHGf+rzLCzfvotl5eIZGA7U6qY9e0+DISrW32IkNcOmolTfdzCfwyxi4eAg01mPNWr2BholH0W4+DLqb6ykG+Gcm5nkJbt+2Rs0D0bhPqemWWW4Y9OpdC0fUvSO3LZynwM8V+PUFQANunuDiCa4e4HLz4ep5698uHpaHzsp5I0qD7DQ1iJRyHgIbwKB59v/OLa57X1eHVV07Axveh6j3nF2i0kdR1PxWqyaqCbODGsHgH6BKQ/vtw9VDDT6FD4ArJ2H3D7B7PtxIvNm+sVo45Hu2jJL2kygsR3+uZeS8cXogafDgwVy8eJE333yTxMREWrVqxapVq0wJuM+cOYP2jsbpkSNH2Lx5M2vWrHFGkZ3DYIDfxoMhFxr1gSYPOrtE1jWMgpbD1KFVvzwHz2yWIW5G+5fCr+MhOxU8A+DhL9QhgY7m5nWrYfTvz+rdtfxkpagN2XzogCYACYUpiKI25OP/Ue8QCvuJ/yfvXQszN+v+m96FT+aadsm2bcvnWrYUeM4AGVdg8fD81zHSuanBJhd39ceYQZHzRjifwQA/PQ0Je9Tv3UcXg2dlZ5cqL3cfeOB/MH8AbP0MmveHam2cXarSIztd7a21b6H6vGk/eGiWWm+OElAX7nsTuv8fHFsDm/+n5lKy6uY17b+N1WugFS4KRGak43Ly9VvT8+ZkQlpywduW66X92dp+KuBztUg+1/LJkecMlJnzxumBJICxY8cyduxYi69t3Lgxz7JGjRqhKJYidJaV+bxIALu+gbPb1OTJvT9wdmkK1ut9OLkBLh9Xh7hV9DtrORlq5HjXt+rzmp2h/9fgX63ky2LItW292nepjShrmzEYOHP2LDVr1LgV7L1yEk5vKnjbG94D/g9qdc3bi0EUzY2kgtcBOLvV+WUQzmVMzm/s4VqQgLrqVOm5meojJwNysyA3w/x6os9WH1mFLI+cN8KR1k2GQ7+qgc4hP+b7veZ0DXpA8wFwYCmsGAdPbSh9Paec4cpJWBQNSftBo1OHsXUaq/a8Lgk6FzX1QE56AYGkm/L9AajGjrwBsotQltRC3b0TtrD1O6iAz7VEyiBKB+OokoI48pwBp583pSKQJAqQmghrJ6v/vvcNddrS0s6zsgxxM7p4VB3KlvwvoIG7X4JuE8zH8pckn2Db1uv2ar5Rbn1ODntXrqRa795ojbMmndpkWyDpzBb47kHwr6km/245BALr2VYuYZm7jUNdO45Rp5wujEvHb82Kkx9bzy1R8gwGdXaqPQvg0Ar1B5GtHvzE+rVAn3srwJSbqd5Fy70ZaDq7TZ2FqiBy3ghHiZsHf89Q//3QLHWod2nXayqcWKcGTbZ8Cl3/4+wSOdfRNbD8Cci8Dt5V1FnZnHUH3tZrVe/pENbK6su5ubn8/c/fdOncBReXm23BC3tgZUzB217zBlw/B62GgW/+ExMJG+nyztxtUQGfq0W2fq7yPVj65WSqNyXivrPttw4U7ZyBMnPeSCCpLPjjVTUhc1gbdaa2sqJhlDpL2N4Fas6dZzZVvCFuexfCbzGQk6Y2gB75Eurd69wy1eqsZvxPScDy2FuN+nqtzo7ZtneQOvvJvz/D9TPw1wfqo2Yn9Xxp9nDpzP9Vmp2PU68T+br5ufZ8p2hj/A/+lM/ninqXuBA9RUUJuXwC9vyozgZ1/eyt5YEN1ADu9i/V2Y+Kei3QuYDOx/LwkrDW6g9hR1xrhCjIyT9vzXLb7VV1NrSywKeKOnHJz8/CxqnqjbiKeKPFYLg5c9o0QIHq7WHgd87pyW1ka/up3ah8v2eVnByueSeiVGsDxhtxYa1g80f5f8+iUXM1rZus9vZv2AvajoR69znv5mRZd3Y7rHypgJVs+1wtsuVz1blDkB3zfAn7SvpXvSmxdyFkXru1XOcOemtdsItxzoAN503paD/JmJLS7uhqOPiz+iPtwY/LXiK2XlPAJwQuH7s5nKkcMujVnjj7l6r/N+jVxJ4/j1HzMuSkqcPEntns/CASqOdQr2k3n9zZLfzm815Ti3au2bLtPtOh7yfw0hEYMFed5lijVXsp/ToOPmoIy55QZ0ox6K3vy1K925Ojt28PBj1smg5zesDVk2r+D6BkP9ebFD3M6wvr3gZ9TuH3IQpm6zmZeV0dRjunJ8xsA5s+UoNIHv7Q7jF4Yh2M3aH2juz90c032fmcAcdea4TIz6Vj6sykhlx1qFj3ic4uUeG0HAp1u6u9/H4bX/GC9OlXYMFg+HMqoED7J2DU784NIoGT208a9WbkQ7OgRgf1O/fI72rP/xnhamDpanzh91tRKQps/0rNG3kjUZ0NG3BK+0mfBV/dA+d2FX77wjGyUtV21Ff3wuedYdtsNYjkV139Phl/QE1RYvzbNFNx2k8Svi7Nsm7A7y+q/+70HIS2cG55isI4xG3B4FtD3GpEOLtU9nNwhZpV//aEa95V1ZwGKefVAEm3CeoPttL0Y6lpX3XWmjvL7hemXpia9nX8tl091WSizfurEfd9i9SeE5eOwP4l6sOvGrQYrHbhDmpwa1uW6t0vTL3oFqfsJbV9e0i5AL+OudW9tulD8MAMOL25hD/XahA5CU7+BXt+gE3/hZMb4ZGvKuZddEcp6Jw06NV63/OjOvNTbqa6jkarBmtbDlV7At6Z9NGR14KS2L4Qd0q7DPMHqgHV6hHqD++SyqVjLxqNmnj7s85w6i91xtXWNia9LysMejVR7I0kdXhGrc5qOylhHywaDtfi1dkgH5gBrYY6u7S3lIb2U+vhkHz4Zi+JBZB6Af76EP76SA1AtolWZ3NysTJky1rd24Mjt20vOenw26tq3YHafnpoljqrcUm3nzqNhZ1z1Jyy3/SC+z+AtqPK3jWrtLPlvFQUOLdTHbp2YLnaEQBA66K2n9qMhHr33HpfpRoVvv0kgaTSbOMU9S6yf82ydzftdo163Rri9vNz5WeI28EVsDiaPF0OjYnVPCqp09KW1lkYmvZVGxqO+MIv7Lb9QqHreOjyAlyIU38M71+qBuM2T1cf1durASUXT7XL/531npKgfh6D5hXv4mrtc7XX9u0g9NoOXL4ap94dcfVWE/C3elRteDjrc20xGBpEqtPFn98FX9ytNohaDZMGUXHle06OgMYPqMMbU29raFRpov74ajG44DwajjxnSmL7QhjlZsGiR+HqKahUC4YuKNqMOaVBQF24ZyLEvgmrX4MGPcGnqrNLZR/WAuONH1R/xOVmqp/f4B9K503U0tB+qtpYndgmchIc/l2tt5Mb1YluTm4Ar0C17d0mGqo0uvU+R94oKwM34byyknH5tjckH1BvtEROhs7PO7f91PpR9ffR4d/UHojnd0Lv/5bda1dpU9B5mX5FvZkdNw+SD95aJ7C++vfTcpg65NiSCt5+kkBSaXVhtzr9K8AD08HN27nlKa5eU9RI/+Vj6rTyPd9xdomKx6BXL0pWx7GjBstKe+4Prc5xga6ibFujgWpt1UfU+3DkDzUAeSwWzu1QH1YpgEadHa9xn6JdZPP9XO2w/eLKuoFu5StEnJqvPg9rDf3n5O3546zPtdnDUK2dOqQz/m/45Tk4HqveWS+N022XBQWek6iNT1DrOHyg+uMhrHXhAniOPGdKYvtCKAqseF4dJu3uB8MWqzn5yrKOY9SbKon71Dx4A79xdomKz2pg/AJs/0L9d/0e6jAur4A8by81Skv7ycUdmj+iPq6eht0/qI/UBDVH3ZZPoUZH9Qexzg2WP4lDbpSVgZtwmuOxdDvyJhp9OngFqX9Pde42X8kZn6uHvxo0/XuGmh5g9w+QeECts8q1HFOWiqKgG3E1Oqo3sPU3p1B08YCm/dTcYzU72daOqsDtJwkklUb6XPWuvmJQh/006OHsEhWfZ2V4cAYsGKJ+qTXpCzXaO7tURRf/j3lk25LUBHW9UvrHX+q5uEOzfuojNUkd6rb9K7h2Op83KWovpm8fKNoPiLRLBXyuN7fvjM/1fBwsewLtlRMoaDB0fgHdfa+XvqmhK9WAkb/C5v+pvSr//QnO7lB/FNTu4uzSlT22XGsAuv+f2qvP2lAGIcq7vz5S7yprdDDoO7XHRlmnc1FzCn51L/y7XE2Q3zDK2aUqOltuwrn7wpAF4FLKvtvKgsq14d7X1ZQKx9eqPSyOroKzW9UHGhxyo6y034QzGOCvD9BtnIoLCoawtmgHf+/8nFu302jUGRpDW8HSxyBhD3zZTb1ZWP8+Z5eubLLlRtzZrer/Q8LVoWvhA8GzUgkVsOyTQFJptP0LSNirRqh7TXV2aeyn0f3QYgjsW6j2VHh6U9nttnkjyb7rifz5BkPnsWqXzuVPFLz+mX8cW56S/FwNevj7YzVZvSEXxTeMv4NH0uGeF9GVtiCSkVan5gWrew8se1wdZvJtH7grRh2mW1rLXRpdiLNtvcB6EkQSFdf+pbDhXfXfff5bOia2sJew1tBpDPwzU50FdsxWNdhSFtkSGM9KVX/cyU24otO5qGklGvVSe17s/RG2fVFA2+XmjbL5Aws/pfiNpNJ7Ey7jKix/Co6tQQOcCrqX6iO+R+tpYabR0qDePfD0X2pvmQu74Yf+cO9r0PVF0MocWYVi6424B/4HbUdLGoYikEBSaXPtLKy/ObtZj7fLz3h4o15T1LHbl47CxvfVYyyLdDb+YCvsl7HIX0G5Xow6PquObS6sy8dh6+cFr3csFqq1UXNYONL18+owsdsSauf2+ojLG7Y4dr/2Ur2tmhPtj1fVZLGSiNs2GVfhwDI1V9h5G2dxkWuNqKjOblfzi4CauLbdaOeWxxG6/586RONaPKx7R82LVxbJTbiS5xcKd70I/jVuDmsrwIl1jitLSX+uifvVxO1XT4OLB7n3f8S+c35UL+03XSrVgNGr4I9X1NxX69+F87vh4c/VTgbCNon7bVvP3U+CSEUkgaTSRFFg5UtqlvianaB1tLNLZH9eATdncRui3l1r/GDZG+J2fB389p8CVtKoidxKe46ksqZWZ7VeUxKw3FX1Zr33fK/oOZIO/pLP9m/at1B91OysJpNu1s/+d4gP/gIrbkuoff80daaW3Fz77sfR3H2h32fqzGG/jpdE3Nboc9Ug+575auJU43h9jU7twWWchS0PudaICuzqaVgwVJ0+u1HvsntzqiBuXmp6gO8fhu1fqsMvylrbCWwPeEtg3P58Q21br+1oCKhTuG1fOQW7bMjftf1LNedr/R5qrylH2rtITROSmwGVasLgH1CCmsK5lY7dr724eqjDWqu3g99fgiO/w5fdYfB8CG7q7NKVXrlZat7IuHnqjUtbyPWmyCSQVJoc/EUdy6x1VYMt5bULY6P71ZmE9i0qW0PccrNh3WQ1xxOo03amnCfvmPObP4x7TS01WfXLDa1OnWVhcTQOqXdbtt/pObh4BE6sV4fQnflHvWvUpK8aGKl9V/H+drNuqLkEdn+vPreWULusaf6IOvOeJOI2l3xYHXawdxHcSLy1PLi5OhNf+EA1efBi440FudYIAUDmdfhxMKRfgpAWak/H8vx3UO/eWzPg/joOnvoTXNycXarC8a6iTqVtsHZDRALjDmPrjbg+/y1ajqRjqwu+CXd2m3oj2TdU/X5rPbzwQauC5GbD6v+DHV+pz+tHqtcGrwDIybHvvkpCm2i1PbA4Gq6chK/vg74zIXyAs0tWuiQfgrjv1etjxpVby3Xu6o0Gi+R6U1zlNFJRBmVeV4d/gJps7fapOsujXlPVCPClo2rul1Ob1BwHpzapX0ilzaXjMCfyVhCp/RPw/C4Y9L3abfh2fmGlYnaKcqtpX7V+HVXvBW0/6n0Yvgz+8y9EvgVBDSEnXe2hNK8vfNxCHZ565aT1fRj0ls/583Fqb53d3wMa6BoDj8eW/SCSkTER971vqD1t/v0JPu8Kp/++tY61urEXR27f1m1nXIUdX6sJdD/roObAupGoTtfc4Vk1uP7s32rQ0qeK4895IcoafQ4sHgkXD6s/SoctAvdSmvPEnnq+p14nkg+q142y5NCv8HVk/kEkkMC4oxhvlAGmujYpZt0XuG2N+nqnser5m5oAmz6CT1rBd33V78xcaz/2CyHlgpqP0RhE6vaqOntjaZ79zxbV2qiB47r3qO3NZY/DqonqdbAiy05Tg0df94DPOsLWWWoQyTcM7n4FXtgL/b/GdA6akeuNPUiPpNJi7WT1h0RgfXUsc3nnFQAPzICFQ+GfT9SHkV+Y+oVTGn4cKYo61GTlK+qQQ8/K8NAsdeYJUMvYuI+a0O1Gkhocq9VZLkqO5uh6t2X7fmFq0LfLeHW41p75sH8ZXD8Lf32gPiwNfTu4Qp1F4vYEgH5hULsrHFiuNrJ9w9RZzspjstH8EnEHh8Oa/8tbN/a6Hlire3tsv6Bt63PVXmx75sORlbeGrmldoEGUep406Gm9h4Fca4RQKYraC/TkBnD1UoNIfmHOLlXJ8A5Uf/gsf1L9jmnWD4IaOLtU+dPnqonQN/9PfV6rizr73MYpFq6XU0tH26+8Mt6UsPhdVcy6t3Xb901Sh2nFzYMTG+DUn+rDs7La465NNFRtUvj9n94MS0ZDWjK4+6ttqEa9in48pY13oHoTc8N7ar7JrZ/BhT0w8Ft1QpqKQlHUJORx36lt7uxUdblGp454aRMN9e67NXSycm3HnfNCAkmlwtntsHOu+u8H/lc2hnnZg7W7UikJahdOZ99pz7im5kL6d7n6vPZd6hfTnQ1Wra58/uAv7Rxd77ZuX6NRx7BXb6f2VjqyUk2SbGnoW+Xa8Oc08nT9TrkA+xar/276kBpkLet30ApiKRG3Jfa6HhxccXN42J11b4ft57vtEWrulvO7zBON3j50zaeKbfuRa42oiAx68wBqwt6bbSaNOuw3tKWzS1iywgeqqQGOr1Xz6HWfqP54Lo3B5bRL6lTmp/5Un3ccAz0mq3nfWj0qgXFncORNCVu27eIGzR5WH1fjYfcP6iP1ghoc2foZVI9QAwLNHs7b0/DO60HNTups12veAEWvfrcOmld+enLfTquD+96EsDbw87Nq+/KLu2HQd1CzY966sefflCO3bcv2M67CviVqADLptiTaleuo50qrYdYn5JEbcQ4jgSRn0+eoyeBQ1C/VOnc7u0Qlw6BXo8MWKYBGzRPTuI9z/tDPbINlT8D1M2qU+97X1J4nctER+XH1hOb91UfKBbWxv3s+XD6mDn0riEcl6D/X8UkoSwtjIu5696p/bxZzK9jhemC63jhg+wVuGzW4CGqX/vBBaoMntEXh9iNERWSpp59Rz3ehce+SL5OzaTTQZzp82k79ITnvwVuvlaYe3ed3waJoSDmn9hy7M6+LBMadx5F1X5htV66ltq+7T1ADo3Hz4MgfcG67+lg1QW1PtR2pBk8O/Zr3euDiqSbUBvX79cGP1eT05VmTB6BKY3VGuouH1F7dLYeqM+45o8d1cVnd/lS13RQ3T80jbJx0ROeu7rfNSLWHoy15SeV64xAV5NdKKfbPJ+pYd69AtVFUUcT/Y7lhaKKoiazj/ynZP3yDXu0ZsXGqemejUi0YMFftbSJEYdw59O2vj+DoH/m/J/Oamli5on3Z+QSTb4JO4/Xgk9bqjC+FlZ1m2/WmgO27KAr3pKbicm7KrdnmCtz2TffcDEaXteS4QjiLtZ5+RpVqlGhxSpWEvbeGx96utPTo3vUtrHxZLWNAPRgyv2jDlUTFoNVBwyj1kZqkTkARN0/NNRn3nfrwr6GmDriTMYjUOlqd5ayizAQbVB+eWAsrnldHThgnaLmdw3tcO7K3+IXbJhm5qWozNagYPrD899ovIySQ5ExXTsKfH6j/jnq/Yv1R3D7EIz/nd5bcj+rr52D5U+qMUqDe2ejzX/DwK5n9i/LJOPQtfEDBgSSw/W+jPLH1mK/FO7YcBWxfA/gBZBZh2wF1JYgkhK3y7ekHai/CidD4gYrXU7g09+jOyYSVL936UduoDzz8OXj4l2w5RNnlG3zrJtzpzWpA6d+fLQeRbndiHSgGdRRBReHuo85Id3wdZF23sMLN6+ev49QblZpCzrGlGNQhg/n1uLZx2xq9npqX96HZew10Ohu2b3qnOrtf29Fq0vGKEigsIySQ5CyKoubfyc2EOt2gxWBnl6hk+diYGG7tW2rumPAB0HyA2g3WEQ6uUKP6mdfAzUcNILUc4ph9iYrJ1nPe1vXKE1uPuee7EBJe+O0n7oc1rxd7+7m5erZt30aHiA64uOgKt+2K+LkKUVSltddyaVBa6+baGVg0AhL2qD8q730duvzHtmEnQtxJo1HP3zp3qbmSFg7Nf/2Kej04s8VKEOk2GVfV3ziOYOO2XYDWAGcKuwNF/Y1cvW3hyyYcTgJJzrJvMZzcCC4eaoLtihZhrdVZHfqTkoDVSLSLh3rnLfkgrHtbfdTooHZpbNrP9gS1+clOV+/cxX2nPg9ro04VWR6T9AnnKvCc16iv1+pc0iVzPlvrpuNzRbvDXvsuNYFnMbev5ORw6dANlDp3g6tr4bZdET9XIYrK1l6K0oPTugPL1Dv4RRkOXFgn1sPSx9Wptz0DYMAcNfedEPaQk27benI9sC6kBfiGFm7bqQmQuM8u2zYoBpKTk6latSpaY+8lW7dfET/XMkICSSXJmJH+8nGIfVNddvfLFTNoodWpSdoWR6MOGLn9B9jNoNojX6l3Fg79CvuXwKlNcHab+vjjVah3jxpUqtcz/31Zmwkgcb/a8Ll0RN1nlxfUPCYy/EQ4gi3nfK+pFW+YBji+bhy5fflchbA/6cFpna3HvOsbNZgUPkCd1Sistf3LYjDA5umw/l1AgdBWMPh7qFTT/vsSFZdcD6yz9Zij3i98b61Tm+C7B+yybX1ODttWrqR3795ojTfibN1+RfxcywgJJJUUSxnptS5q3oyKqmlfNUmbtUz9xuRtbaLVR0qCmlBu/xK4sFud4eH4WlxcPGjn0wLNEaBxL3Bxv7UtazMB1L0P9i9SE0H6hMAjX0Dd7iVx1KIis/Wcr4gcXTeO3L58rkLYl/TgtM6WunH3Bc/Kat63nXPVR0gLtS0VPhA8KxW/HJnX4adn4cjv6vPWI6D3R+DqUfxtC3E7uR5Y58i6cXS9y+da5kkgqSRYy0hvyIWlj6kBpYr6Q6NpXzUhpKUeQ3fyC4VOY9TH5ROwfynsX4zm8nGqXdsOS6PVhI5NH1IbSulXYMkoLM4EsOdmIsiG98NDs8A70NFHKoSqMOd8RePounHk9uVzFcJ+pKefdbbUzUOz1ETkpzepyYoPrVCHkKx8Sc3p1rQfmpaPqvk6iyLpoDr1+JUToHNTA0htRxbzwISwQq4H1pXlHtfyuZZ5EkhytAJnHsF5s2uUFlpd4btbBtaD7q9Ct1fIObuL+N8+ol76bjQ3EtVGU9y8mzMI5FPvHpVg8A+gkz8DUcKKcs5XFI6uG0duXz5XIexHevpZZ2vd1O2mPtKvwL5FsOs7uHgI9i3EZd9C7nMPQRtwEtoMB5+qefdjKTXAwZ/hl7Fq3hq/6jB4HlSTRLjCweR6YF1Z7nEtn2uZJr+gHa20zq5RXmg0ENqSf6sNpVavb3G9sEMd+rZ/KeSk5f/ezGvqbAdS70IIIUTpIz39rCtM3XgFQMdnocMzcH4X7PoW5cByfLISYf1k2PgeNOoNbUaq+Se1OsupAdy8Iftm26pONxgwF7yDSuZ4hZDrgXVluce1fK5llgSSHE1mHik5xt4Ade6Cmp3g52cKfo/UuxBCiDJo1qxZfPjhhyQmJtKyZUtmzpxJRESExXW7d+/On3/+mWd57969+f3338nJyeH1119n5cqVnDx5En9/fyIjI5k6dSphYWGOPpT8SU8/6wpbNxoNVG8H1duRe9/bHFj0Di31e9Fe2KUOfzu0AvxrQPX28O9P5OnVbQwiNX4QBn0nP/REyZPrgXVluce1fK5lktbZBSj3ZKYB5/Cvbtt6Uu9CCCHKmEWLFhETE8OkSZOIi4ujZcuWREVFkZycbHH95cuXk5CQYHocOHAAnU7HwIEDAUhPTycuLo433niDuLg4li9fzpEjR+jbV4YVlFvuvpwJ6o5+9Gp45m+1t5JHJbh+Vp3YJL/UABfiSqqUQgghSikJJDmaMSO9MWlYHhrwqyYZ6e1N6l0IIUQ5NX36dJ588klGjx5N06ZNmT17Nl5eXsydO9fi+gEBAYSEhJgesbGxeHl5mQJJ/v7+xMbGMmjQIBo1akTHjh359NNP2bVrF2fOnCnJQxPOENIc7p8GLx6Bu14qeH1jSgYhhBAVlgxtczTJSO8cUu9CCCHKoezsbHbt2sXEiRNNy7RaLZGRkWzZssWmbcyZM4chQ4bg7e1tdZ3r16+j0WioVKmS1XWysrLIysoyPU9JSQEgJyeHnJwcm8piXM/W9YV9WK53HZrABjb9OMi9fh5FPrMikXPeOaTenUfq3jkKqvfifh4SSCoJkpHeOaTehRBClDOXLl1Cr9cTHGw+NDs4OJjDhw8X+P7t27dz4MAB5syZY3WdzMxMXn31VYYOHYqfn5/V9aZMmcLkyZPzLF+zZg1eXl4FluV2sbGxhVpf2Med9R6YepquNrxv64HTXI5f6ZhCVRByzjuH1LvzSN07h7V6T09PL9Z2JZBUUiQjvXNIvQshhBAmc+bMITw83Gpi7pycHAYNGoSiKHz++ef5bmvixInExMSYnqekpFCjRg169uyZbwDqzv3FxsbSo0cPXF1dbT8QUSxW690QhfLpd5CagMZCniQFDfiF0WHgeGlLFZGc884h9e48UvfOUVC9G3sRF5UEkkqSZKR3Dql3IYQQ5URQUBA6nY6kJPNZR5OSkggJCcn3vWlpaSxcuJC3337b4uvGIFJ8fDzr168vMBjk7u6Ou7t7nuWurq6F/rFQlPeI4stb765qviQrqQE0AL2m4uruUZLFLJfknHcOqXfnkbp3Dmv1XtzPQpJtCyGEEEKUEW5ubrRt25Z169aZlhkMBtatW0enTp3yfe+SJUvIyspi+PDheV4zBpGOHTvG2rVrCQwMtHvZRRlhTA3gF2q+3C9MXS6pAYQQosKTHklCCCGEEGVITEwMI0eOpF27dkRERDBjxgzS0tIYPXo0ANHR0VSrVo0pU6aYvW/OnDn069cvT5AoJyeHAQMGEBcXx2+//YZerycxMRFQZ3xzc3MrmQMTpYekBhBCCJEPCSQJIYQQQpQhgwcP5uLFi7z55pskJibSqlUrVq1aZUrAfebMGbRa807nR44cYfPmzaxZsybP9s6fP8+KFSsAaNWqldlrGzZsoHv37g45DlHKSWoAIYQQVkggSQghhBCijBk7dixjx461+NrGjRvzLGvUqBGKkjd5MkDt2rWtviaEEEIIcSfJkSSEEEIIIYQQQgghbCKBJCGEEEIIIYQQQghhEwkkCSGEEEIIIYQQQgibSCBJCCGEEEIIIYQQQthEAklCCCGEEEIIIYQQwiYSSBJCCCGEEEIIIYQQNpFAkhBCCCGEEEIIIYSwiQSShBBCCCGEEEIIIYRNJJAkhBBCCCGEEEIIIWxSKgJJs2bNonbt2nh4eNChQwe2b99udd3u3buj0WjyPPr06QNATk4Or776KuHh4Xh7exMWFkZ0dDQXLlwoqcMRQgghhBBCCCGEKJecHkhatGgRMTExTJo0ibi4OFq2bElUVBTJyckW11++fDkJCQmmx4EDB9DpdAwcOBCA9PR04uLieOONN4iLi2P58uUcOXKEvn37luRhCSGEEEIIIYQQQpQ7Ls4uwPTp03nyyScZPXo0ALNnz+b3339n7ty5TJgwIc/6AQEBZs8XLlyIl5eXKZDk7+9PbGys2TqffvopERERnDlzhpo1azroSIQQQgghhBBCCCHKN6cGkrKzs9m1axcTJ040LdNqtURGRrJlyxabtjFnzhyGDBmCt7e31XWuX7+ORqOhUqVKFl/PysoiKyvL9DwlJQVQh8nl5OTYVA7jerauL+xH6t45pN6dQ+rdeaTunaOgepfPQwghhBCiZDk1kHTp0iX0ej3BwcFmy4ODgzl8+HCB79++fTsHDhxgzpw5VtfJzMzk1VdfZejQofj5+VlcZ8qUKUyePDnP8jVr1uDl5VVgOW53Z28oUXKk7p1D6t05pN6dR+reOazVe3p6egmXRAghhBCiYnP60LbimDNnDuHh4URERFh8PScnh0GDBqEoCp9//rnV7UycOJGYmBjT85SUFGrUqEHPnj2tBp8s7Ss2NpYePXrg6upauAMRxSJ17xxS784h9e48UvfOUVC9G3sRCyGEEEKIkuHUQFJQUBA6nY6kpCSz5UlJSYSEhOT73rS0NBYuXMjbb79t8XVjECk+Pp7169fnGxByd3fH3d09z3JXV9dC/1goynuEfUjdO4fUu3NIvTuP1L1zWKt3+SyEEEIIIUqWU2dtc3Nzo23btqxbt860zGAwsG7dOjp16pTve5csWUJWVhbDhw/P85oxiHTs2DHWrl1LYGCg3csuhBBCCCGEEEIIUdE4fWhbTEwMI0eOpF27dkRERDBjxgzS0tJMs7hFR0dTrVo1pkyZYva+OXPm0K9fvzxBopycHAYMGEBcXBy//fYber2exMREQJ3xzc3NrWQOTAghhBBCCCGEEKKccXogafDgwVy8eJE333yTxMREWrVqxapVq0wJuM+cOYNWa95x6siRI2zevJk1a9bk2d758+dZsWIFAK1atTJ7bcOGDXTv3t0hxyGEEEIIIYQQQghR3jk9kAQwduxYxo4da/G1jRs35lnWqFEjFEWxuH7t2rWtviaEEEIIIYQQQgghis6pOZKEEEIIIYQQQgghRNkhgSQhhBBCCCGEEEIIYRMJJAkhhBBCCCGEEEIIm0ggSQghhBBCCCGEEELYpFQk2xZCCCGEEKK80Rv0xCXHcTH9IlW8qtCmaht0Wp2ziyWEEEIUiwSShBBCCCGEsLO18WuZun0qSelJpmXBXsFMiJhAZK1IJ5ZMCCGEKB4Z2iaEEEIIIYQdrY1fS8zGGLMgEkByejIxG2NYG7/WSSUTQgghik8CSUIIIYQQQtiJ3qBn6vapKCh5XjMum7Z9GnqDvqSLJoQQQtiFBJKEEEIIIYSwk7jkuDw9kW6noJCYnkhcclwJlkoIIYSwHwkkCSGEEEIIYScX0y/adT0hhBCitJFAkhBCCCGEEHZSxauKXdcTQgghShsJJAkhhBBCCGEnbaq2IdgrGA0ai69r0BDiFUKbqm1KuGRCCCGEfUggSQghhBBCCDvRaXVMiJhg8TVjcOnViFfRaXUlWSwhhBDCbiSQJIQQQgghhB1F1opkevfpeXolBXsFM737dCJrRTqpZEIIIUTxuTi7AEIIIYQQQpQ3ncM6o6CYnveq3Yupd02VnkhCCCHKPOmRJIQQQgghhJ1dyrhk9jxTnylBJCGEEOWCBJKEEEIIIYSws+T0ZLPnp66fclJJhBBCCPuSQJIQQgghhBB2djHjIgC1/GoBcDb1LNn6bGcWSQghhLALCSQJIYQQQghhZ8YeSU0Dm+Lt6o1BMRCfEu/kUgkhhBDFJ4EkIYQQQggh7MwYSAr2Cqauf10ATl4/6cwiCSGEEHYhgSQhhBBCCCHs7GK6OrStimcV6vjXASSQJIQQonxwcXYBhBBCCCGEKG+SM9QeSVW9qpJjyAEk4bYQQojyQQJJQgghhBBC2JmpR5JXFdx17oAEkoQQQpQPEkgSQgghhBDCjhRFMc3aVtWzKkGeQQCcvn4ag2JAq5HsEkIIIcou+RYTQgghhChjZs2aRe3atfHw8KBDhw5s377d6rrdu3dHo9HkefTp08e0jqIovPnmm4SGhuLp6UlkZCTHjh0riUMpl27k3CAjNwOAIK8gqvlUw1XrSqY+kws3Lji5dEIIIUTxSCBJCCGEEKIMWbRoETExMUyaNIm4uDhatmxJVFQUycnJFtdfvnw5CQkJpseBAwfQ6XQMHDjQtM4HH3zAJ598wuzZs9m2bRve3t5ERUWRmZlZUodVrhiHtfm6+eLp4omL1oVafrUASbgthBCi7JNAkhBCCCFEGTJ9+nSefPJJRo8eTdOmTZk9ezZeXl7MnTvX4voBAQGEhISYHrGxsXh5eZkCSYqiMGPGDF5//XUeeughWrRowbx587hw4QI///xzCR5Z+ZGUngRAsFewaZlx5jbJkySEEKKskxxJQgghhBBlRHZ2Nrt27WLixImmZVqtlsjISLZs2WLTNubMmcOQIUPw9vYG4NSpUyQmJhIZGWlax9/fnw4dOrBlyxaGDBlicTtZWVlkZWWZnqekpACQk5NDTk6OTWUxrmfr+mVFYmoiAEEeQaZjq+1bG4ATV084/XjLa72XBVL3ziH17jxS985RUL0X9/OQQJIQQgghRBlx6dIl9Ho9wcHBZsuDg4M5fPhwge/fvn07Bw4cYM6cOaZliYmJpm3cuU3ja5ZMmTKFyZMn51m+Zs0avLy8CizL7WJjYwu1fmm3KXMTAFmXs1i5ciUA17KvAbDr9C5WXl7prKKZKW/1XpZI3TuH1LvzSN07h7V6T09PL9Z2JZAkhBBCCFFBzJkzh/DwcCIiIoq9rYkTJxITE2N6npKSQo0aNejZsyd+fn42bSMnJ4fY2Fh69OiBq6trsctUWhzYeQCOQqsGrejdqjcA9a7WY8kfS7iuu87999+PRqNxWvnKa72XBVL3ziH17jxS985RUL0bexEXlQSShBBCCCHKiKCgIHQ6HUlJSWbLk5KSCAkJyfe9aWlpLFy4kLfffttsufF9SUlJhIaGmm2zVatWVrfn7u6Ou7t7nuWurq6F/rFQlPeUZpezLgMQ4hNiOq56AfXQoOF69nVS9akEegY6s4hA+av3skTq3jmk3p1H6t45rNV7cT8LSbYthBBCCFFGuLm50bZtW9atW2daZjAYWLduHZ06dcr3vUuWLCErK4vhw4ebLa9Tpw4hISFm20xJSWHbtm0FblNYlpyuzqBX1auqaZmniydhPmGAzNwmhBCibJNAkhBCCCFEGRITE8NXX33Fd999x6FDh3j22WdJS0tj9OjRAERHR5sl4zaaM2cO/fr1IzDQvCeMRqNh/PjxvPvuu6xYsYL9+/cTHR1NWFgY/fr1K4lDKncupl8EoIpXFbPlMnObSm/QsyNxBytPrmRH4g70Br2ziySEEKIQZGibEEIIIUQZMnjwYC5evMibb75JYmIirVq1YtWqVaZk2WfOnEGrNb9XeOTIETZv3syaNWssbvOVV14hLS2Np556imvXrtG1a1dWrVqFh4eHw4+nvFEUheQMtUdSsJd5AvO6/nXZfH5zhQ4krY1fy9TtU0lKvzU8M9grmAkRE4isFZnPO4UQQpQWEkgSQgghhChjxo4dy9ixYy2+tnHjxjzLGjVqhKIoVren0Wh4++238+RPEoV3NesquYZcgDx5kOr61wUq7tC2tfFridkYg4L5uZicnkzMxhimd58uwSQhhCgDZGibEEIIIYQQdmIc1hbgEYCr1jyZad1KFTeQpDfombp9ap4gEmBaNm37NBnmJoQQZYAEkoQQQgghhLATS4m2jer4qTmSEtMSSc9JL9FyOVtccpzZcLY7KSgkpicSlxxXgqUSQghRFBJIEkIIIYQQwk4uZtxMtO1ZJc9rlTwqEeARAFS8hNvGnlr2Wk8IIYTzSCBJCCGEEEIIO8mvRxLcmrmtog1vu3MGu+KuJ4QQwnkkkCSEEEIIIYSdGHvUWAuIGBNuV7QeSW2qtsHX1TffdUK8QmhTtU0JlUgIIURRSSBJCCGEEEIIO0nOUHskWRraBhV35rZN5zeRmpOa7zqvRryKTqsroRIJIYQoKhdnF0AIIYQQQojywji0Ldgr2OLrFTGQdPjKYV756xUAOoV24uT1k3kSb7tp3Wgb3NYZxRPC4fQGPXHJcVxMv0gVryq0qdpGgqaiTJNAkrCJXPyEEEIIIQpW0NA2Y46ksylnyTHk4Kp1LbGyOUNyejJj1o0hIzeDjqEdmRU5Cy1aU7syyDOID3d8yOGrh/nmwDfEtItxdpGFsKu18WuZun2qWfA02CuYCRETiKwV6cSSCVF0EkgSBZKLnxBCCCFEwXINuVzOvAxYT7Yd4h2Cp4snGbkZnE05S91KdUuyiCUqPSed59c/T3J6MnX86/Df7v81Bc7ah7Q3rfd8m+cZs24MCw4vILpZNEGeQc4qshB2tTZ+LTEbY1BQzJYnpycTszGG6d2ny+8pUSaVihxJs2bNonbt2nh4eNChQwe2b99udd3u3buj0WjyPPr06WNaR1EU3nzzTUJDQ/H09CQyMpJjx46VxKGUO8aL353dj40Xv7Xxa51UMiGEEEKI0uVK5hUMigGdRkdl98oW19FoNKZeSeU54bZBMTBx00QOXj5IZffKzLpvFn5ufhbXvavaXbQIakGmPpM5++eUcEmFcAy9Qc/U7VPzBJEA07Jp26ehN+hLumhCFJvTA0mLFi0iJiaGSZMmERcXR8uWLYmKiiI5Odni+suXLychIcH0OHDgADqdjoEDB5rW+eCDD/jkk0+YPXs227Ztw9vbm6ioKDIzM0vqsMoFufgJIYQQQtjOOKwt0DMw3xQAFSFP0oxdM1h/dj1uWjc+ufcTavjWsLquRqNhTKsxACw+spiktCSr6wpRVsQlx+W5GX87BYXE9ETikuNKsFRC2IfTA0nTp0/nySefZPTo0TRt2pTZs2fj5eXF3LlzLa4fEBBASEiI6REbG4uXl5cpkKQoCjNmzOD111/noYceokWLFsybN48LFy7w888/l+CRlX1y8RNCCCGEsJ0x0XZVT8vD2ozKeyBp6dGlfPPvNwC80+UdWlVtVeB7OoV1ok3VNmQbsvl6/9cOLqEQjmcMLNtrPSFKE6fmSMrOzmbXrl1MnDjRtEyr1RIZGcmWLVts2sacOXMYMmQI3t7eAJw6dYrExEQiI2+NNfX396dDhw5s2bKFIUOG5NlGVlYWWVlZpucpKSkA5OTkkJOTY1M5jOvZun5ZkJiaaPN6OYHOO+7yWPdlgdS7c0i9O4/UvXMUVO/yeYjS5GJG/om2jcpzIGlrwlbe2/oeAM+1fI7edXvb9D6NRsPY1mN5bPVjLDu2jMeaP0aoT6gjiyqEQxV0HSjsekKUJk4NJF26dAm9Xk9wsPn0qMHBwRw+fLjA92/fvp0DBw4wZ86tsdSJiYmmbdy5TeNrd5oyZQqTJ0/Os3zNmjV4eXkVWI7bxcbGFmr90uxkjm2Nm+N7j7Py4EoHl6Zg5anuyxKpd+eQenceqXvnsFbv6enpJVwSIawz9UiykmjbqE6lWzmSDIoBrcbpgwTs4uS1k8RsiCFXyaV3nd480/KZQr2/fUh7IkIi2J64nS/2fcFbnd9yTEGFKAFtqrYh2CuY5PRki6lCNGgI9gqmTdU2TiidEMVTpmdtmzNnDuHh4URERBRrOxMnTiQm5tZUoykpKdSoUYOePXvi52c5KeCdcnJyiI2NpUePHri6lo9pXPUGPb+t+I2L6RetXvyqelXl2QefzTcPgKOVx7ovC6TenUPq3Xmk7p2joHo39iIWojSwNZBUw7cGLhoXMnIzSEpLKhc9b65kXmHMujGk5qTSumpr3u7yNhqNptDbGdt6LNF/RPPL8V94PPzxfHMrCVGa6bQ6JkRMIGZjjNV1Xo141am/o4QoKqcGkoKCgtDpdCQlmefhSUpKIiQkJN/3pqWlsXDhQt5++22z5cb3JSUlERp660s5KSmJVq1aWdyWu7s77u7ueZa7uroW+sdCUd5TWrniysSIiRYvfhrUhsGEiAl4uHuUdNEsKk91X5ZIvTuH1LvzSN07h7V6l89ClCbJGWogqYpn/kNVXLWu1PCrwanrpzh1/VSZDyRl6bMYv2E8526co7pPdWbcMwN3Xd62tS1aV21Nl7Au/H3hb77Y+wXvdn3XzqUVouRE1opkevfpvPzny+QquWavPdfqOSJrRVp5pxClm1P70bq5udG2bVvWrVtnWmYwGFi3bh2dOnXK971LliwhKyuL4cOHmy2vU6cOISEhZttMSUlh27ZtBW5T5GW8+Lnp3MyWB3sFM737dLn4CSGEEELcZEyaW1CPJCg/eZIUReHNv99kd/JufF19mRU5iwCPgGJt0ziD268nf+X09dN2KKUQztO1WlcMigGA/4v4P7pV7wbAkStHnFksIYrF6QOyY2Ji+Oqrr/juu+84dOgQzz77LGlpaYwePRqA6Ohos2TcRnPmzKFfv34EBgaaLddoNIwfP553332XFStWsH//fqKjowkLC6Nfv34lcUjlTmStSOr61TU9j6oVxar+qySIJIQQQghxG2MgyZbkueUlkDR732xWnlqJi8aF6fdMNx1XcYRXCadb9W4YFAOz9822QymFcJ6jV49iwECARwBDGg/hhTYvALD+7HoSbiQ4uXRCFI3TA0mDBw/mo48+4s0336RVq1bs2bOHVatWmZJlnzlzhoQE8z+wI0eOsHnzZh5//HGL23zllVd4/vnneeqpp2jfvj03btxg1apVeHiUjiFYZdGlzEumf2cbsmUsrxBCCCHEbbL12VzNugpAVc+CeyTV8VcTbpflQNLvJ3/nsz2fAfBax9foGNrRbts29kpaeXIlJ66dsNt2hShphy4fAqBJYBM0Gg0NKjcgIiQCg2Jg8dHFTi6dEEXj9EASwNixY4mPjycrK4tt27bRoUMH02sbN27k22+/NVu/UaNGKIpCjx49LG5Po9Hw9ttvk5iYSGZmJmvXrqVhw4aOPIRyLdeQy+WMy6bnZ1LOOLE0QgghhBClz6UM9aabq9YVf3f/AtevW0ntuXPq+imHlstRdifv5o2/3wBgdLPRDGg4wK7bbxLYhPtq3oeCYgpWCVEWHbqiBpKaBjQ1LRvWeBgAy44uI0uf5ZRyCVEcpSKQJEq3yxmXzWZtO5t61jTOVwghhBBCmM/YZstsZXX81B5JVzKvcC3zmiOLZndnU8/ywvoXyDHkcG+NexnfdrxD9vNcq+fQoGFN/BrJJyPKrIOXDwLQNPBWIKlbjW6EeodyNesqf5z6w1lFE6LIJJAkCnQxQx3vH+gRiIvWhWxDNklpSQW8SwghhBCi4rg9kGQLL1cvQrzV2YZPpZSdXkkp2SmMWTeGq1lXaRrYlCl3TUGrccxPioaVGxJVOwpAeiWJMilbn82xa8cAtZedkYvWhUGNBgHw46EfURTF4vuFKK0kkCQKZGwYhXqHUt2nOgBnUmV4mxBCCCGEkfHGWxXPghNtG5kSbl8rG3mScgw5vLjxRU5dP0WwVzAz752Jl6uXQ/f5bMtn0Wq0rD+7nn8v/+vQfQlhb8evHSfXkIufmx9h3mFmr/Vv0B83rRuHrhxi78W9TiqhEEUjgSRRoNtnIKnpVxOA+JR4ZxZJCCGEEKJUKWyPJChbM7cpisJ7W99ja8JWPF08mXXfrEIda1HVrVSX3nV6AzBr9yyH708Ie7oz0fbtKntUpndd9dz+8dCPJV42IYpDAkmiQMkZtxpGNX3VQJIk3BZCCCGEuOX2G2+2Ks0zt+kNenYk7mDlyZXsSNzBt/9+y7Jjy9BqtHx494c0CmhUYmV5puUz6DQ6Np3fJD03RJliSrR9W36k2xmTbsfGx5qC0UKUBS7OLoAo/UwNI88q+Ln7ATK0TQghhBDidsYbb0UZ2lbaZm5bG7+WqdunkpSeNyfmy+1epluNbiVanlp+tXiw3oP8fPxnZu2exZc9vyzR/QtRVKZE2wGWA0lNApvQumprdifvZsnRJYxpNaYkiydEkUmPJFEg6ZEkhBBCCJE/4423wgz3MvZIunDjAhm5GQ4pV2GtjV9LzMYYi0EkgGCv4BIukerpFk/jonFhS8IWdiXtckoZhCiMHEOOabbB2xNt38nYK2nJkSXk6HNKpGxCFJcEkkSBLOVIOpt6FoNicGaxhBBCCCFKjaIMbQvwCMDf3R8FpVTkn9Qb9EzdPhUFyzNIadDwwY4P0Bv0JVwyqO5bnYcbPAzArD2SK0mUfqeunyLbkI23qzc1fGtYXe++WvdR1bMqlzMvsyZ+TQmWUIiik0CSKNDtQ9tCvUNx0bqQbcgmKc3ynSohhBBCiIokPSed1JxUAKp62t4jSaPRlKqZ2+KS46z2RAJQUEhMTyQuOa4ES3XLUy2ewlXryo7EHWxL2OaUMghhK1Oi7YAmaDXWf3a7al0Z2GggAD8elqTbomyQQJLIV7Y+m6tZVwG1q7aL1oXqPtUBiE91/p0zIYQQQghnu5ih3nTzcvHCx82nUO8tTTO3GW8e2ms9ewvxDmFAwwEAfLr7UxTFcs8pIUoDY36k/Ia1GQ1oOABXrSv7Lu7j30v/OrpoQhSbBJJEvi5lXALARetCJfdKAKbhbZInSQghhBAC02xLhcmPZFSaZm6zdVheYYbv2dsT4U/grnNnz8U9/HPhH6eVQ4iCGGdsaxJQcCApyDOIqNpRgPRKEmWDBJJEvkwNI8+qaDQaAEm4LYQQQghxm6LkRzIqTTO3tanahmCvYDRoLL6uQUOIVwhtqrYp4ZLdUtWrKoMaDQKkV5IovfQGPYevHAagaaDlGdvuNLTxUAD+OPUHlzMuO6xsQtiDBJJEvow9km5vGJl6JKVKIEkIIYQQwji0rYpn4QNJxh5J8Snx5Bpy7VquwtJpdUyImGAx2bYxuPRqxKvotLqSLpqZx5s/jqeLJwcuH+DPc386tSxCWBKfGk9GbgaeLp7U9qtt03taVGlB88Dm5BhyWHZsmWMLKEQxSSBJ5MtSV+1avrUA6ZEkhBBCCAHFG9oW5hOGh86DHEMO52+ct3fRCi2yViSPNnk0z/Jgr2Cmd59OZK1IJ5TKXKBnoKn3xqw9s6RXkih1jPmRGlVuVKjA67AmwwBYdGQROYYch5RNCHuQQJLIl6U7bDX81Okrz6aexaAYnFIuIYQQQojS4vYZbgtLq9FS2782UDpmbgPIyM0AIKp2FNPumsbcqLms6r+qVASRjEY1G4WXixeHrxxm3Zl1zi6OEGZMM7bZkGj7dlG1owjwCCA5PZn1Z9Y7omiFpjfo2ZG4g5UnV7IjcQd6g97ZRRKlgASSRL6Md9huH9oW6h2Ki9aFbEM2SWnWp4gVQgghhKgIkjOK3iMJSlfCbYDtCdsBeKjeQ/Su25v2Ie2dPpztTpU9KjO86XBA7ZUkNzdFaVKYRNu3c9O5mWYm/PGQ85Nur41fS9SyKB5b/RivbnqVx1Y/RtSyKNbGr3V20YSTSSBJ5Mt4h+32hpGL1oXqPtUBdfyvEEIIIURFZunGW2EYE26XhkDShRsXOHfjHDqNjjbBzkuqbYvoptH4uvpy/Npx1pxe4+ziCAGAQTGYeiTZmmj7doMaDsJF40JcchxHrhyxd/FstjZ+LTEbY0hKN+84kJyeTMzGGAkmVXASSBL5spY80pRwW/IkCSGEEKICUxTF4o23wihNM7dtT1R7IzULaoa3q7eTS5M/f3d/RjQbAcBnez+TITeiVDiXeo4bOTdw07pRt1LdQr8/2DuY+2rdB8CCwwvsXTyb6A16pm6fajHxvnHZtO3T5G+uApNAksiX6Q7bnYEkXwkkCSGEEEKk5qSSqc8EipYjCW4NbTt1/ZTTE0fvSNwBQIeQDk4th61GNBmBv7s/p66fYuWplc4ujhAcvKIm2m5YuSGuWtcibWNYYzXp9u8nf+d61nW7lc1WcclxeXoi3U5BITE9kbjkuBIslShNJJAkrMrMzSQlOwXI21Xb1CMpVQJJQgghhKi4jL2R/Nz88HDxKNI2avnVQqvRciPnhqk3uDMoisK2hG0AtA9p77RyFIaPmw+jmo0C4PO9n5NryHVugUSFV9RE27drXbU1jQMak6nPZPmx5fYqms2M1zV7rSfKHwkkCauMDRl3nTt+bn5mr9XyrQVIjyQhhBBCVGzG3ttFHdYGaoLdGr7qrLjOzJN0NvUsSelJuGhdaFW1ldPKUVjDGg8jwCOAs6ln+fXEr84ujqjgipMfyUij0TC08VAAFh1ZVOJDyGzN91bUvHCi7JNAkrDq9qlsNRqN2Ws1/NTGztnUszJLhhBCCCEqLGv5JAvLNHPbNecFkoz5kVpWaYmni6fTylFYXq5ePNb8MQBm751Njj7HySUSFZWiKKahbcXpkQTQu05v/N39OX/jPH+e+9MexbNZm6pt8HH1yXedQI9A2lQt3Qn5heNIIElYld9UtqHeobhoXcg2ZJOUZn38rBBCCCFEeVbcGduMSsPMbdsT1EBSREiE08pQVIMaDSLIM4gLaRf46fhPzi6OqKAS0hK4nnUdF40LDSo1KNa2PFw8eKTBIwD8ePhHexTPZrFnYrmRcyPfdbIN2abrn6h4JJAkrDL1SLLQMHLRulDdpzoA8anxJVouIYQQQojSorgzthk5e+Y2RVFMPZLKSn6k23m6ePJE+BMAfLH3C/4+/zcrT65kR+IOuw8L0hsUtpy4zC97zrPlxGX0BucmSC8MvUHPjsQdDqkbR9eLI8tuL8ZhbfUr18dN51bs7Q1pNAStRsu2hG2cuHai2Nuzxb6L+3h98+sA3F3tboK9gs1eD/YKJtQ7lNTsVMasH8ON7PwDTqJ8cnF2AUTpdfvQNktq+tXkdMppzqScoWNox5IsmhBCCFGhzZo1iw8//JDExERatmzJzJkziYiw3ovk2rVrvPbaayxfvpwrV65Qq1YtZsyYQe/evQHQ6/W89dZb/PDDDyQmJhIWFsaoUaN4/fXX8wxvF+bskSMJzGduc4ZT109xOfMy7jp3WlZp6ZQyFNeAhgP4fM/nJGck88zaZ0zLg72CmRAxgchakcXex6oDCUz+9SAJ1zNNy0L9PZj0YFN6NQ8t9vYdaW38WqZun2o2G5e96sbR9eLIstuTcVhbcfIj3S7MJ4zu1buz/ux6FhxewOsdX7fLdq05f+M8z69/nix9Ft2qd+Pjez4G1FncLqZfpIpXFdpUbUNyejLDVg7j2NVjvPzXy8y8dyYuWgktVCTSI0lYld/QNoCavjdnbpOE20IIIUSJWbRoETExMUyaNIm4uDhatmxJVFQUycmWhxhkZ2fTo0cPTp8+zdKlSzly5AhfffUV1apVM60zbdo0Pv/8cz799FMOHTrEtGnT+OCDD5g5c2ZJHVaZZWovedonkHQx4yKp2anFLldhbUtUZ2trVbWVXXpSOMOmc5u4np13qvTk9GRiNsawNn5tsba/6kACz/4QZxYsAUi8nsmzP8Sx6kBCsbbvSGvj1xKzMSbPlO72qBtH14sjy25vBy/fzI8UULz8SLcb1mQYACtOrHDotSE1O5Wx68ZyJfMKjQMa88HdH6DT6tBpdbQPaU/vur1pH9IenVZHqE8oM++diYfOg83nN/Phjg8dVi5ROkkgSViV39A2UHskgQxtE0IIIUrS9OnTefLJJxk9ejRNmzZl9uzZeHl5MXfuXIvrz507lytXrvDzzz/TpUsXateuTbdu3WjZ8lavk3/++YeHHnqIPn36ULt2bQYMGEDPnj3Zvn17SR1WmVVQe8lWvm6+pmCUM/Ik7UjcAZTN/EigDnuaun2qxdcU1CFW07ZPK/JwKL1BYfKvB7E0WMu4bPKvB0vlMDdj3SgWSl/cunF0vTiy7PamKMqtQFIxE23fLiIkgvqV6pORm8Evx3+x23Zvl2vI5eU/X+b4teNU8azCzHtn4uXqle97mgc1Z8pdUwA1h9OPh0o2j5NwLul/JqwyzkJi7Q5bLd9aAJxNOVtiZRJCCCEqsuzsbHbt2sXEiRNNy7RaLZGRkWzZssXie1asWEGnTp0YM2YMv/zyC1WqVGHYsGG8+uqr6HQ6ADp37syXX37J0aNHadiwIXv37mXz5s1Mnz7dalmysrLIysoyPU9JSQEgJyeHnBzbZs0yrmfr+qWNQTGY2kuVXSsX+zhq+9UmOSOZY5eP0bSSfYbGWHJnvRsUgynRdpugNmXy89iZtDNPj5XbKSgkpiey/cJ22gW3K/T2t526kqfHjfn2IeF6JluOJ9OhToDV9ZxxzjuybuxVL9bYq+wlUe8X0y9yJfMKWo2WOj517LqvQQ0G8f6O9/nx0I8MrD8QrcZ+/UEURWHqzqn8feFvPHQe/K/b/wh0C7Sp/N3CujGu1Tg+2fMJ03ZMI9QzlK7VupqtU9av82VVQfVe3M9DAknCqoLusNXwqwHA2dSzGBSDXS9oQgghhMjr0qVL6PV6goPvSH4aHMzhw4ctvufkyZOsX7+eRx99lJUrV3L8+HGee+45cnJymDRpEgATJkwgJSWFxo0bo9Pp0Ov1vPfeezz66KNWyzJlyhQmT56cZ/maNWvw8sr/TvadYmNjC7V+aZFmSCPXkAvAjo070Gl0xdqeNl1tS63bsw7XI67FLl9BjPWeoE/gevZ13HDjzPYznNecd/i+7W1v9l6b1ovdEkuyW+Fnmtp1SQMU/Pn+8ec2Lh8quPdNSZ7zjqwbW+vl+9XbuFRDobAp1+xddkfW++Ec9RpcRVOFDWs22HXbOkWHBx6cvXGWT1Z8QkPXhnbb9pasLfye8TsaNDzi/gint57mNKdtfn8VpQpt3NoQlx3HS3++xFO+TxGiC8mzXlm9zpd11uo9PT29WNuVQJKwKD0n3TTlo7UcSaHeobhoXcg2ZJOUlkSoT+lOMOgoeoM+TwI6nbZ4DUkhhBDCXgwGA1WrVuXLL79Ep9PRtm1bzp8/z4cffmgKJC1evJj58+fz448/0qxZM/bs2cP48eMJCwtj5MiRFrc7ceJEYmJiTM9TUlKoUaMGPXv2xM/Pz6ay5eTkEBsbS48ePXB1dXzgxN6OXj0Kf0CARwAP9nmw2Nu7cfQGW3duRROooXf33nYooWV31vv8w/MhDtqFtuPBe4p/HM5QNakqS9YtKXC9Hp16FKlHUuCpK8w7trPA9Vacd8MjpDoD21anXhXvPK8745x3ZN0EnLzMvGO7Clxv9XkdRzK9GNi2Go+0DiPIx92m7dur7CVR72f3n4X90L5We3p3sv/f74ldJ/jxyI+c8DvB+HvG22Wbf53/iz/++gOAF1q/QHST6CJtp6e+J2M2jmFn0k6W6pcyL3IeQZ5BQNm/zpdVBdW7sRdxUUkgSVhk7Kbt5eKFt2veL0EAF60L1X2qczrlNPGp8RUykFRWZpAQQghRPgQFBaHT6UhKMh/qkZSUREhI3jvAAKGhobi6upqGsQE0adKExMREsrOzcXNz4+WXX2bChAkMGTIEgPDwcOLj45kyZYrVQJK7uzvu7nl/DLq6uhb6x0JR3lMaXMm+Aqg33exR/voB9QE1/2RJ1Iex3nclq4GAjmEdy+TnABARFkGwVzDJ6ckW8+lo0BDsFUxEWESRbvh1ql+VYD93klKyrK6j1UBqpp45f8cz5+942teuzJD2NekdHoqnm/k+S/KcN9ZNfkPEQrxCCl03aVm5LNxZcO81LzcdKAqnL6fz4Zpj/G/tce5rUpUh7Wtyd8Mq6LTWuym1C22Hu86dLL3lei/s5+rIej9y7QgAzYKaOWQfjzZ9lAVHFvB3wt9cyLhALb9axdrekStHmPj3RAyKgf4N+vNY+GNFnqXT1dWVGffMYPjK4ZxOOc2Lm15kTtQcPF08zdYpq9eXssxavRf3s5CxSMIiW6eyNSbcrogzt5WlGSSEEEKUD25ubrRt25Z169aZlhkMBtatW0enTp0svqdLly4cP34cg8FgWnb06FFCQ0Nxc1Nn50pPT0erNW8W6nQ6s/eIvIztpSqexUu0bVTXvy4A526cs/rD2d70Bj27ktRAUllNtA2g0+qYEDEBUIMLd1JQeDXi1SL3GtdpNXSuF2TxNc3Nx8yhrfkquh2RTaqi1cCO01d5ccleIt5by+s/7+fA+bwzypWE2+vGmv4N+xeqbk5evMHDn/3N7/sTMcaB7qx1Y71MH9SSHa/34IP+LWhTsxK5BoXV/yYx+tsddJ22numxRzl31fIwmy/2fVHg30JxPld7OnT5EGDfRNu3q+lX05R/aOHhhcXaVnJ6MmPWjSEjN4MOoR14reNrRQ4iGfm7+zPrvln4u/uz/9J+Xtv8GgZFvkPKKwkkCYtsnYGkpm/FDCSVpRkkhBBClC8xMTF89dVXfPfddxw6dIhnn32WtLQ0Ro8eDUB0dLRZMu5nn32WK1eu8MILL3D06FF+//133n//fcaMGWNa58EHH+S9997j999/5/Tp0/z0009Mnz6dhx9+uMSPryxJzrDtxputgjyD8HX1xaAYiE8pmVlxD185TGpOKr6uvjQOaFwi+3SUyFqRTO8+3eLn0aNWj2L1Fr+RlcvGI+rn7e9pfic/xN+Dz4e3oU+LMHo0Debrke35Z8J9vNSzITUCPEnNyuWHrWd4YOZm+n2+hc2JGlIzLSe61RsUtpy4zC97zrPlxGW7zQIXWSuSMO+wPMs9dB4AfH/we05fP23Ttlb/m0jfT//maNINqvq6s/jpTswe3oYQfw+z9Yz10qt5KN7uLgxqX4Plz3Vh9fi7eaxLHSp5uZJwPZNP1h3jrg82ED13Oyv3J5CdqwYffj3xK1/s+wKAIY2GEOxlnhvO382f6d2nl4pRAJczLpOUnoQGjUP/joY1GQbAz8d/Jj2naDlu0nPSeX798ySlJ1HHvw7Tu0/HVWufnkI1/Wry8T0f46J1ITY+lpm7Z9plu6L0kaFtwiLj0LaC7rAZeyTFp5ZMY6e0iEuOs2kGibjkONqHtC/BkgkhhCjvBg8ezMWLF3nzzTdJTEykVatWrFq1ypSA+8yZM2a9i2rUqMHq1av5z3/+Q4sWLahWrRovvPACr776qmmdmTNn8sYbb/Dcc8+RnJxMWFgYTz/9NG+++WaJH19ZYrzxZq9AkkajoU6lOuy7uI+T10/SsLL9Eupasy1xGwBtQ9qWil4dxRVZK5J7atxjyl8ZnxLPZ3s/458L/3At8xqVPCoVabvfbD7F1fQc6gZ588cLdxF35hrJqZlU9fUgok5AnuFZIf4ejL23Ac91r88/Jy6zcMcZ1vybxL8XUvkXHb9+8Cd9wsMYElGDdrUqo9FoWHUggcm/HjSbBS3U34NJDzalV/PipZA4m3KWC2kX0KJlxj0zyMjNoIpXFZoGNOWptU+x7+I+xqwbw/ze863Wkd6g8N81R/hs4wkAImoH8OmjranqqwaQejQNYfupK/nWC0CjEF/efLApr/RqxJqDSSzacYa/j1/mr6MX+evoRQK93bgrPJU/U94F4PHmj9PYfTC/Ho8gPecQrpU34+p3iBvX6pGb2qxY9WIvh66ovZFq+dWymhbEHjqHdaaWXy3iU+JZcWIFQxoPKdT7DYqBiZsmcvDyQSq7V2bWvbPwc7Mtp52t2ga35e3Ob/N/m/+Pr/d/TTWvargiQ9rKGwkkCYtsHdpWy1cdm3s25azDy1SaGBuO9lpPCCGEKIyxY8cyduxYi69t3Lgxz7JOnTqxdetWq9vz9fVlxowZzJgxw04lrBhs7cFdGHX967Lv4j5OXTtlt23mZ3vidqBsD2u7k06rM93IMygG1p9dz+Erh/n2328Z33Z8obd3PSOHrzadBOCFyAa4u+roVC/QpvdqtRq6Ngiia4MgrqRls3TnGeZuPExihoFlcedYFneOelW8aVWjEsvi8uYbSryeybM/xJl69hTVujPqcNj2oe25p+Y9Zq99fM/HPPr7o5xJPcMLG17gq55f4aZzM1vnSlo24xbsZvPxSwA81qUOE3s3xlV3K2it02psrhcAD1cdfVuG0bdlGGcup7No5xmW7DzHxczzxF7+DK1LDr76Nlw5ey/Pbo272ee/HqDB1e8QuW5HePaHnXw+vF2xA23F5ehhbUZajZahjYcydftUFhxewOBGgws1JG1G3AzWn12Pq9aVj+/92DQLt709WO9BTqec5st9X/LejveI9ixaEm9ResnQNmGRsWFkzLZvjfHiczb1bIUZA6soCnsu7rFpXXs2LIUQQghRupiGtnnap0cS3MqTdOq64wNJOYYc4pLigPIVSLqdVqPluZbPAfDj4R+5nHG50NuYs/kUKZm5NAz24YEWeYeH2SrA243RnWsxoaWexU9GMKhddTxddZy4mGYxiASYkihM/vVgsYa5GQNJ99W8L89rQZ5BzLpvFj6uPsQlxzF5y2QU5da+9p27xoMzN7P5+CU8XXV8MrQ1bz7Y1CyIVFw1A714Oaoxq/7TjjrNF6J1SUefUZ0Lx/oxb+tZs2QS+vRaKHp3NC5paD3OF7tu7MHYI6lpQFOH7+uheg/h5eLFyesnTT0KbbHs6DK+OfANAO90eYfWVVs7qogAjGk1hl61e5FryGVB+oISG64rSoYEkoRFto75D/UOxUXrQrYhm6Q060O9yovM3Exe2/waCw4vyHc9DRpCvEJoU7VNCZVMCCGEECXNUT2SAE5eP2m3bVpz8PJBMnIzqOReiQaVGzh8f87SvUZ3mgc2JyM3g7kH5hbqvVfTspm7WQ3qjY9smO8MY7bSaKB1zUp8MKAl21+7jye61sl3fQVIuJ7J9lNXirS/i+kXTTdB761xr8V16leuz0fdPkKn0bHixAq+2v8VAIt2nGHA7C2cv5ZBnSBvfh7Thb4tix5My0+OPoeXN73IxcxzhHqHsvThrxjcrp6FNXXkpqkzHOp8jharbuzl4OWDADQNdHwgycfNh771+gLw46EfbXrP1oStvLtVHSr4XMvn6FO3j8PKZ6TVaHmnyzuEB4aToWQwbuM4rmVec/h+RcmQQJKwyNQwKiBHkovWheo+1YHynyfpwo0LRP8Rza8nf0Wn0dGvXj80N/+7U3FnBhHO56hkl0IIIcqHXEMulzPV3i32ypEEUMdfDSqcTjnt8Ek7diTtAKB9SHu0mvL7s0Cj0TCmtZpcftGRRYVKPfDVppPcyMqlSagfvZqF2L1svh6uhFf3t2ndhOsZRdrH+jPrAWhRpQXB3sFW1+tSrQsTI9RE/TN3zyR64Ze8umw/2bkGejQN5pexXWgU4lukMhREURTe2foO2xO34+3qzaf3fUrT4Op0tjJUTp/WCAAX7yMAJKdmWlyvJFzPus75G2qPssaBJZOwfmiToQD8ee5P076tOXntJDEbYshVculdpzfPtHymJIoIgIeLB9Pvnk4lbSXO3jjLCxteIFufXWL7F45Tfr8xRJEpimJKtm1Lw8iYcLs8z9y2LWEbg38bzKErh6jsXpmven7FO13fsToziBatXRuVomStOpBA12nrGfrVVl5YuIehX22l67T1rDqQ4OyiCSGEKCWuZF7BoBjQaXRUdq9st+1W86mGm9aNLH0WF9Iu2G27luxM2gmU32Ftt+sS1oWWVVqSpc/i6/1f2/Seyzey+Paf0wDE9GiI1g69kSwxJqsuyFsrDjL1j8OcupRWqO3nN6ztToMbD+bhumoC57iMz9F5nuHlqEZ8Mbwtfh6OS5j8zb/f8NPxn9BqtHx494emRPPW6ib3hvq61vMsaNNtrkNHMA5rq+5T3e6Jq62p61+XjqEdMSgGFh1eZHW9q5lXGbNuDKk5qbSq0oq3u7xdqJxK9hDoGcgI7xFWh06KskkCSSKPGzk3yMhV73gUlCMJoKZv+Q0kKYrCd/9+x1OxT3Et6xpNA5uy6IFFpgSOkbUiWd1/NXOj5jLtrmnMjZpLr9q9MGDg/zb/X5Gn5RTOs+pAAs/+EGc2YwrcSnYpwSQhhBBwa2KSQM9Au/ZA1ml11PJXJzNxZJ6kXCWXvZf2AhUjkKTRaBjbWk1Qv+ToEhLTEgt8z+w/T5CeradFdX8imzjuBmFEnQBC/T0s9HG/RauBlMwcZv95gns+2sjgL7bw8+7zZObk32vtetZ1diSqPc9sCSRtPnaJFRvakpvaGI02l+AGC+jX3tNhQTSAtfFr+d+u/wHwavtXuav6XabXrNWNklsJfWYwGo2Cp/9xmoWVTADHkpJKtH2nYY2HAbDs2DLTb7fbZeuzeWHDC5y7cY5qPtX4+N6Pcde5l2gZjYJ1wUztMtU0dNLWYK4ovSSQJPIwdvf1dfXFy9WrwPWNPZLK29C2jNwMXt30Kh/t/AiDYqBvvb581+s7Qn3MZ4UwzgzSu25v2oe05/WOrxPsFUx8Sjwf7fzISaUXRaE3KEz+9SCW7pHYK9llWac36NmRuIOVJ1eyI3GHw4ddCCFEaWUMJAV7WR8qVFSmPEnXHJcn6az+LFn6LII8g0zD6cq7DiEdaBfcjhxDDl/t+yrfdZNTMpm3RW3b/qdHQ4f24tBpNUx6UM2tc+deNDcfnwxtzezhbbmnURW0Gth26grjF+0h4r21TPrlAIcSUixu+89zf5Kr5NKgcgNq+dWyWgZFUfhs43Gi527jWrqeusrT1PVrSGrOVcauG0tqdqp9DvYOBy4dYOImdTjdsMbDGNZkmNnr+dWNcXib4nGY/p//w4mLNxxSxoIYA0klkR/pdndXv5tqPtVIyU5h5cn/Z+8846Oqtj78TEvvPYSQhBJ6C0noSglVsGMDxXK5SlE06gX0VUS9CBbEQrmgKIoodkV6l56EEFqAENJDeu+ZzMz7YZyBkDaTTEk5Dz8+ZGaffdacTGb2Wfu//mtnredUKhVvnniTs9lnsZfZs3b8WlysXEwa3+2M6DRCWzr56dlP2Z2026zxCLQMIZEkUAeN0bauxpF+9uovpdTiVKPFZGpSS1KZtXMWuxJ3IRVJeW3oa7w78l2spE3LZh0tHXl3lNrM7qe4nziSesTY4QoYiIjE/DpKpFtpqdllW2d/8n4m/TKJp/c8zaKji3h6z9NM+mUS+5P3mzs0AQEBAZOjq59kc9B2bis2niIpQa5OUoV4hZi81MVciEQi5g9SeyX9Gv9ro94yaw9fp6pGSVAXJ8YEGr8L7+R+3qybFYSXY+21ppejFetmBTFtQCcm9/Piq6dCObZoHC+FBeLjZE1xZQ2bTyYz5ZOj3PP5Mb6PSKG0qkZ7/IHk2mVt9XlAllTKeW7LGd7ffRWlCh4K7swvz43lfxPX4G7tTnxhPK8eeZUaZQ2GJKM0g+cPPk+lopLRPqN5NeRVva6Ng6ofADL7a1zLLuaez4+z+2LTSjNDE5v/j9G2CTq23YpELOGRnuoyxO8uf8dXZ/bz9qEtfH1mP2ti1rIjYQdSkZRVY1fR1alrs89jSN/Qh3s9zON9Hgfg9aOvcy7nHNU1NXx9S+zVNYZ9nxmTjuypKjV3AAKtD307kGgUSaklqShVyjZv1ngi/QSv/v0qxdXFuFi5sGrMKoZ4DtFrjmHew3i8z+N8G/stb554k1/v/hVX6/rNAgVaD7oaNe66mMGAzo7YWnacj9D9yfsJPxyO6ja9VnZ5NuGHw1k1ZhVhfmFmik5AQEDA9Oi78aYPplAkJdSo5+4IZW23EuwVzDDvYZzKOMX/zv2Pt0e+XWdMRlEFW0+rLRvCJ/Q0WaJtcj9vJvTxIiIxn+ySSjzsrQgNcKnTKa6TkzULw3qwYFx3jsXnsi0yhX2xWZxLK+Jc2gXe+SuWaQO8uW+IO8dvHAcgrEsYuy9msGx7bK1NMzc7CyQiEVklVVhIxCy7py+PhqrX9l4yLz4b/xlP7X6K4zeOsyJiBa8Pfd0g16NMXsb8g/PJrcilh3MPPrjzA6TihtdV9V2bQV3CuPPHr6ighAEB5ZxPFPPcljPMHdONVyb2NEiHvaYorS7VtrU3ldH2rdzX4z5Wn/mEa4XXWFX4Up3nXx/2OsO8hzV7/vreM96OViyd3ofJ/bwbObJhXh7yMqnFqRxOO8y/dv+bKrkEleSm4m3VOSce7/ECr46e0ey4TYExrk1bokV3/NXV1Vy9epWaNpQ1FGgardG2tW614F62XkjFUqqV1WSVZRkzNKOiUqn48sKXzD0wl+LqYvq79WfbtG16J5E0LAxaSHen7uRX5vPWybcEU7k2gK5Gjd+cTGbIu/uYvzWa3Rczm/QnaOsolApWRKyok0QCtI+tjFgplLkJCOiIsH5qH2g23ozRXENTapZQlGCU9UNFTQVpijSg4yWSAK0q6c/rf9br8bnmUDzVCiWhAS6M7G7ajUCJWMTwbq7cM8iH4d1cG02GSMQi7gx0Z+3MIZxcMp7Xp/amq7st5dUKfoxK4/Gt31ClqMJR6sX569b1ekDmllaTVVKFs42MH58brk0iaejr2pf3Rr+HCBHbrm7ju8vftfg11ihrePXIq1wruIarlStrxq3BVmbb5HG3XxtrmSVDvYcCMHVYEU+PVP/drDt8ndmbIsgrrWpxrE1xJf8KoL4fMkfp2IaIvdSo6v8uUakgMav5nx/G8g2ViCWsvGMlzhaeVCrLUYprl00qxYVsvv42Hxz9qdmxGxvBU7WZiaTy8nKeeeYZbGxs6Nu3Lykp6g/g559/nhUrVhg0QAHTo68iSSqW0tmuM9B2fZLK5eW8cuQVVkevRqlScn+P+/l68td42Ta/zaulxJIVo1cgE8s4nHqY3+J/M1zAAkYhJb/pLih2llL8XKyplCvZcT6D57acIeTd/bz84zkOX81GrlCaIFLTEp0dTVZ5w0liFSoyyzOJzo42YVQCAm0PYf3UvtAqkoxQ2ubn4IcIEcXVxeRV5hl8/vO551GgwMvGC197X4PP39oZ5DGIUT6jUKgUrD+3vtZzaQXlbItU2zWEG9kbyZC42Vky546uHAi/k5+eG84DQZ2xdFSXXOVk9eDVXy7U6wGpwUIqpr+PY73Pje8ynvAh4QC8H/l+i20bPoz6kKPpR7GSWPH5+M/r+I/qw6hOowA4eeM4b07vw6ePDsZaJuFYfC7TPzvGudTCFsXaFJqObaYuawOorqnh22ufNjrm27hPm1UqZmzfUKnIgsKKClQquP1PTPNzc2M3NoKnqppm1WUsWbKEc+fOcfjwYSZPnqx9PCwsjLfeeovFixfrPNeaNWv44IMPyMzMZODAgXz22WeEhja8M1JYWMjrr7/Or7/+Sn5+Pn5+fqxevZqpU6cCoFAoeOutt9iyZQuZmZl06tSJJ598kv/7v/9rM18E5kZjHqnPDlsXhy4kFSeRUpzSIvmkOUgpTmHhoYXEF8YjFUtZErqEGYEzDPJ+6enSk+cHP8+qM6tYEbGCEM8QfB1az4JNoVQ1KZ/uKBy6ms1rv13U/iyCWl8Qmqvy4YwBTOrrxcX0Yv48l85f5zPIKKrkl+g0folOw8XWgin9vLh7YCdC/F3q7XLS1q67JrlsqHECAh0VQ66fBMyPMRVJVlIrfOx8SCtNI7EoUacuuvoQkRkBQLBncIddHy8YtIBj6cfYkbiDfw34l7ac8LMD8cgVKkZ2d2VY17ZnSyASiQjxd2GQrz3Ht12jTA5uoiE07AalJqu4iojEfIZ3q/81z+47m6TiJH659guv/v0q3075lp4uPfWOb+vlrVpV0/LRy+nn1k/vOW5lVOdRcBrO5ZyjuLqYuwd2oqenPc9tOUNibhkz1p/k7Xv68sBg45Qaxeapk3Wm7tgGsPXcYVSSwga7/YlEoJIWcs+X39LZur9ec+eXVevkG/rQ/07iYmvR6FwqpZKsLDHbC84iEqt1LGkVF1BZFTcZ+9Zzh3lySOuyTtDHU7Whv6f2QLMSSb///jvbtm1j2LBhtb58+vbty/Xr13WeZ9u2bYSHh7N+/XqGDh3K6tWrmTRpElevXsXDo+6XcnV1NRMmTMDDw4Off/4ZHx8fkpOTcXJy0o5ZuXIl69atY/PmzfTt25eoqCieeuopHB0deeGFF5rzcjscmtI2fXbYutirZbD1yYNbM0fTjrLo6CJKqktws3bj4zEfM8hjkEHP8USfJziSdoQzWWdYcmwJX0/+utEacFPR0et6b+VcaiHztkSjUKq4f7APE/p48vZfta+N123Xpn9nR/p3dmTJlN5EJRew/dwNdl7IIK+smu9Op/Dd6RS8HKy4a4A3dw/sxIDOjohEojZ53XVVJxrDJ0RAoD1hqPWTQOtAs/FmrM++rk5dSStNI6EwgRCvEIPOHZUVBagTSR2Vvm59Ges7lkOph1gXs44P7vyApNwyfo5Wl/yFT9A/SdKaOJ15mjJ5KW7WbrwwZiIvbTvf5DGNeUWKRCJeH/Y6aaVpnM44zfwD89l611a9Eql/p/3NysiVALwY9CIT/CbofGxD+Nj5EOAYQGJRIqczTjPBbwI9vez5Y8FIXv7xHPtis1j86wXOJOcz1AjLb3N1bANIKdbNWPxa3g0uFxs+4Q1wJrlAx5FiLhTc3HCUOtzA2qfpo3R9jaYkvbBcp3G6eq+2VZr155STk1NvoqesrEyvXY1Vq1YxZ84cnnrqKQDWr1/Pjh072LRpU727cps2bSI/P58TJ04gk8kA8Pf3rzXmxIkT3HPPPdx1113a57///nsiIiJ0jquj01xFErTO0jaFUkF0djQ55Tm427gT5BGEWCRm44WNfH72c1SoGOg+kFVjVhllV1EilrB81HIe+PMBzuWc48sLX/LswGcNfh590NT13i641NT1rpsV1GqTGoYmKbeMp7+OpEKuYHQPN1Y+OACZRMzEvk2bXQKIxSJCA1wIDXBh6fQ+nLiex/ZzN9h9KZPM4kq+PJbIl8cS8XO1oY+3A7vq6SbS2q97kEcQnjaeZJdn1+uTJEKEp40nQR5BZohOQKDtYKj1k4D5qVZUU1hVCICnjadRztHVsSt/p/1t8M5tZfIybZepjpxIArVX0qHUQ+xJ2sOcAXNYf7AchVLFmJ7uDPFzNnd4LeJAirpb2zjfcXg52Oh0TFNekTKxjFVjVjFr5ywSixJ5/uDzfDXpK2xkTc8fVxDHf/7+D0qVkvu638fT/Z7WKSZdGNlpJIlFiRxLP6ZNTjlYyfjfrCGsO3KdD/de5acz6ZyylRA8qgJ/d5lBzlsuL9f+ffZ2Mb0iqYuDbhYcU3sHMtxHP0VSQk4pG482/dkzZ3QAXd3tGh2jUCi4cOEC/fv3RyKRAHAyvZxDxU3HsS9lN4NiA7m7j/m93OKySvghIpVtUboJJ7aeTsbJxoLR3d3qrVBo6zQrkRQcHMyOHTt4/vnnAbSLny+++ILhw4frNEd1dTVnzpxhyZIl2sfEYjFhYWGcPHmy3mP+/PNPhg8fzvz58/njjz9wd3fnscceY9GiRdo35YgRI9iwYQNxcXEEBgZy7tw5jh07xqpVqxqMpaqqiqqqm2ZsxcXqd7VcLkcul+v0ejTjdB3fWlGpVFqptrPMWefX42OjTimnFKeY/Bo0du0PpB7ggzMfaJNjoFZaedp4cjFPXcb0YPcHeXXIq8gkMqPF7m7pzn+C/8ObJ99k/bn1DPMcZpadC1CXVb3156UG63pFwLLtlxjTo3GDx/bwns8treLxLyPIK6umXycHPn14ACgVyP8xjQ7u4gA4AKBU1KCLl/TwACeGBzixdFovjl7L5a8LmRy8kk1yXjnJefXvYLSF6/7KkFf4z9H/1PucChUvD3kZpUKJsh16RGloD+/5tkhT170t/T4MsX4SaB1o1NsWYgscLByMcg5jdW47k3UGhUqBs9iZTradDDp3W6OnS08m+E1gX/I+Pjj9GQfOqktOXwoLNHNkLUOhVHAw5SAA4/3GE+rlgrejFZlFlfWu/0SoldehAU2bRTtYOLBm/Bpm7phJbF4sS44u4eOxHzfatTm3IpcFBxZQJi8j1CuUN4a9YdDk+Wif0Wy5vIVj6cdQqVTaucViEfPHdqe/jyMLfzhLapmc+9ad4tNHBzO6R8uVhHEFcShVStyt3U2uyi6vruHMVSeUckdE0qI6PkOgNtsWK5z4cPp9WEj1u+1XKFX8dT6jyffM4im9m7RnkMvl2GefZ2pwZ60Y5IGaTgR/8ylKcWGDsYtEUMg5Xo98hrdO+TLG+y7CRzxKZ0fTmZqXVdWw43wG30emcDalUPu4WARNWSCdTizgdGIEPk7WPBTsy4zgznRysjZuwCakWYmk5cuXM2XKFGJjY6mpqeGTTz4hNjaWEydOcOSIbuZrubm5KBQKPD1r7+J4enpy5cqVeo9JSEjg4MGDzJw5k507dxIfH8+8efOQy+UsXboUgMWLF1NcXEyvXr2QSCQoFAr++9//MnPmzAZjee+991i2bFmdx/fu3YuNjW4ZfA379u3Ta3xro1xZTrWyGoCoI1FIRbq9RfIV+QCkFKXw146/Gv0yMRa3X/tL1Zf4vvz7OuNyKnLIqchBjJi7re9mUO4g9u0x/u9NpBLRT9aPi/KLvLjvRebZz8NC1HhNsTG4ViQis1jS4PPqut4qPt+2mx6OTZvEtdX3fKUCPrskIa1MhKulioe98/n7wF6Dn2eiHdw5GA6ki9iT3rav+yM2j/Br+a9UUbsLSmdJZ6ouVLHzwk6Tx2QO2up7vq3T0HUvL9dNYt4aMMT6SaB1cGtjEmOpyW7t3GZIIjMjAegq7WrQedsq8wbOY3/yfk5lHQaL/oR1DWKgr5O5w2oRMTkx5FfmY29hT4hXCBKxiKXT+zB3S3SDHpBLp/fR2a/R196XT8Z9wjN7nuFg6kFWR6/WmnHfTkVNBS8cfIGMsgz8HfxZNWYVMolhFEEahngNwUpiRXZ5NtcKrxHoXDsReEegO7/NHcbj6/8mtUzO7E0RvDyxJ3Pv7NYipYi5/JGScst4bssZrmSWILOfjqXPljqm1Zpmj48HvqB3Egkw+HvmdiykUh7v8QKbr7/dYOyD7R4ivTyFrJpI5JJU9mWvZ++vX9JJNpQn+j3EYwPuRCw2/D2nSqXiXFoR2yJT+DPmBmXV6p1kqVjE+N4ePBLShYpqBfO3qpvM1HdtXpvam7SCcn47m056YQUf74/jkwNx3BnozsMhXRjf2wOZxPT3y4akWYmkUaNGce7cOd577z369+/P3r17CQoK4uTJk/Tvr59sTh+USiUeHh5s2LABiUTCkCFDSE9P54MPPtAmkn788Ue+++47tm7dSt++fYmJieHFF1+kU6dOzJ49u955lyxZQnj4zQ+/4uJifH19mThxIg4Ouu0yyeVy9u3bx4QJE7SZ1rZIfGE87AQnSyfuvutunY+rUdbw6Y+fUqOsIWhMkEl3uOq79gqlgk//bLyLgZOlE6/f8zoSccM394ZmVNUoHtr5EDkVOVzxuMLiENMbq24/nwGxF5octz/fERtfb4YFuNDH26HOF0Vbfs9X1yh59ruzpJXl4WIr44c5ofi7Nt12tiVIz2ew56emr3vXvoOYOqDh8jZzXvepTCXtcBpHbxxlWsA0gj2DWXZqGWmKNPyH+ZulY4kpacvv+bZMU9ddoyJuC5hr/SRgeJpjA6AvmkRSVnkWZfIyndqj64LGaFtIJKnp7tydkV5hHMvch6X7fl6a8LC5Q2oxmrK2MZ3HIBOrPzcn9/Nm3aygOj6Nt3tA6spgj8G8M/IdFh9dzFcXv8LP3o8HAh+oNUapUvL6sde5kHsBR0tH1oxfg6Nl/Z3hWoKlxJIQrxCOph/lWPqxOokkAB8naxb2U3C6xo+fzqTzwZ6rxKQW8tFDA3Gwat53uqZjmynL2vbHZvHSjzGUVNbgZmfJmkf/xd/pXfn22qeoJIXacWKFE48HvsCro2c0+1yGfs/cjia2pmJPys/mwxPfczxrBzXSDDIUx1h57hgfnvFgqPtUXhnxGD3cWm4NUVheze9n0/khMpUrmSXax/1dbXg4pAsPDPGpVf65Ttz0tVkytTe7L2byfUQKpxPzOXQ1h0NXc3Czs+TBIZ15OMSXADfj3oMYC70TSXK5nGeffZY33niDjRs3NvvEbm5uSCQSsrJqt5TOysrCy6v+ek9vb29kMpm2jA2gd+/eZGZmUl1djYWFBa+++iqLFy/mkUceAaB///4kJyfz3nvvNZhIsrS0xNLSss7jMplM75uF5hzTmiioVhumudu46/U6ZMjobNeZpOIkMioy8HPyM1aIDcdwy7WPyYypVc5WH/lV+VwouGBwA8vGcJO58e6od3l237P8eO1HxvqNZZTPKJOdH8DbSbcPqyuZpVzJvAaAvZWUYV1dGd7VlRHdXQn0sNeOa+g931o7k6lUKhb9eo5j8XlYyyR89WQoPbycjH5eXa+7t5OtTn975vqsuVakfk88EPgAwV7BnMk+w/aE7ay/sJ51YetMHo85aOuf822Vhq57W/ldGGr9JNA6aE5jEn1xtHTE1cqVvMo8EosSW9zdCqCoqkhrDiwkkm5Snj0OlWo/UvvLKGUpQNtN7KpUKg4kqxNJ4/3G13pucj9vJvTRzQNSF+7qehcpxSmsPbeWd0+9i7edNzKxTOtLeiz9GPuS9yEVS/lk7CdaT1VjMMpnFEfTj3I8/XiD/ksyMSy/ty9Bfi4s/eMS+2KzuPfz46x/fAiBnvZ6r101f0umUCQplCpW74/js4PxAAzxc2btzCA8HawY2nUGC4ffx9Zzh0kpzqSLgxePDRzTLCXS7Rj6PXM7r45uOnZ/Fw8+n7YQpfJ5frl0gk3nt5FafQKFNJsTBV9z31/f4CYK4uFeD/LMkEl1Xnd1TU2D86tUKk4l5PNDZAq7LmZSXaO2aLCQipnaz4tHQrswNMClXuWpLtfGSibh3sE+3DvYh4ScUn6MSuPnM2nkllax/sh11h+5ztAAFx4J9WVKP2+sZLUFDq31fgqakUiSyWT88ssvvPHGGy06sYWFBUOGDOHAgQPce++9gFpxdODAARYsWFDvMSNHjmTr1q0olUqtjC0uLg5vb28sLNQlQuXl5XUkbhKJBKWy/fp2GJLsin86kDRjYdTFoQtJxUmkFKcwzHuYoUPTi9bcrnxEpxE81usxtl7ZyhvH3+DXu3/F2cp0ho6hAeo6+YbaVooANztL/n1nV04n5HM6IY+Syhr2xWaxL1ad+HWxtWCovzN25SJ65ZQR6O1Y6wO2NXcmW7n7Kr+eTUciFrF2lunk65rr3lCtOYCFRER3j8YNC81JUVURmWVqs3BNy9/nBj7HzsSdHEs/Rkx2jMG7HgoItBcMtX4SaB2YQpEE6s5teZl5JBQlGCSRdCbrDCpU+Dv4Yy+2b/qADsClG0UcuSTCqtNgZI7RrIlZw/oJ680dVrO5nH+ZG2U3sJJYMaLTiDrPS8Qig7Ykf27gcyQVJ7EzcSfP7Xuu3qYcb494myGeQwx2zvrQbMxGZ0c3qeB7NLQLfbwdmLvlDAm5Zdzz+XEeG9qFnRcydF67VimquF6o7rbZ17WvgV9NbQrKqlm4LYa/49T3LU+O8Oe1qb2xkN6857WQSnlySJhRzm/o98zt6Bq7WCxmRv9RzOg/iqzSIlYd/5ED6X9SJUkijyjWXoli3cWVDHKeyEvDZjK4UwAfHP2pjuJp1TknHvCbh4cklG2RKSTd4mHay8ueR0O7cO8gHxxtmt6o0ufadHW3Y/GUXrw8MZADl7PZFpnCkbgcTifmczoxn6V/XOK+wT48HNKFPp0cWvX9FECzCvPuvfdefv/99xafPDw8nI0bN7J582YuX77M3LlzKSsr03Zxe+KJJ2qZcc+dO5f8/HwWLlxIXFwcO3bsYPny5cyfP187Zvr06fz3v/9lx44dJCUl8dtvv7Fq1Sruu+++FsfbEdDW/DcnkWSv3mVIKdbNyd6YtPZ25S8NeYmujl3Jrcjl7ZNvo1I17YljKCRiEbOG1b8jpEkFvXNvX+aM7soXs4M5++YE/pg/ksVTenFHoDvWMgn5ZdXsupTFT4kSJn16nGHvHeClbTH8GJnKllPJzN0SXSdRpelMtvtihpFfYcN8dTyR9UfUX/or7u/P2J7GvQG4FU2tOdy8zrdTrVDx4PoTJOSUmiwufbiafxVQt9q1t1DfgHRx6MK93e8F4POzn7f4HAqlipPX8/gjJp2T1/NQNOVk2IrmN3bsxqQtx96WMNT6ScD8aBJJxl5HaAy3E4sM07lN448U4mk6NXZr5+N9aqXtaLdHkYgkHL9xnLPZZ80cVfPRlLWN8hmFtdT4xr4ikYgxvmMA6k0iASaJo4tDF7rYd6FGWcOpjFNNjh/o68T250cxsrsrFXIFXx5L1Gvteq3gGjWqGpwtnY3WuRHgYnoR0z8/xt9xOVjJxHz88EDeurtvrSRSR8TTzpGVk+YQ9fR2Phi+mW6Wk0FhjUpawNmSbTy+9x6CvpzK5utvoxQX1jpWKS7kp9TlfHT8Z5LyyrG1kPBoaBf+mD+SXQtHM3uEv05JpOYik4iZ3M+Lr54K5diicbwUFoiPkzXFlTVsPpnM1E+PcucHh3iuld5PaWiW3q1Hjx68/fbbHD9+nCFDhmBrWzvj+8ILL+g0z8MPP0xOTg5vvvkmmZmZDBo0iN27d2sNuFNSUmqpi3x9fdmzZw8vvfQSAwYMwMfHh4ULF7Jo0SLtmM8++4w33niDefPmkZ2dTadOnXj22Wd58803m/NSOxwt2WHzc1CXsyWXJBs0pubQ2tuVW0mteG/0e8zcMZP9Kfv54/of2ptxU3AqQW2Obm0hoaL6Ziuy+mqepRIxA32dGOjrxHN3dqO6Rsn5tEKOxmWzI+oaKeVSsoqr+O1sOr+dTW/wnDc7k8UyoY+XyWWZf52/wdt/qU0RX53UkxnBviY9PzRca+7taMWc0V3ZdDyR5Lxy7lt7gv89PoRhXY23+9McrhaoE0m3ew88O+BZ/rz+J6czT3M64zRDvYc2a35j77wYc/7WvmvUGG059raGodZPAuanJRtv+qA13DZQ57bTmacBCPYMRp7TdjoeGotzqYXsv5yFWASLJ4zi22v38su1X1hzdg1fTPrC3OE1i4bK2oyFQqngo6iPGnxehIiVESsZ6zvW6L6kI31GknIlhePpxxnfpenX72pnyVdPhjL4nb2UVdVtzdvY2vVWo21jGe7/FJXK//1+kaoaJX6uNqyfNYTe3sbpEtmWmRwYxOTAIIoqy/nk5K/sTPqdMvFV5NLUejdvRSK1obeV53ZeC3uIewb5YmvZ8jLA5tDJyZqFYT1YMK47x+Nz+SEyhb2XMnXo9Gye+6lbadYV+/LLL3FycuLMmTOcOXOm1nMikUivhdCCBQsaLGU7fPhwnceGDx/OqVMNZ5nt7e1ZvXo1q1ev1jkGgZtoa/6bscOmUSSlFqcaNKbmIBFLWBy6mPDDdTtIiP75SFkUusikRtu308e1D/MHz+eT6E9YEbGCYM9gOtt3Nvp5o5LyOXotF6lYxK4XRpNRVKlX3a2FVEywvwsDfezpWnGVcRPGcuFGKScT8thzKZO4rIbVNOrOZJVEJOYbVSJ7Oyev5xG+7RwqFTwx3I95Y7qZ7Ny301g99d2DOjHnmyjOphTy+JenWXH/AB4YYvz3hK5oFEm9XHrVetzbzpsHAx/k+yvf8/nZzwn1CtV7UbX7YgZzt0TXSftqdl7WzQpqUVLDmPMbO3Zj0pZjb4sYcv0kYF40VgDGVCKAYTu35Vfmc61Arb4J9gjmJCdbPGdbZ9W+OADuHexDN3c7/m39b/64/genM08TmRlpUh9NQ5BYlMj1outIRVLu6HyHSc4ZnR1NVnlWg8+rUJFZnkl0drTRr+con1F8f+V7jqUfQ6VS6bQWOZNcUG8SSUNDa1djGm1X1ShYtj2WrafVVR7je3mw6qFBRlXJtAccrWx4c+ws3mQWbx34hl/SPmhwrEgEyIqoll7H1jLAdEE2gEQs4o5Ad+4IdGf3xQye2xLd4Fhz3U/dTrMSSYmJhpHXCrQ+NDtsHtb6K5I0BnqpJakoVUrEIvNKLsP8wlgxegWLji6q9binjSeLQhcR5mecOmJ9eKrvUxxNO0p0djSvH3udTZM2GT259ckB9SJyRnBn/N1s8W9hpwArmYQR3d0Y0d2N7h52LPwhpsljskvq92cyBlcyi/n3t1FUK5RM6efF0ul9jbZzpCsN1VO72Vny/ZxhvPzjOXZcyODln86RnFfGSxMCzR4z3FQk9XTuWee5Of3n8Ou1X4nJieFY+jFGdx6t87wKpYpl22PrFcRrdl6W/nmJEP/mGQwqlCqW/nmpxfPL5TWUyaGwXI5MptJ57tawa1Qfulz31hp7W0VYP7UftIokE5W2pZakIlfIW9Q2PSozCoAezj1M6s3YWjmTnM+RuBwkYhELx/cAoJNdJx7o8QDbrm7j87Of8/Xkr1vF96+uaMrahnoPxcHCNMqV1uRLGuIVgoXYgoyyDBKLEunq1LShvK5r0uiUgtqJpH+Mtvu4GrZj7Y3CCuZ+F8251EJEIngpLJAFY7sjFr6H9eJ2z+SGOJ97HjD/PeGtVNXo5u1syvup+mixhkvj7dKWPmQFGkZrtt2MhZGXrRdSsZRqZTWZZZl0sutk6PD0RlOi52ThxOKhi/Gw8SDII8isSqRbkYgl/HfUf3ngzweIzo7mq0tf8a/+/zLa+W5VI80b093g89/aErMxtp+78Y/5tHFr5tMLK5i9KYKSyhpC/V34+OFBrf6G2Eom4bNHB+PnasPaw9f59GA8yfnlrHxgQJ1ODqZErpRrTSU1Rtu34m7jziM9H2Fz7GY+j/mcUT6jdP5eiEjMb9D8HdRJjaziKoa8u79ZsTeFfvNLeS3qkF5zt4Zdo/rQ5bq31tjbA8L6qe1SLi+nVK5W3xrbbNvTxhNbmS1l8jJSSlLo5tR8RW1EZgQAoV6hhgqvTaNRIz0Y1Bk/15ubanP6z+G3a78RnR3NyYyT9RpWt1ZMXdYGrcuX1FpqTbBXMCdunOBo+lGdEkm6rl0/2HOVXRczeDikC1P7uxNXoH7/GLJj24n4XJ7//ix5ZdU4Wsv45JFBjDGhn2d7ootD/V3gb2df5lc88lcE9/e4n6kBU7GzMH/TG13fk7qOMxbNlox888039O/fH2tra6ytrRkwYADffvutIWMTMDFKlZLc8lygeQsjqVhKZzt1GU5KifkNtwHO5ZwDIMQ7hLu63kWIV0irSSJp6GzfmcWhiwFYE7NGu8NhDG5VI/m62Bh8fk1nsqZui/ZfzubODw6zbPslo2XTC8urmb0pgqziKgI97dj4RLBZEzH6IBaL+M/kXrz/wACkYhF/xNxg1henyS+rNltMiUWJyJVy7GR2+Nj51Dvm6f5PYy21JjYvloOpB3We29w7KqYgs6jC3CHUITajSKdxaQX11+kLNA9h/dT20dgA2EhtGu0MZQhEIhEBDoYpb9MkktpauZYxOJWQx/H4PGQSEc+Pr72x5mnryUM9HwJgzdk1Jm2I0hIyyzK5mHcRESLG+o412Xk1vqSiBlZ/IkR42XiZzJdU073tePpxncbrsna1komRiUVcTC/mjd8vMnLV98iVcqwldvjY1r8m0geVSsX/jlxn1penySurpo+3A389P0pIIrWAxwaOQaRwoqE/X5UKUMqQiCRcyrvEO6feYdxP43jj+BvEZMeY9e++qfekCLWXZWiAiynDqkOzFEmrVq3ijTfeYMGCBYwcORKAY8eO8dxzz5Gbm8tLL71k0CAFTENhVSE1qhoAXK2bt/vs5+BHUnESKcUpDPMeZsjwmkVMTgwAA90HmjeQJri3+70cSTvCgZQDLD66mG3TtmElNWyW2dhqJLjZmWzulmhEUKtkRvNh+NKEQI7F5xKRmM9Xx5P4PiKF2cP9efbObrjYWhgkjkq5gmc2RxGfXYq3oxVfPxXaJuvKHwrxxcfZmue2nCEquYD71h5nw8zBZolF448U6NxwmZ2LlQuzes9i44WNfH72c8b6jtWpxFXXHZXv/jW0WQbkpxLymPnF6RbPL5fL2bVrF1OmTEEmk+k19393XCajuJJHQroY7H3eHJRKFX9fy2HziSQOXdWtzGDpHxe5mlnC48P9au3aC+iPsH5qH7SkMUlz6OrUlYt5F1vUuS2nPIfEokREiAj2DDZgdG0PlUqlVSM9HOJLZ+e6G2vP9H+Gn+N+5nzueY6mHzWZ31BL0JS1DfYYjJu1m8nOe6svqQhRrSY35vAlHekzEiIhKiuKcnk5NrLGN051WbuufngQoQGu/BqdxrbIVBKrUpEBJcUeTPj4bx4J6cL9QT642lnqHW9pVQ2v/nSOXRczAXggqDP/va9fm9n8bK1YSKU83uMFNl9/G5XqH0+kf9DkiJ7ovoRnQsaz/fp2fr32KwlFCfwe/zu/x/9OV8eu3N/jfu7udrfJS4F1eU8und7H7FUWzVIkffbZZ6xbt46VK1dy9913c/fdd/P++++zdu1aPv30U0PHKGAiNLXLLlYuyMTNu+n2tVd3wkopNr8iSaVScT7nPND6E0kikYilw5fiZu1GQlECq6NXG/wcq/dr1Ei+RlEjadB0JvNyrJ0c8HK0Yt2sIF4Y34Nt/x7GlmeGMsjXiUq5kv/9ncDolQf5aO9Viipa1kVGoVTxwvdnOZNcgIOVlM1Ph9LJyfhtZ43FyO5u/Dp3BJ2drUnOK+ehjae5VmT6Lw5NIqm+srZbmd13NvYye+IL49mTtEenuYvKG1daaXZehnV1RSIW6f1/WFdXnXZ2dJlfLEKvuUG9eMktq+b93VcZ9t4BXv7xHOfTCnW6NoaiqELOl8cSGffRYZ78KlKbRLJson2wRCSiXK7ki2OJjPnwME99FcGhq9kolW1jh761Iayf2gem8kfSYAjDbY0aqZdLLxwtHQ0SV1vleHweEYn5WEjFzB9b/8aam7Ubj/R6BFCrxduCKkmTSNKlW5mhCfMLY9WYVXWSq542nqwas8qkvqQBDgH42PkgV8qJzIzU6Zim1q6T+3njYmvBv0Z3Ze9LdzAtWO1hI6725XpOGf/deZlh7x1g/nfR/B2XU+93pEKp4uT1PP6ISefk9TwUShXx2SXc8/kxdl3MRCYR8e69/fhwhnmtDNoTr46ewexubyJWOtV6XKxwYna3N3l19AxcrFyY3Xc2v9/zO99O+ZZ7ut2DlcSKhKIEPoz6kHE/jeOVI69w4sYJlKq63kUKpYLIzEh2JuwkMjMShbJh43Z90LwnPR0tkNhcR+oQg8TmOp6OFq2mEUqzFEkZGRmMGFG3XnjEiBFkZGS0OCgB82CIHTY/Bz8AkkuSDRJTS0gtSSW/Mh+ZWGZwIzxj4GzlzNsj3mbegXl8d/k77uh8h8Hq8iOT8jkWr1YjzR9r/I5ljXUmA3XibFQPN0Z2d+XQ1Ww+2hvHpRvFfHYwnq9PJPHv0V15alQAdnq24lSpVLzxx0X2xmZhIRXzxewQAj3tjfESTUoPT3t+nz9S29Ft3WUxXc7e4KFQP5PFcKXgClC/0fatOFo68kTfJ1gTs4a1MWuZ4DcBqbjh3+NvZ9N45afz2p+NsfNizJ0dXeb+5OFBVCtUbD6RxIX0In6JTuOX6DQG+Toxe4QfU/t7Yyk1zqLxSmYx35xM5rfodCrk6sWNvZWUh4J9mTXMj6uZxcz9pzNIfbF/9uhgrC0kbD6ZxOGrORz657+fqw2PD/NjRrAvjtZtT+1nLoT1U/tAs15ytzZxIqmw+YkkzQ11R/dHUqlUfLRPvTHyWGiXRr0an+r3FNuubtOWa5sjQaMr+ZX5nMlSd4I0pT/SrYT5hTHWdyzR2dHklOfgbuNuFl9SkUjEKJ9RbLu6jWPpx7jT906djmtq7Xrr/DlytWfk21MmUVXYn22RKZxLK2LHhQx2XMjAx8mah0N8mRHcGW9Ha3ZfzGDZ9thavoRONjIqqhVU1SjxcrBi7awggroIJviG5tXRM1g4/D62njtMSnEmXRy8eGzgGCyktdemIpGIQR6DGOQxiEWhi9iVuItfrv1CbF4se5L2sCdpDz52PtzX/T7u6X4PXrZe7E/ez4qIFbW6FnraeLI4dLFBkqdS+0vYdV9J2S3z29l4IrVfDLTRRFL37t358ccfee2112o9vm3bNnr06GGQwARMj6bmvyULoy726s5trUGRpPFH6uPaBwuJ+UpJ9GF059E83PNhtl3dxhvH3uCn6T9xveh6i7+QP7lFjVSfhNsYNNSZ7FZEIhHjenkytqcHey5lsmpfHHFZpXy0L45NxxN59s5uPDHcDxsL3T6qPjsYz9bTKYhE8Okjg8xeO2xINB3dwredZefFLP7z60XSCitN0tFNpVIRl68uA+jl0qvJ8bN6z+K7y9+RVJzEjoQd3NP9nnrHfXsyiTf+uATAg0M6M7anO+/uuFxroeXlaMXS6X1avPOi2dm5fSFniPl1nfuBIB9iUgv55mQyf52/QUxqITHbCnn3r8s8GtqFmcMav6nRFblCyb7YLDafSOJ0Yr728Z6e9jwxwo97B/lg+0+SNsDNVqfYx/byICm3jG9PJfNjVCrJeeW8u+MyH+2N497BPswe4UcvL9N0CGrLCOun9oGmMYnJStv+6dyWVJzU7K64WqNt746dSDocl8PZlEKsZGLmNbGx5mLlwszeM/niwhesjVmrc7m2OTiSegSlSklvl94N+hiaAolY0io8uEZ2GqlNJKlUKp3XSbqsXWuUNdo1UZBXPwJ6duGxoV2IvVHMtsgUfjubTnphBav2xbF6fxx9OjlwMb24zjyF5WoFfqCnHVvnDMOtGWVxArphIZXy5BDdEzv2FvY81PMhHur5EJfzLvPrtV/ZkbCD9NJ0Po/5nLXn1tLLpRexebF1js0uzyb8cHiLlXj7k/cTfji8VqmoIec3BM1KJC1btoyHH36Yv//+W1vjf/z4cQ4cOMCPP/5o0AAFTIchFEldHNSJpNSSVBRKhVmNrWOyYwAY5D7IbDE0h5eDX+Z0xmmSipOY+MtEqhRV2ueak+U2tRqpOYhEIu1O0F/nb/DJ/msk5JaxYtcVvjiayLwx3XhsaJdaUl+FUlVr1ygpr1TrefD23X1bheTT0FjJJHw8YwDVBXvYny7m04PxJOWV8/6DxpVB51TkUFBVgFgk1qljkJ2FHU/1e4qPz3zMunPrmBowtU7L6rWH43l/t3pX+MkR/rw5rQ9isfp90NRuYHPRdbfRWHOLRCIGd3FmcBdnXpvam22RKWw5lUJmcSWfH4pn3ZHrTOrryRPD/Rka4FJn4Xv7e/72+XNLq/j+dArfnVbPCepFcWNz6nNd/N1seWNaH16eGMjvZ2+w+UQSV7NK+D4ihe8jUhga4MLsEf5M6OOJTFL7Zqup2DsKwvqpfaApbTNVIsnX3hepWEpFTUWzuuJmlGaQWpKKRCRhiOcQI0XZ+lGpVHz8zzrh8WF+OvnzPdn3SX648gNxBXHsS97HJP9Jxg6zWexPUXcdbc2qKVMy1HsoUrGUtNI0UkpStBUThiCpKIlKRSU2Upta8/bp5MCye/qxZGpvdl3M4IeIVE4n5tebRLqVksoanG3axoZ3R6S3a29ed32d8OBw9ifv55drv3Am60y9SSRAm/h599S7eNl6NSv5rFQpeefUO3WSSJr5RYhYGbGSsb5jzXqv3axE0gMPPMDp06f5+OOP+f333wHo3bs3ERERDB5sHiNYgZZjiJp/L1svpGIpcqWcrPIsvRc7hkSjSBro0br9kW7HWmrNfd3v4+Poj2slkaB5WejV+9WLJlOqkZqLRCzinkE+3NXfm99jbvDJgThS8yt4+69YNvydwIJx3Xko2JeDV7LqKCg0zB/bjceH+5s+eBMhFouY3kXJuJD+vPlnLH+eu8GNwgr+9/iQZpk86sKVfHVZm7+Dv84m8I/0fIRvLn1Demk6v8X/pu2Ao1KpWLn7KuuPqGXhL4zrXktVpctuYEsw5vz6zO1ub8mCcT149s5u7I/NYvPJJE4l5LPzQiY7L2Rq1UP3DfbBxkJaryze29GKN6f1wcvRim9OJrPjfAbVCnX9vpudBY+GqndJdVE56RO7jYWUx4Z24dFQX04n5vPNyST2XMridGI+pxPz8XKwYubQLjwS2gV3e8sGYzeE0qytIayf2gfa0jYTeSRJxVL87P24XnSdxKJEvddWGjVSX9e+Ru8y15rZF5vF+bQibCwkPHenbhtrjpaOPN7ncdadW8famLWEdQlrdd1/S6tLOXnjJCAkkjTYyGwY4jGE05mnOZZ+zKCJpNh8dQKhl0uvepMEVjIJ9w3uzH2DO/NrdBrhP55rdL6MokoiEvONuvYRaDnWUmumd5vO9G7T+TP+T14//nqj4/Mq83h0x6NGiUWFiszyTKKzo82qAGxWIglgyJAhbNmyxZCxCJgZjVS7JaVtUrGUznad1Z3bSlLMlkgqk5dxrVBdztXajbZvR6FUsPXK1nqf0zcLHZGYr21v21rVSPUhlYh5cEhn7h7YiZ/PpPHZwWtkFFXyf79f5ON9ceSVNWzO3K9TxzARnTHEBz83u1s6up3gq6dC6OZuZ3D1R1yBOhnZlNH2rdjIbJgzYA4rIlaw4fwG7ul+DzKRBW/+eZEtp9Slr69P7c2cO7o2O672gEwiZkp/b6b0967lZ3Q1q4TXf7vIil1XCPF34eCV7DrHZhRVMve76FqPDe7ixOzh/kzp72U03yUNIpHabHxYV1cyiirYelqtTMosruSjfXF8evAag32diEgqqHNsZlElc7dEtxrDSFMirJ/aPhorAA9r07Xm7urUletF10koSlB3pdIDoaxN3bHy43/K/GeP8Ndr42VWn1lsubyFhKIEdift5q6udxkrzGZxLP0YcqUcfwd/nVTDHYVRPqM4nXmao+lHmdl7psHmvZx3GUAn/1Vd117ZJXU3RgVaL415f96Kg4UD1lL9LQsqaioorm5cyQY3RSDmolmJpJ07dyKRSJg0qba8c8+ePSiVSqZMmWKQ4ARMi6Gk2n4OfupEUnEKw7yHGSI0vbmQewGlSkkn204mk54biujs6FqmbbejTxb6kwNtR41UHxZSMY8NVbdU/SEihc8PxZNb2nASSQS8/VcsE/t6dYiymZHd3fht3gie+jqSlPxy7l97gqdHBvBDZIpB1R8aRVJTRtu382Dgg3x18SuyyrPYduVHoi/04/eYG4hEsPy+/jwa2qVZ8bRXenk5sPy+/iya3Iufz6Tx7ckkkvLK600i3c79g314cqQ/Azo7GT/QevB2tObliT1ZMK47uy5ksvlkEmdTCutNIoHa2FsELNsey4Q+HePvFYT1U3tApVKZvGsbNL9zm0ql0iaSWoN3jbnYfSmTyxnF2FlK+fdo/TYwHCwceLLvk3x29jPWnVvHJP9JOt9ImoJby9qM7ZnYlhjlM4qPznxEVGYUlTWVSDDM5oqmpKm3a+8mx+pSPqnPOIHWga6f/avHrm7W525kZiRP73naYHEYi2Y5xi1evBiFom5rO5VKxeLFi1sclIB5MNTCyNfeFzCv4bbGH6mtlbWB7tnlpsbdqkaaN6Zt71BZySQ8OTKAj2Y0/vtUcVMi3FHo7mHPb/NGMriLE0UVcj7eH1en5E+j/th9sXldoa7mq72M9FEkAVhKLPn3gH8DsDpqPb+fS0IqFvHJI4OFJFIjOFrLeGZUAAdfHsOiybpd8xnBvmZLIt2KpVTCvYN9+G3eSP57b79Gx3bEv1dh/dT2KZGXUKlQf8aaqmsbNL9zW1pJGpllmUjFUgZ7dMzySYXypjfS06MCcLbV349mZu+ZOFk6kVyczF8Jfxk6xGZTpajiaNpRQChru51uTt3wtPGkSlFFVFaUQeZUqpTazbXeLk0nkkIDXPB2tKKh9J4I9WZfe2oO0xEI8gjC08YTUQO/WREivGy8CPIIapXzG4pmJZKuXbtGnz515Xy9evUiPj6+xUEJmB6FUkFuZS7Qcqm2pg45uSS5xXE1F60/UhsrawPdE3lNjWvraqT6KKyQ6zSuo0mE3ews2fLMUKxk9X+ka6z6lm2PRaGsa9zXGOXycpKL1X/LunRsu52JvtOxULkhpxhrt1NseGIIdw80n3daW0IsFtHJSTdJdGt8z9tZ6bZj3xpjNxbC+qntk12mVgg6WDjo7BlnCDSd2xKLEvU67nTmaQAGuA1oVolFe+Cv8ze4ll2Kg5WUZ0YFNGsOW5ktT/V7CoD159YjV+q2HjE2p26corymHE8bT/q69TV3OK0KkUjEKJ9RABxPP26QOZOLkymvKcdKYqVN7jaGRCxi6XT1Z/7tKQHNz0un9+kwqtz2gkQsYXGoevPn9mSP5udFoYua7adm7PkNRbMSSY6OjiQk1N0RiY+Px9a245r4tWXyK/O1LWVdrFqWFe9ir1YamEuRpFQptYmkQR6DzBJDSzBEFro9qZFuRZAIN8z5tCIq5coGn2+u+iO+MB4VKlysXHCzdtPr2KJyOU99HU1RxlgAHL2OEdpV+I7Qh7b8nm/LsRsLYf3U9tH4SZq6bN7fwR+AgqoCCirrLxmtj47qj6RQqjh5PY/fotNYsVOtIJkzuiuO1rImjmyYR3o+gouVi7qJxLXfiMyMZGfCTiIzI1Eo6yoNTcGtZW3N6Q7V3tEkko6lHzPIfBp/pECXQJ3LGyf382bdrCC8HGt/13k5WnVIn8D2QphfGKvGrKrzXeBp46lXUyRzzW8ImlXge8899/Diiy/y22+/0a2b+iY1Pj6el19+mbvvvtugAQqYBs3CyNXKtcXZzS4O6kRSakkqCqXC5NnSpKIkSqpLsJJYEegcaNJzGwJNFjr8cDgiRPW2fmwqC92WOrXpg0YinFlUWc9VUe/ueHVQibCuqg591R9XC9RlbfqqkXJKqnj8y9NcySzB0SYET5vTZJSnsOXyFp4b+Jxec3Vk2vJ7vi3HbiyE9VPbx1B+kvpiI7Ohk20nbpTdILEoEWcr5yaPUalURGZGAhDq1XESSfV1ihSJoLNLy9ZDNjIb/tX/X7wf+T7/Pf1flKqbmzeeNp4sDl1s0pu7GmUNh1MPA0JZW0MM8x6GVCQlqTiJtNK0Fs93OV+dSNKlrO1WJvfzZkIfL4M2QhEwP2F+YYz1HUt0djQ55Tm427gT5BFksHtfY8/fUpqVun7//fextbWlV69eBAQEEBAQQK9evXB1deXDDz80dIwCJsCQxpHett5IxVLkSnmjptHGIiYnBoB+bv2QiZu/82ROGspCW0osm8xCn07I48R1Tae27sYO1aQIEuGG0VXV8UdMOlcym+4EoUHrj6SH0XZaQTkP/e8kVzJLcLe35Md/j+Kl4AUAbL60maKqIp3nMjQKpaJV7CLrSlt+z7fl2I2FsH5q+2g6tpnSH0lDgJN+htuJRYnkVuRiKbFkgPsAY4bWath9MYO5W6LreAWqVBC+LabZXoEaXK3ULdpvTSIBZJdnE344nP3J+1s0vz5EZ0VTWFWIk6UTQZ7m9UpprdhZ2GmrE07cONHi+fTp2HY7ErGI4d1cuWeQD8O7uXao7772jEQsIcQrhKldpxLiFWLwJI+x528JzVIkOTo6cuLECfbt28e5c+ewtrZm4MCBjB492tDxCZiI7PJ/pNoGaGUrEUvobNdZ3bmtJIVOdqb1Q2nL/ki3cmsWOiY7hk/PfopKpWJ4p+GNHvfJAXV724eCffHR0V+lLaGRCL+1/SI58suIpCWoauxxl/Xmren92oREWKFUGHx3oSn1h4aDV3I4eCWHYV1deHJEAGG9PZBKGt5T0CSSAl10U/ddzynl8S9Oc6Ooks7O1nz3r6H4udrSQzWJDec3EF8Yz+ZLm3kh6AV9Xp5B2J+8nxURK2oluM2xi6wvmvf87TvsXi3sxmcK2nLsxkBYP7V9tOslM3SE7erYlePpx3VOJGnK2ga5D8JSonu7+7aKQqli2fbYRr8DW9IpUqFUsOrMqnqfU6FChIiVESsZ6zvWJDd7mrK2sb5jW1UXudbGSJ+RRGVFcfzGcSYxqekDGkClUhGbr+7Y1pxEkoBAe0OvT52TJ0+Sl5fHtGnTEIlETJw4kYyMDJYuXUp5eTn33nsvn332GZaW7f/Lqr2h3WEzUBtBPwc/dSKpOIVh3sMMMqeuaDq2tUV/pNvRZKGDPYP58/qfJBUncTDlINO7Ta93/K1qpHntTI10K1L7S9h1X0nZLQkBOxtPpPaLgdZ9Y2qsZIZG/TF3SzQiqLWQ1iyXX54YyOWMEnZfyuRUQj6nEvLxcbLm8eF+PBLii5NN7U42SpWSuAJ1mWQv56ZL2y7dKOKJLyPIK6umm7stW/41FG9HdTJTLBKzYPACXjz0Ilsub2FWn1kt9mPTh/3J+wk/HF6nVFSzi9xa6s0boi3L4tty7IZCWD+1Hwyp4NYXjeG2vomk5rSfbotEJObXUSLdyq1egcO7ueo9f3R2dKNKexUqMsszic6ONvo1V6qUHEg5AAhlbU0x2mc0n0R/QmRWJOPtmn+t0krTKKkuQSaW0c2x/fiPCgg0F71K295++20uXbqk/fnChQvMmTOHCRMmsHjxYrZv3857771n8CAFjI+hF0a+9r4A2m5PpqKoqki7wGpPMm6RSMSUgCkA7Ezc2eC41fvbtxoJbiYEbl/MmUNWri/Gjr0pQ8cF43qwZmYQR/8zlvlju+FsIyO9sIIVu64w7L0DLPn1fK2yt7SSNMpryrEQW+Dv6N/ouc8k5/PIhlPklVXTt5MDPz47XJtE0jDOdxx9XPtQUVPBpgubWvRa9UGhVLAiYkW9fmOax1ZGrGwTZW5tVRbflmM3BML6qf2gNds2gIJbXzRdohILm+7cplQptf5IQ72HGjWu1oKxvAI1aNbKhhrXEi7lXiK7PBsbqQ3DOpl2w7atEegciLu1O5WKSpJqkpo9j6asrYdzD2SStmmdISBgSPRKJMXExDB+/M1M7g8//EBoaCgbN24kPDycTz/9lB9//NHgQQoYH40iyVALIz8HPwBSSkzbue18znnt+U2pdjAFmkTSqRun6u3Yciohj5MJ7VuN1JYTAqaKfXI/b44tGsf3c4bxySOD+H7OMI4tGlerhKiTkzWvTurFySXjef/BAfTxdqBSruT7iFQmrz7KIxtOsvtiJrF56k433Z27a2Xzmk44f8Skc/J6HgqlimPXcpn1RQQllTWE+Dvz/b+H4WpXV1khEolYMEjtlfTD1R+0JSLGRp9dZAEBYyCsn9oPrUGRdKPsBuXy8kbHXiu4RmFVIdZS6w7TFt7YnSJ1/Z2b4r2hKWu7o/MdHaJssSWIRCJG+owE4FrNtWbP01yjbQGB9opepW0FBQV4enpqfz5y5AhTpkzR/hwSEkJqaqrhohMwGYZeGGk6t6UUmzaR1F78keojwDGA3i69uZx/mX3J+3io50O1nv/kHzXSwyHtV43UmmTl+mLK2DXqj6awkkl4KNiXGUM6E5lUwOYTSbXK3lw7HwJ7CLDvAdTfCcfZRkZJZQ01ShV3BLrzv1lDsLZo2BtilM8oBrkPIiYnho3nN/L6sNdb9Fp1oTXtIgt0TIT1U/tAqVKarWsbgLOVM86WzhRUFZBcnExv14ZvaDVqpCCPoDbbeERfQgNcsLeSUlJZU+/zLe0UGeQRhKeNJ9nl2fVuCgF42XgR5GFc42uVSiWUtenJKJ9R/B7/O9fkzU8kxeYJ/kgCAreilyLJ09OTxES1nLa6upro6GiGDbsppywpKUEm6xhfVu0NQ5tHdrFXJ5JSS1JNqg7RdGxrj4kkgKkBU4G65W211Ehj2qcaCdp2QqA1xy4SiQgNcNGWvc0boy57K0edCP4zUsWsL07xXD2dcArK5dQoVQz2dWLjE40nkTTnen7w8wD8fO1nbpTeMM6L+oeiqiL+SvhLp7HmUBgIdAyE9VP7oKCygBpVDSJEuFrr77FjCDTlbU35JJ3OPA1AqHeo0WNqLey/nNVoEgla1ilSIpawOHTxP/PVP8eLQ140utH29cLrJBcnIxPLGN1ZMOrXhWHewxCLxGQrs8ko079zn0qlalHHNgGB9oheiaSpU6eyePFijh49ypIlS7CxsanVaeT8+fN06yaYj7U15Eo5+ZX5gOHa2XrbeiMVS5Er5Y2qMAyJQqngQs4FoP0mkiYHTAbULV8zyzK1j9+qRurUTtVI0Lpk5frSVmLv5GTNfyary95cXXIBqCrz4lh8XqPHZRZXIhXr9pUS6h1KqFcoNcoaNpzf0OKY60OlUrEnaQ/3/H4PR9OPNjne08bT6LvIAh0XYf3UPtDYALhYuZhN5dPVqWnDbYVSwZnMMwCEenWMRNLF9CJe/CEGgDsC3Rr0Cmxpp8gwvzBWjVlVZ+NVk1jam7QXpUrZonM0haasbUSnEdjKbI16rvaCo6UjA9zU3qknMk7ofXxWeRYFVQVIRVJ6OPcwdHgCAm0SvRJJ77zzDlKplDvvvJONGzeyceNGLCxudvnZtGkTEydONHiQAsYlryIPFSqkIinOVs4GmVMiltDZrjNgOp+k60XXKa8px1ZmS3en9qnK8bJVS6ZVqNiduBvoOGokuCkrbwxTyMqbQ1OxixC1qtirlKUUydU3Ta+MHdPkeE0nHF1ZMFjtlfR7/O8GL4HNLMvkhYMv8MqRV8irzCPAMYAFgxYg+udffdhZ2FFRU2HQOAQENBhj/bRmzRr8/f2xsrJi6NChRERENDq+sLCQ+fPn4+3tjaWlJYGBgezcWVvdmp6ezqxZs3B1dcXa2pr+/fsTFRWlV1ztGUOrt5uDxicpsahhw+0rBVcokZdgJ7Ojl0vTHTfbOhlFFTyzOZIKuYLRPdzYNDuE4014BbaEML8w9jywh02TNrFy9Eo2TdrEV5O/QiaWcTD1IKujVxvkPA0hlLU1jxHeIwA4cUP/RJKmrK2bUzfBk0pA4B/0SiS5ubnx999/U1BQQEFBAffdd1+t53/66SeWLl1q0AAFjI+mlMbNxg2xSK+3RKNoDbdN5JN0PldttN3frb/RZcXm5PbyttX71e3Z27saCWrLyhtiUeiiVvn7l4glvDTkpXqf0yQ3WlPscQXq95WPnQ+dHHTzk9CnE85gj8GM8hmFQqVg3bl1zYrxdpQqJd9f+Z57/7iXw2mHkYqlPDfwOX6e/jPPDny23l1kF0sXLCWWXC+8ztN7niavonHllYBAczD0+mnbtm2Eh4ezdOlSoqOjGThwIJMmTSI7u34D++rqaiZMmEBSUhI///wzV69eZePGjfj4+GjHFBQUMHLkSGQyGbt27SI2NpaPPvoIZ2fDbDC1B8xptK1BW9pW2LAiKSJDnVQM9gzWNkpor5RV1fDM11FkFVfRw8OONTODkErERu8UKRFLCPEKYWrXqYR4hTDEcwjvjHwHgK8ufsUvcb8Y9Hwa0krSuJJ/BbFIzBjfMUY5R3tlRCd1IikiMwK5Qq7XsZpEUmO+ZAICHY1mfbs4OjrW+7iLS/vqktVRMFYrW197XwCSi5MNOm9DaIy2B3kMMsn5zMUE/wm8F/Eel/Mv8/vFGE4l5GMhEbd7NZKGML8wOtl24kZZXW8dqUjaqndfr+ZfBUAsEteSvjtbOfPGsDcI8wszV2h10MQa6BxotE44CwYv4Fj6MXYk7OBf/f9FN6fml/ZcL7zOWyfe0vqkDXAfwLLhy+jufPPvIswvjLG+Y4nOjianPAd3G3eCPIK4UnCFufvmcjn/Mk/ufpL/Tfgfnew6NTsWAYGGMNT6adWqVcyZM4ennnoKgPXr17Njxw42bdrE4sV1k+2bNm0iPz+fEydOaL2Y/P39a41ZuXIlvr6+fPXVV9rHAgIC9IqrvaNZLxnKBqA5aBRJySXJ1Chr6k0URWSqE0mtremEoVEoVSz84SyxGcW42Vmw6ckQHKzM5zV2V9e7SClOYe25tbx76l187H0Y5j2s6QP1QKNGCvYMNlgVQUehl3MvbEW2lNWUEZMTo9ffh9CxTUCgLu17m0JAJ4y1w6ZVJJmotE2jSGqv/kgaXKxcGN5pOMfSj/Hp6R+BkR1CjaQhuTiZG2U3ECNm9djVVNRU4Gbtxv/O/Y+IrAg+iPyAT8Z9Yu4w6xBfEM+3sd8C8MnYT7CV2fJh5IfE5scyq/esVpVEAriSfwWAni49CQ1wwdvRisyiynr71DS3E05f176M8x3HwdSDrI1Zy0djPtI7zmpFNV9c+IKNFzZSo6zBRmrDwqCFPNzz4XrVXZpd5Nvj2DxlM8/ue5ak4iQe3/U4GyZsaFFiS0DAWFRXV3PmzBmWLFmifUwsFhMWFsbJkyfrPebPP/9k+PDhzJ8/nz/++AN3d3cee+wxFi1ahEQi0Y6ZNGkSM2bM4MiRI/j4+DBv3jzmzJnTYCxVVVVUVVVpfy4uLgZALpcjl+u2468Zp+t4c5JVqvZ8dLV0NVu8rhauWEmsqFRUklSQpF1raZAr5URnRQMQ5B7UYJxt6bo3xPJdV9l/ORsLqZi1jw3Cy15m9tfzTJ9nSCxMZFfyLl469BKbJ27Wqsg0tOTa709W+yON8Rlj9tfa1lDUKOgh7UGMPIYjKUcY5DpI52M1iqRAx0DhujeD9vB50xZp6rq39PchJJIEtDX/ht5h6+Kg7txmitK2UmUpqaXq1skD3AcY/XzmZmrAVI6lHyNTcQoLySjmjuk4N7x7k/YCMLzTcMZ2Gat93NXalQf/fJCDqQc5nn6ckT4jzRViHVQqFf89/V9qVDWM9R2rlaNP6zaN2PxYzmSfYQ4N36yZA01pWy/nXkjEIpZO78PcLdGIoFYyqaWdcOYPns+h1EPsTd7LlfwreinKzmaf5a0Tb2lNZ8d0HsPrw17Hy9ZL7zgCHAP4Zso3PLvvWRKKEpi9ezZrx6/tEJ8nAm2L3NxcFAoFnp61Pdc8PT25cuVKvcckJCRw8OBBZs6cyc6dO4mPj2fevHnI5XJtSV1CQgLr1q0jPDyc1157jcjISF544QUsLCyYPXt2vfO+9957LFu2rM7je/fuxcbGRq/XtW/fPr3Gm4OLpRcByLqexc60nU2MNh4uuHCDG/x86Gd6y2orJFJqUiivKcdaZM21E9e4Lrre6Fxt4brXx7FMET8lqpOgjwbIybhwgowLZg7qH0JVoVySXCJFnsK/dv2L5+yew1Zc1xRb32tfoizhXLFafa+8pmTndfO9B9sqPWTqRNKeq3vokaGbaXaJsoTcilxEiEiMSCRdlG7kKNsvbfXzpq3T0HUvLy9v0bxCIklA24XE0OaRXezViaTUklQUSoVRvV9SFeokUjfHbjhYOBjtPK2FcV3GIVLJkFjmMD5I0WHUSAB7k9WJpIn+tY1puzl149Hej/Jt7LesiFjBr3f/ikzSOtpp70jcQVRWFFYSq1oeTxplzNmssw2WKJgDuVJOfGE8AIEugQBM7ufNullBLNseS0bRTS8kL0crlk7v02wT00DnQCb7T2ZX0i7WnF3DZ+M/a/KYkuoSPon+hG1XtwHgauXKkqFLmOg3EZGo+T4YXrZebJ68mXkH5nEh9wL/2vsvVo9drfVVEBBoqyiVSjw8PNiwYQMSiYQhQ4aQnp7OBx98oE0kKZVKgoODWb58OQCDBw/m4sWLrF+/vsFE0pIlSwgPD9f+XFxcjK+vLxMnTsTBQbfvYrlczr59+5gwYYK27K61smXXFiiAsaFjucPnDrPFcfzEcW4k3cCluwtT+06t9dyXl76EczC883CmjZ7W4Bxt6brfztH4XH49fRZQ8eL47swf09XcIdXhjso7eGLPE6SXpbPLchfrx63HQqI22G/utf/52s+oIlX0c+3HY5MeM1bo7Ra5XE7ZnjJEiMhUZhI8Jline5+j6UfhiHrD6d677jV+oO2Qtvx505Zp6rprVMTNpXXctQiYFWOVtnnbeiMVS5Er5WSVZxnVcySlRq16au/+SBrOp1RSXdILmcMF3LxigenmDskkJBcncyX/ChKRhHG+4+o8P3fgXHYm7CSpOIktl7fwVL+nzBBlbUqqS/gw8kMA/j3g37X+Dno49cDewp6S6hIu512mv3t/c4VZi8SiRORKObYyW3zsbprxTu7nzYQ+XkQk5pNdUomHvbqcraUmpnMHzWVP8h4Opx3mfM75RlVAB1MO8t9T/9V6ldzf437Ch4TjaFm/94y+OFk58cXEL3jx0IuczDjJ/APzWTl6ZZ3EpYCAuXBzc0MikZCVlVXr8aysLLy86lfjeXt7I5PJtGVsAL179yYzM5Pq6mosLCzw9vamT58+tY7r3bs3v/zSsGmwpaUllpZ1OxjJZDK9bxaac4ypya3MBcDb3tussXZ37g5JkFyaXCeOM9lnABjqPVSnGNvCdb+VuKwSFv5wHoVSxf2DfVgYFtiiDQRj4SHzYG3YWmbtnEVMTgzvRL7De6PeqxWrvtf+cPphAMb7jW9Tv7PWhK3Ylr6ufbmYd5GI7Aju63Ffk8fEFakV2n1c+wjXvYW0tc+b9kJD172lvwvDtegSaLMYyzxSIpbQ2a4zYHzD7dQatSKpvfsjaVi9P46aYvVrPXpjXy3j5vaMpqxtqPdQnKyc6jxvb2Gv7Yy2/tx6bdmmOVkTs4a8yjz8HfyZ3bf2rr5ELGGIxxAAorJaT4ttjdF2T+eedTo5GqMTToBjANO6qnfOPz/7OZGZkexM2ElkZiQKpQJQJ7zDD4ez8NBCsiuy6WLfhS8nfsmyEcsMlkTSYCOz4fPxnzPRbyI1yhpeOfIKP1790aDnEBBoLhYWFgwZMoQDBw5oH1MqlRw4cIDhw4fXe8zIkSOJj49Hqbz5XREXF4e3tzcWFhbaMVevXq11XFxcHH5+tT14Oio1yhptV0dDK7j1paHObdWKas5mnwXU35PtjdzSKp7+OpKSqhpC/V1474H+rTKJpKGrU1dWjV2FVCRlR8IO1p9f3+y5iquLtd34wrq0Lk/FtsYIb7XK+Gj6UZ3GX84TjLYFBOpDSCQJGLWdrcYEMrUk1eBza5Ar5aQr1PXKAz3afyLp5PU8TifmI67ojY3UlqzyLO3Csb2jKWub5D+pwTHTu01ngPsAymvKWXVmlalCq5cr+Vf4/sr3ALw29DWtrP1Wgr2CgdaZSAp0DjTZOZ8b+BxixJzMOMnTe55m0dFFPL3naSb9Mol3Tr7DPb/fw77kfUhEEv7V/1/8cvcvhHqHGi0eC4kF79/xPjMCZ6BCxTun3uHLS1+iUtVnNy4gYFrCw8PZuHEjmzdv5vLly8ydO5eysjJtF7cnnniilhn33Llzyc/PZ+HChcTFxbFjxw6WL1/O/PnztWNeeuklTp06xfLly4mPj2fr1q1s2LCh1piOTF5FHipUSEQSXKzM26VY07ktsTix1mfS+ZzzVCmqcLVy1Y5pL1TKFcz5Joq0ggr8XW343+NDsJQazzLBUAzzHsbrw14HYG3MWnYmNM/X6EjqEWpUNXRz7Ia/o78BI+x4jOyk9tA8deMUNcqaJsdrOrb1ce3TxEgBgY6FkEjq4FQrqimsKgTAw9rwO2waw21jKpKuFVxDjhwHCwf8HfyNdp7WgEql4uP9aontIyFdmfBPp69dibvMGZZJaKqsTYNYJOa1oa8hQsSOhB2cyTpjwihvolQpeffUuyhVSib5T2J4p/qVAppEUnRWtFZ9Y26uFqgTSfoYX7f4nPlXUVJXWZdVnsWPcT9SIi+hr2tftk3bxsKghVhJrYwek0Qs4Y1hbzCnv9oIfc25Neyq3NVhFIACrZeHH36YDz/8kDfffJNBgwYRExPD7t27tQbcKSkpZGRkaMf7+vqyZ88eIiMjGTBgAC+88AILFy5k8eJbPNtCQvjtt9/4/vvv6devH++88w6rV69m5syZJn99rRGNn6SbtVsdpaap6WLfBYlIQpm8jF2Xr/JHTLp6k+kfxUqIV4hBlDoKpYqT1/O08yuU5kmkK5UqXvnpHGdTCnG0lvHlkyE429bdmGmtPBj4IE/2fRKAN46/wbmcc3rPcSBFrUAc7zfekKF1SPq49MHJ0okSeQnnc843OragsoCMMvVnqSnXRAICbQHBI6mDo1kYycQyg5eHwE3D7ZQS43VuO5er/kIe4DbA7Is7Y3MyIY+IxHwsJGLmjulGYulU/rj+B3uT9rIodBEycfutO26qrO1W+rr25YHAB/g57meWn17OtmnbTG5k/Uf8H5zLOYeN1IZXg19tcFwv517YyewolZdypeAKfV37mjDKuqhUKm3Htp4uPU1yToVSwYqIFY2OsZfZ883kb7CQmvbmQSQS8ULQCzhZOvFB1AecqDrBW6fe4u1Rb7frvzeB1s+CBQtYsGBBvc8dPny4zmPDhw/n1KlTjc45bdo0pk1r2KC5I6MplTZ3WRuATCLDxcKbnKo0nv95N4pydfcpx657wRKDqDV3X8yo01zBu4XNFZrL6v1x/HU+A6lYxLpZQXRztzPp+Q3Bi0EvklKcwsHUg4T/Hc5TFrp7OFbUVHA8/TgglLUZAolYwvBOw9mVuItj6ccI8gxqcKymrM3PwQ87i7b3vhMQMCbt+65boEk0ZW0eNh5GqTPXKJJSio2XSDqfq95NGODWvtt0q1QqVu+/BsAjob54O1oT6h2Ki5ULBVUFnLrR+A1CW0fbrc1PN9PjFwa/gIOFA3EFcfwU95MxQ6tDUVURH5/5GIB5g+bhaevZ4FiJWKJdxERlmr+8Lacih/zKfMQiMd2dupvknNHZ0WSVZzU6pkReok0am4Mn+j7B28PeRoyYvxL/IvxQOJU1lU0fKCAg0C7Q2gAY2E+yOey+mEFGrrorntjyHy9AkRyFLAmAyuKAFs8/d0t0rSQSQGZRJXO3RLP7YkYDRxqeX6PT+PSguovo8vv7M6Kbm8nObUgkYgnvjX6P3i69Kagq4NuybympLtHp2BPpJ6hUVNLJtpOgijEQo31GA3As/Vij42LzYwHBH0lAoD4ERVIHR6NIMtbCSKNISi1JRaFUIBEbvp5dIxFu74mk29VIAFKxlIl+E/nh6g/sStzF6M6jzRylcUgpTtGWtY3vopus29nKmecHP89/T/+Xz85+xiT/SSbztfgk+hMKqgro7tSdx3o33aI32DOYv9P+Jiozqo4ht6nR+CP5O/ibpHwMbt6gGWqcsZjWdRpXL1zlp4qfOJx2mOf2P8dn4z7D3sLerHEJCAgYH02y2xh+kvqgUKpYtj0WhYUHUvtYxJbqz0WJdTIisQKl3IH3/8qltDQecSMbhAqlgivpItKPJdZamylVKtYevk59RWwqQAQs2x7LhD5eBmm20BgRifks/uUCAHPHdOOhYF+jns/YaBo5PPrXo2RXZLPo2CLWTljbpLp1f8p+QF3W1prNxdsSGruBy/mXya3Ixc26/gSlRpEk+CMJCNRFSCR1cDRSbWMtjLxtvZGKpciVcrLKs2q1PjcEWWVZZJZnIkJEP9d+Bp27NaBQqtSt1osrWXfkOnBTjaRhatep/HD1Bw6kHKCyptJkN/+mRKNG0qWs7VZmBM7gl2u/cCX/Cp9Gf8pbI94yToC3cDH3Ij/H/QzA60Nf16n8KcQrBFC3bTZWwlVXNP5IPZ1NU9YGun/+mPsGDqC3rDdrhq3hpb9f4kzWGZ7e8zTrwtY1uAgVEBBoH2g23sxd2haRmE9GUSVSR/XnodhCvY6T2KrXCIqybpRVKli5+2qDc9xEwp8p1/Q6vwrIKKokIjGf4d1c9TpWH5Jyy3j22yiqFUqm9PPi1Ymm+04yJh42Hqy+czVP7n6SU5mneO/0e7wx7I0GE0RyhZwjaUcAoazNkLhZu9HHtQ+xebEcTz/OPd3vqXdcbN4/iiRXQZEkIHA7QiKpg3NraZsxkIgldLbrTFJxEsnFyQZPJGnUSF4SL2xkNgad29zU508A0NvbodbPA90H4m3rTUZZBn+n/c1Ef91Kv9oSe5L2ALqXtWmQiCUsCV3C7N2z+fXar8wInEFfN+N5ECmUCt459Q4qVEzvOl1rpN0UvVx6YSuzpaS6hLiCOLMuWDSKJFP5IwEEeQThaeNJdnk2qnr2wUWI8LTxJMijYR8DUzLEcwibJm3iuf3PcSX/CrN3zWbDxA142XgRnR1NTnkO7jbuBHkEmTUpKCAgYDiMvV7SlewS9ZpAWaWOQ6NIktqoE0k15WrFcqi/C74uDa+LlCol6Wlp+HTuXMtfMjW/nIik/CbjOHQ1ixB/Z6QSw7tkFJXLefrrSArK5Qzs7MiqhwYhNrL6yZT0cunFQ7YP8V3Zd/wU9xN+Dn4NqpEjMyMpqS7BxcqFge7tvzOxKRnlM6rRRFJRVRFppWmAUNomIFAfQiKpg2Ps0jZQG9QlFSeRWpLKcOrvXNVcNIkkX0nbljvfjsafoD5p+Wu/XsDZRqY1uxSLxEwJmMKmi5vYlbir3SWSbi1rG9el4W5tDRHkGcRdXe9iR8IOlkcs59sp3xrNlP3nuJ+JzYvFTmZHeHC4zsdJxVIGeQziePpxorKizJtIKjB9IkkilrA4dDHhh8MRIaqVTBKhvnlYFLqoVSVlerv25psp3/Dvvf8mpSSFh7Y/hEwsI68yTzvG08aTxaGLCfMTdpEFBNo62RX/mG0bocOtPnjYq1XHyup/EknSEkTSQsTW6hteRZk6kfTShMBGFUNyuZydO1OYOrUfMtlN5ezJ63k8urFpz8UNfyfyZ0wGM4I781Cwb6NJK32orlHy3JYzJOSW0cnRio1PBGNt0Xo++w1FL1kvwoPC+Sj6Iz6K+ghfe9961ziasrZxXca1qu/A9sAon1FsOL+BExkn6lWDazbWfOx8jNKQSECgrSOYbXdwTNGFRGO4nVycXO/zLWkvG5MToz6HtEuL42wtaPwPGrsKy7bH1rpOUwOmAvB32t86mze2FW4ta3O2cm7WHOFDwrGR2nA+5zx/Xv/TkOFpyavI45OznwCwYPACvUudQjzV5W3mNNyuqKnQ/p2asrQNIMwvjFVjVtX5LPK08WTVmFWtMhnj5+DHN1O+wcvGi+Lq4lpJJFB/voYfDmd/8n4zRSggIGAotGbbZi6xDfZzxkomBqUlSrn65lbmFIlIpERZ7QI1zng7WhEa0DxPwNAAF7wdrWhM/2NrIcHJWkpmcSWfHYznjg8O8fiXp/nr/A2qahTNOi+om4q88ftFTibkYWsh4csnQ/BwaH/l+hoe6/kYDwU+hAoVi48u1pZRaVAoFRxMOQgIZW3GoL9bf+wt7CmqKuJi3sU6z1/OF/yRBAQaQ1AkdXBMsTDSGG6nlNTt3NaS9rJViiqtCV57UiRp/A8aoj5/gkDnQLo6diWhKIEDKQe4t/u9pgnWBDS3rO1WPGw8eG7gc6w6s4qPz3zM+C7jDW6Q/PGZjympLqGXSy8e7vmw3sdryuDOZJ9BqVIaTTXVGPEF8ShVSlysXMzi+RPmF8ZY37FtqjzMzdoNhar+GycVKkSIWBmxkrG+Y1v16xAQEGiYakU1hVWFgPlL21YfiKNSrgTU5W1iWREy5wgAFOVdAVg6vU+zjbAlYhFLp/dh7pZoRFBrU0sz40cPDWRsLw/2xWaxLTKVo9dytf9dbC24f7APj4T60t1Dv+/Z//2dwLaoVMQi+PyxoDql/O0NkUjE4qGLSStN48SNEzx/4Hm23rVV2+n1fO558irzsJfZE+oVauZo2x9SsZTh3sPZm7yXY+nH6pQOXsq7BAhlbQICDSEokjo4ppBqaxRJKcW1E0ktbS97Oe8ycqUcFysXXMQN77y1RPFkDjT+B/qME4lETAmYAsCuxF1GicsctLSs7VZm9Z6Fv4M/+ZX5rI1Za6AI1ZzNPssf1/8A1AbbUrH+Ofo+rn2wllpTVFXEtQL9zE8NxZWCK4BajWSuzjASsYQQrxCmdp1KiFdIq0++RGdHa0uE60OFiszyTKKzo00YlYCAgCHR/I1biC1wsDBfcuOnqFTWHFJ7Ic0e7ocVXoC6vA3AVhXIullBTW7ENcXkft6smxWEl2NtNZCXo5V2fkuphGkDOvHtM0M5+p+xPD+uO54OluSXVfPFsUTCVv3Ng+tO8FNUKuXVNXXOcfvabOf5G6zYpf4OWjq9L2N7mTdhZypkYhkf3vkh3Ry7kV2RzfMHn6ekqoTIzEg2nt8IwOjOo5FJmm7cIaA/o3xGAXAs7Vid5zSb1YLRtoBA/QiKpA5MRU2FtgzKFIqk1JJUbQ1yY+VburaX1fgjDXAbgKi0/jEtUTyZC0dr3RYLGp8EDVMDprImZg2nM06TV5GHq7XxuqmYCkOUtWmQSWQsCV3Cs/uf5fsr3/NAjwfo7ty9xTHWKGt499S7ANzf434GeQxqXnxiGYM9BnPixgmisqJM6lGkQeMH0Mull8nP3VbRqDoNNU5AQKD1cWuHW3Ml2U9ez+O13y4A8Py47gzsmcq+8hhKqm+Ocei0F6l9CNDy9c3kft5M6OOl7hxbUomHvbpcrr41ma+LDS9P7MnC8T04EpfDD5GpHLySTVRyAVHJBSzbHsvdgzrxaEgX+vk4sOdSZr3NRECdIJs9wr/F8bcl7C3sWRO2hsd2PMbl/MuM/WksVYoq7fPHbxxnf/L+Vlni3dbRJJIu5V0ivzIfFyv1xnSZvExb6i8okgQE6kdQJHVgcstzAbCWWmMnszPaebxtvZGJZciVcrLKswDdy7dW7r7MgctZnEstJL2wgkr5zRKSmOwYQJ1Iqo+WKp7MQeyNYt7efqnRMSKo1/+gi0MX+rr2RaFSaBMwbZ29SerX0ZKytlsZ4TOC8V3Go1ApeC/iPVSqlqvTvr/yPXEFcThaOvJi0IstmivYU13eZi6fpLiCOAACXQLNcv62iK5JeHP7qggICDQfU/hJNkZCTinPbTmDXKFi2gBv+gemEH44vI4nYl5FnkF92SRiEcO7uXLPIB+Gd3NtslxOKhEzvrcnG58I5uTicfxnck/8XG0oraph6+kUpn9+jNErD/FcPWszDc31dmrr+Nj5MKv3LIBaSSRQdw8T/PaMg7uNOz2de6JCxYkbJ7SPX82/igoVnjae7WJjVkDAGJg9kbRmzRr8/f2xsrJi6NChRERENDq+sLCQ+fPn4+3tjaWlJYGBgezcubPWmPT0dGbNmoWrqyvW1tb079+fqCjzGdi2VjRlbe7Wxt1hk4gldLbvDNw03Na1fGvD34k8szmKe9YcZ+SKg/R6Yzf9l+5hzIeHOJSsfq9EXXVgV6qIrRGp7L6YyZnkfK5nl7L0z0sNKp6grmG1OVGpVGw+kcS9a4+TkFuOo7VaLHj7b0Xzc0P+BxrT7fZQ3pZSnMLl/MsGKWu7lVdDXsVSYklEZkSLE27Z5dmsiVkDwMKghS1WTYV4qQ23z2SpfZJMiVKl1CqSTG203ZYJ8gjC08ZT212uIeIL4g2SuBQQEDA9Wj9JI3a4bYiCsmqe2RxFUYWcwV2cWPlAP96PXFmru6UGzWMrI1aiUDbf9NoQeDhYMW9Mdw69PIatc4Zy98BOyMQi0gorGjxGBLy743KrWZuZEoVSwbar2xod0xp+r+0RjSrpePpx7WMa43OhrE1AoGHMmkjatm0b4eHhLF26lOjoaAYOHMikSZPIzs6ud3x1dTUTJkwgKSmJn3/+matXr7Jx40Z8fHy0YwoKChg5ciQymYxdu3YRGxvLRx99hLNzy27w2iOm7EBya3kb1C3LaohBvo7093HE29EKmUR9o1ZSVUNyURoKUTEqlZg9Zy3ZnSZh6fbLPLflDA+sO8n4VUfIKq5qcN5bDavNTWF5Nf/+9gxL/7xEdY2S8b08OPTKWNY34U9QH5MDJiNCxNnss9wovWGK8I2GJskT6hXa4gTNrfjY+fBMv2cA+CDyA8rl5c2e68OoDymTl9HfrT8P9HigxbH1de2LlcSKgqoCrhdeb/F8+pBekk55TTkWYgv8Hf1Neu62jEQsYXHoYoBGk0nLI5az6OgiyuRlpgpNQEDAQGj9JE2sSKquUfLsljMk5pbh42TNhseDiS04p1V310dr82UTi0WM6ObGp48OZu3MoEbHtqa1mamJzo5uU7/X9sRIn5EAnLhxQruJp+3Y5iJ0bBMQaAizeiStWrWKOXPm8NRTTwGwfv16duzYwaZNm1i8eHGd8Zs2bSI/P58TJ04gk6l9ZPz9/WuNWblyJb6+vnz11VfaxwICAoz3ItowWqm2EY22NWgMtzWKpNAAF7wcrchsQNosQp00+WXuSK3yRqVSUVxRQ25ZFTuu72TjVfC26saEO3py9nI8ti6e5JXLyS2tIrOoErmi6R0tXZVRxiIiMZ+FP5wlo6gSC4mYxVN68dRIf0QikV7+BBo8bDwI9gomMjOSXYm7eKb/MyZ8NYZFU9Y2yX+Swed+qt9T/HH9D9JL0/niwhe8EPSC3nOczjjNrsRdiBDx+rDXDdJlTSaRMdBjIKczThOVFUUP5x4tnlNXrhao1UjdnLohEwumnvoQ5hfGqjGrWBGxotaNgJeNF/8J+Q83ym7w8ZmP2ZW4i8t5l1k1ZpVJf7cCAgItQ7PxZspEkkqlYsmvF4hIzMfeUspXT4Xgbm9JZE7b9WUrl+umpjH32swcCH575mOQxyDsZHbkV+ZzOe8yfd36CookAQEdMFsiqbq6mjNnzrBkyRLtY2KxmLCwME6ePFnvMX/++SfDhw9n/vz5/PHHH7i7u/PYY4+xaNEiJBKJdsykSZOYMWMGR44cwcfHh3nz5jFnzpwGY6mqqqKq6qZ6pbi4GAC5XI5cLtfp9WjG6Tq+NZBZlgmAi6WL0eP2sVGrxpKLkrXnGtHVhV/P1lXNaNIkr0/piVJRw60qXhsZdHGypFil9nIZ6x/MggF+7KuOY8KEftoE4+nEfGZtarqcUYLKLL8zhVLF2sMJfH74OkoV+LvasPqhAfTt5EBNTe3uJsFdHAB1l5jbr0d9TOwykcjMSHYm7OSJXk8Y6RUY9z2fUnKzrG2092iDn0OChJcGv8QrR1/h60tfc5f/XVrVnC7IFXKtwfaDPR4k0CHQYDEOcR/C6YzTRGZE8mC3B+ue20jXPTZXvWgKdDLca2lvNHbt7+x0J6PuHsXZnLPkVuTiZu3GYPfB2q5zfZz7sPjYYpKKk3hsx2MsCVnC9K7TTRp/W6Wp97zwfhUwNqZUcGtYe/g6v0SnIRGL+HxmEIGe9nrF0Bp92XRVo+s6rj3Rln+vbR2ZWMYw72HsT9nP0fSjdHXqSkJRAqDuqCsgIFA/Zksk5ebmolAo8PT0rPW4p6cnV65cqfeYhIQEDh48yMyZM9m5cyfx8fHMmzcPuVzO0qVLtWPWrVtHeHg4r732GpGRkbzwwgtYWFgwe/bseud97733WLZsWZ3H9+7di42NjV6va9++fXqNNyfnytRdz/KS89iZtbOJ0S0jU65OWsVmxLJz506SSuD3SxJAhLVERYXipsrG0ULF/f5KFMln2Jlc/3xHS44CoExVsi9Lfc1vvfZKFThZSCishrpOQzd5cVsMo71UjPdRYm8iEUZhFXwbLyG+WB1XiLuSBwOKSY45RnJMy+dXKVWIERNXGMfX27/GQ2LcHVRjvOePVB4BwF/iz8mD9SeWW4pKpaK7tDvxNfEs2rWIx+0e1/nYvyv/JqkyCVuRLYFZdX3aWkJ1jboFz4nUE+zYsaNB/zJDX/ejpeq/qZqMGoO+nvaILtc+m2z2sKfWY8/InuEn+U/E18Sz9NRS/oz+k2nW05CJBAWYLjR03cvLm1+eKiCgC9rSNhMouAF2nM/ggz1qlehbd/flzsCbyQONL1t2eXa9PkkiRHjaeBLk0XgZmTkIDXDB+x81en2acY0avSMabrfl32t7YKTPSPan7OdY+jGGdxqOUqXE1crVLL5oAgJtBbOWtumLUqnEw8ODDRs2IJFIGDJkCOnp6XzwwQfaRJJSqSQ4OJjly5cDMHjwYC5evMj69esbTCQtWbKE8PBw7c/FxcX4+voyceJEHBwcdIpNLpezb98+JkyYoFXFtHZ+3/87ZMPooNFM8Z9i1HPdKL3B139+TSGFhN45lhXrIlGqKpnS15NVM/pzJqWQ7JIqPOwtCfZzbrR8q6KmgqU/qX/fsyfMxtXCtd5rL/PP4vkf1MmyW7+SRf/87O9qQ1JeOYcyRJzKlfL4sC48M9IfF1sLI1wBNQcuZ/Pxb5corJBjayFh2fTe3DOok8HPc/TwUY7eOEqFXwVTB0w1+Pxg3Pf8ll1boBIeDXqUqd2NEz9An6I+PLzzYa7WXMV+oD2jfUY3eUxGWQbv/qVWI/1n6H8MriqpVlTz7c/fUqYoo/eo3nR17FrreWNd989//xxq4N4R9zLEc4jB5m1PGOLa36+8n02XNrH+wnrOVJ+h2KaYD0Z9oC3/FahLU9ddoyIWEDAWplQknU0pIPzHGACeHhnA48P8aj2v8WULPxyOCFGtpIPGp21R6CKtGrI1IRGLWDq9D3O3RGvXYhqaaibS3mnLv9f2gMZw+0LuBU7dOAWoy9qM2YxIQKCtY7ZEkpubGxKJhKys2sZyWVlZeHl51XuMt7c3MplMW8YG0Lt3bzIzM6mursbCwgJvb2/69KktQ+zduze//PJLg7FYWlpiaWlZ53GZTKb3zUJzjjEXuZW5AHjbexs95s6OnZGJZciVcl7+7RgZRSr8XW14f8ZArK1kjAr0bHqSf4jJi0GhUuBh44Gvk6+2rOH2az9tUGekUgnLtsfWajPr5WjF0ul9mNTXi8NxOazeF8e5tCI2HE3iu9OpPDUygH+NDsDJxnAJpUq5ghW7rvD1iSQA+vk48NmjQQS42RrsHLdyV7e7OHrjKHuS9/B80PNG/SI09Hs+tTiVKwVXkIgkTAyYaNT3ZqBbII/3eZyvLn3FR9EfMcp3FBaSxn/vH5/9mEpFJUEeQdwXeJ/Br61MJmOg+0AiMiOIyY2hp1v9HdQMed2LqorILFerBvt49Gkzn2Hm2ynQ3wAAeV9JREFUoiXXXoaMeUHzCPIOYtHfi7hWeI2Ze2aybMQyo/iBtScauu7C+1XAmJTLyymVlwLG90hKzS9nzjdRVP3TeOP1u+r3Z2nIl83TxpNFoYsI8wszapwtYXI/b9bNCmpwbdZQM5GOQFv+vbZ1vGy96O7UnfjCeDZf2gyAo4UjCqVCSN4JCDSA2RJJFhYWDBkyhAMHDnDvvfcCajXRgQMHWLBgQb3HjBw5kq1bt6JUKhGL1ca2cXFxeHt7Y2FhoR1z9erVWsfFxcXh5+dXZ76OTk6F6drZSsQSOtt3JrEokdOpcVhIe7J25hDsrfS/ATiXo1YZDXIf1OTYpgyrx/b0YEygOwevZLNqXxyXbhTz+aF4Np9I4qlRATwzKgBH65bdpFzPKeX5rWeJzVDvmj8zKoD/TO6JpdR4X0xjfcdiJbEipSSFS3mX6OfWz2jnMjR7ktXlQIbu1tYQzw58lr8S/iKlJIVvYr/hX/3/1eDYY+nH2J+yH4lIwuvDXjdagi7YM5iIzAiisqJ4uNfDRjnHrcQVqD3HOtl2wsFCNxWmQMsY5j2Mn6b/xH/+/g9nss7wypFXiM6K5pXgV5BJhMSIgEBrQdOYxEZqg63MOJs/AMWVcp7ZHEluaTV9vB349NHBjSpzwvzCGOs7lujsaHLKc3C3cSfII6hN3PQ2p5lIR6Et/17bOr72vsQXxlMiLwFgR+IOorKiWBy6WEjiCQjUQ8vbDLWA8PBwNm7cyObNm7l8+TJz586lrKxM28XtiSeeqGXGPXfuXPLz81m4cCFxcXHs2LGD5cuXM3/+fO2Yl156iVOnTrF8+XLi4+PZunUrGzZsqDVGAMrkZdo21KYy7nOQqJVmYos8lt3dlz6dmnfDGpMdA8BA94E6jZeIRQzv5so9g3wY3s21zkJFJBIxvrcnfz0/ig2PD6G3twMlVTV8euAao1Ye5JP91yiu1N/MVaVS8VNUKtM/O0ZsRjEuthZ89WQIb0zrY9QkEoCNzIYxvmMA2JnYtvxuNN3aJvpPNMn5bGW2hAerS1s3nN+gNaG/nSpFFctPq0tmH+v9GIHOgUaLKdgrGICorChUqqa7D7aUq/nq5Hugi/Fek0BdPGw8+GLiFzzTT91dceuVrczePZsbpXWbEAgICJgHzaabMdVINQolC7aeJS6rFA97S758Mhhby6b3eiViCSFeIUztOpUQr5A2lWxoam3WkWnLv9e2yv7k/RxKPVTn8ezybMIPh7M/eb8ZohIQaN2YNZH08MMP8+GHH/Lmm28yaNAgYmJi2L17t9aAOyUlhYyMDO14X19f9uzZQ2RkJAMGDOCFF15g4cKFLF68WDsmJCSE3377je+//55+/frxzjvvsHr1ambOnGny19ea0dT728psjbrDpiG3tIpLKWrVWGDnKh4J8W3WPCqV6qYiyWOQocID1AmliX292PH8KNbNDCLQ046Syho+3h/H6JWHWHMontKqmjrHKZQqTl7P44+YdE5ez0OhVFFSKefFbTG8+vN5yqsVDO/qyq6Foxnby3Stg6cEqH2v9iTuQdFUq7dWQmpxqrZb2/gu40123rsC7iLII4iKmgo+ivqo3jGbLm4itSQVd2t35g2cZ9R4BrgPwEJsQW5FLknFSUY9F8DVAnUiqZdLL6OfS6A2UrGUF4e8yJrxa3CwcOBC7gVmbJ/BkdQj5g5NQECAm4okYyWSVCoVy7bH8ndcDtYyCV/ODsHb0doo5xIQEKiLQqlgRcSKep/TeFWtjFjZZtbSAgKmwuxm2wsWLGiwlO3w4cN1Hhs+fDinTp1qdM5p06Yxbdo0Q4TXbjFlWZtCqeKlbTGUljphZQddPMuaXRKUXJxMYVUhFmILervU7x3QUsRiEVP6ezOprxc7L2awev814rNL+WDPVb44msC/7+jGE8P9sLWUsvtiRp06f1c7C8RATmk1ErGIl8J6MHdMd5Pvto3yGYW9hT3ZFdlEZ0cT4hVi0vM3B1OXtWkQiUQsGbqEh/96mN1Ju5kROINQ71Dt86klqXx54UsAXg15FTsLO6PGYymxZID7AKKyoojKiiLAMcCo59Mokno61+/HJGB87uh8Bz9N/4lXjrzChdwLLDi4gKf7Pc3zg59HKjb7V7WAQIfF2EbbX59I4ttTyYhEsPqRQfTv7GiU8wgICNRPdHZ0LU+q21GhIrM8s82spQUETIVZFUkC5sPYO2y3suZQPEev5SJVqBdhN8rSmj2XRo3U162v0X1ExGIR0wZ0Ys+Ld/DJI4Po6mZLQbmclbuvcMf7h3j5xxjmbomulUQCyCutJqe0GhcbC358dhgLxvUwi2TbQmLBBL8JQNspbzN1Wdut9HLpxYzAGQC8F/EeVTVVRGZGsiNhB4v/XkyVooqhXkOZ7D/ZJPFoy9syo4x6HrlSTnxhPAA9XYREkjnpZNeJzZM3M7O3WkG76eImntnzjPbzWqFUEJkZyc6EnURmRgq7owICJiC74p/1krXh10sHLmfxzl+xACyZ0otJfetvNiMgIGA8NMliQ40TEOgoCNucHRRTtbI9EZ/Lx/vVRr4vjx3FJ3FfkFqS2uwuCDE5MYDu/kiGQCIWcc8gH+7q782f527wyYFrJOeV80t0eqPHyaQiBvmaTlVTH1MCpvDrtV/Zl7yP10Jfa9UmvuYqa7uV5wc/z56kPcQXxjP2p7GUVJfUen5sl7EmawUb7HkzkaRSqYx23qSiJORKObYyW3zsfIxyDgHdkUlkLA5dTJBHEG+eeJPo7GhmbJ/BQ4EP8Vv8b3U6+QgmoAICxsVY66XYG8U8//1ZlCp4NNSXOaO7GnR+AQEB3dD1b9tUnrICAm0FQZHUQTHmDpv2HMWVvPBDDCoVPBTcmaeGDkImliFXyhuVkDaGPh3bDI1UIub+oM4cCL+TZ+9oesGXVVxFRGK+CSJrmBDPENys3SiqKuLEjRNmjaUpzFXWdiuOlo5aFdftSSRQ18ibynBxgPsAZGIZ2RXZpJakGu08V/KvABDoHIhYJHwltBYm+k9k27Rt9HTuSX5lPuvPr6/zudmWTEAFNZVAW0WjCDTkTWR2cSXPbI6kvFrByO6uvH1PP5NtUggICNQmyCMITxtPRNT/NyhChJeNF0EeQSaOTECgdSPcNXRQjK1IqlEoeeGHs+SWVtHT055ld/dDIpbQ2b4zoPY60peS6hLiC9QlOAM9TKdIuh2pRKxzx7nsksqmBxkRiVjCJP9JQOsvbzNnWZsGhVLB32l/NzrGVIaL1lJr+rv1ByAyM9Jo54krUCsGBX+k1oefgx+bJ2/GWlq/8a4hTUCNmejZn7yfSb9M4uk9T7Po6CKe3vM0k36Z1CYSYAICWisAA228lVfX8MzmKDKKKunmbsvax4YgkwjLcQEBcyERS1gcqm7cdHsySfPzotBFQvc8AYHbEL65OijG2GG7lU8OXONUQj62FhLWzgrC2kL94dvFvgtAsxQWF3IvoEKFj50PbtZuBo1XXzzsrQw6zphourcdSj1ERU2FmaOpn9ZQ1gb6GS6agiGeQwCIyjKeT5JGkST4I7VOYvNjG/271bwnXzr8EpsubmJ30m4u5FwgryIPlUql0zmMmejZn7yf8MPhbVpNJWBezKlmU6lUN5uTNHO9dGtn1xPxubz4w1kupBfhYmvBpidDcLRpvSXnAgIdhTC/MFaNWVXHO9bTxpNVY1YJJeQCAvUgeCR1UDQLI2OUth2Jy+HzQ2rl0PL7+9PN/WaHqy4O6kRScxRJ57LVZW2m9EdqiNAAF7wdrcgsqqS+WzUR4OVoRWiAi6lDq8MAtwH42PmQXprOkdQjTA4wjVm0PmjK2kK8QsxW1gatz3AxxCuEjRc2EpVlHJ8klUqlVST1cull0LkFDIOu77VDqYc4lHqo1mNWEis62XWik10nfOx88Lb1xsfOR/uYq5UrB1IOEH44XKtu0qBJ9OizgFYoFVTUVGj/l8pLeefUO3XmBnUCTISIlRErGes7VtjpFaiX/cn7WRGxwmzeYMXVxVQpqoDmNSepr7MrgFQsYsPjQ/BztTVInAICAi0nzC+Msb5jic6OJqc8B3cbd4I8goTvJwGBBhASSR0QlUpltNK2jKIKXtqm9kWaObQL9wyqbd7rZ+8HQEpxit5za/2RPAa1OM6WIhGLWDq9D3O3RCOCWrdJmlv9pdP7mKVb2+2IRCKmBkxl44WN7Ezc2SoTSZqyNk0ZnrlobYaLA90HIhVJySzLJK00DV97X4POn1uRS35lPmKRmO5O3Q06t4Bh0PW9Nq3rNABulN4gvTSd7PJsKhWVJBQlkFCUUO8xlmJLalQ1DSZ6AP7v2P9x4sYJqhRVtZJEdf7LK6hWVuv12oSWygKNoVGzGSLJ2Vw0ayVHS0csJZZ6Hbv7YgZzt0TXu9lUo1SRW1plgAgFBAQMiUQsEb6PBAR0REgkdUBK5CVUKtS7Y+7WhrshliuUPL/1LPll1fTt5MAb0/rUGeProL4RTinRL5GkVCk5n3MeaB2KJIDJ/bxZNyuozm6jl6MVS6f3YXI/bzNGV5spAVPYeGEjR9OPUlRVhKOlo7lD0tJaytrgpuFidnl2vTfXIkR42niazHDRRmZDP7d+xOTEEJUZZfBEkqaszc/BDyup+cswBeqi63vy3ZHv1to1lSvkZJZlkl6Wrk0u3Si9USvRVKVs+ka2rKaMn+J+0itmESKspdaIRWJK5aVNjhdaKgvcjkKpYEXECrOr2TSNSfRdKymUKpZtj603iQTqDadl22OZ0MerVWw4CQgICAgI6IuQSOqAaBbtDhYOBr15/HDvVaKSC7C3lLLmsSCsZHUXd34OakVSakkqCqVC5wVgQmECJfISrKXWBDoHGizmljK5nzcT+ngRkZhPdkklHvbqcrbWtjDs4dyD7k7diS+M50DKAe7vcb+5Q9LSWsra4KbhYvjhcESIat3EmMtwMdgrWJ1Iyorivh73GXTuqwVXAejlLJS1tVaa+56USWT4Ovhqk/e3I1fI+eHKD7wf9X6TMYzvMp7+bv2xllqr/8ussZHa3Pz5tv+WEktEIhGRmZE8vefpJucXWioL3I4+fnXGVA9o1kv6lrVFJObXKWe7FRWQUVRJRGI+w7u5tiREAQEBAQEBsyAkkjogWqNtA6qR9sdm8b8j6vKJ9x8cgL9b/XX/XjZeyMQy5Eo5WeVZdLLrpNP8MTkxAPRz64dU3LrethKxqE0sBKcGTOXTs5+yM3Fnq0oktZayNg0aw8X6fDkWhS4yueFisGcwX1z4gqhMwxtux+Wr/ZECXVpPclagLsZ4T8okMnq56pZAnNl7ZrNu1lubwk+g7dBa/Oq0Rtt6rpd07dhq7s6uAgICAgICzaV13ZELmISWdiC5nbSCcl7+Se1f9OQIf6b0b7ikSyKW0Nm+M4lFiSQXJ+ucSNL6I7kPanG8HZXJAZP59OynRGZGkluRa/bOd6BWprWWsrZbaU2Gi4M9BiMRSbhRpi5J8rA0nEH+lQJ1aZtgtN36McZ70tiJntao8BNoG7QWv7qsMnXiVl9FUlvq7CogICAgINAcxOYOQMD0aBRJzelAcjvVNUrmbz1LUYWcgb5OvDa1d5PHNMdwOyY7Bmg9/khtEV97Xwa4DUCpUrInaY+5wwFuqpFaQ1nb7WgMF6d2nUqIV4jZbnZtZDb0de0LYFBVUkVNhbZ7Yk/nngabV8B4GPo9qUn0wM3EjgZDJXqElsoCzUGT5Lz9falBhAgvGy+jq9mau/Gm6ezaECLAu5V0dhUQEBAQEGgOQiKpA5JbkQsYprTtvV2XOZdaiIOVlM8fHYyFtOm3lL6G24WVhSQVJwEwwH1As2MVgKldpwKwM3GnmSNRo0loTfSfaOZIWjfBXsEARGUZLpEUXxCPUqXExcqlVajTBMyDKRI9YX5h7HlgD5smbWLl6JVsmrSJ3Q/sFpJIAg3SWJJTgynUbFqPJGv9Nt4kYhH/d1f9G2utrbOrgICAgIBAcxBK2zogWo+kFkrCd1/M4KvjSQB89NAgfF1sdDpOX0XS+Vx1tzZ/B/9Wp1ppa0zyn8T7ke9zPuc8qSWpBu8Cpg+ttaytNRLsGcymi5sMqkjSGG33dO6JSCTczHRkTFHKKbRUFtCXhrzBAP476r8mSURqurY1R8Gt+VwVi0B5S+Voa+zsKiAgICAgoC9CIqkD0twuJLeSnFfGqz+pEzz/vqMrE/p46nysvookoazNcLhZuxHiFcLpjNPsTtzNnAFzzBbLrWVtLlaCvL8xBnsMRiwSk1aaRmZZpkHmvJr/TyLJRShrExASPQKtk1uTnNnl2Xwa/Sk3ym4gV8qNfm6lSklu+T8K7mZsvH19IgmAuWO6Maq7e6vu7CogICAgIKAvQmlbB6Q5XUgUShUnr+fxR0w6R+KymffdGUqqahji58yrk/S7EfVzUCuSUktSUSgVTY7XGG0P9BASSYZgakDrKG/bm6xOJAllbU1jZ2FHH5c+AJzJPmOQObWKJCGRJCAg0IrRJDnv6noXM3rOAGD79e1GP29BZQE1qhpEiHC11q8z6+WMYiIS85GIRTw+zJ/h3Vy5Z5APw7u5CkkkAQEBAYF2gZBI6mCoVCq9zbZ3X8xg1MqDPLrxFAt/iGH2pkgu3SjB1kLC548NRibR723kZeOFTCxDrpTXkavfTo2yhgu5FwChY5uhGN9lPFKxlPjCeK4VXDNLDKklqcTmxQplbXqg8UmKzo5u8VxKlZK4gjhAMNoWEBBoO0zrOg0RIqKyorhResOo59JsurlYuSATy/Q6dvM/aqTJfb3wasR0W0BAQEBAoK0iJJI6GEVVRVpJuC4Gu7svZjB3SzQZRZV1niurVnAutVDvGCRiCZ3tOwNou0Y1xLWCa1TUVGAns6ObUze9zyVQF0dLR0b5jAJgV+Ius8QglLXpj6bsyBCG2+kl6ZTJy5CJZfg7+rd4PgEBAQFT4GXrRahXKAB/Jfxl1HM1t8NtYXk1v8ekAzB7hL+hwxIQEBAQEGgVCImkDobGONLZ0hkLiUWjYxVKFcu2x6Jq4HkRsGx7LAplQyMaRlfDbU1Z2wD3AYhFwtvVUNwVcBegLm9TqfT//bUUoaxNfzQ+SamlqRQri1s0l6asrbtTd7132gUEBATMybRu0wB1eZsxv7+a25hkW2QqlXIlvb0dCPEXGoQICAgICLRPhDvzDobGaFuXhVFEYn69SiQNKiCjqJKIxHy949DVcDsmJwYQjLYNzZ2+d2IttSa9NJ0frv7AzoSdRGZG6uRZ1VKEsrbmYW9hry1DS6xJbNFcgj+SgIBAW2WC3wSsJFYkFSdxKe+S0c6jXS/p6Sf57Sm10vrJEX5CR0wBAQEBgXaLkEjqYOizw5Zd0nASqTnjbkVnRVK2WpEk+CMZFmupNb1degOw/PRyFh1dxNN7nmbSL5PYn7zfqOfWlLUFewULZW16oilva2ki6Ur+FUDwRxIQEGh72MpsGddlHAB/Xv/TaOfRKLj1KW07cDmLtIIKnGxk3DPIx1ihCQgICAgImB0hkdTB0JhHelg3vTDysNfNIFLXcbeiiyIptyKXtNI0RIjo795f73MINMz+5P31mjZnl2cTfjjcqMkkTVnbJP9JRjtHeyXYU224nVST1KJ54vL/MdoWFEkCAgJtkOndpgOwO3G31vfR0GgUSfokkr45qVYjPRzii5VMYpS4BAQEBAQEWgNCIqmDoY8iKTTABS+HhpNEIsDb0YrQAP1VJX4OakVSaklqg+VUGn+kbk7dsLew1/scAvWjUCpYEbGi3udU/zhirYxYaZQyN6GsrWUEeQYhQkSuMlebFNaX4upibpSpux0FOgcaMjwBAQEBkzDMexiuVq4UVBVwPP24Uc6hr9l2fHYJx+JzEYvg8WF+RolJQEBAQECgtSAkkjoY2h02HRRJErGoQaNITdX/0ul9kIj19wDwsvFCJpYhV8rJLM+sd4ymrE3wRzIs0dnRZJVnNfi8ChWZ5ZkGaTN/O0JZW8twtHTUJn+a+/u5mq/2R+pk2wlHS0eDxSYgIGBa1qxZg7+/P1ZWVgwdOpSIiIhGxxcWFjJ//ny8vb2xtLQkMDCQnTt31jt2xYoViEQiXnzxRSNE3nKkYil3dVU3jTBWeZsmWa+rR9LmE2o1UlhvTzo72xglJgEBAQEBgdaCkEjqYGgXRjookuKySth9SZ3kcbKu3dnJy9GKdbOCmNzPu1lxSMQSOtt3Bhr2SdIokgZ5DGrWOQTqR5NMNNQ4fRDK2lpOkEcQ0PxEUlyBuqwt0EVQIwkItFW2bdtGeHg4S5cuJTo6moEDBzJp0iSys7PrHV9dXc2ECRNISkri559/5urVq2zcuBEfn7o+PpGRkfzvf/9jwIABxn4ZLUJT3nYk9QjF1S3rZHk7Ncoa8iryAN3WS8WVcn6JTgPgyRH+Bo1FQEBAQECgNSIkkjoYukq1FUoV//n5PHKFivG9PIj6vzC+nzOMTx4ZxPdzhnFs0bhmJ5E0NGa4LVfIuZh7ERAUSYZG11bG1lJrg55XKGszDMEeap+kqKyoZh0vGG0LCLR9Vq1axZw5c3jqqafo06cP69evx8bGhk2bNtU7ftOmTeTn5/P7778zcuRI/P39ufPOOxk4sPb3a2lpKTNnzmTjxo04O7fu1vU9nXvS3ak71cpqrdrVUORW5KJChUQk0Uk9+3NUGuXVCnp42DG8m6tBYxEQEBAQEGiNSM0dgIDpUKqU2h02N2u3Rsd+dTyRmNRC7C2lvHtfP6QSscEXR40Zbl/Jv0K1shpHS0f8HfwNet6OTpBHEJ42nmSXZ2s9kepjydElzO43m8d7P46dhV2Lz7sveR8glLW1lMEegwFILE4kryIPV2v9/i41pW29XHoZPDYBAQHjU11dzZkzZ1iyZIn2MbFYTFhYGCdPnqz3mD///JPhw4czf/58/vjjD9zd3XnsscdYtGgREslNU+j58+dz1113ERYWxrvvvttkLFVVVVRVVWl/Li5WK4PkcjlyuW4m2Jpxuo6/lan+U/k05lP+iP+DewLu0fv4hsgozgDUayVFjQIFDXsGKpUqNp9IAmDmUF9qamoMFocxacl1F2gZwrU3D8J1Nx/CtTcPTV33lv4+hERSB6KgsoAaVQ0iRI3efKbklfPhXvXN5pKpvfF2NKwyRUNjiqSYnBhArUYSifT3YBJoGIlYwuLQxYQfDkeEqFYySfOzt603GWUZrI1Zy3eXv+Ppfk/zSM9HsJE13/dhT9IeACb6TWzxa+jIOFk64Sn2JEuZRVRWlF5lgnKlnOuF1wFBkSQg0FbJzc1FoVDg6elZ63FPT0+uXLlS7zEJCQkcPHiQmTNnsnPnTuLj45k3bx5yuZylS5cC8MMPPxAdHU1kZKTOsbz33nssW7aszuN79+7Fxka/74t9+/bpNR7ASmmFCBExOTFs2b4FF4lhNiliq2MBkFXJGvSR0o4tEJGcL8FaosIm6wI7d14wSAymojnXXcAwCNfePAjX3XwI1948NHTdy8vLWzSvkEjqQGj8kVysXJCJZfWOUalULP71PJVyJcO7uvJoqK/R4mlMkaT1R3IfZLTzd2TC/MJYNWYVKyJW1DLe9rTxZFHoIsZ1Gcfe5L2sObuGpOIkPj7zMd9c+oY5A+bwYOCDWEos9TqfpqxNLBIT5hdm6JfT4QiQBpBVnUVUpn6JpKSiJKqV1djKbPGxr+uNIiAg0D5RKpV4eHiwYcMGJBIJQ4YMIT09nQ8++IClS5eSmprKwoUL2bdvH1ZWDXdrvZ0lS5YQHh6u/bm4uBhfX18mTpyIg4ODTnPI5XL27dvHhAkTkMnqX5s0xpGDRzideZoK/wqm9p+q9/H1URpXClHQw7sHU+9ofM5fv4kGcnk41I/7prYdpWdLr7tA8xGuvXkQrrv5EK69eWjqumtUxM1FSCR1IHTxR9oWmcqJ63lYycSseKC/UdVAfg5qRVJqSSoKpQKJ+Ka8PiY7BhD8kYxJmF8YY33HEp0dTU55Du427gR5BGl/D5P9JxPWJYydiTtZG7OW9NJ0VkSs4KuLX/HswGe5y+8unc+lKWsL8QoRytoMQIA0gFPVp/T2SbpaoFYaBjoHIhYJFnkCAm0RNzc3JBIJWVm1u29mZWXh5eVV7zHe3t7IZLJaZWy9e/cmMzNTWyqXnZ1NUFCQ9nmFQsHff//N559/TlVVVa1jNVhaWmJpWXdjQSaT6X2z0JxjAO7ufjenM0+zI2kHcwfPNci6Ja9KbQPgaevZaEyJuWUcuZaLSARPjuzaJm+QmnvdBVqOcO3Ng3DdzYdw7c1DQ9e9pb8L4U6iA6HpwtWQ2XJmUSX/3XEZgFcm9sTP1dao8XjZeCETy5Ar5WSWZ96MoyyTrPIsJCIJ/dz6GTWGjo5ELCHEK4SpXacS4hVSK5kH6hbLd3e7m+33befN4W/iaeNJVnkWb598mwf+eoCz1WdRKBv2jtCgMUIVytoMg7/UH4D4wngKKgt0Pk7jjxToLHRsExBoq1hYWDBkyBAOHDigfUypVHLgwAGGDx9e7zEjR44kPj4epVKpfSwuLg5vb28sLCwYP348Fy5cICYmRvs/ODiYmTNnEhMTU28SqbUQ1iUMa6k1KSUpnM89b5A5NQruphqTfHMyCYAxge74uxl3zSQgICAgINCaEBJJHYjsCrUiyd26biJJpVLxf79foKSqhoG+Tjw1MsDo8UjEEjrbdwZq+yRp/JECnQNb5MkjYDhkYhkzAmew4/4dLApZhIuVC2mlafxS/gszds5gd9JulCplrWMUSgWRmZF8G/stl/IuIUIkdGszELZiW7o5dgPgTNYZnY8TjLYFBNoH4eHhbNy4kc2bN3P58mXmzp1LWVkZTz31FABPPPFELTPuuXPnkp+fz8KFC4mLi2PHjh0sX76c+fPnA2Bvb0+/fv1q/be1tcXV1ZV+/Vr3ho6NzEb73bL9+naDzNnUxhtAWVUNP0elATB7hL9Bzvv/7d15XFT1+gfwz8ywDqssMyAi4JpKLriFXk0NxbpptmllubSqkAtlav1SW3EprlmmLdflZnvmkguGC5o7ikuGgKioGauI7Mx2fn9MMzky6IDMHBg+716+cs58z5nnfEF5fM53ISIiaipYSGpGDImRuSdsv5zKwY4z+XCUSbDo0a6QSW2zwLW5BbdP5uvXR+K0tsbHWeaMpzs/jW2PbMPU7lPhKnFFdkk2Zu6ZidG/jEby5WQIgoAdF3cgel00nt3+LBalLAKgL0Ydzz8u7g3YkQiFfgqKpdPbBEEwTm3jQttETduYMWPwwQcfYO7cuejevTtOnDiBxMRE4wLcly5dQk5OjrF9cHAwtm/fjpSUFHTt2hVTp07FtGnTMHv2bLFuoUGNaDMCAJCYnQi19s53BTKsHahwrX1E0s/Hr6C0WoMwPzcMbF97wYmIiMgecY2kZqS2J2xF5SrM3/QHACBmcDt0DPCwWUzmFtw2LLTdTcFCUmMld5RjQucJ8LzgiYLWBVibvhYZ1zLw8q6X0dqjtdkF1FU6FeKS45AwKIELbjeAXspe+PHsj0jJtWyHpcLKQhRVFUEqkaJdi3ZWjo6IrC02NhaxsbFm30tOTq5xLDIyEocOHbL4+uau0Vj1DewLf1d/FFQWYO+VvXc8+tUwta22EUmCIOB/B7IBAOMiQyC10cM3IiKixoIjkpoRw9S2m5+wvfXLHygqV6Gj0gNTBtn2H5g3j0iq0lThTJF+nSbu2Nb4uUhc8NLdLyHxkUQ8F/4cXGQuZotIN1p4ZKFF6yrRrUX460cknb12Fterr9+2vWE0UohnCFwdXK0aGxGRLcmkMvy7jX4DiM3nNt/Rtaq11ca/U2tbI+nAuas4m18GuZMMj/ZsdUefR0RE1BSxkNSMmBuRtPNMHjae+AtSCbDosa5wcrDtt0Rrz9YAgIulFwEAaVfToNFp4OviiyB3bk/eVHi7eGN6z+mIHxB/y3YCBORW5CI1P9VGkdkvX1dfhHmFQYBg0fS29KJ0AJzWRkT26cE2DwIAkv9Mtqi4XhtDruQkdYKnk6fZNqv/Ho30aEQreLpwByIiImp+WEhqJjQ6Da5W6bezNTxhK6lS4431pwEAzw9og27B3jaPy1BI+rP0T2h1WuO0tu6K7g2yhS/ZlkqrsqidIVGnO9Nb2RsAcDT39oWkzKJMAEBHHxaSiMj+dPTpiI4tOkKj02B79vZ6X+fGHdvM5SGXiyqw84x+DaXx/ULq/TlERERNGQtJzURRVRF0gg4yiQwtnFsAABZsS0duSRVCfeWYESXOduAB8gA4Sh2h1qmRW5GLE/knAHCh7abqVjvc1Kcd3VqvgF4ALNu5jQttE5G9G9FWv+j2nezell/x9zIAtUxrW3voInQC8K92fminsN2akkRERI0JC0nNhGEEiK+rL2RSGQ6eu4pvDuvXsol/pCtcnWSixCWTytDKQ7++wMWSiyYjkqjpiVBEQClXQgLzo8kkkCBAHmDccYzuTC+lvpCUXpR+y6kcVZoqZJdkA+CIJCKyXw+EPQCpRIoTBSdMdoOti9o2JgGASpUW36VcBgCM7xda7ziJiIiaOhaSmgnjEzZXBSpVWsz++RQA4Km+rRHZ1lfM0IwLbh/66xCuVl2Fg9QBnX07ixoT1Y9MKsPsPvrtpG8uJhlez+ozCzKpOIVLe+Mv90eoZygECDief7zWdlnFWdAJOvi4+MDflaPBiMg++cv9ERkYCQDYfL5+i24bNiYx93flxhNXcL1SjVYtXDHkLvMjloiIiJoDFpKaiRu3sk1IysDFqxUI9HLBnPvvEjmyf9ZJMiR9nX06w1nmLGZIdAeiQqKQMCihxrQApVyJhEEJiAqJEiky+9RT2RPArddJyijST2vr0KID1x4jIrv2YFv9otu/nPsFgiDU+fzaprYJgoA1B/Ubg4yLDIFMyr9LiYio+XIQOwCyDUNiJNV54b/7LgAA3ns4HB6NYLeR1h76QpKh2NXVv6uY4VADiAqJwuDgwUjNT0VBRQH85f6IUERwJJIV9A7ojXVn1yElL6XWNoYd2+7yEb9wTERkTUOCh8DVwRV/lv2JEwUn0EPRo07n1za1LSX7Gs7klMDFUYrRvYIbLF4iIqKmiCOSmglDkebIWQ10AjCqe0sMuUspclR6hjWSDFhIsg8yqQy9A3rjgTYPoHdAbxaRrOTGdZJKVaVm22Re0+/Y1qGFOIvqExHZitxRjqEhQwHUb9HtG5cCuNGaA9kAgId7BMFb7nRnQRIRETVxLCQ1E4YnbAXFzvB1c8LcEV1Ejkhvx8Ud+L/9/2dybFHKIuy4uEOkiIiaFqWbEq09WkMn6Myuk6QTdP/s2MaFtomoGTDs3rY9eztUWlWdzr1xKQCDnOuVSPwjFwAwLjK0YYIkIiJqwlhIaiYul+gTIJ3GE/NHdoGPm/hP03Zc3IG45DgUVhaaHL9aeRVxyXEsJhFZqFeAflSSuXWSrpRdQbm6HI5SR4R5hdk6NCIim+ut7A2FXIESVQn2/rnX4vPK1eUoV5cDMF0j6etDl6DVCegT5oNOgZ4NHi8REVFT0ygKScuWLUNoaChcXFzQt29fHDly5Jbti4uLERMTg8DAQDg7O6NDhw7YunWr2bYLFiyARCLB9OnTrRB506DR6nD5ur6Q1Ld1KB7sGihyRIBWp8WCIwsgoOZCmIZjC48shFantXVoRE2OYXrb0byahaTMIv20tnbe7eAoFX9NNCIia5NJZXiwjX7R7U3nNll8nmH0tpujG9wc3QAAVWotvj1yCQAwoV9owwZKRETURIleSPr+++8RFxeHefPmITU1Fd26dUN0dDTy8/PNtlepVBg6dCiys7Px008/ISMjA1988QWCgoJqtE1JScFnn32Grl2b95o7X+7LglaqXztl3gORjWLXptT8VORV5NX6vgABuRW5SM1PtWFURE2ToZCUdjXN+DTdIP2afqFtTmsjouZkRBv99LbfrvyG4qpii84xTmtz/Wda25ZTObharkKglwuGdW4ca0sSERGJTfRd2xISEvDCCy9g4sSJAIAVK1Zgy5YtWLlyJWbPnl2j/cqVK1FUVIQDBw7A0VH/dD00NLRGu7KyMowdOxZffPEF3n333VvGUF1djerqauPrkpISAIBarYZarbboPgztLG1vKxevVuA/u4/BKQyQwgGhXj6NIsbc0lyL26l9bx1vY+17e8d+F4e5fvdz9kOQWxCulF9Byl8p6N+yv/G99Kv6QlI7z3b8Wt0hfs+L43b9zq8HmdOuRTt08umEM0VnkJidiCfueuK25xgecBmmtQmCgDUHswEAT98TAgeZ6M9fiYiIGgVRC0kqlQrHjh3DnDlzjMekUimioqJw8OBBs+ds2rQJkZGRiImJwcaNG+Hv74+nnnoKs2bNgkz2z65QMTEx+Pe//42oqKjbFpLi4+Px1ltv1Tj+66+/Qi6X1+mekpKS6tTemnQCsCxNBjWK4QTAQ+KGxG2JYocFADivPm9Ru6yTWdiaZn7a4s0aU983J+x3cdzc7wq1AldwBT8e/BHXXa8bj5+4fgIAUJRRhK3nLfuzRLfG73lx1NbvFRUVNo6EmooRbUfgTNEZ/HLuF4sKSYapbYaFto9fLsapP6/DyUGKJ3oHWzVWIiKipkTUQlJhYSG0Wi2UStOhwkqlEunp6WbPOX/+PHbt2oWxY8di69atyMrKwpQpU6BWqzFv3jwAwHfffYfU1FSkpKRYFMecOXMQFxdnfF1SUoLg4GAMGzYMnp6WLaqoVquRlJSEoUOHGkdKie3blMvIOnQGcu8yAEBrn9Z4IPoBkaPS0+q02LxpMwoqCsyukySBBAq5ApNHTL7ttvGNse+bA/a7OGrrd+15LY4fOo5r7teMf85LVaX4v5/0uyKOu38cPJ24SOyd4Pe8OG7X74ZRxEQ3uz/sfnx49EOcKjyF7OvZCPUKvWX7/Ar9sgoKV/2IpP8dyAYAjOjaEr7uztYMlYiIqEkRfWpbXel0OigUCnz++eeQyWTo2bMnrly5gsWLF2PevHm4fPkypk2bhqSkJLi4uFh0TWdnZzg710wQHB0d6/yPhfqcYw051yuxaPtZAEDU3a7YXajfJrwxxAYAjnDEnD5zEJccBwkkJsUkCfRrOM3uMxsuzpZ9DYHG0/fNDftdHDf3e9+gvgCAM0VnoIYackc5zl/Vj/wLdAuEr5uvKHHaI37Pi6O2fufXgmrj5+qHyJaR2HdlHzaf34zYHrG3bG9cI0nuj/zSKmz5PQcAF9kmIiK6maiTvf38/CCTyZCXZ7rocl5eHgICAsyeExgYiA4dOphMY+vUqRNyc3ONU+Xy8/MREREBBwcHODg4YM+ePVi6dCkcHByg1dr/LmCCIOCN9adRVq1Bj9beaBOgv2fDUO3GIiokCgmDEky22AUApVyJhEEJiAqJEikyoqYnyD0ILd1aQiNocCL/BAAg41oGAC60TUTN18i2IwEAm89vhk7Q3bKtYWqbQq7At4cvQ60VENHaG3e38rJ6nERERE2JqCOSnJyc0LNnT+zcuROjRo0CoB9xtHPnTsTGmn9q1L9/f3zzzTfQ6XSQSvV1sMzMTAQGBsLJyQn33Xcffv/9d5NzJk6ciLvuuqvGOkr2RKsTcORCEfJLq3A2rxS70vPhJJNi0aNdsebsNgCoUbBpDKJCojA4eDBS81NRUFEAf7k/IhQRt53ORkQ19QrohU3nNuFo3lH0C+qHjKK/C0ktWEgiouZpcPBguDm64UrZFRzPP46eyp61tjVMbWvh5IevD18EAIznaCQiIqIaRJ/aFhcXh/Hjx6NXr17o06cPlixZgvLycuMubuPGjUNQUBDi4+MBAJMnT8Ynn3yCadOm4eWXX8bZs2fx/vvvY+rUqQAADw8PhIeHm3yGm5sbfH19axy3F4mnc/DWL2nIuV5lcnx4FyXaKz1QcKrmdraNiUwqQ++A3mKHQdTk9VL+U0gCOCKJiMjFwQVDQ4ZiQ9YG/HLul1oLSYIgGKe2pf0pQX5pNfw9nHF/eKAtwyUiImoSRC8kjRkzBgUFBZg7dy5yc3PRvXt3JCYmGhfgvnTpknHkEQAEBwdj+/btmDFjBrp27YqgoCBMmzYNs2bNEusWRJV4OgeT16aaWa4a+OVUDh7ommN8wtbYprYRUcPqFdALAPB74e8oU5Uh61oWAOCuFneJGRYRkahGth2JDVkb8Gv2r5jTdw6cZTXXxSxRlaBaWw0A2HisFADwVJ/WcHIQdRUIIiKiRkn0QhIAxMbG1jqVLTk5ucaxyMhIHDp0yOLrm7uGPdDqBLz1S5rZIpLBW7+kQRb695x/18Y3tY2IGk4r91ZQypXIq8jDxnMbodKpIHeQI8gjSOzQiIhE01PZE4Fugcgpz0Hy5WREh0bXaGN46Obu6InjF8vgIJVgbN/WNo6UiIioaeBjlibsyIWiGtPZbiQAyCkpxXXVdQAckURk7yQSiXGa6Ndnvgagn9YmlfCveiJqvqQSKf7d5t8AgM3nNpttY1hoGxpPAMADdwdC4Wn5zrFERETNCf910YTll9ZeRDKQOOiHZzvLnOHp5GntkIhIZL2U+ultl0svAwC8nb2h1dn/bpVERLcyos0IAMC+K/tQVFVU4/38Sv2IpJIyOQAusk1ERHQrLCQ1YQqP2z8pkzqUANAvtC2RSKwdEhGJTKVVmbzefXk3otdFY8fFHSJFREQkvjbebdDFtws0ggbbLmyr8b5hRJJW7YG7g7wQ0drbxhESERE1HSwkNWF9wnwQ6OWC2spDEgA+nvpRSwo510cisnc7Lu5A/JH4GsfzK/IRlxzHYhIRNWsj2upHJZmb3pZXngcA0Gk8Mb5fKB++ERER3QILSU2YTCrBvBGdzb5nSH+iu7kCAPxc/WwUFRGJQavTYsGRBRDMLL9vOLbwyEJOcyOiZmt46HA4SBxw+uppnL9+HoB+45KD565i3wX9a1dJCzzYNVDMMImIiBo9FpKauOHhgZh0b9saxwO8XLD86Qj4eum3suWIJCL7lpqfiryKvFrfFyAgtyIXqfmpNoyKiKjx8HX1Rf+g/gD0o5IST+fgXwt34ckvDuFSSS4AQKP2QHJGvphhEhERNXoOYgdAd66kSg0AGNZZiX93DYTCwwV9wnwgk0qw9zf9nH/u2EZk34w7DjVQOyIie/Rg2wex5889+DFjI/48GQbh72eqkr/XlKysdMfktalY/nQEhodzZBIREZE5HJHUxAmCgOQM/T8Mn+gTjIe6ByGyrS9kUv3kNsMuJP6uLCQR2TNLi8UsKhNRczao1SC4O3qgWJUPqfzC30d1xl1uBY1+h9u3fkmDVldzqjARERGxkGRTWp0WKbkp2Hp+K1JyUxpkrZKs/DJcKa6Ek4MUkW1qroNkGH3AqW1E9i1CEQGlXAlJLcvvSyBBgDwAEYoIG0dGRNR4uDi4oLvPQACAg9dxAIBEVg6JRAdBkEDQuEMAkHO9CkcuFIkYKRERUePFqW02suPiDiw4ssBkDROlXInZfWYjKiSq3tc1jEa6p40vXJ1kNd43FJI4CoHIvsmkMszuMxtxyXGQQGKy6LahuDSrzyzIpDX/niAiak46ug/CvrwtcPT4HdW5DxmntQlaNwD//B2ZX1olUoRERESNG0ck2cCOizsQlxxXYyHchtiSe/ffC0IO7lizUFShrkCpWj9UW+HKEUlE9i4qJAoJgxJqjEBUypVIGJRwR0VrIiJ70TugJ3SqFpDIquHgkQaJo+m0NgOFh4sY4RERETV6HJFkZbfbklsCCRYeWYjBwYPrPFKgrFqDlGz9sOvBHWsWigorCwEArg6ucHN0q0f0RNTURIVEYXDwYKTmp6KgogD+cn9EKCI4EomI6G/3tPGDc2JvqJ1+haNXKjSlXQAAglpfSJJAv/ttnzAfEaMkIiJqvDgiycqsuSX3/qxCqLUCQn3lCPWrWSjKr9CPVlLIFZBIzK+bQkT2RyaVoXdAbzzQ5gH0DujNIhIR0Q1kUglm3POE/vduZyF1+QsAoNN4GleZmzeis3HjEiIiIjLFQpKVWXNL7uS/p7UNMjMaCQAKKv9eH4k7thEREREZPdOrN1x1YZBIdHD0StEflGig9HLC8qcjMDw8UNwAiYiIGjEWkqzMWltyC4JgXGh7kJn1kYB/RiRxoW0iIiKif2i0OlSV6x/ESaT6XXSdvFPh3m4hHDz+EDM0IiKiRo+FJCuz1pbcGXmlyLleBRdHKe5p42u2jWGUExfaJiIiIvrHZ0c3Qud+GDcvYdkQG6EQERHZOxaSrMywJTeAWotJ9dmSe3e6vkjUr60fXBzNn5tfyRFJRERERDfS6rRYk7FE/+Km1MywOcrCIwuh1WltGxgREVETwUKSDdS2JTcAvNLrlXptyf3P+ki1F4mMI5LMfC4RERFRc3Qs7xgqhSLUtg/JnWyEQkRE1Bw4iB1Ac3HzltzrMtfhSN4RpOSmYHyX8XW6VkmVGkcvXgMADOpQe5GIi20TERERmTr25yWL2tVnIxQiIqLmgIUkGzJsyQ0AnX0746GND2HPn3twsuAkuvl3s/g6+88WQqsT0MbfDa195bW244gkIiIiIlOZObUMRboJlwYgIiIyj1PbRBLqFYqRbUcCAD4+/nGdzt3997S2wR1rLxCVq8tRoakAAPi5+tUzSiIiIiL7IQgCTmS2gE7tVWub+m6EQkRE1FywkCSiSd0mwUHqgMM5h3Ek54hF5wiCgOQM/UijWxWS8iv0xSZ3R3fIHWsftURERETUXGTll+FCYSW0BSOhLxmZjk4yvK7PRihERETNBQtJIgpyD8Jj7R8DACw9vhSCINzmDCAtpwT5pdWQO8nQO6xFre0M09o4LJuIiMj+LFu2DKGhoXBxcUHfvn1x5MitH0gVFxcjJiYGgYGBcHZ2RocOHbB161bj+/Hx8ejduzc8PDygUCgwatQoZGRkWPs2bC7xdC4AIDJgEP5jZiMUpVyJhEEJ9doIhYiIqLngGkkie7Hri9iQtQEnC07ityu/YWCrgbdsbxiN1K+tH5wdan9Sll+pH5GkcOX6SERERPbk+++/R1xcHFasWIG+fftiyZIliI6ORkZGBhSKmj/3VSoVhg4dCoVCgZ9++glBQUG4ePEivL29jW327NmDmJgY9O7dGxqNBq+//jqGDRuGtLQ0uLm52fDurGt7mr6QNDw8AFEhfUw2QvGX+yNCEcGRSERERLfBQpLI/OX+ePKuJ7Hqj1X4+PjH+FfQvyCV1D5QLPnv9ZEGdbz1SCOOSCIiIrJPCQkJeOGFFzBx4kQAwIoVK7BlyxasXLkSs2fPrtF+5cqVKCoqwoEDB+Do6AgACA0NNWmTmJho8nr16tVQKBQ4duwYBg689UOupuJyUQVOXymBVAJEdVICMN0IhYiIiCzDQlIj8Gz4s/gh8wekF6Uj6WISokOjzba7XqHGsYvXANy+kGRYI4mFJCIiIvuhUqlw7NgxzJkzx3hMKpUiKioKBw8eNHvOpk2bEBkZiZiYGGzcuBH+/v546qmnMGvWLMhk5kffXL9+HQDg4+NTayzV1dWorq42vi4pKQEAqNVqqNVqi+7H0M7S9ndi2+9/AQB6hbSAp7PUJp/ZWNmy38kU+14c7HfxsO/Fcbt+v9OvBwtJjYC3izee6fwMVpxcgWUnliGqdZTZYdV7zxZAJwAdlO5o1eLWC2gXVOpHJHFqGxERkf0oLCyEVquFUqk0Oa5UKpGenm72nPPnz2PXrl0YO3Ystm7diqysLEyZMgVqtRrz5s2r0V6n02H69Ono378/wsPDa40lPj4eb731Vo3jv/76K+Tyum30kZSUVKf29fH9aRkACVqh0GR9qObMFv1O5rHvxcF+Fw/7Xhy19XtFRcUdXZeFpEZiXOdx+ObMN7hw/QK2XNiCkW1H1mhjWB9p0C12azPg1DYiaiy0Wq1dPIVSq9VwcHBAVVUVtFqt2OE0GxqNRuwQmjydTgeFQoHPP/8cMpkMPXv2xJUrV7B48WKzhaSYmBicPn0a+/btu+V158yZg7i4OOPrkpISBAcHY9iwYfD09LQoNrVajaSkJAwdOtQ47c4aCsuqcf7QHgDAtEcHoaW3q9U+qymwVb9TTex7cTS1ftfpdFCr1RZtxtTYaTQaHDhwAP369YODA8sPtiCRSCAIAnbt2lXr97xhFHF98SvZSHg4eeDZ8GexJHUJPj3xKe4PvR+Osn++4DqdgD2Zlq2PBPwzte3m3UiIiGxFEATk5uaiuLhY7FAahCAICAgIwOXLlyGRSG5/AjUIQRCgVCqhVqubRPJvbX5+fpDJZMjLyzM5npeXh4CAALPnBAYGwtHR0WQaW6dOnZCbmwuVSgUnJyfj8djYWGzevBl79+5Fq1atbhmLs7MznJ2daxx3dHSs89eqPufUxe7MHAgC0LWVF0L8LStyNQfW7neqHfteHE2h31UqFbKzs6HT6cQOpUEY8qecnBzmTzYkCAI8PDzg4OBg9nv+Tv8csJDUiDx515P4Ku0rXCm7gvVZ6zG642jje3/8VYLCMhXcnGToFVL7egWA/pvGMLXN35UjkohIHIYikkKhgFwub/LJg06nQ1lZGdzd3SGV1r4pAjUsjUaD7Oxs5OXlITQ0tMl/H90pJycn9OzZEzt37sSoUaMA6L83d+7cidjYWLPn9O/fH9988w10Op3xezczMxOBgYHGIpIgCHj55Zexfv16JCcnIywszCb3Yyvb/9Dv1hbdxXyxjYioMRAEATk5OZDJZAgODraLfIP5k+0JgoCysjJUV1cjPz//tg+G6oOFpEZE7ijHC11fwIIjC/DZyc8wsu1IuDi4AAB2/71b27/a+8HJ4dZ/AEtUJajW6he/5NQ2IhKDVqs1FpF8fX3FDqdB6HQ6qFQquLi4MBGyIZ1OBx8fHxQXF0Oj0TT6J8m2EBcXh/Hjx6NXr17o06cPlixZgvLycuMubuPGjUNQUBDi4+MBAJMnT8Ynn3yCadOm4eWXX8bZs2fx/vvvY+rUqcZrxsTE4JtvvsHGjRvh4eGB3Fx94cXLywuurk17Gtj1SjUOnCsEwEISETVuGo0GFRUVaNmyZZ3XmmusmD+Jw9nZGVVVVSgpKYFWq611c436YiGpkXm8w+NY/cdq5Jbn4vuM7zG+y3gA/xSS6rI+kpezF5xlNYecExFZm2FNJHtJgkhchjUVtFotC0kAxowZg4KCAsydOxe5ubno3r07EhMTjQtwX7p0ySRZDw4Oxvbt2zFjxgx07doVQUFBmDZtGmbNmmVss3z5cgDAoEGDTD5r1apVmDBhgtXvyZp2p+dDrRXQTuGOdgp3scMhIqqVYQ3GG6ccE9WX4ftIrVazkGTvnGROmNR1EuYfnI///v5fPN7hcVSpHHDicjEAC9dHqtQXnTitjYjE1tynIRFZS2xsbK1T2ZKTk2sci4yMxKFDh2q9nj0s6Fobw7S24RyNRERNBPMnagjW/D7i2LJGaGS7kWjt0RrXqq9h7Zm1+O1sAQQBuCvAA4Fetx9ebhiRxIW2iYiIqDmrVGmNu95yWhsREVHDYCGpEXKUOmJK9ykAgNWnVyMpPRuAZdPaAHChbSKyG1qdgIPnrmLjiSs4eO4qtDr7HTVBRA1v79kCVKq1CPJ2RXgQd2sjouaB+RNZG6e2NVL3h92PL3//ElnFWfjt+k8AojDYgmltAEckEZF9SDydg7d+SUPO9SrjsUAvF8wb0RnDwwOt9rmDBg1C9+7dsWTJEqt9BhHZxo27tXGqCBE1B8yfyBY4IqmRkkqkiO2hX/tA67EXHq6ViAhpYdG5xhFJ3LGNiJqoxNM5mLw21SQJAoDc61WYvDYViadzRIpMv5aMRqMR7fOJyDJqrQ470vIAANFdlCJHQ0RkfcyfyFZYSGrEhgQPgZ9jW0ikKrQMOwhHmWVfrvwK/WLbCleOSCKixkEQBFSoNBb9Kq1SY96mP2BuELbh2PxNaSitUlt0vbosIjxhwgTs2bMHH330ESQSCSQSCVavXg2JRIJt27Zh0KBBcHV1xb59+6DT6RAfH4+wsDC4urqiW7du+Omnn0yud/r0adx///1wd3eHUqnEM888g8LCwvp3JBFZ7ND5qyip0sDXzQm9Qn3EDoeIqM6YPzF/aqw4ta0Rk0gkcLj+ACD/GHnYjdzyXAS43X6hSMPUNj+5n7VDJCKySKVai85ztzfItQQAuSVVuHv+rxa1T3s7GnIny37cffTRR8jMzER4eDjefvttAMAff/wBAHj99dcxf/58hIeHw9fXF/Hx8Vi7di1WrFiB9u3bY+/evXj66afh7++Pe++9F8XFxRgyZAief/55/Oc//0FlZSVmzZqF0aNHY9euXfW6dyKynGFa27AuSsiknNZGRE0P8yfmT40VC0mNWGFZNbIutYRL61BAno3PT32OuZFzb3mOIAjIr+SIJCKi+vDy8oKTkxPkcjkCAvSF+/T0dADA/PnzMXjwYHh6ekKtVuP999/Hjh07EBkZCQBo06YN9u3bh88++wz33nsvPvnkE/To0QPvv/++8forV65EcHAwMjMz0aFDB9vfIFEzodMJ2P6HflrbMO7WRkRkVcyfmh8WkhqxvZkFEAQJWuoeQT4SsP7sekwMn4hgj+BazymuLoZGp5976ufKEUlE1Di4OsqQ9na0RW2PXCjChFUpt223emJv9Am7/XQVV0eZRZ97O7169TL+PisrCxUVFRg6dKhJG5VKhR49egAATp48id27d8Pd3b3Gtc6dO8dEiMiKjl++hoLSang4O6BfW1+xwyEiqhfmT6aYPzUeLCQ1Yrsz9FPUhreLxDlpf+z/az+Wn1iO9we8X+s5hvWRfFx84ChztEmcRES3I5FILB4ePaC9PwK9XJB7vcrsPH8JgAAvFwxo72/T6Spubm7G35eVlQEAtmzZgqCgIJN2zs7OxjYjRozAwoULa1wrMNB6u6YQEYyjkYZ0UsDZoWH+MUREZGvMn0wxf2o8WEhqpLQ6AXsz9YWkwR0VeMD9Zez/az82n9+M5+5+Dm2925o9z7hjmyt3bCOipkkmlWDeiM6YvDYVEsAkGTKkPfNGdLZaEuTk5AStVnvLNp07d4azszMuXbqEe++912ybiIgIrFu3DqGhoXBw4I9bIlsRBAGJp/XrI0VzWhsRNRPMn8iWuGtbI3Xi8jVcr1TDy9UR3YO90cWvC4YED4EAActOLKv1PMNC2/5yFpKIqOkaHh6I5U9HIMDLxeR4gJcLlj8dgeHh1nsiFRoaisOHDyM7OxuFhYXQ6XQ12nh4eODVV1/FjBkzsGbNGpw7dw6pqan4+OOPsWbNGgBATEwMioqK8OSTTyIlJQXnzp3D9u3bMXHixNsmWkRUf2dySnGpqALODlLc24H5EBE1H8yfyFYaRSFp2bJlCA0NhYuLC/r27YsjR47csn1xcTFiYmIQGBgIZ2dndOjQAVu3bjW+Hx8fj969e8PDwwMKhQKjRo1CRkaGtW+jQe1O1xeEBrT3g4NM/2WK7RELCSRIupiEtKtpZs8zTG1TyLnQNhE1bcPDA7Fv1hB8+8I9+OiJ7vj2hXuwb9YQqyZBAPDqq69CJpOhc+fO8Pf3x6VLl8y2e+edd/Dmm28iPj4enTp1wvDhw7FlyxaEhYUBAFq2bIn9+/dDq9Vi2LBhuPvuuzF9+nR4e3tDKm0UP36J7JJht7aBHfzh5syn2UTUvDB/IlsQ/afr999/j7i4OKxYsQJ9+/bFkiVLEB0djYyMDCgUNYshKpUKQ4cOhUKhwE8//YSgoCBcvHgR3t7exjZ79uxBTEwMevfuDY1Gg9dffx3Dhg1DWlqayRzNxiw5U18QGtzxnz5o36I97g+7H1svbMUnxz/Bp1Gf1jiPU9uIyJ7IpBJE2nih3A4dOuDgwYMmxyZMmACdToeSkhLjMYlEgmnTpmHatGm1Xqt9+/b4+eefrRYrEdVkKCRxWhsRNVfMn8jaRC8kJSQk4IUXXsDEiRMBACtWrMCWLVuwcuVKzJ49u0b7lStXoqioCAcOHICjo34x6dDQUJM2iYmJJq9Xr14NhUKBY8eOYeDAgda5kQaUX1qF01f0f9gG3jQkO6Z7DLZnb8dvV37DifwT6K7obnouRyQRERFRM5VdWI703FLIpBJEdWIuREREZA2iFpJUKhWOHTuGOXPmGI9JpVJERUXVqGYabNq0CZGRkYiJicHGjRvh7++Pp556CrNmzYJMZn5XjuvXrwMAfHzMb3NYXV2N6upq42tDxVStVkOtVlt0L4Z2lra/lV1p+idpdwd5wttFanLNQNdAjGwzEuvPrcdHxz7CZ/d9BonknwXT8sv/3rXNyadBYmkKGrLvyXLsd3E0lX5Xq9UQBAE6nc7sHPmmSBAE4//t5Z6aghv7Xa1W1/hZ39j/LJBtGUYjRbbxhbfcSeRoiIiI7JOohaTCwkJotVoolUqT40qlEunp6WbPOX/+PHbt2oWxY8di69atyMrKwpQpU6BWqzFv3rwa7XU6HaZPn47+/fsjPDzc7DXj4+Px1ltv1Tj+66+/Qi6X1+mekpKS6tTenO8ypQCkaCkpNln7yaCtri1kkOFo/lF8vOljtHNsZ3zv8vXLAIDM1EyUnyq/41iakoboe6o79rs4Gnu/Ozg4ICAgAGVlZVCpVGKH06BKS0vFDqFZqqqqwt69e6HRaEyOV1RUiBQRNUaJxmltytu0JCIiovoSfWpbXel0OigUCnz++eeQyWTo2bMnrly5gsWLF5stJMXExOD06dPYt29frdecM2cO4uLijK9LSkoQHByMYcOGwdPT06K41Go1kpKSMHToUOOUu/rQaHX4v+PJADR47oF70CPY22y7P4/+ie8yv8NRl6N4edjLkEgk0Oq0mPe9vg9GRY1qNju3NVTfU92w38XRVPq9qqoKly9fhru7O1xcXG5/QhMgCAJKS0vh4eFhMhKUrEsQBFy9ehUuLi4YOHBgje+nG9ddoOYt93oVjl8qBgAM4/pIREREViNqIcnPzw8ymQx5eXkmx/Py8hAQYD4BCAwMhKOjo8nQ9k6dOiE3NxcqlQpOTv8MY46NjcXmzZuxd+9etGrVqtY4nJ2d4ezsXOO4o6Njnf+hVp9zbnT8zyKUVmnQQu6InqF+kEnN/2Plpe4vYcO5DTh99TT25+7H4NaDcb3yOrSCFlKJFAoPBRykTa5OeEfutO+pftjv4mjs/a7VaiGRSCCVSu1mhw3DdDbDfZFt3Njv5r7vG/OfA7KtpL+XBoho7Q2lp30UsImIiBojUTNhJycn9OzZEzt37jQe0+l02LlzJyIjI82e079/f2RlZZmsT5GZmYnAwEBjEUkQBMTGxmL9+vXYtWuXcSvBpmB3hn6No4Ed/GstIgGAn6sfnur0FADgkxOfQCfoUFCh37HN18W32RWRiIiIqHlL5G5tRERENiH6I9W4uDh88cUXWLNmDc6cOYPJkyejvLzcuIvbuHHjTBbjnjx5MoqKijBt2jRkZmZiy5YteP/99xETE2NsExMTg7Vr1+Kbb76Bh4cHcnNzkZubi8rKSpvfX10lZ+iLQYM73n6nkWfDn4W7ozsyr2Xi1+xfUVCpP7e5TGkjIiIiAoBr5SocOl8EgIUkIiIiaxN92MqYMWNQUFCAuXPnIjc3F927d0diYqJxAe5Lly6ZTCEIDg7G9u3bMWPGDHTt2hVBQUGYNm0aZs2aZWyzfPlyAMCgQYNMPmvVqlWYMGGC1e+pvnKvV+FMTgkkEv2IpNvxcvbCuC7j8OmJT/HJ8U8woNUAAICjxBFanRYyqfld7IiIiIjsyc70fGh1Au4K8ECon5vY4RAREdk10QtJgH4to9jYWLPvJScn1zgWGRmJQ4cO1Xo9w1bBTU3y39PaurXyho+bZVvWPtPpGaw+vRoXSy/i4pmLAICThScRvS4as/vMRlRIlNXiJSIiImoMEk/rp7UND+doJCIiImsTfWob/aMu09oMDuUcQoWm5tbH+RX5iEuOw46LOxosPiIim9NpgQu/Ab//pP+/Tmv1jxw0aBCmT59u9c8hooZRXq3B3rP6HIrT2oiIYPP8iblT89MoRiQRoNLosC+rEAAwqKNlaxxpdVosOLLA7HsCBEggwcIjCzE4eDCnuRFR05O2CUicBZT89c8xz5bA8IVA55HixUVEjcqezAKoNDqE+MpxV4CH2OEQEYmL+RPZAEckNRLHLl5DWbUGvm5OuDvIy6JzUvNTkVeRV+v7AgTkVuQiNT+1ocIkIrKNtE3AD+NMkyAAKMnRH0/bJE5cDUClUokdApFdMU5r6xIAiaT2HW+JiOyeneZPzJ0aHxaSGgnD+kj3dvSHVGpZElRQUdCg7YiIrEYQAFW5Zb+qSoBtrwEwt97d38cSZ+nbWXK9O1g379q1axg3bhxatGgBd3d3PPbYYzh79qxJmy+++ALBwcGQy+V4+OGHkZCQAG9vb+P78+fPR/fu3fHll18iLCwMLi4uAIDi4mI8//zz8Pf3h6enJ4YMGYKTJ0+aXPvdd9+FQqGAh4cHnn/+ecyePRvdu3ev9/0Q2ZtqjRa70vU51DBOayMie9ME86cbcye5XI4HHngA586dM2nD3Knp49S2RmL334WkQXVYH8lfbtkUOEvbERFZjboCeL9lA11M0D9pWxBsWfPX/wKc6reL04QJE3D27Fls2rQJ7u7umDlzJh588EGkpaXB0dER+/fvx6RJk7Bw4UKMHDkSO3bswJtvvlnjOllZWVi3bh1+/vlnyGT6qcaPP/44XF1dsW3bNnh5eeGzzz7Dfffdh8zMTPj4+ODrr7/Ge++9h08//RT9+/fHd999hw8//BBhYWH1uhcie3Tg3FWUVWug8HBGj2BvscMhImpYTTB/ujF38vT0xGuvvYbRo0cjLS0Nzs7OzJ3sBAtJjcCV4kpk5pVBKgEGtvez+LwIRQSUciXyK/IhmKk8SyCBUq5EhCKiIcMlImoWDEnQ/v370a9fP+h0Onz++ecIDw/Hhg0b8Pjjj+Pjjz/G/fffj1dffRUA0KFDBxw4cACbN282uZZKpcL//vc/+PvrC/v79u3DkSNHkJ+fD2dnZwDABx98gA0bNuCnn37Ciy++iI8//hjPPfccJk6cCACYO3cufv31V5SVldmwF4gat+1/T2uL7hJg8YhuIiKyjptzJwBYu3YtQkJCsGHDBowZM4a5k51gIakRMExr69G6BbzlThafJ5PKMLvPbMQlx0ECiUkxSQJ9MjWrzywutE1E4nOU659sWeLiAeDrx27fbuxPQEg/yz67Hs6cOQMHBwf07dvXeMzHxwcdO3bEmTNnAAAZGRl4+OGHTc7r06dPjWQoJCTEmAgBwMmTJ1FWVgZfX1+TdpWVlcbh3xkZGZgyZUqNa+/atate90Nkb7Q6AUlp+rUiuVsbEdmlJpY/mcudfH190a5dO6SnpwNg7mQvWEhqBJIz9GsYDbZwt7YbRYVEIWFQAhYcWWCy8LZSrsSsPrMQFRLVYHESEdWbRGL58Oi2Q/S7i5TkwPw8f4n+/bZDgCZSKHdzM733srIyBAYGIjk5uUbbG9cIIKLaHc0uwtVyFbxcHdG3jY/Y4RARNbxmnD8xd2rcWEgSWbVGi/1ZhQDqtj7SjaJCojA4eDBS81NRUFEAf7k/IhQRHIlERE2TVKbfovaHcQAkME2G/p66MnyB1ZOgTp06QaPR4PDhw8bh2UVFRcjIyEDnzp0BAB07dkRKSorJeTe/NiciIgK5ublwcHBAaGio2TaGa48bN65O1yZqLhL/0E9ri+qkhKOM+8cQUTPXCPInc7nT1atXkZWVhU6dOgFg7mQv+FNXZCkXrqFCpYW/hzO6tPSs93VkUhl6B/TGA20eQO+A3iwiEVHT1nkkMPp/gGeg6XHPlvrjnUdaPYT27dvjoYcewgsvvIB9+/bh5MmTePHFFxEUFISHHnoIAPDyyy9j69atSEhIwNmzZ/HZZ59h27Ztt92CPCoqCpGRkRg1ahR+/fVXZGdn48CBA3jjjTdw9OhR47X/+9//Ys2aNTh79izeffddnDp1itubEwEQBAG//mGY1qYUORoiokZC5PzJXO70zDPPIDAwkLmTnWEhSWSG9ZEGdfDnNzgR0Y06jwSmnwbGbwYe/a/+/9N/t0kRyWDVqlXo2bMnHnzwQfTv3x8AsHnzZjg6OgIA+vfvjxUrViAhIQHdunVDYmIiZsyYYdymtjYSiQRbt27FwIEDMXHiRHTo0AFPPPEELl68CKVS/4/isWPHYs6cOXj11VcRERGBCxcuYMKECbe9NlFzcPpKCa4UV8LVUYaBHbg7LRGRkcj50425U2RkJARBwA8//MDcyc5wapvIdhsKSfWc1kZEZNekMiBsgE0/8sa59y1atMD//vc/AIBOp0NJSQk8PU1Hj77wwgt44YUXTF63a9fO+Hr+/PmYP39+jc/x8PDA0qVLsXTp0lpjefPNN022xB06dKjJtYmaq8Q/cgAAg+/yh4sjR2ETEZmwcf5UW+4E/JM/3Yi5U9PHQpKILhdV4FxBOWRSCf7V3k/scIiIqB4++OADDB06FG5ubti2bRvWrFmDTz/99I6vW1FRgRUrViA6OhoymQzffvstduzYgaSkpAaImqhp2/4Hd2sjImqqmDs1fSwkicgwra1nSAt4uTqKHA0REdXHkSNHsGjRIpSWlqJNmzZYunQpnn/++Tu+rmEI93vvvYeqqip07NgR69atQ1QUd+Ok5i0rvxRZ+WVwlEkw+C6O6CYiamqYOzV9LCSJaHdGAQBgUEfO7Sciaqp++OEHq1zX1dUVO3bssMq1iZoyw2ik/u384OnCB3FERE0Nc6emj4tti6RKrcWBc4UAgMFcH4mIiIjIItv/yAXAaW1ERERiYSFJJIcvFKFKrUOApwvuCvAQOxwiIiKiRu9KcSVO/XkdEgkwtLNS7HCIiIiaJRaSRJJs3K3NHxKJRORoiIiIiBq/7af1o5F6h/rAz91Z5GiIiIiaJxaSRJJsXB+J09qIiIiILMFpbUREROJjIUkE2YXluFBYDgepBP3b+YodDhEREVGjV1hWjZTsIgBAdBdOayMiIhILC0kiMExr6x3qAw/uNkJERER0WzvS8qATgLuDvNCqhVzscIiIiJotFpJEsNs4rc1f5EiIiBo3rU6LlNwUbD2/FSm5KdDqtGKH1KAmTJiAUaNGifLZGzZsQLt27SCTyTB9+nRRYiCqi3+mtXE0EhHRrTB/sh7mT3osJNlYpUqLg+evAgAG38X1kYiIarPj4g5Er4vGs9ufxazfZuHZ7c8iel00dlzcIXZoduGll17CY489hsuXL+Odd94RLY5BgwY160SsvpYtW4bQ0FC4uLigb9++OHLkyC3bFxcXIyYmBoGBgXB2dkaHDh2wdevWO7qmLZVUqbE/S58/DQ/n+khERLVh/mRdzJ/0WEiyIa1OwOr9F6DS6ODr5og2fm5ih0RE1CjtuLgDcclxyKvIMzmeX5GPuOQ4myVDKpXKJp9ja2VlZcjPz0d0dDRatmwJDw+Pel3HXvunsfv+++8RFxeHefPmITU1Fd26dUN0dDTy8/PNtlepVBg6dCiys7Px008/ISMjA1988QWCgoLqfU1b0eoEHDx3FR9sz4BKq0MbPznaKer3/UpEZO+YP1kX86d/sJBkI4mnc/CvhbuwcHsGAOBquRoDFu1G4ukckSMjIrI+QRBQoa6w6FdpdSnij8RDgFDzOn//t+DIApRWl1p0PUGoeZ3aDBo0CLGxsZg+fTr8/PwQHR0NAEhISEC3bt0QFBSEkJAQTJkyBWVlZcbzVq9eDW9vb2zfvh2dOnWCu7s7hg8fjpycf/6O12q1iIuLg7e3N3x9ffHaa6/ViK26uhpTp06FQqGAi4sL/vWvfyElJcX4fnJyMiQSCbZv344ePXrA1dUVQ4YMQX5+PrZt24ZOnTrB09MTTz31FCoqKszeY3JysjHxGTJkCCQSCZKTkwEA69atQ5cuXeDs7IzQ0FB8+OGHJueGhobinXfewbhx4+Dp6YkXX3wRALBv3z4MGDAArq6uCA4OxtSpU1FeXm4879NPP0X79u3h4uICpVKJxx57DIB+aPqePXvw0UcfQSKRQCKRIDs72+KvV3OVkJCAF154ARMnTkTnzp2xYsUKyOVyrFy50mz7lStXoqioCBs2bED//v0RGhqKe++9F926dav3NW3BkDs9+cUh/O/gRQBAXmk1cyciajaYPzF/aqz5k4NNP62ZSjydg8lrU2v8kc69XoXJa1Ox/OkIDA8PFCU2IiJbqNRUou83fRvsenkVeej3XT+L2h5+6jDkjpYvzLtmzRpMnjwZ+/fvNx6TSqVYsmQJ/P39kZ+fj9jYWLz22mv49NNPjW0qKirwwQcf4KuvvoJUKsXTTz+NV199FV9//TUA4MMPP8Tq1auxcuVKdOrUCR9++CHWr1+PIUOGGK/x2muvYd26dVizZg1CQkKwaNEiREdHIysrCz4+PsZ28+fPxyeffAK5XI7Ro0dj9OjRcHZ2xjfffIOysjI8/PDD+PjjjzFr1qwa99evXz9kZGSgY8eOWLduHfr16wcfHx8cO3YMo0ePxvz58zFmzBgcOHAAU6ZMga+vLyZMmGA8/4MPPsDcuXMxb948AMC5c+cwfPhwvPvuu1i5ciUKCgoQGxuL2NhYrFq1CkePHsXUqVPx1VdfoV+/figqKsJvv/0GAPjoo4+QmZmJ8PBwvP322wAAf3+uH3grKpUKx44dw5w5c4zHpFIpoqKicPDgQbPnbNq0CZGRkYiJicHGjRvh7++Pp556CrNmzYJMJqvXNQF94l5dXW18XVJSAgBQq9VQq9UW3Y+h3c3tt/+Rh5e/O1kjdyqv1mLy2lR8/EQ3rpV0B2rrd7I+9r04mkq/q9VqCIIAnU4HnU6HCnUFIr+LbLDr1yV/OvjEwTrnT5MmTTL+jNfpdJBIJPjPf/4DhUKBvLw8vPzyy5g5cyaWLVtmbFNRUYHFixdjzZo1kEqlGDduHF555RWsXbsWgD7vWL16Nb788kt06tQJCQkJWL9+PQYPHgydTgcAmDlzJtatW4dVq1YhJCQEixcvRnR0NDIzM+Hj42NsN3/+fCxduhRyuRxPPPEERo8eDScnJ6xduxZlZWV49NFHsXTpUrz22ms17u+ee+7BmTNn0KlTJ/z444/G/CklJQWjR4/GvHnzMHr0aBw4cACxsbFo0aJFjfzpzTffxJtvvgkAOHv2LIYPH4533nkHX375JQoKCjB16lTExMRg5cqVxvxpzZo1xvxp37590Ol0+M9//oPMzEx06dIFb731FgB9/mS4TwDGYpsgCFCr1ZDJZCb3c6d/FlhIsjKtTsBbv6SZqQsDAgAJgLd+ScPQzgGQSSU2jo6IiG7Wvn17LFq0yOTY9OnTodPpUFJSgvDwcLz77ruYNGmSSSFJrVZjxYoVaNu2LQAgNjbWWBwBgCVLlmDOnDl45JFHAAArVqzA9u3bje+Xl5dj+fLlWL16Ne6//34AwBdffIGkpCT897//xcyZM41t3333XfTv3x8A8Nxzz2HOnDk4d+4c2rRpAwB47LHHsHv3brOFJCcnJygU+jX6fHx8EBCgX28mISEB9913nzHB6dChA9LS0rB48WKTRGjIkCF45ZVXjK+ff/55jB071jhPv3379li6dCnuvfdeLF++HJcuXYKbmxsefPBBeHh4ICQkBD169AAAeHl5wcnJCXK53BgH3VphYSG0Wi2UStMiilKpRHp6utlzzp8/j127dmHs2LHYunUrsrKyMGXKFKjVasybN69e1wSA+Ph4YwJ7o19//RVyed12VUtKSjL+XicAb6XK/s6dauZGAgT8388noM7WgqnTnbmx38m22PfiaOz97uDggICAAJSVlUGlUqFSUylaLKWlpdA4aCxqq9Fo0KZNG7zxxhvGYyUlJZg4caLxdevWrTFnzhzExcUhPj4eAFBVVQW1Wo3FixcjLCwMAPDss89i8eLFxocTS5YswfTp0xEVFQUAWLhwIRITE6HRaFBSUoLy8nKsWLECy5YtM+ZGH3zwAZKSkvDpp59i6tSpxlFGs2fPxt133w0AeOqpp/D222/j+PHjCA0NBQCMGDECO3bswKRJk8zep6urKwDAxcUFcrkcVVVVWLRoEe69915MnToVAPDII4/gxIkTWLx4sTHn0+l0GDBgAJ5//nnjtaZOnYrHHnvM2EdKpRLvvfceHnzwQSxYsAAZGRmQy+UYOHAgPDw80KJFC7Rt2xYlJSWQSCSQSqVwcHAw/ry9cSTTjaqqqrB3715oNKZfy9pGXlmKhSQrO3KhCDnXq2p9XwCQc70KRy4UIbKtr+0CIyKyIVcHVxx+6rBFbY/lHcOUnVNu2+7T+z5FT2VPiz67Lnr2rHnNHTt2ID4+HmfOnNEnVhoNqqqqUFFRYfwBLpfLjUUkAAgMDDSuL3P9+nXk5OSgb99/RmU5ODigV69exidG586dg1qtNiZBAODo6Ig+ffrgzJkzJvF07drV+HulUgm5XG4sIhmO1XWh5DNnzuChhx4yOda/f38sWbIEWq3W+CSrV69eJm1OnjyJU6dOGUdeATA+Tb1w4QKGDh2KkJAQtGnTBsOHD8fw4cPx8MMP17nQQPWn0+mgUCjw+eefQyaToWfPnrhy5QoWL15sHFlWH4Z/EBiUlJQgODgYw4YNg6enp0XXUKvVSEpKwtChQ+Ho6AgAOHyhCMWHjt7iLAmKVYB/53vQN8znFu2oNub6nWyDfS+OptLvVVVVuHz5Mtzd3eHi4gIPwQMHn6h9ZOiNUvNSEbM75rbtlg1ehghlxG3buTq4QiKxrFrv4OCA3r171/i7f8eOHViwYAHS09NN8idDAcRQkLlxqnVYWBgKCgrg6emJ69evIzc3FwMHDjS5du/evSEIAjw9PZGdnQ21Wo2oqCiTNn369MGFCxfg6elpzDnuueceY5vWrVtDLpeb5FTBwcE4efJkrT/DDCN+5HK5sc25c+cwcuRIk3MGDx6MFStWwM3NDTKZDFKp1OSzAX3ederUKfz000/GY4b86erVqxg5ciQWL16MiIgIREdHIzo62iR/cnBwgJOTU62xCoKAq1evwsXFBQMHDoSLi4vJ+4ZCXX2xkGRl+aW1F5Hq046IqCmSSCQWD4/u17IflHIl8ivyzc7zl0ACpVyJfi37QSaVmbnCnXFzM90IITs7Gw8++CAmTZqE2bNnIzg4GAcOHMBzzz0HlUpl/IF+c2IqkUjqtL5AXdz4WRKJxOxn3zi8uSHd3D9lZWV46aWXjE/ibtS6dWs4OTkhNTUVycnJ+PXXXzF37lzMnz8fKSkp8Pb2tkqM9szPzw8ymQx5eaYLqebl5dU6qiswMBCOjo4mw9o7deqE3NxcqFSqel0TAJydneHs7FzjuKOjY53/oXbjOVcrLHsCfrVC06j/QdgU1OdrRQ2DfS+Oxt7vWq3WONpEKtUvZ+wuc7fo3P6t+luUP/Vv1d8q+ZO7u7sxZkCfP40cORKTJk3CnDlzTPInjUZjvEdHR0eT82QyGQRBMOmDG38PwFjgul2bm/vS2dnZ+HuZTFbjs6VSKXQ6ncmxG93qs26+zs3tbu6fuuZP8+fPx9tvv22SP938uTcy5IGGPPHm7/s7/XPAxbatTOHhcvtGdWhHRGTvZFIZZveZDUCf9NzI8HpWn1lWSYLMOXbsGHQ6HT744AP07t0bHTp0wF9//VWna3h5eSEwMBCHD/8zKkuj0eDYsWPG123btoWTk5PJ2kxqtRopKSno3Lnznd/IbXTq1MnkswFg//796NChQ4159TeKiIhAWloa2rVrV+OXk5MTAP1Ts6ioKCxatAinTp1CdnY2du3aBUA/1U6r1VrvxuyMk5MTevbsiZ07dxqP6XQ67Ny5E5GR5tfR6N+/P7KyskyKi5mZmQgMDISTk1O9rmlNzJ2IiOqO+RPzJ1tiIcnK+oT5INDLxcwMfz0JgEAvF/Th0GwiIqOokCgkDEqAQq4wOa6UK5EwKAFRIVE2i6Vdu3ZQq9X45JNPkJ2dja+++gorVqyo83WmTZuGBQsWYMOGDUhPT8eUKVNQXFxsfN/NzQ2TJ0/GzJkzkZiYiLS0NLzwwguoqKjAc88914B3ZN4rr7yCnTt34p133kFmZibWrFmDTz75BK+++uotz5s1a5ZxYckTJ07g7Nmz2LhxI2JjYwEAmzdvxtKlS3HixAlcvHgR//vf/6DT6dCxY0cA+p1MDh8+jOzsbBQWFlptJJU9iYuLwxdffIE1a9bgzJkzmDx5MsrLy43rLIwbN85k4ezJkyejqKgI06ZNQ2ZmJrZs2YL3338fMTExFl/Tlpg7ERHVD/Mn5k+2wqltViaTSjBvRGdMXpsKCWAyyNCQIM0b0ZkLbRMR3SQqJAqDgwcjNT8VBRUF8Jf7I0IRYbMnaQbdunVDQkICFi1ahNdffx0DBgxAfHw8xo0bV6frvPLKK8jJycH48eMhlUrx7LPP4uGHH8b169eNbRYsWACdTodnnnkGpaWl6NWrF7Zv344WLVo09G3VEBERgR9++AFz587FO++8g8DAQLz99tsmC22b07VrV+zZswdvvPEGBgwYAEEQ0LZtW4wZMwYA4O3tjZ9//hnz589HVVUV2rdvj2+//RZdunQBALz66qsYP348OnfujMrKSly4cMG46CWZN2bMGBQUFGDu3LnIzc1F9+7dkZiYaFws+9KlSyZD3YODg7F9+3bMmDEDXbt2RVBQEKZNm2ayGPvtrmlLzJ2IiOqP+RPzJ1uQCNZawKEJKykpgZeXF65fv16nxSK3bt2KBx54wOx8w8TTOXjrlzSThbcDvVwwb0RnDA8PbLDYm6Pb9T1ZB/tdHE2l36uqqnDhwgWEhYXVWNyvqTLs2ubp6VnrfHRqeDqdDoWFhSgsLESbNm3MLhZZ15/ZZB0NnT8xd7KepvKzxB6x78XRVPqd+RM1FGvnTxyRZCPDwwMxtHMAjlwoQn5pFRQe+iHZfJpGREREVBNzJyIiosaJhSQbkkkliGzrK3YYRERERE0CcyciIqLGh2PLiIiIiIiIiIjIIiwkERERERERERGRRVhIIiIiq+F+DkRERER1w/yJGoI1v49YSCIiogZn2BGloqJC5EjIHmg0GgCATGbbrYuJiIhsyfBzTqVSiRwJ2QPD95E1dirkYttERNTgZDIZvL29kZ+fDwCQy+WQSJr2Tks6nQ4qlQpVVVXcvtaGNBoNioqK4ObmBgcHpi1ERGS/HBwcIJfLUVBQAEdHR7vIN5g/2Z4gCCgrK0NhYSH8/f2t8iCOGRkREVlFQEAAABiLSU2dIAiorKyEq6trky+KNSWGZKhNmzbsdyIismsSiQSBgYG4cOECLl68KHY4DYL5kzgEQcC1a9fQpUsXq1yfhSQiIrIKQzKkUCigVqvFDueOqdVq7N27FwMHDrTKEGEyT6PRYOfOnexzIiJqFpycnNC+fXu7md7G/Ek8Z8+etVrxjoUkIiKyKplMZhdr28hkMmg0Gri4uDARsiF7KEISERHVhVQqhYuLi9hhNAjmT+Kwdv7ESYpERERERERERGQRFpKIiIiIiIiIiMgiLCQREREREREREZFFuEaSGYIgAABKSkosPketVqOiogIlJSWc+2lj7HtxsN/FwX4XD/teHLfrd8PPasPPbhIP86emg/0uHva9ONjv4mHfi8Pa+RMLSWaUlpYCAIKDg0WOhIiIiCxRWloKLy8vscNo1pg/ERERNS31zZ8kAh/h1aDT6fDXX3/Bw8PD4u3ySkpKEBwcjMuXL8PT09PKEdKN2PfiYL+Lg/0uHva9OG7X74IgoLS0FC1btoRUyhn7YmL+1HSw38XDvhcH+1087HtxWDt/4ogkM6RSKVq1alWvcz09PfkHRCTse3Gw38XBfhcP+14ct+p3jkRqHJg/NT3sd/Gw78XBfhcP+14c1sqf+OiOiIiIiIiIiIgswkISERERERERERFZhIWkBuLs7Ix58+bB2dlZ7FCaHfa9ONjv4mC/i4d9Lw72u33j11cc7HfxsO/FwX4XD/teHNbudy62TUREREREREREFuGIJCIiIiIiIiIisggLSUREREREREREZBEWkoiIiIiIiIiIyCIsJBERERERERERkUVYSGogy5YtQ2hoKFxcXNC3b18cOXJE7JDsSnx8PHr37g0PDw8oFAqMGjUKGRkZJm2qqqoQExMDX19fuLu749FHH0VeXp5IEdunBQsWQCKRYPr06cZj7HfruHLlCp5++mn4+vrC1dUVd999N44ePWp8XxAEzJ07F4GBgXB1dUVUVBTOnj0rYsT2QavV4s0330RYWBhcXV3Rtm1bvPPOO7hxXwr2/Z3bu3cvRowYgZYtW0IikWDDhg0m71vSx0VFRRg7diw8PT3h7e2N5557DmVlZTa8C7pTzJ2sj/lT48D8yXaYP4mD+ZNtNKb8iYWkBvD9998jLi4O8+bNQ2pqKrp164bo6Gjk5+eLHZrd2LNnD2JiYnDo0CEkJSVBrVZj2LBhKC8vN7aZMWMGfvnlF/z444/Ys2cP/vrrLzzyyCMiRm1fUlJS8Nlnn6Fr164mx9nvDe/atWvo378/HB0dsW3bNqSlpeHDDz9EixYtjG0WLVqEpUuXYsWKFTh8+DDc3NwQHR2NqqoqESNv+hYuXIjly5fjk08+wZkzZ7Bw4UIsWrQIH3/8sbEN+/7OlZeXo1u3bli2bJnZ9y3p47Fjx+KPP/5AUlISNm/ejL179+LFF1+01S3QHWLuZBvMn8TH/Ml2mD+Jh/mTbTSq/EmgO9anTx8hJibG+Fqr1QotW7YU4uPjRYzKvuXn5wsAhD179giCIAjFxcWCo6Oj8OOPPxrbnDlzRgAgHDx4UKww7UZpaanQvn17ISkpSbj33nuFadOmCYLAfreWWbNmCf/6179qfV+n0wkBAQHC4sWLjceKi4sFZ2dn4dtvv7VFiHbr3//+t/Dss8+aHHvkkUeEsWPHCoLAvrcGAML69euNry3p47S0NAGAkJKSYmyzbds2QSKRCFeuXLFZ7FR/zJ3EwfzJtpg/2RbzJ/Ewf7I9sfMnjki6QyqVCseOHUNUVJTxmFQqRVRUFA4ePChiZPbt+vXrAAAfHx8AwLFjx6BWq02+DnfddRdat27Nr0MDiImJwb///W+T/gXY79ayadMm9OrVC48//jgUCgV69OiBL774wvj+hQsXkJuba9LvXl5e6Nu3L/v9DvXr1w87d+5EZmYmAODkyZPYt28f7r//fgDse1uwpI8PHjwIb29v9OrVy9gmKioKUqkUhw8ftnnMVDfMncTD/Mm2mD/ZFvMn8TB/Ep+t8yeHhgm7+SosLIRWq4VSqTQ5rlQqkZ6eLlJU9k2n02H69Ono378/wsPDAQC5ublwcnKCt7e3SVulUonc3FwRorQf3333HVJTU5GSklLjPfa7dZw/fx7Lly9HXFwcXn/9daSkpGDq1KlwcnLC+PHjjX1r7u8d9vudmT17NkpKSnDXXXdBJpNBq9Xivffew9ixYwGAfW8DlvRxbm4uFAqFyfsODg7w8fHh16EJYO4kDuZPtsX8yfaYP4mH+ZP4bJ0/sZBETU5MTAxOnz6Nffv2iR2K3bt8+TKmTZuGpKQkuLi4iB1Os6HT6dCrVy+8//77AIAePXrg9OnTWLFiBcaPHy9ydPbthx9+wNdff41vvvkGXbp0wYkTJzB9+nS0bNmSfU9ETRrzJ9th/iQO5k/iYf7U/HBq2x3y8/ODTCarsctCXl4eAgICRIrKfsXGxmLz5s3YvXs3WrVqZTweEBAAlUqF4uJik/b8OtyZY8eOIT8/HxEREXBwcICDgwP27NmDpUuXwsHBAUqlkv1uBYGBgejcubPJsU6dOuHSpUsAYOxb/r3T8GbOnInZs2fjiSeewN13341nnnkGM2bMQHx8PAD2vS1Y0scBAQE1FmXWaDQoKiri16EJYO5ke8yfbIv5kziYP4mH+ZP4bJ0/sZB0h5ycnNCzZ0/s3LnTeEyn02Hnzp2IjIwUMTL7IggCYmNjsX79euzatQthYWEm7/fs2ROOjo4mX4eMjAxcunSJX4c7cN999+H333/HiRMnjL969eqFsWPHGn/Pfm94/fv3r7E9c2ZmJkJCQgAAYWFhCAgIMOn3kpISHD58mP1+hyoqKiCVmv5olMlk0Ol0ANj3tmBJH0dGRqK4uBjHjh0zttm1axd0Oh369u1r85ipbpg72Q7zJ3EwfxIH8yfxMH8Sn83zpztZKZz0vvvuO8HZ2VlYvXq1kJaWJrz44ouCt7e3kJubK3ZodmPy5MmCl5eXkJycLOTk5Bh/VVRUGNtMmjRJaN26tbBr1y7h6NGjQmRkpBAZGSli1Pbpxl1HBIH9bg1HjhwRHBwchPfee084e/as8PXXXwtyuVxYu3atsc2CBQsEb29vYePGjcKpU6eEhx56SAgLCxMqKytFjLzpGz9+vBAUFCRs3rxZuHDhgvDzzz8Lfn5+wmuvvWZsw76/c6WlpcLx48eF48ePCwCEhIQE4fjx48LFixcFQbCsj4cPHy706NFDOHz4sLBv3z6hffv2wpNPPinWLVEdMXeyDeZPjQfzJ+tj/iQe5k+20ZjyJxaSGsjHH38stG7dWnBychL69OkjHDp0SOyQ7AoAs79WrVplbFNZWSlMmTJFaNGihSCXy4WHH35YyMnJES9oO3VzIsR+t45ffvlFCA8PF5ydnYW77rpL+Pzzz03e1+l0wptvvikolUrB2dlZuO+++4SMjAyRorUfJSUlwrRp04TWrVsLLi4uQps2bYQ33nhDqK6uNrZh39+53bt3m/07ffz48YIgWNbHV69eFZ588knB3d1d8PT0FCZOnCiUlpaKcDdUX8ydrI/5U+PB/Mk2mD+Jg/mTbTSm/EkiCIJQtzFMRERERERERETUHHGNJCIiIiIiIiIisggLSUREREREREREZBEWkoiIiIiIiIiIyCIsJBERERERERERkUVYSCIiIiIiIiIiIouwkERERERERERERBZhIYmIiIiIiIiIiCzCQhIREREREREREVmEhSQisnvZ2dmQSCQ4ceJErW2Sk5MhkUhQXFxslRhWr14Nb29vq1ybiIiIqKExfyKi2rCQREQWmzBhAiQSSY1fw4cPFzu0Rm/MmDHIzMwUOwwiIiKyMeZP9cf8iahxchA7ACJqWoYPH45Vq1aZHHN2dhYpmqbD1dUVrq6uYodBREREImD+VD/Mn4gaJ45IIqI6cXZ2RkBAgMmvFi1aGN+XSCT48ssv8fDDD0Mul6N9+/bYtGmT8f1r165h7Nix8Pf3h6urK9q3b2+SWF2+fBmjR4+Gt7c3fHx88NBDDyE7O9v4/oQJEzBq1Ci8//77UCqV8Pb2xttvvw2NRoOZM2fCx8cHrVq1qpGsAUB6ejr69esHFxcXhIeHY8+ePbe813379mHAgAFwdXVFcHAwpk6divLy8lrbnzx5EoMHD4aHhwc8PT3Rs2dPHD16FEDNodmhoaFmn05a2g9ERETUdDB/Yv5EZE9YSCKiBvfWW29h9OjROHXqFB544AGMHTsWRUVFAIA333wTaWlp2LZtG86cOYPly5fDz88PAKBWqxEdHQ0PDw/89ttv2L9/P9zd3TF8+HCoVCrj9Xft2oW//voLe/fuRUJCAubNm4cHH3wQLVq0wOHDhzFp0iS89NJL+PPPP03imjlzJl555RUcP34ckZGRGDFiBK5evWr2Hs6dO4fhw4fj0UcfxalTp/D9999j3759iI2NrfW+x44di1atWiElJQXHjh3D7Nmz4ejoaLZtSkoKcnJykJOTgz///BP33HMPBgwYUKd+ICIiIvvB/In5E1GTIRARWWj8+PGCTCYT3NzcTH699957xjYAhP/7v/8zvi4rKxMACNu2bRMEQRBGjBghTJw40ez1v/rqK6Fjx46CTqczHquurhZcXV2F7du3G2MICQkRtFqtsU3Hjh2FAQMGGF9rNBrBzc1N+PbbbwVBEIQLFy4IAIQFCxYY26jVaqFVq1bCwoULBUEQhN27dwsAhGvXrgmCIAjPPfec8OKLL5rE99tvvwlSqVSorKw0G7+Hh4ewevVqs++tWrVK8PLyMvve1KlThZCQECE/P9/ifiAiIqKmgfkT8ycie8M1koioTgYPHozly5ebHPPx8TF53bVrV+Pv3dzc4Onpifz8fADA5MmT8eijjyI1NRXDhg3DqFGj0K9fPwD6oc1ZWVnw8PAwuV5VVRXOnTtnfN2lSxdIpf8MqFQqlQgPDze+lslk8PX1NX6mQWRkpPH3Dg4O6NWrF86cOWP2Pk+ePIlTp07h66+/Nh4TBAE6nQ4XLlxAp06dapwTFxeH559/Hl999RWioqLw+OOPo23btmavb/D555/jv//9Lw4cOAB/f/869QMRERE1DcyfmD8R2RMWkoioTtzc3NCuXbtbtrl5OLJEIoFOpwMA3H///bh48SK2bt2KpKQk3HfffYiJicEHH3yAsrIy9OzZ0yT5MDAkCbVd/1afWR9lZWV46aWXMHXq1BrvtW7d2uw58+fPx1NPPYUtW7Zg27ZtmDdvHr777js8/PDDZtvv3r0bL7/8Mr799luT5NHSfiAiIqKmgfkT8ycie8JCEhHZnL+/P8aPH4/x48djwIABmDlzJj744ANERETg+++/h0KhgKenZ4N/7qFDhzBw4EAAgEajwbFjx2qdsx8REYG0tLTbJn0369ChAzp06IAZM2bgySefxKpVq8wmQllZWXjsscfw+uuv45FHHqnx2dbsByIiImp6mD8xfyJqLLjYNhHVSXV1NXJzc01+FRYWWnz+3LlzsXHjRmRlZeGPP/7A5s2bjcOcx44dCz8/Pzz00EP47bffcOHCBSQnJ2Pq1Kk1Fn6sj2XLlmH9+vVIT09HTEwMrl27hmeffdZs21mzZuHAgQOIjY3FiRMncPbsWWzcuLHWxKmyshKxsbFITk7GxYsXsX//fqSkpJgdwl1ZWYkRI0agR48eePHFF0360hb9QERERLbF/In5E5E94YgkIqqTxMREBAYGmhzr2LEj0tPTLTrfyckJc+bMQXZ2NlxdXTFgwAB89913AAC5XI69e/di1qxZeOSRR1BaWoqgoCDcd999DfJkacGCBViwYAFOnDiBdu3aYdOmTcYdT27WtWtX7NmzB2+88QYGDBgAQRDQtm1bjBkzxmx7mUyGq1evYty4ccjLy4Ofnx8eeeQRvPXWWzXa5uXlIT09Henp6WjZsqXJe4IgWL0fiIiIyLaYPzF/IrInEkEQBLGDICIiIiIiIiKixo9T24iIiIiIiIiIyCIsJBERERERERERkUVYSCIiIiIiIiIiIouwkERERERERERERBZhIYmIiIiIiIiIiCzCQhIREREREREREVmEhSQiIiIiIiIiIrIIC0lERERERERERGQRFpKIiIiIiIiIiMgiLCQREREREREREZFFWEgiIiIiIiIiIiKL/D9NlSYPfmpctQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "best_rf_estimators_count = max(rf_score['accuracy'], key=rf_score['accuracy'].get)\n", + "print(f'best random forest size: {best_rf_estimators_count}')" + ], + "metadata": { + "id": "Jr4pCs8MWRLq", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "c22a5e33-e290-4d46-833b-3d393327d40c" + }, + "execution_count": 203, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "best random forest size: 12\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "The random forest implementation from the sklearn library has proven to perform better than our own implementation of tree bagging. The optimal number of trees for a finished implementation of random forest is different from the same number for our own implementation of bagging. This can be explained by the fact that the quality function for in both cases is not monotonic and we cannot identify any obvious dependence of quality on the number of trees." + ], + "metadata": { + "id": "2t6WVUK0Uy-x" + } + }, + { + "cell_type": "markdown", + "metadata": { + "nbgrader": { + "grade": false, + "grade_id": "cell-99191c0852538d4d", + "locked": true, + "schema_version": 2, + "solution": false + }, + "id": "7xdNAH90OcME" + }, + "source": [ + "#### 2.8. Learning curve\n", + "Your goal is to estimate, how does the model behaviour change with the increase of the `train` dataset size.\n", + "\n", + "* Split the training data into 10 equal (almost) parts. Then train the models from above (Logistic regression, Desicion Tree, Random Forest) with optimal hyperparameters you have selected on 1 part, 2 parts (combined, so the train size in increased by 2 times), 3 parts and so on.\n", + "\n", + "* Build a plot of `accuracy` and `f1` scores on `test` part, varying the `train` dataset size (so the axes will be score - dataset size.\n", + "\n", + "* Analyse the final plot. Can you make any conlusions using it?" + ] + }, + { + "cell_type": "code", + "execution_count": 204, + "metadata": { + "nbgrader": { + "grade": true, + "grade_id": "cell-e39bc7e7dff61ff9", + "locked": false, + "points": 15, + "schema_version": 2, + "solution": true + }, + "id": "mvToedi8OcME" + }, + "outputs": [], + "source": [ + "one_tenth_size = int(len(X_train) / 10)\n", + "train_sample_size_list = np.arange(one_tenth_size, len(X_train), one_tenth_size)\n", + "\n", + "logreg = LogisticRegression(**logreg_grid_search.best_params_)\n", + "tree = DecisionTreeClassifier(**tree_grid_search.best_params_)\n", + "random_forest = RandomForestClassifier(n_estimators=best_rf_estimators_count, **tree_grid_search.best_params_)" + ] + }, + { + "cell_type": "code", + "source": [ + "models_score = {\n", + " 'logreg': {\n", + " 'f1': {},\n", + " 'accuracy': {},\n", + " },\n", + " 'tree': {\n", + " 'f1': {},\n", + " 'accuracy': {},\n", + " },\n", + " 'random forest': {\n", + " 'f1': {},\n", + " 'accuracy': {},\n", + " },\n", + "}" + ], + "metadata": { + "id": "dfd4pMh_WV9G" + }, + "execution_count": 205, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "for train_sample_size in tqdm(train_sample_size_list):\n", + " logreg.fit(X_train_pd_scaled[0:train_sample_size], y_train[0:train_sample_size])\n", + " tree.fit(X_train_pd_scaled[0:train_sample_size], y_train[0:train_sample_size])\n", + " random_forest.fit(X_train_pd_scaled[0:train_sample_size], y_train[0:train_sample_size])\n", + "\n", + " models_score['logreg']['f1'][train_sample_size] = f1_score(y_test, logreg.predict(X_test_scaled), average='macro')\n", + " models_score['logreg']['accuracy'][train_sample_size] = accuracy_score(y_test, logreg.predict(X_test_scaled))\n", + " models_score['tree']['f1'][train_sample_size] = f1_score(y_test, tree.predict(X_test_scaled), average='macro')\n", + " models_score['tree']['accuracy'][train_sample_size] = accuracy_score(y_test, tree.predict(X_test_scaled))\n", + " models_score['random forest']['f1'][train_sample_size] = f1_score(y_test, random_forest.predict(X_test_scaled), average='macro')\n", + " models_score['random forest']['accuracy'][train_sample_size] = accuracy_score(y_test, random_forest.predict(X_test_scaled))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "N2KXn38xXVHE", + "outputId": "245a8796-252d-4f17-ca7f-84bc69625754" + }, + "execution_count": 206, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 10/10 [00:01<00:00, 7.02it/s]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "plt.figure(figsize=(14, 3))\n", + "plt.subplots_adjust(top=1.5)\n", + "\n", + "for i, score_type in enumerate(score_type_list):\n", + " plt.subplot(1, 2, i + 1)\n", + " plt.plot(train_sample_size_list, models_score['tree'][score_type].values(), marker='o', label='tree')\n", + " plt.plot(train_sample_size_list, models_score['logreg'][score_type].values(), marker='o', label='logreg')\n", + " plt.plot(train_sample_size_list, models_score['random forest'][score_type].values(), marker='o', label='random forest')\n", + "\n", + " plt.title(f'Test {score_type} score depending on train sample size')\n", + " plt.xlabel('Train sample size')\n", + " plt.ylabel('Score')\n", + " plt.grid(True)\n", + " plt.legend()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 519 + }, + "id": "Y54Yby7JX37w", + "outputId": "2ef977c0-bf37-4645-9256-273c57b9b61a" + }, + "execution_count": 207, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABI0AAAH2CAYAAAD9FXyRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hTdRfA8W+S7k2hk1EKlFH2RrbsPWS5WIIgQ0BEgdcFqCwVWSKobFBkiaBsGbJklb33KNCWUbpXct8/QgMhHSm0Tcf58OShubm599zbjNNzf0OlKIqCEEIIIYQQQgghhBDPUFs6ACGEEEIIIYQQQgiR80jRSAghhBBCCCGEEEKYkKKREEIIIYQQQgghhDAhRSMhhBBCCCGEEEIIYUKKRkIIIYQQQgghhBDChBSNhBBCCCGEEEIIIYQJKRoJIYQQQgghhBBCCBNSNBJCCCGEEEIIIYQQJqRoJIQQQgghhBBCCCFMSNFI5BqXLl2iRYsWuLq6olKpWLdunaVDyvH69OlD8eLFLR1GpknpeFQqFePGjbNIPHlB48aNady4saXDsDhLnIfixYvTp0+fbN2nEEKInGnXrl2oVCp27dpl6VAyRUrHk9fy0uy2aNEiVCoV169ft3QoFmWJ8zBu3DhUKlW27S+nkaKRMFCpVGbdMuPLLCYmhnHjxmVoW7179+bUqVN8/fXXLF26lBo1ahAVFcUXX3xBq1atcHd3R6VSsWjRopeOT4ic4uzZs4wbNy7fJwhCCGGOnJ7LCCHytokTJ8qFbZHnWFk6AJFzLF261Oj+kiVL2LZtm8nycuXKvfS+YmJiGD9+PIBZV/djY2M5cOAAn3zyCUOHDjUsv379OhMmTKBYsWJUrlxZErd8KDY2FiurvPtRdvbsWcaPH0/jxo2z5Orc1q1bM32bwjwXLlxArZZrN0JkppycywiR3/3888/odDpLh5GlJk6cSNeuXenUqVOmb7tnz568/vrr2NraZvq2Rdo+/fRTxowZY+kwLCbv/qUlMuztt982uv/ff/+xbds2k+WWEBYWBoCbm5vRch8fH+7evYu3tzdHjhyhZs2aFoju5URHR+Po6GjpMHItOzs7S4eQYyiKQlxcHPb29mY/x8bGJgsjEmmRpE+IzJeTc5ncRvITU3FxcdjY2EjB/wVZW1tbOoQcJaPvMY1Gg0ajycKIRGqsrKzy9EXq9MgnnsgQnU7H9OnTKV++PHZ2dnh5eTFw4EAePXpktN6RI0do2bIlhQoVwt7eHn9/f9555x1A3zrIw8MDgPHjxxuaiqc2Ls24cePw8/MD4KOPPkKlUhlaXNja2uLt7f3Cx3Pv3j369u1LkSJFsLW1xcfHh44dO5p0Bdq0aRONGjXC2dkZFxcXatasya+//mq0zqpVq6hevTr29vYUKlSIt99+m+DgYKN1+vTpg5OTE1euXKFNmzY4Ozvz1ltvAeaf29SsW7eOChUqYGdnR4UKFfjjjz9SXM/c/RQvXpx27dqxdetWqlSpgp2dHYGBgaxdu9Zkm+Hh4YwYMYKiRYtia2tLqVKlmDJlitHVpOvXr6NSqfj222/56aefKFmyJLa2ttSsWZPDhw+/8PE8/9pJ7nN8+fJl+vTpg5ubG66urvTt25eYmBij58bGxjJs2DAKFSqEs7MzHTp0IDg42OxxkkJDQ+nXrx9eXl7Y2dlRuXJlFi9ebLRORo/7WYsWLaJbt24AvPrqqybdKpJ/R1u2bKFGjRrY29szb948ABYuXEiTJk3w9PTE1taWwMBAfvzxR5N9PD+WT/IYBCtXruTrr7+mSJEi2NnZ0bRpUy5fvpzuOYmMjGTEiBEUL14cW1tbPD09ad68OUFBQYZ19uzZQ7du3ShWrBi2trYULVqUDz74gNjYWKNtJb9fbt68Sbt27XBycqJw4cL88MMPAJw6dYomTZrg6OiIn5+fyXsyuc/7v//+y8CBAylYsCAuLi706tXLrPdVfHw8X3zxBaVKlTLE+fHHHxMfH5/ucy9dukSXLl3w9vbGzs6OIkWK8Prrr/P48WPDOs+PaZRWV5pnP5POnz9P165dcXd3x87Ojho1arB+/fp0YxJC6FkilwF4+PAho0aNomLFijg5OeHi4kLr1q05ceKEybpxcXGMGzeO0qVLY2dnh4+PD6+99hpXrlwxOo4ZM2ZQsWJF7Ozs8PDwoFWrVhw5csQQY2rd9lP77jx79ixvvvkmBQoUoH79+gCcPHmSPn36UKJECezs7PD29uadd97hwYMHJtsNDg6mX79++Pr6Ymtri7+/P4MGDSIhIYGrV6+iUqn4/vvvTZ63f/9+VCoVv/32W6rnD2DWrFmUL18eBwcHChQoQI0aNUw++9OKIdnVq1fp1q0b7u7uODg4UKdOHf7++2+j7SR/H65YsYJPP/2UwoUL4+DgQEREBAAHDx6kVatWuLq64uDgQKNGjdi3b1+a8Se7ffs2nTp1wtHREU9PTz744INUv1vM2U/y7+/8+fN0794dFxcXChYsyPDhw4mLizPZ5rJlyww5q7u7O6+//jq3bt0yWqdx48ZUqFCBs2fP8uqrr+Lg4EDhwoWZOnXqCx/P82MaZTRHWrVqFYGBgUa5YUbGSZozZw7ly5fH1tYWX19fhgwZQnh4+Asf9/NUKhXR0dEsXrzY8JmQ/D2fGe+xlMbySc4F9+7dS61atbCzs6NEiRIsWbLErHOyYsUKqlevbvgbp2LFisyYMcPwuLmfW8/mj+PHj6dw4cI4OzvTtWtXHj9+THx8PCNGjMDT0xMnJyf69u1r8hpRqVQMHTqU5cuXU6ZMGezs7KhevTr//vuvWceyadMmGjRogKOjI87OzrRt25YzZ86k+7zExETGjx9PQEAAdnZ2FCxYkPr167Nt2zbDOs+PadSnT59Uc7ZnP1tfJpfMSfJvuUy8kIEDB7Jo0SL69u3LsGHDuHbtGrNnz+bYsWPs27cPa2trQkNDadGiBR4eHowZMwY3NzeuX79uKDZ4eHjw448/MmjQIDp37sxrr70GQKVKlVLc52uvvYabmxsffPABb7zxBm3atMHJySlTjqdLly6cOXOG999/n+LFixMaGsq2bdu4efOm4Qto0aJFvPPOO5QvX56xY8fi5ubGsWPH2Lx5M2+++aZhnb59+1KzZk0mTZpESEgIM2bMYN++fRw7dsyohVRSUhItW7akfv36fPvttzg4OJh9blOzdetWunTpQmBgIJMmTeLBgweGYtjzMrKfS5cu0aNHD9577z169+7NwoUL6datG5s3b6Z58+aAvnl+o0aNCA4OZuDAgRQrVoz9+/czduxY7t69y/Tp0432/+uvvxIZGcnAgQNRqVRMnTqV1157jatXrxr2nZHjSU337t3x9/dn0qRJBAUF8csvv+Dp6cmUKVMM6/Tp04eVK1fSs2dP6tSpw+7du2nbtq1Z24+NjaVx48ZcvnyZoUOH4u/vz6pVq+jTpw/h4eEMHz48w8f9vIYNGzJs2DBmzpzJ//73P0N3ime7VVy4cIE33niDgQMH8u6771KmTBkAfvzxR8qXL0+HDh2wsrJiw4YNDB48GJ1Ox5AhQ9I9vsmTJ6NWqxk1ahSPHz9m6tSpvPXWWxw8eDDN57333nusXr2aoUOHEhgYyIMHD9i7dy/nzp2jWrVqgD7pi4mJYdCgQRQsWJBDhw4xa9Ysbt++zapVq4y2p9Vqad26NQ0bNmTq1KksX76coUOH4ujoyCeffMJbb73Fa6+9xty5c+nVqxevvPIK/v7+RtsYOnQobm5ujBs3jgsXLvDjjz9y48YNQ4KTEp1OR4cOHdi7dy8DBgygXLlynDp1iu+//56LFy+mOV5BQkICLVu2JD4+nvfffx9vb2+Cg4P566+/CA8Px9XVNcXnPd99BvTNoUNDQw2feWfOnKFevXoULlyYMWPG4OjoyMqVK+nUqRNr1qyhc+fOqcYlhNCzRC4D+kLFunXr6NatG/7+/oSEhDBv3jwaNWrE2bNn8fX1BfSfe+3ateOff/7h9ddfZ/jw4URGRrJt2zZOnz5NyZIlAejXrx+LFi2idevW9O/fn6SkJPbs2cN///1HjRo1XujcdOvWjYCAACZOnIiiKABs27aNq1ev0rdvX7y9vTlz5gw//fQTZ86c4b///jN8jt65c4datWoRHh7OgAEDKFu2LMHBwaxevZqYmBhKlChBvXr1WL58OR988IHRfpcvX46zszMdO3ZMNbaff/6ZYcOG0bVrV0Mx5OTJkxw8eNCQj6UXg42NDSEhIdStW5eYmBiGDRtGwYIFWbx4MR06dGD16tUmn6NffvklNjY2jBo1ivj4eGxsbNixYwetW7emevXqfPHFF6jVasPFmj179lCrVq1UjyM2NpamTZty8+ZNhg0bhq+vL0uXLmXHjh0m62Z0P927d6d48eJMmjSJ//77j5kzZ/Lo0SOjAsLXX3/NZ599Rvfu3enfvz9hYWHMmjWLhg0bmuSsjx49olWrVrz22mt0796d1atXM3r0aCpWrEjr1q0zfDypMSdH+vvvv+nRowcVK1Zk0qRJPHr0iH79+lG4cGGz9jFu3DjGjx9Ps2bNGDRokCEfOHz4sEn+a85xp2Tp0qX079+fWrVqMWDAAADD+zXZy7zHUnP58mW6du1Kv3796N27NwsWLKBPnz5Ur16d8uXLp/q8bdu28cYbb9C0aVNDfnzu3Dn27dtnyGPN/dxKNmnSJOzt7RkzZgyXL19m1qxZWFtbo1arefToEePGjeO///5j0aJF+Pv78/nnnxs9f/fu3fz+++8MGzYMW1tb5syZQ6tWrTh06BAVKlRI89z37t2bli1bMmXKFGJiYvjxxx+pX78+x44dS7OwOG7cOCZNmmT43UVERHDkyBGCgoIMf+88b+DAgTRr1sxo2ebNm1m+fDmenp7Ay+WSOY4iRCqGDBmiPPsS2bNnjwIoy5cvN1pv8+bNRsv/+OMPBVAOHz6c6rbDwsIUQPniiy/MiuXatWsKoHzzzTeprnP48GEFUBYuXGjWNh89epTuNsPDwxVnZ2eldu3aSmxsrNFjOp1OURRFSUhIUDw9PZUKFSoYrfPXX38pgPL5558blvXu3VsBlDFjxhhty9xzm5oqVaooPj4+Snh4uGHZ1q1bFUDx8/N7of34+fkpgLJmzRrDssePHys+Pj5K1apVDcu+/PJLxdHRUbl48aLRNseMGaNoNBrl5s2biqI8/R0WLFhQefjwoWG9P//8UwGUDRs2ZPh4FEUxeR198cUXCqC88847Rut17txZKViwoOH+0aNHFUAZMWKE0Xp9+vQx67U5ffp0BVCWLVtmWJaQkKC88soripOTkxIREZHh407JqlWrFEDZuXOnyWPJv6PNmzebPBYTE2OyrGXLlkqJEiWMljVq1Ehp1KiR4f7OnTsVQClXrpwSHx9vWD5jxgwFUE6dOpVmvK6ursqQIUPSXCel2CZNmqSoVCrlxo0bhmXJ75eJEycalj169Eixt7dXVCqVsmLFCsPy8+fPm/zeFi5cqABK9erVlYSEBMPyqVOnKoDy559/pnoeli5dqqjVamXPnj1Gcc6dO1cBlH379qV6fMeOHVMAZdWqVWmeBz8/P6V3796pPp4c55IlSwzLmjZtqlSsWFGJi4szLNPpdErdunWVgICANPcnRH6Uk3KZuLg4RavVGi27du2aYmtrq0yYMMGwbMGCBQqgTJs2zWQbybnHjh07FEAZNmxYquskf/+klBel9t35xhtvmKyb0mf2b7/9pgDKv//+a1jWq1cvRa1Wp3jOkmOaN2+eAijnzp0zPJaQkKAUKlQozc9DRVGUjh07KuXLl09zHXNiGDFihAIYfb5HRkYq/v7+SvHixQ2/o+TvwxIlShidA51OpwQEBCgtW7Y0bFNR9OfJ399fad68eZoxJucPK1euNCyLjo5WSpUqZfR9n5H9JP/+OnToYLSvwYMHK4By4sQJRVEU5fr164pGo1G+/vpro/VOnTqlWFlZGS1v1KiRyXdQfHy84u3trXTp0iXDx6Mo+u/1Z/O4jORIFStWVIoUKaJERkYalu3atSvF3PB5oaGhio2NjdKiRQuj9+Ds2bMVQFmwYEGGjzs1jo6OKb6WM+M9lpzXXLt2zbAsORd8dr3Q0FDF1tZW+fDDD9OMdfjw4YqLi4uSlJSU6jrmfm4lv18qVKhglHO98cYbikqlUlq3bm20jVdeeSXFnB5Qjhw5Ylh248YNxc7OTuncuXOq5yEyMlJxc3NT3n33XaPt3bt3T3F1dTVZ/rzKlSsrbdu2TXOd5N9fai5duqS4uroqzZs3N5zPl8klcxrpnibMtmrVKlxdXWnevDn379833KpXr46TkxM7d+4Eno479Ndff5GYmGjBiNNmb2+PjY0Nu3btSrWryrZt24iMjGTMmDEmY+ckV/2PHDlCaGgogwcPNlqnbdu2lC1b1qS5M8CgQYOM7pt7blNy9+5djh8/Tu/evY1aMDRv3pzAwMCX2o+vr6/RFbfkrj3Hjh3j3r17hm02aNCAAgUKGG2zWbNmaLVakyalPXr0oECBAob7DRo0APRXMjJ6PGl57733jO43aNCABw8eGJqVb968GYDBgwcbrff++++btf2NGzfi7e3NG2+8YVhmbW3NsGHDiIqKYvfu3Ubrp3fcL8rf35+WLVuaLH92XKPHjx9z//59GjVqxNWrV426SKWmb9++RuMdmRuvm5sbBw8e5M6dO6mu82xs0dHR3L9/n7p166IoCseOHTNZv3///kbbL1OmDI6OjnTv3t2wvEyZMri5uaUY34ABA4yuIA4aNAgrKys2btyYaoyrVq2iXLlylC1b1uh13aRJE4A035PJr9stW7aYdIk0186dOxk7dizvv/8+PXv2BPRNxHfs2EH37t2JjIw0xPTgwQNatmzJpUuXTLrECiGMWTKXsbW1NYyFo9VqefDgAU5OTpQpU8aoC++aNWsoVKhQit9HybnHmjVrUKlUfPHFF6mu8yKe/+4E48/suLg47t+/T506dQAMcet0OtatW0f79u1TbOWUHFP37t2xs7Nj+fLlhse2bNnC/fv30x13ys3Njdu3b6fatdvcGDZu3EitWrUMXYMAnJycGDBgANevX+fs2bNGz+vdu7fROTh+/DiXLl3izTff5MGDB4bXUHR0NE2bNuXff/9Nc7DnjRs34uPjQ9euXQ3LHBwcDC1TXmY/z7ckTn4NJX/frV27Fp1OR/fu3Y1e/97e3gQEBJh8tzk5ORn9XmxsbKhVq5bRd625x5OW9HKkO3fucOrUKXr16mXU26BRo0ZUrFgx3e1v376dhIQERowYYTQe1bvvvouLi4tJrm7Ocb+oF32PpSUwMNBwzkDfErJMmTJm5WzR0dFG3bCeZ+7nVrJevXoZ5Vy1a9dGURRD195nl9+6dYukpCSj5a+88grVq1c33C9WrBgdO3Zky5YtaLXaFGPctm0b4eHhvPHGG0ava41GQ+3atdPM2ZLPw5kzZ7h06VKa66UmOjqazp07U6BAAX777TfDuFMvk0vmNFI0Ema7dOkSjx8/xtPTEw8PD6NbVFQUoaGhgP4DvEuXLowfP55ChQrRsWNHFi5cmOP6btra2jJlyhQ2bdqEl5eXoftLcjEEMIwdkFZzyBs3bgAYugU9q2zZsobHk1lZWZl0szL33Ka1/4CAAJPHno8po/spVaqUSfJZunRpAEN/6kuXLrF582aT7SU32Xx+m8WKFTO6n5wkJBfuMnI8aTFnP2q12qQrU6lSpcza/o0bNwgICDAZDDO569jzv/f04nlRz8efbN++fTRr1gxHR0fc3Nzw8PDgf//7H4BZRaMXjXfq1KmcPn2aokWLUqtWLcaNG2eStNy8eZM+ffrg7u6Ok5MTHh4eNGrUKMXYksfpeJarqytFihQxeW26urqmGN/zryUnJyd8fHxMxi571qVLlzhz5ozJ6zr59Z/We9Lf35+RI0fyyy+/UKhQIVq2bMkPP/xg1nkH/dgQPXr0oF69ekybNs2w/PLlyyiKwmeffWYSV/IfjmnFJYSwbC6j0+n4/vvvCQgIwNbWlkKFCuHh4cHJkyeNPh+uXLlCmTJl0hx09cqVK/j6+uLu7v7C8aQkpe+Uhw8fMnz4cLy8vLC3t8fDw8OwXnLcYWFhREREpJkvgf6Ps/bt2xuNQ7R8+XIKFy5s+EMqNaNHj8bJyYlatWoREBDAkCFDjMb2MTeGGzdupJhPpPb9/fw5Sf7Dsnfv3iavoV9++YX4+Pg0P+9v3LiRYn6VUs6W0f08/31XsmRJ1Gq1Uc6mKAoBAQEm2zx37pzJd0hK37UFChQw+q4193jSYm5umFKOZk7ellqubmNjQ4kSJUx+5+Yc94t60fdYWp4/f+bGO3jwYEqXLk3r1q0pUqQI77zzjuGiajJzP7dSiyX5QlrRokVNlut0unRfw6D/2yMmJsYwMdLzkt8rTZo0MXldb926Nd3caMKECYSHh1O6dGkqVqzIRx99xMmTJ9N8zrPeffddrly5wh9//EHBggWN4nrRXDKnkTGNhNl0Oh2enp5GV4eelfyHnUqlYvXq1fz3339s2LCBLVu28M477/Ddd9/x33//Zdp4RJlhxIgRtG/fnnXr1rFlyxY+++wzJk2axI4dO6hatWqW7PPZin0yc8/ty8qK/eh0Opo3b87HH3+c4uPJH4zJUpv1QXnSrzuzZNd+zJVV8aQ0U9qVK1do2rQpZcuWZdq0aRQtWhQbGxs2btzI999/b9Z0ty8ab/fu3WnQoAF//PEHW7du5ZtvvmHKlCmsXbuW1q1bo9Vqad68OQ8fPmT06NGULVsWR0dHgoOD6dOnj0lsqcWR1b9fnU5HxYoVjYo2z3o++Xned999R58+ffjzzz/ZunUrw4YNM4wxkdbYXAkJCXTt2hVbW1tWrlxp9Edj8rkZNWpUiq3LwPyipxD5lSVzmYkTJ/LZZ5/xzjvv8OWXX+Lu7o5arWbEiBFZMg15ai2OUrtaDyl/p3Tv3p39+/fz0UcfUaVKFZycnNDpdLRq1eqF4u7VqxerVq1i//79VKxYkfXr1zN48OB0ZyQrV64cFy5c4K+//mLz5s2sWbOGOXPm8PnnnzN+/PgMx2Gu589J8jF/8803VKlSJcXnZEaumxn7ef41oNPpUKlUbNq0KcXv0ee3JzmbscyIJyveYy8ar6enJ8ePH2fLli1s2rSJTZs2sXDhQnr16mWY2CWjn1uWyNuS41i6dGmKEySlN+tZw4YNuXLliiFn++WXX/j++++ZO3euUWv3lMyYMYPffvuNZcuWmbxPXzaXzEmkaCTMVrJkSbZv3069evXMmtK7Tp061KlTh6+//ppff/2Vt956ixUrVtC/f/+Xajqd2UqWLMmHH37Ihx9+yKVLl6hSpQrfffcdy5YtMwxed/r06VT/GEue2e3ChQsmV8kuXLhgeDy9GDJyblPaf0pNKi9cuPBS+0lu2fDs7+vixYsAhgHlSpYsSVRUlMlgcC8qI8fzsvvR6XRcu3bN6KqGOTOEJT//5MmT6HQ6o0T3/Pnzhsczw4u8VzZs2EB8fDzr1683uuKTXc1gfXx8GDx4MIMHDyY0NJRq1arx9ddf07p1a06dOsXFixdZvHgxvXr1MjwnrabRL+vSpUu8+uqrhvtRUVHcvXuXNm3apPqckiVLcuLECZo2bfrCn1cVK1akYsWKfPrpp+zfv5969eoxd+5cvvrqq1SfM2zYMI4fP86///6Ll5eX0WMlSpQA9N0gM+v9JkR+Y8lcZvXq1bz66qvMnz/faHl4eDiFChUyivHgwYMkJiamOlFCyZIl2bJlCw8fPky1tVFya43nZ4d6vlVFWh49esQ///zD+PHjjQasff472sPDAxcXF06fPp3uNlu1aoWHhwfLly+ndu3axMTEGLrhpsfR0ZEePXrQo0cPEhISeO211/j6668ZO3as2TH4+fmlmE+Y+/2dnBu6uLi80Gexn58fp0+fNsmvUsrZMrqfS5cuGbVkuXz5MjqdzihnUxQFf39/k4t6L8rc43nZfUDKOZo5eduzuXrydynoL9Rcu3YtU79TM/q5YO57LKvY2NjQvn172rdvj06nY/DgwcybN4/PPvuMUqVKmf25lVlSOu6LFy/i4OCQ6sXt5PeKp6fnC/8u3d3d6du3L3379iUqKoqGDRsybty4NItGe/bsYdSoUYwYMcIwG/bzcb1sLplTSPc0Ybbu3buj1Wr58ssvTR5LSkoyJCWPHj0yqRonV16Tm3Unzxj2fCKTnWJiYkymIS1ZsiTOzs6GOFu0aIGzszOTJk0yWTf5GGvUqIGnpydz5841ara+adMmzp07Z9ZsXOae25T4+PhQpUoVFi9ebNTEc9u2bSb98jO6nzt37hhNdR8REcGSJUuoUqWKoZLfvXt3Dhw4wJYtW0y2GR4ebtJXOT0ZOZ6XkdxSY86cOUbLZ82aZdbz27Rpw7179/j9998Ny5KSkpg1axZOTk6G7lYvy9HREcjYeyX5as6z78PHjx+zcOHCTIkpNVqt1qSZsaenJ76+vob3RkqxKYpiNL1rZvvpp5+MxiT58ccfSUpKSnMGlO7duxMcHMzPP/9s8lhsbCzR0dGpPjciIsLkdV+xYkXUanWaXVsWLlzIvHnz+OGHH1KcecfT05PGjRszb9487t69a/J4as22hRBPWTKX0Wg0JttctWqVyVhkXbp04f79+8yePdtkG8nP79KlC4qipNjCJnkdFxcXChUqZDK24PPfe+nF/Ow2kz0/M6paraZTp05s2LCBI0eOpBoT6K/6v/HGG6xcuZJFixZRsWLFNGedS/b89OM2NjYEBgaiKAqJiYlmx9CmTRsOHTrEgQMHDI9FR0fz008/Ubx48XTHT6xevTolS5bk22+/JSoqyuTx9D6L27Rpw507d1i9erVhWUxMDD/99NNL7+eHH34wup+c0yR/37322mtoNBrGjx9v8jtVFMXkHJvD3ON5Gb6+vlSoUIElS5YYnYvdu3dz6tSpdJ/frFkzbGxsmDlzptFxz58/n8ePH5s9c645HB0dXzpnA9P3WFZ4/vetVqsN78Vn8zZzPrcyy4EDB4zGSrp16xZ//vknLVq0SLW1UsuWLXFxcWHixIkpjkGX3nvy+fPg5OREqVKl0szZ7t69S/fu3alfvz7ffPNNiuu8TC6Z00hLI2G2Ro0aMXDgQCZNmsTx48dp0aIF1tbWXLp0iVWrVjFjxgy6du3K4sWLmTNnDp07d6ZkyZJERkby888/4+LiYriyb29vT2BgIL///julS5fG3d2dChUqpNsPPSWzZ88mPDzcMPDuhg0buH37NqAfADC16a0vXrxI06ZN6d69O4GBgVhZWfHHH38QEhLC66+/DugTru+//57+/ftTs2ZN3nzzTQoUKMCJEyeIiYlh8eLFWFtbM2XKFPr27UujRo144403CAkJYcaMGRQvXtxkWtmXObepmTRpEm3btqV+/fq88847PHz4kFmzZlG+fHmjL9eM7qd06dL069ePw4cP4+XlxYIFCwgJCTEqPnz00UesX7+edu3aGab3jI6O5tSpU6xevZrr169n+EqEucfzMqpXr06XLl2YPn06Dx48oE6dOuzevdvQkiq9KwIDBgxg3rx59OnTh6NHj1K8eHFWr17Nvn37mD59Os7OzpkSZ5UqVdBoNEyZMoXHjx9ja2tLkyZNDNN5pqRFixaGK0cDBw4kKiqKn3/+GU9PzxSLDZklMjKSIkWK0LVrVypXroyTkxPbt2/n8OHDfPfdd4B+nK+SJUsyatQogoODcXFxYc2aNZkyTkBqEhISDO/1CxcuMGfOHOrXr0+HDh1SfU7Pnj1ZuXIl7733Hjt37qRevXpotVrOnz/PypUr2bJlS6pTWu/YsYOhQ4fSrVs3SpcuTVJSEkuXLkWj0dClS5cUn3P//n0GDx5MYGAgtra2LFu2zOjxzp074+joyA8//ED9+vWpWLEi7777LiVKlCAkJIQDBw5w+/ZtTpw48eInSoh8wJK5TLt27ZgwYQJ9+/albt26nDp1iuXLlxu1fAB9960lS5YwcuRIDh06RIMGDYiOjmb79u0MHjyYjh078uqrr9KzZ09mzpzJpUuXDN1Y9uzZw6uvvsrQoUMB/UQCkydPpn///tSoUYN///3X8D1nDhcXF8OYj4mJiRQuXJitW7dy7do1k3UnTpzI1q1badSokWF66bt377Jq1Sr27t1rNJV7r169mDlzJjt37jRM9Z2eFi1a4O3tTb169fDy8uLcuXPMnj2btm3bGr5zzYlhzJgx/Pbbb7Ru3Zphw4bh7u7O4sWLuXbtGmvWrEm3m5xareaXX36hdevWlC9fnr59+1K4cGGCg4PZuXMnLi4ubNiwIdXnv/vuu8yePZtevXpx9OhRfHx8WLp0qaEI+TL7uXbtGh06dKBVq1YcOHCAZcuW8eabb1K5cmVAf3H0q6++YuzYsVy/fp1OnTrh7OzMtWvX+OOPPxgwYACjRo0y6/eR0eN5WRMnTqRjx47Uq1ePvn378ujRI2bPnk2FChXSzQ09PDwYO3Ys48ePp1WrVnTo0MGQD9SsWTPdQdgzonr16mzfvp1p06bh6+uLv78/tWvXTnX9jLzHMlv//v15+PAhTZo0oUiRIty4cYNZs2ZRpUoVwxhf5n5uZZYKFSrQsmVLhg0bhq2traHInVYXVBcXF3788Ud69uxJtWrVeP311/Hw8ODmzZv8/fff1KtXL8UifLLAwEAaN25M9erVcXd358iRI6xevdrwOZqSYcOGERYWxscff8yKFSuMHqtUqRKVKlV6qVwyx8nSudlErvb8NLXJfvrpJ6V69eqKvb294uzsrFSsWFH5+OOPlTt37iiKoihBQUHKG2+8oRQrVkyxtbVVPD09lXbt2hlNn6goirJ//36levXqio2NTbpT1iZPyfnNN9+YPJY81WRKt2enpHze/fv3lSFDhihly5ZVHB0dFVdXV6V27dpGU4YmW79+vVK3bl3F3t5ecXFxUWrVqqX89ttvRuv8/vvvStWqVRVbW1vF3d1deeutt5Tbt28brdO7d2/F0dEx1ZjSO7dpWbNmjVKuXDnF1tZWCQwMVNauXWsytWlG9uPn56e0bdtW2bJli1KpUiXF1tZWKVu2bIrTiEdGRipjx45VSpUqpdjY2CiFChVS6tatq3z77beGaTfT+h2m9Ps393ief27ylJhhYWFG66U0TWl0dLQyZMgQxd3dXXFyclI6deqkXLhwQQGUyZMnp3KmnwoJCVH69u2rFCpUSLGxsVEqVqxoMrVxRo87JT///LNSokQJRaPRGE1fm/w7Ssn69euVSpUqKXZ2dkrx4sWVKVOmGKZxfvYcPD/VfPKUqc//ntOaujlZfHy88tFHHymVK1dWnJ2dFUdHR6Vy5crKnDlzjNY7e/as0qxZM8XJyUkpVKiQ8u677yonTpww2X5q75dGjRqlOO3y8+cj+Xe+e/duZcCAAUqBAgUUJycn5a233lIePHhgss1nz4Oi6KeBnjJlilK+fHnF1tZWKVCggFK9enVl/PjxyuPHj1M9D1evXlXeeecdpWTJkoqdnZ3i7u6uvPrqq8r27dtN4k2eljf5/JrzWXblyhWlV69eire3t2Jtba0ULlxYadeunbJ69epUYxIiv8pJuUxcXJzy4YcfKj4+Poq9vb1Sr1495cCBAyl+/sTExCiffPKJ4u/vr1hbWyve3t5K165dlStXrhjWSUpKUr755hulbNmyio2NjeLh4aG0bt1aOXr0qNF2+vXrp7i6uirOzs5K9+7dldDQULO/OxVFUW7fvq107txZcXNzU1xdXZVu3bopd+7cSfF4b9y4ofTq1Uvx8PBQbG1tlRIlSihDhgxR4uPjTbZbvnx5Ra1Wm+RKqZk3b57SsGFDpWDBgoqtra1SsmRJ5aOPPjL5PDYnhitXrihdu3ZV3NzcFDs7O6VWrVrKX3/9ZbSd1L4Pkx07dkx57bXXDPH4+fkp3bt3V/755590j+XGjRtKhw4dFAcHB6VQoULK8OHDlc2bN5tMUW/ufpJ/f2fPnlW6du2qODs7KwUKFFCGDh2qxMbGmux/zZo1Sv369RVHR0fF0dFRKVu2rDJkyBDlwoULhnVS+65NKRcz93ief25Gc6QVK1YoZcuWVWxtbZUKFSoo69evV7p06aKULVs2hbNsavbs2UrZsmUVa2trxcvLSxk0aJDy6NEjo3UyctwpOX/+vNKwYUPF3t5eAQzf85nxHkspl00tF0zpc+V5q1evVlq0aKF4enoqNjY2SrFixZSBAwcqd+/eNaxj7udWau+X5JgPHz5stDyl8wEoQ4YMUZYtW6YEBAQotra2StWqVU3eEymdh+QYWrZsqbi6uip2dnZKyZIllT59+ph8bj/vq6++UmrVqqW4ubkp9vb2StmyZZWvv/7a8DfMs/Ema9SoUao527O/sxfNJXMalaJYaIQxIUSOVrx4cSpUqMBff/1l6VCy1fHjx6latSrLli1LsX+yyD0WLVpE3759OXz4cO65kiOEEPlE1apVcXd3559//rF0KLneuHHjGD9+PGFhYVkyzkxOVqVKFTw8PLJ0bESRPVQqFUOGDEmzVZCwDBnTSAiRb8XGxposmz59Omq1moYNG1ogIiGEECLvO3LkCMePHzeaEEGItCQmJpqMF7hr1y5OnDhB48aNLROUEPmEjGkkhMi3pk6dytGjR3n11VexsrIyTDc6YMCAXDUNphBCCJEbnD59mqNHj/Ldd9/h4+NDjx49LB2SyCWCg4Np1qwZb7/9Nr6+vpw/f565c+fi7e3Ne++9Z+nwhMjTpGgkhMi36taty7Zt2/jyyy+JioqiWLFijBs3jk8++cTSoQkhhBB5zurVq5kwYQJlypTht99+w87OztIhiVyiQIECVK9enV9++YWwsDAcHR1p27YtkydPpmDBgpYOT4g8TcY0EkIIIYQQQgghhBAmZEwjIYQQQgghhBBCCGFCikZCCCGEEEIIIYQQwoSMaZQCnU7HnTt3cHZ2RqVSWTocIYQQQqRCURQiIyPx9fVFrZZrYZYk+ZMQQgiRO2Qkf5KiUQru3LkjMycJIYQQucitW7coUqSIpcPI1yR/EkIIIXIXc/InKRqlwNnZGdCfQBcXFwtHYxmJiYls3bqVFi1aYG1tbelw8jw539lLznf2k3OevfLT+Y6IiKBo0aKG725hOZI/5a/3Xk4g5zt7yfnOXnK+s19+OucZyZ+kaJSC5CbVLi4u+TrpcXBwwMXFJc+/YXICOd/ZS8539pNznr3y4/mW7lCWJ/lT/nzvWZKc7+wl5zt7yfnOfvnxnJuTP0nnfyGEEEIIIYQQQghhQopGQgghhBBCCCGEEMKEFI2EEEIIIYQQQgghhAkZ0+gFKYpCUlISWq3W0qFkicTERKysrIiLi8uzx5gTWFtbo9FoLB2GEEIIkS0kfxKZQfInIYTIPlI0egEJCQncvXuXmJgYS4eSZRRFwdvbm1u3bsngollIpVJRpEgRbG1tLR2KEEIIkaUkfxKZRfInIYTIPlI0yiCdTse1a9fQaDT4+vpiY2OTJ5MCnU5HVFQUTk5OqNXSizErKIpCWFgYt2/fpnjx4pYORwghhMgykj+JzCL5kxBCZC8pGmVQQkICOp2OokWL4uDgYOlwsoxOpyMhIQE7OztJerKQh4cH169fJykpydKhCCGEEFlG8ieRmSR/EkKI7CPfZi9IEgGRGZKvsiqKYuFIhBBCiKwn+ZPIDJI/CSFE9pFvbiGEEEIIIYQQQghhQopGQgghhBBCCCGEEMKEjGlkIVqdwqFrDwmNjMPT2Y5a/u5o1HlvQEghhBBCiMwi+ZMQQgiRvaRoZAGbT99l/Iaz3H0cZ1jm42rHF+0DaVXBJ8v227hxY6pUqcL06dOzbB9CCCGECZ0WbuyHqBBw8gK/uqDWWDoqkctI/iSEECJfySH5kxSNstnm03cZtCyI54ftu/c4jkHLgvjx7WpZmvikRVEUtFotVlbyshBCCJFJzq6HzaMh4s7TZS6+0GoKBHawXFwiV5H8SQghRL6Sg/InGdMoEyiKQkxCUrq3yLhEvlh/xiThAQzLxq0/S2Rcolnby8iMEX369GH37t3MmDEDlUqFSqVi0aJFqFQqNm3aRPXq1bG1tWXv3r3odDomT55M5cqVcXR0pHLlyqxevdpoe6dPn6Z169Y4OTnh5eVFz549uX///oufRCGEEHnP2fWwspdxwgMQcVe//Ox6y8QlLM7c3EnyJyGEEPlODsuf5JJIJohN1BL4+ZaX3o4C3IuIo+K4rWatf3ZCSxxszPsVzpgxg4sXL1KhQgUmTJgAwJkzZwAYM2YM3377LSVKlKBAgQJMmjSJZcuWMW3aNCpXrszevXt5++238fDwoFGjRoSHh9OkSRP69+/P999/T2xsLKNHj6Z79+7s2LHjhY5dCCFEHqPT6q+Qpfqnvgo2j4GybaWrWj6UWbkTSP4khBAiD9FpYVPOyp+kaJRPuLq6YmNjg4ODA97e3gCcP38egAkTJtC8eXMA4uPjmThxIlu3bqV8+fK4uLhQqlQp9u7dy7x582jUqBGzZ8+matWqTJw40bD9BQsWULRoUS5evEjp0qWz/wCFEEJYTnwkPLwKD67o/394FYKDTK+QGVEgIljfV9+/QbaFKkRGSP4khBAi08VFwOPb8PiW/hZ+68n92/DgMsSk1QI1+/MnKRplAntrDWcntEx3vUPXHtJn4eF011vUtya1/N3N2m9mqFGjhuHny5cvExMTQ8uWxseTkJBA1apVAThx4gQ7d+7EycnJZFtXrlyRpEcIIfKi+KgnBaEnhaEHT35+cAWiQ198u1EhmRejyDXMzZ1A8ichhBC5iE6nz21SKgglL4t7/PL7ycb8SYpGmUClUpnVzLlBgAc+rnbcexyXYmMzFeDtakeDAI9snT7W0dHR8HNUVBQAGzZswNXVFScnJ9Rq/dBXtra2hnXat2/PlClTTLbl42OZQSiFEMJIDpltItdJiH6uxdCVp8Wh9JITh4LgXhIKltT/r42Hf79Jf59OXpkTu8hVzM2dQPInIYTINnklf8rK40iMfVoAMhSEnv0/GHSJ6W/Hzg3cioJr8q2I/n70A9j4YfrPz8b8SYpG2UijVvFF+0AGLQtChXEvxeQU54v2gVmW8NjY2KDVatNcJzAwEFtbW27evEnHjh1xcXExJD3JqlWrxpo1ayhevLjMFCKEyHly0GwTLy0rkp6EmOdaDD3TpSzybtrPtXd/WhQqWBLcSzy92buZxn58uX7QxtT+1Hfx1R+TEGmQ/EkIIbJBXsmfXuY4FAWbxAi4exyi7hq3Dnp8W18kSrPr2BMqjX6fycWg5IKQoUBUGGydU36uTgt7v8tR+ZN8Y2WzVhV8+PHtaozfcJa7j+MMy71d7fiifWCWThdbvHhxDh48yPXr13FyckKn05ms4+zszKhRo/jwww+JiYmhWbNmREZGsm/fPlxcXOjduzdDhgzh559/5o033uDjjz/G3d2dy5cvs2LFCn755Rc0mlxYjRZC5A3Js008/yWbPNtE9yW5J/F5maQnMQbn2Fuozv8Fj28802LoKkSmNc4QYF/AuMWQewkomFwYKmB+/GqNPtaVvSC1P/VbTc6dVzBzgB9++IFvvvmGe/fuUblyZWbNmkWtWrVSXLdx48bs3r3bZHmbNm34+++/Af0sYYsXLzZ6vGXLlmzevDnzg38Bkj8JIUQWyiv5U3rH0XUBFK72XAuhpy2GrB7fpnVSLJxOZz82Tsatg1yLGLcYcvYBzQuWWnJg/iRFIwtoVcGH5oHeHLr2kNDIODyd7ajl757lTapHjRpF7969CQwMJDY2loULF6a43pdffkmhQoX4/vvvGT58OG5ublSrVo3//e9/APj6+rJv3z5Gjx5NixYtiI+Px8/Pj1atWplcVRNCiGxjzmxdmz6CIrXA2hbU1qCx1v+f0z67zEneAprDw2spthiyjgimCcD5VLZv55ZCi6GS4O4PDumPCWO2wA76WFMsfk3OHQloDvT7778zcuRI5s6dS+3atZk+fTotW7bkwoULeHp6mqy/du1aEhISDPcfPHhA5cqV6datm9F6rVq1MsoNkrtV5RSSPwkhRBZIN38C1g+F8BugysGfVYoOdk8lzeNY3TfNTSR/myhOXqhciz5TECpmXCCycwNVFn735LD8SYpGFqJRq3ilZMFs3Wfp0qU5cOCA0bI+ffqYrKdSqRg2bBh9+vRJsXk1QEBAAGvXrs2qUIUQIuNu7E9/tq7IezCtjOlDKvUzRSSrp8UkjZVxcUljpX/c5LFnn2PONpLva0wfQwN/jyDNpGdVH1DS7i6ToHHAyrMM6kKlnhaFkgtEmVkYSk9gB/20sHlhjIQcYtq0abz77rv07atPfufOncvff//NggULGDNmjMn67u7Gv+8VK1bg4OBgUjSytbU1zBCWU0n+JIQQmSzd/An9wM1bP82eeLKa2hoK+D3tNvZMQSjR0ZvN+07Sql1HrK2tLRtnDsqfpGgkhBAib4i89+LPVXT6gZu18ZkXT1ZKLhjZuj7pOpbcjUzfeijRpRibdh6gTdu2qC2d9IA+wcmmaWHzuoSEBI4ePcrYsWMNy9RqNc2aNTMpbKRm/vz5vP7660YDOQPs2rULT09PChQoQJMmTfjqq68oWDD1Ak18fDzx8U/fMxEREQAkJiaSmGg8CGhiYiKKoqDT6VLs3pVXKIpi+D8vH6el6XQ6FEUhKSkJwOT1JrJG8nmW8509sut8q+5fMasooCtSC9yKZWksLyX8Jurbh9JdLan9bJQKXVJ8LDExEZ36XM56jRep8/RnrU5/ywQZOUYpGgkhhMj9bhwwb6YugF4boFgd/cwW2kTQJT35P6X7Sfr7qT6WmMr9FLZpWJbO/qLu6buZpafddKjeJ+Xm0YmJWdtsWljM/fv30Wq1eHkZz5ri5eXF+fOp9Ud86tChQ5w+fZr58+cbLW/VqhWvvfYa/v7+XLlyhf/973+0bt2aAwcOpDrWzqRJkxg/frzJ8q1bt+Lg4GC0zMrKCm9vb6Kiooy6yuVVkZGRlg4hT0tISCA2Npb9+/cDsG3bNgtHlL/I+c5eWXa+FYUij/ZT8dYys1bfb9eUB9blsiaWTFDQ7hz1Sb9o9N+Z6zy4uTHNdfLDazwmJsbsdXNE0Si/DeYohBAik9y/BNvHwfm/nix4fsDAZz2ZbaJ4vSdNe22yJcQMu7YHFrdLf72CpaQwJDJs/vz5VKxY0STPev311w0/V6xYkUqVKlGyZEl27dpF06ZNU9zW2LFjGTlypOF+REQERYsWpUWLFri4uBitGxcXx61bt3BycsLOzi4TjyhnURSFyMhInJ2dUcn7M8vExcVhb29P3bp1+ffff2nevLnlu5LkA4mJiWzbtk3OdzbJ0vN97xSarWNR3/oPAEWlAUVLSp9aypP8qXa3ETm7a7muJcrsxRB5F1UKuaA5x5GfXuPJrYPNYfGiUX4dzFEIIcRLiAqFXZPh6CJ9Vy2VGqr1gsLVYf2wJytZfraJF+JXV1/cykFTrYqco1ChQmg0GkJCQoyWh4SEpDseUXR0NCtWrGDChAnp7qdEiRIUKlSIy5cvp1o0srW1TTG/sra2Nkm2tVotKpUKtVqdpwd9Tu6SlnysImuo1WpUKhVWVvo/ZVJ6zYmsI+c7e2Xq+Y59BDu+hiPz9V3zrR2g4ShUBYrD6n5PVjLOn1QArSZjbZvTC/7W0Dr1Wccychz54TWekeOz+LfZs4M5BgYGMnfuXBwcHFiwYEGK67u7u+Pt7W24bdu2Lc3BHJNvBQpkYJpgIYQQOVNCNOyaAjOrPkl4tFC6NQw6AO1n6AtH3ZeAy3PTb7v45p7pYpOnWgUwueaXi4pfIkvY2NhQvXp1/vnnH8MynU7HP//8wyuvvJLmc1etWkV8fDxvv/12uvu5ffs2Dx48wMcn66ayF0IIkU10OghaArOqw+Gf9QWj8p1h6GFo8CFU6JL78yd4OutYbj+OHMaiLY1yymCOMpCjKRnIMXvIQI6WIQM5Zr+XPue6JFQnfkWzezKq6FD9Ip+q6JqOQ/Grl7wT/f8BraFkC1S3Dhhmm1CKvqIvsuSW33lAa1RdFqLZ+j9UkU9nNFFcfNE2/xoloHWax5KfXuP54RifN3LkSHr37k2NGjWoVasW06dPJzo62jCbWq9evShcuDCTJk0yet78+fPp1KmTST4UFRXF+PHj6dKlC97e3ly5coWPP/6YUqVK0bJly2w7LiGEEFkg+Cj8PQruBOnve5SF1lOhRCPj9XLQbF0vJa8cRw5i0aJRThnMUQZyTJ0M5Ji1ZCBHy5Lznf0yfM4VBa+I4wTeWYlLXDAA0TYenPXtxh232nDmMZxJazBDeyACzmx54ZgtRw0lJ1Iw6gJ2ieHEWbvxwKkMXFXD1bQHcEyWH17jGRnIMa/o0aMHYWFhfP7559y7d48qVaqwefNmQz518+ZNk65RFy5cYO/evWzdutVkexqNhpMnT7J48WLCw8Px9fWlRYsWfPnll9K9XwghcqvoB/DPeH0LIxSwcYbGY6D2QNCk0jUpr8x2mleOI4ew+JhGLyOzBnOUgRxNyUCO2UMGcrSM/DTIXU7xIudcdScI9T/jUN/UF1UV+wLo6o/CplofqljZUiUL481ZzBgU+zn56TWekYEc85KhQ4cydOjQFB/btWuXybIyZcoYWhE/z97eni1bcmNhVQghhAmdFo4sgB1fQVy4flml16H5eHBOe+w7IVJi0aJRThnMUQZyNCUDOWYPGcjRsuR8Zz+zzvnDa/DPBDizVn9fYwt1BqGq/wEaezekcbH58sNrPK8fnxBCCGG2m//BxlFw75T+vldFaPMN+KU95p0QabFoNSBfD+ao0+qnVT61Wv+/Tpvlu2zcuDEjRozI8v0IIcQLiXkIm8fC7JpPCkYqqPwmvH9Uf3XM3s3SEQohLC2b8yfJnYQQuUJkCPzxHixoqS8Y2blCm29hwC4pGImXZvHuaflyMMez62HzaIh4OrgpLr762XJkRHchRH6TGAsH58Ke7yH+sX5ZySbQbDz4VLJsbEKInEPyJyGEMKZNhEM/wc5JkBAJqKBaT2j6BTgWsnR0Io+weNEo3w3meHY9rOwFPDeuQMRd/fJcPBVgQkICNjY2lg5DCJFb6HRw8nd9n/uI2/plXhX1rYpKmXYlFkLkY3k0f5LcSQjxwq79Cxs/grAnE0j5VoU230GR6paNS+Q5OWKwmqFDh3Ljxg3i4+M5ePAgtWvXNjy2a9cuFi1aZLR+8mCOzZs3N9lW8mCOoaGhJCQkcP36dX766SeTGdoylaJAQnT6t7gI2PQxJgmPfiP6/zaP1q9nzvZSGdDSHI8ePaJXr14UKFAABwcHWrduzaVLl4zWWbx4MX5+fjg4ONC5c2emTZuGm5ub4fFx48ZRpUoVfvnlF/z9/Q0Dg4eHh9O/f388PDxwcXGhSZMmnDhxwmjbX331FZ6enjg7O9O/f3/GjBlDlSpVXvh4hBC5zJUdMK8hrHtPXzByKQKd5sLA3VIwEiI/MDd3ykH5kzm5088//0z58uVxcnKS3EkIkTUeB8OqPrC4vb5gZO8O7WdC/x1SMBJZwuItjfKExBiY6JsJG1L0Ta4nFzVv9f/dARvHF9pTnz59uHTpEuvXr8fFxYXRo0fTpk0bzp49i7W1Nfv27WPkyJFMnjyZjh07sn37dj777DOT7Vy+fJk1a9awdu1aNBr98LTdunXD3t6eTZs24erqyrx582jatCkXL17E3d2d5cuX8/XXXzNnzhzq1avHihUr+O677/D393+hYxFC5CIhp2HnBH3RCMDWFRqM1E//am1v2diEENkn03InyK78yZzcafDgwYwbN45u3bqxY8cOyZ2EEJknKR4O/AD/fqP/DFWpoUY/ePV/4OBu6ehEHiZFo3woOeHZt28fdevWBWD58uUULVqUdevW0a1bN2bPnk2zZs348MMPUavVlC5dmv379/PXX38ZbSshIYElS5bg4eEBwN69ezl06BChoaGG7oDffvst69atY/Xq1QwYMIBZs2bRr18/w7hVn3/+OVu3biUqKiobz4IQIltFBFP1xjysju0HFFBbQ613oeFHkugIIXI8c3KnWbNm0apVK95//31cXFwoW7as5E5CiMxxabu+xeXDK/r7RevoZ0WTsR9FNpCiUWawdtBftUrPjf2wvGv66721GvzqmrffF3Du3DmsrKyMugEWLFiQMmXKcO7cOQAuXrxI69atjZ5Xq1Ytk8THz8/PkPQAnDhxgqioKJMBymNjY7lyRf8hd+HCBQYPHmyy7R07drzQ8QghcrDYcNj7PVb//Ugxbbx+WYUu0OQzcJcr5ELkW+bmTpAj8idzcqcLFy7QqVMno+dJ7iSEeBkO8WFoVvWCixv1Cxw9ocWXUKkHqFSWDU7kG1I0ygwqlXnNnEs20c/yEXGXlPvlq/SPl2wCak1mR5klHB2NjzsqKgofHx927dplsu6zffqFEHlcUgIcmQ+7p0LsQ1TAfacyuHWdhVXx2uk+XQiRx5mbO0Gey58kdxJCpCsxFvW/02hy7nvUSiKoNFBnEDQaDXYulo5O5DM5YiDsfEOt0U8LC8DzleEn91tNzvKEp1y5ciQlJXHw4EHDsgcPHnDhwgUCAwMBKF26NEFBQUbPO3z4cLrbrlatGvfu3cPKyopSpUoZ3QoV0k/7WKZMGZNtmbNtIXI8nRau7YFTq/X/67SWjij7KQqcXgM/1ITNYyD2IRQqQ1L35ewr9T+UwtUsHaEQIrfJAfmTObnTi+Y3kjsJIQwUBc7/DT/UQrNnKholEZ1ffRi0D1p+LQUjYRFSNMpugR3008K6+Bgvd/HNtuliAwIC6NixI++++y579+7lxIkTvP322xQuXJiOHTsC+hnttm3bxvfff8+lS5eYN28emzZtQpVOM8hmzZrxyiuv0KlTJ7Zu3cr169fZv38/n3zyCUeOHAHg/fffZ/78+SxevJhLly7x1VdfcfLkyXS3LUSOdnY9TK8Ai9vBmn76/6dX0C/PL67vg5+bwOp34NF1cPKC9jNg0H6UgJbSjFoI8eIsnD+Zkzu9//77bNq0iR9++EFyJyHMJRfcnnpwBZZ3gxVvQvhNFGcfDhcfgvatP8CznKWjE/mYdE+zhMAOULatvo9+VIj+Dyu/utnapHrhwoUMHz6cdu3akZCQQMOGDdm4cSPW1tYA1KtXj2nTpvHNN9/w2Wef0bJlSz744ANmz56d5nZVKhUbN27kk08+oW/fvoSFheHt7U3Dhg3x8vIC4K233uLq1auMGjWKuLg4unfvTp8+fTh06FCWH7cQWeLseljZC5NuExF39cuzqSBsMaHnYfs4uLhJf9/GCeoNh1eGPO1+oku0WHhCiDzCwvmTObnTnDlzmDBhAl9//bXkTkKk5+x62DxaP/thMhdffcvCvJw3PS8hGv79Fg7MBm2CfrKQuu+T9Mow7mz/lypSHBYWplIUJaXO4flaREQErq6uPH78GBcX4yaAcXFxXLt2DX9/f+zs7CwUYdbT6XRERETg4uKCWq1vkPbuu+9y/vx59uzZk+n7a968Od7e3ixdujTTt52TJb+eihQpwo4dO2jTpo0h+RRZJzExkY0bN2bO+dZp9S2KIlIb0PXJWBsjTuWKsTYyJPIe7JwIx5aCotP3t6/eBxqPASdPo1Uz9ZyLdOWn853Wd7bIXpI/meZPkjtlDcmfLCNTv1tSu+CW3OU0r19wA31XtLPrYMsnEBGsX1aqmb5oVqhUvvouzyny0znPSP4kLY1EqmbNmkW7du1wdnZm06ZNLF68mDlz5rz0dmNiYpg7dy4tW7ZEo9Hw22+/sX37drZt25YJUQuRzW7sT6NgBKDoE4FLW6F0q7zRRSs+EvbP0t8SY/TLyraDZuOgUIBFQxNCCEv67rvvqFOnDl5eXmzZskVyJyFSotPqWxilOLC9Aqj04yKWbZv3LrglCz0Pmz6Ca//q77sV04/NVqZN3sgVRZ4iRSORqqCgIGbNmkVkZCQlSpRg5syZ9O/f/6W3m9wM++uvvyYuLo4yZcqwZs0amjVrlglRC5GFFAUe34K7J+HeKbh3Em7+Z95zf3sdNLb67hTOXvr/nTzByfvJ/88sd/QEK5usPZbU6LSpd/3QJkLQEtg1GaJD9cuK1ITmX4LfK5aJVwghcpBDhw4xdepUoqKiJHcSIjXmXnA7tRoCO4J1HmqdGBcBu6fAwbmgSwIrO6j/gb5bv7W9paMTIkVSNBKpWrhwoVH3tMxib2/P9u3bM3WbQmQ6bRI8uKQvDt09oS8Q3TsFsY9eYpvx8Pim/pYee/dUCkxPfnZ+Umyyc8u8K1Kpji0wWd/1bPs4/TkBcC+hb1lUroNcERNCiCd+//13k+79mUFyJ5HrKQo8uKwvGJ34zbzn/DFAf3P0ANei4FpE3yLHtcjT+65FwcE95+ciigInf4dtn+svzAGUaQutJkKB4hYNTYj0SNFICCESYyHkLNw78aQV0Un9/aRY03XVVuBRDnwqgXcl8AzUJzSR90i5mfWTMY2GHIaY+xAVqk8Wou7pf46898yyJzddkn6q+tiHEHYu7diTWy89W0hy8jK+OZvReinVwbzvPFn+hENBaDQGavQFTd7u6y2EEEKIF6RNetoi++Z+/f/RYRnbhsYOtHH650WHwZ2glNezdjAuJLkVffLzk/suvlmfs6TVUvvuSdj4Edx60jrdvSS0ngIBzbM2JiEyiRSNhBD5S8xDVMHHKBmyCc2f6yHkNNy/qB/I+Xk2TuBV4UmBqOKTIlE5sLI1Xq/11CeFFRXGRZcnV71aTQZbR/2tgF/a8el0EBf+pJj0TCHJUGB68nPUPYh7nMHWSwWedod7tsDk6AlbxpJy0esZ9Ufqm1DbyWDDQgghhHhGYizcPgI3D+iLJ7cPQ0KU8TpWdlC4BhStBUGLIeYhaV5wG34S4iP0QwM8vg3ht57+nPx/VIh+fMX7F/W3lKjU4OyTdmHpZXKb1FpqN/kcgo/Ckfn6PNPaARqOgleGmuaSQuRgUjQSQuRNypP+8Mkth5L/f3wLK6ACwLPd6R099EUhQ4Gosr4LljndCwI76Gf5SK1rV0Zm/1Cr9c2sHdzBKzDtdRPjnikimdN66ZH+ll7rpdSUbCIFIyGEEELoCz63DuoLRDf/gzvHQJdovI6dKxStox/3sFhd8K3ytFjiWzX9C24aq6c5kU/llONIjNPne0aFpdtPLqjd1t+0Cfp1IoL1MafEztW4y9vzhSUnr5RzwrRaaq977+n98p2hxVf67QqRy0jRSAhheWk16TX3+Q8uPykMnXg6UHXswxRXV9yKcxcPvCo3R1O4ir5Y5Oz9cv3hAzvoZ/l4mePIKGs7fcull229dO8U3L+Q/v6S++ALIYQQIn95HIzq2h4q3fodq58mpXwBytkHir2iz3+KvaLvwp/axbfMuuBmbQcFS+pvKdHp9F3bni0khT/bWumW/oJa3GP9LeR0yttRW4NrYePCkosv7PiSNFtqq63gzVVQqol5xyNEDiRFIyGEZaU6+PKUlBOGxDgIPWPcgijkTBrjD5XVF4W8KxpaESVpHDi8cSNt6rdBY52JfdzVGvBvkHnbyyzptV66tgcWt0t/O05emR+bEEIIIXIWRdF39bqxX9/d7OYBCL+JFeD/7HoFA562IvJ7Bdz8MnYBLjsuuKnV+rEdnb2gSPWU14mPetoqyaSwdFvfQkmXCI+u628ZoUuSMSBFridFIyGE5aTapPeufnmnH/VXdZ4tEN2/CIrWdFvWjuBdwbhA5FEu5WlaExNNl+VnfnX1hbqIu6Q5toBf3eyOTAghhBBZTZuoz7NuHHhaJIp5YLyOSo3OqyLXtN74NXwDK//64OTx8vvOCRfcbJ3As6z+lhJtkn4IgOe7vt06lHrLpGdJS22Ry0nRyEK0Oi1BoUGExYTh4eBBNc9qaLKyG0s269OnD+Hh4axbty7b971u3TpGjRrFtWvXeP/995k+fXq2xyDMoNPqWxilWKR4suzZvuDPcij0dPYy74r6fu7uJbK2K1heptboW3alN7aAnF8hhIVJ/pR1JH/KhV60e39CjH6gasOg1UcgMdp4HSs7KFLzSXezV6BITbRqO05v3Eixsm0gM1tq53Qaqydd0p4bj0haaot8QopGFrD9xnYmH5pMSMzTqrOXgxdjao2hmV8zC0aWNwwcOJC+ffsybNgwnJ2dLRZH48aNqVKliiRdqbmx37hLWmocvaBYLf3A1MktiJx9Xm78IWEqMwfzFkKILCD5U9aS/CmXyUj3/piHT1sQ3TgAd4/ru009y84NitV5OiaRTxWwsjFeR1pqG5OW2iKfkKJRNtt+Yzsjd41Eee6DJTQmlJG7RjKt8bRsSXwSEhKwsbFJf8VcJioqitDQUFq2bImvr+8Lbyevnp8cIz4Sjv9q3rqtJkLFrlkbj9CzxGDeQghhBsmfspbkT7lMet37200DG6enYxKFnTfdhkvhp62IitXVjwFpzoyx4ilpqS3yCflkyASKohCTGJPuLTI+kkmHJpkkPADKk3+TD00mMj7SrO0pShoj9T+ncePGDB06lBEjRlCoUCFatmwJwLRp06hYsSKOjo4ULVqUwYMHExUVZXjeokWLcHNzY8uWLZQrVw4nJydatWrF3bt3DetotVpGjhyJm5sbBQsW5OOPPzaJLT4+nmHDhuHp6YmdnR3169fn8OHDhsd37dqFSqViy5YtVK1aFXt7e5o0aUJoaCibNm2iXLlyuLi48OabbxITE5PiMe7atctwZaxJkyaoVCp27doFwJo1ayhfvjy2trYUL16c7777zui5xYsX58svv6RXr164uLgwYMAAAPbu3UuDBg2wt7enaNGiDBs2jOjop81358yZQ0BAAHZ2dnh5edG1q7640adPH3bv3s2MGTNQqVSoVCquX79u9u8rz3pwBTaNge/KwQkzi0bSpDd7JY8tULGr/n9JdIQQWcDc3EnyJ8mfJH96Trrd+xX46wNY+y4cXfi0YFSoNFTrDZ3nwfCT8MEZ6DofavbXT5IhBaMXk9xS28XHeLmLr365tNQWeYC0NMoEsUmx1P61dqZsKyQmhLorzGvCePDNgzhYO5i97cWLFzNo0CD27dtnWKZWq5k5cyb+/v5cvXqVwYMH8/HHHzN79mzDOjExMXz77bcsXboUtVrN22+/zahRo1i+fDkA3333HYsWLWLBggWUK1eO7777jj/++IMmTZ5OLfnxxx+zZs0aFi9ejJ+fH1OnTqVly5ZcvnwZd3d3w3rjxo1j9uzZODg40L17d7p3746trS2//vorUVFRdO7cmVmzZjF69GiT46tbty4XLlygTJkyrFmzhrp16+Lu7s7Ro0fp3r0748aNo0ePHuzfv5/BgwdTsGBB+vTpY3j+t99+y+eff84XX3wBwJUrV2jVqhVfffUVCxYsICwsjKFDhzJ06FAWLlzIkSNHGDZsGEuXLqVu3bo8fPiQPXv2ADBjxgwuXrxIhQoVmDBhAgAeHpkwWGBupNPB1R1wcB5c2vp0uXspiAmDuAikSa8QQuQvmZk7geRPkj/lI+Z27y8YAAEtnrQkegUcC2V9bPmVtNQWeZwUjfKRgIAApk6darRsxIgRhp+LFy/OV199xXvvvWeU9CQmJjJ37lxKliwJwNChQw1f5ADTp09n7NixvPbaawDMnTuXLVu2GB6Pjo7mxx9/ZNGiRbRu3RqAn3/+mW3btjF//nw++ugjw7pfffUV9erVA6Bfv36MHTuWK1euUKJECQC6du3Kzp07U0x6bGxs8PT0BMDd3R1vb29AfzWwadOmfPbZZwCULl2as2fP8s033xglPU2aNOHDDz803O/fvz9vvfWW4RwFBAQwc+ZMGjVqxI8//sjNmzdxdHSkXbt2ODs74+fnR9WqVQFwdXXFxsYGBwcHQxz5TnwkHP8NDs2DB5efLg9oCbUHQIkmcP4vadIrhBAiR5P8SfKnHCXkjHnrNR4j3fuzU06YBU6ILCJFo0xgb2XPwTcPprve0ZCjDP5ncLrrzWk6h+pe1c3ab0ZUr266ze3btzNp0iTOnz9PREQESUlJxMXFGTVhdnBwMCQ8AD4+PoSGhgLw+PFj7t69S+3aT68WWllZUaNGDUMT6ytXrpCYmGhIZgCsra2pVasW586dM4qnUqVKhp+9vLxwcHAwJDzJyw4dOpSh4z537hwdO3Y0WlavXj2mT5+OVqtFo9EXJWrUqGG0zokTJzh58qThiiDom9PrdDquXbtG8+bN8fPzo0SJErRq1YpWrVrRuXNnHBzMv3qZJz24Aod+hmPLICFSv8zWBaq8BbXehYJPX0sy+LIQQuRP5uZOIPmT5E8CgLALsHc6nFxh3vrSvV8IkUmkaJQJVCqVWc2c6/rWxcvBi9CY0BT75atQ4eXgRV3fulkyfayjo6PR/evXr9OuXTsGDRrE119/jbu7O3v37qVfv34kJCSgftK32fq5KTVVKlWGxgPIiGf3pVKpUty3TqfLkn0/f36ioqIYOHAgw4YNM1m3WLFi2NjYEBQUxK5du9i6dSuff/4548aN4/Dhw7i5uWVJjDlWal3QCgZA7YFQ+XWwTWUmFmnSK4QQ+Y65uRNI/mQOyZ/ysDvHYM80OLcBQ6tsjS1o41N5gnTvF0JkLhnxLBtp1BrG1BoD6BOcZyXfH11rdJYkPCk5evQoOp2O7777jjp16lC6dGnu3DGjj/QzXF1d8fHx4eDBp1cLk5KSOHr0qOF+yZIlsbGxMRoLIDExkcOHDxMYGPjyB5KOcuXKGe0bYN++fZQuXdpwlSwl1apV4+zZs5QqVcrkljwziJWVFc2aNWPq1KmcPHmS69evs2PHDkDf3Fur1WbdgeUE8ZFw8Cf4oSYs6/K0YBTQAt5eA0MO6VsXpVYwSiaDLwshhEiF5E+SP+U7igLX98LSzvBTYzi3HlCgbDvovwO6/IK+K7/quSdK934hROaTlkbZrJlfM6Y1nsbkQ5MJiQkxLPdy8GJ0rdHZMl1sslKlSpGYmMisWbNo3749+/btY+7cuRnezvDhw5k8eTIBAQGULVuWadOmER4ebnjc0dGRQYMG8dFHH+Hu7k6xYsWYOnUqMTEx9OvXLxOPKGUffvghNWvW5Msvv6RHjx4cOHCA2bNnM2fOnDSfN3r0aOrUqcPQoUPp378/jo6OnD17lm3btjF79mz++usvrl69SsOGDSlQoAAbN25Ep9NRpkwZQD/GwcGDB7l+/TpOTk64u7sbrj7meil1QbNxhqpvm3ZBE0IIIV6S5E+SP+ULigIXt8Ce7+D2k+6EKg1U7Ab1R4BnuScrVpfu/UKIbCNFIwto5teMV4u+SlBoEGExYXg4eFDNs1q2XSFLVrlyZaZNm8aUKVMYO3YsDRs2ZNKkSfTq1StD2/nwww+5e/cuvXv3Rq1W884779C5c2ceP35sWGfy5MnodDp69uxJZGQkNWrUYMuWLRQoUCCzD8tEtWrVWLlyJZ9//jlffvklPj4+TJgwwWgQx5RUqlSJ3bt388knn9CgQQMURaFkyZL06NEDADc3N9auXcu4ceOIi4sjICCA3377jfLlywMwatQoevfuTWBgILGxsVy7do3ixYtn8dFmIaMuaNswNJE2pwuaEEII8ZIkf5L8Kc/SaeHMH7D3ewg5rV+msdVfjKs3DAoUN32OdO8XQmQTlZJVnatzsYiICFxdXXn8+DEuLi5Gj8XFxXHt2jX8/f2xs7OzUIRZT6fTERERgYuLS/65umMBya+nIkWKsGPHDtq0aWMyDoHFGWZB+wkeXHq6PKCFvlhUognkstdIYmIiGzduzJnnO4+Sc5698tP5Tus7W2QvyZ8kf8ouuSJ/MkdSPJz4TT/A9aNr+mU2TlCzH9QZDM45awa5/PTdkhPI+c5++emcZyR/kpZGQoiUSRc0IYQQQojMFx8FQYth/yyIvKtfZu8OdQbpcyz7rG9JJoQQ5pKikRDiqbS6oNUaAFXekC5oQgghhBAvIuah/oLcwR8h9pF+mbMv1H0fqvcGG8e0ny+EEBYgRSMhRJ7sgiaEEEIIkSNE3oMDP8CRBZAQpV/mXgLqjdCPCWlla9HwhBAiLVI0EiI/ky5oQgghhBBZ4+E12D8Tji0Hbbx+mVcFaDASAjvJoNVCiFxBikYvSMYPF5kh+XWkUqmyb6epdkErBbUGShc0IYQQWUbyJ5EZLJI/ZUToOf1MaKdWg6LVLytaGxp8qG/FnVPjFkKIFEjRKIOSR1GPiYnB3t7ewtGI3C4hIQEAjSYbrjTFR8KJFfpikXRBE0IIkY0kfxKZKVvzp4y4fRT2fAcX/n66rGRTfbHIr64Ui4QQuZIUjTJIo9Hg5uZGaGgoAA4ODjn3KsdL0Ol0JCQkEBcXJ1PGZhGdTkdYWBgODg4vnvTotHBjP0SFgJOXPiF5vqlzche048shPkK/TLqgCSGEyEaSP4nMkin5U2ZSFLi2G/ZM0/8PgArKtdd3Q/OtatHwhBDiZUnR6AV4e3sDGBKfvEhRFGJjY7G3t8+TSV1OoVarKVas2Iud47PrYfNoiLjzdJmLL7SaAmXbSRc0IYQQOYrkTyKzvFT+lFl0Ori4Sd+yKPjok8CsoFIP/QDXHqUtF5sQQmQiKRq9AJVKhY+PD56eniQmJlo6nCyRmJjIv//+S8OGDQ1NykXms7GxQa1WZ/x1dHY9rOyFoRiULOIurOwJTj4QdffpcumCJoQQwsIkfxKZ5YXzp8ygTYIza/Uti8LO6ZdZ2UG1XlD3fXArlv0xCSFEFpKi0UvQaDQ5o1lsFtBoNCQlJWFnZydJT06j0+pbGD1fMIKny6LugrUTVOspXdCEEELkKJI/iVwpMU7f1X/fDAi/oV9m6wI1+0OdQeDkadn4hBAii0jRSIjc5sZ+4y5pqem2AEq3zPp4hBBCCCHyqvhIOLIADvygH0MSwKGQvlBUsz/Yu1k0PCGEyGpSNBIit0lOWNITH5m1cQghhBBC5FUxD+HgXP34kHHh+mUuRaDeMKjaE2wcLBqeEEJkFykaCZHbmNv82ckra+MQQgghhMiN0pp9NuKOvlXRkYWQGK1fVrAU1P8AKnYHKxvLxS2EEBYgRSMhcpOEGAhaks5KKv0san51syUkIYQQQohcI7XZZ+t9ACGn4cRvoE3QL/euBA0+hHLtnxaVhBAin5GikRC5xYMr8HtPCD0DqAEdoMJ4QOwnU8+2mizJjRBCCCHEs1KdffYObPro6X2/elB/JJRqCipVtoYohBA5jRSNhMgNzm+EP96D+Mfg6AHdFun72qd0pazVZAjsYLFQhRBCCCFynDRnn33CyhbeWgv+9bMtLCGEyOmkaCRETqbTws6JsOdb/f2itfUFIxdf/f2ybVPvky+EEEIIIfTMmX02KZ40i0pCCJEPSdFIiJwq+gGs6QdXd+rv134Pmn9pPACjWgP+DSwTnxBCCCFEbmHu7LPmrieEEPmEFI2EyIluH9X3uY+4DdYO0GEWVOxq6aiEEEIIIXIfnQ5u7DNvXZl9VgghjEjRSIicRFHgyALYNFo/c4d7SeixDLwCLR2ZEEIIIUTuE3EX1g162nI7VTL7rBBCpESKRkLkEGpdApq/hsHJ3/QLyraDTnPAztWygQkhhBBC5Ebn/4Y/h0LsQ7Cyh8qvw9FFTx6U2WeFEMIcUjQSIid4dJ0GFyegjr0JKjU0/RzqjZBpXoUQQgghMiohBrb8D44u1N/3rghd5oNHGSjZRGafFUKIDJCikRCWdnErVmv74xb3GMWhEKquC6BEI0tHJYQQQgiR+9w9Aav7wYNL+vt134cmn4GVrf5+YAeZfVYIITJAikZCWIpOC7unwO4pqICHDiVx7rcW64LFLR2ZEEIIIUTuotPBgdnwzwTQJYKzD3T6EUq+arquzD4rhBBmk6KREJYQ8xDWvguXtwOgrf4O+5Lq0cqlsIUDE0IIIYTIZSLuwl9D4dpu/f2y7fQzzzq4WzYuIYTIA6RoJER2u3MMfu8Fj2/qB2VsPx1dYBd0GzdaOjIhhBBCiFzFO/woVr8Mh9hH+ryq1SSo3kfGhRRCiEwiRSMhslPQEvh7FGjjoYA/9FiqH5wxMdHSkQkhhBBC5B4J0ag3jaH2tSX6+z6V4bVfwKO0ZeMSQog8RopGQmSHxDjY9JG+aARQujV0ngv2bhYNSwghhBAi17lzHNb0R/PgEgoqdK8MRdP0c7CysXRkQgiR50jRSIisFn4Tfu8Jd48DKmjyCdT/ENRqS0cmhBBCCJF76HSwfybs+Ap0iShO3uz37kOtJqPQWFlbOjohhMiTpGgkRFa6vB3W9Nf3s7d3hy6/QKmmlo5KCCGEECJ3eRwM696Da//q75dtR1Lradzf9Z9l4xJCiDxOikZCZAWdDvZ8CzsnAgr4VoXuS8CtmKUjE0IIIYTIXc6uh/XvQ1w4WDtAq8lQrRckJVk6MiGEyPOkaCREZot9BGsHwqUt+vvV+0CrKWBtZ9GwhBBCCCFylYRo2Dzm6ZiQPlWgy3woVMqiYQkhRH4iRSMhMtPdk7CyJzy6DhpbaDcNqr5t6aiEEEIIIXKX4CBY+y48uAyooN5wePUTGexaCCGymRSNhMgsx3+Dv0ZAUpy+G1r3peBbxdJRCSGEEELkHjrtM4NdJ4GzL7w2D/wbWjoyIYTIl6RoJMTLSorXN50+skB/v1RzeO0ncHC3bFxCCCGEELnJ42D4YyBc36O/X64DtJ8hOZUQQliQFI2EeBmPb8PKXhB8FFBB4zHQ8GNQqy0dmRBCCCFE7nH2T1g/7Mlg147Qeoq+i79KZenIhBAiX5OikRAv6spOWNMPYh6AnRt0+QUCmls6KiGEEEKI3CM+St9i+9hS/X3fqvrBrguWtGxcQgghAMgRzSF++OEHihcvjp2dHbVr1+bQoUOprtu4cWNUKpXJrW3btoZ1FEXh888/x8fHB3t7e5o1a8alS5ey41BEfqDTwZ7vYNlr+oKRdyUYuFsKRkIIIYQQGRF8FOY1fFIwUkH9kdBvmxSMhBAiB7F40ej3339n5MiRfPHFFwQFBVG5cmVatmxJaGhoiuuvXbuWu3fvGm6nT59Go9HQrVs3wzpTp05l5syZzJ07l4MHD+Lo6EjLli2Ji4vLrsMSeVXcY/j9bfhnAig6fbPpfluhQHFLRyaEEEIIkTvotPoLcPNbwMMr4FIYem+AZl+AxtrS0QkhhHiGxYtG06ZN491336Vv374EBgYyd+5cHBwcWLBgQYrru7u74+3tbbht27YNBwcHQ9FIURSmT5/Op59+SseOHalUqRJLlizhzp07rFu3LhuPTOQ5IWfgp8Zw4W/Q2ED7mdDxB7C2t3RkQgghhBC5w+PbsLiD/gKcLgkCO8J7e8G/gaUjE0IIkQKLjmmUkJDA0aNHGTt2rGGZWq2mWbNmHDhwwKxtzJ8/n9dffx1HR0cArl27xr1792jWrJlhHVdXV2rXrs2BAwd4/fXXTbYRHx9PfHy84X5ERAQAiYmJJCYmvtCx5XbJx51fj/95qtOr0Pw9ElVSLIpLEbRdFqD4VoNMOj9yvrOXnO/sJ+c8e+Wn850fjlGIPOPMH7BhuL7ltrUjtJkKVd6Swa6FECIHs2jR6P79+2i1Wry8vIyWe3l5cf78+XSff+jQIU6fPs38+fMNy+7du2fYxvPbTH7seZMmTWL8+PEmy7du3YqDg0O6ceRl27Zts3QIFqXSJVEh+FdK3N8OQKhzBY76DSLh+D04vjHT95ffz3d2k/Od/eScZ6/8cL5jYmIsHYIQIj3xUbBpNBxfpr/vW00/gYiFxi7S6rQEhQYRFhOGh4MH1TyroVFrLBLLy8grxyGEyNly9exp8+fPp2LFitSqVeultjN27FhGjhxpuB8REUHRokVp0aIFLi4uLxtmrpSYmMi2bdto3rw51tb5tG95xF00a99Bff8wANp6H1Kg4cc0y4IvYznf2UvOd/aTc5698tP5Tm4dLITIoW4fhbX94eFVQAUNPoTGYyw2dtH2G9uZfGgyITEhhmVeDl6MqTWGZn7N0nhmzpJXjkMIkfNZtGhUqFAhNBoNISEhRstDQkLw9vZO87nR0dGsWLGCCRMmGC1Pfl5ISAg+Pj5G26xSpUqK27K1tcXW1tZkubW1dZ5PttOTb8/BtT2wui9Eh4GtK7w2D02Z1mT1tZt8e74tRM539pNznr3yw/nO68eXmh9++IFvvvmGe/fuUblyZWbNmpXqRbTGjRuze/duk+Vt2rTh77//BvRjQn7xxRf8/PPPhIeHU69ePX788UcCAgKy9DhEHqbTwt7vYdck/dhFLkXgtZ+geD2LhbT9xnZG7hqJgmK0PDQmlJG7RjKt8bRcUXDJK8chhMgdLDoQto2NDdWrV+eff/4xLNPpdPzzzz+88soraT531apVxMfH8/bbbxst9/f3x9vb22ibERERHDx4MN1tCoGiwL4ZsKSjvmDkVREG7oIyrS0dmRBCCAHIzLMiFwi/BYvbw44v9QWj8p1h0F6LFoy0Oi2TD002KbQAhmVTDk1Bq9Nmd2gZkleOQwiRe1i8e9rIkSPp3bs3NWrUoFatWkyfPp3o6Gj69u0LQK9evShcuDCTJk0yet78+fPp1KkTBQsWNFquUqkYMWIEX331FQEBAfj7+/PZZ5/h6+tLp06dsuuwRE6n08KN/RAVAk5e4FcXEqLhz8FwboN+ncpvQNtpYJO/x7USQgiRszw78yzA3Llz+fvvv1mwYAFjxowxWd/d3d3o/ooVK9KceRZgyZIleHl5sW7duhQnEREiVafXwl8j9INd2zhBm2/0OZWFB7sOCg0y6sr1PAWFezH3GL5zOJ4OntkYWcaExoSadRxBoUHU9K6ZjZEJIfIqixeNevToQVhYGJ9//jn37t2jSpUqbN682TCQ9c2bN1GrjRtEXbhwgb1797J169YUt/nxxx8THR3NgAEDCA8Pp379+mzevBk7O7ssPx6RC5xdD5tHQ8Sdp8scPUGlgai7oLaG1lOgxjsWT3CEEEKIZ+WUmWdBZp9NSX6audBEfCSarWNRn1wBgM63GtqOc8G9BCQlZckuM3K+70WmPCHO83bfNu3KmRvdi7xHYsHMfR3m69e3Bcj5zn756Zxn5BgtXjQCGDp0KEOHDk3xsV27dpksK1OmDIpi2iQzmUqlYsKECSbjHQnB2fWwshc836Q3+kmTfnt3eGsVFKmR7aEJIYQQ6ckpM8+CzD6bljw7c6Gio2DUBewSw4mzduOBUxlQqSkQfYVq13/EKSEUBRUXvdpzwbMTyn/ngfRfly/LnPN9NfGqWduqal2VApoCLxtSlnmkfcSxxGPprnf5xGU2ns38mX4hD7++cyg539kvP5zzjMw+myOKRkJkC51W38IohT7gBla24Fs120ISQgghslNmzTwLMvtsSvLyzIWq83+h2fo/VJFPW2orzj7oir6C+tKfqBQtiksRtB1/pESxVyiRDTFl5HxrdVr+Wv8XoTEpj/2lQoWngyc/dfgpR09br9Vpabu+LWExYSmOa5R8HIPaD8r048jLr++cSM539stP5zwjs89K0UjkHzf2G3dJS0nkXf16/g2yJyYhhBAiA3LKzLMgs8+mJc+dg7PrYU1fnr/wpoq8i+bsWv2dCl1QtZ2Glb1btodnzvm2xpq3y77NtKBpJo+p0A9HMKbWGOxsc/ZwFtZYM7bWWEbuGokKVYqFo6w+jjz3+s7h5Hxnv/xwzjNyfBadPU2IbBWV+qCBL7SeEEIIkc1k5lmR7cxpqW1fADr/BBYoGJlLURR2B+vHK7LTGBdUvBy8ctU09c38mjGt8TSTAbutVFZ82+jbXHMcQojcQVoaifzD1tm89Zy80l9HCCGEsBCZeVZkK3Naasc+gpsHcnRL7R03d3A05Ci2GlvWdVrHnag7hMWE4eHgQTXPajm6S1pKmvk149WirxIUGsSNiBtMPTyV2KRY4rXx6T9ZCCEyQIpGIn8IPgqbRqezkgpcfMGvbraEJIQQQrwImXlWZKs80FI7UZvItKP6bmm9AntR2KkwhZ0KWziql6dRa6jpXZOa3jUJjw9nRtAM5hyfQ6virbDW5O2uNUKI7CNFI5G36bSwbwbs/Bp0SWBfEGIfACqMm1nr+7LTajLkoitNWp2WoNCgXH2lTAghRMbJzLMi25jbAjsHt9RecWEFNyNvUtCuIP0q9rN0OFnizbJvsuzsMm5H3WbtpbX0KNvD0iEJIfIIKRqJvOtxMPwxEK7v0d8P7ATtp8O1Pfq++c82tXbx1ReMAjtYItIXsv3GdiYfmkxIzNMre14OXoypNUb6sgshhBAic/jVBRsnSIhKZYWc3VL7cfxj5p6YC8DQqkNxtHa0cERZw8HagQGVBjDp0CTmnZxHh1IdsLeyt3RYQog8QIpGIm86twHWv6/vY2/tCG2mQpW3QKXSF4bKttX30Y8K0V8Z86ubq1oYbb+xnZG7RprMmBEaE8rIXSNz1WCOQgghhMjBDsxOu2AEObql9twTc4lIiCCgQACdS3W2dDhZqlvpbiw5u4TgqGB+O/8b71R4x9IhCSHyAJk9TeQtCdGwYTj8/ra+YORTBQb+C1Xf1heMkqk1+sEaK3bV/59DE52UaHVaJh+anOIUq8nLphyaglanze7QhBBCCJGXHF0E2z7X/1ypu75F0bNcfKH7khzbUvtGxA1WXFgBwKjqo/J8F35rjTWDKg8CYP6p+UQkRFg4IiFEXiAtjUTecfckrOkH9y8CKqg3DF79FKxsLB1ZpgoKDTLqkvY8BYV7MfcICg2ipnfNbIxMCCGEEHnG6bWwYYT+53ojoPl4/ViRuail9vdHvydJl0T9wvWpWzhndp/LbO1KtGPB6QVcfXyVxWcW837V9y0dkhAil5OWRiL30+ngwA/wS1N9wcjJG3qtg+YT8lzBCCAsJsys9U6EnUhz0FMhhBBCiBRd2g5rBwAKVO8Lzcbpl+eiltpH7h3hn5v/oFap+bD6h5YOJ9to1BpDoWjp2aXcj71v4YiEELmdFI1E7hYZAsu7wJb/gTYByrSFQfuhRGNLR5ZlPBw8zFpvRtAMWqxpwVf/fcXe4L0kaBOyODIhhBBC5Ho3Dui7+esSoUIXaPudcRf/XECn6PjmyDcAdA3oSqkCpSwcUfZqWqwpFQpWIDYplvmn5ls6HCFELidFI5F7XdwCP9aFKzvAyg7aToPXl4NjQUtHlqWqeVbDzdYtzXVsNbbYqm25F32P3y/8zqDtg6i/oj4f7PyAdZfX8TDuYfYEK4QQQojc4+4J+LU7JMVCQAvoPC9HtyZKzd9X/+bsg7M4WjsyuMpgS4eT7VQqFcOqDQPg9wu/cyfqTjrPEEKI1MmYRiL3SYzTD8p4aJ7+vlcF6DIfPMtaNq5scifqDnHauBQfUz2ZxWRyg8nUL1yfQ/cOsevWLnbf2k1obCjbb25n+83tqFBR2aMyjYo2onGRxpR0K4kql11FFEIIIUQmun8Jlr4G8RFQrC50Wwwaa0tHlWGxSbHMCJoBQP+K/Slon7cvJqamjk8dannX4tC9Q8w9MZcJ9SZYOiQhRC4lRSORu4Sc1Q92HXpWf7/OYGj6BVjbWTaubBKTGMOwncOIS4rDz9mPWG0soTGhhse9HLwYXWs0zfyaAdCwSEMaFmmIUkfh7MOzhgLSuYfnOB52nONhx5kRNIMiTkVoXLQxjYs2pppXNazVuS9JFEIIIcQLCr8FSzpBzH3wqQxvrgAbB0tH9UKWnFlCSEwIvo6+9AzsaelwLCa5tdHbG9/mzyt/0qdCH0q4lrB0WEKIXEiKRiJ3UBQ4/Ats/RSS4sDRAzr9CAHNLR1ZtlEUhc/3f87l8MsUtCvI/JbzKWRfiKDQIMJiwvBw8KCaZ7UUp5NVqVSUL1ie8gXLM6TKEO5F32P3rd3sur2LQ3cPcTvqNsvOLWPZuWU4WztTr3A9GhVtRIPCDXC1dbXA0QohhBAiW0SFwdJOEHEbCpWGt9eCXe787r8fe5/5p/Vj+AyvNhxbja2FI7Ksyh6VaVy0Mbtu7WL2sdlMazzN0iEJIXIhKRqJnC/6Pvw5BC5u1t8v1Rw6zQEnT8vGlc0WnVnElutbsFJZMa3xNLwcvQCo6V0zw9vydvSmR9ke9Cjbg5jEGA7cOcCu27v49/a/PIx7yObrm9l8fTMalYaqnlUNrZD8XPwy+7CEEEIIYSmx4bCsMzy4DK5Foecf4FjI0lG9sNnHZhObFEulQpVo7d/a0uHkCO9XfZ/dt3az7cY2zjw4Q/mC5S0dkhAil5GikcjZruyAP96DqBDQ2EDzL6H2wFw3i8fL2n9nP9ODpgMwutZoqnlVy7RtO1g70NSvKU39mqLVaTl1/xS7b+9m161dXA6/zJGQIxwJOcK3R76luEtxXi36Ko2KNqKyR2Ws1PIRIoQQQuRKCTHw2+tw75S+BXevP8G1iKWjemEXHl7gj8t/APBRzY9krMYnShcoTZsSbfj76t/MCprF3OZzLR2SECKXkb/4RM6UFA//TIADs/X3PcpCl1/Au6Jl47KA25G3+fjfj9EpOjqV6kSPMj2ybF8atYYqnlWo4lmF4dWGczvyNrtv72bnrZ0cvXeU6xHXWXhmIQvPLMTV1pWGhRvSqGgj6vnWw8nGKcviEkIIIUQmSkqAlT3h5gGwddW3MCpY0tJRvTBFUfjuyHfoFB0t/FpQxbOKpUPKUYZUHsKWa1vYd2cfh+8dfqFW6kKI/EuKRiLnuX8JVr8D907q79foBy2+yrUDMr6M2KRYRuwcweP4x5QvWJ5P63yarVfOijgX4a1yb/FWubeITIhk35197Lq1iz239/A4/jEbrm5gw9UNWKmtqOlVUz8bW9HGFHYqnG0xCiGEECIDdFr4YwBc3g5W9vDWylx/UW7/3f0cuHsAa7U1I6qPsHQ4OU5Rl6J0Kd2F3y/8zsygmSxpvURaYgkhzCZFI5FzKAoELYHNYyAxBuzdoeNsKNvW0pFZhKIojNs/jguPLuBu5870V6dbdEBHZxtnWhVvRavirUjSJXE89Lh+Nrbbu7kecZ0Ddw9w4O4BJh+aTECBABoX0Y+DVKFQBdQqdZrb1uq0Zg3oLYQQQoiXoCjw1wdw5g9QW8Pry6BYHUtH9VK0ipZpQfoBnt8q9xZFnYtaOKKcaUClAfx5+U+Ohx1nT/AeGhZpaOmQhBC5hBSNRM4Q8xA2DIdz6/X3/RtB53ng4mPZuCxo6dmlbLy2EY1Kw7eNvsXb0dvSIRlYqa2o4V2DGt41GFVzFNceXzPMxnYs9BiXHl3i0qNL/HzqZwraFaRR0UY0KtKIOj51cLA2bjG2/cZ2Jh+aTEhMiGGZl4MXY2qNoZlfs+w+NJFHaHUKh649JDQyDk9nO2r5u6NRy1VVIUQ+piiw7XMIWgwqtb7bf6nc/z17NOEo12Kv4WbrxruV3rV0ODmWp4Mnb5R7g4WnFzIzaCb1C9dP96KeEEKAFI1ETnBtD/wxECKCQW0FTT+HV94Hdf79Ijt49yDTjuqvmn1U86Mc3/fc39Uff1d/+lToQ3hcOHuC97D79m72Bu/lQdwD1l5ay9pLa7HV2FLbpzaNiuiLSKfun2LkrpEoKEbbC40JZeSukUxrPE0KRyLDNp++y/gNZ7n7OM6wzMfVji/aB9KqQv4tRAsh8rm902D/TP3P7WdA+U4WDSczRCVG8U/cPwAMqjwIFxsXC0eUs71T/h1WXVjFhUcX2HxtM21KtLF0SEKIXECKRsJytImwaxLsmQYo4F4Sus4H36qWjsyi7kTd4aPdH6FVtLQv0Z43y75p6ZAyxM3OjfYl29O+ZHsStYkcCTlimI0tOCqYf2//y7+3/+VLvsRKbWVSMAJQUFChYsqhKbxa9FXpqibMtvn0XQYtCzJ5Vd17HMegZUH8+Ha1XFU4khZTQohMcfgX/QQjoB8nslovy8aTSRaeWUi0Ek1xl+J0K9PN0uHkeG52bvQp34fZx2fzw/EfaF68OdZqa0uHJUSmk/wpc0nRSFjGw6uwpj8EH9Xfr9oTWk0G2/w9A1dcUhwjdo7gUfwjyrmX4/NXPs/VAxVaa6x5xfcVXvF9hdE1R3M5/DK7bu1i1+1dnAw7SZIuKdXnKijci7lHUGhQjm9pJXIGrU5h/IazKZQhQQFUwPgNZ2ke6J0rEgdpMSWEyBSnVsPfo/Q/N/wI6r5v2XgySXBUMMvPLwdgeJXhUvww09uBb/Pr+V+5GXmTdZfX0a20FNtE3iL5U+aTopHIXooCJ1bAxlGQEAV2rk+aSHe2dGQWpygKEw9P5NzDcxSwLcD0V6djZ2Vn6bAyjUqlIqBAAAEFAni30rv8fuF3vvrvq3SfFxYTlg3Ribzg0LWHRgnC8xTg7uM4qk7YhquDFfbWGuytNdhZa7C30eBg8+Tn5Nuz921M1332fvJzbK3UqDOhIJXXWkwJISzk4hb9EAAoUGsAvPqJpSPKNDOCZpCgS8Dfyp+GhWVQZ3M5WjvybsV3mXJ4CnNPzKV9ifZ5Kt8U+ZvkT1lDikYi+8Q9hr9GwunV+vvF6sJrP4GbzHIB8F/Cf/x97W/DwNe+Tr6WDilLlXAtYdZ6Hg4eWRyJyCtCI1MvGD0rIi6RiLjELIvDzlr9tCD1fIEphQKU0bpPCk+f/Xk6z7SYEkJYyPW9sLIX6JKgUg9oNQVycevlZ50IO8Gma5tQoaK1Xetc3SrbErqX6c7is4u5F32P3y/8Tu/yvS0dkhAvLa+1OM9JpGgkssfNg7C2P4TfBJUGGo+FBiNBxqoB4GjIUTbFbgJgZPWR1PKpZeGIsl41z2p4OXgRGhOa4rhGKlR4OXhRzbOaBaITuZGns3lXSqd0qUiAlzNxCVpiE5/cErTEGX7WEZOY9Mzjuucef+bnJ/fjk3SG7ccl6ohL1PGIrClMJbeYev2nA5T2cqaQky2FnGwo6GRLQUcbCjnb4mqrRkkpa7IQGVtAiGwWHAS/vg5JcVC6NXT8Ic9MMKIoCt8c/gaA9iXa4/swb19kywo2GhsGVx7M5/s/55dTv9AloAtONvl7iAiR+yRpddyLiONOeBx3wmM5cPWBWS3OD117yCslC2ZfoHmAFI1E1tImwZ7vYPdkUHTg5gdd5kNRGaMm2b3oe3y892N06Gjt15qegT0tHVK20Kg1jKk1hpG7RqJCZVI4UlAYXWu0DIItzJKk1bHp9N0011EB3q52dK1eNNMLFlqdknJR6Unh6dmClP7/JKP7cc+se/tRDFfCotPd5+Hrjzh8/VGqj2tUGiad3U0hJ1sKOtlS6ElBqaCjvsBUyMnmyWM2uDvaYGuVNe81GVtAiGwWdgGWdYGESCjeALotAk3eGe9n642tnAg7gb2VPUMqDeHwrsOWDilXal+yPQtOL+B6xHWWnF3C4CqDLR2SEEai4pO4Ex5LcHgswY9iDT/feXL/XkQcuhe4QHbrUQyvIEWjjJCikcg64Tdhzbtw6z/9/Uo9oM23YCfToSaL18bzwc4PeBT/CG+1N5/W/jRfNbFu5teMaY2nMfnQZEJiQkwelz72whyPYxMZ+msQey7dNyxTgVEZMvld9UX7wCxp4aJRq3C0tcLR9uW/Vg9cecAbP/+X7nrv1CuOk501D6LieRCVwP2oeB5E6/+PjEtCq6gIiYgnJCLerP262FkZikjJ/xd0tKWQs77gVPCZx1zsrMz6rJKxBYTIZo9uwJJOEPsQfKvBG7+Bdd75Lk3QJvD90e8B6Fu+r3RhfwlWaiuGVh3KqN2jWHxmMa+XfR13O3dLhyUsLLtaBut0Cvej4rn9pAiUXAgKDo8zFIYex6bfYttao8LH1Z7CbvZYa1T8+0wumJpP/jjF3kv36VTVlwYBHlhr8kYrzKwkRSORNU6vgQ0fQPxjsHGGdtOgUndLR5WjKIrClwe+5PSD07jauPKm7ZvYW9lbOqxs18yvGa8WfZWg0CDCYsLwcPBg49WNrL60mrF7xrKy3Up8nOSPSpGyq2FR9F9yhKth0dhba/i+R2UAk5Yt3rmoZUstf3d8XO249zguxX75yS2mPmmbegEsKiaO1X9toXKt+oTHaQ0FpQdR8dxPLjA9U2jS6hQi4pKIiEvi6v30WzlZa1RPCkr6wlJyMamQ09P7BRxs+PzPMzK2gBDZJTIElnaCyDvgURbeXgO2zpaOKlP9eu5XgqOC8bT3lHF4MkFzv+aUcy/HuYfnmH9qPh/V/MjSIQkLysyWwXGJ2ifFoDiCw2MIftKFLPhRLHcex3I3PI4ErS7d7bjaW+PrZk9hNzsKu9nrfy7w5H83ezycbA0TkGh1CvWn7Eg1fwL9Rb5ErcL6E3dYf+IO7o42tKvkQ8cqhalWzC1Dx5ifSNFIZK74SNg0Go7rp0ClSE147Wdw97dsXDnQ7xd+588rf6JWqZlUbxIPjz20dEgWo1FrqOn9tMtiJY9KnH14lrMPzjJq9ygWtVqEdR5qWi8yx95L9xm8/CgRcUn4utrxc+8alPd1BaB5oHeuHUNHo1bxRftABi0LeuEWU7bWGgrYQoXCLlhbp/3e0ekUIuISuf+koGQoJkXFcz86gfuRTwtOD6ISiIxPIlGrcC8ijnsR5g0+nhIZW0CITBT7CJZ2hodXwa0Y9PwDHPJWq5FHcY/46eRPALxf7X0crB1ITMy6SQ3yA7VKzbBqwxi0fRArzq+gZ2BPvB29LR2WsICMtAxWFIVHMYncCY/l9nPdxpJ/vh+VkO4+1SrwdrEzKQQVfnLfx9UOZzvz839z8qfZb1TF182edceD2XDiDvejElhy4AZLDtygmLsD7Sp64xZr9i7zDSkaicxz+yis6QeProFKDQ1GQaOP81Q/+swSFBLElENTABhRbQR1fOqw8dhGC0eVc9hqbJnWeBrdN3Tn5P2TfHf0O8bUGmPpsEQOsuTAdcZvOItWp1CtmBvzetbAw9nW8LhGrcrVhYhWFXz48e1q2dJiSq1W4eZgg5uDDaU8018/LlH7TKsl00LTg+gEwiLjCQ6PJTIuKd3tmTvrnRAiFQnRsLw7hJ4BJy/o9Se45L3BoX888SORiZGUdS9Lh5IdLB1OnlHPtx7VvapzNOQoc0/MZVzdcZYOSWSz9GYdAxi58gTL/rvB3cf6gadjE7XpbtfBRmNoHeTrZk+RAvb4utlR2M0BXzc7vF3ssMrkrmHm5k+Vi7rxSZty7LvygD+PBbP5zD1uPoxhzu6rgBXrQ/+jU9XCdKjsi6dL3uni+6KkaCQyRqeFG/shKkSfmPjV1S/fNwN2fq2f1tWlCLz2ExSvZ9lYc6iQ6BBG7hpJkpJEy+It6VO+D0lJ6f9hld8UdirMxPoTGbpjKMvPLaeKZxVaFW9l6bCEhSVqdYzfcIZl/90E4LVqhZnYuSJ21nlvwPRWFXxyZIspO2uN4UpgWswdm8ncWe+EEClIiocVb8HtQ2Dnpm9h5F7C0lFluquPr7LywkoARtUYhVolY5BkFpVKxfBqw+m1qRfrLq+jT/k+FHctbumwRDY6dO1hmrOOAcQkaNl7+YHRMg9nW30xyE1fDEpuKZRcIHK1t7bIWK3m5k9WGjWNSnvQqLQHXyUkse1sCH8E3ebfi2GcvhPB6TsRTNx4jnqlCtGxSmFaVfDGKRPGrsyN8udRixdzdj1sHg0Rd54uc/ICe3cIO6e/H9gJ2k8H+wKWiDDHS9AmMHLXSB7EPSCgQAAT6k7IVwNfZ1Sjoo3oX7E/v5z6hS/2fUHpAqUp4Zr3kmFhnkfRCQxeHsSBqw9QqWBMq7IMaFgiT7+HcnOLKXPHZqrln7e60AiRbbRJsKY/XN0J1o7w1mrwKm/pqLLE90e+R6toaVykMbV9als6nDynqmdVGhZpyL+3/2XO8TlMbTTV0iGJbGRui983ahWlXSVfCrvZ4+1ql6Mv2GU0f3KwsaJjlcK0Ke/Jyj83kuBdgQ0n7xF0M5w9l+6z59J9Pl13imblvOhUpTANS3tgY5V/itf550jFyzm7Hlb2Mi4Ygb7FUdg50NhCxx/007pKwShVEw9O5OT9kzjbODOj8QwcrB0sHVKON6TKEGp61yQmKYYPd31ITGKMpUMSFnA5NJJOc/Zx4OoDHG00/NyzBgMblczTBaPcLnlsAXg6lkCyrJ7NTog8T6eDDcPh3HrQ2MAbv0LRmuk/Lxc6ePcgu27vwkplxcgaIy0dTp41rOowADZd38T5h+ctHI3ILo9jE9l0+q5Z63aoXJh6pQpRvJBjji4YvSwna3i7djHWDq7H7o8aM7J5aUp4OBKXqOOvk3fpv+QItSdu59N1pzhy/SGKktqw2y9Pq9Ny+N5hNl7dyOF7h9Hq0u8WmBWkaCTSp9PqWxilOg49YO8Gld8A+QMuVasurmLNpTWoUDG14VSKuhS1dEi5gpXaiqkNp1LIvhCXwy/z5X9fZumHs8h5dl4IpfMP+7nxIIYiBexZO7gezQK9LB2WMEPy2ALersZd0Lxd7YwG1RRCZICiwNZP4fgy/RiSXRdAicaWjipLaHVavj3yLQDdynTD31UmVskqZdzL0Lp4awBmBs20cDQiq+l0CquO3KLpd7vYfDokzXVV6GdRy48tg/0KOjKsaQD/jGzE+qH1eKeePx7OtjyKSWTZfzfpOvcADabu5NstF7gcGpmp+95+Yzst17TknS3vMHrPaN7Z8g4t17Rk+43tmbofc0jRSKTvxn7TFkbPiwrRrydSdDz0OBMPTgRgWLVh1C9c38IR5S6F7AvxTcNv0Kg0/HX1L1ZfWm3pkEQ2UBSFX/Zcpd+iw0TGJ1GruDt/DqlHGe+8NYV0Xteqgg+7P2rEuG62vNPyEeO62bL7o0ZSMBLiRf37Dfz3g/7njj9AufaWjScLrb+ynvMPz+Ns7cygyoMsHU6eN6TqEDQqDXuC9xAUEmTpcEQWOXX7MV3m7uej1Se5H5VASQ9HhjUthQppGZwalUpFpSJufN4+kANjmrC0Xy1eq1YYRxsNtx/FMnvnZZpN+5e2M/fwy56rhLzE7LKgLxiN3DWSkBjjgl5oTCgjd43M9sKRjGkk0heVdvU5w+vlM2ExYfqBr3VJNPdrTr8K/SwdUq5Uw7sGw6sNZ9rRaUw6OInAgoGUL5g3x24QkJCk49N1p1h55DYAPWoU5ctOFfJV//G8YvuN7Uw+NNko8Vl21YsxtcbQzK+ZBSMTIhc6OE8/8QhAq8lQ5U3LxpOFYhJjmHVsFgADKg2ggJ0Mf5DV/Fz86FSqE2surWFG0AwWtVok3cDzkEfRCXy79QK/HrqJooCjjYbhzQLoU9cfGys1gT4u2TJra25npVHTIMCDBgEexHbSsu1cCH8eC2b3xTDO3IngzJ0Ivt54jrolC9LpyQDaznbmzyau1WmZfGgySgq9fBQUVKiYcmgKrxZ9FY06e7oJStFIpM/JzG4g5q6XjyRqExm5ayRhsWGUdC3Jl/W+lC/fl9CnfB+OhR5j562dfLjrQ35v9zuutq6WDktksgdR8QxaFsSh6w9Rq+DTtoH0rVdc3ju5UPKVsucTn+QrZdMaT5PCkRDmOrECNn2s/7nxWKiTt1veLDqziLDYMAo7FebNcnm3OJbTvFf5PTZc2UBQaBD77uyT1vF5gFansOLwTb7ZcoHwmEQAOlbx5X9tyuH1zHTyOXXW1pzM3kZDh8q+dKjsy8PoBP4+dZd1x4I5euMR+y4/YN/lB3y67jTNynnRsYovjct4pnkBVKvTsu7yOpMWRs9SULgXc4+g0CBqemfPWHZSNBLp86sLLr4QcZeUxzVS6R/3q5vdkeV4Uw5P4XjYcZytnZnRZAaO1o6WDilXU6lUfFX/K7pv6E5wVDCf7P2EmU1mytS7ecj5exH0W3SE4PBYnG2tmPVmVRqX8bR0WOIF5MQrZULkWuf/hnWD9T/XHgSNRls2niwWEh3CojOLABhZfSQ2GhvLBpSPeDt683rZ11lydgkzg2ZS17eu5Fm52NEbj/hi/WlOB0cAUNbbmfEdylO7RMozi+XmWVstzd3Rhp51/OhZx49bD2P483gwfxwL5kpYNH+fusvfp+7i5mBNm4o+dKpSmBp+BUhSEjl9/zRBoUEcDTnKidATRCaaNzZSWExYFh/RU1I0EulTa6DVFP3saSaeVJ5bTdavJwzWXlrL7xd+R4WKyQ0n4+fiZ+mQ8gQXGxemNZ5Gz4092X17NwtPL6RfRenylxdsOxvCiBXHiE7QUrygA7/0rkEpTxm/KLfaG7w3x10pEyJXurobVvUBRQtV3oKWE/P8xCOzjs0iNimWqp5Vae7X3NLh5Dv9K/ZnzaU1nHt4jm03ttGyeEtLhyQy6H5UPFM2nWfVUX03f2c7Kz5sXpq36/hhpZEiYFYr6u7A0CYBDHm1FGfuRLDuWDDrT9whNPoxv58+zeqr13FwvoliexMdiUbPtdPYEadNf0wkDwePrArfhBSNhHkCO0D3JU+TlmQuvvqCUWAHi4WWE50KO8VX/30FwOAqg2lYpKGFI8pbAgsGMrb2WMYfGM/MYzOp5FFJ/ujMxRRFYe7uq0zdch5FgbolCzLnrWq4OciV5dwmQZvAnuA9/H31b3bc3GHWc7LzSpkQuc7to/DbG6BNgLLtoP1MUOftP/jOPTjH+ivrARhVY5R0TbaAAnYF6B3Ymzkn5jD72GyaFmuKlVr+bMwNkrQ6lv53g2nbLhIZlwRAt+pFGN26LIWcbC0cXf7zIO4BwYlH0XgEUaxiEHGPLqKgAyD5L2pdkhOOugBqeFfjjUqNqVW4HG3/aJvmhTdvB2+qeVbLhiPQk3e/MF+xV54WjNrPBPcS+i5p0sLIyP3Y+4zYNYJEXSKvFn2VAZUGWDqkPKlLQBeOhR5j/ZX1fLT7I1a1X5WtFXeROeIStYxde4o/jgUD8HadYnzRvjzWchUs19ApOo6GHOXvq3+z9cZWIhMyNuWsvG+FSEXIWVjeBRKjoURj6LoANHk7dVcUhW+PfIuCQmv/1lTyqGTpkPKtnoE9+fX8r1yPuM76K+t5LeA1S4ck0vHf1QeMW3+G8/f038MVCrswoWMFqhWTQeSzg6Io3Iy8SVBIEEGhQQSFBHEz8qbJekWcilDZoyq22lJcvunJwSsqonWw8Qps2h/MKyXi8HN7k3vK94Bxw1LlSY//Ft4DsrVrf97+5hGZ6/Yh/f8e5aB6b8vGkkMl6hL5cNeHhMaE4u/qz8T6E6UfeBZRqVR8Wuf/7N13fNPV+sDxT5Lu0kHpLqUte1NaoEwnCAi4FUEcqKgIguAA7/1dERcoyAUXKIIiXJWhMgSZiqAUCi1lr9IBlE66d8b390doBVmlTZomfd6vFy/S5JtznoTQnj7nnOf8H8dyjnEq9xSv7XiNr+76SmbCrEhmYRnPL41l/5k8NGoVbw1rz+O9Qi0dlqgGRVE4mXuS9Ynr2ZC04bLZMF9nXwaHDWZw2GAm/j6RzJLMq9Y1UqHCz8WvTmfKhLAaOUmw9H4ozYWm3WH4/8DO9lcJbD+7nZj0GBzUDrwc8bKlw2nQGjk04tlOzzJ732zmH5jPkOZDUCNj2vooo6CM99YfY+2B8wB4utjz+sC2DO8eLEWszUhv0HMy92RVPaL9mfvJLs2+7BoVKlo3bk2EX4Txj28Evi6X1+rMvVhAe018KnuTc9l1+gLgh53bKBz91qGyz6+6VtF5UJ4xjJ/SvJjcR6mzf1/57UpU39k9xr+De1g2jnps9t7ZxGXG4Wrvyrzb59HIoZGlQ7JpznbOzLl1Do+uf5TYjFg+2f8JkyInWTosUQ2HU/MZ8+0+0vLL8HC25/PHIujT0tvSYYkbSC1KZUPiBtYnrud0/umq+93s3RgQOoAhYUOI9Iusmv2a2mMqk7dPRoXqssSR6mI9vCk9pkgRbCH+qSANlt4HReng2x5GrgBH2x9PaA1a5sTOAYyrXAIbBVo4IjG8zXC+Pfot6cXprDixgkdbPWrpkMQlKnQGvv4riY+3naK4Qo9KBY9FNeOVAW1o7Cpb/E2tXF9uLFqdEUdsprFodZG26LJr7NX2dPTuSISvMUkU7huOu4P7ddtt7OrAqJ4hjLpYQPvT3xNYvvcsusKO6Arbo3FJQmVXiKJzQ18SBqhJo4yYpJw6K1ouSSNRfWcvrjQKjrJsHPXUmoQ1fHf8OwBm9J1BmEeYhSNqGEI9Qpneezqv/vEqiw8vJtwnnNub3W7psMR1/HoojckrDlCq1dPcx5VFT3YnzFtOFqyvcsty2Zy8mfVJ69mfub/qfnu1Pbc2vZUhzYfQr2k/HDVXroLoH9KfObfNYWbMzMtWI/m5+DGlxxT6h/Svk9cghNUoyTGuMMpNhsZh8PjP4OJl6ajqxIoTK0guSMbLyYtnOz1r6XAE4GTnxNguY5kePZ2vDn3FsNBhlg5JXLTzVBbT1h4hMasYgK7NPHnn3o50DPKwcGS2o6CigPjM+KrtZoezD6M1XF60upF9I7r4diHSN5IIvwg6ene86niouoK9XOjdognL9569eI8afUmLq16bWXjjYtmmIkkjUT26CkiNM96WpNEVjlw4wtvRbwMwtstYSVrUsYGhA4nPjGfZsWX8+69/s7zxcoLdgi0dlvgHRYFPfj/Nx78ZV6jc0tqHT0Z0xcPZ3sKRiX8q0Zaw/ex21ietZ1fqLnSKsZimChU9/HswpPkQ7gy584azZ2BMHN0efDtxmXFklWTh4+JDhG+ErDAS4p/KC+F/D0HWMXALgCdWg5u/paOqE/nl+Sw4sACAceHjZKV2PXJvy3v5+vDXnCk8w3fHvyOIIEuH1KCdyy3hvfXH+PVwOgDejRyYOrgdD3QNQi1b0aroDfqbHndklWQRcz6GX0p+4dsN33Iq79QV2+ubODUhwi+CSL9IInwjaN24tcnHM75uTia9zhQkaSSqJ/0g6MvB2QuaXD3b2VDllOXw8u8vU2Go4Namt/JClxcsHVKDNDlyMoeyD3Eg6wCvbH+FpXcvrVWmX5hWaYWeJafU7L9gTBg93SeMf93dVo59rUd0Bh3R56NZn2Q8+axUV1r1WDuvdgxpPoRBoYPwc/W76bY1ao2ccCjE9WjL4IeRkBprHGs9vhoah1o6qjqz8OBC8srzaOHRQgou1zP2anvGdx3P6zteZ+nxpUxwnmDpkBqkMq2ehTsS+Wx7AmVaAxq1iid6hTBpQGvcnWTy7VJbU7ZedYXz1B5Tq1Y4K4pCSkFKVT2iuIw4zhWd+7uRCuNfzdyaVdUiivSLJNgt2OwnOvYI8yLAw4n0/LKrVIQEFeDv4USPsLpbhSpJI1E9VfWMoi4v4d7A6Qw6Xv3jVdKL0wl1D2VGvxlS+NpC7DX2zL51No+se4RjOceYGTOTab2mWTosAaTnl/Hskr0cvqDGTq3i3fs68miPZpYOS2AcNB3IOsCGpA1sSt5ETllO1WNNGzXl7uZ3MyRsCM09m1swSiFsnF4Hq56GpB3g0AhGrQLftpaOqs6cLThbtb3/lW6vyIEW9dDA0IEsOrSIE7kn2KHewUM8ZOmQGpTfTmTx3oYTnMkpASAqzIvp93agrf+NV/s2NFtTtjJ5++QrVghllmQyafsk7mtxH8W6YuIy4rhQduGya9QqNa09W+NZ7Mn9Pe6ne0B3i5zwqlGrmDasPWOXxaGCy15J5W/h04a1r9Mi5/JdWVSPFMG+qo/2fcTe9L242Lkw9/a5uDm4WTqkBs3f1Z+Z/WbywtYXWHVyFV19u3JPi3ssHVaDduBsHmO+3UdmYTmudgpfPNGNvq1vfqWKMK3E/ETjyWeJGy6bWfNy8mJg6ECGNB9CZ+/OZp9NE6LBMxhgzTg4sR40jjDiBwiKtHRUdeq/cf9Fa9DSO7A3fYP6WjoccRVqlZoJERMYt20cu8t3k1mSSZCHbFMzt5ScEr48ruZItLGeoJ+7I/8e0p5hnQPk5/NV6A16ZsbMvOqJrZX3rT69uuo+B7UDHb07Grea+UXQxacLTionNmzYwIBmA7C3t9wKrkEdA5g/KoLp646Slv937SJ/DyemDWvPoI4BdRqPJI3EjSmKFMG+inWn17Hs2DIA3uv7Hi08ZdtefdA7qDdju4zl8wOf8070O7T1akvrxq0tHVaDtCY+lddXHaRcZ6CVrysjgvKJqsOltOJymSWZ/Jr0K+sT13Ms51jV/c52ztzR7A6GhA2hZ2BP7NWyzF2IOqEosHEqHPwBVBp4ZAmE9bN0VHVqf+Z+tqRsQa1S80q3V+QX4XqsX1A/wn3Cic+K56vDXzGtj6zmNpfSCj2fb09gwR+n0erV2GtUPN03jAl3tMLVUX59v5a4zLjLtqRdy4OtHuSeFvfQ0bsjDprLT5nTarXXeFbdG9QxgAHt/YlJyiGzsAxfN+OWtLpcYVRJPnXixvLPQmEaqO0gsKulo6kXjl04xvTo6QCM6TRGTgCqZ57r/BzxWfHsOr+LV7a/wg9Df8DVXk7nqisGg8J/t57kk98SALizrS+zHuzIzt82WziyhqewopA/kv9gfeJ6YtJjqmba7FR29A7qzZCwIdwWfBsu9i4WjlSIBmj7DIj5AlDB/QugzWBLR1SnDIqBWXtnAXB/y/tlgqeeU6lUjOsyjjFbx7D69Gqe7vQ0we5y6IgpKYrCpiPpvPPLMVLzjHUF23gYmPdkP9oGelo2OCuQVZJVret6+Pcgwi/CzNGYhkatoleLJpYOQ5JGohoqVxn5dwYH+cUityyXl39/mXJ9OX2D+jIufJylQxL/oFFrmNlvJg+ve5jkgmTe/OtNZt86W2Yw60BxuY7JK+LZdMQ40/P8rc15fWBbDHqdhSNrOMr15fx+9ne+L/6et396mwpDRdVjXX27cnfY3QwMHUhjp8YWjFKIBsagh5RdUJQBjfwg7QD88YHxsbtnQedHLBufBWxM2sih7EO42Lkwvut4S4cjqiHSN5JWdq04pTvFZwc+Y2a/mZYOyWYkZBYxfd0Rdp7KBiDI05l/DW6NNimWFj4y8Vkd1a0ra4k6RdZOkkbixqq2pkk9I51Bx2s7XuN88XmC3YKZ2W+mHBtdTzV2asxHt33EU78+xeaUzXx3/Dsea/eYpcOyaal5pTy7ZB/H0gpw0KiZ8UAnHoxsChh/XxI3r7pHxuoNemIzYlmftJ4tyVso1BZWPdbCowVDmg9hcNhgmro1rcvwhRAAR9fCxilQcP7Kx+74P+gxpu5jsrAyXRlz4+YC8EynZ/B29rZsQKLaBjgN4FTRKTYkbuDpjk/LCrFaKirX8cm2Uyz6MwmdQcHBTs0LtzRn7G0tsVMZ2JBs6QitQ3xmPO/vef+616hQ4efiR4Svdawyqk8kaSRuTIpgV5kXN489aXtwtnNm3u3z8HD0sHRI4jq6+HTh1e6vMjNmJrP3zqZDkw6E+4ZbOiybFJuSw/NLY8kuqsC7kQNfPB5JZIjUL6qNGx0ZqygKx3OOsz5xPb8m/0pmSeZl17XSt2L8HeNp79NeVtkJYSlH18KKJ+CqBycD3g3zF+5lx5aRVpyGv6s/T7R/wtLhiJsQaBfIgGYD2HJmC5/s/4RP7vjE0iFZJUVRWHvgPO+tP0ZmYTkA/dv58p+h7QlpYlxZpNUaLBmi1Vh3eh3Tdk1Da9AS6BrI+eLzqFBdVhBbdfHcsSk9psiEfw1I0khcX0UxpB8y3m7gRbB/TfqVb458A8A7fd6hVeNWlg1IVMvItiOJy4hjc8pmXv3jVVYOW0kjTSNLh2VTfow9xxs/HaJCb6BdgDtfPdmNIE9nS4dl1W50ZOzgsMGcyDlBYn5i1WNuDm7cFXKX8eQzr85s/HUjrRu3loSREJZi0BtXGF0rYYQKNr4BbYdCA/olJrs0m68OfQXAhK4TcLJzsnBE4ma90OkFtp3dxvaz24nPjJcJuZt0PL2AN9ccISYpB4CQJi5MG9aeO9rK6bI3w6AYmBc3j8WHFwNwR/AdzOg3g13nd1110m1KjylSh7aGJGkkrkuVth8UPbgHgUfD3dZwIucEb/71JgBPd3yagaEDLRyRqC6VSsX03tM5mXuS5IJkpu6cyrxb5lk6LJugNyh8uOk4X/xhTFwM7ODHnEfC5WSPWqrOkbG/Jv0KGI+LvTX4VoY0H0K/oH5Vp4DUp9M/hGiwUnZdfUtaFQUKUo3XNaBT0z6P/5xibTEdmnRgSPMhlg5H1ECYRxj3triXnxN+5uP9H7PorkUyQVEN+aVa/rvlJEt3p6A3KDjZq3npjlY80zcMJ/uGkzg2hWJtMVN3TmX72e2A8WCi8V3Ho1ap6R/Sn9uDb6/W9n5RPTKyF9elOrfXeKMBb03LL89n4u8TKdOX0TuwNxO6TrB0SOImNXJoxJzb5jBy/Uh2nd/FV0e+Ihg58aM2Csu0vPxDPNuOG7dEvXRHSyb1b43aAseA2prqHhk7usNoxnQeg5uDWx1EJYS4aUU3/n98U9fZgITcBH489SMAr3V/rdqFa0X9M7bLWH5J/IW96XuJToumd2BvS4dUbxkMCqvizvHBr8e5UGw8nOLuTv78e0h7WZldA+eLzjP+t/Gcyj2Fg9qB6X2mM7T50Muu0ag1dPfvbqEIbY98pxbXpTpXWQS7YW5N0xv0vL7jdVKLUglqFMSHt3woWWor1apxK97sZVwt9uWhLzmlPWXhiKzXmQslPDh/F9uOZ+Jop2beo+G8clcbSRiZSHWPjG3r1VYSRkLUZ42qudWkutfZgNmxszEoBvo360+kX6SlwxG1ENAogOFthgPwcdzHKMq1tmE2DBU6Hd/EbuXt35fxTexWKnTGU2MPncvnwQW7eH3VQS4UV9DCx5Vlz0Tx+WORkjCqgf2Z+xmxfgSnck/RxKkJXw/6+oqEkTA9WWkkrk0xoErdZ7zdQFcafbL/E3ad34WTxkkKX9uAYS2GEZcZx6qTq1hZspLhxcMJ9pQVRzdjT+IFXlgWS26JFl83R758ohvhwZ6WDsumeDp6Vus6OTJWiHoupDe4B0JBGleva6QyPh7SMFZo/JX6F3+l/oWd2o5JkZMsHY4wgWc7PcuPp37kyIUjbDuzrcHWi5m1cyVLT32Mosmrum9OvAchqpEcPhWCooCrg4aJ/VvxVO8wHOxk3UZNrElYw/To6WgNWtp6teWTOz7B39Xf0mE1CPKJFdfUqDwdVWku2DmDf2dLh1PnNiVvYtHhRQBM7z2dNl5tLByRMIWpPabStnFbSpQSpv41Fa1ear9U1w8xZ3jsqz3klmjpFOTB2vF9JWFkYqfzTvPRvo+ue40KFf4u/nJkrBD1nVoDgz64xoMXV2YOmtkgimDrDXpm75sNwIi2I2jm3szCEQlTaOLchMfbPw4YJ1r1Br2FI6p7s3auZMnptzGo8y6736DJJ0k9H02jw9wXHshvr97Gc7e0kIRRDegNeubEzuH//vo/tAYt/Zv1Z8mgJZIwqkPyqRXX5FV8cftOUARo7C0bTB07lXuK//z1HwCebP8kdze/28IRCVNx1DjyYb8PcVI5cTD7IHNi51g6pHpFb1CIPn2BNfGpRJ++gN6goNMbmL7uCFN/OoTOoDC0cwArnu+Fv4eceGMqiqKw4sQKhv8ynJN5J3G1Mx63W3lEbCU5MlYIK9P+Hrhv/pX3uwfCI98aH28Afk74mYS8BNwd3Hm+8/OWDkeY0FMdnsLdwZ3E/ER+SfzF0uHUqQqdjqWnPgbgn3XAK7929v+FDx/qhJ+7jJlqolhbzMu/v8zXh78G4LnOz/HRbR/hYu9i4cgaFtmeJq7JqzjBeKOBbU2rLHxdqislyj+KlyNftnRIwsSaNmrKgy4P8r/i/7Hs2DLCfcPlRDxg4+E0pq87Slp+WdV9fu6ONHF15GhaAQCTB7TmpTtayikpJpRblsu0XdP4/ezvAPQO7M17fd8jPjNejowVwhY0uriVtJE/DHzPWMMopHeDWGEExl/6Ptn/CWAsnixb/W2Lm4Mbz3R6hv/G/pfP4z9ncNjgqpM8bd13B7ajaPK41ohIpQLs8vjuwHaeipSf2zcrtSiV8dvGk5CXgIPagbf7vC0nLlqIJI3ENVWtNGpARbD1Bj1Td07lbOFZAl0DmXXrLOzU8t/EFrWzb8dT7Z/im6Pf8OZfb9K6cWvCPMIsHZbFbDycxthlcVdU3cgoKCejoBx7jYp5j3bl7k4BFonPVu1O282/d/6bzNJMY52PiEmMaj9KjowVwpacvXgSbfNbodNDlo3FAhYdWkROWQ4h7iFVhZOFbRnRdgTLji7jfPF5Vp5cyWPtHrN0SHUiKe98ta47U5Bu5khsT1xGHJO2TyKnLAdvZ2/m3T6Pzj4Nr1xKfSHb08TVlebhVnbxG2HThrPS6PMDn/Nn6p84ahyZe/tcGjs1tnRIwoxe7PwikX6RlOhKmLx9MqW6UkuHZBF6g8L0dUevWqa1koezPQM7yN5xU9HqtcyJncNzm58jszSTMI8wvrv7O57o8MRlR1BXHhl7d/O76e7fXRJGQlijypNomza845/Ti9P59ui3AEyKnIR9Ayt30FA42znzQpcXAPjy4JeUaEssHJH5LYnbxs/Ji6p1bXbFCXQGnZkjsh2rE1bzzOZnyCnLoZ1XO74f8r0kjCxMkkbiqipPTVO8moNrEwtHUze2pWzjy4NfAjCt1zTaNWln4YiEudmp7Zh1yyyaODUhIS+Bd3e/2yCPjI1JyrlsS9rVZBdVEJOUU0cR2bbk/GRG/TqKrw9/jYLCQ60f4ochP8j3HCFskcEA52KNtxtg0mhe3DzK9eV08+vGHcF3WDocYUb3t7yfpo2aklOWw/+O/c/S4ZjN4fQz3Ll0DLMPvYxil4OiqLjW0LHy/t/TV/PwuofZm7637gK1QnqDno/2fcR//voPOoOOASED+GbQN1Lwuh6weNLos88+IzQ0FCcnJ6KiooiJibnu9Xl5eYwbN46AgAAcHR1p3bo1GzZsqHr8rbfeQqVSXfanbdu25n4ZNkd1zvhNTWkgq4wS8xL515//AmBUu1EMazHMwhGJuuLj4sOsW2ehVqlZe3otP536ydIh1bmMgusnjCplFlbvOnF1iqLw86mfeeSXRzh64Sgejh7MvW0u03pNk4KOQtiq7JNQnm88idavo6WjqVOHsw9XFUZ+tfurUgvPxtlr7BnXdRwAXx/+mvzyfAtHZFrF5eU8t3YWj/56P5mG3SiKilCH/twfNAngisRR5dc9vYfg4ehBQl4CT296mtf/eJ2M4gzE5Yoqipj4+0S+OfINAM93fp7Zt86W8VE9YdFiLcuXL2fy5MksWLCAqKgo5s6dy8CBAzlx4gS+vr5XXF9RUcGAAQPw9fVl1apVBAUFkZKSgqen52XXdejQga1bt1Z9bWcnNWlulirVmLwzBHW3fGbRDPQGfVWdEFd7V2btnUWJroTu/t2Z3G2ypcMTday7f3cmdJ3A3Li5vL/nfdo1aUf7Ju0tHZbZ5ZdoWRl7loU7E6t1va+bnPxRU/nl+byz+x02JW8CoId/D97r+57Mnglh6yq3pgVFgKbhjEcVRWHW3lkA3NPiHjo06WDhiERdGBw6mEWHFpGQl8DXh7+2mcNkvojZwPxDH6G3y0SlBid9c97s9W+GtTNOrrvvbMTSUx+jaPKqnqPWe/J46wm81u9h8sry+DT+U1acWMGvyb+y/dx2XujyAo+3e1y2bALnCs/x0m8vkZCXgKPGkXf6vMPgsMGWDktcwqI/vebMmcOYMWMYPXo0AAsWLGD9+vUsXryYqVOnXnH94sWLycnJYdeuXdjbG/+DhYaGXnGdnZ0d/v4yEK8xvQ5VahxgmyuNtqZsveJEIgBPR09m3TILe7V8826IRnccTXxmPNvPbWfy9sksH7rcZk94OZyaz9LoFNYcSKVMawBABRdrGhnQuCShsitE0bmhLwlDhRp/Dyd6hHlZMGrrFZsRy9SdU0kvTsdOZce4ruMY3WG01CcSoiG4uHK7oW1N23ZmG3GZcThpnHip60uWDkfUEY1aw4SuE5jw+wT+d+x/jGo/Cm9nb0uHVWOxqad5Zes7XCDW+Fuz3o37mj3HtNsfx07z98/w1/o9zMRe9/Pdge2cKUinmbs/I7vchsPFhQueTp78X8//44FWD/D+nvc5kHWA/8b+l59P/cwbPd6gd1BvC71Cy4vNiGXS75PILc/Fx9mHebfPo5NPJ0uHJf7BYkmjiooKYmNjeeONN6ruU6vV9O/fn+jo6Ks+Z+3atfTq1Ytx48axZs0afHx8GDlyJFOmTEFzyX/cU6dOERgYiJOTE7169WLGjBk0a9bsmrGUl5dTXl5e9XVBgfFoaa1Wi1arre1LtT7pB7HXFqNVO6P1bA429B5sO7uN13e+jnKVkr955XnsTdvLncF31nlclZ+zBvl5s4Brvd9v9XyLkb+OJLUolX/v/DdzbpljM8vpy3UGNh7J4H97zrD/7N9Lxtv4NWJUVDNcHNRM2fQDjn7rUNv//bhB60F5xjD+PfgxDHodBn3N+m+In3GtQcvCQwtZfHQxBsVAcKNg3u/zPh2adMCgN2DQG8zXdwN6vxvCaxRWrPLktGDbm4S7lspC/wBPdnhSVlQ2MLcF30Znn84czDrIFwe+4N89/23pkG5aflkJE3/9L/vyfkSl1qIoalo7DeLTu6cQ6H71CTQHOzueiux/3XbbN2nPt4O/5ZfEX5izbw7JBck8v/V5+jfrz2vdXyOwUaA5Xk699fOpn3l799voDDraebXjkzs+wc/Vz9JhiauwWNIoOzsbvV6Pn9/lHww/Pz+OHz9+1eckJiby22+/8dhjj7FhwwYSEhJ48cUX0Wq1TJs2DYCoqCi++eYb2rRpQ1paGtOnT6dfv34cPnwYNze3q7Y7Y8YMpk+ffsX9mzdvxsWl4e2jDMvaSmcgx7Ulu7dus3Q4JmNQDMwumH3VhFGld/98l1L30stOL6pLW7ZssUi/DdXV3u97VffyJV/yR+of/Ovnf9HPqZ8FIjOd3HL4K0NNdKaKIq0xAaZWKXTxUujnb6C5Wx6qrDyOVBzBOej7K56vtsvHOWgZB0/p0afUfntBQ/mM5+hzWFmykrP6swB0dejKUM1QUvakkEJKncXREN7vkhLbP6VHWKmyfMi6OKZtQCuNvj/+PWcLz+Lt7M3THZ+2dDiijqlUKiZ2ncgzm59h1alVPNnhSZq6NbV0WNX28a41LDr2Xwx2F1CpwUXfmnf7/YcBrcJN0r5apeaeFvdwe/DtfB7/Od8f/56tZ7ayM3Unz3Z6ltEdR+OocTRJX/WV3qBnTuycqpMV7wq5i3f7vouznbOFIxPXYlWbqw0GA76+vnz55ZdoNBoiIyNJTU1l1qxZVUmjwYP/3v/YuXNnoqKiCAkJYcWKFTzzzDNXbfeNN95g8uS/69gUFBQQHBzMXXfdhbu7u3lfVD2kWb0GzkGOaysGDBhQtRXQ2u3L2EfBtoLrXpOv5OPfzZ9uft3qKCojrVbLli1bbOr9rs9u9H43PtWY9/e+z9byrTzU9yEifSMtEGXNKYpCdGIOy/acZdvxTAwX86R+bo4M796U4d2a4uv294BEb9Dz8dqPjXvU/kkFKlT8xm9MHjS5xluqGtJnfEPSBr7Y+wXF+mIa2Tfi393/zcDQgXUaQ0N6vytXBwtR76TGAgp4hkCjK2t12qK8sjwWHFwAwEtdX5Iitg1Uj4Ae9Azoye603cw/MJ/3+r5n6ZBuaFfKcV7//R3yVQfBDlR6D4Y3f5E3bnkUtdr0k8luDm5M6TGlasvavox9fBb/GWsS1jClxxRuC77N5H3WB0UVRby+43V2pu4EYGyXsbzQ5QWLTdiL6rFY0sjb2xuNRkNGxuV1ZTIyMq5ZjyggIAB7e/vLtqK1a9eO9PR0KioqcHBwuOI5np6etG7dmoSEhGvG4ujoiKPjlRlde3t7mx9sX1WqcSl1rmtLWtrQe5BbkVvt6yz1mhvsZ85CrvV+P9ruUQ5dOMS6xHW88dcbrBy20ir25BeUafkp9hxLd6dwOqu46v6ezb14olcoA9r7Ya+58odyfHo8mSWZ12xXQSGjJINDuYfo7l+72XJb/owXVRTx3p73qk4L6urblZn9Zlp0ubktv9+VbP31CSvWALemfXHwCworCmnduDX3trjX0uEIC5oYMZHd63ez7vQ6RncYTcvGLS0d0lVdKCnkpQ0fcbBwNSq1HkXR0MF1KJ8Ofh2fRuZfPNCqcSsWD1zMpuRNzNo3i3NFxqLQtzS9hcldbetwnrOFZ5nw24Sqgtfv9nmXQWGDLB2WqAaLpfQcHByIjIxk27a/tz8ZDAa2bdtGr169rvqcPn36kJCQgMHwdx2IkydPEhAQcNWEEUBRURGnT58mICDAtC/AVhWkQd4ZFJWaXNcWlo7GpHxcfEx6nbBdKpWK/+v5f7T0bEl2aTav73gdnUFn6bCu6UR6If/++RA939/GW+uOcjqrGFcHDY/3DGHzpFv44ble3N0p4IqEkdagZVfqLhYcWFCtfpLzk80QvW04kHWAh9Y9xC+Jv6BWqXkx/EUWD1zc4OoTCCEu0cCKYCfnJ/PD8R8AeLXbq1Lsv4Hr6N2R/s36o6Dwafynlg7nCgaDgQ93rOD27+/mUPGPqNR63Awd+PzW/7H84XfrJGFUSaVSMShsEOvuW8fTHZ/GTm3HjnM7eHj9w2wp3UKprrTOYjGXfen7GLl+JAl5Cfg6+7Jk0BJJGFkRi25Pmzx5Mk8++STdunWjR48ezJ07l+Li4qrT1J544gmCgoKYMWMGAGPHjuXTTz9l4sSJvPTSS5w6dYr333+fCRMmVLX56quvMmzYMEJCQjh//jzTpk1Do9EwYsQIi7xGq1N5NKxPe3Qa29pXGuEbgZ+L3xWnplVSocLPxY8I34g6jkzURy72Lsy5bQ6P/vIoe9P38ln8Z0yMmGjpsKpo9QY2HUnn2+gUYpJyqu5v6duIJ3qFcH/XINycrlyBodVriU6LZkvKFn478xsFFdXf2lN54seIdiPk+OSL9AY9Xx36ivkH5qNX9AS6BjLzlpl09e1q6dCEEJakGBpc0ui/sf9Fp+joF9SPXoFXnwAWDcv4ruP57exvbDuzjUNZh+rNqVi/Jx7iX3+8Q5H6mHErms6LJ9tMYFLv+82yFa26XOxdmBQ5ifta3sfMmJnsOr+LP8r/4MFfHuS17q8xIGSAVR7Q8tOpn3hn9zvoDDo6NOnAvNvnScFrK1OrpFFFRQVJSUm0aNECO7ubb2r48OFkZWXx5ptvkp6eTnh4OBs3bqwqjn3mzJnL/uMGBwezadMmJk2aROfOnQkKCmLixIlMmTKl6ppz584xYsQILly4gI+PD3379mX37t34+MjqkWo5a0waGZp25zr1oq2SRq3h7rC7+frI11c8prpYzGVKjykyMyaqhHmEMb33dF7b8RpfHfqKcJ9wbg2+1aIxZRSU8d2eM3wfc4bMQuOpjxq1irva+/F4rxB6NW9yxYCiXF/OrtRdbEnZwvaz2ynUFlY95uXkxR3Bd7DtzDbyyvOuWSjeTmWHTtGx5vQa1pxeQ2efzoxsO5K7Qu7CXtMwtwelFaUxdedU4jLjABgcNpj/9PwPbg5XP3RBiEq1HT8JK3DhNJTlgZ0T+NePX5TNaW/6Xn47+xsalYZXur1i6XBEPdHCswVDmw9l7em1fLz/YxbetdCi8WQU5TN+wwccK1mPSm1AMdjR1f1+Ph48mcYujSwa26XCPMJY0H8BW5K28M6f75Beks4rf7xCVEAU/+rxL5p7Nrd0iNWiN+j5KPYjlh5dCsDA0IG80+cdKXhthWo0UikpKeGll15iyZIlgHGLWPPmzXnppZcICgpi6tSp1W5r/PjxjB8//qqPbd++/Yr7evXqxe7du6/Z3g8//FDtvsVVXEwaKU27w1kLx2Ji5fpyNqdsBsDV3pVi7d81X/xc/JjSYwr9Q65/VKZoeAaFDWJ/5n6+O/4db/z5BiuGrqjzU0AURWFPUg5Lo1PYdCQd3cXK1t6NHBnZI5gRUc0I8Lj8B3CprpS/Uv9ic8pm/jj7ByW6v0+Y8nb2pn+z/twVehcRvhFo1Br6BPVh8vbJqFBdljiqTKh+eMuH+Lj48P3x79mcspmDWQc5mHWQWXtn8VDrh3ikzSP4ujSMQq8Am5I3MT16OoUVhbjYufB/Pf+Poc2HWuUMoKg7phw/ifpNlbrPeCOwK9h4Yt2gGJi1dxYAD7V+iBaetlXeQNTOi+EvsiFpA7vTdrMnbQ9RAVF1HoPBYODdP75jZdJ80BSgUoEn4cy+802imrWq83iqQ6VScXvw7eS755MWnMaSo0vYk7aHB9c+yKj2o3ihywu42rtaOsxrKqwo5PUdr/Nn6p8AvNjlRV7o8oKMk6xUjZJGb7zxBgcOHGD79u0MGvT3XsT+/fvz1ltvyaDHWmnLIC0eqEwaHbNsPCa29OhSUotS8XXxZfU9qzmee5yskix8XHyqfnEW4mpe7fYqh7MPczD7IJO3T2bp3Uvr5DjU4nIdP+1PZVl0Cicy/l4d1D20MY/3CmVQB38c7P5ejVmiLWFH6g62JG9hZ+rOy/bA+7n4MSBkAANCBhDuG37FKRX9Q/oz57Y5zIyZedkWzn8mVMN9w3mt9DVWnlzJyhMrySrN4ouDX7Do0CLuDLmTkW1H0tW3q80OCkq0JcyMmcnPCT8D0Mm7Ex/0+4Bg92ALRyasgYyfGg5VasPZmvZL4i8cyzlGI/tGvBj+oqXDEfVMUKMgHm79MN8f/555cfP4393/q9MxwsaTcbz557uUak6BBtQ6H8Z0mMT4nsPqLIbacFA5MLbzWO5vfT8f7v2Q7We3882Rb1ifuJ7J3SYzJGxIvRtznS04y/jfxpOYn4iTxol3+75b56fICtOqUdJo9erVLF++nJ49e172Ie3QoQOnT582WXCijqUdAH0FuPqAZyhgO0mjzJJMvjz4JQCTIifh5uhW61OgRMNhr7Fn9q2zeeSXRziWc4wPYz7kP73+Y7b+EjKLWBqdzI9xqRSVGwtwO9truK9rEI/3DKF94N/FGYsqithxbgdbUrbwZ+qflOnLqh4LdA00JopCB9DJu9MNjzPtH9Kf24NvJy4z7roJVW9nb8Z2GcuznZ5l25ltfH/se+Iy49iUvIlNyZto07gNI9qO4O7md9vUEuQjF44wZccUUgpSUKHi2U7PMjZ8LPZq215FIExHxk8Nh7pypZGNn5xWqitlXtw8AMZ0HoOXk5eFIxL10XOdn2N1wmoOZR/i97O/c0ezO8ze57n8HMb/OoOEsk2oNAqKwZ6oxo/w30ETcXeyvrFJsFswn9zxCTvO7eCDmA84U3iGN3a+wcoTK/lX1L9o49XG0iECxq2qk7ZPIr88H19nXz6+82Opg2kDapQ0ysrKwtf3ym0IxcXF9S7TKW7C2T3Gv4OjwMb+HefFzaNUV0oXny4MCRti6XCEFQpoFMCMfjN4ceuLrDi5gnDfcIa1MN0slU5vYOuxTJbuTuavhAtV94d5uzKqZwgPRTbFw9mYnCioKOCPs3+wOWUzu1J3UWGoqLo+2C2YASEDuCvkLto3aX/T35M1ak21E6r2ansGhQ5iUOggjucc54fjP7A+cT0nck/wVvRbzImdwwOtHuCRNo/g7+R/U3HUJwbFwDdHvuGT/Z+gM+jwc/FjRr8ZkngWN03GTw2Dnb4UMi9OvNn4SqMlR5aQWZJJoGsgj7V7zNLhiHrK29mbx9o9xleHvuKT/Z9wa9NbzbbCX6fX8+Zv37Du7FegKUKlAm9Vd+YM/A9dA8PM0mdduqXpLfQM6MmSI0v48uCXxGXG8cgvjzC8zXDGdx2Pu0Pdnfr2T6tOruK93e+hU3R0bNKReXfMa1ClC2xZjZJG3bp1Y/369bz00ksAVQOdr776il695LQEq1WVNLKtWbGDWQdZe3otAFN7TJWBuaixvkF9eb7L8yw4sIB3dr9DO692tGzcslZtZhWWs3zvGb7bc4bz+cZVQmoV3NHWjyd6hdC3pTdqtYr88nx+PvUbW1K2EJ0Wjc6gq2oj1D3UmCgKvYs2jdtY5DPe1qstb/V+i0mRk/j51M/8cOIHUotS+ebINyw5soR+Qf0I04ZhUAx1HlttZBRn8O+//s2eNOP3xwEhA5jWaxoejh4WjkxYIxk/NQyeJYmoUMCjGbhZb8L8RrJKslh8eDFgXMVdF9u2hfV6qsNTLD+xnIS8BDYkbTDpxFul1Ud38+7u9ynXJIEGNDp/XuryKs90s62tUQ4aB8Z0HsPQ5kOZvW82m1M28/3x79mUvImXI17m3pb33nB1uSnpDDo+2vcRy44tA2Bw6GDe7vM2TnZOdRaDMK8aJY3ef/99Bg8ezNGjR9HpdMybN4+jR4+ya9cu/vjjD1PHKOqColQVwSa47gvUmYtBMfBBzAcA3NviXjp6d7RwRMLavdD5BQ5kHiA6LZpJ2yfxw9AfbroQoaIoxJ3J5dvoFDYcSkOrNxae9nJ1YHj3YB6LakbTxi7klOXwU8KPbEnZQkxaDDrl70RRS8+WVTWKWnq2rDfJUA9HD57q+BSPt3+cnak7+f749+w6v4sdqTvYwQ7+WP8Hj7Z9lHtb3Esjh/pzUsnV/HbmN6btmkZeeR7Ods5M6T6FB1o9UG/ea2F9ZPzUMHgVJxhvBNveKiO9QV+1hfmXxF8o1ZXS2aez1CsRN+Th6MHTHZ9mXtw8Pov/jEGhg0x2+mpiTgYvbXyflIrfL25Fc6Sf90hm3zUOV0fbTWYGNArgo9s+YnfabmbsmUFifiJv7nqTlSdX8u+of9PB2/zbwgorCnltx2v8lfoXAOPCx/F85+dlrGRjapSC7Nu3LwcOHECn09GpUyc2b96Mr68v0dHRREZGmjpGURdyk6E4E9T2EBBu6WhMZn3ieg5mH8TFzoWJERMtHY6wARq1hpm3zMTXxZfkgmSm7ZqGohiTPnqDQvTpC6yJTyX69AX0hsuPry+t0PNDzBmGfPwnD86PZk38ebR6hfBgT+Y80oVdU+/gmVu9+StjHc9uepbbV9zO9Ojp7Dq/C52io03jNowPH8+ae9fw870/82L4i7Rq3Kpe/mDWqDXcFnwbXwz4gjX3reHR1o/iiCPJBcnMjJnJnSvv5L3d75GYl2jpUK9Qqivlneh3mPj7RPLK82jn1Y7lQ5fzYOsH6+V7LayHKcdPn332GaGhoTg5OREVFUVMTMx1r8/Ly2PcuHEEBATg6OhI69at2bBhQ9Xjb731FiqV6rI/bdu2rdHrbOgaVyaNbGxr2taUrQz8cSBPb3qaKTunsDN1JwC3Nb1NvjeKahnZdiRNnJqQWpTKT6d+qnV7FTodr2ycz72r7+GM9jdUKgV/dR9WDlnN/GGTbTphdKmeAT1ZNWwVr3Z7FRc7Fw5lH2LE+hG8testcstyzdbvmYIzPLbhMf5K/QsnjRMf3fqRnJBmo256pZFWq+X555/nP//5DwsXLjRHTMISKlcZBYaDvRNotRYNxxRKtCX8N/a/gLEAn4+Lj4UjErbCy8mLj279iNEbR7MpeRMRvhF46W9n+rqjpOX/XYg6wMOJacPa09bfnaW7U1i57ywFZcbVQo52au7pEsgTvULxbVzG1jNbeWHbFuIy4i478r59k/ZVK4pC3EPq/LWaQnOP5rze7XVaZbSiolUFK06tICk/iR9O/MAPJ34gKiCKkW1HmrXGQXWdyDnB6zteJzHfmMx6qsNTvNT1JRw0DhaNS1g/U46fli9fzuTJk1mwYAFRUVHMnTuXgQMHcuLEiavWTKqoqGDAgAH4+vqyatUqgoKCSElJwdPT87LrOnTowNatW6u+trOr0YL0hk1RaFx8sah5U9vZ7r81ZSuTt0++7OdTpU/2f0KYR1jVKZtCXIuLvQvPdX6OGTEz+OLgF9zT8p4aH5ix/OBOPtg3A63mLGjAThfEK5FTGBV+u4mjtg72Gnue7PAkd4fdzZzYOfyS+As/njKuVp/QdQIPtX7IpGOsmLQYJv8x2Vjw2sWXT+74hPZN2pusfVG/3PRowN7enh9//JH//Md8JwcJC7i0CLaN+OrQV2SVZhHsFszj7R+3dDjCxoT7hjO522Q+3PshH+6dRWFiPvqypmhcklDZFaLo3EjLD+OFZXGXPa+ZlwujejbjlnZ2xGT+wYcHZxOfFX/ZNZ29OzMgZAD9Q/rT1K1pHb4q83JUOXJ/6/t5rP1j7Enfw3fHvuOPc3+wJ20Pe9L2EOgayCNtHuHBVg/i6eRZp7EpisL/jv2PObFz0Bq0eDt7817f9+gd2LtO4xC2y5Tjpzlz5jBmzBhGjx4NwIIFC1i/fj2LFy9m6tSpV1y/ePFicnJy2LVrF/b2xu0goaGhV1xnZ2eHv7/t1uCpEzmncdQXoWgcUfl3snQ0JqE36JkZM/OqCaNKH8R8wO3Bt1s88S/qv4dbP8y3R78ltSiV7459xzOdnrmp55/IOs+ETe9yXr8TNIDeiTv8n+SDAc/hZC8TPD4uPszoN4OHWj/E+3ve52TuSd7d8y6rTq3i31H/Jtw3vNZ9rDy5kvd3v19V8PrjOz6WyXkbV6MppPvuu4/Vq1czadIkU8cjLKWqnpFtzIqdLTzLkiNLAHi126uySkCYxah2o4jLiGPrma04BX8Diga1fWHV4watB+UZw9AVduTW1t4MjXCkUBPH1jML+WTDocva6urb1ZgoatafgEYBdfxK6pZKpaJnQE96BvQktSiV5SeW89OpnzhffJ65cXOZf2A+g8MGM7LtSNo1aWf2eLJLs/m/v/6vaj/+bU1vY3qf6XJ0tDA5U4yfKioqiI2N5Y033qi6T61W079/f6Kjo6/6nLVr19KrVy/GjRvHmjVr8PHxYeTIkUyZMgWN5u9f8k+dOkVgYCBOTk706tWLGTNm0KxZs2vGUl5eTnl5edXXBQUFgHFVldYGVizXhOGMcRLO4N8Zg6KyiZXb+zL2kVGScc3HFRTSS9KJOR9DN79udRgZVZ+zhvp5q2umer+f6/gc03ZPY/Hhxdzf/H7cHNxu+JwybQVTt33JH9nfoVIbV3U31dzKnIGv07JJgEniqm9q83539urMsoHLWHVqFfMPzud4znEe//VxhoYNZUL4BLydvW+6TZ1Bx3/j/sv3J78HYGDIQKZFTcPJzslm3vuG9D3lZl5jjZJGrVq14u233+avv/4iMjISV9fLi8BOmDChJs0KSykvhMwjxts2spR6zr45VBgq6BnQk9uDG+YyVWF+KpWKYYGT2Hx6D2r7QpR/TMKq7PJxClqGriCcbPcS3j5w8u/HUBHpF8mAkAHc2exO/Fz96jj6+iGoURCTIyfzYpcX+TXpV74//j3Hco6xOmE1qxNWE+4Tzoi2IxgQMsBkBTMvtfPcTv7vr/8jpywHR40jr3Z7leFthst+fGEWphg/ZWdno9fr8fO7/HuGn58fx48fv+pzEhMT+e2333jsscfYsGEDCQkJvPjii2i1WqZNmwZAVFQU33zzDW3atCEtLY3p06fTr18/Dh8+jJvb1X+hmzFjBtOnT7/i/s2bN+Pi4nLD12KLOp9dQxiQpPXmyCU1o6zZgYoD1bpuS/QWMh0yzRzNNfressUi/TZUtX2/VYoKX7UvmRWZvLnuTQY4D7ju9TvzkthS8QsGhwxUatCUBzHEeSg93II5uWc/J9lfq3jqu9q83+64M855HFtUW4itiOWXpF/YkrSFO53uJMoxCo2qeqsDSw2lrChZwSndKQDudLqTvnl9+W3zbzWOrT5rCN9TSkpKqn1tjZJGixYtwtPTk9jYWGJjYy97TKVSSdLI2qTGgmIAz2bgbv0rHPak7WHrma1oVBpe7/66/PInzCq/BFApKAr886NW+bW9RzxnikGtUtPdr7sxURRyZ41meWyVk50T97e6n/ta3seBrAN8d/w7tiRvIT4rnviseGbtm8XDrR/modYP4etyZc2Wm1WuL2du7Nyq42FbNW7Fh/0+pGXjlrVuW4hrsdT4yWAw4Ovry5dffolGoyEyMpLU1FRmzZpVlTQaPHhw1fWdO3cmKiqKkJAQVqxYwTPPXH37yBtvvMHkyZOrvi4oKCA4OJi77roLd3d3s7yW+k6z0Hhia3CvBwjpeLeFozEN3wxfVm5becPrBvQaYJGVRlu2bGHAgAFVWy+F+Zjy/XY568KrO19lj24PbXxvJ6ekmGB3P4Z3vAWHi/XUDmec4ZXfZpDFHnAA9C4MDBjN9NuerLrGlpny/X6ERziUfYgP9n3A0ZyjbCjbwAnHE0yJnHLZ/1u9Qc/+rP1kl2bj7exNV5+upBan8vIfL5OsS8ZJ48Q7vd7hzmZ31vbl1UsN6XtK5erg6qjR/7akpKSaPE3UV5Vb02xglZHOoOODvcYB2yNtHqFV41YWjkjYMr1B4ddTu1DbFd3w2gGBj/B//cbJlqcbUKlUhPuGE+4bTla3LFadXMWKkyvILs1m/oH5LDy4kAEhAxjRbgThPuE1Sgon5CYwZecUTuYaV3491u4xJkVOwlHTME5ZEZZjivGTt7c3Go2GjIzLtwtlZGRcsx5RQEAA9vb2l21Fa9euHenp6VRUVODgcOUWbk9PT1q3bk1CQsI1Y3F0dMTxKqcT2dvb2/xg+6rKi1CyjgGgbtbTZt6DHoE98HPxu+YWNRUq/Fz86BHYw2I1jRrsZ85CTPF+3xV2F032BHKh4jxfnnyr6v65hzwZ3vxFUgrOsevCD6jUFSiKiuaO/fl08Bs082x4tXNM9fmOCIjg+6Hf89Opn5gXN4/T+ad5bttzDA4dzORukzmcfZiZMTMv+7/e2LExZfoySnWl+Ln48ckdn9RJ6QBLawjfU27m9alr25miKFXHTQsrZUNFsH88+SOnck/h4ejBuPBxlg5H2LCk7GIe+SKa3xJOV+v6O5pHSMLoJvm4+DA2fCybH9zMh7d8SFffrugUHb8m/8oTvz7BI788ws+nfqZMV3bFc/UGPXvT97IhcQN70/eiN+hRFIXlx5fz6PpHOZl7Ei8nLz678zOm9pgqCSNR52o6fnJwcCAyMpJt27ZV3WcwGNi2bRu9evW66nP69OlDQkICBoOh6r6TJ08SEBBw1YQRQFFREadPnyYgwPpXINeZ83GoFAMl9l42sXK7kkatYUynMVd9TIUxcT+lxxQpgi1uyuw/V5Fdfv6K+w3qPL5Pfp/o3G9RqStw0jdnRtQi1o6Y0yATRqamVql5qPVD/HL/LwxvMxy1Ss2vyb8y5KchTNo+6YrkcG55LqW6UkLcQvh+yPcNImEkrlTjpNG3335Lp06dcHZ2xtnZmc6dO7N06VJTxibqgsEAZ/cab1t5Eez88nw+jf8UgHHh4/Bw9LBwRMIWGQwK3/yVxOB5O4hNycVJ5Vmt5/m51n5LVUNlr7FncNhgvh38LSuGruD+lvfjqHHkeM5x3tz1Jv1X9WdO7BxSi1IB49HQA38cyNObnmbKzik8velpBqwawIj1I3h3z7uU68vpE9iHH+/5kVua3mLhVycaGlOMnyZPnszChQtZsmQJx44dY+zYsRQXF1edpvbEE09cVih77Nix5OTkMHHiRE6ePMn69et5//33GTfu78mVV199lT/++IPk5GR27drF/fffj0ajYcSIEaZ54Q3BxZXbua62t811X8Y+ABzUlycZ/Vz8mHPbHPqH9LdEWMJKVeh0LD318VUfU6mMfxRFxT2Bk9j91E8Ma9e9jiO0fR6OHvxfz//jhyE/0MW7CxWGiuteX6Yvk8nPBqxG29PmzJnDf/7zH8aPH0+fPn0A+PPPP3nhhRfIzs6WU9WsSfYJKM8Hexfw62jpaGpl/oH55JXn0dKzJQ+3ftjS4QgbdDanhNdXHSQ68QIAvVs0YcaDt/DMtp+ve7KMv4s/Eb4RdRWmTWvXpB1v93mbyZGT+SnhJ5YfX8754vN8ffhrvjn8De2btOfIhSNXPC+rNIus0iw0Kg2vdHuFx9o9hlpV68W2QtwUU42fhg8fTlZWFm+++Sbp6emEh4ezcePGquLYZ86cQa3++/MdHBzMpk2bmDRpEp07dyYoKIiJEycyZcqUqmvOnTvHiBEjuHDhAj4+PvTt25fdu3fj4yMz+9V2zphYyXFtiS1NE8RnxrMxeSMqVCy9eynF2mKySrLwcfEhwjdCVhiJm/bdge0omjyut8FcpVJo5dVMPl9m1q5JOyZETOCZzVevXVcpoySDuMw4uvtLAq8hqlHS6JNPPmH+/Pk88cQTVffdc889dOjQgbfeekuSRtakcmtaUCRorLeg3Om80/xw/AfAuETaTm29r0XUP4qi8MPes7z7y1GKK/Q422t44+62jIoKQa1WMbXHVCZvNxaDVfh7u4ks2zcfTydPnu74NE+2f5Id53bw3fHv2J22+6oJo8ue5+jJyLYjJWEkLMKU46fx48czfvz4qz62ffv2K+7r1asXu3fvvmZ7P/zwQ7X7FlehKHDO9lYaKYrCrH2zALiv5X20b9LewhEJW3CmIN2k14nayS7NrtZ1WSVZZo5E1Fc1GjWnpaXRu3fvK+7v3bs3aWlptQ5K1KHKIthWXM9IURQ+iPkAvaLn9uDb6RnQ09IhCRuSnl/GU1/v5Y2fDlFcoadbSGN+ndiPJ3qFolYbk0L9Q/oz57Y5V5zqJcv2zU+j1nB7s9tZeNdC3u3z7g2vv1B2gbjMuDqITIgryfjJhuUkQskFFI0D+c4hlo7GZDYlb+Jg1kGc7ZwZ3/XqSUohblYz96sX7a/pdaJ2fFyqt6K0utcJ21Oj5RgtW7ZkxYoV/Otf/7rs/uXLl9OqlZxWZVVsoAj2H+f+IDotGnu1Pa92e9XS4QgboSgKP+9P5a21Rygo0+Fgp+a1u9rwdN8wNOorF1T3D+nP7cG3E5cZJ8v2LcReXb1TIGSmTFiKjJ9s2MWtaYp/ZwzV/F5U35Xry5kbNxeA0R1HXzExIkRNdQ+IxLDfA5VdPlc7BFVRQK33ZGSX2+o8toYowjcCPxc/MksyL1sxX6nyhEQptdBw1ShpNH36dIYPH86OHTuq9uT/9ddfbNu2jRUrVpg0QGFGxRfgwsWjdJt2s2wsNVShr2DWXuOy6cfbP04z92YWjkjYgqzCcv798yE2HzXWKerS1IOPHulCS1+36z5Po9bIXm8LkpkyUd/J+MmGXdyapgR1A62FYzGR/x37H6lFqfi6+PJk+yctHY6wEb+fyGTCd/spdxiGU9AyFIXLEkeVh0o+3noCDnZSbqIuaNSaqlILKlRSakFcoUbb0x588EH27NmDt7c3q1evZvXq1Xh7exMTE8P9999v6hiFuVwc4ODdBlyssxr+d8e+40zhGbydvXmu83OWDkfYgA2H0hg4dwebj2Zgr1Hx6l2t+XFs7xsmjITlVc6Uqa5RWlOFSoqSC4uS8ZMNu7jdX2lqGxMHOWU5LDy4EIAJXSfgYu9i4YiEtVMUha92JvLMN3spLNcR4X0LjzT7N2qD52XXqfWePNniTV7rJ4fa1CUptSCup8bp28jISJYtW2bKWERdq9qa1sOycdRQdmk2Cw4uAGBixERc7V0tHJGwZrnFFby59gjrDpwHoK2/G3MeCad9oLuFIxPVJTNlwhrI+MkGVRRDhrEIvxLUDZIOWDig2vs8/nOKtEW082rHsBbDLB2OsHIVOgNvrjnMD3vPAjC8WzDv3NcRB7teTNU9xHcHtnOmIJ1m7v6M7HKbrDCyECm1IK6lRv8jN2zYgEajYeDAgZfdv2nTJgwGA4MHDzZJcMLMrLwI9if7P6FYW0yHJh24p8U9lg5HWLFtxzKY+tMhsgrL0ahVvHhbC166oxUOdnLClrWpnCmbGTOTjJKMqvv9XPyY0mOKzJQJi5Lxk406vx8UPbgFgnsQYN1Jo8S8RFadXAXAa91fk9MmRa3kFFfwwrJYYpJyUKvg30Pa83SfUFQX96Q52NnxVKT8bK4vpNSCuJoaJY2mTp3KzJkzr7hfURSmTp0qgx5roNdC6sUThKwwaXTkwhF+PvUzAFN7TJUBjaiRwjIt768+yqrYcwC09G3ERw93oUuwp2UDE7UiM2WivpLxk42qmoSzjV+0Por9qOpEWvnlUdTGyYxCnl2yjzM5Jbg52vHxyK7c3kYKqgthbWqUNDp16hTt27e/4v62bduSkJBQ66BEHUg/BLpScPKEJi0tHc1NURSFD2I+QEFhSPMhhPuGWzokYYWO56mY+Wk0afllqFQwpl9zJg9ojZO9JBZsgcyUifpIxk826uLJadhAPaPo89HsOLcDO5UdkyMnWzocYcV+O57BhO/jKSrX0czLhUVPdqOVn9SHFMIa1Shp5OHhQWJiIqGhoZfdn5CQgKur1JWxClWzYj1AbV2rdDYmb2R/5n6c7Zx5OeJlS4cjrExxuY731h/lu2MaoIyQJi7MfrgL3UOtsxi8EMJ6yPjJBinK3weLNLXOGpGV9AY9s/fNBmB42+GEeoRaNiBhlRRFYdGfSby34RiKAlFhXswfFYmXq4OlQxNC1FCNsgX33nsvL7/8MqdPn666LyEhgVdeeYV77pHaMlbBSotgl+pK+WjfRwA80/EZ/F39LRyRsCZ7Ei8weN5OvosxbkcbFRXMrxP7ScJICFEnZPxkg3KToTgL1PYQ0MXS0dTK2tNrOZl7EjcHN17o/IKlwxFWqEJnYMqPB3l3vTFhNKJHMEufiZKEkRBWrkZJow8//BBXV1fatm1LWFgYYWFhtG3bliZNmjB79mxTxyjMwUqLYH99+GsySjIIdA3kyQ5PWjocYSXKtHre+eUojy7czZmcEgI9nHixvZ5pQ9vh4iAndAgh6oaMn2xQ5da0gM5g72TZWGqhRFvCx/s/BuD5zs/j6eRp2YCE1blQVM6or/awYt851Cp4c2h73r+/kxwqIoQNqPH2tF27drFlyxYOHDiAs7MzXbp0oV+/fqaOT5hD/jkoOAcqDQRGWDqaaksrSmPx4cUAvNLtFZzsrHdwJurO/jO5vLLyAIlZxYDxmNcpA1ux87fNFo5MCNHQyPjJBtnI1rSvj3xNdmk2wW7BjGg7wtLhCCtzIr2QZ5bs5VxuKW6Odnwysiu3ScFrIWzGTSWNoqOjuXDhAkOHDkWlUnHXXXeRlpbGtGnTKCkp4b777uOTTz7B0dHRXPEKU6hcZeTfERwbWTaWmzAndg7l+nK6+XVjQMgAS4cj6rlynZ55W0+x4I/TGBTwdXNk5oOduKOtH1qt1tLhCSEaEBk/2TAbODktvTidbw5/A8CkyEk4aGQrkai+bccymPD9foor9IQ0MRa8bukrBa+FsCU3tV7w7bff5siRI1VfHzp0iDFjxjBgwACmTp3KunXrmDFjhsmDFCZmhVvTYjNi2Zi8EbVKzZQeU1CpVLVqT29QiD59gTXxqUSfvoDeoJgoUlEfHE7N595P/+Lz7caE0X3hgWyedAt3tPWzdGhCiAZIxk82qqIEMg4bb1vxyWmf7P+EMn0ZEb4R9G/W39LhCCuhKApf7jjNs9/uo7hCT8/mXqx+sY8kjISwQTe10ig+Pp533nmn6usffviBHj16sHDhQgCCg4OZNm0ab731lkmDFCZWVQTbOpJGeoOeD2I+AODBVg/S1qttrdrbeDiN6euOkpZfVnVfgIcT04a1Z1DHgFq1LSxLqzcwf/tpPt52Cp1BoYmrA+/d31H+XYUQFiXjJxuVFg8GHTTyB49gS0dTI0cuHGHt6bUAvNb9tVpPyomGoVxn4F+rD7Iy1niwyIgezXj73g7Ya6R+kRC26KaSRrm5ufj5/T1T/8cffzB48OCqr7t3787Zs2dNF50wvYoSSD9ovG0lJ6etTljNsZxjuNm7Mb7r+Fq1tfFwGmOXxfHPdUXp+WWMXRbH/FERkmCwUiczCnllxQEOpeYDMKiDP+/e3xHvRrLdQwhhWTJ+slGVK7ebdgMrTLYoisLsvcYC7EOaD6Gjd0cLRySsQZEWnvpmH/tS8lCr4D9D2/NU71BJOAphw24qHezn50dSUhIAFRUVxMXF0bNnz6rHCwsLsbe3N22EwrTO7zfOirkFWMWsWGFFYdVpHmPDx+LlVPOj0fUGhenrjl6RMAKq7pu+7qhsVbMyeoPCF3+cZujHf3IoNR8PZ3vmPRrO/FERkjASQtQLMn6yUef2Gv+2kkm4f/r97O/sy9iHo8aRiV0nWjocYQVOpBfy0SEN+1LycHOy45vRPRjdJ0wSRkLYuJtaaXT33XczdepUPvjgA1avXo2Li8tlJ34cPHiQFi1amDxIYUJVW9N6WMWs2BcHviCnLIcwjzAebftordqKScq5bEvaPylAWn4ZMUk59GrRpFZ9ibqRlF3MqysPEJuSC8DtbXyY+WBn/NzlZD0hRP0h4ycbpCh/J42s8OQ0rV7LnNg5ADzR/gkCGskqa3F9W49mMPGH/RRXqAjxcmHRU91p6Ws9B+oIIWruppJG77zzDg888AC33norjRo1YsmSJTg4/H3CwuLFi7nrrrtMHqQwoapZsfpfzygpP4n/HfsfAK93fx17de1mYTMLr50wqsl1wnIMBoVvo5OZufE4ZVoDjRzteHNoex7u1lRmu4QQ9Y6Mn2xQ3hkoygC1HQSGWzqam7bi5ApSClLwcvLimU7PWDocUY8pisIXOxL5YONxFAVauRv47vkofDxcLB2aEKKO3FTSyNvbmx07dpCfn0+jRo3QaDSXPb5y5UoaNZKMc72lKH+vNLKCWbHZ+2ajU3T0C+pH36C+tW7P1616q0+qe52wjLM5Jby+6iDRiRcA6NOyCR882JmmjWXwIoSon2T8ZIMqJ+H8O4G9s2VjuUn55fnMPzAfgPFdx+Nq72rhiER9Va7T86+fDvNj3MWC192b0l2djKeLbKcVoiG5qaRRJQ8Pj6ve7+VV83ozog7kJELJBdA4QkBnS0dzXTvP7WTHuR3Yqex4rftrJmmzR5gXAR5O192i5uKgITKksUn6E6alKAo/7D3Lu78cpbhCj7O9hn/d3ZbHokJQq2V1kRCi/pPxkw2x4q1pXx78kvzyfFp6tuT+lvdbOhxRT2UXlfPC0lj2peSiUat4c2h7RnQL5Ndfky0dmhCijsm5iA1J5SqjwK5gV38LBGsNWmbtmwXAyHYjCfMIM0m7lT/wrqekQs+k5fGU6/Qm6VOYRnp+GU99vZc3fjpEcYWe7qGN+XViPx7vFSoJIyGEEHWv6uS07paN4yadKTjDd8e/A+DVbq9ip67R/LGwccfSCrj307/Yl5J7seB1d56UE9KEaLDkJ0VDcmkR7Hps+fHlJOUn4eXkxfNdnjdp295uV0+WBXg4MbRzAN/sSmb9oTQKyrQsGBWJq6P8F7EkRVH4eX8qb609QkGZDgc7Na8PbMPoPmFoJFkkhBDCErSlkH7QeDvYupJGc+PmojPo6BPUhz5BfSwdjqiHNh9J5+Xl8ZRU6AnzduWrJ7vRwke2zwrRkMlvxA1J5axYPS6CnVOWw+fxnwPwUteXcHdwN2n7X+5IBGB496bcF96UzMIyfN2c6BHmhUat4pbWPjy/NJadp7J57Ks9fP1Udxq7OtygVVFbeoNCTFLOZf8eOcUV/OvnQ2w5mgFAl6YefPRIF1r6ulk4WiGEEA1a2gEw6MDVFzxDLB1NtcVmxLIlZQtqlZpXI1+1dDiinlEUhQV/JPLhJmPB6z4tm/DZyAg8XWQcLERDJ0mjhqI0DzKPGW/X45VGn+3/jEJtIW292pp8n/3prCK2HjMmIMb0a3HVY0L7tfLhf89GMfqbvcSfzeORL6JZ+kwU/h5SHNtcNh5OY/q6o5fVmvJ0sUerM1Bcocdeo2Lina144dYW2GlkR60QQggLu3RrmpVs1zEoBmbvnQ3Ag60epGXjljVq52qTPLLy1/qVafX86+dD/BSXCsDjPUN4c1h77GXcJYRAkkYNR+o+QIHGYdDI19LRXNWJnBOsOrUKgCndp6BRa27wjJvz1c4kFAX6t/O9asKoUtdmjVnxfC8eX7SHU5lFPDh/F8uejSLMW04XMbWNh9MYuywO5R/355VoAQjydGLhE91pH2jaFWdCCCFEjVUWwbairWkbkjZw+MJhXOxceDH8xRq1cbVJngAPJ6YNa8+gjgGmClXUsazCcp5fuo+4M3lo1CreGtaex3uFWjosIUQ9IunjhqKeb01TFIUP9n6AQTEwMHQg3fy7mbT97KLyquNCn7ulxQ2vb+3nxqoXehPm7UpqXikPL9jF4dR8k8bU0OkNCtPXHb0iYXQpgwJt/GU7mhBCiHpCUazu5LQyXRnz4uYBMKbzGLydvW+6jcpJnn+eQJueX8bYZXFsPJxmklhF3Tp6voD7PvuLuDN5uDvZsWR0D0kYCSGuIEmjhqKeF8HeemYre9P34qhxZHLkZJO3/210ChU6A12CPeke2rhazwn2cmHF873oEOhOdlEFI77czZ7ECyaPraGKScq5YvD5T2n5ZcQk5dRRREIIIcQN5J+DwjRQaSAw3NLRVMvSo0tJL04nwDWAUe1G3fTzrzfJU3nf9HVH0RuuNw0k6ptNR9J5aMEuUvNKae7tyupxfejb6uYTikII2ydJo4bAoIdz+4y36+FKozJdGR/t+wiA0R1HE9go0KTtl1boWRqdDMBz/Zrf1HGhPm6OfP9cT3qEeVFYruOJxTFsvViYWdROZuH1E0Y3e50QQghhdpWrjPw7gkP937aeXZrNV4e+AmBixESc7G6+RuONJnkUZJLHmiiKwme/J/DCslhKKvT0benNzy/2obmckCaEuAZJGjUEmcegoggc3MC3naWjucK3R78ltSgVPxc/RncYbfL2V8WeJbdES7CXM4M6+t/0892d7Pn26R70b+dHuc7A88ti+TH2nMnjbEgURSEuJbda1/q6SRFyIYQQ9YSVbU37LP4zSnQldGzSkcFhg2vUhkzy2I4yrZ7JKw4wa9MJFAWe7BXCN6O74+Fib+nQhBD1mCSNGoLKrWlNu4GJi0vXVkZxRtUM2OTIybjYu5i0fb1B4as/kwB4tm/zGp/w4WSvYcGoCB6ICEJvUHhl5QEWXWxX3JwLReU8s2QfS6JTrnudCmOBzR5hXnUTmBBCCHEjl56cVs+dyj3FT6d+AuC17q+hVtVs2F/dyRuZ5KnfMgvLGLFwNz/vT0WjVvHOfR2Zfm9HOZlWCHFD8l2iIagqgl3/ZsXmxs2lVFdKV9+uNZ4Bu57NR9JJuVCCp4s9D3drWqu27DRqZj/Uhaf7hAHwzi9H+WjzCRRF9vBX146TWQyat5PfjmfiYKdmeLdgVBgTRJeq/HrasPZylK8QQoj6QVcO6QeNt63g5LSP9n2EQTEwIGQAEX4RNW6nR5gXAR7XTwj5u8skT3125Hw+9336F/vP5OHhbFxB/3jPEEuHJYSwEpI0agjqaRHs+Mx4fkn8BRUqpvSYclO1hqpDURS+2JEIwOM9Q3BxsKt1m2q1iv8Mbcerd7UG4JPfEvjPmsNS/PEGKnQG3t9wjCcWx5BVWE4r30asGdeHDx7qzPxREfj/YzDq7+HE/FERcoSvEEKI+iPtAOgrwMUbGodZOprr+jP1T/46/xd2ajsmRUyqVVsatYppw9pf9xovVwcZC9VTGw+n89D8aM7nl9Hcx1jwuk9LKXgthKi+2v8WLeq3okzITQJUEGTaY+xrw6AY+CDmAwDua3kfHZp0MHkfsSm5xJ/Nw0Gj5gkTHh+qUqkYf0crPF0c+M+awyzbfYa8Ei1zHgnHwU7ysP+UmFXEhB/2czi1AIBRPZvxf0Pa42Rv3Co5qGMAA9r7E5OUQ2ZhGb5uxtlKWWEkhBCiXqmqZ9QdTDzRZUo6g67qgJHH2j5GsHtwrdsc2MEfP3dHMgrKL7u/SSMHCkt1HE0rYNLyeD4e0VV+ftcTiqLw+fbTzNp0AoB+rbz5dGQEHs5Sv0gIcXMkaWTrKrem+bYDZ0+LhnKpdafXcfjCYVztXZkQMcEsfVSuMnogIggfN0eTtz+qZwieLvZMWh7PLwfTyC/V8sXjkSZZ0WQLFEVhZew53lp7hJIKPZ4u9nz4YGfu6nBlMXKNWkWvFk0sEKUQQghRTVXb/ev31rSfTv1EQl4CHo4ejOk8xiRtHjlfQEZBOQ4aFQse70ZhmbZqkmfX6Wye/mYv6w+l0cjRjpkPdjL56nFxc8q0eqb8eJA18ecBeKp3KP83pJ3ULxJC1Ij8dmvr6uHWtGJtMXPj5gLwfOfn8XY2/RLZ01lFbD2WAcCz/cy3hHxo50DcnOx5YWksO09l89hXe/j6qe54ujiYrU9rkF+q5V8/H2L9wTQAejVvwn+Hh1+xDU0IIYSwGlZwclpRRRGfxX8GwNguY/Fw9DBJu2sPGJMPA9r7c0db38se69fKh48f7cq47+JYvu8sHi72vDG4rSSOLCSzsIznvo0l/mwedmoV0+/twGNRUr9ICFFzkm62dVWzYlGWjeMSCw8uJLs0m2ZuzXis3WNm6WPRn0koCvRv50tLXzez9FHp1tY+/G9MFB7O9uw/k8fwL3aTUdBwj53dl5zD3fN2sv5gGnZqFa8PasOyZ6MkYSSEEMJ65adCQSqo1BDY1dLRXNOiw4vIKcsh1D2UR9o8YpI2DQaFdReTRveEB171msGdApj5YGcAvtyRyOfbT5ukb3F9eoNC9OkLrIlPJfr0BQ6czePeT/8i/uzFgtfP9JCEkRCi1mSlkS3TlcP5/cbb9SRpdLbgLN8e/RYwHv/qoDH9ipzsonJ+jD0HwJh+zU3e/tVENGvMiud78fiiPZzIKOTB+btY9kwUod6uddJ/faDTG/j09wQ+3nYKgwLNvFz4eERXwoM9LR2aEEIIUTuVq4z8OoBjI8vGcg3ni87z7RHjGGty5GTs1aapXbM3OYe0/DLcnOy4rY3PNa97pFswBaVa3l1/jFmbTuDmZGfSmpLichsPpzF93VHS8q+cqGzh48qiJ7s3qHGoEMJ8ZKWRLUs7CPpycGkCXnWTPLmR2ftmozVo6R3Ym1ub3mqWPr6NTqFcZ6BLU486Pf61jb8bP47tTWgTF87llvLQgmiOni+os/4t6VxuCSMW7mbuVmPC6IGuQayf0FcSRkIIIWyDFWxNmxc3jwpDBd39u3Nb8G0ma3fNxVVGgzv642inue61z/ZrzoQ7WgLw5pojrN6farI4xN82Hk5j7LK4qyaMAF68vaUkjIQQJiNJI1tWVc8oql6c8hF9Pprfzv6GRqXh9e6vm2Wve2mFnqXRyQA8d0uLOt9PH+zlwsoXetMuwJ3sonKGfxlNTFJOncZQ19YfTGPwvJ3sTc6lkaMdc4eHM2d4OG5OcjqHEEIIG3HpyWn10KGsQ2xI2oAKFa92e9Vk458KnYENh4z1Ce8ND6rWcyYNaM1TvUMBeGXlAbYezTBJLMJIb1CYvu4oyjUeVwGzN51Ab7jWFUIIcXMkaWTL6lERbJ1Bx4d7PwRgeJvhtPBsYZZ+VsWdI7dES7CXMwM7+JmljxvxcXPkh+d60j20MYVlOh5ftIdtx2xvwFRSoeP1VQcY910chWU6woM92TChH/d1rd6gUgghhLAKugo4H2+8XQ/GVP+kKAqz9s0CYFiLYbRv0t5kbe88lUVeiRYfN0d6Nq/eKacqlYo3h7bngYgg9AaFF7+LI/r0BZPF1NDFJOVcc4URgAKk5ZfZ/KSlEKLuSNLIVinK37Ni9aCe0aqTq6qOf30x/EWz9KE3KHy1MxGAZ/qEWfRYUQ9ne759Ooo72/pSrjPw3NJYft5/zmLxmNrh1HyGfvwnK/adQ6WC8be3ZOULvWjWxMXSoQkhhBCmlX5xu7+zV73Z7n+pLSlb2J+5HyeNExO6TjBp25Wnpg3tHIBGXf3VS2q1ig8f7MyA9n5U6Aw8u2QvB87mmTS2hiqzsHqHrVT3OiGEuBFJGtmq/LNQmAZqO4uf8pFfns+n8Z8CMD58vMmOf/2nLUfTSblQgoezPY90DzZLHzfD2UHDgscjub+rcaZt0vIDfP1XkqXDqhXDxcTc/Z//RWJ2Mf7uTnz3bE9eHdgGewsm6YQQQgizuXRrWj3Y7n+pCn0F/439LwCjO47Gz9V0q6xLKnRsPmJcKV3drWmXstOo+WREV3q3aEJxhZ4nv47hVEahyeJrqJKyi6t1na+bnForhDAN+S3PVp2NMf7t3xnsnS0ayufxn5Nfnk9Lz5Y81Pohs/Xz5Q7jKqPHe4bg4lA/Dga016j56OEujO4TCsD0dUeZs+UkimJ9+8wzC8t46pu9vLv+GFq9wl3t/fh1Yj96tajecnUhhBDCKlWOqYLrXz2j749/z7mic/g4+/BUh6dM2vaWoxmUavWENHGhS9OaTfg52Wv48oludAn2JK9Ey6hFezibU2LSOBsKRVGYt/UUc7eeuu51KiDAw6lOD4MRQtg2SRrZqkuLYFtQQm4Cy08sB2BKjynYqc2TzNmXnEPcmTwcNGqe6B1ilj5qSq027u2fPKA1AB9vO8W0tUcwWFGBwt9PZHL3vJ3sOJmFk72a9+7vyBePR9LY1cHSoQkhhBDmVU9PTssty+WLA18A8FLXl3CxN+0W8XUXt6bd2yWwVoW1GznasWR0d1r7NSKjoJxRi/aQWSBbp25GmVbPhB/i+e/WkwDc0dYXFcYE0aUqv542rP1NbScUQojrkaSRraoHRbAVReHDvR+iV/Tc2exOegb0NFtflauM7u8aVC+X46pUKibc2Yp37u2ASgXfRqfw8vJ4KnQGS4d2XeU6PdPXHWH013vJLqqgrb8b68b35bGokDo/mU4IIYSocwVpxi3/KjUERVg6msssOLCAQm0hbRq34Z4W95i07dziCrafyALgnvDAWrfn6eLA0meiaOblQsqFEh5fFENeSUWt220IMgrKGP5FNOsOnMdOrWLmA51Y/FR35o+KwN/j8jGvv4cT80dFMKhjgIWiFULYovqxh0eYVnkRpB823rbgSqPtZ7cTnRaNvdqeV7q9YrZ+ErOK2HLxdLIxt4SZrR9TeLxXKO7O9ryy4gBrD5wnv1TL/FER2NfD/EtCZiEvfR/PsbQCAJ7qHcrUwW1xstdYODIhhBCijlSuMvJtD45ulo3lEkn5Saw4sQKAV7u/ikZt2p/Nvx5OR2dQaB/gTktf07xuP3cnlj0TxUMLdnEio5Cnvt7L/56NwtVRfh25loPn8hjz7T4yCspp7GLP/FGRVafYDeoYwID2/sQk5ZBZWIavm3FLmqwwEkKYmqw0skXn40DRg3tT8LDM8ecV+oqq41+f7PAkwW7mK0z91Z9JKArc2dbXZAMbc7o3PIivnuyGk72aP05m8fiiGPJLtZYOq4qiKHy35wxDP/mTY2kFeLk6sPipbrx1TwdJGAkhhGhYzl2sZ9S0ftUzmhM7B52i49amt5plJfea+FQA7jXBKqNLNWviwtJnovBwtif+bB7PLd1HuU5v0j5sxS8Hz/PIF9FkFJTTyrcRa8b1rUoYVdKoVfRq0YR7w4Po1aKJJIyEEGYhSSNbVA+2pi07toyzhWfxcfbh2U7Pmq2f7KJyfow1HmU/5pb6dwzutdzWxpf/PRuFu5MdsSm5jPxqL/n1YJV2XkkFY5fF8a+fD1GmNdCvlTcbJ/bjjramO41FCCGEsBrn9hn/rkdJo5i0GLaf3Y5GpWFyt8kmbz8tv5SY5BwAhnYxbdIIoI2/G0ue7oGrg4a/Ei4w4fv96PT1e7t+XVIUhblbTzL+u/2UaQ3c1saHH1/sTbMmpq1ZJYQQ1SVJI1tUdcqHZbamZZdmVxVmfDnyZVztXc3W19LoFMp1Bro09SDKyk6JiAzxYsULvfB1c+RkZhHzDmtIseCJIrsTLzB43k42HknHXqPiX3e3ZcnoHvi6178aUUIIIYTZ6Srg/H7jbQtOxF3KoBiYvW82AA+3fpjmHqafMPvlQBqKAj1CvQjyNM8JvOHBnix8ohsOdmo2Hclg6k+HrOqAEHMprdAz/vv9VSekPds3jEVPdsfdyd7CkQkhGjKLJ40+++wzQkNDcXJyIioqipiYmOten5eXx7hx4wgICMDR0ZHWrVuzYcOGWrVpUwyGS5JGlhngzIubR4muhE7enRjafKjZ+imt0LN0dwpgXGVkjYWZ2/q7s+qF3jTzcuZCuYoRC2OqagjVFa3ewEebTzBi4W7S8ssI83blp7F9eO6WFqhlmbMQQoiGKuMQ6MrAyROatLR0NACsO72OYznHcLN3Y2z4WLP0seaAcWuaKQpgX0/vlt58OqIrGrWKVbHneGf9URSl4SaO0vPLGP5lNOsPpmGvUfHBg534v6FyCpoQwvIsmjRavnw5kydPZtq0acTFxdGlSxcGDhxIZmbmVa+vqKhgwIABJCcns2rVKk6cOMHChQsJCgqqcZs258IpKMsDO2fw71Tn3R/OPszqhNUATOkxBbXKfB+xVXHnyCmuoGljZwZ18DdbP+bWrIkLPzzbg0AXhayiCh75Ipp9F5eFm9vZnBIe+SKaT35LQFHg4cim/PJSXzo19aiT/oUQQoh669KtafVgYqpEW8LHcR8DMKbzGLycTL/C+nRWEYdTC7BTq7i7k/lP4Lqrgz8fPtgZgK//SmbetlNm77M+Onguj3s+/ZOD5/Jp7GLPsmeiGN69maXDEkIIwMJJozlz5jBmzBhGjx5N+/btWbBgAS4uLixevPiq1y9evJicnBxWr15Nnz59CA0N5dZbb6VLly41btPmVNYzCooETd0uZVUUhZkxMwEY1nwYXXy63OAZNac3KCzamQgYl+7aaSy+aK5WfNwceamDnshmnhSW6Ri1aA+/HzdvonNNfCp3z9vJ/jN5uDnZ8cmIrsx6uIucYiKEEEKAxVdu/9OSI0vILM0kqFEQI9uNNEsfa+PPA9CvlTderg5m6eOfHoxsylvD2gMwd+spFv+ZVCf91hfrDpzn4QXRZBb+XfA66h8Fr4UQwpIs9tthRUUFsbGxvPHGG1X3qdVq+vfvT3R09FWfs3btWnr16sW4ceNYs2YNPj4+jBw5kilTpqDRaGrUJkB5eTnl5eVVXxcUGLcHabVatNr6c6pVdWhSdqMG9EHdMNQi9srXfTOv/9fkXzmQdQBnO2fGdR5n1vdu89EMki+U4OFsx31d/K3u3+mftFotLnbw5WOdmfzjUf44mc2Yb/fxwQMduaeLaWf6isp1vP3LMX6OTwMgopknHz3UiaaNna3+fayumny+Re3Ie163GtL73RBeo7CQenRyWmZJJl8f+Row1ot01DiavA9FUVh7wJg0uje8bk/ffapPGAVlOuZsOcnbvxzF3dmehyKb1mkMdc1gUJi77RQfX1xddXsbHz4e0RU3qV8khKhnLJY0ys7ORq/X4+d3+alMfn5+HD9+/KrPSUxM5LfffuOxxx5jw4YNJCQk8OKLL6LVapk2bVqN2gSYMWMG06dPv+L+zZs34+JiXScV3HHid9yAvekqMv5R66kmtmzZUq3rKpQK5hbMBaCPXR/2bd9X676v57+HNICKHl4V/LFts1n7qkt/bv+NextDkbea2Gw1r6w6xK598dwSYJo9/ilF8O0pDdllKlQoDGyqcFdgNgejf+egSXqwLtX9fAvTkfe8bjWE97ukxHIHCAgbVpgBeWcAlXH1toV9sv8TSnWldPHpwsCQgWbp41BqPknZxTjZqxnQvu5PTX3pjpbkl2pZ9GcSr686QCNHOwZ1tN7yA9dTWqHnlZXxbDiUDsCYfmFMHdxO6hcJIeolq9qHYjAY8PX15csvv0Sj0RAZGUlqaiqzZs1i2rRpNW73jTfeYPLkv48sLSgoIDg4mLvuugt3d3dThF43SnOx32+cIYq89wVwqfnSVq1Wy5YtWxgwYAD29jee8Zh/cD4FhwsIdA3knaHvmGUGrFLcmTySo2Ow16h467Hb8XUzX1915Z/v9xCDwrsbjrN0z1l+TNYQFNaC8bfXvNi3waDw1V/JfLwnAZ1BIcDDiY8e6kT30MYmfiXW4WY/36L25D2vWw3p/a5cHSyESZ3ba/zbtx04WXYseDznOGsS1gDwWvfXzHbwR+XWtP7t/CyyVV2lUvF/Q9pRUKplZew5Jny/n8VPdadvK+86j8Wc0vJLGfPtPg6nFmCvUfHefZ14pHuwpcMSQohrsljSyNvbG41GQ0ZGxmX3Z2Rk4O9/9VmFgIAA7O3t0Wg0Vfe1a9eO9PR0KioqatQmgKOjI46OVyYe7O3trWuwnRRv/LtJS+w9TDMzU533ILUolW+PfQsYBzONnBqZpO9rWbzLeGLaA12bEuRl3r7q2qXv99v3daKJmxNzt57i499Pk1+mY9qwDjd9ollGQRmTV8TzV8IFAIZ0CuD9+zvh4WJFn20zsbr/4zZA3vO61RDeb1t/fcJC6snWNEVRmL13NgoKg0MHm61epN6gsO6gZbamXUqlUjHjgU4Ulev49XA6zy3dx7Jno4hoZhuTXPFn83ju231kFpbj5erAglGR9AgzfUFzIYQwJYtVD3ZwcCAyMpJt27ZV3WcwGNi2bRu9evW66nP69OlDQkICBoOh6r6TJ08SEBCAg4NDjdq0KZVFsIOj6rTbOfvmUK4vp4d/D+5sdqdZ+0rMKmLzUWNS8Nl+YWbty9JUKhUv92/N9Hs6ALAkOoVJK+LR6g03eObfth7NYNDcHfyVcAFnew0fPNiJT0d2lYSREEIIcT2XnpxmQTvO7WBP+h4c1A5MjJxotn72JF0go6AcD2d7bm3tY7Z+qsNOo2buo+H0a+VNSYWe0V/v5Xi69a8oXHvgPMO/MBa8buPnxppxfSRhJISwChY9cmry5MksXLiQJUuWcOzYMcaOHUtxcTGjR48G4IknnrisqPXYsWPJyclh4sSJnDx5kvXr1/P+++8zbty4ardp06qSRnV3ysfe9L1sTtmMWqXm9e6vm23JdKVFfyahKHBHW19a+bmZta/64sneocx7NBw7tYo18ed57tt9lFbor/ucMq2eN9cc5tlv95FboqVDoDu/TOjL8O7NzP5vJIQQQlg1vRZS44y3LXhymtagZfa+2QCMaj+KoEbmWwG07mIB7MEd/XGws/yJtI52Gr54PJKIZp7kl2p5fFEMydnFlg6rRgwGhTmbTzDh+/2U6wzc2daXVWN7EexlXXVThRANl0VrGg0fPpysrCzefPNN0tPTCQ8PZ+PGjVWFrM+cOYNa/fcPruDgYDZt2sSkSZPo3LkzQUFBTJw4kSlTplS7TZul10FqrPF2Ha000hv0fBDzAQAPtXqINl5tzNrfhaJyVsWeA+C5W5qbta/65t7wINyd7Bn7v1h+P5HF44v2sOip7jRytCMmKYfMwjJ83ZzoEeZFQmYRE77fz4mMQsBYXPHVgW1wtNPcoBchhBBCkHEYdKXg5AFNWlksjFUnV5FckIyXkxfPdnrWbP2U6/RVBZnvCQ80Wz83y8XBjq+f6sHwL6M5nl7IqEV7WPVCb/w9nCwdWrWVVOh4ZcUBfj1sfH+fv6U5rw9qKwWvhRBWxeKFsMePH8/48eOv+tj27duvuK9Xr17s3r27xm3arIzDoC0BRw/wNl/yRm/QE5cZR1ZJFkcvHOVE7gncHNwY13XcjZ9cS0t3p1CuM9C5qQdRDXA57+1tfVn6TBRPf7OXfSm53D1vB1q9QmZhedU17k52lFTo0RkUvBs58tEjXSy+zFwIIYSwKpVb04K6gdoyq24KKgr4PP5zAF7s8iJuDuZbXb3jZDb5pVr83B2JCqv5ISrm4OFiz7fP9OCRBdEkXyjh8UV7WPF8Lxq7Olg6tBtKyy/l2SX7OHLeWPD6/fs78XA3KXgthLA+Fk8aCRM5e7FgY3B3sw1wtqZsZWbMTDJKLi80fmfwnXg5mTeJU1qh59toYwHsMf1qfoqYtese6sWK53vxyBfRpOaVXfF4QZkOgA6B7ix5ugfejaz/ZDkhhBCiTlWNqSy3Ne2rg1+RV55Hc4/mPNj6QbP2tSY+FYBhnQPr5QoYXzcnlj0bxUPzozmVWcRTX8fwvzE9aWSBE96qa/+ZXJ5bGkvWxYLXXzweSffQhjfhKYSwDZbftCxMw8xFsLembGXy9slXJIwA1pxew9aUrWbpt9KPcefIKa6gaWNnBnc0zclw1qq1nxtON9hqllNcQWOX+j8LJ4QQQtQ7VSendbNM94XnWHZsGQCvdHsFO7X5kiPF5Tq2HjOO7erT1rR/atrYhWXP9sDL1YED5/J5dsleyrTXr+9oKWviUxn+5W6yLil4LQkjIYQ1k6SRrTDjrJjeoGdmzEwUlGte80HMB+gN5vnhrTcoLPozCYBn+oZhp2nYH9uYpByyisqve01afhkxSTl1FJEQQghhI4qyIDfZeDvIMkmjuXFz0Rq09AroRb+gfmbta8vRDMq0BsK8XekU5GHWvmqrpa8bS0b3oJGjHbsTcxj/XdxNnShrbgaDwuxNJ5j4QzwVOgP92/ny44u9peC1EMLqNezfvm1FQRrknwGVGoIiTd58XGbcVVcYVVJQSC9JJy4zzuR9g3FAk5RdjLuTHY/IXnAyC6/cllab64QQQghx0bm9xr992oKzZ513H58Zz6bkTahQ8Uq3V8y+Hb9ya9o9XQKtYut/p6YefPVkNxzt1Gw9lskbPx/BcO05zTpTUqHjxf/F8envCQA8f2tzvni8W73eQieEENUlSSNbULmM2q8DOJq+UGJWSZZJr7tZC3cmAjCqZwiu8sMXX7fqnRpS3euEEEIIcZEFt6YpisKsvbMAeKDVA2Y/lTanuIKdp7KB+r017Z96Nm/C/FER2KlVrDmQxk9JahTFcpmj83mlPDQ/mo1H0nHQqJn9cBfeGNyuXtaHEkKImpCkkS2o3JrW1DwFG31cqnf6VnWvuxmxKTnEpuTioFHzVO9Qk7dvjXqEeRHg4cS1hiIqIMDDiR4N8IQ5IYQQolYqT04z05jqejYmb+Rg9kGc7ZwZ39X8pwBvOJSGzqDQMcidFj6NzN6fKd3R1o+PHumCSgU7M9TM3XbaInHsP5PLPZ/+xdG0Apq4OvD9c1E8FNnUIrEIIYS5SNLIFpi5CHaEbwR+Ln6orpGmUKHC38WfCN8Ik/f95Q7jKqP7ugbi6y4rZwA0ahXThrUHuOJfpPLracPaywyXEEIIcTP0OkiNNd6u45PTyvXlzI2dC8AzHZ/B29nb7H2ujT8PwL1dgszelzncGx7EW0PbAfD5H4ksvDhmrCur9xsLXmcXldPW34014/sQGSITdkII2yNJI2unLYPz8cbbZhrgaNQapvaYetVC2JWJpCk9pqBRX/9Er5uVlF3M5qPGWkpj+jU3advWblDHAOaPisDf4/JEmr+HE/NHRTCoY4CFIhNCCCGsVOYR0JaAozt4m3dr2D8tO7qM88Xn8XPx44kOT5i9v9S8UmKSc1CpYGgX6x0zjOwRzNBmxoNY3ttwjOV7z5i9T4NBYdam47y8vLLgtR8/ju1N08ZS8FoIYZukQIy1S4sHgxZcfaFxqNm66R/Sn7ZebTmec/yy+/1c/JjSYwr9Q/qbvM9FfyaiKHBHW19a+Zm+VpO1G9QxgAHt/YlJyiGzsAxfN+OWNFlhJIQQQtRAZRHsoEhQ19286oXSCyw8tBCAiRETcbZzNnufvxwwrjLqEepFgIf5+zOnAUEKAc1CWfhnMm/8dAg3J3vu7mSeRFhxuY7JK+LZdMQ4qTn2tha8dlcb1DL2EkLYMEkaWbuqrWk9wIynXqQWpXIi5wQAM/rOQK1S4+PiQ4RvhMlXGAFcKCpn5b5zgKwyuh6NWkWvFk0sHYYQQghh/c5eTBrV8da0+QfmU6wtpn2T9gxpPqRO+lxTuTUt3Dq3pv3Ta3e1oqjCwPcxZ5j4w35cHe24tbVpa22m5pXy7JJ9HEsrwEGjZuaDnXggQuoXCSFsnySNrF1lEWwz1TOq9OPJH1FQiAqIYmiLoWbtC2Dp7hTKdQY6BXnQs7nsDxdCCCGEmVWdnNa9zro8nXealSdXAvBat9dQq8y/wikhs5CjaQXYa1QM7uhv9v7qgkql4t37OlJYpuWXg2k8v3Qfy56JoluoacaQsSm5PL80luyicrwbOfDF45FSv0gI0WBITSNrpihmL4INoDVo+TnhZwAebv2w2fqpVKbV8210CgDP3dIclRlXUAkhhBBCUHwBci4WUm7arc66/WjfRxgUA3c2u5Nu/nXTb2UB7Fta+dDY1aFO+qwLGrWKOY+Ec1sbH8q0BkZ/s5cj5/Nr3e7P+88x4mLB63YB7qweJwWvhRANiySNrFluEhRngcYBArqYrZs/zv5Bdmk2Xk5e3BF8h9n6qfRj3DlyiisI8nS2mRkwIYQQQtRjlfWMvFuDc+M66XLX+V3sTN2JncqOSZGT6qRPRVFYc7Ge0T3hgXXSZ11ysFMz/7FIeoR6UVim48nFMSRmFdWoLYNB4YONx5m0/AAVegN3tfdj1Qu9pOC1EKLBkaSRNavcmhYQDvbmO46+ctn0/S3vx15jb7Z+APQGha92JgHwTN8w7DTyERVCCCGEmdXx1jS9Qc/sfbMBeLTto4S4h9RJvwfO5ZNyoQRnew0D2vvVSZ91zdlBw1dPdaNDoDvZRRU8viiG83mlN9VGcbmO55fFMn/7aQBevK0FC0ZF4uoolT2EEA2P/EZuzS4tgm0m54rOsev8LgAebP2g2fqptPVYBknZxbg72TG8e7DZ+xNCCCGEqFppVEdJo9UJqzmVewp3B3de6PJCnfQJsCY+FYAB7f1wcbDdBIi7kz1Lnu5Bc29XUvNKGbVoDxeKyqv13HO5JTw4fxdbjmbgYKfmv8O78PqgtnJCmhCiwZKkkTWrOuXDfPWMKmsZ9Q7sTbCb+ZM4C3cY6wmM6hkiszlCCCGEMD+DHlLjjLfr4OS0Ym0xn8Z/CsALXV7Aw9HD7H2CcTX3LwfTALjXBrem/ZN3I0eWPRtFkKcziVnFPLE4hoIy7XWfE5uSw32f/cXx9EK8Gznyw3M9ub+rnJAmhGjYJGlkrcoKIPOI8baZBjg6RceaxDVA3RTAjk3JZV9KLvYaFU/1DjV7f0IIIYS1+uyzzwgNDcXJyYmoqChiYmKue31eXh7jxo0jICAAR0dHWrduzYYNG2rVps3IPAoVReDgBj5tzdKF3qBnb/peNiRu4N3d75Jdmk0zt2Y82uZRs/R3NbsTL5BVWI6niz39Wpn2OPr6KtDTmaXP9MC7kQNHzhfw7Df7KK3QozcoRJ++wJr4VKJPX0BvUPgx9hwjvtxDdlEF7QLcWTO+DxHN6qa+lRBC1GeylMNapcaCYgDPZuBmnmLRx7XHySnLwdvZm1uDbzVLH5eqXGV0X3gQvu7mq9EkhBBCWLPly5czefJkFixYQFRUFHPnzmXgwIGcOHECX1/fK66vqKhgwIAB+Pr6smrVKoKCgkhJScHT07PGbdqUyq1pQRGg1pi8+a0pW5kZM5OMkozL7r+z2Z1mrxV5qcqtaXd3CsDBruHMGzf3acSSp3vw6Je7iUnO4eEFu8guqiC9oKzqGlcHDcUVegAGdvBjziPhsuJdCCEuajg/MWxNZRFsM25Ni6kw9nF/y/uxV5t3UJOcXcymo+kAjLmluVn7EkIIIazZnDlzGDNmDKNHj6Z9+/YsWLAAFxcXFi9efNXrFy9eTE5ODqtXr6ZPnz6EhoZy66230qVLlxq3aVOqtvubfuX2iXv71wAARLdJREFU1pStTN4++YqEEcA3R75ha8pWk/d5NeU6Pb8eNo6z7uli+1vT/qlDoAdfP9Ude42Kw+cLLksYAVUJo8Ed/Zn/mBS8FkKIS8l3RGtVVQTbPEmjM4VnSNQlokLFQ60fMksfl/rqz0QUBW5v40NrPzez9yeEEEJYo4qKCmJjY3njjTeq7lOr1fTv35/o6OirPmft2rX06tWLcePGsWbNGnx8fBg5ciRTpkxBo9HUqE2A8vJyysv/Li5cUFAAgFarRau9fu2Y+sTu7B5UgM6/K0ot46583VqtFr1Bz4yYGSgo17x+ZsxM+vr3RWOGFU6X2nY0k8IyHX7ujnQNcrOqf5/rufT9vpGOAY1o5GhHbsm1r40/m0uFVotGil5f1c2836L25P2uew3pPb+Z1yhJI2tkMPy9lNpM9YyqCmAH9CawkXlnpC4UlbNy3zlAVhkJIYQQ15OdnY1er8fP7/Lj0v38/Dh+/PhVn5OYmMhvv/3GY489xoYNG0hISODFF19Eq9Uybdq0GrUJMGPGDKZPn37F/Zs3b8bFxaUGr67u2esKuTvHeKz65mO5aE9tuMEzqmfLli0kahPJLMm85jUKChklGcxfN5/m9uYd/3x9Ug2o6eBaysaNv5q1L0vYsmXLDa85la8it+T6ybm0/HI+Xb6RVh7XTvSJ6r3fwnTk/a57DeE9Lykpqfa1kjSyRlnHobwA7F3Bt4PJm9fqtaxNXAvAg60eNHn7/7Rs9xnKdQY6BXnQq3kTs/cnhBBCNCQGgwFfX1++/PJLNBoNkZGRpKamMmvWLKZNm1bjdt944w0mT55c9XVBQQHBwcHcdddduLu7myJ0s1MlbIFDoHi1YMA9w2vdnlarZcuWLQwYMIBtqdtg142f07JLSwaFDqp139dSWKbj9b3bAQMT7utNh0Dr+Lepjkvfb3v765dSWHcwDY4eumGbzTuEc3fnAFOFaFNu5v0WtSfvd91rSO955erg6pCkkTWq3JrWNBI0pv8n3HZmG7nlubir3Okb2Nfk7V+qTKvn2+hkwLjKSKWS5cBCCCHEtXh7e6PRaMjIuLxGTkZGBv7+Vz8YIyAgAHt7ezSav1dZtGvXjvT0dCoqKmrUJoCjoyOOjo5X3G9vb289g+20OABUwT1MGrO9vT3+1TyoxN/N36zv1/ZDGZTrDDT3caVLMy+bHGtV5zMX4OlarbYCPF2t5/NrIVb1f9wGyPtd9xrCe34zr08KYVsjMxfBXnlyJQCRDpHYqc2bV/wx7hwXiisI8nTm7o7mOQVOCCGEsBUODg5ERkaybdu2qvsMBgPbtm2jV69eV31Onz59SEhIwGAwVN138uRJAgICcHBwqFGbNqNyu3/T7iZvOsI3Aj8Xv2s+rkKFv4s/Eb4RJu/7UmvizwNwb5cgm0wYVVePMC8CPJy41jugAgI8nOgR5lWXYQkhRL0nSSNrZMYi2Mn5ycSkx6BWqYl0jDR5+5cyGBS+2pkEwNN9w7DTyMdRCCGEuJHJkyezcOFClixZwrFjxxg7dizFxcWMHj0agCeeeOKyotZjx44lJyeHiRMncvLkSdavX8/777/PuHHjqt2mTTLo4Vys8bYZakRq1Bqm9ph61cdUF1MXU3pMMWsR7AtF5fyZkA3APeEN79S0S2nUKqYNaw9wReKo8utpw9pLEWwhhPgH2Z5mbYqz4WLBRpp2M3nzq06uAqBPQB88SzxN3v6lth7LICm7GHcnO4Z3DzZrX0IIIYStGD58OFlZWbz55pukp6cTHh7Oxo0bqwpZnzlzBrX674mY4OBgNm3axKRJk+jcuTNBQUFMnDiRKVOmVLtNm5R1AioKjTUifdqZpQtPR8+r3u/n4seUHlPoH9LfLP1W2nAoDb1BoXNTD8K8q7c9y5YN6hjA/FERTF93lLT8sqr7/T2cmDasPYM6Si0jIYT4J0kaWZvKrWk+bcG5sUmbLteXs+b0GsBYALvoQJFJ2/+nL3ckAvBYzxAaOcpHUQghhKiu8ePHM378+Ks+tn379ivu69WrF7t3765xmzbp3MUxVVCEWWpEAiw4uACAh1o9xN3N7yarJAsfFx8ifCPMusKoUuXWtHu6NOxVRpca1DGAAe39iUnKIbOwDF8345Y0WWEkhBBXJ7+pW5vKAY4ZllFvTdlKXnke/q7+9Anow6YDm0zeR6XYlFz2peRir1HxVO9Qs/UjhBBCCHFVZy/WMzLDmApgf+Z+9qTtwU5tx5jOYwhsVLeJm7M5JexLyUWlgmGSNLqMRq2iVws5sVcIIapDishYGzMWwa4sgP1AqwfMPvv11U7jKqP7woPwc3cya19CCCGEEFcwYxFsgAUHjKuM7m1xb50njADWHTSuMuoZ1kTGWkIIIWpMkkbWRK+F1IsFG5uadlYsMS+R2IxYNCoND7R8wKRt/1NydjEbj6QDMOaW5mbtSwghhBDiCqW5kH3CeNsMSaOD2QfZdX4XdirjKiNLWFt5aloDL4AthBCidiRpZE3SD4KuzFjLqElLkzZducrolqa34Odq3qKXi/5MQlHgtjY+tPZzM2tfQgghhBBXqDw1zas5uHqbvPkvD30JwLAWwwhqFGTy9m/kRHohx9MLsdeoGCzFnYUQQtSCJI2sSeXWtKY9QG26f7oyXRlrT68F4OHWD5us3avJKa5gZexZAJ6TVUZCCCGEsAQzbk07pzvHrrRdaFQaxnSy0CqjA6kA3NbGFw8Xe4vEIIQQwjZI0sianN1j/NvEBRu3pGyhoKKAQNdAegf2Nmnb/7Q0OoUyrYGOQe70ai4FCIUQQghhAZUHi5ghafR72e8ADGk+hGD3YJO3fyOKorD2gJyaJoQQwjQkaWRNzFQEu3Jr2oOtHzRrAewyrZ5vo5MBGNOvOSqVHG0qhBBCiDpmMPy9Pc3EE3FHc45yQncCtUrNc52fM2nb1bX/bB5nc0pxcdDQv515Sw4IIYSwfZI0shb556AgFVQaCIowWbMJuQnsz9yPncqO+1veb7J2r+anuFQuFFcQ5OnM3Z1kf70QQgghLCD7JJTng70L+HYwadMLDy0EYHDIYELcQ0zadnVVFsAe2MEfZwfznoYrhBDC9knSyFpUbk3z7wQOriZrtnKV0W3Bt+Hj4mOydv/JYFD4amciAE/3DcNeIx89IYQQQlhA5da0wAjQ2Jms2WMXjvFH6h+oUPFMx2dM1u7N0OkN/HJQtqYJIYQwHfnN3VqYYWtaqa6UdafXAeYvgL31WAaJ2cW4OdkxvHvd7+8XQgghhAAuGVOZtp7RFwe/AKCTfSdC3UNN2nZ1RSdeILuogsYu9vRtZfpT4YQQQjQ8kjSyFmYogr0peROF2kKCGgXRM7Cnydq9moUXVxk9FhVCI0fTzeoJIYQQQtyUc/uMf5uwCPaJnBNsO7MNFSpuc7rNZO3erDUXt6YN6Rwgq7qFEEKYhPw0sQYVJZB+yHjbhCuNKremPdT6IdQq830U4s7ksjc5F3uNitF9Qs3WjxBCCCHEdZXlQ9Zx4+2mppuIq1xlNKDZAHw1viZr92aUafVsOpwOwD1dgiwSgxBCCNsjSSNrcH4/GHTgFggeTU3S5ImcExzMOoidyo77Wt5nkjavZeEO4yqje8OD8HN3MmtfQgghhBDXdG4foEDjUGhkmlqOp3JPsSVlCypUjOk4xiRt1sT2E5kUlusI9HCiW0hji8UhhBDCtkjSyBpcujXNRMfUV64yur3Z7Xg7m2/Pe8qFYjYeMc56jenX3Gz9CCGEEELckBm2plWtMgoZQAvPFiZr92ZVbk0bFh6IWm2a8aIQQgghSSNrUFWw0TTLqEu0JaxPXA+YvwD2oj+TUBS4rY0PbfzdzNqXEEIIIcR1VZ6cZqKtaafzTrM5eTMAz3d53iRt1kRBmZZtxzMBuFe2pgkhhDAhSRrVd4pyyUoj09Qz2pi8kSJtEcFuwUQFmK5G0j/lFFewYt9ZAJ6TVUZCCCGEsCSDAc7tNd5u2s0kTX5x8AsUFPo360/rxq1N0mZNbDqcToXOQEvfRrQLkEk6IYQQpiNJo/ruwmkozQGNI/h3NkmTK0/UTQHsZbtTKNMa6BDoTq8WTczWjxBCCCHEDV1IMBbCtnMG/061bi4xP5GNSRsBy64yAlh7wLg17d4ugahMVMpACCGEAEka1X+Vq4yCIsDOodbNHbtwjMMXDmOntuPeFvfWur1rKdPqWbIrGYDnbmkuAxghhBBCWFbl1rTArqCxr3VzXx78EgWF24Nvp61X21q3V1NZheX8lZANwD3hgRaLQwghhG2SpFF9d2kRbBOoLIDdv1l/mjibb/XPz/tTuVBcQZCnM3d3CjBbP0IIIYQQ1VJZI9IEW9OS85P5NelXAF7o8kKt26uN9QfPY1CgS7AnIU1cLRqLEEII2yNJo/quqgh27WsPFWuL66QAtsGgsHBnIgCj+4Rir5GPmRBCCCEsrPLkNBNMxC08tBCDYuC2prfRvkn7WrdXG5duTRNCCCFMTX6br89K8yDrmPG2CU752JC0gRJdCaHuoXT3N91Rs/+07XgmiVnFuDnZ8WiPZmbrRwghhBCiWsoKIPOo8XbT2o2BzhScqZqEs/QqozMXSog7k4daBUM7y8puIYQQpidJo/qsckbMqzk08ql1c5cWwDZnjaGFO4yrjB6LCqGRo53Z+hFCCCGEqJbUWEABj2bg5l+rphYeWohe0dMvqB8dvDuYJr4aWnfQuMqodwtvfN2dLBqLEEII2yRJo/qsqp5R7bemHck+wrGcY9ir7bmnxT21bu9a9p/JJSY5B3uNiqd6h5qtHyGEEEKIaqvamla7VUZnC8+y7vQ6wPKrjADWxKcCcI9sTRNCCGEmkjSqzypP+TDB3vvKAtgDQgbQ2Klxrdu7lspaRvd0CcLfQ2a8hBBCCFEPVI6parndf9GhRegVPX0C+9DZp7MJAqu54+kFnMwowkGjZmDH2q2eEkIIIa5Fkkb1lUF/yaxY7VYaFVUUsSFpA2DeAtgpF4rZeDgdgOduaW62foQQQgghqk1R4Nxe4+1a1DNKLUplTcIaoL6sMjJuTbu9rQ8ezvYWjkYIIYStkqRRfZV5FCqKwMENfNrWqqkNSRso1ZXS3KM5kX6RJgrwSov+TMKgwK2tfWjj72a2foQQQgghqu3CaSjNBTsn8O9U42a+OvQVOkVHz4CehPuGmy6+GlAUhbUXk0b3dAmyaCxCCCFsmySN6qvKekZNu4FaU+NmFEWp2ppmzgLYucUVrNh3FpBVRkIIIYSoRyq3pgWEg51DjZpIK0pjdcJqAMZ2GWuauGoh7kwuqXmluDpouLOdr6XDEUIIYcMkaVRfna2sZ1S7rWmHsw9zPOc4DmoHsxbAXrY7hTKtgfYB7vRu0cRs/QghhBBC3JTKMVXTbjVuYtHhRegMOqL8o4jwizBRYDVXuTVtYEd/nOxrPrkohBBC3IgkjeqrqpPTalewsXKV0cDQgXg4etQ2qqsq0+pZEp0MwPO3NjfbaiYhhBBCiJtWVSOyZmOq9OJ0fjr1EwDPd3neVFHVmFZvYP3BNEBOTRNCCGF+kjSqjwozIDcZUNVqVqywopCNyRv5//buPD7K6u7//2tmspMdyMYSwr6GnRjcWkEIIqCoRaV1abVfrTzUUtsb+7Mg1Vu9q1XbflVcbgG/KioiKFaRRcGqyL6DkS2sWYCQfZ85vz+GjIRJIIHMAnk/H488yHVd55r5zCGR4+c653MAbunhuQLYCzcd4XhJFUlRIVzXL9Fj7yMiIiLSJJXFkLfD+f157pz25vY3qXZUMyR+CEMTzr+QdnP5ds9xTpRW0bpVEJd3bePrcERE5BKnpJE/ql17H9cbQs5/dtCn+z6lvKacrtFdGdB2QPPEdgaHw/D6f/YB8OsrUgi06UdKRERE/MSRjWAcENkeIpv+YCuvLI8FPy4A/KOWEcAnW5xL08amJmrcJSIiHqd/afxRMyxN81YB7C9/yGPfsVIiQgK4dVhHj7yHiIiIyHk5vM75Z4fzmyH05vY3qXJUMShukF/MMqqotvPF9hwAJgzQ0jQREfE8JY38UTMUwd5ybAu7T+4mxBbCuC7jmikwd6997ZxldHtaR8KDAzz2PiIiIiJNVps0Oo+lacfKjvHhjx8CcF//+/yiZuOKXXmUVtlpFx3KoI4xvg5HRERaACWN/E1NJRzd5Pz+AmYanV4AOzIosjkic7Pp4EnWZuUTaLNw9/AUj7yHiIiIyHkx5rSkUdNnCc3eMZtKeyUD2g7gssTLmjm48/PJliMAjB+Q5BdJLBERufRpaoi/yd4C9ioIawOxnc/rJQorC/ki6wug+Qtg2x2GtfvzySuuYN6agwCM79+OhKiQZn0fERERkQuSvw/KToAtCBJTm3Tr8fLjzM90PoDzl1lGheXVfPXDMUBL00RExHuUNPI3py9NO88Byqf7PqXSXkn3mO6ktmnaIOlslmzPZubinWQXVtQ53yspotneQ0RERKRZ1M4yShwAAcFNunXujrlU2CtIbZPK8KThzR/befhiew5Vdgfd48PpmeCZWeQiIiJn0vI0f3OBRbCNMa4nY81ZAHvJ9mzuf3ujW8II4L8/3cWS7dnN8j4iIiIizaL2QVwTl6adKD/B+5nvA/4zywjg41NL0yYMaOfjSEREpCVR0sifGHPBSaNNeZvYW7iX0IBQru98fbOEZXcYZi7eiTlLm5mLd2J3nK2FiIiIiBed585pc3fOpbymnD6t+3BFuys8EFjT5RVVsHrvCQDG99fSNBER8R4ljfxJwUEoyQVrACQNPK+XqC2AndEpg4ig5lk2tnZ/fr0zjGoZILuwgrX785vl/UREREQuSFUp5O5wft+EndNOVpzkvR/eA+D+/vf7zSyjT7dm4zAwqGM0HWLDfB2OiIi0IH6RNHrppZfo1KkTISEhpKWlsXbt2gbbzpkzB4vFUucrJKRuEea77rrLrU1GRoanP8aFq51GndgfAkObfHtBRQFLs5YCcEv35iuAnVfUcMKoTrvixrUTERER8agjG8HYISIJohq/nOutnW9RXlNOr9heXNX+Kg8G2DQfbzkKaJaRiIh4n88LYb///vtMnTqVWbNmkZaWxosvvsjo0aPJzMwkLi6u3nsiIyPJzMx0Hdf3FCgjI4PZs2e7joODm1YA0SdcS9PSzuv2T/Z+QpWjip6xPenbpu8Fh1NWA3NXH2DO6gONah8XoR3URERExA+cx9K0wspC3t31LuBftYwOnChly6ECrBYYm6qkkYiIeJfPk0bPP/889957L3fffTcAs2bN4t///jdvvvkm06ZNq/cei8VCQkLCWV83ODj4nG38zgXUMzLGuJam3dL9lvMe6Bhj2HjwJG+vzuLTLTaqTeY577EACVEhDEuJPa/3FBEREWlWtUmjJixNe2vnW5TVlNEjpgc/7/BzDwXWdJ9sds4yurxrG9pGXAQPQUVE5JLi06RRVVUVGzZs4NFHH3Wds1qtjBw5ktWrVzd4X0lJCcnJyTgcDgYNGsRTTz1Fnz596rRZuXIlcXFxxMTEcM011/Dkk0/SunXrel+vsrKSyspK13FRUREA1dXVVFdXX8hHbLyqEgJyt2MBqhMGQRPfd0PuBrKKsggNCOXaDtc2Oe6i8moWbcnm/XWH+TGv5NRZC93iWnHb0A5EBAfwp4+2A9QpiF2bmvr/xvTAYa/BYW/S28optX9fXvt5a+HU396nPveultTfLeEzShMZ0+Sd0/x1lpExhkWbnbumaWmaiIj4gk+TRsePH8dutxMfH1/nfHx8PD/88EO99/To0YM333yT1NRUCgsLee655xg+fDg7duygffv2gHNp2sSJE0lJSWHv3r38+c9/ZsyYMaxevRqbzeb2mk8//TQzZ850O7906VLCwrxTbLBN8U4uNw7KAluz7JvNwOYm3f9B6QcA9LH24etlXzfqHmMgqwS+y7Wy6YSFaodzgBRoNQxsbRge76BTeCGW/EIA7u5u4aMsKwVVPw2kooIMEzs5sB/YwGeNW8UmZ7Fs2TJfh9CiqL+9T33uXS2hv8vKynwdgvibk1lQdhysgc46kY3wzq53KKkuoVtMN67peI1n42uCndlF7D1WSlCAldF9L7IZ9CIicknw+fK0pkpPTyc9Pd11PHz4cHr16sWrr77KE088AcCtt97qut6vXz9SU1Pp0qULK1euZMSIEW6v+eijjzJ16lTXcVFRER06dGDUqFFERkZ68NP8xPrNLtgDId2u4rrrrmvSvScrTjJzkTPp9fA1D9M7tvdZ2xeVV/PxlmzeX3+YzNwS1/nuceHcOrQ9E/onEhrg/J+Na6+9lsDAQACuA/7kMKw/cJK84kriIoIZkhyDzeofT+MuZtXV1W79LZ6j/vY+9bl3taT+rp0dLOJSuzQtsT8EnrveYlFVEW/vfBuA+1Lvw2rxi31iAPjkVAHsET3jiAy5tH+XRUTEP/k0adSmTRtsNhu5ubl1zufm5ja6HlFgYCADBw5kz549Dbbp3Lkzbdq0Yc+ePfUmjYKDg+stlB0YGOi9wfaR9QBYk9OxNvE9P8v8jGpHNb1b96Z/fP1P1Jy1igqYt/Ygn249SkW1A4DgACvXpyZxe1pHBnWMdk3Hrp3uf2YfBAJXdI93e31pHl79mRP1tw+oz72rJfT3pf755Dw0cWnaO7veobi6mK7RXRmZPNKDgTWNw2FYfKqe0YQBWpomIiK+4dOkUVBQEIMHD2bFihXccMMNADgcDlasWMGUKVMa9Rp2u51t27addXbO4cOHOXHiBImJic0RdvNzOODwqQFOE4tgG2P4cPeHgLMA9pkKy6tZtOkI89Ye5IecYtf57vHh3D6sIzcObE9UmAbcIiIicolows5pJVUl/L+d/w+A/5P6f/xqltH6Ayc5WlhBRHAAP+tR/47CIiIinubz5WlTp07lzjvvZMiQIQwbNowXX3yR0tJS125qd9xxB+3atePpp58G4K9//SuXXXYZXbt2paCggGeffZYDBw5wzz33AM4i2TNnzuSmm24iISGBvXv38qc//YmuXbsyevRon33OszqxGyoKITAM4vs26da1OWs5UHSAVoGtuC7FmTgzxrDpUAHvrnGfVTQ2NZHJaR0Z1DHGb4o8ioiIiDSLqjLIdW7c0Zid09794V2Kq4rpHNWZa5Ov9XBwTfPxqQLYo/smEBLoXpNTRETEG3yeNJo0aRLHjh1j+vTp5OTkMGDAAJYsWeIqjn3w4EGs1p+e+pw8eZJ7772XnJwcYmJiGDx4MN999x29ezvr+NhsNrZu3crcuXMpKCggKSmJUaNG8cQTT9S7BM0vHFrj/LPdYLA1bdbP/B/nAzA2ZSw19kDeWp/Fu2vqzirqFhfO7WkdmahZRSIiInIpO7oJHDUQngBR7c/atLS6lLd2vgXAb1N/i83qP4mZaruDz7ZlA1qaJiIivuXzpBHAlClTGlyOtnLlyjrHL7zwAi+88EKDrxUaGsoXX3zRnOF5Xm3SqJFr72udKD/BioMrADh8sD/DPlvumlUUFGDl+n6J3J7WkcHJmlUkIiIiLcDpS9POMfaZ98M8CisL6RTZiYxOGV4IrvG+2X2ck2XVtAkPIr1za1+HIyIiLZhfJI1avNqCjR3SGn1LUUU1M76cTY2jBnt5B77YZQMcdI1z1iqaOKgd0WFBnolXRERExB/VJo3OsTStrLqMuTvmAv43ywh+Wpp2fWoSATb/qbMkIiItj5JGvlaWD8d/dH5/jplGxhi2HC7k3TUHWLzlCNaOi7EGgaPoMiYObMdtaR0ZollFIiIi0hIZc1rS6Oxjqvcy36OgsoCOER0ZkzLGC8E1XnmVnaU7nTsLj9fSNBER8TEljXytdnDTuhu0qn/6cVFFNR9vPsq7aw6yK7sIAFur3YQF5RNkDWPpfQ+RGBnlrYhFRERE/E/BQSjJBWsAJA1osNmZs4wCrP41HF6+K5eyKjsdYkMZ2CHa1+GIiEgL51//SrZEtfWMzliaVjuraN6ag3yy5Sjl1XbAWatobL9EToZ/zobjMLHbeCWMRERERGofxCWkQmBog83m/zif/Ip82oe3Z2znsV4KrvE+3nwUgPH9kzR7XEREfE5JIy+xOwxr9+eTV1xBXEQIw1JisVktp9Uzcq69L66oZtHmo8xbc5Cdp2YVAXRp24rb05KZOLAddmsR187/FoBbetzi9c8iIiIi4ncasTStvKacN7e/CfjnLKOCsipW/ZgHwIQB7XwcjYiIiJJGXrFkezYzF+8ku7DCdS4xKoTHx3Zj9JENAPwQ2Is5C7byyZajlFX9NKvour4J3J6WzNBOP9Uqen3rQmpMDf3b9qd7THfvfyARERERf3PGg7j6fPjjh+RX5NMuvB3Xd7neS4E13pLtOVTbDT0TIugeH+HrcERERJQ08rQl27O5/+2NmDPO5xRW8H/nfczo4DJKLK0Y824uBufuGJ3btuL2YR25aVB7YlrV3QHNYRws2L0AgFu6a5aRiIiICNXlkLPV+X0DM40qaipcs4zu6XcPgdZAb0XXaK6laSqALSIifkJJIw+yOwwzF+90SxgBGGCQdTcA62q6EmgLYEy/BG4f1pFhKbENrmFffXQ1R0qOEBEUwehOoz0XvIiIiMjFInsLOGqgVRxEd6y3yYLdCzhefpzEVolM6DLBywGeW05hBd/vPwHAuFQljURExD8oaeRBa/fn11mSdqbapJG93VC+/9UIYs+YVVSf+T/OB2B8l/GEBIQ0T6AiIiIiF7PTl6bV8+Ct0l7Jm9tOm2Vk879ZRp9uPYoxMCQ5hg6xYb4OR0REBODUeijxiLzihhNGAIOtPwIQ2mV4oxJGeWV5rDy0EtDSNBERERGXw6eSRu2H1Hv5o90fkVeeR3xYPDd0vcF7cTXBJ1u0NE1ERPyPkkYeFBfR8EygePJpbzmO3VgI6NDwLh+nW7h7IXZjZ1DcILpEd2muMEVEREQuXsbAodqd09yLYFfZq/jfbf8LOGcZBdnO/aDO2/YdK2Hr4UJsVgvX9Uv0dTgiIiIuShp50LCUWBKjQqivOlHt0rS91k4M6d7hnK9ld9hdBbBv7n5zc4YpIiIicvEqPAwlOWCxQdJAt8uL9iwityyXuLA4Jnab6IMAz612ltEVXdvQJjzYx9GIiIj8REkjD7JZLcwY1xvALXFUuzQtuHM6Nmv9Ra9P9+3Rb8kuzSYyKJJRnUY1d6giIiIiF6fapWkJfSGobi2gans1b2x7A4Bf9/21X84yMsa4kkYTtDRNRET8jJJGHpbRN5FXfjmIhKi6S9UuC9wDQHL/nzfqdU4vgB1s0xMoEREREQAOr3f+Wc/StI/3fkx2aTZtQ9v67UztHUeL2HeslOAAK6P6JPg6HBERkTq0e5oXZPRN5NreCazdn09ecQUJodDn/SwwOHf5OIec0hy+Pvw1oALYIiIiInWcvnPaaaoddWcZ+etDt483HwFgZK94woM1NBcREf+if5m8xGa1kN6ltfPgwGpwVEN4PEQnn/PehbsX4jAOBscPpnN0Zw9HKiIiInKRqK6A7C3O78/YOW3x3sUcKTlC65DWfjvLyOEwLN6SDWjXNBER8U9KGvnCoTXOPzsMA8vZ6xnVOGpcBbA1y0hERERaErvDuGZqx0WEMCwltm4tyJytzgdxYW0gJsV1utpRzWtbXwPg7r53ExLQ8I62vrQ2K5+cogoiQgL4WY+2vg5HRETEjZJGvuCaRp12zqbfHPmG3LJcooOjuTb5Wg8HJiIiIuIflmzPZubinWQXVrjOJUaFMGNcbzL6ntqW/vSlaac9iPv3vn9zpOQIsSGx/KLHL7wZdpN8vNlZAHtM3wSCA2w+jkZERMSdCmF7mzGnzTQ6d9KotgD2hC4T/HLHDxEREZHmtmR7Nve/vbFOwgggp7CC+9/eyJLtziVdrp3TTluaVuOocc0yuqvPXYQGhHol5qaqqnHw2Tbn55gwoJ2PoxEREamfkkbelr8Pyo6DLQgS+5+1aXZJNt8c+QbAb9fii4iIiDQnu8Mwc/FOTD3Xas/NXLwTu8PUu3Pa5/s/51DxIWKCY5jUY5LH4z1f/9l9jMLyatpGBHNZ59a+DkdERKReShp52+F1zj+TBkLA2XfxWLB7AQ7jYFjCMDpFdfJ8bCIiIiI+tnZ/vtsMo9MZILuwgs3bd0DREbBYod0gAOwOu2uW0Z197iQsMMwbIZ+X2qVp16cm1q3TJCIi4keUNPIWhx32/wc2v+s8PmOHjzPVOGpYuHshoALYIiIi0nLkFTecMDrd8mWLASiP7UWNzbkE7fOsz8kqyiIqOIpbe97qsRgvVFlVDct25gJamiYiIv5NhbC9YecnsOS/oOjoT+c2z4MOl0Hv8fXesurwKvLK84gNiWVExxFeClRERETEt+IiGrfTWezJrRAAH+Ym8szMpQxMjuJAyP8FYHLPX9EqsJUnw7wgy3bmUl5tJ7l1GP3bR/k6HBERkQZpppGn7fwEPrijbsIIoPyk8/zOT+q9zVUAu+sEAm2Bno5SRERExC8MS4klMSqEhhZsWYDW4UFcH3sYgF0BPSmtsvN97lcU1BzB2EN5fkFbJr78LU9/vovlO3MpKKvyWvyN8cmppWnj+ydhsWhpmoiI+C/NNPIkh905w6jBUo4WWDINeo4F60/brB4pOcJ3R74D4OZuKoAtIiIiLYfNamHGuN7c//ZGLNQdRdWmV54a153ET34A4MkH7mZydRseWPUSJ6ogqPRnlFQHs/FgARsPFvAq+wDoER/B0JQYhnaKPZWY8s2uaidLq1j14zEAJgxI8kkMIiIijaWkkScd+M59hlEdxlnA8cB3kHKl6+yCHxdgMFyWeBkdIzt6Pk4RERERP5LRN5FXfjmImYt31imKnRAVwoxxvRkdfQTsVRDWGmubLhw+sJQTVYeICIxgyW8fo6AkgHVZ+azLymdtVj77jpWSmVtMZm4xb39/EID2MaEM6xTLkE6xDEuJoUvbcK/M+vlsezY1DkPvxEi6xkV4/P1EREQuhJJGnlSS2+R21Y5qFu5RAWwRERFp2TL6JnJt7wTW7s8nr7iCuIgQhqXEOncaW+0cK9F+KA4Ms7bMAuCXvX9JZHAkkcHQsXUYNw1uD8DxkkrWZ+Wzdv9J1mXls+NoIYdPlnP45BE+2nQEgNhWQQxJjmFYSixDO8XSJymSAFvzV3JwLU3TLCMREbkIKGnkSeHxTW638tBKjpcfp3VIa37e8eeeiUtEREQuai+99BLPPvssOTk59O/fn3/9618MGzas3rZz5szh7rvvrnMuODiYioqfZvDcddddzJ07t06b0aNHs2TJkuYPvglsVgvpXVq7Xzi81vln+yF8efBL9hTsITwwnMm9Jtf7Om3Cg8nom0hG30QASipr2HjgpDORlJXPpoMF5JdWsXRnLktP7WoWFmRjYMdo53K2TrEM7BhDaJCt3tdvrKMF5azNygdgXH8ljURExP8paeRJycMhMgmKsqm/rpHFeT15uOvM/ExnAewbu91IoFUFsEVERKSu999/n6lTpzJr1izS0tJ48cUXGT16NJmZmcTFxdV7T2RkJJmZma7j+pZhZWRkMHv2bNdxcHBw8wffXA6vB8DRbgiztrwEwORek4kKbtxOZOHBAVzVvS1XdW8LQFWNg21HCp1L2vY7l7UVVdTw7Z4TfLvnBAABVgt920W5ZiINSY4hplVQo97P7jCs3Z/Pe+sOYgwMTY6hXbRvaiqJiIg0hZJGnmS1Qcb/OHdJa6iUY8YzriLYh4oOsTp7NRYs3NTtJm9HKyIiIheB559/nnvvvdc1e2jWrFn8+9//5s0332TatGn13mOxWEhISDjr6wYHB5+zjV8oyobCQ2Cx8hWlZJ7MpFVgK37V+1fn/ZJBAVYGJ8cwODmG+67ugsNh+DGv+FQCybmkLbuwgs2HCth8qIDXvnYW1+4WF87QFOdMpKEpscS1ch9aL9me7VabKTO3mCXbs10zn0RERPyVkkae1ns8/OIt5y5qpxfFjkxyJox6j3ed+nD3hwAMTxpO+4j23o5URERE/FxVVRUbNmzg0UcfdZ2zWq2MHDmS1atXN3hfSUkJycnJOBwOBg0axFNPPUWfPn3qtFm5ciVxcXHExMRwzTXX8OSTT9K6dT1Lw06prKyksrLSdVxUVARAdXU11dXV5/sRz8lyYDUBgKNtT2btcC6pm9R9EmHWsGZ93y6tQ+nSuh23DmmHMYYjBRWsP3CS9QdOsi6rgH3HS9mdV8LuvBLeXeMsrp0YFUxSoJX877NIS2nD3mMlPPj+Vrf55kUVNdz/9kb+dWt/RvdpZDkDcVP79+3Jnzf5ifrbu9Tf3teS+rwpn1FJI2/oPR56jnXuklaS66xhlDzcNcMIoNpezaI9iwAVwBYREZH6HT9+HLvdTnx83URDfHw8P/zwQ7339OjRgzfffJPU1FQKCwt57rnnGD58ODt27KB9e+dDqoyMDCZOnEhKSgp79+7lz3/+M2PGjGH16tXYbPXX8Xn66aeZOXOm2/mlS5cSFhZ2gZ+0Yb2PfEA3YL4lnB9O/kAQQSQcSuCzI5957D1rBQHDA2F4NyjpBHuLLOwrtrCvyMLhUsgurCQbKxv+/SPwIxbMqYSR+3JAg+GxjzZTnWXH6vlN2y5py5Yt83UILYr627vU397XEvq8rKys0W2VNPIWqw1Srmzw8opDK8ivyKdtaFuu6nCVFwMTERGRS1l6ejrp6emu4+HDh9OrVy9effVVnnjiCQBuvfVW1/V+/fqRmppKly5dWLlyJSNGjKj3dR999FGmTp3qOi4qKqJDhw6MGjWKyMhID30asM19CQMsiDVQAbf3vp2bB9zssfdrrNLKGtZnnWD+yk0UBMSy8VAh1faz3WGhoAra9r6MtJRYb4V5SamurmbZsmVce+21BAaqFqinqb+9S/3tfS2pz2tnBzeGkkZ+4sNM59I0FcAWERGRhrRp0wabzUZubm6d87m5uY2uRxQYGMjAgQPZs2dPg206d+5MmzZt2LNnT4NJo+Dg4HqLZQcGBnpusF1TBdmb+To0hF0VuYQGhHJ3v7v9YnAfHRjI1T3iKd3r4LrrhrF4ay5T5285530nymr8Iv6LmUd/5sSN+tu71N/e1xL6vCmfz+rBOKSRDhQdYE3OGhXAFhERkbMKCgpi8ODBrFixwnXO4XCwYsWKOrOJzsZut7Nt2zYSExsuwnz48GFOnDhx1jY+kbsNY69kVqyz1tKtPW4lNsQ/Z+kkNnJ3tLiIEA9HIiIicv6UNPIDH/7onGV0RbsrSApP8nE0IiIi4s+mTp3K66+/zty5c9m1axf3338/paWlrt3U7rjjjjqFsv/617+ydOlS9u3bx8aNG/nlL3/JgQMHuOeeewBnkew//vGPfP/992RlZbFixQomTJhA165dGT16tE8+Y4MOrePb0BC2BdkIsYVwR587fB1Rg4alxJIYFVJPNSMnC5AYFcIwLU0TERE/puVpPlZlr+LjPR8DKoAtIiIi5zZp0iSOHTvG9OnTycnJYcCAASxZssRVHPvgwYNYrT89Fzx58iT33nsvOTk5xMTEMHjwYL777jt69+4NgM1mY+vWrcydO5eCggKSkpIYNWoUTzzxRL3Lz3zJHFrDK9FRAPyixy9oE9rGxxE1zGa1MGNcb+5/eyMWqLODWm0iaca43thUBVtERPyYkkY+tvzAck5WniQuLI4r2zdcKFtERESk1pQpU5gyZUq911auXFnn+IUXXuCFF15o8LVCQ0P54osvmjM8j1mdu56tEcEEWwO5u+/dvg7nnDL6JvLKLwcxc/FOsgsrXOcTokKYMa43GX39bPmfiIjIGZQ08rEPdzuXpt3U7SYCrPrrEBEREamPKcphVmAFEMItXW7w61lGp8vom8i1vRNYuz+fvOIK4iKcS9I0w0hERC4GylL40P7C/azLWYfVYmVit4m+DkdERETEb63d9R6bQkIIMnD3gPt8HU6T2KwW0ru09nUYIiIiTaakkQ/VFsC+st2VJLRq3Da5IiIiIi2F3WFnY95GjpUd43/3zAfgppB2xIXF+TgyERGRlkFJIx+ptFfy8V4VwBYRERGpz/IDy3lm7TPkluX+dNIYurXp67ugREREWhjruZuIJyw7sIzCykISWiVwRbsrfB2OiIiIiN9YfmA5U1dOrZswOuWJI1+w/MByH0QlIiLS8ihp5CPzM51TrCd2m4jNavNxNCIiIiL+we6w88zaZzB1Nqk/xWIBLPzP2v/B7rB7PTYREZGWRkkjH9hbsJeNeRuxWWxM7KoC2CIiIiK1NuZtrHeGUS2DIacsh415G70YlYiISMukpJEP1BbAvqr9VcS3ivdxNCIiIiL+41jZsWZtJyIiIudPhbC9pHb3j6MlR1mwewGgAtgiIiIiZ2ob1rZZ24mIiMj5U9LIC+rb/cNqsVJeU+7DqERERET8z6C4QcSHxZNXlltfVSMsQHxYAoPiBnk7NBERkRZHy9M8rKHdPxzGwSOrHtHuHyIiIiKnsVltTEscAcZgMXXTRhZjwBj+K/EabSQiIiLiBUoaedBZd/84Rbt/iIiIiJzGYWfk2rd4Pu84cfa6Y6R4u53n804wcu3/A42fREREPE7L0zyoKbt/DE0Y6sXIRERERPzUge+g6CgjgZ+XlbMxJJhjNhtt7XYGVVTinF9U5myXcqVvYxUREbnEKWnkQdr9Q0RERKSJSn564GYDhlZUnrOdiIiIeIaWp3mQdv8QERERaaLw+OZtJyIiIudNSSMPqt39w4Kl3usWLCRo9w8RERGRnyQPh8gkaGD8BBaIbOdsJyIiIh6lpJEH2aw2pg2bBuCWOKo9/q9h/6XdP0RERERqWW2Q8T+nDs5MHJ06znjG2U5EREQ8SkkjDxuZPJLnf/Y8cWFxdc7Hh8Xz/M+eZ2TySB9FJiIiIuKneo+HX7wFkYl1z0cmOc/3Hu+buERERFoYFcL2gpHJI/l5h5+zMW8jx8qO0TasLYPiBmmGkYiIiEhDeo+HnmOdu6SV5DprGCUP1wwjERERL1LSyEtsVhtDE4b6OgwRERGRi4fVBilX+joKERGRFkvL00RERERERERExI2SRiIiIiIiIiIi4kZJIxERERERERERcaOkkYiIiIiIiIiIuFHSSERERERERERE3ChpJCIiIiIiIiIibpQ0EhERERERERERN0oaiYiIiIiIiIiIGyWNRERERERERETEjZJGIiIiIiIiIiLiRkkjERERERERERFxE+DrAPyRMQaAoqIiH0fiO9XV1ZSVlVFUVERgYKCvw7nkqb+9S/3tfepz72pJ/V37b3Xtv93iOxo/tazfPX+g/vYu9bd3qb+9ryX1eVPGT0oa1aO4uBiADh06+DgSERERaYzi4mKioqJ8HUaLpvGTiIjIxaUx4yeL0aM5Nw6Hg6NHjxIREYHFYvF1OD5RVFREhw4dOHToEJGRkb4O55Kn/vYu9bf3qc+9qyX1tzGG4uJikpKSsFq16t6XNH5qWb97/kD97V3qb+9Sf3tfS+rzpoyfNNOoHlarlfbt2/s6DL8QGRl5yf/C+BP1t3epv71Pfe5dLaW/NcPIP2j89JOW8rvnL9Tf3qX+9i71t/e1lD5v7PhJj+RERERERERERMSNkkYiIiIiIiIiIuJGSSOpV3BwMDNmzCA4ONjXobQI6m/vUn97n/rcu9TfIr6h3z3vUn97l/rbu9Tf3qc+r58KYYuIiIiIiIiIiBvNNBIRERERERERETdKGomIiIiIiIiIiBsljURERERERERExI2SRiIiIiIiIiIi4kZJoxbk66+/Zty4cSQlJWGxWFi0aFGd68YYpk+fTmJiIqGhoYwcOZLdu3fXaZOfn8/kyZOJjIwkOjqa3/zmN5SUlHjxU1w8nn76aYYOHUpERARxcXHccMMNZGZm1mlTUVHBAw88QOvWrQkPD+emm24iNze3TpuDBw8yduxYwsLCiIuL449//CM1NTXe/CgXhVdeeYXU1FQiIyOJjIwkPT2dzz//3HVdfe1ZzzzzDBaLhYcffth1Tn3evB5//HEsFkudr549e7quq79FPEPjJ+/S+Mm7NH7yLY2fPE/jpwunpFELUlpaSv/+/XnppZfqvf63v/2Nf/7zn8yaNYs1a9bQqlUrRo8eTUVFhavN5MmT2bFjB8uWLePTTz/l66+/5re//a23PsJFZdWqVTzwwAN8//33LFu2jOrqakaNGkVpaamrze9//3sWL17M/PnzWbVqFUePHmXixImu63a7nbFjx1JVVcV3333H3LlzmTNnDtOnT/fFR/Jr7du355lnnmHDhg2sX7+ea665hgkTJrBjxw5Afe1J69at49VXXyU1NbXOefV58+vTpw/Z2dmur2+++cZ1Tf0t4hkaP3mXxk/epfGT72j85D0aP10gIy0SYBYuXOg6djgcJiEhwTz77LOucwUFBSY4ONjMmzfPGGPMzp07DWDWrVvnavP5558bi8Vijhw54rXYL1Z5eXkGMKtWrTLGOPs3MDDQzJ8/39Vm165dBjCrV682xhjz2WefGavVanJyclxtXnnlFRMZGWkqKyu9+wEuQjExMeaNN95QX3tQcXGx6datm1m2bJm5+uqrzUMPPWSM0c+3J8yYMcP079+/3mvqbxHv0PjJ+zR+8j6NnzxP4yfv0fjpwmmmkQCwf/9+cnJyGDlypOtcVFQUaWlprF69GoDVq1cTHR3NkCFDXG1GjhyJ1WplzZo1Xo/5YlNYWAhAbGwsABs2bKC6urpOn/fs2ZOOHTvW6fN+/foRHx/vajN69GiKiopcT4DEnd1u57333qO0tJT09HT1tQc98MADjB07tk7fgn6+PWX37t0kJSXRuXNnJk+ezMGDBwH1t4ivaPzkeRo/eY/GT96j8ZN3afx0YQJ8HYD4h5ycHIA6vwy1x7XXcnJyiIuLq3M9ICCA2NhYVxupn8Ph4OGHH+byyy+nb9++gLM/g4KCiI6OrtP2zD6v7++k9prUtW3bNtLT06moqCA8PJyFCxfSu3dvNm/erL72gPfee4+NGzeybt06t2v6+W5+aWlpzJkzhx49epCdnc3MmTO58sor2b59u/pbxEc0fvIsjZ+8Q+Mn79L4ybs0frpwShqJeMEDDzzA9u3b66yflebXo0cPNm/eTGFhIR9++CF33nknq1at8nVYl6RDhw7x0EMPsWzZMkJCQnwdToswZswY1/epqamkpaWRnJzMBx98QGhoqA8jExHxDI2fvEPjJ+/R+Mn7NH66cFqeJgAkJCQAuFWKz83NdV1LSEggLy+vzvWamhry8/NdbcTdlClT+PTTT/nqq69o376963xCQgJVVVUUFBTUaX9mn9f3d1J7TeoKCgqia9euDB48mKeffpr+/fvzj3/8Q33tARs2bCAvL49BgwYREBBAQEAAq1at4p///CcBAQHEx8erzz0sOjqa7t27s2fPHv2Mi/iIxk+eo/GT92j85D0aP/mexk9Np6SRAJCSkkJCQgIrVqxwnSsqKmLNmjWkp6cDkJ6eTkFBARs2bHC1+fLLL3E4HKSlpXk9Zn9njGHKlCksXLiQL7/8kpSUlDrXBw8eTGBgYJ0+z8zM5ODBg3X6fNu2bXUGm8uWLSMyMpLevXt754NcxBwOB5WVleprDxgxYgTbtm1j8+bNrq8hQ4YwefJk1/fqc88qKSlh7969JCYm6mdcxEc0fmp+Gj/5nsZPnqPxk+9p/HQefF2JW7ynuLjYbNq0yWzatMkA5vnnnzebNm0yBw4cMMYY88wzz5jo6Gjz8ccfm61bt5oJEyaYlJQUU15e7nqNjIwMM3DgQLNmzRrzzTffmG7dupnbbrvNVx/Jr91///0mKirKrFy50mRnZ7u+ysrKXG3uu+8+07FjR/Pll1+a9evXm/T0dJOenu66XlNTY/r27WtGjRplNm/ebJYsWWLatm1rHn30UV98JL82bdo0s2rVKrN//36zdetWM23aNGOxWMzSpUuNMeprbzh99w9j1OfN7Q9/+INZuXKl2b9/v/n222/NyJEjTZs2bUxeXp4xRv0t4ikaP3mXxk/epfGT72n85FkaP104JY1akK+++soAbl933nmnMca5bexf/vIXEx8fb4KDg82IESNMZmZmndc4ceKEue2220x4eLiJjIw0d999tykuLvbBp/F/9fU1YGbPnu1qU15ebn73u9+ZmJgYExYWZm688UaTnZ1d53WysrLMmDFjTGhoqGnTpo35wx/+YKqrq738afzfr3/9a5OcnGyCgoJM27ZtzYgRI1wDHmPU195w5qBHfd68Jk2aZBITE01QUJBp166dmTRpktmzZ4/ruvpbxDM0fvIujZ+8S+Mn39P4ybM0frpwFmOM8d68JhERERERERERuRioppGIiIiIiIiIiLhR0khERERERERERNwoaSQiIiIiIiIiIm6UNBIRERERERERETdKGomIiIiIiIiIiBsljURERERERERExI2SRiIiIiIiIiIi4kZJIxERERERERERcaOkkYh4RKdOnXjxxRd9HYZH/OxnP+Phhx/22Otfyn0nIiIiDbuUxwAaP4lcnAJ8HYCI+JbFYjnr9RkzZvD44483+XXXrVtHq1atzjOqlk19JyIi4t80fvI/6jsRz1DSSKSFy87Odn3//vvvM336dDIzM13nwsPDXd8bY7Db7QQEnPs/HW3btm3eQFsQ9Z2IiIh/0/jJ/6jvRDxDy9NEWriEhATXV1RUFBaLxXX8ww8/EBERweeff87gwYMJDg7mm2++Ye/evUyYMIH4+HjCw8MZOnQoy5cvr/O6Z04RtlgsvPHGG9x4442EhYXRrVs3Pvnkk7PG9vLLL9OtWzdCQkKIj4/n5ptvdl1bsmQJV1xxBdHR0bRu3Zrrr7+evXv3uq5nZWVhsVj44IMPuPLKKwkNDWXo0KH8+OOPrFu3jiFDhhAeHs6YMWM4duyY67677rqLG264gZkzZ9K2bVsiIyO57777qKqqajDOyspKHnnkEdq1a0erVq1IS0tj5cqVDbY3xvD444/TsWNHgoODSUpK4sEHH6y37+bMmYPFYnH7Ov3p5RtvvEGvXr0ICQmhZ8+evPzyy2ftVxEREbkwGj9p/CTSUihpJCLnNG3aNJ555hl27dpFamoqJSUlXHfddaxYsYJNmzaRkZHBuHHjOHjw4FlfZ+bMmfziF79g69atXHfddUyePJn8/Px6265fv54HH3yQv/71r2RmZrJkyRKuuuoq1/XS0lKmTp3K+vXrWbFiBVarlRtvvBGHw1HndWbMmMFjjz3Gxo0bCQgI4Pbbb+dPf/oT//jHP/jPf/7Dnj17mD59ep17VqxYwa5du1i5ciXz5s3jo48+YubMmQ1+rilTprB69Wree+89tm7dyi233EJGRga7d++ut/2CBQt44YUXePXVV9m9ezeLFi2iX79+9badNGkS2dnZrq958+YREBDA5ZdfDsA777zD9OnT+e///m927drFU089xV/+8hfmzp3bYLwiIiLieRo/afwkckkwIiKnzJ4920RFRbmOv/rqKwOYRYsWnfPePn36mH/961+u4+TkZPPCCy+4jgHz2GOPuY5LSkoMYD7//PN6X2/BggUmMjLSFBUVNSr2Y8eOGcBs27bNGGPM/v37DWDeeOMNV5t58+YZwKxYscJ17umnnzY9evRwHd95550mNjbWlJaWus698sorJjw83NjtdmOMMVdffbV56KGHjDHGHDhwwNhsNnPkyJE68YwYMcI8+uij9cb697//3XTv3t1UVVXVe/3Mvqu1Z88eExsba/72t7+5znXp0sW8++67ddo98cQTJj09vd7XFhERkeal8ZPGTyKXMs00EpFzGjJkSJ3jkpISHnnkEXr16kV0dDTh4eHs2rXrnE/KUlNTXd+3atWKyMhI8vLy6m177bXXkpycTOfOnfnVr37FO++8Q1lZmev67t27ue222+jcuTORkZF06tQJwC2G098zPj4eoM5Tqfj4eLcY+vfvT1hYmOs4PT2dkpISDh065Bbntm3bsNvtdO/enfDwcNfXqlWr6kz3Pt0tt9xCeXk5nTt35t5772XhwoXU1NTU27ZWYWEh119/PWPHjuWPf/wj4HxauHfvXn7zm9/Uee8nn3yywfcWERER79D4SeMnkUuBCmGLyDmduRPFI488wrJly3juuefo2rUroaGh3HzzzWddtw4QGBhY59hisbhNh64VERHBxo0bWblyJUuXLmX69Ok8/vjjrFu3jujoaMaNG0dycjKvv/46SUlJOBwO+vbt6xbD6e9Zu9PJmecaiqExSkpKsNlsbNiwAZvNVufa6UUwT9ehQwcyMzNZvnw5y5Yt43e/+x3PPvssq1atcusjALvdzqRJk4iMjOS1116r894Ar7/+OmlpaXXuOTMWERER8S6Nnxqm8ZPIxUNJIxFpsm+//Za77rqLG2+8EXD+45uVldXs7xMQEMDIkSMZOXIkM2bMIDo6mi+//JKrr76azMxMXn/9da688koAvvnmm2Z73y1btlBeXk5oaCgA33//PeHh4XTo0MGt7cCBA7Hb7eTl5bliaYzQ0FDGjRvHuHHjeOCBB+jZsyfbtm1j0KBBbm1///vfs23bNtavX09ISIjrfHx8PElJSezbt4/JkyefxycVERERb9H46ScaP4lcPJQ0EpEm69atGx999BHjxo3DYrHwl7/85YKeNtXn008/Zd++fVx11VXExMTw2Wef4XA46NGjBzExMbRu3ZrXXnuNxMREDh48yLRp05rtvauqqvjNb37DY489RlZWFjNmzGDKlClYre4rert3787kyZO54447+Pvf/87AgQM5duwYK1asIDU1lbFjx7rdM2fOHOx2O2lpaYSFhfH2228TGhpKcnKyW9vZs2fz8ssvs3DhQiwWCzk5OQCuqdQzZ87kwQcfJCoqioyMDCorK1m/fj0nT55k6tSpzdYnIiIicmE0fvqJxk8iFw/VNBKRJnv++eeJiYlh+PDhjBs3jtGjR9f7hOdCREdH89FHH3HNNdfQq1cvZs2axbx58+jTpw9Wq5X33nuPDRs20LdvX37/+9/z7LPPNtt7jxgxgm7dunHVVVcxadIkxo8fX2eL1jPNnj2bO+64gz/84Q/06NGDG264gXXr1tGxY8cGP9vrr7/O5ZdfTmpqKsuXL2fx4sW0bt3are2qVauw2+2MHz+exMRE19dzzz0HwD333MMbb7zB7Nmz6devH1dffTVz5swhJSWlWfpCREREmofGT3Vp/CRycbAYY4yvgxAR8Rd33XUXBQUFLFq0yNehiIiIiFwUNH4SuXRpppGIiIiIiIiIiLhR0khERERERERERNxoeZqIiIiIiIiIiLjRTCMREREREREREXGjpJGIiIiIiIiIiLhR0khERERERERERNwoaSQiIiIiIiIiIm6UNBIRERERERERETdKGomIiIiIiIiIiBsljURERERERERExI2SRiIiIiIiIiIi4ub/B6OZFsi3JldxAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "The best quality is shown by the logistic regression model, followed by a random forest, and then a decision tree. As the size of the training set increases, on average the quality increases. Obviously, the quality of the random forest must exceed the quality of the decision tree, since the random forest is an ensemble of decision trees. The quality of the random forest decreases with a sufficiently large training sample size, which means overfitting." + ], + "metadata": { + "id": "pzRg4nc9YkjC" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### 2.9. Boosting\n", + "Your goal is to build a boosting ensemble using xgboost, CatBoost or lightgbm package.\n", + "Please, do not use the sklearn API for these models.\n", + "\n", + "Find optimal number of decision trees in the boosting ensembe using grid search or other methods.\n", + "Please, explain your answer." + ], + "metadata": { + "id": "_jMVp5EqA8vP" + } + }, + { + "cell_type": "code", + "source": [ + "!pip install catboost" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "R9iyYuXiA_Nx", + "outputId": "d0f5bf36-0acc-4b32-b8ff-58692283c594" + }, + "execution_count": 208, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: catboost in /usr/local/lib/python3.10/dist-packages (1.2.2)\n", + "Requirement already satisfied: graphviz in /usr/local/lib/python3.10/dist-packages (from catboost) (0.20.1)\n", + "Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (from catboost) (3.7.1)\n", + "Requirement already satisfied: numpy>=1.16.0 in /usr/local/lib/python3.10/dist-packages (from catboost) (1.23.5)\n", + "Requirement already satisfied: pandas>=0.24 in /usr/local/lib/python3.10/dist-packages (from catboost) (1.5.3)\n", + "Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from catboost) (1.11.3)\n", + "Requirement already satisfied: plotly in /usr/local/lib/python3.10/dist-packages (from catboost) (5.15.0)\n", + "Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from catboost) (1.16.0)\n", + "Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.24->catboost) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.24->catboost) (2023.3.post1)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->catboost) (1.1.1)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib->catboost) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->catboost) (4.43.1)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->catboost) (1.4.5)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->catboost) (23.2)\n", + "Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->catboost) (9.4.0)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->catboost) (3.1.1)\n", + "Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from plotly->catboost) (8.2.3)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "from catboost import CatBoostClassifier\n", + "\n", + "grid = {\n", + " 'num_trees': [1, 5, 25, 50, 100, 250, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 5000, 10000],\n", + "}\n", + "\n", + "score = {\n", + " 'accuracy': {\n", + "\n", + " },\n", + " 'f1': {\n", + "\n", + " }\n", + "}\n", + "\n", + "for num_trees in grid['num_trees']:\n", + " CBC = CatBoostClassifier(num_trees=num_trees)\n", + " CBC.fit(X_train_pd_scaled, y_train)\n", + " score['accuracy'][num_trees] = accuracy_score(y_test, CBC.predict(X_test_scaled))\n", + " score['f1'][num_trees] = f1_score(y_test, CBC.predict(X_test_scaled), average='macro')" + ], + "metadata": { + "id": "HQyjTtuCBCAV", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "6130d05e-ddd2-4248-ab80-903ad24045b4" + }, + "execution_count": 213, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1;30;43mStreaming output truncated to the last 5000 lines.\u001b[0m\n", + "5000:\tlearn: 0.0575067\ttotal: 30.8s\tremaining: 30.8s\n", + "5001:\tlearn: 0.0574911\ttotal: 30.8s\tremaining: 30.8s\n", + "5002:\tlearn: 0.0574669\ttotal: 30.8s\tremaining: 30.8s\n", + "5003:\tlearn: 0.0574505\ttotal: 30.8s\tremaining: 30.7s\n", + "5004:\tlearn: 0.0574429\ttotal: 30.8s\tremaining: 30.7s\n", + "5005:\tlearn: 0.0574296\ttotal: 30.8s\tremaining: 30.7s\n", + "5006:\tlearn: 0.0574105\ttotal: 30.8s\tremaining: 30.7s\n", + "5007:\tlearn: 0.0573888\ttotal: 30.8s\tremaining: 30.7s\n", + "5008:\tlearn: 0.0573794\ttotal: 30.8s\tremaining: 30.7s\n", + "5009:\tlearn: 0.0573613\ttotal: 30.8s\tremaining: 30.7s\n", + "5010:\tlearn: 0.0573496\ttotal: 30.8s\tremaining: 30.7s\n", + "5011:\tlearn: 0.0573331\ttotal: 30.8s\tremaining: 30.7s\n", + "5012:\tlearn: 0.0573228\ttotal: 30.8s\tremaining: 30.7s\n", + "5013:\tlearn: 0.0573143\ttotal: 30.8s\tremaining: 30.7s\n", + "5014:\tlearn: 0.0573003\ttotal: 30.9s\tremaining: 30.7s\n", + "5015:\tlearn: 0.0572866\ttotal: 30.9s\tremaining: 30.7s\n", + "5016:\tlearn: 0.0572715\ttotal: 30.9s\tremaining: 30.7s\n", + "5017:\tlearn: 0.0572577\ttotal: 30.9s\tremaining: 30.6s\n", + "5018:\tlearn: 0.0572414\ttotal: 30.9s\tremaining: 30.6s\n", + "5019:\tlearn: 0.0572206\ttotal: 30.9s\tremaining: 30.6s\n", + "5020:\tlearn: 0.0572057\ttotal: 30.9s\tremaining: 30.6s\n", + "5021:\tlearn: 0.0571926\ttotal: 30.9s\tremaining: 30.6s\n", + "5022:\tlearn: 0.0571800\ttotal: 30.9s\tremaining: 30.6s\n", + "5023:\tlearn: 0.0571538\ttotal: 30.9s\tremaining: 30.6s\n", + "5024:\tlearn: 0.0571415\ttotal: 30.9s\tremaining: 30.6s\n", + "5025:\tlearn: 0.0571144\ttotal: 30.9s\tremaining: 30.6s\n", + "5026:\tlearn: 0.0571022\ttotal: 30.9s\tremaining: 30.6s\n", + "5027:\tlearn: 0.0570881\ttotal: 30.9s\tremaining: 30.6s\n", + "5028:\tlearn: 0.0570794\ttotal: 30.9s\tremaining: 30.6s\n", + "5029:\tlearn: 0.0570639\ttotal: 30.9s\tremaining: 30.6s\n", + "5030:\tlearn: 0.0570480\ttotal: 30.9s\tremaining: 30.6s\n", + "5031:\tlearn: 0.0570392\ttotal: 30.9s\tremaining: 30.6s\n", + "5032:\tlearn: 0.0570235\ttotal: 30.9s\tremaining: 30.5s\n", + "5033:\tlearn: 0.0570025\ttotal: 31s\tremaining: 30.5s\n", + "5034:\tlearn: 0.0569923\ttotal: 31s\tremaining: 30.5s\n", + "5035:\tlearn: 0.0569740\ttotal: 31s\tremaining: 30.5s\n", + "5036:\tlearn: 0.0569687\ttotal: 31s\tremaining: 30.5s\n", + "5037:\tlearn: 0.0569499\ttotal: 31s\tremaining: 30.5s\n", + "5038:\tlearn: 0.0569367\ttotal: 31s\tremaining: 30.5s\n", + "5039:\tlearn: 0.0569233\ttotal: 31s\tremaining: 30.5s\n", + "5040:\tlearn: 0.0569127\ttotal: 31s\tremaining: 30.5s\n", + "5041:\tlearn: 0.0568991\ttotal: 31s\tremaining: 30.5s\n", + "5042:\tlearn: 0.0568869\ttotal: 31s\tremaining: 30.5s\n", + "5043:\tlearn: 0.0568724\ttotal: 31s\tremaining: 30.5s\n", + "5044:\tlearn: 0.0568560\ttotal: 31s\tremaining: 30.5s\n", + "5045:\tlearn: 0.0568411\ttotal: 31s\tremaining: 30.4s\n", + "5046:\tlearn: 0.0568311\ttotal: 31s\tremaining: 30.4s\n", + "5047:\tlearn: 0.0568217\ttotal: 31s\tremaining: 30.4s\n", + "5048:\tlearn: 0.0568089\ttotal: 31s\tremaining: 30.4s\n", + "5049:\tlearn: 0.0567943\ttotal: 31s\tremaining: 30.4s\n", + "5050:\tlearn: 0.0567746\ttotal: 31s\tremaining: 30.4s\n", + "5051:\tlearn: 0.0567701\ttotal: 31s\tremaining: 30.4s\n", + "5052:\tlearn: 0.0567552\ttotal: 31s\tremaining: 30.4s\n", + "5053:\tlearn: 0.0567287\ttotal: 31.1s\tremaining: 30.4s\n", + "5054:\tlearn: 0.0567004\ttotal: 31.1s\tremaining: 30.4s\n", + "5055:\tlearn: 0.0566796\ttotal: 31.1s\tremaining: 30.4s\n", + "5056:\tlearn: 0.0566691\ttotal: 31.1s\tremaining: 30.4s\n", + "5057:\tlearn: 0.0566626\ttotal: 31.1s\tremaining: 30.4s\n", + "5058:\tlearn: 0.0566404\ttotal: 31.1s\tremaining: 30.4s\n", + "5059:\tlearn: 0.0566252\ttotal: 31.1s\tremaining: 30.4s\n", + "5060:\tlearn: 0.0566111\ttotal: 31.1s\tremaining: 30.4s\n", + "5061:\tlearn: 0.0565930\ttotal: 31.1s\tremaining: 30.4s\n", + "5062:\tlearn: 0.0565814\ttotal: 31.1s\tremaining: 30.4s\n", + "5063:\tlearn: 0.0565700\ttotal: 31.1s\tremaining: 30.3s\n", + "5064:\tlearn: 0.0565493\ttotal: 31.1s\tremaining: 30.3s\n", + "5065:\tlearn: 0.0565349\ttotal: 31.1s\tremaining: 30.3s\n", + "5066:\tlearn: 0.0565118\ttotal: 31.1s\tremaining: 30.3s\n", + "5067:\tlearn: 0.0564990\ttotal: 31.1s\tremaining: 30.3s\n", + "5068:\tlearn: 0.0564872\ttotal: 31.2s\tremaining: 30.3s\n", + "5069:\tlearn: 0.0564705\ttotal: 31.2s\tremaining: 30.3s\n", + "5070:\tlearn: 0.0564564\ttotal: 31.2s\tremaining: 30.3s\n", + "5071:\tlearn: 0.0564347\ttotal: 31.2s\tremaining: 30.3s\n", + "5072:\tlearn: 0.0564160\ttotal: 31.2s\tremaining: 30.3s\n", + "5073:\tlearn: 0.0564041\ttotal: 31.2s\tremaining: 30.3s\n", + "5074:\tlearn: 0.0563777\ttotal: 31.2s\tremaining: 30.3s\n", + "5075:\tlearn: 0.0563584\ttotal: 31.2s\tremaining: 30.3s\n", + "5076:\tlearn: 0.0563414\ttotal: 31.2s\tremaining: 30.2s\n", + "5077:\tlearn: 0.0563303\ttotal: 31.2s\tremaining: 30.2s\n", + "5078:\tlearn: 0.0563162\ttotal: 31.2s\tremaining: 30.2s\n", + "5079:\tlearn: 0.0563047\ttotal: 31.2s\tremaining: 30.2s\n", + "5080:\tlearn: 0.0562912\ttotal: 31.2s\tremaining: 30.2s\n", + "5081:\tlearn: 0.0562781\ttotal: 31.2s\tremaining: 30.2s\n", + "5082:\tlearn: 0.0562579\ttotal: 31.2s\tremaining: 30.2s\n", + "5083:\tlearn: 0.0562378\ttotal: 31.2s\tremaining: 30.2s\n", + "5084:\tlearn: 0.0562250\ttotal: 31.2s\tremaining: 30.2s\n", + "5085:\tlearn: 0.0562076\ttotal: 31.2s\tremaining: 30.2s\n", + "5086:\tlearn: 0.0562016\ttotal: 31.2s\tremaining: 30.2s\n", + "5087:\tlearn: 0.0561904\ttotal: 31.3s\tremaining: 30.2s\n", + "5088:\tlearn: 0.0561749\ttotal: 31.3s\tremaining: 30.2s\n", + "5089:\tlearn: 0.0561523\ttotal: 31.3s\tremaining: 30.2s\n", + "5090:\tlearn: 0.0561449\ttotal: 31.3s\tremaining: 30.1s\n", + "5091:\tlearn: 0.0561305\ttotal: 31.3s\tremaining: 30.1s\n", + "5092:\tlearn: 0.0561155\ttotal: 31.3s\tremaining: 30.1s\n", + "5093:\tlearn: 0.0561002\ttotal: 31.3s\tremaining: 30.1s\n", + "5094:\tlearn: 0.0560858\ttotal: 31.3s\tremaining: 30.1s\n", + "5095:\tlearn: 0.0560663\ttotal: 31.3s\tremaining: 30.1s\n", + "5096:\tlearn: 0.0560511\ttotal: 31.3s\tremaining: 30.1s\n", + "5097:\tlearn: 0.0560410\ttotal: 31.3s\tremaining: 30.1s\n", + "5098:\tlearn: 0.0560290\ttotal: 31.3s\tremaining: 30.1s\n", + "5099:\tlearn: 0.0560130\ttotal: 31.3s\tremaining: 30.1s\n", + "5100:\tlearn: 0.0559985\ttotal: 31.3s\tremaining: 30.1s\n", + "5101:\tlearn: 0.0559843\ttotal: 31.3s\tremaining: 30.1s\n", + "5102:\tlearn: 0.0559657\ttotal: 31.3s\tremaining: 30.1s\n", + "5103:\tlearn: 0.0559570\ttotal: 31.3s\tremaining: 30.1s\n", + "5104:\tlearn: 0.0559444\ttotal: 31.3s\tremaining: 30.1s\n", + "5105:\tlearn: 0.0559358\ttotal: 31.4s\tremaining: 30s\n", + "5106:\tlearn: 0.0559176\ttotal: 31.4s\tremaining: 30s\n", + "5107:\tlearn: 0.0559038\ttotal: 31.4s\tremaining: 30s\n", + "5108:\tlearn: 0.0558900\ttotal: 31.4s\tremaining: 30s\n", + "5109:\tlearn: 0.0558728\ttotal: 31.4s\tremaining: 30s\n", + "5110:\tlearn: 0.0558572\ttotal: 31.4s\tremaining: 30s\n", + "5111:\tlearn: 0.0558483\ttotal: 31.4s\tremaining: 30s\n", + "5112:\tlearn: 0.0558353\ttotal: 31.4s\tremaining: 30s\n", + "5113:\tlearn: 0.0558159\ttotal: 31.4s\tremaining: 30s\n", + "5114:\tlearn: 0.0558077\ttotal: 31.4s\tremaining: 30s\n", + "5115:\tlearn: 0.0557947\ttotal: 31.4s\tremaining: 30s\n", + "5116:\tlearn: 0.0557796\ttotal: 31.4s\tremaining: 30s\n", + "5117:\tlearn: 0.0557650\ttotal: 31.4s\tremaining: 30s\n", + "5118:\tlearn: 0.0557485\ttotal: 31.4s\tremaining: 30s\n", + "5119:\tlearn: 0.0557357\ttotal: 31.4s\tremaining: 29.9s\n", + "5120:\tlearn: 0.0557238\ttotal: 31.4s\tremaining: 29.9s\n", + "5121:\tlearn: 0.0557037\ttotal: 31.4s\tremaining: 29.9s\n", + "5122:\tlearn: 0.0556934\ttotal: 31.4s\tremaining: 29.9s\n", + "5123:\tlearn: 0.0556820\ttotal: 31.4s\tremaining: 29.9s\n", + "5124:\tlearn: 0.0556678\ttotal: 31.4s\tremaining: 29.9s\n", + "5125:\tlearn: 0.0556571\ttotal: 31.5s\tremaining: 29.9s\n", + "5126:\tlearn: 0.0556397\ttotal: 31.5s\tremaining: 29.9s\n", + "5127:\tlearn: 0.0556242\ttotal: 31.5s\tremaining: 29.9s\n", + "5128:\tlearn: 0.0556072\ttotal: 31.5s\tremaining: 29.9s\n", + "5129:\tlearn: 0.0555912\ttotal: 31.5s\tremaining: 29.9s\n", + "5130:\tlearn: 0.0555746\ttotal: 31.5s\tremaining: 29.9s\n", + "5131:\tlearn: 0.0555598\ttotal: 31.5s\tremaining: 29.9s\n", + "5132:\tlearn: 0.0555507\ttotal: 31.5s\tremaining: 29.9s\n", + "5133:\tlearn: 0.0555376\ttotal: 31.5s\tremaining: 29.9s\n", + "5134:\tlearn: 0.0555239\ttotal: 31.5s\tremaining: 29.9s\n", + "5135:\tlearn: 0.0555204\ttotal: 31.5s\tremaining: 29.8s\n", + "5136:\tlearn: 0.0555072\ttotal: 31.5s\tremaining: 29.8s\n", + "5137:\tlearn: 0.0554954\ttotal: 31.5s\tremaining: 29.8s\n", + "5138:\tlearn: 0.0554839\ttotal: 31.5s\tremaining: 29.8s\n", + "5139:\tlearn: 0.0554709\ttotal: 31.5s\tremaining: 29.8s\n", + "5140:\tlearn: 0.0554589\ttotal: 31.5s\tremaining: 29.8s\n", + "5141:\tlearn: 0.0554423\ttotal: 31.6s\tremaining: 29.8s\n", + "5142:\tlearn: 0.0554225\ttotal: 31.6s\tremaining: 29.8s\n", + "5143:\tlearn: 0.0554046\ttotal: 31.6s\tremaining: 29.8s\n", + "5144:\tlearn: 0.0553894\ttotal: 31.6s\tremaining: 29.8s\n", + "5145:\tlearn: 0.0553817\ttotal: 31.6s\tremaining: 29.8s\n", + "5146:\tlearn: 0.0553581\ttotal: 31.6s\tremaining: 29.8s\n", + "5147:\tlearn: 0.0553436\ttotal: 31.6s\tremaining: 29.8s\n", + "5148:\tlearn: 0.0553323\ttotal: 31.6s\tremaining: 29.8s\n", + "5149:\tlearn: 0.0553179\ttotal: 31.6s\tremaining: 29.7s\n", + "5150:\tlearn: 0.0553002\ttotal: 31.6s\tremaining: 29.7s\n", + "5151:\tlearn: 0.0552862\ttotal: 31.6s\tremaining: 29.7s\n", + "5152:\tlearn: 0.0552628\ttotal: 31.6s\tremaining: 29.7s\n", + "5153:\tlearn: 0.0552430\ttotal: 31.6s\tremaining: 29.7s\n", + "5154:\tlearn: 0.0552265\ttotal: 31.6s\tremaining: 29.7s\n", + "5155:\tlearn: 0.0552185\ttotal: 31.6s\tremaining: 29.7s\n", + "5156:\tlearn: 0.0551994\ttotal: 31.6s\tremaining: 29.7s\n", + "5157:\tlearn: 0.0551801\ttotal: 31.6s\tremaining: 29.7s\n", + "5158:\tlearn: 0.0551726\ttotal: 31.6s\tremaining: 29.7s\n", + "5159:\tlearn: 0.0551595\ttotal: 31.6s\tremaining: 29.7s\n", + "5160:\tlearn: 0.0551322\ttotal: 31.6s\tremaining: 29.7s\n", + "5161:\tlearn: 0.0551172\ttotal: 31.7s\tremaining: 29.7s\n", + "5162:\tlearn: 0.0551039\ttotal: 31.7s\tremaining: 29.7s\n", + "5163:\tlearn: 0.0550875\ttotal: 31.7s\tremaining: 29.6s\n", + "5164:\tlearn: 0.0550736\ttotal: 31.7s\tremaining: 29.6s\n", + "5165:\tlearn: 0.0550578\ttotal: 31.7s\tremaining: 29.6s\n", + "5166:\tlearn: 0.0550401\ttotal: 31.7s\tremaining: 29.6s\n", + "5167:\tlearn: 0.0550299\ttotal: 31.7s\tremaining: 29.6s\n", + "5168:\tlearn: 0.0550193\ttotal: 31.7s\tremaining: 29.6s\n", + "5169:\tlearn: 0.0550152\ttotal: 31.7s\tremaining: 29.6s\n", + "5170:\tlearn: 0.0550036\ttotal: 31.7s\tremaining: 29.6s\n", + "5171:\tlearn: 0.0549963\ttotal: 31.7s\tremaining: 29.6s\n", + "5172:\tlearn: 0.0549905\ttotal: 31.7s\tremaining: 29.6s\n", + "5173:\tlearn: 0.0549742\ttotal: 31.7s\tremaining: 29.6s\n", + "5174:\tlearn: 0.0549701\ttotal: 31.7s\tremaining: 29.6s\n", + "5175:\tlearn: 0.0549568\ttotal: 31.7s\tremaining: 29.6s\n", + "5176:\tlearn: 0.0549516\ttotal: 31.7s\tremaining: 29.6s\n", + "5177:\tlearn: 0.0549405\ttotal: 31.7s\tremaining: 29.6s\n", + "5178:\tlearn: 0.0549303\ttotal: 31.7s\tremaining: 29.6s\n", + "5179:\tlearn: 0.0549164\ttotal: 31.8s\tremaining: 29.5s\n", + "5180:\tlearn: 0.0549013\ttotal: 31.8s\tremaining: 29.5s\n", + "5181:\tlearn: 0.0548806\ttotal: 31.8s\tremaining: 29.5s\n", + "5182:\tlearn: 0.0548661\ttotal: 31.8s\tremaining: 29.5s\n", + "5183:\tlearn: 0.0548555\ttotal: 31.8s\tremaining: 29.5s\n", + "5184:\tlearn: 0.0548418\ttotal: 31.8s\tremaining: 29.5s\n", + "5185:\tlearn: 0.0548323\ttotal: 31.8s\tremaining: 29.5s\n", + "5186:\tlearn: 0.0548210\ttotal: 31.8s\tremaining: 29.5s\n", + "5187:\tlearn: 0.0548013\ttotal: 31.8s\tremaining: 29.5s\n", + "5188:\tlearn: 0.0547885\ttotal: 31.8s\tremaining: 29.5s\n", + "5189:\tlearn: 0.0547727\ttotal: 31.8s\tremaining: 29.5s\n", + "5190:\tlearn: 0.0547579\ttotal: 31.8s\tremaining: 29.5s\n", + "5191:\tlearn: 0.0547447\ttotal: 31.8s\tremaining: 29.5s\n", + "5192:\tlearn: 0.0547341\ttotal: 31.8s\tremaining: 29.5s\n", + "5193:\tlearn: 0.0547236\ttotal: 31.8s\tremaining: 29.5s\n", + "5194:\tlearn: 0.0547129\ttotal: 31.8s\tremaining: 29.4s\n", + "5195:\tlearn: 0.0546914\ttotal: 31.8s\tremaining: 29.4s\n", + "5196:\tlearn: 0.0546758\ttotal: 31.8s\tremaining: 29.4s\n", + "5197:\tlearn: 0.0546573\ttotal: 31.9s\tremaining: 29.4s\n", + "5198:\tlearn: 0.0546364\ttotal: 31.9s\tremaining: 29.4s\n", + "5199:\tlearn: 0.0546284\ttotal: 31.9s\tremaining: 29.4s\n", + "5200:\tlearn: 0.0546186\ttotal: 31.9s\tremaining: 29.4s\n", + "5201:\tlearn: 0.0546136\ttotal: 31.9s\tremaining: 29.4s\n", + "5202:\tlearn: 0.0545955\ttotal: 31.9s\tremaining: 29.4s\n", + "5203:\tlearn: 0.0545814\ttotal: 31.9s\tremaining: 29.4s\n", + "5204:\tlearn: 0.0545715\ttotal: 31.9s\tremaining: 29.4s\n", + "5205:\tlearn: 0.0545577\ttotal: 31.9s\tremaining: 29.4s\n", + "5206:\tlearn: 0.0545407\ttotal: 31.9s\tremaining: 29.4s\n", + "5207:\tlearn: 0.0545236\ttotal: 31.9s\tremaining: 29.4s\n", + "5208:\tlearn: 0.0545118\ttotal: 31.9s\tremaining: 29.4s\n", + "5209:\tlearn: 0.0545027\ttotal: 31.9s\tremaining: 29.4s\n", + "5210:\tlearn: 0.0544832\ttotal: 31.9s\tremaining: 29.3s\n", + "5211:\tlearn: 0.0544692\ttotal: 31.9s\tremaining: 29.3s\n", + "5212:\tlearn: 0.0544447\ttotal: 31.9s\tremaining: 29.3s\n", + "5213:\tlearn: 0.0544363\ttotal: 31.9s\tremaining: 29.3s\n", + "5214:\tlearn: 0.0544155\ttotal: 31.9s\tremaining: 29.3s\n", + "5215:\tlearn: 0.0544006\ttotal: 32s\tremaining: 29.3s\n", + "5216:\tlearn: 0.0543920\ttotal: 32s\tremaining: 29.3s\n", + "5217:\tlearn: 0.0543823\ttotal: 32s\tremaining: 29.3s\n", + "5218:\tlearn: 0.0543669\ttotal: 32s\tremaining: 29.3s\n", + "5219:\tlearn: 0.0543521\ttotal: 32s\tremaining: 29.3s\n", + "5220:\tlearn: 0.0543347\ttotal: 32s\tremaining: 29.3s\n", + "5221:\tlearn: 0.0543204\ttotal: 32s\tremaining: 29.3s\n", + "5222:\tlearn: 0.0543116\ttotal: 32s\tremaining: 29.3s\n", + "5223:\tlearn: 0.0543010\ttotal: 32s\tremaining: 29.2s\n", + "5224:\tlearn: 0.0542910\ttotal: 32s\tremaining: 29.2s\n", + "5225:\tlearn: 0.0542838\ttotal: 32s\tremaining: 29.2s\n", + "5226:\tlearn: 0.0542687\ttotal: 32s\tremaining: 29.2s\n", + "5227:\tlearn: 0.0542539\ttotal: 32s\tremaining: 29.2s\n", + "5228:\tlearn: 0.0542459\ttotal: 32s\tremaining: 29.2s\n", + "5229:\tlearn: 0.0542347\ttotal: 32s\tremaining: 29.2s\n", + "5230:\tlearn: 0.0542135\ttotal: 32s\tremaining: 29.2s\n", + "5231:\tlearn: 0.0541932\ttotal: 32s\tremaining: 29.2s\n", + "5232:\tlearn: 0.0541725\ttotal: 32s\tremaining: 29.2s\n", + "5233:\tlearn: 0.0541602\ttotal: 32s\tremaining: 29.2s\n", + "5234:\tlearn: 0.0541438\ttotal: 32s\tremaining: 29.2s\n", + "5235:\tlearn: 0.0541320\ttotal: 32.1s\tremaining: 29.2s\n", + "5236:\tlearn: 0.0541222\ttotal: 32.1s\tremaining: 29.2s\n", + "5237:\tlearn: 0.0541059\ttotal: 32.1s\tremaining: 29.1s\n", + "5238:\tlearn: 0.0540920\ttotal: 32.1s\tremaining: 29.1s\n", + "5239:\tlearn: 0.0540767\ttotal: 32.1s\tremaining: 29.1s\n", + "5240:\tlearn: 0.0540701\ttotal: 32.1s\tremaining: 29.1s\n", + "5241:\tlearn: 0.0540584\ttotal: 32.1s\tremaining: 29.1s\n", + "5242:\tlearn: 0.0540433\ttotal: 32.1s\tremaining: 29.1s\n", + "5243:\tlearn: 0.0540345\ttotal: 32.1s\tremaining: 29.1s\n", + "5244:\tlearn: 0.0540127\ttotal: 32.1s\tremaining: 29.1s\n", + "5245:\tlearn: 0.0539943\ttotal: 32.1s\tremaining: 29.1s\n", + "5246:\tlearn: 0.0539849\ttotal: 32.1s\tremaining: 29.1s\n", + "5247:\tlearn: 0.0539769\ttotal: 32.1s\tremaining: 29.1s\n", + "5248:\tlearn: 0.0539576\ttotal: 32.1s\tremaining: 29.1s\n", + "5249:\tlearn: 0.0539453\ttotal: 32.1s\tremaining: 29.1s\n", + "5250:\tlearn: 0.0539312\ttotal: 32.1s\tremaining: 29.1s\n", + "5251:\tlearn: 0.0539233\ttotal: 32.2s\tremaining: 29.1s\n", + "5252:\tlearn: 0.0539151\ttotal: 32.2s\tremaining: 29.1s\n", + "5253:\tlearn: 0.0538964\ttotal: 32.2s\tremaining: 29.1s\n", + "5254:\tlearn: 0.0538896\ttotal: 32.2s\tremaining: 29s\n", + "5255:\tlearn: 0.0538735\ttotal: 32.2s\tremaining: 29s\n", + "5256:\tlearn: 0.0538614\ttotal: 32.2s\tremaining: 29s\n", + "5257:\tlearn: 0.0538530\ttotal: 32.2s\tremaining: 29s\n", + "5258:\tlearn: 0.0538372\ttotal: 32.2s\tremaining: 29s\n", + "5259:\tlearn: 0.0538216\ttotal: 32.2s\tremaining: 29s\n", + "5260:\tlearn: 0.0538062\ttotal: 32.2s\tremaining: 29s\n", + "5261:\tlearn: 0.0537935\ttotal: 32.2s\tremaining: 29s\n", + "5262:\tlearn: 0.0537825\ttotal: 32.2s\tremaining: 29s\n", + "5263:\tlearn: 0.0537571\ttotal: 32.2s\tremaining: 29s\n", + "5264:\tlearn: 0.0537396\ttotal: 32.2s\tremaining: 29s\n", + "5265:\tlearn: 0.0537259\ttotal: 32.2s\tremaining: 29s\n", + "5266:\tlearn: 0.0537127\ttotal: 32.2s\tremaining: 29s\n", + "5267:\tlearn: 0.0536907\ttotal: 32.2s\tremaining: 29s\n", + "5268:\tlearn: 0.0536690\ttotal: 32.2s\tremaining: 28.9s\n", + "5269:\tlearn: 0.0536563\ttotal: 32.2s\tremaining: 28.9s\n", + "5270:\tlearn: 0.0536465\ttotal: 32.2s\tremaining: 28.9s\n", + "5271:\tlearn: 0.0536351\ttotal: 32.3s\tremaining: 28.9s\n", + "5272:\tlearn: 0.0536231\ttotal: 32.3s\tremaining: 28.9s\n", + "5273:\tlearn: 0.0536098\ttotal: 32.3s\tremaining: 28.9s\n", + "5274:\tlearn: 0.0536028\ttotal: 32.3s\tremaining: 28.9s\n", + "5275:\tlearn: 0.0535972\ttotal: 32.3s\tremaining: 28.9s\n", + "5276:\tlearn: 0.0535863\ttotal: 32.3s\tremaining: 28.9s\n", + "5277:\tlearn: 0.0535713\ttotal: 32.3s\tremaining: 28.9s\n", + "5278:\tlearn: 0.0535596\ttotal: 32.3s\tremaining: 28.9s\n", + "5279:\tlearn: 0.0535449\ttotal: 32.3s\tremaining: 28.9s\n", + "5280:\tlearn: 0.0535264\ttotal: 32.3s\tremaining: 28.9s\n", + "5281:\tlearn: 0.0535186\ttotal: 32.3s\tremaining: 28.9s\n", + "5282:\tlearn: 0.0535062\ttotal: 32.3s\tremaining: 28.9s\n", + "5283:\tlearn: 0.0534988\ttotal: 32.3s\tremaining: 28.8s\n", + "5284:\tlearn: 0.0534808\ttotal: 32.3s\tremaining: 28.8s\n", + "5285:\tlearn: 0.0534671\ttotal: 32.3s\tremaining: 28.8s\n", + "5286:\tlearn: 0.0534549\ttotal: 32.3s\tremaining: 28.8s\n", + "5287:\tlearn: 0.0534342\ttotal: 32.3s\tremaining: 28.8s\n", + "5288:\tlearn: 0.0534208\ttotal: 32.3s\tremaining: 28.8s\n", + "5289:\tlearn: 0.0534079\ttotal: 32.3s\tremaining: 28.8s\n", + "5290:\tlearn: 0.0534018\ttotal: 32.4s\tremaining: 28.8s\n", + "5291:\tlearn: 0.0533826\ttotal: 32.4s\tremaining: 28.8s\n", + "5292:\tlearn: 0.0533738\ttotal: 32.4s\tremaining: 28.8s\n", + "5293:\tlearn: 0.0533627\ttotal: 32.4s\tremaining: 28.8s\n", + "5294:\tlearn: 0.0533456\ttotal: 32.4s\tremaining: 28.8s\n", + "5295:\tlearn: 0.0533286\ttotal: 32.4s\tremaining: 28.8s\n", + "5296:\tlearn: 0.0533159\ttotal: 32.4s\tremaining: 28.8s\n", + "5297:\tlearn: 0.0533043\ttotal: 32.4s\tremaining: 28.7s\n", + "5298:\tlearn: 0.0532853\ttotal: 32.4s\tremaining: 28.7s\n", + "5299:\tlearn: 0.0532731\ttotal: 32.4s\tremaining: 28.7s\n", + "5300:\tlearn: 0.0532609\ttotal: 32.4s\tremaining: 28.7s\n", + "5301:\tlearn: 0.0532397\ttotal: 32.4s\tremaining: 28.7s\n", + "5302:\tlearn: 0.0532198\ttotal: 32.4s\tremaining: 28.7s\n", + "5303:\tlearn: 0.0532051\ttotal: 32.4s\tremaining: 28.7s\n", + "5304:\tlearn: 0.0531938\ttotal: 32.4s\tremaining: 28.7s\n", + "5305:\tlearn: 0.0531882\ttotal: 32.4s\tremaining: 28.7s\n", + "5306:\tlearn: 0.0531753\ttotal: 32.4s\tremaining: 28.7s\n", + "5307:\tlearn: 0.0531684\ttotal: 32.4s\tremaining: 28.7s\n", + "5308:\tlearn: 0.0531613\ttotal: 32.4s\tremaining: 28.7s\n", + "5309:\tlearn: 0.0531460\ttotal: 32.4s\tremaining: 28.7s\n", + "5310:\tlearn: 0.0531332\ttotal: 32.5s\tremaining: 28.7s\n", + "5311:\tlearn: 0.0531241\ttotal: 32.5s\tremaining: 28.6s\n", + "5312:\tlearn: 0.0531042\ttotal: 32.5s\tremaining: 28.6s\n", + "5313:\tlearn: 0.0530950\ttotal: 32.5s\tremaining: 28.6s\n", + "5314:\tlearn: 0.0530860\ttotal: 32.5s\tremaining: 28.6s\n", + "5315:\tlearn: 0.0530688\ttotal: 32.5s\tremaining: 28.6s\n", + "5316:\tlearn: 0.0530507\ttotal: 32.5s\tremaining: 28.6s\n", + "5317:\tlearn: 0.0530359\ttotal: 32.5s\tremaining: 28.6s\n", + "5318:\tlearn: 0.0530182\ttotal: 32.5s\tremaining: 28.6s\n", + "5319:\tlearn: 0.0530129\ttotal: 32.5s\tremaining: 28.6s\n", + "5320:\tlearn: 0.0529942\ttotal: 32.5s\tremaining: 28.6s\n", + "5321:\tlearn: 0.0529797\ttotal: 32.5s\tremaining: 28.6s\n", + "5322:\tlearn: 0.0529661\ttotal: 32.5s\tremaining: 28.6s\n", + "5323:\tlearn: 0.0529522\ttotal: 32.5s\tremaining: 28.6s\n", + "5324:\tlearn: 0.0529401\ttotal: 32.5s\tremaining: 28.6s\n", + "5325:\tlearn: 0.0529240\ttotal: 32.5s\tremaining: 28.5s\n", + "5326:\tlearn: 0.0529073\ttotal: 32.5s\tremaining: 28.5s\n", + "5327:\tlearn: 0.0529026\ttotal: 32.5s\tremaining: 28.5s\n", + "5328:\tlearn: 0.0528856\ttotal: 32.6s\tremaining: 28.5s\n", + "5329:\tlearn: 0.0528664\ttotal: 32.6s\tremaining: 28.5s\n", + "5330:\tlearn: 0.0528520\ttotal: 32.6s\tremaining: 28.5s\n", + "5331:\tlearn: 0.0528383\ttotal: 32.6s\tremaining: 28.5s\n", + "5332:\tlearn: 0.0528249\ttotal: 32.6s\tremaining: 28.5s\n", + "5333:\tlearn: 0.0528127\ttotal: 32.6s\tremaining: 28.5s\n", + "5334:\tlearn: 0.0527881\ttotal: 32.6s\tremaining: 28.5s\n", + "5335:\tlearn: 0.0527752\ttotal: 32.6s\tremaining: 28.5s\n", + "5336:\tlearn: 0.0527667\ttotal: 32.6s\tremaining: 28.5s\n", + "5337:\tlearn: 0.0527478\ttotal: 32.6s\tremaining: 28.5s\n", + "5338:\tlearn: 0.0527273\ttotal: 32.6s\tremaining: 28.5s\n", + "5339:\tlearn: 0.0527145\ttotal: 32.6s\tremaining: 28.5s\n", + "5340:\tlearn: 0.0526998\ttotal: 32.6s\tremaining: 28.4s\n", + "5341:\tlearn: 0.0526889\ttotal: 32.6s\tremaining: 28.4s\n", + "5342:\tlearn: 0.0526807\ttotal: 32.6s\tremaining: 28.4s\n", + "5343:\tlearn: 0.0526669\ttotal: 32.6s\tremaining: 28.4s\n", + "5344:\tlearn: 0.0526516\ttotal: 32.6s\tremaining: 28.4s\n", + "5345:\tlearn: 0.0526451\ttotal: 32.6s\tremaining: 28.4s\n", + "5346:\tlearn: 0.0526274\ttotal: 32.6s\tremaining: 28.4s\n", + "5347:\tlearn: 0.0526158\ttotal: 32.6s\tremaining: 28.4s\n", + "5348:\tlearn: 0.0526034\ttotal: 32.7s\tremaining: 28.4s\n", + "5349:\tlearn: 0.0525928\ttotal: 32.7s\tremaining: 28.4s\n", + "5350:\tlearn: 0.0525797\ttotal: 32.7s\tremaining: 28.4s\n", + "5351:\tlearn: 0.0525588\ttotal: 32.7s\tremaining: 28.4s\n", + "5352:\tlearn: 0.0525511\ttotal: 32.7s\tremaining: 28.4s\n", + "5353:\tlearn: 0.0525307\ttotal: 32.7s\tremaining: 28.4s\n", + "5354:\tlearn: 0.0525212\ttotal: 32.7s\tremaining: 28.4s\n", + "5355:\tlearn: 0.0525029\ttotal: 32.7s\tremaining: 28.4s\n", + "5356:\tlearn: 0.0524843\ttotal: 32.7s\tremaining: 28.4s\n", + "5357:\tlearn: 0.0524758\ttotal: 32.7s\tremaining: 28.3s\n", + "5358:\tlearn: 0.0524632\ttotal: 32.7s\tremaining: 28.3s\n", + "5359:\tlearn: 0.0524515\ttotal: 32.7s\tremaining: 28.3s\n", + "5360:\tlearn: 0.0524334\ttotal: 32.7s\tremaining: 28.3s\n", + "5361:\tlearn: 0.0524208\ttotal: 32.7s\tremaining: 28.3s\n", + "5362:\tlearn: 0.0524140\ttotal: 32.7s\tremaining: 28.3s\n", + "5363:\tlearn: 0.0524021\ttotal: 32.7s\tremaining: 28.3s\n", + "5364:\tlearn: 0.0523909\ttotal: 32.7s\tremaining: 28.3s\n", + "5365:\tlearn: 0.0523810\ttotal: 32.8s\tremaining: 28.3s\n", + "5366:\tlearn: 0.0523683\ttotal: 32.8s\tremaining: 28.3s\n", + "5367:\tlearn: 0.0523442\ttotal: 32.8s\tremaining: 28.3s\n", + "5368:\tlearn: 0.0523332\ttotal: 32.8s\tremaining: 28.3s\n", + "5369:\tlearn: 0.0523129\ttotal: 32.8s\tremaining: 28.3s\n", + "5370:\tlearn: 0.0523043\ttotal: 32.8s\tremaining: 28.3s\n", + "5371:\tlearn: 0.0522915\ttotal: 32.8s\tremaining: 28.2s\n", + "5372:\tlearn: 0.0522826\ttotal: 32.8s\tremaining: 28.2s\n", + "5373:\tlearn: 0.0522719\ttotal: 32.8s\tremaining: 28.2s\n", + "5374:\tlearn: 0.0522651\ttotal: 32.8s\tremaining: 28.2s\n", + "5375:\tlearn: 0.0522584\ttotal: 32.8s\tremaining: 28.2s\n", + "5376:\tlearn: 0.0522514\ttotal: 32.8s\tremaining: 28.2s\n", + "5377:\tlearn: 0.0522437\ttotal: 32.8s\tremaining: 28.2s\n", + "5378:\tlearn: 0.0522347\ttotal: 32.8s\tremaining: 28.2s\n", + "5379:\tlearn: 0.0522268\ttotal: 32.8s\tremaining: 28.2s\n", + "5380:\tlearn: 0.0522189\ttotal: 32.8s\tremaining: 28.2s\n", + "5381:\tlearn: 0.0522035\ttotal: 32.8s\tremaining: 28.2s\n", + "5382:\tlearn: 0.0521900\ttotal: 32.8s\tremaining: 28.2s\n", + "5383:\tlearn: 0.0521746\ttotal: 32.8s\tremaining: 28.2s\n", + "5384:\tlearn: 0.0521538\ttotal: 32.8s\tremaining: 28.2s\n", + "5385:\tlearn: 0.0521319\ttotal: 32.9s\tremaining: 28.1s\n", + "5386:\tlearn: 0.0521131\ttotal: 32.9s\tremaining: 28.1s\n", + "5387:\tlearn: 0.0520998\ttotal: 32.9s\tremaining: 28.1s\n", + "5388:\tlearn: 0.0520826\ttotal: 32.9s\tremaining: 28.1s\n", + "5389:\tlearn: 0.0520665\ttotal: 32.9s\tremaining: 28.1s\n", + "5390:\tlearn: 0.0520496\ttotal: 32.9s\tremaining: 28.1s\n", + "5391:\tlearn: 0.0520382\ttotal: 32.9s\tremaining: 28.1s\n", + "5392:\tlearn: 0.0520171\ttotal: 32.9s\tremaining: 28.1s\n", + "5393:\tlearn: 0.0519979\ttotal: 32.9s\tremaining: 28.1s\n", + "5394:\tlearn: 0.0519918\ttotal: 32.9s\tremaining: 28.1s\n", + "5395:\tlearn: 0.0519754\ttotal: 32.9s\tremaining: 28.1s\n", + "5396:\tlearn: 0.0519628\ttotal: 32.9s\tremaining: 28.1s\n", + "5397:\tlearn: 0.0519572\ttotal: 32.9s\tremaining: 28.1s\n", + "5398:\tlearn: 0.0519439\ttotal: 32.9s\tremaining: 28.1s\n", + "5399:\tlearn: 0.0519384\ttotal: 32.9s\tremaining: 28s\n", + "5400:\tlearn: 0.0519255\ttotal: 32.9s\tremaining: 28s\n", + "5401:\tlearn: 0.0519123\ttotal: 32.9s\tremaining: 28s\n", + "5402:\tlearn: 0.0518917\ttotal: 32.9s\tremaining: 28s\n", + "5403:\tlearn: 0.0518779\ttotal: 32.9s\tremaining: 28s\n", + "5404:\tlearn: 0.0518580\ttotal: 33s\tremaining: 28s\n", + "5405:\tlearn: 0.0518430\ttotal: 33s\tremaining: 28s\n", + "5406:\tlearn: 0.0518302\ttotal: 33s\tremaining: 28s\n", + "5407:\tlearn: 0.0518183\ttotal: 33s\tremaining: 28s\n", + "5408:\tlearn: 0.0518026\ttotal: 33s\tremaining: 28s\n", + "5409:\tlearn: 0.0517946\ttotal: 33s\tremaining: 28s\n", + "5410:\tlearn: 0.0517896\ttotal: 33s\tremaining: 28s\n", + "5411:\tlearn: 0.0517677\ttotal: 33s\tremaining: 28s\n", + "5412:\tlearn: 0.0517446\ttotal: 33s\tremaining: 28s\n", + "5413:\tlearn: 0.0517337\ttotal: 33s\tremaining: 28s\n", + "5414:\tlearn: 0.0517211\ttotal: 33s\tremaining: 27.9s\n", + "5415:\tlearn: 0.0517082\ttotal: 33s\tremaining: 27.9s\n", + "5416:\tlearn: 0.0516933\ttotal: 33s\tremaining: 27.9s\n", + "5417:\tlearn: 0.0516829\ttotal: 33s\tremaining: 27.9s\n", + "5418:\tlearn: 0.0516757\ttotal: 33s\tremaining: 27.9s\n", + "5419:\tlearn: 0.0516676\ttotal: 33s\tremaining: 27.9s\n", + "5420:\tlearn: 0.0516516\ttotal: 33s\tremaining: 27.9s\n", + "5421:\tlearn: 0.0516416\ttotal: 33s\tremaining: 27.9s\n", + "5422:\tlearn: 0.0516269\ttotal: 33s\tremaining: 27.9s\n", + "5423:\tlearn: 0.0516174\ttotal: 33s\tremaining: 27.9s\n", + "5424:\tlearn: 0.0516066\ttotal: 33.1s\tremaining: 27.9s\n", + "5425:\tlearn: 0.0515936\ttotal: 33.1s\tremaining: 27.9s\n", + "5426:\tlearn: 0.0515844\ttotal: 33.1s\tremaining: 27.9s\n", + "5427:\tlearn: 0.0515703\ttotal: 33.1s\tremaining: 27.9s\n", + "5428:\tlearn: 0.0515609\ttotal: 33.1s\tremaining: 27.9s\n", + "5429:\tlearn: 0.0515501\ttotal: 33.1s\tremaining: 27.9s\n", + "5430:\tlearn: 0.0515443\ttotal: 33.1s\tremaining: 27.8s\n", + "5431:\tlearn: 0.0515249\ttotal: 33.1s\tremaining: 27.8s\n", + "5432:\tlearn: 0.0515181\ttotal: 33.1s\tremaining: 27.8s\n", + "5433:\tlearn: 0.0515101\ttotal: 33.1s\tremaining: 27.8s\n", + "5434:\tlearn: 0.0514972\ttotal: 33.1s\tremaining: 27.8s\n", + "5435:\tlearn: 0.0514902\ttotal: 33.1s\tremaining: 27.8s\n", + "5436:\tlearn: 0.0514787\ttotal: 33.1s\tremaining: 27.8s\n", + "5437:\tlearn: 0.0514594\ttotal: 33.1s\tremaining: 27.8s\n", + "5438:\tlearn: 0.0514410\ttotal: 33.1s\tremaining: 27.8s\n", + "5439:\tlearn: 0.0514224\ttotal: 33.1s\tremaining: 27.8s\n", + "5440:\tlearn: 0.0514118\ttotal: 33.1s\tremaining: 27.8s\n", + "5441:\tlearn: 0.0513959\ttotal: 33.1s\tremaining: 27.8s\n", + "5442:\tlearn: 0.0513854\ttotal: 33.2s\tremaining: 27.8s\n", + "5443:\tlearn: 0.0513703\ttotal: 33.2s\tremaining: 27.7s\n", + "5444:\tlearn: 0.0513633\ttotal: 33.2s\tremaining: 27.7s\n", + "5445:\tlearn: 0.0513492\ttotal: 33.2s\tremaining: 27.7s\n", + "5446:\tlearn: 0.0513416\ttotal: 33.2s\tremaining: 27.7s\n", + "5447:\tlearn: 0.0513220\ttotal: 33.2s\tremaining: 27.7s\n", + "5448:\tlearn: 0.0513170\ttotal: 33.2s\tremaining: 27.7s\n", + "5449:\tlearn: 0.0513061\ttotal: 33.2s\tremaining: 27.7s\n", + "5450:\tlearn: 0.0512926\ttotal: 33.2s\tremaining: 27.7s\n", + "5451:\tlearn: 0.0512803\ttotal: 33.2s\tremaining: 27.7s\n", + "5452:\tlearn: 0.0512743\ttotal: 33.2s\tremaining: 27.7s\n", + "5453:\tlearn: 0.0512644\ttotal: 33.2s\tremaining: 27.7s\n", + "5454:\tlearn: 0.0512511\ttotal: 33.2s\tremaining: 27.7s\n", + "5455:\tlearn: 0.0512371\ttotal: 33.2s\tremaining: 27.7s\n", + "5456:\tlearn: 0.0512206\ttotal: 33.2s\tremaining: 27.7s\n", + "5457:\tlearn: 0.0512107\ttotal: 33.2s\tremaining: 27.7s\n", + "5458:\tlearn: 0.0511963\ttotal: 33.2s\tremaining: 27.6s\n", + "5459:\tlearn: 0.0511765\ttotal: 33.2s\tremaining: 27.6s\n", + "5460:\tlearn: 0.0511662\ttotal: 33.2s\tremaining: 27.6s\n", + "5461:\tlearn: 0.0511524\ttotal: 33.2s\tremaining: 27.6s\n", + "5462:\tlearn: 0.0511353\ttotal: 33.3s\tremaining: 27.6s\n", + "5463:\tlearn: 0.0511165\ttotal: 33.3s\tremaining: 27.6s\n", + "5464:\tlearn: 0.0511076\ttotal: 33.3s\tremaining: 27.6s\n", + "5465:\tlearn: 0.0510974\ttotal: 33.3s\tremaining: 27.6s\n", + "5466:\tlearn: 0.0510844\ttotal: 33.3s\tremaining: 27.6s\n", + "5467:\tlearn: 0.0510796\ttotal: 33.3s\tremaining: 27.6s\n", + "5468:\tlearn: 0.0510718\ttotal: 33.3s\tremaining: 27.6s\n", + "5469:\tlearn: 0.0510634\ttotal: 33.3s\tremaining: 27.6s\n", + "5470:\tlearn: 0.0510525\ttotal: 33.3s\tremaining: 27.6s\n", + "5471:\tlearn: 0.0510420\ttotal: 33.3s\tremaining: 27.6s\n", + "5472:\tlearn: 0.0510277\ttotal: 33.3s\tremaining: 27.6s\n", + "5473:\tlearn: 0.0510113\ttotal: 33.3s\tremaining: 27.6s\n", + "5474:\tlearn: 0.0509992\ttotal: 33.3s\tremaining: 27.6s\n", + "5475:\tlearn: 0.0509772\ttotal: 33.3s\tremaining: 27.5s\n", + "5476:\tlearn: 0.0509552\ttotal: 33.3s\tremaining: 27.5s\n", + "5477:\tlearn: 0.0509470\ttotal: 33.3s\tremaining: 27.5s\n", + "5478:\tlearn: 0.0509415\ttotal: 33.4s\tremaining: 27.5s\n", + "5479:\tlearn: 0.0509351\ttotal: 33.4s\tremaining: 27.5s\n", + "5480:\tlearn: 0.0509229\ttotal: 33.4s\tremaining: 27.5s\n", + "5481:\tlearn: 0.0509150\ttotal: 33.4s\tremaining: 27.5s\n", + "5482:\tlearn: 0.0509067\ttotal: 33.4s\tremaining: 27.5s\n", + "5483:\tlearn: 0.0508880\ttotal: 33.4s\tremaining: 27.5s\n", + "5484:\tlearn: 0.0508751\ttotal: 33.4s\tremaining: 27.5s\n", + "5485:\tlearn: 0.0508608\ttotal: 33.4s\tremaining: 27.5s\n", + "5486:\tlearn: 0.0508545\ttotal: 33.4s\tremaining: 27.5s\n", + "5487:\tlearn: 0.0508362\ttotal: 33.4s\tremaining: 27.5s\n", + "5488:\tlearn: 0.0508232\ttotal: 33.4s\tremaining: 27.4s\n", + "5489:\tlearn: 0.0508083\ttotal: 33.4s\tremaining: 27.4s\n", + "5490:\tlearn: 0.0507993\ttotal: 33.4s\tremaining: 27.4s\n", + "5491:\tlearn: 0.0507861\ttotal: 33.4s\tremaining: 27.4s\n", + "5492:\tlearn: 0.0507737\ttotal: 33.4s\tremaining: 27.4s\n", + "5493:\tlearn: 0.0507646\ttotal: 33.4s\tremaining: 27.4s\n", + "5494:\tlearn: 0.0507519\ttotal: 33.4s\tremaining: 27.4s\n", + "5495:\tlearn: 0.0507380\ttotal: 33.4s\tremaining: 27.4s\n", + "5496:\tlearn: 0.0507230\ttotal: 33.4s\tremaining: 27.4s\n", + "5497:\tlearn: 0.0507071\ttotal: 33.4s\tremaining: 27.4s\n", + "5498:\tlearn: 0.0506984\ttotal: 33.5s\tremaining: 27.4s\n", + "5499:\tlearn: 0.0506897\ttotal: 33.5s\tremaining: 27.4s\n", + "5500:\tlearn: 0.0506758\ttotal: 33.5s\tremaining: 27.4s\n", + "5501:\tlearn: 0.0506667\ttotal: 33.5s\tremaining: 27.4s\n", + "5502:\tlearn: 0.0506556\ttotal: 33.5s\tremaining: 27.4s\n", + "5503:\tlearn: 0.0506446\ttotal: 33.5s\tremaining: 27.4s\n", + "5504:\tlearn: 0.0506302\ttotal: 33.5s\tremaining: 27.3s\n", + "5505:\tlearn: 0.0506248\ttotal: 33.5s\tremaining: 27.3s\n", + "5506:\tlearn: 0.0506134\ttotal: 33.5s\tremaining: 27.3s\n", + "5507:\tlearn: 0.0506026\ttotal: 33.5s\tremaining: 27.3s\n", + "5508:\tlearn: 0.0505908\ttotal: 33.5s\tremaining: 27.3s\n", + "5509:\tlearn: 0.0505743\ttotal: 33.5s\tremaining: 27.3s\n", + "5510:\tlearn: 0.0505574\ttotal: 33.5s\tremaining: 27.3s\n", + "5511:\tlearn: 0.0505415\ttotal: 33.5s\tremaining: 27.3s\n", + "5512:\tlearn: 0.0505307\ttotal: 33.5s\tremaining: 27.3s\n", + "5513:\tlearn: 0.0505153\ttotal: 33.5s\tremaining: 27.3s\n", + "5514:\tlearn: 0.0505014\ttotal: 33.5s\tremaining: 27.3s\n", + "5515:\tlearn: 0.0504923\ttotal: 33.5s\tremaining: 27.3s\n", + "5516:\tlearn: 0.0504771\ttotal: 33.5s\tremaining: 27.3s\n", + "5517:\tlearn: 0.0504613\ttotal: 33.6s\tremaining: 27.3s\n", + "5518:\tlearn: 0.0504439\ttotal: 33.6s\tremaining: 27.2s\n", + "5519:\tlearn: 0.0504281\ttotal: 33.6s\tremaining: 27.2s\n", + "5520:\tlearn: 0.0504216\ttotal: 33.6s\tremaining: 27.2s\n", + "5521:\tlearn: 0.0504059\ttotal: 33.6s\tremaining: 27.2s\n", + "5522:\tlearn: 0.0503918\ttotal: 33.6s\tremaining: 27.2s\n", + "5523:\tlearn: 0.0503845\ttotal: 33.6s\tremaining: 27.2s\n", + "5524:\tlearn: 0.0503602\ttotal: 33.6s\tremaining: 27.2s\n", + "5525:\tlearn: 0.0503543\ttotal: 33.6s\tremaining: 27.2s\n", + "5526:\tlearn: 0.0503391\ttotal: 33.6s\tremaining: 27.2s\n", + "5527:\tlearn: 0.0503225\ttotal: 33.6s\tremaining: 27.2s\n", + "5528:\tlearn: 0.0503080\ttotal: 33.6s\tremaining: 27.2s\n", + "5529:\tlearn: 0.0502944\ttotal: 33.6s\tremaining: 27.2s\n", + "5530:\tlearn: 0.0502838\ttotal: 33.6s\tremaining: 27.2s\n", + "5531:\tlearn: 0.0502770\ttotal: 33.6s\tremaining: 27.2s\n", + "5532:\tlearn: 0.0502601\ttotal: 33.6s\tremaining: 27.1s\n", + "5533:\tlearn: 0.0502482\ttotal: 33.6s\tremaining: 27.1s\n", + "5534:\tlearn: 0.0502288\ttotal: 33.6s\tremaining: 27.1s\n", + "5535:\tlearn: 0.0502226\ttotal: 33.6s\tremaining: 27.1s\n", + "5536:\tlearn: 0.0502084\ttotal: 33.6s\tremaining: 27.1s\n", + "5537:\tlearn: 0.0501918\ttotal: 33.7s\tremaining: 27.1s\n", + "5538:\tlearn: 0.0501773\ttotal: 33.7s\tremaining: 27.1s\n", + "5539:\tlearn: 0.0501655\ttotal: 33.7s\tremaining: 27.1s\n", + "5540:\tlearn: 0.0501489\ttotal: 33.7s\tremaining: 27.1s\n", + "5541:\tlearn: 0.0501439\ttotal: 33.7s\tremaining: 27.1s\n", + "5542:\tlearn: 0.0501285\ttotal: 33.7s\tremaining: 27.1s\n", + "5543:\tlearn: 0.0501196\ttotal: 33.7s\tremaining: 27.1s\n", + "5544:\tlearn: 0.0501073\ttotal: 33.7s\tremaining: 27.1s\n", + "5545:\tlearn: 0.0500981\ttotal: 33.7s\tremaining: 27.1s\n", + "5546:\tlearn: 0.0500861\ttotal: 33.7s\tremaining: 27.1s\n", + "5547:\tlearn: 0.0500820\ttotal: 33.7s\tremaining: 27.1s\n", + "5548:\tlearn: 0.0500761\ttotal: 33.7s\tremaining: 27s\n", + "5549:\tlearn: 0.0500667\ttotal: 33.7s\tremaining: 27s\n", + "5550:\tlearn: 0.0500528\ttotal: 33.7s\tremaining: 27s\n", + "5551:\tlearn: 0.0500376\ttotal: 33.7s\tremaining: 27s\n", + "5552:\tlearn: 0.0500210\ttotal: 33.7s\tremaining: 27s\n", + "5553:\tlearn: 0.0500075\ttotal: 33.7s\tremaining: 27s\n", + "5554:\tlearn: 0.0499901\ttotal: 33.7s\tremaining: 27s\n", + "5555:\tlearn: 0.0499737\ttotal: 33.8s\tremaining: 27s\n", + "5556:\tlearn: 0.0499648\ttotal: 33.8s\tremaining: 27s\n", + "5557:\tlearn: 0.0499570\ttotal: 33.8s\tremaining: 27s\n", + "5558:\tlearn: 0.0499467\ttotal: 33.8s\tremaining: 27s\n", + "5559:\tlearn: 0.0499385\ttotal: 33.8s\tremaining: 27s\n", + "5560:\tlearn: 0.0499258\ttotal: 33.8s\tremaining: 27s\n", + "5561:\tlearn: 0.0499150\ttotal: 33.8s\tremaining: 27s\n", + "5562:\tlearn: 0.0499025\ttotal: 33.8s\tremaining: 26.9s\n", + "5563:\tlearn: 0.0498987\ttotal: 33.8s\tremaining: 26.9s\n", + "5564:\tlearn: 0.0498903\ttotal: 33.8s\tremaining: 26.9s\n", + "5565:\tlearn: 0.0498719\ttotal: 33.8s\tremaining: 26.9s\n", + "5566:\tlearn: 0.0498587\ttotal: 33.8s\tremaining: 26.9s\n", + "5567:\tlearn: 0.0498485\ttotal: 33.8s\tremaining: 26.9s\n", + "5568:\tlearn: 0.0498411\ttotal: 33.8s\tremaining: 26.9s\n", + "5569:\tlearn: 0.0498279\ttotal: 33.8s\tremaining: 26.9s\n", + "5570:\tlearn: 0.0498138\ttotal: 33.8s\tremaining: 26.9s\n", + "5571:\tlearn: 0.0497979\ttotal: 33.8s\tremaining: 26.9s\n", + "5572:\tlearn: 0.0497871\ttotal: 33.8s\tremaining: 26.9s\n", + "5573:\tlearn: 0.0497782\ttotal: 33.8s\tremaining: 26.9s\n", + "5574:\tlearn: 0.0497686\ttotal: 33.8s\tremaining: 26.9s\n", + "5575:\tlearn: 0.0497642\ttotal: 33.9s\tremaining: 26.9s\n", + "5576:\tlearn: 0.0497590\ttotal: 33.9s\tremaining: 26.9s\n", + "5577:\tlearn: 0.0497488\ttotal: 33.9s\tremaining: 26.8s\n", + "5578:\tlearn: 0.0497380\ttotal: 33.9s\tremaining: 26.8s\n", + "5579:\tlearn: 0.0497275\ttotal: 33.9s\tremaining: 26.8s\n", + "5580:\tlearn: 0.0497123\ttotal: 33.9s\tremaining: 26.8s\n", + "5581:\tlearn: 0.0497021\ttotal: 33.9s\tremaining: 26.8s\n", + "5582:\tlearn: 0.0496966\ttotal: 33.9s\tremaining: 26.8s\n", + "5583:\tlearn: 0.0496819\ttotal: 33.9s\tremaining: 26.8s\n", + "5584:\tlearn: 0.0496718\ttotal: 33.9s\tremaining: 26.8s\n", + "5585:\tlearn: 0.0496602\ttotal: 33.9s\tremaining: 26.8s\n", + "5586:\tlearn: 0.0496527\ttotal: 33.9s\tremaining: 26.8s\n", + "5587:\tlearn: 0.0496415\ttotal: 33.9s\tremaining: 26.8s\n", + "5588:\tlearn: 0.0496373\ttotal: 33.9s\tremaining: 26.8s\n", + "5589:\tlearn: 0.0496200\ttotal: 33.9s\tremaining: 26.8s\n", + "5590:\tlearn: 0.0496060\ttotal: 33.9s\tremaining: 26.8s\n", + "5591:\tlearn: 0.0495880\ttotal: 33.9s\tremaining: 26.8s\n", + "5592:\tlearn: 0.0495798\ttotal: 33.9s\tremaining: 26.7s\n", + "5593:\tlearn: 0.0495661\ttotal: 34s\tremaining: 26.7s\n", + "5594:\tlearn: 0.0495556\ttotal: 34s\tremaining: 26.7s\n", + "5595:\tlearn: 0.0495481\ttotal: 34s\tremaining: 26.7s\n", + "5596:\tlearn: 0.0495376\ttotal: 34s\tremaining: 26.7s\n", + "5597:\tlearn: 0.0495323\ttotal: 34s\tremaining: 26.7s\n", + "5598:\tlearn: 0.0495256\ttotal: 34s\tremaining: 26.7s\n", + "5599:\tlearn: 0.0495128\ttotal: 34s\tremaining: 26.7s\n", + "5600:\tlearn: 0.0495023\ttotal: 34s\tremaining: 26.7s\n", + "5601:\tlearn: 0.0494923\ttotal: 34s\tremaining: 26.7s\n", + "5602:\tlearn: 0.0494798\ttotal: 34s\tremaining: 26.7s\n", + "5603:\tlearn: 0.0494747\ttotal: 34s\tremaining: 26.7s\n", + "5604:\tlearn: 0.0494611\ttotal: 34s\tremaining: 26.7s\n", + "5605:\tlearn: 0.0494489\ttotal: 34s\tremaining: 26.7s\n", + "5606:\tlearn: 0.0494426\ttotal: 34s\tremaining: 26.6s\n", + "5607:\tlearn: 0.0494266\ttotal: 34s\tremaining: 26.6s\n", + "5608:\tlearn: 0.0494097\ttotal: 34s\tremaining: 26.6s\n", + "5609:\tlearn: 0.0494036\ttotal: 34s\tremaining: 26.6s\n", + "5610:\tlearn: 0.0493920\ttotal: 34s\tremaining: 26.6s\n", + "5611:\tlearn: 0.0493826\ttotal: 34s\tremaining: 26.6s\n", + "5612:\tlearn: 0.0493683\ttotal: 34s\tremaining: 26.6s\n", + "5613:\tlearn: 0.0493565\ttotal: 34.1s\tremaining: 26.6s\n", + "5614:\tlearn: 0.0493420\ttotal: 34.1s\tremaining: 26.6s\n", + "5615:\tlearn: 0.0493266\ttotal: 34.1s\tremaining: 26.6s\n", + "5616:\tlearn: 0.0493112\ttotal: 34.1s\tremaining: 26.6s\n", + "5617:\tlearn: 0.0493074\ttotal: 34.1s\tremaining: 26.6s\n", + "5618:\tlearn: 0.0492986\ttotal: 34.1s\tremaining: 26.6s\n", + "5619:\tlearn: 0.0492924\ttotal: 34.1s\tremaining: 26.6s\n", + "5620:\tlearn: 0.0492794\ttotal: 34.1s\tremaining: 26.6s\n", + "5621:\tlearn: 0.0492643\ttotal: 34.1s\tremaining: 26.6s\n", + "5622:\tlearn: 0.0492498\ttotal: 34.1s\tremaining: 26.6s\n", + "5623:\tlearn: 0.0492360\ttotal: 34.1s\tremaining: 26.5s\n", + "5624:\tlearn: 0.0492268\ttotal: 34.1s\tremaining: 26.5s\n", + "5625:\tlearn: 0.0492088\ttotal: 34.1s\tremaining: 26.5s\n", + "5626:\tlearn: 0.0491957\ttotal: 34.1s\tremaining: 26.5s\n", + "5627:\tlearn: 0.0491859\ttotal: 34.1s\tremaining: 26.5s\n", + "5628:\tlearn: 0.0491776\ttotal: 34.1s\tremaining: 26.5s\n", + "5629:\tlearn: 0.0491700\ttotal: 34.1s\tremaining: 26.5s\n", + "5630:\tlearn: 0.0491586\ttotal: 34.2s\tremaining: 26.5s\n", + "5631:\tlearn: 0.0491469\ttotal: 34.2s\tremaining: 26.5s\n", + "5632:\tlearn: 0.0491376\ttotal: 34.2s\tremaining: 26.5s\n", + "5633:\tlearn: 0.0491296\ttotal: 34.2s\tremaining: 26.5s\n", + "5634:\tlearn: 0.0491153\ttotal: 34.2s\tremaining: 26.5s\n", + "5635:\tlearn: 0.0491042\ttotal: 34.2s\tremaining: 26.5s\n", + "5636:\tlearn: 0.0490965\ttotal: 34.2s\tremaining: 26.5s\n", + "5637:\tlearn: 0.0490834\ttotal: 34.2s\tremaining: 26.5s\n", + "5638:\tlearn: 0.0490780\ttotal: 34.2s\tremaining: 26.4s\n", + "5639:\tlearn: 0.0490679\ttotal: 34.2s\tremaining: 26.4s\n", + "5640:\tlearn: 0.0490609\ttotal: 34.2s\tremaining: 26.4s\n", + "5641:\tlearn: 0.0490445\ttotal: 34.2s\tremaining: 26.4s\n", + "5642:\tlearn: 0.0490323\ttotal: 34.2s\tremaining: 26.4s\n", + "5643:\tlearn: 0.0490265\ttotal: 34.2s\tremaining: 26.4s\n", + "5644:\tlearn: 0.0490092\ttotal: 34.2s\tremaining: 26.4s\n", + "5645:\tlearn: 0.0489958\ttotal: 34.2s\tremaining: 26.4s\n", + "5646:\tlearn: 0.0489844\ttotal: 34.2s\tremaining: 26.4s\n", + "5647:\tlearn: 0.0489706\ttotal: 34.2s\tremaining: 26.4s\n", + "5648:\tlearn: 0.0489537\ttotal: 34.2s\tremaining: 26.4s\n", + "5649:\tlearn: 0.0489429\ttotal: 34.2s\tremaining: 26.4s\n", + "5650:\tlearn: 0.0489349\ttotal: 34.3s\tremaining: 26.4s\n", + "5651:\tlearn: 0.0489248\ttotal: 34.3s\tremaining: 26.4s\n", + "5652:\tlearn: 0.0489145\ttotal: 34.3s\tremaining: 26.4s\n", + "5653:\tlearn: 0.0489031\ttotal: 34.3s\tremaining: 26.4s\n", + "5654:\tlearn: 0.0488922\ttotal: 34.3s\tremaining: 26.4s\n", + "5655:\tlearn: 0.0488797\ttotal: 34.3s\tremaining: 26.3s\n", + "5656:\tlearn: 0.0488649\ttotal: 34.3s\tremaining: 26.3s\n", + "5657:\tlearn: 0.0488565\ttotal: 34.3s\tremaining: 26.3s\n", + "5658:\tlearn: 0.0488469\ttotal: 34.3s\tremaining: 26.3s\n", + "5659:\tlearn: 0.0488381\ttotal: 34.3s\tremaining: 26.3s\n", + "5660:\tlearn: 0.0488309\ttotal: 34.3s\tremaining: 26.3s\n", + "5661:\tlearn: 0.0488207\ttotal: 34.3s\tremaining: 26.3s\n", + "5662:\tlearn: 0.0488071\ttotal: 34.3s\tremaining: 26.3s\n", + "5663:\tlearn: 0.0487954\ttotal: 34.3s\tremaining: 26.3s\n", + "5664:\tlearn: 0.0487833\ttotal: 34.3s\tremaining: 26.3s\n", + "5665:\tlearn: 0.0487777\ttotal: 34.3s\tremaining: 26.3s\n", + "5666:\tlearn: 0.0487665\ttotal: 34.4s\tremaining: 26.3s\n", + "5667:\tlearn: 0.0487499\ttotal: 34.4s\tremaining: 26.3s\n", + "5668:\tlearn: 0.0487361\ttotal: 34.4s\tremaining: 26.3s\n", + "5669:\tlearn: 0.0487239\ttotal: 34.4s\tremaining: 26.2s\n", + "5670:\tlearn: 0.0487157\ttotal: 34.4s\tremaining: 26.2s\n", + "5671:\tlearn: 0.0487107\ttotal: 34.4s\tremaining: 26.2s\n", + "5672:\tlearn: 0.0486996\ttotal: 34.4s\tremaining: 26.2s\n", + "5673:\tlearn: 0.0486889\ttotal: 34.4s\tremaining: 26.2s\n", + "5674:\tlearn: 0.0486817\ttotal: 34.4s\tremaining: 26.2s\n", + "5675:\tlearn: 0.0486684\ttotal: 34.4s\tremaining: 26.2s\n", + "5676:\tlearn: 0.0486585\ttotal: 34.4s\tremaining: 26.2s\n", + "5677:\tlearn: 0.0486420\ttotal: 34.4s\tremaining: 26.2s\n", + "5678:\tlearn: 0.0486301\ttotal: 34.4s\tremaining: 26.2s\n", + "5679:\tlearn: 0.0486160\ttotal: 34.4s\tremaining: 26.2s\n", + "5680:\tlearn: 0.0486097\ttotal: 34.4s\tremaining: 26.2s\n", + "5681:\tlearn: 0.0485944\ttotal: 34.4s\tremaining: 26.2s\n", + "5682:\tlearn: 0.0485825\ttotal: 34.4s\tremaining: 26.2s\n", + "5683:\tlearn: 0.0485716\ttotal: 34.4s\tremaining: 26.1s\n", + "5684:\tlearn: 0.0485507\ttotal: 34.4s\tremaining: 26.1s\n", + "5685:\tlearn: 0.0485346\ttotal: 34.4s\tremaining: 26.1s\n", + "5686:\tlearn: 0.0485220\ttotal: 34.5s\tremaining: 26.1s\n", + "5687:\tlearn: 0.0485092\ttotal: 34.5s\tremaining: 26.1s\n", + "5688:\tlearn: 0.0485033\ttotal: 34.5s\tremaining: 26.1s\n", + "5689:\tlearn: 0.0484968\ttotal: 34.5s\tremaining: 26.1s\n", + "5690:\tlearn: 0.0484776\ttotal: 34.5s\tremaining: 26.1s\n", + "5691:\tlearn: 0.0484678\ttotal: 34.5s\tremaining: 26.1s\n", + "5692:\tlearn: 0.0484521\ttotal: 34.5s\tremaining: 26.1s\n", + "5693:\tlearn: 0.0484361\ttotal: 34.5s\tremaining: 26.1s\n", + "5694:\tlearn: 0.0484280\ttotal: 34.5s\tremaining: 26.1s\n", + "5695:\tlearn: 0.0484118\ttotal: 34.5s\tremaining: 26.1s\n", + "5696:\tlearn: 0.0484059\ttotal: 34.5s\tremaining: 26.1s\n", + "5697:\tlearn: 0.0483980\ttotal: 34.5s\tremaining: 26.1s\n", + "5698:\tlearn: 0.0483898\ttotal: 34.5s\tremaining: 26.1s\n", + "5699:\tlearn: 0.0483839\ttotal: 34.5s\tremaining: 26s\n", + "5700:\tlearn: 0.0483702\ttotal: 34.5s\tremaining: 26s\n", + "5701:\tlearn: 0.0483577\ttotal: 34.5s\tremaining: 26s\n", + "5702:\tlearn: 0.0483493\ttotal: 34.5s\tremaining: 26s\n", + "5703:\tlearn: 0.0483359\ttotal: 34.5s\tremaining: 26s\n", + "5704:\tlearn: 0.0483241\ttotal: 34.6s\tremaining: 26s\n", + "5705:\tlearn: 0.0483059\ttotal: 34.6s\tremaining: 26s\n", + "5706:\tlearn: 0.0482973\ttotal: 34.6s\tremaining: 26s\n", + "5707:\tlearn: 0.0482875\ttotal: 34.6s\tremaining: 26s\n", + "5708:\tlearn: 0.0482666\ttotal: 34.6s\tremaining: 26s\n", + "5709:\tlearn: 0.0482553\ttotal: 34.6s\tremaining: 26s\n", + "5710:\tlearn: 0.0482371\ttotal: 34.6s\tremaining: 26s\n", + "5711:\tlearn: 0.0482301\ttotal: 34.6s\tremaining: 26s\n", + "5712:\tlearn: 0.0482226\ttotal: 34.6s\tremaining: 26s\n", + "5713:\tlearn: 0.0482099\ttotal: 34.6s\tremaining: 26s\n", + "5714:\tlearn: 0.0481982\ttotal: 34.6s\tremaining: 25.9s\n", + "5715:\tlearn: 0.0481869\ttotal: 34.6s\tremaining: 25.9s\n", + "5716:\tlearn: 0.0481805\ttotal: 34.6s\tremaining: 25.9s\n", + "5717:\tlearn: 0.0481684\ttotal: 34.6s\tremaining: 25.9s\n", + "5718:\tlearn: 0.0481528\ttotal: 34.6s\tremaining: 25.9s\n", + "5719:\tlearn: 0.0481349\ttotal: 34.6s\tremaining: 25.9s\n", + "5720:\tlearn: 0.0481267\ttotal: 34.6s\tremaining: 25.9s\n", + "5721:\tlearn: 0.0481228\ttotal: 34.6s\tremaining: 25.9s\n", + "5722:\tlearn: 0.0481140\ttotal: 34.6s\tremaining: 25.9s\n", + "5723:\tlearn: 0.0481053\ttotal: 34.6s\tremaining: 25.9s\n", + "5724:\tlearn: 0.0480960\ttotal: 34.7s\tremaining: 25.9s\n", + "5725:\tlearn: 0.0480821\ttotal: 34.7s\tremaining: 25.9s\n", + "5726:\tlearn: 0.0480684\ttotal: 34.7s\tremaining: 25.9s\n", + "5727:\tlearn: 0.0480573\ttotal: 34.7s\tremaining: 25.9s\n", + "5728:\tlearn: 0.0480485\ttotal: 34.7s\tremaining: 25.8s\n", + "5729:\tlearn: 0.0480412\ttotal: 34.7s\tremaining: 25.8s\n", + "5730:\tlearn: 0.0480281\ttotal: 34.7s\tremaining: 25.8s\n", + "5731:\tlearn: 0.0480114\ttotal: 34.7s\tremaining: 25.8s\n", + "5732:\tlearn: 0.0480048\ttotal: 34.7s\tremaining: 25.8s\n", + "5733:\tlearn: 0.0479939\ttotal: 34.7s\tremaining: 25.8s\n", + "5734:\tlearn: 0.0479801\ttotal: 34.7s\tremaining: 25.8s\n", + "5735:\tlearn: 0.0479733\ttotal: 34.7s\tremaining: 25.8s\n", + "5736:\tlearn: 0.0479659\ttotal: 34.7s\tremaining: 25.8s\n", + "5737:\tlearn: 0.0479479\ttotal: 34.7s\tremaining: 25.8s\n", + "5738:\tlearn: 0.0479413\ttotal: 34.7s\tremaining: 25.8s\n", + "5739:\tlearn: 0.0479344\ttotal: 34.7s\tremaining: 25.8s\n", + "5740:\tlearn: 0.0479172\ttotal: 34.7s\tremaining: 25.8s\n", + "5741:\tlearn: 0.0479093\ttotal: 34.7s\tremaining: 25.8s\n", + "5742:\tlearn: 0.0478982\ttotal: 34.7s\tremaining: 25.8s\n", + "5743:\tlearn: 0.0478899\ttotal: 34.8s\tremaining: 25.8s\n", + "5744:\tlearn: 0.0478771\ttotal: 34.8s\tremaining: 25.7s\n", + "5745:\tlearn: 0.0478687\ttotal: 34.8s\tremaining: 25.7s\n", + "5746:\tlearn: 0.0478614\ttotal: 34.8s\tremaining: 25.7s\n", + "5747:\tlearn: 0.0478496\ttotal: 34.8s\tremaining: 25.7s\n", + "5748:\tlearn: 0.0478468\ttotal: 34.8s\tremaining: 25.7s\n", + "5749:\tlearn: 0.0478403\ttotal: 34.8s\tremaining: 25.7s\n", + "5750:\tlearn: 0.0478275\ttotal: 34.8s\tremaining: 25.7s\n", + "5751:\tlearn: 0.0478141\ttotal: 34.8s\tremaining: 25.7s\n", + "5752:\tlearn: 0.0478033\ttotal: 34.8s\tremaining: 25.7s\n", + "5753:\tlearn: 0.0477947\ttotal: 34.8s\tremaining: 25.7s\n", + "5754:\tlearn: 0.0477866\ttotal: 34.8s\tremaining: 25.7s\n", + "5755:\tlearn: 0.0477809\ttotal: 34.8s\tremaining: 25.7s\n", + "5756:\tlearn: 0.0477766\ttotal: 34.8s\tremaining: 25.7s\n", + "5757:\tlearn: 0.0477675\ttotal: 34.8s\tremaining: 25.7s\n", + "5758:\tlearn: 0.0477547\ttotal: 34.8s\tremaining: 25.7s\n", + "5759:\tlearn: 0.0477472\ttotal: 34.8s\tremaining: 25.6s\n", + "5760:\tlearn: 0.0477364\ttotal: 34.8s\tremaining: 25.6s\n", + "5761:\tlearn: 0.0477286\ttotal: 34.8s\tremaining: 25.6s\n", + "5762:\tlearn: 0.0477188\ttotal: 34.9s\tremaining: 25.6s\n", + "5763:\tlearn: 0.0477074\ttotal: 34.9s\tremaining: 25.6s\n", + "5764:\tlearn: 0.0476923\ttotal: 34.9s\tremaining: 25.6s\n", + "5765:\tlearn: 0.0476834\ttotal: 34.9s\tremaining: 25.6s\n", + "5766:\tlearn: 0.0476676\ttotal: 34.9s\tremaining: 25.6s\n", + "5767:\tlearn: 0.0476557\ttotal: 34.9s\tremaining: 25.6s\n", + "5768:\tlearn: 0.0476384\ttotal: 34.9s\tremaining: 25.6s\n", + "5769:\tlearn: 0.0476223\ttotal: 34.9s\tremaining: 25.6s\n", + "5770:\tlearn: 0.0476134\ttotal: 34.9s\tremaining: 25.6s\n", + "5771:\tlearn: 0.0476060\ttotal: 34.9s\tremaining: 25.6s\n", + "5772:\tlearn: 0.0476024\ttotal: 34.9s\tremaining: 25.6s\n", + "5773:\tlearn: 0.0475897\ttotal: 34.9s\tremaining: 25.6s\n", + "5774:\tlearn: 0.0475723\ttotal: 34.9s\tremaining: 25.5s\n", + "5775:\tlearn: 0.0475646\ttotal: 34.9s\tremaining: 25.5s\n", + "5776:\tlearn: 0.0475563\ttotal: 34.9s\tremaining: 25.5s\n", + "5777:\tlearn: 0.0475478\ttotal: 34.9s\tremaining: 25.5s\n", + "5778:\tlearn: 0.0475364\ttotal: 34.9s\tremaining: 25.5s\n", + "5779:\tlearn: 0.0475262\ttotal: 34.9s\tremaining: 25.5s\n", + "5780:\tlearn: 0.0475136\ttotal: 34.9s\tremaining: 25.5s\n", + "5781:\tlearn: 0.0475030\ttotal: 34.9s\tremaining: 25.5s\n", + "5782:\tlearn: 0.0474940\ttotal: 35s\tremaining: 25.5s\n", + "5783:\tlearn: 0.0474825\ttotal: 35s\tremaining: 25.5s\n", + "5784:\tlearn: 0.0474746\ttotal: 35s\tremaining: 25.5s\n", + "5785:\tlearn: 0.0474611\ttotal: 35s\tremaining: 25.5s\n", + "5786:\tlearn: 0.0474544\ttotal: 35s\tremaining: 25.5s\n", + "5787:\tlearn: 0.0474478\ttotal: 35s\tremaining: 25.5s\n", + "5788:\tlearn: 0.0474385\ttotal: 35s\tremaining: 25.4s\n", + "5789:\tlearn: 0.0474237\ttotal: 35s\tremaining: 25.4s\n", + "5790:\tlearn: 0.0474103\ttotal: 35s\tremaining: 25.4s\n", + "5791:\tlearn: 0.0473954\ttotal: 35s\tremaining: 25.4s\n", + "5792:\tlearn: 0.0473851\ttotal: 35s\tremaining: 25.4s\n", + "5793:\tlearn: 0.0473699\ttotal: 35s\tremaining: 25.4s\n", + "5794:\tlearn: 0.0473564\ttotal: 35s\tremaining: 25.4s\n", + "5795:\tlearn: 0.0473413\ttotal: 35s\tremaining: 25.4s\n", + "5796:\tlearn: 0.0473245\ttotal: 35s\tremaining: 25.4s\n", + "5797:\tlearn: 0.0473185\ttotal: 35s\tremaining: 25.4s\n", + "5798:\tlearn: 0.0473035\ttotal: 35s\tremaining: 25.4s\n", + "5799:\tlearn: 0.0472968\ttotal: 35s\tremaining: 25.4s\n", + "5800:\tlearn: 0.0472803\ttotal: 35.1s\tremaining: 25.4s\n", + "5801:\tlearn: 0.0472726\ttotal: 35.1s\tremaining: 25.4s\n", + "5802:\tlearn: 0.0472621\ttotal: 35.1s\tremaining: 25.4s\n", + "5803:\tlearn: 0.0472469\ttotal: 35.1s\tremaining: 25.4s\n", + "5804:\tlearn: 0.0472367\ttotal: 35.1s\tremaining: 25.3s\n", + "5805:\tlearn: 0.0472234\ttotal: 35.1s\tremaining: 25.3s\n", + "5806:\tlearn: 0.0472137\ttotal: 35.1s\tremaining: 25.3s\n", + "5807:\tlearn: 0.0472023\ttotal: 35.1s\tremaining: 25.3s\n", + "5808:\tlearn: 0.0471906\ttotal: 35.1s\tremaining: 25.3s\n", + "5809:\tlearn: 0.0471741\ttotal: 35.1s\tremaining: 25.3s\n", + "5810:\tlearn: 0.0471555\ttotal: 35.1s\tremaining: 25.3s\n", + "5811:\tlearn: 0.0471470\ttotal: 35.1s\tremaining: 25.3s\n", + "5812:\tlearn: 0.0471362\ttotal: 35.1s\tremaining: 25.3s\n", + "5813:\tlearn: 0.0471250\ttotal: 35.1s\tremaining: 25.3s\n", + "5814:\tlearn: 0.0471187\ttotal: 35.1s\tremaining: 25.3s\n", + "5815:\tlearn: 0.0471100\ttotal: 35.1s\tremaining: 25.3s\n", + "5816:\tlearn: 0.0470977\ttotal: 35.1s\tremaining: 25.3s\n", + "5817:\tlearn: 0.0470875\ttotal: 35.1s\tremaining: 25.3s\n", + "5818:\tlearn: 0.0470784\ttotal: 35.2s\tremaining: 25.3s\n", + "5819:\tlearn: 0.0470679\ttotal: 35.2s\tremaining: 25.3s\n", + "5820:\tlearn: 0.0470627\ttotal: 35.2s\tremaining: 25.2s\n", + "5821:\tlearn: 0.0470459\ttotal: 35.2s\tremaining: 25.2s\n", + "5822:\tlearn: 0.0470295\ttotal: 35.2s\tremaining: 25.2s\n", + "5823:\tlearn: 0.0470214\ttotal: 35.2s\tremaining: 25.2s\n", + "5824:\tlearn: 0.0470103\ttotal: 35.2s\tremaining: 25.2s\n", + "5825:\tlearn: 0.0470029\ttotal: 35.2s\tremaining: 25.2s\n", + "5826:\tlearn: 0.0469907\ttotal: 35.2s\tremaining: 25.2s\n", + "5827:\tlearn: 0.0469821\ttotal: 35.2s\tremaining: 25.2s\n", + "5828:\tlearn: 0.0469740\ttotal: 35.2s\tremaining: 25.2s\n", + "5829:\tlearn: 0.0469633\ttotal: 35.2s\tremaining: 25.2s\n", + "5830:\tlearn: 0.0469571\ttotal: 35.2s\tremaining: 25.2s\n", + "5831:\tlearn: 0.0469487\ttotal: 35.2s\tremaining: 25.2s\n", + "5832:\tlearn: 0.0469331\ttotal: 35.2s\tremaining: 25.2s\n", + "5833:\tlearn: 0.0469272\ttotal: 35.2s\tremaining: 25.2s\n", + "5834:\tlearn: 0.0469136\ttotal: 35.2s\tremaining: 25.1s\n", + "5835:\tlearn: 0.0469030\ttotal: 35.2s\tremaining: 25.1s\n", + "5836:\tlearn: 0.0468859\ttotal: 35.2s\tremaining: 25.1s\n", + "5837:\tlearn: 0.0468787\ttotal: 35.2s\tremaining: 25.1s\n", + "5838:\tlearn: 0.0468669\ttotal: 35.3s\tremaining: 25.1s\n", + "5839:\tlearn: 0.0468550\ttotal: 35.3s\tremaining: 25.1s\n", + "5840:\tlearn: 0.0468375\ttotal: 35.3s\tremaining: 25.1s\n", + "5841:\tlearn: 0.0468299\ttotal: 35.3s\tremaining: 25.1s\n", + "5842:\tlearn: 0.0468190\ttotal: 35.3s\tremaining: 25.1s\n", + "5843:\tlearn: 0.0468063\ttotal: 35.3s\tremaining: 25.1s\n", + "5844:\tlearn: 0.0467962\ttotal: 35.3s\tremaining: 25.1s\n", + "5845:\tlearn: 0.0467874\ttotal: 35.3s\tremaining: 25.1s\n", + "5846:\tlearn: 0.0467798\ttotal: 35.3s\tremaining: 25.1s\n", + "5847:\tlearn: 0.0467672\ttotal: 35.3s\tremaining: 25.1s\n", + "5848:\tlearn: 0.0467576\ttotal: 35.3s\tremaining: 25.1s\n", + "5849:\tlearn: 0.0467482\ttotal: 35.3s\tremaining: 25.1s\n", + "5850:\tlearn: 0.0467368\ttotal: 35.3s\tremaining: 25s\n", + "5851:\tlearn: 0.0467323\ttotal: 35.3s\tremaining: 25s\n", + "5852:\tlearn: 0.0467243\ttotal: 35.3s\tremaining: 25s\n", + "5853:\tlearn: 0.0467136\ttotal: 35.3s\tremaining: 25s\n", + "5854:\tlearn: 0.0467072\ttotal: 35.3s\tremaining: 25s\n", + "5855:\tlearn: 0.0466931\ttotal: 35.3s\tremaining: 25s\n", + "5856:\tlearn: 0.0466835\ttotal: 35.4s\tremaining: 25s\n", + "5857:\tlearn: 0.0466724\ttotal: 35.4s\tremaining: 25s\n", + "5858:\tlearn: 0.0466661\ttotal: 35.4s\tremaining: 25s\n", + "5859:\tlearn: 0.0466505\ttotal: 35.4s\tremaining: 25s\n", + "5860:\tlearn: 0.0466413\ttotal: 35.4s\tremaining: 25s\n", + "5861:\tlearn: 0.0466354\ttotal: 35.4s\tremaining: 25s\n", + "5862:\tlearn: 0.0466224\ttotal: 35.4s\tremaining: 25s\n", + "5863:\tlearn: 0.0466134\ttotal: 35.4s\tremaining: 25s\n", + "5864:\tlearn: 0.0465994\ttotal: 35.4s\tremaining: 25s\n", + "5865:\tlearn: 0.0465916\ttotal: 35.4s\tremaining: 24.9s\n", + "5866:\tlearn: 0.0465842\ttotal: 35.4s\tremaining: 24.9s\n", + "5867:\tlearn: 0.0465779\ttotal: 35.4s\tremaining: 24.9s\n", + "5868:\tlearn: 0.0465687\ttotal: 35.4s\tremaining: 24.9s\n", + "5869:\tlearn: 0.0465616\ttotal: 35.4s\tremaining: 24.9s\n", + "5870:\tlearn: 0.0465499\ttotal: 35.4s\tremaining: 24.9s\n", + "5871:\tlearn: 0.0465420\ttotal: 35.4s\tremaining: 24.9s\n", + "5872:\tlearn: 0.0465370\ttotal: 35.4s\tremaining: 24.9s\n", + "5873:\tlearn: 0.0465247\ttotal: 35.4s\tremaining: 24.9s\n", + "5874:\tlearn: 0.0465102\ttotal: 35.4s\tremaining: 24.9s\n", + "5875:\tlearn: 0.0465028\ttotal: 35.5s\tremaining: 24.9s\n", + "5876:\tlearn: 0.0464888\ttotal: 35.5s\tremaining: 24.9s\n", + "5877:\tlearn: 0.0464809\ttotal: 35.5s\tremaining: 24.9s\n", + "5878:\tlearn: 0.0464680\ttotal: 35.5s\tremaining: 24.9s\n", + "5879:\tlearn: 0.0464591\ttotal: 35.5s\tremaining: 24.9s\n", + "5880:\tlearn: 0.0464524\ttotal: 35.5s\tremaining: 24.9s\n", + "5881:\tlearn: 0.0464454\ttotal: 35.5s\tremaining: 24.8s\n", + "5882:\tlearn: 0.0464374\ttotal: 35.5s\tremaining: 24.8s\n", + "5883:\tlearn: 0.0464241\ttotal: 35.5s\tremaining: 24.8s\n", + "5884:\tlearn: 0.0464104\ttotal: 35.5s\tremaining: 24.8s\n", + "5885:\tlearn: 0.0464006\ttotal: 35.5s\tremaining: 24.8s\n", + "5886:\tlearn: 0.0463900\ttotal: 35.5s\tremaining: 24.8s\n", + "5887:\tlearn: 0.0463774\ttotal: 35.5s\tremaining: 24.8s\n", + "5888:\tlearn: 0.0463605\ttotal: 35.5s\tremaining: 24.8s\n", + "5889:\tlearn: 0.0463525\ttotal: 35.5s\tremaining: 24.8s\n", + "5890:\tlearn: 0.0463441\ttotal: 35.5s\tremaining: 24.8s\n", + "5891:\tlearn: 0.0463401\ttotal: 35.5s\tremaining: 24.8s\n", + "5892:\tlearn: 0.0463297\ttotal: 35.5s\tremaining: 24.8s\n", + "5893:\tlearn: 0.0463222\ttotal: 35.6s\tremaining: 24.8s\n", + "5894:\tlearn: 0.0463184\ttotal: 35.6s\tremaining: 24.8s\n", + "5895:\tlearn: 0.0463072\ttotal: 35.6s\tremaining: 24.8s\n", + "5896:\tlearn: 0.0462949\ttotal: 35.6s\tremaining: 24.7s\n", + "5897:\tlearn: 0.0462867\ttotal: 35.6s\tremaining: 24.7s\n", + "5898:\tlearn: 0.0462736\ttotal: 35.6s\tremaining: 24.7s\n", + "5899:\tlearn: 0.0462555\ttotal: 35.6s\tremaining: 24.7s\n", + "5900:\tlearn: 0.0462434\ttotal: 35.6s\tremaining: 24.7s\n", + "5901:\tlearn: 0.0462280\ttotal: 35.6s\tremaining: 24.7s\n", + "5902:\tlearn: 0.0462217\ttotal: 35.6s\tremaining: 24.7s\n", + "5903:\tlearn: 0.0462121\ttotal: 35.6s\tremaining: 24.7s\n", + "5904:\tlearn: 0.0462005\ttotal: 35.6s\tremaining: 24.7s\n", + "5905:\tlearn: 0.0461873\ttotal: 35.6s\tremaining: 24.7s\n", + "5906:\tlearn: 0.0461753\ttotal: 35.6s\tremaining: 24.7s\n", + "5907:\tlearn: 0.0461611\ttotal: 35.6s\tremaining: 24.7s\n", + "5908:\tlearn: 0.0461519\ttotal: 35.6s\tremaining: 24.7s\n", + "5909:\tlearn: 0.0461388\ttotal: 35.6s\tremaining: 24.7s\n", + "5910:\tlearn: 0.0461185\ttotal: 35.6s\tremaining: 24.6s\n", + "5911:\tlearn: 0.0461118\ttotal: 35.6s\tremaining: 24.6s\n", + "5912:\tlearn: 0.0461006\ttotal: 35.6s\tremaining: 24.6s\n", + "5913:\tlearn: 0.0460933\ttotal: 35.6s\tremaining: 24.6s\n", + "5914:\tlearn: 0.0460855\ttotal: 35.7s\tremaining: 24.6s\n", + "5915:\tlearn: 0.0460776\ttotal: 35.7s\tremaining: 24.6s\n", + "5916:\tlearn: 0.0460721\ttotal: 35.7s\tremaining: 24.6s\n", + "5917:\tlearn: 0.0460648\ttotal: 35.7s\tremaining: 24.6s\n", + "5918:\tlearn: 0.0460480\ttotal: 35.7s\tremaining: 24.6s\n", + "5919:\tlearn: 0.0460351\ttotal: 35.7s\tremaining: 24.6s\n", + "5920:\tlearn: 0.0460221\ttotal: 35.7s\tremaining: 24.6s\n", + "5921:\tlearn: 0.0460090\ttotal: 35.7s\tremaining: 24.6s\n", + "5922:\tlearn: 0.0460021\ttotal: 35.7s\tremaining: 24.6s\n", + "5923:\tlearn: 0.0459884\ttotal: 35.7s\tremaining: 24.6s\n", + "5924:\tlearn: 0.0459850\ttotal: 35.7s\tremaining: 24.6s\n", + "5925:\tlearn: 0.0459728\ttotal: 35.7s\tremaining: 24.6s\n", + "5926:\tlearn: 0.0459661\ttotal: 35.7s\tremaining: 24.5s\n", + "5927:\tlearn: 0.0459574\ttotal: 35.7s\tremaining: 24.5s\n", + "5928:\tlearn: 0.0459458\ttotal: 35.7s\tremaining: 24.5s\n", + "5929:\tlearn: 0.0459353\ttotal: 35.7s\tremaining: 24.5s\n", + "5930:\tlearn: 0.0459261\ttotal: 35.7s\tremaining: 24.5s\n", + "5931:\tlearn: 0.0459227\ttotal: 35.7s\tremaining: 24.5s\n", + "5932:\tlearn: 0.0459136\ttotal: 35.7s\tremaining: 24.5s\n", + "5933:\tlearn: 0.0459043\ttotal: 35.8s\tremaining: 24.5s\n", + "5934:\tlearn: 0.0458914\ttotal: 35.8s\tremaining: 24.5s\n", + "5935:\tlearn: 0.0458847\ttotal: 35.8s\tremaining: 24.5s\n", + "5936:\tlearn: 0.0458730\ttotal: 35.8s\tremaining: 24.5s\n", + "5937:\tlearn: 0.0458686\ttotal: 35.8s\tremaining: 24.5s\n", + "5938:\tlearn: 0.0458533\ttotal: 35.8s\tremaining: 24.5s\n", + "5939:\tlearn: 0.0458435\ttotal: 35.8s\tremaining: 24.5s\n", + "5940:\tlearn: 0.0458309\ttotal: 35.8s\tremaining: 24.4s\n", + "5941:\tlearn: 0.0458138\ttotal: 35.8s\tremaining: 24.4s\n", + "5942:\tlearn: 0.0458059\ttotal: 35.8s\tremaining: 24.4s\n", + "5943:\tlearn: 0.0457967\ttotal: 35.8s\tremaining: 24.4s\n", + "5944:\tlearn: 0.0457768\ttotal: 35.8s\tremaining: 24.4s\n", + "5945:\tlearn: 0.0457594\ttotal: 35.8s\tremaining: 24.4s\n", + "5946:\tlearn: 0.0457442\ttotal: 35.8s\tremaining: 24.4s\n", + "5947:\tlearn: 0.0457338\ttotal: 35.8s\tremaining: 24.4s\n", + "5948:\tlearn: 0.0457291\ttotal: 35.8s\tremaining: 24.4s\n", + "5949:\tlearn: 0.0457133\ttotal: 35.8s\tremaining: 24.4s\n", + "5950:\tlearn: 0.0457021\ttotal: 35.8s\tremaining: 24.4s\n", + "5951:\tlearn: 0.0456906\ttotal: 35.8s\tremaining: 24.4s\n", + "5952:\tlearn: 0.0456800\ttotal: 35.9s\tremaining: 24.4s\n", + "5953:\tlearn: 0.0456688\ttotal: 35.9s\tremaining: 24.4s\n", + "5954:\tlearn: 0.0456576\ttotal: 35.9s\tremaining: 24.4s\n", + "5955:\tlearn: 0.0456467\ttotal: 35.9s\tremaining: 24.4s\n", + "5956:\tlearn: 0.0456346\ttotal: 35.9s\tremaining: 24.4s\n", + "5957:\tlearn: 0.0456232\ttotal: 35.9s\tremaining: 24.3s\n", + "5958:\tlearn: 0.0456118\ttotal: 35.9s\tremaining: 24.3s\n", + "5959:\tlearn: 0.0456053\ttotal: 35.9s\tremaining: 24.3s\n", + "5960:\tlearn: 0.0455931\ttotal: 35.9s\tremaining: 24.3s\n", + "5961:\tlearn: 0.0455872\ttotal: 35.9s\tremaining: 24.3s\n", + "5962:\tlearn: 0.0455729\ttotal: 35.9s\tremaining: 24.3s\n", + "5963:\tlearn: 0.0455623\ttotal: 35.9s\tremaining: 24.3s\n", + "5964:\tlearn: 0.0455549\ttotal: 35.9s\tremaining: 24.3s\n", + "5965:\tlearn: 0.0455430\ttotal: 35.9s\tremaining: 24.3s\n", + "5966:\tlearn: 0.0455315\ttotal: 35.9s\tremaining: 24.3s\n", + "5967:\tlearn: 0.0455220\ttotal: 35.9s\tremaining: 24.3s\n", + "5968:\tlearn: 0.0455116\ttotal: 35.9s\tremaining: 24.3s\n", + "5969:\tlearn: 0.0455066\ttotal: 35.9s\tremaining: 24.3s\n", + "5970:\tlearn: 0.0454934\ttotal: 36s\tremaining: 24.3s\n", + "5971:\tlearn: 0.0454851\ttotal: 36s\tremaining: 24.3s\n", + "5972:\tlearn: 0.0454746\ttotal: 36s\tremaining: 24.2s\n", + "5973:\tlearn: 0.0454662\ttotal: 36s\tremaining: 24.2s\n", + "5974:\tlearn: 0.0454548\ttotal: 36s\tremaining: 24.2s\n", + "5975:\tlearn: 0.0454410\ttotal: 36s\tremaining: 24.2s\n", + "5976:\tlearn: 0.0454227\ttotal: 36s\tremaining: 24.2s\n", + "5977:\tlearn: 0.0454072\ttotal: 36s\tremaining: 24.2s\n", + "5978:\tlearn: 0.0454032\ttotal: 36s\tremaining: 24.2s\n", + "5979:\tlearn: 0.0453919\ttotal: 36s\tremaining: 24.2s\n", + "5980:\tlearn: 0.0453814\ttotal: 36s\tremaining: 24.2s\n", + "5981:\tlearn: 0.0453702\ttotal: 36s\tremaining: 24.2s\n", + "5982:\tlearn: 0.0453627\ttotal: 36s\tremaining: 24.2s\n", + "5983:\tlearn: 0.0453514\ttotal: 36s\tremaining: 24.2s\n", + "5984:\tlearn: 0.0453448\ttotal: 36s\tremaining: 24.2s\n", + "5985:\tlearn: 0.0453373\ttotal: 36s\tremaining: 24.2s\n", + "5986:\tlearn: 0.0453277\ttotal: 36s\tremaining: 24.2s\n", + "5987:\tlearn: 0.0453189\ttotal: 36s\tremaining: 24.2s\n", + "5988:\tlearn: 0.0453074\ttotal: 36.1s\tremaining: 24.1s\n", + "5989:\tlearn: 0.0452984\ttotal: 36.1s\tremaining: 24.1s\n", + "5990:\tlearn: 0.0452823\ttotal: 36.1s\tremaining: 24.1s\n", + "5991:\tlearn: 0.0452756\ttotal: 36.1s\tremaining: 24.1s\n", + "5992:\tlearn: 0.0452654\ttotal: 36.1s\tremaining: 24.1s\n", + "5993:\tlearn: 0.0452607\ttotal: 36.1s\tremaining: 24.1s\n", + "5994:\tlearn: 0.0452542\ttotal: 36.1s\tremaining: 24.1s\n", + "5995:\tlearn: 0.0452376\ttotal: 36.1s\tremaining: 24.1s\n", + "5996:\tlearn: 0.0452310\ttotal: 36.1s\tremaining: 24.1s\n", + "5997:\tlearn: 0.0452248\ttotal: 36.1s\tremaining: 24.1s\n", + "5998:\tlearn: 0.0452136\ttotal: 36.1s\tremaining: 24.1s\n", + "5999:\tlearn: 0.0452073\ttotal: 36.1s\tremaining: 24.1s\n", + "6000:\tlearn: 0.0452005\ttotal: 36.1s\tremaining: 24.1s\n", + "6001:\tlearn: 0.0451910\ttotal: 36.1s\tremaining: 24.1s\n", + "6002:\tlearn: 0.0451868\ttotal: 36.1s\tremaining: 24.1s\n", + "6003:\tlearn: 0.0451761\ttotal: 36.1s\tremaining: 24.1s\n", + "6004:\tlearn: 0.0451697\ttotal: 36.1s\tremaining: 24s\n", + "6005:\tlearn: 0.0451641\ttotal: 36.1s\tremaining: 24s\n", + "6006:\tlearn: 0.0451489\ttotal: 36.2s\tremaining: 24s\n", + "6007:\tlearn: 0.0451331\ttotal: 36.2s\tremaining: 24s\n", + "6008:\tlearn: 0.0451180\ttotal: 36.2s\tremaining: 24s\n", + "6009:\tlearn: 0.0451087\ttotal: 36.2s\tremaining: 24s\n", + "6010:\tlearn: 0.0451031\ttotal: 36.2s\tremaining: 24s\n", + "6011:\tlearn: 0.0450946\ttotal: 36.2s\tremaining: 24s\n", + "6012:\tlearn: 0.0450875\ttotal: 36.2s\tremaining: 24s\n", + "6013:\tlearn: 0.0450817\ttotal: 36.2s\tremaining: 24s\n", + "6014:\tlearn: 0.0450755\ttotal: 36.2s\tremaining: 24s\n", + "6015:\tlearn: 0.0450613\ttotal: 36.2s\tremaining: 24s\n", + "6016:\tlearn: 0.0450553\ttotal: 36.2s\tremaining: 24s\n", + "6017:\tlearn: 0.0450490\ttotal: 36.2s\tremaining: 24s\n", + "6018:\tlearn: 0.0450365\ttotal: 36.2s\tremaining: 24s\n", + "6019:\tlearn: 0.0450316\ttotal: 36.2s\tremaining: 23.9s\n", + "6020:\tlearn: 0.0450261\ttotal: 36.2s\tremaining: 23.9s\n", + "6021:\tlearn: 0.0450099\ttotal: 36.2s\tremaining: 23.9s\n", + "6022:\tlearn: 0.0450006\ttotal: 36.2s\tremaining: 23.9s\n", + "6023:\tlearn: 0.0449899\ttotal: 36.2s\tremaining: 23.9s\n", + "6024:\tlearn: 0.0449769\ttotal: 36.2s\tremaining: 23.9s\n", + "6025:\tlearn: 0.0449684\ttotal: 36.2s\tremaining: 23.9s\n", + "6026:\tlearn: 0.0449601\ttotal: 36.3s\tremaining: 23.9s\n", + "6027:\tlearn: 0.0449437\ttotal: 36.3s\tremaining: 23.9s\n", + "6028:\tlearn: 0.0449326\ttotal: 36.3s\tremaining: 23.9s\n", + "6029:\tlearn: 0.0449223\ttotal: 36.3s\tremaining: 23.9s\n", + "6030:\tlearn: 0.0449167\ttotal: 36.3s\tremaining: 23.9s\n", + "6031:\tlearn: 0.0449076\ttotal: 36.3s\tremaining: 23.9s\n", + "6032:\tlearn: 0.0449010\ttotal: 36.3s\tremaining: 23.9s\n", + "6033:\tlearn: 0.0448904\ttotal: 36.3s\tremaining: 23.9s\n", + "6034:\tlearn: 0.0448792\ttotal: 36.3s\tremaining: 23.9s\n", + "6035:\tlearn: 0.0448716\ttotal: 36.3s\tremaining: 23.8s\n", + "6036:\tlearn: 0.0448636\ttotal: 36.3s\tremaining: 23.8s\n", + "6037:\tlearn: 0.0448504\ttotal: 36.3s\tremaining: 23.8s\n", + "6038:\tlearn: 0.0448456\ttotal: 36.3s\tremaining: 23.8s\n", + "6039:\tlearn: 0.0448352\ttotal: 36.3s\tremaining: 23.8s\n", + "6040:\tlearn: 0.0448239\ttotal: 36.3s\tremaining: 23.8s\n", + "6041:\tlearn: 0.0448105\ttotal: 36.3s\tremaining: 23.8s\n", + "6042:\tlearn: 0.0448022\ttotal: 36.3s\tremaining: 23.8s\n", + "6043:\tlearn: 0.0447898\ttotal: 36.4s\tremaining: 23.8s\n", + "6044:\tlearn: 0.0447821\ttotal: 36.4s\tremaining: 23.8s\n", + "6045:\tlearn: 0.0447643\ttotal: 36.4s\tremaining: 23.8s\n", + "6046:\tlearn: 0.0447564\ttotal: 36.4s\tremaining: 23.8s\n", + "6047:\tlearn: 0.0447487\ttotal: 36.4s\tremaining: 23.8s\n", + "6048:\tlearn: 0.0447404\ttotal: 36.4s\tremaining: 23.8s\n", + "6049:\tlearn: 0.0447265\ttotal: 36.4s\tremaining: 23.8s\n", + "6050:\tlearn: 0.0447149\ttotal: 36.4s\tremaining: 23.7s\n", + "6051:\tlearn: 0.0447044\ttotal: 36.4s\tremaining: 23.7s\n", + "6052:\tlearn: 0.0446959\ttotal: 36.4s\tremaining: 23.7s\n", + "6053:\tlearn: 0.0446839\ttotal: 36.4s\tremaining: 23.7s\n", + "6054:\tlearn: 0.0446728\ttotal: 36.4s\tremaining: 23.7s\n", + "6055:\tlearn: 0.0446630\ttotal: 36.4s\tremaining: 23.7s\n", + "6056:\tlearn: 0.0446488\ttotal: 36.4s\tremaining: 23.7s\n", + "6057:\tlearn: 0.0446433\ttotal: 36.4s\tremaining: 23.7s\n", + "6058:\tlearn: 0.0446260\ttotal: 36.4s\tremaining: 23.7s\n", + "6059:\tlearn: 0.0446112\ttotal: 36.4s\tremaining: 23.7s\n", + "6060:\tlearn: 0.0446007\ttotal: 36.4s\tremaining: 23.7s\n", + "6061:\tlearn: 0.0445942\ttotal: 36.4s\tremaining: 23.7s\n", + "6062:\tlearn: 0.0445818\ttotal: 36.4s\tremaining: 23.7s\n", + "6063:\tlearn: 0.0445725\ttotal: 36.5s\tremaining: 23.7s\n", + "6064:\tlearn: 0.0445648\ttotal: 36.5s\tremaining: 23.7s\n", + "6065:\tlearn: 0.0445592\ttotal: 36.5s\tremaining: 23.6s\n", + "6066:\tlearn: 0.0445501\ttotal: 36.5s\tremaining: 23.6s\n", + "6067:\tlearn: 0.0445413\ttotal: 36.5s\tremaining: 23.6s\n", + "6068:\tlearn: 0.0445314\ttotal: 36.5s\tremaining: 23.6s\n", + "6069:\tlearn: 0.0445203\ttotal: 36.5s\tremaining: 23.6s\n", + "6070:\tlearn: 0.0445069\ttotal: 36.5s\tremaining: 23.6s\n", + "6071:\tlearn: 0.0445019\ttotal: 36.5s\tremaining: 23.6s\n", + "6072:\tlearn: 0.0444938\ttotal: 36.5s\tremaining: 23.6s\n", + "6073:\tlearn: 0.0444826\ttotal: 36.5s\tremaining: 23.6s\n", + "6074:\tlearn: 0.0444718\ttotal: 36.5s\tremaining: 23.6s\n", + "6075:\tlearn: 0.0444536\ttotal: 36.5s\tremaining: 23.6s\n", + "6076:\tlearn: 0.0444483\ttotal: 36.5s\tremaining: 23.6s\n", + "6077:\tlearn: 0.0444382\ttotal: 36.5s\tremaining: 23.6s\n", + "6078:\tlearn: 0.0444318\ttotal: 36.5s\tremaining: 23.6s\n", + "6079:\tlearn: 0.0444231\ttotal: 36.5s\tremaining: 23.6s\n", + "6080:\tlearn: 0.0444109\ttotal: 36.5s\tremaining: 23.6s\n", + "6081:\tlearn: 0.0444013\ttotal: 36.5s\tremaining: 23.5s\n", + "6082:\tlearn: 0.0443911\ttotal: 36.6s\tremaining: 23.5s\n", + "6083:\tlearn: 0.0443822\ttotal: 36.6s\tremaining: 23.5s\n", + "6084:\tlearn: 0.0443708\ttotal: 36.6s\tremaining: 23.5s\n", + "6085:\tlearn: 0.0443627\ttotal: 36.6s\tremaining: 23.5s\n", + "6086:\tlearn: 0.0443501\ttotal: 36.6s\tremaining: 23.5s\n", + "6087:\tlearn: 0.0443371\ttotal: 36.6s\tremaining: 23.5s\n", + "6088:\tlearn: 0.0443323\ttotal: 36.6s\tremaining: 23.5s\n", + "6089:\tlearn: 0.0443127\ttotal: 36.6s\tremaining: 23.5s\n", + "6090:\tlearn: 0.0443014\ttotal: 36.6s\tremaining: 23.5s\n", + "6091:\tlearn: 0.0442843\ttotal: 36.6s\tremaining: 23.5s\n", + "6092:\tlearn: 0.0442780\ttotal: 36.6s\tremaining: 23.5s\n", + "6093:\tlearn: 0.0442635\ttotal: 36.6s\tremaining: 23.5s\n", + "6094:\tlearn: 0.0442521\ttotal: 36.6s\tremaining: 23.5s\n", + "6095:\tlearn: 0.0442452\ttotal: 36.6s\tremaining: 23.5s\n", + "6096:\tlearn: 0.0442387\ttotal: 36.6s\tremaining: 23.4s\n", + "6097:\tlearn: 0.0442295\ttotal: 36.6s\tremaining: 23.4s\n", + "6098:\tlearn: 0.0442245\ttotal: 36.6s\tremaining: 23.4s\n", + "6099:\tlearn: 0.0442164\ttotal: 36.6s\tremaining: 23.4s\n", + "6100:\tlearn: 0.0442117\ttotal: 36.6s\tremaining: 23.4s\n", + "6101:\tlearn: 0.0442044\ttotal: 36.6s\tremaining: 23.4s\n", + "6102:\tlearn: 0.0441928\ttotal: 36.7s\tremaining: 23.4s\n", + "6103:\tlearn: 0.0441842\ttotal: 36.7s\tremaining: 23.4s\n", + "6104:\tlearn: 0.0441755\ttotal: 36.7s\tremaining: 23.4s\n", + "6105:\tlearn: 0.0441687\ttotal: 36.7s\tremaining: 23.4s\n", + "6106:\tlearn: 0.0441571\ttotal: 36.7s\tremaining: 23.4s\n", + "6107:\tlearn: 0.0441482\ttotal: 36.7s\tremaining: 23.4s\n", + "6108:\tlearn: 0.0441376\ttotal: 36.7s\tremaining: 23.4s\n", + "6109:\tlearn: 0.0441239\ttotal: 36.7s\tremaining: 23.4s\n", + "6110:\tlearn: 0.0441191\ttotal: 36.7s\tremaining: 23.4s\n", + "6111:\tlearn: 0.0441106\ttotal: 36.7s\tremaining: 23.4s\n", + "6112:\tlearn: 0.0440978\ttotal: 36.7s\tremaining: 23.3s\n", + "6113:\tlearn: 0.0440862\ttotal: 36.7s\tremaining: 23.3s\n", + "6114:\tlearn: 0.0440792\ttotal: 36.7s\tremaining: 23.3s\n", + "6115:\tlearn: 0.0440713\ttotal: 36.7s\tremaining: 23.3s\n", + "6116:\tlearn: 0.0440605\ttotal: 36.7s\tremaining: 23.3s\n", + "6117:\tlearn: 0.0440520\ttotal: 36.7s\tremaining: 23.3s\n", + "6118:\tlearn: 0.0440410\ttotal: 36.8s\tremaining: 23.3s\n", + "6119:\tlearn: 0.0440332\ttotal: 36.8s\tremaining: 23.3s\n", + "6120:\tlearn: 0.0440244\ttotal: 36.8s\tremaining: 23.3s\n", + "6121:\tlearn: 0.0440132\ttotal: 36.8s\tremaining: 23.3s\n", + "6122:\tlearn: 0.0440033\ttotal: 36.8s\tremaining: 23.3s\n", + "6123:\tlearn: 0.0439966\ttotal: 36.8s\tremaining: 23.3s\n", + "6124:\tlearn: 0.0439884\ttotal: 36.8s\tremaining: 23.3s\n", + "6125:\tlearn: 0.0439776\ttotal: 36.8s\tremaining: 23.3s\n", + "6126:\tlearn: 0.0439647\ttotal: 36.8s\tremaining: 23.3s\n", + "6127:\tlearn: 0.0439509\ttotal: 36.8s\tremaining: 23.3s\n", + "6128:\tlearn: 0.0439422\ttotal: 36.8s\tremaining: 23.2s\n", + "6129:\tlearn: 0.0439316\ttotal: 36.8s\tremaining: 23.2s\n", + "6130:\tlearn: 0.0439259\ttotal: 36.8s\tremaining: 23.2s\n", + "6131:\tlearn: 0.0439212\ttotal: 36.8s\tremaining: 23.2s\n", + "6132:\tlearn: 0.0439160\ttotal: 36.8s\tremaining: 23.2s\n", + "6133:\tlearn: 0.0439043\ttotal: 36.8s\tremaining: 23.2s\n", + "6134:\tlearn: 0.0438964\ttotal: 36.8s\tremaining: 23.2s\n", + "6135:\tlearn: 0.0438888\ttotal: 36.8s\tremaining: 23.2s\n", + "6136:\tlearn: 0.0438819\ttotal: 36.8s\tremaining: 23.2s\n", + "6137:\tlearn: 0.0438785\ttotal: 36.8s\tremaining: 23.2s\n", + "6138:\tlearn: 0.0438638\ttotal: 36.9s\tremaining: 23.2s\n", + "6139:\tlearn: 0.0438570\ttotal: 36.9s\tremaining: 23.2s\n", + "6140:\tlearn: 0.0438470\ttotal: 36.9s\tremaining: 23.2s\n", + "6141:\tlearn: 0.0438368\ttotal: 36.9s\tremaining: 23.2s\n", + "6142:\tlearn: 0.0438212\ttotal: 36.9s\tremaining: 23.2s\n", + "6143:\tlearn: 0.0438133\ttotal: 36.9s\tremaining: 23.1s\n", + "6144:\tlearn: 0.0438045\ttotal: 36.9s\tremaining: 23.1s\n", + "6145:\tlearn: 0.0437965\ttotal: 36.9s\tremaining: 23.1s\n", + "6146:\tlearn: 0.0437915\ttotal: 36.9s\tremaining: 23.1s\n", + "6147:\tlearn: 0.0437818\ttotal: 36.9s\tremaining: 23.1s\n", + "6148:\tlearn: 0.0437681\ttotal: 36.9s\tremaining: 23.1s\n", + "6149:\tlearn: 0.0437578\ttotal: 36.9s\tremaining: 23.1s\n", + "6150:\tlearn: 0.0437499\ttotal: 36.9s\tremaining: 23.1s\n", + "6151:\tlearn: 0.0437381\ttotal: 36.9s\tremaining: 23.1s\n", + "6152:\tlearn: 0.0437251\ttotal: 36.9s\tremaining: 23.1s\n", + "6153:\tlearn: 0.0437124\ttotal: 36.9s\tremaining: 23.1s\n", + "6154:\tlearn: 0.0437041\ttotal: 36.9s\tremaining: 23.1s\n", + "6155:\tlearn: 0.0436956\ttotal: 36.9s\tremaining: 23.1s\n", + "6156:\tlearn: 0.0436845\ttotal: 37s\tremaining: 23.1s\n", + "6157:\tlearn: 0.0436712\ttotal: 37s\tremaining: 23.1s\n", + "6158:\tlearn: 0.0436622\ttotal: 37s\tremaining: 23.1s\n", + "6159:\tlearn: 0.0436557\ttotal: 37s\tremaining: 23.1s\n", + "6160:\tlearn: 0.0436470\ttotal: 37s\tremaining: 23s\n", + "6161:\tlearn: 0.0436447\ttotal: 37s\tremaining: 23s\n", + "6162:\tlearn: 0.0436339\ttotal: 37s\tremaining: 23s\n", + "6163:\tlearn: 0.0436270\ttotal: 37s\tremaining: 23s\n", + "6164:\tlearn: 0.0436205\ttotal: 37s\tremaining: 23s\n", + "6165:\tlearn: 0.0436076\ttotal: 37s\tremaining: 23s\n", + "6166:\tlearn: 0.0436011\ttotal: 37s\tremaining: 23s\n", + "6167:\tlearn: 0.0435949\ttotal: 37s\tremaining: 23s\n", + "6168:\tlearn: 0.0435853\ttotal: 37s\tremaining: 23s\n", + "6169:\tlearn: 0.0435784\ttotal: 37s\tremaining: 23s\n", + "6170:\tlearn: 0.0435714\ttotal: 37s\tremaining: 23s\n", + "6171:\tlearn: 0.0435608\ttotal: 37s\tremaining: 23s\n", + "6172:\tlearn: 0.0435520\ttotal: 37s\tremaining: 23s\n", + "6173:\tlearn: 0.0435414\ttotal: 37s\tremaining: 23s\n", + "6174:\tlearn: 0.0435320\ttotal: 37.1s\tremaining: 23s\n", + "6175:\tlearn: 0.0435221\ttotal: 37.1s\tremaining: 22.9s\n", + "6176:\tlearn: 0.0435109\ttotal: 37.1s\tremaining: 22.9s\n", + "6177:\tlearn: 0.0435070\ttotal: 37.1s\tremaining: 22.9s\n", + "6178:\tlearn: 0.0434919\ttotal: 37.1s\tremaining: 22.9s\n", + "6179:\tlearn: 0.0434819\ttotal: 37.1s\tremaining: 22.9s\n", + "6180:\tlearn: 0.0434746\ttotal: 37.1s\tremaining: 22.9s\n", + "6181:\tlearn: 0.0434697\ttotal: 37.1s\tremaining: 22.9s\n", + "6182:\tlearn: 0.0434637\ttotal: 37.1s\tremaining: 22.9s\n", + "6183:\tlearn: 0.0434553\ttotal: 37.1s\tremaining: 22.9s\n", + "6184:\tlearn: 0.0434495\ttotal: 37.1s\tremaining: 22.9s\n", + "6185:\tlearn: 0.0434409\ttotal: 37.1s\tremaining: 22.9s\n", + "6186:\tlearn: 0.0434322\ttotal: 37.1s\tremaining: 22.9s\n", + "6187:\tlearn: 0.0434218\ttotal: 37.1s\tremaining: 22.9s\n", + "6188:\tlearn: 0.0434136\ttotal: 37.1s\tremaining: 22.9s\n", + "6189:\tlearn: 0.0434059\ttotal: 37.1s\tremaining: 22.9s\n", + "6190:\tlearn: 0.0433899\ttotal: 37.1s\tremaining: 22.9s\n", + "6191:\tlearn: 0.0433832\ttotal: 37.2s\tremaining: 22.8s\n", + "6192:\tlearn: 0.0433710\ttotal: 37.2s\tremaining: 22.8s\n", + "6193:\tlearn: 0.0433564\ttotal: 37.2s\tremaining: 22.8s\n", + "6194:\tlearn: 0.0433511\ttotal: 37.2s\tremaining: 22.8s\n", + "6195:\tlearn: 0.0433422\ttotal: 37.2s\tremaining: 22.8s\n", + "6196:\tlearn: 0.0433321\ttotal: 37.2s\tremaining: 22.8s\n", + "6197:\tlearn: 0.0433226\ttotal: 37.2s\tremaining: 22.8s\n", + "6198:\tlearn: 0.0433116\ttotal: 37.2s\tremaining: 22.8s\n", + "6199:\tlearn: 0.0433008\ttotal: 37.2s\tremaining: 22.8s\n", + "6200:\tlearn: 0.0432988\ttotal: 37.2s\tremaining: 22.8s\n", + "6201:\tlearn: 0.0432903\ttotal: 37.2s\tremaining: 22.8s\n", + "6202:\tlearn: 0.0432805\ttotal: 37.2s\tremaining: 22.8s\n", + "6203:\tlearn: 0.0432769\ttotal: 37.2s\tremaining: 22.8s\n", + "6204:\tlearn: 0.0432618\ttotal: 37.2s\tremaining: 22.8s\n", + "6205:\tlearn: 0.0432530\ttotal: 37.2s\tremaining: 22.8s\n", + "6206:\tlearn: 0.0432411\ttotal: 37.2s\tremaining: 22.7s\n", + "6207:\tlearn: 0.0432327\ttotal: 37.2s\tremaining: 22.7s\n", + "6208:\tlearn: 0.0432242\ttotal: 37.2s\tremaining: 22.7s\n", + "6209:\tlearn: 0.0432089\ttotal: 37.2s\tremaining: 22.7s\n", + "6210:\tlearn: 0.0432005\ttotal: 37.2s\tremaining: 22.7s\n", + "6211:\tlearn: 0.0431833\ttotal: 37.3s\tremaining: 22.7s\n", + "6212:\tlearn: 0.0431756\ttotal: 37.3s\tremaining: 22.7s\n", + "6213:\tlearn: 0.0431656\ttotal: 37.3s\tremaining: 22.7s\n", + "6214:\tlearn: 0.0431591\ttotal: 37.3s\tremaining: 22.7s\n", + "6215:\tlearn: 0.0431539\ttotal: 37.3s\tremaining: 22.7s\n", + "6216:\tlearn: 0.0431437\ttotal: 37.3s\tremaining: 22.7s\n", + "6217:\tlearn: 0.0431333\ttotal: 37.3s\tremaining: 22.7s\n", + "6218:\tlearn: 0.0431240\ttotal: 37.3s\tremaining: 22.7s\n", + "6219:\tlearn: 0.0431140\ttotal: 37.3s\tremaining: 22.7s\n", + "6220:\tlearn: 0.0431031\ttotal: 37.3s\tremaining: 22.7s\n", + "6221:\tlearn: 0.0430958\ttotal: 37.3s\tremaining: 22.7s\n", + "6222:\tlearn: 0.0430832\ttotal: 37.3s\tremaining: 22.6s\n", + "6223:\tlearn: 0.0430722\ttotal: 37.3s\tremaining: 22.6s\n", + "6224:\tlearn: 0.0430655\ttotal: 37.3s\tremaining: 22.6s\n", + "6225:\tlearn: 0.0430546\ttotal: 37.3s\tremaining: 22.6s\n", + "6226:\tlearn: 0.0430383\ttotal: 37.3s\tremaining: 22.6s\n", + "6227:\tlearn: 0.0430328\ttotal: 37.3s\tremaining: 22.6s\n", + "6228:\tlearn: 0.0430198\ttotal: 37.3s\tremaining: 22.6s\n", + "6229:\tlearn: 0.0430071\ttotal: 37.3s\tremaining: 22.6s\n", + "6230:\tlearn: 0.0429998\ttotal: 37.4s\tremaining: 22.6s\n", + "6231:\tlearn: 0.0429896\ttotal: 37.4s\tremaining: 22.6s\n", + "6232:\tlearn: 0.0429813\ttotal: 37.4s\tremaining: 22.6s\n", + "6233:\tlearn: 0.0429730\ttotal: 37.4s\tremaining: 22.6s\n", + "6234:\tlearn: 0.0429658\ttotal: 37.4s\tremaining: 22.6s\n", + "6235:\tlearn: 0.0429544\ttotal: 37.4s\tremaining: 22.6s\n", + "6236:\tlearn: 0.0429438\ttotal: 37.4s\tremaining: 22.6s\n", + "6237:\tlearn: 0.0429340\ttotal: 37.4s\tremaining: 22.5s\n", + "6238:\tlearn: 0.0429232\ttotal: 37.4s\tremaining: 22.5s\n", + "6239:\tlearn: 0.0429153\ttotal: 37.4s\tremaining: 22.5s\n", + "6240:\tlearn: 0.0429085\ttotal: 37.4s\tremaining: 22.5s\n", + "6241:\tlearn: 0.0428986\ttotal: 37.4s\tremaining: 22.5s\n", + "6242:\tlearn: 0.0428891\ttotal: 37.4s\tremaining: 22.5s\n", + "6243:\tlearn: 0.0428824\ttotal: 37.4s\tremaining: 22.5s\n", + "6244:\tlearn: 0.0428719\ttotal: 37.4s\tremaining: 22.5s\n", + "6245:\tlearn: 0.0428633\ttotal: 37.4s\tremaining: 22.5s\n", + "6246:\tlearn: 0.0428527\ttotal: 37.4s\tremaining: 22.5s\n", + "6247:\tlearn: 0.0428444\ttotal: 37.4s\tremaining: 22.5s\n", + "6248:\tlearn: 0.0428336\ttotal: 37.4s\tremaining: 22.5s\n", + "6249:\tlearn: 0.0428222\ttotal: 37.4s\tremaining: 22.5s\n", + "6250:\tlearn: 0.0428158\ttotal: 37.5s\tremaining: 22.5s\n", + "6251:\tlearn: 0.0428068\ttotal: 37.5s\tremaining: 22.5s\n", + "6252:\tlearn: 0.0427995\ttotal: 37.5s\tremaining: 22.4s\n", + "6253:\tlearn: 0.0427874\ttotal: 37.5s\tremaining: 22.4s\n", + "6254:\tlearn: 0.0427692\ttotal: 37.5s\tremaining: 22.4s\n", + "6255:\tlearn: 0.0427605\ttotal: 37.5s\tremaining: 22.4s\n", + "6256:\tlearn: 0.0427513\ttotal: 37.5s\tremaining: 22.4s\n", + "6257:\tlearn: 0.0427445\ttotal: 37.5s\tremaining: 22.4s\n", + "6258:\tlearn: 0.0427357\ttotal: 37.5s\tremaining: 22.4s\n", + "6259:\tlearn: 0.0427246\ttotal: 37.5s\tremaining: 22.4s\n", + "6260:\tlearn: 0.0427169\ttotal: 37.5s\tremaining: 22.4s\n", + "6261:\tlearn: 0.0427057\ttotal: 37.5s\tremaining: 22.4s\n", + "6262:\tlearn: 0.0427011\ttotal: 37.5s\tremaining: 22.4s\n", + "6263:\tlearn: 0.0426893\ttotal: 37.5s\tremaining: 22.4s\n", + "6264:\tlearn: 0.0426796\ttotal: 37.5s\tremaining: 22.4s\n", + "6265:\tlearn: 0.0426744\ttotal: 37.5s\tremaining: 22.4s\n", + "6266:\tlearn: 0.0426682\ttotal: 37.5s\tremaining: 22.4s\n", + "6267:\tlearn: 0.0426599\ttotal: 37.5s\tremaining: 22.4s\n", + "6268:\tlearn: 0.0426531\ttotal: 37.6s\tremaining: 22.4s\n", + "6269:\tlearn: 0.0426426\ttotal: 37.6s\tremaining: 22.3s\n", + "6270:\tlearn: 0.0426340\ttotal: 37.6s\tremaining: 22.3s\n", + "6271:\tlearn: 0.0426212\ttotal: 37.6s\tremaining: 22.3s\n", + "6272:\tlearn: 0.0426118\ttotal: 37.6s\tremaining: 22.3s\n", + "6273:\tlearn: 0.0425995\ttotal: 37.6s\tremaining: 22.3s\n", + "6274:\tlearn: 0.0425945\ttotal: 37.6s\tremaining: 22.3s\n", + "6275:\tlearn: 0.0425901\ttotal: 37.6s\tremaining: 22.3s\n", + "6276:\tlearn: 0.0425740\ttotal: 37.6s\tremaining: 22.3s\n", + "6277:\tlearn: 0.0425630\ttotal: 37.6s\tremaining: 22.3s\n", + "6278:\tlearn: 0.0425577\ttotal: 37.6s\tremaining: 22.3s\n", + "6279:\tlearn: 0.0425522\ttotal: 37.6s\tremaining: 22.3s\n", + "6280:\tlearn: 0.0425421\ttotal: 37.6s\tremaining: 22.3s\n", + "6281:\tlearn: 0.0425355\ttotal: 37.6s\tremaining: 22.3s\n", + "6282:\tlearn: 0.0425245\ttotal: 37.6s\tremaining: 22.3s\n", + "6283:\tlearn: 0.0425147\ttotal: 37.6s\tremaining: 22.3s\n", + "6284:\tlearn: 0.0425036\ttotal: 37.6s\tremaining: 22.3s\n", + "6285:\tlearn: 0.0424925\ttotal: 37.6s\tremaining: 22.2s\n", + "6286:\tlearn: 0.0424805\ttotal: 37.7s\tremaining: 22.2s\n", + "6287:\tlearn: 0.0424729\ttotal: 37.7s\tremaining: 22.2s\n", + "6288:\tlearn: 0.0424629\ttotal: 37.7s\tremaining: 22.2s\n", + "6289:\tlearn: 0.0424555\ttotal: 37.7s\tremaining: 22.2s\n", + "6290:\tlearn: 0.0424503\ttotal: 37.7s\tremaining: 22.2s\n", + "6291:\tlearn: 0.0424407\ttotal: 37.7s\tremaining: 22.2s\n", + "6292:\tlearn: 0.0424331\ttotal: 37.7s\tremaining: 22.2s\n", + "6293:\tlearn: 0.0424243\ttotal: 37.7s\tremaining: 22.2s\n", + "6294:\tlearn: 0.0424145\ttotal: 37.7s\tremaining: 22.2s\n", + "6295:\tlearn: 0.0424018\ttotal: 37.7s\tremaining: 22.2s\n", + "6296:\tlearn: 0.0423940\ttotal: 37.7s\tremaining: 22.2s\n", + "6297:\tlearn: 0.0423895\ttotal: 37.7s\tremaining: 22.2s\n", + "6298:\tlearn: 0.0423852\ttotal: 37.7s\tremaining: 22.2s\n", + "6299:\tlearn: 0.0423745\ttotal: 37.7s\tremaining: 22.2s\n", + "6300:\tlearn: 0.0423647\ttotal: 37.7s\tremaining: 22.2s\n", + "6301:\tlearn: 0.0423562\ttotal: 37.7s\tremaining: 22.1s\n", + "6302:\tlearn: 0.0423468\ttotal: 37.7s\tremaining: 22.1s\n", + "6303:\tlearn: 0.0423366\ttotal: 37.7s\tremaining: 22.1s\n", + "6304:\tlearn: 0.0423237\ttotal: 37.8s\tremaining: 22.1s\n", + "6305:\tlearn: 0.0423176\ttotal: 37.8s\tremaining: 22.1s\n", + "6306:\tlearn: 0.0423060\ttotal: 37.8s\tremaining: 22.1s\n", + "6307:\tlearn: 0.0422990\ttotal: 37.8s\tremaining: 22.1s\n", + "6308:\tlearn: 0.0422934\ttotal: 37.8s\tremaining: 22.1s\n", + "6309:\tlearn: 0.0422891\ttotal: 37.8s\tremaining: 22.1s\n", + "6310:\tlearn: 0.0422821\ttotal: 37.8s\tremaining: 22.1s\n", + "6311:\tlearn: 0.0422777\ttotal: 37.8s\tremaining: 22.1s\n", + "6312:\tlearn: 0.0422717\ttotal: 37.8s\tremaining: 22.1s\n", + "6313:\tlearn: 0.0422647\ttotal: 37.8s\tremaining: 22.1s\n", + "6314:\tlearn: 0.0422598\ttotal: 37.8s\tremaining: 22.1s\n", + "6315:\tlearn: 0.0422561\ttotal: 37.8s\tremaining: 22.1s\n", + "6316:\tlearn: 0.0422487\ttotal: 37.8s\tremaining: 22.1s\n", + "6317:\tlearn: 0.0422407\ttotal: 37.8s\tremaining: 22s\n", + "6318:\tlearn: 0.0422368\ttotal: 37.8s\tremaining: 22s\n", + "6319:\tlearn: 0.0422278\ttotal: 37.8s\tremaining: 22s\n", + "6320:\tlearn: 0.0422162\ttotal: 37.8s\tremaining: 22s\n", + "6321:\tlearn: 0.0422109\ttotal: 37.9s\tremaining: 22s\n", + "6322:\tlearn: 0.0422066\ttotal: 37.9s\tremaining: 22s\n", + "6323:\tlearn: 0.0422011\ttotal: 37.9s\tremaining: 22s\n", + "6324:\tlearn: 0.0421935\ttotal: 37.9s\tremaining: 22s\n", + "6325:\tlearn: 0.0421889\ttotal: 37.9s\tremaining: 22s\n", + "6326:\tlearn: 0.0421774\ttotal: 37.9s\tremaining: 22s\n", + "6327:\tlearn: 0.0421674\ttotal: 37.9s\tremaining: 22s\n", + "6328:\tlearn: 0.0421562\ttotal: 37.9s\tremaining: 22s\n", + "6329:\tlearn: 0.0421449\ttotal: 37.9s\tremaining: 22s\n", + "6330:\tlearn: 0.0421395\ttotal: 37.9s\tremaining: 22s\n", + "6331:\tlearn: 0.0421316\ttotal: 37.9s\tremaining: 22s\n", + "6332:\tlearn: 0.0421253\ttotal: 38s\tremaining: 22s\n", + "6333:\tlearn: 0.0421106\ttotal: 38s\tremaining: 22s\n", + "6334:\tlearn: 0.0421069\ttotal: 38s\tremaining: 22s\n", + "6335:\tlearn: 0.0421002\ttotal: 38s\tremaining: 22s\n", + "6336:\tlearn: 0.0420913\ttotal: 38s\tremaining: 22s\n", + "6337:\tlearn: 0.0420833\ttotal: 38s\tremaining: 22s\n", + "6338:\tlearn: 0.0420705\ttotal: 38s\tremaining: 22s\n", + "6339:\tlearn: 0.0420590\ttotal: 38s\tremaining: 21.9s\n", + "6340:\tlearn: 0.0420458\ttotal: 38s\tremaining: 21.9s\n", + "6341:\tlearn: 0.0420382\ttotal: 38s\tremaining: 21.9s\n", + "6342:\tlearn: 0.0420286\ttotal: 38s\tremaining: 21.9s\n", + "6343:\tlearn: 0.0420183\ttotal: 38s\tremaining: 21.9s\n", + "6344:\tlearn: 0.0420138\ttotal: 38s\tremaining: 21.9s\n", + "6345:\tlearn: 0.0420089\ttotal: 38.1s\tremaining: 21.9s\n", + "6346:\tlearn: 0.0419994\ttotal: 38.1s\tremaining: 21.9s\n", + "6347:\tlearn: 0.0419896\ttotal: 38.1s\tremaining: 21.9s\n", + "6348:\tlearn: 0.0419789\ttotal: 38.1s\tremaining: 21.9s\n", + "6349:\tlearn: 0.0419640\ttotal: 38.1s\tremaining: 21.9s\n", + "6350:\tlearn: 0.0419519\ttotal: 38.1s\tremaining: 21.9s\n", + "6351:\tlearn: 0.0419398\ttotal: 38.1s\tremaining: 21.9s\n", + "6352:\tlearn: 0.0419300\ttotal: 38.1s\tremaining: 21.9s\n", + "6353:\tlearn: 0.0419206\ttotal: 38.1s\tremaining: 21.9s\n", + "6354:\tlearn: 0.0419115\ttotal: 38.1s\tremaining: 21.9s\n", + "6355:\tlearn: 0.0419017\ttotal: 38.1s\tremaining: 21.9s\n", + "6356:\tlearn: 0.0418902\ttotal: 38.2s\tremaining: 21.9s\n", + "6357:\tlearn: 0.0418823\ttotal: 38.2s\tremaining: 21.9s\n", + "6358:\tlearn: 0.0418752\ttotal: 38.2s\tremaining: 21.9s\n", + "6359:\tlearn: 0.0418660\ttotal: 38.2s\tremaining: 21.9s\n", + "6360:\tlearn: 0.0418629\ttotal: 38.2s\tremaining: 21.9s\n", + "6361:\tlearn: 0.0418544\ttotal: 38.2s\tremaining: 21.9s\n", + "6362:\tlearn: 0.0418397\ttotal: 38.2s\tremaining: 21.8s\n", + "6363:\tlearn: 0.0418269\ttotal: 38.2s\tremaining: 21.8s\n", + "6364:\tlearn: 0.0418214\ttotal: 38.2s\tremaining: 21.8s\n", + "6365:\tlearn: 0.0418152\ttotal: 38.3s\tremaining: 21.8s\n", + "6366:\tlearn: 0.0418033\ttotal: 38.3s\tremaining: 21.8s\n", + "6367:\tlearn: 0.0417942\ttotal: 38.3s\tremaining: 21.8s\n", + "6368:\tlearn: 0.0417820\ttotal: 38.3s\tremaining: 21.8s\n", + "6369:\tlearn: 0.0417733\ttotal: 38.3s\tremaining: 21.8s\n", + "6370:\tlearn: 0.0417575\ttotal: 38.3s\tremaining: 21.8s\n", + "6371:\tlearn: 0.0417473\ttotal: 38.3s\tremaining: 21.8s\n", + "6372:\tlearn: 0.0417434\ttotal: 38.4s\tremaining: 21.8s\n", + "6373:\tlearn: 0.0417319\ttotal: 38.4s\tremaining: 21.8s\n", + "6374:\tlearn: 0.0417235\ttotal: 38.4s\tremaining: 21.8s\n", + "6375:\tlearn: 0.0417129\ttotal: 38.4s\tremaining: 21.8s\n", + "6376:\tlearn: 0.0417040\ttotal: 38.4s\tremaining: 21.8s\n", + "6377:\tlearn: 0.0416953\ttotal: 38.4s\tremaining: 21.8s\n", + "6378:\tlearn: 0.0416807\ttotal: 38.4s\tremaining: 21.8s\n", + "6379:\tlearn: 0.0416676\ttotal: 38.4s\tremaining: 21.8s\n", + "6380:\tlearn: 0.0416641\ttotal: 38.4s\tremaining: 21.8s\n", + "6381:\tlearn: 0.0416562\ttotal: 38.5s\tremaining: 21.8s\n", + "6382:\tlearn: 0.0416467\ttotal: 38.5s\tremaining: 21.8s\n", + "6383:\tlearn: 0.0416383\ttotal: 38.5s\tremaining: 21.8s\n", + "6384:\tlearn: 0.0416259\ttotal: 38.5s\tremaining: 21.8s\n", + "6385:\tlearn: 0.0416188\ttotal: 38.5s\tremaining: 21.8s\n", + "6386:\tlearn: 0.0416122\ttotal: 38.5s\tremaining: 21.8s\n", + "6387:\tlearn: 0.0416049\ttotal: 38.5s\tremaining: 21.8s\n", + "6388:\tlearn: 0.0415977\ttotal: 38.5s\tremaining: 21.8s\n", + "6389:\tlearn: 0.0415932\ttotal: 38.6s\tremaining: 21.8s\n", + "6390:\tlearn: 0.0415895\ttotal: 38.6s\tremaining: 21.8s\n", + "6391:\tlearn: 0.0415818\ttotal: 38.6s\tremaining: 21.8s\n", + "6392:\tlearn: 0.0415720\ttotal: 38.6s\tremaining: 21.8s\n", + "6393:\tlearn: 0.0415630\ttotal: 38.6s\tremaining: 21.8s\n", + "6394:\tlearn: 0.0415521\ttotal: 38.6s\tremaining: 21.8s\n", + "6395:\tlearn: 0.0415471\ttotal: 38.6s\tremaining: 21.8s\n", + "6396:\tlearn: 0.0415414\ttotal: 38.6s\tremaining: 21.8s\n", + "6397:\tlearn: 0.0415345\ttotal: 38.6s\tremaining: 21.8s\n", + "6398:\tlearn: 0.0415261\ttotal: 38.7s\tremaining: 21.8s\n", + "6399:\tlearn: 0.0415187\ttotal: 38.7s\tremaining: 21.8s\n", + "6400:\tlearn: 0.0415087\ttotal: 38.7s\tremaining: 21.7s\n", + "6401:\tlearn: 0.0414949\ttotal: 38.7s\tremaining: 21.7s\n", + "6402:\tlearn: 0.0414904\ttotal: 38.7s\tremaining: 21.7s\n", + "6403:\tlearn: 0.0414846\ttotal: 38.7s\tremaining: 21.7s\n", + "6404:\tlearn: 0.0414776\ttotal: 38.7s\tremaining: 21.7s\n", + "6405:\tlearn: 0.0414696\ttotal: 38.7s\tremaining: 21.7s\n", + "6406:\tlearn: 0.0414649\ttotal: 38.8s\tremaining: 21.7s\n", + "6407:\tlearn: 0.0414585\ttotal: 38.8s\tremaining: 21.7s\n", + "6408:\tlearn: 0.0414513\ttotal: 38.8s\tremaining: 21.7s\n", + "6409:\tlearn: 0.0414460\ttotal: 38.8s\tremaining: 21.7s\n", + "6410:\tlearn: 0.0414381\ttotal: 38.8s\tremaining: 21.7s\n", + "6411:\tlearn: 0.0414339\ttotal: 38.8s\tremaining: 21.7s\n", + "6412:\tlearn: 0.0414249\ttotal: 38.8s\tremaining: 21.7s\n", + "6413:\tlearn: 0.0414159\ttotal: 38.8s\tremaining: 21.7s\n", + "6414:\tlearn: 0.0414089\ttotal: 38.8s\tremaining: 21.7s\n", + "6415:\tlearn: 0.0414014\ttotal: 38.9s\tremaining: 21.7s\n", + "6416:\tlearn: 0.0413943\ttotal: 38.9s\tremaining: 21.7s\n", + "6417:\tlearn: 0.0413817\ttotal: 38.9s\tremaining: 21.7s\n", + "6418:\tlearn: 0.0413711\ttotal: 38.9s\tremaining: 21.7s\n", + "6419:\tlearn: 0.0413631\ttotal: 38.9s\tremaining: 21.7s\n", + "6420:\tlearn: 0.0413511\ttotal: 38.9s\tremaining: 21.7s\n", + "6421:\tlearn: 0.0413429\ttotal: 38.9s\tremaining: 21.7s\n", + "6422:\tlearn: 0.0413283\ttotal: 38.9s\tremaining: 21.7s\n", + "6423:\tlearn: 0.0413166\ttotal: 38.9s\tremaining: 21.7s\n", + "6424:\tlearn: 0.0413089\ttotal: 39s\tremaining: 21.7s\n", + "6425:\tlearn: 0.0413049\ttotal: 39s\tremaining: 21.7s\n", + "6426:\tlearn: 0.0412973\ttotal: 39s\tremaining: 21.7s\n", + "6427:\tlearn: 0.0412859\ttotal: 39s\tremaining: 21.7s\n", + "6428:\tlearn: 0.0412734\ttotal: 39s\tremaining: 21.7s\n", + "6429:\tlearn: 0.0412646\ttotal: 39s\tremaining: 21.7s\n", + "6430:\tlearn: 0.0412575\ttotal: 39s\tremaining: 21.7s\n", + "6431:\tlearn: 0.0412505\ttotal: 39s\tremaining: 21.7s\n", + "6432:\tlearn: 0.0412444\ttotal: 39s\tremaining: 21.7s\n", + "6433:\tlearn: 0.0412304\ttotal: 39.1s\tremaining: 21.6s\n", + "6434:\tlearn: 0.0412208\ttotal: 39.1s\tremaining: 21.6s\n", + "6435:\tlearn: 0.0412135\ttotal: 39.1s\tremaining: 21.6s\n", + "6436:\tlearn: 0.0412020\ttotal: 39.1s\tremaining: 21.6s\n", + "6437:\tlearn: 0.0411966\ttotal: 39.1s\tremaining: 21.6s\n", + "6438:\tlearn: 0.0411861\ttotal: 39.1s\tremaining: 21.6s\n", + "6439:\tlearn: 0.0411767\ttotal: 39.1s\tremaining: 21.6s\n", + "6440:\tlearn: 0.0411666\ttotal: 39.1s\tremaining: 21.6s\n", + "6441:\tlearn: 0.0411555\ttotal: 39.1s\tremaining: 21.6s\n", + "6442:\tlearn: 0.0411496\ttotal: 39.2s\tremaining: 21.6s\n", + "6443:\tlearn: 0.0411466\ttotal: 39.2s\tremaining: 21.6s\n", + "6444:\tlearn: 0.0411319\ttotal: 39.2s\tremaining: 21.6s\n", + "6445:\tlearn: 0.0411288\ttotal: 39.2s\tremaining: 21.6s\n", + "6446:\tlearn: 0.0411186\ttotal: 39.2s\tremaining: 21.6s\n", + "6447:\tlearn: 0.0411120\ttotal: 39.2s\tremaining: 21.6s\n", + "6448:\tlearn: 0.0411056\ttotal: 39.2s\tremaining: 21.6s\n", + "6449:\tlearn: 0.0410941\ttotal: 39.2s\tremaining: 21.6s\n", + "6450:\tlearn: 0.0410827\ttotal: 39.2s\tremaining: 21.6s\n", + "6451:\tlearn: 0.0410741\ttotal: 39.3s\tremaining: 21.6s\n", + "6452:\tlearn: 0.0410690\ttotal: 39.3s\tremaining: 21.6s\n", + "6453:\tlearn: 0.0410618\ttotal: 39.3s\tremaining: 21.6s\n", + "6454:\tlearn: 0.0410551\ttotal: 39.3s\tremaining: 21.6s\n", + "6455:\tlearn: 0.0410496\ttotal: 39.3s\tremaining: 21.6s\n", + "6456:\tlearn: 0.0410386\ttotal: 39.3s\tremaining: 21.6s\n", + "6457:\tlearn: 0.0410352\ttotal: 39.3s\tremaining: 21.6s\n", + "6458:\tlearn: 0.0410290\ttotal: 39.3s\tremaining: 21.6s\n", + "6459:\tlearn: 0.0410199\ttotal: 39.3s\tremaining: 21.6s\n", + "6460:\tlearn: 0.0410060\ttotal: 39.4s\tremaining: 21.6s\n", + "6461:\tlearn: 0.0409936\ttotal: 39.4s\tremaining: 21.6s\n", + "6462:\tlearn: 0.0409826\ttotal: 39.4s\tremaining: 21.6s\n", + "6463:\tlearn: 0.0409783\ttotal: 39.4s\tremaining: 21.5s\n", + "6464:\tlearn: 0.0409702\ttotal: 39.4s\tremaining: 21.5s\n", + "6465:\tlearn: 0.0409558\ttotal: 39.4s\tremaining: 21.5s\n", + "6466:\tlearn: 0.0409439\ttotal: 39.4s\tremaining: 21.5s\n", + "6467:\tlearn: 0.0409342\ttotal: 39.4s\tremaining: 21.5s\n", + "6468:\tlearn: 0.0409260\ttotal: 39.5s\tremaining: 21.5s\n", + "6469:\tlearn: 0.0409204\ttotal: 39.5s\tremaining: 21.5s\n", + "6470:\tlearn: 0.0409128\ttotal: 39.5s\tremaining: 21.5s\n", + "6471:\tlearn: 0.0409028\ttotal: 39.5s\tremaining: 21.5s\n", + "6472:\tlearn: 0.0408974\ttotal: 39.5s\tremaining: 21.5s\n", + "6473:\tlearn: 0.0408896\ttotal: 39.5s\tremaining: 21.5s\n", + "6474:\tlearn: 0.0408821\ttotal: 39.5s\tremaining: 21.5s\n", + "6475:\tlearn: 0.0408692\ttotal: 39.5s\tremaining: 21.5s\n", + "6476:\tlearn: 0.0408603\ttotal: 39.5s\tremaining: 21.5s\n", + "6477:\tlearn: 0.0408456\ttotal: 39.5s\tremaining: 21.5s\n", + "6478:\tlearn: 0.0408354\ttotal: 39.6s\tremaining: 21.5s\n", + "6479:\tlearn: 0.0408262\ttotal: 39.6s\tremaining: 21.5s\n", + "6480:\tlearn: 0.0408234\ttotal: 39.6s\tremaining: 21.5s\n", + "6481:\tlearn: 0.0408169\ttotal: 39.6s\tremaining: 21.5s\n", + "6482:\tlearn: 0.0408108\ttotal: 39.6s\tremaining: 21.5s\n", + "6483:\tlearn: 0.0408082\ttotal: 39.6s\tremaining: 21.5s\n", + "6484:\tlearn: 0.0407954\ttotal: 39.6s\tremaining: 21.5s\n", + "6485:\tlearn: 0.0407909\ttotal: 39.6s\tremaining: 21.5s\n", + "6486:\tlearn: 0.0407868\ttotal: 39.7s\tremaining: 21.5s\n", + "6487:\tlearn: 0.0407788\ttotal: 39.7s\tremaining: 21.5s\n", + "6488:\tlearn: 0.0407718\ttotal: 39.7s\tremaining: 21.5s\n", + "6489:\tlearn: 0.0407621\ttotal: 39.7s\tremaining: 21.5s\n", + "6490:\tlearn: 0.0407569\ttotal: 39.7s\tremaining: 21.5s\n", + "6491:\tlearn: 0.0407358\ttotal: 39.7s\tremaining: 21.5s\n", + "6492:\tlearn: 0.0407262\ttotal: 39.7s\tremaining: 21.4s\n", + "6493:\tlearn: 0.0407197\ttotal: 39.7s\tremaining: 21.4s\n", + "6494:\tlearn: 0.0407091\ttotal: 39.7s\tremaining: 21.4s\n", + "6495:\tlearn: 0.0406982\ttotal: 39.8s\tremaining: 21.4s\n", + "6496:\tlearn: 0.0406902\ttotal: 39.8s\tremaining: 21.4s\n", + "6497:\tlearn: 0.0406818\ttotal: 39.8s\tremaining: 21.4s\n", + "6498:\tlearn: 0.0406749\ttotal: 39.8s\tremaining: 21.4s\n", + "6499:\tlearn: 0.0406635\ttotal: 39.8s\tremaining: 21.4s\n", + "6500:\tlearn: 0.0406541\ttotal: 39.8s\tremaining: 21.4s\n", + "6501:\tlearn: 0.0406475\ttotal: 39.8s\tremaining: 21.4s\n", + "6502:\tlearn: 0.0406437\ttotal: 39.8s\tremaining: 21.4s\n", + "6503:\tlearn: 0.0406387\ttotal: 39.8s\tremaining: 21.4s\n", + "6504:\tlearn: 0.0406291\ttotal: 39.8s\tremaining: 21.4s\n", + "6505:\tlearn: 0.0406182\ttotal: 39.9s\tremaining: 21.4s\n", + "6506:\tlearn: 0.0406123\ttotal: 39.9s\tremaining: 21.4s\n", + "6507:\tlearn: 0.0406040\ttotal: 39.9s\tremaining: 21.4s\n", + "6508:\tlearn: 0.0405910\ttotal: 39.9s\tremaining: 21.4s\n", + "6509:\tlearn: 0.0405825\ttotal: 39.9s\tremaining: 21.4s\n", + "6510:\tlearn: 0.0405710\ttotal: 39.9s\tremaining: 21.4s\n", + "6511:\tlearn: 0.0405630\ttotal: 39.9s\tremaining: 21.4s\n", + "6512:\tlearn: 0.0405582\ttotal: 39.9s\tremaining: 21.4s\n", + "6513:\tlearn: 0.0405435\ttotal: 40s\tremaining: 21.4s\n", + "6514:\tlearn: 0.0405354\ttotal: 40s\tremaining: 21.4s\n", + "6515:\tlearn: 0.0405182\ttotal: 40s\tremaining: 21.4s\n", + "6516:\tlearn: 0.0405093\ttotal: 40s\tremaining: 21.4s\n", + "6517:\tlearn: 0.0404987\ttotal: 40s\tremaining: 21.4s\n", + "6518:\tlearn: 0.0404920\ttotal: 40s\tremaining: 21.4s\n", + "6519:\tlearn: 0.0404866\ttotal: 40s\tremaining: 21.4s\n", + "6520:\tlearn: 0.0404792\ttotal: 40s\tremaining: 21.4s\n", + "6521:\tlearn: 0.0404708\ttotal: 40s\tremaining: 21.4s\n", + "6522:\tlearn: 0.0404587\ttotal: 40.1s\tremaining: 21.4s\n", + "6523:\tlearn: 0.0404543\ttotal: 40.1s\tremaining: 21.3s\n", + "6524:\tlearn: 0.0404457\ttotal: 40.1s\tremaining: 21.3s\n", + "6525:\tlearn: 0.0404394\ttotal: 40.1s\tremaining: 21.3s\n", + "6526:\tlearn: 0.0404292\ttotal: 40.1s\tremaining: 21.3s\n", + "6527:\tlearn: 0.0404225\ttotal: 40.1s\tremaining: 21.3s\n", + "6528:\tlearn: 0.0404124\ttotal: 40.1s\tremaining: 21.3s\n", + "6529:\tlearn: 0.0404016\ttotal: 40.1s\tremaining: 21.3s\n", + "6530:\tlearn: 0.0403893\ttotal: 40.1s\tremaining: 21.3s\n", + "6531:\tlearn: 0.0403799\ttotal: 40.2s\tremaining: 21.3s\n", + "6532:\tlearn: 0.0403722\ttotal: 40.2s\tremaining: 21.3s\n", + "6533:\tlearn: 0.0403676\ttotal: 40.2s\tremaining: 21.3s\n", + "6534:\tlearn: 0.0403642\ttotal: 40.2s\tremaining: 21.3s\n", + "6535:\tlearn: 0.0403552\ttotal: 40.2s\tremaining: 21.3s\n", + "6536:\tlearn: 0.0403477\ttotal: 40.2s\tremaining: 21.3s\n", + "6537:\tlearn: 0.0403409\ttotal: 40.2s\tremaining: 21.3s\n", + "6538:\tlearn: 0.0403377\ttotal: 40.2s\tremaining: 21.3s\n", + "6539:\tlearn: 0.0403313\ttotal: 40.2s\tremaining: 21.3s\n", + "6540:\tlearn: 0.0403219\ttotal: 40.3s\tremaining: 21.3s\n", + "6541:\tlearn: 0.0403146\ttotal: 40.3s\tremaining: 21.3s\n", + "6542:\tlearn: 0.0403072\ttotal: 40.3s\tremaining: 21.3s\n", + "6543:\tlearn: 0.0403017\ttotal: 40.3s\tremaining: 21.3s\n", + "6544:\tlearn: 0.0402965\ttotal: 40.3s\tremaining: 21.3s\n", + "6545:\tlearn: 0.0402899\ttotal: 40.3s\tremaining: 21.3s\n", + "6546:\tlearn: 0.0402814\ttotal: 40.3s\tremaining: 21.3s\n", + "6547:\tlearn: 0.0402732\ttotal: 40.3s\tremaining: 21.3s\n", + "6548:\tlearn: 0.0402616\ttotal: 40.3s\tremaining: 21.3s\n", + "6549:\tlearn: 0.0402526\ttotal: 40.4s\tremaining: 21.3s\n", + "6550:\tlearn: 0.0402456\ttotal: 40.4s\tremaining: 21.3s\n", + "6551:\tlearn: 0.0402333\ttotal: 40.4s\tremaining: 21.2s\n", + "6552:\tlearn: 0.0402244\ttotal: 40.4s\tremaining: 21.2s\n", + "6553:\tlearn: 0.0402129\ttotal: 40.4s\tremaining: 21.2s\n", + "6554:\tlearn: 0.0402079\ttotal: 40.4s\tremaining: 21.2s\n", + "6555:\tlearn: 0.0401981\ttotal: 40.4s\tremaining: 21.2s\n", + "6556:\tlearn: 0.0401901\ttotal: 40.4s\tremaining: 21.2s\n", + "6557:\tlearn: 0.0401797\ttotal: 40.4s\tremaining: 21.2s\n", + "6558:\tlearn: 0.0401703\ttotal: 40.4s\tremaining: 21.2s\n", + "6559:\tlearn: 0.0401635\ttotal: 40.5s\tremaining: 21.2s\n", + "6560:\tlearn: 0.0401514\ttotal: 40.5s\tremaining: 21.2s\n", + "6561:\tlearn: 0.0401427\ttotal: 40.5s\tremaining: 21.2s\n", + "6562:\tlearn: 0.0401352\ttotal: 40.5s\tremaining: 21.2s\n", + "6563:\tlearn: 0.0401226\ttotal: 40.5s\tremaining: 21.2s\n", + "6564:\tlearn: 0.0401164\ttotal: 40.5s\tremaining: 21.2s\n", + "6565:\tlearn: 0.0401127\ttotal: 40.5s\tremaining: 21.2s\n", + "6566:\tlearn: 0.0401065\ttotal: 40.5s\tremaining: 21.2s\n", + "6567:\tlearn: 0.0400966\ttotal: 40.5s\tremaining: 21.2s\n", + "6568:\tlearn: 0.0400906\ttotal: 40.5s\tremaining: 21.2s\n", + "6569:\tlearn: 0.0400801\ttotal: 40.5s\tremaining: 21.2s\n", + "6570:\tlearn: 0.0400734\ttotal: 40.5s\tremaining: 21.1s\n", + "6571:\tlearn: 0.0400650\ttotal: 40.5s\tremaining: 21.1s\n", + "6572:\tlearn: 0.0400543\ttotal: 40.5s\tremaining: 21.1s\n", + "6573:\tlearn: 0.0400459\ttotal: 40.5s\tremaining: 21.1s\n", + "6574:\tlearn: 0.0400355\ttotal: 40.5s\tremaining: 21.1s\n", + "6575:\tlearn: 0.0400275\ttotal: 40.6s\tremaining: 21.1s\n", + "6576:\tlearn: 0.0400167\ttotal: 40.6s\tremaining: 21.1s\n", + "6577:\tlearn: 0.0400138\ttotal: 40.6s\tremaining: 21.1s\n", + "6578:\tlearn: 0.0400037\ttotal: 40.6s\tremaining: 21.1s\n", + "6579:\tlearn: 0.0399951\ttotal: 40.6s\tremaining: 21.1s\n", + "6580:\tlearn: 0.0399919\ttotal: 40.6s\tremaining: 21.1s\n", + "6581:\tlearn: 0.0399863\ttotal: 40.6s\tremaining: 21.1s\n", + "6582:\tlearn: 0.0399775\ttotal: 40.6s\tremaining: 21.1s\n", + "6583:\tlearn: 0.0399701\ttotal: 40.6s\tremaining: 21.1s\n", + "6584:\tlearn: 0.0399611\ttotal: 40.6s\tremaining: 21.1s\n", + "6585:\tlearn: 0.0399525\ttotal: 40.6s\tremaining: 21s\n", + "6586:\tlearn: 0.0399452\ttotal: 40.6s\tremaining: 21s\n", + "6587:\tlearn: 0.0399344\ttotal: 40.6s\tremaining: 21s\n", + "6588:\tlearn: 0.0399270\ttotal: 40.6s\tremaining: 21s\n", + "6589:\tlearn: 0.0399176\ttotal: 40.6s\tremaining: 21s\n", + "6590:\tlearn: 0.0399048\ttotal: 40.6s\tremaining: 21s\n", + "6591:\tlearn: 0.0399015\ttotal: 40.6s\tremaining: 21s\n", + "6592:\tlearn: 0.0398923\ttotal: 40.6s\tremaining: 21s\n", + "6593:\tlearn: 0.0398871\ttotal: 40.6s\tremaining: 21s\n", + "6594:\tlearn: 0.0398774\ttotal: 40.6s\tremaining: 21s\n", + "6595:\tlearn: 0.0398672\ttotal: 40.7s\tremaining: 21s\n", + "6596:\tlearn: 0.0398569\ttotal: 40.7s\tremaining: 21s\n", + "6597:\tlearn: 0.0398427\ttotal: 40.7s\tremaining: 21s\n", + "6598:\tlearn: 0.0398389\ttotal: 40.7s\tremaining: 21s\n", + "6599:\tlearn: 0.0398313\ttotal: 40.7s\tremaining: 21s\n", + "6600:\tlearn: 0.0398262\ttotal: 40.7s\tremaining: 20.9s\n", + "6601:\tlearn: 0.0398159\ttotal: 40.7s\tremaining: 20.9s\n", + "6602:\tlearn: 0.0398065\ttotal: 40.7s\tremaining: 20.9s\n", + "6603:\tlearn: 0.0397989\ttotal: 40.7s\tremaining: 20.9s\n", + "6604:\tlearn: 0.0397928\ttotal: 40.7s\tremaining: 20.9s\n", + "6605:\tlearn: 0.0397787\ttotal: 40.7s\tremaining: 20.9s\n", + "6606:\tlearn: 0.0397722\ttotal: 40.7s\tremaining: 20.9s\n", + "6607:\tlearn: 0.0397620\ttotal: 40.7s\tremaining: 20.9s\n", + "6608:\tlearn: 0.0397578\ttotal: 40.7s\tremaining: 20.9s\n", + "6609:\tlearn: 0.0397517\ttotal: 40.7s\tremaining: 20.9s\n", + "6610:\tlearn: 0.0397459\ttotal: 40.7s\tremaining: 20.9s\n", + "6611:\tlearn: 0.0397379\ttotal: 40.7s\tremaining: 20.9s\n", + "6612:\tlearn: 0.0397245\ttotal: 40.8s\tremaining: 20.9s\n", + "6613:\tlearn: 0.0397177\ttotal: 40.8s\tremaining: 20.9s\n", + "6614:\tlearn: 0.0397145\ttotal: 40.8s\tremaining: 20.9s\n", + "6615:\tlearn: 0.0397055\ttotal: 40.8s\tremaining: 20.9s\n", + "6616:\tlearn: 0.0396974\ttotal: 40.8s\tremaining: 20.8s\n", + "6617:\tlearn: 0.0396915\ttotal: 40.8s\tremaining: 20.8s\n", + "6618:\tlearn: 0.0396874\ttotal: 40.8s\tremaining: 20.8s\n", + "6619:\tlearn: 0.0396835\ttotal: 40.8s\tremaining: 20.8s\n", + "6620:\tlearn: 0.0396728\ttotal: 40.8s\tremaining: 20.8s\n", + "6621:\tlearn: 0.0396687\ttotal: 40.8s\tremaining: 20.8s\n", + "6622:\tlearn: 0.0396582\ttotal: 40.8s\tremaining: 20.8s\n", + "6623:\tlearn: 0.0396504\ttotal: 40.8s\tremaining: 20.8s\n", + "6624:\tlearn: 0.0396414\ttotal: 40.8s\tremaining: 20.8s\n", + "6625:\tlearn: 0.0396306\ttotal: 40.8s\tremaining: 20.8s\n", + "6626:\tlearn: 0.0396230\ttotal: 40.8s\tremaining: 20.8s\n", + "6627:\tlearn: 0.0396204\ttotal: 40.8s\tremaining: 20.8s\n", + "6628:\tlearn: 0.0396147\ttotal: 40.8s\tremaining: 20.8s\n", + "6629:\tlearn: 0.0396054\ttotal: 40.8s\tremaining: 20.8s\n", + "6630:\tlearn: 0.0395923\ttotal: 40.8s\tremaining: 20.7s\n", + "6631:\tlearn: 0.0395815\ttotal: 40.8s\tremaining: 20.7s\n", + "6632:\tlearn: 0.0395705\ttotal: 40.9s\tremaining: 20.7s\n", + "6633:\tlearn: 0.0395657\ttotal: 40.9s\tremaining: 20.7s\n", + "6634:\tlearn: 0.0395523\ttotal: 40.9s\tremaining: 20.7s\n", + "6635:\tlearn: 0.0395482\ttotal: 40.9s\tremaining: 20.7s\n", + "6636:\tlearn: 0.0395407\ttotal: 40.9s\tremaining: 20.7s\n", + "6637:\tlearn: 0.0395367\ttotal: 40.9s\tremaining: 20.7s\n", + "6638:\tlearn: 0.0395284\ttotal: 40.9s\tremaining: 20.7s\n", + "6639:\tlearn: 0.0395192\ttotal: 40.9s\tremaining: 20.7s\n", + "6640:\tlearn: 0.0395096\ttotal: 40.9s\tremaining: 20.7s\n", + "6641:\tlearn: 0.0395021\ttotal: 40.9s\tremaining: 20.7s\n", + "6642:\tlearn: 0.0394901\ttotal: 40.9s\tremaining: 20.7s\n", + "6643:\tlearn: 0.0394769\ttotal: 40.9s\tremaining: 20.7s\n", + "6644:\tlearn: 0.0394676\ttotal: 40.9s\tremaining: 20.7s\n", + "6645:\tlearn: 0.0394585\ttotal: 40.9s\tremaining: 20.7s\n", + "6646:\tlearn: 0.0394505\ttotal: 40.9s\tremaining: 20.6s\n", + "6647:\tlearn: 0.0394389\ttotal: 40.9s\tremaining: 20.6s\n", + "6648:\tlearn: 0.0394287\ttotal: 40.9s\tremaining: 20.6s\n", + "6649:\tlearn: 0.0394219\ttotal: 41s\tremaining: 20.6s\n", + "6650:\tlearn: 0.0394134\ttotal: 41s\tremaining: 20.6s\n", + "6651:\tlearn: 0.0394059\ttotal: 41s\tremaining: 20.6s\n", + "6652:\tlearn: 0.0393982\ttotal: 41s\tremaining: 20.6s\n", + "6653:\tlearn: 0.0393857\ttotal: 41s\tremaining: 20.6s\n", + "6654:\tlearn: 0.0393762\ttotal: 41s\tremaining: 20.6s\n", + "6655:\tlearn: 0.0393701\ttotal: 41s\tremaining: 20.6s\n", + "6656:\tlearn: 0.0393654\ttotal: 41s\tremaining: 20.6s\n", + "6657:\tlearn: 0.0393583\ttotal: 41s\tremaining: 20.6s\n", + "6658:\tlearn: 0.0393524\ttotal: 41s\tremaining: 20.6s\n", + "6659:\tlearn: 0.0393448\ttotal: 41s\tremaining: 20.6s\n", + "6660:\tlearn: 0.0393378\ttotal: 41s\tremaining: 20.6s\n", + "6661:\tlearn: 0.0393288\ttotal: 41s\tremaining: 20.5s\n", + "6662:\tlearn: 0.0393255\ttotal: 41s\tremaining: 20.5s\n", + "6663:\tlearn: 0.0393158\ttotal: 41s\tremaining: 20.5s\n", + "6664:\tlearn: 0.0393132\ttotal: 41s\tremaining: 20.5s\n", + "6665:\tlearn: 0.0393023\ttotal: 41s\tremaining: 20.5s\n", + "6666:\tlearn: 0.0392909\ttotal: 41s\tremaining: 20.5s\n", + "6667:\tlearn: 0.0392833\ttotal: 41s\tremaining: 20.5s\n", + "6668:\tlearn: 0.0392792\ttotal: 41s\tremaining: 20.5s\n", + "6669:\tlearn: 0.0392749\ttotal: 41s\tremaining: 20.5s\n", + "6670:\tlearn: 0.0392636\ttotal: 41.1s\tremaining: 20.5s\n", + "6671:\tlearn: 0.0392552\ttotal: 41.1s\tremaining: 20.5s\n", + "6672:\tlearn: 0.0392474\ttotal: 41.1s\tremaining: 20.5s\n", + "6673:\tlearn: 0.0392444\ttotal: 41.1s\tremaining: 20.5s\n", + "6674:\tlearn: 0.0392374\ttotal: 41.1s\tremaining: 20.5s\n", + "6675:\tlearn: 0.0392294\ttotal: 41.1s\tremaining: 20.5s\n", + "6676:\tlearn: 0.0392201\ttotal: 41.1s\tremaining: 20.5s\n", + "6677:\tlearn: 0.0392180\ttotal: 41.1s\tremaining: 20.4s\n", + "6678:\tlearn: 0.0392127\ttotal: 41.1s\tremaining: 20.4s\n", + "6679:\tlearn: 0.0392081\ttotal: 41.1s\tremaining: 20.4s\n", + "6680:\tlearn: 0.0391982\ttotal: 41.1s\tremaining: 20.4s\n", + "6681:\tlearn: 0.0391902\ttotal: 41.1s\tremaining: 20.4s\n", + "6682:\tlearn: 0.0391803\ttotal: 41.1s\tremaining: 20.4s\n", + "6683:\tlearn: 0.0391722\ttotal: 41.1s\tremaining: 20.4s\n", + "6684:\tlearn: 0.0391647\ttotal: 41.1s\tremaining: 20.4s\n", + "6685:\tlearn: 0.0391551\ttotal: 41.1s\tremaining: 20.4s\n", + "6686:\tlearn: 0.0391467\ttotal: 41.1s\tremaining: 20.4s\n", + "6687:\tlearn: 0.0391409\ttotal: 41.1s\tremaining: 20.4s\n", + "6688:\tlearn: 0.0391296\ttotal: 41.2s\tremaining: 20.4s\n", + "6689:\tlearn: 0.0391193\ttotal: 41.2s\tremaining: 20.4s\n", + "6690:\tlearn: 0.0391120\ttotal: 41.2s\tremaining: 20.4s\n", + "6691:\tlearn: 0.0391031\ttotal: 41.2s\tremaining: 20.4s\n", + "6692:\tlearn: 0.0390929\ttotal: 41.2s\tremaining: 20.3s\n", + "6693:\tlearn: 0.0390869\ttotal: 41.2s\tremaining: 20.3s\n", + "6694:\tlearn: 0.0390824\ttotal: 41.2s\tremaining: 20.3s\n", + "6695:\tlearn: 0.0390729\ttotal: 41.2s\tremaining: 20.3s\n", + "6696:\tlearn: 0.0390653\ttotal: 41.2s\tremaining: 20.3s\n", + "6697:\tlearn: 0.0390615\ttotal: 41.2s\tremaining: 20.3s\n", + "6698:\tlearn: 0.0390553\ttotal: 41.2s\tremaining: 20.3s\n", + "6699:\tlearn: 0.0390486\ttotal: 41.2s\tremaining: 20.3s\n", + "6700:\tlearn: 0.0390369\ttotal: 41.2s\tremaining: 20.3s\n", + "6701:\tlearn: 0.0390310\ttotal: 41.2s\tremaining: 20.3s\n", + "6702:\tlearn: 0.0390232\ttotal: 41.2s\tremaining: 20.3s\n", + "6703:\tlearn: 0.0390162\ttotal: 41.2s\tremaining: 20.3s\n", + "6704:\tlearn: 0.0390031\ttotal: 41.2s\tremaining: 20.3s\n", + "6705:\tlearn: 0.0389913\ttotal: 41.2s\tremaining: 20.3s\n", + "6706:\tlearn: 0.0389826\ttotal: 41.2s\tremaining: 20.3s\n", + "6707:\tlearn: 0.0389760\ttotal: 41.3s\tremaining: 20.2s\n", + "6708:\tlearn: 0.0389711\ttotal: 41.3s\tremaining: 20.2s\n", + "6709:\tlearn: 0.0389624\ttotal: 41.3s\tremaining: 20.2s\n", + "6710:\tlearn: 0.0389520\ttotal: 41.3s\tremaining: 20.2s\n", + "6711:\tlearn: 0.0389427\ttotal: 41.3s\tremaining: 20.2s\n", + "6712:\tlearn: 0.0389336\ttotal: 41.3s\tremaining: 20.2s\n", + "6713:\tlearn: 0.0389194\ttotal: 41.3s\tremaining: 20.2s\n", + "6714:\tlearn: 0.0389108\ttotal: 41.3s\tremaining: 20.2s\n", + "6715:\tlearn: 0.0389014\ttotal: 41.3s\tremaining: 20.2s\n", + "6716:\tlearn: 0.0388924\ttotal: 41.3s\tremaining: 20.2s\n", + "6717:\tlearn: 0.0388875\ttotal: 41.3s\tremaining: 20.2s\n", + "6718:\tlearn: 0.0388771\ttotal: 41.3s\tremaining: 20.2s\n", + "6719:\tlearn: 0.0388666\ttotal: 41.3s\tremaining: 20.2s\n", + "6720:\tlearn: 0.0388550\ttotal: 41.3s\tremaining: 20.2s\n", + "6721:\tlearn: 0.0388484\ttotal: 41.3s\tremaining: 20.2s\n", + "6722:\tlearn: 0.0388406\ttotal: 41.3s\tremaining: 20.1s\n", + "6723:\tlearn: 0.0388353\ttotal: 41.3s\tremaining: 20.1s\n", + "6724:\tlearn: 0.0388302\ttotal: 41.3s\tremaining: 20.1s\n", + "6725:\tlearn: 0.0388226\ttotal: 41.3s\tremaining: 20.1s\n", + "6726:\tlearn: 0.0388131\ttotal: 41.4s\tremaining: 20.1s\n", + "6727:\tlearn: 0.0388047\ttotal: 41.4s\tremaining: 20.1s\n", + "6728:\tlearn: 0.0387924\ttotal: 41.4s\tremaining: 20.1s\n", + "6729:\tlearn: 0.0387846\ttotal: 41.4s\tremaining: 20.1s\n", + "6730:\tlearn: 0.0387790\ttotal: 41.4s\tremaining: 20.1s\n", + "6731:\tlearn: 0.0387685\ttotal: 41.4s\tremaining: 20.1s\n", + "6732:\tlearn: 0.0387621\ttotal: 41.4s\tremaining: 20.1s\n", + "6733:\tlearn: 0.0387574\ttotal: 41.4s\tremaining: 20.1s\n", + "6734:\tlearn: 0.0387520\ttotal: 41.4s\tremaining: 20.1s\n", + "6735:\tlearn: 0.0387470\ttotal: 41.4s\tremaining: 20.1s\n", + "6736:\tlearn: 0.0387396\ttotal: 41.4s\tremaining: 20.1s\n", + "6737:\tlearn: 0.0387288\ttotal: 41.4s\tremaining: 20s\n", + "6738:\tlearn: 0.0387208\ttotal: 41.4s\tremaining: 20s\n", + "6739:\tlearn: 0.0387104\ttotal: 41.4s\tremaining: 20s\n", + "6740:\tlearn: 0.0386973\ttotal: 41.4s\tremaining: 20s\n", + "6741:\tlearn: 0.0386902\ttotal: 41.4s\tremaining: 20s\n", + "6742:\tlearn: 0.0386847\ttotal: 41.4s\tremaining: 20s\n", + "6743:\tlearn: 0.0386737\ttotal: 41.4s\tremaining: 20s\n", + "6744:\tlearn: 0.0386676\ttotal: 41.4s\tremaining: 20s\n", + "6745:\tlearn: 0.0386605\ttotal: 41.4s\tremaining: 20s\n", + "6746:\tlearn: 0.0386439\ttotal: 41.5s\tremaining: 20s\n", + "6747:\tlearn: 0.0386376\ttotal: 41.5s\tremaining: 20s\n", + "6748:\tlearn: 0.0386310\ttotal: 41.5s\tremaining: 20s\n", + "6749:\tlearn: 0.0386249\ttotal: 41.5s\tremaining: 20s\n", + "6750:\tlearn: 0.0386157\ttotal: 41.5s\tremaining: 20s\n", + "6751:\tlearn: 0.0386085\ttotal: 41.5s\tremaining: 20s\n", + "6752:\tlearn: 0.0386028\ttotal: 41.5s\tremaining: 19.9s\n", + "6753:\tlearn: 0.0385954\ttotal: 41.5s\tremaining: 19.9s\n", + "6754:\tlearn: 0.0385890\ttotal: 41.5s\tremaining: 19.9s\n", + "6755:\tlearn: 0.0385820\ttotal: 41.5s\tremaining: 19.9s\n", + "6756:\tlearn: 0.0385771\ttotal: 41.5s\tremaining: 19.9s\n", + "6757:\tlearn: 0.0385708\ttotal: 41.5s\tremaining: 19.9s\n", + "6758:\tlearn: 0.0385648\ttotal: 41.5s\tremaining: 19.9s\n", + "6759:\tlearn: 0.0385542\ttotal: 41.5s\tremaining: 19.9s\n", + "6760:\tlearn: 0.0385480\ttotal: 41.5s\tremaining: 19.9s\n", + "6761:\tlearn: 0.0385432\ttotal: 41.5s\tremaining: 19.9s\n", + "6762:\tlearn: 0.0385336\ttotal: 41.5s\tremaining: 19.9s\n", + "6763:\tlearn: 0.0385256\ttotal: 41.5s\tremaining: 19.9s\n", + "6764:\tlearn: 0.0385157\ttotal: 41.5s\tremaining: 19.9s\n", + "6765:\tlearn: 0.0385083\ttotal: 41.6s\tremaining: 19.9s\n", + "6766:\tlearn: 0.0385055\ttotal: 41.6s\tremaining: 19.9s\n", + "6767:\tlearn: 0.0384980\ttotal: 41.6s\tremaining: 19.8s\n", + "6768:\tlearn: 0.0384907\ttotal: 41.6s\tremaining: 19.8s\n", + "6769:\tlearn: 0.0384828\ttotal: 41.6s\tremaining: 19.8s\n", + "6770:\tlearn: 0.0384758\ttotal: 41.6s\tremaining: 19.8s\n", + "6771:\tlearn: 0.0384730\ttotal: 41.6s\tremaining: 19.8s\n", + "6772:\tlearn: 0.0384697\ttotal: 41.6s\tremaining: 19.8s\n", + "6773:\tlearn: 0.0384654\ttotal: 41.6s\tremaining: 19.8s\n", + "6774:\tlearn: 0.0384576\ttotal: 41.6s\tremaining: 19.8s\n", + "6775:\tlearn: 0.0384470\ttotal: 41.6s\tremaining: 19.8s\n", + "6776:\tlearn: 0.0384427\ttotal: 41.6s\tremaining: 19.8s\n", + "6777:\tlearn: 0.0384344\ttotal: 41.6s\tremaining: 19.8s\n", + "6778:\tlearn: 0.0384231\ttotal: 41.6s\tremaining: 19.8s\n", + "6779:\tlearn: 0.0384128\ttotal: 41.6s\tremaining: 19.8s\n", + "6780:\tlearn: 0.0384067\ttotal: 41.6s\tremaining: 19.8s\n", + "6781:\tlearn: 0.0383999\ttotal: 41.6s\tremaining: 19.8s\n", + "6782:\tlearn: 0.0383969\ttotal: 41.6s\tremaining: 19.8s\n", + "6783:\tlearn: 0.0383896\ttotal: 41.6s\tremaining: 19.7s\n", + "6784:\tlearn: 0.0383852\ttotal: 41.7s\tremaining: 19.7s\n", + "6785:\tlearn: 0.0383736\ttotal: 41.7s\tremaining: 19.7s\n", + "6786:\tlearn: 0.0383674\ttotal: 41.7s\tremaining: 19.7s\n", + "6787:\tlearn: 0.0383565\ttotal: 41.7s\tremaining: 19.7s\n", + "6788:\tlearn: 0.0383494\ttotal: 41.7s\tremaining: 19.7s\n", + "6789:\tlearn: 0.0383411\ttotal: 41.7s\tremaining: 19.7s\n", + "6790:\tlearn: 0.0383317\ttotal: 41.7s\tremaining: 19.7s\n", + "6791:\tlearn: 0.0383247\ttotal: 41.7s\tremaining: 19.7s\n", + "6792:\tlearn: 0.0383210\ttotal: 41.7s\tremaining: 19.7s\n", + "6793:\tlearn: 0.0383138\ttotal: 41.7s\tremaining: 19.7s\n", + "6794:\tlearn: 0.0383002\ttotal: 41.7s\tremaining: 19.7s\n", + "6795:\tlearn: 0.0382960\ttotal: 41.7s\tremaining: 19.7s\n", + "6796:\tlearn: 0.0382844\ttotal: 41.7s\tremaining: 19.7s\n", + "6797:\tlearn: 0.0382795\ttotal: 41.7s\tremaining: 19.7s\n", + "6798:\tlearn: 0.0382724\ttotal: 41.7s\tremaining: 19.7s\n", + "6799:\tlearn: 0.0382626\ttotal: 41.7s\tremaining: 19.6s\n", + "6800:\tlearn: 0.0382545\ttotal: 41.8s\tremaining: 19.6s\n", + "6801:\tlearn: 0.0382432\ttotal: 41.8s\tremaining: 19.6s\n", + "6802:\tlearn: 0.0382350\ttotal: 41.8s\tremaining: 19.6s\n", + "6803:\tlearn: 0.0382337\ttotal: 41.8s\tremaining: 19.6s\n", + "6804:\tlearn: 0.0382288\ttotal: 41.8s\tremaining: 19.6s\n", + "6805:\tlearn: 0.0382244\ttotal: 41.8s\tremaining: 19.6s\n", + "6806:\tlearn: 0.0382212\ttotal: 41.8s\tremaining: 19.6s\n", + "6807:\tlearn: 0.0382138\ttotal: 41.8s\tremaining: 19.6s\n", + "6808:\tlearn: 0.0382054\ttotal: 41.8s\tremaining: 19.6s\n", + "6809:\tlearn: 0.0381950\ttotal: 41.8s\tremaining: 19.6s\n", + "6810:\tlearn: 0.0381905\ttotal: 41.8s\tremaining: 19.6s\n", + "6811:\tlearn: 0.0381848\ttotal: 41.8s\tremaining: 19.6s\n", + "6812:\tlearn: 0.0381810\ttotal: 41.8s\tremaining: 19.6s\n", + "6813:\tlearn: 0.0381711\ttotal: 41.8s\tremaining: 19.6s\n", + "6814:\tlearn: 0.0381656\ttotal: 41.8s\tremaining: 19.5s\n", + "6815:\tlearn: 0.0381540\ttotal: 41.8s\tremaining: 19.5s\n", + "6816:\tlearn: 0.0381450\ttotal: 41.8s\tremaining: 19.5s\n", + "6817:\tlearn: 0.0381383\ttotal: 41.8s\tremaining: 19.5s\n", + "6818:\tlearn: 0.0381326\ttotal: 41.8s\tremaining: 19.5s\n", + "6819:\tlearn: 0.0381243\ttotal: 41.8s\tremaining: 19.5s\n", + "6820:\tlearn: 0.0381190\ttotal: 41.8s\tremaining: 19.5s\n", + "6821:\tlearn: 0.0381153\ttotal: 41.9s\tremaining: 19.5s\n", + "6822:\tlearn: 0.0381083\ttotal: 41.9s\tremaining: 19.5s\n", + "6823:\tlearn: 0.0381038\ttotal: 41.9s\tremaining: 19.5s\n", + "6824:\tlearn: 0.0380966\ttotal: 41.9s\tremaining: 19.5s\n", + "6825:\tlearn: 0.0380893\ttotal: 41.9s\tremaining: 19.5s\n", + "6826:\tlearn: 0.0380849\ttotal: 41.9s\tremaining: 19.5s\n", + "6827:\tlearn: 0.0380779\ttotal: 41.9s\tremaining: 19.5s\n", + "6828:\tlearn: 0.0380726\ttotal: 41.9s\tremaining: 19.5s\n", + "6829:\tlearn: 0.0380653\ttotal: 41.9s\tremaining: 19.5s\n", + "6830:\tlearn: 0.0380592\ttotal: 41.9s\tremaining: 19.4s\n", + "6831:\tlearn: 0.0380525\ttotal: 41.9s\tremaining: 19.4s\n", + "6832:\tlearn: 0.0380469\ttotal: 41.9s\tremaining: 19.4s\n", + "6833:\tlearn: 0.0380432\ttotal: 41.9s\tremaining: 19.4s\n", + "6834:\tlearn: 0.0380367\ttotal: 41.9s\tremaining: 19.4s\n", + "6835:\tlearn: 0.0380329\ttotal: 41.9s\tremaining: 19.4s\n", + "6836:\tlearn: 0.0380248\ttotal: 41.9s\tremaining: 19.4s\n", + "6837:\tlearn: 0.0380187\ttotal: 41.9s\tremaining: 19.4s\n", + "6838:\tlearn: 0.0380130\ttotal: 42s\tremaining: 19.4s\n", + "6839:\tlearn: 0.0380045\ttotal: 42s\tremaining: 19.4s\n", + "6840:\tlearn: 0.0379989\ttotal: 42s\tremaining: 19.4s\n", + "6841:\tlearn: 0.0379911\ttotal: 42s\tremaining: 19.4s\n", + "6842:\tlearn: 0.0379846\ttotal: 42s\tremaining: 19.4s\n", + "6843:\tlearn: 0.0379777\ttotal: 42s\tremaining: 19.4s\n", + "6844:\tlearn: 0.0379714\ttotal: 42s\tremaining: 19.4s\n", + "6845:\tlearn: 0.0379678\ttotal: 42s\tremaining: 19.3s\n", + "6846:\tlearn: 0.0379615\ttotal: 42s\tremaining: 19.3s\n", + "6847:\tlearn: 0.0379563\ttotal: 42s\tremaining: 19.3s\n", + "6848:\tlearn: 0.0379467\ttotal: 42s\tremaining: 19.3s\n", + "6849:\tlearn: 0.0379425\ttotal: 42s\tremaining: 19.3s\n", + "6850:\tlearn: 0.0379351\ttotal: 42s\tremaining: 19.3s\n", + "6851:\tlearn: 0.0379275\ttotal: 42s\tremaining: 19.3s\n", + "6852:\tlearn: 0.0379168\ttotal: 42s\tremaining: 19.3s\n", + "6853:\tlearn: 0.0379121\ttotal: 42s\tremaining: 19.3s\n", + "6854:\tlearn: 0.0379029\ttotal: 42s\tremaining: 19.3s\n", + "6855:\tlearn: 0.0378933\ttotal: 42s\tremaining: 19.3s\n", + "6856:\tlearn: 0.0378896\ttotal: 42s\tremaining: 19.3s\n", + "6857:\tlearn: 0.0378850\ttotal: 42s\tremaining: 19.3s\n", + "6858:\tlearn: 0.0378790\ttotal: 42.1s\tremaining: 19.3s\n", + "6859:\tlearn: 0.0378689\ttotal: 42.1s\tremaining: 19.3s\n", + "6860:\tlearn: 0.0378613\ttotal: 42.1s\tremaining: 19.2s\n", + "6861:\tlearn: 0.0378536\ttotal: 42.1s\tremaining: 19.2s\n", + "6862:\tlearn: 0.0378471\ttotal: 42.1s\tremaining: 19.2s\n", + "6863:\tlearn: 0.0378388\ttotal: 42.1s\tremaining: 19.2s\n", + "6864:\tlearn: 0.0378311\ttotal: 42.1s\tremaining: 19.2s\n", + "6865:\tlearn: 0.0378238\ttotal: 42.1s\tremaining: 19.2s\n", + "6866:\tlearn: 0.0378178\ttotal: 42.1s\tremaining: 19.2s\n", + "6867:\tlearn: 0.0378132\ttotal: 42.1s\tremaining: 19.2s\n", + "6868:\tlearn: 0.0378093\ttotal: 42.1s\tremaining: 19.2s\n", + "6869:\tlearn: 0.0378063\ttotal: 42.1s\tremaining: 19.2s\n", + "6870:\tlearn: 0.0377951\ttotal: 42.1s\tremaining: 19.2s\n", + "6871:\tlearn: 0.0377857\ttotal: 42.1s\tremaining: 19.2s\n", + "6872:\tlearn: 0.0377782\ttotal: 42.1s\tremaining: 19.2s\n", + "6873:\tlearn: 0.0377679\ttotal: 42.1s\tremaining: 19.2s\n", + "6874:\tlearn: 0.0377610\ttotal: 42.1s\tremaining: 19.2s\n", + "6875:\tlearn: 0.0377533\ttotal: 42.1s\tremaining: 19.1s\n", + "6876:\tlearn: 0.0377451\ttotal: 42.1s\tremaining: 19.1s\n", + "6877:\tlearn: 0.0377385\ttotal: 42.2s\tremaining: 19.1s\n", + "6878:\tlearn: 0.0377336\ttotal: 42.2s\tremaining: 19.1s\n", + "6879:\tlearn: 0.0377274\ttotal: 42.2s\tremaining: 19.1s\n", + "6880:\tlearn: 0.0377229\ttotal: 42.2s\tremaining: 19.1s\n", + "6881:\tlearn: 0.0377160\ttotal: 42.2s\tremaining: 19.1s\n", + "6882:\tlearn: 0.0377102\ttotal: 42.2s\tremaining: 19.1s\n", + "6883:\tlearn: 0.0377054\ttotal: 42.2s\tremaining: 19.1s\n", + "6884:\tlearn: 0.0376985\ttotal: 42.2s\tremaining: 19.1s\n", + "6885:\tlearn: 0.0376893\ttotal: 42.2s\tremaining: 19.1s\n", + "6886:\tlearn: 0.0376813\ttotal: 42.2s\tremaining: 19.1s\n", + "6887:\tlearn: 0.0376695\ttotal: 42.2s\tremaining: 19.1s\n", + "6888:\tlearn: 0.0376638\ttotal: 42.2s\tremaining: 19.1s\n", + "6889:\tlearn: 0.0376577\ttotal: 42.2s\tremaining: 19.1s\n", + "6890:\tlearn: 0.0376483\ttotal: 42.2s\tremaining: 19s\n", + "6891:\tlearn: 0.0376422\ttotal: 42.2s\tremaining: 19s\n", + "6892:\tlearn: 0.0376380\ttotal: 42.2s\tremaining: 19s\n", + "6893:\tlearn: 0.0376319\ttotal: 42.2s\tremaining: 19s\n", + "6894:\tlearn: 0.0376270\ttotal: 42.2s\tremaining: 19s\n", + "6895:\tlearn: 0.0376232\ttotal: 42.2s\tremaining: 19s\n", + "6896:\tlearn: 0.0376142\ttotal: 42.2s\tremaining: 19s\n", + "6897:\tlearn: 0.0376083\ttotal: 42.3s\tremaining: 19s\n", + "6898:\tlearn: 0.0376046\ttotal: 42.3s\tremaining: 19s\n", + "6899:\tlearn: 0.0375951\ttotal: 42.3s\tremaining: 19s\n", + "6900:\tlearn: 0.0375877\ttotal: 42.3s\tremaining: 19s\n", + "6901:\tlearn: 0.0375822\ttotal: 42.3s\tremaining: 19s\n", + "6902:\tlearn: 0.0375777\ttotal: 42.3s\tremaining: 19s\n", + "6903:\tlearn: 0.0375687\ttotal: 42.3s\tremaining: 19s\n", + "6904:\tlearn: 0.0375611\ttotal: 42.3s\tremaining: 19s\n", + "6905:\tlearn: 0.0375532\ttotal: 42.3s\tremaining: 18.9s\n", + "6906:\tlearn: 0.0375443\ttotal: 42.3s\tremaining: 18.9s\n", + "6907:\tlearn: 0.0375317\ttotal: 42.3s\tremaining: 18.9s\n", + "6908:\tlearn: 0.0375242\ttotal: 42.3s\tremaining: 18.9s\n", + "6909:\tlearn: 0.0375196\ttotal: 42.3s\tremaining: 18.9s\n", + "6910:\tlearn: 0.0375092\ttotal: 42.3s\tremaining: 18.9s\n", + "6911:\tlearn: 0.0374991\ttotal: 42.3s\tremaining: 18.9s\n", + "6912:\tlearn: 0.0374931\ttotal: 42.3s\tremaining: 18.9s\n", + "6913:\tlearn: 0.0374860\ttotal: 42.3s\tremaining: 18.9s\n", + "6914:\tlearn: 0.0374818\ttotal: 42.3s\tremaining: 18.9s\n", + "6915:\tlearn: 0.0374751\ttotal: 42.3s\tremaining: 18.9s\n", + "6916:\tlearn: 0.0374659\ttotal: 42.4s\tremaining: 18.9s\n", + "6917:\tlearn: 0.0374610\ttotal: 42.4s\tremaining: 18.9s\n", + "6918:\tlearn: 0.0374561\ttotal: 42.4s\tremaining: 18.9s\n", + "6919:\tlearn: 0.0374468\ttotal: 42.4s\tremaining: 18.9s\n", + "6920:\tlearn: 0.0374394\ttotal: 42.4s\tremaining: 18.8s\n", + "6921:\tlearn: 0.0374278\ttotal: 42.4s\tremaining: 18.8s\n", + "6922:\tlearn: 0.0374148\ttotal: 42.4s\tremaining: 18.8s\n", + "6923:\tlearn: 0.0374081\ttotal: 42.4s\tremaining: 18.8s\n", + "6924:\tlearn: 0.0374004\ttotal: 42.4s\tremaining: 18.8s\n", + "6925:\tlearn: 0.0373961\ttotal: 42.4s\tremaining: 18.8s\n", + "6926:\tlearn: 0.0373831\ttotal: 42.4s\tremaining: 18.8s\n", + "6927:\tlearn: 0.0373752\ttotal: 42.4s\tremaining: 18.8s\n", + "6928:\tlearn: 0.0373716\ttotal: 42.4s\tremaining: 18.8s\n", + "6929:\tlearn: 0.0373657\ttotal: 42.4s\tremaining: 18.8s\n", + "6930:\tlearn: 0.0373556\ttotal: 42.4s\tremaining: 18.8s\n", + "6931:\tlearn: 0.0373509\ttotal: 42.4s\tremaining: 18.8s\n", + "6932:\tlearn: 0.0373463\ttotal: 42.4s\tremaining: 18.8s\n", + "6933:\tlearn: 0.0373396\ttotal: 42.4s\tremaining: 18.8s\n", + "6934:\tlearn: 0.0373366\ttotal: 42.4s\tremaining: 18.8s\n", + "6935:\tlearn: 0.0373326\ttotal: 42.4s\tremaining: 18.7s\n", + "6936:\tlearn: 0.0373283\ttotal: 42.4s\tremaining: 18.7s\n", + "6937:\tlearn: 0.0373215\ttotal: 42.5s\tremaining: 18.7s\n", + "6938:\tlearn: 0.0373141\ttotal: 42.5s\tremaining: 18.7s\n", + "6939:\tlearn: 0.0373064\ttotal: 42.5s\tremaining: 18.7s\n", + "6940:\tlearn: 0.0372954\ttotal: 42.5s\tremaining: 18.7s\n", + "6941:\tlearn: 0.0372906\ttotal: 42.5s\tremaining: 18.7s\n", + "6942:\tlearn: 0.0372826\ttotal: 42.5s\tremaining: 18.7s\n", + "6943:\tlearn: 0.0372750\ttotal: 42.5s\tremaining: 18.7s\n", + "6944:\tlearn: 0.0372689\ttotal: 42.5s\tremaining: 18.7s\n", + "6945:\tlearn: 0.0372620\ttotal: 42.5s\tremaining: 18.7s\n", + "6946:\tlearn: 0.0372562\ttotal: 42.5s\tremaining: 18.7s\n", + "6947:\tlearn: 0.0372500\ttotal: 42.5s\tremaining: 18.7s\n", + "6948:\tlearn: 0.0372431\ttotal: 42.5s\tremaining: 18.7s\n", + "6949:\tlearn: 0.0372393\ttotal: 42.5s\tremaining: 18.7s\n", + "6950:\tlearn: 0.0372318\ttotal: 42.5s\tremaining: 18.7s\n", + "6951:\tlearn: 0.0372229\ttotal: 42.5s\tremaining: 18.7s\n", + "6952:\tlearn: 0.0372160\ttotal: 42.5s\tremaining: 18.6s\n", + "6953:\tlearn: 0.0372113\ttotal: 42.6s\tremaining: 18.6s\n", + "6954:\tlearn: 0.0371996\ttotal: 42.6s\tremaining: 18.6s\n", + "6955:\tlearn: 0.0371911\ttotal: 42.6s\tremaining: 18.6s\n", + "6956:\tlearn: 0.0371860\ttotal: 42.6s\tremaining: 18.6s\n", + "6957:\tlearn: 0.0371766\ttotal: 42.6s\tremaining: 18.6s\n", + "6958:\tlearn: 0.0371666\ttotal: 42.6s\tremaining: 18.6s\n", + "6959:\tlearn: 0.0371598\ttotal: 42.6s\tremaining: 18.6s\n", + "6960:\tlearn: 0.0371557\ttotal: 42.6s\tremaining: 18.6s\n", + "6961:\tlearn: 0.0371480\ttotal: 42.6s\tremaining: 18.6s\n", + "6962:\tlearn: 0.0371420\ttotal: 42.6s\tremaining: 18.6s\n", + "6963:\tlearn: 0.0371364\ttotal: 42.6s\tremaining: 18.6s\n", + "6964:\tlearn: 0.0371319\ttotal: 42.6s\tremaining: 18.6s\n", + "6965:\tlearn: 0.0371183\ttotal: 42.6s\tremaining: 18.6s\n", + "6966:\tlearn: 0.0371073\ttotal: 42.6s\tremaining: 18.6s\n", + "6967:\tlearn: 0.0370997\ttotal: 42.6s\tremaining: 18.5s\n", + "6968:\tlearn: 0.0370934\ttotal: 42.6s\tremaining: 18.5s\n", + "6969:\tlearn: 0.0370857\ttotal: 42.6s\tremaining: 18.5s\n", + "6970:\tlearn: 0.0370814\ttotal: 42.6s\tremaining: 18.5s\n", + "6971:\tlearn: 0.0370742\ttotal: 42.6s\tremaining: 18.5s\n", + "6972:\tlearn: 0.0370676\ttotal: 42.6s\tremaining: 18.5s\n", + "6973:\tlearn: 0.0370654\ttotal: 42.6s\tremaining: 18.5s\n", + "6974:\tlearn: 0.0370581\ttotal: 42.7s\tremaining: 18.5s\n", + "6975:\tlearn: 0.0370495\ttotal: 42.7s\tremaining: 18.5s\n", + "6976:\tlearn: 0.0370462\ttotal: 42.7s\tremaining: 18.5s\n", + "6977:\tlearn: 0.0370353\ttotal: 42.7s\tremaining: 18.5s\n", + "6978:\tlearn: 0.0370293\ttotal: 42.7s\tremaining: 18.5s\n", + "6979:\tlearn: 0.0370190\ttotal: 42.7s\tremaining: 18.5s\n", + "6980:\tlearn: 0.0370146\ttotal: 42.7s\tremaining: 18.5s\n", + "6981:\tlearn: 0.0370113\ttotal: 42.7s\tremaining: 18.5s\n", + "6982:\tlearn: 0.0370062\ttotal: 42.7s\tremaining: 18.4s\n", + "6983:\tlearn: 0.0370023\ttotal: 42.7s\tremaining: 18.4s\n", + "6984:\tlearn: 0.0369912\ttotal: 42.7s\tremaining: 18.4s\n", + "6985:\tlearn: 0.0369809\ttotal: 42.7s\tremaining: 18.4s\n", + "6986:\tlearn: 0.0369731\ttotal: 42.7s\tremaining: 18.4s\n", + "6987:\tlearn: 0.0369663\ttotal: 42.7s\tremaining: 18.4s\n", + "6988:\tlearn: 0.0369626\ttotal: 42.7s\tremaining: 18.4s\n", + "6989:\tlearn: 0.0369586\ttotal: 42.7s\tremaining: 18.4s\n", + "6990:\tlearn: 0.0369516\ttotal: 42.7s\tremaining: 18.4s\n", + "6991:\tlearn: 0.0369434\ttotal: 42.7s\tremaining: 18.4s\n", + "6992:\tlearn: 0.0369388\ttotal: 42.8s\tremaining: 18.4s\n", + "6993:\tlearn: 0.0369355\ttotal: 42.8s\tremaining: 18.4s\n", + "6994:\tlearn: 0.0369301\ttotal: 42.8s\tremaining: 18.4s\n", + "6995:\tlearn: 0.0369260\ttotal: 42.8s\tremaining: 18.4s\n", + "6996:\tlearn: 0.0369233\ttotal: 42.8s\tremaining: 18.4s\n", + "6997:\tlearn: 0.0369151\ttotal: 42.8s\tremaining: 18.4s\n", + "6998:\tlearn: 0.0369083\ttotal: 42.8s\tremaining: 18.3s\n", + "6999:\tlearn: 0.0369004\ttotal: 42.8s\tremaining: 18.3s\n", + "7000:\tlearn: 0.0368925\ttotal: 42.8s\tremaining: 18.3s\n", + "7001:\tlearn: 0.0368817\ttotal: 42.8s\tremaining: 18.3s\n", + "7002:\tlearn: 0.0368728\ttotal: 42.8s\tremaining: 18.3s\n", + "7003:\tlearn: 0.0368668\ttotal: 42.8s\tremaining: 18.3s\n", + "7004:\tlearn: 0.0368582\ttotal: 42.8s\tremaining: 18.3s\n", + "7005:\tlearn: 0.0368512\ttotal: 42.8s\tremaining: 18.3s\n", + "7006:\tlearn: 0.0368434\ttotal: 42.8s\tremaining: 18.3s\n", + "7007:\tlearn: 0.0368342\ttotal: 42.8s\tremaining: 18.3s\n", + "7008:\tlearn: 0.0368276\ttotal: 42.8s\tremaining: 18.3s\n", + "7009:\tlearn: 0.0368216\ttotal: 42.8s\tremaining: 18.3s\n", + "7010:\tlearn: 0.0368159\ttotal: 42.9s\tremaining: 18.3s\n", + "7011:\tlearn: 0.0368078\ttotal: 42.9s\tremaining: 18.3s\n", + "7012:\tlearn: 0.0367993\ttotal: 42.9s\tremaining: 18.3s\n", + "7013:\tlearn: 0.0367911\ttotal: 42.9s\tremaining: 18.3s\n", + "7014:\tlearn: 0.0367797\ttotal: 42.9s\tremaining: 18.2s\n", + "7015:\tlearn: 0.0367768\ttotal: 42.9s\tremaining: 18.2s\n", + "7016:\tlearn: 0.0367700\ttotal: 42.9s\tremaining: 18.2s\n", + "7017:\tlearn: 0.0367610\ttotal: 42.9s\tremaining: 18.2s\n", + "7018:\tlearn: 0.0367545\ttotal: 42.9s\tremaining: 18.2s\n", + "7019:\tlearn: 0.0367445\ttotal: 42.9s\tremaining: 18.2s\n", + "7020:\tlearn: 0.0367386\ttotal: 42.9s\tremaining: 18.2s\n", + "7021:\tlearn: 0.0367302\ttotal: 42.9s\tremaining: 18.2s\n", + "7022:\tlearn: 0.0367189\ttotal: 42.9s\tremaining: 18.2s\n", + "7023:\tlearn: 0.0367141\ttotal: 42.9s\tremaining: 18.2s\n", + "7024:\tlearn: 0.0367041\ttotal: 42.9s\tremaining: 18.2s\n", + "7025:\tlearn: 0.0367002\ttotal: 42.9s\tremaining: 18.2s\n", + "7026:\tlearn: 0.0366942\ttotal: 42.9s\tremaining: 18.2s\n", + "7027:\tlearn: 0.0366854\ttotal: 42.9s\tremaining: 18.2s\n", + "7028:\tlearn: 0.0366813\ttotal: 43s\tremaining: 18.2s\n", + "7029:\tlearn: 0.0366730\ttotal: 43s\tremaining: 18.1s\n", + "7030:\tlearn: 0.0366662\ttotal: 43s\tremaining: 18.1s\n", + "7031:\tlearn: 0.0366558\ttotal: 43s\tremaining: 18.1s\n", + "7032:\tlearn: 0.0366515\ttotal: 43s\tremaining: 18.1s\n", + "7033:\tlearn: 0.0366450\ttotal: 43s\tremaining: 18.1s\n", + "7034:\tlearn: 0.0366391\ttotal: 43s\tremaining: 18.1s\n", + "7035:\tlearn: 0.0366311\ttotal: 43s\tremaining: 18.1s\n", + "7036:\tlearn: 0.0366233\ttotal: 43s\tremaining: 18.1s\n", + "7037:\tlearn: 0.0366149\ttotal: 43s\tremaining: 18.1s\n", + "7038:\tlearn: 0.0366075\ttotal: 43s\tremaining: 18.1s\n", + "7039:\tlearn: 0.0366012\ttotal: 43s\tremaining: 18.1s\n", + "7040:\tlearn: 0.0365949\ttotal: 43s\tremaining: 18.1s\n", + "7041:\tlearn: 0.0365892\ttotal: 43s\tremaining: 18.1s\n", + "7042:\tlearn: 0.0365800\ttotal: 43s\tremaining: 18.1s\n", + "7043:\tlearn: 0.0365727\ttotal: 43s\tremaining: 18.1s\n", + "7044:\tlearn: 0.0365678\ttotal: 43s\tremaining: 18s\n", + "7045:\tlearn: 0.0365656\ttotal: 43s\tremaining: 18s\n", + "7046:\tlearn: 0.0365596\ttotal: 43s\tremaining: 18s\n", + "7047:\tlearn: 0.0365548\ttotal: 43s\tremaining: 18s\n", + "7048:\tlearn: 0.0365492\ttotal: 43s\tremaining: 18s\n", + "7049:\tlearn: 0.0365402\ttotal: 43.1s\tremaining: 18s\n", + "7050:\tlearn: 0.0365371\ttotal: 43.1s\tremaining: 18s\n", + "7051:\tlearn: 0.0365306\ttotal: 43.1s\tremaining: 18s\n", + "7052:\tlearn: 0.0365233\ttotal: 43.1s\tremaining: 18s\n", + "7053:\tlearn: 0.0365189\ttotal: 43.1s\tremaining: 18s\n", + "7054:\tlearn: 0.0365146\ttotal: 43.1s\tremaining: 18s\n", + "7055:\tlearn: 0.0365090\ttotal: 43.1s\tremaining: 18s\n", + "7056:\tlearn: 0.0365027\ttotal: 43.1s\tremaining: 18s\n", + "7057:\tlearn: 0.0364981\ttotal: 43.1s\tremaining: 18s\n", + "7058:\tlearn: 0.0364953\ttotal: 43.1s\tremaining: 18s\n", + "7059:\tlearn: 0.0364885\ttotal: 43.1s\tremaining: 17.9s\n", + "7060:\tlearn: 0.0364847\ttotal: 43.1s\tremaining: 17.9s\n", + "7061:\tlearn: 0.0364801\ttotal: 43.1s\tremaining: 17.9s\n", + "7062:\tlearn: 0.0364734\ttotal: 43.1s\tremaining: 17.9s\n", + "7063:\tlearn: 0.0364712\ttotal: 43.1s\tremaining: 17.9s\n", + "7064:\tlearn: 0.0364561\ttotal: 43.1s\tremaining: 17.9s\n", + "7065:\tlearn: 0.0364482\ttotal: 43.1s\tremaining: 17.9s\n", + "7066:\tlearn: 0.0364441\ttotal: 43.1s\tremaining: 17.9s\n", + "7067:\tlearn: 0.0364389\ttotal: 43.2s\tremaining: 17.9s\n", + "7068:\tlearn: 0.0364319\ttotal: 43.2s\tremaining: 17.9s\n", + "7069:\tlearn: 0.0364250\ttotal: 43.2s\tremaining: 17.9s\n", + "7070:\tlearn: 0.0364229\ttotal: 43.2s\tremaining: 17.9s\n", + "7071:\tlearn: 0.0364183\ttotal: 43.2s\tremaining: 17.9s\n", + "7072:\tlearn: 0.0364074\ttotal: 43.2s\tremaining: 17.9s\n", + "7073:\tlearn: 0.0364005\ttotal: 43.2s\tremaining: 17.9s\n", + "7074:\tlearn: 0.0363930\ttotal: 43.2s\tremaining: 17.9s\n", + "7075:\tlearn: 0.0363893\ttotal: 43.2s\tremaining: 17.8s\n", + "7076:\tlearn: 0.0363787\ttotal: 43.2s\tremaining: 17.8s\n", + "7077:\tlearn: 0.0363705\ttotal: 43.2s\tremaining: 17.8s\n", + "7078:\tlearn: 0.0363648\ttotal: 43.2s\tremaining: 17.8s\n", + "7079:\tlearn: 0.0363570\ttotal: 43.2s\tremaining: 17.8s\n", + "7080:\tlearn: 0.0363537\ttotal: 43.2s\tremaining: 17.8s\n", + "7081:\tlearn: 0.0363482\ttotal: 43.2s\tremaining: 17.8s\n", + "7082:\tlearn: 0.0363472\ttotal: 43.2s\tremaining: 17.8s\n", + "7083:\tlearn: 0.0363380\ttotal: 43.2s\tremaining: 17.8s\n", + "7084:\tlearn: 0.0363336\ttotal: 43.2s\tremaining: 17.8s\n", + "7085:\tlearn: 0.0363260\ttotal: 43.2s\tremaining: 17.8s\n", + "7086:\tlearn: 0.0363176\ttotal: 43.2s\tremaining: 17.8s\n", + "7087:\tlearn: 0.0363116\ttotal: 43.3s\tremaining: 17.8s\n", + "7088:\tlearn: 0.0363021\ttotal: 43.3s\tremaining: 17.8s\n", + "7089:\tlearn: 0.0362961\ttotal: 43.3s\tremaining: 17.8s\n", + "7090:\tlearn: 0.0362884\ttotal: 43.3s\tremaining: 17.7s\n", + "7091:\tlearn: 0.0362839\ttotal: 43.3s\tremaining: 17.7s\n", + "7092:\tlearn: 0.0362767\ttotal: 43.3s\tremaining: 17.7s\n", + "7093:\tlearn: 0.0362654\ttotal: 43.3s\tremaining: 17.7s\n", + "7094:\tlearn: 0.0362633\ttotal: 43.3s\tremaining: 17.7s\n", + "7095:\tlearn: 0.0362553\ttotal: 43.3s\tremaining: 17.7s\n", + "7096:\tlearn: 0.0362492\ttotal: 43.3s\tremaining: 17.7s\n", + "7097:\tlearn: 0.0362406\ttotal: 43.3s\tremaining: 17.7s\n", + "7098:\tlearn: 0.0362327\ttotal: 43.3s\tremaining: 17.7s\n", + "7099:\tlearn: 0.0362205\ttotal: 43.3s\tremaining: 17.7s\n", + "7100:\tlearn: 0.0362129\ttotal: 43.3s\tremaining: 17.7s\n", + "7101:\tlearn: 0.0361997\ttotal: 43.3s\tremaining: 17.7s\n", + "7102:\tlearn: 0.0361937\ttotal: 43.3s\tremaining: 17.7s\n", + "7103:\tlearn: 0.0361845\ttotal: 43.3s\tremaining: 17.7s\n", + "7104:\tlearn: 0.0361780\ttotal: 43.3s\tremaining: 17.7s\n", + "7105:\tlearn: 0.0361706\ttotal: 43.3s\tremaining: 17.7s\n", + "7106:\tlearn: 0.0361670\ttotal: 43.4s\tremaining: 17.6s\n", + "7107:\tlearn: 0.0361601\ttotal: 43.4s\tremaining: 17.6s\n", + "7108:\tlearn: 0.0361542\ttotal: 43.4s\tremaining: 17.6s\n", + "7109:\tlearn: 0.0361451\ttotal: 43.4s\tremaining: 17.6s\n", + "7110:\tlearn: 0.0361376\ttotal: 43.4s\tremaining: 17.6s\n", + "7111:\tlearn: 0.0361336\ttotal: 43.4s\tremaining: 17.6s\n", + "7112:\tlearn: 0.0361284\ttotal: 43.4s\tremaining: 17.6s\n", + "7113:\tlearn: 0.0361207\ttotal: 43.4s\tremaining: 17.6s\n", + "7114:\tlearn: 0.0361123\ttotal: 43.4s\tremaining: 17.6s\n", + "7115:\tlearn: 0.0361050\ttotal: 43.4s\tremaining: 17.6s\n", + "7116:\tlearn: 0.0360997\ttotal: 43.4s\tremaining: 17.6s\n", + "7117:\tlearn: 0.0360929\ttotal: 43.4s\tremaining: 17.6s\n", + "7118:\tlearn: 0.0360831\ttotal: 43.4s\tremaining: 17.6s\n", + "7119:\tlearn: 0.0360789\ttotal: 43.4s\tremaining: 17.6s\n", + "7120:\tlearn: 0.0360706\ttotal: 43.4s\tremaining: 17.6s\n", + "7121:\tlearn: 0.0360648\ttotal: 43.4s\tremaining: 17.5s\n", + "7122:\tlearn: 0.0360552\ttotal: 43.4s\tremaining: 17.5s\n", + "7123:\tlearn: 0.0360461\ttotal: 43.4s\tremaining: 17.5s\n", + "7124:\tlearn: 0.0360395\ttotal: 43.4s\tremaining: 17.5s\n", + "7125:\tlearn: 0.0360329\ttotal: 43.4s\tremaining: 17.5s\n", + "7126:\tlearn: 0.0360264\ttotal: 43.4s\tremaining: 17.5s\n", + "7127:\tlearn: 0.0360141\ttotal: 43.5s\tremaining: 17.5s\n", + "7128:\tlearn: 0.0360086\ttotal: 43.5s\tremaining: 17.5s\n", + "7129:\tlearn: 0.0360041\ttotal: 43.5s\tremaining: 17.5s\n", + "7130:\tlearn: 0.0359952\ttotal: 43.5s\tremaining: 17.5s\n", + "7131:\tlearn: 0.0359904\ttotal: 43.5s\tremaining: 17.5s\n", + "7132:\tlearn: 0.0359847\ttotal: 43.5s\tremaining: 17.5s\n", + "7133:\tlearn: 0.0359783\ttotal: 43.5s\tremaining: 17.5s\n", + "7134:\tlearn: 0.0359725\ttotal: 43.5s\tremaining: 17.5s\n", + "7135:\tlearn: 0.0359680\ttotal: 43.5s\tremaining: 17.5s\n", + "7136:\tlearn: 0.0359613\ttotal: 43.5s\tremaining: 17.4s\n", + "7137:\tlearn: 0.0359540\ttotal: 43.5s\tremaining: 17.4s\n", + "7138:\tlearn: 0.0359428\ttotal: 43.5s\tremaining: 17.4s\n", + "7139:\tlearn: 0.0359382\ttotal: 43.5s\tremaining: 17.4s\n", + "7140:\tlearn: 0.0359327\ttotal: 43.5s\tremaining: 17.4s\n", + "7141:\tlearn: 0.0359272\ttotal: 43.5s\tremaining: 17.4s\n", + "7142:\tlearn: 0.0359188\ttotal: 43.5s\tremaining: 17.4s\n", + "7143:\tlearn: 0.0359101\ttotal: 43.5s\tremaining: 17.4s\n", + "7144:\tlearn: 0.0359017\ttotal: 43.5s\tremaining: 17.4s\n", + "7145:\tlearn: 0.0358964\ttotal: 43.6s\tremaining: 17.4s\n", + "7146:\tlearn: 0.0358890\ttotal: 43.6s\tremaining: 17.4s\n", + "7147:\tlearn: 0.0358819\ttotal: 43.6s\tremaining: 17.4s\n", + "7148:\tlearn: 0.0358758\ttotal: 43.6s\tremaining: 17.4s\n", + "7149:\tlearn: 0.0358694\ttotal: 43.6s\tremaining: 17.4s\n", + "7150:\tlearn: 0.0358639\ttotal: 43.6s\tremaining: 17.4s\n", + "7151:\tlearn: 0.0358598\ttotal: 43.6s\tremaining: 17.4s\n", + "7152:\tlearn: 0.0358537\ttotal: 43.6s\tremaining: 17.3s\n", + "7153:\tlearn: 0.0358477\ttotal: 43.6s\tremaining: 17.3s\n", + "7154:\tlearn: 0.0358444\ttotal: 43.6s\tremaining: 17.3s\n", + "7155:\tlearn: 0.0358409\ttotal: 43.6s\tremaining: 17.3s\n", + "7156:\tlearn: 0.0358378\ttotal: 43.6s\tremaining: 17.3s\n", + "7157:\tlearn: 0.0358254\ttotal: 43.6s\tremaining: 17.3s\n", + "7158:\tlearn: 0.0358231\ttotal: 43.6s\tremaining: 17.3s\n", + "7159:\tlearn: 0.0358184\ttotal: 43.6s\tremaining: 17.3s\n", + "7160:\tlearn: 0.0358126\ttotal: 43.6s\tremaining: 17.3s\n", + "7161:\tlearn: 0.0358060\ttotal: 43.6s\tremaining: 17.3s\n", + "7162:\tlearn: 0.0357968\ttotal: 43.6s\tremaining: 17.3s\n", + "7163:\tlearn: 0.0357888\ttotal: 43.6s\tremaining: 17.3s\n", + "7164:\tlearn: 0.0357816\ttotal: 43.6s\tremaining: 17.3s\n", + "7165:\tlearn: 0.0357754\ttotal: 43.7s\tremaining: 17.3s\n", + "7166:\tlearn: 0.0357714\ttotal: 43.7s\tremaining: 17.3s\n", + "7167:\tlearn: 0.0357638\ttotal: 43.7s\tremaining: 17.3s\n", + "7168:\tlearn: 0.0357542\ttotal: 43.7s\tremaining: 17.2s\n", + "7169:\tlearn: 0.0357497\ttotal: 43.7s\tremaining: 17.2s\n", + "7170:\tlearn: 0.0357403\ttotal: 43.7s\tremaining: 17.2s\n", + "7171:\tlearn: 0.0357301\ttotal: 43.7s\tremaining: 17.2s\n", + "7172:\tlearn: 0.0357242\ttotal: 43.7s\tremaining: 17.2s\n", + "7173:\tlearn: 0.0357178\ttotal: 43.7s\tremaining: 17.2s\n", + "7174:\tlearn: 0.0357099\ttotal: 43.7s\tremaining: 17.2s\n", + "7175:\tlearn: 0.0357011\ttotal: 43.7s\tremaining: 17.2s\n", + "7176:\tlearn: 0.0356928\ttotal: 43.7s\tremaining: 17.2s\n", + "7177:\tlearn: 0.0356852\ttotal: 43.7s\tremaining: 17.2s\n", + "7178:\tlearn: 0.0356771\ttotal: 43.7s\tremaining: 17.2s\n", + "7179:\tlearn: 0.0356703\ttotal: 43.7s\tremaining: 17.2s\n", + "7180:\tlearn: 0.0356651\ttotal: 43.7s\tremaining: 17.2s\n", + "7181:\tlearn: 0.0356585\ttotal: 43.7s\tremaining: 17.2s\n", + "7182:\tlearn: 0.0356542\ttotal: 43.7s\tremaining: 17.2s\n", + "7183:\tlearn: 0.0356497\ttotal: 43.7s\tremaining: 17.1s\n", + "7184:\tlearn: 0.0356427\ttotal: 43.8s\tremaining: 17.1s\n", + "7185:\tlearn: 0.0356360\ttotal: 43.8s\tremaining: 17.1s\n", + "7186:\tlearn: 0.0356338\ttotal: 43.8s\tremaining: 17.1s\n", + "7187:\tlearn: 0.0356266\ttotal: 43.8s\tremaining: 17.1s\n", + "7188:\tlearn: 0.0356196\ttotal: 43.8s\tremaining: 17.1s\n", + "7189:\tlearn: 0.0356140\ttotal: 43.8s\tremaining: 17.1s\n", + "7190:\tlearn: 0.0356060\ttotal: 43.8s\tremaining: 17.1s\n", + "7191:\tlearn: 0.0356004\ttotal: 43.8s\tremaining: 17.1s\n", + "7192:\tlearn: 0.0355936\ttotal: 43.8s\tremaining: 17.1s\n", + "7193:\tlearn: 0.0355883\ttotal: 43.8s\tremaining: 17.1s\n", + "7194:\tlearn: 0.0355834\ttotal: 43.8s\tremaining: 17.1s\n", + "7195:\tlearn: 0.0355767\ttotal: 43.8s\tremaining: 17.1s\n", + "7196:\tlearn: 0.0355691\ttotal: 43.8s\tremaining: 17.1s\n", + "7197:\tlearn: 0.0355591\ttotal: 43.8s\tremaining: 17.1s\n", + "7198:\tlearn: 0.0355518\ttotal: 43.8s\tremaining: 17.1s\n", + "7199:\tlearn: 0.0355424\ttotal: 43.8s\tremaining: 17s\n", + "7200:\tlearn: 0.0355342\ttotal: 43.8s\tremaining: 17s\n", + "7201:\tlearn: 0.0355233\ttotal: 43.9s\tremaining: 17s\n", + "7202:\tlearn: 0.0355179\ttotal: 43.9s\tremaining: 17s\n", + "7203:\tlearn: 0.0355132\ttotal: 43.9s\tremaining: 17s\n", + "7204:\tlearn: 0.0355056\ttotal: 43.9s\tremaining: 17s\n", + "7205:\tlearn: 0.0354997\ttotal: 43.9s\tremaining: 17s\n", + "7206:\tlearn: 0.0354946\ttotal: 43.9s\tremaining: 17s\n", + "7207:\tlearn: 0.0354854\ttotal: 43.9s\tremaining: 17s\n", + "7208:\tlearn: 0.0354804\ttotal: 43.9s\tremaining: 17s\n", + "7209:\tlearn: 0.0354747\ttotal: 43.9s\tremaining: 17s\n", + "7210:\tlearn: 0.0354681\ttotal: 43.9s\tremaining: 17s\n", + "7211:\tlearn: 0.0354602\ttotal: 43.9s\tremaining: 17s\n", + "7212:\tlearn: 0.0354540\ttotal: 43.9s\tremaining: 17s\n", + "7213:\tlearn: 0.0354496\ttotal: 43.9s\tremaining: 17s\n", + "7214:\tlearn: 0.0354468\ttotal: 43.9s\tremaining: 17s\n", + "7215:\tlearn: 0.0354367\ttotal: 43.9s\tremaining: 17s\n", + "7216:\tlearn: 0.0354262\ttotal: 43.9s\tremaining: 16.9s\n", + "7217:\tlearn: 0.0354201\ttotal: 44s\tremaining: 16.9s\n", + "7218:\tlearn: 0.0354168\ttotal: 44s\tremaining: 16.9s\n", + "7219:\tlearn: 0.0354130\ttotal: 44s\tremaining: 16.9s\n", + "7220:\tlearn: 0.0354044\ttotal: 44s\tremaining: 16.9s\n", + "7221:\tlearn: 0.0353956\ttotal: 44s\tremaining: 16.9s\n", + "7222:\tlearn: 0.0353903\ttotal: 44s\tremaining: 16.9s\n", + "7223:\tlearn: 0.0353809\ttotal: 44s\tremaining: 16.9s\n", + "7224:\tlearn: 0.0353730\ttotal: 44s\tremaining: 16.9s\n", + "7225:\tlearn: 0.0353668\ttotal: 44s\tremaining: 16.9s\n", + "7226:\tlearn: 0.0353592\ttotal: 44s\tremaining: 16.9s\n", + "7227:\tlearn: 0.0353505\ttotal: 44s\tremaining: 16.9s\n", + "7228:\tlearn: 0.0353460\ttotal: 44s\tremaining: 16.9s\n", + "7229:\tlearn: 0.0353379\ttotal: 44s\tremaining: 16.9s\n", + "7230:\tlearn: 0.0353324\ttotal: 44s\tremaining: 16.9s\n", + "7231:\tlearn: 0.0353284\ttotal: 44s\tremaining: 16.9s\n", + "7232:\tlearn: 0.0353202\ttotal: 44s\tremaining: 16.8s\n", + "7233:\tlearn: 0.0353166\ttotal: 44s\tremaining: 16.8s\n", + "7234:\tlearn: 0.0353045\ttotal: 44.1s\tremaining: 16.8s\n", + "7235:\tlearn: 0.0352965\ttotal: 44.1s\tremaining: 16.8s\n", + "7236:\tlearn: 0.0352927\ttotal: 44.1s\tremaining: 16.8s\n", + "7237:\tlearn: 0.0352860\ttotal: 44.1s\tremaining: 16.8s\n", + "7238:\tlearn: 0.0352774\ttotal: 44.1s\tremaining: 16.8s\n", + "7239:\tlearn: 0.0352732\ttotal: 44.1s\tremaining: 16.8s\n", + "7240:\tlearn: 0.0352652\ttotal: 44.1s\tremaining: 16.8s\n", + "7241:\tlearn: 0.0352547\ttotal: 44.1s\tremaining: 16.8s\n", + "7242:\tlearn: 0.0352505\ttotal: 44.1s\tremaining: 16.8s\n", + "7243:\tlearn: 0.0352434\ttotal: 44.1s\tremaining: 16.8s\n", + "7244:\tlearn: 0.0352309\ttotal: 44.1s\tremaining: 16.8s\n", + "7245:\tlearn: 0.0352255\ttotal: 44.1s\tremaining: 16.8s\n", + "7246:\tlearn: 0.0352186\ttotal: 44.1s\tremaining: 16.8s\n", + "7247:\tlearn: 0.0352115\ttotal: 44.1s\tremaining: 16.8s\n", + "7248:\tlearn: 0.0352084\ttotal: 44.1s\tremaining: 16.7s\n", + "7249:\tlearn: 0.0352027\ttotal: 44.1s\tremaining: 16.7s\n", + "7250:\tlearn: 0.0351958\ttotal: 44.1s\tremaining: 16.7s\n", + "7251:\tlearn: 0.0351928\ttotal: 44.1s\tremaining: 16.7s\n", + "7252:\tlearn: 0.0351863\ttotal: 44.1s\tremaining: 16.7s\n", + "7253:\tlearn: 0.0351794\ttotal: 44.2s\tremaining: 16.7s\n", + "7254:\tlearn: 0.0351689\ttotal: 44.2s\tremaining: 16.7s\n", + "7255:\tlearn: 0.0351635\ttotal: 44.2s\tremaining: 16.7s\n", + "7256:\tlearn: 0.0351570\ttotal: 44.2s\tremaining: 16.7s\n", + "7257:\tlearn: 0.0351523\ttotal: 44.2s\tremaining: 16.7s\n", + "7258:\tlearn: 0.0351430\ttotal: 44.2s\tremaining: 16.7s\n", + "7259:\tlearn: 0.0351391\ttotal: 44.2s\tremaining: 16.7s\n", + "7260:\tlearn: 0.0351339\ttotal: 44.2s\tremaining: 16.7s\n", + "7261:\tlearn: 0.0351310\ttotal: 44.2s\tremaining: 16.7s\n", + "7262:\tlearn: 0.0351265\ttotal: 44.2s\tremaining: 16.7s\n", + "7263:\tlearn: 0.0351190\ttotal: 44.2s\tremaining: 16.6s\n", + "7264:\tlearn: 0.0351118\ttotal: 44.2s\tremaining: 16.6s\n", + "7265:\tlearn: 0.0351044\ttotal: 44.2s\tremaining: 16.6s\n", + "7266:\tlearn: 0.0351003\ttotal: 44.2s\tremaining: 16.6s\n", + "7267:\tlearn: 0.0350929\ttotal: 44.2s\tremaining: 16.6s\n", + "7268:\tlearn: 0.0350870\ttotal: 44.2s\tremaining: 16.6s\n", + "7269:\tlearn: 0.0350811\ttotal: 44.2s\tremaining: 16.6s\n", + "7270:\tlearn: 0.0350727\ttotal: 44.2s\tremaining: 16.6s\n", + "7271:\tlearn: 0.0350673\ttotal: 44.2s\tremaining: 16.6s\n", + "7272:\tlearn: 0.0350587\ttotal: 44.2s\tremaining: 16.6s\n", + "7273:\tlearn: 0.0350514\ttotal: 44.2s\tremaining: 16.6s\n", + "7274:\tlearn: 0.0350435\ttotal: 44.3s\tremaining: 16.6s\n", + "7275:\tlearn: 0.0350366\ttotal: 44.3s\tremaining: 16.6s\n", + "7276:\tlearn: 0.0350323\ttotal: 44.3s\tremaining: 16.6s\n", + "7277:\tlearn: 0.0350248\ttotal: 44.3s\tremaining: 16.6s\n", + "7278:\tlearn: 0.0350179\ttotal: 44.3s\tremaining: 16.5s\n", + "7279:\tlearn: 0.0350108\ttotal: 44.3s\tremaining: 16.5s\n", + "7280:\tlearn: 0.0350049\ttotal: 44.3s\tremaining: 16.5s\n", + "7281:\tlearn: 0.0349987\ttotal: 44.3s\tremaining: 16.5s\n", + "7282:\tlearn: 0.0349892\ttotal: 44.3s\tremaining: 16.5s\n", + "7283:\tlearn: 0.0349867\ttotal: 44.3s\tremaining: 16.5s\n", + "7284:\tlearn: 0.0349794\ttotal: 44.3s\tremaining: 16.5s\n", + "7285:\tlearn: 0.0349746\ttotal: 44.3s\tremaining: 16.5s\n", + "7286:\tlearn: 0.0349695\ttotal: 44.3s\tremaining: 16.5s\n", + "7287:\tlearn: 0.0349629\ttotal: 44.3s\tremaining: 16.5s\n", + "7288:\tlearn: 0.0349559\ttotal: 44.3s\tremaining: 16.5s\n", + "7289:\tlearn: 0.0349526\ttotal: 44.3s\tremaining: 16.5s\n", + "7290:\tlearn: 0.0349434\ttotal: 44.3s\tremaining: 16.5s\n", + "7291:\tlearn: 0.0349337\ttotal: 44.3s\tremaining: 16.5s\n", + "7292:\tlearn: 0.0349266\ttotal: 44.3s\tremaining: 16.5s\n", + "7293:\tlearn: 0.0349215\ttotal: 44.4s\tremaining: 16.5s\n", + "7294:\tlearn: 0.0349138\ttotal: 44.4s\tremaining: 16.4s\n", + "7295:\tlearn: 0.0349111\ttotal: 44.4s\tremaining: 16.4s\n", + "7296:\tlearn: 0.0349037\ttotal: 44.4s\tremaining: 16.4s\n", + "7297:\tlearn: 0.0348977\ttotal: 44.4s\tremaining: 16.4s\n", + "7298:\tlearn: 0.0348892\ttotal: 44.4s\tremaining: 16.4s\n", + "7299:\tlearn: 0.0348841\ttotal: 44.4s\tremaining: 16.4s\n", + "7300:\tlearn: 0.0348795\ttotal: 44.4s\tremaining: 16.4s\n", + "7301:\tlearn: 0.0348751\ttotal: 44.4s\tremaining: 16.4s\n", + "7302:\tlearn: 0.0348685\ttotal: 44.4s\tremaining: 16.4s\n", + "7303:\tlearn: 0.0348601\ttotal: 44.4s\tremaining: 16.4s\n", + "7304:\tlearn: 0.0348518\ttotal: 44.4s\tremaining: 16.4s\n", + "7305:\tlearn: 0.0348385\ttotal: 44.4s\tremaining: 16.4s\n", + "7306:\tlearn: 0.0348302\ttotal: 44.4s\tremaining: 16.4s\n", + "7307:\tlearn: 0.0348220\ttotal: 44.4s\tremaining: 16.4s\n", + "7308:\tlearn: 0.0348148\ttotal: 44.4s\tremaining: 16.4s\n", + "7309:\tlearn: 0.0348069\ttotal: 44.4s\tremaining: 16.3s\n", + "7310:\tlearn: 0.0347967\ttotal: 44.4s\tremaining: 16.3s\n", + "7311:\tlearn: 0.0347877\ttotal: 44.4s\tremaining: 16.3s\n", + "7312:\tlearn: 0.0347837\ttotal: 44.4s\tremaining: 16.3s\n", + "7313:\tlearn: 0.0347762\ttotal: 44.4s\tremaining: 16.3s\n", + "7314:\tlearn: 0.0347682\ttotal: 44.5s\tremaining: 16.3s\n", + "7315:\tlearn: 0.0347652\ttotal: 44.5s\tremaining: 16.3s\n", + "7316:\tlearn: 0.0347613\ttotal: 44.5s\tremaining: 16.3s\n", + "7317:\tlearn: 0.0347536\ttotal: 44.5s\tremaining: 16.3s\n", + "7318:\tlearn: 0.0347468\ttotal: 44.5s\tremaining: 16.3s\n", + "7319:\tlearn: 0.0347395\ttotal: 44.5s\tremaining: 16.3s\n", + "7320:\tlearn: 0.0347308\ttotal: 44.5s\tremaining: 16.3s\n", + "7321:\tlearn: 0.0347226\ttotal: 44.5s\tremaining: 16.3s\n", + "7322:\tlearn: 0.0347197\ttotal: 44.5s\tremaining: 16.3s\n", + "7323:\tlearn: 0.0347170\ttotal: 44.5s\tremaining: 16.3s\n", + "7324:\tlearn: 0.0347125\ttotal: 44.5s\tremaining: 16.3s\n", + "7325:\tlearn: 0.0347087\ttotal: 44.5s\tremaining: 16.2s\n", + "7326:\tlearn: 0.0347022\ttotal: 44.5s\tremaining: 16.2s\n", + "7327:\tlearn: 0.0346978\ttotal: 44.5s\tremaining: 16.2s\n", + "7328:\tlearn: 0.0346907\ttotal: 44.5s\tremaining: 16.2s\n", + "7329:\tlearn: 0.0346803\ttotal: 44.5s\tremaining: 16.2s\n", + "7330:\tlearn: 0.0346766\ttotal: 44.5s\tremaining: 16.2s\n", + "7331:\tlearn: 0.0346706\ttotal: 44.6s\tremaining: 16.2s\n", + "7332:\tlearn: 0.0346629\ttotal: 44.6s\tremaining: 16.2s\n", + "7333:\tlearn: 0.0346580\ttotal: 44.6s\tremaining: 16.2s\n", + "7334:\tlearn: 0.0346518\ttotal: 44.6s\tremaining: 16.2s\n", + "7335:\tlearn: 0.0346415\ttotal: 44.6s\tremaining: 16.2s\n", + "7336:\tlearn: 0.0346358\ttotal: 44.6s\tremaining: 16.2s\n", + "7337:\tlearn: 0.0346293\ttotal: 44.6s\tremaining: 16.2s\n", + "7338:\tlearn: 0.0346228\ttotal: 44.6s\tremaining: 16.2s\n", + "7339:\tlearn: 0.0346139\ttotal: 44.6s\tremaining: 16.2s\n", + "7340:\tlearn: 0.0346066\ttotal: 44.6s\tremaining: 16.2s\n", + "7341:\tlearn: 0.0345991\ttotal: 44.6s\tremaining: 16.1s\n", + "7342:\tlearn: 0.0345952\ttotal: 44.6s\tremaining: 16.1s\n", + "7343:\tlearn: 0.0345927\ttotal: 44.6s\tremaining: 16.1s\n", + "7344:\tlearn: 0.0345825\ttotal: 44.6s\tremaining: 16.1s\n", + "7345:\tlearn: 0.0345788\ttotal: 44.6s\tremaining: 16.1s\n", + "7346:\tlearn: 0.0345755\ttotal: 44.6s\tremaining: 16.1s\n", + "7347:\tlearn: 0.0345725\ttotal: 44.6s\tremaining: 16.1s\n", + "7348:\tlearn: 0.0345631\ttotal: 44.6s\tremaining: 16.1s\n", + "7349:\tlearn: 0.0345546\ttotal: 44.6s\tremaining: 16.1s\n", + "7350:\tlearn: 0.0345470\ttotal: 44.6s\tremaining: 16.1s\n", + "7351:\tlearn: 0.0345442\ttotal: 44.6s\tremaining: 16.1s\n", + "7352:\tlearn: 0.0345396\ttotal: 44.7s\tremaining: 16.1s\n", + "7353:\tlearn: 0.0345342\ttotal: 44.7s\tremaining: 16.1s\n", + "7354:\tlearn: 0.0345277\ttotal: 44.7s\tremaining: 16.1s\n", + "7355:\tlearn: 0.0345255\ttotal: 44.7s\tremaining: 16.1s\n", + "7356:\tlearn: 0.0345166\ttotal: 44.7s\tremaining: 16s\n", + "7357:\tlearn: 0.0345131\ttotal: 44.7s\tremaining: 16s\n", + "7358:\tlearn: 0.0345060\ttotal: 44.7s\tremaining: 16s\n", + "7359:\tlearn: 0.0344970\ttotal: 44.7s\tremaining: 16s\n", + "7360:\tlearn: 0.0344875\ttotal: 44.7s\tremaining: 16s\n", + "7361:\tlearn: 0.0344808\ttotal: 44.7s\tremaining: 16s\n", + "7362:\tlearn: 0.0344742\ttotal: 44.7s\tremaining: 16s\n", + "7363:\tlearn: 0.0344667\ttotal: 44.7s\tremaining: 16s\n", + "7364:\tlearn: 0.0344613\ttotal: 44.7s\tremaining: 16s\n", + "7365:\tlearn: 0.0344547\ttotal: 44.7s\tremaining: 16s\n", + "7366:\tlearn: 0.0344481\ttotal: 44.7s\tremaining: 16s\n", + "7367:\tlearn: 0.0344369\ttotal: 44.7s\tremaining: 16s\n", + "7368:\tlearn: 0.0344299\ttotal: 44.7s\tremaining: 16s\n", + "7369:\tlearn: 0.0344241\ttotal: 44.8s\tremaining: 16s\n", + "7370:\tlearn: 0.0344163\ttotal: 44.8s\tremaining: 16s\n", + "7371:\tlearn: 0.0344059\ttotal: 44.8s\tremaining: 16s\n", + "7372:\tlearn: 0.0343983\ttotal: 44.8s\tremaining: 15.9s\n", + "7373:\tlearn: 0.0343928\ttotal: 44.8s\tremaining: 15.9s\n", + "7374:\tlearn: 0.0343893\ttotal: 44.8s\tremaining: 15.9s\n", + "7375:\tlearn: 0.0343845\ttotal: 44.8s\tremaining: 15.9s\n", + "7376:\tlearn: 0.0343776\ttotal: 44.8s\tremaining: 15.9s\n", + "7377:\tlearn: 0.0343695\ttotal: 44.8s\tremaining: 15.9s\n", + "7378:\tlearn: 0.0343611\ttotal: 44.8s\tremaining: 15.9s\n", + "7379:\tlearn: 0.0343511\ttotal: 44.8s\tremaining: 15.9s\n", + "7380:\tlearn: 0.0343483\ttotal: 44.8s\tremaining: 15.9s\n", + "7381:\tlearn: 0.0343427\ttotal: 44.8s\tremaining: 15.9s\n", + "7382:\tlearn: 0.0343361\ttotal: 44.8s\tremaining: 15.9s\n", + "7383:\tlearn: 0.0343327\ttotal: 44.8s\tremaining: 15.9s\n", + "7384:\tlearn: 0.0343246\ttotal: 44.8s\tremaining: 15.9s\n", + "7385:\tlearn: 0.0343162\ttotal: 44.8s\tremaining: 15.9s\n", + "7386:\tlearn: 0.0343110\ttotal: 44.8s\tremaining: 15.9s\n", + "7387:\tlearn: 0.0343032\ttotal: 44.9s\tremaining: 15.9s\n", + "7388:\tlearn: 0.0343005\ttotal: 44.9s\tremaining: 15.9s\n", + "7389:\tlearn: 0.0342910\ttotal: 44.9s\tremaining: 15.8s\n", + "7390:\tlearn: 0.0342798\ttotal: 44.9s\tremaining: 15.8s\n", + "7391:\tlearn: 0.0342701\ttotal: 44.9s\tremaining: 15.8s\n", + "7392:\tlearn: 0.0342636\ttotal: 44.9s\tremaining: 15.8s\n", + "7393:\tlearn: 0.0342609\ttotal: 44.9s\tremaining: 15.8s\n", + "7394:\tlearn: 0.0342544\ttotal: 44.9s\tremaining: 15.8s\n", + "7395:\tlearn: 0.0342512\ttotal: 44.9s\tremaining: 15.8s\n", + "7396:\tlearn: 0.0342453\ttotal: 44.9s\tremaining: 15.8s\n", + "7397:\tlearn: 0.0342376\ttotal: 44.9s\tremaining: 15.8s\n", + "7398:\tlearn: 0.0342332\ttotal: 44.9s\tremaining: 15.8s\n", + "7399:\tlearn: 0.0342265\ttotal: 44.9s\tremaining: 15.8s\n", + "7400:\tlearn: 0.0342221\ttotal: 44.9s\tremaining: 15.8s\n", + "7401:\tlearn: 0.0342130\ttotal: 44.9s\tremaining: 15.8s\n", + "7402:\tlearn: 0.0342058\ttotal: 44.9s\tremaining: 15.8s\n", + "7403:\tlearn: 0.0342037\ttotal: 44.9s\tremaining: 15.8s\n", + "7404:\tlearn: 0.0341977\ttotal: 45s\tremaining: 15.8s\n", + "7405:\tlearn: 0.0341905\ttotal: 45s\tremaining: 15.7s\n", + "7406:\tlearn: 0.0341841\ttotal: 45s\tremaining: 15.7s\n", + "7407:\tlearn: 0.0341747\ttotal: 45s\tremaining: 15.7s\n", + "7408:\tlearn: 0.0341704\ttotal: 45s\tremaining: 15.7s\n", + "7409:\tlearn: 0.0341679\ttotal: 45s\tremaining: 15.7s\n", + "7410:\tlearn: 0.0341628\ttotal: 45s\tremaining: 15.7s\n", + "7411:\tlearn: 0.0341558\ttotal: 45s\tremaining: 15.7s\n", + "7412:\tlearn: 0.0341529\ttotal: 45s\tremaining: 15.7s\n", + "7413:\tlearn: 0.0341489\ttotal: 45s\tremaining: 15.7s\n", + "7414:\tlearn: 0.0341386\ttotal: 45s\tremaining: 15.7s\n", + "7415:\tlearn: 0.0341325\ttotal: 45s\tremaining: 15.7s\n", + "7416:\tlearn: 0.0341266\ttotal: 45s\tremaining: 15.7s\n", + "7417:\tlearn: 0.0341215\ttotal: 45s\tremaining: 15.7s\n", + "7418:\tlearn: 0.0341153\ttotal: 45s\tremaining: 15.7s\n", + "7419:\tlearn: 0.0341105\ttotal: 45s\tremaining: 15.7s\n", + "7420:\tlearn: 0.0341077\ttotal: 45s\tremaining: 15.7s\n", + "7421:\tlearn: 0.0340991\ttotal: 45s\tremaining: 15.6s\n", + "7422:\tlearn: 0.0340933\ttotal: 45s\tremaining: 15.6s\n", + "7423:\tlearn: 0.0340899\ttotal: 45s\tremaining: 15.6s\n", + "7424:\tlearn: 0.0340839\ttotal: 45.1s\tremaining: 15.6s\n", + "7425:\tlearn: 0.0340801\ttotal: 45.1s\tremaining: 15.6s\n", + "7426:\tlearn: 0.0340743\ttotal: 45.1s\tremaining: 15.6s\n", + "7427:\tlearn: 0.0340650\ttotal: 45.1s\tremaining: 15.6s\n", + "7428:\tlearn: 0.0340573\ttotal: 45.1s\tremaining: 15.6s\n", + "7429:\tlearn: 0.0340542\ttotal: 45.1s\tremaining: 15.6s\n", + "7430:\tlearn: 0.0340481\ttotal: 45.1s\tremaining: 15.6s\n", + "7431:\tlearn: 0.0340430\ttotal: 45.1s\tremaining: 15.6s\n", + "7432:\tlearn: 0.0340357\ttotal: 45.1s\tremaining: 15.6s\n", + "7433:\tlearn: 0.0340297\ttotal: 45.1s\tremaining: 15.6s\n", + "7434:\tlearn: 0.0340186\ttotal: 45.1s\tremaining: 15.6s\n", + "7435:\tlearn: 0.0340102\ttotal: 45.1s\tremaining: 15.6s\n", + "7436:\tlearn: 0.0340037\ttotal: 45.1s\tremaining: 15.5s\n", + "7437:\tlearn: 0.0340017\ttotal: 45.1s\tremaining: 15.5s\n", + "7438:\tlearn: 0.0339961\ttotal: 45.1s\tremaining: 15.5s\n", + "7439:\tlearn: 0.0339919\ttotal: 45.1s\tremaining: 15.5s\n", + "7440:\tlearn: 0.0339846\ttotal: 45.1s\tremaining: 15.5s\n", + "7441:\tlearn: 0.0339799\ttotal: 45.2s\tremaining: 15.5s\n", + "7442:\tlearn: 0.0339719\ttotal: 45.2s\tremaining: 15.5s\n", + "7443:\tlearn: 0.0339683\ttotal: 45.2s\tremaining: 15.5s\n", + "7444:\tlearn: 0.0339623\ttotal: 45.2s\tremaining: 15.5s\n", + "7445:\tlearn: 0.0339567\ttotal: 45.2s\tremaining: 15.5s\n", + "7446:\tlearn: 0.0339529\ttotal: 45.2s\tremaining: 15.5s\n", + "7447:\tlearn: 0.0339462\ttotal: 45.2s\tremaining: 15.5s\n", + "7448:\tlearn: 0.0339437\ttotal: 45.2s\tremaining: 15.5s\n", + "7449:\tlearn: 0.0339341\ttotal: 45.2s\tremaining: 15.5s\n", + "7450:\tlearn: 0.0339298\ttotal: 45.2s\tremaining: 15.5s\n", + "7451:\tlearn: 0.0339238\ttotal: 45.2s\tremaining: 15.5s\n", + "7452:\tlearn: 0.0339150\ttotal: 45.2s\tremaining: 15.4s\n", + "7453:\tlearn: 0.0339090\ttotal: 45.2s\tremaining: 15.4s\n", + "7454:\tlearn: 0.0339028\ttotal: 45.2s\tremaining: 15.4s\n", + "7455:\tlearn: 0.0338953\ttotal: 45.2s\tremaining: 15.4s\n", + "7456:\tlearn: 0.0338887\ttotal: 45.2s\tremaining: 15.4s\n", + "7457:\tlearn: 0.0338846\ttotal: 45.2s\tremaining: 15.4s\n", + "7458:\tlearn: 0.0338741\ttotal: 45.2s\tremaining: 15.4s\n", + "7459:\tlearn: 0.0338650\ttotal: 45.2s\tremaining: 15.4s\n", + "7460:\tlearn: 0.0338614\ttotal: 45.2s\tremaining: 15.4s\n", + "7461:\tlearn: 0.0338593\ttotal: 45.3s\tremaining: 15.4s\n", + "7462:\tlearn: 0.0338543\ttotal: 45.3s\tremaining: 15.4s\n", + "7463:\tlearn: 0.0338513\ttotal: 45.3s\tremaining: 15.4s\n", + "7464:\tlearn: 0.0338451\ttotal: 45.3s\tremaining: 15.4s\n", + "7465:\tlearn: 0.0338386\ttotal: 45.3s\tremaining: 15.4s\n", + "7466:\tlearn: 0.0338324\ttotal: 45.3s\tremaining: 15.4s\n", + "7467:\tlearn: 0.0338281\ttotal: 45.3s\tremaining: 15.4s\n", + "7468:\tlearn: 0.0338226\ttotal: 45.3s\tremaining: 15.3s\n", + "7469:\tlearn: 0.0338198\ttotal: 45.3s\tremaining: 15.3s\n", + "7470:\tlearn: 0.0338158\ttotal: 45.3s\tremaining: 15.3s\n", + "7471:\tlearn: 0.0338115\ttotal: 45.3s\tremaining: 15.3s\n", + "7472:\tlearn: 0.0338046\ttotal: 45.3s\tremaining: 15.3s\n", + "7473:\tlearn: 0.0338001\ttotal: 45.3s\tremaining: 15.3s\n", + "7474:\tlearn: 0.0337940\ttotal: 45.3s\tremaining: 15.3s\n", + "7475:\tlearn: 0.0337900\ttotal: 45.3s\tremaining: 15.3s\n", + "7476:\tlearn: 0.0337841\ttotal: 45.3s\tremaining: 15.3s\n", + "7477:\tlearn: 0.0337791\ttotal: 45.4s\tremaining: 15.3s\n", + "7478:\tlearn: 0.0337739\ttotal: 45.4s\tremaining: 15.3s\n", + "7479:\tlearn: 0.0337680\ttotal: 45.4s\tremaining: 15.3s\n", + "7480:\tlearn: 0.0337611\ttotal: 45.4s\tremaining: 15.3s\n", + "7481:\tlearn: 0.0337538\ttotal: 45.4s\tremaining: 15.3s\n", + "7482:\tlearn: 0.0337487\ttotal: 45.4s\tremaining: 15.3s\n", + "7483:\tlearn: 0.0337409\ttotal: 45.4s\tremaining: 15.3s\n", + "7484:\tlearn: 0.0337366\ttotal: 45.4s\tremaining: 15.3s\n", + "7485:\tlearn: 0.0337333\ttotal: 45.4s\tremaining: 15.2s\n", + "7486:\tlearn: 0.0337266\ttotal: 45.4s\tremaining: 15.2s\n", + "7487:\tlearn: 0.0337195\ttotal: 45.4s\tremaining: 15.2s\n", + "7488:\tlearn: 0.0337141\ttotal: 45.4s\tremaining: 15.2s\n", + "7489:\tlearn: 0.0337061\ttotal: 45.4s\tremaining: 15.2s\n", + "7490:\tlearn: 0.0337027\ttotal: 45.4s\tremaining: 15.2s\n", + "7491:\tlearn: 0.0336934\ttotal: 45.4s\tremaining: 15.2s\n", + "7492:\tlearn: 0.0336892\ttotal: 45.4s\tremaining: 15.2s\n", + "7493:\tlearn: 0.0336809\ttotal: 45.4s\tremaining: 15.2s\n", + "7494:\tlearn: 0.0336782\ttotal: 45.4s\tremaining: 15.2s\n", + "7495:\tlearn: 0.0336719\ttotal: 45.4s\tremaining: 15.2s\n", + "7496:\tlearn: 0.0336653\ttotal: 45.4s\tremaining: 15.2s\n", + "7497:\tlearn: 0.0336625\ttotal: 45.5s\tremaining: 15.2s\n", + "7498:\tlearn: 0.0336595\ttotal: 45.5s\tremaining: 15.2s\n", + "7499:\tlearn: 0.0336556\ttotal: 45.5s\tremaining: 15.2s\n", + "7500:\tlearn: 0.0336486\ttotal: 45.5s\tremaining: 15.1s\n", + "7501:\tlearn: 0.0336438\ttotal: 45.5s\tremaining: 15.1s\n", + "7502:\tlearn: 0.0336390\ttotal: 45.5s\tremaining: 15.1s\n", + "7503:\tlearn: 0.0336360\ttotal: 45.5s\tremaining: 15.1s\n", + "7504:\tlearn: 0.0336310\ttotal: 45.5s\tremaining: 15.1s\n", + "7505:\tlearn: 0.0336256\ttotal: 45.5s\tremaining: 15.1s\n", + "7506:\tlearn: 0.0336195\ttotal: 45.5s\tremaining: 15.1s\n", + "7507:\tlearn: 0.0336127\ttotal: 45.5s\tremaining: 15.1s\n", + "7508:\tlearn: 0.0336095\ttotal: 45.5s\tremaining: 15.1s\n", + "7509:\tlearn: 0.0336036\ttotal: 45.5s\tremaining: 15.1s\n", + "7510:\tlearn: 0.0335974\ttotal: 45.5s\tremaining: 15.1s\n", + "7511:\tlearn: 0.0335914\ttotal: 45.5s\tremaining: 15.1s\n", + "7512:\tlearn: 0.0335853\ttotal: 45.5s\tremaining: 15.1s\n", + "7513:\tlearn: 0.0335785\ttotal: 45.5s\tremaining: 15.1s\n", + "7514:\tlearn: 0.0335720\ttotal: 45.5s\tremaining: 15.1s\n", + "7515:\tlearn: 0.0335660\ttotal: 45.5s\tremaining: 15.1s\n", + "7516:\tlearn: 0.0335604\ttotal: 45.6s\tremaining: 15s\n", + "7517:\tlearn: 0.0335504\ttotal: 45.6s\tremaining: 15s\n", + "7518:\tlearn: 0.0335474\ttotal: 45.6s\tremaining: 15s\n", + "7519:\tlearn: 0.0335436\ttotal: 45.6s\tremaining: 15s\n", + "7520:\tlearn: 0.0335397\ttotal: 45.6s\tremaining: 15s\n", + "7521:\tlearn: 0.0335342\ttotal: 45.6s\tremaining: 15s\n", + "7522:\tlearn: 0.0335278\ttotal: 45.6s\tremaining: 15s\n", + "7523:\tlearn: 0.0335226\ttotal: 45.6s\tremaining: 15s\n", + "7524:\tlearn: 0.0335196\ttotal: 45.6s\tremaining: 15s\n", + "7525:\tlearn: 0.0335146\ttotal: 45.6s\tremaining: 15s\n", + "7526:\tlearn: 0.0335066\ttotal: 45.6s\tremaining: 15s\n", + "7527:\tlearn: 0.0334991\ttotal: 45.6s\tremaining: 15s\n", + "7528:\tlearn: 0.0334934\ttotal: 45.6s\tremaining: 15s\n", + "7529:\tlearn: 0.0334888\ttotal: 45.6s\tremaining: 15s\n", + "7530:\tlearn: 0.0334821\ttotal: 45.6s\tremaining: 15s\n", + "7531:\tlearn: 0.0334736\ttotal: 45.6s\tremaining: 14.9s\n", + "7532:\tlearn: 0.0334681\ttotal: 45.6s\tremaining: 14.9s\n", + "7533:\tlearn: 0.0334593\ttotal: 45.6s\tremaining: 14.9s\n", + "7534:\tlearn: 0.0334537\ttotal: 45.6s\tremaining: 14.9s\n", + "7535:\tlearn: 0.0334467\ttotal: 45.6s\tremaining: 14.9s\n", + "7536:\tlearn: 0.0334423\ttotal: 45.6s\tremaining: 14.9s\n", + "7537:\tlearn: 0.0334360\ttotal: 45.7s\tremaining: 14.9s\n", + "7538:\tlearn: 0.0334309\ttotal: 45.7s\tremaining: 14.9s\n", + "7539:\tlearn: 0.0334210\ttotal: 45.7s\tremaining: 14.9s\n", + "7540:\tlearn: 0.0334136\ttotal: 45.7s\tremaining: 14.9s\n", + "7541:\tlearn: 0.0334080\ttotal: 45.7s\tremaining: 14.9s\n", + "7542:\tlearn: 0.0334016\ttotal: 45.7s\tremaining: 14.9s\n", + "7543:\tlearn: 0.0333958\ttotal: 45.7s\tremaining: 14.9s\n", + "7544:\tlearn: 0.0333892\ttotal: 45.7s\tremaining: 14.9s\n", + "7545:\tlearn: 0.0333821\ttotal: 45.7s\tremaining: 14.9s\n", + "7546:\tlearn: 0.0333775\ttotal: 45.7s\tremaining: 14.9s\n", + "7547:\tlearn: 0.0333715\ttotal: 45.7s\tremaining: 14.8s\n", + "7548:\tlearn: 0.0333662\ttotal: 45.7s\tremaining: 14.8s\n", + "7549:\tlearn: 0.0333609\ttotal: 45.7s\tremaining: 14.8s\n", + "7550:\tlearn: 0.0333565\ttotal: 45.7s\tremaining: 14.8s\n", + "7551:\tlearn: 0.0333526\ttotal: 45.7s\tremaining: 14.8s\n", + "7552:\tlearn: 0.0333448\ttotal: 45.7s\tremaining: 14.8s\n", + "7553:\tlearn: 0.0333390\ttotal: 45.7s\tremaining: 14.8s\n", + "7554:\tlearn: 0.0333312\ttotal: 45.8s\tremaining: 14.8s\n", + "7555:\tlearn: 0.0333245\ttotal: 45.8s\tremaining: 14.8s\n", + "7556:\tlearn: 0.0333192\ttotal: 45.8s\tremaining: 14.8s\n", + "7557:\tlearn: 0.0333131\ttotal: 45.8s\tremaining: 14.8s\n", + "7558:\tlearn: 0.0333047\ttotal: 45.8s\tremaining: 14.8s\n", + "7559:\tlearn: 0.0333007\ttotal: 45.8s\tremaining: 14.8s\n", + "7560:\tlearn: 0.0332944\ttotal: 45.8s\tremaining: 14.8s\n", + "7561:\tlearn: 0.0332888\ttotal: 45.8s\tremaining: 14.8s\n", + "7562:\tlearn: 0.0332864\ttotal: 45.8s\tremaining: 14.8s\n", + "7563:\tlearn: 0.0332780\ttotal: 45.8s\tremaining: 14.8s\n", + "7564:\tlearn: 0.0332752\ttotal: 45.8s\tremaining: 14.7s\n", + "7565:\tlearn: 0.0332712\ttotal: 45.8s\tremaining: 14.7s\n", + "7566:\tlearn: 0.0332638\ttotal: 45.8s\tremaining: 14.7s\n", + "7567:\tlearn: 0.0332589\ttotal: 45.8s\tremaining: 14.7s\n", + "7568:\tlearn: 0.0332547\ttotal: 45.8s\tremaining: 14.7s\n", + "7569:\tlearn: 0.0332475\ttotal: 45.8s\tremaining: 14.7s\n", + "7570:\tlearn: 0.0332400\ttotal: 45.8s\tremaining: 14.7s\n", + "7571:\tlearn: 0.0332334\ttotal: 45.8s\tremaining: 14.7s\n", + "7572:\tlearn: 0.0332288\ttotal: 45.8s\tremaining: 14.7s\n", + "7573:\tlearn: 0.0332215\ttotal: 45.9s\tremaining: 14.7s\n", + "7574:\tlearn: 0.0332163\ttotal: 45.9s\tremaining: 14.7s\n", + "7575:\tlearn: 0.0332107\ttotal: 45.9s\tremaining: 14.7s\n", + "7576:\tlearn: 0.0332043\ttotal: 45.9s\tremaining: 14.7s\n", + "7577:\tlearn: 0.0332024\ttotal: 45.9s\tremaining: 14.7s\n", + "7578:\tlearn: 0.0331978\ttotal: 45.9s\tremaining: 14.7s\n", + "7579:\tlearn: 0.0331959\ttotal: 45.9s\tremaining: 14.6s\n", + "7580:\tlearn: 0.0331848\ttotal: 45.9s\tremaining: 14.6s\n", + "7581:\tlearn: 0.0331777\ttotal: 45.9s\tremaining: 14.6s\n", + "7582:\tlearn: 0.0331712\ttotal: 45.9s\tremaining: 14.6s\n", + "7583:\tlearn: 0.0331666\ttotal: 45.9s\tremaining: 14.6s\n", + "7584:\tlearn: 0.0331559\ttotal: 45.9s\tremaining: 14.6s\n", + "7585:\tlearn: 0.0331492\ttotal: 45.9s\tremaining: 14.6s\n", + "7586:\tlearn: 0.0331439\ttotal: 45.9s\tremaining: 14.6s\n", + "7587:\tlearn: 0.0331334\ttotal: 45.9s\tremaining: 14.6s\n", + "7588:\tlearn: 0.0331258\ttotal: 45.9s\tremaining: 14.6s\n", + "7589:\tlearn: 0.0331231\ttotal: 45.9s\tremaining: 14.6s\n", + "7590:\tlearn: 0.0331194\ttotal: 45.9s\tremaining: 14.6s\n", + "7591:\tlearn: 0.0331141\ttotal: 45.9s\tremaining: 14.6s\n", + "7592:\tlearn: 0.0331086\ttotal: 46s\tremaining: 14.6s\n", + "7593:\tlearn: 0.0331029\ttotal: 46s\tremaining: 14.6s\n", + "7594:\tlearn: 0.0330967\ttotal: 46s\tremaining: 14.6s\n", + "7595:\tlearn: 0.0330903\ttotal: 46s\tremaining: 14.5s\n", + "7596:\tlearn: 0.0330862\ttotal: 46s\tremaining: 14.5s\n", + "7597:\tlearn: 0.0330800\ttotal: 46s\tremaining: 14.5s\n", + "7598:\tlearn: 0.0330773\ttotal: 46s\tremaining: 14.5s\n", + "7599:\tlearn: 0.0330701\ttotal: 46s\tremaining: 14.5s\n", + "7600:\tlearn: 0.0330656\ttotal: 46s\tremaining: 14.5s\n", + "7601:\tlearn: 0.0330549\ttotal: 46s\tremaining: 14.5s\n", + "7602:\tlearn: 0.0330476\ttotal: 46s\tremaining: 14.5s\n", + "7603:\tlearn: 0.0330413\ttotal: 46s\tremaining: 14.5s\n", + "7604:\tlearn: 0.0330399\ttotal: 46s\tremaining: 14.5s\n", + "7605:\tlearn: 0.0330336\ttotal: 46s\tremaining: 14.5s\n", + "7606:\tlearn: 0.0330286\ttotal: 46s\tremaining: 14.5s\n", + "7607:\tlearn: 0.0330223\ttotal: 46s\tremaining: 14.5s\n", + "7608:\tlearn: 0.0330162\ttotal: 46s\tremaining: 14.5s\n", + "7609:\tlearn: 0.0330105\ttotal: 46s\tremaining: 14.5s\n", + "7610:\tlearn: 0.0330069\ttotal: 46s\tremaining: 14.5s\n", + "7611:\tlearn: 0.0329990\ttotal: 46s\tremaining: 14.4s\n", + "7612:\tlearn: 0.0329920\ttotal: 46.1s\tremaining: 14.4s\n", + "7613:\tlearn: 0.0329835\ttotal: 46.1s\tremaining: 14.4s\n", + "7614:\tlearn: 0.0329737\ttotal: 46.1s\tremaining: 14.4s\n", + "7615:\tlearn: 0.0329701\ttotal: 46.1s\tremaining: 14.4s\n", + "7616:\tlearn: 0.0329657\ttotal: 46.1s\tremaining: 14.4s\n", + "7617:\tlearn: 0.0329598\ttotal: 46.1s\tremaining: 14.4s\n", + "7618:\tlearn: 0.0329528\ttotal: 46.1s\tremaining: 14.4s\n", + "7619:\tlearn: 0.0329472\ttotal: 46.1s\tremaining: 14.4s\n", + "7620:\tlearn: 0.0329395\ttotal: 46.1s\tremaining: 14.4s\n", + "7621:\tlearn: 0.0329356\ttotal: 46.1s\tremaining: 14.4s\n", + "7622:\tlearn: 0.0329283\ttotal: 46.1s\tremaining: 14.4s\n", + "7623:\tlearn: 0.0329218\ttotal: 46.1s\tremaining: 14.4s\n", + "7624:\tlearn: 0.0329149\ttotal: 46.1s\tremaining: 14.4s\n", + "7625:\tlearn: 0.0329075\ttotal: 46.1s\tremaining: 14.4s\n", + "7626:\tlearn: 0.0329021\ttotal: 46.1s\tremaining: 14.4s\n", + "7627:\tlearn: 0.0328971\ttotal: 46.1s\tremaining: 14.3s\n", + "7628:\tlearn: 0.0328911\ttotal: 46.1s\tremaining: 14.3s\n", + "7629:\tlearn: 0.0328845\ttotal: 46.1s\tremaining: 14.3s\n", + "7630:\tlearn: 0.0328799\ttotal: 46.2s\tremaining: 14.3s\n", + "7631:\tlearn: 0.0328765\ttotal: 46.2s\tremaining: 14.3s\n", + "7632:\tlearn: 0.0328707\ttotal: 46.2s\tremaining: 14.3s\n", + "7633:\tlearn: 0.0328625\ttotal: 46.2s\tremaining: 14.3s\n", + "7634:\tlearn: 0.0328575\ttotal: 46.2s\tremaining: 14.3s\n", + "7635:\tlearn: 0.0328500\ttotal: 46.2s\tremaining: 14.3s\n", + "7636:\tlearn: 0.0328435\ttotal: 46.2s\tremaining: 14.3s\n", + "7637:\tlearn: 0.0328359\ttotal: 46.2s\tremaining: 14.3s\n", + "7638:\tlearn: 0.0328325\ttotal: 46.2s\tremaining: 14.3s\n", + "7639:\tlearn: 0.0328288\ttotal: 46.2s\tremaining: 14.3s\n", + "7640:\tlearn: 0.0328211\ttotal: 46.2s\tremaining: 14.3s\n", + "7641:\tlearn: 0.0328143\ttotal: 46.2s\tremaining: 14.3s\n", + "7642:\tlearn: 0.0328097\ttotal: 46.2s\tremaining: 14.3s\n", + "7643:\tlearn: 0.0328041\ttotal: 46.2s\tremaining: 14.2s\n", + "7644:\tlearn: 0.0327995\ttotal: 46.2s\tremaining: 14.2s\n", + "7645:\tlearn: 0.0327946\ttotal: 46.2s\tremaining: 14.2s\n", + "7646:\tlearn: 0.0327905\ttotal: 46.2s\tremaining: 14.2s\n", + "7647:\tlearn: 0.0327849\ttotal: 46.2s\tremaining: 14.2s\n", + "7648:\tlearn: 0.0327809\ttotal: 46.2s\tremaining: 14.2s\n", + "7649:\tlearn: 0.0327763\ttotal: 46.2s\tremaining: 14.2s\n", + "7650:\tlearn: 0.0327683\ttotal: 46.2s\tremaining: 14.2s\n", + "7651:\tlearn: 0.0327611\ttotal: 46.3s\tremaining: 14.2s\n", + "7652:\tlearn: 0.0327546\ttotal: 46.3s\tremaining: 14.2s\n", + "7653:\tlearn: 0.0327491\ttotal: 46.3s\tremaining: 14.2s\n", + "7654:\tlearn: 0.0327451\ttotal: 46.3s\tremaining: 14.2s\n", + "7655:\tlearn: 0.0327416\ttotal: 46.3s\tremaining: 14.2s\n", + "7656:\tlearn: 0.0327349\ttotal: 46.3s\tremaining: 14.2s\n", + "7657:\tlearn: 0.0327293\ttotal: 46.3s\tremaining: 14.2s\n", + "7658:\tlearn: 0.0327245\ttotal: 46.3s\tremaining: 14.1s\n", + "7659:\tlearn: 0.0327233\ttotal: 46.3s\tremaining: 14.1s\n", + "7660:\tlearn: 0.0327126\ttotal: 46.3s\tremaining: 14.1s\n", + "7661:\tlearn: 0.0327036\ttotal: 46.3s\tremaining: 14.1s\n", + "7662:\tlearn: 0.0326975\ttotal: 46.3s\tremaining: 14.1s\n", + "7663:\tlearn: 0.0326918\ttotal: 46.3s\tremaining: 14.1s\n", + "7664:\tlearn: 0.0326840\ttotal: 46.3s\tremaining: 14.1s\n", + "7665:\tlearn: 0.0326819\ttotal: 46.3s\tremaining: 14.1s\n", + "7666:\tlearn: 0.0326754\ttotal: 46.3s\tremaining: 14.1s\n", + "7667:\tlearn: 0.0326701\ttotal: 46.3s\tremaining: 14.1s\n", + "7668:\tlearn: 0.0326637\ttotal: 46.3s\tremaining: 14.1s\n", + "7669:\tlearn: 0.0326581\ttotal: 46.4s\tremaining: 14.1s\n", + "7670:\tlearn: 0.0326544\ttotal: 46.4s\tremaining: 14.1s\n", + "7671:\tlearn: 0.0326517\ttotal: 46.4s\tremaining: 14.1s\n", + "7672:\tlearn: 0.0326435\ttotal: 46.4s\tremaining: 14.1s\n", + "7673:\tlearn: 0.0326418\ttotal: 46.4s\tremaining: 14.1s\n", + "7674:\tlearn: 0.0326344\ttotal: 46.4s\tremaining: 14s\n", + "7675:\tlearn: 0.0326295\ttotal: 46.4s\tremaining: 14s\n", + "7676:\tlearn: 0.0326238\ttotal: 46.4s\tremaining: 14s\n", + "7677:\tlearn: 0.0326184\ttotal: 46.4s\tremaining: 14s\n", + "7678:\tlearn: 0.0326154\ttotal: 46.4s\tremaining: 14s\n", + "7679:\tlearn: 0.0326108\ttotal: 46.4s\tremaining: 14s\n", + "7680:\tlearn: 0.0326079\ttotal: 46.4s\tremaining: 14s\n", + "7681:\tlearn: 0.0326028\ttotal: 46.4s\tremaining: 14s\n", + "7682:\tlearn: 0.0325978\ttotal: 46.4s\tremaining: 14s\n", + "7683:\tlearn: 0.0325928\ttotal: 46.4s\tremaining: 14s\n", + "7684:\tlearn: 0.0325869\ttotal: 46.4s\tremaining: 14s\n", + "7685:\tlearn: 0.0325833\ttotal: 46.4s\tremaining: 14s\n", + "7686:\tlearn: 0.0325759\ttotal: 46.4s\tremaining: 14s\n", + "7687:\tlearn: 0.0325687\ttotal: 46.4s\tremaining: 14s\n", + "7688:\tlearn: 0.0325630\ttotal: 46.4s\tremaining: 14s\n", + "7689:\tlearn: 0.0325616\ttotal: 46.5s\tremaining: 14s\n", + "7690:\tlearn: 0.0325534\ttotal: 46.5s\tremaining: 13.9s\n", + "7691:\tlearn: 0.0325486\ttotal: 46.5s\tremaining: 13.9s\n", + "7692:\tlearn: 0.0325430\ttotal: 46.5s\tremaining: 13.9s\n", + "7693:\tlearn: 0.0325348\ttotal: 46.5s\tremaining: 13.9s\n", + "7694:\tlearn: 0.0325276\ttotal: 46.5s\tremaining: 13.9s\n", + "7695:\tlearn: 0.0325238\ttotal: 46.5s\tremaining: 13.9s\n", + "7696:\tlearn: 0.0325195\ttotal: 46.5s\tremaining: 13.9s\n", + "7697:\tlearn: 0.0325109\ttotal: 46.5s\tremaining: 13.9s\n", + "7698:\tlearn: 0.0325081\ttotal: 46.5s\tremaining: 13.9s\n", + "7699:\tlearn: 0.0325054\ttotal: 46.5s\tremaining: 13.9s\n", + "7700:\tlearn: 0.0324993\ttotal: 46.5s\tremaining: 13.9s\n", + "7701:\tlearn: 0.0324953\ttotal: 46.5s\tremaining: 13.9s\n", + "7702:\tlearn: 0.0324919\ttotal: 46.5s\tremaining: 13.9s\n", + "7703:\tlearn: 0.0324846\ttotal: 46.5s\tremaining: 13.9s\n", + "7704:\tlearn: 0.0324797\ttotal: 46.5s\tremaining: 13.9s\n", + "7705:\tlearn: 0.0324758\ttotal: 46.5s\tremaining: 13.9s\n", + "7706:\tlearn: 0.0324665\ttotal: 46.5s\tremaining: 13.8s\n", + "7707:\tlearn: 0.0324619\ttotal: 46.5s\tremaining: 13.8s\n", + "7708:\tlearn: 0.0324569\ttotal: 46.6s\tremaining: 13.8s\n", + "7709:\tlearn: 0.0324501\ttotal: 46.6s\tremaining: 13.8s\n", + "7710:\tlearn: 0.0324409\ttotal: 46.6s\tremaining: 13.8s\n", + "7711:\tlearn: 0.0324362\ttotal: 46.6s\tremaining: 13.8s\n", + "7712:\tlearn: 0.0324317\ttotal: 46.6s\tremaining: 13.8s\n", + "7713:\tlearn: 0.0324254\ttotal: 46.6s\tremaining: 13.8s\n", + "7714:\tlearn: 0.0324167\ttotal: 46.6s\tremaining: 13.8s\n", + "7715:\tlearn: 0.0324122\ttotal: 46.6s\tremaining: 13.8s\n", + "7716:\tlearn: 0.0324080\ttotal: 46.6s\tremaining: 13.8s\n", + "7717:\tlearn: 0.0324026\ttotal: 46.6s\tremaining: 13.8s\n", + "7718:\tlearn: 0.0324000\ttotal: 46.6s\tremaining: 13.8s\n", + "7719:\tlearn: 0.0323943\ttotal: 46.6s\tremaining: 13.8s\n", + "7720:\tlearn: 0.0323851\ttotal: 46.6s\tremaining: 13.8s\n", + "7721:\tlearn: 0.0323770\ttotal: 46.6s\tremaining: 13.8s\n", + "7722:\tlearn: 0.0323735\ttotal: 46.6s\tremaining: 13.7s\n", + "7723:\tlearn: 0.0323678\ttotal: 46.6s\tremaining: 13.7s\n", + "7724:\tlearn: 0.0323651\ttotal: 46.6s\tremaining: 13.7s\n", + "7725:\tlearn: 0.0323590\ttotal: 46.6s\tremaining: 13.7s\n", + "7726:\tlearn: 0.0323537\ttotal: 46.6s\tremaining: 13.7s\n", + "7727:\tlearn: 0.0323488\ttotal: 46.6s\tremaining: 13.7s\n", + "7728:\tlearn: 0.0323411\ttotal: 46.7s\tremaining: 13.7s\n", + "7729:\tlearn: 0.0323347\ttotal: 46.7s\tremaining: 13.7s\n", + "7730:\tlearn: 0.0323302\ttotal: 46.7s\tremaining: 13.7s\n", + "7731:\tlearn: 0.0323288\ttotal: 46.7s\tremaining: 13.7s\n", + "7732:\tlearn: 0.0323203\ttotal: 46.7s\tremaining: 13.7s\n", + "7733:\tlearn: 0.0323172\ttotal: 46.7s\tremaining: 13.7s\n", + "7734:\tlearn: 0.0323139\ttotal: 46.7s\tremaining: 13.7s\n", + "7735:\tlearn: 0.0323112\ttotal: 46.7s\tremaining: 13.7s\n", + "7736:\tlearn: 0.0323091\ttotal: 46.7s\tremaining: 13.7s\n", + "7737:\tlearn: 0.0323018\ttotal: 46.7s\tremaining: 13.6s\n", + "7738:\tlearn: 0.0322970\ttotal: 46.7s\tremaining: 13.6s\n", + "7739:\tlearn: 0.0322945\ttotal: 46.7s\tremaining: 13.6s\n", + "7740:\tlearn: 0.0322881\ttotal: 46.7s\tremaining: 13.6s\n", + "7741:\tlearn: 0.0322825\ttotal: 46.7s\tremaining: 13.6s\n", + "7742:\tlearn: 0.0322764\ttotal: 46.7s\tremaining: 13.6s\n", + "7743:\tlearn: 0.0322701\ttotal: 46.7s\tremaining: 13.6s\n", + "7744:\tlearn: 0.0322646\ttotal: 46.7s\tremaining: 13.6s\n", + "7745:\tlearn: 0.0322551\ttotal: 46.7s\tremaining: 13.6s\n", + "7746:\tlearn: 0.0322490\ttotal: 46.8s\tremaining: 13.6s\n", + "7747:\tlearn: 0.0322423\ttotal: 46.8s\tremaining: 13.6s\n", + "7748:\tlearn: 0.0322336\ttotal: 46.8s\tremaining: 13.6s\n", + "7749:\tlearn: 0.0322292\ttotal: 46.8s\tremaining: 13.6s\n", + "7750:\tlearn: 0.0322231\ttotal: 46.8s\tremaining: 13.6s\n", + "7751:\tlearn: 0.0322165\ttotal: 46.8s\tremaining: 13.6s\n", + "7752:\tlearn: 0.0322100\ttotal: 46.8s\tremaining: 13.6s\n", + "7753:\tlearn: 0.0322058\ttotal: 46.8s\tremaining: 13.6s\n", + "7754:\tlearn: 0.0322016\ttotal: 46.8s\tremaining: 13.5s\n", + "7755:\tlearn: 0.0321955\ttotal: 46.8s\tremaining: 13.5s\n", + "7756:\tlearn: 0.0321904\ttotal: 46.8s\tremaining: 13.5s\n", + "7757:\tlearn: 0.0321834\ttotal: 46.8s\tremaining: 13.5s\n", + "7758:\tlearn: 0.0321804\ttotal: 46.8s\tremaining: 13.5s\n", + "7759:\tlearn: 0.0321764\ttotal: 46.8s\tremaining: 13.5s\n", + "7760:\tlearn: 0.0321732\ttotal: 46.8s\tremaining: 13.5s\n", + "7761:\tlearn: 0.0321670\ttotal: 46.8s\tremaining: 13.5s\n", + "7762:\tlearn: 0.0321653\ttotal: 46.8s\tremaining: 13.5s\n", + "7763:\tlearn: 0.0321611\ttotal: 46.8s\tremaining: 13.5s\n", + "7764:\tlearn: 0.0321545\ttotal: 46.8s\tremaining: 13.5s\n", + "7765:\tlearn: 0.0321492\ttotal: 46.8s\tremaining: 13.5s\n", + "7766:\tlearn: 0.0321448\ttotal: 46.9s\tremaining: 13.5s\n", + "7767:\tlearn: 0.0321396\ttotal: 46.9s\tremaining: 13.5s\n", + "7768:\tlearn: 0.0321354\ttotal: 46.9s\tremaining: 13.5s\n", + "7769:\tlearn: 0.0321304\ttotal: 46.9s\tremaining: 13.5s\n", + "7770:\tlearn: 0.0321242\ttotal: 46.9s\tremaining: 13.4s\n", + "7771:\tlearn: 0.0321185\ttotal: 46.9s\tremaining: 13.4s\n", + "7772:\tlearn: 0.0321107\ttotal: 46.9s\tremaining: 13.4s\n", + "7773:\tlearn: 0.0321060\ttotal: 46.9s\tremaining: 13.4s\n", + "7774:\tlearn: 0.0321040\ttotal: 46.9s\tremaining: 13.4s\n", + "7775:\tlearn: 0.0320981\ttotal: 46.9s\tremaining: 13.4s\n", + "7776:\tlearn: 0.0320929\ttotal: 46.9s\tremaining: 13.4s\n", + "7777:\tlearn: 0.0320841\ttotal: 46.9s\tremaining: 13.4s\n", + "7778:\tlearn: 0.0320792\ttotal: 46.9s\tremaining: 13.4s\n", + "7779:\tlearn: 0.0320748\ttotal: 46.9s\tremaining: 13.4s\n", + "7780:\tlearn: 0.0320708\ttotal: 46.9s\tremaining: 13.4s\n", + "7781:\tlearn: 0.0320666\ttotal: 46.9s\tremaining: 13.4s\n", + "7782:\tlearn: 0.0320616\ttotal: 46.9s\tremaining: 13.4s\n", + "7783:\tlearn: 0.0320523\ttotal: 47s\tremaining: 13.4s\n", + "7784:\tlearn: 0.0320497\ttotal: 47s\tremaining: 13.4s\n", + "7785:\tlearn: 0.0320454\ttotal: 47s\tremaining: 13.4s\n", + "7786:\tlearn: 0.0320428\ttotal: 47s\tremaining: 13.3s\n", + "7787:\tlearn: 0.0320356\ttotal: 47s\tremaining: 13.3s\n", + "7788:\tlearn: 0.0320306\ttotal: 47s\tremaining: 13.3s\n", + "7789:\tlearn: 0.0320253\ttotal: 47s\tremaining: 13.3s\n", + "7790:\tlearn: 0.0320211\ttotal: 47s\tremaining: 13.3s\n", + "7791:\tlearn: 0.0320164\ttotal: 47s\tremaining: 13.3s\n", + "7792:\tlearn: 0.0320107\ttotal: 47s\tremaining: 13.3s\n", + "7793:\tlearn: 0.0320044\ttotal: 47s\tremaining: 13.3s\n", + "7794:\tlearn: 0.0319992\ttotal: 47s\tremaining: 13.3s\n", + "7795:\tlearn: 0.0319941\ttotal: 47s\tremaining: 13.3s\n", + "7796:\tlearn: 0.0319886\ttotal: 47s\tremaining: 13.3s\n", + "7797:\tlearn: 0.0319846\ttotal: 47s\tremaining: 13.3s\n", + "7798:\tlearn: 0.0319791\ttotal: 47s\tremaining: 13.3s\n", + "7799:\tlearn: 0.0319750\ttotal: 47s\tremaining: 13.3s\n", + "7800:\tlearn: 0.0319711\ttotal: 47s\tremaining: 13.3s\n", + "7801:\tlearn: 0.0319671\ttotal: 47s\tremaining: 13.3s\n", + "7802:\tlearn: 0.0319624\ttotal: 47s\tremaining: 13.2s\n", + "7803:\tlearn: 0.0319591\ttotal: 47s\tremaining: 13.2s\n", + "7804:\tlearn: 0.0319542\ttotal: 47.1s\tremaining: 13.2s\n", + "7805:\tlearn: 0.0319512\ttotal: 47.1s\tremaining: 13.2s\n", + "7806:\tlearn: 0.0319471\ttotal: 47.1s\tremaining: 13.2s\n", + "7807:\tlearn: 0.0319449\ttotal: 47.1s\tremaining: 13.2s\n", + "7808:\tlearn: 0.0319404\ttotal: 47.1s\tremaining: 13.2s\n", + "7809:\tlearn: 0.0319348\ttotal: 47.1s\tremaining: 13.2s\n", + "7810:\tlearn: 0.0319295\ttotal: 47.1s\tremaining: 13.2s\n", + "7811:\tlearn: 0.0319273\ttotal: 47.1s\tremaining: 13.2s\n", + "7812:\tlearn: 0.0319224\ttotal: 47.1s\tremaining: 13.2s\n", + "7813:\tlearn: 0.0319168\ttotal: 47.1s\tremaining: 13.2s\n", + "7814:\tlearn: 0.0319105\ttotal: 47.1s\tremaining: 13.2s\n", + "7815:\tlearn: 0.0319068\ttotal: 47.1s\tremaining: 13.2s\n", + "7816:\tlearn: 0.0319011\ttotal: 47.1s\tremaining: 13.2s\n", + "7817:\tlearn: 0.0318938\ttotal: 47.1s\tremaining: 13.2s\n", + "7818:\tlearn: 0.0318865\ttotal: 47.1s\tremaining: 13.1s\n", + "7819:\tlearn: 0.0318783\ttotal: 47.1s\tremaining: 13.1s\n", + "7820:\tlearn: 0.0318741\ttotal: 47.1s\tremaining: 13.1s\n", + "7821:\tlearn: 0.0318685\ttotal: 47.1s\tremaining: 13.1s\n", + "7822:\tlearn: 0.0318621\ttotal: 47.2s\tremaining: 13.1s\n", + "7823:\tlearn: 0.0318533\ttotal: 47.2s\tremaining: 13.1s\n", + "7824:\tlearn: 0.0318475\ttotal: 47.2s\tremaining: 13.1s\n", + "7825:\tlearn: 0.0318415\ttotal: 47.2s\tremaining: 13.1s\n", + "7826:\tlearn: 0.0318366\ttotal: 47.2s\tremaining: 13.1s\n", + "7827:\tlearn: 0.0318283\ttotal: 47.2s\tremaining: 13.1s\n", + "7828:\tlearn: 0.0318204\ttotal: 47.2s\tremaining: 13.1s\n", + "7829:\tlearn: 0.0318160\ttotal: 47.2s\tremaining: 13.1s\n", + "7830:\tlearn: 0.0318109\ttotal: 47.2s\tremaining: 13.1s\n", + "7831:\tlearn: 0.0318031\ttotal: 47.2s\tremaining: 13.1s\n", + "7832:\tlearn: 0.0317957\ttotal: 47.2s\tremaining: 13.1s\n", + "7833:\tlearn: 0.0317916\ttotal: 47.2s\tremaining: 13.1s\n", + "7834:\tlearn: 0.0317869\ttotal: 47.2s\tremaining: 13s\n", + "7835:\tlearn: 0.0317820\ttotal: 47.2s\tremaining: 13s\n", + "7836:\tlearn: 0.0317757\ttotal: 47.2s\tremaining: 13s\n", + "7837:\tlearn: 0.0317674\ttotal: 47.2s\tremaining: 13s\n", + "7838:\tlearn: 0.0317622\ttotal: 47.2s\tremaining: 13s\n", + "7839:\tlearn: 0.0317596\ttotal: 47.2s\tremaining: 13s\n", + "7840:\tlearn: 0.0317553\ttotal: 47.2s\tremaining: 13s\n", + "7841:\tlearn: 0.0317511\ttotal: 47.3s\tremaining: 13s\n", + "7842:\tlearn: 0.0317463\ttotal: 47.3s\tremaining: 13s\n", + "7843:\tlearn: 0.0317444\ttotal: 47.3s\tremaining: 13s\n", + "7844:\tlearn: 0.0317380\ttotal: 47.3s\tremaining: 13s\n", + "7845:\tlearn: 0.0317347\ttotal: 47.3s\tremaining: 13s\n", + "7846:\tlearn: 0.0317283\ttotal: 47.3s\tremaining: 13s\n", + "7847:\tlearn: 0.0317244\ttotal: 47.3s\tremaining: 13s\n", + "7848:\tlearn: 0.0317210\ttotal: 47.3s\tremaining: 13s\n", + "7849:\tlearn: 0.0317137\ttotal: 47.3s\tremaining: 13s\n", + "7850:\tlearn: 0.0317057\ttotal: 47.3s\tremaining: 12.9s\n", + "7851:\tlearn: 0.0317019\ttotal: 47.3s\tremaining: 12.9s\n", + "7852:\tlearn: 0.0316982\ttotal: 47.3s\tremaining: 12.9s\n", + "7853:\tlearn: 0.0316963\ttotal: 47.3s\tremaining: 12.9s\n", + "7854:\tlearn: 0.0316875\ttotal: 47.3s\tremaining: 12.9s\n", + "7855:\tlearn: 0.0316856\ttotal: 47.3s\tremaining: 12.9s\n", + "7856:\tlearn: 0.0316819\ttotal: 47.3s\tremaining: 12.9s\n", + "7857:\tlearn: 0.0316765\ttotal: 47.3s\tremaining: 12.9s\n", + "7858:\tlearn: 0.0316714\ttotal: 47.3s\tremaining: 12.9s\n", + "7859:\tlearn: 0.0316661\ttotal: 47.3s\tremaining: 12.9s\n", + "7860:\tlearn: 0.0316594\ttotal: 47.3s\tremaining: 12.9s\n", + "7861:\tlearn: 0.0316539\ttotal: 47.4s\tremaining: 12.9s\n", + "7862:\tlearn: 0.0316453\ttotal: 47.4s\tremaining: 12.9s\n", + "7863:\tlearn: 0.0316408\ttotal: 47.4s\tremaining: 12.9s\n", + "7864:\tlearn: 0.0316365\ttotal: 47.4s\tremaining: 12.9s\n", + "7865:\tlearn: 0.0316268\ttotal: 47.4s\tremaining: 12.9s\n", + "7866:\tlearn: 0.0316213\ttotal: 47.4s\tremaining: 12.8s\n", + "7867:\tlearn: 0.0316164\ttotal: 47.4s\tremaining: 12.8s\n", + "7868:\tlearn: 0.0316105\ttotal: 47.4s\tremaining: 12.8s\n", + "7869:\tlearn: 0.0316052\ttotal: 47.4s\tremaining: 12.8s\n", + "7870:\tlearn: 0.0315958\ttotal: 47.4s\tremaining: 12.8s\n", + "7871:\tlearn: 0.0315933\ttotal: 47.4s\tremaining: 12.8s\n", + "7872:\tlearn: 0.0315884\ttotal: 47.4s\tremaining: 12.8s\n", + "7873:\tlearn: 0.0315837\ttotal: 47.4s\tremaining: 12.8s\n", + "7874:\tlearn: 0.0315789\ttotal: 47.4s\tremaining: 12.8s\n", + "7875:\tlearn: 0.0315708\ttotal: 47.4s\tremaining: 12.8s\n", + "7876:\tlearn: 0.0315624\ttotal: 47.4s\tremaining: 12.8s\n", + "7877:\tlearn: 0.0315586\ttotal: 47.4s\tremaining: 12.8s\n", + "7878:\tlearn: 0.0315532\ttotal: 47.4s\tremaining: 12.8s\n", + "7879:\tlearn: 0.0315454\ttotal: 47.4s\tremaining: 12.8s\n", + "7880:\tlearn: 0.0315425\ttotal: 47.5s\tremaining: 12.8s\n", + "7881:\tlearn: 0.0315374\ttotal: 47.5s\tremaining: 12.8s\n", + "7882:\tlearn: 0.0315322\ttotal: 47.5s\tremaining: 12.7s\n", + "7883:\tlearn: 0.0315272\ttotal: 47.5s\tremaining: 12.7s\n", + "7884:\tlearn: 0.0315222\ttotal: 47.5s\tremaining: 12.7s\n", + "7885:\tlearn: 0.0315171\ttotal: 47.5s\tremaining: 12.7s\n", + "7886:\tlearn: 0.0315117\ttotal: 47.5s\tremaining: 12.7s\n", + "7887:\tlearn: 0.0315061\ttotal: 47.5s\tremaining: 12.7s\n", + "7888:\tlearn: 0.0315004\ttotal: 47.5s\tremaining: 12.7s\n", + "7889:\tlearn: 0.0314965\ttotal: 47.5s\tremaining: 12.7s\n", + "7890:\tlearn: 0.0314916\ttotal: 47.5s\tremaining: 12.7s\n", + "7891:\tlearn: 0.0314869\ttotal: 47.5s\tremaining: 12.7s\n", + "7892:\tlearn: 0.0314784\ttotal: 47.5s\tremaining: 12.7s\n", + "7893:\tlearn: 0.0314692\ttotal: 47.5s\tremaining: 12.7s\n", + "7894:\tlearn: 0.0314599\ttotal: 47.5s\tremaining: 12.7s\n", + "7895:\tlearn: 0.0314554\ttotal: 47.5s\tremaining: 12.7s\n", + "7896:\tlearn: 0.0314530\ttotal: 47.5s\tremaining: 12.7s\n", + "7897:\tlearn: 0.0314461\ttotal: 47.5s\tremaining: 12.7s\n", + "7898:\tlearn: 0.0314393\ttotal: 47.5s\tremaining: 12.6s\n", + "7899:\tlearn: 0.0314359\ttotal: 47.6s\tremaining: 12.6s\n", + "7900:\tlearn: 0.0314310\ttotal: 47.6s\tremaining: 12.6s\n", + "7901:\tlearn: 0.0314234\ttotal: 47.6s\tremaining: 12.6s\n", + "7902:\tlearn: 0.0314159\ttotal: 47.6s\tremaining: 12.6s\n", + "7903:\tlearn: 0.0314090\ttotal: 47.6s\tremaining: 12.6s\n", + "7904:\tlearn: 0.0314023\ttotal: 47.6s\tremaining: 12.6s\n", + "7905:\tlearn: 0.0313954\ttotal: 47.6s\tremaining: 12.6s\n", + "7906:\tlearn: 0.0313902\ttotal: 47.6s\tremaining: 12.6s\n", + "7907:\tlearn: 0.0313867\ttotal: 47.6s\tremaining: 12.6s\n", + "7908:\tlearn: 0.0313819\ttotal: 47.6s\tremaining: 12.6s\n", + "7909:\tlearn: 0.0313752\ttotal: 47.6s\tremaining: 12.6s\n", + "7910:\tlearn: 0.0313717\ttotal: 47.6s\tremaining: 12.6s\n", + "7911:\tlearn: 0.0313681\ttotal: 47.6s\tremaining: 12.6s\n", + "7912:\tlearn: 0.0313661\ttotal: 47.6s\tremaining: 12.6s\n", + "7913:\tlearn: 0.0313600\ttotal: 47.6s\tremaining: 12.6s\n", + "7914:\tlearn: 0.0313553\ttotal: 47.6s\tremaining: 12.5s\n", + "7915:\tlearn: 0.0313449\ttotal: 47.6s\tremaining: 12.5s\n", + "7916:\tlearn: 0.0313395\ttotal: 47.6s\tremaining: 12.5s\n", + "7917:\tlearn: 0.0313327\ttotal: 47.7s\tremaining: 12.5s\n", + "7918:\tlearn: 0.0313292\ttotal: 47.7s\tremaining: 12.5s\n", + "7919:\tlearn: 0.0313242\ttotal: 47.7s\tremaining: 12.5s\n", + "7920:\tlearn: 0.0313197\ttotal: 47.7s\tremaining: 12.5s\n", + "7921:\tlearn: 0.0313116\ttotal: 47.7s\tremaining: 12.5s\n", + "7922:\tlearn: 0.0313066\ttotal: 47.7s\tremaining: 12.5s\n", + "7923:\tlearn: 0.0313010\ttotal: 47.7s\tremaining: 12.5s\n", + "7924:\tlearn: 0.0312976\ttotal: 47.7s\tremaining: 12.5s\n", + "7925:\tlearn: 0.0312907\ttotal: 47.7s\tremaining: 12.5s\n", + "7926:\tlearn: 0.0312851\ttotal: 47.7s\tremaining: 12.5s\n", + "7927:\tlearn: 0.0312817\ttotal: 47.7s\tremaining: 12.5s\n", + "7928:\tlearn: 0.0312761\ttotal: 47.7s\tremaining: 12.5s\n", + "7929:\tlearn: 0.0312716\ttotal: 47.7s\tremaining: 12.5s\n", + "7930:\tlearn: 0.0312687\ttotal: 47.7s\tremaining: 12.5s\n", + "7931:\tlearn: 0.0312642\ttotal: 47.7s\tremaining: 12.4s\n", + "7932:\tlearn: 0.0312596\ttotal: 47.7s\tremaining: 12.4s\n", + "7933:\tlearn: 0.0312530\ttotal: 47.7s\tremaining: 12.4s\n", + "7934:\tlearn: 0.0312492\ttotal: 47.8s\tremaining: 12.4s\n", + "7935:\tlearn: 0.0312435\ttotal: 47.8s\tremaining: 12.4s\n", + "7936:\tlearn: 0.0312380\ttotal: 47.8s\tremaining: 12.4s\n", + "7937:\tlearn: 0.0312331\ttotal: 47.8s\tremaining: 12.4s\n", + "7938:\tlearn: 0.0312260\ttotal: 47.8s\tremaining: 12.4s\n", + "7939:\tlearn: 0.0312217\ttotal: 47.8s\tremaining: 12.4s\n", + "7940:\tlearn: 0.0312181\ttotal: 47.8s\tremaining: 12.4s\n", + "7941:\tlearn: 0.0312141\ttotal: 47.8s\tremaining: 12.4s\n", + "7942:\tlearn: 0.0312091\ttotal: 47.8s\tremaining: 12.4s\n", + "7943:\tlearn: 0.0312072\ttotal: 47.8s\tremaining: 12.4s\n", + "7944:\tlearn: 0.0312024\ttotal: 47.8s\tremaining: 12.4s\n", + "7945:\tlearn: 0.0311950\ttotal: 47.8s\tremaining: 12.4s\n", + "7946:\tlearn: 0.0311916\ttotal: 47.8s\tremaining: 12.4s\n", + "7947:\tlearn: 0.0311872\ttotal: 47.8s\tremaining: 12.3s\n", + "7948:\tlearn: 0.0311825\ttotal: 47.8s\tremaining: 12.3s\n", + "7949:\tlearn: 0.0311736\ttotal: 47.8s\tremaining: 12.3s\n", + "7950:\tlearn: 0.0311678\ttotal: 47.8s\tremaining: 12.3s\n", + "7951:\tlearn: 0.0311626\ttotal: 47.8s\tremaining: 12.3s\n", + "7952:\tlearn: 0.0311595\ttotal: 47.8s\tremaining: 12.3s\n", + "7953:\tlearn: 0.0311564\ttotal: 47.8s\tremaining: 12.3s\n", + "7954:\tlearn: 0.0311470\ttotal: 47.9s\tremaining: 12.3s\n", + "7955:\tlearn: 0.0311432\ttotal: 47.9s\tremaining: 12.3s\n", + "7956:\tlearn: 0.0311417\ttotal: 47.9s\tremaining: 12.3s\n", + "7957:\tlearn: 0.0311338\ttotal: 47.9s\tremaining: 12.3s\n", + "7958:\tlearn: 0.0311301\ttotal: 47.9s\tremaining: 12.3s\n", + "7959:\tlearn: 0.0311232\ttotal: 47.9s\tremaining: 12.3s\n", + "7960:\tlearn: 0.0311190\ttotal: 47.9s\tremaining: 12.3s\n", + "7961:\tlearn: 0.0311158\ttotal: 47.9s\tremaining: 12.3s\n", + "7962:\tlearn: 0.0311116\ttotal: 47.9s\tremaining: 12.3s\n", + "7963:\tlearn: 0.0311049\ttotal: 47.9s\tremaining: 12.2s\n", + "7964:\tlearn: 0.0310993\ttotal: 47.9s\tremaining: 12.2s\n", + "7965:\tlearn: 0.0310938\ttotal: 47.9s\tremaining: 12.2s\n", + "7966:\tlearn: 0.0310875\ttotal: 47.9s\tremaining: 12.2s\n", + "7967:\tlearn: 0.0310826\ttotal: 47.9s\tremaining: 12.2s\n", + "7968:\tlearn: 0.0310764\ttotal: 47.9s\tremaining: 12.2s\n", + "7969:\tlearn: 0.0310725\ttotal: 47.9s\tremaining: 12.2s\n", + "7970:\tlearn: 0.0310660\ttotal: 47.9s\tremaining: 12.2s\n", + "7971:\tlearn: 0.0310637\ttotal: 48s\tremaining: 12.2s\n", + "7972:\tlearn: 0.0310598\ttotal: 48s\tremaining: 12.2s\n", + "7973:\tlearn: 0.0310570\ttotal: 48s\tremaining: 12.2s\n", + "7974:\tlearn: 0.0310533\ttotal: 48s\tremaining: 12.2s\n", + "7975:\tlearn: 0.0310493\ttotal: 48s\tremaining: 12.2s\n", + "7976:\tlearn: 0.0310451\ttotal: 48s\tremaining: 12.2s\n", + "7977:\tlearn: 0.0310425\ttotal: 48s\tremaining: 12.2s\n", + "7978:\tlearn: 0.0310389\ttotal: 48s\tremaining: 12.2s\n", + "7979:\tlearn: 0.0310325\ttotal: 48s\tremaining: 12.1s\n", + "7980:\tlearn: 0.0310279\ttotal: 48s\tremaining: 12.1s\n", + "7981:\tlearn: 0.0310243\ttotal: 48s\tremaining: 12.1s\n", + "7982:\tlearn: 0.0310211\ttotal: 48s\tremaining: 12.1s\n", + "7983:\tlearn: 0.0310189\ttotal: 48s\tremaining: 12.1s\n", + "7984:\tlearn: 0.0310134\ttotal: 48s\tremaining: 12.1s\n", + "7985:\tlearn: 0.0310082\ttotal: 48s\tremaining: 12.1s\n", + "7986:\tlearn: 0.0310026\ttotal: 48s\tremaining: 12.1s\n", + "7987:\tlearn: 0.0309958\ttotal: 48s\tremaining: 12.1s\n", + "7988:\tlearn: 0.0309885\ttotal: 48s\tremaining: 12.1s\n", + "7989:\tlearn: 0.0309851\ttotal: 48s\tremaining: 12.1s\n", + "7990:\tlearn: 0.0309773\ttotal: 48s\tremaining: 12.1s\n", + "7991:\tlearn: 0.0309700\ttotal: 48s\tremaining: 12.1s\n", + "7992:\tlearn: 0.0309631\ttotal: 48.1s\tremaining: 12.1s\n", + "7993:\tlearn: 0.0309583\ttotal: 48.1s\tremaining: 12.1s\n", + "7994:\tlearn: 0.0309563\ttotal: 48.1s\tremaining: 12.1s\n", + "7995:\tlearn: 0.0309479\ttotal: 48.1s\tremaining: 12s\n", + "7996:\tlearn: 0.0309436\ttotal: 48.1s\tremaining: 12s\n", + "7997:\tlearn: 0.0309400\ttotal: 48.1s\tremaining: 12s\n", + "7998:\tlearn: 0.0309335\ttotal: 48.1s\tremaining: 12s\n", + "7999:\tlearn: 0.0309263\ttotal: 48.1s\tremaining: 12s\n", + "8000:\tlearn: 0.0309168\ttotal: 48.1s\tremaining: 12s\n", + "8001:\tlearn: 0.0309114\ttotal: 48.1s\tremaining: 12s\n", + "8002:\tlearn: 0.0309064\ttotal: 48.1s\tremaining: 12s\n", + "8003:\tlearn: 0.0309024\ttotal: 48.1s\tremaining: 12s\n", + "8004:\tlearn: 0.0308986\ttotal: 48.1s\tremaining: 12s\n", + "8005:\tlearn: 0.0308929\ttotal: 48.1s\tremaining: 12s\n", + "8006:\tlearn: 0.0308902\ttotal: 48.1s\tremaining: 12s\n", + "8007:\tlearn: 0.0308887\ttotal: 48.1s\tremaining: 12s\n", + "8008:\tlearn: 0.0308855\ttotal: 48.1s\tremaining: 12s\n", + "8009:\tlearn: 0.0308797\ttotal: 48.1s\tremaining: 12s\n", + "8010:\tlearn: 0.0308741\ttotal: 48.2s\tremaining: 12s\n", + "8011:\tlearn: 0.0308685\ttotal: 48.2s\tremaining: 11.9s\n", + "8012:\tlearn: 0.0308646\ttotal: 48.2s\tremaining: 11.9s\n", + "8013:\tlearn: 0.0308602\ttotal: 48.2s\tremaining: 11.9s\n", + "8014:\tlearn: 0.0308566\ttotal: 48.2s\tremaining: 11.9s\n", + "8015:\tlearn: 0.0308519\ttotal: 48.2s\tremaining: 11.9s\n", + "8016:\tlearn: 0.0308480\ttotal: 48.2s\tremaining: 11.9s\n", + "8017:\tlearn: 0.0308422\ttotal: 48.2s\tremaining: 11.9s\n", + "8018:\tlearn: 0.0308364\ttotal: 48.2s\tremaining: 11.9s\n", + "8019:\tlearn: 0.0308338\ttotal: 48.2s\tremaining: 11.9s\n", + "8020:\tlearn: 0.0308304\ttotal: 48.2s\tremaining: 11.9s\n", + "8021:\tlearn: 0.0308236\ttotal: 48.2s\tremaining: 11.9s\n", + "8022:\tlearn: 0.0308195\ttotal: 48.2s\tremaining: 11.9s\n", + "8023:\tlearn: 0.0308142\ttotal: 48.2s\tremaining: 11.9s\n", + "8024:\tlearn: 0.0308084\ttotal: 48.2s\tremaining: 11.9s\n", + "8025:\tlearn: 0.0308026\ttotal: 48.2s\tremaining: 11.9s\n", + "8026:\tlearn: 0.0307986\ttotal: 48.2s\tremaining: 11.9s\n", + "8027:\tlearn: 0.0307917\ttotal: 48.2s\tremaining: 11.8s\n", + "8028:\tlearn: 0.0307866\ttotal: 48.2s\tremaining: 11.8s\n", + "8029:\tlearn: 0.0307806\ttotal: 48.3s\tremaining: 11.8s\n", + "8030:\tlearn: 0.0307754\ttotal: 48.3s\tremaining: 11.8s\n", + "8031:\tlearn: 0.0307710\ttotal: 48.3s\tremaining: 11.8s\n", + "8032:\tlearn: 0.0307658\ttotal: 48.3s\tremaining: 11.8s\n", + "8033:\tlearn: 0.0307638\ttotal: 48.3s\tremaining: 11.8s\n", + "8034:\tlearn: 0.0307587\ttotal: 48.3s\tremaining: 11.8s\n", + "8035:\tlearn: 0.0307521\ttotal: 48.3s\tremaining: 11.8s\n", + "8036:\tlearn: 0.0307471\ttotal: 48.3s\tremaining: 11.8s\n", + "8037:\tlearn: 0.0307438\ttotal: 48.3s\tremaining: 11.8s\n", + "8038:\tlearn: 0.0307384\ttotal: 48.3s\tremaining: 11.8s\n", + "8039:\tlearn: 0.0307311\ttotal: 48.3s\tremaining: 11.8s\n", + "8040:\tlearn: 0.0307264\ttotal: 48.3s\tremaining: 11.8s\n", + "8041:\tlearn: 0.0307192\ttotal: 48.3s\tremaining: 11.8s\n", + "8042:\tlearn: 0.0307158\ttotal: 48.3s\tremaining: 11.8s\n", + "8043:\tlearn: 0.0307111\ttotal: 48.3s\tremaining: 11.8s\n", + "8044:\tlearn: 0.0307053\ttotal: 48.3s\tremaining: 11.7s\n", + "8045:\tlearn: 0.0307022\ttotal: 48.3s\tremaining: 11.7s\n", + "8046:\tlearn: 0.0306914\ttotal: 48.3s\tremaining: 11.7s\n", + "8047:\tlearn: 0.0306847\ttotal: 48.3s\tremaining: 11.7s\n", + "8048:\tlearn: 0.0306802\ttotal: 48.4s\tremaining: 11.7s\n", + "8049:\tlearn: 0.0306742\ttotal: 48.4s\tremaining: 11.7s\n", + "8050:\tlearn: 0.0306670\ttotal: 48.4s\tremaining: 11.7s\n", + "8051:\tlearn: 0.0306652\ttotal: 48.4s\tremaining: 11.7s\n", + "8052:\tlearn: 0.0306612\ttotal: 48.4s\tremaining: 11.7s\n", + "8053:\tlearn: 0.0306578\ttotal: 48.4s\tremaining: 11.7s\n", + "8054:\tlearn: 0.0306528\ttotal: 48.4s\tremaining: 11.7s\n", + "8055:\tlearn: 0.0306493\ttotal: 48.4s\tremaining: 11.7s\n", + "8056:\tlearn: 0.0306449\ttotal: 48.4s\tremaining: 11.7s\n", + "8057:\tlearn: 0.0306402\ttotal: 48.4s\tremaining: 11.7s\n", + "8058:\tlearn: 0.0306338\ttotal: 48.4s\tremaining: 11.7s\n", + "8059:\tlearn: 0.0306297\ttotal: 48.4s\tremaining: 11.7s\n", + "8060:\tlearn: 0.0306214\ttotal: 48.4s\tremaining: 11.6s\n", + "8061:\tlearn: 0.0306195\ttotal: 48.4s\tremaining: 11.6s\n", + "8062:\tlearn: 0.0306145\ttotal: 48.4s\tremaining: 11.6s\n", + "8063:\tlearn: 0.0306087\ttotal: 48.4s\tremaining: 11.6s\n", + "8064:\tlearn: 0.0306009\ttotal: 48.4s\tremaining: 11.6s\n", + "8065:\tlearn: 0.0305971\ttotal: 48.4s\tremaining: 11.6s\n", + "8066:\tlearn: 0.0305928\ttotal: 48.4s\tremaining: 11.6s\n", + "8067:\tlearn: 0.0305899\ttotal: 48.4s\tremaining: 11.6s\n", + "8068:\tlearn: 0.0305860\ttotal: 48.5s\tremaining: 11.6s\n", + "8069:\tlearn: 0.0305802\ttotal: 48.5s\tremaining: 11.6s\n", + "8070:\tlearn: 0.0305718\ttotal: 48.5s\tremaining: 11.6s\n", + "8071:\tlearn: 0.0305689\ttotal: 48.5s\tremaining: 11.6s\n", + "8072:\tlearn: 0.0305645\ttotal: 48.5s\tremaining: 11.6s\n", + "8073:\tlearn: 0.0305606\ttotal: 48.5s\tremaining: 11.6s\n", + "8074:\tlearn: 0.0305565\ttotal: 48.5s\tremaining: 11.6s\n", + "8075:\tlearn: 0.0305527\ttotal: 48.5s\tremaining: 11.6s\n", + "8076:\tlearn: 0.0305474\ttotal: 48.5s\tremaining: 11.5s\n", + "8077:\tlearn: 0.0305445\ttotal: 48.5s\tremaining: 11.5s\n", + "8078:\tlearn: 0.0305398\ttotal: 48.5s\tremaining: 11.5s\n", + "8079:\tlearn: 0.0305354\ttotal: 48.5s\tremaining: 11.5s\n", + "8080:\tlearn: 0.0305303\ttotal: 48.5s\tremaining: 11.5s\n", + "8081:\tlearn: 0.0305278\ttotal: 48.5s\tremaining: 11.5s\n", + "8082:\tlearn: 0.0305201\ttotal: 48.5s\tremaining: 11.5s\n", + "8083:\tlearn: 0.0305163\ttotal: 48.5s\tremaining: 11.5s\n", + "8084:\tlearn: 0.0305128\ttotal: 48.5s\tremaining: 11.5s\n", + "8085:\tlearn: 0.0305105\ttotal: 48.6s\tremaining: 11.5s\n", + "8086:\tlearn: 0.0305069\ttotal: 48.6s\tremaining: 11.5s\n", + "8087:\tlearn: 0.0305033\ttotal: 48.6s\tremaining: 11.5s\n", + "8088:\tlearn: 0.0305004\ttotal: 48.6s\tremaining: 11.5s\n", + "8089:\tlearn: 0.0304946\ttotal: 48.6s\tremaining: 11.5s\n", + "8090:\tlearn: 0.0304915\ttotal: 48.6s\tremaining: 11.5s\n", + "8091:\tlearn: 0.0304866\ttotal: 48.6s\tremaining: 11.5s\n", + "8092:\tlearn: 0.0304820\ttotal: 48.6s\tremaining: 11.4s\n", + "8093:\tlearn: 0.0304772\ttotal: 48.6s\tremaining: 11.4s\n", + "8094:\tlearn: 0.0304715\ttotal: 48.6s\tremaining: 11.4s\n", + "8095:\tlearn: 0.0304654\ttotal: 48.6s\tremaining: 11.4s\n", + "8096:\tlearn: 0.0304619\ttotal: 48.6s\tremaining: 11.4s\n", + "8097:\tlearn: 0.0304565\ttotal: 48.6s\tremaining: 11.4s\n", + "8098:\tlearn: 0.0304511\ttotal: 48.6s\tremaining: 11.4s\n", + "8099:\tlearn: 0.0304457\ttotal: 48.6s\tremaining: 11.4s\n", + "8100:\tlearn: 0.0304408\ttotal: 48.6s\tremaining: 11.4s\n", + "8101:\tlearn: 0.0304378\ttotal: 48.6s\tremaining: 11.4s\n", + "8102:\tlearn: 0.0304341\ttotal: 48.6s\tremaining: 11.4s\n", + "8103:\tlearn: 0.0304303\ttotal: 48.6s\tremaining: 11.4s\n", + "8104:\tlearn: 0.0304259\ttotal: 48.6s\tremaining: 11.4s\n", + "8105:\tlearn: 0.0304189\ttotal: 48.7s\tremaining: 11.4s\n", + "8106:\tlearn: 0.0304159\ttotal: 48.7s\tremaining: 11.4s\n", + "8107:\tlearn: 0.0304123\ttotal: 48.7s\tremaining: 11.4s\n", + "8108:\tlearn: 0.0304083\ttotal: 48.7s\tremaining: 11.3s\n", + "8109:\tlearn: 0.0304047\ttotal: 48.7s\tremaining: 11.3s\n", + "8110:\tlearn: 0.0304000\ttotal: 48.7s\tremaining: 11.3s\n", + "8111:\tlearn: 0.0303981\ttotal: 48.7s\tremaining: 11.3s\n", + "8112:\tlearn: 0.0303953\ttotal: 48.7s\tremaining: 11.3s\n", + "8113:\tlearn: 0.0303886\ttotal: 48.7s\tremaining: 11.3s\n", + "8114:\tlearn: 0.0303851\ttotal: 48.7s\tremaining: 11.3s\n", + "8115:\tlearn: 0.0303815\ttotal: 48.7s\tremaining: 11.3s\n", + "8116:\tlearn: 0.0303790\ttotal: 48.7s\tremaining: 11.3s\n", + "8117:\tlearn: 0.0303723\ttotal: 48.7s\tremaining: 11.3s\n", + "8118:\tlearn: 0.0303646\ttotal: 48.7s\tremaining: 11.3s\n", + "8119:\tlearn: 0.0303581\ttotal: 48.7s\tremaining: 11.3s\n", + "8120:\tlearn: 0.0303523\ttotal: 48.7s\tremaining: 11.3s\n", + "8121:\tlearn: 0.0303477\ttotal: 48.8s\tremaining: 11.3s\n", + "8122:\tlearn: 0.0303383\ttotal: 48.8s\tremaining: 11.3s\n", + "8123:\tlearn: 0.0303332\ttotal: 48.8s\tremaining: 11.3s\n", + "8124:\tlearn: 0.0303276\ttotal: 48.8s\tremaining: 11.3s\n", + "8125:\tlearn: 0.0303223\ttotal: 48.8s\tremaining: 11.2s\n", + "8126:\tlearn: 0.0303188\ttotal: 48.8s\tremaining: 11.2s\n", + "8127:\tlearn: 0.0303160\ttotal: 48.8s\tremaining: 11.2s\n", + "8128:\tlearn: 0.0303096\ttotal: 48.8s\tremaining: 11.2s\n", + "8129:\tlearn: 0.0303045\ttotal: 48.8s\tremaining: 11.2s\n", + "8130:\tlearn: 0.0302974\ttotal: 48.8s\tremaining: 11.2s\n", + "8131:\tlearn: 0.0302913\ttotal: 48.8s\tremaining: 11.2s\n", + "8132:\tlearn: 0.0302886\ttotal: 48.8s\tremaining: 11.2s\n", + "8133:\tlearn: 0.0302805\ttotal: 48.8s\tremaining: 11.2s\n", + "8134:\tlearn: 0.0302738\ttotal: 48.8s\tremaining: 11.2s\n", + "8135:\tlearn: 0.0302681\ttotal: 48.8s\tremaining: 11.2s\n", + "8136:\tlearn: 0.0302623\ttotal: 48.8s\tremaining: 11.2s\n", + "8137:\tlearn: 0.0302575\ttotal: 48.8s\tremaining: 11.2s\n", + "8138:\tlearn: 0.0302548\ttotal: 48.8s\tremaining: 11.2s\n", + "8139:\tlearn: 0.0302474\ttotal: 48.8s\tremaining: 11.2s\n", + "8140:\tlearn: 0.0302460\ttotal: 48.8s\tremaining: 11.2s\n", + "8141:\tlearn: 0.0302412\ttotal: 48.9s\tremaining: 11.1s\n", + "8142:\tlearn: 0.0302372\ttotal: 48.9s\tremaining: 11.1s\n", + "8143:\tlearn: 0.0302320\ttotal: 48.9s\tremaining: 11.1s\n", + "8144:\tlearn: 0.0302293\ttotal: 48.9s\tremaining: 11.1s\n", + "8145:\tlearn: 0.0302238\ttotal: 48.9s\tremaining: 11.1s\n", + "8146:\tlearn: 0.0302183\ttotal: 48.9s\tremaining: 11.1s\n", + "8147:\tlearn: 0.0302141\ttotal: 48.9s\tremaining: 11.1s\n", + "8148:\tlearn: 0.0302073\ttotal: 48.9s\tremaining: 11.1s\n", + "8149:\tlearn: 0.0302042\ttotal: 48.9s\tremaining: 11.1s\n", + "8150:\tlearn: 0.0301982\ttotal: 48.9s\tremaining: 11.1s\n", + "8151:\tlearn: 0.0301950\ttotal: 48.9s\tremaining: 11.1s\n", + "8152:\tlearn: 0.0301898\ttotal: 48.9s\tremaining: 11.1s\n", + "8153:\tlearn: 0.0301850\ttotal: 48.9s\tremaining: 11.1s\n", + "8154:\tlearn: 0.0301786\ttotal: 48.9s\tremaining: 11.1s\n", + "8155:\tlearn: 0.0301723\ttotal: 48.9s\tremaining: 11.1s\n", + "8156:\tlearn: 0.0301672\ttotal: 48.9s\tremaining: 11.1s\n", + "8157:\tlearn: 0.0301602\ttotal: 48.9s\tremaining: 11s\n", + "8158:\tlearn: 0.0301546\ttotal: 48.9s\tremaining: 11s\n", + "8159:\tlearn: 0.0301515\ttotal: 48.9s\tremaining: 11s\n", + "8160:\tlearn: 0.0301478\ttotal: 49s\tremaining: 11s\n", + "8161:\tlearn: 0.0301428\ttotal: 49s\tremaining: 11s\n", + "8162:\tlearn: 0.0301382\ttotal: 49s\tremaining: 11s\n", + "8163:\tlearn: 0.0301307\ttotal: 49s\tremaining: 11s\n", + "8164:\tlearn: 0.0301244\ttotal: 49s\tremaining: 11s\n", + "8165:\tlearn: 0.0301199\ttotal: 49s\tremaining: 11s\n", + "8166:\tlearn: 0.0301160\ttotal: 49s\tremaining: 11s\n", + "8167:\tlearn: 0.0301130\ttotal: 49s\tremaining: 11s\n", + "8168:\tlearn: 0.0301084\ttotal: 49s\tremaining: 11s\n", + "8169:\tlearn: 0.0301056\ttotal: 49s\tremaining: 11s\n", + "8170:\tlearn: 0.0301010\ttotal: 49s\tremaining: 11s\n", + "8171:\tlearn: 0.0300978\ttotal: 49s\tremaining: 11s\n", + "8172:\tlearn: 0.0300886\ttotal: 49s\tremaining: 11s\n", + "8173:\tlearn: 0.0300817\ttotal: 49s\tremaining: 10.9s\n", + "8174:\tlearn: 0.0300767\ttotal: 49s\tremaining: 10.9s\n", + "8175:\tlearn: 0.0300744\ttotal: 49s\tremaining: 10.9s\n", + "8176:\tlearn: 0.0300679\ttotal: 49s\tremaining: 10.9s\n", + "8177:\tlearn: 0.0300639\ttotal: 49s\tremaining: 10.9s\n", + "8178:\tlearn: 0.0300571\ttotal: 49s\tremaining: 10.9s\n", + "8179:\tlearn: 0.0300514\ttotal: 49s\tremaining: 10.9s\n", + "8180:\tlearn: 0.0300468\ttotal: 49s\tremaining: 10.9s\n", + "8181:\tlearn: 0.0300395\ttotal: 49.1s\tremaining: 10.9s\n", + "8182:\tlearn: 0.0300357\ttotal: 49.1s\tremaining: 10.9s\n", + "8183:\tlearn: 0.0300282\ttotal: 49.1s\tremaining: 10.9s\n", + "8184:\tlearn: 0.0300245\ttotal: 49.1s\tremaining: 10.9s\n", + "8185:\tlearn: 0.0300223\ttotal: 49.1s\tremaining: 10.9s\n", + "8186:\tlearn: 0.0300169\ttotal: 49.1s\tremaining: 10.9s\n", + "8187:\tlearn: 0.0300114\ttotal: 49.1s\tremaining: 10.9s\n", + "8188:\tlearn: 0.0300079\ttotal: 49.1s\tremaining: 10.9s\n", + "8189:\tlearn: 0.0300021\ttotal: 49.1s\tremaining: 10.8s\n", + "8190:\tlearn: 0.0299977\ttotal: 49.1s\tremaining: 10.8s\n", + "8191:\tlearn: 0.0299944\ttotal: 49.1s\tremaining: 10.8s\n", + "8192:\tlearn: 0.0299904\ttotal: 49.1s\tremaining: 10.8s\n", + "8193:\tlearn: 0.0299856\ttotal: 49.1s\tremaining: 10.8s\n", + "8194:\tlearn: 0.0299816\ttotal: 49.1s\tremaining: 10.8s\n", + "8195:\tlearn: 0.0299795\ttotal: 49.1s\tremaining: 10.8s\n", + "8196:\tlearn: 0.0299759\ttotal: 49.1s\tremaining: 10.8s\n", + "8197:\tlearn: 0.0299706\ttotal: 49.1s\tremaining: 10.8s\n", + "8198:\tlearn: 0.0299658\ttotal: 49.1s\tremaining: 10.8s\n", + "8199:\tlearn: 0.0299614\ttotal: 49.1s\tremaining: 10.8s\n", + "8200:\tlearn: 0.0299577\ttotal: 49.2s\tremaining: 10.8s\n", + "8201:\tlearn: 0.0299522\ttotal: 49.2s\tremaining: 10.8s\n", + "8202:\tlearn: 0.0299469\ttotal: 49.2s\tremaining: 10.8s\n", + "8203:\tlearn: 0.0299445\ttotal: 49.2s\tremaining: 10.8s\n", + "8204:\tlearn: 0.0299410\ttotal: 49.2s\tremaining: 10.8s\n", + "8205:\tlearn: 0.0299353\ttotal: 49.2s\tremaining: 10.8s\n", + "8206:\tlearn: 0.0299328\ttotal: 49.2s\tremaining: 10.7s\n", + "8207:\tlearn: 0.0299299\ttotal: 49.2s\tremaining: 10.7s\n", + "8208:\tlearn: 0.0299252\ttotal: 49.2s\tremaining: 10.7s\n", + "8209:\tlearn: 0.0299197\ttotal: 49.2s\tremaining: 10.7s\n", + "8210:\tlearn: 0.0299135\ttotal: 49.2s\tremaining: 10.7s\n", + "8211:\tlearn: 0.0299094\ttotal: 49.2s\tremaining: 10.7s\n", + "8212:\tlearn: 0.0299057\ttotal: 49.2s\tremaining: 10.7s\n", + "8213:\tlearn: 0.0299026\ttotal: 49.2s\tremaining: 10.7s\n", + "8214:\tlearn: 0.0298994\ttotal: 49.2s\tremaining: 10.7s\n", + "8215:\tlearn: 0.0298933\ttotal: 49.2s\tremaining: 10.7s\n", + "8216:\tlearn: 0.0298840\ttotal: 49.2s\tremaining: 10.7s\n", + "8217:\tlearn: 0.0298789\ttotal: 49.2s\tremaining: 10.7s\n", + "8218:\tlearn: 0.0298741\ttotal: 49.2s\tremaining: 10.7s\n", + "8219:\tlearn: 0.0298706\ttotal: 49.3s\tremaining: 10.7s\n", + "8220:\tlearn: 0.0298662\ttotal: 49.3s\tremaining: 10.7s\n", + "8221:\tlearn: 0.0298602\ttotal: 49.3s\tremaining: 10.7s\n", + "8222:\tlearn: 0.0298545\ttotal: 49.3s\tremaining: 10.6s\n", + "8223:\tlearn: 0.0298521\ttotal: 49.3s\tremaining: 10.6s\n", + "8224:\tlearn: 0.0298488\ttotal: 49.3s\tremaining: 10.6s\n", + "8225:\tlearn: 0.0298451\ttotal: 49.3s\tremaining: 10.6s\n", + "8226:\tlearn: 0.0298400\ttotal: 49.3s\tremaining: 10.6s\n", + "8227:\tlearn: 0.0298323\ttotal: 49.3s\tremaining: 10.6s\n", + "8228:\tlearn: 0.0298273\ttotal: 49.3s\tremaining: 10.6s\n", + "8229:\tlearn: 0.0298224\ttotal: 49.3s\tremaining: 10.6s\n", + "8230:\tlearn: 0.0298182\ttotal: 49.3s\tremaining: 10.6s\n", + "8231:\tlearn: 0.0298142\ttotal: 49.3s\tremaining: 10.6s\n", + "8232:\tlearn: 0.0298096\ttotal: 49.3s\tremaining: 10.6s\n", + "8233:\tlearn: 0.0298047\ttotal: 49.3s\tremaining: 10.6s\n", + "8234:\tlearn: 0.0298012\ttotal: 49.3s\tremaining: 10.6s\n", + "8235:\tlearn: 0.0297951\ttotal: 49.3s\tremaining: 10.6s\n", + "8236:\tlearn: 0.0297908\ttotal: 49.3s\tremaining: 10.6s\n", + "8237:\tlearn: 0.0297848\ttotal: 49.4s\tremaining: 10.6s\n", + "8238:\tlearn: 0.0297820\ttotal: 49.4s\tremaining: 10.5s\n", + "8239:\tlearn: 0.0297763\ttotal: 49.4s\tremaining: 10.5s\n", + "8240:\tlearn: 0.0297727\ttotal: 49.4s\tremaining: 10.5s\n", + "8241:\tlearn: 0.0297690\ttotal: 49.4s\tremaining: 10.5s\n", + "8242:\tlearn: 0.0297650\ttotal: 49.4s\tremaining: 10.5s\n", + "8243:\tlearn: 0.0297587\ttotal: 49.4s\tremaining: 10.5s\n", + "8244:\tlearn: 0.0297537\ttotal: 49.4s\tremaining: 10.5s\n", + "8245:\tlearn: 0.0297476\ttotal: 49.4s\tremaining: 10.5s\n", + "8246:\tlearn: 0.0297442\ttotal: 49.4s\tremaining: 10.5s\n", + "8247:\tlearn: 0.0297416\ttotal: 49.4s\tremaining: 10.5s\n", + "8248:\tlearn: 0.0297344\ttotal: 49.4s\tremaining: 10.5s\n", + "8249:\tlearn: 0.0297297\ttotal: 49.4s\tremaining: 10.5s\n", + "8250:\tlearn: 0.0297253\ttotal: 49.4s\tremaining: 10.5s\n", + "8251:\tlearn: 0.0297212\ttotal: 49.4s\tremaining: 10.5s\n", + "8252:\tlearn: 0.0297175\ttotal: 49.4s\tremaining: 10.5s\n", + "8253:\tlearn: 0.0297154\ttotal: 49.4s\tremaining: 10.5s\n", + "8254:\tlearn: 0.0297095\ttotal: 49.4s\tremaining: 10.4s\n", + "8255:\tlearn: 0.0297036\ttotal: 49.4s\tremaining: 10.4s\n", + "8256:\tlearn: 0.0297004\ttotal: 49.4s\tremaining: 10.4s\n", + "8257:\tlearn: 0.0296960\ttotal: 49.5s\tremaining: 10.4s\n", + "8258:\tlearn: 0.0296923\ttotal: 49.5s\tremaining: 10.4s\n", + "8259:\tlearn: 0.0296870\ttotal: 49.5s\tremaining: 10.4s\n", + "8260:\tlearn: 0.0296832\ttotal: 49.5s\tremaining: 10.4s\n", + "8261:\tlearn: 0.0296783\ttotal: 49.5s\tremaining: 10.4s\n", + "8262:\tlearn: 0.0296738\ttotal: 49.5s\tremaining: 10.4s\n", + "8263:\tlearn: 0.0296669\ttotal: 49.5s\tremaining: 10.4s\n", + "8264:\tlearn: 0.0296639\ttotal: 49.5s\tremaining: 10.4s\n", + "8265:\tlearn: 0.0296611\ttotal: 49.5s\tremaining: 10.4s\n", + "8266:\tlearn: 0.0296571\ttotal: 49.5s\tremaining: 10.4s\n", + "8267:\tlearn: 0.0296501\ttotal: 49.5s\tremaining: 10.4s\n", + "8268:\tlearn: 0.0296446\ttotal: 49.5s\tremaining: 10.4s\n", + "8269:\tlearn: 0.0296404\ttotal: 49.5s\tremaining: 10.4s\n", + "8270:\tlearn: 0.0296350\ttotal: 49.5s\tremaining: 10.4s\n", + "8271:\tlearn: 0.0296279\ttotal: 49.5s\tremaining: 10.3s\n", + "8272:\tlearn: 0.0296217\ttotal: 49.5s\tremaining: 10.3s\n", + "8273:\tlearn: 0.0296201\ttotal: 49.5s\tremaining: 10.3s\n", + "8274:\tlearn: 0.0296155\ttotal: 49.5s\tremaining: 10.3s\n", + "8275:\tlearn: 0.0296108\ttotal: 49.5s\tremaining: 10.3s\n", + "8276:\tlearn: 0.0296075\ttotal: 49.6s\tremaining: 10.3s\n", + "8277:\tlearn: 0.0296046\ttotal: 49.6s\tremaining: 10.3s\n", + "8278:\tlearn: 0.0296013\ttotal: 49.6s\tremaining: 10.3s\n", + "8279:\tlearn: 0.0295969\ttotal: 49.6s\tremaining: 10.3s\n", + "8280:\tlearn: 0.0295929\ttotal: 49.6s\tremaining: 10.3s\n", + "8281:\tlearn: 0.0295879\ttotal: 49.6s\tremaining: 10.3s\n", + "8282:\tlearn: 0.0295827\ttotal: 49.6s\tremaining: 10.3s\n", + "8283:\tlearn: 0.0295769\ttotal: 49.6s\tremaining: 10.3s\n", + "8284:\tlearn: 0.0295700\ttotal: 49.6s\tremaining: 10.3s\n", + "8285:\tlearn: 0.0295673\ttotal: 49.6s\tremaining: 10.3s\n", + "8286:\tlearn: 0.0295616\ttotal: 49.6s\tremaining: 10.3s\n", + "8287:\tlearn: 0.0295596\ttotal: 49.6s\tremaining: 10.2s\n", + "8288:\tlearn: 0.0295553\ttotal: 49.6s\tremaining: 10.2s\n", + "8289:\tlearn: 0.0295485\ttotal: 49.6s\tremaining: 10.2s\n", + "8290:\tlearn: 0.0295433\ttotal: 49.6s\tremaining: 10.2s\n", + "8291:\tlearn: 0.0295378\ttotal: 49.6s\tremaining: 10.2s\n", + "8292:\tlearn: 0.0295338\ttotal: 49.6s\tremaining: 10.2s\n", + "8293:\tlearn: 0.0295308\ttotal: 49.6s\tremaining: 10.2s\n", + "8294:\tlearn: 0.0295273\ttotal: 49.6s\tremaining: 10.2s\n", + "8295:\tlearn: 0.0295221\ttotal: 49.7s\tremaining: 10.2s\n", + "8296:\tlearn: 0.0295197\ttotal: 49.7s\tremaining: 10.2s\n", + "8297:\tlearn: 0.0295159\ttotal: 49.7s\tremaining: 10.2s\n", + "8298:\tlearn: 0.0295137\ttotal: 49.7s\tremaining: 10.2s\n", + "8299:\tlearn: 0.0295090\ttotal: 49.7s\tremaining: 10.2s\n", + "8300:\tlearn: 0.0295066\ttotal: 49.7s\tremaining: 10.2s\n", + "8301:\tlearn: 0.0294993\ttotal: 49.7s\tremaining: 10.2s\n", + "8302:\tlearn: 0.0294930\ttotal: 49.7s\tremaining: 10.2s\n", + "8303:\tlearn: 0.0294886\ttotal: 49.7s\tremaining: 10.2s\n", + "8304:\tlearn: 0.0294835\ttotal: 49.7s\tremaining: 10.1s\n", + "8305:\tlearn: 0.0294803\ttotal: 49.7s\tremaining: 10.1s\n", + "8306:\tlearn: 0.0294740\ttotal: 49.7s\tremaining: 10.1s\n", + "8307:\tlearn: 0.0294722\ttotal: 49.7s\tremaining: 10.1s\n", + "8308:\tlearn: 0.0294691\ttotal: 49.7s\tremaining: 10.1s\n", + "8309:\tlearn: 0.0294631\ttotal: 49.7s\tremaining: 10.1s\n", + "8310:\tlearn: 0.0294604\ttotal: 49.7s\tremaining: 10.1s\n", + "8311:\tlearn: 0.0294570\ttotal: 49.7s\tremaining: 10.1s\n", + "8312:\tlearn: 0.0294539\ttotal: 49.8s\tremaining: 10.1s\n", + "8313:\tlearn: 0.0294475\ttotal: 49.8s\tremaining: 10.1s\n", + "8314:\tlearn: 0.0294427\ttotal: 49.8s\tremaining: 10.1s\n", + "8315:\tlearn: 0.0294385\ttotal: 49.8s\tremaining: 10.1s\n", + "8316:\tlearn: 0.0294327\ttotal: 49.8s\tremaining: 10.1s\n", + "8317:\tlearn: 0.0294259\ttotal: 49.8s\tremaining: 10.1s\n", + "8318:\tlearn: 0.0294219\ttotal: 49.8s\tremaining: 10.1s\n", + "8319:\tlearn: 0.0294172\ttotal: 49.8s\tremaining: 10.1s\n", + "8320:\tlearn: 0.0294141\ttotal: 49.8s\tremaining: 10s\n", + "8321:\tlearn: 0.0294111\ttotal: 49.8s\tremaining: 10s\n", + "8322:\tlearn: 0.0294080\ttotal: 49.8s\tremaining: 10s\n", + "8323:\tlearn: 0.0294037\ttotal: 49.8s\tremaining: 10s\n", + "8324:\tlearn: 0.0293998\ttotal: 49.8s\tremaining: 10s\n", + "8325:\tlearn: 0.0293920\ttotal: 49.8s\tremaining: 10s\n", + "8326:\tlearn: 0.0293875\ttotal: 49.8s\tremaining: 10s\n", + "8327:\tlearn: 0.0293801\ttotal: 49.8s\tremaining: 10s\n", + "8328:\tlearn: 0.0293785\ttotal: 49.8s\tremaining: 10s\n", + "8329:\tlearn: 0.0293719\ttotal: 49.8s\tremaining: 9.99s\n", + "8330:\tlearn: 0.0293692\ttotal: 49.8s\tremaining: 9.98s\n", + "8331:\tlearn: 0.0293654\ttotal: 49.8s\tremaining: 9.98s\n", + "8332:\tlearn: 0.0293597\ttotal: 49.8s\tremaining: 9.97s\n", + "8333:\tlearn: 0.0293566\ttotal: 49.9s\tremaining: 9.96s\n", + "8334:\tlearn: 0.0293513\ttotal: 49.9s\tremaining: 9.96s\n", + "8335:\tlearn: 0.0293468\ttotal: 49.9s\tremaining: 9.95s\n", + "8336:\tlearn: 0.0293422\ttotal: 49.9s\tremaining: 9.95s\n", + "8337:\tlearn: 0.0293377\ttotal: 49.9s\tremaining: 9.94s\n", + "8338:\tlearn: 0.0293313\ttotal: 49.9s\tremaining: 9.93s\n", + "8339:\tlearn: 0.0293262\ttotal: 49.9s\tremaining: 9.93s\n", + "8340:\tlearn: 0.0293209\ttotal: 49.9s\tremaining: 9.92s\n", + "8341:\tlearn: 0.0293157\ttotal: 49.9s\tremaining: 9.92s\n", + "8342:\tlearn: 0.0293111\ttotal: 49.9s\tremaining: 9.91s\n", + "8343:\tlearn: 0.0293065\ttotal: 49.9s\tremaining: 9.91s\n", + "8344:\tlearn: 0.0293017\ttotal: 49.9s\tremaining: 9.9s\n", + "8345:\tlearn: 0.0292985\ttotal: 49.9s\tremaining: 9.89s\n", + "8346:\tlearn: 0.0292951\ttotal: 49.9s\tremaining: 9.89s\n", + "8347:\tlearn: 0.0292918\ttotal: 49.9s\tremaining: 9.88s\n", + "8348:\tlearn: 0.0292849\ttotal: 49.9s\tremaining: 9.88s\n", + "8349:\tlearn: 0.0292798\ttotal: 49.9s\tremaining: 9.87s\n", + "8350:\tlearn: 0.0292770\ttotal: 49.9s\tremaining: 9.86s\n", + "8351:\tlearn: 0.0292730\ttotal: 50s\tremaining: 9.86s\n", + "8352:\tlearn: 0.0292670\ttotal: 50s\tremaining: 9.85s\n", + "8353:\tlearn: 0.0292619\ttotal: 50s\tremaining: 9.84s\n", + "8354:\tlearn: 0.0292558\ttotal: 50s\tremaining: 9.84s\n", + "8355:\tlearn: 0.0292518\ttotal: 50s\tremaining: 9.83s\n", + "8356:\tlearn: 0.0292472\ttotal: 50s\tremaining: 9.82s\n", + "8357:\tlearn: 0.0292444\ttotal: 50s\tremaining: 9.82s\n", + "8358:\tlearn: 0.0292408\ttotal: 50s\tremaining: 9.81s\n", + "8359:\tlearn: 0.0292370\ttotal: 50s\tremaining: 9.81s\n", + "8360:\tlearn: 0.0292315\ttotal: 50s\tremaining: 9.8s\n", + "8361:\tlearn: 0.0292252\ttotal: 50s\tremaining: 9.79s\n", + "8362:\tlearn: 0.0292207\ttotal: 50s\tremaining: 9.79s\n", + "8363:\tlearn: 0.0292192\ttotal: 50s\tremaining: 9.78s\n", + "8364:\tlearn: 0.0292119\ttotal: 50s\tremaining: 9.78s\n", + "8365:\tlearn: 0.0292091\ttotal: 50s\tremaining: 9.77s\n", + "8366:\tlearn: 0.0292054\ttotal: 50s\tremaining: 9.76s\n", + "8367:\tlearn: 0.0292026\ttotal: 50s\tremaining: 9.76s\n", + "8368:\tlearn: 0.0291976\ttotal: 50.1s\tremaining: 9.76s\n", + "8369:\tlearn: 0.0291935\ttotal: 50.1s\tremaining: 9.75s\n", + "8370:\tlearn: 0.0291896\ttotal: 50.1s\tremaining: 9.75s\n", + "8371:\tlearn: 0.0291852\ttotal: 50.1s\tremaining: 9.74s\n", + "8372:\tlearn: 0.0291784\ttotal: 50.1s\tremaining: 9.74s\n", + "8373:\tlearn: 0.0291751\ttotal: 50.1s\tremaining: 9.73s\n", + "8374:\tlearn: 0.0291727\ttotal: 50.1s\tremaining: 9.73s\n", + "8375:\tlearn: 0.0291686\ttotal: 50.1s\tremaining: 9.72s\n", + "8376:\tlearn: 0.0291658\ttotal: 50.1s\tremaining: 9.72s\n", + "8377:\tlearn: 0.0291628\ttotal: 50.2s\tremaining: 9.71s\n", + "8378:\tlearn: 0.0291579\ttotal: 50.2s\tremaining: 9.71s\n", + "8379:\tlearn: 0.0291520\ttotal: 50.2s\tremaining: 9.7s\n", + "8380:\tlearn: 0.0291475\ttotal: 50.2s\tremaining: 9.7s\n", + "8381:\tlearn: 0.0291443\ttotal: 50.2s\tremaining: 9.69s\n", + "8382:\tlearn: 0.0291396\ttotal: 50.2s\tremaining: 9.69s\n", + "8383:\tlearn: 0.0291364\ttotal: 50.2s\tremaining: 9.68s\n", + "8384:\tlearn: 0.0291312\ttotal: 50.2s\tremaining: 9.68s\n", + "8385:\tlearn: 0.0291266\ttotal: 50.2s\tremaining: 9.67s\n", + "8386:\tlearn: 0.0291227\ttotal: 50.3s\tremaining: 9.66s\n", + "8387:\tlearn: 0.0291176\ttotal: 50.3s\tremaining: 9.66s\n", + "8388:\tlearn: 0.0291120\ttotal: 50.3s\tremaining: 9.66s\n", + "8389:\tlearn: 0.0291034\ttotal: 50.3s\tremaining: 9.65s\n", + "8390:\tlearn: 0.0290997\ttotal: 50.3s\tremaining: 9.65s\n", + "8391:\tlearn: 0.0290944\ttotal: 50.3s\tremaining: 9.64s\n", + "8392:\tlearn: 0.0290913\ttotal: 50.3s\tremaining: 9.64s\n", + "8393:\tlearn: 0.0290867\ttotal: 50.3s\tremaining: 9.63s\n", + "8394:\tlearn: 0.0290801\ttotal: 50.4s\tremaining: 9.63s\n", + "8395:\tlearn: 0.0290753\ttotal: 50.4s\tremaining: 9.62s\n", + "8396:\tlearn: 0.0290698\ttotal: 50.4s\tremaining: 9.62s\n", + "8397:\tlearn: 0.0290645\ttotal: 50.4s\tremaining: 9.61s\n", + "8398:\tlearn: 0.0290612\ttotal: 50.4s\tremaining: 9.61s\n", + "8399:\tlearn: 0.0290551\ttotal: 50.4s\tremaining: 9.6s\n", + "8400:\tlearn: 0.0290528\ttotal: 50.4s\tremaining: 9.6s\n", + "8401:\tlearn: 0.0290490\ttotal: 50.4s\tremaining: 9.59s\n", + "8402:\tlearn: 0.0290427\ttotal: 50.4s\tremaining: 9.59s\n", + "8403:\tlearn: 0.0290394\ttotal: 50.5s\tremaining: 9.58s\n", + "8404:\tlearn: 0.0290343\ttotal: 50.5s\tremaining: 9.58s\n", + "8405:\tlearn: 0.0290292\ttotal: 50.5s\tremaining: 9.57s\n", + "8406:\tlearn: 0.0290251\ttotal: 50.5s\tremaining: 9.57s\n", + "8407:\tlearn: 0.0290192\ttotal: 50.5s\tremaining: 9.56s\n", + "8408:\tlearn: 0.0290158\ttotal: 50.5s\tremaining: 9.56s\n", + "8409:\tlearn: 0.0290111\ttotal: 50.5s\tremaining: 9.55s\n", + "8410:\tlearn: 0.0290066\ttotal: 50.5s\tremaining: 9.55s\n", + "8411:\tlearn: 0.0289992\ttotal: 50.5s\tremaining: 9.54s\n", + "8412:\tlearn: 0.0289955\ttotal: 50.6s\tremaining: 9.54s\n", + "8413:\tlearn: 0.0289909\ttotal: 50.6s\tremaining: 9.53s\n", + "8414:\tlearn: 0.0289880\ttotal: 50.6s\tremaining: 9.53s\n", + "8415:\tlearn: 0.0289852\ttotal: 50.6s\tremaining: 9.52s\n", + "8416:\tlearn: 0.0289813\ttotal: 50.6s\tremaining: 9.52s\n", + "8417:\tlearn: 0.0289743\ttotal: 50.6s\tremaining: 9.51s\n", + "8418:\tlearn: 0.0289688\ttotal: 50.6s\tremaining: 9.51s\n", + "8419:\tlearn: 0.0289644\ttotal: 50.6s\tremaining: 9.5s\n", + "8420:\tlearn: 0.0289555\ttotal: 50.6s\tremaining: 9.5s\n", + "8421:\tlearn: 0.0289519\ttotal: 50.7s\tremaining: 9.49s\n", + "8422:\tlearn: 0.0289458\ttotal: 50.7s\tremaining: 9.49s\n", + "8423:\tlearn: 0.0289424\ttotal: 50.7s\tremaining: 9.48s\n", + "8424:\tlearn: 0.0289367\ttotal: 50.7s\tremaining: 9.48s\n", + "8425:\tlearn: 0.0289337\ttotal: 50.7s\tremaining: 9.47s\n", + "8426:\tlearn: 0.0289289\ttotal: 50.7s\tremaining: 9.47s\n", + "8427:\tlearn: 0.0289247\ttotal: 50.7s\tremaining: 9.46s\n", + "8428:\tlearn: 0.0289206\ttotal: 50.7s\tremaining: 9.46s\n", + "8429:\tlearn: 0.0289138\ttotal: 50.8s\tremaining: 9.45s\n", + "8430:\tlearn: 0.0289073\ttotal: 50.8s\tremaining: 9.45s\n", + "8431:\tlearn: 0.0289037\ttotal: 50.8s\tremaining: 9.44s\n", + "8432:\tlearn: 0.0288994\ttotal: 50.8s\tremaining: 9.44s\n", + "8433:\tlearn: 0.0288928\ttotal: 50.8s\tremaining: 9.43s\n", + "8434:\tlearn: 0.0288889\ttotal: 50.8s\tremaining: 9.43s\n", + "8435:\tlearn: 0.0288852\ttotal: 50.8s\tremaining: 9.42s\n", + "8436:\tlearn: 0.0288817\ttotal: 50.8s\tremaining: 9.41s\n", + "8437:\tlearn: 0.0288765\ttotal: 50.8s\tremaining: 9.41s\n", + "8438:\tlearn: 0.0288713\ttotal: 50.8s\tremaining: 9.4s\n", + "8439:\tlearn: 0.0288665\ttotal: 50.8s\tremaining: 9.39s\n", + "8440:\tlearn: 0.0288585\ttotal: 50.8s\tremaining: 9.39s\n", + "8441:\tlearn: 0.0288552\ttotal: 50.8s\tremaining: 9.38s\n", + "8442:\tlearn: 0.0288520\ttotal: 50.9s\tremaining: 9.38s\n", + "8443:\tlearn: 0.0288473\ttotal: 50.9s\tremaining: 9.37s\n", + "8444:\tlearn: 0.0288418\ttotal: 50.9s\tremaining: 9.37s\n", + "8445:\tlearn: 0.0288399\ttotal: 50.9s\tremaining: 9.36s\n", + "8446:\tlearn: 0.0288342\ttotal: 50.9s\tremaining: 9.36s\n", + "8447:\tlearn: 0.0288286\ttotal: 50.9s\tremaining: 9.35s\n", + "8448:\tlearn: 0.0288271\ttotal: 50.9s\tremaining: 9.35s\n", + "8449:\tlearn: 0.0288243\ttotal: 50.9s\tremaining: 9.34s\n", + "8450:\tlearn: 0.0288188\ttotal: 50.9s\tremaining: 9.34s\n", + "8451:\tlearn: 0.0288126\ttotal: 51s\tremaining: 9.33s\n", + "8452:\tlearn: 0.0288085\ttotal: 51s\tremaining: 9.33s\n", + "8453:\tlearn: 0.0288030\ttotal: 51s\tremaining: 9.32s\n", + "8454:\tlearn: 0.0288001\ttotal: 51s\tremaining: 9.32s\n", + "8455:\tlearn: 0.0287960\ttotal: 51s\tremaining: 9.31s\n", + "8456:\tlearn: 0.0287939\ttotal: 51s\tremaining: 9.31s\n", + "8457:\tlearn: 0.0287902\ttotal: 51s\tremaining: 9.3s\n", + "8458:\tlearn: 0.0287883\ttotal: 51s\tremaining: 9.3s\n", + "8459:\tlearn: 0.0287832\ttotal: 51s\tremaining: 9.29s\n", + "8460:\tlearn: 0.0287800\ttotal: 51.1s\tremaining: 9.29s\n", + "8461:\tlearn: 0.0287729\ttotal: 51.1s\tremaining: 9.28s\n", + "8462:\tlearn: 0.0287660\ttotal: 51.1s\tremaining: 9.28s\n", + "8463:\tlearn: 0.0287614\ttotal: 51.1s\tremaining: 9.27s\n", + "8464:\tlearn: 0.0287587\ttotal: 51.1s\tremaining: 9.27s\n", + "8465:\tlearn: 0.0287556\ttotal: 51.1s\tremaining: 9.26s\n", + "8466:\tlearn: 0.0287512\ttotal: 51.1s\tremaining: 9.26s\n", + "8467:\tlearn: 0.0287483\ttotal: 51.1s\tremaining: 9.25s\n", + "8468:\tlearn: 0.0287438\ttotal: 51.1s\tremaining: 9.25s\n", + "8469:\tlearn: 0.0287355\ttotal: 51.2s\tremaining: 9.24s\n", + "8470:\tlearn: 0.0287314\ttotal: 51.2s\tremaining: 9.24s\n", + "8471:\tlearn: 0.0287276\ttotal: 51.2s\tremaining: 9.23s\n", + "8472:\tlearn: 0.0287210\ttotal: 51.2s\tremaining: 9.23s\n", + "8473:\tlearn: 0.0287167\ttotal: 51.2s\tremaining: 9.22s\n", + "8474:\tlearn: 0.0287097\ttotal: 51.2s\tremaining: 9.22s\n", + "8475:\tlearn: 0.0287069\ttotal: 51.2s\tremaining: 9.21s\n", + "8476:\tlearn: 0.0287010\ttotal: 51.2s\tremaining: 9.21s\n", + "8477:\tlearn: 0.0286982\ttotal: 51.3s\tremaining: 9.2s\n", + "8478:\tlearn: 0.0286928\ttotal: 51.3s\tremaining: 9.2s\n", + "8479:\tlearn: 0.0286868\ttotal: 51.3s\tremaining: 9.19s\n", + "8480:\tlearn: 0.0286794\ttotal: 51.3s\tremaining: 9.19s\n", + "8481:\tlearn: 0.0286745\ttotal: 51.3s\tremaining: 9.18s\n", + "8482:\tlearn: 0.0286714\ttotal: 51.3s\tremaining: 9.18s\n", + "8483:\tlearn: 0.0286678\ttotal: 51.3s\tremaining: 9.17s\n", + "8484:\tlearn: 0.0286643\ttotal: 51.3s\tremaining: 9.17s\n", + "8485:\tlearn: 0.0286597\ttotal: 51.3s\tremaining: 9.16s\n", + "8486:\tlearn: 0.0286560\ttotal: 51.4s\tremaining: 9.15s\n", + "8487:\tlearn: 0.0286528\ttotal: 51.4s\tremaining: 9.15s\n", + "8488:\tlearn: 0.0286483\ttotal: 51.4s\tremaining: 9.14s\n", + "8489:\tlearn: 0.0286440\ttotal: 51.4s\tremaining: 9.14s\n", + "8490:\tlearn: 0.0286394\ttotal: 51.4s\tremaining: 9.14s\n", + "8491:\tlearn: 0.0286356\ttotal: 51.4s\tremaining: 9.13s\n", + "8492:\tlearn: 0.0286314\ttotal: 51.4s\tremaining: 9.13s\n", + "8493:\tlearn: 0.0286274\ttotal: 51.4s\tremaining: 9.12s\n", + "8494:\tlearn: 0.0286206\ttotal: 51.5s\tremaining: 9.12s\n", + "8495:\tlearn: 0.0286136\ttotal: 51.5s\tremaining: 9.11s\n", + "8496:\tlearn: 0.0286066\ttotal: 51.5s\tremaining: 9.11s\n", + "8497:\tlearn: 0.0285982\ttotal: 51.5s\tremaining: 9.1s\n", + "8498:\tlearn: 0.0285943\ttotal: 51.5s\tremaining: 9.1s\n", + "8499:\tlearn: 0.0285915\ttotal: 51.5s\tremaining: 9.09s\n", + "8500:\tlearn: 0.0285872\ttotal: 51.5s\tremaining: 9.09s\n", + "8501:\tlearn: 0.0285828\ttotal: 51.5s\tremaining: 9.08s\n", + "8502:\tlearn: 0.0285798\ttotal: 51.5s\tremaining: 9.07s\n", + "8503:\tlearn: 0.0285762\ttotal: 51.5s\tremaining: 9.07s\n", + "8504:\tlearn: 0.0285704\ttotal: 51.6s\tremaining: 9.06s\n", + "8505:\tlearn: 0.0285664\ttotal: 51.6s\tremaining: 9.05s\n", + "8506:\tlearn: 0.0285600\ttotal: 51.6s\tremaining: 9.05s\n", + "8507:\tlearn: 0.0285558\ttotal: 51.6s\tremaining: 9.04s\n", + "8508:\tlearn: 0.0285519\ttotal: 51.6s\tremaining: 9.04s\n", + "8509:\tlearn: 0.0285470\ttotal: 51.6s\tremaining: 9.03s\n", + "8510:\tlearn: 0.0285428\ttotal: 51.6s\tremaining: 9.03s\n", + "8511:\tlearn: 0.0285403\ttotal: 51.6s\tremaining: 9.02s\n", + "8512:\tlearn: 0.0285353\ttotal: 51.6s\tremaining: 9.01s\n", + "8513:\tlearn: 0.0285317\ttotal: 51.6s\tremaining: 9.01s\n", + "8514:\tlearn: 0.0285263\ttotal: 51.6s\tremaining: 9s\n", + "8515:\tlearn: 0.0285234\ttotal: 51.6s\tremaining: 9s\n", + "8516:\tlearn: 0.0285170\ttotal: 51.6s\tremaining: 8.99s\n", + "8517:\tlearn: 0.0285105\ttotal: 51.7s\tremaining: 8.99s\n", + "8518:\tlearn: 0.0285068\ttotal: 51.7s\tremaining: 8.98s\n", + "8519:\tlearn: 0.0285010\ttotal: 51.7s\tremaining: 8.97s\n", + "8520:\tlearn: 0.0284951\ttotal: 51.7s\tremaining: 8.97s\n", + "8521:\tlearn: 0.0284921\ttotal: 51.7s\tremaining: 8.96s\n", + "8522:\tlearn: 0.0284876\ttotal: 51.7s\tremaining: 8.96s\n", + "8523:\tlearn: 0.0284828\ttotal: 51.7s\tremaining: 8.95s\n", + "8524:\tlearn: 0.0284798\ttotal: 51.7s\tremaining: 8.95s\n", + "8525:\tlearn: 0.0284745\ttotal: 51.7s\tremaining: 8.94s\n", + "8526:\tlearn: 0.0284703\ttotal: 51.7s\tremaining: 8.93s\n", + "8527:\tlearn: 0.0284680\ttotal: 51.7s\tremaining: 8.93s\n", + "8528:\tlearn: 0.0284609\ttotal: 51.7s\tremaining: 8.92s\n", + "8529:\tlearn: 0.0284569\ttotal: 51.7s\tremaining: 8.91s\n", + "8530:\tlearn: 0.0284533\ttotal: 51.7s\tremaining: 8.91s\n", + "8531:\tlearn: 0.0284477\ttotal: 51.7s\tremaining: 8.9s\n", + "8532:\tlearn: 0.0284443\ttotal: 51.8s\tremaining: 8.9s\n", + "8533:\tlearn: 0.0284402\ttotal: 51.8s\tremaining: 8.89s\n", + "8534:\tlearn: 0.0284316\ttotal: 51.8s\tremaining: 8.88s\n", + "8535:\tlearn: 0.0284281\ttotal: 51.8s\tremaining: 8.88s\n", + "8536:\tlearn: 0.0284215\ttotal: 51.8s\tremaining: 8.87s\n", + "8537:\tlearn: 0.0284158\ttotal: 51.8s\tremaining: 8.87s\n", + "8538:\tlearn: 0.0284118\ttotal: 51.8s\tremaining: 8.86s\n", + "8539:\tlearn: 0.0284073\ttotal: 51.8s\tremaining: 8.86s\n", + "8540:\tlearn: 0.0284037\ttotal: 51.8s\tremaining: 8.85s\n", + "8541:\tlearn: 0.0284018\ttotal: 51.8s\tremaining: 8.84s\n", + "8542:\tlearn: 0.0283974\ttotal: 51.8s\tremaining: 8.84s\n", + "8543:\tlearn: 0.0283942\ttotal: 51.8s\tremaining: 8.83s\n", + "8544:\tlearn: 0.0283900\ttotal: 51.8s\tremaining: 8.83s\n", + "8545:\tlearn: 0.0283861\ttotal: 51.9s\tremaining: 8.82s\n", + "8546:\tlearn: 0.0283821\ttotal: 51.9s\tremaining: 8.82s\n", + "8547:\tlearn: 0.0283797\ttotal: 51.9s\tremaining: 8.81s\n", + "8548:\tlearn: 0.0283771\ttotal: 51.9s\tremaining: 8.81s\n", + "8549:\tlearn: 0.0283746\ttotal: 51.9s\tremaining: 8.8s\n", + "8550:\tlearn: 0.0283679\ttotal: 51.9s\tremaining: 8.8s\n", + "8551:\tlearn: 0.0283651\ttotal: 51.9s\tremaining: 8.79s\n", + "8552:\tlearn: 0.0283613\ttotal: 51.9s\tremaining: 8.79s\n", + "8553:\tlearn: 0.0283599\ttotal: 51.9s\tremaining: 8.78s\n", + "8554:\tlearn: 0.0283535\ttotal: 52s\tremaining: 8.78s\n", + "8555:\tlearn: 0.0283479\ttotal: 52s\tremaining: 8.77s\n", + "8556:\tlearn: 0.0283442\ttotal: 52s\tremaining: 8.77s\n", + "8557:\tlearn: 0.0283404\ttotal: 52s\tremaining: 8.76s\n", + "8558:\tlearn: 0.0283359\ttotal: 52s\tremaining: 8.76s\n", + "8559:\tlearn: 0.0283344\ttotal: 52s\tremaining: 8.75s\n", + "8560:\tlearn: 0.0283297\ttotal: 52s\tremaining: 8.74s\n", + "8561:\tlearn: 0.0283238\ttotal: 52s\tremaining: 8.74s\n", + "8562:\tlearn: 0.0283203\ttotal: 52.1s\tremaining: 8.73s\n", + "8563:\tlearn: 0.0283160\ttotal: 52.1s\tremaining: 8.73s\n", + "8564:\tlearn: 0.0283122\ttotal: 52.1s\tremaining: 8.72s\n", + "8565:\tlearn: 0.0283088\ttotal: 52.1s\tremaining: 8.72s\n", + "8566:\tlearn: 0.0283067\ttotal: 52.1s\tremaining: 8.71s\n", + "8567:\tlearn: 0.0283008\ttotal: 52.1s\tremaining: 8.71s\n", + "8568:\tlearn: 0.0282970\ttotal: 52.1s\tremaining: 8.7s\n", + "8569:\tlearn: 0.0282941\ttotal: 52.1s\tremaining: 8.7s\n", + "8570:\tlearn: 0.0282879\ttotal: 52.1s\tremaining: 8.69s\n", + "8571:\tlearn: 0.0282824\ttotal: 52.2s\tremaining: 8.69s\n", + "8572:\tlearn: 0.0282792\ttotal: 52.2s\tremaining: 8.68s\n", + "8573:\tlearn: 0.0282766\ttotal: 52.2s\tremaining: 8.68s\n", + "8574:\tlearn: 0.0282724\ttotal: 52.2s\tremaining: 8.67s\n", + "8575:\tlearn: 0.0282691\ttotal: 52.2s\tremaining: 8.67s\n", + "8576:\tlearn: 0.0282656\ttotal: 52.2s\tremaining: 8.66s\n", + "8577:\tlearn: 0.0282614\ttotal: 52.2s\tremaining: 8.66s\n", + "8578:\tlearn: 0.0282543\ttotal: 52.2s\tremaining: 8.65s\n", + "8579:\tlearn: 0.0282522\ttotal: 52.2s\tremaining: 8.65s\n", + "8580:\tlearn: 0.0282484\ttotal: 52.3s\tremaining: 8.64s\n", + "8581:\tlearn: 0.0282463\ttotal: 52.3s\tremaining: 8.64s\n", + "8582:\tlearn: 0.0282437\ttotal: 52.3s\tremaining: 8.63s\n", + "8583:\tlearn: 0.0282407\ttotal: 52.3s\tremaining: 8.63s\n", + "8584:\tlearn: 0.0282364\ttotal: 52.3s\tremaining: 8.62s\n", + "8585:\tlearn: 0.0282331\ttotal: 52.3s\tremaining: 8.62s\n", + "8586:\tlearn: 0.0282291\ttotal: 52.3s\tremaining: 8.61s\n", + "8587:\tlearn: 0.0282220\ttotal: 52.3s\tremaining: 8.61s\n", + "8588:\tlearn: 0.0282186\ttotal: 52.4s\tremaining: 8.6s\n", + "8589:\tlearn: 0.0282142\ttotal: 52.4s\tremaining: 8.6s\n", + "8590:\tlearn: 0.0282102\ttotal: 52.4s\tremaining: 8.59s\n", + "8591:\tlearn: 0.0282074\ttotal: 52.4s\tremaining: 8.58s\n", + "8592:\tlearn: 0.0282021\ttotal: 52.4s\tremaining: 8.58s\n", + "8593:\tlearn: 0.0281970\ttotal: 52.4s\tremaining: 8.57s\n", + "8594:\tlearn: 0.0281944\ttotal: 52.4s\tremaining: 8.57s\n", + "8595:\tlearn: 0.0281917\ttotal: 52.4s\tremaining: 8.56s\n", + "8596:\tlearn: 0.0281898\ttotal: 52.4s\tremaining: 8.56s\n", + "8597:\tlearn: 0.0281849\ttotal: 52.4s\tremaining: 8.55s\n", + "8598:\tlearn: 0.0281813\ttotal: 52.5s\tremaining: 8.55s\n", + "8599:\tlearn: 0.0281775\ttotal: 52.5s\tremaining: 8.54s\n", + "8600:\tlearn: 0.0281722\ttotal: 52.5s\tremaining: 8.53s\n", + "8601:\tlearn: 0.0281696\ttotal: 52.5s\tremaining: 8.53s\n", + "8602:\tlearn: 0.0281644\ttotal: 52.5s\tremaining: 8.52s\n", + "8603:\tlearn: 0.0281574\ttotal: 52.5s\tremaining: 8.52s\n", + "8604:\tlearn: 0.0281534\ttotal: 52.5s\tremaining: 8.51s\n", + "8605:\tlearn: 0.0281506\ttotal: 52.5s\tremaining: 8.51s\n", + "8606:\tlearn: 0.0281468\ttotal: 52.5s\tremaining: 8.5s\n", + "8607:\tlearn: 0.0281437\ttotal: 52.5s\tremaining: 8.5s\n", + "8608:\tlearn: 0.0281386\ttotal: 52.6s\tremaining: 8.49s\n", + "8609:\tlearn: 0.0281338\ttotal: 52.6s\tremaining: 8.49s\n", + "8610:\tlearn: 0.0281265\ttotal: 52.6s\tremaining: 8.48s\n", + "8611:\tlearn: 0.0281207\ttotal: 52.6s\tremaining: 8.48s\n", + "8612:\tlearn: 0.0281185\ttotal: 52.6s\tremaining: 8.47s\n", + "8613:\tlearn: 0.0281169\ttotal: 52.6s\tremaining: 8.47s\n", + "8614:\tlearn: 0.0281142\ttotal: 52.6s\tremaining: 8.46s\n", + "8615:\tlearn: 0.0281110\ttotal: 52.6s\tremaining: 8.46s\n", + "8616:\tlearn: 0.0281053\ttotal: 52.7s\tremaining: 8.45s\n", + "8617:\tlearn: 0.0281010\ttotal: 52.7s\tremaining: 8.45s\n", + "8618:\tlearn: 0.0280962\ttotal: 52.7s\tremaining: 8.44s\n", + "8619:\tlearn: 0.0280920\ttotal: 52.7s\tremaining: 8.43s\n", + "8620:\tlearn: 0.0280877\ttotal: 52.7s\tremaining: 8.43s\n", + "8621:\tlearn: 0.0280800\ttotal: 52.7s\tremaining: 8.42s\n", + "8622:\tlearn: 0.0280746\ttotal: 52.7s\tremaining: 8.42s\n", + "8623:\tlearn: 0.0280724\ttotal: 52.7s\tremaining: 8.41s\n", + "8624:\tlearn: 0.0280682\ttotal: 52.7s\tremaining: 8.41s\n", + "8625:\tlearn: 0.0280643\ttotal: 52.7s\tremaining: 8.4s\n", + "8626:\tlearn: 0.0280591\ttotal: 52.8s\tremaining: 8.39s\n", + "8627:\tlearn: 0.0280572\ttotal: 52.8s\tremaining: 8.39s\n", + "8628:\tlearn: 0.0280517\ttotal: 52.8s\tremaining: 8.38s\n", + "8629:\tlearn: 0.0280451\ttotal: 52.8s\tremaining: 8.38s\n", + "8630:\tlearn: 0.0280418\ttotal: 52.8s\tremaining: 8.37s\n", + "8631:\tlearn: 0.0280375\ttotal: 52.8s\tremaining: 8.37s\n", + "8632:\tlearn: 0.0280337\ttotal: 52.8s\tremaining: 8.36s\n", + "8633:\tlearn: 0.0280305\ttotal: 52.8s\tremaining: 8.35s\n", + "8634:\tlearn: 0.0280243\ttotal: 52.8s\tremaining: 8.35s\n", + "8635:\tlearn: 0.0280187\ttotal: 52.8s\tremaining: 8.34s\n", + "8636:\tlearn: 0.0280148\ttotal: 52.8s\tremaining: 8.33s\n", + "8637:\tlearn: 0.0280069\ttotal: 52.8s\tremaining: 8.33s\n", + "8638:\tlearn: 0.0280010\ttotal: 52.8s\tremaining: 8.32s\n", + "8639:\tlearn: 0.0279972\ttotal: 52.8s\tremaining: 8.32s\n", + "8640:\tlearn: 0.0279940\ttotal: 52.8s\tremaining: 8.31s\n", + "8641:\tlearn: 0.0279899\ttotal: 52.9s\tremaining: 8.3s\n", + "8642:\tlearn: 0.0279828\ttotal: 52.9s\tremaining: 8.3s\n", + "8643:\tlearn: 0.0279793\ttotal: 52.9s\tremaining: 8.29s\n", + "8644:\tlearn: 0.0279768\ttotal: 52.9s\tremaining: 8.29s\n", + "8645:\tlearn: 0.0279703\ttotal: 52.9s\tremaining: 8.28s\n", + "8646:\tlearn: 0.0279665\ttotal: 52.9s\tremaining: 8.27s\n", + "8647:\tlearn: 0.0279639\ttotal: 52.9s\tremaining: 8.27s\n", + "8648:\tlearn: 0.0279598\ttotal: 52.9s\tremaining: 8.26s\n", + "8649:\tlearn: 0.0279548\ttotal: 52.9s\tremaining: 8.25s\n", + "8650:\tlearn: 0.0279505\ttotal: 52.9s\tremaining: 8.25s\n", + "8651:\tlearn: 0.0279478\ttotal: 52.9s\tremaining: 8.24s\n", + "8652:\tlearn: 0.0279448\ttotal: 52.9s\tremaining: 8.23s\n", + "8653:\tlearn: 0.0279418\ttotal: 52.9s\tremaining: 8.23s\n", + "8654:\tlearn: 0.0279398\ttotal: 52.9s\tremaining: 8.22s\n", + "8655:\tlearn: 0.0279367\ttotal: 52.9s\tremaining: 8.22s\n", + "8656:\tlearn: 0.0279308\ttotal: 52.9s\tremaining: 8.21s\n", + "8657:\tlearn: 0.0279241\ttotal: 52.9s\tremaining: 8.2s\n", + "8658:\tlearn: 0.0279164\ttotal: 52.9s\tremaining: 8.2s\n", + "8659:\tlearn: 0.0279132\ttotal: 52.9s\tremaining: 8.19s\n", + "8660:\tlearn: 0.0279102\ttotal: 52.9s\tremaining: 8.18s\n", + "8661:\tlearn: 0.0279071\ttotal: 52.9s\tremaining: 8.18s\n", + "8662:\tlearn: 0.0279003\ttotal: 52.9s\tremaining: 8.17s\n", + "8663:\tlearn: 0.0278960\ttotal: 53s\tremaining: 8.16s\n", + "8664:\tlearn: 0.0278946\ttotal: 53s\tremaining: 8.16s\n", + "8665:\tlearn: 0.0278916\ttotal: 53s\tremaining: 8.15s\n", + "8666:\tlearn: 0.0278870\ttotal: 53s\tremaining: 8.15s\n", + "8667:\tlearn: 0.0278833\ttotal: 53s\tremaining: 8.14s\n", + "8668:\tlearn: 0.0278775\ttotal: 53s\tremaining: 8.13s\n", + "8669:\tlearn: 0.0278735\ttotal: 53s\tremaining: 8.13s\n", + "8670:\tlearn: 0.0278714\ttotal: 53s\tremaining: 8.12s\n", + "8671:\tlearn: 0.0278692\ttotal: 53s\tremaining: 8.12s\n", + "8672:\tlearn: 0.0278663\ttotal: 53s\tremaining: 8.11s\n", + "8673:\tlearn: 0.0278634\ttotal: 53s\tremaining: 8.1s\n", + "8674:\tlearn: 0.0278623\ttotal: 53s\tremaining: 8.1s\n", + "8675:\tlearn: 0.0278559\ttotal: 53s\tremaining: 8.09s\n", + "8676:\tlearn: 0.0278524\ttotal: 53s\tremaining: 8.09s\n", + "8677:\tlearn: 0.0278485\ttotal: 53s\tremaining: 8.08s\n", + "8678:\tlearn: 0.0278427\ttotal: 53s\tremaining: 8.07s\n", + "8679:\tlearn: 0.0278391\ttotal: 53s\tremaining: 8.07s\n", + "8680:\tlearn: 0.0278353\ttotal: 53s\tremaining: 8.06s\n", + "8681:\tlearn: 0.0278310\ttotal: 53.1s\tremaining: 8.05s\n", + "8682:\tlearn: 0.0278263\ttotal: 53.1s\tremaining: 8.05s\n", + "8683:\tlearn: 0.0278217\ttotal: 53.1s\tremaining: 8.04s\n", + "8684:\tlearn: 0.0278163\ttotal: 53.1s\tremaining: 8.04s\n", + "8685:\tlearn: 0.0278125\ttotal: 53.1s\tremaining: 8.03s\n", + "8686:\tlearn: 0.0278073\ttotal: 53.1s\tremaining: 8.02s\n", + "8687:\tlearn: 0.0278040\ttotal: 53.1s\tremaining: 8.02s\n", + "8688:\tlearn: 0.0278008\ttotal: 53.1s\tremaining: 8.01s\n", + "8689:\tlearn: 0.0277972\ttotal: 53.1s\tremaining: 8s\n", + "8690:\tlearn: 0.0277931\ttotal: 53.1s\tremaining: 8s\n", + "8691:\tlearn: 0.0277889\ttotal: 53.1s\tremaining: 7.99s\n", + "8692:\tlearn: 0.0277832\ttotal: 53.1s\tremaining: 7.99s\n", + "8693:\tlearn: 0.0277814\ttotal: 53.1s\tremaining: 7.98s\n", + "8694:\tlearn: 0.0277777\ttotal: 53.1s\tremaining: 7.97s\n", + "8695:\tlearn: 0.0277723\ttotal: 53.1s\tremaining: 7.96s\n", + "8696:\tlearn: 0.0277655\ttotal: 53.1s\tremaining: 7.96s\n", + "8697:\tlearn: 0.0277596\ttotal: 53.1s\tremaining: 7.95s\n", + "8698:\tlearn: 0.0277569\ttotal: 53.1s\tremaining: 7.95s\n", + "8699:\tlearn: 0.0277524\ttotal: 53.1s\tremaining: 7.94s\n", + "8700:\tlearn: 0.0277475\ttotal: 53.1s\tremaining: 7.93s\n", + "8701:\tlearn: 0.0277424\ttotal: 53.1s\tremaining: 7.93s\n", + "8702:\tlearn: 0.0277405\ttotal: 53.2s\tremaining: 7.92s\n", + "8703:\tlearn: 0.0277339\ttotal: 53.2s\tremaining: 7.92s\n", + "8704:\tlearn: 0.0277305\ttotal: 53.2s\tremaining: 7.91s\n", + "8705:\tlearn: 0.0277269\ttotal: 53.2s\tremaining: 7.9s\n", + "8706:\tlearn: 0.0277254\ttotal: 53.2s\tremaining: 7.9s\n", + "8707:\tlearn: 0.0277208\ttotal: 53.2s\tremaining: 7.89s\n", + "8708:\tlearn: 0.0277175\ttotal: 53.2s\tremaining: 7.88s\n", + "8709:\tlearn: 0.0277132\ttotal: 53.2s\tremaining: 7.88s\n", + "8710:\tlearn: 0.0277119\ttotal: 53.2s\tremaining: 7.87s\n", + "8711:\tlearn: 0.0277040\ttotal: 53.2s\tremaining: 7.87s\n", + "8712:\tlearn: 0.0276998\ttotal: 53.2s\tremaining: 7.86s\n", + "8713:\tlearn: 0.0276956\ttotal: 53.2s\tremaining: 7.85s\n", + "8714:\tlearn: 0.0276902\ttotal: 53.2s\tremaining: 7.85s\n", + "8715:\tlearn: 0.0276856\ttotal: 53.2s\tremaining: 7.84s\n", + "8716:\tlearn: 0.0276817\ttotal: 53.2s\tremaining: 7.83s\n", + "8717:\tlearn: 0.0276766\ttotal: 53.2s\tremaining: 7.83s\n", + "8718:\tlearn: 0.0276691\ttotal: 53.2s\tremaining: 7.82s\n", + "8719:\tlearn: 0.0276670\ttotal: 53.2s\tremaining: 7.82s\n", + "8720:\tlearn: 0.0276618\ttotal: 53.3s\tremaining: 7.81s\n", + "8721:\tlearn: 0.0276580\ttotal: 53.3s\tremaining: 7.8s\n", + "8722:\tlearn: 0.0276541\ttotal: 53.3s\tremaining: 7.8s\n", + "8723:\tlearn: 0.0276516\ttotal: 53.3s\tremaining: 7.79s\n", + "8724:\tlearn: 0.0276450\ttotal: 53.3s\tremaining: 7.78s\n", + "8725:\tlearn: 0.0276396\ttotal: 53.3s\tremaining: 7.78s\n", + "8726:\tlearn: 0.0276380\ttotal: 53.3s\tremaining: 7.77s\n", + "8727:\tlearn: 0.0276348\ttotal: 53.3s\tremaining: 7.76s\n", + "8728:\tlearn: 0.0276267\ttotal: 53.3s\tremaining: 7.76s\n", + "8729:\tlearn: 0.0276222\ttotal: 53.3s\tremaining: 7.75s\n", + "8730:\tlearn: 0.0276177\ttotal: 53.3s\tremaining: 7.75s\n", + "8731:\tlearn: 0.0276137\ttotal: 53.3s\tremaining: 7.74s\n", + "8732:\tlearn: 0.0276118\ttotal: 53.3s\tremaining: 7.73s\n", + "8733:\tlearn: 0.0276052\ttotal: 53.3s\tremaining: 7.73s\n", + "8734:\tlearn: 0.0276025\ttotal: 53.3s\tremaining: 7.72s\n", + "8735:\tlearn: 0.0276002\ttotal: 53.3s\tremaining: 7.71s\n", + "8736:\tlearn: 0.0275980\ttotal: 53.3s\tremaining: 7.71s\n", + "8737:\tlearn: 0.0275938\ttotal: 53.3s\tremaining: 7.7s\n", + "8738:\tlearn: 0.0275908\ttotal: 53.3s\tremaining: 7.7s\n", + "8739:\tlearn: 0.0275835\ttotal: 53.3s\tremaining: 7.69s\n", + "8740:\tlearn: 0.0275765\ttotal: 53.3s\tremaining: 7.68s\n", + "8741:\tlearn: 0.0275734\ttotal: 53.3s\tremaining: 7.68s\n", + "8742:\tlearn: 0.0275705\ttotal: 53.4s\tremaining: 7.67s\n", + "8743:\tlearn: 0.0275684\ttotal: 53.4s\tremaining: 7.66s\n", + "8744:\tlearn: 0.0275628\ttotal: 53.4s\tremaining: 7.66s\n", + "8745:\tlearn: 0.0275594\ttotal: 53.4s\tremaining: 7.65s\n", + "8746:\tlearn: 0.0275563\ttotal: 53.4s\tremaining: 7.64s\n", + "8747:\tlearn: 0.0275534\ttotal: 53.4s\tremaining: 7.64s\n", + "8748:\tlearn: 0.0275507\ttotal: 53.4s\tremaining: 7.63s\n", + "8749:\tlearn: 0.0275477\ttotal: 53.4s\tremaining: 7.63s\n", + "8750:\tlearn: 0.0275460\ttotal: 53.4s\tremaining: 7.62s\n", + "8751:\tlearn: 0.0275425\ttotal: 53.4s\tremaining: 7.61s\n", + "8752:\tlearn: 0.0275388\ttotal: 53.4s\tremaining: 7.61s\n", + "8753:\tlearn: 0.0275361\ttotal: 53.4s\tremaining: 7.6s\n", + "8754:\tlearn: 0.0275324\ttotal: 53.4s\tremaining: 7.6s\n", + "8755:\tlearn: 0.0275291\ttotal: 53.4s\tremaining: 7.59s\n", + "8756:\tlearn: 0.0275271\ttotal: 53.4s\tremaining: 7.58s\n", + "8757:\tlearn: 0.0275210\ttotal: 53.4s\tremaining: 7.58s\n", + "8758:\tlearn: 0.0275185\ttotal: 53.4s\tremaining: 7.57s\n", + "8759:\tlearn: 0.0275167\ttotal: 53.4s\tremaining: 7.57s\n", + "8760:\tlearn: 0.0275148\ttotal: 53.5s\tremaining: 7.56s\n", + "8761:\tlearn: 0.0275091\ttotal: 53.5s\tremaining: 7.55s\n", + "8762:\tlearn: 0.0275046\ttotal: 53.5s\tremaining: 7.55s\n", + "8763:\tlearn: 0.0275005\ttotal: 53.5s\tremaining: 7.54s\n", + "8764:\tlearn: 0.0274955\ttotal: 53.5s\tremaining: 7.53s\n", + "8765:\tlearn: 0.0274915\ttotal: 53.5s\tremaining: 7.53s\n", + "8766:\tlearn: 0.0274857\ttotal: 53.5s\tremaining: 7.52s\n", + "8767:\tlearn: 0.0274811\ttotal: 53.5s\tremaining: 7.52s\n", + "8768:\tlearn: 0.0274757\ttotal: 53.5s\tremaining: 7.51s\n", + "8769:\tlearn: 0.0274716\ttotal: 53.5s\tremaining: 7.5s\n", + "8770:\tlearn: 0.0274702\ttotal: 53.5s\tremaining: 7.5s\n", + "8771:\tlearn: 0.0274657\ttotal: 53.5s\tremaining: 7.49s\n", + "8772:\tlearn: 0.0274605\ttotal: 53.5s\tremaining: 7.48s\n", + "8773:\tlearn: 0.0274564\ttotal: 53.5s\tremaining: 7.48s\n", + "8774:\tlearn: 0.0274507\ttotal: 53.5s\tremaining: 7.47s\n", + "8775:\tlearn: 0.0274490\ttotal: 53.5s\tremaining: 7.47s\n", + "8776:\tlearn: 0.0274428\ttotal: 53.5s\tremaining: 7.46s\n", + "8777:\tlearn: 0.0274400\ttotal: 53.5s\tremaining: 7.45s\n", + "8778:\tlearn: 0.0274378\ttotal: 53.5s\tremaining: 7.45s\n", + "8779:\tlearn: 0.0274359\ttotal: 53.5s\tremaining: 7.44s\n", + "8780:\tlearn: 0.0274324\ttotal: 53.6s\tremaining: 7.43s\n", + "8781:\tlearn: 0.0274290\ttotal: 53.6s\tremaining: 7.43s\n", + "8782:\tlearn: 0.0274257\ttotal: 53.6s\tremaining: 7.42s\n", + "8783:\tlearn: 0.0274226\ttotal: 53.6s\tremaining: 7.42s\n", + "8784:\tlearn: 0.0274177\ttotal: 53.6s\tremaining: 7.41s\n", + "8785:\tlearn: 0.0274142\ttotal: 53.6s\tremaining: 7.41s\n", + "8786:\tlearn: 0.0274097\ttotal: 53.6s\tremaining: 7.4s\n", + "8787:\tlearn: 0.0274058\ttotal: 53.6s\tremaining: 7.39s\n", + "8788:\tlearn: 0.0274009\ttotal: 53.6s\tremaining: 7.39s\n", + "8789:\tlearn: 0.0273960\ttotal: 53.6s\tremaining: 7.38s\n", + "8790:\tlearn: 0.0273931\ttotal: 53.6s\tremaining: 7.38s\n", + "8791:\tlearn: 0.0273894\ttotal: 53.6s\tremaining: 7.37s\n", + "8792:\tlearn: 0.0273837\ttotal: 53.6s\tremaining: 7.36s\n", + "8793:\tlearn: 0.0273805\ttotal: 53.6s\tremaining: 7.36s\n", + "8794:\tlearn: 0.0273769\ttotal: 53.6s\tremaining: 7.35s\n", + "8795:\tlearn: 0.0273737\ttotal: 53.7s\tremaining: 7.34s\n", + "8796:\tlearn: 0.0273717\ttotal: 53.7s\tremaining: 7.34s\n", + "8797:\tlearn: 0.0273667\ttotal: 53.7s\tremaining: 7.33s\n", + "8798:\tlearn: 0.0273635\ttotal: 53.7s\tremaining: 7.33s\n", + "8799:\tlearn: 0.0273584\ttotal: 53.7s\tremaining: 7.32s\n", + "8800:\tlearn: 0.0273533\ttotal: 53.7s\tremaining: 7.31s\n", + "8801:\tlearn: 0.0273491\ttotal: 53.7s\tremaining: 7.31s\n", + "8802:\tlearn: 0.0273462\ttotal: 53.7s\tremaining: 7.3s\n", + "8803:\tlearn: 0.0273406\ttotal: 53.7s\tremaining: 7.29s\n", + "8804:\tlearn: 0.0273350\ttotal: 53.7s\tremaining: 7.29s\n", + "8805:\tlearn: 0.0273299\ttotal: 53.7s\tremaining: 7.28s\n", + "8806:\tlearn: 0.0273261\ttotal: 53.7s\tremaining: 7.27s\n", + "8807:\tlearn: 0.0273235\ttotal: 53.7s\tremaining: 7.27s\n", + "8808:\tlearn: 0.0273183\ttotal: 53.7s\tremaining: 7.26s\n", + "8809:\tlearn: 0.0273166\ttotal: 53.7s\tremaining: 7.25s\n", + "8810:\tlearn: 0.0273137\ttotal: 53.7s\tremaining: 7.25s\n", + "8811:\tlearn: 0.0273099\ttotal: 53.7s\tremaining: 7.24s\n", + "8812:\tlearn: 0.0273061\ttotal: 53.7s\tremaining: 7.24s\n", + "8813:\tlearn: 0.0272991\ttotal: 53.7s\tremaining: 7.23s\n", + "8814:\tlearn: 0.0272931\ttotal: 53.7s\tremaining: 7.22s\n", + "8815:\tlearn: 0.0272891\ttotal: 53.7s\tremaining: 7.22s\n", + "8816:\tlearn: 0.0272868\ttotal: 53.8s\tremaining: 7.21s\n", + "8817:\tlearn: 0.0272825\ttotal: 53.8s\tremaining: 7.21s\n", + "8818:\tlearn: 0.0272788\ttotal: 53.8s\tremaining: 7.2s\n", + "8819:\tlearn: 0.0272771\ttotal: 53.8s\tremaining: 7.19s\n", + "8820:\tlearn: 0.0272745\ttotal: 53.8s\tremaining: 7.19s\n", + "8821:\tlearn: 0.0272701\ttotal: 53.8s\tremaining: 7.18s\n", + "8822:\tlearn: 0.0272653\ttotal: 53.8s\tremaining: 7.17s\n", + "8823:\tlearn: 0.0272618\ttotal: 53.8s\tremaining: 7.17s\n", + "8824:\tlearn: 0.0272569\ttotal: 53.8s\tremaining: 7.16s\n", + "8825:\tlearn: 0.0272515\ttotal: 53.8s\tremaining: 7.16s\n", + "8826:\tlearn: 0.0272481\ttotal: 53.8s\tremaining: 7.15s\n", + "8827:\tlearn: 0.0272453\ttotal: 53.8s\tremaining: 7.14s\n", + "8828:\tlearn: 0.0272398\ttotal: 53.8s\tremaining: 7.14s\n", + "8829:\tlearn: 0.0272367\ttotal: 53.8s\tremaining: 7.13s\n", + "8830:\tlearn: 0.0272347\ttotal: 53.8s\tremaining: 7.13s\n", + "8831:\tlearn: 0.0272317\ttotal: 53.8s\tremaining: 7.12s\n", + "8832:\tlearn: 0.0272285\ttotal: 53.8s\tremaining: 7.11s\n", + "8833:\tlearn: 0.0272248\ttotal: 53.9s\tremaining: 7.11s\n", + "8834:\tlearn: 0.0272209\ttotal: 53.9s\tremaining: 7.1s\n", + "8835:\tlearn: 0.0272170\ttotal: 53.9s\tremaining: 7.09s\n", + "8836:\tlearn: 0.0272126\ttotal: 53.9s\tremaining: 7.09s\n", + "8837:\tlearn: 0.0272113\ttotal: 53.9s\tremaining: 7.08s\n", + "8838:\tlearn: 0.0272065\ttotal: 53.9s\tremaining: 7.08s\n", + "8839:\tlearn: 0.0272010\ttotal: 53.9s\tremaining: 7.07s\n", + "8840:\tlearn: 0.0271990\ttotal: 53.9s\tremaining: 7.06s\n", + "8841:\tlearn: 0.0271955\ttotal: 53.9s\tremaining: 7.06s\n", + "8842:\tlearn: 0.0271927\ttotal: 53.9s\tremaining: 7.05s\n", + "8843:\tlearn: 0.0271897\ttotal: 53.9s\tremaining: 7.04s\n", + "8844:\tlearn: 0.0271848\ttotal: 53.9s\tremaining: 7.04s\n", + "8845:\tlearn: 0.0271826\ttotal: 53.9s\tremaining: 7.03s\n", + "8846:\tlearn: 0.0271796\ttotal: 53.9s\tremaining: 7.03s\n", + "8847:\tlearn: 0.0271766\ttotal: 53.9s\tremaining: 7.02s\n", + "8848:\tlearn: 0.0271747\ttotal: 53.9s\tremaining: 7.01s\n", + "8849:\tlearn: 0.0271712\ttotal: 53.9s\tremaining: 7.01s\n", + "8850:\tlearn: 0.0271675\ttotal: 53.9s\tremaining: 7s\n", + "8851:\tlearn: 0.0271631\ttotal: 53.9s\tremaining: 7s\n", + "8852:\tlearn: 0.0271595\ttotal: 53.9s\tremaining: 6.99s\n", + "8853:\tlearn: 0.0271545\ttotal: 54s\tremaining: 6.98s\n", + "8854:\tlearn: 0.0271486\ttotal: 54s\tremaining: 6.98s\n", + "8855:\tlearn: 0.0271464\ttotal: 54s\tremaining: 6.97s\n", + "8856:\tlearn: 0.0271431\ttotal: 54s\tremaining: 6.96s\n", + "8857:\tlearn: 0.0271388\ttotal: 54s\tremaining: 6.96s\n", + "8858:\tlearn: 0.0271351\ttotal: 54s\tremaining: 6.95s\n", + "8859:\tlearn: 0.0271318\ttotal: 54s\tremaining: 6.95s\n", + "8860:\tlearn: 0.0271287\ttotal: 54s\tremaining: 6.94s\n", + "8861:\tlearn: 0.0271254\ttotal: 54s\tremaining: 6.93s\n", + "8862:\tlearn: 0.0271196\ttotal: 54s\tremaining: 6.93s\n", + "8863:\tlearn: 0.0271181\ttotal: 54s\tremaining: 6.92s\n", + "8864:\tlearn: 0.0271155\ttotal: 54s\tremaining: 6.92s\n", + "8865:\tlearn: 0.0271131\ttotal: 54s\tremaining: 6.91s\n", + "8866:\tlearn: 0.0271098\ttotal: 54s\tremaining: 6.9s\n", + "8867:\tlearn: 0.0271071\ttotal: 54s\tremaining: 6.9s\n", + "8868:\tlearn: 0.0271016\ttotal: 54s\tremaining: 6.89s\n", + "8869:\tlearn: 0.0270986\ttotal: 54s\tremaining: 6.88s\n", + "8870:\tlearn: 0.0270949\ttotal: 54s\tremaining: 6.88s\n", + "8871:\tlearn: 0.0270920\ttotal: 54.1s\tremaining: 6.87s\n", + "8872:\tlearn: 0.0270876\ttotal: 54.1s\tremaining: 6.87s\n", + "8873:\tlearn: 0.0270824\ttotal: 54.1s\tremaining: 6.86s\n", + "8874:\tlearn: 0.0270792\ttotal: 54.1s\tremaining: 6.85s\n", + "8875:\tlearn: 0.0270751\ttotal: 54.1s\tremaining: 6.85s\n", + "8876:\tlearn: 0.0270700\ttotal: 54.1s\tremaining: 6.84s\n", + "8877:\tlearn: 0.0270655\ttotal: 54.1s\tremaining: 6.83s\n", + "8878:\tlearn: 0.0270615\ttotal: 54.1s\tremaining: 6.83s\n", + "8879:\tlearn: 0.0270566\ttotal: 54.1s\tremaining: 6.82s\n", + "8880:\tlearn: 0.0270515\ttotal: 54.1s\tremaining: 6.82s\n", + "8881:\tlearn: 0.0270489\ttotal: 54.1s\tremaining: 6.81s\n", + "8882:\tlearn: 0.0270467\ttotal: 54.1s\tremaining: 6.8s\n", + "8883:\tlearn: 0.0270426\ttotal: 54.1s\tremaining: 6.8s\n", + "8884:\tlearn: 0.0270388\ttotal: 54.1s\tremaining: 6.79s\n", + "8885:\tlearn: 0.0270321\ttotal: 54.1s\tremaining: 6.79s\n", + "8886:\tlearn: 0.0270274\ttotal: 54.1s\tremaining: 6.78s\n", + "8887:\tlearn: 0.0270231\ttotal: 54.1s\tremaining: 6.77s\n", + "8888:\tlearn: 0.0270192\ttotal: 54.1s\tremaining: 6.77s\n", + "8889:\tlearn: 0.0270161\ttotal: 54.1s\tremaining: 6.76s\n", + "8890:\tlearn: 0.0270140\ttotal: 54.2s\tremaining: 6.75s\n", + "8891:\tlearn: 0.0270109\ttotal: 54.2s\tremaining: 6.75s\n", + "8892:\tlearn: 0.0270097\ttotal: 54.2s\tremaining: 6.74s\n", + "8893:\tlearn: 0.0270070\ttotal: 54.2s\tremaining: 6.74s\n", + "8894:\tlearn: 0.0270054\ttotal: 54.2s\tremaining: 6.73s\n", + "8895:\tlearn: 0.0270034\ttotal: 54.2s\tremaining: 6.72s\n", + "8896:\tlearn: 0.0269992\ttotal: 54.2s\tremaining: 6.72s\n", + "8897:\tlearn: 0.0269945\ttotal: 54.2s\tremaining: 6.71s\n", + "8898:\tlearn: 0.0269928\ttotal: 54.2s\tremaining: 6.7s\n", + "8899:\tlearn: 0.0269889\ttotal: 54.2s\tremaining: 6.7s\n", + "8900:\tlearn: 0.0269866\ttotal: 54.2s\tremaining: 6.69s\n", + "8901:\tlearn: 0.0269811\ttotal: 54.2s\tremaining: 6.69s\n", + "8902:\tlearn: 0.0269791\ttotal: 54.2s\tremaining: 6.68s\n", + "8903:\tlearn: 0.0269753\ttotal: 54.2s\tremaining: 6.67s\n", + "8904:\tlearn: 0.0269689\ttotal: 54.2s\tremaining: 6.67s\n", + "8905:\tlearn: 0.0269633\ttotal: 54.2s\tremaining: 6.66s\n", + "8906:\tlearn: 0.0269618\ttotal: 54.2s\tremaining: 6.66s\n", + "8907:\tlearn: 0.0269592\ttotal: 54.3s\tremaining: 6.65s\n", + "8908:\tlearn: 0.0269548\ttotal: 54.3s\tremaining: 6.64s\n", + "8909:\tlearn: 0.0269501\ttotal: 54.3s\tremaining: 6.64s\n", + "8910:\tlearn: 0.0269446\ttotal: 54.3s\tremaining: 6.63s\n", + "8911:\tlearn: 0.0269409\ttotal: 54.3s\tremaining: 6.63s\n", + "8912:\tlearn: 0.0269383\ttotal: 54.3s\tremaining: 6.62s\n", + "8913:\tlearn: 0.0269337\ttotal: 54.3s\tremaining: 6.61s\n", + "8914:\tlearn: 0.0269299\ttotal: 54.3s\tremaining: 6.61s\n", + "8915:\tlearn: 0.0269272\ttotal: 54.3s\tremaining: 6.6s\n", + "8916:\tlearn: 0.0269225\ttotal: 54.3s\tremaining: 6.59s\n", + "8917:\tlearn: 0.0269186\ttotal: 54.3s\tremaining: 6.59s\n", + "8918:\tlearn: 0.0269137\ttotal: 54.3s\tremaining: 6.58s\n", + "8919:\tlearn: 0.0269119\ttotal: 54.3s\tremaining: 6.58s\n", + "8920:\tlearn: 0.0269070\ttotal: 54.3s\tremaining: 6.57s\n", + "8921:\tlearn: 0.0269021\ttotal: 54.3s\tremaining: 6.56s\n", + "8922:\tlearn: 0.0268977\ttotal: 54.3s\tremaining: 6.56s\n", + "8923:\tlearn: 0.0268933\ttotal: 54.3s\tremaining: 6.55s\n", + "8924:\tlearn: 0.0268878\ttotal: 54.3s\tremaining: 6.54s\n", + "8925:\tlearn: 0.0268825\ttotal: 54.3s\tremaining: 6.54s\n", + "8926:\tlearn: 0.0268773\ttotal: 54.3s\tremaining: 6.53s\n", + "8927:\tlearn: 0.0268739\ttotal: 54.4s\tremaining: 6.53s\n", + "8928:\tlearn: 0.0268696\ttotal: 54.4s\tremaining: 6.52s\n", + "8929:\tlearn: 0.0268635\ttotal: 54.4s\tremaining: 6.51s\n", + "8930:\tlearn: 0.0268586\ttotal: 54.4s\tremaining: 6.51s\n", + "8931:\tlearn: 0.0268540\ttotal: 54.4s\tremaining: 6.5s\n", + "8932:\tlearn: 0.0268496\ttotal: 54.4s\tremaining: 6.5s\n", + "8933:\tlearn: 0.0268449\ttotal: 54.4s\tremaining: 6.49s\n", + "8934:\tlearn: 0.0268401\ttotal: 54.4s\tremaining: 6.48s\n", + "8935:\tlearn: 0.0268375\ttotal: 54.4s\tremaining: 6.48s\n", + "8936:\tlearn: 0.0268360\ttotal: 54.4s\tremaining: 6.47s\n", + "8937:\tlearn: 0.0268324\ttotal: 54.4s\tremaining: 6.46s\n", + "8938:\tlearn: 0.0268298\ttotal: 54.4s\tremaining: 6.46s\n", + "8939:\tlearn: 0.0268255\ttotal: 54.4s\tremaining: 6.45s\n", + "8940:\tlearn: 0.0268227\ttotal: 54.4s\tremaining: 6.45s\n", + "8941:\tlearn: 0.0268170\ttotal: 54.4s\tremaining: 6.44s\n", + "8942:\tlearn: 0.0268144\ttotal: 54.4s\tremaining: 6.43s\n", + "8943:\tlearn: 0.0268116\ttotal: 54.5s\tremaining: 6.43s\n", + "8944:\tlearn: 0.0268065\ttotal: 54.5s\tremaining: 6.42s\n", + "8945:\tlearn: 0.0268034\ttotal: 54.5s\tremaining: 6.42s\n", + "8946:\tlearn: 0.0268006\ttotal: 54.5s\tremaining: 6.41s\n", + "8947:\tlearn: 0.0267958\ttotal: 54.5s\tremaining: 6.4s\n", + "8948:\tlearn: 0.0267867\ttotal: 54.5s\tremaining: 6.4s\n", + "8949:\tlearn: 0.0267813\ttotal: 54.5s\tremaining: 6.39s\n", + "8950:\tlearn: 0.0267792\ttotal: 54.5s\tremaining: 6.38s\n", + "8951:\tlearn: 0.0267740\ttotal: 54.5s\tremaining: 6.38s\n", + "8952:\tlearn: 0.0267674\ttotal: 54.5s\tremaining: 6.37s\n", + "8953:\tlearn: 0.0267651\ttotal: 54.5s\tremaining: 6.37s\n", + "8954:\tlearn: 0.0267613\ttotal: 54.5s\tremaining: 6.36s\n", + "8955:\tlearn: 0.0267541\ttotal: 54.5s\tremaining: 6.35s\n", + "8956:\tlearn: 0.0267505\ttotal: 54.5s\tremaining: 6.35s\n", + "8957:\tlearn: 0.0267488\ttotal: 54.5s\tremaining: 6.34s\n", + "8958:\tlearn: 0.0267428\ttotal: 54.5s\tremaining: 6.33s\n", + "8959:\tlearn: 0.0267384\ttotal: 54.5s\tremaining: 6.33s\n", + "8960:\tlearn: 0.0267365\ttotal: 54.5s\tremaining: 6.32s\n", + "8961:\tlearn: 0.0267309\ttotal: 54.5s\tremaining: 6.32s\n", + "8962:\tlearn: 0.0267280\ttotal: 54.5s\tremaining: 6.31s\n", + "8963:\tlearn: 0.0267243\ttotal: 54.5s\tremaining: 6.3s\n", + "8964:\tlearn: 0.0267165\ttotal: 54.6s\tremaining: 6.3s\n", + "8965:\tlearn: 0.0267130\ttotal: 54.6s\tremaining: 6.29s\n", + "8966:\tlearn: 0.0267104\ttotal: 54.6s\tremaining: 6.29s\n", + "8967:\tlearn: 0.0267067\ttotal: 54.6s\tremaining: 6.28s\n", + "8968:\tlearn: 0.0267036\ttotal: 54.6s\tremaining: 6.27s\n", + "8969:\tlearn: 0.0267004\ttotal: 54.6s\tremaining: 6.27s\n", + "8970:\tlearn: 0.0266948\ttotal: 54.6s\tremaining: 6.26s\n", + "8971:\tlearn: 0.0266878\ttotal: 54.6s\tremaining: 6.25s\n", + "8972:\tlearn: 0.0266868\ttotal: 54.6s\tremaining: 6.25s\n", + "8973:\tlearn: 0.0266836\ttotal: 54.6s\tremaining: 6.24s\n", + "8974:\tlearn: 0.0266814\ttotal: 54.6s\tremaining: 6.24s\n", + "8975:\tlearn: 0.0266770\ttotal: 54.6s\tremaining: 6.23s\n", + "8976:\tlearn: 0.0266723\ttotal: 54.6s\tremaining: 6.23s\n", + "8977:\tlearn: 0.0266710\ttotal: 54.6s\tremaining: 6.22s\n", + "8978:\tlearn: 0.0266681\ttotal: 54.6s\tremaining: 6.21s\n", + "8979:\tlearn: 0.0266661\ttotal: 54.7s\tremaining: 6.21s\n", + "8980:\tlearn: 0.0266611\ttotal: 54.7s\tremaining: 6.2s\n", + "8981:\tlearn: 0.0266570\ttotal: 54.7s\tremaining: 6.2s\n", + "8982:\tlearn: 0.0266536\ttotal: 54.7s\tremaining: 6.19s\n", + "8983:\tlearn: 0.0266498\ttotal: 54.7s\tremaining: 6.18s\n", + "8984:\tlearn: 0.0266467\ttotal: 54.7s\tremaining: 6.18s\n", + "8985:\tlearn: 0.0266416\ttotal: 54.7s\tremaining: 6.17s\n", + "8986:\tlearn: 0.0266371\ttotal: 54.7s\tremaining: 6.17s\n", + "8987:\tlearn: 0.0266337\ttotal: 54.7s\tremaining: 6.16s\n", + "8988:\tlearn: 0.0266314\ttotal: 54.7s\tremaining: 6.15s\n", + "8989:\tlearn: 0.0266285\ttotal: 54.7s\tremaining: 6.15s\n", + "8990:\tlearn: 0.0266243\ttotal: 54.7s\tremaining: 6.14s\n", + "8991:\tlearn: 0.0266215\ttotal: 54.7s\tremaining: 6.13s\n", + "8992:\tlearn: 0.0266164\ttotal: 54.7s\tremaining: 6.13s\n", + "8993:\tlearn: 0.0266130\ttotal: 54.7s\tremaining: 6.12s\n", + "8994:\tlearn: 0.0266088\ttotal: 54.7s\tremaining: 6.12s\n", + "8995:\tlearn: 0.0266066\ttotal: 54.8s\tremaining: 6.11s\n", + "8996:\tlearn: 0.0266036\ttotal: 54.8s\tremaining: 6.1s\n", + "8997:\tlearn: 0.0265999\ttotal: 54.8s\tremaining: 6.1s\n", + "8998:\tlearn: 0.0265955\ttotal: 54.8s\tremaining: 6.09s\n", + "8999:\tlearn: 0.0265928\ttotal: 54.8s\tremaining: 6.09s\n", + "9000:\tlearn: 0.0265908\ttotal: 54.8s\tremaining: 6.08s\n", + "9001:\tlearn: 0.0265877\ttotal: 54.8s\tremaining: 6.07s\n", + "9002:\tlearn: 0.0265831\ttotal: 54.8s\tremaining: 6.07s\n", + "9003:\tlearn: 0.0265804\ttotal: 54.8s\tremaining: 6.06s\n", + "9004:\tlearn: 0.0265745\ttotal: 54.8s\tremaining: 6.05s\n", + "9005:\tlearn: 0.0265707\ttotal: 54.8s\tremaining: 6.05s\n", + "9006:\tlearn: 0.0265644\ttotal: 54.8s\tremaining: 6.04s\n", + "9007:\tlearn: 0.0265637\ttotal: 54.8s\tremaining: 6.04s\n", + "9008:\tlearn: 0.0265600\ttotal: 54.8s\tremaining: 6.03s\n", + "9009:\tlearn: 0.0265565\ttotal: 54.8s\tremaining: 6.02s\n", + "9010:\tlearn: 0.0265531\ttotal: 54.8s\tremaining: 6.02s\n", + "9011:\tlearn: 0.0265472\ttotal: 54.8s\tremaining: 6.01s\n", + "9012:\tlearn: 0.0265420\ttotal: 54.8s\tremaining: 6.01s\n", + "9013:\tlearn: 0.0265369\ttotal: 54.9s\tremaining: 6s\n", + "9014:\tlearn: 0.0265316\ttotal: 54.9s\tremaining: 5.99s\n", + "9015:\tlearn: 0.0265278\ttotal: 54.9s\tremaining: 5.99s\n", + "9016:\tlearn: 0.0265234\ttotal: 54.9s\tremaining: 5.98s\n", + "9017:\tlearn: 0.0265204\ttotal: 54.9s\tremaining: 5.97s\n", + "9018:\tlearn: 0.0265166\ttotal: 54.9s\tremaining: 5.97s\n", + "9019:\tlearn: 0.0265138\ttotal: 54.9s\tremaining: 5.96s\n", + "9020:\tlearn: 0.0265112\ttotal: 54.9s\tremaining: 5.96s\n", + "9021:\tlearn: 0.0265072\ttotal: 54.9s\tremaining: 5.95s\n", + "9022:\tlearn: 0.0265032\ttotal: 54.9s\tremaining: 5.94s\n", + "9023:\tlearn: 0.0264983\ttotal: 54.9s\tremaining: 5.94s\n", + "9024:\tlearn: 0.0264960\ttotal: 54.9s\tremaining: 5.93s\n", + "9025:\tlearn: 0.0264949\ttotal: 54.9s\tremaining: 5.92s\n", + "9026:\tlearn: 0.0264903\ttotal: 54.9s\tremaining: 5.92s\n", + "9027:\tlearn: 0.0264853\ttotal: 54.9s\tremaining: 5.91s\n", + "9028:\tlearn: 0.0264813\ttotal: 54.9s\tremaining: 5.91s\n", + "9029:\tlearn: 0.0264793\ttotal: 54.9s\tremaining: 5.9s\n", + "9030:\tlearn: 0.0264774\ttotal: 54.9s\tremaining: 5.89s\n", + "9031:\tlearn: 0.0264716\ttotal: 54.9s\tremaining: 5.89s\n", + "9032:\tlearn: 0.0264655\ttotal: 55s\tremaining: 5.88s\n", + "9033:\tlearn: 0.0264621\ttotal: 55s\tremaining: 5.88s\n", + "9034:\tlearn: 0.0264605\ttotal: 55s\tremaining: 5.87s\n", + "9035:\tlearn: 0.0264549\ttotal: 55s\tremaining: 5.86s\n", + "9036:\tlearn: 0.0264511\ttotal: 55s\tremaining: 5.86s\n", + "9037:\tlearn: 0.0264485\ttotal: 55s\tremaining: 5.85s\n", + "9038:\tlearn: 0.0264455\ttotal: 55s\tremaining: 5.84s\n", + "9039:\tlearn: 0.0264383\ttotal: 55s\tremaining: 5.84s\n", + "9040:\tlearn: 0.0264349\ttotal: 55s\tremaining: 5.83s\n", + "9041:\tlearn: 0.0264293\ttotal: 55s\tremaining: 5.83s\n", + "9042:\tlearn: 0.0264251\ttotal: 55s\tremaining: 5.82s\n", + "9043:\tlearn: 0.0264218\ttotal: 55s\tremaining: 5.81s\n", + "9044:\tlearn: 0.0264172\ttotal: 55s\tremaining: 5.81s\n", + "9045:\tlearn: 0.0264101\ttotal: 55s\tremaining: 5.8s\n", + "9046:\tlearn: 0.0264061\ttotal: 55s\tremaining: 5.8s\n", + "9047:\tlearn: 0.0264012\ttotal: 55s\tremaining: 5.79s\n", + "9048:\tlearn: 0.0263998\ttotal: 55s\tremaining: 5.78s\n", + "9049:\tlearn: 0.0263945\ttotal: 55s\tremaining: 5.78s\n", + "9050:\tlearn: 0.0263903\ttotal: 55s\tremaining: 5.77s\n", + "9051:\tlearn: 0.0263862\ttotal: 55.1s\tremaining: 5.76s\n", + "9052:\tlearn: 0.0263846\ttotal: 55.1s\tremaining: 5.76s\n", + "9053:\tlearn: 0.0263805\ttotal: 55.1s\tremaining: 5.75s\n", + "9054:\tlearn: 0.0263774\ttotal: 55.1s\tremaining: 5.75s\n", + "9055:\tlearn: 0.0263730\ttotal: 55.1s\tremaining: 5.74s\n", + "9056:\tlearn: 0.0263704\ttotal: 55.1s\tremaining: 5.73s\n", + "9057:\tlearn: 0.0263684\ttotal: 55.1s\tremaining: 5.73s\n", + "9058:\tlearn: 0.0263645\ttotal: 55.1s\tremaining: 5.72s\n", + "9059:\tlearn: 0.0263612\ttotal: 55.1s\tremaining: 5.71s\n", + "9060:\tlearn: 0.0263562\ttotal: 55.1s\tremaining: 5.71s\n", + "9061:\tlearn: 0.0263536\ttotal: 55.1s\tremaining: 5.7s\n", + "9062:\tlearn: 0.0263505\ttotal: 55.1s\tremaining: 5.7s\n", + "9063:\tlearn: 0.0263457\ttotal: 55.1s\tremaining: 5.69s\n", + "9064:\tlearn: 0.0263421\ttotal: 55.1s\tremaining: 5.68s\n", + "9065:\tlearn: 0.0263371\ttotal: 55.1s\tremaining: 5.68s\n", + "9066:\tlearn: 0.0263338\ttotal: 55.1s\tremaining: 5.67s\n", + "9067:\tlearn: 0.0263272\ttotal: 55.1s\tremaining: 5.67s\n", + "9068:\tlearn: 0.0263218\ttotal: 55.1s\tremaining: 5.66s\n", + "9069:\tlearn: 0.0263185\ttotal: 55.1s\tremaining: 5.65s\n", + "9070:\tlearn: 0.0263161\ttotal: 55.1s\tremaining: 5.65s\n", + "9071:\tlearn: 0.0263132\ttotal: 55.2s\tremaining: 5.64s\n", + "9072:\tlearn: 0.0263099\ttotal: 55.2s\tremaining: 5.63s\n", + "9073:\tlearn: 0.0263071\ttotal: 55.2s\tremaining: 5.63s\n", + "9074:\tlearn: 0.0263011\ttotal: 55.2s\tremaining: 5.62s\n", + "9075:\tlearn: 0.0262969\ttotal: 55.2s\tremaining: 5.62s\n", + "9076:\tlearn: 0.0262932\ttotal: 55.2s\tremaining: 5.61s\n", + "9077:\tlearn: 0.0262866\ttotal: 55.2s\tremaining: 5.6s\n", + "9078:\tlearn: 0.0262842\ttotal: 55.2s\tremaining: 5.6s\n", + "9079:\tlearn: 0.0262807\ttotal: 55.2s\tremaining: 5.59s\n", + "9080:\tlearn: 0.0262760\ttotal: 55.2s\tremaining: 5.59s\n", + "9081:\tlearn: 0.0262718\ttotal: 55.2s\tremaining: 5.58s\n", + "9082:\tlearn: 0.0262701\ttotal: 55.2s\tremaining: 5.57s\n", + "9083:\tlearn: 0.0262668\ttotal: 55.2s\tremaining: 5.57s\n", + "9084:\tlearn: 0.0262626\ttotal: 55.2s\tremaining: 5.56s\n", + "9085:\tlearn: 0.0262597\ttotal: 55.2s\tremaining: 5.56s\n", + "9086:\tlearn: 0.0262560\ttotal: 55.2s\tremaining: 5.55s\n", + "9087:\tlearn: 0.0262535\ttotal: 55.2s\tremaining: 5.54s\n", + "9088:\tlearn: 0.0262512\ttotal: 55.2s\tremaining: 5.54s\n", + "9089:\tlearn: 0.0262464\ttotal: 55.3s\tremaining: 5.53s\n", + "9090:\tlearn: 0.0262432\ttotal: 55.3s\tremaining: 5.52s\n", + "9091:\tlearn: 0.0262411\ttotal: 55.3s\tremaining: 5.52s\n", + "9092:\tlearn: 0.0262374\ttotal: 55.3s\tremaining: 5.51s\n", + "9093:\tlearn: 0.0262329\ttotal: 55.3s\tremaining: 5.51s\n", + "9094:\tlearn: 0.0262287\ttotal: 55.3s\tremaining: 5.5s\n", + "9095:\tlearn: 0.0262250\ttotal: 55.3s\tremaining: 5.49s\n", + "9096:\tlearn: 0.0262216\ttotal: 55.3s\tremaining: 5.49s\n", + "9097:\tlearn: 0.0262196\ttotal: 55.3s\tremaining: 5.48s\n", + "9098:\tlearn: 0.0262151\ttotal: 55.3s\tremaining: 5.47s\n", + "9099:\tlearn: 0.0262088\ttotal: 55.3s\tremaining: 5.47s\n", + "9100:\tlearn: 0.0262059\ttotal: 55.3s\tremaining: 5.46s\n", + "9101:\tlearn: 0.0262033\ttotal: 55.3s\tremaining: 5.46s\n", + "9102:\tlearn: 0.0261983\ttotal: 55.3s\tremaining: 5.45s\n", + "9103:\tlearn: 0.0261913\ttotal: 55.3s\tremaining: 5.44s\n", + "9104:\tlearn: 0.0261883\ttotal: 55.3s\tremaining: 5.44s\n", + "9105:\tlearn: 0.0261846\ttotal: 55.3s\tremaining: 5.43s\n", + "9106:\tlearn: 0.0261811\ttotal: 55.3s\tremaining: 5.42s\n", + "9107:\tlearn: 0.0261768\ttotal: 55.3s\tremaining: 5.42s\n", + "9108:\tlearn: 0.0261745\ttotal: 55.3s\tremaining: 5.41s\n", + "9109:\tlearn: 0.0261703\ttotal: 55.3s\tremaining: 5.41s\n", + "9110:\tlearn: 0.0261646\ttotal: 55.4s\tremaining: 5.4s\n", + "9111:\tlearn: 0.0261635\ttotal: 55.4s\tremaining: 5.39s\n", + "9112:\tlearn: 0.0261610\ttotal: 55.4s\tremaining: 5.39s\n", + "9113:\tlearn: 0.0261573\ttotal: 55.4s\tremaining: 5.38s\n", + "9114:\tlearn: 0.0261553\ttotal: 55.4s\tremaining: 5.38s\n", + "9115:\tlearn: 0.0261508\ttotal: 55.4s\tremaining: 5.37s\n", + "9116:\tlearn: 0.0261489\ttotal: 55.4s\tremaining: 5.36s\n", + "9117:\tlearn: 0.0261468\ttotal: 55.4s\tremaining: 5.36s\n", + "9118:\tlearn: 0.0261427\ttotal: 55.4s\tremaining: 5.35s\n", + "9119:\tlearn: 0.0261371\ttotal: 55.4s\tremaining: 5.34s\n", + "9120:\tlearn: 0.0261338\ttotal: 55.4s\tremaining: 5.34s\n", + "9121:\tlearn: 0.0261272\ttotal: 55.4s\tremaining: 5.33s\n", + "9122:\tlearn: 0.0261258\ttotal: 55.4s\tremaining: 5.33s\n", + "9123:\tlearn: 0.0261207\ttotal: 55.4s\tremaining: 5.32s\n", + "9124:\tlearn: 0.0261176\ttotal: 55.4s\tremaining: 5.32s\n", + "9125:\tlearn: 0.0261129\ttotal: 55.4s\tremaining: 5.31s\n", + "9126:\tlearn: 0.0261088\ttotal: 55.4s\tremaining: 5.3s\n", + "9127:\tlearn: 0.0261057\ttotal: 55.4s\tremaining: 5.3s\n", + "9128:\tlearn: 0.0261020\ttotal: 55.4s\tremaining: 5.29s\n", + "9129:\tlearn: 0.0260987\ttotal: 55.5s\tremaining: 5.28s\n", + "9130:\tlearn: 0.0260932\ttotal: 55.5s\tremaining: 5.28s\n", + "9131:\tlearn: 0.0260901\ttotal: 55.5s\tremaining: 5.27s\n", + "9132:\tlearn: 0.0260842\ttotal: 55.5s\tremaining: 5.26s\n", + "9133:\tlearn: 0.0260801\ttotal: 55.5s\tremaining: 5.26s\n", + "9134:\tlearn: 0.0260764\ttotal: 55.5s\tremaining: 5.25s\n", + "9135:\tlearn: 0.0260721\ttotal: 55.5s\tremaining: 5.25s\n", + "9136:\tlearn: 0.0260682\ttotal: 55.5s\tremaining: 5.24s\n", + "9137:\tlearn: 0.0260655\ttotal: 55.5s\tremaining: 5.24s\n", + "9138:\tlearn: 0.0260615\ttotal: 55.5s\tremaining: 5.23s\n", + "9139:\tlearn: 0.0260561\ttotal: 55.5s\tremaining: 5.22s\n", + "9140:\tlearn: 0.0260519\ttotal: 55.5s\tremaining: 5.22s\n", + "9141:\tlearn: 0.0260482\ttotal: 55.5s\tremaining: 5.21s\n", + "9142:\tlearn: 0.0260437\ttotal: 55.5s\tremaining: 5.2s\n", + "9143:\tlearn: 0.0260413\ttotal: 55.5s\tremaining: 5.2s\n", + "9144:\tlearn: 0.0260377\ttotal: 55.5s\tremaining: 5.19s\n", + "9145:\tlearn: 0.0260329\ttotal: 55.5s\tremaining: 5.19s\n", + "9146:\tlearn: 0.0260310\ttotal: 55.6s\tremaining: 5.18s\n", + "9147:\tlearn: 0.0260284\ttotal: 55.6s\tremaining: 5.17s\n", + "9148:\tlearn: 0.0260262\ttotal: 55.6s\tremaining: 5.17s\n", + "9149:\tlearn: 0.0260223\ttotal: 55.6s\tremaining: 5.16s\n", + "9150:\tlearn: 0.0260189\ttotal: 55.6s\tremaining: 5.16s\n", + "9151:\tlearn: 0.0260154\ttotal: 55.6s\tremaining: 5.15s\n", + "9152:\tlearn: 0.0260119\ttotal: 55.6s\tremaining: 5.14s\n", + "9153:\tlearn: 0.0260090\ttotal: 55.6s\tremaining: 5.14s\n", + "9154:\tlearn: 0.0260031\ttotal: 55.6s\tremaining: 5.13s\n", + "9155:\tlearn: 0.0260013\ttotal: 55.6s\tremaining: 5.12s\n", + "9156:\tlearn: 0.0259957\ttotal: 55.6s\tremaining: 5.12s\n", + "9157:\tlearn: 0.0259919\ttotal: 55.6s\tremaining: 5.11s\n", + "9158:\tlearn: 0.0259892\ttotal: 55.6s\tremaining: 5.11s\n", + "9159:\tlearn: 0.0259860\ttotal: 55.6s\tremaining: 5.1s\n", + "9160:\tlearn: 0.0259832\ttotal: 55.6s\tremaining: 5.09s\n", + "9161:\tlearn: 0.0259796\ttotal: 55.6s\tremaining: 5.09s\n", + "9162:\tlearn: 0.0259747\ttotal: 55.6s\tremaining: 5.08s\n", + "9163:\tlearn: 0.0259698\ttotal: 55.6s\tremaining: 5.08s\n", + "9164:\tlearn: 0.0259643\ttotal: 55.7s\tremaining: 5.07s\n", + "9165:\tlearn: 0.0259604\ttotal: 55.7s\tremaining: 5.06s\n", + "9166:\tlearn: 0.0259571\ttotal: 55.7s\tremaining: 5.06s\n", + "9167:\tlearn: 0.0259534\ttotal: 55.7s\tremaining: 5.05s\n", + "9168:\tlearn: 0.0259462\ttotal: 55.7s\tremaining: 5.04s\n", + "9169:\tlearn: 0.0259432\ttotal: 55.7s\tremaining: 5.04s\n", + "9170:\tlearn: 0.0259374\ttotal: 55.7s\tremaining: 5.03s\n", + "9171:\tlearn: 0.0259343\ttotal: 55.7s\tremaining: 5.03s\n", + "9172:\tlearn: 0.0259280\ttotal: 55.7s\tremaining: 5.02s\n", + "9173:\tlearn: 0.0259238\ttotal: 55.7s\tremaining: 5.01s\n", + "9174:\tlearn: 0.0259222\ttotal: 55.7s\tremaining: 5.01s\n", + "9175:\tlearn: 0.0259178\ttotal: 55.7s\tremaining: 5s\n", + "9176:\tlearn: 0.0259153\ttotal: 55.7s\tremaining: 5s\n", + "9177:\tlearn: 0.0259121\ttotal: 55.7s\tremaining: 4.99s\n", + "9178:\tlearn: 0.0259086\ttotal: 55.7s\tremaining: 4.98s\n", + "9179:\tlearn: 0.0259054\ttotal: 55.7s\tremaining: 4.98s\n", + "9180:\tlearn: 0.0259021\ttotal: 55.7s\tremaining: 4.97s\n", + "9181:\tlearn: 0.0258967\ttotal: 55.7s\tremaining: 4.96s\n", + "9182:\tlearn: 0.0258927\ttotal: 55.7s\tremaining: 4.96s\n", + "9183:\tlearn: 0.0258889\ttotal: 55.7s\tremaining: 4.95s\n", + "9184:\tlearn: 0.0258866\ttotal: 55.7s\tremaining: 4.95s\n", + "9185:\tlearn: 0.0258824\ttotal: 55.8s\tremaining: 4.94s\n", + "9186:\tlearn: 0.0258796\ttotal: 55.8s\tremaining: 4.93s\n", + "9187:\tlearn: 0.0258771\ttotal: 55.8s\tremaining: 4.93s\n", + "9188:\tlearn: 0.0258745\ttotal: 55.8s\tremaining: 4.92s\n", + "9189:\tlearn: 0.0258713\ttotal: 55.8s\tremaining: 4.92s\n", + "9190:\tlearn: 0.0258674\ttotal: 55.8s\tremaining: 4.91s\n", + "9191:\tlearn: 0.0258611\ttotal: 55.8s\tremaining: 4.9s\n", + "9192:\tlearn: 0.0258582\ttotal: 55.8s\tremaining: 4.9s\n", + "9193:\tlearn: 0.0258563\ttotal: 55.8s\tremaining: 4.89s\n", + "9194:\tlearn: 0.0258542\ttotal: 55.8s\tremaining: 4.88s\n", + "9195:\tlearn: 0.0258512\ttotal: 55.8s\tremaining: 4.88s\n", + "9196:\tlearn: 0.0258480\ttotal: 55.8s\tremaining: 4.87s\n", + "9197:\tlearn: 0.0258461\ttotal: 55.8s\tremaining: 4.87s\n", + "9198:\tlearn: 0.0258419\ttotal: 55.8s\tremaining: 4.86s\n", + "9199:\tlearn: 0.0258393\ttotal: 55.8s\tremaining: 4.85s\n", + "9200:\tlearn: 0.0258376\ttotal: 55.8s\tremaining: 4.85s\n", + "9201:\tlearn: 0.0258363\ttotal: 55.8s\tremaining: 4.84s\n", + "9202:\tlearn: 0.0258333\ttotal: 55.8s\tremaining: 4.84s\n", + "9203:\tlearn: 0.0258272\ttotal: 55.8s\tremaining: 4.83s\n", + "9204:\tlearn: 0.0258251\ttotal: 55.9s\tremaining: 4.82s\n", + "9205:\tlearn: 0.0258217\ttotal: 55.9s\tremaining: 4.82s\n", + "9206:\tlearn: 0.0258193\ttotal: 55.9s\tremaining: 4.81s\n", + "9207:\tlearn: 0.0258161\ttotal: 55.9s\tremaining: 4.8s\n", + "9208:\tlearn: 0.0258128\ttotal: 55.9s\tremaining: 4.8s\n", + "9209:\tlearn: 0.0258091\ttotal: 55.9s\tremaining: 4.79s\n", + "9210:\tlearn: 0.0258066\ttotal: 55.9s\tremaining: 4.79s\n", + "9211:\tlearn: 0.0258043\ttotal: 55.9s\tremaining: 4.78s\n", + "9212:\tlearn: 0.0257998\ttotal: 55.9s\tremaining: 4.77s\n", + "9213:\tlearn: 0.0257982\ttotal: 55.9s\tremaining: 4.77s\n", + "9214:\tlearn: 0.0257966\ttotal: 55.9s\tremaining: 4.76s\n", + "9215:\tlearn: 0.0257925\ttotal: 55.9s\tremaining: 4.76s\n", + "9216:\tlearn: 0.0257884\ttotal: 55.9s\tremaining: 4.75s\n", + "9217:\tlearn: 0.0257855\ttotal: 55.9s\tremaining: 4.74s\n", + "9218:\tlearn: 0.0257818\ttotal: 55.9s\tremaining: 4.74s\n", + "9219:\tlearn: 0.0257797\ttotal: 55.9s\tremaining: 4.73s\n", + "9220:\tlearn: 0.0257738\ttotal: 55.9s\tremaining: 4.72s\n", + "9221:\tlearn: 0.0257679\ttotal: 55.9s\tremaining: 4.72s\n", + "9222:\tlearn: 0.0257650\ttotal: 55.9s\tremaining: 4.71s\n", + "9223:\tlearn: 0.0257591\ttotal: 55.9s\tremaining: 4.71s\n", + "9224:\tlearn: 0.0257556\ttotal: 56s\tremaining: 4.7s\n", + "9225:\tlearn: 0.0257533\ttotal: 56s\tremaining: 4.69s\n", + "9226:\tlearn: 0.0257499\ttotal: 56s\tremaining: 4.69s\n", + "9227:\tlearn: 0.0257436\ttotal: 56s\tremaining: 4.68s\n", + "9228:\tlearn: 0.0257401\ttotal: 56s\tremaining: 4.68s\n", + "9229:\tlearn: 0.0257365\ttotal: 56s\tremaining: 4.67s\n", + "9230:\tlearn: 0.0257320\ttotal: 56s\tremaining: 4.66s\n", + "9231:\tlearn: 0.0257296\ttotal: 56s\tremaining: 4.66s\n", + "9232:\tlearn: 0.0257261\ttotal: 56s\tremaining: 4.65s\n", + "9233:\tlearn: 0.0257244\ttotal: 56s\tremaining: 4.65s\n", + "9234:\tlearn: 0.0257218\ttotal: 56s\tremaining: 4.64s\n", + "9235:\tlearn: 0.0257169\ttotal: 56s\tremaining: 4.63s\n", + "9236:\tlearn: 0.0257135\ttotal: 56s\tremaining: 4.63s\n", + "9237:\tlearn: 0.0257108\ttotal: 56s\tremaining: 4.62s\n", + "9238:\tlearn: 0.0257071\ttotal: 56s\tremaining: 4.62s\n", + "9239:\tlearn: 0.0257046\ttotal: 56s\tremaining: 4.61s\n", + "9240:\tlearn: 0.0257004\ttotal: 56s\tremaining: 4.6s\n", + "9241:\tlearn: 0.0256982\ttotal: 56s\tremaining: 4.6s\n", + "9242:\tlearn: 0.0256961\ttotal: 56.1s\tremaining: 4.59s\n", + "9243:\tlearn: 0.0256919\ttotal: 56.1s\tremaining: 4.58s\n", + "9244:\tlearn: 0.0256883\ttotal: 56.1s\tremaining: 4.58s\n", + "9245:\tlearn: 0.0256852\ttotal: 56.1s\tremaining: 4.57s\n", + "9246:\tlearn: 0.0256806\ttotal: 56.1s\tremaining: 4.57s\n", + "9247:\tlearn: 0.0256777\ttotal: 56.1s\tremaining: 4.56s\n", + "9248:\tlearn: 0.0256760\ttotal: 56.1s\tremaining: 4.55s\n", + "9249:\tlearn: 0.0256722\ttotal: 56.1s\tremaining: 4.55s\n", + "9250:\tlearn: 0.0256676\ttotal: 56.1s\tremaining: 4.54s\n", + "9251:\tlearn: 0.0256638\ttotal: 56.1s\tremaining: 4.54s\n", + "9252:\tlearn: 0.0256607\ttotal: 56.1s\tremaining: 4.53s\n", + "9253:\tlearn: 0.0256590\ttotal: 56.1s\tremaining: 4.52s\n", + "9254:\tlearn: 0.0256550\ttotal: 56.1s\tremaining: 4.52s\n", + "9255:\tlearn: 0.0256512\ttotal: 56.1s\tremaining: 4.51s\n", + "9256:\tlearn: 0.0256480\ttotal: 56.1s\tremaining: 4.5s\n", + "9257:\tlearn: 0.0256452\ttotal: 56.1s\tremaining: 4.5s\n", + "9258:\tlearn: 0.0256416\ttotal: 56.1s\tremaining: 4.49s\n", + "9259:\tlearn: 0.0256373\ttotal: 56.1s\tremaining: 4.49s\n", + "9260:\tlearn: 0.0256348\ttotal: 56.1s\tremaining: 4.48s\n", + "9261:\tlearn: 0.0256298\ttotal: 56.1s\tremaining: 4.47s\n", + "9262:\tlearn: 0.0256261\ttotal: 56.2s\tremaining: 4.47s\n", + "9263:\tlearn: 0.0256243\ttotal: 56.2s\tremaining: 4.46s\n", + "9264:\tlearn: 0.0256221\ttotal: 56.2s\tremaining: 4.46s\n", + "9265:\tlearn: 0.0256196\ttotal: 56.2s\tremaining: 4.45s\n", + "9266:\tlearn: 0.0256166\ttotal: 56.2s\tremaining: 4.44s\n", + "9267:\tlearn: 0.0256145\ttotal: 56.2s\tremaining: 4.44s\n", + "9268:\tlearn: 0.0256101\ttotal: 56.2s\tremaining: 4.43s\n", + "9269:\tlearn: 0.0256050\ttotal: 56.2s\tremaining: 4.42s\n", + "9270:\tlearn: 0.0256033\ttotal: 56.2s\tremaining: 4.42s\n", + "9271:\tlearn: 0.0255997\ttotal: 56.2s\tremaining: 4.41s\n", + "9272:\tlearn: 0.0255954\ttotal: 56.2s\tremaining: 4.41s\n", + "9273:\tlearn: 0.0255913\ttotal: 56.2s\tremaining: 4.4s\n", + "9274:\tlearn: 0.0255875\ttotal: 56.2s\tremaining: 4.39s\n", + "9275:\tlearn: 0.0255853\ttotal: 56.2s\tremaining: 4.39s\n", + "9276:\tlearn: 0.0255829\ttotal: 56.2s\tremaining: 4.38s\n", + "9277:\tlearn: 0.0255808\ttotal: 56.2s\tremaining: 4.38s\n", + "9278:\tlearn: 0.0255752\ttotal: 56.2s\tremaining: 4.37s\n", + "9279:\tlearn: 0.0255699\ttotal: 56.2s\tremaining: 4.36s\n", + "9280:\tlearn: 0.0255661\ttotal: 56.2s\tremaining: 4.36s\n", + "9281:\tlearn: 0.0255610\ttotal: 56.3s\tremaining: 4.35s\n", + "9282:\tlearn: 0.0255579\ttotal: 56.3s\tremaining: 4.34s\n", + "9283:\tlearn: 0.0255533\ttotal: 56.3s\tremaining: 4.34s\n", + "9284:\tlearn: 0.0255495\ttotal: 56.3s\tremaining: 4.33s\n", + "9285:\tlearn: 0.0255464\ttotal: 56.3s\tremaining: 4.33s\n", + "9286:\tlearn: 0.0255394\ttotal: 56.3s\tremaining: 4.32s\n", + "9287:\tlearn: 0.0255351\ttotal: 56.3s\tremaining: 4.31s\n", + "9288:\tlearn: 0.0255311\ttotal: 56.3s\tremaining: 4.31s\n", + "9289:\tlearn: 0.0255289\ttotal: 56.3s\tremaining: 4.3s\n", + "9290:\tlearn: 0.0255251\ttotal: 56.3s\tremaining: 4.3s\n", + "9291:\tlearn: 0.0255236\ttotal: 56.3s\tremaining: 4.29s\n", + "9292:\tlearn: 0.0255187\ttotal: 56.3s\tremaining: 4.28s\n", + "9293:\tlearn: 0.0255134\ttotal: 56.3s\tremaining: 4.28s\n", + "9294:\tlearn: 0.0255070\ttotal: 56.3s\tremaining: 4.27s\n", + "9295:\tlearn: 0.0255038\ttotal: 56.3s\tremaining: 4.26s\n", + "9296:\tlearn: 0.0254967\ttotal: 56.3s\tremaining: 4.26s\n", + "9297:\tlearn: 0.0254922\ttotal: 56.3s\tremaining: 4.25s\n", + "9298:\tlearn: 0.0254886\ttotal: 56.3s\tremaining: 4.25s\n", + "9299:\tlearn: 0.0254849\ttotal: 56.3s\tremaining: 4.24s\n", + "9300:\tlearn: 0.0254823\ttotal: 56.3s\tremaining: 4.23s\n", + "9301:\tlearn: 0.0254761\ttotal: 56.4s\tremaining: 4.23s\n", + "9302:\tlearn: 0.0254721\ttotal: 56.4s\tremaining: 4.22s\n", + "9303:\tlearn: 0.0254687\ttotal: 56.4s\tremaining: 4.22s\n", + "9304:\tlearn: 0.0254661\ttotal: 56.4s\tremaining: 4.21s\n", + "9305:\tlearn: 0.0254596\ttotal: 56.4s\tremaining: 4.2s\n", + "9306:\tlearn: 0.0254553\ttotal: 56.4s\tremaining: 4.2s\n", + "9307:\tlearn: 0.0254508\ttotal: 56.4s\tremaining: 4.19s\n", + "9308:\tlearn: 0.0254461\ttotal: 56.4s\tremaining: 4.18s\n", + "9309:\tlearn: 0.0254412\ttotal: 56.4s\tremaining: 4.18s\n", + "9310:\tlearn: 0.0254371\ttotal: 56.4s\tremaining: 4.17s\n", + "9311:\tlearn: 0.0254352\ttotal: 56.4s\tremaining: 4.17s\n", + "9312:\tlearn: 0.0254327\ttotal: 56.4s\tremaining: 4.16s\n", + "9313:\tlearn: 0.0254306\ttotal: 56.4s\tremaining: 4.16s\n", + "9314:\tlearn: 0.0254278\ttotal: 56.4s\tremaining: 4.15s\n", + "9315:\tlearn: 0.0254257\ttotal: 56.4s\tremaining: 4.14s\n", + "9316:\tlearn: 0.0254230\ttotal: 56.4s\tremaining: 4.14s\n", + "9317:\tlearn: 0.0254133\ttotal: 56.4s\tremaining: 4.13s\n", + "9318:\tlearn: 0.0254104\ttotal: 56.4s\tremaining: 4.12s\n", + "9319:\tlearn: 0.0254056\ttotal: 56.4s\tremaining: 4.12s\n", + "9320:\tlearn: 0.0254022\ttotal: 56.5s\tremaining: 4.11s\n", + "9321:\tlearn: 0.0253999\ttotal: 56.5s\tremaining: 4.11s\n", + "9322:\tlearn: 0.0253968\ttotal: 56.5s\tremaining: 4.1s\n", + "9323:\tlearn: 0.0253911\ttotal: 56.5s\tremaining: 4.09s\n", + "9324:\tlearn: 0.0253866\ttotal: 56.5s\tremaining: 4.09s\n", + "9325:\tlearn: 0.0253830\ttotal: 56.5s\tremaining: 4.08s\n", + "9326:\tlearn: 0.0253799\ttotal: 56.5s\tremaining: 4.08s\n", + "9327:\tlearn: 0.0253777\ttotal: 56.5s\tremaining: 4.07s\n", + "9328:\tlearn: 0.0253737\ttotal: 56.5s\tremaining: 4.06s\n", + "9329:\tlearn: 0.0253709\ttotal: 56.5s\tremaining: 4.06s\n", + "9330:\tlearn: 0.0253684\ttotal: 56.5s\tremaining: 4.05s\n", + "9331:\tlearn: 0.0253611\ttotal: 56.5s\tremaining: 4.04s\n", + "9332:\tlearn: 0.0253600\ttotal: 56.5s\tremaining: 4.04s\n", + "9333:\tlearn: 0.0253566\ttotal: 56.5s\tremaining: 4.03s\n", + "9334:\tlearn: 0.0253515\ttotal: 56.5s\tremaining: 4.03s\n", + "9335:\tlearn: 0.0253478\ttotal: 56.5s\tremaining: 4.02s\n", + "9336:\tlearn: 0.0253438\ttotal: 56.5s\tremaining: 4.01s\n", + "9337:\tlearn: 0.0253394\ttotal: 56.5s\tremaining: 4.01s\n", + "9338:\tlearn: 0.0253357\ttotal: 56.6s\tremaining: 4s\n", + "9339:\tlearn: 0.0253322\ttotal: 56.6s\tremaining: 4s\n", + "9340:\tlearn: 0.0253282\ttotal: 56.6s\tremaining: 3.99s\n", + "9341:\tlearn: 0.0253223\ttotal: 56.6s\tremaining: 3.98s\n", + "9342:\tlearn: 0.0253183\ttotal: 56.6s\tremaining: 3.98s\n", + "9343:\tlearn: 0.0253144\ttotal: 56.6s\tremaining: 3.97s\n", + "9344:\tlearn: 0.0253123\ttotal: 56.6s\tremaining: 3.96s\n", + "9345:\tlearn: 0.0253078\ttotal: 56.6s\tremaining: 3.96s\n", + "9346:\tlearn: 0.0253053\ttotal: 56.6s\tremaining: 3.95s\n", + "9347:\tlearn: 0.0253033\ttotal: 56.6s\tremaining: 3.95s\n", + "9348:\tlearn: 0.0252990\ttotal: 56.6s\tremaining: 3.94s\n", + "9349:\tlearn: 0.0252966\ttotal: 56.6s\tremaining: 3.94s\n", + "9350:\tlearn: 0.0252920\ttotal: 56.6s\tremaining: 3.93s\n", + "9351:\tlearn: 0.0252870\ttotal: 56.6s\tremaining: 3.92s\n", + "9352:\tlearn: 0.0252844\ttotal: 56.6s\tremaining: 3.92s\n", + "9353:\tlearn: 0.0252789\ttotal: 56.6s\tremaining: 3.91s\n", + "9354:\tlearn: 0.0252735\ttotal: 56.6s\tremaining: 3.9s\n", + "9355:\tlearn: 0.0252690\ttotal: 56.6s\tremaining: 3.9s\n", + "9356:\tlearn: 0.0252667\ttotal: 56.6s\tremaining: 3.89s\n", + "9357:\tlearn: 0.0252643\ttotal: 56.7s\tremaining: 3.89s\n", + "9358:\tlearn: 0.0252604\ttotal: 56.7s\tremaining: 3.88s\n", + "9359:\tlearn: 0.0252560\ttotal: 56.7s\tremaining: 3.87s\n", + "9360:\tlearn: 0.0252525\ttotal: 56.7s\tremaining: 3.87s\n", + "9361:\tlearn: 0.0252473\ttotal: 56.7s\tremaining: 3.86s\n", + "9362:\tlearn: 0.0252435\ttotal: 56.7s\tremaining: 3.86s\n", + "9363:\tlearn: 0.0252412\ttotal: 56.7s\tremaining: 3.85s\n", + "9364:\tlearn: 0.0252387\ttotal: 56.7s\tremaining: 3.84s\n", + "9365:\tlearn: 0.0252363\ttotal: 56.7s\tremaining: 3.84s\n", + "9366:\tlearn: 0.0252342\ttotal: 56.7s\tremaining: 3.83s\n", + "9367:\tlearn: 0.0252305\ttotal: 56.7s\tremaining: 3.83s\n", + "9368:\tlearn: 0.0252256\ttotal: 56.7s\tremaining: 3.82s\n", + "9369:\tlearn: 0.0252210\ttotal: 56.7s\tremaining: 3.81s\n", + "9370:\tlearn: 0.0252185\ttotal: 56.7s\tremaining: 3.81s\n", + "9371:\tlearn: 0.0252158\ttotal: 56.7s\tremaining: 3.8s\n", + "9372:\tlearn: 0.0252126\ttotal: 56.7s\tremaining: 3.79s\n", + "9373:\tlearn: 0.0252107\ttotal: 56.7s\tremaining: 3.79s\n", + "9374:\tlearn: 0.0252069\ttotal: 56.7s\tremaining: 3.78s\n", + "9375:\tlearn: 0.0252030\ttotal: 56.7s\tremaining: 3.78s\n", + "9376:\tlearn: 0.0251977\ttotal: 56.8s\tremaining: 3.77s\n", + "9377:\tlearn: 0.0251938\ttotal: 56.8s\tremaining: 3.76s\n", + "9378:\tlearn: 0.0251887\ttotal: 56.8s\tremaining: 3.76s\n", + "9379:\tlearn: 0.0251827\ttotal: 56.8s\tremaining: 3.75s\n", + "9380:\tlearn: 0.0251788\ttotal: 56.8s\tremaining: 3.75s\n", + "9381:\tlearn: 0.0251742\ttotal: 56.8s\tremaining: 3.74s\n", + "9382:\tlearn: 0.0251695\ttotal: 56.8s\tremaining: 3.73s\n", + "9383:\tlearn: 0.0251664\ttotal: 56.8s\tremaining: 3.73s\n", + "9384:\tlearn: 0.0251624\ttotal: 56.8s\tremaining: 3.72s\n", + "9385:\tlearn: 0.0251594\ttotal: 56.8s\tremaining: 3.72s\n", + "9386:\tlearn: 0.0251544\ttotal: 56.8s\tremaining: 3.71s\n", + "9387:\tlearn: 0.0251505\ttotal: 56.8s\tremaining: 3.7s\n", + "9388:\tlearn: 0.0251479\ttotal: 56.8s\tremaining: 3.7s\n", + "9389:\tlearn: 0.0251451\ttotal: 56.8s\tremaining: 3.69s\n", + "9390:\tlearn: 0.0251385\ttotal: 56.8s\tremaining: 3.69s\n", + "9391:\tlearn: 0.0251326\ttotal: 56.8s\tremaining: 3.68s\n", + "9392:\tlearn: 0.0251295\ttotal: 56.8s\tremaining: 3.67s\n", + "9393:\tlearn: 0.0251263\ttotal: 56.8s\tremaining: 3.67s\n", + "9394:\tlearn: 0.0251244\ttotal: 56.9s\tremaining: 3.66s\n", + "9395:\tlearn: 0.0251208\ttotal: 56.9s\tremaining: 3.65s\n", + "9396:\tlearn: 0.0251178\ttotal: 56.9s\tremaining: 3.65s\n", + "9397:\tlearn: 0.0251163\ttotal: 56.9s\tremaining: 3.64s\n", + "9398:\tlearn: 0.0251130\ttotal: 56.9s\tremaining: 3.64s\n", + "9399:\tlearn: 0.0251108\ttotal: 56.9s\tremaining: 3.63s\n", + "9400:\tlearn: 0.0251089\ttotal: 56.9s\tremaining: 3.62s\n", + "9401:\tlearn: 0.0251066\ttotal: 56.9s\tremaining: 3.62s\n", + "9402:\tlearn: 0.0251022\ttotal: 56.9s\tremaining: 3.61s\n", + "9403:\tlearn: 0.0250998\ttotal: 56.9s\tremaining: 3.61s\n", + "9404:\tlearn: 0.0250950\ttotal: 56.9s\tremaining: 3.6s\n", + "9405:\tlearn: 0.0250913\ttotal: 56.9s\tremaining: 3.59s\n", + "9406:\tlearn: 0.0250888\ttotal: 56.9s\tremaining: 3.59s\n", + "9407:\tlearn: 0.0250862\ttotal: 56.9s\tremaining: 3.58s\n", + "9408:\tlearn: 0.0250837\ttotal: 56.9s\tremaining: 3.58s\n", + "9409:\tlearn: 0.0250806\ttotal: 56.9s\tremaining: 3.57s\n", + "9410:\tlearn: 0.0250764\ttotal: 56.9s\tremaining: 3.56s\n", + "9411:\tlearn: 0.0250716\ttotal: 56.9s\tremaining: 3.56s\n", + "9412:\tlearn: 0.0250690\ttotal: 56.9s\tremaining: 3.55s\n", + "9413:\tlearn: 0.0250640\ttotal: 56.9s\tremaining: 3.54s\n", + "9414:\tlearn: 0.0250610\ttotal: 57s\tremaining: 3.54s\n", + "9415:\tlearn: 0.0250581\ttotal: 57s\tremaining: 3.53s\n", + "9416:\tlearn: 0.0250543\ttotal: 57s\tremaining: 3.53s\n", + "9417:\tlearn: 0.0250509\ttotal: 57s\tremaining: 3.52s\n", + "9418:\tlearn: 0.0250459\ttotal: 57s\tremaining: 3.51s\n", + "9419:\tlearn: 0.0250427\ttotal: 57s\tremaining: 3.51s\n", + "9420:\tlearn: 0.0250387\ttotal: 57s\tremaining: 3.5s\n", + "9421:\tlearn: 0.0250358\ttotal: 57s\tremaining: 3.5s\n", + "9422:\tlearn: 0.0250332\ttotal: 57s\tremaining: 3.49s\n", + "9423:\tlearn: 0.0250318\ttotal: 57s\tremaining: 3.48s\n", + "9424:\tlearn: 0.0250293\ttotal: 57s\tremaining: 3.48s\n", + "9425:\tlearn: 0.0250267\ttotal: 57s\tremaining: 3.47s\n", + "9426:\tlearn: 0.0250247\ttotal: 57s\tremaining: 3.46s\n", + "9427:\tlearn: 0.0250204\ttotal: 57s\tremaining: 3.46s\n", + "9428:\tlearn: 0.0250154\ttotal: 57s\tremaining: 3.45s\n", + "9429:\tlearn: 0.0250119\ttotal: 57s\tremaining: 3.45s\n", + "9430:\tlearn: 0.0250086\ttotal: 57s\tremaining: 3.44s\n", + "9431:\tlearn: 0.0250055\ttotal: 57s\tremaining: 3.44s\n", + "9432:\tlearn: 0.0250014\ttotal: 57.1s\tremaining: 3.43s\n", + "9433:\tlearn: 0.0249960\ttotal: 57.1s\tremaining: 3.42s\n", + "9434:\tlearn: 0.0249935\ttotal: 57.1s\tremaining: 3.42s\n", + "9435:\tlearn: 0.0249915\ttotal: 57.1s\tremaining: 3.41s\n", + "9436:\tlearn: 0.0249888\ttotal: 57.1s\tremaining: 3.4s\n", + "9437:\tlearn: 0.0249852\ttotal: 57.1s\tremaining: 3.4s\n", + "9438:\tlearn: 0.0249804\ttotal: 57.1s\tremaining: 3.39s\n", + "9439:\tlearn: 0.0249773\ttotal: 57.1s\tremaining: 3.39s\n", + "9440:\tlearn: 0.0249748\ttotal: 57.1s\tremaining: 3.38s\n", + "9441:\tlearn: 0.0249724\ttotal: 57.1s\tremaining: 3.37s\n", + "9442:\tlearn: 0.0249706\ttotal: 57.1s\tremaining: 3.37s\n", + "9443:\tlearn: 0.0249660\ttotal: 57.1s\tremaining: 3.36s\n", + "9444:\tlearn: 0.0249628\ttotal: 57.1s\tremaining: 3.36s\n", + "9445:\tlearn: 0.0249592\ttotal: 57.1s\tremaining: 3.35s\n", + "9446:\tlearn: 0.0249573\ttotal: 57.1s\tremaining: 3.34s\n", + "9447:\tlearn: 0.0249543\ttotal: 57.1s\tremaining: 3.34s\n", + "9448:\tlearn: 0.0249506\ttotal: 57.1s\tremaining: 3.33s\n", + "9449:\tlearn: 0.0249464\ttotal: 57.1s\tremaining: 3.33s\n", + "9450:\tlearn: 0.0249429\ttotal: 57.1s\tremaining: 3.32s\n", + "9451:\tlearn: 0.0249400\ttotal: 57.2s\tremaining: 3.31s\n", + "9452:\tlearn: 0.0249383\ttotal: 57.2s\tremaining: 3.31s\n", + "9453:\tlearn: 0.0249347\ttotal: 57.2s\tremaining: 3.3s\n", + "9454:\tlearn: 0.0249321\ttotal: 57.2s\tremaining: 3.29s\n", + "9455:\tlearn: 0.0249289\ttotal: 57.2s\tremaining: 3.29s\n", + "9456:\tlearn: 0.0249238\ttotal: 57.2s\tremaining: 3.28s\n", + "9457:\tlearn: 0.0249172\ttotal: 57.2s\tremaining: 3.28s\n", + "9458:\tlearn: 0.0249153\ttotal: 57.2s\tremaining: 3.27s\n", + "9459:\tlearn: 0.0249117\ttotal: 57.2s\tremaining: 3.26s\n", + "9460:\tlearn: 0.0249108\ttotal: 57.2s\tremaining: 3.26s\n", + "9461:\tlearn: 0.0249087\ttotal: 57.2s\tremaining: 3.25s\n", + "9462:\tlearn: 0.0249055\ttotal: 57.2s\tremaining: 3.25s\n", + "9463:\tlearn: 0.0249032\ttotal: 57.2s\tremaining: 3.24s\n", + "9464:\tlearn: 0.0248983\ttotal: 57.2s\tremaining: 3.23s\n", + "9465:\tlearn: 0.0248942\ttotal: 57.2s\tremaining: 3.23s\n", + "9466:\tlearn: 0.0248907\ttotal: 57.2s\tremaining: 3.22s\n", + "9467:\tlearn: 0.0248860\ttotal: 57.2s\tremaining: 3.22s\n", + "9468:\tlearn: 0.0248811\ttotal: 57.2s\tremaining: 3.21s\n", + "9469:\tlearn: 0.0248776\ttotal: 57.2s\tremaining: 3.2s\n", + "9470:\tlearn: 0.0248731\ttotal: 57.3s\tremaining: 3.2s\n", + "9471:\tlearn: 0.0248688\ttotal: 57.3s\tremaining: 3.19s\n", + "9472:\tlearn: 0.0248634\ttotal: 57.3s\tremaining: 3.19s\n", + "9473:\tlearn: 0.0248603\ttotal: 57.3s\tremaining: 3.18s\n", + "9474:\tlearn: 0.0248569\ttotal: 57.3s\tremaining: 3.17s\n", + "9475:\tlearn: 0.0248538\ttotal: 57.3s\tremaining: 3.17s\n", + "9476:\tlearn: 0.0248511\ttotal: 57.3s\tremaining: 3.16s\n", + "9477:\tlearn: 0.0248473\ttotal: 57.3s\tremaining: 3.15s\n", + "9478:\tlearn: 0.0248433\ttotal: 57.3s\tremaining: 3.15s\n", + "9479:\tlearn: 0.0248405\ttotal: 57.3s\tremaining: 3.14s\n", + "9480:\tlearn: 0.0248375\ttotal: 57.3s\tremaining: 3.14s\n", + "9481:\tlearn: 0.0248334\ttotal: 57.3s\tremaining: 3.13s\n", + "9482:\tlearn: 0.0248302\ttotal: 57.3s\tremaining: 3.12s\n", + "9483:\tlearn: 0.0248257\ttotal: 57.3s\tremaining: 3.12s\n", + "9484:\tlearn: 0.0248238\ttotal: 57.3s\tremaining: 3.11s\n", + "9485:\tlearn: 0.0248184\ttotal: 57.3s\tremaining: 3.11s\n", + "9486:\tlearn: 0.0248132\ttotal: 57.3s\tremaining: 3.1s\n", + "9487:\tlearn: 0.0248101\ttotal: 57.3s\tremaining: 3.09s\n", + "9488:\tlearn: 0.0248044\ttotal: 57.3s\tremaining: 3.09s\n", + "9489:\tlearn: 0.0247998\ttotal: 57.3s\tremaining: 3.08s\n", + "9490:\tlearn: 0.0247990\ttotal: 57.4s\tremaining: 3.08s\n", + "9491:\tlearn: 0.0247955\ttotal: 57.4s\tremaining: 3.07s\n", + "9492:\tlearn: 0.0247914\ttotal: 57.4s\tremaining: 3.06s\n", + "9493:\tlearn: 0.0247879\ttotal: 57.4s\tremaining: 3.06s\n", + "9494:\tlearn: 0.0247833\ttotal: 57.4s\tremaining: 3.05s\n", + "9495:\tlearn: 0.0247796\ttotal: 57.4s\tremaining: 3.04s\n", + "9496:\tlearn: 0.0247758\ttotal: 57.4s\tremaining: 3.04s\n", + "9497:\tlearn: 0.0247710\ttotal: 57.4s\tremaining: 3.03s\n", + "9498:\tlearn: 0.0247677\ttotal: 57.4s\tremaining: 3.03s\n", + "9499:\tlearn: 0.0247633\ttotal: 57.4s\tremaining: 3.02s\n", + "9500:\tlearn: 0.0247590\ttotal: 57.4s\tremaining: 3.02s\n", + "9501:\tlearn: 0.0247553\ttotal: 57.4s\tremaining: 3.01s\n", + "9502:\tlearn: 0.0247536\ttotal: 57.4s\tremaining: 3s\n", + "9503:\tlearn: 0.0247504\ttotal: 57.4s\tremaining: 3s\n", + "9504:\tlearn: 0.0247487\ttotal: 57.4s\tremaining: 2.99s\n", + "9505:\tlearn: 0.0247448\ttotal: 57.4s\tremaining: 2.98s\n", + "9506:\tlearn: 0.0247400\ttotal: 57.4s\tremaining: 2.98s\n", + "9507:\tlearn: 0.0247355\ttotal: 57.4s\tremaining: 2.97s\n", + "9508:\tlearn: 0.0247315\ttotal: 57.5s\tremaining: 2.97s\n", + "9509:\tlearn: 0.0247280\ttotal: 57.5s\tremaining: 2.96s\n", + "9510:\tlearn: 0.0247222\ttotal: 57.5s\tremaining: 2.95s\n", + "9511:\tlearn: 0.0247157\ttotal: 57.5s\tremaining: 2.95s\n", + "9512:\tlearn: 0.0247130\ttotal: 57.5s\tremaining: 2.94s\n", + "9513:\tlearn: 0.0247080\ttotal: 57.5s\tremaining: 2.94s\n", + "9514:\tlearn: 0.0247039\ttotal: 57.5s\tremaining: 2.93s\n", + "9515:\tlearn: 0.0246999\ttotal: 57.5s\tremaining: 2.92s\n", + "9516:\tlearn: 0.0246968\ttotal: 57.5s\tremaining: 2.92s\n", + "9517:\tlearn: 0.0246924\ttotal: 57.5s\tremaining: 2.91s\n", + "9518:\tlearn: 0.0246887\ttotal: 57.5s\tremaining: 2.91s\n", + "9519:\tlearn: 0.0246836\ttotal: 57.5s\tremaining: 2.9s\n", + "9520:\tlearn: 0.0246810\ttotal: 57.5s\tremaining: 2.89s\n", + "9521:\tlearn: 0.0246780\ttotal: 57.5s\tremaining: 2.89s\n", + "9522:\tlearn: 0.0246753\ttotal: 57.5s\tremaining: 2.88s\n", + "9523:\tlearn: 0.0246713\ttotal: 57.5s\tremaining: 2.88s\n", + "9524:\tlearn: 0.0246677\ttotal: 57.5s\tremaining: 2.87s\n", + "9525:\tlearn: 0.0246635\ttotal: 57.6s\tremaining: 2.86s\n", + "9526:\tlearn: 0.0246621\ttotal: 57.6s\tremaining: 2.86s\n", + "9527:\tlearn: 0.0246574\ttotal: 57.6s\tremaining: 2.85s\n", + "9528:\tlearn: 0.0246543\ttotal: 57.6s\tremaining: 2.85s\n", + "9529:\tlearn: 0.0246504\ttotal: 57.6s\tremaining: 2.84s\n", + "9530:\tlearn: 0.0246464\ttotal: 57.6s\tremaining: 2.83s\n", + "9531:\tlearn: 0.0246418\ttotal: 57.6s\tremaining: 2.83s\n", + "9532:\tlearn: 0.0246396\ttotal: 57.6s\tremaining: 2.82s\n", + "9533:\tlearn: 0.0246377\ttotal: 57.6s\tremaining: 2.81s\n", + "9534:\tlearn: 0.0246335\ttotal: 57.6s\tremaining: 2.81s\n", + "9535:\tlearn: 0.0246314\ttotal: 57.6s\tremaining: 2.8s\n", + "9536:\tlearn: 0.0246273\ttotal: 57.6s\tremaining: 2.8s\n", + "9537:\tlearn: 0.0246242\ttotal: 57.6s\tremaining: 2.79s\n", + "9538:\tlearn: 0.0246220\ttotal: 57.6s\tremaining: 2.79s\n", + "9539:\tlearn: 0.0246173\ttotal: 57.6s\tremaining: 2.78s\n", + "9540:\tlearn: 0.0246157\ttotal: 57.6s\tremaining: 2.77s\n", + "9541:\tlearn: 0.0246121\ttotal: 57.6s\tremaining: 2.77s\n", + "9542:\tlearn: 0.0246077\ttotal: 57.6s\tremaining: 2.76s\n", + "9543:\tlearn: 0.0246044\ttotal: 57.7s\tremaining: 2.75s\n", + "9544:\tlearn: 0.0246011\ttotal: 57.7s\tremaining: 2.75s\n", + "9545:\tlearn: 0.0245959\ttotal: 57.7s\tremaining: 2.74s\n", + "9546:\tlearn: 0.0245910\ttotal: 57.7s\tremaining: 2.74s\n", + "9547:\tlearn: 0.0245867\ttotal: 57.7s\tremaining: 2.73s\n", + "9548:\tlearn: 0.0245836\ttotal: 57.7s\tremaining: 2.72s\n", + "9549:\tlearn: 0.0245792\ttotal: 57.7s\tremaining: 2.72s\n", + "9550:\tlearn: 0.0245748\ttotal: 57.7s\tremaining: 2.71s\n", + "9551:\tlearn: 0.0245729\ttotal: 57.7s\tremaining: 2.71s\n", + "9552:\tlearn: 0.0245693\ttotal: 57.7s\tremaining: 2.7s\n", + "9553:\tlearn: 0.0245655\ttotal: 57.7s\tremaining: 2.69s\n", + "9554:\tlearn: 0.0245617\ttotal: 57.7s\tremaining: 2.69s\n", + "9555:\tlearn: 0.0245582\ttotal: 57.7s\tremaining: 2.68s\n", + "9556:\tlearn: 0.0245552\ttotal: 57.7s\tremaining: 2.67s\n", + "9557:\tlearn: 0.0245524\ttotal: 57.7s\tremaining: 2.67s\n", + "9558:\tlearn: 0.0245474\ttotal: 57.7s\tremaining: 2.66s\n", + "9559:\tlearn: 0.0245447\ttotal: 57.7s\tremaining: 2.66s\n", + "9560:\tlearn: 0.0245423\ttotal: 57.7s\tremaining: 2.65s\n", + "9561:\tlearn: 0.0245383\ttotal: 57.7s\tremaining: 2.64s\n", + "9562:\tlearn: 0.0245368\ttotal: 57.7s\tremaining: 2.64s\n", + "9563:\tlearn: 0.0245332\ttotal: 57.7s\tremaining: 2.63s\n", + "9564:\tlearn: 0.0245309\ttotal: 57.8s\tremaining: 2.63s\n", + "9565:\tlearn: 0.0245269\ttotal: 57.8s\tremaining: 2.62s\n", + "9566:\tlearn: 0.0245252\ttotal: 57.8s\tremaining: 2.61s\n", + "9567:\tlearn: 0.0245221\ttotal: 57.8s\tremaining: 2.61s\n", + "9568:\tlearn: 0.0245189\ttotal: 57.8s\tremaining: 2.6s\n", + "9569:\tlearn: 0.0245164\ttotal: 57.8s\tremaining: 2.6s\n", + "9570:\tlearn: 0.0245130\ttotal: 57.8s\tremaining: 2.59s\n", + "9571:\tlearn: 0.0245086\ttotal: 57.8s\tremaining: 2.58s\n", + "9572:\tlearn: 0.0245060\ttotal: 57.8s\tremaining: 2.58s\n", + "9573:\tlearn: 0.0245035\ttotal: 57.8s\tremaining: 2.57s\n", + "9574:\tlearn: 0.0245003\ttotal: 57.8s\tremaining: 2.57s\n", + "9575:\tlearn: 0.0244973\ttotal: 57.8s\tremaining: 2.56s\n", + "9576:\tlearn: 0.0244919\ttotal: 57.8s\tremaining: 2.55s\n", + "9577:\tlearn: 0.0244878\ttotal: 57.8s\tremaining: 2.55s\n", + "9578:\tlearn: 0.0244837\ttotal: 57.8s\tremaining: 2.54s\n", + "9579:\tlearn: 0.0244819\ttotal: 57.8s\tremaining: 2.54s\n", + "9580:\tlearn: 0.0244790\ttotal: 57.8s\tremaining: 2.53s\n", + "9581:\tlearn: 0.0244769\ttotal: 57.8s\tremaining: 2.52s\n", + "9582:\tlearn: 0.0244747\ttotal: 57.9s\tremaining: 2.52s\n", + "9583:\tlearn: 0.0244720\ttotal: 57.9s\tremaining: 2.51s\n", + "9584:\tlearn: 0.0244697\ttotal: 57.9s\tremaining: 2.5s\n", + "9585:\tlearn: 0.0244679\ttotal: 57.9s\tremaining: 2.5s\n", + "9586:\tlearn: 0.0244640\ttotal: 57.9s\tremaining: 2.49s\n", + "9587:\tlearn: 0.0244602\ttotal: 57.9s\tremaining: 2.49s\n", + "9588:\tlearn: 0.0244549\ttotal: 57.9s\tremaining: 2.48s\n", + "9589:\tlearn: 0.0244500\ttotal: 57.9s\tremaining: 2.47s\n", + "9590:\tlearn: 0.0244465\ttotal: 57.9s\tremaining: 2.47s\n", + "9591:\tlearn: 0.0244436\ttotal: 57.9s\tremaining: 2.46s\n", + "9592:\tlearn: 0.0244407\ttotal: 57.9s\tremaining: 2.46s\n", + "9593:\tlearn: 0.0244386\ttotal: 57.9s\tremaining: 2.45s\n", + "9594:\tlearn: 0.0244361\ttotal: 57.9s\tremaining: 2.44s\n", + "9595:\tlearn: 0.0244339\ttotal: 57.9s\tremaining: 2.44s\n", + "9596:\tlearn: 0.0244304\ttotal: 57.9s\tremaining: 2.43s\n", + "9597:\tlearn: 0.0244266\ttotal: 57.9s\tremaining: 2.43s\n", + "9598:\tlearn: 0.0244251\ttotal: 57.9s\tremaining: 2.42s\n", + "9599:\tlearn: 0.0244208\ttotal: 57.9s\tremaining: 2.41s\n", + "9600:\tlearn: 0.0244184\ttotal: 57.9s\tremaining: 2.41s\n", + "9601:\tlearn: 0.0244148\ttotal: 57.9s\tremaining: 2.4s\n", + "9602:\tlearn: 0.0244129\ttotal: 58s\tremaining: 2.4s\n", + "9603:\tlearn: 0.0244096\ttotal: 58s\tremaining: 2.39s\n", + "9604:\tlearn: 0.0244064\ttotal: 58s\tremaining: 2.38s\n", + "9605:\tlearn: 0.0244034\ttotal: 58s\tremaining: 2.38s\n", + "9606:\tlearn: 0.0244015\ttotal: 58s\tremaining: 2.37s\n", + "9607:\tlearn: 0.0243970\ttotal: 58s\tremaining: 2.37s\n", + "9608:\tlearn: 0.0243959\ttotal: 58s\tremaining: 2.36s\n", + "9609:\tlearn: 0.0243914\ttotal: 58s\tremaining: 2.35s\n", + "9610:\tlearn: 0.0243886\ttotal: 58s\tremaining: 2.35s\n", + "9611:\tlearn: 0.0243858\ttotal: 58s\tremaining: 2.34s\n", + "9612:\tlearn: 0.0243818\ttotal: 58s\tremaining: 2.33s\n", + "9613:\tlearn: 0.0243788\ttotal: 58s\tremaining: 2.33s\n", + "9614:\tlearn: 0.0243745\ttotal: 58s\tremaining: 2.32s\n", + "9615:\tlearn: 0.0243728\ttotal: 58s\tremaining: 2.32s\n", + "9616:\tlearn: 0.0243692\ttotal: 58s\tremaining: 2.31s\n", + "9617:\tlearn: 0.0243653\ttotal: 58s\tremaining: 2.31s\n", + "9618:\tlearn: 0.0243626\ttotal: 58s\tremaining: 2.3s\n", + "9619:\tlearn: 0.0243604\ttotal: 58.1s\tremaining: 2.29s\n", + "9620:\tlearn: 0.0243570\ttotal: 58.1s\tremaining: 2.29s\n", + "9621:\tlearn: 0.0243520\ttotal: 58.1s\tremaining: 2.28s\n", + "9622:\tlearn: 0.0243498\ttotal: 58.1s\tremaining: 2.27s\n", + "9623:\tlearn: 0.0243463\ttotal: 58.1s\tremaining: 2.27s\n", + "9624:\tlearn: 0.0243433\ttotal: 58.1s\tremaining: 2.26s\n", + "9625:\tlearn: 0.0243400\ttotal: 58.1s\tremaining: 2.26s\n", + "9626:\tlearn: 0.0243335\ttotal: 58.1s\tremaining: 2.25s\n", + "9627:\tlearn: 0.0243315\ttotal: 58.1s\tremaining: 2.24s\n", + "9628:\tlearn: 0.0243291\ttotal: 58.1s\tremaining: 2.24s\n", + "9629:\tlearn: 0.0243279\ttotal: 58.1s\tremaining: 2.23s\n", + "9630:\tlearn: 0.0243249\ttotal: 58.1s\tremaining: 2.23s\n", + "9631:\tlearn: 0.0243224\ttotal: 58.1s\tremaining: 2.22s\n", + "9632:\tlearn: 0.0243193\ttotal: 58.1s\tremaining: 2.21s\n", + "9633:\tlearn: 0.0243164\ttotal: 58.1s\tremaining: 2.21s\n", + "9634:\tlearn: 0.0243140\ttotal: 58.1s\tremaining: 2.2s\n", + "9635:\tlearn: 0.0243117\ttotal: 58.1s\tremaining: 2.19s\n", + "9636:\tlearn: 0.0243092\ttotal: 58.1s\tremaining: 2.19s\n", + "9637:\tlearn: 0.0243063\ttotal: 58.1s\tremaining: 2.18s\n", + "9638:\tlearn: 0.0243013\ttotal: 58.1s\tremaining: 2.18s\n", + "9639:\tlearn: 0.0242981\ttotal: 58.1s\tremaining: 2.17s\n", + "9640:\tlearn: 0.0242937\ttotal: 58.2s\tremaining: 2.17s\n", + "9641:\tlearn: 0.0242900\ttotal: 58.2s\tremaining: 2.16s\n", + "9642:\tlearn: 0.0242860\ttotal: 58.2s\tremaining: 2.15s\n", + "9643:\tlearn: 0.0242816\ttotal: 58.2s\tremaining: 2.15s\n", + "9644:\tlearn: 0.0242786\ttotal: 58.2s\tremaining: 2.14s\n", + "9645:\tlearn: 0.0242741\ttotal: 58.2s\tremaining: 2.13s\n", + "9646:\tlearn: 0.0242705\ttotal: 58.2s\tremaining: 2.13s\n", + "9647:\tlearn: 0.0242679\ttotal: 58.2s\tremaining: 2.12s\n", + "9648:\tlearn: 0.0242656\ttotal: 58.2s\tremaining: 2.12s\n", + "9649:\tlearn: 0.0242600\ttotal: 58.2s\tremaining: 2.11s\n", + "9650:\tlearn: 0.0242566\ttotal: 58.2s\tremaining: 2.1s\n", + "9651:\tlearn: 0.0242534\ttotal: 58.2s\tremaining: 2.1s\n", + "9652:\tlearn: 0.0242497\ttotal: 58.2s\tremaining: 2.09s\n", + "9653:\tlearn: 0.0242467\ttotal: 58.2s\tremaining: 2.09s\n", + "9654:\tlearn: 0.0242433\ttotal: 58.2s\tremaining: 2.08s\n", + "9655:\tlearn: 0.0242364\ttotal: 58.2s\tremaining: 2.07s\n", + "9656:\tlearn: 0.0242340\ttotal: 58.2s\tremaining: 2.07s\n", + "9657:\tlearn: 0.0242315\ttotal: 58.2s\tremaining: 2.06s\n", + "9658:\tlearn: 0.0242289\ttotal: 58.2s\tremaining: 2.06s\n", + "9659:\tlearn: 0.0242243\ttotal: 58.3s\tremaining: 2.05s\n", + "9660:\tlearn: 0.0242220\ttotal: 58.3s\tremaining: 2.04s\n", + "9661:\tlearn: 0.0242172\ttotal: 58.3s\tremaining: 2.04s\n", + "9662:\tlearn: 0.0242150\ttotal: 58.3s\tremaining: 2.03s\n", + "9663:\tlearn: 0.0242134\ttotal: 58.3s\tremaining: 2.03s\n", + "9664:\tlearn: 0.0242090\ttotal: 58.3s\tremaining: 2.02s\n", + "9665:\tlearn: 0.0242066\ttotal: 58.3s\tremaining: 2.01s\n", + "9666:\tlearn: 0.0242016\ttotal: 58.3s\tremaining: 2.01s\n", + "9667:\tlearn: 0.0241984\ttotal: 58.3s\tremaining: 2s\n", + "9668:\tlearn: 0.0241972\ttotal: 58.3s\tremaining: 2s\n", + "9669:\tlearn: 0.0241937\ttotal: 58.3s\tremaining: 1.99s\n", + "9670:\tlearn: 0.0241903\ttotal: 58.3s\tremaining: 1.98s\n", + "9671:\tlearn: 0.0241880\ttotal: 58.3s\tremaining: 1.98s\n", + "9672:\tlearn: 0.0241865\ttotal: 58.3s\tremaining: 1.97s\n", + "9673:\tlearn: 0.0241813\ttotal: 58.3s\tremaining: 1.97s\n", + "9674:\tlearn: 0.0241786\ttotal: 58.3s\tremaining: 1.96s\n", + "9675:\tlearn: 0.0241767\ttotal: 58.3s\tremaining: 1.95s\n", + "9676:\tlearn: 0.0241739\ttotal: 58.3s\tremaining: 1.95s\n", + "9677:\tlearn: 0.0241697\ttotal: 58.3s\tremaining: 1.94s\n", + "9678:\tlearn: 0.0241655\ttotal: 58.4s\tremaining: 1.94s\n", + "9679:\tlearn: 0.0241614\ttotal: 58.4s\tremaining: 1.93s\n", + "9680:\tlearn: 0.0241564\ttotal: 58.4s\tremaining: 1.92s\n", + "9681:\tlearn: 0.0241532\ttotal: 58.4s\tremaining: 1.92s\n", + "9682:\tlearn: 0.0241503\ttotal: 58.4s\tremaining: 1.91s\n", + "9683:\tlearn: 0.0241479\ttotal: 58.4s\tremaining: 1.9s\n", + "9684:\tlearn: 0.0241437\ttotal: 58.4s\tremaining: 1.9s\n", + "9685:\tlearn: 0.0241410\ttotal: 58.4s\tremaining: 1.89s\n", + "9686:\tlearn: 0.0241382\ttotal: 58.4s\tremaining: 1.89s\n", + "9687:\tlearn: 0.0241347\ttotal: 58.4s\tremaining: 1.88s\n", + "9688:\tlearn: 0.0241321\ttotal: 58.4s\tremaining: 1.87s\n", + "9689:\tlearn: 0.0241275\ttotal: 58.4s\tremaining: 1.87s\n", + "9690:\tlearn: 0.0241231\ttotal: 58.4s\tremaining: 1.86s\n", + "9691:\tlearn: 0.0241210\ttotal: 58.4s\tremaining: 1.86s\n", + "9692:\tlearn: 0.0241178\ttotal: 58.4s\tremaining: 1.85s\n", + "9693:\tlearn: 0.0241138\ttotal: 58.4s\tremaining: 1.84s\n", + "9694:\tlearn: 0.0241088\ttotal: 58.4s\tremaining: 1.84s\n", + "9695:\tlearn: 0.0241062\ttotal: 58.5s\tremaining: 1.83s\n", + "9696:\tlearn: 0.0241026\ttotal: 58.5s\tremaining: 1.83s\n", + "9697:\tlearn: 0.0240993\ttotal: 58.5s\tremaining: 1.82s\n", + "9698:\tlearn: 0.0240955\ttotal: 58.5s\tremaining: 1.81s\n", + "9699:\tlearn: 0.0240930\ttotal: 58.5s\tremaining: 1.81s\n", + "9700:\tlearn: 0.0240886\ttotal: 58.5s\tremaining: 1.8s\n", + "9701:\tlearn: 0.0240849\ttotal: 58.5s\tremaining: 1.8s\n", + "9702:\tlearn: 0.0240819\ttotal: 58.5s\tremaining: 1.79s\n", + "9703:\tlearn: 0.0240768\ttotal: 58.5s\tremaining: 1.78s\n", + "9704:\tlearn: 0.0240730\ttotal: 58.5s\tremaining: 1.78s\n", + "9705:\tlearn: 0.0240710\ttotal: 58.5s\tremaining: 1.77s\n", + "9706:\tlearn: 0.0240665\ttotal: 58.5s\tremaining: 1.77s\n", + "9707:\tlearn: 0.0240634\ttotal: 58.5s\tremaining: 1.76s\n", + "9708:\tlearn: 0.0240601\ttotal: 58.5s\tremaining: 1.75s\n", + "9709:\tlearn: 0.0240559\ttotal: 58.5s\tremaining: 1.75s\n", + "9710:\tlearn: 0.0240539\ttotal: 58.5s\tremaining: 1.74s\n", + "9711:\tlearn: 0.0240514\ttotal: 58.5s\tremaining: 1.74s\n", + "9712:\tlearn: 0.0240476\ttotal: 58.5s\tremaining: 1.73s\n", + "9713:\tlearn: 0.0240437\ttotal: 58.5s\tremaining: 1.72s\n", + "9714:\tlearn: 0.0240422\ttotal: 58.5s\tremaining: 1.72s\n", + "9715:\tlearn: 0.0240391\ttotal: 58.5s\tremaining: 1.71s\n", + "9716:\tlearn: 0.0240355\ttotal: 58.6s\tremaining: 1.71s\n", + "9717:\tlearn: 0.0240319\ttotal: 58.6s\tremaining: 1.7s\n", + "9718:\tlearn: 0.0240272\ttotal: 58.6s\tremaining: 1.69s\n", + "9719:\tlearn: 0.0240254\ttotal: 58.6s\tremaining: 1.69s\n", + "9720:\tlearn: 0.0240226\ttotal: 58.6s\tremaining: 1.68s\n", + "9721:\tlearn: 0.0240181\ttotal: 58.6s\tremaining: 1.68s\n", + "9722:\tlearn: 0.0240162\ttotal: 58.6s\tremaining: 1.67s\n", + "9723:\tlearn: 0.0240130\ttotal: 58.6s\tremaining: 1.66s\n", + "9724:\tlearn: 0.0240108\ttotal: 58.6s\tremaining: 1.66s\n", + "9725:\tlearn: 0.0240078\ttotal: 58.6s\tremaining: 1.65s\n", + "9726:\tlearn: 0.0240043\ttotal: 58.6s\tremaining: 1.65s\n", + "9727:\tlearn: 0.0240013\ttotal: 58.6s\tremaining: 1.64s\n", + "9728:\tlearn: 0.0239982\ttotal: 58.6s\tremaining: 1.63s\n", + "9729:\tlearn: 0.0239948\ttotal: 58.6s\tremaining: 1.63s\n", + "9730:\tlearn: 0.0239898\ttotal: 58.6s\tremaining: 1.62s\n", + "9731:\tlearn: 0.0239855\ttotal: 58.6s\tremaining: 1.61s\n", + "9732:\tlearn: 0.0239818\ttotal: 58.7s\tremaining: 1.61s\n", + "9733:\tlearn: 0.0239797\ttotal: 58.7s\tremaining: 1.6s\n", + "9734:\tlearn: 0.0239764\ttotal: 58.7s\tremaining: 1.6s\n", + "9735:\tlearn: 0.0239730\ttotal: 58.7s\tremaining: 1.59s\n", + "9736:\tlearn: 0.0239704\ttotal: 58.7s\tremaining: 1.58s\n", + "9737:\tlearn: 0.0239686\ttotal: 58.7s\tremaining: 1.58s\n", + "9738:\tlearn: 0.0239673\ttotal: 58.7s\tremaining: 1.57s\n", + "9739:\tlearn: 0.0239630\ttotal: 58.7s\tremaining: 1.57s\n", + "9740:\tlearn: 0.0239608\ttotal: 58.7s\tremaining: 1.56s\n", + "9741:\tlearn: 0.0239588\ttotal: 58.7s\tremaining: 1.55s\n", + "9742:\tlearn: 0.0239567\ttotal: 58.7s\tremaining: 1.55s\n", + "9743:\tlearn: 0.0239519\ttotal: 58.7s\tremaining: 1.54s\n", + "9744:\tlearn: 0.0239494\ttotal: 58.7s\tremaining: 1.54s\n", + "9745:\tlearn: 0.0239465\ttotal: 58.7s\tremaining: 1.53s\n", + "9746:\tlearn: 0.0239435\ttotal: 58.7s\tremaining: 1.52s\n", + "9747:\tlearn: 0.0239406\ttotal: 58.7s\tremaining: 1.52s\n", + "9748:\tlearn: 0.0239376\ttotal: 58.7s\tremaining: 1.51s\n", + "9749:\tlearn: 0.0239341\ttotal: 58.7s\tremaining: 1.51s\n", + "9750:\tlearn: 0.0239317\ttotal: 58.7s\tremaining: 1.5s\n", + "9751:\tlearn: 0.0239285\ttotal: 58.8s\tremaining: 1.49s\n", + "9752:\tlearn: 0.0239255\ttotal: 58.8s\tremaining: 1.49s\n", + "9753:\tlearn: 0.0239225\ttotal: 58.8s\tremaining: 1.48s\n", + "9754:\tlearn: 0.0239201\ttotal: 58.8s\tremaining: 1.48s\n", + "9755:\tlearn: 0.0239170\ttotal: 58.8s\tremaining: 1.47s\n", + "9756:\tlearn: 0.0239130\ttotal: 58.8s\tremaining: 1.46s\n", + "9757:\tlearn: 0.0239087\ttotal: 58.8s\tremaining: 1.46s\n", + "9758:\tlearn: 0.0239062\ttotal: 58.8s\tremaining: 1.45s\n", + "9759:\tlearn: 0.0239023\ttotal: 58.8s\tremaining: 1.45s\n", + "9760:\tlearn: 0.0239003\ttotal: 58.8s\tremaining: 1.44s\n", + "9761:\tlearn: 0.0238981\ttotal: 58.8s\tremaining: 1.43s\n", + "9762:\tlearn: 0.0238952\ttotal: 58.8s\tremaining: 1.43s\n", + "9763:\tlearn: 0.0238894\ttotal: 58.8s\tremaining: 1.42s\n", + "9764:\tlearn: 0.0238862\ttotal: 58.8s\tremaining: 1.42s\n", + "9765:\tlearn: 0.0238790\ttotal: 58.8s\tremaining: 1.41s\n", + "9766:\tlearn: 0.0238756\ttotal: 58.8s\tremaining: 1.4s\n", + "9767:\tlearn: 0.0238726\ttotal: 58.8s\tremaining: 1.4s\n", + "9768:\tlearn: 0.0238695\ttotal: 58.8s\tremaining: 1.39s\n", + "9769:\tlearn: 0.0238646\ttotal: 58.9s\tremaining: 1.39s\n", + "9770:\tlearn: 0.0238595\ttotal: 58.9s\tremaining: 1.38s\n", + "9771:\tlearn: 0.0238552\ttotal: 58.9s\tremaining: 1.37s\n", + "9772:\tlearn: 0.0238516\ttotal: 58.9s\tremaining: 1.37s\n", + "9773:\tlearn: 0.0238470\ttotal: 58.9s\tremaining: 1.36s\n", + "9774:\tlearn: 0.0238456\ttotal: 58.9s\tremaining: 1.35s\n", + "9775:\tlearn: 0.0238413\ttotal: 58.9s\tremaining: 1.35s\n", + "9776:\tlearn: 0.0238367\ttotal: 58.9s\tremaining: 1.34s\n", + "9777:\tlearn: 0.0238355\ttotal: 58.9s\tremaining: 1.34s\n", + "9778:\tlearn: 0.0238326\ttotal: 58.9s\tremaining: 1.33s\n", + "9779:\tlearn: 0.0238306\ttotal: 58.9s\tremaining: 1.32s\n", + "9780:\tlearn: 0.0238265\ttotal: 58.9s\tremaining: 1.32s\n", + "9781:\tlearn: 0.0238246\ttotal: 58.9s\tremaining: 1.31s\n", + "9782:\tlearn: 0.0238222\ttotal: 58.9s\tremaining: 1.31s\n", + "9783:\tlearn: 0.0238178\ttotal: 58.9s\tremaining: 1.3s\n", + "9784:\tlearn: 0.0238164\ttotal: 58.9s\tremaining: 1.29s\n", + "9785:\tlearn: 0.0238131\ttotal: 58.9s\tremaining: 1.29s\n", + "9786:\tlearn: 0.0238105\ttotal: 58.9s\tremaining: 1.28s\n", + "9787:\tlearn: 0.0238073\ttotal: 58.9s\tremaining: 1.28s\n", + "9788:\tlearn: 0.0238036\ttotal: 58.9s\tremaining: 1.27s\n", + "9789:\tlearn: 0.0238001\ttotal: 59s\tremaining: 1.26s\n", + "9790:\tlearn: 0.0237979\ttotal: 59s\tremaining: 1.26s\n", + "9791:\tlearn: 0.0237953\ttotal: 59s\tremaining: 1.25s\n", + "9792:\tlearn: 0.0237909\ttotal: 59s\tremaining: 1.25s\n", + "9793:\tlearn: 0.0237885\ttotal: 59s\tremaining: 1.24s\n", + "9794:\tlearn: 0.0237841\ttotal: 59s\tremaining: 1.23s\n", + "9795:\tlearn: 0.0237810\ttotal: 59s\tremaining: 1.23s\n", + "9796:\tlearn: 0.0237776\ttotal: 59s\tremaining: 1.22s\n", + "9797:\tlearn: 0.0237745\ttotal: 59s\tremaining: 1.22s\n", + "9798:\tlearn: 0.0237697\ttotal: 59s\tremaining: 1.21s\n", + "9799:\tlearn: 0.0237655\ttotal: 59s\tremaining: 1.2s\n", + "9800:\tlearn: 0.0237641\ttotal: 59s\tremaining: 1.2s\n", + "9801:\tlearn: 0.0237586\ttotal: 59s\tremaining: 1.19s\n", + "9802:\tlearn: 0.0237548\ttotal: 59s\tremaining: 1.19s\n", + "9803:\tlearn: 0.0237526\ttotal: 59s\tremaining: 1.18s\n", + "9804:\tlearn: 0.0237478\ttotal: 59s\tremaining: 1.17s\n", + "9805:\tlearn: 0.0237445\ttotal: 59s\tremaining: 1.17s\n", + "9806:\tlearn: 0.0237412\ttotal: 59.1s\tremaining: 1.16s\n", + "9807:\tlearn: 0.0237361\ttotal: 59.1s\tremaining: 1.16s\n", + "9808:\tlearn: 0.0237341\ttotal: 59.1s\tremaining: 1.15s\n", + "9809:\tlearn: 0.0237319\ttotal: 59.1s\tremaining: 1.14s\n", + "9810:\tlearn: 0.0237278\ttotal: 59.1s\tremaining: 1.14s\n", + "9811:\tlearn: 0.0237265\ttotal: 59.1s\tremaining: 1.13s\n", + "9812:\tlearn: 0.0237234\ttotal: 59.1s\tremaining: 1.13s\n", + "9813:\tlearn: 0.0237205\ttotal: 59.1s\tremaining: 1.12s\n", + "9814:\tlearn: 0.0237174\ttotal: 59.1s\tremaining: 1.11s\n", + "9815:\tlearn: 0.0237141\ttotal: 59.1s\tremaining: 1.11s\n", + "9816:\tlearn: 0.0237116\ttotal: 59.1s\tremaining: 1.1s\n", + "9817:\tlearn: 0.0237083\ttotal: 59.1s\tremaining: 1.09s\n", + "9818:\tlearn: 0.0237064\ttotal: 59.1s\tremaining: 1.09s\n", + "9819:\tlearn: 0.0237034\ttotal: 59.1s\tremaining: 1.08s\n", + "9820:\tlearn: 0.0237002\ttotal: 59.1s\tremaining: 1.08s\n", + "9821:\tlearn: 0.0236977\ttotal: 59.1s\tremaining: 1.07s\n", + "9822:\tlearn: 0.0236953\ttotal: 59.1s\tremaining: 1.06s\n", + "9823:\tlearn: 0.0236916\ttotal: 59.1s\tremaining: 1.06s\n", + "9824:\tlearn: 0.0236903\ttotal: 59.1s\tremaining: 1.05s\n", + "9825:\tlearn: 0.0236875\ttotal: 59.1s\tremaining: 1.05s\n", + "9826:\tlearn: 0.0236842\ttotal: 59.1s\tremaining: 1.04s\n", + "9827:\tlearn: 0.0236827\ttotal: 59.2s\tremaining: 1.03s\n", + "9828:\tlearn: 0.0236814\ttotal: 59.2s\tremaining: 1.03s\n", + "9829:\tlearn: 0.0236787\ttotal: 59.2s\tremaining: 1.02s\n", + "9830:\tlearn: 0.0236745\ttotal: 59.2s\tremaining: 1.02s\n", + "9831:\tlearn: 0.0236723\ttotal: 59.2s\tremaining: 1.01s\n", + "9832:\tlearn: 0.0236687\ttotal: 59.2s\tremaining: 1s\n", + "9833:\tlearn: 0.0236659\ttotal: 59.2s\tremaining: 999ms\n", + "9834:\tlearn: 0.0236636\ttotal: 59.2s\tremaining: 993ms\n", + "9835:\tlearn: 0.0236609\ttotal: 59.2s\tremaining: 987ms\n", + "9836:\tlearn: 0.0236584\ttotal: 59.2s\tremaining: 981ms\n", + "9837:\tlearn: 0.0236538\ttotal: 59.2s\tremaining: 975ms\n", + "9838:\tlearn: 0.0236485\ttotal: 59.2s\tremaining: 969ms\n", + "9839:\tlearn: 0.0236419\ttotal: 59.2s\tremaining: 963ms\n", + "9840:\tlearn: 0.0236398\ttotal: 59.2s\tremaining: 957ms\n", + "9841:\tlearn: 0.0236369\ttotal: 59.2s\tremaining: 951ms\n", + "9842:\tlearn: 0.0236328\ttotal: 59.2s\tremaining: 945ms\n", + "9843:\tlearn: 0.0236307\ttotal: 59.2s\tremaining: 939ms\n", + "9844:\tlearn: 0.0236272\ttotal: 59.3s\tremaining: 933ms\n", + "9845:\tlearn: 0.0236250\ttotal: 59.3s\tremaining: 927ms\n", + "9846:\tlearn: 0.0236204\ttotal: 59.3s\tremaining: 921ms\n", + "9847:\tlearn: 0.0236182\ttotal: 59.3s\tremaining: 915ms\n", + "9848:\tlearn: 0.0236156\ttotal: 59.3s\tremaining: 909ms\n", + "9849:\tlearn: 0.0236125\ttotal: 59.3s\tremaining: 903ms\n", + "9850:\tlearn: 0.0236074\ttotal: 59.3s\tremaining: 897ms\n", + "9851:\tlearn: 0.0236047\ttotal: 59.3s\tremaining: 891ms\n", + "9852:\tlearn: 0.0236026\ttotal: 59.3s\tremaining: 885ms\n", + "9853:\tlearn: 0.0235987\ttotal: 59.3s\tremaining: 879ms\n", + "9854:\tlearn: 0.0235964\ttotal: 59.3s\tremaining: 873ms\n", + "9855:\tlearn: 0.0235949\ttotal: 59.3s\tremaining: 866ms\n", + "9856:\tlearn: 0.0235911\ttotal: 59.3s\tremaining: 860ms\n", + "9857:\tlearn: 0.0235892\ttotal: 59.3s\tremaining: 854ms\n", + "9858:\tlearn: 0.0235863\ttotal: 59.3s\tremaining: 848ms\n", + "9859:\tlearn: 0.0235830\ttotal: 59.3s\tremaining: 842ms\n", + "9860:\tlearn: 0.0235806\ttotal: 59.3s\tremaining: 836ms\n", + "9861:\tlearn: 0.0235772\ttotal: 59.3s\tremaining: 830ms\n", + "9862:\tlearn: 0.0235751\ttotal: 59.3s\tremaining: 824ms\n", + "9863:\tlearn: 0.0235715\ttotal: 59.3s\tremaining: 818ms\n", + "9864:\tlearn: 0.0235697\ttotal: 59.4s\tremaining: 812ms\n", + "9865:\tlearn: 0.0235674\ttotal: 59.4s\tremaining: 806ms\n", + "9866:\tlearn: 0.0235649\ttotal: 59.4s\tremaining: 800ms\n", + "9867:\tlearn: 0.0235623\ttotal: 59.4s\tremaining: 794ms\n", + "9868:\tlearn: 0.0235592\ttotal: 59.4s\tremaining: 788ms\n", + "9869:\tlearn: 0.0235560\ttotal: 59.4s\tremaining: 782ms\n", + "9870:\tlearn: 0.0235532\ttotal: 59.4s\tremaining: 776ms\n", + "9871:\tlearn: 0.0235493\ttotal: 59.4s\tremaining: 770ms\n", + "9872:\tlearn: 0.0235477\ttotal: 59.4s\tremaining: 764ms\n", + "9873:\tlearn: 0.0235430\ttotal: 59.4s\tremaining: 758ms\n", + "9874:\tlearn: 0.0235391\ttotal: 59.4s\tremaining: 752ms\n", + "9875:\tlearn: 0.0235378\ttotal: 59.4s\tremaining: 746ms\n", + "9876:\tlearn: 0.0235350\ttotal: 59.4s\tremaining: 740ms\n", + "9877:\tlearn: 0.0235333\ttotal: 59.4s\tremaining: 734ms\n", + "9878:\tlearn: 0.0235309\ttotal: 59.4s\tremaining: 728ms\n", + "9879:\tlearn: 0.0235281\ttotal: 59.4s\tremaining: 722ms\n", + "9880:\tlearn: 0.0235251\ttotal: 59.5s\tremaining: 716ms\n", + "9881:\tlearn: 0.0235231\ttotal: 59.5s\tremaining: 710ms\n", + "9882:\tlearn: 0.0235217\ttotal: 59.5s\tremaining: 704ms\n", + "9883:\tlearn: 0.0235190\ttotal: 59.5s\tremaining: 698ms\n", + "9884:\tlearn: 0.0235156\ttotal: 59.5s\tremaining: 692ms\n", + "9885:\tlearn: 0.0235137\ttotal: 59.5s\tremaining: 686ms\n", + "9886:\tlearn: 0.0235092\ttotal: 59.5s\tremaining: 680ms\n", + "9887:\tlearn: 0.0235051\ttotal: 59.5s\tremaining: 674ms\n", + "9888:\tlearn: 0.0235027\ttotal: 59.5s\tremaining: 668ms\n", + "9889:\tlearn: 0.0234979\ttotal: 59.5s\tremaining: 662ms\n", + "9890:\tlearn: 0.0234961\ttotal: 59.5s\tremaining: 656ms\n", + "9891:\tlearn: 0.0234934\ttotal: 59.5s\tremaining: 650ms\n", + "9892:\tlearn: 0.0234905\ttotal: 59.5s\tremaining: 644ms\n", + "9893:\tlearn: 0.0234873\ttotal: 59.5s\tremaining: 638ms\n", + "9894:\tlearn: 0.0234833\ttotal: 59.5s\tremaining: 632ms\n", + "9895:\tlearn: 0.0234805\ttotal: 59.5s\tremaining: 626ms\n", + "9896:\tlearn: 0.0234762\ttotal: 59.5s\tremaining: 620ms\n", + "9897:\tlearn: 0.0234725\ttotal: 59.5s\tremaining: 613ms\n", + "9898:\tlearn: 0.0234691\ttotal: 59.5s\tremaining: 607ms\n", + "9899:\tlearn: 0.0234668\ttotal: 59.5s\tremaining: 601ms\n", + "9900:\tlearn: 0.0234632\ttotal: 59.5s\tremaining: 595ms\n", + "9901:\tlearn: 0.0234606\ttotal: 59.5s\tremaining: 589ms\n", + "9902:\tlearn: 0.0234585\ttotal: 59.6s\tremaining: 583ms\n", + "9903:\tlearn: 0.0234558\ttotal: 59.6s\tremaining: 577ms\n", + "9904:\tlearn: 0.0234520\ttotal: 59.6s\tremaining: 571ms\n", + "9905:\tlearn: 0.0234490\ttotal: 59.6s\tremaining: 565ms\n", + "9906:\tlearn: 0.0234464\ttotal: 59.6s\tremaining: 559ms\n", + "9907:\tlearn: 0.0234413\ttotal: 59.6s\tremaining: 553ms\n", + "9908:\tlearn: 0.0234387\ttotal: 59.6s\tremaining: 547ms\n", + "9909:\tlearn: 0.0234354\ttotal: 59.6s\tremaining: 541ms\n", + "9910:\tlearn: 0.0234327\ttotal: 59.6s\tremaining: 535ms\n", + "9911:\tlearn: 0.0234294\ttotal: 59.6s\tremaining: 529ms\n", + "9912:\tlearn: 0.0234265\ttotal: 59.6s\tremaining: 523ms\n", + "9913:\tlearn: 0.0234247\ttotal: 59.6s\tremaining: 517ms\n", + "9914:\tlearn: 0.0234215\ttotal: 59.6s\tremaining: 511ms\n", + "9915:\tlearn: 0.0234173\ttotal: 59.6s\tremaining: 505ms\n", + "9916:\tlearn: 0.0234137\ttotal: 59.6s\tremaining: 499ms\n", + "9917:\tlearn: 0.0234100\ttotal: 59.6s\tremaining: 493ms\n", + "9918:\tlearn: 0.0234092\ttotal: 59.6s\tremaining: 487ms\n", + "9919:\tlearn: 0.0234062\ttotal: 59.7s\tremaining: 481ms\n", + "9920:\tlearn: 0.0234038\ttotal: 59.7s\tremaining: 475ms\n", + "9921:\tlearn: 0.0234009\ttotal: 59.7s\tremaining: 469ms\n", + "9922:\tlearn: 0.0233953\ttotal: 59.7s\tremaining: 463ms\n", + "9923:\tlearn: 0.0233905\ttotal: 59.7s\tremaining: 457ms\n", + "9924:\tlearn: 0.0233862\ttotal: 59.7s\tremaining: 451ms\n", + "9925:\tlearn: 0.0233834\ttotal: 59.7s\tremaining: 445ms\n", + "9926:\tlearn: 0.0233812\ttotal: 59.7s\tremaining: 439ms\n", + "9927:\tlearn: 0.0233777\ttotal: 59.7s\tremaining: 433ms\n", + "9928:\tlearn: 0.0233750\ttotal: 59.7s\tremaining: 427ms\n", + "9929:\tlearn: 0.0233705\ttotal: 59.7s\tremaining: 421ms\n", + "9930:\tlearn: 0.0233649\ttotal: 59.7s\tremaining: 415ms\n", + "9931:\tlearn: 0.0233621\ttotal: 59.7s\tremaining: 409ms\n", + "9932:\tlearn: 0.0233589\ttotal: 59.7s\tremaining: 403ms\n", + "9933:\tlearn: 0.0233534\ttotal: 59.7s\tremaining: 397ms\n", + "9934:\tlearn: 0.0233498\ttotal: 59.7s\tremaining: 391ms\n", + "9935:\tlearn: 0.0233479\ttotal: 59.7s\tremaining: 385ms\n", + "9936:\tlearn: 0.0233450\ttotal: 59.7s\tremaining: 379ms\n", + "9937:\tlearn: 0.0233428\ttotal: 59.7s\tremaining: 373ms\n", + "9938:\tlearn: 0.0233403\ttotal: 59.7s\tremaining: 367ms\n", + "9939:\tlearn: 0.0233376\ttotal: 59.8s\tremaining: 361ms\n", + "9940:\tlearn: 0.0233346\ttotal: 59.8s\tremaining: 355ms\n", + "9941:\tlearn: 0.0233304\ttotal: 59.8s\tremaining: 349ms\n", + "9942:\tlearn: 0.0233285\ttotal: 59.8s\tremaining: 343ms\n", + "9943:\tlearn: 0.0233265\ttotal: 59.8s\tremaining: 337ms\n", + "9944:\tlearn: 0.0233236\ttotal: 59.8s\tremaining: 331ms\n", + "9945:\tlearn: 0.0233203\ttotal: 59.8s\tremaining: 325ms\n", + "9946:\tlearn: 0.0233184\ttotal: 59.8s\tremaining: 319ms\n", + "9947:\tlearn: 0.0233154\ttotal: 59.8s\tremaining: 313ms\n", + "9948:\tlearn: 0.0233121\ttotal: 59.8s\tremaining: 307ms\n", + "9949:\tlearn: 0.0233089\ttotal: 59.8s\tremaining: 301ms\n", + "9950:\tlearn: 0.0233058\ttotal: 59.8s\tremaining: 295ms\n", + "9951:\tlearn: 0.0233041\ttotal: 59.8s\tremaining: 289ms\n", + "9952:\tlearn: 0.0233016\ttotal: 59.8s\tremaining: 282ms\n", + "9953:\tlearn: 0.0232991\ttotal: 59.8s\tremaining: 276ms\n", + "9954:\tlearn: 0.0232965\ttotal: 59.8s\tremaining: 270ms\n", + "9955:\tlearn: 0.0232929\ttotal: 59.8s\tremaining: 264ms\n", + "9956:\tlearn: 0.0232906\ttotal: 59.8s\tremaining: 258ms\n", + "9957:\tlearn: 0.0232880\ttotal: 59.8s\tremaining: 252ms\n", + "9958:\tlearn: 0.0232848\ttotal: 59.9s\tremaining: 246ms\n", + "9959:\tlearn: 0.0232826\ttotal: 59.9s\tremaining: 240ms\n", + "9960:\tlearn: 0.0232792\ttotal: 59.9s\tremaining: 234ms\n", + "9961:\tlearn: 0.0232771\ttotal: 59.9s\tremaining: 228ms\n", + "9962:\tlearn: 0.0232738\ttotal: 59.9s\tremaining: 222ms\n", + "9963:\tlearn: 0.0232698\ttotal: 59.9s\tremaining: 216ms\n", + "9964:\tlearn: 0.0232667\ttotal: 59.9s\tremaining: 210ms\n", + "9965:\tlearn: 0.0232648\ttotal: 59.9s\tremaining: 204ms\n", + "9966:\tlearn: 0.0232611\ttotal: 59.9s\tremaining: 198ms\n", + "9967:\tlearn: 0.0232590\ttotal: 59.9s\tremaining: 192ms\n", + "9968:\tlearn: 0.0232565\ttotal: 59.9s\tremaining: 186ms\n", + "9969:\tlearn: 0.0232558\ttotal: 59.9s\tremaining: 180ms\n", + "9970:\tlearn: 0.0232523\ttotal: 59.9s\tremaining: 174ms\n", + "9971:\tlearn: 0.0232499\ttotal: 59.9s\tremaining: 168ms\n", + "9972:\tlearn: 0.0232470\ttotal: 59.9s\tremaining: 162ms\n", + "9973:\tlearn: 0.0232455\ttotal: 59.9s\tremaining: 156ms\n", + "9974:\tlearn: 0.0232425\ttotal: 59.9s\tremaining: 150ms\n", + "9975:\tlearn: 0.0232405\ttotal: 59.9s\tremaining: 144ms\n", + "9976:\tlearn: 0.0232389\ttotal: 59.9s\tremaining: 138ms\n", + "9977:\tlearn: 0.0232363\ttotal: 59.9s\tremaining: 132ms\n", + "9978:\tlearn: 0.0232331\ttotal: 60s\tremaining: 126ms\n", + "9979:\tlearn: 0.0232296\ttotal: 60s\tremaining: 120ms\n", + "9980:\tlearn: 0.0232263\ttotal: 60s\tremaining: 114ms\n", + "9981:\tlearn: 0.0232252\ttotal: 60s\tremaining: 108ms\n", + "9982:\tlearn: 0.0232219\ttotal: 60s\tremaining: 102ms\n", + "9983:\tlearn: 0.0232199\ttotal: 60s\tremaining: 96.1ms\n", + "9984:\tlearn: 0.0232172\ttotal: 60s\tremaining: 90.1ms\n", + "9985:\tlearn: 0.0232146\ttotal: 1m\tremaining: 84.1ms\n", + "9986:\tlearn: 0.0232104\ttotal: 1m\tremaining: 78.1ms\n", + "9987:\tlearn: 0.0232067\ttotal: 1m\tremaining: 72.1ms\n", + "9988:\tlearn: 0.0232028\ttotal: 1m\tremaining: 66.1ms\n", + "9989:\tlearn: 0.0232003\ttotal: 1m\tremaining: 60.1ms\n", + "9990:\tlearn: 0.0231973\ttotal: 1m\tremaining: 54.1ms\n", + "9991:\tlearn: 0.0231931\ttotal: 1m\tremaining: 48.1ms\n", + "9992:\tlearn: 0.0231908\ttotal: 1m\tremaining: 42.1ms\n", + "9993:\tlearn: 0.0231884\ttotal: 1m\tremaining: 36ms\n", + "9994:\tlearn: 0.0231840\ttotal: 1m\tremaining: 30ms\n", + "9995:\tlearn: 0.0231827\ttotal: 1m\tremaining: 24ms\n", + "9996:\tlearn: 0.0231788\ttotal: 1m\tremaining: 18ms\n", + "9997:\tlearn: 0.0231764\ttotal: 1m\tremaining: 12ms\n", + "9998:\tlearn: 0.0231743\ttotal: 1m\tremaining: 6.01ms\n", + "9999:\tlearn: 0.0231708\ttotal: 1m\tremaining: 0us\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "plt.figure(figsize=(14, 3))\n", + "plt.subplots_adjust(top=1.5)\n", + "\n", + "for i, score_type in enumerate(score):\n", + " plt.subplot(1, 2, i + 1)\n", + " plt.title(f'Test {score_type} score depending on random forest size')\n", + " plt.xlabel('Number of trees')\n", + " plt.ylabel('Score')\n", + " plt.plot(score[score_type].keys(), score[score_type].values(), marker='o')\n", + " plt.grid(True)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 519 + }, + "id": "1LqGgrTaWVYE", + "outputId": "d7fc6849-c5b9-4781-d24f-2935881b5aa3" + }, + "execution_count": 214, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABI0AAAH2CAYAAAD9FXyRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACk+0lEQVR4nOzdeXhTVf7H8U8a2nShLUtXFgERhbJqlVpAcWF331iUQVFxhmVEO+MozggUHfi5jOKOMqK4zAii4zIiUEHcAHHAhX2TRYGWpbSFFtrQ3N8fJaFp0jZt05uWvl/P0wdycnNy7mmTnHzvOd9jMQzDEAAAAAAAAFBKUKAbAAAAAAAAgLqHoBEAAAAAAAA8EDQCAAAAAACAB4JGAAAAAAAA8EDQCAAAAAAAAB4IGgEAAAAAAMADQSMAAAAAAAB4IGgEAAAAAAAADwSNAAAAAAAA4IGgEYAqW758uSwWi5YvXx7opviFt/O544471LZt24C1qaGYOnWqLBZLoJvhZtu2bRowYICio6NlsVj04YcfBrpJte5Me00DDU1DfN+qqTPtc97b+VgsFk2dOjUg7WlI2rZtqzvuuCPQzXDz1ltvqWPHjgoODlaTJk0C3RxTnGmv6bqEoFEAWSwWn378MYgvKCjQ1KlT+UIAAJW4/fbbtW7dOv3973/XW2+9pQsvvDDQTfLw0ksv6Y033gh0M4AGo66P2by9bx07dkxTpkzRoEGD1KxZM1ksFt43gAZg8+bNuuOOO9S+fXvNnj1br776aqCb5GHfvn2aOnWqfvzxx0A3BT5oFOgGNGRvvfWW2+0333xTGRkZHuWdOnWq8XMVFBQoPT1dknTZZZfVuD7gTDd79mw5HI5ANwMmO378uFauXKm//vWvmjBhQqCbU66XXnpJMTExfruyeemll+r48eMKCQnxS33AmaYuj9nKe9/atWuXpk2bprPOOkvdu3fnwmEDdPz4cTVqxNe9hmb58uVyOBx69tlndc455wS6OV7t27dP6enpatu2rXr06OGXOhm71x7eRQJo5MiRbrdXrVqljIwMj3JULj8/XxEREYFuRp1y4sQJhYSEKCiICYXVERwcHOgmmM7hcKioqEihoaGBbkrAHDx4UJL8OpW7Prw/BQUFNejfO1CZujxmK+99KzExUfv371dCQoL+97//6aKLLgpA62qmPrx/1mUN8X2dvxnpwIEDkvw7likoKFB4eLjf6qsNDXHsbha+TdZxDodDM2fOVOfOnRUaGqr4+Hj9/ve/15EjR9yO+9///qeBAwcqJiZGYWFhateune68805JJVeaYmNjJUnp6emuKdQVrXHOzs7Wn//8Z3Xt2lWNGzdWVFSUBg8erJ9++snj2BMnTmjq1Kk699xzFRoaqsTERN14443asWOH23k8++yz6tq1q0JDQxUbG6tBgwbpf//7n6uN5U2bLttWZw6UjRs36tZbb1XTpk3Vp08fSdLPP/+sO+64Q2effbZCQ0OVkJCgO++8U4cPH/aod+/evbrrrrvUokUL2Ww2tWvXTmPHjlVRUZF++eUXWSwWPfPMMx6PW7FihSwWi/7973+X23+S9Pzzz6tz584KDw9X06ZNdeGFF+pf//qXz21w+uWXX3TLLbeoWbNmCg8P18UXX6xPP/3UrR5nPpJ3331Xf/vb39SyZUuFh4crLy9PkvTdd99p0KBBio6OVnh4uPr27atvv/22wvY7/fbbb7r++usVERGhuLg43X///SosLPR6rC/P4/z9bd68WUOHDlVUVJSaN2+uiRMn6sSJEx51vv3220pOTlZYWJiaNWum4cOH69dff3U75rLLLlOXLl20ceNGXX755QoPD1fLli31xBNPVPt8yq6Ldv6NPvXUU3r11VfVvn172Ww2XXTRRfr+++89Hv/ee+8pKSlJoaGh6tKli/7zn/9Uaa31Sy+9pM6dO8tms6lFixYaP368cnJyqn3e3lgsFk2YMEHvvPOO67kWLVokSXrqqafUq1cvNW/eXGFhYUpOTtaCBQvKrePDDz9Uly5dZLPZ1LlzZ1c9pX3zzTe66KKLFBoaqvbt2+uVV17x2q6TJ0/q0UcfdfVx27Zt9fDDD3v8ntq2baurr75ay5cv14UXXqiwsDB17drVdTX9gw8+cL3nJCcn64cffqiwP6ZOnao2bdpIkh544AFZLBa339cPP/ygwYMHKyoqSo0bN9aVV16pVatWudXxxhtvyGKx6Msvv9S4ceMUFxenVq1aue7/7LPPdMkllygiIkKRkZG66qqrtGHDBrc6MjMzNXr0aLVq1Uo2m02JiYm67rrrtGvXLtd5b9iwQV9++aXr/byy2QjvvvuukpOTFRkZqaioKHXt2lXPPvus6/6yOY2c5+Htp+xz+fIaBRqCQIzZKnrfstlsSkhIqPb5VPZe5PTZZ5+pb9++rveXiy66yGO8895777neJ2JiYjRy5Ejt3bvX7Zg77rhDjRs31o4dOzRkyBBFRkbqtttuk+R735bH+RlV+jPZG1+fx/n5s2TJEvXo0UOhoaFKSkrSBx984FFnTk6O7rvvPrVu3Vo2m03nnHOOHn/8cbcZEVUdY/h6PuWNobdv36477rhDTZo0UXR0tEaPHq2CggK3xx4/flz33nuvYmJiFBkZqWuvvVZ79+71OU/SgQMHdNdddyk+Pl6hoaHq3r275s6d63ZMVc+7rIo+c3fv3q1x48bpvPPOU1hYmJo3b65bbrnF4+/XWce3336rtLQ0xcbGKiIiQjfccIMrIOtkGIYee+wxtWrVSuHh4br88ss9PsOdqjJ+nz9/vtLT09WyZUtFRkbq5ptvVm5urgoLC3XfffcpLi5OjRs31ujRo8sdgzu1bdtWU6ZMkSTFxsZ6/L6qMr5cs2aNLr30UoWHh+vhhx+WJBUWFmrKlCk655xzZLPZ1Lp1a/3lL3/xaFdGRob69OmjJk2aqHHjxjrvvPNcdSxfvtwVxB49erTrfa6i5bNHjx7Vfffdp7Zt28pmsykuLk79+/fX2rVrXceUHWdfdtll5Y5lSj+XL6/Rho6ZRnXc73//e73xxhsaPXq07r33Xu3cuVMvvPCCfvjhB3377bcKDg7WgQMHNGDAAMXGxuqhhx5SkyZNtGvXLtcHV2xsrF5++WWNHTtWN9xwg2688UZJUrdu3cp93l9++UUffvihbrnlFrVr105ZWVl65ZVX1LdvX23cuFEtWrSQJBUXF+vqq6/W0qVLNXz4cE2cOFFHjx5VRkaG1q9fr/bt20uS7rrrLr3xxhsaPHiw7r77bp08eVJff/21Vq1aVe18Ibfccos6dOig6dOnyzAMSSVvUL/88otGjx6thIQEbdiwQa+++qo2bNigVatWuRLu7tu3Tz179lROTo7uuecedezYUXv37tWCBQtUUFCgs88+W71799Y777yj+++/3+1533nnHUVGRuq6664rt22zZ8/Wvffeq5tvvtkVDPn555/13Xff6dZbb/WpDSEhIcrKylKvXr1UUFCge++9V82bN9fcuXN17bXXasGCBbrhhhvcnvfRRx9VSEiI/vznP6uwsFAhISFatmyZBg8erOTkZE2ZMkVBQUF6/fXXdcUVV+jrr79Wz549yz2P48eP68orr9SePXt07733qkWLFnrrrbe0bNkyj2Or+jxDhw5V27ZtNWPGDK1atUrPPfecjhw5ojfffNN1zN///nc98sgjGjp0qO6++24dPHhQzz//vC699FL98MMPbldQjhw5okGDBunGG2/U0KFDtWDBAj344IPq2rWrBg8eXOXzKc+//vUvHT16VL///e9lsVj0xBNP6MYbb9Qvv/ziusLx6aefatiwYeratatmzJihI0eO6K677lLLli19eo6pU6cqPT1d/fr109ixY7Vlyxa9/PLL+v77712v+6qcd0WWLVum+fPna8KECYqJiXF92D777LO69tprddttt6moqEjvvvuubrnlFv33v//VVVdd5VbHN998ow8++EDjxo1TZGSknnvuOd10003as2ePmjdvLklat26d631q6tSpOnnypKZMmaL4+HiPNt19992aO3eubr75Zv3pT3/Sd999pxkzZmjTpk0eA+Pt27fr1ltv1e9//3uNHDlSTz31lK655hrNmjVLDz/8sMaNGydJmjFjhoYOHaotW7aUO/vuxhtvVJMmTXT//fdrxIgRGjJkiBo3bixJ2rBhgy655BJFRUXpL3/5i4KDg/XKK6/osssu05dffqmUlBS3usaNG6fY2FhNnjxZ+fn5kkqWt9x+++0aOHCgHn/8cRUUFOjll19Wnz599MMPP7j6/qabbtKGDRv0xz/+UW3bttWBAweUkZGhPXv2qG3btpo5c6b++Mc/qnHjxvrrX/8qSV770SkjI0MjRozQlVdeqccff1yStGnTJn377beaOHGi18dceumlHstudu/erb/97W+Ki4tzlVXlNQqc6QIxZqvofaumKnsvkkq+cN95553q3LmzJk2apCZNmuiHH37QokWLXOMdZ59cdNFFmjFjhrKysvTss8/q22+/9XifOHnypAYOHKg+ffroqaeecs1s8KVvy7NkyRLddNNNSkpK0owZM3T48GFXMKysqjzPtm3bNGzYMP3hD3/Q7bffrtdff1233HKLFi1apP79+0sqmZ3Rt29f7d27V7///e911llnacWKFZo0aZL279+vmTNnuj2/L2OMqpxPeYYOHap27dppxowZWrt2rf75z38qLi7O9RkhlXwBnz9/vn73u9/p4osv1pdffunx+V+e48eP67LLLtP27ds1YcIEtWvXTu+9957uuOMO5eTkeHz2+HLeFfH2mfv9999rxYoVGj58uFq1aqVdu3bp5Zdf1mWXXaaNGzd6zJr54x//qKZNm2rKlCnatWuXZs6cqQkTJmjevHmuYyZPnqzHHntMQ4YM0ZAhQ7R27VoNGDDA7WKvpCqP32fMmKGwsDA99NBD2r59u55//nkFBwcrKChIR44c0dSpU7Vq1Sq98cYbateunSZPnlxuX8ycOVNvvvmm/vOf/+jll19W48aNXe8fVRlfHj58WIMHD9bw4cM1cuRIxcfHy+Fw6Nprr9U333yje+65R506ddK6dev0zDPPaOvWra4E/Bs2bNDVV1+tbt26adq0abLZbNq+fbvrQnKnTp00bdo0TZ48Wffcc48uueQSSVKvXr3KPa8//OEPWrBggSZMmKCkpCQdPnxY33zzjTZt2qQLLrjA62P++te/6u6773Yre/vtt7V48WLXWKaqr9EGy0CdMX78eKP0r+Trr782JBnvvPOO23GLFi1yK//Pf/5jSDK+//77cus+ePCgIcmYMmWKT205ceKEUVxc7Fa2c+dOw2azGdOmTXOVzZkzx5BkPP300x51OBwOwzAMY9myZYYk49577y33mJ07dxqSjNdff93jmLLtnjJliiHJGDFihMexBQUFHmX//ve/DUnGV1995SobNWqUERQU5LXPnG165ZVXDEnGpk2bXPcVFRUZMTExxu233+7xuNKuu+46o3PnzhUe40sb7rvvPkOS8fXXX7vuO3r0qNGuXTujbdu2rt/RF198YUgyzj77bLc+cDgcRocOHYyBAwe66jSMkn5q166d0b9//wrbOHPmTEOSMX/+fFdZfn6+cc455xiSjC+++KLKz+P8/V177bVuzzVu3DhDkvHTTz8ZhmEYu3btMqxWq/H3v//d7bh169YZjRo1civv27evIcl48803XWWFhYVGQkKCcdNNN1X5fAzDMG6//XajTZs2rtvOv9HmzZsb2dnZrvKPPvrIkGR88sknrrKuXbsarVq1Mo4ePeoqW758uSHJrU5vDhw4YISEhBgDBgxwew2+8MILhiRjzpw5VT7v8kgygoKCjA0bNnjcV/a1VFRUZHTp0sW44oorPOoICQkxtm/f7ir76aefDEnG888/7yq7/vrrjdDQUGP37t2uso0bNxpWq9Xtfe/HH380JBl333232/P8+c9/NiQZy5Ytc5W1adPGkGSsWLHCVbZ48WJDkhEWFub2XM7Xc+nfsTfO3/OTTz7pVn799dcbISEhxo4dO1xl+/btMyIjI41LL73UVfb6668bkow+ffoYJ0+edJUfPXrUaNKkiTFmzBi3ejMzM43o6GhX+ZEjR7w+f1mdO3c2+vbtW+ExThMnTjSioqLc2lOW8z2kvP45fvy4kZycbLRo0cLYv3+/YRhVe40CZ5q6NGYr732rtO+//77ccZY3vrwX5eTkGJGRkUZKSopx/Phxt/ucY4GioiIjLi7O6NKli9sx//3vfw1JxuTJk11lt99+uyHJeOihh9zq8rVvy9OjRw8jMTHRyMnJcZUtWbLE4zO5Ks/j/Px5//33XWW5ublGYmKicf7557vKHn30USMiIsLYunWrW50PPfSQYbVajT179hiGUbUxhq/nYxjlj6HvvPNOt+NuuOEGo3nz5q7ba9asMSQZ9913n9txd9xxh09/m87x1ttvv+0qKyoqMlJTU43GjRsbeXl5VT5vb8r7zDUM798JVq5c6TFuctbRr18/tzHs/fffb1itVlc/O8dnV111ldtxDz/8sCHJ7btBVcfvXbp0MYqKilzHjhgxwrBYLMbgwYPd2p+amlrpONIwTv+eDx486Cqrzvhy1qxZbvW+9dZbRlBQkNt5GYZhzJo1y5BkfPvtt4ZhGMYzzzzj8fxlVfU9KTo62hg/fnyFx5Qdu5f17bffGsHBwW5//76+Rhs6lqfVYe+9956io6PVv39/HTp0yPWTnJysxo0b64svvpB0er3qf//7X9ntdr88t81mc12NLy4u1uHDh11TC0tPA3z//fcVExOjP/7xjx51OGf1vP/++7JYLK6pkt6OqY4//OEPHmVhYWGu/584cUKHDh3SxRdfLEmudjscDn344Ye65pprvM5ycrZp6NChCg0N1TvvvOO6b/HixTp06FClOQyaNGmi3377rdyptb62YeHCherZs6dr+Z0kNW7cWPfcc4927dqljRs3uj3u9ttvd+uDH3/8Udu2bdOtt96qw4cPu/6G8vPzdeWVV+qrr76qcOrlwoULlZiYqJtvvtlVFh4ernvuucftuOo8z/jx491uO/+GFi5cKKlkaZHD4dDQoUPd/v4TEhLUoUMH199/6X4p/XsJCQlRz5499csvv1T5fCoybNgwNW3a1HXbeXXE+Tz79u3TunXrNGrUKLervX379lXXrl0rrf/zzz9XUVGR7rvvPrcZMWPGjFFUVJTH1GZfzrsiffv2VVJSkkd56b+jI0eOKDc3V5dcconb69+pX79+rlmFUskV8aioKFcbiouLtXjxYl1//fU666yzXMd16tRJAwcOdKvL+ftPS0tzK//Tn/4kSR7nn5SUpNTUVNdt54yfK664wu25nOW+9ktpxcXFWrJkia6//nqdffbZrvLExETdeuut+uabb1xLQZ3GjBkjq9Xqup2RkaGcnByNGDHC7e/ZarUqJSXF9fccFhamkJAQLV++3OdlF5Vp0qSJ8vPzlZGRUe06xo0bp3Xr1un99993LXep6msUOJMFcsxWG3x5L8rIyNDRo0f10EMPeeTOcY5j/ve//+nAgQMaN26c2zFXXXWVOnbs6PGeLkljx451u+1r33qzf/9+/fjjj7r99tsVHR3tKu/fv7/HZ19Vn6dFixZuM0aioqI0atQo/fDDD8rMzHTVeckll6hp06Zudfbr10/FxcX66quv3OqsbIxRlfOpSNkx9CWXXKLDhw+7PsucS8yds3WdvI33vVm4cKESEhI0YsQIV1lwcLDuvfdeHTt2TF9++aXb8ZWdd2XKfuZK7uMYu92uw4cP65xzzlGTJk28jmXuuecet+8ll1xyiYqLi7V7925Jp8dnf/zjH92Ou++++zzqqur4fdSoUW6zfFJSUmQYhmvZaunyX3/9VSdPnqyoO7yq6vjSZrNp9OjRbmXvvfeeOnXqpI4dO7r9PV9xxRWS5PE+99FHH/ltiVeTJk303Xffad++fdV6fGZmpm6++Wb16NFDL730kqu8qq/RhoqgUR22bds25ebmKi4uTrGxsW4/x44dcyU569u3r2666Salp6crJiZG1113nV5//fVK17xWxOFw6JlnnlGHDh1ks9kUExOj2NhY/fzzz8rNzXUdt2PHDp133nkV7sywY8cOtWjRQs2aNat2e7xp166dR1l2drYmTpyo+Ph4hYWFKTY21nWcs90HDx5UXl6eunTpUmH9TZo00TXXXOO2Lv+dd95Ry5YtXW+O5XnwwQfVuHFj9ezZUx06dND48ePdcvv42obdu3frvPPO8yh37s7i/CBzKtsn27Ztk1QSTCr7N/TPf/5ThYWFbr9Pb89/zjnneAT3yrapOs/ToUMHt9vt27dXUFCQa635tm3bZBiGOnTo4FHnpk2bXH//Tq1atfJoZ9OmTd0Gu76eT0VKByKczyHJ9TzO34m33Sp82cHC+fiybQoJCdHZZ5/t8Tv35bwr4u11JJV8obn44osVGhqqZs2auZZMePt7KdsnZdtw8OBBHT9+3ON3Lnme5+7duxUUFOTRVwkJCWrSpInH+Zd9bucgunXr1l7LqxOIOXjwoAoKCsp9LTocDo8cPuW9Fq+44gqPv+clS5a4/p5tNpsef/xxffbZZ4qPj9ell16qJ554wvUFpDrGjRunc889V4MHD1arVq105513es05VZ5XXnlFr7/+up5//nlXEN55TlV5jQJnskCO2WqDL+9FztyVFY1lyvtMk6SOHTt6vKc3atTIY5mVr31b0fP78vlT1efxNp4499xzJcltLLNo0SKP+vr16ydJHnX6Osbw5Xwq4svzBAUFeXyW+boT1+7du9WhQweP5eDljV8ra09lvI1ljh8/rsmTJ7vy1Di/y+Tk5Pg0lvG172NjY90CXs5jqzJ+r8pYxuFwVDh2L09Vx5ctW7b02FF127Zt2rBhg8ffs/Pv3vn3PGzYMPXu3Vt333234uPjNXz4cM2fP79GAaQnnnhC69evV+vWrdWzZ09NnTrV56DiyZMnNXToUBUXF+uDDz6QzWZzO6eqvEYbKnIa1WEOh0NxcXFuM11KcyZKtFgsWrBggVatWqVPPvlEixcv1p133ql//OMfWrVqVbXWtk+fPl2PPPKI7rzzTj366KNq1qyZgoKCdN9999VKUrDyZhwVFxeX+5jSVxCchg4dqhUrVuiBBx5Qjx491LhxYzkcDg0aNKha7R41apTee+89rVixQl27dtXHH3+scePGVbojWadOnbRlyxb997//1aJFi/T+++/rpZde0uTJk13b6NaGsn3iPOcnn3yy3O0s/ZH7wB/PU/ZvwOFwyGKx6LPPPvO4euStPm/HSHLlu/IXs57HVzVtj7fX0ddff61rr71Wl156qV566SUlJiYqODhYr7/+ukdyU3+0wRtfZyGW99yB/j2V91p86623vCamLR14v++++3TNNdfoww8/1OLFi/XII49oxowZWrZsmc4///wqtyUuLk4//vijFi9erM8++0yfffaZXn/9dY0aNcojKWlZq1ev1sSJE3X33Xd7zMir6msUOJMFcsxWW/z9XuSL0jPdnXzt25qqjedxOBzq37+//vKXv3i93/ll24mxjLuajGX++Mc/6vXXX9d9992n1NRURUdHy2KxaPjw4V6/EwSyT+riWMZbnzocDnXt2lVPP/2018c4g1xhYWH66quv9MUXX+jTTz/VokWLNG/ePF1xxRVasmRJuedVkaFDh+qSSy7Rf/7zHy1ZskRPPvmkHn/8cX3wwQeV5vB84IEHtHLlSn3++eceQemqvkYbKoJGdVj79u31+eefq3fv3l5fuGVdfPHFuvjii/X3v/9d//rXv3Tbbbfp3Xff1d13313lZWALFizQ5Zdfrtdee82tPCcnRzExMW5t/O6772S328tNVNe+fXstXrxY2dnZ5c42ckboy2bvLxv1rsiRI0e0dOlSpaenuyWIc17hd4qNjVVUVJTWr19faZ2DBg1SbGys3nnnHaWkpKigoEC/+93vfGpPRESEhg0bpmHDhqmoqEg33nij/v73v2vSpEk+t6FNmzbasmWLR/nmzZtd91fEuWQoKirKFTGvijZt2mj9+vUyDMPtb6hsm6rzPNu2bXO7MrR9+3Y5HA5Xcs327dvLMAy1a9fOb2/Yvp5PTZ9DKjmfsryVlff4LVu2uC2FKioq0s6dO6v1e6yq999/X6GhoVq8eLHb1ZjXX3+9WvXFxsYqLCzM47UoefZ9mzZt5HA4tG3bNtcVOakkqWROTk6lf/O1ITY2VuHh4eW+FoOCgjyuBpblfI3ExcX59Dts3769/vSnP+lPf/qTtm3bph49eugf//iH3n77bUlVX9obEhKia665Rtdcc40cDofGjRunV155RY888ki5V44PHjzomsr94osvem2jv1+jQH0VyDFbbarovcj5vrZ+/fpy30dKf6aVnaW9ZcsWn97Tq9q33p7fl8+fqj7P9u3bPcYTW7dulSS3scyxY8f89tldlfOp6fM4HA7t3LnTbWaNL+MY5+N//vlnORwOtyCgr+NXf1iwYIFuv/12/eMf/3CVnThxwuO7hq9K933p8dnBgwc9ZkTVdPxeG/wxvmzfvr1++uknXXnllZW+TwUFBenKK6/UlVdeqaefflrTp0/XX//6V33xxRfq169ftd7nEhMTNW7cOI0bN04HDhzQBRdcoL///e8VBo3effddzZw5UzNnzlTfvn29npM/X6NnKpan1WHOaXSPPvqox30nT550vekdOXLEI+LsnO3hnO7s3CHA1zdKq9XqUed7773nsT3qTTfdpEOHDumFF17wqMP5+JtuukmGYXidYeM8JioqSjExMR7rRkuvOfWlzaXrdCqb9T4oKEjXX3+9PvnkE/3vf/8rt01SydX/ESNGaP78+XrjjTfUtWvXCnedczp8+LDb7ZCQECUlJckwDNntdp/bMGTIEK1evVorV6503Zefn69XX31Vbdu2rXT9enJystq3b6+nnnpKx44d87i/7FaiZQ0ZMkT79u1z22q9oKBAr776ao2fp+yX0Oeff16SXG/8N954o6xWq9LT0z1+p4ZhePSxL3w9n5po0aKFunTpojfffNOtL7788kutW7eu0sf369dPISEheu6559zO+7XXXlNubq7PO5fUhNVqlcVicZvpt2vXLteuGNWpb+DAgfrwww+1Z88eV/mmTZu0ePFit2OHDBkiyfN167yqZcb5l2W1WjVgwAB99NFHblv1ZmVl6V//+pf69OmjqKioCusYOHCgoqKiNH36dK95TJyvkYKCAp04ccLtvvbt2ysyMtJt+UpERITP7+dlXytBQUGu97HylsQUFxdr+PDhKioq0vvvv+8xRV2qndcoUF8FcsxWG3x5LxowYIAiIyM1Y8YMj2Od53jhhRcqLi5Os2bNcnu/+eyzz7Rp0yaf3tN97VtvEhMT1aNHD82dO9dtSU9GRoZHXpmqPs++ffvcdvTMy8vTm2++qR49erhmlA4dOlQrV670+KyTSn6/Vc1NU5XzqQlnvsGy43DnWK0yQ4YMUWZmptvOYydPntTzzz+vxo0be/3y7m/evss8//zzFa5iqEi/fv0UHBys559/3q1eb7tr1XT8Xhv8Mb4cOnSo9u7dq9mzZ3vcd/z4cdfOddnZ2R73l32fi4iIkOTb+1xxcbHHkry4uDi1aNGiwqW969ev1913362RI0eWu1usv1+jZypmGtVhffv21e9//3vNmDFDP/74owYMGKDg4GBt27ZN7733np599lndfPPNmjt3rl566SXdcMMNat++vY4eParZs2crKirK9QUsLCxMSUlJmjdvns4991w1a9ZMXbp0KXcd+tVXX61p06Zp9OjR6tWrl9atW6d33nnHLTItlSzfevPNN5WWlqbVq1frkksuUX5+vj7//HONGzdO1113nS6//HL97ne/03PPPadt27a5lop9/fXXuvzyyzVhwgRJJdts/9///Z/uvvtuXXjhhfrqq69cV2x8ERUV5Vpzb7fb1bJlSy1ZskQ7d+70OHb69OlasmSJ+vbt69oycv/+/Xrvvff0zTffuG3/OmrUKD333HP64osv3LYirciAAQOUkJCg3r17Kz4+Xps2bdILL7ygq666SpGRkT634aGHHtK///1vDR48WPfee6+aNWumuXPnaufOnXr//fcrXSYXFBSkf/7znxo8eLA6d+6s0aNHq2XLltq7d6+++OILRUVF6ZNPPin38WPGjNELL7ygUaNGac2aNUpMTNRbb73lsU1pdZ5n586duvbaazVo0CCtXLlSb7/9tm699VZ1795dUsng9LHHHtOkSZO0a9cuXX/99YqMjNTOnTv1n//8R/fcc4/+/Oc/+/T7qOr51NT06dN13XXXqXfv3ho9erSOHDmiF154QV26dPEaVCstNjZWkyZNUnp6ugYNGqRrr71WW7Zs0UsvvaSLLrqo0iTs/nDVVVfp6aef1qBBg3TrrbfqwIEDevHFF3XOOefo559/rlad6enpWrRokS655BKNGzfONXjs3LmzW53du3fX7bffrldffVU5OTnq27evVq9erblz5+r666/X5Zdf7q/TrJLHHntMGRkZ6tOnj8aNG6dGjRrplVdeUWFhoZ544olKHx8VFaWXX35Zv/vd73TBBRdo+PDhio2N1Z49e/Tpp5+qd+/eeuGFF7R161ZdeeWVGjp0qJKSktSoUSP95z//UVZWloYPH+6qLzk5WS+//LIee+wxnXPOOYqLiys319rdd9+t7OxsXXHFFWrVqpV2796t559/Xj169HCbzVXarFmztGzZMv3hD3/wSP4aHx+v/v3718prFKivAjlmq8gLL7ygnJwcV/LYTz75RL/99pukkuU7pZMpl+bLe1FUVJSeeeYZ3X333brooot06623qmnTpvrpp59UUFCguXPnKjg4WI8//rhGjx6tvn37asSIEcrKytKzzz6rtm3b6v777/db35ZnxowZuuqqq9SnTx/deeedys7Odn3+lP5MrurznHvuubrrrrv0/fffKz4+XnPmzFFWVpbbrNwHHnhAH3/8sa6++mrdcccdSk5OVn5+vtatW6cFCxZo165dbjP4feHr+dREcnKybrrpJs2cOVOHDx/WxRdfrC+//NI1Lq9slsg999yjV155RXfccYfWrFmjtm3basGCBfr22281c+ZM11i4Nl199dV66623FB0draSkJNfypObNm1ervtjYWP35z3/WjBkzdPXVV2vIkCH64Ycf9Nlnn3n8Dms6fq8N/hhf/u53v9P8+fNdY4PevXuruLhYmzdv1vz587V48WJdeOGFmjZtmr766itdddVVatOmjQ4cOKCXXnpJrVq1ciUHb9++vZo0aaJZs2YpMjJSERERSklJ8Zqf6ujRo2rVqpVuvvlmde/eXY0bN9bnn3+u77//3m0mWVnORN6XXnqpa6a2U69evXT22WfXymv0jFSre7OhSspu3+r06quvGsnJyUZYWJgRGRlpdO3a1fjLX/5i7Nu3zzAMw1i7dq0xYsQI46yzzjJsNpsRFxdnXH311cb//vc/t3pWrFhhJCcnGyEhIZVul3nixAnjT3/6k5GYmGiEhYUZvXv3NlauXGn07dvXY5vngoIC469//avRrl07Izg42EhISDBuvvlmt62pT548aTz55JNGx44djZCQECM2NtYYPHiwsWbNGrd67rrrLiM6OtqIjIw0hg4dahw4cKDc7UK9beP422+/GTfccIPRpEkTIzo62rjllluMffv2eT3f3bt3G6NGjTJiY2MNm81mnH322cb48eONwsJCj3o7d+5sBAUFGb/99lu5fVbaK6+8Ylx66aVG8+bNDZvNZrRv39544IEHjNzc3Cq3YceOHcbNN99sNGnSxAgNDTV69uxp/Pe//3Wrx7ll53vvvee1PT/88INx4403utrTpk0bY+jQocbSpUsrPZfdu3cb1157rREeHm7ExMQYEydOdG0/W3Z7bl+ex/n727hxo3HzzTcbkZGRRtOmTY0JEyZ4bNlrGIbx/vvvG3369DEiIiKMiIgIo2PHjsb48eONLVu2uI7p27ev0blzZ4/Hett609fzKfvYirY09vb39e677xodO3Y0bDab0aVLF+Pjjz82brrpJqNjx45eetnTCy+8YHTs2NEIDg424uPjjbFjxxpHjhxxO6Yq5+2NpHK3L33ttdeMDh06GDabzejYsaPx+uuvu353vtTRpk0bt+1nDcMwvvzyS9d70Nlnn23MmjXLa512u91IT093vae0bt3amDRpknHixAmP57jqqqt8Oi9ftqSu7Li1a9caAwcONBo3bmyEh4cbl19+ubFixQq3Y5xb95a3nfYXX3xhDBw40IiOjjZCQ0ON9u3bG3fccYfr/frQoUPG+PHjjY4dOxoRERFGdHS0kZKSYsyfP9+tnszMTOOqq64yIiMjDUke78ulLViwwBgwYIARFxdnhISEGGeddZbx+9//3ti/f79bu0q/Bpy/F28/ZZ/Ll9cocKapS2O2it63nFvDe/vZuXNnuXX6+l5kGIbx8ccfG7169TLCwsKMqKgoo2fPnsa///1vt2PmzZtnnH/++YbNZjOaNWtm3HbbbR5jqttvv92IiIgot02V9W1F3n//faNTp06GzWYzkpKSjA8++KDcz0pfnsf5+bN48WKjW7durs9Kb+Owo0ePGpMmTTLOOeccIyQkxIiJiTF69eplPPXUU65t1qs6xvD1fHwdQzs/u0r/TeTn5xvjx483mjVrZjRu3Ni4/vrrjS1bthiSjP/7v/8rp6dPy8rKMkaPHm3ExMQYISEhRteuXT22V6/qeZdV0WfukSNHXM/fuHFjY+DAgcbmzZs9xifl1VH2c9EwDKO4uNhIT093fT+67LLLjPXr13sd89Rk/F5emyr6DuTrcTUZXxqGYRQVFRmPP/640blzZ8NmsxlNmzY1kpOTjfT0dNf3nKVLlxrXXXed0aJFCyMkJMRo0aKFMWLECI9t7T/66CMjKSnJaNSokSHJ4+/DqbCw0HjggQeM7t27G5GRkUZERITRvXt346WXXnI7ruxroKL3v9LP5ctrtKGzGEaAMp4B9cj555+vZs2aaenSpYFuSr03depUpaen6+DBgw0uct+jRw/FxsbWaOtzAAAQWG3btlWXLl303//+N9BNMdWPP/6o888/X2+//bZuu+22QDcHgEnIaQRU4n//+59+/PFHjRo1KtBNQT1ht9s91kAvX75cP/30ky677LLANAoAAMBHx48f9yibOXOmgoKCdOmllwagRQAChZxGQDnWr1+vNWvW6B//+IcSExM1bNiwQDcJ9cTevXvVr18/jRw5Ui1atNDmzZs1a9YsJSQk6A9/+EOgmwcAAFChJ554QmvWrNHll1+uRo0a6bPPPtNnn32me+65p9IdQwGcWQgaAeVYsGCBpk2bpvPOO0///ve/FRoaGugmoZ5o2rSpkpOT9c9//lMHDx5URESErrrqKv3f//1ftRMwAgAAmKVXr17KyMjQo48+qmPHjumss87S1KlT9de//jXQTQNgMnIaAQAAAAAAwAM5jQAAAAAAAOCBoBEAAAAAAAA8kNPIC4fDoX379ikyMlIWiyXQzQEAAOUwDENHjx5VixYtFBTEtbBAYvwEAED9UJXxE0EjL/bt28euAAAA1CO//vqrWrVqFehmNGiMnwAAqF98GT8RNPIiMjJSUkkHRkVF+a1eu92uJUuWaMCAAQoODvZbvXBHP5uDfq599LE56Gdz1FY/5+XlqXXr1q7PbgQO46f6jX42B/1c++hjc9DP5qgL4yeCRl44p1RHRUX5fdATHh6uqKgoXli1iH42B/1c++hjc9DP5qjtfm5oy6FefPFFPfnkk8rMzFT37t31/PPPq2fPnl6Pveyyy/Tll196lA8ZMkSffvqpJOmOO+7Q3Llz3e4fOHCgFi1a5HObGD/Vb/SzOejn2kcfm4N+NkddGD8RNAIAAKhH5s2bp7S0NM2aNUspKSmaOXOmBg4cqC1btiguLs7j+A8++EBFRUWu24cPH1b37t11yy23uB03aNAgvf76667bNput9k4CAADUC2SMBAAAqEeefvppjRkzRqNHj1ZSUpJmzZql8PBwzZkzx+vxzZo1U0JCgusnIyND4eHhHkEjm83mdlzTpk3NOB0AAFCHMdMIAACgnigqKtKaNWs0adIkV1lQUJD69eunlStX+lTHa6+9puHDhysiIsKtfPny5YqLi1PTpk11xRVX6LHHHlPz5s3LraewsFCFhYWu23l5eZJKptLb7faqnFaFnHX5s054op/NQT/XPvrYHPSzOWqrn6tSH0EjAACAeuLQoUMqLi5WfHy8W3l8fLw2b95c6eNXr16t9evX67XXXnMrHzRokG688Ua1a9dOO3bs0MMPP6zBgwdr5cqVslqtXuuaMWOG0tPTPcqXLFmi8PDwKpyVbzIyMvxeJzzRz+agn2sffWwO+tkc/u7ngoICn48laAQAANBAvPbaa+ratatH0uzhw4e7/t+1a1d169ZN7du31/Lly3XllVd6rWvSpElKS0tz3XbuxDJgwAC/J8LOyMhQ//79SbZai+hnc9DPtY8+Ngf9bI7a6mfn7GBfEDQCAACoJ2JiYmS1WpWVleVWnpWVpYSEhAofm5+fr3fffVfTpk2r9HnOPvtsxcTEaPv27eUGjWw2m9dk2cHBwbXyBaK26oU7+tkc9HPto4/NQT+bw9/9XJW6SIQNAABQT4SEhCg5OVlLly51lTkcDi1dulSpqakVPva9995TYWGhRo4cWenz/Pbbbzp8+LASExNr3GYAAFB/ETQCAACoR9LS0jR79mzNnTtXmzZt0tixY5Wfn6/Ro0dLkkaNGuWWKNvptdde0/XXX++R3PrYsWN64IEHtGrVKu3atUtLly7Vddddp3POOUcDBw405ZwAAEDdxPI0AACAemTYsGE6ePCgJk+erMzMTPXo0UOLFi1yJcfes2ePgoLcrwtu2bJF33zzjZYsWeJRn9Vq1c8//6y5c+cqJydHLVq00IABA/Too496XX4GAAAaDoJGAAAA9cyECRM0YcIEr/ctX77co+y8886TYRhejw8LC9PixYv92TwAAHCGYHkaAAAAAAAAPBA0AgAAtarYYei7ndlac8ii73Zmq9jhfcYLAAAAStSV8RPL0wAAQK1ZtH6/0j/ZqP25JyRZ9ea2/ykxOlRTrknSoC7szAUAAFBWXRo/MdMIAADUikXr92vs22tPDXhOy8w9obFvr9Wi9fsD1DIAAIC6qa6NnwgaAQAAvzIMQzkFRXrkow3yNpHaWZb+yUaWqgEAgAbPXuxQdn6Rfjl4TH/7cH2dGj+xPA0AAJSr8GSxcgvsOlJg15GCIuUUFLn+n3vq3yMFdld5ToFduceLZC+ueDBjSNqfe0Krd2YrtX1zc04GAADAjxwOQwX2Yh09YdexEyeVd+Jkyf8LT+roiZM6dup23omTp8pO33f6x67Ckw6fni8Q4yeCRjijlE4W1nxntlLPiZM1yBLoZgFAwDkchvJO2CsI+JT8P9cVHCr5t6CouFbbdeDoicoPAgAA8LOikw4dPWEvCe4UnlTeqcDP0TKBn6OFpcpO3e86vvCkDD9O+gmxWlRUyYU3ydzxE0EjnDHqUrIwAKgthmHouL3YFdTJKRX8yS01C6j0/TkFRco9bld1ZzIHWaQm4SFqEhasJuHBahoeoibhIWoaXnK75P/O2yFqGhGsrZlHdfvr31dad1xkaPUaBcBvuOgGoD5xOAzlF50O3rhm8rgCOnaPmTzHCt3/n3fipIp8nN3ji0ZBFkWGNlLj0EaKtAUrMrTRqZ9gNbaV+n9oI0Wduq/xqeMa2xopKjRYETarvt91RCNmr6r0+cwcPxE0whnBmSys7PchZ7Kwl0deQOAIQJ1zstihnOPuS7tKLwHLKRP8cQaHajLIiQixugI7TcJCXEGg0gEf9/IQRYY2UlAVv0DGRYYqMTpUmbknvK7Lt0hKiA5Vz3bNqn0uAGqOi24AzHTCXlzx0q0yM3uOlr3vxEkdK/Lv7J6IEKsroFM6iOP8f+n7okoHe1xlwbI1CpLFUvNge892zerc+ImgEeq9Yoeh9E82lpsszKKSZGH9kxK4agagVhiGoWOFJ90COzkFRTqSX3QqKORe7rx99MTJaj9noyCLa7ZPycyf0/82KR0ECg9W04iSWULR4cGyNbL68czLZw2yaMo1SRr79lpZJLf3aOc78ZRrknhfBgKIi24AfOVwGDpWdDqYk3PshDYcscjx834VnDTcgkBHCz1n+DgDPkXF/pvdE2y1lJnJUxLQiSoV0Cl7f2TZYJCtUZ0ai9TF8RNBI9R7q3dme2xHWJozWVj6xxuU3LapmoaHqFlEiJo3LvnXrC9QAOqHwpPFHku73JZ8uQJB7kGgkzXYxSIqtFFJYOfUErCmpZd8RQQrOuz0rJ8mp4JAESFWv1zRqk2DuiTq5ZEXlJrFUCKBWQyop4odhlbvzNaBoycUF1lypbcufdmoisouuknSIx9tUNeWTRQV1kgRIVWfcQgg8AzDUOFJh9dlWkdPuC/xKp2/51iZ+48VervQZZU2r6tWu5yBHNe/p4I5UWUCOqUDPaWDPZGhjfw2u6euqWvjJ4JGqPd8TQL25qrdenPVbo/yxrZGahZxKpB06t9mjUv+3zTcGVyyue4Lrwdf1AB4Jn4umfljLxXwORUMOlaoPVlWPb7xK+Uct9co8bOtUZDbrJ+mEcGlAkHu5dFhJbOAosOC1cga5Mczr1sGdUlU/6QErdx+QEu+/k4DLkkhXwrqJfdlXCXq8zKuyi66SdLBo4Xq/fgy1+3wEKsibCVf2iJsVkWElPw/3NZIjU/dPn1/yTHO/5ctCwtmPAVUpthhuAV03II7ZfL3eN2569Txle1oWhUh1iBFhpa8lh2FBWoV10yRYSVL2SNLBXQaO4M9ZfL5RIaWBKEZB1SsLo2fCBo1UGfSlTJfk4BdfHYzWWRRdn6RDueXfGF0vhEfKzypPdkFPtVjaxRUEkAqE0wq/dPc9a9NUWGNGBQBNeBM/Hzk1Cyf3OOllnrln/r3uGfun9zj9iqsd7dIOv3lyZX4OTy4VMDn9FKv0zN/TucBahoeotBgZi56Yw2yKKVdMx3eZCilHn/eoOE6E5dx+XrRzWKR6720oKhYBUXFOni0sMbPH2SRK8hUOrgUHnIqAOUWaDpd5ioPKRW8sp25Mw5QPxmGoRN2h46WSsjsdemWl524St+X78cdTC0WqXFII7eAjsdMHlupYE+pINDppV6NXKs07Ha7Fi5cqCFDLlJwcLDf2onT6sr4iaBRA3SmXSnzNVnYO3df7PZCc85CyM4vcgWSXP8/VqTs/EL3svwiFZ10qPCkQ/tyT2hfJVfnnBoFWdS09CymU/8/XWZzWy7XNDyEL1Q4Y5VN/Hwk/9QSsOOl8wCdDvr4O/GzM/hTeglYlC1I2zb8pH6Xpio2KrzaiZ8BnJnO1NyJvl50+9fdKTr/rKY6VnhS+acutOUXFiu/qOR2SVlxqf+XKSs6XeZ8nGFIDkMlX569LnmpukZBFvdZUKcCSxFlAlAlASdvQSn34FXwGTwD1Fdn0kXmqjhZ7CgVvPG2dMtzW3bXzl2lZv3UZNl6WSGNgqq0bOv0Dl2nj2WJKaqLoFEDcyZeKXMmC/vD22s97qsoWVjQqSSyTcJDdHZs5c9jGIYKiopLBZgKTwWX3INOh/NLkt9m5xfpWGHJB8bBo4U+X5WzWKQmYcGumUrN3AJMp4NLzvubRpiX2BZwMgxDRwtPKie/bMCnVJ6f4/bT5QVFysm31+jLQbDV4nWpV5NTu315JH4+tfSrsteH3W7Xwn0/qkfrJlwpAxoQX78Q+5o7cfXObKW2b16LLfYv50W38s7t9A49zWUNsig02KqYxrYaP6/DUTJ7tHQAyhVUKjoVWCoVfCoJOpUpKxWUOm4vmYlx0mEo97hducftNW6jVPIlvfQyPLcZT2WW4XnMgipTVh+X4tTHi8yumcnHCpV1XPrx1xydKFappVtlduI6FRjKK5W/51jhyRotUy/LYjmVu8fLsq2SHbrcAz6ld+M6neunEWN9BBRBowbkTL1SJpWs+bwluZXeW/ObW7k/k4VZLBbXh3/rZuE+PeaEvVhHCoq8BJcKXbdLB5xyCkqW05TkYLFrx8F8n54n0tZIzRqfysFUJi9T2SV0zRuHKDyElz5OK534+Uh+6YDP6cTPpQNB/k783PTUErDSiZ89gkP1JPEzgMCpyqyIqnwh9nUZl6/H1RXWIIsmX52kse9U7aJbTQUFnR5PxfmhvmKH4XXWU+kAU35R2bJi95lTRafLnDNbi046lH2ySNm+DcUqFRbsnP1kVXGhVW/tW63I0OByl+E5l+B5mwVV2/k1A3GR+WSxw32ZlnMmT6HdlavHLbeP6373fD/FrrFJI+nH1TVqk61RkJeZPO4Bn9JLuUrP9HEeFx5sZXYP6j2+OTYgZ+qVMqfdh0tyEo1Maa2g7F11ItlqaLBVidFhSowO8+n4k8UOHSmwnwokFbotlztScCq4dKzIIy+Tc3q3sw8qb1eQmoV7z8vkPqOpZKZTVCh5meqDYoehPGew57j7Ui9vS8CcQaCaXFELDQ5SkzDPxM8lgSBv5SV/T2dy4mcA5qtKEKi8L8T7c0/oD2+v1V2926pfUoIr6OTrMi5fj6tL4qK8zxyqTzscWoMsigoNVlSof2aK2osd3mdBuc1+KikvqGAZnvP/zgssx+3FOm4v1iFJkkW/5edUu40WVz4o92V4HsvtypSXl6C8dD6oql5kds7EdyZkzisV0HEmaD5dVmbnrlJbsTtnjPlDkEWyBRlq2jhMUWHBlc/k8RLsaWxrpJBGjFUAiaBRnVWVq2Vlj01u01Rrdh/xeOyZeqVMKmnz97uzJUn3XNJOP3y7s14mW21kDVJspE2xkTZJkZUe78zLdLhMcKmyvEwn7DXPy9Q0rJEO7bXoyOpfFRcV5parqS7mZapP6/Kd06sP5h7Xb/nStzsO61iRwz3xs3PJ13F7NRM/uyud+LnpqVk+ZZd6uZWT+BlAHVGVWREVfSF2eu3bXXrt212uoFP/pAQfl3E188v5mOntVXskSTdf0FLX90gM+A49dUGwNciVvqCmnFudlw4k5Rac0PJvVimp2/k6UWx45IMqKPIWqDo1U+pUPijDUKkt0GuelNwaZFFESEkgSRb5dJE55e+fq+hU7h8/pu5RaHCQGtuCTy/bCm2kSFvlu3GVXv4VbHHos88+05Ahl7LsHPADgkZ1UFWvlpU9Nsgitzdv52PP5CtlizdkyTCkHq2bKDE6VD8EukEmKZ2Xqb2PeZnyi4qVfaxkJpP3pXOlltAdK1J+UXEFeZms+uy3TR7P4y0v0+nlcu75mJz31+bVnECuy7cXO5RTYFfucffEz+XNBnKWn0783Ej6eU2VntNb4me3JWClZv04ZwSR+BlAfVTZrAhJun/ej/rXd3uUe+KkMnOPKyvPty/ZmadmHt3fr4MuPy9W/1r9q8cxtbmMq7Zl5xfp05/3S5J+l9pWSQkRAd+h50xjsZTkggoNtqp545Iyuz1MBzYYGtI1ocoBDedFJbdAkrfgkpd8UKVzRjnvd840LnYYyjs1I8hXh/KL3G4HWVQmQXNFy7YaqbHt9H1Rp+6L8NPsHrvdP3mtAJQgaFTHVOVqWXnHlo32Ox/74q3n+7TLWH28UvbZupJBz5CuCQFuSd1msVjU+NRU5LOa1ywv06G84/px8w41bp5Qaknd6dku1c3L1MxtRpPNLUdTs/Cq52Xy17r80omfj5ya5ZN73D3fT8nW7/5N/BwW5FB808ZqGm5zS/zsDPhEh7nPBmoSVrsBOACoSypbei9Jx+0OfbXtUJXrdn5uPPP5tnKPaRYRor/f0MXtc6S+zGyd/79fVVTsULdW0ereuglftOsBi8Wi8JBGJWOgyiekV6rYYaigTCDp+53Zemyh5wXBsh69rrNS2zd3BYpqO88SgMAhaFSHVGUNsU7935fZoM7HPvrpJj1yVZLG/csz4aFTfbxSdvhYob7bWbI0bXA9WHtf35SXl8lut2uhfZuGDOnhdqWsorxMp4NOznJ7jfIyuWYxRXgmAHcmUH7kww0VXoH+63/Wq7jYUO6Jk+UEgkrK/J34uWl4iKLDPPMAucojQhTiml7dm+nVAOCFr0vqb+3ZWpd3jNfeIwWa+snGGj9v25hw7TpUoNt7tXELGNWXHaccDkP/+q5kadrIlDYBbg0CxRpkOTUD6PQYo0vLaL327c5KLzLfmtKm3n1nAFA9BI3qEF8TVff8e4Yk6XC+71eEnI9tGhHsdV1+0/Bgzbixa50a0PgqY2OWih2GurSMUutm4VwpCzB/5GXKzvfMx+QtL9PenOPam3O8Ru09nF+k8f/2fUFjaHBQ5QEfPyV+5m8ZACrm65L6a7q3VGr75ip2GHrlq1/K/ULsC4uk7GMlS3O+33XEVV7V3EqBnI301baD2pNdoKjQRrqmewvTnhd1nzXIoinXJGns22tlkdz+nuvzckwA1UfQqA7x9WpZVYJFZa38pSQwFdooSC/edoH++c0vWrkjW8Mual0vA0aStHB9piRmGdVXNc3LVDoXU9ng0q/Z+cr24fXSLiZC7WMjPJZ6OWcrNQkj8TMA1EU92zWrUpLqir4Q+8qQXLlf1uw+opPFDlksFp9ni2dszAz4bCRXAuzk1goL4XMN7gZ1SdTLIy/w+DutT7vqAfAfgkZ1iK9Xy6Zf30WS9PCH66v8HItO5f65tkcLXdkpXll5hVq5I1sb9uV5HOvLVbBAXynLLbBrxfaSPAWDu5DPqCGoSl6mlTsOa8TsVZXWOf2Grkpt39xfTQQAmMQZBPrD255L78ubFVHeF+KqCgsOUkFRsTbsy1NBUbFPs8Uf++8GvbFid43z7NXE3pzjWrY5S5J028Vn1epzof4a1CVR/ZMS6kV+LgC1i6BRHeLr1bJhPUs+4J//YnuVp1dvPXBMkrR08wEtWr9f3VpFS5J+/i1XhmG4Etj5sia/Lqzbz9iUpZMOQx0TInV2bGNTnhP1h/M1dSYmfwcAlDgvIcrrrKGKZkWU/kKcsTFTc77dVeWZR50So7R2T46+35V9akl25V5fsdtrednZSL5+Ma/Oxbt/f7dHDkPq1b652jN2QgWsQRYuqgEQW+zUIc6rZd6UvVpW+tjqxPuzjxVp7NtrtfNQvkKsQco9btee7JIExM41+WWDV86rYIvW7/fpGDM4n2cQs4zgRUWvE9blA8CZ4fll22RIuvy8WP17zMV6dngP/XvMxfrmwSsqvIjl/EI8+ZrOmjXyAiVE+zbj26KSi2T9k+IlSd/tzPZ5tnhFnLORVp/a3KMyi9bvV5/Hl2nE7FWa+O6PGjF7lfo8vqzCMVjRSYfe/f5XSdLvLiYBNgCgcgSN6phBXRLVskmYR3lCdKjHlGXn9Oqygxxfvv86r6RNX7hJHRNKrjL9/FtupTu4GZL+suBnPfj+zxXuSJX+yUYV12CnKV8cPWHXV1tLlqYN6craanhX3uvE22sKAFC/7DqUr49+3CdJuq/fuUpt31zX9ShJel2VCwKDuiTqmwevcAWd7u93riyq+ILDxWeXzMD4fle2LmzTVIkVBJ0skpqE+bYLpi85Lqt78W7xhkwdOlaouEib+p0KegEAUBGWp9Uxvx0p0N6c47JIeuV3yTpuL65wurG39cbJbZpqze4j+nb7Qb3wxY5yn8t5RatLi2hpb57W7c1VTGNbpev7nckfK6t39c7sWp3SumzzARUVO3R2bIQ6xDG9GuVjXT4AnJmeX7ZdxQ5Dl58Xq+6tm9SorrJLcc5LaFxhImB7sUNhwVblFNj1y6H8SnMrje7dVs98vq3SdjiDS+UtPavsAl9Fy9zeXlWyPG54z7MUXI1dPQEADQ9Bozpm6aYDkqSL2jbTgM6+Lbnytt44tX1zn3dji4kMkST99GuOOreIqkJrK+br80vVW5P/2bqSXdOGdEl05WICysO6fAA4MzjHDBv35eo/P/wmSZrY71y/P09lFxyCrUFKbtNU32w/pNW7stUpIdJrPc5AU/+kBL37/a+V5qOc8vEGDb0wT2+t2u01b2R0WIhPSbedF++c/fXzbzn6bme2gizSiJ6tq9MlAIAGiKBRHZOxsWQ3i/5+mDLs6/r6Hq2b6N+rf9X6vbmKbexbIkd/Pn91EmoXFJ3U8q0lATbyGQEA0DB4GzPYGgUpM/e4VMOZRt5UdsHhorbN9M32Q1q4br/mfe/cxr6lbrqgtddA05RrkjT27bUeSbedt5uEBWvX4QI9sXiLx3Nl5p7QH95eqy4tfbvAd+DoCa/9FWwN0k+/5igx2jMdAgAAZTEvtQ7JO2HXql8OS5Jf1pk7d44qbw6OM5Hj9T1aKjQ4SPlFxWre2FbpmvyEKJsSosqvV5ISonzbkaq6a/KXbzmoE3aHzmoW7tfZUQAAoG5avCHL65ih8KTD1E04vFm547DW782TJH255aByjxd5za1UUZ69WSMv0LI/XabQYO/Dc2eQyfk8lflyy8E6218AgPqDoFEd8uWWgzrpMNQ+NkLtYiJqXJ+vO0fZgq0leY0kbdyfW+kOblOv7ayp11a8c1tclK3SXd0qW5MvlZ9Qe+G6koHO4K4JLE0DAOAM5zCkxxZurnBZlxmbcJS2aP1+zfx8q0f5oVM71JYXlCmbdLv0Tm9bso7qhN1R6XM3tlkrPeaDH/bWqf4CANRPBI3qkNNL0/y33MrXnaO6tioJGv30a64GJCUotnGIR12lH1NevTGNQ9QoyKKff8v1OpAqbfXObJ/X5Jd2wl6sLzaXLE0bzM5XAACc8XbkWZSZV1ju/VXdrr6manLhSzq97K3sbCRf80EOvbB1hbu79WgdXeHjze4vAED9RU6jOsJe7NAXW0oCIf2T4vxaty87R3U7FTRatzdX32w/pIPHitTYZtULt16g3ON2r48pr94Pf9irP733k55btl3nJUTpqm7eAzu+DozKHvfV1oPKLypWi+hQdW9V8aAIAADUf3l2346ryiYcNVGVC19V2YTB13yQ/ZMS1LNds3J3dys86dDEd3+stB6z+gsAUH8RNKojvt+ZraMnTqp5RIh6tG7q9/orS+TYtWUTSdLPv+XoiUWbJUk3XtBKl51XcQDLW703JbfSxv15eu2bnfrzez+pdbMw5RcWewSssvOLfGp7zKnk3M7dP1796hdJ0oDOLE0DAKAhiAr27Thfgy41Vd0LX5Vx5qMsb4c1i0oCQ86xVHkXBVfuOOzT85nVXwCA+ougUR2x5NTStCs7xVW61Xxt2Jp5VBZJ9mJD6/eVJFhcuG6/erVvXu4OZhWZNLijtmYd1dfbDun6F79V6dnZcZE2nR3TWKt2+jagefyzTbq6Wwu9vmKX29W0T37ap4vPblat9gEAgPqjfZShhCibsvIKKw2mmMHXYEtVgzLOfJTl7bAmleSjdI4Vy7soWJXgEwAAFSGnUR1gGIY+31QSNOrXqea7plXVovX7Nf5faz0GFYcrSeRYkUbWIF3fo6Ukqexy/gNHC10Boz7nxFS4Jj+0UZB+3pun6Z9t9pgGnp1f/fYBAID6I8gi/W1IR6/3eQum1DZfd6itTlDG13yUFfF1M5RAXKgEANQvBI3qgM2ZR/XbkeOyNQpSnw4xpj53TRM5VlTvU0u2VHhM88Yhmntnzwq3nv3iz5VvPcvuHwAAnPkGdo7XyyMvUNk4R1WCKf5S20GZinZYq0odNQ0+AQDA8rQ64PNTS9Mu6RCj8BBzfyW1lcixsnqlkplMq3dmV5ioe+WOwxVuPVvd9gEAgPrnsvPiXDOYp9/QRe1iGnts1GEWZ1CmvGTUNQ3KVJaP0tc2VrYZCgAAFSFoFEDOxM7vrflVknRFR//umuaL2krkWNV6yxsY1Vb7AABA/bM357gkKSLEqhE9zwr4hhj1ISjjj+ATAKDhImgUIIvW7/e4MjXz821qFhFi6nTh2krk6K96a6t9AACg/vk1u0CS1KppeMADRk4EZQAAZzJyGgXA4g1ZGvv2Wo/lWwePFpqe2Lm2Ejn6q97aTDQJAADql9+OlMw0at0sLMAtAQCgYSBoZDKHIT22cLPfE09XV20lcvRXvez+AQAAnH49cnqmEQAAqH0EjUy2I8+izLzCcu8vndjZLLW1u4a/6mX3DwAAIJ2eadSqKTONAAAwAzmNTJZn9+04sxM711YiR3/VWx8STQIAgNr126mcRq2bMdMIAAAzEDQyWVSwb8cFIrFzbSVy9Fe9JJoEAKBh+5WZRgAAmIrlaSZrH2UoIcpGYmcAAAAfOQxp+ZaDys4vkiQlRhM0AgDADASNTBZkkf42pKPX+0jsDAAA4G7xhiylr7VqzNs/uMqueu5rU3ebBQCgoSJoFAADO8fr5ZEXKCzY6lZOYmcAAIDTFq3frz+++5NyitzLM3NPaOzbawkcAQBQy8hpFCCDuiTq36v36MuthzSiZ2td270liZ0BAABOKXYYSv9kowxJKrOw3zhVkv7JRvVPSmD8BABALWGmUQBl5RVKkgZ2TlBq++YMeAAAAE5ZvTNb+3PL303WkLQ/94RW78w2r1EAADQwBI0C6MDRkqBRfJT5O6UBAADUZQeOlh8wqs5xAACg6ggaBUjhyWLXDiAEjQAAANzFRfo2PvL1OAAAUHUEjQLk4KlZRsFWi5qGBwe4NQAAAHVLz3bNlBgdqvIW71skJUaHqme7ZmY2CwCABoWgUYA48xnFRYbKYiGXEQAAQGnWIIumXJN06pbhdp9z5DTlmiRyQgIAUIsIGgXIgbyS9fcJ0UypBgAA8GZQl0Q9P7y7moS4lydEh+rlkRdoUJfEwDQMAIAGolGgG9BQZZ0KGsVH2QLcEgAAgLprYOd42XcV66nNjbU354T+OqST7uzTjhlGAACYgJlGAZJ19PTyNAAAgKp48cUX1bZtW4WGhiolJUWrV68u99jLLrtMFovF4+eqq65yHWMYhiZPnqzExESFhYWpX79+2rZtmxmn4pMgy+klacltmxIwAgDAJASNAiQr1znTiKARAADw3bx585SWlqYpU6Zo7dq16t69uwYOHKgDBw54Pf6DDz7Q/v37XT/r16+X1WrVLbfc4jrmiSee0HPPPadZs2bpu+++U0REhAYOHKgTJ+rOdvYF9mJJUniINcAtAQCg4SBoFCBZR1meBgAAqu7pp5/WmDFjNHr0aCUlJWnWrFkKDw/XnDlzvB7frFkzJSQkuH4yMjIUHh7uChoZhqGZM2fqb3/7m6677jp169ZNb775pvbt26cPP/zQxDOr2PGiU0GjYLIrAABgFj51A8S5exozjQAAgK+Kioq0Zs0aTZo0yVUWFBSkfv36aeXKlT7V8dprr2n48OGKiIiQJO3cuVOZmZnq16+f65jo6GilpKRo5cqVGj58uNd6CgsLVVhY6Lqdl5cnSbLb7bLb7VU+t/LY7XY5DOm43SFJCg5y+LV+lHD2KX1bu+jn2kcfm4N+Nkdt9XNV6iNoFADFDkN7jxRIkvbnHlexw2BtPgAAqNShQ4dUXFys+Ph4t/L4+Hht3ry50sevXr1a69ev12uvveYqy8zMdNVRtk7nfd7MmDFD6enpHuVLlixReHh4pW2pilPxIknS118slY0VarUmIyMj0E1oEOjn2kcfm4N+Noe/+7mgoMDnYwkameynwxZNf+or19WyP7/3s/6xZKumXJPEtrEAAKBWvfbaa+ratat69uxZ47omTZqktLQ01+28vDy1bt1aAwYMUFRUVI3rd7Lb7fpg4enB8nVXDVYQF9v8zm63KyMjQ/3791dwcHCgm3PGop9rH31sDvrZHLXVz87Zwb6oE0GjF198UU8++aQyMzPVvXt3Pf/88+UOZi677DJ9+eWXHuVDhgzRp59+Kqlkbf6UKVM0e/Zs5eTkqHfv3nr55ZfVoUOHWj2PyizekKU5W4MkFbqVZ+ae0Ni31+rlkRcQOAIAAOWKiYmR1WpVVlaWW3lWVpYSEhIqfGx+fr7effddTZs2za3c+bisrCwlJp4eh2RlZalHjx7l1mez2WSzeeZmDA4O9vsXiFPpjBQaHCSbLcSvdcNdbfz+4Il+rn30sTnoZ3P4u5+rUlfAE2E3lB1Aih2GHlvofdq4cerf9E82qthheD0GAAAgJCREycnJWrp0qavM4XBo6dKlSk1NrfCx7733ngoLCzVy5Ei38nbt2ikhIcGtzry8PH333XeV1mmWwlPL08JD6sT1TgAAGoyAB40ayg4gq3dmKzOvUJL36dSGpP25J7R6Z7ap7QIAAPVLWlqaZs+erblz52rTpk0aO3as8vPzNXr0aEnSqFGj3BJlO7322mu6/vrr1bx5c7dyi8Wi++67T4899pg+/vhjrVu3TqNGjVKLFi10/fXXm3FKlXLONAoLJpkRAABmCujlmrqyA4gZu3/sz8n3+Ti73X95ABoiMvmbg36uffSxOehnc9SF3T/OFMOGDdPBgwc1efJkZWZmqkePHlq0aJErkfWePXsUFOR+XXDLli365ptvtGTJEq91/uUvf1F+fr7uuece5eTkqE+fPlq0aJFCQ+vGLq9FjpKLbuEhBI0AADBTQINGdWUHEDN2//gl1yKp8oHOLxt+1MLffvDLczZ0ZPI3B/1c++hjc9DP5gjk7h9nkgkTJmjChAle71u+fLlH2XnnnSfDKH8JvMVi0bRp0zzyHdUVzplGBI0AADBXvV4Y7q8dQMzY/aPYYei9f3ylrLwT8rZEzSIpIdqmCcMulZUdQWqETP7moJ9rH31sDvrZHHVh9w/UX0WnchqFETQCAMBUAQ0a1ZUdQMzY/SNY0iNDOmrCuz963OcMEU25prNC2RHEb8jkbw76ufbRx+agn80RyN0/UH8VumYa1evrnQAA1DsBTYTd0HYAGdg5Xnee6/CYWp0QHaqXR16gQV0Sy3kkAABAw8VMIwAAAiPgl2vS0tJ0++2368ILL1TPnj01c+ZMjx1AWrZsqRkzZrg9zpcdQDp06KB27drpkUceqTM7gHRvbig7PE4f/rhf13RroVtTzlLPds1YkgYAAFAOZ9AonN3TAAAwVcCDRg1xB5BCe8nIJ7lNE6W2b17J0QAAAA1XscNQZkHJxbW843YVOwwutgEAYJKAB42khrcDSIG9ZGE+6/IBAADKt2j9fk39eIMy80ouIC7emKU+jy/TlGuSWNYPAIAJAprTqKE6cSpoFMq6fAAAAK8Wrd+vsW+vVWZeoVt5Zu4JjX17rRat3x+glgEA0HAQNAqA486ZRqzLBwAA8FDsMJT+yUZ5m1fuLEv/ZKOKHeXPPAcAADVH0CgAjheVBI3YAQQAAMDT6p3Z2p97otz7DUn7c09o9c5s8xoFAEADRNAoAI6fSoRN0AgAAMDTgaPlB4yqcxwAAKgegkYB4JppxPI0AAAAD3GRvu146+txAACgeggaBcAJ1+5pBI0AAADK6tmumRKjQ2Up536LpMToUPVs18zMZgEA0OAQNDKZYUgFdmYaAQAAlMcaZNGUa5IkySNw5Lw95ZokWYPKCysBAAB/IGhkspNGSeBIIqcRAABAeQZ1SdTLIy9QfJTNrTwhOlQvj7xAg7okBqhlAAA0HI0C3YCG5lQ6I0lSKDONAAAAyjWoS6Iu69BcV/zfEu07btHEKzvo3is7MMMIAACTMNPIZEUlG6cp2GpRsJXuBwAAqIg1yCLbqcucnRIjCRgBAGAiohYmcwaNyGcEAADgG+fSfouFgBEAAGYiaGQy5/I08hkBAAD45lTMSFaCRgAAmIqgkcmcM43CQ0gnBQAA4AvHqahRECNXAABMxUevyYocJVfISIINAADgG+dMI5anAQBgLoJGJnMuTwtneRoAAIBPnDmNWJ4GAIC5CBqZrPBU0OjYiZNaueOwip3zrQEAAODVqdX9CiJoBACAqQgamWjxhix9sKuky7dkHdWI2avU5/FlWrR+f4BbBgAAUHc5ZxoFETMCAMBUBI1Msmj9fv3x3Z90vNi9PDP3hMa+vZbAEQAAQDmc87KDiBoBAGAqgkYmKHYYSv9k46kBj/tgxzkISv9kI0vVAAAAvDg904igEQAAZiJoZILVO7O1P/dEufcbkvbnntDqndnmNQoAAKCecF5XszJyBQDAVHz0muDA0fIDRtU5DgAAoCFxzsW2MNMIAABTETQyQVxkqF+PAwAAaEgcLE8DACAgCBqZoGe7ZkqMDlV5wxyLpMToUPVs18zMZgEAANQLzplGVoJGAACYiqCRCaxBFk25JunULfdk186hz5RrkmRlRxAAAAAPzkTYxIwAADAXQSOTDOqSqOeHd1dImR5PiA7VyyMv0KAuiYFpGAAAQB3nOPUvy9MAADBXo0A3oCEZ2DlePWMNfZNl0cCkeN3Ru516tmvGDCMAAIAKGK7d0xgzAQBgJoJGAdIxMUqp7ZsHuhkAAAB1nnNxPzEjAADMxfI0k50e9DDqAQAA8IXDldOI8RMAAGYiaGQyw7VlbGDbAQAAUF+4dk9jAAUAgKkIGpnMlciRQQ8AAIBPuOgGAEBgEDQyGVvGAgAAVA27pwEAEBgEjUxGTiMAAICqcc00YqoRAACmImhkMteWsQSNAAAAfHJ6plFAmwEAQIND0MhkzkEPMSMAAADfcNENAIDAIGhkstOJHBn0AAAA+MJQybjJwvgJAABTETQy2emcRgFtBgAAQL3gcBiu/zN+AgDAXASNTEYiRwAAAN85jNNBIyvjJwAATEXQyGRsGQsAAOC7UhONWJ4GAIDJCBqZjJxGAAAAvmOmEQAAgUPQyGTkNAIAAPBd6aAR4ycAAMxF0MhkDmYaAQAA+Kz08jTGTwAAmIugkcmc4x7GPAAAAJVz3z2NARQAAGYiaGQy5wxr1uQDAABUzn2mUeDaAQBAQ0TQyGSncxox6gEAAKiMe04jxk8AAJiJoJHJnFfLGPMAAABUzi1oxFQjAABMRdDIZMw0AgAA8N3pTUQC2w4AABoigkYmM4ySEQ9BIwAAgMoVn4oakQ8SAADzETQymXOmkZWeBwAAqJRxanmahQtuAACYjtCFyZxBIwY+AAAAlWN5GgAAgUPQyGSnBz6MfAAAACpTfGqmkZWxEwAApiNoZDKDq2UAAAA+Y3kaAACBQ9DIZOyeBgAAaurFF19U27ZtFRoaqpSUFK1evbrC43NycjR+/HglJibKZrPp3HPP1cKFC133T506VRaLxe2nY8eOtX0aPnE4Sv7lghsAAOZrFOgGNDSuoBEjHwAAUA3z5s1TWlqaZs2apZSUFM2cOVMDBw7Uli1bFBcX53F8UVGR+vfvr7i4OC1YsEAtW7bU7t271aRJE7fjOnfurM8//9x1u1GjujFMdC1PY+wEAIDp6sZooAFheRoAAKiJp59+WmPGjNHo0aMlSbNmzdKnn36qOXPm6KGHHvI4fs6cOcrOztaKFSsUHBwsSWrbtq3HcY0aNVJCQkKttr06Ti9PC3BDAABogAgamYxE2AAAoLqKioq0Zs0aTZo0yVUWFBSkfv36aeXKlV4f8/HHHys1NVXjx4/XRx99pNjYWN1666168MEHZbVaXcdt27ZNLVq0UGhoqFJTUzVjxgydddZZ5balsLBQhYWFrtt5eXmSJLvdLrvdXtNTdSmyn5RUMnbyZ71w5+xb+rh20c+1jz42B/1sjtrq56rUR9DIZM7lacSMAABAVR06dEjFxcWKj493K4+Pj9fmzZu9PuaXX37RsmXLdNttt2nhwoXavn27xo0bJ7vdrilTpkiSUlJS9MYbb+i8887T/v37lZ6erksuuUTr169XZGSk13pnzJih9PR0j/IlS5YoPDy8hmd62m/5ktRI9sJCtzxMqB0ZGRmBbkKDQD/XPvrYHPSzOfzdzwUFBT4fS9DIZCTCBgAAZnI4HIqLi9Orr74qq9Wq5ORk7d27V08++aQraDR48GDX8d26dVNKSoratGmj+fPn66677vJa76RJk5SWlua6nZeXp9atW2vAgAGKioryW/t/3J0t/fw/hYWFasiQvn6rF+7sdrsyMjLUv39/1zJG+B/9XPvoY3PQz+aorX52zg72BUEjkzlzGpHMEQAAVFVMTIysVquysrLcyrOyssrNR5SYmKjg4GC3pWidOnVSZmamioqKFBIS4vGYJk2a6Nxzz9X27dvLbYvNZpPNZvMoDw4O9uvA1nKq3dYgC19MTODv3x+8o59rH31sDvrZHP7u56rUFeS3Z4VPTu0aSyJsAABQZSEhIUpOTtbSpUtdZQ6HQ0uXLlVqaqrXx/Tu3Vvbt2+Xw7l3vaStW7cqMTHRa8BIko4dO6YdO3YoMTHRvydQDQ5XImwGTwAAmI2gkcmcM40Y+AAAgOpIS0vT7NmzNXfuXG3atEljx45Vfn6+aze1UaNGuSXKHjt2rLKzszVx4kRt3bpVn376qaZPn67x48e7jvnzn/+sL7/8Urt27dKKFSt0ww03yGq1asSIEaafX1nsPAsAQOCwPM1k5DQCAAA1MWzYMB08eFCTJ09WZmamevTooUWLFrmSY+/Zs0dBQaevC7Zu3VqLFy/W/fffr27duqlly5aaOHGiHnzwQdcxv/32m0aMGKHDhw8rNjZWffr00apVqxQbG2v6+ZVVfGrrWStjJwAATEfQyGQOrpYBAIAamjBhgiZMmOD1vuXLl3uUpaamatWqVeXW9+677/qraX7H8jQAAAKH5WkmY6YRAACA705vIhLYdgAA0BDx8Wuy0+vyCRoBAABUpvjU4ImxEwAA5iNoZDLX7mn0PAAAQKVYngYAQOAQujAZM40AAAB8x/I0AAACh49fk53OaRTQZgAAANQLzt3TuOAGAID5CBqZzHm1jCnWAAAAlTu9PC3ADQEAoAEiaGQy50wjKyMfAACASjlOJYRk7AQAgPkIGpnMQU4jAAAAnznYPQ0AgIAJeNDoxRdfVNu2bRUaGqqUlBStXr26wuNzcnI0fvx4JSYmymaz6dxzz9XChQtd90+dOlUWi8Xtp2PHjrV9Gj5zzjRi3AMAAFA5V9CIhJAAAJiuUSCffN68eUpLS9OsWbOUkpKimTNnauDAgdqyZYvi4uI8ji8qKlL//v0VFxenBQsWqGXLltq9e7eaNGnidlznzp31+eefu243ahTQ03Tj2j2NgQ8AAEClTs/SDmw7AABoiAIaTXn66ac1ZswYjR49WpI0a9Ysffrpp5ozZ44eeughj+PnzJmj7OxsrVixQsHBwZKktm3behzXqFEjJSQk1Grbq4vd0wAAAHzH8jQAAAInYEGjoqIirVmzRpMmTXKVBQUFqV+/flq5cqXXx3z88cdKTU3V+PHj9dFHHyk2Nla33nqrHnzwQVmtVtdx27ZtU4sWLRQaGqrU1FTNmDFDZ511VrltKSwsVGFhoet2Xl6eJMlut8tut9f0VF3sdrtrppGjuNivdeM0Z7/Sv7WLfq599LE56Gdz1FY/83s785EPEgCAwAlY0OjQoUMqLi5WfHy8W3l8fLw2b97s9TG//PKLli1bpttuu00LFy7U9u3bNW7cONntdk2ZMkWSlJKSojfeeEPnnXee9u/fr/T0dF1yySVav369IiMjvdY7Y8YMpaene5QvWbJE4eHhNTxTd45TXb5s6VJFhfi1apSRkZER6CY0CPRz7aOPzUE/m8Pf/VxQUODX+lD3OBzOmUYBbggAAA1Q3Un24wOHw6G4uDi9+uqrslqtSk5O1t69e/Xkk0+6gkaDBw92Hd+tWzelpKSoTZs2mj9/vu666y6v9U6aNElpaWmu23l5eWrdurUGDBigqKgov7W/qKhIWrlcktS/fz81jyBqVBvsdrsyMjLUv39/1zJG+B/9XPvoY3PQz+aorX52zg7GmYvlaQAABE7AgkYxMTGyWq3KyspyK8/Kyio3H1FiYqKCg4PdlqJ16tRJmZmZKioqUkiIZxCmSZMmOvfcc7V9+/Zy22Kz2WSz2TzKg4OD/TqwLXbOr5Zk83Pd8OTv3x+8o59rH31sDvrZHP7uZ35nZz7X8rSA7/kLAEDDE7CP35CQECUnJ2vp0qWuMofDoaVLlyo1NdXrY3r37q3t27fL4XC4yrZu3arExESvASNJOnbsmHbs2KHExET/nkA1OK+USVwtAwAA8AUzjQAACJyAXrNJS0vT7NmzNXfuXG3atEljx45Vfn6+aze1UaNGuSXKHjt2rLKzszVx4kRt3bpVn376qaZPn67x48e7jvnzn/+sL7/8Urt27dKKFSt0ww03yGq1asSIEaafX1mlJhpxtQwAAMAHBI0AAAicgOY0GjZsmA4ePKjJkycrMzNTPXr00KJFi1zJsffs2aOgUtGV1q1ba/Hixbr//vvVrVs3tWzZUhMnTtSDDz7oOua3337TiBEjdPjwYcXGxqpPnz5atWqVYmNjTT+/shwOZhoBAABUxend0wLbDgAAGqKAJ8KeMGGCJkyY4PW+5cuXe5SlpqZq1apV5db37rvv+qtpfsfyNAAAgKo5vXsaYycAAMzGIikTlV6exrgHAACgcq7laUw1AgDAdASNTGQw0wgAAKBKWJ4GAEDgEDQyUemZRlZGPgAAAJUiETYAAIFD0MhExW4zjQLYEAAAgHqC5WkAAAQOQSMTlV6eZuFqGQAAQKUcjpJ/iRkBAGA+gkYmYk0+AABA1bA8DQCAwCFoZCIGPQAAAFVz+qIb4ycAAMxG0MhEztVprMkHAADwjcPhvOgW4IYAANAAETQyUTGDHgAAgCpxztRm51kAAMxH0MhELE8DAACoGufyNDYRAQDAfASNTGS4Bj2BbQcAAEB9cfqiW4AbAgBAA0TQyETMNAIAAKga1/I0xk8AAJiOoJGJnNOrGfQAAAD4xpkTkuETAADmI2hkIgeDHgAAgCpx7T7LAAoAANMRNDIRy9MAAAB8V+wwtDfnuCQpM++Ea9YRAAAwB0EjEzlcV8oC2w4AAIC6btH6/erz+DIt3nhAkvTJz5nq8/gyLVq/P8AtAwCg4SBoZCJmGgEAAFRu0fr9Gvv2Wu3PPeFWnpl7QmPfXkvgCAAAkxA0MpEraMRUIwAAAK+KHYbSP9kobwvRnGXpn2xkqRoAACYgaGQilqcBAABUbPXObI8ZRqUZkvbnntDqndnmNQoAgAaKoJGJnDONLCxPAwAA8OrA0fIDRtU5DgAAVB9BIxMZzDQCAACoUFxkqF+PAwAA1UfQyEQkwgYAAKhYz3bNlBgdqvJGSxZJidGh6tmumZnNAgCgQSJoZCJnwkZmGgEAAHhnDbJoyjVJkuQROHLennJNkqwMqAAAqHU1ChoVFRVpy5YtOnnypL/ac0Y7vTyNQQ4AAA0V46fKDeqSqJdHXqCEaPclaAnRoXp55AUa1CUxQC0DAKBhqVbQqKCgQHfddZfCw8PVuXNn7dmzR5L0xz/+Uf/3f//n1waeSVieBgBAw8X4qWoGdUnUNw9eocvOjZEk3XJBC33z4BUEjAAAMFG1gkaTJk3STz/9pOXLlys09PQVoH79+mnevHl+a9yZxkEibAAAGizGT1VnDbIoLtImSWrdLJwlaQAAmKxRdR704Ycfat68ebr44ovdto/v3LmzduzY4bfGnWmMUzONLMw0AgCgwWH8BAAA6ptqzTQ6ePCg4uLiPMrz8/MJiFSg2Lk8jfTjAAA0OIyfAABAfVOt8MWFF16oTz/91HXbOdD55z//qdTUVP+07AzkXJ5mZWAIAECDw/ipeoxANwAAgAasWsvTpk+frsGDB2vjxo06efKknn32WW3cuFErVqzQl19+6e82njEMB8vTAABoqBg/1QyjJwAAzFetmUZ9+vTRTz/9pJMnT6pr165asmSJ4uLitHLlSiUnJ/u7jWcMEmEDANBwMX4CAAD1TZVnGtntdv3+97/XI488otmzZ9dGm85YDmdOI2YaAQDQoDB+AgAA9VGVZxoFBwfr/fffr422nPEcrt3TAtwQAABgKsZP1WeQ1AgAgICp1vK066+/Xh9++KGfm3LmcyXCZn0aAAANDuOnmiEnJAAA5qtWIuwOHTpo2rRp+vbbb5WcnKyIiAi3+++9916/NO5Mw/I0AAAaLsZPAACgvqlW0Oi1115TkyZNtGbNGq1Zs8btPovFwqCnHM6ZRsSMAABoeBg/AQCA+qZaQaOdO3f6ux0NgsFMIwAAGizGTwAAoL6pVk6j0gzDcAVDULFihzNoFOCGAACAgGL85DtD9BMAAIFS7aDRm2++qa5duyosLExhYWHq1q2b3nrrLX+27Yxz8lTQ6ODRIq3ccdgVRAIAAA0D4ycAAFCfVCto9PTTT2vs2LEaMmSI5s+fr/nz52vQoEH6wx/+oGeeecbfbTwjLFq/X08s3ipJ2pR5VCNmr1Kfx5dp0fr9AW4ZAAAwgz/HTy+++KLatm2r0NBQpaSkaPXq1RUen5OTo/HjxysxMVE2m03nnnuuFi5cWKM6AQDAma9aOY2ef/55vfzyyxo1apSr7Nprr1Xnzp01depU3X///X5r4Jlg0fr9Gvv2Wo/J1Zm5JzT27bV6eeQFGtQlMSBtAwAA5vDX+GnevHlKS0vTrFmzlJKSopkzZ2rgwIHasmWL4uLiPI4vKipS//79FRcXpwULFqhly5bavXu3mjRpUu06AQBAw1CtmUb79+9Xr169PMp79eql/fuZOVNascNQ+icbva7Gd5alf7KRpWoAAJzh/DV+evrppzVmzBiNHj1aSUlJmjVrlsLDwzVnzhyvx8+ZM0fZ2dn68MMP1bt3b7Vt21Z9+/ZV9+7dq12nmUj9BABA4FRrptE555yj+fPn6+GHH3Yrnzdvnjp06OCXhp0pVu/M1v7cE+Xeb0jan3tCq3dmK7V9c/MaBgAATOWP8VNRUZHWrFmjSZMmucqCgoLUr18/rVy50utjPv74Y6Wmpmr8+PH66KOPFBsbq1tvvVUPPvigrFZrteqUpMLCQhUWFrpu5+XlSZLsdrvsdrtP5+MLh8MhSTIcxX6tF+6cfUsf1y76ufbRx+agn81RW/1clfqqFTRKT0/XsGHD9NVXX6l3796SpG+//VZLly7V/Pnzq1PlGevA0fIDRtU5DgAA1E/+GD8dOnRIxcXFio+PdyuPj4/X5s2bvT7ml19+0bJly3Tbbbdp4cKF2r59u8aNGye73a4pU6ZUq05JmjFjhtLT0z3KlyxZovDwcJ/Oxxf79gVJCtK2bdu0sGCr3+qFdxkZGYFuQoNAP9c++tgc9LM5/N3PBQUFPh9braDRTTfdpO+++07PPPOMPvzwQ0lSp06dtHr1ap1//vnVqfKMFRcZ6tfjAABA/RSo8ZPD4VBcXJxeffVVWa1WJScna+/evXryySc1ZcqUatc7adIkpaWluW7n5eWpdevWGjBggKKiovzRdEnSFwt+lg5mqkOHDhpy2Tl+qxfu7Ha7MjIy1L9/fwUHBwe6OWcs+rn20cfmoJ/NUVv97Jwd7ItqBY0kKTk5WW+//XZ1H95g9GzXTInRocrMPeE1r5FFUkJ0qHq2a2Z20wAAgMlqOn6KiYmR1WpVVlaWW3lWVpYSEhK8PiYxMVHBwcGyWq2usk6dOikzM1NFRUXVqlOSbDabbDabR3lwcLBfB7ZBQSUpOIOsVr6YmMDfvz94Rz/XPvrYHPSzOfzdz1Wpq1qJsBcuXKjFixd7lC9evFifffZZdao8Y1mDLJpyTZLX+yyn/p1yTZKsQRavxwAAgDODP8ZPISEhSk5O1tKlS11lDodDS5cuVWpqqtfH9O7dW9u3b3flBpKkrVu3KjExUSEhIdWq00zkwQYAIHCqFTR66KGHVFxc7FFuGIYeeuihGjfqTDOoS6JeHnmBIkPdJ3YlRIfq5ZEXaFCXxAC1DAAAmMVf46e0tDTNnj1bc+fO1aZNmzR27Fjl5+dr9OjRkqRRo0a5JbUeO3assrOzNXHiRG3dulWffvqppk+frvHjx/tcZ11g4foaAACmq9bytG3btikpyXP2TMeOHbV9+/YaN+pMNKhLon7NztffF25Rj1ZRenBwknq2a8YMIwAAGgh/jZ+GDRumgwcPavLkycrMzFSPHj20aNEiVyLrPXv2uJZ0SVLr1q21ePFi3X///erWrZtatmypiRMn6sEHH/S5TgAA0DBVK2gUHR2tX375RW3btnUr3759uyIiIvzRrjNS0KlLZC2ahCm1ffMAtwYAAJjJn+OnCRMmaMKECV7vW758uUdZamqqVq1aVe06AQBAw1St5WnXXXed7rvvPu3YscNVtn37dv3pT3/Stdde67fGAQAAnCkYPwEAgPqmWkGjJ554QhEREerYsaPatWundu3aqWPHjmrevLmeeuopf7fxjGEYJakcLWJJGgAADQ3jp2oySIUNAECgVHt52ooVK5SRkaGffvpJYWFh6t69uy655BJ/tw8AAOCMwPipZrjoBgCA+ao002jlypX673//K0myWCwaMGCA4uLi9NRTT+mmm27SPffco8LCwlppKAAAQH3E+AkAANRXVQoaTZs2TRs2bHDdXrduncaMGaP+/fvroYce0ieffKIZM2b4vZEAAAD1FeMnAABQX1UpaPTjjz/qyiuvdN1+99131bNnT82ePVtpaWl67rnnNH/+fL838kzhWpHP7GoAABoMxk81Q0ojAAACp0pBoyNHjig+Pt51+8svv9TgwYNdty+66CL9+uuv/msdAABAPcf4yT8sXHQDAMB0VQoaxcfHa+fOnZKkoqIirV27VhdffLHr/qNHjyo4ONi/LQQAAKjHGD8BAID6qkpBoyFDhuihhx7S119/rUmTJik8PNxtx4+ff/5Z7du393sjAQAA6ivGTwAAoL5qVJWDH330Ud14443q27evGjdurLlz5yokJMR1/5w5czRgwAC/N/JM4VyTz+xqAAAaDsZPAACgvqpS0CgmJkZfffWVcnNz1bhxY1mtVrf733vvPTVu3NivDQQAAKjPGD/VDHmwAQAInCoFjZyio6O9ljdr1qxGjQEAADhTMX6qGWZqAwBgvirlNAIAAAAAAEDDQNAoANgyFgAAAAAA1HUEjQAAAFBnGSQ1AgAgYAgaAQAAoM6zMFUbAADTETQCAAAAAACAB4JGJjJOza+2sP8HAAAAAACo4wgaAQAAAAAAwANBIwAAANRZhsiEDQBAoBA0AgAAAAAAgIeAB41efPFFtW3bVqGhoUpJSdHq1asrPD4nJ0fjx49XYmKibDabzj33XC1cuLBGdZrFeZ2MzT8AAAAAAEBdF9Cg0bx585SWlqYpU6Zo7dq16t69uwYOHKgDBw54Pb6oqEj9+/fXrl27tGDBAm3ZskWzZ89Wy5Ytq10nAAAAAAAAPAU0aPT0009rzJgxGj16tJKSkjRr1iyFh4drzpw5Xo+fM2eOsrOz9eGHH6p3795q27at+vbtq+7du1e7TgAAAAAAAHhqFKgnLioq0po1azRp0iRXWVBQkPr166eVK1d6fczHH3+s1NRUjR8/Xh999JFiY2N166236sEHH5TVaq1WnZJUWFiowsJC1+28vDxJkt1ul91ur+mpuhQXF0uSHA6HX+uFO2ff0se1i36uffSxOehnc9RWP/N7O/MZ5MEGACBgAhY0OnTokIqLixUfH+9WHh8fr82bN3t9zC+//KJly5bptttu08KFC7V9+3aNGzdOdrtdU6ZMqVadkjRjxgylp6d7lC9ZskTh4eHVODvvtu6zSLIqc/9+LVy412/1wruMjIxAN6FBoJ9rH31sDvrZHP7u54KCAr/Wh7qLnJAAAJgvYEGj6nA4HIqLi9Orr74qq9Wq5ORk7d27V08++aSmTJlS7XonTZqktLQ01+28vDy1bt1aAwYMUFRUlD+aLkn69csd0u4dSmyRqCFDulf+AFSL3W5XRkaG+vfvr+Dg4EA354xFP9c++tgc9LM5aqufnbODAQAA4H8BCxrFxMTIarUqKyvLrTwrK0sJCQleH5OYmKjg4GBZrVZXWadOnZSZmamioqJq1SlJNptNNpvNozw4ONivA1tnu4MsQXwxMYG/f3/wjn6uffSxOehnc/i7n/mdAQAA1J6AJcIOCQlRcnKyli5d6ipzOBxaunSpUlNTvT6md+/e2r59uxwOh6ts69atSkxMVEhISLXqBAAAQN1FSiMAAAInoLunpaWlafbs2Zo7d642bdqksWPHKj8/X6NHj5YkjRo1yi2p9dixY5Wdna2JEydq69at+vTTTzV9+nSNHz/e5zoDyTg17GFNPgAAQNUwfAIAwHwBzWk0bNgwHTx4UJMnT1ZmZqZ69OihRYsWuRJZ79mzR0FBp+NarVu31uLFi3X//ferW7duatmypSZOnKgHH3zQ5zoBAAAAAABQuYAnwp4wYYImTJjg9b7ly5d7lKWmpmrVqlXVrhMAAAAAAACVC+jyNAAAAAAAANRNBI1MZDgzOZLUCAAAwDdkwgYAIGAIGgEAAKDOs3DRDQAA0xE0AgAAAAAAgAeCRgAAAAAAAPBA0MhEzpxGTK4GAAAAAAB1HUEjAAAA1FkGmbABAAgYgkYAAACo85ipDQCA+QgaAQAAAAAAwANBowBgx1gAAAAAAFDXETQCAABAnWWQ0ggAgIAhaAQAAIA6j5naAACYj6ARAAAAAAAAPBA0CgAL+38AAAAAAIA6jqCRiQwW5QMAAAAAgHqCoBEAAADqLC65AQAQOASNAAAAUOexuB8AAPMRNAoAdv8AAAAAAAB1HUEjEzG9GgAAAAAA1BcEjQAAAFBnsZEIAACBQ9AIAAAAdR/r+wEAMB1BowBgyAMAAAAAAOo6gkYmYnY1AAAAAACoLwgaAQAAAAAAwANBIwAAANRZTNQGACBwCBoFAHkcAQBATbz44otq27atQkNDlZKSotWrV5d77BtvvCGLxeL2Exoa6nbMHXfc4XHMoEGDavs0qoThEwAA5msU6AY0JFwpAwAANTVv3jylpaVp1qxZSklJ0cyZMzVw4EBt2bJFcXFxXh8TFRWlLVu2uG5bvFzBGjRokF5//XXXbZvN5v/GAwCAeoWZRgAAAPXI008/rTFjxmj06NFKSkrSrFmzFB4erjlz5pT7GIvFooSEBNdPfHy8xzE2m83tmKZNm9bmaQAAgHqAmUYAAAD1RFFRkdasWaNJkya5yoKCgtSvXz+tXLmy3McdO3ZMbdq0kcPh0AUXXKDp06erc+fObscsX75ccXFxatq0qa644go99thjat68ebl1FhYWqrCw0HU7Ly9PkmS322W326t7ih4MR8lc7eLiYr/WC3fOvqWPaxf9XPvoY3PQz+aorX6uSn0EjQKCVfkAAKDqDh06pOLiYo+ZQvHx8dq8ebPXx5x33nmaM2eOunXrptzcXD311FPq1auXNmzYoFatWkkqWZp24403ql27dtqxY4cefvhhDR48WCtXrpTVavVa74wZM5Senu5RvmTJEoWHh9fwTE/LOhAkKUibNm3SwiMb/VYvvMvIyAh0ExoE+rn20cfmoJ/N4e9+Ligo8PlYgkYmMgyyGgEAAHOlpqYqNTXVdbtXr17q1KmTXnnlFT366KOSpOHDh7vu79q1q7p166b27dtr+fLluvLKK73WO2nSJKWlpblu5+XlqXXr1howYICioqL81v5PjqyVsg8pKamThlzc1m/1wp3dbldGRob69++v4ODgQDfnjEU/1z762Bz0szlqq5+ds4N9QdAIAACgnoiJiZHValVWVpZbeVZWlhISEnyqIzg4WOeff762b99e7jFnn322YmJitH379nKDRjabzWuy7ODgYL8ObC2WkhScVquVLyYm8PfvD97Rz7WPPjYH/WwOf/dzVeoiETYAAEA9ERISouTkZC1dutRV5nA4tHTpUrfZRBUpLi7WunXrlJiYWO4xv/32mw4fPlzhMQAA4MxH0CgAvOxyCwAA4JO0tDTNnj1bc+fO1aZNmzR27Fjl5+dr9OjRkqRRo0a5JcqeNm2alixZol9++UVr167VyJEjtXv3bt19992SSpJkP/DAA1q1apV27dqlpUuX6rrrrtM555yjgQMHBuQcAQBA3cDyNBOR0QgAANTUsGHDdPDgQU2ePFmZmZnq0aOHFi1a5EqOvWfPHgUFnb4ueOTIEY0ZM0aZmZlq2rSpkpOTtWLFCiUlJUkqWfb1888/a+7cucrJyVGLFi00YMAAPfroo16XnwWKhY1EAAAwHUEjAACAembChAmaMGGC1/uWL1/udvuZZ57RM888U25dYWFhWrx4sT+bBwAAzhAsTwMAAAAAAIAHgkYBwORqAAAAAABQ1xE0MhNJjQAAAKrEMBhAAQAQKASNAAAAUOex+ywAAOYjaAQAAAAAAAAPBI0CgCtlAAAAAACgriNoZCKDpEYAAABVwugJAIDAIWgEAACAOo+J2gAAmI+gEQAAAAAAADwQNAoAC9fKAAAAAABAHUfQyEQGi/IBAAAAAEA9QdAIAAAAdRYX3QAACByCRgAAAKjzLKzuBwDAdASNAoBBDwAAAAAAqOsIGpmI2dUAAAAAAKC+IGgEAAAAAAAADwSNAAAAUGcZzNUGACBgCBoFACmNAAAAqooRFAAAZiNoZCK2jAUAAAAAAPUFQSMAAAAAAAB4IGgEAACAOouZ2gAABA5Bo0CwsCYfAACgKhg+AQBgPoJGJmL3DwAAAAAAUF8QNAIAAAAAAIAHgkYAAAAAAADwQNAoAFiSDwAA4BsW9wMAEDgEjQAAAFDncdENAADzETQyE5fKAAAAAABAPUHQCAAAAAAAAB4IGgWAhfnVAAAAvmGmNgAAAUPQCAAAAHUeF90AADAfQSMTcaEMAAAAAADUFwSNAAAAAAAA4IGgUQAwuxoAAAAAANR1BI0AAABQZxks8AcAIGDqRNDoxRdfVNu2bRUaGqqUlBStXr263GPfeOMNWSwWt5/Q0FC3Y+644w6PYwYNGlTbp1EpgzEPAABAtViYqw0AgOkaBboB8+bNU1pammbNmqWUlBTNnDlTAwcO1JYtWxQXF+f1MVFRUdqyZYvrtsXLdhqDBg3S66+/7rpts9n833gAAAAAAIAzVMCDRk8//bTGjBmj0aNHS5JmzZqlTz/9VHPmzNFDDz3k9TEWi0UJCQkV1muz2So9xqmwsFCFhYWu23l5eZIku90uu93uUx2+KHYUS5IMh8Ov9cKds2/p49pFP9c++tgc9LM5aquf+b0BAADUnoAGjYqKirRmzRpNmjTJVRYUFKR+/fpp5cqV5T7u2LFjatOmjRwOhy644AJNnz5dnTt3djtm+fLliouLU9OmTXXFFVfoscceU/Pmzb3WN2PGDKWnp3uUL1myROHh4dU8O0+7dgdJCtLuPXu0cOEuv9UL7zIyMgLdhAaBfq599LE56Gdz+LufCwoK/FofAAAATgto0OjQoUMqLi5WfHy8W3l8fLw2b97s9THnnXee5syZo27duik3N1dPPfWUevXqpQ0bNqhVq1aSSpam3XjjjWrXrp127Nihhx9+WIMHD9bKlStltVo96pw0aZLS0tJct/Py8tS6dWsNGDBAUVFRfjvfdZ9tlvbtUZuzztKQIUl+qxfu7Ha7MjIy1L9/fwUHBwe6OWcs+rn20cfmoJ/NUVv97JwdjDMXOSEBAAicgC9Pq6rU1FSlpqa6bvfq1UudOnXSK6+8okcffVSSNHz4cNf9Xbt2Vbdu3dS+fXstX75cV155pUedNpvNa86j4OBgvw5sg6xBp/618sXEBP7+/cE7+rn20cfmoJ/N4e9+5nfWcHhJYQkAAGpZQHdPi4mJkdVqVVZWllt5VlaWz/mIgoODdf7552v79u3lHnP22WcrJiamwmPMxJgHAAAAAADUdQENGoWEhCg5OVlLly51lTkcDi1dutRtNlFFiouLtW7dOiUmJpZ7zG+//abDhw9XeAwAAAAAAABOC2jQSJLS0tI0e/ZszZ07V5s2bdLYsWOVn5/v2k1t1KhRbomyp02bpiVLluiXX37R2rVrNXLkSO3evVt33323pJIk2Q888IBWrVqlXbt2aenSpbruuut0zjnnaODAgQE5RyfW5AMAAFQNwycAAAIn4DmNhg0bpoMHD2ry5MnKzMxUjx49tGjRIldy7D179igo6HRs68iRIxozZowyMzPVtGlTJScna8WKFUpKKkksbbVa9fPPP2vu3LnKyclRixYtNGDAAD366KNe8xYBAACg7mN5PwAA5gt40EiSJkyYoAkTJni9b/ny5W63n3nmGT3zzDPl1hUWFqbFixf7s3l+RyJHAAAAAABQ1wV8eRoAAAAAAADqHoJGJmJNPgAAAAAAqC8IGgEAAKDOYiMRAAACh6ARAAAA6j6SQgIAYDqCRgAAAAAAAPBA0MhEBvOrAQAAAABAPUHQCAAAAHWWwVYiAAAEDEGjALCwJh8AAKBKGD0BAGA+gkYAAAAAAADwQNAIAAAAAAAAHggaAQAAAAAAwANBowBgTT4AAKiJF198UW3btlVoaKhSUlK0evXqco994403ZLFY3H5CQ0PdjjEMQ5MnT1ZiYqLCwsLUr18/bdu2rbZPwzfkwQYAIGAIGgEAANQj8+bNU1pamqZMmaK1a9eqe/fuGjhwoA4cOFDuY6KiorR//37Xz+7du93uf+KJJ/Tcc89p1qxZ+u677xQREaGBAwfqxIkTtX06PmMfEQAAzEfQyEQGV8oAAEANPf300xozZoxGjx6tpKQkzZo1S+Hh4ZozZ065j7FYLEpISHD9xMfHu+4zDEMzZ87U3/72N1133XXq1q2b3nzzTe3bt08ffvihCWcEAADqqkaBbgAAAAB8U1RUpDVr1mjSpEmusqCgIPXr108rV64s93HHjh1TmzZt5HA4dMEFF2j69Onq3LmzJGnnzp3KzMxUv379XMdHR0crJSVFK1eu1PDhw73WWVhYqMLCQtftvLw8SZLdbpfdbq/ReZbmOHXVrbi42K/1wp2zb+nj2kU/1z762Bz0szlqq5+rUh9BowBgejUAAKiOQ4cOqbi42G2mkCTFx8dr8+bNXh9z3nnnac6cOerWrZtyc3P11FNPqVevXtqwYYNatWqlzMxMVx1l63Te582MGTOUnp7uUb5kyRKFh4dX9dTKlZ0dJClI69atU8j+n/1WL7zLyMgIdBMaBPq59tHH5qCfzeHvfi4oKPD5WIJGAAAAZ7DU1FSlpqa6bvfq1UudOnXSK6+8okcffbTa9U6aNElpaWmu23l5eWrdurUGDBigqKioGrW5tH/tXy3l5qhr164acn4rv9ULd3a7XRkZGerfv7+Cg4MD3ZwzFv1c++hjc9DP5qitfnbODvYFQSMTkdIIAADURExMjKxWq7KystzKs7KylJCQ4FMdwcHBOv/887V9+3ZJcj0uKytLiYmJbnX26NGj3HpsNptsNpvX+v05sA0KKknB2chq5YuJCfz9+4N39HPto4/NQT+bw9/9XJW6SIQNAABQT4SEhCg5OVlLly51lTkcDi1dutRtNlFFiouLtW7dOleAqF27dkpISHCrMy8vT999953PdQIAgDMTM40CwCKSGgEAgOpJS0vT7bffrgsvvFA9e/bUzJkzlZ+fr9GjR0uSRo0apZYtW2rGjBmSpGnTpuniiy/WOeeco5ycHD355JPavXu37r77bkklO6vdd999euyxx9ShQwe1a9dOjzzyiFq0aKHrr78+UKcJAADqAIJGAAAA9ciwYcN08OBBTZ48WZmZmerRo4cWLVrkSmS9Z88e15IuSTpy5IjGjBmjzMxMNW3aVMnJyVqxYoWSkpJcx/zlL39Rfn6+7rnnHuXk5KhPnz5atGiRQkNDTT+/sgyDBf4AAAQKQSMTMegBAAD+MGHCBE2YMMHrfcuXL3e7/cwzz+iZZ56psD6LxaJp06Zp2rRp/mqi31nYfhYAANOR0wgAAAAAAAAeCBoFABfKAAAAAABAXUfQCAAAAAAAAB4IGpmIjEYAAABVw/gJAIDAIWgEAACAOo/V/QAAmI+gUQAw6AEAAAAAAHUdQSMAAAAAAAB4IGgEAACAOssgqREAAAFD0MhEDHoAAACqx8L6fgAATEfQKBAY9AAAAAAAgDqOoBEAAAAAAAA8EDQCAAAAAACAB4JGJiKlEQAAQNUwfgIAIHAIGgWAhaRGAAAAAACgjiNoBAAAAAAAAA8EjQAAAAAAAOCBoJGZDFblAwAAAACA+oGgUQBYSGkEAADgE4OLbgAABAxBIwAAANR5Fq66AQBgOoJGAAAAAAAA8EDQyERMrgYAAAAAAPUFQaMAYHI1AAAAAACo6wgaAQAAoM7johsAAOYjaAQAAAAAAAAPBI1MxI6xAAAAAACgviBoFADsGAsAAAAAAOo6gkYAAACos5ipDQBA4BA0AgAAQJ3HTG0AAMxH0MhEhrhUBgAAAAAA6geCRgFgYdNYAAAAAABQxxE0AgAAQJ3FPG0AAAKHoBEAAADqPGZqAwBgPoJGJmL3DwAAAAAAUF8QNAoELpQBAAAAAIA6jqARAAAAAAAAPBA0AgAAQJ1lsL4fAICAIWhkIoY8AAAA1WNheT8AAKYjaBQAjHkAAAAAAEBdR9AIAAAAAAAAHggamaTYYSgr74Qk6bcjx1XsYLEaAABARYodho6eOClJ2pp1lPETAAAmI2hkgkXr96vP48v0xZZDkqT3f9inPo8v06L1+wPcMgAAgLrJOX7afjBfkvTM0h2MnwAAMBlBo1q2aP1+jX17rfbnnnArz8w9obFvr2XgAwAAUAbjJwAA6gaCRrWo2GEo/ZONXndNc5alf7KRqdYAAACnMH4CAKDuIGhUi1bvzPa4QlaaIWl/7gmt3pltXqMAAADqMMZPAADUHQSNatGBo+UPeKpzHAAAwJmO8RMAAHUHQaNaFBcZ6tfjAAAAznSMnwAAqDsIGtWinu2aKTE6VJZy7rdISowOVc92zcxsFgAAQJ3F+AkAgLqDoFEtsgZZNOWaJEnyGPg4b0+5JknWoPKGRQAAAA0L4ycAAOqOOhE0evHFF9W2bVuFhoYqJSVFq1evLvfYN954QxaLxe0nNNR9erJhGJo8ebISExMVFhamfv36adu2bbV9Gl4N6pKol0deoIRo9zYmRIfq5ZEXaFCXxIC0CwAAoK5i/AQAQN3QKNANmDdvntLS0jRr1iylpKRo5syZGjhwoLZs2aK4uDivj4mKitKWLVtcty0W9ytNTzzxhJ577jnNnTtX7dq10yOPPKKBAwdq48aNHgEmMwzqkqj+SQlauf2Alnz9nQZckqLUc+K4QgYAAFAOxk8AAARewGcaPf300xozZoxGjx6tpKQkzZo1S+Hh4ZozZ065j7FYLEpISHD9xMfHu+4zDEMzZ87U3/72N1133XXq1q2b3nzzTe3bt08ffvihCWfknTXIopR2zZQcYyilXTMGPAAAAJVg/AQAQGAFdKZRUVGR1qxZo0mTJrnKgoKC1K9fP61cubLcxx07dkxt2rSRw+HQBRdcoOnTp6tz586SpJ07dyozM1P9+vVzHR8dHa2UlBStXLlSw4cP96ivsLBQhYWFrtt5eXmSJLvdLrvdXuPzdHLW5c864Yl+Ngf9XPvoY3PQz+aorX7m9wYAAFB7Aho0OnTokIqLi91mCklSfHy8Nm/e7PUx5513nubMmaNu3bopNzdXTz31lHr16qUNGzaoVatWyszMdNVRtk7nfWXNmDFD6enpHuVLlixReHh4dU6tQhkZGX6vE57oZ3PQz7WPPjYH/WwOf/dzQUGBX+sDAADAaQHPaVRVqampSk1Ndd3u1auXOnXqpFdeeUWPPvpoteqcNGmS0tLSXLfz8vLUunVrDRgwQFFRUTVus5PdbldGRob69++v4OBgv9ULd/SzOejn2kcfm4N+Nkdt9bNzdjAAAAD8L6BBo5iYGFmtVmVlZbmVZ2Vl6f/bu/eoKOs0DuDf4TaAiCAII14A7yIICImIt6MEmmu5tpt5yEDNsuAkori6XkhMQSvTPJS7nU3ds62WrZqbiuuiaHjBRFFRJEURMwavBN6BefaPPb46DSrYzHD7fs7hHOb3Pu9vfr+HHJ4e3plXo9HUag5ra2sEBgbi7NmzAKCcV1pairZtH95Zo7S0FAEBATXOoVaroVara5zbFP8DYap5SR/zbB7Ms+kxx+bBPJuHsfPMnxkRERGR6dTrB2Hb2NggKCgIGRkZyphOp0NGRobe1URPUl1djRMnTigNIm9vb2g0Gr05y8vLkZ2dXes5iYiIiIiIiIiau3p/e1pCQgKio6MRHByMvn37Yvny5bh16xYmTJgAAHj99dfRrl07pKSkAACSk5PRr18/dOnSBWVlZfjggw9w4cIFvPHGGwD+f2e1+Ph4vP/+++jatSu8vb0xb948eHh4YPTo0fW1TSIiIiIiIiKiRqXem0Zjx47FlStXMH/+fGi1WgQEBCA9PV35IOvi4mJYWDy8IOrGjRuYPHkytFotnJ2dERQUhP3798PHx0eJmTlzJm7duoU333wTZWVlGDBgANLT02Fra2v2/RERERERERERNUb1+va0B+Li4nDhwgXcu3cP2dnZCAkJUY5lZmZizZo1yuOPP/5YidVqtdi6dSsCAwP15lOpVEhOToZWq8Xdu3fx3//+F926dTPXdoiIiIhMKi0tDV5eXrC1tUVISAgOHTpUq/PWr18PlUplcPV1TEwMVCqV3tfw4cNNsHIiIiJqTBpE04iIiIiIauerr75CQkICkpKScOTIEfj7+yMyMhKXL19+4nlFRUWYMWMGBg4cWOPx4cOHo6SkRPlat26dKZZPREREjQibRkRERESNyLJlyzB58mRMmDABPj4+WLVqFezt7fHFF1889pzq6mpERUVhwYIF6NSpU40xarUaGo1G+XJ2djbVFoiIiKiRqPfPNCIiIiKi2rl//z5ycnIwe/ZsZczCwgLh4eE4cODAY89LTk6Gm5sbJk2ahO+//77GmMzMTLi5ucHZ2RlDhw7F+++/DxcXl8fOee/ePdy7d095XF5eDgCorKxEZWVlXbf2WA/mMuacZIh5Ng/m2fSYY/Ngns3DVHmuy3xsGtVARAA8LH6MpbKyErdv30Z5eTmsra2NOjc9xDybB/NsesyxeTDP5mGqPD/4Xf3gd3dTd/XqVVRXVys3DHnA3d0dp0+frvGcrKws/O1vf0Nubu5j5x0+fDjGjBkDb29vFBYW4s9//jNGjBiBAwcOwNLSssZzUlJSsGDBAoPxzZs3w97evvabqqVvv/3W6HOSIebZPJhn02OOzYN5Ng9j5/n27dsAalc/sWlUg4qKCgBAhw4d6nklREREVBsVFRVo1apVfS+jwamoqMD48ePx+eefw9XV9bFxr776qvK9n58fevfujc6dOyMzMxPDhg2r8ZzZs2cjISFBeXzp0iX4+PjgjTfeMN4GiIiIyGRqUz+xaVQDDw8PXLx4ES1btoRKpTLavOXl5ejQoQMuXrwIR0dHo81L+phn82CeTY85Ng/m2TxMlWcRQUVFBTw8PIw2Z0Pm6uoKS0tLlJaW6o2XlpZCo9EYxBcWFqKoqAijRo1SxnQ6HQDAysoKBQUF6Ny5s8F5nTp1gqurK86ePfvYppFarYZarVYeOzg4sH5qxJhn82CeTY85Ng/m2TwaQv3EplENLCws0L59e5PN7+joyH9YZsA8mwfzbHrMsXkwz+Zhijw3pyuMbGxsEBQUhIyMDIwePRrA/5tAGRkZiIuLM4jv0aMHTpw4oTc2d+5cVFRUYMWKFY+9qvqnn37CtWvX0LZt21qvjfVT08A8mwfzbHrMsXkwz+ZRn/UTm0ZEREREjUhCQgKio6MRHByMvn37Yvny5bh16xYmTJgAAHj99dfRrl07pKSkwNbWFr6+vnrnOzk5AYAyfvPmTSxYsAAvv/wyNBoNCgsLMXPmTHTp0gWRkZFm3RsRERE1LGwaERERETUiY8eOxZUrVzB//nxotVoEBAQgPT1d+XDs4uJiWFhY1Ho+S0tLHD9+HGvXrkVZWRk8PDwQERGBhQsX6r39jIiIiJofNo3MSK1WIykpiQWYiTHP5sE8mx5zbB7Ms3kwz8YVFxdX49vRACAzM/OJ565Zs0bvsZ2dHXbs2GGklRkf/9sxD+bZPJhn02OOzYN5No+GkGeVNJd71BIRERERERERUa3V/tplIiIiIiIiIiJqNtg0IiIiIiIiIiIiA2waERERERERERGRATaNiIiIiIiIiIjIAJtGZpSWlgYvLy/Y2toiJCQEhw4dqu8lNVgpKSl47rnn0LJlS7i5uWH06NEoKCjQi7l79y5iY2Ph4uICBwcHvPzyyygtLdWLKS4uxsiRI2Fvbw83NzckJiaiqqpKLyYzMxN9+vSBWq1Gly5dDO4q01ykpqZCpVIhPj5eGWOOjePSpUt47bXX4OLiAjs7O/j5+eHw4cPKcRHB/Pnz0bZtW9jZ2SE8PBxnzpzRm+P69euIioqCo6MjnJycMGnSJNy8eVMv5vjx4xg4cCBsbW3RoUMHLF261Cz7awiqq6sxb948eHt7w87ODp07d8bChQvx6L0emOe62bt3L0aNGgUPDw+oVCps3rxZ77g587lhwwb06NEDtra28PPzw7Zt24y+X2q4WD/VDmun+sH6yXRYP5kWayfTaJL1k5BZrF+/XmxsbOSLL76QkydPyuTJk8XJyUlKS0vre2kNUmRkpKxevVry8vIkNzdXXnjhBenYsaPcvHlTiZkyZYp06NBBMjIy5PDhw9KvXz/p37+/cryqqkp8fX0lPDxcjh49Ktu2bRNXV1eZPXu2EnPu3Dmxt7eXhIQEOXXqlKxcuVIsLS0lPT3drPutb4cOHRIvLy/p3bu3TJ06VRlnjn+769evi6enp8TExEh2dracO3dOduzYIWfPnlViUlNTpVWrVrJ582Y5duyYvPjii+Lt7S137txRYoYPHy7+/v5y8OBB+f7776VLly4ybtw45fgvv/wi7u7uEhUVJXl5ebJu3Tqxs7OTv/zlL2bdb31ZtGiRuLi4yHfffSfnz5+XDRs2iIODg6xYsUKJYZ7rZtu2bTJnzhzZuHGjAJBNmzbpHTdXPvft2yeWlpaydOlSOXXqlMydO1esra3lxIkTJs8B1T/WT7XH2sn8WD+ZDusn02PtZBpNsX5i08hM+vbtK7Gxscrj6upq8fDwkJSUlHpcVeNx+fJlASB79uwREZGysjKxtraWDRs2KDH5+fkCQA4cOCAi//8Ha2FhIVqtVon57LPPxNHRUe7duyciIjNnzpRevXrpPdfYsWMlMjLS1FtqMCoqKqRr166yc+dOGTx4sFL0MMfG8ac//UkGDBjw2OM6nU40Go188MEHylhZWZmo1WpZt26diIicOnVKAMgPP/ygxGzfvl1UKpVcunRJREQ+/fRTcXZ2VvL+4Lm7d+9u7C01SCNHjpSJEyfqjY0ZM0aioqJEhHn+rX5d9Jgzn6+88oqMHDlSbz0hISHy1ltvGXWP1DCxfnp2rJ1Mi/WTabF+Mj3WTqbXVOonvj3NDO7fv4+cnByEh4crYxYWFggPD8eBAwfqcWWNxy+//AIAaN26NQAgJycHlZWVejnt0aMHOnbsqOT0wIED8PPzg7u7uxITGRmJ8vJynDx5Uol5dI4HMc3p5xIbG4uRI0ca5IE5No4tW7YgODgYf/zjH+Hm5obAwEB8/vnnyvHz589Dq9Xq5ahVq1YICQnRy7OTkxOCg4OVmPDwcFhYWCA7O1uJGTRoEGxsbJSYyMhIFBQU4MaNG6beZr3r378/MjIy8OOPPwIAjh07hqysLIwYMQIA82xs5sxnc38Nac5YP/02rJ1Mi/WTabF+Mj3WTubXWOsnNo3M4OrVq6iurtb7xQAA7u7u0Gq19bSqxkOn0yE+Ph5hYWHw9fUFAGi1WtjY2MDJyUkv9tGcarXaGnP+4NiTYsrLy3Hnzh1TbKdBWb9+PY4cOYKUlBSDY8yxcZw7dw6fffYZunbtih07duDtt9/Gu+++i7Vr1wJ4mKcnvT5otVq4ubnpHbeyskLr1q3r9LNoymbNmoVXX30VPXr0gLW1NQIDAxEfH4+oqCgAzLOxmTOfj4tpTvlurlg/PTvWTqbF+sn0WD+ZHmsn82us9ZNVnc8gMrPY2Fjk5eUhKyurvpfSpFy8eBFTp07Fzp07YWtrW9/LabJ0Oh2Cg4OxePFiAEBgYCDy8vKwatUqREdH1/Pqmo6vv/4aX375Jf75z3+iV69eyM3NRXx8PDw8PJhnImp2WDuZDusn82D9ZHqsnai2eKWRGbi6usLS0tLgrgmlpaXQaDT1tKrGIS4uDt999x12796N9u3bK+MajQb3799HWVmZXvyjOdVoNDXm/MGxJ8U4OjrCzs7O2NtpUHJycnD58mX06dMHVlZWsLKywp49e/DJJ5/AysoK7u7uzLERtG3bFj4+PnpjPXv2RHFxMYCHeXrS64NGo8Hly5f1jldVVeH69et1+lk0ZYmJicpfzPz8/DB+/HhMmzZN+Ssw82xc5szn42KaU76bK9ZPz4a1k2mxfjIP1k+mx9rJ/Bpr/cSmkRnY2NggKCgIGRkZyphOp0NGRgZCQ0PrcWUNl4ggLi4OmzZtwq5du+Dt7a13PCgoCNbW1no5LSgoQHFxsZLT0NBQnDhxQu8f3c6dO+Ho6Kj8EgoNDdWb40FMc/i5DBs2DCdOnEBubq7yFRwcjKioKOV75vi3CwsLM7jl8Y8//ghPT08AgLe3NzQajV6OysvLkZ2drZfnsrIy5OTkKDG7du2CTqdDSEiIErN3715UVlYqMTt37kT37t3h7Oxssv01FLdv34aFhf6vNEtLS+h0OgDMs7GZM5/N/TWkOWP9VDesncyD9ZN5sH4yPdZO5tdo66c6f3Q2PZP169eLWq2WNWvWyKlTp+TNN98UJycnvbsm0ENvv/22tGrVSjIzM6WkpET5un37thIzZcoU6dixo+zatUsOHz4soaGhEhoaqhx/cDvTiIgIyc3NlfT0dGnTpk2NtzNNTEyU/Px8SUtLa1a3M/21R+/+IcIcG8OhQ4fEyspKFi1aJGfOnJEvv/xS7O3t5R//+IcSk5qaKk5OTvLtt9/K8ePH5aWXXqrx1puBgYGSnZ0tWVlZ0rVrV71bb5aVlYm7u7uMHz9e8vLyZP369WJvb99kb2f6a9HR0dKuXTvltrEbN24UV1dXmTlzphLDPNdNRUWFHD16VI4ePSoAZNmyZXL06FG5cOGCiJgvn/v27RMrKyv58MMPJT8/X5KSkp75lrHU+LB+qj3WTvWH9ZPxsX4yPdZOptEU6yc2jcxo5cqV0rFjR7GxsZG+ffvKwYMH63tJDRaAGr9Wr16txNy5c0feeecdcXZ2Fnt7e/n9738vJSUlevMUFRXJiBEjxM7OTlxdXWX69OlSWVmpF7N7924JCAgQGxsb6dSpk95zNDe/LnqYY+P497//Lb6+vqJWq6VHjx7y17/+Ve+4TqeTefPmibu7u6jVahk2bJgUFBToxVy7dk3GjRsnDg4O4ujoKBMmTJCKigq9mGPHjsmAAQNErVZLu3btJDU11eR7ayjKy8tl6tSp0rFjR7G1tZVOnTrJnDlz9G5FyjzXze7du2t8HY6OjhYR8+bz66+/lm7duomNjY306tVLtm7darJ9U8PD+ql2WDvVH9ZPpsH6ybRYO5lGU6yfVCIidb8+iYiIiIiIiIiImjJ+phERERERERERERlg04iIiIiIiIiIiAywaURERERERERERAbYNCIiIiIiIiIiIgNsGhERERERERERkQE2jYiIiIiIiIiIyACbRkREREREREREZIBNIyIiIiIiIiIiMsCmERE1KEVFRVCpVMjNza3vpShOnz6Nfv36wdbWFgEBAfW9HCIiIiI9rJ+IyFTYNCIiPTExMVCpVEhNTdUb37x5M1QqVT2tqn4lJSWhRYsWKCgoQEZGRo0xQ4YMQXx8vHkXRkRERA0C6ydDrJ+ImgY2jYjIgK2tLZYsWYIbN27U91KM5v79+898bmFhIQYMGABPT0+4uLg88zwigqqqqmc+n4iIiBou1k/6WD8RNQ1sGhGRgfDwcGg0GqSkpDw25r333jO41Hj58uXw8vJSHsfExGD06NFYvHgx3N3d4eTkhOTkZFRVVSExMRGtW7dG+/btsXr1aoP5T58+jf79+8PW1ha+vr7Ys2eP3vG8vDyMGDECDg4OcHd3x/jx43H16lXl+JAhQxAXF4f4+Hi4uroiMjKyxn3odDokJyejffv2UKvVCAgIQHp6unJcpVIhJycHycnJUKlUeO+99wzmiImJwZ49e7BixQqoVCqoVCoUFRUhMzMTKpUK27dvR1BQENRqNbKysqDT6ZCSkgJvb2/Y2dnB398f33zzTZ32980338DPzw92dnZwcXFBeHg4bt26VeMeiYiIyPRYP7F+ImqK2DQiIgOWlpZYvHgxVq5ciZ9++uk3zbVr1y78/PPP2Lt3L5YtW4akpCT87ne/g7OzM7KzszFlyhS89dZbBs+TmJiI6dOn4+jRowgNDcWoUaNw7do1AEBZWRmGDh2KwMBAHD58GOnp6SgtLcUrr7yiN8fatWthY2ODffv2YdWqVTWub8WKFfjoo4/w4Ycf4vjx44iMjMSLL76IM2fOAABKSkrQq1cvTJ8+HSUlJZgxY0aNc4SGhmLy5MkoKSlBSUkJOnTooByfNWsWUlNTkZ+fj969eyMlJQV///vfsWrVKpw8eRLTpk3Da6+9phR2T9tfSUkJxo0bh4kTJyI/Px+ZmZkYM2YMROQZf0pERET0W7F+Yv1E1CQJEdEjoqOj5aWXXhIRkX79+snEiRNFRGTTpk3y6EtGUlKS+Pv765378ccfi6enp95cnp6eUl1drYx1795dBg4cqDyuqqqSFi1ayLp160RE5Pz58wJAUlNTlZjKykpp3769LFmyREREFi5cKBEREXrPffHiRQEgBQUFIiIyePBgCQwMfOp+PTw8ZNGiRXpjzz33nLzzzjvKY39/f0lKSnriPIMHD5apU6fqje3evVsAyObNm5Wxu3fvir29vezfv18vdtKkSTJu3Lha7S8nJ0cASFFR0VP3R0RERKbH+on1E1FTZVU/rSoiagyWLFmCoUOH1vjXodrq1asXLCweXtTo7u4OX19f5bGlpSVcXFxw+fJlvfNCQ0OV762srBAcHIz8/HwAwLFjx7B79244ODgYPF9hYSG6desGAAgKCnri2srLy/Hzzz8jLCxMbzwsLAzHjh2r5Q6fLjg4WPn+7NmzuH37Np5//nm9mPv37yMwMBDA0/cXERGBYcOGwc/PD5GRkYiIiMAf/vAHODs7G23NRERE9GxYPxkH6yeihoFNIyJ6rEGDBiEyMhKzZ89GTEyM3jELCwuDy3krKysN5rC2ttZ7rFKpahzT6XS1XtfNmzcxatQoLFmyxOBY27Ztle9btGhR6zlN6dF13Lx5EwCwdetWtGvXTi9OrVYrMU/an6WlJXbu3In9+/fjP//5D1auXIk5c+YgOzsb3t7eJtwJERERPQ3rJ+Ng/UTUMLBpRERPlJqaioCAAHTv3l1vvE2bNtBqtRAR5Vayubm5RnvegwcPYtCgQQCAqqoq5OTkIC4uDgDQp08f/Otf/4KXlxesrJ79ZczR0REeHh7Yt28fBg8erIzv27cPffv2rdNcNjY2qK6ufmqcj48P1Go1iouL9Z7zUbXZn0qlQlhYGMLCwjB//nx4enpi06ZNSEhIqNO6iYiIyPhYP9UO6yeiho8fhE1ET+Tn54eoqCh88skneuNDhgzBlStXsHTpUhQWFiItLQ3bt2832vOmpaVh06ZNOH36NGJjY3Hjxg1MnDgRABAbG4vr169j3Lhx+OGHH1BYWIgdO3ZgwoQJtSo8HpWYmIglS5bgq6++QkFBAWbNmoXc3FxMnTq1TvN4eXkhOzsbRUVFuHr16mP/8teyZUvMmDED06ZNw9q1a1FYWIgjR45g5cqVWLt2ba32l52djcWLF+Pw4cMoLi7Gxo0bceXKFfTs2bNOayYiIiLTYP1UO6yfiBo+No2I6KmSk5MNfon37NkTn376KdLS0uDv749Dhw79pvfu/1pqaipSU1Ph7++PrKwsbNmyBa6urgCg/HWruroaERER8PPzQ3x8PJycnPTe/18b7777LhISEjB9+nT4+fkhPT0dW7ZsQdeuXes0z4wZM2BpaQkfHx+0adMGxcXFj41duHAh5s2bh5SUFPTs2RPDhw/H1q1blUujn7Y/R0dH7N27Fy+88AK6deuGuXPn4qOPPsKIESPqtGYiIiIyHdZPT8f6iajhU8mv31RLRERERERERETNHq80IiIiIiIiIiIiA2waERERERERERGRATaNiIiIiIiIiIjIAJtGRERERERERERkgE0jIiIiIiIiIiIywKYREREREREREREZYNOIiIiIiIiIiIgMsGlEREREREREREQG2DQiIiIiIiIiIiIDbBoREREREREREZEBNo2IiIiIiIiIiMjA/wCYk1vALHadZQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Indeed, as the size of trees in gradient boosting increases, the quality of the model increases. This is explained by the fact that the task of the next tree in gradient boosting is to reduce the error of the previous ones." + ], + "metadata": { + "id": "-IRmMKo5cUkl" + } } - }, - "source": [ - "#### 2.8. Learning curve\n", - "Your goal is to estimate, how does the model behaviour change with the increase of the `train` dataset size.\n", - "\n", - "* Split the training data into 10 equal (almost) parts. Then train the models from above (Logistic regression, Desicion Tree, Random Forest) with optimal hyperparameters you have selected on 1 part, 2 parts (combined, so the train size in increased by 2 times), 3 parts and so on.\n", - "\n", - "* Build a plot of `accuracy` and `f1` scores on `test` part, varying the `train` dataset size (so the axes will be score - dataset size.\n", - "\n", - "* Analyse the final plot. Can you make any conlusions using it? " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "nbgrader": { - "grade": true, - "grade_id": "cell-e39bc7e7dff61ff9", - "locked": false, - "points": 15, - "schema_version": 2, - "solution": true + ], + "metadata": { + "celltoolbar": "Create Assignment", + "kernelspec": { + "display_name": "Py3 Research", + "language": "python", + "name": "py3_research_kernel" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": false, + "sideBar": true, + "skip_h1_title": false, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": {}, + "toc_section_display": true, + "toc_window_display": false + }, + "colab": { + "provenance": [] } - }, - "outputs": [], - "source": [ - "# YOUR CODE HERE" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### 2.9. Boosting\n", - "Your goal is to build a boosting ensemble using xgboost, CatBoost or lightgbm package.\n", - "Please, do not use the sklearn API for these models.\n", - "\n", - "Find optimal number of decision trees in the boosting ensembe using grid search or other methods.\n", - "Please, explain your answer." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# YOUR CODE HERE" - ] - } - ], - "metadata": { - "celltoolbar": "Create Assignment", - "kernelspec": { - "display_name": "Py3 Research", - "language": "python", - "name": "py3_research_kernel" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.7" }, - "toc": { - "base_numbering": 1, - "nav_menu": {}, - "number_sections": false, - "sideBar": true, - "skip_h1_title": false, - "title_cell": "Table of Contents", - "title_sidebar": "Contents", - "toc_cell": false, - "toc_position": {}, - "toc_section_display": true, - "toc_window_display": false - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/homeworks/lab01_ml_pipeline/lab01_part3_svm_kernels.ipynb b/homeworks/lab01_ml_pipeline/lab01_part3_svm_kernels.ipynb index eb8b30779..240c02785 100644 --- a/homeworks/lab01_ml_pipeline/lab01_part3_svm_kernels.ipynb +++ b/homeworks/lab01_ml_pipeline/lab01_part3_svm_kernels.ipynb @@ -1,481 +1,2091 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Lab assignment №1, part 3\n", - "\n", - "This lab assignment consists of several parts. You are supposed to make some transformations, train some models, estimate the quality of the models and explain your results.\n", - "\n", - "Several comments:\n", - "* Don't hesitate to ask questions, it's a good practice.\n", - "* No private/public sharing, please. The copied assignments will be graded with 0 points.\n", - "* Blocks of this lab will be graded separately." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "__*This is the third part of the assignment. First and second parts are waiting for you in the same directory.*__" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Part 3. SVM and kernels" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "nbgrader": { - "grade": false, - "grade_id": "cell-c7b8f71403aa9084", - "locked": true, - "schema_version": 2, - "solution": false - } - }, - "source": [ - "Kernels concept get adopted in variety of ML algorithms (e.g. Kernel PCA, Gaussian Processes, kNN, ...).\n", - "\n", - "So in this task you are to examine kernels for SVM algorithm applied to rather simple artificial datasets.\n", - "\n", - "To make it clear: we will work with the classification problem through the whole notebook. " - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "ExecuteTime": { - "end_time": "2019-03-13T23:26:22.240114Z", - "start_time": "2019-03-13T23:26:21.327520Z" - }, - "nbgrader": { - "grade": false, - "grade_id": "cell-57f562bf4f554fae", - "locked": true, - "schema_version": 2, - "solution": false - } - }, - "outputs": [], - "source": [ - "from sklearn.datasets import make_moons\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "nbgrader": { - "grade": false, - "grade_id": "cell-1b128784928e8df1", - "locked": true, - "schema_version": 2, - "solution": false - } - }, - "source": [ - "Let's generate our dataset and take a look on it." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "ExecuteTime": { - "end_time": "2019-03-13T23:26:22.247247Z", - "start_time": "2019-03-13T23:26:22.242895Z" - }, - "nbgrader": { - "grade": false, - "grade_id": "cell-ee8cf8e9cf114b9d", - "locked": true, - "schema_version": 2, - "solution": false - } - }, - "outputs": [ + "cells": [ { - "data": { - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "90vdirTjFLpA" + }, + "source": [ + "# Lab assignment №1, part 3\n", + "\n", + "This lab assignment consists of several parts. You are supposed to make some transformations, train some models, estimate the quality of the models and explain your results.\n", + "\n", + "Several comments:\n", + "* Don't hesitate to ask questions, it's a good practice.\n", + "* No private/public sharing, please. The copied assignments will be graded with 0 points.\n", + "* Blocks of this lab will be graded separately." ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnWeUFEUXhp/uyZtYcs4SJCo5JwUBSYKAICJiAgGRrOSMIlFQQIKgfiRBlAwiOS8sLDksOcdl0+SZ+n4MOzBMz7IEYZV+zuEctqe6q3rDrapb975XEkKgoqKiovJiIT/vAaioqKioPHtU46+ioqLyAqIafxUVFZUXENX4q6ioqLyAqMZfRUVF5QVENf4qKioqLyCq8VdRUVF5AVGNv4qKisoLiGr8VVRUVF5AtM97AIHIkCGDyJMnz/MehoqKisq/ir17994UQmR8WLtUa/zz5MnDnj17nvcwVFRUVP5VSJJ0LiXtVLePioqKyguIavxVVFRUXkBU46+ioqLyAqIafxUVFZUXENX4q6ioqLyAqMb/BcNhd3D+2CVib8Y976GoqKg8R55KqKckSbOABsB1IUQxhc9rAH8CZ+5e+l0IMfRp9K2SclbOWMe0nj8j3AKnw0nZuq/y5S9dMIWYnvfQVFRUnjFPa+U/G6j7kDZbhBCv3P2nGv5nzN6/ovjhi9mY4yxYEqw4bE4iVu9jVJvvnvfQVFRUngNPxfgLITYDt5/Gs1T+GeZ//Qc2s83nmsPmZO/aKGKuxz6nUamoqDwvnqXPv6IkSVGSJK2SJKnoM+xXBbhx8abidY1Oy51rd57xaFRUVJ43z8r4RwK5hRAlgUnAH0qNJEn6RJKkPZIk7blx48YzGtqLQckaxdBoFX7cQpC9QNZnPyAVFZXnyjMx/kKIOCFEwt3/rwR0kiRlUGj3oxCijBCiTMaMD9UlUnkE3u3XFFOoCVlz70duDDLQfmRr9Eb9cxyZiorK8+CZCLtJkpQFuCaEEJIklcMz6dx6Fn2reMiUKyNTI7/l12G/sX/DYTJkS0fLPk2o0KD08x6aiorKc+BphXrOA2oAGSRJuggMAnQAQoipwNtAR0mSnIAFeEcIIZ5G3yopJ3PujPSY8dnzHoaKikoq4KkYfyFEq4d8PhmY/DT6UlF5WjjsDtbO3siG+dswBhto8Gkdyr9ZCkmSnvfQVFT+cVKtnr+KihIJdxJxu9yEpQ99oue4nC56vTaE6H1nvSGwURsP8+antekw5v2nMVQVlVSNKu+g8q/g2rkbdKs2gOaZP6Rl9k/o8Govzhw6/9jP2/bHbk5FnfPJfbAm2lj6wxqunVMjzVT++6jGXyXV43Q4+aJqf47sOIHT4cJpd3Iq6izdqw0k4U5isvdGrN7HJyV7UN/UirYFOrN+7hYAdq7YizXB6tdeq9UQtfHwP/IeKiqpCdXto5Lq2bUiksRYM26X2+e6w+5k/dytNPrsDcX7ItbsZ0izMdgsdgCunLrGuE+mYbPYSZc5HI1Og8vh8rlHkqTHdimdPXyBY7ujyZA9Ha++VgyNRvNYz1FReRaoxl8l1XPt3A2cdpffdZvZxuVTVwLeN/Or/3kN//33zOo3j3GbhvDHpFV+xl+r1yKEYM3sDRStXJgcKUiAc7lcjGw9kV3L9yLJErIsE5I2mHGbhpI5t5qvopI6Ud0+KqmegqXzKWYnm0KMvFy+YMD7Lp64rHg9/nY8GXKkp9fszphCjQSFmTCFGEmbOQ2SRuLrNt8xuctMPn2lJ2M+/AG32634nCSWT13LrhWR2Cx2rIk2zPEWbl68xbCW4x7tRVVUniGq8VdJ9RStXJgCpfKhN+q817R6Lemzp6NSk7IB7wu06tYZdOgMOqo3r8iiazMZ+mcfRq8bSGj6UOJuxGOOt2BNtGG32Nm0cDvrftmc7PiWTVnrJ5rndgtOR53j1pWYR3hTFZVnh2r8VVI9kiTx9Zr+NO/VmIw50pMuSziNPnuDSTtGotPrAt7XblgrDEH+0hUuh4su5b/CkmBBb9RTsnpRwtKHcu3MdR7MPbQm2lg6ZU2y47NbHYrXZVnCbrUrfqai8rxRjb/KP8LJyNN0rdyPN3QtaZL2fWb2/R9Oh/ORniGE4MDmI6yc8TfR+87w/uAWzD0/lQWXp9NxXDtCwoOTvb9q0/J0+7EDGq3vwavD7uT80Yss+OaevqDNYvfRPbqfB1f1D1K9RUV0Bv/js/BMaciSJ1Oy96qoPC/UA1+Vx0YIweZFO/lj0koSY81UbVaBpl3rE3sznu41BnlDKRNjzSyZuJLr52/y1a9dU/Ts+JgEetYazOVT18AtQIK8xXPzzdr+3spjQggiVu9n7ewNuFwuXnu3GpUal0WW7xnxV2oWQ9bIuJy+B7t2q4N1v26h3TBPcnqul7NjCNJjeSD8U2/UUfOdysmO9Z0+Tdj6+y5uXrqNNdGGzqBDo5X58pcuarawSqpFNf4qj82PvX9h+dS1WBM9K+NLJ6/w9/+2ULzayzgecHfYLHa2LN7Fx6NvkyFbuoc+e1LnGZw/egmn/d5uIXrfGWZ89T+6TPoIgMldZrJ2zkZv/3vWRFH+zVL0m9fNa3RlWQKUZaQk+Z5h1mg0fPnL5wx661tcTk8ugTHYQNZ8mXnr8/rJjjU4TTDT9o9h44LtRG06TJa8majXvhYZsqd/6HuqqDwvpNSqr1amTBmxZ8+e5z0MlQDcvHybtvk747D5+rsNQXrSZAzj+jn/4jHBaYIYsqQ3JWskX8vH7XbzZtC7PoY/iaAwE3/e+Zmzhy/QudyXfqGcxmADo1b1o1iVl73XOpbuzan9Z338+XqTnlZfNqHNgOY+9189e51VM//m+oVblH69BNWaV0RvCHyuoKKS2pAkaa8QoszD2qkrf5XH4tiuk+gMWj/jbzPbQYBGK+Ny+oZI2q0OshfI8tBnCyH83DRJOO/G5Uf+dUAxBNNqtrF79T4f499v3hd0qzoAm9WO3eJAZ9Tx0it5aNGrsd/9WfJk4oNhyeoUqqj8J1CNv8pjkTZzOMLtv2uUNTLFqhRm+597cDnv+c/1Jj2VGpdNkStEo9FQsnoRojYe8Vmty7JEubqvAh7JByV/uk6vJTiN70FwjoLZ+N+5KWz7I4IbF25SqOxLlKheRPXHq7zQqMZf5bEoUrEgabOEYztz3Ud2QWfQ0uqrpjT9ogGTu8zkeEQ0phAjDTrUod3Qlsk+81L0FRZ+u5STkafJkjsjpjATLocTm9mOIciAKcRI+1Gt6d9wFJHrDuCw+buFJFmmRLUiTOjwI1EbD5MpVwbe+bIJr9Yq/tCDWxWVFwnV56/y2Fw/f4NBb33LhWOXkLUaNFqZ7tM7UrVpeW8bIUSKVtjR+87QrfpAHFY7LqcbWSOjM+io/9FrmOMtFCidj9rvVeeb9yexa0WknyxDUoTNp2PaMrPvXCzxVq/ryBBkoPOk9tT9oNbT/QaoqKRCVJ+/yj9OplwZmbJ3NJdPXcUcZyFPsZxodb6/Uil1rXzfdZaPyqbb5cZmtnFw61Gm7BmN3WpnYONv2PvXAcX7g8JM/HrmByZ3mYk5zuKzG7GZbUztPofX21TzG5+KyouK+pfwL0AIwYFNR9i8eAc6vY7X21TjpVfzPpexuN1uti3Zzfp5W9DqddT9oCalXi/xxP7zo7tOKl4/te8sDruD0e2+T1Zq2WFzYAwysH/DIT/1TwCXy82V09fIWSj7E41TReW/gmr8UzlCCMZ+NIVNC7djM9uQJInlU9fy3uAWtFSIVvmnxzL07THs/euAN7Z+57I9T6X6VXCYibhbCX7X9UYd72T/lLhb8cneX7K6J3w0XZa0XDvrX4zF5XCRJkMY4KkGtmPpHqxmG2XrvqJm4aq8kKjyDqmcQ1uPsWnhdqyJNoTwCIbZLHZ+HrSAGxdvPdOx7Ft/yMfwg0f7ZtkPa7h4MrC0ckpo3Lmenw6PwaRHCPFQwx8UZuLj0W0AT7atIcjg87nOoKNcvVcJSx9KxJr9vJPjU77rPJ1pPebwYZEv+GXob080dhWVfyOq8U/lbF2yS1FbRpJlIlbte6Zj2b0q0sfwe8ciSUQG8MWnlHf7NaN6i0roDDqC0wShM+ooVO4lNLrkC6KkzRzO9IPjvO6cSo3L8sHwdzAGGwgKM6Ez6ChdpyR9fu6MJdHK0LfHYDPbsCbYsFns2K0OFoz+kyM7TzzR+FMzibGJrJ61nt/GLuNU1NnnPRyVVILq9knl6I26u9o0vn5sWZbQGf+ZzFMhBKtnrWfJdytJuJNIhQalaTPgbULCg9HqNX6FVWSNjCnUSOS6A+zbcIh0mcOp1bqK182SEjRaDb1mdeKjUe9y8cQVsr2UhUNbj/LtBz8otpdlCWOIka/X9CdTzgw+nzX7ogENPq3NxRNXSJclnLSZwwHYsninonib3Wrnr583UqRC4NoA/1aiNh1mQMOvEULgdLiYM0imRsvK9JjRUc1zeMFRjX8q5/U21fh94kpcTl8ZA7fbTcWGD43m8mkfsXo/kX9FkTZLOK+/Vz2gxs73XWexZtYGrHd3HCtn/M3WJbsZseIr5o1aAvgafwGsnvk3JyLPYE2wojfpmdVvHiNWfEWJakUe6X3TZvYY6yunrzG9z6+Kux5ZI1OlaXk6TfyAdFnSKj7HYDKQv2Qen2tOh8tvEgUQboFTIWfg347T4WRw0299xOqcdti0cDsVG5ahcpNyz3F0Ks8b1e2TysldJCefjG6D3qjDGGLEFGrEEKRnwILuD5U0TsJhd9Cr1hBGvDOe3yeu5OfBv9Gu4OdErvN31dy6EsPK6X97DT94DksTY81ErN5P7586YQjyuFSCwkwEpwnizY9f5/ieU95QTbvFjjXRyrCW43C5lGUakkMIQd/6I7h+3l8fSJIlMuXKwGcTAhv+QMTFxCtOJoYgPdVbBk4Ac7vdjyxHnRo4vP24YuSTNdHG6p/WP4cRqaQm1JX/v4DGnepR7e2KRKzej1avpfybpQgOC0rx/atnruf4nlNew5ekxzP8nfH8dnWGj9599L4z6I06P80eu8XO/vWHaP1VU8q9WYoDGw+j0WkpWaMI3asP8mj6PIAt0cbpqHMUKJXvkd43ev8Zrpy+pigfIdyC21di+LDIF4zfPJS8xXOn6Jl2m4NZX81V/CxL3kyUrl3C/x6rnR97/8LqmeuxWx3kLZGLrj98TJGKhR7pfZ4XSobf+5nCDkjlxUJd+f9LSJs5nDrv16BWqyqPZPgB1v26WXHF63Q4ORl52udaxhzpFUXVZI1MtvyZATAFGyn/ZmnK1CmJTq9TrK8LHnfQgz52l8tF9P4znD92ya9qVhIbF2xXdM8kYbc6SIw1M/ajqQHbPMj5IxcDKTsjISn6v0e2nsiqGX9js9gRwlOWsXv1gRzZeTzF/T5PilYurHjdGGygdtvqz3g0KqkN1fi/AGj1ATZ4Ar+M13wlcpOrcHa/KBudQRtQ175u+9f8wisBQsKDyFfi3sp8719RNMvQnk5lv+TDol/QKE1bti+N8Ltv79qoh70S4KkWZjXbcDqcrP5pAz1fG0zf+iPYumSX38QSmi4koOsmPJP/wfT18zeIWL3Pr0Sjy+mmT51hPm6x1IreoKPfvG4Yggze+sfGYAOl65Sk6tsVnvPoVJ43qtvnBeDNj1/nxJ5TfmGaweHB5H8lj1/7kav6MbL1RA5sPowkSRhMejpOaE/uIjkVn1+7bTV2r4xk96p9uJxOdHpPhNKQJb29K+rr52/Qv+HXPhr91gQrg5qM5rsdI3i5/L1Im0A1cR9EliUkWaJv/REc3XnS+34HtxzltTZV+WLKp962mXNn5KVX83I84pTPzsYYbKDpFw28X8dcu8PKGevYv/6QotsJPLLVG+Ztpd6Hr6VonM+TcvVe5efoSWyYt4242/GUqfMKxaoUViN9VFRht6dBfEwCswcuYPPC7UgamdfbVOO9Qc0xBRuf99AAz4Hltx98z5ZFOxFCoNFp0Gg0fPv3oIAyEWcPX6BnrcHYLHYkwOV00bhzPT7+pk1Aw3F8zykObDyMMdhAgTL5yF0kJ6ZgIy6ni8/K9eH0/nOK9+UpnovpUWO9X88etICFo//0O3e4H61eQ4U3y1D3w1oMf2e8jy4QeCSkp+wdTa7C2RFCELXxMIe3H2ftnI3cvHQLrU6L0+7k3f7NaN23GQCnos7SvdpAnA7nQyegNz6oSc+ZnyXbRkXleaAKuz0jnA4nn1fqx7Uz13HcXdX+OXkVBzYfYdKOkalihSXLMn3mdKFFz0asmb2Rg1uOYLPYWfPTBtJkDCNjDl+NfSEE/RqMIvZGnM/1ZVPWULzqywFDTPOVyMWyKWtYP3crWr0Wt9PF2z0b4nYJzh48H3B8F09c9vm61juVWTJxBQ67w+OnlzyJZFqdFo1WxmF34nK62b16H6cPnvMz/HhuIWrDITJkT0fPWoO5cOwSDrunBoDL6cJhd2IKNqLRarzKo2Pa/4A53vLQ76dOryVHwWwPbaeikpp5Kj5/SZJmSZJ0XZKkQwE+lyRJ+k6SpGhJkg5IklTqafSbGtj2RwS3Lt32Gn7wuC3OH7nI/g2K347nxoXjl1k+bS0n957m3OGLLJ+2lk9K9uDKmWs+7U5GniZeQVLBmmhj+dS1AZ8/vfevbJy/DYfNgSXegs1iZ9HY5Swetwy3K/AOM23GNF4ffezNOHrUGOQ5oL57i0aj4bXWVZm4bTjhdxO2hFtgt9i5fOqq4jMFgmO7o/m67SSi953BmmjD5fDU5hVugXAJzHEWfh26iMUTlmNJsHDmoPLO5EF0Rh1129dMUVsVldTK0zrwnQ3UTebzekCBu/8+AaY8pX6fOyf3nvJJoknCYXNwav/ZZz+gALhcLr7rNAOb2U6Sp8/pcGGONTNn0EKftgl3ErFb/UM3gYArY5fTxYrp6/xq6trMtoe6UOJjEqijaUH7Il35odtszPEWn2gfl9PFpt92cOPiLe5cj/XV8g8wp9gtDjbM38aOPyMC+u7BU/Zx3sjfkbWagLs0rV6DVuf5l69EbsZuGEJ4xjTJvpOKSmrnqbh9hBCbJUnKk0yTxsDPwrO82ylJUrgkSVmFEE+mBpYKyJY/C8Zgg99hqs6oJ3MqUou8efE21kT/ScrtFuxff9Dn2vY/IgKGWl46eYUjO477xbpbzbZkffTJkfS9u3DsMheOX1Y06Hqjjn1/H0QEiF3X6jToTXpsZpt37CkdT/ztBDQamXL1S7F7ZaS3TnBSv817NKRlnyY4HS5C04Y84tupqKROnlWoZ3bgwn1fX7x77V9PjXcqozPofFaNskYmOMxExYaln2pfdqudA5uPcGLvqYAx8g8ihOB4RDSR6w74Vb9KIk1G31DHtT9vDPi8mGuxdKs20C8/ICjUBE8jeCDAIxx2J+ePXlTcRRiCDHz49bsM+aP3Y3WZLmtatDotPWZ0JOfL2TGFGDGFeDKpS9YoSuv+b2MKMamGX+U/Rao68JUk6RM8biFy5cr1nEeTMoJCTUzcNpzR708met8ZBFCscmF6z+70VKtGbVywjXGfTEWSJIRbEJY+lOHLvyJPUeXwS/C4b/rUGcb5oxeRZBm3WyBJvjbaGGTwqwugpNx5P26Xmy/rDmfRtZneSU+SJLR6rWJd3SdFq9Pgcrg4sPmI36QnyRJ6o466H9RC0ki4k3HxBKLG3dq+YelDmbZvDEd2nODyqavkL5nHJ0/hYZw7coEbF2+T/5U8pM2kuoVUUjfPyvhfAu63UjnuXvNBCPEj8CN4Qj2fzdCenJyFsjNp5ygS48zIsoQpxPRUn3/uyAXGtP/Bx59uTbTS+/UhzLswzUee4X4mdvyR0wfO+cTWS7KELIMx2IjL4aJ5r0bUbFXF576ilQpxaOuxZMcUfzuBIztOULTSPfdP9RaVWD93a7KyAilGAp1eBwgyZE/P9Qs3/dREk8baY+Zn7FoZyfhPpnkmx0DbhwDcLz4nSRJFKxXyea+HEXcrnn4NRnHm4Dm0Oi12m4NGHevw6Zj3U0W0l4qKEs/K7bMUaHs36qcCEPtf8Pc/SHBY0FM3/OBR1XwwO1UIT7LRvvXKEUVOh5OtS3b7GH7wRMkEpwlm2NIv6TC+HZYEK2tmb8Ry33lAl8kfYQo1JaulL9yCy9G+kTYdxr5PljwZMYU+eX6DTq9lzPpB/HZ1BkGhJkWXlaeIy3sIt5vxH0/FZrY9+sQj8cQa96PenUh05GlsZjuJsWYcVgcrflzHXz9veuRnJcaZ2bxoB5sX7SAxzgzAzUu32LRwO/s3HHosoTwVFSWeyspfkqR5QA0ggyRJF4FBgA5ACDEVWAnUB6IBM/DB0+j3RSHm6h1lKeJkqly5Xe6AhtBhdTCqzUQS75ixJFgxBhuZ1Xcuk3aOJHPujOQrkZsZh8ax5LuVLJm4IuDhr1bvOzmkyRDGzCMT2LF0D2cOnmfD/K1cPOE/x0uyhCnEiNPhQqvTYI7zjSCSJImchbJ7D5Uz5kyvaKCddifpsoSzfOpan0PaR0Lgpx7qdDhZOGYpK6b9hc1ip2KjMrQf3spbF+B+4m7FE7XpsF//1kQbiycsp877NVI8lC2/7+Kbtt+h0Xi+ry6Xi1KvF2fP2gPodFoEgpA0wYz+exA5CmR99HdVUbmPpxXt0+ohnwug09Po60WkQoPS7Fi2x88X73S4KF71ZcV79EY9L72alxN7Tvlcl2WJkHTBPhOKNdGK3Wpn4mfTGbmiLwCZcmbg02/bcjLiFFGbj/g9X9bIirscrU5L1WYVqNqsAhUalqZHjUHYrQ7cLjeyRkZn0DFi+Zeeil3hweQomJVR737HzmV7kCQJWSNjDDEycFEP7zPf7tGQfesP+YjTSZIn0ipTrgycPXxBUYwuJRhDjLxas5jPtWEtx7F3TZTXzfbXnE1ErN7PrCMTPAfb95EYZ1YsEAMe11hKuX01hm/e+84vVHbH0r2AZ8IGsCbY6N9gFD8dm6i6lFSeCFXY7R/A7XZjf8ywRyWqvl2B3EVy+IinGYMNNO1a3y879366T+9AUKinlCF4auKGpgsl9ma832re7XKzd20Ubrfv9fINS3tFwe5H1soUKvdSsuMuWDo/U/aOps77NchfMg+vvVuV73ePomSNYhSpWIjcL+dAo9HQf343Ju/+mo7j29F3blfmnptC9peycuPiLTYu2IZwCz6b2M7nbEMIuHLmOp+U7KFYl0CJpMknCb1RR+bcGanS7J7I2bkjF9hzn+EHT55BQkwia+ds9Htm5twZ/SYE8FQmK/9m4FxGl8vF9fM3vHkTm3/bmaKTCiEEty7f5uzhCz7X427Fc/PSrRRHgamopKpon387dqudqT3msGb2Rhw2B5lyZaDD2Pep8lb5J3quTq9j3KahrJ61gQ3ztxKcJoiGHepQrn7yidL5S+Zh1rGJrPjxL84eukDh8gWo92EtWufqgNLUJMv+0sb1P36dPyev5vbVGG8kjzHYQKNOdVMU0ZKjYDZ6zOj40HY5C2UjMdaMEAIhBFO7z2bplLXo9B53hzHIgEan8Vnh28w2zh2+qPg8vUlPoTL5OXPwPAl3Esn1cnY6jHufq2dusHzqWuxWBzVbVebt7g3R3zchRO87i0ZhJW8z2zi87RhNOtfzuS7LMt2nd2T4O+Nx2Dw7HL1RR1BYEG0GNFcc2/p5W/i+6093zygEVZuVJ0ehbAFDcR9E1sjexMJbV2IY9e5Ejmw/jiRLpM+Wjt6zO1GsivKOUEUlCVXY7SkyuNm3RKzylwEuU+8Vhi7pfTd65fkz5sMf+Pt/W3wOgzU6DZUal2Xgwh5+7eNux7No7DK2/RlBSHgwTbu+SbW3KzzU7XDuyAVW/7SBxDuJVGxUlvJvlkKW/Q3r/o2HGNjoG+9qW6vT4BYPlFaUCJgD4IcE9dq/RvfpHQDPTkyp3yS2L41g5ldzuXrmGmkzhxNz7Y7fz1Bn0NGyT2PeH9zS7/4rp6/x25g/ObD5qLfEZJPO9QhLH+rXNmrTYfq9OcrHhaU36ihW9WUObz3m5/ZRIijMxKLrM9HqtLQv8gVXTl312ckZg43MPDLer7axyouBKuz2jLl+4aai4QeIXHuA2QMX8PHXbXyuu1wu9qzez8nIM2TJm4mqzcpjMPnr4j9tPh3TluMR0Vw7ewOn3YnWoCVdlrR8/v1Hiu3D0oXSfkRr2o9oneI+1szewMSO073ibGtmb6Rg6XxM2DYcjUZDYmwiU7rP4e+5W/zq59qVDqofYY2iN+rJV/JefH5yhn/L4p1803aS1+heO3cDSfKsru8/MNfqNLz58et+96+fv5WxH07B7XThdLgwhhg5feAcIWmVS2zOG7XEr7CO3erg4OajvP5eNTbM2+r9XG8yeKuqWRNtHreVXkv36R3R6XUc3HKUW5du+7nwXA4nK6b9xQfDkz2KU3nBUY3/U+LK6WvoDDpF4+92uVkx7S8f458YZ6Z7tYFcOX0Na6INY7CBaT3nMHHbCLLlz6LYR5KEwuNkmibGmVk5fR171uwnU84M9JrdibibCZw7fIEchbJR5o2S3iiTB7Fb7az48S/Wz9vmfZ/zxy55NHOEQGfUUb15RdqPbE1YulAS48wew3/fuYfb5ebY7mhm9Z3LR1+3oWetIZw7fMEvFPVpUS2FxUqm9/nVb7UthCfU1O10gSSRLX8Wev30GRmy+56vmOMtjPtoCvb78y8SrOxdG8WOpXsUC6RfPXNdcRw6g5ZGn71B3mK5WP3TerQ6Dc17NqZiw9JsmL+d3SsjSZ8tLQ0+re2tq3D9/E3PjugBHHYnl6KVBe9UVJJQjf9TImehbMkKmD0o/vbLkIVcOH7J60e3JFixmm2MbjeZCVuG+7SNux3PuI+msmtlJAhB9gJZ6T6jI0UqFCQlxN2O57MyfYi5FovdYkeWJTbM30bvOZ1p1q1Bsvc6HU561BjEmYPnA7okkuSh960/xIxD4ziw6UjA6Js/J6+mXP1SXDx5xUcJ9XGQZYnmvRqx5LtVHj+95Km01Xt25xQXdw9kjB1WB3/GzsFhcyq6bwCiNh5WTLCzJtpY89N6ReNfvEphrpy+5heG63K6mDtiMRGr92NNtKHVa/n6ve+o0rThFGdcAAAgAElEQVQ87/ZtSt0P7qmIut1uhFtQqGx+xXMCY5CBktWL+F1X8Ue4riLiBoNtMyCD8Q2ksP5Icsp+f/7NqNE+T4l0WdLy2rtVkWRlP/jL5Qv4fL1+7lY/KQThFhzfHe1N7gFPdMdXbwxn18pInHYnToeLc0cu0qfOMK6fv+HXz6XoKwxs8g0Nw96jZbaP+XX4In4bs5TbV2K8K1S3W2Cz2Bn/6bSApQ2T2PZHBOeOXHyoL9rpcBFz9Q7bluxGb9QFzDGwWe2c2n8uoECbEoGOFjw7jkpM3jWKwuULYDAZyFciFzpDytc06bMp/5Gnz5YWU4gpoOEHjysoEDtXRDLmwx/8vr+t+zfDGGxAvu/3xBBkoGqzCl7DD54cBpfDxaYF2+lc/itm9ZtLfEwCI1tP4E3Tu9QztmLsR1MoUaMohiC9z5jCMoTy+nvVUvT+LzJCWBC3moFtI+AE7GBdjbjVGiH++wXuVeP/FPli2ic07FjHZyvuiYc30nnSh4/8vM2LdtD+5a6c2Hvazz3itDv58/s1PtduXYmhc/mv2Ll8L9YEK7ev3mH+qCUs/WGNouaOJcFK69wdaVeoC7+NXao4EexZs09RsloJS4KVk5Gnkw031Bt05C2eM2Bs/P1odBpKvVacTLkzKn+u1XAy8jQ9aw7mwKYj3Lkey7Fd0YxsPZGFY5amaMxtB7fwqz9sCDLQdnAL79dut5v1c7fQ6/Uh9Kw1mLVzNuJyuihZs1jAQ2/hFmycv41Z/eb5XM+aNzPfR3xD1bcrkjZLOGkzp0GjlVk/d2tATSW71cHi8cvpWqkfW37fhdPhqUlweNsxju48Qauv3iJHwaxkyJ6OBp/W4Yc93/wjmeb/OSwrwZ0I3G/oHeC+CvZtz2tUzwzV+D9FNBoNXSZ9xM8nJ9PoszcoUrEgDTrUZtr+Mbz0al5vOcEJHaYRnjmNn3yCJEsUKvcSwWFBLBq3jNHvT1bMkAWP8b9w3Fce6c/Jq7CZbT769TaLHUu8svF23V2tXzp5lTmDFjCsxTi/NumypvXL5A2EMdhA2izhDGk2RvFzWSvTqFNdXqlZjGwvZUl25SzLEnmK5uSbvwbSsEMd9Ca9Xxun3cmRHScwx5n9QkB/HrzQR7IiEPU+fI1Px7xHmgxhyBqZNBnC+HTMez71eUe2nsj4T6exf/0hojYeZlLnGQx6azQ6vZYhS3pjCjEq+t5tFjvLpqzxy53IUSAr/ed34+UKBUiMs2COszxUlsJhc3Dl9DWfRYAQ4LA50Rl0/HTsO+ZdmEan79qTJoN/QXoVf4TzBB7BgQc/cIDzlP/1/xiqz/8fIGu+zHSZ7B85M6nzDP76eZPHQIuk0oQaXE43xmADhiADvWd3xm61M2fwwoe6Wi4cv0zMtTte2YGjO08qrvD1Jo8bJjnFTZvZzt61UZw5eI68xe9FytRtX4vF41coiqrdjyRJ6E163M7AshLFKxfmw5GtPSUT1w+ic7m+XIr2ndw0Og2yRualV/Iw+PdegCfXYNG45bgcTm9kiyFIT6XG5TgRcUpR2kGjlTl/5CKFyiafiAbQsMMbNPi0DnarHb1R77OaPx4Rzc7le30idKyJNqI2HubA5iOUrFGU+Zd+pGmGDxT973aLHafDhd7gu866ePIKe1bvT3GxesXZ5e7zzxwIXCJTJTCSthCCIPwmAEkH2vzPZUzPEnXl/4w4sfcUa+dsxJpo80oqC88MQOMu9eg65RN+PfM92fJn4crpawH93Pdz8fhl3svfiahNhwHIUyynohibEFC7bXX0Rh3BYSZkrfKPXZIljkfcW/FY7xZG6TOnEyFpgwkKNaE36tDqtPcSwu6GRRapVJCJ20ZgjrcoGjSNTkO5+qW8MtenD5zn1pXb/mOQJMZvHsp320d6D21D04YwZe831GpdlbAMoWTOnZG2g1rQZ05nMuZSjmV32p2kzeKvxZPElTPXWDZlDX/9vInE2EQkScJgMvi5caI2HlZ0h1nNNm+ZzqBQU8DD90y5MzJ7wDy+aTuJDfO3eZ915uB5tPqUr720eg2ywuGyIchAwTL5Uvwclfsw1QM5BF8zqAU5K+grP69RPTPUlf8zYteKSK8+iw8Cbpy/gTnOzJ3rd6jTriZps4Q/dKWdhM1sZ/g741lw6Ueadn2T1bPW+6xAdQYdRSsVpNu0DrQb1ooTEdHsXBHJ2tkb/Iy02y1Iny0tQghmD5jP4gkrkGUJt8tNgw61qda8IsYgI3mL58JmsXMy8jS/Dl3E+aMXCQ4LIiEmgVdrFWfx+OV+/mvhFhStXNj79ZbFO/3i3cFzYHnm4AUKlfFdsWfInp7eszv7tW/RqxFRGw9hM9/bJen0WopVfTlgktPsQfP57dulIEloNDLfdZrO4N97Ubp2Sb+2oelC0Om1fqt6vVFPmvT33Csdxr3v0TGy2O/WTZDQ6DTcunSb3yesxOV0sfWP3fw+YTljNw4h+0tZAgrmJSW0aQ1a5LuTUdvBLdi1MpLju6O9PzePfLjhkcTjVO4hSSZIvwgRN/Tuoa8GjHWRwvohSf/9dfF//w1TCcYgg2JYoNPhZNeKfaydvZGf+s/n/QJdiLsZT5W3ygWMHHoQW6KN0wfOkTVfZr75ayB5S+S6q2OjpUbLSgxZ4qlwlTZTGsq/WZo2A95WHIvD6mD0B98zrefPLJ6wApvZhiXBis1iZ/m0dez7+xD5SuRGkiSO7DjBV3WHE7nuADcv3Wb3qn30rDUYgSBcQfZBCMGm37Z7v9YbdEgKyVeSJKFLZkUcH5PA7asx3kPlktWL0mXyRwSnCcIUYkRn0PHKa8UZuLC74v2Hth1j0dhl2K0O7Ba7J8Q20caQZmOwKkxG1d6uoPhzkGWJGu9U8n5dsHR+Ju/+mhrvVCFn4exUbFQGjVbGYXd6zyOsCVbOHDrPmp82kK9EbgqUyqscmSQ8O6VMOTPw4ah3mXF4PC17N2Hkyn40+LQOIeHBGIL0VH6rHN/v/prgNP4JZUIIDmw+wqqZf3Ns98n/vOaPcMfgjp+I+2Yz3DGfIewRKbpP0mRBTvsDcpYjyFkOIod/iyQH3jH+l1DlHZ4R18/f4IOXv/BJCFJCkiRK1CjCiOVfMbrdZDb/tvOhzzYGG/hux0jyFrtX/cxqtqHTawMWejmy8wTD3xnPjQfkjJPGoPR7ERIezJLbswH4qHg3RV2d/K/k4XL0VcUIIVOIkaVxvwBw+sA5Pq/Y1+9cwxBkYMGlaX4G7ebl23zd5jsObz+OJHkE1XrP6eINoXU6nFw6eYWwDGHJag6N+2Qqq2eu93u/oDATvWd3VozNP7z9OIObfos53oLD6kAIQWjaYNoNb0XDDnUUI34ObjlK/4aj/OSqAYpVKcz4zcMwx1uY1HkGf/+6RfH7rTfqmHlkAlkesRZ03O14etUawuXT17xl2156NS8jV/XDFPzktRZSG8J9G3GzIbhjgaTfJyOEDUAOUtZX+i+TUnkHdeX/jMiUKyPdp3dAb9JjCjUqKkHC3RXbpiNo9Vr6z+9Ogw61kbUyye1CwzOm8SvnaAwyEHszjttXYwCwJFhYM3sDvw5bRMSa/RQu9xJVm5VXDLkMtCBIuJPoSTASgnNHlAXVkksGs5pt3mfnK5Gb94e2RGfQYQgyeGrmmvT0n9/Nz/C73W561BjEwS1HcdqdOGxOLp64Qp/aQ7l1xfN+Wp2W3EVy+hh+q9nGsilr6N9wFBM6TPNWNVN8P0HAmgBFKxWi+/QOiLvvDhAfk8iPvX5hyXcrFO8xBOlxBTj4TvrZB4Wa6DOnS8BSkVq9lttX7yh+lhzffTaD88cuYb27q7Em2jgecYqfHgg7/a8gEmc+YPgBrBA/EiEerpX0oqL6/J8hr7WuSvn6pYhYvR9Zlhj78RTFMEyNRoMsy+xYuod1v2zG/aBv+G6JQ61eg1arYfCSXj6rz+j9ZxjSbAw3Lt5CliUy58nI7auxuF1ubHelJHIXzUm2fJkVI3MkWfIJF00iZ+HsXp2c0LQhinr1YelDyFU4BwcUagAUrVTIZ5zNezSi5juV2b1yHzqDjoqNyhAS7u/COLDpCDHX7ihmxa6a+Tdt+r/td4853kKncl9y48ItbGaPLs66XzbT5PN6GIMNirURStcu4fecJOYMXOAXLWUz2/hl6CKadKnvpx9kM9sVzzQMQXoadKjjc61U7RKcO3rRL5fD5XCRt1jgGs1KuFwuti3Z5TeROWwO/vp5E59N+A/WUbL+ja/hT0IC50nQFX3WI/pX8MKs/O02B4vGLePTV3vyWdk+LJu69rELgDwJIeHB1HynMtVbVKL2e9V99OXBs9qrelcxc+mUNYqJP3qDjiZd6tFtWgfmXZxG/pJ5vJ9t+2MXHUv35uqZ67gcLs8q+fgVzLFmrAlWhBBYEqycjjqHy+UJMX0QjVaD3qjziTgymPR0mnjPcDTv0VAxOapFr8Z0nvwhQaEmbzSLVgemEDedhh9D2Db73JMhe3rqf/w6tdtWVzT84BFbU5qM7FYHlwLkQfwxeRXXz93wGmC3y43NYmfpD2uo0LC0T1YsgCnUwMEtRxWfBXD5lLJWjjXBiiXe17XjcrkY1mKsohhdscqFqdCgtM+15j0aEpImyCfvwRhsoO2Qlo+crCXcArdLeef2pHIaqQ0hBO640eA6E6CBA56j/164buCO7Yf7ekXcN2rhTpiFEKmnDOcLsfJ3u930fn0I0ZFnvC6J80cvEbF6H0P/6POP93/rSgwb5m0l9mY8pWuXoGSNokiSxEdfv8vJfWc4c+Ac4PG1Z82fmc8mtmPHsj3e6w+i1Wup1Lgsxe6Lntm5fC+/DF3IiT2nUzQmu9XO8YiTFCyTnxN7TnknGWOwgabdGlCpYRl+HvIbZw6cI1eRHLQd1NxbVhGgZZ8mxMcksvT71V4FzLc+r8fb3RsiSRIzDo/n9wk/c3LXXxQonkjjD2+SKbsDEdMZETYcOaiR35hORp5mep9fObHnFGmzhNO6b1Nqv1edgmXyKxp/Y7CB4tWUNWy2Lt6lGHIqSRJNu74JArYs3uVdAMTeiGfEO+MZsbIvJav7rxSzvZSFU/vP+l03hRgxPeDCOx11LmC2riXB6ndGkDZzOFP3j2HB6D+IWLWPtFnCad6jERUbPtRt64dWp6VI5YIc3nrcx70la2TK1X/1kZ+XqrH+Aeb/oSz5qgVdMSRN9n+ka2Hfi7AsA0AyNUTS+07owh2HuNUE3DF4pCOAhAkI5yGkcP9kyufBC2H8I1bv53TUOR9ftM1sI3LdQY5HRKcoEejx+97HkGZjcLsFDpuDPyatpGTNYgxZ0gtTiImJW4dzdNdJzh66QM5C2ShYNj9fvTGck/vOYA0kqyCgYJl7SSjLpq5hWs9fFN0MySFJMt+sHcCf369m3S+bCcsQSstejSn1usf9MWL5VwHvlWWZT0a/x3uDmnPrcgwZsqfDeN9OIGOO9HzcNwrs0Q/caYWEUQhTA59wulNRZ+lebaA34iYx1qMMGnPtDi16NqZ0nZLs/SvKG9Kp1WtJkzGMWq2rKI4vJDxI8brL6Sm2smPpHr+dn81i5+fBCxm7YYjffR+ObM2QZmN8foeMQQbaDGru5/JJrs5BoAiu9FnT8tn4D2D8k7tluk3rQNfK/XBYHdgsdgxBBoJCjXQc1+6Jn52aEIk/Af4H6gBoCyOFT/5H+nXHjQLLfBCev09hXYIwtUIO+/Le2My/gTser+EHwArWvxDO80jaXDxvXgi3z8HNRxSjT1xOV7Jb/SfFYXcwotUEbBa7V97YmmgjasMhNs73hD1KkkSRCgWp/9FrFK/6MmtmbeDE3lOKhl/WyBiC9PSY2dFbfcphdzDjy/89suHXG3XUbludiR2nM6vvXC6fusrhbcf5qf884m4rF4VXwhRsJEeBrD6G/9434KDyTe54ELE+l35WyGi2mW38OnQRdpuDAQu703ZQC7Lmy+yRNv6kNt/v/lq5X6BJl/p+Li1ZlsiaLxPBaYIDGuFAchpl675Kv/ndyFEwK5IskSF7OjqMf5+3utT3a5uvZG7FA31jsIG67V/zu34/lkQry6asYVDT0fzwxU9+Eh4pIVfh7Mw5OYn3h7akTrsafPzNu8w+MSnZkp//StyxAT4wIIVPRNI8/fcVjuNgngfCgmfHITz/N89FOE7ea+jYAygt3myI2+1THIr6T/JCrPzTZ0uH3qT3C7PU6bWkSyYLNBDHI6I5HnGKTLkyULbuK4HDKXecUIwssSbaWPvzRl57t6rfZ+t+3eyTsJSERquhWvOKvDfwbXIWureVvXbuJm4Fl8iDyLJHfsFmsWMMMpCnWE5MIUY2zN/miXm/6yKJ3neGb9t9z7ClXz7kiSlAzgwupYlEBsnXv39izymf71Wa9A6qN4olTXqJ2CvbyJinBi16NaZFr8Yp6rpiozK89Xl9Fo1f7ikF6fbkHwxb+iXpsqYNKBWar0RuDmw+wv9GLObyyasULJuftoOak6NgNo7viSb2ZjyyLJM5TyYKls6vuMqXZZlBv/fiyzeGeWU1dHotpV4vQe221XA5XQghvNnOSSTcSaRT2S+5dSUGm9mGRiuzcvo6BizsTvk3S/v1kxxh6UJp3sPftZaE2+0mYtU+Nszfhs6o4412NX3ciP8KDFXB8ju+q2tADoV/yN3jSQZTkuRwgm0D6O6q92rzgk2n3NZ9HnH7Q0g3G0mffCnWf5IXwvjXal2Fn/r7h7lpdRoqKcR1B8JhdzCg0Tcc3nYMt0ug0ckEpwli/OZhirHYSrVgvX0HmDACiajpDFpa9GrkY/gB0mQITVHt1zzFc1GxYRl0Bh2Fy73Eq68V54PCXf12DE6Hiz1ro0iMMxMcpuw6SSlSyGeI2H74bs2NENQKSfI9cM2aPws3L3nkHsrUiGPAjLNIEmh1Aln7Oe479ZDSfP3Q0pHeviWJ9iNa89bn9Tmy4wThmdJQpGJB7/3v9GniV1XLEKSnZM2i9K0/wjsBXzt/g90r9/FKzaLsW3/Qe/3wtmN0rzGIqZGjyf5SVr/+Xy5fgLnnp7Jl8S7uXI+lRPUiZMmTkSHNxrB75T6EEJSo9jLdp3cka77MACwau5QbF295d4kupxuX087oD75n4ZXpAYvtKHHx5BVuX4khX4ncfgfpQghGtp7IrhV7sSbakCSJDfO20rxnI8UylakVKaQzwroORAKeaB8J0EDQBwTSQnryTg14zOaDf3MakO7lUEim1gjz/zyHzopYEfHjkNL/+s+MMwW8EG6fNBnCGLW6v8cvfVdALWu+zIzZMCSg20CJRWOXcWjLUayJNuxWj1rm7csxjHx3omL7lysU9FvdQdL2v5biPW9+XFsxAicsfahPVE8SoWlDqPxWOfRG//rA9xvK01HnWDR2GVWalqd07ZLIsow5TkHR8O59j+pGUnyOqQGEdgcpFDABBghqjhTay69tmwFvYwjSozO46TftHMYggcEk0GhBwgq2NWBb/8hjSJs5nMpNyvmFmbbu25QOY9uSKVcG9EYdhcq9xKhV/flz0iqfnZdwC6yJVnatiPTbkTmsdhZ+G1g6OjgsiLof1OSdPk0oVDY/3aoOYPfKfbicLtwuN1GbjtClQl8sCZ7Jccvvu3yqnyWRJJWdEuJux/NF1QF0eKUnAxt/Q8tsH/PLsN982kRtPOw1/OCZDGxmOwtH/8nVs8rFbVIjkiYLUoYVYGoKaPCas4TJiJiPEHcNrxAWhHUdwroKEdBVlEKMdZP57I17Y9PmQEo7C+Qcgds7TzzZWJ6QF8L4gyfGfO75qUzaOYope79hzslJAZNrArFq5no/v7TbLYiOPE3szTi/9hqthiF/9MYUasQYbECn12II0lO9eUWqNC2v2EfNVpWp0rQ8BpMevUmHKdREaNpghvzR22/Va0m0khhnpufMjlR+qzw6gw5jiCeBTKPV+LmcbBY7PWsN5sLxS1yKvhJQUTJ91rRepdAnRQ5+HynTTqSMq5Ay70YOG4Ak+U+IpV4rTq+fOlPlTQnFHDNhRliWPJUxgWeCa/BpHf53dgorzHOZvHMUuYvm4M4N/58jKCe+uZxuH6OccCeRc0cvYrP4T5x71kQRcz3W55BZuAU2i40Nd89/AiX+OawOetYawpEdxx/6XsNbjud4xElsFjuJsWbsVgcLvv6DLYvvZYpvXxqhGI0kyRJ71kQ9tI9UhZwO7LvxaPK78LiALGCPQJjnImzbEdcrIWJ7I2L7Iq5XwW1e/NjdSZoskGYUYPC4LqVgz//TfI2kyezbVl8aMqwCAmRVP+dD3xfC7ZOEJEl+mbCPgsMeaAsnBcwOLVa5MPMuTGPbkt3E307glVrFyF8yj8cAn7xK7qI5yJr33i+NLMv0mdOFFr0ac3DzUdJkDKNCg1I+hd1vXYlhTPvv2bf+EBKQt3guev3Uic+//4g7N+KIuXaHAQ2/JjHWf2V/51osn5Xtg9PuClg/t9Ok9il2r6QESdKBJttD21VvXpGqDbsi7nwOJD61/lOKKcQYuMjMXbG1B7EmWLl1+TYz+85l44LtaPUahFvwbv9mtOzdxPt9vHTyiuL325po4/zRC4DnkHpCh2mKhtmWaKNv/REsuj5LcTcJcPtqDIe2HvMTBbRZ7MzsN5eqzTx1jZMWBw9GO8myp/DQvwrXRXBdxv+HYwXzQoT7EogH/g7iBiP0pZC0eR+rS9nUAGGoCrYtnguGakiycg0FWTbgDm4PfpFJRqSQzx+r/6fFC2X8nwS32x0w4SZr3kykzxq45mdwWJBXedGSaKXPG8M4vPUYWr0Wh81BhYZl+OrXz33+qPMWy+Wj1XP/OLpXH8i1s9e9qpAnI8/QrdpAfo6eTI4CWQkJD8Ku4D5IwpoQ2KVjDDH6ZxQ/QyRDOc9h7IN/y5IJydT0H+lTOKMR8WPQ2PfwS4SGX8eGseynNCT5jY3BBvIUy8XJyNN+5yuXoq/Q/uUvcDpdOGwOr9vm12GLyZgjg/dQP0+xXGh1Wr8sYWOIkZde9Ugy12pdhaM7T/DnD6sVJxpzvJW/ft5E5LoDnNp/lrwlctO6b1OvOzA+JjGgFPilk1ewmm0Ygwy8/l51fhu7zM/4CyGo2OjRcwueL8n8rrpjUfb9uxCWP5BCuz12r5KcBkzJ17/2tg35HCHpIHGmJzJIzgShXyIZnm+pzRfG7fOkbP8zghsX/EXQALpN75Di5/zQ9ScObjnqsy3f/sduPizSjeEtx7FvfYDwyLvs+/sgMdfu+MkBO+xO1s7ZCHi0fl5rXTXFFbjuR5YlxZoASQjhfGpZikp1UiXJE6bn2Sob8fhyjR5fq6GmX/snHoPzAuJWC0+khogjPF0Mnwy6xEcDrmMKNaI36anQsDQVG5VWTDRzu4SnhoFCmOq8Ub97v36lZlGyF8jqo+Kp0WoISxdCtbcr3H13ic6TPgwYPSbcgu86zWDTbzu4cPwyWxbvpGvlfhza6glXzlEga8BCOpIkEbXxsLfd599/hN6oJyjURFCYCVOoiaF/9gnoekq1aHKBrBTSaQR9SVD8XXXdLd/4bJAkGTmkE1KmPUiZ9yFl3IhsqvfM+g+EuvJPIet+2ay4HTeFGlNc49blcvH3/7b4Heo5HS4un7rK5VNX2bliL6Vrl6R22+qUrfuKj7sH4Mrp64orc7vFzsUTl71ffzH1EwSCNbM2pGhs3jE6lfVkhPM8Im7AXf+qhDDUQAobiqRR1swPhBBuROIMSJwOIhahyY0U2hfJeM+wS4aqkGkjWFd5cgIMVZB0xR6pH+W+reA4DnJaJG0u3G43kSvGczIimMw5tVSqG4veINDrnbzdMYaTx15n+9Kj7F6xj00LdjyyLHLMtXuibLIsM2bDYGb1ncvf/9uC2+2mUuNyfPrte+iND0hNBBtJuKNsnHzKOLo9B7WTP5/F1Mhv0Wg1vFQqL8d2PZhY52l79tB5ytf3hBa+0a4mlZuUI3LdAbR6LaVrl/D7Xfs3IEkSpJ2IuP3+XUNvBYI8IZehPeABORHPTUYk4+vPeqh3kxpTj1tNNf4pRNYo76clSUJOoe6+2+XGpVAV6n5sZjvb/4xgz5ootHoNw5d9RZFKBTmw6QixN+JIny1cMUHJGGygcPl71aQ0Wg09pnfk4vHLnNhz2jvhSBJIsoxwC0VjJkkS7Qp3peGntekwrp1H3tmd6Fkdizt4t9m2jYjbrSDDaiQp5TsMkTAJEmfh9X+6ziHudIW0PyIZKtwbh5wOgt5N8XMfhjtxPiSMAjQgHFjsL9O7eW7OHTmPw5YJvUEwdWA2xi+NJmtuO067xM3zkThsumTLXwZCkjzRXvcTHBZEl8kfKZb4vJ8GHWqzYPSfijsNJU5HnUMITwGZWq2qKBp/8OSd3E9IeDDV3q6Yoj5SM5KuBGTcAJblCPdVJF1pjx9e0uAO+QQSZuCZFARIJtDXAL1ywMWLhGr8U0id92sSsXq/3+pfkqSA+jIPotPryFcyD9H7AghR3YfdasduhX5vjiQ4PMh7eOu0u0iTMRSX0+U1ShqdhrAModS8r7hI0thGre7PzK/+x7pfNuO0Oylb71Xe6lqfka0mYIm34nK5sVtsHhezwPt+K6f/Te6iuaj/0WtgXXE3lf3+HYcT3DfBvgUMNVL0/kLYwXyf4fdiRSRM9DH+TxNh3w3xo3z6nTvmOqcPCBw2CZCwOMFmkRjdJRfjl0YjhJ3LKYuu9EOWJfRBBj4c9XiTV5sBb3No6zFO7PHUJ5Y1MuEZw7AmWkm443+Ibwo1Er3vDBlzpid3kZxo9VrFw2WlAID/CpIcDsFt/Dz8ckgXhL4ywvI7CBuSsT4Yqj/VgIaHIZznwfY3nkphdTwRQ6mAp1LMRZKkusBEPA7aGUKIrx/4vB3wLZCUqz5ZCDEjuWemtmIuQggmfDqNv+duweVwodFqcDqchGcMI1uBrLzT5y3K1Xu4cP3jtSUAACAASURBVNbxiGh6vTYEu9WRIlVRzy+p8Al/NAYZKFP3FY7sOI7T7qLyW+VoP6IV4Rnvadm7XC7McRaCwkyKyUEup4t96w9x9cw1Jn8+SzFRLHeRHMw4NN6jZWL+SWF0eqTQnkjB7R76HgDCdRVxow6Kae9yOuRMDy9c8zi4Yzr45Qi0LvUyt67q/dpqdW7mR0VzOCKYQe8/Ypao5MkreKVGUdoMbE6uwo+fZSqE4MiOE0TvO0OWvJko9Xpx5o5YzG9jlytLRQcbcDvdVGhYml0rIv3OIAxBej4Z3ZZGn73hd6/KP4c7YRokTMZzgn93wgkbjBzU7B/rM6XFXJ545S959vzfA7WBi0CEJElLhRAPCrovEEL4F2H9lyBJEt1+7ECjTnXZ/Nt2Fk9YgRCCW1fucOvKHU7sOc0n375Ho47J/3EVKvsSPx4Yy4wvf2XL4l0BD+iSUJSHMNuIv53AgkvTFdsvmbSSXwb/htVsw2DS06pvU1r0bOSz2tFoNZSpU5IbF28xpdtsReMfH+PxO0u6lxFSkH/InKQFbSG/+wIipwNJE0CEsUDKn/OouK75XRIi8MpPGOuyZ2dONNqtfhO0UohkErIs83P05EdKHPSMxeOCu18gTpIkilYqRIHS+Zje+xeGNR+Lw+bAGCAU03Z3x7ZreSSFyubnxN5T2K0OhFtgDDaQvUBW3vigxiONK7UiXFcR5l/AcRR0JZCCWiNpHq3a2bNAOE5AwvfAA5N13GCEoRqSJuNzGVcSTyPapxwQLYQ4LTxlc+YDKRNg+ReSv2Qe7tyIx2l3+uim28w2ZvT5NdkQyySy5MnEhyPf9erdPw7meGU1w9Wz1jOr7zwS7iTitDtJjDXz69Df+GPSKsX2GbKnIzRdiN91WSNT5o27Bc2N9UBKg+9aQQ+aPKBPuatGkvQQ/AmebN/7MSKFfOHXXgiBsK7Hffsj3Lda406c+3iVmQw1POO9j5pNYtDpfSdeSZLIV/IlwvN8Q5sB75ImYxgGk+c+jVaDzqCjcee6BKdRlr14q2v9gIZfCMGZg+c84aIuz+QRdzueEa3GU9/UmnqGVvSuPdSvbsDodpNZOeNvbHcLwyuVhbwfu9XOsYhovvlrIG+0q0mFBqX5bMIHfLd9xBMd6CbGJrJxwTY2LdxOYuyzz8FIQjiOIm7Wg8TZYN8KiTMQN+shnI/po/sHEf9n78zjbareP/5e+8znzoNryJAoTZQilYpolqFSmtMkkgZFIyGViCINJBWlzEOhohQpMoUSGTJmuO693OmMe6/fH+u47rlnn3MH1/Dt5/N6edU9Zw/rnLP3s9d6ns/z+XjnYK4DJEJpoOOLysj5nwLsKPb3TsCsmnKLEOIK4G/gKSnlDpNtjhg/fPEznw+cQtbuHM5sWp+HBt1N/cYVa+aIht8X/BFBtQRll7pr425Tfn5JVD+tKmc2rc+6JX9HbbYCsLts+D2BEq/ZadnpUtPtxw+YEpEW8Bb4+PzVqdz0eKQCpRCCnh92Y8CtbxLwBTF0A5vDhjvByX39O4W2cUDaVGTe66GLVgNnW0RCr1Jzp9LIheAWsFRHWKoi4roiRQIUjAIjC6ynIxKei9BDB5B5g6DwS4py9YE/kN7pkDpBNY6VESLuXqRnSkhbXT087uqZy4qf67F3WwBPvhdnnAO708az41TjTWq1FMaue4u5H/3Asm9+Z/1vGzF0g9mjv0PqQTSLxGIRBAPqd7dYLXz9/ne44p3c+/Jt4dIaa7bRt8MbHMzMRWgCu9POC58/wfs9P2Hnhn+LGgR/X/AHPS55gXEb3yEuKY6s3Tn8MmOZqeRD7O9cUuuMGjw9plu59ouGBRMXM/SB91TXOBIjaND708eOS7FY5r4MsvjDxw8ygMx9FZH60TEfT2yEVD+jvnd8ccQ5fyFER+A6KeVDob/vAZoVT/EIIdKAfCmlTwjxCNBJShkhbiOE6AJ0Aahdu/aF27aZm5lEw5RhX/FJ34lhwc/pdjD8l1fLLeUQC8+06lfEmS6J+o3r0n9GbzJqlU6BzMvJ59Xb32LNwr+Q0iDo14s49gLo8d7DJKbGM+juEQQDQfSgct6qVjeDEb++ZmrGfZ29k+mDCeDb4MQI7flD+GftNqa+9TW7Nu3hvBZn077HDTGN0EuDlBKZ9yYUfqrEsKRfUTaThyFE6Vxyqe9CZl5HxJIZNyLpVYSrTfnGY2QjCz4B30+gpSPi7sewXMLS2SvZsHwz1etm0OK2S0wb+Z5q0Zd1v2wIS9HZnQaXtzlAo0sK2LLOycyxagnvdDvoPuKBIu0mv9fP7TUfibC8tDltWDStyL/gEJxuBw8Nvpv2j17Hn79s4MU2r5W7UJteM5UJ2z6olKLm/l1Z3HfG4xE1BLvLzvjNI0mtFr25sbIhpY7cezbmgdOGVs38njxq4zFyAAdCM18JysBfyKxORNa4HIgq845a4feY5fxRRdzixPCaHC7sAiClzCr25xhgsNmBpJSjgdGgCr7lGYTfF2Bc/0kRs16fx88nfb+sVMeuTs92YP1vm0wLb1vWbOPpli9zU4/rWfnDH1Q5JY2MOmnkZuVT99zatLjtkqLld0JKPIO+7UPO3gPkZufjTnDy+4I/ccY5aXrd+dgcVlbOW8Otvdqzc8Mu9KDBRTdcQKs7mkdwww/hlDNqsN3EXL1a3YyogR+gbsM6PDO2ewW/kUjIwklQ+BlqZhYKHL6fkQf7IZLfKP0A/mVR6gOFSN9PUYO/lBL0zYrzbT29yDBGaKmIhJ5KaC4EC3Bp+6Zc2r5p1GHkZuexfunGiNqM36vx57I4er+zA59HMG9yKoV5FryFPiYOnlkU/H+dtdxU+sMIGugRypCqnrN17XYAap5RPar+Uiw0aGouNV0RLJy8JCrldOHkJXTocSyblTRU+s6kQz3GhEJKL/hXgrCBrbGptlR5IP0rkQdfAF0lL6TjCkTS64pxVHxItrOQcQ+EqM2B0Pg11d17AjB+KiP4LwNOF0LURQX924E7i28ghKgupTzkktEOqHQHlaxd2aYXqZSSjSsqNx/Y9Nrz6Tr0Xt59fGzEjW3oBnu37mPM859H8MMdcQ7GvvQFI5e8Rvoph7sSU6omFwmpXdq+KWOe/YwhnUfiKfBisWhoFg2Bsni844WbTQN//oECVsxbw+U3N2Pylr1hQcPhttNlyL2V+RWUjsKPiKR0+sA7Gyn7I0QpzS5aMuat+VaI0lgmA38hc7qrdJIQSnQreTjCXnHJAj2gRw2kAZ96sAT8gnrneFi7RNVODmQeVo7M2XfQtLdDD+qmnbzOOAf1zldpyqT0RK7t3JJ54xeWS2V1+Ter8eR7ilYx//yxnc8HTmHTqn+oc3Yt7nzxFhoUc4KLBW+hz7TArQf1iFXL0YYQAunqAJ4ZhD8AHOC6zXQfw/Mt5D6LCrxSbZsyCmE/L2JbKXXwzkV6pgIC4boFnNeHOc7J4E5kzv0hM5cQfAuR2Q9A2tSIa0VLeBLpbAO++YAVnNeeEC5eUAnBX0oZFEI8BnyLmkyNlVL+KYQYACyXUs4CHhdCtENJ7mUDnY/0vCWRnJEYlTlTrW7lMwFufOQaVsxbw8/Tlka8JyWmjUG+Ah++Ah+DO7/L4Hl9TfaT9Grdn61/bC/aX2m6q8+1bd1OejR7nguubkS/ab2K3Ly+/XQBI7qNOWwALgSnnF6dnL0HqFGvKvcPvLNMNNRKhZET470CsJQS/O3NAQeRAm9WhOvWiM2l9CCz7wEZUuWUKCXQnIegyg+qaawCSKmaTPW6GWxfH+6oZbUZXN72QOj/Jdn71G8hBGGmKOe1ONu8KS/eSWq1JDJ3ZBX91ppFw53govVdh60pHxv5IFVPrcL04XPIy84nqOvIKAbthyA0wZAH3iNz+36q1E5j6exVBHyK+fPvpj2smLeaATOeLbLrjIVmbS5gwmtTI+SsrVYLzdoceyMSkfA8Ut8RmslblV6+ozkiwYQwENwBB3sRnnYpQOY8ABmLwyYgUkrVbOhfVBTYZWAl+OYjkt9CGgdUg6JnanjgByCgVpvBdWCL9H8WttMPm7ycQKgUbR8p5Rwp5RlSynpSyldDr/UNBX6klM9LKc+RUp4npbxSSrm+Ms5bHK54F9d0vrKInXEIDredu/t0LPfxdv79L5OGzGTKsK/Yuy3TdJsLrz4PRzlpfaD0ecwYE2t+WsfODf/G7CjVgzqrf/yTz0Ia7bs27eadR8fg9/opzPMU6czs35XNhG3v8/6KIcc+8EOog9Lk8tLSFOWzFAhhQ6SOA60GCDeIeDWTTxocpsYo/aswsu5E7r0IpIlrmDQgZLRdUTw7vgfuBBd2p5orOd06VU4JcNdTewn44Z+/XOza4kCzaDjjnTw06HBzV92GdWjeoVmYR4PDbafeeafyztJBXNv5SlzxTuxOG5e2b8rI3wahBw2GP/ohd9buyj11u3MwK4/Ra4Yy2zOBeo1OPfyQjwJvgY+fpy1l/W+bWDR1KX6Pv2hVLCUhSYiyFUfrnXcq1z/YGmecQy2mhFqd3Nj16jIRGyobQnOjpX6CSJ+GSBqMSP8KLeWDCHMgQDV2lXT5AsAAbwlviMBKpdJZPLDLQvD+gOFfhsy6RZEPStKdi2BRCqP/Q6iUJq+jgYo0eQUDQT7sPZ7ZH87H0A3iU+LpOuw+Wt1ubvIdDRNem8rnA6di6AZCEwgh6Pb2/dzY5eqw7byFPh457+mQ+5K6yIQQZdKAefzdh2hboidgxsi5fNh7fJnyvMlVEpm89yPG9Z/EhNemRfD0XfFObn2mHdv/2smODf9yTvMzue2ZdlStowqTPo+PwjwvyVUSj0q3owz+o24Y6UXdgIIib9ViOj6lHkdKCP6hjmM7L+wml/7VarZv6pVaDO6H0RIjDWTKM4bf5q5i/vifCHp3cHGrFbRol4fdEaDAczrvvNCQjasOcPYlZ3DnizdHOHsZhsH3ny9i9uh5BP06re++nDZdri5auRXH1j930P2i5yIKrKnVk/lw7TAA3u46ml9nLkPXDWUhW+x6K+v1J4RgjndCVHnokp9/7aK/+GHCIkDQ+q7LaXj5WaXud7xhHOwHngkm7zgRiS8g3LcXvSLz31Uz+wiVUCs4WodWBLEK7w5E+uwTIqVT1oLvfyr4H0LAH8CT5yU+JS5mkdMM29btoHvT5yJMW+xOG59ufCcsVw+KsTNpyEwWTlmCK85Jvcan8tOkX0x9eIuj49NteaREHn75d6sZ0PHNMgnFueKdzModz6he45g67KsIA5RDPQR6UEcaEovNgsNlZ9hP/Zk+Yi4/TPgZkCSlJ9Lj3Ye4tF30omdFIfVdyPwP1azKcioi/mGErWGlHd/Ivgf8kWm3CCT2R3PfUaFz5Gbn0bv1AHZt2oMQKpCf1/Js+n7ZAbsrrdILd4+c/wxb1kSy3IRFcE+fW7mnr0p5BfwB9KDB+qUbefeJsWz9cwfxyXHk55SNg++KdzLz4LhjKnNwrCF9PyIPPGkStCMDtSz4DJn3BhHFZOEC65kQWBXjTE5wtkZLfquyhn5EKGvw/09KOtvsNhLTEsod+AEWTllC0Ex8TQgWz1gW8XJCSjwPvnYXn/79Dh+sGsIzHz3KNfe1xOawYXeZM3KccQ7OanY4B6gHdSYPncWI7h9GPHTMoGmCpqFUzgVXNTQ1Iw/6gwT9waLlvh7Q8eR5ebHN6yz44ueQ9nyQ/buyee2Ot1m35ChYymlVEYkvoaXPQksZUamBH4BAGbOHwYpZE0opGdL5Xbb+uR1vgRdPvhdfoZ/fF6zji8FrKz3w52bnsc2EqQUgdcmybw4HIJvdhtPt4Pwrz+XDNcP4LjiJafs/LlMa0u6yU7dhbe4/8wm6Nu7F7NHzMIzj5+Fw1GC/AmyNCW8qdIH79sgZuusGEFHihf0SVP3JBCIN4nsgkoZUwoCPLf6Twf9IUAl9Dzz+7sN88vcInhvfg9Ma1Qnr5LU5rGTUTg+jF77SaRifvjyR3Zv3lir3oFk1EtISeGTIPQCsXVh24pSUkqx/cyLSSn6vn4lvzCjzcUo9j74bI/tB5N6GyL0NMbIfQup7St+xvBBlCb4CRPkD20+Tf+X2mo+w5OsVEX0Tfo+fOWPMOzTXLfmbPu0Gcf+ZT/DGfe+EyWyXBotFi+k7XqWmmW69ghAqPXnDw60jJh2aRcNi1XAnurA7bVjtVv5esYVdG3ezefVW3u/5KYM7vxtzbP9u3sPbXUfR7cLeDO48kq1/HpUezUqFEBoi5UNEUn+wXwaOqyB5ODiuwch7B1kwDqkrFrrQUhHJH6hO9kP1JZGs9nffpYrLYbCApRYiYzFa/MNHTB89HvhPpn2OBFv/3MFjF5mnfT75+52YN6AZfB4fX74xg+8+/hFd12l5e3Pu6dORuKQ4QNHwejR7vkwzflD0v483DCchRdEK7677aNSCtBmi5YQPibgdKaT0ITNbK8XPovypBloGosp808Jc2P5GgSqcWaopt6So5/Ej910BMruUETkRaV8ibGVTXgVYOX8NfTu8ETN1F5fkZkbOp2GvLZ29glc6DSvaT7NoOFx2hi8eSFqNVGa++w0r5q0mo3YVbnnqRlO6Zc+WfU0f6BarxtAfB3DOpbG1lPy+AIPuGcHSr1dgc9jw+wK0uO1SHn2rM5k7slj781+MefazCHVau8vOqFVDqHlGpN3mljXbePKyl/B7/ehBA82iYXfYeG3ui/8Tuf9DkFJXFqH+n0O1KDsIDZH8HsLRPLRNAAK/AwJs5xcFdRlYgzzQC/RdgFT9AslvnhB8/ZI4lk1e/ymcek4t7njhZia8Og1D1yGk19912H3lDvwADpeD+/p14r5+nUzf37BssykVMBqq16taFPiBqJ6zQhMh28Bwvn/AH0QGw4O/xapxdilBpczwzgu13xefLRuKieOdr5bXJpBSIvPfUpotQmnuS1c7RGJ/cykH7zcgD0a+XgRVYCauc7kCP8D4AZNjBn7NIrnoqvC6jJTKZav4foZu4Mn38t6Tn7B9/S7yc/LxewOs+/Vvfpm5jF5jH6XFbeEyHc+N60GPS17kwL4DRdpRmkXw2LsPcc6lDdj/bza/zlyGYSjLxZKd5HaHjb6Tnmbfjv38u2kPNRvUIL2GYlclpMQz6c2ZpqZEFovGX0s2mgb/93t+ElaHMnQDb6GPEd0/5MM1w6J+TyccvHNDgf8Qo8enCuYHnoCMXxXDTNjAHln/ErZGiCrfIvVMELaIhq7/RZwM/ia468VbaHHrJSyesQzNonH5Lc2odurRUQ3MqJ1e5uDvjHNw8xPhna3XdG7JF69NC0vlCCE4rVEdMmqns/y71dgdNvzeADc+cg12l43pw+cUBQAhBA6Xgzueu6lyPpC+1ZwVIT2gR5frkIUToOBTwHu4q9fzNVIkIBKfj9zevxxMOmQVBNiugIQnEVoC0siNarBthn83R6qAHoLdoROXaPDQi/8gA2uL6hgFBwvJ3m3e2/DH4vUgZVFDoHLg8vF2t9FcdnOzsGavjNpV+Hzre/w2ZxUbV20ho1Y6re66HIfTztyx3zPysY/U6g0Y3WscXYbcQ/vukV22GbXSix4MUko2LNvEljXbESibzggVVyFIq2Eu1bDulw2mr29btxO/L2DKWqoMSCNfXU9adYSl/BOviOOZcvQBDDXbNwn6JXG8lTgrEyeDfxTUPKMGnXoffXHSRi3Owul24skrneFTo141mt8UfoHe9kw7Vs5fy8YVmwn6g9icNhwuBy9N7EnN06uTuTOLzB37qdmgBompCUgpqXFaNSYOmcnBzFwaXn4WD75+F9VPq1o5H8h6huLlyxKsE+FS70VDwYeYmbxQ+AUyoXekW5gWa7ktIbAQsheFniMa0nktIum1MukK1T8/g2V7ciIYVBar5L7ee7j+rmzikpwQ2Aih4O9w29UqzETKQRrSvEs2oLPz73+pc7ZSR9mxYRe7t+yjbsPaEbITmTuzGPnYRxH1mtG9xtP0usbUqGf+fXgLfbxww6thXe4lbUA1TZCQEsd5V0Y2KIFKcfm9kassu8MWtedAGvlqdWZkgr0J2JrEZBbJwBpk/gcQ3Ay2c1XO3TNdSTLIANJxJSJ5cOmd4TERrcQZPfUtjWxk4XTQtyrxQef1SujwP4CTwf8I4S30MfnNWcz+cD4FBwpwJ7ppefuldOrVvlTRK8MwGNjprajyzCWxa+Nu3n38Y54a9UjRa3annaEL+rF20V9sWLaZjFppXNK+adFsrErNtLB0lRCC6x5oVaQ9U+lwXAlaFdB9HG6wsYGWAY4W0feT0TqCAyo/K+LCXy61Y7K4oqIB3m+Q0kCkDI++h/Qgc7pz7xNrWf1jbXyew8HC4dK5t9ceOnbdf3gH62GxQJvdxrX3X8m3n/wYxtF3uh0kV01kzz+RdZlgUCc+JZ7CPA9927/B+qUbsdpVqq7l7c3p+WHXIiMes05yUCmYbz5ewB3PdTAVpfuk75es/20TgWIPDYtVQ7NasVg0DN2gzjm16Dv5aVPTH1BS1Z8PnBYmMWF32bn+odamjDoZ+AOZfa9qsMMLwqlYNymjTVN40vczMudRFM1Sqtn+od9Ohs7pW4DMHYBIes10jJFjWB+a6RcgHFcr9y53x9CKseT9Zguxgkoe489Q13gA8CG9Xyl9/rQpMetR/ys4WfA9Aui6To+LX2DL6q1hjBAhIDEtgVGrh5JWPfoDYNm3vzOg45umOdhosDttTMkca6roWRbkHyhg5rtz+WXmcpIzkrj5iRu48OpInZMjgVH4FeQ+x2EtcyekjEJzRJcAjsrZt9REpH8fMWtUDV53YyryFRU2RMbiqPla1RQ0FfCxfpWLjwbWYONaF6kZQe54Yi9X35pTdByspyPSpoeNy+8LMOyh91k4dQk2uxU9oHPLUzdSt1Edhj74XtjvbLVZOKf5mbz5Qz9evfNtFk9fGtbZ7XA7uK//bdz6dDsApr71NR+9EKkXBaFgrmlc0r4pT4/phjvh8EPglioPkJsV2flssVn4YOUQ4pLcpdaydF3nne5j+G7cT9gdNgK+AJe0a0LvT3tEpHyklMjMK8EoyXJyQkJvtLi7I45vZF4F+vaYY1CwI6quKHXmbRR8DnlvoOS7D92XFrBfDUIH389AQK0qEIrRY5LyMTKvV7INYbCB+060xBfLMN7jg//XTV7HCr/MWsbrdw2PWkBr0/UaerzzYNT9h3cbzdej5kW87nA7MAydgDfyRne4HYxd9xYZtasgpWTPP/uwu+wxHzKHUHCwgK6Ne5O95zDd0+l2cG+xIHOkkPq/ISnmEmkskYjI+Dnqsl3Nsu4MzfQO3bBORMoIhIlHsJQGMrMFGNHz85GwI9JnIKz1Td819pxH5KwQlcaynq2a1bAoca7El6PO/nKz8sjcmUX106riTnAhpeTTfhOZPGQWNoeNYCBI3XNr88pXz+FOcNE+6V5T5c+M2ul8vvV9AHZv2ctD5/bE741eiLY5rDS84mze+LZP0Wvtk+41XVkKIbi0Q1Oq1qnCjY9cTa0GpVtOZu3JYeIbM1g6eyV6UOeKjhdzx/M3hxEQZHATcv8tmH6P1nPQ0qeHvSSlB7n3AqLXb4rDjshYaKrTJIM7kAVjwb8K9PVEduqCov2mQPLbiMBa0JLAeZ1pPUjq+5GZLTnk/xAGLQMt4+cyjPf44CTb5xjgryUbo87add1g+be/x9zfleBECy29i0OzCOqcXYeNK7ZE0DJtditpNVJZs3Adb9z7Dgf352Loknrnn0qfiU+RUTt6QeqrD+aRvTec5+8t9PFJ34nc8PBVxCWa65KXB7JwGuY3sg6+BcoVzATCdg6kTkEWvAuBP8BSFxHfHWE/33x7oSETX4MDj6EeNGWZxGhgMW+/V99zlLqL9KOlTVA0QLTI+kMJJKYlkJiWUGysgs79b+fmJ9qw+fetpFZPoc5ZNQHYs3WfaeAHwly7qp9WlZueuIEpQ2dF9WsI+IL8segvdv+zl+p1VQ3n4rYX8tOkXyL3EbB4+m9YrBZmj57HCxOeLLXL+/0nP2HJ1yuK0j/TR8xl8fRljF7zZrhLmLKdNoHZi3bARpmCv5aignfJowbWI7NvD0mHR9fFUtSeQgj8iYh/OOapJDLGmGLTlf9XcLLJ6wiQUSstZlNOcpXYDJNr7rsyqpVjj5EP4nA7wtIKDreDBwfdRdbuHF5s8xr7tu/HV+gn4Avw9/LN9GzxsmmnpjID38B3ny6IcAUD9UCpNNlrIxtT6zqpg3Eg5q7Cdjpa8ttoVeajpX4YNfADGAUfw4FHQ3+VhW0iIP7pqH0GQgiwRbqJgShigSgqYOzAHwuJqQk0btWwKPADLJq6xKxBG4A659Tk2Wte4QbXHVzvuJ1JQ2ZGDfyHYHPY2Lf9cF3i4cH3kJyRVCQsZ7GqW76o8zuo4yv08+b970b1JgbY9tdOfv1qeVjeP+gPkr0nhwVfLD68oaUeCLO0mgtckablQljAfTtgtiIUxf7rRCT2My0ay9yBIYZZrMB/CN4Qjz86pPSHJhVmDysnuCNVZf8XcTL4HwFa3t4cESP6X3Nfy5j7n3pOLbq91Rm704Y7wYU7Uf17ZdZznHnR6Yz49VUuadeElGrJNGhanxcmPMGNXa5m7kffR1D1DN0gNzuP3xeEuxnt35XFA2c/ybPXDuTfTeYpEj2ok1TKg6qsEI7LALMVhAT7RZVyDhn4G/LeQuX7PYQvzc0uaQckDECLvy/mcUXiy6HC8qEHhB1EPCKxT6zdjggbV/4TwSo6hPW/bWLl/DUEfEGCAT2qqUpxBHwBLBaN8QMm8/mrU/Hkefh4/XC6DLmXa++/kqQq5qmqYNDgn7XR8+5/L9uMZkJJ9hb4+P3HP4r+FkIgUt4Jdcm6UIHbDfbzEW7zXheR0AucN3Do+wYHOG8D5y3qYeJohUgdj3C2jvKhYwfzcNhAq67SYJZ1hgAAIABJREFUjEYUHSTv3JB0iMmD1nYeIi48lSuljpTH1tugMnAy7XMESEiJp+EVZ7Hmp3UR71nsFq6+Nwa7JYQbu1zNZTddxKJpS0lKS+DiGy8sMmupe25t+k/vHbHPnn/2ETDx/ZWGZP/OrLDX+nccyr+b9kSVjdAsGtVPq1pp8rzSdiHYzoDABg7nfV3gaoewRjcQkUYBsmAMeGcBNnDdhoi7x5wd4p2FuTG2C2wXgOYE2yVgOx2hpYO1fpkEzIStAaTPRRZ+DoF1YDsX4b4LYTk6PR4ApzWqw+IZv0WoeAqNSC5+KbA7bdQ7vy7PXTuQgD+IEIIJr02j84BO3Pp0O9p2vYanruhj2o9g6DrO+OgkgrRTUk37UWwOawRNWNgaQZWfwDtbGevYLgR7s6i/gRA2RPIgpPEs6LvBUhuhxZtua36AOIrc4kpFADyfIj2TAAMZ3xUR1y1sbNL7HaY1C1yIuLuLVo9SepG5r4bMZQJIaz1E4gCE/UKkDKoUqGcSIMF1E8J9W6kd7scSJ4P/EaLbW515ovlLYTev3WXnnr4do1otFsd3435k1NPj8BX6kFJy1T0t6D7igZiNM+e1PJefpy2NqDcYhuTMYoJxmTuz2LJ6q2ngV0biNmqeUYOBXz1Xlo8aE4Z/JRx8CfQtgEXN+rRaYMlQMz7HNVH3lTKgcrbBrRSxd/LfRvp/RaR+aLJD8aJwOITreoTb3NWpLBCWaoiEp4uNzY/U94KWclRu3OsfbMXEwTMIeANF9R2b3RqqA5SdjGGxanR6rgMT35gZdi3qQZ2PX/qCy2+5mGqnZtC++3VsWvVP2LUjNEH106pS8/TqZocG4PwrzyEpPRFfoT/serJYLdzw0FUR2wstIZTOKTuElqLy+uWF++5Qn0jpvTIKEgg1Iua/j8SFiL//8NtaMmoFWbJOooE4XMuRB54A3y8UXbPBjcjsB5Bp0yD/zdB7oYdI3ib1UEn99IRRUj2Z9jlC1D+/LsN+GkCjFmfjSnBySv1qPP7uQ3Tq3aHUfZd9+zsjHv2Q3Kw8fB4/fm+A7z9byDvdx8Tc78rbLyWtRio2x+Fnt8Pt4NJ2Tah95mHWRmGeB83EKhAg/ZRU3ls+mA9WDomQqS4PpJQYua9C9p2gb0LdMAGQuaBvRyQ8h3BeG0nVNAowcl/D2NsMubeJau4Jo216IfAbMrAm4pzCeQ3mOWIjdi9BeT9X/nvIfc2QmVcj9zVTf1cyOy4pPZERv7xKoxZng1AUzEvaNwkVHMsIASOXDkLTNIImK8KAL8jEITMBuOiGxqRWD8/JJ6TGl+pxrWkaQ3/sz5kX1cfmsOFw2alapwqvz32xQrInlQkR3+1w2ohDK4ayBlgf5A/C2H9zkfig0vk3edALV1HqUgZ3hgf+Ivghr0TgB/X/wTXg/6WM4zr6ODnzrwQ0aFKPoQv6l3u/CQMj7fF8Hj/fT1hE12H3RWXfOFwORi59nS/fmM5Pk37F6XZwY7druPGRcLOZmmdUx+my4y3hD2BzWGl91+VhD4oKw78UCidiPhP3Iws/RiS9HvaqlFI1zwT/xpRKV7ShDv7fwVbCbtDWBFxtQw5dXtQcxgYJTyEsR96pLI18ZOFEyB9F0Q0sgfxRSm4i7p4jPkdxVKubQbW6Gaz79W+sNgtLZ68ssymL3Wnjms5XUr9xXX77ZlXU9N53Hy/g+/EL1Yy/RFz0FnjJ+je71C7vjFrpDF/8Kjl7D+D3BpQ0yQkwixXCqtJGek/QtyJFCngmg+drkPtLPwASgn8hszsjEwchbHUh4TnIez3UCyBBuBEpYw+rd+rbQdgPN6EVQYfgX5iTHgqR/mVFInLHGyd5/scRd9TuGpGjB6Xh88GqIRGOUBXB0jkreeW2YQRD5h8Ot4OUqkm8t/yNMH52RWEcfD7UGBUFtgvR0r4Ie0n6fkUe6FaKMxJAHMTdrwK67ewwPwApJQRWqKW0sCOc7RC2GPIRZYD0L0Me7BPSIIqSb9fS0TIqd/b2To8xfDt2QbiyaxS6ZEbtNFwJbvb8s5eElHhueepGbn6yDZqmsXPjbu5v8HiFxtCszQUM/CpSQ6myIfXdyt/ZWv+o57+llMh9zUDGZpmFwwUYKmUV9xgisBK0eLBdEMb0kvo+ZGYrIicvNrU68K+iKLVUBCcioTfCpNGtMnGS5/8/gCo100yDv2bRyKidbrJH+dHshgt4f8UbzHrvW/ZuzeSCqxtxbeeWplIAFUMs6qEFrPVDM1gJKM15gutBloWWVwAFY5EYIATSdj4iZTRChCiw9iYIe6nXeNk+RWAjZN9PzJUIqAJmJcLvC/DN2AURBV+kYs5oVg09oGN1WEhKS2Tk0kGkVDXvUK55enVcCS48ZZQLKY49/1TM8KaskEY2MucxCKwt0saXCS+iucvvr13quWRIRVbEQ9LAEG2zrAh9d4WTwHIKIq6z6VbCkoF0tQXPbA7XGgQIByS8CNmdIh/eQgNXG04UnAz+xwk5ew+wadU/pu917HkjNnvlKSXWanAK3Yc/UGnHKw7hbIf0fhNFLVEHz3SkZyYqN2pHum4G+8Uhwa6yMDRCsycJ+Fci899HJDx5RGNWaZ1JSt7XUh2c10LO45Qa+AEspx3RuUvCk+dBRnHRciU6adftWnb+vZtGV5zFNZ2vLLUR796Xb+Xjl76M2QlcEhabhfNamou6VRZkTjcV+AkeTpXkDkBa65hKK5T5uMHtqsvbegZCS8Io+ALy31LCgsIBcQ9D4huQ+5I6Nxpl6yb2QMFYiBL8AUTiQKSlDhSOByMf7E0Ric+BpTYycSDkvgaEpDVEvPKvrkhB+yjhZPA/Tlg4ZYkpdc5i1XDGVdas/BjAfik420FRgC853SkehHzgmRbKlyYpwbYy3YjF958CRxD8pXEQmdUB9CyK6gWeKSbjNoMTUcmaLolpCSSkJkTQL4WAcy45kwdfu6tcx7v5yTZk78lh5shvsNqtStohxkfTLBrOOAedni2doFBRyOA2CPxFZBOWF1nwcYWCvzTykAe6q/SKsIP0I+3NQwXV0ExcBqDgA4jrjqi6BgIrVN7d0gBy7gQ9k5gPfCOWX4RqUBPxXZFxXdRkonAccv/tQGFoTEFVn0p4UvkBRLOJPE44sUbz/wh+j9+0OCcleAvLSlk7/hBCoCW9gkibgIh/XJldx2Ra+MC/ApIGh7xRraHty1g4LDOfO8ruBWNCN/2h79ggduAXQBLYLkSkjgk1sVUehBB0H34/jmLWi0IIHG4HDw0qX+AHxcrpMvheJu0Zw7CfBlDv/FOjbhufHEerOy/j/RWDI0xhKhXGfhMbxBAqaO8pD/YC/zKUIUue+q//ByLontIDBaMADWG/COFoiWatjkibAXFdQtdrlP4G+wVlG0tuH1Uc1jcBuajVTSHgVw+cgrEnXOCHk8H/uOGiGxqbunBZ7Raa3VC2i+5EgrCdi4jvHuJBlzKLFlaEzEVLHYuougrSZlI2vRQrOMMZTVJKjIIvMTKvxdh3CcaB3kg9hm+udz5lSu8cgusWtGrLEKkT2PxnFdYsXIfPU7ndnA2a1sfusqNZ1ANQaIKk9ATSa0YKmJUVcYlu6p13Kld0vCSMElwcAX+A6x9sXaQDdNRgbRClxmMHx+XlPpw0DoLvJ8q8apQFlPzNhZaElvA4WvosRMr7qAfAofvRotg9CaX3v0j9X/DMwrwpDMAHvh/UmE8wnAz+RwG/zFzGww170jbhbro16c2Keasjtqlzdi3ad78OZ9xh/R6hCfyeAD1bvMy7T4zF7zPrYj3B4WhF1JnUIUgfhJQ1hXCg2c6E+G4cvgE1wIHS7Dl0LDdoVRDxPcMPlTcwNOv6RxVjvbOQ+zsg9SgUv3I4emG7CJH4Cjs27OK+M3rwVIu+9Gk3iI5VH+L7CYvKfpxSMOzhDyg4WFhk22joBlm7DzDmuc+P+Njtu19H+ilpRZo+xeEr9DPo7hGV3rtQEkKLh/gnUEyaQ7CBloSIiy25YQZpZFOudKGWTqzJhXA0R6R9CY5rleGQqwMibabq+C4NgT9CdNAYEFbFcDrBcJLqWcn44cufGfbQ+2H8favNwiNv3kuHHpH+tX8sXs+sd79h4ZQlYcJadpeNptc2pt+0Xsdk3JUFaeQjs25SbfrRZtgiHq3qysh9A38hvXMAiXBeD5bqIRelLQhbY3C1CXPiknqWknWOOI8d4u5HK9apCyEZ6Px3Q2kAMz0gq3pduEGrikibjCHjuLvuo2Ttyg7T4HG47Iz49TVOa1SHiiA3K49pw2fz61fL2bLa3N7SzCS+IijILeTeeo+Z6vo73A5G/V45tOLSIH0/KtllfT84WyLcDypZZX2rkvwuo4yGEdgOWZFdxeZwQtKraK62FR53LMjAmpBxTQzaskhAZCwx96I+CjhJ9TxOGPPsZxGNW8GAzntPfsLy71bTb1ovrLbDX/u5zc/kh88XUTJV4vcEWPbNKvZuy6Rqnegyzbquq7y7iaPS8YDQ4iFtOrLgIyh4D9MUUJT5hrCdhbCdFf5afKQfgvQvVy5NwR2YL1794P8tfJ/gdmT2faEZ2KFai03N2rQakPQm+BeCvkMVIJ3XAza2rfyIHq/+TsBvMG9iKkvnJwCCgD/I16O+4/F3Y0sDmyE3O49HGj/DwcxcU3OWykZcopu0GimmwV8aRplkSCoDwtEyzJvB8MyB3JdRHeFBpP0CRPLbpnr9YcexZiCxYqriqZ0GlgTVMW45BRH/ZHRBuMqAtSFYakJwi/l4cELCs8cs8JcHJ4N/JSLgD7B/Z7bpe1JKfl/wBzNHzuWWp8JnIZtLOIEdgs1hY9emPabB/9/Ne3i762hW//gnmia47OZm9Bj5UJiO/PGCWuY/hiz8DKRJrrNUC8boMPJHQv4hHZdoq1YNrHWL/pJSInO6hNyliu8jIO4JRFznUN/A2eH7HHiSWtV/4NSaKsffpGUeP0xLZsSztTB0g+w95WkeOowZ78zlYGZezMBvs1tp2anyOkHbdr2GUb3Gh0kya5qgzjm1jos8gwyshYPPEVag9S9H5jyCSJscc18hnEh3Z0WxDJNXcCCS+iMczUo/v74X6fsRfIshsBowwNlGeUhoZb+HhBCQ8gnyYE/wH1rNWkBLAMupiPiulU4SqCycGNPF/wisNisJqXFR3/cV+pnz4fcRr5/RpJ6pEXbAF6BWgxoRrxfkFtLjkhf4fcEfGLpBMKDz87Sl9Gxprud/PCCEBeKfIjzPC6rL8Zmiv6Q0MArGYey7EmPvBRjZXZDBTabHlPoeyP8AVVyLla60I9zF+hqCG0NpKBMaqn+RuURBYCX4fsRiORxcXHEGrW/J4dQzPTjjHFx8Y8UazH6bs5JAlHqO0ASuBCc16lcrN9vHU+Blydcr+G3uqgie/w1druKSthdid9lxxjlwJbhIOyWVPpN6Rjna0YUs+JhIXZwgBNZgZLbBONAbw/NdyEAnEiLhGYjvEpKA1tTsO/ntUgO/DPyNsb8DMvNyyO0Dvm/A2K16BQo/Q2Z1inrOaBCWdLTUccplLP0bRNXfEYmvgHAg80dg5I9FGqV1sx97nJz5VyKEENz54i2MffGLyI7NEAKByNneLU/dyLef/EgwcJgx4HDZaX7TRaazsvmfLcRf6A/Tdw8GdPZty2T1j3/SuFXDiH2OB7S4OzFEAhS8A/peJbGc0DuM1y3zXlfdlIfYEv6fkFnLIG0Wwlor/IC+xSAsUeJ+SN9HS0EkDQyXepAF0fczck3HLn2LMFOJ1CySZld7WL7oLFrdUbGZeVqNVKCkNyxY7VbadbuWC65qSJPrzo9qqG6GRVOX8MZ9I8MKuy9P7cUFrdW1YLFYePGLp9i2bgd/Ld1EWo0ULriqYbnOURFIqSMLJ0DhZ4p26bgKkfAY6Lsw/0Ek6BvVP+/XyPxqkDoRYQlf/QqhIeJ7IOMeAwJlkoqQviXInIeJ7vvsV6tD3/fgvK6cnxSVrtJSMfLegoJPKLqmA+uR3mmQNrVU/+Fjif/XwV9KycIpS5g8dBa5+/Noen1j7nrxZlKrVbwL7+Yn2qAHdcY893mE+YbdaaPVHZFLwGqnZvD2old476mP+fPnDbgTnbTtdi139zFvfd+6djvewsgL2NANdm7494QJ/gCauy24zYtt0jgAhV8SfjNKkD5kwRhEUgmxPC0O88WqBdx3I+IeAi0jciZvOxvzQOOMbiupJSKxUbKYLA0Lja9qzt2vv1jhXPktT93Iinmrw2pDFquF0xrVodtbnct9vH079jPo3nciJhwvd3iDCds/YP3SjXw/4WcsFo2r7rmCazu3PGaCbPLgs+CdR1Eg9ExAeiYCCZjKJochCPpuZO7LiJT3kDKorECDm8B6mjJ5ETbKQhOWUiJz+xI98B/asBDpX42oQPAHkHomFHxE+HXjVfUpz6wTygWsUoK/EOI6YDhgAcZIKQeVeN8BjAMuBLKATlLKrZVx7iPBuP6TmDL0qyJt8zmj57Fw8q98uHYoyVEcj0qDEILbnmnPuZedxXPXvIKuG/g9flzxTqrVzeC2Xu1N9zutUR3e/L5fmc5Rv3FdnHGOCD1/YdE4tZJMWY4FZGAL5kE5aO7O5GiBeTOYDeHuhLBUVTNN/1rAD7bzEcKOEA5k4itw8AWU2qIOuMBaE+G+w3xwzjaQ93bkENx2LmjzDEJzIAMbwb9EadA7W4cxkWKh0RVn03VYZ0Y9Mw5NEwQDOqc1qkP/6RVjdi344mekacOg5KW2g9iyemvRtbJwyq+06XIVXYd2rtC5ygMZ3AbebwkPuEbon3ltLBLK+9nQ9yvZcCNTrSCES+nup04KWxVIKcG/CFk4GfAjnG3VA156QN9ZhvO5Ilec5UFgZVHHcTg8SN8CRIzgL2VA9S/oe8B+XpiQ4dHAEQd/oaTu3gWuBnYCy4QQs6SUxe2tHgRypJT1hRC3A28A5p5uxwh5OflMHDyTQDEz82BAp+BgITNGzKHzK1GCQhlx9sVnMG7zSOaN+4m92zJpeNlZNL/pojCmT0XR6s7LGNd/Mn5voKhL2OawUvvMGpx72ZlHfPxjBt8CotJBTVy/hHBBymhkziOoh4ZUzUOJfRHW+sjAH6qwKz0UyWImvYlwtkbYmyDd90JgGQgHwnmjchcT5j0JwlIVkt9Whbyi1YZAJI8EkRBSM52tziGsirWS+rFysSoDbuxyNVffcwX/rN1OYloCNepVK9N+Zsg/UGiaTgwGdP5evjlM499b4OPrD+Zx/UNXhXkJlxVG4UzIf1vlyS01IP5ptGhiZYE/UCEm1mzbiurniFXAB3IHhYJ36LPIAtC9yNx+iJR3lZib/xdk7uBQp63aTvqXKOmR5JGUqcQpbOA8AlqolhLlc1hAi87aU2y0OxRlVAZBaEhbU0TK+0eNKVQZBd+LgE1Syi1SSj/wJVByetseOERYngK0FsdZCHzLmm2m4mkBX4CV3689omOvmLea5659hV6t+pOz9wB3vdSRFrddWimBHxQL6N5+t3FK/WpYbBac8Q6u7XwlQ77vd0Loq6si7iSM/W0xMltj5A5SKZ6wbSR4vohyBFQKx+x1exNExq+I5LcQSW8gMhajuTtiBDYpjwBjvwoMMh9kAfLAUxj5nyAzr4bCT1VA8v+O1HdHDfxF53K2Uvzs5OGI5HfUeR2XqCKhZw4qYPlC58tD5nRTQaiMcLgcnHnR6UcU+AGa3dAYpzsylywNiW7yUDAMg+XflMf3NrRf4UxVJDV2AYYKxgefx/DMNt/BUh1EaX1EQXBciWrqM4MGtsbgm00klVIH3w8YRhB5oDsy51HQ14dvJz0QWIYILANXuxjnsYC1ASL183KxfSJgawIikcgVqi36KhOUK5iRFepG9qlx+39DFoyr+FhKQWVEo1OAHcX+3gmULLkXbSOlDAohDgJpQFgbphCiC9AFoHbto5u+SKueYnpjCCFi8upLw4yRcxnz3OdFlLqdG3czf/xCRq0eSkpG+VNJu//Zy89Tl6LrBpfddBHJGUk80fxFMndk4cn34oxzYHfauaVnW9wJJ4YgnMzto4w0iuRxxyN930La1wjtEBvKrwK0KWwI29lR3kMV90KOXVLfjbH/PghuwJxnrUP+G4R3hAag4COk8yqELbaapRDOCAkCWbxAHf6GUq60nxfzmJWNc5qfycVtm7Dkq+VF6R1nnIN659fl72WbIvyeLVYLrhh+vVGRP4zIIrgX8oeaSxXbGoNWPeSPEI3WagNrPYSrLfLAk5SkbiKsITXQGB29vvng/9VkbCHIQqR3ASKxD9K/BvS/D78nUiBxOMJxRqn9BWWBEBqkfhqiFu9FZcIlJA5A2MxX5VLfpxhpEfUPr/IANul1qQycUAVfKeVoYDSoDt+jea6aZ9SgfuO6bFi2KeSXqmB32ejYs2LLPm+hj4+e/zyMSx30B8nLKWDym7PoMrh8DlCz3vuGUc+MwzAkSMn4AZOpd14ddm/eW3RDewt8+Ar9DOk8kuGLX63QuCsDMrgdmTdEySTLghLvBkDPRnqmFXPBsoNWVaUPSsJatj4A5Qh2H+g7iB4cAqgbsCT8SM/sUoO/+YljUQGPftNWSQgheP6zx1ny9Qq+/2whFpuVa+5rSa0za/DAWZEKqFJKLru5GSvnr2H26Hl4C/20uuMyWna6FEsU208ppflvBRBFS0kIAanjkAefVmJ+Zu5WWBHujkjv94TPlrUQQ8sfZT8ACzhaKqP4mMZASkoC7w+ha6X4B/NAYAHCdXGM/csHYT0V0r9VExJZALZzS2H5BIkubHj0rqfKSPvsAopXSGqGXjPdRigftCRU4fe4YsDMZ2l4xdnYHDac8U4SUuPpNbY7DZrWr9Dxtv25w1SsLegPsvzb8i2z9+3Yz6hnxuH3Bgj6gwQDOn6Pn7+WbIyYyUkp2bB8s5LvPQ6Q+n5k1s3gm2cS+A/BE5qdKQghlFVehA6QE5EQ20+2CIHVYOwjts6LnehznIrNL4SrPZH9CwCWSMvJSkDOvoP8OHExv81dRdBktQpKzfPSdk3pM+lpXvj8CZpccx5Va1eh98fdcbjtuBNduBNdOOMc9J38DJOHzuLlmwazcMoSfpuzkre7juL5G15F182/SyEEaFHSU5bIXpSi/SxVQhz4nyFlPGh1AWdIQiMVkfKeypPnDyF85m6gJL9jrBi0KojEfqrAGhMWhKsDsuA9IldsXij8FGN/B4y84RHpyYpCCIGwnYmwX1g6vVOrDhaz79YOzhsrZTxmqIyZ/zLgdCFEXVSQvx24s8Q2s4D7gF+BjsAP8gQQFUpMS2DwvL7k7D1AXk6ByqFHmfmUBckZSaYG2gBpp5RvSfnLjGXlPv/xSverTl4vsWl7VrCEp/I01/VIzY3Me1tp/FtPRyQ8XXZ9dyOT2PMXl6J5BsxqOAIq2nnp6qBmm4HfQzNOO6AhkodVenFu4uAZjOs3CYvNihBKJ+r1b17ijAsjC+JmaHHbpTS9vjEr569Bs2hccFUjDmbm0v+WIfiLkR28BT7+WrKRpbNXcmm7KN9//FMhOYbiQdoJ8aU3igktBeFohqzyjdLykT71ewsLMrAG89VZtOtJA+f1iKTXVArQ1RHpnY9pKk64IHEQwlobqe+NcjwDgusguEnJhqTPQmjmbmlHA0IISB6qVrFSR32/bsVGiyu/fEhZccTBP5TDfwz4FvULjpVS/imEGAAsl1LOAj4CxgshNqE4Xrcf6XkrEylVk6Na45UHVetUoUHT+vy15O+wVJLD7eDWp9sBsG97Jr8v+JP45DiaXHc+dkeUYBEjkGsWLcwLQLNonHNpg0q0Ziwn/CspXSbZhnCXnBOAcLRAhPL35YatkQmlDlTHZ21E3CPgaocsnAF5LxE+0zcgty8yfW65vWSFsEHKWPD/jPT9DFo6wtUOYTp7qzj+WLye8QOmqCBdLFC/cP1rTPx3dJknKu4EF5fddLgM99OCP0xXqN58L79+tTxq8NfcN2EglFOWsUfNWON7ornKPjsVQoRJb6gDp5WSSisJm9LsCf1uwnEJ0n2PKugjKOofiH8CEXfnYQqu7dyQ2Us0+MHIVt3H1jOU/IOWhnDfhrBWroNbSQhbI6jyPbJwJug7EY4mqiHuKGoCVUrOX0o5B5hT4rW+xf7fC5w43Q1HEf2m9aJ/xzdZv3QTVrsFw5B0GXw3F7RuyEcvfM60t2ejWSxomsBi1Rj0XR/TWdyl7ZvyYe/xEa/bnDZqnFaVfdv34/cGsLtsuBNc9P6kPD6llQxrPQgsx3yJ7gAtGZGkZl+VCWGpinTfFWoUOzTrs4OlKiJt+uHisrUKEifhM0Op3Ly888EVqbZa6rmFBo4rEI4rjvBTRMecD+fjN/EOyD9YwE9TltDq9op1GMcluU2Dv8VqIakUbSjN3QHcHZBSVhqzTFhOQdoaKY581BTeofSghITnEdZwmqqW+AzS3Qn8i5Xkg6MVQgu3vBQJvZBZdxKbVuqHgk+QQoRWdVZk4QRk0iC0Clwn5YHQUhHx9x/Vc4Sd7wTIvpjiRJd0XjFvNWNf/IJdm3ZT84waPDDwDi646nC+d9/2THL25XLqOTVxuBysmLeafjcPiWjMSs5I4stdo0zb7L/64Fs+6PmpKmxKJcR1z8u3cluv9qz6fi2bf99KtboZXNKuSaV6/pYXMrgNub8d4cHVrgpdSYPBUuuoUVCllOCdgywcr6QanNci4u5HFNPtl/mjkflvY/pwcndDxN2hJIW12P64xxr9bh7M4ijpP3eCi7Hrh5NWvfzd6H6vn041upB/ILw+43DZeX/lYGo1OKVC4z0SSCMHmXkdSDPdexe470BYaoLzqiNaYcnAOpVmDKwGeQDzh4BJ57GIC8kynzjyDNFQVknnk8G/Aljy9QoGdhqGr1g7vcNlp8/kp6O6cA249U0WTV0a8bo70cXAr56n4eVnmewFe7fC2Y4+AAAgAElEQVRlsmjqEgzdoPlNFx0T3fWKQPpXIA++FKL1CXBeh0jsrxQ+j/fYvN8hD/QiMidsD3VjBgAZyiMPKHOn7tHGDxMWMazLBxES4aBy/+0fu56uQ8tvhgKwYdkmXmzzuhKYE6AHDZ4a/Qit7yy/s1Zlwci+X83cS0LEqz4LR+WpnAIY+zuqXH/YpCCK5ISIR6R8gLBfVKljOBo4qed/FPHB05+GBX4An8fP6F7jogZ/T0H0LseSxyqOqnWqVJh6eiwh7BciqsxFGvkg7OXOo1c2pAyAdx7SNz9EMywZ+AWq16DYd+/9Bim9iJR3yn2+nL0H+GLQdJbNXUVieiIde7bl8ptLlxaOhRa3XcrkobPYtGprxHvBgM6qHyrejNigaX0m/juaPxavx+/xc+7lZ+GKqwD3Pwak9KjVmJauVF5LgXDeiPSvJOK3knqZ/XRNx2EUIvPfAs8MIAD2lojE5xAp7yNzuiqOvbCq82ingGGmKmtAKU2B/2s4GfzLCSkluzaZ8513/h2FBw20uv0y/lj0V0TaRw8anNO8DHZx/yM4IWb60qtyu8HNRPVWFQkgSyp6+sD3PYa+F81Sdl/bg/tzeaRxL/Ky8lSh/+/dDF69lW1/bufuPhUvdVmsFvpOfoYHznoijEBwCEfSjHjo+Oe1qECfQymQ0o/M7Qeer9QLwo1MeAHNba5rVQRXW/BMgeBfoXy7BbCpBqkKrsaUl8ODIcZX6EHv+xaZtQyR/h1a+lRkcCsY2crM3b801GxW4roRSWA9t0JjOFFxUs+/nBBCkBylUzelavQO3ivvaE6DpvWLOistVgt2l52nRj9S6TOu/++QBZ8r5ceoptqhrktTBCHzaozCqWU+3/R35pKfUxAWoL0FPr54fXpEXr28qH5aVRpecRZWe/g8zeG2c9sz7Y7o2EcDygTniZCpuU/9kzmQ2wfpM0npEHpYG9mADZE6HpE0CJztwX0vIn1a1IeGlB6kZwYy/wOk71dzL+LAGgisI5yNpoORj/TMBFRTlrBfoGo+jpbgvhPVXewGEQciFZEyWhX5/0M4OfOPgQ3LNzOyx0dsWLYJd4KLtt2u4b7+nbjrhZsZ8/yEsE5eh9vBnS/eEvVYVpuVN+b1YclXK1jy1XIS0xO47oFWx6W49p+H92uitvoDoKsbW0baGoYOALn9kJaqYS5MUt+P9MwAY4/K/TpaIYSVFd+tNjVnsdn9bF61lvOuPLLu0ZenPMPrd49g5fy1WGwWrDYL3Uc8wLmXmdeJjhdkYKMS3TPM1DO9yPz3w/L20ihQUiDe7wCpmraSBiKc15lKKkt9HzJvKPh+ACyhhkIN8KmUjPVsSP0YKa1KFsHzFcgszFloHghGps2EEIjEZ5Fx9ygrUC0Z7M1PSBvGI8XJ4B8FOzfu5pkr++EtUEGk4GAh04fPIXNHFs+O64HP4+eL16cruqXTxl0v3ULbrtfEPKbFYqF5h4to3uHELxqdKJDSrwTEtPQwBk9MlJqbdYKzAxSOirGNLxSsVPCX/hUqfSB19Z5nClhOg7TPyaiVxobfNlJy4hn0S1LiPwbKFvyl9CtJAJEURouNS4pj4FfPcyDzIHnZ+dSod2TNiEcDUvqR2XdHYeuEUEJaQR54HPxLKZqVG/8icx5A2pqowru1PlL6kIVfQOEMZfCCjmlBVhZC4A/kgRfBN4fSZRGcYFEyItL/GzL/AzU+exNEXDf1/bs6lPHT/2/iZPCPgklDZkZY4fk8fhZOXcLDg++hU+8OdOzZlvwDBcQnx51wN+N/AUbBONVQFJJuls5rQ12dsel2wn0H8uA6zNM+NtV3EN8F6Z0Dxg6TbUIIbChKJcgDT4brx8hCCG5EFoyj49PtWDr7F3yew2kBi9XgtHM91Ky1CCkDETNH6V+BzBsEgfVgSQdrM6UWKjSQAaS1gZLzLaZVn1wlqcI+E0cdvh+J3einhRVtZXCnmlmb7RNYjszqiIx7VNUA9D3EXskdghd8s8qwnVCkBPfNGJ6vQz4PoeN7diK93yrXrZLNaP8x/LeSWJWITav+CeuiPQS7w8aujaqwa7FaSEpPPBn4jwKkdx7kDQ3JJRcCfvB+hzzYp/SdnW1DKpMOVHOQHaWnXh3c9yDSZyC0BETCk8S+BfKV+5O+JYrdow88Mzmr2ek8+eY+4hKDuOJ0bA6Dc5sV0P/jf1Cz1PAlgfSvRmbfHzIO9ylLQ980oDCkdOqD4J8hy8GyQRqFSO/3SO98pKHqDNI7H2N/e4y9TTGy70X6V5f5eOWGkRVaFUWBcCLiizUiGv/G1uSRhUpFVN9K2QJ/WRDq/rVdgEibqIr+ua+UOL6uVEDz3qqkc564ODnzj4L6jeuy+fetEQ8Avy/AKaefmFz7/xJk/vtEztx9qqHL6BvBKpLBnUrL33o6QotDJL2GjHsY/MuVfIDj8ojZt3C1VY5PgSVRRmGAZwbSeT1RC8ShY7a64yKuuHEOO7dYSUjSSasWUmq0XRBBe5X5wyk9oOkQ/AcZ2IiwxVY5ld4fQqYzoUY6aSCdHcE7+fB5/EuU30HqeEQ5JKdl4C9k4ZdgZCGcrcHZxpzGa7sw+kGsjRBJryOKG/RY60eR5iiOsnsjKIQMfKLB9X/tnXeYJFXV/z+nOvfktEuOIiC+IghIVEDQFZB1WRDJUeSHIqugIrySRcQXBSQLSJCwEoRVchRBQIKEJQqKSNzd2Z2d0Lnr/P64NaGnq3p68uzO/TzPPNPTXV11umbm1K1zz/1+D0bqf9gXvxY/MqqefsfNT801RmOJHfkH8I0fzi7zaI0lonxh7tYjWlVpGSbuIv/nJQQDlBfV7cBtPwBd8lVTL160DW73VWbT8LpIch9jyhIwYSeN55jJ30Dy0PEd/JNKAhJGpkrqfkw41so6G4a8xJ8wq4YbfGS2C29UON7A4MLmglYBLbb3l6S0x5sETUPmevy097X7/6o7NuCmbkPb94X0fMjej3aehrZ/E9ctnyiXyCchviulaqdxiHwGabm57AImTjMk96Vc1XWESBKkhYqiWDUHlV64pI7AC4zTOjZxTWFs8g9gjQ1W5f8eOY2NPr8B4gg1DUnmHLc7J1x9zGSHNj2IbI7/n2e0RP5WO+Z5fr9Zr2SSgZ4L0czD/duoi2Yfw11+Cm7XL9FC/yIeCa0GdT+pEIhLn7tS7/F7y0mx7ZHkN7z9zEBa74O6kyCxL9T9AGl7yF8QLFSlxpHmjBhZJbL3VrevXvKvDr0NpoxE5xmYC4iXIDUNhYWw6HO4S76G5v5R8h5p+CXScCpEPms6b2rnGWcs8S8wSN1Jnqz3KFdUhzdBGi+ElttMa6YfiQNxBmlLiVNj/H3L3L0SRhRwJceWfSqw4Rbr85snz57sMKYlUjcPzf3Vuy3vHZ0loO7EvmSixY/9TUI0jfZcicR3Nom/4xhjtO4tHNKe69H6U3CSe5vt038cRmAxqDkOiW1R7jYmCaOrnXsSMncZVci6HyGR0pZMqf2e50M8eGQ+QFpAElBzzNCWgm6KYRl+aAZ38a6QmIPUHB5sZZl/wTNTCdhP4Q106aHQekffxKiIA4m9kMReVYUi4kByPzT/ImQWUNmXoQLFD5HYF0zRp+VOtOtsyD4OFMCZAXWn4iR29o+h4UzTZZV9yJTw1IXa7yBBvsQrETb5W6YkEl4PWm5Huy8yCT60GlJ7TEnfPW6HtyzfRzqjt1ySfRCyTwG9nTpF89V5uukecuqg8Hr1gWkGSe7pq/euPRdD92/pm6vIPWFMuVtuRcL9BkES2wZtOA+6zjbuWJKAxH5AGHKPGJOT5KFIfKeh44ntAN2/ofwC4Jj9lXXT5I3+Uvel5uLUfLP/4iWpYeiaew7tuRppOHPoOIPI3g/Z+xhx4oeS1l4Jr4k0XVr9WyWONF1gFpkVF0F47Smj7TTe2ORvmbJIeF2k8bzgDcLr4l/jDff57mrmbvoT/0BCaOfpaPYxKlsA+uzbp7Sgmi5N/H0vZNDui5DG80uedhK7ovFdMMk5MiABD22MMhCJbIQmZnt3L72JPoJZxdz7s99EaBYKbxp9ez9Tm8j/gDR6d15Bw/9i9fMXAWjq1mGe/8HEoYIxerWI0wxj4OG7ImFr/pYVFpEo1J1M6aRhxEy09tZsJYb/BSJlSg1aybZvcAtvHJL7+08eF94zPfpluJBfGBC/IBILlA0wUt6VVXfVXeqVOHo/o4Mpgw10Vgv4N9e0127qF5uDNF9pJj4DJ8TDo7et1OUjfGOEvnmXmsPLd5t/FbfrN7jdlxt/6eyjXtvrZrhL5hgTnmmOHflbVmic5Fw0vBbacxUUP4TYdkjycCTkdWvE94L03fRP2A6D0LrgftzvMpXcF6k7PmDbmaABtffQ2sM6rLqdaOeZkLkHKKDRbYw8to8Zjnb9ysTYV/bxK9UElVQS4AQL2En4E9D2GOT+jnZf3L8uwbwKEvNNvNWi2Scg/8oI312AlltwBs+7AG7nLyB1A+bOx0G7L8TcvXjnqPAKuuwYaLoQie04wuOv+Njkb1nhkeiWvr6/mnsGOo5l+P3iHsW3oeZ7SHIvcJqCJ0cBcerRxB6QvovBHrdSW32HmJv/F7TPBQYIwuWeRNv3gbYHyyeAM/cxrAnfkqDDXrdLhU0kBLFtILol2nMFpK4HtxuiWyL1J5luqRGgqmjnqZRN1pujmoladzHBvzs1UsyDkr/mX4LUjfT/DoLen0E7f4G07TiC6FcObNnHslKi7nKzQlY78E8wVe0Fei4DLVZM/L1I/emQ3AdThgqbFcUN5yHRCgugBh6tuBja96Ik8QOm3TRjROXKDlrt+C0BzvqYtsYYhNY3bZhOQGtk+YEwMhtFIG8m291RKJZqj1nZ7EscaboaU9qptI/yhXKavoeq7/KK7/S/T/Pmb2aKmluNB3bkb1k5ydxDxdWeVSNGtyZ84NBbShSp/ylad6Kpp0sdIoK6S9HU7UaYLLypMXv38T3Q1E0EJ660f1dSYg70XEdlXZ0E1B6LU3ukWdWKIqHhrVLXzjOMzk7vhbSwEF36TbTlVpzICDwBxLtA+pWknCY0dRWVL9oCsV18nh6G1IrThmrBKIWmbsS0hjYa74Fp0OppR/5jQC6bZ/65d3D4xsdx2EbHcePZt5H1Md62TCDu8irkA6ohh/Zcgdt9FTpopKluD27nWbiLdsRd/DXc9H0AiEQQp94k/vyb6OJdoftC05HT9Qt0ySyzRmEw+ZcIrs9HzcKpQUjtsRDZxJuUjZlOJGcGRLY0K1hD6yENZ+LUHmm2D60y/MTvdkD6FsqTcRGWfdfvLUMiEobEXvgtsKLmcMi/TcVyXXwfnFBL+X7ju2MW4g1FAmq/i3b93JsfSGPuaBbD8p8Eeg+sTFgP31Giqpyw82m88fe3+uwYo4ko62+6Nuc/fhaOY6+vk4HmXzJaNr7aLSMhbnSDWuYjEsZ1e2DxDt6q4gEk9sZp6F8Y6Lbv7blIDfw/cyC+B05jqdSC23Ue9FyN74hXGpG2h/3vGFQh/xyaew3ogcK/zXxsfDZEtzEb5Z9Ds381stjx3Yc0QVe3B+3+DWTuBDcHdBN4JyU1EN8DqfvR0IvSSuLOoh0/8hZYeV7Kyf2QuhMHJGWf+YzanyI1ByLiL+Xgdl8C3Zd68Trme+zLkHvUlIokCbXHQnwuLN4a37utyOY4LTdX/VmmEtbDd4J46S+v8uazb5f48ObSOd5Z+F+eu/9Ftpy12SRGN40Jf9p85Z+nfzQd91ZxpvAfYXuqj0Tw08Wh+LZJVPGvQOfPyhM/QPpW3Nrv44TazJ1C/hXKk6YLmXuB0uQvyQPQ1O/7u4v6XmhCWm8PtMgUEYhugWbuMaUZ74KnmXuNb4Hb4UkuZ1Ai0HUBNP7aCLX5oOqaC2fhTSqXk3rf0APp29H8C9ByZ9WOVyIxs8CquBiKH0B4HcTxJKtrDkfTt3vnuPf8JSAxG6f2oIr7dWqPQeN7QPYR8/uO7YqE2lAtmlilFhEHLbyHiuN/TSv6GdKsXNhh6Sh57el/+ro4pbszvPrUm5MQkcVIOnzP6ND0JXnxtPIrrSRVoB7is/CdbNQUmn3SPM4+FLyb9K3eg0r/XjnPrLwfCa2CNN8Ikc1MvMQgsS/S9ggSquz4pvnXIXVL6Z2Opk0s2UcwZQ3FJPMMuvz4sjJWf2hPGhnrahJ/H3mTMHN/G3JL1RzqLuubXJVQGxLdtD/xAxJaFWm5BWI7gdSCsxrUHofUn1ZVNBJeC6k5BEnu3+eJIBLyynHe7yU0A//fkfiW2FY27Mh/lLSs1kQ0HiXdXfqPFEvGaFu9vCZpmQByj0Hu8UElH61yJelyCK3eX4YoIWr6+cEsHguqmGYex83+DSIbm7uPgv9CKk1dhwwwOAGQyMZIy3wzSsUJLG2UkX0M/wnSfMDzjjFTiX2h/KXC6yObL9GcuVvwWzGM11HTdS6k5gNFb3L1ZJzEbr7bS3g9pOmy4cdRJSJRtPZYcydUsjI77nk9rNzYkf8o2WHu1oSjYQb/j4YjIb6477aTE9RKjqqi6Ttwl8zFXTwLt+t8dIDZimbuG4VkgOuJxfmtDHYh9hXzMFmh9FB4BvJPQ+r3UHjNZz8excWBuxAJVZ/4YUD3zGAq/YsHdMaE1iB40lQwraw+sUnULIwLQDt/5iX+DP2Tqyei2aHvFsYLp+ZwqD/DWHJKLUS3Rlp+Xy7atxJik/8oiSdj/OovZ7DWxmsQjUeIJqKs8UkjB11TX0kn3jJStPN0dPmpxoC7+C/ouRJt38vIEAOQZFR/2vnXoOFMcAaXWhxY+k208A5ScySEPzvEjgoEl04cyL+B274PbvcVpqNmNAQu1hIC++V9FsYBXqklyCpTzLGcZkrPsZjuIr87CcAtLDK+AL4eAxcFHGticJKzcdruxZn5PE7zdUjkfyY1nonCdvuMIYveXYwqzFirdXijNkvVaPEDdPFXKO/QSEDdj3Fq9kfzr6Dt+zE6+784hDcyF5iSyWEHIp/DabkBADfzkGf2MtQq4gT+nsK9RKD+NJzkPiOO2E0/AMtPMDHSK4Ud9b4X6VP6FAdpvAyJbRO8r9Qt0HkKvhPj0S9C7dGw9CBKu3FC0HAuTuJrJZur5tEle0Dx3/4Hc2bizPhr1Z/TUplqu33syH8MmbFWGzPXbrOJfzzJvwi+rlxpyJnebIlsAnXzMKWbpKfCGaXPyxcwJZJKf/4ZKLxAefJzTdukVxOX8DolksL+xKHxEojuRHlfe98Hg84z0EJAgvTQwnto9glvsVYpTmJXZMbfjBxD32fLYRK00m/KYj67asY4gfkMAE0nkN/5SUBsZ0jdTPm5KcLyE3BzL5Q+nXkA/NY19DJNRtpTDTvha1mxcNrwn2kNm4na3s1qDkfjXzMXBEmYckTxfbOKNvu418o3Qs0fhL6ad2htKssQxCAxFye+HRrbCv24kjNXFl0yFyWL6U3fCak/BQnNNIm6Yx5kn/Amo7NofBbScE6JU5Y4NV4XkZ/ej2LumLLoskPpuxA6TVB/OhI3hieqinb9kvLzE4XQ6kjy6+iiXrE0n2N0zEPbHukbBJl4guZgIkjt9yqcE8t4MaqRv4g0i8gDIvJP77uvua2IFEXkBe9rwWiOaZnmRD5nDNnL/nQjSHI/1O00Ur5LZqPLTzDyzvGvIJJAwp9A6k6A4keMXO8nBLEv9sk6i4Sh/jTKvWgFiJoJxPofe8+FK8gj99LtxVaA7MNo+94m8XeeYxI/WdAuIAeZ+z2j+8FU89mKZh/kwP0Y7ZiH5ryupOz9nhLq4JG9A/Hd0EXbgrYH79pdgmYfRdW7eIRWw9+r14G645HIRlXEaxlrRlv2ORF4SFU3AB7yfvYjraqf9b72HOUxLdMYEUGar/P6sGMmmUoz0nSB0WppnwM9V5gum9yT6PLv4w6cUCy+H6C7XyVOM1J/VulTid2R5ush9lUIbwqJA42gW+tdOM2/RSRu5BwKr3uOXUGln8EUQbvQ9N2Qvo3yeY6Mtwp2ELEvMfyb+qxR7cQzWPGdnyhAz4Wep3ElctBxHLp4BzT3DyT5dR/NHQecFqRS15RlXBlt2Wc2sKP3+FrgUeDHQRtbLGOBhFZDWm9Hi+8bD9vweoiEcLuv9tonByRJTUP35WjyAMRpMvr1Qbr7CKZTKIt/2SQOdf/b7xUw8J3RTZHoBf2HdTsh/zJu8UMjNZB/3rOcVGNwnn+WqqwLNQX5fxLYNeSTiKXuh2juKaNvVHGSuWRHxt4RCJaIHo50dAbcDLr0MGTGX5Hma9GOH3i1fzVSGY0X+BvjWCaE0Sb/mar6off4IyDIGSIuIs9i/nrOUVUfbVqLZXhIaPW+srUW3jU6NH4dPhIxommxLyJOnWd7uIDBuvs0/hrRlLmodF/iuy/x7CEr4XZfBd3nD5CS6J1o9S5K+RfNBHBxEXSdSuW5hwQS3RDNb+StGSiJBnzkoiXUBq33ouk/mWPlX4biu1S+EIQh4i04i36+b/J89KTQzjNwGn8JrQ+A+wEQRkJBqcIyUQyZ/EXkQcBPBerkgT+oqopIUN/o2qr6voisBzwsIi+r6ts+xzoKOApgrbXKXYsslsGo24N2HAu5ZwgcSatr7Ag9pP5UVGq8jpUcOKuYidVew3RV1F0CqT9gxivev0nDeYH6On2Hyv7NKHiSxddYHjDlmptwmq/AzT8NmT8H71BqID4LCa2LLjvYW3lbNDFJHKk72f9tThKp2RfY19Tes/ehqTuMVk7xIy8J954vx+yr5lvmx8IY69pk7sJNbY+TnF0yKW+ZXEbV5y8ibwA7quqHIrIq8KiqbjjEe64B/qyqt1babkXs87dMPG7HjyBzN8GLqUIQWgdpvbusBdcIfRmVR7/2XM2/aQTRJAHxr/qWe8riWXY0ZB8eOvDwRjitC3CL7bA4qN8+DK0P4IRNwtTCf9CeqyH/OoRWMZ034XVMbD5qmqppb5K4CNFt0fQt0HU+9HYTIZgJ7J2QuuOR8HrmMyw9yihgjiWhNXDaqjgvllEzUaqeC4BDgHO873f6BNIEpFQ1KyKtwHbAuaM8rsVieu0DE78njObpw/gld5GQtwbAH4l8EiKfHF5Q7tIqNor06d9I7mk0aAFYZNO+xA8g4bWh/qdoxzGePHEWJQZdP4ema5Dopn3bavYxI27XK2msBcxdzMC7IwWiSGIOhFZFC2+BswrEdvTKPiPtiPKhUp+/ZVIYbfI/B/iDiBwB/Af4BoCIbAEcrapHAhsDl4uIi/lLPEdVXx3lcS0Wr6wSVC+PI60LTMKcSGK7GHmIQEeusHH4SnrG55oBEf+W+fwLaO75UvG39O2QfZr+i0Xa5PZlR6DJI5DoZmh4I1h2LNVN9qbQrl9Dxw9MR44WjDuYsyq47w7aNmTmA6JbQnEpRLcy8eQeGfowwzSxt4w/Vt7BssKiquiSWT6yAQ7EvoTTdPHEx+R2o+17eWsJMvRp64RWM49jX0BqjuqTGdbix+jiXQi8WIQ3xGn9U9+Pbvs3IP+C/7aIKVE5M7yRdjXJv9fDYOAdQRyS+wNho8fjaeCTPBip/XZZh46bW2gmuHMvevvrprQzKI40XYjEdqwiHoNqHk39wXMQcyExB0kegEg1Ll3Tm2rLPjb5W1ZoNPd3dOm3MKWfIhAxk5ctt4/bqF8L70Lur97K4V3L6u3q9niJaz64i7yOn7CpzdefZFpOB+B2XwHdpcYu/TjIzJf6kp7bvo/p4KmIg0nCVbSSBiFJZMbzVRuzDEQzD6BdvzJrKsLrIHUnIAGCb77vV0WXHWV8BfpKehGIfMaYznsxqduN9lwO6T+bu5bE3kjN4dP+AmGTv2XaoIW30Z7fQeFtiG6GJA8ZcSuhas7sx2lAQquVve52ngepa+gbMYsijZcgse369+Gm0KX7e62ZA/+/whBa05t8Ll305H68Jehyn4hiyMwX+xKe2zMfus6m+v79SvTG4HeRKL3oTCSae944iZXNOTjQeClOfCdzZ9A+Bwrv0H+BiEN0c6Tpd9NaX8vaOFqmDRJeH2k4a+gNh8BN/wk6TwNc0AIa+RTSeFF/iSb3DKSuo3QRGWjHd2DGU4gn8KY9l3oWiIMHVgUofoAu/ylKGJwoktgTiXwGag6D7ssoXVsQg8ReJaNvSc5Fs/ebRWKa8TnGQKJUduOKGF0f98Pyl6Rx0kbQmn0c/8lm17TnxncyTmrF9yj9fBnI/cPcGUWHktu2WFVPiwXQ/Muw/GSjm6M9QBbyL6HLjuzfJn07/jLRjtdS6ZG+k+DVsFnI3AqZmyF1Pdp+IG73RUjNUZ4mf9To4hOD2PZI/U9K3i0SRpquRJp+CzXHYlYkBxD7MsRmEWjaQsbrTvIZJWs3bip4LaZqDk3dgtt+IO7SI02pZ6yqCNoZ/Jr7gdkk91yAYU/RLOizDIkd+VssgPZcQ/mkaxEK76D5N5DIhp6tY1CCG5jsqy05KJCB7sshvifScAZaOw8pvgPhtQJ9e41h+1ZIdCvT69Rzoc9WEYh8Eqf2aDS/EO08PWCuIBsQbw66f2VWQ+efh+KHEPk0El4H1SK69HDjddBrFp9/BuJzkIbTqvzsFYju4N1h+RD2ROBCa2LE4gZdjCUCoVVHH8M0wI78LRYwyc0vsUsI3CXmcWxnfMdLmofoAMvOxNcJtkH0w0Xb90E/3hTaZ6HZx0zHThVIzcEYo5jBhBDPVEUin8ZpuYXgO4CAC5r7EbpkN9NG2vlTdMnXcDt+gGYehsJCH7P429DCO1XFXQmJbQ++AsFRpOYQs01iT6OVVIJjhP6G0VU0nbHJ32IBiO2Ar9qm5iGyCeouB1+Ne6DmuyUdP1LzbQhviH9S9iMPuszsW9OQugHtPK2qd4pTjzRdYharSa35Ig4N55TfOYQ3CNhL0EUhasTeNNVfCss8BD1XBpRc8mPixysSQlpuAJmJOYdJIFOBg24AAAzfSURBVAb1pyAR44cgTqNRUg2tZ14jCuFNkOabrFhcldiyj8UCSPIAY/TiLqV/EjEBtUciTiNu1/nGcNwv+fdcjBtqxEnua/blJKHlFrNKNv+yqYX3XE71tpIZSC9A636EOA1Dxx7bDmY8CbmnQIsQ/byvBpHU/Rhd9v8oE7RL7AfpmyibbC5bEQyQNr7JvrhQLJPsGhES/gTM+Iup32s3RDZDnNLV2BLZBGm713M1C1clv2HpxyZ/iwUzgqb1TrTnKsg8DE4jUnMoEv+y2SD7IMGdMxnoPMs4a3nJWsQxdxOxHRDAdf8LmXsDRsx+AYXNQjGf5K+ahsyD5mIU+Zzpf5f4kOUOiW0HzVeaHvzC2xBeG6mdh8S2x41sAt2/NhOqziqQPAy6z8O/DbTCxG7+reo+XxWIOFV17UjIT3fSMhQ2+VssHuI0GaevuhN8XhxiBC4RM/KOf8X/5fqfQ+xLRkqh+C+GtJDUoq8CpuZf93rgC57CZ9h49jZeVGLnGBhmdCuk5eay553knpDcE1VFRMxCq/T1UPzvoC0jEN0asn/Bd1WyU22pyzLZ2Jq/xVIFUnMoQ9bwJdihS0SQ+K5eWWko7+AEJA8qK92oqllToMu9GnweSEP2SbOieAzoXRwlIkjDOWYVc59HcdxIY9efGiCIl0AS+45JHJbxxyZ/i6UKJL4r1BxO8M2ylHb8BKHLKrwYNyWXuuPNHchgiv+G4hKf96U9DZyRo5pHc/9Acy8aqWtAolsirXebzx2bBXU/NNaUoTak6XJvgrnGxE0MknvbTpsVCFv2sViqxKk7Dq05yJipZ+4CQp43rSBNl1e3Ija0PhR96uLhDXBa7xrizW6wAugodHw0+wTaMc/bh5rRfuOlxpoytDpSd3zZeyS6Kcx4wsyPaKcxqg+vO+IYLBOPHflbLMPB7fGkGwRTvnGMw1d0SCkVAKT+ZMxIeSBxpO6kod8cWh+k3ueFOMTnVHX8wWhxsfEH0OWmq0Z7wF2CLjsMdSsbtYskkMTuSHI/m/hXQGzyt1iqxKxsPQgKr2M6f3JGDqJjHlql9aHEtkOar4HoNuC0QXQbpPmaEmG4wPeKII0XDCi1YBY1RTZBag4Y2WdKLzA2l2W4XoeTZWXFln0slmrJPe0pbw5OlgU0Pd+3POKHRDdHmq8dUQgS3QzaHob0n1B3ERLdEqI7jEh6GfAmoH26drQAbqX5CcuKjk3+Fku1uIsDXsh7CpMTgzhNUHNw1QpCFfcV2xZN3+Cz/sAxLZ2WlRZb9rFYqiWymeeFOwhJINHtx/3wqi7qLkN1DL11o9uYz1XSxpqA+CwkstHYHccy5bAjf4tlAFr8CO25EnLPQmhtpPZb/Xoy4bXQxO6Qvod+M5WY8btN7DGucbmpBdD9c3A7gRCa3N84ZFWxsKsSIg40/RbSd6DpO0DCSGJviO82NoFbpiw2+VssHlp41/jvagooQOE1NPsINJ6PxHcGQOrPhsiWaMorlcR386wDgxd4jSomVbTrXEhdTX+PZx5SN6IUkPr/HfUxRMKQ3BtJ7j3qfVlWHGzyt1g8tPt80+7YN6Fr9Pa18xSI7YiIY0bKyblIcu7ExNT1S0j9jvLm/gyk5qN1xyNiJRUsw8fW/C2WXnJP4iu94C6vMNk7fqi71DM1CZKDcGxHjmXE2ORvsfQijQEvuJ5O/gSTfx0qrRqWkFkrYLGMAJv8LZZeao6gXLwtCvFdy7TkJ4TQTP/uIvMi1M4b0rhEi4vR7ONo4d9jH59lhcbW/C0WD0nMNUkydZ0ZcWvOGKPU/2xy4gmvj0Y2hvxCjIJn3ytQOw+n5uDA96q6xg0sfbtRG9U8GvkM0nSZr9GLZfphk7/F4iEiSP0P0dqjoPAWhFZFQqtNbkxNl6Mdx5vVxYTASSL1ZyHxL1V8n6Z+D+k7MRIUnglN/gV0+UlIk5/hu2W6YZO/xTIIcRog+rnJDgPo9aq9ykz+ut0QWqM6KYfUtfSvReglB9mHUE2XdQip5tDuiyA13/gIx7ZF6k5CwmuN2WexTC1s8rdYVgDEaQanufo3uN1BezLJfXDy75gH2cfp8/HNPormnoO2+8yxLSsddsLXYlkZiW2H7793aCZIU8lTWvh3aeIHwAXNoKkbxzNKyyRik7/FshIitT/wtP97W0VDQAKpP7PPqrGPwpv4p4Is5F4c1zgtk8eokr+I7CMir4iIKyKBbhYiMktE3hCRt0TkxNEc02KxDI2E1/AsGI+AyJaQmIu03obEyq0m1U0Dg1U9ASJgxd1WWkZb818I7AVcHrSBiISAi4FdgfeAZ0Rkgaq+OspjWyyWCkioFan7/tAb9lwa8IIiyZGZxFimPqNK/qr6GlB+G1nKVsBbqvovb9ubgdmATf4WyySjbkcFL4I4ElplQuOxTBwTUfNfHfjvgJ/f856zWCyTTSU1UsfPL9iysjBk8heRB0Vkoc/X7LEORkSOEpFnReTZxYsnXkjLYpluiCQg9kVgsExEHGzJZ6VmyLKPqu4yymO8D6w54Oc1vOf8jnUFcAXAFltsMVjD1mKxjAPScDa69AgovgWEQPMQ3wWpOWyyQ7OMIxOxyOsZYAMRWReT9L8J7D8Bx7VYLFUgTiPSehuaf9XU/8Mb2ZW904DRtnrOEZH3gG2Au0TkPu/51UTkbgBVLQDfBe4DXgP+oKqvjC5si8Uy1kjkU0j8yzbxTxNG2+3zR+CPPs9/AOw24Oe7gbtHcyyLxWKxjB12ha/FYrFMQ2zyt1gslmmITf4Wi8UyDbHJ32KxWKYhNvlbLBbLNERUp+ZaKhFZDPxnhG9vBZaMYThjhY1reEzVuGDqxmbjGh5TNS4YeWxrq2rbUBtN2eQ/GkTkWVUNlJieLGxcw2OqxgVTNzYb1/CYqnHB+Mdmyz4Wi8UyDbHJ32KxWKYhK2vyv2KyAwjAxjU8pmpcMHVjs3ENj6kaF4xzbCtlzd9isVgslVlZR/4Wi8ViqcAKn/yHYSL/joi8LCIviMizUyy2CTW4F5FmEXlARP7pfW8K2K7ona8XRGTBOMZT8fOLSExE5nuvPy0i64xXLMOM61ARWTzgHB05QXFdLSKLRGRhwOsiIhd6cb8kIptPkbh2FJHlA87XKRMU15oi8oiIvOr9Px7ns82En7Mq4xq/c6aqK/QXsDGwIfAosEWF7d4BWqdabEAIeBtYD4gCLwKfGue4zgVO9B6fCPwiYLvuCThHQ35+4BjgMu/xN4H5UySuQ4GLJvJvyjvuF4DNgYUBr+8G3AMIsDXw9BSJa0fgz5NwvlYFNvce1wFv+vwuJ/ycVRnXuJ2zFX7kr6qvqeobkx2HH1XG1mdwr6o5oNfgfjyZDVzrPb4W+Po4H68S1Xz+gfHeCnxJRGQKxDUpqOpjwNIKm8wGrlPDU0CjiKw6BeKaFFT1Q1V93nvchfEVGewjPuHnrMq4xo0VPvkPAwXuF5HnROSoyQ5mAJNhcD9TVT/0Hn8EzAzYLu55Kj8lIuN1gajm8/dto8YcaDnQMk7xDCcugLlemeBWEVnT5/XJYDL+pqplGxF5UUTuEZFNJvrgXslwM+DpQS9N6jmrEBeM0zmbCBvHUSMiDwKr+Lx0sqreWeVutlfV90VkBvCAiLzujVSmQmxjTqW4Bv6gqioiQS1fa3vnbD3gYRF5WVXfHutYV2D+BNykqlkR+Tbm7mTnSY5pKvM85m+qW0R2A+4ANpiog4tILXAbME9VOyfquEMxRFzjds5WiOSvozeRR1Xf974vEpE/Ym7rR538xyC2qg3uh0OluETkYxFZVVU/9G5tFwXso/ec/UtEHsWMTMY6+Vfz+Xu3eU9EwkAD0D7GcQw7LlUdGMOVmLmUqcC4/E2NloGJTVXvFpFLRKRVVcddW0dEIpgEe4Oq3u6zyaScs6HiGs9zNi3KPiJSIyJ1vY+BLwO+HQmTQJ/BvYhEMROa49ZZ47EAOMR7fAhQdociIk0iEvMetwLbAa+OQyzVfP6B8e4NPKzebNg4MmRcg2rCe2JqtlOBBcDBXgfL1sDyAWW+SUNEVumdqxGRrTD5Z7wv4njHvAp4TVV/FbDZhJ+zauIa13M23jPa4/0FzMHU57LAx8B93vOrAXd7j9fDdGu8CLyCKclMidi0v9PgTcyoetxjw9TLHwL+CTwINHvPbwFc6T3eFnjZO2cvA0eMYzxlnx84A9jTexwHbgHeAv4OrDdBv7+h4vq59/f0IvAIsNEExXUT8CGQ9/6+jgCOBo72XhfgYi/ul6nQBTfBcX13wPl6Cth2guLaHjPn9xLwgve122SfsyrjGrdzZlf4WiwWyzRkWpR9LBaLxVKKTf4Wi8UyDbHJ32KxWKYhNvlbLBbLNMQmf4vFYpmG2ORvsVgs0xCb/C0Wi2UaYpO/xWKxTEP+P5Zlfp9iVVbiAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": { + "id": "029141QqFLpF" + }, + "source": [ + "__*This is the third part of the assignment. First and second parts are waiting for you in the same directory.*__" ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "moons_points, moons_labels = make_moons(n_samples=500, noise=0.2, random_state=42)\n", - "plt.scatter(moons_points[:, 0], moons_points[:, 1], c=moons_labels)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "nbgrader": { - "grade": false, - "grade_id": "cell-35b09404d22ab9f4", - "locked": true, - "schema_version": 2, - "solution": false - } - }, - "source": [ - "## 1.1 Pure models.\n", - "First let's try to solve this case with good old Logistic Regression and simple (linear kernel) SVM classifier.\n", - "\n", - "Train LR and SVM classifiers (choose params by hand, no CV or intensive grid search neeeded) and plot their decision regions. Calculate one preffered classification metric.\n", - "\n", - "Describe results in one-two sentences.\n", - "\n", - "_Tip:_ to plot classifiers decisions you colud use either sklearn examples ([this](https://scikit-learn.org/stable/auto_examples/neural_networks/plot_mlp_alpha.html#sphx-glr-auto-examples-neural-networks-plot-mlp-alpha-py) or any other) and mess with matplotlib yourself or great [mlxtend](https://github.com/rasbt/mlxtend) package (see their examples for details)\n", - "\n", - "_Pro Tip:_ wirte function `plot_decisions` taking a dataset and an estimator and plotting the results cause you want to use it several times below" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "ExecuteTime": { - "end_time": "2019-03-13T23:26:22.846438Z", - "start_time": "2019-03-13T23:26:22.482543Z" - }, - "nbgrader": { - "grade": true, - "grade_id": "cell-550546e70e191bc3", - "locked": false, - "points": 10, - "schema_version": 2, - "solution": true - } - }, - "outputs": [], - "source": [ - "from sklearn.linear_model import LogisticRegression\n", - "from sklearn.svm import SVC\n", - "\n", - "from mlxtend.plotting import plot_decision_regions\n", - "\n", - "lr = LogisticRegression() # add some params\n", - "svm = SVC(kernel='linear') # here too\n", - "\n", - "### YOUR CODE HERE" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 1.2 Kernel tirck\n", - "\n", - "Now use different kernels (`poly`, `rbf`, `sigmoid`) on SVC to get better results. Play `degree` parameter and others.\n", - "\n", - "For each kernel estimate optimal params, plot decision regions, calculate metric you've chosen eariler.\n", - "\n", - "Write couple of sentences on:\n", - "\n", - "* What have happenned with classification quality?\n", - "* How did decision border changed for each kernel?\n", - "* What `degree` have you chosen and why?" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "ExecuteTime": { - "end_time": "2019-03-13T23:26:22.864832Z", - "start_time": "2019-03-13T23:26:22.862013Z" - }, - "nbgrader": { - "grade": true, - "grade_id": "cell-3a1681e6d52ed236", - "locked": false, - "points": 15, - "schema_version": 2, - "solution": true - } - }, - "outputs": [], - "source": [ - "### YOUR CODE HERE" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "nbgrader": { - "grade": false, - "grade_id": "cell-ba9a59e3ec57f514", - "locked": true, - "schema_version": 2, - "solution": false - } - }, - "source": [ - "## 1.3 Simpler solution (of a kind)\n", - "What is we could use Logisitc Regression to successfully solve this task?\n", - "\n", - "Feature generation is a thing to help here. Different techniques of feature generation are used in real life, couple of them will be covered in additional lectures.\n", - "\n", - "In particular case simple `PolynomialFeatures` ([link](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html)) are able to save the day.\n", - "\n", - "Generate the set of new features, train LR on it, plot decision regions, calculate metric.\n", - "\n", - "* Comare SVM's results with this solution (quality, borders type)\n", - "* What degree of PolynomialFeatures have you used? Compare with same SVM kernel parameter." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "ExecuteTime": { - "end_time": "2019-03-13T23:26:22.869584Z", - "start_time": "2019-03-13T23:26:22.866757Z" - }, - "nbgrader": { - "grade": true, - "grade_id": "cell-58a1e03cab2ca349", - "locked": false, - "points": 15, - "schema_version": 2, - "solution": true - } - }, - "outputs": [], - "source": [ - "from sklearn.preprocessing import PolynomialFeatures\n", - "\n", - "### YOUR CODE HERE" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "nbgrader": { - "grade": false, - "grade_id": "cell-868839a4a8358c59", - "locked": true, - "schema_version": 2, - "solution": false - } - }, - "source": [ - "## 1.4 Harder problem\n", - "\n", - "Let's make this task a bit more challenging via upgrading dataset:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "ExecuteTime": { - "end_time": "2019-03-13T23:26:23.084319Z", - "start_time": "2019-03-13T23:26:22.876842Z" - }, - "nbgrader": { - "grade": false, - "grade_id": "cell-86be614f32559cea", - "locked": true, - "schema_version": 2, - "solution": false - } - }, - "outputs": [ + }, { - "data": { - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "tPb5Wh2MFLpG" + }, + "source": [ + "## Part 3. SVM and kernels" ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUgAAAEyCAYAAACYrUmUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnWeUFEUXhp/qybM5kHMOkiSLCKKgqKAYMaBiVlRQUQEVERAliAJmRRRFSQZEgoCAIDlKDpKD5LBxctf3ozfNTs/uAPtJ6uccj2x3dXX17sztqrr3vldIKTEwMDAwCEU53wMwMDAwuFAxDKSBgYFBGAwDaWBgYBAGw0AaGBgYhMEwkAYGBgZhMAykgYGBQRgMA2lgYGAQBsNAGhgYGITBMJAGBgYGYTCf7wGEIzk5WVasWPF8D8PAwOASY/Xq1cellMUiaXvBGsiKFSuyatWq8z0MAwODSwwhxN5I2xpLbAMDA4MwGAbSwMDAIAyGgTQwMDAIg2EgDQwMDMJgGEgDAwODMBgG0sDAwCAMhoE0MDAwCINhIA0MDAzCYBhIgwueOd8t4MEqz3KT7T6eqPcSK39fe76HZHCZYBhIgwuaaV/MYeQzX3J491H8Pj97Nu6n/53vsWr2uvM9NIPLAMNAGlywSCn55o3xeDI9Qcc9Li9f9fn+PI3K4HLCMJAGFyyudDfppzN1zx3Y/u9/PBqDyxHDQBpcsNijbDii7brnSlYs/h+PxuByxDCQBhcsiqJw/+t3YHfago7bnFYeefu+8zSqYLxuLx6Xp/CGBhclF6zcmYEBwF0vdcRsMTPu7R9JO5FGsbLJPD60Cy1ua3Jex3X84Anee/QT/p6/CZDUal6dl8d0o0zVUud1XAZFi5BSnu8x6NK4cWNp6EEaZCOlJOAPYLac/3e63+fn4erPc/zASdSACoBQBLGJMXy36yMc0Y7zPEKDghBCrJZSNo6krbHENrgoEEJcEMYRYPn0NaSdzMgxjgBSlXhcHv6cuOQ8jsygqDEMpIHBGfLvziP4PN6Q4+4MDwf/OXQeRmTw/8IwkAYGZ0iVBhWxWC0hxx3RdqpeWek8jMjg/4VhIA0uezLTXBw/eAJVVQtvDDRocwVlqpfCYstd8pstJhJKxHH17U3/X8M0OA8YBtLgsiUzzcXAe4ZzV7FHebja89xf/mmWTVtd6HWKojB8fn9uebIdsUkxRCdE0e7ha/lw2bu6M0uDixfDi21w2dK7/dusX7AJn8efc8zmtPLBwoFUa1j5PI7M4P+J4cU2uKz4Z80uvn1rIhOGTOHQ7iMRXXN4z1E2LNwSZBwBvG4fk96b+v8YpsFFyIURN2FwwRAIBFgxYy2bl2wjuWwSbe67mtjEmKA2qqqydu4GNi7eSmLJBK7t3IKYhOgiH0tGSgaZaW6SyyQihAg5L6Xkkx5jmDlmHj63D8Vs4rsBk+n+8ePc2LVNgX0f238Ci82M1x3sjZaqNDzRBjkYBtIgB3emh5fb9GPfloO40t3YHFbGvPYDQ+f2o0bjKgB4PT76tH+bf1bv0to4bYzuNY4hc/pSs2m1IhlHRkoGQ7t+zIqZa1EUQUxiNC99+QxNb7oyqN2mxVv5fcx8PJmakVO92mxwVLcvad6hEXHJsWHvUeGKsvg8vpDjZquJeq1rn9F49209yJo/1pN2Mp0aTarSoM0VWO3WM+rD4MLEWGJfhkgp2briH379+HeWTVtNwB8A4OcR09i9cR+udDegyYplprkYdO8HZO9VT/tsNttW7Mhtk+nJcna8T1HtZ79521BWzlyL3+vH6/Zx4t9TDLh7OLvW7w1q9+fExXhcofGIJrOJFTMLFtXNTHVR/9orgjzRiiKwR9m566WOEY1TSsmIZz7n6Stf5uPuY/j2rUm8fss73JH8CIt+WR5RHwYXNsYM8jLD5/XRt+NgNi3ZhhqQmCwK0fFRfLBwIH98txCvK3RWdfLwKQ7vPkqpyiWYPfZPXaOUeiKNfVsPUqFW2YjHcvzfkwghSCqVkHPswD+H2LZyBz5v8N6gz+3lx/d/49Vvnss5pphMIAAdu2wy6b/7pZR82WscUz6aicmkIIRAUQRR8VE0uelKug7oTHLpxIjGv3jKCuaO+ytkH9OT6eXdB0YyetMHlKpUIqK+DC5MjBnkZcbk4b+xYdFW3BkevG4vrjQ3J/49xTsPjEAJZ1RUmXNOby8QQMrw5/Kze+M+nqj7Eg9VfY4HKz/LUw1eZu+WAwAc3XccszX0va3q7A1ed39LrPbQsBqv20eJMHJoK2au5bdPZ+Fz+7J+Bz5UVWK2mnn1m2fPyKDNGP0H7gx9JZ+AP8CcbxdE3JfBhUmRGEghxBghxFEhxMYw54UQYpQQYocQYr0QomFR3NfgzJk5ei7efDNANaCyfdUuru3cApszeO9MCChVuQQlKhQDoP2jbULaACSUiKNcjdKF3j8zzcVLrd9kz6b9+Nw+fB4fuzfspUeL1xnxzJcMeXAUGSmhIrkWm5n6114RdKxm02rc1bMjVrsVkznPR1lKerUbwMc9xoQs+6d/MUfXqLkz3GxdvqPQ8ecl/8wxLwG/yuljqbrndq7bw4TBvzDlw5mcOnL6jO5p8N9SVDPIb4D2BZy/CaiW9d+TwKdFdF+DM8Tv0/9SCwHtHr6Wui1rYY+yYbaacUTbiUmKoe/knjntbnmyHfVa1cYeZcNkNmGPthMV56Tfjy9HNINcMGkJ/nzLZykhIyWT6Z/P5uThUIOhmBQc0Q5u735zyLmu/e9l1NJBCCX3oxwIqHhcXn4fM4+184Lf2fnLN+Q+v9DdOiiItl1aYXPoO2NsUTaa5XMqSSkZ9eyX9Lj6db55cyJf9h5Hl8rPsnjKijO6r8F/R5HsQUopFwohKhbQ5DbgW6m9zpcJIeKFEKWklEY8xX9M63taMPXj30NmP6Uql6RE+WK8M/N1Ni/dzpZl20kqncjVnZoEeWTNFjODpr/GpiXb2LhoK4kl47nmzmYRS3wd238i7LI0P0IIouOdNO/YmK4DOpNQIl633ZE9x7DaLSGG153h4Y/vFtDw+ro5x9rcdw2bl24PGYOqSq5oUT3o2I61u5k99k/cmR6uubM5jW+oH/QSuO7+lkz5cCY7/t4dtA9qsZmp3awajds3COpv7dwNzPl2QY7XPds59m6XUUw+/KUhk3YB8l85acoA+/P8fCDrWJCBFEI8iTbDpHz58v/R0C4vOr/aiYU/LiP1WCoelxebw4rJYqLPuO6AZpSuaFGDK1rUCNuHEII6V9ekztU1Q879u/MwR/cdp2KdcsQXiws5X6NpVRzR9hwveEEIAXe+1JEHXr+zwHYF5VAf2nUEr9ubY+TbdrlG89Zv2BfU7s4et2Bz5CqX/zRiGl+/MR5f1h7l/PGLaHZLQ14f/2KOkfyo+xitNo7MHq8gsVQ8jw66n+vub4nJZAq6xx/jFuq+HExmhTV/bODqTkYe94XGBeWkkVJ+IaVsLKVsXKxYsfM9nEsCKSWblmzj81e+ZcDd7/Fw1edIP5WBqkqi4px06n4T3+38+JxVaDJSM3m1XX+eqNeTt+4YxgMVnuHTF78O2QNsfGN9ytcqo+tcyY/NaYuo9kzDtvVyZmP52b56Jw9WfjYnwyb9dAb/7gzNtvlpxDRST6YBmtf+q9d+wJPpRVW18bszPCyfvian3Oy2VTuZO+6vIIMnpSTtVAY1mlY9Y+3KCzXl93LnvzKQB4FyeX4um3XM4P+IFqf3Bb1vHMiPw3/jr5+W40p340pz4fP4yEzNZM63C4mKc57zvYY//ikbF23D6/KSkZKJ1+1j+pdzmfHlH5w4dIpv+o6nd/u3GfPaeHqP60HnXp10nT3ZCCGwOqy0vKPwWZUzxkGvsc9jdVgRSvA+qNfl4/TRFIZ26YWa9hF/jp+pa4ykhAWTlgKwevZ6zGZTSBt3hofFWfGNK2asCcnCAZABlRUz9GMw23ZphT3KFnI84Fdp1K5eoc9p8N/zXxnIqcBDWd7s5kCKsf/4/2fjoq3MDbOsA80ouNPd/D1fN/ggYlzpLpZNXRWSmeLJ9DB+8C88VvsFJr03ldWz1/HzyOk8Vb8na+eu58rr6mJ1WEPCi0xmE9WbVGHEoreDlr0Fcc2dzRm7fVRIgS/Q9he3rEwn88jnpB38TNew+b0+0k9lAGB1WLX1fT4Uk4I9SquyaHfadI2oYlZ0jSDAldfXpe2DrbE5tWe22i3YHFZ6f/e8sf94gVIke5BCiPHAtUCyEOIA0A+wAEgpPwNmADcDO4BM4JGiuK9BwXw/6Mcch0A4JJKUMOEokeJKd4Oi78E+cfAkAX+A7ElbtiNl46JtCAEWu5VqDSvhSvdQplpJbu3WnuqNKhObFKPbX0Ekl0nC5rTp7m8KIZHSR8NWp5n4URIeV7BRNlstNLpBm8U1vflK0JllWqxm2j3UGoDWnVvwTb+JIW2kKrnmzmaoqsrf8zZyYPshKlxRlnqtaiOEoMcnT3DLk21ZOfNv7FE2Wt9zFYklE0L6MbgwKCovdoE1OLO8188Wxb0MIuP4wROsnVv4zDDgC1CnZaiz5UxIKBFPfHIsxw6cCDquKIJAQNWzNYBmg7wuL7s37GP8gc9DRDHOhms7t2D6F3OCvPRCkVSv7yIqRqVmw0wat0ll6e9xqKpm1C02M1ff3pTqjbR8c0eUnf5TXqVfp6EIIXIKhj367v1UqV8RgOLlkmnUrh5LpwZL8lnsVmaP/ZPfx8zn+IETBPwqJrNC2RqlGTa3H1GxTqo2qETVBoby+MXABeWkMSg6Fv64LGy6XTb2KBsdnr6B4uXPzSEmhODFL57C5rShZM0kLVYzUfFROKLthV5vtprZuGjrOY0hm64DOlO6aikcMVlL4agAsQkBXh65L2us8OLw/ZSpnDvLrFC7HL3GPhfUz5XX1WXioS/p+dUzdP/kCcbt/oQ7ut+Sc/7gjkOsznLY5CXjdAZfvjqO/Vs1wQ+v24sr3c3uDfv48tXviuQZDf47jFzsSxSfxx/WMxqbFEOVBhW5tduNRRZa0qT9lYxaMojJw6dy8J9D1L2mNne8cAs/j5jGlI9+D8neyYuUnLGjyOf1oQbUkD3KqLgoPl87jOUz1rBj5XxKFJ/KNbccw+7M/V2ofsHB3bmGu3SVEihK6MvEEWWn1V1X6d5/1axQ41gQfq+feeMX8cJnT53RdQVxaPcRPunxNavnrMNitdD2oVY8PrgLjqjCX0oGkWEYyEuU5h0a8m3/SeALDn+x2i28N/8tKtUp+jjTyvUq0Gvs80HHHh5wL/u3/svqOetQTIquw8gRbS90mS+lC5n+CWrGz2SkpDNnUjTfv1+KcrVq0HP001SonRskYTKbaHFrE67q2BiZ6gbXZCTgSvchVejXtRJqACxWFZPFzs1PtD3jZ3VE21HMZ7YAC/gjq3kTCemnM3iuWR/ST6ajqhKfx8/M0fPYtX4vHywYWGT3udwxltiXKBVql+OOHjdjc1oRQiAUgc1po9PzN/1fjGM4rDYLA37txefrhtNnXA8eeP0OLFZLrnERcMXVNQp0JkkpkScfgoyvUThGTJyLDg8dZ/gv29i+ahsvtOybE8OYFyEEStybiOSpKLG9SXH35PE2jalxZYCJGzYzdecGJvy9mSuvPvPlfYvbmuiqCIVDMSk0uzkyCYJ54xfxaO0XuC3+IXq26ceW5f+EtPl9zDw8GZ6cOE0An8fHjjW72bZqZ+QDMygQoybNJc7WFf8wf8JipJS0ubcltZoVjajt2ZKRksHD1Z4n9WQ6MuvLbbGZqVy/Ih8ufUdfOdyzBHm6G8hgEYvMdIVh3cuzekExHnn7Xu58sXAdR1/KD5D+DiZTXoPsgNh+KM47zuhZ1vyxnrfuHIYrreCsIHuUDWesk49XvEtymaQC2075aAaje/8QlDNuc1oZ/ueAHNFigHceGMn88YtCrndE23nuw8e44eFrz+hZLifOpCaNscS+xKnZtNpZKX1LKdnw1xYW/rgUs9VM2wdaFUnN5znfLcSd6c0xjqDtl+7dtJ8ty7ZT+yqdFEf/ZpChM0xntEq1epks+d3Lns0HIrq/yfMJmPL35YL0kXCGBrJh23pMPjyaD58bzayv/ww6p5gUytcqQ91WtanaoBJt7ru60L1Bv8/PN30nhghqeDK9fP3GeAb//kbOsYpXlEUoIuj3CNrfrVzNMmf0HAbhMQykAaB9sbav2knqiTSqN6nKmNd/YN73f+HJ9CCEYNqns3mg713c1/v2c7rPjrW7wyrq7Nl0QN9AmsqAsIEMFqNwZQiOHLBij7JRs0nVQu8tpUQGjurFgIMaWbGv/NgcNnqO7kZCiXh+fH8aJrMJqarUbFaN/r+8SnR8VMR9nTqSElZtaeffu4N+TjmWGmIcQdtjrtm08N+FQWQYBtKAw3uO0vvGgZw4dBpFEXjdPqQqc/KbpZR4XF7GDZjM9fe3POOwIOnfD9IN5ipUrlcBm9MWaiSFoHytMDMf2/UgnCBdgOboUFXweRUWTU8iOj6K6x64ptBxnD6WivugjRJldQy0qVzosQgRQvDYOw9w98u3smfjfpLLJFK6Ssmc836fn6VTV7Fv60HK1yrLVR0bYVJOgP8fMJVDmCsAEJccE3ZfM39O+tzv/9Jtl5HqQlXVEKGMcHjdXhZMWsr6hZspVbk4Nz5yXZDC++WOYSAvc6SUvNHhXQ7tPBK04a+HEILl09fQ8ZkbI+vbvw95+lnw7wFhAuGkfZeBfP+2Ba87d5ltsZopW71UWAUhIayQOAGZ8grStx41INmzxcGIV6vQrGMrnhgSWWjLrDHz2LWyDC8M2x0U9uNxKRw5dR8Vz1EfJTYxhnqtggt+nTpymu5XvU7KiVTcGR6cMVZeGHaAazocRwgbSC/S2gQR/xFWu5MOz9zAtM9mBzmtbE4rD/a7J6jfcE4tGVC14PQIDGT66Qyeb96H4wdP4s7wYLVbmDB4CoNnvaE/k78MMbzYlzl7Nu3nyN5jhRpHAKEILBFW65MygDzZRZsl4dEcLOpx7L6X+GR5dxpeXxfFpGCxmbn23qsZ9ke/AgV3hbkcStIElOLLMJdaRrW2a/h4zWR6f/t8xDOevZsPMP+XGIY8V4F9/9jwugV7t9l474UqbN9QOaI+wj6rdyXSPQ+ppgSd+6j7GI4dOIErzY1UJTfdv5+m1x1C4AWZpv1uvCuQaf0BeGJIF255oh0mi2bgFJNCi9ua0rBt3aB+G7arlxOUn5dqjSpzePdR+t0+lDuKPcIjtXrw+5h5ujGxP7zzM0f2HssJvfK6fbjS3Qx+8ENDXSgLYwZ5ERDwB5g4dAq/fTobd4aHRjfU54khXXLKIJwLGaczwtaiyY9UJVd3ahJZx95lWQYgf+yfn2LF/mTwrL45X0Jdz7V/L/g2afuPlno5bYQSvpRrYdRqXp1Fvyxnye9xLPk9V6vS5rRyX/8KZ9SXlBLc05Hpn0BgF6Dk7JPKmJdQojS5gSW/rgySYuv02PGg2auGF1zTkbEDkarC2nkbcp5XDagsmbKCfp0yGDT9tZwrnn7/YTYs2oInq66OxWbGbLXwwBt38VyzPrjT3Zr82ol0Puo+hsN7j9K1/71Bd10weYlu2YgTh05xbP/xc86wuhQwDORFwOAHR7H0t1U5y6q/flzK8umriU6IJv1UOsUrFOOpYQ/S9KYzL/VTtWFl1EBoALPJYkKqEqvdglAEakDlte9fICYhOrKO1aPob6j5IKB5nHUNowwgU14B9xwQZq0PkYi0NgThQDhuRVgjNNL5aPtgK3545yd8Hl9O0LbVbqHO1TXPODdapo+CjK+A7BAfNdeJlPYB0lIPYW0Ucp0zRl+3EgIgvSyesoHDu48GqaN7XF7WLdjMtpU7qJHljCpVqQRfbxnJ9C/msHX5DirVLU/HZ27gm74T8GR6gmaAnkwPP773G/e8fBvOGE01aM3cDZw4eEr/2VQVi61wvc7LAcNAXuAc2nWEJb+uxOvOlRJTVYk7w5OzNNq3+QBvdBjMY+/eT+dXO51R/3anjW4jH+Hj7mPwunxIKbE5rBQrl8Sg6a+x4a8tmC1mmndoSFRc5B5ZLFeCDGMM3HNRXTNQHKE1ZmTmt+D+A21Z7sk+CO4DgEC6piKd96PE9sq9Rk3X2iqJBS7TnTEOPl45hMlDPkYJ/AWYiSnZiTtf7hr5c4G2jM4YrY1RFw8yczzC2oirOjZiya/LCPi1cf29OJrm7VIJ2SI0VUQo0WxctEVXjUiqKluW/0NcsVhsThsJxeOIS47l/tc0tXUpJT8M+onZYxfoLo9NFhMH/zlEtYaV2bf1IG/eNkRXZFgxKVS9slLY8haXG4aBvEBwZ3o4dfg0iaXig/KLd63fi9lqCTKQekgp+abvBG55st0ZhZYA3PTo9VSqU54pH/3OqcOnaN6hEe0fux5HlD3IG6vdxwWepUAArFchFP0ZpTBXRDpuAffMLO9zXjIhpTfSVBJhzTfrzfye3FlZyFMCLsj8Hum8C5RE5One4F0ECDCVhLh3C5xhJsRM5sne2TJlCjAK1FJAh7DXhODfDsKSa8D1xqlqxcee+/Axti1fRtqpAK5Mhe+GlaDB1ek4o9WscCMTYEXEDUBKP8VL7cZql3jdwYZeKILv+k9mdK9xqKpKjSZVeX38CzmB5z+PnM74wVPC7h36vX6Sy2ptfxk5PUS7M5v44rG8Pv7FyH8XlziGgTzPqKrKmNfHM2XUDC3wV8JdPTvw8FudEUJQqnKJsOUE8hNQVYY//ilN2l9Jm3tbnJEIa82m1ej9bcEB5dKzAHm6Bzm+PRlAxg1Gcdyk217EvoM014C0wYQut93IjC8Q1s/y3SS05GsoAaR7PrhngH8bkPVlD+xDnnocmTgVYS4fMpuUvq2Q/hEhM7+UPkhbC4SSGMG9AaU4yAJeWMKBsGtFPhNLJjBm/V0snfwh+/5RKF/NjdWWbRyd4LgVEfUIwlwJ9fQLtO24gO/eqYRmOLO6UwSeTG+Q53rz0u28cn1/xmwZiRCCCYOnhI0vtdotNO/YmITi2r7rge2HdLdV7E4bL3z+VJHsbV8qGF7s88zEIVOY8uFMPC4v7gwPnkwPPw2fxs8jpwOaAESV+hWwWAt/l8mAZNHPy/n0xa95sMpz/LvzcJGNU6qnkKee1wyYTNf+wwUpryIDweLwUqpI91zk6RfBswgIE4IT0Ml+sbWl8Pe2CWQKBHaSYxxzbu6CE+2QR+qgnu6JVHPLyEr3dEAnPEYo4J5XyD3zNDdXAEtdsjSh8z8AmKqC49acI9a4e2h1zzV0eek0rW71Y7FFgaksoth0lLgBCHMlpH8PuOcSl5TBkEk7KV3Rg9WuYrGpxCdbMFmCv6pqQOXA9kO80PIN9m09WKDocZv7WvLqN7lyrHVb1dKtCRRQVao1PHtv/qWIYSDPM5OH/xby5ndnepg09Necn9+Z8RotOjXBbDVjMptQTAXXn3ZneEg9kcYHT36mez4QCLB6zjpmfjWX3Rv2RjZQ92zdMgQgtZlc9k9SIlN6IlN6gmcmeP8C8i+xAcxgCV0Ki+juoCQS1qjmXB48ywrFB+7fkSe75C47w+2JSoDIZuk540z4BKzNAStg0/5vro2I7Y9IGq/Fbma3FQpK3GBE8jTtfPyniOQ/EKY8gfG+jWS/GGo0cDFm8Va+WriVscu2ULeFIODTVwLavHQ7zzfvQ8nK+sXNytYow8tfdQvatrm1242aGlGe6AWb00a7B1uTXDrCWfRlgrHEPo+oqkrayXTdcynHc2cEUXFRvDHhJbweHz6PVoTqpdZvcvLQad1rQQvJWb9wCz6vD4s1d7ZwdP9xerbuR8oJLVVNSknDtvV4c3LPgivxycwwBsaLdM0DWxuEuTL4VoFnns6+Y14UEE5E9JMhZ4QpGZJnIl0/gneldk/vYm3PD7Sf44YjLLWQBS1zgRyPuXc52JojHO2RmeMI3eNUwdamkL50MJXM2ov0gakCOB8CR0eE0PcAC3MFMIcJJzKVASHzlJCF4mV9gIX6rUqxfPahsEtor8tLhdplOfnvKTx5dDdtDivdRnQNaR9fLI5PVg9l7JsTWTFzDVFxUdze/aacBACv20vK8TQSSsSdcXXGSw1Dzec882jtHuzf+m/I8SoNKvLZmmEFXrvj7z1sW7mDz18eq6soYzKbmJYxLuhD/mKrvmxeuj1oD8rmtPLQW5255+VbQ/rIRvp3II/fTv79OykBoSCwQMzLoB6HjC8I3XM0gZKsHbdehYjujjBHlt4n1VRtqS4UsLaEwD7wLkG6ZmXtQRakpmNHxPZBOLWqIGrqYMj8AW2prWjjiumNEvVARGPRntmPPH4LBPYDeeMIBZiqIpImBjmvpJoG7mlI/x6EpS7YbwiaYWp9SuSJDuDfna9PE15rX55suoij+06G3Y+u1qgyT733EN/0ncD+rQcpV6ssXQd0pn7rKyJ+rpz98A9nAhKTycQDfe/i7p4dC4wOuNgw1HwuIrqNeJS3bh8a8uZ/5v2uhV5btUFFqjaoyK51e5j51dygoF+T2USTm64MMo6pJ9LYtnJHyAa9J9PL9C/mFGgghbkqmYHbEJ4fsdpVsgW4te+NCngg7V2w34H2sco/u7MhonsgnHcV+lwh91ZiwXGzZkRS3wDXVDQDJ9DiJBO0n6WbkKWyUMCcK96gxPZGOm5FuucAFoTjZoS5Yth7q5lTIeNDCBwBczVEbC9QU7LiPPMHWUsI7EZmfImI0TzB0r8DeeK+rPG5kMIJ6aMgaRJCyQ2lEUJAwrdaDKh3CbkB9gGs3sGMWRTLqj+L0e9BE2og2FgpiqBC7bLUb30FHyw8e7HccQN/1PbD88xUv+k7HmesnQ5P3nDW/V7MGHuQRYDf5+f7QT9xX/mnuCOpK4Mf+jCkgFU4Gt9Qn8Gz+3Ll9XVJKp1IoxvqM2zeW9S/NvI3/6Pv3E+F2uVwRNuxWM04YhwUL5/Mi58HL2G9Hl+YfUR0S6Hm5/uR1en/WBX2bLOh6m6JqeCeon+xkGA/xy+ZZz64fkObxUrtfkiQpyDmbVAS0IxmNmYwVQJL8GRBWGqjxPRAielWsHHM+B5S+0JgL+AG/wbkycelrZ/KAAAgAElEQVSRnnkFeNv9WQZcQ57uBTI1d8tBZkLgIDJtVMiVwpSEiB9FqPPHjcJRml67iWZtM7DmqyprsVsLfLlFgqqq/PTBtJBlvM/jZ1S30exYuzvMlZc2xgyyCBh03whWzlybMwucP34Rq2evY8yWERFlntS5uiZD57x51vePinXyyaohrJ23kT0b9lGmWkkat28QIliQVCqB4uWSOfhPsNfZYjWHrb2Slx1rdrN2gZOlv8dRvupRdMq4AH4QiZohENkfL4mI/+ic0gSl9CNdkwm7nE7rBzEDIPUVcmevJoh5+ayWh1IGIH0EoQ4mN7h+KvjirOeWahr4txC63eDTHFtxOn9z36oCYyz7fLKLj9+owLyfE1EDUKJiMXp8+iSV6p5ZqmTIbT2+8PXTVclrt7zD+P2fRawSdKlgzCDPkf3bDrIij3EELQTDleZi5leRh44UxuIpK3im8avcXfIx3rh1MLvWB3ufhRA0vL4ubR9qxfyJS7g15kFust9Hv9uH5sxmhRD0+vZ5HNH2nDAPm0PTU/Rkelg+Yw2qqqJ6VqCmj0V6FiNl7lSxasPKmK1mFvyakJMZootMg+QZiLj3EPEfIIovQ9iuPqvnlmo66uleyCMNwDO3gIZuSO1N8NLeA6ef0/Ywz/jGKRHGZObHBo7sbYQCfkcinKGxUVAtB5tD8tLwPfyytxQ/HR/DN9tG0fD6umHbR4rVbi2wcJo7w82WZaGlHy51DAN5juxat1e3vKrH5WXzkm1Fco9pn8/m3S6j2LFmN6ePprJi+mp6XP16SIiOqqq81OpNFkxcjNftw+/1s2zaak28IGvpVKtZNb7ZPooH3riThm3rEgiouDI8TP/iD97uPJxe13bEf7QLpA9CnnoUeaw1MqDFU3Z6/iasdgt7t9sZO7QkMmwNKqktF+3XIWytNVmvs0SeehrCxS8GPz36hkXVsnnO9L6qm9A9xoIQgA2sjRBZQhVCiQZzFZ22VnCEUS+3NtHOF4iCxRZDVKyzyJwnPq8/rJcctJdrQZUpL1UMA3mOlKxUPMf45Ccq/sxKmeoR8Af4qk9wjRIps2T4+04Iart6znqO7j+OP08lQzWgkpmayYJJS7Rr/QeId37KnY/+xtYVm/F7/TnCCO4ML1vW2PhrerbSjQT1CPLEQ0jpoXi5ZEYsept6rWvzy+jijB9VjICeDbE0QojIs3jCIf07wLeewo2jAkqSfjvpBVVflKFAUvtG2NAE9o6ImNcRieMQCV/neKilb6umhZkfYUNEd9PtTQgzIuELEDFAuM+P9aycXQWxf+vBAkN6/D4/NZtX4+COQxz459BlI4dm7EGeAYFAgH1bDuKItucoPFtsFl3pe4DTR1N0j58JJw7upXm7I/g8PlbOjyUzTVuaSSnZmq/a3b4tB/B7Qo21O8PD7o37kN51mkYjXrYud4IMDbZOLumnWdt8FQLVPcgjjZGxA6lUpxPD5/dHuqYhU14jFAXiQx0QZ4V/r7afF/a7aNWWqkpxiO4JKa8SukcZQJrKFbTYDUFKN3iXElHZQmFH2K5H6AlvZHxNqDcfzWgHjoFZv7qksNaH4kvAswDp2wyZ32ZfqMVcxryAsNSL+HkiIb54HL4w5R4AVL/KHYldUUwmFJNCQvE43pj0UlAhsUsRw0BGyPIZaxj2yMd4XV4CAZUKtcrw1s+vsOy38LGaq2ev49bYB6nZrBpPDn3wjIteqa4ZJNl68ewgH1KCySwZ1r0ci6ZrArF59fqklNSu/yf3PHuIQ3ttLJ4Zh8elLRDsUQqV6pTXQkiy4hjNZoneJODJN//F7tRbO3sg9U2kpSrCUgfsN2lLX+/SrL06M6Ag4j9EmIpIst9cLUzOsxUc9yJsjUApBhZNVkym9QdVx4mTOR4ctwQdktKPzPxBi4mUbrC3R0Q/g1Di0PYOIpkhaQHv2Ntq6ZWZEyDzO5AZWpkI/zZC9TABYYXAv2ENJKBtS9hvQNhvQEZ3A89ipEwF/w7IGIea8TXYb0JEP6uN+RxJKpVAvWtqsW7B5iCptWyyVyXZMnGH9xzl1bb9+X7Pp2csjnIxYQSKR8CB7f/ydMNXgsQCFJNCiYrFuLFrG77Jt9TVwx5l46Pl7wYVuC8IGTiMPNaO/IHZHpeg61W1yEiP5o0JL9K8QyOk9CBPdkX61qD6JR63gs8r6NmpKgd324hP9vP1P6Oxp7fI6ScQgAca1ubUseCQkl93rNcRdM2D43aUuCHaGKXU1LA9C0GJ17QaTSUier6IfgfShzzWAdS8ISYCRAwi+Xct6yYP6uEr0J2xoSBKbEaI3B0l9VQPLWwoZ8ZpBVMJLR1QOFBP3AO+degbSgGYNCHfuGEIcznUlD7gmkGu19usGULpJXQv04YovqBAcQyppmsG1zMXlGRE1EPI9M+07KKcMVvAVCZrzJEpvRdE2ql0Bt7zPpsWa3XCC1OQsjttPDX8YTo81e6c7/1fYgSKFzG/fTYbvzc4AFkNqJw+koIzxoHJYiLgKziX1+vyMm7gjxFJSQUCAXynp4bdqm/X2UWZ+s/TvEPWzCljDPg2IZCYzFo5VFWF1z/fy9ghJXn2ncPYHSbIk9VoMsGAb3fTu3Nl1IBAVW1I6SMQyAq+Dju4ozn/FEKArRnC1qzQZzobZEovUA/lO6pA/EchxlEbkDXMjNNEXo+y9O/IZxwBvBA4Dq5p4LwbETcYeaIz2QHeCKemN5n0Y05/2WFL0n9Auy7oZeYHacpqq5I7k3Ro/RdmHE/cDoHDWX0KpGc+2t8l7/P5tIB19wxwhNcBDfgD/DFuIXO+W4DFauHmJ9rS8vamIQ6emIRohs55k6P7jzNp6K/89tlsXdWfbNyZHk78ezLs+UsBw0BGwJG9x3RTvIQQJJSIo3L9Cuz6e2+BsmSqqpVVLQhVVflh0E9Mfu83Oj22jwde8mDO9xey2hUeeft2TDHX5x50/Uz+vTdFgfLV3fT7eg/CVBqhxCOV0qDmpjVWr+/ihzWbWTYnnjR/Hxq0qUNU7CMgw5VAtZ9dzvJZIANHNFXxEFFaoXmlbc1DL7J3Atdkgp01FrDfHGwMfOu1DJuQ94AL6V2BcN6t5ZUXm4d0TYXAnqxthfb6Hnn/pjCxix4tUN1cA7wrQIkD5yMIZ+fQ5/XvBvcsQGoKRDnGEbSBhnFUyUykdzUijIFUVZXXbn6HzUu35cQ5bly0hVWzWvLi50/rXlO8XDKt72nBrG/mh42NBHBE27ni6pphz18KGF7sCGjUrj42Z+gXw+/zU/uq6gyf9xa3Pdee2GQt9CKc2k6Z6qVJPZnG3s37tayWfPww6CcmDPmVzDQXS2dF4/eG9iOEBcV+Xb6j+m/5gE/w3XulEHFvaQYibjj5/+R2p+Dae9tx27OdqFC7KiRNQP+9qYCpFMJRtN7TsPj3aDPC0BPg26x7iYh5GSxXAA5txiecYK6OiM0XkK2URD9G0RpU/lUoMShRD6DEvo5w3IYQNq0khJoe7MVVShLub6DljS9GJH6NUmwWStS9ITM3NWMM8vhtyPRRWimHzG8Ir1aeH5smlBGG1bPXsXnZ9iBD587w8Me4v9i7RUduLos6LWtS5+qa2Jz66xirw0qVBhVDioldahgGMgLaPdSa5DKJQXU67FE2bnz0OoqXL4Yj2sEz73flp6NjmHJ6LO0euhabI/iDZbVb8Hv93FvmKZ6/6jXuKvYoP4+annM+EAgw+b1c6bPdWxzM+D4JV4bISusTaMuz+xCW6sEDtHfC7w82aqoKh/ZamfRJKU6dqg+AYmuESPxOm9UAiGiI6gYxbyL9O5GBoyjmMojk38HaGi1o2QJKKYh6AZH0E0I599CliDBXCJNNYgJLLd1LhBKFSJyASPwWEdNXC7lJ+hmhxAQ3tDbPklTLF6wtTAhncHnVbKQMoKYORx5thDzaFHmsFarrd+2kpR6YyqL/YgmATEOefkm/X/9+SPsAbQXg19pH5CDKHrMZ4QwTUwmsmr0Ot04JB5D8PW9j+G6FYOBvvXkiy7lYuV4Fru7UlIp1ylGxTjke7t+ZIbP7ouinU10yGEvsCLA7bXy84l0mDJnC3O//wu600blXJ254+Nqgdqkn0xj75kTNsy0EJrP2BUwqk0DJisXZtHgrvizJMoDPXhzL8mmreeGzp4hNig7Jh/68X2kWT4/jhntTufGR68HeAWEuj1TTg9RiRPTj/LvuB5JLnsIRpeLOFPh9Cu92q4DFZmXH2j00vUnzLAtrE0SxWUgpEUKgumbDsWuQeED6kZYGiPiRKIlf/h9/o4UjTCWR9rZZQrZ5vuDChoh6LPx1QoC1vvZf2DYKJH6PPP1Clg6jAFMxRNxQhKmk7jUybQhkTsgdi3pEEwtWYrQsoYSxyJSXssKDdAgcQAaOhDqxPH9wRgYxB222K+KHFbifGVcslqZtM7m5y2Fi4wMsmhHHjHFJCMVObFJM2OsAzBYzt3Vrz23dNHX0Q7uOMP2LORzdd7zQay8VDC92hMybsIj3H/8Mk1nbu1LMCgN/7UWdltpsxuvx8USdl7RA7awwCYvNTLVGlXl7Wh86l3oypA6IEJIaV2YSl2ThyRHv07PNu7qxkzWbVWPkvDZavrGaBkiwXY+IewehaCEW7z/1KSd2/Ur1BhkcP2Rhwa/xuDJM2Jw2Ri0ZROV6ocsw6duMPHEvwfuXZjDXREn+uUh+b+eClF5k2khwjddCZyz1ELFvapJhRXWPwAnAA0qpsFkpUrqQR5qiu+y1NERJyo1iUI+2AfWgTi9WRLE/Q5xLMmMsMm0YoXuMCmGX7SiQNAvFUnj+ddrB4Zg8X+aEbrldgiP7rfTqXJ9vd36FXWfrSI+Vs/6m/53vEfD58fsC2KNsFC+fzIfL3s2plHixYHixi5h/dx5m+GOfhqRavdJ2AMllErVKcA0qcvLwqaAYMp/Hz651e1n7xwZMZgVfnu9X5douBn63C2eM5nG22jry2tcP0/fuDUFZMzaHledHNIGUngQZMs9c5OkXEFkzvdufv4Xnmy9ixdzcN7vZYqJ8rTK6xhFAZo4l9IvpB/9OpG976FL+P0YIKyL2FYh9JWfGW+T3MCUV3kg9GcapQ5YmZB6cd0P6ZwS/dASYq+p73u3tIO09nY4tYGkGvkWEGEpzjYiMo1RPE2X6BvLEtdodkhLlfIya1yhi4xgIBBj60IdBn0t3hofDu4/y0wfTePDNu4Pv+3/6W50PLu0NhCJizrd/6nqo/V4/h3cf5d8dh1n0ywpdj58aUDl+8CTmPDVlzBaVwRN3kljCjzNaJTpWxWrzU//K73lr0h1UqF0WR4ydms2qMWjGa1StPpfQ2YsXvMty8qQr1SlP30k9SSgZj81pxWIzU6/1Fbw78/WQMUn/AdS0j8CdV3cwD8KsLSEvIM7rF04pRtivijl4P1REPQ6W+pqDCAtauqAT1FOoh+ujnuiM9K7NbW8qDTF90PZ7s0o3YIOYnhDdNd99BeBExL0b2bh9f+cqsefB7lApXmJ9RF34fX7Gv/MLqTrK9163jwWTs1JYpWTy8KncVfxRbjDfwyO1erBi5tqg9stnrOGla9/k4WrP8f6Tn3F037HInuM8YswgIyDtVGahcY7h4sVMFhNlqpbk6eEPM+rZ0XhdXhq2SsdskTpyYX4atvyH0Rs/CO77+D50py/CooWDZO2bNbu5IRMOfM7h3UdxxjqILxaaYaG65mTNRgPoB1WjBTdbItejvNQRwoqMelYTzg0qJWFHxLwQ0pbEb8G3Gnzrkb4tWj2f7HhO31rkyYchaVxOuqASdT/Sfm1WWJPUCpcJG/L4jYQEmZvKhhjl8ANPQH+ZrmQZ/YJRVZXXb3mXjYu3hv18O6K02kHjBv7IpKG/5ugSHNj2LwPueo9B01+j/rVX8OvHMxnd6/uc80f2HuOvn5bx+dphQRlhFxrGDDICmndohD2qkCJSOigmhdjEGBrf2IAbu7ZhwJRXSSgZT0y8P4xurR9UHaFdSxN032XSjTQFZ+YoikLpKiV1jaOUHkjNzlcOlyXhAOdDkZdAvUwQUY9BzFtaSI1wgqUxIvE7LT4yf1shENbG4OyS5YQJ1ZSUaSOCrzGVRkQ9jIjqijCX1bJoZP7tDwmB7UjXRCLCUi+rzEX+r7kVEdUFgOXTV/NYnRdpb72XByo+w6xv5ue0Wj1nPZuXbQ+r4mOPsnHrs+3xeX1Mem9qiGiLx+Xlm34T8bq9fNXnh6DzAb+KK83ND+/8EtmznCcMAxkBDdvWpcF1dQo1kjanjRIVimG2mDBbTNRrVZsP/hqY481u1K4+3+38CHtCK8wWvRmhExES4wgi+gnQVceRcLpH5Moq3jWE1yi0gqUuIm6QFk9oEIQQAsV5O0qxOSgl/kZJ+kETlSgI9ThhNeH8Wwu+NrCTsMHhqYOQBRZFyx2zSBgDpora50dEa/+PfRNhqcfKWX8z8J732bf5AAF/gKP7jvPhc18x9dNZAKz5Y32YECGtpMd197WkbZdWpBxLRYaZYe7felATaNaZEQT8Af6eHz7U6ELAWGJHgKIovPXzyyz6eQXzxy9CmASrZ63DlefDIwTYHBZGb/oAv9ePYlJ0vXs2h40XvuhH5mETqjoJRcnqQzjAXDOrLnQwwlQSGfNW1uwv71I/AP6NWmiJrUXIdaEdmQkfUuJHxL6DsNQovB+DyFASCfv7NoUXqgDAXA+YhX45WgU8f2qCIYUgzOUheaYmnCHTwFInR4ruqz7fBwk9A3gyPYx9cyIdnmpHXHIMFps5qNYRaApWj717P3e+0AHQQokUHU1UgAq1yhJfIl5XAAOgWNkInGTnEWMGGSEmk4nWd1/FWz+/Qr/JLzNy8dtUqF0Wq92CxWahYp3yvL9wIHanjej4qEJDH5wl38CU9KGm+mK5ChHzhhbgLPTfWUI9gO6XTbrAtyayh7BcCVK/JClILYvDoMgQwg7O+4H8nwU7Ivr5gq913kXY+YsQoOqXC9ZvLhCWmloMbJ6VSP7SG9lkpGbizvDQtksrFJ0SC1a7ls+dTcrxNN2MG5vTSteB95JQPI5GN9THYjPnO6/FE1/IGDPIs6RS3QqM3vgBxw+eACHOquC6sLVG2FqHPa8tnaUW2KwUB+xA/jIA9qxzEdxPmJFxAyClu97dssRpDYoSEfMKUtg0TUfp1v5WMX0KLUEhlFhk3EBI6UPILFIGwNbynMdWslIJ9mzcF3LcEW3HHmXDGeOg3489eef+kaiqipQSu9PGvb1v5+95G2nQ5goc0Q4G3PUeKceDNUSFENz5QgfqXqM5lPqM687gB0exatY6zBYTQgieGPYgjW8oZJviPGMYyHMkuUzRLRGklOzesA93+gmqVB2HRdWWWNJ6FUT30sRh808ihQnsoWKtWn8qeOYj3dNAWBGOOxG2a5DY0A16NkUmxWYQOUKYEDEvIqN7aAZSOCIOWRL2W5HuWeBZivZiFIAdoh5DmErpXiOlG9wzkb6tCHM1TagjTHroo4PuY9B9HwTJ+NmdNrr0vSsnhbBJ+yuZfGQ0W1fsYOffu/nqtR8Y228iakDF7wvQ8ekb2LF2d4hotJQyaH/RGeNgwJRenD6WQsqxVEpVKYnVFm41c+FgZNJcIOzfdpA3Ogzm5OFTKMKNECovvr+fa25JQRNmjYP4jyG1l6ZGjQBTMiJ+pK4nVUqJPN0DvAuzBG2zvlzOh7SCVK4pBAcz2xEJn551cS2D/w9SBsDzB9I1AxQ7wnEXwtpEp50fmfYxZH5G7ozTAUoUImkywlRGt/8Fk5fy5avfcWTvMeKKxdKl713c9mz7ECOekZLBvWWf0o31FQJd8eXytcrw1aYRoSfOM/95Jo0Qoj0wEi37f7SUcnC+812BYUB2DtZHUsrRRXHvS4FAIMDL1/Xn1OFTWR80TZB1WPfyVKyxnXJVPdrsw78VkfxHVp1mCaaKQR9kGTgM7j+0fyuJ4F2QJ25PAi5NKSZpqhZDmTkZUEGJhZjXDON4ASKECew3Iuw3FthOprwM7t8Jjnt0gepBpvRDJOp/3VrffRWt774KVVULFJ5YPGVlAamYoccsNjMtbmta4JgvBs7ZQAohTMDHQDvgALBSCDFVSplfk2qilPK5c73fpcjf8zbiTneHfND8PpgxLpGn3joEuMC/XfuQ6hS7VzO+h7TB5Ibx+ND3gAqEbxkiti8yphfIdBDxQWrbBhcX0r8H3HPRDwpXwbsQ1bMSxRY688ymsGV/ZpqrQL1TAKEIpCqxOazEFY/l7pc7Fj74C5yi+FY0BXZIKXdJKb3ABOC2Iuj3gmbtvA1MHDKFrSvOvVZwyrFUpI6HOuBXOHkke5/GAebagCYmK32btcBvshSt0waj7Su6s/4L92HOqqNCVq6zkmgYx4sd30YKneucegzVNS3ksPQsRz3eEXmkJuqRJqjpHwfVQs+m8Q31C9QcstgstL6nBY3a1aPrwHv5Yt1wYhMvfsWfolhilwHyZuwfAPQ0+O8UQrQCtgMvSin367S54Dmy9xhPX/kK6aczco6VqlycT1cPJSru7IoX1bmmlm4qo90ZoMn1aWipYVFga4168hGtLomwABIZ/QoCNxFLZgm00CKDSwdTGRCykI+AG1IHIu03act2QPo2IE89Qc5etEyB9C+QagoiNrhiZdnqpSlfqww71+7R7T2hRByvfd/jkhGpyOa/mjr8BlSUUtYD5gBj9RoJIZ4UQqwSQqw6dqzoEtm9bi+qqpKRksGRvcdQ1fB1Ngqj+1WvBRlHgEO7jtLvjmFn3Wfxcsl0fOYG7FG56io2h6BMZR+tOmZq0mZJP0Hqa5p0P15N/ktmQtpQpH8X+t+OrJooIjrrvyhE/KdBWpIGlwCWBpqRzC8AHIJbq6aYhUz/mNBoBhdkjkfqxFlme6qFIjGZte+QYpIIAff2vv2SM45QNDPIg0De+JCy5DpjAJBS5k0wHg0M1etISvkF8AVoXuxzHdjaeRsY9exoDm7/V1tGCrBYzThiHHT/5AmuuSN0ouvO9HD84EmSSifkJOJns3vjPk4eOa17r/V/bsbr9mK1n111uafee5g6LWvx26ezyUxzcW3nFtzyZLscSSoZOJxV0S5/DrVLKwWq+64zQ+LErCBzC9ha6NdUMbioEUJAwreao8a7nNAqilnIACjxuT/7t6P/YvUgT9wNsX0QtlY5R0tVLkHmyX8Y9vM/LJsVx6ZVUZQs6+H6e04TW/HMtQouBorCQK4EqgkhKqEZxnuB+/M2EEKUklJmh+3fCmwpgvsWyI6/d9P31sE5MV7Z+yoelxePy8uQhz6kWNlEajatlnVe8k3fCfw0YjqKIlADKh273cgTQ7rkePdOH00Ju4yRSHwe31kbSCEELW9vRsvbw1QIVE9mFYbSyc9VUyG6G6R/Qu6XwwzR3VCstYHaZzUmg4sHYUpCJH6NVFO1kKC0dwkWybCCrU1w+QlTdQiEqUsT2Ik89RwybjiKQyvr2vnVThzb9CNJJf3c+ugJbn00z7zHPAxopd/XRcw5G0gppV8I8Rxa4qgJGCOl3CSEGACsklJOBboLIW5F+/aeBLqe630LY/y7v+B1ha/r63V5mTRsKm9O7gnAzyOn8/OI6UGioL99OpuoOCdd3tAKVVVvXAXFpOhKP8Ulx571HmRepPSCZ55WtMpcA2yttD0jcxXCWufAMYTlSkj+BZlVJ0U42iPMVc95PAYXF0KJRZrLESJKYiqPiMuNvlP9B8FXWJyxG9IHQ5aBrNWsGlXKuNHJPgT/DqSaGRKU7nV7+WfNbpwxdirWKX/RLcOLJA5SSjkDmJHv2Jt5/t0H6FMU94qUfZsPFKhyI6Xk0K5cUdi8WnbZeDI9/Pj+bzkGMirWSedetzE+n0STEND7O730vTND9a6Hkw+hvfklWsW6ssjolxCKBaKeh4xR+TQJAVKRp55CJE1EiTEiqS5n1MypWaIm+V7igQPgXQb265H+fXD8FiKqnBjYj5RqTqSD2RoNaqiSkN8vebVVf+q0rMsdL9xCQol4vuw1jp9GTNNCds0KJSoUZ9D0PpSuol/350Lkko3vyJ7thcNsNVH/2tylZ8qJNN12Gaczg5w6j759P29MfJEy1UrhjHVQ+6rqfLJm6DnnlMrAMTh5L1pKWbZh92iyVyk9tKp46aPAfif6kmUeZMYX5zQGg4sbKX2Q1h/9eEh3zudDpvYj4rKyIl8YmPM+NE2AXLwewcLfYtm0ZBc/j5zOE3V7MuCe4Ux+byqqX0UNqPg8fg5s/5dX2vY/Jyfpf80lm4t9X5/bWfjTMl09O8WkYI+yc9dLuYGsletV4J/Vu0LalqtZOiTDoPXdLWh9dwTyYmeATP+CsJvr+LWAbgDXJC2OUWbka6NmOWsMLkekZ7nmlZYFqPwEjmmrqnCVF0NwQPTTQUdE1FNI33bwzAdhwZ2ZyY4Ndj7sXRbQ6jD5feks+mm5bo+nj6Swecm2nGJ3FzqX7AyybPXSfLBwAPXbXIHVbiE6PoqkUgkklk7guvtb8tmaYUFCE8+83xWb0xqk62lzWOk24tH/ZsBe/Q9UKAEt7TAEBYqw2p/BxYOa8S3y1JPgW0aBwZC2q7L+UdC8SAGsIGIg+lmE8+Ggs0JYUBJGIZKnk+p9nVfuqEXPTtXITMvdmMwvXBE01oAaovxzIXPJziABqjaoxHtz34qobd1rajH8zwF8+9Ykdm/YS/laZXmo393Uvuo/EpA1l4FAISrTgJYhEwfkLw+rguP2oh+XwQWNVDOyqiLqK3/n4kBEd0MIgbTfBO5phGZbmSF5lhYnK2LCapOCJsRrjkli99YfCb/yCUVVJbWvOr/VMs+ES9pAnik1Gldh0LT/1JeUi+168Cyg8A+bA9BbRpk1oQprRCIlBpcK/k2aUnzYSZsAc11Ewoc5Emkiti/S/QeQf5vGjPDvQNjbRHRre5SNUpVLsG9LcD3QKs4AACAASURBVB1wm9OKlOjWsrnlybYklIgPOX6hYhjIMJw6cpr5ExZzZM8xDu85yqFdR6hwRTk6v3obVRtUKrL7SDVTS/fybSR3xyNrnS8Ss/aUsjbUhQPM1cG/S5PPD8IP3tVFNi6DiwQRrwWA62Fpgkj4PDRzSnrRL9rmRmZ8GWQgM1IyWD1nPYpJodEN9YOSJwbdN4LDe0Iz3m5+oi3X338Nr3d4l8yUTPyBAEi45+VbeXxwl7N4yPOHYSB1WD5jDQPvGU7ArwbV0ti9cR9Lp65kwJReNGxbL+e43+dn94Z9OKLtlK1e+ozuJdOGgG8dwQWazGC/CSX+PaRnMdI1GaQHYe+AtNTNCtHIjwLmymf2oAYXP+ZqYC4H/p0EL5m1krS6aaXqqQKSDo7m/HPuD3/x/hOfYTKbEGhlYN+Y+BLNbm7I3i0HWDlzbcgs0ea0UqZaKWo0qcrEf79gy9LteN0+areokZMVdjFhGMh8eN3eEJXlHCR4Mr2M7PYlY7d/CMCSqSsZ9sjHBPwqaiBAqUolGPBrL0pVLhF8qQxoYgAiBpG3mLt7CqHV63xaLWVA2K4O0mkUgGptmuXUyXudFRH1HzmUDC4YtDTD0doqxL8vS3U+ADGv6ArrAmCugH6omBmsWimHw3uO8v7jn+J1B880B94znB/2fsaONbt1w+g8mV42LNzCbd3aYzKZLhpvdTguWS/22bJ+4ZZCo/2P7DlKZpqLfVsP8s79I0g/lYErzYUn08veLQd45frgWC81bSTySD3k0ebII/VQU978H3vnHR5F1cXh985s3/SE3quIKCigiAWxYQXFAmLBgh2xIXZBFMVeABUUFbtSVMSCWD5FBQQsgNKll0B62T5zvz9mSbLZ2RS6Zt7nyZPs9EkmZ+495XfKJaVkomqfUOJE95Qx0QfZbnypTQ01cKsjYZ1EqA1Rsj5DZE4zptT1f0HxJp7KCuGA5PuIbSZmA5GEiKb1fP/Bz+gm0WhBhLnvP079pubTervTRtNDajeL2kUoGGbSiLc4L30wZzgGctcpo9jw94EV/bIMZCVqUgml2lQcLjuzJn4d185S6pKivGKWzjXKzfWSCVA6gXKfjwb+D5CF9xsfHccQ/zYX4DgmzlDregl67uWQ0xtCvxj5kMn3IbK+tdTALRD2dkbnQqX6klfFcyEifSI4TgC1LXguRWR9BkoDpAwTKA2YSvBpkQiBgh/p2H4Y9Zu5UO2xdYc2u42zK3Q8rA2PDniWT8d/RWmhDy2i8ef//mJYz/uNxngHCMtAVuLwEzsiTKcfBg6Xg9MHn4TNbmPnply0SHxVgECQvz2q+lPysvmBAtPR/Z8jUkaCSKG8OsFlTMNTRsZsLrXtsOM4CC/A8DUFjCl78RO1yKG0sChHOHugZExGqfcFIvluZOk7yB1HIrM7cXTPt3C444uuhQLdexcgRIAnP1xMl96HYnPYsDlsNDukMU/MeajGva6llAT9QXRdZ8uabSyesyRmSi8lhANhPp3w1V6759pi+SAr4XDaeWjandxzxqOmCa+tDm/ODc8aybPdzziSRbP/iGtkFAlH6NjzkOg02sSXuYvCe5DJtyHqfY30fQThv8DeEeG5GKHEtpGV+TcRq86yiwCydCLC2aOWd2phUY4sehT8M9iVT9mhy1oGDWvIhtUels5zkrPNjsOl0/fqHJq2MZ7ptHrw+Ccn4gvdRTgYJq1eao3P9+O0ebxy5xRyt+bj8jrpcU5XVFv8eC0cirBq0dq9co+7g2UgTajfPAu7026ax7X6t7UM6XQHoz8ZwSmXHs/05z5j+7odZW8+l9fJmdecQv1mWVEfooJ5bSxAEErGgecylKTrE16P1HZApIok8goiqBYWtUXqxeCfTsX6bCFgwC3b0TUVKXWWLfCg2iWHH1OpL7uw4U0xbyubiIWz/+DJK8eXBUJ9RX5++ngBEZMpvc1ho+2RBy47wzKQJuRuy8fusJkaSF2TbF+3g9tOeJCp2ZMZN/9xPhn/JT9OnYcn2U2/m8/gxIuMki4hBNLZB4JfVnE2AdomSCBNJsPLkb4PSGxkgUTRSguLmqBtjyabx86EhADVZhitLsdXTiqP4kigX1oFU0Z+GJclEvKHEYrA7rQRDpb79e1OO/2GnlHrc+wtLANpQusjWhAKJtaSBOOt9+Xk7+h3Ux8G3dufQff2N98wZRTsrMJAyjAoWaar9JKXoOQVjGl6IgPpQHhvSLDOwqIGqI0TJ5tXhUjHyKSoHdvWZpsul7qkcZuGbFu3g3AwTMdjD+GW8ddQv5n5/8f+wArSmJCcnsSAEedVm9g6d1r1qiiKmg52s0g1gAqu0xBKfOmVjKyPBngCmBtHAXgg80OErWm112FhkQiheMEz2KjUqg36NggviVu8bV02L9w4iRu7juCJweNYt2xjzPqWnZrF7bOL7et2cNrlJzI7/CHPz32ENp1b1u6a9jKWgUzAFSMvYvgbN5PZOD3hNpVTfBIh0p4CpRFQ0eAKcJ6NSH3cfKfgd5gX2Aqj3DB5NKLBPBT7YTW6BguLykgpkaFf0QtHAX5wDwRRvxZHiEQbxpWzbtlGru8ynC8nf8ea39fx3btzGXrMvbz32HTmfbaIgC/I1WMG4XSbtyYJ+kPMeesHfMVmAcn9T52eYpcUlDJ3+nyKckvocnInDunWpmydEIJeFx1Lu6NacWX7YXFJ20IVdI2K5Eq9FFn8NAQ+BRkBZy9Eyv0ItWF024ZQ7xsIzkVqm0BtCPZjUdSq+gbbSFTtIFz9EN4Be3j3FnUZKSWy6CHwz8SYpQjAAUnXI2wdkQW3YuTuVjP1rpRtMfHOKfiLy5WFdF0S8od486EPcSe50DWd+967jUc/v5d7zxhjOshQbSr52wtqHfzZF4iq2hIcSLp16yYXLaquZ8bus+znFdx35hiklISDEWwOGz3O6cp9790aJ5D72KDnmTt9flmUTQhIzkhm8t/PkZqVgswbAOG/KU/pUUDJQGR9vdstVqW2HbnzNOKVn52IrC8QtsTTFAuL6pChP5D5g03adxjPF4SRvvdB2wLhNaCvNzmKgqi/MKYR2DlJl5qX6VZCKILUrBSjEV4lXF4n03ZMxuneN7XbQojFUsoayV7VySm2pmmM6v8U/pIAgdIgWkQj6Auy4PPF/O/DX+K2v/utW7jykYHUa5ZJUrqXkwYcx0uLnjDyvsK/R9tnVnwodNBLkf6Zu32NQm0IKaMBZ9Q35DZ+TnnAMo4We4wMzkkgvCwg+APC1hol5X6U9JcQaY8R6x4CsIH7gtguiUBSWs0a10ldUphTFLfc5XEy8J7z95lxrC11coq98tc1hAPxUepAaZCvXv+Oky85Pma5alMZMOI8Bow4L/5gkdUgzYIofogsq9H1yMhmQ9FHrQf2bmU9QBTP+UjniRD8FpDgPBmh1qvRMS0sqsaN0YS00hRXCKjcO11tZkS6tXXly5wnIVJGxR21/61n89bDU2O6gyZC6hKH20H95lnkbs0nvX4qA+85jzZdWvLTxwtod1RrGrQ4sM97nTSQVXkVat1QyNbKqL+KO6Yb1PbI8HLQd4K9U3x1jJRGAyX/DEN+Cmn4dDLeRqhNAKPfMZ6La3dNFhbVINznIEsnEmcgpQTXqRU+SmTelaDFRqIJ/gTahrj83QvvPJdt63bw9Zvfo9hU055QFQn5Q3Q97QiGvngNRbnF3NPnUTat3IKiKkRCEXoN6Mmdr92Iatprdt/zn59ia5rGL58uZPywybw/dgY5W3LpcHTbuCJ7MPwiDVrUIxyqOgcyBnt34w0bkw8mDIPnn4rMG4gsuB25oxd60TPGAyd1owwx8Cn4PwVCRhMu6QNtKzLfat1qsW8RtpaQ8gDG1NkDwgu4IPVZhFIhcyO8xEjniQvWBJB5VyF9Hxm93HcdVwiGTbiCd9a/zONf3EfvS47D5U08XXZ5XWUC1E8MHse6pRsIlAbxFfkJBcL8OHUeMw9gLfZ/OkgTCoQYcepo/lmyAX9JALvThqKqjP5kBIqq8GDfsYQCYXStfNTo9Dhp37U1T303ssZvLakXIItGQ2A2oBmVLXpR1DcZK2KKvX00oCOj3QnNGhg5EfW+KhtFWljsK3RtBwR/NjRKnSfFBRVlYA6y8O7E3RKFG2yHIDLeRQa+heLHQc82DK73WvBcy+I5S/nm7R/49Yvf8Zf4ywReFFUhJTOJo886ir9+WsHWtdmmEn+N2zYs01/dG9QmSPOfNpAfj/uCyfe+GxdVS81K5sNtr7JiwWru7D0qTtbJleTi3neG0bNv7Ur4DHEKCfoO5M7TqXHv4coIDyJjKsLebvf2t7CoBhlZgyx80AgyooKrDyJlFEJJid1Oy0buPIUqRVfwgOdS8L1NbPMwN3ivRkm+FTDaN0y8622+f/8ndE3niF4dWfbzSsKBkKkq1i4cbgczi97aa9NsK4od5dt35pqmHISCYf75cwPrlm7CZjLVDpQEWDznz1qfTwgFIVRj9Cj24I8pXFb7BIt9htTzkLkDIPwbRpVWGAKzkXmDTfJ9G4DnEmLFdSvjM/q1x3VW9IPvDWRUFNqb6uWOSTfwWfE7fO57D2+ql5AvWKVxBKMgY8bzn9fyLvcO/2kDaXeax6CkLrE5bKRkJpnKxgMs/OoP/vzfX7t3Yltrahf/2mVMbYALkfqEYWgtLPYB0jc1qmRf0RiGjSh1OH5gIJLvQ6Q+AmorzIsXFJN8yl0n00CPz3UEWPLj36aq5ZXRNZ1PxsXqGei6TnF+CZq2GzXkteA/bSDPuvZUUwdxWr1UWh7WjB7ndMVmMzdE29Zmc/85j/HNuz/W+rxC2CHlEQwH+K4HKnFlDM5zwNkHPFcgsmYinL1qfU4LixoTWUXCPtoVU3miCCEQ7r6IrM+jAhWVcSRUo0I4wERrIH9HIQ5XzYUucrbksf4vo/3CZ6/M5qIG13Bxo2vpn3kV7z8+I3F7kj3kP20gT7n0BI47/xicbgdOtwN3spvkjCRGfzoCIQQOl4MnvxlJVpMMU7HOoC/ES7e+gRap3VtKhhZC6XgMv40CohF4bga1JfG/8giEFyFSx6Kk3GNEFy0s9iX2wzGdMksJtsR9jYSwITKmgNLACMKIJOM4KaMRKQ9Qroq/Czck3YIQsbOpt0dP5bKWN5KfbTKyTCDmr2s6t5/wIJ9N/JqJw9+mKLeESCiCr8jPu2Nm8NFTn1Z1x7vNfzpIs4t1yzay9MflpDdI5ZhzuuJwxr65dF1nQKNrKdgZn9nv9Dh5dekzNGrVIG6dGTK8HJk7kFj1bxe4zgTv1ZDbj3h1Hhck343ivbRW92VhsTtIvcgIIsoCyp9FJ9i7oGS+Xf3+Ujem4tIH9iMRilEzLYMLjDbGkdVG0YP3ZhTPBTH7Lvzqd0Zf9EycCr8QAptDpcPR7Vjx6xrCJnKDTo8Dp8dJUU585kdSmpcZuW9U23Aveq4aB2nqRKJ4q07NadWpecL1iqJQr3mWqYHUNY2UjMT11FJKCH6D9L0DeknUt1M5eh2AwOfg6BZN7amcMhGA0E9gGUiL/YBQUiBrOrLocQj+aEyD3f0RybfXbH+hgOPI+OXOYxDOGVXu++mEr+KMI4DDZeeRz+7hyJMP562HP+LdR6fHpN+BMaOrKKZbEV+Rj3AoEjf42VPqhIHcha7rfPvO3OgfKUCvi3tywe3n4El2c8k95/Pk4PEEKpRIOVx2ju3XHW9q4vpSWfw0+N6hfMQoMJUpE7vkncwidjawch4t9iNCbYJIH79Hx5DhpciisRBeBko6eK9HeAZWOYorzjdXJtc0nTlv/cDKRWv5/oOfkSYVbe4kF8kZSezYmBO3LqNROnbH3jdn/2kfZGWev34SL978KisXrmHD35v5YOzH3NLjXkKBECdc0IPLR12Ey+vEk+zG7rTT/cwjufO1GxMeT2rZ4JtC7HQ6gctChsF5Kij1KY9a78KO8Azaw7uzsNh/yPBKZO5lEF4I+EHfCsVjkSUvVrnfiRf2wGGiBRkJRZjz1g9MvuddNq/cGlcOrNpVkjOSGDZhSJyWpNPj4NqnLq/R9Lq21BkDuXXtdr5998eY4X0oEGbHxhy+/+BnAC4e3o+p2ZN5bu4jvLvhZUZNvwu3t7LjuQLh3yuMDKvCDe4LUdR0RMZbYO+EUZqoGl+u3qaRPguLgxVZMh7TvMfSychEKT/AmZcFadKyGKfbGCEKRSJE1XEQh9vBaZefyPhfx3LM2V15dNa9dDimHe5kN62PaMF9793GyQOPr/IYu0udmWL/PW8Vqk3FEAEtJ1AaZPGcJfS5srfRp9cXpFGbBlUbxl0oGSQcMZZhg6SbEd4hgCFjJj1XQ+EIDKEACYFvkKEFkPkpQq2NorOFxQEi/BfmriTV0JA0SfuR4ZW4Ig/zwqwg385IZ/7XKaRnRTixbwEPXNoaXTcfAXY7rTN3vnZT2ecuvTsxbt5je+tOqqTOGMiMhmmGlFMlbHYbQV+QJwaPY9HsPynOL0EIQY9zunLnazdWrW9n7wYi1YjmJTKUwoGwdy6TMJMyAkUjiQ3khEAvRJa8gkh9aLfv0cJiXyMDcwwVIH1Hgg2CSP8scPYEe/eYaa/0fQiEcLolZ12ax1mX5gFQWqzQ+bgSfp8br7Cv2lQatDpwkmd1ZordufdhJKd7EUqskdQiERbN/pNv3v6Rgh2FaGGNSCjC/FmLeeCcBP1iogihGFNmtRXxfsUoMhhbnaBtxLyuNQLBb9Hzb0XPPhI9uwd68TMxSikWFgcSvfQNZOHwaKOuRM+lhNJXkPnXIvOvin1+9RwSdedMTjPPNbY5VPre2GePrntPqDMGUlVVnv5+FK0Ob47D7cCd5MLhsiMUhVAg/o8dCUVY88e6suz9RAhbc0TWl5B0M/Gqyxh11dHeNMbnFKNvjRn6DgjOjkqf5UHpm8j8m8y3tbDYj0gZhJIXEpQUCsozvDVAN7YL/Rbt6R7dynUyZgnqdodk1Z9puDxOhCKw2W24vE7SG6QyctpwmrZvvA/uqGb8Z6bYc2cs4N1Hp5GzJY9De7Tn6kcH0urwFjHbNGrVgKe+Hcn4Ya+z8Ivf8ZcGqnQh2uwq2et30PKwqlscCCHAcyWy9M1KzdcFYAfX6eVL1CykozuEfiXWH7orf6visiCEfkWGVyHs7au8BguLvYnUSyAwC6ltQdgPR6rNSFjmIhpEk84rB20C4J8O3iuMj66zoPRtiKyhLPNDuAkpF3HxPUfj8jrp2a87/mI//pIATdo1iusPtb/5TxjITyd8yat3v1sm875g1iL++G4Z4+Y/FmPcwqEww469n+wNO2vUsjUcjNDqiBbVbgcYOnoZ7yALbgdts7HQ1gKR9jxCxAZ8RNqzyPwbDV1IYQcZMvIgtX9MDqxCZIWhI2lhsR+Q4dXIvEuiRQ9+pPAYbYtlAiFpW0MImwtSVByBCOGAzPeQvukQ+AKUZIRnECnOEzj3hvI9DoZuhrv41xvIcCjM6/e/H9MDQ0oI+oJMeehDRk4fXrb8l08Wkrctv0bG0elx0uviY6nfLKvG1yLsHRD1vkRq243P0am11IuRvrch8I3R7dA7GCXzA2RkHWg7wN4BWfoWlE4k3rcjQa2Zkbaw2BvIwjujQs5R4yZ9URELsxGkG7y3QdH9oG+ptM4J9q5I3zSwd0TYOyKEE+EdBN6a5f1GwhHCoUjNskr2Af96A5mzOS+uJAmMEsDlC1bHLFu1eC3+BD0yhBAoqoKu62Q1yeCC287mvGFn7dY1iQo+R6mXIHPOjkb9jOuUoXnIpGEoSdcbPW0APAORvjeM0WQZdlBbg/2I3boOC4vaIvU8iKwl3veUoALMcxmKqydSfRGZN9iQNyOAIVwhIfAx0m+UH0rHUYj0iaBtB0Kgti7L7qiMr9jPuJtf44ePfkHTdJof2oTbJ91Axx77dyb1rzeQqfVSTA0kQIMWsaO/Jm0b4fI642pBnW4Hx19wDMf1O5pj+3bDZt97vxZZ+DDo2ystDUPJc+jugShqKoDRrTDjXWTh/RBZDghwnoJIfWSfVAhYWJhTm2ctAr530NUMFO81UO8HY+qs5yAD30Pk79iAZGghcscJRgBHCBDJkPYcwhGv3P/QeU/w9y8rCUdne+uXbeLu00Yz6c9naNS6ZsIxe4N/fRTbk+zmlEtPMC0/uuzBC2OWnTTwOCNyXcnghIJhVi5cQ1FucTSZPDFSBpAysfyZ1LYjI5uizblCEPwswZY6BGL7Zgv7oShZMxANfkc0+BMl/UWEklrl9VhY7E2Ekg622ozS/FD8PFIvQijJCM8AQ7Uqspy4jomEQOYDAcNI6juQ+UOQWmxO5cYVW1gxf3WcMEUkFOHjF7/Yndvabf71BhLglglDOO2KXjhchu5jSmYSt0wYQvczYhVHPMlurhw9MO4lKXXJ5pXbePmOKYwfNtn0HDK0EH3nWcjsLsjsLuiFo4zUh13rIxvQc/ohd56GzDkbmXMK0v8pVYbJI/HipABCuAzRXQuL/YyUftBza7eTsMfm+spohViNTqiVTcF3sW3tdmyO+IFKJKxVm3a3t9krBlIIcYYQYqUQYo0Q4h6T9U4hxIfR9QuEEC33xnl3YXfYufXl65ie8zpvrnqRj7a/Rp/BveO2k1Ly3mMzkAlk3oO+IF++9h152/Nj9wuvRuYPAW0Nhi8mCP7pyILh0eOGkXmDILLSWEfAiGQXPUqVv2Kb1ZTL4iDD/3nCFgmJ0WO0BISSXItnOwTatpglLTs1N5U1szvtdOyxf/9n9thACqN5ygTgTKAjcIkQomOlza4B8qWUbYHngCf29LxmuDxOsppkJux+VrCziMKceM3Hijhcdtb+uSFmmSx9rVJ+I0AQgv8zItbBH6LlhpV9oTqQqFTRjnDvXhDIwmJfIcOLiVWnqg4FlHpg6xSzVKQ+HlUc31U8kSAKLTwIZ4+YRQ1a1DM6AXjK3WZCETg9DvoNPbMW17bn7I0R5NHAGinlP9KoK/oA6Fdpm37AlOjP04BTxAGIPHiSXVTnhI6EItRvXim1J7Ia0yiecIC2yegDbFodEwRXL6NeOwYHpL9h+RctDj7UlrXcvgUi/fU4v76wd0RkzYGkoeDuD8n3geM0YitpnEYKm/PUuMPePWUog+7rT2bjdNzJbnr2686EX8eS3mD/ql7tjXBtE6CiY2AzcEyibaSUESFEIZAJxChfCiGuA64DaN48sQL47uJ0OzlpQE9++OgXQoH4pFebw0bbI1vR4tCmsSvshxvJ2pWdzjJopOEIN6aGV3gQzlMg9QlkcK5Rw2o7BOE6FSFsRn5k8fMQmGVs7zoHkXybMUWxsDgACPcFyJJnarClDZwnI9LGJcyyEGomIun6ss/Sc5GRE+n/wEhnc5+L8FwR52/P2ZrH1Kdn8sd3y2h3VGu6nt6Zgh2FfPP2jxzSvQ3dzuiy13pkV8dBleYjpZwETAKjJ82+OMewl67FXxxgwRe/oaiCoC+EalNQVIWup3dhxJs3x+0jvEOQgZmVRokucPdDqJmgZiKdPSH4C+XlVk5Qm4HrNKPZkau3oftYdq+aUa0QWUdZeaH/A2Q4KntmtX21OAAINQvpPAOCX5msVQAXCKO5l0gdW6sUNCFUhHcAeAck3Gbn5lxuOHI4vmI/kZDGP0s2MH/W4rL1ql2lfrNMXvh5zH4ZTe4NA7kFqFis3DS6zGybzcJocZYK1DJUtndweZyMnD6c3G355GzOpUn7RviLA3iSXQlbKwhbM8j4EFn8OIQWg5IMnisR3qvLt0kbh/S9C74PgTC4+iK81ySORgd/MHTzYmqvw0ZwJ/hjjDG1sNifiNTRyNwVoGUDfmOGJG2QOgohg0YAxn7EPsnPfeeRaZQW+hN2EtXCGtnrc3j+hkk8/PGIvX7+yuwNA7kQaCeEaIVhCAcCleuIZgKDgXnAhcB38gC3U8xslE5mI6PHb1IVPWd2IeztERlvJF4v7AjvleC9smYXEFkeDexUQvqjOWSWgbQ4MAglDbJmQeBrZHiJ4Wd0990vrp/f5iypts2yruss+Pw3NE3b51PtPTaQUZ/iUGA2hiji61LKv4QQo4FFUsqZwGTgbSHEGiAPw4jWbdTm0TdzJSMp3MbU3MLiACKEA9znINzn7NfzpjVIZfv6BGK8FZBS1jjVck/YK3mQUsovpJTtpZRtpJRjosseihpHpJQBKeVFUsq2UsqjpZQmsjX/bqRegl74CHp2d/Tso9Dzb0EP/M+QjTLDdbrRAjbmT6AYyyrIo1lY/FfJ257P5tXbqDiZvPiufjg9Jrqqleh80mHVVr3tDQ6qIM3BgpSSjSu2oKoKTdo1qtbXIqVE5l0eTQeKik0EZ0PwayR2ZNKNKEmxwR8hnIZfs/BeCP9mLLQfhUh93FhnYfEfZcPyzQw/aWRZH3qbXWXo+Gs4+9rTOKH/MWxZvZV3Rk9DShmXbSKEICUjidsnXW926L2OOMCuwIR069ZNLlq0aL+fd/mC1Tw64FmKcouREjIbpfHQtOG06dwybtucLbm88eAHLJi1AJeniL5X7uD8a3OId4u4EWlPIFxnmJ5T6sY0WygHjw6ehYWUEkI/In0zAIlw9zNSe/YgOBMJR+ibcgXhYHya3XNzH6HTcR0A8Jf4Wf/XZvwlfn6avoAVv64hKcPL8ecdw2lXnIg7KV6ZvKYIIRZLKbvVaFvLQJZTnF/CwKbXE/LHajImpXt5b+MrMZp0xfklXNPxNopyi9EiRhK5063T84xC7pmwMf7g9iNQMqft0+u3sKgtUkoIfoUsfR30fHD2QnhvQKj10AsfAv+nlKt/e8B5OiL1id02krMmfs0LN75quq7D0W0ZN7/qPlB7g9oYyDo9xfaXBvhpxgLythVwWM/2THtuVpxxBKO65qcZCzjt8l5ly7549RtKi/xlxhEg6Ff4+YtUtm900LB5peNoefvsPiwsdhdZFX8a1QAAIABJREFU8iL4Xi/vNeN7Hxn4Epn2HPg/IaaNgvQZrqPwpeDovFvn+2fJhoTrsjfmJFwHkJ9dwOeT5vDPko10OLotZ1xzMikZ+zayXmcN5D9LNnBn75GE/CHCoQg2u2paIA8Q9IXI314Qs2zp3OWmxtTmkKxZ5q5kIG3gPGFvXr6FxR4j9UIofZVYFfsI6EVQ/BLxcmWA9CMLH4C0xxH2TvHrq6HraZ357OWvTdcd0q1Nwv3WLdvIbcc/QCQUIRQIs+CL3/joqU8Z/+tYGrbcd73k/xNyZ7VFSsmo/k9Rkl9KKBBG6jKhcdzFYVHfyC6aHtLYVFhX16BB00qq4HjBfT4HqzvDoo4SXgGmAcGQoTFAgiIHbRUydxC6/3OkDBkjztLJyNDCap/xnv26k94wvgJGKIKbX7zaZA+D5657BV+RvyxoE/KHKM4r4ZU7pyTcZ29QJw3ktn+yyd6ws8bbJ2ck0fHYWBHRfjefEadZZ7OrNDu0LW1PnAT27oAHow1mEeRdisw5DRn6EwuLgwK1XoJGXALsh1axowQCUPgAcmcvZOF9yOJnjV7YeZfF6KTGHVkI3lz1Il1P74yiKgghaNKuIS8teiLhSDAcCrPy1zVxy3Vdsmj2H1Xf4x5SJ6fYuqYnbNNQGdWucO+7w+Kc0o1aNeDxL+/n6atfKvOddOvThbtevwkhF0B4KbFtMMOgbUTmD4asbxBqzZuBWVjsC4StNdLeAcLLiJ1OOw2RCc8lyIJbosUMZiNDH+gV1skwhJciSycjkhL3c/ckuRn71QOm6zRNIxQIGz2yo/9ziqqg2FR0k2Z7DpcjbtnepE6OIBu3bVjlervTjivJRVKal9sn3kC307uYbtfp+EN5Y+WLvL/pFWbkvM4jn95NckYSFI8mvkdwFBMFZQuLA4VInwiO7oDDiFKLVEgdC7YOhghuxgeGYpUpknjDGQB/7bM1tIjGpBFvc17aYM5PH8zlrW8uE6lQVZUTLzwWuzN2POdw2Tnj6pNrfa7aUCdHkIqi0OmEQ1k2d3ncumPOPooRU4ZSlFNMw1b1q23gJYQgrV4FXUdZVI1kfVRo19YWnCdYrRUsDihCSUdkTEFqO0EWgtoSGfgGueNYQDe6FCoZGMK3FafOqrHebGSp1dx9tYvxt0xmzls/EIwGPrM37OTRgc8ydvaDdDquA8MmXMPWtdtZv2wjQhHomk6n4w/lytGJlYH2BnU2D3LHphxu7n43JQU+IqEIdqedpHQvE34dS72mmdXu/8vMhTx//UTyswuxO2ycMeQUbnruSlSbjszuRsIRJAAqCBcILyLjPYRt72tfWljsDjK8Cpl7IbHPr2Kog8uAIRItNbC1NFolyAKTo6iIrM8RtkQjz1hKi3xc1HAIYRON1q6ndy6bjkspWbX4H7as2kqrw5vT6vDd6xdv5UHWgPrNsnhr7QR++PAX1i3dQKvDW3DSwONw1aAO9JeZCxl53pNln8OhCJ+9NJudG3N4ZOY9SM9F4JtKYiOpgSw1UiYKhiGyPtk7N2VhsYdI33vEpv2AMVLUIG08QthAqYewH4KeMwgiZoMYl1F2W8lAbl27nalPz2TNH+tp26UlFw3vS+M2Dcndmm+k2ZkYyNWL15b9LITgkG5tqkwH2tvUOQMZ9AcpzCkmo2Eabq9rt3wYz18/0XT5gs9/Iz+7gLT6dyNlKfhnYppLVoYOkbVIbTtCrdovamGxX9C3YdpeBIEgiHCeVL7I2R0ifxKraQqgxfktV//2D3ecNJJwIIwW0Vi9+B++eXcuz/7vYZp1aJIwaFqSX8qqxWtp33X/GcWK1JkgjaZpvHLHm1yQdTVXH3orF9S7mhkvzNqtY+Vnm3d9k1KyZfU2hHCgpI6F5DtImEtWhkDqQSOf7CB1d1jUIRy9iO0bE0WGwB7bRll4LjGm3LEHAHtnhD22++D4WyYTKAmUaT1qEY1ASYDxt0zG5XHS6+KeppcjpeSzl2bv7t3sMXXGQL5x//vMmjSHoD9E0BfCV+Tn9Qc+4Nt355puX5WxstkTyyw1adeo/INSj/i3a2VckH8JMvtw5M7j0H0fVrO9hcW+Q3jOB7Uh5d0IMTRKPVcg1Ng8RaE2RGS8X8FwRlPhtE3oJZORslz4dvmC1abn27W8Z9/ucVFqACkhf0dt29DuPeqEgdQiGp9O+IqgL9a3EiwN8u6jsSkJf/7wF9d1GU4f2wD6Z13FO49OQ9djh/+nXtELM5od2iS2T0aJ+VTcwIkxuvSBngNI43vRI+il02t+cxYWexEh3IjM6eC+AKPQQQHhBbW16aBB2Dsg0l8GkY5hIEOgb4WSFwwpvyjuJPO2rzabytRnZtKkXUNTAQyX18nx51fuAbj/qBMG0l8SIGKSZAqQszW/7OdVi9dy/9mPsW7JBqSUFOeV8MHYT5hYqZxp2IQhdDm5U8wftEn7RoxfUK5EIrWdoJmo+gDggqRbQEkn3iEeguKHyiTQLCx2Byn96MXPoO84AX3H8ehFY2PEm6WMIANfoxeNMUZ7WoXUNG0r+D8Gor3e9RwofgRZ+or5uXwfmPSFD0DgS6RmtKc654bTcbjjk7rDoQhvPPABQ4+5j14DjosRy3V6HDRp14iTBx2/B7+JPaNOBGm8qR5SMpPJ2x6fktCoVX1yt+WT2Siddx6ZFidAEfQFmTVxDoNHD8STbPhm7A47T30zkh0bd7JxxVaatm8UXyYlVBJqwitZKEnXoSdsrxlGljyDSHmwlndqYbFLwPkKo9Z6V+6i7x1k6CfI/AQII3MvBe2fqGFzIkvHQfrrCMdRyJJxxGdg+KH0FaT3KoSoNBoMLSI2RzKKsEN4JahNuHL0AHZs2MnPnyws6ya6i13akL98/Csjpw/ni1fnUJxXyokXHkufq07a59UyVVEnRpBCCK5/djBOT/wveuva7Vze5maeuHI865ZuxMz1aLPb2GEixVS/eT26nd7ZtIZUKBlg70T8r9gFnouMH5UmiS/ab6X+WOwmoXlRdfuKRisU7Zj5P2Tpm8b6sn5IQZA+ZMFtxjQ6vBTTl7vUkOH44gojncdkrCUjoBrPuN1h5/73b2fK6nE062D+3IdCYRxOOyOn3cXT342i7019cLoPrLp+nTCQACcPPJ6R0+/i0B7tcbodCMWYHgdKg4QDYeZOnYfdYcNMBzQS1qjffDdqp1OewvDjVEBtBp6r0UunRH2PCTAVEbCwqAHhZUbUuTLShwwvBf9nmI749ELQ1oEtUQJ2CPIGI4PzYpYKzxXEZ2vYwd4BYT8kZmm9pploYfOuheFAmKA/sdDFgaDOGEiA7n268MLPj4IQSD32DRn0h8jbXoBQ4n8l3U4/omx6XSuCMzHUfCqgbYLiJ6DkWRInkgtwnFj781lYgDFqM5UxcxrBFJHIsyYBGyLpZsA8qAIBZMEt6P7/If0zkZHNCFtzRMZroLbEMJR2cPZGpL9mfnmJskAEhENVt3zd39QpAwmgaXrCt1SgNGiawvPbt0tr/WaTMgKlkymTqy8/C/g/KFdwNt8bwvORge9rdU4LCwBcpxmpOXH/3kEoecqISscZQAFqE8PYOY6GlMcSH18WQeF1hsxZzpnohaPA3g2RNRtR/ydE/YUo6eMRSorp7i06NjVd7nA5SMlIquFN7h/qlIHctHIL13a6HYF5P42kNE9cFzUwxDy/fXcu29Zl1/xksriKaXLV4rzG/kXIgluRkfU1P6eFBUZPa5HxAdiPgLhnPQzhv4y+7LgxVHy8INIR6eMrHCNE9eYhBASNiHfgc4QQhvhFNc3n+t50hmk8ICUjicOOO8RkjwNHnTGQWkRj+MkPs2X19rh8LtWm4E5y0aZLS9N9jYz/1xnS6Q6GHH4Hm1YaqQtSRtBLXkff2Qd9R2/04qeQerGxk0iJvsXNSDR9qUzESKGwsKglxrT3bcwTVQKAD5H5HiL5bkTqWET9HxG28nI+Gf4b85JDM/xI37uma/74fhm3n/ggFzUcwl2nPszf81bSsUd7hoy9DIfLgSfFjTvZRVbTDMbOfgDFxMV1IKkTaT5gTJMDJQHTZNdWh7fgoWl3svHvzfw9bxWB0tjptJTlqQgb/97MHb1G8t7Gl1FLb4XgT5T5EkunIAPfQNZnCOFAJt0GxU8SO812QdIwKHmRqhV/ACJGTpqFxe5QlRtHL0LYDwP7Yebr1dYYL/LqntFd54rP25332SLGXPJcWUrPH98VMmLeaMZ8cR/nDT2TUy87kb9+WYk31UPHY9ubGkd/aYCgL0hqVsoetZvdXQ4uc70PKdhRmLB8sEXHpjRq1YCjzzqKkwcdj9PjQLWrqLZ4f6SUkqA/yPyZM2ONI2BUEWRD4EsAFO+lkPIIqC0AF9g6IdInoSQNgaSbiJ/+VMaNcFrBGovdRKRGywYro4DDvPa5bFd33wR+TDNc4DorbunLt78ZX73mDzFx+FsAJKV5Oeaso+h0XIc441hSUMqoC56if+ZVXNLsBq5sfwt//vBXDa5l71JnDGSn4zuUFcpXxOV10q2PoRguhOD2iTfwws9juOqRS+h0fIe47QG0sE7e5pXmJ5I+ZOjXso+Kpy9KvTkoDZcgMqcjtY3oOWdDyTgSJpID4AS1EbjPqdH9SSmR4SXI4E8xFRMWdRchBCLlUQxf466XvR1EEiJ5eNX7KkmIzI/A3g3DTOz6qowTbM3BfaHhbso5Hz13IJGSGWSv32567HVLE1WYlXP/2Y+x4PPfiIQiREIRtq7N5v6zH2fz6m3V7rs3qTNT7EatGnDG1Sfz9ZT/lU2hnW6jlKnXxcfGbNumc0vadG5J4zYNWLVoLf6S2GmGUOCwnu2Napk4G+c0ch1NkMVjwD+1mgi2YjjQ3echPFfEVy2YHTeyAZl/dVTJXAEZRibfheK9otp9Lf7bCOexkDUdWfo6RP4BR1fjuVIbVL+vrQUi8x2kNAI20v8llL5gCOWKJLC1Q3j6I519IO+KaHK68b+iRJYz/MUknhzaOO646Q1S45ZVZN2yjaz9c0NceXA4GOaTcV8w9MVranz/e0qdMZAAQ8ddwxEndmTmy7PxlwToPfA4zr2xD3aHuSTZsX270aRdIzYu30IoYEwVnB4n3fp0pk3385E7nzWEbysiVIT7grhjSW0n+D4gvva6EsKNyJqFiJORMkdKaRhHbTMx1rr4aaT9MISja42OY/HfRdjaIlKrSNupbv/osyg854Ln3PgNAl8htbXEuJukn159w0x7uSH//FU+8nR5nAy6r3+V58tevxObXY1LZdc1ne/e+4krRl1MSkbybt5N7ahTBlIIQa+LeybUnquMzW7j2R9H8/ELn/Ptu3OxO+ycfd2pnHXtqcZb1Gwqq7ZGqPXil0eWG8m7ZhUOZbghaXiNjSMA4SXRkWPloWwQ6XvHMpAW+xwZ/Nk0SKOoNk652M0/I8tNXVqDVHqed3SVx2vduUVZULQypYU+Hur7BM//9OieXXQNqTM+yN3F7XUx6L4LmPzX87zy+1Oce2Mf/lmygd9m3kUkYmLsImuQkbXxy9XGiXsQ4wH7UYi0543ATm2QRZj/GSXoebU7lkWdQcoIeulH6LkXoedciF76HlKGkdKPDP6MDC2K0XOsEqU+ZsLQ/pIQS3/eEbNs5+ZcHjzn8bhtK1K/WRa9LzkeRY1/rnVNZ83v69i8av9kd1gGspbMmvg1t5/wIDKyEpvNJE9M2CCywWRxW7B3IP5BckLm2+Dqi/S9iZ5/a0yQp1rsXRIYXhc4T6v5cSzqDFJKZMFQKB4D4T8hsgSKxyJzzkPu6IEsuAWZfy1y5wnI8LJqjyc8F1AeBDLQdQgFBIu+j50Ka2GNjcu3sG5Z1YGa2yddn7B5ns1hI2fL/nn5WwayFpQWlvLy7VMI+kMsX+whFIhN05ES/vzZzicTt/Prl7+jabFvYJE+KZpe4QBcxps37VkofMCozw7Ng+CXyLxroxp925GlbyBLXo4m7sYjlGRIHo4Rqdx1PS6wNY8+uBYWlQj/AcF5xObnBkBbbQQQZYnhW9dzkHlXRYM0iRFqY0T6SyDSkXjx+xS2bXAw4sK2RMLxJka1q9UaOFVVOfWyE7A740em4WCY1p13r6NhbalTPsg9ZencFdgcKqEAfPZmFn2vysVm11BU8JcqjLioLRtXe9Ais7A5viS9QRrPz32kTGVcKGmIjFeReqHxECqNkL6pEFlP7MPqh5JnkCXPY/gWI1DyMtLdH5EyMi5hVvEORtoPQ/reAS0PXKcjPBcgElbyWNRVpO6Ldi6sqbZABII/GPXdVSCcx0P9XwgU/sFtp4xm/XI7ifJ8w8Ew7Y5qFbc8FAhRlFtMeoM0VJvKecPO4vNXv6U4v6RMAcjlddL/1rP3W5DGGkGaoGka6//axI5NsXJk7iRXmV5k/k47w85ux6/fphDwCSaNbsq65R4CpZJwMIy/OED2+p08e1182wWhpCLUJgihQHAO8YIWYNRrBzGi3jqGQvPHkGD6LRzdUNKeR8l8C8V7mWUcLeKQwR+RO3tGCxlqWkaog15Uoy2FUHGnHkUw2IxExtHlddJv6Jmk1StP9dEiGq/cOYX+mVdxZfthXFj/Gma+PJu0eqm88vtTnH3tqTRsWZ/23Vpzx6s3cuUjA2t47XuONYKsxLzPFvH0NS+Vtads3bklI6fdSVaTTDqd0AGXx4G/2DBoW9c5GXllK5weJ6qqEA7GGjotorHwq9+JhCPY7Al+1UomxsNUg46G0o8MfIpwHrgeHRb/TqRegMy/BfOXcZU7grNHjTcvzCmizZEt2b5uR1nl2q4ZT7MOjTl/2FmcOeSUmH0m3/cesyZ+TTCq5h/0h5h019ukZqXQ66JjuWX8kNpd817EGkFWYMPfmxhzyXMU5RTjLwkQCoRZtWgtI04bjZQSVVV57Mv7Sa2XgifZjSfZjcNl5/KHLkRPUMYodYmuJzZ+wjOImA5y1WHVZlvsDoE5mKpBlyFAaUxMy1fhBs/lCLUK5fsKFOUVc8ORdzH/s8UxxrHNkS05+7pT2bExhwm3vsGAxtcxe4oh5RcOhZn50uz4kkRfkHdGT63NHe4TrBFkBT6d8BXhYGz2vq7p7Nycx4pf13DoMe1o26UVH2yeyB/f/4WvyMcRvTry+aRv4nrZgCGTdthxh+AwcTSXbePojEy+B4rHRoVMdZApgHmZFtqmPbhDizqL9EOVaTvSyKd19zeazQkPwjOgSi2Agp2FBEqDNGhRDyEEMyd8RVFeSUwFjJSStX+uZ9PyLWUjxMKdRYy7+TVSMpLpeGx7dM38unZuyTVdvj+xDGQFdmzIQdfifTOKIsjbVt790Ga30e30zoBRFvXeYzNM9/Omerjj1RurPa/iHYTuOgvCSxFKClJtCjuPJ06NHECPbzxmYVEtzhOh+KlqNgpCaB5Kva+r3Cpvez5jLnme5fNXoSgKKVnJjHhzKIu+/pOwiZ6q1GSZcSw7ky/EWw9/xIRfx+JJ8VC4M97P2e6o1tXe1r7GmmJXoOvpR5gKeYaDEQ7p3sZkD/hx2jzTlrKqXeHSBy6kabtGVZ5Thpeh5/SHncdAwU1I/wwI/oqpcQSwmQtoWFhUhbC1BM8VUYWeKqbaWtViEFJK7jp1NH/9vIJwMELQH2LnplweOHcsyRnJtZIk27EhB0VRuO6py+P+75weJ0Mer2XRxD7AMpAV6HPVyaTXT8PuLB9Yu7xOzrn+NLKamCetJpJQs9lsOF2Jp9YAMrIZmXcZRJZhBGmC4J8BRbcn2MOBSL6rBndi8W9C6oWGEk7BXeilbxhpYPsAJeUuo0+M6wIS+r1tVY/als9fxc6NOWiR2BmTFo7gTXHjcMc+84pNMa2IAWjTxchlPP2Kk3jggzto360NqfVS6Hp6Z57538Mc0r1tzW5sH2JNsSvgSXbz0uInmPr0TObOWIA31UP/YWfR+5LEjctPvKAHHz35adwUW0rJsf26V3k+6ZtiUgVTRX6a/SiEo0vi42k5EPkblAZx3eQsDk5kZCMy90KQAYxUrtnIklcgcyrC1rxmxwivMEZ+9o7VqvQIR3eEozu6rzsUjaKymHN1L+Cdm/NMR4mRsEagNMidr93Eize9ihbR0CIa7bu3pcc5R/H2w9MI+sqfbafHwdVjBpV97nFOV3qcc/DpBlgGshLJ6UlcPWZQzB8vEaWFpTx77cTYDokC7E47Nzw7mKzGGVUfILwCqEV7V9X8eFJKZPFj4HsfhMPoX2xrg8h4zejPbXHQIotGRevpd71gAyBDyKKHERmTq95Xz0fmDYHImqj0XgjpvjCmmECGVxoyZLbWYDsUQgsgssqQ1Et5DErHGZkRtlaI5LuMhO8qaN+tNZFwvEvJ6XHQufdh9B54HCdccAybVm4lOd2LardRkl9C/Wb1eHfMdHK25NKmc0uGjL2MDke3243f2P7FMpB7wIs3T+afP9cTqdDnV1VVTruiF+fe0Kf6AziOgPBv1MxICtCykeElCPsRsasCH4PvIyBUrhYUWYEsuAOR8WYN78bigBCaR3zSth5dXjWyYLihEkWkPI3W/zHS1hE8fZH5N0Dot6jx1DB8jzpG8UF0B1dfROZ0hOKt0eU2atWAXgN68uPU+WUjQpvDRmpWCn2u7G18ttvIbJzO44Ne4M8f/ka1q9jsKrdMGMLJA6s2wAcbe+SDFEJkCCHmCCFWR7+nJ9hOE0L8Ef2auSfnPFjQNI0fp80jXClAo0U05k6bX+3+UtsezWmsqsNhRX+OhPBvyNzL0P2xUUZZOoX4BOAIhBYhKyn6SKkbquMlryIDs6uts7XY1yQao1Tjv9YLIDSf+OfHD/4pyOJnILQYY0RaanzHj+HCqTDjCcxC5l9vHDPwLXpOP/Tsbui5lyJDv5mee/jkm7j+6Sto0bEp9Ztn0femPry06ImY3vGjzn+KP75fRjgYJlASoCS/lMcvfYEH+40l5yBI36kpezqCvAf4Vko5VghxT/Tz3Sbb+aWUiZ1n/0J0TUc3aeEARn9tKWXCiJ7UcpE5/aJTqyoqaEQayJwK20ggAMUjka5TjVJFgIROfdXQrIxOs6Vegsy7FLQNxkhTOA1l6MyPEGrV0XaLfYT7XPDPJFZI2VF9qw3pw1DQMZl96EVGsK9G9dY6hJegF78Epa9QJnobXojMuxIy3ojTFFUUhXNvOJ1zbzjd9Ihb125n5aK1MTMr45ph/qzFrJi/mleXPRtTbniwsqdR7H7AlOjPU4Dz9vB4/xrsDjuHJPChaBGNcUNfS7ivEZwpJWEqD2C8u3yYGlC9FPQK6RjOkzF91yleUMubtMuS5yCyNvrPFSlXbCm8p4rrsNiXiOT7jNQt4QbhMb7bDkUk31v1jkojUMwMjM14HmRNxSgAVPC9RnwHwwCy2tzJeHK35mN3JBh7SfAV+5n50uxaH/dAsKcGsoGUctd/6nYgUQjNJYRYJISYL4RIaESFENdFt1u0c+fOPby0fc/tE6/D5Y1Pl9A1nVkT5/D8jZMoyi2O3zG0gGpbL6CCkujXqYMoVzMRSTeBkk556oYKuBApY8pHmQD+WSbn1SC0EClr2N7TYq9iNMeaikifgkh+0Pie+RFCSap6PyGibRQqNuRyGgZWSQdbR2r+7x2ORtFNiCRoTlcFrY9onlARHCAUCPPH99XrTB4MVPsbFEJ8I4RYZvLVr+J20kgITDRfbCGl7AYMAp4XQphmXUspJ0kpu0kpu9WrZ9K24CCj1eEt6Df0TNO8W6lLvpr8LUM63U7e9vzYlWoLEv/q3YATUh5GJN1ITG0sAA5w9kIoKWVLhJqFyPrcaCVr7wHu/ojMaQhX70r7JlJwMf50Ui9BLxqDnn0MevbR6IWj9llOnkU5QgiEo4shUefoUuNka+E8AZE1HdwXg/1IjIZtGpROgsgKjAez4kszAUpjw91SAS0CQb8AxaxtbNV4U70MvOd8HG7z1iGKqtCkTe2PeyCo1gcppTw10TohRLYQopGUcpsQohGww2w7KeWW6Pd/hBD/A44ETPoS/PvIaJiGw2knZFJipUV0ivJKeHfMDG4ZV96JTXivQga+InZKYwe1OSLpFnAeb5QcSgnB+RD4xFiPDo7uiNQnyvaSMmREPGUE4bk8alQT4DoT/NOJ9VsJsHcGnMi8840p+K5Rpn8qMjQfsj5DiKqDBhYHBqMh18PoOedjPE+7xigRwAn2rqAkGSPE0C+YBgX1QlDrg7aV0uIw4+9tyo+fpaJrgtaHZ3L7a2tp39W8ksxX7OfzSXP46eMF5G7JJ39HIXaHjVMuPYHbXrmOcTe/FtcV1O600f/2mrUzPtCIRJUgNdpZiKeA3ApBmgwp5YhK26QDPillUAiRBcwD+kkpzSWyo3Tr1k0uWrRot69tf5G7LZ/BbYfG1ZpWJDkjCZfXSXFeCR2OaccNzwym9SHrkEUPgF4M6IZRTH2ybGQopYYsGAbBnzAeahWEDZHxDsLe0dgmuABZUMEgygikjkFxm3SeIyp5lTsA9OxKTZYcRq1u6Jf45kvCg0h9AuGqQdqSxQFBajnInSdh6rZRmqLU/w4ZWYssM6JmCEDljvNasuoPN+FQ+QzHneTitb+eo36zrJg9SgtLuanb3eRsyYsbINidNlp2as7Y2Q/w5ODx/PbNEhRFISndyx2v3sjRZx65J7e8RwghFkdntNWyp1HsscBHQohrgA3AxdEL6AbcIKUcAhwKTBRC6BjzyrHVGcd/E54UNy0Oa8qqRf8k3KakoJTiPKMD4h/fLeO2Ex7knreHsXXt3SSnRji+f0+S0mOnHNI/PWocd6XvhEGCzB8K9b4FWYosuD7eoBXeh7R3Nq3CEEoaZM1CFj8PvtcpDxKFIPg/TING0ocML7cM5F5GBn8wUnG0DdGZwx0mLpGaUpX4bXSd8BovweAPmEe3Jf/8bWPN0ljjCBAORZg54SuGjL0sZvmnE74yNY5g6BeWORyFAAAgAElEQVRsWrmVdUs28uhn91JSUIqvyEe9Zlm1qtc+0OyRgZRS5gKnmCxfBAyJ/vwLcPienOdg5rnrJrJuadUSZLKSHmSgJMDDFzxVNht64aaPeHDqnfTsW6E00fcRpuKmMhe0tRD+K4HHV0P6ZyKSh5peixB2ZOgX4o1honxMD0KtWcmbRc2Qge+QBbdRNpqLrEQW3IpMfRrFbZ46UxVCrY9UWxg9ZWJwsnpFb7ybBtOw8SIUxQnoRi8kPZ/KKUJb1ztRbfEPVSQUYf2y+Gf8509+NTWOu9AjGuuWbqTzSYeRlOYlKa1myegHE5ZYxR7gL/Hz04wFphE7oQhsDlvCdAepS6NEUEoiYY1R5z9F7raKSd2JUoCEMZWWpZiPHCLR/MoqqFKxRYn9WbjAfWbVx7OoFbJ4LGYpNZQ8YbY5UgaRge+RgTlIs17sgEh7FkQKu4J6Ab+XO/u355dPfiAjfQGKCBt9kAgbknnCFXeMVh38RMLxozuHy06HHvEpbSmZKXHLKqLaVZq0/3fn11oGcg8oLfInFGn2pHh4dckz1ag4lyOl5NUR75QvcJ8HxD/EyCCy6FmkyMB8COkGJavqvsb2wxJcRTLYj8aYWNgMcYzMj6z+NnsbLUHLU21TnDqUDP6C3HEssvAOZOEI5I6e6L7YYjRjHx1Sx0Ly7eC9gclP9mPl707Ovnw7Lk/lF2nIENCt9Hw1aQ3dTvHERJ8VReD0Ok2TwvvfepZpmhuAalPJaJjOUaf+uyePloHcAzIappGUHp+vpiiCbqd3pmn7xvQa0BNngnSHyixfUD5FEp5LwN7JSB6OQYPwD1A4Apy9iU0DUjA6Ij6HzLsaufNEQ+mlEiL5TuLTh9yQfBdK5luIBosR9RehZL5XY0UZi1qg1E+wvF6Mf07qJUYQblcb1l0lg0X3IyOGkZXadmTuuci8gcYzUfwMCA/fvLeWcDCMJ6mK1C7P5Ri5k0nGd+dx3D91AhcP70ta/VRcSS6O7dedCb+OJTUrfrTY/YwjGXRffxwuO64kF0Ixrl21KfQ4tyvPzX0EVa0ivehfwB5Fsfcl/5Yo9i8zF/LYoOcJ+cNIKbHZVZweJy8teoLGbRoSDoV5dcQ7fPHaN0RCEbxpXopyTJLHgWPOOopHZ5VXUEipQ2gusuABkNnxO6gtESmjjXavwe8w9SOKDET9nxDChtSyDSe9sCGVxlD6KoSXgtoIkXQzwlV7/5dF7dF9H0HRGGJ8zMINSXejeMtVpKT/E2ThKIyKqorYwXsjSvJQI70nsoJYl4zKOS07Eg4pjHx9HT1OK0KpbKfUtij1vjCm7JG1oDZAqLuXm1icX8KKX9eQVi+Flp2aoSgKqu3gNYz7M4pdJ5BSsn7ZRkqL/LTv2hqHy8GaP9ax9o/1NGnbkKe/G8WHT37K1jXb6XTCoQy4qy/1mxuJ7naHnZuev4rrn7mCUCCMw2XnovrXUJxfGnMOm9PGRXf1jVkmhALOXkiZoM2CthEcR0HgMxL6LGUAQvPRI/9EJfcVylRdUp9CMZHUklo20vc2hP7f3nmHR1F1f/xzZ/umkUDoRUCqFAsoYkURBBQLiGADaZZXQAVExYIiIr4i+qJYfoC9AIKKgIqIKIggAtKkSjPUAOnbd+7vj9mUzc6EhBKK83mePMnO3pm5N7t79t57zvme1WBtiIjrrSlSm5wQhOs2LX4193/a7FDEQfxD2qqhKCXtM4fTUD1fc3DnThbPTSYUUGjTMYs6Df1AmAuvymHFjwn83+jqtLg0F7tTYndIwiGBxepEJD2v9UWJB3vL4xpPKBhm1YK1/P7talKqVuC2oV1PaRjPicScQR6FPdv2MbLLWA7vPYJiUVBVlap1K7Pv7wPackgIqtWtzCsLR5FYsXTFzDMOZvJY++fZvTENi9WCYrHwwITedBmgX5xdPXiFFrtYHOFGVF6FTG8PaprB3Zzg7Ai+ucTOMJ2Iyj8jlEIRJhnaiTzcLZJ6FkT7DrUhUqbGiBaYHB9SqlqYlnBre4LqPlCqFqQZytBu5KEuxIblKICV7z9P5o0nKyNVUFWwWKHbfen0GbGf/bvtDOrcAL9HEJek0m1gOk1a+ajToh0JNf6DsNY9IWPITM9iYMth5BQp1uV0O+j9/O10f1Q/HvdUU5YZpGkgS0BVVe6u9x/S/zlsWFoBwGqzcEmXixg1q2zlEA7sSifrUDbnnFcLuzN2nzJfldka/hRyJlBc/Rn3XSiJj6Eevg2Ca0q4kxX95bdLy/91dy84pB7pD4FfYttaGqCkzi3t0ExKiZQqMucV8HykVbWUIXD3QCQ8iRAW1Oz/gudjCrNkFECSka5wz8VNCfij3QgOl8r4L7fRoIWXnEwL86cls3Wtm3pNw3R+eHapv8RLy5QnP2HmhDkx1UAdLjszDkzGFX/6OfjMJfYJYv2STeRk5JZoHEFbYiyfu5KAP1hiidfiVKmTSpU6sTnnnhwvEx+azM/TlxIOqdRrWZvRn3UhJeGbwg+Rqysi4VEARNwAZOZwjIvCG8Q4SknR7AupZkFgsX7b8Hak6kEoxZ1GJseDzJsKnk8Af6ECj2cGUiQhEgajJA5HOq/SEgfCORBYBIRY/kMSwhL7vgz6BT/PrkCDFl4SKoTpdt8h7Qn7FSgpx28cd2/awxevfsOuDf/Q5NKGrJy/JsY4ghbis2PdbppeemaX/jANZAlkHcopddS/lJJwKAxlMJBGjLzhRTb/vq3gjbdt1U76XuRkyoY5VKrq05wqRcUqnB2Q8Tsh9w20WUYQiEczfiWp9MiIJzzyKO9DjPVGLFBCPrZU8yCwJKIKZNMMqf1SRDERBBlKQ+aMhcASwAHu2xDxQxCidJ7+sw7PVGK/2Hzg+QASBgMg7Bcj7Bdr6YKHl2pfkIZoKYOFaLGsJ6LY25qfNzCyy1iC/iBqWGXLyr9jkiDyCQXDJFepcNz3PNWYYT4lcF7bhrrfjnrUP78urjiduMUysmPdLrau3B5z32AgxFdvLEbYGkUZx3yU+IGIyssQFT9FpC5CVBijzTYNcUL8w9FCuf6fjZvb2xgKVkjfT8j0ttosNms4ZD2MzBiEPNgG6S+ckWq54N3A/6O25yYzIe9DZMaDJfTz9OOEbksZ1TmXObFxrJY65CuNt+mQjQzHfnnbnHba3TMU7FeCpTaqvTMz3h9Mj9qv0MnRk0GXPslfy7YcU1dfu/9d/B5/QYG6UCBMOKTGVC202Cw0uLAu1eqVXEDsTMA0kMVYtWAtD13yBDcn9+apG17i8lsvjgqGtTttWKxKQR1fu9OGO9HF0MklqOiUgT3b9uuGSIQCIXas28XiWcsZ3WM843pPZM2iDVFthOJG2Jpr4Rr2S4mtmAiaoGoHRMUZKPH9op+yGEnMCS0AWQepHkFmDokEHhedrfq1fPGMh5CqJvcmPdMi7dTodoHfkcHCGFApS8otPnXI4GbUw3cgDzRBPdASNXv0UXU0ZfAv1CN9UQ+0Rj10A9I7L7qBtYn+iZb6CGHRsq0Cq5CezzQd0YRnAScVKoUZNC4Nu0PF5lCx2izYXXa6D72RBhd3QUmZjJK6gMljWvLR6IVkHsgiFAyzaflWHmv/PDvW7SrT2D05Xvb9vV+/qzYFd4ILd6ILu9NG00sb8dyXj+m2PdMwnTRF+P3b1Tzf/ZUoZR5H5E23ecXf5GbmcdVtl9Ku1+UsmbWMjcu3UqdJTa7vdy3JlU+MfPyebfsY2HIYgWLqQDaHlap1K5P+z2F8eX6EAIfLwS0Pd6bvC/oVGFXPTMh+Dm0PMqR5S+2XISpMjBbSjSD9y5EZA4g2dApYm6BU+jK6rfRpYguezylZ2t+FSHwC4e6JmvEQ+OfHNhFxiMTRoCQjs1/Qcs1FIsTdi4h7QLev5Y0M70ce6hxJ18vHAfZLUFL01eNlcCPycE+il9AuSBiKEneP1iawSittUFArRtNwFMlvg+18ZMa9WpyjlFrxLaUyJD6llVQI7yE9vRVLvj2HUNBB25taUatRjYI75WV76FG1f0y+tFAEV3Rrw9PTHi31+IOBIDcl9dZNq02uksTHO99i919pJFZKiFH9Od0wnTTHyDvDPoyRLfN7A/z0+a98sGVi1PGb/tOJm/5z4nOUa5xbjdbXn8+K7/4sMJL5ed37d6YTjLzZpQSfx8/MV+fQuX97qp4Tm52huLsh7RcgPV+CzEU424O9reG+qnBcgnT31Dyq2hXA2gCR/E5MW5nxIARWcPS6J8FCo2JtGFENKi7LpWpxgRkPUGCcZTbkvotUcxCJpSsJIdUs8H2n3c/eFmEzmJ0dA9LzkU4ZAz8EliNDO3TDZmTu68TuAXsh9zWkuydC2BH2C6Hi58jcNzVDaDkXkfAfhK0FavYYTZQk//8lgfA/4PkMJXkSAFUqQrfG+n0+sDMdq90aYyClKtm2ekdM+1AwxJJZy1m5YC2VaqTQqe81UfG8V/dsy0+f/0qo2PZPzpFc1vy0ntbXnx2xj0U59V/NpxFpW/bqHt+7bf+J3Xc6CiM/e1hL90pNxBnnoM0NF5FUMbHAOBZFKAor5+uH+OzamMbwDh9yfcpyutbYysRH/sLnMTZoat6HkRlhOPIjtN9KtPdThrZB4A9KVxTKirTUQYbSEO6eWt3uKOya4fTNRdeYeD5FqsUzSWKR/mVaamXOi8ic8cjDt6NmPXHiXrfgX+gWyBJ2CBlI3QXWoO/0CoNaWFJE2JqiJL+JkvojSso7hWV9vV8T+2USAv8ipAwiQ2moORNQMx9DemfHVKisXLuS7h66EFC3Wa2oYz6Pn8GXPsn4AW/z3ZSFTHvpK/o2fYQ/iry3Br3RX7fQVigYZnz/t8r1M1JemAayCClV9b1uFSonlZuGXf6b7J5RPZhxYArf5HzMVbe1Jd2gVKZQNGGM4mQcyGRI25Gs/XkDUpX4PX6+e+8nnulqoBij5kQybYoaqQCEdmsz0KKEth3FAZSPA5CQNRx5qJO2fE96NaJgrgA2cHZEJE/Vrmk0QL0g+fx+Sz+qdy4yY2DE8eNF21LwgW+e5hA6EdiaATqedhlEikSkZ1akjK72/1O9c0EeiW0PIFXQr5BcDCMpMamV7j3UBfImg+8rZPYzyMPdor5M4ivE0bHP1QX75fnYXXbuGNmN3Mw83hwylR7V+nN7tQH8vWYXvoj6dzAQwu/xM/au1wmHNWeRK85paARzM/JI/+dQKcZ0ZmEayCLc+VQ3HO7osBSH28GdI2896feWUjLr9bl0r9KPLq47uaP2/fz4qeYBnjd5AeHiJTTzzwtL2twYm+HyzdvzCfqDFH0/B/1BNi7for9BH/zTIIzHC/5iFegs9QxCTQQoNcDWGuxXo82e/BFRX79WACrrWUh+H1FlLaLKWpQK4xFKAlgbYVDcBwxyhGVwPfLgZZD1BLrhTNKL9M7SPbegSXivlrES+UdpdcN/ReZNjhg8zUgJ9506s1+H1reMe5E5zyOzHtfUdnw/Q9bj6M8e7eDqVrp4Use1xNaSEWBtGRmzlwIjKj0Q2qltBRThoYn96PbIjbgTtYDtOk1rMnr249RrUYfBbUcy950fyDiQhSfHW+CdLkrQF2THukL1ofgK+v1WVRVXwukXFH68mHuQRegy8Dp8ngAfj55BwBvA7rTT64lbtMJcJ5mZr83hg6enFSyBD+05woSBb+Nw2VFDxl7d+8b3xhXnRFVVfHl+XPFOhBBsW71DV8zUYrWwe9Ne6javE/2ESEQ/71cU1NUuOGJriLSdD8HVFC6zhSa4kPwmiq2plgESE3SugtwHBy9C2lpoVfms52pnJwxCHl5GtKFzQVxvXbk1KcORWeNRtC8NctRlaAcycxCEdkXGWBGZNAZyXobwTgrrhidE6oZXhZRpyJznte0F4QT7FYV7qkWXt5mD0DX2QE5uNcb1FXiyn6Jdr8vo1O9a3Swq7X8yAhn4PVL33Kv9P4Qd4vuz588n+O7jqqTvt9G6XQ5X3JCF3eEH3xyIv6/gGharhXtH96TP87ejqioWiwVVVZn08Hvs2bIX1SCOMR9VlVH9u3XIDbz1yHv48gq3V6w2Cxdc25wEHWWrMx3Ti61DOBwmL9NDXJK7XFRJVFWlW2pfcosJWADUblKDW4d04c2H34vZg0xIiWP6vsnMfG0un42dhS/XT3xyHH3H9OLw3gw+f+nLGCPpcNuZuGwsdZtFy5hJKZHp14K6h+iZjxOhUzxeqh5N+NX7Jdo+mSXyI7VyteoBSi5tK0AkIFIXaKUgABlYgcweA6EtoFSAuP4I97262xsysAqZ0S8i6GCEC1FhHMJ5fbGxBpDpV4F6pNhYrVq/opa2CtjboKS8H3N1NXM4+GajP1OMRVVhzdIExj9Sk/Q9dhxuB3Wb1WLC4tFYbQbCytIL3jnI4Dqw1ke4bmHZN0sYc8cUwiEIBRWc7jDVzwkwYfY2nEktUCpOLzg/HAqz8NMlLPj4F+xOG536X8svM35j0fSlhquSfISAGg2qMXXj6wWvgZSSN4dMZd7//YjdaSMUDFOvRR1emPM4iScgU6c8ML3Yx4nFYjnhOasl4fcG8Obopwke2JXORR1aFggBFKXqOVWY9fo8Pn5uRsHMMys9m0kPv899r9yNzWmLWmbbnVaatKnLOeduQs2ehrDWAOcNCCVR+wCkTEUe6RvZO1O0OMqEYWBriZr7Dng+1ZZyjqsQCcNQkp5HxvVHHroBbeYX6aNacgkKDQkygPR+hYjrA4Cwt0ZU+qp0/zQZwGiWpuECx9Xg6BCRjfsVGViOUFKRIi4ixlHcsOltG6hanKb0IYqrcOtewxghoGmrXKYs3sSMSal89Eo1dv6VxpJZy7n69ssMznFp2UbcBmgG7799p+P3Fu6O+TwW0rY7+OaDqvR4vDDkS1VVRt4wlg2/biqY8a36cS3hoBbgbYTNYcXmsOFw2XnuqxFRX1BCCB76Xz/uePJW/l6zi8q1KlKnaS3Da53pmAbyNMDpdpCQkkDmwdga1DUbVGfsXf/TTen6e81Otv25I+Y5fyT8Z+JvL/LGoKmsWbQOuyPMdT3S6f/UamTmF4CKxKUJrKZ8jLA10STNUn+E4Fpt6Wo7H6EkoGY+DL6FFCx/fXOQ/iWQ+h3S8ynG5SGOhs/YOXM07Begb5wUsF2CSBgSqRUdRB7pB6F1ID1IInVZymDYQL/ku3B1RgYWE1M4zQAhwOHUrtPtvnRW/5LA+t9h+berDQ1kcf5es5OQjnEL+BQWza5Jj1GF5er/+H4NG5ZujloOB7zGNWRAi2m8Z1QPKtWoSKuOLWNmtv9s3oMn20u9lnVo3fH8UvX5TMY0kKcBQgj6junFm0Pew18kDMfhsnPPcz0Ydet/dc/T21TPJz3tMLUa1eCleb2Rh25EX8jCq03kMochIko9QogofUAZ2g2+H4kO6dFkuqRnGoT3YOxtPRpusB6bJL8QDmTiS1pqY0GQNdrv4CpkYBmK/ULUvBmawS8Yf0mhSYJYQ6iA7QL9shOODmCbBcEVpTaSBae6JB17HWHj6iQqGkRP6J7ndhi+7q7EelGzvRXfrS7wSpeGKuekMv6n53QFVPbtOMAzN41j3/YDBdtOj757P1f1aFvq65+JmF7s04RO/a7l0Xfvo1r9KgU1hZ+dOYy6zWrH5LqWhlqNtYwKbYZ3lHzy8C5k+KD+c6GNBt5tHwRXaSmNMeUbSolwIwxqeJcGxdURUj4i+m0c8Zznvq2Vm/DOQv/LwUJ02I6ecUTbJ00aq3t/ISxaEL3zJsr6UVIUsDslVquFTv1jCoMaUrtxDVJrVozZl3XGOej6YHRp3qRKiVgNisYVx+G289qSF3SNo5SSEdeNZvdfafg9ATzZXjzZXv7b980ypyyeaZgG8jTimjuu4MOtbzDP+xn/t3Y8ra+/gJRqFcrsKHK47AwYdxd52R5mv7uZCcOqMPu9iuTllPRyG9zDUgv9JbQt4jS4GSyV0I0RLBErJD5TqnAXGT6MmvkI6v7m2k/mUKSqxRiK0CaDeweQvnlaep4uDnD3BmsDUKqjP34BjnYIax2d5yKo+yJG2Gg2b0FvoebNU/htfmUe/3gwNc7VBEMC/iC/fPEbs16fy1/LtujGHAohGD17BMlVK+BOcOGKd2J32rjunqtjZnPX3XMVFp0vV2e8k8q1KuGMd+BKcJFYKYHnvxpBpeopMW0BNizdTGZ6VozHO+gPMXvS97rnnC2YS+zTHIfLwa1DOjPztbm6mTTFaXBhPfq/dCfVz61KnwaD8OZ58Xsq4nCF+fjVKvxv3laq1irmpbU2RFgq6l5P2JoiLQ20mWTRpbSwIlx3aAau4ixk3v9paX4iDmytNGGF8E60ynl5xBpZpVQK5VIGkEdug/B+CmbCvnnIwBpI/Y6S9xIlhm9xoSAShiHEcKR3HjJ7pE5spwTf16gHV4ClMjhvRLhvi5Zw880/Sh+skPAU5IwhPydeVZ0EZUuGfzIZu1O7VtqWvTxy5dP4vUFCgSAWq4VmlzXm+dkjsNmjZ/A1G1bn011vsXrhejIOZNLs8sZUqxutnOP3+pnzznysDht+bwCrzaI5XtwORs8eQaPW57Jj3W6CgRDnXnBOicW1Mg9m6UYSqGGVQ3sMguHPEkwDeQZw7wu9iEuKY8Yrs8k+nKO7GlQsCt0e6cLAlzURhJE3vEj24ZyCb32/10LAJxh0fQMsNqjdwMc9w7No1gZEhQkl3l+kTEFmjQT/T9qNLXUQSS8irDW155UkRMIwzeNdDE3koUskHzu/005N8NdQPagI/h8hfITobYIwqLuR6ddAwhPoz3DtYGsDeVP1rys9WgC883qwNSlBY1FqoU/qHghuRPpmQ8qniIJMoqM4fIRFa2OpCeE0UFJREu4jqVqvKKMzuserZKXnFMwag/4Q65Zs5KuJ33Lb0K4xl7VYLbTqoF9LRkrJE53GsPn3bQVhXqoqccU7eX/rxAJZvnotSpgZF6Hppfqyfw6346ypPWOEucQ+A1AUhZ4jbmZm+lS6D71RN2ZOSsktQ7oUPF45f03MkkhKhewMGxkHbaz5NYEne9Vh5eqJJS8h0QygkvxGpBzsbyip3yLspftgCEtVRMUZmjCviAOlKsQPQiQ+V6rzNRk0AweIul8rdaroqMc4uxrU4Sk4GZmriXAIa92IcPDR5gs+LUbTv6DwkKM9JX6MZAByxkJ4m3a+ug9yxkVm5BrpaYdJ27I3Zknt9wT4dspCALy5XvbtOEAwcPRVxMZlW9i6cntUDKwaVvHk+lgyc/lRzy9OStVkuj3cJUb2r3KtilzX++oyX+9MwjSQZxjrftmoGxPpTnCxd1uhXl9p9i393jBvPfJxqe8thBOhlF3WTVjroSS/jVJlNUrlX1DiByAM9wZjz42tDV4Uv2Yoo1DA9/XRg7iLCkZUeFWLmzwa0oP0FdbsEdY6ED+IfCHbaJxo0/3inmQfMufVgkfhUFiLAdIhHAzx+gPv0r1yPwa2GEr3yv2Y9T/92kDhcJj1v25i0fSluhkyvlwfG5cfm1hu3xfv4PGPBnN+u2ace0Fd7ny6O2/8/hLOYqm5ZxvmEvsMo2bDamxd+bfOhnmQyrULZ1Ltel7Gwk+XENQxpkX5Z9MepJQxe0xpW/exdtEGElLiuaTLhYbpcCcdZwdNREP6MHaEFD+ucnSlIQHW85BSRQhFWzInPodMX3z0cwOLo+rzKPEDkc5rkdkTIfhzRBbNBs4bwacX+C61euQRqtRJpVKNlKgvONBmaQkVE/jhw5+jZoNTn/yMilWTo5wyG5dv5ZmbxuH3aorfxfVEQfNU12pU/Sj/F32EEFx288VcdvPFx3T+mYo5gzzDuG1YV2zO6NmKzWGl+RVNojbqH5jQhzrn1cIZ8XIa4UpwRRlHKSUTB03mvpZDmfTI+/y37yRurzGQrasMJL1OMkLYERWnayUETihSy65JvwLpX6Tdy5IKic+hqRCVUD5DPYLMfTXqkLDWR0l5DVF5FaLyb4gqfyCSnsIw26dIqQshBE9++jDuBBcOl/ZF5Ip3UrNRdbav3RWrUerx88mYmQWPvXk+nuj4ApkHs/Dm+PB7Yo2jEJqmY/u7rzIel0kMpoE8w6jf8hye/WIYqbUqYnPYsDmstL35Yp75ItpBEpcUx6Q/xjFmzhNc2f1SFKv+S12rcfSM4rfZfzD//UUEfEH8Hj/eHC+5GXk8deNYVPX4SiHIcDoyrC/bVhLCUgUl5V1w9SE25tKC/vJWD62edKHRCoCajswYjAxqS0/FfauWH544Atz9Da4TBK9+SqQQQnNaCZuWmujuQayxdSHiH4o60qhVfT7a/ib9XrqT7kNv5LEPHmLMnCcMR3Job6H3+LevV5T42ihWhQYX1WfC4tFnpaDEycRcYp+BtL7+Aj7Z+RaZB7NwxjsNi4UJIWhxZVNyjuTy61e/49XJqti2agcPtnqMmx7qRPu7r2TOu/OjUtPy8eb62Lzib5pc0qDM/ZXBjcjMoRDeDUiktTGiwgSEVRPMkOGDmkxXcC1YGyHcdyOssfm9IvFxpKWKVglQzQJbC4gfDNmjImFAHsCpeY5lkGixDAWUiqDmEOu4CSI9HyCSxmj3sVQB952a1qNnCvr7mEd3lmQfzmHFd1dgCWfSqu0C3PFSUwhKGMahQxewZtEvJCTHceF1LbDZbSRWTOCWQZ0LzldVFXeCi6ziJRMENG5d+DrkZOQVaDbqYXfaGTVrOKk19UO5TIwxDeQZihCi1GU1W3e6AJvDijc39jk1rLJ11Q7eGDSF5XNXGebqCiEI+EpS59FHqtnII3eBzCk8GNqAPNITUhdBeA/ycPfIvl0AAiuQns+Qic8iXLdG1aMRQkHE94NixcZkpdngW4AMrgZLbYSrKwRWIbNGoJV8CIO1Drj7QM6Lkf3MooQhtJviCGFD2i6C4EqijaQF7O1i2hfl2yk/8sagKZqzTHoohqsAABZRSURBVIAabs7Tn9/LxV2uYurIacx8bRBWq6WgnMbLPzxD/ZbnRF1DURTuf7U3r933TsGyWQiBw22n74u9Ctqdf00zShLuCAdCzJ70Hf1evLPEPpvEYi6x/wXYHTZeXvAsthLSznx5fn7/djXNL28SIxqcT5M2Dct+c98cYqsrqpryt/8nZPaLkRjJfOMbAvyQPRKZfnXB0rckhLAjXJ1REkeixN2tLXGd7RCVlyJSPkVUmoNS6RuE4yqdujIADnBcqn/tpBciWpn5s3Q3KCkl1slJ27qPNwZPJeAL4s31RfYF/YzuOZXFX/zOVxO/JRh5zpPtJftQDiO76G9htL/zSp6dOZzz2jaiYvUULu3aiv8tHcO55xfWwKnTpCbX3XMlNof+6xsMhNi+9uxOCTxZmDPIfwn1W55DzUbVo9Shi6OGwrgTXTRuXZ/NK7fjy/VhtVuwWCyM+GAQdkdp9/oKkaF/0Ff7DkB4r5Zxo7uElaDuR2b0gdRfigRmlx4hrFoQeP5jSyWkuxd4plOYn20FJQHh7qV/DWs9SF2A9H4Joa1gbY5w3YhQ4gzvu/CTxbpai0JR+Oylr3S3MDw5Hjb9vo2mOl9CrTuef1TlnCGTBlK3eR3eHDw1Rt3J7rTR+OKyb42YmAbyX8Xlt15C2pZ9uqU7Aax2KynVkhm34BmWz13Fiu/+pELlRDr0vjomla20CPv5SK87Vu1G2MDWXItxLKm2tPRqRtRROjmwo/Yn4UmktTF43gc1W8u1jn8QoRjXiBFKUoFmZTAQxHPES0KKiqLoL8B8Hr/unqAaVg2Lpgmh6BrO0iKE4KYHr2fl92tYuWBtYUVMIbC77Nxwf4djvva/GXOJ/S+i28NdSK2Zgt2lPxO0WC1cdsvFWCwW2nZtzZBJA+g96vZjNo6AVlfFUouighKqagdrM7BdBO5elBhSA7plFaSUZB3KLrFKox5CCBR3N5RK36BU/hklaRTCElsytzjhUJi3H32fW1L60KvWffSsMZCFnxUvKaHR9qbWugHUoUCI3Mw83YgCNRzmvLbHsIVRjKemP8otgzqRkBKP3Wnj4s4XMHHZ2BNWt/3fhlly4SzC5/FzZF8GFasn43Dp7yN6c718995PLPxkMdvX7Y7EQErikuIYPXsEDS+qH3PO/p0H+fGTX8jL8nLpja1odnnjMlV5DAWy+PXT/jRqvhE1LFgwsxKLvz2PcfNHk1wlHpk5DPw/oJ8WaEekLkJYCoPgVy9cx6sD3i4QSrjs5tY88u79xOlUdzxRTBw0me+n/hQVk+hw2xk167GYnGgpJeP7TeLnGb/hy/MjhDCsBmixKlhtVh6dfD/X9LripPXfpJCylFwwDeRZgKqqTH78E2a/+R1CEUgJ3YfeQO9Rt5doyHZv3sNTN4zlUNphFItCfIU4nvh4CC2vPq+gzcLPlzC+31uo4TChQFir031jK578ZEipjeS0l7/io+dmRBkXi1Wh5dXNGDf/aW0MoR2QcR+E91GYyeKC+AEoRWIGd21M4z+tH48SFrbZrTRt24hXFo4qVX/KijfPxy0pfXT3FZu2bcTrS16IOS6lZPXC9Sya9itLZi0n50hsCEFSaiLt77qSTv2vpU6Tmiel7yaxlMVAmkvss4DPX/qS2ZO+x+8N4MvzayUXxs9h1uv6ObsAoWCI4dc8x/7tBwn6Q/g9AQ7vzeCpG8dyKFKDOy/bw6v93iLgDRAKaMbBl+dn2Td/sHzuKnweP/M/WMSHo6az9OsVWk6xDnPenh+TDRIOqaz95S/ysrSiW4q1LqLSHEh4WhPhdXREJL8VZRwBZr02J2YPNRgIsWn5VtK27DUc777tB/j8pS/5aPQM/l6z07CdHktmLTcscLV/h77QsBCCJm0asHPDbl3jCJCX6eH+8b1N43gaYzppzgJmjP8makYF2nJ7+stf0+3hG3TPWTl/Db5cX8zSLxwK8917P3HXU935c+F6LDZLjCC3L8/PN+/M55V+kzSjnOvDleCkcu1U+o7pxYxXZrNn6z7qNq/DvS/0xG+gY6nFVgaJS8p/bEfE9YC4HoZj/WfTXt2SA1a7lf0706nZMDbXeO7//cCkIe+hhlVUVTLtpa/o+p/rGfjy3Yb3KcqCj342fK5OkxqGz/Vt8jCH0owzh+IMakybnD6YM8gzHFVVdcvFAmQdytE9DnB4XyZhvULx/hAHdx8CjBWBhIANSzaRlZ5dUPPEm+MjbfNenuv2CuuXbCLjQBarFqxl2DWjaNqmAVZb7LUq1UgudbB7Ps2uaKwb7xfwBanbvHbM8YwDmUwa8h4BX5BQMIwaVvF7A8ye9D2bV5SuYFjG/thiavl07HuN7vH1v24q0Tg63A5uGdzZ8HmT0wPTQJ7hKIoSk0+dj57ByOe8tg11HQeueCfnt2sGwAXXNkNvi1qxWsjLitVoDIfCMbM7vyfAgd2HSKmWHCOykZ52mPee+bzg8YFdB3nqxrHcVq0/D1z0GL9+9XvMPW4Z1BlnnBNFKdz/dLgddOh9FRWrxYbqLJuzUremT8AX4OcZSwHIy8pj11//GHrEW11/vm5tF8WioChCd2thzU8bdK+Vz3V3X0nPx28usY3Jqcc0kGcBD77Wt0AFJh+H2879r/Y2PKdO01pcdnPrqKwZi82Cw+1ACG2P0uFyMGrmMJxxjoLaJzaHFV2rWQK7/0pj4vKxyGLGMxQIM/PVOWxYupnVC9dxd72HWD53FZkHsti2egfP3fYK7438NOqc5CoVmPTHOK66vS2JFROoVq8K/V7sxeBJA3TvLQxiFfNF2V8d+DY9qg1g0KUj6V65Hx8+Nz3mi+O2YV1JSI6LyURSwyoTBr7DoDZPxBjXxpeca/j/qN20BkPeGlhimQOT0wPTi32WsGHpZj58bjq7/0qjbvPa3DOqx1GzJ8LhMN9P/Ykv/zeP3Zv2IBRBOKh5qi1WC1a7FafbwXX3XElqrUqR/UI3bwyagidbr1KgPlXOSeW+V3rzSt83Y84TQtCp/zX89PmveHP0A8YbX9KAJz4eTPX6VUt9z3yyDmVzR50HdPURk6tWIDczL6rWj8Pt4IEJveky4LqothkHs/hi/GxmvjY3xmFjd9q486lu3PFkt4JjUkq6V+6nlcgoxqs/P0fzK5rq9ldKyb7tBxBCULVu5TKFU5mUjnLzYgshbhNCbBBCqEIIwxsKIa4XQmwWQmwTQhgnsZocM+e1bcS475/ms3/e4cV5I0uVWmaxWOg8oD1JqYkgZcEH35fnJy/LQ1Z6Ngd2pTP9v7OZ/8EiLFYL3hyvobfa5rBhLzaTdcY5uOPJWwkHQ7oZhVJKjuzPwl9CFsnm37cxpO3IMgeFg1b6dOjk+7E77TFL7Yz9mTGF0PweP9PGxUqZJVdOolO/a3XLXQR8QX78JDpoXAjBlI0TqNO00EPtiHMw4qNBhsZx2+od9Gk0mIEthjKg+aP0bTLEzKE+xRyvF3s9cCvwjlEDoWnrvwlcB6QBK4QQs6WUfx3nvU1OAAFfgPVLNupK9Be2CbLh181sWbkdq81CSCfkxeawMfqbEaxasI6v3/gOAMUiuHNkNzr1u5bczDzd85xxDi68thkrvl0FBn2QUuL3Blj8xTKuu6fsgq/X9LqCmg2rM+jSJ0vV/tCeIwT8wZjcc4vNYhjwrWc4K1RKYvL6Cfg8Pny5PpJSkwxnhHnZHoZdMypqbzdtyz6GtnuWT3e9hSv+GGuPmxwXxzWDlFJulFJuPkqzi4FtUsrtUsoA8Dlw0/Hc1+QEIgQlSWUVJegL4s3RQoPsLjuueCdxSS5sThu9n7+di9q3ZMBLdzHr0FSm/jWBmelTuf2xmxFCkJAcz+C3+mN32TWPttCM4xXd2nDjAx0NFYTy8eb62Lf9wDEPM/twrqFuZnFCwTCPtX8+ZqZcrW4VqtWtHFM+xuF20GVg9JI8n4WfLebeRkPoUX0g3Srdy4zxs3WN7M/Tf9OdmYeCYRYfQ6EtkxNDecRB1gD+KfI4DbhEr6EQYiAwEKB2bWMPrMmJw+6wcX6781i9cL1ufKEeakhFFWFenPckvjw/Tdo0IDElofCaTjuVa8eWdO3Yux3NL2/Cws+W4M3R0hbPu0xLW3x6+lCe7vqSbkEy0MpK1D//nGMaY8bBLJbN+aPU+6ZSlfy9Zie/ffMHl98S/VZ9duYwHr3qGfyeQEGdmHPOq0mHPrEz21+/+p1XB7xdoOWYk5HHh89ORw2r3P5YtAf78J4jumIVAa8WwG9yajjqDFIIsUAIsV7n54TPAqWU70opW0kpW6WmlqJmsskJYeiUB0mplowrwYnFoDRDcaSUNGxVn0s6XxhlHI9G9fpVueup7gwYdzfNLm9SsORs1aElH21/k97P3447MXY5GQqE2XIMdXEO7k6n/3mPMO//fjRcHuvhy/Xxx/d/xhyv1agGL857ElVVEUILbdq9cQ8Ptnqc3MzoeNT3n/48pj6Mz+Pns5e+jNF+bNq2Ic742Bmu3Wmj6QkQsTA5No76aZBStpdSNtP5+bqU99gDFNXPrxk5ZnKakFqzIh9um8jwqf+hz+hePDChD7UaV8fmsCIUEbMCFwIaXlS/1EvW0lKpegp3PdWd5lfGOjGklMx8dU6ZHTVTRn6meaoNJN6MEAKSUvUVcF7p+xZ+T6BgTzV/+f/x6BlR7fbvStc7HV+eP6b8xQXXNqd+yzpR4VoOl51Grc+lhc7/w6R8KI8l9gqggRCiLpph7AncUQ73NSkDNruNK7q1KXh865AuZKZnkZfl4bH2z5N9OAdfnh+H247NbmPolAdOWl92Goj6KhbBwd2HqN3YOL2vOH98/2eptw6KIiW44mP3RTPTs9i9MS3meCgQYtG0pdw/vk/BsVqNqrN1ZeysNz7JjavYbFFRFF7+4Rm+mvgt37//E0IIOt7bjpsHdTJDfU4hx2UghRC3ABOBVGCuEOJPKWVHIUR1YLKUsrOUMiSEeAj4Hq0E3VQpZclpBianBRVSk6iQmsSUv15j0ee/snnFNmo1rsF191x1Uqvj1WxUnQM6s69wMEzF6sbCtnrEJbrJLiHlsiSWfv0HPUfcUvB44/KtvNBjvK43HogJ/O4/9k6euXlc1DLb4XZw75heumK7dqedHsNvosdw04d5unC8XuwvpZQ1pZQOKWUVKWXHyPG9UsrORdrNk1I2lFLWl1KOOd5Om5QvTreD6/tew5C3BnLrkC4nvXToXU93180M6tCnXZk1H28Z3EnXQ54fE+lw2Q2d+EX3LLMOZTOiw2gO/qOfX2132ujYN7qQ14XtWzBq1mPUa1kHu9NGtfpVeOSd+2KC0E1OX0w1H5Myo6oqX74+l5kT5pKTkct5bRtx3/je1G12YiIPml3WmKenP8obg6dycPch7E4bXR/sSN8xZd+ZuemhTuzckMYPH/2M3WEjFAxx7gX16HhvOw7sPEitRjV4d/iHHNmfGXWew+3g+nsLDd6PnywuMUC+0cUN6DkiNre6VYeWMYK6JmcOZqqhSZl5c8hUvp2yMEpizRXv5O3V/z2mdEAj8gPEbQ7rcectH9p7hB1rd1HlnMoxe5gblm7miU4vFCj9ON0Oml3emNGzHy8IAH9n+Id8Mf6bmOsqFoWuD3bkwdfuNfcKzxDKkmpoziBNykT2kRzm/d+CghjAfAK+AJ+P+4pH373/uO+hqirb1+5CCEG9FnVOiOGpVD2FStVTdJ87r20jPtn5FoumLSXzYBYtrmpKiyubRt23+eVNmPvODzHeZ5vDRvu7rjSN41mKaSBNykTaln3YHLYYAxkOqWz+vXT6iiWx/tdNjL5tPN5cHxKIr+Bm1MzhNGptrI5zIkhIjufGEir/XdLlQmo1rsHODbsJeLWxO9x2zm933knvm8mpwzSQJmWiSp1UAjoxhUIRUcIMx0L24Rye7DQmapbmy/Ux4rrRfPrP27gTTl0+ssVqYfyi55j1+lwWfPQLFqtC5wHt6fpAx1PWJ5OTj2kgTcpExWrJtO3ait++WRklIWZ32rldx0lRFhZNW6obsxgOh1k8cxkd+7TTOav8cLod3PHErdzxxK2ntB8m5YcpmGtSZh77YBDX39sOh0uTEKvZsBqjZ4+gfstzjuu6GQczY4p7gVYGIuOAcdkDE5OThTmDNCkzdoeNQW/058HX7iXgD56wlMMWVzbFGe8sqHOTj81hpcVVZrqdSfljziBNjhmL1XJC87HPb9eMpm0aRgV2O9wOLri2OU0uOboAsInJicacQZqcNgghGDP3Cb6b+lNBPnKnftfQoc/VZhiNySnBDBQ3MTH5V1FuNWlMTExMzmZMA2liYmJigGkgTUxMTAwwDaSJiYmJAaaBNDExMTHANJAmJiYmBpgG0sTExMQA00CamJiYGGAaSBMTExMDTttMGiFEOrCrnG5XCThUTvc6VZhjPDswx3j81JFSppam4WlrIMsTIcQfpU09OlMxx3h2YI6xfDGX2CYmJiYGmAbSxMTExADTQGq8e6o7UA6YYzw7MMdYjph7kCYmJiYGmDNIExMTEwNMA2liYmJiwL/SQAohbhNCbBBCqEIIw3ACIcT1QojNQohtQojHy7OPx4sQIkUI8YMQYmvkd7JBu7AQ4s/Iz+zy7uexcLTXRQjhEEJMizy/XAhxTvn38vgoxRj7CCHSi7x2/U9FP48VIcRUIcRBIcR6g+eFEOJ/kfGvFUJcWN59BEBK+a/7AZoAjYBFQCuDNhbgb6AeYAfWAE1Pdd/LMMaXgccjfz8OjDNol3uq+1rGcR31dQEeBN6O/N0TmHaq+30SxtgHeONU9/U4xnglcCGw3uD5zsC3gADaAMtPRT//lTNIKeVGKeXmozS7GNgmpdwupQwAnwM3nfzenTBuAj6I/P0BcPMp7MuJpDSvS9GxfwFcK86sql9n+nvvqEgpfwGOlNDkJuBDqbEMqCCEqFY+vSvkX2kgS0kN4J8ij9Mix84Uqkgp90X+3g9UMWjnFEL8IYRYJoQ4E4xoaV6XgjZSyhCQBVQsl96dGEr73usWWX5+IYSoVT5dKzdOi8/fWVv2VQixAKiq89RIKeXX5d2fk0FJYyz6QEophRBG8Vx1pJR7hBD1gIVCiHVSyr9PdF9NTjjfAJ9JKf1CiPvQZszXnOI+nXWctQZSStn+OC+xByj6rVwzcuy0oaQxCiEOCCGqSSn3RZYmBw2usSfye7sQYhFwAdr+1+lKaV6X/DZpQggrkAQcLp/unRCOOkYpZdHxTEbbcz6bOC0+f+YS25gVQAMhRF0hhB1ts/+M8PJGmA30jvzdG4iZNQshkoUQjsjflYDLgL/KrYfHRmlel6Jj7w4slJGd/zOEo46x2H5cV2BjOfavPJgN3BPxZrcBsopsGZUfp9qbdYo8aLeg7Wn4gQPA95Hj1YF5xTxpW9BmVCNPdb/LOMaKwI/AVmABkBI53gqYHPm7LbAOzUu6Duh3qvtdyrHFvC7A80DXyN9OYAawDfgdqHeq+3wSxjgW2BB57X4CGp/qPpdxfJ8B+4Bg5LPYD7gfuD/yvADejIx/HQbRJif7x0w1NDExMTHAXGKbmJiYGGAaSBMTExMDTANpYmJiYoBpIE1MTEwMMA2kiYmJiQGmgTQxMTExwDSQJiYmJgb8P99gIgJQIb3AAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": { + "nbgrader": { + "grade": false, + "grade_id": "cell-c7b8f71403aa9084", + "locked": true, + "schema_version": 2, + "solution": false + }, + "id": "e3JEFYCJFLpG" + }, + "source": [ + "Kernels concept get adopted in variety of ML algorithms (e.g. Kernel PCA, Gaussian Processes, kNN, ...).\n", + "\n", + "So in this task you are to examine kernels for SVM algorithm applied to rather simple artificial datasets.\n", + "\n", + "To make it clear: we will work with the classification problem through the whole notebook." ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "from sklearn.datasets import make_circles\n", - "\n", - "circles_points, circles_labels = make_circles(n_samples=500, noise=0.06, random_state=42)\n", - "\n", - "plt.figure(figsize=(5, 5))\n", - "plt.scatter(circles_points[:, 0], circles_points[:, 1], c=circles_labels)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "nbgrader": { - "grade": false, - "grade_id": "cell-e7e5a8e0da66afbe", - "locked": true, - "schema_version": 2, - "solution": false - } - }, - "source": [ - "And even more:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "ExecuteTime": { - "end_time": "2019-03-13T23:26:23.326325Z", - "start_time": "2019-03-13T23:26:23.086480Z" - }, - "nbgrader": { - "grade": false, - "grade_id": "cell-7a98ef8e43822e61", - "locked": true, - "schema_version": 2, - "solution": false - } - }, - "outputs": [ + }, { - "data": { - "text/plain": [ - "" + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2019-03-13T23:26:22.240114Z", + "start_time": "2019-03-13T23:26:21.327520Z" + }, + "nbgrader": { + "grade": false, + "grade_id": "cell-57f562bf4f554fae", + "locked": true, + "schema_version": 2, + "solution": false + }, + "id": "9W_yYMnOFLpH" + }, + "outputs": [], + "source": [ + "from sklearn.datasets import make_moons\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np" ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAT4AAAEyCAYAAABj+rxLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnWd0FFUbgJ/Znp5A6CWhQ+i9Si8KiNLEAlIUFFQUUBALVUH9FEFRUBBpooj03nvvEHpvgZAE0rfN7Hw/NizZ7GwSJFLnOcdzZPbuvXeSyTvvfasgyzIqKioqTxOah70BFRUVlQeNKvhUVFSeOlTBp6Ki8tShCj4VFZWnDlXwqaioPHWogk9FReWpQxV8KioqTx2q4FNRUXnqUAWfiorKU4fuYSwaGhoqh4eHP4ylVVRUnmD2798fK8tynqzGPRTBFx4ezr59+x7G0ioqKk8wgiBcys449airoqLy1KEKPhUVlacOVfCpqKg8daiCT0VF5alDFXwqKipPHargU1FReepQBZ+KispTx0OJ41NRAZBEia3zd7Hxr+0YfY206d2cyo3LP+xtqTwFqIJP5aHgcDj47PmxRG47iSXFCsDOxXvpOKgtPUa+/JB3p/Kkox51VR4Ku5cfIHL7KZfQA7CkWvn7myXcvBL7EHem8jSgCj6Vh8KOJXuxJFs8rmt1Wg6uP/oQdqTyNKEKPpWHQkCIH1qd5+On0Qj4Bfk+hB2pPE2ogk/lodCqZ1N0ek8Ts6ARqPVc1YewI5WnCVXwqTwUwsoVpv+k3hh9DPgG+uAb6ENgbn/GrvoMg8nwUPeWeCuJWaPm8V7dTxjV+Vsit598qPtRyXkEWZYf+KI1atSQ1bJUKgCpSWaObD6OwcdApYblFLXAB0liXBJvVfmQhLgk7BY7ggAGHyPv/tiLZ3s2fah7U8kaQRD2y7JcI6txqsan8lDxDfChTtvqVGtW8aELPYB53y0hITYRu8UOgCyDNdXKpA+mY7PaH/LuVHIKVfCpqKRj9/ID2K2i4mcXIy8/4N2o/Feogk9FJR3BeYMUr4uiRGDugAe8G5X/ClXwqaiko+OAthh9jW7XtDotJauEkz8870PalUpOowo+lScSc7KZud8s4p1aQxjcYhTbF+0hO4682q2r0W1YJww+BvyCfDH6GihRJZwRCz56ALtWeVCoXl2VJw6r2co7tYZy/Vw0NosNAJOfkRfeeZY3v+qarTlSElM5e/ACIfmCKVq20H+5XZUcRPXqqjwRmJPNRJ27cU8e1fWztxJ94aZL6AFYUqwsmLCCuOu3szWHX6AvlRuVV4XeE4oq+J4iZFnm5uWYLP/4b0fHczs6/gHtShnRLjKh7690yvsGb1X5kE55ejHvuyXZ+u7uFQewpFo9ruuNOo7vOJXTW1V5DHn4gVMqD4STe84wtusPxF6NQ5ahWMWifDZ3AAWK5XONuXzyGmNfm8Cl41cAKFq2MEPnvE9YucI5to/bNxNYOGE5B9cfJV94HjoNfJ6ytUp5jJsyeBZrZ27GZrmr6c0Y/je58ofQ7LVnMl0jtFAuNFoNDsnhdl2WZYLyBN7TfmVZxm61ozfqEQThnr6r8uii2vieQCRRQtAIaDROhf72zQS6l3wXc7pqKBqNQK4CIcw6/xM6vQ5LqpXXwvuSFJfEnUdCECAglz+zL07Cx8903/uKjbpF36ofkZKYit0qIggCBh89H017h0Yv1XONs9vstM/VA2uqzWOOImULMe34+EzXuXjsCu/W/tjt+4JGIG+RUGaem+j6uWSGLMss/mkVM4bPJfl2CoIgEBjqT7dhnXm+b6tszaHy4FFtfE8h5w5f5L26n/Cc6RXa+nXluzd+xpxsZs2MjUii5DbW4ZBJSUxl3+rDAGydvwu7xU7696Asg80qsmXezhzZ35wv55N0O8UVICzLMtZUGz+8M8Vtf+YkC5LoUJzj1g3vx3RZlpn//TI+ajYCq9mGoBEw+how+RkpXLog36wblm2BteTnVUwdMpvk2ymuuRNikpg0cAYT+0/L7i2rPKKoR90nhNhrcQxsOIzUJDMAdqud9XO2EXU+mrCIwm5Hxjs4RAcxV+MAuHk5VtEuZkmxEHMlLtv7OHvoAvO+Xcq1M1FUbBhBxwFtCS2YC4C9qw55CGBwCtfr56MpXLog4NQyA3P5c+uGp52xTPUSXteeNWoe8/63xHUfsizjkGQG/NqH5l0b3tNRddaof7CaPTVOyS6x6rcNdPu8EyH5grM9n8qjxX1rfIIgmARB2CMIwmFBEI4JgjAyJzamcm8smbQau81duNmtdk7tPUu+sDyY/BWOqgKUrVUSgDI1S2LKELgL4ONnonQN78ImPbtXHOCDBp+x8a9tnNp7jkU/rqRPxUFcPR3F1vm7kOyeQg+cwsQv2O/utgSBt7/vgdHXs0pL5PaTTP5wBqLdPa3MZrUz79slHsLbbrWzatqGexJ6kiiRGJvo9XODSc+FyCuKn8myTOKtJI/9qTxa5ITGZwWayrKcLAiCHtgmCMJKWZZ35cDcKtnk/OFLijmmWp2WvGF5yFc0lKhz0djTwkKMvgaqNKlAqWrFAajWvCJhEYU5f+SSSzs0mPQUKVuIGq0qZ7m+LMuMf+sXN7uaaBNJsiXTs9z76A06RW1Pp9dSuVEEIRlSxZp0qU9Q7gAmD5rBhcjLkHYEt1nsLJu8Bmuqjfd/7u0aH38zwWuA8uUT17Lcf3q0Oi25C+Ui9uotxc/tNpF8YaEe19fP2covg2aSdDsZnV5Lu36t6PXlq2h12ntaX+W/5741PtlJcto/9Wn/PXiPyVNOmZolMZj0Htclu0TJKuFM2PElHQe0JX+xvBQuU5Aeo152y0bQaDT8b8MIOn/0AvnC8pC3aCidP2zHtxtHZMsudutGPIlxScofymC3ijiku4+FzqDD6GOgbO1SDJ3zvuLXqjWv5PTCZniarKk21kzf6DrWgzPHVvCyz6LlPGPxRLvIpeNXvIbtvDH2NfRGT71Aq9MQUac0hUoWcLu+Z+VBvu8zmdvR8Yg2EUuKlcU/rWbKkNmK86s8XHLExicIghbYD5QEfpJleXdOzKuSfdq+3ZIFE5Zjt4ouzcdg0lOlaQWKlHH+4b8x5lXeGPOq1zlMvkZ6jOxCj5Fd7nl93wATsiP77zuTj4GJe7/yECAZiTp7Q/G6Rqvh1o14fAN8ADAY9bz0YTv+GrvQLdhZb9TRY5R717Z1szczsf80HKID0S5RqWE5Pv1rAAEh/q4x8dEJgNOzfUeR1GgFGnSozYBf3/bYz6yRf3t4oa2pVpZNXkOvL1956MVVVdzJEa+uLMuSLMtVgMJALUEQKmQcIwhCH0EQ9gmCsC8mJiYnllXBWS045mosW//ZRUi+YIy+BjRaDf4hfrz43nMM++fD+17j5uUYvus9ia7F+vFe3U/YusDzvebj70PddjUUtSQlNHptlkIPoFS14or2OUuKlbGvTeDC0Uuua9VbVsbh8PQGx0bdPbJGbjvB+Ld/JSU+FXOyBbvVzuHNxxnZ8VvXmO2L9jB92Ny0l4jzms6oo3ab6nz210D8Aj17gty4eNPrPXjVhFUeGjkaziLLcjywEXhW4bNfZVmuIctyjTx58uTksk8lMVfjGNhoGC8X7MNr4f2Y+N5Urpy8hiXFik6vI394Xnp+8QoGo+fx917XebvaYNZM30T0pRhO7j7DN6//yNz/LQacR8ZTe89yIfIyA6f2pWLDCLT6zG1aOoOOxuni9jLj9REvYfRR1pZO7zvHB898zunT15AcDqYOmY2YwYFit4r8MnCGSwue991SD81MtImc2HXaJbz++noR1gxOEtEqsm/1YRJvKQuxElWKKV7XGXSq9/cRJCe8unkEQQhO+38foAWgNin4D5EkiYGNhnFsxynsNhHZIbvF39ksNq6duc7OJfcfJD73m0WYk8xuWRCWVCuzRs5jy/xdvJT/TT5qPpL+dT+hX/UhdBzQlo+m9fMqrEz+JvIXy0uP0dlrGl68UhjfbR5JqWrKgiUlxcKb3b+n2Ue/cHL/OcUxCbGJpCamAhB9Sfm0oTfquZWWyuctVlCr15IYqyz4en35iocX2uRrpMfoLqpz4xEkJzS+AsBGQRCOAHuBtbIsL8uBeVW8sHfVYWKuxnmkZKXHnGzh8OZj973W4Y3HPLQoAEEDX3X9gaTbKZiTLFhSrESdu8Gnrccwod8USMv6MPkZMfoaCMjlT6sejfloWj+mHPnOzZ6WFaWrl6D9+23wUQjJESQZYpNJTLVg0Ss/zjqDDlNa5km15pXQGzyP46JNJLxCUQCqNq2IRus5l06nJX8x5Zp8pauX4NsNI6jcuDy+gT4ULVeIgVP78uK7rbN9nyoPjvt2bsiyfARQ+wE+QKZ//qfXmLg7GEx68hTJfd9r5Q3Lw8VjnjFrVrPNq7fXnHQ3NW7glL6UqBxG0XKF7yvXtXilMEX7nUOnQczrrIycWq0w/lvOOYVhGkZfAy+++5xL6+o0sC1rpm8kOT7VFV5j8jPy2mcdXY6Srp93YtPc7e4pb4JAu36tcDgc/PbJHJb/uhZzsoVKDSPoN74HYRFFKFurFN9uGPGv71HlwaGmrD1mXDt7ncsnrmY5TqvT0vL1xve9XpfBL3hUJNYb9eTKH5Kl8LWZ7excspewiCL3neBfonI45euVdQvZkQVAr8VaxqmF2UrnJbWye+hK4y716fHF3WN1rvwhTD70LW36NKdgiXxE1CvDx7P68/KQ9q4xsdduecQEyrLMn2MX0iF3T+Z/v4ykW8mINpGD64/Qv96nxF7LfnaLysNHFXyPGZeOXc3UYWH0NZKnSG7GrPw0R4zqlRpG8MHk3viH+GHyN6E36qjRqjI9RnVRzgZJhyzLxF5TDgL+N4xeMoT2/VsTFBqArNdiK5abhA6VkO94kh0OpFx3Pa6+gT607N4YrdbdxhZaMBfvTXyTGWcmMmHbF9R/sZbb5/O+XYLN7Jnidye32J4uXEaWwW6xs/CHlTl2n3fWOrr1BLNH/8PSSatVz3AOo+bqPmYUKl0Au4KmpdEINO36DK8O7UDh0gVztIRS866NaPJyA66fjyYwdwCBuQMQ7SJLfl7N5eNXFXNawXncrt2mepbzy7LMgTPXOHUpmtuRV7GciCKsbGFadm/s1uDHYDLw5lddefOrrszddIgJC7fisKVlqzhkkGR89909ltttIuEVitzz/cZcib2n8XabyOl9yo6Vf4MkSgzv8D8Ob4zEmmrD4KPn1yGz+XLZUCo1jMixdZ5mVMH3mBFWrjDl65UmcvspV+9XcGp6PUe9TN6i/02okFandRURANDpdXy/ZRTLflnLhj+3kRibRFzULVfanEarwS/Il7ZvNc903iSzlT7fz+Ny9G0sqTaQZTTxZkJH7WT26H8Yv+0Lwst7Cq8ujasQGuTH1JW7ib6VhO10NKbdF5GAlBpF0Bn1NK5bjsBc994ZrWqzSlyIvIJoy16+rU6vo0SVsGyNNSeb2bF4HykJqVRrXtHtZ3qHdbO3cHhjJJYUZ0jNHVvjqM7fMTfqVw8NVuXeUevxPYaYUyxM+mA662ZvQbSLlK5Rgg8m9aFkVeWQjwfFwh9WMHnQjLTwGhmTn5GytUoxZuUn6A3Kx/PhM1azau9J7Ok91KIDw7kYAjefo3TNkkzcNTbLtW9eieXT0X9yABuyIIBGwGTQ0a5ueT5+uek93cftmwn0qTiQxFvJmXrO7+Djb2LK0XHkC8v8pRO5/SSftB4DyGmOFYHWbzaj3/iebhr6wMbDOLrlhOc6ASa+WTtMsXCrihO1Ht8TjI+fiYFT3mZZymxWmOcwcdfYexZ6llQriXFJ2eo8lh3u1MJzSA7XnJYUKyd2n2bZ5DVev7dm/2l3oQeg02ArEYosw9kDFzAnm5W/nA4hwMRRo4ys1YDGKUQsNpElO49x5Pz1e7qXkLxBTgfIWy28jtFoNQiCQJlaJflu08gshZ5oFxn2wteYk8yYkyzYzHZsZhurpm1g76pD7veSiZlCrQKdM6iC7zFGo9Gg09+btSIlMZXRXcbRPlcPuhTqQ4/S/Tm86f7j/a6ciiIhxrOUkzXVxurfN3r9nuhNo0oLlREEshUAvDXyAhoFoWC1iaw7cDrL72ckd4EQ+k98k8/nDUSXLhNFq9MSFBrA7As/s9L2JxN3jXVVuMmMyG0nFavTWFKsrPxtvds1paM9OI/UJb0EcqvcG6qN7wnnzIHzzPlyAReOXaZklWJEnbvBxaOXXfarqHM3+LTtWCYf+EbR3pRdBAHwpoxkoqXUiwhj+7GLONJrng4H+ivxaPVaqreqkq0E/6TYRGeaWYZ0OUEQ0N9H5kTDjnUpuDs/879fxvXz0VRpXJ4X3mvtUUYrK5SCwO/g7iWWFXOhAfKF57ln+57D4SDpVjK+gT5ezQ1PI6rge4I5vOkYn7Ydg81sR5Zlos7eUKygItrsLBi/nP7p6ttlxfVbify18RCnrsZQPiwfXRpVJjhPEDdS3JP1jb4GWvVs4nWeIS83pdtXczDb7FhsItglNKKD3AejyFcsL4OmeFZCUeLgT+uQw/08P3A4eK5m2WzflxIlqxRjyIz3PK6LdpFZI+ex5OfVmJPNlK1dmmZD27HuwjWu30qkRuki9GhVk7zB/lRoUFbRXmjyM9LstYaufyfHp5AUl+wxDrxXqvHGmpmbmDJ4FikJqWi0Wtr1a8kbY15TU+hQBd8TzcT+v7llH3grGyWJDi6fzH6xzlNXbvLGd39jFyXskoODZ6/y9+bDjJrShwmdxiGJEjazDYOvkYg6pWmbia2sYO5AFo/qyYo9Jzh9NYZAOxS2OAjv9hxVmpTPVi1ASZQ4sek4/kWDSW5ayhnaIgggCPgfukbJQp5FQ3OCb3v9zLYFu13hPPujY9m6cDNymmC5GH2bFXtO8uenr1EgVyCDZ7zH191+QBIlRLuEwcdA5cbladi5jmtOH38TWr0GUaGNcK78Ic55j13hzP7z5A0LpVLDCEW73+7l+/mh35R0v39n+JFDdPD2uB45+nN4HFEF30NGtDurfsTfTKBiw3LZKtWUHRwOBxe9lEfPiN6op8Iz5bI995g/15Oa7nhmFx2Ioo15x84y5/Jktszbya0b8ZSvX8brH2Z6/H2MvNSoSrbX90BwdlEzXriFfvZ+bOG5QCOgv3ybgH8Z+mG22dlx/CKbD58n8uJ1fA16Xmpchba1I9BoBGKjbrHln12uY6osQGr9Yi6hB077ZYrFypTluxnWrQXPdKjN4c1NWfrzGqfdUJa5EHmZ6IsxFCyRH3Da8dq+3dJVZfoORl8jXQa/wPAO37B/9WEErQYByF0oF99tHOESineYOXKeQn1AG8t+WUuvMa8+9fUBVcH3ELl04iofNhmBzWLDITlwSA6ad2vIC+8+y/nDlylRJZxiaYnz94ogCPgG+LhVKVZCoxEw+Rl54R2PSmKKSA4HkRc9j1wysP/0VXwDfHi2l3L4iF2SmLf5CAu3HUWUHLSuVZYuTaogOWQCfY1o/2XLRq1WS/0Xa7Fj0R5Eq4jplPO4rTfqaN7D+zHbG2v2n2L4jNXYRMmt6s3Xf23g4NlrDO/Wkmunr2Mw6V2CzxFgcnqUMyA5ZHafdNYM3L18P6unbUz7XQN2iZgrcXzWdiy/HR/vekH0/qqrs1fIbxvRaAUEQaDrsM7ExySyf/Vht4Dx6+du8PXrE/l6zed31xQlrp6O8np/ibeSXQ2gnlZUwfeQkGWZYe2+JiEmwe2Pa8WU9ayYctfLl6tAMN9tHHnPjgdBEHixf2vmf7/UQ3Oo0qQ8l45dISXRTI2Wlek15tVsG+s1goBBp8Oq0ExHEARuxieTN1i58sqHvyxl76krTlse8OuKXUxevhOdRoOP0cA7L9Sjc8Os+3so8f7Pvbl07Ao3r8TiEB0IGoGw8kV4c+xr9zTPlZh4hs9Yg1XBGWG2iazce5Jez9aiUKn8bp3rBKvo1YmTO9Bpe1w0cZUrKPkOskMm5mocF49dcb3ktDot7/34Jm+OfY34m4nkLpQLc5KZHmX6e2TJSKKDI1uOk5KQgl+QHzarncHNR3mscwedUXfPjpknEVXwPSQuHb/KrRu3ySqM7tb1ePrX/YS/b0y959CV14d3JjE2kTUzNqEz6BBtIm16N+Ot77r/64bYgiDwfJ0Iluw6hi2DcBAlifbDpzPxvfZULeleLOD4pRtuQg+c2hCAXXJgT7Xw/fwtBPgYebZmWeySxMZDZ9l/+ioFcgfyfJ0IlwBRIjB3AD3/6s///ljPzcQU8gf60eXVpvj4+9zT/S3bdRxJoQrMHXQaDYfPR9G2dgS1nq/OtoV7ECQHGquI/upt7IVDQHf3Z2sy6OjewhlP662IqUarYfPfO5j7zSLyFA6lde9mFCiWDx9/H3z8fTh76AKDGg8nNVFZexcEZxMmvyBY/ftGzh68oOhIMfgY6PXFK6pzA1Xw/aekJKSwZuZmzuw/T7GKRWnVs4krhcpmsXltjpOR1CQze1YepF67mve0vlan5f1Jfeg15lVuXo4lf3ge/IKUhceO4xeZvnov0beTqVG6MG88V5uCuQMVxw7o1JCouER2n7zkEl7g9CmYbXY+n76KpaN7udn2jly4gSOLnhwWm8gvy3bRsGJxen47l6uxCZitdox6LVNX7Oan/h2oXFxZ891y9DxDpix3aaKX45MYMmU5X/R8lqZVs5/pkJhi8R5bmEaeIKdG+8ms/rRpOBTHoSsIdgemI9exFwgCnQZNWhhN79a1aVatFKv3neKo3oFBq0HIML852cI/45yauU6vZeEPKxg+/0NqtnLaPb9+faJXoQeQPzyvqyDFhj+2elSPBqcN9JWhHWjXL3smjScdVfD9R9y8HMM7NT/GkmLFkmrF6GNgzpgF/LDjS4qUKUSJyuFugbGZIYkOhrf/hoBgPzp80IZXPulwT/FcASH+mRb+/GfrEcb9s9mljUXFJbDuwBn+/LSrovATEBjZvSWvjvmDmIQUj8/jElO5fivJ7bt5gvzQazXYFIJ403MzIZmZa/dx6eZtl0bpPHZKDJy0hG7Nq1O6SB7qlA1Do7krWMfP3+Jx/LbYRcYv2HpPgq9BhWIs2XUcs9XTraoRBAL9TNQoXRhwNjga+OObjP5jLRar3XXUNeq1DH6pCa1qlMHXZCAqLoERM9dgLZuXoBM30CZZEUQHsuAsbkpa1RdwxvuJdonRL41j+ukJ6HS6TO11Pv4mBs941/Vvg0IvYnBWg67dWi2beQc1c+M/4ucPppMYl+RqcG0120iJT2VC3ymAUxv7eFZ/jL5GdIZsCDEZkm6n8NfXi5k0YHqO7dNmF5mwYKvHETTVauO3le6BtFa7yMhZa2g86GfafPobt5JSlbcqyxgzCPWGFYtjNOgzi2UGoESB3Kzad8rjGA1wO9nMT0u2M/jXZbwyZjbJ5ruazeWbym0ir8Z677erRN2IcKqVLIRPhmBfrUagZKFQpgzo7OaEea5WWb7p3ZaI8PwE+5moWaYIvw7oTPsGFfFN85yu2H3CWURVryWhfSVS6oRjKxqCFJEf/7yBSKKnhmlOMvNaWD9WTVvv8dkdfAN9mHZyglvubts+LTD5eTaG9w/xe+i53I8Sqsb3H7F31SGPo50syxzZchxJktBqtdR6ripTI8exatoGYq/dQhJF1s3emmlXYmuqlRVT19Nz9Msex9bzRy4xc8TfnN5/jkIlC9D1805Ublw+0316EwySQ2bvKfdwmBEzV7Pp8LlMtTaNRqBskbwe9ji9Tstvg15i8JRlXL55G4dD9sjRNep1fNDhGcb+ucHr/E6hbOdi9G1+XLydoWkFCEKD/LgZ7xn4mzvQ957yWzUagfH9XmDOhgMs330CP6OB52qVo25EUQqFKtc3bFChGA0qeBcqyWbb3eOzXou1fH6s5fNj1GsxrD8H15R7fIg2kZkj5lGicjhnDpx3s9sZfAx0HvS8h3e2QYfaHFh/lDXTNyJoNGi1GrR6LaOXfKzm+aZDFXz/ETqDFpvF87pWp3VzLOQPz+vW97VJlwZM/nAG0ZdiEW2iopFab9ARfSmW4pXuCpdT+84xqPFwbGYbsiwTcyWOE7tPM2Rmf57pUNvrPkMCfL3atK7GJtDr27kM7tKE/CEBbDykLPQ0goBRr0MQINjfh6/ebKM4X1i+EOZ+1o3rtxIRJQfnomL5ZdkuouISKVkwN+++2ICqJQvRoUFFfly8zU0LzYhdlFi996RL8PVpU5tv5212+47JoKN36zreplDE4ZAZPmM16w+eQZQcSA6Zg+eiqFsujBGvtySPF491ZjSoWIx5W45gtrkfn2VZpl2/Vvzx8RyvXli7TaRElTASYhNJiE3CIUkIgkD5emV4afCLHuMFQeD9n3vTcUBbjmw+TlBoADWfq4rBqCclMZUNc7Zx5dQ1SlUrTqPOdZ/aeD5V8P1HtHi9ESumrHfLw9QZdDTsVDfTN2+t1tWo1boaACM7fcv2hXs8NDLRJpIvzD0bYcrgWR5GbWuqjZ8/+J0G7Wt5XTPE34d65cPZdvQ8ooLz4dC5KHp9O5exb7RGr9MqCr58If681bYu+YL9qVmmqJvtTYkCuZy2vyJ5gmlcuSTgFAKLtkcyYuYabiWm4GPQue5bKbQEcMvvbV+/Ija7xORlu0i12vAx6unTug6dG1byug+z1c7OE5eQJAd1yhUlwNfEwu1H2XDorMeaO09cotvXf7JoZE9Mac2KLDaRHxdtY8nOY9jsIjXLFmXwS40pmtc9mLh6qcI0qFCMbccuuNkO7ZKDndio8XI9ds7agmTzvE+H5EB2yEw//QMH10cSffEmJasVp0yNEl7vC6BwqQIULnU3GP7qmeu8X+9TbBYblhQrJn8T04f9xcTdXz2V4S1qPb4sEO0ihzcdw2axU6lRhGIzaSXMKRY+bvUF5w9fdF0rXLog/1s/HP9g72EZ6Tl76AIfNPjcTaAZfY0890ZT3pnQy21su6DXMSsEK2v1WubHTMt03zExCbTr8R3WQkHOkk4KQjLYz0Sq1e4h+DSCQOtaZRnV4/68hT8v2cGsdfvcBI4AvFCvPJEXb3AuKs7NAqDTamiu/fsVAAAgAElEQVRTuxzDu7V0m8fhkEmx2vAzGjIVwNuPXWTwlGVpFV1kREnms1ebM3PdPs5cU67AbDLo+OTVZrSt7ayC3HfCfA6eveb6mQgCBPgYWTiyJyEZwmgcDpmNh87w2fRVioJcl2onaM5+yKB9m/yMfP73IGo9d3+OiYGNhhG57aTHS7Riw3J8t3HkE3MMVuvx5QDHd53mpQK9GdXpO77q9gMvFejNqt+925/S4+NnYvzW0fxv/XDemdCLsas+4+d9X2db6IEzOf6rVZ9SsmoxBI1AYG5/XhnanrfHdfcY6+2trdfrMPl6GrvTc2xDJHm2XcB/zUnwol3Fp1jQ67RuTgtBcAqDN+/xOJmRFIuNWev2ewgEGVi66zgfv9yUID8fdGmZETqNQJ4gP/q3f8ZjLo1GIMDHmKnQS0yx8NGvSzFb7aRYbKRY7C7Hzc0E5QIB4NTwzl51CsWz12I5fC7K7UUgy04H0IJtRxT3ZZccXrNTRF895lpFnaEwaXs3+Rmp3qIyNVr9u6DuO9isdo7tOKVoyz265QS/Df3jvuZ/HFGPul6wmq188tyXpCS4ey4nvvsb5WqXIiwi614OgiBQtlapLCvmXj8fzbWzNyharhB5i7gfYSs0KMek/d8Azti/3SsOsmb6Jqo0qUCB4vlc414Z2p6J/ae5a4c+Btr2bZllwKpol0AGfWyKqw6eErIs81KjKmw/doFbialUKVmId1+oT9G8/66pkSzLHDx7jY2Hz7mXpUqH5JBZsvMYonQ3fUxGIDHVSmxCiodmlR02Hj6HoFBDS3Q4SEhWMMymYTLoKFHQ2bLz3PU4ReFqtUscvxit+P1L0bfdcpwzklqpIELRXNRz6MntY6Jhp7rUal31Xweb30FQVuJdLPxhBZ0GPU9wnqfnyKsKPi/sXXVIuYSTXWTV7xt563+v3/caVrOV0S+N4+D6o+iNemxWOw3a12bw9Hc8sjRO7z/HkBajnXmeDmde7/N9W/LWt90RBIFWPZtwOzqeOWMWIAgCNosNjU7Dwh9WsGfFAdp/2oFVcbEcuxRNkJ+JHi1r0q5ueTQagRqtKiOJEhqLHcOFOGwlcisKQJsoUSRvMP909NQ47xWbXeSdHxdy/HI0NrvoFgidkc1HzpNisbmOupLDQYrFxld/ree3QV3uee1ksxWbmL1+GncQcBZTaFG9DADh+UIUMzwMOi1liig3HS9ZMBRfoz5T4WfN7UtEu/p0b5nlaS3b6A16/IP9SIhVzhzRG/Wc2X+ems8+PXF+6lHXC6mJZuwKXkVJdHitl3avTB40k4Prj2Kz2ElJSMVusbNj0R7mfDnffU1J4rO2Y0mOTyE1yYwlxYrNYmf5r+vYs/Ig4NQuX/64PdMu/kznwe3Q6XWYkyxIdonLJ64xvvtP7F11iIQUC5dvxjN69lpGzHSWhA/OE0S/CT0x+hgI3HYe3ZV4lHLpZFmmQnj+HLn3mev2E3nxBmarPVOhp9dqSEy1KEb4HDoXlWU2iBIbD53NdM2MaASnZ3bm4Fdcjo3cgX4oTaHTaej4TEXFeRpWLk7uQD/XkV0Jg05LqcI5W0Yr9locKZkUq5BEidxPWdECVePzQrk6pdw8sukJDL33zl0ZcTgcrJm+0S3RHZyBzksmreH1EXc1mRO7zrgCodNjSbGy/Ne11G5djTX7TvHN3E0kJKcSOHMvmgx9YQXJgeFcLPaiTo+jDCzbfZwAHwN92talTe8WVG5UnpkTlrF69wmSCgWBVuN2RiocGkRZL9rMvbJkxzHFQgduewb8TAbskkSKxfN3YdBpswyIzsixizc4fln5KJoRo17HguHdyZ8rwMP4/83cjc6g5AxUDC/gNadYr9UyffDLfD9/C+sOnMZqE0G4+47R67QUCg2iTtnsdWzLLvE3EzEY9YhW5Z+3wWTg1N5zrJ21Gcku0bBzXcrXK/PEODyUeOoFnyRJ7Fq6n31rDhGSL5iW3RuTPzwvx3d679NwaONRdi7dR9laJf9V026HQ2bpzmPEtCqLrBUwnonBdPwGguT8C8jonU1JtniNabOm2th94hKf/b7SGY5ilxAUhIQUaCKlgWdviD83HWLlvlPM/vhVCpcuyMc/9mb3iOmkxMa7aTR6rYaf3+94z/fqDW82PU1aLKBNlKgbEc777RswZ8NB5mw46DlYELDYRY8sC4BUi40zUbGEBvpRKPSu7eroxaxzhu8Q5GdyCT27KHHi8k18jHpKFszN5qPnFbXG/WeuIstypuFDo7q3YlT3VtxONvPDwq2sP3gGjSDQonppmlUpxckr0ZQtki/LsKDsUqRswUzvOTEuiXG9JwHOk8PK39bTsntj3pv4Zo6s/yjyVAs+u83OkBajOXvwAuZkCzqDjr+/Wcxncwdyas9Zr987e/AiX3X7AbtNpP17z/HmV13v6e04bMYqNh46i5jfqTmmBvtgLRFK0OKjaICK6ZpG34xP5sf9kcS9VAXBKmI6eh3TiWgEQNZraPxKA8Yv2Ho3Bk+nQTbonGWS0mGuWMCpwSmQkGzm+/mb+V+f59FoBKYO7Mynv6/k8LkoBEGgQO5ARnVv5Yq/ywmeq1mWmWv3eWRvhOfPxT/D3G2INUoX4a9NnpkwArB2/2na1XXPTpm1dh8/L92JTqtBlBxEhOXju7eeJ9jfh3zB/uiyyBnWCAIGvZbh3VoiCALrD55h5Kw1yLLzpRUa5KdoCrgXJIfTVvvJK80Y3q0l2yMv8MnvK1m11+l99fcx8n3fdpQrmi/rybLA6GPkjTGvMvXjPxQLGKRHlmUsKVZWT99Ei9cbPbGtLJ9qwbf6902c3n/e9TCINhERnKErH7bz+j3ZIbuqZSz5eTWla5SkUee62VrzXFQs6w+edT/m6bVIIT5IJUPxi06h7/c9AGdu6itfzuZ2shl8Dci+BlLrhiPl8sVv9yUc+QIp/EwZLv8YeXcuQSC1emH89lxGSJcDKoX4uNouetwPsOPYJde/8wT78+uAziSmWLCJkvMPPQdxOGRupGVvpMfXaGBMr9Ye46/FJqAVNDhwF1YWm8jZDDF3W46eZ9KynVjtIncsFUcvXGfIlOX8MqATDSoUw9dkwGIT3bROvVZDzTJFsNklihXIxctNqlIsfy4u3LjF57+vwpLu93U1Nh6DTodWlt20Pq1WQ5PKJbJ8Cf6z5QgTF2/HYrejFTS0rVOOpTuPu62RarXz9vj5rP6qj8uumBmJt5LQG3Rey3C9+O5zFCqZn7//t5gLkVdIiktWPKrfwWa2sX3RHlXwPYms/2OL4htQlmUKlsyPzqBFVIimT48lxcrCH1ZkKfgcDgcH1h1l0c5jyg+cQUehlhX5fkgX8hR2hkz8vekQKRb3wpPotVgj8iEFmdAXC8XPz0iwvw/mdLXerBUKgCDgu/8KGotIcMEQEnwy77BlUKgUE+hnyvQ7/5Zlu4+z4dBZN4eFIEDB3AGULuzZn7ZYgVzodRrskvvvwseo9+inMWvtfg+zgCg5OHw+ylUkddqgl/h46grORsUiCJAvJIAxvZ4jIszTcbNg61GPdWXZWbQg0NeXFIsNq13EqNeRK8CXIV0yb16+dv9pxs1Pn1onsWDbUUUF0iHLbDl6jpZpnmQlTu09y/96/sS1szdAlqnesjIfTuunGJpS89mq1Hy2KksnreaXj2Z6lKZPj0arQW96cruyPdWCz+ijnKcoO2QKlMhP95FdmDlyHpJNwiE7vBYPSFZIjk9PYlwSAxp+TszVOJLzByA2KA4ZKrIYdFqatK7uEnoA+05fVT6SiQ4cQT6EhgRQLH8uerSq6Z7YLwhYKxRArFSQZaN7kS9XIAfPXuON7/5W3J9ep+XF+hUyvYecZO6mQ5gzCCdZhisxCUTFJVAwt/sfbZ2yYeTPFcDlm/EuLVGrEfA3GWhRvbTb2LhEzzJZ4LzH+GQzeYP9KZwnmNlDXyUmIRlRcpA/xNN5cYeYhGRFW16q1U6BXAF0bV4dUZIIz5eLZyoW9/DYRt9O4qclO9h+7AJ+JgNmi81DMHvzMIuSlGlcYey1OD5qNhJzujH71xxmcPNR/HLoW6/31KBDbSZ/ONPrvODM+Gn6coNMxzzOPNXhLG28lPDxC/KlVLVivDykPZP2f0O3EZ3p+nknfAM9jxF6o55arauxdPIapn48m+2L9ng0jp7YfxpRZ29gTrKgORfrTEvK8LBrNALPZ7BVFc0brGzgFgQCNpzm6x7PIggCnZ6pRK0yRdwaauu1Gt59oT750uxyVUsW4q02dTy8oBpBoEbpwvRtm72jek7gzVGj0QiKn2k0Ar8N6kKrGmUw6nXotBoaVirOrI9f9XBs1Csfjt6LLTM8n3sObZ4gfwrkCkQQBG4nm1my8xiLdkS6Cc8GFYopOk8Azl2/xaSlO6hfvhhNqpT0EHq3k828OuYPVu45we0kM1djEojLogeKOwLV02r/KbHs13Ue/XpFu8SNCzczdc6F5Avm45nvYfAx4BNgQm906j96ox6TnxGDSc/b371+X32WH3Weao3PawmfpR+7ouXDyhUm7LNO2G129EYds0fPR7JLOCQHRl8D/iH+LP9lLZLowJpqxeRnJE/RUMZvHU1grgBng+j5u1wPqOCQCVwaSVKrssi+Bnz8TRj1Osa80dqjV8WrTauybMcx3A7GkgNdXAoBKSLX95ynbPECCILApPc7suPYRdYeOI3JoKdd3Qh8jAamrNiFLEOzqiV5q21dWtcux7oDp7lxK4lCoUHUiwj/z9oveqNFtVJMX7PPQ5v1NeoJz6ccTxbkZ2J0j2cZnUVOcI+WNVm19xRJZgv2NBunyaDjw86NMHgp3b9yz0lGzV7j/J3LMl/9uYHBXZrQoUFFWlYvzR/rD3Ax+rZi+I3VJvLTku1M6OdZKeWfzYdJsdjuKWbwDj4GPS1rlKZ4gdxex1w9eQ271Y6s0yBrBDR3zDICRF+8Sfl63o/Iz3SsQ9VmFdmz8iCyQ6Zc3VIc33Ea0S5Ru3XVfxWt8DjxVAs+QRDoN74H+cLysGHOVgJy+dNtWGdKVnGvrbZz6T6+fv1HZFlGIwhofQwUr1iURi/VY9kva4m7dss11pJi5cqJa3Qp2Ic3xr5Gxw/aIGew6elumwn+6yBCHn8m7vsagN0nL3M1Jp7m1UoTlGZbK1EwlBZGf1bFxuIw6UAQ0F+Jx3/jGURB4PaNu8U3BUGgfoVi1E+rCzdzzT4mLduJmGaf+n31Xnq2qkmfNnXo2apWzv8w74Guzauz5sAZom8lYraJ6LXOl87oHs/edwhHaJAff3/WjdnrD7Dz+EXypx1Hq5dS1pxiEpIZNXuNq8rzHf7390Zqly1KodAgpn3Uhd9X7eG3VXs8bHEycPKyexP1O+w/48VUkQlajUCN0kXo0KAizatl7lgIr12C5akJWAs4tXrtbTP+m84ipdopUSU8y7X8g/1o+koDZFlm/vfLmPftEhLikihROYy+43pQoUH2W44+btx3dRZBEIoAM4F8OJ+DX2VZnpDZdx6V6ix2m51BjUdw4eglLClWBEHA4GPg9eGdqfN8DecRQIbeFQd6dLcKCg3kp71j6Vn2A49AZzG3H5ayedH4GujUuiax646zb9Uht9p6Gq2GOu1qYOxYzdXgRpt2VBr3djvqlHMGse5evp8vXhlPiuxAsEuut7rR18i4zSMpXd2zPNHVmHg6j57pkfRv1Ov4Y+irmWoRDwqrXWTV3lPsPnmJArkC6dCgolu83YNi7qZDjF+w1UOb02s19H2+Hj1aOfucmK12mn40SbGySuXiBfj9o5c9ro/9awMLth7x0PgMXsp7gTNIfMnoXoqfpUeWZTqNnMGF63F30wtlGcHuoPltia8XDMlyjjtMHfoHi35cmaEKkIHvt4ymVDXP2M9HmQdZnUUEBsmyHAHUAd4RBCEii+88Emyau8Ml9MD5MFlTrUwZMpt+NQbzZoWBvFdnKKLCEcdmtXFkywkyejzM5fOT8EIFrBH5MBfPzR+RZ4l+phiBoQEue6LJz0Rw3iBq92/F8t0nsNhF7JIDi03EYhP56Ndlrj/EGs9WoUTlMHwduAm9Gq0qKwo9gE1Hzit6CUVJYuOhc//2x5WjGPU6XqhXnjG9WvPeiw0eitADZ008bxWo0wsnH6OeF+pVwJThuGzUaWlZvQz7T1/1EJ6vNK6CPkOBCL1WQ9mieWldq6yHLdJk0PFas2rZ2vfBs9eIjk92z6kWBDQGLSV6eVat8YY5xcLCH1Z4RDfYzDZmjZrndu3c4YtsnreTSyeuKs+VbOba2evYMkYiPILc91FXluXrwPW0/08SBOEEUAg4fr9z/9dsX7jba+XbO65+m1n5lyg7ZCTRQXiFopw5cB5kcBh1pNYJd2sv6NBpOBEVy6fzByCcuMGFyMsUrxRO4y71GDFnnUdV3jvsO32V+uXD0Wq1fLN2GEsnrWbd7K1odVqee6Mpz77hGTax8dBZflm+i0vRtz1CMMB5HNbmUDbAk0LDisX5afE2j+sGnZbGld1fLB92boxeq2H+1qM4ZBlTmtPjpyXbEQQBWZYZ8XpLmldzeprD8+diQr8XGTlrDbEJKcjI1C9fjGGvteCbvzd6aILNqpbMdl/ha7EJii83CbgUk5CtOaLO3eCLV75XfMZlGc4fdsZ2piSm8mmbMZw9eBGtToNkl6jcpALD53+IwahHEiUmDZzOyqkb0GidpWBeHdqelz9u/8imveWojU8QhHCgKrA785GPBgEh/ggaQbEKS1Y4JAeVGpajQoOyfNDgMxJiE7EXDASHg4yKtNlqZ8vxix4l2b2lbQFuWojBZKDjgOfpOOB5r+MX74jk67kbMy3XrtVo7qnj2NNA0bzB9GxVi+mr92ITJWejJIOOzg0re8QU6rQaBnVuTP/2z3A72czLX8wiPsU93OTz6aspVSgPYWke5JplirB0dC9uJaViMujxMxlYtCOSTUc8S3EdvXAj2zbOMkXyIivEV/kYdFQufrfy8o2LN7l0/CqFMlRkNieb6V/vUxJiE72uERbhtItO7D+N0/vOYU+XDXRow1FmDp/Lm191Zdpnf7Jq2gY3Te+PLxcQki+YZ3tlHtf4sMixcBZBEPyB+cAHsix7/DQFQegjCMI+QRD2xcTE5NSy90Wbt1pgyEaQpiAIbq0gTX5GWvVqSsES+SlcqgBzLk+m/Xutvb5FNIKAn0Jvgza1yinnmVptGO+hebjDITNhoXKPCkFwtjs06rX0f7HBv66d9yTTp00dpn3Uha7Nq/Fas2r8OqAzAzo29Dper9Ny8spNj3Q7cKaiLdoR6XZNEARyB/q5noF5mw8r/q4u34xnzoYD2dpz6cJ5qF6qsNtzotUIBPiaaFM7ArvNzugu43gj4gPGvjaBt6p8yNDnvnAVu9j8907n8dbLu9foa6DrsM44HA42/bXdTeiBs4H5yt/WI0kSS35a5REMbU21Mmfsgmzdy8MgRwSfIAh6nELvD1mWFe9WluVfZVmuIctyjTx5PKPzHwZla5Wi99ddMZgM+Ab6OCPVFV64epOeTh+2I6Juaao2r8jg6e/y3o9vuD43GPX0G9+TsT+/jU6hjp3BS4Bww0rFaVy5hMeSsgwDJi0mJovA6DskpFpI9WJXERB4p119Fo7oyStNn556a/dK2SJ5+aBDQwZ2apSt0luJKRbFxH9RcnArUbnt5h0yq0rz0+Id2LKoWnOHcW+3o3vLGuQJ8iPI10TrWuWY/fGr+JkMzB79D7uX7XeVPLOZbRzZfJzJg2YAcPV0lFczT3DeIEYtGkK52qVwSA6PuFTXfaTasKbaPITiHW5HZ+/I/TC476Ou4DzE/wackGV53P1v6cHywjvP0ey1hkRuO4nR18Avg2Zy5XSUy+5h9DVSu0013vjy1Sznqt2qKr+Vzs+7Py7EIcvIsowoOej7fF0qFivgMV4QBNrVjWDDoTMe3kJRcrBweyR92mRd1t3fx5BW0tzzAZVlmWuxCeTPdf+ltFTuUq1UYcVCpD5GPc9UzLx/bavqZZi8fKeijU4Q4OSVGCoV93xeMqLXaXm7bV3eVgg+XzZ5rUckgs1iZ+2MTbz/c29KVi2Gj7/JLesDnKeZobP7U625s0mTTq+jeKUwzh266L5PjUC1FpXw8TeRq0AwMVfiPPZQuvqj6xHOCY2vPtANaCoIwqG0/zwzzR9h/IP9qNO2OlWbVuT7baN57dMOhEUUpkSVcN7+rjufzHk/23NVLFaAtV/3YUyv5/j8tRas+PJNurXw7l2Pjk9GIyhXO74So9wkOyN6rZaXGysbxWVg0Y5jXltIqvw7CuYO5KVGld1MFSaDjlKFQl2d47zxarNqmPTKJhaHLOPvJZXyXsgo0O5gtzpbltZvX4uQfEFuJhy9UUfh0gWp0vTu6eT4zlNcPRXlMY9fkC99x/VIi4XtidH37p4Fwakw9Pmm233fx3+F2mXtASM5HBw+F0Wq1U6VEgWJvp1E16/+9Dj++Bj1fNipEe0bKFfzVZq3bv8fFQWcViOw+bt++D6lPVT/K2RZZsvR88zfehSz1cazNcvyfJ0Irxki6Vl/4DSfTFvpZifUCALF8udi3rD7b2sw9Nkv2L/2sIdWWaZmCSbu/gpw5pBP/Xg2W+fvRtAIVGlaAZOvEYfkoNFL9ajVuipvlPvAWQAhHYJGoGWPJnw4ta/r2uFNx5g1ah7Xzt6gVLVivD7iJY9EgAdBduP4VMH3AIi5GseGP7dx+XIMa+JiMef1QxCcteI+7NyIHccvsvPYJVdZIp1WQ95gf+YNe13R+WGxifyybCeLd0ZiFyUaVCjOgI4NGTFzNbtOXPYYXyRPMItH9fzP71Pl3vhp8XZmrduPXqdFlmVC/H2Y/EEnrzGNq/edYs6GA9yMTyGiaF7ealtXsZoNwOWT1+hf9xNsZht2m4hOr0Vv1PPtxhGK8Z9/fPEPf361yBXPp9EKhBbKza3r8YpxrLkLhvDX1V/v4+7/G1TB94iwY8lexrwyHofDgc0qgk6DrUgwyS3KgCBg0uv4dWAnDpy5xvytR7HaRZpWLUmf1nUI9lJbrc/3/3Dk/N3WhlqNQIi/D9++1Y5+P8x31ZoTBDDqdIzrezcTROXRIi4xhaMXbhDi70OltLzrjJy/Hsc7PyxwBiynIQBGg47fBr3ktVhp7LU4Fv24klN7z1G8Uhjt329N/nDP1gE3r8TSo0x/7AqVu71RsEQ+ZpyZmO3xD4rsCr6nOlf3v8ZqtvJV1x9cRmYBQHRguBLv7GZWPBSbKLF4xzE+fbU5ryvYAmVZZvOR8/y9+TApFisVixXg6AX3fq6SQybZYuPE5WjmfPIa01bt4djFaIoVyEXPVjVzpIqvyn9D7kA/j0Dp9FhsIm98N5eEDB5YOe2z8fO38MuAzorfDS2Umze/6prlHg6sPYJWqyG7Ys/oa6Dt2y2zHvgIowq+/5CjW08iKASkCqIDw+kYbMVDcchypjXXfli0jb/T1a87cfmmojfRYhOJvHiDLo2rMOL1Vjl3EyoPlc2Hz2Hz0uQdYO/pq0xfvZfuLWsoaou3k82cvhpDvmB/wvMrV74x+RkVn9M7OHPY9Wg0GiTJQc1nq9Lh/TZexz8OqIIvHVdOXeP3z/7i+oVoqjSpQNfPOuJ3H2XXNZm0EbxTBt7HoKdJlZLY7CKbj5znWlwC5Yrmo1aZIsQkpPDnhoNu2p0376xRr6XEI1B8QCVnuZmQnGWFl19X7AJwFVQA50lh/IItzN10GINeiyg6KFMkDxP6vehRWbt2m2o4RO9ef71Rx0e/v4PNbKd0jeKERRS5jzt6NFAFXxrLp6xl/Ft3jbVnD1xg8cRVTI0cR8ES/66XbMVnyrrq+qVH1mmwlsnrDH8oHEpEeD7afj6NVIsNmyih12kpXiAXXRpVQe+lMY7A3aB7AWdM1wsPsIqyyoOhYrH8GHQ6rznd4NT2f1+9l9db1HClvC3ffYJ5W45gEyXX83P8UjSf/r6SH99t7/Z9H38fKjxTjv1rDivOX7h0QRp1rpdDd/Ro8NhWYL5+IZrdKw5w9tAFNv+9g3WztxCfzeTsjJhTLPzQb6rHdbvVzhdd/n1Mtt6gZ8SCjzD5mzD5OSvd6k168tYvRc3nqjL05aZMGdCZkTPXcCsxlVSrHVFyYLbaOXM1lu2RFxUzijSCQKHQIHRaDVqNQIVi+Zk2qAshXpwhKo8vlYsXpGLx/Bh0nj1R0pNqtbmFRM1a59l7xC452H3yMjfiPPNz78T9ST56ZI2AQ69xFjg16nh5aHuP8Y87j53GZ7fZGfPKBPasPICg0WBNtaLRajD6GJBEibfHdef5t91tXJIkcWhDJNEXYyhVvbhHjbGD64+61cpLz5kDFzLtk5oVlRuX568rk9m6YA+pCalUb1nJ7aiQZLYSefGGR8K6TZTYd+YK/j5GzDa7WzyWXqfl+77tKJovBEmSs9WFS+XxRBAEfnynPXM2HGTxjkiuxSYo5ggH+/u4PQeJKcp2Y1Fy8OKI3+nSuCrvt3/GpSFWaVyeY5duEN+qLBqbiO5mMg5fA2KIDxd8BZr8N7f30Hjs/mJmDP+bPasOYkvnendIDtcba/KgmVRqVJ6wcs7KErFRtxjYcBjxMQnIkoyMTIUG5Ri1eAgGozNGLjOhlpnRN7v4BfnxbE8vj04m4USSQ2bqwE70/2kRsQkprof0867NKVHQWS5eoTmayhOGXqele8sadG9Zg90nL/PBz4vdtDuTQUf/Fxu4PceVihdg7YEzivPZRAfzthwm2M9Ez2ed1bhf7N+aKcfPgF6LQ6/FVuxuL5rpGw/xeus6Hj1FHmceO8G3/Je1XmvkAUh2kfWzt9ArLbf269d/JPpSjJtGF7n1BH//bzFdP+sEQNVmFdHqtIrJ2FWaVMiRmmLXYhOYvmYvp67EUC4sH92aVaNwnmACfE2ULpyHE5ejPWRgYgYUHlUAACAASURBVIqZ2ev3s2B4d85dj8Nss1OuSN5sZQaoPHnYRYmlO495ZPmUD8tHm9p3a/8u2XmM9QfPZjqXxSYyc91+l+ALyRuEITwUi9mzcIFdlLidnEqeIPeeMFdPR7Fj8V50eh3PdKrj1iHwUeex+wvyVlHiDg7J4Sq9k5KQQuS2kx7HWKvZxsqp612Cz+RrZOgf/fnylfFutfkCc/vz+d8D73vPS3ceY8SsNS7BduziDZbuOEbbOuXwMerp0qgK4+ZvJinV6nbkdchOI3WpgqG81LjKfe9D5fHms99XsfaAZ/e0yIvRrD1wmlY1yrDl6HlGpnvWMiMxxeJmximcN5jjl6I9xtnMNrrm703RkgXo/U03qreoxMetRnNo4zHAeSqaOnQ270/qQ6sej8eh+LHTXSs2LOfRIjE9Rl8j9V90vsWkTFz0GftkNOpcj7lRU+g4oC3129fiw2n9+OfmNAJC/L3MkD0u34xnxKy1bg+iDFjsIvO3HmX2ugN89dcGKhYroHhfFpvInI0H72sPKo8/0beT2HRYWYuz2kUWbjuKLMt8/dfGbAk9gJKFQt1OM33b1vUorY9dwng0CodV5OKxK4zq9C39633qEnrgrEZut4pM6DuF29HZK6zxsHnsNL53JvSkf71PsVnsiBm8ViY/Iw061KZSQ6faH5g7gMKlC3Ax8orbOJ1BxzMdPcs9heQN4u3vuufofv/YcECxpwPcDUcx2+zsO3Ul7SH0HJukcPzIDjaHyMqoQ2y4cZQAvS8di9Siaq4Hnziu8u8x2+z8tHg7C7dFKjo17iBKDix2kej4pCznFHD2PPmwc2O36/UrFGNYtxaMm7+F+GQzksWO6UgUPvvv/v1YzTZO71Pu2+JwONi5dD+t32yWrXt7mDx2gi8soghTI79n0Y8rOb3vHLkKBKPT69AbdTTsVJeqzSq6vcWGzHiPQU2GI9olbGYbJj8jwXmC6D6yywPZ7/kozzplSljsIia9ziNAWRCgfkT4Pa9rc4j03vULF1JuYpHsCMCW6OP0KdWcrsWy34xG5eHy/k+LOHLheqbZG1qNQNs6ERh0WoyZxPwVSKvJWKJgKG+1qUN5hYKrz9YsS6saZbh5M57uYX2RbNlvj+mQHJk66x4lHjvBB5CncG56f511DiJAyarFmHHmR1ZP38i1MzeIqFuGJi/Xw+hjzPrLOUDFYgU4cPZqtp6HAF/j/9k76/Corq2N/46MxRUIgeDuVqClLdJSWihtqVF3vW1v7dbl1t1ujTpV6gbFStHi7h4SSIi7jBzZ3x+TDJnMmSRo7Xufh+chM+fsI3PO2muvtd534SkL9mKFgOO6HHyl/Kz96wNGD2qW16bGpJ2/cmbqAGLtEQc95v/j2GLr3jw2ZeQ2aPQAerZNYeyQbiiyzAUn9+GLeWsCzdRrERvp5PtHr8TRhNInSZJITo7FGeGgytewmnT9/YacOaDJ2/+R+MvF+A4FccmxXPifs7nz3RsZc9WIY2b03D6NhGhXjTpyw3DaFEoq3Zbfffv7xoM+9ry8zQGjVxc2SWF9aeZBj/f/OPbYvb8IuYGAdnJsJPdcOIIP7roAm+Kva7p5/PHY1VDj5tMMZq/e3uRjV5e7SW6dFPK5w2Wnfe82lnTMKx6/kIQW8U0+xh+Jv6THd6gQQrDkp5XM+OA38jILKM0vp6KkktSOLbj22UsZemajajZNRkFZJZc9O4UKtxfdMJElCVMIIp12TujRloUb0pFkCbNGcGDMoK7MWrXDkoubY1Fp3xji7BFISCGduAQQpTqtd/qDIISgyvDiUuwoFmrU/1SkNYu3XCk4bArXjx3KVXW4ubXYV1Bq2QvE7dP4btFGzhzaI/DZ9pW7WPDNEiRZZsTEE4KEQx8a9wzZ9ZWXJbjmmUsYc/UIXr/lA+ZN+R1DN4lvEcutb1zLsHMGH/rFHmP8owzf//71PnM+XRBSErN3azZPXfQKD315J0PGHXDVc9LzWDt3E1FxEQwe2/+gPMVXvltIUXlVoHdqrT5el1bJPHvtWCrdXuav302Vx8fQ7m1ISYxhjkXBqSxJlv06GsO5rQczJ2cjHjPY64tQ7fSJP7rafHmeMqp1L2mRSY0astk563l123RKfFXYZZWL2pzAdZ1G/b8BxM/Tbdsinl3ZhYHEhp+XrVo2rwJ/zV04J7Eu5/vdez7l57dm4XP7kCT46fUZXHT/OVzy0HlkbN7HrnV70OolDxVFIXtXDq4oF/dMvoU737sRzafjivxzTaRNwT/G8O3dls3sj+eHLX72Vvt4797PGDJuAEII3vnPJ0x9axaSLCMrErIs8+ysh+h6XHBf2oKyStL3F5GaFEur5AOtGxduSA9pGC0ErEvfj6YbRLkcjBvSPej7f519Aq99vyjAsZQkv9jkTWeGNpNpDD3iWnNbl9N5bfsMVElGIIhSnfxv0FVHzajkecq4b+3n7KzIRZFknIqNR3udx/HJXQLb5HvKmJ69llKtihjVxeT0BQHj7DZ8fJHxO7owuKXLmKNyjn8lSJLEpH+fy7NfzuPXNTswTUHv9ik8dMkpYXnZHVOTcNptVNcr13LaVcYN7gbA7vUZ/paQNe+CEP5s7RdPf8/wiSeQuycf1abiJfhdMXSDfdsOeIGqTUU9yGL6ipJKinNLSWnXDPsf2ArhH2P41s/bZNU5Mgj7d/t7C6ycuc7PEKmnSPvwmc/y5f53URQFwzS56bXvWLUjC/DPxJ1bJ/PhXRfictjCxvUkpLBMkL7tW3Lh8L4s2riH0ko3vdq14F/jTwjQ0w4W57UZwpiWfVlfmkmU6qRXXGvLxkZHAkIIbl7xPvvdJRjC7524DR/3rf2CT0+4lTaRSSwt2MG9az/HwEQzDculuMfU+CpzCdd0HIlLCX4xfKbOL1lr+C1vI9Gqi3PTBjMwMbyI598B0RFOnrr6dJ64cgymEI3SxhRZ5plrzuDfb/2IaQp8uoHLYaNjyyTOPcnfOW3JzytDvDnwe4R33/MRE68fjc8bGh+2O230HNb1kK7D6/by0rWT+P375ah2BQRc/tiFnHfHuEMa73DxjzF8UfFRyGrDD02zNL+Bmf7eHEuGiM+rsWXJDnqd2I2HPpoRMHrgj51t31fAv9/6kXfvOJ8zBnflh983BS0vVEXmxJ7tQh7e3OJyrn35G/JKKlEVGSEEI/p24IkrTz9sfmSUzckJdTyuo4UNpXsp9FYEjF4tNGHw3d5l3NplDA+t/zJo6V3f6NXCa+qcOe857u9xNqNS/M2WNFPn+mXvkl6ZFxhjceF2rmo/nKs6/DXYAocDWZaQG526/RjUpTU/PXYV05ZvoaC0ikFdWnNir/YUlVdRXFENsowsS5j1ksVCQEZhKc/PWEanwR0oXLmnTg8OGWekkzNvOjTl5Vdveo/FPyxH82oB8sDkh7+keVqSZU3t0cY/xvANHT+Q124Kb0QcEXauemIiAN4wzbkBfDXf/bramgC+akcWr3y3gJvOPJ7NGXnszinCNAWKLJEcF8VDl5wStP3e/FLOf/zjQAynVl15/vp0Pp2z2jKAfSyhmwYbSjMRAnrHp2GTrR+ZQm+55YtpCJMcdymby7JCFGgaQrnu5rGN39LCFUePuNbMytngL8+pYzg9hsYHu+dxdutBxNsPj2Hzd0NyXBRXneZnMFVUe7j1jR9Yuzsbm6IgSqqJCrPq8LVLRPg0tnVP4sZT+vDbB3OprvAwcExfrnnqIuKSrRshhYzj8ZGxeR8xidHEJEaz4KslIWwpb7WXKc98//+G72jCGeHgian3cdfJj1hmyoacOZCh4/1Z3ZEXDWPToq0hXp9pmPQc1hXDNBt8ib+at44qj8bH90xk7a5sdu0vIq1ZHMd1SQsorNTi0Y9nWlbkezWdbxasP+aGb0NJJlOz1+AzNdpFNuPTPYswhQmSf5n+dN+LGJIUHOcs9VXz6/4NVBmhXrIiyVRqbnaWh0pvNQavqfPZnkU80+9iFuRtwW2ETkg2SWFdcQYjWvy/CGs43PfBdNbszEIzTH9NoEvFOKMb6v4y1LxKpOxSZCGoPLkDoqY/rmpTSBndi08fPO+gjzfjw994+/bJSJKErum06dGacBGWopw/huL2jzF8AFWl1biiXFRXhNbLLfpuGStnrOWZmQ8x8qJhzPl0IVuW7cBT6UG1Kciqwt0f/iuQ2bWpckiRaC18hsm05Vv49znD6N+pFf07tbLczqvpbNyTE/Z8q73hPc+jgfd2zeHTPYvwGnrYZeg9az/jx5P+Q4LD72HppsF1yyeRXV1sub0hTFaX7GFLeTa6aDoLAPxL4f3uEgDi7JHISJgW5TnRtv8XYA2HwrIqVu/ICplcvc2j8TaPRhaA24cpSeA60MpUkiAu6uCztRsXbeXN2z7EW33g2U3fkBkk/hE4hizR44SjH4axwj+qZqC6wh32hTZ1k+pyN/eNfgIhBE/PeICHptzOuBtO5YJ7zuK9DS9x8vkHsquXjOzX4LFsikJuSaXld7WNqP/z7lQsnocATuhx7Hi1Oe4SPk5fiMfQwt4j8J/7rzkbAn8vKdxBgaccXYTnkYI/0XGw8l42SWFgol809tzWx1kusyNU+//zjxtASaW7wTixKYEZYQ8yegB2VWXgITCGvnt1WpDRAzA0A0mWsDkPHKM2ZlgbXjrW+Ed5fP1G9sRohP7jrvSw4OsljLrkJAaPHcDgsdYUnOvOGMonv64Oa7h0w6BlYozldy9/u4Dvf9/UYB8Fh03h1rOHNXiuRxLLCnc2KXjuM3XKNT+NaXdFLq9vn0m1xRI03L5WUJBoH9WcfdVFgRiegkyE6uCiNicA0DU2lbu6jeWlrb+gyv4EUJTNxWsDrvz/mr8G0KZZXINqRuGgmwamEByszm1hljU33dAM4pJjaJaWREleGT1O6MqlD59Hq04HX6N6JPCPMnzxzeO4/LEL+fSxr0NmpbpYOm01oy45qcGxXA4bowd04be1O0OWEaosMXFEPyIt6pSyC8sCTWCsIEsSiTERfPSfibSoIZVbodRXTZXuIcUVd0RKVOqXjoSDU7FzXFIn0ivzuHrZJMu428FAQsKp2nm238VsLsvi8z2LKNWqOS6xI9d3HEWS88DkcXbr4zg1pQ8bS/cSoTjoGdfqqJXn/F1gt6ncPuEkXvp2QUgPjoZQ7dFYvnUvw3oGe9O71u3hg/u/YNuKnSS1TOCSh85l+IUnBL4fdHo/0jdkonlDj1WSV4Yz0sknu944IuK+h4N/lOEDuPA/Z9HrxG68eNWb7KtPyamB3Rns9le4vQhThLTle+iSUyir9rBqRxaG4U94uOw2bjpzKJeM6m859qodWTU1fqGGr1fbFvzrrBMY1KV12Aej1FfNw+u/ZE3JHmRkolQHD/acwLBmh1ZfBf5l7qd7FoawPOrDpdgZmtSJ3nFp3LfuC0su8MFARqJtVDOGJnVCkiTGtOzLmJYNC65Gqo6Q5Mr/IxSabvDz0s1MX7EVh03lslMGsiE9m9U7s8O2KK0LwxRkFwY379qzMZM7Tnw4kPSrLKnihavfYsE3S+g+pAvHje3PObeewYwP5lKcUxIS1zMNk+KcErat2EW3wX/sb/i3NHzbV+5i9ifz8Xk0Tj7/eAac2jvIkHQf0pn//vAfru15Z8iPY3PYGDrOn93dX1TOw5NnBhIQnVKTeOLKMbSv6V8b4bTz5q0TyC4sI6e4nA4picRHN6x6EhvpDMnsgr/Gb1CX1hzXNa3B/e9YPZnt5Tk1iQIDr0/jgXVT+GjoTXSIPrg2mFW6F5+hcfOKD8ipSSIEnRMyZ7UeRK67FBPBuNT+jGrhl+LfVLqvwVhgU2AiyKwsYG9VAd/uXcZtXU7n/DYHz1I5UsiuLmZp4Q4cso2Tm3cn5i+aNDFMkxtf+5ate/MDXt763TmMHdyN2yecxPWvfItumvg0PYRdVBepScGhmsmPfBWyUvK5ffz+/QqWTV3N5Ee/4oxrR/L4j/fwxAUvkbunIGRMSZb+FGKlfzvD98XT3/HF09/j82gIUzD/y8Ucf/Zx3PfJrUHGL61rK8ZcPZI5ny1Eq2Fo2J022vdpy/FnDUIzDK5+8SsKy6sCpO9te/O5+sWvmPbkNUTV4e2mJsWSmtS0+qbju7exDDarssz44xsuydhdkcvuiryQ7KjP1JmSsYSHek0I+lw3DZYW7qTEV0m/+Ha0jvQb7EJvBY9t+IbVxekIwBT1c6V+CAQri3ZzbYeRjEkN9sRauOIo8B68eEJ9GJggQBcmr22fwUnNu9Pc2bR7eSTx/q7fmJy+AAmQJZkXtvzMM/0uPibF30caCzeks21fQdDS1u3TmLpsM5ee0p8ZT1/LnLU7KSyrYtWOfSzbujdkDEWW6NcxuBph+8pdYUV1dc0AzeDH12fyy7tzsDlsqA4Vvd6SV/Ppf7i3B3+zrG7+3gI+f/I7vNW+gCfnqfKy5McVbFiwJWT7O965gXs++hd9hveg6+BOXPvcpbw0778oqsLvG/dQ6fYGKV0I/LSemauaLu9TH3abytv/Ppfk2EgiHDYinXYiHDYev/I00prFNbhvvqfckgpnIsh2BweV0yvzGDf/OR5e/xUvbZ3GxYtf4+lNP2CYBjeteI9VxenowsQIY/QADAR7qwt5essPfJ25JOi7azuMxCnbwuwZCpvchDC5ECzK34rP1Jm5fx0vbvmZrzKWUK5Zy3UdKWwu3ccn6QvxmTpeU8dt+PCYGvev+4Iq/dDUr/9ILN2SiduCciZJEqt2ZBHhtDN+aA+uHnMc900cicsR/DvaVIUrRw8KiVG3aNusScfXvDrV5W4Mn46tjv6fM9LBuXeMI755w8/5scDfyuNbNWu9ZTtIb7WXxT+toM/wHkGfS5LE8AtPCArO1iK7qNyyTs/j08nKb9xVF0KwOTOPNTuzSIiOYGTfjkTUPEhdWzdjxtPX+UUmdZ1e7VJwNIHs3TkmBa0+zwiwyyqDEg5wVoUQ3LX6U0p8lUFGbWbOOhLsURR4ykOoZQ3BY2hM2jmHvnFtmZK5mGJfFaNTenN3tzN5YetUvI3EBi9pcwIVuoffcjehCQPNNCyXybowcRs+Ji56lVxPaaBE5rXt03ml/xUMTj46nsIv+9fitcg4y8gsKdjOqSm9j8pxjxYSYiKwKXJI0k2RZeLqiRuYpiDSYcer6YFJfnif9tw8/viQcS995Hz+O+H5BhODdSHJEu16t8HQDaLiIjnrljFEx0fxw/+m07JjCwae1gdF+WP6o/6tDJ/dZUe28IhkRcEZcXDio93SmqGqMpoRbGgiHDa6pCWzcGM6xeXV9OnQknYtEoK2MUyTe977haVbMtANE5uq8PxX85h0+3l0b9Pcf06yRMe0BNaXZLKlYh+949s0WpaR6IhmQuvj+HHfygNlH5JMlOpkQtoB2k96ZR5FvooQ0+IxNObkbjykyFy17uXSpW8E/l5auIPmzlicstqo4ft23wpUScZn6lzQZghfZCy23M5E8OPelWS5g4uhdWFy++rJ/DrqYaJsR14CyQhjiEEc1ATxZ8H4od35ZPaq0GoDRWZYj7aBv01T8K/Xf6CovCro6hdt3MO63fvp1zE1aP+Bo/twx7s3MunOj6ksqwpZxtaHaQgiYyN4/tdHcFe6uXvUY+zbmo2uGah2hbjkWF79/Yk/RLz0L2v4SvJKmTppNtuW76R97zaM/9cYhp45gFdvfDdkW8MwMHQTXdObLKPTv2MqnVOT2Lo3P1B6YlNk4qNcvPTNArw1gWEhYPSAzjx62WjKqj0IU7BwUzrLtmQGYiy1WbS73vmZ6U9diyRJTMtezfObf0aRZATgUmy8NvBKOse0bPC87ug6ls7RKXyRuZgKzc2w5K5c02EEcXWk5L2mjhwmiqFIB8RP6yPBFkml4bWst7NaEOd5ykI+s4LX1KhdMH6duaxBw7vPHaYODME3e5ceFUGCU1J6MzNnfUhpji5MhiR1PuLHO9pomRjLs9eN5aGPZiCEfwUQ5XLw2s1nBfVk3pSRS1mVO3SC9Onc+sYPXHByX64YPZDYmmoG3TDpdlpvPtj9OkaVjxUz1vC/m9/HNMyQxl/gd0T6jfTHrT98cAp7NuwN8HU1r4bPrfHK9e/wxM/3HZ0b0QCkcMHKgxpEkj4ExgH5QohGSZMDBw4Uq1atOuTjZe3M4dYh9+Nz+/B5NFS7is2u8vKCxyktKOe/E54PJDdq4Yiw02d4T56adn+Tj+Px6bw/YxlTl27BMAWjB3Rm8eY9ZBWUBT0sDptKUmwE+SWVIEkokoRHC30QXA4bH919IUqswZVL3w7xlGJtEcwYcT9qU+JhDUA3DcbMe9oyNpZgjyRadZFZXRjyXazq4pHe53H/2in4RNNrvo4VRjbrwbP9Lzni4woheHLT9/yauwGvoaFIMookc1e3Mzm79R8rEnGoEMJfjpKZV0J8tIuurZuHVBMs3pzB/e//QmUYUQ6bqpAUE8nXD1/G3LU7eenbBfh0A9MUjOrXiYcuPYWKvDIWfL2Uhd8uJX19RkDKTbEpRMVF0uvErmxYuJWK4kpL2pqiKkyt/BSbvenx4oYgSdJqIUSjUupHyuObDLwBfHKExmsQk+6cTFVpdSDDpPt0dJ/Oqze+yxvLn+G2N6/l1ZveC2RrwS80un7+Zrav2k2XgU3TcHPaVW45axi3nOVnUGTmlfDjkk0hM6RX08kuPJDhDLfwk/Avg6dmrUSz8Kp002BF0a4g4c5w8BoauyvziLVFkBoRvNRWZYV7uo3noQ1fhexXqXnxGtZGrUx3U615aO6KZV9107rDHStIQJfYhr3hQx5bknio5wTGtxrIwvwtOBU7p6X0IS3y0HQQ/2is3pHFo5/Moqi8ClPAgE6pPHnl6STEBJda9W6fEhLKqQtNNyiuqOa17xcxbfmWoCzxb+t2opsmz107lvPvOpPz7hzHzA/n8sP/plNZWkX/Ub34/ccVLPlxpaUUfi0M3aA4p5TmbZIP/8IPAkckqyuEWAhYs9SPAtbO3WSZVt+xeje6prNjdXqQ0auFMAXbV1g3ZW4KvJreYPOXxuBy2OjSqhmlvmrLpaNAUKF5Gh3n56xVnDb3Kf614gMm/v4qVy19i0LvgX6qc3I28sSm7y339QndUkWlFo9s/Jb9YQQH/kg4FTsjW/Ti490LuGXlhzy7+UfSK/OO2PiSJNEnvg23djmd6zqO+ssavayCUm598wf2F5Xj1Qw03WDVjixu+t93Ie9MtMvBbeeciLOBzmteTWf2mh0hrA+fZrBg/W5KaxpkSZLE6deM4t31L/FF5iQSUuLxuX0NGr1avHrjO4dwpYeHYxbjkyTpeuB6gLS0hot0G4MzwmEpIa/aVGRFpnmbZOwue8g2Po+PH9+YTuuuLek3stdBH7dDy0QcNjVE1jscFFnCMAUOm4osSzx37VhkWeKkZt1YmL/VMqY0oBHC/YaSTF7cMjWIZbGtbD93rv6YT46/hcyqQh7b+G2jCYdwEAgLTskfi+4xqdzSZQw3rXiPCs2D19RYXSQxPXstz/a72NJD3lWRyw/7VlDsq6RtZDL5nnIEglNb9GZIDVPk74ivF6wPYWbohklWYRmbM/PoWa+X7kUj+tE9rTnvTl/G8q17Q6TDZEnCCMP0UBWZovKqkEwx+FVarGhrVlg3dxPVFW4iov3jGIZBXkYBUXGRxCSGp20eDo5ZHZ8Q4l0hxEAhxMDk5MNza8+47hTsruAaI5vDxsiLhyHLMqdefjJKGEWKfdv28/CZz7L8l9UHfVxFlnnqqjE4bApqTbzEblMsSeCKLDNxeF+uHnMc/z5nGNOevCYgTzWieQ+6xKTgVA7ENZyKjcvbnRTETbXClIzFIUbNwCSjsoA9lfn8tG/lQcs/1YfURKXfo4G6R1YkmZHNe/DB0JuYl7eZUl9V4NoNBB5T44lN3/v1Auvgl+w1XLX0bb7bu5zfcjfxwe55TM1ezbTsNdy37gse2/hN2ELcvzr25pdaUtJkSSKvuMJiD+jToSVv3HIObVvEo9SLA9ptCoO6tLJc6QgI6jNTi6KcEiRZbvLkomsGc6csAmDJTyuZmHoD1/e5m4mtrueB05+iPMx5Hw7+klndy/97Pnu3ZrFq1jpUu4qhG3Qd3Il/vXYV4O+j+/ycR3j6ktfITc8Peci9bh9v3/lxWOWVcPht7U6e+2oepvD/6G2axXH1mOP4YfEmNqTnBM2WhmkyfcU2vv/vlYGsWC1UWeHNQdcwa/96vsxcEqCLbSrdR2ZlAW2iwk8M+d5yy6yoIssUeysp9lUedgmGioRAQufYlnLUqsPUlpYYwmRJwQ6+27ucRfnbLKWvqjQPOe5SsquLeXfXHPZVFVGmWYcSwC+PNTdvMzbZxsqiXejCZHSLXlzdYeRRKZU51hjQuRUrtu0NSa5pukHXtPAFyJIk8fZt53L3u1PZnlWAIss4VIVHLxtN+5aJrNyehdurBZ5xp13lpnFDQ+pPv3t1Gh888AWyJIW8d5Jc85nFTzPpzk9QVZU3bvsgqE5w7dyNPDL+OV79/cmDvRUN4ohkdQEkSWoLTDsWWd1aZO3MIXPzPlI7pdC2R6h2mBCCMfYLMQ3ra5ylf2VZ92eFdbuzufl/3wfFOhw2lRF9OnD92MGc9/inIcsEh03lujMGc/WY4yzHfGfHr3ySsTCkKPnBHhM4q/VASn1VLMrfholgWHIXEh3RfLBrLh+lzw8pOXHIKjNGPMDSwh08uen7w1JNSXXGc3/Pc3hh889kukOzv8ca7SKTMYWwzETbJIX7epzF81saL6Sui7qipjZJITUigc9PuDWstP5fBRVuL+c//gnFFdUBz89pVzmlXycev7JpnevySiqo8vho0zw+wBTam1/C2z8vYc2ubJJiI7l6zHGM6hdcUL57fQb/Pv7BQPe2ulBsCoPG9GP7yl2U5FoTAJJSEyjOKQmJrJ51VQAAIABJREFUCzpcdt5e8zytu6Ra7lcXxzSrK0nSFGA4kCRJUhbwqBDigyMxdkNo1SmlQT0vSZKIbx5H0f5QAn5MUnSDRs8wTX5cvIlvFm4IVLXXD/B6NZ2563YxtHsbXA4bVfXKAryazppd2VxtMX655ubTjEWWTIxnN/+Az9T53/bpyDWtIV/Y8jN3dR3H+W2G8u3eZRTXYWU4ZJXrOo4iyuZkRPMeTMlYzK6K3AbVVpyKjTglglxfaC1etqeEe9Z+Torrj6cWgd9Lq9Ctkz594trw7q7fDjqmWdcj1IRBnqeMeXmbGZ3S57DO9VhACB28cxHe30BKQIo4D0n1VypEuxx8fv/FvDt9OfPX7SLCaWfi8L6cd1LT2SfN40PjamnN4nnm2rEN7vfrpwssu7e5opzc8sY1jL58OBsWbOa+MU9axv8qSiotkyGqTaUwu7hJhq+pOCKGTwhx0ZEY51BRXeHmy2d/YO6U31FUhdOvGcW5d4zFZrdx8QMTePeezwLdosCfHJl479kNjvnw5JnMX7+7UQ0zm6rgsKuBJkF1oSoybZtbV6XvLA8vOW8geGXbtJCl3cvbppHvLadUqw68thISLtXB+FYDWV2Uzgtbfya9Mr/BKJ1DVjm71SAqNDe/7F9ruU214WX3Ecya1oVNUkl2RuNS7GRUFTS4NFckmXh7FGVh+LoJjijWlmYc9jm5DR8bSvb+6Q2fEBqi+CrQN4GoBlRE9eeImCeRI8YDkBgTyf0TR3L/xJGHfJxNGbk899U8tmbmEeWyc+Hwflx3xuAG1Zy91T5Mi/iiz6Mx66N55Kbn8/sPyy2NnmpTaNujNel1ipxrofk02vduc8jXYoW/tl8P6JrOHSc+zL7t+wM37LPHv2HNnA08N/thzrzpNKrK3Ux55ntM3URSZC64ezzn3Xlm2DHTc4qYt243Xosi5PowTJMTe7anfUoiO7MKgmhCqiJz4XBrfbkkR3SDL7xVPMtr6nywe27QZwJBua+al7dOY37eloCX11AAwxAmJzbrxp2rP25gq6MDGYlfRtwXYJqMmPNYg0IApjDZUb4fI8wVzc3bjCLJhx3XdMo2UiOOPXXqoOGZCtpGoHYi0P3/yh9GOE9BkhuWRWsK0nOKuP6VbwKTfnm1l0/nrCK/tIJHLwvfXvLECYOZ8+mCkCZdhm6wYcEWS6EQ8MvQu6Jd3Pnejdx76hNUlJgYNWwpZ6SD8f8aQ2xSw0m/g8VfXp1l6c+ryEnPC5olvG4fW5ftYOuyHUiSxEX3ncP3hR8xeefrfF/4IZc9cn6DGacNe3KaVK/ntKtcMXogLoeNN2+dwPE92qLIEpLkN3rHd2+LXbVmYbSJSqZdZNPULhqDiWBmzvpGhURroQuTh9d9eZhqeocGVVb4ad9KwL/cT7Y3/EALCGv0AHRhIIRAOcxHWZFlTm9pLR77Z4JwT+OA0asDSQFtzRE5xuRZK0MUwj0+nRkrtlFSUR12v6rmUVSmxiJUPw1TSP5/DcERYWf0FSczac3ztO/dlrfXvsDp146kWVoSHfu15d9vX8+1zxx5ts5f3uPbvHQ77srQ+I+hG2xbsYvuQ7tgGAbFuaVEx0c2iRqTHBsVth1eLZw2lfsmjuTMId0Bv8DomIFdWbZ1L15NRzdMFm5MZ+WOfUx54BJaJoZqzL113LVctuT1JnNejySKtapjfkzwawduKctid0Ue1y9/x1IVRaJhj7U+NGEccgGOBKRFJHNGal9m7l9L/4T2dI75Y/pA1ELo6YjqL8HIQXKcCK7xSFJNxlkK59EJkI5MVnp7VoFlrM1uU9hXUGYptltUXsW97/2CZ3gH1E5JOPYUIVQZb7tEYmZtQ/ZYr55ik2K46/2bA38ntUzg329df0SuoyH85Q1fi7bNcLjsIZkk1aaSuSWL+894is2/b8XQTYSA4Rcez+2Trsdu0Q+jFoO7phHldODx6mF7wUqSRFqzuIDnaJgmz301N2h5rBsmVW4fk6Yt4/ErTgsZI84ewdTh97Igbwu/5mxgc1kW2e4/H2uiqUiyRVGoWXeWq4UqKZTrbm5fPdkyYZHqikcX5kFPBofivboUG+e2HsKPWSv5OH0BmjBQkDm5eXce633+H9LPQ3jmIUr/Te0SVngXQtWHkPgtkhyFFDER4VsEop7XJ7nA1nDnv8bw29qdvD9jOZl5oclAALdX59fVOyipqGZYr3ZB2pC/rt7hL0OSJPRWceitahJjmoGvfSLOLdbx4hbtjsyq52Dxl1/qjrx4GIoteDkpyRKeKg+zP57PqpnrcFd68Xk0NK/Ggq+X8NK1bzc4pqrIvH/n+XRMTQq75DVMky2Z/h+z2FvJ5G0LqU4thajgmc0UgmVbMrj3vWkc/+/XOfGON3nmy7lBGeCTm3fnyb4TObFZ18Nesh19WJsYl2xrkraaLgxWF6eHNWyVmpcxKX3DSnQdDmWwLlRJJs4WyaycdVTqHqoNH5pp4DE1FuZvYXadFprHCqbpQ5TdAXjwGz4ANxjZiGo/DV5yDAPX5YDD7/1JkSDFIsW/hyQ1fP+F8CLcP2FWvIRw/4wQB2JxX85by8OTZ7J9X0HYRlgCwedz1/DgRzO45JnPg57hSrfPus+0LCHCUOIcEQ4ufmCC5XdHG3/2t6xRxCRE89K8x2jdtSV2pw2bw4bdaUMILKVyfB6NRd8tpyJMz9tatEqO48sHL+X6sYOx20IfKFWRaZkYy/zczZy14HkmZ83F7FyBMrwEuXvw2KWVHuau24XHp1Pl8fHj4k3c+Oq3IQWeLSMSwhbe/lngknTOTtxDfQPoMw2KvNb3VAr8a9xoVRoezk8bEnZLGYl4e+RBnTP4+4dckDaUBHsUMTYXZ6YO4KFeE6i0SKy4DY0fa+KQxxSlt9VkauvDC57pgb/kmLuQkmcjxTyCFPsiUrPFSLYDIrtC34VZejtm/gjM4ssR3mUIIxdRcAqi/FGoegdR/gii4FSEkY+mG7z585KwFQy1k03t8rfaq5GRW8IHM1YEthnavY3leyIJQVSRG2eUA1mRUWwKDpedmKRobnvrWgac+sdk0f/US11d0/nmxZ+Z9u6v+Nwax581kCsfnxgiXd2xXzue+Pk+3rjlAzYt3haSVaoP1aZQkldGdHxUo+cwcXg/Pv9tLb46/XhlWSLK5aBv1xaMX/D8gTiVUkO5aueGXAcU27ApMiDVoREJNEljd14Ra3dlB2hs7+6cw2cZiw67gc+hQkZChBxdQD0TJJC4ocVmsr0xrKxMDHzulL1EKhoFmgtRb5/jEjtSpXnZVL6v0fMQQvDWztnYJRVdhBbCSpLUoAFt7Uoiy10YchcHJHbg7u5ncnf3A9n8zaX7wo6lC4MCTznFvkraRCYH0QuPBoS2DXy/h99ACn5WJSUFXKHektC2I4ovBOEBTPBlI3zrQO0IZiGB7n6iGmFWU73/PAptn4QVE0iMiaC82oOp15vodIMZK7dy2zl+5aIebVswql8n5q7dFegX7XLYGDmwC6ecejymKRg0pi+KTaGypIqElLg/TH0Z/uSG74kLXmb17PWB+N2syfNZMWMtH255FVcdYnTh/mJuOe5+qsqrLTW/rNCibdP4wjGRTt6/6wIemTyT9By/VFOPti148qrTWVm82zIOJMlgb+tDqnDRISWRLXv9S2IpxYPcqwrsJjrwdsYs3uxwBdW6j0/2LAzbcPtow6XYaeGMo8hbgdvwodVwfdPsVeRrTjQho0gmEvBo2gribV4uTSlj1c5EImSNh9NWcnxMLiYSlYaNZ/f15/dyv4SUU7ExsnlPftnftIyjiWDG/nVhl7Tx9ii8DbS1jLI5cPnsIU3O15XsYX7eZoY3P+AZdYlp6e8FUm9l55BtVGgezln4IjZJwcTkpk6jmdg2tEXBEYNvRQNfqkgRlzZpGFHxUk38r+574PHX/dWDJIFLzUUuuQjEhZbjtUiIobzKuni8/m/0+BWncUq/TkxdtgVJkhg3pBsn9WofUkHhivzjqYF/WsOXsXkfq2avD1JYMTSDiuIqfv1kIeNvPpAs+PH16XirvU0yeo4IB5c/dmGDyY366JSaxJQHL6Wk0o0iSYH+uiszfGi6Xt8pQpJhWM92PHbZ+UxbtoX03CI8UW7k/hVIde74FiODpzf9wJiWfbHLiqXhi1adVOnesEtgpYbheii8WhmJUS16Mrx5D0Y070GpVs3nexaxqmg3Ka54bk4zcFd8yNLyWFyyzqi4LJJsHkCiQvcigOfaLaF3ZBF2uYYeJRs80XY5N+wczl5vM9Iikjg9tR+KLLOjIqdJvXgFAiNMUql7TCoeQ2Nl8W7L2r2t5dkBzm9deE2dh9Z/xYwRDxBdw8n1mTqxNhdlWvDy0i4r7KsqRMfEVxNre2vHbFIjEjnxMPoXNwg5HiQbWHi5oPqXpmUPgGM4UswDSEqYVqLaOg4m1SNJEB9RzpCO6czbGqwM5LSr3DhuKJOmLmHr3vygRJ9dlRnUuTU/LtlEu+YJ9G6fgiRJnNynAyf3aZrepWEYeKt9uKKcx1wt509r+HauSbdUWPFWe9m0eGuQ4duydIclVQZAVv1jyJJEWo9WXPLAuZx03qH1bo2v42VWur289cEqfEMM6seUnYqdizoPJdJp54zB3Zg0bSlal0qot52GwZzcjYxPHWhZsAz+uFi7qGZhWRR+GalDWx7bFZWzWg/iuMSOgL+o+t9dzzgwtlmB0F+ii6s+y8TJXuN4Wtmz6FnH6NXCIZnc2iqHLNuVjE3tj1OxcUbLfszP28zq4j34DA2brAZCBKqkc0pcFoOjc8nTIvipqB37fdZhiPn5W4iQ7SGKLHURbpLwmToTFjzP6an9GZDQnlVFu8my0B60yjZ7TI1P9yw8eobPMQrEI2G+9BywZd7ZiKJVkDQbSba4R0oy6FZcWLkmcBF63yLsGp2aFQYZPlWRueCkPpzQoy2tk+O4+sWv8Pg0vJqOTVWQJIlf1+xg9hp/rWzb5vFMuv08PF6NCreXtGbxYVkepmny6WPf8N2r0/C5fcQ1i+XGl69g+AVH0aOuhz+t4QvXys7msNGqc7ASb9vurdmyZDtGvaySalc5/67xDDytD71O7HZEZ5XnvppLQaEbaW00cr8a2RwJMOGUlF70r9HVi3Y5+Pieizh/5QuWxZwyMrF2F60iEtlTke/vM1sH5bqb8srQglUFP4f3cJIhXkOnY1QLhG8Fwj0dJBXJNR7J5ud1SnI0IvZFKLu7Zg/Df5FKe0YkeFlf4kEzZZz1DJ8sCQbF2hicNDjwmSorvNT/cjaU7mVN8R4S7Ta6Rjl4YP10bk9ZhCYkukaUkqB6uCBpF3eln8CaKutnoNo8dAGGMt3Dl5lL+ClrFV5DO6j7V+g5/D7C4SDJEYjIi6HqvUa2NMGsQrinIkWGMkWlyBsRZQ8RXOTsBOcYhPd3MAtDZNSqfTayS4ILyXXD5OuF64l0ObjujMH88tQ1zF+3m5zictbuzmb51r1B2d9d2YWc8+hHVLp9qIqMTVF46JJTGNU/tDPeRw9O4YfXZwRopEX7S3jx6reIjIlg0JjDK8lpKv60Wd2ew7qS3DoRpR7zQbUpnHHdKUGfTbh9bGhhcs2Pu27uRtwV7kaNnm6YDWq0FZZVkV/qz1pqusGMFf7euiLbiTEnAXNrJOb2CIzf4+hUEhzXsEWLEK+wFpqp0dKVwP8GXEm32NRGO63Vvb7DzQBLgF7+HKL4OnBPgerPEEWXYlYe6KYmu0YjJc9DirkXbH38exlbaMdn3NhiMw7ZyvOygSNUkUaSJHrHpXFFsw2Ms91MqvsGUtRM7s8YyhN7B3H+1jE8uW8gNtkkWvVxaNV5TYPb8B3U/VMkmeOSjm4jbElJA0JFPUPhtozZAeAcB1G31JS6RAB2cJ6BFPskcvJvVHld1KXTGqaEV1OZs6V9yFAen84HM5ZTXF6Nw6Zy2qAuXHnaIFbtyAopedEMk+IKNz7doNqrUVbt4eGPZ7JtX37Qdj6vFmT0auGt9vHJf79uwrUfGfxpDZ8kSbw497/0G9kT1a6i2lXSurXi+TmPkNQyuMdEq84tOfXK4cHGraacZevynTxx4StMf3+O5XGWbMng7Ec/YvAtr3HSnW8xadrSIMGBjNxiJj71GeMe+oDxD3/IeY99zKxV24Pznx4FsTsCsSMSymxk1pPdSa/MD5sVjLQ5sckKSc4YPhx6E22bKHkejpt6MCKiJoJbN5UiAsFwE/BA5TsI/UAGVlIS/cWx2ibAG9i2W2Q+dhmgbrBaASkSKeIKy2OK6i+g6gPAzctZnVlblYRXKFSadnxCYX5pKp/kdWFNZTNCgqcWUCUZRz0pKadswyEd3mKm7pFVSSZSdXBV+5MPa8zGINRuhGRaLOEE1doIS5KEHHUdUrPlSInfIzVbghz3LJJkx+ctoLAy0s+MEf5/ewriuOrDc/Dq1s+nTVVYl74/6DM9TJ1fffg0gylzg0Uwyosq/Ae2QE760RHFsMKfdqkLEN88jmdmPkR1hRvNq4UlKleVVzPrw3lhPTZvtZf37vmM064cEeRBrt+9n7smTQ2wLao8Pj75dRWVbi93nz8cr6ZzzUtfU1rlDvxW6bnFPPPlb8jRBoZiQpkKZvAL2r6+YY5IDGuoKjUPD67/kuf6+fmIaZHJ7K7Mt9y2KTjYcphczclWdzzdI+pV63vng3rZgXE9vwFWS0zFH5/SN4OR6y+7cI6DcIan6h3AjS4kZpWk4RPBrrBXqHxb2JEIWafCaDwBFSHbGZDYgd8LtoHkf6dUScauqE0SmQiHgYkdkJHI85QxKLEDl7c/meZOP+0wvTKPRfnbUCWZUS160eIw5buEnoUovRn0jDqf2vH7JV4CMRTw/19yILnOaXBMSXKAesCLE0KgFV5Kq/gi6qqxpcZXoFp67Qf2i40IzsIO6d6GxZsywrKaamEKwf6i4PBAfLNYVLtqqdnX7ggrsDSEP63HVxcR0a4G1Rl2rk7H5mjYhus+ncLs4ED2O78sC3k5PD6d7xZtoNrjY36NQkvQ7xthoA3LRzqxBGVoGcqYIqSWB4LhNkVm9IDgHhBtIpPoG98O1WIZayJYkLeF5YW7MIXJpe1OxH6Y3srBQAYKtXrlBZIc4H0K32rM4stqvDRL7WdQksDIAzQQheCegig4HWHsD93c9P8GhpDQwzDYq3SVGKXWswwPFRkDwfKiXUiAZhrowqDS8FKsVVlmd5sCu6xyQdpQXh90NV+feAf/6T4+YPTe3jGbK5a8yaSdv/LWztmcv+hlfs46dFFdIUxEyeWg78DP2Kg1CCZEXQeJ08AxBrABMtgGISV+jSSHcr+DxjXyEb6VCKPGi9JWo0olqErwPbUpBucN3Gw5hgREuRwhjcXvvXAEsZHOQJOi+irMtXDYFIZ2DzZmiqpw+WMX4IhwBG8bYefqpy5u8JqOJP7UHl9TEdcsFkNr2P02TZOYxOAsWEauNS9WkWUKyqrILanAG+TWC5TjSxEu028baj6V+1VgVKjY3Q7euOWcEKl5gOf7XcLlS96wVBE2Edy66sPA307ZdlDhLbkm87uvqhCfRb+N01P6oUgyM3PWhmSPNSHTrb63JwQ4T0F4lyJKbsD/QoaDCZ45BAfTvSA0RMUrSHEv+En3Ve+AttkfdxI+HLJJO2c5uz3B3pKESRtnOTs88YRf6vrzk6qsNNgx7lBioAoyCfZIS3bItrLsmp4n/smyVtj7+S0/c0KNQvZBQ1sNZgmEZFsFGKVIahuErRdoO/wfO0aA4jdEQhj+omdtEygtwTkGUBGl94F3pn/yEl6EczQ4RiJZTLyqIkiJs+5pkZIYwxu3nBPSj7dlYiw/Pn4VU5duYdu+fDq3SiK3uILvf98YYH/YFJnYSBfnnRgqgDrhtrFEx0fx+RPfUri/hA592nDd85fRbfDRjaHWxd/C8LXt0ZrUTins2bTXUgjR7rIz4qITgoqeATq1SiKvpCLk9TCFoFl8FD3btsCuKrhrx0zQwS5ClFtkRWLwGcm8euLlqIqMx6czedYKpi7bgibr9BvQjEuHDeKM1H68t/O3RmvumiovVYsI1cG+qiJLo+eH4M7uY1lVvJsib0WgQNmp2DirRTLJNgFE+Iu6hAGxLyPJ8ZgVz2Bt9CT8QXgDoh+GiscstjHBuwCz8i2ofMP/NyZ1jdn9rddw6+6T8JkyBjI2ScIu28jVW2IpvVRzLTGKj3LDcdD3qSkw8Qsk3LLyQ85I7c+93ccHYse/5m60VJORJYlF+dsOrfm4WYS1gTfA2I8ovhq0DQR+h8rXEN55iLhJUHIZGBl+mpvkgvInQchADQ9a1NwfzxwgCpsS+ny4fSpLdwW3bVBkicFd03j9lnPCJgWjXQ4uHnkgAyuEoHf7FD7/bQ1lVR5O7t2BK0cPDNS81sLr9jLzo3ks+GoJrbumcuF95yBMwebF2ygvqmDQmL5HrLl4Q/hbGD6AJ3+5n0fOeo69W7IwTRPNq2OzqyBLjLjoBG5787qQfW4cN5SV2/cFcRSddpVLR/XHZbfRv1Mq3dKasTkjD6+mIzlMy0dUSAJHtIyqyAghuPl/37Flby5ahwrkjtXMM/cxf/lq2sUkI8lS6OTeAGzIaI3sUBlGlh1AQSLJEc3nexZxTutBFHorWVa4g2ibi4ltjue0lD4grgDvIvzxupOR5BrPRQ/Xg1hAzCNIzlGADWFp+ABRDpX/I/iCa6eZSHpG2/mkZxFfFg0lvdqkZ1xrLmxzPB/uns8P+5aHTEgyJuMT9zAxaScTtzetf8TBovaYHlNj+v41nJbSm351Wn5aSWZJcOilUra+YYqWXaC0As83BE8+NSyMikdA30lgaWzJ8a2zj3cqUsSFeMu/xKH6DaJXUyioiOSXDV2QJP+SVZYkWiXH8vTVZxzUNUmSxOgBXULCPHXh82rccdIj7N2aFWgotGzagW6HsioTFRvJi/P+S7ueh9eCtjH8bQxfUssE3lr5HFk7cygvqqBN91TKiyqJTYoJ9Ousj25pzXnrtgm89O1CduzLJy7axRWnDuKiEX7VZEmSePPWCXz222p+WrwZTWiUqpUhBcNOxcawZH9h65qd2WzPKkBLciN3qPaXsSj+lENGVQGtIhLYW13U5OvqFteaTaV7D7l0xUDwaYa/dZ9d9j/YL/S7lMF1SzOkBHCdFbqznACmRaJFikWOOMATFY4R/mRIUPJDpmELX4WUvJI2ksq9wWWZ2CXF8mptkslNKZuYXeL3UBTkkLrHIwmPofHA+ik82GMCw5p1ZXRKb77OXBra3lMITkw+tMJmSWmBiLgIqr/mgJfrAKUFyFE1nNt6EG6L+90IRDVEPYhhdGdbxus4bG5+3dSB71f3R1Gc/Peikfh0nbYtEujfMfWoMCkWfL2Efduyg7qo1YWpm5QXVfDw+Gf5dPebR5XN8bcxfLVo1SkFahoQRcY0ruLRt0Mqn94bvmWIw6ZyzZjBXDPGX4z79o7ZTMlcHKBeOWSVFGc8p6f63f7NmblouoHUoToksWkiyPWU0SW6Jbsqc5skl76xNPOIVbPVUuIeWDeFWSMfRJXDk8SF8PiXTyFwQuQB71noe8BxPOh7wNjnz+YKH015KYWQg4ppddPg3rWfs6hgm9XWDIrKY0lZC17O9t9rRZYxTDPghcmS5BdbEIfOZqmPIm8lD6yfwi2dx3BBm6Gcm3YcUzIWB40+snlPEhyNC16EgxT9ANj6Iqo/A1EBzjFIEVeCZyYCJ1DfmxMgDlJIVu2JLMtExZ9Lh6iz+HX1DorNHK4YE8+4Id0t49JHGkt/XtWogAhAWUE56Rsy6dCn7VE7l7+d4TvauLHTqfSIa803mUup0N2MbN6L89IGB+r0UhJisKsKXrv1i6dKMnd2G8tH6fNZXZSOLswGS1CORgmvKQQbS/cGLeFCjlvxmr88pT6UlkiR1/qzkWX3gmemX/YcCaQYiL7Dv3wrOr3R85Akk7qFBV/vXcryonDLa4ntniSWZrUK3K9aQx64R8Kf6DklpTfTc9Y1fGz8NY9N8aQ9hsZbO2ZxVquBbCjZi1SjZFOL+XmbWVG0K0D9awhCmCAqEdiRtPWAAfYBSK6xSK7gLmbCOQYqng3zEBzMk+FCin008JfDpjJuSHfG1aiHHyvEN49FVmTLOHxdyLKMz3Pk47d18f+GrxG4fRqTZ65k2vItCGBU346MHdyNl/tfgc1CVufk3u1xOWx48xyIiOoQxoYiyfSKS+PRXufxSfoC1hRnUKV5yPIEZ5jlJr6Uh4pG1YXd3+OvIasHYy9gIKq/A89s/zaB03RD9RdIkY4mnblwz0GKOBCr+z5zQYMKNYaoLdC2Ht1E4MMI4zEGQ0IiUnXg1n1NFHiQWFW0m50VuSG/i8fU+CLjdwYldEBUfw3V7/sztfYBSNH/QVL9BtGs/goqXvbHPjEQ2AC73wrHvozkHFHvkA6IvAWq3gJh3YvWP3EI/ETw+vdOAqUtUvwkJDX8JHc0IITA59WwO2yBJeu4G05l1kfzLGv46kJWZTr1P7rn+5eo4ztSEEJQkldKVVnTlgmmKbjhlW/5+NdV5BRXkFtcwedz13LJs18w8u5J/LQklDZkt6l8ePeFdPK0QfLJgUJ8CQmnbOO+HmezoTSTM+c/x5TMJWyv2E+WpxgJiUEJHegQ1ZxWEYmc14AYZ30crKqZKiv0iG3VyFbhHk5/+x/cXxCaeTVB34HQrOvCQlB+B0LP9O9Z/ROaURB2Uwc6aY6KsGIOdRGuB2/wmQoqdA+KLBNvazwkogs/T1kN04u5yFuJqHwFKp4GI9Nv3LzzEUXnI/S9mO5pUP4UiBIOsDM0oApEFaL034gaD1sID2bVZ4j8IVD5QgNGD5CTQO2OZWY44mqkpOnH1Oi5q9zcOvR+RisXMC7iEsZGXMx3r04DoF2vNtz+7g04Ix04Ix2W+9u03bF0AAAgAElEQVQcNu775FbUMLWBRwr/GI9v0+JtvHDVmxTsK0QI6DuiB/d8fCvxzUILQUsLyvjyuR+Z/91y8n1e6JkC7RKoDUgJ4Wd5PPfVPFokxDC4a3AGqnVyHF/cfRn7SouZun8V6ysyaOGKY2KbE+gSk8Jpc58OeYEFgjUle3h/8A30iGvNG9tnIiM1GquSLLY5ULgrLH2ZS9oOazC+5x8kFYwdFp8nIEnOGpqb5Y4gJ4b5rj4MRPVXEH0XVDzFKXGt+KqgUwibAwRnJu6hb1QZ2z0tcRuHLlJQH17T31fFKdsaLI/pH9+OAYntwsZl7XihajLBXrIA4UFUvQ2+NTRWDync08A+CFFytT/W1ygUsPUH7xxCvT0VhKdBOfqte/OYsWIbhhCMHtCZPu1bht22qbihz93kpB9IiGlenUl3fkx88zhGXjSMUy45iRMnDGbbil1Ul1ezZs5G1v62EVmR6TuiBxNuHxdWoORI4h9h+PIyC7j31MeD4gbr5m7i3lMf5511LwZlj8qLK7ih738oL6pA9+koQFRBJe6ilrgHBRs4f73eyhDDV4vWcQncHBfch3RHeQ6VYZpjG8Jkds56esS1ZmtZdpMC9PXjgzISd3YdR467hM8zrRV9p+9fy5Udhjc8sBGGN2lW+KmBztP9TXDqe4ZyDKjdGj3vA+PlgJkHwsMVzbexsKwl+ZoLt2nDJvm7pz3VZiknxpWiO8fzVWlzdlbkHtEaPk0YgdpGK0j4405Oxc7NnUbz8rZfQrcxMtBRLF4oA3zrwQjfQN4PH5jFiJLrmmj08BcoSxGEGj38n2lr2LV7Mr9v3sey9Dac0LMr5w1x4nSovDe7lMmzVuPV/fv+8PtGJgzrxd3nD2/asS2QvjEzyOjVxbv/+YSRF/nVmh0uB31O9gvCDj3zEGofjwD+lobP5/GxavZ63BUe+o3qyTOXvhYSLNU1g5z0PLat2BVUMf7TGzOpKKkM6tch6Sau9dl4eqUgnMHFlbklTXxIa6BIcoMGrULzewWdY1JYU7LnoBtly5LM9P1rSQ+j3wewr5FyGlPbTKAINgReP2NA7UNorE1Fin0BUfli00/Ycao/KYJJlKLzaZc5zC1NZW1lMi0dVYxLyCTRZoJzDLbYR3h7sMzUrFXMylmPU7ZjIlhbvAe7ouLRfUcsm1sXAlhZuAu37qNzTIqld7jPa/M37wlZcUqgtvEbqXCKKuDPoCvJ+Je/TYR9mD+5FAamto3m6gtM6A0X9DPxaCpmsYlhUzmrs8TidaexMcsvaOrx6Xy/aCNjB3ejW1rzpp9DHexYtTvsd2UFDUt6GYbBiulr2bx4G0mtEhl58TBiEg6BCdNE/O0M39blO7l/zJPomoEwTUzTRA9DZzMMk7yM/CDDt/rX9WgWGSWhyChF1eipB5bGiiwxsHNjsbJgtI9q1mD9Wa00+vFJnfk8o4EeDGGgC4Nt5dkNJkZqeadWMKu+gIr/hj+A0gYKT65hHNS/BhVhloK2sWknK7dGco5GklSE83TwzMAu+xiTsI8xCbXqMCpE3Y4c5e+1apfg3LQhnJs2JDBMnruUbeX7WZS/lZ+zV1sc6PAh8GeRDSEspcNKdCeb3J3pF5FO8HLXgRR5Iwg3ouR6LJe7kgvsJ4DSjqYo0gTgnRV2e395jyDSceBZdtoOxBaTo+GNS6cx9pXLqPT6420eTeeFr+fxxJWnk5rUMBfYCl0Hdw77XUJKfNjvPNVe7h7xKHu3ZuOu9OCIsPPRg1N4fs4jdBnUeKb8UPC3Sm5oPo0HTn+KqrJqvNX+lpL/x955x0dRfl38+8xsTW+E0DtIlyYi0lQUBBUs2BAL9oq9Yu+9VxQVf4oNBRFRFJAqvfceenrdOjvP+8dslmx2dpNQrO/5fCJmy8zsZPbOfe499xzNF4ja+dd8Gq26heuQZTauY0qcFLpExh3K9lRF4LRZuXxg91odoxCCUc37mj6XYo2jb11jmThpt7kHg0UotEtqSJfUplhM6jc2ocYkfjoUK9e3HGj6nNQLoPTJGEdvhcA+0HMxJyd7oPhuqr+srGAfjqjzE6KC7Og4G/M/lAZlbyJ9q6Jura4zhX5123Fx097H7IJOscWRbIujc6q5gohTtVHofChIBLcBVoMYbj0OWfIk0r8ckl81NA1FPCj1wdIJbP0QSU8jUt5A2LqDrK2iTJSLuwaJrxCSge3Ds7TV2/dzwROfMn/tDqSUrN91gJ+Xboo6114ZTds1pNFx5nXCm964Kur7Jr06lR1rs3GXGTcFr8uHq9TNkxe9ElMj80jwr8r4Vs5ah6s0WtE9EllN69CgZb2wx84bM4QFkxeHsctVq0rTjo0ZOmY4n/22nOycQnRdUu7xcc7D4+nauiFjLx1I48yayRNd2+o0dpblMCdnIxKJIgQJFgfjTrw+9JpofDaLovJ45xE0js/gwZUTmZOzITRJoCBwqjakgBKTOqJFKNzV7iwGNTje/MC8s4n9janJMsyL0WeuSjuxg/NcRNKjCGGQjKV7ErL8/WCNL9bIlQ/pnoiwxbYizHKmogglpiz94cKpGhJZNsXCk8dfxH0rPkeXOn4ZwKnaOCG9BQOyuqGIHsikh5HlE6DstaAHBlC2EZR0RMbkqMoqUttrcCD9izgyBqcF87pfOOwWjbT48OtEl8ay98HxP9EgI5mdBwtRBGgBSa92TXju6iFYLdEbJu8se56Hhz3Pil/XIKXEmejg5tev4qQYtbxfJ8zB5468tgoPFrF/+0Hqt4jiL3IE+FcFvoJ9BdWSIyugWhQemnhHxONterTkznE38vqNHxAIBAj4Axx3Qise+uoOthaWkJ1TGOE/unzzHq54/gumPHEVCU7zNn3YvoXCc11HsrX0AGuKssmwJ9Iro3Wo0+rSvJSb+L0C+AJaaErgsU4X8PnOeXyd/QcuzcdJdVpzc+szWJi3hZc3TA2rQ9kVK2/1uIpOUTKW4JFhZGs1E5qMjkBwO9bgj9doeCTeE8pGZflbUPYB0cUIKkMHPQalI4htpQewq1a0KOeuMqKzAaMcQaVg2rtOGyb1vZOf96+i2OeiV51WdEltVinTDgRnlCsva72g5yHLP0Uk3hK5fddPUHInNQlYMSHiwDkC4fqS6s6tV7OyPLue6XNlHh9b9uShVRLlXbh+Fx9NX8x1Q6N71tiddp77eWytDlmJ4s0hJREK7EcL/6rA16JLdL6SoirYHFYUVUHqklvfvprW3c3doAZc1Js+5/Vk96Z9JKbGk9EgHSklj7/xranpsgS8fo1pizcwol+UbMoELROzqO9M5dMdc3hpw1QEgqENutI9vQU2xRIxEwqgChVrcIlrUVRGNe/HqCrKwMMa9SDZFscHW37jgKeIVolZ3NxmEB1Tqhn8tvfn6FU/FGMpp63EWCJvgdz+yLQPQW0JZe8Tm95xCO6Ayu8FdTktWcOmRL9k02wJeLTYVJeGzlT6Zrajc2oTCr3lPLdhcrUB0CJUBlSypQSo40hiZLM+5m/wbzSmWSI27APvLKgS+KT0QcldHHHQwwGp/0NY2yH1PKRnagxhL4FqP4F8d1vMGlm6Hunn4vVrfDtvTczAFw2Lpi3nowc+Z+/WA9RvUZfRT19CzyHdABg8+hTGj50YtsoSAuo1y6Ruk5rZwNYW/6rA17xTE+KSnbiKq9zpBJx94xmcec1plBe7aN2tebX2kharJUwhoqjMHfLcMIPbp7Fg3U66tWpIi/o1k4/X9ADXLX6f7aU5ITrFe1t/5bMdc6Mu1/xS47ZlH/NOj6tDS8atZQco83tom9wAR3BJNiBoGVkbCCUZmfx80FzoSOkiErTlGLVALRQEZMHVkPRkjbfv12GbO5EXdviZV/o1Tx9vPle9vewgdy//LGpXt11SA8Z2PI8WiYeWTVJKDniKmLBjbkyxA4uiMKp5/xodLwBKSvRanbYZvfQVRML1iOAstPStoObnO0auKuwIaxvjurANQHh+JdrNRdfh7JfbkJlux2FV8VSjZ1mBolqUkiow//vFPDPytVBg27EmmycufJn7P7uN3sNO4JybB7P0l9WsnbcBzR/AarNgdVgZ+/Wdtd5XTfGvCnyKovDwV3cy9pzn8Hv9IA2ntdS6yYwce35MFecKbFq6jVeue5c9m/aRnJHEVU9fwqmX9MFRA42wPzZks3jTFzSvl84bNw0jNTEu5uvn524iuywvgkNWHvCiCiXq2NqG4r2sLd5Nmi2BMcs+4aCnyKDJSJ072w7lnIaHz41SnIPRrd0hf2hwyiDqK4mtvhLti+QPNkBif9GkDMoDolDf7iZeKWdOzgZyPMVkVulK+3SN6xeNo8gffSLHq2thQQ8M3mT3jBY0SajDW5t+Js9nTk2KU2yk2GL/LStDWJohLS1A20jk5/RB+XtI1+fIhNsQceeDjEYdCtsqWI4HvQz0LSbPOyDp8VCzSIgAMkb2rkso8yqU7M0jwWlH4kMRCooiQsrK+SWRdVddSrbuzaNlg5rd3AE+uGdChCKL1+Xj/Xsm0HvYCVisFp6e9gAb/tjM+oWbyWiQxknn9KiV93Vt8a8KfADdBnbm/VUv8cM7P7Nv2wG6ntqR068YQHxS9Rfu0l9Wcv+gp0K/52Tn8exlr7Nvy34ue2QE/To25/fV2/BHqSP6tABYdTaru7j8+3E8cuZQuqY1i9plXVu8G3cUIq4A4i12SkzGr3Sps6l4H5/vmsdeV2EYifml9VNpmZBF+5RGEe+rKRRLHWTKywaZNuryK4oMPXqU5yreVr17WkXQA7ApOknCy631V/Ps3v7sdRVEBL75uZtizvgCpFRRVN5Uso9bl47HG9AQArxa9IwrtZbKK4ZRk0r04K4bwa70cWTp85DySjVbFIAFtBVRnlch6REUZyVhCHvfqPuXEnRdIdnpJafUitvn55nRQyhxeUhLjOPEtk24670pzFmzI+K9VovC2l0HIgKfz+Nj9pcLWDNvAw1a1uOMKweEpqL2RTER2rf1kAiGEIJ2vdrQrld0Pb+jiaNS0BFCDBJCbBJCbBVC3Hc0tnkkaNiqHje8fAVPTL6P4bcOqVHQA3h25OuRD0r431Pf4vP4GHvZQDo2qxe9q5XqRx1YgGxbyoGMA9y+7BNuXToeTTe/ALMcKaaUFABN6jSOz4hwEAOjzufXNWM+tGodRtf4OvuP2B+0BhD23pDyGrHl3yvDAs7zqP5e6idqMFWMYF31PmERcFLSfnwBFw0D7yK1cApGvrc0JtHboVq5pOkhs2pND3Dr0vEU+spxBYxGUjShAodqNaUfSelBuicjy95AemYgg0tbKT3Iggtjk5XD4IGiG4j9VXQQu/4XAO9vYY8IJQ2SHsKg1oRDCFAVnTsHGTxRVVGIUzcx9Lj3OSnrDpTyZ+nRyobVpOmgqgp1U8KJxSUFpVzT8Q7euPlDpn84kwmPfcUVrW5hU5DQnJYVne2w6Mdjw7usDkcc+IQxDPgWMBhoB1wshPjT9G4CWoBPH/uK8+pcxWDHxdzR72G2roy8U1UHn8dHcZ75Uieg6ezfkUOi0864O0cwamA3k2F1idqjBGGVhg6fMFQ7VhXuYnIUM5rT63UyNSACg293SlZHrFUCn4og0eogweo05ThJJHne2k2TRINQmwZJtRWo6NSaQQPvkppsNcrjdkh5I+r2fVLljNRdpAemIPPORfoOyU51SW0adW8WoXB5s370yTw0Rre8cAe+QM0aCZc07s2geuENK6ntRuYOQJY8YgS+4nuQeWch9RJDsUa6qZXMNlTz+gr7zxgwMXZS4i6E9B8wO+cWVdKntSEQ0bP5Vrpm3Gv4dGjrwPU/Luw4lsbp4TVtRREkxzk44bjw1cRnj39Dzu58POXG6sTn8eMqdfP8qDcAGHG3ichtEJ8/PSn25zpGOBoZ3wnAVinldimlD5gIRP+kRxmvXPceXz0/OTRbu2buBu7o+zD7tploycWAUERM0nxq3UPLq+b10sO8dwFIMpa5VeHR/by+dAaLNmZHPKcIhXiLuQBkvMXO8EYn8H7Pa2mdWA+LUFGFgl21UeAt5Zl135nOq9qFhb6ZtZiVNYHUdqEXXofMHwqB7ZWPuEogrPqBbIb/bky9mChfYGsbFFs7Y4StSvDz6grZngTua7QMY/nmRpY8Hnq+RWIW/eu2C/MutikWmsRl8GP/+xnd8pSw7ZVrZqNlkVBRWJi/hXe3zAi7mcji+wzZqQruoSyHQDay9BVDtismJ/FYQDXEYE0gLE2JloUHdAWnTeWhs+aiUNnVzo9COe9evZcG6Ya+pCIEDquFrLREfl+9PeymO+fbP8JGPCuwf8dBCg4UcsKZXbBYza+JnN01VyM/mjgaga8BsLvS73uCj4VBCHGtEGKpEGJpbm50+aHaoOBAIbO+mBeh7+Xz+Pn6xSlhj21duYOHhz3HJU2u556Bj7Fm7oaw5602K21PNB+5adi6Xtjc4MSZK6J8faPYJXp8jHl7MrNXhZOSf9y7jHKTGp6C4NkulxJvsdMyMYvPet/C1P73kmKNwx3w4Zd6VHkmi6JyVoNups/VBFLbicwfbtAuIj6lBoHo85jYeiNSXgy6gFXPZwyDxXDjEsmPGWbZIi44gA92RadTQgFq5dOrrQv78j3W6QLuaXs27ZMb0jqxHte3GsiE3rdgVy08t24y/Wc8ysm/PMxdyydQ35GKP0r5oTIC6Gwo2ctnO+dy0bxX2esqMFRp/BXd6srwg+dHQyJK1LwRcnRgBcco0xWAEAIcZ1D1ZuLTFGasb0X7xgoJdrPOr06qfRXfPno5zeqlYbWouLx+Vmzdx9jx03nhq1mH9m4zD6x6QGfZjNWkZCZH2EmCkUG2P+nPqelF7PvP2pGU8n0pZXcpZfc6dY4ON2fP5v1Y7ZFLo4AWCBuY3rh4C2NOHssfPywld3c+K35by/2Dn2TBlPCl2WPf3UNqlXpEUkYir8w7NMZVWOpi4x6TwF2iIvyRgU9qIHc58Po1Hho/HS2gI6WkxO9mcf4206xNILh16XjO/f1Fvsn+Ayml0QgJ+Ks1DLcoCk7L4XfDZNnr1WQsAvPlqApxoxBqFiLjF7DW0oMiOOEglGRE+neI1PGIpEeAKI0FERfWNFKEwtCG3Rjf60Y+630LI5v1wa5YuGXpeKbsWYIr4MOna8zJ2cCNS8ZxdYtTcCjWoLBpNYemByjze3hz03SqTRXt/Qyrx1qrJB4+pPRCfl9kTjf00leQMsD2/flMWbjOWGkkPARqYxDxSGy4fFZ25afy8vRebMwuR4u27FdS+H3VdrJzisL8p90+P9/NX8vePKMbfebVp2J3Rl5zUoc3b/mQSxpdz8BRfcOCn1AE9ng7lz824uiejBriaHR19wKVF/0Ng48dc9RvmWXQVqpAKIJGxzVASokQgnfv/BSvK5zN73X5eGfMeHqd1T30BUrNTGbinvdYPmM1m5Zs5bgTW9P11I5hXzB/wNxpDQTJG7PQuudT7vUaLn86yFwbcrexnHV5/Twy9Qc2pm5lv7uQgNRNWVkBdNwBH3vcBby+8Sd2lefSJL4OgRjSSRVItJgbK9UYvqXErjcJEAkhFWEDdnAORbEYc5pCKEillppq2jqD3xY3EqHWAVsXoIvRIS0fRzgfzQHO6D4pFVhXvIetpQfwV8mOSzUPKwp38vYJV/Pd7sUU+8rZUZ5Lnrc0qtafXmFcLhxIWw/wLSb8PFnBcZahf5c2EVn6Mri/4hA/r2ZjZIcDISpIkmXI8vEsXLuKu77ohiIEQkBqgpNxd0wkM2ktvyyaxveLvCzeXp+KID5nU1P6ttmFzVL5+nJC3Gjmr9uB2+Q7pgiFZVv20CAjmfPvPIu18zexavY6pK6HlJB0XcdVYvD+pn84izvH3cCk134kb08+7U5qwxWPX0ijNhGLwz8FRyPjWwK0EkI0E0LYgIuAKdW856ggo36Q71PlbiN1yeyvFnBJk+uZ//1itq4wb3bk7M6PWCYrikL3M47n0ofOp9tpnSKoKHWS46lrIpdjtagMbt2RHwbcS8L2DPSN8QQWpKAvTgIZ3Ea8xgx1Mbtd+UGvjerHpjy6n+92L6FRXHq12YlDsXJRU/NaT42hxgpYdnCeg8iYDM6zDcFRtTEk3oVIeirslcJ5XhSzomiQUP4+Mu90ZCVbS5FwIziHADZytQwe3nkip6wewhlLfLy2cVrI9MkM28sOEoiypF2Ut4VUWzxjO57Hi91G8eXJY3i04/mc3aB7JSHXcMRbjIxFJD9jKB+LeEAx/rU0RySOQQbyDHFVoULyS5A6AZFwG8RfR/VZoALWbhhd3MODwEPXhouwKOW4fX5cXj8HCku576PpCHtv3vylOYu3N6By5vr4lAEs39UAXdpAJAJ2iBuJcA4nLSkei0l3V1EEKUGfaqvNylNT7+fVuU/Q5dQOpklxIBBA82u8sfBpvtj9HmO/vOMvC3pwFAKfNPr4NwM/AxuAr6SUNdQeP3Lc88nNDL1uYEjKuiJQBfwB8vYU8MzI14hLMv8C2p02bI7qicmVIYTgqSsHY7eqIdqFogjSE51cM7gnm3fkkZibgtwSB4VWQEBcANHYjdKxDKmYhzqbYoka1myKilWx0DWtGXbl0PEKDvH9bIqFwfW7cH4luabDgYi/AcMsvCoUI+glPYpQs1CSn0PJXIhS51eU+MsRVbvT9gFBxRUHxtK4JpdawJBhzzsXqQWbQdKDiL+G8pQfuHLzIH4raoRLFxT7XXy9az63Lf0w6taMLDlKNVYI5lXy5rAoKgOyOvBQx3M5rV4nbFVoRg7FyojGxqiWUBsg6sxEJD2JSBiDSHkFkf490jMTmdsPyl4C16dQcp9hFhR/FSJ+NCixhu0VUFsbqi3W9obeoXo82E7FjJISC/6AQlbyoY5sQJes33WQghIXaSZWqy6fjZs/G8IVH17Ofv0FROY8lKS7EUIwvHcHU7l9m0WlV7vwue+WXZqRlJ5kejf3ezVy9/w1jQwzHBUCs5RyGjDtaGyrtrDarNzw8hVc8uB5XNzwuoilr9flo27TTErySgloh+7+QggGjuqHEsVDIRayDxYCgorvlK5Liso9/LJsMy99/TueUD1EonQsQzTxBAXSwIy9Eq/aubPtUObmbOT3nPUR0xo+PUA9Zwovdr2ML3bOZ/KepfhlgDPqdaJ/3fYU+1y0TMyijqP6yZTqIBynIhPvgrKXMaTTNbD1gZSnUZTommpSLwfv74AHbCcj1ExE8hPIuJFIz4/B5WpNKR4eZN7ZSMcQ8EwBYWF6TkPKtI5hlFyflGwo3sG6wnW0T22PlH7wrzSK/NJNR2s2KVYr+f5I0QKrUMNuIpVxf/th5HtLWVu0G6ui4tM1Tq3XgUuanXzoPAlbMBM1oJe8Cq63q5wUF2hbkSXPgGcqyGrEEwIbjR8gtDSOUt0ITbZUIntXwKLq7C8KX5UoAryaxqiB3Xnkk59xm3RhN+y1cM2b2/nsvhMpKsunUZ0UGtVJ4enRZzL2Y0PwVJeSlHgHr904zNRsSyjRVyVmnd+/Cv+ayY2C/YVYbKppza8kryQi/ZZSsmGRiadENdB1ycvf/h5W7AVDyufVb+dUCnog6vkQjT3hTmuSiGPxywAnZLSkTXJ9FuZtDmt42BSVbmnNqOc0gs5lzftyWRQ9v6MFJf4yZNyFENhjSClFkVGqgPQuRBbdQGiOVGrIxNtR4kcjrG1A24IU9lpqzbnA8y1GodTLBncCHrO4KSWbc7+kXdyZyKJbAH+QRycBCy83S+fKzSdTtTIrkfRLE0jXRKRSF7S94P0FlBTi4i7lnROuZldZLvvchTRPrBsm3iqloT4TUprxbzKc1UzhBffXVK94U/XD1excVQ16Xs3KN0s74PKFZ4kZSfFkpSZSLy2J7fvzeXdqJMldAgcKSjntnvdwWC2oqsJt5/bh/D6dmPnC9azfdRC7zUKbhuaalWBIvZkVrhWLUqOR0T8L/4rAt3/HQd4eMx53qQk1RBHouiRgMoS9a/1eDuzMqZW5SXG5m7Io9njlVYKuaOKOMBUPXRTB68ahWBlYryOZjmQyHck833Ukz6z9zuCNCcOs+r72w2p8fEcLQtjA0rza10ndZQS9qp3g0tfQrZ2NJoDrm2Awqi0OBYNmjhLsQsMrw0+oEJJGyhJk0WSTfWi0iTvIPQ1X8fLe41EVGwJjRvfR5gdJLhtt+NyGfEOMb6v0/o5MuJUmCaNpknCIgSC1rcjiR8C/DLAg7f0h8cGgzWasQHX0xTSrxh0pocRt49MFPfhp7Yk4bX7cPj82i4qqKjxx5aBQsGrfJAtFCPQYIp8evwZ+ePmb36mXmkjvDs3o3KJ6M6K+5/fii2e/j1Axt1hUeg/7a/w1zPCPD3zuMje39nqAkihTF7Y4OwnJcabPaz4/V7S5FUecncFXn8qVT1yEzWFDSsmyLXuY+sd6AgHJoBOO46R2TRBCkOC0o0S521lUBa3yHG+0WrYECyoZzkQubNKLiyqNU52Y0Yrv+91Nsd+FQ7WFkXL/lvDNxZzi4YXCG4PBqHp9vOowNG0X4w+2xReQyOD+LASoZ3PRJaEgZmwZlrGVfil5/CHeRRUKvZwzSfR+F2Pp6Yayl9DtvVGCtBwZyEfmXwiyjKAQvZEhemeA0irKduCQxuHRF0etDCHgh5XH8cn8TnRrncaQnm1Zumk3jeqkMPzkjmSmHKIFLdm0O2bQqwyPT2P8z0vo3SGSuF6SX8qP789g3cLNNGnbkHNuOoMm7Rox6pELmPDY1+i6waoQAm549UoyGtTUfe/Y4x8f+GZNXICn3IuuR/4hW3Vrzl0f3sicbxby1QtTIpbBekBCIEB5sYspb00ne/0envrxAV75dg7fzl2D22e8fubKrZzWtRWPjjodq0Xl3D4dmTR3Tdiy1mGzMLRnO6YuWh/S7JN7bMgUf0TWJwOCDts78f5tFwPGEMUAACAASURBVJh+JiFExFD93xbSGyXoSAy3sCMVNTWQbPHxQatZPJXdnQ2uVISAk5P2c1+j5Qi1JQQ2xXx/qsXNkKyuAOg5N1N9MNYg/1z0xLEo8Rcj3V9FEViQoG8324ABay/wr+bIZb4qUBFIq9Sy/Sr5ZQZxel9eMcNO6sCwkzqYbiEtKQ6rqkQV26gKMzm2g7tyuanHvbjLPPg8fpb9spIf3vmZ5399mIvuHU6f805kwfdLUFSFPuf1JLPxsdHVO1z84wPfznXZeMpNitd2K6eN7EvzTk3IbJzBb/+bS+HBIkMex6QG4fP4WTV7HQvmruPrOasjCJszlm/m/L6d6NisHmPO7UsgoPP9gnUIYWR6Nww9iYtP6UJinJ3xPxvEaJntRDbyQrKGsIAMGPsVK5Np3+Hoy2n/JbD1xnyZF0ud5PDQzOFhXOvZeHSBRUgsFfy1wDaMzme05bQA6/EhXqcRwGoCDUqfRjoGBCWmogVLDePz2jh0YUmIvx4l8VZ095SgxuHRQCoQ6VimS8G0Na0RAto1ie2SduYJbXl36sIaBT5VEXQzMdT64N7PKC0oCyUcmi+A5gvw8jXv8v6ql2jQsh4X3HV21O0umLyECU98TW52Hq27t+Sqpy6mZQwh4aONf3zga3l8MxwJDjxl4fU9i1WlaVBINCElnvdXvcj08bNYOn0lO9ftJic7L2JbqlVl9m+rTUVAvT6NeWt20LFZPSyqwr0XncKt5/ahqMxNRnI8u3OKePGr2cxatTXUbUMK9PkpiCwfItMHXoHMdhKnO7l4QJcaf8aAruP1aTjt1phGQn8FhJqOTLwHSl/AqJXpgNOYXghkc9QyHSXDoHv4F+CIoARZjEkRbUOUqRMJ/uXIgksg9UPD6rHGZTcBnhlg6QjMJGrwEw5IfhMR2Aoo4BiIUIM3txhGSdFhxfzc5VEh6e8PKPg0HX9A5YFvBpJfFo/DZuHaIbEVkjOS43n1hnO478Np+DQNnz8QXqKp+EhAnN3GNWf2ZPOeXH5bsQUBDOzWmqU/rzRdZWVv2Iur1E2cCW2mAtPG/crbYz4ODRUsmb6C1XPW8+rcJ/604CeOlYtRLHTv3l0uXWquWFJbeN1ermhzG4UHCgloxh/ParPQqG0D3ln2vCld5aMHP+ebl3/A7w3PVOxxNoa9cxXjl66PaPdbLQo3ntWby0+PdFX7afFGnvhsBv5AgIDJxVABVRF0bdWQe0b0D6k0F/nKsQiVBGskaVUL6Lw1ZT5fzV6FT9Ook5zAPRf2p3/nY2O5dySQ/o1I93cgXQjHGUi1KeQNoWaeGtXBiUh5Fen+Hrw/mTxvBftQsHUwDJOkKzhPW/VvoRrSWe7vqHlAtiMS7wbn2cjc00FG8/5wIuouMZpClSClhjzYA4gukhoJxTjWmMdoAaUuZR6db5e24bMF7WnVsAFjzuvLcY1q1qwL6DqbducAgmmL1vPtPMMW1KfpxDusnHJ8S64dciJTFq7nk1+W4tcCwRWOSsLqfTAn0hDLYrMwufhTbCajpGAQmc/PHE1ZYeT56DGoC09Pe6BGxx4NQohlUspqrQ//8YEPIH9/Ie/e8TELpyxFsSgMuOhkrn1+JPHJ5nWyvH0FjG43JjROA2B1WGl/Uhse/P4eBj8wLoKuYrdamPTo5dRLC2/Je3wap97zrulYT2XYLCrTn7kmxHbfWLyXR9d8w+7yPCRwfGpTHut0QRgX79mJM5mycF2Yz4fdauHNW4bTrVXt/Hz/CkjvfGTxXUaDQ/o4vJEtAfazDLmkWAIJqMZP0hPgWwmeL6JsLh6j/lhTBRU7os4vCLUeumeOsWQ1DX4qIu0LhM1EwipvCDX1FwFAaQ4yJ9hIqQkcYG2LSPvcGJk7TLg8PvJKyslMSQypMG/fn8+lz3we8X1QgfTv1hDIOdQ0tNos9DqnB2O/jDTxqkDevgIub3ULPhNmhM1h5euDH8bMFqtDTQPfv8JXN71eKg9+cTtTy//HlOIJ3P7edVGDHhijbq/OfYL2vdsgFIHNYWXgqH48PvlepJSmQqP9OjWPCHoAa3fuj9rlrYDdauGM7m1CQa/AW8b1i8exvewgfhlAkwFWFGznusXvh5bZLo+PyQvWRpgbef0a7/945EKjfwaEvTeiznxE2tfBCYTDgQTvD9UEPTDqiT4oeQA882NsTiO6pmBVKJBwtxH0XN9A0U0xMr4AsmAketm7VTaRQq1rnc7B1K4L7AH/JvDOqd1+qiDOYaNxZmoo6AHMXrUNLRB5/IqqkDbguDCHtKT0RG589YqY+0hKi65m7fP6uaPfw+hVJd+OAf4Vge9w0KxjE16d+yTTfROZWv4/bn/3OgCeeesH3J7Iu9Hvq7dR5o6s7zhs1pimxw6bhfP7dOShS08LPfbDnmVoVQQHAkgKvGUszTc6hHkl5ahRpkqyc6q3WvyrIfVypGcGeH8FtR7IIxlXqs2qJAAiRvPC1guSHqFmwc+GUNOQeimUPEb1nWCfYX4eMLQgpbYVWTia2mW6SRB/s2FGXhPRwBBcSN8hE/rt+/P58KfFjP95Mdk5h7xT/FogUksyBhRFmN7YNZ9G9rrdYXaupYVlPHOpiYp5JdgcNs68+lQsZlJW0pCjX/7rmhof3+HiH9/cOFJU1ACX/7aGR4c/z8FBbQikR2aLVlVl855culZZYrZrXJfEOAeuKktdp83CU1cNpllWOn9s2MVPSzYyoHMLEuMcZLvyTD0idCT7PUZQq5uaiFk8FcBxjf5e1ICq0N0zjCVhxbJLahw9OkcNIHMwV0OxIpIfC2Zwnx4y+44KD9L1RdANraZLSBW8C9DtfSFvOJHBUmB0fzUiMkGRChm/oCgqMu1DZMEVhgqOlBi10orpbElkRmiHoCLOB9MW8dH0xWiBAEII3v/xDy7qfzwrt+1nzY79KIrglONb8sDFp5IUH1sQ4bQurXhv6sKIQ5VSYttREPaYz+Nn05KtbFqylTY9otehr3/pctYv3BwmHVd5G9tX7aT76bHN448U/9mMrzLc5R4eHf487jIPFLsNC6oq8Lv9+A6W4Kpir6cogjduGkZaYhzxDhtxdis2i8pFA7qwZscBLnpqAq9OmsNzX87ijPs/YOH6XXRObRJ1TvS4JIMdb7dauOKMHmHLDgC7zcINZx2hAssxhAzkQfGdgNuoUckyjPrW0aW2xEbQ0hIwLnFhdIRT3gbvTCMTrakCSiAXWW2joTLcSD0XCkZhniHaIfVNRMqbwUBlB2zgGIKoMxNFNUbjhKUZos4sROo4RMrLiMw/EJl/QJ05QQWVKhAqIu4ctu/P56Ppi/H6NQK6RAvoeP0BPpmxjNXb96FL47GZK7dy3avfxFytADSsk8Lt5/XDZlGxWy2IgA5agPh521HLzTPr7at3xdymalE564YzQsIilWFzWqnXPDYd52jgP5/xASyetiK0qnCu3o+/USooFdmKJH5xNo61+3n6i2UE/AGGXDuQ614ahRoc0m7ZIIPpz1zD4k3ZlJR76NqqIXtyi7j5ze/whkbljH/vfG8K9eok4m2nG9d8cDd2xUKX1Ga0STo0FnT14BNIT4pj/M9LKChx0bZJJmPO7Uvrhn/jjM9j1nX9K2HM7IKEoluR6IRMUbBxaFwtCvS9wUBei+Vq2etED/QBRGA/Iu4iQ8FGzwMRj1AiVxlCKGALV9MWgEz7DFl0EwRyjZENkYBIeQ2hpDF9yXzTmhyEFwy0gE52bhGrt++vdhRtRL/O9O/cgtmrtvHWLR9i2Z6H4oriDihEjQJXvxG9+PC+z/C6fchgoqGoCvHJ8Zx41uEriNcU/x/4AJ/bF1pWWg+WEj9nG66TmyMFONcfxLnuAFLTQ7PA08b9RmJaPJc9fEg91qIqnNSuaej3d39YiNdEjcLr19i5rwiZm4LSphxR34uQgjMbdeeurmeGvVYIwbknd+Tckzse/Q99rCDdHCvBzcODBPwQqORFK70YIaQmWZ8fZG2X6bFer4PFGIMTQqlG/9AcwtoGMmZAYIfBire0YHduMWM//oJ1Ow/WeBwNCbtyCms0g5uZksCIfp2Z6tbZHyXoWawqdRql06lfuNfY9tW7+OSRL9mybDv1W2Zx2cMX0Ll/e15b8BQvXPU2GxZuAgSd+7fnzg9vwFoDD+sjxX8m8O1ct5sP7p3AugWbSE5PZMQ953Dm1achhKDb6Z3CJKscW/Owb8/HUi8Ze5kPVxWBA6/Ly7ev/hgW+KrCrwVMS/LGNSnBp6CvSYQ1xrKl/AQr1u7/gj+HvS+UvcnRD34KxuVa06mL6iAxsrJjp4xsCqUeWI+8fiWECIlIuH1+rnzhS4rK3aZ14WiQSFrWr7kxOMCgKwfw6WNfR4h+CEXQY1AXbv/g+jDu7OZl27ij3yPB5EKSuyefjYu2cO+nt9DnvBN55ffH8bi8CAF2Zy19Wo4A/4ka354t+7n1pAdY8tMKyotc7Nt2kHdv/4SPx04EIC0rldFPX4LdaUMJ6ok5nTZO7t0Wr8k4HEB5kStm231QjzY4a3Hn2rG/oPoX/QMgrMcZJOFq1ZdrOYHiGA72/hzde7UMevn+WdMwVkifcNSnb35dthmPX4sa9IQAp80a1p21WVTaN8mqdrytAlJKXrr6HT5/+ruwoJeQGs9F9w+n97ATyN60l9dv+CBM8fz9eybgdXnDaolet4+3x4wPPeaIs/+pQQ/+IxnfF09PwuvyhV0YHpeXb16eyoX3DiMu0cl5Y4bSuV97fvlkNh6Xlz7nnYhqUZg3abHpNpu0axhTxPSk9k1DdRG3z49FVVCEwKeZ118Kyv5sS8JjB5H0MNLSKDjGFq3WVXHp1WQZGY9IfhIhVPS84QaZ+ajAD/qfQQ2ygZqJSH4FoR6SW5daNui5YGmDUKLz26rD3vySmAR6EfxPz+Mas2LbXmwWlbNObM+N59S8SbZsxmpmfzk/0rum3Mt3r/6Iz+tH6pJ9Ww6w5OeVPD3tATr1bcfmpeYCDkU5xbhKXDH5tscS/4nAt+GPzWF8owpYbCr7th4IzQe27NIs9P85u/MY3W5M2BK4AnanjRtfuyrmPoUQPHnlIFZu28fvq7YR77QxqHsbznnkY9PX5xXXZqTp7w0hBFIvJHYnVzF8KFwfAKpRR7N2BBzgX4xhahS8PJ2XQ/k7SGtH0I/2eSqs/iVHhDhIegjhPO+QcKlegCwYHRQ+ABDI+JsQcSOQrk/AtwjUpoj4KxHWdtE3HUTbRpnE2a0RlKoK6BI8Pj9Wi8qC126JuS0pJdM/msmk136kvMjFCWd25bJHLmDm53NNxUACWgB/pVq2lBKvy8tbt33EeyteJLVuMu7SyLFF1WrBUQ2V5ljiPxH4Grapz57N+yKWAn6vRkbDNNP3/PzxLNOgp6gKVzx5MV1Pjd1wcPv8fD9vLTOWbyYxzs6IfscT77CjKsJ0njcp7q+7CI4JRDLRu6ZWSH4BxTkImTAatB1I4sDzg/GjZBmiA9aOUDYOXB8jcQeXz04OT99OgRrZOx1taAh737DlrSy40hBUqIzy15CuD4KcRx/41yA9P0PKawjHgJh76N2hGfXSk8jOKcSvmZ8XKWH51j3VHu3bY8Yz/cOZeIKZ3fSPZrJg8mKOP7XjIfGNSjATKgCjoSGl5JIHzuWNmz8MyxTtcTaGXj8Q1WRC6s/CfyLwXXz/uSz/dbUhSRWEzWml97CepNQxl1XP3Z0fIWIAhtxVdbOEXr/GlS9MJPtgUUizb+mm3SQ47aYdN5tF5bLTjn0L/8+EcJ5lePRGwAYZM1As9YzXCSfS0hryzwdtGyHumzcHfAswhvsr7BNdGI2IwxlpCvL5jiqRuiIIR8tCneA8h037IL9kJ+2b1CXJURQZ9CoQNj+sAx5kyViwz4k0c6oEi6ow/q4LeXfqQqYv2UiBSYYFkBIf+7otOFDItA9+DdlDgpHRlRe7sDts2OPsplmfGeKTDd/j0y/vT+HBIv731CRD/VoLcPrl/bnm2ZE12s6xwn8i8LXt2YqHJt7BGzePo+BAEYpiGA3d+MqVUd/T5ZSOzPxiXmRzQ0ra947t/v7Tko3szikKEyp1+zRTgxeArLRERg2sdq76HwWh1oWU15DFd3Bo2sCCSH0bEQx6IXhnQmAn4YRfT5Tk7HC7uuYCnocHgUHC9BB5kImg2EEkUiYu4urXFfbmfYWqCnz+AA+c72Bo7MsnHHoJ6DmgxtZvTHDaueuC/tx1QX8e/2wG0xZtCKsnO2wWRlZzc92yfAdWuzUs8IExTbF/x0GGXHsaP7w7Az2gB7M1Sd/zT2TON4siMrrhtxrULCEEF907nHNvG0LunnxS66YckQjB0cJ/IvABnDi0Gz2HdKW0sAxngiMmV0jXdfZs2Ye/ioKEI95O7+E9adI2tjLKnNXbowY5MyTHO0Ld5KrYti+P57+azYqte3HarJzbpyM3nnWSqZDC3w3CMQDsi4Im5SrYuiJE5HmXvqW1UEs5rCMB5wUI5xBk4Y0gj7SuJ4mutlIGKR+g2Lpy07Ofs+NATlhp4/3phQxpHemZEQ0+zc+guz+hWb2m3HvRgDDJKSklmq6H3M58fo2icg+3n9uXknIP89buwGZV8WsBLujbiQv6doq5r8xG6Wgm3jSKqtCgZRbXv3QFg68+jSU/rcAR76DPeT1JTEsgISWBH9+fgcVmwe/TGDiqPyPHnh+2DZvDRoOW9SK2/VfhPxP4wLj7JJmYgVfFhMe/4esXp4TVL4QiOPOa07juxVHVvj89MS5kclQdVEWQlZqEz69hs4b/OQ4WlnLFC19SHhRNKHV7mThrpSF6et1Z1W777wAhbGCvpnuo1scgE9dCuqlWsBoUG/0gRtYXrUZYg0mOaiHB8yN7S1qwdV9eRD13X5GNvUWZNEzNMXlvOKfQpynM39KYEreNVdv3cfVLXzHxwZE0yEjmi1krGDdtEcXlHuqkJNChaRYL1u80+KMSWtRP55nRg8lITqBJZmq1M7lgCHc0bd+QbSt3hgVAq93C8FsNK80mbRvSpG1D/pi6jLFnPUvu3gLan9SGV+Y8jmq1ULdJHRJS/v62Cf8JHl9toPk1vnn5h4i2vdQla+duqNaHV0pJh2ZZiBpywwK6ZP66HQx64AO27g1Xhf5i1gp8VcnTfo1563awN684Ylu6LtlfUEKp61gFkGMD4TwbaqUjZ6Xm0lKAsIFvEbJoTFAlpnLQE0bTRG0BaZ9hLGGPEHoRpW4vFtX8Wnls6qWgNuJQEFbAdhrEXQbY0EnA41dZtTuLRycfamx4/RoTflvO5zNX8Obk+RSVe5AYnhgzV27F4zPmc3Up2bI3j3vHTWP9roMkxTsoKffw+cwVPPPFb0z9Y32Evl4Fnp72IMcP6IDVZsHutJFeL5WHv76Lpu0bhV4z9f0ZPHnRK2xYtIW8PfnM+XoBt508lg1/bMaZ+M9o0v2nMr6aoLSwHD0K127f9oMx36vrkns/mMqC9buiSv8owqjHlLq9oQ6Zy+vH5fVzx7tTmPz4laEO4IZdOfhN5i5tqsqOAwU0yDjUmJmzZjtPfvYrpW4vupT0atuEJ644g8R/QLdYKGmQ+jGy+HYI5GEsJVUgxvI34RYQ6VD2Ksjc2DuQfvAvwTybs0DSkwjHUIOGk/I6svgeQAuKp9a2JijA2pkW9dJNico2i0q3Np0QGdeDfxUE9oK1A8LSxDjUhOvYsn0+j3++mk3748LeG9Al63ce4OclGyN0Gs2gBXRenTSX9k3qctMb3+EPBPD4NKYu2sC7Uxcy4b5LSE0Ir7clpSfyzPSHKMkvxVXqJrNxRtjNXvNrjLv3s7DEQEpDpurNmz/k549n8+LMR/50QnJt8f8ZXxUkpSdgc9hMn3OVulk7L0pHDpixfDML1u8KubOZQZdGF86MZZ9f4mL7/kO6da0b1jHNGvwBncaZqaHfN+/J5b5xP5JXUo7Xr+HXAixcv5Mx70yJehx/NwhbZ0TGb4iMqYbicdqHRL8vC4T9FJT4C4JZWqzszwGO00GvmulVbMqBUA4ZZAvHAETmQkgdByb1yOrhRDjPwmpReeDiU3FYLaGJCbvVQnpSPJee2s2wXbQdj3AOCQU9MG4Caen92ZEbWZJRFUGrBhmh0kdNYFUVHvp4OmVubyhYur1+corKeHtKdMHWpPREsppmRqxwcrLzTGleAIGAzvbVu5j06o81Pr6/Cv8f+KpAVVVGPTYCuzMy+Omazr2nPxFVdufHRRtiBj0Ap91KnN08sApBmPPVxad0wValiWGzqPRo04jGmSmhxybMWBaxJPYHdNbvOhgmQvl3hxACYWmMUOshbN1AidZEsiOsrY33WJqCGuV1IhkSxiCSnwdbT4waXhVIH1jD26xCWBB6EeZfDwFKXbCdbJiJq20xlscOUJsg0icgFOOmNKjHcXx41wjOPOE4erRuxPVDe/HlQyNJrqbeVjc1kX6dW2CvUvO1WSycdWK7WnE+NV1nb15xRO9ZC+j8tnyL6XtiITkjMeRtYwaf28eMCUemBP1n4P8DnwmG33ImJ5xp7oLm8/i5sce9vHLduxFaZmqUzmwFnDYrHZtmcUG/zjiskdmM3WqhVYNDQ+P105MYd+cIOjWvZ2iJ2CwMP7kDz18zNOx9u/OKTPmBVovCgQLDEyG3qIyPpi/m+S9n8fuqbbVS4f2zIH1L0QuuRM/pj154E+jRCLelSGlkL0IIRMrrQcJ0HKCCiANrT0TmfJSEq5DSC/6NRC51nRA3MhSowg/GjKqC8ZitF0raRyjxl6PUmYyo8yuiznRExi8IazixvW3jujx+xSDeu/18Lj+9Owk1XAI+ecUgRvTrTJzdigCS4uz4AgFueH0Sfi1Q465+fJTVCximQbVFfHI8/Ub0wuqIng1HYyj8nfD/Nb4oqNs0ulxQwB9g5ufz6HByWwZe1i/0+Nm92rN44+6IrM+iKnRv3Ygzex7HGd3boOuSX5ZuYvv+fNw+DZtFRVEET48+M0Ju/rhGmXx890VBV3pM60bdWzVkY3ZOxBywzx+gVcM6LNqYze3vTEbXJT4twJSF62jVIIP3xpwf0Un+qyA9s5BFtxHq7Hr3E3XKQsRTWRFZWNtAnd/B+zMEDoK1C9hOMGp2gRzIPR3TemHiGETcFeb7sPcKTlFU3XccwjEo/CH16AtnWi0qt5/Xl9vP68vNb0xi6eY9BAK64SyiBbCogsyUBApLXSQ47RSWmZOWWzWoQ1GZm817cowyy75iHOsOoPoDdBraDZ/XH9URDaAot5g1czeSv6+APZv3AXD65f0B+PWzORF/InucjcGjTzkap+CY4u9x1f8N0WNQF6a+OwNPuXmH1FNuSFPl7cknd28BXQZ0oM/Z3Tm9e2t+XrKJgK4b9TkheP3GYWGmzMu27aG43INPC6AIQaPMFJ6/ZijNsozxOb8W4J0fFvLt3NV4fH66tmrI3SP607xeuumxXHJKVybNX0vA5QnRJ4SA9KR4Vm/bx2OfzQgrhru8fjbtzuXbuWu4+JSa+/seK0gpkaVPEE5nqfhGVXV/d4BzZMQNQChx4Bweue3C6zBvkqigF0RVShFKGjLxXih9npBfsIgD20lBlZg/B/sLSli2ZU/ETS2gSzq3qM9zVw/h5yWbeOJ/M0xndZdt2YNFURBCkLhqL9Yl2aDpCGDjJ/O4fclOXpn7hGnwm/jcd0x47Gv0gB6itwghmP7RLIZeexqvL3iaBwY/ieYPoPk0LDYL7Xq14ZybBx+Tc3E08a+wlzwWkFJyc8/72bJse1R5biGEQdr0+nEmOGjctgEvznqUjdsPsmLXflJTEzi1SysSKy1vdh0s5OKnPwsLRFaLSsdmWYy7w9D3u/O9KSxYtytEORAYDljfPnI5mSnmKh4HC0t5e8oCpi3egK7LUKiwWVSklGG1wwq0b1KXCfddchhn5+hCSjfyYFfMRQ1UwGI0GqQfnMMQSY8gRPX3bBnIReb2I6renu1klLSPkHoZsnycMSeM1SA7x49CCGvQL3gSyHKEYyDY+sYcHwPILS7jxz82kFtcRo82jenTsVlU46jqsHLbXm5983vKTBoaxzXK5PMHLsXn1xj+6MfkFJVF9XW2eDWSP1sKVepzjng7t751DQNH9Qt7fNXv63hwyDMRtK4K2J02XlvwFA1b12P+d4vJ31dI216taX9Sm7/U9L6m9pL/n/FFwXdvTGPX+j0xPQmklPiDd1l3mYftq3ZxadMbKS8qR0roempHTpt4O1QKfJ/PXI6/yt3brwVYv/MgOw4UYFUVFqzbWUmy3sh3fH6NibNWcuvwk02PpW5qIp2a12PG8s1hQTWaDBbwN5r+sIGwm09vKFmIjB8gsBvU+gjFfLbaFNKFETijBD5rR6T0IwsuBm0HoRpg2WtI3x+ItA8MySj7KUjvTKRvFUJtBpW6sFWxdPNubntrMgFdx6cF+H7BOlrWz+D928+PaFbUBM2z0vGZUJosqkLXlg1YuH4Xb02eR4nLS7zDhsvjRzOp3yr7ipEikl3qKfcyb9KiiMD3w7u/RA16AH6fxh9Tl3Hpg+dxyiV9av25/mr8f3PDBD6vn48fmhj1D29zWk3van6fRkleKQFNRw/oLP1lFVe2uTVMsHTHgQLTu7KqKuzLL2H7gYLQCFLYtgM663cdiHncc9bsMOV3md1/K8bf/g4QQgXnpURKwTsh/jqEkoCwtq1d0AODJKxEm9SxIuIuBc8M0HYT3vjwgH8xum8Vsug2ZNF14PoYyt9D5p2F7ppsusWArnPfuGm4ff7QDcft9bN5Ty7fzFldu2MPIinewcUDuoSZTgkk8RtzmPXMZG565WvWZ+dQ7vFR4jJI03Emy1bdbh50FUWQnBnpF11WGFv+S1WVqLSvfwL+P/CZ4MAOs3EiA444O5c+dD42Z804XkW5JXz53Peh37u0aBBBUQHw+DQKSsppmJFsuiy1GjrdPgAAIABJREFUqkq1JkN1kuNNO2p2qyXkAGe3qjisFgYc34Ize7St0Wf4MyASbwfnuYA92LxwQsI1iLgLD3+bQkEkP4cRUCufFxukfYpQM5G+5ZjWAKUO7m/AOzvoIwJG5uiBkoeQelnEW7bty8djQmfy+jV+XBTJ/9xfUMJd7/1Ar1vfoO8db/PCV7NN6VC3DjuZey8cQLOsNNISnRxfrBO3cCcHj6sDVa4lj19DUUQE/1PLSkJ1RAY/q8PK0OsGRjze74JeOOKid6CFqtBvRK+oz//dcUSBTwhxgRBinRBCF0L8a+RFUusmmw5rA7Tu0YKL7xtORoP0Gg+az5jwe+j/L+x/PE67NcKkWUrJc1/O4qY3JtGhaRY2a/gFHdAl385dzSl3vcPzX82i1MTc/IK+nbBVyRaFgNTEOH559loeHXU6t5/Xj0/vvZgnrxz8t6IdCGFBSX4UkbkQkf4tou4fKAk3H3G9SNj7IDImQ9xIw9Us8QFE5h8oFe5loTnhqm+0gG8Z5vPDalAyKxwGMd28NGK1hH/VSt1eLnv2C2av2obXr1Hm9vLt3NXc/MZ3oddoAZ1PflnK0Ic+4vXv5tGpeT0+v/9SCn9Zh9ftQ0825/OVe/zUSY7HGcz87FYLCfF27p90N3UapuNMdBCX5MTutHHDK1fQuluLiG2cOrIvTTs0irCAtNqt2BxWbn/vWjIb1c6v4++EI63xrQXOBd47Csfyt0FiagJ9zuvJvO8W46uk0GKPs3PJA+cihOCx7+7mrgGP4vX40DUdv8+PHojSBKlU2E5LiuN/91/Cm9/PZ/aqbSHpKl1KXF4/Hp9GnaQEzunVnikLD81U6lKGpK2+mbOKJRt388WDI0N3diklLRtk8NClp/H0F78hhCGSkJmawOs3DcNpt3Ja19bH6pQdNQglAY5Aht10m5ZmiKSx5s/FDUOWv1GFlqEYHdxANB6hF7NpkWZZaaQnxbOnyhy1w2bhvD7hyihTF67H5fWF8S99WoCN2QdZv+sA7Zpk8eBH05i7ZkfoGpn6x3pmL9mEpajcsBZ3+5FxkcvN9KQ4vnnkcn5euok1Ow7QtG4KZ53YnpQEJ313vs3GRVsoL3HT/qQ2USWibHYrL895nNlfLmD+94uJS3RSv2UWWU0zOeHMLjUS+/g744gCn5RyA5hzy/7puOOD61EsKr9/tQBFUbA5rFz34ii6DTQcspq0a8Tnu99l0Y/LKTxYTOPjGnD3qY9F3PGFKjjjiv5hj9VPT+bp0WdyzsPj2Z0b7vmgS8mmvbm8dtM5nHJ8S257e3JEg0ILSPblFzN/7Q66tW7IC1/NZvrSTWiBAMe3qM+4O0fg8fmJd9hpWT98ZrTM7WX1jv0kOOx0aJr1t8r6/gocmhO+0+AAIsHSEpIehYJoHe+AqeKMEIKXrj+ba1/5Gr8WQAvoKELQr2NzhvYMl5Bfn33QfN5WCLbszSfeYWfOmu34yrxG2m5TCeiS4oCfVKuK4tVwLtuN68SmUGl14LBZuGZwT5w2K8NO6sCwkzqEbV5RFNr1qpkgoNVmZeBl/ehySgdWzlpHQko83U7v9KfYPx5r/GldXSHEtcC1AI0bN/6zdhsVml/ju9enMW3cbwT8GqdcfDL1W9Xjf09+y8GdudRtWoernrqEW94YTWlBGRkN0iKksq02KycP7xn6/Z5PbuaFK98K+XuoNpWm7Rpx9o3hhNcKmAkQQFAnOKAzaf7aqF1Zt09j454cxv+8hA27D4Ykx1du3ce1r3zN949eSVpS+JD7l7+v5NVv52JVFXQpSY538NYt59I0y1x+/78CYets+NTq+wALQq1rUGyiVYKULIQwr3+1CprLz12znfwSF11aNjCtzbasn4HdaolQSdECOh9MW0j5nkIc09YRX2DUH/1ZiZQPaIWeYMfVvRHxi3bhWH8QLAruro2QFgWn3cr1Q3txfjW6e7XBx49M5OsXpqBaVIQQqFaV534ZS6uuzY/aPv4KVMvjE0L8CpjJvz4opZwcfM1s4C4pZY3IeX81j09KyYNDnmH170atBAyxRanLsIzNHmfj7o9uot+ImrtR5WTn8tNHM8nbnU+30zvTe/gJUe+Qr3w7h4mzV0T4JDSpm8qkRy7n1re+Z/66nabvVYXAYlFN5YXsVpXRg3ty9eBDQXn19v1c/+o3YarQAoMGM/XJ0f/5zM8MetE94PmJcGVoByQ9hBIX3VO5MlZs3cunM5ZyoKCUE9s1YeSpXUlPiqeozM05D4+nzHNIpUcJelpIr0bq58sQvkCoJSMF6PF2ii7uCgLsGw7iXLYHxeWDtDjueftaTj2/12HzBc2w/Lc1PDLsuQi5+ZTMZCbufQ/1MEbejjWOGo9PSnna0Tmkvw82L93G6jnrQ0EPMHVh87p8jLv/f7UKfJmN63D5o9E7kdkb9zLtg18p2F9IpzM6Uz8tiZzictxeP3aryv+1d97hUZRbHH6/2Z5CKAkljV4l9CpFBFREpYgiCAKKIipFQREuWChWFCyIBUFRkCIKAiJNeu8l1NAJJQVC6tbZuX9sCCw7GxJBQ5n3Pvd53NmZ2ZNl9+z3nfI7Op3EmF5tEELwUP3K7IiLV1VzlhUF2Y+mmt0pczjeW6rpqz/Wezk98IS10rJs7Dl+llrlI9DwRoSMRFHSwb7uSgF1wDMIy5N5un7Bxn18MHNFzpb22LkLzN+wj5kjuhMWEsSPQ7rw3vTl7Dp6FkkSyG43CmCKSwK34pWHFgoIuxPD6RScpYtir1YSezXPeqRmuXAe7NzkpvzN8XHnOBN3jtLVIln03TLVGRsOq4N96w9Ro/n1J8DdqtyVBcwHNseh5LFJP+HkdbTe8sGaORv5uNcEXA4XssvNxgXbiKgawbPjuhN7KpGI0BAea1QtZ4v6UL3KzN+wj9gT5/Okv3YZk0FPtegr/aMp6Vlsj/M/YSstl0LV/JCSnsWSbYdISbdSr3IU9SpF3tbxXyEsiCJfo8gJIJ8HfVmE5FvzpobTJTP211Ve/25O2U261c4Pi7cyJLs85fvBnXHJbtbsPcY7U5eQaXOgS7UiqSigCLeCPtPhpRBoNurp9dCNF1TYsuyMeuITdq/ah8FkwGl3EuhPSVmQa3Hz7cANOT4hREfgSyAM+FMIsUtRlIduimX/IqERRdEZdGC7vshkWIR6f2x+cdidfNr7a69Jb7ZMO/H745F3nuZ//dv6XGPQ6Zg4oBOr9xxlzZ5jBJgN1Cofwehp6n2ZAJIQmI16OjS5EtReuv2wp/RGJarhcMrUKheuei9FUfhjwz6+/2sziZfS0Uk69DqJ2hXCGdChGRWuUpLxdCzMw6146tamrdhBnQoRjH+pvV8l4tsFoSsB+RQiOJmQojp6wCW72bD/hNcxvU4ivFihnPNdxYNx6xN9nJ/FbCS6Tjn2u+wY9Drcbjc9m9Qgcfl+Js/YRO1WMdRqWf26KuFqfDP4R3av2ofD5swZNuS+kI7OoEO+prRLdslUb1ol369xK3GjWd25wNzrnngL4LA72fjHVhJOJlG2RmnMgWZsmXaUXOZimAKM9BrT5aa8/uFtR1VbKOxZDlbNXE+Hfg9z6kA8brdC6WqROR9evU6iVe2KtKpdEYBMm8OvpJQQ0KR6Gd54sgWFr1LWzbI7/NaXNaga5Xcew49LtzJp0eacVYtLdmF3wrrYE+yIO8PPQ5+mbMmiyG43Qyb96bUlt9qdbI+L58/NB2h/7z3Xf4MKmEybg8VbDxJ3Jpkq0cV5qG7lnDo4fzicLtbsPcb5i+lULV2COhUicla4IUFmXCrhE/DMZLmWypFhRBcvzNFzF3CUK0bAttMoGXZE9ufTaDZQoXZZxo3rQ1JqJhfSMkmJPcP7ncehuN04bE7mfbWY6k0qM2bBsHzNrFUUhWVTV/tMV3M5ZXR6HeYgM7YMGzq9hN6gZ+DXfbAEFfyktBvhrtjqnjuWwMCmI7Bl2HDYnBjMBiIqlKBoycKcOnAGIQlCI4pyf5emLJ7yNxfOplAsvAjPjunqJTt1I5gDTX6HDymKwjPlXyE1KQ2EICgkgBGzBnHPvb5lB4FmI080r5mt3HLF0ZiNeiYP7kzVaN+VSaOqpb0c2GWMeh0vP+YbG7Lanfy19SAT52/w2/Ruc7iYtGgT7z/XlgOnEnGoxBttDhfzN8bS/t57OHbuAou2HMTucHF/rfLUvspJFDRnklPp8dEMrA5PHaXFaGDi/A1MG/q0X1GI+KRLPPfJLLLsTpwuN3q9RJWo4kwc8Dgmg56wkCBqV4hgR1y8VyeO2ainxwP1UBSFOWv3MPmvLVxIy6J8qaK80LYhc9buZceRM1g71yZoezyBJy9iNhl5sFcLuo3ohBAeOaqigWY61x7qteW0ZdiIXXeQZT+voc2zuQ8hvxq37FadIQ2eIVtDfuzHhvlbCSkWzMO9W1K6WpTqubcTd4Xj+6D751xKTM1Z3ckZMqcPnuXJwY8xZuEwZKdM8ehQhBD0GvUUsizf9IxV+ZplKBxWiIRMm5fsvCnAyPE9p3Im14PnAzyszRimnZioWij62uPNKRJkYdry7aRl2akYEcrrnVuoOj3wiGG2qV+FxVfNarAYDTxQtyLVSntfc/ZCGj0/nkGm1eHX6YGn3jD2hKd3OLeEsCQkZq3axWe/r8Uly7gVhd/W7eGhepV5u/sD+XJ+uWkS3gjvz/ib1ExbTjGxp9fWxdjZKxnbR32a3fAf/uJiujXnGqcss/9kAlOXbqPPI40A+PD5R3j92wXEnjiPQSfhlN30aduI+2qW54clW7x+jA6fSWbEj0uYOOBxypUqRpbdQckiwX7/1kNbj6pKwNsy7Sz7aZWq45NlmaTTFwguEkhgyJX4nU6vo0KdssRtP+ZzjSnARM37qtHs8YY+z93O3N7BlzyQnpJB3I7jPltah83JkqmrCA0vSonSYV4fsH8jTS+EYMzCYTkDlS3BZoxmAxXrlsdh95UccstuVs5Qn4kgSYL7I0vSI6AI/YqVZPQjTahb0f+sX7vTRVqmFZfLjU4nEALqVIzgrW6+PZrv/bKclAyrTwZYjchQj/x9lagSqttCi1FP6zoVGf/bGuxOzwQwRfGsBJduO8yOuDPXfQ3waMp1Hv0T9V75jGavfcWX89b53UbmF7dbYfOBUz4K1rJbYe3e46rXpGRYOXgq0ecau9PFHxticx6HBJqZNOhJ5rzdgy/7d+Tvj1+k10P1ccoyUxZv9VmB250uvpq/npBAM6WKFuJShpWzF1JVwxQ6vYTiR6hVZ/D9/K6YsZbOpV7g+eqDeLLk84zpMg7rVVqTA7/ug1FFVdmWYWP0U+NUX+d25o5f8eUWw/PXYvZvUbpqJL+c+oadK2JJS04jqkoErzYdoWqH3erg4vlLKneBGR/OZfroOTizvzhzxi2g0+DHeHaUejxy3JzVrN93wkuuaHtcPNP+3k7PB+vnHJPdbjYfPJWnecDG7BrCZ8fOpHmN8ozp1YbXv1uI263glGX0Oomm1ctiNujR6SS4ZnViczhZtuOwl0CrGofjk+g/YW6Ok8iyO5mxYicpGVbe7u7ruPOLEJ4fErV/A52fpMyRM8l+Ha/aKjkiNMRrIt6ldKvf64+du0hyaibDJi9iz/FzSEJQOMjMuz0eomGVK4X/FeuWwxxoxpru3UtsDjTRtncrABJPJ7Nl0U4STibx++cLcVivxPA2zt/Gh92/YOTcIQBUrlee6KqRHNnp7exll8y+9Ye4eD6FoiVVJPpvU+54x1eoWDBl7oni6K7jXltMg0lPq27q2nY3G2uGlZUz1nN0zwnK1yjD/V2bYAmyMG30r36djNFipEZzX/WUs0fPM23Ur16BaLvVwZxPF3D/U0285p+Cx5nN37jPS98PPKuuX1bu9HJ8Ivt/fiXfAZ0kYTZ6Og52HvGs2A6eTiIsJJA5b/dg04FTXMqwUr9yJNVKl+SvLQdVZbGEEKoqNZc5HJ/Ep3NWsz0u3uc9sjldLNp8gAEdmnolcf4JQgha1arAil1HvGJxBp1E7fIRPP3+dE4mpBARWohX2jWhclRxXvv6D9V3yKjX0ab+9dvBCgdZ/BaMR4eF0Pfz3ziZcEW+LCElg9e+/oNZI54hKsyzytbpdIycO4ShD41GcSu4HC4kvUSTjg1p/mRjZn8yn6lvz0RIEk6706dO1WFzsnXJLi+HZvUjX6836Ei/mKE5vtuNodMG8Fqzt3Dandgy7ViCzJQoE0a3EU/866+deCqJVxoMw5Zpw5Zpxxxo4se3ZzJh8wfE7TiOy099XskyYdRu5auXt3H+NtWtj+xwsX7eFh/H53DJPp0hl0m/phZLkgT31SjHmr3HvFYkBp1Em/pV+F/XliSnZdFp5FSv5+1OF+cupjH42/m0b1ydJ5rXyBly0zSmrJ9BSDoeaagui3Xi/EWe/WQWVj8lO+BxMmcvpKk6vksZVn5ds5tth+KJDAuh6/21iSpemAnz1jN3/V5sDhe1yocztEtLKkSE8maXlhw+k0xCSjqy7EankygSHMC2w6dzWgaPnL3AsMmLqF85ykdI9jIligTRpEgRjuw8TvlaZfzG5wx6Hc+0qstPy7d5J6gMeh5uUJUv5q3DnelAkt24A40gBC7Zza+rdzPoiSvJtqoNKzIz/lvWzd1C+oUMarSoRoVaZYnbcYwfR8zI2RH4w2DUc/HcpRyHVr9NbRJOLPVRJtLpdURULJXrvW437grHV7pqJNOOT2TVrA2cP55A5foVaPRo3Xyl/P8pX/abTNqF9JxfXFumHYfVwZf9p1C5Xjm2LdnlU0agN+h48+f+OO1OVs3awIFNh4msFM6DPVvk9Exei5CE6t9jMRqILl6YEwneYyYFUKu8b/3esK4tOXwmiYtpWThdMpIkeaa1paSzYNN+rA6XqiOT3Qr7TyZy/Nxavlu0iWlDn6ZEkWCCLSY+ev4R3pz0p2dLqSi43Qp9H21E5Sj1gU5TFm9RzRJfjUOWiQz1FSZNSs3g6fenk2G1Y3fK7DgSz19bD1IhPJS4M8k5LX47jpzh2U9mMuftnpQoEsyvb/Vgy6FTnEhIoXypYnw0a4VPn7TN6WL9vhPqjlySyJyznTFfrEJxK4SEFWLMgqF+M6AvPtoIs1HP1KXbSM2yERkawuAn7yPl3CVMv+3Cci4NBLgtRjLur4ArPMRH0AI8MlHRVSOxBJmJqhzOnjX7GdZmzHWdHoDschNR6YpD6zqsI6tnbyDjUhZOu9OjjWAx0v+r3uhvkaFUNwtt5sa/TBtjF9Xsm06vY0b8tzwd3ddn1RdZKZzxa0fRr8EwUpPTsGXaMVmM6I163vp1MG+3+9DHWRrNBr6PHU+xqGLodJJXz+b2w/H0/2ouDqcnq6qTBCaDnh/f6EK5UsXYcugUpxMvUTEylJrlwpHdChv2n2Du2r1sOHAiZ8UoScIzGOg6HxlJCFrWqsDHfa6MwUzPsrF67zEcTpkm95ShRBH/skZPjJzKsfMX/T5vNupp3/ge3uzimeZ1Oa5oMuh5/5e/mbshFjkPyQ+DTkfXlrV49fHmPs816Pd5/hIoioKwuzAdSCBg+2kkt0LhEoWZceqb6/7Aym43Osmj5dej8gDOHT2PuOo9VvQS1m71eOWZ1jx91XCodXM380nvibhlBbcsUzwqlMTTF/LUVWEKNNFteCe6DvUe0HQpKZV5Xyxi29I9lCgdyhOD21G1YcW8vw8FjDZz4xZBp5f8OD6JAxsPqW51E04m8lHPr0g+cyFneLPd6sBudfD9m9MYMPEFvnh5EkISyG4FWXYT8mgNXvzhT84kp6LXSTxYtzJvdrmfIIuJupUi+WlIV6Yu3cbR8xeIKVOSHg/UI8BkoNOoqSRdysguFRFUjAjl64GdqFUunDcnLfTaJucl6QGeUpe1sd5B8uAAs480kz/KlirK8YSLqg42JNDMM63r0uvB+jhdMl/MXctv6/bicMpEhRUmNcuWJ6cHnhKUA6fU1baLFw7i7IW0PN0HACFQzAZsMaVwhQUR8ud+7Jl2dq6Ipd6DNXO99PKPVOy6g6Sev+Tl9ABwKwQeTqJd4yvv36mDZ/jwmS+8OoFOZ49/9IckCULCQigWUYQuQzqo9qAXDguh1+iu9Brd9Tp/8O2N5vj+ZZo/2ZhVszZ4OTi9Uc99ne/lq4E/qF7jtLvYtnin6nPHY0/RtGMD6repxbtvT2f3kbNkRhYiOdAE2QKYTtnNsh2HOXMhlSmvewQTKkSEMvpZb3msQd/MJz451ctRHDydyFfz19OgSjR6nc4nKZJXrlUczg/PtWnA+n0nfMo9zAY9Azo0pWNTT+zz3Z+WsXxHXE7pzcnElDyrYoNnxVc1Wn27/eIjjflg5t/56pEGQK/DVSIYV2ggik0m7UJ6ni9NOp2sely4FRqVDPMaRr7wm6W+P5q5/C5JOom+43rSUaU1EmDH8j3M+/IvUpPTaNKxIY/1feC2787IjTu+jq+gefmzZ4mqHI4lyFO3ZwkyE1UlnBc+7k6inw/69ZD0Oi4pbraaFdIrh+EO9NWGc7hkDp5O9FFpuYzTJbMu9rjP6sjhklm46QDBFlOuE+ZyQy9JtG3wz+d5VI0uwbi+7QgL8W6StzldjP11FbNW7SIlw8rS7Yd9FWcUfGT9/WEwSHRpoT5X+LHG1Rj0xH1eo0Hzg6tYIC6nTEyzvL8PlepXUN0dmANN1G/trbGXFH9lN3A99AYdb/zwil+nN+vjebzT4WM2LtjG/o2H+emdWbxSf6hXnd+dhub4/mWCiwTxzc6xjJw3hD5jezBy3hC+3fkJQYUDEfnUwNPpJWq1uAdLoNkTZLc5IJdtnU6SOJ2oXgvoidWpOzbZ7aZmuXCCA0yqpSjXI9BiZECHvJUKOWWZFbuO8OPSrayPPZ7Th9yoammKqvS02hwuvl6wkbPJqX7LYYIsRox6HYFmIwadpLoKlIRg0mtPUjIXCfXa5cNxuPyv+HQqQ30AUMDikOk44GHCIvMuchFZsRRNH2+I6aohP3qjnpDQQrR+xjsO2bBtHZ95GOBJcl19vTnQRMNH69Kqm/oIyPSUDH56d7ZX55Dd6iDxdDKLp6zIs+23G9pW9z9AkiRqt4yhdssr5SkGo4G6rWqwbdnuXLcolzEHmihasjBv/NiPDX9s5fcXvyE4OR0kga1KCbIalYZrJ2vJbsqHq3/xjAY9MWVLsfvYWa9Ymi67pEWSBBMHdOKVL34nLcuGEAKbw4lA5AzVsausTgTQokZ5AvIwejDpUga9xs4kNdOG3enCZNBTqlghpgzuTHCAmVMqWUzwiC4UCbaoKtQIAc2ql2Pg4804dDqRCX+s55DKqtetKMxYuZNOTWMoViiQyOz6uKv5/q8tfkuBwBM+OJOcSsZVuo7CrRCI4N3xvWn8mCfG7rA7mTb6V/6a9DcOm5N6bWrx4ic9VIf1DJnajwVfL2XBxCVYM200fbwh3Uc84bPtrNemFkGFA3E5XDnlJ+ZAE21faEW1xlVYPGUFiqLwYM8W3Ne5sd/SmoOb4zCYDD7JMnuWg43zt/ldJd7uaI6vAHltUl8G3juc9JQMjyiqHwcYUMjC8JmDqPdgDWLXHeT9pz/DbnV4VmNuBfOBBITNgbNsKO4AA64SwZiMBhpWjc5VVv7t7g/Qa+wsHC6XpznfZCDYYsrJcpYtWZSFY3qz98Q5MqwOapQrRVqmjQ37TqDXS3z662of52My6mmXRzWWMdOXk3gpI6dQN8vu5Pi5CwyYOI9xfdsTGRpC3BnfcECAycDB00mqq1FF8QTxQ0MCCQ0py/QVO/y+/sJNB1i89RA6SaJyVBjjXmznJdd/6LRvW9rVZNmcfDvwCYZNWUR8UiqSJGhasyxvdX+AIlc5qncfH+uRfMp2kOt+38yeVfuYcvBzgot4iyDodDo69HuYDv0e9vu6y6evYfwL3yLpBWT3LkdVjaDnu51p1qkRQgjuezJvox8LFQtWTQYJISha0vfH4E5B2+oWIMWjQpl6ZAKvT36Zx/o+iF6lxxLgtW9fpEGbWkiSxPT3fvNSjgYQshvTkQsErjpCoUX7KTp7Fx1rVGDsC4+q3u8yZUoWZcHoZ+nfvilPNKvBG51bMHdkL0Kviq1JkqBmuXCa3FOGYIuJiNAQnryvJh2bxDD+pfYEmAwEmAyYjXqMeh3PtK5L7QrXV3O+rEt3bYuXW4HdR8/x6PDvaV2nIrprwgEmg44X2jZi9qpdyH6c0uKtBzmTnejp1KwGFqP/33eX7MbudLH/ZAKDvp3v9Zy/1fJlMm0O+n7+GxfSsjAZ9QigYZVoL6d3PPYUe65yeuDpw7Zm2P7RVjLxdDLj+3yLw+bAlmHH5ZBRFIXzxxOp3rRKvgUcKtUrT9GShX06SYwWA+1zcb63O9qKr4Axmgy0eKoJe9ceUJW/NwWaMFqubBvPxJ1TvY8ARPaWR0q3c+KblRiev/4HNzjATNeW6gH+61G/chRLPuzD2r3HyLI7aVS1NOHF8qZQrPhtsfdgdbiY9Ofm7C/ylTN1ksSavcfYdti/orQQgs0HT/F40xha1qrA9nvvYeaq3bna45LdHDqdRHzSpZxtb++HG7Iu9rhqZtugk0jPsvkMf//s97XULB9Olezi7ON7TiKpZLjtVgcHNsURf/gsf03+m5TEVBo+XIcmHRvkWiy8evZGv+rha+ZsynWlqIYQgg+XjGD4Ix+QdDoZSSfhlt28NL7XbVW/l180x3eLkJVhU62TkyThNfegUr3yJJ5Kvo74gpuTB85w7ngCpcrmTzk4vwSajbSpn381XoNOR/1KUWw9fNpvfaBL5Qtud7rYfjg+14yzXicRlP1jIYRgyFMtOXr2AltzcZYAbrebU4lXHF+VqOJ82a8j7/60jLMXrszKtZgMBJmNZNocPo7PKcv8sSGWKk95iqvDK5RU/bcymg1IOkHf2m/gcsnITpm1czbx22cL+WR7DkT7AAAaQElEQVTlSIxXqd24nC4WT1nJ8p9Xk3z2ouqwe7cse60q80OpsiWYvG88J2JPkZ6SSaV65TEH/LNs9u2CttW9RWj2eEPVLJ3LIVOn9ZWkyDNvP4nJcv3EAeCj3GG32vlp5Gy6lXmJrtEvMunNaWSlqzem/xdcjoXltfwEPK1xucXdwFOSE3v8HKcSr7TpDXy8OeZctrzgqX9875flWB1X4pb1KkWxcMxz/PX+8/Tv0ITHm8bwv66t6NdefbiP262QcVVRceX6FYiuEoH+mtfWGXRs+XMndqsjR9rdlmnn2J6TLPlh5VX3czOszXt8+/pU9m04RMKJJFVHqtPpaPTYP5+9IYSgbExpajSvdsc7PdAc3y1Do0frUvP+6piDPDLwkiQwWYz0/uBpCodd6UktWz2acatHUbtVDGY/kvHgkRMqXe2K5JOiKLz54GhmfTSPxFPJJMdfZO4Xf/Jq0xGqtWP/BeHFCrFgdG8ebxZzU+ZyXHagLtnNzFW7eWrMNJZtPwxAtdIlmNCvI1Wji6OThN9C50sZNpZsO+RzvESRYJ59qAEjurXmkYZVufeeMqotbRaTgVZ1rmwRhRB8uPQtmnSoj96gQ9JJVKpXjpfHP4vQ+Rphz3Kwcsa6nMfbl+7m4NYjqtPOLouymgJMdBjQlugq2qS8vKJtdW8RJEli1LwhbFq4nbW/bSIg2MJDz95Ppbrlfc6tWKccHy97m8Pbj/J6y3d9VnYA5gATx/acpGxMNHqDnj2r93N010mvsgWn3cX544lsWridJh0a/CO7k1MzWbBpH+cupFO3YiQta1fAcE19XVJqBjoh+Qw4B0/f7dCnWpKWaWPN3mM4ZTdGnQ5QKBYSyPmL6V4ORk00SxKC8NBCJKSk43ZlD+yR3bhkNyN/XkrzGuUwGfTUqRjJ9GHdAPhlxQ7G/7bGJ7lidTjZEXeGDvdWJzeKFQrklXb38vXCjTk90BaTgToVImgWU9br3OAiQYyYOQiX04XskjFZTBzadtRvuMISdOUHbeeKvdgy1AuJFaByvXK8/PlzVGtUKVd7NbzRHN8thCRJ3NuuPve2q3/9k4HS1SL9fnkyU7Po3+h/WILMDJrUl/PHE3E6fOverBk2Dm6J+0eOb/fRs7zy5e+4ZDcOl8yfWw7w/eLN/PhGFwLNRg7HJ/G/7FIPBagYHsr7vdsSXdy7TEKSBB8+/wj7Tpxn66HThASaaV2nIrJbYdS0ZayLPQ4KlAsvSscmMXw+d22OszHoJMxGA4UDLcQnpfrYKIQg9vh5H8HT8uGhmAx6n3Ico17nY9+1nDuWwM+jfmXvmgPEhAUT0LwS5iolaF2nEqUlA+91GU/c9mNEVQ6n24gncman6A36nMRFxTplCSoSiDXDV0j00b4P5jwuXDwEo9m3zg4ABU7sO+0VD9TIG5rju40xWUz0fv9pvn3jZ1WxA9klk3Epk496fknPkU9hNBmwXhMYNweaKFlGvV81NxRFYdiURV6Ow2p3cjrxEj8t3Ub31nV4ftyvZFivbNH2n0rgiVFTee6h+jzdso7PdLd7ypTknjIlvY6N69sOu9OFS3bnaPzVrhDBz8u2czIxhVrlw+neui7v/bLcr50mldhe/UpRFA0OwO5M81r16XVSrqu9c8cSeKnuEKwZNk8W/kQipn3x9P20B5GyxGvNRmC3OVDcnhKTPWv289bswTRsW8frPpIk8d7CYbzRehROmxNFceNyuXmkT2saPVo357xW3Zrz07u/+rXHaXOycuY6KtQu6/ccDV80x3eb06F/W7Yt2cXmReqiBuDZ0p46eAZzoAlb1pWRmkJ4WqJadFEP1OdGfHIql1QSIw6XzOLthwgNCcQl+8YOXbKbKUu2Mm/DPmYO754nBWWTQc/Vi5pKkWE+ggudmtVg26F4r8QEQJDF5DVc/TKSJPh+cGdG/PAXu4+dQ+CJOY7q1carjvFafh716xWnl409y86kN6dRrkYZr9Yvz3MOJvSf7OP4AMrGlGZm/LdsX7qbtAsZxDSv6vMjVKxUEUbNG8I7HT9WjfMp8I97qu9mNMd3B1ClUSV2/L3X74hAt+zm4tkUPls3hg+6fc6RXScQAqKrRPLmz/0JVIm9XQ+jXuc3u2rU6Th7Mc2vsolLdpOSYWXa39vp1/7myP83q16WTs1imL16NzqdhCQ8rXVfvNLBr8x78cJBfPfak6Rl2nC45Fwd3mX2rN6vWm+puBUObTuiek3iqWRsWXbVbKneoKfhI3VVrrpCndY1+OHg5zxTvp/Pyt5oNnBf5/z/cN3taI7vDuDBni2Y+eE8QN3RmAKM1GtTi/DyJfly0wekJqfhdisUKe6rYJxXShQJpkzJohw5k+zlAM1GPZ2a1aB4kSAsJoNf+XinS2bNnmM3zfEJIRj0xH10ub8W2w/HUyjQzL3VyvgkWtQoFGjm7NHzzP5uOW63QpMO9YmqrJ4hDYssRsJJ395fp8NFcJFAUmy+cUaj2YDBdGNftdCIYgyY+DwT+k3G7VZQZDd6o56O/dtSuZ5vAkwjdzTHdwdQPCqUd39/gw+6fU5mWlZOXRh4pMmLlSriNWc1JDRv3RXXY2yfR+n9ySzSMmw4nS4EUMZkpkPjaugNeiJDQziRkOJ3RkURFfWV9JQMVs3awKXEVGKaVaVmi3vy1YYVXiyE8Mb5c+i/f/Enk4dOxy27UfBsZ7u/9YSPOjFAl2EdGd15nJfKsZBETjz1WkwBRh576aGbMrL04edaUbtlDGvnbMLpcNG4XT3KVo++/oUaPmjS87c4ToeTDfO2sn/jIUqVL0mrbs18GtsvI8syR3YeJ3btQVbOXEfCyWRCw4vwaN+HeKDnfT7Zv+XT1vDTu7NIPpNCdNUIXvioO3UfyF0t+GoUReGNB0ax63QCdr2EPiGdQJtM9aZV+OCv4WTZnUxZvIVpy7f7dDhYjHo+eP4RmseUyzm2f+MhhrYZg1t2Y7c6MAeaqdaoEu/9Oexfm/lw/kQiz1V9Fee12V2zga93jFWtjVvwzRK+Hzodxa1gy7R5ymuu+RqZAowoboUHetxH/wnP/yfzXTTyLj2vOb5bmMzUTAbcO5yk0xewZtgwBRjRG/R8umok5WuW8Xvd7lX7GPHYB8guGafdhTnITMkyYXy+/j0Cgj3JhAXfLOHb13/2WrmYLEZGLxjqJZ+VGztX7OXtDh/71JmZA028v2h4jghncmomA76ax4mEi+h1Ek6XzPNtG9G7zZUSGrfbzdPRfblw1nsokinAyItje/DYSw/lyab8MvHVH5j7xSKf4zq9jh7vdubp/z2uep3T4WTpT6v54qVJPjE/IQkaPFybYdMGEJiHuKHGzSOvjk/r3LiF+Xn0HM4dS8ip9bJnOchMzeLDZ770e43b7eaD7p9jy7TnJDtsGTbOHjnPnHELcs758a2ZPkNp7FYHk4f9wskD8bzV/iM6FO1Jz4r9WfjdMhRFwZZlZ8+a/RzfexJFUdi3/hA2FZVeh83J3rUHch6HhgTyy/+6MW3o03z6YjuWftjHy+kBnIg9TVaab5bYnuVgyY+r/P69h7YeYfD979AupAfPVR3I39PX+j33WhRF4e9f1M93u925brG/eOV7Puvzrd9ER2Zqlub0bmG0GN8tzOpZG1QztWfizpKSmKqanDgTd47M1Cyf4w6bZ1Rlj3c6k5VmJUul2wPgxP7T9Gs4LGcVl3kpi28GTWX9vM3Erj2YPTzJTYnSYbTq1hyzxeRTwmE0G1S13MqVKka5UupST0L412P1538Obz/K4PvfzXHgpw9ZGf/it1xKSqXTq7lLcgGkJFxSdbbgcV7NOjVUfW7H8j0snuxfUspgNlD3gRp+n9coeLQV3y2Mv7iQooDOT2+r0WxUXYV4nvPE+CzB5pz/9rm32+2zdbVn2dm2eDe2TDuZqVZsmXZOHzzD4ikrkFTscNqdlCrnWzuXfPYiJw/EI6vU95WpHk1QYd8VkjnQRJvnWqraqrpqzbLz07uzcV1nLi943it/FCoWRGQl37nDANPGzPF7nZAEhYoG0e6VNn7P0Sh4NMd3C9Pmufu9tPjAU3hbqV45ChVTnxVRonQYkZXDfeZ5mAJMPJbdCqXT6egytKOPGozOoFNvjVLB7Va4mHCJfhN6U6SE98pTdrkZ/sj77FoZC8ChrXE8Wep5uka+yAsxg3i82LOsn7fF6xohBO/+9joBhSyYA81IOglzoIka91Xz6/iO7Dyuelx2ubl4/hLHY0/x41szmTL8F+J2HPM5L6hwIDHNqqr+wNiyHHz+0neqmVq13ujLRFQoydc7xlIol1keGgWPlty4hXHYHPzvkfc5tOUIssuN3qgjsFAA49eOzrXN7OzR8wxq8Q5ZaVZkl4zL7kTSS4SXL8nT/+tEmepRWNOt7Fl7kDmf/EFGahbFwovisDlIS877OMSAQhbemj2Y74f+zNFdJ32eL1M9ipHz3uTZSv19NPeEJBg48QUefr4V0lXDzzPTslg7ZxMpCanENK/KPfdW9htrG3DvcA5sOuxz3GDS02VYR2Z/9AdOhwsUBYPJQMeBben9fjevc1MSLvF6q5EknkzCnuXw6oIwGPWEVyzFt7vGepWj/P75Ir5+TX006NgV71CrRe4CBxr/HlpW9w5BURQObDrMoa1HKVE6jAZta+eptEN2ySyesoIJA6fgujpOKDxbaJPFiKIovPZdX5p2bIDBaKCNqYtXDeDVCIHPgG+j2cCss5PoFPac+vZaQKNH6rJp4XbVe+r0OkrfE8m4VSP/USJg65JdjOw01muoNoCkl3CrDAkyWYx8uel9ysaU9jquKAozPvid6WN+81nxWoLNDJ/xmlfLmeyS6VGhH4mnvOeBVG9ahfFrRqvaqigKu1bGsn3pboKLBdPq6aaERuR9AptG3vhPsrpCiLFCiINCiD1CiLlCiDt3OkkBIYSgWuPKdBzQlnvb189zPZtOr2PXyljc1zoyBWSnTFaaFWu6jY+e+YI+NV9n0H1vU7SE+j+fOchMePmSXttuc6CJHiOfIqhwIMFF1esKg4sEcWirehsXeBzIqQNn+H7o9Dz9TddS/6FaDJ78ss/rqzk98HRXrLtmiw2e99hpd6lu8+1ZDo7t9l7N6vQ6psZ9Sc9RT1GqXAmiqoQz8Os+fp2eLMu81f4j3m7/MbM+/oOpb8+iV6UBbF7kfxCSxr/Ljcb4lgHVFUWpARwGht24SRo3iwOb4/zKul9GdrmJP3SWvWsPcCk5zSdZYbIYeWPKy0zc/jE9Rz5F1UYVafRYXUbOe5On3mgPwJOvP+Y1yxU8McVOrz1K8WjfEYpX43K4WDlz/T/46zzc/1QTYprnbWi3W3azacF2HCptdBEVS3np4F3GFGAkomJJn+N6g56uQzvSf0JvOr/RgZotqvl93VUzN7B7ZWxO6Y/T7sRudfD+05+p2qLx73ND5SyKoiy96uEm4IkbM0fjZlKqbAkSTvj2lfrDaXOiN+goXS2a8yeSCC9XnGfHdM1pou/8ejs6v97O57onB7cjNSmd+V8tRtJLyE43j774AF2HdaRCrTK803FsrirP/rLQeSUjxTcB4Y/je0/yae+JDJs20Ot4s04N+W6Ip6D78o+FpJMIDAmkcTvfndOVOGoWilvBLbtp3vle3pjyslfMEmD5tNWqyioABzYepmaLvI3j1Lh53Mys7nPAX/6eFEL0EUJsE0JsS0rK+5dR45/TbUQnTAF5m89xGaPZSLcRTzA/9Se+2fnJdZVDwKMt1+fjZ/g14XsmbP6QOYnf0/fTnkiSRMNH6vLS+F5+y2cAytcq7fe53MhMy+Kjnl8Su+5gnq9x2l2s/X0zaRe8kzgmi4kvNrxHTPNqOckUSSeo3SrGRywUYGSnT7h4LgVrug1bph2Hzcm63zaxVKXY2m+7mgI6lQlsGv8+133XhRDLhRCxKv9vf9U5w/FIg/gN1iiK8p2iKPUURakXFhZ2c6zXyJVa91fn9SkvU6REYQwmA5JOuu4XTUH5x4OkLUEWoqtEYLlGY6/9K22YmzKVMQuHqhYjH952jFMHz+T79UY8+gGrZ2/I94rRYNCTfOaiz/ESpcNwuz3Zc/AMelo5Yx0DGg/32pKeO5ZAfNw5H/VrW6adBV8v8blvm+daqg6S0hv1VNUk4wuE6251FUVpndvzQohewKNAK0VTRLzlaNG5Cc2faExqUhoBhSzsWL6X+ROXcPF8Cqf2x3uNKpQkQUhoIe5pUvmm22E0GVDcnkTJtXVwskvmr8l/8+LYHnm+39HdJ4jbcdyvBmFu2LLslCrvW2C9f+Nh4rYf87qny+Hi4rkU1v2+mZZdPRJaDpvDr8afTWXEY5MODbi/S1NW/LLW41gNehAwct4QTbyggLihGJ8Qog0wBLhPURTfPimNWwJJkiiSnbFt/Fg9GmePIVw/bwuf9J6I7HLjlmXCy5dk1B9v+sSobhbpKRmqfWmyy82lpLR83evskfM3tE28eC6FiAqlrtggyyz7ebVqssGaYePg5rgcxxdVJQJLsMUnbmc0G7j/qXt9rhdCMGhSXzoObMvOv/cSXCSIJh0b5AhGaPz33Giv7gTABCzLjotsUhSl7w1bpfGf0KRDAxo+Uofje09hCbYQWbHU9S+6AWreV011GLY5yEzjR68fS7yaMtWjVO+VF4xmAwc3H8lxfNYMK4Pue4dTB+LV6/+uyexKksSwaQN4u/1HyE4Zp8PlmV1StjidXvPfI1y2erSmn3eLcKNZ3Qo3yxCNgkFv0FOxTjmvY5eSUjl98CwlyoRRPCr3cpT8UDw6jE6vPsK8CX/lrJbMgSYq1CqT7ylvUZUjqNu6BtuX78GRvb0UkkAIgaSX0OkkdHod9iyHT0ZZSIJi4UVyHk8b/Rsn98f7aPJdxmA00Kpbc69jtVvGMHnfeP6avIKEU0nUaVWD5k821iae3SZonRsaObjdbiYMmMLiKSswmgw47U7qPliT4TNexWTxDc7/U7Yu3snCb5dhzbDRsmtTWnVvhsGYf4fhdDj5edSvLJr0N/ZMO3UeqEHfT3uiN+px2p0ISdAnZrCXeoykkygeHcrUuC9ztvRdIvv46ABepmxMNMOmD9RWarcJWsuaRr757bOF/DDCW/HEaPasdgZNuj0jGDtX7OWjnhPITMnE7XZTtkZp3p49iOLRVyoLuka9qJrl1Rl0zD43SRMcuI3Iq+PT9Pg0cvht/EIfmSeHzcnf09cwYOLzNyz/bs2wsnr2Rs4ePU+F2mXz1YL3T6ndMoYZp77hzJHzmAOMqv2xrbo34/fPFnltdYUkqFi7rOb07lA0x6eRQ8Yl9cS87JJx2Jw35KTi484xsMlwHFYHtkw7liAzxSKK8sWG9/zOELlZCCFyTdx0G96JHcv3En/obM4YSJPFyJs/D/hX7dIoODTHp5FDjeZV2bJoh48KS8myJW649GLssxNIv5CRI/tkzbBx/ngiP741k/4Tnr+he98oliALEzZ/wPaluzm8/RglyxSn6eMNbmpcU+PWQuuX0cihz9geWIIt6A2eolpJJ2EKMDHw6xdu6L7WDCuHth7l2niyy+Fi1awNN3Tvm4UkSdRvU5tuwzvRqlszzend4WgrPo0coqtE8N3uT/n10/kc2BRHdNUIOr/ezke/Lt/kMrTHXweEhsa/ieb4NLwoUTqMfl/0vqn3tASaiWlalT1r9nv11RpMBlp1b57LlRoa/w7aVlfjP+GNH16maMnCWILN6PQ6LEFmylSPoufIzgVtmsZdiLbi0/hPKB4dxk9HJ7BpwXbOHUugfK0y1G4V86/1BWto5Ibm+DT+MwxGA806NSpoMzQ0tK2uhobG3Yfm+DQ0NO46NMenoaFx16E5Pg0NjbsOzfFpaGjcdWiOT0ND465Dc3waGhp3HZrj09DQuOsoEAVmIUQScPI/eKlQIPk/eJ2bjWb3f8ftaDNodvujtKIo1x3cXSCO779CCLEtLzLUtxqa3f8dt6PNoNl9o2hbXQ0NjbsOzfFpaGjcddzpju+7gjbgH6LZ/d9xO9oMmt03xB0d49PQ0NBQ405f8WloaGj4oDk+DQ2Nu4473vEJIcYKIQ4KIfYIIeYKIQoXtE15QQjxpBBinxDCLYQo8PR/bggh2gghDgkhjgghhha0PXlBCDFFCJEohIgtaFvygxAiSgixUgixP/vzMbCgbcoLQgizEGKLEGJ3tt0jC9KeO97xAcuA6oqi1AAOA8MK2J68Egs8DqwpaENyQwihA74CHgaqAV2FENUK1qo88SPQpqCN+Ae4gMGKolQDGgGv3Cbvtx1oqShKTaAW0EYIUWBy3He841MUZamiKK7sh5uAyIK0J68oinJAUZRDBW1HHmgAHFEU5ZiiKA5gJtC+gG26LoqirAEuFrQd+UVRlHOKouzI/u904AAQUbBWXR/FQ0b2Q0P2/wsss3rHO75reA74q6CNuMOIAE5f9Tie2+CLeCcghCgD1AY2F6wleUMIoRNC7AISgWWKohSY3XfEsCEhxHKgpMpTwxVF+SP7nOF4tgnT/0vbciMvdmtoqCGECAJ+A15VFCWtoO3JC4qiyECt7Dj7XCFEdUVRCiTGekc4PkVRWuf2vBCiF/Ao0Eq5hQoXr2f3bcIZIOqqx5HZxzT+JYQQBjxOb7qiKL8XtD35RVGUS0KIlXhirAXi+O74ra4Qog0wBGinKEpWQdtzB7IVqCiEKCuEMAJdgPkFbNMdixBCAJOBA4qijCtoe/KKECLsckWFEMICPAAcLCh77njHB0wAgoFlQohdQohvCtqgvCCE6CiEiAcaA38KIZYUtE1qZCeO+gFL8ATaZyuKsq9grbo+QogZwEagshAiXgjRu6BtyiNNgGeAltmf511CiLYFbVQeKAWsFELswfNjuUxRlIUFZYzWsqahoXHXcTes+DQ0NDS80ByfhobGXYfm+DQ0NO46NMenoaFx16E5Pg0NjbsOzfFpaGjcdWiOT0ND467j//9hEqZSGXECAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": { + "nbgrader": { + "grade": false, + "grade_id": "cell-1b128784928e8df1", + "locked": true, + "schema_version": 2, + "solution": false + }, + "id": "MWmp6Q2GFLpJ" + }, + "source": [ + "Let's generate our dataset and take a look on it." ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "points = np.vstack((circles_points*2.5 + 0.5, moons_points))\n", - "labels = np.hstack((circles_labels, moons_labels + 2)) # + 2 to distinct moons classes\n", - "\n", - "plt.figure(figsize=(5, 5))\n", - "plt.scatter(points[:, 0], points[:, 1], c=labels)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "nbgrader": { - "grade": false, - "grade_id": "cell-7c2a785a2d63ce73", - "locked": true, - "schema_version": 2, - "solution": false + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2019-03-13T23:26:22.247247Z", + "start_time": "2019-03-13T23:26:22.242895Z" + }, + "nbgrader": { + "grade": false, + "grade_id": "cell-ee8cf8e9cf114b9d", + "locked": true, + "schema_version": 2, + "solution": false + }, + "colab": { + "base_uri": "https://localhost:8080/", + "height": 448 + }, + "id": "cvJcScr2FLpJ", + "outputId": "5aa93cc8-f187-4d2a-9c70-149bef55b0aa" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 53 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXgUVxeH35nduOPuUtzd3Yq3QD8oVkopxa3FrXhxirsUt0Jxd3co7hA87rtzvz82WViylpAE6bzPk9KduXPnzsrcM+ee8zuSEEKgoqKioqKiovKZIH/sAaioqKioqKioxAXVeFFRUVFRUVH5rFCNFxUVFRUVFZXPCtV4UVFRUVFRUfmsUI0XFRUVFRUVlc8K1XhRUVFRUVFR+axQjRcVFRUVFRWVzwrVeFFRUVFRUVH5rNB+7AEkNIqi8PTpUzw8PJAk6WMPR0VFRUVFRcUOhBAEBQWRLl06ZNm6b+WLM16ePn1KxowZP/YwVFRUVFRUVOLBo0ePyJAhg9U2X5zx4uHhARgu3tPT8yOPRkVFRUVFRcUeAgMDyZgxo3Eet8YXZ7zELBV5enqqxouKioqKispnhj0hH2rAroqKioqKispnhWq8qKioqKioqHxWqMaLioqKioqKymeFaryoqKioqKiofFaoxouKioqKiorKZ4VqvKioqKioqKh8VqjGi4qKioqKispnhWq8qKioqKioqHxWfHEidSr/bV49fcOlg9dQ9Ap5y+QiXfY0H3tIKioqKioJjGq8qHwRhAaFMfXnuexfdRShCOP2EnWK0HdhZ3xSe3+8wamoqKioJCiJumx06NAh6tevT7p06ZAkiU2bNlltf+DAASRJivX37NmzxBymymeOLkpH/zqjOLD6mInhAnB290V6VhxCSGDoRxqdioqKikpCk6jGS0hICIUKFeLPP/+M03E3btzA19fX+JcqVapEGqHKl8Cxzae5duwGil6JtU/RKTy9/YydC/d/hJGpqKioqCQGibpsVKdOHerUqRPn41KlSoW3t3fCD0jli2Tn4v3IGtms8QIgEGxfsJcmPeol8chUVFRUVBKDTzLbqHDhwqRNm5YaNWpw9OhRq20jIiIIDAw0+VP5b/HqyRuLhgsAAl77+iXdgFRUVFRUEpVPynhJmzYts2fPZv369axfv56MGTNSuXJlzp07Z/GYMWPG4OXlZfzLmDFjEo5Y5VMgVaYUyBorX2UJUmRIlnQDUlFRUVFJVCQhhLDdLAFOJEls3LiRRo0axem4SpUqkSlTJpYtW2Z2f0REBBEREcbXgYGBZMyYkYCAADw9PT9kyCqfCUc3nWJYkwmWG0jwy9T2NOoS9yVMFRUVFZWkITAwEC8vL7vm70/K82KOkiVLcvv2bYv7nZyc8PT0NPlT+W9Run4xClfJjyxLsfbJGpkseTNSq12VjzAyFRUVFZXE4JM3Xi5cuEDatGk/9jBUPmE0Gg2/b/2NOh2qoXV8G4MuyRIVmpRi4sHhuLg5f8QRqqioqKgkJImabRQcHGziNbl37x4XLlwgWbJkZMqUif79+/PkyROWLl0KwJQpU8iaNSv58uUjPDyc+fPns2/fPnbt2pWYw1T5AnBycaLH7J9oP+p/XD12A6EIcpXITop0aqyLioqKypdGohovZ86coUqVt+76Xr16AdCmTRsWL16Mr68vDx8+NO6PjIykd+/ePHnyBFdXVwoWLMiePXtM+lBRsYZncg/K1C/+sYehoqKiopKIJFnAblIRl4AfFRUVFRUVlU+DLypgV0VFRUVFRUXlXVTjRUVFRUVFReWzQq0qraKikmjoonQcWnucbfP38vzBS5Kl8aZW2ypUa1UBJxenjz08FRWVzxQ15kVFRSVRCAsJZ0CdUVw5ch1ZllAUgSRLCEWQJV9G/tg/DK8U6m9URUXFgBrzoqKiEgtdlI7A10FERUYlyflm91rCtWM3AFAUwzOSiP734fUnjG8bt2rzKioqKjGoy0YqKl84Lx+/5q9R69m99CARYZFoHbVU/a48/xvYhPQ5EkcAMvBNELuWHDAaLe+j6BVObTvHk9u+iTYGFRWVLxfV86Ki8gXz9M4zfi7Wj20L9hIRFgmALlLH3hWH6Fz8V+5eehDvvqMio3j19A1hwWGx9t04fQddpM5mH5cPX4/3+VVUVP67qMaLisoXzJROcwnyC0bRKSbb9TqF8JAIxrWeTlzD3vye+zOj6wIaJ2vHdxl+oqF3G4Y0GseNM3feNvqyQulUVFQ+MVTjRUXlC+XpnWec33s5luESg6JXuHvpATffNTps8NrXjy6l+rNl9i4iQg3V3IUiOPnPOXqUG8i5PZcAyF0yB1oHjc3+ClT4yu5zq6ioqMSgGi8qKl8o968+sqvdvSv2tQOY23cpr5++QdGbGkSKXkGvVxj7/TR0UTo8k3lQo01lZI35W4yskSlRp0iixLtEhkdyZONJtszaybHNp5MsQFlFRSXpUAN2VVS+UJxd7dNRcXZ1tKtd4JsgDq45jt6CJ0coAr/nAZz85xzlGpXk50ltePjvY64evfE2VVqSEAgy5k5Hv8W/2H0t9rJ9wV7m9l1GsH+IcZtHMnd+ntyWGt9XSvDzqaiofBxU40VF5Qslf/mvcPNyJSQg1GIbByctxWoWsqs/3zvP0ev0VttotBruX31EuUYlcXF3YcLeoRxcc5xt8/bw4uErfNJ4U7tdFaq1qogkwc7F+zmz6yJ6nZ6vSuSgVrsq8dZ+2bFoP5N+nB1re9CbYMa3mYFGq6Hqd+Xj1beKisqnhWq8qKh8oTg6O9Li10YsGPCX2f2SJNHwl9p4+Ljb1Z+zm21PjqIouLg5G187ODpQvVVFqreqaNLu3pWH/FZzJG+e+SPLMkIIjmw4yeIhqxm4sgflGpW0a0wxREVGMf/XZVbbzOu3jErNyqDR2I7FUVFR+bRRY15UVL5gmvVrSNOeXwOGOBON1vAHULNtZTqMbWV3X5nyZCBd9tQgWW4jhKBsoxJW+wkNCqNf9RH4vwwEDAaPEAKhCKIioxjZbCJ3Lt63e1wAF/ZdIeBVkNU2r5684coRNTVbReVLQPW8qKh8wciyTKeJbaj/c012LznIyyev8UnlRfXvK5ElX8Y49SVJEt8Pbca41tMt7If85fOQPJ2P1X72Lj+E/8sAMJdNHb1tw5R/6LvI/piYGEPIZrsX9rVTUVH5tFGNFxWV/wDpc6Sl7cgWH9xP9VYV8X8RwPzflqPoFYOt8Y4RcvnwvzRP15E+CztTtoF5D8zxrWeRMG+7gEGD5tjm03EaV6qMKexqlzJj8jj1q6Ki8mmiLhupqKjEiW961eevh7PJXSKniQUSo0sX7BfM8KZ/cPHAVbPHR4ZH2tSwi2t6c4GKeUiVKQWSZH5NS5IlMuROR55SOePUr4qKyqeJaryoqCQRwf4hrJ+8lc7F+/F9tl/oX2cURzedQlHMpx5/ykSGR3H99C2z+4Qw/GfxkFVm9+cqms2i/guALEvkKJI1TuORZZluM38EiVgGjCRLSJJE1+k/WDRuVFRUPi/UZSMVlSTA9+5zelUawuunfkY5/hePXnFm5wXKNS7JoFU90Tp8+M/R70UA2+bt4ciGk4SHRJCzaFYadK5F/vJ5Prjvdzm45jiyLMcSq4tBUQRXjlzn1dM3pEiXzGRfvZ9qsG7yVot9K4qgUZc6cR5TqbpFGfXPAGb3WszDf58Yt2fOm4HOU9pRpGqBOPepoqLyaaIaLyoqH4iiKJzZeZGdi/fx4uErkqdNRs02lSn1dVE0Gg1CCIY2Ho/fc3+TOkIxE/+xTadZNXYTrQZ/80HjuHn2Dr/WGElIYCgiupqz791n7F91lGZ9G9JhbEuzngddlI6jm05z7dgNJFmiSNX8FK9d2GpKcbBfsEF4zrrsC8F+IbGMl/Q50tJ1+g9M+2U+suatASTJEkIR1GxbmUrNysbx6g2UqFWY4lcmc+fCfd488yd5Oh+yFcyselxUVL4wJBHXqmyfOIGBgXh5eREQEICnZ/zErlRU7CUyPJJhTf/g9Pbzxok45t+ClfLy+5bfuHXuHr0rD7Xaj2cKD1Y/mRtv70tkeCQtM/9M4Jtgi96Q/iu6xxJpu3XuLoPqj+WNrx+a6FpE+ig96XKkYdTW/mTIlc5sX9vm7WFypzmWo24xCNate7EAd283s/vP77vMmgl/c273RRRFkL1wFpp0r0eN1pVUY0NF5T9IXOZv1fOiovIBzO27jDM7LwBvPSkx/145cp1pv8wnQ850aLSyRVl9gMBXQTy68ZSs+TPFaxwH1xy3mi4syRJr//jbxHh59fQNfasPJywoHDAYLTE8u/eCPlWHseDaFNw8XWP1V6l5Wf7ssYjIsEiz55O1MhW/LW3RcAEoUrUARaoWMOq8qOJxKioq9qIG7KqoxJMgv2C2zd9jXKJ5H0WvsO+vI4QGhSX6WC4euGoUnzOHUAS3z98jPLoSNMCWmTsJCwo366lR9ApvfP3ZveSg2f7cPF3pMq09YNB3eRdZK+Ph7c4Po1vaNXZZllXDRUVFJU6oxouKSjy5evQGURE6q20UvYKDk4NVrwsYlo0y5Ip/hWVhbf3m3XbvrBIfWH3U4hJTTJ8H1hy1uL/OD9UYsq4PGXKnN26TZIkyXxdn+snRpM6c0q4xqaioqMQVddlIRSWeWJv43yVdjtRkLZCJh/8+NmvESJJE4651cXB0iPdYCpTPw67FByzul2SJrPkzmdQdCgsOt96pgNBA616jCk1KUb5xSR5ef0JoYBhpsqTEJ7V3HEauoqKiEndUz4uKSjzJVTwbkmw7sDRv6VwM39gPnzQ+hkDU6ENitE7KNirBd/0bf9BYKrcoh0cyd2QL4xGK4Jte9U22ZcqbwareikYrk8WOGBxJksicJwN5SuVUDRcVFZUkQTVeVFTiSYr0ySnfuKRFA0CjlSlaoyAZcqUjbbbUzLs0kZ/+aE3OotlIkzUVRasXZNiGvgxZ2xuN9sNiPpxdnfh9a3+c3JxMxhMTB9OwS22qf29a2bnBz7Wseo/0OoX6nWp+0LhUVFRUEgM1VVpF5QMIeBVIz4pDeHzjqSHuJPrXJMkSqTOnZPLhkbF0ThKSkIAQQoPC8UrpiaOTA6+evGbr7N0cWnec8NBIo0hd0eoFjenH5/ddZt2kLZzdfQm9Th873Tm68FDDLrXpMu0HwBAr43v3OcH+IaTOnBKvFOpvS0VFJWGJy/ytGi8qKh9IaFAY2+btYdu8Pbx+6od3ai/qtK/K151qWk0V/hCuHrvB8hFrObP7IghwdnOidruqtBzcFO+UXhaP2zR9O392X2gqDidJJoG86XOmpVmfBtTpUA1Jkjix9SyLBq3k7qUHgGG5q1yjknSc8D1psqRKlOtTUVH576EaL6rxovIFc3zLGYY1mQCYBg3LGplUmVIw7fhofFLFNmAeXHtEhwK9rArL/bq0K9VaVjB6afYsP8S4NtMNBs47KeGyRsYjmTszTo5RDRgVFZUEIS7ztxrzoqLyGREZHsn4tjMQihIrXkXRK7x4+IpFA/+KfVxEFLN6LrFquMgamb0rDhsNl7CQcKZ1ngeCWFo2il4h2C+YBQNWfPhFqaioqMQR1XhRUfmMOLz+JMF+IVjylyp6hT3LD5kI4718/JqfCvXm7O6LVvtW9Ao3Tt02vj609rjVdGq9TuHwuhMEvgmK20WoqKiofCCq8aKi8hnx8N/HxhpEloiK0PH8wUvAEGg7qP4YfO8+t6t/rdNb6SffO89tnkuvU3j1+I1dfauoqKgkFKpInUqic//qI3Ys2IvvvRd4JnOnynflKVKtwGdZfE8IwcUDV9kyayf3rzzC1dOFSs3KUrt91UQLzn0XZzdni+UI3sXF3SBGd3DtMe5efGBX3xqtTLmGJYyv3X3c7BLic/eOXftIRUVFJTFRjReVREMIwZw+S1k/eauxMKFGK7Nj0X4KVsrLiM2/mi3696kihGBa53lsnbPbpNDijdN3WPPH30zcP4yM70jlJwblm5RkoZmYlhgkSSJrgUzodXoGfj2aU9vO2923JEk06lrH+LpC09LM7bvMcntZIlex7KTKpJYBUFFRSVrUZSOVRGPjtG2sn7wVwDjRx/x75ch1JrT986ONLT5snbObrXN2A5jI/AshCHgZyMB6Y9Dr9ZYOTxAy5k5PxW9LW1bSFYL6P9ekW5mBnNlpPcblXbSOWgav7U3mvBmN21JnTkndjtXNe8iitWDa/d4i1vnP7b3MhPZ/Mqj+GKb9Mp+bZ+/YPQ4VFRUVe1A9LyqJgl6nZ9W4TRb3K3qFo5tO8fiWLxlyxr8gYVIhhGDtxL+Nk/b7KHoF37vPOb39AqW/LpaoY+m7qAu6SD3HNp9Go5WRJAm9XkGjkek8tT1XjlwnOCDE7tpLzm5OLLoxzayYXpdp7ZFlyWi0yRoZfZQeN09Xes7tRLEahYxtw0LCGdZ4POf2XDbxtG2ZtZM6HarRY3ZHZFl9XlJRUflwVONFJVG4d/khfs/8rbaRZIlT286RoXu9pBnUB/Da1w/fO9aDXjUOGi7su5zoxouzqxPDN/bjzsX7HFh9jJCAUDLkTEv17yuicdDwZ7eFKDaqWMcgyRLN+zWyqAKsddDS7c8f+a5/Ew6vP0FIQCjpc6ShXOOSOLk4mbSd2mkuF/ZdBWJ72rYv2EvqTClpOahpfC9bRUVFxYhqvKgkCpERUTbbSJJEVIQuCUaTANip5ZiUko/ZC2Uhe6EsJtse33xqkPy3BwmKVM1Ps34NbTZNmSE5TawYmS8evWLfX0ewqHkpYN2kLXzbpz6Ozo72jU/FKr73nnP34gMcnBwoUOErXNxdPvaQVFSSDNV4UUkUMn2VHq2jFl2kZeNE0SvkLJo1CUdlmxePXvH09jPcvFzJXjiLcZkjWVofUmVKwYuHryweq4/SU6BinqQaqlk8krnb1c4ntRethzWndvsqaB0+/DZwZudFy4ZLNMH+Idw4fYcCFT7ue/S58/LxayZ3nM3pnReMS5hOrk407laXtiOaf3CRTxWVzwHVeFFJFNy93ajWsgK7lx40G3sha2RSZ05J4ar5P8LoYvP4li9/dl1grBUEhoDVtiNbUL1VRWRZpmmPr5nVe7HZmBdZI5MsrQ9l6hdHr9dzatt5Dq45RtCbYNJlT0OdDtXIVjBzol+HVwpP8pXLzbXjNy2nVEsw7fjoBJX110XqkCTbnqcoOzxyKpbxfxlAt7ID8XvmZ/I9jAiNYNW4jbx6/Jpfl3b9eANUUUkiVONFJdHoOOF7/j1xk8c3fU0MGI1WxtHFkcFreiVoAKcQgsjwSBycHOLUr+/d53QrPYCQwFCTCeH5g5eMaz2dYP8QGnWpQ8Outbl++jb7Vx4xKWwoa2TcPF34fctvhASGMqDOaG6cvm1so9HKbJqxnW961afjhO8TTd/m1ZPXTO40l6tHb1hsI0kS9X6qnuD1iHIWy2bTcJE1MlkLZErQ8/7XWD9pK298/cwHYwtDLapG3eqSu3j2pB+cikoSoob+qyQansk8mHZsFN8P+Zbk6XwAg3ha3Q7VmX1uAjmLZkuQ84QEhrJk6Gqapf2Rr91aUc+1JePaTOfBtUd2Hb9g4F+EBIZazM6Z23cpQX7BaDQaflvWleEb+1GkWgGSp0tGxtzpaDXoG+ZfnUz2QlkY/b8p3Dp3F3hbNDEmaHXdpC1smbUrAa44NgGvAulebhBndl6w2EbWyDTqVocu035I8PPnLJYN71SWC6nJWpkK35TGJ7V3gp/7v8S2+XutZpFptBp2Ld6fhCNSUfk4qJ4XlUTFzcuNVoO/odXgb9Dr9Wg0CbseH+QXTM8Kg3l0/SmKYrip6yJ17F95hENrTzBu1yDyl7ccYxHsH8KR9SesTgi6SD0HVh2l/s+1kGWZsg1LUPYdJdoY7l1+wNldl6yOd9W4jdT7qXqCvw8bpvzDqydvrF5H/Z9rkqNwVgJeBZIsjU+Cnn9qpzn4vwy0uD9VxhR0mdY+Qc/5X0Ov1xP42nodKb1Oz6snarkGlS8f1XhRSTISesIGWND/Lx7deGu4xKDXKQglit9bTGbF/VkWgxhf+/qZCM6ZQ6OVeXb/pc2xnNx23mQ5yRwvH73m0fWnZMmX0WKb+GDriRxg84wdgMELUqttFbpMa58gmT+3L9xjx0LLT/uSJFGyThG8U3rZ3ee9Kw+5evQGkgSFquT/LLSAEhuNRoO7txvB/iGW22g1qndL5T+Bumyk8tkSGhTGrqUHLE7aiiJ4/dSPk9vOWezD047sHEWv4JXCw2Y7Q9Cq7XgWaxlY8UEIgf+LALvbKzqFHQv3MbrlVJsZQvawe8lBNFrLtxIhBHuWH7LrXK+evKZ35aF0LNibqT/PZUqnubTL3Y0B9UYT8MqyZ+e/Qq12VZA1lt9rvU5PzTaVknBEKiofB9V4UflseXrnGVHh1rNXNFoNdy7ct7jfJ7U3havktzohCAGVm5e1OZ6cxbLZ1FhxcnUifc40NvuKC3cv2Vd48V2EIji68RQ3Tt/+4PO/9n2DYqNYZGhgGJHhkVbbhASG0rPiEK4eux5r35mdF+hbbbhd+kFfMt/0ro9ncg+z31dJlijXuCR5Suf6CCNTUUlaVONF5bPFniUPIYTNdu1+b4EkSWa9JpIEDX6pZVfxweK1CpE6c0qLhpCskandropVMbHAN0Gc3nmB0zsvEPjGenxDDFtm7SI+CUwarYY9yw7F/cD38EntbTO7y8Xd2ebnsGPBPp7ff2l2GU8ognuXH7Js+JoPGuvnTop0yZhyZCRflcxhsl3roOHrTjUZ8FePz7Jau4pKXFFjXlQ+WzLkSkuarKl4dv+FWe0VMCz5lK5vXa4/b5nc/L61PxPa/ckbXz9kWUJRBBqthsbd69JhbEu7xqPRaBi8tjd9qw0jIjTSZDlLkiWyF8pC+9H/M3tsWEg4c3ovYeei/eii9MZjitcsxKDVPXH1sFx9+9+TN+Ol7KsoCv4vA2Jtu7D/KvcvP8TJ1ZFS9YqSIn1yq/3UaF2JTdO3W9wfE2Nja1LduWg/wtIHGc2qcZuo9G1ZchT5tMQNk5L0OdIy9ego7l1+wO3z93Fw0lKkWgG8UljO9lJR+dJQjReVzxZZlmk5sCkTO8wyv18jU6puUTLnyWCzr+I1C/HXg1mc2XWRJzd9cfV0oUyD4nGeEHIXz86c83+wbtIW9q44TFhQGKkyp6R+p5rU71wLFzfnWMfoonQMqDOKq8dumAjLCUVwescFmqftyIJrky16fxycHOI0xhhkWSJlhhTG1/+evMWYllPwvfvCYMAJgSRJ1Gpbha4zfrDoOclVLDtVWpTjwOpjseJaZI2Mu5cb3/ZtYHM8/i8DLBqhRgQsH7mOYRv62uzvSydrgcxkLZD4wocqKp8ikkiIiL1PiMDAQLy8vAgICMDTU30S+dIRQrB85DqWDl+DLMsIIZBlGb1OT6HK+Ri+qR9unpa9FpbwexFARGgEydL64BhP48Be9q44zNjvp1ltkypTCpbd/dPs8syKUetZMnS1ZUVdK8y/MonMeTPy4NojfinxG1ERuliZW5IsUb5xSYas7WOxH12Ujrn9lrFl1i6TgOQ8pXPRb/EvZMiVzuxx968+4vC6E4QGhXF4wwme25HVJcsSmwKWmjUEVVRUPl/iMn+rxssXymtfP26cuo0kS+Qtk+uLdyk/vfOMHQv34Xv3OW5eblRpUY6ClfLGef3/5D9nWT5yHddPGQJZXT1dqPdjdVoO/iZeRpA9/FysH7fP37PZbvT2gZSoVTjWdr/n/rTJ1ZXwkIg4GTANf6lNl+kGwboxraZycM0xq2njM8+MsyksGPgmiPN7rxAZHkn2QlkslkQID41gfNsZHF53AlkjI8uScbnMHlY9mUvytAmrVaOiovJxUY2X/7DxEuQXzPRf5nNw7XFjzIXWQUPNtpX5eXI7nF2dPvIIP122zdvD5J/mIMmSiREga2Qy583A5MMj42XACCEIehOMxkET6/iVYzaycOBfdvVTv1NNus380ey+a8dvMKDuaEICQ5GQEEIgyRJaRy3ZC2XhxqnbxiUdd283mvVtSPNfGyLLMlGRUdT3+B69FeNBo5Vp3K0eP/3R2uS6rp+6zZkdF9BF6chdMgel6ha1qzDgiGYTObrhpM0sJXM4uTqx8c0iHBwT1yOmoqKStMRl/lZjXr4gwkMj6FNlGPevPjIJFtVF6dmxYD9Pbj1j3K7BX3zV2VdP33Dp4DUUvUK+srlJmy21zWP8XgQwrct8gFjeC0Wv8ODaY9aM30y737+zexy6KB0bp25j4/RtvHz0GoA8pXLS4rfGlG1YgnN7LtltuABEWEk1zlowM+1+b8HRTad5/fQNPmm8KVm7CLXaVcErhScvH7/m/tVHODo7oNFq2LfiMEMajsM7pRdlG5awariAIRTl3eynN8/8GN70D64dv2nQeJEk9FF63Lxd8UnlTdCbILxTeVGrXVXqdqiKm5eb8dgH1wxLRfHBEPxbWTVcVFT+46jGyxfErsUHuHv5gdmgR0VRuHjgKsc2n6ZC09JJP7gkICQwlKk/z+PA6qMmBkjJOkXos7CzVeXRPRaqX8eg6BW2zN5F6+HN7FIK1uv0DG0ygdPbzpsEsd44fZuhjcfTcfz3XDhwxaYirxEJsuY3X9Tw4NrjTPxhJmEh4Wi1GhRF8PDfJ3gkc6fBL7UBSJkhOcnSejO54xx2LtqPRqtBr9Oj0crsXLzf9jgEpI4OGI6KjKJfjZE8uvEk+lrfHhfiH0qIfygAAa+CmPfrMrbM2smkQyNIkS4ZAIeil4rsuu53kDUyydL40HJQ0zgdp6Ki8uWh6rx8QWxfuBdrER6yRmbHon1JNp6kRBelY0Dd0RxccyyW5+TMrov0rDiE0KAwi8c//Pcxsmw9PiboTTDBfpal2d9l56L9nNp2Llb2Tcwyydxfl3HhwFW7J3CNVkPNNpVjbT+/7zKjWkwmLCQchMHLFtPnsU2nGdvqbSDw8hHrjEX7YsT0YgwPRa9Y1YpRFIXyTUoR5BfM0Y2neHD1EYqNsgpg8GI9f/iS8W1mGLeFBYXZfK8BUqRPZvz/mMKO00+MTvC6TCoqKp8fiWq8HDp0iPr165MuXTokSWLTpk02jzlw4ABFixbFycmJHDlysHjx4sQc4hfFq8evrep9KHqFFw9fJd2AkpCjm05z7dgNs8aAold4evsZOxZYNtxcPCwLx8UgSYZ4C3vY9Od2JCumpCzLKHEIUO27sDOPb/myb+URTu+8QFSkQWl22fC1SDLmvW16haObTnHv8gMiwiLYMPUfq98PIbAosOed0oufCvehSfJ2/PGD+dR0Syg6hfN7L/PwusFTkyF3enQ2lIgdnR2Yf20ycy78wdSjv7P6yVwGrexp9N6oqKj8t0lU4yUkJIRChQrx559/2tX+3r171KtXjypVqnDhwgV69OhBhw4d2LlzZ2IO84vBJ4031lwvsix9sTf/XUv2W5f4R7B94V6L+9NkTWk100bWyJSoU8TugOeH155YreWj6BXcvN2QrdQEAsMkXq1VRVb8vp7uZQcypuVUBtQZRfN0HVkzYTOXD/+Lord8Hlkjc2jdCa4dv0looGXPUww5imQ1eR+do9OR360rFBEaYbMfc1w7dgMwlFpwcrH8PsoamRqtK+Pm4Uq2gpnJWyZ3nIo6qqiofPkkasxLnTp1qFOnjt3tZ8+eTdasWZk4cSIAefLk4ciRI0yePJlatWol1jC/GGq3q8rsXkssqpQqiqBm2ypJPKqk4dWTNzZjNt74+pvdFfgmiIUDV1rtX9EruHu743v3uV0BwBoHjc06R14pPAh4ab3YYGREFHuXx5bwD3oTzLxfl9schyxLhAaG2V0Msm6HapRtWIKH15/ge+e5UQAwPhoy7yNFLxW5erjQa14nxraahiRhknEka2RSZkxOmxHNP/h8KioqXy6fVMzL8ePHqV69usm2WrVqcfz4cYvHREREEBgYaPL3X6V2+6pkyJXWbIVfWSPzVakclG9S8iOMLPFJlTGFVc8LEqTIYN7rtGvxASLDbBf8O7D6KG1zdWX7AssenBi8U9pO01f0CnU7Gr7vkqWhf6DNoNPpyZArLdkKZTEaD9bIWSwbPqm9KVQpH5cP/2u1WnSckKBQ5XzGl1W/K8+YHQPJU+ZtEUFHZwfqdqjGjJNj8EmlelpUVFQs80llGz179ozUqU2falOnTk1gYCBhYWG4uMSOSxgzZgzDhw9PqiF+0rh6uDDx4Aj+aD+TU9vPGSc+SZao+G0Zeszu+MWmmNZqV4UTW89abVO3Q3Wz2y8dumazpg5g9OxM+nE26XOmpWDFvBbb2hOQ+vimL49v+ka/kvhgS8UMjs6OVPmuPLfO3SVDzrQ8vvnUbNyLrJXJXjAzuYplN267c+Ge1aW0uFC4Sn7SZEllsq1YjUIUq1EIv+f+hAaFkTxdMlWHSEVFxS4+KeMlPvTv359evXoZXwcGBpIxY8aPOKKPi08qL0Zt7Y/v3edcO34TSZYoUCEPKTNYL66X2ESGR3Jw7XEu7r+KQFCgQl4qNy8b78kq2D+EXUsOcGTDScKCw8leOAu5imXj9vl7sYTPZI1Mpjzpqdm2cgJciYHR/5vCigezLKZN+6Tx4ZkdUvcxJMSyzLtIskGort3IFvSsOJj7Vx6h0crmDReNjIe3G/1XdDfZ7uyecPL7Fb8pY3GfT2pvq2nsKioqKu/zSRkvadKk4fnz5ybbnj9/jqenp1mvC4CTkxNOTurT2vukzZbartiMpODWubsMqDsa/xcBxmWIXYsPMLfvUn7f8ht5y+SOU3/3rz6ib7XhBLwMNAbF3rv8AL1OIUfRrNy//NCkMnOFJqXoNutHi7VwClbMy4ktZ+3yvsTw+qkfOxbso17HGmb3V/2uPNdP3rIatJvQODhpiYowxLbkLp6d5r82YnbvJbx6bBDIM+dFcfN2pU77ajTtWS9W9eiKTctw7djNBLkGz2TuH9yHioqKSgyflPFSpkwZtm3bZrJt9+7dlClj+alN5dPG/2UA/WqMMGa6mAqahfBb7d9ZcHWK3Z6hqMgo+tcZReDrIJNJNabf2+fu0WteJ7xTeSEUQa4S2W1mWNVsW5klQ1cTERYZJw/IxunbLRovNdpUYs0fm3nj65dgSy/WkGSJNsObU7ZhCVw8XEiRLhnb5u2xWuhQ1sjU71SLH0b/z2T7nYv3WTvxbw6vP5kwxpcEBStZXmJLSC4evMqGKf9wYd8VhBAUrJSXJj2+pmi1AklyfhUVlaQhUQN2g4ODuXDhAhcuXAAMqdAXLlzg4cOHgGHJp3Xrt7VSOnXqxN27d+nXrx/Xr19n5syZrFmzhp49eybmMFUSkW3z9hISEGpef0URRIRGsnX2Lrv7O7bpNK8ev7aYWSTJEltm7aJM/eKUbVjCrtRwz2QejPz7NxydHKwH/b7Hg6uP0OvNZxS5eboycf9wMuRODxhE5hK1LIMwaNBkzJ3eeM0HVh+1WphS0SvsX3nEZNuJrWf5pcRvHFh1lMgwy+UI4jq2y4f/TZi+rLBh6j/0qTKMk/+cJTQojLDgcE7vuMCvNUawatymRD+/iopK0pGoxsuZM2coUqQIRYoUAaBXr14UKVKEIUOGAODr62s0ZACyZs3KP//8w+7duylUqBATJ05k/vz5apr0Z8yRDSesejMUvcKhdZazyd7n3J5LVo0AoQhunbtLWLBtTZN3KVwlPwv/nULzfg1JnzOtXccYqiFb/gmlzZaaeZcmMn7PEFr82ojm/RqSOktKq1o8McQYHfZm+wghKPKedyE4INSm5yQ0MNT4/yEBIfzeYjKKXp+g3iJJhn3vGUkJze3z95jVczFg6t2LMXIX9F/BteM3EnUMKioqSUeiLhtVrlzZ6s3TnHpu5cqVOX/+fCKOSiUpCQ+xLWgWEWr/E769cvqKXuHJbV82TPmHA2uOERESQcav0tPwl9rUaF3JrAGUKlNK2o/6H+1H/Y8upftz49Rtq+dIltbbqmcDDEZIkaoFKFLVYFh4JvdgTp+lVuNr6naoxtM7zwnyCybjV+mo26E6Z3dfZPW4zWbby1qZwlXykzlPBpPtmfNm4O7F+xYNEVmWyPhVeuPr3csOERkWaVWFNz4IBQJfBdlu+AH8PXMHGq1s8Vo1WpnNf+6Ic3yVJRRF4dyeyxxed5zQ4HAy5kpH7fZVSJUpJUII/j15i4OrjxHkH0y6bGmo1a7KRw+aV1H5kvikYl5UvjxyFMnK0zvPLE+gWpnsRbLY3V++cl+xY9F+i/slCdLnSsfdSw/pX/t3oqJ0xho8dy7eZ2KHWRxef4Lhm/qhdbD89bcn1TksONzuccdQ+4eq/D1rJ8/vv4j1nsgameyFstBlxg+xUtoLVMjD45u+HN14yjhJy7KEoggy58lA/+XdYp2rXsca7FkWW+AuBkUR1P/5rVfz5tk7hiwlK4q98UGjlUmfI43VNteO3+DvmTu5fuo2js4OlG1Ygq871bRbEfrq0RtWvUV6ncKVI9fjNG5LBL4OYmC90Vw/dduQwaUIkCSW/76O9qO+49LBa5zecSHaQBYIAUuHr+GH0S1p3q9hgoxBReW/ziclUqfy5dGgcy2rk4qiU2jQubbd/VVuUQ53HzeLxoUQ0PCX2gxrMoGoiCiT4oExy1end15g3cQtNs5k23ixp7r0+7h5ujLp4AgTwbaY05WpX5xxuweb1eLROmgZsrY3o7cNoEyDEmQvnIUi1QrQb0kXZpwaa1Y+P3+5r2jYpbbZy5FkiVJfF6PKd+WM2xwctDY9SfFBr1Oo06Gaxf1Lh62he7lBHFh9lCe3fLl3+SErx2yk/VfduXLUPoND42D7s7CnjS2EEAxv+gc3z94FDNemKAJFryAUwYL+f3Fm18XofYblt5h9839bzu5lBz94DCoqKqrnRSWRyV8+D836NmTNhM2Gp/poAyLm/xt0rkXxmoXs7s/Z1YkRm36lf51RBuMkehlJ1sgoeoUarSvh7u1K4GvLyxRCEWyYto1v+zawaIAUqJCHG6dvW1ym0mhlClTIY/e43yV5Wh/G7RrCoxtPuHr0BpIsUahyvlgibu8jyzIlahehRO0idp/rl6ntyZw3I2smbObZvRcAaB00pM6ckkIV8xIaGIaHjyGNOX2udDZLGpgdl0bGwcmByHDz2Vp1f6xGntK5zBwJxzafZtmItUDsWJXw0AgGfT2Gvx7OxtVG4cxS9Yrx4Npjq59Xma+L23tJFrl+6jaXDl2z2sZijJcEy0euo3qrioliJKqo/JdQPS8qiU6HsS3pv6I7OQpnNW7Lki8jfRf9QpfpP8T5Rl6gQh7mXZ5Ik+71SJUpBZ4pPChYKS9D1vWh76JfuHH6js2nbL9n/vg987e4/+tONbA2LL1OoXH3unEa9/tkzJ2e2u2rUqttFZuGS3yRJIn6nWryw5j/oXHQIMkSuig9T24/Y96vy2mVtTMX9l9mSKPxzOu3zGZ/zu4GTSWtw9vsqTylcjL/ykQadq5tUnXbO5UXP45rRfdZHS1+xusmbbGY4SUUQUhgqNWlrxjqd6qB1lFrtgSCJIEkyzT45cMD/09sORP/kgkCnt5+xqMbTz94HCoq/3UkkZQqWklAYGAgXl5eBAQE4Olpu76MStISHhqBEMKiYFxCMLv3EjbN2I4+yroXYY3vPKvKrvtXHWXs94bigTFegZh4kx/GtKTFr40ScNQJw4Nrjziz8yK6KD1flcpBwYp5uXf5IT8X64eiKLEqEEiyZPBa6fQWA3VjDILOk9tR98dqHFp3gtvn7+Ho7ECZBiX4qmQOo3ESFhzGw+tP0WhlsuTLaDWuSFEUaju2sJqNJskSFZqWZvDqXhbbxHB290WGNhpPZESUsU9ZltBEL7mV/rqYzT5iEEIQ+DoIjVaDu7ebcbu93y1rzDo7nhxFssbarigKga+DcHBywM3TNd79q6h8rsRl/laXjb5wXj15zcZp29m74hAhgWGky56a+p1qUbNtZRydkr7OUVLUrileqzDrJ2+1uF+SJTLnzYC3jeJ/VVqUI0u+DGycto1T28+j6BUKVMhD4251yV8+fktGiUXg6yBGt5zK2V0XkWQJSZJQ9AoZv0pHpjwZDF4kMzaCUAR6xfpE7OLuzKyz40mX3RB0W71VRaq3qmihrQu5i2c3uy++2Pt8VaxGIZbd/ZPtC/ZxYX+0SF3FvNT9sTrJ0/rY1Ydep2fT9O1smPoPLx6+AgxB5y1+bUSlZmXJXjjLBxkuDk5a0mYz9bJFRkSx9o+/2fznDqM3MG/Z3Pyvf2NK1bPf4FJR+S+hel6+YO5eekCfKkMJCQyLFQuQNltqJh0aYXc2x+eEoih0LNibxzefWgwW/m1ZN6q1rJDEI/tw9Do9x7ec4eyuiyh6hTylc1Hhm9L0rTqcOxfvx/qcZY2MUJQPTn+ee/EPshbI/GGdRBMWEo4sSzi5ONGjwiD+PXHLcgq8BL9MaU+jrnUS5NzW0Ov1jGw2iWObTpm8XzHxWa2HNaNZ3wa0yPATIQGhca5HJWtkarapTO/5Pxu3RUZEMaDuKC4dvGbSX0wmWZfpP9DwF/sD2lVUPmfiMn+rxssXiqIotM3VjecPXlqcGGSNTP/l3ajcvJzZ/Z8zzx+8pG+14fjefW6cfGKWfFoN/oY2w5t/lHHFaIBcO3YDWZYpUr0AWfNnsuvYxzef8lvt33l+/6VxmUYIgZOrY5y0cuLDtOOjyVMqZ7yPVxSFnYv2s37yVh5cewzAVyVzUKBiXtb+8bfZYyRZwtnNmZUPZ+Hm5Wa2zbsE+QVzZudFwoLDyZIvA3lK54pTPNXuZQcZ32aG1TZzL/7Ba19/BtcfgxDCxDiWZIn0OdLw7P4LFL0w+d3JGpk0WVMx7dgovFK8vS9tmPIPs3svsehdkmWJZfdmkipjCruvQ0Xlc0VdNlLh7O5L+N59brWNolcY9b8ppEif7JNbBvlQUmdOyfwrkzi45jiH1h8nNDCMLPky8vVPNRLMgxBXnt55xshmk7h9/p4xjkQogsJV8jNgZQ98zCxjKYrCpYPXuH3hPkuHrSEsyKAc/O5kl9iGi0arsanTYg0hBJM7zmbHwv0mxsTNM3e4fuo2Bcrn4fKRf01E5mIymEb+/atNw0Wv07NgwF9smr7NWJgSDCJ9/ZZ0IVcx+5axNv+5wyQj7n00Wpmtc3bTdUYHpp8Yw6rxmziy/gR6nUKytD406FyLJj3q8eSWLytHb+DIxlMoegU3L1fq/Vid5r81wjOZh0mfm2Zss14QVJLYPn/vRzO2VVQ+VVTPyxfKshFrWfH7Opsy75IsUaJ2YUZtHWC13Y0zdzi68SThIRFkyZeRKt+Vw8XdevqqylsCXgXSsVAf/F8ExPaESZAuWxrmXZ6Io7OjcfPVYzcY13q6TSM0QbAQEyNrZao0L8dvy2KL4NnLsc2nGdp4vNU2PeZ05NzuS9w4fQdHZwfKNSpJ/c617PI4TP5pNtvn7421NCZrZBydHZhxamws9WFz1Pf8nnAbwoMFKuRh0sERxtd6vR5dpA5HZ8dYXp7IiCgiQiNw9XQxm5Kv1+mp7djC6vkkSaJ801IMWdPb5vhVVD53VM+LChqtxq44B6EITm8/T2R4pMnEGUNIQAjDv53I+T2X0WhlJElCp9Mzq9di+i3uQoWmpRNh9PEj8E0Qr5/64Zncw+4ATXuIjIji3xM3iQyLJEv+TOh1enYvPcjrJ2/wSO6Om5cbr5++wcFRS6l6xShYKW+siWzrnN34Pfc3/1QvDF6Z1eM28f3QZoBBDbhv9eHoI3Wx28cVCRydHIgMjzLZrNHK6PUK3/auz6YZO1B0pjWNZI1MygzJ6Tjh+w86/eY/txt1eMyh0Wq4fvI2g+MxQT+68YRt8/aa3afoFSLDo1gxch0D/uphsy9nF0erxoskSTi7mQacazQaNC7m0/IdnRysBsXLGhmNg8ZqALAkS0kS5K6i8rmhGi9fKMVqFmLRoJV2tRUCoiKiYhkvQgiGNpnA5UOGisDvTmzhoRGMbD6JSQeG27XkpNfrefnoNZIkkTJjcqsFDePK41u+LBzwF0c3nTJOkAUq5qH979990HKYEII1E/5m9biNBPmFmOyL0SYxTsiSQURu7cQt5CyalZFb+psYULuXHrQZ4Lnmj79pNeRbJEli6bA16KP0KHEMCjV/IZgsp8SQMmMKfl3alfzlvqJ6q0r8NWaDcRnE1dOFOu2r8t2AJiYxGvHhzoXYgcTvotfpuX3+Xrz63rv8MLJWNlFSfpeYwp+9F/yMk4t1I6Dit2XYOne3xb6EEFT8pgxg8ERunPYPZ3ddQghBocp5adytHvnLfWX32CVJonzjkhzZcNKih1TRK5RvXMruPlVU/iuoInVfKLmLZydfua/Mina9j08ab1zMKJheO36Ti/uvmp94hOHmu2LUBqt963V6Vo/fzP8y/cz32X6hVdbOtM7Rhc1/7jDojnwgj248oUup30wMFzDUuulTdRind16Id99zei9h/m/LYxkuYJhUTN4X8daQuXvpAb/WHIku6q3B4P8iwOb5wkMi+PfETUICQzm+5YzdRSjtwdzq8LN7L3h80xeAbAUzM2hlT/4OWs76lwvZ8HoRnSa1/WDDBcDRJbZH733e92jYi/+LAJtBuXqdQrB/qNU2AI2710OrNS90J2tkUmVKQeUW5di+YC9dSv3GgVVH8X8RQMDLQI5uPEXPCoOZ228ZIQGxvy+WaNa3ISCZFUTUaGUy58tIqXpF7e5P5dNCKMGI4NkoLyqjPMuN8rw4SuDvCP2Tjz20zx7VePmCGbquN+lzpLXaRpYlGnaubdYTcnjdcbPVl2NQ9Apndl0gLMS8q11RFEb/bwoL+i/nja+fcfvzBy+Z0XUBUzvPs1vDIyIsgofXn/D8wUuTY/7stpCwoPBYE73BuBD80X4men3cdTke3XjC+in/xPk4MEyWD64+4viWs8Zt9hoBD68/JdgvJM5puObQ2lAZliSJ9ZNNazw5OjngmdwjXnWbLFGxaWmLKrox44ivdyFFhuQ23ytZlrh17q5NYzlDzrSM3j4ANy+DQJxGqzEqNafJmooJe4fy/P4LJnecA8LUExnz/2v/+JsmKdoz9vtpvHj0yqT/qMgozu25xMG1x7l17i5CCHIVy87Q9X0MysRS9Dmjf3OZ82Zk7M5BVn+DKp8uQglEvGmBCJ4CylNAgAiE0BWIVw0QUQlTKPS/irps9AXjk9qbuZf+YGb3RWydszvWfkmWyF0yB017fW32eLuqJguDx8CcYu6RDSc5tO6E2WMAts3dQ9UW5WMXKXyHkMBQlgxZzY6F+4zjyZQnPS0HfUO+srk5u/uS5aEJwRtfP87svEipunF7et25aL9J9ktckTUyh9cfp0ITw6RcpmEJ1k+yVQzSIAjnmcIDraMWXTzjXSYfHolGq2HzjO0cWH3U4jUIIbh/5RFhwWG4uLsQ8CqQTdO3s3PRfvxfBZI8jQ91f6xOg8417UpVtkTDLnXYOme3ifJtDLJGxsPHjZptK8er7xqtK7F02BqrbYSAwfXHkr1wFkZvG0CyNJbjoQpVysfKR3M4sPoY10/eQqOVKV6rMCXrFkGj0TCj6wJkjYReZ9lgUvQKB1Yf5fzey0w/OYZUGVOwZfYulgxZRcCrtzW3shXMTPfZHSlTvzirn85j74rD3Dl/DwdnB0p/XYwi1Qok6PKqStIigsaB7g7w/u9PDyIU4d8NUuxU61zFE9V4+cJxcHSg+6yOVGhampVjNnJh/xUAvFN50uDn2nzbt4HFgMCMX6W3+bTq7u2GZzL3WNsfXn/CshFrbaaebpmzy6LxEhYcRu9KQ7h35ZGJZ+XR9aeMaTmVuj9arlQcgyRLXD95C71Oj4OTA/nLf2VXaYKXj19/kLCbolcIC3pr/JWoVcim8eLo7EDxWoVwcXOm6nfl2bP8UJyWjmIKPMbEXWybG9tgNX+gxIuHL+lefjBvfP2M53x2/wWLBq9k5+L9TD480mwqtz2kzZaaUdsGMLTReEICQ9FEe2H0OgXvVF6M3THQWBzSHFGRUQS9CcbFwyXWZ5c6c0qa92vIqnGbLB4f46m7f+UhA+qMYubZ8VaNAmdXJ2q3q0LtdlUAiAyP5Mj6kzx/8JKjm0/ZZdDqdQoBrwJZ0H8FuYplZ3bvJbHa3L/ykD5VhjLlyO/kKpad+p1q2uxX5fNAKIEQtgmw5PXVg/4+RJ4Ep08n6eFzQjVe/iMUrV6QotULEhYcRmR4FO4+bjaXBmq0rsSC/ivQWZCPlzUyX/9Uw8St/fD6E6b8NIfLh/+1OSa9TuH+lUcW96+btJV7lx/GClqNmYy2z99n8xxCESwfuc742tndmabd6/H9sG+tXr9XCs8PeiKSNTKZotNz9608wtjvp1lMR47h2z4NjDVtvh/6LSe2niXYP8RuA0YIwXf9mxhfF65agB2L9ltsL8kS2QtlwcXNmYH1RuP3zC/WuYQi8L33nKk/z2XY+r52jcMcBo/GbPavPMqVY9eRJZmi1QtQvmlpixk5fs/9+WvUBnYs2kd4SASyLFGmQQlaDf7GpDZQ+9H/wzOFJyvHbCDoTbDFMeh1CncuPuDMzouUrGNfZe49yw8xo+sCQgJCrWZMWTrfgdXHOLz+pNn9iiJApzD/txWM3z3E7n5VPgN0d4AoG41k0F1RjZd4ovok/2O4uLvglcLT6sQdGR7Jw+tPCA0Mo+ufPwLECmI0TM7pafFbI+M233vP6VFuIFeP3bBvMBK4eZrXihFCsGXWTqvZNpIsGeMT7CU8OJy/Rq83xC1YoVqriuh18a9hoygKdX+sht9zfya0nWHwPlkxXJp0r0frYc2Mr9NkScW046MoWq2AweiJxiOFOykzJAcMn4GskZFkCa2Dhr4LfzG0j6bCN6XxSe1ltWrzt30acP/qIy4f+tdyxotO4dim07x8/DoO70BsXNxdqPtjdfot6kKfhZ2p+r8KFg2X175+/FLyN/6etZPwkAjDOBTB8S1n6FpmABcPXDW2lSSJb3vXZ8WDmTYNTo1Ww7FNp+wa7+ENJxnXejohAYZg3/gEUCt6hahIy5OYolc4v/fyB7+3Kp8Ykj114wRgO5hdxTyq8aJiJDw0gnn9lvFtmg78kLcHrXN0YfW4jTTqVoevSr6Vhnf1dKFxt7pMOTzSJBZi+Yh1hATFrqNkEQElLcSiRIRF4vfcdoZOJjvEx2KdVhhiWqyl5+Yunp2K35S2K1vrXWLa/zC6JelzpGXHwv3obbwf6XOk4efJbWMtZaTPkZZR2wbQZnhzkkWnXQe9CsbZ3YmmPb+mbodqVGtZgQ5jWrLy8RxqtqlscryjkwOjtw/EzcvV5DpiPGUtfm1ElRbluHnmjs3rEkLEO505PszpvcRkCSsGRa+g1+kZ3XJqbONS2C7iKIQgPCzC5vmFEMz/bbmJ4RhfNFaClWN4N6Bd5QtAmxvk5DYaCXAyX+BUxTbqspEKYPC29Ksxghsnb5vEuTy9+5xN07bzXf/GjNjcj4jQSHzSeMd6Yo4Ii2DfyiMWNTIssWfZIZp0rxtLrdfBSWtbwEuSyFYgE9VbVWR2nyXoInTIWhmhV2zqo2i0MjsX7TdZfnifX5d1wyP5InYs2GvilXDzciUiNBJdlM7g9dBqiIoOrs1WIBPf9W9CpWZlAbh1/q7N9+DJ7WfodfpYWSVCGLKldi89aOJReHzDl0fXt9K0Rz26z+pote8chbOy6PpUdizcz+H1xwkPiSBH0azU71SLfGVzR78X9mWz2MpeSigCXwdxaN1xy4HGiiEQ+9T285SpX9y43dnNmRQZkvHq8RuLfQshyJLPdi2pOxfu8/T2s7gP/h0kWSJlhmS8fGR5PDH4pPH+oHOpfFpIkgO4dTAE7ZpFA06VkbRZknJYXxSq8aICwJZZu7h+4lbsJ9folyvHbKTq/yqQJV9Gs8cH+YXEKzvm8c2nfJPqB77t3cAkDkWj0VChaSkOrTth0SDS6/RUal6WIlULUPV/5Tm45hjP7r/Ew8eNeb8ut3peRa/w8ol1V72jkwM9ZnWkzbBmnNl5kYiwSLIVzESe0rmIiogiyC8Ed29XtA5aXvv64eDkECuo1cFRiyRJVuvXxCz9vM/xLWfYvfQgYOpRiPn/9VP+oXyTUjaF+LxSeNK8X0Oa92todn/hqvltxnM4uTiSN9rYSWwe3/K1GRSr0co8uPbYxHiRJEPa/8JBKy0GicsamVrRgbjWCHwdZLMNGPRpYpa13kcIwY/jv2d8mxlmRQJjxpO//Fdq4cUvEdf2oHsCYcsBDYbg3eh/HQoheVkvmaFiHXXZSAWALbN2Wp9gtTLb5u2xuN/d2w2NNn5fp8jwKFaMXs+MLgtMtrf4tTGybH5ilzUy+crlpnCV/Mbz1+tYgx9G/49mfRvajIWRNbLd2TM+qb2p0boSX/9Ug7xlciNJEo7OjiRP64OTixMarYZUGVOY7a9UvWJWjQJZK1OybhGz2S9bZu20qo+i0cr8PWuXXddgjeRpfajWsoLFc0myRP2faxmDie0hMiKKIxtPsmn6dg6uOUZ4qO2lmhhc7BCsUxRhNkuuSQ+Dyq25GC0k6DnnJ4LeBDOr52L6Vh/O4IZj2bFoPxHvLSWlzpLSrrH2W9LFYAxJb+X+kQxGza9LulK5WTlaD21m9lhJlpBliR/GtLTrXCqfF5IkIXsNQUq+CVxbgGMlcP4ayWc+UrK/kGQPm32oWEb1vKgAGIr/WVlpUXQKj2/5Wtzv7OpExW/KcHDt8fgpwwpD/Z9G3eoai+hlL5SFUf8MYFSLyQS+DkLroEEIgV6nUKhKPgav7mUxQLNmm8psnrnDitdGoUbrSibb7l15yIYp/3Bs8ymiInTkKJKVhl3qGGJfrASCRkVGcXbXJV4/fYNPGm+K1ypsXFar0LQUCwek5OXj12bfF0Wn8I0FnZ27lx7YkNVXuHvxvsX9caHbzB959eQN5/deNnphYnRuyjYsQfvR39nd1+5lB5nVYxFBfiHGVHkXD2faj/ofjbrUsXl85nwZSZM1Fc/uvbDcSECZBsVjbXZ0dmTszkGsnbiFv2fu4I2vPwCFKuejxW+NuX3uLj/k7WEsKSDJEie2nGXZ8DVM2DuUdNkN1bPT50hL/vJfce34TaufwfRf5vP1TzWZdW48Z3deIiQghHQ50lLp29LGpdDmvzbC0dmRpcPXGIN/DedIQ8+5nchbOpfN90Tl80VyyIvkMPRjD+OLQ60qrQJAQ+/WhAaGWdwva2Sy5s9IaFAYzx+8wtXTheqtKtK059ekyZIKMKjS/lLiN/vE7cyg0cp806s+Hca2MtkeGRHF0Y2nuHvxPo7OjpRpWJwchS3HqoBBp+Xnon0J8jOTaixB1vyZGLq+j1GB+PiWMwxv+gcgjEsWMZN4nQ7V6DnnJ7MGzL6VR5jZfaGJ+JiHjxsdJ7SmdvuqADy6/oRORfvGKowYQ5XvytN/ebdY/bfN3Y0nVgxGgK9K5mD6iTFW29iLoiic3XXRUHTS14/UmVNSq20Vs4UmLXFwzTF+bzHZ4v6uMzrQoHMtm/3sWnKACe3+NLtPliWqtqzAr0u6Wu1DURRCAkJxcHLA2dWJo5tOMazJBPN9amTSZEnJwn+nGmOAbp+/R4/yg4iK1Fn3nmlk0mVPzZQjv1tVUo4Mj+TcnssE+4eQNltq8pbJpQqUqai8Q1zmb9V4UQFg6s9z2f5eYGos3tMpkbUyLm7O/LF/mNGYuH3+HqO+m2ysmRMXZI1M1f+Vtzkp2cvjm08Z13o610/dNtkuSRJIhsDPSt+WoeOE1rT7qhtREVEWhen6Le4Sy1NzcO1xfm8+yeL5+yzsTK22Vdi74rBB58UKY3YMonjNQibbFg1ayapxmyxOnJIs0XH893zTq77VvpMKRVH4PtsvvHj4ymIbd283Vj+da7aC+fusHr+ZhQP/AqI/s2jDssI3pfltaVe7+niXbmUGcOP0bavB3MM39qNswxLG17cv3GN27yVc3H/V4jFg+C1UaVGO35Z2i9OYVD4thP45hG9DKG+QNOnAuS6SHD9xRpW4oxovqvESZx7f8qVTkb5ERUTFmiwlSbKYgiprZFJnTsnim9OMcRtCCE5sPcOGKdu4cvS63YG8Gq1M0571+XFcK9uN48DBtccY02oaik6JdR2yRiZ9jjQ8uvnU4rJZjJjbrLNvA+z0ej3fZ/uFl48sB/16pfBg1ZO59Kk6nH+P37A4acpambINSjB0XR+T7a+evKZD/l6EBYeh6M3I6idzZ9H1qVbVaWOIiozixNZzPLv3Ao9k7pRtWBzPZAm75n712A16lB9ks937BoI1Xj19w56lB/G9+xxnd2eyFcxMxtzpyFEka5yMl7DgMBp4trbaRqPVUOeHqmYzuGx5lGKOX/VkDt4pE3ayUxSFg2uO8/fMHdy78tC4RNu4W13SZkudoOf6ryKEggiaAKGLorfIGAJsHZA8+iK5tfmIo/vvEJf5W415UQEMRenG7x7M8G8m8sbXzxB4KGKWUKzXcfG9+5xzey4bPQeSJFGmfgnK1C9BeFgE9y495NKhq6ybuNVqdWVzcSgJwZGNJxFCmDXAFL3CoxtPrep5CMWgcaLX643ZUNeO3bRquAAEvAri3J7LPL3ta/VpX9EpPL75NNb2FOmTM27XYAbVH4v/iwDjcoZepyd5Oh9Gb7Muqx/D4Q0nmfLTHAJfBxmXwqb+rKV5v4a0HtYswernBLwKtKud/0v72gGkSJeMhl1qM+/XFWydvcu49Obm5UqjrnX4fsi3dqV621ujSmchNf+1r5/VUheGc+h5cO0x3pUSznjR6/WMaTmNg2uOGT+7EP9QNs/cwbb5exm7Y6DNbDMV24jgaRD6bsJAzPclEhE0CiQPJNcm5g5V+UioxouKkbxlcrPi/kxObD3LjdN3cHDUkiZbKia0NR97EIOskbl55o7JskdEWATLR65n6+xdBPuHAJAqc0qcXJ0seHegVvuqFlOx40tUZBSHraRbG85tPZUZDHEW78YnWDPC3sX/RQDuPu5WBfckScLDTH0ogNwlcrDiwSyOrD/BlSPXQZIoUjU/ZRuWsGvSPr3zAiO/nWi8vpj3XRepY8Xv60FA25Et7LoWW6TKZF+6b+rM9qcFR4ZH8mvNkdw4fcfkOxMSEMpfozbw+MZTBq7qaTN2xM3LldRZUvL8wUuLtrheryd3iRxm9zk4arGn2JWDBcXg+PL3nzs5uPYYYKrwq+gUopRIhjQaz8pHs3FysZ2hpWIeoQRCyHzrbYKngEtDJEmt8P2poBovKiZoHbSUb1yK8o0N1ZDvXnpg+yAhDDf3aCIjouhfexRXj1438Ti8fPgKIQTJ0/nw+ulbRVFHZweadK9n1yQqhCAiLBJHZwejxyAiLIKDa45zbu8lFL1C3tK5qdG6Im5ebkSERtp+6paIXfj1HWSNTNH3KvymyGBLPdNAyozJqdayAkuGrrb41C4QVG9pWWnT0cmBqv+rQNX/VbDrnMZ+hWB+jN6NhXl39fhNNO5e12qg6bu8eebH5hk72Ln4AEFvgkiZKQVfd6xBvZ9qkL1QFrIWyMT9q4/MXqskQfJ0yShcNb/d17BryUH+PXnL7PiFEBxce5w6HapRrEah2A1Mzi3RqGsd5vRean6/LOHs5ky1luXN7i9Rp4gN89awTJizqPVA8rgghGDD1H8s7lcUQdCbYA6uOR5LXVklDkTsByKtt1GeQdRlcCycFCNSsQPVeFGxSua8GUiW1tuYcmoORRGUeKfQ3fb5e7ly5N9YD6oxyzavn/oxZG1voiJ1OLk4UrhqfpsaIgGvAln7x9/8M28PwX4hODo7UK1lBco0KMHkjrPxex5g0PIQggOrjrFgwAqGbehLkWoFcPNyNUlRfR9JknBycyQyPLZHCAxPvN/2aWCy7auSOUifMy1P7zyzOFGnyJCcgpXykq1gZjbP2E7Aq6BY/Wu0hpihKv8zP2l+CE9u+do0PnU6PUc2nKRexxo2+3t8y5eeFQYT+PrtdTy55cvcvsvYvfQgEw8Mp+uMDvSrPhw9isn7EuMZ6fpnB5sFQd/ln7m7kbDsGdNoZbYv2GvTeAl8HcT+lUfN7pMkQz9D1/WOpfQcQ5osqaj0bVkOrz9hMYC6Wd+GODgmnOcl8HWQ9XRxDHE2147fVI2XD0EJwmbVVABhueinStKjitSpWEWj1dC8XyOL+2WNTPHahU2We/6etdPqbUCjlbl44CpVvytPuUYlbRouLx694od8PVk9YTPBfoYlqMjwKHYuPsCQhuOMMRRKdFmAGO/M4AZjeXr7GfV+rG5V7E0ogqHr+hiWbiSM8S+y1iBs9su09hStXtDkGEmS6PZnByRJirVkYXgt0WX6D2g0GrxSeDLp4Agy5EprvP6Y8eQokpU/9g/Hxc3Z6nsQH+xRidVoZAJf274pCyGMejsmk3d0PaH7Vx8xu/cSClTIw4S9Q2OVXUibLRW/Lu1C2Qb2BerG8Oz+C6v1ivQ6hae3n9vsZ2SzSRZrMwkBrQZ/a9MA6j2/E4Uq5wMwCjLG/Nvwl9p80zths76sfWffJb7ikCoGhOSMTcMFQGO7rIRK0qF6XhKQB9ce8c/cPTz89zEuHi5UaFqa8k1KWayc+7nQuFtdfO8+Z9P07UbhspjgwVzFsjFgRXeT9k9v+Vq9F+h1Co9uPLHr3I9uPOHnYoaaSu8TM4ma83wIRaDoFTbP2MH3w77lyMaTPLv/0nTijX7YajO8OcVrFWbJrensWXaIY3+fJio8ilzFsvF1p5pkyJXO7NiKVi/ImB2DmNl9IQ+uPTZuT58zDZ0mtaXUO0UnM+RKx/wrk7l08BpXjlxHwp9CZe7wVYEzSFJzFP/iSG7fIznks+t9sYdUmVLYfKDU6xS71GRvnL5ttTCjolfYu/wQHSd8T/7yeZh5ehzXTtxk9bhNnNl1kad3njP2++msm7SV74d8a3e2kWcyd6PBag5JlvBKZX3J69a5u1zYf8VyAwl2Ld7P/wY0sRo74+Luwrhdg7mw/wr7/jpC4OsgUmdOSe32VclWMLPNa4krHj7uZC+UmbuXH1pcctTr9LEMaxX7ECISETAIwjfZaKkBx+JI2s/XeBFCD+E7EaF/gf4OSJ5ILvXB5TskjX1L4J8aaqp0ArFsxFqWDltjVO6UZQlFEWTIlZbxe4aS0s4YiU+Z2xfusX3+XnzvPscjmTtVWpSnRJ3CsZYBmqRoR9Aby0/zsixRrnEphqztbfV8r56+oVORvgTEITvlfZKl9WH1k7n4vQhg/q/L2ffXYWNGSeosKWk16BujmFx8EUJw58J9Xj0xKOzmKpbN6iQowncj/LtjsCpislsMNU8kj8FIbt/bfe4XD1/y6qkfPqm9SJs1dtps/9q/c27vZYtLHW5erqx+OtdmwOemGduZ2X2RzarNf+wbRqHK+Qj2D6F7uYE8vulrcu6YjJ1uM3+kfqeaNq9v+ch1LBu+xmq2Vv/l3azGAy0fuY5lI9baVH5efHOaUbTwU2H/qqOM/t8Us/tiZAoWXZ9qd3FNlbcoAQMgbD3WvS4akFyQkq9B0poP5v7UESIK4d8NIvZiWGyJ+R3IIHkhJVuO5JDzI47wLWqqdBKz76/DLB22BsCY1RJzs/W9+5xB9ccw+9yET1JNMzQojP0rj/Dg2mOc3Zwo36QUuYplN9s2R+GsdJ3RwWJft8/fY//KI/ik9iLYP8Ti06KiCGPVZXMc3XSKVWM3xhKXiw9R0am1Pqm86LvoFzpNasPT289wdHEkc94MCZImLEkSOYpktVqhOgahfxptuOgxvWkajBgRNBIc8iM5FjF3uJEbp28zp+9SLh/617gtb9nc/DiuFfnLfWXc9tPENnQrM4CIsEhTI0IyLJd0mf6DXZkqGq3GZkaWoZ3h/Vw5ZmMswwXeesn+7L6Q8k1K2awvVf/nmmyZvYuAlwGxAq9ljUyWfBkp37S01T50kYbq35jPgjZiqXjix6RKi3I8uPaIFb+vN3o9JcnwzfFJ7cXobQNUwyUeCP0TOwwXwKkqkkdvJG22JBmXLYQSDOFbEJEnQAgkx+Lg0ghJtjLRh8yHiH3RL979DSkgAhH+nSDFbiTp81p+VI2XD0QIwcqxGy0KuRnqzzzgwv4rFKla4COM0DKH1h1nQrs/CQ+NQKs11A1aOWYjxWoWYvDqnrh5udnVT2R4JONaT+fQuhOGSU4Ii4aLRiuTIXd6yjUyv2ywduIW5vZdimymGGNckTUyOd7L/vDwcbeYDpsUiNBVGG4glm6aGkTIEqvGy7UTN+lTZWisyfz6iZv0qTKMsTsHGQtWZsmXkanHRjGrxyLO73u7dJI+Vzo6jGlJuUYl7Rp3sRoFbd7n3bxcyVU8O3qdnn/m7rbq6VD0CruXHKBZX/OVrmPwSuHJlMMjGdlsIrfO3TMYIdFxNoWr5mfAiu42l2WzF8mK3oJ+Swwu7s6kzZbKapuPRdsRLSjXqCRb5+zm7qX7uLg7U6FJaaq1qoirh/kAYxUbhO/GniBdyaMvkjZLUozIJiLyAsKvA4hADB4UgYjYCcGTwHsWklOZ2MeIKEToEixfpx70jyDyMDglvMZWYqIaLx+I/4sA7l95ZLWNRqvh9Pbzn5TxcunQNX5vMdlgcAlTca7zey8z/JuJjNs12C5v0dTO8zi84SRgWIN/n5jquXqdQs5i2Rm+sS9ah9hfvSe3fZnbz5DKam2ZwF4UvWJSCDDgVSBHNpwk6E0wqbOkolyjEnGWmP9gIk9gNS8bfXQb8wghmNppLvoofaz3SFEEEgqTO85m8c3pxs8ua/5MjN8zlOcPXvLs/gs8k7mTJX+mOHkC02VPQ9mGJTix9axZo0SSoEn3ejg6O+L/MsBqdhcYDEt7S0ikzZaaP0+P48bp21w7dhNZI1OkWn4y57VPE6hM/WIkS+ON/4sAs98rWSNTt0O1T1orJWfRbPSc89PHHsaXgwjBdAnFUrtPI8NI6F8h/NqDiPldvRs0H4bw6wgptiFp3/tN6J+A8sZG71pE5Fkk1Xj5bxFlj/S9ZGe7JGTF7+sM3iIzN3NFr3B+72Wun7pNnlLW10JfPn7N7iUHrcZCOLs50ahrXUp/XYw8pXJanDS3zd2DLMvxqkodE0AMb+Mq6v5YjTINiqMoCosHr2LtH3+j0+nRaAzudzdvV7r9+SNVv0v4NOXE4s6F+1bTn4UieHrnOVeOXKdABVPl1dSZU5I6s+3gXEv0W/wL/euM4t8Tt2JVnq7yXXlaDmoKgJOrk+2HWgGunvZ7DSRJ4quSOfmqZNzX5rUOWgav7c1vNUeii9KZeKxiSj+0GdE8zv2CQdPo8qFrhASEkj5nWrIXyhKvflSSGE0WwNY9WQOa9EkwGDsIWx1tuJi7NwpAhwhdgeT523v77HlA0UHY3whtdnCugyQl8QNdPFGNlw8keVofvFN5WZe9j7Ks3PkxCA0K49yey1bbaLQaDq87btN4ObHlDLZcr2FB4VRoUoqcRa2vG9+7+ijOhkuOIln534AmbJy+zRj/ka1AJpr0+JoarSshSRKLB69i5ZiNxmNiJq8Q/1DGtJqKi7szZeoXj9N5441jGYi6hOUnPg2Ycf/G4HvXdlpwTLv3jZcPxc3LjcmHRnJy2zn2LD+E/4sA0mZLTZ32VclX7iujUeri5kzJOkU4s/Oixc9Tr9NT8VvL12mO175+BLwMJFla7zjXD8pf7itmnRvP2olb2PfXESJCI0iVKQUNOtemwS+14pyqLoRg0/TtLBux1iQ4PWfRrPSc28nmd13lI+NcAwK9opdgzN2/NOBcG0n2SeqRmUWE78GmxzZiN/Ce8aLJAHJqUGzcNxRfREBfCF0BPguRZNtlRz42qvHygWi0Ghr+Upulw9eY9WLIsoSbjxsVv7EeVBhXIsMjuXflEQhB5nwZcXa13+UdHhJuu5EEoUG224WHRiLJMsKG0RERGmGzLxd3Z2OWlj0UqZafMTsGodFoqNC0NHqdHkVRTITCAl8HsWbCZot9SEgs6L+C0l8XS5KAasm1BSJkPoYbprnr1CO5Wi4gaKmMAICTi0LhcsG4uOtJncFyZecPQaPVULZBCZt6LS0HNuXMrovGwOB3kTUyhavkI0+pnAghOLLhJJtn7uDepYc4uTpS8ZsyNOpahzRZDDEo/568xcIBfxnTnSVJolS9ovwwpmWcyklkzJ2eXnM70WtuJxRF+aBg7VVjNxkrXr/LnYsP6FlhMNNPjCZrgYRPn44L96485MCqowT5hZA2W2pqtK6Y4EUjP1ckyRG8xiL8fyG2xLYG5GRIHr9+pNGZw4YCMICI3UaSNODWHhE0xtbBhn+iLiECf0fyHhv3ISYxqvGSADTr15BLh65xft9lg7c8+nug0cpotFqGruuTYLEVuigdy0esY9OM7ca4AhcPZ+r/VJM2I5rbdR7P5B42VWcVvUKmr2y7TLPkz2jTWyJrZNJb0Ep5l3INS3Bo7XGb7dJkTUWeUjlJnystuxYfoOI3pXHzckOj1aDBNPPi6KZTFovtgeEJ+sG1xzy49jjB6yqZQ9KkBe+phtTFWKnSCpLnEKvBugUq5DHj6RO06PqC5l1f4Ooe81kMQHm1DMlrDJJD3kS5FmvkLZOboev6MK71dEIDw9A6aFCEQNEpFKtZiIEreyCEYELbP9mz/NDbZb/XsHHaNrbO2c3YHQPR6xR+qzXSxKAVQnBq+3kuHrjK5MMj47VUY85weXb/Bfv+OoLfc39SZkhO1ZYVSJEuWax2Aa8CWTJ0tdl+Fb1CVKSOhQNXMvLv9134SUNkeCQT2v3JgdXHDNlfkoSiV1jQfwU//dGaxt3qfpRxfWpIztUg2TJE0DSIOhm91QGc6yN59EDSpPmo4zNBWwB0d7GcMqcBBwsxla5tIOomhK8nRpLBMgqE/41Q+iHJsb/7nxKqzksCERUZxY6F+/l75g4e33iKk6sTlZuXo2nPemTMnTDrpoqiMPybPzi++UysGBNJNhTsG71toF2pk/P6LWPd5K0WDQ+to5bVT+bimdzDaj96vZ7W2bvw6vFrsx4TjVamXOOSDF5tXdMFDPEDPxboxfP7L2Jl0kiyhCRL1PmhKjsW7jdo6Whl9Do9jk4O/DC6JU161IvV55oJm1kw4C+bBtakgyMSfJnFGkL3ABG6AiIOAXpwLInk2tIuQ2PHwn1M7DDL+Lr9gKc07/LSTEsZJCek5Os/mkZFeGgEh9Ye58HVRzi5OlGucUmjsbFl1k6m/WK+IJ4sS7h5ueLq6cqLR6/MezU1Ml+VysnUI79/0Bj1ej1zei9l4/RtyLJs8P7pFZAkWg5syvdDvzXxym2asZ2ZPRZZrTAtSRJrns1LEE9HVGQUD649NjxQ5Mlg08s6vu0M9iw/ZHF8/Vd0/6zivJICobxB6F9D5LloETdHJKfK4JA0Hlmb44u6hHj9jdU2ks8iJKdy5o8XAiKPI4Imge6SzfNJ3rMMxl0So+q8fAQcHB2o36mmXcJb8eXkP+c4tum02X1CEZzbc5mDa47ZVcDvfwObcHLbOR7deGoyscuyhCIE3Wd1tGm4AGg0Gvqv6M6vNUai0+lMqjfLGplkaX34eXI7O67OUIBw/O4hDKg7iof/PkHjoAFhmFyc3Zyp3Lws/8zZY2wfk/4aGR7FrF6LcXZzou6P1U36TJM1lV1xNPaozCYkkjYzkucAYECcj63dvirhoRHM/3U5Hj7BfNvZnOECBh2HSETQVCSf6R803vji7Opktu6OEIJ1k7dalBhQFEGQXwhBVtR1Fb3CtWM3eHj9iV1eQkssHbqGjdO3gYguMWF8MBUsG7EWdx83mnR/axi/fuqHRiOjU6x79PyeB3yQ8aLX61k9bjMbpmwl4JWh1IOLuzP1Otag7cjmZrOjnt1/we5lBy2HoUmwdNgaqrQo90lMyp8MUdfBv1t0DIwWEIiQueBQCLxnf3QVWsmhILj3RARPJpbQHAq4dbBouEB0yRKnsqC8QgT0seOMn75P4/NSpfmP88+8PVbrnciyxNY5u+3qy83LjSlHfqdx1zq4eLwNVvyqVE5G/zOA2u2q2D2u/OW+YsbJ0VT8prRRpMzF3ZkGnWvx56mxZl3vlkidOSXzLk/i9639qfdjdWq1rUyPWR1Zens6B9ccs3rswkEr0UWZZhCUrl8cVw/LwZiyRqZo9YKkypjC7jF+CjTqUoc1z+Yz7K88WM8oMATyCeXTSPmMIdg/hKe3n1nNUpPs1Pp5evtZvMcREhDCuklbrN6rV4xaT1RklPF1sjTe6O0wiG+fv4deb0MZzwIxS2qLBq80Gi4AYcHhbJiylQF1R5uMKYZjm09bN0qEoZjmw+v2lef4LyCibhpSjUXM+6zDuLQSdQXh184grx/TXnmDCFmA4t8dxb8XImwjQtiO6ftQJPefkbzngENxjEXYHAoieU9Dcu9rXycORbGdgaQBB+simZ8CquflM+LprdiKpe+iKIKnd+y/kbt7u9FpUlvaj2nJG18/nN2c4v2kmLVAZgb+1ZPIhZGEBoXh4eMeb+VPWZYpVbeoSW2gY3+fJjQwzOpxAS8DmfjDLLrP7mh0re9YsI+wYMs3FkcXB36e3DZe4/zYuHq4kLOwB4RqsJ72qRi0Hj6hDAJ7ig5KkuVq0u/i5mW9sKc1Tu+4QGR4bCPgXQJfBXH16A2j8F/l5mWZ02cJehuB5ePbzGDv8kMM39Qvzhoy5/ddYe+Kw2b3KYrg0sFr7F1+OFZpi7DgcGRZRm/FKwQQHmxH0P5/BBEyj9iK1zHoQXcdIg6Cc1VE+B6Ef0/eBtBKiPCtEPQH+CxCcsiVqGOVnKsgOVdBiGhZiDiq4kraDAinqhBxAPOxLzI4f/3RPU32oHpePiO8UnradPXas9TzPo5ODqTJkipB1ucdnR3xTulll+Gi1+s5+c9Z/hq9gfWTt/L4lmXRMmu1kt5l74rD9Ks2nEc3n9KjwiCmd5lv9em+3o/VkyRQN7GQ5JTYFNpChk8s+M7N05UcRbJa9a4oegWto/XnK5803uQt83bC0EXpOLj2OJN+nM2E9n+ydc5uwoItG71hdk7ioUFv+/BJ7c13/ZvYddzZPZeY02epXW3fZdv8PdarRUuwZc6uWJsz5clgVijyXTRaDWmzxa6D9V9ECAHhO7AexKpBhO9ARF2PDrSP5G22YPRvT3mD8GuDUCwvcyYkkiTHW85f8hoN2pgSMDG/v+i+tPmQPId+8PiSAtV4+Yyo1rKiTTd7je8TTiVRURSeP3iJ793nNm+IceXa8Ru0yvoLg+qPZemw1czpu5R2ubsxrOkEs5NN+hz2Rf4LIfj31C26lurPteM3bbY/uOY4ihJ3UbxPBpcGNhpowKnmJ6nb0KxvQ4tBpbJGJmXG5PzPhpEQ5BfMvH7LCAsO4+H1J7TJ2ZXfm09i15ID7F1+iKmd59I8/U+c22te1yijnbEy78fUtB7WjB/GtMTZzYZHRcC2+XsJfBNkvd17PLnpGyto/f1+719+GGtzmfrFrD7kaLQylZqViddDzpeJAtha8lFAhCBCFmNN4gDlNYRvSegBJjiS7IOUfC2S50hwKAhyWnAojOQ5Fin5yk/yXmEO1Xj5jEiTNZVFd7ukkUieLhl1Onx4hLgQgi2zdtImZ1daZe1M6xxd+C7jT/w1ekOsmJL48ODfx/SrPoI3Tw2y1XqdYpzEjv99hmFNJsQy0vKV+4p0OdLYFwchICQg1Go2SAyvnryx26vzKSJp0oDbjxb2RmcbeXRP0jFZQ+hfIEJXIUIWULlRJK0GNQbeFnREMiwXeaXwYMyOQbQa8g3f9W+MrDH/uesidGycvp1eFYfQp+owXj2J+U7pDZO/MOgaDao/hsc3n8Y6Pl/Z3GT8Kp3F/mWNTIGKecjwXqq/JEm0+LURTXt8bfOa9VF6rh0zGNIhASFcOnSNK0f+JdyK9pFncg+boQmR4VE8+PexyTatg5bflnVD1six7hWyVsYnjQ8/jre/avmXjiRpDEJuVpFBmw0i9mDdQyMhwvcm4OgSD0lyQXJtjpx8LXKqg8jJVyG5Nvls1HVBNV4+Gx5ce8TQRuMsel6cXByZeGAY7t72FVO0hBCCP7stZNov83l2/4Vxu9/zABYPXsXwpn/EOwgxhtXjNqGL0plNrVb0Cuf2XObKkesm2yVJotfcTmg0sn2K13HA1tLEp47k3gvJvQ9I7z0xafMiJfsLyegi/ngIEYUSMAzxsiIicCgiaALC/ye+7zKLBRdbUKN1ZXIWzUaBCnn4eXJbFl2fSuY8GZAkibxlcqPRWF6GVPQKty/ex++Zv9mYMKEIFJ2eDVO3xdonSRJ9F3XBwdEh1mSv0cq4eDjTfVZHi+e+evyGXdcfFhzO1J/n8m2aH+ldeSg9Kw6hWdoOzP9tudnA26rflbeZ8CHJEjsX7ou1vXjNQkw5MpLitQoZfytOLo7U61CdP0+NiVMA/X8BybUl1m8qCpLLt2ZF4EwRgBpLlFSoOi+fCePaTGf/yiNWXcnj9wz54OKPV45ep2eFwVbbNOlel9wlcpCjaLY4p6gqikI915borNR60mg11O1QjW4zY3sUrh2/wfCmf/DmmX+czmsOWSOTt0wuJh8a+cF9fQoIEW4o6qiEgDYbkkPS6dbYQvH/DcI3EntGlgENUvJVSGZEtu5ffcTPRftaFRq0F++Unqx9vsDsvnuXH7Bk6BqO/X0aoQg0Wg2VmpWh9bBmpM+R1mKffasNNyr/WiN7kSzcu/QwlnElyRKlvy7GsA19TYTzggNCaOzT1ma/Fb4pzZA1ljWUQgJDCQ0MwyuFR9IXIf1MECIC8aY1RF3ENH7MUKBLcu+L5P4jyuvmZtq8iwbc2iF79Ev0MX+pqDovXxiKonBg9TGrhotGq+HAqqMfbLz8M3e3sdieJd59gi1YKS99FnYmbVb7AgAjw6OsGi4AQlEI8jO/lJO3TG76LPqFAXVG2XU+ayh6hRa/NrK7vdC/Av09kJwNXg0pftlUdp1LKKC7DUSAJguSbDtGQZKcwalyoo0pvgjdXQjfYGGvAkiIoOlIyebi99yfbfP3cna3oS5SWFB4glQYB6xmFWUtkJlhG/oSEhBC4JtgvFN64uJuu3Bkmqyp4ABWvSSyRubO+ftm9wlFcPzvM5zZeZGSdd6mp7p5uuLo7GAzEyrcRgkPN09X3Dzjn431X0CSnCDZEkTwLAj9C0S0erU2J5JbZyQXgyKx5Po9IuC8lZ4UJJf4FfhUiTuq8fIZoIvU2ZzwFUUhJNCy3L+9PLj62Hqg4HtcOXKd7mUHMuLvX8mQM53NZSsnF0c8k3sQ+NpKAKMkkcaKMVSsRkFyFcvG7Qv3Yy8TRMdMIESsmjrvt/tlSntK1StmdbwAQv8METgquvBZ9Pnk1OD+C7g0T1CxLyEEhK023EiVmOwrR4RzAyTPfkiyd4KdK6mI8Pub68c9iIoUZMsbjk/K97/Leog8yMUDJxj49QwiwyPtileKC7JGJmuBTDbbuXm54eZl/9Jr9e8rssPM0s27eCRzJ/BVkMUlX1kjs33+HhPjRZIkKn1b1iA4Z4WHN54ghFAF5z4QSXJG8uiJcO8C+ucgOYKc0vR9da4HEUeiDfF3heIMkvuS5xAk7cetZ/VfQo15+QxwcHLAJ7X1NGZJkkib7cNrcbh5ucbpRqjoFfyeB9C11ACaJG/HwPpjuHHmjtVxfv1TDas6H4qiUOeHqhb3y7LMqG0DyF3cEMuh0WoMarySQdG1//LuZMqTweI5UqRPRtFqBVg0eCWNfNowrMkELh26Zrat0L9EvP42OljvHUNJeY4IHAIhMy2OMz6I4GmGfpV308YjIXwj4nULhBK3rJWkQEReRPHvi/KyGsrLWiiBYxG6h+j1epYOW0PzHMfp2zQbA77Lzv+K5mVM50wEvH7fayWY2vGPRDFcwPA9bdilToL3W7BiXkrWK2o2kFySDYHHik5vNUtQ0Ss8NVMtPFMe20uyz++/5MG1xzbbqdiHJDkgaTMgaVLFug9KkoTkNRrJcyxoY9LzZXAsi+SzODp2RiWpUI2XzwBJkqjfqZbNCb9uAmQaVWpW1i5hMHMIITiz4wI9yg00xgEIIbh2/AZ7Vxzm5LZzREZE8W2fBqTLkcbi9bQc2JR02a0bYt4pvZh6bBSTDo6gcbe61O1QnR6zOrL66TyqtCjHpIMjqPhNaZNzOLk4UqBCHl49ecPFA1cJDQwjJCCUE1vP0LvyUDZM+Sf2NYXMAuUVlrIMRPA0hN6yPk1cELoHEPKnhb160N9HhCxMkHMlFCJkPuLNtxC+FfSPDMtqoUtQXtblj7bDWD5yLaFBb40+RS9xaIs3vRrlICTw7Wej12t45SslvOESLURapUU5KjUrk7B9Y/htDl3bm9rtqiC/p8uSu3h2phwdhXdqb6t9yLKET6rYDycarQbZjuw6q15MlQRFkmQk1ybIKf5GSn0NKfU15GQLkJzKfuyh/edQA3Y/E0KDwuhebiAP/31iulRiiCmjzfDmtBpsvXCXPYQFh/Fjgd68fPLapE5RXJBkieRpffh1WVemdprL45tvJ3d3bzfajGhOlRblmP/bCvYsP2RcEkuVKQX/G9CEuj9WTzA3+Jtnftw6exdZq8HBUUvfasOttp95Zhw5i2YDDBky4nlxwJqyr4zk3g3JvfMHj1UJ+gNCFmA1HVNOhpTy+CexTCAijiP82pjd9+9ZN3rUt1wMUpYFrfs947tuLwANx3dnYFgb7wQfY/qcaWnaox71fqphtpJ0QuL33J9zey4TFRFFjqJZyVE4KwCrxm1i4cC/rBpmvy3rRrWWpjXJDq07zshmk2yed/m9maTOnLS1uVRUEoO4zN+q8fIZEewfwsKBK9m1eD8RYYa0vXTZU/O/gU2p1db+WkS28L33nMH1x/Lg2mNkjWxXYUNzaLQyiiLM3rQ7jv+eb/s0INg/hCe3fHF0diBzvoyJOsGMbzuDfX8dthjTo9HKVP++En0WGAwRoX+NeGnraV0LLo2QvUZ/8PgU/+4QvhNbirlS6suGIMOPjOL309uq2O8xpW8Gdq1Khl5vycgSpEofxbLTN0H2YVDr4pzelTAeLEmWaNS1Dm1HtMDF3fmjG3pBfsH8VLgPb3z9Yn/3JEiVMQWjtw/k9rl7CCHIVzY3abOlJjIiihbpfrRYnFLWyBSqnI/xu4ckwVWofAkIJRDC1iLCthiKUGqyIbm2AKeq8VbsTUhU4+ULNV5iCAsOw/fuCxydHfBJ482+v44YsjN0CnlK56J2+yr42HBV20IIwfl9V1jx+zouHTQfD2KL6LhZszg4O7Dm6bwP1qWJC99n/4Vn915YbZM+ZxoW3zBUYBYiHPG8CLakw3Frj+xhZ2E0KygBQyBsrY3zOSKlvvRJ3GiU54VBmA8SH/BdVs4etP7702gE216kQvIcyKzeu9g8c4dFb58kS7h6uBASYF9Q+pB1fajQpJRdbZOC5w9e8nuLyVw/ect0R7Tn9P1tpeoWpc/Czlw8cI3fW0xCwrT6tqyRcXJxZOqxUWTNbzsQWUVF6B4i3rQEJeYeKIgJNsapFpL3ZCTp4+bwxGX+/vh3QJU44+LuQraCmQkNCuP7bL8w7Zd5HNt0muNbzrBo8EpaZunM0U2nPugckiRRtFoB0mRNZb3GihWsmcVREVEcXn8iDn0Jrh67wcZp29gyexe+ZgIcbaF1sJ3arHV4++M1pB7XwPADt4Qeydm2yqo9SC5fY9NQcv76kzBcbOGdQoessf5c5JHMA9lnJpImPfV/rml1WUUogmEb+uKdyvYDiYu7M2UbFI/zmBMav+f+7Ft5hN3LDhIeGsHIv381BMS/G8di7pKFoWBk78pDKVm3CL///RuZ85mqwBaqnE81XFTsRgiB8Ps5On7v3RIH0febiF0QMu8jjS5+JImZ9eeffzJhwgSePXtGoUKFmD59OiVLljTbdvHixbRr185km5OTE+HhqnLhuwT5BfNrzZGGSssCY5CtUARRkVGMbDaJWWfHkbXAh6Xuubq7kOCStoBGo+GNr79dbR/8+5jfm0/i/pVHSPLbJ9DyjUvRZ2Fnu3UsStUrxtM72ywug8kaOVbqtOT+CyJiPyZF2N7uBafaCScG51ACHEtD5Ckz55IBRyR3S6UAPgKOpSwuG1Vr6sfe9ZaVXGWNTK12bwPMM+ZOT885PzG54xxkjWRcXpG1MopOoe3IFhSukp8GP9dm2Yg1Vg3jX5d1jXdF84QgPDSCGV0XsHvZQRNPUposKQkNCrMrKFnRKzy8/oQ9Sw9S/+dalKxblIfXnxD0OohUmVOSKmOKxLyELxIhBERdQISuAf19kH2QXOqDU3UkyeFjDy9xiTwF+ltWGghE6BJw6/DZvBeJ/gi3evVqevXqxdChQzl37hyFChWiVq1avHhh2X3v6emJr6+v8e/BgweJPczPjp2L9hPiH2p+IhaG/2ycFlsOPa5UalYmwYsygqGidPJ0PjbbvXrymp4VBvPw3yeAwTiLeXA4tvk0g+uPtbuwYoPOhowtcyEQkmSIefm6Uw3T7Q65kZItBjkm+0nGYMzJ4NIUyXuCXee2B0mSkLxnglPMpG5QnzX8byqkZIvjJPUv9K8Rel+E+PB6VOaQXNthyVNUpGIIhcqFmK0ZJGtkPJK507h7PZPtdX6oxrTjo6j4TRk8krnj5u1KyTpFGLd7CC0HNgWgaa+vyZI/k8UaV9/2aUC5huYfjOLLvcsPmNdvGePbzWDx4FU8uW05NkdRFIY1Hs/uJQdiLYE9u/8yTtlUErA9WkNGkiQy58lA/vJ5VMMlHgihIAIHId40h/BNEHUWIvYh/LsjXjdFKG8+9hATl6hTWPcgA8ob0H8+c22ix7yUKlWKEiVKMGPGDMDw486YMSNdu3blt99+i9V+8eLF9OjRA39//3id778Q8wLQp+owLh64arWNVwoP1r34sNRaIQR9qg7jypHrdgfuFqqcD0VRuHr0hsVjHJ0dWOM7z6Yg2Jw+S9kw9R+r5x69bQAlahexuP9dTv5zluHfTESv0xv7lGUJraOWoev7mgiFvYsQCkQeA90tkFzAqbKhKGIiIXT3IGI/iAjQfgVOFe1W9BXhOxHBs0EX/f2QvMG1JZL7T4alsIQcZ8gCRNA4jGvnEP3/WsIdpjCl22UOrDpmeOqNju/IWTQrA/7qEavYodn+heDSoWuc3HqWqEgdOYtmo3itQvw1agM7Fu0nIrq4YfqcaanZpjLFaxUiY+50dqnjxnD/6iPe+PqRPJ0PmfNmNG7XRemY+MMs9iw/ZFw6FcLgFWna82t++qN1rGDg0zsvJIj6cwzJ0/mw6vHcBOsvLuiidBzbfJo7F+7j4ORA6a+LkaNI1o8ylg9FBM9DBFt60NCAY0nkZEuSdExJiQiejgieifVlaZBSbEPSWs4STGw+mfIAkZGRnD17lv79+xu3ybJM9erVOX78uMXjgoODyZw5M4qiULRoUUaPHk2+fPnMto2IiCAi4m111sDAwIS7gGjePPNj+4J93Dh1G42DhhK1ClPlf+VxcUvYiSAuREVYlw0HEqQejCRJjNjUj5HNJ3N210U0Wtl4AzdtZ7ix12pXhd7zf+bmmTv0rDgYhDAr795+1P/sUjLdveygVcNF1sjsXXHYbuOlVL1iLL0zg+3z9xqNv8JV8lOnQzWSp7XsCZIkGZzKG/6SAEmbFbRxnyhEyEJE0FhMnKrCH0JmISJPQLLFCZqpJLn9AI4lESErDE+zaMG5KpLLd7hqMzBgRTU6jG3F2V0X0UXqyFUih1Fc0BZvnvkxqP5Ybp29i0arQZIM32l3b0cGLs5O+0FlefasMAfXPWD7gn0sGrSSRYNW4uTiSO32VWk/+n+4elg2Yi7sv8Ls3ku4c+G+cVv2wln4eVJbClXOx9y+y9i74jBArCyh9ZO34p3KK1Z5iT3LDn5Qht67SLJEyo/kZbl8+F9GfDsR/xcBaBw0CEWwZOhqilQrwKDVPfFMZrtcxaeCEFGIUPM1rQzoIfI4IuoGkkPuJBtXkuJQAluGC3Iy0Hw+CsGJ6nl5+vQp6dOn59ixY5Qp8zbltF+/fhw8eJCTJ0/GOub48ePcunWLggULEhAQwB9//MGhQ4e4evUqGTLELl0+bNgwhg+Prd2RUJ6Xg2uPM7bVVBS9gqIIY8yFVwpPxu4cZNRySGpm9VzMphnbLd4kJUkia8FMzDw9LsHW/2+fv8exzaeJCI3AI5k7vveec2LrOXSROnKXzEHjrnVMjIgrR68z5ac5Jgqgnsk9aDuyBfU71bTrnLUdm9ssV1CsRkHG7rReTPJTQih+ELYVoX+KJPuAc10kbezvdpz71T1GvKqG5UI7EpJHP4PB8Ymj1+npVLQvj64/ifX5S7JAqxXM2HGbLF+FsW+DN5N6ZyQq4q3BJmtkchTOwsSDI3B2jW2snd19kQF1RxsCGd8xriVZQpIkBq3uyejvplh9AHD3cWP103k4Or2NEbDHIxoXes3rRJ0fPlx8Mi48uPaIn4v/ij4yduV3WSNHi+/9nui6OQmFiLqGeN3IRisZyaPvZ/HbiA9CCMSrr0F/F/NGjITk3gPJ/eekHpoJn4znJT6UKVPGxNApW7YsefLkYc6cOYwcGbv6b//+/enVq5fxdWBgIBkzZozVLj7cOneX0f+bYoipiP4Nx9zogt4E81vNkSy5PeOjFD77ulMNNkyLrQgbgxCCuxcf8F2mTvRd2Nluz4Q1chTJGie3cf5yXzHv8iRunr3Ls7vPcfdxo2ClvDg42h8QliJ9cp4/eGlxv0YrW62D9KkhQpYggsYDOkCDQIHgiQiX/yF5DvygVEURthaDx8XShCsQoSs+ixv08S1nuH/lkdl9QpFQ9LB2Vgr6Tn1EpYb+yDKM6fz2qVHRK9w6d4+ts3fxTa/6pscLwbTO8xCKiCXbLxQBMkzvssCm5zLYL4Rrx25QuEp+47ZUmVLYLGxqD5Ikkb1w5ljCdUnB6vGbUXR6sx5TRa/w78lbnN19iRK1Cif52OKHPR5oCRIpNuxTQJIk8Jn1Tqp0zGcbkypdE9w+oWQAO0hU0zlFihRoNBqePzdNa33+/Dlp0tgXL+Dg4ECRIkW4ffu22f1OTk54enqa/CUU66dsNQR3mnmQVfQKAa+D2Lv8cIKdLy5kzJ2ertM7AMSSJX8X/+cBDG4wlitH/k2qoZkgSRK5i2enUrOyFKtRKE6GC8DXP9WwGJwJBne+tTpInxIibAMiaBQQheFLpcOQVSQg7C9E0AcG/+ruYEvgDv3jRAvgTUiObDhptRyGPrrMAIBGA5Ub+ZMxh2lGokCwdfauWMdePXaDp3eeW6w3JBSB3zN/u8YZE3MTQ802lT/YcAGDgeXo7IjZ6PJERAhhRwV7mYOrjyXhqD4QTTbA1hK/HhwKJsVoPgihBCNC/0IJGIISOBoRcdJq3ax3kbSZkFL8g+TxK2jzgiYDOJZD8p6J5D31o2u8xJVENV4cHR0pVqwYe/fuNW5TFIW9e/eaeFesodfruXz5MmnTpk2sYVrkxJazVn/EEnDin7NJN6D3aNC5Fn/sG0bBinktthHR1ZUXDlzJtvl76V5uIK2ydqZHhcGsnfg3iwavZEyrqUzrPI+LB6/a/UOwRkw9o00ztvPP3N1WPSe2aPBLbTJ9ld78RCZB7R+qkrvExwswsxchFETQVGstIHTZh2U9SK7Y/kk7YDPr4N1RCYFQ/JO8IGRYcLjNuJHIcJmYRDO9DirW9zdtIDD73XvxAd9HEyTInM/Uy1uocj7KNS5p1eC2l39P3DJrfCUmep3eZjydoheEBn14BfukQpLdwPVbLP82NKDJYpApsBOhf4WIvIDQ3UmQe6Zd5wzfiXhRDhE4HMLWQehyhN/3iNffIvSv7epDkj2R3Nojp9iEnHIfcrL5SM7VPwvtqPdJdFOrV69etGnThuLFi1OyZEmmTJlCSEiIUculdevWpE+fnjFjxgAwYsQISpcuTY4cOfD392fChAk8ePCADh06JPZQYxFTc8cSQkBkeGQSjcY8hSrn4+bZu1w6cM1iyrCiV7h8+F8uH/7XELOjCJ4/fMnVo9cBkDUSkiSzZfYuClbKy4hN/ewKpo3BYKzcZN9fh3l2/wU3Tt8h4GUgkmSID5IkiUrNy9Jr7k9xygIBcPVwYdKhEczutYR9fx0xpm17+LjRtFd9vuvfOE79fTR0196rFG22EYTvB9em8TqF5FwLEb7JSgsNONexSy5fCD2ErkCELga9IWZJaPMhuXdEck746szvkzF3OuuBr5IgXeZIYsIuFEXCzSN2W1fP2N83r5T2eWdTZ0nJy0evzY5B1sgGEccsqUyHJUkMXNmDBf3/YsusnUSG2w6st4RA8PefO2jyXkp5DGEh4ZzddZFg/1DS50hD/vJffXApBK2DlhTpk/HqiWUjWpIl0udI+ofJD0Fy74WIugRRl6K3xBgcMkgeSN5/2ve70D1EBI2BiH1v+9BkB4+eSM72xfEBBu+n7gaIKNBmR5KtB0CLyAsI/+68FZh7Z27SXUX4dYDk6z9LIyS+JLrx0rx5c16+fMmQIUN49uwZhQsXZseOHaRObYhTePjwoUngl5+fHz/++CPPnj3Dx8eHYsWKcezYMfLmtexdSCxyFs/OtWOW031ljcxXn8BTf+CrQGSNhD1yJ8bgxHceFhS9IGZd+MqR64z631RG/zPArnOHh0Yw8tuJnNp+3igoZjxX9BOJwRV9lCuH/6XLjB8o/XUxNBrLT/9Pbvuye8lBXj55jXdKL6q3qkC/xV3oNLEN9y4/ROuoJWexbCaBkp88SrAdjWQQ9rSzgFNl0OYG3W1ir/MbtGnsiXcRQkH494KI7ZgIFOr+NdxA3e8guXeJ/zjtoO6P1Vk9YbPF/RJQv90r42utVvD4rmlgrqyVqd6qUqxjC1XOh1dKTwJeWs5M9E7lxeA1vehbbTiRYZEmHlhZK+OV3INus8zHCDg4OtBpYhu+H/INV47eQB+lZ8Xo9dw+dy9uWUgCnt55ZnwAMG4WgtXjN/PXqPWEBb9dKkufMy295nWy6om1h/o/12LxkFUWNWkUvULtz2SpNgZJdoNkyyF0DSJ0pcEglz3BpRGS6/dIGttxc0L3EPH6GxBBmNxA9XcR/l3AcwySjQcPIQSELkKEzI9WuwVwRLg0NgQMy+YNaxEyG8O33tz3R2+QRYg8Dk7lbF7Hl4Ja28gKtqq6yrLE4lvTSfuRA0a3ztltCEBMwI9y7sU/7FLnHd1yCgfXHI/TTTldjjSM2T6QdNlN456EEMztu4x1k7aYiMnpdQo1Wlei17xOJvL9nxNC74t4WRnLmUAGJJ95SE6xJ1z7z/MK4fcT6C7z9tlEF/10OQXJyXYAqAjbigjoZbWNlHxzwikLW2D1+M3M/2250VtoPLcsyF8yhNEr7+LoJKI9oBItCuUjNNhgFMsaGRd3Z+Zc+MNsxeUdi/Yz8YeZFs/dZ2FnarWtwuNbvqwas4G9fx1BF6nDydWJWm0r813/xqRIn9zua7G3QvT7OLk4MuvceA6tO0FYUBgZcqfnyW1fVo3ZGKutJEtotBqmHB75QUupYSHh9Ko4hLuXHiRqBfvPDcWvG0TsxnIAsAtSqmMGQ8lSHwEjIGy5mT0a0OZASrbKeLwQURC+GxG2ESIP2hidFly+QfYaYc+lfLKohRkTyHgRQjCl0xy2zduLLEvG6HtZa3Bn95zTibodkjaN0RzB/iE0S/cjUR/gon6fuh2r03P2T1bb+N57TuscXWzNx7GQNTIp0idjwbUpJmmsq8ZtYkH/FWaPkSSJRt3q0HlyO7P7PweUNx0g8iiWUhWRUyGlPGC3GJ0lDDLoZwxlDUQkkjYvuNRBkqwv2QkRCfrnBu+K7hqWg3814NIc2WvYB43THg6uPc7KMRuMWiyeyXQ0aPuK5l1e4OgsEIaShUzonpF961MgyQZjN03WVAxd38eqlME/c3czt99yQgNDjQaSq6crHce3ol5HU6VlXZSO0KAw3Dxd4yU9IIRgZo9FbJq+3W4dGI1WJkWG5Dy//xJZIyPLks0MqISqNB0aFMaSIavZvmCv0buTPmdaWg5sSo3W8TeuP1eE4o94URqbFd89RyO5mjfsbKdsy0juvZDcOyKUAMSbdqC7giFWx9b3RQPO9ZC9/7DR7tNGNV4SUGFXCMH+VUfZNG0bN87cQaOVKVG7CN/0qk+BCgn/5Pni4UvO7b2CotOTu2QOshfKYtdxf8/cyfQu82Ntf/+p1V68Unqy9tl8q+vAm2ZsZ2aPRfHqH6D3/J+p3d7gfo4Mj6R5uo4E+4dYbK911LL6yVw8k38+AlnvInQPEK+/jXY7vzsJyYAc7XVJerevUEIQITMhdKX9y1YORZGTr0rcgb2D34sAIkOfkcx9ERrdFgwZW4A2P5J7V+7fysbpHReIitSRu0QOilYvYJcOSURYBCe2nuONrx/J0vpQ+uuiOLnETcTP995zFg5cyeVD1wgJDMMntTe12lamfqeaJt9VIQTH/z7DxunbjIKXCIOhEEv0MTrgVwgR54cDgFVP5loVXbSX8NAInt9/gaOzI2mypvrgmJrPFRF1HfG6gY1WWnD7Edmjp9m9SuAwCF2N1dRtOQNyqn0ofj9DxAHrbU0PjNZp6WRn+0+Tz1rn5VNDkiSqfleeqt+Vj7X2nJCEBoUxqcMsDq07YbL8k6d0Lvqv6GZzaapB51q4e7uyaPAqnt2LrhslQYEKebh08FqcxxPwMpCbZ+9aVUONDIs0BOXG4+4qyRJHNpw0Gi9Xj92wariAIYD6zK6LVP2uPOGhEbzx9cPV0wXvlF5xPv/HQNJmhuTrEMFTIXw7xqA7xzJI7t2RHAsn+ZiEEop4870NT8v7SNGZTUmHTyovwAsYi1AGgd4XZDckjaHEQNYCxKsIqZOLE5W+tS/z8X30Oj1/dl/IllmmGUG+wc9YPGQVW2btZPKhkaTNZvjtSpJE2YYlKNuwhLHtm2d+DG4wjptn7pioCLu6uxASGP+MHv8XAQlivDi7OpmUTPjPIttzj1GQrLXTPcKmMaI8RegeQMRe6+1iIYFL/AL9P1dU4yUOJJbhotfrGVhvNNeO34wVt3LjzG16lB/MnAsTbE7SVf9XgcotynH34gNCAkJJmz01qTKmYPg3Ezi2+UycJct97zyzarxkK5Ql3jLoQhGEhbwNNowItS9ry++ZP1M6zWX30gPGTI4CFfPQemgzE7GwGBRF+aSUQCVtJiTviQhlmCFgT/ZCki1XX050QhfF0XABEOBUw3azD0Sv03Nq+3keXHuMs5sTZRsUJ1WmlEiyO8g5E/38tpjTZ2ksw8WIMHxXR3w7kZlnxlm8dyRL48OMk2O4cuQ6J/85S1SEjpzFsvH4xlNWjt0Yv9+XBMnSeMf9OBWLSJq0CIfC0dlKVj4T57qW98k+mNYAM3ciD0Pgrd0YlpQkz2FImtixXV8yqvHyCXDyn3NcOXLd7D5Fp+D/IoC//9xJ62HNbPYly3IsFdyeczvhe2cEdy7ej9Mykpu39XTpotULkDpLSl48eBXnYGFZK5PtnSflzPnsk8dfPWEzAa8CTbKarh69Tr8aIxi0qicVvynDi4cvWTtxC7uWHCQ0MBTvVF7U+7E6TXrW+2RqskiyB9hIj0xshDAo7sbNcInGQlZEQnF+32XGfj+dN75+yFoZoQhmdl9EzbaV6Tbzx4+eafbq6Rs2/7nDahtFEdw+f49/T94ib+lcFttJkkSBCnlMlqFn91psiLOLY3kyWSNTvFYhfFJ7x+1AFZtI7j0Rfu0wRi6b7gWX/1kt1io510OE/23lDBpwaYTBuLGgjvo+DkWR3DshOVW03fYL49N5JP0Ps2f5IatqoopeYcei/fHu3zOZB9OOj6L3gs7kLZOb1JlTWj0fGOq2FKpsvhhmDLIsM3Blz3gJcik6hXo/vX16T5s1NcVqFES20JeskXH3do1luIAh1VsIwR8/zOTmmdt0KtKXv2fuJDTa7e7/IoCVYzfSpWR//J77x3msXywi7J10zbggQ/i2BB9ODDfP3mFAnVHGz0rRKUYp/11LDjCh7YxEO7e9HN14yq6HAEmCa8duxLn/9LnSodPFzXKRNTIOTg78MLplnM+nYhvJqQyS9zSQYjzgGmIkCHD9HsnThryEU0VwKIx5kUgNSK5Ibm3BoQi2DRctpNiHnPyv/6ThAqrx8kng/zzApns48NWHVct2dHakdrsqTDk8kuX3ZvLTH62ttm8zrLnFp9sbZ+4wrs10vsv0EyObTcTFw/7q2jHGSbvfvyPLe+qkX5XMabaeCgAShIdExDJcjAgICwpnWJM/CAmMHQCp6BVePHzJjK7Wqsv+x5AciYva7lsUUJ7bbhZPlo1Yi6IIs8aBUAzy9feuPEy089tDsF+IXUa7gHgtW1b9rpyhPIAFJFnC0dn095mjcBYmHxpBZHgk49vN4MeCvehSuj+rxm4k4APvHyoGJOeaSKmOGOT03bsjeQ5BSnkY2XOQTXl9SdIg+cw3GDGAYfqN/v1pMiAlW46kSY/kkBccCmH5tymDcyPkBCjm+jmjLht9AqTOnJKrx29YnpiBFOkTNi6icbe6RIRGsnT4GvRReqPAnMZBQ5thzWjYpbbZ47bM3sW0X+ah0bwtPheXUKDM+TPRalBTKn5jGiT58PoTVoxeb/E4RafYThbUyrx8bFkmW69TOLLxFG+e+ZEszYcHM8YVoXsIEftBhIPDV+BY/oPToj8ESdIinKpBxB7itnSkATnhFVaD/UPYteQAJ7ZYL7mh0crsX3mErKP+Z1e/keGR6PUKzq5OCRa3ljZ7avviUQQUqRY7FssWbl5u9JjVkfHtZhiC4t8x5GStTMr0yZl8ZCRPbvoSEhBKuuypyVogM0uHrWHZiLUmxSFvnrnD6gmbGbdrMLmKWY5hU7EPSXKEeKpMS7Inks8chO4uRBwyKOw65AfH0ibfTclrMuLNd6C85O1vM3q/9ivbXp7/AKrx8glQq10V9iw/ZHG/JEvU+8l+6Wl7kCSJ7/o3pt5P1Tm45jivn74hebpkVGpWxmJcyO3z95j2yzwQmCiO2hvuIssyVb8rH8twAfhnzm5k2bL+hSTZPo9Fr827bfQK9y4/TFLjRSihiID+EBETIxFd+VlOB96TkRw/vOJ3vHFrAxFxrZ+jR3JpkqDD2DJrJ7N6L0Fno64OAJJE0BvbKd0ntp5l9fhNxniyDLnS0qR7Pep2rG5V4dkeyjcuiZuXKyEB1jOCClXJF68sKIAarSvhldKTpcPWcOO0oTCtg7MD1VtVpN3IFvik9iblO0J5hzecZNmItcB7v09FEBoYxoC6o1lxf6bdqeDhoRFsnb2LrbN38ezBS9w8Xaj6vwo07fl1rLIIKgYpBMK3IBQ/Qxacc0MkTQqzbSVtNtBms9iXpM0AKf6G0FWIsPWg+IEmLZJLC3D9Bkmy39v9paIaL58AhSrno+I3pTm8PnaFUFkjkzF3Oup1rJ4o5/ZM5kH9TvYZRptmbDfxuMQVWSPxyoJn5Nb5u1afZIV4R/vCgpFibyCyQxIGewohEP5do8XpYsYXHcugPEO8aQMpNiBpk77MhFBCICCuYmYyOJZ5x/X94ez76zDTfomtUWQJoVeM6ceWWDtxC3P7LjWJ7Xp8y5dpXeZz6dA1+q/obrKc8+z+CwJeBZEyQzK7DFtHZ0d6zu3E7y0mWQxPSJ8zLQNXmtf8sJeSdYpQsk4RXj15TWhQOCkzJLNYH2ztxL9NxDTfRdErBLwMZP+qY9RuV8XmeUODwuhbdRi3zt0zSCEICHwdzN+zdrJ76UH+2DcsVmLAfxUhdIjAoRC2lpg4GIECQX+Ae08k947x6leSfcD9ZyT3nxN0vF8KaszLJ4AkSfRf0Z1mfRvg7Pb2qUijlanUrCyTDo3A1SNuBQ0Tg4v7r8bbcAGDZ8RSFoSTi6PN5SdnNyeLBookS5T+upjNOAR3bze+KpmEhkLUeYg8jPllGQWIQgT/n72zjpOjePrwUzMrt+e5uwgS3DVocAIEDRIsAYK7uzv8cNcXd3dN0CR4cHcLEoie2+rU+0fv+crsWS5hns8HLjfT0127tztd0131rTu71bWqg0a/QiPvoPHfcr++8W5I5HKdH0LjkEG39dp2l+M43HvuY7ldJMpW+6Z3nv768R/uPO1B0397hzhZ0+6tJz5g6mPvA/DVW99x/IZns98yx3Ds+mcyfrHDOXvMZfzx3d9Zzdh8zw25bOLZLL9Oxyfo0sHFHHbVftz51TVJfZqeU7FYOUustFhaxyUWjfHDtJ8zrj5atsWXU79xNd595zzGr1/+0UUkz4k7NDeEuWiPa9IWgv2vofVXmirPgHkwiWO+2wm04Rq06cn5Z9xCjLfyMkDw+X0cesW+TDh3d3746FcS8QTLjVhqYKU89jBcwHEctpywScpzG+28Hp++/lXaa22fxRbjN2bVjVfixqPvIhaOYfssHEdxEg6b7j6S0+8/lhuPuovJD7+T9ia+xyk7ZQyE7G00/BLma5auQnkCwhNRvTwnh0DDr6D1V7dWfAZQ/wik+DzEv3r269WBpkddj0fxNUjepuZpsBf57cs/mP3HXJetFRAOOedfyopfBA5I2WriHW90KRLaHssSXrj1VYrKCjlv5ys6rnYqfPb6Vxz/7g/c+P4lWbd81ttuLdbbbi1m/j6bhppGBg8vz6jHlEgkSMSdXk/1dq1U4KJdc0Mzr9w7Je1KqJNwmDV9Dp+98TXrbTvCtY0LI+pUQdMjZHpjteFmCO0+X+PbFkY852WAESoMsfZW2Sef+cF6245g0t1vdm/1RWDssdunVQreat/NeOjip6idV99VKl3M6tSuJ4xhqVWHs/HY9Zjy2Pv88/O/FJQUsNmeG7SqgB7/f4dRM6eWT179sjVoseXnmMNHs/dZu+Zue09waskeDBszQbySWVenBW1+Fq09M0U3X6OV+0D544g/c5o7Wg9a7Wo88COh7RHp/e22bDEj7Rm2RJR9T5nN1ntWmyq7+fuktOnXL6ZnDH53HOX3r//g2kNva03B7nA+4RBpjnLzcfdw3VvuCt1l28b6/sOfefKqF5j2khGLHLb0EMYeuz07H7Mt/kDP39dA0M+yI5bi96//TF8N2nFYdeOVsvY14+eZRJoiGdvYPoufP/ntP++8EJ5K+geTJM5siH0LgTX7xaT/Cp7z4uGaXY7djol3vZnzdZZtsdcZYzng4vFp2+QXhbjqzQs4c9v/UflvtYlVUFMxOBDyc96Tp7SmVheUFKSN08nLD3LpxLP5+p3vmfzwu9TOq2PI8Aq2PWiL+bNHbw8n65KVlLiW21cNo3WXpDmb3IaquxwpT1W5tv2YebgWwvKtQreE7Fyw6LJDXZlxzKUz2PGASlrDVJxKo3YaWKdL22CBySrKJJxoWRZVM9M7b07C4Zt3fuDf32Z1qX6eK+8+8yGX7HU9Im3bWLP+mMMdpz7IhxM/49KJZ3drJUZV+eeXmdRXNzJ0yQr2OHknrtz/5pRtLUsIFYUYvW/2quK+QPZpQdVdu4UebcRV4UTNXPrEI3e8T5+Ha5ZcZThnPnQ8V+x3E4Br6fIV1lmGLSdsmlXvYqlVh/Pgb7fy7tMf8unrXxKPJVh55PJsvf/mFA0qdG2niLDm5quy5uZZVh/6AQntblYJ0mJD/nj3KbzhN7MUT3Qg9jEan2EyFtLZJUE0MBKiH2YfM/4VWrUfWni6CUqM/QRWCMnbyiyH92AracgSg1l36zX5fPI3KT9PIsqgIXHG7NfOcWlBw13aA2wydn0+efWLtGPaPoul11iSH1KU4+jMzN9n98h5qa9u4Ir9bjLxIe2HUlCUr976judunMT403fJqd+PJn3OvWc/yu9f/wmYz/z6Y9ZmqwmbMvmRdztUrm4Rr7v4hTPSxsy0Z4mVF6N80UFU/pvZuVt/+xE52dwbqCok/jZ/e3txxMpHnTpofhJtetasJtrDTVZOaEeT1tyX+JYlu2Mv4POCm3sbz3nxcM3M6bP56ZNfKRtWSn11Q3J1BJobUk8iLfz82e8cuupJHHblvow7LfNNOhD0s9WETdlqQvYnxAUB8S2BFhwNjbemOGubG3DBoe47dGaRtT4KgDMTyCJiZS8BuHBeAGJfQnU7XZUEaOwzaLgdyu5H/LlrmQCoRjn6mtU4frMfaKqP4STa6ZlYigicfN3f2F3uVJKcOLqyxT6b8OBFT1KdQvxRRBDLYqOd13WlfFuYokRG5cxqfv70NyzbYtWNVkzZpoU3H3qHWCSedmVJHeX5W15h3Gk7u3Zg33rifS7d54YO7VWVT175glBRHiffeQTvvfAJv37+O4G8AJvtvgE7Hb2t6/Rm27YZf/pY/u/E+1Ket2wrpxRw1SiE30SjRtdE/KtDaNfMRQxT9dP8Mtpwa7sg8zw0b1uIfAg6h9Y32alCY1+aINqyexDpw2SHwIZG8sCZRWonxjZ6TnZ2XSRVheg0tOlx8xqlFAntBHk7I1b/FkJdEPCcl4WMqlnVvPX4B8z7p5KG2iaGr7goi6+wKOtuu2aP9ta/eus7zhlzGbFovMMTnZNwCIT8xKJxNJFmrz3Z/q4zHmb4Soux4U7rdtuOBREpPB7soWjDbUmnAsAHeTsixWciVmkOnZWR1XEBcFXs0cHVkncmtB6tOgQGT835BqtNj6H117FYRS03TQxw72WL8MGrJTgJMymvNrKRA06fxWojOy+52xDcLG0dmVBBHldPvoAzt72EOX/Nw/ZZqJqYj2B+gPOfPpVVNlieBy58klg4va7M0KUGd8gkqqus56aj7+KdZz5sjSvxB33scOhoDr96v5SB4L99+QeWLSTi6Vd45s2opLG2KaMT1EI0HOWGI012WufYFifh0Fwf5oMXP+XSl87K2lcmxh63PTN/n81zN03C9tkk4onW7/uyay7FuS5TwDX+B1p1EDj/YJxuRcMvQ/21UHqDWb1z00/jPSarp8MWbBjCL6RqbX7EPkfrr0WKz3U1RsbxnQZwqsAaZOqSJRGxoPRqtOrApG3tv5s2SDFSfF72/jWB1p4N4edoezgRNPYJNN4BZY+0VlD3MIjmWlFvgFNXV0dJSQm1tbUUF/dt8biBhKrywPlPmEq0nZeogeLyIo658SC23Cf3FY2m+mb2Hn4EzQ3htMGAy45Yit++/CNjP5ZtscqGK3D9O//L2YYFHVVFox9D84tAFAIbIqGds0qKd+nHqUPnbGT6SImAbyWsilQ39Y449VdD4724coayIMX/Q/LTxzR1RhsfROu7xu7UVfuomh2gaPjxlBfciHmdnSYEqwwpfxKxF8s4RjwW5/3nP+HTV78gkXBYcb3lGL3fZhQUGyfroYue4sGL0qexnvXICWy5t8mOa25o5rgNzubvn/7tuppjCetsvSaXTjyry9bojUfdySv3TCGRpU7RBc+cRlFZAStvsELG+Jepj7/PZfvckLEvEeHxf+7oFSHGX7+czqS7JvPvrzMpKi9ii/EbM3LM2ti+7JkzqmF07jZJldjOr18AGyl/BvGvnOLqdv0kZqFzR9E9JzsPGfKBqUTeDTT+O1p/I0Reo9XZD45GCo9H/G3FNjX2nckqikzF3Hz9kLcTUnRc1s8ptHfOUmGDb0Wk/LleU4geqOQyf3srLwsJj13+HI9cml5ev66ynsv3vQnbZ7P5uI1y6nvyw+/QVN+cdum7RVtl1PiNeOfpDzOmWH773o9Ew9E+TVeeOX02r94zhX9+nUlBcT6bj9+YtbZcbb598TUxC60+CuLf0VrMLfwC2nAtDLoN8a/hui+xiqHwWLThulRnAUGKTnfXV95OaONdrsfO0BMa/cC186JOI1p/bcpzxYPiFA9ywDcJKX3GrFaFX8FkdIQgf1ek4MiM1Xtb8Pl9bL7nhmy+Z1dFZ4AJ5+1OPBbniatewEk4WLZFIpEgLz/IUdcd2Oq4ALxy9xT++uGflDEy6iifvvYln7z6JSN3WLvDuQ12WpeX73gjq60X7X41AEWDChh/xq5pt5H+/W1W60pIOlSV2X/O6xXnZbkRS3P8rTlsa7aneVJyOyUVRnRHG+9DSq/K0s+z3RsfgDDEf0oZ2J0Njf2MVu1lCpi2Ok4ORF5HI6+jUg75eyMF+yH+VZFBt6NOPTg1YJW7XolUjaONmWquJSD+PcQ+g8B/a9U6E57zshDQ3BjmscvdfcHvOO1BNtl9ZE7y6N998FNG6X51lN++/KNLocV0JFwG+naHRy59hvvPf9w8AasilsWkuyez+qYr878Xz6CgxF06cm+hGjUquomWQoLtJh2n0pwrfyljcG0XCo5AsNGGW4BmWtN1rHKzAhLc2FU34l8JzdsRwhNxlXWUFgXN4W8aeRNjdzociH8N2Fil16J6GTgNYBX3arq2ZVkcdMne7HrCDrz79IfUzK1jyBIVbLbHBl0CWyfd/aZRmk3Xl23x6n1Tujgv6267JkutNpy/f/zHlcRAfXUjd5/5MNWzazjy2q46NsVlha4C5YvKurfSkAlVpWZOLYhQOrg468OARiaTOZUsAZHsjp3Gp9MzkanuXat154A2kXbFRyuh8Va0+VkjT2APM1tK7baVXJH400V1d9sE13vOSyuewu5CwGevf0W4MbMuQwtz/67k+w9+zql/N9VzAVZcb7nMqpti6svk5burrZIrbzz4Nvef9zioWeVxHG19Qv3ug5+4ZO8b+mTcjIRfgcR0Um/NOKBhtOnBnLoUEaTwMLMcXnK9qWw76C5k8DuuYwha+yq5AkLj6OmtIKf6TM48XFWzTt7QRYKIXd4nOjMApYNL2Omobdnv/D3Z9sAtUmbkzPunKqN/5yQc5vzZdQKybZvLXzmHxZY3AZu2z3K1AvjM9S8z4+d/uxzfZLeRWHbm6xdZZggPXfQkJ256LhftcQ3vP/8xiUT3twYdx+HF/3uNA5Y/jnGLHMa4YYdy0EonMOmuNzNna2kzWZ1idXHfsorptvMiBZBlW6rVlPivOLXn48zZCGfW2hD7iuxbVQrObFO7rNu4eXAQIyzp0YrnvCwE5CL0BZinpxxYa8vVMz7tWZawykYrss2Bo0zl3gzOzm4njOlw8/72/R/537hr2a3iIHarOIiL97yWb9//MSf7wDwVPnLp02nvcU7C4dNXv2T6N3/m3HdP0PArZP6aJSD8Urf6FqsACY1B8icgwc1zjp8BUyHXKvkfMvhdKDyT7k0SQcilUKM1GHdBxwOj+J+qZl3tsGyL8kVTb9NULFbOnV9dy4XPnsZiyy+SNT27pb/X7n+ry/FBQ0vZ9YQxGf9MM3+fw9tPfsB37//EBy98woW7Xc3Jm19AY11u9wkwr/26w27n5mPvZub02a3H//l1JtcfcQc3H3t3+tfjX5nMTqoFvhWz2iB525NVCC71lZC/r6tsIw1PReftbKQAnHlA9sKfbSQg+r4pzNgd7CWM1lNG4kg3tr4WZjznZSFg8RVyi0IfPLw8e6N2bD5uQ0oHF3coctcex1H2PGUnCorzOf/pU7F9Nravra2VdGa2GL8xY47YuvX48ze/wkmbnsf7z39MfVUD9VUNfPDCx5y06Xk8d9OknGz897dZ/PPLrIwPMZZtMe2lz3Lqt8c49WR9enPmj4CVqoNG3sOpPQetv9So7uaNJbfbgiCDbs0tYyo4GjJOKBb4RyC+7lVj7m2+fe/HrHIATsJhmwNGpTz30ye/cuUBN3PFfjfx1w//uB537ozUWwmHXjGBPU7eqXUVpyV41h/0tTo1LVtULU7Xjx/9wnWH3eZ67BY+nvQ5r9031fzSSacG4KXbXufLqd+mvFZC48n82XeQ/P2yG+FfBwIbkNoRkhT/TrYLbmEy/bKgThVaczzGoe5B8HrMXd2oLsR/zZIdaIO9pEnL9mjFi3lZCFhlwxWoWKzMLG1noWLxclZcL7fChMFQkMteOYcztr6Yhtqm1oyjFtn9/S8cxya7jgRMCYHbv7ia526cxLvPfEg0HGPp1Zdg7LHbMWqvjVuzMX75/HduPeFegA6xAC3//r8T72PVjVdkhXVSa3l0Jpoh5bUFsYRoOF2WTh/hWxZin5P+pijgW6ofDTKoU4NWH5ZcGjcprMkzRu1Xw2S9kdtLQ+nNHbIu3CBWPhSdgdZdmOKsBVhIUYryB/OJ1++fimVLBw2azvj8PjbcaV2qZlXzwi2v8tGkz4k0RcgryOPXL6a3flfcIkLaGkm2bXPE1fsz7tSdee/Zj6iraqB80TJuPe4eYpp6hcJJOLz79EfM/nMuQ5cc7NqOF29/vYPgXRdbfBYv3fY6a23ZtaSJ+JaAovPQ+ovpqE2UdDKC20IouzifiEDp/6G1pySzeZJB78RBSqHkSsSpRJufB61KitSNh+DmJpU5G03PYLLaeph4241tTY1+jFYdTMb7g1WSLIbqrTW0x3NeFgJEhO0O3oqH//dU1rbb7L95t7Jull97Ge776SZevXcq7z33EdHmKMuvsww7HblNF2doyZUX58TbD+fE29OXgn/h1lcz3tBtn8WLt77Kqfcek7aPRCLBtBc/5bX7pjL7z7mIJWlTuQESsQTLrrlU5hfay0j+eLT58QwtFMmf0G/2tI5afayptwJ0uXFqI9grQ+JH2m7oBRBYA+zFTWBwaGfE1/3q3JK/DxAwGVdOZdsJe2mk5GIksHbaa/ubef9UZXRcwHwWpz7+PlcfdGvKiT7XemCJuMPoDJWzwWwh7XTUtgB8MeUbwlnqEakqX0z+hu0O3tK1HdO//jPjllki7rSq/KZCCvYF31Jo450Q/QhQsJdCCg6A0HjXxQrFKkQG3YHGfoHIm6hGEN8KkDe6VUVX8nd3/brao7H0aszu8UNg/dzG1QRacwptVahTYC+HlD2I2Lmtlv8X8JyXhYT1d1jLlfOy0djcvmDtKakoZvzpu+QsZZ6Kb9/9IeMNPRF3+PqdH9KeDzdFOG+nK/hy6rdtT4YZfDLLEooritlw5/6N1hf/qmj+IdB0D10zLywIjMwtXqQX0NjXEPs4QwsBSUD5m0jiV1MHKbA2Ir0baC35e5gn7+gnJr3Utzj4Vh9wWhZliw7KWKUajBLvlQfc3OOHdzArhJvvuSHLrbU08Vicz17/irkzqigdUsz626+VUmbArXOUTW+mM27KCeQXZ24jwU2Q4CaoxoAEInk52dChL//y4F++pwXuO9HTas8WhPbMvUxG5B1TtDETid/MMpxHFzznZSFhpfWXY/hKizLj55mpVx/E1CZaoZ1i6PzEciFyZfvTt7nt5Pv5+u3vgHY1ltJMHLbPwvLZnPfkyfj8/f+Rl6LT254+E38nD5ZC/gSk8KhuZ9Fo/G+zamEPdSU/3npduGXpPd1EphD/GbH8iH+LbtnmFhE/BHPTHepvtt5vc15PETzbgmVbFJcXUV+VS5Bnmr4sYcyR23DUdQfw9lPTuPnYu6mdW9d6vqAkn0Mun9ClMOlyay3lamtqpZHL52TPqHEb8fAlT6ddfTGOlru/n/mc903GWE+Q4EZo5LUedFAEUoBTdQwkfgDyIG9bJH8vxM5QbTz+K9lLfTgQ/wMCqWNiNPYTGp4EWovYS0JoFyRN/Iw6TaB1YJX2yIEcKHibaAsJIsLJdx6J7bO7BNZatoU/4OOkO44YME+162+/VtoAYDA2j9w+dfptXWU9r983FSfDFlELPr/NqL025taPr2CNzVbptr09QUSQ/PFIxZtIxRSk4g1kyPtYRSd0q3CcRj/BqRyHztsKrRqHzt0cp2o/NJY6cLIrEVxlFblJY/0PsOaoVVl/zNops+hsn0XpkGL+/S2dGJt7AqEA9/18M8ffcigfT/qCS/a6roPjAiaz8Kaj7+Kl21/vcLx0cAmjxm+c9jtl+yxW3mCFnLdNxxwxmvziUMp+LduiuKyQ7Q9xvw01IMnb2TxMdHc61Fpouguib0BiBiR+hcbb0HnbodEv018nIVypBqcIblcN41Qfh1buBI13QtOTaP0V6JxN0MaOFeU1/itO9YnonHXQuZuhs9fBqTnTPPwswHjOy0LEapuszPXvXMzqm3bUNVhjs1W4/p3/sepG2dMS0+E4Dq/dP5Wj1z2d7YJ7sWPhvlw24QZ++fz3bvW389HbmiykVHOomCfQnY7eNuW1377/I/FY9uXv0x84lonNj3Lmg8ez9GpLdMvO7qKRD3GqDseZtRrOrFVwKveGyOtgL4b4luz+akvkA7Rqf4h93fFE9BO0cm80+lXWPsS3EllTT6UQcljNWZgRES546hR2OGx0F1n8VTdeiStfPy9jrJVbznviJBZdZiiO43DHqZm1f+4565EuwedH33gQS6y8mHlAafe9smyL0iElnPVI9sybzpQNG8TVky9g0FATPGz77dYV0fJFB3H1lAspLs9RlG2AIVYBUnaP+cz32oaUA9qMVh+OahpBRjeaTNaiKdPJtfacdgJ/Ccz3WYE4Wn9xUqIhWbZg3u7J8gYt98yYUfiu3A2Nd+/+PRDwahstpMz5ex7Vs2oYNKyUIcMretRXIpHg8gk38vaT0zoExdo+CwXOffxkNt1tZM79TnvpUy7e81ojKNeu2KNlW5z/1ClpCzi+99xHXLT7NVn7P/Oh4/u9OrXGfkLrzocuQYDJAoj5ByNFZ3RrBUzVQeeNhsQ/pN4js5J1jZ7P0k8EnbOJWUJO10/+QVjFZ+RsY2+gTg3EfwH84F+lW6tTfUXN3Fq+nPItsWicFdZdliVXXpw3Hnqbqw64pfudCiyx0mLc/e31iAg/fPQLx294dtbLLnz2NDbuFMPW3NDMU9e+xCt3T6Z2Xj2lQ4rZ/uCt2OnobdJmL7mhpU7UN+98j4iwxqhV2WjndV3VOFpQUKcGmp9Bw1OACNiLmbiUDuUBukFoAlJ8VsrPsVNzFoSfJd2etxRfgeR3jInT+F/ovK3TXgMC9jJQPhEqd0pW4U5T8dq/Dlb5wynOzR+82kYeDBle0WOnpYVX75nC209OAzpWsk3EHUSEyyfcyJoz7sj5CWzDndblwV9vYdJdb7ZqRaw5alXGHL41gxdPH12/0sjls2YWISaFvD/R5pfR2lNJfaNIHmu618R4BDNnkoApLUDzc2jTY5D4AwiA1mS4woH492jsR8S/UtpWIkEovQGtPjxpV/tVLAt8KyOFx2a1r7dRpxatuywp2pdcGZJSKDgYCg4fEKmiLdsz7fnrh3+yfx4zobDf+Xu2OrSdt4rS8eXUbzs4L3WV9dx0zN28+0xbfbHauXU01DSSX5xbxe/OZKsTtTAgVikUHIIUHNJ6TBPzoPlJs5KRmJ3l+5eG5kfQ8EQouSgpuNduzJKLUG2CyCu0pYCbv50UntzFcQGSKy6Zyi6ocVgir0HilwyGJSD2MRqfjviWzvllzW8858UjK8/dNAkRSLVGp6rEY3Feu28qe566c859D168nAMuGs8BF7mvSFyxaBmb7r4B7z37UcpAQsu2WHebNVlkmQzBcr2Mxv/K4Li0x0YbH0KyOC+qEaPDEv2QthuVS4XUxN+QwXkBTP2j8qdNYcbwq0AcrMFI/r6Qf4DronK9hToNaNXeEO9USkFrTBHKxD9IyfyvRt7c0MyUR9/jhw9/wbIt1tlmTQIhd1uA/jwfsXC8NXZGxDg8h14xoYNDVLF4JsGyNj586TMOvmwfvv/gJ+qqGrj/3MeY9cfcDt+JaDjGczdP4t/fZ3HRc6d3qXrtkRmxK6DwaKTwaLThLrThGrqVUqY1aM2JUJqH5LUFwYsEkEE3orGj0fDL4NQg9uIQGps+2FebaF3JzUT8V3e2xX8Dz3nxWNiIx+L8+f2MjG0E+OlTl1+UXuKE2w7jrx9m8Md3yaAzNYYIwqLLDuXUe4/uV3u06VHc7ZcnksJwWfpruAWiLenMOd4sXardin9lpPQ6VK8BYr2eCp0TTQ9D/HfS3pCbn0Dz98ypAndv88WUb7hwt6tpqm/Gti1AeOWeyZQtUpp11WXRZYdy30838cXkb3jnqWk01Tez2PKLsP0hW3URjVt2zaVciU7O+mMO44YdmrWumTrKhy99xudvfsO626zp6rV6pCA4Ehp6FmWh9Vejgc0Q6VjjSvwrIn6XMYn2smQvl+BzH7Mm/fug0lt4zotHRsQSF1s0gi/Qvx+l4rIibpp2Ga/dN5VX7p7MvH+qKBtWyvaHbMV2h2xJflF2fYpeJfoxrqXFswTrqkah6VG6tc9uDQZ/DkUSIbkd07+Oi2oUwm+Y5XSnFmLfkfn12mjTM0jJ/HFeZvwyk3N2vJx4NG5W5dulJNfMqcMf9JOIxdNmwB1+9f5YlsU6W6/JOltndiBEhJFj1mHindkrLrstyGrZFq/dN8VzXnqA+NdAfatA/Ptu9qAmE2nOyih+NLgFUnAoEhiRWzd5o6FuUHILK9XnzYa8MUjetkkV6wyq4lKywFaq9pwXj4zYts06o9fg88nfpNV6cBIOI3fo/6JhoYI8xh67PWOP3T574z7HbQCubWr7ZCLxl6kz1B0KT4ToeziRd0FjiH91cyPr522gTGiiEq0+EOI/4Wr5G4BEm0bOfODZGyaSiCdSOvEtAedLr74E07/5C9tnIwKJhINtWxxz0yFdAmuzMWKLVV05L25xEg6zU1S9Hiho/FdIzDHOt2+5ASPp0BkZdDs6b3ujQt0jYhCZjEbehJJrkNCO7m2QAJRehVYfiXFe2n9/bLCGIkWnI1YRWnAQNN6Rvq/CIwdUQHwueM6LR1bW3W4En76eequjpZruJrt1X7l3oSC4CcSzrR4ACFKQrRhdN+MS7GWg4S7U+YOWr7Y2Pw71V5gaRANEDE5rjmu3H+92dcnOUryub3n3mQ8zKuyKwKBhpZx+/7G8/eQHNNY2sfgKizJ6v826lUq84c7rUlCSn3PF+HSY72lpr/TVm2j0E7Tu0o6rGb6VoOgsJDjwgoPFHoZWvAlV+0Bievsz5B4LY1ZqtfYMCGxg4mvc2hHcHMoeS24vv5scOwT5uyIFx7b2JYUnok49ND9Kx4BghYLDIf/gHG0eOHjOi0dG/v7pH+49+7G0AbsicOnEs/AHBp5yZn8i+XuhjfcAMdLfxCwIrIc23meyjYJbQmImONVgL4LYQ0wze0mwhoGTo/BZor1mQ7s9cW0wmUUVz/eoHlFv4ISnQOzTblyZQEK5B4T3FtHmzAU9VSHSGGG5tZZmubV6HvwYDAU59uZDuHL/m7s3L3bCSThsvd+oHtvVm2jkQ7T6ILq8uPhP5vigu5HgJvPFNgB1Gs1nVWPgWwnxLQ6AZZejFZMg+i7a9Dw4c8Be1Ijd1Z5iROtyIgHNT0HhUTldJYERSNndxjnRRrDKuqyiiNhIyYVmBSb8IpqoNIHAobE5qXIPRDznxSMjz1w/kUQ8ntJxAbP3/9f3/7D0akv2r2EDDLEXgUG3mIKHHQqttcw8tjkW/Rj4GG1+CiOVHmttp4FNkeIzjYNRcChaf0kvWadAAm28HynprT4zjKYK0Y/QyKvgNCK+ZUz9psQMqDmuGz1a4F8bAvNvIlt6jSX44cNfMlZXXqaXi36O3nczgvlB7jnrEf75ZWbrcV/AZ2JvXGLZFqtutCIjdxw4xS5VFa27gNZVgI5nzf/rzoeKN/s9RV41jjbcCI0PAOHkUUEDm5uiofYwU1AyOAoJjup07QWm+rX5ze2IaOz7bsvjiVUEZF7dE9+SUHhcL9eEmr94InUeGRk76ICMS9eWJWy820jOf/KUtG3+S2jiX6PLEnkXSBh1zPAk8++sNzMbJA8pexJ8y6F1F0PzI7TVP+nhI7gUYQ39rPvXu0CdGrMXH/uctoJ3LTYHMKUJ3L6G5K02uA1ScjliFfamqTkx9fH3uWyfGzK2ufOra1h69d534lWV3776g7rKBoJ5fk7c9DzX14oljBq/ESfefkT/B7FnQKNfoVV7Zm0nZY8ggfV6f3ynDpqeQJufAacK7EWR/PEQ2hWtPR/CL9D1c2qDNQSpeC5t/SAADb+J1l/TaSU0ExbkjcEqvba7L8eMq0l9F21G8UH4ZYh+ClhGGiE0HrEHZ+1nfuKJ1Hn0GpGmzNkMjqM01aWRv/4PIvaiSNEpUGScOafmbMxN0M2EnQANo/WXYJU9gJRcgIZ2RpueMPvrmoD419m7SYeGs7fpIVp9XLtU8M7ZV27HzzNPiVY+BDZFfP1b2iEVm4/bkGkvfcrUx97r4ENaluA4ykGX7N0njguY7KPlRpitqF+/nJ6ltWHElquxzQGjWGvL1ahYLL3g43wj8Y/Ldv/2+tCamIlW7gPOv7T+IeO1ZiWo8cGkIm1KY8CZY1Ywi05O27/kjYbgViYg3alBG2/Lko3odFnByRVtft7EvyT+am8JratYsS+g4U4YdJtxZBYCPOfFIyOLLr8If/8wI+22ke2zWHLlxfvXqAWJDjVF3JCA6DQ0PgPxLY4E1kICJvVZE3PQuZvRPalyAd+y3bjOPRr9CmIf9bAXgfwJWIWH9YpNvYVlWZz50HGsvslKPHPDxNZtnBXWXZZxp4/tVnmM7lC+yCBXC3Cjxm3E1vtt3i82dQtrUO+2ywGtOSUZT9b+TUz+O+tqSQKanoAMzgsYh7NVKFJ8aNWENC1NdhB5qeu4uUEb70brr6JrxmP71+cAEbMqOvjNzNWuFxA8uUWPjOxy9HYZzyfiDjsc5qLA2H+V7lZmTvFkKvaQZJp1d+rJqFHP7UM0Mpnu2dYO3xpIUe4FBPsDy7JYdsRSLLvWUpQOLqZ0SAmLr7goQ5bonTIcbhg0tJT1tstckR3gu/d/ZNYfc/rJqm4QWA+sLO+bDILABr06rMZ+TAaMp3ugcLFCqtWoun+AkMC6SMnlmO9Gy98t+dMagpTd3+10ZU3MMltU5rdsrYGYWcldCPCcF4+MbH/olqy5xWqtkuYttOgw7H/BOJZcZfj8MG3BwLci3fqaWakD8KT4PPOk1sVJsDExJaQYTyC4hQmaTYOqopFpONUn4MzdHqdyT7TxPhMb4BYN06OqvNYiSPkjiAyc2Iz2PHvjRE7Y+Fzef/YjaubWUTOnlqmPvcdxI8/ilXsm95sdh10xAX/Qn9GBmfLYexy1zun8+UNmdez5hYgPKTo1c5uiU3pfg6RLwdRuIMU5BxFLaDdk8FRTMyw4GvK2Q0quQQa/gfiW6r4tzc/leIED0Xe6P94AwnNe/kM4jsOfP8zg1y+n09zgLk7FH/Bz6cSz2e+8PSmpaJtQl1h5MY658WCWWGVx3nl6GlWzqvvK7AUaKdiXnLd57CXBt3Lq/uyhSMWzplihtAS0BSG0O1IxESm9GXyrtl1gDTOCVaW3IJJ6l7gl80OrD4DI62bPP/YVWn8FOm97NO4uzkJ8K5FdtjzD9UWndZms/vz+b2494V5O3ORcTt/6Ip6/+RUaa3sqEJY7P378C7eddD/QUV03EXdQVa4//A7+/L5/RPSWXn1Jrn/nYlZYZ5m0bRJxh6a6Zq4+8NZ+sak7SGg3pPgSkJZA7OR0JAVI8YVI/rheH1Odnurm2BDao1tXij0MKTwWa9D/YZXegIR27rFzpom/yXka1+5/RwcSXrbRfwBV5ZW7J/Po5c8y+4+5AARDAbY5cAsOuWxvCkoKXPWTiCeYO6OScGOEBy96kvee/ahVcdSyLUaN34jj/+8wCnpYwXZhQjVhCrJFXm85kv2i4v9h5WcvVKmqoM0mQ6nTk6A6dUafwhqU9SlRmx5NyoinwgZ7caTiVZMemtGeZnTOJqANpH6dFiY9PNrufDKTquAIU0W3nbLqM9e/zO2nPoBlW0YgLlm7qriiiKveOJ9l1ui/9Pwr9r+Jtx5/v4Pj0h7bZzHm8K057pZD+82mv3/6h4NXPjFruzu+vKZf36tcUQ1DZGqbwm7eFn22+uY03AkN12RvmBIbrFKk/PkBEzPi1F0BTQ/i/qHBhvx9sYrP6Uuzuk0u87e38vIf4IHzn+D6I+5odVwAIs1RJt75Bidtdr7rVRjbZzNoaAmXT7iR95/7uINUupNweOuJDzhru0uIRWMZevlvIWIjpTcgReeC5SawWRAnc0G+tr4FsfJTOidiFSN2eXbHRTUprpduuycBiT8hkn2pWSSElFyDcUg6OzqW2UKrmIQUngr+NcC3POTtiJQ9gVV0SgfH5ZNXv+D2Ux4ApU3ZVo299VUNnLnt/4g0dzOeKAfm/VvFr19O58sp36Z1XMCsdHz1dndr3nSP6d/8lb1RDu3mFyJ5SN72SMEBSGiHPt02FMvlA21gc7rks/hXR8oeHzCOC4CExpDbaqeD5O/dV+b0K1620ULOjJ//5ZFLn0l5zkk4TP/mL6479HbOeOg4fP7sH4c3H3qH37/5M+WDtZNw+OHDX3j36Q/Zcp9Ne2r6QoOIDQX7oXm7wtxsQmGCxn/tPzEpZ7aLmkE+NPoRkrdF2haqUYi8bVI1Cw6H2PfJvXUHrHIkfx/IPxixCqDwMCRLNtGT17xoVlxSiMI5CYfq2bW8/eQ0tjlgVPbX2A1++uRX7jnrEb6Y8q3ra+wsQbS9TTDkbssh4LLdQMRol/xtVhjtxXqu9ZNmO7YzUvI/kABEPgCi4FvVfdXnfkT8q6PBLSHyFtkKm4KDFF9mRCMXAjznZSHnlbsnY/usjE+Nbz35Ad9+8BOXv3IOS62aOfj2lXsmIwiaZvvDsoRX7p3iOS8pECuItgrOpcMCcbeN1xM0Ph0S/6Ku97/Tb3dp+E209hzQatoKLfog/yAoOAqxinIqtJeIx2mq/JgNt4lSW+Xj+08KcJyO11u2xedvft0nzsu37/3AaaMvTqummwrLtlh32xG9bksm1hi1KnkFwYyVpf15ftbearV+tKr30OZJaMPN7XRXAmhoLFJ0ckaRuIz41zAOTPwnUk/2FgS3ROxh5tccCibOL6T0erT27KQYpiT/SwCBZAX7AAQ3MStb/vlTlb0v8JyXhZx/fpvl6iZcNbOaU7e8kPt+vJGiQemfbub9U02mMCnHUebNcLft0UI8Fufvn/7FSTgMX3FRAnkL7pNiJkT8aHAriEwmvQMTR3qg+ZANjX2N1v2vnZAckNWhiiOB1FXDNfIBWnMsbc6N03oNTfeAWEjRae7ti3wEdRdw8yttehvzZvq463+L8tbz7TQ/VEnEc9HPcTm+KtcednvaCtIpEeO87HTUNr1uTyZCBXnscfJOPHzJ0yl9SxHY9bgdXMe0DSS08QG0/lI6bmdGofkZNPoRlD+FWKU59ysiUHotWrl3Mjar/WcoWZG5+IKeGd/PiISMAxM/ydxbNAy+5Uz5All4a855MS8LOUWlBVk1IcAsxdfNq+f1+9/K2K5isUEZn6ItS6hY3N1TUSKR4PErn2fv4Udy+BqncORap7HnsMO456xHiEYWzrgZKTyCtqejztjgXxMCfVNNV6NfGWXR2DedzmRyAmxTJDK4Zeo+61skzdNM9I33ool5Lu37GK0+EEl0zG4qHxbnrP/7i9F7tjnFqrDyyBVc9ZsL30/7mRk//evacbFsC5/fxwVPn8qwpYb0uj3Z2Pf8PdjxCOM02T4Ly7awfeb7vs2BW3DwpQtefIMm5qL1V7T81ulsAhIz0Ibbu92/+JZDKp6H/L1BkskFUgoFhyAVz/Y4pkVV0cQcnOjnOLUX48zZEGf2CJx5u6FNz+aw2pkb4lsCKTgIKTwKydt6oXZcwMs2Wuj59PWvOGs798X4Vt5wBW56/9K05yfe+QY3HHVnxqSZsx4+Puu2kapy1QG38OYj73TpSyxhxBarcdmks13F4SxoaHgqWnuyqQSLj5bCifjXRQbdimRQFVWnKul8CPjXRKwS1+M6lXsmr822N97izFggRUjZg4i/a6yAxv9G52UTKBSk6LxkyngW++btknY5XxUaam32HrEK8ZhNIOTnsb/vyLhK2B3eePBtrjrwlqztFll2KMVlhaw9eg12PHIbhgzvP6G6VPz5wwzeeOAtKmdWUza0lNH7b87Sq83/sgrdQRvuRBuuI+PnVAqRIR+nTf93PZYa4bbe0JNRVWh+Am28u5NMfwvJLdXgFknpgv51LlQ1p+3b+YFX28ijlbVHr84qG63Ijx+lr4jbnnBD5vozo/fbjBf/7zX++O7vLv1ZtsUK6y7DpntkV8X8Ysq3vPlw6gwWdZQvJn/DlEff67OAzPmJ5G0BgfchPAmN/wQSQIJbG2ckzc1FnQa07hIIv0hbdkEADe2OFJ+FSF7GMTX+e6etojT4ljeF6qQA8sYg+XunL+amNdn7w3bVTmO/QPyHtOdFoKg0wcitG/jwjTLOe/KUXndcAApK3aX5n3jb4aw9um/iB1SV6d/8xdy/51E6pIQV1l0266Sz5MqLc+gVfaug3F9o4g/aYqfSNWpAZ6+D2sPBvzISWB/yts85oNe8rz3UWlFFm1+C+stAM22ZJ19P5C1ovA8KD+/RuK5si32NNtwDkSlADPWtgOTvD6Fds0ofDHQ852Uhx7IsLn35LC6bcCOfvJJZXdL2GfnzTARDQa6ecgE3Hnkn7z7zUWv8S3udF38g+xPFpLveyBhILJbw8h1vLJTOC2CKDubv4SqrSDWCVh0A8e/puMUTNU96iekw6N7MT6GJmW6sQkJ7IAX7u2gLWIuQvdBOHOzFsvflzM7exIFNd12aA686t8/qaa09eg3yi0MZi40WVxSx+mbuslZy5et3vufW4+/l96//bD226HLDOOKa/dlo596vrjy/0ESl0T5yasAeDnmj2xxwKcZdIdNmSPwMiZ/R8AtQdwmUXIKEdupDyztiBB7PheancrkKbXrQbFP1oQOh4VfQmpNoC+AF4j+hdWebqvel1y3QDoznvPwHKCwt4LKJZ/P8za9w6wn3pm2XiDvsdGT2oMPisiLOe/IU5s6o5PtpPyMCq268kika55K/f/o3YwaUOso/v7qZcP8DNL8A8c5xKi04EP3QBOplCvR1VeBOIYcsDrEr0OCopAZMmrgZyYegiwDkbHVuAMuCLfYZi+T1XSHQvPwg+563J3ee9mDaNgdeNN6Vg54rX7/zPaePvhjH6fi9mPnbLC7Y9SrOe+JkNtujb+Kh+gtVB224FhrvxaxEWEAC6gqh+GIktCMS2gFtSn+fSk8zWnuqEZIL9lO2Y3hSjo5LEmcOOHOhJaupl9FEJVpzKsYJbP95SjqFkVegeSNwIYY5UPGcl37kl89/57X7pjLn73mUlBex1b6bseaoVfttH3KXY7fjl89/5/UH3urwwCyWoI4y7tSdWWVD91oGgxcvZ/M9u3czLS4z6bOZQq4KSxe8LIm+QJufJPMKh4U2PZk5S8m3MthLGcG5tP2ETA2kHJCi09HoJ0aHo4MDY+yVovPNKlM2fCuCvTwkfk1vnxRCcFRO9nWHPU7ekUhThEcueZpE3MHyGYVf229z0P/2Yqejej8bTFW55bh7cBynS7Bwy1fkluPuYeOx62P7bOKxOJ+/+Q1Vs2ooX6SUtbZafYGIDzOOy13tjiRaTqC1J6NNT4JvGfCtDvFvcbcC0x5BG27q4ryoRsGZBxLKGFOWK9r0IFm3uNLSh3+v5mcw722690/QxgcQz3nxyITjONx09F1MvPPN1q0S22fx6n1TWWfrNbjwudPJyw/2uR0iwin3HMVKI5fnmetf5p9fzMrGUqsOZ9xpu7DVhP7TZtlyn034cmp6ATDLEkbvu1m/2TOgScwk803cgcS/GbsQESg6A605On2bouONiFwOiG9ZKH8SrbsUoh+02WkvaQrruUz7FhEoPgutbpHX7/p6pejUrLE9vYGIsO95e7DTUdvw9pOmblfFYuVstucGFJelLpjZU37/+s+sSrjVs2v57I2vaahu4LaTH6BmTm3rudIhJRx9w0FssdfGfWJfb6CJShPrkYnYhxD7BEiY7SOtIzfnwDF1uRKzEHsY6tSiDbea1RE1NbHUvx5SeAwS3KgHr6bF3u9ysK0FMbFlVnnPx0+Dxr8j8z1DIfErqvEeBz3PL/olVfrWW29lqaWWIi8vj5EjR/Lxxx9nbP/UU0+x0korkZeXx+qrr86kSZP6w8w+47HLn2PinW8CbUXdWn5+MeVbbjjijn6zxbIsdjpyG+778UaemXcvz1Xdz51fXcvofTfr10j0LffZhMWWXwTL1/UjaNkWxRXF7OhiC+s/QVbROgvSBdW27yZvK6TkepMWao4kf4SQojMg/+CU16lGzZNrun59y2GV3YcMfgspewQpfwmpeC1nvRoJboKU3mZSszucKEGKLzYqvZ1ti/2Chl9HI9My2tgdSiqK2fnobTnw4r3Y8Yit+8xxAZj7d6Wrdu8++yGX73tTB8cFoGZOLZftcwNvP/lBX5jXO0TeIHNafgstqzGNZjWu4EQgx5IB2mAcl8rx0PRQq+MCQOwztPogtPnlzF0kZqMNN+NUHYhTdQjaeA/q1HRs1K2MIUUKDuvj+62f7NO75aJNVzQ+Aw1PQSPvm7pU84k+d16eeOIJTj75ZC644AI+//xz1lxzTbbddlvmzJmTsv0HH3zA3nvvzSGHHMIXX3zB2LFjGTt2LN9+616meyARDUd5+tqX0p53Eg5THn2PuTPc3bx6CxGhuKxovm3NBENBrplyASussyxAB32KxZYfxrVvXcSgIe7TgBdWNP4rJGZkaeUgod1c9SehHZAh7yGltyJF5yAl1yGDP0AKDulwMzUZFC/izBuLzl4Nnb0aTuU4NPxa+r7tRZDAeoh/xW7fmCVvC2TwVGTQA0jxFUjpHciQ95H8vTq009gPOJV7opVj0Jpj0eoD0DmboI0PZdyKHKiUDHYn6/Desx9lPH/7KQ+QSPS+eB8k4yga78epuwJtuAt1FQTeDqeW3KacBCR+QQJrQt4OdK2XlQ4/WMPQhluS26Sd3w8HULT2bNRpSNmDhl9D525pVm2iH0D0XbT+KnTuFmj007aGwS1ysCvZruAoyNvZ5TXdQ4Kbk1W/KbBp1tpn7dHEP8aJm7cVWnOkcQDnbIQ23Ipqd7bNekaf67yMHDmS9dZbj1tuMdoJjuMwfPhwjjvuOM4888wu7cePH09jYyMvv9zmFW+wwQaMGDGC22/PLkw00HRevn7ne04ZlV2x8eS7jmT7Q7JpZix8qCo/fvwrX0z+BifhsOrGKzJii9UGvB5Bf+HUnAzhV8h4I7KXRipe6hWtCmjJoLgEmh+i45J98t8Fx2AVnWDaOlXQ9Awa+wbERgKbQmiHPt3e0fivaOUeRkk0xZK9FJ6EFB7VZ+P3BY7jcOAKxzNz+uy0q/3ZSgG0cPXkCxixRe+VBFBVaLwdbbgJ837btDgA5B+EFJ3uahLU5klo7Yk5ju6D/L2R0B5o5a5k36KxIW8XpORidM76oE0Z2gpSfGFroULVBEQmow33QvzzNNdYpop7xWTELkdj35rPYka7/Ebx1r8Wkj8+pWZSb6MaReduk8ziS3XvEKTsIZNi7qa/xFy0cqyRUUjVX2gCVknPlYkHTFXpaDTKZ599xujRo9sGtCxGjx7NtGnTUl4zbdq0Du0Btt1227TtI5EIdXV1Hf4bSMSj2dUURSAW6RvVxRZUla/f+Z6nrnmRZ2+cyF8//tOn47nFcRxWWGcZ9jl7N/Y9bw/W2nL1hdZx0bhRBnXqLkMb7zMxAJnaazS744KYuiW95LgAEH0/6bhAx5ty8t+Ntxq13vAb6JzN0IZrIPIahF9B685E526Fxn7uPXs6ofXXgUZIN2Fow83GqVqAsCyLI67JnKK++Th3MRrVs2uzN8qF5kfRhutpCwCN0+q8NN1rVjjckLdVMg06l++3goYR/8pIybUYxynd9TZYg5Gik00mT0bHxbTXuKmbpBpFq480pS7imSQlHOM0JzOMxL9a0i4fbdNpi315UHQmMvRLrIoXsEou7BfHBUAkgJTdD1aL6rPV7qeFFF/q2nEB0Ma70jsuAM2PmFXifqRPI3XmzZtHIpFg6NCOcstDhw7lxx9/THnNrFmzUrafNWtWyvaXX345F110Ue8Y3AcsvfoSaavjtqAKy629dJ/Z8Md3f/O/cdfy1w//YNmWebI+6X7W234tznr4+D4R+8rGx698wZNXv8DXb39nXv9aS7P7STuy1YRNFzrnRTWB1l0GzQ9jbmwWSgLqr4LCk5B0YlVdaq+kwnJxk3ZrZwTCk5NP2JmCJG204f/aqka3LhUkfzpVaPWBUPFGzgHAWW10apKCW5medB1ofhnc6tUMEDYeuz7nPnYStxx/b4eYloKSfA65fAJLrLwYr903NWs/FYt1s2hhClRjpjhiJhrvRgsOzioQJxKE4ovR2hbtETeL/g7iM2UgJDQGAmuhTU9AeDI4/ya/IwB+yNsJCk+C6DQz2WZFW8sDaMONyc8zLuxy0MhbSOGR7exaD216CCLvAxbkbYXkH+Au066PEN9SMPh181ARmQpOGPyrmNWfHFK0VZ2ks5Z5G0qbn0WKTu+p2a5ZMMOM23HWWWdx8sknt/5eV1fH8OGZKyP3J4OGlrLpHhvw7jMf4qTQNbFsi6VWHc7KI5fvk/Hn/VPJyZufT2OtmeDaO1Gfvf4VZ213KTe+fwm2r/fFiipnVvPnd38TCAVYaf3lWlM5n7rmRe48/aGkI2Xa/vbVH1y5/81898GPHH9rXwez9S9af227lYz2ugsJs2phFXeJ6QDMU6qEkmnI6RF70Z7bGH4VrT03md2RjQTEWvb9U93oEyYtNfwSpHpdPcGZR/atAwt1ZuX0fD9Q2HzcRmy86/p89vpXzJ1RRemQYtbffi0CeQEcx2Hw8HLmzagk1Wa/CAxdagirbuxe7iAr0c+TT9yZCEP0XcjbPmt3EtoBrHyzehZP/QDbrjUQgNDYtkPWUMQ/Ao3/CU6J0SUKbgHBrRGrEK27BG1+CHerOwkkb1tUm6HpUXJKy9a22muqUVNrqfkJIHm84WtTQLLkipwchd5GJAihsUj79zBXtLljwHPqRpBIvcDQV/Sp81JRUYFt28ye3VE9c/bs2QwblvoPOmzYsJzaB4NBgsG+TzPuCcfceDC/fPobs/6Y28F5sHwWBUUhzn70hD6brJ+7cRKNtU0pV36chMNPn/zKRxM/Z6Ndek+9c96/Vdxy3D188MInrZoVJRVF7HXmrqw9eg3uPP2h1vFbaGn38u1vsN52ay3waqKqCvEf0cRf0HR/5rYNN0Nojy4piyI+NLRH8saa7qnHAZfBumnHj7yL1pxAbjfvRjI7EYKGJ6d2ynqCVUb2p3YHcSF6N1Dx+X2MHNO1irdlWRx3y6FcMPYqRLSDA9Ny/zj2poOxrF6MBsg6aSVJE/iaCgmOgsDmkPgDTcyB+iuSpSHaf55sQJGSK1rrd6nThNYcAdGPaKvBZZsty+AUNLRnp4eETFgQ2ATxr4pGv3T/OltsC6xlRlE1353IVLp8H6IfmWyniueQHMQfBxySBwSBTPFW0qep36no05iXQCDAOuusw+TJk1uPOY7D5MmT2XDD1OJmG264YYf2AG+88Uba9gsCg4aUcMvHVzDhnN0ZNKwUMEvBuxy9Hbd/eQ1LrtJ3K0WvP/h2xi0ry7aY8ui7vTZe9Zxajt/wbD586dMOYlu18+q549QHueqAW1qzitLZ8+Ktr/aaPfMDjbyNztsBrdwFao6jrRZRGpy5EPs65SkpODKpPptmZazgaMSN/H4me+uvy/EKNymWSuabXfcQqwwCm5E1wyNvx14feyCw4U7rcvELZ7DIMh231hdZdij/e+nMVqcnEU8w5bH3OHXLC9hniSM5cu3TePq6l2iszWWSBnxL9W67JCKC+JbGCo5Eyh9DCk9op7IsENjYBJSGxrReo3UXQPST5G+Jjj8jb0D9/3Cd+RPYBCm9oaXnnGwHpzXIl9gnRt06pSOfAGc22vhQinMLDiI2hHYl83ub6NnqTjfo822jk08+mQMOOIB1112X9ddfnxtuuIHGxkYOOuggAPbff38WW2wxLr/8cgBOOOEENt98c6699lrGjBnD448/zqeffsqdd97Z16b2KUWDCtn/wnHsf+E4HMfp3aejDGS7WTkJh5p5vRfk/MSVz1P5b3Vah+m3r/7Ias/Pn/7ea/b0Nxp+E605phsXpv47iT0Yyp9C6/7X8SZpVSAFR0P+hO4bC2j8L4h/l8MVltGdsZdM1lpKHxeDv/cyXtojRSehldPoKn2epOBQxB7S9fhCwgY7rsPIMWvzw0e/UDWzmvJFy1hp/eVaV1+i4Sjn73Iln73xdWu83dx/Kvn9qz957qZJXPf2xQxdMrsuEID4lkH960DsS1Kv/lmmNpF/3W6/HpE8KDwKCo40MSwSMNsd7dDELLMNmfbzpmkqOXcerBQpuxdp/9n0rehqe9Y47IoUX2TEGQFtfo6Oldg740DTo2hgXbNq6FtpgdwSl4LD0fCk5H2q82sVyNsB8a/arzb1ufMyfvx45s6dy/nnn8+sWbMYMWIEr776amtQ7l9//dVhIt9oo4149NFHOffcczn77LNZfvnlef7551lttb65Ec4P+stxARiyxGBTIyjNw4Xts1h0md7Zk3Uch1fvneKqenUm/Hn9Wyq+t1CNo3Xnt/yW28X2UmlPiT0MGXSrWWKPTzfLuP5Ve0cZU91mpiS3aqQEKbsb4n+itSdnaO8goV7eMmqxxL8KlD2E1p4JientToSQgiOMjsZ85t/fZjH54Xdb1XlH77eZa4fBDSLCKhuskPLcA+c/weeTTS2s1u+igqJU/lvF/8Zdyy0fXeF+rOKL0arxdC0BYQM2UnJlr0zIIgKSRggw+iHdk+DvhL1YR8cFUyRVQ3tB0wMZxrAgOBopOBAJtHPUEulSkduh1Wj1Qcnxl4aiM5C8Lbv7CuYL4lscyh4ztaM6VH/3QWg8UnxW/9vU1zov/c1A03mZ3zx93UvceVpm4a6bpl3WKwHDTfXN7FKSOcMjWz0jy2ex4+Fbc9wth6ZtM1DRyDvt5O3dYkNgJFbZ/X1hUlY0UYnO3YiszpZ/bSS0B4TGIBIye/21Z0H4WVLGoOTtjpRc0rdVc1Uh9gXE/wCrwGwF9HJ2U644jsP/nXgfL9z6KpZltdYNU0fZ89SdOfSKCX365B1uijBu2KE0N2RWPr3lo8tZcb3lXPer8elo/Q0mvgQHs7WzOVJ0onEm+xhtegatczNBZsqSs5DCE1JqAKlG0OojkiUu2vchYC+KlD2K2It0uc6pPQuan8edcnCyP0BKb0BcBDgPRDT2DcR+AglCcONejefJZf5e4LONPDKz45HbMPmRd/n96z9Trohsf+hWvZbpFMwP4A/6MmrWiCX4/D4SsUQXe0QE27YYe9yC+aXOVl+oKzZIAVLcc3Gn7iJ2ORrcEiJvkb4ydAFSdh8ibRLtIgIll6H2cGi8mY7Oi0D4GVSrofRmpFsS6i5sF4HA2ua/AcKDFz7JC7e+Cppc9Wj3lj559QsUDSpgrzN37bPxp3/zV1bHxbIsvn7nh5ycF/EtjQy6EXXqTcaXVdqrBQ6z4l/dbUNMxk/ne11yuzM0LuVVIkEYdLdJK256wmxBWWUmjiO0O2KlXhGS0K5o8zMubYOW74nWXgjBrXpXn6mfEP/qOfw9+o7+27/wmC/k5Qe5ZuqFbH/IVh22Y0oqijjk8gmceHtXjZHq2TX89OlvRu0zB2zbZsu9N8kYkOskHE6560iKyowmhGWbp1MRIRgKcNHzZzB8xZ4FoM43crqZ+yBvDFL+LOLrO40fN0jR6cn6SZ1XSZJPicUXdnBc2tCk/kPnlYSkIxOZCo13966xA5im+mZTCiTDItZjVzxPpLn3A5lbcLeooy7bpejfKjKOTH86LoD4V0jG1WRbybNM/ArQsq1lOihByu5H7PQZMSI+JLQTVvnDWEPewap43mwTpXFcAPCvB8HR5DyVajVE3kGdBrTpcZzaC3HqLkejnyyQ5S3mB9620X+IxtpG/vzhH3x+m2XWWLJVd6WFv378h7tOf4iPJn7e+gVaYd1lOeSyfVh79Bquxpjxy0yOXvd0Ik3RrisrlrDRLutx4TOnEW6K8Nbj7/P55K9xEg6rbLgiW++/+XwRzOstVMPonI3aCWelwFoEBt2P2IOzinr1JxqfjtZdDtG3aZ19fSsYqf281GUrNDwFrTkyc8dWOTL43QW2cm0uvPvsR1y8xzVZ2132yjmst+2IPrEh0hxh3CKH0VSXOfj0/z69kuXXXqZPbOgrNPEPWrkXOHNI7yFaIBVQeAzEPgcECWzQpyUrVKNo3ZXQ/DitOi9ZEQjtDuGJyViilu9HHPxrIoPuWLDTq7tJLvO357x4APDnDzM4fsOzCTdGOjgdYplHtAuePpWNx7qTk/7l89+5bMKNzPjp39YYF8u22OaAURx3yyEE8ha8pVK3aOODaP0lac9L6U1I3nb9aFFuaGKO2f6yisBeJmN8hlN/DTTeS7ZUcKl4E/Et0cuWDjzeeOhtrjogu1T+XmeO5ZDLepYllol7z3mUx698voNUQQu2z2Kl9ZfnhvfSf0YHMk5iLszdGsisKi2lN+dc1bynqFMD0Y/R+B/QkN2JbVux7Px3ssG3ClL+VE6FExcGvJiX/xDVs2t47b6p/P7NnwTzAmy4y3qMHLM2tp1boORtJ97XxXGBpHicwPWH387IMWt3Wa1JxfJrL8O939/At+/9yG9f/UEwFGD9HdamfJH+XWqeH0hSkl4brkvK9rdk6ZQixecNaMcFMCnGrtOM3d5YF7zU0O6wxMqLu2r3+JXPs+yaSzFq/MZ9Ysd+F+zJ9G//4sOXPmtNlRYxU+TQJQdz7hMn9cm4/YEQR7M4LuBDo5/3u/MiVinkbQOqaPPTyYrWGVaIgLT6MPFvIDoNgn3zGVkY8FZeFmDeePBtrjvsNhIJx4g+CSTiDkuusjhXvHYuFYu5Uzyc8/c8JiyZPb30gmdOZZNdR/bU7P8E6jSZmA+nEuxhEBy1QAbnZUIj09DqAzI3shaFileR2FfGmfMtg/iW7B8D+xlV5ai1T2P6t39nlgsQKCwp4ImZdxEI9k0ws+M4THvxUybe9Sb//jqT4opitt5vc0bvuymhwlTxSwsGmpiFzt0sSysf5B+AVXxGv9iUCg1PRmuOJr3zkk0l2gehPbBKLu594wYw3srLf4Cv3vqOqw66pfXzr+2+CDN+/pczt7uUO7682tUKzKzpc7K2sWyLmb9nb+dhECsf2qmDLpQENgDf8hD/nbSZSv7VYO5mqNa0HtLAyKTQ14IVc5ENEeHU+47hxE3OI9KUIShXoaGmkWkvfsrme/aNcrhlWWw8dn3XW70LDNZQsJeAxN+kn/zjSHD+KrJL3lZQcj1adyFoDW3p13lQcAQ03pilB+21gqsLK/+tDbWFiMeveC6t2F0i7vDnd3/z6atfuuqraFB2bQzHcSgsnX8VUj0GIPGfwbcGJj21PUmH2bcqRF5P3rzbEf0UrRyPxv/uM9NUleaGZhIJt/obvcNyI5bmpDuPyNrOsi1XDw0eHRERpOBQ0jsuthGCC2zS57aoOmj0KzTyFhr7pct5Ce2ADHkPKf0/pOhspORaZMgHSOHRYGUTLFTE5z6V/b+It/KyABKNxPjsja9SVpZtwfbZfPDCJykLvHVmqdWWYPEVFmHGL+mVeH1+38L3FOeRE+pUQ/OzaORLUxHY+RPjqDi0PVkWQHBzCG0HNSem6SkB2oA23IyUXtWrNtZXN/DUNS/y8h1vUF/VgM9vM2qvjdnrjLF9WkOsPcuNWCprGyfhUFw+cLLNFihC4yH2S7IIY4s0fzKuyhqMDLqrzwNdNfwqWn8lJP5pO+ZbFSm+AAmMaD0mEoC80V07yN8XbbiR9IJ6yWwkj7R4Ky8LIPFoPKPjAubJMxpxl7YnIhx82YSMW7B7nLwTxeUZ9A48Fmo0PBWdsxlafxVEX0s6LmAmjvY1hpqNTH/8z9QdtZKA8Mto1noy7qmdV8dxG5zNE1e9QH2VSVePxxJMfew9jlnvTL774KdeGysTS6y8OEuuOjxjppYv8N95GNDELJz663HmboczZxRO9TEmXqqb4ZYiglVyHlL2KOSNAd9K4F8XKT4fqZjU55lt2vwiWnN8B8cFgPgPaNUENPpV9k4KDkwKvXWegs3vUnyBqWvmkRbPeVkACRXmMXh45mBcVWWZ1d0HRm6620hOvfdoQoVGC8H22Ubx1mcx7rRdOOiSvqlT4zHw0fivyWKTUbLXbHIg/Bwan07220scjeeqSpyeu854mJnTZ3cJlk3EHWKRGJfsdX2/bCOJCIdePsHEoaXxX8aftst/4mFAo5+j87aDxjsg8Ts4/0JkClp9AFp/RY8E2SSwLlbpNVgVL2KVP4LkT+hz7SSj6ZIuiNYBEmj9pVn7EQkhZQ+aYpRS2nbCPwIZdCeS791vs+FlGy2gPHn1C9x91iMptRzAPNk9PuMOSipyew+aG8O898xHzPpjDsXlRWy2xwYMGlraCxZ7LKg4tedC8zO4r9+CUR2NTHVxjQ/y90EKT+zRxNNQ08ieww4lHs2sOXPJS2e62krtDd564n1uPOouGmoaTcqy4+Dz+xh/2i7sf9G4fi3QOj9Qp8lkBmkD6bZHpOQ6JLRj/xrWDtU4aBgk39VWk4ZfQ2uOy9pOKl5zrZytGgenCiSIWCWurllY8bKNFhLqqur599dZBPODLLnK4h1udruesAOfvv4VX079toMDY9kWqspp9x2Ts+MCECrIY+v9N+8V+z0WEsJvkJPjAuBfBSKTXTSMQ9PDaPQjKHus2w7MjJ//zeq42D6L37/+q9+cl1HjN2ajsesz7cVPmTV9DsXlhWw8dv3/xoqL05jMtKnL0MpCG+/J6rxo/DeIfgViQWBkygKJrmzSMGjEVK5O/IE23Anhl4AYSCEa2hMpODxjCQESs8hc/LGl3Uxw6byI+HLQVvJowXNeBiDVs2u449QHeeuJD0jEzaQxbOkh7Hf+nmxzwCgA/AE/l048i+dvfpXnb3mFOX/ORSxh/e3XYvzpu7DaJivPx1fgsXDhVvK8DQlsjAZ/g8hEF60diP8CTQ8YWfcUGN2cNyAxG6wKyNu6Q82ZYCi7ho7jJPD7+i7DKRWBoL/P0qEHKhp5C6050UWqrwPx71CNptRA0sRstPZ0I9bWiqDB7ZCSS107uhr9FG24A6LvYAQjS0AbzfgtTog2QNODaPg1KH8CsYeaw+pA9H20+UVwqkFTFX1MgeVOY8uj+3jbRgOMmrm1HDvyLObOqMSJd/2SHHL5BPY6Y2yHY6pKNBzF5/dh+3JT1vXwyIZTuS/EPsXVTRsbfMsi5S+hkWlQc6D7gazBWEPe73JYmx5H669IToYt2SVBpOgEyD8EEcFxHPZb5hjm/DUv4xD3fjCdxdefmrnYnke30dj3aOUetAVyZ0eGftvFeVGnDq0ca1Ywuqz6CdhLwqD7sXyLprZDHdAaNPwO1J1prnG1emhDcDRSeiMamQK1Z4HWunodrbb5lkPKX+4QsK2q4Mw0n2FrUaMD5dGFXObvhXvTdQHkscueY+7fqR0XgPvOeZR5/1R2OGYqMgc9x8WjFdW4mQC05wGqUrAfrh0XKTBxDCJImoklLc5cVDuKu2nz82jd+e2e4lteT8RkPjU9ABhRtgnnpE8ttSxlkzE1LLZUPTQ/l5tdKVCnygQyOzU97mthQhvvwjgtbhwXC3xrpFaebnrC1NhK6XAoJP6AeVvg1JyKOm2FUFWjaMPt6NxN0TkbQN3ptATSuiMBkdfRqv2g5ujcHRdAis7o6LiEX0crd0bnjkLn7YDO2QCn7kLvs9NDPOdlAJGIJ3jl3slZpMWF1x94u/+M8lig0PhfODVno7NHoHPWRWevjVN3EZqY1f1Og9tAaFzyl/a3jHapNBKC/L2Q8ucR/wrmkG8p8I/o2C4jPtoL3qkm0PrMBe604SYTywBsd8im7HvyLBDFshXLUmyfmUTX2rSeU2/4GxA0lj2VVTWOht/EqTkVp/oonLorTeXt2Hc4VYegczZsm4iqj0bjv7p8jQsvqgrh13HvKDhIwcGp+2p+muwOs5p0++qDUY0Zx6X6ULThenDm5mB5in5jn+Z+mVWBlN6CBNvKF2jTI2jNsUbQsZUwND2BVo5DnVycI4/2eDEvA4i6qgaa68MZ24gIM3/rwUTksdCisZ/Qqn2SqxQtE0gzND1u9vLLnkB8uQu1iQgU/w8C66KND0D8O0AgsCFScBgE1gP8KXVNpOgctGovXE9o4YkQ2sn8O/Y5OFlUaLUBIu+aGBix2O/U2Yzes5rXHi9j5p8BikoTbDG2mlXWa8KYZ9OqAJyuy0QlWn2QEeJr3aay0aZ7kr+3X1lwIDIVjU4zAcf+ldy9zoWSBO7io5J1fQoOh7ztUzdxKlMf79oQYl+ileNNHEtiusvrsuEymqLwRMQqA3sRCGxsgm9bekhUonUt1bs795eAxN9ow+3IfKzBtCDjOS8DiPyiPCxLcNKkP7dQVOYpc3p0RFVNcGMHx6WFBDjVaN15SNn93epfRCA0FgmNTW5FiavUUgmsiRYcA403uRgljtaeYq4L7QRun0qTy+8iftS/Hoss+RkHnpHOwU8gGSr1qqopqBf/pbV96p8d+0Sb0brzkfIn3dncDTT+N9r0SLLkQhT8qyH5+0Fgo4yCeP2FiA+1h0NiBhknf3tZpOQiJLBehjZDIV6fuZ/2xL/NxdReQ/xrI8ENUp8MP0dm+xPQ/ARadEoHp8fDHd620QAiGAqy0dj1sXzp/yyJeIIt9u77uh0eCxjxbyH+A+lXOBIQ/QCN/9XjoUTsnOTXpWACuTwnaf3lRvvCXtzdBe3aSeFhpN9usMEakv5pHyD2FcS+IOfU8JYVgB5sH2nse5ya03Bmr4sze02cyglGV0TVKNLO28HE+CRmmBWpyNto9UE9FnvrTSR/32wtkLK7MjsugITG955RfYZAcos0Fa6EGrXBvZPu0QHPeRlgTDh3d2zbQqwUS/CWsNHY9Vh+7YWrGq9HLxBzKX3vYnI18QO9p0Qr1iAI7Y3r2BdnHkQ/MlswvpVJf5sSsBaFwMi2I8FRSFHLMrzd1g4BqxQZdF/qANEkGplKtm2ljGQti5Bm3PAraOVuEH7ZaKNoM8Q+Q2uOQ2vPQWuOwigct/+7JP/ddB+EJ3Xf5vZ2OA1o02M4VYfiVO2HU3dFchJ2Sf4E8K9HWtn7onMQe7Hs/YT2AN8K9Ohv4Qor+V9ynLxd3V/qW91sGaVDisi+ciQmXswjZzznZYCx3IilufyVc1tVbW1f0pER2GKvjTn7kRPmr4EeAxPJc9kumPKwasJMWnO3Q2evis5eFafqMDT6ce+YV3ymqUPjEg1PRJuegoIjMKs2qSZDQUr+12UVSAoOQSomQf4+4F/bxOYUnYdUvIH4l88ycgz3AcYpkNy3dDUxB605FTPRtXdOkitI4aeT24HpJkILbbo/53G72BH7BZ23DVp3AUTfhehH0PQAOm87tPFBV32IBJCye5DC4ztqnfhXR0pvQwr2d9ePlY+UPQx5O9Cjv0fmUSC4FeTtCAWHIRVvYJVeCf41yD41CpTekLlF3vZkXsGzIbC5lzbdTTydlwFKIp7go0mf8+d3MwjmB9hw53VZZOmh89ssjwGKOtXonE3IGDAphciQaUgnB0Y1gdacYETgzJHkT1MxWoovQ/J7p8KtU3MOhJ/K7SL/CGNS/Mu2Y741kOLTkUDvFjfU5olo7Undu9gqQwa/i4g/e9v2YzbcijbcjLt09PTI0B8Q6d5KhWoEnbtVMlA29YQrg+5Fgu63rFUTSdn7QI9k753431C1v9FJ6eF71JVgsphjWyC7xv9Eq/ZOvheppkcbSm/HysusRK6qaPUhEP2ArnYLYCFlj3WoQv1fxysPsBBg+2w22nk9Nto5896whweYrRnN3weaHiTdE7oUHNbFcQGg+WkTBNoFM4lp3bkQ3Bixh6XsVxOzTQyGVZZxS0CbJ+buuADEvgF7KSifhGitSUn1uS86mhN5W0PdoKS+R24TpRQen7PjAiSrEPd0Uk5ujXWX8CtZM7u0+mBUiiG0E5J/UNbqzSI29EJlZMs3HK14Dq09P/k57U0HJo42Pdoh40d8S0L5CyazrvmxZG0mASmAvJ2RgoNdZe2JCJTehNaeCpEpmIcBAeLmQaLkGs9x6QGe8+LhsZAgRacb4avwC3SMFUhAaL/kFkxXtOkhWtNXU7dAm55Eio7veDT2oxGKi77feq3610KKTu0SkGk0W67sxqtK2p/4DYl92q1qu0YHxsoY69KCSAAG3YJWHQzEaVuFSDoG1uCkhoh5cm5Jo5bCE5JxPd1AfGR+/7NhgX+dnIKoO6OR92hLC8/UsM6k3jc/B2UPIv41uj1mTjjzjPMgeaY+kTUEnNn03JFJQORNoGO6stiDkeJTofjUHvUuViEy6HY09jNE3kS1GfEtB3nbpX6Q8HCN57x4eCwkiPiR0qvR2CFo8wvmhm8PQ0K7Ir7UQd6qmkwLzjRxOslMpnbXxb5HK/fGBJG2uzb2FVq1Pwy6q+MWQ+wLcHqiTyRo8zOunRdVhebn0KZ7WwXC1D/CxMPkbZt5pMB6UPEc2nCvqc2kYbAXR/InmDgapxbCE1GnErGGQmjHzIGb2V5ZcFM08maGFi1Bpe1q8XTAgcQMnNnrmlWp/D0gND7HEghx3DtPCdAwWn0sDJ7a7a0qt2jkfbT6cDoo5Tqz6L6z12WA3uknA+JfAfwr9Fn0zn8Rz3nx8FjIEP9KOYql+cgsLmZ1CfTVuguBCF0nUwcQtPac5MSWXA1wqnOwJxUKicx1i1pbqpqSAs1P0GErJfY1WnMcFB6HFB6XsQ/xLYeUXgZchqp21FGx86Dg4N6biPJ2hvobMmxVKRSfD/VX01ZQEDqslLRM5ok6tP5qaHrciOa53LYR/xpo+JUcjHbMmJF3IG+LHK7LDXUajUJtF+eqt0I1bfCv2Ut9efQnXraRh8d/GBGB4JZkTkl1kOCWrb9p/DeIfUn6JftkEbr21YDtHOscdcECNym2AJG3ko5L0pZWjL3acDMacy9q1tcCcGIVIGX3mWrHHWJXbMBCiv+Hlb8XUvG62Z7yrQ6+5cEaRtstvNPEnvgHrT3TvRGh3YAA5OSS+dDY1zm07wbhl5MOW3ecFQuCW2dpk0jW7vJY0PCcFw+P/zhScChmckg1cdlGSyVvu7ZDib/ddZz42wiv1Z6P1l4I9CQl1EHyx2VvBmjTw2R2xmy08dEe2NL7iH8VZPCbSNG5ENgYAutDwcFQ/hKQwJk3Fp23Pdr8IhLaHkpuyJJ9k4Dou6hL3RmxSpHSG3FTPqENdRVH1BM09g092iAoPAlCLenZ7V9X8t8FR/V6xppH/+BtG3l4/MeRwJpQcq0pL0Cctqf/hImZGXR/x0lK3KW9auRtqDsfV4GgAPZykPidrhOyBf61OjpQmYh9l2W8RLI+08BBE/OMVkvTU6DVIIPAtwrUnozGf6I1oDdRY7aFrHtwFawa+xJcZmZJ3pZQ/hzaeL9Jm9ds8vwJaFeEsE/oRvZW8kLAgsodkr8Hje6MM8uc86+DFByE5G3VO3Z69Due8+Lh4YGExkBwQ2h6Go1/BwSQ4BaQN7rr07V/DbNlkS0ANzI5+Q83ar0+KL0Kmp6E5mdoi8HxQ2g3pOgs90/5kudC2NSlqF8/oPEZpnhle40VrYYOwnOdtoVcxxDlFkwr/hWR0suBy9Gmx4xgXbp+/esg/lVz6j9nAptA0yPduFAxjngLEXD+Bd+aUPYwluU+00fVMUHtGgbfkohVao7HvkYbH0rquGBqTBXsj/hX74a9HrniOS8eHh4AJmOm8PCsUQ8iNhSdnFyp6S0UGh/FKr0MLTrFaLuAKT6YnCxck7dtUu8mndMkSN42PbC1K6pxiH4CWmNic3yru46V0dqzM4rDpcZNirCVrPjdTUJ7QfwvaK2mnWj76VsBGeSm2Gb30cRcqL/RRcuWTKzO/05B/CtofhgKDsk+vio0P4U23JrcogPwoXljTMxRw7W0pcsD4ZfR8ItQfFG3Uvo9csNT2PXw8MgZVUUb74OGG4BwL/Uawhr2VY970fjf6LwxmDTuzhOZDVKEDH49d6co3XhNz6AN1yQdkJZhlkVKLs5agFDj09F5mVO3M5NOH8aCvB2xSq/pQd8Gjf2ENj8J8elgFSN5YyC4RZ9WQlZ10Mpdk2nuGZy6/IPNikjkDdAYYIFWZe7cKscaMi1zG1qUj1M5T1kcJAQpfyHHjD8P8BR2PTw8+gjVKDQ+YITteqTbkopmnJpTkZLLehQIKr7hUHY3Wn1UMm6jZeskAdYgZNA9vea4OA13QkMKByExHa06AMoeQgLrpO8g1sPYG3tZSPxKl5UR/wik+KKe9Z1E/Csi/vN6pS/XRN/voi3UEQH/WljFLRlVF5q06jmbZu+7vZOZBk38gzakW1nKtuploU2PICX/y26LR7fxnBcPDw9XqEaNWFh0Gr2ns9GJ8EuoFCAlPZt4JbA+DH7H9Bf9DLCQ4IaQt32vKJuqKtpwPTTenqZFMi27/gqkPENJhG4HpAIIDLoNif+ONj8NiX/BHoqEdoPgln26MtLXaHgyZnqKp2sBsc9RDSOSZ9Seqw8EGtz131m7p/P5pmfovupxwhS19OhTFtxPt4eHR//S9GjfOi5g+m5+Ei081rXAWjrEKoD8vfom/qDp/gyOSwuOURyO/4H4lkrdJLABRl8lmqMBNgS3wPItaYJI+0goTlUh+h7a9AjEfgIrH8nbwSj42hV9MqYhjKvPmUZN6Ynqg4zysSuC2eOREjPoWTVrT4Wkr/HeYQ8PD1cY/ZT+IAGRqf00Vu6oRk0Qp1syFDwUqwTy9yL7RNmy9ZW8ZftWQkoud29DN2hRKtbqQyDyNjj/QPwXtOEmozkT+77PxhbfCmTdnrEGgxRC+KXcAp5Du2VvY7UIBnYHu0sKuWoUjXyIhqei8Rnd7NejPd7Ki4eHR1ZUY5D4q+cdWUuCk004zQJt7vlYWVCnyQR6JmaCVQZ527iLhYl+bAoUusXKvIIkRaebytyR1+gSuxLYFvJ3hubnzGqANRgJ7Wps7WOBOJqfaKdU3N4xUNBatOpAGPJe39gR2hXqryP9ipSF5O+LiIUTeQfXWzxSihQem71Z3o5o0wM5GNx6JSBI/j5AcuWq8W608c5k+QfTRgObIMUXIb7FuzGGB3jOy0KL4zjM/nMu6ihDlxyM7evb4mkeCzstyqu5pPOmIH93aLiebIUg1V4E1OlRpeRMaNPTaP0loE2Y1+VA3cVQeBQUHJ15W0EbXY4i4FsN8S2duZUEoPQmiH2JNj9rqlZbg03sin+EsSUvm8x972Kyye7N0qgGbbwXKTyy18cXaxCUXIHWnkKHdGRzFvxrGwViAO1UHDQdvhFI6TXutiP9a0BwC7PilEo0seUzA+1sswFBSq9v3SbU+quSqebtUYh+gFaNg/JnEXtYdns8uuA5LwsZjuPwwi2v8vR1LzHnL1PIbtDQEnY9fgzjTtvZc2I8uoWIhQa3SgrP9cCBibwL/vUg9lnmfmqORa0KyJ9giiBKKGUzJ/aTeUKPvmf6s4ZAweFI/t5pqx1r88to3dntjrTYEUUbbkSwIdOEbC+V4QW2R5DiM9y1FIHAWkhgLZd99zFaDYk/srdreizze9UDJLQj2EPRhjsh+g6gYA1B8veFgoPaAq/9qyf//um2mQR8y2NVPOl+bBEovcFo8IQnJY8mnShrMFJ6PVhD0ebHIZIUqQtuhIT2bl1N0fifKRyXFhLgVKONdyDF6YQAPTLh6bwsRKgq1x9xB6/cPbnLORFho7Hrcd6TJ2PbngPjkTsa/QqtGo95yu1827Bpq06dKVbBMv9JAWgD2R0hC/yrI2UPdnFgnOZXofaEFLZgVjzKn+yScaPqoHO3NGqraclDhnyAWIVpWzjzdk+WGEj3Wn1QehdW3sYZxsmOOvVA3Gx39HGBSI3/abKznGqwBkHaVOFOBLc2qrKhPfosiFc1alZYpKDL+6CJWejcLcj0WZKS64wz1J2x43+ZGCwNg28FCG6W1jFuj1N/AzTekdEuCCFDP1ugM8N6k1zmby9gdyHiy6nfpnRcwDg27z/3Me8946XweXQPCayZLN7XUn24xWEBfMtA6S2An8y3Fcf8p0BodyCbTL8DsW/Qhrs6Hk3UQ+2JpN0uiH+L1l3a9XjsmyyOC0DYVKbOgJRckiwx0HkSEyAAgx7tkeOi4Vdx5u2GzlkHnTMSnTsKbbzPKPmSdMKaJ+FU7osze12cOZvi1F2Gxl0WzWw/lsZxas9D521tApGbHoOGm913EJmMNtyAzt0MbXo25/HdIBJArMKUDpzYw5CSK2jbzmkh+TkM7Ql5Y7o/tm8JpOAApPAIJG8LV44L4FIHqTmpReSRK57zshAx8Y43sH3p/6SWbfHS7a/1o0UeCx2BjaHkSsjbHYJbQ2gcMugupPwlrLzNkfInwJ9BlA0wDkwtEtgIGfopFJyUvX3zo6i2e4JtvI2s2SjNT9NlYbk1aDIz6mRWaRX/ykj50xDcirbbqBjl2fKnsYIjXI2TcuyG29Ca4yHeLpvHmYnWX4HWHI/jRNHaU9DaEyH2qQkedmZD00PovB3R6Ke5jVd/FTS3bKkkMNoquSzIJx1S4mjdWWgku3ptbyOhXZCyJyC4DRACfGbFruQ6pPiSPl+1SolV7qKR36xCeuSMt1a1EPHnDzNIxNPf0J2Ew18/Znvq9PDoimoMbbgBGh+irRyAQGBT1F4OibyG0/hosiq0GxE4G43/hCU7oM4/ZBYkA5wqcGrATk4IkbddjBFBEzMR36LthnWZ3RF5Cwr2z9hEfMshg25BnTqTqmuVmdTnHqCxX4z4HdDVOVOIvAl17eMw2rdJABGjLDzkXcRF8Ul1qqDpYXpPu8cycRzBDXupP/dIYE0k4KYWUv8geTuhjXdlaGFD3k59nzW2kOI5LwsRBSX5WTMGC4pTBz56eKRDVU0RxvAkulQ3jr4H87ZDiZC95kt7EkkhMCBNMG4XOijjup1sYx1+E98yqH8ExL7MfFn0vczicu37tIrB6p34Om1+nMxZXRaEX8nQg2NWl5onQb4LPZPwW2R0GnMmYTJpksq3/2XEvxKatwuEXyRljJjkIYVHzA/TFgq8baOFiFHjM++xW7bFlnu7qP3h4dGe2FcQnkhqh8EBIu3+nQPhiWjsOyQ4mswTqAX+kR0DaP1usnIsxF4U1TjqNLVtIRWe5uJa24if9Tfxn8gc4OlgHLJMzpsPjX3ubjxtxJ0YW767/lr7jWVv0765NqNNT+FUH4NTdRhO/Y1oYmb2Cwc4UnIZ5O9Hl3UCexmk7JGsafQe6fGcl4WIrfffnIrFylPGvVi2RWFpATse2b96ER4LPtr8DF0DU3sDQRvvgcD64FsjwxjaVUuk6JTs3dvLo9VHo7NXQ+eMMAGlDbe3bT1ls82pdtGutymgZ7L0Lbj8e/mWwdUqVnATKL0X8nYlq33WUKN86xKN/4rOHY3WnWO2xaJvQ+Nt6Nwt0ebnXPczEBHxYxWfiwx5Hym51sTflD2JVLyM+FeZ3+Yt0HjOy0JEQXE+1711EYstvwgAtt/G9pub2ODh5Vwz5QIGDS2djxZ6DCQ09j3acJt5yg2/2ZrJ0oXEHHosTpe6Ywi/gYggZXeCr+Vm3iKIl/x30cVIsOOqomWXQeGZZCTxk5kIW1aEnNkmbqfmDExWVCYcxF4slxfTK0je1mR2JmyQUjI7EHEkuJG7AQMbgr1Ylv6AyOuI1iDFZ2Heu3TtBcnf33WArGqzqb7dGiDd8todIIHWnpksrLlgI9YgJLQTkj8OCYyYPwHECxmezstCiKryxeRv+GLKt6jjsNomK7Pe9iM8fRcPANSpRqtPgNiHtKiCQtwIgJXeggRGdGjv1J4Dzc/SNw6MIEN/RESSRQCnoc1PQfRrU0sHBwhCaFek8OguaqRO+C2ovxwS03MY0wJ7BUj8QvrXZCOD3+3j4oNdUW1G525vsoe62GYBPig8GRquSNODDdYwZPAbrrVDNPoJWrUfWfV5/KtjlT+FNk9Ca0/GfG46K9+uj5Td4zoIVZueQevOytAiWYBy0P+56s9jwSaX+dtzXjw8/kOoJtDKcck03FSTYxCpeKFDoKqZ3Cb0jUFSYSY7/8pmrNg3aNW+Scn39vbZYJWaJXff8C7dOI2PQP1FOQxcAmInU6dTODD2Mua8NRiCO0BoW6weZhK5ReN/odWHJhVuWxyQOFAIJZchwfXRhgeg6TbagnuTT/JWhRH08y2b05hO5bjsQcwEsIZ9a2yMfm624KJvY1ZL8sz2X/FFWD73K1ZO5cEQey9LKz/WsO9c9+mx4OKJ1Hl4eKQm8g7EvyH1ioMDRLvWtPGvm9QzSbXUnWn528VKn1ailbvgVO6Hk6hEa04DjaSwLwFODVp3Yep+wi9msaUztTDojmT13/bXJVcMEn9C/BeIfgD158Kc9XDmjkXDr+YwRvcQ3xJIxStI6R2QP87EmQS3B6sAao9H52wA0Teh8ATI2w18q0NgfaT4fKTitZwdF8AUpsz2/km7rTZ7kWShTsVMI5Fk5tnWpj6TC7R5IsTed9Ey0VWvx+M/j+e8eHj8h9DwRDI7FYkuWTYiYpR1Q3vTJWvCtzYEt03+0tKvqayLNQQKj+90rotF5kfsU6gal9SJSbd9kUimMM9IcepfXAWetkN8S2MNugMZ/DYy6EEI7khbanUK5y7xvRGJq3cpm98DRGyj5lp0nlkdirya3EpKEv8VGm4EuwQpuQgpOhNCe2YsaZBxvOAossbaBLcEkqt3VQcbBw8wfy+lVaiu9kyccGahOo3/hdaemmVMAAt8K3sxIh5d8HRePDz+Szj1ZI1dUZNW3H7CEAkgJReiRcdD5EMgCr5VEf/yyViVD9CmxyH+G1hFEBwD/mXNykVwK4j/niUuJQEJN9L2ahwcXyexOasCnDm4c2AsU605qc0i9jBUCiFymLvrG29B87ZE/Ku5GKuHhCdC5PUUJ5J2Nt6NNt5t/i3FaP5+JjZIsgUkdyJvJ1PLyKmm6+fDiEdJwUHm18hbkPgtc381R6GD30hbwVmbHnVpmINkEQv0+G/iOS8eHv8lfEtCNJMIGmAvlvZJV6wyCO3Q8ZgIBDduzQhSpwatPhoaPqVjzEYWBUW3pBC1k9BuaP33KRqnwkEKj+p4KPYNbXo12bDRxkeR0stctgd1aiE82VRrthc3ZQRcBLVq0yO4Fv/TOmj8PzT+M5TeDFoDTq2pgpx1RSZiHM7mR+n42TD1gqT0mlZnTSNTyCykB9Bk4nbKn0/9WYpOy3J9kryxkLdL9nYe/zk858XD4z+E5I9Dm+7P1ALJ36fb/asqWn140hmAjuJzveG4lIJ/za7HQ7sZmfvEX2RUp0WQ4guQ4OadzuUisJeAyBs4NRGIvGuqY9vDzfuWP76DsqyqQuOtJriVKK2OiJRC8YVIJ0ewC/Ffc7RNIfIGWjkW4j8mj/nQvB2QwhORzitWgEY+RGuOSMYatR9LIG97pOicjllX6tLJi/8A0Q8hZakAF9tAUoyUXIGIF93g0RXvU+Hh8R9CfMtBQYskeecJxDJaK/k9yCyKfpTMWumLtGqQwqNSrliIVYCUPQKBDbpeZC0CwW2RwhNMfEv+Xl3b+Fclu/ZLO7TWxAZpDRCHxB9o/WVo1f6o09TWrvEWtOEmjOMCrc6B1qC1J6HhqZnH6a7EfqvjgrEvPBGt3B2N/9XxZSTmotVHgIbp6iQphF9t1WBRVTT2bbJMg5u/rw+NpHl9wY3IHHtlQ3C057h4pKVPPxlVVVVMmDCB4uJiSktLOeSQQ2hoaMh4zahRo0yAYLv/jjzyyIzXeHh4uEcKT0aK/wd2u4KFkg/5+yNlDyHttmU0/htO3cU4c7fGmbsVTs1ZaCz99oxGXqNv1HgxTlf+gWlPi12BVXYfUvEqUnwpUnwZUvEG1pC3sQbdbBwfe0jqa61SCI2l+7dENf/FvkYbTHFAdWrRhjsyX9VwbeZMmrwx9M77mQCtQ+sv7Xi4+UnMdll6G7TpISNiOG9rtHI3aH7K/bBpVmkktBetgd0pcZCC/dyP4/Gfo091XrbffntmzpzJHXfcQSwW46CDDmK99dbj0UfTB2uNGjWKFVZYgYsvvrj1WH5+vmvNFk/nxcPDHaqOyRjRKPiW6OC0AGj4FbTm5ORvLU/aNuCYrZcU20tOzRnJtOVeXnnxrYxV8ULv9tkJdRrQqgMh/nXPOpJ8ZMg0aJ6URYAt2bx8IuJfPrVN8b/Ryh1TbOl02zhk8DuIPRQAp3JPU7sq4yXFJp6mW/jM9aExSP4BiG+J1jMafg2tOQnjOHX+fF2C5O/ZzTE9FlRymb/7LOblhx9+4NVXX+WTTz5h3XXXBeDmm29mhx124JprrmHRRRdNe21+fj7Dhg1Le97Dw6PniFiQpjCcxv9KOi4p9FYArbsI/Ksh/jU69ulbFs0a29KyFRJuuYqs8TAdKkr3HpqYA1oP1lAT1Fr+CDS/YLRuEtOz25Wy0yaI/5ncUsoW2EqyXWrENxwG3YdWH2WCffFhnJjuOjJq4oKSzgvpSkJ0uKS7jgtAHLQKmh5Fm5+GQQ+0KjhL3rZQMclkHkXeBRwIbIDkT0D8K/RgTI//An22bTRt2jRKS0tbHReA0aNHY1kWH330UcZrH3nkESoqKlhttdU466yzaGpqytjew8Ojd9Gmx7K0sNDGh7oeDu1G5mBMCyk8DBnyIVL+DFL+PAS2JfPWiJU6lqUHaOR9nMpx6NxN0Hnbo3M2wKk5G5xaJH8c1uBXkSFfQGDTLK8nDeJP1gxysQJlp3+QA5DA2siQd5GSayB/PITGJ+sbdfP23b5oYmBd+mybrwMJ0AhaczTaruK0+JbCKj4ba/ArWINfwyq5yHNcPFzRZysvs2bNYsiQjvvLPp+PsrIyZs2alfa6ffbZhyWXXJJFF12Ur7/+mjPOOIOffvqJZ59NrdoYiUSIRNr2VevqevKU4OHhAbhIZU0YDZdOiF0BxRegdefTNcXXCI6RfzBi5YO1ujlceBBalU65VgArdZCtS1QTEHkHjb6PWQlQaH6cjk5JFMLPodH3oPxpxB5ibMwfh0bfzW1AaxGwlwZ7eHLLpZ7UKziWUcZ1UQBSJAChnZHQzuY1FRyK1hyXLPPQ4sS4WI2xh4NvxbZ+8/dCmx7Ifl2v4IAzz1SOztu+n8b0WFjJ2Xk588wzufLKKzO2+eGHH7pt0OGHH97679VXX51FFlmErbbait9++41ll+0qe3355Zdz0UW51DTx8PDIjpvVhjRaMPl7gTUUbbytrV6OFEP+XkjBUYhV0LF9YC0oOg+t/x8dt1lM0UgpvRHJsjqRDlMn6LDkFpCPjvEVnR2KBDhz0frrkdLLzaHglqa+kTPX9ZhSeHgySyYAxReitafQdWvMAgkiRWd363WJbziUP2fe3+gnpv/A+mj4JWh6KMVra7HthI4ZPNrcrfF7gjY+arK/vEwijx6Qc8Du3LlzqayszNhmmWWW4eGHH+aUU06hurq69Xg8HicvL4+nnnqKXXfd1dV4jY2NFBYW8uqrr7Ltttt2NiK03gAAJExJREFUOZ9q5WX48OFewK6HR45o7BcjihZ9zyitagPpYz5syNsZqzTzg4w6VSbY1KrIqvqqse/Qxoch9glgQXBzE//QrkhkLmSu0JwJPzLko1ZhN41+iVbt7a6P0F5I8UUdhNk0PAWtv7qjKm1gpNFP8a+Ug13ZUY2jdRdD8xO0rFoZu31I0Rld1Gqd2guSGUd9k9qeltDeWCXeQ6dHR/o0YHfw4MEMHpxa8rk9G264ITU1NXz22Wess846AEyZMgXHcRg5cqTr8b788ksAFllkkZTng8EgwWDfBPN5ePxX0OYX0drTMROem4nMXSqrWGWubRD/qm0rHr1B80Rw/u3GhTFwZoG1nLErMALN3x+a7st8mTWsi+MCIHlbQnALU+hRa8BaNKVYXE9QpwHCL6HhN81qSt6upkwDttmWCu1k0sE7k/iTfndcAJofQ0O7tgbvenjkSp/FvKy88spst912HHbYYdx+++3EYjGOPfZY9tprr9ZMo3/++YetttqKBx98kPXXX5/ffvuNRx99lB122IHy8nK+/vprTjrpJDbbbDPWWGONLCN6eHh0B43/lnRc3GSwtKSyXtw/tX16gIZfo9slCaSTnH40c6FBACk4PH1ZBRHoo0BUjf+KVh2Q3NpKvt7YF4CDFJ2Z2cm0SnFdfqBXsdGmJzznxaPb9Gl5gEceeYRjjz2WrbbaCsuy2H333bnppraKrLFYjJ9++qk1mygQCPDmm29yww030NjYyPDhw9l9990599xz+9JMD4//NKZIXqYYFzGTuVVhtjvyJyD+FTO0HyBoI7k7Lhb4VkPsNqkGjX3TSbE2zXDBUa4ihTT2Ndr4mJHPl3yTMhzatbVQZNrrnCpofglN/G2k80NjwB5uKjwnVXDbXm8ypb3+cvAtk6IcgkHyxqDhSS6sTkUxkC4YORuJLIU6PTwy06fOS1lZWUZBuqWWWqqDuuTw4cN5++23+9IkDw+PzkSyZRYpSDHW4Nf6y6Lewb9CcgUil20RRYqO73go5i4BQeK/dK123Qmn/gZo/D/aApMFjX0GjbdD2UOmfEMqqxofMo4IieS1ijbeAv51zBZXWiy04a60zgvBLcC3OsS/Jb0TYoF/baT0umQtpwj4V0F9q0HdhRB+OuNrTtunVdKN6zw8DF64t4fHf500Wx05txlgSMhNkK3Q9gwXQkquRoKbdWriLqZOwy8Z1eJ055tfTjou0DHjScGpQasO6aCB0v46k4kVT7aPt10f+yyLVQ7EPkY1isZ/RxvuwKm/wfSpUUR8SNk9ENgofRe+FZBBtyD2MCR/T6RgXySwNpYVwCq9DMpfBrslE1Q6/Uxvl+TtlKWNh0d6vKrSHh7/dQIbQfx30k/0dubJbYAi/hWh8Di04Wa6xr4I+DeAwPpAE2IvCXk7tGYYdSCwCa6UcsMvo/ZwpOiklKe18e4UdrSQAGcmWn89BFYH36qIbwlTDLHhxgzXuUOrT4Tom5jnVQslDnUlUHIVkrcFUnYfGvvZqODGvjDKu/ZwszUV3DJjppjlXwGtmASxz9DmZyEx2wQLR95KljXo/L7ZRtk5b5tuvx4Pjz6tbTQ/8GobeXjkhsano/N2IP3kbCHlLywYcS4p0OaX0ca7TIwJgLWISRnOPwARd89vJqX4cbI7EH5kyPtdMnvUaUDnrJ2b4YFNoOBwqN4/e9u0CEgoTdXopABg2WN9EjirsR/RmmMg8TdtKr6J5BbULUbQsDfH0wQk/jG/2Iu6/tt6DBxymb8958XDwwNtnthOTK29SJwiJZchod3mn3G9hDrVoAmwynIWSFONolWHQ6yrqnBnpPjSLkUF1alD56yb5op02KYMgGbW1eoZNgQ2wSq7q096V3Ug+n6y+KMNwU0Q/+q9P0bTg6YeVUv8j1WB5O8PBYd6TswCxIAozOjh4bHgIKEx4F/ZiNRF3gcUghsi+fumDSJd0BBrEKpRCL+CE37RZOjYSxlHw79e2jRnMPL8WngMVGdzXmzQ2hQdFIG9pCmK6Hr7J2GKGnZryyh5jb0cJH4nfSp0AqLvoE5D6i2zHiJiQXBT818foKpo7bldg4adeWjD9RD7BkpvQiR1/SaN/wbh11BtROylkluHBSnbegwsPOfFw8MDAPEtgxSfN7/NyIhJM34EYl+DBCC4FZI/HmmpkpzuusQ8s3XU9BAm4DVJ7Bs0/ALk7QwlV6ad5ADEt7gLFyJh6gd1vlYECg5G6y7I2kMny4GA6TeXrClrCFJ0Jhr5EBJ/kFnHRU0lbHrfeelzotMyZDspRN4w/+Vt1/GMhtHaMyE8iZYyFCYO6BIouRQJ7djXlnv0EC/byMPDY4FAG25HK/eA8ItGaj/+AzT+HzpvWzT6afrr4r+jlTsmFXLjnc4mJ/XwS9B4R8bxxV4kGbiczsERs80T3CL16dB4yBub/CWXW28UrEEZxu2MZVbMQmMQ/1JkFaCT/KRY3YKHNnUusJmiTWNXZWTjuLQUA03Q9rloRmtPQSPv9aaZHn2A57x4eHj0O6oJNDwVp+ZUnKojcOouQ2M/p28feQttuC75W/sVCAc0jFYfjjr1KcZRtPo4cGqyWYQ23me2lTIgxeeC5NHVkTATqJRcbCpAp7pWLKTkSqT0ZvCvDzIICGWxK0lwRwjthlmFyYaDOlXm/QztSubbvAWhPdPaPOCJ/0jWLbVOOj1mq2gS6Z06SWaoeQxkvG0jDw+PfkWdGrTqUIh/TWsKctRGm+5HCw5DCk/tEn+ijfeSXsbeMWq6zc9Bp8KDxD6DxC8uDas1mUmJuZD4CSQPCW4JwVGtQZ/iWw7Kn0LrLjcFLFsmTt+KSNGpXTViOiEikLetUdUFNPoxWrVvdtsiLyGDP4Dic9HmN6Hu1BajU40CTQ+gTfdBcBQUngIN6QpoKljFqGrGmJ8Bi4ZdNIqgGmtL9w6/RubUdwdiX6CJOYg9pHfs9Oh1POfFw8OjX9GakyD+XfK3RMefjXeBvTjk793WXhWin5Bt+0OjH3WpmmyyXHKo3VN3ZvIfAojRPbGXgbL7zLYRxoGRsnvQxCxIzASrFPEt7a7/zvjXA2sIOHMyt3MqgQgiISR/J9TKQ2vPTgYHd56Ik8J3YBRxnTAUnpl0YDo7OwoNNxvnpbOycBZUNZmaHAN7sfmzemMPy6IwDEYEsA7scvObNpBdRI9kVXXPeRmoeNtGHh4e/YbGfjSpsxmCT7XhjoxKtRl6T3Gsu7c4pdXhSfyJVh2Easd4GbGHIYG1uu+4kFyJCW5O9snUT/stI8nb2ujJlFwP9tIZrk9A7EOItAjUpaHxNrPi5BJtfh6dtx06b0sTczRnA5z6q1GnyXUfvYJ/TReNbGiXSSX2UnSNfepMAKzMQeAe8xfPefHw8Og/Im+RNfDU+TeZ3mswFZnXItvtSgIpdFQCG9PziskJY0+kb+quGZn8THEbtknh7aRNIxIwKrWJ6dmvj31K1vpV4Zdd2asNt5gq5Ik/2h+ExnvQ6gNQV1s5vYOE9sjSwkq+d+1KPOTtQOZYIxtCY72U6QGO57x4eHj0IzHcLdl3rPEjBQeTKcASCUFo965n/CtkyRByi41GJpuU68j7aPQTVCM97DNJYKQJ4E15O7YAH1JweOprNUz2FGo3GjEWmphjUoibnsGp3A9n3hic6iPR8JTWlTCNT0cbbkrTr2NS2JsecTFe7yD+FU2ae+qzQBApPKrjUasQKbmEFoXhjthgDUUKT+x1Wz16F8958fDw6D98q5F9yT7PCLq1J7gZBLdK0dYGAkjprUiaKsVSeh34lk/+1oNtpMgH6NxN0OqD0KoJ6JyN0Ib/6+YWVzv7RJBBt5vX2GpjMhzRKkfK7kX8y6e5uMCkZ2ezPSsOSD5auTtadxbEPob4LxB5G605Eq05yqgMNz1JZkdQjdBhPyIll0FoH9rsSjrH9hJI2YMpRRYltBMy6G7wr9HuaABCuyHlT/d66QKP3scrD+Dh4dFvqCbQuVuCM5vUKykW5E/AaieWp/HpaNWB4MykS/BtYBRSfB7i6yoM13HcKITfQJtfNKq19pIm9sbJRXo/jdJtaE+skktz6CeDnfFfITwFiIBvJQhukVXe3qm/DhrvJP3KlAWBDSD6EZnqV+Ff2xRlTNlGoOBQU8AzMjnr65ChP+ZcgqGnaGIeRN4Bmo2zmkU1ue26OWbbyxrqbRXNZ7zaRp7z4uExYNHoV2j1ASkqDgv4VkbKHm6VqleNoHO3BmcuaSfewMZma8DlZNWCU381NN6bvt8ckPLnEP+qPe6nO6hTj1aOS8agdHo/UaToDAhsglbuCURJ6eSExkPzE5kHknwIjILIq6n7aMWHNez7nF6DhwfkNn9720YeHh79igTWRMpfMBOmFAJiUm0LT0XKHu1YYyc8KZkKm8HBiH6AVu2L1p6T0xaO5O9nJuRsIm5ZsU1K9XxCrCKk/HHzfpLXzqxlkJLrkIJDEP+KSPnD0HkLRQqQwlPAtwJZY5G0Cfwrkz0A2kkpGOjh0Zt4Oi8eHh79jviWREouhJILMwqkaeQtsuu0JBePw0+DfzkoONidDfYwKHsIrT4y6SD5kuO0G8s/AmKfZ+kpAYl/XY3ZV4hVgpRciBadbrRXJAj28A7vq/jXgPKXIP4txP8wjmNwA0RC0Pigu9KPWeNrAByITIHQLt17MR4eLvCcFw8Pj/lKxq0ejZBLqrM23gP5B2QssNhhbP8qMHgKRN5CY1+AUw2RL8D5zTSIfU72qs42WGXubVQFrQaNgjXYta1uECsfrDTBvbSkna9u/mtPYF2yB/YGwVUgq7gox+Dh0TO8bSMPD4+Bi29lcrpNOXM76o+4QMSH5I1G8sZA88vgTO/UItuknkDy3K0yaPPLaOVO6JwN0LmboXM3RRtuy1pTqa8R/ypmlSltJpEF+XsivvSOURsK9mK9Z5yHRwo858XDw2PAIvnjcaUL055upi5r/eWkDWhNi2WE8AIjs/ffcCtae7JJQW7BmYc23IBWH4l20rbpb6T0hqSqbPv3OzlF+NdCik5DfEuAf13STx1iCk4GN+9TWz08POfFw8NjwCL2MKQ4naBYqgtKwLdk9nad0MQ/yVRiN45Ly+RuQd6ORmMmS5aTxn9FG25s+a3zWVPksfnZ3IzuZcReFKl4ESk63aQaWxXgXwMpvgIpe8DExpCsrE2Arn+P9pW1/f1qu8d/Dy/mxcPDY0Aj+buDbwm04S6IvpWhpdGI6VaBwMRMF40sCO2N+JcDAhDc1AT9ukCbniBzJWNBmx5OrjTNP8QqhoJDkIJD0rfxrwLlT5iVquiHbSd8yyNFp2etrO3h0Rt4zouHh8eARwLrIWXr4cR+hqp9QetoWyVJZiMFNkQKj+7eAK4Cbh3Ev5pxpnIl/gtZawvFf89wfmAh/pWRsgfNilXiX7AGgb1sTjo7Hh49wXNePDw8Fhgs/wpoxUS06VEIvwBOA/iWQvL3Nls43dyuEN8yqG9liP9I+gDdAORt3T3DpYCsKd+SqVhgz1GnAcIvo7FvQPxIYHMIbtajbCexF/OCcz3mC57z4uHhsUAh9mCk6AQoOqF3+y06Ha1u2S7p6sBI4TFmW6U7fedti0beyNDChrwx3erbDRp5B6053gjNJW/72vQo2EvDoHsQ3+J9NraHR1/gBex6eHgsMKjTiDY9jlN1EE7lOJza89FY70jRS3BjpPRWsMpbjiR/5iGFJ0PBkd3vPG+7ZLHJVKscLZWjD+h+/xnQ2E9GiE+bk0fitBbHTPyFVh8w31O1PTxyxVt58fDwWCDQ+B9o1f5JNdykcFzsG7T5cbTgGKxeWImRvK1Mmm/kXUjMMLEcwVEdSxZ0p18JQNmDaPVhEP+ZtltvHKQIGXQr4lumx/anQhvvw6wkpdoOS0Dibwi/BqGd+mR8D4++wHNePDw8BjyqcbOl48xtOZL8mQyCbbwV9S2LhHbs8VgiPsjbosf9dOnXXgTKX4ToNDTyDhBH/KtD3vaIBHt9vFYir5I5WNhCw28gnvPisQDhOS8eHh4Dn8hbZoUgLYI23tUrzktfImJBcGMkuHH/DaqRLA2cZCyMh8eCgxfz4uHhMeDR6HtkftZSiP+AOnX9ZdKCg29ZMqsU2+Bfob+s8fDoFTznxcPDY+DjWvI/3qdmLIhI/n5ZWjhIaP6K43l45IrnvHh4eAx4JDCCzI6JGL0RGdRPFi1AhHaHwOZ0XX0xt38pOgPpRkkFD4/5iee8eHh4DHzydjB1izLcsiT/QE/hNQUiPpPNVHQ6WIu0nfCvgZTehhQcPP+M8/DoJl7AroeHx4BHJA8G/R9adSim8nNL9kxStTa4LeTvO/8MzIKqSVUWmT/PiyJ+KDgE8g8GrQH8PU7/9vCYn3jOi4eHx3xDNQqRd9rq4wS3SDupSmA9qHgJbXoIwpNAw6YYYP6+kLfDfHMMMqHRL9DGu022FHHUtwKSfwCEdpsv9oqIt7XmsVAgah4JFhrq6uooKSmhtraW4uLuSXl7eHj0PRp+Ba29ILkS0FL3Jw8pPA4KDl3gt4C0+QW09nTMa2tZKUqK6+WNQUquHZAOl4fH/CKX+dv75nh4ePQ7Gp6C1pyYdFygrWBhGG24Ghrvmj+G9RJO5JOk46J0FIhLPiuGJ0Lzs/PBMg+PhQPPefHw8OhXVBWtvypzm4ZbTBXkBRANvwLV+5K+OjWAoE0P9JdJHh4LHZ7z4uHh0b/Ef4LE72Se3MMQmdJfFvUaGv8brTmFzK8Ncz7+M+pav8bDw6M9nvPi4eHRvzjVLhpZ4FT1uSm9jTY/TnbHpQUfmZVvPTw80uE5Lx4eHv2LvaiLRo4RnVvQiEwjcxHEFmwIbr7AByV7eMwvPOfFw8OjXxHfkuBfm/S3HwEpheDm/WhVb+HWGXGQgkP71BIPj4UZz3nx8PDod6T4HMBP11uQJM9fgEigv83qOcGNcHNblZKrkMDafW+Ph8dCiue8eHh49DviXx0pfxT8IzqesJdCSv8PCY2ZL3b1FMnfC3NbzbACU3oXEtql22OoKqpRFjKJLg+PnPAUdj08POYLxoF5HI3/kVTYLQXfygt0HIjYi0HpTWjN8XTUeLEBBym+GMnr3naYJv41ar3Nz4I2gRShoXFIwSGIXdFLr8DDY8HAU9j18PDw6GU0/hfa9ChE3wVNQGAkkr8P4l+xm/39hlbuDVpPx4BgG6wKpPxJxF4k3eUeHgsEuczfnvPi4eHhMcBx5u0G8R9InclkQ2BjrLK7+9ssD49exSsP4OHh4bGQoLHvIP4t6VOwExB9F43PyK1fjXlxMx4LLF7Mi4eHh8dAJvaji0ZGsRff4plbOY3Q9KDZ0nJmA0E0bwxSeCjiW65XzPXw6A8858XDw8NjIOM2ZVyCGU+r04BWTTDlGVoLYUYg/AIanghl9yGBdXtkqodHf+FtG3l4eHgMZIIbk/U5Uwogi26MNtxgVmfoXE8pAcTQmuNRjXXfTg+PfsRzXjw8PDwGMGKVQWgcGbVj8g9CJJT2tGozND9F+rgZB5x5EJnaE1M9PPoNz3nx8PDwGOBI8dkQ3Db5m41xZGzza2gcUnhM5g7iM0Cbs4ziQ2Pf98xQD49+wot58fDw8BjgiASQQTehsa/R5ucgUQn2MCS0G+JfyUUHbuJmFMkSN+PhMVDwnBcPDw+PBQTxr4H418j9QnsJsCrM1lBaEhAc1V3TPDz6Fc958fDw8FjYiUzO4rgIBDZC/Cv3m0keHj2hz2JeLr30UjbaaCPy8/MpLS11dY2qcv7557PIIosQCoUYPXo0v/zyS1+Z6OHh4bHQo+qg9ZdlaWVDydX9Yo+HR2/QZ85LNBplzz335KijjnJ9zVVXXcVNN93E7bffzkcffURBQQHbbrst4XC4r8z08PDwWLiJfQWJbOq7cST+Xb+Y4+HRG/TZttFFF10EwP333++qvapyww03cO6557LLLqZc/IMPPsjQoUN5/vnn2WuvvfrKVA8PD4+FF2euu3YJl+08PAYAAyZVevr06cyaNYvRo0e3HispKWHkyJFMmzYt7XWRSIS6uroO/3l4eHh4JLGGumtnu2zn4TEAGDDOy6xZswAYOrTjF2jo0KGt51Jx+eWXU1JS0vrf/7d390FR1f8ewN8HhV1NgcvlYZeRDNCgURK0YKBGaCAhnQb+qSQzaEyKwUYm04E7Nxl7GMOanKlhxn5/JKWNPYwhTQ96cWVxNNyKhwmRHyPEgJSsEwa7gI4Fn/uHl70hT7sLu8uh92vmzLiH73f5vDl84ePhnN2wsDCX1klEpCre9wMLlmPKF7nzCgR8Et1WEtFMOdS8FBUVQVGUKbd//9ueNxGbPcXFxejv77dtV65ccevnJyKayxRFgeL7Km43LxM3MMrS/4ai8OZTUg+Hvlt37dqF3NzcKcdEREQ4VYhOpwMAmM1m6PV6236z2YzY2NhJ52k0Gmg0fGElIqLJKJr1wH/8C2J5HRju/P8PeOmh+P4XFG365JOJ5iCHmpegoCAEBQW5pJDw8HDodDoYDAZbs2KxWGAymRy6Y4mIiMZTNOuBwP8B/vwZGOkBvP4T8F4LRZkzVw8Q2c1l37VdXV1obGxEV1cXhoeH0djYiMbGRgwMDNjGREdHo6KiAsDtU5uFhYV444038NVXX6GpqQnPPvssQkNDkZWV5aoyiYj+MRRFgeKzBoo2HYrPA2xcSLVc9kfOvXv34qOPPrI9jouLAwBUV1cjJSUFANDa2or+/n7bmD179mBwcBB5eXno6+vDww8/jJMnT0Kr1bqqTCIiIlIZRUTE00XMJovFAj8/P/T398PX19fT5RAREZEdHPn9zXOGREREpCpsXoiIiEhV2LwQERGRqrB5ISIiIlVh80JERESqwuaFiIiIVIXNCxEREanKvHsnrtGXrbFYLB6uhIiIiOw1+nvbnpefm3fNi9VqBQCEhYV5uBIiIiJylNVqhZ+f35Rj5t0r7I6MjOC3337D0qVLoSgTv/27IywWC8LCwnDlypV5+4q9zDg/MOP8wIzzAzM6TkRgtVoRGhoKL6+pr2qZd2devLy8sGzZsll/Xl9f33n7DTiKGecHZpwfmHF+YEbHTHfGZRQv2CUiIiJVYfNCREREqsLmZRoajQYlJSXQaDSeLsVlmHF+YMb5gRnnB2Z0rXl3wS4RERHNbzzzQkRERKrC5oWIiIhUhc0LERERqQqbFyIiIlIVNi8TePPNN5GUlITFixfD39/frjm5ublQFGXMlpGR4dpCZ8CZjCKCvXv3Qq/XY9GiRUhLS8Ply5ddW+gMXL9+HVu2bIGvry/8/f2xbds2DAwMTDknJSVl3HF88cUX3VTx9MrKynDPPfdAq9UiISEBP/zww5Tjv/jiC0RHR0Or1SImJgbffvutmyp1niMZy8vLxx0vrVbrxmodc/bsWTz++OMIDQ2Foig4ceLEtHOMRiPWrl0LjUaDFStWoLy83OV1zoSjGY1G47hjqCgKenp63FOwE/bv348HH3wQS5cuRXBwMLKystDa2jrtPDWtR2cyunM9snmZwK1bt/DEE08gPz/foXkZGRm4evWqbTt27JiLKpw5ZzIeOHAA7733Hg4dOgSTyYS77roL6enpuHnzpgsrdd6WLVvQ3NyMqqoqfP311zh79izy8vKmnbd9+/Yxx/HAgQNuqHZ6n332GV5++WWUlJSgvr4ea9asQXp6Oq5duzbh+O+//x7Z2dnYtm0bGhoakJWVhaysLFy8eNHNldvP0YzA7Vf3/Pvx6uzsdGPFjhkcHMSaNWtQVlZm1/iOjg5s2rQJjzzyCBobG1FYWIjnn38ep06dcnGlznM046jW1tYxxzE4ONhFFc5cTU0NCgoKcOHCBVRVVeHPP//Ehg0bMDg4OOkcta1HZzICblyPQpM6fPiw+Pn52TU2JydHMjMzXVqPK9ibcWRkRHQ6nbz99tu2fX19faLRaOTYsWMurNA5ly5dEgDy448/2vZ99913oiiK/Prrr5POS05Olp07d7qhQsfFx8dLQUGB7fHw8LCEhobK/v37Jxz/5JNPyqZNm8bsS0hIkBdeeMGldc6EoxkdWaNzDQCpqKiYcsyePXtk1apVY/Y99dRTkp6e7sLKZo89GaurqwWA/PHHH26pyRWuXbsmAKSmpmbSMWpcj39nT0Z3rkeeeZlFRqMRwcHBiIqKQn5+Pnp7ez1d0qzp6OhAT08P0tLSbPv8/PyQkJCA2tpaD1Y2sdraWvj7++OBBx6w7UtLS4OXlxdMJtOUcz/55BMEBgZi9erVKC4uxtDQkKvLndatW7dQV1c35uvv5eWFtLS0Sb/+tbW1Y8YDQHp6+pw8XoBzGQFgYGAAy5cvR1hYGDIzM9Hc3OyOct1CbcdwJmJjY6HX6/Hoo4/i/Pnzni7HIf39/QCAgICASceo/VjakxFw33pk8zJLMjIy8PHHH8NgMKC0tBQ1NTV47LHHMDw87OnSZsXo359DQkLG7A8JCZmTf5vu6ekZd9p54cKFCAgImLLep59+GkePHkV1dTWKi4tx5MgRPPPMM64ud1q///47hoeHHfr69/T0qOZ4Ac5ljIqKwocffojKykocPXoUIyMjSEpKQnd3tztKdrnJjqHFYsGNGzc8VNXs0uv1OHToEI4fP47jx48jLCwMKSkpqK+v93RpdhkZGUFhYSEeeughrF69etJxaluPf2dvRneux3n3rtKTKSoqQmlp6ZRjWlpaEB0d7dTzb9682fbvmJgY3H///YiMjITRaERqaqpTz+koV2ecC+zN6Ky/XxMTExMDvV6P1NRUtLe3IzIy0unnJddITExEYmKi7XFSUhLuu+8+fPDBB3j99dc9WBnZKyoqClFRUbbHSUlJaG9vx8GDB3HkyBEPVmafgoICXLx4EefOnfN0KS5jb0Z3rsd/TPOya9cu5ObmTjkmIiJi1j5fREQEAgMD0dbW5rbmxZUZdTodAMBsNkOv19v2m81mxMbGOvWczrA3o06nG3eR519//YXr16/bstgjISEBANDW1ubR5iUwMBALFiyA2Wwes99sNk+aR6fTOTTe05zJeCdvb2/ExcWhra3NFSW63WTH0NfXF4sWLfJQVa4XHx+vimZgx44dtpsBli1bNuVYta3HUY5kvJMr1+M/pnkJCgpCUFCQ2z5fd3c3ent7x/yidzVXZgwPD4dOp4PBYLA1KxaLBSaTyeG7smbC3oyJiYno6+tDXV0d1q1bBwA4c+YMRkZGbA2JPRobGwHArcdxIj4+Pli3bh0MBgOysrIA3D6VazAYsGPHjgnnJCYmwmAwoLCw0LavqqpqzP+M5hJnMt5peHgYTU1N2LhxowsrdZ/ExMRxt9PO5WM4WxobGz2+5qYiInjppZdQUVEBo9GI8PDwaeeobT06k/FOLl2PbrksWGU6OzuloaFB9u3bJ0uWLJGGhgZpaGgQq9VqGxMVFSVffvmliIhYrVZ55ZVXpLa2Vjo6OuT06dOydu1aWblypdy8edNTMabkaEYRkbfeekv8/f2lsrJSfv75Z8nMzJTw8HC5ceOGJyJMKyMjQ+Li4sRkMsm5c+dk5cqVkp2dbft4d3e3REVFiclkEhGRtrY2ee211+Snn36Sjo4OqayslIiICFm/fr2nIozx6aefikajkfLycrl06ZLk5eWJv7+/9PT0iIjI1q1bpaioyDb+/PnzsnDhQnnnnXekpaVFSkpKxNvbW5qamjwVYVqOZty3b5+cOnVK2tvbpa6uTjZv3ixarVaam5s9FWFKVqvVttYAyLvvvisNDQ3S2dkpIiJFRUWydetW2/hffvlFFi9eLLt375aWlhYpKyuTBQsWyMmTJz0VYVqOZjx48KCcOHFCLl++LE1NTbJz507x8vKS06dPeyrCtPLz88XPz0+MRqNcvXrVtg0NDdnGqH09OpPRneuRzcsEcnJyBMC4rbq62jYGgBw+fFhERIaGhmTDhg0SFBQk3t7esnz5ctm+fbvtB+5c5GhGkdu3S7/66qsSEhIiGo1GUlNTpbW11f3F26m3t1eys7NlyZIl4uvrK88999yY5qyjo2NM5q6uLlm/fr0EBASIRqORFStWyO7du6W/v99DCcZ7//335e677xYfHx+Jj4+XCxcu2D6WnJwsOTk5Y8Z//vnncu+994qPj4+sWrVKvvnmGzdX7DhHMhYWFtrGhoSEyMaNG6W+vt4DVdtn9LbgO7fRTDk5OZKcnDxuTmxsrPj4+EhERMSYNTkXOZqxtLRUIiMjRavVSkBAgKSkpMiZM2c8U7ydJsp3589Lta9HZzK6cz0q/1ckERERkSrwVmkiIiJSFTYvREREpCpsXoiIiEhV2LwQERGRqrB5ISIiIlVh80JERESqwuaFiIiIVIXNCxEREakKmxciIiJSFTYvREREpCpsXoiIiEhV2LwQERGRqvwvxI0efiOf8oQAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "moons_points, moons_labels = make_moons(n_samples=500, noise=0.2, random_state=42)\n", + "plt.scatter(moons_points[:, 0], moons_points[:, 1], c=moons_labels)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "nbgrader": { + "grade": false, + "grade_id": "cell-35b09404d22ab9f4", + "locked": true, + "schema_version": 2, + "solution": false + }, + "id": "dDN-HcxNFLpL" + }, + "source": [ + "## 1.1 Pure models.\n", + "First let's try to solve this case with good old Logistic Regression and simple (linear kernel) SVM classifier.\n", + "\n", + "Train LR and SVM classifiers (choose params by hand, no CV or intensive grid search neeeded) and plot their decision regions. Calculate one preffered classification metric.\n", + "\n", + "Describe results in one-two sentences.\n", + "\n", + "_Tip:_ to plot classifiers decisions you colud use either sklearn examples ([this](https://scikit-learn.org/stable/auto_examples/neural_networks/plot_mlp_alpha.html#sphx-glr-auto-examples-neural-networks-plot-mlp-alpha-py) or any other) and mess with matplotlib yourself or great [mlxtend](https://github.com/rasbt/mlxtend) package (see their examples for details)\n", + "\n", + "_Pro Tip:_ wirte function `plot_decisions` taking a dataset and an estimator and plotting the results cause you want to use it several times below" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2019-03-13T23:26:22.846438Z", + "start_time": "2019-03-13T23:26:22.482543Z" + }, + "nbgrader": { + "grade": true, + "grade_id": "cell-550546e70e191bc3", + "locked": false, + "points": 10, + "schema_version": 2, + "solution": true + }, + "colab": { + "base_uri": "https://localhost:8080/", + "height": 74 + }, + "id": "XbO4f7JoFLpL", + "outputId": "33b822b0-41a9-48e0-cfa1-3b2ec995b675" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "SVC(C=2, kernel='linear')" + ], + "text/html": [ + "
SVC(C=2, kernel='linear')
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ] + }, + "metadata": {}, + "execution_count": 54 + } + ], + "source": [ + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.svm import SVC\n", + "\n", + "from mlxtend.plotting import plot_decision_regions\n", + "\n", + "lr = LogisticRegression(penalty='l2', solver='saga', max_iter=500, tol=0.0001)\n", + "svm = SVC(kernel='linear', C=2)\n", + "\n", + "lr.fit(moons_points, moons_labels)\n", + "svm.fit(moons_points, moons_labels)" + ] + }, + { + "cell_type": "code", + "source": [ + "from sklearn.metrics import accuracy_score\n", + "\n", + "print(f'logreg accuracy score: {accuracy_score(moons_labels, lr.predict(moons_points))}')\n", + "print(f'SVC accuracy score: {accuracy_score(moons_labels, svm.predict(moons_points))}')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mvTRQY4nUHYJ", + "outputId": "29b120d8-fbef-489f-e042-cf0f838f6bd6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "logreg accuracy score: 0.856\n", + "SVC accuracy score: 0.862\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "def logreg_plot_decisions(dataset, target, estimator):\n", + " plt.scatter(dataset[:, 0], dataset[:, 1], c=target, cmap='autumn')\n", + "\n", + " b = estimator.intercept_[0]\n", + " w1, w2 = estimator.coef_.T\n", + " # Calculate the intercept and gradient of the decision boundary.\n", + " c = -b/w2\n", + " m = -w1/w2\n", + "\n", + " # Plot the data and the classification with the decision boundary.\n", + " xmin, xmax = -2, 3\n", + " ymin, ymax = -1.5, 2\n", + "\n", + " xd = np.array([xmin, xmax])\n", + " yd = m*xd + c\n", + " plt.plot(xd, yd, 'k', lw=1, ls='--')\n", + " plt.fill_between(xd, yd, ymin, color='tab:blue', alpha=0.2)\n", + " plt.fill_between(xd, yd, ymax, color='tab:orange', alpha=0.2)" + ], + "metadata": { + "id": "Za6ml8Q3IynB" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "logreg_plot_decisions(moons_points, moons_labels, lr)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 430 + }, + "id": "HqEy7nveJnGt", + "outputId": "ba8a85cd-8189-4f36-f33d-ce4c90a031c9" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADJLElEQVR4nOyddZhU5RfHPzOz7C5s0p3SIZ2SojSKimKCgY2CmKg/FQtbDBS7UaQRMAgJCQUBBWkkpHuLzZn7++PMZWZn771zZ4tdeD/PM8/uztx4J3be7z3vOd/j0DRNQ6FQKBQKhaKY4DzbA1AoFAqFQqEIBSVeFAqFQqFQFCuUeFEoFAqFQlGsUOJFoVAoFApFsUKJF4VCoVAoFMUKJV4UCoVCoVAUK5R4USgUCoVCUaxQ4kWhUCgUCkWxIuxsDyC/8Xg8HDhwgJiYGBwOx9kejkKhUCgUChtomkZSUhJVqlTB6bSOrZxz4uXAgQNUr179bA9DoVAoFApFLvjvv/+oVq2a5TbnnHiJiYkB5MnHxsae5dEoFAqFQqGwQ2JiItWrVz8zj1txzokXfakoNjZWiReFQqFQKIoZdlI+VMKuQqFQKBSKYoUSLwqFQqFQKIoVSrwoFAqFQqEoVijxolAoFAqFolihxItCoVAoFIpihRIvCoVCoVAoihVKvCgUCoVCoShWKPGiUCgUCoWiWKHEi0KhUCgUimJFgYqXcePG0bZtW2JiYqhQoQKDBg1i69atQfebMmUKDRs2JDIykmbNmjFv3ryCHKZCoVAoFIpiRIGKlyVLlnDvvfeyatUq5s+fT2ZmJr169SIlJcV0nxUrVnDddddx2223sW7dOgYNGsSgQYPYuHFjQQ5VoVAoFApFMcGhaZpWWCc7evQoFSpUYMmSJXTt2tVwmyFDhpCSksKcOXPO3NehQwdatGjBxIkTg54jMTGRuLg4EhISVG8jhUKhUCiKCaHM34Wa85KQkABAmTJlTLdZuXIll1xySbb7evfuzcqVKw23T09PJzExMdtNoVAoFArFuUuhdZX2eDyMGjWKiy66iKZNm5pud+jQISpWrJjtvooVK3Lo0CHD7ceNG8fYsWPzdaymZGVAwj7QPIVzPoVCoVAoiiIlIiGu2lk7faGJl3vvvZeNGzfy22+/5etxx4wZw+jRo8/8nZiYSPXq1fP1HGfISoVjW8GTBQ5VqKVQKBSK8xB3JkSVPffFy4gRI5gzZw5Lly6lWjXrJ1upUiUOHz6c7b7Dhw9TqVIlw+0jIiKIiIjIt7HaIqYSOAtN9ykUCoVCUXRIO3W2R1CwOS+apjFixAhmzJjBokWLqF27dtB9OnbsyMKFC7PdN3/+fDp27FhQw1QoFAqFQlGMKNDwwb333sukSZOYNWsWMTExZ/JW4uLiKFmyJABDhw6latWqjBs3DoCRI0fSrVs3Xn/9dfr37893333HmjVr+PDDDwtyqAqFQqFQKIoJBRp5ef/990lISKB79+5Urlz5zG3y5Mlnttm7dy8HDx4883enTp2YNGkSH374Ic2bN2fq1KnMnDnTMslXoVAoFArF+UOh+rwUBgXq85KWAHtWQFQ5lfOiUCgUivOTtFMyB9bqkq+HLbI+LwqFQqFQKBR5RYkXhUKhUCgUxQolXhQKhUKhUBQrlHhRKBQKhUJRrFDiRaFQKBQKRbFCiReFQqFQKBTFCiVeFAqFQqFQFCuUeFEoFAqFQlGsUOJFoVAoFApFsUKJF4VCoVAoFMUKJV4UCoVCoVAUK5R4USgUCoVCUaxQ4kWhUCgUCkWxQokXhUKhUCgUxQolXhQKhUKhUBQrlHhRKBQKhUJRrFDiRaFQKBQKRbFCiReFQqFQKBTFCiVeFAqFQqFQFCuUeFEoFAqFQlGsUOJFoVAoFApFsUKJF4VCoVAoFMUKJV4UCoVCoVAUK5R4USgUCoVCUaxQ4kWhUCgUCkWxQokXhUKhUCgUxQolXhQKhUKhUBQrlHhRKBQKhUJRrFDiRaFQKBQKRbFCiReFQqFQKBTFCiVeFAqFQqFQFCuUeFEoFAqFQlGsUOJFoVAoFApFsUKJF4VCoVAoFMUKJV4UCoVCoVAUK5R4USgUCoVCUawIO9sDUCiKFSkpMHcuLFgIqalQrx5cfTU0ani2R6ZQKBTnDQUaeVm6dCkDBw6kSpUqOBwOZs6cabn94sWLcTgcOW6HDh0qyGEqFPbYsweuugpefRXWrYXNm2DuHLjpRnh/4tkenUKhUJw3FKh4SUlJoXnz5kyYMCGk/bZu3crBgwfP3CpUqFBAI1QobOJ2w4j74MRJ0DS56fcDfPIx/Pzz2RufQqFQnEcU6LJR37596du3b8j7VahQgfj4+PwfkEKRW5YshYMHzB93OOHzL6B378Ibk0KhUJynFMmE3RYtWlC5cmUuvfRSli9fbrlteno6iYmJ2W4KRb7zx+/gcpk/rnlg+zZISi68MSkUCsV5SpESL5UrV2bixIlMmzaNadOmUb16dbp3787atWtN9xk3bhxxcXFnbtWrVy/EESvOG9wee9t53AU7DoVCoVAUrWqjBg0a0KBBgzN/d+rUiZ07d/Lmm2/y1VdfGe4zZswYRo8efebvxMREJWAU+c+FF8KM6eaPOxxQpSrExhXemBQKheI8pUhFXoxo164dO3bsMH08IiKC2NjYbDeFIt/pdakIE4fFv8wN14Oj8IakUCgU5ytFXrysX7+eypUrn+1hKM53IiLgzTcgMgKcfrkv+u+9esPgq8/O2BQKheI8o0CXjZKTk7NFTXbt2sX69espU6YMNWrUYMyYMezfv58vv/wSgPHjx1O7dm2aNGlCWloaH3/8MYsWLeKXX34pyGEqFPZo3hwmT4bJ38P8+ZCWBnXrwjVXw8U9wanCLgqFQlEYFKh4WbNmDT169Djzt56bMmzYMD7//HMOHjzI3r17zzyekZHBgw8+yP79+ylVqhQXXnghCxYsyHYMheKsUqUKPDBKborc4XbDipWwbx/ExkCXrvJToVAobOLQNN1t69wgMTGRuLg4EhIS8j//JS0B9qyAqHLgLFK5zgpF8WDZb/Dcc3DiuOQPaR4oEQ43D4Pb71DRK4WiOJB2SubAWl3y9bChzN9qBlYoFNnZuRN+/0PKvps1gwub508i8uo1MHo04L1e0rzl55kZ8NFHkOWGe+/JhxMpFIpzHSVeFAqFcPIUPP44rP5DoiIOhwiYevXg5VegRggWBGlpsn9EhO++d96Rn2bB3i+/gOuvh9LxuX0GCoXiPKHIVxspFIpCICMT7r4L/vxT/tY8PsO9nf/C8OHS18kKDZj3I1x3PXTuDBddBDfcCD/9BPv3w6Z/fNEWIzweWLggX56OQqE4t1GRF4VCAYsWgpmfkscNp07B1Klwx+3G22jA66/Bd99l98LZtg2efBLs9DhzOuU8eSEjA44cgchIKFcub8dSKBRFFhV5USgUEjGxMuDzuGHOHPPH16wR4QLZoyv67z/+GHwMbjfk1tMpORneeBN6XgKDBkGfPnDTUFi6NHfHUygURRolXhQKhUQ8rJZ0ABITzB/7/nvrxpUuF5Qtl93gLxCnC15/Q6I0L78CfjYKlqSkwG3DRTylnvbdv2WLJAhPm2bvOAqFotigxItCoYDq1a3Fh967yYwtWyRyYobbDSXCZDnHTMBoHhFIR4/C9GkwZAisXBV87J9/Drt25WyKqYuxV18Nnq+jUCiKFUq8KBQKWWqxEh8Ag68yfywywvwxnVJR8Nmn0Kql8eP+VUhuN2RlwcMPQWKS+TE9Hpg6zbqbt9sDc34IPj6FQlFsUOJFoVBAmzaSJ+IwMHRxuqBpMxgw0Hz/Sy6xXhIC+G8vHD4CEyfC7Nnw/kSoXcf4nCBiJj3dOtcmKQmSEq3P63TA7j3W2ygUimKFEi8KRXEiOVlyO+65F26/Hd4cD3v/y/tx3Vnw9DNw550Q4+dsGREBV18N770H4SXM97/yKihZ0lyIgERSHhwN//4rbRZat4Ldu8x9XwBwwF9/mT8cGWmdaKwTVSr4NgqFotigSqUViqKGR5McksQEyTPRzeG2bYO77/Elzmoa/PU3TJoEjz4CgweHeB4PzJgB334Lu3eLCOjYEca9CLGx4nhb9wIoVcq3/eEjEsmoUDG76275cjDhXbj7bkhNNT6fpskxvv4GnvofcgAHZxx3zXBaiJOICLiok/RKMls6crslMqRQKM4ZVORFoShKzF8AV1wBQ2+CESPgyivEIO7vv+Hee2WZRNN80QqPWxJTX3rJZzBnB48HHhsj++3xLqloHli1Cu67D7ZvhwubiXBxu+GLL6BfPxg4APr3lxyZadOy646mTWX5ySr64nbDwoXyu9MBbVpbLzdpHmjfzvq53HqbVweZLHm1biMtDhQKxTmDEi8KRVFh9g8w5jHYvy/7/X9vkOWckyfNowtOF3z1VQjnmi3GdP5CCLxiSIMXXoTDh70i5zF49104dsy33YH9MG4cvPJydgGTnhFkGQgxktO5aaj1c4qLh959rI93YTOpKCrpjRCFhfkqp9q2FfM81e9RoTinUMtGCkVRIC0NXnvN+DGP27qaRt9m1SoREnYm6smTJVJhJTRmzpSE2l9/zfmYvt+UKdCrN7RsIX/XryeGdWbjdTihTh3f3506wshR8NZ4ERx6xZPDCVFRIppKRgZ/Pl27ws8/w/z58O9OyYXp3h0aNgy+r0KhKHYo8aJQFAV+XQynU/J2DHcQkzkdDdix01q4eNywdRus+VOEhJmBncslniy6eLnySvjmG4tze8S/xZ+bboSOHaT9wD+bICIcunWHywZCXJy95wQici6zqIhSKBTnDEq8KBRFgUOHskceQsXhhMaN7UVdHMjSSmaGxTZOEREbdlk777rdIoR0atSAUaPgzTdl2UePwOj5KN27w4D+OY9Tt64sTykUCoUNVM6LQlEUiI+X/JJgmHqieOD66+ydKzEJOrQPnijb7EIpbw42nuhoSEyEnTslL+aGG6TP0IXNfNtVqQoPPigJwlbVQwqFQmEDFXlRKIoCPS+W5NfMTOPHHU7xRjl0UP7WIzR6dOPKqyT3xIplv8Gnn8CGDdbbuVwQHSPRk2BlzJomvYUuudQXZWndBu65Gz7+GFLTRABFR6ukWYVCkW+oSyCFoigQGwu33Gr8mB5teeJx8Ujp11+qcEqWghYt4JVXYcwYa3EwZSo8MAo2/mN+Dj0SE18aEk5J9MUqL8bhlP127MieoLtuHdxxhyQQl4yEGCVcFApF/qIiLwpFUeH228HlhE8/FVt8vRqoTFkRLu28fidPPxXacY8clVJiMM5fcTjgggugfgOoXNl+yXVEOGRk5qws8rjlmGPHwty5aplIoVDkO0q8KM5tPBrs2A4pp6FaNXGCLWpoyFLOoUNipvbjj7BiheSRVK0KHTpYd3wOxuxZQc6vSR7MlVeIn4ydpOGGDcUF2OqYR49K9KVTp9DGq1AoFEFQ4kVx7jLvR3j/fTh4QP52OKBzF+lUXKXK2R2bzh9/iNnbf379icqWg5H3wzXX5M85/g3WPwg4clj8VuxWOwVrwgiyrLR3rxIvCoUi31HiRXFu8t13OU3fNA2WL4cNf8NXX0PlSmdnbDqr18CI+3IKi+PH4KmnpLdQfviWlCwpVvzBdElKsr3jOZzQoD5sMsmf0dE8EBUNp1Nl+WjePEhIgOrVJcrTpauMS6FQKEJELUYrzj0SEmD8eOPHPG7pD/T++4U6pBxoiG29ppn7qLz5huSU5JWeF+feP8YIl1P6LVWubL1diRLQqKGUcL/yMmzcAHv3wMqVUjb98MPBS7EVCoXCACVeFOceP/1k7TbrdsMvP8Pp04U3pkB27pAqHSsDuKQkiRTllQ4doUFDe0s9wdATcStWlA7XVttdfwM8/zwcPJizmSTA0iVSTn2+c+yY9Jr6fgqsXx+0Ol2hUKhlI8W5yIGDEh3IshAGWVlw7DjUKFXw49m7F2bNloaLcfHQu7f0MgqGwwFHj8DmLVK6XLky1KwZ+vmdDnjnHXG+3fSPJP86HCLiguXCZDuOC95/D1q3lr/79YXkZIlyZWZ4HYK9r/m1Q6BHd/jic/PjaZr0WLr1VggPD/15FXcyMuHVV+SzoVdoaRrUri2ir0GDsz1ChaLIosSL4twjLk6qjKxwOCA2JnfHT0kR8RMbZ+1fogET3oXPP5eJ3aOJkJg2FZo1s9hR31+DTz6VHBidZs1kuaVx49DGXKY0fPGFeLAsWQIZ6ZJ78sYb9o/x0IM+4aJzzdXQty/M/0UiLPHxcGkvqFAevvwqe4sAI5KSYOe/srx0vvHkk9L0Uo++6UJyz164/Q7pEVW92tkbn0JRhFHiRXHu0etSiRCY4XRB+3Yy0YbC4sUiRDZulL8rVYJrr4XrrjMuZZ4yRbYHX86JPo//s8mbzJpiHf3wFy76fsNvl+WWxo1CG78DaNVSbidOwq232NsvJhYeHA0DBpg8Hi0NGXNgkc+TbbPzcJ1k0yZYtND4MY8b0tPgs8/gqf8V7rgUimKCynlRnHtUqwaDBhn3AXI4ZRK/887QjvnV1/DQQyIedA4dgrfegocezpkQ6/HAZ5+aH8/j9lX3mPUrMtsvKwveeN3+Pka88rIsrwUjIgK+/95cuFiRcjq4MImKhgvqmD9+4ABs2Civ9bnEvHnW3j1ut/j92Ol3pVCchyjxojg3efRRuGaIL79DT1YtWwbefhuaNrV/rL174e235PfASIKmwbKl8MMP2e/fsUNM2qxwOKUnUeUAz5moaOv9PG5J7Ny3L+jQDTl2DBYutF7O0cnIEKF34mRo50hPl3L1YAweLAIpkPXrpV3CZZfBLTeLeLrjTti0ObRxFFVOnQqemJuZYS83SqE4D1HLRopzk7AwMaO79RZYslSWZ2rWgk4dQ3ernT5dLO7Nyo0dTpj8vUR7dNIzgh/X4YCqVWDmTPjrL4kulI6H7TtEYAVbcjl0SKJMgWhY5+KsXGV/qUbTRCQ9/3xo0Z4lS+z5xgw0iOisXgMj7s2Zt7T2TxEyEz+Ali3sj6UoUqlS8H5PUdEQWbJQhqNQFDeUeFGc25QtK4ZoeWHHDmufFM0Du3dlv69mTRFQVj4mHjfUry9JvP6T8YkT9nJFSpf2/b51K3zxJfy6SM4ZXxoGXQ533ZVTrC1bFvzYgeNcthQOHhJjv5On4PdVUi1Tv560Cgjk0OHgybogx6rlfy5NhJLHJF/G7Yb7RsDPP0NUVGjPoyhx2WW+fCgjnC64YpAy8VMoTFDLRgpFMEqWlOiKFeEBSx+xMdC7j7m3itMly0Xt2ud8rFs346UUHYcD6lwgN4Cly+CmoeJdk5kp0ZKTJyThs1dvOH48+/5//2X9XIzQNNnv5ZehT2+plHl2LNx4I9x0E+zenX370qXtLUuVKZ397zVrpKTcSrylpcETT4T8FIoUNWrIa2eEywXly8PQYYU7JoWiGKHEi6Jw8Xjgv32SR1Jc3FV79LCeTF0u6Nkz5/0PjJLGikYCxuWU7tBGV9ZRUXDHHcbn0pN7R94vyw7JyZLfYyYUEk7BsGHZl2DsLGkZMfl7mDotZxRq6za49bbsSbU9uucUdP44nNLFumZNWeb65RcRYPfcbW8sy1fkFGXFjZGj5BYX77vP4YAuXUR4Bgo7hUJxBiVeFIWDR4NJk6D/AAmHX3kl9OkDH31c9EXMJZdAlarGuTIOp4iTG2/I+Vh8vHirdOyY87HMTBgzRpakjBg6DO4fCZGR2e+PihJr/Ysukkn/f/+TxE4rDh2ClSt8f9erFzySFIjTJZEXIxHncYuI+vIr79+alAIbLSeBT4CNGik/3xoPjz9u3aU6EM0Df/1tf/uiiAO46UZxhP74Y3jvPWkm+tpr4pOjUChMUeJFUfBoeBM+3xDHWJ1Tp+DDD+HhR4p2SWh4OEycCFW9ybEul2/ydzige3coaeLUu2M7LP/N+LGERLjnXuOKEgcw9Cb4ZT5cd73v6jw5WSa3YTeLa67d/JV5P/p+v+Zqezk1/miateDxuOGH2XDkKNxwA9xzD/yz0XifsDC4+y5o106Sc7/+2nuOUD8D54g/TIkwaNFCXo/y5c72aBSKYoESL4qCZ80amD3L+DHNI8mgCxYU7phCpUplmDpFynU1fBOtxy1lx1cMgkWLcu735ZfmeS8eN5w4LgLFjMWL4dtJkJiQ/f5Nm+DLL+yPPzXV9/vWrdbbGvnOaJ7g4iI1Fe6+2xdNcruN98nKksaYCxaIh0yo1V8goqjZhaHvp1AozgkKVLwsXbqUgQMHUqVKFRwOBzNnzgy6z+LFi2nVqhURERHUrVuXz60y8hXFg+nTrCcohxOmTC288eSWI0ckFyFwQva4ZaIeMwZ27fbdrwGrVlknrjqc2Zd0/MnIkN43kLO0OdQoxf798N77MG2aPAcznC6IDuIzY8We3cHHpj+XZ58TERZqx2unCy69VEUpFIrzmAIVLykpKTRv3pwJEybY2n7Xrl3079+fHj16sH79ekaNGsXw4cP5+eefC3KYioLm313BS4337Cm88eSWqVPNmxnq930/Oft9wSZmzSP5L0YsXSq9f/KDXbukNHfcOGtHX03Lv3NaoWnivRNKvpM+7nr1RCgqFIrzlgL1eenbty99+/a1vf3EiROpXbs2r78uZliNGjXit99+480336R3794FNUxFQRMb4+uYa0Zx8OxYvsI6iuJ2yzY6f/1lzwzuz7WylBPYRfjw4dyN0wj/cVuNKeS8kzzgckk11smT5q+rwwHlysvPCuXFCLBvX+tScoVCUaBomhbUY7GgKVImdStXruSSSy7Jdl/v3r0ZNWqU6T7p6emkp6ef+TsxMbGghqfILb17i927GQ4n9OtXcOfXgG1bISEBKlWGGtVD2z8jE37/HU7ZsMj3j7R8P1meWzBBkJQIN98MkyeL/4eO3+f6nMSjSZPI7dslaTnwdXI4oVQp+PorMRtUKBRnlSk/zOf7H+aTmHiKKR++QuxZHEuRStg9dOgQFStWzHZfxYoVSUxMJNU/4dCPcePGERcXd+ZWvXqIE5Oi4OnXX+zQjfJenC6Ii4WrjLoS5wNLlsBVV/kqYK68QjxJNtssy502DXr3Es+WYL2KXK7sTrl/b7AfycjMhBH3ZfdjqVTJ3r6FTWQk9O1nnohsF80Dl10OE96VPBu9B5V+3NhYeG9CaMIlKwuSkot29ZpCUUw4cTKBr6fNJSM9g6SEE7zxwRds3r6T+g0bsuv02W1dUaQiL7lhzJgxjB49+szfiYmJSsAUNUqVhA8+hNEPSCWKLmLcbqhcGd58A8qUyf/z/vKL+IcE5nhs3AjDb4OPP4FGJl4kIJUwr7xi/3xuNwy51vd3eInQxntgPyxfDl06y98VKoS2f2HgcIjvzT+b7DnoWlGmrETBalSHuXPF72TdWsABbVpLxC7Q58aMXbvh009g/nwRMFHRcPnlcMst0i9KoVDY4tCRY8z8aTHT5i1k8co1uN0eSkW6qFm3Ic+9Np6ostXICIsm1cweopAoUuKlUqVKHA5Y5z98+DCxsbGULGms8iIiIohQ699FnyqV4dvvpLne6tUSYWjRHDp0LJj+LRmZMO4l+T0wx8Pjhkyk0eBHHxnvn5omPip2cLlEuIwaBc38ulV37QbffhvaJD9jhk+8tGghNvsnQ+zoXJC0aQM//pizaWJu8I+yliopUbHc9KHauFF6OGVm+pbtUpKlq/WihZKoXE5VJikUZhw4dJQqlcqTmZVJj8HD2b57H22bN2b0vbfR4eJ+VK7VAGd0aSqGy8VEQqpJkUEhUqTES8eOHZk3b162++bPn09HI4dSRfHDAbRuLbeC5rffJJfEDI8b1q2TjslGnZmXLsnujWJGeASUKAHuLLHPT02DqweLu+41V0v0RvPY7+K8y6/BY1iYmNi98Ly9fXNDWBjUrgPbt1lv53BKT6PflsuSjN3nY8WRI8b3ezQ44r2IqVDRWtx6NHj8CWl5YFTCfvQovP66VFmFSkaGRHIWL5acnHr1RVyFhUkn8G3bJXG4W1e4uGfokTaF4iyybecepv+4iKlz5/Pn31tY+u2blK1UmTEPj6R0jYaUr1aXyJgyuMKK5ue6QMVLcnIyO/zsz3ft2sX69espU6YMNWrUYMyYMezfv58vv/wSgLvuuot3332XRx55hFtvvZVFixbx/fffM3fu3IIcpuJc5NBBe12NDx0yFi/HT9hLts3MkJumwcED4hg8fTp88olU0rzxBjz8kCTf2pnwswKuaK4YJCLq3Xd9bQDyQziARIwGDoRbboXLBlpv63RAymlrQRgqx4+JEHJ6U+88mkRLvvkGDnv7JFWqBDfcCEOGGIuYNatluc0MtxsWLoITJ0PrFbR/v0RzDh70fQ5+/0OMAR0Ouc/jlp/zf4HK78HE9+U9VyiKON2vGs6SVWspGRlBl3YtePbJh0ir1ILk8lW5sNYluMKKVFzDkAId4Zo1a+jRo8eZv/XclGHDhvH5559z8OBB9u7de+bx2rVrM3fuXB544AHeeustqlWrxscff6zKpBWhEx9vb7kmPt74/grl7SXbGpnHnTgOTzwuZnAdO8CcOTB7Nrz9dvDjGeV4XH+diIuFC2HHTvju2/wRMB5NREGlStLh+tBB8+O63bK0Y0cQ2iUiwtc+QAOeeQZ+nJd9DIcOweuvwdYt8PQz5KjP3L49+Jg8bvERsite3G64915fZMjfTRlkfJo7+2NHDss+U6dKZEahKAJomsaavzYxbd5CZv20mB8+GUd4mIMendvSp18fWnfrS1zZKkTExOPMawJ+IVOg/2Xdu3dHs/iSNXLP7d69O+vWrSvAUSnOC7p2lSWdDJNyY4cDatWGC+oaP96liyR9piSHfm63GzZs8Hm3xMfD0KESlTHqY+SPWYVRtDcBFSA6yjhXx+WCsuVg+HDpWl27tkSQHntUhIo+0TpdMgGPHQt160r046ab4JWXzcflcMCy3/JPuLhc0KuXT4ws/w3mWURY58yBXr2hU8AScmSkPZEZSl7c0mWynBgKbrfss3QpXHxxaPsqFAXAYy++zTfT57Hv4BHKxMXQvXNbNh7OoFztJvS7tR3hUXHFTrD4oy4RFGeHo8ek39Hu3dLUsOfF0LZd/iXvRkfD7bdLGa4ZI+/PeSWvExEBD46GZ5/N+Vgwwz19mw0bshvPdekiSxhWAqBLF+vjgvRXKltWlqb08m2nSybN0Q/mtM2fPl0iAqtWybjbtIHBgyVn4+abJeEVpPrnxHHjc2pa7oScEQ4nuMLgpqG++6ZOtY6guFyyTaB46dIFXnoZyyaN5ctDwwbGj+3cCdOmiw9QyZLQ42LY8LcvCTsUXC4ReLp42bRJXvtdu8Wo8dJLpVIrPDy04yoUQcjMzOTXFWuY9fMSnn/4dtzpp9mzdy+d27eic/ceNGnfg+j48oSXisPhLFIOKblGiRdF4TNlKrz6qlcAeCed6dOkIuStt3I6zeaWm28WMfThh5JzoucuxMdLCXXnztb7X3YZlAiHt9/K7vFSqbLkt1ihaTJB+3PDDeYNKPWeQnbM+hyI+LjyStiyVZ5bzZrmyyKVq0CHDpL3ceqUlBJ/8qks0fh3fT55Ivi5g47N+xrrQqRkKUg97e3E7ZBzx8VKCXrt2uK3c/QIbNkS3L14586c91eoAP37wdx55hGYW2/z5dX489nnIm51oeJwiMCLiMhdw2oNb/4T8OabMOkbv2M7pQP4x59Ih/IK5XNxAoUiO7N/WcK0uQuY/csSTiUmU71yeS7tcREVajfivqffIDy6DOElo88ZweKPQ7Na1ymGJCYmEhcXR0JCArGx+ez/l5YAe1ZAVDlwKt2XK5YuBT9fHkMefUwqdvKL06flvKdOQZUq0KlTaHkJHg+s/0v2r1xZhELv3jIpm+FwSEVKYALn3Lkw1hvN8bh9HjQxsTBhgrXvDMjk/8t8EXv79kFcPPTrC1dcIaZugePevQee+p+Ig4Jm8GBZpjp4QJavBgyAHt1l+WzZMilfb9hAohvr1knTSf/qqmA0aAjffJ3z/m3b4eGHYb93qcfhQBSeJsLlrrtyRth+XSyJ1EbYiawZ7ueUaF6pUvDii8bbuFxQvz58+ZV51E+hMCEpOYUFy37nsku7cTo1ia5X3kFSSio9unak08WXUL9ZByJjyxFeMg/NVW2QkJpJmMtBhzr563wdyvytxEsoKPGSd4YOg82bg+cpvPOuJLv6oyFLMStXQJYbmjSWZQOrjtUFxYQJ4h9i9O/jdEn57KuvGu978JAsJ2zcKGXWF3WC/v2Dd3POyICRo2D1Hzkfi4uXSpiqVeVK/5tvxGMmmCtwfhEVDUsW29v2jz/ETTiUEnKHE+67D4belP3+n36Cp56W3/XIjS4IHxgtyc5G3HyzGO1ZfQ5DETEOB4SVgHnzYNgwEXBW+378sfj4KBRBOHkqUSIs8xbyy5KVpGdk8sOnL1Oldj2OpIURV6kO4dGlCY8svP5wRUG8qBlYUXicPAWb/gm+ncMBX3yeXbwcPw4PPigTvv8SRPny8Npr0KRJQY3ah4Y4wK76XcRT02bZ8yP0pZLGjXwTqhFly8iSyamTcpyt28T47eixMwEDSpUSl9mrr4Y6dWS/9ydKabARCafg5lvg55/E92TRwvwrqQ6Gwwl1atvbVkOWjEIRLk4XxMXBoMuz3//vLnmdA5eb9OOOHw8dO0LtWtkfP53qy/MxQ19OczqziyKjMbtc8rxeeF6icVal2/r2K1cp8aIw5cTJBMqUjiMrK4s2fa9n138HadmkHnffdgOdLu5N2boX4ogtQ9Xws2vRfzZR4kVReKQHqbTR0TRYs0YiDeHhkJkFd90Ne/fI4/6JlMdPwN33SPlwlSrZj+PxiFndjJlw4IAkuQ7oD5dcGrqh2OHDMOoBMXPzF0+lS0PDhpCUJEsl/ftJpZPZstSmzTBypOSXBCvx3bNHklSffFKWqaZOsZ7wT56AZ8bCQpO8moJC88DV19jbdvNmSdIOhtMl+UpZWbJUN358zmWxKd9bL704EJPARx/Jfr+diimHQz4vR/2M9DRNqtN694aff4Z/d0q0pXt3qdZq3Aj2/mfv2O6s4NspcskhYCawHYgAugE9KerT3X/7D3lN4xawYs3frJr2LtFxpRnz0AjK1mxM5VoNiIguTVi4zZYZ5zhF+91UnFuUKye5HXaNzrKyRLz8+ivs+td4G49byo+//VYiMzoZmfDQQ7BiuU8k/Psv/PE7fPU1fDAx52Soc/SYLM1kZkLjJtJ75847xbAMsounhES5ip88OXgvomPH4J675cpfH7sV+uPPPy+Jw3YcfxcuyF8vlmA4HJL43LuXve1159xgtG8nZdytW0uOklHC4e9/WFcEud3ijTNqZPZS6ahoMSbcv99cDHrc8n4FsnMHvLcDOnaSXKImTeSztnixNAENLyHLf8kWlVlZWdCsmfnjijwwDXgZUa5uwAX8ArwPvAdUMd/1LKFpGpcMuYtFy1cTXiKMjq2b8fiD93Iiui7ucjVpM/CSIutyezZR4kVReISFweCrzHNF/KlSVSpVQBxMrdxuPW5ZdvEXL+PHw8qVvsfBt//OnfD001IR4k9qmiRa/vRT9nNVq2bu++FxQ3KKCKI77vB2RzZ5TtOni0ut3U7TOk4n/PKzvW3TTXxt8orDAZ0ugvXrs5dMh5UQkWF3CchuA85rhvh6PJlh55wnjsMVV4r7bY0acp8DuP5685ykM8e3eJ9WrRSBe9dd8t4nnJLPt0ezFo5Ol0R0glW6KXLBKiCwDYT+XhwERgBTEEFzdtA0jY1bdjBt3kJ++GUp0z94Dice2rVsQrfuXWnXoy+lK9YgIrpMsXC5PZuoV0dRuNx6G6xYKY6pZjgccO21PhGQlBR8wtejGavXSGn0urXm23rcUv3y3z6o7m0N4NGkCmrNmpzn2h8kh0HzwLeT5FarFtx4I1w+KKeImb8gdOECEkHYtNnetrmtlAl+YIkwBUZ/MjNEjO7ZCy+/HLyCpmmz4G6+sXFS2g0ixmbNhhnTJfIVHy9VTFdfDW3bSn5JMD+WY8fE/Xb6DCjh/cobPBjWrQ8ujM3QNDnvu+/6EoSzDJaC/N8Pp0u8ZN544+wkmZ/zfI4IE6PPgxvYC/yGLCMVLpqm8b9X3uO7WT+zc88+YqJK0qVDK/7al0SZmk254q7/FUuX27PJuVf8rSjalIyETz6Gvn2NH3c4oHMXGHKNhON/+UWWZhwWs6LDIdGRefNkWcZKuPjz5xrf77//LlfSRpNYKGJgzx5Z5hk3LqdXSJqNZR8zEhPsbVfnApkkQyHcpvtswinjqIKmSYLw76uCH8PpEJFo9ZqOGikiIyVF3IJffQV27JClmH374IMP4drroEcPe92tPW4RPosX+43DCS+8IO9VwwbWny8z9Odg9Vyq15AIYtlyUvn03XfBy+EVuSATWIOxcNFxAcsKZTRut5tlv6/l0RfeIinxFCeO7uevjZu4sEl9Xhs3lpk/L+SZd76iZofLiatan5JxZZVwCREVeVEUPpGR8NxzcP0NctW+bJnkl9SuDdcOERv8v/6CRx4RbxWXK7iAGNBfjhmK0PC/Yp87J39yRfTzT58miZz+jrD1G0i/nFCdW50u46t6I0beD0/+z160Sueeu+HPtbB8ufnzD3Ysl0t8bTp0sN4OxPvlpZfg1dekOaNObJyM/7LL5O833pRKLLP+URMnwlNPwdhngp/T5ZIWBJde4rvP6YA+fUS4btsW+vti55ydO8PoB/L3uAoD7CZAZwbfJJdomsaCZb8zde5CZv70K0eOnaBiudJ06diasjXq8+jLE4iMLn1OudyeTZR4UZw9GjWEl1+S3zV8Sw67dosPSKb3i8ZqUnE4fSWnWSFOPh98CBUqSm7F8eP5m+TqcsGUKdnFy9WD7Xuh+ONx2xNWTzwpya2vvCwVWFboxxswQERks2bwm8lVqcuVvTeSEXpvH7tccolETn7/Q5J4y5SVsmZ9WScxUXodmT1ntxv+2QhjHhPDt0D/l0A0JKfpyFGpENPPc/q05Djlt3DRSUoqmOMqAigJVAUOYG6P7AEa5etZ09LSWfr7Wi7p3J7TqYmMfPIlkk+n0efiznTu0ZOGrbtQ0msapwRL/qLEi6Jo4B+1/+orKSUNdrUfEyO5C8OHS38bhyM0W/cTx+Wq+MVx0hDRTj8buzklbrdczYNM/L//Dmv/lLJqu263ei5G06ZSYhyMnt6eOmvXBX8tGtSHESOgXXt57Zs3lyWUZ54REehweAs23FC1muS26NVWZmMtbZGMe+SolH3P/0Xyk+rWFTHXrbtxnsy2bT7xanpOB/y9Aa65WnKN9uyxrh5auEBuJUvCZZfD7cMlshfsPLnFo/mShBWFwHXA6yaPOYBwYECez5KccpofFy1n6twFzFv4G8mnU/npy9eoUL0Wr7z5OqWr1CsUl9vzHSVeFEWP+b8EFxElS0FUlNjL//UXRIbQNdgfTZP8lJdfhh9+MN/O4RQ33+3bg/c10omIkAl11APw397sSZolSvgmzXLlICJSogApKb5O2JoHmjSVcu1/NlmfKyYWomPk9x/nWUdpHE6pimrfPvv9vXuLmPnhB2lUGB4BXbvI8/78c5j4gbmg1DzicWPEps2+EnF9XCdPSo5M337S3TqwIafd9f8w73bXXSdLUXZITZWo2LJl8IbZZGcTKzHrcMDAvE+WCrsMBn5HknLBp971z9ILQO4ERXLKaaKjSpGVmUWziweze98hGterxdDrrqBj90uJbdoWT3Rpahaiy+35jhIviqKFhvi2BCP1tNyOHpVEzO7dc7/sk5gg4f1Le8GC+TknI6dLEoKfHQuloqRSZvL3MGmSdXTo4AFph6BX6PgLMo9HIhVffAFVKsPevTDs5pzmZZs3wxYbUZesTBE9kZGQGGSpQvNIErQRpeNlCSYjU/JsSpb0NYKcOhVOnMgpLJ0uuOACuLhnzuNlZsGoUdmFC/h+/3EeNGsK1wSY3DVuJK/16RSL56FJJ3KQ3k6rV0vjSzvVQx43HD4Ek76FC5tL2wk7OUIOhyT7ut3yfLdvl2o0/+emC5pRI0WYGrH3PxHdDqBVa/kMKIB9wFREhGhAO+BqoLqNfcOA14BZwHfALiTa0h24CQgtUfrw0ePM/OlXps1byNJVa/ljxvuElyrFwyPvpFzNRlSv14zI2DKEnccut2cTJV4URQsHPl8Vu8szIAKmStXgPWWMcLpEkDz3rLj0fj/ZJzgcTri4BzzyqK/3UJUqcMvNEqFITjYXTZmZ5ksSbrcsWSxYIGLh5Vck6hJ4LI+3I7HTYV1IkZoqDRsvGyjl34mJ5pOxyyXNJY1YuUpaM6zxVmJVqyZRjcGD4ZNP4NFHRVA5nIAmr3X7dpIsbeRa/OsiWZ4zw+GAr78Rh17/4EtkpFScWXkC1a0LFb3GgE6nLP917iyGgTt2yBj1KJYRbq8/0MsviUeQnSVBTYMBA6VDeJ3akJAAE96DOXN856pVC26/HXoZGPedOCEeQ7oHkf4adO8O/3sKYmOsz39OswB4wvu7/mHfBUwGngPsGCG6gCu9t9yhaRp9briX+Ut/x+GAds0bc/9dN7M/rAqly9Sm45UXK5fbIoBqzBgKqjFj4TBpErw5PjTvDYdTJo0SJWTJI1TGjpXmiCBRgg1/S+ShfgMo73f17NFEsERGis39vfeKLX9uadBQejPldXnB4ZScl5dekon0mWest39/IrRtk/2+KVNlIvdPDtZLiLt2k5JlpxM2bYK//gaXUyIf/r2DUlK8jTeR/J7335fKq2DVUr/8ktPALivL16fJjKZN4b33oZTB1e/EiSJ+gp372++k9cQzY607hYMIv2E3yzKYP6dPS05QZKSIaKM8ntOp0kbgv/9yilSnC+rVg88+C711xTnBXiTCYqbQXYiIqZXvZ96xay/T5i1i7oKlTH53LB53Oq98PJWY0hVof3FfylerS0R0PGElcrk0fQ6iGjMqFEYMHgwLF8Hff9sXMJpHWggsWiSVNlYmeIGER0A3P+OqUiWln84Pc2D+fPHo6NYVliyViTgpSSabHj0kz+Obb3JvDJeUJJNZXtE8skQDUv4770dZRgl8/RwOyTNpEyBcDhyUhomQfWLVn9eSxWIWd8UgaNxYbv5kZMA774iLsO7yWyJcElbtvDZ6I0R/wsIkF2nwYBEXRsfZtFnclB8fk/OxkiXBbePzU6ok9OwpHjlXDw4yToexwClVSpbOrPhhtvnz8LjlM7tgPvQzyR06p/nexjaTgUfz5WyapvH8+I+ZMmc+G7bsIDIinM7tWrBm9wlK12jE9aOeVy63RRz1ziiKHuHhMOFdWaaYOjW0ctMFC0ITLgC33epbEvJ44IknRLQ4HIDD1+XaH49bei6BN8ciF/k2TpcsPUSVsre9ZXKoE5p4BUVYGIx/U5yGp0719dkpXQZuvEGu/gMjAzNmWFcoOZyynHbFoJyPeTzwwGj4I8DkLzND+kkFE6C1a4tzrhFbtsCe3eb7etwSabrvPogJSMbMyAx+7joXSKQEoKq3JYVV9MXthtp1rI9phlVCOMhrPHv2eSpelmO9LupG7P9zh6Zp/Pn3Zn5ctJwH77iOtNNJLPptJTWqVeL6awfTpls/YstXzaXLrRtIQJpAqoTdwkKJl/MZDckVmTQJNm6QJYEOHcXevmWLszu2yEhZkrnjTkmsXBqkMsThlByImbOCJ2zqIiA8Am69RVoWgPiA3HCDr3u1piF5HSbH8bjzZsfvccNVg6FRI/GbsWpaaOXz4gBcHrj8JJACRIkAHDFC+i3t3i3vba1a5t2ut22zTnjWPLDTpDnm4iXm7rr6+2D1npQpK0naJQ3yCP7+K/hrnJEu3b5btfLdd/QYfPSR+T46d93pE3LhJWDQIMmZMXotHA6pIOvTO/hxjTh+3Pp5aB7jZpDnPJ8DdqKPof2faZrG8tXrmTZ3IdPmLeS/A4cpHRdN61aNKV35Ap57+2MiossQHhWXS3fbNOALJGp0yntfa+BWwIZZoyJPKPFyvqIh4fZvvs4+Mf62TJYIxoyBq64q/HFlZsFvv3n72MRB166SNDr4KvjsU6mSMbSo90jFyfjxwa+2K1WSLtHdusvVekICzJol+QahmooFEy5mE6/DIdVNF10kybh3323uFOtwwA3XS4LvDz9kFwIu5L18Dij7PfAH8AlnSkLDw6F+ffn9xEmJxMybC0nJktg7eLAsM0VGBhd9ZrkYM2YEEVcO64TjtWvhvhGSh1Mi4CvJ7qQSaAA2e1bwfWJi4eKLs993xx3SdHHP3uzPx+mS1+bpZ2SJKDdUqAjHjpu/xk6XLFeeV8wA3rWxnQtoE3SrzMxM/lj/D51aN+f06SSG3vcEKalp9Ojcnou6d6dZh55Ex5cP4nK7FWkjkAnUR3ohBU6VacBdwD+I+Z3OeqQB5NPAQBvPS5FblHg5X1mxXIQLZP+S1qt3XnpZ8iLMqlIKgvkLxHMlMcE3kYZHSOXGzTfD2+9IomRyit/k7TWWa9RYEl+DlUvrib0DvAmy27bBXXdDUmLuIyj6xB04+TtdYqR3xSCYO1fKugHKlxdX2xuu9/mbDBwgY3jnHTGJczl9rrZXXyPLIg4ntG8N3z0n369hQFfgBqAxiDrYDUwEHso+xl274Y7bs4u/xETY+Izkx/TpIwZuZri8OT5GHDgQJGqjyYRvJgw1j3Srnj8f+gX0vGrbJvj7UipKkoP92flv8P2SEiVXJzzcd19MNHz6GXz6iYgyfcmtdWsYfpv8zC1XDBJXYDM8bon8nDe4gQ9sbusBhhg+kpaWzvylq5g2dyGz5y/hZEISv373FqUrVOWNN1+jbM3GNl1uE4HHkDJtFxKSywLKAi8DLf22/ZqcwkV/TgDPA52B0jafnyJUlHg5X/lusvXVstMBU6fBg6MLZzzLfpOkyzPN7rxfChnpkv8CUp48bZpMKgsWylJDwwaAQ4zt7KB54NJLvcfOkDYEycl578TcubNU4CT5+ac0v1CqfqpWhXvukUkepNTa6Ev0+uul4unnnyXyVLq0lNtWquTbpk8Y9AmWGzALuA9Zg0ciMw89lDNqpb/Gq1dDgwbS7fnI4Zw+LnrF0Y03Gp+yTBnxqbFsH+AJEp1xSufoQPFSqxZ07AR//G5sXOhwSEl1ZMCSU8mSwcvLnS7jZbSYaBg5UpYtT5wUA8TUVPmMeDzG750d+vWTztZbtuR8HRxOaNlSSqbPGzYBdpfJngDqnfkrIyOT8PASuLPc1O9yOf8dOEKdGlW4cmAvOnXrSYm6nciKKcsF9eyWnnuA+71jguwfnJPAvYhgqePd9ntyChd/3MCXwEib51eEihIv5ysbN1pfLbvdUi5cGGjAW+Ott/noI7GBL1MGbrtNbiC+GWYdqgNxuaBiJXGSBRFAVh4kdvG4ZanL30HX4YR168RHZPhwmfCqVQt+rLi4nIZt2diO/Ntalf+mAocBrzX96tXWSa+aR4TDZ5/DA6PEY8flkvdF80hk4sUXReAYMXCAdSdvh0OWnCwN5zxS8aQhpeeZmWLw5nLB889JdGz7Nt8ynC6EunWTJcBAuneHWTPNz+dySfm3lRBxhUlO2Fdf+VyVy1eQiNn114cuYsLD4f334NVX5XOhi7ESJWDgZdKqwv8zdM4TpCz9DDcDgzh5KpE5C5Yyde5CFq9YzeqZ74MrjFF330qFWg24oGlbwqNLE54rl9vfgQ0mj3nwiZFnkLyyYN8bmnf7/d59crnUqDBFiZfzFTslgCXCg29jxImTMOcHCd2XjJSJpF37nBbwOjt3SFKpFRnpsGRJzkqMhYvkatgOtWpLTkyENyKxerW9fkZW+C8VuQ2iGhMnSiKpfzJpnojEXuKinyfF33/lfJ4uZCn/UiAW2JMMzh0S2Vq6TMRYZqYkEw8YkLOSx5/evcVobvfunILY5c3jKF1aIj9m0RmHQ/Jdrr9eRApIBdI1QySy0qgR7NzpO77HDW3bwlNPG3+WL+okvin//mscSdIQ873du0VUVK6SvQJLQwTbjOm+yBPA0SPw1ltSov388+afaTOioiQaN3IUbPpHjt20KRh5WmzYCN99JzlBTqd07L72WqhXN7RzFlnsLUlrWjsuu3kkPy1eQVaWmxZN6nHrjVezM7Ms8WVr0+P6i/PB5fYXrC8KsrzbPI249jqw93+4GCnvfhtj8x9FblHi5XylSxeYO8d84tZ7+YTK7B/gxRdkmUBv7jd1qkw+b70NZQzWgE+dCn5ch9N4u8QEn127FY88ktPF1aqSyAr96tjthgoVJJfFLIrlcskSXb6Jl25Y5wk4gLpARd9dTlf251kamIDkIroRIdMaCHsMuAl6jIQe3e0PKSICPvgAnvpfdudYgBYtZZJf/ptY8JuhaRLx8fd7OXVKIm6TvhHzu8ClvT/Xwr33SEl9eIDQdjolf+j+kWJa6HLJ59Htlm3bd/C2LfBGg6rXkJJ5PRdqzRoRLvrYAsf6y8+y/Nije/DXJ5ATJ+HwYSkRr1LFeJtvv4PXX8suOuf8IKXUY8fmXF4rllRCqnJW479Ms++Axoyf4Kdf4YvXapORXpoqFcrwwD230rFnXyrXakREdOl8drlNxnqNESDdu00E0Akp3Q62jxtYAWwEmuVxjAp/lHg5X7n+OhEvRtUwDqd4j1wWYrb877+Lxf6ZvBW/x7Ztk8niiy9yXoD453SYoXmgkkElRtWq9jpB9+yZ87zNmwf33jCicmW4qLNEHMaNk1JuM9xu6WGTb9QHOiJVRUbPWwOGZ7+rXVt4b4Lv71eQpXvw9aw7803wFdJHJkR79dLxIhb27IE//5TPQMuWUMd7or594ZtJUoZu1BtJF3+BkRnN40uaDcTjFjffefOME13LlRMDwdV/iMFgRrp4tMydK5Elf8G57z+JiBw4KInN06ZaR+WcLmnu2KO75cuSjf/2SeRv6VLf82zYUEraO/iV1m7YKMIFsp9f//2ZZ6Bpk3OkY/VjwDA8niRem+hm2lz4Y71GiTDo0LoUq/+NJLrKVm557CUiost4XW7TEF8VkEhkflADcGItRirg+0e5FViJvQhMGPAzSrzkL7nMPFMUe+rWlYqisDDf1a7Da8gWHQ3vvmtuHGbGJ58aO6WCfPFu+gf+XJPzsWrVZKIzK4t1OCA2zjgS1KOHz2DOCKdLkmnLGthY9+4j5bJmYzZj3z5oUB8ubCZVQcHI9zyGcfgqH1zem9P78yEgoEFik6Zyc7mgkXdX08sWB+K7kcsE5po14corpcxeFy7gi860a5dznwrlQ38PdBxOmDHT4nHknA8/JOaDmRnGnja64P7wA2mauNNguckfj1vyfDYF6fats/c/GDpUOln7C7St26SSbKFfC4Tvvgv+mZk6zd55iyiaprFxyw7e+GAxaakfknCyJVNmhxETU4qxj1dj9k9NefXjWlRunUF89S+IKr2YsBKHgSeR6GM/788ngD35MKJBBMnuRtoX6LQAXkSWkIKhASFaMCiCoiIv5zM9uos76cyZ3l41LujQXiperASBEadPw9o/rbdxuSQBMtCaHqQa5tZbxVohsEMvwGOP5fQAAZkUH3sM/vc/+ds/iuR0SQTpgQey77N5CyxdAmnpkk/x9dfixhpKV+pnn4V/NkkehhVOV+6W3yyJRsqh1yPN7JKR/IGBgEEXYweSJHrnndBpryzfm/7na8ABpLtv9fwddpnSftGZtXKulq3kvkMW0SsrNI8v8rV5i3jYHD8BFSvCwIHiYOzP1KnWVVFOl1SzRdtI+szMlM/sxInQooX1tm++Ydx4Ux/L889Dl66S2Lz2z+DCaY3BRUARR3e5nTZvIdPmLmD7rv+ILlWSZk3qEFs+nDc+aEREbBbhUem4wlID9n4PeB9ZutHzUrKQz/8y4FNkuTS3VEd8WyaSM5ri8h77uoB9LgXaAv2RaJAVNpL1FSGhxMv5TtmyvsqdvJCeYXM7ky6/DRpI7sJrr4nnh07NmtII78B+GPeSVOP06ZN9UurTB6K80aKdO+Q+h0OSNh94wBdeT0yCRx/xJeo6HNK0LzpaojObt0B6mkwyqYFfngZMmxp8G80jAqlAaOG92aBCefjuW9jzGDh+I3hkxaQbdn5Qs6aff5AHKjgh1gmJITTi9Od0qrzPy5b5qqQcwFdfignfI49KYq3HIyXoVnjc8N9eMRDcuDF4CX1WlizjzJhpno95/LgsU1kdKylJyv3797cXhbIT8SsCeDwe/t60nRZNG3A6JYnLbh5JWno63Tu15Y7bb6NV115ElzlORNQhSlk+pdNI9CPwM5KFvOHPIKXMeeF2JA/nU6RRJEiV0CBE2BglBccj/jNfYx650VCGdfmPEi+K/CE2RqIgZuIEZPKoa3F11LAhfPyxLMscPCRC5bdlEuUA+cLWNDEQ6z8AnnzSF43p0lkEyJ7d4h5buZLkPOhoSM7NRq9JmP+VbUqKVDJ98YW40d40FDbbXA4IRnRM9uWTs0lEBNS/ArlStSKagr9STENKSb+Hx05J6sN6xBx4pcVuRpxOEeECOSMWU6eKKeBtt4koCPYZdblECA8cCF9+IVGcYI7N+/bBgw9KaXx6uiTiDrlGhIjL5S0Bt7EMN2eu7NO+vUSQrPJt/HNkihiZmZksWbmWqXMXMPPnXzl89AQrpk0gqnR53nzjJSrVuZCo0hX8XG4X2zyy2fvgBjYD25CcsLwwEBiAlDinA1UJnlczDPgViVgaVSvdg4giRX5SPOS7ouizYIH1pABSet2vf/BjVasmzqr//APvvSeTh+aRq1z9C33uHEk6futt2LpV7nMgpmbNmmYXLiDRlr//Mmkt4DUf++xz+btXr9znYASSYuFtcla4CEk8NMupcCLJurksk7dFOvKF/jG+njBIPuM7wBV+mzrMwhkh8NVX8tl0AL16W+eTuN3Q61IpDf/wQ/utAJYt9Tr2pktOzbPPSsTH7RZhb4eNG8VV+bpr5acRDoeI+CvPQusOC9ze/0t3lpu6F13GpdfdzdwFS+nV/SI+mPAmWdU7klGlA426XEWZ6g2IiC7t53ZrUnEVMia9t0LGgYj3C7CXEBwHfIYsH/n/31RDIkK35NO4FP6oyIsif/jqq+C9cYL5hfjj8UjypBW7domz61dfSuLu2GehlInfw4IF1tUjbjcsWijnvfxy+PJLOHUy7867RqXhgFRLzAYWIqZyDYDBwIV5Ox/7gKnAOuRLuAMiRip4H3cBrwF3I9EP/fXQRUIz4I48jiEYkyBhA5zWxHld/77XNcWjwFLEByyvrz9ItdJff0vV1dChUuast17wx+mS6F/HjvJ3jRrSDmDpkuDn8B+nftylSyT59vobpE1EsL5ZqachOUmif2OfkT5KTofvM+t0iXB55VWJLJ5lklNO89OvK5g6dwGLlq/mjxkTyPTAXbdcR8Wa9WnQshORMWUJLxVMvNVDIiY7sHatDcbZNIKLB54CRiP/g5FIHprydikolHhR5J2MDLE8t8LhDB6Z8WfLFl8vICv0L/Zff4Vfu0CdC8R87PLLsjugpqQET/Nwu+W5xMZIZcxtt4beqDGQ6GgxGcvm87IDWUNPxPdlvRuYh4Sg78vlyX5CTLTAJ0o2I+XPryEl1iCNkCYB33r3SUHC41cjYY/8iLp4gCXATCQEXwYYAH+Whw8+hLXeNyMSuAzRS/HeXZ3e+z7Lh2Ho6J+92rXg3Qni+3PyhFTbaZq89y1bwisvZ//c5KW3l6bBt9+KeGneXPJegpGUJIZ1/fqJed2UqZKc63KKqLrqKnvWAgWI2+3mmjsfZd6i30hLz6BR3ZoMvrwPm5OjiatUi17DuoXocutA1g3v9P7uf4GhvxclkIidGaWQ5NmzTTTQMOhWiryjxIuicAg1/G8nYdaIf3fCC8/DqlXiUzNnDhw6bK9/UZmyEOENE9epLfkS/fvLclVu2fufdCq+8y64fTiSCDsCKZ30v8rUv7C/QK5E+4R4ou3IlZ9RozgPUkI9A18Epqr3voAGjvlCBnIFugoJp7iBvbBorURV/D8KaUigaDlSoV0aEZn5mSbkcGTPtWrZAn6cJ3lOW7bIcmaXLtDIYNLp1Usie7nl0CExUrzscnviZckScRkGifwUVm8xC44cO8Gsnxczf+kqPnzxIdJOJxMZ4eLOm6+l08V9qF6/ORHRpSkRmZfIR3NkGfENwN8XqT4wynvf+xb7D8U4oVZxrqLEiyLvhIeLg+6WrebLRh43tA7BZbZGTWMDPbssXCA33QDN6bJe0nI44eqrs0+sZcvCCy/AmMe9F4Ru37bBkjh19BybDybKlXTHBKyb0TmRRNZQxct3mIeoNSSRcDoS8Slo3kVM9OCMKEv1+IJCgS+dBziIVKmOQYabS+2aA5dL3HQDl1nCwsS4sGdP4/10GjWUxpCrVub+s7hsmTgx2xnr8RO5O0c+43a7ee+LKUydu4Df/lgPQJsLG7Jq2wGiqtTlvrFvF4DLbVOk0uc/4AiypljL+1hrRPB/g/yP6OXMHqSEOR8qJnNNGmJCt8o7nqZI4m/8WRzTuY9K2FXkDzfdFFwc/LoY/lht73jly4nvRV4N3vx74ZjhdEkfnBtuyPlYz57w+efQ8xKpVHE4oe4FMGaMVDw5HHJfsARfpwsmTQLWYJ4sC/Lltw1ZygmFlVibbOk25QVNCjCNHAplPiJIzOZ/D/CDd5swJBUorzhd0lPp8TF5O87LL4mAgezvdYkS9vZ/5hnpUB0MjwYVbYicAmLn7v/46JvpZGZkkHTqOO9/MRmPx81jo+9mxuzZvPXldCq26k989QuJKlM5n4WLP9URsVLL7z4n8ACSJ3Y7Ur58O9JB/UHO3lS2DREqzyKeMwuRPkb9CV7Vp8gLDk3Lj4w4ayZMmMCrr77KoUOHaN68Oe+88w7tjJw2gc8//5xbbsmenR0REUFaWjATICExMZG4uDgSEhKINWp2lhfSEmDPCogqB04VtMqGBrz9toTYzRJj9ftvvFEa0wVbSTp0SDxeTp3MW/NEK0pFwRVXwJ13+CpLli8XK/u/1os4adsObrxBkjd1DxGdAwdg0SL4fop40VhRsiQs643M0sGez2Jk/dwufbCO6ICsxefVCyMYazCM7ryNpNkEW4GbjKQ2DCPXJr+A730depOxu3Ju2LIFFv0KJ0/CsWOwY4d8Ru1G4YJFEkuUgJ9+EouAQkDTNDZt+9drGreQvzdvJzIinB+/eZtSZauQElaaUvEViYgujSvMplCzjQfp5LwF6RV0EXYbNRYdkhARlUTO/2cHcpEyCalaOrdISM0kzOWgQ518+t/yEsr8XeAz8OTJkxk9ejQTJ06kffv2jB8/nt69e7N161YqmIRSY2Nj2aqXvwKO/CiXVBQsDmDk/eK38u234qQb+EWtC5Cvv4bGTaQk1YpKlaSK6aOPfE3y8otHHxM/jUoVszf1++ADOZ9/v50Vy6UU9qGHpKuvP1WqiBhbtSq4eMGBmMrNDLJNTUITLiCe/4swF0V690UztiE+FXFI/kE+X8mWwl4hSWI0PHbaviAwom1bmPBe6B2fd+6UxqIHD0prjL59xTlXP0zDhlI1NHw4HDse+hj1/wczEXP33QUuXDRNY/u/e6l/QU1ST6fQ7arbSE/PpEuHVlw75CradO1LqQrVCI+Ko6SdzvO54h8kQfcA8rnUgNeB7sBYQv/sny3mIFWDRoJUv+9bpKWBIr8pcPHyxhtvcPvtt5+JpkycOJG5c+fy6aef8thjjxnu43A4qHSWM+rPKU6nSnPAzExo2MDe+ntuadUK/v1XxIsZDqc0zAsmXkCcYZ94XKIhRw7n2zCJiYYaAfb3a9aIcIHsy0y66HrtNWjdBuoZGO21awe//2E+oblc3r4+lwLjyV5p5I8G3BjCE9G5FlmbMUMDjLxB/gZeQsSLTnkkqdiGJ08OGiLVSgGOyxcjOS1mOIBGtSD8GTh1W2h5RYHcfoexcNEQ9+Y5c6SSrUJ5MaNr1gxefwMme3sKeTxScTR9GnS6SCqQIr1LJI+NgRM2jOvMcDhk+dE/klymLNx1p/SEyiubNkt59mrv8mzbtniuuYaVqZlMm7uQafMWsv/QEf6Y+T4loksz/rVxVGnQkugylYiIisNp1l8s39iLROb0yiF/sb0MWQLSLfqLOkuxDg9mIeZ1SrwUBAUqXjIyMvjzzz8ZM8a35ux0OrnkkktYudLcRjM5OZmaNWvi8Xho1aoVL774Ik2aNDHcNj09nXS/EtzExMT8ewLFHbcb3n9fvsz0L0uHA7p1k5yN/AqnB7JuvXfyMYkCaB74Z6NU8di9uht0OXz8SWj9h6xo0jTnfZMnW3vBuFxSgTTGQHRfdpkIn7R044nN7fbm1EQg4uUe5AtcP5delTPIewvGLqREJwsRDO2RqozxfsfSj+tBKpECuxBvRMpTA5/vUSS7NoPsjnF2iEZyAGZmP24doAdSPW047zvgzgfkfXlzvPSqSjiVOxFz3whpJdHVr6dURqbkvixe7HuPXS7p61W3riwBge+913+uXAkvvCjd0jdtyrvzsqZJRdvXX0slWnQ0NL8wf5p3Tp8B414EpxMtKwuHw0HmTz9S/4s57M7SKF8mnh6d29G5e3eSyrYgqnQFLqwT52cWVxh8iXyujP7H3Miy4xqKRtlzMOy0RMlDpaLCkgL91B47dgy3203FihWz3V+xYkUOmTRia9CgAZ9++imzZs3i66+/xuPx0KlTJ/bt22e4/bhx44iLiztzq149n5vJFVc04OmnxfLe/ypP06T64ZZboaCEnt2Lprfesl+GPGSI2Lzb/ZI3S6DVq0+qG9jfb9hgnVvjdotLrxHx8fDmmxARnv3ceg+lhx+GVnon6KbAFKS8szoS6eiACI9gV2nJiEi5GkkkeR+JklwBtEHKTXsgvirlkO67XyOW54GMx1dKbcR4gjecM+IBxOwOsn3FPAt08UYwXC5vR3MHhEfAU0/DRRfJY506wo8/wogR9oWLf0pGRoZ0kdYFCcD48bBkqfweKFD8twtE88BPP8Lhw/L5yOsStsMhyei1aom4atUyf4TL9h2kv/gCc1I93HI8kzrHYF+5OPZWr8LQmhWZ2Kgu0z78jIdf+YhuV91l4HJbGGjAj1hP6GGI99DZREOcn09hHVlphPX1vwvl+VJwFLms044dO9JRd7gEOnXqRKNGjfjggw947rnncmw/ZswYRo/2eSEkJiYqAQOw4W9J/jPC7ZZ1/e8mwx235/+5W7eBn38Ovt1338GRo1C/Hpw6JZ2Aq1aTZMhSJWUyi4+XbePipKfRU0/DnwEddfUJRdMkKfbJJ+Htd2SZyT+3wOGEipWk+sMIO9UjVomLbdpIg74ZMyRHJjMTmreAqwcb9HSqCNzrvdnFA9yP5Azof+scRMLxk5BloGDsR5oJWZGChEp6B9nOTfYKqkgk9P8TUp59ECgDJQfC65fB9gPieJySLCXxffvmdF4OLwF79lpHwpyIDrwVaIesih3E955/840I+MREyZnK7VKPpsGKlZIHlVc0TarU8pGsrCxuun00cw97SPJA7cgwelSMY2OJysQmOrksK53wVGDBcmjfI1/PHRpugothN5JHYkUS8tksQ/62sdCQz+vX+Boz1gJuAi4n51XZVYhFgRlupGmjoiAoUPFSrlw5XC4Xhw9nz1U4fPiw7ZyWEiVK0LJlS3aYXB1FREQQERGR57Gec8yebf3Fr3lkki0I8dKnD7zzjriFWk0YmiZeLIsWiQAJXBIKCxPvlZEj5feKFcUvZfduCeFrmpxj23apAEk9DSdPwfPPZze5c7okajN4sDiUmvWa6dJVOkWbvWYOJ3Ttav3cy5eT17QgXldWIDkqRriROuNJ2DOes+FejAvx2zAiDfningocQpbDeiPRpFrIV8sADCM+9eoa5w0Fsn6ddSTMA5wAOuNbcdN9zNxuWSJ6+mnJZcrMQ5dsh1N6FnXsmD/tCtIDJvCUFJg/39eM9NJL5XNkwqmEJOYsWMqvy9fw5lMjSEtJJC31NNdXLcdFsWWp4y5BZEom4fsDzHL+/DPvY88TYUg00KoqzoUYKBqxHvgI8VMBMaW7HCmZjrc45mlkiTXRe+y25LQr0IDnkeVOf5GyB3gOyQl7OOCx2kiOzmtkX6rVu19fiURBFQVBgYqX8PBwWrduzcKFCxk0aBAgLdIXLlzIiBEjbB3D7XazYcMG+vXrV4AjPQc5fCR4efGxYKW1uaRkJLz9Ftxzr3T8DYbmMY7OZmVJ5dLpVPif33JKrVpyA0mufO45iXSY5Ud43BKF2blDyq79xUtWlgi977+XXklWwiUyAq4YFPz5FBg/k/1LMhA3MBd74qWMjW3cJtulIH7+2/FFf9K95/4ZeA+pWMojdiId+iYOZAXOnwxvTkJehAvIZ6pBA3G8vaiz5MHkJfdq5kxx9A2PgLV/whtvyFhdLnB7ZPnx2mvhgVFnWhVkZWXx+fc/MHWO9BHKzMqieeO6/LFtH5HlavNI/bZEbN9FiWNZmC7L5Fez0TxxFbK0afb6ZWGcZ7UEEQ/+pCLLr8sQZ+rAPmIaYtv8MdkjPhWBJ5DybLxj+RxfFaD/l5H++2Qk67xNwDmuQ0TMV4gxowfpU3Y90JfikXhcPCnwZaPRo0czbNgw2rRpQ7t27Rg/fjwpKSlnqo+GDh1K1apVGTduHADPPvssHTp0oG7dupw6dYpXX32VPXv2MHz48IIe6rlFubLWkRfwLckUBE2bwiefSIfcvDJrJtx0o0+w+PPxx1I9AsGjPD//LD2Q3p0gFvGZWTJB/P67bxsjHE6pNnnrrZzdqguVRIL7w9g1t6uB9DjagnnOSwQ5rxxPIFeaRk303MiX/aNIGWkev146d4b//jMXCk58848HSQfScTihfgP5vVGj3I/B6YKaNWT5D2RJctQo2Lolezl9KBw6ZGyI6J//9d237E9NZ2nTlgwe0JOUhJM8P/5DKpYvy6i7b6F9z95UrdWYiJgyYhbXrA1s2W1+TpcLOnYIfaz5zvXAL8iyjNFrN4zs5nQgwuNp5E0O/B91I5G/d4H/BTz2KSKkAzmC5GW9h+S1vEbwSGQYIpQCxQtIvloHv/EVdMWWAgpBvAwZMoSjR4/y1FNPcejQIVq0aMFPP/10Jol37969OP2Sxk6ePMntt9/OoUOHKF26NK1bt2bFihU0bty4oId6btG3H/zwg/njTpdUyOSGk6fgh9mw8R/vl2JHKXvWy0l1ataUq8uMEBoymvHaa/Duu9nvS08XMzm7oXxNk6qThx6ShNBJ33jLmw32dzjkqrdtW+jQQV6r/DY9DJlqWEdeAEKxGBiJVD3pVuuB3I2vU+9eJIF3aZBjepBlgd8Q3448cPVgKV/WDHxRHIh4ucb7dxgyJ+poHrjWm29Qo4a8j3+uNRYbTheUCBMx6/+4yyU5VCNGwD33iN2A/lm+oK7kZR07Jvlj+cS/WRrT02Bqusbv70+hRNh0alQpS3h8JT755juiylQWW/4SAUvl11wjTRyNPGQcDsAh25x1ooFPkGTzefgqdioAtyCJ6IEsQvJczHAjicCjAb0hZCKyxGSEhm+ZaB/23BCzkEijFUUhsnX+UCgOu4WJctj1ogH33y/maYERCZcL4uLh20mhl0svXiy9frKyOGM3q3nEq+K9CTkTU597Hub8kHeH3IgIWLo0e2XGn3/CnXfm7njPPgfvvB28c3Wv3rJNerpcwV91lSQYnxW2I2FqM5xIAvCwEI65CngByXTViUaSf/Wo2R7gZiR3wM776EImonzoo7R0GTzysHx+9K8qp/cULwNdvUP6G0l90JcO+/WXxGzd7+XgIbj1Fukd5C9QnC6Jpr39FsxfIN4uJ0+KaBkwQP4/JloY1Dz2mIiGXbtyFYXRNI19HqjucpAc5qLq/kzSNbiodBRdy5Sm7bC7KDvoGnsutwsXwBNP+Lpkg6/a7YUXpMVFkSIJ+WyFIy60ZhGLCUiJdbDKxO/xudnOQD7X+Tm9NUR6KynOC4ddxVnCAbz2Krzyak7x0KSp+FaEKly2bYdHH5U8kzOa1/vz1ClxCJ01y2ezD5K4unSJVHzkRcCkp8PWbdDYbwkgt7kMYWGwbm1w4QLwi1/V1NYtktA7YoRUVH39NSz/TYRco8Zw3XWSbFlgy9z1kLD7JIPHXMgXd6jVDR2QfjFr8TnsdiB7Fceb2BcuINGXfKgCOXFSoof+wsUBNAFecEEVZExb4mH0KXm8Th24/joYeFl2o7rKlSRK9+238hk9eRLKlIHLL5f3rXS8CO+775IIjP4ZueMO6zG+/IpcBHzwgbGrtAGaprE2C6alakxLd7DbrbG2VQWIiOWNWDfVHaWIT/UQnpaFK7w0xNs0lex5ibgAT53q6yHWrq0kqlc1sAY468Qg5WLBKIk9EeLf1foU8j+RXz4rTsRgUlFUUOLlXCYiQhJd77lbvswyMyV6YKfSw4hvvZOm0Re0xy0CZu48CffrVKwIn30GL7/sjQLpk5AT0EKr3ghcfgoPz13naU2DErmYXHXxpS9f+ecUbdwoJmhr1ogBYIEJmNHIrP05vqqNCMQYbgRSphwqDqR1gFH7gKNIpUYor7FGTkO8EElKhttuk5YL/u+vBmx0wNs1YFxfcHSFJnVhoUeSXUtYfKWVKQ333iO3wB5V/ujH+OorGwPVpFru1Vcll+XvDZCWKkng69dLZMevI3mGptH4GOzM0ohzOeheJobby5ThSHoMUafctEn24PRvqb13L/w4T2wDYm20DqhaTfqGnVNcjERfzHACdcm+ZFqR/BMuLkRoDcqn4ynyAyVezgfKloW+ffJ+nMVLgkdPli7NLl4AqlWT0ukDB6XMuWRJEVIj75cJx0643eXyJeyeOgWPPwF//J6LJ4E8h4t7SETIxCzR9nF09KW56dPkaveSggrRH0H+ba9HrkgbIdUOUVY75YED5C70vif3pzydCs8+C/v+MxammgYLdsE1LaGVV4g7nWcqcwCp3jl4ULx7KlfJKVSCiUsNqSoKhqbBNm9rhUqV5AZw2WVkbd7Mkq+nMG3DNpZt2MKC+rGcjormqsh0qpaMprkrhqiUDMJPZeDgtPHxp06VW4kSYtR4333gsvG1nZUp/ydRUVCyVNDNiza1gEuQ3Bej5HIPUv3m/6b2QP4/Ug22B185sx3KAu9gXY6tKGyUeFHYJyvIMo2myfKOGVUqy03n08/Et+W336yP63RJ7kl8vIT0775b+iflBpcL6lwgS2cnT+buGFY4nGK+l+/iJRNJ8piNzKxOZBmnIpJ42NJ81zyRm7wxF/as0w2YPVuiGKlmk45+CpckjbcKeN6pafDhhzB9upjggRjh3XYr9A+xV5PHpmgLz548m5GRyZ2PvsDsXxZz4lQiVSuVo0ejuvwVHklUMgwmg4gTGTjOVIbZCNNlZorpXmqaRPbMOHlC2mjMniWvodMJnTrB7bcbt8QoNoxFIimL8U1bHnxOhRORROAuiL9KecSD5XmDY7kQS+Y45GLA7H2ORKqcLkZNlUUP9Y4o7NOggYTFTUtXXdAkhKqwRg3Ftj0xSfILnvyfiJ/AhMqqVUB3UV60ELYHy/q3oEoVeGu8RF2shFZu0TzSHC/feRpYgO9qUX+NjiLLRZ8B9W0eax9SflqZ4BGbcgSvcArEjeTnhMj8BRJxsXUKd86oWXq65Kxs2pz9M/TfXjGrO3BQEq5nTBeH39RUaNBQckLatMmuIRxIftXGjUGHktKhAz/NXciy39fy7EPDSU9OYP/Bg1zeryede1xKg5YdiTyZTPhtd0FmhuSM5WZdUdMksnfTTRLNDOT4Mbj5Zjji5/Hk8UgEaeUq+dx36Jhzv2JBJNJ5ehvSgDQZER6LkR5d+hLRNiS5923ELyYSKaP2/6w0Rsr5jyOtNgKr7fT35lmgZ34/EUU+ocSLwj5DrpV1fDM0Da406lwchNgYaRb5zTfw1Zcwb55MRPHxcrwbb/QZy837MW8dhz/5VHIfDh/OvU9HMOw2m7TNDrLXAfvjQb64P0EiM1YsAD5AmjqCJNX2Q8RPvMk+3xCacHEiV7TdQ9gHmTvem2A/h8kJlC2Z/b7J38M/m3J+NvTjfTBRkqxPn/Ztc/CgVOkMuVZK6P01xXXXSfWOAZmaxvdpMFUL5+cHXiQ1LZ2G1SpyeYvGlGjeiWfe+oSImLKER3rFYUXv83vsMUkUd4XJk3a75bP/4INSdn3bbdbP3+mUXkvDDRyc335b2m0ELu263fK6PvmktAwJVrVUpKnvva1BmopC9twW3WtoFPADYhTXGxE4usNubb/txwOvIoJepzKSW6bccYsySrwo7HPJJbBqkJjG+QsIXQQ8+ohxw0O71Kguk8XjT0iYPNzgS/bUqdwLl5hYnzFffOncH8cKl0vcU/OVnwjurPsrEk0xS9j9DjHj8p+dM5Av+DWIQ6lRQujUEMbp8t7GEfJXy/btYkhnFw/QP6BabMqU4O/p6ZTs4kCf6Cd/J5HAAX7tDHr1Fm+Y6dMAOOrWWJkJ/Uq5OF0qkgdPpFKxajmGx0bRKctFTbeLiFe+okTcXPGFGRjgo9S8hRgqLl8ueTIREdKSwt98MZhwcziMlzuTk8SE0W2SpKpp8r+zZEkRLJnODV8jnzGj5+tB/hd+QPoSOYELTY7TGXE63IhEcsp6t1WeLUUdJV4U9nEgV2+tW8GkSbB1q4iYjh0lOtLWyH0yl+cxEi4g4mjL5tDLrp0uuPJKX/lsjx7w0kvmBnp6s0en03cuXaSVCJfyaMNWBBrccH1oYwtKAsGXGTyIu66ReDmOlDuDsUPpQcSN9IGAx9KQklO7VEIiONOBk8iVq82vmMRgzfj8cCJGp+03I8sBleR1P3gg+L5WLspffZ1dvDhg/823MSMpk6lzFrDsRDJOByxv1xRn5558UaMxsW9MJPJkEmHpfjk+R4/C2LHSs+jaAF8eVxh07SY3EDH16ScwbZpEA4Ph8fiSgv3Ztz94h3ZXmPjRFAgngH+RXJLGiCfRNGAnsjR5CdAHSaLND1ZjXU3k8W5zU5Dj6GVnzYJspyhqKPGiCA0H0K+f3DyaTPJ2l+89mkxSYWEQFZ27cuJevc27ZVsRXgKG+DmMxkTD8OESyg9EdyR96inYskXybNIzJOdnyDVQuTLcey8keCdcTZPJz+mQSSvf3aCrErziJxLjyAmIVb/V/m5gFnAf2b8SwjG/ujViv/f2D7LMVR3plGjD9beqzbYLDmSl6zG8F8d75PhOhzg8pwXrWmyC5pHeVykpHEvLoNyeXST/OI/6H84iw+Ohw4WNeOyW7rTv0RdPjXqUiC5NlYcfgaMJ5kL67bdFDEWbNAJNSpTP4K5d3jwYGzgc8r8XSEkbJfKaRyr9DElFIhWzkDyq8kjTw4FYC47jSERvIb7IYCQifPVooQMxQ/wEWbY0a7wYCnaSqc22SUC8kmYidgNxyPO8EXneiuKAEi+K3OO0qT6ysmDSt2LH798MMiZGyj+vu0666QYjMVH6C+XG2yU9Q8q1n3vOd98tt0CYCz76SJI39eOWLStLV127wMAB8LBBo8PZs0VELV8hS1xNm8CgQVDBpqFYSAzAuEeLjgu4DPN/5/8IrhSTEcdT/+Z2TsRTZq+9YeZgP5JP8z3WYfgtUHkEtENWsMzm8SjvoSoG3unl0l4wb26uzBA3Z2pMS4OpA4ayY+ce1jUvT0ZUHK82qEEtVwxlT7uJiKmNq7l3SfDkCVn+sfocZmaKV8wtt+ZsnQEw/i2xDrArXEBM88oaCL2aNeW2d6/5mDQNunc3eOAUUmqsV/BpSCTlFSR68gHGOVEJwK1I9Mv/NdcFpH6fPp6jSEuKYJ8Hfw56x7AK+WC0QloItEA+LGbvtRPjCrxjBmNOAL5FGot+Sp49ihSFglrYUxQsWVkw+kGxXw/sYp2UJM0bb7zJXofrdydIXkRuOlpoHhEb/hUqDmDoUPj5F3hxHDzyqFwtz50rwsUMjwbr/4LVq+HECbmabdwYyhXUVVs5ZHIxIx64zeJxkyv/bDgxvsKubHCfXTzAbmCFxTYJSH+lJGmGXZKc30reQBjPESBcyiNLFF6GDZWonlH3ZJOOymmaRuNjcnsp1UGVzHQer1uNfZkVSDkQRqcTTqofTqFUQhqu9yfCXG8T0GPHgn8ONU0+3717SaVPul9UKDlZzOfsCq2yZSXZ9zaz99khrTLMxuR0Qu/eJk67zyPvk97zB7/fdwEvmpzzG0Rc2I3MZXmP94fN7ZchFUNfApuBrYjIuBLJUTF77RzI8tXlBo+NAw4b7OtGEnqfzLGHomiixIuiYJn9A6y0mLw0Tdb6x71kfZzTpyXZMa/VQSsMxlKqpDSWvHqweGL4908KJCMDRo6E+++DhYtgw9/SqXrUKFlKyu2yRVC2YB49ycS6IqhXkMddiD+G0dJDPfLWJdeJNGk0YzYS9XFDHcQ4+CKyP9WmSOCpa+C+d5LtK6xWLRG48d4oXliY771sfiGeuDhWZDp4KNFDpxMax0rHcqhmFXpWLsOrDWoy89ExPOOMp/+pEpQ7cpqSyem4/IMiDod0MUeD0v4RqiCkpEgl3X33+bySdu+Wz5IVTic0by7tKGbNgsFXYxlB69VbKqZcYbKvK8yXu1W1qkQ4c3AIKTe2SgZfhEz4gUy32M+MMMDK/C8TKYV+BfFpyTI5h3/3dP/PZ5j39gqSfOvPYWAJ5mLLjSx5brUYn6KooMSLomD5fnLwK1SPW3xXjhwx32bf/nzoTu2Q5aPjx2USumkoXHstPP+8zyU1GG+8IW0O9HH7/1yzRnpJ5Tt/IxOM2euYglRfmNEIESdG/+5OZEI0u6IfROgTlD8a1oZ1S8i2TlQbyS3+GfgK0TafAW1dyKSkd2W8D0O79pYtpJz+pZckify220j96GPuKX8BVY94uOiYmy8ynFSLj2V9qSrsT6vIMFd5evW6jooly1EyJcP8S1HTJPK3d69E2Vq3tha6/ng8sHatCHCwbmPgv89ff0k7ir59YeaM4Ptce51Ehxo2lMojvTv6gYMwbBg8OzagImkDwfNHNO92/mQhSdm5wezz9AeS1PsYMAVf2bMVTqQjdQVkifNqZFmqs8G2220cDyTKoyjqqJwXRcFit7pB06TxolnOSGSE8f2hoHlksrniSslx0auFdu2CmTOlJ8xNN5rvn5goV8Bm5biaRyaOESPESybfmEfwUunZiDeFGeOAZxCvFxciWLIQB93nybb8ko1qSKPGVaEO2ouGdOM1w0TYlPHeABnjjchkWQnJ2DV/fdM9HhYQwarTTh67eQgpiSdZv3ETPS/uzEVtO9AkKZOSv/1BRGIKjkYN4OqroV07iajZWZI8ckTEQJcuIkjs4nSK1f+gK6QJZNlyYixnh6QkEdlOJ1xmtBzix3ffwWbvBHwmn8b784cfpCHliPu899vNmg+UdC6s7ffNyMK4bHkrcD++z7jdPCAPkkvzM8Ht+5NtHjMfmooqChwlXhQFS3gEpJr0bcmxrYV5VvUaUL067NtnPcGYGdjpTr3vTcguXMCXd/DWeKhfD9q3z7n/3v+kc3CwTtZuN/z5J1yan14axwn+Ze5dejFd4okEXkKqcxYjSZUXIGZyZl8D6UiC5RpyupDaRTfCM6MxMnGZCTMX0kb6VsuzZGZmMvuXpUybt5C5C5aRmJxCrWqV6HVpV1yxVXjto2+IiC5LeClv/s+dAQfQPLBpU/Cn43DAXXcF384Ijwf275ffXWFwy83w2muhHeOtt6XayMxoLiUZvv3OOmn32+8kWT0qGkl8DeagHAY0D7jPAfRHKnbs5ry4kMoeI/O3T5HPV268l7KQkmyjxqI6xxBDumCEIZnjiqKOWjZSFCwdDISAEWFhsr5vhgPpz2KakOgSv5kqVeR3f1wuSartcbHkH5hFTpwucWD1x+2WZN4rr4BfzFxuAzAzCss1FQj+rxqPvdyUmsAwZPa+BOvrl4mAHlnIjXABcf2Ntnh8MNYTpxsYYvhIQmISC5f9jjvLTVLCKYY/NJa1GzZx3eABfPHFx3w962dK1b+YmNptiKlQyydcjDhyxF6vq9wki/sTHg7j34SXxsln/hpv+b6dZosACadglUVD0jVrsicGG5GeJtsBkgzeB/PPjsv7eGD+CMBQRBTb+dy5kO7nbyLJtP5kISaLefm/OYBUSJnxEcGXuRxIZV9gNZeH3H/+FQWFirwoCpbLLpeE1mA0a2ZcTupPv35iAPbuBF8iogMRGG3awMsvS3XT19+I6VfCKTlmv/5SifLmm1ZHl9yV1at9vlUg5dUzpsvvdh15870B3kBgssXjLgzzP7KhITkFPyBOohWQL+r2GC8dpCElqrl1Ia6EVKmYOZvq1EWs3MeTPQKgd/0dgn/+wrETJ5n18xKmzV3Iwt/+QNM0Vs6aCKXK8NU3X1O2Wj0ioktTIjLETsp5FSV2OX5cIh/65zYiQpK9Dx+W/BY70Z+TFpO03X5d2ZKFH0Xs8f/C9x7oP5t5HzeiKiIKxiDVSvp7ppu+ZSFl9iURi/4hSF5KIGnkLa8KZEnUgWR1j0REuk464nUUTBzVBB72/p6FRJUmIxVSYUA3RPjrS6zHkeXarYgw6+rdRk2rhYF6lRUFy0WdpDIj2FXt3XfbO96VV0HKaclROZ0CsXFwxRVw6y2+5Ml77pZbRiaUKOGbmzXslbfqJCTAZBsJxzouF7Rtm7cWCTnYiFj7m+UXuJCSYYtcHTKAR5CqH//J6SegI2IyFphTtBuws9znQJaGmiDlQtWQpahQXoMbkSWsr5AlKg2ZIK4DepOUnEJMdBQJSUnUaNuP9IxMWjdrwH13DqVDzz5kVG1CZEwZaobbMGozo0IFKF9exHFB4x+ZS0+X8vyPPpKk3KFDg+9v5SVUz2ZDzGzbRQEfItGPWYi4rYh4BwVzSa6PtJBYj28S74gtY8IzlEKWk0JwWTZEQz7ja5GytVre+0/h854xIwyxbY5EhMvDSKm2ftxMZLn1VyR/LA1p3KiLeycikHRjxrxYDCjsoMSLomBxOsVF9FWTKhynCxrUh5atgh/rwAFpSHf0qC8KkpEpDfc2bpT8Af8qjsAcmubNYelS62WjC5v7xI5uQGcHhxMqVoKnn7G3fVC2A2OREmnTkyITxRMYJyvuQMTPT/iWf9wBP39HxEtgA0I7K8ouxKNlmI1tg9HRexN/kV171zN93sdMnfsKW3em8OcPz5LmrsmLTz9CnWbtqFBDIixhJfIhkRvkvb/uOom0FVYUBuRcmgYffggTJki59549xmNwOKBcORHIZtSuAy1awIYNxh4yLpdEOWvVDnggDLjUewsVB2IIZ2QKZwcncBXSXyuvERg3YrZ4L/AG0AARZ3pUyArdKHMKIlwC34Ms5Lk+gYgZf/RjH0T+J6agpteCReW8KAqea4bAVYPldz06opuGVa0Kr78RvOhBAx56WKoz/MWHXqa8YoVcvVpx2UCICPctOQXicWfvS5R62nxbf8qWk0Z8X38N5W3a3FuyDunJYiVcnMgV3nhyWpofAoYD1yKVRFa2tR4k9H0q4P46BK/ecCPLTvlHyuk0WvXuTZ2Ow3ni5VWUKpnB/XdX5F9tEollf6H7tXdQu3kXokpXyj/honPDDXBxT/ndmY9fjVWrBc9p+f13MT5s38E62fbRR3PmdAXyzDPiXh14TleY3P/MM3ZHXogMQ5xt8+Ip5M8h4Hokbysa6BTk2FnI0paGRDrN0KMwZt8L+lLZ0hDHqwgVJQ0VBY8DGPMY9O8H06fDrt3SW6h3HzGHi7AxCf39F2yzMI/SPOIpM/w2SYo0Ij4eXn0NRo8WoaJfmbpc8vstt2S3T69d295V+GefSqJwvuABHif4FagD+YIMbIaZiAiXUJY/3MCfQE+/+8KAGxB3OKPXwIXkNViVQVujaRrr/9nKtLkLWb3+H759+z6SUxbQqpmHwVdWp233OOIqeAiPSscVloIsCbyGRKQKAFcYvPC8iFYjM8PcULYstGrp83exYriVSzLyuW7YKPhxqlWXxqlffCFtLFJTJWH9ssvE66VCxeDHKHSikYqj95C8LP9lntxWuoHk5KQiS5mrMI7AOJGI0wXe8+6zcVyr8YQh/5sXhzhWRSgo8aIoPC68UG65Yd06X1dnM5KT4d9/xaDLjI4d4PvvRegsXizLQk2ailldYFfslq285dn7zcuv27TJR+ECYqVvR3i4MbZZn4LkLISaaLsBCa+3wOe0OwxJVvT3mdG//KsjlUShczo1ladenci0uQvYve8gcTGRdOsUz18HXySsTBh3/K8yEVHpOJ2BOT4epP/M3YSWUxECr78OK60cYG3idEp08fnnpblnfixFud0wbSrcOyL4thUqwsOPiONuWpokrpu0SLBHOiICoim4aSMWMai7H6keCkcM475Hcmpyi15BWAbJ/0pGnoNeRdQfuWAAnwdSXt4vD9bGjIr8QIkXRfHAbjNGO8s81avBgw/KzfJYwLPPwV13QmZWduHkckm34DFjgp8vJHYS3HfDf4CB/EDuKoS+9t6ikSWrWxGh8iySuDkdCYfHI6WzvbBr5pWVlcXSVWtZ8/dm7ht2FSkJx/llyXLatGzCyFGX0LLTX5SKzyIiKhWHrWafyxAn1Xzm0CExkcuN0AgLk0o3nSZN4P77RQDXqycNRfOK2w2LFtkTLzoOJ5QMsfIqG1uQbtCLkc9VNNJv6BbMu5jnlVJIFRrIUlJvJOL2bR6Pq1dp3Yh8jksiERl/IVwCX4fQvOTf1M/Dvgo7KPGiKB6UKRu8VDkmVhIW85NmTeHzLyShcvFiGUOJEtCnD9xxJ1TO7whAJPav+k4j3Qo15Mu4H7m3bNdJRnJpTuArG21DzuUpa7KysvhlySqmzVvIrJ8Xc/xkAlUrlaPrRdXwRJXh/a+/JTw6iYiSd/oFBOwIFwcSBSgAFszPXcfyMmWka3pGOhw5CuXKytKNTnxpWT46fjzvY7RbCp0v/IFEQfzN45KBSYiY+Qwrp+O8kQ4sRIRqBlKWXYKcibK5YR7wI+bT3zAkkd2IMETAnbI4vhMR/IqCRIkXRfFg9qzg2wwebO3Sm1vq1YVXX5HmkImJkjsTzJMm13RDrjLtsN970/sTfYm1IVwoTAauIbtfhjWnU1P5659ttG/ZjBMnj3PNXY9Qvkw8l/XtwUXd42jYajslYj4mvFQWctWbm4nIg++qPJ9JSpLlHk8Ikav27eHJJ6UKCKBKVePthg2Tvlh5wRUm3csLhSx8uVeBr4cbqap5B3gqj+c5jQiJ1YhIuhCpWnoYSbrVlyn1z7jdqKQVJ5D8F6P+RyBJ6E8iPkUOsvvelEEiN98ir4E/Lu9Yn8Gvt4WigFDiRVH0OXBQcl6CUbtWwY6jVCm5FSh6754fCa2/i06K6Vah4UJ8K+613CoxKZk5C5Yxbe5Cflq8Ao/Hw6pZH+CJiOXLrz6jYq1GRMZ8SHjJX8geUQq1Jw7IBFaJArNvr1LFuLzYH5cLXnxRlonq1pVKIjtceRX89BNs3Rr8HGa4s6Ryr1BYgnUULwv5jI4m94J5IxLZScSXZ7LQ+5gehQvozQSIuNmAz3TOThl0IMHyyq5ASvdnIFGmfYh4OYKUYDsDzutAxNBQJG9MUdAo8aIo+hw5HHwbhxOO2WxyV+R5HJncFxH6laYuEHLzhR6I8Rd8Wlo6kZERnDqVSJXWvUlNS+fCRhdw602D6dS9D6crtiAiugz16pZClh5+zuM4QL6qwpCr4QJyeLj0UvEjSjMxNHOFwcU9oGcu+lZFRsLEieIjM3t2aMs/ejRo6FBJEC8UdiKvt5UrbQYS+WuQi+OfRIRxCrq3T3bMlu7CkMTeJcjnsyTwHzDCO1a7LQbsREYqese5w+Ax//8tvUnl4+RsLaAoKJR4URR9SttYV9c8UPpcCdVGAK8gjqU/Izb9oUZUmgL/kLcQu6+fzYFDR5nx03ymzZ3Glh37+WP6hSRn1eCpR4ZQt+VAqtZuQmRMacLCSwYcYzrBJ8FghAG9IOsmCLPpIJsbSkVJdc7zzxs/Hl4C7rvP+DG7x3/0Mek6vns33HmnuVDyp3p1caC+JD+bfQbDbu5VbpdPZ+ITLqGQhZTMhyMVbyCCYTLizzIfWRayEu5xSFQlGH8j/3vBcCMXG1OBXDbtVISMEi+Ks4dHg1UrxfU2IxMaNpD+RdEBYeiaNaX8ees286RdhxMSEyQvpcCXdgqLBt7bUkITLw6gL/A6IoBeQyqFQonEuIF+JCYl0+eGe1n55wbCXNC+ZUmG3VCOrZkZRJXdSe+bUwgrUQ7xiDGKiOwh98LFAZlvwvc74bupcHCeLNdcfLHkkDTIvceMKZstjAFTU+Gff8zzWuwSFS3l+f36waxZwZeR9u2X/wFbCc35RVfAqkLKgVQC1cjl8X8k9+XIeh6O/+etGvCQ97YUWc7C5BwjsVcpNwP7wtuNCCclXgoL5bCrODscOSJ27PffDzNmwNw5ErLv0wd+XZxz+5Gj5KdZKbTmgfHj4fLLYdv2Ahr02SKYO2ggGmK4VRrogCQfOrDz775lh8YLb2lcc2dlTh6PIun4QWpUrcRTj17IzLkX8tqndRhyfykq1E0hqnQyYSU0pB/ONyZHLG3rvIZkPgV3fw5vTYCD3uTIrCxYuAiGDoPlv+XuuEZkZcGa1TDd4krb4ZCln/zqMHzjjd7eWzZEyaRJ+XNO29RCBKnZ504Dbif3giq3PaQcyGfb6rq7K/AqOZdw4pEE48ttnitU4W2nF5giv1DiRVH4uN1ip797l+9vt1tKVNPS4JGH4fsp2eeItm1g/JtQLtAK3w9Ng4REuPceOJ2bhNCiyjXIl7bdiSIC8O8V1QJxLg28So4DKpOcovG/Vzw06qbRqJvGuHdcJKXU4O/9Kexy1WT0iw9wxV0p1GiSQlTpNFxhRpP31+T8os9CQvu5yb25Hj49AH//nbP6x+313Hn8cUjL4/vszhKH5D694a67rMukNU36Dv37b97OqVOjJrz3ngiYYGNcZKMze74zFt/yip5z5EKmjRFI6fJniDFiqPlmuZ16NKTtRTB6IIaGE4CnkSjST9gXLiC5NXbH6aLAquAUhqhlI0Xhs2SprPmboWnwysuwfj0896yvH9JFF0mE5o474K+/jZeQPG44dQp+/hmuGGQ9joxMyMoUE6/CjMiHTDUkB+ZRcu9z0RpZk9+Ix3OAP9adZP0/Dm6+egCnE/5k0vRnaNq4Orfe2o+WnQcQW648EVGrcTrfxDhhMZBjyJXqBd6/9yEJmVZW63qFiV65ASJ4rgD3YIi7Hr73SIR/EzJH/undTNMgJUUqeAZdEcLr4I8GTz0Fv/wSmrdLSn5VdCGNQJs3h9WrrbfLyg9/k1ApiUz6/wC/IA0PqyERjfFIF+gwZMnkVWAwslxjZ1qphLVXSiB6Avol2BcgLiTymFv6IPk1dnBTIMaJClOUeFEUPosX+/oJWTH/F+kvdPtw331OJ2zeHNywbsVyc/Gyeg189hms/kMmrYqVYMgQWcYqUVT/JboiyzO3IxUeVuRMonS73Sz7fR1T5y5kxo+LOHD4KBXLlaZ1q6ZkRdbji6nziYgpQ0RUPA5nCtIZdxOhVS3p72emd/9gVWK1ET+Pv7zblkVydY6D8zq4Ot23alEBmbc+Qy6mQfJftm2zOTYDVqwQkRsKTidUs1kebZdGjWDtWvP/B6dTyrLPGk28NxDn2bvxhUX1aJsbsfF3A3Zcpwdi3XgUJFJ4wHvMOkjE5TKMl7LSkBYC6xCFuw9x6u2FiKrcVAH1RNyF/8N8+UgX4AOALrk4hyK3FNVvasW5TFqaPSMwTZO1/mHDspvPZQVZh9Y0iaoYMXs2PPecJPjqV9uHD0kJ66pVYuNeZAVMBeA6JBHXLFLgQoQOpKdnsHn7Lpo3Ps3RozPpc8McysRH0qNLazp3e5TG7bpBfHmiSsbiyNZF+QUk0RfsC5dofMtSv2ItsJyIGdnHyJe/v29LMjAUHJnZ5yj9LbkF0VS/Ii+BWRNOO0ybbk9E67jCoHu3PFS1aRiG+K68SjqSm+HxSO+tIsH73p9Gnz8Nqc6piHieVEMEhBEDECVqVBnkQAT4+95j6dE5I04gLSxWYRyV/ASpRPqA0C37w5Gu1I8gAlsfg/94Y5Al2lso4uHbc46i+i2tOJepe4HXat/GpJGUCDu2Z3cWbdwYNv5jHn1xuqBp05z3HzsGL7wgoiXw3JpHIjFTvofrr7f9VAqfAcikn0TOMmgHp1M1fvr1AqbNe4I585fg0dJZNaMKmWExfP5ZA6o3iCQy5ijhpTYgPYwCO3ofBhYQWlKqE7m61SM+S7H2p/EgBmVGzEESH03O70aaXf+K5IJ07RrCOAPYszs04RIXCw88ENo5NA/MnQvffgfbt0m0qEsXuGmo7zNarRo8/DC8/HJ2MaW3KujdRxLZC53NiFIsgbjOOgjeIFFDQmMTkOllALJ8GCj4ohFBcT8idPWGiFlIYu2b+HoOGYkCDREmH2AtsD1Ipd5IpO9XqFNeOaTb9T+IQHIjy2lfAceRz+pSxMiuJ+Kue65UOxZtlHhRmKMBR49I5+UKFfMvIjFoEHz8if3t3QFfTtdeC088Yb690yHnCGT2bCnPtmJyURcv0Ujy7b3oOQNZWR7CwlwcP+6iZnuNlNQ3qF+7Gtde1ZCO3VM4VbYEkTEZNKnnxnd1ugLJU3gy4PjrsC9c9CWlVsAdfvdnEDxik4VMBIGfqXVYdvV1Ac2BMBfUbwCtWhlvZ4fYWHu9jEqUgN69xWulYgi9rDQP/O9/kpejG81lZMDiJfDrr/Dss9Cnr2x79TVQowZ8+SX84V3OrFNHljIvvzyPHaFDZQ9iuOa/rOMk9PyRLGA2YlT4BTkFTC3EB2gZ0h7Ag7y5PQleyvwlvihQMHRn3KXAxTb3CURfOtuBuOjq/0f+UeDFyDLou6goTMGjxIvCmB9/gk8/hV3eyoqYWLj6arjtVogIvFoPkQoV4NFHYNy44NtGRsIFF2S/r1dvSXCcOVOiLHq3Z5dLxMnYsVDeYI17e5ASak2D/ftkyakgeiTlG/U5fuJrZv3yHtPmrmTrzhR+m3wDiWntGT1iPQ1bdKB24wZERN9GiUgz11EPciV6D9knFbvCpSSSs3IV0B+5OtdpgG9dxwgHMnEZff3Y+NLXgDq1pTQ+L5NE376wYYP5404n3HCDJIjnpjPz3LkiXCD7Mqnb+34884xEYn78UZLTnU7odBF8/jnUrw8l8rAklmuOIh3FkwLu9yCCN1Q8SDTvQyTh/E/kc3cYiWoMQPp59QjhmKlI9DEUwpCoUW7Fi85nGPd7wnv/KsTcrnkez6MIRqHI+QkTJlCrVi0iIyNp3749f/zxh+X2U6ZMoWHDhkRGRtKsWTPmzZtXGMNU6Hz8MfzvSV8pM8jyzWefwb33ytVjXrnqKnj7HSgZ6Mjqh9MlEZRSAds4gCeehHEvSei9RLhMLj0vgS8+l6tkIyIjJSpjhdMlE0oR5eSpRHpecycVW/Rn+ENzOHysHJf3v5ZNqddyPP4irrjrSZp1HUh0uaOUiAzmO5GFXBX705zggsCFOKR+hXjQ/I1cpetf6JcT/KvFrEdPaywFlMcBSRfA15OgTDpSgvQNkkgaov9K//5QubIsCQXickluy8035064AHz7rQgSM9xueOwx+G05JCTAyZMidm65BebPz90588w3GC9J5gU3IlgeBO5ESpZXIxVM9yJLR0ZOw/8i0cHbvdtMR4TLCnLnqZLXaEgWsqRqlXMXhr12GKeQ12QSEnnKiwP1+UmBf0tPnjyZ0aNHM3HiRNq3b8/48ePp3bs3W7dupUKFCjm2X7FiBddddx3jxo1jwIABTJo0iUGDBrF27VqaGuUxKPKXPXu8RlzkDKdrHvjrL0l0vC4fEgg7dYRvJsHw4fLFreewOJzye7NmcO8I430dwKWXyM0u3brBDz+YP+5yQecuwQVOIbL7vwPM+HERG7fs4PUn7+F0UgJRJSN4+P47ad+jD5VqNSAiujRhJQKjYbsMj5eTwCTHKsiV8DKMJzAXcCky2YxCSkn1z0klxGF0ILIcNRZ5o/yb14EkFJuVN/dFwu6nMby6dWoQdzvwP2Ty04/rQRKGxwE2nXdLRcGHH8GDD8LWLT4R484SR9vXX4e4eHvHyoEmkT6rxHT9/8vtN3Hpv48dK2XUeapsWo90P16HiMmOSMK3VeLqD+SvcNFJQ5ZtIHuFEsDviEj5n/fv40hS+s/4cqccwHLgIyTaFypZQF77QqURXGRo5Ixa+eNBln2/Rv739KXXcsjzN+t0rQjEoWmhGByETvv27Wnbti3vvvsuAB6Ph+rVq3Pffffx2GOP5dh+yJAhpKSkMGfOnDP3dejQgRYtWjBRn1QtSExMJC4ujoSEBGJjY/PviQCkJcCeFRBVDpxF9+o8T4wfL1eMZomMDgdUqw4zpufP+XbskCqfdetlAkk5DVWrSAXGgAH5u3zjdku+zJ69vqUmHYfXBO6TT+DCZvl3zlyQnHKatz/5lmnzFrJ2wxYiwkvQqc2FPPfM43hiYikRtYXImDRcYZWRMLhRZOAmJNkyGJPJaa51Cslh0c3Y9GoPDyIMxiIiJRHjiW44EokJ9Mgo7T3ulVhfN60H7gPS/Y6v27TfjnQU/oOc4saFJA1PQipd7KKJKF+zRgRFy5bQujV5u1LXoEOH4JVxZrhcknulO0uHzJeIR4u/vX0Y8pqNRTqXG9GWvDf0zA1hSDTvYyRPxmwMLiSh93gIx3YBlZHITShO1YF4kHycxCDnuhXzNgHjEeESOO3qDtjvI9HHok1CaiZhLgcd6pQNvnEIhDJ/F+gMnJGRwZ9//smYMb66f6fTySWXXMLKlSsN91m5ciWjR4/Odl/v3r2ZOXOm4fbp6emk+3VoTUy0+mApgrJ7t3UFhqbBvn2mVZ+2OXJEkm7Xrct+f5euMPYZSabMb06ehEaNjQ3ywkpIAuVZEC6apvHXP9v4e/N2hgzsSUriMd759FuaN2nAc/97hHbdexNfsTrhUdNwhX2OTOguZFJ6CQnH+0cy9mJPuNTC2BU0Hpn85iDeMkeRktXLEKE0ChE4Ztc9H2M8SZwEDhL8a6cFMtFMR5Ig05FkyWuQq9WPTPZze7f9Ekk4tYsDmreQW77hgIs6w2/L7Fc0+eN2w9p1wbczZB2+vkT+4kn//RmgGb7Ghv6UJ7g/T0GQhfQl2oa1eHIjwqU0YpIXTGg5vNu+Rd6EC4i4uBJZLrWqpDMz0TuGCGuzMnMNicqEUMxwHlOg4uXYsWO43W4qVqyY7f6KFSuyZYuxQdGhQ4cMtz906JDh9uPGjWPs2LH5M2CFNI3zT4I1IjIyb8IlKRluGw5HDL4kly+Hu++RpMXcVjft3Qvffw8rVsrzaNkKevWCZ8fCiRPZl8McDslLePll6Fp4JlMej4c/1m1k2ryFTJu7kF3/HaB8mTiaNrqAjIh4vp01j1Jx5YmIjsfpPI0kPPr3t9EnolTgeSSBVi+nPWhzFJdaPBaJlD8P9v59DDEns2uNb/b5+QoJ+weLjJRH8iPuDLj/Rayb5WUhtvBjOOsVH0NvgqVLcr9/WG4n2+8I3lBwKmBU9n0FIg4LYukoGMFM63TCgMaA8QWwb5s6yBLmQMSPJT8YBixCyrv9XyO9Qu4uJMpjxHys87I8SNTxEL4ycYUZxb630ZgxY0hISDhz+++//872kIo3PXtaCxeXS4RAXpgxAw4dMr4i9bhl+Wjhgtwd+9fFUhU1ZQrs3SNRonlz4b4RcOx4znNqmlQojRtnzzgvD7jdbrbt3APAwYOH6HzFrXw2eRatmjfmzVef4/sffsZdvSOlanekbPWGlIw9idP5CLI0FKwx3wR8V6FxNkdU0+Z2GhJt2WtzeyucSF5Fbkkg+MSaRu7bKOQjzVtIRZErzNfiQk/gjYj03WeE0yk5XxPehcFXweWXweNjYL2daMw6rIWLG1hr8ti1QFXsRSn0qrH8mmhDEWsmOVGAjKsbku9zPfknXED6HX2GVEn5V4NVQXooDTfaycsp7E25avXADgUaeSlXrhwul4vDh7NfYR8+fJhKlYw/8JUqVQpp+4iICCLyWrqr8NGtK1xQVyqNAid6h1O+iG+8MW/n+GG2tb2/wwlz5oRuzHXwEIx5TESIf3RFfx5m59Q84mezcqX0T8pHMjIyWbT8D6bOXcisnxfjdrv5fcb7nHZE8OmH71KzSVtKxZcnIofL7SYkvyMTezkIB7z7NEVKlasjFulmV3qR2LczX4cYluUXxlFUe1TGt2RmRmmC+4TkkZRk2LVLBEi9erLsaET/AdCunQj2LVukMq5LZ/F0GW4y0TmdUvE2Zar0NNI/v4cOSx+m4cPhrrstBmcn4mQ2icYgpmyvAAuxFooa0ssqr00jwxD/olM2t3cDuzH3A9KQsd+FJIcPQERHfhGPdKcejbQOiEBEXDBhUpngwtuJRB0VwSjQyEt4eDitW7dm4cKFZ+7zeDwsXLiQjh07Gu7TsWPHbNsDzJ8/33R7RT7jcsH770HDRr6/9dLh2Fh4912oXStv5zh50vpxzQPHQ0nI8zJtqkRRcpOD7nTBzvzpFqznwB89doIKF15M3xvvY/7SlQzo1Y2XXnqBI7FNyKzcnpa9rqdM1XpERsUHCBcNSarMJLTwvV7l4EAcRa1eh+HIhGGH5eTfdY4D+fLPLZdjLVxc5K4axSanU+DllyT6ePPNcNNNUpr/6SfmEcvyFeCOO+GNN2V5csBAqSQaO1b+v/wjME6nCBynEzIzsl9A6JVIH38MSxZbDLIj1u9XsIaFpZGqrXlI1Y/uWaJ3lnZ6fz6ERHDyErF0ID2tgo1Zx4mIhZMEL41fDbyBiBezSFNeiAYaIctTdqbSS8jpaO2P3tqjdN6Hdh5Q4CUzo0ePZtiwYbRp04Z27doxfvx4UlJSuOWWWwAYOnQoVatWZZzXsGzkyJF069aN119/nf79+/Pdd9+xZs0aPvzww4IeqkKnTBnJOfn7L/jtN3HYbdQIelycP9U/lSqJr4WZyHC6oErV0I/7x2rrJS8rNE9OP5kQSExKZu7C35g2dyE7d+/lp89eIjE1nTuGDaFx6/bUa9aeyNhyhJe0Ixg2Ya+TcyD+r1kPJBfmFSQMrZecRiDC5eYQjhvqEoyFQy5ZSGQot9QGbkQqNgJxIeH7G/JwfAvS0yQfa8vm7KIiIQHef19yrZ55Btu5Nn37QbMLYfo0aczoCoOOHSQPa+JE8/8Pl0t6IXXrbnLga5G8HyMcyNe+HYFXDujuvW1BSpeTkXylAUAU8JqN41jRHSmr3wf8GGRbXTSNQhLV7aAheWH3AzOQCEyS92dhmwBGI8n1Lxg85kLy1u4r1BEVZwpcvAwZMoSjR4/y1FNPcejQIVq0aMFPP/10Jil37969OP2uOjt16sSkSZN48sknefzxx6lXrx4zZ85UHi+FjQNo3lxu+c2VV1q763rcYon+228wfYbkrsTFyzJS//7mIsORlwRNB3TtFvJex06c5OZRTzN/6e9kZGbStEEdunftxObTcUTEV+Lakd0pERmqydmeELd3IdUjNQLu74uUdi5FknjjEVFjN+Ki0wh7JlphQG8kZG9kOqbzCuJnkdtQ/iikSeXnSGM+/dyXIpNDAVSqAcyaBZv+MRYVmiZLnYMGQYuW9o9ZrRrcPzL7fY8+Yr2P2y2l3aYlfw2R/AvdZ0cXWi7kdXodef1CoSE5/XM8BE8MtiIcWX6JRT6b/ZFoj5FocyLl3TcjyypvIG0o7OBBqtBGIMtNWYgjdB9kaTYXF0q55kpE9L2HCDadNkhrgVqFOJbiTYH7vBQ2yuelCKJ/wvTv2YwMGH675ADk8FtxQseO4ry7cIGv8kkXJpWrwEcfQkBFGgATJsAXX4YefXE4JSHyycA+Pzk5dOQYM378lW3/7mHsqFtISjjJsEdeoXnzZnS4uA/V6jYjMqY0YeG5j+JIefCDNrd1IV/En5K3iIYV6cjEkYjxEoEDESNPIa0G7sPaSt6B5AvktYdUFtL9OgOJyMTn8XhBGHIN/Puv9bJk584w/i3zx+3w6KPw6yLrBHKnU3ogWUZ59iJVRX8in5OOSMQlVOFixZNIFU2oAsaBRNBG+d2XhVTVfYvPQdeBLKU8jkSCdJ4j74Z6YUjp/2cUvmjQkM9uMiKezCqUiibnvM+L4jxGAxYtFAfdDRtEfLRpIzkCHTtIXs3rb8CP82RZCqQEe/BgKFUKPvJ6eehCRJ8wDh+Chx6CL7/K+b195VXw1VegWTTb0xvcuZyyjdsNl14Kjzxq+lSSklP4eNIMps5dwMo/N+B0OujYqin/HEwkq1QVnn/vKyJiyhi43OaW9kgIOdXGtu2Q/JZ6+XRuIyKQaMl9yGShT1T6G9AKeBnfev7fQY6nIQZ2V3r3yW3ELAzxfykkDhwInk+1fLmY3bXJg5trq5byv2OGy+WNiAZ73WogIrEguRmJtNkhDHnvPch7H7hEEob02roF+AtZrqyHcTXTfYgoO0DuBUwW0nH6eULvlZRXHNh2glYYoiIvoaAiL/bQgLfGy7q8v2eM/vv9I8UDAyAxUSIwDic0aSzJin36QMIp63N8+pmxodzixdIvxqMFNGz0yP3duknDvP0HIC4O+vTO2fgR2LpjNxu37mTgpRdx7MgRGl9yAy2bNaRL54vocHFfylSpQ2RMGVxmVSZ55hMktGzGtYjnRH5eRQdjN+LTsgARVtUR47gryJ4/0IXgvWd0x94YZCIbSoFHTvJK/34QUAlpSIUKsoTkzKVPS3KyLI+mnjaPvrzxRq6WOQuGyYi4tcKBJP52QJYz89L2QCcBWTqcjkQw8sI01JKNfVTkRXFusmqVCBfIvoSj//72W2KdXr+eVDC1a+fbZvuO4MLF6ZKrWyPx0r27lJh+/z2sXAFuD7RuBdcMkfMBDBuWYzdN0/h703avadwCNm3fRdn4WOpOnUiaK4YZ834iqnQlwqNK4yqUxo23IleFX3n/1id7h/exOyl8E7ZaSP+V/5k8noas45cneN6OPiknIcm3vyATkUE3cNtosPEfyUtxueQzVjU/JkkvAwZIc9JgfkBHjsj/QKdclt1HR4v4HzFCopJ6crArTCqO7rijCAkXsB/96gNcnQ/nO4m4P+9G8kfGI0uaeYky/YsSL8ULJV4U+c/3k2XyMLNFd7nERO4JAwt324FAi+2qV4MHRxPsy8zj8bD/4BGqV63E3n37adn7OmKiStK1Y2uGDr2B1l17k162CpEx8ZTK7VV0rnEgFRJDkC68xxFR0Je8TfAFQQowEanmsLPUFYgbaUHwKrL8lAv27oExY2Dr1uyJ2z16wNNPi3N0XrnmGpg8WSIjVrhc0oIit+IFJOl3+nS5/fqr5Ik1aSJjuLAAkugB8d+ZCxxBynX7Ys/IsCGS63QiyHb50XRwOvIZ8eArT/4G6ck0FGkNoVfWgU/0ByMvOWqKs4ESL4r8559N1v1c3G7YuNH4sVo15crTaoLwuEOr6Mh2aje//bGeafMWMn3eQrKy3Cyf8g4plOCDd1+jbotORJeuSERUHI5CFyxGVESWh4oqqUizxe3kLXkyC8mdyIU1+rFjcNttsgQJ2QXwkiVw//2SQ5XX97NsOXjqKXjERjVQqVArzAyoUFHM6CwN6fIDDRGfnyCTvV7q/hGypPco1lNFGJKn8rrJ43on8rwmpS4le5mxvyhZ6z3PeETMrEOeRyskN8YqoTgayN33ieLsocSLIu8EVhOVsJEHEmHisRAeLks8n31m7IjrckHt2tL5N0QOHDxC817XcuzEKSqXL0P3Lu3p3K0H+0s1oGRcOdrXuSTALE4RnO8I3kzPLhrSS+kxxEfE7hC+FeFiJJj1suIVK6BzPvSu6tFDfIpMeq0BsrzTtWvez1VofIovYTXwNZyBLM2MMtn3FLJceDXS0PFrfN2rnYhoaI9UJRmRBSxDDOU0RET0QCroAvkY80iKG1iFJPJODHhsAlJRZBatvRlxnFYUJ5R4UeSe5cslt2Wt172yRUtpHdC9O0ydYh59cThlGzNu95ZRr1iePeHX4RQDvVdfC5rukZqaxi9LVzFt7kJ2/7efaROeIiUljWuv6EuzNh1p3KYzkTHliIgqIE+Q84ap5I9w0UlFPEociO+HP7uQCSoL8bXxVtz8MMc60ucC5s3KH/HicMJdd3nN6Iwed0gvojL5m8hYMCQiibZW5nAaIlBvJbt/znJETOiVZTFIGfZXSP6S7ivUlzPvE3i3/w6JhmhIYncqvqnoe2RZ9E2k+WIqsmz6B/BPkOcThrQqCKziucv7XKciHwY9suRBDA1vDnJcRVFEiRdF7vjkE3EV9RcX69bBn2skcuJ05ewxBPLlH1UKLh9kfuwSYfDmG7BwIUybLs6lsbFS7TFokPxuwtHjJ7lnzDh+XPQbKalp1KtVje5dO7LpdBQlYi7g5ke72nS5VQTHTd76FFkxHjG8C0OqSp5EvGP0yJgH6avzCiQFaWTnBk7oV/b5kOQ8YCCcOgXvvCvRQadf2f1ll8MDBV2enB+cRgza7LTEyERee73X2AykvNg/SpmEJFzPBJ4FOuF7rROQTsy/4ms1EbiM4//3SURwtEU8j0JBN0fc7T1nCpKI+wAiVOYhHdIrIOK4MA3qFPmJEi+K0NmwUYQLGFcTfT8ZRo0Si/P09Oz7xsRItVHpeOtz6N2rg3SwPn7iFD/MX8rOPft45M5rSU86xr6DB7n5hqvo1KMXtRu3JiK6TC5cbs8XTgKzgN8RQdASKX02MAHMgRMJt1u56eaWE8hSQlvgXmRpCrJHeXYDt0HFcvDfAfNDuYCqycAa7/EC8eC7sg9DJt5k5Ep9K5LMeQnSVyledrnxJqk+mjdP/F/i46XEv1r1kJ/p2WEqIlzsRs30ROwT+Kz5jfY9hSSat0VaB3yL5NL4t5gIZmjnRkTHYptj8z9udSRHZwG+KEsWkgz+FCKKFOcCSrwoQsdONdGmzfLF/sMPsP4vuTpt2wb69ctzMmNyymm+njaPqXMXsHjlGjwejbbNGzFwQG/SS1bmjU+n5IPL7fnAGiSXIR3fRLQOyQ94EWktYIUD6IVczQabkFxAHMErUvzZjEQIzDpau4EkuLIuvHPAfB52A5e7kN48geJlG2LLvg+fidrbfmPWP+NbkEqWD4C6cld8abg+L32UspCScjdiKFeYeRfTCG25r7b35xyb+61BknTtWvjnFQfilrsSSeyF7Pk7p5FcqomIFb+iuKPEiyJ0Nv4TvJpowwZZ3rnhBrnlkT37DrB5+y56dmnH8aOHeOCZ12jRpD4PjridDhf3pXKtBpSILk3JcJV4Z49jiDNvBtknIzcyETwOTEKWZqwYhuQ4eDCf1PRO0u8iSxV2DcU+Bi4ku4gIxA2Dd/tsPwI3cyCdDS704Ou6rXMIqZTSDfUCBZj/wfT970Ns6e1+daYh9vm7kcn1YqT8eBKSH3LMu10UEvG6m8IRMUdsbudCohl6efYu7JUfaxSecNGryO7GvFGkhoz7Q5R4OTdQ4kUROnmpJgqBbTv3iGncvAX8+fcWypeJY9GU90l1RjFz7lziKtQoYJfbc5np5BQuOnqe0mRExARy0nsrh+QTTAAeQbxo9EoTDzIJ10GSNgciSZ0jsN8ROBOJeAQpwS6ZDB+XgddPSG6nrkGikfY5t4JMXIFLOpMQ4WK3xNuNTPq/IlGFYPwKPIOINT2q8x6SZ7E/YNsU73g2Au8TesfjU4io+geZzDt4x2gmhGLxCSczHEjVz7P48leK2vKrA+nZdCuSzG3VKNKDJAqfRHxsFMUZJV4UodOtm5hwmTVAdLqgW/eQD6tpGkePn6RCuTLs3LWXBl2voGRkBF3ateC5/z1M2+59OF2xBuFRpalSKC635zLLsb561ktY/fkHmXxXef92At2RnJR5SLh+CzLhdcG4d8vV+CbZYOjRDr06xAgHUAViesEzH8EDbtiBfLM1wk8DeIBBAfvOI3RvmjB8SyJWrEUEnT5u/wk1ULjoeJCePrORknG7LEOWRPRIhwNRce8iwrKuwT4DkMiP1fNvjohX/+jbxUi1UFGgFfAOPoG2wOZ+KSjxUvxRM4AidAZfBd9OgnQtpxeLwynVQoPtfflqmsbq9f8w/cdFTJ2zgKysTJZ8N57TWU7efu15GrXtRmzZKkTExOMsEqZx5wp2ugD7T2xrkaZ5/u+3BxEsvyN5Mhd7bzqJSI5LaSTfRWcMcBOWLsnZCLbdlcBlwAKI2wWtjSbkO8jZTye3/XDsjPtDRETkpox8KvbFyw7gIeS9ChzXcST01BcpY26CL4JyHZKonUhOAeP0bvshviUZnVZAC6TkOT9L5HPDnWSPLNUguBiNpOg5VCtyg3LkUoROxYrw9ttQsqT4WvjfIiPgrbegcnCX1H0HDlOjbV/aDxjKR19Po3nT+oy8/172lLiAtIpt6Xr13VSs04yScWWVcMl3mhPcNVXvHeVBlj/c5JwcspC8jnF+9/0LPIgk/F7l/TkKceEFCYlcm+uR+3B5j3UFkjPyMSJk/Ce0csATiHgJpCqhl05nEdyNNQGplMqN47AG/Ie0S7DDJL/9jI6ViSQEDUOqbXTRWg4xp9O7kTv8bj2QqI3R/5wDeIOCc6StjCQHB3tfLiRn7kofrJfbXEjESeXFnQuoyIsid7RqJd2Z58yBtX+Kz0Wr1lI+GhuTY/OMjEx+XbGaqXMXcvDwET5/5REyTqfQu0cnWrbrSJP2PYiOL094qTjlclsoDEYMwczIQq7OQaIuZksdIJP0OmAvUlJ7G9nzaTTEJ2Q1Uq3TFClBtloOCkYEkkdzP77JKAZ5XpvwLUsdA95Coiw3kX1SvAqZiO3iQnJFglVhBeuoHYw0JFpyERJVsSq/XkzwKJr+PvyIiIN7vH/XQBxx/0FeszDEDTeY90kc8j6OQ6qW8pO7ked9D/IZMaIZ0rogkBgkqvcMOZOKwxBvlzvza6CKs4wSL4rcExMN110rNxMOHz3Ow8+N54f5SziVmEz1KhXo2bUjWxIjcMbW5K6n3iaiVEz2ZnqKQqAO8kU/DpmU9QlQr+y5E9+VbbAO0Tp7kUktg5xRB/3vZ5Fci7W5GrWMrzfi5RFoNrgHEU6BzSGTEQGThOTn6FyJlE9vNhiv0XlLeo8TLJm2DHn3v9GQst9hSIm2WXfsTJP7zY75LdKHSLcRcCBismmI49tJ/gsXkM9OPPKcFyH5NXuQqaoeUq12IeaRmYHIMuUHiCADEbr9EGFUpgDGrDgbKPGiyFeSklOYt/A39u4/xF03XEZ60nHW/7OZqy/vQ8eLL6F+sw5ExpZTLrdFgquQZM5JSBKublJ3PVKtomP3vTqJb8Iwwo1MereGPFIfDmRyMhrTB4hgMBMinyORGd2ALxKp7JmAOMPqYqMc0gH5KLLUVRJJ0L0KuXoPRgRiaDfVYix2cCPC6x3Mu23XJ7T8k9NIUnCHYBsGYQrWlT25RV/GCkM8hKxNKo3p7L0dRp5vRYpelZQiryjxosgzKadTmTpnAVPnLmD+0lWkZ/y/vTsPj7o89z/+npmQQAgkIIGAhE2scQG0gAiisgloa0E9uLaCUlQKtlSOFf0plCpFCz1aqZfaYwseBbWngnVXRHBlUTxxq6BsjYIsCiSAEMjM/P64ZzKTMGsyk8kMn9d1zQWZfGfmyTcw33ue537u+wi9e5zE4CHncCi7LY88+RzZea3Ibto81UOVo/QiUMMjnLOxC3JlhGPa+I6JxboYjwulCut5U9v3WFfqSBdTB7Z0Mi7ovlysSN0kbOYoC9v+Xd+3xrHYrqr6LiG5sS3Xe6mu7lvDFUBpnM8Zz2xNOJ+Q2MDFheW6nBriewexZcum2JKWG1suexv7WU7CErZr7yCKpUq0pCsFL1In23d+yxeb/s2APr3Y8c02fv6fv6PnySfwi/E/pf+Q4XQ8sSeuFq3JV5XbDJCH5Ys8GuGYG7Gcg2RyYjknQ0J8by/RL6YOwifC5hJ6a7fffmyJqQw7H+djQU44czl6+aqu3Ni4C0J8bxh24X6O2IrHObDZmvrwYknJiZKFBSZ3U3M5aB+2Nf85ArNix2PndTeBmkJLsRm0mdiSohwLFLxIzMq2fsPil97gmZeW8e77H9HuuAKWPf0gBxzNePaF5zmuQ1dy8lqRpSq3GegGLB/hCd/X/gulE5u1uBi7wORS/9mGULJ8t7mEzjnJJ3IlXrCLbl26PS/Bui8fJlBs7mFsd8t0jp5x+hzL10ikcM1IHb4x/BBb/vsizHFgYx9I/WckHiexDTl/hC0lBuf17Mfyl7ZQ83canDgeHKx6sOad7bGcGMl0Cl4kovKKfeS3bMH6jZsoOfc/yG6SRf/ePbjjlsn0HTSSisLuNG3Rmk6qcpvhnFg7gSuxGYg92EVwBDYjcADbGZPIwMXfWK+p73WuIvxsR3Nsi+9ywgcwHmwXT6w8WILx80H3BV8wX8POy121HvcyicsHcWIX40gBhwNLVL0Iu9j/nKPrt7h8z3FbPcdzkNA7feqjP0cnJD9O6H4PkTiBx4A/JmZY0qgpeJEavF4vn3z+ZVDRuCqWPj6HKjfce9ft9BowlIK2xeTktcalKrfHoLbYElJt07HS64nkxQKScMmqtd2AVQ4OtdsJ4Grsk3ms/kjNwKU2D1al9wZqXnwTtaTiX0KZGMdjumCNJe+i5izMicCd1L9A23vEFqDGsw3+C2pWLPZSt2TnKuAd3+O1ezHT6eoj1bZ8tY1hl9/Ixn9/TYvmzTi3f28GnnMOm11daFrYhhHXDFOxOAlhM5ZAmWgebCblW2K76HbD8nJ+S6AgHthuobHY0sTn2I6nZlhNk3A7qTYSWxl8F5YoPDbovvbEX78m+GLrxC7c+cAM4msk+DXWPLKi1v3rsBmZBYRuFxCr2s8bTjw/f4daXx/EcpjqogqbsXkay4U5iDXCvAybmdIlL1PoN3mMcrvdvPt+KYtfeoOdu75j3szJuA/to+8PT+MXEydwxjnDyWvVjuzm+YkNWLZ+DatXW+fpU06BU4NLlkt6epvo+SZ15cY+7f8kwvc/wRI4i7Gk2yexIGUzloPTD8uV+Bk1C5/lYEtREzm6muxzxPYzObAls2AXETm5uTZ/DZlHfT/Lft/Pcg7xv0Xfhc38hAoeDmKNMV+J8zmDRStg5xdL8jDY+RtW675s6rbs5sCWxn7qe6z/8V9iycDLgPuw3luS7hS8HGO27/yWGX98hCUvv8Gu7/bQrk0rzj+vP+vLm+BpfjJTf/9Qcqrc7t8Pv5sJy5cH7vN64aQSuGc2FHdK7OtJA6okuQHoTOBF35/BbScWYbtRgnf1HIflqZxFYEu1v3hd7aJxldhMxD6OzgXZTmwX3yqsUm2w432vFymA8b/1VmEzLH/ClnZODPuI8LxYfZ3PsaaRkezCluFuIPTupWj6YL+DHYQOkFxYUBhr7tMFHL1LLQurYhxt63so5RzdLd0/ztVY8bvxcT6nNEYKXjLcoUOVvPbWKr7etoNr/mM4B/d9yxvvrOKCoecwcPBQSnqfQzNf0bikleX3uOFXv4JPP7GAJdiGDTB+PDz5JBynhmnpqTuJL1ZWWyl20VmIXXT/ghWlq+07bPfTPGCA775HsUAl1CyKP7/iKmx5wa+AmpWHw8nj6JkDsK3jxwF/xZa9/PxJyK2w8/YjLPhZjO2WcWJ1dcYQvqpusPewHVixVkEGawuxGNshdjPRKwYHc2K5M7/Ezl1wkODCLimnA2uIfu7O9D1XKNdiS4axbv8Gq/cSqYaQB1tOGkfovk2SThS8ZKDvDx7khaVv848Xl/HyG++w//uD9Dq5O2f1783BJoU89sxL5LQ4ruGq3L7zDnxUGvp77iooL4enn4ZfTAp9jDRy52Bl1/dQ915F0VRhswb/iy0LRNvxcif2yb0S2xUUrXjdC9RsHXAhFtREcyehG/05sDyLS7Ag62/UXIbajZX/92IzAsGBUhmWb/MH4LwIr/0etgOsLue8CivvvwsLfuKZOTsLq6vyAPBp0P1nAL/G8mLei/Icl2KzXeFe90QsAJ2G/bvyb1F3Y72NmmMBkgdbYrsCO28biPy7/g4LJlXALt0peMkQe/ZWsGHLV/zwtBLKysq4fOI0Tv1BF8ZeeTH9Bw+n26l98Oa1omUqqty+/DK4XJbnEorbDc8/r+AlbX2CLRMkK3Dxc2Nl/D1E/zS+F7uwFhF9BsCL1WUJ/vfXEwsc3g7zWi5sGSvUrEuwbdjSFNSc+fH/fZXvz6pa33Ng/ZuepeZSWfCY7/X9Wdfz7sESrT/CZkvi0Rvblvw1Foi1DRqnf5fYihBjc2EzTb8iesDUB8vPWYHlreQA5xJIOPZ3OffPHN0X49h12csE+i2msR27vuPZV5bzjxeXsWLlBxS1ac1ri+7ne5qx5NlnaNe5hKYtW5OV6iq3u3eHD1z8KmLdxSCNyy5sd8vhBnq93UQuxBbsaWxpognRS+JvwQIN/84XB9a08l5su3RwANPZd38s+SnPULd8IP+SzGICXaCDfYwFDvWVhf18p0c4xgO8if0sZViOzoVYYnJHjl7e8p+7B7GZMn+ukQsL9n6DzZzEOr5hhA4SXdRc/jmbQBHFUBzACag5Y2ZQ8JJmDh48RLNmTfnsi430GHIZTqeDvj1P5uZJ4zlr8EjKjzuZnLxWnNCYqtx26AClH9kSUTjtNI3beG3DLlrNsN4zwW8bz3B0gmR9RMtxOI7w1WZre8l3i/V1XweuCbovB6tfMxFbBjmMBSy9iD0g+Zi678JyY0tKoYKXnXV8ztqqqJmTE+r7t2KzH/5lr61YcvATWD5RqNo5TYApWBdofx+kEupfZyaSvtiszBZCz7Z5sXwX7W7MBApe0sCGzWU889Ib/OOFpbjdVTz/6CzwVjHztimcPnAYhR27k5NXQFaTWBvjNbBRo21ZKBynEy65pMGGI7H6CriHwNIGWPAwAevO7ADeIrFbpKMFQWcDl2NbmRPJSfjicoVYl+i6SNZbbO0mhHWVhf184TxKoIZP8O/ZiwU9/4kFMeECgubUv4N1rBzYrq0bsX+7/kDYv+16AvFVWJbGTMFLI7bp318z6tpf8+n6jTRrmsPAM0/nnHMHsolisguP46IJw9Ojyu3pveDCCy33pfZuI5cLunSFSy9NzdgkjG3Yp9R9te7/DgtoKrDdPw21XOS3GOvjczL26T9RqrBttO9hSxSXkZhGkwOxnVJ1mZlyYbMJoZyBBR3hGk3GqorwNXQOYWX6Iz12HTa7FK0zeUMpwnZTve67HcCWii6hfsX5pLFJgyvfscHr9fLBR/9i8ctvsGfPXn5/y8/xHCqne9dirr5yDH3Ou5CWhceT06IgDavcOmDGDOjYERYtspovAFlZMHIkTJ0KzXJTO0Sp5RGsWFq4WZVHsNmI07BPucneKu3nwZZynsF2tmxK8HN/4bv9Nzar8B/1fM5R2E6j74kvgHH4buGCehf2898ew3PlYLuuwj1PqCVmr++5a9fGCfX4D2k8wQtYAu+FvptkKgUvKbZ957fc++ACnnlpGV9t20Gr/DyGDxrAut3gyTuZ2//rb4mvcpsKriy4/gYYOxY+XwdVVXBid8gvSPXI5CgHsV0ekQISL5ZPchmR+/8kgwcb39+BWVjX50Q7giWdtsCaQtZVAbbl9yYsGIyVA2tzEKkX0wgskIv0e3JiS33bwnzfjc2wPU/NjttvY0m6Io2TgpcGduTIEVasXMu27bsY86NB7N+zk/994TUG9uvN2YMG0+OsIeQVFCanym1jkNMUTj891aOQiPYSfSbFiVWhPQW7MM8jeS0CavNgFWUd2E6XWF/XSaAeTazj/AO2lfgQ0BXbYVMQ9P33scJ5a7GArjdW8K5f0DE9seDgXmIvze/Fduu8gAVSJdjSR5dax53qG184HqIvLVVifZ+eIXBJ+F9iO69ubAlLpGEpeGkA/iq3i19cxnNL32RP+T56nNSNXj1P4WCTtjz1/FKa+orGZWTAImmmBdF3/XgJJI1egdX5eA74P999vXz3vU18Mw6xcBLoT/NDYg9EPMAtvvHcFeNj9mJbrl3Yz/xnrBLuRVg+yP3UvMivxDob34TNaPi1xPIvYu354wW+8d3A8mYWYRVxr/Ld9ziRAxcX9rvcG8PrfY39rgb7vt5AbOe1hMa1ZCTHiqReKXfv3s3VV19Ny5YtKSgoYPz48ezfH/mNbNCgQTgcjhq3G2+8MZnDTIr9B77n03Ub8Lg9rNuwgVHX/pq313zIJRcN52+PPsRDCxfj7ngWeV3PJL+oKznNWypwkUYiDysGFmmp0o3NMvwWGIRVml3re9xCrHz/3cCrWLfnRP7b9hAo/d8Du4BG+xzmxAKdQdStzofb97pVWHG6v2OBi/971Pr7PGyLcLAD1H1LuRsLaP6IJRXvwCrcRuIl9u7MDmxn0Vbf17HUhmoCzEFbjyUVkjrzcvXVV/PNN9+wdOlSjhw5wrXXXsv111/PokWLIj5uwoQJ/O53v6v+Ojc3PZI59+yt4Pmlb/GPF1/ntTdXcny7Nrz02Bw82c158snH6VxyBtl5rchORZVbkbjcQKB8fe0LrgPLt/DPYviXmPzFzN7Dysf39B2byKRaB5abMSLo6znYNthwzQKzgB9jCbgV2CxIU6Ino4bjxC70kTofZ2EzNj2C7uuG7cypT3KzC6ts25foQUM8gZIX2zk0Cju3g7GZnXCzLw7g5wSK+ok0rKQFL59//jmvvPIK77//Pn369AFg3rx5XHjhhcydO5cOHcL/o8/NzaWoKFRJ7ManqqqKrKwsPvrXevpc8FOqqtycceoPmHjdVfQfcgG7W/WgacvWnNo9xVVuReLyAywAmY4tKTiwC1wWtkz0BbaNuvbFzT9DMB1LpE1U8Tq/LCwXJHiHTAesF9A/sSTicqx3TU8sJ+RELK9jGvAu9W9j4Ma2jEdShQUqwS4htn5J0V77A2xJLhkzHl6sF1RfIBfbJVX7d+zCAsAxSXh9kdgkLXhZuXIlBQUF1YELwLBhw3A6naxevZqLL7447GMXLlzIE088QVFRERdddBF33nln2NmXyspKKisD2wArGqDM/Nff7GDxKzbD4nG7+fu8O2ji9HLLL6+n73nn076LVbnNakxVbkXi1gsLQD4ENmNLCQOxC9pFER7nwbZPf4gt1XTBuh7XN2hwYDMCoep1tMAaNv7U9/VmbHbkDgIzHf4ArKE0qfX1SVi35PkJGEtzEh8Y+nmwyr53YgHstwQuFVVYfZkHsDYBIqmRtOBl+/bttG3btuaLZWXRunVrtm/fHvZxV111FZ07d6ZDhw58/PHH3Hrrraxfv57FixeHPH727NnMnDkzoWMPZ8PGTVx15RTe/+QLmmS56N+7B0OGnMdG7/E0KTyOMZOHNt4qtyJ14sQa5PXBLlzLsYtvNP7lIv/um99HOM6FFRfbg+WFhOPFln+i+Qy43jfe4CWaUMGCA6uD4iG+gns5vucOt6ziwrpt1zYJ6420ACtjHy8Htvx0NrYjKJkewpa+VmOJ2A7s38F5aK+HpFrc/wKnTZvGvffeG/GYzz+ve+XL66+/vvrvPXr0oH379gwdOpSNGzdywgknHHX8bbfdxs0331z9dUVFBcXFxXV+/UgK2hTSurAtM2//MWcOuZBW7TqRk9cKV1btT1gimeYQttNlNbEl33qxZQeAi7HdMi9Rc7dNFnaRvw/bWrwduBILYEItVfQA+sfwundg24tj2S3jxX62ydhOolg4gNFYx+dwOUEuQhe4c2CzVj/GtjDvwRJ/1xDbbIwXO0dbYhxrfXyH5RPNon61bkQSL+7gZerUqYwbNy7iMd26daOoqIidO2s2D6uqqmL37t1x5bP062f1EjZs2BAyeMnJySEnp2FmO7JbtuXW+xaQ3yKfJk0UsMix5M9YTROIbbmiCTY7ABawzMRmIp7GtuFmA0Ox/JkuvuOKsMq2t2IXZyd2sfb6HjuT6IHTh1gTyXi1IPaWA8djwc65wFSObkzpxHJGvvEdGyo3pRLbnfWV73kuw2an9hA6gPEHfT/CkmrnEvu267ry57/8EsshEmk84g5eCgsLKSyM1MjL9O/fn71797J27Vp69+4NwBtvvIHH46kOSGJRWloKQPv2kSpNNhCHA3eTPJwuTZnKsWQ/8SXfOrDmiQVB9zmB4b5bJN2xpNYPsUJ0/iAo1tnUjdQtn6QlVs02WvDiwHb75GINB1/AZmCew4Im/2uvxpKDT8dmloI7YS/FtpHvx96CPQSCtHCc2Lb087EZpVg7a9eXB/tdqKGhNC5JKyxy8sknM3LkSCZMmMCaNWt49913mTx5MldccUX1TqOtW7dSUlLCmjVrANi4cSN33XUXa9euZcuWLTz33HNcc801nHvuufTs2TNZQxWRiNYT27Zi/9vJaKxIW105sFyZn2EzM/EsAzcl/sClKVY3pnZdllD8xer8WmFBj3+2x7+M5M+1+QSbudjgu28VcBuB3J4qAsFLJFVYj6T+WND0OsmddQnWEFWTReKT1CmEhQsXMnnyZIYOHYrT6eTSSy/lgQcChZWOHDnC+vXr+f777wHIzs7m9ddf5/777+fAgQMUFxdz6aWXcscddyRzmCISUazBwABsGaVTEscSyxgi1V8JZRxWmC+Wt8Mq4DfY8hbYuXmU8LM9biyAuRyrT5PlO7Yugce/w/w9Ev925xxsJmxHHV63rh8cD2BLjYewGTV1dZbESWrw0rp164gF6bp06YLXG/gPX1xczJtvqhmYSONSQuTOxH43kdrABaANNvOzmPABgjPoz2uwYmtguSf/IPpMg39J6xQsr2VzjGOLVhsmmuDgKJbg52JslseJBUxurLfSHKxGTzRZWO5OvL9TN9Z1fCE1Z+xOw5a+uoZ4TAVW3bcZthtLVXslMiVviEgUediF8O+EvmhmYbkdDfHJei9WjO5jbAnnTOBCAjubwCrp7scu1KGSWj3YWO+h5oX0Mqw5YTQuLJ/lFKIHdMnmwpbYTsN2dDmwxOOfALU3OLiwhN8LsUJ3b2AF/dYSCKz8AZIDWw77bR3GdC+hz+NnWJ2bhVgiM1gNmT9hicH+2bLO2Fb3kXV4bTlWKHgRkRjchOVtfEAgIPB/Ou6AbaetDy/2yfsQdtEM1ULjbWwn0hHf8Q7sAvwQ1kvoFN9xTbAZhw2+WyibfM/1GIE+Pl2wZa/IpSDsdf0X2va+xx+M8phkcWM/y0NxPMaBzaj09X19EEs4XgLsxJa3RmEzWHlxjmcz4QNALzbj8zDWGHM3MBYLYIKX+cqA/4ftvLoyzteXY4WCFxGJQVOsLP/r2EXua6zBob9mSX36j72GLTNs8X2dg80QTCKwY2kTNqPibz9A0J/7fMc+S6Dq6++I3FPJg+1MehgLvlxYrZmfYNVjIwUjVQQCpabYRf7vpC6xNbuej2+G5eRcnoCxvBDDMa8AM7C8oV0cfd78v9f7sfoydWmkKZlOwYuIxCgLm8pP5HT+QuC/qJnjUIktDa3FKtG2xHoXQfik2P3Y7MHPgG3YjEwsicZP1Pr6PCwge4bQwYgLm5kYGHTfjdiM1EYabgdQsFwCM1GRfIntHMvBArVkbLdeH8MxHizh+DkiB3we4EXsdypSU9K2SouIRObPd4CjAw03Nrvjb0Wwgsg7iDzAW76/vx/i+WL1DrY76BQsGAgOCLKwC/8cLIjxywP+iuVpHFfH162PDUSe8diCLc9cgc14TMNmNP6L+nW4DiXW59tC9O33TuzfgMjRNPMiIinyPJGDDDe2a2gylucSjb83UX1mP9xYobobsR5Cq7EgKxcr1HYV0DHE45oDE7CdSxuJvgST5Xu+LGwZrj6NGp3YDNJhrI6MB0vgHY3NYl2HzUwFOwwswvJK7qrj64bSk0Al5khaEdvP3KLeI5LMpOBFRFKkjOgl7vdjOS0lRJ5RyQJO9f29RwLG9nDQ34uBWwi0O4jEQaCmSbhkYbAZisHYMtUF2GzI7jqN1M7fBmA2gYDgLeAvWFJuqF5R+I57CbgaO7+J8BNsFiqSAizIORtYGWZsYOdIPZUkNC0biUiKxPKp2v8WtZPIn9KrCDRC7I5t3U7UZ7OvgV9hS0qxuiHC91xYQOTPm+mNXczr+3bsr+7r//MItqU70lKOE8srSZSOwBAi59+Mx343Ezh6aS54XEOBExM4NskkCl5EJEWGE/nC6sIKxz2INTCMJA+rJOs3CytYl4i3OH/QNIfYl3aGYMtdEAii/GMpxBpdBufNDCLxyb6xjNU/a5NIv8UCMgj8zP6f9WoC259Pw3Ke/DvEsggU1BuB7RgTCU3LRiKSIqdivXrWcPTSgf8idiVWYybaNuTvgYnYrqTjsQ7Vi7BdQ//ElmQqY3iecLzYDMzHQK8YH3MtFpQ8g+30aYYFNcOxLdbBzseWqkJtHfZLVhfpbQl+vubYz7IWeBkrLNiR0IXzzsK2Tr+FbW3PxZbSQuUViQQoeBGRFHEAfwCmA8uxT+f+AnAtCRS+Oxzy0TV5fMc9idWDAftEf53vBhbE1PfT/M4w92/yvfZybLmmBNvdMyhoPJE0xS74v8CCiSwCyz85WAD331hFXP+MSrw9nMLZnoDnqM0B9PHdommCLRENTcI4JFMpeBGRFMoF5mKVWVcQaOI3CLuofRjHc1UBrxI+WBiFlcF/CAsA6rK7J9RW6Hewyrz+MQD8H1b75VKs2m8svXqKsZ1Hb2K5Kkew2akfY8tiP8K2RK/AztOpWELzq9QviPHnyaifkKQPBS8i0gh0JXTDvhLiK7//fZTvX4cFRlcS/wW/CEsEDrYXazMQXPkXAks/zwBnYDuKYpFF+FmIFti4g0vmb8F2DNWVvxeSAhdJL0rYFZFGLBfbRRTLW5UDm72IZid1m6n4dYhxPI8tV4WbxXFiuTeJFJwT0wX4je/vwQnA/nH+BAuIwgUnXtQ/SNKRZl5EpJH7BbasFMtW5ctiOCbewKUNtiw0LMT3PiXy8pMH+BcWcLgiHBfNbqwQ3T+x2Z4WWGDyM+xn7gY8TqBI3alYQb3zgQFYo8PghpL+5N/RqHuzpCMFLyLSyGUD92F5IHMJXTLeiW3PvSiG5yvBAoloO48mYkFAX8K/Vfp3RUUKYPzH1NV2bLnrWwJj3oftrHoZ+BuB5Fj/OIJf73xsRuoJrDP3EWyp6HLf97RkJOlHwYuIpAEnVrAs3PJRP6xXT5MYnqsNllOyjNABTBZWNO7nMTxXP6wrdjguLPipzwr9LCzRuPZY3djuoxlYAAPhA5ES4O56jEGkcVHOi4ikAQ/wS8LXJFmJLZnE6lagM0e/BTqx4CbWfj8jsT494ZaE3NSvK/JW7GcLt9TlBj4i8YXmRBo3BS8ikgZWYQ0Pw13EncCCOJ6vwHf8r7Ck11ygA1bWfyG2sygWTbEKwC04ugO1A9u2fVYc46rtC2Lb0r2uHq8hkn60bCQiaeAdIhdl82AzEPuxmiixaA781Herj5OAZ7EaLG9ilXxPwXZJhdr+HY/sBB8nkhkUvIhIGjiS4OMSLVQNlkQ4HZvdORThmCzgzAS/rkjjpmUjEWlEqrCCdLWXSkqIvjuoLYEmfw3lS6wtwCJsS3SiNccConCJuE7gEmwZTOTYoZkXEWkESoH5wHvYElARtpX3CmxJZCRwP6EDG7CL+OU03Oexb4HbseaD/tf0YJ2S7yX2nJlY3IgV1nuRwNKZ/89BwM0JfC2R9KDgRURS7FXgDmx2wd81eTswD6vtMg+bgZjN0T2E/DMSZwJXN8RgsToz12DblKFmp+d12BbrJ7GlpETIwhpKXoFV9N2J7Yj6MRYsqU6LHHsUvIhICu0FfkvNAMDPgzVmXASMAwZiVWQfB97AEmM7YzMul9Awb2ebscAlXA+lKizwepb6bZEO5RTfTUSU8yIiKfQCkcv1e4C/E1gq+gFWg+Vd4H2s8eFlNEzg4sW2Pkdr/ujFlnhEJFkUvIhICn1J9GWPHcCBEPc39HLJWqyLcyz2Jm8YIqLgRURSKYfoQYiD2Mr+J9snxNZc0QEcn+SxiBzbFLyISAqdS+RlIxfWPyinYYYTUaxvl14sByeaQ1jxvZexbdaxVNIVEVDCroik1ACgO7YcEyqI8QDXNuSAIjgLeCCG43oDIyJ834t1eH4Uqwjs1x2YjnWyFpFINPMiIinkBP6M9RcC+zzl8t2fhe1E6pOKgYVwEhaYRPrMdzoW4EQ65lGsZs3+WvdvAq7H+hmJSCSaeRGRFCvEtkOvBJZjW6C7Az8BWqdwXKHcA0zEujg7sZkhF1b990JgJpE/E+7GgpdQPFh7gweBP4U5xoslDn/ke52+2EyNar3IsUXBi4g0Ai6sjsvAVA8kitZYnZllwCtYobpOwMXYrEu0IOJVQte08XNj28D3AK1qfe/f2FbtTdhbtxebtToNmIO1RxA5Nih4ERGJSzZwge8Wr28JzNiE48VmaIKDlz3ABAJbsIPzg9Zhy01PYU0cRTKfcl5ERBpMGyIHLmCzN7WXy57BAphQzSmrgK+wXUsixwYFLyIiDWYEkd92XcDZHL1k9BKRgx4HtowlcmxQ8CIi0mBaY40bQ3Fhxfgmh/heeYj7gnljOEYkcyQteJk1axYDBgwgNzeXgoKCmB7j9XqZPn067du3p1mzZgwbNowvv/wyWUMUEUmBnwM3c3TX6W7AfwMn1rr/EHAwynO6sCaVIseGpAUvhw8fZsyYMUycODHmx/zhD3/ggQce4OGHH2b16tU0b96cESNGcOjQoWQNU0SkgTmAq7GdRw8As4GFwJOE7hq9FNs+Hokb2/EkcmxI2m6jmTNnArBgwYKYjvd6vdx///3ccccdjBo1CoD/+Z//oV27djz77LNcccUVyRqqiEgK5GD5LdG8jAU8kdoHNMfaKIgcGxpNzsvmzZvZvn07w4YNq74vPz+ffv36sXLlyrCPq6yspKKiosZNRCRz7CZ636MsVKhOjiWNJnjZvn07AO3atatxf7t27aq/F8rs2bPJz8+vvhUXFyd1nCIiDaszkSfJnYDe9+TYElfwMm3aNBwOR8TbunXrkjXWkG677TbKy8urb1999VWDvr6ISHJdTOTO2x7g0gYai0jjEFfOy9SpUxk3blzEY7p161angRQVFQGwY8cO2rdvX33/jh07OP3008M+Licnh5ycnDq9pohI49cPOB94naOXj5xYW4K6VPsVSV9xBS+FhYUUFhYmZSBdu3alqKiIZcuWVQcrFRUVrF69Oq4dSyIimcUB3A2cgDWw9Of15QKXYI0im6RmaCIpkrTdRmVlZezevZuysjLcbjelpaUAdO/enby8PABKSkqYPXs2F198MQ6HgylTpnD33Xdz4okn0rVrV+688046dOjA6NGjkzVMEZE0kIX1NhoLbMSWiroBzVI5KJGUSVrwMn36dB577LHqr8844wwAli9fzqBBgwBYv3495eWBqpC/+c1vOHDgANdffz179+5l4MCBvPLKKzRtqmZjIiLWFPLkVA9CJOUcXq832h68tFJRUUF+fj7l5eW0bNkysc996AhrNu+mTfMcXE5tSxQRkWNP+cEjZLkcnNXtuIQ+bzzX70azVVpEREQkFgpeREREJK0oeBEREZG0ouBFRERE0oqCFxEREUkrCl5EREQkrSh4ERERkbSi4EVERETSioIXERERSSsKXkRERCStKHgRERGRtKLgRURERNKKghcRERFJKwpeREREJK0oeBEREZG0ouBFRERE0oqCFxEREUkrCl5EREQkrSh4ERERkbSi4EVERETSioIXERERSSsKXkRERCStKHgRERGRtKLgRURERNKKghcRERFJKwpeREREJK0oeBEREZG0ouBFRERE0oqCFxEREUkrCl5EREQkrSh4ERERkbSi4EVERETSioIXERERSSsKXkRERCStKHgRERGRtKLgRURERNKKghcRERFJK0kLXmbNmsWAAQPIzc2loKAgpseMGzcOh8NR4zZy5MhkDVFERETSUFaynvjw4cOMGTOG/v3789e//jXmx40cOZL58+dXf52Tk5OM4YmIiEiaSlrwMnPmTAAWLFgQ1+NycnIoKipKwohEREQkEzS6nJcVK1bQtm1bTjrpJCZOnMh3330X8fjKykoqKipq3ERERCRzJW3mpS5GjhzJJZdcQteuXdm4cSO33347F1xwAStXrsTlcoV8zOzZs6tneRqCwwE7Kg6Bo8FeUkREpNFwe7y0bp6d0jE4vF6vN9aDp02bxr333hvxmM8//5ySkpLqrxcsWMCUKVPYu3dv3IPbtGkTJ5xwAq+//jpDhw4NeUxlZSWVlZXVX1dUVFBcXEx5eTktW7aM+zUjOeL2sL38ELGfMRERkcyTneWkKL9pQp+zoqKC/Pz8mK7fcc28TJ06lXHjxkU8plu3bvE8ZdTnatOmDRs2bAgbvOTk5DRYUm8Tl5Pi1rkN8loiIiISWlzBS2FhIYWFhckay1G+/vprvvvuO9q3b99grykiIiKNW9ISdsvKyigtLaWsrAy3201paSmlpaXs37+/+piSkhKWLFkCwP79+7nllltYtWoVW7ZsYdmyZYwaNYru3bszYsSIZA1TRERE0kzSEnanT5/OY489Vv31GWecAcDy5csZNGgQAOvXr6e8vBwAl8vFxx9/zGOPPcbevXvp0KEDw4cP56677lKtFxEREakWV8JuOogn4UdEREQah3iu342uzouIiIhIJApeREREJK0oeBEREZG0ouBFRERE0oqCFxEREUkrCl5EREQkrSh4ERERkbSi4EVERETSioIXERERSStJaw+QKv6CwRUVFSkeiYiIiMTKf92OpfB/xgUv+/btA6C4uDjFIxEREZF47du3j/z8/IjHZFxvI4/Hw7Zt22jRogUOhyOhz11RUUFxcTFfffWV+iYlkc5zw9B5bhg6zw1H57phJOs8e71e9u3bR4cOHXA6I2e1ZNzMi9PppGPHjkl9jZYtW+o/RgPQeW4YOs8NQ+e54ehcN4xknOdoMy5+StgVERGRtKLgRURERNKKgpc45OTkMGPGDHJyclI9lIym89wwdJ4bhs5zw9G5bhiN4TxnXMKuiIiIZDbNvIiIiEhaUfAiIiIiaUXBi4iIiKQVBS8iIiKSVhS81MGWLVsYP348Xbt2pVmzZpxwwgnMmDGDw4cPp3poGWfWrFkMGDCA3NxcCgoKUj2cjPLggw/SpUsXmjZtSr9+/VizZk2qh5Rx3nrrLS666CI6dOiAw+Hg2WefTfWQMs7s2bPp27cvLVq0oG3btowePZr169enelgZ56GHHqJnz57Vhen69+/Pyy+/nLLxKHipg3Xr1uHxeHjkkUf47LPPuO+++3j44Ye5/fbbUz20jHP48GHGjBnDxIkTUz2UjPL0009z8803M2PGDD788EN69erFiBEj2LlzZ6qHllEOHDhAr169ePDBB1M9lIz15ptvMmnSJFatWsXSpUs5cuQIw4cP58CBA6keWkbp2LEj99xzD2vXruWDDz5gyJAhjBo1is8++ywl49FW6QSZM2cODz30EJs2bUr1UDLSggULmDJlCnv37k31UDJCv3796Nu3L3/+858B6wlWXFzMTTfdxLRp01I8uszkcDhYsmQJo0ePTvVQMtquXbto27Ytb775Jueee26qh5PRWrduzZw5cxg/fnyDv7ZmXhKkvLyc1q1bp3oYIlEdPnyYtWvXMmzYsOr7nE4nw4YNY+XKlSkcmUj9lZeXA+j9OIncbjdPPfUUBw4coH///ikZQ8Y1ZkyFDRs2MG/ePObOnZvqoYhE9e233+J2u2nXrl2N+9u1a8e6detSNCqR+vN4PEyZMoWzzz6b0047LdXDyTiffPIJ/fv359ChQ+Tl5bFkyRJOOeWUlIxFMy9Bpk2bhsPhiHir/ea+detWRo4cyZgxY5gwYUKKRp5e6nKeRUSimTRpEp9++ilPPfVUqoeSkU466SRKS0tZvXo1EydOZOzYsfzrX/9KyVg08xJk6tSpjBs3LuIx3bp1q/77tm3bGDx4MAMGDOAvf/lLkkeXOeI9z5JYbdq0weVysWPHjhr379ixg6KiohSNSqR+Jk+ezAsvvMBbb71Fx44dUz2cjJSdnU337t0B6N27N++//z5/+tOfeOSRRxp8LApeghQWFlJYWBjTsVu3bmXw4MH07t2b+fPn43RqEitW8ZxnSbzs7Gx69+7NsmXLqpNHPR4Py5YtY/LkyakdnEicvF4vN910E0uWLGHFihV07do11UM6Zng8HiorK1Py2gpe6mDr1q0MGjSIzp07M3fuXHbt2lX9PX1yTayysjJ2795NWVkZbreb0tJSALp3705eXl5qB5fGbr75ZsaOHUufPn0488wzuf/++zlw4ADXXnttqoeWUfbv38+GDRuqv968eTOlpaW0bt2aTp06pXBkmWPSpEksWrSIf/7zn7Ro0YLt27cDkJ+fT7NmzVI8usxx2223ccEFF9CpUyf27dvHokWLWLFiBa+++mpqBuSVuM2fP98LhLxJYo0dOzbkeV6+fHmqh5b25s2b5+3UqZM3Ozvbe+aZZ3pXrVqV6iFlnOXLl4f89zt27NhUDy1jhHsvnj9/fqqHllGuu+46b+fOnb3Z2dnewsJC79ChQ72vvfZaysajOi8iIiKSVpSoISIiImlFwYuIiIikFQUvIiIiklYUvIiIiEhaUfAiIiIiaUXBi4iIiKQVBS8iIiKSVhS8iIiISFpR8CIiIiJpRcGLiIiIpBUFLyIiIpJWFLyIiIhIWvn/jAJLn1gmvNAAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "def plot_svc_decision_function(model, ax=None, plot_support=True):\n", + " \"\"\"Plot the decision function for a 2D SVC\"\"\"\n", + " if ax is None:\n", + " ax = plt.gca()\n", + " xlim = ax.get_xlim()\n", + " ylim = ax.get_ylim()\n", + "\n", + " # create grid to evaluate model\n", + " x = np.linspace(xlim[0], xlim[1], 30)\n", + " y = np.linspace(ylim[0], ylim[1], 30)\n", + " Y, X = np.meshgrid(y, x)\n", + " xy = np.vstack([X.ravel(), Y.ravel()]).T\n", + " P = model.decision_function(xy).reshape(X.shape)\n", + "\n", + " # plot decision boundary and margins\n", + " ax.contour(X, Y, P, colors='k',\n", + " levels=[-1, 0, 1], alpha=0.5,\n", + " linestyles=['--', '-', '--'])\n", + "\n", + " # plot support vectors\n", + " if plot_support:\n", + " ax.scatter(model.support_vectors_[:, 0],\n", + " model.support_vectors_[:, 1],\n", + " s=300, linewidth=1, facecolors='none');\n", + " ax.set_xlim(xlim)\n", + " ax.set_ylim(ylim)" + ], + "metadata": { + "id": "dcC2levgLP-Y" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "plt.scatter(moons_points[:, 0], moons_points[:, 1], c=moons_labels, s=50, cmap='autumn')\n", + "plot_svc_decision_function(svm);" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 430 + }, + "id": "rjFO15yqLXFf", + "outputId": "d2bd949a-4d57-4a72-80e0-daafa8cbceb2" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5wT5fbGn8lk2aX33nvbBEURsRfsP3sDFUGsWFCxci3ItaD36gULipUmUmyABUFApErHhAWWpSNtqdtbkvf3x7OzKZtk3mSzlff7+eQDm0xmJm3mzDnPeY4mhBBQKBQKhUKhqCRYynsHFAqFQqFQKCJBBS8KhUKhUCgqFSp4USgUCoVCUalQwYtCoVAoFIpKhQpeFAqFQqFQVCpU8KJQKBQKhaJSoYIXhUKhUCgUlQoVvCgUCoVCoahUWMt7B2KNx+PBwYMHUbt2bWiaVt67o1AoFAqFQgIhBDIyMtCiRQtYLOFzK1UueDl48CBat25d3ruhUCgUCoUiCvbv349WrVqFXabKBS+1a9cGwBdfp06dct4bhUKhUCgUMqSnp6N169ZF5/FwVLngxSgV1alTRwUvCoVCoVBUMmQkH0qwq1AoFAqFolKhgheFQqFQKBSVChW8KBQKhUKhqFSo4EWhUCgUCkWlQgUvCoVCoVAoKhUqeFEoFAqFQlGpUMGLQqFQKBSKSkWV83lRnOZ4PEBqKv9t0gSwqq+4QqFQVDVU5kVRNcjKAt55B2jbFmjeHGjZEmjWDHjlFeD48fLeO4VCoVDEEE0IIcp7J2JJeno66tati7S0NOWwe7pw8iRw6aWA08mMiy+6DrRqBSxdCrRpUz77p1AoFApTIjl/l2rmZenSpbj++uvRokULaJqG2bNnh11+yZIl0DSt2O3w4cOluZuKys599wGbNxcPXADA7QYOHABuugmoWnG6QqFQnLaUavCSlZWFXr16Yfz48RE9Lzk5GYcOHSq6NWnSpJT2UFHp2bkTmDuXQUooXC5g40ZgxYqy2y+FQqFQlBqlqma85pprcM0110T8vCZNmqBevXqx3yFF1eO77wCLJXzwAlC4O3MmcMEFZbNfCoVCoSg1KqRg94wzzkDz5s1xxRVXYIXJ1XJeXh7S09P9borTiBMnGLyY4fEo4a5CoVBUESpU8NK8eXNMmDAB33//Pb7//nu0bt0al1xyCTZs2BDyOWPGjEHdunWLbq1bty7DPVaUO40bm2ddAAY4jRuX/v4oFAqFotQps24jTdPw448/4qabboroeRdffDHatGmDqVOnBn08Ly8PeXl5RX+np6ejdevWqtvodGHvXqB9ezkx7qpVwLnnlv4+KRQKhSJiKky3USw455xzsGPHjpCPx8fHo06dOn43xWlE27bA7bezJToUVivQty9vCoVCoaj0VPjgZdOmTWjevHl574aiIvPFF8DZZwOaxpsvFgszMz/+WPwxhUKhUFRKSrXbKDMz0y9rsnv3bmzatAkNGjRAmzZtMHLkSBw4cABTpkwBAIwbNw7t27dHz549kZubiy+++AKLFy/GggULSnM3FZWd2rWBJUuAL78EPvwQSE7m/a1aAU88ATz8MFC3brnuokKhUChiR6kGL+vWrcOll15a9PeIESMAAIMHD8akSZNw6NAh7Nu3r+jx/Px8PPPMMzhw4ABq1KgBu92OhQsX+q1DoQhKQgLw2GPAo49yVIDHw6BGZVsUCoWiyqHGAygUCoVCoSh3qpRgV6FQKBQKhcKXUi0bKRQKBZKTgW++AY4eBerVY3fYmWeW914pFIpKjApeFApF6XDqFDBoEPDzz2xlt1joxzNmDMc0zJoFqE5ChUIRBapspFAoYk9ODnDFFcC8efzb7QYKCjgkEwD++osBzIkT5bePCoWi0qKCF4WiqpOdDXz1FXDppUD37sCFFwIffwyU5hywiROB9etDj25wueiOPHZs6e2DQqGosqhuI4WiKuNwAFdeCRw5wrKNx+NtH69bF/jlF+C882K/3e7dqXUxO7w0bAgcOgTExcV+HxQKRaVCdRspFAoGBZddBhw7xr89Hv4rBG/p6QxsUlIiW29uLjBlCnDJJUCHDkDv3sCbbzJAAoC8PGDbNrl5U8ePAwcORLZ9hUJx2qOCF4WiqvLhhxTNhirdeDwMNN59V36dO3YA3boBgwcDy5YBu3cDGzcCr77KOVNz5sRk1xUKhSIcKnhRKKoiQgCffho6cDFwuZhFyckxX2daGnUz//zDv41MjvH//HzgttuADRuArl3l3I0bNABatjRfLlJSU1m2Ono09utWKBTljgpeFIqqSFaWfCdPbq635BOOSZNY4gkVEBnlqNdf50wpM3QdGDYstnqXn38GLr4YaNqUGaImTVg6++232G1DoVCUOyp4USiqItWqRbZ8QoL5Mp9+ar6M281A4eqraUSn68GXs1qBNm2Aa6/lesePB/78U04nE4o33wSuvx5YscL//qVLgWuuAd57L/p1KxSKCoUKXhSKqki1amyJDhU8GGgaO4OaNjVf5+7dcsGFECzbLFwIXHUV79N1Zlishb6YiYnsNDr/fOCRR5ipueQSoEsXZk8iZf584OWX+f/AzJDx97PPMkBSKBSVHuWwq1BUVYYPp6hWZjkZfUpCAktMMlSvDtSvz1bsrVuB6dNZmmrQAOjVC3jwQX+djREU7dwJ3HADl7/zTrltAcyq6Hp4jY/VSl+Ziy+WX69CoaiQKJ8XhaKqIgQwZAgFucHQNOC664Aff/RmRMJx99209DdcckPRpAlFvaG0LL17038mVKChaQx+Dh0CZH7DGRlyywH0usnOBuLj5ZZXKBRlhvJ5USgUDAImTgTeeoslGl/q1AH+9S/ghx/kAhcAePxx88AFAGrWBJYvD/7Y2rVsrQ6XIRGCWZmpU+X2Ky1NbjmAXVGZmfLLKxSKCokKXhSKqozFAowcCRw8yDlDU6YAP/0EHD4MvPFGZJ0+/frRz8WMffuAyy8Hvv66+GNLlpjrcHyXlaFBA/l1xsXJZ2kUCkWFRWleFIqyQghmJObO5dV/q1acutymTelvu1o1dgCVlNGjub/PPksDvGAYWZUhQxjwdOzofSw/X05fIwSXlaFGDeDmm4HZs8NnhqxWYMAANYpAoagCqMyLQlEWbN8O2O3ARRcB48YBX34JjBoFtGtHt1pZIawZHg+wYAHw/PPAk0/SZTfWk5vvvVe+FXvCBP+/u3aVKz3pOn1aZHnmGX/TvGAIATz9tPw6FQpFhUUJdhWKWHDwIPDdd3R0bdAAuPVWb0Zl717grLOozQh24rZYmBWZO1e+/BGM1auBgQPZ0mxkF1wu/v/555k1sYS4XtmzhyJai4WC2hYtQm/nr7+YUZGhbVuu2yA/H2jeXC6g2r4d6NxZbjsAS2L33cfX4Ps+G5qer7+OrINJoVCUKRGdv0UVIy0tTQAQaWlp5b0ritOBzEwhBg0SwmLhLS6O/2qaELffLsSpU0IMGSKE1Wr4z4a+zZkT/X5s2CBE9epC6Hro9T/1VPHnbdokxFVXcX+N5SwWIW6+WYiUlODbWrDA/LUYt/r1iz//s8/CP0fThLj//ujeh40bhbjvPiESEriu6tWFePBBIRyO6NanUCjKjEjO3yrzolBES14e0L8/sGpV8O4ZXQd69uSEZTP9hq7Txn7Bguj25aKLgJUrzWcZOZ00iAOYQbnsMu5b4PN0ncLWFStoYudLUpJ3HeHQNL5+p7P4Y2PHUjcDeMs9ViszJkOGAJ99VjJtihD8fOLj5TQ2CoWi3FGt0gpFWTBxIk/uoQIGt5snbhnhqdsNrFsX3X5s3UozOrPAxWr1alBcLg5RzMsL/jy3G0hPp8A18PqmRw/qd2SCgvvvD37/00+zK+mVVzjs8YILgIcfZulq4sSSi2o1jaZ6KnBRKKokqttIoYiWDz4wX6YsEpuyQY/LxSwRQOfbAwfCL+92M5hYvRo491zv/ZrGlunbbgv9XF2nw+6QIaGXadkSeO01uX1XKBQKH1TmRaGIhqwsZjxiFZzoOnD22dE9N5J9MJb99Vc5czqrlcsGcuutwLvvepfxxWJh4LJwIVCvnvy+KRQKhSQqeFEoosGsRBOIWReR200H22jo3VtuOasV6NuX/8/JkQt6NM1/BpEvzzzDrM+gQQxWEhLo6fLWWwzsevWS2y+FQqGIEFU2UiiioXZtlj3MSi8Aha9xcTR1Cxb0WCycvnzdddHtS2IiW5dXrw7vdeJycYIzQH8ZGVyu8MuedRbw1Ve8KRQKRRmhMi8KRTRoGvDYY6F9Uwx0ncutXOnt2rFaGczoOtdzzz2cMVQSj5dx47jeUPujaRTE9urFgYfp6XLZo7g4escoFApFBUK1SisU0XLqFDMP+/YFN5+zWoGmTYENGzhpWQh2J82Z4x0PcM89NHKLlH/+YTvxDz9wqnK7dsCFF9K59/BhBh1CMBNjsQDDhwP/+Q+DnBde8D4WDk2jud3ddwPjx3NbWVnc7wceYCdRgwaR77tCoVAEITU1FU2bNpU6f6vgRaEoCQcOADfcwADFamU2Q9cZzPToAfz8M9C+fWy3OX06Rwp4PN7sicXCvzt0YHDidLINulMn2vk3awZ8/DGzQGYYfiv3389MzZNPel+TgcXCwGXRIrZNKxQKRRS4XC6kpKTA4XDA4XDgrbfeUsGLCl4UZYIQ9Fn55hvg2DGe1O+8kwZwsfYZ+eMPGuOFyppYrcyMbN4M1KzpvT8nh9mfzEzzbdxyC/Dccxx1cMMNoZcz2qG3b+e/CoVCIYEQAnv37oXD4cCWLVuQWzjbLS8vD2+//bbU+VsJdhWKkqJpdLi96KLS39aoUeEfd7k4S2naNOChh3jf/v3ANdfIBS66DpxxBn1dzjnHm9EJhtsNHD9OU7kRIyJ6GQqF4vQkPT0dX3zxBdLT04vuq1OnDmw2G9q1a4e3335baj0qeFEoKgs7dzLDI8OECQxeDhxge/Thw/Lb2bqV2ZS1a+WW/+ILFbwoFIqgpKWlITU1FZ0Lh6zWrl0bVqsVCQkJ6NGjB+x2O9q2bQtN0/wCGjNU8KIofXJy6Oh68CDbhq+9liWMysrRo8xs7N0LVK/OrMYFF5S+Ff3evXLLCcHJ0gD1L0ePRmZkZ7VSECy7LZl2cYVCcdqQk5ODLVu2wOl0Ys+ePUhISMCzzz4Lq9UKTdMwcOBA1K9fH1YZo8wQqOBFUXp4PDQs++9/2ZprlCCsVuCuu2ivX7duee+lPC4Xu28+/JCvQ9d58h4zhgMIZ87kv6VFQoL8stWqMXCZNi2ybbjdwMUX08dGllq1ItuGQqGocvgKb7dv3w63jxVDs2bNkJmZiXqFjtuNGzcu8faUYFdROggBPPggW3eDoes0V1u+vHKc/IQA7rsPmDIleBZD1/k61q4FCtOjMSc3F2jenC3a4dB1Boj5+ZFlXDSNr+HwYQY/rVubl5usVuDRR4H33/fel5rKLqtTp9gqfsMNkQVDCoWi0rFkyRIsWbKk6O8mTZrAbrfDZrOhruRFqpoqrSh/FiwIHbgA3onLkuKscmflSmDy5NDBgNtNQexzz5XePiQkMFAwM8Zzu4GCgujmLk2cCNSowaDkySfNS2EeDzBsGP+fkcEAr2VLtlk//zx9bJo1A158MbgXjkKhqHQcOXIEv//+O3bt2lV0X2JiIurUqYPzzz8fw4YNw6OPPooLLrhAOnCJFJV5UZQO118PzJtn7uLaoAEdX6tVK5v9ipa77wZmzTI/AVssNK1r2bJ09iMnhy3Ya9YU7wLStOgHRdaowdfnO6KgoAC4+WYOZgxcr8XC+z77jIZ12dnAJZfQ7ybYZ65pnEI9Y4Z58KVQKCocaWlpcDqdcDgcSE1NBQD07NkTt99+e9EyQghoJdD+qcyLovz54w85+/kTJ9jdUtFZuVIuc+DxABs3lt5+VK9OY7innipebuvUKTq3XqB44ALQpXf2bGbHWrTwf+y884DffmPgAtC5d/360J+5EMC339KlVxEbhKCWLDu7vPdEUUURQmD9+vWYOHEixo4di4ULFyI1NRW6rqN79+6wBxhUliRwiRSVeVGUDvHx1FzIsHYtcPbZpbs/kSBE8XJJu3by3T5z5zLzVNpkZbF1OiuL+pQ+fViiKbwqkkLX6U/z++/hZyu53YDDwW21bOnvGux2c/uHDplv6/zzgT//lN8/RXFSU4GPPgI++YSmiAAniw8fzjJdSWZkKU57PB4PLD7Z0QkTJuBwofatXbt2sNvt6N69O6pXrx7zbUdy/lbBi6J0SEwEtmwxL2NYrRSFNmxYNvsVisOHeTL4/HP+PyGBAcgTT7AN+o47gB9/NM++aBrblHWd7eGZmTzZ33ADSzOlTefOwI4d8stfey1LOSUR1O7YIS9StlhYjlKlo+jYvp3dYEeP+me5jE6+G24AvvuOWTOFQhIhBPbs2QOn04mUlBQ8/vjjiI+PBwA4HA5kZGQgMTGx1PQrBip4UcFL+fPxx8Djj4cPXnTdq4MoT9avB664ovikZWPGz7//zQDmssvCr0fXgUsvZfv3jz/ytVssXGft2hTzvvRS6Z24jx4Fbr1VzsiuenWW9vr2Lfl2t23zTsyWoaCA760iMgoKgK5dqakKVZ7TNOCZZ2hPoFCYcOTIETgcDjidTj+DuFtvvRU2m63M90cFLyp4KX+yspjK3rUreLbCYmFpae3aknujuN0UB0+cyAN7nToUmg4aZO4jc+IEswZpaeE1Ol9/zYDkxx+D2+XrOl9P48Y0eAu1rgcfBD79NPaGdjt28Ir88GG5adFvvAH861+x2XZmJtCoEQdBmtG+Pb8Tisj5/nsG+2ZUrw4cOaLa0xUh+eeffzB37twi4S0AJCQkoGfPnrDZbEWOt2WNEuwqyp+aNYHFizlZGfDW4Y2sQ7161FmUNHA5eBA480yWeObMAdatY0Zh+HCWaxYsCP/8SZOAkyfDBy6aRrO9adPYCqxpXi8VI4PQsiVw443hAxeAZak//oj4ZYbF5QKuvppaCLPABeB79fzzsdt+fDz9Z8ywWOSmWiuC8803cnqWnBz67CgUheTk5OD48eNFf9euXRtHjx6Fruvo0aMH7rzzTjz77LO4/vrr0a5du3IJXCJF5W4VpUfLluy8mT8fmDqVAwLr1uXU4gEDSq4Byc5mKWfnTv5tBA1GMjEnhyfqFStCC4InTjTX5QhB/c62bZzj88or9HzZs4ev4dprgQsv5Os167CyWoHx481LUJHw88/e90CGv/+mu/Hjj8emRX3UKDkxc5s23u4kM3JzmUWzWPi8it5KXxYcOSLXwWexsISoOK1xuVzYvn07HA4HUlJS0L59e9xzzz0AgLp162LAgAFo27YtEiJx7q5AqOBFUbpYLJz9c801sV/3N98AycmhH/d4eLAfPRr46afgyxw8KL+9w4eBXr3Yjvzqq/6PrV5NkzYzXC5mpGLJtGmRebzs2wc8+yy7oubNY5khWrKyOC5BZtsjRpiX8Q4fBv7zHwaJxvvZoAHwyCPc5/r1o9/Xyk6jRuGnfBt4POUvgFeUC4bw1uFwYMuWLcjzKeVmZWXB7XZDL8zede3atbx2Myao4EVRefnkE/ODudvtHQoZ6FUC8GR64oTc9sKdeCNxj4210+zGjZGZ0xnLLltG51tfa/9I+e03al7MsFi47BNPhF5m924KowMzDCdOAO+8Qy+a5cs5cuB05M47WRo1IyGhuGeP4rRg1qxZ2Orjm1W3bl3YbDbYbDY0rWK/G6V5UVRetm+X03gIEVokOmCAnI6gefPwXjSdOsl1EVks5p05+fnyHjlZWSxfRYPHQ4fctLTong/Ilyc8nvD+M0IAN93EZYKVRtxulsbKwj+nonLLLQzAw31fLRZg6FBqyhRVmlOnTmHZsmXIysoquq9jx45ISEjAWWedhSFDhuCpp55C//79q1zgAqjgRVGZiUQHEWrZhx/mAT+cQE3T6Ggbrr23aVMKds0CIY8nuGg1J4ft5d27UwAbH08NzZgxfCwUs2bJ6SBCkZvLjIgvJ09SF5OcLDfeQQaLhWWPUCxfThO8cFkpIdid9vHHctusasTH87OqW7f490zTeLv4YuC998pn/xSlTk5ODtatW4eJEydi3LhxWLRoEZKSkooe79WrV6UT3kaLCl4UlZcrr5TzC6lbFwiwsS6ibVtqZyyW0CeEW26hd4YZo0czSAqVgbFaqZm5807/+0+dosvtY49RFGxw8CDbmVu2DK3t2bq15J4pxpRqh4OZqCZNgDPOALp14/vzzjuh26CvuUZOM+PxAAMHhn78u+/kX8eTT0bmIlyVsNmATZtYfvMdD9GpE0XYv/3GspGiyuByubBlyxbMmDED7777Ln7++Wfs3bsXmqahffv2qOeTZYuLi4P1NPFQUsGLovLy2GPm+hFdZ3Yl3AH9ttt45X/ttf4ZmI4dKUadOVOutGSzsTXbEJUaQYxxMDnrLLaHB+7LoEEcaBiKkycZTBRadPsRCyfVJk04L+mcc+gl4vueHjjAAOqqq5ilCaR2bU6VDlcy03Vmpu64o/hjOTnAkiXA5s3yuh2XC/jqK7llqyKtWwNjxwLHj1N8ffgwg9tYdY8pKhT5+fn47rvvsG3bNrjdbjRt2hRXXHEFnn76aQwePBhdunQp710sF5RJXVVFCHZrWCz0XKmq6cNnngH+97/gj+k6fWZWrJA37Fq1inNjVqzgSbJLF+Chh5h9kT0x5OSwnDNnDvUkrVsDQ4YwpR/4OUTiTnvNNZzw7MuCBQwsoqVuXWZvunRh63koDZHFwoxHsPc6L496lfnz+bfvIUXXaRq4eDEDMIPsbGaqJkygs3GknHlm+IBPoahkCCGKHG/T0tL8pjX//PPPSEhIqJLCW1+Uw+7pHLykp/OEMH48r8oAnpgef5weG6UwTKtcEYITjd96yzukDmBG4u67+ZjsPI6xYxkM6bo3+2B0MxlZlWbNYrvv/fvLt05rGktJvvvg8bBksHevnHg5cH2jRvH9GTHCPPNRsyav8n3LFenp7HbKzeW/kyZ5S1y1agH33891t2njfU52Nl/36tWR77NBhw6RedsoFBWUU6dOwel0wul0+jnePvnkk6h/mlkDRHL+Pj2KY6cLR47w6j4lxf+kkJLCq+avv2bZoioFdZoGPP00g7MFC+hwW6MGRxPUr+9/og3H9Ok8yQL+ZRPjfdy6lS6269bJazOEYElkwgTqSeLiaE43bBhn1Lz+emSeL0JwIrOvZsZiAaZMAS6/nLNvZK5FdJ1C3DPPBFq14rgCmedlZbG8dOON1Jy88gq3bZSTNI1To202rr9ZM2asWrf2X8+//w2sWRN94GKxFF+nQlHJ2LFjB5YtW4a9PgaPVqsVXbp0gd1uR2013iEsKnipStx2G69GA08Kxolp/Xq2UX73XdnvW2kTF8fAbfx4zu355x/e36gRDc6eeiq0cZcQwMsvh1+/y8UOnJ9/ZonEjKws4PbbaQJnDHgEGAS9/z4N10KVu8IRTDibkUF9jo+/QxHt2gGXXMKg9cAB3md8HzZtkne8NUhLY/anXz/+6xvoCUHtEMAAw2KhF4/dzhJau3YsqU2YULIOKY+HYxoUikqEy+WC2+0umtack5NTJLxt164d7HY7unfvXmkdb8saVTaqKqxdS8GlGZrGAKd9+9Lfp7Lk5ElOdHY6iwdvus4Mw7Jlwa/YV6ygOZoZus7si8zcmJtvpquv2cykSH9+K1YA553n/furrxiAaFrx122x8DuxaBHbbG+9Vc7kLBzz5zPoWrhQPgCxWinY3bCBAdYll0S/fV2n10lyctUrgSqqHB6PB3v37i1yvL3wwgtxQeGxJj8/H+vWrUNiYuLpda4KgyobnY5Mn+5/hR8Ki4XdMy++WDb7VVYMHsyOlWClCLebWYcbb2T2KVA0K2vyZhilmbFhAzB7tvlykQYunTpR65GVRf3Jrl2cUi1E8HV5PCzPjBrFTqeSBi66zpJXpFOhXS5qZd57j9mxaNE0lqIWLlSBi6LC4iu8dTqdyPAZG7J79+6i4KVatWo4z/dCRBERpdoqvXTpUlx//fVo0aIFNE3DbIkD+pIlS9C7d2/Ex8ejU6dOmDRpUmnuYtXh2DG5k6HF4i9srQrs3Gme5XC5KChdsaL4Y5EMiKxZ03yZL78sufdKMPbsodNvrVrUuDz3nHkXmeGiO26cXLt3ONzuyAMX3+d++qnc9GmAr6tBA3aJxcUBnTsD777LAPU0bQ1VVHyEEPjiiy8wYcIErFy5EhkZGahevTrOOuss3HfffUWDERUlp1QzL1lZWejVqxeGDh2KW265xXT53bt347rrrsMjjzyCadOmYdGiRXjggQfQvHlzXFWSdtDTgQYN5NqhPR55V9TKwrffekWo4bBamXUKLBHJ2Poby8nMjNm5M/bziwD/df75p3zZJj2dnT3lTVoabevPPJP6oXCCXSE4oPH++8ts9xSKSMnJycGOHTtgs9kAAJqmoUGDBjhy5EiR8LZTp06njXFcWVKq7+g111yDayKYJjxhwgS0b98e7xXaW3fv3h3Lly/H2LFjVfBixh13yA3Yc7spJK1KnDjBwMLsZC5E8SGMQgAvvCC3HY+HguAOHVimCkVZeOqURPBqRqtWLLOVhhzOYqG/yw03hF7GauU+hHPkVSjKiYKCAmzfvh1OpxMpKSlFxnFNmjQBAPTv3x/XXXedEt6WMhUqHFy1ahX69+/vd99VV12Fp556KuRz8vLy/MZ+p0djeFUV6NePuoa//w591W8ITjt3Ltt9K20aN5Y7mWta8fk6y5eHtt4PxvHjNJzLygIefTT4MpGUocqKxo3lhihWr86Bl5Mn8/XFMoBp0oSjDtq2ZQlp2DB+JsZnZ3jqtGpFkXFFfB8VpyUejwd79uyB0+nEli1b/M45zZo1Q47P/LG6sr5SihJRoYKXw4cPF3MPbNq0KdLT05GTk4PqQUR6Y8aMwejRo8tqFysumkaR6IUXAvv3Fz+ZG9OMp0wpl90DQDfZtWt5QuzdG0hMjH5dQgArV7IF+MgROc8Qlwu46y7/+9av9540I+HxxznhOFj3UkVywNQ0mtDJ6JysVrYgV68O7N7NvwsKYrcvDz3k1QI99BA9byZMAH78kcFgu3a8f8AAFbgoKhQ7d+7EtGnTiv6uW7cu7HY7bDZbUcZFUbZUqOAlGkaOHIkRhrkYmHlpfboaWLVqRRO1Dz7g5F3jhNWyJecABQ5zKys2bQKGD2ersi/9+lFIKtPi7YvDQffczZt5MpQp01itwNlnR76tUAjBWUhOZ/HH6tePLiAqDYSg5sUsg6LrFMc+9xz/TkiIfdkoMHDs1Iki3Hffje12FIoSYDjexsfH45zC40WHDh3QsGHDIj+WNm3aVOmJzZWBChW8NGvWDEeOHPG778iRI6hTp07QrAsAxMfHF5n+KEAjttGj6X6amsoTe9Om8qLUWLN2Ldtj8/OLP7Z6NTNFCxfyXxm2bqXgNjubf8sIYy0W6lR+/LF4oHP22dEHGZs3M3Nz1ln+9//f/3FcQXlitM3LBlFNmtBQr107CmvT0mIvOg4s2ZUGR47Q+2bdOv595pkU/cp2OSlOS7Kzs7FlyxY4HA7sKxyrUq9ePfTp0weapkHXdTz++OMqYKlAVKjgpV+/fvg1YPDc77//jn79+pXTHlVirFaaeZUnHg9LAPn5wTUpHg9PkHfeyTlMMor84cMZuMgKVlu3ZonnkUeCj0U4/3ygWzfqPKIJYj77jPoNX849F+jVi8FNaQprg1G/Pl9nv37AjBlyr2nECGDMGA6e/PZbipF9avgxoWbN0g1ehKCPzMiRfM1G1mj2bOC113h76aWqO6BUERXbt2/H+vXrsWPHDrgLf6u+jrcejwd6ocWAClwqFqUavGRmZmLHjh1Ff+/evRubNm1CgwYN0KZNG4wcORIHDhzAlEIdxiOPPIKPPvoIzz//PIYOHYrFixdj1qxZ+OWXX0pzNxWlxaJF5r4gHg9w6BB9Wm6+OfyyO3cyS2OG1cqr7f/8h6WQcAcdTaOF/RVXePcnEpKSgq9z1iw64ZZGBiMcy5YBPXtyRIJs+/ipUwxc5s/3n5sUS7KyqKPp0KF01v/BB96Sly9GEPPKK3ytVc2cURERHo8HmqYVBSLbt29HcqFgv1mzZrDb7crxtpJQqsHLunXrcOmllxb9bWhTBg8ejEmTJuHQoUNFKToAaN++PX755Rc8/fTTeP/999GqVSt88cUXqk26srJwIQ3GzESfcXFc1ix4WbNGbrsuF/DXX1zv5MnAb78xk9CuHWc79erlv/wllwC//goMGsSyQySEMn7r0oUlpZdeordMWQQwdetyxhHA7JRM+7jHw2WF4LwloHRapDUNmDuXM6ZiTWYm8K9/mS/32mvAww8zOxULDh9mgJ6VxQ6qyy/3Zg/T0vhYZiY1Z5dcUnKTQEVUCCFw+PBhOBwObN68GXfccUeRLvLMM89E9erVlfC2ElKqwcsll1yCcKOTgrnnXnLJJdi4cWMp7pWizDCmDZshRHBNTCCRZEXS03nSOHnSq/uwWnmFftNNnLDt65Z7xRUc5vjTT8Crr7LkI0O4ya9t23I748ZRZOxwcAK2DLruH3yYvXZd56gAw1uiTRt5PVCbNtQmyb7maNB1DpAMxcmTwLRpbFuvVo0n+2uvlTvhz5ghV+bKzwemTmXpsSQcO8Z1fPut/3vcvDkzO8nJ1N34fv9btOD36qGHVOmqjDh58iScTiecTieO+tgEJCUlFQUvLVu2RMuWLctrFxUloEJpXhRVjE6d5E6gHo83YxCOwIxJKHQd8BkzX3TiN/blp584pPDXX/2FzFYrsz+bNsmfyGXE4o0asS340kvZqu50hvfiOecc4JpreNXeqhWnhQ8dyrJOsIsBq5UBiG9J5M47meUINoXaF5eL7dGyWa1ocbuDa7CEYInrzTcZXBiZi//9j6/966/N5yE5nXJt3VZr8DJfJJw4wXLg7t3FP8NDh4Annww+cPPgQequ9u/n61WUGpmZmZg1a5ZfVt9qtaJr166w2WzoXNV8rk5TyqkFRXFacPfdLN2YoWnhHWsNEhOBvn3NO6fMshVuNwOBUPoZI0tjhqbJBS++y8+ezeGCwTIKuk4DwblzqdF45x22tzdvzk6poUO9GZm4OO86Lr6YM5saNvSuq359ZnnCXeVbLAziunUrnVlMvhhTrQN56SVmJPLyeMIvKPAGIQcPMiO2cmX4dUey7yUt3bz0EnVc4YLycGW3N99kSVMRMwoKCnDo0KGiv2vWrIlTp05B0zR06NABN954I5599lncfvvt6NatW5EAV1HJEVWMtLQ0AUCkpaWV964ohBDi5ZeNmcfBb5omxFNPya9v5Uoh4uKEsFjCr9fsZrUKceONwbfx3Xdy67BYhHj77cjfk9RUIV58UYh69bzratJEiNdeE+LUqfDPPXhQiP/9T4jnnxfijTeE2LIl9LIulxBDh3r3Ndhr6NpViEWLhBgypGTvp9ln/Nxzxfdvxw4+ZvYe9+oV/j35/nv5ffn6a9OPJySnTgmRkFDy791dd0W/DwohhBBut1vs3LlT/Pjjj+Ktt94S//nPf4TL5Sp6fM+ePeocUAmJ5PytCVEa6rzyIz09HXXr1kVaWppSjFcEPB7gmWeo+zC8RwDv/x98kN0+kVwNLV7MssixY1yP8RX2eCialOlIAijg3b27+P0FBdTLmNnpW63MDjRuLL/vvuTn8/maxu3FIvuRm0svHJeLZbt69YBRo4DXXw++vMXiff+iPRToOm/5+f6+Mka308CBLJcFvr4XXmB7s0w7+Zo1QJ8+wR9zuVhiSk0N/Ro0je/FoUORZct8WbjQ25VWEho2rHqT3csAESC8zfDRUNWrVw+DBg1CQ9/so6LSEcn5W2leqjoFBcCcOSxFZGTwID9kSHFjtdLCYgHGjgUeeIBByqpVPLn17UsNwBlnRL7Oyy7j4MDvv+cJJS+PLbhDh1L/IBu8hAoW4uIo7DUbDPjaa9EHLgCFqe3aRf98X06epDHe55+z0wXg67jlFn72oYi0NbxdO2DPHu/fCQnAvfey9LNwIfDRR9SV6DqNBx9/nPqdYOWrv/6Sn0m1bl3o4MVqBSZNojmgr8eL7/MBimjNAhchOLF7wgRqn3Sd4uFhw8z1Q7IErsfj4ZiLCROALVv4vbjySv4+lD6jiOXLl2PRokVFf1evXh09e/aE3W5H69atlQ/L6UZpp4HKGlU28mHNGiGaN2e6WteZojfKB337CnHiRHnvYew5fJipeZn0/YMPhl/XlClC1KzJ981q5XtosbBs9eabQng8ZfOaAtmzR4iZM4WYPl0Ip5NlqC5duH/Byi6xKP3Exwvx2Wfc/vbtQvz8sxALFghx8mT0r+Oii+TLTh9/bL6++fOFaN/e+303vgdt2gjx00/mz8/OFuL6673fD9/vCiDEQw/FpoRmt3u3mZYmxMUXe/fZWM74vb7zTtRvb2UmKytLrFmzRuzfv7/ovkOHDonXX39dzJo1S2zdutWvTKSoGqiykSobsXTQpw/LCKGubqtXZzfHLbeU7b6VNgMGMCtj1um0YQPt48ORmQl88403S2C3U1xcErfYjAxgxw5mpbp04ecgQ0oKO4gCXKhRvz6zLaU5S6lWrfCtzjJs2MDs27p1zGgIwSnoMtmXv/5iti4cQrAMt3gxRbVxcRwAeuWVcuMxBgxg+3O497FtW3YMRfteaxrnjj3yCPf3iiuAJUvCvwdffsmsYhWnoKAAycnJcDqdSElJgcfjQa9evXBzof+TEAL5+flqHEwVJpLztwpeqip33AH88IPcieGrr9guW1XYt4+B24kToQOYZ58F/vvfst+vN96g14jhAVK7Nktq//pX6IAoLQ1Yvpw6n6yssttfX+Lj5X17AikooLZp8mR/3ZOMA7DFwi6zTZtCd0653cAXXwDvv8+g3djfgQOpq+nWzXwft2yhM7EZ1atT2xOsPGWG0dL+998MBpctAy66yPx5zZszYKqCXTJCCOzevRsOhwNbt25Fnk9JrXnz5ujduzf6hCoXKqocKng53YOX1FR6asjO1bFaqWMIZ9aUkUG9Sm4u9SWJiTHZ1VJj925qe5Yu5QnQYuFJs3Zttrs+/3zZmoVt3UoNyKlTxT8XTeMMpr/+8h8g+PffwNtvA999V7YjBgLRNKBrV29gECnDhnH+U6SHGuNzW7w49OBOlwu4/XbqugD/bVitzL7Mm2fuFfPMM9Q5ybzPTz7J12O0dxvbcrmoUdm/3xvgAN4grUsXYMECZm8Afj+nTZPb5rx5wNVXmy9XyRBCYPz48ThWKGCuV68ebDYb7HY7GpdET6aolCjB7unO9u2RDQQUgleuo0YVfywtjSf7r77ydzHt3ZueFRX1gNq+PYWXSUn0dMnO5n033wzUqBH5+owhktWq8d+lS9mNVL8+fVt27+YJrG/f4hkUjwe44YbggQvA93/fPjrKGu7S8+fzOcZ2y5tHHonueXv3ygcuFos3u1BQQDH0tGnhJ46/+SYDl2Drd7n4/l1/Pfcj3FiAXbvkfjNxcUCDBhSMT5pEMXRmJgP6Bx4A+veneHriRGY+09IYrAwdCtx4o7/v0fbtcp+tppnPCKsEGI63ycnJGDJkCOLi4qBpGvr06YOjR48q4e1pTkZGBtZEYJapgpeqiEx93xe3G/jll+LBS1oapy5v21b8wL5pE0+2kydzJlB5cvw4dQFffcWsU506LLE88ghLATLlgGAIwRPjBx8wEPJ4uG63O3T5Ji6O2ol33vFmUX7/nRoXMzZt4snw3HOpQyooiL59OVYY08mHDInu+RMnys1YAugkXL8+38NLLuHJPlz7eF4eW/DDvUceD4OLyZPDz1WqXl1+FpSxbFwcy0AeD7VTZ53F+xs2ZFnSmBUVCtkgWgjv2IdKRnZ2NpKSkuBwOLB///6i+7dv346ehb/LvmZaJkWVJS8vD1u3boXD4cDu3buRG0FpWgUvVRGbjQdYmXkvBsGWfe654IEL4E2JDx3K1uVQJSePhy20H39MoabFQnv1Rx/lFXVJr7LWrgWuuspfsHryJP1Dxo6lIPmOOyJfr8fD1zZ5MrMBxrrT08M/r6AAmD4d+OMPloFatqSrbjDL+GCMHs2TeG5u2QQuFguDvEmTuE3jdRp+LW3aMPiqWze69csEbQADgQ4dgDFj5Nf955/MZpkhBEXX4YKXK6/k52aG283vQPPmDJ6MC4Xp04GRI5kJevZZue/1Ndfwe2Im/tU0+hdVIlJTU7Fw4ULs2LEDnsLXp2ka2rdvD7vdjk6dOpXzHpYVHgCLAUwB8A+AegBuBnA7gMoZkJYUt9uNHTt2wOFwIDk5GS6f7GMkc6aU5qWq8uijTNfLdEVYrSxRfP+9976TJ70H6HBYLMDLL/OkG0huLjMgc+cGN6i7915mTKI1Zzt4kFmVjIzgAZamcf+WLQP69Yts3W+9xXJZtFitDKp+/pnC0Rkz5J5nsQA9epTukMRANmxgaWPiROpr0tLoBzR0KDNA1apFv+6hQylQNiuPWK0ULQf7HoVi5kxmuWRo08Z/3lUgOTnMMKWnh/7N6DrfJ7MSTrNmDGQGDy4e9OXmMmtXty7f55YtqY8JdRi2WhnkhPPqqQB4PB7k5OSgZuGw0xMnTuCDDz4AQOGt3W5HYmIiaocbZFrlOATgOgAbwTyBC5zI4wHQGMBPAE6PrJMQAvv374fD4UBSUhJyfC6WGzVqBLvdDpvNBl3XlWD3tA9eUlPZceMznCwsgYLAOXM4fVmGM87wajV8ufdeahZCnQw0jVfD//tf6HXn5bF9dcIE78Thq64CHnuMGY0xY8Kn+nWd5a1IDv55eTwByVzVh8PQKrz3Hs3bZGnenE6wZYHVypLQ55/zfZw3D5g1i8Fr48YMvC6/PPJSpMH06cBdd8ktu2wZcMEF8uv+4w9m/WQZMIDZuGbNgj8+f77X6C7wO6vrLBkWFLAMJUOzZsCiRQxG583j99wwUKxeneXWbt0oFgaKBzBWK9C0KbB6dXgxfTkhhMChQ4eKHG9bt26NO++8s+jxtWvXol27dqep8DYLwNkAUgAEOz7pYOZlHQCJbrhKytGjR+FwOOB0OnHK53haq1atImF2s2bNinROqttIBS/k4EFetTkcoZcxphgvX+5/gpoxw9xh1qBzZ4oPfdmxg90VZl8vq5Un6mBtwkeOUAC5ebO/7byRualZU751ePduBgUyHhE//cRMVEnRNPqa9O7N91iWM85gp1G0P01D+Go2ZdmgVy9mMa67Dti50/v+Gv8mJlIT1aZN5PuSl8cT78mT4TMaXbvyc46kjGiMBThyRG55q5XfgTVrQgcwK1awXLpqlfc+TeP3sEcPtmPLouv8Xt91F4OmwNZwq5X3vfoqA/RNm/wfu+02Br7BpnGXI4bw1uFwFHUJAUDt2rXx1FNPqcGHAIAJAB4FEO43bAVwJ4Cvy2SPyoqMjAxs3rwZDofDb2BmfHw8unfvDrvdjnbt2sES5IJIBS8qePHHd7aN8XEbB9Jzz+WJqUED/+esWkVtihm6TqOtefP49/79PMB/9JGcnboxPmD4cP/73W6e8GVNzGQ55xxOah44MLRvxpdfsnOkpFgswLvvcqaOrMlYr17c9vDh0QUvus428B495IXUPXuyc+r48eDvtdXKIGHDhvAdO6H4/Xdmv0JlNBISGDwHjorIzWUWaOJEfq/q1mVb9NChQJMmXGbsWGDECPl9sVrZcTZrVvjlkpJ4+/tvZksi6IKICE3j69+2je//9u3MLp53HrMuFYyffvoJ69evL/rbarWiW7dusNls6NSpkwpcirABSEL44AVgAJMKIIrfVQUiUHhrhBUWiwWdO3eG3W5Hly5dEOfbbReEiM7fMXb3LXfUeIAQ7N7NSca9enGS8A03CPHLL5w8HAyPR4hOncyn/gKc6iuEEGvXClG3bnCb+lC3uDghRowovv1ffomNrX0ou/ybbxYiPz/4a5edKi1ze+65yJafOJGW8Y0bR/Y++r6+PXuE2LZNbnmrVYgzzjDflsUixFtvRf/9W7ZMiD59iq/30ks54iCQlBQh2rb1/8yM/yckeO3+PR6vbb/MdxXgaz1wwHyf33/fu3xpfBd99+df/4r+vS0l8vPzhdPpFDk5OUX3rVq1Srz22mti8uTJYuPGjSI3N7cc97AiEyeEgORtXTntY8lwuVxi27ZtYtasWeL1118Xo0aNKrp9+eWXYu3atSIrKyuidarxACrzEh0FBfSm+OQTpvBdLu+Qv2BYrazZb9hAwWOHDqG9TEKh6xQ3Bk49vu02alpimXXxRdOYoXj77eKPZWTwqjeSbq1gNGxIJ9VwQlFfBg5kd5TFwhLC5Zfz/YzEin78eIq1AbYbL19u/h7Klt9atmQGpCQdYps2sYxpsTAL1qVL8WXS0liqOnQotBBb11niOecchgBz51JjZdYNZjBtWngtztq1kZX6SkqrVnxvyxmPx+PneJufn48bbrgBvXv3BgDk5uaioKDgNBPeRkMNALLHj78B2EtxX2KHEKGFt40bN4bNZoPNZkP9aDK0UCZ1img4cYKC3bVr/WvzhtbEt9XXeLxrVzqGxsVR8HnihHcZWdzu4J1Ae/aUXuACcD8/+oidUrVq+T9Wuzbbh99/v2TzggYMYDAhwznnsCvHqAOfcYbXS0em88hoM/ZtC//gA763eXmh38v772eZTIYDBxjkBL5fkXDGGeaTxL/6itsK9V0ychZvvMGgRdPoCdO+Pcs8Mpj5SXzwgX+HXGlz/HjZbCcIQvgLbzN9BMn16tXz0yYkJCQgoZJ6zpQtlwBYgOBiXV8aoDIIdkMJb2vXro3ExMRiwtuyQAUvCp4Ibr6ZGRTA/0RnnLyFYCahenWgUyfg4Yf922inTIl++4MHsxPj7ru9J+9IT5C+gl5ZsrKo9/HpkCjirbd4IvzjD/4tG5QZJ7yXX6Y4VNbfxRBv+vLmm9RdhOO66zi/54ILimdE7HY6AQ8cyKGOViuXMZyCX3iBM4dkgxdjP0ubTz81X8btZhv64cNe8W3Xrny/ZAKOjh3DPy4z2DOWRHmlGguysrLw+eefw0jC16hRAz179oTNZlOOt1HzOIB5JsvoAB4BUAIrglIkPT29SHh7+PDhovtlhLdlgQpeFEy/L11qvpzLRUFhsCnIR45EnnUxOHaMKf+5c9laa7XySnrpUvN1Wq3MbnzwgfmJPhBNo1A1GAkJFCF//DEzMHv28P5q1YCzz2ZJKS2NAYfVylJTQgJLPY8+ysDhiy/k35PALqj9+4HPPjN//u+/M3AMdYI56yy2mP/xB5fNy2PwedddFBIbRnRmLfUWC80PI7nqPnKEn229epG1+u7ZI/e+CcH9NoKXBx80F+ICzNAcOsQANSGBgnObzfu4213ykqEvZgGsrgP33BO77YUhKysLSUlJOHnyJK666ioAbFs1xJRKeBsrrgFwL4CpQFDRrg6gO4AXynKnTMnNzS0S3u7Zs6cooI1UeFsWqOBFwW4OmRR5WhrbiIM51jZq5D3BR8v337MU8Npr9B55+WWeREId+HWdpZmHHuKJKymJV+KjRwMrV5pnYoTwv+LNyKAWYskSGod17ert/Nm/nyf+Fi2CZ4VOnGDqv359b9u32TBAA4uluF/JpElydvUFBXSPffzx0MtoGtcfzBPFYuFzX3wx/Pvl8RTvCAvF/PnUEi1Z4r3v3HPpPHvrrebPr1ZNrlMN8A+mLr+crs0rV4Z/344cYTbKavV2QJ1/Pn8HnTvze9WgAT/TaDEygffcQx1TKAz9TrSzoyQoKCjAtm3b4HQ6ixxvNU3DeeedV6RdGTBggMqwxBQNwFcA2gL4H+j7ooNlJB102P0EQPnrMt1uN1JSUormTvk63rZp0wZ2ux09evRAjWhmwpUiSrCroIfFokXmy1ks9CypW5dX0zfeyNbVhAS2rD7zTPTZF4O6dRmAJCQwULrlFq4z8GSk6xR7rlhRPOU+bZrclWx8PLdVrx6dZYcM4QBH40rZCB4eeoj6mGBXGwsXAv/5D7MaBpdcQq+Qa6/lCfXPP8OfTDWNgZ+vj8p99/GkZxZQxsUx+Ahn9GdGTg73ef364PtpBFe//hr8PfBl3Djg6aeLe5oYJ/OXXmKAGo4BA+TKNs2aMaj0LWWdOkWPnmXL/ANyY8RDuEC4bl22RHfsyEBr3Dh53VXg6+3TB3jlFZrejRjBdQXzedE0vtbrr5fbTgQcOHAAa9asKRLeGrRo0QI2mw1nnnmm0q+UCZkA5oKOu3VA193y9e4xE94ajrf16tUr0/1SrdKSrVaKQm66Sb7N1GhbNf5t3FiIlSuFOHFCiDp15NcT7ma0wQohxPLlbKf1fbxmTSGGDxfi5Mngryc3V4hmzcxbXBMShHj1VbZ6a1rofdc0Ie67r/h2xo0L3kpr/P3WW2z5jYsLvx+aJsQjj/ive9gwtjGbvVdWa2zabNPThbj7bu67pnG9xr8PPSSET7tsSJYvl/t8Z88Ov55ly+S+h2+8Efz5brcQ8+cLccstQvToIUTv3kI8/LBcy/L//R/XsXu3EDVq+Ldpm30OLVoIMWeOEFu3+u+PxyPEDz8IceGF3uXj4oS4914h/v7b/H2VxOPxCJeP9cGGDRuKWlfHjRsnFi1aJI4ePRqz7VVNXEKINUKI34UQfwshPOW7OzEmNTVVLFy4UIwdO9avtfndd98Vv/32mzh48KDweMrvNatWaZV5iYySmLLpOjMYa9eybHLVVSXXC3z1FTMPvuzeTdfeatWo4zAT9G7axGxBenr4q2djOrBMmcLpZAsvwCv7iy4yf87nn7OkZYbVyiyCod+IZDzDn3/K7cuhQ8w01a7N7EKwMsGhQ8CPP7Jk0qQJM1/B3I+DcfvtbG8PlzHRdZZo/vwz/LpeeomalGBYLFzH77/LOSYDHEMxfrx5NkfT+F1r2xZYvJiZk/x8uQyMpjED+eSToZdJS+N4gQYNgmvHQrF9O38Xu3czK3nllbQTiI/HiRMnihxv+/Tpg3PPPRcA9QuLFi1SwlspPAA+APAeOEDRoDuAlwDcXR47FRPCCW979OgBm81WrsJbX5TDrgpeIiM7m4LKcEPpwqHrPJDOmMGD7MiR9IuJljlzYmPPv3cvO3Y+/7zk67JaqUv48EP+fcstLGuZnajbtGFQYnbSNNx4n36af7tcQLt2DDZCnTh1nRqNLVvCe68sXsw2amOuDkB/nhEj2Codi4OW282TqmyHzrFj7F4LhRD83N54o7j/icVCDc2TT1JDIyMuNUYuyDBjhrcDbd8+BiTjxpk/T9P4eSQny21HhtxcBr9ff+3V6GgastxuJNWpA+eDD2K/TyDfpk0bDJV1c1YU4gEwCMA3QR7TQMHtKACvleE+lYxQwltd19GpU6cKJbz1RQUvKniJnD/+4Bwklys6f5XAGUVHj1IDM2eOvHEYwOF3hw9HdlUajv/9j/qFWHzNL7iAGZf8fO6fbKAXqHUIRlwcxxa89573vpUrqZkpKAiu+alRgyZ09jAGV19+yZNfoPjX0PUMHswr+pIGMBkZ/Oxk2bmT3jRmHDtGq/yUlOBeQ9ddR82IWQYmMVG+G+3rr9m2b+BwcGyDDBYLf0OxyHII4TVrLPyuCQDfAtgGnnJhsUAbOhQdLroIdrsd3bp1Q7xsNkpRyJcAZDLPf4D+LRWTyiq89UWZ1Cki59JLKX595RXgt98iP9m7XCzrNGpE0eRNN/HkG0nLpaaxoyWawGXLFuCvv3hC69WLgklNYwYoVvG5IQzNzIwsQyVzIhOC5RxfzjuPn8mzz3r9Zoz1XXEFA7Pu3UOvc/NmBi7BBM/GezJ5MrMYst0uLhf9VX74gZ9zs2acoXTeefzcZEqGFot8KWrAAE7m9t1nwPt65s1jBmbChPDr6dWLGRGZzFDPnv5/R3J1quuxCVwAYPlyeH74AQcAtC68y8gDeEDJpx1AYlISasUiu3haIsBuIOOdDYUVLCtdUgb7JI8QAvv27YPT6axQwtuyQGVeFMXZv5/lH6uVNX8fx82wrFvHbqQrrmCbrGwGx+hEuekmTtcNZoRWUMAszpQpnJZdvz41FnY7O3uWL/df3mZjqn/48Mj9X4Kh68C//gX8+9/cl5o15aY2y5rUAez2KbRhL0ZKCssemkbNT7t25usbNoxeM+FO2JpG35fkZPOTrtPJ78O+fd7Mh9HRY1j9z5gRfntWK7Mls2eb7//69fTUMcNqpSOvMawxGDKTwi0W4Mwz+T32RXZ6ta4zUzZ/vvk+h0EIgYMHD8J5zz3YvHQpMj0ePAHAKLKlArAA8Av/tmwJH8gqQrAfgOy09DgAeWCgU76kpqYW6ZzSfEa41K5du8iiv6wdb2OByrwoSkbr1rwBzMjMm2d+xVq3Lq9Y16yRa7v2JTGRgsp77w2eqdm1i+LbvXv9xxUYGo5gJY+kJIoazzhDrmxjhhBsmQZ4JT5gAA31zE7U11/Pk/7u3aH3wWrlSTpU4AJQS9G5c2T7PGuW+ecmBAOjbdvCn/z27KFvjVECNF6Lsf4NG1ji0bTwAZvbzWBThqlT5fyHPB5g5kyW3YJx4gRLmGaBpKZRdxSI1UrjwdGjw2fc3O7wfjsm+Apvjx8/zu+Nx4MaAI7DG7wEDdGcThW8RIXkhRkAoACACwxiyp6K7nhb1qjgJZbk5NAlds8eptCvvjr44LnKxOOP86o1HLrO8kRCgrzhHcDuj4EDw1ujr1tH4zFjFo3vuAKDYCcUI8DZulW+U0TTQp+c3n6bV98GTz9Nc7hwuN0s+dSpw26gjIzi74tVAxpXA2ZcDyADQAwH3slmzABzXdLbb3P/Q72XLhcDtAcf5HdAiODfgUsvpa+ODIcPy5XndJ16q1C89hoDYLMM2Jgx9LsJxjPP8HewcWPoYZH33MPMVBTs3LkTU6dOLfo7Li4OXatXhx1AR9DWLCynyQkrtuSDRnKyNERZBy6xFd7uADAZwD4ANQFcD+AqMI9XCSmldu1yo1x8XjweIf77XyHq1vV6PhieIf37C7FvX9ntS6zxeIQYMiS0B4quC9Gtm9dz5eqr5X0xxowJv+2tW+nFIusPE+rWtKm5Z8qLLwrRq5f3NRnL168vxCefBN+/b77xX9b3tWmaEF9+6V12504hBg3y93xJgBAPWYQ4YBV0LaguhPiwxB9ZEa1ayb9He/aEXk9GhtznoGn8Lmzbxu9MMI8U4736z3/M9//BB+W8bnQ99HcpI4N+LTLfx7vuCr8/6el8XcY+Ga+vdm36Bfl4rIQjLy9POBwO4XQ6i+7Lz88Xb7/9tpgyZYrYtGmTyM3Nlff60TQh9u6V2rbCIE8IcbkQwiKEgMRNF0K8WCZ7VlBQILZu3SpmzpwpXn/9dT8/li+//FKsXbtWZGVlRbDGbCHEQOF9HboQwlr4dzshxMZYv4SoUT4vZa15eeEFuqwGw2oFGjemD0ok813KEqOskZDAKcSBwlG3m1qP997jMEPDrVTTONDx00/Z9pqZSZ+XVavMr3I1jTODgqX6k5OBTz7hbJ+SesboOrU0GzZ4xxcY+2ZkiJ57DnjnHd63Zg3FsQUFzJrddFP4ThaHg6/jm2+YHapWjW22Tz5JbUogJ6YC2+5l2bwnQriDjwXwVPjXtWcP36MpU4CTJ1m2u/tuljc6deIyr75Kr5RwmSddp2A3UDPky+bN/rN/wmGxsPW+d2/qpsJl4AK7egL57Td2wMmwbRvHOQQi68cDUDNjpmsB2En366/0bGnWjNkWkw4Oj8eDXbt2weFwYNu2bcjPz0ejRo3w2GOPFekS8vPzUc0YdArIdTnpOt8js+yoIoC3ALyCwp4tEywAagHYDK90OraIQuGt4Xib6zP1vLjwdj2AteC+9wbQF6F1OB7Q0XcBgr9WHUCNwvUF+f2UMapVuiyDl02bKPILh9XKE1q4GSflwa+/srvImCYN8CA8dCj9UQLfv8xMlsUOHGCA83//x1JKbi5NxT79lMGNDJpGrYXvdF8h6Ovx6qvRTYkOhsXCWUyffcYT/SefsIRQrRoDrccfZ1mqpAjBQKt69TDCVxd48DuC8J0N1UAr8QbBH543j0FjYFu7rvP1zphBH5qDB3lCz84O/17+8gtHGYTCTA/ji64zkAs2qTuQDh3YoRbq/fJ4uP/h9EK6Tj3UggXBH1+8mCJaGerXL9k8oyAcPHgQf//9NzZv3owsn99G/fr1YbfbcdFFF4Ufgvjss/7t877oOn+Ha9ZEroc6rXEBaAX+DmWoC+A3AOfGfE9SU1PhcDjgdDqDCm/tdjuaNm1aGOCuBjAMwEZ4gxUBoAeA8QjeCfULALNSpg7gZrAJv3xRwUtZBi8PPsghemYaD6uVJ5PGjUt/n2SYPJkutsF0HroO9OjBq3Gz9zAvj8LY5cvlgw2rlR1Jv/7qf//48SUSPAZF1xlYjR7NACM5mfqO5s29ouQyYzZ4kDBDA50+ny7+0NatDJbz84Nnt4xBf2vWcLnly3llnpNTfK6O2x06++VLQQEHUh47Fn45XWfmrmZNiqlltEbLl9MtNxRbtzK4TEsr/hvTdXZdrVgBNG0a/Pn799Mt1+wwZxjfrVhhvs8R8OOPP+LvQnO8GjVqIDExETabDa1atZLrBBGC2bO33uJnaBjVud3Mbn39tRLqRsxGMGMhQw0AewDE7ridnp5eJMw+4pPpMxxv7XY72rZtGyC8XQHgclA0HHictRTefgY1LL5cC2ZdzH6LOugs3Czi1xNL1GyjstS8dOworyv45Zey2Scz9u0zn/uj66y5m/HWW/LzXwxtQZs2Qhw44L+evDwhGjQombYllB5g1y7qVjp39n/swguF+O230nmPg/KKECJOyNXX7w6+ioceMtdBBOo39u8X4qWXOO/JYhGiVi1qN9ati2DXXzH/zgBCzJwpRJcu8p/PN9+Yb3vvXs4m8tXd1K0rxLPPCnH8uPnzr7lGbt+//lr+/fAlO1tk7tsnVq9cKT7//HNx8ODBood27dolvv32W5GcnOw3dyhiMjKE+OorIV5+mTOd1qyJfl2nPcuEnM4FQogaMdliTk6OWL9+vZg0aZJ47bXXijQs//73v8X06dNFUlKSyM/PD/FstxCirQivz7EIIRoJanl8aRLBa/0qJq+1JCjNS1lmXtq2pe+FDLNncxJzefPyy+weMbsyTkhgx0fdusEfd7tpf3/woNx2ExLYkfHGG8WvlH/4gVbvsUTTaL6WlcWSUWCrrNFCPX48tSKlzqsA3gavnsKhAxgAIKDM6HIxEyajA7Jama0I1GIIEZ2JWno6jei2bQs9efr66+l226cPu3JkiOQ3kZnJkp/FQl2P7ETkdeuY3XG5gmcHrVZqelatkp+VJATyf/wRye+8A8eaNdgJwGO1AmecgfMefRRXBs7mUlQg9gJoJ7GcBqAL6GccOS6Xq8jxdvv27X6Ot23bti1yvK1uasr5GwBJ7Remg8cOg2aQL48BzNR8DSBMB2gponxeyhK7nRoQmRR5jx6lvz8yzJ0rt7+5ucDSpTwpBWP7dvnAJT6e7ayh2mR37SqZH4uvRsYQ4t53H09KRmASGKcb23r8cZ6Yzzgjum1LcxbMAxeAaeEgYt+MDPPApTaY6T7h4qDMwOAlWtOqOnX4XXjwQQ5u1DTvyIG4OAaJ//2vVyD999/mZcSEBLYm797NEQU7d3qHDt5yC3VJAP19JkyglubUKZZehwzhvoQqF/ly9tnU9dx6K99DgN8F43ty1lkUvEoGLtlZWfhtwABs+/ln5Pu8ny1cLtg3bkTio4+ynHXppVLrKzWys1mWy8hg2e/cc2Pn/lupaQvqQ5bBvJzycERrFkJg7969RY63vsLbJk2aFBnIReZ4uwRs0TY7dlgLl/UNXvqB5STJmWOYD5anloMHkoqLyryUlF9/pWNoOCwW1u2XLCn59txuZik++ogdTEJQ2/D443Sclen379jRa7luxsyZFLwGY+PG8MZqvuh6eF3Q+PHUXkT6dWzXjieeqVN5oDa0AI88wsClWzcKg8Ot12qlQd6XX0a27YiRFezGg4LdgKufvDwKgoO9ljsBPAkeqwAgG4B+HxA/EkCMxZz79tHt+NQpaoduuYVTkg0OHWJGMpwDsa5TGO7xeGcrCeGdDdSoEb97GRn8/rnd/oGtxcLA7Ndf5QXXmZkMgObM4XrbtWOAe8klPKkXFDD7YkzU7tsX0HUIIZCZmYnahV14ns8/x3sPPYQs8BOyA7DBx/HWYuHntGOHd0p4WZKbC4waxYDP17+nQweK4QcPLvt9qnD8AZ6kQ/0OdVDnshVAPdO1hRLe1qlTB4mJiQHC20gZAeAjyAUv94KzmgwWAegf4fY0cGTCUxE+r+QozUtZal7cbiEuuSR0Td1iobfHypUl31Z2thBXXeXVpPhuw9BwZGSYr+eKK+Q0AIAQf/0Vej1Hj8rrXTp0CL9P27ZFr2ux2YJrJ5KT5ddRp475+xYTZgtWazURuvY8LvTTA/UbGoT4svB5BYHrsQrW7P8svZcTim++od4o2PdD14Ww24W49dbQ3x+LhdodXQ/tMWSxCFGzJjVNJcHlEuLtt4Vo0sRv/cdbtBBLnnxSfPD+++K9994THo+HvkedOokkQOwHhCfU98liEeLf/47NexkJublCXHRR+N/l6NFlv18Vkq8FfyO6KP4bbCCEWBX22WlpaWL58uXi448/9vNieeutt8Ts2bPFrl27hNvtjsF+ThDhjxfGzSKEeCfguR4hxADJ5xs3TQjRsfC5ZUsk528VvMSC9HSeVIDiBlZ16ggxf35stjN4cPiDkq4LcfPN5uuZNcv8ZK5pQnTtyoN1OG691VxAarHQxM+Myy6TD6oC1w9QzOjL2rXy69B18/2LGd8LHhwhKOCNEzxg1BRCfBT+qfPn++/3UxDCY3ZAqy2EOFo6LyUcv/8uRL9+/vtbq5YQTz3Fx2S+gzKf24gR0e+j2y3EgAFF28oExF+A+BwQo4xbnz7ijddfF6mpqUJs2CD/nerUqWTvn9stxJw5vNioVYtme/36UVicFyjMLOT11+UuKFavLtm+VRl2C5rPtRTFxfTxQoj7hBBHipY2hLcTJ06MQngbLWlCiISAfQt2swohDgd5fr4Q4gnhNaaTvUlcCMcYJdgtr8GMa9cyBb5nD1Pa117LGTg1a5Z83f/8Q3GszMcVyrDLoKCA+g4zE7FZs1iKCsfGjaylhxJD6jpT505n+DEAAN+3vn2Ztg/cL9kBh7/9Rv8WgFokX0v/cLRoweXLjHwAPwBYBWpc7AAGgmZYJowaRdNAqwbsFUBzmMyKs4BCYcmZQrFm2zavCeI55/D3MHgwSzgyYyTMqFOHJaxoUvJffQXcfz8A2nTNg7cRVQOt+W0Aun3/PeJvuQX4/XdqcmSoW5f7FQ35+Tx2/PijvxbM0Hb160e/H18xfUEBv++pqeHXbbVyLMeUKdHtW5XjZ9DCwIPibchWuFwtkZIyFQ7HQaSkpMDlKgAt9lPRtm0j2O3/hx49/k9CeFsS3gYw0mSZFwqXC4UDQK8ItpkBqeNRDFFlo7LOvJQFb78tl5WwWtkWa8aBA0L06OGfuTCuZDVNiA8+kN+3+fN5Veh7pWyss21bIbZvl1/X3r3Bywm1asldUfbuLURBgXd93bvLXb2/8or8PlYEZs4U4r7OQv4qyl5OOxqCnj3lMxgyt4js0oVwu90iZft2caRbt6Lv1f7CTMtngFgFiAzf70f//nzi+vWR7dfAgXKl3EAee8w8y3rNNf7PiSQrVL9+5PtUJTklWFr1L6t4PBC7d0PMnQsxZoxFjBrVtTDLMlCMH99YLFsGcfKk7+/rAiHE5lLcT4+g1YIm/Mtcxv+fEmypDodLyLVOa0KI9qKil41Ut1Fl4eBBb3eHzLJmtGhBZ90ffqAz7o4dFBlefz3FrpEMlLzySpqBTZrEbM2pUxyFcN99wG23hW9pPXKEV+XVqnG6dJs2wHff8TWsWuW9mpQVZW7YwKvSyZOZodi61fw51asDD0fWVVDu3HEHcEcCgBsln3C0NPcmcmI5SNBi8e8U2rWL3x2Ph6Ltwi4yIQQOHjwIh8NBx9sjR3DWtm0weulaAhiOIL7GbjcnpbtcXFf79swSymQCZ85kt9TixfJt2Kmp/E2aTbCeN48jBOx23hfJKA2fLpjTmykAcoBC4e6RI0wSO510GiAe1KmTjMTE47Dbp6Np02BJvlWgA+9KMFcXazQA/wZwH4DPAPwFZonOBjuiZI7XOoDHAIyG+ViEJ2CSzi13VPBSWahTR+5gaSwrQ3w808cDB0a/XwYNGgAjRvAmw8aNdL396SfvQbpBA2DYMGDkSAZXhu+LrI+OwYYNPMmE63bx5fXXK+7cqbA0jGDZCuLsbHDhhQwsY1E26tWL69mxAxg+vNiogON2O5z33QeHxYITPvb/NePi4FvQ1RByIAN/e7m5QK1anIUl6wvk8QArV7I8NWyY3HNmzpRzq9Y0BunG+IC2beXKq5rGZRUAfkFamsDmzYwDfUdbxcfT3cJu59tlsXwGfkuCvb9uMAgaAs4eKi3aAxhTgucPBzAVdA0O9tvTwXEDD5ZgG2WD0rxUFtavp1+FDEuWABdfHP22hGDb8ccfe23/e/fmwffqq0t+1bxwIeciBc7mAVjf79WLr8EYEJmdzdp+LE50geg65wR9W/5zPSLHDaANALNMmwXAOwCeLfU9MscDYDuwwwn0uwMIN3EgkvlW3boxW5eV5fedEgA+0DScBICBAxHXowe6desGu92ODk2bQm/cmPoSM+rVoxbLCA6GDWN2RJauXan9AbzBRSiNzsiRDEhkgm+bjWddg6uvNh/NoGnA2LEcHnqakpubiy1btsDhGIC9e1OKPhJd55gou53JZ2tUl/drwYxIReUwgDtAnxvfF+gCcAVodBfJhVHsUCZ1VZFjx8yvqnSdB0nZKbrBcLuBhx7ilaJh4gUwlf3zzzw4/vADSy3RkJ7OYKGgIPiJye2mwdnTTwNffMH7atRgmWTWrNgHMG43pyZXSnQAzyO8H4MxEbe8HV8LAHwA4H0A+4FOoN3NXHDA79qAxXWdwt7+/fl9M2PbNuSDXqjbANwKvjsaALsQOADAPncuun38Mar5ilwHDgSmTQv/vdJ1GuIZwYamccBn167ymcbkZODDD4HPPweSkriOPn3oz3Tnnf5nydq15c0at21jRsgozb7yCoOXUMcKQ0A/ZIjc+qsQhuOtw+HA9u3b4Xa7AVQHoKFtWwG7nZmW0Ie2UFkXX3TQKK4iBy/NACwFsAHALAAnQJeigSidklfpoDIvlYG0NJY1cnLCX4nGx7NYW5IJsyNHAu+8EzpI0jTauX/yCY3EIr00kTWjq1aNZmeG+dmmTTzYl0b2xW5nwFQpEQAeAvAFeOD0PelZQcO7eQBiMDk7avJBbc58FDv4uwuzK7cBmBfH74XLxYzCN9/wpH/77SG/Lx4Au8A+iq3w2ngNBGD02wn4VO+/+opaLIOkJGY08/NDd8vVqsXsRps2/o99+CHLVLIYwY/xWozMUv/+dL02zpqbN/P1y/LDD7wgMPj+e+Cuu/yN/YxttW7N4CYSTVslRgg63jocDmzZsqWY463d7kZi4vCQxt9eZBxuAf7mRgP4V7S7fFqjMi9VjalTWToxO+G73aHt92U4eZLp5HDbEYLzaGbPZinnwQeBp56S14zIXEUDPJksWMB2UYAalu++ow4m2hECwdB1TriutGiggO9KMKthTEWuAWZbngYbfsuTNxA0cAEA3QNYNOAHHXjnYSC/IVvq09IYvIwdG3SNp0CJ5GYAWT73NwCbzn2HBhQFLrrOVmff4KVnT+qubryRGQzfAEbT+B2fN6944ALQ8TgSAn9XxrYWL6aGZuJE/p2YyOyLMcrAjMOH/f++9VaK4L/4guXQ9HTu/9ChzPIEjoyoghw5cqRImB3oeGtY9NPxFgC+BYW24Y4rF4EZFbNjjwvesFlRmqjgpTIwe7bcci4XMH8+hx9Gw8yZcvV/g7Q0nlwmTQL+/FNudtOpU/LCY19rc4AnmJUr6SsTq4ShxyPRaXQCzGxMAIe6VQNHzz8BWozHEgGmdD8C8DuYtegMYBiAQQCCeQZpAG4vvGWCwsH6qBg/7zwAHwIewTRJsF3SBIOYOzOB/j+zk8dq5WfjE0y4wdwSwHdldeH/awJIBBPeLRGmR8LjCf797t/fO1/pm2+84wEGD+Yt1AVB4xiJoD0eeq68+SaF6gBHfixdKvf8kyeL39eiBUcBvPpqbPaxEpCWlgan0wmn04kjPsrb+Ph49OzZEzabDW3btoWlmGZvDjiQ8C/4Zy+tYDDyMoB7AHST2IuGQFH/mqI0qQhHN4UZaWnyJ+usLPNlQrF3L08asl06ALMgx46x9NK1K6/sHnyQM2+C0aYNSzQy2ZNg2ZxzzuE2vv02NhmYxERmg+67jyesYmwHcCkocjNOpLkAfgEPeiMAvIvYtBUKcEDRh/AeOAHACeBRcN7IYgDhjPdqoayNpZgHmQYgCTz4XwDgZsCtA9+9AXx4yuvF1x7s1nwAgI/0BMID5EwC9hWeWArLg5mFa3WAWRVj7niTwq20BdAB3qAmLBYL53oFo0kT4MUXeZPl//6Ps8Qi+b2EY+ZMar0A4O675YOXLVtis/1KiFd468DevXthqCB0XUeXLl1gs9nQpUsXWMOWt+uD4tWfAHwCFiDjQPHqo/Aauw0FMBHhdS9jwIsbRWmjNC+Vgdtvp9OmzMn655/NB0WG4vXX2b5ckqDAYuEBfdYs4IYbeF9uLq8Oa9Viivymm8zX06gRu0eCDZpMTWX2Zd++4vtqCBVlOlV8BZgWCzBmDPDMMz5dILlgCvgAwqeLPwLPyCXlPYTvCLIW7s/fkDxdlzICDNxeBTMsxgmiAChoCNzRGZj9V3EpjgUMYpbAPw77B0BrFAlvHaCexfgU40GP4BJdcSUnx1bv8dBDHOgp2xUVirg4Bi7vvMO///5bfsp5nTq+piRVnuDCW9K2bVvY7Xb06NGjFBxv80F92WT4X1zo4G/hv+DFjCJalOalqnHffdR7mNGokbx1eTCuu67kaWYjNX/rrfSgmD8fmD7de3V60UU0nTt8OLz4duTI0BOymzQBVq8Gnn+eaX7fUsAZZwDPPgu89hqwc2f4k4oRtwvB5Z57jtssaiGdBdqAm/EWgEdQsoAiv3A94XCBeYhfUTFS02MAvOTzt08G4sXjwJzj/H9g3OcBq2/XAtgEBjNuAP9w1u9K/zWhJahj6YkSHLAsFmDQoNgLVceNY+bDMMXzRde9HXtmFwQej7/VfyTC9MxM+WUrKebCWztsNhvq+r6HMacagElggPIpeBERB+phHgK/qYqyQmVeKgNuN3DWWeyMCHdQGzuW4tmScM45NHkraUnGYmFQoOv++2zMaalXzzuPxvgKGgf64cN5UpCZVXPiBLBiBQOYTp3oEQNQL/PZZ8BHH7EcBsgZeNWowcCqdm2wXLQU5m6UAMs5l0osF4qfANwgsZwOdu58X4JtxYJDAFojaEYqDezGNDFxFQAOTAOa3AZUswIYBiz/DFgIr/DWhhI6ThjfqTvvZDAt63IbCbm59ET68EPqdQC2ed9/P2d13X233Hr+/JNlraZNmV2UFcE3a8bOvCqIvPC2YrvBVhwEvCWyTPA3fA/oF1X+RHL+VsFLZeHQIeDyy+lK6lsSMQ7Ol13GGrzdDlx6afRGcjt3siRz6lTptCX7Mngwzfd27mTG44or6HtxySWx3U5ODgOZp5+Wcx+dMIHlAHQFNS8yTANwVwl28lMweyPD2ShujFLWvAFgFIIGdpNBo9EQHAdVPA4LcCIRuHUyYGsKoDOQmUUFTVjhrSzt2tGscdgwBuWlfYLzePg7LShgQJGQwO9bz55ASkr435NvYN24Mfd58WJmdMJdSOg6dTpvvBHb11KOhBLeJiQkoEePHmGEt4rwJIOqsSQwh6nBO4zyXrAhIcwolzJAlY2qIs2b80Q/Ywav8rZvZ4CiadST/PEHXWk9Hs5eef99zimKlI4dgXXrWLaZNSu2bcm+aBpfj8Mhf1LJyOCVbVwc9zNUWSmQ6tWpdZARI1ut9MoB4K8oNaOkgXJtyeU0RLZfpcV6hBQuHkExnYuv8LZodrcHiMsCMk7WAO7OBrJiLDf+88/gLc6lhcXiny3xeJhBmTCBM76OHw9dxvQNqo8eZedR48bhf38WC7/bj8gGvRWX2AhvFaHZA+A8MC0KFB8NMBW8rJgD1nErPuqbUJmoXp36l/vuA9au5VWl4TVhzIsFeIK/8UYGOnfcEfl22ralluT885kJKQ2EoBnX9u3sUgrHzp08mH/zjff1Nm5Mb4xnn6UQ2Aw9Aj1K0bJ3gCdps7JRLQCXya8/KFdC3gjrlhJuq5SpB7+3LAvskzLusoDOMzYL0O3MnqjW7zfgoA3MucSIs88u28DFl5wcmjj6lpFq12ZgLGtFYHTxGUMgg5Vfq1cHfv2VGrJKSDjhbbt27WCz2UpBeHsKLLkeAC84rkf5+yCVBa8ASEfoxgMPgJ9BQ8soGz7KmDIJscaPH4927dohISEBffv2xZo1a0IuO2nSJGia5ndLCDeV+HRECODee3kiD3YlZwQxQ4eWTMzXrFn0z5Xl+PHwj2/cyLlKU6f6m4IdPcpU+fnny3VanHeeXEtrQQHXCYAmbwkI/zOxgOWekhp/NQJrz+GCLMPqP0ofn5hyNoIVdtxuICURWOnzUE2wqaglgGsAPAPgbgB2D1DtzteAhFbA//5nvslI/Is++UR+WTOys2lkN2UK8Ntv4QOQzEyWcJ97zhu4AMwaRuKhBDBY2b2b3/0hQyjotVrp4TJyJEcDyE5bryAIIbBnzx7MnTsX7777LmbOnImtW7fC7XajadOm6N+/P55++mkMGTIEZ511VgwDFxfYydcMHDr4OvhN7ASerI+Efmql5ziAGQg+iNEXHeycLD8iUbGUeuZl5syZGDFiBCZMmIC+ffti3LhxuOqqq5CcnIwmQX01KMZKTk4u+luJsQJYvtw75C0UQvCgO22ahAlbCC69lDb9kR50I6FhGDlmfj47oAKG7RXhdlPE/Mgj7GgKxy23cNTAyZPhRx80auTTyt0QwI/g1Zkbxa9aLGCnwevhty3NOAAbQUVI4LZ08Of6I8xLVJtBv4rfwRbmngAeBg/SsfrJ3w9qXvh2HjjACuDmzfzaWRKBMzYDNQpj60FgXsn7cgpn7Nx4I/++7z4Gp089xc/d9zevaRTc3nwzS5opKeHLKU8/LT/E1MDjKa4Ty88HRo3iSAtft9uGDZnxe/754s957DFmRUvaOm1gtXI0xuef81bW7NvH97taNRrnyWQ5g2AIb51OJ9J9zCcN4a3dbkfTpk3DrKEkCPAbOBPeUqfviXwBgPNB28PyGUhYuiTBPHABeMwJnVgoTY4fPw6n0xk2sRFIqQt2+/btiz59+uCjjxjReTwetG7dGk888QReDGIINWnSJDz11FM4depUVNsrFcGuxwMsWsQjs9UKXHABf8jlxRtv0I/FTFCr6ywbffNN9Nu6/352acRa+2KxUMj499+hNS8zZ3rHA4RD13mQNdxJQzFnjncGTODXXtN4mzOHwmc/NgF4EwwcjPehJThe/inE1pQqE2xB/gSA4ZxqATuRXgUQ7nsnwEBqFIr7ULgB9APN9erHZE9PnnwVmza9DqeTTV8GNWsCiR2AC94Aajs0uuv6YrWyjLJkCQXm/itlhuOvvxgF7d/P351v1qx6ApCTG3xOntXKdT7+OIcuhsvabtnC0s60aQxO6tThTKAnnmBL9Y03MtMSKhAZMoSuvMb39/BhlnBi+VuxWtni/dVXsVunDKtX0zZhwQLvfTVrMps7ejRHOJhgCG8dDgdSU1OL7jeEt3a7HW3bti2Di9NfAAT+pgPRwd+zRAaw0rEUwMWSyzYAMzWlT2ZmJpKSkuBwOHDgAJVweXl5ePvtt8tfsJufn4/169dj5MiRRfdZLBb0798fq1atCvm8zMxMtG3bFh6PB71798Zbb72Fnj17Bl02Ly8PeT7lhPRAS/mS8uOPvBrct8/b/isEhwR+9pm8kVQscbnkRK4eT8k7ht57jweybdvkD8pnnMGuqPz80FkOj4ddEuFex/ffy5nNeTxM65tlmG68kcsNG8aToiH+c7k4sG7CBOCaa4K9IHD+yXEA+8FSUmdE7+siwAzLYVB82xfen2ItMFB6FbxiygM9ZGWuSj+FkQ3xv9IyPrc1AG4C3eFKfsLYseP/8OeffwFYjLg4N7p312GzaejY0QWLpTFw9QRg3FZmLoxW3urVedJ//nl2AwVSvz59dm6/nV1vBw8W/97l5TKe6wQgFZQJ5Ra+TJeLmYqhQyla//334Db+s2Z5W5iN30h6OucBffEFy7Lz5oXvTps0iaL4Wwo1SLNnxy7j4kusxhDIMn8+X1fga8nKYrPAggW0JwiSNc3JyfET3hoYwlu73Y7OnTuXsfD2IxR3SgzEDY4AeQMlLwFXNAyHJJmy0TmlvjeZmZmYPXs2du3aBU/hd8xisaBDhw7o0KED3n77ban1lOo36NixY0W1TF+aNm2KbSHKHl27dsVXX30Fu92OtLQ0vPvuuzjvvPOQlJSEVkGEaWPGjMHo0aNLZf8xbRrr7MYJ1vfHvGEDtRHLl5d9FqZbNzn9hhA8kK9cSc1HNNSrxwPVq6/SSTRw/IBv2lwIBnr//S8PgDffXDyAMnxeRo7kVW44Tp6UOxlYLPIOo9ddRy3C/Pn8DAF66Fx5pUR7eUOUPK08FTxA+rZgNwUzOM/C+5OMB9A7gvUWwBu4hMINXoUtA8tdcuTn52Pr1q1wOp3o0aMHevfmfvXsmYiUlCGw2Uaja9d1qFYtuXD/LwBwI1Azjh52L77I99zlYmaiZrD5TAE88ggDnmABsweMvf4B7WZqgvMorwRjPeM7k5TEgHXFCv8gecMG79TlQIzvqkymQ9eBDz7wBi8nThQX1pYUl4sZpLIiPZ2dUW538N+e2w3s2MHMVmGp1uVyYfv27XA4HEhJSSkmvLXb7ejevXspON7KshzmAxUBIAMcDXBW6e5OmdMQwJ1g2Szcd9ON2DiF++PxeHDy5Ek0LAx2a9SogUOHDsHj8aBly5aw2+3o2bMnatWqFVHyoVTLRgcPHkTLli2xcuVK9OvXr+j+559/Hn/++SdWr14d5tmkoKAA3bt3x8CBA/H668W1BcEyL61bty552ejUKZYhcnJCL6PrnI2zcWPpe0j4kpvL1mmZ0prROTN9Oq9mS0JmJuv5ubl8b9avZzuqywV0707dgm+raFISjfO+/tortu3fn5qEa681397gwQwgZTI+kyfzarlC8xqA0Qhe79DArMi3iC6j8zPkXHetoB/N5LBLud1u7Ny5E06nE9u2bUNBYbDcpk0bDB06NIr9i4A9e4AOHSQ8ecAxUI+Bx9134G/4a7BsGUu9BnffzcxLLIIMTWOG0WplJvaRR2I3NBSgIFd2xlEsGD+eZTOT1yAsFuxZtQqOQ4ewdetWP8fbpk2bwm63IzExsZQdb2WpAQ4rlWE1yiL7ED0CLGOngBc4F0DugmoPGJSlIXggZwHl9HMRiz4eIQQOHDgAp9OJzZs3Q9d1PPXUU0XePCkpKWjQoEFRQGNQYXxeGjVqBF3X/YyGAIq3mkl2ssTFxeHMM8/Ejh07gj4eHx+P+NJwzZwyhSfpcLjd1GysXUsTrLIiIYEzUGSEuG43D7B3380r3mXLeIXYuDGvsI4cYQmlVi2axIUT0NaqRRGvQa9eTM8HIyOD233+eeoKMjO5/RoRpGQHDeLnYEb16nLzksqVpWDgAgT3RxEAZoNGUdFc/exF8KAoEBeA4L8lgAed+fPnw+FwIDs7u+j+hg0bFgkrS53ff5cPAH4B3y4dHLz9bzD7YmC1srxjBC95eRzqGavsiBDMglqtzMA8/njsBjUCzH4IUXYXR3PmhHxIgD05TgBOjwfpb71VVDYvG+FttPQEsAHmlgdWsBZZUZkH4EXQLckgDsBAcMZYuPJiOzA9eRuCm9QNAo89JQtcDOGtw+HACR8hXM2aNXHq1Ck0aNAAANC5c+cSbQco5eClWrVqOOuss7Bo0SLcVHhy8Xg8WLRoER6X9A9xu91wOp24VuZKPZbIXu3oOrMPZRm8AHSAzcpi14NZacU4wF53HQ+yhm7nzTf9l4uLY5ls7Fj/OSsynDrFWviOHRRi/vmnt0upaVN2YYyIcGjZ5Zfz4Lh5c+iTjabxSrHCuykHTooOxThwkm2kJ6vqMA9cDPzLNmlpaUVXyJqm4fjx48jOzkLNmkeRmLgVdvsBtGhRDZp2CXiAbBDhvkVIdrac1kmAJjIG9QGcC+BPn/tcLuCff7x/nzwZ2+CicWOvKLhRIwbzn38eO+3LihUs+xa17wdw/DgvDBo3juzCIBQZGcUCxzQUOiKDEiODBCHQo3fvMhTeRstjoO1BOKxgacXsu30UwOeFt4Pgb+kmAE8gvJi+pEwDA4zA97ig8LFlAP4C562Hohv4SS4HMyyZoInBIMRiPMCKFSvw+++/F/0dFxeH7t27w2azoUOHDtAj8dqSQZQyM2bMEPHx8WLSpEliy5Yt4qGHHhL16tUThw8fFkIIMWjQIPHiiy8WLT969Ggxf/58sXPnTrF+/XoxYMAAkZCQIJKSkqS2l5aWJgCItLS0ku34DTcYp/jwN6tViLfeKtm2SsIvv8jtp+xN14VITBRC9v3LzBTikUeEiI8Pv15NE6J9eyFkPse8PCHmzRNi8mQhJk4UolMnPl/T/PcTEOKOO4QoKCjRW1g2JAghIHnbEcX69wohNIl1a0KIcSIjI0OsWrVKfPrpp+K1114Tp06d8q5pb7JISblSuN0QQlh9nmv8/0UhhCeKfZRk9mzJ3x6EGBLw+q4NWMZiEeL2273rzsz0/x6V9Lfyyiv++56TI0T//t5tl3QbVqsQQ4f6b8PjEWL6dCH69vUuFxcnxN13C7FpU8ne+wEDhLBaRTYg1gHiK0CM8rn9GxAzALEFEAU//FCybZUZuUKI3kIIXQT/TehCiNpCiGST9WwQQjQQQlgCnm/8LsZK7ItHCPGrEOJaIURNIUS8EMIuhJgghMgK8ZzDQoi4EPvuuw8DJLYfG/Ly8sTff/8tDh06VHTf/v37xejRo8XXX38tHA6HyMvLi3i9kZy/EfHao+DDDz8Ubdq0EdWqVRPnnHOO+Ouvv4oeu/jii8XgwYOL/n7qqaeKlm3atKm49tprxYYNG6S3FbPg5YUXvCdIs1t5/ogXLIht8GIcdEeMMN92VhYPoLLvk3G74QYhdu4svj63W4gxY4Ro2NB/+dq1hbjiCiG6dOG+xcUJcemlfN/d7ti/pzHHI8yDCt/b31Fu50YR+gANkZcHsWlTvJgy5RPx2muviVGjRolRo0aJ0aNHi82bN/us525R/AAdeHsnyn2UIC+v+Hcg1G1ZwH7ZgiwzbZr/+q++2vw7q+v8roUKQHRdiEaNhPA5eBeRny/EF18IYbPF5vd40UVCLFsmxG+/CbFlixAPP+z9nQYGOnFxQvz0U1Rve0FBgUj67DMxvTBI8Q1aJgJiPSCyjW01bMjPqdJwTAhxsfAPNozfSgshxDqT5x8XQjQU4X5fvP0YZh0uIcTggG1D8IJCE0L0EEIEfp9ShBBXmWzTuFmDPD92uFwukZycLL777jvxxhtviFGjRom5c+cWPe7xeERmZmaJthHJ+VsNZgzFjh2ATF2ucWM6dMnO2Yk1mzcDNlvs11u9Ou3Jw6Wi//1vej5EmiLXdZal/vrL+x4LwZT7pEnBn6NpbGOePZulrwqbog5FSzDNbIYGJucbRbGNw2Db9UEElqf27tXw9ddAQcEdYPoYaNWqVZHSv2ZRB1By0ePhqVW4PYnOoWj46COWA0Ohgw1Ti8C3zA1mxH0z97pOY8L9+/2nSS9YAFx1lfk+jB3L77fRySaEt5zVvDnXk5gYfh3Z2Zyr1TuSzrEAjOGrMmgaDeVSUtj+b4IQdLx1OBwU3ubksFX80CE0FQJ2AIkIMk0rFhPsyxwB2gVMBn8jtcGSzw0IsFAMwrsAXkB43YwFtFVYH+LxV8FOw1CnXGvh89eAtgxDQFFXJHwDamBigxAU3hqTvQN1cGeffbZfM05JUVOlY2VS98gj7CAI9xZNnEjfiljhdtNTxvAeMRuNIASDly1bwu9nNHz9tdcLI5CCAra9pqYGf9wMq5U6oRUr+Pf331NAHA5N40nt0Uej22a58hpoIBfu4GcFXXBnl2A7RyDECzhw4Bvk5xegQwfem5d3Lt59tyfq1OkFu90Om81WJJ5j3Xw2KNhbA9bCZZgMTqMtBYSgu+3rr/ufvA27jvPBBqt6Ps+5Gd63zmrlSXzhQiDYwfXNN4GXXy6urTFa+d98E/jXv9g6/PXXnBN27BhdgQcPpvmj0frrdgPffUdPqOxsdtzdfDM764z2+8cfp0dKWRxudR144YXimrZChBBFjrebN28u5nhrb90atlGj0DTUBPvnnmPDQKW7gCgJPcA2ahm2gRPpfckERxNkFV+8GHMBPA92FEVqePglgNh1Awoh8P777xeZxtasWROJiYmw2+1o0aJFzHVOEZ2/S5TjqYDErGwkBLUUDz3kTcn6llWsViE++qjk2zDIyBDi9deFaNbMu51atYQYPlyI/fvDP3f69NikpwNv110XepsOR2y28XdhieSii8xT+ZrG0pGnFPUWpcYhIUR9ETrtrAmmfVdHvYWjR4+KxYsXi/fff1+MGvWc+OSTxwTT2FuEEEKcOHFCeIq9d6lCiDNF8VS22S1OCDEq6n2VxuGgpqpTGyHa6EJcAyHmQghX4X54dCE8EOJZH82VrlMLZaavmj1biPPP9/+OnX++EHPmyO1bQQF/s6H0Xp07s8wjhBAulxBPPMHvsK7HTncT6tamTbHdPXXqlFi2bJkYP358Uclw1KhRYsyYMWLu3Lli9+7d3u9Hbq4QU6cK0a+fEA0a8Lh0zz1C+JT8Ty/qCPnfxqIgz/9a8rm6oAYmkt+i7+2PqF+hoYObPHmycLlcRfcvXbpUfP/99yIlJUW4S7lMr8pGsR4PsG0bMzBOJ8tDF17IEkesWgJPnQIuuYTrDyzBWK00ilu2jOZ0oXjrLeCllyJLMZsRH8/ug2AlsfXrI58fE4jFwiu4J5/kVbIs777Ldtd9+9h+ffPNzJIZaYYKywbQSc1oITR+enrhbQaYPpAnMzMTmzdvhsPhwMGD3rJUtWrV0K1bN9xwww1h3Ew9YHvOBkR+haeDKfDiIz5iyuHD/JyrVwe6twasMwB8BvpW1ADT/sOA7PbMPhYUAJ06ReZKe/Agu3YaNjQfMWHgdgO33hq2tRiaxrLVhg3eCdd79tDs0djX5cuZ3Yn1+I3atYH09ArqeFsZaQVOopZhLTi41Jd3wd+KzOcs05UYjLYAdiGSdmdfA8qdO3fCCAcGDhyIrl0Ds0eljyobxTp4KW3uuAP44YfQBzBdB9q2BbZv95rOBWPlSnqqzJnjNbLr0oVty9F+zEeOAMEGaBop9JIcdK1WlgZGjJBzXfXFN52t63x9X3xBo7zcXAY3335LT5vmzekZc9114d+/MuEUgEkAJoL2sHUBDADwEABzjUIg3377LZKSkgDQYrtjx46w2+3o2rUrqpkGhPMAlMSCYB1KzY109WqWjH791fvdbd6cOpgRI/w1LOXB2LFyrf+6zvlgn34a/PEjR+hA/M03MRuA6gKwvVUrOP77Xz/HW03T0LZtW9jtdvTo0QMJZiVphQ9Pg2MGzIKKFgD2objR5KegEZHZcdgCcz+aUHwNzms35+jRo1i6dKmfASVAHZzNZkNiYqKPDq7sUMFLZQpe9u9nYCLzMfz0U5ChgSEQgld+aWlA374UIEcTaBjmcsG4/XbW+UsSwEybRvvzJk0YEJUETQPGjWOtPzXVG+AYOoauXTloL9hMnQqO4XjrcDhw8cUXo3FhZiE5ORnLli0LIryV4TYAcxDdVR7Ag3TkAZcpc+cyqyFE8e+WxQJcdBHnDpXXydfj4Xdo/3655RMSGKSEOx4dP06zy4ICZoIeeSSyXQJtCh0Atmga8i6+GLj4YgAV0fG2MpICoDvCZ0400Ob5uSCPHQC9VGI9+8oCBkT/A0eMBEcIgfz8/CJD19TUVHz88ccAvAaUNputmONtWVNhHHYVEsyezZOuWfBitTKTIBu8GEKqunVpuDdgAPDHH/JlJV3nSSLYyTAtjSJGl6tkZlx16rDko2k8WL/5ZskEjZrmfzVs7JtxAty5kwf0TZukpuKWN0II/PPPP3A4HEhKSipS+jdo0ACXXXYZAM4Ciz69uwvRBy4agO/AK9IYcuQIcOed/MyCfRc8Hn6fX3sNkBzgFnM2b5YPXABmAnfuDD8DrWFD4Oqr+f+//5ZarQAdbx1go1WG8YCuo26tWrAlJcHWogWaXnghZ5udVgLbWNMZFMPeBwYMgUGMBuBGhP49tAQvFr4P8lwDHXRazC68mVENNMcbBqBj0CWOHTsGp9MJp9OJFi1a4LbCpogmTZrg8ssvR4cOHUpFeFsWqOClvDl5Us5N1OWSm2UUjCZNgMWLAYeDM13Wr2cGIhxud/BWyPHj2W2Qm1vyEsyrr3o7NmrUKHknhsx7+M8/LC89F+zqqLQpALAF9K9vj1B23nl5eVixYgWcTidOnjxZdH+tWrWQmJiIHj16xGh/SpIWtoLtnDFECOCNN2jhH+674PEAn3zC708sXGUjJSPDfJlATId++mC3s4Nw8+ag78MpeB1vj/rcn2CxoKemwQ6gzc8/Q4uL4/M/+IA6oG++Afr0iXzfFYUMBjONbwJY7HN/WwBPAhiO8HPJJgDYDNoRBAYwVnBW0c9g+eeTIMv4ogEYC7px+xNKB5eXlwe3213kdHvhhReGWX/FRwUv5U3TpnJlF6s1uPYkEux23oTgcMT33y+e9TH+HjECuD5g0N/HH7Pl06AkwuB//cubJcnNBf7zn+jXFQkejzcAKzOywXTyxwCM0pgFFJu+AuAMuFyuItGkrutYs2YNcnNzUa1aNT+LbUskJ0FTrgetwqPBjfCzVCJk5kwGLps3yy2fns4MjJGtCMbOncCECRxX4XJx1MQjj7BFvyRXmr7DR2WoXZvaM1k0jf4yxrRqcKxgEhi0FMludR1WtxtdANiqV0fn7t1hNSalA/5jEHbvZtZxxYrwGSBfhKCgePJkZprq1OGU7ttuK7+SXblzWeHtH7AUVBNso7YAyAdt+k+BbdHnwF88Wx/AKgBjwEDmVOH9VgB3AHgZLE21BCdAn0DwAMYKejENLvbIr7/+irVr1xYJbwN1cDG36C9PSq3nqZyIaat0WXD0KF0xZdoflyyJ3XY9HiG++kqIrl39t9G1K+8PbKlNTxeievXYtHFOmeK/7hkzSrdtNNgtPz9272VYMoQQfUQwx9rcXF1s2hQnpkx5QXzwwQd+bcyrV6+O2mJbni3F9kn+ZhFC/BOb3XjjDX4mkbYPz5oVfH0eD1uYjbZkY3nD7uCOO9gKXBIuuEDO/l/ThHj66ag2UfD++yIJENM1zc/x9jVATGrYUKyfPVvkpKUJceqUEFu3mu+Lrgtx3nlyGz961NtGbrxvxutt3FiIlSujek1VkwIhxGjB0QG+v5F2QojPRfBRGrlCiI1CiLWC7r2BbBNCdClcj1Xw92Y4A18ohEgtcrz1PUYsW7ZMjBo1Snz++edi9erVJXa8LWsiOX+rzEt506gRuxE++yx02cNq5QTniy6K3XY1jZ05Q4bwavf4ce5Lz57Br0qnTTOfsi1LrVr+f2/fHtsWbzMsljLsOnoWvhNt3W4mBBwOIDnZjYICNyi2G4HU1NSiibznSA/6FGA5KoJWc+4JgLsifI6BDg6xizADEYwVK2gWB0ReNgzV1vzRR8Arr/D/vllN4/v13XdszZ86lU6048fThC49ndnN++7j4NPmzUNv+5VXwmd9DFq1YpZREo/Hg71798LhcGBLVhbyHnuMQt5t29DM7YatVSvYhg1DnQce8NejjR5t/htyu9mRmJTE33kocnM5Yd7IghnrNI5PJ07QgG/NmvDrOS1wAbgFLPcEfn/3AngQwE4w2+JLPOimG4quoCne76BO5hSAphDiHvzzT3M4nWuLHG9vueWWomnvvXv3Ro8ePXwMKKsuKnipCIwbR/+H337z178YQUSHDuzAKA1RlabJjRfYtIkn/FgEGIFi2WrVSq53kUXXOaE3puWXUJwE26J5AnU62STj47CNhg0Bu70ANlt9NGgQiW/QKgDvA/gBDF7qgnbiTyCUeM+fXwBsimB7gHeibV+w9TMGfPhhdIFru9pAv3OL35+bSy1MODweCs579QJGjuR9xvb37uXYi3ffZZt2KF3AlVfyguOhh/h3sO/v2WfTtqBR+FEPQngdb51OJzJ8NDV1O3aE7aabYLfb0SRc2XjlSvn30CzomDGDv/dQuN1s6x49mhq605pPEDxwgc99bwO4Aiw3RYIFwFUArioS3jocfxXTwfm2OteoUQM1ykMHVg6o4KUiEB/PNujp03kwX7uW97dvDzz2GPDAA+HbLMsCiyU2wVOTJgwefLnsssjarYN1Z1ksHKewb1/4QMjtBoYPl99WCTh27HtYrXmoV49/16rFwKVWLY7Esdt5cU+l/zxwdooM/wPwDPzNrNIAjAeDirngwTIcX4DBSCRBYxcwOHoAvHKMAXPnRhcQv5wBWOajmE/NnDlywnZdD6178nj4QV1zDc3kDIO5QB54gF08H39MzU56OgXE55zDAMr3e56aSnO6335jgNWtG07deSectWrB4XTi6FGv9LZ69ero0aMH7HY72rRpI9cJEknwb7bsxx+bNxG4XPSmSk0tuRav0iIAjJNYzgrgQ0QevJCMjAx89NFHRX+Xrg6u8qCCl4qC1UojtUGDvC3IkbjOljZ9+rDDoyRoGoXCgY69ffpQROhwhA5iNI1p8gkT6MrrdHofq1uXQsznn6cR3dq1wdejaTQEvDkyF9tIyMjIwObNm+F0OnHw4M/o25fnQIDWIPfey3/9jzcCDD5k+AUMXIDibc4uMMtzI5hybhtmPTsRWeDSD8AKeLMvMUAIICdHfnljrtHLAIZawBNCQPCyY4dcJscsWPZ4GGSMH8/vWyh69GCZyufkUoyvv6Yjt9uNHI8HSQAc69Zh35QpvEC5805Ya9Yscrzt1KlT5I63Z59NJ1+ZQPCMM8I/vnWrnAWC2833+7QNXnaDdgNmuMDfrYDZ7ycvLw9bt27FyZMncemllwIAateujfbt2yMuLg42m03SgLLqo4KXikhFtOq+8062TvsMcYtqHaGudqdM4VVsdnbxE4um8TZlCgOPu+5ioLN/PwOac8/1tlz//jsDpMmT2W1hXEHWrMkxBKNHx7xkZBxwnE4ndu3a5aP0r+NnmqppoSYY6JA3exuD8C6cAux6+ARMV4ci0jbpY2B3xSIA28EpvJcAuBhRBzSaxtTToUNyy18PSojOB/j6f0exE0IsS5BuN7Ml4YIXM37+GQWDBmE72ClUNGrP44EGoN2ePbAvWoTuf/6JBOM7LIPTycDqu++ArCyOITALXCwWBi5mE64j0YNViGOVALAELKGmg50+g8B52KWJjBeLQQFCBS++BpTJyckoKCiAxWLBOeecU2Q6OWjQoNM2wxIK5bCrkGfSJIoZoyE+nqZiTz4ZuvyUlMQy2Z9/+t/fowfwv/8BV10lv73jx4FffmEJoWlTmvuVgt21EAIffvghTpw4UXRf69atCy3YO6FmzS7wtkeH43tQ+BeO/aBLpwxNARwO8/hocNJ1tBgBVBcAU8G20Ch49VXgrTcBd5grfR3ANQB+CvZgAfyuwTZuND85R0pBgf9JWggGDLruDZoD8Hg82LN7N5yXXIIt//yDPJ/HmgGwg6fWoiPUwoXA5ZfL7c+ECZysHqhBC2d2abHw9scfwAUXhF//TTfxt2MWDNWuzdlTUhqLnWBbvgtsLT4XkQe968DS6DwwQO8EzgKbAk5ytsIbILjAL8038B89HktOgnYBMiXvFgicjXT48GGsX7/ez4ASyELDhrtgt1vRp08n1KhxC0ptBEcFRDnsns54PEwfnzjBA27LlhQMltT2+fffS+aNkpfHjEh6emhBZc+e9OTYto0CRLebYuK+fSPX2zRsyBpNDBFCYP/+/di2bRv69+8Pi8UCTdPQtWtXpKSkwG63w2azob6fIHkkvGWeYOigwPb6MMsYpEawt0dNHi+p0Z0RbOwAMzDLEPlB9mdg2CLgQw/tYYOdA4yPPWjDTgsUO4SdeSbLkBs2hC9Byl6zVavmzUSkpTFwGD/e67Dbowc1VEOGQFSrhsOHDxc5mmZs3UpTRPD0aSu8FSuyWK2cfSQTvMyfDwwbxv8HBhdCeF+bEawYyzVsSE2dWeAC0Msp3MBJgO/JAw9IBC4pAB4Ds2S+dAO1W9eY7w8EGGyPhr/Oaz04BNEgMNhaAApelyJmGi0/6oPB048IH8Do4OwyHkMMDdP+/fuxtlDfWKtWdSQmroDd/iuaN/dA04xA7C0AfUDfl/al8BoqLyrzUlUQgkK7//6XHROB9O9PTcgVZkLOICxbRlGtx1OycQAAD64pKUBHmY6YisHRo0eLTkiG0n/QoEHoWPgaXC4XdF0PIawUoPvmh/CKNgDvWbk96NYZTp9isBO82pShHnhlGIpvIDvEzRwLGLisieA5L4EHZh1Y6+Y5Jg3+1TC9cNVfgx5exbb5GmjyF8DWrUC/fpzLFWw2kqYxqP/nn/DfZ6uVM5ZmzGBp6+KL2efu+xxNwykh4LTb4Rg8GEd9yqrVt25Fz1mzYAPzZWHD7549ORbArGRz4YUM7MPtt8XC32urVgy+Lr+c5dZg0+GDIQQDk4kTgwd5us765+rVJmM2kkGtVDqC2+kDPCnfbrJDn8M4+UfHRLATLxpOFD5/KnhB0AD83dwPZl02gFkkF4JryHRkZNTF5s1T4HQeQO/evXH22Zw4nZ2djfnz58NmS0SHDi/BYvkuxDqshdtdD063rrqowYynW/AiBFs2v/gi9DLGFdm4cSzdRIIhpi1p4ALwwPf00wyySouCAmDBAp6catViW2vjyNxgs7Oz8ffff8PhcOCQjybDUPr369cPzZo1k1zbAfBgtwD+B6ceYHeQxNUwUPhcGzhiINzP1gp2BIUTWP8CQHJOljQbEd67wmAW6BPjw3HwHPEV/IdtP4wgF5w6gIagiiSEWDQ5mRmRBQv877fbWYLct48iWjOWL6cWq29flqQKsx3Z4KfgAMdTAgBsNljvuANdu3aFzWZD540bod8VgZeOxcIAafhwOtkGBsN798oPFW3Xjq660eJ2s2X8vfe8JTLj93/jjcDnn5u2gAMXgi39obISGoAEeD/woDsChn4HQzxuhgX8Tq6P4rkrQUF4BoprzHQAl4LDED1gdJ1ftFxeHhPIDkdt7Np1N4SgDULbtm1xX7HS+28wz0BZQR3PV1G8jsqDCl5Ot+Bl+nSKWGVZujS0f0UgGzYAZ0mUAyJJxZ99trcdPJYIwVbzN94AfFpPYbVycvUHH6Cob9mEgwcP4rPPPgNAi+1OnToVWWzHyV7BAqBO5Vyw5BOY1tZB4evvkA9gJsP8KtIC4G+EFyxmg+qLKOb0hOQTADLTkM8CPWbCBcNG2sX3itbQ2bQA3zOJ0tfOncCqVQw6EhP5XTa+q/ffz+xC4HfXEHm//Tbwwgs00rvgAhSAUmUHWCzzzaG1A2DXNHTfsQMJhir74EG270cS9BsT0IcMoVjYV6S5ahUDKRkSEiLr5ApFZiZLSAcOUONy3XWhW8f92AwG2mZooF/REyEeXwSgv+TOhsIKBhaRlJ53g8qkbJhPgu4M/i4XQYjp+PHHw9i6NQEFBWcUriMerVu3hs1mCzH5/XpQx2OmnakG6tgq/lDZaFGal9ONsWPlhjsCPJG//7588LJxo9xykcTApeWkO3Jk8M4Ql4tD6davZ8q9rvcqz+12Y8eOHXA4HKhZsyauvZatt82bN4fNZkObNm3Qs2fPEhg/DUbwwAXgwUqAdfN/IFeXvxes849H8a4jvfDvr2DeaVEDnEb7LswPzrLIrGcPmGo3ww2gNoBR8M55aQG+n3cCkOzM6dgxeIlS0xgcnHMODel27vQ+duaZdMW95RYKbz/5BA6LBVs9nvDCW02jX5OR2WzRgvOJZs+W/84bZa5JkzgPyTDRAxg8yKLr7KyrV48lI6mAIwi1avHCaOVKWiWMHcv7+/Wj9iakHm0RwnfFBS4bKniJYHp3SGSDlmwA0wH8CWA1gCyY2QkIAaSm7kLTprcC2ARNexk5OdNQUJCChg0bFungwjvehstO+ZIPZhtj6LReiVGZl8qOYesfCRYLPSxkMggTJ8ql12WxWoF77uF6AeDYMR6o1xemdc86i1edkb6mv/7iATUcug48+STEu+9i//79cDgcSEpKQk7hFWp8fDyee+65yD02QrIV8sLYaZC36xcAZgB4D950uAbgOtDoTjaLk1f4nMWIzPMlFMsktr0ewNmS67NA7qBeQoRgp1thZ5ro1AmHDx+Gw+HA5s2bkfHFF6wBgMUNO0IIb+PiKGp/803vfQcOMEBKTY08aG/QgNmb+MKg1uNhILZ3r9zFQlwcgyEhGER98YV05rGIggJ2GE6b5u+fY/x/6FCKjYv9Zv4LitVlPr+rwcxDML6DuSYmHDroCL3CZLkfwIxmBmSCrmPHWEl3OoGTJ4Gnn7agbt0XAbyJgwcPQgiBFi1ayBkMogHC69N8WQLaE1RNVObldCIrK/LneDxMB4cV2xUiO2NH17m+EyfMnTmNbomxY5mW9xVVzprFq9633/ZOnZZh/Hip2S5rJkzAyqZNccrHo79WrVqw2Wyw2Wwxnrr6K+SuPnXQYlw2eNEADCy8HQQFkU3Ag2AkxINCkxfAk8epCJ/vS1cUGrCYEElQWkbpcU0DEhNx8uRJCrMXLPB3vD1xAj0Bc+Gt282Aw5eWLdkhNGAAA6RIOHGCLdTXXce/LRbqxZ56Su75vlOlZ8/mDLGVK4vPFgvHk08yawn4/7aM/0+cyIDovfcCntgZcoGLFWy3D8Xl4Pc0L8wy4XADeNxkmV8B3Obzd/Dfa0YGxz05HP7WRNWqAUeOeFC37gQA/0aLUDO3QpIItpGbBaRWlLxLsOqggpfKTuPG/PX4uqGZUa2afAq6Z0/W2VevDu9K6nbzADZ0aGj9i8UC3HYbW1k//DB0cOLxAM88w2BE1sp/wYKggUsGWGAwvujZ2dk4lZyMah07okePHrDZbGjfvn0pGUBlQy54cSMywytfWhTeIuU4mKr/FsFLWpGgAfgAcun5tmDr53qEf18MgWLpkp2djS1btsDhcGDfviLpLaxWKx1v27RBpzfekDtQejzMcCxcyFtGBi8upk/3DyQi4cgR/78fe4wi4u++49+yiXO3m8HT2LHeoZVm/PMPsyrhtiEEtWQvvBDgtHsdGKiaeRy5QHF5KOqD34OJiDwLZwEt+cNlbgSA4T7/D87OnTRKNt4KiwXo1IlODt26GUnsE+DvKhLH4V/AEpVM4HIb2OGkAFTwUvmpXp0BgXF1JMPtt0fmjDl+PAOY/PzQAczIkfRVqV8fuPtuHrgtFv7aDTOte+7hMLvMTODFF823++KLTFmHC7T27mW2Js1rr58HFmwcoOzuDgDdCx87A0Cj889H10GDIhTeRkMbyAUGVsibz8WCEwDOA1uvS1qWsYLdQ1dG8JwXAdwa5nENPPE8VoL9Ck1BQQG2b98Oh8OBHTt2wF34ndY0De3bt4fNZkP37t2RkJDAzILs3K0GDZipPCZjSihJYHZU171+LWPHcqCrLB4P7RRGjpT7/U+ZIuev5PGwrPT00z53xoGt8OFanC3gr9NM2Pse2IafhOLfVwt44hfwiryNZe4BMAHhT3N/gr8DL8bkd4CyI4C6a6sVaNaMDWs9e4ayuInklLoWwE0w/w1aQEfsf0ew7qqPCl6qAg88EFnwEqmG5Ywz6Hp79930aLFaeVBzudjV8Mor3mDk+uuZU50+nVefeXm8RHngAaBrVy4zebJcJ0RuLl/Xww8Xfyw9nev87jvAYqHwFgxYkuEfMhyEN3ipp2mod8UV8p4XJeIWAI/CPKviAhBDXZEpr6DkgUscaM4yDT4+sZLcAhqOjYK/9w3AQ5IGBkSynjbmeDwe7NmzBw6HA1u3bkVenrcM0axZM9jtdiQmJhavsx875u0AMsPHZTkm1KxJX6YTJ7gf9esz06rrzEg+/jgHR546JS/AP3yYbeLB51T4s3u3XPCi6yHash8EzXteAD9T4z00jOZuBjMqZtQByyr/BvAZWCY1uBT8LtWB/3iAgZDzRHECsEAID/bvp4YlKYlTSpo18wYv1aoxNgut29fAUlkkpc7X4Q28wlEP1KV1jmDdVR8VvFQFzjtPbhgdwOVkD3S+9OlD74w//gAWL2YWplMn1vIDD/g1azKweCBEOtjh4H6YpdKtVi4bSG4uvVvWrQOEQLbbjY/gHyI0gldYWXQ40XWeDFrLzhEqKbUBPAceXEOhg0HAGWWxQ+DBXSYFbwFbM3ML/z4fTMF3A9/RSyDd8ROUV8EW8nGgz4Uo3N7dAJ6GXJtteIQQ/sLbDG9beL169WCz2WC329E4nAdQgwaRTTyPFRYLcO21zJLOn++tV1xwAfDss/RasVjY/h1pSUr29cjOWhIizLLPgmWbT0GxaQH42T6CyEZK1AZFwP8Gu9XyAHQAm9QNIv/OHDuWDYfDUyS8NahVi1Y5brfXNzB8w6EA0BO8WIkHfyvXgb/vYBwBdW4yZb/6AHqFeCwbFMpnAmgJipOjnDVWyVDBS1UgPp4lmalTwx+YdB0YPDj6rIOm0bnzsuhGu/vtRwmWPTp2LA6vXl10qKoBXptYwMOXHbz28vsJaxoP9q+9Fs0el4BXwQOVkb42Akwj43A+2DkUCTsAfAxmPdJAw7Z7wROCmVPvWgAy/h8esHa/DcyylMah4srCWy548K1buK2SYQhvHQ4HjvmUcKpXr46ePXvCbrejdevWcp0gN9wgf2EQKzSNl/zffsvvv6/mZNUqzh569VW2QgP8PXfsCOzaZa6BqVmTzrsyXH01tWlmuFxcNiRtwRJSLKgOOWG4HEuWUIQLMLvSvTvLQu3bRzO/9Ud4S1fvg8HEzBD7ux/yHX77gtyXA2YuJ8Dfq6kj6Dx9j899hkvwdFCD1BQ8XgxC5FnTioNqla4qOJ1sM3a5gh/ANI2/zg0bOI8l2m0YbaPx8bQdHzw48vbLGTNoGifDN98AAwciIyMDmzdvhuPvv3HopZdgPXECz4L+nADzCbXAw0YxNI2XTd9+C1wjM0slFhwC8AXo4eABc0EZ4HA5NxhiPQa63EbS4fQ9mBL3wD97ooOZi9kIrz+ZB7qGytAMfB0Vn+zsbCQlJcHhcGC/MXcIFN527doVdrsdnTp1iq6b7MEHga++io3DtBnVqnHo4vvvmwcic+YwuAKof3nmmfDPsVq965bB7WZQ9M8/oS+KdJ3LbNsW+fyxMsSY/O5wOHDNNdcUZdtSUlKwdu2VsNv3omtXEeNqsgUMxpeieJZJ1sQP4JHNN0DJBXAF6AAc+J3UwKDoTXAg2J+gCV6Wz7LG59QAwHxUpMGPymH3dAxeAE6CvfVWBjC+Bxtd59XZDz9Ed/LOy6Nwdvp071WocaCKj+eBXTYYAVhyatGCtfxQXz9NQ169etj6229wbNuG3bt3QwgB5OXB8vbb6Ay6Q5hWmC+4ALjjDoqJfczpSo9MAPeBQYbvazMyLU+BAsRoupvWg6UWw9wuEA1MWf+N0O2nOyBXO9dBz5YlEe9lbDBeX+gTYkFBAZKTk+F0OpGSkgJPYXBhCG/tdju6d++OeMMnJVqysznRfEWhV4jvd1ZWDyPL6tUMRL77Lny2x2IBzj+fbtkABfJ9+lBpGux5hpXBxo3ymReATtgXXxxcrG9M1V62jLq4CoavAWVycjJche/LhRdeiMv9hmCuA0cZFCD2vkKhxhO4QJG+2cWBFdSIzfS57zVQL2MWTH8HZlfyQiyrg+U4JyrKzCQVvJyuwQvA7oMJE1hCOnmSNftBg4BHHgHaygz/C8KAAcxahLry1DReBV5/vfw658yh8ydQPIApDIxWvvUWFuTmFt3dunVr2Dt0QM/LLoO03+3Bg0Dz5vL7VSKmgm2f4drWNVAH8B/JdW4EMAl04F0PppvNWowfAh14Q3ExKIA0O/jNQLEZRKVKJvhax4NG/Dp4UnkCwA0ALGGFt82bNy8S3taOxI1Whrw8tg1/8IG3FaVuXWpSws0Ui4Trr6cfS0KCvI4lNdU7tys5mQNYCydZ+9GhAy9uunWLfL8cDg51XbDA+1vVNJaK3n03+kxuKZGdnY3Fixf7GVACQKNGjUJMfgfYzXQvKPc3SqSxLBX2BbMhvkHTGAAvw/x3uBT8HQAMsFrAvAXdCg4F243wr0MHp94HcSYvB1TwcjoHL7Fm3Tpe0YVD0yjeTU6OLHX800/AsGEQBw5gv67DIQTaezzo2bIl8PHHyLj0UkydOhWJiYneA44QtDoPdoAOpFEjdlfE1HguFNMhbzJnAYOQcP4s6eBkwnnw18rIUANep9BgLAO7NDwINQmXZa2/wFJUWXCwcJ9SCv829kuHEG4cPnwDHI6HsXnz1mLCW+OEFFZ4GyuEoGg9KYnBi6YxqxcLNmxgR16x2Tdh+PlnBiz79jGrGkr3cvHFwLx58iLcYOzaBWzaxNfcu3f0F0OlQG5uLlvbwSnv7777LnJzc/0MKJs3b26icxJgoPAnGCRYwVEb+1C8Ky5SjJbuT8EuLIAZkasLtxkqgHkRDHIM1oE+SbGkHqiLKf+ynwpeVPASOx58kPb9MoLFSAY+Ajh69CgcGzfC+e23OJXCk1bH3r0x6L//DR9wvP028NJL4TUIus5lDFFjqZIPBiLHJZfXwdTvyyEed4HdPH8h+gNmGsKL8eaA2plceAMFI0jqA5pnlZUhlgesu2+Gb5B28iRlVg6HYZ1yPoD+qF69elFAKy28jQVLl7JfdoPMbKYIeeUVTnEWgsGL7FDFxo39h5CGwmLxDnusIhTp4BwO5ObmYvjw4UXfhU2bNqF27doxMKD0gLqQrwFEYEcREg3MphrdQ7mg8PYT+OtaWoPHhwfhH1QsQ+nMNkoHS0jliwpeVPASO849l3V4GT79FHgonCkV21f/+usvOBwOHPLx2K5WrRp69OgBu92ODmYeFGlpzAbt2hVcb2C10pZ9/XqgYUO5fS8RsxBZeUUvXH5aiMdLOs/FAh4UzdSHJ8EyzVywZNMBwP3gFN/ScBwOZAfYLvp34X5QXpKUxIDFR3cLqxXo2rUa7PZV6NSpV4zHOEjw228s63g80Qt3jaDE9/lNmwKjRrGsawRhAwYAM2cGX0dJsFr5pjZrFvt1lxG+wtsiHRw4+f3RRx9Fo0hnokmTAXbf5ZotaIIGdvvYwXbqoeBFQjaY8UkH0BzUmwX7De6DeUehsZ1ITu15KLssa2jUbCNF7KgWwRc6hGuny+UqGnaoaRqSk5Nx6NAhWCwWdO7cGTabDV27dpV3vK1bl6Z5N9/MwMpq5RWrYZxns1FTUyaBCwBsAgOFSPw2wv30xiP6NLUVLL/8VLg/PRF6wnR90FPl6RCPlxaHQFHzfAAWFBR4kJzMgGXHDu+5XdPYsmq3s4U1Pj4fdFntXba7m5NDQbox5DBaVq2ihf7vv3NsQNu2LPkE/m5uvrl0ghePh0Lgx81m/ZQXHoQLmtetW4fffvutSHgLFOrg7PYSTn6XoTY4uHFCCdcjABwuvC0EDSM/BX8PMs0UbcCg50+YHx+aF24n3HfW0JWVf+ASKSp4UYTn0kvZZSFztXmBd6Kw2+1GSkpKUSfI8OHDUatwINx5552HxMRE9OjRI/oDTvPmPBmsWcN26mPHKE6+8052YZRp22akWQo3wk+G/RvRl4tc4EHxd5/7+oIC4dJIN0fKUQDnwePZh927AYfDg61b/UdzNW/OgCUxMXAyhA4ejMuYmTPpYhsNxpyv//6XQTVAT6ZwnHdedNsyQ9cp8K1QbAPwIbyeRbUB3A0hHsP+/XVQq1YtNCgcdtmoUSO4XC4T4W1p8ipYOko3W1AST+FtKPi6bwu/eBGjwAuUUNkVHSxjPw+K3cPhhne2U+VCBS+K8HTtah646Dpw8cUQnTtj3969cDqdxZT+KSkpOPPMMwEAXbqEauONEE0D+vblrVzpg8iyLglgy3MoSloSCTygrQW7HGaDrp/lgxAChw49A4djLzZvFsjM9D5Wrx7P7Xa7t3mmOB7QyK6M+f13uZZoTaMlgW8k1qkTjRHvkhVzgw7QF1zACdCx9JYJNvW6XPkeFKUDhtbp6NEMOByfwen8DKdO3Yy+fe/HNYX2Dm3btsXDDz+MZs2alZ3OCTmF+1YLzGSsBnA26JsSS54DW6JlLoQuAjsB7waDD+M7YgyBbQVewHQAMzSBtg2+PATOV6p8KM2LIjTZ2fRj8Rl6GBSrFQcWL8a369fjlM8Vau3atZGYmAi73V7GB5yyxvBsMEvRBtIWrKVng/X0oeDB5DGw7BPLVk0NPAAfAoe8lTZHwXks2Th5sgGczjpwOL7FsWOfFC1RvToH3NntPF+bfz10sEurrFrfC7ntNnokmR0q4+Jo3X/hhSwLtWlDbVY03/tffwWui3GgqWm0UmhTlkNAQ/E3GAS4kZEh4HRSnO0jg0N8vIazzvoAV15Z1mUuN5gJeh8cRQDw9zkM/G3GgwMl5xc+JjM5XoaF8G+lNuMAaIT5LXgcaQNq1u6Ed3SHG8DbAMbCv6GgOZiZeRIVocvIQGleFLHhm29CBi7p4LVHcwBwudCgfn1kZGQgPj4e3bt3h91uR7t27Uqo9K8sWMGBcTcgMqHcXp//7wONp94D8AZoNR5LBHiA+wbeVs3S4ASAp5GdPQ1JSW4f4W0NADmFwlsGLJ06RdLFroMi5jIOXADvjpp13BUUUJwTCxfna6+lE+6TT8ZmPIGuU0tTIQIXgCdTZuO++MJ7mLFYgM6dmYXr2tWCuLiVAEojeBEA/gDF8WlgcHIP6Hp7G3jx4HvsSgV/l5+Dxo2/gcHDj+B3vgnoWButL5IGltAiCV5agiWkUUEeKwBfw9/g65gIZnxPFe7r+ajsp3+VeVGE5tZbgR9/LLrizAWwFZzcvAf86TwA8Irugw+w74Yb0Lx5c3nhbZXjZ/AdOQIKeAMt/GWwgJmRqxA+3RsNFjBF/H0M1+mloCAVycl94XDsxY4dIozwNtI166Dw+E/Qk6KM2b7dOxE9HLVr01colsLRtWs5X+i77ygcNjQ0kWCxAL160Z+mTFymg2M43iYnb8b//d8AWCwMyBYsoG2TzcZMnP/bZwUvlUoyBDSQnQBuBMXfVvA3poGZzlagIWQodDBj6mtm58snYHZGR+SZ088Q/YXFKgAfgb5QWeBxxw1/w702YKbmiii3UfqozIsiNmRlwS0EUsCAZTv8f44WML6Ps1iA7Gy0qTBXdeXF/4EHvp/A2vgG+AtnZfCAZaROAF4Apy7nIbqDYbB1S/qHyK7R48Hu3bsLHW/fRn7+XhgBV2jhbSQ0Aif1PgeWvcqBLl04w2vq1PAalFdfjW3gArDsNGUKbx4Pgw9fsZAZLVsCjz0GDB8emfldjBBCYP/+/XA4HD46uGz07OlCx45c5oorwlXWXGBmo2WM9ugQ2IZsONQG/qbMzC/dAHaBv/Gbgzw+DBTIfwiWcyLRxkQjqBdgx9KbCG5m6fv3frCj6VeEn39WOVDBiyI07dvjR4sFm30O2I1BhwIbfK6B3W7Oj1eAP6mbC2+3IXK/BYAHyImghuYFMLX9D1iDP1XCfetYgucTCm8PweFwYPPmzcjMzAQDrPWoV0/AbudVdMkMb8eAV8edEItJ0yXm00+Z+Zg1i5kM4zdh/P+llzgYsTSxWPimygYvP/3E8lM5lG7T0tKwbt06OJ3OIDq4s1C//n+L7jOXBMUyg/4fUI9VErdcHSy/BgteALbyTyy8HQIzHmYW/RcBkMjuFeNzMHCByTYAHoc8oC5mD0reGFC+qOBFUURqaiqcTifOOuss1KtXDxg6FN0mTMBeMFixgXOGix1r6tb1TrdV+ODrXhspRwqfWw+FxTmwZv0SohcHusADVyiOggflvWCa/hqwNs5P/OTJk3A4HHA6nTh2zDtbpUaNGujZ0wq73Y1WrWLRpX4OgBGoUN4T1aoB55xD4a6v/sTjYR1MTnFccgYPphOvTBfSkCE01zv77FLfLYBBrSHKz8rKwrJlywAghA7uWlDwGi6I0MGW4Fg5v+aCZZOSDl90Q75lvzlYznkkxOM6GJxF4x/jBnVykSDAC6HfUJ6dh7FABS+nOenp6UUW24cP8wcZFxeHiy66COjTBz2uvBI9Fi6EJdzBcsSIaIQMpwGdEflcIoMaKB4mGgMXDyHyA7AOlrXOCPKYC+w8+BAMjHTwIPcWsrJ6ICnpFTidWdjvY3lrtVrRrVs32Gw2dOrUCbo+L8L9CUVL8MBaGLjk5jJg2L6dAcSll9L1uaw7195/n51EwcjLo0Ou1QrcHy44jAEPPUTPmECn3mCcOkUTvE2bSi0zmpubW+R4W79+fdxQeBHTvHlznH322Wjfvj26dOkSRAc3AixfhMNduFys2Ac6SZcUC4BIDDAfBgOU58HAwZhzJMAS1mcIPQU+HMtgXuYKRhyokancwYsS7J4uLF0KjB8PLFyIgrw8bG7TBo5+/bCneXOIQodPXdfRqVMnnHPOOehoFKTT02mLvnSpv9eFb+ocYBfD448Dw4YBtcpJm1Dh2AzmqyLFAg55nBrksZ1gvXoXvC68xok8Hry69A2YjP9fDZafAnUPAnT3nAIjS1RQAGzbxtbVHTs0eDzVADwETWuIDh06wG63o1u3boj3C1i3AegexWsNxAkgkaLU8eOBl19mK0pcHL9vbjdrUlOnUoRaFpw6RQGPz4TzoNSty17fkgw/lGHJErZR5+SYi3etVuDRRxl8xQjDgNLhcGD79u1Fjrfx8fF4/vnnIxjdMAbAv1DcTdr4+zUE76SJlu2IrjQTjOnwetTI4gawCPytVAPnl0Ux5buIaWCHVKTEgZOkx5gtWOao2UYqePEiBPDUUxAffACtsOUyH8C7moZ8IYDGjdFm5EjYL7wwtOOt203fiU8+4VXcsWM8wwVisVCd+ccfFcwMqzwZCM4+irTUsxJAvxCPFYCGc1PAds2GoO/EQPDq8hOwDbQAVCgNg9eRM5DlAC6Ex8NRUU4nijnetmihwWa7CImJP6F2WOVtPwBrEH1ZawTYKg5gzBjgX/8KvpiuAwkJdFi2RRMcRshHH1HwKnOonDw5dlOmw7F9O1+77wcVipo1gRMnIhv1EYKlS5di1apVfgaUjRs3LprcHLnj7U+gDmW5z339QIF2KE1JtOwAs6ElQQeL57tQ/mXNuaAuLBqmgRdIFQsVvKjgBQBr0PteegmOMWNwDJzMYZy+/gCvyW2ahnrdu/OsJSPsu/hijgsI5Taq68BVVwG//BKLl1AFyAWdMH9AZOLdSA2rIkcIgYMHb4HTORebN3v8dKD163sdbznrzgJ2K7QIs8bvQJ8LIyUeiF54ywe/fUZ7ajyAF0H79UIjtY4dzaeG9+sHFOoqYs6+fRTpfv01synBgvVA4uKAJ54A3nuvdPbJlxMnIpvddeAADScjJDU1FQ0aNCiaTbZkyRIsWbKkFAwoD4IdQA0Ru86iQFIQWXkm8PdqBfU3fyK6jGqsyQCHPEbaQVgP1OxUvFK/apU+zUlNTaWwcuNGpP3vf0X3HwGvGQBehwPg1eSWLRQjTp1KI45QbNjA8lE4jCxNcrKcN0aVJwE8qf8F1phPSj5vT2ntEE6cOAGn0wmHYxOOH/8DRqakRg2v421x4a0HwEYED16WgB0PC0Ns0SgD9AJ1DkmFy+aB3UQD4eff8tlnPDLVADtNg8UNbjewfDm/uz16SLzqCPjlF3ocuVzmIwECKavOnkg1ZhEsH6iDu/POO9G98LjQu3dvtGnTphQMKFug+HdrAyh2/RW8COgI6kfuRnQu0S3BE3aexLJ1wN7KnYV/1wKF8yMAtI5i26VBbdAXZjwi08D9DxUxcIkUFbxUIVJSUrBo0aIi4S22bUN8Xh66g8WDJuGevGEDZwQtX86zVzBmzJBz+9R1DrN79dXIX0SVRANT4T3hnx4PR2z9QrKyspCUlASHYyH++WcuOAk7D1Yr0K0bP/KOHc0cb4NlU6aAOb1QJ7J6YG3/AVB3o4NXi5eFWN4JnPcl8KqHcZ8bzI6PBfWJgaxcGdvgxekEbrmFmZZIk9IFBRQTlwU1a9IDZv368Bkqi4Xvj0kZ11d4u2fPHhgJeV3Xcfy411a+Tp06ZZTRfh3MxPnqtzaCXTv/AUdPROorVQPAYABfIvzJXgMtCkaCl3z54He2Ip7wx4Cl2nDlWkMgHA/6Rt1XJntW2qjgpRKTm5sLj8fjp1M5fPhwkfDWXlCALpB0yRCCs4wGDACSkoJ3c/gcxMJisVAXY4bHA8ybR2GmMYTuzDNpqnXLLQyUqhT/B2pZzDQhVsSiZFRQUIBt27bB4XBg586d8Hi2A5gBTRPo0MEDu52Bi9xFuQaGwL5sA+cxCYQ+GZwCAxWZzobCQX1Xu7xHJqNJ6mZQY/i/gKdEmhkx4913+T2MNHDRNHqwlKVlwPDhwKBB4ZfxeICnngrbnZWZmYlx48YVCW8BoE2bNrDb7SWb/B41E8HABfDv1DM+k72gS6wTketOngeHGhoutIEYmpaHwe98syDLyJILGtXNA0s77cHfS2IJ1hlIDTCQewfMwPged7uCAV5j0DjvXpSLQ3UpUdXODlUel8uFHTt2FCn9zz33XPTv3x8A0KFDB9xwww3o1q0bDziTJkW2crebas3lyzlcLhDZGrvHYwglQlNQwEDphx/8u5hWrGBp6sILmb6P3pq1AjIUPCgXILT2RQd1I+HyZLnggbV41OHxeLBr1y44nU5s3boV+UWCzhNo0WImbDZ3FI63Opg1CbzS/RjmQ900MG3yGMJPzN0Kdm+4ix+VjOj7PQBbwE5qg1BZwmjIyQGmT498jpARGHz+OXUvZcVddwE//0zjvGDBlqaxU3DIkKK7hBDYt28fjh49irML/V9q1aqFJk2aoKCgAHa7HTabjT5P5YIHwGiTZVxg59CPiHyWUEew4+da0NfIGKpolDbbgv4zkbRCGwiwPDy+cBuphes2Mh86+Fu4BcxYxsrxuDrYmfUvsMMxF0A7hNenVX5U8FIJMA44hsV2rk/L5iGfMay6rqN3797eJ159deRD3axWYP784MHLgAH0mDDD7QbuNDmojBjBuUnG8r7PBZiJuftuYO5cuf2uFDQG258Hgif1wAyMDl6djQvy3Cww3f0h2DUBsDV5OIQYjIMHqWPxOt6S+vXrF56QZpjGk8HRwfrN20Eemwk5V8/d4EE1XKDxoc/yITDsaH4DT8zdu8e2THP8uJww18D4bTVtSp3O9dfHbl+EYGt2QkLorInFAkybxvdh7Fj/Iap16lA8PGoUoOteHZzTibS0NFitViQmJiIhIQEAMGjQICQkJFSAye8r4D+wNBxPgLXESwD0KLzJcHbhNmYV3o6BJ/pBAK5HdI7Om8FAakuQx4zfufFbmQO6b/+C8AF9pFQD3X19OQ5mshaDWp9uoF9UGdkMlCKq26iCI4TA559/joMHDxbdV7t2bdhsNtjtdjRt2jT8Aefuu6k/kU2vx8UxHf3uu8Efv+gitqiGCoh0HbjySop2Q5GaypkrMkHV5s1UkVYpFoFOuat97ksAD55jUPyq7zgosd5c+Dd/sidOUKLhcLTF8eMDYWRi6HjbE3a7Ha1atSr8ftSH/GiBwGFu34MH/EBqgnOYZFgGGnKFog7YPSFBMwBHLSw5XhnDGS0nT0bW4v/888B559FzJVYlzi1bgA8+oHg+O5vtzbffzunSffqEfl5uLrBwIXD0KDOkV1yBDJerUJjtNaAE/r+9Mw9vqsz++CdJN/ayl6Wy700AFxBERUFR1BH3dUaUkXFBxXVgfi7jNo674wrjxjiACyo4o46KKIw4CIpiAhSEssm+t1CgbZr398fJTdI2y71p0jbl/TxPH2h6k7w3y73nnvM93yN+LH379uW0006rxWOkD8m2FSGBQyf/7TMRQW48HItkIBIYRMakDLEieD2O+35BcockvoUIer0EAyhDQ3Qp8A/kuFN30N1GKUxRURGrVq3ihBNOwGazYbPZ6NChA3v27KFv3764XC46depkXun/4ovizZKfb66O7/USmJgWjlmzJIBZu7aqUNAQB06fHv053nnHnL15Wpr4ZjzxROxtU4oR/p8VSDdDBnAikevRxhWdorhYJElut0ziFTaRnv5vevX6My6Xi27dulUyCivH2kykc5ETymiCIttwtMF8V1Q07YAX04ELwDENYerMxAYuIP3hQ4fC4sXRg32HA04/HR5/PLHP/+GHwYylEdiXlsrFx8yZ4rP0hz+Ev29WFpx7boWbli9axBdffOFfsl8H53JFcLytKXxIufEZJCNnMAwJ6KtjcPkT8BvE5yiSHX+iuRl4I477pSGvQ7KCl9mIOLkyxgXj+8h7MStJz598dOalJjl4UGrU27dDdrYcbFq14siRI6xcuRKPxxNQ+l933XWBKc2HDh0iPT09/gNOYaFcJf7977G3zcwMri/a4738sgRGRkbIisPuH/8oae5YKXqHQw7mM2bEXne9ZRmlpQNZvVoCloKCYNxns0HXroQIb9chZadwNMS8H8SvQEcT2z2COKBGC0TtwAmIFiAaFrI4h9ZCw+oPmAzLrFlw6aWxt/v4Y8m4JIoVK2DAAAmaIh2SbTYxgDz1VPm9sBD27cPbpAlrd+3C7XbTp08fnH7jvgMHDvD+++/jdDprSXhbGR+SVXmHqh4qhubkciTTZ6F8VwU7Euwn26qhuo69nakYwCUKH2JBsIHYvlLfEz6rWjvozEtdw+uV2vPf/gbFxWC34/X5WJOWhmfYMH45+WS8IZmUTp06ERpTVvug06yZGG6Vl8Mbb0TPwNxzT/TAxXi8yZMlCNm7Vw6qLVqYnzfTuLG5zIvNdtSOGjCEt273n1m1yk5pafD1at9eApa8vNCXx4FYlkdwpeVi/9+jlerswEDMBS4gKemnkKxJpPfTF2VNoVyOpLljrW9I8gIXgIsvlm63l16Sz1/od8X4/e67Exu4gJSKIPp30+EQzZnXi3rySTZ9/jluJH93pHt3GDqUI0eOBIKXJk2acO21dakt9hUkcIGqJ1Uj0/UO1cfuf67nEJ3H+8hAxgIkSP4N0k3UtZrP8yrxzy6D5J1+/4u5oCgNmatUd4IXK+jgJdn4fHD11RU7Anw+tgLver2wYAH88gtt7r4b1/HHk5eXlzyl/yuvSG18xoyKQl7j/xMmwJ//bP7x7PbYXUXh+M1vzHnAeL0wZoz1x09RxPF2ayXh7QZA0by5BCxOZ6SX3I50N0TiViBGOQ8f0o9slraIevYsZOBdaKnFOKg/i5wsYnEbMM3E+ioPR/QhwVMWCfHhsNnghRckC/LEE7BmTfBvvXrBpEmJt/9XSjQusTRgXi/qk0/46pNPcNtshMhzaVJQgHPtWlw9qmt/nywUUiqy4jIdL17E0fouYCSwmmBXEYjT7lPIJOfrozxOOaJL+dl//xOBkwl22OVTvcDl1DjvG4t8zL3OXiT0tYpCsqQZxCduTgw1Ygf50ksv0blzZ7Kyshg8eDBLliyJuv2sWbPo3bs3WVlZOJ1OPo0m/qzrzJ7Nznff5UulWBBycy4ihTxJKW7Yto0bDx1i2LBhyW1RTE+Xg+SiRdJm2beviGHHjRNdzAsv1IxDaP/+MGxYdJGjwwFdusiogXrO3r17WbBgAS+++CKvvvoq3333HQcPHqRhw4YMGtSIceMUt94qA5Ujx4o+IJrY9HikhROqaliM93wiFYfNLQcmIB4RJwK3I6nyUE5EUvT/h+hk7Ijz55WIcdbEKGsKxYUEL3aqXlMZ6/0zMMb//3X+x26GaIUaIPqBT6j2ydFmg9//Xlyif/5ZSjUej4hpr7km8ROtDx+WnwiEFtNsyBzhQqXIRPJk1wC3K8WZQM5998V2wY4bH1Jm+BSZSmzFY2cV8p7VlEqhGAlcDIfc0Mxguf/38chspXDMQco6o4F7kezhqUhHk2E0mU5sq4BIeIGb4rxvLNIx/zpb8cnZiZSJ2yLapAzgJOKb3ZYAVJJ55513VEZGhnrjjTfUihUr1PXXX6+ys7PVjh07wm7/7bffKofDoZ544gm1cuVKde+996r09HTl8XhMPV9hYaECVGFhYSJ3wzKFhYVq4cKF6uXu3dUDNpt6ANTjoLxynVX1p317pbzeWl1zjbJxo+yzw1H1tXA4lGrWTKmff67tVSaNgwcPqsWLF6tXX31VPfDAA4GfRx55RL3//vtq9erVyuvdpZRqoJTC5M9KE8/8pVJqZKX7HaeUmqmU8vm38SqlbvD/LS1kO+P/94Rs61NKzVdKvaSUmqqUWh7nK2KwSCl1kVLKHvK8pyulPg7Z5r9KqUaV1oZSyuH/9/aQ9aUA5eVKpadX+A4cBrUU1DRQD4I6EPK3AlArQJWGO46kpSl1/vkJXqBPKfV3pVQXVfH1bq+UekopVW7iMb5T0T+70X7sFre3KaU6mdzOpSp+VtYrpS6LsZZ0pdQCpdSz/seIZ59uN/Gaxctqk2uwK6X+bPIxVyql2qjgd6zyd+5yJceN6mHl/J10we7gwYM54YQTePHFFwGp5efm5nLLLbcwadKkKttfdtllFBcX8/HHHwduO/HEExkwYABTpkyJ+Xy1LdhduXIlS5YsYePGjSifDx56CAcyy9SFyLsiOrCvXRu906e67N8vis/0dEmBW52Pkmi2bYMHH5SOIsO7Ji1NRLp//jN0716ry0s0paXFrF49C7fbQ0HBAXy+doB0lHXr1g2n00nv3r3JDLwvzyJlHDNf0dMQLwez7PT/ZFNV43Kn/7mjPe9DyHX/7YjvTGia+iQkJV8dJ9GDwF6khTq70rq7I1fW0a72XkVGEqQIV1yBd9Ys1pSX40HyW6EFiYux8Gra7dIc0KBBAhamkPJLtJLPVYheKVrW9les2/mHkoHY9JvBhpjRrcNcRmAZ8pm6HtGFxcKOtHZ/j3x3jkTfvAKNkbEDk4k/a2OG0xHtS7TsmAOZQh/LzM6YQbYtyuPZkKzMA9aWWYk6I9gtLS1l6dKlTJ48OXCb3W5n5MiRLFq0KOx9Fi1axB133FHhtlGjRjFnzpyw25eUlFBSEhy0VVRUVP2FW8Dr9WK32wOty1u3bmXDhg0AdDrmGFxIotHUYcTMePt4WLMGHn5YWpSNDp/sbGm7nDxZBLg1zYYN0v20cqWUkXJzRQszerS1abl1HBHersHtfphVq+ZQWloc+FuHDq1wOq8nL28yjRuHs7ydhfn0r1VhZhvCu/j+gAgdYz3vw0hHiHEADt3+O2SW0/+If/puY8K3zb5O7MDFhpjqjSO5J4jEsfGyy3j7nXcqnAZbIxc8Tiyauvt8cOBAgoKX/xCcyRDpMzEDKdGMjfI4ucApiAldPCMdfo+0FsfCAbRCplSbLWWsRYLwBbE29ONDBLE/AlMJ35IcSmek/HQi4q6bKGfdaExByr0HiPx6P4c5F973kWJlNBRywXMPJs921Sapwcvu3bspLy+nbdu2FW5v27Ytq1atCnuf7du3h90+1GQplMcee4wHH4xlJ51YlFJs3LgRt9vNypUrueiii+jhF8oNGDCArKysoPD2kUfkRB2LrCw5gSeapUvFk+LQoYqCwP37xYjuo49kHECyAobycrkSNHQCSsFf/gL33Se3G34aS5fC++/D9ddLG3YKzzVSfuGt2+1m+XI3xcX/QER00pTldIr4tmXLPYgpXTkym6QyZidQJ4IvkdZnswdwo5U13AmtHGnLHgssrfbKKvIWsU9KCtE6/ERVx9G6wc6dOykpKSHX/51vM2oUZeeeS5OPP8Zpt+Py+WiLP/QyxmdU7n6KRFpaAi9InifYxhwJO/A3ogcvINqReDVs1yCak9uAcOcCI0jNQoYpWuEH4GuL90lDtC8PIkLxG6n6fW2OOEfHa7pXHXoiFxHXIwaRNoKu3u2Q402MuVgBplNR8ByJQkTgfH4c67VO6p4h/EyePLlCpqaoqChwQEg0O3bswOPxBCy2DX755ZdA8NKqVSuGDQtxEr3pJulQiNYanJYmHUmJbgsuKxPL8uLi8KZb5eWSlbn+ejHIShR79khWZcoU2LRJ9u/006Wbae1auPfe4PMbGIHVa69JOeuFF6o+bh1n7969AQv24CTe72nYMJ+8PAlYOnQI1XsaJ6InkCvXyoZV7ZECgpkryHbVWPnryEEukWLtcuTK9AcS24q5y8K20bqvap6ioqKA4+2OHTvo2LEjv/+9lLYaNGjA+Ndeo/Xy5diffho++ywYqAwdCnfeKeaPc+ZE70pKS4OLLkpQSdgLzCX258+HlF52IGLOSJyBZARuQAIiM506NmQMxgmItf2piEBUUbGM1RIprM038ZihGIMNzZycK6/LiwTpUwh/oVGElNwGIcKBmqYXUjpaibwupUhQM4oo4oUwbMf8a1Nz37mkBi+tWrXC4XCwY0fFSHjHjh3k5IR33MzJybG0fWZmZohGIDkcPnyYadOmVViXYbFtON5GxMgkbN4c/qDjcEDDhhLgJJrZs0VXEo3ycjkgbtokRnPVZc0aaYvZti0YsHm9MG8efPFF7MF1SonHxt13J2Y9Saa4uJjly5fj8XjYHLC83U56+hJ6916By1VK167yNkcmDbnCrRy8XIM5HUtbZL5LPKxEui4U8aXzo2FHDpqJDF5aIOMSzG5buxgGlG63W3Rw/oDE4XDQuHFjvF4vaf4sY9u2bWVO0ogR4p+0e7e4/rZuLQ/Wpg188EH0Jywvl7lhAL/8IgHP1q0y6+iCC6TLz3S31BGsndCLY2/CeKSk+DIShOwjeolSAX9BgoTTkSBJhfzNYC/WAxcHUo6agvVumTKgH1JuitTdVY4E22cj7dpWAoZEYmXuUzhaYb7Fvea+c0kNXjIyMjjuuOOYN28eY/x+HT6fj3nz5jFhwoSw9xkyZAjz5s1j4sSJgdvmzp3LkCFDkrnUChw5coTt27fTuXNnALKyslBK4XA46NGjR8BiO81MaSM7G+bPh7PPFot+IwVst8vJvWVLmQOUDKHu7NkVJzZHwmaTAYgR3hPTlJaKZfuOHVUzTcYazAy+s9vFTM+K50wNUlpayqpVq/B4PBQUFODz76sIbzfjdL5G794OMjPNBgNeRFtgXE0aXIqk2rcSPbCYRPxf5ZewftVpFjvmRZZmuQrR28R6bY+hLphvffTRR+Tn5wd+79SpE06nk379+tEgmialRYuqc5aGDJHM5O9/L9/r0IuhtDT5zr3+ulggXHyxBDoORzBYefZZqVl++KFJMXwjRG2z38S26UTPuoTiREzkXkGCjvMQfVRoecqBfBemImWIx5EyYDQzRCs4/Ot4xL8Oq2QjGp6xMZ67HClh/ptgm3+qcRlSVo5FQ+IvC1on6WWjO+64g2uuuYbjjz+eQYMG8dxzz1FcXBxwfvzd735Hhw4deOyxxwC47bbbOPXUU3n66ac555xzeOedd/jhhx/4uxlr+2rg9XpZs2YNbrebX375BYfDwV133UVGRgY2m40LL7yQZs2aRT/gRKJTJ/GJ+Owz8VnZulUOTBdfLEPXkpU5Kiw0N5DRbodECJ0//NCcvicWSonHRh3C5/NRUFCAx+Nh1apVlIaIqzt06IDT6SQvr5DGjc/232o1i1GOBDGhmaksJG1/GpKSDz1IGiZwExAdQLzMwrrRltmrMC+S6k8k1yMnsiMx1nAXNWRjBQR1cB6Ph2HDhtG8USNYuJC8LVvYs38/rjFjyBswoPo+TtddJwHIc8/JKIOyMslmXnopTJwo4vcRI2QqO1T9/ufnw0knicasYywnZRsien6O6J/nNMQfKB4hagtEk/EF0iH2CyL4HI281x2Qz/2LJC7ATkM0Ko8inkQDEG2Wlcd/Avgc82MMLkD261JkGvZxFp6rtrkCuUDaT+TPgR15TWvOET3pwctll13Grl27uP/++9m+fTsDBgzgs88+C4hyN23aVGHI4NChQ5k5cyb33nsvf/rTn+jRowdz5swhL686bZfhqSy8PXIkqPVv2bIlhYWFtPanbCOVrUzjcIileKJtxaPRoUNFJ91IlJdDu+poJvy89VYwo1Qd7HaZplvLVBTeLqe4OJgWb968OS6XC6fTSauAc9x5mK/lV6YV4d0qewEe5MA+BWltTEdKTLf6/61OR81Bi9s7kMNGSawNkX06N+ZW1miPDJ07n2DAZ2BkkK5DgrrkU0UH5/PR7F//4pQ5c2D37kDC3vbOO3DXXVLSqa4R5AkniEv2P/4herZGjYIC9xkz4JtvIt/X65WS1F/+IuXsmNyCWMhH6vCyIa/73RZ3IhQ74tJ8VoS/byF2t4tZHMhn49mQ224BzLompwNPI4HVE8QWM4dyGOnMegvJ9kQYslnnaIRkhkcg+xD6nTOOPSOQYLDmOKoHMy5atIjPP/888HvTpk1xOp24XK4qHU8pyTffyAToWGRlyTDG6nYoDBggjqSJ4M03YezYxDyWRfbs2RMQVu7duzdwe8OGDcnLy8PlctGhQwdsFbQD+xHRYDyBmwO5snnExLaVS0vVxfDDMMsQpIPiZeBNomc/jke6l5IxEHA5YvE+k+DV7/GI6+6VJLNFuqSkhB9++CEgvDXIzMig73/+w3ELF0aeDnXttVLaSbRLr4ExFTvWBUSDBlLebRKuRb8yixDdRuUZVnak0+ZDIgceiWA91Z9DFMrnQOhE8lLk5BvNNTgT8T+aiDSxg0yTHhfnGmxIKeb0OO9fGxQg37lpBL1teiAXUX8gEaMCrJy/j5rgpbCwEI/HQ7t27ejm15fs27ePqVOnVhDe2pJ1UKkNlJKD2Q8/RM6+2Gwijn08XKuuRU47TWY1VecjZbOJuHDbtgT5VJjDEN663W62bNkSuD09PZ3evXvjcrno2rUrjojK27XE11HgQFLXKzDnuZBo/gLcR2zflK5IxsPwbSlDrNP+FeV+duQk8QnJK+EcAnYjAVIcc7ZM4vP5AhnisrIynnzySUpLSyvq4L77jrRxJk5m770n5eJk0KBB0PAxFkuXwrFmW8n3IMHqP5ASZgtEf/R7qtfpZoYSJGA4UM3HcSBaqLVU/TweQATys6lYkPAC/ZEArXIAtQfZ93gmYDuQcvBcRIS8FgmQhiIXQXWZw8hnIAPZ/8SdM3Xw4t/59PR0Vq5cicfjCSj9e/XqxRVXXBHYvry8PMoJqR6wcyeMHAnLl8vvxtttCHkvv1x0OGlpciX26qtyZWhclV12mbR79zahXXjlFZnIa+YjFU5IbLPJz5w50uKdZKILb7vhcrno3bs3GaZKWLsIb/oWDRviBfE5tScu3YnoUoqInv7+GKhc8jzff3usbNMniIYhtQjVwe3fv5/x48cHLm4WLlxIgwYN6Nu3b1AHN3AguN3Rsx4Ohwhvo5V2qoOV4OXHH2XNKcEdSEdevB1xDuRk+zVi3haJXxBfk22Iu/OFSEAR6QR9A1LSjbdU3o+KwxHTkaDwCYIZnqMHHbw0a8Ybb7zB5s2bKQ85QXbu3JkBAwYwYMCA2ltgbXD4sLRMvvRSsOPp5JPhlltEg2OzwXffwVlniTNn6MHX6GJ44w0ZSheNAwekvbmoKPIB3G6XgGjDBhkQGUrfvvC3v0mwlSRiCW9dLhf9+vWjcVyeOychxlCxDmSZiHfFWORqLzuO50ok3yMZkiKqioLLkTLRzZXuswVxTY11+HAgHQifJGSlySaaDu6mm26iTZsIAeqePdYmrB86lJzM4skni1g3VtmoUSO5QGlUE26viWArMo5iN/EFCkORz3GiTQsPI4G5Ye5o9XQaTvzuQMYPfMfRFsDo4KVZMyZNmkRmZiZt27bF6XTidDppVhs2+MnG55MpsmvXStfS8OHWnXq3boU+fWQeSqSDns0GX30ljx+NhQtlEnRpadVSld0uPhOffSYHbo9HgiafTxzcTjwxKVoApRRbtmzB4/FUEd62aNEiILxtWW2X4Q+Bi0xs9z9EO1KX2IFcQb6KmFI1Qq46b0HS5pX5HPM6hxzkSrZus3z5cubOnVvBgNK0Dm7LFhPdOyE88wzcfns1VhuBd9+VbGo0HA648cYUNIJcjXTpmPGTAXgSKSWegGQ4kkUpon/5GzI9OxGkIWVZM7OW6g86eGnWjNmzZzNkyJD6IbyNxHvvibnd+vXB22w2mRH04ovmD6b33y/dB9Haqh0OacEMEThHJD8fHnus4iyl3FzJ9Nx6a40NhIwkvG3UqBH9+vWLILytLpORuTqVvVOMroS/IQK3VGcuFUWP0WgPbEQO8g2oK/OGCgsLsdvtNPGLVtesWcOMGTOqGFDazXQHlZSIp5PZkg2IaeMZlY0Jq4nXK55SX30V/kIkLU3M7pYuhep2UNYKuZjvPPo3ie92i4ZCLPL/gFzIxNN1GEoasq/1+BxWCR281OJU6RpjyhS5egpHWpq4ci5ZYi6A6dBBsi9m2LrVfFt1UZE4C2dmQpcu1W8RNcHBgwdZsWJFNYS3iWAW0k65OOS204E/Yv6EX9fZhQQlsQ7QduTqdxdycG+OuKxOoOo06+RT2fF26NChnOEPIHw+H6tXr6ZHjx7mDCgrc8MNoheLZU0AwdLt11Zn6pjg0CEYPx5mzpTvnN0uOjSvV9qsZ80S76mUpBNiF2CG2tJaLUWyPYk4tc5EfFaODnTwUt+Dl82boXPn6JmStDQRvZqZWeRwmPdmsdShUDMYwlu32826deuqKbxNJFsQ+/PW1M+rp8uQibOxPjvhslBNkFbR5Jt1VTagDNXBOZ1OLrrITKnPBGvWiF3AoUPm7/Prr9bKTVbYuFECGGM8wJgxErykNFcD7xI7aHYgWYtkZ5cU0jacRcWM4hTEtK2yD4xVN+vXEd+iowMr5++UH8x4VGLGbdjrlYnRmzfHPjg2bCh6FzOY8oVIPuXl5axbtw63282qVasoCxk7UH3hbaLo4P+pLyjgW+BnxLTqK8wdiCtvU460po5CPGYSeJHh9cK//w3TpsGmTaimTXmldWv2dO8ufkZAmzZtcLlcwcnviaJHDymrnnyy+fts25a84KVTJ5g8OTmPXWvchBi9RcOB6LWSGbgsQkrAHyKt0o0R8f2tyPDDGxDrhL9S0Vp/AHLaXYq5zqlE+tvUL3Twkop88YU5239DzHvlldG3u+ACePvt6Olum00OzqZmoiQHQ3jrdrtZsWJFEoW3mqp8hhh0JWpsQzky1+afVO1kipNNm9gxYgSr1q7lFLsdm8+HzWajq1KUZWTgfOghXGPHJlcHN2yYBPgHTHqS1Mcmgip4kZb6rxDPlh6Io61VawEQofs4RCAbrmiQhgTDCfCtisjfkO+CMaIDxKl6KvAaEtCMRozvRiB2BDuQrsJc5Lt0NrHphMxP0oRDBy+piBVRYEgrcERuvVW8XqKhlHRH1IKJ3549e3C73Xg8nirC27y8PJxOZxKEt5ogHyKdD4lGIW6d1QteCgsL8SxejOeqq9ixRyZOd/b56ASgFCOB0WVl2O6/XwaHJlvEf8klMioj1sVAz55yQVCv+S+i2dhK0IG1HBG234lYylvRnxnDGlshFv9lyGlMIYGEE3gH6JKAtYfjcyRwgaqlKy+ybxciDtDGhV4bKgZqZwInIhYF0S5CH6Ym53OlGjp4SUX69IEVK8wJA81kSo4/XibO3n571dlENpsELldeKSLAGqJuCG810pZq+PskQx73I+LaehmiGzDHkSNHWLFiBR6Phw0bNsD338Pu3TiQpH2oUXkmyGe4vBweekimrSeTW2+V8RbRUErmHNXrgPs7ZPaWcZwKdaL1IUZsB5Ghi1ZwIOWYe5BAZSPBYY6DqrFeM/yV6POMlP9vL1FxflIodiQTNRpYQtVp2j7Ehv+3iVlyPUULdlORr7+G02PMxLDZJHBZvdr8AfJf/5KW6cUhXTJdushB9qabkt4tFEl4a7fb6datG06ns5aEt0czryLdQckmD9EGmMuKbNq0iTfeeCPwe+fXXsO5ZQt9kdNYROx2EbAmO/sydap0H1V2kjYuBq65RgKceh285AEriR30Lie6D0sZkrmxIx1uibhgKUJKlrMQUX17JEi/EHHiDcc2zI/waI6URaNRjnRETQXykeD9LEToW98zcuHR3UapHrwUFYngcMoU8XDJyIDRo2HCBBlnr5S40C5YEF378sEHcOGF1p+/oECEhM2aQb9+SQ1aoglvO3bsiNPpJC8vj0Yp4wRa37gSeI/4bdnNkga4kFR68POmlGLDhg14PB4aNixi5MheQHOU6srMmW/TqVMnMaDMyTFfTl20SAwRk80XX4jf0fz5wdt69oQ774Trr6/HgcuXiHA138S2aYi4NZxh3k7gGeTkvt9/W3ukzHgrIpI1w1YkCP8EmYXVAhHMHiLocGt0AXVGPIxCM9bbEc+YfCJnU8JRji77WEMHL6kcvKxbJy62m/1GTMbbk5YmZaLJk+HRR0UQeOGFMG9e8G8Q9HWYMgXMDImrBbTwNpW4GNG8WD1MREutR+M/wFns2LEjoHMqKloMLKRBg63cdZckM0TbcDfSOmuTQLuoyNxT/PgKDLwhjrXFyebNwYuBHj3qcdAC8AFwKfJ5MfuZGURFTySQSdInI4FD5c+RDZnHtRAJRKLxD2R4pFHOiYUD6VJyI5mTy5FAxyqNqf4gyaMP3SqdqpSUSEZl27aqww2N4OSxx6QF8g9/gLlzZcDb3/8Oq1ZJK+ioUXJVVwfdM2MJb10uF+3bt9fC2zpFL+Tq0UogkobU62PoPiqhlI0ff3yaxYvXsXPnTv+t35CV9RV9+9pwuUKTgCuQjpWfgKfFqfajOeCNsc6WQL8XEBfUGvqcdeyYvHboOsU+JJi0EriEQwG/QTp0wr2fCsmCdAQeRNqnjcysD8mcTEGyeFvC3D8a5Uim5nTEEiAe0hANl4EbeBnJ/BwGuiGfvyuIUeTUREFnXuoSM2bA1VfH3q5jRxlsmAJi1YMHD7J8+XI8Hk8F4W1GRkYF4a0pC3aNCQ4iPhhvA3uQq8irkavheA6U65AUutnDhANoiAhxByEntMgcPixVUeOj/OWXPVm48AocDgc9e5bhcj1Mjx6SXIzM+7CgVey5Ww6kyeVhkCv9WOLOTUhb6yHgGGSq9h7g78hrvBcxILwGubo/uoboVeVZpIPIyiklDQk+/hZy21dIi7EZbEgWbj7yBp8f8v9klzojYUc+//0Rge9kKrZVGyWqHsA8pH1aAzrzkrq8+WbVbp9wbN4sGZdYB+taorS0lPz8fDweT1jhrcvlolevXlp4m3C+Q06wRsCgEMHkl8gB9AtERGmFrshV4lSin5QM7UALpJOiO3JSf57KJnVeL/zyC7jdYkp7+eXBjuGBA9Np3vw8+vbtS4MGl1PxoB8OB/AMnLIQJraF53ZE3mwAMMm4wU3k4GUHss//oqIeojHipuoL2ae9wL3AY8CnwLAoa63vfIr1jIsX0byEMovY77uBQgS/JyHC3nX+22sjcDE6hV5DApd/It87qLgvxmdnPdI2/TORRcKaSOjgpS7x66/mbfrNziKqIbTwtrYpQNpSD1PxBGJ8nnYCpwEerDuPvoCcGF4n/BVkR0RsewmSLjcyPDcj6fJSlJJkoccDK1dW1NauXx8MXlq2XEHLlt8gB/+Pie3gWw78D2x74JkucMwOiSN2hWySiVSYniZYXYjYsbILMULbRPB1NNYQyYXah7SUn4W8vsnyGClF9Efz/f/vhQSIdaVEfDiO+9wO9Kl02z6sWej7MCcOTiZ2xHjuHkSr4wMeiHEfLzKFeg6SGdVYQQcvdQkrbpt1wKY/VHi7fPlyDoXMdGnZsiVOp1MLb2uMJ5GsQKQrznLkpPAS/rqJBdKQq8mJSAZmGXLyPxlpo46U9u4OvEZx8e+YOrWinrZpU3A6weUK17V8u/++Vk5gRWA7BW7/HiaUS7JpCzJC6Uykc7UCQyM8zv8hgYvVK3cf8vq/gHTIxEMh8BZi7FaGnNSvR7JfXwBXAbsJHrZ9/vXeiURstV167Y6U48xkTNKQrMSfw/ytNdZnANUm+UiLf+iH7H9IZiUWDuS7pYMXq2jNS13i8cfhT3+KnX1p2BB27IBamtujhbd1jcNIucZMq3BLJLuQvPemsLCQ7du306tXL0ChVGdeeWUTRUXQt68ELJ06RWu6SUMijvmI3iQWDiQw20VsfY4DKe3MD7dyJIthwcG6Ck2Rtl6rr+90JBA84r+vj2AZ4jeI2LOc8PtmQ6Z0Px/XiquyFNGdlCKWf7/Bb/UXg28wZ2ffBFhL5PEAi4gcXNY12iIdUZV5G7EZMENPEjd2I7XRmpdU5brr4MEHJaceKaa028XptoYDFy28rcvswPwJdw9S4qj8+VFId8ZURCeTgXRcXI8ZY67Dhw+zcuVK3G43GzduJCMjg7vuuouMjAxstnu47LIJNGsWS3hr4EX0E8bU6mhZkDTgAuSE2AR4CLgvwrYOpKT1UoS//0D1AhcQ87OD/rWY5UMquqka331jvz+KcX+FZHxuQlqI48UDXIsELw4kKPIigfGjVNWmVGYYUpr8L9Hfs6eJPtfoRP/PD5jL4tQmkRosrJTHdSk9HnTwUpdo3RpmzZLR9YadeSh2u5hr/eUvNbKcUOFtQUEBRpJOC2/rGmauikOp/H4dRg7CH1JR0/ItUmJ6HjkxVsTr9fLLL7/gdrtZs2YN5f7Pq81mo3379hQXF/s/G+Np2fJfSAurlUTvuya2UcBdIb//H5L9uB/JpKQj2YtyRKz8FpHdXMsi3G4FG1bGHMjabk/A8zqQwNOKiVooKxHRq5HpCj327EVcXw8g3jqRsAGzgfOQLExox4/xuXoUCYijYTzOqcAakjOWIhwtER3RYsyVDTOJrGs5FfkcxAqG7UjwrbGKLhvVRZYskRksn34azMC0aQM33wz33CN+LkmivLycgoICPB5PWOGty+WiX79+Wnhbp1DIFXesA70DuaJdWOn2S5DAJVq5cjqiuQiycOFCvvzyy8Dvbdu2xeVykZeXR7Mq+q1SpBS0IMpzWMHIDEynoqeGwWHkBLiGYBZpENHLOesRfUl11nQGYrRnli+AUdV4zlCGIUFDPJyKBKuxTtpnI693tNZ7HzLAcArix5OBvPc3YC0zdABpS/8/ZBp1smiEtL6fjZSABiJlyFinxg+QcQKRuBkJKCO9pjYkqNsItLOw3vqLdthN9eDFYNs22LhRgpV+/SA9PfZ94sCM8NblctGiRSw3S03t8TKie4j1dX4PCVYMfgSOi3oPpWDHjhzc7jfo3LkbPXv2BGDfvpVMm3Y7TucynM4i2rbNRoy3bqKivTqY10NEwjjQK6AZEkjdhFwpJ5KRiB4m3lbbT5GToFmeQbIZiRCnnoyUbKySD/S1eJ+WSHB4chzPZ5VtSGC2nuRlYd5G3HRBWq9HA79G2LYJ0s4dK+g8AAxHWqErf56M8vpMwgffRyda81JfaNdOfpLE7t278Xg8WnhbLxiPtBZ/TvgToQ054V9c6fZXieSpUVgorc1uN+zcuR2Ywe7do/3By3yaNz+XiRMPY7MZz7cdKTG9gFzJhnZQPBfxecyhkLLOD8QKtoIsQ67+f0BOFich5Y+eUe7zKHJCVpgPKAyPm7uwFrhAYoYMGmvYiezfZUgmxez39ts4nm8fkk35DmlrTyY/ILquZAUuaUjQZwQveYj1wL+RMuNy/3P3RLRJF2POl6UJkml8EMkghY6vOMl/+2nVX/5Rig5ejjIM4a3b7WZriFeMFt6mOmmIX8QDiCA1dK5Kc+AOpDW18gktn9CAQin48UcJWDZuDHn0NBs9e6bTv/9xyBXwaKAkJHAxKPc/x5XIkLtB/sf/iOobh6UhV7yxghcvYjL3BhUDpp+QIGoS8BfCn9wHI0HgxQR9XVTI43RDSlKhPkvdkNf2Wis742cYicm6KOAX5KQ7BfHd+RfQycR943lffEgw+QDyuUsW8xFNSLLbpivrndKRklAcg20r0BixMXiIoCC8C1Uzkxqr6ODlKKCkpIRVq1bhdrtZt26dFt7WWzIQv4/7EHHsXqSrYySRRb1Z+HzBmUE2GyxbJn6JNht07ix+LH37KrKyBiNlmjsQDUukE4pCAoMnkG6hYhLjeGoj1rgBYSLBuUqhmR7j/39FRL2TCc+ZSHAyA7n6PoiccK4jGGws9a+lNaKRiDc7eRxwLOFLC5WJ5X2iCO7jSiSDtJTYYwsiCZhjUY4ESNtInmbjHqo/KykWPqrXpWWGBtRMie3oQWte6ilaeKuJhs/nY+PGjbjdf2b16n9yyy2KBn795cqVsG+fBC0Vv0KrkNR5c6STJxZ2RIz4BZIJqW7bq2Fs9lCUbX5Fsg2xDmsNkTJX7Zs9SkboJCQgjBTAHIt4gRQT1EvEykY4kCzTIzG2U4gh3i/EFyTMR8pUicZN8ktSIFmWrUCrGnguTTS05uUoRSnF5s2b8Xg8YYW3LpcLp9OphbdHKUopduzYETAYPHDgAGKyZWPVKsXAgbJd3yraTcNNtxdSMjETuEBw+FyiOkW8xDb+ehNzU7API63Yv0/AuqrLQCQAuARx94WgjsYoV7n9vxvtx2bKuuXAK4iLbbRDvQ1psT4n5HmtkKzTyIoEPIaZ/ZmMDlxSDx281AMM4a3b7WbfvmBavXHjxgHhbbt27bTw9ihm69atzJkzh507dwZuy8rKol+/43C52nLMMXcR/kDvQLp7/u7/PRNrwtvqmr6FrmMUsdP7a00+XhrSRl0XWIWImzcRLA0Z74O30r8GZjUgexEhbyyjwbORTrRrqDofKxqNSF52JBHdlZH2w3AvvofYM4gisR8ZvrjU//vxiKDXwpgXTdzo4CVFiSa87dOnDy6Xiy5dumjh7VHK4cOHKS4uplUruaJs2rQpu3fvJi0tjZ49e+J0OunRowdpAcvbrki3zLpKj3QacvVuCAztwLmIqDXR7qehwbWqdNsARIMSiwzM6U8U1s39YnEE0cc0w/yJdxtSctnj/z0ZwlSzx4CLkQBxOhLIzI+xvQPRASXL7btbkh43G/GcGU/sIZr/RbrnPkfKel2Rjq4jiBFiCcHX9y2k7f1pwpk6ahKL1rykENGEt927d8fpdGrh7VFMZcfb3Nxcxo4dG/j72rVr6dixI1kRTQ4V0tq5CgkCTiF8V8QCxL8iGVyJaECMKcG9gVuBsUQ2RQvFykyZ+SRGq/ElUnb5D8Gg6ErEOdcZ476TgKdIjKA5HLnABqwPbVTISXpqhL87EG3REsTzJdFsRzrVInmtVJfF/sePhCIYiIRmGs2W1aYgOi+NFbTmpR5hCG/dbjerV6+uILzNzc3F6XRq4e1RTFB462blypWUlAT1JSUlJXi93kB2pXv3WO2ZNiQoGR5lG6OjJQ/xv0g0PyAzdgysBuIXIifTfUTOYjgQLU51TPMMHkLKDnaCJ7USpJwwHWntPj/Cfb1Ed2CtLnbEuDCe7KsNMT7sgHSNHSRYagHRx7xKcgIXkI6xrbE2CsFYm9lr8YeQ7GEkXkQCF6iYYTT7+HchIzf0cTlZ6MxLHcQQ3rrdblasWKGFt5qIvP/++yxfHgwimjVrFnBEbtMm2vC7eDiAeG7Mo3qGc7E4A5miHK/mYS7iQ+OjagDjQDIj3yAdPPGikCvrV6NsY0P2YTkSLFVmJyKYTgYOxOvlG6p/Aj2E+PRs9j/WOZjzj4mX7UBHzAV1IxBX5zlIacfsfKoOyP6Ew+t//h0mHysSr1I3BOGpg868pCi7d+8OdIJo4a2mMvv378fj8dC/f//AF7tHjx6sXbuWfv364XK5OOaYY5L0+VDARQR1EMmc9vslojO4I877nwF8jVy9L630t5P8j+2Kd3HIa3EL0QMXYzsfYhr4XJi/J0KQmklQd2F0Iikk2/M6ibnyL0TKN+uQ0t1KpByVLD1drKnUoexHhLK3YW2wZrTP79dUP3BJR7x7NMlCBy+1zIEDB1i+fDkej0cLbzVVOHz4MCtWrMDtdrNpk7TROhwOhg4dCkC/fv3o169fiPA2WXyLZDRqAoWMGZhI/CfIYUgJ6idkTIAdcc9NhBnZR0hAYgYvUj56LszfshF/lVXE569i+LiMQ8pTu4EWiPC2cxyPVxkvcCeyr4rge/EcknmZBZyQgOepjJUOtRJkSrXVrrZoQt0tFh8rEpU/u14kwMoiflNDjYEOXmqBWMJbw/E2PUmDGDV1G6/Xy+rVq/F4PKxZs4bycrkKtdlsdO7cmZYtgzqD5ActBq+R3FJRZTYiVvfhyi1WGOj/icR6pHyTjRjwmTmp/I3YbrehRHIFtiFi5Hg6Uwzdzu1Id1O8WapIKCQo+AfBwCp0fzchmqFkzDYy+56nIQ7SX8XxHLdF+Vsi5AZlSLCskJLW84jQXSGOxzcgU6eTVTas/+jgpYaIJbx1uVz07dtXC281eL1eZs+ejdcrgUJOTg4ul4u8vLxa1HGtpuYCF4PDSXzsj5D5RktCbuuNCC2vI3IQc5jYLcSVieb7MQ74ADkBRwuGjLKQDympnIGIgpPlKbIEmBbl7wrJdlyLTCZPJCcigeQaomekvP7t5mOtxbwNUgKNxAgkO1Idj6LmiD5sHGKc6CC4L7uQz94U5H3Pq8bzHL3o4CWJRBPetmrVKiC8bd68eSKfFBYsgJdfhm+/ld+POw5uvhnOPDM4xEZT6yil2L59Ox6Phz179nDFFVcAYh53/PHHk56ejtPpTILwNh7MtCknmslIt8woIpePDiDak/eRk01P//2iZQOeAP4Y5jFXIwLL7xFvm3ABjNWAyoF0nUQiHZmfdDeyH4Z+xYecQMcj2Zk5iA6jOXLijTYZOxG8jLns0k/AQqRMlyhsyPypaEMRHcBQpPxjpQTTDBGcR8tqN0M+B69gvRPMWMvfkWyLMWOr8uOUIwaCZyIZxtr4fqU2utsoCdSa8NbrhbFjYcYMSEuT3yH4/3POgVmzCAyx0dQKhvDW7Xaza9euwO0TJkwImMrVPR4H/kTyp/uGYpSpTkTaWiu35c5EHGHDZYSGICepyp/1bzF3ov0n4YOOcuTkVmziMUD2YTkyWiEW+5FAZjdiV38eUs6qKUqR16cQKatsir55gGMRr5pTSayI93Wko8sQPkPwM3EyMhTyf0j3k9l1foR0EsWiGBlouoTwHWs2ZD5WEcFAqAwpCb2CvHftCZoPRuNNxMdIY+X8rYOXBFEnhLcTJ8Lzz0u2JRx2O1xxBUyfnrw1aCJSUFDAggULAsJbIOB463K56N69ew1qWKyyCznol9bCczuQjpJv/f8HOQmNiXG//khmIPQi4VJgNtFLYHb/fSOVQ25BUv6xymg2xKn24hjbhWMlchL82v88AxDTuFMI7s9a5MRXgGRpzkSyMladg71IGeNvSDYgXjojU80vr8ZjVGYLkpH6DMl69UKyUSOQ16EcOAZznjCrMBdEGhxGgvaXkc8//uf8DTK53YUEUEZH23H+v6X713u2ieewI0FfPLqd+ocOXmooeCkpKSE/Px+Px1P7wtudO6FDh2C2JRI2G6xZA92SZb2tMSgrK6O8vDzgaJufn8+7774bEN66XC769OkTxfG2rjEDmd0S7pBhtOlaHexnZft/I6MJQDITZq5qZxEMHgz3W7MttVsIPxOoAAluDhM5E2VHApdo2opwKOTE+CgVBdLG/89FskK3I5oUQ0th9/+9pf95Tzf5fF7/Gv9NfB1P4XiJmrXHfwfxeomEDdGexGptj0QZEkyWIF1WZkS2byFZQTP08T++Rvu8JJHy8nLWrl2Lx+Nh1apVAVElBIW3/fr1o2HDhjW7sLffBp+JlL7dDtOmwcMPJ31JRyM+n48NGzbgdrvJz89nyJAhDB8+HBBPllGjRtGvX78UNFD0IlmXzkiHTig2JMXeELkStaITMHvgdiButOciXRtmAheQicpG8FKGNS+QPYQPXrohowDOQcoLod87G5IF+TeSHbDKM0jgAhUzO8b/P0VGDhiZBuO1NtawDzgL8Uo50cTzTSGxgQtIZupcJCNSE1yOvA83Ia9T5RLTOCR7Ei/pWO+oMqtjtJE8l+L6jQ5eTKCU4tdff8Xj8dSc8NYqmzaBwxE7gLHZ4NdkzQs5OjGEt263m+XLl3PgwIHA3zZu3Bj4f1paGkOGDKmNJVaTEqRz4j9U1TTYEAv/zwmWdKxwAeaCl3JEUAtSMjJL6JTpDESvUmjyvtORskE4TkZM215HrrJ3ISeh3yIny3haYA8jtvXR8BHZGdb4uw3pmloY47EUUipKNDYk0Hw01oYJZBxSRnwTCdzKgH5Iu7eVUlGiGAE0QQTlsUhkme3oQQcvUdi1a1dAWLl///7A7Y0bN8bpdOJ0OuuO422jRpG1LpWp6axQPUYpxRtvvMGvIQFhgwYNAo63ubm5tbi6RHEPEpxA1TKJQoIbiG9Gz9rYmwQwxLdWsgSVt70OMVkz8xivIcFEJA1JK6Rr6Y8W1hON2YgAtLqUI/qglUDfKNttwNrrb+X5v8B68PIzklXzIm3ro7AWELdEgra7LD5vMmiI+Lg8QfTSYlMk4NVYRQcvlTCEt263m23btgVuz8jIoG/fvjidzrrpeHvOOeZKQV4vnHtu7O00YTl06BBr1qzB5XJhs9mw2Wy0atWKbdu20atXL5xOJz169MDhiCcLURfZj7R9JqvLaA7mzO8cSDkERM/xnMnHb4h0Fx1CzM/MdqaAiFe/xbx+pLqsI7FGgG6iBy/J9NEpib1JgOVIhuQ75IRuCHHbA09ifkp4XeNBJCD7zP97aMCchmQCPyYxpnhHHzp4ISi8dbvdrF+/PjUdbwcNgoEDwe2G8ghXwA4HdOwIo0bV7NpSnLKyMn755Rfcbjdr1qzB5/PRqlUrOnToAMDpp5/OqFGjUkh4a1CMWOeXISf2DmG2+TfVM+uKRSnSwrqM6JkbhbiSgugpGiOTjmOxHwlAQKZVv4e1AMFsiSkRNCCxQWKsC6z2BIXWiSQN82MYliN+LUYpPnT/twJXIaWXPyRsdTVHBqIBm4qU59b4b89E2vDvpnZKWvWDozZ4MYS3huNtnRHexovNBu+8A0OHQmFh1a4jh0P8XT78UP6viUpl4W1JSfBKMicnh9LSYMtwkyZNamOJ1WAvclX4OkG/EhuSlXiIinb6u0nOCc5AIV4mnRBfkUhBxeUEdSQ25Ir8RovP5a30rxlyLD5HdTiDxAUvNsSePhrZiBHcBxae13ifYjnfmg02xiOBS7TP1y2INqoumDVaJQ0pH92EBGNHkM+UdlKvLkdV8GIIbw3H28OHg2nTOiO8rQ49e8IPP8DkyfD++8EAxm6H886Dv/wF+vSp3TWmCBs3buStt94K/J6dnR3QOdUNx9t42Y1c6a6j4glDIYLcuf5/T/Pf3oLkBS4GZUjJYCLwbpjnsyGGdF8hWgonkoXZjbQVJ4um/ufLRrqiko0LeW+WEDnAMtNa7kA8XzqZeM7JwIcm1+dAum42xtjmZMyV2jzAIhPblQNvIEMoUxUb4TObmng5Knxedu3aFXC8rfPC20SxaxcsWyYi3rw8aB+u5VMDsG/fPjweD+np6YFuIJ/Px5QpUzjmmGMCwtv68fm4GNGZRApIDBHhZuTq0GgXTqY5nXF1egnScl1CZC+Z5shJz8iIrEcmH89Owrrs/nUopHPkMv9zJWIydSTWIi3O+4n8HkUrmTn8f1+C+REC1xG0sY/F2YjR3/WED7Aykbbk60w81rVEn58UyiiC2hFNfUX7vCDC2xUrVqSe8DZRtG4NZ5xR26uosxw6dIgVK1bg8XgCjrdNmjRh8ODB2O127HY7N954Yz0JWAw2I1fZ0a5XfMiJ8x2k/bQlcpJ5leSJdr3Ai0h3T1mU9ZUjPiavIGUvkNk2vYhP6Gp89yPtV+jtB/zrew3pLnoMazN1zNIdCTxuJ7L/ykEqzh0yDuNeJCs1A2uzj5yYm2NkQ4KTEUgQuSfMfUqQz00J0ct672I+cAFr/jyao4F6G7y8+OKLZGZKi2NKCW81SeWXX35h6dKlAeEtgM1mo0uXLrhcLkITkfUrcAG5cjWTaLUhXirj/L8/i1ir/9f/u9lkrRX33HLMzQsqR4zVHgy5bafJ56hMd0Q4ORVx0zXL40h26k9xPm8suiKv/2ZE6/M/qr6Ovkr/dyDC58lYF4EOx3xgeioyLHNvjPvchGhujg3zt1KsOfCmIZ4tGk2Qehu8QIoKbzUJxefzBVqaAdatW8fq1WJ21q5dO1wuF3l5eSkouo2HA5i7wlZU9BtpgGg/piKTcg1vkKZIeWA/YuhmnER9JFcnsxO5sjf8V+LRqDmQrqX7/D8DkHKU2ZP4o4iQ1OznRiE6oyJEeGymjHuAYKdUNHz+n5+R0tsopIxmdgDrQGR21I9E3/9MpKx3B+aC0tMQY8HKouc5WJuh5EWEvRpNkHobvNxwww106mRGsKapb1R2vL3wwgvp0qULAAMGDCAjIwOn00nr1q1reaU1TS7mTs5pVBV7ZiAn6wmIm2wZ0v1hZDH/iohqVyPzhApJXgBjD3leEB3P0xYfw0ewrFGOnPitcAh5PQ4hAUkuMhl4KBXLSQoRmz4N5IfcfhqSuRkZ5TnexFo5zHi9v0CyHoeR96E9EmRegzgMV+ZrYDuRPxtGBu1V5HUym00rQgzjKg+CXYq8f2ZLQb8D8kxuqzlaOCoEu5qjA0N463a72b17d+D2E044gXPOsWJOVl8x2jTNeJd8jZQTrPI7JIhJVuDiQE78c0NuU8jJ+ifMn+ifQsS3+O8TbynZOLEbQcYpiK6opf/28YhOpnIJzchQTSFyVuFSrLUxR1sj/jV9ScU5PV8hmRojexOOVohR4QVIe/3vLTx3GtIiHHqh8EekFGkmeOkOrECCZ019Rwt2NUcVhw4d4p133gkIb0HmCPXq1QuXy0X37t1rcXV1iSyk3XRylG3SgBMQbQPI1fssYDFychuITPANVy7ZBbxNcktG5cCtlW6zISf5YYh2JdrzHwM8QkVLdsNUbTXWBxQa2xtB07eIE/C3yPTn1yptZ2Cs8QYk8Ao3+C+LxIiCjefeh4htVyJZMx+SLYoWuIB8Bloi+qD3LD63F3ktxoTcdjzmAhcbUqLSgYumKklttdm7dy9XXXUVTZs2JTs7m3HjxnHwYHRXzOHDhwc0CsbPDTfcEPU+mqOLsrIytmwJCiwbNGjAwYMHsdlsdO3alTFjxnD33XdzySWX0KtXr3pk1Z8I/oiUfqDitYtxKMhDxKI2pOOoHVJueBW56r4Byd6Em9L7NYmzto/EeESrUplcpBxxN+LLYtAcOB8ZJzAPaa0ON0tmQpjb4qEc+AEJ+J4mdvDhAF6I8LezSGwgaHRr/d3/++fAr8TO7BQjwexM4uv6eRIJ5Ayn5vORbE6s1yYLCZg0mqoktWx09tlns23bNqZOnUpZWRnXXnstJ5xwAjNnzox4n+HDh9OzZ08eeig4XbVhw4amS0C6bFQ/8fl8rF+/PuB4a7fbueuuu0hLkxPwr7/+SnZ29lEivE0EC5H25HlIwNEH6QC5BBFmvof4mkTjRcSfxeAfyJV8sjgDOeHGOumVIp06NqAj5kpChxC9ynKqHzDYEcO5ZSa3b0r4Ul4JYmy2j8S2qeciLrn3Ip1TyQ44DZF4SyRDdirwPlIWg8jZrimk5lgATbzUibJRfn4+n332Gd9//z3HH388AC+88AKjR4/mqaeeon0U07SGDRuSk1OTttyauohSim3btgWEt6FZu+zsbPbt2xcQ3daP6c01yTD/TzhKqRiUROIu5MrYEIF2rv6yIpKGmLeZKaNkIO3G0fgF8YuZjWQWjkH25WNksnF18GFtWnOkbHQmksExMjCJysIYWUsfyfGqqYwReO1D9DXfIiLrd5HgZB/BALMMKUk+gzVtjeZoI2nBy6JFi8jOzg4ELgAjR47EbrezePFiLrjggoj3nTFjBtOnTycnJ4fzzjuP++67T7c6H4UsWrSIL774IvB7gwYN6NevXz1zvK2LfIRY78eiBCkHGCWXk5EAZoOJ+/ZEShblmHPv9RLeM8QsWxHdjhfp+nkQyQgYWYc9iOC3A9LK+y4SyByI8/msHFqjjZs4DfgGuIfqB1UGRgt1HjVr/uZDXu//QzyHLgF+g2RjliAZmP6It40+3muik7TgZfv27VVmwKSlpdGiRQu2b98e8X5XXnklnTp1on379rjdbv74xz+yevVqPvww/PyNkpKSCkPzioqKwm6nqdsYjrdt2rQJtLj37NmTr776qoLwVutXagKzrawO/7YGduBhwmtKDNKQE9Ri//3NjB+wId4o4bQusdiAiD4/omrpJfR3o3SxDQnGViIZgc5YF/GmIcLY3Uh5LlrGxIE4GEdjEDAfyRYtR9qa70UCK6slnzQkYAAZypiJBKE1RTlS+luPuCNnAlf6fzQa81gOXiZNmsTjjz8edZv8/Pyof4/G+PHBtkFj5tCIESMoKCigW7duVbZ/7LHHePDBB6vcrqn7lJWVsXr1atxuN2vXrsXn89GvX79A8NKqVSvuueceMjJ0t0HNcAjJOHxB/CWKqxETubuQE7NxcjUmU7uAT/2/g+ggnkCGMobDyK69jPXDVQHSyVOIec1IOVJWmY74wIxCXg8rmhMvEgCV+u8fCTsiSjU7HbsnQdv/c5FAcTpBIayZgNNYG0QfxZBsxiHt7vpiRBMfloOXO++8k7Fjx0bdpmvXruTk5LBzZ0Xbbq/Xy969ey3pWQYPlrHua9euDRu8TJ48mTvuuCPwe1FRkdY/1GGUUqxbty4gvC0tDV5xt2vXjs6dO1fYXgcuNYVR/iki6EESi3KkrboydwDnIJqS/yAn155Ip9JvqCqgvQ05kU9C2nKNw1IZ0jlkeIxY5XdEH3AYjb8jQcWjiDeKleBlHCJKtSFB181UDOTw/54FfIIIaK1yDNIB9hTS4m1D3rtbqGiGZ2D4zDyECJNBymPJHLgZjflI9uixWnp+TapjOXhp3bq1KWfSIUOGsH//fpYuXcpxxx0HwFdffYXP5wsEJGZYtmwZICe2cGRmZgZmGGnqPjabjblz5wZKh9nZ2bhcrqPU8bauMB050RuYPdlHa2XthbQnP2fysW5BOpVmAm4kmDkREXbG8/12IzOB4kEh3TggOpu/IJoTMziRwMfIGN2I7McLSIdNMWLYdp3/b9W90GqG6EOuQez97YQfAdETGYNwVchtW4hvoGUiUMhnYxLhXX81mugkTfPSp08fzjrrLK6//nqmTJlCWVkZEyZM4PLLLw90Gm3ZsoURI0bw1ltvMWjQIAoKCpg5cyajR4+mZcuWuN1ubr/9dk455RRcLleylqpJEvv27QtkWK699tpAkHnCCSewfft2nE6nFt7WOkeQwCEenkHafBNFExLXGvs55uY4RSJUMFpg4X5TqGqfNRAZEfAGctI+gJTnXkYCwDOAIcTu/FGIh8xW5LUaimhHTiI41DLc/t6EtLVXfvymJNdQMBYlSEA3LtaGGk0VkuqwO2PGDCZMmMCIESOw2+1cdNFFPP/884G/G5qHQ4cOAVIi+PLLL3nuuecoLi4mNzeXiy66iHvvvTeZy9QkEEN463a7+fXXXwO35+fnM2DAAIBAJk5TF3gfKa2YwdCtNEYCl+uTtKZEcATz5a/KpBEsUx1G/GvMkIUEIZFQiLvvX5ATd5r/tj8jnT8zkcxNOKYjJZ81IbdlI1mLg0Tfz1cQDVKXSrefQ+LM+eIhDfHj0Wisk9TgpUWLFlEN6Tp37kyoR15ubi4LFiSqHVBTk+zatYu5c+cGhLdAwPHW5XLRu3fvWl6hJjxmO4tsiJHd7Yh5XaMkr6u6dCH+NuBygiLabQQFsbE4goieI702d1NxgGTo+vKRDMpi5HUO5RGk5FM5c7Ifc4GnHZkI/iBSWjqCdFF1Qdxu/4W5IK8RwQxPGtIBtpX4Rb9GIKzRWEfPNtLEhc/n49ChQzRuLAefjIwM1qxZg1KKdu3a4XK5yMvL04639YY05OR6XW0vxCQXIuUSKz4tRpnpJYIBhFXB+A1IpqZy6Wg50SdflyOBz82Iu3EL/2MsRgIXqF6QMB0JYPaH3H4qEoyuRDI6kR7fjgQ7/0Nez1JEq5OFZIP+Sny6GR9wXhz302h08KKxQGXH25ycHK6+WgSbzZo149xzz6VTp060atWqlleqMc8JmMtQlBG+s6iu0hDpZvmjhfsMAB4g6IMCYlrXFdGWmAkepiNmfZUnRb9CbHFsOTIfqjXSQn4D0kmUCFHtljC3LUQM8F5FgquXCe/5co5/m7b+n1AeRkpSv0Na4L1UnaAdjjTEgK9njO00mvAkdbZRbaBnGyUeQ3jr8XjYvTvovNq4cWNuu+020tPNzI7R1E1KkOGL+2Js1xgxR6vr5aJQFNLN8gQVAwDj/2chbd3lSCahX4THec6/nZlDpQ05IedTsczjAjyWVh/U7CTzEG1DXo8NyBDLH4CvkNekLRK4dDb5WHuREtRupG37aeTzVVkU7ECCwkWIQWF1UUjQ95L/MRUyufomxGcnqfOHNQnEyvlbBy+aqHz66acsWbIk8Ht6enrA8bZbt27a8bZe8DaxHU7fILYTbF3Fg2Q+vkZOpN2ATkiGowNiU98yyv1LkUDnawvP+QvQI+T3PGCFhfvXJHYk43R/gh83HxEjf0AwgGmAfI4eIPpYBLOUIW3ibxM+QD0HEaVnRbj/EeB7gvOt+iZgTZp4qRODGTWpR1lZGatWraJbt26BWVJt2rSpIrzVvjr1jSv8/96EaCJCh+Q1Bf5GcqdFW6EIOVHlI+scjgQW0YJoJ+KzMgP4EzJXB4KZjVuREs1ThNe4ZCAlkYaYz4JUHlNyHFICqg1PlVj4gA9JfPDSB2kJ34nsuwN5LxKpg7sTeMf//9DX1vj/f5ABj9Mr3e8IUvJ6mYo6oGMRYXM8oyg0NYnOvBzl+Hw+1q1bh8fjCTjejh49mkGDBgEyO6qsrCwgzNXUZ44gV6nf+38fiHQWNYh4j5pDIeWfP1OxzdgLdEQcgodHuK8bORn9GuHvIOWTMcj+RyozdEC6a8ywhYolke+I3kZd23QB1tX2IiyyE3lPYgWENmTKtzFp/DBwJiJArtxlZYi2p1JVt6RJNjrzoomKUoqtW7fi8XhYvnw5Bw8eDPytefPmpKUFPxbawfhownDMjeSam2g2I1fGB5AA5DwiB0oP+n8MQkXGW5GT0ddIR1Qo65CumsIYa1HAbGSAY6RRBNchdvaxBi0Op6qWYzAyLfk94jfOs8q9SJt1LOxIGS3VmIk5kz0FvIb464C8JuECF0JuuxF5H7WguK6ig5ejkCNHjvD6668H/FgaNmxIv379cLlcdOzYUTveapLMHqRM8yFysjDM75oi3UGTqJj92IS05EbCOOHcgGRZQj+/DyMmbmYSzA6kvNQCaR3ORAKfY0Ie/2+IPiJSAOIDJoe53Ya0UDcGXid4hZ/MxPdziIldrMDNR2q63G7A/Ov3jf/fI0ipKFYAaUPckp+Ja2Wa5KODl3pOcXExK1asYNeuXZxzzjkANGjQgD59+mCz2bTwVlPD7EOyI2sJnkCMq+ci4P+QjMxLBIOQvyMn+2hX2T6k3XcxMksI5KQ9E/M6E6NVOVSYa0NKTi8hHUn/Ac5GPFlC15Pm//3vwIgIj5+BtBz/CXgT8Vf5EPNdTAOQ/fzZzM4gQZvZTpuFyNyjVLpw2WVhW6Mk9j3mjP3KkUycDl7qKjp4qYeUlpayevVq3G43BQUFgQzL0KFDad68OQAXX3yxzrBoaoGHkMAlWiDyCnApQQ3L4hjbG9iQk5MRvKyl+lOTFSLWHQQsQQKv1Ygm4nVEd9HYv96bka6iWHQhmEk6hWBWINY6HIhD7luIgDpWQAfmS1RTgf4EnYVjsQTJYHyJlPD6+O97IVWnhicLKyUd41hXHHWriljZVlPT6OClHrF161YWL14cEN4atG/fHqfTSVZWsF1QBy6amucQoj2IdcJNQzIdw/2/my0NVP5MJyqbWI54l9yM+Ji0Q4TDf07AY1+HueDFRrBL53eIRuhhYH4C1mDwBDIYM1q2RiGlvSep2Jq8B1iA+Kt8RvTW80RhZUZaR/+/x0TdKoiN1NQBHT3o4CWFUUrh8/kCJZ89e/bw88+SUm7evDkulwun06kdbzV1BDdSyoiFFzFKMzgOOUmbyTIMDPm9F6Kjqdy2HA9e4GNEf9MeOcEnwvzsXMzNloKKQuLT/T/HIdmYRLABmXWVhZSzCoEcpJU+17/Ns0jgAhXLccZ78xMyL+kbkl+COp2K85aicbn/375IO/QyYmel6vLgUY1ulU5B9u7di8fjwe12M3DgQIYNGwZIuWjevHnk5eVp4a2mDvINUiYxQ1OCQtN1QHeiZ2BsSLCykoonzbsQ4aqZspMZWiFZGDswDLgFKZVUJ5AZi/iQRFqjHenC2oIIcENxIlqfRJHnfzwHwbKUQvQwzyMGf7HcmEGCzVMTuK5ITAYeJ/Jnw4YEOJsQB2GAf1NxBERlDAfgFejBkTWLdtith8GLIbx1u91s3hwcI9++fXvGj9d+BJpUYDtyUoh1xWtHyg+L/b//Aowksk+LHTlJfYFcjYeyF9GrbCTxBnFGl9SliAFevInsQmQe0krCW+nbkRPuqDD3PQ8REScqODP2qTJ2ZHyCmREHaYhj8z8StKZolCKvwVyqBjBp/p9PkTlKoUxFTBltBPfXCHpzgXlIwKypSbTPSz1CKcX7779Pfn5+QHhb2fFWo0kNcpAyySfE7hy6yf//1YgAN9p06DRExFo5cAFpe/4WsZD/nKAOJhEne+MxZiEGaI/F+TjNkG6fR5BuJSPjZEPcgx8g8lDMcUg5K1FEel18SOBiZuiiFylB1QQZyP6/jLSxr/ffnoaUiv5IeBH1H5CA5hWkq6gY0biMR7JMqTTD6+hEZ17qGD6fj02bNtG5c+fAbR988AEej4f27dvjcrnIy8vTjreaFOVnJBgpJXwGJg25wv8O0V6cghiKxQo20pGA5ykiX5OtQUzoipAs0KsW1x6NhsAOql9mOIxog0qQEk2HGNt7kRbqWKMHMhFdTXUM8swELgb9EV1JTeJDMmxHkNct9Y7/Rzu6bJRiwYvheOt2u1m+fDnFxcXceOONtG0r4+eNSc5aeKupH/wXseLfR9CszehcGYSUSNogZZRIk57DYUOutmcQWyxahlxp7yRxJZcZxB5wmQy2IN4yqwm+nhB8Te9D9Cfn+n8PDXIilYmqS3vEr0fr7jTm0WWjFGHv3r243W48Hg979uwJ3N6wYUP27dsXCF500KKpX5yCnNjeAeYgHUi5iHB1OMET3nysXe0rZGjjWGRcQDTSkY6a05EsUHVP4A4k81IbdEC6fN5ByiBrkXLK2Uh79/H+7ZYhpmtvIdkJkLEFFwB3J3hNWxGRrG431iQHnXmpJTZs2MC0adMCv6enp9O7d29cLhddu3bVjrcaDc8hU4OtlDrSgNFIecgMHsTV92Oqb9X/BnBtjG1+RvQZXyPZHxdi7nYmiWm9NkMp4svSENHbHEIyXbFajkOzOmZwI91QGo05dOaljlFaWsqqVatQStG/f38AcnNzady4MTk5OTidTnr37q0HIGo0FeiFdY2GFxHomsWJGM8tRjJCZcQXxKQhZZlIKGQswF+paO622f/8IxHhaE1o2TIQoz2DhkjQNYXouhkf5n1VbEDbeBeo0cREBy9JwufzUVBQgMfjYdWqVZSWlpKdnY3L5cJms+FwOLjttttIT68pK22NJtU4E9FObLV4v3hEqbMJeppYxQH8FmgdZZtnkMAFKgYIxv+/Rszg/h3H8yeCyUjX1B7CBzAOxNztJGR4ZazJ2iORbI5Gkxx08JJgtm3bxrJlywLCWwPD8dbr9QYCFh24aDTRcCCW9VdbvM+AOJ5rGvHpXuyIy+3zUbY5jFj5R6McKV39iAQJNU17JGM1BjGpS0MCORsSzJyB6In2I+3cR4g+WXtSUler0ejgJcEsXbqUH374ARDhbV5eHi6Xiw4dOmjHW43GMlchrc23Ys5krhyYEMfz7Im9SRXa+59rIuKAG4l/EfRuiUYaopupjeAFpDXbjXSDfUBwPMBvCXqlZCNB1rlIO3e4ydqvEpxLpdEkBx28xElxcTHLly/H4/EwatQocnNl9kf//v0pKSnRwluNJmHciHTEPIYMbIyUIXEglv3RrN8j0RjJKpjhP0APoDPmhj+up6LOJRJeZBRCMlmGtKCnA0MIDiw0sCFt1dGs/U8DViGdTW8i7eZNgMuQYE6LdDXJRwcvFjCEtx6Ph4KCgoDjrdvtDgQvubm5gf9rNJpEkYM4qI5FShubqFraOA/4J/Ed1i5HJl5HCzBsyGC/UVjzL2mAOR2OneQ5u36FtEOHDnG0I4Hec1hvac4F/uL/0WhqHh28mODIkSN8+umn5OfnU1YWnP7aoUMHXC4X/fpZMdLSaDTxMxARlr6IaDMyEMfe67FmaFeZCYiWIxoKGfRotfx7FlJaioXPv22i+QgZHhnu+f6NaF0WA12S8NwaTXLQwUsYlFIcOHAg0GeemZnJhg0bKCsro0WLFjidTlwuFy1btqzllWo0RxOrEfHuDwQHFpYhQUxbJCsSr66sH1ICGUtwmrKB4W9yIzIjySq9EDO8BUSfHN0YyQAlkiJEN6QI30lVjgyvHIdkZzSa1EAHLyHs2bMHj8eD2+2mpKSEO+64A4fDgc1m45xzzqFRo0ZaeKvR1AprEY1Gkf/3coKBQDHiobIXeLIaz/E7JPvwODKJ2DjZ9wfuQIKAeL/7byButuFake3+n/dIfNloOmJCF60FvBxp1V4F6EGvmtTgqA9eDOGt2+1my5YtgdvT09PZtWsXOTk5APTq1au2lqjRaLgDCVyitTM/hQQg1RGMnuz/2YPY/Telqqg1HjoB3wP3AO9TMYA5CfGAGZqA56nMFya3swFfooMXTapwVAcvS5cu5ZNPPgkIb+12O127dsXlctG7d28yMjJqeYUajQZ+xZx9fxrSAfNyAp6zpf8nkeQiXinPAUuQAKYvUlZKFocxZ7xnJzjvSKOp+xw1wUt5eTnr1q2jSZMmgWxKhw4d8Pl8FYS3jRvXhD23RqMxz2LMnYC9iK6krtMW6YyqCbojWpZYbdrlQNfkL0ejkQWcbwAAEutJREFUSRD1OnhRSrFlyxbcbjcrVqyguLiY/v37c8EFFwDQtm1bbrvtNpo3b17LK9VoNJGxYvdf3enQ9Y1xmMtEtST6bCaNpm5Rb4OXb775hoKCAvbu3Ru4rVGjRjRp0iTwu81m04GLRlPnMathSaP23GnrKscC5yNlt2iB3UNI27lGkxrU2+Bl4cKFZGZmkp6eTp8+fXA6ndrxVqNJSfogYtbFRD8Be5F2Zk1FZgCXIh1UoU6/xv8fRr9umlSj3gYvXbt2ZfDgwVp4q9HUeXYinT3ZiKg1HE8hlvWK8GUkO5JhGJaE9VWHnUib9FdAKeInMx5pv64pGiGZlwXAFGR+UTriPXMj0LMG16LRJAabUiqeGfB1lqKiIpo1a0ZhYWHAZE6j0dRFvkLmFX0ZctsAxMX2Sqp6qsxDMgh7EZM6n/9fL+LB8hqQldQVW+M14CYkW2QEXEa243JkknVmraxMo6mLWDl/19vMi0ajqctMRa767ZVudyMuuouRWUahAcwIYCvik/I50gbcFbiO5LYbx8N0ZGRBZYySzXv+f9+umeVoNPUMnXnRaDQ1zE/AccRuf/4nEsikGjORdZs5tP6EZJs0Go2V83flyx6NRqNJMs8j5Z5o2IGna2AtiWYWwVlCsUgj9jBIjUYTDh28aDSaGmYWsU3TfMAyYFPSV5M4yhCNi1m8wIokrUWjqd/o4EWj0dQgPmSQoln2J2kdyeAjYLfF+2jBrkYTDzp40Wg0NYgdaGFh+7bJWkgS+AlpQTaLHTgtSWvRaOo3OnjRaDQ1zFhia14cwEhSK3ixigOx79doNFbRwYtGo6lhJiBW9NEOPz7gjzWznIRxPKJ7MctLQJskrUWjqd/o4EWj0dQwXRB9SCZVMzBpiLfLy0jmJZU4D8kUVTbXC8cbhPeBicYR4C1gNDAIcRR+D3Hu1WiOLnTwotFoaoEzgOXAbYAxHLUB4o/yPXBDLa2rOqQh5nsQPYB5EbjW4mP/CHQCrkEM+r4HPgEuQ+z9V1t8PI0mtdHBi0ajqSW6Il4uexEL/UPAm4iBXapyPuIAbIiS0wmKeJsgwc3NFh9zAzKHaI//d2PUgDGkcgswHJmjpNEcHejxABqNpg5Qn66jLgTOBWYjYw58yCDGy4CGcTzek0h7eaSJ2l4kcHkZ+HMcj6/RpB56PIBGo9HUWY4gWZzDJrZtA2wnesnKhwzCfBPJ6DRFskVX+/+v0dQeejCjRqPR1Au2Yy5wAcm+FAONo/x9NLCU4HRrGzAX6ez6ADizOovVaGqM+pSr1Wg0mnpGRoK2L0G6t372/26MZ1D+n0NIt9T3Vheo0dQKOnjRaDSaOks7oDux26/twIlEDl7eAzxEninlQzQ1D8SxRo2m5tHBi0aj0dRZbMCtJrbzxdjuZWIf7suBz4BfzS1No6lFdPCi0Wg0dZo/IDOQIh2ubcAlSDdTJFYTbLGOhgLWWlqdRlMb6OBFo9Fo6jQZiCHdLUBWpb81Bv4EzCT64dzKwEirOhuNpubR3UYajUZT58kCngMeAv6DGPu1Ac7GnHdMF8yZ2DUGBsS1Qo2mJtHBi0aj0aQMTYleHgrHEsQsLxZ2ZMp1I6uL0mhqnKSVjR599FGGDh1Kw4YNyc7ONnUfpRT3338/7dq1o0GDBowcOZI1a9Yka4kajUZzFPAs5q5TG6AdejWpQtKCl9LSUi655BJuvPFG0/d54okneP7555kyZQqLFy+mUaNGjBo1iiNHjiRrmRqNRlOP8SLmc5FapEMpxtxEbI2m9kla2ejBBx8EYNq0aaa2V0rx3HPPce+993L++ecD8NZbb9G2bVvmzJnD5ZdfnqylajQaTT2lGCizsP0+oFmS1qLRJI460220fv16tm/fzsiRIwO3NWvWjMGDB7No0aKI9yspKaGoqKjCj0aj0WhABLhmO43sBKdhazR1mzoTvGzfvh2Atm3bVri9bdu2gb+F47HHHqNZs2aBn9zc3KSuU6PRaFIHB3A5sZPsDqRzSQ9n1KQGloKXSZMmYbPZov6sWrUqWWsNy+TJkyksLAz8/PqrdofUaDSaIBOJbVDnA+5K/lI0mgRhSfNy5513Mnbs2KjbdO3aNa6F5OTkALBjxw7atWsXuH3Hjh0MGDAg4v0yMzPJzMyM6zk1Go2m/nMs8A/gGuR6NVS8m4aMBXgRGF7jK9No4sVS8NK6dWtat26dlIV06dKFnJwc5s2bFwhWioqKWLx4saWOJY1Go9FU5mqgD2J09y4i4nUAFyCZmaG1tTCNJi6SpnnZtGkTy5YtY9OmTZSXl7Ns2TKWLVvGwYMHA9v07t2b2bNnA2Cz2Zg4cSKPPPII//rXv/B4PPzud7+jffv2jBkzJlnL1Gg0mqOE44B/Ih1Ie4DDyLRpHbhoUo+ktUrff//9/OMf/wj8PnDgQAC+/vprhg8fDsDq1aspLCwMbHPPPfdQXFzM+PHj2b9/P8OGDeOzzz4jK6vyPA+NRqPRxEc6uqtIk+rYlFKqtheRSIqKimjWrBmFhYU0baqV8xqNRqPRpAJWzt91plVao9FoNBqNxgw6eNFoNBqNRpNS6OBFo9FoNBpNSqGDF41Go9FoNCmFDl40Go1Go9GkFDp40Wg0Go1Gk1Lo4EWj0Wg0Gk1KkTSTutrCsK0pKiqq5ZVoNBqNRqMxi3HeNmM/V++ClwMHDgCQm5tbyyvRaDQajUZjlQMHDtCsWbOo29Q7h12fz8fWrVtp0qQJNput2o9XVFREbm4uv/76a7117NX7WD/Q+1g/0PtYP9D7aB2lFAcOHKB9+/bY7dFVLfUu82K32+nYsWPCH7dp06b19gNooPexfqD3sX6g97F+oPfRGrEyLgZasKvRaDQajSal0MGLRqPRaDSalEIHLzHIzMzkgQceIDMzs7aXkjT0PtYP9D7WD/Q+1g/0PiaXeifY1Wg0Go1GU7/RmReNRqPRaDQphQ5eNBqNRqPRpBQ6eNFoNBqNRpNS6OBFo9FoNBpNSqGDlzA8+uijDB06lIYNG5KdnW3qPmPHjsVms1X4Oeuss5K70GoQzz4qpbj//vtp164dDRo0YOTIkaxZsya5C60Ge/fu5aqrrqJp06ZkZ2czbtw4Dh48GPU+w4cPr/I+3nDDDTW04ti89NJLdO7cmaysLAYPHsySJUuibj9r1ix69+5NVlYWTqeTTz/9tIZWGj9W9nHatGlV3q+srKwaXK01/vvf/3LeeefRvn17bDYbc+bMiXmf+fPnc+yxx5KZmUn37t2ZNm1a0tdZHazu4/z586u8hzabje3bt9fMguPgscce44QTTqBJkya0adOGMWPGsHr16pj3S6XvYzz7WJPfRx28hKG0tJRLLrmEG2+80dL9zjrrLLZt2xb4efvtt5O0wuoTzz4+8cQTPP/880yZMoXFixfTqFEjRo0axZEjR5K40vi56qqrWLFiBXPnzuXjjz/mv//9L+PHj495v+uvv77C+/jEE0/UwGpj8+6773LHHXfwwAMP8OOPP9K/f39GjRrFzp07w27/v//9jyuuuIJx48bx008/MWbMGMaMGcPy5ctreOXmsbqPIO6eoe/Xxo0ba3DF1iguLqZ///689NJLprZfv34955xzDqeddhrLli1j4sSJ/P73v+fzzz9P8krjx+o+GqxevbrC+9imTZskrbD6LFiwgJtvvpnvvvuOuXPnUlZWxplnnklxcXHE+6Ta9zGefYQa/D4qTUTefPNN1axZM1PbXnPNNer8889P6nqSgdl99Pl8KicnRz355JOB2/bv368yMzPV22+/ncQVxsfKlSsVoL7//vvAbf/5z3+UzWZTW7ZsiXi/U089Vd122201sELrDBo0SN18882B38vLy1X79u3VY489Fnb7Sy+9VJ1zzjkVbhs8eLD6wx/+kNR1Vger+2jlO1rXANTs2bOjbnPPPfeofv36VbjtsssuU6NGjUriyhKHmX38+uuvFaD27dtXI2tKBjt37lSAWrBgQcRtUvH7GIqZfazJ76POvCSQ+fPn06ZNG3r16sWNN97Inj17antJCWP9+vVs376dkSNHBm5r1qwZgwcPZtGiRbW4svAsWrSI7Oxsjj/++MBtI0eOxG63s3jx4qj3nTFjBq1atSIvL4/Jkydz6NChZC83JqWlpSxdurTC62+32xk5cmTE13/RokUVtgcYNWpUnXy/IL59BDh48CCdOnUiNzeX888/nxUrVtTEcmuEVHsPq8OAAQNo164dZ5xxBt9++21tL8cShYWFALRo0SLiNqn+XprZR6i576MOXhLEWWedxVtvvcW8efN4/PHHWbBgAWeffTbl5eW1vbSEYNSf27ZtW+H2tm3b1sna9Pbt26ukndPS0mjRokXU9V555ZVMnz6dr7/+msmTJ/PPf/6Tq6++OtnLjcnu3bspLy+39Ppv3749Zd4viG8fe/XqxRtvvMFHH33E9OnT8fl8DB06lM2bN9fEkpNOpPewqKiIw4cP19KqEku7du2YMmUKH3zwAR988AG5ubkMHz6cH3/8sbaXZgqfz8fEiRM56aSTyMvLi7hdqn0fQzG7jzX5fax3U6UjMWnSJB5//PGo2+Tn59O7d++4Hv/yyy8P/N/pdOJyuejWrRvz589nxIgRcT2mVZK9j3UBs/sYL6GaGKfTSbt27RgxYgQFBQV069Yt7sfVJIchQ4YwZMiQwO9Dhw6lT58+TJ06lYcffrgWV6YxS69evejVq1fg96FDh1JQUMCzzz7LP//5z1pcmTluvvlmli9fzsKFC2t7KUnD7D7W5PfxqAle7rzzTsaOHRt1m65duybs+bp27UqrVq1Yu3ZtjQUvydzHnJwcAHbs2EG7du0Ct+/YsYMBAwbE9ZjxYHYfc3Jyqog8vV4ve/fuDeyLGQYPHgzA2rVrazV4adWqFQ6Hgx07dlS4fceOHRH3Jycnx9L2tU08+1iZ9PR0Bg4cyNq1a5OxxBon0nvYtGlTGjRoUEurSj6DBg1KiWBgwoQJgWaAjh07Rt021b6PBlb2sTLJ/D4eNcFL69atad26dY093+bNm9mzZ0+FE32ySeY+dunShZycHObNmxcIVoqKili8eLHlrqzqYHYfhwwZwv79+1m6dCnHHXccAF999RU+ny8QkJhh2bJlADX6PoYjIyOD4447jnnz5jFmzBhAUrnz5s1jwoQJYe8zZMgQ5s2bx8SJEwO3zZ07t8KVUV0inn2sTHl5OR6Ph9GjRydxpTXHkCFDqrTT1uX3MFEsW7as1r9z0VBKccsttzB79mzmz59Ply5dYt4n1b6P8exjZZL6fawRWXCKsXHjRvXTTz+pBx98UDVu3Fj99NNP6qefflIHDhwIbNOrVy/14YcfKqWUOnDggLrrrrvUokWL1Pr169WXX36pjj32WNWjRw915MiR2tqNqFjdR6WU+utf/6qys7PVRx99pNxutzr//PNVly5d1OHDh2tjF2Jy1llnqYEDB6rFixerhQsXqh49eqgrrrgi8PfNmzerXr16qcWLFyullFq7dq166KGH1A8//KDWr1+vPvroI9W1a1d1yimn1NYuVOCdd95RmZmZatq0aWrlypVq/PjxKjs7W23fvl0ppdRvf/tbNWnSpMD23377rUpLS1NPPfWUys/PVw888IBKT09XHo+ntnYhJlb38cEHH1Sff/65KigoUEuXLlWXX365ysrKUitWrKitXYjKgQMHAt81QD3zzDPqp59+Uhs3blRKKTVp0iT129/+NrD9unXrVMOGDdXdd9+t8vPz1UsvvaQcDof67LPPamsXYmJ1H5999lk1Z84ctWbNGuXxeNRtt92m7Ha7+vLLL2trF2Jy4403qmbNmqn58+erbdu2BX4OHToU2CbVv4/x7GNNfh918BKGa665RgFVfr7++uvANoB68803lVJKHTp0SJ155pmqdevWKj09XXXq1Eldf/31gQNuXcTqPiol7dL33Xefatu2rcrMzFQjRoxQq1evrvnFm2TPnj3qiiuuUI0bN1ZNmzZV1157bYXgbP369RX2edOmTeqUU05RLVq0UJmZmap79+7q7rvvVoWFhbW0B1V54YUX1DHHHKMyMjLUoEGD1HfffRf426mnnqquueaaCtu/9957qmfPniojI0P169dPffLJJzW8YutY2ceJEycGtm3btq0aPXq0+vHHH2th1eYw2oIr/xj7dM0116hTTz21yn0GDBigMjIyVNeuXSt8J+siVvfx8ccfV926dVNZWVmqRYsWavjw4eqrr76qncWbJNz+VT5epvr3MZ59rMnvo82/SI1Go9FoNJqUQLdKazQajUajSSl08KLRaDQajSal0MGLRqPRaDSalEIHLxqNRqPRaFIKHbxoNBqNRqNJKXTwotFoNBqNJqXQwYtGo9FoNJqUQgcvGo1Go9FoUgodvGg0Go1Go0kpdPCi0Wg0Go0mpdDBi0aj0Wg0mpRCBy8ajUaj0WhSiv8HaYnb7ivqo2AAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Obviously, the relationship is nonlinear, so linear models build unsuccessful dividing surfaces." + ], + "metadata": { + "id": "mOy-cZR-NC6d" + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1bBQYXDpFLpM" + }, + "source": [ + "## 1.2 Kernel tirck\n", + "\n", + "Now use different kernels (`poly`, `rbf`, `sigmoid`) on SVC to get better results. Play `degree` parameter and others.\n", + "\n", + "For each kernel estimate optimal params, plot decision regions, calculate metric you've chosen eariler.\n", + "\n", + "Write couple of sentences on:\n", + "\n", + "* What have happenned with classification quality?\n", + "* How did decision border changed for each kernel?\n", + "* What `degree` have you chosen and why?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2019-03-13T23:26:22.864832Z", + "start_time": "2019-03-13T23:26:22.862013Z" + }, + "nbgrader": { + "grade": true, + "grade_id": "cell-3a1681e6d52ed236", + "locked": false, + "points": 15, + "schema_version": 2, + "solution": true + }, + "id": "hEVxZ30TFLpN" + }, + "outputs": [], + "source": [ + "poly_svm_list = {\n", + " 2: SVC(kernel='poly', degree=2, C=1e4),\n", + " 3: SVC(kernel='poly', degree=3, C=1e3),\n", + " 4: SVC(kernel='poly', degree=4, C=1e3),\n", + " 5: SVC(kernel='poly', degree=5, C=1e3),\n", + " 6: SVC(kernel='poly', degree=6, C=1e2),\n", + " 7: SVC(kernel='poly', degree=6, C=1e2),\n", + " 9: SVC(kernel='poly', degree=6, C=1e2),\n", + " 13: SVC(kernel='poly', degree=10, C=10),\n", + " 15: SVC(kernel='poly', degree=15, C=10),\n", + " 17: SVC(kernel='poly', degree=15, C=10),\n", + "}\n", + "rbf_svm = SVC(kernel='rbf', C =1e6)\n", + "sigmoid_svm = SVC(kernel='sigmoid', C=1e6)" + ] + }, + { + "cell_type": "code", + "source": [ + "plt.figure(figsize=(18, 6))\n", + "plt.subplots_adjust(top=1.5)\n", + "\n", + "for i, degree in enumerate(poly_svm_list):\n", + " plt.subplot(3, 4, i + 1)\n", + " poly_svm_list[degree].fit(moons_points, moons_labels)\n", + "\n", + " print(f'Polynomial SVC, degree: {degree}. Accuracy score: {accuracy_score(moons_labels, poly_svm_list[degree].predict(moons_points))}')\n", + "\n", + "\n", + " plt.scatter(moons_points[:, 0], moons_points[:, 1], c=moons_labels, s=50, cmap='autumn')\n", + " plot_svc_decision_function(poly_svm_list[degree]);\n", + " plt.title(f'Polynomial kernel, degree: {degree}')\n", + "\n", + "rbf_svm.fit(moons_points, moons_labels)\n", + "print(f'RBF SVC. Accuracy score: {accuracy_score(moons_labels, rbf_svm.predict(moons_points))}')\n", + "plt.subplot(3, 4, 11)\n", + "plt.scatter(moons_points[:, 0], moons_points[:, 1], c=moons_labels, s=50, cmap='autumn')\n", + "plot_svc_decision_function(rbf_svm);\n", + "plt.title('RBF kernel')\n", + "\n", + "plt.subplot(3, 4, 12)\n", + "sigmoid_svm.fit(moons_points, moons_labels)\n", + "print(f'Sigmoid SVC. Accuracy score: {accuracy_score(moons_labels, sigmoid_svm.predict(moons_points))}')\n", + "plt.scatter(moons_points[:, 0], moons_points[:, 1], c=moons_labels, s=50, cmap='autumn')\n", + "plot_svc_decision_function(sigmoid_svm);\n", + "plt.title('Sigmoid kernel')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "4n7I2cdHN2UC", + "outputId": "0d4ce78d-f27a-4e2f-c4e3-d1942016d3ff" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Polynomial SVC, degree: 2. Accuracy score: 0.748\n", + "Polynomial SVC, degree: 3. Accuracy score: 0.892\n", + "Polynomial SVC, degree: 4. Accuracy score: 0.746\n", + "Polynomial SVC, degree: 5. Accuracy score: 0.89\n", + "Polynomial SVC, degree: 6. Accuracy score: 0.742\n", + "Polynomial SVC, degree: 7. Accuracy score: 0.742\n", + "Polynomial SVC, degree: 9. Accuracy score: 0.742\n", + "Polynomial SVC, degree: 13. Accuracy score: 0.716\n", + "Polynomial SVC, degree: 15. Accuracy score: 0.794\n", + "Polynomial SVC, degree: 17. Accuracy score: 0.794\n", + "RBF SVC. Accuracy score: 0.99\n", + "Sigmoid SVC. Accuracy score: 0.642\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Sigmoid kernel')" + ] + }, + "metadata": {}, + "execution_count": 61 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABbIAAAOECAYAAAB0FscHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hT5RfHvzdJaSmlLdCyoZRdKKuUIXsPGYIKooCgPxQRB6Io4EDEhYqKIChDECfIcjBlD9m7jLIKZRVKoXsm9/39cbhN0qbJTZs0aXs+z5Onzc0d78343nPPe4YkhBBgGIZhGIZhGIZhGIZhGIZhGDdF4+oBMAzDMAzDMAzDMAzDMAzDMIw12JHNMAzDMAzDMAzDMAzDMAzDuDXsyGYYhmEYhmEYhmEYhmEYhmHcGnZkMwzDMAzDMAzDMAzDMAzDMG4NO7IZhmEYhmEYhmEYhmEYhmEYt4Yd2QzDMAzDMAzDMAzDMAzDMIxbw45shmEYhmEYhmEYhmEYhmEYxq1hRzbDMAzDMAzDMAzDMAzDMAzj1rAjm2EYhmEYhmEYhmEYhmEYhnFr2JFdhOjSpQu6dOni6mE4hKVLl0KSJFy5csXubUePHo1atWrZXK9WrVro37+//YNzAyRJwvvvv+/QfdaqVQujR4926D4ZhrEM6zXBep0/WK8ZpvBgvSZYr/MH6zXDFB6s1wTrdf5gvS4+sCPbiSjipDy8vLxQv359vPTSS7h9+7arh8cwJYatW7fi2WefRf369eHt7Y3atWtjzJgxuHXrlquHxrgJrNcM4x7s2rULAwcORI0aNeDl5YXKlSujT58+2Lt3r6uHxrgJrNcM454899xzkCSpyDrOGMfDes0w7kHO36LpIyYmxtXDsxudqwdQEvjggw8QHByM9PR07NmzB/Pnz8f69esREREBb29vVw/PJYwcORLDhg2Dp6enq4fClADeeust3Lt3D0OGDEG9evVw+fJlzJ07F//88w+OHz+OypUru3qIjJvAep0b1mumMDl//jw0Gg1eeOEFVK5cGffv38fPP/+MTp06Yd26dejTp4+rh8i4CazXuWG9ZlzF4cOHsXTpUnh5ebl6KIwbwnqdG9ZrxhUov0VT/P39XTOYAsCO7EKgb9++CA8PBwCMGTMGFSpUwJdffok///wTTz75pItH5xq0Wi20Wq2rh1EgUlJSUKZMGVcPw+1xh/fpyy+/RIcOHaDRGJNQ+vTpg86dO2Pu3Ln48MMPXTg6xp1gvc4N63XJwR3epzFjxmDMmDFmy1588UXUrl0bX3/9NTuymWxYr3PDel1ycKf3SQiBV155BU8//TS2bt3q6uEwbgjrdW5Yr0sO7vQ+mf4WizJcWsQFdOvWDQAQFRUFANDr9ZgxYwbq1KkDT09P1KpVC1OnTkVGRkae+0hOTkaZMmXw6quv5nrt+vXr0Gq1+OSTTwAY0wj27t2LiRMnIjAwEGXKlMHgwYMRGxuba/t58+ahcePG8PT0RNWqVTF+/HjEx8ebrdOlSxeEhobi5MmT6Ny5M7y9vVG3bl2sXLkSALBz5060adMGpUuXRoMGDbBlyxaz7S3VhPrzzz/Rr18/VK1aFZ6enqhTpw5mzJgBg8Fg+01VyY8//gidTodJkyZlLztw4AD69OkDPz8/eHt7o3PnzrlSmN9//31IkoQzZ87gqaeeQrly5dChQwcAxtpTe/bsQevWreHl5YXatWtj2bJluY4fHx+PCRMmoEaNGvD09ETdunUxc+ZMyLLssHMUQuDDDz9E9erV4e3tja5du+L06dMW11U7nri4OIwcORK+vr7w9/fHqFGjcOLECUiShKVLl2avN3r0aPj4+ODSpUt4+OGHUbZsWQwfPhwAIMsyvv76azRu3BheXl6oVKkSxo4di/v37+ca14YNG9CxY0eUKVMGZcuWRb9+/XKdQ1ZWFs6dO6eqPEinTp3MnNjKsvLly+Ps2bM2t2dKLqzXrNes14Wr15bw9vZGYGBgru82w5jCes16zXrtGr3+6aefEBERgY8++kj1NkzJhvWa9Zr12nX2dVJSkkO/U66AHdku4NKlSwCAChUqAKBZyffeew9hYWH46quv0LlzZ3zyyScYNmxYnvvw8fHB4MGDsXz58lxfwt9++w1CiOwfjMLLL7+MEydOYNq0aRg3bhz+/vtvvPTSS2brvP/++xg/fjyqVq2KWbNm4bHHHsP333+PXr16ISsry2zd+/fvo3///mjTpg0+++wzeHp6YtiwYVi+fDmGDRuGhx9+GJ9++ilSUlLw+OOPIykpyer7snTpUvj4+GDixImYPXs2WrZsiffeew+TJ0+2/oaqZMGCBXjmmWcwefJkfP755wCAbdu2oVOnTkhMTMS0adPw8ccfIz4+Ht26dcPBgwdz7WPIkCFITU3Fxx9/jOeeey57+cWLF/H444+jZ8+emDVrFsqVK4fRo0ebiU1qaio6d+6Mn3/+GU8//TS++eYbtG/fHlOmTMHEiRMdco4A8N577+Hdd99Fs2bN8Pnnn6N27dro1asXUlJSzNZTOx5ZljFgwAD89ttvGDVqFD766CPcunULo0aNsnh8vV6P3r17o2LFivjiiy/w2GOPAQDGjh2LSZMmoX379pg9ezaeeeYZ/PLLL+jdu7fZd+unn35Cv3794OPjg5kzZ+Ldd9/FmTNn0KFDB7ML/Y0bNxASEoIpU6bk631KTk5GcnIyAgIC8rU9UzJgvbYM67VjYL3Om8TERNy9exfnzp3D1KlTERERge7du6venil5sF5bhvXaMbBeWyYpKQlvvfUWpk6dyqX6GNWwXluG9doxsF7nTdeuXeHr6wtvb28MHDgQFy5cUL2tWyEYp7FkyRIBQGzZskXExsaKa9euid9//11UqFBBlC5dWly/fl0cP35cABBjxowx2/aNN94QAMS2bduyl3Xu3Fl07tw5+/mmTZsEALFhwwazbZs2bWq2njKOHj16CFmWs5e/9tprQqvVivj4eCGEEHfu3BGlSpUSvXr1EgaDIXu9uXPnCgDihx9+MBsLAPHrr79mLzt37pwAIDQajdi/f3+ucS5ZsiTXmKKiorKXpaam5noPx44dK7y9vUV6enr2slGjRomgoKBc6+YkKChI9OvXTwghxOzZs4UkSWLGjBnZr8uyLOrVqyd69+5t9r6kpqaK4OBg0bNnz+xl06ZNEwDEk08+afE4AMSuXbuyl925c0d4enqK119/PXvZjBkzRJkyZcT58+fNtp88ebLQarUiOjo6exkAMW3aNJvnmBPlM+zXr5/ZOU2dOlUAEKNGjbJ7PKtWrRIAxNdff529jsFgEN26dcv1uY4aNUoAEJMnTzbb5+7duwUA8csvv5gt37hxo9nypKQk4e/vL5577jmz9WJiYoSfn5/Z8qioqFznZA8zZswQAMTWrVvztT1TvGC9Nh8n6zXrtav1unfv3gKAACBKlSolxo4dK9LS0lRvzxRfWK/Nx8l6zXrtSr1+4403RHBwcPZ3yfT7wTCs1+bjZL1mvXaVXi9fvlyMHj1a/Pjjj2LNmjXinXfeEd7e3iIgIMDsfS8qcER2IdCjRw8EBgaiRo0aGDZsGHx8fLBmzRpUq1YN69evB4BcM1Cvv/46AGDdunVW91u1alX88ssv2csiIiJw8uRJjBgxItf6zz//PCRJyn7esWNHGAwGXL16FQCwZcsWZGZmYsKECWZlGJ577jn4+vrmGouPj4/ZLGmDBg3g7++PkJAQtGnTJnu58v/ly5fzPBcAKF26dPb/SUlJuHv3Ljp27IjU1FScO3fO6rbW+Oyzz/Dqq69i5syZeOedd7KXHz9+HBcuXMBTTz2FuLg43L17F3fv3kVKSgq6d++OXbt25UopeeGFFyweo1GjRujYsWP288DAQDRo0MDsnP/44w907NgR5cqVyz7W3bt30aNHDxgMBuzatSvf56igfIYvv/yy2Wc9YcKEXOuqHc/GjRvh4eFhNuOq0Wgwfvz4PMcxbty4XMfy8/NDz549zY7VsmVL+Pj4YPv27QCAf//9F/Hx8XjyySfN1tNqtWjTpk32egClMAkhzFJ51LJr1y5Mnz4dQ4cOzU5tYxiA9Zr1mmC9dr1ef/rpp9i8eTMWL16Mtm3bIjMzE3q9XvX2TPGH9Zr1GmC9dqVenz9/HrNnz8bnn3/ODesYq7Bes14DrNeu1OuhQ4diyZIlePrppzFo0CDMmDEDmzZtQlxcXJEsC8XNHguBb7/9FvXr14dOp0OlSpXQoEGDbGG8evUqNBoN6tata7ZN5cqV4e/vny2qltBoNBg+fDjmz5+P1NRUeHt745dffoGXlxeGDBmSa/2aNWuaPS9XrhwAZNfkUY7VoEEDs/VKlSqF2rVr5xpL9erVzcQBAPz8/FCjRo1cy0yPkxenT5/GO++8g23btiExMdHstYSEBKvb5sXOnTuxbt06vPXWW2Z1oABkp1HklRKiHFd5nwDk6vCqkPO9Bej9NT3nCxcu4OTJkwgMDLS4jzt37uR9IipRPqN69eqZLQ8MDDQ7D3vGc/XqVVSpUiVXR+mc31kFnU6H6tWr5zpWQkICKlasaPVYymeSl3PZ19fX4nJ7OHfuHAYPHozQ0FAsWrSowPtjihes16zXyvFYr12r182bN8/+f8SIEQgLC8Po0aOza08yDOs167VyPNZr1+j1q6++inbt2mWnzTNMXrBes14rx2O9dr0/RKFDhw5o06ZNrvrtRQF2ZBcCrVu3ttkZNKcAquXpp5/G559/jrVr1+LJJ5/Er7/+iv79+2eLpSl5dcUVQuTr2HntLz/HiY+PR+fOneHr64sPPvgAderUgZeXF44ePYq33nor38X/GzdujPj4ePz0008YO3asmfAq+/z888/NbphN8fHxMXtuOktqippzlmUZPXv2xJtvvmlx3fr16+d5Hs7AWePx9PTM1VhRlmVUrFjRbLbcFOXioXwmP/30k8U6ezpdwSTr2rVr6NWrF/z8/LB+/XqULVu2QPtjih+s17aPw3rNeq2sBzhPr00pVaoUBg4ciE8//RRpaWl5frZMyYL12vZxWK9Zr5X1AMfq9bZt27Bx40asXr3arGarXq9HWloarly5gvLlyzvU6cIUXVivbR+H9Zr1WlkPKBz7GgBq1KiByMhIh+6zMGBHtosJCgqCLMu4cOECQkJCspffvn0b8fHxCAoKsrp9aGgoWrRogV9++QXVq1dHdHQ05syZk++xAEBkZCRq166dvTwzMxNRUVHo0aNHvvarhh07diAuLg6rV69Gp06dspcrnYzzS0BAAFauXIkOHTqge/fu2LNnD6pWrQoAqFOnDgCa1XLmuSnUqVMHycnJTj2W8hleuHDB7DOMjY3NNQOsdjxBQUHYvn179iy3wsWLF1WPq06dOtiyZQvat29v1QGhfCYVK1Z0+PsUFxeHXr16ISMjA1u3bkWVKlUcun+m+MN6TbBeOwbWa/tIS0uDEAJJSUnsyGZswnpNsF47Btbr3ERHRwMAHn300Vyv3bhxA8HBwfjqq68spvMzjCms1wTrtWNgvbaPy5cv5xmR7s5wjWwX8/DDDwMAvv76a7PlX375JQCgX79+NvcxcuRIbN68GV9//TUqVKiAvn375mssPXr0QKlSpfDNN9+YzZwtXrwYCQkJqsaSX5QZPNPjZmZmYt68eQXed/Xq1bFlyxakpaWhZ8+eiIuLAwC0bNkSderUwRdffIHk5ORc28XGxhb42KYMHToU+/btw6ZNm3K9Fh8f75Danz169ICHhwfmzJlj9l7m/H7ZMx6li+7ChQuzX5dlGd9++63qcQ0dOhQGgwEzZszI9Zper0d8fHz2sXx9ffHxxx/n6goNmH8mWVlZOHfuHG7dumXz+CkpKXj44Ydx48YNrF+/PleqEcOogfWaYL1mvVaO5Qy9tpRWGh8fj1WrVqFGjRp5pmQyjCms1wTrNeu1cixH63W3bt2wZs2aXI/AwECEh4djzZo1GDBggOpzYUourNcE6zXrtXIsZ9jXlj7L9evX48iRI+jTp4/q83AXOCLbxTRr1gyjRo3CggULstNJDh48iB9//BGDBg1C165dbe7jqaeewptvvok1a9Zg3Lhx8PDwyNdYAgMDMWXKFEyfPh19+vTBwIEDERkZiXnz5qFVq1YWGyY4inbt2qFcuXIYNWoUXnnlFUiShJ9++infaT45qVu3LjZv3owuXbqgd+/e2LZtG3x9fbFo0SL07dsXjRs3xjPPPINq1arhxo0b2L59O3x9ffH333875PgAMGnSJPz111/o378/Ro8ejZYtWyIlJQWnTp3CypUrceXKFQQEBOS5vSRJ6Ny5M3bs2JHnOoGBgXjjjTfwySefoH///nj44Ydx7NgxbNiwIde+1Y5n0KBBaN26NV5//XVcvHgRDRs2xF9//YV79+5lj8sWnTt3xtixY/HJJ5/g+PHj6NWrFzw8PHDhwgX88ccfmD17Nh5//HH4+vpi/vz5GDlyJMLCwjBs2DAEBgYiOjoa69atQ/v27TF37lwAFO0REhKCUaNG2WxwMHz4cBw8eBDPPvsszp49i7Nnz2a/5uPjg0GDBtk8B4ZhvSZYr1mvnanXffv2RfXq1dGmTRtUrFgR0dHRWLJkCW7evInly5fbHD/DAKzXCqzXrNfO0uuaNWtarIk7YcIEVKpUiW1rRjWs1wTrNeu1M+3rdu3aoUWLFggPD4efnx+OHj2KH374ATVq1MDUqVNtjt/tEIzTWLJkiQAgDh06ZHW9rKwsMX36dBEcHCw8PDxEjRo1xJQpU0R6errZep07dxadO3e2uI+HH35YABD//fef6nFs375dABDbt283Wz537lzRsGFD4eHhISpVqiTGjRsn7t+/n2ssjRs3znWsoKAg0a9fv1zLAYjx48fnGlNUVFT2sr1794q2bduK0qVLi6pVq4o333xTbNq0KdcYR40aJYKCgiy+D7bGcuDAAVG2bFnRqVMnkZqaKoQQ4tixY+LRRx8VFSpUEJ6eniIoKEgMHTpUbN26NXu7adOmCQAiNjZW9Tlb+rySkpLElClTRN26dUWpUqVEQECAaNeunfjiiy9EZmam2fs1bdo0s+0AiGHDhtk8b4PBIKZPny6qVKkiSpcuLbp06SIiIiJEUFCQGDVqVL7GExsbK5566ilRtmxZ4efnJ0aPHi327t0rAIjff/89e71Ro0aJMmXK5Dm2BQsWiJYtW4rSpUuLsmXLiiZNmog333xT3Lx502y97du3i969ews/Pz/h5eUl6tSpI0aPHi0OHz6cvU5UVJQAkOucLBEUFCQAWHyo+S4xxR/WayOs1wTrtWv0eu7cuaJDhw4iICBA6HQ6ERgYKAYMGCB27dplc1umZMB6bYT1mmC9do1eWyKvz40pmbBeG2G9JlivXaPXb7/9tmjevLnw8/MTHh4eombNmmLcuHEiJibG5rbuiCSEg6Z4GJcyePBgnDp1yq46PUzRYf369ejfvz9OnDiBJk2auHo4AIC1a9di8ODB2LNnD9q3b+/q4TBMkYH1unjDes0wxQfW6+IN6zXDFB9Yr4s3rNeMKVwjuxhw69YtrFu3DiNHjnT1UBgnsX37dgwbNsxlop2Wlmb23GAwYM6cOfD19UVYWJhLxsQwRRHW6+IP6zXDFA9Yr4s/rNcMUzxgvS7+sF4zpnBEdhEmKioKe/fuxaJFi3Do0CFcunQJlStXdvWwmGLImDFjkJaWhoceeggZGRlYvXo1/vvvP3z88ceYMmWKq4fHMG4P6zVTWLBeM0zBYL1mCgvWa4YpGKzXTGHBeu1ecLPHIszOnTvxzDPPoGbNmvjxxx9ZtBmn0a1bN8yaNQv//PMP0tPTUbduXcyZMwcvvfSSq4fGMEUC1mumsGC9ZpiCwXrNFBas1wxTMFivmcKC9dq94IhshmEYhmEYhmEYhmEYhmEYxq3hGtkMwzAMwzAMwzAMwzAMwzCMW8OObIZhGIZhGIZhGIZhGIZhGMatKXY1smVZxs2bN1G2bFlIkuTq4TAMw6hGCIGkpCRUrVoVGk3xn2dkvWYYpqjCes0wDOP+lDStBlivGYYpmtij18XOkX3z5k3UqFHD1cNgGIbJN9euXUP16tVdPQynw3rNMExRh/WaYRjG/SkpWg2wXjMMU7RRo9fFzpFdtmxZAHTyvr6+Lh4NwzCMehITE1GjRo1sHSvusF4zDFNUYb1mGIZxf0qaVgOs1wzDFE3s0eti58hW0md8fX1ZuBmGKZKUlDRA1muGYYo6rNcMwzDuT0nRaoD1mmGYoo0avS4ZhaIYhmEYhmEYhmEYhmEYhmGYIgs7shmGYRiGYRiGYRiGYRiGYRi3ptiVFmHySWYmcPUqIMtAUBDg5eXqETEMwzCWSE8nvdZoSK9LlXL1iBiGYRhLpKQA164BHh6k1zq+9WIYhnFLkpKA69fJDxIURHY2wzBuCf86Szr37wNTpwKVKwP16wMNGwIVKwITJwIxMa4eHcMwDKMQEwO89hppdMOGpNlVqgBvv01azjAMw7gHV64AL7wABAQAISFA3bpAjRrAhx+Sc5thGIZxD86cAZ5+GqhQAWjUCKhdG6hTB/jySwr2YxjG7XCqI3vXrl0YMGAAqlatCkmSsHbtWqvr79ixA5Ik5XrEsEPVOdy+DbRuDXz2mbkTJCkJ+OYbICwMiIpy3fgYhik0WK/dnMuXSZPnzCGNVrh3D5g5E2jThjSdYZhiD+u1m3PiBNCiBbB4MWXQKMTEANOmAZ06AYmJrhsfwzCFBuu1m7NrFxAeDvz2G5CVZVx+9SrwxhvAww8DGRmuGx/DMBZxqiM7JSUFzZo1w7fffmvXdpGRkbh161b2o2LFik4aYQln+HByVBsMuV8zGIDYWOCRRwAhCn9sDMMUKqzXbowQpMWxsXnrdVQUMHJk4Y+NYZhCh/XajcnMBPr1owlHvT7367JMju6XXir8sTEMU+iwXrsxCQnAgAHkqM6p10LQY/t24J13XDM+hmHyxKmF2vr27Yu+ffvavV3FihXh7+/v+AExRs6cAbZutb6OXg+cOgXs3k3RIwzDFFtYr92YnTuBiAjr6+j1wL//AmfPUho7wzDFFtZrN2btWuDGDevrGAwU/ffZZ1Taj2GYYgvrtRvz00806WgtaE+WgfnzgfffB8qUKbShMQxjHbeskd28eXNUqVIFPXv2xN69e109nOLJqlWAVmt7PZ0OWLnS+eNhGKZIwnpdCKxapa5BmFZL6zIMw1iA9boQWLlSnX1tMAB//eX88TAMUyRhvS4Eli9Xt15KCrBli3PHwjCMXbhV6+wqVargu+++Q3h4ODIyMrBo0SJ06dIFBw4cQFhYmMVtMjIykGFStyiRa86pIz6eOvFaSlM3RQhal2EYxgTW60IkPl5diSeNhvWaYZhcsF4XIvfv27atAdZrhmEswnpdiNy7p76EKus1w7gVbuXIbtCgARo0aJD9vF27drh06RK++uor/PTTTxa3+eSTTzB9+vTCGmLxoVIlSpWxhSTRugzDMCawXhcilSqRFtvCYOA0dYZhcsF6XYhUrkwZNJbqY5vCes0wjAVYrwuRqlWBc+fU+UTYH8IwboVblhYxpXXr1rh48WKer0+ZMgUJCQnZj2vXrhXi6Ioww4apE229HhgxwvnjYRimyMN67SRGjLDtFFEYNsy5Y2EYpljAeu0k1Oq1lxc18WUYhrEB67WTePppdf6QgACgWzfnj4dhGNW4vSP7+PHjqFKlSp6ve3p6wtfX1+zBqKBmTeDJJym1MS+0WqBHD6BZs8IbF8MwRRbWayfRvDnQvbv1uqsaDfDUU0D16oU2LIZhii6s106iZ0+gSRPrfQ0kCXjpJcDPr/DGxTBMkYX12kkMGQLUqGG7r8GbbwKlShXOmBiGUYVTS4skJyebzR5GRUXh+PHjKF++PGrWrIkpU6bgxo0bWLZsGQDg66+/RnBwMBo3boz09HQsWrQI27Ztw+bNm505zJLLggXUWX3nTnKCKDOSSgp706bqmyAURWQZ2LoV2LuXUjxDQ4FBgwBPT1ePjGEKHdZrN2fFCnJmnzhBz5Wafop2d+oEfP+968bnbAwGYP164NAhet6yJdCvn7ommAxTzGC9dmM0GtKqLl2Ay5dpmaLXWi1p2aBBwMcfu2qEziczE/jzT+DkSTrnhx4iB7+14BmGKaawXrsxXl7A5s1A167AnTvm0dmKXj/3HPD6664bo7NJTaVG8ZGR5Kzv0gXo2FFdSUOGcSXCiWzfvl0AyPUYNWqUEEKIUaNGic6dO2evP3PmTFGnTh3h5eUlypcvL7p06SK2bdtm1zETEhIEAJGQkODAMynGZGYKsWSJEGFhQkiSEIAQjRoJMX++EKmprh6d89ixQ4jgYDpfnU4IDw/6v3x5ej8YxgW4Ur9Yr4sAqamkzY0akV5JEmn30qWk5cWVP/8UompVOmcPD6NeV64sxOrVrh4dU0JhvWaskpAgxJdfClGnDumVRiNEhw5CrFghhMHg6tE5j2XLhKhQwajXOh39X6uWEFu3unp0TAnE1drFel0EiI0V4sMPhahWjfRKqxWiVy8h/v5bCFl29eicgywLMXu2EL6+ufW6YUMhDh1y9QiZEog92iUJobZVa9EgMTERfn5+SEhI4LQae5FlihqxlV7jShITgZ9+AnbtArKygEaNgP/9DwgOVr+PXbsoslGW866LNX8+8MILjhkzw6ikpOlXSTtfh2IwULSEO0e4xcUBS5YABw6Q1jZvTnpdtar6faxdCzz6KP2f01xRokVWrAAef9wRI2YY1ZQ0/Spp5+tQ9HrSanfW61u3gMWLgePHSVtbtwaeeYZqw6pl8WJgzBjLrynnv2kT15plCpWSqF0l8Zwdhl5PvhB3jki+coX09vRpwMODIqhHjrSvXNUnnwBTp1p+Taul6Ow9e4CwMIcMmWHUYI92sSObKTr8+isZyOnpdHERwphWP3488PXXlp3wycnAli1AfDx1HH7lFUr3tNbcoVQpMurLl3fW2TBMLkqafpW08y1RzJ0LTJxIDnfAqNcA8M47wLRplm8S7t8Htm0DkpKAypWpcdq9e7md2AqSBPj7k15zWSimEClp+lXSzrfEIAQwYwbwwQf0vxBGbdZqgS++ILvZEnfuADt2AGlpQGAg8NhjZKPnhUYDBAUBFy+6t1OfKVaURO0qiedcIjAYyLaeM8foA1F8Il5eVGJw5EjL216/To7pzExyeA8enLdtDZD+t2xJwSgMU0jYo11cXJIpGqxZAwwfbnyuCK/iJPn2WxLzb781rpOeDrz9NvDdd1T/yR6ysoClS+liwTAMw6hn4ULg5ZdzL1f0evp0MsDfe8/4WmIi8MYbwLJlQEaG+mMJQc7vlSvNrxEMwzCMbT7+mCYWTVFsbFkGXn2VgjtMsxRjY4EJEygbRq9XfyxZBqKiqD9Nz54FHjrDMEyJYsIE8nUIYR4oAtCE4tNPA6VLm2cpRkeTTf7339Yd1zkxGICDB6k3T7NmDjsFhnEU7Mhm3B9ZJuFWZhwtIQQwbx6tV68ezTY+/DA1srQWeZ0XkgTs22d7Pb2emvps307HrF+fIggrVLD/mAzDMEWdtDRg0iTb682YAYwbR1F8yclA587AqVNGw9wePDxIr205sjMzaVL0v//oOE2aAE8+CXC0EsMwJZG7d2li0RZvvQWMGkUOkthYoG1b4OrV/Om1Tkd6bcuRnZpKjvIjR+h5y5bA0KGAt7f9x2QYhinqXLpE2Y62mDiRoq21WtLp1q2tZzbaYt8+247sxETgt9/IjtdqgXbtaAylSuXvmAyjAs7rYtyfLVtoNtGWAGu1wIIF9P+cOfl3YgO0XUyM9e137qQUyUceodnRhQvp4lGlCkW35PfYDMMwRZVVq4CEBNvryTJlvQDk1M6vExug7W7csH6N+Osvqs09bBj1QFiwgBzplStTWariVWWNYRjGNsuWqdPdxETgjz/o/0mTyCbPr17LMqW42xpXlSpUo/v77+nxzDO0bNmy/B2XYRimKLNggbo+ZteuAf/+S/+/8AI5se3JnMnJjRt5vyYE2dCVK5NNvWAB2djDhpHN/ddf+T8uw9iAHdmM+xMRoa6WnsFAzhBZJkd2QR3Je/YAdeoAf/6Z+7X//qNokpgYep6VRQ9Zpr8ffEARLAzDMCWJiAiKkLaFJNG6aWnkpMivUwQg3V27lpr/bt+e+/V164BBg8iYB4x6LQQd/7XXgFmz8n98hmGYooha+9rDg+zruDjqV1MQp4gsU+BHWBhw+HDu15cto+jvxER6rug1QMtGjQJ+/DH/x2cYhimKRESos5W1Wlr30iVqrlsQvQaADz+kZpLnzuV+7csvyYZOSyOb2lSv790j23vduoIdn2HygB3ZjPujZvbRdN2oKEqlcQRXr1JqzG+/mS9/6SW6mFhzln/xBXDhgmPGwTAMUxTQatVFN0sSrXv8uLoIbjWcP08TjJs2GZcZDBQlAlgf15QplDLPMAxTUrCn4aJWSwEeipOioJw8Sc4R00ZiqamW+yvk5JVXyHHCMAxTUlDrDxGC1t22zXHZhvv2UUkpU2d2bCwwebL1cQBkgxckWIVh8oAd2Yz70769uuhqjYbWtadRmC2UDu7/+58xOuTIEeDYMdtj0mqp0STDMExJoX17ddEfer3j9VqW6TFypNHZsnkzpVnaMuZlGViyxHFjYRiGcXc6dFCn11lZpNfp6Y47tsFA+x01yqjPK1YYbW1rJCYCy5c7biwMwzDuTvv26iYfZZlqVKenU9CIIzAYqJ/N2LHGZUuW2PaFCEE2uGmACcM4CHZkM4XDzZvA559TFMXUqTSzp3aWMDwcaNHC9kykRgOMGQNUr64utd0e0tONdfkspUJaQun2yzAMU5S4cgX4+GPS6/feo6hptfTuDdSoYd3YliTAx4dq6NWuXdDRmiMERYmsXUvPDx+m5mJqUKvtDMMw7sK5c9Sw8ZVXqKydpfTvvBg6lJrdWnN2aDRAtWrUQL1u3YKP1xSDAYiMBHbtoudHjqiz3z08jE0gGYZhigrHjgHvvkt6/fHHZG+r5dlnbftCtFqgaVNq8Fi3rmP7vxgMpNVnztBztRqs07FeM05B5d0dw9jBnTvUGMDHB6hZE3j1VaqHBxjTzj/5hDrg/vEHUK9e3vvS66lRgE5nOy3lo48Af3/qkPvEE8Dvvxe8LpSCJFFzx5decsz+GIZh3IGbN4Hbt0k7AwKA556jqDiNhh5CUDPGDh1IU6tVy3tfGRmk6X5+FIFhCcVh8vXXpNU1awI9elAKpKMa5Hp4kF4PGeKY/TEMw7gD0dFUp7pCBaBMGWDECGDjRrKtNRrS0GnTgL59gZ9/BsqXz3tfKSlU7zowMO8oaI2GNHvOHLoWhIUBTZpQvWxHodORXnfu7Lh9MgzDuBIhqNRpQgJQqRI9f+IJYO9e0jxJIr1+5x2aUFy8mDQ9LxISqMxpxYp5N1/UaMj+/eor2nevXtRw8eZNx52XJJEzu1Ejx+2TYfIJR2QzjmPvXqBfP+pcGxYG1K9PxvaCBcaU76wso3P59GlKfcmrnnVCAtClC/DYY8DRo7lfVyL+vLzIIfLWW/R/797kdLGntrYtlLEDQMuW6rbRamlGlGEYxt3YvJn0tVo10uvatYEqVciJLYQx7VvR6/37Ka3x7l3L+4uJoeyZkSON0RqmKHpdujQZ8WPGkF4PHkwPR6I0nAFIr9VOaIaHO3YcDMMwjmDVKrIng4JIr4OCKPNl82Z6XdFrJeBD0ffkZMv7u3wZCA0Fnn+enC05MdVrAHj0UcDbmxznzzzj0FODJJnrtZoa3FlZ6m1xhmGYwkIIakbbtClQpw7pdbVq9P++fbSOXm/UayGAlSsp4yUv7Tt5koL+Jkyw7JRW9NrbmwJKunenYMKxY4Hx4x17fqZ6HRambhu9nvWacQrsyGYcw++/A506UQ0k0zSWlJS801r0eiA+nlJsciIE8Pjj5DwBLEdjyzI5i7OygMxM43ZbtwIvvECOdEeh1QING9L/4eFA8+a261QZDDQOhmEYd+Lbb2nCb88e8+W29Pr6dWDmzNyvGQxAnz7GlHZLkdWyTAZwRobRCJZl4J9/yNB2pF7LslGve/emclO26gRqNI530DAMwxSU998nezhnanZaWt5ZLAYDBYvMn5/7tdRUcnQoWTN56TVAZfUU+zsriyY6X38dCA7O16lYJCvLqNdKqRNb+PrSugzDMO6CEGTPjh6dO6AjI8O6Xu/aRRHXObl7l/T63j1j366cKPtNSzO+np5ODvX336eIcEdhal8/+6xtX4gkkQ3eu7fjxsAwD2BHNlNwLl+mKDxZtr8rrV5PTvC4OPPlBw8CW7bY3p/BkHsd5fmpU46LyjYYKOVe4dtvjamcefH669bLpjAMwxQ2hw8DL79M/9ur1wYDlYnK2fBr/XrgxAnbkc9KpLcpyjbnzqlrYqMGrZauScr/StNda87sjz+mFHuGYRh3YeNGqn8N2F96SZaBuXNzOz5+/ZXqsqrRf0t6raTMOwo/P8q8BCiicM4c29t88w2tyzAM4y789JNx8tBevdZoSK9zsmABObHzq9d6PZV8dRQ1a5JjHSCb+ZNP8l5Xsbnnz3dsljzDPIAd2UzBmT+/YM0EsrKAiAjzZUuWqG/QZQ01wq9mNnHsWEoLUmjXjlI3lVlODw96KPWp3n0X+Oyz/I+bYRjGGXzzTcEMyoSE3E6MxYsLbqQq9QLVrGeLKVOo3rdCv37U/LFcOXqu6LUkUer8V18Bb7yRr2EzDMM4jS+/LJi2RkeTE8SUhQsLPmkoSeq0WA0ff0xlphSefhpYutQYma3oNUDLli4FRo1yzLEZhmEcgRDA55/nX1tlmbJucvpTlPKsBRkXoF6vba33xRfm5/j662RDly5N25rqdblywJo1QP/+9o+bYVTAzR6ZgrN8uf2RfTnJKdxXrzquUaMtZBl4+21KmVdqeQN082AwUC1XS7OkXbrQTcK6dcD27VTepEEDqiFYoULhjJ1hGMYeVq50vLZevuz4a0BeaLVUJ3DWLDKmleNqtaTdb75JqZQ5GTgQuHULWL0a+O8/2q5JE+Cpp9SlsjMMwxQmKSmUmViQQBFLXL1a8Ma6asdUtizw5JPkjFFsasDoCPn0U+DFF3NvN2oUNetdscJYUqVlSyonwpHYDMO4G1ev5g7KcwSOaNSoVq+rVaMeY8uXUzChcq+g0ZB+z5+fu4m6JJFN/uyzlO2jZMO3a0e9FUqVKvj4GSYP2JHNFJykpIJtr9MBjRvnXi5Jjjfgc6LRUBfhDz8EXnoJWLSI6sZmZVGjhuefB0JC8t5epwMeeYQeDMMw7owsUw29guDjA9SqZb6ssFIGJYl0+vPP6e/ChcCBA3SdCA+nzBlrtVtLlQKGDaMHwzCMO5OUVHAbuFo1YyaKgiOyHRVs2elTpwKTJ1PU3oIFwPHjRifHc88BVavmva23N9WaHT3aceNlGIZxBomJBdteoyG/g2lEtBAU3aymAa4abOn1jBnUK2bqVNLrM2cAT0+ga1dyVJtmOubE15f7gjGFDjuymYJTqRI1bcwPOh3N7im1SW/eJOfxxo0OG55F4VZmGh9+mNLiAaByZeCddxx3XIZhGHdCowHKl8+daq4WrZYyVEqXpucXL9Lz48cdNkSLKHo9ciQ5sQEgKIgmIBmGYYoj5coVzImh0dCEnxL9fOIEOY9v3HDcGC05RRS9fv114K23aFn9+pSSzjAMUxwpaENFWTb2rwEoqO6FF6g5r6OwpteffGJseN60qeVMdIZxM7hGNlNw1HSttYRWS9F9M2bQ85gYoG1bYNMmx47PtD6UJFEEyIABwL//An/9ZXTKMAzDFHeeeSZ/EdQ6HRnqimPi0iWgTRsytp2BJNF1pXp1SiffvZtqozoympBhGMZd8fQk7cuP5mm11GxcKdtx/DhFQR896tAhZiNJNM6gICoLcuQIOa4dVUebYRjGnalUCejRI3/2tVZL9vTw4fR8xw6Kgj571qFDNMPDA6hdm5zlp09T5gzDFDHYkc0UnGefpa7jtsRboyFDVzHKa9cm54TSRHHKFKph6qza2ELQGBo1ojqpPXqwkc0wTMli/HgqsWFL+7Rac70ODQX27qXMFYAi/RISCl4bOy8Uve7SBfjlF6rbx3rNMExJ4vXX6a+9et2+PbBzJ6V7C0HlOTIynKvXQgCPP04l+sLCnHMchmEYd2XyZHX9BxStVvS6b18K4vP0JI0eMcK8Z5czMBjIiT1nDvlFGKYIwqFNRR1ZBrZupQL8J0/SDFu3bsC4ceR4cDZJSdQUoEIF4P793K8rKStvvEHR19euAWXKUOOtbt2MxnlcHDkrnN3g0WCg5jkXLwJ16zr3WAzDMKYYDNQc9vvvgXPnAC8vMmBfeKFw9OjePWDVKqpzd+1a7td1Ohrj++9T89pbtwB/f+Cxx4CHHjLq9eXLZHQ7u4eBXg/8/jt1RLdWm49hGMbRZGYCa9ZQLf7Ll6lx4cCBVP6uRg3nHz8mBvj7b7Kvb9/O/briBPn4Y+DuXXoEBFAPgBYtjOsdOkRlRZyNwUDv1YwZnOnIMEzhkpZG9uLSpWTf+vtT6dL//Q+oWNH5x796lfwL/v6W/SFaLfloZs6kdRMSKDBk+HDzXlwbNji2/FNeyDI5sV9/PX9Z9QzjBrAjuyiTkgIMHkwlMky7y168CMybR/WeP/jAeVFsly6RM9qSQwQgwX78car59NBD1vd18KDjmhmo4f336UbE35+66tarV3jHZhim5BEXB/TrR80JtVpjZFxkJPDll/SYMMF5xz9xgrJQ7t2zHOXh6UlRIC+/DDRrZn1fu3c734mtoNdTtk5AAD2GDAFq1iycYzMMUzK5fh3o2ZMmHDUao2aePg18+inwww9Us99Z7N5NPVxSUy3rtbc3OWjGjwcaNLC+r507za85ziQxkcpPlSkDVKlCzdQLWjuWYRjGGpGRpNfXrpnr9YkT5Af54w+gf3/nHf+ff8jfoddb1lk/P2pG/uKLVH7JGjt2OLbBozWuXSP7Wqsln8gTT1AfHYYpIrAjuyjz1FPAtm30v2kks/L/hx9SJIcznCNpaeQUuXEjb4dGVhY5bmw5sQHnR2Ln5Ndfyfkvy5QK1Lcv8OOPxqaTDMMwjkKWqS7/4cP03NTQVf5/7TXSH6VGniOJiwO6d6emvHmlKmZkkJPYlhMbKNxJR4Aa8irR4pMmUd3YhQspQpJhGMaRpKeTfXvpEj031UxFr0eNoii/3r0df/yrV8kmTUuzrNeSRNHiI0fadmIDpNeFWZbp22+NjvPXX6fyg998Q5OlDMMwjuT+fQqqU7JWTDVTlsm2HTwY+O8/oFUrxx//5EkKiNPrLftDNBoaw5gxtp3YQOH7Q774gvRaryd/0Suv0GRtfmp9M0whw7kERZWjR6lRoa0Ii+nTySh3NCtWAFeuWD++JNHx1UTuqTHGHYkQZNwr49+8GejYkRw9RZnUVIq+2bgROH/e1aNhGAagrJl9+2zr9TvvOKcm3uLFZOxbO75Wa2y8awvTNMjCQNFrWab/V66k6BtnXNsKk8REmozetImupwzDuJ4VKyjCz5pDQZKAadOcc/w5c0jb8roWKDb1zJnq9hcSUrjOEVk26rVeTzWzBw8unIhwZxIXR6UcN28unNR/hmFss3gxlWHKS1+U+v0ffuic43/+ufEYllB0cPZsdftr2NA1ei0ETZDOmkWTj4WVdeksYmLo3mvLFuDOHVePhnES7Mguqvzwg7pO5vHx5PB2BFFRwEcfUer5u+/ajvAQArhwAVi2jGppW6N+fXIku2oG0GCgkiyzZrnm+AUlKQmYOJHqbXXpQtE8DRpQw5+tW109OoYp2SxapE7brlyhlHJHcO4clVB6+WVyeNhykBsM1Mzx778pEtAa7dqRZruq+aLBQOWoFi50zfELyt27VBe9UiWKlO/TBwgOJuf8gQOuHh3DlGwWLLBdM1SW6bd69qxjjnnsGE1kvvQSRTTbcvrq9VS/e/ducj5Yo39/1/YYkGWq+7pypevGUBCuXweefppKpfToQVH4NWoAjzwCRES4enQMU7L5/nt19u3ff1vuNWAvQlB095Qp1I/s119tO571enK4Hz9ue92nnnJt9ooQ5LfZudN1YygI589Tdmn16kCvXmRXV6sGPPkk9bpgihXsyC6qXLqkbsZOpyMHtDWEoEiDW7csp4ynpFDzmDp1KALl+++prpLa2brRoykFc9w461EMn3xCjpGCOkfyu73BQE0zCzttvqAkJtIkwDff5J4w2L+fRPz3310zNoZhyLBSG41my9ASAoiNpWgDS9eAe/doIiskhCJQvv+elqll4EBysE6cSNcFS0gSpSM6goI0mfnmm6IXNXLnDtCmDU1u5Iwo376dtHzzZteMjWEYsq/VZsbY0mtZJufJ7duW93njBtChAxAWRhOOCxaozzSRZaBTJ3Kwvv123gEjHh4UNegI8htsotUCc+c6ZgyFSVQUEB4O/Pab+b2BENS4uU0bmlRlGMY1XL2qbj0hgOho6+sYDGRbx8Zati0vXKBGuu3bkw28eLH6a0V6Om1bowYFBWZkWF7P15ey2QuKJOVfr3U6mlAtapw8SeVj1qwxv+fS62kiNTycgnyYYgM7sosq3t7qHLaynHf3cL2ejObQUIrWqFqVampPnGhs4KjUuV65kkTdYMifozc9nW7cw8KMdQdz0r49RY+XKZN/h/bEieQ4B0jA7RXyuLiil+I9eTJFhVhylCmp+E8/Ddy8WfhjYxiGNE0teel1ejrw9ddA3bo0MVilCjmc336bjG6AJh27dKF0OiD/ep2URE7iVq3IqLfEgAHAzz9T5Eh+Jw8//pgc5wAZzvbotRCURZOYmL9ju4oXXqAbL0t6bTDQ4/HHbWcxMQzjHLy81K+bl14nJlJwRo0alClXuTJFiH30EZCQQOvcvUtObCULQ6/Pn17fu0dO8A4djPvOyejRVLJEp8v/5OGCBTTRBtiv1wZD0cw2GT6c7gssTRobDOSMGjSo8OvaMgxD2BO9nJde371LmeaVKpFtXbEiULs2NWFXMhSjoykb8fRpep5fvY6JAd57jzI78pq0nDSJMioL4oxevtzY88ZevdbrgT178ndcVyHLVKs8JcWyfa3X03V5yJCiFwDD5I0oZiQkJAgAIiEhwdVDcS7ffy+EJClVmaw/zp7NvX1GhhB9+tA+cu5HqxWiXDkhTpwQYtkydcdQ+9DphGjaVAhZzvvcEhOF+PxzITw87Nt3v35CZGXRPs6fF2LyZCEee0yIJ5+0bz/nztE+DAYhtm+n92DVKiHu3XP4x1hg4uOF8PKyfU4ajRDTp7t6tIwNSox+PaDEnO+MGfQbVKOPMTG5t09MFKJt27z1ulo1IS5dEuKLL9Qdxx697tnT+rnFxQnx9tv2H3f0aON14NQpIV57TYhHHxXi8cft24+iy1lZQmzeLMSPPwqxdq0QSUmO/QwdQXS0uuu2JAkxf76rR8vYoMTo1wOU8/3hhx/ErVu3XD0c5/Hyy6R9tn6nPj5CJCfn3v7OHSFCQixrokYjRP36pPNvvkn67Si91mqFePpp6+cWEyPESy/Zv+833zTu4+BB2sejjwoxcKB941M0Pz1diHXrSK//+UeItDTHfX6O4tgx9ee2erWrR8tYoaRptRAl6JyHDFGn11WrCqHX597+yhUhatTIrcWKvd2qlRAJCUKMGqXuOGofGo0QkyZZP7foaCFGjLB/3198QdvLshA7dwoxdqwQgweT30ftPipWNI4jOVmIP/8kvd60SYjMTId9fA5j0yb157Znj6tHy1jBHu1CIYynUCkxwp2UJETZstZvinU6Ibp0sbz9669bdzxotUJUqSJEy5aOdYyoFZGZM9U76gEh6tXLW1jv3VO/Lx8fIVJThfjhByFq1jR/zdNTiOeeowuau/Dnn+rfoxYtXD1axgYlRr8eUGLO99Yt2xNzOh1Nulli+HDrDg+djhwnQUGO12pAiMhI6+f3+uv26XWbNjRRaImLF9Xvp0oVujH56ishKlUyf83bm5zj7uQgWbhQ3XlJkhAPP+zq0TI2KDH69QDlfCdPniymTZsmfv/9dxFjaeKtqHPmjG0902qFmDDB8vbdu1vXa61WiI4dhfDzc7xW63RC3L5t/fxGjLBPrwcMyDv4ZPdu9ZrWrBnp9QcfCOHvb/66n58Q771nDEZxBz76SN1Eg04nxLPPunq0jBVKmlYLUYLOedcu279RjUaIjz/Ova0sC9GkiXUHtVYrxKBBQpQq5Xi9LltWiJQU6+fXrZt9ev3cc3nv6+ef1et1r1404ThpEvlGTF8PDCRnubWgxMLmlVfUTTTodBToyLgt9mgXlxYpqvj4UN1jrdZymqBOB5QvDyxZkvu1pCRg3jzrdZ0MBqqZfeyY+vpPatHpqH5RRgawaxfVmTt+nCRG4euvzZ/b4sIFarhgiaVL1e9n2DBKJXr22dy1tDIyqDxKeLj7pH2npDhnXYZhHEflytSgV5Is67VWC9Ssabmr+c2bVJ/TWo1tvZ6ajqmtFWgPWi2wdi2Qmko1nNevB86cMV9n3jz79PrAAWDjRsuvLVqkvlTJmDHAa6/RI2cTn9RU4KuvKBU+r1qEhU1Kirq0fiGA5GTnj4dh8kFISAgkScLZs2cxf/58rFixArcd0UTLXQgJITsQsKxFWi3QpAnwwQe5X4uIoAbb1vTaYKAmjXmVASkIej1pdEICsGUL/X/hgvH1tDSyle3R63Xr8q4DrVzXbCEEMHYsMGIE9dqJjzd/PSGB3s/+/dX3k3A2avValtm+ZhhX0bEjNV7MC42Gegm8/nru17ZvB06dsl4ayGAA/vzTdlPd/JCURE0V4+KoN8rGjeZ2/K1bwLZt9un1jz9SXx5L/PKLer1+/nkqLTtrVm57NDYWeOMNKltqz9iciVoNliTW62IEO7KLMg8/TALXpo35cq2W6gQdOgTUqpV7uw0bjDWfrKHRON6JDZDobdtGdbk7dybDtUULqs/95Zd0zLzqsuaFJFGt6Mceo67iTz9NRrwsA//8o15oy5WjzvHWxn7hAtVYcgdq1lS3nlYLBAU5dywMw+TNiBHkEGjSxHx5qVLAyJHUmDUwMPd2q1er279OV/AxWkKSgFWrSJ+7dSPDtnFjo3M+IUHd9cQUrRaYMAEYPJj0eswYYO9e0te1a+0zjOfMsf764cPkQHEHatZUd03V6SxfuxnGDRg0aBDGjRuHxo0bQ5IknDlzBvPnz8e54tREacIEChapV898eenSVOd+1y6gbNnc261YoU6L81v31BaSRLWsAwOp0Xe/fkD9+mT/rVlDfQXstes1GmrWPmAA7fPFF4GjR+m1v/5Sr9e3b9N7am39TZus2+CFSc2a6mpfazTqbXGGYRzPRx+R7uX8Hfr6ksN140aytXOyfLnzbGe1fPgh1ebu3ZsatdeqRZq9bVv+GskaDMAzz5D29+5NgR5nzpDub9qkXq+PH6cxWLte/Pyz+zSFrFlT3bkZDKzXxQhJCHeZSnEMiYmJ8PPzw6JFi9C+fXvUq1cPWmcZjO7EmTP00OnIsV2lSt7rzp8PjB+v7gfv7U3NCGwZvt7e5Nz96aeCO7/Dw8n5kB8kic5LpyMDtHlzen7ihLrtW7TIHR2eF3v2UINKVyLLdKN1+bLtdVescB8HPGMRRb8SEhLg6+vr6uE4nZJ2vgBIW44fJ4eCpydpSIUKea8/fToZ6WqaypQurc6pHBhIjcH++qvg0W/t25MTuiAoet25M70vN26o265hQyAyUp1eR0bSzYEryciga/P9+7bX3bGD3g/GbSlp+mXpfO/cuYOdO3fi6tWreOWVV1DqgbNAr9dD52oHgSMQgpwJV69S096OHck5khfjxwMLF9rWa6X5lq31NBpq8FutGkXuFdS+7tiRosELgqLXgwZRFGFqqrrtatbMneloCY2GnN4BAQUaZoG5f5/0Wk1Gz+nTQKNGzh8Tky9KmlYDJfOcIcvAf/9RJqOvL0Vie3vnvf6QIRSoYcuG9PAgW9mW/mq1QOvWFPF76lTBo5XbtqUgl4Kg6PXIkeSjUUv58tRI2BalSlGGTV6NNAuLK1eoQaet91yrBa5fp2Acxu3Q6/XYsGEDBg4cqEq7ioGVaZmLFy/i2rVr8PHxQbNmzdCiRQsEuNooSkwkEdm/n8SwSROaNatUqeD7btRIvREVEKBOXDUacpLacgJLEvC//1HazrJl6sZgjfw6sQHjeSlRFBERJK5arTqHzbFj6o/1wQc0u+lKNBpydI0cmfc6Oh3dCA0aVGjDYpgiT1wclSVSNCE8HBg1irI2CoIk0YRZixbq1g8IUBcVptMBoaHAkSPWjW1JAl59FejThyL0CkpBndiA8fz27KGbDmVC0hb2RIB++ilFkLsST0+KNrSU4qqg1dLNS6dOhTcuhsknFStWxJAhQ5Cenp7txBZCYNGiRfDz80OrVq1Qp04dSGrLBeWXW7eolF5EBP2G2rcHhg+3HDVtD5JEwSE5Mx/zQq19DQBhYWTvWrNNZZkiCqtXpzT4glJQJzZg1Ou//wa8vNRvp8aJDdA5z50LvP++3UNzKOXKUWT+Z5/l/ZlqNGRbsxObYdRz9SrZY+fPk13UrRswdKh9emIJjYaCNNRSoQJdL2zZ2AYD2ewnTtguQzJ5Mk2CjR6tfhx5UVAnNmAc708/kdNZbYkUNU5sgPa3fLljzrcg1KpF2fjWAioliUqmsBPb7bh//z7Wrl2LjRs34vr166q3K7alRVq3bo0yZcogOTkZe/fuxdy5c/HDDz/g1KlTrhnQ0qX0w3n5Zap3unw58PbbZJxOn164NYb69qXIElvIMt1wt2tnvaaSECSUQUHAk0+qqylXWOj1VIPKGTX3tm5V52ByNiNGADNn0v+mEVDK51C7NvDvvzSjzDCMdYSgEkdVqgBvvkmp0L//DkycSMvmzi3c8Tz2mDpN1euBd9+lqGNbei3LQMuWQPfuzktxzw8GA+m1M66Ha9c6fp/54bXXgEmT6H9TvVY+h7AwqsfobMcfw+STGxYyJrxMHBDXr19HTEwMIiMj8fPPP2POnDn477//kKo2ctceZJkmh2rUIP1bvpxs7BdfJJv7l18cf0xrPPGEOrtQr6fJtcqVbf/WhaAU8SZNXJ8Gb4rB4Lxao7/95pz92stHH9EENmBZr7t1c0wAD8OUBPR60ubgYPptrVhBGj1qFNnX69YV7niefFL9ffycOdSfzBqSRLo4dChdk9zJvgacU+cboBIj7sB331FJFcD8vVe0e8gQy72IGJeRkpKCFStW4NFHH8XSpUtx+/ZtlLYjur/YlhZJSEhAmTJlcP78eRw7dgwXLlyAEAJNmzbFo48+WriD+uUXcjZaY/p04L33Cmc8AM0YWosyAMjZHR1NaZV9+9re56pVFOX3yCNUn7okcO9ewSM0HcWpU1Q25p9/qBxM3bpUG3boUNen/DCqKGmpgG55vl9/Tc5Ga8ybRzVDC4tnnqGbZWuR1gEBlC73yy+UIWOLXbsogrtXr4JlwRQV1ETdFCaHDlFtwS1bqLxASAjd4A0ezJOORQS31C8nopzv5MmTERoaij59+qBCHmWR7t69i8OHD+P48eNIT08HAOh0OrRq1QodOnRAGTXBFGqYOhX45BPr6/zxB/D44445nhr69KHftbUAitq1KRrx009t14TWaMi+8/Mjx2lejbyKE4GBwJ07rh4FIQRdL+fNo4h2WabozBdfpF5F7uasYnJR0rQacNNz/t//KHPGku9BaYa+eTPpXGEgBAUPRERYtw9btiSb7eWXrdeEliSKer58mRokduumvlReUSY0lK5R7oAsU/De3LnGe5u2bansV/fuHCTiJty6dQt79+7Fzz//jPj4eKSnp8Pf3x9DhgxB9+7dERwcrEq7irUj2/TkExMTceLECQQHB6N69eoAgNjYWKxfvx5hYWEICQlxTj2/rCygalXg7l3r6+l05IRwRJkRteN6/HGqkZoXGg2Jd5Uq1PncmshrNMBDD1Fq+LVrlGaXs8ttcUOno9qA7HRgHIRbGp5OxO3ONyGBIuQeOF7yxMeHGtI6yhlji5QUco7s2ZP3OpJETumEBJp8tOb01ulownHlSjLgW7Z0XqSGu1Chgu3rMMPYgdvpl5NRznfq1Knw8PCAVqtF27Zt0alTJ3h6elrcJjMzExERETh06BBu3boFABg+fDjq5WyimB+uX1fX4KlqVQrKKCyH4717QJcutm/sn3oKOHCAnB7WzkGno6CEuXOpTna3bs5pxO5OhIRQ3x+GcQAlTasBNzznEyeob5U1NBpqJn7iROE5HK9do94BV69aX+/VV6lsha2SGxoNMG0aBSeuWkVRwMXL1Zabrl2pMSTD2ECv12PVqlWYPXs2kpOTUb58efj7+6N79+4YOnQoKlWqZJd2ObUGxK5duzBgwABUrVoVkiRhrYrU3h07diAsLAyenp6oW7culi5d6pCx+Pr6omPHjtlObAA4ePAgoqKisGrVKsyaNQsbNmzA7du3HXK8bP76S93NsywXbv1ODw/grbesryPLVG/1779tR7LJMtVKvXsX+P579c1fiipaLU0EsBObKSa4k167jF9+UdfYKTmZUtgLizJlbEeJC0E1+5UeDNbQ66nUhsFAaXbOKL3kTmg0trOiGKYI4Uq9fu6551CvXj0YDIbs0n0nT56EpbiYUqVKISwsDM8//zxGjBiB8PBw1K1bN/v169evI0tNI1tLLFqkruzSzZvAhg35O0Z+KF+eHM+2+PVX4NIl204Ovd54vfnii4KPz92RJNZrpljB9jXIN2ArYFCWaQLw0KHCGRNAJUBGjLDtOJ89W13daFmmcoSAsexncWf4cFePgCkCXL58GWPGjMG7776LmzdvQgiBPn36YNmyZXj55ZdRKR/BvE51ZKekpKBZs2b41loahglRUVHo168funbtiuPHj2PChAkYM2YMNjmpoV6HDh3QpUsX+Pn5IS0tDQcOHMD8+fOxcOFCHDlyBHpHpCGfOKHO2SlJwMmTBT+ePcyfr+6iYs9MYkIC7be4R4vIMs3OMkwxwd31ulA4eVJdDVIPD9fotSMjCg0GMsp/+qlkOLJffNHVo2AYh+FKvS5fvjyGDx+Op556CuXLl0dSUhJWr16NpUuXIiYmxuI2kiShbt266N+/f3bjx7S0NPz888/4+uuvsW3bNiQmJto3kJMn1dmaOl3h6rUQ5LSx5WS3p59MYiJw+zbVkC3O9rUkUSk8NeWxGKaIwPY1gKNH1Zd3K0y91uspkNCWr8MevY6LA06fJod8cY7G1miorOGwYa4eCePGREVF4cMPP8S4ceOwb98+6PV6NGnSBEuWLMFbb71VoIwRp3YN6du3L/qqqa38gO+++w7BwcGYNWsWACAkJAR79uzBV199hd69ezt8fH5+fujSpQs6deqEy5cv4+jRozh37hxu3LiB+Ph4NLeVAqMGrVa9iBW0SeKNG5Q+6eVF9YpsOdDXrXN8zdCff1bf6bYootXSTcR331HNJYYpJri7XhcK9jiKC6rXV65QpKCPD+m1tf3JMjWXdbRB/NNP6iLQiypaLTlGfvuNmmAyTDHBHfS6fv36qF27Nvbt24ddu3bh6tWr+P777xEeHo5u3brZbNgTHx8PLy8vxMfHY9euXdizZw9CQkLQunVr1KxZM9vhnSdqNViIguv1xYtUs9nfn8peWBtbXJy6eqH2OKQzM0nHirNTRKul+5a//iq8MosMUwi4g167HHs0uCB6LQQQGUm+iIAAoF4963p9/jzwoOyVVezR69jYws0CcgVaLd2/bNhQeGUWmSJFZmYmFi5ciNWrV8PwIGCqZcuWaN26NcaOHWtXU8e8cGpEtr3s27cPPXr0MFvWu3dv7Nu3z6nH1Wg0qFu3LoYOHYrXX38dvXr1QseOHaF94NQQQuDnn3/G7t27ER8fb9/O27ZV5yyWZaoxnR/27qWO5tWrA+3aUeOC6tWBDz+07KSIiqKyGPfv5+941nj/fcfv012QJKB/f2r68vzzxuV6PTmk7twp3jcZDGOCq/TaqbRtS/0DbJGVlf+JrM2bqR5fcDDQvj3QrBn9/9VXliOjT5+mZrvO0JY33nD8Pt0FnQ544gmqQWva6C0zk/T67l3Wa6bE4Cy91ul06NixI1566SU0btwYQggcOnQIc+bMwd69e7MbPVqiSpUqePnllzF06FAEBQVBlmWcPn0aS5YswXfffYcbtppktW2rro6qwZB/+3rVKuohUK8e6XXjxkCDBsDChZb148ABshOdQXHW61KlgNGjgWPHqCGXQkYGBek4436FYdyUYmlfd+igPlgkP/a1EMDSpaTRISGk1w0aUF1updRHTrZupRrWjkYI4O23Hb9fd6FMGcpyPH4cCA83Lk9Lo94VCQkuGxrjWoQQuHfvHtasWYNnn30Wy5cvR1xcHGrXro0pU6Zg6dKlmDBhgkOc2ICTI7LtJSYmJld9FKXod1pamsWTzsjIQIaJs9bu1MQclClTBu3atTNbdvnyZVy8eBEXL17E1q1bUbNmTTRt2hSNGjWCt7e39R327AkEBVEzAWuzeV5ewMiR9g949Wpg6NDcy+/coWYDW7YAGzfS/gGKKmnblkXGHiQJ6NGDbmjKljUuv32bnE/ffw8oExy1a1NX4xdeML7nDFMMcQe9djhDhgCvvEL6mJeTU5KoBuqgQfbvf+FCqp2a0/kSHQ28/jqwezfwxx9GY//oUaBTJ9vNJ/NLcXXkPvkk1c81vT5fvQp8+SWlkCqNiBs1ohJRzz6rrqQMwxRRnK3Xfn5+GDJkCMLDw7FhwwbcuXMH//77L3bu3ImwsDC0bdsW/v7+ubbTarVo1KgRGjVqhNu3b+PgwYM4efIk7ty5gzImUV6yLEOTM0rvmWeAqVOt29YaDVC3LumovXz8MTkjch734kUKZjh8mLLzFD3fvp2a8jqrVFNxLQH1yitUS9bUZo6MBGbNoqwh5foXHk56PXx44TWCYxgXUCzt6xdesF3jX6ulScdGjezbtxDUR2b27NzaEBFBNuGZM8AHHxiXr1pl2X/iKIprA/UZM4A336TJR4Xjx+mzXbHCGAzUsSN9JoMHu2SYTOEiyzIOHz6M7777DhEREdn+UW9vb/Tq1QtvvfUWPJzQV86tIrLzwyeffAI/P7/sR40aNRx+jGrVqmHgwIEIDg6GJEmIjo7GP//8g1mzZuG3337L7sRuEY0GWLyY/lpLlZkzB/Dzs29gN2+SOMuyZQNXlskxMm2acdnIkeR0dXRJkeKE8jkpjo3HHgP+/NPciX3xIs3yfvGF0YkNULT7xInUVV5xljAMA6Bw9LpAeHkBCxbQ/5ZulJVlixebG3FqOHOGnNhCWHa8CEENGL/+mp7LMjnW09OLrwPDESifieL8f/554McfzZ3Yx46RXn/7rbkunz1LN1eDBhXfmw6GySf50evg4GC88MILeOSRR1CxYkVkZmZi//79mD17Nv744w+rUdaVKlXCgAEDMHHiRDzxxBNmju/ly5fjl19+wdmzZ439aypUMOqlJRS7e+FC+x2fu3YZI+py6rUyAbhgATUIBkinhwwh25r12jKm90BK2afJkykgxNSJvWMH0KIFsGSJ+STu0aN0D/PMM8W7TjjD5AO3t69r1wbeey/v17VawNMTmDvX/n2vXk1ObCB3gIaiFTNmUEYkQGVHRozI2x5nzKPnNRp6/vnnwDvvmN//rF0LtGpFDYlNM1r/+w949FFg0qTiGzTDQK/XY9euXRgxYgRGjRqFbdu2ITY2Fp6enhgwYAB++OEHvPPOO05xYgNuFpFduXJl3L5922zZ7du34evrm2cI+pQpUzBx4sTs54mJiQ4Xby8vL4SFhSEsLAyJiYmIiIjAyZMnERMTg8jISHQyifTIzMyEh4eHeW2/7t2phtD//keRdzodGXBZWWSIf/VV/qKxFy0ig9maQCj1nN9/nyIc9u+3/zglBUkiR8e//1K9LB8fisR++mlqPqNgMAAPP0yp6TlvWJTP4uBB4KWXKM0pLwwGqgX47bdkoGs0VCu3bFma3UxPp5IDzz8PPPWUuWOGYVyMu+p1gRkyhAy2F1+krAsPD/pd6/VA5cqUgTFggP37/fZb2q+1SUQhyBifMIFSHi9ftv84klQyjMZSpYBPPwV27iS9Ll+eoiFHjDDvD5GWRsuTkvLW6w0bgHfftd5hPjMTWLkSmDePJiW0WnKOe3hQU+fMTEpnHTuWSpl4ejr8lBkmvxSmXms0GrRo0QLNmzfHpUuX8N9//+Hy5cs4ffo0Tp8+jZo1a6JLly6oXbu2xe1Lly6Nhg0bZj9PTk7GhQsXIMsyLly4gNKlSyM0NBRt2rRBwIsvkhP0jTeo/ISpXgcFkTM0P9HY33xDtro1vdZoKMtjxAjShrg4+44hSfQoCY4UPz+K4tu3j66rlSoB/fqRbWvq4L57l66vGRm53xfl+Y8/Ak2aUBZTXqSmUk3x+fOBS5foehEWRteAU6fob7NmdJ0fMIAzchi3otja19Om0T3u++9TUIGpXjdoQBkYzZrZv9+vviIdsaalWi3Z17160b15RoZ9trJGQ+uXBPu6enWaMDx8mK5r1aoBAwfmjmC/dImWWfJFKfb2F1/QZzpiRN7HS0wkXV+4kPxk3t5U0is5mQJOAHKWjx9Pn19Be14wBSYxMRFr167Fpk2bcPPmTcTFxSEjIwPVq1fH0KFDMXz4cFSoUMHp43CrK/dDDz2E9evXmy37999/8ZCV2naenp7wLMQbRl9fX7Rr1w7t2rVDbGwszp8/j6pVq2a/vmnTJly+fBlNmjRB06ZNERAQQC/06EHRups3kyEny2SIDRpkf2Sfwh9/qIv8SEykyOxjx0jI7YkWKSlOEYDOMy2NnBKKA2nLForKeewxugBWrgxs2gRcuGB9XwYDRep8+iltk5OUFOCRR8hZZfqZ7Nxpvt69e8BzzwGffELr1qpV4NNkGEdQFPQ63zz6KBlt//xDk0wApTX362dfQ0hTVq5Ulwlz7RrdaG/cSEa+mprdCrYM+eKEEkF96BBlJwH0nk2aRAbzl19SY7bly6nUljVkmSYa3nvPctOauDjqQ3HkiPl7vGWL+Xp799K19vPP6VpfsWKBTpFhHIUr9FqSJNStWxd169ZFTEwM9u3bh4iICERHR2PZsmUICQlB7969LZYcMcXHxwfjx4/H0aNHcfLkSSQlJeHQoUM4fPgwGjRogE59+qDq8OHAmjWURq7VUj3W7t3zd8MrBGXh2dJrWSa7+uZN0p782NclRa8TE+l6tn8/OasBur6+9hoFa3z6KQWM/PADOaFtvS+zZtGEr6Xr8fXrlBV54YK5Xm/caL7e9u2k4Z06AX//Dfj6Fvg0GcYRFFv7WpJoAuqFF8gmPn+eJv27daOa1vkpGXT/PtletjAYKGghMxNYvz5/vo2S4g9JSKDP4r//jKVo16yhMlAvv0wTER4eFNghy9bfF42GgkTyKgkVGUmfv1LdQAg65j//mK+3YQMte+QRsuvd/btejElOTsaXX36Jf//9Fx4eHvD09ETv3r3RsGFDDBkyBL6FeS0VTiQpKUkcO3ZMHDt2TAAQX375pTh27Ji4evWqEEKIyZMni5EjR2avf/nyZeHt7S0mTZokzp49K7799luh1WrFxo0bVR8zISFBABAJCQkOPx9bGAwGMWvWLDFt2rTsx/fffy/27dsnkpKSHH/AmjWVuUHbj5UrhZg2TQgPD/XbFOTRtGnhHKewHlotvd+3bgnx9NNC6HS2t5EkIebNs/zZPf447VPt8XU6IerUESItzfHfI8ZtcKV+lTS9LnTKlFH/e9+1S4hx4wpPr8PDXa+xjtbrxo2FSEgQolcvITQaddutXJn7c5NlITp2tF+vw8OFMBgK/3vGFBqs1/aTmJgo1q9fL6ZPny6mTZsmZsyYIbZv3y7SVNo2BoNBXLx4Ufz222/ZdvbBgwfzPR6LpKXZpzfnzgnx6KNk8xWGvrVu7XqNdeRDoxGiQwd63+25d9i9O/dnl5kpREiIOhtdeWi1Qjz8sGO/Q4xb4Wpbs6jqdZHg6lX79ObePSHati08fWvVqvCuDY585DVmSRJi4EAh9HohKlVSv7/IyNyfXWKiENWq2WdfazRCPPts4X/PSjiyLIv79++LrVu3iqefflp07txZtGnTRnz77bfixo0bDj2WPdrl1Ijsw4cPo2vXrtnPlZSXUaNGYenSpbh16xaio6OzXw8ODsa6devw2muvYfbs2ahevToWLVqE3r17233sbdu2oVu3boU6K6DRaPDyyy8jMjISJ0+exMWLF3Hz5k3cvHkTmzdvRosWLTBASUkXgqI4lHT1/Mws1axJkQdqIjqqVaMUjfzWxrY3MrtXL4pue/99ipAp6hgM9HlNnEgp6mreR63WPNU0M5Pei8hImom2B72eUnhWrgT69qVZbJ2OujNzyRHGAbhSr90eg4GiBWQZqFLFvHSFWqpUodr6aqhalbIv8ltr1d7I7BEjKMX644/Vj9GdMRiAc+cojfXOHfXvxb17xv/T0oDTpym1cvdu+46v19N2W7ZQSuXly5R5FRrKUSSMQ3ClXhsKUAO6bNmy6Nu3L8LCwrBhwwZcuXIFO3bswL59+9C6dWu0bdvWrMljTjQaDerUqYM6deogNjYWhw4dQvPmzbNfj4yMRGZqKhqXKweNVktaam8WjacnlcJQ0xRdo6HMi+Bg26WjrO3DHr1+/XUgJgb47DPASs3xIoMsU+TfV18Zo7XVYGpfJyVRCvrWrcZUdLUYDBSheewYEBhIqe2lS1PWLJccYRwA29dWyMwk+1qnIzvZ3iyagADbZaAUSpemzIt69chGy49e2+sPmTWLei58/bV9+uZq8jpHIags6o8/mvcIs4WpXt+/T76QNWvsv4bJMpUMmzaN/r9xg8rVhIZyyREnERsbi8WLF2PDhg3QarWQZRlly5bFk08+iWeffdZp9a9V4VAXuhugePEnT54spk+fLlatWiVu3rzpkrEkJyeLAwcOiIULF4pp06aJbdu2UcTBrFkiKyhIXACEHhCidGkhRo8WIjravgMsXqxu9qpOHYoqS0oSwtu7cGby5syhMcqyEN984/qZRUc9dDohhg5VH5H93XdCpKQI8c47QpQvX7BjazRCBAaaH9vHR4hXXxXi7l2Hf3+ZwqfERFA8wO3PNzFRiA8/FKJKFeNvrmxZIcaPF+LOHfv29ckntiODNRohHnqI1r95074ohYI8VqygY8qyEO+953qdVfNQE+Hi4yNE9+7qI7JXr6ZonYkThfD1Ldj4tFohqlY1H2e5ckJMmULXYqbI4/b65WCU8/3iiy/E9evXC7w/WZZFRESE+Pbbb7Ojqz/88EOxfv16ER8fb//+YmPFnF69xDQvL/ElILYAItbPT4hJk4Swd3+vvWZbf3U6IQYNovVPny487duxg45pMAjx4ouu12JH6XXVqvZFZO/dS1mS48bRfVRB9bpGDfNllSrR9T893e7vIuMeZGRkiBMnTogFCxaUKK0Woghcn27cyG1rVaokxPvvC5Gaat++nnrK9n25TifECy/Q+jt2FJ72nTlDx8zMFOKJJ1yvxY7Qa41GiCZN7IvIvnBBiMuXyd9VqlTBxqfR5K5KULOmEF99RZHijENIS0sTK1asEL179xZ169YVQUFBon379mLq1KkiKirKace1R7skIYRwnRvd8SQmJsLPzw/z5s0za5RQq1YttGvXDvXq1TNvxFhIxMXFoVRWFso+/jjw3384JwR+B+AFoAGAEAB1tFp4fP89NYVUQ2oq0LAhRQpbi5BZuhQYNYr+/+gj6jjrTCSJIhqqVzcuW7SI6uABJDmAMQqlfn2a2fvhB2DxYvevGTh1KkUu2kKno8jpJ56g2qrOOi+tlpoa/fcfNdBhiiyKfiUkJBRujSkX4dbne+8e0LkzNfaz9Nv19KQ6bY88om5/d+9SM5uEBOt6vW4dNZMFqB7d3LlGzXQGnp7UfMvPz7jsk09I50wjTxS9btmSGl5++qn9mSWuQK1e+/pSbfKePSn7pQBRp1bRainSb+dOrslahElPT0dSUhIqVqzonvrlBBS9njx5Mry8vNC2bVt069atwNE4QghERkZi9+7duPEgOkur1aJp06bo0KGDuoZB169D37499l6/jgOyjFSTl6oDaObtjdA//0TpHj3UDSoqiiK80tPztt20WmDPHqBtW3r+xBOkic60YStUoOhF5T0XgiK0czY7U+p1d+1Kr731FvV3cXfefJOag9l6D6tXpyjHDh3o+uUsvdZoqIb2xo2cTVNEkGUZV65cwYkTJ3D27FlkZmYiLi4Oc+fOLTFaDbi5fX3uHP2u7t2z/NutUAHYtg1o2lTd/o4dA1q3ttx0ECBb1tOT1mvYkNbp2pX0Oz/aodORRtnSqXr1KPJY8Tvp9dRE8eefzfVaiSgfNIiy2cePp35q7s7LL1OdbGvvoUZDn+PPPwMdO6rPareFpch4SaIeR8uX57+fEYPMzEwcOnQIP/74I06cOIHbt2+jTJkyCAsLw7hx49C2bVtonBj9bo92FducqeHDhyM5ORn79u3D6dOnceXKFVy5cgUBAQF46KGH0LRp00INha9QoQI17du3DxACqQDKAEgBcOLBo5TBgHpjxiAkJgb1J01CqVKl6EcaGUliHxgI1K1rFERvb0pd7tbN2OxK+VErojh9utGJDdBNfVwcGbZqU3FMqVKFjMa8xFujIRExdWLv2EEpkDkFR6ejZi0vv0wO9kWLnOuwcRQNG1K6qvKeW0KjAUaPpvM+etS5NzYGA3D1KvDss+QEYxim4IwaRSnKef12MzLI6DR1PMsybZOQQFoZHGxcPyAA+PdfcpTGx5vvV6ej3/HcucZ9AdSwMD6eOrnbq9eSRI7SxMS8dVWS6Lpk6sT+809g/nz633Q7T0/g3XeBYcPoOlIUnNgA8NBDxvchLySJrkMTJjjXiQ3Qvk+domP98IPzjsM4HIPBgAsXLuDkyZOIjIy02nirONO4cWNcvHgR+/btw7lz5zBw4EAEm2qdnUiShIYNG6JBgwaIiorC7t27ERUVhWPHjuH48eNo3LgxOnbsiEp5TdQLATz6KHQ3bqCzLKM9gEgAxwFcAnAdwPXUVET36oXH/vvP6Hg2GKjcW2oqUKOGud0aHEyNpfr3J6031QSl3MRPPxn3BVDQSEoKXRPs1WsvLzqPjAzr602YYF7a6qefqLE4YH5N8fYm+7NbN9qmKDixASqdN3u27fdh0iRqHnbnjnP1WpbJYT59uroJUcal3LhxA7///juSkpKQkZGBO3fuIDEx0bWp74w5BgM1Ts/LiQ2QnyI8HDh+HGjUiJZlZlK5t/R00ufKlY3rt2gB/PEHMHQo/WZN96vVUmm3NWvo/h0gm2/tWtL3vXvtb9QbEGC7iTgAvPGG0WcjBDl9//6bnpvqta8vNRxv1IjK/BUFJzZAk7fz5llfR5ZpgnLQILLDHaXXlu5rhABWrwbmzKHrHmM3t2/fxtSpUxEdHY2srCyUL18e1atXx5AhQ/DII4+gdOnSrh6iGcU2ItvUi5+QkIADBw7gyJEjyHhgHHl7e6NVq1Zo1aoVfHx8nD+wu3fJ+ZmVlb1IBnANwNkHD9NqfC8fPYoKJ08CM2dCnD2L7Bjypk2BKVPImaCQkEAG9HffkUPTy4suEi+9BLRpY3k8x46Rs2LnTqq1Z+0mHyDHbHg4OZs7d857Rq1MGaBHDxLjQYNovd69bc/WFVYUdmAgnastI9kar71GEwHWaNOGLpq1a9NFtzCQJOrSXqdO4RyPcThuHUHhBNz2fC9doklDNXh6Uo22334jx3NUlPG1hx4C3n6b9FghNpZ0dNEimgzz8QEee4yMV0vRJ0IA+/eTkbt/P+l1aqr1ST+djhwCb71F/QpyOmIUfH1Jn0NCgMcfpyiZJ56w7vguTJOhYkWqpWdy3bSbF1+0bWg//DAZvnXrFt75eXhQZKWaaFPG5Rw5cgRbtmxBWlpa9rLatWtj1KhR7qdfTsJUr2/fvo2///4biQ9sx5YtW6JPnz4Ocxhdu3YNu3fvxvnz57OX1a9fH23atEHt2rXNMyv37yettUAygJOgYJGeAOqWKwdER+PuZ5/h8Lffovm9e6gEkI3dvTtN1nXubNzBjRuUgbJkCdnxvr7AU0+RrtSrl/uAQlAk4bx55IS5eZP015ZeP/ssMGAAMHgwrZtXlGKfPpTZM2wYBbK8+GLe+y1M2xogx1JsbP4dFTodvbfLlllfb/Romnhs2TJ/x8kPfn6k1252E1/SSUxMRHJyMqpWrQqA7venTp2K2NhYeHh4IDAwEAaDAbdu3cKqVatKjFYDbmxf//WX+kzG2rWBB74QzJtnrLMsSWRXT5tGvgmFy5fJt/HzzxQEUr48BaW88AL1FcuJwQBs2ED+k9OnSa8zM62PSaslP0y9eqRFkmRZZytXJvs7JIR0belSGq+1/TpzUs4USaIM7tu382/z+vjQROnff1vfx5QpdE3t0yd/x8kPQUH0XeCa2TaRZRnR0dHIzMzE+vXrsXfvXkRGRqJKlSpo3LgxnnvuOdSrVw+6QuwXYY92lQhHtkJGRgaOHTuG/fv3I/5BgXqtVouQkBCEh4cjKCjIeWVHliwhQzUPBICbIIf2XQDDwsOpEYEk4Y8HEdz1ANSXJFQQAtK77wIffEAbp6cDK1ZQaQmDgdKWR44EypWzPqbbt0lgfv5ZnaNg1SqKtl6zhi4KamYjPTwK5oRwFL/9Rk6iRo3ogjNpEkV92HPRkCS6qF6+bF20NRq6IRo7lpxDhYVGQ00lSvws5A0Af4B+SeUBPAYgyKUjUovbGp5Owm3Pd+ZMijpW6wQIC6PMi5yOXsWR8M03dOMNUNPdX38lfQfICH/qKTIKrXHlCjB5MkVC29ItSaJMmE6dKOr3jTfIIWyLwnZ85MW6dXSTUK8enevo0cDvv9sX4ajVAs2bU1kna2g0dL1s3ZomfwvTJPrlF/rsSzSXAawGEA+gIoAhAKq4ckAAgLt378LLyys70OHMmTNYsWIFypQpg/Lly0OWZYSFhSE8PNz99MtJ5NTrjIwMbNmyBYcOHUL16tXx7LPPOjzdNCYmBnv27MHp06eh3K74+/ujRYsWaN68Ofz8/Ki0xjffWNUH5VctAUCTJvg3IgJ7H+yvAqi8X4hGg6pCQPrlF+DJJ2mD+/cp6vnUKdKUdu0o6s/Ly/rAz5yhicR//rF9kjodBZeEhlJZjenT6TpRFPDxoXuDBg3IeaDX08Tgtm322dc6HdC+PQXXWEOjoc/b25syOR2Roq6Wf/+lQJ0SzRkAf4GmiKoBGAr6BRUOQgjcvn0bkZGRiIyMxM2bN1G5cmX06NEDJ06cwLlz5xAXFwcfHx9oNBp4e3vj4sWL8PX1xaxZs0qMVgNubF+PGEH2nFp9aNCAgrRy2qZaLenBX38ZnaS3b9NEWGQkRWF37UpBdbYmWA8dIn/I1q3W19NoKHjl/HnK4Jk6lQLbCitgraBUrUoO9caNjcGVrVrR9c0e21+rpezSjRutrydJwOefU3DQwoWFq9cnTqgvTVNsOQpgI4A0ALVA9jVpQVJSEv777z+sXbsWx48fh4+PD7Ie+Ov8/Pzw4osvomfPnk4tIZIXXFokDzw9PdG2bVu0bt0aZ8+exf79+3Ht2jVEREQgIiIClStXRrt27dC4cWNoHV1b5949q04CCWQSVFMWPHByZAmB8wCyAEQB2CwEAgCEzJiBRiEhqKzTQXr+eZp5VGZLDAZK45g+nf6aOufPngUuXqT0x0mTKLrPmrAo6ZEzZpATe9cuigRRK0audmJrNOTMMI1glySqyW3vzKcQ5LC6csX6trLsGoNXo6EI+BJLCoCxAH578FwLwADgDQCPAlgMwM/ypgxjyr175rppi6NH6W9OJ6ii96++SjfpR4/S/2lpxvptixZRlsfXX1OZDwUhKBIlOpqcKa+9ZjstTylRMm8eObH//JP2qdY562ontk5HEeKm5VUyMyll1N6yKgBQrRoZs9a2lWWaWKhZkzS0sCJigBKu1/cAjAbwD8gCUvR6IoBRAOYCKNzox6ysLJw7dw6HDx/G1atX0bVrV3R+EJ1bqVIl1K1bFzdv3sS1a9cAoMSnq3t6eqJfv34IDQ2Ft7e32Q2PEMIhgSGVK1fG448/jq5du2L//v04deoU4uPjsX37duzcuRPNmjVD51u34G9Du8xGcuoU6gC4DypBEgdgD4A9sowAAK1GjkRYy5bwWLuW6pVmZhr1+vvvScMXLjQPVBCC7PZbt8iunjjRtnNDsdl//ZWc2D/8QHZ5UUGnI6d+r17GZXfvUqS4PROCGg3tS/lrS6+//94YCVmYlGi9vgFgJIDtIK3WANADeBXAeACfAXCeHmZmZuLkyZM4ePAg7jwIojIYDLhz5w7Onz+PGzduQKvVIj4+HqVLl0b37t3RtGlT+Pv7Y8GCBShfvrzTxsbYibWSIpY4f96ynij1sB97jOzkL74w1tdXrkXz51Nm3y+/mN+TGwzAgQOkV1euULCHLftXp6PHn3+SE3vmTOonU1TQaik6vWdP47Lz58lGtnc/ZcvSpIGt4BchaJK5Y8fCLx1bovX6AoDhAA7BXK9fhhBvYt++Hvjpp19w9OhRxMbGAqASbw0aNEDv3r3RrVs3VKxY0WWjt4cS5chW0Gg0aNy4MRo3boxbt27h8OHDOHnyJGJiYrB69Wps3boVDz30EMLCwqhOtSMIDMyXk8ADwDgA50FfyyugONPdkoTdEyeiUUwMhpo2EVDIyKDoPYOBZgy3bKEmjwcO2DeAnj0p+qF7d9r/E0/QX1c7PNQiy+QAMiUjw5iepAaNhh7ff083GmovwDt2qD+GIzAYyHFTIskA0BvAflDRHpj8BYC1oMi/3aDq9AxjhXzqdZ5otdS4ce9e4zJTvU5NpWa4kgSMGUNZL9OmUZSEPQweTA6Utm0pom/ECGNP76KAXk/vkymxsfaVgtJoKBLnt9/o5kSNAzwri97rwnRiAyVYr5MAdAJwDhQrK2Cu10sBXAWwAc50jgDkcI2OjsaJEydw+vTp7PJzGo0GSUlJuHTpEg4dOoTIyMjsiGAfHx/UrFkTDRo0cOrYigpBQeYZTzt37kRqair69OnjsCzHChUqoF+/fujVqxfOnj2Lo0eP4sqVKzh27BhORkcjTAh0AlBW5f5qP3hkgGzrsw/+3gWwQ5YRNmYMsHu3cQNTHUlIIAfu6tUU7ffjj8CHH1KQiFokifR5wgSgWTNKaR87Vv327oBeT1ksply/bt/1RpKoJOGff9J7qUavExNtN7l3BiVWr+8AaAfKGwZowlF577MAzAZwCxRE4pzJhbVr1+LMmTMAAL1eD1mWkZKSggoVKqBKlSrIyMhASkoKNBoN/Pz80LZtW3g+aM75/PPPI6lEO7XcjIoV7StTZ209WabAkMGDzfXa1H6/e5dK7W3dSg7VuXOpf8D16+rHrNGQjf7qq0D9+lSGZPJk9du7A0LkvsZcvWr/fsqXp3Iipv0hrBEdTTZ8YU88lli9jgLQFsaCxUa9vns3DatWTcfmzT/h5s2KiI+PR40aNdCmTRs8+uijaNGiRbZuFhVKpCPblCpVqmDAgAHo3r07Dh8+jAMHDiAhIQEbN27Ezp070apVK7Ru3brgdbQHDqSba1u1lyxQHvSVbAsgHWRsnxECF2NiUB3IFvk00Fx5PVACgQdAzpDy5amOXn5E5PBhaobz0EOUQhITY/8+XIlOR+mOppQqZV8KfWgoGc0TJtgXYb5hg+0mY47E05NmpkskSwD8B2MCcU4MoCqZ3wJ4s7AGxRRVhg6lbBZHodebO7Hz4rXXyEli2iDGHvbvpyjuli2pZFRKStFxYgOUrl8lR1kJb2/79tGsGRnno0bRDY5a/vyTNLQg/RPsoUIF80jGEsVXICd2Xo4oGcBWAL+AoradgxAC33//PWJM7Bp/f3+EhIRAp9PhzJkzOKyUAAIQHByMVq1aoUGDBjh48GB2ZDZjJCYmBtu3bwdAqav9+/eHt72/YSt4eHigadOmaNq0Ka5fv45t27bhcmgoDu3di2MAWgNoD/XT1Z4AQh88MkD1tGUh4PHAKSJAhW/qA2gEim2CEKTP48eTjfzRR/brtdL74NQpKge4aFHRCRBR8PUF/P3Nl9nzWWs0pNdXrpAjyp5yKmvXql+3oEgS9Z5p1arwjulWfACKyM5LrwWA5QCeBvBwHuuoR5ZlXLx4EZUrV85OK2/evDkiIiKg0+kgSRJKlSoFDw8PCCFgMBig0+ng6ekJrVaLJk2awGAyyeG0kqFM/njySZr8cxRCmDuxc6Lo6ksvkS9jwQL7jyHLVH7k9GkqeTdvnv0NfV1NxYq5a/zbo9ceHtQs89o1ypy0h3XrCu+90mioBFitWoVzPLdjEoBE5NTrjAwqrnDmDGAwXEbz5i1Qp85jCA8PR6dOnVxSQsQRlKga2WrIysrCiRMnsG/fPsQ9iNrV6XRo1qwZWrdunXfXdDUo6eMOIhNkPihzJ8dBcacAzVAEA6gnSagLoHxBPmZJopIazZvTxacoCbdGQ8Z2dDSlwij060dd3NVEdBSkAUPp0vY5U/KLJFFK6syZzj+WW9IIxug+a9QA5TW4p2C7bU07J+HW5/vkk1THr6ghSZRB4+NDtQOLknNEq6W6fZcvG9PuAbr+nDhh/VyUCJ/83lxIEl0rEhJsr+sIvviCsp1KHHpQETVbPTY0AJoDsFHj3A7S09Nx4cIFhIaGZjs3/vzzT5w5cwaNGjVCpUqVEBMTg9OnT2fXCvT09ERISAhKlSqFOnXqZEdhp6enY926dXj88cfdU7+cgFq9PnbsGP7++2/IsowyZcqgX79+aNSokdPGdeXKFWzr1QvRFy4AAEoBaAUgHICNTjE2uQxAaT1YGkBDAI1B9nWBCxAqmjV0KNmo+/cXdI+Fi05HgR5KfwiAbOXgYHJ2WKOgeq3R0GRgXFzhXON++oki6EscyQAqAUi1sZ4OQC8A6/J1FCFEdqnP06dPIyUlBR07dkT79u1x4sQJHDhwAHFxcdm67e/vj/j4+OwSRlqtFi1atEDHjh2pbn4O3NrWdBJue86yTP2qIiNdPRL7UDTrxRcpUM20sXtRQKul8iqmda3T0qgppa2Au4LqtVYLBARQdHxhZNJs2FC4zSXdhlsAqkPJcIyLI9fX0aP0luzaRQlQnTtLGDVqGAIDf3HLiT5u9ugA4ZZlGZGRkdi7dy+um6Sf1KxZE+Hh4WjUqJH9HTwzM2k2UKmn6mBuADgGitjOeSteAVQlON+JFlotpWncvFm0HNkACfC8edSgUmHTpsITuYcfBtavd86+lYvKU0/RJEMhdpV1H1IA2JMxcRPu0EzMEm5reDoJtz7f5GSKFrt8ufCOqRgUBb0sazRUwy86uuBjcgVKY2GFZcsowrow6NmTehw4A0WvX32VGgS5oQHpfKJARR3UkoWCJA8aDAZcvHgRp06dwrlz56DX6/H888+jatWqAIDY2FhERkbi5MmT2bVXAWNN7JSUFJw5cwaZmZmoWrUqnnvuuWzD3631ywnYc743b97E2rVrs9/T0NBQPPzwww6NzjZFxMbiUsOG2HbvXnYBBIC+aWEgB3R+vkXJoKmUI6AYJ4XSoAaRD0kSAguq15IEVKpU9DIeFXbvBjp0MD7/4gvKaCqM28tOneju3Bkoev3hh8DbbzvnGG7PAVA+sBr8QE171SGEQExMTHafqgSTSWRlEsxgMCDzQSazh4cHwsLC0KpVK2g0GnzzzTfZgWYdO3aEf87sABNKmlYDbn7OV6/SJFhhN7W1p6SJNfz8Ci/owdGcO0cNNBXefBOYNcv5E4KSRM3tDx1yzv6VHkHz5xe9Ml0O4y8AjyA2lioKb9lCb0tsLJWmL1UK6NaNkn51urogj6H7wc0eHYBGo0FISAgaNmyIa9eu4cCBAzh79iyio6MRHR2NTZs2oUWLFmjZsiXKlVMZ81GqFNWofvppqt/pYJRmkQJALOjreRFUaTIO5m3uzoHMjWAAFaGiqpnBQE6RIpp6gOXLzR3ZPXsC//sfsHixc4+r1VJkZLNmlPLvSMNekii9Z/x4csqXSKcIYF5b1RnrMyUSHx9KIxw0iCa+CgNH6YMsU/2/gmSTuAqtFli50tyR/dRTVI/2zz+de2yNhtJGz561r36i2n0PGkTprQ8aCJZM7P0+2v+bkGUZV65cQUREBM6cOYN0k6Z7FStWRFpaGqKionD06FGcPXsW+geT8zqdDiEhIShXrhyuX7+OvSblgCpWrIiWLVvaPZaSStWqVfH8889j165d2LNnDyIiInD79m28+OKLTokAkgIDUffyZdTp1QvnDx7EIQCXQBHVlwF4A2gGoCWAADv26wOgM4COAKIBnAZwBjR9fhRAmIlmp4Oiwe22koWgSLWilqoO0JhXrTJ3ZL/4ItVQteRgdpQjSaFTJ+D4cceX8NPpgOHD6Vxat3bsvosU9ui1fba1LMtYtmwZ0h5krQoh4OXllV0DOy0tDUIICCGg0+lQq1Yt9O3bN3v7oUOHIjg4GKVzlktg3J+gIODCBfKqnT1beMd1lPakpzvEvs4ElYEttLt3rZZs6SlTjMsmT6Z7nFOncr8/jtRrJfvo+HH7yrSqwdMTeOYZ0usmTRy77yLEnTv3sGULsHkz/bzi4uitqVKF5i569KDbD4p5LGL3hnnAjmwbSJKEmjVrombNmkhKSsLRo0dx5MgRJCYmYs+ePdi7dy/q1auH8PBw1K1b13aNGZ2OOpS/9RYwezYZe6mpJIaZmQ4RDAnknK4IqhWYAeA6zGNWD4KMe4AM/Fomj0DkIaqSVLTS1BWEoKkogG4S5s2j9z6vSMvy5Y3rFxSDAVixwjH7yom/P/DPP87Zd5HCBzSFc0PFuuVAaZIMowIvL0rD27ePNOPff6nQWEaG+zsciqJWA6SZ9+/T/2lpVI5r7lzKBrJExYrAHVtlKlQiy3R9cAZ16wJ//OGcfRcpqoNa8tlqviWB4mntb/Z49epVLFu2LPt52bJl0bhxY9SpUwcxMTFYt24d7plc4ytXroywsDA0bdoUGzduxK4HDjili3ubNm1Qq1Ytt0zBdGd0Oh26deuGhg0bYu3atejcubNz30M/P0j796PB9u1o8NVXiN+9G8cyM3EsPR2JQmAfgH0AaoIc2o2g/tulgdFG7gsKELkA8yzHf0FBIiGgXjXBIMe2Ktz9emKN+Hj6m5BAkX3z55Nj3hKVKwO3bjnu2B9+6Lh9mdKuHbB0qXP2XaRoAHIV2Pp+agE0tfiKEAK3b9/GxYsXcf36dTzxxBPZ5UDq16+Ps2fPQgiBjIyM7Ga7sixDp9NBr9dDkiTIsozLly8jNTU1O6vDmeWKmEKgcmXqwbVuHfDNNxSpK8sUpe3uxQIc0EvlMID1IJ/L/2DHtaIgaDRGvb5zh5peLlyY90RglSqk1476PCZNcsx+TFGCRObPd/y+iwgxMTHYunUr/v33b1y/Dty4QS67qlWprHmvXjTnW768soUOQAsXjthxsCPbDsqWLYvOnTujY8eOOH/+PA4dOoRLly7h/PnzOH/+PPz9/REeHo7mzZvbbg7ZrBnwww/0/8GDQJs2Thu3J4A6OZbVAxnm0aDKZ2cePABqLvkyLDizXXlhKVfOmMZjr4NGo6GyKJmZJHam9aEUtFpa75NPgJAQqqHtzmg01Dm5RBAJ4DYop6AJcsc7SQBeAvA2rEeEaAGMA8seYzcPPUQPgCaPBgxw7XjcnUqVgNu38xfNodOR8ZySQuEDBw/m1nytlhrPzJ1L648e7bChOwWtlmpCFnsEKGb1HqigWSPktiS8AIwB8A1sR4S8bPOIt2/fRkREBLy8vNC+fXsAQFBQEAIDA1GzZk2EhIQgIyMDp06dwm+//Qb5wXfJ09MToaGhqFChAkJDQ7PTFxs0aIBz585lp7Crzrhj8qRq1aoYO3YstFpjVenIyEgYDAbHO6MkiaL8unWDP4CuP/yAzv/7Hy6AIqjPg+zeaAAbQK63JqDpFbUudg3ISR1sskyAum+kgBwUh0EWRw0AdUE2uHsWNANQo4btmtbWqFSJQr86dgTOn88dpajVUmHOxYupruyUKe6dKaTTlRC9lkHtTRMBVAa1NM1JBQBDAayAdWe2AcD47Gfp6em4fPkyLly4gIsXLyIpyThxefnyZSQnJ+PUqVO4fPlytiZrNBqUKVMmOyJblmVoNBqULl0aLVq0QHh4uNNKEzEuQqMhe1qxqT/5BHjnHfd3ZBeQfQCUPM9SMHdiC9i4FgUH578+t8FAEwjR0ZRFc/Nmbi1W+g/88guF9s6e7fgIakciSealUootegAnQFZGDQDB2ZOEX3zxBY4ePQpZlhEQEIDate/C0xPo25c+5tzVOfQw1euiDHt08oFGo0HDhg3RsGFDxMXF4fDhwzh+/Dji4+OxZcsWbNu2zSxK22YEyokThTNwEx568DCAKgZHgYzwayBHtumIF4NiXoNA0SiVUIhpMAAZwU8+Sanmr7xCLVftQZapvuqMGeTEtnSBNBho+XvvFY2oOVmmFJqsLGrotnAh5ZGULg3070/1oYKDbe/HrVkJ4CNQG1OFYACvgxzSpg7tcQAWgeKkLBnbOpChPsEJ42RKFCdOFM0U8MJCqzWm973xhv01xvV6YORIao5syYkNGA3vKVMoksfdMRiotFV6OpVNWbyYakT6+gKDBwPPPUehE0UWAWAJgJkgV6FCCIDJAEbC3GqYBOBXUNGzvPS6HihOKceRHhjuEREROHfuHO4+iPwsW7YsHnroIWg0GkiShIEDB+Lo0aP4448/sqP8AKBGjRoIDQ1Feno6jh8/jiNHjiAzMxNdunQBQI7s119/HR4e9keCM3lj6sROSUnBX3/9hZSUFISGhuKRRx5x3vt94gQ0Hh5okJWFBiCX3XGQUzselJ14EMZp8lYwL8OnFgnAiyBbOhJU1u8+yK6+AnIXvmiyvk1nRWHy9tuUfTR1at6ZL3mh11MTxNGjLTuxAVqWkkIp7K+/7v7ZQno9aXJKCmXQ/vgjvS/lygHDhlEKe4A9BWrcDRnAXACzQFM6CmEA3gEwOMf67wP4B+RAsTQBoQXQGsBjAICDBw9i48aN2Q5qgLIzypYti9TUVCxbtszsvrhKlSpo0qQJGjdujPPnz2PdunXQaDSoUqUKWrdujdDQUNbjksLJk64egdPZA2DLg//DQZnzCkkAfgBVpW+JPJx0X3xBpe9mzMg788UaQ4eS3XnrlmW9lmXKinzvPerx5e56LcvAs89SpPmPP5ID/u5dIDCQ7iVGjqSa5kWWTABfgII/biMyEtizB6hTpwlOnOiAo0dTcOHCBZQtWxbdunVD//7jULv2SMiyHmXKWJoQ0gB4GEDXwjwJp8GO7AJSoUIF9O7dG926dcPp06dx+PBhXL9+HZGRkYiMjET58uXRqlUrNG/ePO86Xi6sO61EjNQA0Al0S2namzoF5NwGAKWKVWkYndp1QGkxTkWjoRm3cuWMTmhlma2oDq2Wok369iXnrrVZXlkmR8OJE8Zu6O6IEt3XuTPQqhWN17RW17lzwOefU5rN88+7dqz55mNQhHXO38YVUPT1IZDjRDGG/QDsAjAQ1JZJBzLWNaBvdUNQEwSnf1uZ4o5GU+yjRQqEJBn1WjGA1eq1TkcO8CZNqO6/NQPaYKAOJvfvkxPGpA6yW6HVAu3bU2mRxo3Jsa/RGM/t1Cngo4/IYfL4464da74QoAnCb5DbNXcOwCgAEQA+M1leBcBuAANAbr+cet0KwBrkbOJ7+PBhHDx40Kwpo1arRb169RAaGoqsrCycPn0ahw4dwi2T8gW+vr4IDQ1FvXr1EBUVhe3bt2fXzfby8jJzqmg0Gtsl4pgC4enpiZYtW2bXzk5PT8fjjz8OLy8vxx8sx2fpC7J1O4LK6x0HfQMTQA6G/wCEAmgHmvq2By0o+rrug+f3QA7tSzn2pQfw3YP1mgCoCjdwapvqtTLpoMa+7tmTAijWrbN+XTQYgEuXAHePqNVoKGjGw4M0OybGmFkUFUX1Xd9/n/o19Ojh6tHmAxnACACW+jQdB/AogM8BvGGyvB6AnSD7+hpM9VoIPWJiOsLLaynKlaO40sDAwOzIwKCgIOj1ety4cSN70lGSJAQEBKBGjRq4f/8+wsPDERoaCgBo3Lgx7t+/jyZNmqBy5cpczqmkodiKrsBRzdatcAZGJ3ZX0LXI9GwPgyZAN4CuRZ0ANAddW8zG6e9vv15rNOTUvXHDdsNFvR7Yv596uqjNnnF0/wO1x3zxRTqn5s2NmftCAFeu0HlOmwZs2FBEex1kAugPYCsSEmRs2ECndP48UKrUKSQnn0JWVkNUqxaK1q1b44033nigmVUAPA7qmKcF2emKfT0UNF1SPLRVEqJ43ZG7Q5feu3fv4siRIzh27Fj2zZKHhweaNm2K1q1bo1KlHDV6T5+m7r2FgekNtOL87NqVjDOlLqkJBlDl4WhQrOtV0M9KoSXoVhSgn0cMyGB3+AzJ9OnAzJlUlyovUc0pohoNRbzVqkVpk2od02FhlOY0Y4btmcjy5Skq2iRtzmEoHXgBOi/l8woLoyjsfv3ou2MtMnT1app5LVLsAd1m2uIHAM/kWCYA7AVF+8WC0iKfANAFRUG03UG/CpMieb7bt1PqemFgqtfK/z17Anv3Um8Fd2XmTIryk+W8NdRUr5UbiIAASnu8ds1Yx88aGg1NUtasCSxYYNvgrlKFDF1nvHdaLZ2Pcr5K1H63bsCyZZTfd/26Zb1WnP/bt1MhuyLFaiiReNb5B0DOkl0ygK0A/gDdvlUCOVnaAJCQkpKC0qVLZzuWN27ciP3792fXVg0NDUWdOnWQnJycnRmn2Fw6nQ6NGzdGWFgYatasiX///RcHDx7MbuwYEBCAdu3aoUmTJvmO9iuS+lUAHH2+V69exc8//4ysrCz4+flh8ODBqFWrVsEHasry5RRFa4UsUL3rg6CpcoXaIId2Hai0HnJqmkYDdO8O7NhBpe0ecBbAcpPNfEGViENAQSJmTovC4IsvjLVL87oltKTXVauSQ+XaNXXNFnU6anZ//z7ZsLb0OiiIogYzM62vlx+UCY6cev3YY1TnOzycxmlpjJIElCpFHoUi11jsO1AGoy32g3TYFAOAdRBiLW7fvoszZ0rhzJm6uHvXC61atUK/ByUZDQZDdkmRkydPIvPB5+fh4YEmTZqgbt26OHv2LCIiIiCEQEBAAMaPH+9Up3VJ02qgiJ7zN98AEya4JljEy4vsr61bnVL6KBbAQpAP5SEAvS2sowdNJ+0CZQ8BlCXfBTTBqpEkKr8yebL6Ayv3DrVrk25dv051yG2h09F1YccO0jpbWah165LzWMlwdyTK9VT5XBS9fu45yvIJDye73tL9hlLa6uRJuqYUKabDYHgfBw4YGzhGP0ii0WrpLW/QAOjbdz0aNuwJnc7U+5YJCgjZAApRDQbwLMjacG/s0S52ZDuRzMxMnDp1CgcPHsTt27ezlwcFBaF169Zo2LChMd2yQwea/XJm3Th/fxIXZcZKwY5ZNBnALRjTJcNAxjdA8/SLQUZ4ZVDNwWoP/pZDAdyIvr4UyXbwoLoZR1kmh0VaGjlDTJ1BaqhVC4iMpIjn/futr6vVUlqlt7fjGw188w3tf+1acpQHBVH6TI8etOwxG84DSaJ63xERrpvhzhdDQeJr7aKpAdVfPYmi4KBWy927dxEYGOgW+lUYuJNeq0YIshwuXXJeyp1GQ3VHExMpvdkUV0Q9qEWSqB9B6dK23x/T6JeaNWmiMSXF/vNr25aacLZsSWEK1tBqqWTJtWvk4HIkP/9MTpcNG8igrl8fGDOGru3ffQeMH2/9vLRauuZs3erYcTmdTqDYIWvXZi0o/uhfm3vLyMhAZGQkTp06hUuXLmHkyJEIflAm686dO7h+/ToaNWoEnU6HyMhIHD58GFEm9SLLlSuX3aukTJky2cv/+usvHD16FNWqVUOHDh3QsGHDAjtOiqR+FQBnnO/169exatUq3L9/H5IkoUOHDujWrZvjnFqZmeRwvXdPla7cBH2bz8DYcaMiyKEdijyCNJTMv5iY3JkhFvTMAIrSPgkqxGPqpvUCFXYolFtNjYYcsdev235/lEAKSSIb+dYtCiyxR6sliQIrvvsOaNqU3i9b63/0EU3wbdni2OveP/8AR48C27bReTRuTBmMrVpR4MyMGdbvN3Q6StH/5RfHjcnpCFB24oUH/+eFDsAwAD8ZtxQCMTExOH36NM6cOWPWLFer1aJ58+bo27dvdmbyNZOa6wEBAQgPD0e1atVw+PBhnDx5EorroWHDhujSpQsqV7Y3/8E+SppWA0X0nOPj6f7dmRl2Wi2V3oyOzj1JZq+/wA7uAvgd1Op6JHLnG5uiB0Vn7wZlxgNAZUnC6C5d4LVvn/X3R5JIn7Ky6Hzq1CEHs15vn4Z6eJAN+9ZbpNdqJivnzweWLCF/jSPZtYts6717SZebN6dyfaGhZFsvWGDd0a7VUmnaL7907LicSiauXauMv/++j4gI4OJF+roaDPQTqV+f4lA7ddLAw2MiKJOmeMCObD8/nD9/HvXq1cv/ju7epWaMO3aQGDRuTDM/jRvbvSshBKKjo3Hw4EGcPXs2u25Y2bJl0bRpUzRv3hyBN29Sl2xrEccFxckOkHOg4g2WYt28QckRSvsUu+oDfvwx1e6zheKkeOcdEt0bN+x/LyWJPoc9eyhd5fvvbV/UPD1pPUc3HPv1V6oNbom+fcl5o+b8Dh2i2coigQC1vVBbf/gqgJrOGw4AajS5GFSzO/HB8Z4Fpe2oT4WWZRlJSUm4f/9+9iM5ORkDBw7MXufYsWMICwsrWoZnAXCYoX3zJrBoEbBvH/1emzenm9I6OdvcOohduyjSzlrEcUlDcTx9/DHVrraFRgN8+ikwfDjpdXy8/Xqt0ZBjZOVKSgdfu9b2Na58eTLM33rLvmPZYssW+k5YonlzigZRc/29cqUIRY0kAPC3Y/1UUHGyHEtTUxEZGYmzZ8/i0qVLMJh8D7p06ZJdvxqg5o7Hjh3DyZMnkfogsl6SJNSvXx+tWrVCjRoCJ09+ggMHNuHRRz1QtWpDAM8hLq49EhPTUKtWLYc5SYuko6AAOOx8o6Kor8eRI4BGg4ywMGysXRvHrl1DmzZt0LdvX8cNGiBdePRR+l+lDRwP4ACoUJni6igNsmFDQZHTjihAowfV1T4LKnGSAiqeplRgvgLKVagPoIyF7fONRkPOjnfeoVqoali6lJoeh4VRoIi91z6tlkr8ffstTUAePGj985AkiiIcMAD4+mv7jmWLU6fyzoStWpUc9bbQ6ehescjUX70Ayw0dLVEGgDFqUwiB2bNnI/5BppROp0O9evXQqFEjBAQE4NSpUzh+/Hi2Jms0GoSEhCA8PBy1atXCzp07sWPHjuz9NWjQAF26dEGVKsmgKPFNoF9aCICxoHhVx+UmlDStBhx4zmfPkl6fOkXOzU6dKKiqYkXHDdaURYvI31IMyQBNZFossCQh1/xSJug6tFeS0NLTEz1eew3Sp5+qu46tW0d1otu1y1+UtEZD14b33qPQX1v9brRaKt9Rs6bjA0Vu37b8fcvMpCDNtDTb+yhblrJstI7TFeeyG8uWdcqOZaxdmz7OpCS6pejXz/QtCYJ5PpmziAAwD8AO0De5OYAX4Oisd3u0q9jWyP7hhx/Qpk0bdO3aFX72GhmLFwPjxtEPXzHUduygzq2jRtHMT6lSVndhiiRJCAoKQlBQEBITE3HkyBEcPnwYSUlJ2Lt3L/bu3YuqVaqg+ZQpCJ0/H972NluxPQASMCfPWTQERZHEA7gOKklyHRTBnQrzapcnAGwDUEkDVOrogcrXS6HSpRRU0OkodSYriy6Y9epRCqIaDAbgv/+A336jiLv8nK8QFFEIkKNYjaGekUHfGbWomVDQ6azX38urqY4lLl8uQo7s76DeiQ2YGtr5JxFUtUzp3N4dgJJqvhYUmZIFY3xWFIDtAN59sB05S4UQSE5ORkJCAqpXr569923btuH06dOIj483c9Ao9O7dG56engDMG2IxKvn8c6PjVHl/t24FPvsMmDiRXnd0zduOHYE5c6j2mkm9XofgzhHXWgBjygIbDMC1NNIpwKjXDRuSU1lNVIsQwIEDZIDev5+/CQFZpkhIgCLr1Lxv9+7ZZ2SrORdfX3Lw5EVUlPrPNCqqCDmyP7Zz/RTkdGTfu3cPc+fONWsMFhAQgMaNG6NJkyYICAhAeno6Tp06hWPHjuHmzYsgDc5C2bKV0bz5o2jZkmofHjw4AytXfvUgWEng8GFg4MDrADahQoUmqFBhE4pTBk+RQ5YpKOGzz8zShD3//RePCIFGr7yCWiaTQenp6fD09Cz4xMOAAZSOPXOmxRJ6lvAHudI6g5zZB0AWwpEHDx8AjUFO7erI/7dKaWtaD8aMR9M2ggdB0eESKDK8FuiWNQgqHNsaAG+UBxYnA/eySK+FoMi1UqWo18off6hrXuzhQXp98CDZvPnRa4OB7sb1etqXLYSgzB619wCAeb+YvKhenbIVLaHXq3NiK+veuFFEHNkCgO0Ji7Q0mkuNikpBdPR8PPfc89BqtZAkCc2aNUNsbCwaNWqEwMBAXLp0CQcOHMD169ezt/fz80PLli1Ru3Zt+Pv7w8cnGcByVK8eDUm6hgYNeqBTp86oWrUqqIHZm6AvqvKZXQaFRLUHlaPyd+B7wNhFVhYFdC1aZK4RmzaRc/Obbygq1tGMGkX3rXPmqCuB4eYkgspHAYCntRUFgGmVgM/vAulUTrSUEOio16OllxdKN2kCafVq9T6EQ4do8gHI3z2FLFP2aUyMuqbtBgMFE9nKjDTFll5rNECzZnlPmty9q86JDZAHOD6eeqC5IYp/MDg4GDqdBocPj8PZs/T2PPQQVSns0IESCYKDcybaO+p3chVUnlXpLdYKxhmWKaCG7joY/TSXAawAhaqugKVAFWdTbB3ZAHD8+HFERESgbdu26NChg7pGMsuXUypFThQB/+lBqtXSpfkak6+vL7p27YpOnTrh/PnzOH78OC78+SduzpuHm7Gx2ASaL28OagTjELdWITpFJFAZkXKgJjYAmScxoOqXCjEgcU+UgQv19EBnHyCiG3QXrqDiuXMYBKCiXg+cOQMDyMxRdaNgMNBEQ0FYsYLq+GVkqN9m715163l708XBWkqmVks1HQOtNCa0p2FOXk1G3Y4LoFgktWhgfzsmU9IATAZVLTO9EAY+WN4WwBDQN9j0s5IRFQVcuxaNhIS2iI//CPHxGWaO6ilTpmQ7p1NSUhD3oD67RqOBv78/ypUrh3LlyqF8+fJmI3J4fdDizty5wJtv5l6uGEZffkkG3cyZjjmeEKT9H31EN9jOwF2d2ACJ8BspwLfNgKVjgXWbKOoDoMiIkyftS82UZdLrgkS1f/MN8MQT9tVRPXpU3XoVKth2fGk0FP1vTZM9rd6+mFNk9Ho/zBs42qI04uMFzp7dB71ej44dqQ9CuXLl4OfnB09PTzRq1AghISEIDAyEEAJXrlzBrl27cObMGej1yQA2Qas9hQYNDGjRgnxi16//iU2bBuLcuWQI8SsACrpv3Rpo0QIwOkjOAugFckOqD0RgHMj77xu12PTm9cH/9b7+miamJk6ELMv47bffUKpUKTzyyCPw8fHJtTubCEHOkM8+I4djPvACudQeAt3iRYAcy8kg5/YBkKtNcWpXRv6d2hpQOT5TqoMism+BcsNuPzgmHhzreeQRGa55MPg34oEZ3YCFjwDr1lOABkCp6UeP2jdxqtdTKQ1bTm9rTJ1qf5NENU4UgCYAr161vo4kUYp5XkEDWq06x75CkdHrv0GFDczJyiLHSFQUvc23bilfBx8AtxEVFYW6dal9abNmzXDmzBn8999/uGkScCVJEurUqYOWLVtCo9Hg6NGj2L79b7Rvfwg9euwBYECdOlT62M9vF4BPQL+gB3XZzcpSKf/vBzAIFDTCk48uYfx4Y5CW6e9ByUQcN45qD48c6Zjj6fV0fZg9mxp5FwMugtqq9oTS+SMPtCDHyZt3gLeGAvNbU/mjnTsBSYJ3WhpNIkoS9EJgDYAOoJZ+FpEkKtW3Zk3B7Ovnn7e/3J3afmQhIRTtbw1ZBl59Ne/X7dVfZzSULgBCCFy6dAmHDx/G6dOnERMTA1mWERh4E7duncbNm9SH+X//M8a31K6dcy8SgBoFHEkUgFcArIO5vyMUNOF4AuTEBsyDDZX/14Mau68o4Djsp9g6sp9++mns378fV69exZ49e3DkyBF07twZ4eHhOYqhm2AwAG+8Yfk1BVkGfvyRCuDno8yIglarRUhICEI2b0bK8uU4Bfqa3ALdbp0FRVs0AdAMBTOOnYpOR0JipdmhFkA1DYwBrQC6aoDGMhAzCbjdSSAm5j7uZKUh859I3NTraU7ngXG9HcAhUJRKhRx/y8MYOwudjlIef/+9YM4grZZS3hs2pJIFaiKf7blQ/PorMGSIeWMwBY2GUnhmz7a+j/79kT1VZw1PT4oeLRLMh/pvuRY0A1je1op5kA5yavwH5YuZlEQ+q8TEWCQkvI7ExAAkJBiQmCiQkED3Poo/KiICOHJEBlU9WwOlKY4kSfD19UVqamq2I7tVq1YIDQ1FuXLl4Ovrm924jCkgqanUUNAWs2bRHVSVPE0+9bzzDpXOKFI1503Qaim9zlYjxRx6DR3ItvkJQF0ZwDGgczLw4rrcN/xqtVCpz7pmjcrBW9nPrFmkmxERjp0I8Pama8Fzz1l20EuSsaaqNfr3p0lwW86R8uUpZ7BIMAfmkRm50evJSXLxogaXLrXE7dvfAgC8vLzQrl277Ei/sWPHZgca3Lt3Dzt37sTx48dxP3sSIR0VKy5Dixa30bSpDKX0tcEArFoVg8TEBQDKoHZtCW3aCNSrZykJQw9yQ64F9WFgCpXYWIqKtsW77wLPP4+YxETcuHEDer0e8+bNwyOPPIIGDeyoHC0E3YQvWpT/MZugAbVKCgbwMCgO6RSopF48KIZpL8g2DQUFpFRFAe12rRbt/P3RLi4OyTA2XL8C4A7ICtIoBxBU/MwTQA0tUFULBKwENIEygC1AqwHAK5ty66M9Tuy6dQveKFeZvKxUidLFbWGPU7lSJYoQnTLFsoNekoA+fcgeyAtJoobKmzdbt6+VsidFJvjgawBaGAwGCGFMpjp40Di3oRAQICE4uD/q1BkGHx+f7MnEGJOa5pIkoVatWmjUqBGqV6+OixcvYtOmTQ9KjyQDWIj4+GQohoQkKYHrl0ABIv42xmsAsPPBo0tBTpzJD+fPUzkRW0yaRCUw8/KrqEVptPr33+4dzGENjYaCH+7eBYTAfQCrQN/kWACSYpPkNJF1oEnHfwB4CwDLgfptqTdAToTADgCnQU7yEcjDhZmVRfc8BS19mJJCDvXSpdVFPnt7U1CJGs1u0ADo3ZvKRuU1oTpypPWJknLlKGLhxAnr56qUPSljM4+pUEhNTcWxY8dw+PBhXL16FTdv3sTt27eh0WggSRKiovYhMJCqX9Wpo8b/biEAVzWXAbQGlQrM+RmcBtAHtsuoyqCm7adB0/qFR7F1ZFerVg2jR4/G+fPnsWXLFsTGxmLjxo3w8PBAy5YtLW/077/U9MQWOh0ZYracjbaIiABeew1lQLGfbUHRFidATWCSQXPS+0FO28YPHk6qSmU/Wi3VJ/38c7r4TJxoXodJowGqy8DnApgFYxgJAM9uQI23gBrZgRkaiKgjuP+ZAXeEMCtDEgeqK3XjwcMUCcBreJC2o9fjyoABSFm5Ev4gF2e+YiUMBqqRPXVqbgsvJxoNzSqePq1u3zodvWfbttEN265d5q/LMjmatm2ji3peDrOxYynKyBpaLV0A/P3puRBu7oBbA+sNw0wRAGzXuDUYDEhOTkZycjKSkpJMHkuQmLgXQ4aI7AvEzp3A4cOmW98121diojFIvlYt+pr4+wP+/jvg7/8+/Pzqw9fXN1d5EGc3sSmxrFyprvmIENR8RE2dfWvs2EFObGWfeeHEZjEFwsMDeOopinj5/nvggw/MS05JEtASwDgZ+BLk8wPIg/MwKEkhu3qGFrj3qXn5LXsRghzEM2fal/2SE70eWL2anBNKGmVeaLVUZklNWjtA6fdjxtANwbRpVNPXFCHIwty1ixwkefHSS/QdtIZGQxFOymyZ2+v1X7DmxN68mTJbs7KUJc2yy6yFhIRAluVsrUxPT8eRI0cQERGBWyZp/Z6enmjSpAlatPgTVarE4Pp1gR076K3Waunx0EN039imTYrKkp0vAeiB/E+CMvnixx/VaUVaGvD776g6Zgyef/55rF69GjExMfjtt9/QsmVL9OrVK3uS2CorVqhzYudDr7UwlgPJAuWSRYAaN8bB6H7zBmVWKg878ujIcfDMM8CHHwLvvw+fOXPQWKNBY1kGJAmpsozknlpgoAGYDWRcfNCgUgKOhADoAHgcBarcAqpW0aD25XdRvyAlBr28qJ9BQXsL6PWU1TRiBH0+1t57nQ5o356MMzWUKgVMnkwG2vTpwLlzltfbv996gMcrr1BjMVu88op502I31Ot79+7h+vVLuHVrO27epIjr/v2pLQVAKeq+vuSTDw6m8rYJCWVw+fJgbN++HbdNJhs0Gg1q1aqFxo0bo2HDhihTpgzWrl2LDRs2ZJeGKl26NJo334mWLZMREGDps1W+f/Eqz+B/oDti93BAlRgWLlRXpuf2bWD9esCk10++mD9fnRPbXe3rsmXJfps6FXjpJWT9/DOWazRIk2VUkyT0FQIYXQqolwl8C6q7CtDM43CQfa20dRNa4Mq7eR6qI4BroEnNZQCeBJArSDcwkHppTZxYsPOSZdLpAQOAVausfx+0Wup9oEavNRq6J/nySypx9fHHVNPIFEkie+DYMWrmnhcTJlA5GmsYDKTXCi7W6x9++AEnTpzArVu3kJaWhrJlywIgm7dqVT9UqpSKevXotBs1slXWuxKofWh++R9Ijy19tsrvUW3z1REgZ1/hZT0WW0c2QDPGDRo0QL169XDs2DGcOHECzU2inWRZNo+OPHtWnUjq9bYdl3FxZKxt2kQ/xPr16Ya4bVvjj2fePPp2msxcVQLFifYAzbadAHBOq8VdScJOvR47QakkzUHR2nYZxo5ApyPHdXAwzW4pUY4vvUSzskuWkJEoy1TX6MVGQOBQmoC/CfqtBD54mCFDKncf5Q0mt5ceAAYBjz0D3CsHxN0E7v4DxK0F7t6nGwY9qAMwJAl49lkcTErCmZo1s2dES4P2pzw6wBjBbbPhpBJ5aevCOnMmlQKxVctLo6Eo76QkapYxahSwezcdw/Q7d/QoRWy/8QY5qy2Jba1adOEfO9byGLVaqi/+zDN0cf3tN3L6lS9PZVPGj3deI7x8k2J7lQfo9W8gNbUxkpNv5nBQJ6FXr17Z0X0bN27EoUOHcmwtg6LyBJKSjDOd5crR21O2LBn2fn70UP4vV864hyZN6EGkg77gh+DI5jSMDc6eJUPI6CmzjCTZTl+LiSFjbccOiiYIDaVoPtPo2G++URcd5u1N6ziz67pavL0pWrlaNWr4otSGe+89uh4tXkxGoiSRno+rAPg+B4wGGdpJoHSgXD4/A1D+rrnd4wUKdH0GlA+fAJqgX4ycc0LE5MlUq7RvX4r4KEi6uiyTQWxNryWJdPHDD+mYto6n0ZCGpqdTV5XTp7Ob05np9Z49tL/PPqPoJEuEhVE5mrwyCLRaiuzu04euC6tXUyRMpUrUVOnFF429G9wGY3TOvXvAmTNAmzb0kwSMP00fH6Bu3WdRp85Y1KlTB94PSrDIsozIyEgcOnQIly5dgtJ3XKPRIDg4GE2bNkWjRo2g02UgMvIJrF8vsqtD1K5tLHFrrTS5ZWIBdAJl45SMpl9ugVr7WqfL1uuKFStizJgx2LZtG/bt24cjR47g4sWLGNquHar99RfV4zQY6G7v+efJvlKYPVtd/U0/P4oyzudkmgeoAWQjUMBFJCij8jKoN8zJBw8tqOJkGMjpkMuqkySaGZ81i+qBduxIxodyLq+9Rteo06cBnQ7eHTrA+7kMwHsyMF5Aewl44jxwNQO4EU8Oy8xMyoiIjpaRok1E/QfSKACc9wZqPgmUfgZ043EXwK8gz0iChRP99FPSoIceojDegjSlT02lYCBrjgSNhpz5U6eqd4wEBZHoPPEEzaKdO2f+nROCZtg2bqRr3zPPWN5X797Ayy9TWRpLSBJpfmgo2err1tH3p3p1+h4+/7z10oBOJikpCfv370dkZCTu3r0L89J59J1QHNlVqtBXKz6ebj3+/RdITu4PmhYhPa5duzYaNWqEhg0bQqPRmJXpLFWqFGRZRvXq1dGqVSs0alQBHh7vIHfYaX65DKpWvxX/Z++846Mqszf+vTOTBoEktNBCb1IURIodbAiuvbtr17W7tt3VdRV1LWvbtffeUbGjIiIogqBI752EnpAGIW1m3t8fz9zMTDLlThKQ/cnz+dzPTCb33rn3zr3nPe9zznlOHIXhfWhMOKn4haC9jkVkL1+u5932n4YP1zNiVzMY46yZq53xXFwc3+/f3bAsPTwPP6yJ4xFHBOXl3nyTrw85hC1vvknTkhLO6tULz+jRcNEaSP4P/LUa1sO2zfDhLGjVEQ5yQ9cabtUPrWvxCVnILz8HUlrAn/Jg3N2wajq87YXTqJUH+/jj4p26dUusR0skbNqkwHAs2L/NX/6iRLx48PuDGeOXXqpkkHXrwn14Y9So+ZNPlLh08smR9/WnPynwOG5c9PM8/3yN9SecIKmU6mpdm6uu0vfvxj4H5eXl/Pzzzxx66KF4PB5yc3NZtWoVW7ZsoUOHDrRv356ePXvy66+/0qZNGwYNasXgwe8lIOX9NfX3ZZehxo2NhXmID/mIPcWHWMb8r9ZwRIbTTpc+n49XXnmFXr16ccghh5CUlCS91euvd/bAjx6tKGQkvPceXHSRHhTbgbIJkNGjZRDS0x13xq4AVpx+Oos/+ohVxtRwB27UXHEQajdXQ8nvzmZhHo+MRrzsshrMJCSNLza2ERTSbg9MQrMDL8GQixf5R5e5MG9r4pBqjCb6jz3GlGnTWPPDDxTfdRe1xU48wO0EJxAfoKhm88CSUet9B+IQ3QAjRsho33ij7h8nA3+TJhr036urV1cH770npzwaPvwQbr5ZnqmN1FQZ7cGDRVhbVjhpY2sAfvQRjBkT/xj2AHw+H+XlQygvn8uuXZrnlJUpNlBWBkcfHSScv/kGZsy4imi1CVdffTVtAql5P/zwA1OnTiU9PZ1mzZoFlmKaNbuK5s01ziciNx4dHuAS4PkG7eX31lm9Qed7550qVY9HSMazWc8+K7tv6/7Z23i9weBccrJuQKc6zBdcoOCRE2d7d9prt1sBsX//2+EGnwFRnMXaWAgEJsP0RH1POyFy243YEj8y0me74KvAebpcIrHvuUfnPmWKupjsCZx1lpzdc8+V7XRCnmdkyE6++278dSdPjn0uL78sMju0pL5pU2Wmt28vvffawRK3W0bqq6+UnbgXwO/3s2FDR1at2szKlUE35qyzlD0CUFKiGECbNmBZwS4ZO3bsYM6cOcyZM4eSkiBj1qVLF/r3789+++1H06ZN8fl8LFy4kOnTXyM/X9VvHo8CiAcfHL33jzO4UeOafzVkJ/vsdSK44gp45RVnTQVvvLFOX4O1a9fy2aefUvTpp7SdOpUrXC6s2vb62mtFiOzaFSSBneC00zRZdpLp59Be+1AscGVgCRXRyESE9kBqTT8tCx55JIEsuheRSnZd+P3Kp9m0CTZthE550C/Ql61gf3jqOLCaQpvWkNMZOnWUPHmmC6yTXTAjkGCRlKTx48YbtfG4cUrc2BP4y1/0e44cqaQPJ/5169aywfEa+rpcYm4POCDy/41RcPT++xWps5GZKb/a59N1qW2vXS4RW999F5rtsFtRUVFBeXk5WYFsi507d/LII48AkrFs374t7dtfR/v2lbRrp0tkWTqFZcvELwZlyF00aXIPPXrsR/fu3enVqxdpaWns2rWLGTNm8PPPP/OnP/2JTp06AdT0hmlZw7p8QONLN1nAEyTWQyccvzdbDQ0851NPhU8/dZYh/fDDkW2W36/56WOPhT8nbrf+d+edqnRbs0ayRU6Qmqqki9rVzNGwu5unv/WWKlVCsGLFCt555x0sy+KCCy6ga9eugf/cB4zFzgB5883wVjstWmjaPnB/aPqJBRcEjnsEcs3togSXduH1w0evwpI7gW0WxxnDwWlpWM8+G8xQfuIJZSzvCarv/vvl2/frp+CFk/G0QwcFNsaPj76OZWkcWrlSJSOR4POpB8djj4UnFbZpo3tz9eq6VQZ2ILVTJ81Dan6nxkF1dTUzZ85k+vTpVFRUMHToUEpLS1m2bBk+nw+fz8dJJ53EAQccQFpaGuvXr6dDhw54PDuRDoOTYHEWUBh3reh4CmljN/b9MY6GjAOJ2K7fLZE9f/58Pg5oc2ZmZnLsscfS1+vFcqJP6XLpgY1UYvfVV4r4QGTD4XbLyZo4UVYrnlapjT/+Ed5/n13V1SwE5qKGiTaaIS3tA4DWzZs7K7mvL5KTddyORPYrUEpfpBSPEBg3vOFTxDEFBXW6EyKAHQLbNj44EqqOVFZFbeP23/9SddNNFKFHvBCoAkaGrPIidaVKbLiBfxIksiegiUjTkKWJ/f755+ly+ulYw4bB+vUYrzc+Ae5kcHW5lMlXJ6MYbfvsszLcoU0xLEslQH/+s8jyaAOJZel3nD9fOlWNAJ/PV6PvBJCfn09BQQGVlZVUVFTUONu7du2ivLycU089laYBvaqvv/6amTOfRiJhdXH11UHi4vvvmzNlyuW4XOtp2hSaNcumWbNhNGuWRbNmzRg0aFDNs+/1emt0WIOYh8I/jY1U9FTWP7L7e3O2G3S+334rLUsnePVVBRdr4623YuuvuVyS43j99Xi1XeE4/XRNApwQpa1aqYJkd6FFC+fNVyhENT9xCHvjgof9UvfJRHX1baCsKignUV2t06+uhOoqC+8HA9gv5wgG//OfkJ1NVVUV48ePp2nTpjR9912avvdemG1tzm6qOJoxQ5lzQ4boujQkEzwUbrcC1Z9/Xvd/fr+IuYceCh/zXS6R6iedFDtg6XKJ8F6+vHG03uuJgoICvvvuO9asWUNFxTeog4WGk65d1VG9biOabvj9U1m79n1+/XUFy5aV4/d3QYRJEwYNGsTgwYPDGt+WlZXxwgsvBIjuVaSmvs2QIZrvNJ7EYStUJhbJyXCGffY6AbzzTp0Jf1RMmBAxyF7x4IN8eeutHE6Eoj7QjXjzzQreJSLpNWqUfHIn6NChXo0jNwNzUPzPrtWxUHZ2H5SU0tyy5I/FqyCqwRokWhLHlzQW/DUg8dcR1k+Az6eosrE2mjWF40a6GTDuD9BhhIKyoU2pjVE1zyuvODzGBsCyZPO8Xj38ZWUNywQPhccjsieS/IzXK+m/J5/Ud9pIStK5DxyowEw0uN0a11euVIlfI8IYQ3FxMbm5ueTl5ZGXl8e2bdvo2rUrF1xwQc16U6ZMoU2bNvTo0SMgxXMd8BzgZft2kdfz5gUlz23J78GD+9O798e43TOASnbt6sSMGRY//zybqkAgf+jQoYyJmgTzJnBBlP/VFxaKli+jvqrzvzdbDQ085//+V7bUCUX0yy+SbKuNW2+N32j9oYdkf6MFlCLhwAOdN+zu2lUZybsDLpcqZ6ZOrfnIGMNTTz3F9u3bOfjggxk1alTIBj9j91NaswbeeEOmYuBAKc3aRUFuN/SdDIO/h859wJqDlBoiTEH8VTDxcw+zHupFWvteXPPMM6SH+oherwK1X3yx+8nspCSNjWvWwJFHhidzNhRutzi3++6r+7/yco35L78cXlmVmqpgaPPmsfspeTy6TxYvDpYUNgA+n4+5c+fy/fffs2PHDnbt2kVxcTFpaWlkZWVRVVXFjh07yMjI4LzzzqOvnf0RhrOQ3Gq8+ckYpAU5AxHf/YnTVrQWHkUTuUYaVwHdqAcD0+q9h31EtoOTN8awaNEiJk2aRGmA9O3cuTPHP/007ebNi+0s2Q9r7dIxY1SvtXhxfINhZ/EuWODMuNx3nxqNhay7BRHaC1EJIwCWRZtjjqHvsmX0zcujNbupSWRurtI3HOFW1PU0zoNybAZ8WyKpnzfi7dOFxOl/ir7KBx+I6F2yJPhZ06by3IxhJ6LXSwNL6HsLVcjbeImgpFUYLIukrl25ffFikVFXXsnbEyaQi/j41FqvacAJIZsvD3yfJ7Akhby6CWSFL18OvXpRWlpKdXU1lmXhevBBXA89hIvg79vEfu/xsCspiarKSvD7MVCz+JFZzAZcHo+aKt1xB0VFRfh8Prxeb02ksKqqiurqag477DBVLACzZ89m6dKlVFdX1/y/srKSyspKqquruemmm2qeu4kTJ/LTT9F/n9DM6e+//54pUyaSlvYMaWmlNG1qaNqUmuWgg4IJVhUVYIxFaqoJqUxtBfwDuIH4d3whyuZuTMNt43tUtl4//N6c7Qadr9+vlPq1a2MHbJo1k3RI7cCb1ysbtmVL5G1DsXAhHHecowoaXC41m/r3v+NPui1LjvxDD+3eLu0VFUHt5bi4GE1G6x57RYWSibduga2ne9iy0csBf4ShrwNumcCnnoq0TwvoxfDhj3F8QEu6sLCQJ554Qv82RhIn06bVEL2DgRMDQVkfKp5rRVCZKp16jG0ej9KGX3pJ/TAuv7ymK3yjOfklJeHZoMaofPH5KNUabrd+m/Ly2MfgdotcGTu2cY4zDrxeL7m5uXg8nrDsu8cCJcBpaT66d3+MHj3K6NnTRCSY8/NFlixYEN4PulOnTA466Ab69r29pvl2ZWVlmPbxK6+8QmFhIcOH5zBkyDnOb9+EsBTRiPXDPnudACorVXVQVBT9Pne5RBSvXVs3cLhzp8jpUGIRye91RE0WAW23erW0Z5w2p7rkEnjuOWdBrRdflOxEPaWjqpFowxykcRqKjkCftDT65ObSqlUrh3scA3xDdH/GApMEbaqhwMBDqLGMR5c0L0/ufF6ehjefD847z02vXpcBz7F69WqmTZtGu3btaNOmDdnZ2bRu2ZKkZ59VJuamTcGvysrS79tYcLtVLXXvvSKFL79cpFlj2evkZN0joRKTPp/GiI8/jvwdLpe2i/f7WxY8/bRsfyPhs88+Y8WKFeyMIGPYunVrrrzyyjo9WmwUF89h+fJDWLKkkvUhN16zZuqVduCBwXY6oMfsp5+kIlNVlQkcS7t2RzNixAh69epVKzkkFD8Bhzg8I4vEMgELUQZi4vi92Wpo4DkXFSloHktyye0W5xGJVN6yRf61Eym+xYsldemE9GzfXjIeTivq3n1XAdTdpavduXOYtrPX6+X7779nxYoVXHLJJbX6ORhgMMbM56WX/GzcKDm20aNV7Ll4McyebbExLwnurwIftPoTHHQFHDA4eu6gMS5mzryQDh3uqvHVwuD1qnr18cfDk1patkwgycUBXC5xVdddpyS5yy8X/9JY9rpFC00yQm1PZaUCIdOmRf6NLUt+v5Pq2PHjRfo3AIsXL+a7775j+/btVFRUUFBQQHJyMq1bt6aqqgq3243f7yc5OZnU1FROO+00evXqFWFPv6LOefVJtOmLmvs6SfT6FDjF4X4Tsddu5O3s/sDj75bItlFdXc306dOZPn26SML8fAa+8gonVFXhiWb4XnxRUfna+OUXlbzEg8ejjL0jjlApZLzGYcOHK9M7Ozui8+RDTWbmon7QvkMOqQm1twL2Q7d1WxqR1N6+PTxLIybKELk3n+jO9p2quLnvPpjqUzDHUQJknImoTZBs2CBG9JBDJNdx6aW6tg6zOzYiorssZNkVeHURkn+w//683KMHeb/+Spi3GEAyolttvIW00CPBQpeEgQNh5kzGffIJS5culYMQgRT5J0EFlo+QLmM03EqgB22TJnz2zjvMmTs36rqh5LQyp2dGXTeUnP7ll19YsGABKSkppKamkpKSQpMmTUhLS6NJkyb06tWrRi/V6/Xicrlwudagu7W++mc3AP91sN7Z6CrFGiQspJVQ93eMju8Iz/tPDL83Z7vB5ztjhipcIkX+bWdn/HiVSdbGF1+oeiEePB6VBGRlaUIdr9nJySfLYezcOb7z7HYr6+WFF5xX5yQKt1tecuhkPSa2IwdqHeBl504lGW/dGnqIo+GLbTBnDvs/aTjtKsClGOGUKbpkSUlaQt+3bj2f9u2lR1JeXs6SJUsoKysLLjt2ULZkCbsKChi8//6MvOYaeOIJCv76V56q5QynEiS1+wCRXMGICN3P8OG6N8aN05jZGJOd446T7JhNKCRSORAPOTnhMlKNiKqqKjZs2EBubm5Ntl91dTW9e/fm3HPPrVlv5syZdOzYkfbt2+NyzUUB5eB127VL2UXz5oVzXGlpqrQfPFiujHA/Gzacz8yZM1m5ciV/+ctfasaE4uJimjZtGgiiHgn8SHzd1fYoy9opFtGQDuv77HWCmDBB1QeRmg66XHpmJk1SNldtvPKK/O6Q7dYDr1PTToX9QPu4+275fC+9FJvsCATzueIKZxmBTZtq3eefr0Oo1wfbUY7pUkISJZo0gb/+lVatWtGnTx/69OlDhw4dYhCHeegZLKCuP2Nv8w6c8h58+QVs86mKJgKqq/XMtm0LKSlpQCGTJ09n2rTwzCrLsmjRogVtWrXiqPR0Wvv9IkWGD1fm20MPNV5TNrsU3LIk5XfCCbr+q1Y1Djly6aWa09nXN5HKgViwLGVg/Pyzo9WNMezcuZP8/Hy2bdtGfn4+ZWVlnBMi4/LOO++wYsUK3G437dq1o1OnTuTk5JCTk0N6enqd/W3atInly5ezfPnyQNPG1cBbWBY1jcR69ozsGrzwQtB+t2unS9+r1wtY1uXxzgQ9iSuIT3q0RE+BU2wjSi1GXPzebDU0wjm//nrkSkYIBuCnTw/vJWPj3/+WLYhnAyxLN9uECfF7pbhckiM57DA45pj4x9+mjSrdXnihYQ3FY6FfPzk8jrGEpUuHMW5cGcnJhuuvl9Ks4AJcbN78BrNH3s3CdSuo+quBgBrowIHibCMnDbchVMBq2bJlZGZm0ja0MqmqSnOmkhIZ+cGDNaa+/nrjkc22vXa51PPlmGOUlb9tW+Ps/5//hH+FSMIlUjkQC263qsA++6xBu3nnnXdYtGgR27Ztw+12kx2oPvX7/ViWRVogGtGhQwdOP/30sErEuqhvdYsVWD4EIsx9w1CN/GYnVcHpQJxecGHH4CVE9Dgh7COy62G4S0pK+Pbbb1m4cCHdkpM5//PPsWbO1MNtE54dOki/Lpo+XLwy9VD066dwd9++wTSIaHC71VAkPT12F3bLojwpiRXV1SwxhlWE08ZZBJvStKcBpPawYWromBB2An8FXiO8+2lH4E7gcqWHHHYYfD1frLsjTEAZKQnihx800H79NbQxygLvjnqifANMpH6SQS4Xu/x+KlJTqaiooBKdrf3qJzxXYRoqOa1Gj3zoq0HKRQCceCIftWnDiqws/N9/j3/2bIwx+EMO83aCRdKfokx9q9biQvGBqwiW7U+fNIll69fj8Xhwu9243W48Hg9JSUkkJSUxcuTIGnJh48aNFBQUkJSURHJyMklJSaSkpNSQ1ampqTEmXE4wHylHNgROsqIXoPKbKiKTIx50E85Ck0QnpcQWmo62d3ykNowxlJSUsGPHDjp16vS7cbYbZXIxc6bIhQULgjMyv18ZHk8+qXSHSPjPf9Scz8lk+5hjJGjXt69km2LZ6+RkaXLv3KmqkFhDbFKS9rU7u7CfdJJkThzAGMPWrVupqNhEly7/Bd7D6/Vy//32IWaRkfEHsrOPJzs1lbbXX0/7ORvJcqxX/AsQoQQ1Dko++IDZ995L/oIF5GdC4QAwzdHjuwJGrhfVCapw+QQ9ve0Cry2J4k7ZZIuTpqGJ4LzzNJadeKL0VCdMaJyS+NRUZ1mmCcAYw2uvvUZeXh7+Wvdhs2bN2G+//WKUkX8DjMLnU8Lk/PmwYkXwVO1+mQMH6jWQfI3fL/WEn36CDRuuxiYnTj31VA6ISCj+ABwFYSNeKDwolDEZhTXiSJkBCoXkI+e8fvi9kSONcr6TJumZWLky3F7366es6MMOi7zd3/8umx1CdOxAirx2aOdQ4GiXC9cf/6jqhYEDlfwRy76mpYnMXLFCGvfxfHFoPHmLEOxAFXrLRo5k7ciR+EK+o1mzZvTu3ZsuXbrQqVOnCNc+D/gL8vxCz7U/SsEercSKowfDqkSIw1yKitJZu3YtW7duZdu2bWzdupVdth4FcO2119Zkj8+cOZO5c+eStWwZWV9/TeaKFWR1hswzIasrJO0ExqMK+/ogXvPO+uLyyyU1dfLJGi9//rlxSJcOHRRQCYE95bb95FmzZrF48WK2bdtGRYREpRtvvJGMQCOyvLw8jDG0a9eupkoyFF6vl7Vr19aQ1ztCymAsy6Jz54307v0iffuG9zbbsUO2e+hQuS86Ln12xBFSu9HhetC9Fm+C9jFqPxcNbhQsfxdJ4zjpPdIK1SHXr4HY781WQyOd84cfSmM4L0/22g5CDhmiAFC0AODFF8tnjve8JiWp6uLss5Vo5vPFfvaaN1fw8fvvlQker5mvy9V48nG1YVki60OJ1Tjw+/0888xYCgre5YgjVtdqqTIEyUQcBosWUfnHoSx8uZzZs4OFo126SI0ucoVaBZBCUVERzz33HF6vl5EjR3LIIYfgipbIYoykF//zH6WED0B5Xq1QjOk9RCbUB7vLXt9wgyoBTj5ZwcLGko4ZNMixZM2OHTtYsmQJS5Ys4bjjjqNDhw6Ul5czYcIEvv76a9q2bYvH46FLly5s27atZszMycnhiCOOoEePHg64kv8At1A/MspCQo1bCIqrR8MLQAypLFyod9I9SMA43nzVQmJpTiXS6mIfkd0Aw52Xl0daWpocswUL2DVpEuvz8+lz5JFYxx0XWyc1kSYoBx4okbKVK9XJzh4kojnctkEYNkweRmjjBPt9crLWCRiOShQTX4KazYSa8gw07esBdCHBXtD33htbbygmilHWahkSzjiSMMekpAQqO0Abp9kuDcmA9UL5tZDyIhh/kPVPRsmIZyHeZW+BHTFNSwsjMwwNCEoknK25u/EGcGEDtvegCGScDsuA7p2T0b0IupIuZKS7IpKmB86a17iBPyAKLTqMMZSWloZl3divVVVVDBgwgDPOOON342w32uTCGE0+Z82SDT3gAKUQxXIUHnss2MAqHk44Qdkic+cqu9Zu/hRt+HS79b9Bg2TnI9lrjye8weTuQoRmNKEwxrB58+Yap6ywsJC2bdty5ZVXIqLve+bPX05GRi+ys08gLS1EuXrrVsjoAKlOndWGZMBWwK4LIfV9vFWwPR8KtkN+MXT3Qc51wFKRQbXbMnqQnFJbFCZzKorVIFhWcGksZ75Vq3pJ0FRVVZGfn8+WLVvYsGEDu3btCsuyfvXVV1m/fj0ZGRl06tSpZmnTpk1UZ9vv95OXdwdLlvybhQv9hHBbtGunR3DAgHBN68pKmD1bj6r6PFq43UMZMOBWhg8fHp49VAcfAeehMK/9zLjRwD0ARZ/bAU8TvymYB7gUacbWH783cqRR7fUPP8ieWpYYtOHDY9vrKHqrPtRn1hYx6+JyccYf/0j6G2+I7PjDH1QmEMvOut1a+vRRQDSSvQ4lcXYnfviBiiFDWLlyJcuWLWPlypU12sQ2MjMz6dy5c81z2qpVq8BzuhFVLlSjieRBhHmH65ZBl/0SOJjIGbA7d+6sIbWHDRtWQ5J89NFHLFhg1wJWQvUHkLS6Jv503TXQsi3wM6w9FfI3BXvOpAdeU2mAP9sQhCYtNRBFaOQs7dqVkhdfpLS0lJKSEkpLSyktLeWGG26oyaAOrXKsyXRv04bWrVvTunVrevbsSard6bwWjDHk5+eTm5vL6tWrWb16ddi9kpycTI8ePejTpw89evSgSZOxwONANX6/ktrtaajfLw7/wAO1rd8faVrgAu5G9Z/x8DIiR2xRQwja68NQ97oslMh0H7HJETdK1bnbwfdGxu/NVkMjnrPfr8qyxYtlDw8/PHIWdiguukiZvvGQlKSM2gceUMLF2WfH11Z2uRTU79RJ3UpDCVPbXu/uJo82Vq1S0gxQVFTEtm3b6N69e41kWm3MnTuXTz/9lLS0NP7yl5NITbUr1QcQ7J4ewPJvofexGCPZ6ffflw/VoYNyZcKlRlzI7rsoKyvj888/Z9myZQB06tSJU089taYZbESYbVB5KqTOCGbSWSg7bjJwLjJqewvsBpBVToJgDvd31FG6z6OgtLS0Zp5kBxX9fj+dO3emRYsWLFu2jMrKSsrKyujatSujRo2iW7duLFu2jF9++YUjjjiCzp07J5DsdyHwNvWXQbWQjxu5IXQ4HkQN0F0h3+dBzOEfUPPGJsCVSGw31jFZwJPANfU6akjMdkV+0n7HyAnVfd5/f6Zu2MDPO3bQZetWjt60Kfz/teF0gulyBctievZUatK776ocPVqJim2kZ83SZLZnT2kF+XwqD2nZUuUzIcY/BZnGASjevZIgqV2CONpfkIvQCVF2PVCBSszHrEYb3J5CLCAo7j48ztaZhEfqKxD5lws0gYzRwEVgngMr3sObjrJl64srIO1VaqJdoTGKjujU2hEiQP4bwx6Ua2Xk1dvp93jglFP2IhIb6luGEoQXmORw3aNQBvUbiPguRsGVi9A9GkhN4RR0b/9MZOPtCqwbjMr7/X5KSkooKCigoKAgjLCujFLi5na7qW7MrNDfEyxLQb5hw5xvE6p7EA8jA8GyQYOkv/r66+oGHtpyPBS2vf71V2n6de6s0jrLgoMPlp1+773dT2JDSN1iNfAlonqT2bixL4sXw5IlSygOkTXxeDxkZWXh9XrxeFoDZ4Qk3ZQhmngzkAHZJwCngvnYgb1uT/31iP3AWdBkgo4xFbJztNSc2kSgO7SrhpNQHsJmVGxZhSiejShwa2+Wi+o32iC6xn5tFDnmxia9PJ7YDSFrYc6cOaxcuZKtW7dSVFRE7ZyF8vLymjLHMWPGkJqaWpP5Fw0+n49169axdOlSli1bxs6ds7HHz/R0JckccECodEg4qqvVHsTnE8E9ZIjhoIMKSE8/xcEZnYayAV9Bmac7UMDxMtR5wh7AL0Jkdu3wvQ03ao99q4Pv3IfdAsuSfEgkCZFoiCKp4wZGIZftU2Cd38/zXi9n5eWRc+SRYgBeeUXi/bWyY2tgJ4AsWKCOd61by5/3eGT7N22SvN/uyuwLhcdDamoqAwb0ZMCAZXi9sHatl1WrOpGba9iyZQvFxcUUFxczf/58AJo0aRISgDqUdu3aBbSSixFhWAC0hC4nAoeBmQFWrLHHhbK5I+t0p6enk56eTrdanV2POuoo+vfvT3FxPkVFl1NcvIaiIklSVVRAhr27QbDgrzA3QhzZjabLf0ZPKSivawuyy8kRXrMJPv32KBTaPyYeDOA3Bq/Phy+wDy9qOGzvd3NgqUCFm7Vfzw6sD6rjmwka92vJsoAm6TaRvf/++9OhQwfatGlDy5YtoxJgoIzrjRs31kg/5ebm1snibt68Ob17967J4A/fn4viYsOcOZJ+CrSHAsQJhvaljDwt8KMEDydE9qXA8Sjb72t0lXqjX/Zogr7+9cCr6BeO9HzZ1ZHXOfjOfdgtcLkkmXbccc63CdGNjonq6qB/ffLJ8qlffBGefVY+cyT4/QpOLlumXgjp6eJDUlIkZzF7tsq9dkc2cFSUMW/eI3z//Sz69u3MWWf9E/knQXi9XqYGGkMefvjhpKbuR0AQK4B84HNkt7Oh94lATyxW0b274cILlZeycaOSqC+4wHbv3YQ+U02bNuXss89m3rx5fPXVV+Tm5vLss88yevRoBg4cGIFI3QHWCEhdoT9rF3scCbyDM8nlPQVjGo/EtnHmmRE/3rFjB++//z55eXmA/ODCwkL8fj/GGKqqqkhNTWXHjh01TR0HDBhA90CAo0+fPuy3XyIBZBuJjGKRYKGEPSdE9t+BM4HnUeSiGrGHV6JaN/s4bkN8SSmR+RAPaszbkITExLCPyI6Dpk2b4vF4WLduHS+//DI9e/Zk1KhRkRuxvBG3Q6Hg98OVV4Z+iXSKfvhBhjmes1xQoKVLF3VpHTlSJe8xSJFklAfXD92ea5A28yqUPbA2sExCzmNPZF67EaGQy7IQ+Xw9mli6CUbd+wMvIkI7FgzqlnofMtp2pN4CRsRxsgmsfxnxSyZCsRRldRWDvxK+e0XP7GJkuI9Fz2wP9GR8w+4lsfdUxDgavF519N2rkAARGRWJDG4ZyEGO5SQnAV8hIz+JYJTSjTE+Skqy2Lr1SbZtK2br1g/Jz89n+/bteKM8xy6Xi5YtW4Zl3bRp04YWLVpQ1gi6m/vgAH6/ZD+cwOVSmaSNjAyVQk6YIGc9nrO8aZOWfv1kr4cOVTByjzrZryFHZRu2vZ4508/Che2Bk0lK6kCvXr3o27cvPXv2JNmuL66BD7gL6c+XEbTXHmCkAxLbhZ6xRMqC5yCnfif4iuHLzzW0rERdc/+A/LOO6BH9DKgWmXBgyF4MahG1JbB0DPnfJqQaWjsckYFI7REotAUa3WyJpt8Efr+02lFvj+LiYoqKiigqKqrJtr7oootqiIu8vDz1VAggPT2d7Oxs2rVrR+fOncNK07OjMc8EtVZ//fVXli5dSnlIIDU1tSu9exv691dSUu2eaQsXin886ST7GJTMlZGhbG0daiLBu9boPv57jHWaAlNQOONnQu217tkOwBcopLEP/xOoqJDufAz0Q4TmOI+H/G7dapq407o1/O1v8PbbYgDi+Vxr1mgZPlxazL16qZx9T5DYEDAwjyN7W4zH46FnTz89e/qBEVRWPseGDR5yc3NZv359TYXFsmXLajLw3G5DdvaPdO48jZ49q+nUyYXH40czgSMd+Nd+JFWSCBU8g8zMb8jMLIeqjfDxUvGT64BmUHEieAqRYU2Ctgslc1iGhAfLECnsQyGq0Bzk5cC8GN9+M0HS+ytgduB9qKSeTQlcjew7yJubSfTcsusINhFdBEyPcQxlBIns1kA7j4fmZ55JRpcuNG/enObNm5ORkVHzaqN9+/a0bx9djm7nzp0sWLCApUuXsmnTpjDJGYCkpCQ6duxI586d6dWrF+3atYua8VdRcSBPPOGtmSo2aaLA44EHhuQnxUUiWsMdUBZ1rEzqVkg66gQ0R7Pttf3aE0lIOm1+ug+/ObZvF5HsBJmZ4XrXHTpIFurFF51tb/s4xxyj5qoZGSoJ21Nza8sAd2PMQyxZsguw6N3bION3AspelX/1yy+/1GSYDhkyJGQnOxGf8ibhvkoacBhY6qTVvr0S3d98Uxz/K69IzTYry0ftOaxlWQwaNIguXbrw8ccfk5uby6effsqKFSs466wzsKwpwFSgGspXwrhl8LpRtC4LReYuDLz3ILUgi/qpXOztcLkUxTvvPIwxrF69mvz8fA4++GBAPGBhYSEVFRWUlpbi9/vJysoiJSUFYww7duygtLSUlJQUOnbsiMvloqQkKG9Xf7nV4agLSH3hJzF73Q1lZsdCZ4L2Ope69noQmozVX7IvUeyTFnGAkpISvv/+e+bNm4ff78ftdnPooYdy+OGHByeDRUUJND9E0cTQuhCvV15FfTIy+/WTvl89szkLCZLaawmfVqYgCZLugaUZwLWj4ImJAUK79u3jQqzCFJTFGg23ICI7EtzI1SwksuV0I8J8GkH3NRa2IBHsb7XtDgtO8+pP+9mzd+sH/g38DTgOBbMawjf91mQ11JWsscuwHn4YbrnltzuuqDgKGcr6XHgLRRHnN+oR2Y14tm2bTH7+W+Tn57FtG2zb1pXKyp5EIug8Hg8tW7akVatWtGrVqoa4btmyZdTO8r+38sff7HyXL1cZuROkpNRtsrt9u8jo+uDAAx3rsDUKHjgRbv2c4mJVY9pVyitXwoIFLvr2TaVHj+kkJQ2MsgODGo68TWQv1g20IHrdoQtp1k8kWOUQC2tQHWOAhMwHxnjFTtj+vf21oGDkpagqc1GUQ4yCQsSzbAss+ZbFjhB7fRkB4tuymAVMNoYW6GyzAq/2+wwah+S2Xc8qlPPQ3uXCbQy88go/9ujBrFmzwrRPQ3HllVfWyHPYznh2djZt2rShadNEgr6SI1m4cCGzZ89m8+bNNZ83bdq0JsOka9cuuN0HoJZ1GmOqq6UYMX26LR+intaRHxc3svffJHRszmCQzMKbyAfIAM5ADnjj5HDss9d7CNOmSazXAapat2b6uHGMGDGiZgLpX7oUV9++9ftuW85vT+HVk+CiaA2n3Iha/QXVUSo7bPPmzTXEdl7eenbteonQ8FxyMnTtqkLOHj0gM7MteiYiwULVD+/jrEJuIZL8WQR4NLc9ziv2OdRe21ODd1GRWztCe5MBcsXtZuqh1O4ClDJj28WaV8uiyhiuJTiyfA78ClF975sIEs7fADMinJGlM+HPBIVVFgTONC2wpNZ67Rx4j9ut7x4/PhjBSwDGGIqKili1ahUrV65k9erVYb0L0tPTw+SfsrOzo/qTPp+PDRs20Llz58AnXl5/vRWWVcLgwdK+jpEAHgEe4I8oMN7Y8KNJ2XvUVBBwLnAMDa/U/P3ZavgNz3n8eDjjDGfr9u0ryZJQJGDv62D48Hr08KonLAu+OA7GTCQ3V8Syx6NptfxsN7IMsygrS+PJJ5+koqKCk046iQNtDR/KUcrEr0Sf87ZFxlL2rLBQeZPFxcqDPO+88+nQ4XWieaB+v58ZM2YwZcoUhg9vzrHHPonGBw8sNXCsT+WKtrImBCWWP0NUTksantgXjQ+xpb0aO8PaCdxuSE6m+osvWJCRwcyZM8nPz6d58+bceOONWJaFMYYvv/ySn3/+ucanyMrKokuXLuTm5lJQUIBlWbjdbvr168fhhx9Oa+eRwRjYiX77+ia4udGI91AjHEtteFGAcTxKRm2LeLbDaIyZ0D5pkUZGRkYGJ510Eoceeihff/01K1eu5IcffsDn83HssYFai10JPuHl5eFE9s6d9W82VXsQSBAtkEDHUHRr5qK4+DKUGbGQoNZ/NtDjqYl0d0OnR0wEJ8iPqPALkScb6Yb+megkNsiYl6BSmfWIYreRClyC2GYnJHYherDW60/jU2LtlMC/Q5Ns7DHk78hoL6FhJLbLJcmX/PxwMtnWz33gATUw2p2wLOjfXyWzNoYPl97kH/6we7+73ngSRSLLqd8PcHW9v9mOrubn54fJgeTn51NRsQ49FVVIIqc/0Ay3202rVq3Izs4mOzu7Jss6IyMjeoONffhtkYi9jmSXt2+v/3fvSRIbqL7tc6Zvgx9bSIXK7n3ZsyeBLL9KlA3yQ5Q9TADeivENPtQVZgwaKfJC/tcMlbn8C2ck9gbUDjdwfb1e7XZeyFdR6/1liG1YScLZIjYRXYPMTMqLisi3LLYaozwalwvcboouvJCql16qyeyujatRsiEoy+8XxNskoTO3X+0iUDtfYVZgqQSqXC6qs7LC7q9rjjiC1mPHwogRmGnTakjslJQUsrKyyMrKokWLFnTo0IHMzMya7bp3715T2ugUfr+ftWvXsmjRIpYsWVIjg2Q76IMGDaJz58617NqLKFPU8Msvhp9+AruwJD1dSjrpUZMzfKj1cGPDoF9hEiKw90ekSMtYG+3D3ooEKpWSjWGkXaoO7Nq1i1dffJHDUJuihLEnSWyASz6T2Tw90j99yKe9BbsPiNvtpmPHjnTs2JFDDjkEY16muHg1GzeqSn/VKjXzW75cC0Dr1lvo0eNgevRYTocOhQQlmFugTOx/4Iw8XIb868DvU+ZVXGp9yOHa8CPX6UykcFWLxAZNSDMIZkzb2J866rFCerrmTlBDkBxvWRyTloa59Vb8d95Z0x7WH1hCTdHhqAbQHfhud2CJdOYRjyE9XT7++sAJW5b86ttvVzM8h6ioqGDt2rU1OtdFRUVh/+/YsSMHHHAA3bt3JysrK26Gn8/nY968eUybNo3S0lKuu+66gD6uhz/96Q3c7lMCayaaZOMFLk9wGycwKDv0B2SjhwPnEAw57MP/FBpaWVqPPiA12FMkNsjmnDwRvoEZAXu2//6E2FMfMoZ3M3nysVRUVNC2bVsGhumLP46yNGJVyWxBA8K3QAktWqg/8dtvN2fLloN57bVenH76cvpESc5xuVwcdthh9Oq1kxYtTsYmPkrXekkdAcm2uxl6CAYR12NQIXtjVKenpkrk2+ZCbDuWkaHq8LFjG+FLYqBVK0Ua7M6ZHg87TjmFX0aPZvbs2TUNGVNSUujXr19NT6sJEyawYsUKLMuiY8eOjB49mvbt2zN+/Hi2b99OUlISI0aM4KCDDoraz6B+SAeeof4yHT40QWps+FBi0kxEYB+NBvYmsTbabdhHZCeAli1bct5557Fs2TK+//57Dj300Jr/mZYtsVJT62buRUJaWnjLaJBDFNpgZnehTRtNkqOUtXtQcUE3ZL/yCGZr23qjW4Hpj0NSCnTZXxke3bvLn5Nd8iNW4XsUaayNpwlPhY4EHyrk24xo9YCGNkeSmHPzEMq5C5zvTPT8xcM/abhQqjFqNjR3rvTL16xR1v3JJ8MVV0iL8dtvYZJTTed6HsMXX+j3LipS/WDHjvG3+03RD2XS/RHpvnhQQMQmFKPVN3mQJtmf4n6D1+ulsLCwRsO6oKCA7du3U1BQEEHDugQYj2Xl0aKFizZtLFq39tO69be0aXMerVo9j9v92xjwfagnOnRwXi3Rpk3dz2I1TWksuFyyEatWxV83AgyiGSYCxU8Ct2h+ULeJkw9VtyxBxd618SThqXWR4Ed0bB6icDchOz2CxJybO1A2VuC7JhCsE48GC/EuDfVmkpNh3jzSJk2i08sv02nDBpUbnnUWXHYZx2RnM3j6dIqWLqUQSXIVBpZiwmUFd1BDxUfEMIKESmVgH0BQdqy0FLfXS3p2NhWXXAKB3hz7778/3bp1Iysri7S0tAaULAZhjCEvL49FixaxePHiMHmjli1bMnjwYAYOHEiTJtF+x0PYtOl93njjEioqigCLzEyLQw/1M2hQrIw/NxKBObHB5xCOpYi0nk9w7PChzJQbgAdITOJmH35z1GSUOkC7dmF//vLLL+RXVPAxogOOpTHyOyPA7RaLMXduw/d1NVLGqa1VCshv/gj5xu3q/NeyniAry0VWlp/+/TXEbd2qCpyVKyUTnp8P+fnL+emnq7GsXFq1ctOxYyc6dBhFx45dadPG5bB1yk2IxA7Y67dRQU20YdX+/N9O9h0HmZmSYnz/ffWs2LoVWrYk6bzzSLrkElXIPvNMkLSIADu7ut6wu7CtXKnkpA4dHGl0+P1+Nm3aVENcb9iwISzr2u12k5OTQ48ePejdu7fj7L5QAtvue5Genk5hYWFNoze3+yQkrXQ5GqftmyxeIpUblake4uhYnOMXlNG/iqC99iJbfQfqZfCbCXrtQ33g1F5bVh17DewZ/9rjkczfjEg1GQnADwVXwPLz9OchdR4PH5s2vcTcuc2BJMaMGROSCOBD/rUTKdWtaAT7HiiiWbNsLr54KB9++AkrV65k3LhxjBo1iuHDo8u6tmlzG3q2/Pj98P6NUJoPg40EIeowK/7A6i/EOTwn6NJFQeHXXoN33hEPlZ0NF14ose+UFHjooYYHQWKhaVPNp1auhKoq5hYX88UPP+AL9N/IzMxk+PDhDBw4kI0bN/LBBx+wfPnyGiWGkSNHcsghh9T8fqNGjaK8vJzjjz++kTKwI+ECZBevR7OKJDSQxuMKXYFtezXy8UxGfWg2ED52XI9kSa6MvNluxD5pkXrCGFMziTTG8OGHH9L+jTcY/tVXuJ1on557rh7oUC3Ss8+Gjz7afWS2ZcnKLloUrPlNAGXIR10NrLJg5xGE8dSZmWoYkpMDOTlu2rS5A5crUoStI6pjcYLvgJFx14qMShQtKg5+dCnq7efkEo9Cz2x9fg63G8aMgc+ilYgGMH++SlejNABsFBQW7hnHoMGoQO2aVqLcxaMCn32LUnm6o9TLPxIstTEESba+iLYTUW9nV2/fvp3CwsIaorqgoCBi8zMbLpeLFi1aBDKr3bRpcw2tW2+nZUtfBFLGhUrVP2Ff+WPi+E3P98QT1cDLib2+9lo14w2d3R95pPQTdqfW9RFHKIPbzjpziAKkFWoXlzcHRv0T+t4TTIKoi+eAKyJ8nopznbVFKBBVHxQhex1SXngCeqSdXOLDUKCyPvba5VKKywtxPPbvv4ejj67zm9fWzy4JLFXIxasOee8FBhKsJypGEiIpQIrbTXJJCSmpqVHLxRsDxhi2bt3KwoULWbRoUZieX5MmTejbty/9+/eP2WHd6y3B4/kMWIfXm8Ljj28jJaWCww+vpn//LNzu/uiKXIrO3J6s2UHsg5EQQGNmSa8GhhC9EY0FXIx0K/ds+eP/B/ym5zt0qJrnOmmQe9ddcOedECgLnvLdd/xw1llQWEh3JDDTIAIzGkaM0GS9VkPuemE84X3R6+Aj4NRan+0kXqVieXmQe12//l6KiuoSmElJSbRv374m07tjx440a1Z7v+tQykuIHzUYmIuzRF9bCsrBz1kHlqWs53/9K/Z6H38Mp8W8iA1DmzYi0GPAGENxcTGbN2+uWTZu3BjWawCgVatWNVU0Xbp0idCnIjpsAvuHH36oseXp6ekcdthhDB48OCCBWYxuqo3IIxiDQt2/oB9sINLxup5g/joE7fVoVAXQmNqnc1EjsSqiD/K3Afc3+Jt+b7YafsNz9vuVhGFXKsSCZcGTT8I11wQ/q66WIHRBwe47RpAP/9NPDZa0+Bz49WLofayonVAYo9Y4GzZcwv77n8BpYfZoDZrXOoEL+VHh80y/38+XX37J7NnK+Bg2bBijRo2KUA08G/lGQmEhvNY12PDVQpTnYNQmLGxrN9J6Ci22TBRPPql5VCy88IKS/BoZhkAvuO7daTFpEl27dgVg27ZtPPPMM3Tq1Inhw4eTk5PDggUL+PXXXyksrEkvoUuXLowZM4aCggI2bNjAcYk0Pa038pG93obEC09Av+F89OsMDby/M/C3bT9te30e0ml3Po7Ex1SUChA6PtTGY6iqq2HY66RFnn76aR5++GG2bNnCAQccwJNPPsnQoUMjrvvaa69xcWhjLZTmX7sz82+N0MndunXrWLx4MYs7d2a+ZXG8ZdEtXnxg3DiVWbzySvCzG25w3oAs8QOWRf3pp+gTgeTkmAa9KVIfHoB2tS0FVh2r8sX166XXVFxsq1gYkpO/p2PHN8jJySEnJ4eOHTsGyi4SkVCx1y1B1EwRIjNHE7/R41rCSGwQR+qE6LCbtjvJ3q4Ny1In5ddeq/u/8nL99h99pIuVkwP336+lIXIFkeB2iyRPlMT2ehMVzmsgDCqf+Sf6vTyBz3xoWH2dcHJsI9I9/Qhjitmxoz2FhSexffsBFBYupbBwOtu3b6eoqIjqGHI9KSkpNfrVoUtWVlZIp/drUL5kNCfbj9yYz5Dw4/8+/j/a64i4/Xb4+mtnmdlPPaWqmQceCH52yy1q0NvYCD2eWER5FHu9BPgQ3ZluNE08zA3JW4jB3dlZUJGQCFFvP28FwNcoN7k9cDzxS1wWUqdR6/IEvv5QVMiRKCxL+hePPVb3fzt2qE38F18omNCtm2z1vffqfwHUnjJEKo+PhszAgsej4EoiWtbG6P5waK8LCgpYtGgRixYtoiBkkpiSkkKfPn3o378/3bp1i0mib9iQx4wZf2Xr1o+55poqXC4PHo+fiy/2k5V1BJb1OuGNFEchh/oLFIDsgcodj6Lxc2P/TnQSGzSuvBL4/lg9PP438Lux1SBy2qkc2l13qerxhhuwLIujjj6a7L/8hU/GjmU1EsM5l6D+cYMQaq9//DF6IkpSknP5wCQkmRqTg430PfH3n5amtjr9+gFcTFlZBhs2zGHjxgls2LCZjRstKis7sX79etaHEFFpaWm1fKXZtGplyMoKie+uxrlaxWgkPF0f/OEPClTURmGh/O5JkyQf1qcP3H23xu3Gvs89Hjg9XP/F7/ezffv2GsJ6y5YtbN68OfiMGaPF5SI1NZVu3brVkNehslCJwhjDt99+S3l5eQQC24ua/jyJAtJ2M6CbEJn9MnYzOuFk9IR8ixJJ9kMB7kNo/Mzoa4lNYoMqaC5GTR//t/G7sdcuF9xzj7Jt48EYEZyZmfDHP+qzpCS46Sb56I2daxkq8zl9enR77bBC3gAlFrAZQor0azB/vqpgkpNdQSnaGiTChdjkoQsFEacAlbhcPTnhhNFkZWUxadIkZs2aRUlJCaeddlqtYNgsQquZW2TA9aWaL/yKBFCWB5bmqPaiv72pDziL2IqwsXDxxTWNysOwZYtY/h9+0FxmwADJnj7ySIMTOncgBmhN4LXEsqBjRwbMmVNDZLdp04ZrrrmGXbt2MXv2bMaPH1/TTDclJYWBBxzA4IEDSc/M5KuvvmLhQons1ke2zzkqEBH8Crrwtr2+Acl3PE9wdnEiqkB/HmXqe5GA2pWIO2lMGFTFE4vEBvgrItF3V4Z6Xex2tmrcuHHcdNNNPPfccwwbNozHHnuMUaNGsXz5ctpEKtkGmjdvznJbzI2GdPx0iNmz9SBVV6vxwOjRCRF5Xbp04ZRTTuGbb75h23nn8ca779KtupqjUc/miPD74dVX4bbbJFYKmkw/9VR4ZLIx0Lp1MLIZicS2LJHqS5bI4XvxxbiDhwVkp0L2oTLeVVWQlxdcNmzwU1nZgjVr1rBmzZrA11i0bt2anJw2tG9fQNu2flq3Dk9Kr4vO6AF+Hj3gtiFOR5kDdxP9No5wrk7TcPxoLt6CkLpvh7jjDrj5ZmUPPfecSk3dbnVWmTpV2fD25MftVplN//76bPv2xhu4fT4FR5xgyRJFTN96S4RNkyYKLV9/vcpldyv+jbQBbIQOYPOoqjqY4uIvKSpqTVFREUVFRRQXt6Co6PQQsnojkbL8XS4XmZmZtGzZMqzxYqtWrWjatGkc27ITETDxBlQ3kss5xcG57t3Y6+21MSILZs2SLRs0SBmy9dEiHz5cQaVzz3WWkfHII3Ku7RKyE0/UJLmxdd1Cs7wikdgul0ia5cuVvfDpp2F2vTOKwXdC9HELcDD/NESWFQFNIJcRn6FIQtm1l6JAUzVBe52FSMa/xTiYBthr0OGnIWl9p7AslTNedZVs83PPyRampECvXvDNN8HsSmNUhur1Kjt06VLZysay116vdAKdYM4ceOIJldWXl0Pz5po0XnutjjsAv99PXl4ey5cvZ/ny5WwPCZZ6PB569epF//796dmzZ7BxdQT4/X5WrFjBjBkzyM19AU2KIDcXunSRfVSv6xlI3/QXICewdSvk3P7V2bnVG5uBj4mf4ulB9vp/m8je6201yC5NniwfyOVSYP2ww2KVhUTHmDHyTf/8Z2dZ2WPHyj4GetH0u+MOWq5dy7uvvUYhysn/I3bLxAagXTvYtEnvI02+XS5JTixeLAJ22rRGshmR7HUGet6cZDJqMty06SX07j2e3r19gDLYCwpas2HD5WzYMIyNGzexdetWysvLycvLIy/PTstbBMiFbdFC8qOtLI0AzRAZ0gyFLyP+2kOIrzBYGx6P7N5FF6na8YUXVCrepImCjF9/rXmcfX1tez1ihJJ4GqHy0YvSaoq9XoqOPJLib78N+KTFbNu2LWLyhHvDBrLnzaPt/Pm083ppn5lJu8svx3XeeSpjTQA7d+5k4cKFrFu3jnPOOQfLsvB4PAwbNozU1NQQAhs09p4PjCM4fode8IkoAjyLYGVMe2BsYNmdWETkVpu14UbVYvVl0fYO/E/Ya69XVYpLlohMPuIIOOig+u3rggtg82YRk05w221wzjkyKAB/+5vGjcZO7mvXDjYG5oqR7LXbrUS0WbM0Xi1aFHN3FvAnC7YdBq1zwv9XURFUDj3yyD9EqGrpiCoenQQnuiApoKtQUl9wDLGszhx66ANkZp7Jxx9/zLJly3jmmWcYM2YMvWr8wVpjpkvmdH+vimMKgDmoHY1dIWijCvAcCq7/4DxQCRp7n3sOzjwT3n5biZu5ufJXO3bUvWZMcDy3A8HHH68L56Da1aCZhk0j+ZC1qK2y7rYsOp50Eh0D0qoVFRXMnz+f2bNnkx+iyd6+XTuGeL30mzAB7riDxT4fk5s1Y+eBB+IaOpTDjj+eLl26JHAREkE1Iqe/I/h7hd6jH6JszGkEJRu7oGDf7sZUwvvVRYMPkfC7uf9bCHa7tMiwYcMYMmQITz31FKAJUU5ODtdddx23RjBwr732GjfccEONvleiSKiUZu5clRPbTrZl6cFp21akhR0ddIjy8nKmTp3K7Gefxff554Bi2ScSRSXU7Rbh+eCD4Z9fc4203RoD7dqpw1e8Enr7WI4/Ho46Kv5+XcBdSMIsAvz+TPLz55OXty3g/K6jsHAWiv/lY7fLsiw5wdnZuuzZ2VoyMlxY1kiCTUAiTVwsYndX34WiQiFdCv6D+uTEu+stxAiti7NebbRrp4HvwguVxedU9zw0StxQ2CT5NdeInI7n/IwfLwcCwo/V49F+XnsN/hRfd7p+WEtlZTdKS8Xvl5QEM/uLirSUldk/RuTovk1Wt2jRgpYtW9KiRYua9xkZGQ0o0f8Fle84QTqKATcMv3X5415tr6dNE4mxbFnQ2fX5pMf31FP1b156993K4IsHywqS2aE480z48MP6fXdtDBggEnXOnNj2wOUSAduxI/5zzmE14flKJdTKCLaAZ4msHIKFtOVXErSjVah0/VOUKR2vobAHFewvR2l20caaK1H1RSSbtBWFfkO2vRV4JMbubNgcenQ51Mjo21dyIaeeKifa7XYmFeNUX90J7H3dc4+CoPHwwgvS0Xa769prt5vK995jVc+eLF++nJUrV4aVsLvdbrp160b//v3p06cPKSmxs+Srq6uZP38+P/30U4AE34Tb/SIDBijunp0daSsPSt9528HJNyYmAE5tQBeUp9Mw/Jb2ek/bakjwfL/4Aq67DtatC7fXffrA88+LJKkPrrpK2zt5/t58M9x3MYayI4/k/WnTKEX5RfXubmFZ8pVXrtTk3MmxFBUpWOXk2D8mSmzcLiv+KeSzXcB7qApmHppwxvoON7LFX6NcvGg+6l3AWKqrq8Ok2bQsYvv2u8OTzD9B5j/kq5MJkto1r2nQzANNdojGSSH4GtNbHTlShMioUbBwYWL2GqJed4NGvF0oDloe8r4M1QkWBV53BORqOOGEiCRfcnIybdu2pV27dnp9/31a//vfuGvPBdxuET1ffaXgTgx4vV5WrFjB/PnzWblyZY2e9iWXXEKnmES4E5voRklB/4mzXmPjVeASh+sOQ7ph9cfvzbeGBM/57bdVZbhli+5Nm2AcOFAE5KBB9TuI006DTz5xZvMmToRQ2Qb7+wOZsA2Cx6NjmTjRmbTqxIlKcPz3v53ZmOnUkY+fOBF++smiZcv+XH313JC5aClK9piC5pl5xLbXLkQMvoJ0kqPZ66fJzf0D48ePr5EY2m+//Rg9ejTNm88Hao25o1E/7JDT8wIrgD6Bb8WCyRkwdye09yoxpiXB1+bEqKs7/3wFlI89FtauTYznqOVje1FOYUHgCoS+ZhDeMvx5NBVoB3R1uehmDNmvv87WQw5h/fr1rFu3jo0bN9ZkXyclJTFgwAAOGjyY9o88QtVjj/GVy8Viv7+mRrS1ZXFKZiYdvv9e87TdAic20QXchyZHexL/RlXz8Z4FC0mejW/Qt+010iJVVVX8+uuv3HbbbTWfuVwujjnmGH766aeo2+3cuZPOnTvj9/s58MADuf/+++nXL7LuZmVlZVhztlJb8Cce5s2T82BvG/pwbdki57esTMSJQ6SlpTF69GiG//ADU7/8kgU+H/nIQYsInw8mTJChDCUb//53ePbZhk+UPR6R2BMmxN+XzwcvvaRj6dFDInqxDI5FzGaoLtfDZGd3Iju7EwcdlAbcRFnZOvLyXOTl+dmyRZe5rExJyNu3KwhsIyUFsrM9ZGdPpGVLNZJs1UrVR8FLZdDD8h4qZaiNJsgoPEeN4b8IuB1V2EW7JHYS4bro5xcVmzfDAQfEztCJhMYisUEZ/n/7G1xySXwSe8ECkdg+X917xD72Cy/UPocNS/hQfD4fO3bsoKSkpOY1fHmP8vJguVNkGFJT1wUaGPUhKyuLzMxMsrKyat43TE92AxJDL0eaj0cTLOdxit0aD9wj2Kvt9dSpcobs5yTUsczNhZNOEplcHz3M/HxnZd/GKPu5NpH9j380DpHt8aj64W0HBKDfDy+9xM7p0/moaVPWlJVxJkEBnjqyFmko/TAqHiXojs5Cnca2Eb/JI4F1UlHWdSwSG2SLz0DPWG1ko8DkR8F9XAE8HOfrLZTIkCiJDRp0Bg4MNgRzqnfemPH/AQNUQnvWWfHXnTpVJLYxYWPLDmCp18tyr5d1Z5yB76qrNGgiv6RXr1707t2b7t27xyWvQ7F582a++OILAFJTUxkyZD1Dh7pp1izWdfKi4PJ/gciZZg3DauAHRD31Rg2gLRKz14043v4G2BO2Ghpgrz/+OFx2IfS5WrFCVTSTJilTNlEkopv6ySfhRLZl0fT227ng+OPZQZDErkYhuH4kIJ5gWQqiTp4cf12XSyXUH38s3yyWPICFHpuI/KOF7HRo8ss3wNmIZnXhrHFYVmD9dcS213cBp5KUtD9t27albdu2If87A2MmU1Iyg4ICPwUFUJABRTfJHpWiPMMqRDaE/WpRqmYsgqR26JIUOGrXlCm4+/bFVVqqv30+XPb/Qs7eGzirmsWYOp9VEk5cOxbQ6tCBpJEjyRo+vMYPtV9btWpFixYtgvq0H3ygORXUnQv4fJI/GTNGz0TYtRW2bt3Kr7/+ysKFC8MCkh07dmTgwIFRM3mDeIr4Y7gP1SfcSwPCOjGwBAVdfEiYcjiJ2+v/bf96r7fXtbWJQ+31woXiSn78sX5k9rZtzv2lzz8PJ7JdLvjrX5Xd3VD4fCIQnJDYbrcSuP79b0nJRcEGIMuCpvtRp8ArPx9mzbIAN6NH3x8yR30fSeWU4+w58KDM7XnEJrEBrqdTp5O45pprmDp1KjNnzmTp0qWsXr2akSNHMGxYT1yukCDn9SiWWevbQmt9jIEVxapPXhHhG5MQpWqf3brAmbkB15tv4vrsM9w7d+IBkvz+MI+wDI0LZQTtsL1YxoS1AX8BzUgiwR84I3vsPhUJz24B1h5wAFOOPZZNa9fiX706bLs2bdpw0EEHsf/++0v29pln4LHHSALyAiR2C9SSfJgxJJWWah66apWkJhsdTxB/DPcju/5Xdk/T8jlIbAbgINQG1P5ep97RnrXXu5XILigowOfzkV0rbSc7O5tly5ZF3KZ379688sor7L///pSUlPDII49wyCGHsHjx4pqSgFA88MAD3H333Ykf3KWXisSONXG99loRI61aJbTrrIwMTkUFWxUE6QE/KqYaQMjtsHixovJpadCsmcrKDzlExvzbbxvWSMzrVaZZYCIaF4WF+r7nnlPGQ6yss3sOhXYzCBeZt13KRwmy3HkoClhC06bQp4+fPn2Cu9m5U1X09rJlCxQUpFBZeSa5uRPqJLokJ6uyv3VrXarWrS3atPkvzZufG1J2tRWFGctQ5sr7KJYXCCe+DpxDqFxUEB6PNKWbNlUmkVOElkhu2OB8u8ZEZqayVvv1c166+9//6jWWo+FywaOPqow9BMYYKisrI5DTwaW0tDRqU0VBooqpqTr8jAxVHWVm6mfIytJ7VQd3Qpl+oCYxH6EnrAcauhJt37QZaWB/SvjA0R459aeifKJ4shNu1Cjnfxt7rb32+xVM8fsjB3yM0f1+ySWShUpL8D5IoKkSP/wgGaYmTWSv27ZVw5ghQ1TZ0xBdN69XGX5OiGxga14e77z+OiWjR5P04Yex3eHHD4H0GQQNlW0fUtAk9pTA30uQdrE9GYo1/tgOVwuUPnhSnPUJfP+ThBPZeaiUrhJpdn5FDbXQFflsVxPZXrvdKlGsrAyS0U4Q+ljbZaZ7Gl27wpdfSnLKqb1+8EFwuTA+H9vRxGIFyqmsuTR+Py0XLKD37bfTu3dvcnJyIjT+iYzS0lI2b95M7969AcjJyaF///7k5OQwaNAgkpOfxxnl40WNacYEjuwnRD5Xo2nSiSTehGYNuhFqN67ohqIdg4l8k9SGBzno/7vYE7Ya6mmvy8uliQmR/Qrbhl94YTBLKxGkpGgbJ77x+PEaD5o0kWPRrh0ceyzu7t3JXL++xl7PQ7mri1EoLbrITggsSxm5oX1uosHvV8A1M1NVPdGaXtl24Lkh4PmZoL12ofu6KUrcsDPrfkJNoGzrH2sUsAnNDkhqYiTO7PUzKABpYxUqbfZiWeeTmfkzmZleevTwi6PcQY0qRRVBUnsHUOpyUdq+PTsKC9mxaxflyOrbRLJBHl0dmj+Ui21Ahmo8eBCVm1brNRPI7NePrOefJ3PgQJo0aeJM5uH++2NnIfr9yuZ56SX45z/r/LugoICff/4ZgGbNmnHAAQcwcOBAWjmek/6IM3u9A439B6Ff4TsU0PYj33Y0iZMmC5G9rt24oi/wOM595n32erfa64KC2E34fD75V5ddJrnMRJEaNZWvLp56SgE/21536CAuok0bZbs1hA9JS1OSnpOsYJ9P9rpTJ1XJ3XNPnVUqgPcti12WxZ/u7EUXaxm2vTbG4ssvDX5/Kr17/40ePeyo5AREPoCes3hVMz5Ua/kS6mbuhCB8geTkezjuuOM44IAD+OKL58nLm8XEiTNZsOBATjppJe3aBfyk49EjGk0AwOXCGjiQPy9ZQm5FBdsRlV4YeC1C9jHUMkwB1icR0t4sGDhIJTyPeDzy6iIhGcKI7Jao0rRV4H3oawvCKdadwEf77ceWUaNEKgD4/WRkZNClSxe6dOlC586dycrKwrIstmzZwvdTpnDq/feTHNjXKDQ7ygndt8+nwMw77ySU5OoMlcgTcYKNSGYmB90jdiWWhapXRpJ4/5mfUM+CObU+H4LmbINwpgNmIZ3uPYc92dHNEQ4++GAOPjgY2jrkkEPYb7/9eP755/lXhA7Vt912GzeFZMiVlpaSk5NTZ70w/PqrSrfjweeTk/q3vzk+fgCOOQZuu61OLtJPiF6djdpp2IpkVFZqKS6WwPTcuTK0bdrooakPXC5lKR4dKfMtCpKTRQwcfbSyuC+8UOyyrbfm9WpQuuceyZCwFjUFWYBupYNRBnTomT+EzE/kASg9XYuE8/cDTsLnO4uCgvVs3foW27YFM7a3b5eU7caNodyDAWaTknIvLVo0JTPzIzIzfyIz009GhuYNmZktSE1theJzHjjLQIaBv/vV9NWG2y3i/z//Ud20U5yM5tEjkG35rTB4sCZuJ54o5yQjA847T6W4geYGYfB6ZZBrkW8GmdSdyL3d4fWyY/x4dnzyCTuqq9mxYwc7d+5kx44dMZsp2nC73TRv3pzmzZuTkZFRa/mEjIwNOEsS9CGt3gtQOZabYJO65ih76AaCw85GdH9+ioIaXVEx8cloKB6OfrDaTs0mdB/no0z/t4htwH2IEE8cxhhKSkpYv349ubm5tGzZMv5GexH2iL2eODF+6bYxcpjef99Zg5lQHH10MKDjBLa9LirScf3yiz7PylIwsD6wLDlGDvXoVwPvu1xUlpTQ6sgjOfu442j997/rmGx7XV2tycB//yuSn6XoeViG3MQRqEQlM2TPd6GnP96EoQ+y16ehDOtlOGsm4EXVD6Dn7GrUKDXUQc9GLuR2wANXGWht4HZ/eEpIUpLs2yOPJKYzejGqyhmIjNxvheHDlfXz9tsa+1u10r375z9D+/Z1Vvdt28b6r7+uIa9rX+0c9Iv0MoZWc+eGZzbFQXFxMT/++CNz56r89YYbbqgha84444zQo0jgBH3I27kYhfBD7XUr5BtcHLL+GkSYfUUw2/oKNNtahxz04gjfsxY4HZXdjqJOrWwdeKmvvf5fRqK2Guppr8eNi5/1ZhO7Eycq+JgIEgj2Acp+rqiQbV63DmbOlH+cnq6GrX4/ypuThXwDNYKMm5t6++2J2R17Qn3NNUqYuOUWZXKE2uusLOmAn3IamlC+jJ6LJujePg/JmNn4G7Kd8bL6BiCbfTYKOE7BmS6rl2DgaBUq4P621jodkSEtBjxwp4GOfrjbkJyreU5L0Nzh0kulhRvhunkJkthhy7lQfSL4z9eUzI+e7tDX0PfuwOIJeR/p72TqktYxAxjHHKN7+4wz9Lu1a6fzufTSyMlOy5er8jce/H7NM//5TzZs2EBxcTH9+/cHoF+/fhQXF9O2bVu6du3qOCAZRKL2+jvgz8jDCLXX7VFE+dSQ9ZcgvbIpiLU6AMnVjEQTq8OIfI8tRffyx2gQXkDs+9cb2O/vC3vMXr/ySnyC2OcTZzJ7duKa2cccA1OmOK86Li/Xsn27Ap3Tp8tepqbq8/pWLz/0kAhyJ9tbVtBe33VXkPeorKzpn/Z1dTWlTZuSdcEFdDjtv8jXeQ3IY/58L2vXppOUNJDjj78+sFMD3BjyPhYGA71QI79RwLsOtgE9w98C9wDzyM6+hksumcHcuSqA2rwZXnwxk4MPrmDEiAqSkjzwlB96Gvi3UQ6gjWbN1KDxootw77cfXdEMOhR+woRbAcg6E/y9wX9v0C770FNce5pvUG1QM2R/ay+hWdanIRseLXzoRykx0wlME9q1I/XHH+mzYgVdqqvp0rkzmVddpfleiFTFpk2bePPNNylftozmGzdieyMxW8u+9tpuILITDdL4kJbXtYjr8KAr5kPJHS8QnjA0B0UsZgTWG4LG8+EoyeTYKMfwKwqcT0Rj/Ubi34sx5Bp2A3Yrkd2qVSvcbjdbt24N+3zr1q21StSiIykpiUGDBrFqVWSR8ZSUlIRKZQGVyDiJyvn9WjdRIvugg+DAA+XEhHxHKnKectHwPxLdQnXi3PY227bJaV+1ypkGXyh695YBdkrqeDxwyinBjJBRo5RZ/PnnyvL1epXpe+65IUagG7FF5ssJdl6NBbu85nNAfHJ2dkYd/U2/X3ORbdtUtmO/FhRAZWURmzc/zubNhdR9yAoDGb9DyczMJCOjiqZNs2ny0ok0XZ9K040badqsGU2OPJLUrl2VaZFI+epfkdU7CnGevxUmT4bvvgtmQe3ciXn0Ubz//S8Vr79OxbHHUl5eTllZGbt27aJs82Z2VVVRhgaj0Nc6v5jfLy1Ze3APQVpaWuC61iapM8jMzIzTVHEIyoNyEulrjoIlthZ16FGWoi7sxagB6FuIJLGnOaAJ4TdoQpeCnsRYuBU5BZ8G9h/pPnYHjumMCP+LjO3bt7N27VrWr1/P+vXrw8r/Onfu7Hg/jY292l47kf7weGSrEiWyjz8ecnJk7+ojGWFvU1goUmbOnGCzRqcYNkwT4quuirvqr8AElwv/fvvRpUsXzj77bNLS0lR+OX48/PyzjmnQIMlVNLEpmf2IrYO5jTBZj6hwIffzI4BAc7Ct5OXJbPp8Mhf2a+h7vVbg9z9O06b3kJVVTFaWoUULcTjNmoFl2dfOLnUtgzNy4PQLYGaRZK/S0pQJ37KlMtpCyq7j4h9Ad/TYTnK+WaPj3XfD/ZCdO+Ff/4KHH1YV1ciRlJWVsWrVKpYvX87qmTNr8uRBlqcLmu70Qr9IDXbs0KQrzrNWWFjItGnTmD9/fo3uaocOHdi1axdNmkSi8g5AAQgnTrcfOcB26nvoNgUoWLgLkcpPoEmeFbLeauQTHAQ1uUCRYD+zVyBn+weiB2NcKM9npIPj33uxJ2w1NMBeO+kNYtvrRInsc86RvJOTEvFIMEaGqKREyR4//MBBxcW0QrnOeYg+/iOBRrmRMGaMfHMH9hrQcx4qtXLFFZI8GTcO5s8PNsI87bSQCqEDA0s0LKdutmskuJHBC62oc9DcOGzdFWi2EkmqwM4q+QvyHivgku5w0QUwLU/janq69K2bNxc5FWHu5UEUfZ2C7eeQ6/cg4YknexqPPx5ur1eulKzYQw+pKfDgweHrJ+AD5G3ZwvdvvcWqVatITU2lR48eKnUHDj300AYcdD9EYMQj7zzIrp8Vsm6o/dyMgoXvBtYZC/yL8FLUNcAHyLYuQvdCJNj2+nzUvGxM4O9Ix2hrWA6Ic/x7N/Zqez1tmjNy1+USqZwokX3ppXDnnfUnoI2R719drUSzb76Rz5cILrxQMlCxMs9rf+cpp+i9ZSn4dvXVCqAuW8ay0lLmVVRg9e7NqZdeSlJSMhLIPgS/38933z0GlHLkkUeTlWV7Zj+iPjTx4EHz4mdDPkvEXlegWcLhQBWWJTqqVy/1wl20qJjp0y2WLj2KE09sSdeuqXBDH7j2fJi6XJWNmZka35o0UdPLKHBRy14nwSn2MPMyMhsxcAHOxSoiBRmrkdVZhkZDm1R3AUO++44jLYsm9vxs+XK44QbZ6+++g1692LBhA2+99RYVFRXkpKY68wqNCUrHNirSUNW5E66vOaLszw/5LNTfWocCIF8hMvsaNJCG2utVSKf9JMRzRJtf+wPbnI/89NOJXfl4O6r62nPYrUR2cnIygwcPZvLkyZwSMAp+v5/JkydzrUOD4vP5WLhwIWPGjIm/slNUVzsv5a1yYECKipSVV10tArlHD3jjDVmPkO0HI3fyczRFm4TMzbGIWot4RFOnKoz23XcikZ1i6VKVuzstxfF64frrwz/zeDRwnHpq5G3iIo+68bpIMCirqpqgucpGeRLB7V2uQGf0WskPPl8LCgunUlS0vaZRYOiya5cScrZs+ZktW/6MWgBA2KBSWAhvvIHb7aZJkyY0TU6mSUVFTfAhGVGfyZGWckjaBG5/UKcv1mLnz8R7taOY1RGW2p/b2SuVxoRns/j9Iij+9CeVhoVm+sW5N1JRpLQZGqyaHXkkzdq2pVmzZjVLenp6SIf0+uBKVDYVCxYqR3wVkdixjvseNBhcTl1Da28XuZSvLlzoaf0RSS+sJBj1tDNVTkCkeeRr4PP52Lx5M+3atavRSJs+fTpzQipCXC4X7dq1o3Pnzg40D3cf9mp77RROpD22bQs2U+zfX9lh770Hhx/ecO3jKVO0/9deq2tPY2HmTFWBxPn+zQTCfX4/B/zpT5x0/vlB7b2UFGUonxepX4ATrMAJQVlZ6WfjxgXk5X1PXl4eGzZsoKJiO85kHUBO2L+IlMHt8ciHFrH9AllZ42nZsj/Z2dk0a9YM62CrbrVMWpqzQIeNzMBrAhWvuw21Jndlfj955eXkHn886++8k01eb1CaybJoSpC47kbdDJcapKTElMwpKSlh8uTJLFy4sGb/3bp144gjjojTkf0qIJ5UmRuRGXehCVise+oGZGf/EuF/9naz43xf6PozUVbhGUjB0rbXoFH1T6gVkNPp096JvdZWg3N5Jctytu7GjerlAdKzb9dOhEJ9m/uGYvp0TdzvvZcu997LpahF6XY0Dz8X5SDVwZdfihVwAsuSfbqsVpZS06aBSpn6Il4DXhs+6jLAMfPNQuBGtR4jUSF5JNjP1/OIDA0QNy7gyG51V8/MdPjdBLU+YK+01/j9Cogce6yaUIf6bxGSPmojF7WyX+N2w6pVuFwu9ttvP7wNkSgLwzWEV71Eggc4EwnmhiZ+hML2eS9HQlZ2RnDocdrvpzg4LoOCInnAl+hJC1Rg1fzfoGzDRx3sb+/GXm2vnfpNluVs3bVr1XvE7RYH0bq1pHMSTTCJhAULxLdcf73zhr8Ar7+uxQnv43Ip4Fbbj87IgKuvpqysjM+feQbKyjj0sMPqNFtdvXo1paWlpKWlMXz48JD/OLXXXura614Ot/Ug7uRoajciSE9XMcmAASq4Lyycweuv30z//gPp27cv3bu3IeWYCNn7LaKGc+siM+S9A3tdHy+sHM1UliEqNvSOTEN1fIcTqAIKvT/s91u2wNFHkztpEm9//DGVlZV06tSJPw4ZQspzoRJaMZDINXEMC9nr24gvEXYhqmaFyHMuPxqALybo80Jke/2Zg2PzI386CcmSXYbstyfk/y7gjsCyZ7HbpUVuuukmLrzwQg466CCGDh3KY489RllZGRcHNPQuuOACOnTowAMPKLP3nnvuYfjw4fTo0YPi4mIefvhh1q9fz2W1ncCGoF8/ZwSvx6N1o2HbNkXq3n472DQSlCl2//1yXGs1bcxEt9U8FAMpRLfFYcAxkb7D75d22urVzjt020iEALrvPmhQ5D8SErm9LMI1fVLRQ/g8sbN1LdzuQlq3LqR168hrVFXJ1ywudlNcvImSkjOVkVxWFsxOLiujsrKypjnhjr59FYmMN1C2RHKBP6KKjb0UlmWROmsWaZdeKqK+aVO9HnwwTX7+maY+H02QAqP9WkPNut3KprEj1I2KwciJHUf0jAwLldBehDP909txTqrFgg9lcP8XDZuTUSnPDhRxvABluQZRXl5OXl4eeXl55ObmsnHjRrxeL5dffjkdOihK2b17d4qKiujcuTOdOnWiY8eOJAdIJ8fNWXYT9lp77cSW+f3Qt2/0/69fD7feqsaM9kTRspSR/cADCth99FHDyOyKCkl5jBsXu8dAJDiw7e0sixHGwM03c+S11zrT6XSMyPa6pESXLi9Py9atYIyP0AlrUlImHToMpm3bOSQl+XG7NR+wX8PfF+JyKWm4qCi4FBfrZykoCC2IeRR7ZGzatGlNw7G2bdvSrl27YGOtM8+UrEwsAsCNBlo7ELqmQRerwTCofiQXUQO5BBqi2RlIn30Go0fTtm1bevfuTa9evWj/449Ys2fHzm7yeDRjiXNvLFq0CGMMvXr14vDDD49fggxI5uMY9NtHy3j2oOwNJxNXP0qRbwz4kY2+DWWkTEAkyS6Uu34Rov//f+C3tNXjxo2jf//+dO/endatW4fbob59nWXfVVfHttfLlqnx+eefB+2oyyU7/e9/K/A4bVrCxx6G7dvlv7/4IgCtgUuBd1DQ8E0UaonYdcFpibrLpeqL2iWGDUYi/nXtQHtv1MXnJ2JPmn1IK9kJKlFp/Y2xV8vKUrbf99/HHvM8KPnLEzjE9Q4PY0/Dzu5/8UXJzdgYMAC6dNHgWcsP2IZy5dYCWBauAQMYeOCBHH744SEZnI2Bc5G+6XyiVxSmIZmxd+PsyyDf965GOjY3GkfeRAGQjwj2yuiF7PWezezbndgrfWtQMsfkyfGDij5fbHs9e7b4kG9DpIeSkuDss2Wve/dWVmxDsHq1NDLeeKNh1ZPRYFnynz75RIHGOpsbPv/8c8rKysjOzmbEiBF11pk7dy4A+++/Px5PqI1uiL0+FAUfVxF7XuulTvfGWujdGzp3NkyeXMEvvyxl0SIPixYtwuVy0blzZ3r27EmvXr1o2bKlo64eiAABAABJREFUxvUePfS7L10a+/q5kfIVKIsugZY1sWBQCHUVmoWvI3zEykCJoH1QCls8Jf9qn48pGzbwy223UX3AAXTt2pVzzz2XZL9fQdZ4PRhcLt3TuwVXIEmQ9UTmvTyoTqwrkaujQuFH1VKP0jjNF5OQvX4UdaJ+D2WFe4H+yN+PQsLtZux2Ivvss88mPz+fO++8ky1btjBw4EC+/vrrmqYHubm5YbpfRUVFXH755WzZsoWsrCwGDx7MjBkz6BvLgCaK445TE4F4TZ683ug6OFu2SONy48a6A8C0aSKz77gj4oNvIdn0vug2mEUcafQJE3ZTKUMInnpKWclbt4pFaN1aJZzHH594M54adAbaEt+iuVApTW0TdAvKj4mWhevCSefrYINIH2oSGDFkgNfrDRLbhx9O2ahRVPp8VEGdpdJ+PwaqWkJ1PvjXBfMZ/JaF35io+Q2RzsRFkM63NRuTai2eCJ8lEd7pPWLXd78fa/FiNWFq1iz4xZmZEGEwDoPPBzfGmZw0CK+ho36NyM2N3kRxWCfG2Eu40FdDYQeoXKh24tiIa61atYpvvvmGbRE07Zs0aUJpaWkNkd2vX7+Yncd/S+yV9vrMM+G668R8xoLLBRddFPl/q1fLXttsqQ1jVKo4dap0/xuakQ0iRlasiL+eQ+xCNiQdwBhGgMj4pCRpvhYXq9Li/PM17tSb3B6AnrcyjFFizcyZqqAOvywWmZk9yMkZQE5ODjk5OWRnZ+NynYh0jKuIbPVi22s7uc0mtgsLDUVFm8jPb01BQQFlZWWsXr2a1SGdx5OSksjOzqbt4MG0e+cdWqPYYhMiZHv4gJsDr3NRgowdbEg06JAgDFKR3Y6sU25giXRHtwY6G0OnhQvp8s03NA/N7LvlFsnFxILPB38JZjgbY1izZg25ubmMHKniyYyMDMaMGUOHDh1o165dtD1FgAtpm/4JSS7Z9tqNLmwmauEzH2fjs5/Iutf1hW2v3ahk8qRG3Pfehd/SVq9Zs4aNAf+5efPmdO/ene7du9OtWzeaXHSRCL14RG+zZtHv5blzZct27Qp/Lv1+kQyTJyubefr0+pes23jmmTAZiGYoheIDJMwQkcR2ClvG5B//ENGzcqUkhDp1ki82dGgD7PUwwrsgRoOHyFI69yM9vGhB/0STAQwKJDnwFW+5RVWmseBDUQSbm9mCM0nI3wJ+f10i2+XSeQYybn0EZzhuRMi4gYGWxeFPPUXmgbFkZOqLFJSMcTrwPXXtdTbKyBuPZhLxEgZc1M70rD8MQXudjJrgnRN99f9x7JW+NcDll8OjDrLe7caLkTB1qriC2lxIdbWqHSdPVgXNqlUNa9gIIsV3Oan0rgeMUebbDTdIPmrZMsnW9egBl13GUo+HZcuW4Xa7OfXUU2sR1VBWVsbyAFl/YJ3n2WmioBs4stZnFuopEqs63rm9Tk2FE05wM2hQMgsXHsyKFStqJC/Xrl3LN998Q1ZWFr169aJnz550uflmPJdeGnunFkoSrkZFyuUkZK+9yD8uCCz5Ie9rU7ptCHbpaUtimd0eYIVlUf3LL/Q4/XTOPvvsYFX59ddL3i/aXMDl0sVrUCVVLGQgO/0HlO5q22v7tQtK0Hgo5LNYcDlYJxHY9joNeUnxqn32DCxjduPs7TdAaWkpGRkZlJSU0DxE0L0O3n8/dlTFsmTgn38+8v9POUUEc7QopmWp5DkrSyR0jMtcSXiJ8FfIlB1OA53o+sCe0NvZ3717q4yyW30zme5FemrxjNlbSJWwNuaiLLBtBCfG9qsTJ742snDUlGzpUpWwx9JhvBr1P7HQvP4dS9fvjjuUkR8QhbWlQuwllKy2X/cYVq7UoByKRx6Bv/61bsa//ffdd0vjbLdjBZIZWYmeiKMINjd6i3A9qD0BN+rWLu326upqNm3axIYNG8jLy2PQoEH07t0bgPXr1/Pqq68C0LJlSzp16kROTg6dOnUKRrYdwLH9+n8Cx+f79NPx9e2idBcHRGLPnh3diXa7pVlUXg4NzYpPtHImBsoJhncuIoKAje0o2pq0gwcrgzEhcjKI6uprWLDgOWbN8of1Ge7QQdxLTg507AjNm39D5KDO96iZqn0NDUE77SzwGI5ewHKqq6vZtm0bW7ZsCVtqms1u3Aivvlpz3VMJNhlrZb+/BVr8K6C4MQaY5NJ1u+02Oa9Q1+lOkOD2EuzoXlBrqYywvhsJXXVG2SQ51Goyt2OHakJtGKMs1YcfrjtJsO+7p5+Gq6/G5/OxePFiZsyYwZYtCiZfffXVjShftAD1wFgXOOoxSNIjFWmx/43Ex+eGwH5KXtxj3/h7tdeTJk1i8+bNrF+/PkwGoU2bNlx99dUwdizcc0+NtxYRTz2lxoe14fdDz57KZI1lr7t3V7QtkcrDSGjaNKLmqi2mYGMnCvM1yF+z7Yltr48+WkHJROQ2wnA2ymSNN1mdR+R0mU9R1m4FQRLEniDXp6ptJMqqjYNJk0QUxcoCfQYlqPlQJc2vbpEI11+vCqrdHHxMGMnJ4ZW5QNmOHSw+5xwWffklSZbF+SHHO8/loguQ+c47uzHDz4YBfgZeR9nPzZBc3knIq7gV2WwnRLYt+9FQuAPfe28j7Cs+fm+2GhI45yuuUCAm1vP03nuR79OKCjmIxcXRSUuPR75pDL1lx2jVKrEeVo2BgL32nnoqUy6+mCYtWkTUrv/pp5+YOHEi7du3588RkyCPQKXbsfwiF8rIjSRq9Rpqxuoj6Es7ITSj4Y/Yjb0KCwtZsWIFK1euZN26dfhCxt6kZcvoMm4cmci7Swt5TQNSLUh7GdLOgSQfcCD4VruozMyk8qyzqHzuOSqhzrKLoH9cRHSr4kHtZu3M60SEPbYiyzeaYObuSoCWLemRnx8+N7d12L/8Un+HPg8ej/yOzz5LqJF6/WDQXOptxH21QPJPo5DdvAQl+DkhsiHxeVckWMBjSIJq9yMRe73bM7L3Wpx1lqJ6V14Z1LEOdTD//Gc52pGQm6ubOZbRN0akyMUXS17E/iwCQknsIvTQGUThHknkXOXdBvsYbSO2ejUccYQyZKJpd8TEjSjav4DoWXqjiR6JH4SM+geolCEfTf0HIj3kROFAuKmiQhOMeIRWZ3RKNyN7M6C/yLTjj1fk+m9/gx9/rMmudrtccPLJkjeYPr3xMkATwahRyhq5+OJgJtAtt0i+4aGHFFm3MXy4CO6TT95DB9cLRRojob/DfdQnuBEZlZU+Vqw4nry8L9mwYQNbtmypaYgGymq0iewOHTpwzjnnkJOTQ9MIJWn70EBcc42ey1tvDXYQBDkWfr8+v/vuyNvOnRvfgfb5lJX3l7+oqVNDJsmNRGJXIFdlKwrl7KRWQz8IXgebEJg/X2Xbv/wSToDGQWlpKT///DO//tqS8vLmQAnJyYaBA5U0GOxLYCFJnchVLRqxNiCDOB4oQfRsN+Bhx8cThKj7pKQkOnToUFPVANKYLCwsZMuyZWwZNYotPh8FgW+sQEV1YTVXK4H7oPmXkDkHUrp3JfXss0np35+U++4j5ZVXSFm5khQ0Jqe43SSfdBLeiy6i8ttvqXzyyTAnvIJwp7yU2M64hX6/VmiK0gkVTsfsMHDooRpTzgg0k7Us2ekhQ0Rm//JLcN2jjoK//53Kww5jzk8/MXPmTEoCgdikpCQOPPDAmgZijYP9kWMbCf1xZofrE9yIBi+a5O3D7sbQoUNp3rw51dXV5Obmsnr1alatWkX37t21wl13UV1ZySMPPki2ZZFjDJ2AjpZFU7dbWXWRSGwQybkmju6Pz6eql+uugyefbNjJVEYKMdUlsV9GAbEjkUWrF+wxxbbXU6eK0P3+e1XYJIyHUbnvdqI/R38jes3nychKvo4C9jtRJ58WwNP1OB4HWLcOTjwxvpRBJ2RYz0STohGHq4H90KFqOPfPfyrhxEZqqhoe//nPknJxkmXamKiqgkMOoeLWW1nWqRMLFy5k7dq1+A86CDweXDNnUr5tm5KTLIuBJ56ooGTtng+7BRbK4B8W5f/9iE9iQ+MQ2Db8SMhnH35zPP20fIvnnw9yIPb8MCkJnnsuerDl/fdVzR0LXq988CuuiJ4c6BSJNPZuLARslefTTznWln2rBWNMTe+jutnYNp5FTXPtOstIeIgonRlQoH40Go2+QV7ofui5fDPGPqMh+Dy3aNGC4cOHM3z4cKqqqlizZg0rV65kxZQp7Hj//dhtKg2SF1gO7neBXPD16KZq75Yt1VT5++/DEwOTkhTc6N9fPYvmzCEV+cetA6/2+0xiBMSjIBcpvtq1se1Q23AIdIjYvl29De66Cw47LHhMn3wizu7xx8V/gZ6JM8/UPHP//RM8kvrAQnJPI6L8vx/OfuuYqQQJIgllbO59+P0S2aAy9JNOUhOAH36QI9KvnzKxe8ZohjJxonOSY80aZW5feqkys+Nk62WiHNRvEGX7NfLh/sBvpO7o9UpG5amnohNFMbEUxewiPXQe1OzvEWJT9akoGzc0I/eFehwLRM6LC8HmzXKyN8dptwvwSCp0vxc6u+C82fDFF8FS2YMOCjaksBtfDB2qyDXImU+EKOvSRb9DRYXzbSJh7VrdiwsWSMvXdlaOOkoCuFu2qJwKFPXesEGOQ9oerw2ohYHAgSizKJ6mY+IRamMgP1+8oJqIu6isHML48VvRkyg0a9aMjh07kpOTQ7eQKgWPx0OfPn0S+s59SBA336ympS+/LKfY51ND3csuU7pwNHz5pbMsaY9Hwat331X29/btjZpdnQiqkU7rJpTregERSOxI8HqlQ/j669GJohCUlJTw3XffsXDhwkCQJpfMzDSGDStm0CBxA0GkILmnu4mdl5iOUumuCPnsXuqXORJ9cu1yuWhVUkKryy6jf0ipae2s6O328mMqu5KPpLSFj9K+m0SE3X+/NurUSYG7o44K/u45OcrWnDNHJbEOkQK0at2aVkVFtPJ6a7LCW1APh2vRIjnQ99+vzHEbo0fLn8jP11gCkJ/Pul9/5b2ZM6kIZKmmp6czdOhQhgwZQtoeteHHILpvA7HJj8YisS1Eyg1ppP3tgxMkJSXVyIocd9xxwUCvZbH56quprKwkd84ccjdvZrplQceOtDr6aIYefjgH+f1hpfQ1+PJLZ81bPR5o0kSTzr//Xba7PtITDhrrbSIYqFqFONYzUV5rg+DzwU8/afJ85pn12MF8VI6cH+F/6cCdyGbHQhbS8Lgh5LPrqJ+9jjNWLlgAJ5wQNXhQAzdwXwcouw0OLYWUgH89YoR81lGj5L+2aCGfNi1Nmul2ZvunnyZ22L16ibRo4Fj/1cyZ/HryyXhPPFG+CdChY0f6H3II/QYOJO3FFzW3sB3O9eth2LAGyDc2Fs5Av3mMCtQaNAaZbaGgY9dG2Nc+NBgej8jqm29WZvbixaowOOIINWmM1dzOqX/tcolXuf9+VcBVVOhZTtReR6ie2d3Yjqysx++XHZo2TdcmBBs2bCA/P5+kpCT694+WeDUvsKedEf6XBTyIGqrGQjbqKxLaW+Rs6udLRX6Wk5OT6dOnD30KCzGvvcZWY1iP6PcKVClaHvK+wgXlP7bE1284vq47IXmj7OmqVaRYFsn9+pFy0UWkpKSQsnMnKc2akTJwIKmZmbRs2ZJW//kPrefMcV7x1Lt3UPOwFo9SjTpu2R67hWjfiMHnqVM1prz/Ppx2mj6zSett2+RbbN+ue9u21wMGNEAOrLFwIfGbQkJjJvapemZ3NLlsOH7fRDbIQN94Y2IawLt2OXOYjZHRPf54ZXFPmCCn9YsvNEGNAAtFi7qjjOwpaFL+BlIwPR6VN+5R+HzSERw7NkGHazqa0EaakLhQhOdiwnPSbdide8uQCart8CQncByhiOGEbdkip3LDBme7yq+ALalwzz9VAh46kM+Zo+yQ/ffXIL99uzqan3++HINECelTToEHH1QzunvuCc9ESQS20X/8cRnwU07RsY8aJUHcUNgZT6+8ogYejdqEpj74D+rGHK/kNf7kyxgl4K5bp7Fp/Xo91r162c2qD6V588/o3fsrsrKyasjr5s2bN3KDvX1ICNnZ0htNBLa9judo+/1a95xz5NR88onkSD76KBiZ3wPwo1zmXIIhvITFIJ5+OiaRXV1dzfTp05k+fXqNPEeXLsUMH/4mvXqZCGbehSj1i4gcdKxE9roC2erabmMy9St/jPGsrV6t4GCtbCAPul51rtn2CnYdeSLbb76ZUq+XKp8vmFG9YQMV779PZY8eVFZUULlrF5UZGVQNGULSsGGkNG0azNSOsjRFhHU6YN10kwKZ48bJXttkc6KwfYx//EMTp0MPlYM9cmTdMWDBAtrPm0dKjx6kX3UVh4wYEaHh0J6CC3gcOG0Pfd9JqApgH35LhBLTOTk5XPfPf9Y0Ps7LyyM/P5+Cqiq+/PJLdu3aFbFZFmVlzoL8lhWsqrzwQvjgA1WkjBsXv/9NguiFUi5moNrCXOBVNJ3MiLGdI7jd8q8TJrJfJ7pGpYtga/lINnQXOpNqNONoW+v/9bXXMRJS5s5V5psTfVsf8NNGuDQV7rxBn9kBB2OUtf/11yKvt2+X7njXrgpqn3lmkCRzmizy97+r6uWtt0Sybalfp7K2xuAFWn/xBf3PPJP+Y8bQsrRUvvaGDeFzxlmzYMYM3bfvvVfPjPzGQhrKBL0i3oqNhItQE8p92KvQs6cqvhLBrl3OAkAul5Ki/vlPJYq89x4sXAjvvCMfbm+SCQrBTmRpmyERpnSb9A8hsr1eL1988QWgHkiRK98eJXpQ0YVscLQxoBRYhGYHfQh2LLdRXz4khn89ZQqMGoVVXU1b6o4QYfCDWVVM9TWjqLj+enC7STGGZMAyRslxixfLDm7aJPs8d64y9I85JqD3lwAeeUSVLK++CvfdF9ag8VdEYrtRHdKhqJIqInw+jRPnniuOLjtb9+RRR6lRj31fG6Pr8e23OuZnn/2NyexWKEh9R5z1GitR5BYkEbyXwvw/Q0lJiQFMSUnJ7vuSjz+240CxF4/HmAsvrLu9z2fM448b07Zt3H1UgJkA5i4w/waz08n37q6loCCBi1RtjGlvjHEZY4iyuI0xPYwx/pDtKo0x9xlj2tZa9zBjzDch630eY7+xloHRD/ncc/WbJXJNmjUzxu12tq5laWnRwpgXXkjsey65xJivvzbG6zVmy5bEj7P24nYbc+SROu/TT499Dm63MaNGJfDb705MMMY0N/X77TF+P+b99zEPPIAZOzZ8ufdezHvvYYy53oTfk3sOe8R+7UXYI+f7/PN67pzY67/9re72VVXG3HefMZmZu93G+sF8CWYsmH+BWVfffblcxvgj38NFRUXm2WefNWPHjjVjx441L7/8stm4cYUxJt0YY5noz4/byA6HoswY8w9jTFatdY8zxkwPWe+pGPuNtriMMaOj/64jRji3vfaSmqpr4/QagjHt22u8TuR7brjBmO++01i/bFnD7w2Px5izz9ZvethhNfZ/M5gvwPhC1i22LOO/4ILo122P4m1jTBMT+75q6HKv2Wev9wwaer67du0ys2bNMo899pjZuXNnzef+UFt1zz3OnmuXy5hHHon0Jcb84x/GNG3a8OcuwlII5rGAjX4MTFFj7LdlywSv5GZjTJKJ/Vx4jDFn1Nqu0BhzozGmWch6LmPMycaYeSHr3RRn35EWtzHm4siH6/cbs99+idtrj8fZ2B1qr3v21HidyPfccYcxM2boOKdNc7RNFZhZYOaFfOYHswWM3+Uy5i9/kb/eu3dsf92yjPn73xP8/XcXnjS6r3anvX5pj51NKH5vttqYPXTO117rfD76xht1ty8qkr+UnNxwO9rIixfMywFb/yTiYwwY07dv2ClMnDjRjB071jz00ENmx44dES7SEuPMfl5Ta7tNxpgrjDGpIet5jDHnGmNWhKx3loP9R/q+KHanqsqY7GznvnKoLXO6rj0WHHig5l2JbPvgg8bMmaNj/fDDms+rwTwa+L1mJ3LcLpfGjLIy8XLxxqlHH4183fYo/MaYu4x+x1g8W0OXz/fUCYUhEdvFHjiePYo9YrgrK0VGOnlAfvgh+n58Pj08Llddg1FrYNgIZmmtfRfsacNeXJzARfrEOH9QJtsX1ogAifRQuoycq1cC656TwP7txTLGPB35cBuDHE7EaDZrZkynTs63sY18+/bGvPKKMc880zjHMm+e83UXLkzg93eC+pIPZUZkc/TfuqoKs3Yt5vvvMZ99Fvq/TPPqqyKu77sP8+abmGnTMLm5GK8Xowmdt4HnVX/83pztPXK+RUUiMJ3c40uXRt9PdbUxt9wSfIZj2Ov6LjvAPIQcsUUN2VdSUsRTWLt2rXnwwQdrnO5FixYFSKTnjfPJ64LA3nYaY4YaOVK113EbOdyfBtY93OG+ay8fRv4t6ksOJ+qYg5za7GxjMjIS37ZrVznaY8c2/P5ISTFm5kxjEJn2YeA+GUs4mVJzzBs3Rr+X64X62usSY8x5xtnvXfserB0gqb1c2oDjajj22ev6wefz1bz3+/3mvffeM2+88YaZNWuWKZo/33ngccuW6F9SUWHMpZdGfu4TJVRrLcVgHg88e1809LkGTZ4Twr+Ms8mryxizIbBNgTGml4lur1ONMd8bPU/dHew70hJlvvPDD/W7LvX5nTwe2d36EGP77WfMxInGXHll1HUqwUwH83Dg938UESh11u3QwZjPPnP2vU2aGFNamuA9EA/1tYsFRgFkJ793bXudGWe9f9TzmBqO35utNmYPnfOvvzq7x9PTjQkJXtbBjh3GnHqq2R32ur7L54Fn/H5q8S37719z2GvWrDF33XWXGTt2rFm2bFmUk7vOyB+O9zylGflLxhiz3igZMNJ2HmNMhlHw0Wvi+0nRlijznRByOGHbW59t9t8/MSLbXg480Jjp05WMZ1mmBMxrYB6JZpPj7eull5ytm52t+WCjor72epMx5mBTv+BjcxPZj7D39d96HlPDkYjt+q2Fuf43kZwMd94Zex23W6Untoh8JLhcKhmeO1fN92wNy5QUacF27lyzqt2x1cYy4CngK1TMvVthWbDffpBQp+dvcKZckxRYF6QPNYnI5RB+wACXIfn+8Qkci41UpLMcAT/+6EgrMQwu6ldeYksYHHCA822M0eumTXDJJZIDef11lcKA7rf6HMt772nbePB4VAIWhiJgMbAWYkp97ESFuP8EbkIq8K1Q8U8GKtqNLLUTGU2A1YSWse7aJWngSZPgpZfUS+q11+C77+DXX49n167XUGHwJo4++iouv7wVt96qx+ywwyAnpxVu9z3Ah+zB1qr7sCeQmQk33RT7+XC5VJIcS+fc41GDvZkzJT9ilwI3aaK+CgnZx8hIR+2PTka6bvWC2y0Jilr45ZdfeOONN9i1axft2rXjz3/+M/369QtI5UzCmTqdC/g28P5WVMgXqazUF1jORs/qtHqcSBZqZBMB332XuL3zkLgeIwT18UaOTHzbdetUst6pk+ScbHmm+tjrykp2vvIKX7pcPAUsDHzcnwj6f8ZI9y8MBcjO5hLbXhcBzyN7fSP6DTORXWwZ+CwRqZ3mwHKcNZ0xqJHRe8BsYB1wNXW1+doD/wVexKGq4j7sRQiVIFm3bh1Lly5l9erVfPnllzz20Uc8M3w431oWeUQpjrUsuOqqoP8TCSkpcga++059T2w/JyNDsj8NQAYS9RiG5P4aBI+nHrbla5w3e5oaeH8Fem6j2esq4BRgCYk93zbsFrYR8N13Ok+ncBGQ96yHvqfXK93s0aMT33b5cm03apQkoeyGyW43FcAPqL3tN8irzQAOJ4oFKiuDt9925l/v2gWff17rwy3IXm+Ks/E2NBu8HbgeyTk1QxewbeBzh3KJgGz8wrhrCclI0um9wDYrkWxIbV+oK7Lr9yZwHPvwP4EDD4Q//CH+fX7rreo5Eg3p6TB+vJ6DY44Jypi2atVge10fzA4sFlKQr5Gn8HgkPQFUVFTwySefYIxh8ODB9O7dO8reJuBMqqkcsBvT/xE925G28yILdArwE/LZEkVfonbemTw5cXttkTiHQmCbBQskwZso5s3T2HnNNXDTTTRPTeVCy+JKlytx3eQdO+CNN5z55Vu3qnllGDYie701zsZ5yHe9HbgWdcBrgiYonZCN3JbAgdv2OpZPbyMLKYi/j3i0RUjOpkmt9fYDPiC8b8bei30a2fXF9dfrZn7ggWCXXwg2PRgyRBqroQ+FzbQtXqwJ7bHHiuzef3853C++KO2g1FRtN2aMdHtM3RvUnorOQlTi8Yj4sCAxbbhEzjehiXci9HoF0up7kvgPo4W6qTvpsF0b5cDBSGu5liZ6VVViu7IlCAvreZ19PjUNzcwM03dyjFtv1f20YYOabTz/vF4TaXaUkhJskORkwrDVNtC/Ag8AHxOcTPUE/oJIaduhMcC/kWEuRxet9veUIgf3ReA1wht6RkIxxmyiqGgumZm+Gl/nm280poWiWTPFgjp1GoHLdRJqKjqGnJzikLV6IerwBuqvM7YPez3uuUdk5Isvhttr+/1xxynyEYr58zUBX7FChMlxx0mXbdgwTVDfeivcXs+YoW3qAS/BwbgFDWyp4fNJ277mTx9fffUVs2fPBmDAgAGcdNJJJIVpclbgjBhxBda1n9tYdsMgcuSlxI6/BkWoM8SrqN1lCCoT1EC1qL/sK8imfvedJls7IzXqiQL7+K68Urq9V1yhjvdPPy1H2OE5+IAfMjP56aefqArY9x6oY0C7SBu43SH2+gdkh78mOL4OAG5G19Ue132ogcwT6HeLZK8L0Tj9LAomnxDnyAuQU74U53p9vQLHdxe6d0Kv9wA0xlzBvoDj/w906dKFa6+9luXLl7NixQry8vLYdtRRbCsq4sdlyxjicnGC7dPY9vrcc+HRR4M7MQZ+/llN21evVuDouONg8GBNdEeO1DNcVSW/x7IUxHfS1DsSLItmxhBKlRpgB3UpvLjweuHqqxPcyIHOdA0qEJEZ6q9Fgh/Z3NoBMKfYgJ7dD4ETw/9VWQFWAr6yn4bFpyxL/YjS0qTL6/h7/dr2oot0b9x0E3z8MYseeIAvliypmdW0QAT2/kSxQoHGpmze7Fw/eJtNXnyFknpCiZJhwF+B00M+q0Q+98sEL1jt79oa2NcTgf3GSKyqWX8LzonvSuAgROnfAbxJ+NzvoMAxnoezQOY+/E/inXfgpJPUPC+08aNtr6+/Pry3jTGy1TNmqEFRjx4iMvv3Fyn+hz9oH9XV8q+rq6VLnGhvKRsJciK56GkBOArNbmvg9cqfAyZMmEBJSQktWrRg1KhRMfaYKB+yAPgxzno+FOj/Ns560bAE6Ib8wsPD/1XldD4QQEOlmF0uaVMnJyfGxfj9eKurmXH22RySl4fnjjvggw9o+uij0uV2CrdbPkMUvi0iavzr9xG38EvIP0egRJ/Qe2IHanA7juDgVvvC5SEt6seA79AIEwubUFqr0zlJUeCYihGRPo7gpMiF+LG/op4z/0MJIrs/QXzPYo+XD82Zo/LFLl0k+3DMMcZ89FF42cHKlcYccUTkEoUWLYx59tnIeqZ/+lPM8obVYJ4gWF78emj5S4sWjVPu7nJJS7myMsELc5+JXMJYe3EZY54wxsxwsK69dDTOynRiLe+HH+4vlyV2XY7BmMMwxmrg9a3vYlnGnHmm7pvp0xPf3uOR7vaddzq7TzweY26+2RjzWeDa177+VmA51Ugf3Rhj/pbgb+Iy4bq6QlVVlVm//nPz449HmnfftcxDD0kaZNOm4LZz5mCefFIyIvPmYQoLpYet/39ojDnExJaseS3ybbyH8Xsrf9yj52s/K3/8o2R9OnY05sQTjfnqK8k82Zg715iDDor8HLRvb8w770Te/9FH1+tZ3gbm0eRks6I+sheR7MJpp9Wcz86dO83LL79sxo4da+666y7z448/huvR1uAvxrlNHWcSk446MIF1oy3fhf6QxkwYk9h1OQdjejXw2jb0d7nmGt2Dn3yS8PZ+l8u8NGaMGTt4sHnB5TJr4m3jdktH0LxuZN9qj8W2Lbxc19P4jTEXGufliZYxJtlI+zESphqVp9en3HGSMaZvhGPGBCVrPovyvXsW++x142PXrl1mwYIF5sMPPjAPXHaZWXL00bLVOTlm3QknmOdvvtl88fnnZt68eSY/P9/4v/9ekhCRnoPu3Y35PILGo8+ncub6Ps8pKWHl737Uy+YhpJGc0L6uvDJqP4PoONs4t9dTjKSjnD7XxzhcN9riMcbMDTnWKmNeOSgxX/lajMmq528Tzw47WK8KTOntt+vwX3jBbEBzrKfAzCe8J0HU73nsMWNOOcW5nNWrrxpjHjVBOxd6TW17/c/ANfUaY8YY59qoLiNd9GhyUxOMMUfU8/eeaYzpFOV+tCVrpkX53j2H35utNmYPn7PXK1s7erRkdTp1Muaii4yZNSt8vQkTjOncOfIzMGCAMVOn1t13VZUxOTn1f+7dbsfPvj/wnI8F837g77B1xo41xhizYMECM3bsWHP33XebvLy8OBfnSOOMD8EYs9hIOsrJ+h5jzCkO9xttaWKMWRNyrGXG/Lu7Ma4Eru9YjHHX87dpgL0uAfNC4Lf67Oqrdfj/+lf9ZEreeceYYcOcr//ll0Ya45i6dtj+7R4PXNNyY8zwBO4BtzGmjQnKzITCbzQHG1LP33u+MaaliW6vM0xQPvK3QyK2yzLGmN+ORm98lJaWkpGRQUlJCc0bodS7wVi5EoYOjZ91+7e/wYMPBv+eNw8GDYq7ey8wHRVue1FM5WjgULvksqAgckZAp07Qr58yEDp0UHR01arwdSxLJfQvvxyUPXGMjahMIl6oLhnYjIp4YkU0Q9ECyYTEK7mLhf1QLrsFvA7mIgW/FkPcpPDLUVL4qxZcaeKvnwgSzabv21e/5bffOi/rsSxFPufM0TZOJU5+/RwOPANl60U7RgtlYJ+EsucSgQdl+H0CwOrVq5kyZQqbN0/G5xsXWEff63bDaafpFgZdssgFA0koe+8ZYt+LblQW2TXBY25c7HX2azdjrzvfOXMkyxEv8+ORR+Dmm4N/T5qkDMAEsQPlUxW3aEGn8nIurqrCCrXXtj3o0UMd5Y2RvZ40SdkDoXC7lfH72GOQlMTmzZt57733KCkpISUlhTPOOIOePXsSGQuJH/0HlaFsRll38aonbPRG40ECmcx1cBQwOfD+YfD+TXoaWxxsejtwD3C/C8b6G6+RNyRur4cO1TazZ8fM1POhX6QPkOpyQXo6G779ltIFC9jvssuc5Uqs/wo6nUD8E34R6I6ucSLwIKmvZ2t9/hLKPImU0R0PGajU8r0Y21po/N9AA2sXGoy9zn7tZuzp8/UFnhF3oGx92rRpTJ48ObjC2rWkvvkmHYyhIzAIWag6eP11uCCkquPtt6UrVh+4XMr0XrhQ/pPXSxWqG9mMinTP79WLdt27a/127VQtt6WWsUpOlt9/993BMnrHmAwc42C9Lkgm5DHgbzh7HkeiKo56yHrU4DwkOQFwM+z8j1Quyhxs+hhSyLjegucAbyM62DHsdRkqtl6Grlhf4LSjjtI4u3o164yhMw7y1NxuySEsXw4TJsAf/xj/uJKSYNt4yDzJwUl8iiocz3GwbtiBocHw7lqfP4iyB90k/pt3QqPUd0Qvd3IhO70BSElw/42H35uthr3wnD/4AM46K/Y6breq2f/wh+Bn//kP3HJLYr5W6P6OOAKmBeTtQufJdvb4gQdC69bKIG/ZkqLPPuO74mJOJKRONzUV7rsPbryRktJSnn32WSoqKhgxYgQjRoyIcxDvIpsYCxYwBNXZ34oqx+NVnruQNMS4OOvF+94bAbvC6U+w5R3oaOKbAwt4C53aWcDHLvA2ooMdw17norMuA9LQVeh2yimSiS0ocP4dHg906SKlhGeeURVOvPssIwO2PQfJ5zr4ghmI3/oLiZFFFqp+vCbkMwPcgu4NF4lNZlzAAYFtFhH9x3UjHsSpHODuQUK2a7fT6nsYe13U9aijnEeHQiORl16aUEb1djBvBSJTK+3Pb77ZmDFj1EjE/qxzZ2Meflid3Y0xZsMGRU4jNVNwu9WEZvXqep58XxM/OnRcYN3FDtbFKPayv1GTsfpEo0KXOSassc0XxM4acaMsbF9g+x0Y0yr9N2tEUfMbJRrhTElRFqqNESPi32u9ehnjH2ucZYC0NsZcaZxkDFVXY9asUVPGd9/FLF9uGWOKjTHGrFnzoRk7tpcZOxbz8MOY997DTJ+uxozV1U5+X7u7c3MH68bo4LwHsdfZr92Mvep8/X51I3dqrxctCm77hz8k/CxWgnkuYLOfAFP2178qqzu0MWWfPmrsWlWl71m2zJhWrSI/r263MhC3bDELFy409957rxk7dqx54oknTH5+fryTN2osE+85uTCw/hQH69rP1XFGGVtO1o+15Bk1BG6hv1+Lc41dGHNayPabMaZJav0aPu4he10FZgbBzuuTwZjmzY2ZMUOX3edT9mk8e33oocaYq018G2wZY/oYY05zsG6kJc0YY1czfGuUeVTf39ft8Jjt4/7tO8fvVfZrD+C3Pt/S0lKzaNEi8/XXX5uXX3jB/Cs9vaYicSxqim4/AyvBTAWzCoyvdvPTIUMabgfGjjXm8MPVWBdMOZgXcnLM2JNPNg/cf7+ZPn26qZ4xQ03OIj2vLpcaTNXrWlYbZ37NbYH1xzlYF6Nn70JjTLrD9WM9yzuMMUXGmBR99lCc62lhzFUh+1iGrlt9suscLmWocePLYO4KuY/GorHZX5/vbtMm6BtUVGgOFc83OPVU48wGu41s7KHGeXZf6NIxcD/4jRoxN6RaymUSq7p8y/yW+K1t12+BveqcS0uNadrU2TOUnq7mj8bI54mWwe10SUqSvR4+PPxZPPRQYz74IFgRM2mS5seR7LVlGTNypPHv2mVee+01M3bsWPPiiy8ar9fr4OSLTY0djLk8FVj/CeNsru0xxtxi6lf5Fro0N7IJ64L7upn4VTR3hexjhrVbbXXo8guYuwN2+hnU/LxmTE10f126GLN2rS57YaExzZrF389VV5noVd61f5+zjDE96/EbWUb22RhV4Lxr1Ky5Ib/zHQms+03tm3iPIhHbxR44nj2KvcpwL1/u/GGyLGPOOCO4bXZ2vR7wTYSXwswBMwuMv2VLY+65R+U/oTjssNiTYrujbMKlj6uMs4eluVHZhTHGDDLxDYNlZORvcbBuvOUzY8ys8M/exJgkwstqPIHXIzCmyF7XbYzJMeaXGcZkZDSOjMueWlq2NGb+/OBPtXmzCLB4g9D27ASubbeIn/t8mA0bMD/8gHn9dcy//iWZEHuZOBFjzEpjzH9NZSVm/vzaMiFOF48RefZBAtv0jHE/7xnsVfZrD2CvOt8ff3T+DLlckoowRrYxQGY4Xfxg3kOO2EMoEBm2Tvv2Kk0Otbs+nwJKcez1rKFDzdixY83YsWPNW2+9ZcrLyyOfbxhmGmfPSCcj4tJrjMlxuM17xpjzTcPt9SxjzOfhnz2GbHVoWaNtr0/GmF2h9mB/Y76dpEDBXmiv14J5nCCR8jCYmSBZhdBg8qpV8f0Dl8uYikTIqJYN+F1KjDH/CLyv74TKbYzpZ4x5OYFtjqh7G+9h7FX2aw/APt+PPvrIzJkzx+Tl5ZmKiorf5mDGjzde5PP+DOYTMN6QZ+CzkGfpMTAzLrtMtrC4uPGf365djXn1VVNRUWFeeukl2d/bbzc/ZGbGJjHdbmPOP78eJ/+Zif98WEblx8YYs8s4I74xClIeaxpOjqw1xrwU3I8fY/5pn3fINbDt9UUYUxVqD44x5sMPZat3g732Ei7NOBaR11ORPEwdSQGny377GbNlS/CnmjNHc4RY26QlGeNLZHysr7RistH4fVkDf1uXEZn+sMP7xGUkh/Pb4fdmq43Zy8752WcTe46ee07brVjR6M++2W8/2ZYA/H6/+er9982itLSYJKbfssxXp59uxo4da+69915TUFDg8ORfNPGfEcsY84fA+tuM82d8kTFmgMN1Yy1lxpj7TU2AzIsCi6E2OtR234Jses3z/Udjnn9ePMJu9K+LCQYdn0cJQQ3a57Bh8glsTJ0ankxUe7EsY7o0TeC6NkQGt50xpspIsrUhv61ljDnJKFnPqWTNdea3RCK2a1/3hd2JOl1NY8AYlR/aqKys11e2I1j6VgJ8GVje3r6dHXfeGV42MW+eyjBiSVLYHWV/jNd4oDZexlkzplLgo8D7O4kv/9AGNai6JM66TpBOHXmSPyG9/X+hviiDUcvi71Dz90z7OFoBE+Ggg3Udr7km2OEc1MRxb0VxsbpCFxbq77ZtVd5q3xfRUBmvG28odE/5/WrIHvrVL76opshr1uj2Sk9Xj49Ro2yVk1+AG0lOVh/UrKwE+4wCKk+fCQmV8jipe92H/7eYMsV5ibffr+7q9vvqxJrPzkHt79zAuUQQSNi0CW64Qc2EbXz7rRpPxrDXM71evvz5ZygoYPjw4Zx77rmkpqY6OKIXcNb7OReYEjjyO+Ks60Ftck6lcex1U+rY67+gfje3AYeg3lJ/Qo3cP0Y1h7iQDskXcPQxMHcuXHKJSkVtZGTUx8g0Cip1ZLyGWik2Q63SbkAtvtiyRY2h7aZl3burzDYW/H6wEpFyqa+MgAs1fbw/8Hci9taGBz0FP5KY/MyOenzXPjQGfv75Zz799FNeeuklHnjgAf7zn//w5ptvhst+7G5MnYrbsmiHCrJPJtzj7ILEktJQi6OJX37Jf/7zHyZ8/jkJFB47w7p1cPHFpLzxBhdeeKE+W7KEZsXFsZv9+Xzw7rshjaOc4nni+9cG+VIL0VX4W5z1PcjiHAlcRP2e5VA0RWIrgeO0kF+9kqBxG4J6bc9F2ixJVmDFvsB7cPrpauJ5zjmS37DRrFk95FjC4UYtuVoAowOHdAU6+2wa0Opq5UoYPTrYdH3QILj00tjbJHvBlcj4WN+xNB2Vpde3ATNIHuTPwDfAdpzdJ372+de/c0ydmtj6X3+t10SatTrF8uWSOPn4Y3w+Hx999BEzX3yRj8vLKfVHf7a+M4aZn30GVVWceOKJtGzZ0uEXPkt8mQYDTEA+bmvgKmJbITea5/ajTjP0hGHLtW0OHqcbKXIuRIZxCDAUuBbpLz1MwGe2kPP9PPz5z5JwOemkoH22LGjatMH22kYzoHPgfUtCpF/qi9mz4eyzg38feaTGnWjzAWMgOZF7sr4d5kGto/+BLbdaPzRBDRw/RFqMTn39/x17vY/I3p1IpPsqhJPXXbo0eGLdHKnoeYBVyCYteeIJETazZ0tk2Ak8Hvjoo/jrhWEFzpytJOTZApyCumtbhJMqtrFshbQBmwN3JXg8tZGGOrRG0N7JRrZjGpI2ehfJBloEjuEfwHyks41+q8ceEzG8ZQsUFUmj6f77pbu1t8Hng+3b4ZVXgp89/7z0wmJhC3F/Up8PNmyA6dPb8c47Lh56CD77LPj/rCzx5n36wJgx4v9vvhnOOAMOPthNdvbBSBjRSRAkGhYgFqsdIuicwEVweNyH3yWqq+MHc0JhO9huN7Rv73izImBi4P0xQMdYK99+uwKJU6eGa7xGwBLUfxzL4rDyckaNGoXLsfO4FGcOl4VsO0gf2SazI9nrTsAkggxGQ8azNsjeRrDXOYHdT0e8zavAcPvrOiDN/l8DKyLj8/zzUFICmzfrdetWuO02Edp7GJPQMAOKm14TeK25ol6von4ffKC/jYEXXojvH+QnchT9SdzmelAvhH9T/9/WhSLHbyJ97Bcdbmfr+O3Db4GDDjqIbt260axZM0B6hqtXr2bNmjVh67399tuMGzeOadOmsWbNGsobk5SIY68HAKcBN6HAUBtjqKqq4pfly3kvKalRW5vUHMdVV1GxejXpubl4vvySPk629XqlpZwQluB8Qmrb69uAKwPvQ+21PUb0Az4DdiGWoiHoh8iY5tRxGnsAj6A8g5+RuzfQ/mc34L8oEhkgiQYNgjffhNJSBXh37NDrddeJIHEIH/La54d8NgC4GnHqmc5PLja8XgVLJ03S31VV8MYbsbfZYSR77QguNBYmanM9KCvnwXgrxkAzRHY9G9jfWwl8d04Dvncf/ueRKB9ijxUdO8afmyYKv+otKv74R955+WUWvvMOrilTOJmIHiYgOmAaQHU1J7Rqxf77O+kpY8MpH2KQQj9Is/qMwPvQ87ffHwK8g4JJzyRwLJFwFLIrzakTmOoPPIVs9SzUw6C3/c++yBZMRoFL1GNo/Pignd65E9avh4svhpSGa+S7UHeeY9G43mD4fDBxovojgeYD48fHngtu9SeQ+5GGGkQkChdKAnqK+geVOwJbkc0vR/0VnMCg+dv/BpykYO1DfdG7d/x1QhEa3bviCrj66gZ9vYUctG4o53kz8L5lMfDqqxm9Zg0pTpsDgh7uhJAcOIJ4D6Cf8Jjadci9/AcwD5ErbVHq3SVAFvAV8H6Cx1Mb16II5KGBfRbFWd+FGjDcS1QHMikJ7CabIGLklluUzb59O3z8MbzzTgOPu5Hg9ys1+pZbRLrbjTBi4VU0iEXAjBmwejXk5UFVVRYa4GYB4oiMEe9iWbq1I3MwPpQJdEXi5xOGF1D2UTHwrcNt/IjIPgTlRbYDLgTORpHJ99ETlIFyv6I1zduH/1n07p0Ykd2qVfD9FVeoqiFGNoeNdOBA5F4Mj7eyx6NndPLkmPveRjBmP9zl4uhWrbASCoQ6ydoG2XPbXluoi+IQVE2zDD3DnYCbkbuZDryOSloagr8jGzwKZYQ5qVj6Lxo3olyH5GRF1Wzcdx/ccYdsYWmpAn2hVVK7CSNQDs6xxKBmXS41Xb7gAli6VFl/8fAqGrJienkudBfejJzmROBFGUGfJLhdKPyIyboapf4scridD91bQ1BmdmfkH5wKFKDsk3yUb3k6/0tO+f8Cjj322JoGPBUVFRQUFJCfn09SSNZsdXU1q1evxu/3s3Tp0prPW7RoQYcOHejRowcHOG00HQm9ejlaLQkFhg7cbz/WXXghs2bNovvJJ2N98gl4vRQA36MUhZYhi5NMLx/yFrahu224MaTffDM3TZhAPg6tqssVvxl8HSSSh2av60KEx2GogmI1suc9kL90Njrih1EyQEPwj8DrSSjX2QneQQ0Mo9jr1FQ1zrTx2GNw773yr8vK1BBuxow6m1WjCqgZqEo1HdHstlncLZNgt1vjx6hROqZ4zcf8iBO+ON4BeRB9czzBoIRT+NGT4DS5IxJ2omzuy1DYfIPD7byoSfyBiFDpgbK6x6Aqr4/RHCwbtW3Ljrybffjfhd381ils36xFCzjlFPj009jV4wmiyBjeKS8n/9FHSVqxgrPRXRkJswi2Gj8WGNKmTYLfVh97nYTaGY5Avqzd3H0AstenBtb5a8j/6otbA6+nAvc53OZb4Ojo/27SRIv9/qWX4OGHZQ8rK8WPrFgRffsYcCPmxoZBIdi+1HNm7vHAa6+p6efEiVBREXt9W+5gDHHyPzyI02iHki+dVtLYyZztgDjHEhNbUa3nxWhC4JTH8yPbfgCy2/0RL3MUCsp8hvzujqjLZ1YDjrHhsIxJZOa+92Ov6tLr98v5clp2ftZZMC7QfXbnTukq5ObGLk10CB9SxvgRPfStLYurjXEW0/d44K9/VYaxYzyLJqdO8BOaTPuQgX4CPUjuwNF6ge6ITDwQTZ4nUv+SjR5o0mxPM8YigjqakbHQgLEWcJ55WQd/+Qs8/XSj/J6NgqZNdZ+tWgU9HZj/5lC+EPLKXRQW+RkewsK98opuVYC0tNPp3Pl0Ond+ic6dp9C2rYlTVWR3370J6QIcWN8zCtlfE1Qw+jH1u0/sY2qKSDMfGlj8gffHowGicR3uvcp+7QHsVedbUSGHy+mQeOONmjwDbNsG/fqpGsPh8+0jgRzYGN27K1Ae63ZEhJ5vWbj++1/ZG8cYi9KanZz7KmSPK5GNfxU9Ly6C9noAIhN7ocnzPOpfDj0EjRH21boSTaajXWcXois2oAyyeuLcczUeN6KLZIDFaNoxptbnccfiTp2U2TJjhrJe4qEDii2kx+tu/jmylcegnKN49687sM6DKJVyVPxjiQkXIpwHo+miU3sdGii3j6kZIluskM8Mymx6EQUiGw97lf3aA0jkfH0+H3l5eWzatIlNmzaxceNGioqCCQMDBgzg9NNPr/l72bJldO/ePYwMj4mCgsQq3p54Qlm8oKj7wIGwaxeL/X4+iLB6M0RuH0qQ4NiEpnH5iLzeTviTdQn1DJm8847sjWNcgWxgPJuahALwLdHE82IkBeQm3F4fjPzr9kiUJS+BY6mNE5BNsS3aKUg8KZpdcaNklXU0iFYeMSJMzrGcYBKhrW7XFJ3pMHRldiuGDoVZs+CTT+BUB0HCvkhiJTlWApCFSo8GoqSLhTiz1350vySjAHND4EIERltUS+R0XLftcej7TJRw4gr5zIWSSJ7CeYA9Pn5vthr2snOeN0/VFU4xYYLKdkHZssOHi8huBH8sF3gP2YXmSNisXZR15xLMYz0SFWfz7bdwdAwStw5OQTYx3rOSgex1GgrIn4sIYw969u3553Eo8NcUzUFLEziW2riM8Eq44aiCMZof5kEVIfNpUJVl7971JrJrYx7BdIpDEO3aigTCB5YFJ5+sZMPnn4crHQQJD0MR8Kjchs0bzUe/0WA0rsbzb92BbT9Awea/U3/pP/s49kOEtB28doJQe+1Bx20nfdr22ouu8jVoPtB4YeFEbNe+jOzdCdf/sXfeYVKUWRf/dZgh55wzKAZEFMWIioqCGXXNuuaAYXV3Dbti+lbXNeuqqGvCiBHFhKCoiJJBEJCck2SGIcx03++P0zXdPdOhqqdnGGHO89Qz091V1VXVVfe977n3nuuXM/Pjj+7Wv+yy6P81ayrjIJUD1L69So5dIIBiZ50QtdfFLYkNGjwucuv8GCqJucPlUe2D3MolyMH6PubzWKO/CDgSuaVjyZzEPgFFk2JLXO5CdY5fU/Ihd67SZZSKFAFo0yarpEip4URLGzZMSJQZcjGXRJalm2HNYQG4PAeffwcHHGBFMrM9ewbYZ58QbdveSOPGj+Pz+VFh7zWI8HVIYCg5mHcDbkODdmkjy87+8xCRlun1do4xVicqNiA1Eo1k40igcFyJPyKqVoWOHd1lu0K87mXjxtKzvuqqxOv6fOS1bk31xYuL/B5PxZJJ7Iahapt1aEp4NkhOJFbzLSVCKJv6QdI/K84o0gExpH9CmXsW2U+sszULuZQT0FQg0+fwXJSqFnu1HonsM9Ek2pE1uZZSuzdt2mgMz1LgcS3KYZsXed0FXUlwOR1wejC4zQZaDlzWCN7bSjQY58BxTB9DgWHQROtCNG1LZa8PRc71Kej3LS3C6A7+OsF3pULsPeWc25aYz2L39SGwAPkX1TM7zEp4QiAQoG3btrRt27bovfz8fFauXMny5ctpElO9tnr1at555x2qVatG9+7dOeigg6hfP8242rChlnTZrg7+9Kfo/x06KCPsrrtogkI462KWrcCW2rXZsnmzdOojWIYSQmKRi0Q0GhHvVbpGjRrSFHWFnSjD2U1WraM93wDlJJ+DkjGgpL2egCj7L8mcxPYhgv1Z4i3aS8hXmkfJCbkTcLqBUvdQaN9e2dmhEL8g6twRM6iHzq4b5UBgg/zpiOyOa3s9ywd3tIdHlxANMDhw7PEriIoH+aAD0B2Zyl4fgzLkj0FXpbQIo3tkWYLvSoVQgv83xuwz9vhfARajtMdy+cUqUdbo1k3SEm76fwUC8UTxgQeqQv3JJxOvHwzqOVuxIvHnxTAfkdjNkIVMRpP9itgCkNfTG1QVcvTRrr5HI8mVuJN0CKAqharomT4fZdRCSb7jm8jRvETmJLYf8TQPFHt/KPLdE+kpO+Ts9USTDTNE+/ZKonNRxZoO+6Ig83jEDo2NHGldJEp4MmlSGPz+qExVE5fJaWP98NS+cPMMdC2L22s/4iAcgbHvUYXSFJLbax8KBN+JeLGXKR2JDRpLZuF9Dhb7vc65OYkIsfZ6B6oYWIGCK+Xfa6iSyC5rPPAAHHNM+vXatVMZmoMFC1KTx4GANKcmTJA287ZtEqhPM+lujajF2Ft6MTKbx5FArzUQgL59Ye+9058DYeQsf+Bi3QAy2A8jqYZP06wfQg/MrXhznqqg1LTjEWGdSKctFzl4T0aW2HI5ixzrC8DraOLvtaQvggsugL//PSuGu9QIBqNBkrp14eSTKfjiCwLhcBHR9jnFaAqfD5oeQIOGZ9C69XR27vyWqlXXADnsu28/4EYi8eoIqiCH9K7I3/noNz8euQWb0RSjbcw2bVC2yS+UvjlcWQYNCtGk8EFKrydZiQqD+++PJzyS4ZBDlIHtYMoUuOGGpKuHfD7e2LGD3Lvv5qxu3aizfbvsQSkxGmUIBhHlW93vV0A0VjIjKXYSzcJNhwB6Vv+GRop0UiGFqIztbrw9h9XRKHQyshsNE6xTEzWc/A8iTdYU+9yHsgOeR3b7HA/fH4PLLoN/l0ZPVNiBEjd+Jur6H0W81UuLQEDjOyjY0qOH7rlUY0kgAHtfg7qpPYsaMK9DNvhMZK9jabqaKK9lBgo+LkUZP6egDPstiK6L9RIOjLx2W2KeDEbZ2usQmkA8i4KmldgVqF69Oh06dKBDsTLzvLw86tWrx4YNGxg7diw//fQTHTt25OCDD6ZTp07JZZL+8Q81xU2H006Lz97+5hvJCCELc0Sx1bf5fKzr1Il1f/0rLXNzpY927bW0BLoTJa4bIxIk46mbz6fjd6X1nIdITDfyO0Hk914Q2ebnNOsXosjX0y72HYtayKc+HY0NieiChpHvfwjZ5OLlzSFEqDwKvImSTbxhx44dbD/7bOq88gqg32Unyhk+AiU7l3tDqNNP199DD4VWraS7lw7tbkb+8TOob8AmZIPPQ7KLsbq8DdA4OAEFe1eh638GqiHIQ1cgNtf0WPSbbaF0KGt7HUZE/duUvpFdJSoEfD74y1/iG5gnw5VXxuspv/9+chIbxHscfLDGg7VrYdo0uP32pKv3Rl5QD5Jn7c5BTIYhL+dEInb+9ts1f06LtZFvcJOcFUBZs72Jzn9ToRD1SXjXxb5jUQfNsc8BbiFxUL81ysj+P0SkFm/6V4A4kAdQ1nBagcTEuOKKaEPPUiKIZgxtUXrLGmT9NkSW2G5wI1BItRGyrAEgGAoR6NCBwA8/cFifPgRq14bNm1mKWApn7Ii1ehYOs3fTOwiwF/A0S5e+zfr125AffQo+35/Qtf4Fn8/HXnvtRU7OJGAMK1e+xMaNq6latQFVq55B1aqtqVo1TJUq7fD7Y4n0/kSTTkqDsk6gNFTjcAmqVi9fVEqLlDXM4IQT5DinmnQOGxaflXHNNdLETKUJ5feLKL8jkv189tkqjfCYQfY6ylUCZYkdS4xgwiGHSDPIVROsh3CXiQ16wF9ETspavJUTH4wMrZuSupXIZLmBIc3Xe9Ks9zwZ6zjfeCM87XWykH0YsPbbb1lety7Lli1j+ejRrH70Ua4i2pZgEiKzm6GhrXUwSKuxY6lx8MExe3JKAbMZhXsLTcD+CKiDJhDZKYGscParjFHhzregQBPPadOS29FAQA1zjzwy+t5pp6kUMsk2oxBdXH3AAK575RVq1qwJRxwBP/2UcWBrNnIdQFPXbqCg40cfUVQqkRI3o8CdG+yDBPIHIBfR7RiTg2y9m5K26kSJVjcwNLn/b5LPHZv0HtJJzgDnnqsmixm4SYZKHkehKwYaX08kgxqOQAAWLhQhAmq+fFaKc/L7dQ/MmQMtWsR84EnQxiWeQJOiPwJaowBkdmitCme/yhhleb7hcJh58+Yxfvx45s2bV/R+vXr1uOCCC2jYMEFQa8sWlasvWpTY9vp80sKfOBH23Tf6/qGHKgkkne399FPo31/Pf+fOkiTJ5pTpggvgtddcNjM7j6jFT4dewD+Qvd6Je3tdG9nsdS7WbYL8a7e+Xwj5dcnIFyc7+2siuY9JsXPnTpYuXcrChQtZtGgRK1asYK8uXTjnuefU4yAcZjkSSin//DCgWjU1fneekeeeS93zKBBQQsn8+cXmWmVhr+9ACUQVIKEmJfwobDQx3YqusKfZaqiA57x6tSRT165NbHv9fj0zU6eqIg60XseO8n/SYdw4VcHv3KkG7OtkxwqRrOrhuMvvX4hCao5I3hlEPIYbb1SlvKv+M8dQsn4nGU5CCQd/IiqH5gatEG2bLsvdh8J5bnuQENlnP6Lq4MURQGGAH9Fz6hEFBcq0nzWrTORWt6Irs4F4sdLXiNYlFaFaNbj1VggEuPvuu/Hffz/cey/vmyW+Yj4f1K7NHUuXUiVSeTNs2DCmTJlEMt/ytttu07wP+Pzzzxk/fnzC9apUqcJVV11Fg0jPvF9/PYP16z+hQ4cwzZq5vPV2CYJodpONqh9vtqvcg9R7HHw+TTqPP16vYyN5fr8aBL76ajyJnZ8v5zZdY4NwGJ6N6VZ7113afzJB4kBAmR/FoomnIjPkA35D6tafAeErr5TmnCsSeydyjtyiAGVHeSGxQQa+De5I7LNxT2K/hwpU7nGx7q1EqQmPuP9+Na/YRViKphH/Dgb578iRfPzxx0ycOJGVNWsS7t+flVB0f+yHWkBcEQxyQk4Oe733XjESG6J6TqAsj69Rdv0sMsd5RBsEVVirHcEmFLuvxG6BnBwF7g46SK9jbaXPJ4fnww/jSexVq0R4JHHGliInGqD/r78WOTM88EB0v4kQDKo8OQHJsRZJRIFyarsB3HmnjsMVib0RWXq3yEHZ1V5IbJCd7+FivdiyynQwlF3cnuQktrMeqGw9w4yGxx7Tb54BClEmdh7KnbsAWbaMrH+9evGE9JlnRntWFM8OCgR0D3z2WTESG+JJkfWo18RwFGjIFDcSDTxWdHu9hJIZ/JWoCPD7/XTu3JkLL7yQG2+8kV69elG1alUKCgqoVy/aTGjSpElMmzaNlStXUlC1qoKKTuNHx1Y6naVr14YRI+JJ7F9/FeGRjsQOBERAOvt76KHUJHYgIHuduiFIFE88AUOGuCSxF+M++86HAuwD8UZig/LPjiM9eeonZSPdOIRRsKsFqc/BkQO6nmRETigUYtiwYTz00EMMGTKEMWPGsGzZMsLhMJs2b4Znnim6ni1cHl2ZoFWrKIkNSky6JRLsK/57BwLR+7TEXCt23dWo0f1nlE6C716U9V7RbXUYdwlLlfjDoEkTcQotI1VdzrPg2MxGjWTPHRIbtL4bEjsYhOef1/+5uUX+9QZUDzyaYhSb3x+V14zBXFQHUIhEIU4nQpS9/bYHEnsy7klsP6pauQrd814CpUsR2ZwuQ9xwn2xQgLKtm5CcxAY9lzvJuMItJ0c9w8ool7YG6hlUvOPWGchbPQFpnh8OHNq+PQcdcgjdu3eXNOM//gEXXEAjoK3PRyuUAtEGaOPz0bZOHdrecQe+mKqBxo0b06FDJzp27BipOqtLhw55tG+fR/v29QnE2P0GDRrQqlUrGjVqRK1atQjG+PA7duwgNzeXbdu28e233/Lee3szalQzXngB7r1X082KiUIU1Ch/VEqLlAdq1YIvvpBW9ksvwezZmmieeKJ0VotrqC1fnr5rqoNlyxR9zM1V85rhw1XSlp8fNRB+v5z21q3hkUdKZHLVReIehyPTOwOYkJvL5sMOY4Df71KhbCRR/Rw3WIHUpzLJCngPNUPYkWT7ADJj97rc3yOo869b5KOs4SR6uKnw8stqCFcO2I6UxeujUkvQsDMLoLCQnDlzaH7SSbRo0YKWLVvS4pZbqD13rpoiDR1K7o4dCnxcfLGaJCWVl9lIVD5kW8z7h6ABsY/HI/chCZdekb/jPG7vFrHNDEqDSkd7t0LDhmqoN2qUntcFC6RPfOqpehZiSBVAOm9JnLFtRJXauwFdY8uLe/dWM8ELLlDQ0iFWAgGR4nvvDbfdBpdcErfPnYgO2IEcqxNAE4P77nNJioAkJHamWykGvxH/bHvBu4igLiDxsxJEVO/fXO7v77iX8zFUMTEcTUk84umn3Wk6JkAOyrNZhyxhqfLq1q7V/egExEGVWEccIXs9bJgyXOrUkU9xww2SK0uIVSgr7y3i74HeSCrJa6moH9V1HYu08rxk/XhBpb3eU1C/fn1OPPFEjj32WNauXRs3Cfz222/Jy1Migc/no169ejS6804aL1xIix9+YK+NG5XdOmAAnH9+VFvewW+/uTuIUAhmzoy+PussNYJyMmudwKVjr3v1UsP2G29MvV+/X1mJnprxvkt8c9NUMESkZBqwGUpU7TuZvW6L+hC4OZY/ozw4NwijkvmfiWpBR/Hxxx8zffp0AOrUqUO7du2KdNjr1q0rOaiKUGQ8Zw788ot+ZxD59eijqs59+mmV1IfD8jWuvlr3VPNkjeQXopSSD4j+Hj40ujyEUk68IBfNvZ4HniLatSHbSNdk2C1KqcVbiYqFvfZSH5qPPoI33xQz16iRJP3OPrtkIoZbe11YqOzeCOzqq5n26698/swz7PT5qGrGASDCu7AQ+vVTwsq990I4TBjxH06Xrg6oniUQCMjvciM5WIQ3cX//hxEBuN7D/mPxIfI2k/lHAZSq6KbKuRBRvZ/jbqwJIZnBuagDm0c89FC5pxjXjixxRztzpiq7nMSPQABef52jzziDo596qqjKhxYtZKuvvhoiGdMOevXqRa9evZCy+u0o4OhcwwDwA/n5g5g0aQPr168nJyeHnTt3YmaEI3O//fbbj969e1OjRg3y8/P57rvvkL2+BPEg49mwYYs75UjPcOtfpMKu8a0riezygs+nSecRxdX4EiDXda9V7Tc2I6tPH5Hbr72mkuiNG0VyXHqpsrhycuRMjRpVIoOwITLc+wLvH3UUvy1axPTp0znwwOIxrUTIxGkujZMTSy44wvmO4H5L1Fyhc5JtQ8jIjEFUb6Ke9akQQHqbHmFWprIihSg+uyCyrEBm6TCiqoNtUMFTx2CQpm3aEIhtMAoa2F9/XfePEyBJOdBsQCGQOZQ0YhOIdlf24gQ4Z3McCrF8gDIvx3rcRyo4E4GpSBsyUwNehWjLtkrsNvD75bzGEofJkMReG6pN2ISCSSeD7G8sBgyAo44SYT5smErl27WTfly/fnr2nnhCk+JQCEOW7XekdHk2kSnePfd4ILFB9toLMZgpie1gJ9ECsOL2uhOaWCfrG78T5Z9PRGG4zzx+dw6y16d722zHDhFXHsoeF6KRyWnv0iVBE92MEAjoHih+Px55pBYz2etYXcmEWIGI6pWUzFL/Aal3D8e7Tm0BstXnI23X5xGZli0E0QTrKzJvbgTSeXfZzKcSuxw5OTk0axa1C+FwmL333ps1a9bw+++/k5+fz/r161m/fj2/AW3PP5+9Lr20aP3vvvuO+vXr06ZNm2h5anEbnArFbftVV8HJJ8sufPWVetPstZfeP+44JaA8/rj0kJNVVIbDIk88YQ3eiMHSVh0URr4vREl7fSCyx3WTbJuPfOpf8JaZ6MAX2a4kkb3//vszZ84czjrrrJLa6Rs2wFtvpa9kLS9MmxYlskFjed++WsJhHWfaud4cdB02Ez9WG7KFo5FOdk+PBxdCtvoKYDDqJVGaKsriyEXeyVDim6R7gQ/51pXNHnc75OZKts1NU3JXetQRRPyfzZs38+WXXzKzQQMYOJA2c+ZwxsqV1DXTM3nNNXD44ZIeeeYZtq5bx/vhcJHkRE/kAQUd+/KPf3g5O7zb3wXpV0kJR4Iokb0+lmgySSJsRpJVsxEnkkkD76l4JrIXLVJAryIEHs1UqRVbwejziTM780zX9nrdupGsWXMq69btYP16Y906qeIceWQI+IhweCSjRl1A4t4/EAwGiyRFqlevzkEHHUSNGjWoVSuHGjX6U69eQ5o2fR/Z60XZOPMIqiPd9FdLsY8A8T0cyg+VRHZFhBci+4gjSpYy1q2rbI9kGR9Dh0r3b8yYaDYJFEUq97rpJi66+WbmzJ1L9+5utY/qpV8lq3Ci9N3QkLMMieyfhsTmk5E6I4DL0IQ+UxH9DCOIGza4K5FKhX32URniTz8VvbUdTRsWU/JsGqLcdAdBVE5TIgBSHD6fC1IEJLOSiMSG6KTrYpTt5yaMOB5l9b2PzsaJEmY7I2MYamL2BPCXDPcRRFHuCqA9V4ldhyT2ehLKLQugAGEVn0+BxuJo3FgNZJI1p/niCxGY06fzs9/Pr5GGrOcEAtQMhVRCefnlHg+6LuWrkRlGz/LRKDtkFRozBqDQWjKb+h7K/FtH5vY6Q0d54UIFgl1iGqLj/UjtsCmoKeOOHRDJIswYZqklC1zb6ytJTGJDVJvxbDQ+umlANxrZ6+FEJ0/O32ziRzS9vANl42eS+RFA91Kl2/tHhd/vp1+/fgCYGVu3buX3338vIrZjdbS3bdvG6NGjcdoA1atXjzZt2tBm0SJao+BiSk/O51PSR3G0bCmJuPvvL/lZ9epKEjnuONkPpxoS5GubqZw6VkrQFepS9g2bYuHYgtNQYsg6JNN3HgqEJbtyL6JS882UrklV4v136tSJm2++mWqJ5J5++UXBvNLgqKMUhCitnw6p7bXf72KeZygBZBOJ7V0IhU3PRKSGG7v2GfJ5R0X279jrbGZFBpHn0wER2q+TeaZe8gbaldhD4LY63eeD445j7ty5DB06lIKCAvx+P8eecw6HHXaYJCOKo2FDFr7+Oh+efTZb8vLIJdramkBAz+kbb4j09oR6lK90j+PLX4B4kM0oMeQi1DwyEQz5UvcgFiFAtu11SkyYUDoS2+eTqsHEiapYLC1KYa83bdrEiBFf8uuvV6FrGT2v6FAVokaNzXTvPpy6dV+lXr361KhRo2ipXr16XOWZ3++jf/98VCXpJPGVhb2ugcaPhigA8xWZ2esQkgUrf1R69BURL7+sh9TNQ37yyd73X6cOjB4tGZL//hdmzBCpecwxcP310LOntIDati3aJC8vj6+//ppjjz2WOgk1s/sgA5qhdnRGCCH64A2UR54Oo1BepGP0MzXaBajhpEdk2NSNgw+G998nVLcuyzduZPGYMfDTTzgqvVWQ+SlEWZrtkHpse1JQrE5Tu1JhHSqhSmf0QsBLqPlQKryKylCdTCCIDgjZLFnxE9W1vh6VUY3CG7EXQFfba6S+ErsdXnklob1ug3I/D0BNpzBL3aAvGZo0gYkTWTx4MF8/+iisXUvfWrVodfrpKnPbz2tpMagzwvWUvhu2F4RQ1u+bSME0HYYCsRk7mR5rIWVprw3Rud9FXu+93340/PxzlR5Wq6ag42GHef/+4sdSanu9AGmspvIrwmgS9BYivVPBkeQKELWdxf9mC3MQkf0PJGM2BW9jQhA9jTdn+bgqsavg8/moWbMmNWvWpF0CGZ1QKMQhhxzC4sWLWbVqFRs2bGDDhg1MfU8VeAcjddGkMJM0iVe0ayef+p134IUXlHlWo4Yk/665BjplUILNWcA/M9iuNAijxI/VyNdJh2eJn8hmaq8Nx16vWrWKcePGccQRRxRlqiUkscG7f+2M2eeco3lQzZqSNfj4YzjjjAyPPQaHHFLKHUwgfeVnCFUUfoaCDslgRCW5/ETHgHDM59lCIeq50CHyfWPQ2OPVXndEIeFK7NF4z2XFtBlcfDEtGjUiEAjQrFkzTjrppLiKnljk5eUxYsQIfvnlF7jhBhrNn885s2fTaM0aycGee64qbVq3zuCgBwBlV32dGI69dpL00uFe4uVXS0Niu+mDUwyZ2uvrrlMQuUYNJW+88IKkPkqDYFDSvBmgoKCAwYMHk58/FZ9vM82bqw1agwb62ySmANDnC3PaaYsRa5MqezmMbN+rxCeFlIW93ooSQRuiSspDUM2vl/shgPzzAVk8LveoJLIrIn780X2kylVjrwQIBOC007S4wMiRI5k2bRozZ87kqKOOolevXnEC9YrqXIcmt+XdDfsnYJ/I3wVIP/to4ss3wkjT2ii9EaiFd6kMZNWaNnWt1l+4774su+ACFvfowaJvv2XZsmUUFKhMr8bBB3PEhAn40DByOiKtG+IiVufz6Tj6pZzGucBo3OnshlEGdCrSdwIisY2y11lySq5AZYvD0aDxhod9NEGRy2Q6tJXYYzB6dEJ73QhRgXG1BBkGs7bs2MF7O3YQvvRS9t9/fw4+44xSass1RaXFb1D+mdmTIt//AxJDqoWysmMDpDuAayi9bpsPhRFO8r5p27bKsMzPT7pKPlIonAfQogVHXHghx91/P75Y+YJDD5Wt/fzzzDJQ/H7o2jULRPZXLtfzIWIkFZH9BdG+EuWhi+eUp9dApfR/wpvETHvgS9w3f67EHx01a9akb9++gBooLV26lMWLF7P48cdZTnx9WD7yQA6hWAH2tgwllapXhz//WUtWsDeqPBxF+epQbkOanz2Qv7cKZYcfS3zFxgYyr2yLhZ9QaB9mzqzChAkvs2SJmhouWLCAgQMHFptzFEPXrvEVpulw1FHSMz/99PhsvP79RUJPmJDZeB0IKCmoY0fv28bhc9xltQdJT2QPIdpXojzGe+eYG6B52Wl4awTWDZ1TzXQrVmJ3hllc9XEiLEX5/ycAvrw8qrdpw1VXXUW9evXipYciCIfDTJgwgW+++YYdO3bg8/k46IgjOP7ee8n1Ug2fEkeie3gG5Wuvf0eNYJsj7ep1iBU4lmjfA1AG7n1Z+L4ASmLMYB7crZv7dR1ZphtvVBZ27O964YXqPzB/vicZwCIEgwpaNGyYft0EyMnJ4ZBDDmHBgi856aQATZumOwbHXpeUzoriMaIyH+Vpr1uhqvh+SBrMLY5F1bO7RgaqksjelcjPh/HjVTrTrh106aL33T6M2dLfdIFevXqxYcMGFi9ezKhRo5g6dSonnXQSHeOctfuRVtLXlG8Z5HjgYeKbluSgMsjHkDP1LaXWoTI0x59/C7Sv5r26w+9XNHHQoIS/2zZEwQNw770MadWKxYsXK7ARQfXq1Wnbti1t+vQh/NxzBN56C/Co0uzzqemoF+2xhEhO8Hhf92Eyv2e8NpUpBLrGvM5FrpBb0syPMlrdVAFUYrfB5s0qY9u5Ezp3hvbt9X6xye56VLYOCQbYDCbGoVCIoUOHkpeXR5MmTejfv39CB907nkG6mJMoXzL7K1QyHNP4kqookPVvNHn9AG/NgxMgDGCw+A5ol4E0kUNGPftswt9tGXLdNgHBU0+l/733ckCirA6fT009zz0XPvOq743s9ODBWWiKk098tUsyGOkrq/6vFMeRSdPGWHtdHfAi1eJHxHdl0HGPwvr1MHkyhMNU6dqVjh07yl+tWpWCzfE662NR3uhPaHpZRGhnMjEuM7yBCJK5lK+9fgsRkbG6rzVR4sp9iCB5DW/Ng0ti80aYNBEmfbs/eTkfApKS6dq1a4LEmQRo0kSZ1B98kH5e9OGHybOug0EFHU89Nc73dgWfT1U4Tz7pbbuEyMfdJMNI7V8bpSOtnAxuL/75XjH/V8dbA2Afkn+s7GWwR2H1askDgXSsnVTWJD7zRlSb5dxZ7YDOEXtdv379hNssW7aM4cOHsyqSTNaiRQv69etH86SNVjOFDzVUPwJJuZWnvX4CyflsinmvHgo03oH8rxdw5wumQMgHhQFYd2uk5NQj9tpL/V3GjElvr3/4Ibm8S/Xq8M03IrpneGw07vNBvXrwr3+53mTt2rV8+eWXHHnkkbRp0waAI488kqOOauVyXuYjdc+hAiQnkim82usgSvRwUBXv/RKuIj4RqXyRbSHDSrjB1q1w223QrJki9yedpIf60ENhxAgZcTeNu8zU/bccyOwmTZpw6aWXcuaZZ1KzZk3WrVvHG2+8wTvvvMOGDQ7hkIuyW5+M/F9eeAmVssWiAJWwH4qikuPJOG7jXN6NwKV+6HifDPCaDBrqHHEEmBFGw9sElNH3JKJyi1pY7r8/LVu2pGbNmuy7777069eP66+/nr/+9a+cc845HHLEEQTefBMmTYJWrbwdw333ZSZJUwJtXK4XIN5QFkcBugqZoh3wN5I3syiOpsRnaE6OLG6fozCauJV35UEldgnWr1cAqmlTaZ+edBJ06ADHHgtjx6okLTLJnono4R+S7WuB92Dat99+y9KlS6latSrnnntuFrNGaqEsu39Rvq7As8ST2CBducEoM3srsowZRvedx/h34Aw/tL9BGdHFyCtXOOywpBOpuUQbeV559dWJSWwHNWrAp5+KGEkyyUqK558vvTQJIHvtZuJS3LEtjjV4y64rjkNQtr2b8diHqq1im5l9jbKO3CIMvOxh/Ur8obF8uZqbN22q3gInnqjy8P79RZTsvz85gUCcdWmJcvW3o5SHJ4HvgR1z55b/8SdFI2Ac5Ssx4kMl8sV93TxUfdkf+W8TyHgMidjr916A764Ik/evN6n1ySccc/jh3HLLLQwYMIAWsU24UqFnz/TzIZ8vvgljItSvL/Jk5MhYkdP0MJMUQteu6ddNiza4L+9um+KzXyk5P3ILJ2njfNz9vgGUnRc7frxPPKnmBq94XL8Sf1jMmyd5nxYt1JPghBP0/znnKMu2a9e4IP5OlGv8DCKxfaj9bHOQjFMC5Ofn88knn/DSSy+xatUqqlatSv/+/bn88svLgMR20BbNK8tTNziIrkzx520DcDdwIfKHxpExie2Y13kGhxVCyxPhhhsya7Lbo0d6ex0Mih9LhRYtYOpUBTFTaV0Xh8+nps0u5GN27NjBiBEjePbZZ5k3bx4jRowo6r/h9/vx+drijkMIkZo7+QGlQ2WCHOASpPTuhlQPIvnG2DnJq3i7NwKUrklk6VFJZJc38vJU0vbEEyUn1uPGyelu0MB9Jshzz8Gtt2b9MBPB5/Ox//77M3DgwKLmCbNnz2bChNgutznAQOA4yv72in1QExmQELAQlUBnSPY7mz2Aeie8FiE1xo1TECLPpSa4GXz7LbPPP5/XgIcQbfMZKuBwQgGrQYb4hRc45phjuPXWWxkwYAAHH3wwjRo1KhnxO/BAeOYZ9+fj93vPMkmKI0jtQDsIAceT/DfYROlI4fook3MNIsLS4T/EkyhTM/jObYhwq8RujbVrVWb8wgsly8xHj1ZAa999obCQfPQ8h0mRm3b33fDQQ66/fsWKFfwYeV5PO+20pJkmmaM60s7cj7JvTpNuPAghTdAHKLW9/gtipz6J2JWvvlLwrqAgyYbF92PKyhs4MOkqR6Mp+1V+P03c6Dj6fCKkPfz+BAIiVLKC/kgWIB0K0fidDCtLcQx+VOr6HJIp6E7y+855/5Fi60zGe/PfDILOlfjjYfFiOOggePPN+GfdeZ4PPhh69y7hX++F2oAOQHTxNkSWPHH99Uz4R0Xqg1EHNedKrPuaXcRqKSdCGEmd/BevGbtmMGUKbMuP7OZSOOjv0HaxWs3ePHUqRz/zDLVqupSWCIXg/ffh3nvTr+vzwYsvulvvuOPgrrvcV8P4/fDdd+nXc4U/4S6YGyK1vV5cimPwA41RNcASpFud7Fr4I0vx7MbJeAtKG9L5rcRujxkzZJM//DDeJjvPc/fukv4hKkr3FAoyFqLZ59Uo1FITVGXx8cdFuzEzJk+ezDPPPMPkyZMBOOCAAxg4cCAHHXRQ4gaQWUVjVBWeoQSsJ/jQVUlmhw14J7KUwr8uQAU6ewGTwzLmzz6rZB+32LkTXn1VvQnSobAQXnst/XqBAJx5pkh1t7+rmeZxSbB9+3aWLVvGuHHjePrppxk7dizhcJjOnTtz5plnFuNjLsEdj+EHeqf43Gs2dCwM9R8aFtlPM5LPuwKomqq4fzMFb3NBp0/DrkMlkV3euOsumDYtNVF9xx1ytt06T48/nkXnKT2qVKnCCSecwLXXXss+++zDUUcdlWCtS/FOTlbD2wPkNvr1JqKIM2xmsAxJBx1F9PAKC2HWLDV6S4LCwkLmzJnD1rw8aTsdeyx5q1axEBFdVZAkSG/UW/jvQGtQBuCXXxLMy3NXqtKvnyZvbhDZd8baj3Hw475k8SbU9u6jBJ+VhkDzEdUrr4WaXVwVeR1LVvuRM/08ikqXFn5ihGAqsbvi+uth4cLE9tpMz9Ptt0OvXnzp87EVESFHp9rnHXfAr7+m/epQKMSwYcMwM/bdd1/23nvvDE/CDa7IYJtauHchHNmedM96CD2ja4nqInuADylMdUXFOEW7DSmA96GLyo/CQjV569cP1q0rert4HosfDQlVw2F4+233lVEXXCApMTdwJnRZQVXcN6f9ExJZGJngs+2lOIYwoqpAkl8/okZ2ELXXTueHqsC7QN9i+8hkvKjUWt0jcPHFCj4myg4z0wT67rtVRVOs6tGPxMKuRXdkQ0Ror3vwQVip4E0oFGLlypVFmVi7DpfjPZhTF/f22iGx3TxrT6JUDPf+/rJlMGwYjBuPEoZ7wv4HatawDxAwg08+SUkyFGHbNgUpzz5b1a7pEA7D66+7Plauvtp9FU04LBmprKAB8pvd/AbHRpZEesKZZveB5kxOA68WwMTI90C8vQbZ2M9QxU0sMrHXSdvUV2J3gRkMGABbtiT3r/Py4N//VoPcQICfUC1IfeShXEJ8rwPMpJmcl8fy5ct56aWX+OSTT8jPz6dJkyb8+c9/5vTTT6dGjRolv6/MEAQuxntFeF3c23gvdv0JSpWENQ3li+0T856ZgoMu5jVs2KAEoMsuc5dY4vPBkCHuj+8vf3FfRWPGznffZdWqVfz666/88MMP5Mf0xPnhhx946aWX+OKLL8jLy6N+/fqcf/75nH/++UXNh6Noj7iFdL9FIeJCTiGxRN66BO+5RSFRf7oLIqUPjLx27j/n+OqjQHSabPe08OEuQabsUElklye2bJE2sZts69GjlZ3tBsEgPB3TIXfmTBEwDRtCbq7KLu66C5YWL+cuHRo1asTZZ59N1YQNJ88AOuHtFmuJsqeDke2cvw78eHfeQbTxUxlsF0ErVFk3AhnxWCWP2OuOOtjOnj2bDz/8kP/85z+89dZbzLzzzqKs6fbIfF2HiOuLEJHdgWIxWzMZfDcIBBTddAvHQcgKLkKiKJB+oJ4OnEnJ3yJTqQQ/yii9NPJ6XuRYfgM6o2h4J9SM4kGU5ZGou7HLIEARgigkXdliYLfGihUqVXNhr2f+/DO/tG6NDxd3RjCoDAYHkyfLqatXT/a6bVt44AG+HzaM1atXU716dU46KYNmhZ5wMXpevEw6D0AEuA/Z5WCx7WPtteE+a28jCj5mAEOP/CWoQm8M0Z6/gYC76pXbb09IRnyFWhy+S4Kz2LEjZVPIOFSvLrkQt8jLy6J82F+QDBOkt1/jUQult4q9n1lTHN0LjYkSIzNQbdJKlOnXCDnffdFkayVR0jsWB+Ot9NEpn6zEbo0ZM+D779OXOIfDmnD36JHwYz+qT7kOeSvdnEk6sHjxYgbfdRdPHHggn1evzvzcXEKdO6vZ1MaNWTyZdLiW+GaLbtCH6CQ3nb0O485eG2oc9qWnIyko0KZjfgD2B64E3ySkTOjEnIJBVZymw1VXSQLEC9z61qB51MMPp1/PwSavMhqp8CBR/zadvf4ehVa/KPZ+KpmoVAgiP/o49DtPihxPHpqxNEZNSPsBLyL/+vgE+zkYb0Fpp6dBJXZrjB4Nv/2W0r9eAhTu3AnLl+Pv3JkTkXdwHaLfSnirZqzZupWht9zCiy++yPJly6iyeDEnjhzJVX/9K607d4b99pNdcRP0yhpuwTt3cR7RSosgJe2143dD1F6nQxjJQI33eCwxuz8YqaXMQIUazvQ9GHTn155zjiRRXX+vKTjtFm3ayIdPgrVoajAE5cr/a948nn/+ed577z1GjRrF77//XrRugwYNqF27Nu3ateOEE07guuuuo3Pnzim+/AVU+Qip7bUhO30I8HOxzzJNWAqiKvkDIvsfi/xrH5JfbYyiD6eiH24pJYOOoB/YaxJqIj+9/FDJxJQnfvjB/WQX4OfiN3gSFBZKWxsUubr0UpVWOA79ihWKaj75JAwfrmzvLGPNmjX8/PPPdO7cmb322gtlv45AJKHbCFMD9MCdgDTdAujBOwZNaucjZdIJyXaQHcQmojh/ncq4vYDvUEX0JmmUF27fzpwFC5g5cyZz5sxh586osECtatWwGJK5PvFqREnhNCFIeZymbJSqVaXZGwy606nKzYU62RTm/ytyZp9FpEeySYIzEt6EghanI6e1JlI481JO6Azsw9CAcCeJdVP9kfevJjkBsz9K35yAO4KkEJ1DJXZrjBjhisTOA4abwfr1HIHu7JQoLFRVBEhi6pZb4p/dxYtZeffd/FC1Klx0Ef1uvLEcMkhqo+zbQ3GfrVEfGcTjkYRTFfQsHY0a6y5B3q6XxnwZIJW97omGoV7AjlC0mVAybNggsrsYcTweZWOD3MQSE6gqVdJngYTDauxcrZomU27RsGEWGj068CEZpnORJMB7wJYk6zrO7EUoG88pSWqFSDQvE8EgCjp+BvwPycesSrDeKlSm+BeSN485BpEzi3DncIfR1LcSuzU+/1zBKjeJIoWFaYlnP7JmmGks+Oc/2fjAA+S88gqbfD7GmzEeqDp3Lh1vu429Hn6YTt98Q5V99km53+ygOSKPj8YdSehHFTSdkD++BD3D3YHDURnyCkRWzqNMm7VbpPLbB3UdF9ex1ycil64P+o0icgBJsWiRZGS8BvrS+dYQb6/dVjyCtNmzhgCyl5cje/0xyRuFOff96ciXdXTA90H210tFagA1iPsUkdePUTKz24fumTVIfzeZj3JmZF8bcXdfBYErPRxrJf6QGD486Zx1NcoVnYOI60Pz8yEYpJPfT6ckPUvWoqn5DJ8P+/FHfOecw/5jx9Jn5EhqxX7Pr78q0e/JJ9UksMw0smOxF3p2++FefqI68se3o+esFiIZe6KMujWoAmOZy31mCMe/jnVBHXv9J2QqzkPXd+rU1PuaONF70BHkA6dDKKSEkmrV1G8OHfoadOWqR1abj+6tItSqRfXq1WnQoAENGjSgSpUqRR91796dAw88EPeoin5nR3Lrc5ILTYaQLT8RZU47AceeSdZPhQCaeb6N+JjBlPTrHXu9Cdn0KiTGJcDtxHRsSwEfurrZqHLPHJVEdnnCC4kN3jI8CgrU/fWSS6Il77EIhUR69usnQ962rbdjSYNp06YxefJkZsyYwaWXXhppoNAWTZSPTb0xoAdiIqILfMgwB1H7tDCKn+2kWCFRltEUTQpSEO85QGsovAKCjwI+H4WhEO+//z7hyDWvU6cOXbt2pWvXrrScNAnflmREQRIEAtCnD9Stm/jzmTM1CA8Zot80JwfOOkvN5775JjWZHQyqbD5rDeNAtaGfI2fVbeaFU7x7NyIZbkPkhRsEgXMQOX0L0uBLBkex+Fw0uPROst7TwJGR/9NNhJuyKzv0VqKcsHWrCMQUk2RDU718oMmWLSmVz+KwY4e0/G65Ra9jntkQ8LEZ4e3b6frmm+zjoaN26bAvyqw638W6PpQ+90nktSFnagaa0P4XkZJuG8JmglbIWduYfJUcxNX8CfVnTddE+f33JT8Qg3lEc9z6INWSOASDcN55yXX5Jk1SwGLoUO27alWt37OnPktFvAUCytbPKiahholNcCcTEkZ2swVwP8oQHIgIcTfERBXk6F6CZjzzUqxr6GnqjzJVDkiwjh856sUlR5KhLeWjUVmJXYqtW/UMuiGyzWDOHPf73rYNXnqJA195hf2AhWbMRkRLHrJ6M37/natPPJFmc+d6axCYMXqhjCs3PXKcBtXO/yB7/QuyA/9BAccDsnuIcWiHaIWtRWa4xE8VRNOFExFPn85ev/mm+9/cQSAAF12U/PMffpB/PWyYxuUaNTSv6thRzedSkeY+H1x+uftjSQtD8kvfo+CFG3u9E+iGghb/QhUwF6Lf3429roGI87OQ3U/WE8HZ10Y0Mk5Fv3FxVEE9EdxmWSfMta3E7ob8/BIB+k2o2e40dHf5iYTLzVRxEwiU4DbWIwL7l8g2mNG1enV679hBY4c0jZ0TO8/v/Plq3D5lircGgRmjL7LVj5D+OQwDjyIbHStm9wuqXnsK+XDZkjFKhI4oazcFoRlAj/UjyK1Mdx1ff919wp0Dv19yMcnw5Zfw1FPw1VdYOMyG2rVZeMopLKhVi0VbtrAV5SA7dHR7lPPcDlnU+v/4B9WT2GxX0q5xcPpGjI/sPWm3pBhsRhUu3ZBPfSJwEiUra5KhDuJCjkfBy3SJhCuRXZ+OqiCLox66925w8d2G6tcylO3NEiqJbK9YuBCmT9fD1aMHNPPQdMVFZ9Q4BINy0Nx04e7QQU2kUjl14bAIlP/+F/7zH2/HkgbHHHMMK1asYOHChbz55pv8+c9/jmgI9UYP1wxSRw2N6MPgnK/z+iNERPbFXZQoE/gQkXpvQh/KDNasUSXUb7PA1wiu8Puhe3eq1qjBAQccQLVq1ejatSvNmzePGsBPP01LhpVAKJS8gefHH0sLEKKDQUGBCJjCwtSZe85nDnlWaixBkgTfEW304sWgrQVuRE76/5CjPZ3E94kPkWLvENV06oG7buxOSPkfSGsgEQ5C7Z3OR5l+jqZvIvyOSnjGEs16qUSFxG+/wezZCvb07Okusu+gdWtXz20H1E7pTJ9P2p7pEAhAly5w//2y18Uc8+9RRkp1M/rl50uH/7bb3B93qXAOCiqtJLWzbZQM+DivXyLadMSfYL1s4S7gBney29cDbwTUbDEVli/XuBvR7luNQrFGNHexBMJh9UBIhJdfhiuu0G/u2Ovt2xWEDIdLBpxj4fcr09tLE52UmIWyqycRLUn18tssB/6MnPT7kS1eQnJ7vR/qZt4JBRwOwF3TxTAaRx4AkumD90HZ3ZeigEkqe72YaMWNS23ySuwaTJ8ugqFqVT2rtT1o5bZu7W2C7BbBIOy1l+w1io11jiyGnorZwAozmi5fDu+9BxdfzLhx46hSpQrdunXLYELsFlcDgxCdng7Fn1Pn2f83mgqux3vmrhfcDVwGvijfkdD8FaDchpFBaammwvLl3ohsn0+2+JprEn/+8MPw97/Hky1bt6rZM6T2BwIBVTpeeqm7Y0mLCci+zSReosst5qKS70HAvSjknkrL/EhEOLdDmXvdcXdfhVDw8VEgmXSXI+10LcmJFgczUZBmAiqHr0SFhJkqJpYuVbDn8MMlm+YWrVsXGYBtSO5hPFHrsw+KaRUpEZvF2feNyFeeSvSO7gIcEwjQ9PDD4+X7EqGwUBV6I0ZAX7dB8dLiVuBx3NvYWLvmnOXfUHBoNGVrr/8BXJrevy5Aw9C1ATjiiNTrrljhLejo90PNmoltqhn87W/wyCOY38/ccJjvgWWbN8NbbxUNMjnIOjloRMQaBQKS3b3gAvfHkxLfIKnFheh38ZolPw1xXM+gyMD36MiT2fxT0djdDiUT9sIdcR5CHMZzaExOhOvROfyV5BWbDn5GlWFjUXZ2+aNSI9stpk6VZnX79nDaaXDKKdCqlUjFBQvc7ePggyGlvk4xOAR1uqwEUJObzz9PbyRCIU2us4xgMMif/vQnmjVrxtatWxkyZAhbtmxBVvBpokRnJggjJ+xryi724keZ2NFy6VBIP+0XXyhB47nnlPC8fCUs3w75wSiBceqpp3L88cfTokWL+ElLrVreyx4ffRSOT6A1N2uW9KUKC0tO2JzXyb4rEJBz/u67sH82yNcViBxwiGGHfMgE76NymkVE7xFH/8u5949G2fo9kAzCw0i+wC3CKLMlVRZWL0SMv0rqCUMIZcZUlqtXWPz4oybBe+2lruf9+qmE8OKLYVUiSYME6Ns3LfHtQ3fuLUATv1/OebqshFAITj1Vk4BiM/mVyKEHFSHWMFNfhXJDAEkEQeZZUYbI7J/w5sx5/b5luLI5AZRGHQqpo3kq1KpVNIZuQUJJO1BOb//iR+iLMDIvvwzdu5fc19ixIrGLTcAAvU5FYgcCIvOGD5fmX6kxBzgMTftANizTAMPzKJC3jnhNlwBR+90fOeL7oQy/fyLn2S1CKICdapsTUcbQo6S31xuRU16JCokvv1RiyP77wxlnKFOuSRO49lr3lYkDBijw4wWNEmUkFUNhIRxySMIeMz5U0NsHhfR9EXuwefNmRo4cyccff8wLL7zAwoULvR2Xa9RAevKlxb+Jp5HcwKs/H70GSTOyQczDfui6pwviefGvfT75wO+/n7jZ7iefiMSGxPY6VZDE71fQZcQI940hU2Ii8nl/i7wujb2+F2Xr7SBqrx099IjGCxehLhBdUBPzW/AmHVUIvELqRKNzkYfzdxf7WoH7RvKVKHe89x7ss48kd844A044QZI6t93mvvL8oouKnt1vEA1WiHytK1EIpng7PWrWZDMKYT+NanHDKFR+Jar3ahoK6fnevDn9MQQC8Npr6dfLGpqg5zEZ3PrAd6Kz9yoX5AVz3a2Wg/K5zNSvIBVq1XLHZ4FsquMDl2isCPzvf/DIIwBsDId5G80IAkAbM3qHQvwZiWSUoNf9fvkXX3+t7yg1RiJ/dHHkdSGZy73cgOShYjUTnZ5xjp89EPEmHVFQ4xrckdgOwojIToWrkb1OV2EUQsHHxz18f3ZRSWS7wU8/KTtk1Kj490Mh+OgjEdRuyhR9PrjPw+BcUAB//rMe/GTkSDAoo927t3uHbv36MslcqVKlChdccAH169dn48aNDBkyhG3bthFtQOKQQjlEGzm6Na5BFHXyAh9yzNx8RwizznGXcPhwVcKMG6e5VE6OEilPPVUJ09V714Hz3kPEZxLdur599Ru5wX77iSn/SxKJjaeeyqzpl9+v0sgZM+DMM11utAoRUZNJbCDvQiRDtrItf0OFZYXovjAk4fEXVKpzJBotc1B3if+QmY5jqrJ2It89h/T3TAgR48XvyWloIOqDqMhHKV3X+Ep4xuefyx6OHRv/fkEBvP227PXy5en3k5MDdyeOWBvxT0UV0HgwcKDeSJaBFwyK9OxaQqBCkiLIxehKTFPwlclKe8sKpwFDicrnxDaayUm2UTEEEXHhhZz2I8fM7ZjQ0f2uC4E/NYITX0DlmEmcvlNPLSKYt6BwVQM0BS9xVL166R675JLE+/rPf9w77bEIBES4z5wJxxzjcqOlaCo4jcSTm5vQGWXTXjv7C6Anog2aYI1C4247dL9URSSHV3sdJnHfg1g48mPpxljn6Yp9lgwFR69C9voUFMTxKAVWidLhjTfg5JNL6mtu364mi716uWvOV6eO98qVv6ch1RyZt8YuM0PDYVi6lOrVq9O7d2+qVKnCypUree2113j77bdZ66VplWtcjiShaiB7G2uv3RL7YVQh5wUBoDXup5Fto1tGzGLSWF4hcGMLOPBhJF+VxG6ddpr7uUzfvtJoPeWUxJ87Fa1ekZsLd9whe52kgWhJLET2OlkF4pVojMqWvXZEcBx7HUaVjfcgEqYWItlykJrscLzb63zSV9xUQT5zOnvtEOOxGeGGhCcuRU3wziDl3KsSZYMnnlBC1ezZ8e9v2QKPPw7HHScppgQwMxYvXszw4cNZ7vOJ30Cidk2AC5AAWYti24WBuT4fH556Kk8R7WbUHlm/C5xt/H5JZ/r97p7lUChhgLJscQcKHFYh3l6De3u9Fe/3fS6JpSQSIQdPMq4FwH2toc0/UMJhEsPuxV6fc458ggRVOeFQiMX33Vc0z6qHUtwORyG4y5AWQGsS+O3Vq8MDD6j6y1ViqSH7ORZVNRa3i6HIN4bJnlb5XGRPw0TttSM98iXyUeug36kGmfWNW0V6hYMaKPkl3bMURr5z7G8bQpKzFyB7fTYp516lgZUDnnnmGWvTpo1VqVLFevbsaePGjUu5/tChQ61Lly5WpUoV23fffe2zzz5z/V2bNm0ywDZt2lTawxZ27jRr2tQsEDATjVhyCQbNDjzQ/T7/9a/k+4pd6tUz277dbMQIsxo1zHw+LRA9ns6dzRYtMluyxN0+waxKFbNwODvXJwHWr19v//nPf2zQoEH2zjvvxHyy08yGmtm1Zna5mT1sZk+YGS6Xlh7W9ZlZjpn5k64TDmPr12MTJ2LvvVfPHn74QVu1qlnR51OmYA8/jA0bhs2eje3cGdm2ELMFmOUTs/8GZjYm8QW55JLU94/fb1arltnmzckvajise8Dtb1z8/jz00PQ/nJmZTTSzUyLXz7lW9c3sLjPLi6yzzsxyPfwWmS5+Mzswy9810sU1ONLD/l6MbLPNzP4UeS8Y87nPzKqY2RAX31sG9isD/KHt9ebNZjVrRu1ksufh5JPd7S8cNrvhhhL7GAf2BNgi5z2fz6x9e7NQyGzoULPcXD3XzufO83/wwWZr1phNmFBin9+ADQL7N1he7GfNm2fn2njGNjN73cyuNrMrzOxJM/uHuX82Olu8HXFjr92s7zOz/cxsq5nVTr/+TsymY1bg2BTMrIWZTUt82ieeqHsEbBnY+uL3TyCg36SgIPml27Il/vf3sgQCZqefnvbXEUab2XHFzrmZmf3LzHZE1lng8rqWdvGZWS8zC2Rxn7+4uAadPOxvWGSbzWZ2YuQ9x177IksNMxvu4nt3vb0uT1ttVgbnu3y5WU5O+ufhssvc7S8UMjvjjPTPmN8f9YkGD9Z3xD6vkeff+vTRmPLZZ+6f35i5QF5eng0fPtzuvfdeGzRokN177732+eefW35+fnauXxy2mNlgM7sqsjj/u3ku/Ga2j7l/dv0me+1m3YCZHW9ma8x51jZvxt57D/vkkwTr78RsImYhYo6ns5nNL3nK4bDZAQek9q8DAbP99ks951m82P3vm+heuvpql7/RZyYbGXvObc3sKTMLRdYZ7/K6ZmM50rI7NqxycQ3qeNjfT5Ft1pjZoZH3HHsdO/f6Ie237mpbbbYb2OsZM1L71s7zcPvtRZuEw2FbuXKljRgxwh577DEbNGiQDRo0SOeyY4fZ4YdbGCxcbD9hsCVgn4E97PPZoC5dtO2xx9rLYAsT2euzzxZn8sor7p/dfv2yc208Y73Jp77C5GO/bmanm7vnIsfM9rX4uWaqxYu9DprZRWY2x936BZiNwywc+2weaGYrS55yQYFZq1bp7fVxxyW8YgUFBTZx4kR74i9/sXvA1mZir30+s7vvdvkbvWNm3Yqd815m9rKZOePJpy6vazaWI7K4L5+ZFaY5/0KP+3TG6EVm1jXynjOGO/a6uZlNTfO93mwXadcoJd555x3Lzc21l19+2X799Ve78sorrW7durZ69eqE6//4448WCATs4YcftpkzZ9o//vEPy8nJsenTp7v6vqwb7vffd/+AjB/vfr9XXJF+f2+8EV1/wwazJ580O+oos27dzPr3N/vgAxHtZnLS9t8//SATDJqdd152rk0KrFq1yp577jlbu/Z3E8F7npk1NbOGZnaMidDeaWaXmvuHZD8TqVp6xyscxl59FRs0yFnOskGDBtnYsdea88AVFmo9d/v0m1k1M0twn27cqN8mkfEOBBRY+Oab1Bd0+3b392HG9+eXpsEu0WQmYGYHmSZLI0t9/XfNUt1EYKRD8YlGquX5yDbnWKqgie7Zj9N+8652tv/w9vrZZ9PbQMeZWbDA3T7DYbNTTy3adjXYA4h0/tnZl99v9sUX0W3WrDF76CGzww+XvT7rLLPPPxfRYmZWWCgyNLLPJWD3RvY5o7i9vvnm7FwbdydrZiPM7DQza2JmjczsZBOxF7Io+edmOd4UxMnmM+wzPWcjIsf7F8uMOA2YWT0zWxx39jt27LBNc+aYtWuX2F4Hgwo6TpqU+jJ6CSwnuz/nJyBu4vBW5FokOn+/mfUxkdlvZfk3KK+lsclHSId2Hvb5oek+7p3kujn3WNDMvk/7zbvSXpe3rTYrg/O95x53AZ/cXLN169ztMxQy69Ur+b78fu3v55+j2yxbpsltr14iRs87z+zbb6PkZ16eAqTpjtPvV6JKMaxZs8befPNNGzRokN1///22YcOGUl86odAUnDnBZKubmNlZZjbKZMu7m3t7eLZlP+DlNyUiTIgc7/nmnnyJXYKmRJa1JS/BvHlmjRtHyazi9rpRI7O5c1NfxgSBZU9Lbq7Z2gTHFoenY65JcXuDKREiZEruSeVLVsTFZ2Z7W5TcSYVaHvY7xhRQ39+S3zfO3Ct10HNP863NyuCcr7su8XNWfKlb10L5+fbLL7/Y888/X0ReDxo0yP71r3/Zxx9/bIsWLdI+d+4022uvom0LwSaBPRXxhwf5fDYoN9cevu02++yzz2zp0qUWnjfP7G9/M+vZ06x7d7NLL5U9d+z1qlXujhPMXnopO9fGFXaayNGjTVxIUzO7wMzGRj5vbe7t4SUu1/Wy+E3P52+R4znW0vrXCTmSoMkebC15CSZPNqtdO/HvEwiYtW1rtmJF0er5+fk2bdo0++CDD+zhhx/WfXT++fYw2JxM7XWdOmbbtqX5re6OuSbFbR1mNtBk7+4w90GCirIETD5wOuz0uN85ZrbBFJxNZq+dudfClN9coYjsnj172vXXX1/0OhQKWfPmze3BBx9MuP4555xj/YpFyA455BC72mXEO+uG+4or3BnEYNDs3nvT7y8cNrv1VityehPtq2ZNs9dfd3d8CxeaDRli9vLL7shxMPvpp7S7zQThcNgWL15s7733no0fP97C4UJT9rVj2GJvZEwRdreGGzO72cw+smjmVOYP8pIlIrDvuQf73/9OtG+++cYWLVpkhYWbzexgy5wcOSfxxdm82eyOO5RlHzvpOeMMsylT3Fxcs6pV3f2+ye7Pv/wlxResN2WipXKgA6YMnxGluva7ZgmYWdQOpcZ15n6y9aNpkpZuPZ+ZdbB0jv6udrb/8Pa6f3/3RPZzz6XfX0GB2cUXFz2vW1Em9iCw14hkkdSrZ/bJJ+6Ob/Zss9deU8bImWeaga1DWdiDwIYmcuzmzCnVJXGPnWZ2rllSe93XvGVTPWhmL3lY3+3yaMwxrzdl62VKjgyMuwLDhg2zhx56yH77+Wezm26KJ6+CQbMLLjD77TdLi40b09+DqZZAQIGQpFjk4pz9Jmd8SBn8BmW9+M3MhT9lZmZnurgWzjLHzD53+f2Hpf3mXWmvy9tWm5XB+fbo4f6Z+OCD9PvLz9cY4Nj4RPtp2tTsu+/cHd+0aWavvqrlmGNSH5/PJx8tCTFlZjZ//nwb7yXhJSXyTMEqLN5fdZ6Fc8zbBPt/pkqObD7HPjOLScix5aaKkejzumEDNmIEtmOHm2fygcSXYulSs6uuiveRq1Y1u/JKBRXTYd489/dhsuXll1N8wRRzN2d5xjS+/RGJbBf+lJmZHe7y/IJm9ruZveJi3YApgJMce5pvbVYG59yypevnoXD0aHvkkUds0KBBdt9999k777xjM2fOtILYSrYNG8yOOMIMbAfYT2CPRnzhQWD/B/ZhkyY2d9gwCzlJIMkQDpuNG6fn8PXXRXCnOka/36x+fbOtCcjWMsE6E7fg3K+x9zmmzGwvvMZwEyeSzefYb2ZfxRzzb2ZW1zLjQ3xm9kLiSzFnjtmFF8ZzazVqmN14o5KAIli2bFlRNZOzPPLII/bTCy/YztLa65TVDW45jqFm9nf74xHZmJI63KCDubsva5qCjv+29PY9aOJZkqPCENk7duywQCBgH330Udz7F198sZ166qkJt2nVqpU9/vjjce/dfffdtv/++ydcf/v27bZp06aiZenSpdk13Oef7y5jJCfH7O9/T7+///u/1Pvx+cwGDEi/nwULVB7vhrSJXR59NP2+PaKwsNCmTp0aF3l96qkHLBw+xlLfzF6dNSer41OLyoxkVsb85Zcisj/4AFPWSiw2m0prghbNznK774CpDC4Jtm83mzjRbOxYRY294KKL3EeZEw3aPXqojHb58gQ7f9zcGasqZjbD5boVZfGbyoE2uLzQ01zsMzYD5Upzf4+MTvnNu9LZ3i3s9bHHunseAgF3tnDgwCIbWwj2csTBfgJsq2Ovb7gh/X6mTzc7+ugSx7GVaObJ4IgzH7fOa6+V+pK4wyIz62Hp73kvz51j394wZQs6z2Jpn+WTih3776aSTCfA6WVMqGFyvsx+/fVXGzRokN1zzz22wMnWz8tTJctPP7nIuCuGPn1Sl1Cmuz+PPlrZQr//nmDnd7g8z/pmNq6U17y8F78pyO1WfsFNhVBsBsopLq8dZjYz5TfvKntdHrbarBzsdUwmXtoltkIxGc45J72//kASMjQWP/2kbD+vPtann3o6/VWrVtnUqVM9bSP8Zt4kddItPotmzz1t0YBlae11wFR1GYslFiXgffbGGz4bNAh77DHst9/S7a+ZpUwG2LRJZNa4cQomukU4LPmRTOWgfD5JFLz2WpLv/bOl9xGdZIcvXV7birL4zKyfmaWQ2orDmy72GTBV8ZqJ/HNzH/otlbTJ7u5bm5WDva5fP+H9HwZbDDYcLOS8P2KEjRs3zr777jvbmogsDofNeve29X6/fUs0mWMQ2CNgP4JtB7MXkpChsRgxwmzffb09s7m5ZmOSyIFmHVNNtitbz1zQVI0TNrP7TdXGTrViafbrNxGzsZhlCuo7n7v1nXwmWY4UWLfO7KefLDxunK2YN8+++eYb+ykm0bKwsND+9a9/2bPPPmsjR460hQsXWmFhYYmK1oyWc881e+st+fgl0M/S2+tA5Lq8XsprviuWS8xd9YyZO24oYAqqmLlPTq1mCTP2I/Bir8u02ePatWsJhUI0adIk7v0mTZqwatWqhNusWrXK0/oPPvggderUKVpatWqVnYN30LZt8sZdsSgs1LqpkJcH//pX6nXM1FV71qzk68yfr4ZlX32l9b2gb19v66fA9u3b+fHHH3nyySf56KOPWLlyJcFgkO7dlzJgwCB8vm/T7MGrMH7byN/+wCIgs27DZvBbpBm4eq5NASbFrFELeB010HoeuJ/0zUkchIAFyT+uUkUNYXr1UtdcL7jppiRt3l0gHIbJk+Gaa6BVK/jTn9TBsggfgqvmLjtQc62T8d4FeVfAB1yIGjXUdbnN/qh5Q7Ln3hdZHo/8nYG77tE+1CyiYmK3sNft2rlrrhoKpbfXq1bBs8+CGYY6pS9G7VjORy2RMIPnn9e6yTB1Khx6KIwZE/d2IfAOsA617TgPtWMpgt+vbvBlCgP+gRrzTXKxrlv4AKdB2gXAcuAxSt8MJYyanSyOea8h8BEaE54BBnnY31ZgJZs2beKTTz4B4IgjjqBdu3b6uEYNjbWHHpq4c3oq3HZb5vY6FIIffoArroDmzeHKKyE/P2aF93HXCGw9agrUgz9Gb+8AcC1qQFbN5TbHovEo2fk5TaX/HXk9HfdN1GanX2UXoDxsNZSDve7QwX1D1DZtUn8+axYMHZqig2AEDz4IW7cm//y77+Coo9QY0AuqVPHQnBXy8vIYMmQIH330EePHj3e5VSF6PrqghlDZQk0iIxpqVr0KjQultdch4C1gY8x7rVBDsDnAk/TseQV168KmTfDWW/oJtyTtt7qSlE3OateGnj211Knj/jB9PvjrX9PfO8lgBl98oca/TZvK9hcUxKzwIel9RAPmAy1RmzIvjZJ3FXKBv6Hx1+0caQBwKMnnDwF0Lzrj+Czc3Ydh0jdz3zXYbex1u3ZxfEgBMBkYDLyMWs795nzYti09e/bkqKOOonr16nG72bZtGxNfeIGXR4/myXCY0ai1XT3Ucvkm4DAirQ8HDUrtR330kXiNX3/1di61a8Mhh3jbxjO2o1bhBxDfaLq0aI6eEx+y06vRuJAN/3ow+mUd7AX8iBqJPxb5HjcwYu6Gkt8UDrNg40Y+X7+eJ378kcFDhvDdd98xfvx4LMJrBQIBbrrpJq699lqOO+442rZtSyAQkM/wl79kcH4xeO89NQZt2hTuuy/G9hcAX5DeXocQr3AsmsH9EVAD+D/0tLodXy4HOpPcvgeABsBt6Nqla9DuYBuaF5Yef4SZTUrccccdbNq0qWhZmu0OtJde6m4yWqWKyMFU+OCD1A60g2AQXn45+edXXSUS0uskORiEwYO9bZMCn376KV9//TWbN2+mZs2aHHfccfzlL7U57bSXadYsW922HTQC6se8DpCpI+/z6RKeeSZ07Oi8+0uCNZsCVwG3A1U9fENORscFwIwZcO210LixSJROndRNfe1aEeCDB+sE3E7+YuHEIsNhBUuOPBI2b458uMnDjrYgY5hLxTchhozlao/bDUa/vY+ow+Bc85qISDox8trt720e1t09Ueb2+s9/dtcVu3596Ncv9TpDhhQFCqcih92HpmFxvb/DYa2bCGZw4YWwfXucvTZgGBryqyCqt1ai7f/3v/TnUircj55ljwHRtNiLeEcpB5GCbie7qWAoeFQcrYHrgL972ls4HODDDz9k+/bttGjRgt69e7vfeMIEuPhikdw1a8I++8BTT8munnhiNHCdib12HOuCAvkDffvCDqfL+Oakm5XEFuBRZKsrOjkSQk/Feg/b+JA9HhB5HSTeXtdDwY+ekddx4aI0yMb9+sdFmdvrK65I78f6fCK8Dz889Xovv+wuiLl1q/yfRCgslB8fCnknNbdtExPrEjVq1GC//fYD4PPPP2dMsUBnYtyEfJNswo8CXbGoioiLbNz/O0nsq3cCBtKp0yCuu04/r98PM2fCM8/ItCbO08nwmMwUpDj7bKhXT/a6e3d48UUFCS+8UMkioAPxCud+2b4dHntM31N0b7uY9xVhK/CE9+/fJXCICy/zh1xEFB0Xee3Ya+d3bQp8i4I14O33rrTXZWqvr7oK0Oj8FfIqPkFhryBwINDQ54PDDtPcNQaFhYXMmjWLd999l0ceeYThzz7LEp8PH9Aejd4DkSWK+xVXroSvv058PFu2wEUXRee2XrB2LXz2mbdtPMFQElWSsSZjBBDNH4uawESyMx/fCKxI8P7+aPy5zMO+Ej+P8+fPZ/Dgwbz++uuMHz+eTZs2kZOTw957783RRx8tIjsSHKx+9tkKStaqpfvqjTdg50645RYR0VA6e52Xp2DJNddE7qF8vAUECoFHvH//LsF2YCHexqNawGj0dENJe90e+B5ogfc5Rnb4kDJloRo2bEggEGD16ngSafXq1TRt2jThNk2bNvW0fpUqVahdu3bcklV06qSHJdWD4vMpOlS3bup9LVwIOS5+uFAIFiTJ6p0zB775JrNMr8JC+PFH79tFsHr1arbEpEr07NmTRo0acdppp3HzzTdz5JEHU7363RnvPzkCiKAo/hu8i/vMqnhUrQr77x8770n3KByDOyepLtA1o2Pi+ed1UC+9BL//Lud63jy46y7Yay9ldl55JYweLVLDTaVAMoRCymB6+OHIG61wn2HdAuiGsuYaZn4M5YbRKANkpodtclA2/jxEjJ2FIusvosj6GTHrHoN7U3qEh2MoX+wW9rpXL+jTJz1xePfdCj6mwsKFRfvpiqbdJ0T+xiEQ0LqJMHasMkWK2esJKC/Uj+6qxgk2JRyGceNSH2OpsA6R2F7gVCOkW+eGBO8PxV3lghuket5yEWmZ7pn0AW0ZM2YBixcvJjc3l7POOksZH27wwAPK/Hv7bVi/XgTZrFlw882w776y3XfcocnSUUcV+2qPtjscVkZ/USC6Je4dxhbA0WjKmeXnrUzwOXAw7jM7QNnb7wK/osnWmajG4Q0UyIzNlD0Od2N5ECjrjK3MUB62GsrBXvfvD926pSagzfSspXtmFixw5xfn5CS3159+quqaTDJzg0FP9trn83HCCSdw9NFHAzBy5Ei++eabomy0kpgPPIf3yph0diIMXF/svZ2oBqk87HUzcnPbcvzxPq66Clq0ULzus8+KJ8X7kV33EoiKwEwkde/e8PHHSgTauhV++UXkXI8eIswefxzefVd2PRZe7bUZDBumrD8AvFRfNkf+5ZtEs+QrKgyN672QP+EWdREVOhFleJ6Bwvkfosqq2MCK27lXLWA/D8dQftht7PUFF7CuZUue9vv5CdFi9ZBffCtwKpEkj3vuAcDMWLJkCcOHD+fRRx/l3XffZdasWYRCIZpu2cIJZtwCXAzsSxIr4fMl50PefFPzZK8kNmgccF0JkwnGAx/gPUs6na0JUTIrelXk+0qbke0glb3uirvq5iDxflcU06ZNY/Xq1VStWpUDDzyQ8847j7/97W+ce+65dOvWDX84DBdcACefLOWBzZtFOI8bp8DFUUfpvSFDFMDeZ5/4L8iEG3nxRfj2W+Krk9ycY0PgClQNmsHYVK4IAa8AvfFGZjcFfgbGoHM9Az21X6AEJSfoGCB1tU0sWiDeqfQoUyI7NzeXHj16MGrUqKL3wuEwo0aNolevXgm36dWrV9z6AF9//XXS9csF//tfNHsv1uF2/r/ySrj//vT7qVrVvYM8fjycfjrcey8sj0m/HzWqdASmRwfdzFiwYAFDhgzhueee48cYIrx169Zcd911dO/enWAwiJwQL5F5kNGuSnJHJQg0IzEx4vW7UqFjms8Hkt6pD6AsXi/Z2xF88YUysc1KZpSGw3K8+/SBdetkxIcP1/9z52rp0UP3hZd7IxSC555TdJPLcBcUaEw0k+IwJL/yOjJKUDEz/kLoXtkPObsnoUmam2ehPSL73kMTiytQeU4sriT9eQfQoN4lzXq7DruFvfb5lG13WCRjIZaUdOz1XXfBjTem31fVqkUOchVEix2aaL1QCEaMUInHv/+tIJSDkSNLkDQr0RQONAFon+oYMi11doUheCcq/MhZS+aoBIG9gUsSfJbn8btSoXOaz28k/fPtY/nyixg9+nsA+vXrR/369dNsE8Hrr8M//6n/Y+21k0mycqXs9bZtcsa/+UYZQHPnKrDRsWNmWSRPPRW5Jy93sbIP/RYHRF6fhO6+/xKtKaio9no1krupg0jpb3BH4HVF2THvo/v7AiIFyjG4jvT3fRA4hyQhpl2O3cJWg2zjV185Gm8l7bXPJ3IxXbUjQLVq7p6pwkLpV5x1lp6nWIm1kSPdJZskg0dCxefzccwxx9CnTx8Avv/+e0aMGJGEzH4J71M2pzIh2XZOdt/pxd73mpWWCn70LKf6fCDgo2lTuPxymczmzZUw7aCgIBxZLwM88gg8/bT+j7XXzvg6b56+1AzOOQd++glWr5a9njwZmjXzXlUTCOj+AuQ3pvvtAohgaBl5fR4iqB6iYpeuh1DCR2NEa16ISA836AE8hQi/VxFBUnwueAPu5l5XUFGJ/z+avTYz1q1bx8SJExk6dCgffPCBPqhRgwbffUeL+vXpBJzv8zEQWZBqgQAWCPD7008zpWFDPv30U5566ilefvllJk6cyLZt26hVqxaHH3441157Lde0b89huAitm8ELL+i5fPHF+Kr20vIhmRDgrjGYzCoEUgUf/ShccGSx97PJhVRBxGUyVAWuJj1ZWYjD22zdujUuCfK4446jV69e3HTTTZx66ql06dKFnNhx9/bb4Z139H9scNqx1xMnquLF74fLLoNp02DFCtnxH35QUqlXex0Mwn//GzmvS0j/2wWBs4nyAdcj//qumPcqqn89GY0pDRFnNc3Fdj7gcBRM/wD4H9CXkuPajaTnkvzo3siSPK1Lte+M8c4771iVKlXs1VdftZkzZ9pVV11ldevWtVWRRncXXXSR3X777UXr//jjjxYMBu2RRx6xWbNm2aBBgywnJ8emT5/u6vvKrKFDOGw2cqTZGWeYtWlj1q6dmu/FCNOnRChkNnmyNzF6n0/NR/x+s0GDdAxPPJF5Q5JgUF28XZ1u2GbNmhXXwPGee+6xYcOGpdjqLsuse+sjZtYl8n+w2N+9zWxBku87wLw2IFuyBBs8GBs3rvhn16S7ImZ2eYp9B8ysq5ltTLOfJOjVK/3v6vOZPfxw4u23bjV7/HGz9u293xe//GJmO02/QboGB08mOYGQmX1hapLQ2KLN3Sri4jSrOCdy3tnAU2m+r66pQVNq7OrO6ruNvS4sVOOtk082a93arEMHs6uvNnPbWCsUsvAXX9hvqJGNJ3udk2P21FPaz5136nVkne1gT6KGNm+n23cgYPbPf2b3usThSsvMXj9rZq0s/lly7EZPS95wqXkG35VsGZTm3ArN7FRLPj74zexw27lzsw0fPtzef/99C4ddNj8Jh93b2VdfTbyPjRvNHnzQrEUL7/Z61SpTQ+Jmlr7xzttJTqLAzD4ws2PNrGFk2dV2Odni3FvXmvsGNenwzzTf19zMEjVFjseutNflbavNyvB8d+wwe/ddNett1cqsUyezm282+y39mGlm8q9ff93bc+TzaalWzWzIEO3n8sszb6jt85k9/XTGl2DcuHFFvvZPCecVp1lmz88rFn2+i9vr4y2xz1poZlUz/L5Ey3/TnP12MzvcYu1ZOBzdPhTCHn98H3vzzSE2Z84c97baTA3W69Vz9xt+/nnifaxZY3b33WYNG3q/JwoLzWylqYFmqmZsPjP7OsX1eSNyjRrYH8NeD0rzw7hF2MyuSvF9ATPrbGbrU+5lT/Otzbyd85YtW+yXX36xjz/+2B577LEiWzRo0CB74IEHrKAg2syzYPNms1dftfxevWxu06b2batWNuTUU+3Bv/0tbrtBgwbZ//3f/9lHH31k8+fPt1AopB2EQmaPPOKNy3DWrVXLbPhw7eeUU7w9j8WXd991fS2942Dz/uz4TPa6VuS1Yy+cZ+psS9wEe715b8aeankvzbltMrN9LLX/+WcrKNhpY8aMsX/96182dOjQdBcscirrzapUcff7TZiQeB9Ll5rddptZnTre7od69SI7+M00/iWz1z7TbzIpyUnkmdmLZnaQqeF6gxTXaVcvwcj5ZO67xKPQzE635PdjwDRPTN7o0cyb7aJ0B+wOTz/9tLVu3dpyc3OtZ8+e9vPPPxd9dvTRR9sll1wSt/7QoUOtc+fOlpuba/vss4999tlnrr9rVw9WccjLM/vvf8323lsOTSBgVrNm5kT0/ffLgJfGcE+Zkvaw58yZY88991zcIPb555/b+vWpHQWzeyw9ERq7+E0P+DaLEqGXmFn/yN8vI+8nw5Pm1Xh/8QU2aBD27rvFP6tqMs6pEDKzey06yARi/v7J0jlSSTFvnvvfr3791PsKh9W53ctkbPLkyMaLTV3TfRZ/XZ3f9FbzRiTsa5kNrgEza5tmnWx0aPZZtNNuNvCamTWNOQfn3I80s9mu9lAR7Ncea683bpRzHSEpf/D7bVAwaB/7fJnZ2sGDzV5+WbYfkdZDEYn9GFi+m0nwkiVleMLXmTciO2Bm7U12sMDMPjSzC0z2+goz+85S24c7zX3H83RLAzPbkeb8dppslkPION+dYyLxo93KiyZYbjB2rPt7oH371PsKh80WLfJ2Xy1bFtn4V5O9KW4HHXv9kPtzskITMZ7Jb+HcF6lsvT/N526XBz2cUyqETf5D/ZhzcMa9vma21NVedrX9Kk9bbbbrzzcOq1eb3XdfNBgUDCpomKm9/vBDs4ceytw/r1pVY0gpMHnyZHvppZds+/btCT49y7z5PEEzOzSy7XYze9Pkp55isv3j0xzN5ebNn0+1dLT0vuNWiw+uOva6qi1efKUNGvSPojnJE088YT/++KPt3OkiEeHjj93/hj17pt5XKGQ2fry3+6LoGH82JTQkstd+E/HhFnlmVtOSX+909rpdguMovk427PXLHs4pFUJmdp/Fz72cOcBZZrY27R4qgu2qyPZ6yJAhcQT0fffdZ6+88op99913tnTpUguFQlZYWGi//vqrffzxx/b000+XIK0dvuDll1+2r7/+2mbNmhV9RpcuNbvjDrNGjfRcVKkiW+vVXvt8svWjR5vdckvmgccGDRRALTMcZt6fy9Mi2+aZ2Qsm4voUM7vJzNIFMPpbdvxrX+TY02G9aTyJ5UEws1oWDt9j06dPsyeeeKLovnj++edth5vr/cIL7u+J/v1T76uw0Oyzz9zfE7VqxWz8lZlVS3BNA6Yx6gMX18jBKst8LPWbWesEx1F8ndL+7pjZpx7OKRV2mtltVnLuFTSzS81sS9o9eLFdPjOz7OR2Vwxs3ryZOnXqsGnTpuzrQ3nBmjVw7LHqXAJ6TEClEOGwymG8XvrcXFiyBA44QDp+XuDzqQQjpnnY5s2bWb58OcuWLaNXr17UrFkTgO+++45vv/2W3NxcDjnkEHr16lWi63BifIs6uLo6IFTC8hVwVJp1k2ETkgTZgFut7Jdf1iUESebVqxf7aRPUefU6Upeo5QPDkfZmLaAfkj/JEN9/DxGdRFd44w3pR6XCvvvq3kt3j+Xk6F4t0nfPQyXZz6FywVwkgDCQkuVM6fAiKlvxgkDkO38CRiFZj/WoFCWM7puTUKf0PpRewzEXlQO5lBRIi0J0T/8W2fcxwD4pt4hFhbFf5YQKc76LFkk/c+lSCIeZBnwMGOqi3iMTe12njkrd2rYlvHUrnwJT0J38Z6IFxElxxx3RZoFlgncBFyX7gI66JvADavqSCZahJpDbyE7ZejukzHgVqZuGbEb60GvQc34KGzcGqFOnDr5MylLff19ljW4xYgQcf3zyz83UOX3NmvT7qlNH0jVFZZgbkObdYKQpXR2Vnl4PHOT+GAHZ2n943CaIioPHo3HjMdRc0rHXASQNcinQH0rdVLQuKrdPo2/vGjuQzNRCpLN9ItDB9dYVxn6VEyrM+c6YIf963bp4+aVM/WufD1q3Vk+D1q0z60Hz+OPSx88Q4XCYWbNmAbBPcc1PQBIMN+PuGQoADZDEQypZj1T4FeiOfJpsTBP3Rfb6YlLLbKwDPkV+X2Nkz2oXSR1MmTKF7du3A1C7dm2OOeYY6aomk5V59lm44Qb398PEiZLqS4b8fGjYULJR6dCmjXyLIqxGfvH/kB2riSSMrsOLnyjchO4JL3CkGn9CrfqeQ0rHjr3OBS5CvvV5HvddHOpBoXlEtlRM89FY7sy9TsaFJwVUINtVjkh0ztu2bWPatGlMmzaNiy++mGrVqgEwZswYZsyYQfv27Wnfvj2tW7cmN1eav3l5eUyaNIlJkyaxeXN8o+n69evTsmVLWrVqRcuWLWncuHHJPiNjx6qvU35+vG3N1F77/XpGX321pD6yW7z5ZrRZYJngH0gWyM1Y4kfPyk9kLmc2BnEp2aL0DkPjzQBSS2SsRD7UFqA5c+bsxahRY4v03WvVqsVxxx1Ht27d3PnbgwbBgw+qyXk6+P2Sf2qfQqBx9WrpVKWTafT74aCDivW5WIp6Zb2GxqW6SK7uWrz4icKf0JzLCwJIjnQUup9eRw12HXtdDbgGCVRmKLtVBD/qTeNWFsoNNgPD0LhXD82m3d3fXux1JZFdFjCDI4/UA1Fc7zgWmRjvRx4R+3pZms6xPp80giKxJrv2WjbcfTeLli1j0aJFLFq0KG5AOvfcc9l7770BWLFiBfPmzeOggw5ySWA7MPTQzSc9UXEi8CBylEuDqUizeWOx7wwiBzwHPfjC4sXq5ZKfLwncM86ALnGyxf7IMY3ClS5dKARffqll2zZo1w4uvhhaeRCxnzIFDjww/XoO9t1XTWpSDQrPPQfXX5/6/goG4bzzpPdaJihA2tm/p1sxBq2RvunBkdc7UUOBJUh36sTIPtejQXZIKY/Rh5z5q0u5n+ygQtivckSFON/CQj1T8+dDYSEzkAKYodZSJ1EKpbM33qBwyRLev/NOZiPrchpqlRoHx16Hw7Lzd96phjml0f9Li53oWVpHeud3ACI602lTp8P3aPK5nXgH37HXXuBcm+MQ8eGiN0FBATvef5//PvMM9YJBBvTpQ62rroImHppxffWVJmVu0acPfP116nXuuUcN7VIRaIGAOrX/5z/uv9sTtiInM9/DNnsBH0X+Etn2M0TS1EFPTyPkyF6JfqfS4iNKavruGlQI+1WOqBDnu3WrNOZ//z0zwjkVRoyQL/f446l9J79fSyikpsEPPpgxiR0Khfjll18YM2YM69ato27dugwcODBB09mNqBGgCwKVi5G9dkfyJccnSAc0REl7HcZbQNKZfJ+L+o240Mfcvl0NE8eO1bXed18K/vQnpi9bxvfff8/GiL75ZZddRps2bRLvY8gQ+eRu4POJ3HrjjdTrXXed9HpTze/8fnjoIfjrX919t2esQ1q2XsbNHqiXUevI680oKWctCnz0R3Z7CSK0v8/Ccf6ISLFdiwphu8oZzjlv3LiRLVu2MHHiRGbMmEFh5L7t27cvhx6qzi9mFkc0mhnLli1j/PjxzJw5k1DE1taoUYNu3brRtm1bWrZsmZ4jWL0aOndWs75s93yZNk19ad55J/W+HXtdWAg1aii45dYmZIwlKIiY7pz9aP55H9IsLg1eRf1T/MTbBadPggtyOG6bEEqKeBo3s6CpY8fy8YMPwooVVAkEOOyoo+h1553kuu09A+K4/v53d/eKzyef+NFHU6931llqvpvOX3jttTK8L5YCbfAWaDgGkd9OT5t1yL/eiGx/P8SLzEEBUTda1+kwB+iUhf2UDpVE9q4erH76KdpsLBUCAWVIv/++nOdUThGIeLzkEnjpJTnat92mB9l5OINB7ePAA+GAAwiHQvg7doRLL2X6hg3Rhg0R+Hw+GjduTMuWLTnwwANp0aJFgi/1ip/Qw1dASQPuQw/xcyiKlC2sBl6ILMsRoXEA6n69ssTamzbJN162TK8PPxyOOy62T5CTRTY09ddOmAADBijFOycnWqASDqsB6NNPK4s+HUIhZW7ENvVMh5kzIRJ4SIitW+HggxWtTHRfBQJqjjRpkpwMTwghY/oiyraohgzqVZTsQnsuaa8joHvjEtTQKN0E52PgfESGldZ85QC3Iydi16NC2K9yRIU4348/VkQLmIXaeoaBA1H8uMh9q1lTTWeeew5+/DG9o5WTw46bb+adrl1Z+PLLBH/4gQF+P3s52zn2+vDDYa+9ZAe6doVLL4VGjVLuOnv4HGW8hSn5LPmQ8/sOIrKzhaVoDPgfCnLVQFnevyFHzSv8yNlOk502ahScfz6fr1nDeL+f+sC1ZuQEAnDrrcp+d9MsLj9fxHeeh+aVa9ak/k3XrlWl1erVye11/fowdaqySzxhJyJ/XwYWo0y2M9CEpziBfxTKuneDvwL/Jv0E5xU0UQtR+kx8H5pUXV/K/WQHFcJ+lSMqxPm+8AJcc036JJAmTeSD3X8/TJ+efr9+vybEAwcqCWDw4KiNhuj/ffooaxv0zF50UUxFm3uYGZMnT+b7779n0yY166pWrRqHHHIIhx9+eHzzqyK8gQjGhCeA/JkvkA+eLcxDDWJfQxPoWih7+FdEhHqFD7gfNcVKgQ8/VOfHjRujDZNDIfnU995L4V/+woSJE1mxYgVnnXVW0WaLFi2iefPmRdmkrFkjm+k26JGTI/85VdPPxYvViXLz5sT7DQaVzDJliqpoPGEbIi9eQ/OXeoikuDTyfyw6od/HDR4FbiG9vX4E+HtkvWwEioaiYMiuRYWwXeUM55wfe+yxIhsD0KRJEw466CD2339/qlSJr24qKChg+vTpTJgwgZUro/PnVq1acfDBB9O1a1eCxRqYp8QDDyjLNh3R3LmzbPUtt0Qn5+nw5psiKS+6SJP6WHsdCOjZ7NcPGjfWdxxyiAJVNWqk3m/W8DjwlySf+VEF3feUPqEvFtOBZ5DfvgXZjC4o6c9NEDQRXkCJCCnw8svsHDiQF/Lz6ez3c6TPR7VwWDzDE0+IE3GD337TfMgtGjZUUDsVpk/Xb79jR+L7MBCA/faDn39WYNoTtqCEurfQfKYxanh7Aaq4iUU9NIa6wZuI50gFA+5Emf9O4KG0GA14UAgoI3ix15m0VK1EOrzxRrxBTYZwWA7T3nsry8sNnAHklltkwAcP1gR95042de7Mwr59WVSnDosWLy6SBQFoVbMmgUCAFi1a0LZt26Joaq4botUTegHfIaM3nWhJWRhFo55C9FA20QT4Z2RxiPLkE906dZTQ/vXXslslVVpCKCt4ceSYE2D6dEkR7Nih18XLYF58UU7uW2+lz6oMBJTN4yVzY82a1ER2jRrwzTcaxCdPjt6PTilXgwYwfHgGJPbvKKNyIvGG8xeUYT8YESQOTsIdkW2oNCYdif0dItUSEW+ZIIwmZpXYYzFkCAQCzA2FeB/dEd1QblLck5uXp8lt+/YKVqYhsvPDYd6YOZMV1auT27cv5w0aRLvPPoMxY7Rt9+5w7bXeqjGyjpOBL1Fp81zi7XUXVFaXbaemFfCvyGIoiHRPKfYXRsd5P0mraMaMgb59mR0KMR4gHKY/EUGSwkJl9eTnw1MuSrWrV4erroLHHnN/iGvXpiayGzaUxFTfvgo+OpMw52+rVvDFFxmQ2EuA41GWRay9noyu+9uI1HbQH2XQpSOcfWiMTUeKfISEdLIFo9Je7+F49VV3661eLTK7eXN3RLaZ/KRAAJ5/Xlm3zz8P48fLh+vVS/Y6ld/lAVOnTuXTT1WhULNmTQ477DB69OhRgliKx4UoceAWFBAMoGfCGbX+R3ZJEZB83+ORJYye++dLsT8D/oMCYUnmH598oiQRB7FzqR074PbbCYZC9LrzzrjN8vPzef311wkEAnTs2JGuXbvSuXNnqpx2mohxNygokO/eoEHyddq0gdGj4eSTlYDi+NWOve7SBT7/PAMSeyaS8ltONIMdYBxwNyrTjpVvPA14gvQERlVkh9PZ6xfQ75JNVNrrXY01a9ZQo0YN9t13Xw466CBatGhRQuZhw4YNTJgwgSlTprAtIpsTDAbZb7/96NmzJ82aZSif+cor6ZM+wmGYPVtkYr167onsYFDE47vvKrHvueeUpZ2To/n51Venlp0oc9yCfNI7kLRdgOjc9TBkr0tb5Vgc+6F5+GCUlf0nVGNaGjwAXEFx+2FmzJw5k67jxuG7/HJyUYpiMPb3zs+Xv+zzwRVXpP+qLl1EOsdJfKTA+vXp19lvPxE+p50mOTLHXju8SM+eGnM8k9jjEcexIfLa0DzqRxSo/QpVwTjojwIM6apo6uMueej/EIkN2SGx4Y9oryszsrOFcFjE4fz5IjEnT3anT3z77dLlOe00d98zZAhceCGgksQFCxYwf/585s2bx9q1a+NW7dKlC+edF9U5KygoSJLlURYw9JD/jB6w/ZEDli2ttGRYhLSL3GV+zZ4tjsAJ0JrF8s5tkapt3ZIb9u0LI0emz/L4/nvJzKRDYSHUqqVSSjf45RcZ53Qw0305ZIgc7rp1lX161lkZGO1CNFmaRWoS+WPkYG9BUcWbUVZgsm0CKIP+30iW5gfgazQ41EOTt+uQDtTh6J7KZonabETa7XrsaVkju+x8Cwrk2CxZolK2+fOZgYpu9wbOIoGl8vlEdFapIscsBTahGP3aCy+k+n77ceGFF9LcMwlZnjAUJJoSeX0wetbKUtoEYBLetZyT4QBgLCJ6YmAG3buz/pdfGGzGDhRuPTHRLmbNcpcNsm2bBg237tOqVe7kS0IhEdZvvy0irlEjOOccOOWUaBDbNbYiyY/lJLa9Tsb9aOAIJNf0MqpQSTWuBRE5fjNy2n9AUlybUTbKpWg60xxlDC5I8v2ZIIjOJ1Mdyeyi0l6XE7ZvV7LHypVw993pM7AcDB0Kc+ZoGzelylOmKMu6jJGXl8czzzzD9u3bOeywwzj22GO9ZTkSAkairOgAstXZsqOp8AUKfmYDx6PKvmJzEqdCccWK9NJ4y5bF2dXly5fz/vvvs2HDhpjVgnSoW5euAwfSBRcCVIGAyBc3ST4FBaroev99ESTNmml+dvzx7qp74rAG2euNJLaXfkT8T0B646tR5uUDafYbQNmB5yHf/Qdk87ciG31lZKkTeZ1JVVQy1EIyU14kKssGe5qthug5jxw5ksMOO6xID9vMWLduHUuWLGHp0qUsXbo0jj+oV68eBx98MAcccIBHedEItm6VH7N2rZK0nISvdBg9WgGnZ59Nnwjo86kywouM5y5DAbKdc4n2Ttq3HL73NeSPZQMXo+o62bW8vDw++ugj5s+eTd8nnuDQ/DSSdDVryg92kw0/bhxEJG/Som5diLH3KbFtmzL3hw1TsLJVK1XAHnlkBjKO81HQIFlleADZv2lIymkJqopJlyzjR/0P+gAzUMb+D6ifS1vkWzvSwk0i72cLLVACpwvZrzJGpbRIeQ9Wb70lQnrpUm/b+f3Su7zpJpUqrlqV3Nn2+bA6ddg6dy41G0pHaefOnfz73/8u0q7y+XxFGdft2rWjVatWZZBxXdFxB8r2yCw6NXy4+OSjjnLsWi+UtfYqKutcBwvrQIdF6efmQR8MOBvedinw/7e/iVRL9Uj6fNChgyZnZaqfWxxbkWFN1wjAh6jA81CG9jZkmJP9Ho5znoOI70QIRPbrGNl08KGSnu2k1gQLoODKCBf7LB/sac52uZ+vmbI27r03YXO9JeguSzqMDxmiQFDTpnLWEzyra4EhPh+batem9j//ycWXXELDhqXVvttdcRmyq6Vt2urgFOBJlI3yLrAJJtSjoOcCXkJT/9ZIxKjEbxz0wfUD4Ykn3X3VRRdp7E9FkAUCyuT8wa1cR7awHpFbs9OsF0ByIgciyQ6nkUwyex1AVFCY5GWqAWTP6wMrXByrD5EoW1J8r7Pf81HDm4qBSntdxgiH4eGHVTER0UP2hK++gm7doGXL1MRIIKDKmPHjMz5ULzAzpkyZwq+//soFF1yQvFFhhcPJyF/KVvbXFagB5LMoAWIrfFYX+i9Iv6nfBw/8n5oix8DMWLVqFTNnzmTmzJmsWxchZl9/nVMWLizKjwsjyxPnRQeDcPrpIjvKFStQ8DidvQyiTL1aiFRyxp5kY5CfqC+8M8U61SLL2iTrxMKH9LTT9dbwo9/2YRf7LHvsabYaoue8du1a8vLy4ojrbQmalXbs2JGePXvSsWPHzGxSQYFkRJ56Sv6xV0ydqkSRdFUvgYCqIT75xPt37FE4EBGp2Ur8ugs4i7lz/8XHH49g69ad5PxSjZM+2oCrutKXXpJclBvst5+aOqdCMKis+2eecbfPrGEe6qCUjkAPIOL5dyRa6cjrJrObfpQ4uYnEY6wzWtWJ7GNTgnUSoRHpe5X5kK2+zeU+yxaVRHZ5DlZPPw033pjZtj4fzJun0peRI+Gkk+S4x0yM89EjMw9YcPHF1DrsMK6+OtqY7qOPPlLGQYcOtGvXrijiuvthOdJ4CqPs7iSSH+yPJE28Y+lSSZaDuOIzz3SCh7mIaIn8LsNw32uqXW1YEGtsDMgjKmkxDpV958CittDlGDkDqR7LwYPTZoRmFyGgL8oAyjYcw55tpNOLCiCJg59Q04SKgT3N2S738737bunwRbAcPYWuvjk3VxmB9eurlNGpdol5VlchEnsr0GDgQC6+7z7qeC4v3h2wEGUT+JEznawstSmil7MJh6KOPP8vwvCrJIZUA6k1J/29D2sFPy6JecOIBthqoM7wC4GqMKUhHHRi+kzPjz92X3GVFWxHGdaTPGxTVnbYLdI1+wwgXd7vcdWEuZxQaa/LEGaapL74Ymbb160re121qia6AwcmXi8QEHkydqxI73JE8QZruw6/RZYgmqAnCrwaUAVvDcPcIub5fwC4l/SxTR9w1oHwXqydcyb3AaAaZt/w+++zmDlzA7M+WsHFT72Ikw/4HaoZbYZGIedv/R9+wHfEEdk5LVfYiLLp53vYJlZ2JBnK0qans9d+NAZ9hasmzOWAPc1WQ/Sc77jjjhJJbTk5ObRo0YJWrVrRqlUrd40bUyEUkhzQsGHuK9Uc+Hyqwpg/Xwl+gwbBfUn6FgUCkuyZMGEXy4bsSkxHlW5VgUNJ7BNtImE1eSlQWCiq6uefZVuaNIEBk6HRa6QfFnKAK/vCf7+IeTMcOU4nmW0kmg/Ugbc2wAVppEiCQVWnZ0nuyx1WourPkolQieHHXb8BNzY9E/iQvU71A/lQFf17VBTF6UqN7PLCkiUZdyoviig6hrhPH2WPXH016+fNY7bfz29mLDHD6tTRuu3aUbB+PTt27CjS0TvjjDNSfMnugLnA31D3dOch9yFi9d+otCMWmZdZtGqlZMvhwzWeDh4M554LLVoky2RwAf9mRG/VRXpYTyHiGko4g219MPQgGBAp74/NIHI0na65xn3ThKzhc8qGxIayc7RTDRo1kV7gPyl9l+hK/GEwZUocib0S5XZWR8V3KemxQECNdp3u2+eeK2L7xhtV3hwM8ns4zJBwmK316tHsssu48N57qVFuTWUqCqaiRlGxVQ4BpMP8byQPFItS2NakKPnsH4Ky7U8iTdDCtxxVn4RRVvfTkS2hhL3uHoSXDobLx+v+iLXXjlbqoEHlTGKD5Jy8kNiwa0lsiCdFihMwdVFWy538EfX7KpEhRozInMT2+eCGG0Rig/6vWVNVb7//rgmwmZ7R/faTjms5kNh5eXkEg0GqRo5r15PYPyIpoTEx7+UgXdWHiQ/yG2VDYkPc8+/2kvhAmtKFSNbov5HFCYwG8fkKadxYvd56986Flj3hb7LXq0IhthJJFPL5dD+cdBJVfviBJnPmcM4551CzZvFmXWWB5xAp5QVuCI+ytOmp7HVj4AY0b/MqX1iJsoCZUatWLVq1akXr1q1p1aoVTZs2JRDIooTAW28paJ/ZAcJf/hKV47nnHmll33MPbNoke+0k+R16qPok7JEk9pcoK3pyzHtV0QzmQeKJa5cypS6xdq0UlNRTzDjkECkoBW/1sBPfeGQrViEuZDDRrOZiyWfnVYOpPeA/k6L+tANn/B4ypJxJbNC46KZyxYFbcrosSGxIP263RlImN1ERJEUyQWVGdmlw110qeXTbDdtBIACdOsGYMeRXq8aKFSto166dBhUz3r/3XmaMiTiWTZvSpFcvOu+1Fx06dKBVq1bZHXwqNH5FUf1EJccB5CSNRiV5Dk5FxGvmpY9r1khace1acVV9+kjGvKjSagmSKkorLYLmA0PujxyTI8uRasMATKkNjxwFQz+LkiOHHKKgybnnRiRFFkYOpDpqxjMUlRouR1TNOUj3Lhu6vCchzepslZPuKvhRs4W3qQiafYmwp2WNlOv5XnEFvPYaFBayEtF9eai24wKStp3Sg3/wwWqqW5yYDoVgxAgWfvstH/z6K3mNG9PskEO45NJLi8iKPQc/AcchcjqRva4TWSe2uc3ByCkvKycOcevd9Q0pi2UDSPb5kacRuTDbxXEF4Mcm8MgB8MmX0ezs3r3h1luhf//IenNQ2Xht5Di+gVTU16Ay7fNRcC0bgbXuqPluGV7TcoEPXZP/UlEJkUp7XYbo31/JHem0UmPhEMMnnqjMwOLSegUFylSYPVuT4aOPVqOnMoKjRbtw4UIWLVrE7NmzqVGjBgMGDKB169Zl9r3u8DnKwgpT0lYEEYn9MxLbctCGaGCvjDCCJA0MisGP+lz99VXUCHEZruz1iDbwaFsKRnzDakSprDzoIFYddRSr69WjsLCAYHADd955On5/Q6AJkyffz86dX9K9+3aqVGmG9GIvpvTVIYYqA5eXcj8VBX9FTZwrXo7cnmarIXrOixcvplWrVmUbODvoICWLuOlF4MAJIF14oXzz4nIm27eLHF+wQEHJ44931xtqt8QbyOb4KGnnAqgfyVjUVwoUbKpPcslOb1i+XBXr1aopN6Oz48YPiRyWG7wKXPIecC0isF1kKX+0NzxWB8aM1VuBgMrlb7stMnaHUYb6BqQZXRN4EXgfnXsr4HIkd1raef92FKjLzjXd9fg3khKpeNJmldIi5TVYHXwwTJzoevUwsKZePZaefjpLevdm2YYNRU1JrrrqqqJmYDNnzmTSpEl06dKFzp07U7du3TI4+IoOQ9nWs0mt19kCZTM45P6niMwuHXbsUIB5cUSSuWtX9dwqwimod0M6Ozw2AL3aR47RLREcAPrA1g+UPVSzJhRp7I5CdZexmqtOSUpsZkQgsrxLeh2UMPANkgJwGgfFKl41Q+7+7oCK1SysOPY0Z7tcz7d1a1i6lLmogGonmqpfSori12bNlM13yy3y4IohHA4zevRofvjhB8yMJk2acMkll5SuRPMPiUJE0K4htb3en/hskv8hndTsY8cOmc+WLVG1/OQUh+ZgbgA6Oo1ZvNjrC2HzU2r4VbeusokA6b7eT/w5O5PJWNfLj5zsT4Heab6vEJVszyHaOKhrzOe5lF3mZHmjJhp7KmZlQ6W9LkNUq+a++bWDdu1UJXP99WqmvouwYMECJk+ezKJFi8jLy4v7rFatWlyyy/smbEFJDltJnlgRBE5ADRkdPAj8gzINkoVR4c6SFIcGShxfATRsjsYdtwGPAHArbLxDTcLq15dUAUY4/Dpr1/4fGzfOLSJqCgvhySdhyxZxaT16KK+kdu0GiHVPpw67A13DRUiH+kSilUnZL//ftWiOfriKl2y1p9lqKMdzzs9318SvOPbeW7715Zdn0Bx1T8IKlD2XrufTxahht4NbUEPY7PSgmTlTleu1YgvjtiOKYGOajeugMthq9UmuAZ0IfuBhWH+ZGjQ2aBA5AEMJJ4+gxL7i24SL/d8KVZZ3JjXykQKAIzzZj2gwd66L7f8o8KOGo1NxXwZVfqiUFikvuO3EC/wycCCfBYPsqFFDEaUF0VKy+vXrsz3GYe/atStdu3ZNtJs9CD+ijOxUCCGn6SNUTvgsKhQsvdZQlSpSEpg0Cb79Vs5rHB5Bcp1bSa7JfylwqCHj5wUhYATUWAU1OsS8/3pkp8WNjnOusV5/KPL+2ahs9JAk3/UxSkNcjK6b04igB4pqdqciRusyRwjRmNfv6gOpRHlj504mojw0Z658DklI7Oefh2OPFTESTDxMbtq0iQ8++IAlS5ShduCBB9K3b989sMEuyPFbmWadEDAFBeMmAy8gu5OI2C0dzNQHaNYs6NcPejyDehoayYeG24GOYUo6xekQAt6C2o9C7XYx7z+Gml0Vt5+JzjOMHOiT0TXqkuS7Xosc6Cri7fVRwEsoK2d3std5KGI8YFcfSCXKG14ysd99V05au3YVghDZsGEDMyKNqoLBIK1ataJt27a0bduWFi1aEEwyppQf3iA1iQ0iP75AStJfIvuyMs02WYAfDQ0nRV4n+7p/EylgcdNQNhYhYDDUvRfqxtrrO/H7H6JxYx+NY/IcfD4l7v/0k+KUP/6o//fddwO9eh1Ls2YzSVz5aEia6l7UfDdAdPDpi/zriqP3nx2sQHO3o3b1gVSiPLHTo0TcyJGSBmnbNlpFU4kUeJH0nEYI1ZnejKqOX0USGCEy1ctfsEB5GY6iYkJaqiqiXs5Ps7NnUByP9R6PIgw8DfVviR4IhrKsXyExCRtO8P8K4FjEKyWyu2Hg/4D/oECvI3XiB84Cnmf38q3DqHLzN2CvXXwspcOu9qb+2OjaVTPliMOdh2hVZzmK6O1Rq3dvdvzyC7m5uUXNFVq1akXz5s134waNpcEXpG8oAjI2VyCNPHBnrKuhdI7NKddyFAW6dYuvUP35Z8jLgyO/gSoXoqTxIFE9fz9wI5JS8jkF7V6JdUNZ0g6RvQCVWafqeJtoH4a653ya4PO3kaiCg9hjnIzSGJ9BGdof4S6qWwNloGQnApx9BHHfpKESuxMmtWjB8DVrwIwDUFFF0ryhPn3U8TUJZs2axbBhw9i+fTtVqlThlFNOYd99983+Qf9h4MVen45IW7c2sTbKn3efnTlhAvz6q2LGTZoALRF/fgHizp1kzUKkWnEnSjTESN8oNhEK0ATeqQaaiEhs8KaRVwA8ipic4ngK6djFru/gB1TBNATZ7bG4O4daRDXBKyJ8VNrrPRQdOsCcOekbhwWDstdFk9zyRUFBARMnTqR+/fp06aIAVIcOHejduzdt27alZcuWFYC4Lo4v0q8CyB4eg2yvWxvRCJV5l8IHPAEYDlyGclQce12AXMx/E8lF8CF77fW7NqFMtEMjr79AOiVQ3L8OBKSa0KOHbseffoJFi+CXX8L88stmjjvudo488vUE33E38r0dxNrjL9Hs8EMUtJxT4nsToway1xUZlfZ6j0Pt2rK/612QlDVrwpFHlpR9qkQKfIo7f24nkusLuVwflG28guL2Z/58ePttqF5dCfMpe9ZH+t5zPTL9sfa6HornXQCy1amySZJhMapocSpZXkckNiWOOzlC6DxfQwRNLAz1YXmx2PpEjvV9xMd8isa3311+Z1WyrVWefayhksjeg7Hj0kuZ++67LEKPWHH598XAXj4fdOlCy/79ueaww2jcuDH+CpAxUvGxDXflDiFESKcyZk6Z9yZklLahUmx3DbFix9v8fPjmGwWgp9aE496EAzaD7yvEzbRDBrsRyGjXjRyfV8PtI74R2vMet3cQQmWNq5F+lIPNKACQ7LoZmhxcg0py3EwU2iOypX+6FcsAbgfIENINq8Sehr0HDmTsZZexPwoyJrQugYCc7CQkdkFBASNGjGDChAkAtGjRggEDBlCvSEpiT0U+7hzKEOkzARtE1tsUWS8PdQmfnGKbKFaskLQuSFKxZcvIB4ejeOAI5JPuRFWC5xOp7g6iFD8vjVxiEVuh9TTuiP3iKERO+lPE1wosQ2WiyWCR7z8HBT/dTGIOQPp4F3o8xmwgB51runvGiI7fldijcO21KjtPhWAQBgzYJSR2KBRi6tSpfPfdd2zevJmGDRvSqVMn/H4/devWpXfv3uV+TO6RzgbHYluadRsixmJT5PUGoiXLpcBJyOx9imKEIRSrO5eI0lAAiYNlqi8da6+fJF0AMzKVo0sXjTFjx8LMmUanTlHpleXLl7N9+3aaNVtL9eoPJN1XdFw7AQ1Cbn6L3igzcKCLdbONXNw3Zq6013sc/H645pr0PcMCAbGilSS2R3gJXhWQ2p40QuSqo/O8FtgHSYsKDoldWCh1RVc9b88DzgQ+IEqtHIiK6aqA7GsDMg90OfbaULVjppX3z1OSyB5FPIldHAasAw5Dgce1pLfZZ6IB6z4X62YbObiXF/zj8yGVGtkesGnTJgoKCoq07TasX8+TPXpISDlyGZugdiitIn9r+3xqVnBq6XWb9yw8CfyF7GWKFScVMjOCZjB3roiSdev0XvPm0LevJHjjkYuaGjyd0XcpS6Rv5P8OeO9sHotzUdOsBpHX/0UOsZvH348MYzIpHT8yhpNR6uO5SL6jPHEOaniZDj4UYmpVtoeTIfY0Hb+yPt+CggJyHK3UnTvZ2bMnuTNmJHa2fT452t9+C0ccUeLj33//nffff5/Vq1cDcPjhh3PsscfuQc13U+EulCaXrYawxe21uyzp7dth8GBJn+69t/oalKxcTVZmWQOx2q+QWTbhZCTFBMoiL01DmGtRSY8zgxiEyh7dXN8AUXud6Dz9SM98UuQ4+wDfleJYM8ElKDMmHaoiGZWKWYJfaa/L9MvggANgyZLE9trvlwbc+PFQjtUwZsaMGTP49ttvWR/JQKxTpw69e/emW7duf5BElStR6XlpK+ccW1rcPmdS1eIVDZDt+gDv5xHrB+5AVZrep8J5eQ7JczdwJx98MJzp06cDw6lbdwrNmoVp3lxkULNmyWSE/Yjp2UHieYIf9Zb4MfL6MGCa52MtHf6M7pd085gGKOux4hGVe5qthnI+51WrYP/9lZWdyF4HAsrcnjo10WS5EinRH1VxlNamprfXsSR2ly7yod1NcdLJl7RCJPA3eOdDchB5XBvZlxapV08JH9KGvYloTe7pKOHPzTiSzl77UNDxKzQH6IFSXcsTFyOZmVT3iw/oiKRFKp68jxfb9UfwuHYZtm7dyowZM/jkk0948sknefzxxxk1alTR53Xr1aPTXXfR64AD+BPw90CAa5HK5X5+P7VzcuDVVytJ7IxwPtm9PYsbqMwIcp9P3Xqvuw5OOAGqVGnOihXw8svw3XfFq2ALgW/JLBrXHDg+5nVeshVd4j1Ucr468vo73BuvMNF0mCqR7XKIDgKHIB3FVpHPhkTWLS+0Qka7M6mbzARQRkvFJLErkV1s2LCBwYMHM9FpyJubS+7XX8OBkeZMsd6Zz6fmYh9+mJDEnjJlCi+88AKrV6+mRo0aXHjhhRx//PGVJHYRLiW7xEVxe51+32aKGW/YoF6Lp52WiMQ+gOT2OB91P/dKijhEwwEx723zuI/iGAwcSVT+6hvcX98QysbohgICTiDSuVePA35GwccgSnlsWXI3ZYbuKCumManttR9VDVVMErsSZYzatRVU7NRJrx1b6/NpqV0bvvyyXEnsxYsX8/zzz/PBBx+wfv16atSowUknncTAgQPp3r37H4TEBml2ZEP+zbGlxW1TNggXUKZgMqwHVrN5cyELF8LEiTB6NCxcCOGU7n0AZUI7fqDbaqKSiGYq3g/0pVatKtSvXx9YwMaNYWbNglGj4I034NFH42Xfly+HNWsgFAqjDMlu6Lwde+2PvD4DGI2aAVdHDcvqZnS8maEvCqpWJ/WczIf0eSseiV2JckDTpnoAmzXTa8cWOn8bNlQ5cyWJnQGuIDv+dWp7XToS20dUCjURlpJZAmEQpXs7ZGZpEkRA1+A2lHDnXIdvcT8eOlX9+0deO4kj/sj/lyJSPAf52N+TpBNTGeFSlPjijB/J4FyHikdie0WltEgxmBkjR45k3rx5RZl3Dnw+HwUFBXGvL7jiCpXK/PgjvPAC/PabWlv37av3Y7uGVMIDGqGM4Sco/7KM9AgEanDYYbfSrdt9fP21gszffSfj37Sps1YYNRboBMzH20D0IPGT/FZIlynTaxFGGShXIOLCTVl3LApR5G42ijQuRY5tP+IJHAdLMzxOr+iGMlWCSFTxSKINLmLhdOhNVT5Uid0Fy5cv56233mLr1q2MGTOGbt26KTO7USOJ3I8cCf/7n2a9tWop2HjJJepsEoNQKMSXX35ZJCXSoUMHzjjjDGq6qrXbk9AJBR/fYVfpLc+ZA7Nny/E++2wNw1HUA25AhEMyGDAOdYdfhnvH1pC9jnUIm0b2kSnCiFS/Fdksj82UCKEskAWooe9KNBE4nZJ6eIWUn67p0UjbJRe1XT0Olc3GXmvnOh6JCJRK7LFo0wamT4fPPoPXXoNly2SjBwyA8893WfOcPRQWFrJ69WqqVq3K4YcfziGHHPIHbe7bCz17oyn7zOlM0AxJHun537ZNFZDr1ilgecABILs7muefr0l+frxUSs2asM8+inG0istbcAiXe2Leq4182fxSHK8B33PCCYdzwgkPsH37I6xcuYGVK2HlSkmR5OTE943+7DO97/dDvXpGw4bLaNToDRo2nESjRjtp0aINqstvW+y78ojKuJQ1zkKVjn7U0PlkZKuL22tDhPvt5XRclaiQ6NpVbOiHHyp6s3q1fO7zzkvklFXCNfqjue6vlFX/qSVLMiWxQZm9fVFPrVQYgYJwW3A37jhBvVi70pTMZUUcGOpP8F8kM+J1DPQjcnpuZD8bUWLGOZRs/LuK8tPJvhp4DtnkdxBZD4nVCK5GlVl/fOzRRPbmzZtZsWIFmzZt4pBDDgFETi9ZsqSIxG7atCnt2rWjffv2tG7dmipVqpTckc+nLL4EmXyVKA0eRlkXrxFfau7835jSkbuZwgecCKyhRo0gp59eSJs2UFAQS2I7CCFDth/qEJvK+Do6z4+i0pBYXI5bTe/kcPSyFyIyw483A74Tncs1adb7Ahn2bOJmVFq1JPK6FWpC9GPk/5rI6f8ANaZ8kWg2Y3NEYt1IRFyxErsxZs6cyUcffURBQQFNmzblggsuiMqLgGaOJ5ygJQU2btzIRx99xOLFi/H5fPTu3ZujjjoKX2WX9ST4H3JQPyWxva6P947l7tG5M5x0kpzv5nG+ZBA5mNNJr1ttKJu5LSKBU9lrJwPjf2iCH4srkDZeaZztENLLfhgF4SbjbRKzEZ1LOk3V93Cvp+cWtyI7vBJdp3ZImX4UmojURVk2w1HT4VeIZrG3Q7b6GiLiipXYkxEMqrzitNPK/asLCwtZtmwZbdu2BaB9+/b079+fffbZ5w/epN2HfKX+wBjiS80dG7mrGgsGkf38msJCH2++aSxcGP20fn2HyAbw06hRHfLy/DRosIUqVYy5cyX5MW4c/P47XBxxpUMhWLgwl/r1X6FOnYNjSBoni+55Smevw4gY+SdVq+5Pu3YraNcu6l8XV1uoWlXKODt2OCT97/z22wygFvXr1+fGG6M6rosXL6ZRo0ZUr14deAPvvns63IrGgd/R9eiEKji/RhroDZEc1FfIVr9FNLi6N/LP/0zqCptK7BHIzYU//UlLJbKEIHr2TkA8Qqy9dv4vnZxTo0Zaatf2SmL7kEzHoy7WDSAuZDrpyWwfakb+KbIxDuqgoNlHlD5p5gnEDewFTPGwv3Bk/Y7A39Ks+zqZ9ctJhiqIhH4f9aMIosqlfRH30gAFgi9HgYPn0VjvXOseyF6fx+6QjQ17EJEdCoVYtWoVS5cuZenSpSxbtoxNmxTV9vl87L///kWO6RFHHEFBQQHt2rWjRmJRs0qUC4LIaboSeBYYiwxIT+A61On72l1wXD6i5dEyTt27x6+xcKEc6WOPhcaNNyMyYiqKWDpkbG2kVeqUgofQZP5JFHm9jqjm6kGk16Byi+FoovBQuhUTwI3hW5J+FU9ogyZU89F1CqDs8N9i1tmAGqQ9iYilNYhECSAiu9LB3t1RWFjIiBEjGD9+PACdOnViwIABiYOPKVBQUMCYMWP48ccfKSwspEqVKpx55pl06dKlLA57N0JVYBiSwfgvCrz5UWbtdagkehDZztjesUOEgM8HkXh0MYRQ15mbcOdMLgcmIKfwv0TlmOojBzGM7FAhyrS4F5iIxiIn27kH2TnPncgZvRp4OQv7S4RFWdyXH13r5agCKBx5bwaxzYRkr/+NtAqHRv6uQpnazdldHOxK/PGwc+dO5s6dy+zZs5kzZw47duzgpptuol69evh8Pg466KBdfYhZQh2Ukf05yuKagbLf+iB7/T/kd5d3xnYhsqP38fvvxJHY7dpJocDMkY0Kc+mly/H5fkMazs8TCm1g/nz49dc6dOjQAE38C9iwYTtvvLEBuAG//1nq1+9DkyZdadq0KU2bNqN583ASDWsv2IjmKdegpJEoihNDF1+s89iyBdaudZaD+P33LdSNqQwLhUIMHTqU7du306VLF7p3n0qHDiGyo2ITQL/3b0SrKH2IpJkSs94GpANeHc0fnkHjYjUUmKy015WoRNmiCfIzP0LSc3ORz30y8j3vRtnBmRGm1aqpKDUnxwuJDeIkGqMEuXQIIVm7OYhE/h9R2dQWaExy/Oudkb9Xo8ziK4lmO++HyNnSwCLHPBuNd5d73N6tzVtI9kjsIGoi+QvSCncqjH6OLA42ItmQ+igY+RLiRGqh32r3wm7b7HH58uU0bdq0SLNu2LBhTJkyJW5dn89H48aNadGiBUcddVSc81CJPwLyUDbuZsq3nD2AnL79UCfbkvjf/2DpUjnb++0HvXu/T/36Z0WO05G+aITOoTdq3hJLVDsRvDtQk68zUGSytOcZRJmCdwDXowmMWxNQFTmv6ZqGnISyp7OFfYBZuD93HyJ/+mTxGMoHe1pDmmydbzgc5qWXXmLFihWAGjEed9xxnjRLzYxff/2Vr7/+uijI2a5dO/r161fU4LcSpcEqlOm8k2wE5EIh+OILqQ38+c9KBEqM6kQbBrr93qmolDOEstRADuAqRMwXb7wbQPbpEdSkuBeSKcmGe/UScrIH4C0LpQEK5uWkWe9A4kmL0sAHtEfkuBsCzIeu3bjIcfyxUGmvdw9s27aN3377jVmzZjF//nwKY8SMa9WqxRlnnEH79u134RHuCsxGvld5S0U1Qfa3GWYwfDhMmiSC5YoroEmTRNusQEHGQqJZxY1Q8sORwCpWrFAPhfXrobDQISFORXb+KY4+eiPHHKN38/MlVdW0qbIUvRE7jgTHsahi0K0dTNx4a+PGjQwdOjTi2xjwJLVqbeKAA5SZ3qBB8X25hdPrphHy6902OquKiJRUergVD7ur7UqFPfGc91yMBQ73vFUo5NW+xcKPgo5DUUawWxQgLmIn4kNykb86BdnN4tJJgcj6Q1E1fDMUXMsGfkZ614cAM3HfUL0X8EOa9XaiY81GJaofzWVyEeflxl4H0LxnFn80AtuL7dptM7KffvppbrrpJppGtB5atGjB7NmzadWqFa1ataJly5a0aNHiD6pvVwmhJnIaTySaIVceuBsZp3bImJZ09E89VX2KZs6EX36BGTO+p3v3XI4++mhq13YMymbkvDpkeCzp4ZzLg8hx/ITskCKFRBt7PYmM9mAX2wWBi0hPYi9HJVDZwgWojNHLufuRFu4fj8iuRGbw+/3ss88+bNq0iTPOOIOOHTt62n7VqlV88cUXLF68GIC6detywgknsPfee1dKiWQNTVH58pnoec480y8/H4YOhUWLFCxcsAD2Ki79XIRHUSZCK9xVi/iJ2shA5LhBJHYnEmupOudyK3Jef06wTqZwjuUNVN491MU2AZQVmI7E/oXskdgAZ6OSR7fkl2PX/w28m8XjqEQl3GPhwoV8/PHHRa/r16/P3nvvzd57702LFi320DFgL5Qx92dKSllkqzowFs4+n0FSFjXx+fLo108NfBcuVIPEkkR2dUSCgPzUSLM5ZiOCQrJJzZurSbuyoI01a2DVqmGsXl2LVas2FvWoA32PczsEAtCyJbRtq6VlS5HqydES2d9PUfDxa5fnfwOJsvzq1q3LVVddxapVq5g69RV++WUTW7bADz9o6dsXDj3U5VeUQF+UOe52LA6j8e1JVAFZiT8CnnrqKWrWrEkwGEy51KpVizp16sQtXisaK7GrcBjwH+CvuNWQNlPSXcOG0KePZEXcwx9ZnkHZ1G7lM5oTpR6dCjxQ0O+oJMcdirx/FupvkC0SG3Ts1VDFaH9UjZkOIWSv0+EDsienGAAORuS5W64rhLKzXwTuytJxVDzstkQ2wO+//15EZHfv3p0ePXrsoQ7p7owjgfHAA2gCXVznL5vIQaXxd0ZeJxfLb9RIOlMrV/r45puOzJ1bj0mTJjFt2jSOOeYYDj/8UJSJnTijOx6PkL1JQ3WU3Q26Rs8jPdJ+pC4xr4POPR1eIbv6fRMz2CaEOgVfhyY4hyNtsazUYlaigmDHjh1s3bqV+vXrA3DYYYdxwAEHeJKDys/P59tvv2XixImYGTk5ORxxxBEcdthh8bralcgSTkEO6wOoRNmxa05Gc3o7t2aNmtJs2CBJkbPOkj52SVRDJLaj6X818E9SO/hB4DSixIiDbSgDw01DsMddrOMWTVBTNlBA811Elp9C6gaNLSPrpcOLZG+s9KHu714zOAvR2H0LCpQeiyY0lb5aJcoGixcvpqCgoCjg2bFjR1q0aEGnTp3Ye++9ady4ceVcAZB2dGvgX0jf3kFZENk1gRcQ+Qsi0P+L3x/i7LPVNLFkUnwwcozFE5I2AEeQSPvf5xNhU7s2dOzoRxrh8cSP3y/SetUq2L4dFi/W8t13IrYHDIC99y6xZ6TlekDkdW2U1PENCt5uLr5BDPYnXeOtpk2b0rfvFPr08TNnTpgpU2DevPhrMnu2grstW0KLFuqLmvw2DiKS3auvXoiSX6pHlpMQwVKJioqtW7fGVZl4QdWqVUuQ282aNaNdu3aeKh7/6CgoKGDTpk3k5ORQo0YNgsGKSJ/dBnRGsqE/xbyfmNieP18NZ3//XQExb6iHkisiZSychYjbVPeZH/nhxbEczdFT+Y4WWV5HXExp+7oEkJ/pJIo0RpWBH6JGw6kaNB6DzjcdnMaL2RgrqwHf4d2/DqN50BaU0HMqUhPYfbDbSousXr2axo0rYCq9mcTQCgqgceP4NtaVKCXWIT2iWZRsllha+FD2Wmz5TD4yCEtIbbx9LFnSmFGjDmHx4o6ceeYl7L//IkSYlCd8KCp3f7H3DWlQvZdi22pIQzFdee0FiGwpb13FRAigcy5EOtuvouBBxcWeVgqY6fmuWLGC999/n0AgwJVXXum5ssbMmDJlCl9//TXbtqnJ3D777MMJJ5xAnTp1oiuGw/LyzDKpMa5ESqxGtnMsaj6SHrNnw4cfws6dUK8enHeehtGSyEFjQYuY99aiUvl1pLZPfkTeXIPIhfpI3mNXdPh+ipLNGguB45G+bTLUQ+Ngwjr8GByHiJaKAMcXcjRy36Siy41U2usKhlBIkS6/X/a6GNGyatUqRo0axdy5c6lbty433HBDBSUkKiKWIwmPz1FWXDZRC8n1xYy9LEIE71aKT94LC2OnTn5UKXMdcFlkX//CWwZaYrLBTFIkixeLIF60CDZvhhtuUBYjwOTJMHWqiO999nmeJk2KEzX5KAj6S4rvb4n64qR7pvZGmeZCXh7UrBn99OOPdSwOatQQoe0Q223axF630jWHi7fXB6LKyYrbR6TC264ygHPOc+bMoVq1ahQWFlJYWEgoFCr631l27tzJli1b2LRpU9Hi+MaJUKdOHbp370737t3jfWYvKCiQf52TowdqFwYPd+7cyaZNm9i4cSNbt27lgGhHWd58803mzp0bt37VqlWpWbMmNWvWjGsov3TpUrZv306DBg2Kkmx2DRYjH/ttVEERb9/M4LXXZNMOPdQrkd0CyTbFZutPQ/IcBaRPFumKMpovRNzCzZFjdANHjq60yRc+FMg7rtj7G1BvssUptt0H9QBKV63QgOxlZFcj2hA9E+Sg3yWECPw3iZL4FQ+V0iLIyFQo7NgBgwfDU08pDAYKl199Ndx8s8TYKlFKNIgsr5L9jGxDA8L/IX3Uv6PSwR0x6ySLvBmtW6/m0kuHs2RJTVq3PhdlQmsMr18/HT/mTMYy1Sp0rsWlJJ6AfENqEhtkQM9GxjsVspnF6q48KjlinfSliPwZCRxdmoOqxC6EmTFu3Di+/vprQqFQ0UDXqFEj1/tYt24dn376KYsWLQKgSZMmnHTSSbRt2za6Ul4ePPOMluXL9V7jxqpNvvFGsaiVKCWaRJaHcTOpnjoVhg2TA96uHZx9NlSvnmztApRZMRAF4P6Gnv3YLI5k9jqMSJQ7UUOab1HTx/KCY6//RuLyxaGkJrFBzvhliHRKhWza66qkzmJJh9jxei7KqPwJadhWohIpsG6dfOvnnpNTBdCqlRjH669n/Y4dfPvtt0yfPh2QFFXHjh0pLCysJLJdo0VkuYXsZ2RvQaTCAJQV93dUuVPSh1+/XhU5PXvCwQeD7PUcRIY8RbTZsBckPhefTxrUDRrAgQdq7NmwIX74nz/fz5IlYZYs6cMPP6yiW7ePOfbYY2Mm3y+SmsQGWIau6//SrBdvr2NJbICuXdUrYtkyWL0atm6V1vecOTqXv/89SmTPm1eDwsLNNG6sqaj35NrY32YakjaYQPpkl0qUN5o0aZIReb9jxw42b94cR25v3LiRuXPnsmnTJkaPHs13331Hx44d6dGjB506dSLgJtlj5Up4/HF44QWI9KOhUyf51lddlarhSdZgZixevJhJkyaxYMECtm7dWvSZ3+9n//33L8o4d/ik3NxcQqEQoVCI7du3s337djZu3Bg3howZM4bffvsNUI+dXr160alTp11Q4dMmspxPIvs2ZYpI7EAAevXyuu/lwGQUoPsG9dyahLvAWCEwHbgKNRMejhJF3MIoHbcTiOzjJUqS2KD5SDoJwl9RVWnxpMDiyKZ/XR9d90wRO/cZi367iaRPdqn42G0zsitU1HXrVoW7fvxRr2MveSCgSOT33yerj66EZ5yDSlzKoknNWYggSfbYVCd1+XkAZV3ksm3bav77X2VNnH46cRp9JdETDRxeDLgvcjzHAjdF/sYOpmuQvtW/ke6dG1yHjHeySPMrqCQ0GzgRGVo38itu4P9/9s47PKoy++OfmUkvBEiDVAIk9N6L0qtYQdeytlUsq+6q23R31e1ut6y66v5sa2+LioAKgiAtIBB6AoSEJJBKQnqdub8/TmaSSSbJTDLJTJj38zz3ITNz5857h+R733vec74HaVDTuqGOu+CW+tWNOHK+VVVVfPLJJ5w4cQKAESNGcMUVV+Dv72/XZxmNRnbu3MnWrVtpaGjA29ubefPmMX36dOsSyeJimDNHDO5NLTTEYJC0pm+/FdNNhRO4BCnvbp/SUvjPf6Ske+lSe5PjzeWObWGPXg9EMlscKWUci0x2Hcl40yHl9csRu6eZLV7PRgI1Tzlw3McRz8SgNl7/M5K56Ixr5S1INU5tRzvaiQGYjj2/G65C6bUbkJMDl1wi3bWN1n8XFTodWwcNYt/3voep0et19OjRzJs3j9DOd8nzcIYi2XjORo9YJn3azj4B7NpVxZdfSuD1llskE7oJLyQ7+7iDn52AZOA5ooN6IIiSksvJyFjOyZMGjh+Xz/X29mbGjFhmzdqJr+/L2B/0/wfShL2tTL+HkWtAx/rf0CDxwrNn5U+kpga+//2m1197bQlnznzZOF65DY2IaNqGDnU0QdYAXIXYRLkfbqld3Ux3nXNDQwPHjx9n3759loQQgKCgICZMmMDEiRPp11ayR2oqXHqpzLOb67X5l+3SS6WLt53z+s7yv//9j0OHrBeY/Pz86Nu3L3379uWqq66yBLDLy8vx8vKyPK6pqaGiooKKigpqa2sZ3qxByxdffEFmZiYFBQWYGu8fQkNDmT59OuPGjXNBX7YQWtoaFRVJXmV9PSxaBLMc7xGJaNRc2u+J1VEWsQGYjCxeOkI4UmHpSPjSHHu5CdHYlk11DiP6+4adx9MhFks/aDy2LW5CEk+ckVT5W+yzd7UXA2Lz0pNJOvbjiHapQHZPcMcd8PrrrYMiZgwGmY2lpanSdadwFxJQ7anmj46iA4LJzi7j3XelcZleL/dil17a1q/AdsTbuhj7gxjmLMdwJJu8+epjGpKZXOTA8cwkIB7UtspSqpDATzldy9jRIR2E30QC7c60KtmCu1qMuKV+dSP2nm92djYffvghZWVleHl5sWTJEiZPnmx3lkNOTg5r164lPz8fgCFDhrBixQrbk+3LLoMvv2wVFLHg5QWTJsGuXS4thbx4uBLJymh9fayrs07OaVlK3XM4UuHjjXjZLUYm8fZol46m3gKxSPC9ue/od0jz2go7j9ecMUgGt63Fx0Iky7KrfoPeSBbLr5EbAWdee48gpZzuh9JrF6NpkpZ78KBE7lqQBbyq00FiIkMfe4wFCxYwsP2MAUWHTMW+hljdg6aJvdThw1KRs3p1Vwuk+gKfIHrdgH3B7OZ6Pazx/cM5e/YsX331FWfObAHeZcgQIzff7Og8eDYSHLJVbnSy8fO6etsexPr1r5Gd/TsKC4/Q0GB9vD594OGHmx5/951MewYOlCB329MeA7Lg6n5/Y26nXT1AT5zz+fPn2b9/PykpKVZZzYMHD2bSpEmMGDGiKVGkoUEyr20sOlrQ6+HOOyXS6iQaGhrIyckhIiKCgMYyvkOHDvH5558zZswYxo0bR0REhFMr+UtLS0lOTmb//v3U1EilWkJCArfeeqvTPsM+4mmeYdzQIA0ezT0Hbr65t93GJCCLeVfS5JvdEebGlGYbpE+QebaZj4Hr6VwT+iuRinZb2dc7kR5dXSUCycaeiWS+OytJMwBJ0nHJTVW7qEC2O12sCgrEnMyeRguffQaXX979Y7ro2YhMSt2ZAKCWykoj69ZJ8ifIhPzSS2Hs2OYB7cXIxDYdKb1McfCzzCK+haYGOEnIhLMzAWIvxEMqGduZzZ8gzW2g8xPuNUh2RwHSPKcA5wSzDUhG+aNOOJbzcTv96mbsPd/333+f48ePExYWxqpVqyxNfDvi7NmzbN++3ZIpFRAQwNKlSxkzZoztIPiJEzDMTp/H5GSpb+4CmqbZ9Cs0b0FBQfTt2xcAk8lEaWkpQUFBF1kjyreAmy2PNA2ysmDfPtHFlSttNdbqaYKx5dVqm9uQhdRDiF6fbHfv1hiQbJdkpCdDGVKufYHOaaABaci1to3Xu+r/rUMWNmcjtlsT6VzAvS1ewXlVPs5F6bWL2bEDZs8G5LctHanfal4pvQnJIR506hQMGdLjQ7z4+DtS5eE66uvhtdekUVlgoHi8TpkCTXGoIESD7OGXiGXgdiSY4Wj5tgHJetwPxKNpOaSlJbJxYy2XXaZZmjFmZcHRo3I7GB0tloK2A0h6RO/+08bnPUlTw/nOYAAOIAucKZhM0ykpqaOgQKOgQJx5/PxgxYqmd/z977KIDBLkHjECRo0S957W57AWWNHySZfjdtrVA7Q8Z3O4pztsLoxGI2lpaezfv5/09HTLZ82dO5e5c+fKTmvWwDXXtH0QM97eEmntRNVMVVUVmZmZZGZmUlhYSHFxMWVlZWiaxuLFi5k5UyrdzF7hvr4d+Rx3jbq6OlJSUti9ezdz585l7NixgGR5p6amMmLECIK6NTvjZ4hmC8XF8N//SpLIvfdCcHA3frTdOOL//AxSsbgeqQJ0tGLbC1lo2w+EIQlz45AZRGfiFW31HjPzEGJR2Fl8kQqjBCQhZSFyH+Ks0G0ysjjtXiiPbHfi00/bXnlsjsEA77+vAtlO4aCrB2AHUs4eGCher0ePSjVVSYn8ymzfLhcZL69AxPMbxBZjBRIgcWRFzrzvj5HVvE8QD9jO0oBk5CQjpd9mMpBSm/XIheICcp7mSZO9wvsQEsQGWYnchpTbn6Qpy7yz/tm6Tr5P0dOYTCZLJsfSpUvx9fVl+fLlHZbmaZpGZmYm3377LadPnwZk4j527FiWLFliyciwyQcfiBZ3pNleXvDee3YFsmtqajh//jzFxcUUFxcTFxdHQkICAAUFBfz73/9u872zZ89m4cKFgHSef+YZaYji6+tLYGAgQUFBln8HDx7MiGYRX03TXODL1xlSAKlMSUmR5llFRU2v7t0Lw4e7OmukGvt0IxSx/gCxF5mDBHcdCeoaEXuOXwDrkKqUYjo/cTUiGe+nkJCemVSkq/rXiF6XIB7Xjur1n5EgNkjA/RvgMqQxXFf1mi68T3Gxo733HjkGA4eNRo4gsw0DssxujmkuBNH0Dz+ERx5x0UgvFjQkAOBavL3h+uulWdn58/D11zJnvv9+c2DGXr2NR6pIQDRsApCLY5pjRBYbfwu8ik73H4YPrycpSbPynU5Pl7VvM0FBUohr3kJDzdc4EzLnfxIJtJhJQTxltyO+pheQ64Sjev0qEsQGGI9e/xWhoVcTGlrMiBFmnW7Sa6MRRo+WuGJurjS7TE6WLTgYpk2zrCU1ovTaXcnLy+PNN98kLi6OuLg44uPjGTBggH2+1h1gMBgYOXIkI0eO5MKFCzz99NOW5y28/7598+v6erkR/kHHC9jN57l5eXm89NJL2MrP9PPzo76+qfLMy8urR/oj+Pj4MHXqVCZPnmz1/NGjR/niiy9Yv349U6ZMYcmSJU75f7DGSMu+Vv37wz33yBzbPYLYAD6IlnWkHeMRe1OQmMBgHJ8bNyBz038iTYGfbXy+s/NrrfEYv0QC8ubndiPz6z1IVfwFJInQ0bnwWiSIDVJJvga4gSZLRK0Tx2xO79drFcjubs6fF+HuKCPbaLS+e1fYySEkcK1HSrH74q7Ztq1ZBmxAp5OJYlKSlPDt2CGZDl5efsik1VymZ0KEsTPCY0JuQPYj3Wqd0bH8fZoC2S8gjdV0zY5rvijHIhef+cB/EV9uW+gbj/enFs8PRVYkNwDvIeXwYYiYD0JuPN5HJugdXYwaUM3D3JuKigq++OILDAYDV199NSAd0q+66qoO35uZmcnXX39NdnY20NS0ZdasWfY1hCwultJGexYfz9vOBCgtLWXz5s0UFxdz/vx5qqqsPZhnzpxpCWQ3n0jrdDq8vLwwGAyWSXbzbJHq6moMBgNGo5Ha2lpqa2spLm7qiO3l5WUJZFdXV/Pss88SERFBZGQkkZGRREREEBER0e0ZKG2jIRYZxxH9mAXUYjL9gzVrJPva/LX7+MCYMeLgMnCgq4PYILoxDwnStqUxIchNQ9/Gx5VItnlndNaI6N0ZRDO7igEpf3wUGf8fEP/s5pYp5t/FRMQ7byGixR9g+5x1yMLqT1o8Px5ZKP0EKdksQa5h30cm9AXAy8iE3J7vZqwd+yg8iZKSElJSUji8axfFzSz7gpAahlazbb2+Tb1WtIWGNFxMR7LCzIty77pyUBb69JHey0eOSBA7KKh5YKYayTL7jrbnywOQ+bA5+HAOWTjsTECjAXgHWcR8AzC2ap6YkAC1teJZnZsrGc5HjsgGkrgS2dh3q7a2AR+fT9Dp7mwc/4PAv7Ct1+OAO5D59Y+Qysu2zvkHNK9+Ei5Fmk1+CHyGZLLHIdmOfhgMJSxd+iSwjYYGI+npcq1OTYXycvHeNlNbCykpRhISCggPD+8lC+meQ1ZWFlVVVaSmppKamgqIn3tsbCzx8fFMnjyZwMDALn+Ov7+/Za46cuTIphcKC+1P7Gs2t22O0WgkJyeH06dPk5GRwYABA1i+fDkAERER+Pj4EBISQkJCAlFRUfTv35/+/fsTEBDg0t9HfQtBCA4OJiYmhpycHPbs2UNubi7XXXcdwZ2OLhsRS7ssIBDRg22IHljj5wcxtpxBXUYZMBK5N2hLu4YiVh1m3TtC5y2ujMCLwG+QOXpXrfDKkISQFUiw+jbkemBLr2cgGjwXacR5kLbnwY8Ai1o8dzkS83gbqdSvRr6bW5HvrgxpFH+Qjq9l3kh1fu9GBbK7m7Aw+2xFDAYxH1PYyS4kc7dlk4DBONdPubvQIR7Tv0W65Fbi42Ng5kwTU6Zo1NdPR4KzcRQXF7Nz507mzx9PQEBXb8ZSEE+krn5HGk0lPR8izRNaYv6Mc0jQ4qdIY4fBSBZfQbN9/YE7G5+35VNmQC4StkoWRwMjkHL+joQ7CllAULgbmqaxb98+Nm3aRE1NDXq9njlz5tC/f1uNRZs4d+4cX3/9Nenp0oTKy8uLiRMnMnPmTIs1h12EhbXdy6AFFSEhZB07RlZWFgMGDGD8+PGATFgPHrSuCgkODrZMqGNjm7zZ+vXrx6OPPoqXlxd6vb7diXZERAS//vWvqa2tpbKykoqKCqt/mx+3oKCA6upqzpw5w5kzZ6yO07dvX2bNmsWUKeLBbDKZ0DStG7JBmvMV8vd/GJAbXl9fHTAIvV5PZaUJo1H6Z06aJAt7Lou328S8yDYeWbSro2kxUAOWIgHn5osl2UiGc2fRkO8rn66XEeqRzBWQxdDHG39uPjcx/5yO3Pw8jEyWRyABmtJm+/ZBNP+32G504w1c27jZIpKOm4LpEW2f0sF+Ck8jNTWVrVu3gsGAj07HCE1jLJK3pLf1BpMJ7FnIVDTyEbLodarZcwbET7+rSRDOw2CAcePEiq+6WWW60QhG40p8fMbQ5NnvRdO4VyGWSs1Llk/RNZ2tRXrP2J6jmzOvQW4Jc3LgzBnIzJQ1lua3f+vW6UlPX8OgQSEMH/41I0a8hKx529LrQ8i8/n4kEP8rJEhT2Wzf/ojFwM+xbQfojwSub2nj3HTAFry8xHlt2DA5h9OnZcokGDhzZhobNhwEDhIYGEhCQoJl69evnwpsu5jJkycTHR3NmTNnyMrKIisri+rqak6fPs3p06fx9va2WG90hVOnTmE0GgkNDbVuqhsRYV9GttHY/BcLkIrErVu3cuDAAavM6gqz5w0y937ooYec6nXdXYwaNYpRo0Zx8uRJPv74Y7Kzs3n55Ze57rrrrOby9vEq0ggwp9lz3kjCl2Tr5uZCfr5oZctFNtejIfPNL2iaF5p7EBiQBbhnsY4NONrQtyUlSMJFZQf72YtZ9x+gabHXll7vQBaFhyGJMT9FrlHNm6QPRCqF7m3js4KBexo3W/wMaTTZHl6IlVbH99fujvLI7m6KiuTuvJnwtsn69bBMBdk6ZguwBBG5lkEnHc7zDupuApHyluuQTu1ZiHf2ciR4ILzzzjucOHECf389Cxc+wYQJXbkQvQr8j85nnpjxQrI//o5kRWe1u7ewDjk3kFXLzUiQuw+y6tjVv9dfI16HtjD/XnwErOzi53Qfbqdf3Yz5fE+dOsU333xjyaQeOHAgl19+OVFRUe2+v7CwkM2bN1s8sPV6PZMmTeLSSy/tXGZDejoMHdrqaQ0JA55BftOzgOLVq0XbgcTERG66SSYOmqaxY8cO+vXrR2hoKP379+/xTuUNDQ0UFhZSUFBAfn6+5d/y8nIALrvsMksg++zZs7zyyiuEhYVZsrbNW9++fVtlkjg6jqKi1ykoWE1BgY78fPHhLC+Hhx5qyqA7e1Y0zb37sPVFAgQLkYU5s3ZdgSzOtSQdayuPzvA5coOyr6MdO8CAaONDiF1Tafu7A1ISaQ4i1yBuw4XIxHcRtpuROcJqxP/a1nVIj2j2RiQT3j3xVL3uyfNtaGjgu+++IzIy0lLJUl5ezmeffcZYTWPYzTfTobrqdBJ1M0cSFe3wEnKD3Jvm0k00NIiLTE1NH2666b/4+ExD9LoQ6If0b4m28U5nNOba03j8nI52tMJksp7T/+tfcP78lcBw4G8EBpqYOBEmT4aQEFtH0CHZ8oMaH1cg2nkBWTRcCB3/lbSDhtj92W7KLHrtQ0bGh2zfXkJWVpZVsBGaqurMf8M9jadpNXR8zpqmUVhYyJkzZygpKWHRokVOWWxYs2YNBw8eZObMmSxe3Kxf1WefwZVXdnwAX18pW2js4rp79262bNlCba0E+8yLJIMHD7YskvRmzp8/z3vvvUdhYSEGg4FVq1ZZ2QS2zx9pskeyjaaJDVNmJlxyCSxY0NURdwfxSHZ0PKLXF5C56kqsE0TMfAJc3cXPzEAywe31526PdUjiRbwd+/oAecj1CORcNwHlSILjPLqWZ1yPZHwnY3vR2YAEw79DLGvdD+WR7U6EhcEdd8DLL7ed6eflJU1olizp2bH1SuqA72E7iA29a+JdiZRw/wEJ6truZjx79mxKS0vJz89n7doI9u8vZPlyjWhbc/EOmYKs1H7eyTGbaUCsPV7FviC2ASknNweyvZHFCGfye2RC/STyu2GekBmRRYOXcecgtifzyiuv4OPjg4+PD/Pnz2fq1KntBlBLSkr45ptvOHTokMUjb+zYscydO7drk9ohQ+Cqq2DtWjSj0fIbZEJCmPUgQZHYWHTR0URGRhIXF8fgwU2BTJ1Ox2xr08gex8vLi4EDBzKwRWS4qqqKgoICqyz3wsJCTCYTBQUFFBQUWO3v7e3NihUrGDdO7Hhyc3NJSUnBx8cHb29vy/+Z+edBgwZZrEuSk5P58stPMZn+1ng0a20+eRImTpSfO6dlPc0FJINhJDLp7CjqPgipADnXyc/TI56tN9L1QLYRuW7+CfuC2F5IkNkcyPbD+Q28/t143OdpyqPVIdeWvshNjfsGsRXdi8lk4tChQ2zZsoXS0lIGDhzIXXfdhU6nIzg4WBYONQ1eeAH27Gk7y89ggKuvVkFsu8ihqbquN82lmygpkYBNbW0Z7757FTfeOA1v7w00BQ3aYhyONYlsiT+SgHIT8BeH3tlyqnPvvXrOnfs9p049woEDJsrL4dtvxUJl0iTrRoyNR0AqEn/b+DiIrgd5mqNDKkTvQErmDc2eb0ACTh+TkDCThARZfDp79iwZGRlkZGSQk5PTKiCxZ88eUlJSLPOUgQMHEhERcZE1snZvdDqdJWmhOfX19aSmpjJ69GiHA9smk4mTJ6XBdVJSC9uCyy6TRJHMzLYr1fV6uPNOSxAbJKhVW1vLwIEDWbRoEQkJCRdVdn9oaCirV6/mk08+4cyZM0TbPSE+REdBbIC0NPnKvbxkMcw9OQNcgswz36fjRIkZWFt3OEoEEjT+Hk19yDpLALAA++ML9YiOmq+1fZEqIWfhjVgT3ogE2L1o6n3QgFhHfYq7BrEdRQWye4KnnpK79q+/FpFuHtA2GGDAAMnGdr96DzfkEySz4mIiG/Gp24d1cEQDkomLy+DuuyPZu3cImzcf5uzZ//F//ydBoAULoL3edU3okLL4EUiW4B3IokBXeLNxswcj0qyxO9EBv0MuDq8hHloGpInPjUgwW+GOaJrGiBEjWLZsWburr+Xl5Xz77bfs27cPY2PgYsSIEcybN6/VZLwzVFRUcPKhh0g7eJDKjAzu0OlA0zAgYck6nY646Gji3nuP2AkTekUJY3MCAgIY1CKgM27cOBISEiyBbPNWWFhIfX29VUf1goICkpt3rGrBjTfeaLl5CQ4OxmQ6gJ9fA5GRUlXafPP3b/Mwbs4xJNthD+KLbcaE9DTIQbId5iJa9BiO9zXQI1nPAxG/vZ914hgteRuxbrKHBiSjvDvxQnxff44siJ5AvHjnIZYkvetvS+EcNE0jNTWVzZs3U1goc70+ffowefLk1g1sdTr4+GOYM0eqaZrPrc37TZoEr7zSg2fQm3nJ1QPoMuHhcPPN8OabkJEB776bzA03LMbbezuiL2YaEE/ZfCSQMA+ZFz+H49YpeiQQEYhkszsWyG6Jl5eJuLhtxMV9wZw5Eojau1fOp9nlGJNJbLrkWnq6S5/ZMX7INeQ3SOAng6YK0suR4Il5/F7Ex8cTHx/P3LlzqaurIycnx2oBPTs7m3PnznHuXNNCr16vJzw8nAEDBrB48WKn+DUrHEPTNNasWcOxRtu8ZcuWOVSVl5OTQ1VVFf7+/sTFxVm/aDDAhg2i1/n51ouP5tjIwoVkP/ggPvn5RDaaxl966aVERkYyduzYiyqA3RwfHx+uvfbaVgs+dXV17VR0Pk9HwVyjETZulJ9nzGirosOdWIdo6VqsbetqESuO84hlytzG/T7C8WC2DunZYq4sf70L4wVpvPgOMnZ78KL79boPkrB4GLE9PIvcl1yFJBFePPFGZS3SU9TXw+uvw7PPNnX3iIiQbiX33dfKD0rRFnchQcqumvO7K6MQj6VgJLviRLPXfKiouJaNGw9x8KB4zS5c2LJjeEdEI156XyIXhZ5kElLKomgLt9WvbsJ8vnv37m3V1bs5tbW1fPvttyQnJ1tKVocMGcL8+fMdyF5ojbm0Mi0tjbS0NM6ePSsdz+vrYd8+HkpLIyQzU/aNiUH3wAPS8tsD/m9MJhMlJSUEBwdbJtK5ubkcO3aM+vp66urqqKurs/xcX1/PlClTLNnbdXV11NRcRXDwBjdo1thdTEH0uhop8WxeneKPBKH3AAfoXCB6CDLRfpGuewI62tn8CiRrQ9EWnqrX3XW+WVlZfPnll5w9exaQpmGXXHIJU6ZMaT9Ts7QU/v1veP55MR8GSEyEBx6Q7L7eu2rWw0zhYpmjZWdLMLuuTpJAr78evLwuRfQ6C+lNk9/sHX2QQPbndN4vexRi3/RLrHvAdIbWAarCQklcMcd3U1NlHWfMGD1Tp17PgAFvd/Eze44LFy5w9uxZcnNzycvLIzc3l8pK8avV6/X88pe/tDTD3rhxI+fOnbNkD4eHhxMREeFQIoGnaTV07pw1TWPnzp1s2rQJTdMYOnQoq1atsvu73rhxIzt27GDMmDGsXNlGhmphITz3nGh242IlY8dS/IMfsCk8nGMnThAfH89tt9120Qau7eHYsWOsX7+e6667rvWiACCZtdntHmPPHsmTDAyEH/3I3XrPdMRSJBlkH/AM4mttJhSxp3sd0drOzK+nIN7ct2HtUd0ZfLA/OdAA/IK2rVAVjmiXCmT3IA0NDdTU1FBTVERNRQW1vr7UG43U19dbNnNAoOXW0NCAyWTCaDRiNBrb/FnTNEvTMFtb89e8vb2tNi8vL5s/+/j44O/vj5+fn9W/3t7eLrjI3IKsfLlHs5nuxZZHoQEYwpkzJnbvPsXKlTQ2gZFKLS+7aiz0SGaKM3yh7EWHZCb+tqMdPRp31q/uoKPzbWhoICUlhW+++cbS1CUmJoYFCxY4xWvx008/5cCBA1bPRUVFMWzYMJKSkhgQGYmuokJK2Pv04SKOyHYTS5BGjxcrHfnIGhB7kHw6uuFo+/ggk+SuTrQd5Xnghz38mb0Lpdddp3mW9bFjx/jggw/w8fFhxowZzJgxw7GqF02ToLZeLwb8Sq8dZAxSyXZxcOYMvPWWrEsPHgzXXGOd0dwaPZKZfYCm5riOYL4eeNNoRNatfP45fGdZd7iWceNuICkpiUGDBvW6bGZN0ygvLyc3N5fS0lKmTp1qee3//u//yDEvUDWjT58+RERE2BVo9TSthq6dc2pqKh9//DH19fWEh4fzgx/8AP8OFgTr6up46aWXOH/+PKtWrWL06NHtf4jJRH1RESfOnOHUuXMcOnQIo9GITqdj4sSJLF261GOtZjRN47XXXiMrKwu9Xs+yZcssfW2aiKC9CvWaGsmdrKoSV5dWb3d77OnTcA1io9GZeIY5ucMVDYy3IpX4Clu4jUd2cXExDzzwAGvXrkWv17Ny5UqeeeYZq1LllsydO1e6kTfj7rvv5sUXX+zOoTpEfX09VVVVVFVVUVlZ2ernmpqaVlttbS0NbXlC9VL0er1VYNvf35+goCCCg4NbbUFBQV1qGtZEV5tn9SZsCbgRSCc+PoL4Zj0FTCaxYY+JgXnzmpqo2cZEzwaxzdzlgs9U2Is76XVNTQ3fffcdu3fvtgSwQ0NDWbx4MUlJSQ4voDU0NJCRkUFaWhpTp0612JAMHz6cw4cPM3jwYJKSkkhKSmp90fSQm57uYSji/39xXfua6GiSbQT2I6XrXTl+TwexfZDSS4U74k5a3RmMRiMnTpzgwIEDREREsHDhQkBsohYuXMj48ePbPZc20emgb1/nDtajGAakcrHodXw83HQTvP22NBQ2GDp6hwm5XnU2g9+s190fxAYJTo0dC8nJ/hw9OoyDBw9y8OBBQBbkV69e3WsyWnU6HX369LEZtFixYoWlabV5Ky0tpaysDIPBYOnLAXD48GH69u1LdHS0k+45u05v1Ovhw4dz44038sYbb1gaQg4fPrzN/dPS0li/fj2lpaV4e3szZEjH/rt79+1j06ZNliaOIJWWixcvttiKeCo6nY7vf//7fPbZZxw5coR169ZRUFDAggULmi3aJCFWG7azkXfvliB2WJg4bPU+7Mmz/V8Xjm/+3no6iB2H+IErnEG3BrJvuukmcnNz2bhxI/X19dx+++3cddddvPPOO+2+b/Xq1fzud7+zPA6wzwS4SxiNRioqKqioqKC8vNzmv+aAdV1d572FdTodvr6++Pn54evra8l4bpkd3fI5g8GAwWBAr9fb/Nn8WKfToWmazc1kMln93NDQYJUB3tDQYPPnuro6qqurqampobq6murqakwmEyaTicrKSks5WEfnHRgYaAlsh4SE0L9/f8vWr18/SxlZ+9yGeLS5A67q6m5EOt42cfo0FBTIdvgwzJwJs2ZBm9ZaPc73sd0pXuEuuINel5eXk5yczN69ey2T25CQEGbOnMmkSZPs1AihurqakydPkpqayqlTpyy6HRwcbAlkJyYm8vOf/7wdDzpF11gNvODqQbgYE/Y1WHQnHkRK7RXuiDtodWcoLCzkwIEDHDx40DJvPHfuHPPnz7fMX13dKNezuQv42NWDcCqDBsEPfiAOBuaEUk2DXbtg2rS2gts9vXDYOXQ6iIuDuLi/MmXKCo4fP05mZib5+fn4+PhYBcvCzJgAAQAASURBVLE/+ugjgoKCSEhIICEhoVfNeQYMGMCAAQOsnqupqaGwsNCSwQtyH79u3TpqamoIDAxk2LBhDBs2zKoZtyvorXp9pNEGNSwsjKFDbSeRlZeXs2HDBo4dOwZAv379uOKKK2xmbxcXF+Pj42MJ4AcFBVFbW0vfvn0ZMWIESUlJTqm0vFjw8fFh5cqVREZG8vXXX7N3714OHz7MzJkzmTZtGr6+9wA72nz/oEGymDd16sXcgk2PxGF6k7nEv2iqtlR0lW4LZB8/fpwvvvjCyvv0X//6F8uXL+fvf/87UVFRbb43ICCg1UWrK9TX11NWVmZZwS0tLbX8XF5eTnl5OVVVVQ4d02AwEBAQQEBAAIGBgVY/+/n5tbm1nFz0RjRNo76+3iq4XVNTQ1VVlSXw33yrqKjAZDJZFgpyc3NbHdO8Gt88uG3ewsLCMFhmm3FIM5UXca1wTQEOIpkrXW3C1Rk0mgfShw6VyfpXX4lF5NatsG+fZGdPmODqi5gX8LQrB6DoAFfrdXFxMdu2bSMlJcVSuRIREcGsWbMYPXp0s7//jrlw4QKffvopZ86cwdSs+VdwcDDDhg2zmijr9fpedUPX+xiPlP59gmt00sw8pJTPVRNeI457VLuKIKRprsIdcbVWd4YjR46we/duK3uAoKAgxo0bx4QJE9wmc9IWmqZZkj7MNigdbeagfO9jIdIcexeute9bgvRxcU6yyMCBspnJyJC5cno6XHddS99YDTl3V5Sbd4Yo4IcMGqS3NHI2VwebqaqqsgQld+/ejZeXF4mJiYwaNYqkpKReOQfy8/MjNjbW6rmamhoSExM5efIklZWV7N+/n/379+Pt7c3A5r8APUhv1GsQ3TMnmF1++eWtkkg0TeO7776zZFTr9XpmzJjB3LlzrexAqqurOXr0KAcPHiQ7O5u5c+cyd+5cQBJJbrvtNuLj43upXnY/Op2OSy65hAEDBvDVV19RWFjIli1bGDFiBOHh1wJPIr20WlfRDBoEt98uC3fdy1Lgi+7+kDYwz6l7i16PRfrPKJxFtwWyd+3aRd++fa0aeC1cuBC9Xk9ycjJXX311m+99++23eeuttxgwYACXX345jz32mMMrkR9++CENDQ2UlpbaHaTW6/UWawxb/zYPWPv6+nqs8Op0Onx8fPDx8SHEjha4JpOJqqoqq+D2hQsXKC4utmy1tbWWBYaMjAyr9xsMBsLCwhgwYACRkZEMGPBjIiNLCQx8h4469nYfa5GGMb8CNrrg80GEu+nc4+Lgjjvg+HHYtAmKi2HtWikvuu22pgYxPYsOye7r38F+Clfiar1+6aWXLOWhsbGxzJ49224Lkbq6OkpKSiyliEFBQeTm5mIymYiIiGD48OEMGzaMqKgoj9Vs1/ImcD2ima7Qaz3SwCsZeBzY3sOfb6a3ZIw8gfRQULgjrtbqzpCdnU1OTg56vZ7ExEQmTpzI0KFDHVqg7CqaplFbW0tZWZlVYktFRQW1tbWW5rW2tuYLovbi6+trqb5sbwsKCqJPnz6EhITg5+fn4muUHtHpyxGddIVeBzSO4QtEiw60v3sn0OmkWjE9Hd54Q+xHWs+Pe0NQBCSQZb0QFBgYaOWR7eXlxapVq8jMzCQ9PZ2SkhKOHz/O8ePH8fb2Zu7cucyaNauHx+18AgMDWblyJUajkTNnzpCamkpaWhqlpaWcPHnSJWPqjXoNWKpjJkyY0MpvvaCggLVr15KdLX0/oqOjufzyy62C7vn5+WzdupW0tDSMRqPlmGarQJDfS/Pii6J9EhMTGTJkCEePHqWgoIDw8PDGVzZx6tQ84uPT8Pa2Hczt3ktKBLAe6V32B8SayhX0Br3WAX929SAuOrotkJ2Xl2cp37Z8mJcX/fv3Jy8vr413wY033kh8fDxRUVEcOnSIX/ziF6SlpfG//9n2wamtrbXyVyorKwPg1KlTVr5ZPj4+lsliSEiI5efmHs4BAQEq0NENmBcIgoKCbK6Ka5pGVVWVVWC7pKSE4uJiioqKqKmpIT8/n/z85h3GEwkOfpDIyANERh5iwIASoqKgf/+e6O8zAohs3L5CMsRf6u4PtcHjyEQfzEESnQ5GjoRhw2DvXsnMDgyUTuc9i/kG6PvIRFvhzrhar0EmarNnzyYuLq5DHTYajaSnp3Po0CHS0tIIDg7mgQceQKfTWW7aQkND6devnz2nr+hWAoBPgZ3Av5FMu6Ie+mwdMKdxDPOAb4GrG8fT04HlXwO/7+HPtBezXj8M/MTFY1G0R09pNbSv122RnZ3N5s2bWbx4sWW+N3nyZPr06cPYsWMJbr+BR5doaGigsLCQ/Px8iouLLUFr89YVW0DAYt1nD+bvzp7vzIw5OcTW1rdvX0JCQnrgHqUvUr3yNVL5uAUo6ebPNKMHrkSaJV4OrEC8RHfhzGqWhAS49Vbxzj53Dl59FW6+ubm9ujdwP/CU0z7TuZj1+knglg739vHxYfTo0YwePRpN08jPz+fo0aMcPXqU4uJiK1/q0tJScnJySExM7JWZ2iDJT4MHD2bw4MEsW7aMvLw89u/f75KxuLte26J5A97mQWxN09i2bRtbt27FZDLh4+PDwoULmTx5sqWqRtM0duzYwZYtWywB7MjISMaPH8/o0aO7Vf8vdvR6PWPGjLF67vx5H95553oCAs5wySVpTJp0hP37y6mogOnTu/veXwfc1Ozf65AqzFR6tvqwD1L5+XoPfqYjeCHfx4vAMheP5eLD4UD2I488wl/+8pd29zl+/HinB3TXXU0N4caMGcPAgQNZsGAB6enpNpsHPPnkk/z2t79t9fzixYuJjo62BK1dn+mgaAuzf3ZgYGCrUjFN0ygtLSU/P5+8vDzLvyUlJZSXh1BerufUqaZJdmCg2TMOYmOlnNC5ST864MfNHhcArzjzA+xkNBIYGQP8HLDONjAY5CI2fjxUVzcF92trYefO7vTP1iErtJcAPwTmorygXEdv0es77rijTQ8+M5qmkZWVxeHDhzl69CjV1dYNSysqKiyT5I6OpehpdMAs4H2kOU1PoQEPNHuchtic9CR6JIj+O6T55a+AnHbf0XPokQXZhcB9wDTXDseDcTethrb12hb5+fls3ryZtLQ0AL755htuuOEGAMLDw5tlkDmHioqKVvPCoqKiDrOn/f39LfcFffr0ITg4GF9fX3x8fCz/2tq8vb2tgjXtbUajkdraWpuN383N3822fBUVFZSWllJZWUldXR2FhYUUFhbaHLuvry8RERFERkZatoiIiGbNv5yFHtGE/6Nn/f1NiA6Z2Ul7HrBdITpa7PjefBPOn4dXXoHvfx8iI/VIQOYfQAKSZVjQLWNwHC9gAHAZcC8wzuEj6HQ6i+f0/PnzycvLIzQ01PL64cOH2bRpE97e3gwfPpxLL73U6X+7PYlOp2PgwIFccolzm6v1dr1ui4KCAtasWcPy5ctb3Y8nJyezZcsWQJpBLl++vFVzTp1OR1FREUajkWHDhjFv3jyX2aN4AuXl5fTp05cLF0xs2PAN27dX0NAg9/2hoTDOcYlwAA3RITNrgWPd+YE20CO9eP6KzK//CnRuAcf5+CB6fQ3yPSW5djgXKTrN3vSCRgoLCzl/vv0b0cGDB/PWW2/xk5/8hJKSpiBjQ0MDfn5+fPjhh+2W0zSnsrKSoKAgvvjiC5YsWdLqdVsrkLGxsZSWltrsfqy4OKirq6Og4Bh5eZPJzzeSlyeZFcYW1SXe3jJhNQe2Y2PBz88bEeDmJZPmkpwgoArbq4kGxBt7C2C+cfgHEkjuae/TvsAaRLh/gL32JuvWSaZ2v36wYgXY0Vi6E/wPyXpUOEpZWRkhISFO06+LSa/XrVvH3r17LY+DgoIYPXo0Y8aMUbYhvYI0oO2u922jb9ya67U5Iy0Aacxlq6xQj2Q/fIpoN8AvEM3u6TLEAYi9SRBwO5Jh6C5sRxYZFI7iTL12N60G+/S6uLiYb775hsOHD1sy+SZMmMCcOXPssp6zh/r6es6cOUNmZia5ubnk5+dblag3x9/fn8jISMLCwqwC1uatuX+rO9G8l4+t7cKFC5YMx5aEhIRYBbejo6Pp27dvF6+JOxC/bEfR0dL2rkmvfYF6bM+XdcCtwKs0JT/cDrxFd9qblJXBW29Jo3Q/P7j/fggKGoKUy5cDdyD9cNyFNLozILJ371527txp0RedTsf48eOZO3eu0/6eXcHFPreGrsdDNE3j1VdfJTs7m+HDh3P99ddbXjt16hRvv/02mqaxaNEiKysac98scwZ/TU0NJ06cYMyYMWpe3gMYjUZSUp5i27afUdq47tivHzzwgL39sVpaknjR1IfLRNvxjV9gbZWxFNhEz8+vxyHz61PA3YhnuDvgBZwDeu9CoKtwRK8dzsi2N7NixowZXLhwgX379jFp0iQANm/ejMlkYto0+7N+UlJSANps1GD2oVN4Fj4+PsTEfElMTNM6TEODBLOzsyErS7bqasjMlA1Ap/MjIuInDBmSwtChm4iNrUXuay5BvJynAjcC3yB/Hs2F/ErgNZqC2CDCaaDnA9mlwAIgBJls20dSEpw4ASUlkokyfjwsXuzM8iNvYDcqkO0e9Fa91jSN7Oxs+vTpQ9/Get/Ro0dz6NAhRowYwdixYxk0aJBbNwlTtORlHPNc1SHNff+HNIt9DwmC6JBmYA8CQ4BrgX1Y67UG3AY8T1MQG0SvXdFwsQCYiWRoVHewb0+iR/RaBbJdjbtpNXSs11u2bOHbb7+1ZEGPGjWKefPmERYWZvc4bGG2CMnIyCA9PZ0zZ85YmgCb0el09O/fv1nvFPm3T58+vTJ44u3tTWhoqFV2bHOMRiPnz58nPz+fgoICi91e82D3iRNNN/DBwcHExcURFxdHTEwM4eHhDlpF/BvH9NoATACeQSw51tDUNPFq4CFkIe86pPTcrNfmRrgPINl0zf/vjjvw+Z2jTx9piPbuu9I0PSgIIKPxXIzd/vmOs4fuDGRPmTKFyZMnc+7cOb799ltSU1M5cOAAhw4dYtq0aSxatKhX/n05m96o1x3x3XffkZ2djY+PD8uWNVkgnD9/no8++ghN05gwYQIzZ860vFZaWsratWvR6XTceOON6HQ6/Pz8GDt2bKfHoXAMg8HApElfMG6cngMHTBw9CnPmdBTENiCB5x8j8+sNyLzZG4mBPARUNv58pvF5ED30QSoLf93imKm4xqv6MFKdXo579aJpQHo8LHb1QC5qHM7IdoRly5aRn5/Piy++SH19PbfffjuTJ0/mnXfeAeDs2bMsWLCA//73v0ydOpX09HTeeecdli9fTmhoKIcOHeKhhx4iJiaGrVu32vWZzl51VbgzNyKl6rYDE5oGRUXWge3i4msQwQMwYjA0MHBgLPHxicTHxxMbG4u/vz8ijB8h3oCRSLMyW+nLDwIvIAEWZ+Kcbu22qK2FzZthzx75jvz8YPZsmDYNup6s5I1cGP/W3giQm5xDyA3MNGA51gEnz8SV+uVqvQ4ODiYnJ4djx45x7NgxSktLmTZtmmVCbS7Zbtk9XdFbmI9Us9iDDtGG9TRNAuuQBbwgwL/F/nuRzOtyIBq5NsTYOO6NwAc4f7LdWzqmt8SA+Kz+rJ19qoAPaQo+zUEWUVUww1V67Qqthtbnu2fPHtavX8/QoUOZP38+UVFRDp2HpmkUFRWRm5trsdQoLCykuLi4lRd1SEgIQ4YMITo62mKp0Vs9fJ1JdXW1JbBdUFBAXl4eubm5NrO3Q0JCCA8PJywsjPDwcItNie3vcTiS/WsPemTu9y1StQgyzytD/EubB9e0xv02INqSgPir2goKOnLNcAQf5HrShNEogR9zjDY7W+z3GntIuxFv0L4vdilyX3QaSbpZDMygs3qdk5PD119/TUZGBhMmTODKK68EZLEpLS2NQYMGtWoG6I542twa7D/n8vJyNm3axOHDhzGZTCxbtoxp06ZRVlbG7t27+e6776irqyM2NpZbb72V0tJSUlNTSU1NJScnB03T8PLy4q677mrlB67oKUKBYjv31SPz6D3AsMbnqoEKJDmu+fXAhPQC24JoehIyj+5r47gj6J5mjwHItaI3sgFZMGiLIiRJJxsIRHpDTOiBcbk33ZqR7Qhvv/02999/PwsWLECv17Ny5UqeffZZy+v19fWkpaVRVSW/oD4+PmzatImnn36ayspKYmNjWblyJb/+dctVH4UCRIzbnpzpdBAeLtvEif7A61RULCczM5NTp05x+vRpysrKyMkpICengB07dqDT6YiIiCA+Pp64uGtJSEiwMUkzl9yA+Ag+0w3nZv4M5wezfX1h2TIYPRo+/xzy82HTJqipgYULu3r0etr37fsvEvwvoSlwbUSCT/+HCL6GlN7vRi6i45EbGpV92524Uq83btzImTNnrJrT+Pj4WGX+mBs5Knorjvz99kFuxptnMvjQdoneFJoCKC1pqdfvOjAOezFnFboi27srGGlbrzXgWSTrpoKmctM/IIu6byIBEhNyk3MA+Q6mIhneKtDdXbjL3HrSpElERkYSHx9v1/719fWcO3eOrKwssrOzyc7ObtXrwIy/vz/R0dEMHTqUIUOGEBYWpjJBbeDv7098fLzV/0Hz7zkrK4tz585RWVlpydw+deqUZV/znDcqKsqyRUZG4uXliF6HI8kJzTXYF9t6rQMubdxs0VyvFyONJ52tq3W0nF8376WjabB2rdiNjBoFS5eC+/Soa0uvTUgz4T8jASfz/99vkZ467yBJPEak4fJRRNMvASa3+WkxMTHccsstnD592qrSIicnhw8//BCQZn5Dhw5l+PDhREdHq0q5FriLXtsiKyuLDz74wGLVNGrUKBISEvjss884ePCgZUFs4MCBTJ8+nVdffZVz585ZHWPQoEGsWLGiy5U4iq7gyLUxDrHiGNbsOX9aJ4iA6MhS2g7GNtfrZUi/LmcndfTWILYO0V5bNCAJJM83/myu7H8CSe57F1nkrQPWId+rL3IPM6pbR93b6NaMbFegMrI9ieeAH2FfsPdT4AqrZzRN48KFC2RlZXHmzBnOnDnTyvPM3CgkMTGWoUMPEB39Nnp9GiLus5DGNA8hPki9LYgBJhMcOQI7dkjXdimrhKoq8Pdvyk6xnxAgD2v7FTOvAHe28149Ulr6KtIwwrxQYQQGAf9CuthfvHiafpnP95FHHrGURQ4bNoyRI0cyZMgQt/UzVXSGx5DsX3smuXtoOzBtD6WIjryAZKZ5I1nEqxEfVncrQXQFZuuW09heZHgS+GU77/dBgib/QkrxDch3akKyOV+i7WDVxYGn6rW951tZWWkJWmdlZdnMFPb29mbgwIFERERYsoTDw8MJDAxUgWsnUlVVRVFRkSXrvaioiLy8PJte4waDgYiIr4iO3klUlImoKIiIaK9U/TRy091ZihC9eBlphOuLNDS8GViFfRWPzkv8qKmRQPbRo/K4Tx+48UZwbc86PTAJuTba4iHEIsAWOiTb77dIj4hzWOv1BGR+bn8m4MmTJ9m0aRP5+flWzwcGBpKUlMTMmTPdqkmkp2k12HfO27ZtY/PmzURERDBt2jTS09M5fvy4pSImPj6e2bNnM3ToUE6cOMG7776LXq8nISGB4cOHM2zYMI/5Pt2bK5EKxo6skLyBfKBfFz7rLGI99UrjsQIR+6grEOsoe3S4+6rOuwdHx2tAKs0/s/GaBnwfCVbbOqYOWQR+CPg7cB5rvZ6N3N8kOjCe3oUjeq0C2YpeTCkwkPY9R/VItm8mHWcEZlFR8QpZWSfIyjKSmTmIvDx/ZDXwDaAQf3/x0ZNNT2CgCSm13ol9k+0E5KbfvdA066D1W29Npbr6Ri677Aqioh4FPsY+r8BXkQY9LSlFLFpqbbzWEluZjebBfQistOMYvRNP0y/z+b711ltMnjyZIUOGqKzri5ZsZEGqvQU/A5Jxts+O451AJoIFyKT82sb3ZgJzgazG/cxTHLP9xxKkVNKeqc9AINeO/VyJHtHcfyHXoOuRjLv2vmeznn6KlDK2JAeI7+AYzY/V8rs0N+j8CphnxzF6J56q122dr8lkIjs7m9TUVE6cOGGzGVpwcDCxsbHExcURGxvLgAEDMBicZyumaRp1dXVUV1dTV1dHfX09dXV11NXV4eXlxZBmHa537NhBebl1jxFz8DwgIIBLLrnE8vyePXuorKzEx8en1ebn50d0dLTV99BbslLLy8s5e/Ys586ds2ySGZqHBJcFf39ISJAG4UOGgLSuMCB6us6OTzqM2DoVIzfpNyAZgYeRRcbzWOuN2Z/7cmCtnWfTF7hg574dk5cHH30kFoU+PnDNNTC8M/2KrfBC7PeeRCoTVyKNNdu7Hpn1dAu2G3Aeov1KyI4wIAuTO3C0rL2yspKMjAzS0tI4efIkNTU1ANx1110Wq6GSkhK8vLwIdmFau6dpNdh3zpqmsWHDBnJzc8nOzrY8n5SUREREBGFhYYwfP96y7549exgzZgwBzmuspHAKG+nYi9kLWRx8tYP9NMSubw1iDxWFBF7jkVjHUiQu0rJBZAMSUP/UjvHqkAXLGjv2dSW+iB/4r5B7imuQ6sP2MDS+LxnbGdmbgEVdGJMBSRrcg23L296PCmR72MXKs/k/JMvOFuaM3g20LxrVSKfbt2iaMGpAA+XlY0hPr+PkyZOkp5uoaaG5UVGQmAiJiT5ER9d1IoPZnZgB3EB5+RKee+5jamtr0el0TJ48mfnzp+Pv/xXwNvAFcsNhvlEzIRnYz9D2/8XzwP1dHJ8OCEZusGyVQPV+PE2/PO18Fe1l+RqQbJFttJ+NXYp4hH7W+J4mvZab/HPIhLO9hTdHmpi5KwuQbMVVQMuS3jKkSeabSONiEP3UIecdjNzMrGrj2I8jZepdwbyIbM7WvvjwNP2ydb719fWkp6dbgtfm8niQoHB4eLglaB0XF0ffvn07lWmtaRqVlZWUl5dTUVFBRUUF5eXl+Pn5MXXqVMt+Tz31FKWlpTaPERERwQ9/+EPL4+eee46ioiKb+/bt25cHH3zQ8vjll19uVVJvJiAggJ///OeWx2+88QZ5eXkEBQVZtsDAQMvP48aNc9tsc03TKC0tbQxq/5qzZ9dw7pz0VmlOaKiOIUP8GTLkIwYNmt9Ok7l8JGi9BeuGvOZFxQNIELu9Sh17s+Gcn+VXUwMffgjp6ZLssXAhzJzZmWrFK5Agz0okCNGcIkSvX0OCH+a5tVmvQxEf1ba8/+4C/uPogFpgAMYC+zt9BKPRSFZWFqdPn2b+/PmW3/FPPvmElJQUoqOjGTlyJBMnTmzsRdRzeJpWg+1zLi8vZ8uWLSxbtgxvb29SU1P53//+R11dHXq9nlGjRhEWFsbRo0cpKCjA39+fBx98sEtNJBU9gYb0GngP2xrohcwT9yGB6bbIwHYDdRNwFRKErcQ5FejubMd3I5JRfRWScd6cc4he/x9wkKb5rVmvo5BFgKnY5jIke74rGJCFi64exz1xG49shaL7uRPJJHgIyfTwpimoEYXcrLcXxDYiK2zmDD0jzSfUwcHHGD/eyPjxYsORkwMnT8KpU5CbC+fOybZ1ax0hIeKnN2qUBLi7dp/iirKbO4EfEBwM999/H1999Q8OH36PvXv/ztGjOhYtmsj48b9Ep3sd8bpOaRznVGSVtz2x2eCE8WlIgOY9bGd9KxQK9+YRpHHLY4i9R3O9HozoSntB7Bpk8mbO2LbWa8kWsWdi7Owgtism5D+lybfQiExoX0B02YDYevwO+V5fRzxRvRFP1OuR/4e2+NwJ4zMhWfhfIBN3xcVCZWWlJXh9+vRp6uubqtH8/f1JSkpi+PDhDBo0yOGAVUNDA1VVVVY3L6+//jq5ubnUtoymIsHp5oFsc8DFy8vLkjHt7e2Nj48P/fv3t3rvxIkTqaqqQqfTWTWX1DSt1bjHjBlDTEwMtbW1lgxv89YyyGPOCK+urqawsNDqNX9/f0uGI8CHH35IYWEh/fv3p3///oSGhlp+7tOnT48HvHU6HX379qVv376MHPkR8HtMpic5d66W9HQD6ekaOTkmzp8P5/z5lezZk4xev5eYmBiGDBlCYmIiAwcObBz3BUSH0huP3lJ37a2MsXcubO9+9uu1n5/YinzxBezdKwHtGTM6M7//HU1Z0/VIIORF4DhyD7MISfgIRQLap5o9vxLrBmwtcUYww4gsKuyls7ZeBoOBhIQEEhKsbWbMi1tnz57l7NmzfPPNN0yYMIHp06e3+ptUdB85OTm8//77liqU4OBgS/PIuLg4hg8fzoEDBzh8+DAAfn5+TJs2zWXjVTiCDpk/R9Lku+xF06LhVCQRrb0gdi5imWq+ZrXU609wblzC3jmzK+bX/wDMXlLVSM+elxAbLX+kUuhdZK79OnAGmVOvQOa77YVX7W/Y2jZGZG6dQddsvXo/KiNbcZFQi4jsIUT0ZiDZHh1lgv2PzlpVlJfLpPbkSdnqmjVB79evKag9YEBnJr06pDy+Ozq2t8ViJLNjJBJo+pjMTAPr1hmRezEdsbEa1157OX36fET7E+uWjEP+b7qKvaVRvRNP0y9PO1+FmSrEJigV0ZE5iAVFR0L5b6QvgTtOW2bTcYm4M7kOCUiPAH6IXCvM9inQlHW+GgmYOGJ1EIvYi3QVb+BhxEv74sPT9KtlTwMzffv2Zfjw4QwfPpy4uDi7bDU0TaO4uJjs7Gzy8/MpKiqiqKiICxcuEBERwb333mvZ96WXXiI3NxedTkdgYCDBwcGW7ObQ0FBmz26yWygvL8fX1xcfH0fmJ86lurrakjXecjMYDFxxRVO/lvaywgMDA/npT39qCWbn5OTg5+dHaGhoDwe4y5Ab+dOAHzU1c8nMjCA9/TTp6ekUFxdb7d2/f39Gjx7N6NEbiIj4J+6ZdTcFWRC1f2wpKTBsmNisOM5dSIZfIlJRtA/bev1LpKGuI/+/fZCF4a6iB/6GaLZzKS8vJy0tjb1791p8tXU6HZMmTWLFiu7vfeNpWg3W53zq1CnWrVuH0WikX79+BAQEcPbsWQAGDx5MaWmpxQrKz8+PGTNmMG3aNPz8bPU7Urg3RYheZyPZxJcD4+14331InwJ3rFYcjSz6ObuRZFv8DEn6GITEiE5iHVD3ahzLP4EHHTy2N877jt9CMvEvLlRGtsID8QW+17g5wnNYTybtJzgYxo+Xrb5esrSPHoW0NCgpge3bZQsNlYD26NHSMKdj9MBMJMviL8CfkM613c1XjVsTgwYZueceSE6Gb77RqKyEgIDPgQdo7p/YMaFOGqOGfV7kCoXCfQlAmi46yr+cPRAnoEPKxt8HfkFTNkx380Hj1pzm1zHzGP6DZJb8zoFj98U5gezm41BcTAwcONASvI6IiOgwsGo0Gq28sP/zn/+0adVRWVmJpmmWY65YscKSUd2Rn7YrfXjN+Pv74+/vb1ezu5tuuonz589TXFxMcXGx5eeSkpJWGdlr164lPz8fHx8fBgwYwMCBAy1beHh4N/py96G5bZyfn3hFDx8+AhAP5NOnT3Pq1ClOnTpFcXEx27Z9w7ZtLxAZaWL0aJn/9utKfzGnshqxwvshksVoXzC7WSI9ANu2wYgRYF9Pw5cbt+bY0us/Ib0ZHLHic1Yg21wa73yCg4OZPHkykyZNIiMjg127dnHy5EmrIIWmaWia1mv85XsLX375JUcbO5dGR0dTWVnJ2bNn8fLyYsWKFYSGhvL666/j7+/P9OnTVQC71xOGBKUdoQKpBHHH+dqvkMDy7YhlR0/wt8YNmhYVm18nzN/TQ0iW+3UOHNsP+b6dgYqHeHRGtvnUzRPFsrIyysvLrUoGzY1i6uvrmTJlikXcjx07xokTJzAajTQ0NNDQ0GD52WQycfXVVxMaKsG7vXv3kpycjMlkQtM0TCYTJpPJ8tnf+973LI1iUlJS+Pbbb9HpdFabwWDAy8uLxYsXExMTA0BmZiYHDhzAy8vL8rq5nNLX15ehQ4fSr3HmWF1dTVlZmSVTxcfHRzVVA8Qr1FmCItTVSYb2kSPyb0Oz60J4uAS1R45sK6itB+5Auo+bS78vIOXhJU4dp6OUlUFFhdimgJ6GhtMcPlzM2LFj7WjW9FckyNNV9Ei2yqNOOJb74WlZI552voquUIcsWLoTzRt3eTc+V4A0xXGnJjb+SG8Be//GfoRzFg10iI/gD5xwLPfD0/TLfL5ZWVnExsba3MecaZ2Xl0dRURHFxcUUFBRQWlrKz372M8t8++OPP+b48eNERUURFRVFeHg4oaGhhIWFERgY6LYe0j2FyWSiurqawEDx59Q0jddee43c3FwrKxczAwYM4J577rE8zszMpE+fPvTr169Hv8u6ujrS0tI4cmQrp049gLFZrDYmRhpFDhokP3t7t3mYbqJ54y5zsNSeJsStOXAAPv1UgvqLF0uQ23nx13DgLE3XlI5YiVSXOoO1SHl891NYWEhQUJDFxuf48eN8+eWXjBgxgkGDBpGQkOC0ygpP02qwrqDR6XRERUVRVlZmsWhavXq1JZ6Qnp5OdHS0CmB7LPuBSa4eRAsCkYW9B2gKJne1sa2z0QFJSLa4vdfZGcBuJ31+Mm17cfdeVEZ2Mw4dOkR6ejo1NTXU1ta2+vehhx6yZHDs2LGD5OTkNo81cuRIi8jn5uaSkpLS5r51zXwmampq2iwdBCxBbZCAs61O77aOW1RUxMGDB9vc9/rrr7cEsk+ePMn//mc90fH29rZkjixcuJDExEQAzp8/T2pqquU1c5Oa4OBgvHt+5tnr8PFpshWprZUM7aNHJWO7sBC++UY220FtE5KN0dy/tC/wdyTA7Tr69JFN0Dhw4K+sWxfOtm3bWLRoESNGjGjnhulOpGSyq2VBOpQ/tkKhcA/M3t7Nr4sRwK8bN3ehGvgI+wPKD+GcQHYAjldJKdydkBBpVtc8axpg06ZN7N2716aXNcic1ZylvHTpUq666io7FsE9E71ebwligyS9/OAHP8BkMlFUVERubq5ly8vLs8r+1jSNt99+m/r6ery9vQkPDyciIsLyb2RkZLcF83x8fBgzZgxjxvSjuvoBjh+XpI6MDOkxk5MDW7eCwQDx8ZCUJA3TQ51VtNcutcBwrG2WYpHM7Odp3xbKum9NUhLExUFWFnz2mVRfLl4smepdpxD4EvsDyo/gnED2QJr6LnQ/LSsWDhw4wIULF9i1axe7du3CYDAwaNAgEhMTSUxMtCSHKRzjxIkTREdHW7SitraWuLg4q74AQ4YMceEIFQpbVCINaJvHFcYiTco/csmIWqMBaUhvAXsDyo8ijX+7gg4YRWf7GVxMXPSB7JycnHaDvc0zG4KCgujbt69Vcxjzz+bHZoYMGYKvr2+rbGiDwYBer7cEkEGaxMTGxqLX6y2bOdNa0zSri/Po0aOJjo62lFiZM7jN2d6RkZGWfWNiYli0aJHlNaPRaMkgr6urs9xsABZvQXN2ufnc6+vrKSsrw9gsbeLcuXNs3LjR5vfl6+vL5ZdfzujRo4GmoLfZr7Bv376EhIT0omzvScB2nOO71LpBo68vjB0rW02NBLWPHesoqP1P4OdYd8q9AfgtkqXRUx5R7aHh43OKoKAESkpK+OCDD4iPj2fp0qUMHDjQxv79keDI37v4ub+gqQGDQqHwHHyAYcAJ3Msj+0/A3Vj3Y7gb8c67gPv4wx5xYN8E4PuI/15X+COtO74rejubNm2irKyM3Nxc7r//fksyiMFgoLa2Fi8vLyIjIy1Z1qGhoURHR1sFT5sHaRX2o9friYiIICIignHjJDNN0zSrJJeqqipCQ0MpKiqivr6ec+fOWdm4jBgxgu99r2mBKTU1lYEDBzq5ueQA/P3DmDixiIkTpZrvxAnIzJStrAxOn5btiy8kkJ2YKAHi+HgJdDsfHVLRtwrr4MjDSN+VamxfW3S0nN8HBsItt8CePRLELi6G996DWbNgwQJnZGefdGDfKUhTSNv3bfbzd1wZFrj22ms5ceIEGRkZpKenU1JSQnp6Ounp6Xz55Zf8/Oc/t2Rvt1xEU7RNSEgIeXl5ZGVlERkZSXR0NL6+vhQVFbVZWaPwNBIRywt3qiQ0INWOc1s8/0ukJ1pbNij6xq0nbVIysD+QfRmSVd52bFJoHVNqel6HNKRUGnjRW4ukp6eTl5eHn58fvr6+rf4NCgryOD8uk8lk1VW9urqaAQMGWG4ssrKy2LdvH9XV1VRVVVFVVUV5ebklAH7DDTcwbNgwAA4fPszHH3/c6jPMQe158+ZZVnrNDXD69u3rRpndHwHXOuE4ZuE0YU/gomVQu3n5pQS1H2PUqAcID69BfPXeB4qRpjsty0rNTWJ+j2Rx7LRrDF1nHHV1e9ixYwc7duygoaEBnU7H+PHjmT9/vg2vSiOSmf061k0TzGK9GLlgPY7192ho/PlnyEXt4v179bTyR087X0VXeR4pM+zqtEWH6IiGc7RyM9Ks8hTSWPF/SBC7rPH4zcdrbhLzPBLsTqdnAvOLaNkDoX1qkGzqz7DWa/PP30NK8v/a+Jyx2es6JIj9cy7miban6ZetZo/N54OlpaVUV1cTHh6uMq3dAJPJRElJCQUFBZatsLCQUaNGMWfOHED+T//5z38C4mMcExNj2QYOHNhFa4cnEB2wTr7QNDh/vqlRemYmNCtMxdcXBg9uytYOCjJriA7n6PURJJvtKPACsA7R6lJEi5vrsaHxc99ALJdaV8zW1kpCyq5d8njcOLj66q6O8ZbGz7SXMiSD+1usAyBmvb638d+XsO4LpEeuSc/R3Afd1Wiaxvnz5zl58iQnT57EZDJx2223WV5/++23MRgMJCYmkpSU1KE3vqdpNTSd83XXXUdcXByBgYFERUUxceJERo8erWxEFC24F7GCczef7DwgEvgOmTd/jfQEKKX1NcGAJL28gyQA9lRg/pfItc5e8pGYxyFs6/WvkKSdD2mK8Zivg/5Ib4eVXR61u+KIXl/0gWyFczBnfJSXlxMcHGy5iTlz5gz79++nvLyc8vJySktLrTJDbrrpJotlSfOgd1BQEGFhYRZPxLCwMKKjowkICGj94d1KA7AM2ELXM531yOTzXaSE0T7MQe2jRyE9HYxGHRJ06EdMzEdMmKAxerQJ+crNgmdAytkDkI7E9yFZGTuQYLB9AfWuEYP4C8oN7KZNmzh8+DAASUlJ3HjjjTbeoyET7Rca/zUBE5HSzmXId5gHvIJ4PxmRbsurkaDJxY2n6Zenna+iq1QDs5FMhq7qtT9wDbJI2NWJ+9vIhHk1otHmsTXXay/Eo3oVonejET9Sc4lhd0/FJiE3Ao5gQrL8XkBKJ0EaEf8QCdzrgCykoeT+xsfTkAVLW5U5Fxeepl/m8/3www8ZMmSIxdva05JBLiby8vL49NNPyc/Pt7I5BMn+nj9/PrNnz+7k0UuQeekZ2tPY2lqZ+548KVnblZXWr8fGwsSJIYwevQBv7zV0XSs3AgeQhTZzkACagghejVtf4EYkwDMUaYbWtj3TkSPw+edw441iO9I1rkSyDh2hAfgc0etDyDnMQ/R6RuM+J5HkmKPIPcQliF2fe9t2NM/Arq6u5m9/+5vl91Wv15OYmMiECRNITEy0uYjmaVoNTef8xBNPMGXKFCZOnNhGxaxCAVLxPRFJmuvKnFiH9IkZhSwSdpUUZI79N2zrtTcyxw5DmsjfjVhG/QWxXeoJ7gH+7eB76oCPkeSXNCQAvxTR6/GN+xxGFhdOIBnzC4Gbsb/fTe9EBbI97GLlTmiaRnV1NRcuXKC0tNSyCgywb98+vvrqqzb9E5tn9mRnZ5OWlkZYWJilRLX77EqqEP/p92nKrNbonJC/hayS3YJkezv259UU1L6SU6fWWiZq3t5iPTJhgkyQdToDEIJMRltabXyBdNA1N7E0B1LMwZXmP3eFeCDT6pmcnBy++uorli9fzoABMq6GhgYMBoMqA7QDT9MvTztfhTMoAW4CNmBdBt0Zvf4KucG/EviGzi/+/QaxfmpL7w1IZ/NjQFCL195FgiPm62JLvW6eDd0VpgO7nHAchRlP0y9PO19PwmxBcvbsWXJycsjJyaGsrIyVK1cyZswYQGwH169fz9ChQxk6dChRUVF2LGLkIvPR7dij15oG5841BbWbOaLg5/cjxo6dwaRJfyQy8hhd0+vftPO6F2JjdYDWDRefR2zyjLSuUpGgvG+znsRlZc17yzjCNUiQQ9ESTdPIy8vj5MmTpKWlcfbsWctrQUFBzJs3j0mTrBvXeaJ2mc+5qKhI+Ysr7CQd0R7zQhh0PjEuF9H5OUisoLN6/Svaz3Y2ALOQOXzzOIOGVKr/FusEE2fNqc3ogbtwPJCtaAsVyPawi1Vvo7q6muLiYs6fP09RURFFRUWcP3+e6667znKx3bZtG5s3b7a8R6/XEx4eTmRkJAMGDGDMmDEdlpI5zmngTWRVMhgoQIIMjgR9/4Nko5kzvTd1YhxewEIqKr7i4EETBw5A816hoaES0B43Tk9w8ONI+WZLKpHSmg2NPw9GViozgKeRLLp8Op/ZokfO7/MO99ywYQPnzp1j6dKlREdHd/LzPANP0y9PO1+FMzmGaFwB0A9IBdbjWED7U+AKmjK993diHEFIA7H9tD851iGZcvfYeO0CUka+GQloD0MWQ/cjk+OzyHl2FgNwG5LZoXAWnqZfnna+nk5ZWRm+vr6WCsytW7eyZcsWy+v+/v4MHjyYoUOHMmTIkA5+J/YDHyDZfuFIYHsHHc2vy8vh4EHYtw9KSu5AKgFriIl5hUmTihg9WhI97Gcg4EvLJAzbfIwEdVpSiFQNmvvrjEUyt7c0Pp8HFJGfD6+8ApMmwaJFjvhm65FMQkdK1T2XoqIiDhw4QEpKCpWVlVxxxRVMnDgRaOqDVV1d7XHapfRa0Tk0xKJ0DWJZFIVo4VEcixmcRvqt5CMa6egcVg+MQOa/F+zY/1tkHt+SHGTua64qnIRYyn6GZHrnI9elrvA08OMuHkNhRgWylXD3etLT00lNTaWwsJD8/Hyqq6utXv/hD39IREQEII1qcnJyiIqKsjQUck72byYSAHbkT2QTsKDx558h4uZIYMUAXIV4rMrnapp0ej9wQEoXzc4tej0MHdqXiRN3tVlO10QF0pTs39h3QbCHz5GmBW1TW1vLU089RU2N+FRNmjSJhQsXWhq2KKzxNP3ytPNVdCf7gMkOvucwYvEBstD3Fo5laugb3/eaHfvqkHJBe4LlxcDvkKBIRQf72steHP9+FO3hafrlaeersKa8vJyTJ09aGvCZ53VmVq9e7UCywgZgud2frWmQkbGL777LIjU1FZPpv0A6fn7STH3SJIiM7OgoOqTs/EU7PtGAeJiut2Pfs0jW35s0ebLqSE7W2LBBHiUkwKpV0iSyY3RIZmSCPTsrGjEajZw4cYLBgwdbFl+Sk5PZsmULQ4YM4brrrvMo7VJ6rXAeryMWRPbig1RPmu1ix+BYw3Ez9yFVMB3hhVhuvGrHvqeQipzmtoLmmFFnQqI+SPZ5/068V2ELR7TLde2JFYp2GDJkiKVJpKZplJWVkZeXR35+Pvn5+VZlUqmpqaSkpFgemxvWREdHEx0dTVxcXCcbDw0CHkUCwPYQi/jRmTE3ibEXA+Ip9RDNSwp1OvEIjI2FpUvFS/vAAcjKghMnLnDixLv06RNi8UALbDVTLkd8s9vzlXXEesSA+KQu7fCMfH19ue+++/j6669JSUlh3759pKWlsXTpUkaNGqXsRhQKhZOYhFhEvWLHvnokqDy6xXOOlBzqEX/RVdgXyNawLwuwACmTzMA5eq0HrkYFsRUKRVcIDg5m4sSJTJw4EZPJxNmzZzl16hTp6ekUFRVZ7OQAtm/fTkVFBcOHDycmJsaGNeASpBpmLR0HDwzodEsYPHg6gwdPp6KigpSU9ezbl05JCezZI1tMDEybBsOH28rS1iFJIjOwL5BtRDIKOyIDmQ8XYZ20ojFtmtiKrFmjIyND4+WX4brrdERHt3e+OsSTWwWxHcVgMDBixAir58wLLvv3d6baSqFQCDciWc076VivvRD7v+Y9zxyJwZh7y9yFJBPaY4fagH3z68PApUiCiLVeN9H883R0fL6/QgWxXYfKyFb0eo4dO0Z6ejrnzp1r1bBGp9Px6KOPWjqvp6eno2kaMTExdnZs1pCVu9/Zse/rSHaemU+QAII9BAEPAr9AyhITO3xHUREcOOBNSsofqWzsjqPX60lKSmL8+PHNsrTvRoI7HQWnByFBj8lIGdDvaMou0WhqsrAACbSH2HluQlZWFmvXrqWwsBCA2NhYrrrqKuXd1gxP0y9PO19Fd2MEHqBjrzodUlHSPCPwZcT2w54pUX/gp8DDSCb4LDvH19Qgt22upH2LFD3i2xpDkzdgHPBk43vM1z+zXq9COpyrKhhn42n65Wnnq7Cf+vp6vBujx5qm8fTTT1NaWgqAl5cXMTExDBo0iPj4eGJiYhr3rUUCHh15QRuQsvEZzZ77PZr2BBkZGt99B6mpYJ76+/jAsGHSV2bIEPD2jkLm1vchgXN75+X2NMidhlTZtK3XhYV+vPdeAOfPa+h0gxk7NpolSz4jIKC5b6tZr+9CMhBVnpkz0DSNjIwMtm/fzq233upR2qX0WuFcypHFx2862M8P0cTmi0oPIAuI9lSoD0WSCG+naV7eETqkQnxtO/uYGo+dRdvxED3SSLE/MmdeivRRe7HxteYJJCaaLKBUUp4zUdYiSrg9lpYNa2pra7n55pstr7/yyitkZ0sgITw8nNjYWGJiYoiNjSUsLKyNDOGfI91y22MAUl7Y3ASvAcnS7siLOqDxvX0bH2tIIPt0B+/zAq6moeEdjh49yt69e8nJybG8GhgYyNixCYwffxORkXUdjF8H/APJBjdTipTar0dWL4ci/t/T6axoNzQ0sGPHDrZv345er+dHP/qRjQxyz8XT9MvTzlfRE9yC6FZ72jkC8dhuTgWi45UdHD8CCUb7ND6uRTwEO/LY80Im5P9qZ59M7LezehvJkjFThJRVbkYWIEcCq4EJdhxL0Rk8Tb887XwVncNkMnHy5EmOHj1Kenq6JdHCTGRkJPfee2/joyWIJV97lTCXANtaPJeLzK8lsFBRIT7a+/dDY/wcAB+fUIYN+zcjR45m6NCheHtXID7ZtpvON6FHklgea2ef74ApHRxHqKlZx+efV3HkiJTXL1kykRkzUpAAvREYhwSxR7R5DEXn8UTt8sRzVnQnJmAiktXcnl6vAj5s8dwxpOK8PfRIdcs2mmIMZ5DqlI7mxDokgeXudvZxxM4qBdFkM5nASzT5bE9u/CxVOdMdqEC2Em5FG3z22WdkZmZSXNw66BAWFsb9999veWw0GjEYKoFImjKT2+NLxFOvOeuByxERbutPrWVAAuA54EftvMfMVqRMRigsLCQlJYWDBw9SUVGBNGf4iKgoGD8exoyBtu2pZyOT6u6nvLycvLw8EhMl81zTNJKTkxk9ejRBQUE9MgZ3xNP0y9POV9Hd5ADx2GcPsp/WQd43kUC4LXTIRHsdEnxpzmOIBVVHzR6PIAHmtngeyVzpSPf1wEqkeZrCVXiafnna+Sq6jqZpnD9/nszMTM6cOUNmZibDhg1jxYoVwCGMxnG89BLExUFSknhJ27YFyUQqT5rzT+AnLT4Pzp6Fo0d1HDump7T0NqR6BXx8fBg2bBgjR77H0KH/w9u7Lb3WIQuPZ5Cgd1s8TlMlTHt4IUGP5zh79iwpKSksX75cWev1IJ6oXZ54zoruZBOwyI79/JDK8pZV248Af2njPQYgEEhGmqc3x54qxUDgHFLd3hb3INXpHem1AXiC9hcxFd2J8shWKNrgiiuuAKCyspLs7GxycnLIzs7m3LlzhIWFWfbTNI1nnnmGwMDDJCTUkJAA8fFSsmgbAxIEaRnIXo6UsN+FBFm8kElyPZLZ9y/gOhvHuxf4GviU1kENs2fT4zQPYoNkmS9atIgFCxZw6tQpDhz4JydOwLlzsn31lTTGmToVmtkZNlLa8oluIzg4mODgYMvj9PR0vvjiCzZv3szMmTOZOXOmxQ5GoVAo7ON9O/fzQrK2Wwayb0ZsO34EFDb+rCET3xjEI7ClxoN45G0DttM6mG323X6W9oPYIKWbBjqeaJsa91UoFAr3RafTERYWRlhYGJMnT0bTNBoazPr2NllZBgoKjBQUwHffgZcXDB4sQe3ERAgJAdHQdxF7kOY8jJR/P4rMX73R6TRiYhqIiRnK4sWvc/ZsHEePHuXYsWOUlpZy+PBhDh8eQkBABFOmFDB1qqlFA0Y9ovn/pf0gNkgVj73BaGnaa+7dY6a+vp5vvvmGSy+91NKgUKFQKNyPt2iyQGqPGmANcFuL559EKs//gNh1eCFzWSPSr+ZtWgexQTKhZyCVkC0tQQyIZn9I+0FskDmzPbm7etT8uvegAtkKjyQwMJDhw4czfLiIptFotOrAXlZW1ridJTdXx86dGnq9NJNJSJBJtnVzdiOyGmiLZUg2yZfAHkRIxwMrkECJLQyI5/ZjiLg3zyBPBH6NBF1sY/bKTkq6hqqqlzh0SBpE5udL6eX+/RKYnzpVGuOIl3Z8m8frbvz9/YmOjubs2bN888037Nu3jyVLlqiGkAqFwgHyaPKuaw8NsXyyxfVItvNnSINcPeKDugRr66jm+CET6Ucb/20+CR6DlKhf1dHggWjs8xD0wpxlqFAoFL0FnU5n8dKGPGJi4Kab4MQJ2UpLm34GuOwymDJFT9t6fS/ipfo/4Dgyp74UmINOpyMmBmJiYli8eDFnz57l6NGjHD16lLKy77F169fs2JHG+PH1zJgB0q5lOtIfZoEdZxNNx03IQK430TZf+fLLL/nuu+9ITU3luuuuIzIy0o7jKRQKRU+Th/3z0zwbz+uQrOz7kXnyacAXyfKeStuLggOQhMDHkIrI5lapc5HA+HQ7xhXTzmc0x0hbeq1wP5S1iEJhoQQJHn8IlFBeHklmZj8yMj4hIwNKSpr2nD4dli6VnxsaIC9PR1TUNej1HzlhHOeQMvXXkFVLkKyThUjZ+ULszwIx+3TnoWmQnS3d3Y8da2qM06cPTJ4Mkya9Q2DgDU4Yf+fQNI1jx46xadMmShq/7ISEBJYvX054eLjLxtWTeJp+edr5KpxJPlIm+AkSOB6MlDJ+QMfBhaZS765zGplIv0OT72oQ0iTmQexvBAmStRdJk+63x3YHj61wNp6mX552vgpnkoU07toAVAPDkAXHppJxTYPCwqZAdnY23HUXDBxoAB7n7Nk7KCwsZOTIkV2o2DuCyfQHjh//iJ07jZw9C+CHTpfEsGE3MGvWTcTGxtp5LGuf7vZJA5JaPZuTk8OHH35IaWkpXl5eXHbZZUyYoPoaOBtP1C5PPGeFsziJNDj8GqkgHwMUIJWHHemdDngB+5o0dsQeZH79OU3Z1BFI08mfYUtT2+YokvndEV5I37IIB46tcCbKI1sJt8JhNiEZc1U0iaW5JFwoKYHMTMjIEL/pwYPl+YwMeOMNCAi4kcTEVSQmJjJ06FD8/Pw6MY5TyMpkiY3XDEip4w5aewW2x/PICmgTZWXSGOe776CyUgeEYjDcz+jRY5k2bRpRUVGdGLtzMDeE/Pbbb2loaCAsLIz77rvPIzKzPU2/PO18Fc7iQ+D7SADErNEG7AsomNkMzOviOPYh2X+2As8GpEHudiDMxutt8QTwe9ougTQgDXG2ojqluxZP0y9PO1+Fs3gZyZzW0aTRHet1VZX0dJGp3xE+/jiVw4cP4+Pjw6hRo5gwYQKxsbEOzA03IXZ/9YAEzrOyYMcOcwZ4FHArsbFDmDlzJsOGDUOvb6sKx8zdiOVUW1VABuTeou0kl6qqKtasWcPJkycBmDBhAsuXL2+Wua7oKp6oXZ54zgpn8CRil6enSaPtsRQxY0BsQDqyZuqID5EKSVvaqkNs/j6jqfG6PVyJZHW3de3RAT/EOUkuis6iAtlKuBUOcRApHa/HviZh1hw+rGfdukBqan6MCLhYe8TGxpKUlMTYsWOt/KDbpgAYhGSrtIUXMAnY7cAINaTk/S9YX4x0NDRoHD0ay54993H2bNPnxsbGMmPGDIYPH27HRL57KCkp4YsvvmDixIkMGzYMkKxt4KINanuafnna+SqcwTdI2Xd7DXTbw4D48B2ma4Hg9MbjtDe5NyAWUp84cFwTsBp4FWu9Ni+sTgS+AkIdG67C6Xiafnna+SqcwcfAqi683wtZLPyanTt38t1331k1aw8NDWX8+PGMGzeug9/Jvcg83/Y1o7AQdu3Sc/DgRIzGyyzHnjFjBuPHj8fLqy0nzlqkz81nWAfnzT/PBdbSkX+rpml8++23bNmyBU3TiIyM5Hvf+x79+/dv930K+/BE7fLEc1Z0lReRRcf2MPfpsoUB0cN3ujiO9cBldozj14gVlL2UI3PybdjW62uQfgyqR5crUYFsJdwKh7gWaUxgT7lMyz8XLyAIo3ET2dmhnDx5khMnTlBYWGjZ4+6772bgQFmZvHDhAr6+vvj7+7c4Th1S8nLSzjHvBSbbua+ZnUh29pfI5HsocsG6CQgkJyeHPXv2cPToUYxG+S5CQ0OZOnUq48aN62SGuXPZu3cvx48fZ+HChS7NGu8uPE2/PO18Fc7gEkTLOlp01NvYxwCEI1nSQ7owhnJEPwvs2FeH2I8McuD4GpIx/hySed2ANIq8D7lJUE3B3AFP0y9PO19FV9EQC5FTdLzo2JZeD0L0WrqTa5pGVlYWKSkpHD16lLo68UsNDw/nvvvua+PYeUhvmYoOR1xR4U1y8gd8910a1dWS3BESEsLkyZMZP358G0kpJiTL73kkyURDFhzvQ7Kx7W9HlZGRwUcffYTJZOKee+4hRLpdKrqIJ2qXJ56zoivUId7QRXbsa6uiRg+MA7YgNn+d5RQwCmsv7Lboh1g8OTInrkdiPs8DKci4ZyB6vYy2e+EoegoVyFbCrbCb84gnqT0l6f2Qpl65jY/9gFuRTuoJVnuWlJRw8uRJsrOzueaaaywZxGvWrOHQoUOWbO2kpCTCw8PR6d4H7PWn9gJ+DvzRzv0do6Kigj179rBnzx5LA0xvb2/Gjh3L1KlTXdaMpqGhgaeffpqKCrkZGTVqFPPmzSMszJGyfffG0/TL085X0VVOIQGJjtAhZY01NDXKDQbuRHz1ulry+CzwYzv31QP/dGB/RW/B0/TL085X0VV2Yp+PvzlgXUBTo9x+iMfqTwHbWcl1dXUcO3aMAwcOkJSUxKxZ8lm1tbW88847JCUlMWLECPr3/yeOzZffoa5uJQcOHGD79u2Ul8uYdDodSUlJTJgwgcTExMYm6c6nvLyckpIS4uKaLARra2vx9VULmJ3FE7XLE89Z0RU+Aa62Yz8DskB5Gpljgyw03gc8BAR2cRyrEbsme9mEfc15Fb0FR7TL/mViheKiJBv7fVVLkQZjZ2hqomhbsPv168fUqVOZOnWq1fPl5eWWjJKsrCw2bdpESEgISUmvkZQEQ4ea/QA7oszOMTtOUFAQ8+fPZ9asWRw6dIg9e/ZQWFjIvn372LdvH3FxcUydOpURI0Z020TeFl5eXtxxxx188803HDp0iKNHj3L8+HGmTJnC3LlzbWS5KxSKi4vTdu6nIdkcuYhem5C+As7SiH87sK+O7tRrhUKhcE/S7dzPiGTUFSB6rUMC2+2Xd/v4+DB+/HjGjx9P85ysU6dOcebMGc6cOcPGjV8RGfk0I0bAiBEQEWHPHLsMHx8fpk2bxsSJEzl69Cj79+8nKyuLtLQ00tLSCAoKYvz48UycONHp9h/BwcFWmd/Hjx/n888/58orryQpyZHmZgqFQmEv6djXa8aI9BPYg8RQvBC9dkZIsRJ4y8H3qPm1J6MC2QoPxxG7DB/AGykp7xy33HILFy5csFiQZGRkUFpayt69pzlzBhKbJRtWV0ujm9aYaJ1RWAS8jWQs+gILkUYInS+R8fX1ZcqUKUyePJkzZ85YbD3MQfigoCAmTpzI5MmTe2y1v1+/flx99dXMnDmTr7/+mhMnTpCcnMzhw4e58sorLV7aCoXiYsQRvfZDNNueDG5HsTdAAzLpb6nXucCbQBayGLoc8YG9OL3/FQqFJ+KIXvs37t+5OVzzvimDBg1ixYoVHDt2jMzMVPLzK8nPh2++gf794corIT6+vaM16bW3tzfjx/dl/PhcioqyOXCgkpSUcCoqYPv27Wzfvp1BgwYxceJERowY4fQGjZqmkZycTGVlJe+88w5Tpkxh8eLFqhGkQqFwMn7Y1ydMh+h1INInxpmcoynL215azq/TEJ/rIqSy5zpgTNeHpnBLlLWIwsMxIpl65zrYzwsJNnzq1E+vr68nIyODEydmExpayIwZ5ufhr3+FyEgYOVK2vn2bvzMTiEcuOr8G/o6ciwHJRmxAVkjfBaY7bbzl5eWWzGxzuaVer2fs2LHMnDmTiIgIp32WPZw+fZovvviCwsJC7rnnHpfZnjgLT9MvTztfRVepQkoYyzvYzwv4AfBSN40jsHEs9uCNVPL0Q7LEHwReRnS6uV6PQLq0j3LyWBXdhafpl6edr6KrFCCeq+01xAXRwV/iWNMu+6iuLiYtLZTjxyE9HRoa4MEHm+bT5eWSMNLUyzEE0WtfROPvBN5DkkL0gIbR2MCJE6PYv381p05dsGSDBwcHM2fOHCZMmODUasWGhgY2bdrE7t3S5D0sLIyVK1daeu8oOsYTtcsTz1nRFdKwLzCtQ+z17u+GMZzBsX4yCUhiiQ4oAb6PNIo0YNZruf7MR+IhPRujUHQO5ZGthFvhEH8GfkXHK5Hd6cN0F/Aa5gl/Vha89ho0/+uMioJRo2DkyCvo188cUH8AaQhmCwOSkbgdaTzjPIxGI6mpqezZs4czZ85Ynjf7FMbFxVllyHQnJpOJrKwsBg0aZHkuJSWF+Ph4+vXr1yNjcBaepl+edr4KZ/AwMonuqPzxIDC2m8ZwBbCBjgM0IBr9LDKhvh4JVtuadhkQH++9dKXqR9FzeJp+edr5KpzBTcD7tK/XBiQ5I6abxjAV2EdtrYnsbLHwM/Puu5CTAxMnwuTJEBLyJPAIou1LkGa7tsbuBURQWrqFlJRc9u/fT2lpKQD9+/dn3rx5jB492qnz4PT0dD755BPKy8vR6/XMnz+fmTNnoter5mQd4Yna5YnnrOgq84FttK3X5mzsXKA7fqdMSCP2TDv3fxW4HVl0nAUcpm29HozYoagGuu6OCmQr4VY4RC0yYf2WtoPZPwaeovtKv1OACVbPlJdDaiocPQpnzpiD2kHAA1xxxSomTvSm40CNAenG+23j42PAC0hThyrE53s1cAudvSjl5OSwc+dOjh8/bslMiYmJYdasWQwfPrzHAtpmCgsL+fe//41er2fGjBlccskl+Pi077XoLniafnna+SqcQRlwCXCUtifbf0Qy/LqLr5BrRkeMQALq3sBmOl4INSDNdj5sfLwP6ay+AblODUEaoN0ABDg8aoVz8TT98rTzVTiDAmAakEPrhT8dsqj3MjIP7S7eAm5u9Wx9PTz3HDTGn9Hp4hg27EmmTp1OQsJudLqbOjiuF3A38BxGo5F9+15h27Z/U1FxAjAxYEAMCxbcy9Ch96HTOadRY1VVFWvXruX48eMA3HbbbVZJHArbeKJ2eeI5K7pKBqLXJbTWa/OC2YfANd04hn8iTdk7Si5cCXzU+PMzSKPJ9kKaeuA3wGON+21E5tc7Gz9rItKw8nJkLq5wFSqQrYRb4TA1SFb2S0izATMDgEeRrLruDsj+BvitzVcqKiA1NZSjRx8nM7OE+++/n9DQx4GXOXWqgfx8GDMG2v6VPwZsQUqBDDRdoMznFAV8TWf9CQHOnz/Pzp07OXjwIA0NcvzQ0FBmzZrF2LFj8fLqGUv+8+fPs27dOk6flsZwwcHBLFq0iDFjxvR4UN1RPE2/PO18Fc6iDPgp8F8kwGsmHtHR27r58zXgh8CL7ewzFDiALD6CTLo/w74y+xwkuPMEEiwxv0ePTLiTEL3urgxGhT14mn552vkqnEUBEmT4AGv9GwY8iSzedSdGxCd1DS0DHSYTpKXBnj3xZGTcjDmAERb2JnPnZjJ6dEfBlAAgD7lPeJ66OgO7dxvZsQNqayVQHx8/iAULPiEubpxTzkbTNFJSUigsLGTx4sVOOebFjidqlyees8IZnEEs8D7DOpg8Hvgb0oOrO7EnuXAR8AVN9iGJSDP4jkKaA5Bg/e2IZVTz+bW50eUCxEY2sNNnoOgaKpCthFvRaSqQzLkyRPDm0nM9UTUkkP5bZGJsxgu4FvgXEEp1dTX+/v7I6uEB3ntPMrd1OkhIgLFjYfhw8LPqs/Mg8HQ7n21Azvc4Ut7eeSoqKkhOTmbv3r3U1EjThqCgIKZPn87kyZPx83OkAVDn0DSNtLQ0vvzyS0pKSgCIjY1lxYoVbu2j7Wn65Wnnq3A2F5AFukqk18FsutLg1jFMSG+CPyPZK2Z8gFuRrJKgZs9H03EvBjM/RjJM2sILmbibs70VrsDT9MvTzlfhbAqQ4EQNUl0yjZ5rcNuALAz+C+seCwFIlcufKCwsY+/evaSkpFBX9zgrVhiZPFn20jSZY9vmflpa/FVVwY4dkJwMDQ06IJakpD8xd+48oqKinHpmANXV1Rw/fpwJEya4fcKGK/BE7fLEc1Y4kxwkW9ncw2VC+7s7lWrgF8B/sG7+2AexF/w1TVnTFTgWt7gDsSRpK/ypRzLOP2zjdUV3owLZSrgVvZoGxI/7DLIiuBAJMrdEAtkpKbB/v/hqmzEYYMgQaRI5bhzodPFANu2X6uiQMpt7nXIWtbW17N+/n127dlFWVgaAj48PEydOZPr06fS17l7ZLTQ0NLB79262bdtGXV0d/v7+PPzww27b8d3T9MvTzldxMVILfIkEqUOQTJL+NvZzJJAdhnRc74iP6d4ST0V7eJp+edr5Ki5GqhCrpkIgFFhKyyBIbW0thw4FM3ZsPb6NjiDJyXDkiMynR42SBpFNBGJdydlEWRls3QoHDoDJdDsQR1RUFDNnzmTkyJFO8bduaGjglVdeITc3l2HDhrFixQqCg7uWkHKx4Yna5YnnrLjYKEUyr0uASESv/Vvs42ggu3kWdnscx77mlwpnowLZSrgVHsE9wCuYBbmkBA4dksl2YaHsERMDd97Z9I66OmjbLlqHrLjuc+oojUYjhw8fZufOnRQUFMgn6XSMHDmSmTNnEh0d7dTPs0VpaSlffvkl0dHRzJo1C5CsbaPR2GOWJ/bgafrlaeer8GSuAtbR8QTa7BvbEQYkaL6ua8NSdBpP0y9PO1+FJzMDaQwmyR//93/SFBIkUSQpSYLaiYleGAwdB0XOnzewdescjh6di9EovR369+/PrFmzGDduXJfnocnJyXz11VcYjUb8/f1Zvny505tN9mY8Ubs88ZwVnohGU4PIjubOQchiZkeWUV6IfeGTXR2cohOoQLYSboVHkEJbpT6FhXDsGPTrp2fs2GHAcaqr4Z//lEztsWNlIt567hyGZKo4H03TSE9PZ9euXaSnp1uej4uLY+bMmSQlJXV793VN0ywT+5MnT/LZZ5+xYMECxo4d6xad3z1NvzztfBWezEagIz9TA+JDaO9i4kik6aXCFXiafnna+So8GesGkeXlcPiwJIvkWZz/dPj7xzJuXBZLlrRnPWJmAVVVn7F3716Sk5OpqqoCxHpvxowZTJ48GV/fzjeFLCgoYM2aNeTm5gIwYsQIVqxYQWCg8nr1RO3yxHNWeCr/RALP7YU0DcBUIJmOA9kGpKn6m04ZncIxHNGubovc/PGPf2TmzJkEBATYbSGgaRqPP/44AwcOxN/fn4ULF3Ly5MnuGqJC0csZj3RMbz17Dg+HOXP0jB3rjTS5gcxM6dKemgoffAB//zusXQtnzoj/n9B9E16dTsfQoUO5+eabuffeexk/fjwGg4GsrCzee+89nnvuOfbs2UNdXV23jsHM3r17KS8v55NPPuHll1+2NIf0RJReKxTdzUKkqVlb0y4Dor+zHDhmUMe7KC46lF4rFN3N94BLMfuwBgfDzJlwzz1w770wc6ae4OBAqqv7cOGCdRDbdnqYDggmICCAOXPm8OCDD7J06VL69OlDRUUFGzdu5KmnnmLz5s1UVtq2KemIiIgI7rzzTubNm4der+f48eM8//zz5OXldfxmRbeh9Fqh6G7uBkbT5JvdEgMwCJkzdxTEBtFrtQDYG+i2QHZdXR3XXnst995rv9/uX//6V5599llefPFFkpOTCQwMZMmSJZaGcQqFoiXPI40PvJA/Z2+amn8NRLy2xZd1xAj44Q9h9mzo0wdqamDfPnjtNXjmGcjOhp7yW42MjOSqq67iwQcf5JJLLsHf35/i4mLWr1/PU089xZYtW6iuru7WMVx33XUsXrwYPz8/8vLy+O9//8vbb79tsT/xJJReKxTdjQ54F+mWrkMm1l40NRNOQBqhnXLgmMof2xNReq1QdDfeiG3T1Y2Pm/Q6MhIWLx7DQw8d4OabTVxySdO7Skvh+edlbt1g5TiiAVdYHvn4+DB9+nR+/OMfc9VVVxEWFkZNTQ3btm3jqaeeYv369Vy4cMHhURsMBubMmcNdd91FZGQkQUFBhIWFOXwchfNQeq1QdDeBSOP3+Y2PvbCeX88AtmJ/BWMDcLkzB6joJrrdWuT111/nwQcf7PCCrGkaUVFR/OQnP+GnP/0pIL62kZGRvP7661x//fV2fZ4qpVF4JvnAf4F0wAfJ/rsMmXz3RxolNKFpkqF98KBYkNTXw8MPQ3DwV8AiCgsLCQoKwt+/ZVOF7qGuro6UlBR2795NcXExIBP9qVOnMmPGjG4tjayqqmLr1q3s3bsXk8mEXq9n3rx5XNL87qSHcLV+Kb1WKHqCbESvs4AARKsXIJNnP+zLGAE4CQztjgEq7MDV+qX0WqHoCU4iViO5QB8kuD0TKKBlI/avvoKdO+Vncxb3pEnm3jQVtJXlp2kaqampbN++nbNnzwKg1+uZMGECCxYsICAgwOFRG41GKioqCAkJAcBkMpGZmcngwYMdPlZvxx20S+m1QtETHAHeQRqm90eq0icCh4Gxdh5DD9TRdoa3ojtxRLvcpstZRkYGeXl5LFy40PJcSEgI06ZNY9euXW0Kd21tLbW1tZbHZWVl3T5WhcL9iAR+1sZr5a2e0ekgIUG2yy6TJjbS5LwvAOvXryc7O5uRI0cyadIk4uLiurVpjDloPXnyZFJTU9m2bRt5eXls376d5ORkpkyZwsyZMwkKcn4pfUBAAMuWLWPq1Kls2rSJ48ePEx4e7vTPuZhQeq1QdIVY4Fc2nq/E/iA2NFXfKBRto/RaoegKicBvbTxf2uqZuXOl4nHnTigrgy+/hG3bYPp0mDq1Fn9/24FsnU7HiBEjGD58OJmZmXz77becPn2affv2cfz4cRYuXMiECRMcmocbDAZLEBtg+/btbN68malTp7J06VK36AujaI3Sa4WiK4wG/mTj+QsOHMMHFcTuHbjNVczs4RUZGWn1fGRkZLv+Xk8++SQhISGWLTY2tlvHqVD0PtoPynp7S0BbiKShoYGamhoaGho4dOgQr732Gs8//zw7d+60NKfpLvR6PSNHjuTuu+/mhhtuICoqivr6enbu3MkzzzzDF198QXl568C8MwgNDeV73/seq1evZtiwYZbnT5w44ZF2I+2h9Fqh6A6CkYxsezAAod04FsXFgtJrhaI7CKNljxofHwla/+hHcMUV0L8/VFfDli3evPDCqxiNxnaPqNPpSEhI4JZbbuH2228nMjKSqqoqPvvsM1555RVLI8fOYDQa0el07Nmzh//9738djkXhGpReKxTdwYCOd7EQ2fEuCrfAoUD2I488gk6na3dLTU3trrHa5NFHH6W0tNSyZYvRr0KhsHAbHa8sGpAmY3F4eXlx1113sXr1aiZNmoSPjw9FRUV89dVX/OMf/2Dr1q3dPmKdTsewYcNYvXo1N910EzExMdTX17N7926eeeYZ1q5dS2FhYbd8dnR0tCXrpaqqijVr1vDiiy+yfv36TjfhcQVKrxWK3oa5U3pHxXJeSHm7avZ4saD0WqHobfQHlmFrfu3lBRMnwv33w6pVBiIjZzJ27DgMBtlX0zTy8/PbPXp8fDx33XUXS5YswcfHh5ycHF5++WXWrFnTqeSKefPmsWrVKgwGA0eOHOHNN9/slA+3Qum1QtH7SEQsRjoKfeqBH3T/cBROwSFrkZ/85Cfcdttt7e7TWe+tAQNkpSQ/P5+BAwdans/Pz2f8+PFtvs/X1xdfX99OfaZC4RncCzwD1NB22boReNTySKfTER0dTXR0NIsXL+bIkSPs27ePc+fOWZUqVlZWUlJSYhX8dSY6nY7ExESGDh3K6dOn2bp1K1lZWezbt499+/aRmJjI7NmziY+Pd/png2SwxMfHk5qayp49ezh48CAzZ85kxowZ+Ijpodui9Fqh6I08BLyJZPq11cLEBPykx0ak6H6UXisUvZFfABvafFWv1zF6tIFRo17EaGzqZ5CZmckbb7xBTEwMU6ZMYdSoUXh5tb4lNxgMzJgxg1GjRvHVV19x5MgRDh48yMGDB0lKSmLWrFkOWf+NGjUKX19f3n//fTIzM3nhhRdYtGgRkydP7lb7wIsNpdcKRW/kV8DKdl7XI30MVvfMcBRdxqFAdnh4eLd5xyYkJDBgwAC+/vpri1CXlZWRnJzsUKdfhULRkljgc6ShWB0StDbjhTQYe6rx9db4+voyadIkJk2aRF5eHv3797e8dvDgQb766isiIyOZOHEiY8eO7ZYGkTqdjiFDhjB48GCysrLYvXs3qampnDx5kpMnTxIXF8ell17KkCFDnDoZDw4O5vrrrycjI4ONGzdy7tw5tmzZwt69e5k7dy4TJkywZNi4G0qvFYreyBjgfeB7jY8bmr3mhQSxXwem9+ywFN2K0muFojdyKfAycBeSmd1Sr/XAx+h0w2kepy4oKMBgMJCTk0NOTg5ffvklEyZMYPLkyfTr16/Vp/Tp04dVq1YxY8YMduzYwfHjxzlx4gQnTpwgNjaW2bNnk5SUZNf8d+jQodxzzz18+umnZGVlsXHjRoYNG6YaAjqA0muFojdyDfBn4BGa4h9mDIA/sB4Y2PqtCrek2zyys7KySElJISsrC6PRSEpKCikpKVRUVFj2GT58OGvWrAEkUPXggw/yhz/8gc8++4zDhw9zyy23EBUVxVVXXdVdw1QoPIR5wDEk2888SfZDuvnuBh606ygDBgywykSuq6vDy8uL/Px8NmzYwD/+8Q8+/vhjMjMz0bS2sgk7j06nIz4+nu9973s88MADTJ48GYPBQFZWFm+99Rb/+c9/OH78uNM/OyEhgdWrV7Nq1Sr69etHRUUF69ato6ioyKmf4yqUXisU7sQ1SIf1uxHfbIAA4FbgAHCzi8alcAeUXisU7sSdwD7g+0ggBCAE+CGi4ytavWPatGk89NBDLFiwgJCQEKqqqtixYwfPPvssb7/9NtXV1TY/KTo6muuuu47777+fSZMmYTAYyM7O5t133+XNN9+0e04aGhrK7bffzrJly1i6dKlVELs75u6ejNJrhcKd+AWwHcnMNlcwhAI/BY4Cs100LkVn0GnddMW67bbbeOONN1o9v2XLFubOnSsfrtPx2muvWcpzNE3jiSee4OWXX+bChQvMnj2bF154gaSkJLs/t6ysjJCQEEpLS9XqskLRJg3I6mPXs5dramo4dOgQ+/fvt2pEEhERwT333NPtndHLysrYtWsX3333HfX19YBkS1xyySWMHj3a6Z9vNBr57rvvqKioYMGCBZbna2tru1zW5yr9UnqtULgzDThYQKfoAZReKxSK1jim1yaTiZMnT7J3715OnTpFWFgY9913n13Z1eXl5SQnJ7N7924aGhosViSXXnppp+zvTp8+zZYtW7jyyisJCwtz+P3uiiu1S+m1QuGuaEiVuppfuxOOaFe3BbJdhRJuhcI1aJpGbm4u+/fv5/DhwyQmJrJq1SrL61lZWcTExHRbYLuqqordu3ezZ88eampqAOjXrx+zZs1i/PjxNv0HnUVRURH/+c9/mD59OrNmzeq0f7an6Zenna9Cobh48DT98rTzVSh6mvPnz1NRUWHp+9LQ0MCbb77JxIkTGTNmTJvz55KSEjZs2MCJEycAsSJZunQpI0aMsNtuT9M0XnzxRfLz8/Hy8mLevHnMnDnzovDO9kTt8sRzVigUvR8VyFbCrVC4lLq6Ompqaix/g4WFhTz//PP069ePqVOnMmHCBPz8/Lrls2tqati7dy+7d++msrISEK/r2bNnM2nSpG4JaG/evJlt27YBcgOxePFiRo0a5fANgKfpl6edr0KhuHjwNP3ytPNVKFxNcnIyGzZIM8nIyEgWLFhAYmJim3PLtLQ0NmzYwIULFwAYMmQIy5cvJzQ01K7PKy0tZe3atZw6dQqAMWPGcOWVV3ZrIkhP4Ina5YnnrFAoej8qkK2EW6FwK9LS0lizZo0lU9rb25tx48YxdepUIiIiuuUz6+vr2b9/Pzt27KCsrAyQIPOcOXMYP368U5s0appGamoqX375peUGIj4+nmXLllk6kNuDp+mXp52vQqG4ePA0/fK081UoXE19fT3Jycls377dMn+Oi4tj0aJFxMbGtvme7du3s337doxGIwaDgZkzZ3LppZfi7e3d4Wdqmsb+/ftZt24dJpOJQYMGcf3113db8klP4Ina5YnnrFAoej8qkK2EW6FwO+rr6zl06BB79uwhPz/f8nxCQgJXXnklffv27ZbPNTdX2bp1qyWg3a9fP6655po2bwQ6S319PTt37mT79u3U19ej0+mYOXMmixYtsuv9nqZfnna+CoXi4sHT9MvTzlehcBeqq6vZvn07ycnJNDQ0ADBs2DCuvfbaNrOli4uLWb9+vSW7OiQkhOuvv56BAwfa9Znp6el88MEH1NbWEhERwe23346/v3/Hb3RDPFG7PPGcFQpF78cR7erdtUI2MMflzQErhULhPiQmJjJ06FCysrLYt28faWlpnDlzBpPJ1K1/s4mJiSQkJJCSksLOnTspKCgAukcnJkyYwODBg9myZQvHjx9H0zS7P8e830W2vtgmSq8VCkVvRem1QqHoKaZNm8aIESPYsWMHBw8epLq6mqqqqjb39/Ly4vLLL+fkyZNs3LiR8vJy9Hq93X+/4eHhrFq1ig8++IA+ffpQV1dnaaje2/A0rQal1wqFonfiiF5fdBnZOTk5Ts+yVCgUip4kOzubmJgYVw+j21F6rVAoejtKrxUKhcL98RStBqXXCoWid2OPXl90gWyTycS5c+cIDg7udZ2Wy8rKiI2NJTs7W5UBNUN9L61R34ltevv3omka5eXlREVFtdmd/mJC6fXFh/peWqO+E9v09u9F6XXvobf/rnUX6ntpjfpObNObvxdP02pQen0xor6X1qjvxDa9+XtxRK8vOmsRvV7f61db+/Tp0+t+6XoC9b20Rn0ntunN30tISIirh9BjKL2+eFHfS2vUd2Kb3vy9KL3uXfTm37XuRH0vrVHfiW166/fiSVoNSq8vZtT30hr1ndimt34v9uq1ZyxLKhQKhUKhUCgUCoVCoVAoFAqFoteiAtkKhUKhUCgUCoVCoVAoFAqFQqFwa1Qg243w9fXliSeewNfX19VDcSvU99Ia9Z3YRn0vip5C/a7ZRn0vrVHfiW3U96LoKdTvmm3U99Ia9Z3YRn0vip5C/a7ZRn0vrVHfiW085Xu56Jo9KhQKhUKhUCgUCoVCoVAoFAqF4uJCZWQrFAqFQqFQKBQKhUKhUCgUCoXCrVGBbIVCoVAoFAqFQqFQKBQKhUKhULg1KpCtUCgUCoVCoVAoFAqFQqFQKBQKt0YFst2UP/7xj8ycOZOAgAD69u3r6uG4jOeff55Bgwbh5+fHtGnT2LNnj6uH5HK2bdvG5ZdfTlRUFDqdjk8++cTVQ3I5Tz75JFOmTCE4OJiIiAiuuuoq0tLSXD0shYeg9FpQet0apdetUXqtcCVKrwWl19YorbaN0muFK1F6LSi9tkbpdWs8UatVINtNqaur49prr+Xee+919VBcxvvvv8/DDz/ME088wf79+xk3bhxLliyhoKDA1UNzKZWVlYwbN47nn3/e1UNxG7Zu3cp9993H7t272bhxI/X19SxevJjKykpXD03hASi9VnrdFkqvW6P0WuFKlF4rvbaF0mrbKL1WuBKl10qvbaH0ujWeqNU6TdM0Vw9C0Tavv/46Dz74IBcuXHD1UHqcadOmMWXKFJ577jkATCYTsbGxPPDAAzzyyCMuHp17oNPpWLNmDVdddZWrh+JWFBYWEhERwdatW7n00ktdPRyFh6D0Wul1eyi9to3Sa4UrUHqt9LotlFa3jdJrhStQeq30ui2UXtvGE7RaZWQr3JK6ujr27dvHwoULLc/p9XoWLlzIrl27XDgyRW+gtLQUgP79+7t4JArFxY/Sa0VXUHqtUPQcSq8VXUHptULRcyi9VnQWT9BqFchWuCVFRUUYjUYiIyOtno+MjCQvL89Fo1L0BkwmEw8++CCzZs1i9OjRrh6OQnHRo/Ra0VmUXisUPYvSa0VnUXqtUPQsSq8VncFTtFoFsnuQRx55BJ1O1+6Wmprq6mEqFL2a++67jyNHjvDee++5eiiKXozSa4Wi+1F6rXAGSq8Viu5H6bXCGSi9Vii6F0/Rai9XD8CT+MlPfsJtt93W7j6DBw/umcG4OWFhYRgMBvLz862ez8/PZ8CAAS4alcLduf/++/n888/Ztm0bMTExrh6Oohej9Np+lF4rOoPSa4WzUHptP0qvFZ1B6bXCWSi9th+l1wpH8SStVoHsHiQ8PJzw8HBXD6NX4OPjw6RJk/j6668t5v0mk4mvv/6a+++/37WDU7gdmqbxwAMPsGbNGr755hsSEhJcPSRFL0fptf0ovVY4gtJrhbNRem0/Sq8VjqD0WuFslF7bj9Jrhb14olarQLabkpWVRXFxMVlZWRiNRlJSUgAYOnQoQUFBrh1cD/Hwww9z6623MnnyZKZOncrTTz9NZWUlt99+u6uH5lIqKio4deqU5XFGRgYpKSn079+fuLg4F47Mddx333288847fPrppwQHB1t8w0JCQvD393fx6BQXO0qvlV63hdLr1ii9VrgSpddKr22htNo2Sq8VrkTptdJrWyi9bo1HarWmcEtuvfVWDWi1bdmyxdVD61H+9a9/aXFxcZqPj482depUbffu3a4eksvZsmWLzd+NW2+91dVDcxm2vg9Ae+2111w9NIUHoPRaUHrdGqXXrVF6rXAlSq8FpdfWKK22jdJrhStRei0ovbZG6XVrPFGrdZqmaV0PhysUCoVCoVAoFAqFQqFQKBQKhULRPehdPQCFQqFQKBQKhUKhUCgUCoVCoVAo2kMFshUKhUKhUCgUCoVCoVAoFAqFQuHWqEC2QqFQKBQKhUKhUCgUCoVCoVAo3BoVyFYoFAqFQqFQKBQKhUKhUCgUCoVbowLZCoVCoVAoFAqFQqFQKBQKhUKhcGtUILsXMXfuXObOnevqYTiF119/HZ1OR2ZmpsPvve222xg0aFCH+w0aNIgVK1Y4Pjg3QKfT8Zvf/Mapxxw0aBC33XabU4+pUChso/RaUHrdOZReKxQ9h9JrQel151B6rVB0D0qbBaXNnUNp88WNCmR3I2bBMm9+fn4kJSVx//33k5+f7+rhKRQex6ZNm5g/fz4hISEEBwczadIk3n//fVcPS+EGKL1WKNyDuXPnWv0tNt+8vb1dPTyFG6D0WqFwHzZu3Mjs2bMJCAigX79+rFq1qlPBOkXvR2mzQuEe5Obm8sgjjzBv3jyCg4PR6XR88803Nvf905/+xPTp0wkPD8fPz4/ExEQefPBBCgsLe3bQDuLl6gF4Ar/73e9ISEigpqaG7du38+9//5v169dz5MgRAgICXD08l3DzzTdz/fXX4+vr6+qhKDyE1157jTvuuINFixbxpz/9CYPBQFpaGtnZ2a4emsKNUHrdGqXXip7kV7/6FXfeeafVc5WVldxzzz0sXrzYRaNSuCNKr1uj9FrRk3z++edceeWVTJw4kT//+c+UlZXxzDPPMHv2bA4cOEB4eLirh6hwAUqbW6O0WdGTpKWl8Ze//IXExETGjBnDrl272tx33759jB8/nuuvv57g4GCOHz/Of/7zH9atW0dKSgqBgYE9OHL7UYHsHmDZsmVMnjwZgDvvvJPQ0FD++c9/8umnn3LDDTe4eHSuwWAwYDAYXD2MLlFZWem2f9juhDt8T5mZmdx333088MADPPPMMy4di8K9UXrdGqXXnoM7fE+LFi1q9dxbb70FwE033dTTw1G4MUqvW6P02nNwh+/pF7/4BYMHD2bHjh34+PgAcPnll1sC2//4xz9cOj6Fa1Da3BqlzZ6DO3xPkyZN4vz58/Tv35+PPvqIa6+9ts19P/7441bPzZgxg1WrVrF27Vquv/767hxqp1HWIi5g/vz5AGRkZADQ0NDA73//e4YMGYKvry+DBg3il7/8JbW1tW0eo6KigsDAQH784x+3ei0nJweDwcCTTz4JNJX57Nixg4cffpjw8HACAwO5+uqrbZYMvPDCC4waNQpfX1+ioqK47777uHDhgtU+c+fOZfTo0Rw6dIg5c+YQEBDA0KFD+eijjwDYunUr06ZNw9/fn2HDhrFp0yar99vyifr000+57LLLiIqKwtfXlyFDhvD73/8eo9HY8ZdqJ2+88QZeXl787Gc/szyXnJzM0qVLCQkJISAggDlz5rBjxw6r9/3mN79Bp9Nx7NgxbrzxRvr168fs2bOBJj+q7du3M3XqVPz8/Bg8eDD//e9/W33+hQsXePDBB4mNjcXX15ehQ4fyl7/8BZPJ5LRz1DSNP/zhD8TExBAQEMC8efM4evSozX3tHc/58+e5+eab6dOnD3379uXWW2/l4MGD6HQ6Xn/9dct+t912G0FBQaSnp7N8+XKCg4MtgQeTycTTTz/NqFGj8PPzIzIykrvvvpuSkpJW49qwYQOXXHIJgYGBBAcHc9lll7U6h/r6elJTU8nNze3wO3nxxRcxGo387ne/A+TvR9O0Dt+nUCi9Vnqt9Lpn9doW77zzDoGBgVx55ZWder/CM1B6rfRa6XXP6XVxcTHHjh3j6quvtgSxAcaNG8eIESN477332n2/wnNQ2qy0WWlzz86lg4OD6d+/f4f7tYXZk73l34E7oQLZLiA9PR2A0NBQQFYqH3/8cSZOnMhTTz3FnDlzePLJJ9td/QgKCuLqq6/m/fffbyV27777LpqmtcpceuCBBzh48CBPPPEE9957L2vXruX++++32uc3v/kN9913H1FRUfzjH/9g5cqVvPTSSyxevJj6+nqrfUtKSlixYgXTpk3jr3/9K76+vlx//fW8//77XH/99Sxfvpw///nPVFZWsmrVKsrLy9v9Xl5//XWCgoJ4+OGHeeaZZ5g0aRKPP/44jzzySPtfqJ28/PLL3H777TzyyCP87W9/A2Dz5s1ceumllJWV8cQTT/CnP/2JCxcuMH/+fPbs2dPqGNdeey1VVVX86U9/YvXq1ZbnT506xapVq1i0aBH/+Mc/6NevH7fddpuVAFVVVTFnzhzeeustbrnlFp599llmzZrFo48+ysMPP+yUcwR4/PHHeeyxxxg3bhx/+9vfGDx4MIsXL6aystJqP3vHYzKZuPzyy3n33Xe59dZb+eMf/0hubi633nqrzc9vaGhgyZIlRERE8Pe//52VK1cCcPfdd/Ozn/2MWbNm8cwzz3D77bfz9ttvs2TJEqvfrTfffJPLLruMoKAg/vKXv/DYY49x7NgxZs+ebXXxP3v2LCNGjODRRx/t8DvZtGkTw4cPZ/369cTExBAcHExoaCiPPfaYUy+kiosPpde2UXrtHJRed0xhYSEbN27kqquucnmGi8K9UXptG6XXzkHptTXmoKO/v3+r1wICAjh37hx5eXntf6kKj0Bps22UNjsHpc1dR9M0ioqKyMvL49tvv+VHP/oRBoPBvZutaopu47XXXtMAbdOmTVphYaGWnZ2tvffee1poaKjm7++v5eTkaCkpKRqg3XnnnVbv/elPf6oB2ubNmy3PzZkzR5szZ47l8ZdffqkB2oYNG6zeO3bsWKv9zONYuHChZjKZLM8/9NBDmsFg0C5cuKBpmqYVFBRoPj4+2uLFizWj0WjZ77nnntMA7dVXX7UaC6C98847ludSU1M1QNPr9dru3btbjfO1115rNaaMjAzLc1VVVa2+w7vvvlsLCAjQampqLM/deuutWnx8fKt9WxIfH69ddtllmqZp2jPPPKPpdDrt97//veV1k8mkJSYmakuWLLH6XqqqqrSEhARt0aJFlueeeOIJDdBuuOEGm58DaNu2bbM8V1BQoPn6+mo/+clPLM/9/ve/1wIDA7UTJ05Yvf+RRx7RDAaDlpWVZXkO0J544okOz7El5v/Dyy67zOqcfvnLX2qAduuttzo8no8//lgDtKefftqyj9Fo1ObPn9/q//XWW2/VAO2RRx6xOua3336rAdrbb79t9fwXX3xh9Xx5ebnWt29fbfXq1Vb75eXlaSEhIVbPZ2RktDqntujTp4/Wr18/zdfXV3vssce0jz76SLvxxhttjlXhmSi9th6n0mul167S65b861//0gBt/fr1Dr9XcXGi9Np6nEqvlV67Qq+NRqPWt29fbcGCBVbPFxUVaYGBgRqg/T97Zx0e1bX14XckCZogwd3dinvR4tAiBYoUSpV6eytfhcqt3jpQWtzdixV3KdrihOIOIUI8M7O/P1YmQmQmMskk2e/zzJPJmSP7jPzOOmsvOXToUIr70OQstDYnHKfWZq3N7mBLL1myRAFq27Ztya5z8+ZNBcQ+ypYtqxYtWpSq42Q2OiI7E+jcuTPFihWjXLlyDB48mAIFCrBixQrKlCnDunXrABLNSr311lsArF27NsX9li5dmnnz5sUuO3HiBP/88w/Dhg1LtP5zzz2HwWCI/b9t27ZYrVYuX74MSNRqVFQUr7/+OkZj3Ffj2WefxdvbO9FYChQokGDmtEaNGhQqVIhatWrRvHnz2OX25xcuXEj2XCDhjP6DBw+4d+8ebdu2JSwsjDNnzqS4bUp8++23vPbaa3zzzTd8+OGHscuPHTuGn58fQ4cOxd/fn3v37nHv3j1CQ0Pp1KkTO3fuTBSt+8ILLyR5jNq1a9O2bdvY/4sVK0aNGjUSnPOSJUto27YthQsXjj3WvXv36Ny5M1arlZ07d6b5HO3YP8NXXnklwWf9+uuvJ1rX2fFs2LABDw+PBLOwRqORsWPHJjuOF198MdGxfHx86NKlS4JjNW7cmAIFCrBt2zZAOp8HBgYyZMiQBOuZTCaaN28eux5IyotSKkF6T3KEhIQQEBDAp59+ymeffUb//v2ZN28e3bp14+eff3Y4Y67JPWi91noNWq+zUq8fZv78+RQrVizJ2tma3I3Wa63XoPU6q/TaaDTy/PPPs2XLFt5//338/Pw4fPgwgwYNIioqCoDw8PAU96HJmWht1toMWpvdyZZ2RJEiRdi0aRN//PEHn332Gb6+voSEhGT4cTIS3ewxE5g4cSLVq1fHbDZTokQJatSoESuWly9fxmg0UrVq1QTblCxZkkKFCsUKbVIYjUaeeuopJk2aRFhYGPny5WPevHnkyZMnyYLu5cuXT/B/4cKFAWLr9NiPVaNGjQTreXp6Urly5URjKVu2bALBAPDx8aFcuXKJlsU/TnKcPHmSDz/8kK1btxIcHJzgtaCgoBS3TY4dO3awdu1a3n333QS1oQD8/PwAkk0TsR/X/j4BVKpUKcn1Hn5vQd7f+Ofs5+fHP//8k2wH7zt37iR/Ik5i/4yqVauWYHmxYsUSnEdqxnP58mVKlSqVqMv0w99ZO2azmbJlyyY6VlBQEMWLF0/xWPbPxF5L7WG8vb2TXO6IvHnzEhoamqjByJAhQ9iwYQNHjx6lXbt2adq3Jmeh9Vrrtf14Wq+zRq/jc+HCBfbt28fLL7+M2axNVk1CtF5rvbYfT+t11uj1Z599xr179/j222/5+uuvAejatSvPPPMMv/32GwUKFEjTfjXZG63NWpvtx9PanPW2tDN4enrSuXNnAHr16kWnTp1o3bo1xYsXp1evXpkyhtSi7woygWbNmsV27k2Oh0XRWUaMGMH//vc/Vq5cyZAhQ5g/fz69evWKFdD4JNcpV6Wx6V1y+0vLcQIDA2nfvj3e3t589tlnVKlShTx58nDkyBHefffdNNcxrlOnDoGBgcyZM4fnn38+gRjb9/m///2Phg0bJrn9wwZYUnXgwLlzttlsdOnShXfeeSfJdatXr57sebgCV43Hy8srway2/VjFixdPMIMeH/sFxf6ZzJkzh5IlSyZaL62OjNKlS+Pn50eJEiUSLLdfXBwZGprcg9Zrx8fReq312r4eZLxex2f+/PkAiepeajSg9dqZ42i91nptXw8yXq89PT2ZOnUqX3zxBefOnaNEiRJUr16doUOHJums1OQOtDY7Po7WZq3N9vXAtbZ0WmjVqhWlSpVi3rx52pGtSZoKFSpgs9nw8/OjVq1asctv375NYGAgFSpUSHH7unXr0qhRI+bNm0fZsmW5cuUK48ePT/NYAM6ePUvlypVjl0dFRXHx4sXYWRpXsH37dvz9/Vm+fHmCyFh7d+O04uvry9KlS2nTpg2dOnVi9+7dlC5dGoAqVaoAMtPlynOzU6VKFUJCQlx6LPtn6Ofnl+AzvHv3biJnrbPjqVChAtu2bYud+bZz/vx5p8dVpUoVNm/eTOvWrZO9INrXA3EwZ+T71LhxY/z8/Lh+/XqC9+XGjRsAyc7MajTx0XotaL3OGLReO2b+/PlUqVKFFi1auGT/mpyL1mtB63XGoPU6ZUqUKBEbLGK1Wtm+fTvNmzfXEdmaRGhtFrQ2Zwxam11HREREmjMDMgNdIzuL6dGjBwA//fRTguU//PADAD179nS4j+HDh7Nx40Z++uknihYtSvfu3dM0ls6dO+Pp6ckvv/ySYDZt2rRpBAUFOTWWtGKf1Yt/3KioKH799dd077ts2bJs3ryZ8PBwunTpgr+/PyDOzSpVqvDdd98lWQPo7t276T52fAYNGsS+ffv4888/E70WGBiIxWJJ9zE6d+6Mh4cH48ePT/BePvz9Ss147J11p0yZEvu6zWZj4sSJTo9r0KBBWK1WPv/880SvWSwWAgMDY4/l7e3Nl19+mahTNCT8TKKjozlz5gw3b950ePwnn3wSkO9y/HOYMWMGRYoUoXHjxk6fiyb3ovVa0Hqt9dp+LFfotZ2jR49y+vRphg4d6vQ2Go0drdeC1mut1/ZjuVKv4/Pdd99x8+bN2JrHGk18tDYLWpu1NtuPlVnanBShoaGEhYUlWr5s2TICAgIcZlZkJToiO4tp0KABI0eOZPLkybEpJn/99RezZs2iX79+dOjQweE+hg4dyjvvvMOKFSt48cUX8fDwSNNYihUrxvvvv8+nn35Kt27d6NOnD2fPnuXXX3+ladOmSTZRyChatWpF4cKFGTlyJK+++ioGg4E5c+akOfXnYapWrcrGjRt59NFHeeyxx9i6dSve3t5MnTqV7t27U6dOHUaNGkWZMmW4fv0627Ztw9vbmz/++CNDjg/wn//8h9WrV9OrVy+efvppGjduTGhoKMePH2fp0qVcunQJX1/fZLc3GAy0b9+e7du3J7tOsWLFePvtt/nqq6/o1asXPXr04OjRo6xfvz7Rvp0dT79+/WjWrBlvvfUW58+fp2bNmqxevZr79+/HjssR7du35/nnn+err77i2LFjdO3aFQ8PD/z8/FiyZAk///wzAwYMwNvbm0mTJjF8+HAeeeQRBg8eTLFixbhy5Qpr166ldevWTJgwAYDr169Tq1YtRo4c6bDpQd++fenUqRNfffUV9+7do0GDBqxcuZLdu3fz+++/4+Xl5fAcNBqt14LWa63XrtRrO/Z0TF1WRJMWtF4LWq+1XrtSr+fOncuyZcto164dBQoUYPPmzSxevJgxY8bQv39/h+PX5D60Ngtam7U2u9qW/u9//wtILXaQ8iW7d+8GiG0C6ufnR+fOnXnyySepWbMmRqORQ4cOMXfuXCpWrMhrr73m8DhZhtK4jBkzZihAHTx4MMX1oqOj1aeffqoqVaqkPDw8VLly5dT777+vIiIiEqzXvn171b59+yT30aNHDwWovXv3Oj2Obdu2KUBt27YtwfIJEyaomjVrKg8PD1WiRAn14osvqoCAgERjqVOnTqJjVahQQfXs2TPRckCNHTs20ZguXrwYu2zPnj2qRYsWKm/evKp06dLqnXfeUX/++WeiMY4cOVJVqFAhyffB0VgOHDigChYsqNq1a6fCwsKUUkodPXpUPfHEE6po0aLKy8tLVahQQQ0aNEht2bIldrtx48YpQN29e9fpc07q83rw4IF6//33VdWqVZWnp6fy9fVVrVq1Ut99952KiopK8H6NGzcuwXaAGjx4sMPztlqt6tNPP1WlSpVSefPmVY8++qg6ceKEqlChgho5cmSaxnP37l01dOhQVbBgQeXj46OefvpptWfPHgWohQsXxq43cuRIlT9//mTHNnnyZNW4cWOVN29eVbBgQVWvXj31zjvvqBs3biRYb9u2beqxxx5TPj4+Kk+ePKpKlSrq6aefVocOHYpd5+LFiwpIdE7J8eDBA/Xaa6+pkiVLKk9PT1WvXj01d+5cp7bV5Hy0Xseh9VrQep11em21WlWZMmXUI4884tT6mtyF1us4tF4LWq+zRq8PHDig2rVrpwoXLqzy5MmjGjRooH777Tdls9kcbqvJeWhtjkNrs6C1OetsaSDZR/zzfO6551TNmjVV/vz5laenp6pWrZp6/fXXk/zs3QmDUhk07aPJUh5//HGOHz+eqto9muzDunXr6NWrF3///Tf16tXL6uEAsHLlSh5//HF2795N69ats3o4Gk22Qet1zkbrtUaTc9B6nbPReq3RZE+0NudstDZrHKFrZOcAbt68ydq1axk+fHhWD0XjIrZt28bgwYOzTMjDw8MT/G+1Whk/fjze3t488sgjWTImjSY7ovU656P1WqPJGWi9zvlovdZosh9am3M+Wps1jtAR2dmYixcvsmfPHqZOncrBgwf5999/KVmyZFYPS5MDGTNmDOHh4bRs2ZLIyEiWL1/O3r17+fLLL3n//fezengajduj9VqTWWi91mjSh9ZrTWah9VqjcR6tzZrMQmuz+6ObPWZjduzYwahRoyhfvjyzZs3SQq5xGR07duT7779nzZo1REREULVqVcaPH8/LL7+c1UPTaLIFWq81mYXWa40mfWi91mQWWq81GufR2qzJLLQ2uz86Iluj0Wg0Go1Go9FoNBqNRqPRaDRuja6RrdFoNBqNRqPRaDQajUaj0Wg0GrdGO7I1Go1Go9FoNBqNRqPRaDQajUbj1mhHtkaj0Wg0Go1Go9FoNBqNRqPRaNyaHNfs0WazcePGDQoWLIjBYMjq4Wg0Go3TKKV48OABpUuXxmjM+fOMWq81Gk12Reu1RqPRuD+5TatB67VGo8mepEavc5wj+8aNG5QrVy6rh6HRaDRp5urVq5QtWzarh+FytF5rNJrsjtZrjUajcX9yi1aD1muNRpO9cUavc5wju2DBgoCcvLe3dxaPRqPRaJwnODiYcuXKxepYTkfrtUajya5ovdZoNBr3J7dpNWi91mg02ZPU6HWOc2Tb02e8vb21cGs0mmxJbkkD1Hqt0WiyO1qvNRqNxv3JLVoNWq81Gk32xhm9zh2FojQajUaj0Wg0Go1Go9FoNBqNRpNt0Y5sjUaj0Wg0Go1Go9FoNBqNRqPRuDXaka2BEyfg5ZehYUOoXx+eeQYOHcrqUWk0Go3mYQ4dEo2uX180++WX4eTJrB6VRqPRaOKjFOzaBU89BfXqQePG8J//wL//ZvXINBqNRhMfmw3+/BMGDIC6daFpU/j4Y7h2LatHptFokiHH1cjWpAKbTYzqH34AsxksFll++jRMnw4jR8LUqfKaRqPRaLKO6GgYMwZmz06o1ydPwsSJ8NZb8L//QS6qAanRaDRuSVgYPPkkrFmTUK///hu+/x6++ALefz9rx6jRaDQaCAiA3r1hz56Een30KHz5Jfz6Kzz3XNaOUaPRJMKlEdk7d+6kd+/elC5dGoPBwMqVK1Ncf/v27RgMhkSPW7duuXKYuZfPPxcnNsSJdvzns2fDa69l/rg0Gk2mo/XazXntNZgzR54npdfffy+artFocjxar92c4cNh3Tp5Hl+vrVaJ1P6//4PffsuasWk0mkxF67UbY7OJE3v/fvn/Yb22WuH552HZsqwZn0ajSRaXOrJDQ0Np0KABEydOTNV2Z8+e5ebNm7GP4sWLu2iEuZjAQPj665TXUQomTdJpNRpNLkDrtRtz5Yo4PZRKeb2vvoKgoMwZk0ajyTK0XrsxR47A8uXiIEmJjz6CqKjMGZNGo8kytF67MZs2SSS21Zr8OgaDZNA4ssE1Gk2m4tKaEd27d6d79+6p3q548eIUKlQo4wekiWPhQoiMdLye0QgzZojBrdFocixar92YmTNFi1MytEE0feFCiR7RaDQ5Fq3Xbsy0aQnT05Pj3j1YuxYefzxzxqXRaLIErdduzOTJYDKlbF8rBX5+sHcvtG6deWPTaDQp4pbNHhs2bEipUqXo0qULe/bsSXHdyMhIgoODEzw0TnD+vPO1r3VjGo1GkwxarzOB8+edW89s1nqt0WiSRet1JnD+vGMnNojzROu1RqNJBq3XmcDZs46DROxcuODasWg0mlThVo7sUqVK8dtvv7Fs2TKWLVtGuXLlePTRRzly5Eiy23z11Vf4+PjEPsqVK5eJI87G5MnjXIqMwQBeXq4fj0ajyVZovc5E8uRxromjUrKuRqPRxEPrdSbirF7bbFqvNRpNIrReZyJ58zq/rvaHaDRuhUGpzCn4YzAYWLFiBf369UvVdu3bt6d8+fLMsTe5eojIyEgi45XICA4Oply5cgQFBeHt7Z2eIedsduyARx91bt0lS2DAAJcOR6PRiH75+PhkuX5pvXYzliyBQYOcW3fHDmjXzrXj0Wg0Wq81STNhArz6qnPBIqdOQa1arh+TRpOLcRetBq3XbsfHH8OXXzqOyjab4epVKFkyc8al0eRSUqPXbhWRnRTNmjXjfApp1V5eXnh7eyd4aJygXTuoWVNSG5PDaITixaFv38wbl0ajybZovXYR/fqJFhtTuGSbTOIQads204al0WiyL1qvXcTw4RLll1JUttkswSTaia3RaJxA67WLeO45x+uYzRLQp53YGo1b4faO7GPHjlGqVKmsHkbOw2CA+fMlrTEpZ7bRKMK9eDF4eGT++DKL6Gg4dw5On4awsKwejUaTrdF67SI8PGDRItHqpJzZJpM4TubPdy6lPbsSGQlnzsgjIiKrR6PRZGu0XrsIHx+YM0e0OCk9NplknWnTMn9smUlYmNjW586Jra3RaNKM1msXUbYsTJokz5PT69Kl4aefMnVYmc6DB5IhdP688zXDNZosxqWO7JCQEI4dO8axY8cAuHjxIseOHePKlSsAvP/++4wYMSJ2/Z9++olVq1Zx/vx5Tpw4weuvv87WrVsZO3asK4eZe2nUCPbvTzoNvXlz2LkT2rfP/HFlBsHBMG6cXJxq1IDatcHXF8aOhZjvp0aTm9B67eY8+qhocvPmiV9r3160vGHDzB5V5nDvHrzzDpQoIRGMtWrJ87ffhjt3snp0Gk2mo/XazXniCdiwAerVS7jcYIAePeDgQahcOWvG5mquXYNXXoFixcS2rlEDSpWCjz6CoKCsHp1Gk+lovXZznn0Wli6FqlUTLrdHYv/1l9icORE/Pxg9WvS6Th2oVg3Kl5dyK+HhWT06jSZFzK7c+aFDh+jQoUPs/2+++SYAI0eOZObMmdy8eTNWxAGioqJ46623uH79Ovny5aN+/fps3rw5wT40GUzdurB1q0RMHDokNf0aNJDl7srt2+K0sVjEoVG7duq2v39fnPenT0uzHTvh4TB5MixcCLt2pX6/Gk02Rut1NqBFC9i7F44fh7//lujspk3F8HRXrl6Fw4dFa+vXT3yj4Ihr16B1a7h+PWGUSHCwRMgsWgR79ojhrdHkErReZwO6dIFjx0T/Tp+WzJpWrdxbq/79N+7a8sgjqR/rmTNS3iowUGx0O/7+8NVX4izatUsCRzSaXILW62xA//4yAblvn+igl5f4Cty5nMipU3JtMZslyCW1Y/3rL+jUSTIc4+v1jRsy8bh6NWzeDAUKZOy4NZoMItOaPWYW7tTQQZPBXL8Ob70Fy5YlFNwWLeDbb1OuDauUpDZ6esqFavXq5FNnTCYx3v38Uq4hrtFkMLlNv3Lb+eYq/PxEr9esSdj0rGNH+O47yQhKjvh63aqVRC/G1/z4mM0Sif7XXzm7rIrG7cht+pXbzjdXceyYZLhs2RK3zGCAnj3h+++hevXkt1VK9NlkkujrixdTtq+7d4c//sjQ4Ws0KZEbtSs3nnOuYfduyVLcty9umckkzvjvvoNy5ZLf1mYTfbZYoEIFCe5LSa9HjYIpUzJ2/BpNCuSoZo8aDSDlPpo0kWiOhx0af/0lzpG1axNvd/AgDBsm9WO9vKBgQVixIuX6T1arGOLr12fsOWg0Gk1u4ORJaNYM1q1L6MQG2LFDnNN79iTebscOmWj08pKHj48Y6sk5sUFeO3RItF6j0Wg0qWPfPtHk7dsTLldK7OBmzeDEicSvrVsnTmkPD5l09PV1XF/VahVb/d9/M/w0NBqNJsezbh106AAHDiRcbrVKoF/TpnD5csLXbDbxn7RvH6fXZcvC3buO9XrWLMmo0WjcEO3I1mQPxoyROqlJCa59dnHwYGlWYOfXXyXVZtEiaRIGEBLi3PHMZhF9Z4iIECfKnj1w65Zz22g0Gk1ORCkYOlS0OCm9tlohKkrqDsZ3UH/2mdQB/+OPuMZgwcHOHTM1eh0SIjcAe/fKNUWj0WhyKxYLDBwompycXoeEiH1tn5RUSmpg9+wJmzbFbRcQ4NwxDQYJKHGGwEBxtO/bJ881Go0mt2LXYqs1YWlUO1arOJ1Hj45bZrGITT5woPgp7Nvdv+/cMaOjxXnuDPfuiW194IDz/haNJh1oR7bG/fHzE2M5pag8pSA0FObNk/83b5bGjfaUx9RisTg2yoOD4d13pSZVs2bQpo00j+zbF44eTf0xNRqNJruzfz/880/KUR42m0z62dPLFy6U5ruQNr0Gx3p99644X0qUkHJUrVtLA7KhQ+Hs2bQdU6PRaLIza9cm7j/wMFarZNns3Sv/jx8PEyfGvZZaTCbHen31KjzzjNjXrVrJo2RJWXb1auqPqdFoNNmd+fPFQZxSVWCLRXqf2e3aTz6BxYvleVr02mh0rNdnz4otXaqU2NYtWoit/corYntrNC5CO7I17s/Gjc7XPt2wQf5+803661tv3CjOlaSi9gIDRay//z5hF3al5MagZUu5kGg0Gk1uYsMGiZB2hNksaetKwRdfpK++tcUimTdff510FPfNm5JuOWkShIUl3G7JEnntyJG0H1+j0WiyI+vXp06vLRbR2fQQHS2N1X/+WZqsP8z589C4saS027MpQZ7Pni1NKP380jcGjSaX8Pnnn2NNiwNT437YfRyOMBjEhxEaKk3R09MOz2aD//1PNNueLRmfI0fEhl6yJGEgSliY2NxNm4oNrtG4AO3I1rg/4eEyI+gIe1T2nTsSkZ3eC3dEhDhYGjWSmtnxefVV6RScXCpmdDQ8/njCUicajUaT0wkPd84prZSse+qU1F9Nb9/pBw/ggw+knNSdOwlfGzky+ahDi0UM7j590h4NrtFoNNmRiAjntNdgEL3etStjnBL37sEbb0g5qfiTj0pJw7KAgOT1OjBQ1knvNUOjyQUsWrSI7t27c/Hh+1hN9iM83DndMxpl3TVrxC+SXq5dgxdegN69E04uWixiO4eFJW0/W61ie48Ykf4xaDRJoB3ZGvenUiXnnNJmM1SpkrFpLFarpMD37BlXV+rOHViwwHHq/IMHcaVONBqNJjdQqZLzDuHKlRM7ndODzSbRfIMGxS07e9ZxaSq7sW0vdaLRaDS5gUqVnFvPYhG9vn07446tFBw+DM89F7ds714pTeWowe/x43GlTjQaTbKYTCbOnTtHz549mTt3blYPR5MeKlVyLoPGapV1b992LhDQGZQSW/rdd+OWrV7tuDSVxSLBhbqEn8YFaEe2JvO4dk3qp544kXSTguTo1QsKF3a8nsUi9fMKFUrzEJPd7+nTIsQgqT3OOmqcbWij0Wg07sSlS6LXZ86kLvJt8GDpiO4Imw2efhp8fNI6wqSxWGDHDjh2TP7/4w/nDHmzGVauzNixaDQajatRSkpt7N8vE3mp0euRI52zxz08YMiQjLevrVap32qve71qlfOlTlatytixaDQ5kF9++YUiRYoQFhbGRx99xOeff57VQ8rdKCU+hf37xc5ODc8845z/oVAhiZ4uVCh1/hZH2Gzw++9xJVVXr3ZOr41GHSiicQnaka1xPdu3Q6dOUK6c1I6uV09mCn/4wTlBtlqhR4+U1zGZoHt3qcVUpoz8zahZSBChXrBAnj944HzqfPz62RqNRuPu/PGH6HSlSvK3Vi2oWVPq4znjIDGZRO9TwmgUJ3alStCwIZQvnxEjj8NslgaSIHrtTL8Eq1WXgtJoNNmLBQtEQ6tXF72uVk3K4dntVUcULCiNuVLCYIA334QiRaQUSEZPPhoMUl8VnLevDQat1xqNE7Rv356tW7fSrFkzlFLMmDGD5cuXZ/Wwch9KiR1dowbUrh1nZ7dqJSVAnKF0adnWkUZ+/DHkySPZ5B4e6R97fCIi4pzSDx44lzFvMmm91riEHOvItmXkDJTGOSIjxXju3BmqVpWGLP37Q8eOEiEXnytX4O235fWUnNkTJ0oX3HnzknZM22cCS5SQutSDBsGcOdIpNyO/AxYL+PvL87JlnXfoZLSDRqPJgShd6zLzCQuD6dOhXTvR66ZNpdZdnz7w118J1/Xzg+efh2efTV777E0bS5aEdeuSNrTtel2unKQjDh0qWStvvJGx5wZxTXrLlnVuwtRkknU1Gk2KaL3OAoKDxR5u1Ur0ulUreOwx0dATJxKue/y4LP/gg+T3Z7GIDV6qFOzbl7JeV6kCR49KndOtW+GllzLuvEC0N75eO2O722wStKLRaBxSqFAh5s+fT926dTEYDKxbt47gpBpjazIGf3/47juxq6tWFTu7XTuxo8+fT7jugQMSPf3TT8nvLyJC7O9y5SSaOynsel27Nvz5J4weLWWaRozI2MA+ozHOH1KmjHOBIhaL1muNSzCoHGaRBgcH4+Pjw88//8zgwYMpXrx4Vg8pd3D5MnTpIg4Po9F5J7LBAF99lbDmkp3vvxdDOyV8fCTq2WSSWUH7sYsWhQoVpJtuRmA2w7BhMGOGOOxLlZJmNI5Yt04ixTUaJ7DrV1BQEN7e3lk9HJdjP99Jkybx5JNPUtiZEkKa9HPqlOj1jRup02sQ5/eoUYmXv/sufPtt8tsZDFCgQFyEtNUa97dsWYkeedjATytmM7z1Fnz9teh0qVIJG9Qkx+HDMgGr0ThBbtXradOmMXDgQAoWLJjVQ8odHDggWYl2mzM1t21r1khUXnyUEg2fPTv5fRmNkC8fhIQk1utq1WR5RjR9tB/rf/+TqO/LlyVK0dE5GgzShL1ChYwZgyZHk9u0GpI+53v37vHTTz9hNpspU6YMo0aNwuxMaQiN82zaBP36ifPZblsbDM7p9oED0KxZwmVWqwSYbNiQvK1uMoGXlwSo2HXabBYHcsOGopUZmSE+Z474RA4fhiZNHK/v5SXXC32Pp3GC1Oh1jo3IvnnzJr///js7d+7E6kzagybthIZK1LW9I3JqnCJKwc8/J46Yu3UL3nvP8fZ2YbZ/xvZjBwTITGRGzUJaLFL7FUSQ338/5fXNZmjQQCJmNBpNily+fJlff/2VAwcO6Gg/V3PvHnToENe0KzV6bTRKSaiHP6PTp1N2YoNsY08ttOu1/e/Nm5Kl40xKuTPE1+vCheHll1Pet8kkmUTaia3ROMTPz4+JEydy7Ngxrdeu5uJFmXQMDBQNTc37bTIlHeW3axfMmpXyvmw2se0hsV5fvAj37zs/DkcoBQMGyPMKFeCpp1K23Y1GWUc7sTWaVOHr68ubb75J3rx5uX79OgsWLNA+kozk778lujq+Exuc022zGcaPT7x8xQoJikvJVrdaITw87jnE+VWOH5fxZBR58kjvMoDGjeX6lFJUtsEgNrh2YmtcQI51ZFepUgWr1crWrVuZMmUKt27dyuoh5Vzmz4cLF5xvgPgwN28mjpyeNi19pUFstriHIxw5T8xmqRPbpUvcsrffFmG2v27HbnxXrSoXnoxM59Focijly5cnOjqa9evXM2PGDPztaWuajOf338WZnZabF5tN0tivXEm4/LffnGv4khxWq5SGcgaDIWXNNpuhfXuJQrHz9ddxju2k9LpJk7garRqNJkVKlixJREQEK1euZP78+QTpXiCu48cfxUGRFnvYapUm5XaHtJ2JE53T6+ScLxYLREU5P/GYkh1sMsHAgQnL8E2eHGdvx3eQ2J936SLraDSaVFOkSBH69+/PtWvX+Pzzz/nkk0+yekg5hy+/FN1Ni15bLLBsWeLl48c7V74jOb22Wp3LSLSTkq4bjfDccwmb/i5eHBeVHV/r7deYJ58UG1yjcQE51stWvnx5+vXrR968ebl16xaTJ09m69atWNLqbNUkz2+/pT+S7uEmAPv3p7/GtbPbKyWO6qQcJCaT1HxduzahQBsM8Msv0siyXz+ZaSxQQKKwp0yRdJvSpdM3fo0ml1C7dm169OiBp6cnV65cYdKkSezZs0f3OnAFv/2Wfm19uLbinj1pn8i042y0oVJQuXLSzhGjUeq5LlqUcLnZLH0W1q+XLBkfH9Hr5s1h7lzYuTOhYa7RaJKlWbNmdOrUCbPZjJ+fH7/++iuHDx/W0dkZTXS0lHJKr7aGhCT8f+/ezNNrg0FKOz2s1waDLHvkEbGZ45M3r9jcy5dLXdmCBeXRrp04etaulXU0Gk2aqFq1KkWKFCEqKop58+axRE/kp5/790Wf0qOtSU1a/vVX2gJP0oKnpzT1fdhxbvePdOqUOPuyUCGxoefNE5u6QAGxsbt2lYC++fPTF+ii0aRAjnVkb9u2jUOHDjFo0CBq166NzWZj//79hD4cmaBJPxcvpi7dMSkedvpmpAPLUUp5pUpw6JCUOKlaNe41X1/4v/+TaPFKlZLeb/v2Esl3/744448cgTFjpLagRqNxig0bNnDmzBmeeuopqlSpgsViYe/evUSmJopA4xibDa5dS98+DAaZ3ItPRhrZKUXvmc1SP/DYMemtUK5c3GulS8N//ytGf4kSibc1GKBbN6kZGxgoer13r6Soe3pm3Pg1mhzO6tWruXHjBk899RRly5YlMjKSPXv26ECRjOb+/cTR1KnF0zNxSndG6rUj+7p3bynzN24cxO9ZVKmSNEPbsQOSqoFpMsHjj0tzyeBgeWzdCk884Vx0okajSZEvv/yS+vXrY7PZ+Pjjj9m3b19WDyl7c/16+rW1WLHENnBmObFNJhg5UkqRvP12wuCO2rVh0iSZRPTySrytp6c0GN67V2zrwEBZt3v3jCsZqNEkQY6dIvH09OTatWvMnTuXDh06UKdOHSwWCz4+Plk9tJxHUqLmLEajRDHXqiX/KyXRdH//nTFjs+8zKcxmifJYvVocz6+8IuVCAgNlRjWpWUmNRpPhmEwmLly4wLVr1+jatSt16tQhX7585NVRVxmLwQAeHs6X8XgYk0miLIoVk/+tVqm1+nCpkfSQ3CSm2SzHXbxYIj7eeQf+8x9x9igleq1LOWk0LsdgMHD69GkuXbpE9+7dqVu3LqVKlcLDwyOrh5azSO/1z2wW54J9oi4yUqKfH86oSQ/J2dcmk2TOTJ0q2vzxx/Dhh6LXRqM417WDQ6PJMsxmMzNnzqRbt27cuXOH4cOH07VrV7777jvy6WCs1JMnT/q2N5ngmWfi/g8JEedxZuik0QiNGkkPnAIFpBTIF1+Av79cP3x8tF5r3JIce9f37LPPUq1aNaxWK5s3b+b06dPUrl079vXLly8zf/58IjKyAH5upUePtKeN2Gzw0Udxz595BoYMybhu6Mnh6Skddw8dgrp145YbDGJgFyumndgaTSYxZswYKlSoQFRUFGvWrOHmzZtUq1Yt9vWzZ8+ydOlSotPqgNUIBoM4otOj1/YmvNHREjH3zDPSXNeV5M0Lzz4rJZviN/gyGKBoUcme0U5sjSZTGDVqFKVKlSI8PJzly5cTFhZG+Xg1jo8ePcoff/yhm4ilF29vqT2aFm2zp4K/+ab8HxoqDW1ffTX9Ud6O8PaG11+HAwfiJj1BzsPXVxzb2imi0WQ5RYoUYfr06VSsWBGLxcK6det47rnniIqKyuqhZT+qVElY6z81GI3iCH/xRfnf3x9athR729WfRdGi8MEHUiq1QIG45SaTZNEUKqT1WuO25Ng7P29vb4YOHUrv3r0xGo2cOHGCmTNnEhISgtVqZcWKFZw7d47ffvuN8+fPZ/Vwszcvv5z6mlB2R8r334szBKS0x4wZ8txVtXENBolQuX1bjlW5smuOo9FonKZIkSI8/fTTdOnSBYPBwMGDB2MnGiMjI1m5ciUnTpxg8uTJXL16NauHm7159dW06bXRKJrZrp0s+/hjKdMB6S8tlRIvvwx37sCvv0qtVY1Gk6WUKFGCMWPG0KZNGwB27tzJkiVLiI6O5sGDB6xdu5bDhw8zbdo03Wg9vbz6aurtYZNJMm+WLYN69WTZK69I2rer65iPGwe3bknZkIdLmmg0Grejbt26bNq0iVGjRmE0Grlw4QK7d+/O6mFlP4xG0evUOn1NJskKX7cuzhE+bBicPu06X4idX36BGzfgs88gf37XHkujcQEGlcO6swQHB+Pj48PZs2epXr06AJcuXWLRokWEh4fj4+PDkCFDAFi4cCGBgYEANGjQgMceeyx7ptNER4tD4eRJMV7btpWZvMyaQbt9G0aNkkZaSWE0igPCbBYDN29eaZD48svQuLGsY7GIgLs6EhvkgnH7dsKZR43GDbDrV1BQEN5J1Y3MYdjP9+LFi1SsWBGAM2fOsGzZMqKjo/H19WXo0KE8ePCAJUuWEBISgsFgoGnTpnTq1Amv9JQ1yioiImDlSjh/XjJDunSRlL7M4vJlyXpJrh6iwSD1SyMj4e5dKb80eDC89JLUyQOJ6CtZMnETMVdQooTU9dbNYjRuRm7V66tXr1K2bFkAjh07Fht9Xbp0aYYMGcLNmzdZvnw5ERERGI1GWrduTfv27TFnx99wSIg0Hbx8WWzHHj3iSuFlBmfPwoABcOJE8uvUrCklOwIDxXk8fLhE9tkDNW7fhrJl09/g0REGg7w3J07oCD6NW5HbtBpSf842m42JEydy+/ZtzGYz3bt3p3nz5pkw0gwkIEAm8G7ckMyQvn2T7nHlKo4cEb2+eDH5derXl3raDx5IxPOoUfD881CmjLx++nScre1KTCbp87Vli+uPpdGkgtRoV451ZH/00UeMGDGCqjHN+/z9/Zk/fz7+/v54enrSv39/KlWqxNatWzlw4ABKKfLlyxdb78+QXYyw2bOlKP/du3Kjr5TULa1TR6LnmjZ13bEtFjn2xIkya2gwJG5KkC+fpJ5/+WXKjuPdu8UBn1lMmyZNw3x8EjYM02iykNxmbNvP99NPP2X06NGxzpGbN2+yYMECgoODyZcvH08++STFixdn48aNHD16FJCsm169esVOWLo9SsH48RLJHBSUUK+bNpVa0650kEREiLE8Z05cqvrDeu3tDWPHwiefpNwAcdkyMdYzixUrpBFv0aI6KlvjNuRWvf7yyy955plnKB7TvO/y5cssWrSIsLCw2GzI/Pnzs379ek6dOgVA0aJF6d27d+yEpdtjs0nz2G++gbAw0WubTR6PPip6ndY0cmcIDpbGWytXisNBqcTReUWLwltvSb+AlErhTZokup5Zt3vbtkkJkeLFEzZ41GiyiNym1ZD2c96xYwfbtm3DZrNRuXJlRo4c6f4+kehoePddydyLihI9tNlE83r2hOnTE5Y5ymju3JEAka1bE14r4lO6NLz/vmhxSu/np5/C559nXpPHY8fk/SpVSq4pGk0WkxrtyrGlRaKjo5k/fz7Hjh0DxIgeM2YMlSpVIioqioULF3L48GEee+yxWIM8LCyMZcuWZZ/U9d9+E0P37l3532KJE74zZyQF/OBB1xxbKRgzRtJSLBYR7PiiazRK5PWOHbKOo+hnf3/XjDM5nnlGUi7Ll5eo8AULMs/I12g0CQgPD2fWrFmcPXsWgFKlSvHss89SpkwZwsLCmD17NmfPnqVv376MGDGCwoULExwczIIFC7h3714Wj95J/vtfeO01cWJDQr0+ckSyaM6dc82xrVZ44gmYOzfOef6wXvv4SM+AL79M2YkNma/Xjz8uel26tEx4/vFH5h5fo9HEEhwczPTp07l8+TIAFSpUYMyYMfj6+sa+dv36dQYNGsSTTz5JwYIF8ff3Z+7cuYRkRhZHRvDqq1ImIyxM/rfbuSCBFy1aSFSdK4iIkF4Gdp2zWhM6RYxGyYg5cUIcI476ufj7Z27Plw4dRK9LlIDHHhPHtkajyRa0a9eOpk2bsm3bNv773/8yYcIE3Drm0WaDp56Cn36STEKl4vRaKckWb93adb1cgoLE37Jjh/wf/1oBotdVq4pf5uWXHWer+Ptnbs+Xhg1Fr4sXl2z5v/7KvGNrNOkkxzqy69Spg81mY+XKlezcuROlFHnz5mXYsGE0btwYpRR//vknK1asoHDhwjz//PN07NiR+vXrJ2ha47bcuyeGdnJYrTJDOWaMaxy0+/ZJREpy+7bZZFb0k0+c219WzgIeOyZ1s998UzuzNZosoHLlykRHR7Nw4UIOHToEQMGCBXn66aepXbs2VquVlStXsnbtWkqXLs1LL71E69atadasGb6+vlk8eic4f16cIslhtUoK+yuvuOb4f/whxnxy9fZsNikX8vXXzu0vK9/zffugTx/nx6rRaDKUsmXLEhERwezZszl58iQgfQ7GjBlDlSpViIqKYtGiRWzZsoWqVasyduxYmjRpQtu2bSmQHUq67d8vmYbJYbFIBN7//Z9rjj97tjgTkovIs9kkgOWXX5zbn69v5kX3PcyWLdCpE0ydmjXH12g0qcJgMNCxY0d8fX2xWCxMmDCB2bNnZ/WwkuePP2DJkuTv361WuHABvvrKNccfPx78/FLW63//lUxwZyha1PW1sZPCZoO1a8Xpv2JF5h9fo0kDOba0SGBgIH/99Rd79uwBoEmTJvTo0QOj0YhSiv3797Nx48ZYB3eXLl1oFFOn1J5CExISwqpVq+jSpUtsCqXb8O23EonhjNjt3w8ZVefq4kWpc/3FF7Bhg2Pj2GCAS5ccp2BarbLOjRsZM860smCB1IPNjhw6JDdfa9fKrHSlSvDCC9I0IjvcPGpyXfqj/XwDAgLYuXMnR44cASQipEOHDhgMBpRSbNu2jZ07dwLi4O7WrRu1Y2rI2fX6/v37bNiwge7du1PY3ZpMvf22RIs4o5fnz2dME1qlZF/37kn6+YEDjq8XXl6i74UKpbxeZtbIToktW6Bjx6wdQ1rZtQsmTJBzsFigRg2pQ/7kk9K9XuP25Fa9vnfvHps3b+b06dMYDAYee+wxWrRoAYDVamXDhg0cjMkGLFy4MD179qRq1aoopWL1+saNG+zevZvu3btTsGDBLDunJBk+HBYudFxT2sND+rpkRCCGUlIbNSgInn5aHCOObs8KFxa9dpRBk1k1slPCYICjR6FBg6wbQ1pRCjZuFL3eu1euo/XrS4mAJ57Q/RuyAblNqyH953zv3j2GDx/O6dOnyZs3L//973/p37+/C0aaTrp0kawPR/a1j4/oZUbYVzab9CULChINsGfGJ4fBIHa9n5/jiOwzZzK3D8PDGAyiaefPu7Z8lquwWmVyY+JEOHxYljVvLnrdo0fmRrtr0oQuLYI4N7p06UL37t0xGAwcOnSIzZs3x77WsmVLRo8eTYkSJQgPD2f16tXMmDGDu/HEaPPmzfj5+fH777+zdetWoqKisup0ErNnj3NObKNR1k0va9ZAq1YixK1aibPUmQgPpaT+65AhcuOenGFuMsF//pP+cULam8wYjfDDDxkzhszms8/kfZ47Vy6owcHwzz/iGKlfXyYTNBo3xWg00rt3bx599FEAdu7cyb6YZoT26JDhw4dTpEiR2MaP8+bNIyBequD69es5d+4cv/76K3v27MGSlTftD7Njh/N6uXdv+o+3YIGkC1avLnq9b59z14vISKhbV5rPxETGJ0n+/M6lSDpDWvdhMsGPP6b/+JmNUhJ5366dNJHz95eboUOHxIHVvLlEe2o0boqHhwcDBw6kWbNmKKXYsGEDf//9NwAmk4mePXvy5JNP4u3tTUBAAHPnzo1t1guglGLNmjWcOnWKiRMncujQIWxZEYGWHNu3O+f0jY6Ou1FOK0rB5MkykVWnjuj1uXPOZQcGBIjGjx2bcjPIEiXEOZ8RN/Dp0evx49N//MzGYpGMzW7dJHjH3lRzzx6ZdOzYUZq2aTQ5DF9fX6ZMmUKlSpUIDw/nk08+YePGjVk9rMTs3u2cfR0UJE7i9GCxiJ+gUiW5t27b1rETG0TP//1XdP7tt8VJnBw1a0L37plbDio+9n4MkydnzfHTQ1iY1ER//HGZ3AgIkMemTdC7tyyPjMzqUWoykBzryLbTvHlzBg4ciK+vLy1btkzwWrly5Xj++ed57LHH8PT05MqVK/z2228cPHgQpRQdO3akRo0aWK1Wdu7cyYQJEzifkvhkJtHRzq2XVAPG+Ny9K81sunaVG+sXXkhsmP/8swjAgQNpG+udO7B0qex/2LDkx/7qqzB6tDxPq4DXqSNGe1oMdptNaoq7qu6hq5gxI65sQfybL6XkcfWqzFi700SMRvMQBoOBRx99lD59+lCyZEkeeeSRBK9XqVKFl156iUcffRSTycT58+eZNGkSJ2Ju4Lt3706lSpWIjo5m06ZN/Prrr1y5ciUrTiUxzuo1pKzX169LI5hOnaTh2GuvSVRIfD74QG68U3JspMT16zIh1rSpOFyTczB99plcFyDtDpLmzaXBZFr03mqFdeuknmx24ttvJbIPEuq1/X0+dUre15yVLKfJYRiNRrp3707nzp0pX758bIaMnVq1ajF27FhatmyJ0Wjk5MmTTJw4kfPnz2MwGOjbty9lypQhIiKCNWvWMHnyZG7dupVFZ/MQqSnDkdK6Fy7Ae++Js7NjR2nK+O+/ca8rBc89J01403pvcfmyOBzq1RNNTk43JkyQlHGDIe3O6M6dJZoxLXptsUj6f3bjP/+BRYvkeXy9tn/ue/fK9VajyYGULVuW33//ndKlS/PgwQM++OADLly4kNXDSkhqJkFT0uvTp+H118W27tRJ7quvXYt73WKRJudvvw1pvbfw85PszBo1pDFlcsydC7Vrp2/ysW9fiaxOS8aI1SoBMdmNMWPEaQ0JP2v78zVrJAhHk2PIsaVFHg5Ht1qtmFIwvoKCgli3bl1ss7HGjRvTvXt3TCYTp0+fZtOmTbHRf40bN6Zr1654eXm59mRS4r334LvvnDO4166VdIqHmTULnn02YSMZs1nE+vHHYd48cZI0bZpx4zYYxFmenIArBYsXi9Dv35+6fRcpIqmLefNKI8xJkyTt02BInVPgxAlxiNuxWuVi4o5dm202iZKPabqUItm5bEouIbelP6ZVr/39/fnjjz+4FJNp0KZNGzp27IjBYODYsWNs3bqVBw8exGbfdOjQAQ8PD1efTvKMGiWGqTNRfocOSQPah/nxRzGgIbFeP/OMaN6mTUlrfXr45JPk63tbrXId+eknOH48dfstX16aXIaHy/Vg8uS4JjepuTG5ezdhzW531uuICCnJYm/4mRLZuWxKLkHrteBIr2/dusXq1au5ceMGBoOBzp0706pVK5RSHDx4kO3btxMeHo7RaKR9+/a0adMmxf25nO7dRUudKQV18SJUqJBwuVLw4YdSk9VojNuPySTP331XXps9W7IwMpJJk8TGTorISKlV/dNPqXec160rwSw3b4pTfPp0yfyzX4OcwR5YE1+brdasizx0hL8/lCrl3ET0P//IZILGLcltWg0Ze84HDx5kzJgxhISE8MknnzB8+PAMGmUG0KiR/P4c2Y2enlJm6eHSeRaLODd//z2hnplMouVffSWTkN9+K76XjHSbLVkizvGkCAkRPf/559QH2LVpIxHJZ89KJsycORKt7OHhfGBNkSKJG7u7s17/+y9Uq+b48zEaJcCvdOnMGZcm1ejSIkkQ3yg+efIk27dvT/C6j48PgwcPpkuXLhgMBg4fPsysWbMIDQ2ldu3avPTSS7E1AA8fPsyuXbsyc/iJsTugHVGmjHQNf5gVK8SAjo5OKP52AV+1SqIMfv45Y+u/KSUXi+RE2WCQdL13303dfgsUkPSi8uWhWDH46COptx0RIQ9nZzUNBunce/26RDYWLy7n7+UldbDsXYndhT17nHNiG4262Y4m2xBfrw8dOsSBh7JBihYtyogRI2jTpg0Au3fvZsGCBURGRtKoUSPGjh1Lw4YNUUqxd+/e2AaSWcYLLzi+2TcapX5oUk7syZOlGa3NlrReT58uhviPP2a8kfnNN8mnTptMkkWT2giHYsWk1FTRolK79csvpZZ3RITUMHQWDw+pe3jhgrw/hQuLXufLJ9k/7tZ9fe1a55zYZrNk2mg02QC7Xiul2LlzJ8cfmtQqWbIko0ePjm20vmnTJpYvX47VaqV58+aMHTuWWrVqYbPZ2LZtW2wDySzjxRcd29cmk9jWDzuxQXrIfPml2LtJRYV9841MEH7/fcbX6xw3LnlHhZeXlCEZMSJ1E32VKsHWraKrVarIdSYwUCYhY/paOIWvrxz31Cl5jwsWFK0rUEAi01M7GepqFi92zklvNsuErkaTQ2nSpAn9+/enS5cu3Lt3L7ZMlFswdqxjJ7bZLD6NpPq/vPFGXBmNh7MubDbxR0yYIP6QjHRiGwziq0hunwUKSEZIv36p0+tGjcTWNJslKO+338QpHh4u5eycpVQp+Xv4sFwz8uWTfRYqJJHr7lKhwM6cOc5fT+fOde1YNJlGrnFk27lz5w5Lly5l+/btHH6ohIbBYKB169YMHTqUPHnycPXqVSZPnsz169fx8PCgW7duPP3001SuXJm2bdtm0RnEUKWKczVKk3JsKCWRfSlta7PBypVSEiSja80aDBKJkhL/+1/q9mmxJD1OLy9p0uJshF/nzhJhU6eO3GzYa19FR8v78eijcuFxF+KnPaWEzZb2VCiNJou4dOkSa9asYcOGDZx5qLad0Wikc+fO9O/fHw8PD/z8/JgyZQp3794lT5489OvXj6FDh1KtWjWaNWuWRWcQQ7NmMGhQ8kaWPd07qRr9kZHS2Dcl7HVWnYkiTC0REY5TwlOr1w9PoNrx8pImLc4yZIjUs61bF375RZwrIGOeP19Kl/zyS+rG5kquXnXO0LZYtF5rsh2nTp1i69atrFy5kssPTbCbzWZ69epFz549MRqNHD9+nOnTpxMYGEiBAgUYNGgQTzzxBLVr16ZeVke29uwptl5yk4JGo0yiffFF4tcCAuC//3V8jK++EsdtRtcGv3MH/vwz+detVonITo1DJqmydAaDlBlZu9b5/YwaJc7hBg0ksMLuDAsNlf8bNpRMUHfh6lXnAnlsNudtcY0mG2IwGHjvvfeoVq0aQUFBTJ06lb/++ovQ0NCsHho89ZRoSnJ6bTJJX5cPPkj82qVL0hTQkR6+/74Ex2UkSknN7pjGyEli18bU6HVkZGI7067XW7Y4v59Ro8QJ3rSpZHSHh8vyoCCxq+vUgfXrnd+fq7l2zTmHv8mk9ToHkesc2cWLF6ddu3YArF27Fj8/v0TrVKtWjWeffZZixYoRHBzMjBkzOHbsGAAVK1ZkxIgRsWVFlFKsXr06kdGeKfz0k9QwNRjkh2kwxKVU58kjEQIDBybebudOiWBzJIxmc+rqjzo7Y2g0ShTHCy9INJ2np0RqvPRSnOM4tZF00dEya7p8OcycKYa8PSpl5kznoxSbNpWmLg8eJHYI2d+v//7XfZqMFSjg/LoFC7puHBqNC6hQoQJNmjRBKcWyZcu4evVqonXq1avH6NGj8fHxwd/fn6lTp8aWiKpevTpPPfVUbMSg1Wpl+fLl3Lx5M1PPI3byzl5L035zbDc2CxSQLJmkSkmsXi0Nphzhqk7cZrPUAR0+XDTE01P6ELzzjqSWWyypj8wICYGPPxYH+cyZEu1n19vp052/ljRoIHUAIyKS1+vXXnOfWn8FCzrnuDIYtF5rsh21a9emdu3aWK1WFixYkKB5OogzpGnTpowcOZL8+fNz8+ZNJk+ezKVLlzAYDNSvX59BgwZhiPn9R0VFsXTpUu7du5e5J2Iyie527y7/2/XabkcWKSI25kN9HABxxDrTj8RVzYgNBti8WcoD5s8vk4Nly4rdGhYmGS/OXE/ic+uWRJgvXCj3FXv2xOlrajL9atQQp1NSgSf2BmPDhklKvDvgrF4bjamzxTWabIinpydPP/00RYoU4dixY7z22mv873//w//h8hOZTd68onn2PmgP63XJkhLwULVq4m2nT3fOdnZlBPrKleJ3yJdP9LpSJfHvREVJqdPUNic8fVqyfebPl/uOgwfjemalJtOvZEnxyyiVtF5HRUGvXmnvx5PROKvBSmm9zkHkmhrZ8VFKsXLlSv7+++/YhjVNmjSJNZ7tREZGsnz58linSLVq1ejWrRtFixaNXefIkSOsXr0ag8FA8+bN6dSpU+bXYr14EaZNk3rWHh7SRXfECHESJ8XvvydfQ+9hUlP/rlYtmV109JWy1wlM7rXvvpNUn/RSrJjMoi5YkPKMZ3wef1wuKs44+W/eTFibNSsIDpaLjX2mNDmMRmkElNSMtMZtyG11/Jw5X5vNxsKFCzl37hweHh707duXunXrJlovNDSUxYsXx04q1q1bly5duuATTwd37drFli1bMBqNtGvXjrZt22Z+LdYzZ0Svz58Xp3CXLhJZnD9/0ut//rn8dh3psD2q29kb70qVnJvQTKnHgKenZK5khF6XLSuNLD/5RCLhnKFPH2ne4uic8+WTSdJ8+dI9zHRx/bqUv3LmM5o8WUqIadwWrdeJiY6OZvbs2Vy9epU8efIwYMAAqibhQAgKCmLhwoXcvHkTg8FAo0aN6NSpE/nj6eCGDRvYv38/ZrOZTp060aJFi0R2uss5dkxu/i9fFv3o2VNqmibXI+eVV8TGdlSHNDW2dZ48YmumN4osXz6ZgPzkk/TtB8Qp9PXXMsHpyP6007WrRAQ6yhry9RX7OiPLGqaF48ehfn3n1l21Sq5HGrckt2k1uO6cr169ygsvvMDZs2cpWLAgjz76KG+++SblypXLsGOkCaWkt9bs2RI97e0tJUF7905eS558UjLPnSlN4qxeFykiY4npq5ZmChUSfR0/Pn37Aanf/8UXqdOoVq3k/XT03lSuLPczWd2XZssWyap3hn37IKZcsMb9SI125UpHNkhk3ooVKzgRM5Nkb+5ofkjslFLs2LGDXbt2YbVaMRqNtGjRgnbt2pEnTx4iIiLYuHEjR2LqxBUtWpSePXtSqVKlpA3uO3ckGtlqlXTopOrruZrp06U5mDOUKycXhJQMT6NRxOPdd6XTr7tRtqw4EJz5qqfkZH+Yl16SlKSs5tVXpVlacuM2GGSC48oViaTUuBVKKY4dO8bUqVOpU6cOY8eOzTXGtrN6HRUVxeLFizkfE/lrb+5ofCiSwmq1smnTJg4cOIBSCg8PD1q3bk3r1q3x8PAgNDSUtWvXcurUKQBKlSpFz549KVu2bNIHvn4d/v5bnjdsmDXNQb7+WhqHOdIlo1GuJ1evpmxwm0wSGd69e1yEuDtRrFhcZo4jUtPI9+uvU997wRU8+SQsW5b852k0SiTg9evJT25osgybzcZff/3F5MmT6dKlC0OHDtV6/RBhYWEsWLCAq1evJmju+LBNHB0dzbp16zh69CgAXl5etG/fnubNm2MymQgKCmL16tX8+++/gGTo9OjRgxLJ2TEXL0pAh9kMTZpkTaDBm29KPVVHjmwPD+lhc/WqY/v6rbdk3TfeSH+N1tQ2P3e0nwIFXBOt6C7Nydu1E6dHctdUk0nsgosX3bcJWi7GYrGwZ88eJk6cyJIlS3KNVoPrHNlKKdavX8/kyZM5deoUnp6etGjRgjfeeIM6deo4v6OzZ8HPTwIimjdPPvjOlQwbJpkmjuxrs1l6Zt26lbJj12CQppABARLkkd5Sf6nxSaSE/drrbLBLatmzRxzfWYlSElB5/nzy75nZLE79w4ez3vGuSZKQkBAWL17MM888ox3Zjk5eKcWePXvYsmULSikGDRpE7dq1k1zX39+fP//8k3PnzgGQP39+OnXqRMOGDTEajfj5+bF69WoexDTFKleuHO3ataNq1apivF++LN1u49ecNhgkQuHrr8VJklmcPy+dXR1hMkla9pQpYqim9FX56SdxqNasKZ1jM7pOqztSqJCkaGa1GIaGSkmCw4cTv+92w3rxYpmZ1rgNwcHBsfWfr1y5wv379/H29mbPnj25xthOjV7bbDa2bNnCnj17ABg1ahQVkpkIvHXrFuvXr4+Nzvbx8aFLly6xRvbJkydZu3Yt4TGRZJUrV6Z9+/Zx+zt9Wpyea9bE6Z7RKGUsvvnGOf3MKPbvj0uZTAl745ivv3ac2r5okZxLuXLSldwVhm16yChnS3yqVpWbpqzG3x9at07a2DaZxNBevx46dMia8WmS5P79+6xatYpNmzZx48YN7t27R/ny5Vm/fr3W6ySwWCysW7eOI0eOYDQaeeGFFyhevHiS6165coUNGzZwI6YGadGiRenWrRvVqlVDKcXhw4fZuHEjUTG6VrNmTdq1a0dp+8TioUOSfbd5c9xOzWaZNPr6awlmyCxWrxZtdYYvvhDNduQY2bZNyiiVKSPRz+522+YKvW7bVsogZjVXr8r199atxHptNktZgx07pMGaxm24c+cOy5cvZ8uWLdy9e5cbN27g5+eXa7QaXB+Fvm/fPsaPHx87EdmgQQNeeeWVJCctE7B9u2QH790btyxPHok+/uoraQKeWUyZIo1mneGrrxz3qzGZJPilYEGJVHYnX0j8zySj9fqpp9yjgeKpU9CmjZSHfXjy0WyWhvB79yZdZkaTZdy6dYstW7awe/duihYtyqVLl5g3b552ZDsr3H5+fly8eJGuXbs6XPf8+fNs2LAhtmZfqVKl6Nu3LyVLliQ8PDy2iaTFYqFixYo8/fTT4tht0UIaUT38wzKZJDJjy5bMnc3q2jVhXdKkMBrFiDt4ULrmJoe9JveRI1LLqW1bca66m3PEFQQFSfpSVhMWJjdFkyYlTGfq3Fm62Ldpk3Vj0yTg/v37fP/996xZs4Y8efKQN29ezGYz1atXp3z58rz//vu5xthOi14fP36cgICA2F4HyaGU4vTp02zcuJHAmCaA5cuXp2/fvhQtWpSQkBC2bNnC33//jc1mo06dOgwcOFBSydu1k99UUo7GAgVg927JqMkMlJKJzpMnU9brPHkk42fePHjxxeTXMxol8uXECXGmdu2afPPFnITZ7DhKMrMICJByMfEbnhkMUm/w00+1U8SNuH37Nl9//TWbNm3C29sbT09PPDw8qF69OrVq1eKVV17Rep0MSikOHToEQNOmTR2ue+zYMbZs2UJIzG+iWrVq9O7dG29vbwICAti8eTOnTp1CKUWzZs3o0aOHOBEfe0xs66Qcjb6+MhmYWdmPVquUD3IUuVe0qKzzxRcpl/owmaBUKdHr7duhf3/Zb866dUtM8eJw+3ZWj0K4dUvs6Nmz4/oGmc1SYuaTT6T2t8YtuHLlCl988QW7du2iSJEimM1mvLy8qFixIpMnT841Wg2ZU07lzJkz/Pjjj+zbt4+IiAhq167NF198kXxk9ooV0rvLXhM/PiYTVKwoGRDFirlkvIkIDRV9TSlYz2CAKlXg3DmxrX//Pfn9mUyiB0ePimPX2ez37E6DBnLv5A5cvCh6vXBhnM3v6SkZqJ99JgE8Grfg6NGjfPDBB5w5c4YiRYpQoEABatSoQZUqVXj33Xe1Izutwh0dHU1oaCiFChVK8nWr1crBgwfZvn07ERERsd3YG8ZEVT948IB9+/ZRrVo1KlWqBC1bYvnrLyw2G3mS2qHRKKJ99ao4tTODf/+FZs3EEZuSc+Trr8UB/7//pbye2Sx1uadNk7pynTo5nx6enQkNzfq6q/GJjJSLSUSEGARZUbpGkyy3b99m5MiRnD17FqUUJUqUYMSIETzxxBOUKlUq19Xxy4jzjYiIIDo6moLJNMeLjo5m37597Nq1i+joaLy8vHj88cepWbMmAIGBgezZs4fGjRtTsnhxqFaNyEuXMNpsJKnGJhNUry6O5czKxjh2TKJ4IyJSdo5MmSLRBrNnp6zXJpPUSv3yS3HK9+ghEQw5mTx5nK/lmlmEhsI//0gEfbVqWVO6RpMsly5dYuTIkbGZHeXKlWPkyJH069cPX19frddpICQkBJPJRN68eZN8PTIykp07d7J//36sViv58+dnwIABYksD9+7dY/fu3XTo0AGfmEaG4ffv46kUSRZ2MJtlIj8zGwhu3y4ThBZL8s4Rk0ma3U6dKo0jU9Jrg0EajL/2mmQJDRyYukbs2ZFy5aQcnjsRHCz3NzabZJ9mlrNN4xQnT55k9OjR3I6ZAKlatSojR46kT58+GAyGXKXVkHl1wa9fv86PP/7Itm3bKFCgAF999RWtkgrM8/eX7JjIyJR1ceDAzG3QvXy5TEql5A7z8pJMubffFie1I9fZ/PnS+2bmTOl14qrmvu5CkybO9yLLLPz9JULbYIA6dSQaW+M2TJs2jW+++SY2065cuXIMHDiQXr164evr67x2KReyY8cO1atXL1WqVCkFqBUrVjjcZtu2bapRo0bK09NTValSRc2YMSNVxwwKClKACgoKStOYIyIi1IwZM9QPP/ygAgMDU1w3JCREzZ07V40bN06NGzdOrV69WkVHRydc6cgRpUBtBvU9qHNxvWMTPxYvTtOY08y+fUqZTMmPx/4oUMDxOqCUl5dSoaFKzZzp3PrZ+WEwKFW/fuZ+Xppsi9VqVStWrFC9e/dWLVq0ULVq1VLvvPOOunnzZoL10qtf6SE76nVISIj67bff1IQJE1RoaGiK6wYGBqpp06bF6vWmTZuU1WpNuNKffyoFahWoX0BdSkkDduxI05jTzKpVojuOtMnDwzkNK1JEKZtNqW+/VcpozHpNdbVed+2auZ+XJtsSHR2t5syZo7p166aaNWum6tSpoz799FPl7++fYD2t16kjICBA/fzzz2rq1KkqMjIyxXXv3r2rJk2apMaNG6c++eQTtWvXLmWz2RKuNHu2soGaD2oSqBspacCpU2kac5qZPNmxJplMzmm6waBUzZqy37ffds5uz84Po1GpkSMz9/PSZFsiIiLUb7/9prp06aIaN26sGjRooL7//vsEOpWVWq1U9tTr1HD58mU1efJk9cEHH6gvv/xSPXjwIPFK333nnK1pMin10L2Ry/n0U8ealCePc/plMinVvr3sd9iw3KHX//lP5n5emmxLVFSUev7551WFChVUhQoVVMuWLdWWLVsS3I+nRruMSXq3M4jQ0FAaNGjARCcb4l28eJGePXvSoUMHjh07xuuvv86YMWP4888/XTnMBFgsFkJCQggKCmLOnDmEhoYmu27+/PkZOnQoHTp0wGAwcPjwYaZPn05A/NIO69djMRo5DQQD84DlQNjDOzObYe3aDD+fFNm0SWQoJQwG5xu5REZKCt4vv6R/bO6OUhIdo9GkQEREBIsXL2bw4MH89NNPBAcHU7FiRaZPn87XX39NyZIls3qIsWRHvY6OjiYkJIS7d+8yb948IiMjk13Xx8eHkSNH0iKmU/Xu3buZM2dObF8DANatI8Js5jzgD8wA1gKJ9ppVeu2omZTJ5Hz5jPv3RdvHj8/5ZUWUgldeyepRaNyc0NBQZs6cyZNPPsnUqVMJDw+nZs2azJs3j48//pgiRYpk9RBjyY56HRUVRXh4OFevXmXRokVYUohS8/X15ZlnnqFhw4Yopdi8eTOLFi2K7WsAwLp1BBuNXAFuAVOALUCivRqNsG5dhp9PijjSa7vt7cgGt69z8aJEYU+e7F51V12BzSbN1DWaFAgKCmLChAkMHjyYBQsWEBUVRePGjVmyZAlvvvmmW0VeZ0e9Tg3ly5dnzJgxVKhQgcjISDZu3Bjb8yCWP/5wzta0WkU/M5NNm+Q6kRw2m+PeM3asVunHcu+ec40ksztKwQsvZPUoNNmAu3fv8tJLL7Fr1y4A2rRpw+bNm+nYsSPGlH5/KZBppUUMBgMrVqygXwq1lt99913Wrl3LiRMnYpcNHjyYwMBANmzY4NRxMiKVJigoiOnTpxMUFETp0qUZOXIkXl5eKW5z/vx5li1bRnh4OCaTiWbNmtG2bVvyffklfPst0dHRbAP2AQrID3QD6gIGEAEdMECacGUWlSuLcZyRbNoEXbpk7D7dDYNBznHNmswrBaPJVjx48IBVq1axevVqLl26xJ07d6hQoQJ9+vTh+eefp0CBAklu5y6p6tlJr+/evcuMGTMICwujUqVKPPXUU5jN5hS3OXnyJKtWrSIqKgoPDw9atWpFq1at8HrlFZgxgwiLhY3AkZj1fYCeQDVi9NrDA55/XpzAmYFSUtc6o8t/7N6dO+rnDx0q9QqzujGvxi0JDAxk6dKlrFu3jsuXL3P//n0qV67MgAEDGD16dLL2n9br1HPt2jVmzZpFdHQ0tWvXZsCAASnewCglzR7Xr1+P1WolT548tGnThubNm+MxYACsXk0osA44GbONL9ALqGjfidkMH38sjRUzg9BQ0euMdGAYjWJfd+qUcft0V954A374IatHoXFT7t69y6JFi9i0aROXL1/mwYMHVK1alaeeeoohQ4bgkcR9mbtoNWQvvU4t169fZ8KECRw6dIhGjRrx/vvvU9he0qFpU2nM6wy//+58E8b0cvWq9DXISLy8pDzKE09k7H7dka++gvfey+pRaNyYoKAg9uzZw65du9i3bx8mk4m+ffvy6quvJrl+arTLpRHZqWXfvn107tw5wbLHHnuMffv2Zeo4fHx8GD58OPnz5+fGjRssWLCAaAdRblWrVuX555+ncuXKWK1W9u3bx88//8yuqCiioqPxALoCY4DiQCiwDJgI3AAxUtNazzgyUm7S27WTrubVqsGbb0pjgqSw2aThQkzdxwwlpaaQOQFPT2n2sHq1dmJrEnH//n1++eUX+vfvz9SpU7lz5w6+vr60aNGC77//nrfeeitZJ3Z2w130ulixYjz11FN4enpy8eJFli5dis1B1EedOnV49tlnKVu2LNHR0ezYsYOff/6ZA0ZjbC+DPsAIoDAQBMwHJiOR2litUoM+LYSGSi3r5s1Fr2vWlA7uydUDjY6WmteuqGHdp0/G79OdyJdPuszPnq2d2JpE3Lp1i6+//poBAwYwd+5c7t+/T+nSpWndujXjx4/nxRdfdBjEkF1wF70uW7YsgwcPxmQycerUKdasWUNK8TQGg4EmTZowevRoSpQoQUREBJs3b2b8+PEczZcPm8lEfmAgMBgoANwDZgLTgAcg9UnTqteBgfDzz/DII6LXdepIg8bkGhFGRMDEiRkfhWezSR+anIy3t/Tl+f77rB6Jxg25cuUK48aNY/DgwSxdupSgoCDKly9P+/bt+e233xgxYkSSTuzsiLvodWopUKAAgYGB3Lhxg+PHj/Prr79y6NAh0fjKlR1nFdpJqz/k7l3RkPr1Ra8bNpRJsfv3k17/wQPXZJFHRkofmpyMry/89pt2YmuS5ejRo7z44osMGjSI33//HS8vL5o2bcr48eOTdWKnlpTD1jKZW7duUaJEiQTLSpQoQXBwMOHh4Uk2h4mMjEyQTh4cHJwhY/H19WXYsGHMnDmTS5cusWTJEgYNGpRipF+hQoUYPnw4Fy5cYNOmTdy6dYstRiN/mc08arHQCCgDPA/sBvYCgUi0HxYLjBqFUgpDam64r12T6OAzZ8QZbnfg/PKLGN+//AJjx8atHx0NTz4pjmxXkEIplmyLwQD588O338p7Fz+9+J9/JNXz77/Fsd2unTR2KFMm68aryXSsVitz585lwoQJ3Lt3D6PRSJ06dejRowcDBw6kaNGiWT3EDMed9LpMmTIMGTKEefPmcebMGVavXk2fPn1SjPQrVqwYzzzzDGfOnGHz5s34+/uzPm9e9ttsdADqAZWBF4HtwEHEoe0NorVPPZV6vT57Fjp3Ft2Or9fffCMNdWfPhsGD49YPDYWePWHHjlS9H06TnHGfnTEaRaO/+06iYexNQJWSZjRTpsj10stLrp3PPCMGuSbXEB0dzW+//caMGTMICAjAbDbToEEDevfuTb9+/fDx8cnqIWY47qTXVapUYcCAASxevJgjR47g5eVF165dU9TSMmXK8Pzzz3P8+HG2bt1KUFAQq3x82Gu10hmoDtQEKiDlRY4iASP5Qey3J55IvV4fPgyPPRank0rBjRsS3f3FF9IkrFu3uPX9/UVTjh5N3RviLNevu2a/WYnRKI0dv/lGJlbt30Ol5Lo3fTpcuCCfYc+eMHKkRLtrcg2RkZF89913LF68mKCgIPLkyUOjRo3o27cvvXv3Jn/+/Fk9xAzHnfQ6NRQoUICqVaty6tQp7t+/zz///ENYWBj//PMPfQYMwHfxYsc7KVUqbZkn27ZB797S1NtuW9+8KQ0aP/9cyku1bBm3/tWr0LEj/Ptv6o/lDOfPu2a/WYm9ceJnn4kee3rKcptNmhbPmiXva6FC8Pjj0vAyB/4+Ncljs9lYtWoVkydP5syZMyilKFOmDIULF6Zbt240adLEYdZ0anArR3Za+Oqrr/j0009dsu9SpUoxdOhQ5syZw/Xr14mIiHAYTWkwGKhSpQqVK1fmxIkTbN26lYCWLflj1y72Ap0RY7s90AK4DuQ3GqF/f6hVi/nz5lGkSBFatGgRl46THJGRYjTbxTJ+FKI9GuTll+WiYE9vefttWLkytW9F7sFgSFiz0GQSo3nrVmjQIG55dLQ4rGfNkrRVe63HHTvkgvndd5IeqcnRPHjwgF27drF48WIuXLjAvXv3yJcvHy1atGDcuHGUz+h0tWyOK/W6UqVKsc6RK1euEB0d7TCa0mAwUKtWLWrUqMHRo0fZvn07AY88wvIjR2L1ugqSTdMGuAt4GAzwwguoEiWYPn06FSpUoHnz5hS0O0yTIyhIjGZ7JN/Dem21wlNPiV63by/LR4+W8h+apHlYr41GKF1adLhy5bjloaFiUP/xR0K93rZNyg1MnZrzox1zOUopgoOD2bx5M8uXL+fSpUvcv38fb29v2rZty6effoqvntBIgCv1ulatWvTp04dVq1Zx6dIlrFarw5sbo9FIgwYNqFOnDgcPHmTnzp3crVaNBefPU14pOgPlkbIi7ZGJRyPAe+9h8fJiym+/Ubt2bZo2bUq+fPlSHuCNG2JfBwcnrmNts0nkdd++MjlWv76s07+/BDdonMNolAzSHTsgvtMuIEDe21274vTaYJDSKu+/L3Vne/fOunFrXI5Sivv377NhwwZWr17N5cuXCQoKolChQnTu3JlPPvkkx2Q3ZhSu1GtnMZlM9OvXj3PnznEuJiv8yJEjBAQEcK1ECdrXqkXbs2cxppQ1+ckn8rtPDWfOQI8eUsc6/r7t2h0cLJOS//wj2TlWK3TvDpcuOdenILdjnwBu0gQ2b5bsGTs3bsh7+c8/4jOxWmX9deskKn3lSgny0+RooqOjmT59OjNnzuTmzZuxy6tUqcLYsWPp169fmutgp4RbObJLlizJ7YfS9W7fvo23t3eSs48A77//Pm+++Wbs/8HBwZQrVy7DxlShQgWGDh0KkKqLpsFgoF69etSuXZtDzZqx44038D9wgEUGA2WVogtQwWSistUKXbvCzJncunULPz8/AP766y9q165N69atKV26dNIHWb5cxDvlgciN+uOPS1TJpEmpF+2HnQU5mebNYf9+eV6okNTBfeWVxBHWL7wg0ZMQ5xSBuAvom29KJOCYMSkfLywMliyBY8fEqG/WDEqWlAtFeLhccIcOTRgFrslSwsPDOXDgQGw0WZ48eQDIkycPAwcOZNSoUdSsWTN1kV/ZEHfU65o1azJw4EB8fHxSVRLAaDTSuHFj6tWrx4FGjdj92mvcOnGCuQYDlWL0urTZTAWLRRyiP/zAhQsXuHr1KlevXmXfvn3Uq1ePVq1aUbx48aQPMnOmRIekpKUGg0Q6bNkiUSJLlmi9Tg6TCerVE+0EKF5cGoSNHZswwlopyaSx15V8WK9tNnj6aZmw7Ns35WMGB4sT5dQpudFq21YiCHfskBuo6tXlWG7UZCq3Exoayu7du1m0aBGnTp2K1euCBQsybNgwRo8eTeX4kx45FHfU60aNGgHSKCw1ETpms5mWLVvSqFEj9tSpw/7XXuPKhQtMNxioqRSdgGJmMwUtFnj1VfjgA04dP87t27e5ffs2u3fvpmHDhrRs2TL5Bp4TJ8rvPbkSIUqJdnzzDcybJw5tV2XO5AS8vMSePXtW/i9XTgJtXnghoV5aLOIUsdfSteu1/ZoWHi6BOVu3iv6mhL8/zJ8vwT5eXhLlGRkJ+/bJ51q3LgwcGBcFrslygoOD2b59OwsXLuTixYuxdlyRIkXo3bs3Tz/9NGVyQcarO+q1s1SpUoWOHTuSL18+zp07R8GCBblx4wa3bt2i+OjRtFuwAI4ciXN6QtyE1Wefpa029nffyfbJOchtNrnf/uUXKTWyfj2cPJn0uhqxhwsViitBW6WKXEvHjEmol6GhCaPa7Z+nXa+DgiRr6cABsddT4tYtKZN75YpEcXfrBnfuxF0LGjeW8rX2KHCNWxAaGsqWLVuYNm0aN27c4O7du5hMJho3bswrr7xCW0fX6XTids0e161bx/Hjx2OXDR06NHZW1hkyo7nB+fPnuXbtGu3bt3faWRUZGcneqVPZN3UqURcvglI0q1mTzh99hGePHmA0opTi4sWL7N27l/PxUlIaNmxIly5dEqdPdewIO3c6V4vv0CF5vPhi7nBypJXjx2HxYikXcvu2OJc7dhQB79VLnERnz0pdW0f4+koqaHKiO326RG0HB0tZEqXijHajUS7yFou89sYbksrqbH0xTYZjtVrZtWsXs2bN4tKlS0RGRnLz5k2qVq1K586dGTJkSLojsN2lIU1O0usTJ04QGhpK8+bNnd4mLDSUXRMn8tesWVivXcMAtGnUiPYffYS5Y0cwGFBKce7cOfbu3cvlGGPPYDDQrFkzOnToEOswi6VOHTh92jn9vXxZHN+ffZbzO56nFaNR3s/Jk0VLAwLkZqhHD3jtNdFtgD17HDe0NBigalXR9qSu6UrJzc9HH0kkptmcvF7nySPrvfeersudhURHR7Nlyxbmzp3LtWvXCA8P586dO9SqVYvHHnuMwYMHJ0rdTi1arzOegwcP4uXlRf369Z3eJjgwkB0//siRBQtQt25hNBrp1KoVLceNwxij+zabjVOnTrFnz57YaCGTyUTr1q1p27Zt4tq6xYrBvXuOD242i8P0//5PGpTFnyhzFdlxsjJvXpl0/OkncVY8eCC28RNPiF63aCHrrVjhuEGa0QitWknEdlLYbKLBdueWySTL7NdSk0n2ER0tTvRvv5WgFU2WERkZybp161i4cCG3b98mJCSEgIAA6tatS/fu3Rk0aFDyk05O4C5aDTlLr5MjIiKCdevWcezYMa5cuUJQUBAlSpSgVKlSvPHyy3hv3y6BdfYyb489JoEIdeum5WDidI1XViVZChaUvgf2EquZYV9nR70uUUIyYH74ARYtkgnEvHml9OFrr8VlqP/2m3xuKZ2fySSanlxZmehoeP11uX4qlVivzWZ5D6OjoWhRmWR+8skMPV1N6omOjmbmzJkcP34cb29v9u3bR548eahSpQpvvPEGlSpVSvO+U6NdLnVkh4SExDpkGzVqxA8//ECHDh0oUqQI5cuX5/333+f69evMjolsvXjxInXr1mXs2LGMHj2arVu38uqrr7J27Voee+wxp47pauEOCgpi/PjxWCwW2rdvT4cOHVK1fUhICNu3b+dQzAyTt7c3jz32GLVr107gFL99+zZ79uzh+PHjKKXw9PTk6aefThidXbGi8w0bly6VtI+vvhIxcDXFiolx76DpmttRuHDiKBz7rPGzz4pov/uuGOPO3LAsW5a0UT5lSupmnQ0GqeU6ZYrz22gyDD8/PyZNmsSBAwfw8PAgX758NGrUiCpVqtC7d2+KFSuWIcfJSsMzJ+r1rVu3+P3331FK0aNHD5o1a5aq7QMDA9myZUvszUSRIkXo0aMHVatWTbDetWvX2LNnD6dPnwYgb968PPfccwnLQxUsCCEhzh14506JJJs2LXP02tdXMnaym14XKCAGdny9tkf2fPAB/Pe/UjJkwQLn9HrXrqSd3l98AR9+mLqx2Y+vyVSUUhw/fpxJkybx999/4+npSYECBWjSpAkVK1akX79+FCpUKEOOpfU6Y7l48SKzZs3CYDDwxBNPUM9RBNdD3Lt3j40bN8amtJcoUYKePXsmmGBWSnHp0iV2797NvzFRZAULFuTFF1+MKzcSGSkTUs5y9qxMXK1cmTkOi6Ts1OyAl5eMOb4W2/X6p5/EQdK1q0RbO3NuZ89KFszDvPoqjB+furH98otkX2oyFaUUhw4dYtKkSZw5cwZPT098fHxo2rQplStXpk+fPhlSQiSrHdk5Ua+d4fz58yxatAiTyYSnpyfBwcFUrFiR4cOHc+zYMWrUqJH+z/fqVUhNEFFAQFyUcGZQoIBEg2cn+9polAck1mubTcqqDhsmDu3jxx1f90wmyUh9+F5ZKclyXbw4ddfO+fNlO02WsGLFCn788UcMBgOenp706tWLGjVq8OijjyYO4koDqdIu5UK2bdumgESPkSNHKqWUGjlypGrfvn2ibRo2bKg8PT1V5cqV1YwZM1J1zKCgIAWooKCgjDmJJNi7d68aN26cGjdunNq2bVua9uHn56d++umn2P3MmjVL3b17N9F6V65cUb/99pv6+eeflcViSfhirVpKyU/f8WPdOqW++04po9H5beI/DIbUrT9ypFJ9+6btWFn5MJlSfv3bb5Xq08e5fZnNSn3xReIPPyhIqbx50za+ffvS9H3TpJ1Nmzap1q1bq8qVK6vKlSurV155RZ07d84lx8oM/UqOnKjXNptNbdq0KVZnDxw4kKb9nDhxQn333Xex+1m4cKEKDAxMtN758+fVhAkT1JQpU5TNZkv4oq+v87/zQ4eUeucd0ZDM0L3331eqQ4es19/UPhxdz2bNUqpxY+f3N3Vq4g//6tW0Xzf9/NL0fdOkDZvNppYsWaJatGihKlWqpKpWraree+89dfnyZZccT+t1xmKz2dSqVavUuHHj1CeffKKOHz+epn0cPnxYff3117F6vWLFChUSEpJovVOnTqkff/xRzZ8/P+FOrNbU/eavXBGbN7P0+scflXrkkazX39Q+HN1HrFunVNmyzu9v9erEX4C//07b2Dw8lEriHkzjOmw2m5oyZYpq0qSJqlixoqpRo4b6/PPP1c2bNzP8WFmp1UrlTL12lmvXrimLxaLu3bunvvjiCzVu3Dj1v//9T40bN07Nnj07sa2cWu7dS91vPTxcqcceS71fI62P2bOVqlEj6/U3Ix9Go1IHDiiVJ4/z2+zfn/iz27w5bcf38VEqLCx93xtNqrl06ZLq37+/qlChgqpQoYJq3bq1mjt3bmL/ZDpJjXZlWmmRzCKzZiD37t3Lxo0bAejQoQPt7c25nOHaNZgyhejNm9lz/z678+XD8sgjmMqXp1WrVrRt2xbPeOUolFI8ePAg9nysViuzZs2i/s6dNJozB5OjWb58+aT20O3b0lglM/j6a4lcPnVKairt25c5x3U1xYpJxN6qVY5nV41GqZ/49tvyPvz6q9Tl8veXulGpxV6TNV8++PtvmeF89FFJ60llpKkmZZRSBAUFMX/+fNatW8e5c+fInz8/7dq146233nJZE0d3iKDITDLjfJVSbN68mT179gDQs2dPmjZt6vwO/v0Xfv+dyF272B4QwAEfH2yPPIJH2bK0b9+eli1bYopX8sdmsxEaGhrb/DEiIoI5c+bQfM0a6q1di8FRpFnx4nKNOHRI0qczg5kzYeRIqVs4cqTUDszupoHBINe7IkXi+h44YtYsieA+fFjSF7dtE71+8CD1xzeZpMxJWFhc+mzXrqLXqYw01aSMUop79+4xe/ZsNm/ejJ+fX2xTsDfffDP5uvXpROt1xqOUYvXq1Rw9ehSj0Uj//v2pU6eO8zs4eRJ+/52w/fvZHBzMkcKFoUkT8pQpQ8eOHWnSpEmChkNWq5Xw8PDYqMDg4GAWLVpE2zlzqLFnD4aU7DyDAWrUEPtu9Wqp35kZrFsnEYX79klUXE5oWGYyQevWEl158aJz22zYIJq6Z4/Y17t3S2ZRWFjq3w+jUeplX78OFy6Ind2nj9Twzqz7plyCUoobN24wY8YMtm/fzsWLF/H19aVHjx68+uqrCTPZMojcptXgnuf8zz//sHz5csLCwrDZbBQIDqbzzZu0uXNHSg21by/Zyqm9x3rkEbkvTkmvTSa5h962LfVZ0fExGlMXXX3oEDRqJJkmTz0Fd++6t17bqwOkNEazWbLN161zPtP0yBFo2FB6gP36q7wv/v5SGiYt78fTT8v1/vp1yXgdMEBKRGVBXficjsVi4dtvv2X27NlEREQA0KxZM77//nuX1OF3m9IiWUFmCveePXvYtGkTAB07dqSdM11Zf/lF6h1DrBDeB9YDfiVLwogR+JQsSbdu3ZJtGHfkyBFWr14NgYEU+eUXOihFXSDJapwmk9TFtqfZ9ewJGze6vo7fjh1xXWqjoqS+dMx7lQD7DUWfPrB3rxT2d3deesn5ppkHD0rjtvfei0uhTC9JNch45RVJzXRBR9jchFKS5jh37lxu377NrVu3AGlG9fTTT9O+ffsETsuMxh0NT1eSWeerlGLTpk3s3bsXgF69etGkSRNHG0n39M8/l99VzG/uNrAOuBzTiNW3VCl69OiRbMO4nTt3snXrVrh5kxKTJ9MRqE4yem00yjE/+kiO36SJlIRytV6fPh1X9z8kROpLHzqUWONMJjFy+/UTPU/LhFxmM2YMzJjhOFXdYJBJi19/ldqqrtTrzz6Tz1iTLmw2G3v27GHRokXcunWLe/fuYTAYqFy5MmPGjKF58+Yu6ZJuR+u1a1BKsWrVKo4dO4bRaGTAgAHUrl075Y2sVikp8euvCX5z14C1wM2aNWHAAEqVLUuPHj2Svflav349Bw4cgPPnKTtvHp2AFCs9/v67OESsVqhcWW6qXVnyw2SSY9jru9+9K8EV588ndq4YjeIc6tMH1qwRB6+7M2yYNNR1pL1eXuL0fucdmYjNKL2O76QymeQaOH682P2adGGxWNiyZQt//PEH169fJyAgAKPRSM2aNRkzZgyNGjVyWZP03KbV4H7nbLFY2LdvH//++y+Xzp8naMkS8p07h5fBwCilSKDIY8aItjp7/Z4zR4IQHLFihdivoaHi8AwKSlvJD2ed2fnyiV/D3uPs8mUJULl1K2m9zpdPmt2uXJk5ZQXTg8kkY92wwbH2Fi4sE5TDh8Mff2ScXsevP27vfTBnjq6hnYH8888//Pe//+Wvv/4CwNfXlw8//DDFGv/pJTXapb1e6aB169Z07twZgK1bt3LmzJmUN5g1S2rA2WwJBKwIMBQYfOsWhX78kaBLl1i0aBHz5s3D398/0W7q169Pt27dyF+mDPd792YZ8LvBwDkggdvBZJLIry+/jFs2Y4bU1k6rM85RZ3l7hEr8LqURESLcSdXB6txZoko++SR1NQmzkvr1xYhOCZNJZohPnhQnNmScMyr+TZJ9n+PHJ/ycNakiNDSU7du38+677/J///d/rFmzhnPnzlGoUCFGjx7Nr7/+SseOHV3qxNa4DoPBQJcuXWjZsiUAa9as4cqVKylv9N134nBUKsFvrgTwNPDEpUsU+Okn7l26xOzZs1myZAnBwcGJdtOiRQs6depEnkqVuN25MwuA6cClh1c0GmXy75137IOW3ga+vq5r8mo/ZvzmteHhEhXzsMYZjdC3Lxw9Ktex7NI5vH17xzccdoN86VL53MG1ev3xx9KkUpMmgoOD2bRpE2+++Sbjxo1j7dq1XL58mWLFivHiiy8yYcIEWrZs6VIntsZ1GAwG+vTpQ4MGDbDZbCxdupR7jhovvveeBBhAgt9cWeBZoOeZM+SZMIGbly4xbdo0Vq1aRWhoaKLdPProo9L8sVYtrrVowSxgDnAj8SChf39xuIBoyB9/SGSYIzs56ZN2vI7JJFFn8ZuURkbKxOPD1wiTCYYOhRMnxMGTljFlBb16OdZek0kiG7/5Ru6rIOP0Ov61wmqV/8eOFQeYJk0EBASwZs0aXn31Vb744gvWrFnDzZs3KVWqFG+++SY//fQTjzzyiMuc2Br3YNOmTWzZsoWoqCiK/vkn3ufOEQJYlWIOsAEItK88dapEMcdEfzrkqadkEiwlXnxRbFgQx/Lq1WLnpsW+zpvX8TpGo1wf7E5sEOd0TMP4BHh4yITomTMy8Zgd9NpqlffdGb1+4QV4+WVYu1aWZZRexw+2sfdfGDpU+gxp0kVkZCQbN27kgw8+4M6dOxQpUoRBgwaxa9culzqxU4uOyM4Adu3axZ07d3j88ceTv3GyWGT2LybCMzmigV1Fi7LnpZewhodj+vtvWp8/T5uICDxLlJDZrKefhiJFiIqKYv/+/eyZNo3IjRvh1i3KIU4WU/78IqCffy6GdXzu35fSH5Mnpy6iztdXOrO/+WbSrxsMItzjx4tzpFYtOVa7diLOSX3VihQRZ/uOHc6PIy0YDPLIiGYLv/wi70NK6TT580uaY58+EjWSGeTPL+Vj4l80NcmilOLChQts2rSJTZs2ERAQgM1mw2QyUbhwYerVq8eYMWMoU6ZMpo3J3SIoXE1mn69Sij///BOlFN26dUv+xikkBEqWlKiNFIgAtpUvz19PP4168ADPv/+m/b//0jwqCnOZMjB6tBjXBQsSHh7Onj17ODBlCtFbtoC/P9WBIYChUCGJ+Pr448QO5Js3ZZJq+nTnI+rsZTUGDpRGhUlhNIrxPHUqNG0qTbOuXJHovuvXk9br0qXlOubqJjnOpDY6y++/S8ZKVFTyxypSRPS6RYvMizIvVUre7+xww+IG2Gw2/Pz8+PPPP9myZQvBwcEopfDw8MDHx4dmzZoxatSoDGu86wxar12LzWZj5cqVFC1aNOXyfTdvii45iIQOBTbXrcvR/v0hIIC8f/9NpwsXaGS1YqpUSWzmJ5+EvHkJCQlh544dHJ48GeuOHRAURCOgL0j5p9dfl0nHh50gFy5Ik9d585LXnIcxmaBlS7GZp05NWveMRrHtZs2SYIoqVSRQol07aV6W1DZVqkiEX0yzYpdhNMZVL00v06bFRbgnhcEgZQfWr5dGY5kRtWgwQJ06kh2lna1OYbVaOXXqFBs2bGDHjh2EhoailMLT0xNvb286duzI0KFDM6zxriNym1aD+51zUFAQEyZMIPrGDdr9+it7ERvaCtit3irA8PgbDR0qWnr6dFx5zogIsVdfeAEef1zsWJD7+x9/lGCE+L6WcuVEq8eOTfz7PXlS9HrpUuedq2azOMQtFpm8TMqvYDSKz2TWLNH1ChUkaK9Ll+RLH9WrJ+fm5+fcONJK/CzB9GAwiH39/PPJa7/BAHXrSpR0w4bpP6YzmEzQoUPSVQA0KRIVFcXy5cv5+++/OXXqFDVr1iQqKgqj0cibb76Zaf4Qt2n2mBVkVXOD+M0KwsPDExc+X7MmVYXs7738sprj5aXGgRoH6itQ60H524vc790bu+vQ0FC1ccUK9fnjj6s5/fsrtWCBUg8eKKWUun79urJarUkPOixMqd9/V6p+fcdjMpmU+ugj2W7iROeaFVao4D4NDp54Qqn/+z+ljh9XatUqpYYPT9t+ChRQqmRJx00hn3lGqa1bM/88Z8/OwG91dua2UuqkUirppjHh4eFqw4YNqk2bNqp69eqqQoUK6tFHH1X/+c9/1Pbt21V4eHj6G5CkAXdpzpJZZMX52my2BJ9taGhoYo2cPj1VjWBuvvqqmmoyxer1t6A2gwoC0Yt4TcuCg4PVmnnz1Ke9e6vlQ4cqtWKFNJ9R0hQn2e9dcLBSP/2kVNWqjsdkMCg1YYJSNptSn32mlKen421q1FCqXLms12pQauhQpT75RKnTp5VaulQaB6elMU+pUkp5eztu3PbBB0otXJj557lhQwZ/u7Mr15Xo9Z0kXw0JCVFLlixRLVu2VNWqVVMVKlRQXbp0UR988IHat2+fioyM1HqdCWSVXscnNDQ08Wf99depas545ZVX1CSDQY0zGNQ4UN+D2mEwqBBQqnJlpS5ejN31/fv31fKpU9UnPXqoP59+Wqm1a5WKilJWq1Vdv349+e/dvXtKffWVUmXKODeuxYuVsliUev1155pGPvKIUkWLZr1WG41KjRgh53runNx/dOyY+ga5RqM0sPfycqz1Eycq9csvaW/Cm9bHkSMZ/O3OjtiUUleU6LV/kmsEBQWpadOmqWbNmqmqVauqChUqqB49eqhPPvlEHTlyREVHR2fmgGPHlJu0Win3POddu3apcS1aqP8ZDGo3Yi9/Cmo3qNmg/OL93h6AOgXK+s47siy+LtrvwRs0UOr27YQH+fdfsZW//FKaCTrTiO76dbE5ndXU7duVioyUJr/O2KYtWyqVL1/W63WePDLmH36QZuRz5yrVtGnqtdRkUqpVK+e2W7FCqQ8/dOw3yejH1asZ/wXOdtiUUheVUqeUUoFJrhEZGakWL16shgwZomrWrKkqVKig6tevr9q3b69GjRqlzp49m4njFVKjXToUKIOwR/YpJbX9AgICGDx4cNxs87lzqWoQUHTiRJ4CzgCbkDra+4EDQLXgYLp06UKxEycgTx7yffQRXebOpUVEBBEgKXB9+xL0zjtM+fNPvL29adasGc2aNcMj/szla69JwwNHaTUmk0Q+vPuuRH5Mm+Zcus/ly06dq8spUkRq7tnPvW5dKWWS2oYNRqM0V1yzxvG6ixZlfgNGs1ma/uRqNgDfANvjLWsN/IeQkE4cPnyYwMBAVq1axZUrV/D398fLy4tatWoxbNgw+vfvr9MbczjxP1+lFIsWLUIpxZNPPkl+ezaDXa+djFooOX48o5Xib2ArEAzsAvYAte/coXOHDhQ6fRoePKDgRx/Rc9EiWlss2AAWL4Ynn+TWq68yZd06ihQpQsuWLXnkkUfiStlERUkTxhUrHNcMNBolGuG55+DGDZg927motbNnnTpXl1O1qkTg2KleXa5VSqV+X02aiF472nb6dKmvm1GRKs6S6/V6KfAdYtnY6Qy8R0DAI5w4cYIbN26wZs0arl+/zv3798mXLx/169dnzJgxPPbYY1qvczjxP1+LxcLMmTPx8fFhwIABeNmzV86dS9U+y40fz3PAQWAnotdblWIHUP/SJTp16ECBkyfh4kUKf/ghj69eTTubDTOILTlsGBefeYY5GzZQvHhxWrduTb169eIyMkNCpATI9u2O9dpgkCjw/v2lzvWiRc5p0JEjqTpnl2AwSNlAe3kPgLJl5dqT2uxHm01qjJ87l7JeGwxSQqZrV9HrjMiydJbLl6XcQa5EAbOAHwB7hL8R6AW8x927VTl79iwXL15k3bp13Lp1i4CAAAoWLEj16tUZO3YsbeOXnNTkSlq2bMnR4GD8leIBUBs4hdyxdQWqxlv3L0Sfi3z7LX2BCvEjpu0aeeKElIX76y9p0v3xx9IHzK4hBQrAM8/IPX9y0f/+/tC7t2iqM/bEyy9LJsyRI1KeJH6d5uTYt8/xfl2N2Sylm2bOjFvm4yNZ/qnVUatVMoQc+VGMRomkL1kyLSNOH1euyPUoV2IBfgd+As7HLDMDA4D3gAZYrVY+/fRTli5dSli8bF8vLy/q1avHiBEjaN++fZyd5aZoR3YG8+DBAy5fvkxYWBjTp09nxIgR+Pr6Sj3R1NyIK4UBqAXURL6GfwF+wDml+Dc8nJYvvUS7v//G8/ZtsFopCBQEEZXVq7m7fj1eo0cTpBSb1qxh//ff8+g//9Do+nUpjm53RqdkNHt4SGr8zz+LaPXvL52B0+JUyAqMRqmLZXdig6QDHT3q/D7sF7bOncUh5IwDPCREmqVlJjabpJHmWn4A3gIenpjZx7lz/Zg1qy3793vg4eFBREQE+fPnp1u3bvTo0YPmzZtT8OESPJocz927d7l58yZRUVHMmDGD4cOH4+Pjk2a9bgjUB84ien0ROGGzcdbfn7YvvUSrzZsxP3gAFguF7NtaLLBoEXf/+APPUaO4D6xdupR9X3xBh2PHqHv7tjSGtOt1StqTJ4+k+X39dZzReulS9tFrkDIg8bl9W0qdOIv9pmLIEDh1yrlzv3lTSgJkplMEcrlev4dMOiZ09Cm1lRMnNjN7dkcOH5bSIZGRkRQsWJB+/frRvXt3mjZtSr5c/d7lTuyTGXfu3GHWrFkMGzZMvgdpqNdvBJoDjRFHyl9IY8ijNhunLl2i49ixNF20CGNUFNhsFLVvGBEBM2fiv2oV5pEjuXPnDivmzGHPmTN0OnqU6v7+otf2siIpaUrBgjJJ98knYlt27SqNwbKLXislTp34nD0LDx44vw+7Pf3aa8458ZUS51Xz5pn/PjlTFzdHooBngBkk1GsbSq3h0KE1zJnThePHI/Hw8CAqKgofHx/atGlDjx49aNSoEXmySw8kjUsxmUw8Vro080+d4gTwMhAA3ESa8hZA/B4AnkBeJJBvHjASSFTYwGoVh/IXX0iJEJstoS6EhMCECfDnn7BnjwS2Xb4Mv/0mQR7378s29mCPlDSlcGF4/314+20pQde1KwQHZ77dmFYslsRNa48eTV29anuwxxdfSA8hR9vabFLi46mnMr8sU661EaOB/sDDQZcWJHhkBRbLcv7v/7azf/9+oqOj8fT0pH79+vTp04eBAweSNxtd63SNbBeNYc6cOdy9e5f8+fMzfPhwSt6/LzXW0ok/sBFxlAD4AN0QZ3ciiTCZsPj6cvz339k+ahRBAQEAFAU6IRcLh7IyeDB8/73URj1+XGrzZSe8vKQGVpUqccuiohw3a4xPiRISxV29usy+OutUyZ9fGvFkVFMDZzh1Supx5Tp2Au0TLFFKfHhbt8KuXfL83r3ylChRlaZNmzJs2DDq1KnjVhF97qBfmYk7nK+/vz+zZ88mKCiIQoUKMWLECIocPy7ZF+nkFpIjcAnAYKCoUvRA6gAmwmQiqnp1jn34ITuff56QmBr8JRG9rooTej12rDhFfH3li9+pU7rPIVMpWFAcyr6+ccuuX09dVEW5clC7tkR2z53rfM3rIkXkpiazMJng2rWsiVTJcpYhkSFxKCXBmFu2SPDSlStw714lypatRvPmzRkxYgRVqlTRep2FuMP53rhxg7lz5xIWFkbx4sUZPnw4BTdsgEGD0r3vq8B6Yho7GgyUVIqeQLmkVjabiWjVikNDhrD79deJiIyEmHU7AxWcOeDHH0vPGR8fWLBA6sFmJ4oXF8Mq/k3vkSPQuLHz+6hWTR6VK0u9VWdrXpcpk7oJzvSSP7/U3U2qaX2OZxKQ0AFms8ntxubN0jLj+nXw969KhQrVaN26NcOHD6d8+fJZM9wkcAftymzc9ZwjfvyRr2N6bf0f4AGsQzJkPIExQPGYdaOABUhQSF5gVLzXYrFnvaTkUDaZ5BoxYoTU1Y6OTl32ncEAP/wg2Sb58klw3xtvZMhkmgUIQXo4xHfUHwb+jVkeAtgQR789aLE9YHfV2uNp85LCfULVqjLRGD9LaMMGiWh3llq1RK/LlIlrruwMVatKxlFmUbKk9CfLlT1oPo15JP3djI6G5cs9WbeuH1ev3mXo0KEMGTIkLiPZDUiNdmlHtosIDQ1l7ty53Lx5kzx58jBs2DDKDhkiDaUygLOIwR0Y839VoAdQJKmVS5bEcvcuh6xWdiKClweJXfVIav342Bs4fvGF3OT/8EPmOmbTi8kErVtLimf8G+Bq1eDffx1fhOzRfWazPE9NYxmjUVKZAgNdP2NrNsedZ67kcWT20YJScr3cskWyza5cEXulTBlo1aoaefO+z4ABA9wyAttd9CuzcJfzDQoKYtasWdy/f5+CBQsyfNgwirdpkyGGl0IScTcixihAHeAxIMkzLlyYqKAg9tts7AEikQnL13g4djUJDAbRgl9/hb17pcFKdtJro1GyfhYvjltmschkojNOZnt0X1r02mQSvQ4Kcv17ZjbLeS5c6NrjuC2tkHIiNpSSPk6bN0tm8LVrcsktX95Ay5ZNKFjwdfr16+eWEdjuol+Zhbuc7927d5k9ezYPHjygSJEijBgyhEI1a2bIRJQNOAJsAcJjljUCuhDnNEhAvnzSyFcpDiCxUKWA5509YL58Ehk4bZpEDWaX6D4QjR07Vhq82wkOFgd3jGM/RezRffaMydTqtbe3HM/V5aBMJok8/+kn1x7HLVHIHeZFQGGzSUzTpk2SnHv9unwNKlc20LhxB0qUeJmePXvimYYsCVfiLtqVmbjtOQcFMcvXl/wWC92B/EjDx7nIt6wI8CzilAWxgWcD1xEHbgfgkbQc12gU2ys6Ou0OaB8fWLZMorKPHUv15jeQCdM7wN2YR3i81/8PceYDrEauRcnxLnHv0VpkIsCEvEcVgOrILzdB2N7nn8OHH8b9f+2aNM91xhdiMolt7OEh66fGTjYa5VoXHu56vTYa5Tz/7/9cexy3JBKxQAKSfPXKFUnYjYqC8uU706nTJ7Ru3TpTR+gM2pHtJsIdERHBvHnzuHr1Kp6engxp0YJKPXo4Z+A5QTRxdVitSJ2YlkBT4jlIHiqDEQnsQ4z1jjHLFFKHuyYSTZLsbF6zZhJtkZ0cI3a2bIGOHeP+d3Y21ZnaV44oX14uFq66QTGboWhRCYuo4FQcUA4jGpmakfc3MFDKuZ86JSXdS5SQqjA9e0pTaIMhAOIKO7gV7qRfmYE7nW9ISAizZ8/mzp075MuXj2H161O6V68MM7oigG1ICrtCjNU2SGp77Dz4Q3odBuxGojBaxSyzInpdHyid0gEbNJA7zezIP//Ij9XOBx/AN984/iwyQq9LlIB791xnbJtMULGihB0XK+aaY7g1t5E8A+HWLXjvPYnGDgqSgPouXaQqTo0aHojV4j5R2PFxJ/3KDNzpfAMCApg1axaBgYF4e3szomJFfAcMyLByE6HAZsBehC4v0A4pHxUbf2wPjog55gNgB1A2Zj2Qb+82xPGSKJLQvg+DQTThwoUMGXumYjTK3XGZeLGEY8ZI3WxH9wrp1WuzWSKlHzxwnX1t7xG0Y0cujcY+jlgbwoUL4ge7cEHmEKpWFb3u3RsqViyJFIlwP9xJuzILtz7nmN4w8QkDJiMBelWBocQFb4QjhW3uAJWQMiN2QolnQzsitb2xktrebJbsQX//JFcJA+7FjPUOUvvbHhe8irhrSnxMiJ3/DHH+m39j9lMg5mFErjEPkKCYjsRZRsuBf5LZbwVgEHKXTN68YnTF/z707g3r17vewZw/vxwjMtJ1ZaHsvczWr09TybHszxYkJywOpWDbNqmwc+IElColb80PP1SnXj036Y30EKnRLocBXpq0kydPHoYPH07lypWx2WwYKleWEFEfnwzZvwciZC8hqeoWxLH9IzAfidq2PSTYXsCjxDmxAa4Ae4HpSALZX4jTJRGpqSvtTpjNMHlywmXPPCPp58k1unzoBiVdxx4wAGrWTN9+Utr/k09KPe5c6cQGm+0B587ZePBAApq++ALOnBGnSOnS8jG//rpUxZGP1clSA5pcRYECBRg1ahRlypTBZrNhbNhQJsAyqLZjHqA7EqlXDkmZ3IpUdl+CGK3qIb3OhxjBreItO4s0/p0c8zgSs69EnD3ruJGvO2I2w9SpCZe98Yb8mB2lCaZXr41GiTAsneIUQdrJkwdGj5ZJx1zpxAar1R8/P5lwXLNGokPOnYPQUJnzrV9fyuXWqAEySZkxE/+anEXhwoUZPXo0vr6+KKUwPvqoRMp5OMwzdIr8QF9gNFACcaT8CXwPrEDsZqVUAs0piLS+axhvP/8gev0r4og5jtjqsdj3cft25tcQzQgMhoTNw0A8nd7ejq8/6dVriyXlJm7ppUAB6dmQa53YYLHc4/x5mdtdvlyScs+fF19U5crST3nsWJmHkbapGo0TDBokpYTilbnIBwxGfBvnEfvYjr2sSGckWM9OCNIuegoS1OcwJye9E142mzhjw+PiqP0QB/U04NuYx3QkR/gvpCSsnQpI0GBbpIrxi0i3kA+BN0iYpVkF6eNQJ2a7ckhzzOZIucH4V4snYvbxOjACCWosigS++BMvKjsighM//sjVq1fj/ENffinlVl19vxAaCr/8kmH3VIkoVEhqmK9bl0ud2BBXp0Euj/PmSSDfM89IHGpUlLxNX3wB9eol6enLduiI7EzAYrFw+/ZtytgjFsLCxLM2d24CMUwPijgHx6V4ywsikSCNSD4G9R7iyD6O3DaCXEjqAU1wEPWXXWjYMM4Rf/06TJkCK1fKHXR4uFxMlYpLnclI8uaVVKaM3m++fFKfMNc6RKycOHGCP/9cx9GjH+DhoQgMlCiRAgXEsH70UWkuXTw2FMqIOLLd86bEHfXLlbjj+UZGRhIQEEBJe+3iwEBpGLt8eVwDr3RiLzdyAEmXtFMY0euGxDTuTYJbiF6fRIxUECO1AaLXSUb9ZTd69IC1a+X5hQtyw7N2bdwdtCv12ttbIvwy2jQqXVr6NbjK6eLmWCwWjh07xoYNKzh+/Evy5hXnSEiIvOWVK0tJ99atpVy5kB+JP3JPB5876pcrccfzDQ0NJSwsjGJ2O+jWLaljum5dwgizdET/2suN/IVE2Nkphuh1A5IpO4Kkke8lJrAkZlk+xCZvTDLlALMTZrPUnZ02Tf4/fVpqp27cCBcvyjXTZBIHkCv02lW9DerWhf37JYowFxIVFcXhw4dZv34up0//Sv78MtcSHi4976pUEQdJq1bxgzsrIsUh3A931C5X4+7nbLPZiDp7ljwvvyxlMWMcqyeQlnQgnTTqprCP08BiElYDLoE4fEsh2TF2bbbErGfGsUXxAPGNhCMR1uFI5HdAzPIhgG/MNWUXEgcbHx/EFi+GON4LOzieq7iHTC9VjvnfZjbzvzZtCG/fnvz581PTw4MmBw9S6sABaYJpsYhOKyV2dkbrdcmSco3OSAwGudH/88/U9T/LkewmNLQtS5aIi9FeHdNgkKC+F16Q7HSj0QA0Q7yG7kdqtCs3VkHPdMxmc5wTG7gTEsKNl16i4c8/x3XJGDEiXTOFBmSWryYiXEeAY8SlOu5EZvcaI3WT4s+7+QJ9kMi/f4BDiLF+JObxAvETgbMp9vqas2ZJ2qPNFvd+2+v0FS4MffqIAfuf/2TcsTNosiIRxYvnOie2xWLhwoULnDx5koMHD3LhwgVu375NcHBh4D5lykCjRnEOkcIJrAczEmPlnk5sjXvg5eUV58QGrgQHEzZuHDUnT4aDB8HPT6yBdGBAknXrI47pw4j2BiAG8TagBuIkqULC1KmSSPRFN0TjDyFRKH/FPN4ieSd4ppGejBaDIa552A8/iBYbDHFOKbteFy8O/fqJg/iTTzJi1EKwC6LKDAYJN85lTuyoqCjOnz/PyZMnOXToEBcuXODu3bsEBxfEZHpA2bLQtGmcQyRh2wIzkkDsnk5sjXuQP3/+BE2K/B48wPzzz1SaOVOCFw4fllpj6ZiYMiKThI2RicfDiLPlLhKlvRlxnDRGIufif2PLAU8izoSjMdsGI9GD+5FovIyJIU8HzjRLSwkvL3l/P/xQovvM5jgHiF2vy5aVJmteXqLrGVUKxBVObKNR+ujkMid2REQE586di9XrS5cu4e/vT0BAHvLkiaBcObGvu3SB5s3jbqsEIxIzq9E45uTJkyxfvpyKFSsyfMsWmSX5+2/YsYO6X37JLaSs3irER5GcD6IWYvOeAU4hgXy3Yx4gFkSlmOdHkVrSRiT4wzPmrwlxVA8iLnDvBKLtyXEP8I25plRGgkp8kSjoosTVuXYJRmNCmzgFfGMediKUokqxYpz39CR04UIOHznCYYOBskrRDKhtMGC2WmWm6oknJLV5xozU9S9IiYx2YoNcY2rVyvVO7PDwcHbvDmXfPm+2bg3GapXA9GbNJHa2SZOHt3g68wfpArQjO5Ox12ENCQkhols3Wjz6qDTkysD6br6IU7ojIu6HkTny8zGPAkjE3yMkjAbJg8zPNEWiSA7F/C0Rb53NSNmRmoh4Z0ptGoNBurkXKCCReXbD2FmMRnjsMYnoGzUq8Q2NfV8PHkjEXHboHG8ywbBh8jwsDFaskMjFvHnlXOPXl822BAAzgVnATcLCvPnssxJcu1acGzcCiYiIIH/+/FSsWJFHHmnB9evf0KmTomXL5LJArYjJo9E4h7+/P/PmzSM6Opq+ffvSoGNHcY6kt85ePEoCPZFmYqcQvb6KRJqcRiI77Fk18eel8yElR1oi+n4ISSqL7wtcg1zka5LYweJSXntN+gIsXZp6vQbxbM6cCW8l8Xu178vfXyJI2rdP93AzBft1JThYSiBcvSqe2169xGmS7bmNJNfOBfzx9y/EV1+V4MYNX27eDCAqKooCBQpQtWpVGjRowK1bv9C1qxjZ9nmLOAyIdfFKJp+DJjtz48YNFi1aBMCgQYOo3qmTRAbHd6ymAwMS4VcWadZ7HNHrWzHPjyNODHtWTXw3qDfQHkkp90P0WpHQib0U0ftaQBkyUa8/+0yKaG7Zknq9tlhEr7/7TpzY9mV27Pu6cUO0r2HDDBu2y7DZYPBgeW6vqXHrlkxE9usnk5LZnqtIcbJFQBBXrxbl+++Lc+tWUW7cuIvNZqNgwYLUrFmTOnWq4O8/na5doXHjpPxFRsQieTaTz0GTXcmfPz9Wq5WAgJimdCVKQNeuMH8+mM10tFi4hfgsFgLPkXzWSwFkorEJEj19DvF9BJNQg+1FymyI4/rhELPQeM+9EV9KvpixNqAXAAEAAElEQVRH3pi/hWKWl4q3bpmYR6YxYYI4lw8eTPW9SD6rlQGvvYZ16VIuHznCUeCUUlwDrgF3lJIKyxcuiO+laFHXnENGYrHE1Vu/eVP02t8ffH2lqXqJEilvny04jxT/XYl8U8sDz3L1aluWL/+TY8eOcffuXcxmMw0btqFq1XW0bCm3F4lP34RYKk9l5gm4DO3IzmTy589P/fr12bt3Lxs2bMBkMtE0LMwlxzIjKTl1kYi9I8iMZAgy07kHSYlsT8K0FwPyEymPuP7sxrQtZvtQxAgvijhRGuDiiBJ7Y4Uff5Q73ilTpNaSsxiNEoXdrVvK61ksUmv6xo20OV8yC4NB3pNnn4Vvv4X//lec8GazXND+8x8JR541S2ZVsyWHga6Eh98nb14DISGKP/+8w/Hj57lzB6KiKlCuXF1GjBhBq1atKFu2LBZLI8xmuzDHv2k1I9/eGcg3VqNxjsKFC1OrVi2OHTvGihUr8PDwoHZYWIY6su14Is6PhkhGjD1KOwiJ0N6JOEjaktChbUAmFe1RIXaikIhtCxL5VwJxfNclYUZOhuPhIbnG06bJ33nz4rTUUXq/wSBRcEOGSIRFSlitkko4cmTK6z28/8yupmY0yvXrqaekaeUPP0h5FHu6/Ztvyg3czJnShSVbshXoQ3h4GHnzSomnDRvu8Pff5wgMNBIVVZGqVRsybNgwWrVqRYkSJbBYamE2v4R8Gx/WayPi1nNRbwlNjqR48eJUqVKFs2fPsnDhQoYPH06l0FCX1J7OgwR9NEHa2x1GHNn+SDPe7UhgSGsSOmCMSLZNDRLq9QMkChDENi+L6HVNXBwwYjCIg3b+fJmAXLbMedvXaJS75E6dHOuwzSY2adeuzl87XXCddYjJJOnv3btL8ecpU+LS7W02CW174glZnjDlLxuxHBhMeLiVvHlt3L0Lf/55h2PHThMSYsJiqUKdOk0YPHgwrVu3pnDhwlitlTCbP0L0Ob5emxA33zoSuvc0muSxZ9EEBQWhlMJg1+iwMLDZMCI1pKcg/otNSD6tI/IRZ0c/TGtEsyMR+zgy5mFFvsHxI5frxDzcEl9fWLJE6vevW+f8dvbI5SpVME2YEHvf8BjiHzqMBMwAoBTh33+P56RJmJyNxs4KvTab5ZwaN4bhw2HBAhmDffL6tddk+YQJD6eQZCOmIVM5BuxWQ3T0bWbPPsjEiWbu3y8OeFC+fHmKFClCly7v07x5Nczmn0ms10ZkOmYjbpC7myFoR3YmYzAY6NKlC2azmZ07d7J+/XqKV6iAq9v0FUGaJHRAavUdRpqLHQP+KVaMhoGBtIuOTlRH+2GHR7+Y7U8iBvsa5BbWHsntkkQ8m01KaHTqJDXrnBVKu9NiyBD46CM4ftzxNiaTdFN+4gmJcnYUxVOsGNy96zoBf3i/ZrMsW7YMfv0Vvvkm7rX4Y92/X3L/Dh2yd2HJRtwgIqITW7Y84J9/oFUrxb59EhBjsUClSlC8+BUaNRrBwIEDYw0gs3kQ4qabAMxBpmzs7UNeRaZcNBrnMRqN9O3bF5PJxOHDh1m5ciVFCxWiREbXjXuI4khjyM5IVPYhpLnYQeBoqVI0uX2bNjZboiI5poeeDyAu5fI20qRsM9ACSYN3ScsVi0Vu8Fu2lIaT8Z0iKTmR7emSQ4bA889LZIUjzGaJuGzbFvbudeyAKVYM7txxnV4/7Cg3myV8bc0aiS6fNSvu9fjfoa1b5f3666/4Bf2zCWcICenBxo1RXLigeOQRYvXaYIAqVWwUL36ZNm1e5fHHH4/dymx+AbEcxiNRgeHIFM0IJBK7ehaciyY7YzabGTRoEMuWLePUqVMsWbKE54oXp5ALgxIMSDp6aSQT8gRiX99AHNIHy5WjxdWrtEScJfGJr9d5gIGIXp9GouMWI0EmLRHHjEvS1ZWS5ltNm0qZQ2ffK5NJHk88IY6CkBDH25jNUj6genUp3ulIg4sWFfvaVROQD+/XZAIfH8neHDIE1q+PG2N8vV65Uq5te/c+XA8pG3CAwMBBrF9v5e5d6UO/f79cbj08oEYNK76+l+na9WN69uwdu5XZ/CHwKKLXKxFXYBFgDPASuPwuVpOT+OeffwAoXbp0nBMboEKFWPssL1L2dCZiw/YkfU4rA1JKJMkCFHYtaNsWdu1Kx1EyAYtF6kQEBqZOr/PkkeyZp55KsF0BoB0SJBN/yvcPm42769bRs3BhKtoj51OiUCEICMi8YBH7pOOSJTJBevBg3HnZne8Wi9jd58/D5s3ZsAnkOiTTJe49vXJFqnjt3SvlVr2979Cw4QB69uzH448/jqenJ9AGuYscjxTJsSD5v8+TQwoGx6KbPWYRSimWLVvGiRMnyJ83L8/98AM+d+443jA9PHTzfh3Y5uHB+ZgfvImkI/6SIgqJzt5HXI/UlsjMXoZjMIjwzp+fOudDkSKSymi1yrk7K/iVK0ukX5MmUh/KEc89J4py4oTjdVPD88+L0b8/phi/h4cY12+9Je9J/fopb28yQd++4vTOJkgDxxfYtGkaN28qzp2TyefwcAnCr15drlvdupmoW/dxDIYlKewtGjeoPpkqsot+ZRTZ5XxtNhtz587lwoULFM6Xj2c//ZR8LsqkicXTM0FzyYvANrOZKzE31B6IG7AVjicQwxHnygEk8g/ESd4mY0cseHlJEc3165PX3KQcE0WLihFsx1mtb9UKxo+Xv5GRjtd//XVYtUoakWUkr70mDmn7hGmePPD00xJxfeWK3ECkhMkkmj9xYsaOy4VER0dz7NhAtmz5g1u3bPj5ScnygAC5f6heXYLMe/QwUaPGi4hRnRQKMbS1Xrsz2eV8o6OjmTFjBjdu3KBk3rw883//h4erI8Xy5ZNoQuTb7GcwsM1k4maMXnshNnILHE8ghiCTln8Rl/7el3jRchlJkSLyQz10KPnAjaT02tdXym6kpr62wSCp3i++KNcIZ7Z55x2YPTvja6v+5z8SrGLvhlWwoGRuvvkm7Nwp9xwpYTJJgMy4cRk7LhcSGRnJoUOd2L59L7duKc6flyop9rndatWklHmvXgYqVvwU+CiZPWU/vc4u2pWRuOs5R0RE8OOPPxIZGcngwYOpWTNe5tWpU1AnLhZaAT8gdutQMmh62575F3/yzWiUe2xnbMiswmCQSC6jUezX1EzQFi0q5TbsjRwdaG8IMMloJLRxY6hQgQZLl9IZBzG8JpP0o5g0KaEtnxH83//JdeDaNfm/cGG5jrz+umR9vvmm42zPiRNlm2xFM+TuzYbVKlVTJk2Syi8mEzzyCHz+OdSs+TsStZ0UConkzj6xy6nRLu3ITokrV2D3bpnZqVVLIhYyMEUxKiqK6dOnc+vWLUqfP8+oefNcZxYYjSLcDx4keukKkgZ5IeZ/MxKt1xbHbfFsSPTIfiQNqFDMcj9kBrUe0sc6zamRRiMMHCgREM5cYJ57Dtq0Eaf3hg1pO2bt2lIr+/334euvHa9frhz89JMY6BnJ9OlS0/v+fbng+vrGpca8+CJMneo4YtxolFqspUunvF4W4+/vz5EjRzh27BhBQR9z6VIE9+/LsK9dk7e4TBmZW+jUyV5T1YS0W8qM9M5/kfyDB0g1tCeQapYZi7sanq4iQ8/Xz0+a59psUofT0URPKgkLC2PKlCkEBARQ+fhxhi1f7rqUb4NBfusPlVBSiE5vQyL2QKL0miMO7USlhh/CgkQMHkKqo9nXP45cB+ohzcnSfJUzGKTk0ZQpzkVlvP22NNedPDl12Tbx6dwZNm0Sp/GsWSmvazTKd+OZZyRtPCNZswZ69BDnTni4RFbniXFZPf64vO5Ir/PmlaZHbh7ld/v2bQ4fPsw//xzhwYNx/PuvjZAQOeWbNyWoqlQpmVto394eBJMPKZSTGcb0SSQKJRyJFHyC5Ctsph2t1+ngxAnpN2AwiG1do0bGDDKGoKAgJk+eTGhoKHX37/9/9s47PKpqa+O/MzMpBEggtNB7R6qAgooVG/aGDa+9l6tXvXq95uq1915RUSyoKJYrIKCCgEoHAYHQAgRSSCCB9MzM+v5YczIlU85MCvjJ+zzngcycc2afst+99tprvYvzvv++fjWnExOhvNzvI0EjrOfiLT7WCOXqEYSIDPRBFZo1uRrNUzB7zmK0gshhqJhDra7rjjvUfrWChx5Sz+dzz6nDKdpId5tNawVMnqzSHZFsdLtda74MGQKPPhrdb0XCkiWajq5adSqRYkbrmdkxkcaj1q01it1x8DoIRISdO3eyfPly1qxZxP79j7Fpk15yaqoON926aYDIMccoZ+vldEB1tBsCy9Dc3krUVXkmkXtHdPircTXU4TWLaNHctWvV2TtqVK0yfRcsWMCcOXNo1aoVN910k39ENsD55+uc38MvM9AgjMFoVnidICBQ5E+Df/xD6xFYwbPPqrzfo4+qHyBKvi5zOPhh3DiWDR6MvPEGcTk5jELHr6C90+HQ7BzDUP9FXWLbNl1ly81VXm7TRn9PBHr0UMd+JEd27946btWD1Fj9YD1aMUMf3Zw5OvSWl+tU4oIL1BWUkGCgYahLG6BNguaaLUSd4wOA06hruz4a7jp4R98Dia1b4bbbNL3Mt2MMGABPPx1Za9ki4uPjGT9+PG+99RaO446jqnNn4h57rH70md3uoE5sUC3sCWi135+AbeigsRyVCxlFaIe2jeBaUitQR/YKz7EDUKO7HQFGtw3olADbKsDmc93mPejfX8nLihPbMPTZXXhh7E5s0OpToM4RK9ixQyP8rMJqWvsgjxRGaqpuvpg711rxIrdbnXs+Kd0HG5xOJ2+//TZ79uwhJ2c9e/aU06qVOq3799fxKzlZixZ06OB7pAtVp6wLR7ag08bAtKNc4Go0vccsQOZCUynvAB6hnhWHDyES1q5Vvv7xR//Phw9XXf3Ro+vkZ5KSkhg/fjwTJ07EfvbZOFu3Jv6NN+qHr0WC1gEwgO6ort0mlK93AfNR58aRqFM7lEPbQXD9wKUo7y9Bl2cO82ytCeBrB9CzEawr879u8/8jR+r/raSC2+1qlA4dqhktscIsxf3DD5H3dbth+fLoJmFW+NowtMCuYah8SSB+/tkaX5eVwe+/19k7Wx8oLS3lzTffZN++fWRnL6OoyE1ams4RBg7UjPs2bYIVmSlFHdl1UTwoFF9nAlegivI2z+ZE+fp+4F4asITeIQTDokXqPDUzzUyMGQMvvui1e2qJlJQULrzwQt5//32MK6/EnZKC/bPP6k9WKMCJDfqm9UV1rv9AHdq7gR/QbEZTszVUsnOc5/vhPp8JyvX5nnO0QLl6AP4ar4Dydb8k+D2groPJ12PHapSelWKYDofOIYqKdBEilhgot1vtaxGYNy/y/i6XZvaUBZZlCwMrY09CgoYfG0bNSlhutzUnNqgTfOvWg7pY7969e3n77bfZv38/2dnzKS7WAJF27ZSv16zR4fD00wOnGbvQt60u+NKN2s2BoVprUb5ehtrRBsrXzYHH0TT4QzigmDNHs4A9UiCA9ptTToGXXlInYhQQEZYtWwbAUUcdVdOJDRqQcN55mhltGPQTYRHq1nNRyxmXyQ8HoxPbDgxoBL97xhKTx0y+Pu88DdixwtfmMVu2xOTEBmjkdDLu0ksZ3L8/Mx96iCxgHtpbLyWIIr7TqUGEUb4TEdG8uUZG2Gw168jk5+s1RoIIrF+vY9ifZiHrI0R0mvTCC6b0kwaKXHut72UIavvWFdyeLdBF/BvqD/kDf75OA55HZVwbHocisgOxZYtOxvfurdnxTcL99FNdCqkj7M7IIHXaNOzvvqtR4BDUKI4JUWrLCZrC/iPeiD8bGtPUGzXIm1k4z3a0UNla/CsDp6IG97H4RGm/Bxx7MlzngiVL1WitqoptsjFsmIbvWol+C4WUFFi5UrWyzDSWSEhOVhmTSLAyiTKjBj2DfVD07OlNiYyEzz/XFe6DBLm5uaxfv55jjjmGqqoq1q5dy/vvv8+OHVto3nwOTmcZgwbBGWfoeLh3rz4Smy3Y2TKpnTbfb8BLwBdoNEgK8DdUo7UZGje1Df+yTCYMdDj/gLpyjvzVokZqfb2rVmkGRllZTb622XSbOVPD+OsIuatX0+qLL7C9/76GnxpG3fF1lBC0ZsFPeCP+7EBXlKt7Y62cx2Y06m8d3sruAK1QZXk/CZLpQKfz4Kbdev/Ly3VSEIspceaZqoG6eHHsiwHt2ilfd+pk/TlYjcZJSIi8iGpGDX73Xeh9mjWzJlMF6uA55hhr+9YzRIRdu3aRmZnJ6NGjKSsrY82aNUycOJE9e3bRrNlMXC4nw4bpo+zYUROImjcPFfRSQu0io38EXkRfQifqursWdVQL6vIrwL+4jS/uAixGM1nAIb6OEj//rJISLlfN/m63a3+bN8+7OFUHyFmyhDZffIExebI6bQ8gX7tRm3gu+paCThW7o3zdi8gyUQJkoHy9AV3OMdEWjcvydXyzFHBeBrdu0Il8RUVsThyHQws6zp2r86RYp459++o5Ah3I4WB18aFp05ABO9UwowZDRQy6XNFFWK9bp0LTBwFEhG3btpGXl8eIESMoKSlh1apVvPnmm5SX7yY5eSYiwhFH6EJjWpp2idTUYHzdCF18jLk1aBbjSyhvu9FQphs8Wz4qtFNCcPsa4Engnlq0wYu/GldDHVzzV1+p81SkZn+323Xe+9tvKk0UBUpKSlixYgVHHnkkdnuAWzojQ+s/ffJJtc3krqjgOVTu4lLg4F02qiUM1BjfdBXcvQw2b1aujoWv4+JUbuOtt2on83HkkTBpEtK7N+vQGjtOdIZcawWBVq3UER1uLLHbVV7qsceCf5+dHV3GuWmgHuSoqvqV9etH8+67wsqVeou6dtVHOmBAML7uhPoqYoUbLbD+ErpE7kb1FG5Gbex1qOeuyvNdMLwLXFmLNnhxKCK7NrjmmtAC+iL69lxxhRrjzZrV/vdWr6bVCSeoNeEx1EqAxnVV3CTKcxhotF9XlE/nog7trZ5tJrr20seztfEcE+gw7+TZTgU2G7BadDV1Dyo7cjyoJ/s4WN4PWhjf037aDBynPKrRebE4se12DdlduDB2JzZoJOQjj6h1Z9WRbcWJDSoXcOGF8N57wZ+N6XyLlOo5ZAhkZlq7zv6B8fINj5KSEjZs2MCyZcvIyspi3759bNq0idzcXMrKyigrK8Pl2sbevWWkpWnQjrmoG3zMMdBpX6datOoF4O/4V/UtAl4F3kTf3lBObFBD/UPgMupJHf4QwkFE05SDObHByyEXXQS7dtVNkY+FC2lz6qnKEW43gk716oyvo4SB12G9Do2WyEWjtTeh08gOePm6pdnOAMdAd892OrDRw9cb0ejBTDyObAO4EBanQruUL2j79QLsR12vzpFYrt3hUGfGd9/VLqLdDFdISbHuoLI6MWjTRsPWpk8PPiaZzrdIElSHHaYVECNdp91e5xILsWDfvn2sW7eO5cuXk5OTQ2FhIRs3biQrK4vy8nLcbjdVVRspLHSSlqZrSR076rGByUMKOxp/Whsn9gPAo/jzdT7wFPAauugYzokN8Cw6Fa4XteFDCIeqKuVipzN4X3K51Ml68cXqzKiL9N/p00k77zz9bZfLy9e1P3NMsKHR0/3RQI/56Bu7wbMZqEVj8nVzm83L1x7uMFC+740uOm7w8PVmND8tC68j230zLK6CTp0+Ju2bZdhGnqVjYaxo1kydK7XB+vXqpIqL8xbkigSr84HevfW8oRZGTefbgw+GPofd7g0UiTSuJSXpAuoBRmFhIWvXrmX58uXk5+dTWFjIunXr2LZtGxUVFTgcDsrL1wFC27Zw3HHqxAaVzq0JByrvESvcqLP6bZT7zee3C/gPamN3JrwTG+A+NMrvwN/jvxz274fLLgvuxAbtX/v2wVVXqQRrFGjcuDFHHRWkQsuHH6pEnGH4zW1taGbLEjQW9KB1ZNvtylWGEZqz7IR+5f8LdDWg66fw5S8w4vjYF11dLuXC2mpV//or/PwzBtAPHXf24HViu4FvUTnaDuAt2m7Fph8xQhdFMzKC7+9wKFH9/e+hz9GqlRqde/ZE/r3WrXWecJCioqKCNWvWMHv2bObNe4GsLKG4WG/psGEahX3YYcGOdFA70Z0q4CJgGtrbzHc3E81ifBV9ccM5sUEDSs7BWrhr3eGQI9sXGzbATz+F30dEiWXSJE2PrA0KCzVScM8ecLtxA7NRTbzrRBpE+TcUDKCHZ9uLGtnrUbdejmebCzRzOOhzww30+e03Oi1dis3XoWMY2JOEXsdCr+ka77rBDnEutK9cARXPwrcvgoiBfc8E2i/Mp7MInVCt1khFcfzgcsGECbWvOOx06oD6z39q3l0kI7pZM32WVtv45puqhfraa94FAPOe2Wxwww2R02tvuEEjrcPBZtPV1L59rbWtjpGfn8/ixYvJzMwkLy+PyspKcnJyyM3NpVGjRpSWlrJv3z6Ki4tp1aoVffvmkpioen3WgnXuIPZI6BmoExtqOj6cqKUxzeK5/gmMrUVbDiEmLFyoemfh4HbrIuEXX6iDpDbYsUPTKUtLwe3GiTqKt6J8faCcI0C1kdkPde2t92xZPtscoGVcHL3vuIM+X39Nhw0bNK3Th6/jWgr9+kO/uVBug/U2SHaiue83QeH9MP1V/cW4nefT4Y9cOonQGTVio1oqcDo1Mu6dd2p38S6XVj+ZMAFeeSW8AW0Ymppo1ZkjAp99pgvcH3+snOrL1w6HhkhESqW86abIkz2HA84+O7pIxTpEdnY2S5cuJTMzk4KCAsrLy8nJySEvL48mTZpQXl5OYWEhZWVltG7dmv79d5KQoMFYkQNcXMDttWjdB6gTG2rytQvYh1pPVnBPFPseQp3h228jF+xzudSB+OOPtc+iWbNGJdWqqkCECnRELwCuoa4VeKODDZV3GgTk4eXrbNTG3mYYfC9Cm0aN6HPnnfSZNIm0rCwMX4eSzUZCFzcDW8DAJVBqgz8MSHOhwbT3QvZVMPMdADfxG06mY1Y+nd1uOqGVPqKKqHM6NbPv2Wdrff28+qqe6/PPwwdj2O0ahmY1+9AwNAPrkkt0gdR0LJn3LSFBa99EiuC7+ebwzhNQvr7ySm/dmgbGtm3bWLFiBZmZmRQWFlJaWkpOTg75+fkkJyfz66+/UlBQQFVVFa1bt+Sww7JISNDpQOQmO4FbatG651AnNtT02rnRJfJcIsON2tcf16IthxATPvxQbd1wizkul9rhq1eH8rD5oby8nMTEELP6BQvUhgvxe/1QR/Z6YBwHmaCjKeORlqbyWDfdpJHGvr4Dux0GunT18Q/U+2agvsFk4GHgNsBcbv3qAo1IjzUoz2ZT6ahHHqnNlWm7339fV79+/hm7y4WveN4qVEJ2BdDPZuOEnj1pYXWx0+HQ7Jzzz1e/TSBfJyXpomPw6AjvOW64AZ58Mrztb7MprwdP7T6gKC0t5bXXXmPRokVs2LCB/fuLEMnFbtdLHztW3VGhffAuoDZFLO8HvvL8P9Df5UZrJVgJNioHHkJlRhoOhxzZvvjhB+tSHLNnR3Zk79ihjvHycp3oHnusfyd67z2/tAo3KslRBkxBg/kdhhF+da8B0BxNADsCKE1OJmPIENZXVLC5RQsKBwzgt8REfjvlFBp17Ej/ZcsYuX27El2XLvDYOBj/MmyB+C/hsL1oGPeFQBqUF6lhtX27UFy2m+2i9wCU44cnwGkXogvyJaj/cUOQRjoc+ntnnKGyHPPm1S7Kr6JCHc6RYBhaYPLppyO/N4ahXlqHQx0uF12k+diFhd73zuVSI3/yZPjmm9Ap5scdp6J2M2YEfzdsNh0UnnxSB4jPPtPfadVKjfw6TN014Xa7cTqdxHsiX8vLy1m0aBGFhYVs27YNl8tFq1atGDRoEA6Hg40bN5KWlkZycjKpqakMHvwlgwdbXTAdjfaQWPE44ZfGo4kwXYnqRk2kFmVNDyFazJljXdtzzpzIjuxNm/yL+44e7R8V+NprGv3t6W9O1EFcBHyGCtIYBwFft0QjqI8C9rdowYb+/dlQWcmW1q3J79+f/Ph4Fp57Lk3++IPDFi9mRHa2Lpr26QPPHg2nvgV/QOK3MHg/6qG+EEiFqt262/btQmlCDltFHfmgb/4xjeHYi9Ac931oqEZmkEY6HKqNfdRReq//+KN2Ee1796pTJNJ9F9GwhoceinxOMzKvUSOtin7RRfoOlfqkW1dV6UTh7bfVgTJ4cPBznX++6kkuWRI6UjAhAdLTYdYsTendv18dLhMm1EtWjdPpRESIi1N31r59+1i6dCkFBQXs2LEDEaF169YMGaLRy1u3bqVDhw40adKEVq1aMXTouwwcCE0iVYQG4AI0UiMWCOrENgjNy9G8O3PQSL/HY2zPIcSE2bOj4+tIjuy1a/2L+wbaNM895zcprgR2ouWav0YprZrfD5DCooGaw22AMUBhu3Zs6N6d9VVVbGvfntw+fci12Zh3ySWkrFnDoEWLODw/n2TQa37lMDjifVgOSTPh8DI0nfJCVFNqp1LYjh1QHp/HZrdGboNaP6c0g+EXoYPGHtTTH2ytwW7XQrYjRuhCW64VJ2QIiKjOa2lp5HfB5dLFzvT0yOd1OPRik5NVWnDSJHVw+EpDlZfD3XfrWD5rVugFyKuv1sXRzZuDt9FuV0P1zjuVq00d786dNaK0e/fI7Y0SlZWV2O32aimGgoICVqxYQV5eHllZWdhsNtLS0hg2bBhVVVVkZWXRpUsXGjduTNu2yQwZ4uSww8xC6ZFwJwGCYlGgCpUECYdo7KNPgMM9bTqEBsOcOdb2s9l03wiObOeiRbz78sskxcdzxlVX0SIwIvuxx/wyTwLRGc2kKUFdAP2sta5+0bOn2mZNm+qi6RlnKA8ddZRyzOuvq3QewBFHwBvtod8X8ItL9QAr0RDn8/AvbCMGtM6ouWbfHg28bYaugH6JV6PKFzabRsoPHaodPpoaA4EwFyvatQv6bLqj+W0rgT/cbta3bcvIDRs4jgiBLQ6H8mTr1io59uyz6q31HYtLStS/8vLLal+HWoC8/Xbl+7y84HztcOix11yj2UA//qjjQs+euhjpX3yrwVBZWcm0adNYv34969atY/fu3SQmJpKYKPTvr3FTo0dD+/aREtReQHO4YsE+4BXC29DR+NJeQJfpr4ixPdHjkEa2L557TrV4rDhATzghNNHv3KkrP998498pO3WCxx9XRyIoAa5b57fPPlTUoAQVKzjS/OLii2HKlANmcFfDZtOJ+333UVVVxebNm1m/fj0ZGRmUmhN8p5OunTsz8uij6dUrG5vt+IinFYE9W2F7d41I2Q7sORrOeBSGHQU4YV8xLFsJ/Qqg9R1g7PRpU4cOumjQrRt8+aXqetUFIi1sjBqlJDxunE7UIr07iYnatgkTdKDJzQ1OvDabOjaWLoV+IYbs0lKVuZk61TtBNCUDmjVT8n/2WdWPNav7milbxxyjxwUrTBYlRIQ1a9Ywd+5cunfvzmmnnQbAli1bePXVVykvL6dZs2bExcXRsWNHhgwZQv/+/fnyyy9JSEhgyJAhdOnSBcPojtctFgk/oXpNsWAnniSoOsbL1C6K5a+n41er6/3nP5WzI6Un2+0wfrxGmATDxo3K14HFXXv10v4zbpz+3bq11yj1IB+NO6oAzgUGgvaxs8/WArAH0KFdjYkT4eqrqaioYNOmTdV8XeGZ4BsuFz27d2fk0UfTrdsyDOOiiKcUgfxFsO1I5eptNig6AcY/DX0OA1ywuwDWb4C+26Hl31GD27TG+vZVY7JNG3jjDY1gqYuxLRJfn3UWTJumBv7vv0d+Pk2a6Hh93nn6Du3bFz5lfdUqr8ZGIAoLtbaG7wKMGcnTpo3Kozz4oLeYjy9fjxunzvQ64ASXy8WqVauYN28eQ4cOZcyYMYgIa9euZeLEibhcLlJSUnA4HHTr1o0hQ4bQu3dvPvzwQ1q1asWQIUNo3749hpGCugWtYB2xG9orUOXfusaneNyZMeMQX0eBq67SBfpIzsu4OLjlFuX2YFi5Ur9fuND/80GDNBpuzBiVDkpOrqFvn4WWZHEBl6OTcOLjNchkzpyDg6+/+QbOOIOysjIyMjJYv349mzZtosoTWW5zu+nbrx8jRo2iU6dvMYzbiLSQ43ZD3tew7VwPXzug+BS4+kXo2AVwQVY2bM+Efn9As7tRQVrTnjziCC28lpysi4APP9ww9+qGGzToo0sXazJ/KSnqSD7pJOXaiorQklBt2+oYECqdJCdHHVNLl3r52vy3Sxedy/3jHzrfM/kalM8vu0wXN0NFn0YBp9PJ0qVLmT9/PscddxyHH344IsKiRYv46KOPMAyjmq979uzJkCFD6NGjBxMnTqRLly4MHjyYtm2bo7JOVsfYvcSeHv49cEqMx4bDj8BxMR/9V+NqqOU1n366SqpFgsOhPoF77w3+/YIFuG+5hc9WrWI9mmV9O9Bo1Cidow4dqg7ItLSINuBbwK5GjRjTuTPHZWQcHHz9229aVy0YRNSJHBenG+noAnqEOYvbgM/FWzsvBXgDjQcAXQeyo47uiWhycSVee/KUU9TOTUzUuc1bb9VObtUCcoE555zDxr594ZlnSKms5FQiWH2tWumi4eGHq33tcgV/B8xFyuXLQ3Pqli36zq5fX5OvBwzQ9/OOO7zFjc3fEdF79Nxz0dVGqAXcbjdff/01O3fuZP78+bRp04bOnTvTs2dP+vfvT9Om+2nVaohFdTWzoHmsGeGTgQkxHhsKNtRuHxjzGQ5pZMeKHj2sObHNThUMu3YpqeXm1uyQ27fDpZdqR7r1VjWAAvZJBk5EI0Z+Rtc1qhfqHA7rmnL1BbdbDct77yUuLo4+ffrQp08f3G43mZmZLFmyhPXr17N15062TplCs2Y2hg83GDpUwkYCGNhoke2mBR71ypdg/xUQn4D2zzhYl6GB1vNckHod9HsJ+iV1pO2tt2Jce61Xs/zMM3Uys2BB7aKyIbJzZckSjeR88EGdCEVypJSXa7HQjz4Kv6/brc/68cd18hcMeXnqwE9K8kYJtmypkYN33aWrwmYqb+Ag9ssvOnlbtMhqSF0NVFRUkJGRwfz588nLywN0hbFv374sWLCAzZs307RpU5o1a8bhhx+O2+3m6KOPrial8ePHB1SsPhddzYv0zJqiSzwuNH+hMdGReF4U+0aDZ1CNqENR2Q2CHj2sG2ehIq8yMnSSHkzjfuNG5RIzGjfAiQ0ayHY0GuP5Ixol4jAdkFYLVNUnbDadLFx9NQkJCfTv35/+/fvjcrnYtGkTS5YsYdOmTWRkZpKRmUnLllWMGKE+oYQwufeG2Gm1U1MMDzeAj6HwJGiSjL7+Nlj9h67x/eCG1jdBv+ehX1p3Wt1+O8aVV0JjjxjLhAnqzF6zpn752jCUo3NzdeJ1xhmRz1dcrEXB3norPF+bepEvvgjPhCgmmJ2tESjz53sdbG3aqIPvsstUBsp8DwPf6xkz4NRTNQ0zLrYSO2VlZaxbt44FCxawx6MnuGbNGjp27MhPP/3Ejh07aNasGfHx8Rx++OFUVlZywgkn0MgzcF955ZUBfH0WmjsWqQ+2R8OOnOiSTxLR8XUtoj9Dwobyde0c2YcQBXr0sLZY5XSG5uulS3URPpjG/erVcOKJKikxcGDQIq0dUP3o31BxmW6AYZ7LKlfXJ6/b7ZqRd8YZNGrUiEGDBjFo0CCqqqrIyMhg8eLFbNu2jbUbNrB2wwbS0ooYMUI47LDwtGDDRtouN2nAyDiQ6bB3EDRviXZFG6xYpfXFZ7mh3S3Q93no17MfLf7+d523mAPCrbdq9FtWVv06R2w2DUp5+mnl67/9LfIxRUV6/156KXxmlMulc7WJEzVCOxiys1Vze8UK73W2b6+LriedpKFy5rsTeB8+/li5/KuvYtZ6LykpYe3atSxYsIB9nnFh9erVNG3alJ9++omcnBxatGhBYmIiI0aMoLS0lJNPPrk6w+aGG24I4OsT0ACQSGPsYNSJXeXZGnHg+dqBpqvH7sg+hCjRs6e1DBqnM3QGwpw5yCmn8LXbzXr0KV6Ex6exaJHOUefOVeek1UCGsjJaR5P1aOUaYoXDoVHXoRzZhhGg49OXiE5sE+s9GWiN0W57GF49FfPfeOB6tCbfOTYYNkL5+YILvE7Z++7zZmTXI1+3sdm4dPVqNj76KN+tXk3ht98yH7X8QrLH7t3+2eyh3gGnU4M+P/1Ug/eCITtbg/4yMnR/w9AFx3/8QwNnTjjB+84E3odXXlHfzFtvRXXNsWD37t3Mnj2bb775hg0bNpCSkkLnzp256aabqm1tXXAcgGrQhHvPDdRjaKC2tRv/0H4ryCV8dnossKGBfW9H2rFOcCgi2xdVVeoYzLPg6Fq2TFcSA3HhhboSFo4wbDZdPRo9Wp3ZAXCji295qIDCSaArRm+8EXmibxhw7rmaNhependtsGuXRjQEQWFhIUuXLmXZsmWUlalQisORwcCBwogR3iIjNTDBBpPdqmHya82vN2/2+o2dVQZwGBjn0KxZM/r27cuYMWO8+lv796vx/e23Suhut973uiZyU5/p5Zc1AvOii/Q9qquJjt2uCx+Behu//AInn6zk63tN5orskCEaHRiuHYYBzz+vaTlRYMOGDSxZsoStW7fi8ryPiYmJ9O7dm3379rF1q0ZV22w2hgwZQuvWrVmxYgU5OTm0a9eOa665BltQnarNaAFHK/duGLri5waaoJVyb0NV3SNhC55YrHrAUk/bYsNfLWqkVte7f786AiOlzRkGbN2qab+BOOYY7UuheNUwdAKfna18F6TwShU6ZO9DldJHgUYZvP9+ZL4xDN130qT6dQpUVYWMNsjPz2fJkiWsXLnSE6U9kYSEXQwerHwdvBgUOjDNQWtCfV3z63XrdJjcsgXcLgM4EoyTaNGiBf369WPMmDE4zDbl56v8xrx59cvXNhv85z/w73/rPb/mGv28tg50E40b64Qh8F7PmKGppy6X/zWZk6zBg9WRH+l6P/44aq3333//nRUrVrBt2zbcnvGgcePG9OzZs1pGRJviYNiwYTRr1qxaYqRHjx5ceumlAQ4RE4uBEBM4P5iKwCtQA705Kgt1K9YyY37DJzetjrEdrcYRGw7xdRTYuVOzEiPZRgkJugAfWExdRHWNNm8O3V9tNj0uI0MX9YOgFHgJVXM8B9Wp5qKLNEPNin19xx1qN9UXUlLC1lzJyclh8eLFrF69mqqqSuAlGjUqZOhQGD48TA36QWiFyWvQ0MaALr1qlQa7Z2aCuAFOAmMUbdq0oX///hx99NFeHtixQ7NbVqyoX742DHUUXX+9ZkfdfXdY+YGo0a5d0DkYH3+sC6wBRedwOPS3+/bVmkqR2mFFIicAS5cuZdWqVWRlZWFOz5OTk+nevTs5OTlkZ2cDkJCQwPDhw0lMTGTJkiUUFRUxaNAgzjknlITTd6i6cCQ40CX53z1/t0ELN94Mfuq4ofANushZ17ChaQLROmoUfzWuhlpe8+rVuiAYCamp6g8IjHyorETat2dGQQGLRbChTmy/UtZ2uzobv/8+Yp0RFxrL7HQ4uG3UKFLnz7fm/L7/fpUtqS90725dw58KIA0oDL+bGNBRNHn4flQ/O5IouLwPRojI2g0bNHDDzParL74GmDaNqtNOY94VVzBgyhTSPDauk+oYl9hgGPo+rlxZ87uXX4bbbqu5aGFGXnfsqIGkkWyPVausvfMxYPv27SxcuJA1a9boYvTatcTFxTFy5Ehuuukm+taoZfYecJWFMyeiemLrPH93QgPqbkBD+SNhIrWTaQ2FJljP2KyJaLjrkCM7EBMnqoZmKNjtSgjTptX8LjtbO0wk48ZuVwmT0tKQxaky0PIWDuDWVq1I+eknTY+wgkmTdGXp11/rT4pk586IBVOqqqpYs2YNixZ9QU7OE5grPp07q5+1e3eVllKGHgyXdoXPvoJ3nHAxISvRVFQoH69b5yAj4x6qquKw2Wzcd9991dEIa9aswel00mH/flp89RVGVpY6GU4/Xe/P9Ol152yOj9fUb5tN5WJcLnVieRwEtcY996jWtYmCAr15+/fX7hpMze4wg7CIkJeXR0pKSvUiwcKFC5ntkWFITU2lY8eOlJSUsMlzHsMwGDhwIK1atWLVqlXs9kSyxsfHM27cOAaGHSiskncgHOgL8z8gkpSNoLO6tYR3mtvR2V40g/1sdIU0NvzVjO1aX+9jj8G//hX6e1PD/o03an63dq01TjUMTTtbtEidHUGMvxWoL7cRcFvfvjR6883Q+vaB+OIL1QBdu7b++LqyMmIkb0VFBatWrWLx4o/Jz38JMw25Rw+N0O7e3QwusQPHwbEVsOAXmOHSQKkQ+V1lZepX+uOPRmzefA9OJyQlJXH33XdXO0ZWrFiB3W6nQ14ezb/5BsN0ZJ1xBjzxhN77unJepKTA8cfr/Rg4UKP4Jk+OXIjOKl59VaP2TGRmqgOusrJ2z9dm08ifX34JuYuIkJ2dTevWrasXCWbNmsUvnmNat25Nu3btKCwsJDMzEwC73c7gwYNJTk5mxYoVFHqcaElJSZx99tn06tUrTKOeRosnRgs7mlkzG9U/DQcXapxHKtBpTpGiGRNX0VDpj/8fUOvrvf12nXSG6wcPPhhcw37uXK0NYgUffaTSDvPnB+WNBegaXIphcOuYMThuvdWaHJ1hqO14/fVq39UHXycnKydFQFlZGcuXL2fJkncpLHy3unm9eytfd+1qZmHbQMZD32VKxKtE/ZQhHCMlJZqd/ccfLdm69RbcbqFVq1bcfPPN1fssWrSIxklJdMzKIvmbbzAKCnTh4IwzNALOipPXCgxDI19GjtSLGTRI51kffgierJJawyPlUo2VKzXVvbbtdzj0vF9+GXIXt9vNzp076dChQ/VYOG3aNFatWgVA27ZtadOmDbt372anx+EeFxfH0KFDSUxMZNmyZRQXFwPQtGlTzj//fDoHW7Cvxt1oJkq0sKNO7HlosEk4lKDOumIL5w1X9yAYsj3njh5/Na6GOrhmc4Ev3DzzlVc00C4Qn33GTxddxDz0KZ9DmJF29myNJN6wISSn5gKvGwaJAwdy7/XXY9x8c2T+jY9XvfyLL9Z5c32gWzddXLWMt4HrwnxvgOt2aPsRFOzWOnttiZAUYUPtqEWhd3G7dWFt6lRdKE1L07oH112nnFoXTm2bTQeeAQPU3zJ4sN6bjz9mzv79bALOQHP0YsaCBRoEauKHHzQTq7ZwONT399prtT+XD3bu3Mn333/Pxo0b2bFjB7s8hebLysoYMGAA11xzDSODRvQLKvkRQhIzLGyoc3seke92LhpQUh+BVC5iXbo4JC1SG1xzjRaOuvde/5V/c6Xn1FPVSA6GEEZzDbhcGjH98cdq1AdBTzRbJA/Ib9mSlK1btbPOnRuacGw29TRceaX1opWxoFUrjYSMgLi4OIYMGcLgwYPZsWMIixb9jXXritm2DbZtAzBo3Vro3r0P3bu/Tue77MR9+T84zhm2nHpCgvLkgAFOqqqOZtOmzuTk5FQ7sQF++eWXasJo1Lo17YcMoWPHjnTo0IH2H35I4n336UTHHKDbufWGl6OBCEEyV0OislKNVTMV0iwsUFfP4KmnNPr/pJN09fu992rvxAZt2+bNGmXqoztVUVHBzp07q/UZCwsLOeeccxg0aBAA/fr1o6ysDLvdTm5uLr///jsigmEYDBgwgLZt21ZHlYBGax9xxBGMHDnSJ3UmFM4gtjQXJ+rAOAMtBRIu0s9ADfpIulCC6kddHkV7aq85fghR4L77NIX3ySf9V+PN/19+eUiO5aefrPfRH37QyI4pU4J+PQhNIikDCpo0oUNlpTpJ164NPSbY7bqSd955+v/64us+fSzJUSQkJDBixAiGDx/Oli0DWLz4FjIyKti0Sde6DMNGWpqb7t2H073783RM343jpJO0JlQYS6JRI/U/DBpURkXFODIyEti3b59flO/cuXMp8jhvGnfsSIcjj6RDhw507NiRdt9+S/ytt/rf+85u7eIlqC8yGrooKvKmfH/+uTbQlDmpC9x8s3r/R4xQZ/xrr+m7WNvn63ZrxEgAysvL2bFjBxs2bPBUPN/PZZddRg9PhNPAgQOx2WzY7XZ27tzJSk9Ei5kxk5KSwtKlS6vT1xs3bsyoUaMYPnx4deHe0DiH2BzZLjRa42Q0QyZc5IgdLfR1N6GdHh79Md4DLg2zXyAO8XWD4tln1VP6zjvB+frvfw9d2O+HH6wXi/zxRz3X3LlBdxmJ5hPYRNhrGLRq1UplI3Jywkd7p6bqHKC++NowNMrDAho1asTo0aM58sgjycjozeLFD7BlSxXr16sj2jBstG/vpnv3E+je/SHaP7oK+4TzNUU9DBo3hmHDYNiwfMrKJrBhQ5Hqc3vgdruZM2dO9WdNe/Sgw7HHVtvXbX/4gbhrr1WJF1OGpadoYG8RsBrr3VNEnSxffaX3fMoUXYgMIhsTM845R/XW+/bVRYQXXqib8zqdmpIUgNLSUrZv386GDRvIyMigpKSE66+/nraeDNdhw4aRkpKCYRhs27atmq8dDgeHH344cXFxLFu2rLomUUpKCkcddRRDhgzxZjiFxLnE5sh2AbvRnLMMwpdxa4xGBD5D6EVFGxqx9xyaImAFDmLX7T6EmDBpkmbzTZvmz712u/br//7Xf9HeByUzZ7LE0/9PI4wT2+TrO+9Up2oIZAOIkBYfjzFwoPbVcPNgm025YuxYbW99wGbTNJiocC2aF/QPtH+Y7bd7/n872J+BR/vBY9dB+HhBD9zoiOYkpDFus+m9GDvW//NfftF50ty5nufqUgWUFmhdmz+iuDS3W30KmzfruT7+GFq2pLK4mBWouT4RdbmfgMYSR41TTtEgzS5dVBb16ae9mei1gdOp0mV1jL179zJr1ix2795NQkIChmGQmJhInz59OPvss0M4sUFt2vOIzZHtRqvNnQEsI/wqSBvgEuAjQk+k7J79bkULpVtBCg0ls3ooIjsUtm6FN9+EH37AVVHBnl69iL/mGhKPPZZ4z8tYAx9+qIRgBf37ayrxu++q8zxIutxeNMIv0TQGO3fWf3ftqtlp7XavJlx967LedVdoHdCwKGffvvdZvvxjNm7MZ9euBEQGo6m9Bna7nc6lpXQ/8gm6DdcFw8jycjMIVljkxx9/ZNu2bezatcvPCAdo2bIlt9xyi+ozzXucVVXvkDh0Hy1aaN0XeyHwOvAY6pk6mDB8uE626iraG6C8nKLycmbMmEFubi579+71+9rhcDBmzBh69uzJxo0bycjI8Et7BHVuH3vssbRu3Zply5bx7bffkpSUVO0QSQgnuOuHz9AEtFhhR4n2vxH2E7TkyMso2fr2GdOgeBf4G/CQZwtHlQYaqbKO2Isu/PWiRursetet06jrBQuocjop7N+fhOuuI3HUKOLi4oLztZmqbGUIPPFEjRp5+mnNkAiik1qA1jiIM42qvn1VMmPv3prOF5vNOxmoq0jjUHjuOXXqRI1i9u59i2XLvmDTpr3k5DRGKxioZR0XF0eX3bvpft6LdOut65uR+XoZgYX7XC4Xc+bMYceOHWRnZ1fLFZno3LkzV155pWqyLnqEpZWTSR5WWs3XtlxUK+AZYgsqqM9F3zFj1PkcRiogKjRuDMXF5OXlMWfOHHJzc6sXAEzEx8czduxY2rZtS0ZGBhkZGdXp6ODNmBkzZgypqan8/PPP/PjjjyQnJzN69GiGDh3qtygcHq+gkk6x3j8DeBE1kMPBBVyGanIHRvGZE7cvUJ2bm1FxtkjZNqPRiJXYcYivY8SKFSoZsWQJlSIUDRtG4vXXkzB4cGi+vvdetTsj2bd2uxZo/eAD5fdnngnax3cDqYDddNAMHaqpfmVlB5avp0zRSMiosZfdu19h+fLpbNpUxO7dyajMmS7WJCQk0DUrg25XTKJ7d/XJR+brHQQGBZSXl/Pjjz+SlZVFTk5OtVyRiX79+nHhhRfC5s3I7/9hccXntDi8ghYt1K9k2wY8C7xGbLRRX3xtGCrXN2dO3aXcd+4MmZns2LGDefPmkZuby/4AycfExETGjRtHcnJyNV/n+chb2u12hg4dWl1fZsaMGSxatIjU1FSOPvpoBg4ciN2yo+7fwBPULvrOSpHcCtSJMsfzdyBfxwEzgWNQ5/rXhOdrB+rUCR5IYAV/Na6GOrpmEXUcvvGG2jLx8ZoZc/31obWxAf72N3a//z5bgRHhzh8Xp7IQTz2lOviTJwft4zPQeOMjbTZOdrth1Cgt/ud01uyvhuGVlajnIofMnat2XtTIReeYC9F3fyDq5Pa5p2/fA9c+HcU5Kwi/yBQGf6yFLf+BPl9DDx+fyTrgSeD92E5rzpVKgFlo3AnoMtYpaHJQTO5Om00z7P/3v7obD0aO1OKdMaKyspJly5ZRXl5O9+7dWbhwIRs2bGDXrl20aNGCxo0bk5ubS/v27Rk9ejRHHXVUCNk+E9ej70ht3uGfgGMj7LMfXVpYRk0edqDZkz+hIVujULm/cPfcgS5mvhh9cz04JC1Sx4PVxx9/TEZGRvXfhmHQs2dPLrnkkurPvvrqK5g7l8QXX6QlOtVvQ4jsPbtddaw/+0z/nj1bi5n8/HPYdjgBh82mERsbNmghKtAQ5aOPVgOsIfDaa3DjjT6tykOpqDXRUFJpaSlbt25l8+b1bN68lqKiMiABXO+DLZPGTTRLpX17DXBOSwuU4TKArUDoVDqXy0Vubi5ZWVlkZWWxY8cO2rRpw/jx44GvETmPJx53U1Gp3cCUWGzRHFrkQ/t74DAfDjGHidhdlbVElIWG3Ogq6H400a8AHT7z0OHyhAEDYPVqysrKeNJHvqRp06Z07tyZxo0bU15eztatW6sj9kykpaXRpUsXnE4nXbt2pX///oBWWV+xYgWDBg2yENEXiFilRXzRAZ2ARYKghvGzKIGDPtnT0ChDUxoiF82RKCG8sT0JCFGIwiL+asZ2XV+viPDOO++QlZVV/ZnNZmPQoEGcddZZ1ft89tlnJH77LYkffUQrNPmqFSHYy25XvjMju6dNg0cfDRpt5Qsn4IiL0/S61au9+tqNG6vB9OOPtbtYq/jqK9UzBTTVZDc6kWxFNExWXFzMli1bqvm6uLgKiAf3q2Dk0zRZsyzbtfPytb8/NB7tS81C/obT6SQnJ6eaq7OysujRowdnnHEG8C5VVVfz6CPeZttskNocWqRCiy3Q+UF/DcYDztdRRoq48OfrfLx8Pchm48jjj4fZsykoKOBln0yDZs2a0blzZxITE6vHVTPl3ET79u3p3Lkz5eXl9O/fn+6eSWh5eTlr165l0KBBFiL6AvEk8ACxG9oGurBhJRLGDbyDFgQ2w4TsqCPkXry1CTaihXKqCG9sf4dyfew4xNe1g9Pp5PXXX6fAJ+3bZrNx5JFHctJJJwGagvvtt9+S+N57JM6cSWuUr806hTXgq4Mvoo6RJ5+EP0KHlgna9xyJiXDYYeqwMQv5NWumny1c2DDFexcv9onyK0dZIBENkbPOZEVFRR6+XseWLesoLXUDDnA/A0YpzZp77eu2bTXJ0r/7N0OZJ/SiVlVVFbt27fKzr4cOHcrxxx8PPEVR0b08/5y32Xa7h69bQIvl0P0ZLbgJ+gw8I8qBQ5T2tRPl6WKUs335erTdzqDx4+HDD9m+fTvvvvtu9XGpqal06tSJhISE6nG1zKfWh2EYdOzYkY4dO1JcXMyIESNo315TxPft20dmZiYDBgwIUWsmHO5CgzcsFpyrATtwKvCthX2rgFfRVeatns/iUd3Ie9GwT9BI0iMJb1vb0Jy3sC7RsPircTUc4Gs+6yyV7bGCN95Qx7jbrQuczz6rwYQ+eBetaHEuPtHdTZqoltLKlV47q3VrJbalS+t/0RE0qKyDudhXhrJAY3SZNBaUomziyVJzp4ItUkSdgaaUb4nxN6FadkjwH2bcaPd7EvhnLU7vwVZUANQc8ZsA47FWLaUG6iIS2/dct9+u754FiAh79+4lOzubXbt2sWvXLnbu3El2djZZWVl069aNvLw8GjVqxAknnMDo0aNp164dK1as4LDDDrPoG7kc+ITYCzE60GA8K0UXS1HH8yt4ZfwaoT6Ne9H3C3RJKZzdbGZHriayDFVoHJIWqUNkZmZWO7HtdjsulwsR8TMgRITVq1fj+uknv2MdqJpXb+Bo3y9cLiVtEyedpNs//qHRc0HWFlYBPwNXuN0kL1umBtf112uhsN69tVBWXXbqUDAMTxjHbrSK9Bto7DhoZPWtaERUUvDjfZCUlEX//i/Tv/8HiJRRUACbNw9k8+YBZGZmUlKiQetr1nh/OjVVnSRt29ro2vUY0tI6hY0qsdvttGvXjnbt2jFixHAgE5drD/A7VF2I8xsXPf+AggooaAOVLVV6b88e2JgNvZ3eTExBg/4EJd8m6DpVE3TYao2uLpoo9tyFOk2u8BjZTtThYQ55ez2/l4rGTIKakY8ReiqfCKpLhqapnn766ezfv5+Kigr27NnD+vXrcfqsZsfFxdG1a1e6detGZWUlu3btYvny5VRWVrJlyxb69u2LzWbD4XAwPOp0KxPh9P2sIt/ifgZqVF+MEvc+1LkXWN2uDer0OBWdWPr2MQf6NP5JZKmSQ6hvrF27lqysLAzDwDAM3G43brfbj68rKipYt26dRpn4IA6VohtAwHTJ5fKvm3DOObpdcYVm4QSZ+P6KKhRdXlVF0pIlGsVy110aKdi7t0aTRDlpjhkuF5CFLti8g7cAR080mvY6rLgPmjTZzMCBzzJw4BREqsjLg82bh7N58xC2bZvN/v3q/zHVLwxDo7TbtoW2be10734urVo1C/sbDoeDDh060KFDB444YiSwCZdrH/ArlF9D5WfQbyMUVMGedlDVHPILdGOL9k7TkV2JFgeKoyZfJ6HOsJ4+v10vfO0Zj6tQrjad1CZftwX6e3YtQkfUUGjldldrUTZv3pyTTz6Z0tJSqqqqyMvLY82aNX7R7AkJCXTv3p2uXbtSWlpKVlYWixcvxul0kpeXR7du3arTHIcNGxbqZyOgM7WLFhHU7WMFNjRi6Rr0fTa1WJsF7NcTmAqcj87CfNtn8vWz1NaJfQi1x7JlyygoKKjmZ5OvfSNMS0tL+WPt2hoLhwlo/xlKQNq6iMrrgZLQhAmaKXnaaRo0EmAjCxo3uhO4pLyc+CVLVKLvn//UgJOePXVrCK4Gj2zGJtTa/ABvWuBA4A50YhmZpVJS/mDIkGcZMmQaIm6ysw02bx7N5s3D2LFjAYWFwooVGhwPOhy1bq183a6dje7dLyc1NXxmRlxcHJ07d/boMrsQ2YjbXQrMhOJ7cX0CfTOgwAUFHcCVDLvzdWOrXoXpyC5Ep9Hx+HO1yded8U6l3Z67kkQdL1J6nnElXr7e52lbMao6apak24XWzAyFbJeLQR7ZhTZt2nDKKadQXFxMZWUlOTk5rFq1yi+rsVGjRvTo0YNOnTpRXFzM9u3b+e2333C5XJSXl3Oxp8hvcnJyhDoz4aDPKXa4AKu1JOLQ9/U2NLCkHA3xahqw3wjUTXkV+kYE8rWZHRm7E/sQGg6rVq2iaVIS3axGtsbFeQtY22xq49x4o0qzLV8OIrjxvnVtfY8tLtZxISUFHnhAZSc6dlTHckM4sUFrnbEarRcyBe8i0RHA34ELsMZSc1CpnZnoqOTQY21novZMpOu5JcqGV6HjTBXwBxQ+A9PQG90MTW5rj3eoiezSsYSuwI1onYrfUJ71nXFvwqvwHPGu1eUzdrnghhss7/7tt9+yfPlyXC4XeXl57N+/n8LCQiorK7HZbKxYsYI2bdrQsWNHzj///GqbJjpbuzO1G+HMQFMrSEKz2e9BZUmc6PJC4IM/FbWf78JrT5tweNo7ldo4saPFIUd2BCzzMZ4feOABnE4n5WZknQ9OPe44yh96iFJ0RX4XamhlUXNdzm0Y2AILgYmonlAQJ7YT+BGd6P6Epx60263SJ1OnavRJXRbDCgcRcOWh04ds/Ml1B+rQm+JpcTjdy5+A01ESdWIYWiumZcu1jBz5Oy5XGllZeWRmusnOVjWVffu0XkNBAaxerVIOqakv079/f/r160daWlqINA1T6/hpYI3KZU0C7oW4PDjfrruIG4qHQv6jUNASCv4DrXxUJyrxDlGF1Kw73AevI1tQo9yJOrmb4jXM49Dp9xCf9Kn5nuNsPpsLJflUvMn4LuApNNIwGHridWTHoZOCSrwTgmaoW7aNzUba4YfDFVdQWFjI8uXLWbFiRY20x2bNmtGzZ0969epFly5dKCgo4Msvv/RLfTRTHOsGY9AFkdpIpzSL4Zh2hBcjOxo1Vl5GnYH70Kc0FjXUT47hNw+hrrF8+XJAJ4V33303VVVVlJeX+zmy7XY7px9xRDVf56B8XYFGfASWxnAnJGALnDiWl2uRxiDOjTJ00bEM+AVP6c/KSl3p/+QTzb75/fc6uV5LsG1HHYBF+PP1JvTdnYYu1IRTrPsSr+SP8nWbNtCmzXJGjXLhdLZm+/Z8tm3z8nVxMeTlQV6ewapVDqAVrVu/Rr9+/ejfv7/q0gaFC10gfQHYhN3m+e9/oHERXOiZ24ob9o2GgkehIAkKbocOPnxtxiNXoY5jf8Ekjd81HdkVqNvIRk2+dqClBk2HsxN9rraAzXRWm4shZhteInTJhcE+5zVVuk310CZAczx8bRiknXwynHkm+fn5LF++nJUrV1brpJpo0aIFvXr1omfPnnTu3JmdO3cybdo0P7moNm3acMQRR4RoUbQ4CxXU2RdpxzCINnLJQMeIcDgDWIne/Q/QJ2MHzkYlpY6K8jcPoT5g8nVaWhrXXnttNV/7ZgY0atSI03r3pmL3bopRqzMb7bOZeB2LoHaXpKZiq46Q8yA/XzMWg9jI+9CUdSeal3UkqHPi4Ye1Hs599ymhNRTi16FJ1xX4TxLXoM6+GWiUVjg5iYnoAqXKpBkGtGsntGv3G0cf7aSysjmZmfvYscPFrl0qQ11aqqp1OTkGK1Y0AuJp2/ZN+vfvT//+/WnevHmI36pECfplDCMLu4EqsT0NqSVwkQNwgVugaCwUPAQFBuyZAp18VIKKfc62x7P54hi8juxCtGebXOnL13b0nTC5vRTN9wjka9NZ3QXvlDvXc+fCxSub75vJ13a8fJ2Kh6+BtpdfDkceSU5ODsuWLeP333+nIkDbu3Xr1vTq1YtevXrRoUMHNm/ezDfffONnh3fo0KEWC42BuASvNm8ssFEz0MPKMZECVK5AQ4ZeROePlejs5SLUGT405JGHcPCgqqqK6dOnU7FuHX/Ly6vur2HRpYvqXfti0ya/hcu16BsRR4i3r6hIZaQmT1ZnZEA2Wr3BMCBhAeqaDVw0X4K+v3PRzIRwDsknUCeixxkBnnN97jlvY5Stgvl4HKjb16rWfAnqC3kN2K1kdw8qp1qJt0TVLaiC0BuoifeCxdNbgAMVuzganX/5Vs6ai/rN2qAiFgMIP9LVGe6/Xxesg8DpdPLzzz8zevToapnUVq1aUVlZybZt2xARmjZtSlpaGps2bSIlJYUOHTrQq1cvjjrqqBgyZ0z8DXg0xmNB73S09rUd7/JyKNyJLiy+hM4NXajDewI6p+wb+tB6wCFHdgQMGDCAjRs3Mn78eAzDIC4uroZ+pGEYHN6li5+RLOjEeSfKASbygA9FGP3TTww97jjvufbvV2syCErxxmR0CvyyoKA6qrbBcPd/YKgNjgxGqm40fvxaVO84GHLRiWYFNQ0qPafdnkPnzv3o3PkPzFWfkhIb2dlusrOTycq6nS1bEtizZw/z589n/vz5JCcn07VrV7p27UqXLl1o1qwZ+iRuRlnaQyYvo33N/ycxgKaroOkF0PVXNHvZp3kJwL/wphL6bmZsmIkKwGUYiAjFhkGxCL5Pt69hMGTECF2AQN3+oSKne+A14+x4h0MbSh1mElNTAlargdsNg0QRbHa7NwLU7cZ13nlsvPdevvv8czZv3lwdGdK4cWN69epFmzZt6NatG61atapeHFixYgX/+9//cLlcNG7cmBEjRtCrV68wCwixwI7OgmKVF7Gjxb7qA11Q3adLUWd5Zw5R6MGFww47jJycHC6//HIMwyA+Pr5GCldcXBzDW7f2+0zQOP5d+Jd/ywS+qqzkmOXLGTRokDdSMCtLi5YFwX68C001+HrXLriqttI5UeKqO6GnAf0DudZknLmoJftSiBNkoAa5i5ospeTpcOTRrVtvunXbgMnX+/crX+/a1YKsrNvZulXIy8sjLy+PuXPn0rx582qu7tq1K02bNvWcbzyqd+zBg8AjPj/pmSsYQMpvkHIBdFuC+nl8LjEVuJ/QfO07tS7xnM8N7DcM9gcsKLuA/mPGwLx5VKJ8HQqD8DqyE/E6se0oX5sOjyb4u2MdwN12O0kuF4bJ1y4XGAbOK69k3Q03sOyDD8jMzKw+Jjk5mZ49e9KmTRu6d+9Oixbead7ChQuZM2cOIkJKSgojRoygZ8+efpxeezRC73KsOac21LlSH+iNOkGuQe94JxpoSnQIFnHYYYdRXl7OeeedF5Kvk5KSGJHqPxlzozmBu/BPSV4H/FRezpg1a+jXr593ArlxY0it1CK87ocayyObN2sNm4bEOddrSk+nQK41yW0qGp39QIgTLEKd2ELNbAn9Oz5+L716daVXr62AAxEn+/bZyc52sWtXO3bsuJVt2yrIzs4mOzubOXPm0LJly2q+7tKlC40bN0ZHulNRrXm3/uQN+Gcye5pgA5r/CM03Qo/5aE1uH3REXTmBXL0fnf/4LjD78vU+ai6jJQI9TzwR5syhhPB8DV5HdiJeJ7aDmnztO2YkA/fExdGoqgrD4VCnltMJcXFU3nora8ePZ+nEiezcubP6mObNm9OjRw/S0tLo3r27Z46imD17NgsXLgS0js/hhx9Oz549/Ti99miJeqheIDaBcjc6PtcHBqIp7LdDteBbneZHHUI9Y9u2bVRUVNC0qsp6bm2wehw+MlC7UAV10BjnsG/E77+HLD5Zbxh7DSwU7Vp+MP0jr6MhC6EKWX6Ht4BeoE/F5O8SdHa/E6+n2YyGPQyV+rEiHbMPOA5d5HfraS5Eb7Cv/xzP35+jg+qn1E61xBc+AXx2oL3plxg7FvesWbRF/WS5aIjNj+hzH0KMxSF9kZCgGU++fJ2YqDJk/wxuw+7Zs4dp06axY8cO8vLyPLK0GjRi2t9NmjRh0KBBOJ1OkpKSaNKkCZdddhkdAhfUo0YP1D6eQmyLj04i1zOIFcPRydm96LuZxoHi60NemAjo3bs3t99+O40aedeMAlPVAWjqny5loMZP4FrIEpRKZvz8M3OWLKFp06Y0btyYJnFxNAaOxxvIbxrYc9DJcEeUDmuFupAfqRQ4y6VBs0Fr+LlQY3s7QVw5aMxDGZE7Zil6x94HttO4cRI9epxOjx7nA4lUVlaSkZHB2rVr2bhxI/v27WPVqlWs8uS2N2/enC5dttK16+ueRV+3hvL8PcxPujxNu4GgYc9xaJRcqNgUE4nAAyKUPvEE+2fOZP/cudVGuatFC1peeqkWt+jRA8nKYije+sXmZkYHtgk49/We8ycSOekkSQTmz1f99T17KGzalOW9erFi1y72f+vVuevWrRvDhg2jT58+IQvHpKWlISL07duXcePGeSYy9YEr0XXa+/FPXQks8hUIA71rN4bZJxa40ZnZc6hTz8SJnjYeV8e/dwixYsiQIfTp0ycmvm6FvxMbVL2xMC6Ob775hpkzZ3r5urSUxmgcvjmI7kXfzu/QN6Y3dZBclZjo1daOFfsEzhFYTwg7w3y/HyZ4NsOrnn/D9T0bupS2EOXrbJo2TaZp03Po1etMII7y8nI2bNjA2rVr2bx5M3v37mXv3r3VUZktW7akS5fldO06lS5dVEqctfg7sQPhQkP37iJo2HM8wcfhQKSiZbBKnnuO/Z9+yv5Fi6odKa62bWl31VWautq6Nfb9+xlGTb62o3zta7o60DXTJHSojMTXjV0ujUT63/9g/37yk5NZ1qMHq3bsoNTD14Zh0KtXL4YNG0aPHj1CRnuYfD1kyBBOOeWUKAruRot70GnH80TH1zbUEV7XCztV6Gr1i6gNYrZlHOr8O5SifrBg9OjRDBs2LGq+tuGNfPXFImB3XBxTp04lMTGRJk2aKF/n5NAU/7LgZsTv/zz/DiVGnc7AdgZktUWNPNG564JQOwja1+4huCTU8ygbhZP8caC5IG8BH2MY+aSkpJKSchF9+pwM2CgpKWH9+vWsXbuWrVu3kp+fT35+PkuWLAE0mrhr1x/p2nUunTsLjRqh/uxwcpxOtEs+FPzrBM8WyXXbEe3JJS+8wP733mP/qlXsR909rk6d6HzzzSoH1qYNiVVVNfjahdryjcEvarQp6kZNInJtBQNISkhQ+3r6dCgtJSc1lWVdu/L71q1U/E/fLLvdTp8+fRg2bBhdu3YNuYiYlqahMEceeSTHH398FAV3o8VT6LL9ZKLjazs6UtamGHswlKH5UK+i4wiedp2Phg4NCHHcIRxs2LhxIwC9unSxLoiQEiRz25ORsx914TnRDIs6nWnZbFot3Kc+Q9QQgc2ov2BqqJ0MtM9dS3BGeRqvczpkY9HR6yzUu1yIiplehmYxW73bt6KBhh7fy1TgqzC7u9BE5Nctnj4cEhLghRe01pBvvYqhQ9WJPHw4ti5dOF2E49EsmkWoH+x7tFDk8XhlegOlvC0hLQ3ee0/rE1VUaAT2+PF+9sXevXvJzMwkMzOTbdu2Uegp1J6YmMjhhx8OwJIlS5gxYwZut5t27doxfvx4kpOT+fjjj3E4HAwePLgOnNgmJqJ34Tui5+tu1H22eBGaQfAm3jzXBNRoeYDI0dx1j0PFHqNEdnY2U6dO5fzzz6dt24D416OPVt3VMI5iF7AyIYGfL7uMosAX/fXXuWf3bnU+AtNRRwoojV1PTcM9KjgcMHasFidYvbo2Z1J8RJhgKhtK0HcG+a4PNcIxQmIxuvITHlVVVWzfvp3MzEy2bt3Krl27cLvNFHWVwWjRArr+Bp0/gdaixnLYlZwRaK5pLH5/m00rlm/apP/Pzobt21V7sV8/XVAAePdd1TmvB1RnBfzwA7uqqqoL8vhGXw8ZMoShQ4eSmlrT1SMi5OTk+L3nubm5tG7dug4j+gJRhq42xHta/zqaSluBmjIJwGz0/fJdCDGf5BS0unldwY2m90ym5sBhx6vf97c6+bW/WkGa+r7erVu3Mn36dMaPH+8f2SSiWtWbNoWteF0FLG3cmIUTJlDsG8XtdmN74QX+vX9/tTH1Oep3BZ0k30xsIjfVsNvhvPO0aM2WOgiHmI1H5yQUPiR4NkMLaiZ6h0ImVnTuKyoq2L59O1u3biUzM5Ps7GxEXKgTRtNCW7eGLtOh80xo7dIpdMh4WtNm20RsgWZ2OwwbVp0hw/btytlNm0LfvlQXYnjiCZUaqAcIWgBn59Kl7PQUKN7lI2mQnJzM0KFDGTp0aNC+4na7ycvLq3aIgPJ1mza1shoioBh1PiShK9uvozE0TtRRVoJXiCWQrx2oG/GEOmxPFTrZM3UmfWHmM32BCkDWHof4um7xxx9/MH/+fC6++GL/81dWanGUCE6HcmBxaiq/XHIJ5b58X1VFk2ee4R+V3tWuSShbgb69t1BLGVCbTfW4v/9eNTpqO7VaRYD4dyBmAScFfFaJumet6Nbb0Elpk4h7lpWVsW3btmq+zs3N9fzWM0AVhqE+gi4fQqdfoZWHr0PGZzVCb3asPiS7HU4/Hb72xGpu2aI6Vqmp6pww+frvf1fnST3ADexu0oRdP//Mzp072bFjh+e+KFJTUxk2bBiDBw8OGvThdDrZs2cPrT12hYhmLNUvX+9D50NN0TnYa+jis6Axj1noiwf+/OlA36sf8BbVrQuUoPy/hJqBTeYY8T3ewuux46/G1dDw1/zSSy+xZ88exp9+On2OOcZaEEa3bjBjBvTyCfvIzcXZvj2TXC6y0ACTq6mDiNxAXH89fPYZFBbWjq9tqKxwWN/lSjRfzxd5WPfqJKH2Vqxz7zw0y8FnbDgKFaqO5ONoha4qxBpT43BoJuqbb+p93rhRC5G1bq3P38TFF8Onn1Y/CyfKRos8rb8ArxTfNjSQvBM64+iEjjlh7063bppl5YGIUFRU5JcZM3nyZDb77GOz2ejcuTPjxo2jWbNmzJgxg6VLlwKaUXbmmWcSFxdHcXExzz33HG63m1tvvbWOMmn2ooNkCrAcXexbjr5ww9E01E3U5E47miLwM3WrVV2AvjQbqfnSOFBbYi413/PocdAVe3z11Vd5+umnycnJYdCgQbz88suMGBE8KmbSpElcaRZq8SAhISGoLvWBwA8//EBBQQHvvvsu5513Hn369PF++fe/w4KQYRSAvl7DKioY8s477J04kZKTTqK4uJiSkhKKi4tpFFAx1dQ4PppaOrHtdiWH6dP1/76FxkyjLxoit6EsEtKRbSe08yMa6zXf5/9O1PAxlfC8iIuLo3v37nTv3h0wHSW/kpn5MFu3qk+ioAAKfoWlnss00MjqVmiX9/03ATRjZzHRwzD0/r73nv4LZsUz/f/evTBrlkbupKXBnXdqkc9aYj+ahrXTs+0Cyho3hrlzve0AunfvzrBhw+jdu3fI6OuioiK+/vprtm3bxrXXXlvtHKk/I3szuvDxPt7Rsjsaz/gC3sgjQfOcnsf7cOxoLeu7gcPruF1voE5s87d9YRL51eiqRz/+P+D/C1+LCLNmzWL37t1MnDiRCy+8kK5du+qXhqH97sbw0ftxwJGlpYx46y32fvopJYcfXs3XlTk5GO+8U82jhmd/J+peaFabxpsc/dln+n+fdLyY+NqB8nVIR7aN0LxcaP13yMfryDZVo5sS6NJISEigZ8+e9PRo0qmj5H9kZhazdSvk5nr0tRfBYpe3hanU5OqWQLwLnetuiqKpJmw2jRZ5y6d0V6dOuoE25IcfVEpmyBAtHDd5cvBzWYSgLgWTp81/K1q2BJ9MGavR1wUFBUybNo28vDxuvPHGaj3b+uPrNWiUkW9xo/6olMc7eJ+3udD3oucYUC43tVrNaUld4RGCO7FB+dpAUy23UlOI68+H/y9cDeByuZg1axaFhYW8/fbbXHzxxbRr56lbER+vEnoPPxy26GIicExhIUdOnEjhN99Q0rNnNV+zebPWlPEEmtjwlpI7jVo6sU2+njTJG6Rgwpe7LZ8P+IYIjuxgfL0f68VX3Si3m47sStT2akIgXzdq1Ig+ffpUz3dKSkrIzHyfzMwqtm5VCfLsbMheBr+6vJfQgpp83QKIK0O9Eh8Sfca0zaZRnM8/7/2sWzevQyQrS23eigp1dm/cCN99F+WP+EPQO+VrW2cbBpUtW3qd6Wj0dd++fRk2bBhdunQJGfCRnZ3NtGnTKC0t5aabbiIpKQnDMOqRrxej9vU0vHbrcDTQ6BO87p9K1OZ9CbXJQVcd/obydV1H292Fxl4Gewmcns/PRB3skRdcDnb8f+LrQBQUFLBnzx7sdjtdBw70Oi4jZYBnZsIRR8Bvv1U7s6V1a7494giyfvmFRiJcTB07sW025ek336yO/q5GLHztRiMPQ6mHAMH9IdH4QkpRW8ucC1fgrYBlxbn9HX5jg6ASVlb4dzdqNk21uL8vHA71fTz8sP5tGP6LFps3w8KFKvNx7bUaRPLLL3ooumw2DB3ZfHMKt+GtpbDS81kT1Kqzo3HIZub8H8Bqm03b8emngAZ+ZGdns2/fPv7xj3/QpInyS7du3aisrKyW0OrYsSPx8fGUlJTwwQcfsG3bNgzD4MQTT2TUqFHVHN+kSRNuvvlmtm7dWgdO7Lmofe1ry45BOXicz36lKFe/go5MoBIz16DcGq7uVyy4huBObNB3a7+nfSpZ1lCo91/69NNPufPOO3njjTcYOXIkL7zwAieffDIbNmyoXokORHJyMhs2eCN26y/60wMRnTk7nbpCFKDR54vzzz+fqVOnsmnTJj799FP/l/mcc+C22+ClUFqjXtgMgxa33UaLnBzvhHnwYFi5UifNqHF9Gl6ZiVrBl5yDDSwdOsCTT2pBsoDq8EHhRt/ZkHBRM1HfRAv8HdTh0BJdMnwBjaRyokR+MTppHhz0KHWUtKjW7i8vh23bYOsXahLloya7SYSB8eFNgVZlkNIUmuz3FnNpjPf/IVPFu3TRCc2oUfDNN7BmjQ6cQ4bAl1/C++97KtObt6OFRmV//70a4UEgaKyyKU9ibsVoTM0ugpfbso8cSVrHjrRv35527dr5aIcH/oDAwoXkvfMOv2/ZwtLycsr79CGuZ0/y8/P9ovzqHkvQqIwy/CdhW9Bn/A06CJt3fLxn243ehVbUrIReFxC0Oq+VFPnX0MHkz40/BV+73crXbrdWHAw0RH3acemllzJlyhSysrKYPHky48aNY+hQj+L8ddep5M4nn4T/PRHsIrS8+WZaZmV5f69/f+XKFStAhPPN5lFHSmEmTwfytQj06QPp6bplZNQ8NhiCS3p74CY0XzfDekR2SzQi93nUsnfjnQjfjgqu1IQ6SlIx14VLSjx8/bZy227UZM/3bOsDjk8BWtkhOQ6aVAbn65Cp4v36wQcf6D397DO9n/HxmvI4aZIavr76uu3aaSTP1KkhI0QFNTFNjvblbJOvi4McFzdqFG07daJdu3a0b9+ezp07B49GcLuROXPIfv99ft+xg2VVVVT1709Ct24UFBSEKcxWF5iN1rhw4c/Xf6Dps7OBj9HphA01fq9GI7dL0SX5+pClqkAlRcJxtaCTwYmomMyfF38KrgbtO7m5agO1bl3T0euB3W7nb3/7Gx9//DF5eXm89957nHvuufTt6ykcdN99OuGdMye8o8HtJq6qilZ33EGrNWu8C3+vvqrZLZ5oqwl4ikNSC7427WqR8Hw9bJgunN5zD/hoJoeEjeAE4YdgfN0U//TjSD+SguqrvoBXSdqcCN9GqOyaxo0b079/M/p71qH271d/VOYzym35aC/Lw8yH9MJAR5SWzSDZ8PJzML4OihEjlK/T0uDDD/WHExPVvn7lFXUs+74fXbtqAbgPPwxZBE7Q4TEYXxei11Ra4yAhftQo2nXpUs3XXu3wADidyP/+x45PPuH3nTtZ7nbjHjiQxt27s2fPHpKSarWMEgGfoQuHBv4OiGXoPGo+arsa6F2/DZUgMEuqpuFfjq2usBfNiwjn6DRV0D9Cc5L/vPjT8HVlpS7eOxxqX1v8TVNWpFOnTipj9uSTsHgxLF8edvERtxv27dM++qNy0C+//MKq4cOxrVzJBSUlUZerCwlfvjZtusDaCSJwwglwxRVw++0aeBYJdizwdQ0RbaIrnJrk+aEpqPPyV59z3IDmFIWbpxfhlxnnJjqn9GWEkU8Jg2OPVTs6MVEz0HfuhCZN4LDDVF519mz//fv2Vft60iQ/P0ngDH8E6rTe7tl2oo9go/mzPvvmA+vcbnWgr1vndx673U5eXl61I3v06NGMHj5cfTWTJ0NZGTmtWvFJcjJF8fEkJCRw3nnn0atXL0SErKysahmRFi1a1IET+3U0n9eGvy27ANXuegjVpgZ9J/6JyoztRLm0LSE0f2uJTPzF1IPBhXrYvgXOqYc2BEe9S4uMHDmS4cOH88or6uRxu9107NiRW2+9lX8GEVefNGkSd9xxR7UuTbSIKpWmvBzeeEMdz1u36mfJyboqdOedOmENArfbzcyZM1m8WCNChwwZwrhx4zS6VUS1NB97LHJjDUONa9+owLIyOOYYNbjrAk2awLhxOkEPN5gAvP22RqZNmBD5vA5U2vLNUDvYUHrxLdFShq40vYcyYqRXrwu6AnUrNTX/HJ7jJ6PGWDDkUoPYb9E2i1NJLx91kpj/7sZnPOqHzs1DwEy2a4LSSRzgSE7G8cEHxP36K44338RRWEic3Y5DBIfbXd1qJ9rlXWH+X46/YR0p+8fU+W0PtLPbad+pE22WLMEegVhd27ezeOxYVm3YQI450BsGHUQ4p29fWkyfrs75ekEpOlnaS+grtKFOsNpHrUeHtVjX52tFzSlb9DjQ6Y8HNV/v36/6aq++qkUTQReBbrwR7rhD/x8ETqeTr7/+mtUeOaVRo0Zx4oknanSr261G08SJ1hr8xRdw7rnev4uKYPhwjfqqC6SlqQN11qyQxcmq8fXX6nS9997I3G5H68n8N9QOjVC+9DUX9+OtuD6HyBp+w1AH54PUdKY4PI34Cn+lWl8E6W8X6CHi1NaYHO3L29X++d6EVayKw+ssSfK0yNG2LXFvvIFj1iwc779PXHExDg9fx7nd1eJBkbjaSU2+jjRHsKEqh+3RgjftDjuM1r/8gi2CU6Ny7Vp+O+00ft++nXwfvu4mwlkjR5LyzTfqMKwX5AFd0asNdYUG8BixF4CMFT9iXaakH14hoNhxIPm6obkaorzeggKVdXj9de+CT7t2cPPNGl3dNHBqqqioqODzzz9n0yZNrzjxxBMZPXq0OnEqK+Gii+Crr6w1eP58OOoo79+5uerwDFFYPWr07KnjzpIlkSMPf/tNx4/nn4/M7TY0ieGWUDu0RieMvjrKe9BU4qfQCNxw7XGgPNwZ5Xd7wP52lCVnoaW2guEnVLXUB0cDv4C41W0SaFvn4y1cT1c0cCsE4vHydSNPi+P69MHx5JM4pk0jbsoUHOXlOOx24txuHCJ+fB3Jxi7Dy9fFROZrOzqbaAe0NwzajxlDi1mzsEXQsi795Rd+O/tsVu/ezV4fvu4rwriTTqLx558H1wmuE2xEuS7SwsY71H2tgkiYQui5my8M9D2bU6tf+6vZ1hDlNe/apZnBb7+tjmXQRaBbb1UbOzF8TPTUqVNZs2YNY8eOZdSoUfphSYlmRcybZ63B69eTYRh88skniAinDR7MiCuu8LanNjAMDRYsLtbFzEg286ZN8N//wkcfReZr0EThoHX1DNQ4/QP/UIpcVNbnAdRwDdceB3AFau1OoaZUmx3NV/yJ0Flun1KjUGtPNPEikismEc0OijZD/YIL4OOP1Sf24ovqmLbb9d6Huv8+HBlNZLwTb9ALQF+8WVbZwM5TTtGocJ+FmRYtWtChQwf/egTz5sEFFyC7d5Nvt7PB7WYeUCVCi2HDGD9tGq06dqSqqoqvv/6atWvXcskll1Rnl9YOi4AjifxAvsU/Mrsh8BJaYM7KSDkeTbeKHQeNtEhlZSXLli3jPh9NSZvNxoknnsivv/4a8rji4mI6d+6M2+1m6NChPPbYY/TvH6pzxoiSEjj55OoUhmrs26fG9wcfaLSer3SIzzWcdtpptGjRgpkzZ7JixQr27t3LxRdfrCuRTZr4S3eEgog6I3wd2Y0awTPP6CpWbWEYuro1fXrktths6tBfuFB1nEtrxB/4w0kYWWDzRTad2FXoKtIrqHlrFWejTmzT9RvYAIDLUcoaHOT4Nmgu/U9UG+nXAa/qcNLUs3UNOKoc2O2A/D/8Dd0Sn/9XeFpQFHhF+/bBQw9plKaJ2hbX9IFZRd1su/n/NHQdLt4s5jlqFHz+eUjnXnVBpcJCbMcdx+LMTPYCdhF6AgNF6APYNm7UhZVly6BVqIjN2mAKkaPz3Wi640PUT+Q1aLxnBf5pWtG8q2HTE/4UOKj5uqBAOfGPP/y5rKAAHn9cV87nz4eOHWsc6nA4OPfcc2nRogVz587ll19+oaCggAsuuACHw6F87XBENlYNQzMsfB3ZKSnwyCPqXKkt7HZ1ssyeHbktdrtGn02aFLLath9caAhiUBhoBIDZt0rRIqZvEyQOLQTcqBfDjBQIxtcudJV+PcEj/fqhek5rqDbkPEV0DDROMBkVHPJFKbA7AQo2hObrSnQU2ou3PAmgDq0HH4RVq7yf1SFfmwudvnydjPJ1GhBnvnennqoRgyGc2NV8vWsXtuOP55f8fMoBh4enB3p421i2DI47TrW+m9RHKvY7hHdig7cY3V34O9rqEsHSaqOZ7NbBxPgA4qDmatDMsqOO0n99+9OuXfDvf+vkdt68oPZJQkICl1xySXWwyJw5c8jPz+ess87CiI/XPmLFvgYtmurryG7TBu6/XzMnaxvD43DA4YdHzugx9331VV10fPrpyPvbiFBT7x94+9ZeVFZtMkEr3gaFE+iBRmJDTae3C2XQU1FPR7CYyGNQt65Xx58bgQXeqOtmqK/EhAAlBuTHQ/5WLz8H8nWV50rMjMlqbNgA//qXZjlWN7Vu+NpA+drXrm6Kl6/bAA7TCXPxxbr4HcKJXc3XGRkYJ5/MwpISXEC8CP1Qvu4KGD/+CKedplIo9VLc8TUL+xio1vmVxK6/Gwll6JiRRPR8bQq7/Hlx0PP1unUwZozqFvv2p8xMuOsuXYD7/ntPBe7gOO+88zj66KP9MxIaNw6ZgRMMuz//nC/sdkSEYcOGMXzcOI2KfvRRa3wfDmZW9LvvRt7Xbtcgxyuu0AzqSEhGYziCQtBFffO9z0YlfaZiXQZKUL7/1PN34L1woUx5MqqvF2zRYRzKbD6h4zcTvIyZL2yepscis/rdd6pU8N133vE20tzG3C/K8dmB6mR3Mj8wjOqt7Q030Pb55yNybNWvv5J50klsdDrZCOz16Qs9gPOWL6fRLbdQ9P77TPn0U7Kzs7HZbBSHyPSJHi8SuVCzHc0Ury9Htpn/D7qE7OsPCVxACQYXDW1f16sjOz8/H5fLVUP3q02bNqxfH5gcrOjduzfvvvsuAwcOpKioiGeeeYZRo0axdu3aoFVAKyoqqPBJP9hndeXu9tu1MGOwzuJyKaGfeqpG2oVIXR85ciSpqalMnTqVuLg476pOVZV1Q3vWLK2ampqq+j0tWyrZ9uxpbdUwEk4/XaNFIsHtVuOwcWMduB55JDSR2O0wOg6OqMB/5ch84Y/AG6rtRB3SM4i8ygTeyJAb0GgCG+EjSwy0878X8LkZI/dPtECJBwNRh04Ybb5EoKPLoGOY9lbhb3ibohhVgHPFCu//fTbzb5vnKs0YxVD/j8ffAdKECB3Wboe774YLL9R3KASWLl3K/Pnzue2227C//jpGZibHuN3V5bn8XClOp04+X3xR34k6xxQiS3eA3uGZaIgmnv134k19jCVVXVDNwJfQlB1QVa1r0QWUaDRU6ysCsuFwUPP1hAlqbAfjQ5dL09XOPlszWYKkQhqGwbHHHkuLFi34+uuvSUhI8OrDV1VZS58UUWejy6XRhB06qCPm8MOVt/fsqR1fu1wwerQWvrGy79KlGuF49dU6qQ712zYbnBcHPU1ncvUXKAmeDjzq+awMb/ElKw4Ck68fROV/whk6pqzD62jVa19UoX35X/hFjRyPBg7ODtEcwyDJMOhcKXQOwyGV+DtLTL52As5Vq0JytcnXkbjajibzBfJ12ClcUpJmfl1yiS44h8D8+fP5/fffuemmmzCeegpHQQHHut0koK5/vyRCp1P7yXvvaSRVneMTrOWj5qGpr8d4/najEaRO1PkVi+Kly/P7L6HvJyjv3ojOyKzytUHdawc2LBqCqyFGvhZRLt65M7iT0e2G9euV00NoF5vBIi1btmTGjBk0atTIm1ZfVRX0mKB4/nnYvVujCTt1gubN4cgj9e+yssjHh4PTCVadSk6nptn37w9nnqnXHcoBaxhwY5xWTKwRJe1CI0ju8ny2FxhFaN3KQJiZMi+izstwcKOT10nU9HaYoRz/RKUoPDgf9Y0vD94cw2ajic1GkwonXUL8qlCTr8s9v+YUoWrNmqA8bW52InO1A3++bopakGElZlq2VE69/HKNVA3WdhFmz57Nzp07Vd84PZ1G5eWMEaE5Wubez5Xicmkw1Zdf1s1ieA18TGRnmQDr0KhQM3DLidrXbjQgKbTcZmhUou/OS3izXzqiXH0D4WUQfGHHP7P3z4eDmq+dTl1MCXRig9cH8Ouvuvj3zjshTxNS473S2uJaFfDJww9TMXAgnVNSOK1RI4y8PG3bo49GPD4iXC4NdLES6etyqd/kqadUvztSxs09Do/6jm9fM/n6HrxRJDuBkWg0thUntpnD/Q6alRxJ1mEn6iC/LOC7ctTuuQO19T3nuRpd69oaojl2u25lVhdIA3+2XBeTDwQ6dtQg0QkTQqor+GLlypV8d+mlVDmd1e+HHdUF6AsMBWwiFH/zDW//858Up6WRlJTERRddROfOwSW4ooMba4sbLjRTtgCvNE0l+uxtKFfG4totRYOXXsZbH6EH6gu5BrWvrdoYDVx/RuoRO3fuFEB++eUXv8/vvvtuGTFihKVzVFZWSvfu3eWBBx4I+n16eropc+e3FRUVhT5pXp6Iw2EqJYXfpk2L2Mbc3FwpLy/3fvDpp9bOHW7r3l0kLk7EMGI73m4XSUsTWbbM+jGGIeJyiTidIlddpZ/53iebTf89/HCRgi0i8riItBcRPFtfEXlNRHzuhbwsIobPPpG2o0TkcxHZG8Vx8SLi9PzeDBE5RURsnu+SReREz/8d+m8FIld6rsnhc+2GIZKYKPLhhyKDB1u/9wmIPIlIfC2feW23448XWb9eJD1d5KabRO6/X2TFCr93ddmyZZKeni7p6emSsWGDSPv21s7dooVIVVXEvhA9hlp8xojImyJSKfpO9fD5PEFErhKRDUHOv05EnheRR0RksogUez53icjVnuPtAb9jF5FmIrJURI4U77sUarOJyEO1vREiIlJUVBSZv+oJBy1fZ2RY7wMLF0Zs465du6TK911++eXYedbcevdWfoz1PA6HSK9eIj/+aP2Y5s21/eXlImedJdW87zsGgMgJJ4gUbxGRf4tIS/G+t0NEZJJ4uVM8+0R63323sSIyXUQ2R3FMmue33CIyVUSO8fmuhYgc6/m/h6+LETnbvE+ef8373LSpyHffWecxEGmCyHOIGLV43nWxXXqpyMqVIv/6l/J1errytw/mz59fzdc7N28WadIk8nkNQ6Rnz4j9IDb4jveRtmkiUioiT4pIR5/Pk0TkFhHZFuT8K0TkGRF5VEQ+Fa8tUSkiZ3uOD3w/7SLSVpTru1lolyEib9TyPigOFF83BFeLxMjXCxda7wMZGRHbmZWVJS6Xy/vBAw/481wsW9++tTve4RA58kiRzz+3fkzv3tr+fftEjjlGavC1aWtfcIFI5WYR+YeIpIj3vT1KRD4T5U0T10lN+yXUZhPtQz+LyC8Wj0FEBnl+q0pEPhCR4T7ftRORUZ7/e/h6DyLHmtfk+decO7RsKfLTT8rbVu9bc0SeqcWzqqvt7rtFfv1V5N57la8feURk69bqJ+F2u2XGjBnVfF24ebO1eabNJnLUURH7QWxIjOI5LxSRQhH5j4i09vk8RUTuFpHcgHO7Rd+jp0TkMRH5SvQdEVE7+xhRrg2cx9lE7fctItLcYtu+rPWd+P9uW4vEyNfTplnnvLw8S231w3XXWeoHC0DSQZ4FKfb9zjBE+vWrXd+120XOOUfktdesHzNmjLY/L09k0CB/HvPl6xtuEHGtF5GbRW0bRN/5sSLyXcDNOFOqeTLiFicil4jOQ7+yeIxNRE72/Fa5qJ3T3+f7LuKdc3vGjZ2IDDGvyed+gUiHDiLz51v3l4FIGiKP1eJZ1dX2wgs6n/rHP5Svn3xSZNeuoK9oUVGRPPL3v1e/f9+CrAepCHLebLtd0vv2lfT0dNkV4nyxYb/FZ2xum0QkT0TuEX87oZWIpItyuS/cIvKjqD3+uIjMFPWDiIgUiI7zgXxt/j1UlK8TLLZtQW1vRlR8Ta1/LQwqKirEbrfLtABn8IQJE+TMM8+0fJ7zzz9fxo8fH/S78vJyKSoqqt527NgR+eLffts6+YX43VBwu92yZOFCqWrWrHad0DCUNLt2je341FSdJL/+uj/5htpsNpGBA30vROSHH0TOPVfPlZyshvuHH4pUVPhesYgUiXbCGndD1GCJ5JC2i8gYEdnnc+yWCMcEboWihr95vsDzJ4nIOBFp6mlPS5F1V4ncdY3IaaeJnH22yIsviuzdqz+flGT9Xs/1/M4ZtXjedbGZkwO7XRdBzMHnmGPEvWuXLF++XP7zn/9Ienq6zJw5U9x790Z3/jolbROniXXH2WeiixTBjGOH5xmbjsztInK85zubeI2HJqJO7fQIv2UXdap9GmE/m+hiSXad3I0DaWwftHz96KPWHBcOh8jtt1tup4iI0+mUJT/8IK74+Nr1PcMQiY8X6dgxtuPbt1cn5hNPWNvfbhc5+WTvhbhcIt9+K3LKKergbtZM5LjjRL78UhcmvTuKLhKWBLkbFaLvfKR+6BCRC8W7KCQi8puF48wtztOOK8Tb1wL7XoqInCrap20i0k5kxfUit1wpcuqpIuedp+N4cbFIaWl093q953dG1OJ518WWkuJ9b+PivO/46aeLe88eWbhwYbVT5Oeff45uQQfqceHR6gLzbBEZKcH53SEiqSKy2nPedZ59zedv8nVzEXlFRK6P8Ft2EekqIm9b2C9Ngtsr0eNA8XVDcLVIjHx9++3WJr52u3J7FKisrJSl33wj7tr2PZtNbby0tNiO791bZMsWdWpa2d/hEJkwwXshVVXqBB8zRnmgeXOR008XmT5dbe9quERkj+iCUCD2ijVHpV1Ebgo4xzcWjjO3NNGxYZzn78D+bBOdPJ/oaY9NxN1J5JcbRa6boHx9wQU6dygvF8nMjO5eF3l+p0stn3ltN3NO58vXhiFyySXi2r9fZs+eXc3Xy5YtE1mwwPq5k5Oj6gfWEc3C4yIR6RPk+ZrvUHsR2eo57xIROcznO5Ov24jIh6ILJuHGCYeIDBN1gIdrk0NEeonXQR47/r/b1iIx8vX48dYXBt9+O+gpMjMz5fPPP5d58+bV/HLp0ojnLQd5AnVkrwjF1ykpGlAVS98dPlwXna691tr+drsuXHlvrMj774uMGKF9NTVV5PzzRebODeBrpyhfl0tNbBNrtpMhIg8GnCOSXeO7DRK1b0ZLaMdkR9GFpnhRvu4p8sPNIldepnOIiy8W+eILkcpKkcWLrd/nOERciDgRSY7hOdXlZtrXcXG62Wz6XG+6Sa/LB1OnTpX0Cy+UiRDRtnCDvNaypaSnp9dYmKodXGJ94dEQkVUi0kGCL2TbRaS3qKNbROQH8Qb/2X2O6SQi34ouRod7N+0icrqI3BFhP4do8J9vn4gN0fB1vUqLxMfHM2zYMH744QfOPvtsQLXDfvjhB265JWQVEz+4XC5Wr17NaaedFvT7hIQE1aWOBnv2aLpEJG01lwvyI+n3+mPevHnMnTuX1WeeyUUffOAv0xANzG5TVAQLFmi6+dNPW07TYc8euPJKf63mcHC7NXXIhGHA8cfrFhamemkw7ED1miLBhVbO9pWHaGbhOBNxaDqEmSoZTO+vHC2EsxmtHmxoFl2o7EpbFHXszWZbzZSrL+z36DS7XNXvtgCbFy5k7qBBZF15JTRqxOGHH87YsWMxSkpCnysYorknlnE5MN3CfiloIYRZEDS9yolXJuE34Di8ZR98yzMXo8U1IsHUHCtA03Bvp2YBOzv68Gdy4B9+7XFQ87XNFpmvRbxFxSxi5syZLFmyhIwzz+T8qVNjSqCt/u3KStVg++kn1dJ+8UXrUiO5uaq9HVBROyRcLi2aZsJm06K+4yLpptkIza2/o+97JDhRuSZfvm5u4TgTzdBUdVN7MBhfFwMr0D7s0WkbjNJ8IKKRGsBzOjjwXbbIo8HvoxkowLoZM5g3aBC5l18OcXGMGTOGo48+WqXGooEVuZyoMQF9LpHQCdXvWkpwKRKzwsSpKH8ehbfOgO/7sJcwFe984ELzY5uj/P4INfnahmr9zkaFX/68aAiuhlrwtQQbowNgs0XF1yLCtGnT+OOPP9h+6qmcMWNG7NqIbrfWgRk4UOsMfPmlFjmz0m6A7dvhhBNg2zZr+zud/nztcMD55+sWFjZCc+tC1K6NBBdaJ6aRz2fR8HUqWmjMlIEJ7M9utJ/uQHnbptxzJLoFIoRUY0iYg3IakBndoXUKs+ieD1+7gdWffMK8pUvZc9FF4JHEGTp0qMoxWEW92Nagz+1JIhdqHoLKg20kOF+7UDmEs9H08zF49dh9z51LTVmDYHACy9AC7tcBb+HP1+bY1QH4nnpWQa13HNR8nZ9vTWfeblduD4J9+/axZs0aunXrxjHHHOP/5bBhynNTp4Y89W+o3FtLVP2zBtxutZfOOguuugo+/VTrLFhFRobWjcrNtba/WQTeREKCSlRMCFloxgM7obn1B4LPXQMhwAL8ReOC1SgIBgO9i2cDvwT5PfPvXWidGo88rGGojF8wd080fB2PV5+pJQe2FIlpXwfOD15/Xd/jjz8Gw2D79u2sXr0aw2bjVCJXCTCAEUlJfAv8/vvvHHlksEEuFtiAS9F5USSN7JNRbs8hOLe7UF/XZWj9jFPx8rrv/jsII+4ecL7vgNXAduBL/AtEm3etD/AVke9i3aK+Rs9q3Hnnnbz99tu8//77rFu3jhtvvJGSkhLVDwMmTJjgVwDh4YcfZtasWWzZsoXly5dz2WWXsW3bNq655pq6a1SrVtaJu3UY7VsR+PFHdUA0awZNmtDplltIWL2abR06MLFXL0tugbDYswdWr1YjKlr9VatObJtNdQMvs2KARINoNAjd+Hfe5mihxkiFIsyB498Wzl8MvIulTnbMMdaKVDRFhUohutqADYRlwIcuF1n5+cQtXswxxxzD6aefrnqTjRtD797WHB6dOtVTscdzUadHuHttADehuuvh+oCp6TgB1Wi1WkgjHCajGpBL0EGhKUqb7YD70ErUdTWQHXgctHxthfsMI/w76narNumpp2qRxqZN6frAAzjWriWjTx/e69Ch9nbXli26oLR9e3SORKdTC1lacaQYhtY+OP302NsZFNHwdUXA3z2BAUTmVjvaf16MsJ8LNdI+jXzOuDgYOtSaM6A9XrnNg5CvfwY+c7vJ3bGDhNWrGTt2LMeahZ87d7bGwTabTh6jKLJkHVeg422kc98EfER4B4oL1c2+BHVi17Zom93zm/9F7+S5aMUHGzrG/BfVah1Qy985OHBQcjWolrAV7nO7w7/PTqc6P449Fpo2xUhJofszz2DbsIFVQ4cyuUULy6VoQ+K339TGX7s2Or4uK4OtW63b5FdeCcOHx9bGkLDixDYRyO1HYG0lz0CLcU8hvBPGiWoszyQiX7dtG7Qocw3YgEF45fQPQr6eCUwTYU9GBkmbN3PmmWcyYsQI/XLAANVijwSHQ2tj1AtuQL1L4Z6JGw0o+Z7wHOwEVgEXo07s2vK1A32v3kBrKJ2MPmw7ak88C6yEkGrqfy4ctHzdpo01W8HtVm4Pgri4OHA6qZo3D0aO1ELTKSlwxhlaJPKDD7Q+QRBUoi5X0PCjsFbc11+rbbN4cXR8XVSkhb2t8vW990L3wLLitYWpU20FgSPbWKzVgRK0z0RymrtQZ/mSyG3q2xeSQwUr+sCOxiOYOFjraYvAlCnw88+43W5meGoSDRk7lnZW5hAOB4cddxzjxo2r7rt1h9s9/0bi61PQ5xzOx+FEA/8uwT+YzxcWF+4BfcBTgc+BL9D6Nwkoj/dHax8t4oDUC6t1/LcFvPzyy9KpUyeJj4+XESNGyG+//Vb93ZgxY+SKK66o/vuOO+6o3rdNmzZy2mmnyfLlyy3/lqVw9D17RBISrKUnfBeoceSByyVy/fW6T4COdC7I82lpkn7SSfIESGZtUyQGDIhO6iLazeEQue02TZWcMUNTAGfM0HSaWmGfaBq5lVSJNkGOn2Hx2Gg0uPtYa/r06ZHvmx2ROzznLUUkpZ6eTxSbG6TU5+8ykGdAZoLsD6Zz/eqrkXV9bTaRp56ydt9iwjrR5x9MYgARGS+qt2r1XYjmfYi0da2/yw6CA5n+aOKg4+stW6xrTy9ZEvwclZWa3gz+aZQ2m+wAeapTJ0k/+mh51jAku7b98Oijrck5xbolJIjcd5/Itm0qJ/LhhyJz5tSBlMR2sd7HDgty/AcWjvP918rvHGut6ZMmRb5vNlS7TxDZjaZBHgR8XebzdyHIUyA/gpT26FHzOtPTraUBv/++tfsWExaLSr+E4utbReStgO9CbdHosVvZjqy/yw6CA83XDcnVIhavd8kSa++/YfhpDPuhuFi1/QP52m6XTSCP9eol6cOGyUuGIQW17YdnnFG//bxJE5VQycpSPdoPPxT5+WedQ9QKy8Van7CLyElBjn9awnNxtHaUXUQuttb0p56yNkZORFPVM+rx+USxuVAZBPPvHA9fz7fZpCKYzvUNN1iT2Zkxw9p9iwmzRVPWA7V5zb//Kyq3Z0Vr3aoeu5XNEJHz6vG6/XGguVrkIOXr776z9v4nJKjvJAg2LV0q6W3byusQXEf6sstUiiOI7bIdlRR5msiyDgJaW6Q++3lqqsjzzytff/GFyEcfifz2W4CESCyw6s9wiMiEIMffLeHtpWhtKYeoVIQF3HWXNbvzW0SqEJlfj8+nLjaHQ+TCC6trhj3++ONSXFysErNWrnPZsqiefHT4zPNsgvG1ISKvi8htQb6vi3ci3BYnIjfW43X746DRyD4QsHzxN98c3pByOFQHz09f1AePPhr2Rd9vt8vbHTpIut0uD4Osqm2nq++ObRY7DCT0//439D2whMslcoeziWoWB8Pjnn1CTZqjNbabW2t2WZlIt26h75cdke6I5KPE/YrPfRw4sP6fV8DmBtkEMhHkbfwNgirffTMz/a+zvFxk1KjQ5G23iwwdKlISTFO3LpErNYvMjBbVqHaJFqWL5jnX1XZ4fV50DRwMxnZDwvL1nndeeAPDbg9fMOm228I6w/fYbPJKz56SDvIoyIba9Mf6XHQMx9dpaarzXyuD+ySJPFk1ROTVIMe6RQ1jgpzDHAOiNax6W2v23r0irVuHvl82RIaihSNdiDzo891hh9W+2GcMfP0HyOsgHwd858fXpQHauEVFWvgoVF+w2UROPLGGBmDdY4eI3CveYl1mcaP/ib4HT0ndOj2sbDYROaM+L7oGDvF1CBx1VGS+Pi+ME+vCC8Pa57mGIc/37y/pIE+CbKtNf4xVdzUWzvb9u3NnXYCLGW7RBUUrNvDUIMe7RIuJmX3Hd3+Tr6O1r4+31vTt28MXfLQhciIilZ7zXu/zXZ8+tS/2GeXmAlkJ8hLIN6H4ulGjmteZk6MF00LN4QxD5KKL6sBJFgkbRZ0fTcT7vM8WkZ883/9DrAUd1WWQiENErq2vC66BvxpXi1i8ZqdTfR3h/Aw2m2oLB4PbLdtGjpR0w5CXwnHfhRcG/W4Z6sj+wGp/jLUOTaw8bW69e2vNmZjhFC2Oa6Vv/Bzk+AoJXSMqVlvrEmtNX706fPCngch4RNye857j81337g3O11a2sg4d5Mknn/TXut68Wf1e4dp7221+t8btdktVndejWS0iV4tXM9ss/LnI8/0EsfbMbVJ3zmyHiPyrjq8zNA45sq1cfHm5FssySTqQtDt00EjAYCgtVcH/CB2lEuTTUaMkHeRhNNrqQHfemEh9/PhaRI+skeoCMEE7h11EWopITphzzBAtJOPbOY+X4OeLtLWK3GS3W43LSPfmG7SowQJEmnqI75pr9N36xz/03pkFYcwtIUELKRxzTJ1EbbpANqIO7HTP9l+Q3aGOuesuNa59sX+/yCWXaHtsNm9hBMPQVfTCwsj3rM7gFi1KFDgwTBdrz7cuDW1DRJ6vj4sMib+asW35eouKtNBKMAeuzaaT28D32sTu3fpORzJsQN4fMkTSQR7HP7PhT7XddlstJsYLxbvyH6xPOEQrn+8Lcbxb1GkyOuAYX/6OZrOQQeN0amHLcM5oO8rTLpS3Ezz8ds89umh51VWe/ezed8owdFHi8su10HEdOLudeB3YJl8/BlIc6pgnnqgZBZWfLzJunHd88S1kc9VVNZ3f9Qq3aOHQQL6eJNaeb11HZH9UL1cZCof4OgRycpSTA20ck79HjFBOD4aNGy31pf2GIW/16iXphiHPErAAFM1W20K/td2iLHjpj28kcpGmQSISamHLDBIY4nNMvIicEOac4bZjIze5tFRkyJDwfBqPyDrPOd9FxO6xTZ94Qu3Vc87R/Uznm/mepaRoUc1hw+rk2VShQUgv+fD10+jcrsb+hiHy+uvaPl/s2KFFPc3xJS7OWxz6jjvqqShvKLhFizQHBic9KdYdI3VpY8+ul6sMhr8aV4tEcc2bN6vPI5gvBETGjg2dof3rr7LT0zeeDdefEhJEBg+u4TD/3nPsdKv90izi19CbyVdvvVWLJ/KuhO8PdhE5TkIXy6sUDSLp7XNMkueYWPqfBUf2nj0a1BfOX9EUkSzPOZ/A60d4+22RggK1z3352rSzW7USueIKDSZp4Oc5w+GQ9LPOkpefe06cvsGaGzZ4xw9fvm7USOShh/x8YRkZGfLaa6/J7Nn1xWMmXwf63+4SaxHZhtStjb2qXq4yGKLha0NEpGFETBoG+/btIyUlhaKiIpIj6fo4nTB5shblWrVKP2vTRouy3HQTtGgR/LipU+GCCyI3xuFAzj+fH/bupdX33zPI4fArFPKnwkcfwSWXxHBgOVp86XmCa/SkocWXrOhWFnq2VFRsPhZ9ojao9moIiMCTT4KPVllQ2IBhNripB3zWHpq39RYHTUyEsWPhuOPg889hzRrVIBs1Cv72N9UK+/57OOWUGNqv2I6qgO7Aq1brAIYDowlTysowoFEj+PbbmoU8f/8dHngANm1S3dmTT4a77tI+ccBRCbRFCzA2BAz0Lm4jusJItUNU/PX/AFFdb3k5vPMOvPSSFm8B1W6/9VYtzNK0afDjXnsNbrlF+3Y4OBy4rr+eGUuW0GvxYnpZKQh8sGL2bDjxxBgOLAbuQGsJ+N4vw/N3d5Svu1o4VwGqfdwSeA24n+h1NfuhusYh4HLB3XfD88+HP40dONkBZ/SArztAyzSoqNBic02bqt74iBFaACYjA+Ljlb8vu0z1Hj/4AK64Isq2e7ER1YHMAszSMwnASFRhv1GI4zAMHS9mzVJtSF/88gs8/LAWnEtMhLPP1oLNIbQoGxaFKF9Ho+NbG9jQsX0r/kWS6heH+DoM9u+HN9+El1/WmgEAvXopX19zTWj94PR0ePTRyNxrt1N1//18M3UqI9ato+Ofma9XroRBg2I4cA9aLO+LgM9tqL09CNU+tmLD7Ua1WVuhNWdexstWVnEsWlgyBCor9dlPnhz+NA7gkgQY3B2+7wBt0qC4WGsFNWumdYn69NHzZGaqTXvKKXDhhfr/Z57RcSFGrEHVY7PwjlhJwCjUxg7JMIYB7dpp7aRevfy/mzULnngCdu3SMeXii9VuaXIwFJ7dho7pDeUOsAO90Dtd76W6gL8eV0OU11xQoLbyq696iyIOGqQ2hafwdFDceCO7336bV10uGgH3hjq/Yaid9t576m+x2cDt5iPUPhoHHB7LRTY07Hatj2BF578GclA9+jkBn5t8fQzwDZAS4TyCFlatRDWJrwU+IXr7+mIgTNHMkhLl1OnTw5/GDtySBC27wcIO6jMoKoJ9+1RX/cILtTbChx/Czp1qc591ltqscXFwzz3w9NNRtj02ONER6lf0jl/WtSs9fv4ZOnTw33HqVPUN7t6tY86VV+ocwMduWb9+PVOmTCEpKYm///3vqhXfIFgODIu4V93BDhxN2LG9jhEVd9W7W72BEfOqa2mpRohYiWR7/nnr0bRHH63nnDdPo3zbtKlf/dT62Gw2jaCJGntFZLh4V4YCV3d6iUheDOcVEXkzyPmsbM1Cn9LlErn66ujuzW+/iZx1lvitNppRR0lJIm+8IfLCCyIPPijy8ssiu3bpb1nRdPXdbr5ZZOZMkdNPFwHZijdC5HGQGSD7onmeiYki69d7r/35572Rfb6bwyHy2GMNkPpoBY+J9edc26iRRBGZ1zCX5YO/WtRITNfrdquG6r591t7L++6zFJEtNpumP7pc2tfOOEMjBhpYdqLWm8OhbY8au0QjPULpzA+T0JHYkfBfiS0yoGfoU1ZWernXymYYImvWaDZMIF+DRvq8/77Is88qX7/+ukY/i6imazTvwUMPqb6iJxJljQ9fPwnyA1FE/NvtIs2be8cOt1vk3//Wz3252sz4eeONGJ9RXeN2qfuI61BbMxFZ2SBX5YtDfG0BbrdGqRYXW+Prq6+2JqcXFydy660a0TptmkrqpKYeeP6Nha+vuy6Gp7FRRNpL6D52omg6eiy4Ncx5w21jQp+yuFjnQ1bvS2KiSEaGRnGaPAje+VPr1iKffCLy5JNaO+Cdd7xR/mZGpNXfevVVkcmTRUaOFAFZ5MPXz4D8jL82dkS+bt/e25aqKpVl8M3QNP9t3Fjks89ifEZ1jfHScHJQ7URkc8Nclgd/Na4WqQVfFxVZz+w64wzZ6+krjxJG59rhUKnSigqRjz9WLmjWTF72HLv5QPNwNP37gQdieBorRCRVQvexC6VmpoRVXBTinJG2MDUN8vOjk0lt2VJk3TqVEvHla/PfLl2U6x5/XPl68mSvZOnll0f3DKZMEXnzTa0fF+XzM6Vs0kG+MN/Lvn29cnxlZZo1b35n8jWoHT5rVvUtcrlc8txzz0l6erq88847Dcwtx4q1qOy62HpKeNWEuschaZH6HqwmTrTWaQxDU4B9kJWVJe89+6zsHTTowBNytFtgylxEnCbhDSO7qPEUiI2iqRNdRTWTDxd1XBf77PN1mPOG2zqGbu5TT0V/TwYNiqz/ZBj+6d9XXCHy6afR/c5DD0lFWZm286efpBLkV5BsVF4k6nY7HFqsVETklVci71+vxR6twiUifxPvuxPL87ey9RMRHyd/A+KvZmw3yPU+9pg1jTaHQ50oPtiyZYu8++ijUtKzZ8PzbW22hIQob5Jb1FEdzjAyJHhxmNWiRUA6ixZtHS1a+LHMZ59Xw5w33BZGoz5aZwWozqFVvjb/vfVWdXRE8zuvvy4VZirulClSDLIYJA+LBY0CN7tdndci6mSPtP9771l98PWIChEZJ/oc69OhfYSIbGuga/LHIb6uB9xxhzVHtsMhcv/91Ye53W5Zv369TEpPl8r61lGt661duyhvUoWofRzJDno8yLGLRe2oDiKSJirT97n4y4/cF+G8obYwC6iXXRZ9EE/nzpHfBTON3TDU+f3vf4s8/HB0Y8PUqV6+fukl2YM6PPJj5WvDULtaRO3sUG0xg16+/dbyk68/7BevJFh98vXJ0tBOEZG/HleLNNA1X3KJuGw2KSbCXNRm06CuALxy662SnpQkWw40B0ezDR0a5U0qFJVQjcTX7wQc5xYNqLpQdNGyrahf5X/iLzdxRYTzBtvsElaj/sQTo9e2btPGOl+D1kl49lmRW26Jjq/nz9cFF7dbFxWiODYf5CHUkZ3h+91nn+n5zj479DhlBvctXFh9mzZv3iyPP/64pKeny1NPPSUbN26M6s2IHbtFZICEDjyqq+0i0aDUhsUhR3Z9E/euXdY7+MSJfodOmjRJ0tPT5dMpU0QWLBDp0ePAEnI02+7dUdykNWKtkxgistXnuHdEjSh7wD6GqBM6w7Pffyye33cLU6W3slKjLxviPtpsWmAxMdHyMctAnkpMlN0336yFcsaNq30BhUaNVP+qcePI+yYkaEG1Aw63iHwp3kh/K5tplEdavTT12nc02NUE4q9mbDfI9a5ZY71P+Ewo3W63vPbaa5Keni7/+/ZbjdJu375hOKIuOCaqLIqfxFpfShARX83mJ6Vm3zL7W18R2enZ7xqL5w/st48Fb25RUVT8WavNMEROPdWyE8YNsgDk2caNpejee0WyszWjqbZ8nZam57Li5EtNDa1p2aBwisiHolrn0Tx3JHJBZ7uoXnuAhngD4hBf1wN++sl6n1i0qPqwqqqq6uion+bM0YlpixZ/joya1NQob9IUsdaXmouIyQNuEbnb87kvX5v97Ajx9qWTLZ4/cPOf71Rjx47YMlFjfXYXXGB5XzfIbJCXmjWT0v/+Vzm2Vy9rPBuu3QMHivzxh7V9u3c/SLIey0XkLRHpJNaet68TJZKTzi4iA0Vr4DQ8/mpcLdJA1zxlivU+sblmFP6bb74p6Q88IBseeUQdm38Gvu5joXaLH16SyM5GQ0S6iddB7RRv4FYwvj5FtD6JiDo0rfTXwO2b4M1dtSq2+xKr2sCECdEf06OHFrffvl2kbduo7GtTl/0FkArQY086SZUTrFzjqFF+t6ugoEBef/11SU9Pl/T0dPniiy/E3SB8Xiz6brUSa8/bl69tPp8F29cmmmEVa5ZA7RANdzWMONX/N7RtqxrZdnvofWw21aq8+GK/j0855RQMw+CPdevY0rYtrFsH//43BGrANGlykGhdetC0qeoEWcZHqNBdJNhQbSeAGcA1qHKRr9aTeLZdwAmojuvrUbTFhAu4PvhXc+eqFlK0sMfQhdxu+PVXOOqoyLsCs1DVrJLycpa//rrqlt17r1cD12HlPgdBWRlMmgSlpZH3rayMrGsYFvuAP4AtqPrgnahW2K2o2rdYPI8BnIMqy4bpf9WwA2eiCmzXo9pkR3u+c6Dvn3n/ugELgACtrEP4c6N/f9U7DtdP7Hbo3BlOPbX6I8MwONXz99Jly8gZNEj14++4Q3U4fdG8eWjN1wOBjh1Vk9AyPsQaX1ei9QkAJuNVRPSt/WDWQtgInIzy9YdRtMWEDbg6+Ffffqua6dHAQMflaCECM2bA6NERd3WhXD0b2FdSwpqnn4ahQ1Un+HCPAmQ4uyEccnLg3Xd1/IiEPXvgq69i+x0A9qJ8nYny820oX9+J8rdV2IFLgYFY4+tE4CzgDOB24AfPsVCTrwcC82nIGgaH0AAYMwb69g3P1w6HasaPGOHzkYOxY8cCsODXXyk86STYsgWuuko1731xUNT98MBmgx49ojzoA6z1p72oBQnwHGDqkPrytWlrL0Ftq3yUwaJFU1RzNQg++yz609Vmdvr55zVrCgRBJfApavUVFBay4cEH4eijtSaQ+Uxi4WsR1YV/663I9rkIbN6sc5CYsRutJbEdfd43oXx9D6pDbRUJqN5uF6w9gGbA2aiNfbfnt813OZCvjwJ+JExFiEP4M+KccyAtLXw/sdvhtNOgW7caX8XFxYHdjvOcc9S+vuiimucK1C8+kLDba+rfR8QkC/sI3vkxwH3A+57/B+PrWWidsE1E18dBjeG2wGnBv/744+j9Cjas2abB8MEH0Y+BmzfrXOzss9XWbdfO047IvDUGVSHfi1aQwOXSWgtvvBH5ut1urU+z1lu7JzU1lauvvpojjjgCwzBISkrCCDv/ykH5Ogv4GvVNXI7Wk9sUsf1eNAZuQevGRYIBtEPt67OAB4H/oe8B1OTrMzzfxzhfaUAccmTHildfhd69g5O33a6G81dfQVKS31dtmjRheN++4HYzY8YMpaeHH9ZJ6ldfwcSJ8OWX+nf37g1wIRZgt8O110ZJbGEKKvrB5rPvQ2hnCwUX2vEnoYUOooWghnqQ4mF5edGdyo7WAnTFSNygg3anTiG/rgCmoEXCQMvonOR2awGFc87RycGPP2rhm27dYjO4N22y9lztdli92vOHE/gKdQ73Q8vf/Jfgz3wtcBnQAuiPFosbAbyIFpl4Ax1WhqBOE6v4HmuFLVyoM+xbdLCYijrYmqJG+CBP+74H1gO9o2jDIfxpMHmyLkAG6yMOhy4cfv21//cidGnRgv5duiBuN9OnT8cdH68Fa3JztRjIxInqVM3OhlatYmtbVA5nC7DZ4MYbozwoG39jORTsaD93A+kR9nWiBvbHxFb0z4ka2pk1v8rLi24R0YHO0WM1tG02LV4X5hmXou6lFegodhowyu3Wtl58McybB999p4UlO3eO3qkeH+9nPIdFXJwPX1egi8UnAX3RRcBnCF44dwlwLlqgsz9aAGwM8Cr6HF9G+fsYohuD52CNr8uBf6LLARehE7lsdLBNRQvcXIU615dxaNHx/yEMA6ZNg5SU4LaJw6GF2AOdoyL0a9+erm3a4KyqYubMmUjTpsrR2dkwZYoWC545E7Kyai5GRtO+uuRstxtuuCHKg3ZhvbBXDsoBj0TYzwXMQyfWsfDkfnTyG8SW3r07OvvUjid+xWqAQ+Dxdp17hSkSVYSWNF6PDg/nAoNF1KFx441akO7zz+Gkk6B9++ife1KSFlB3WhhXbTYtCg/oSPIOavH3RQMvXkODQQIxFzgVLeY5AOiMLh6/ifL188BhqK1eZLHhbnSB0Mo7sBddIPnK87tvoYV+m6BjyAjgBmCxp60tLLbhEP40iI+Hb75hUXw8n9tsbA383gwSeecd/89FoLCQOKcTRKiqqoLWreGTT5SfP/5Yj/nxR/jjj9q1MZYAhlBwubRIa1TIxnqwVi5qm70Y4Rg38BmxFeATT5vOJyivROsPMZsTK2w26No1ujHZjJFetUp9aBkZ6hA/9lid60FIvk5APUEGakVmgM4BV6ywxtfgw9dFwCvExR3HKaf8nWuv/Z7jj98BlAFQUFDA7uogye9Q27ktytcd0YXAiaiN/gTQEw3+KLPWDnYDGyzsJ8BOdFz4EuXm11GbuwlaNPRINLhwNcrpB0MhYgtogAjxBkWDpg8VFqpOZ0qKf9rBeedpaoaJqirVrOzVSwQt8vQkSLrDIR+cdJJUBkm3ERHVDYo19aU2aXG+m90u0qyZyLZoNSj/LtaE6B0i8qCoJrHV1IjBFvcNtSWL6nD74LsXorsvyYj0rYP763AETccpAHnNk/7yX5DVwY599VVte3a2pqZGk7put4uMHi1y113WCuHFxYnccIOIZIumByL+qYQ2EYkTkY99bupPokUTrb4H7UUkN8T7VCUi00Q1V/uLSHwUz/sLEXnO53d83yVTsqahdK3C46+W/tig15ubq0WXkpL8+99ll4n46pqVl2vf8uisFoI8ApIeHy+fn322OM2ie4E4//za80Fd8HXbtt4ihZZxqVjTnTdE5BUR+dnCviZHHG9x31BbmmghSh+8d3d09yUNkTZ1cH9D8HUOmqaYDvIYyMZgx06dqm3fsEHfwWjSMB0Ofb8uu8y63vuDD4oW1OrmuY++uqc2EUkSkRk+N/VLUX60ytd9JXTxz3IR+UhExorWHIhGc/VnEbnf53d824znd0P0wQbGIb6uR2Rmilx5pUh8vPe9TkwUufZakaws737794s8/bQW/wPJxaOBmZgo302YIO6CguDnP+qo2vNBXfBJr17WC6tV43ixrov5mYhMtbivQ0TOtrhvsM0QLQxV6N/cJy4TsVu8JwYiPRCJr6P7G4Rnt4M87eHrpzx/1zh2/nxt++LF3qJf0fzuzTerzqylazY89vwq0ToT5r00/zVEZWJ+8bmpEz2fWxm37SJypIQu/lniOd+xovwazTNfJ6q1a74/5ucmX4+UA6GxGoi/GleLNOw1f/b885Lev7/85mufNGkicttt/vZoQYHIf/6jfgWQKZ5+uKRFC9XQDlWLq3fv2vNBbTe7XQvCOqOVW4imT80VrSljhd/NOmPR9NfAbbj417MRkTtPEnFYvCcGIkPq6P6G4GtL23pPXauZMy1ztSkx8pRhSPG//iXSv7/13/v8cxGZLyIpElyyI03c7t/lnXfekYcfflh++ulaqaoyn1mkZ2IT9XX46qD7olBEXhaRo0TH22ied56InOPz/hDw/1PkQMk/+eKQRnZDD1alpWrsLFwokhNQxKKiQvWMAzrBVrTCbzrIpLg4qZwzx/+4/HytkBorIXic5iGNJt+O3qyZ/2TBd0tNFVmyJIabskCsd6yVIjIriv1TPVs0ndd3M0TkPJ+2rhYpbSSSYvHetkNkDSJ3Yd04t7rZbLIH5D+ed+NpkKxQ+8bFaQXgf/0rNv3Vzz4T+eIL6/t/+K6oEzlSQbjZooZrU4nOgWEXkXuDvEs7xasBFksRmmcs/G4n8eqNHTj81YztA3K9+/eL/PabyC+/qFEd+N2oUTXe/XUgD3v65KdJSeJautT/uK1bY9dsNvU0w33va9yFW7Tq2NFr0EWFL8RaX7KJash/aHF/RKS3qLZ2tP3Wd7vJp60LRHbbReIs3t9eiGQichkijjrWXzQMycJbBf0FtKBj0H2TkkReflnkuutiW2ieO1fktdesO1R++FJ0kS4UXxuii49LRYslxkl0RWMMEXk2yLu0UVS72nxfonnOhqguerh9HKKLqQdGu88Xh/i6AbB3r8ivv+oW+Lu7d4v061fj3V+O14b6JjVV3BkZ/setXBm7Zr1haLGvUN/bbP583bp1zcm52Yf79FH96Kjxuljrq4kiUiTaT60WyB4jtSv2Z4jWsDHxjcjGKO7v4YjkInKiIWKve77e4MPXr4HsDbVvs2Yi778vctZZ0b8rhiGydq067Kw6ZlZ/LzqvCfWcbCLSWJRfV1p8/oHbh0HepRUi0trn2UVzvkSJXBjUXMw+sBrgfzWuFmnYa54+fbqkp6fLnC++UF/IokUiJQFzqm3bRDp18nvvp3r64i/mZ716aR0yX/z4Y636vAweHL7gqm//TksLvg+oEzvqIBERkYfEGqe2FC26e6+oPRZpf5uInG9hv0jbaz5tfVfk1yju71hEihAZgIjtAOqbt20r8uWX+owscm4VyKsg6TabfPLaa+K+8UZrtrlhiOz6STQYJNRztUt5eQv58MNXJD39cklPR15+Gdm6NZrnMivIuzRPNBgzFv5PFZHrIryLNhG5JMjvNiwOaWQ3NBo1guHDYdSomtp7//qXphMHoAsqaBAPNK6qwn7mmbBjh3eHd9+FIqupYEGQkQHPPONNsbDbvek1AwbAokUqUbF7N4wfrxrIwdJvTjpJNZmjxig0LTkShqDyDkmRdvRBEppKFysEmIam1gDcC40qNaMiXOaggWZarEWzrm8wapVOI6hQyhx8FAndbpqhSdRdUbW69qFOUFUF998PTz+t6U7R4Prr4fzz4YwzNJ0rUspkSgpcYKAXHy71xkB1nt5HtXGjuUEuNCWy0ufvL1D5EjOlPprz2YDD0QTSSJI121Ehl0P4f48mTWDkSDjySEgN0Ba74QbVrw9AH+BCPIpCpaUYJ58MhYXeHV59VftjLBDR1MmnnvK2x+Hw8vHIkZrGVlSkklMnnKD93Zevzf571lnQs2cMjTgTa1rDJ6NyDtHwdRMgdIq3NbyH8gnAbdBS4ArCi6MZaLbcajTj+mbAKTG3wA1sQ0WI5psfitAWVarrjfJ1SPGR0lK49VZNl7WavmjiwQdVO/iyyyKnXxqGpvIem4mOMKF+S9Cr+i/Ku27PZ9HgZZ9jKlGuHYjeKYiOr+2oIMuLEfZzAr+jNTUO4f89mjWDI47QLVAq4uKLtc5MAIagCbsGkLxnj/J1ZaV3h2efjV0eRETt64cf1tox4M/Xxx0HW7fC3r1q0x92mMqHBLOvL744Rv3XS9EEaSv7JaMMZaUvGp7942JokwlBpYicnt+8GXoYqm4RTl3EhmZVL0Z5+1YBV+x87UIVZ6fjo+ovQmd03nUYKlLULNQJCgvhiitUcsyqfW2+Uy+9BP36qSRjpPfMZtP6CQN+QtPUQ/2WG5WIeQbl3WilBG2e40yUodIjI9H0dIiO/x3AeCLztQvVxo6mtsIh/NnQpInKEBTb7eoLGTHCX1pVBMaN8/dz4GWaaut540bdT3zexccei722iIhKAd5zj7eOjcnXhgFnngm7dmldka1btb4M1Oy3hgETJqisVdS4lvBzUBPXo3fEKl/bqL1tDV5eKAPuUEoYTviyOTbUzfO9pwm3A+7Y+brWyM5WmdVFiyxLCDoMg3MB+7nnsj43l1XHHx/ZNrfZVB6w7QeozRvqt1wkJBRyySU5XHDBNpo0McjP17JkX3+tJcrCw46Ooyb2o3KOx6NyMNHeazvqdXwnTJvxfPcJOnr+SdAAjvUGxUG16lpUJNKoUdiVnTwQF+gK0v33e4/t06f2K1TmylLjxppGed99GtXiW031n/8MH+FlGCI33hjDxReLrlZFWiHqI7pSXy6aOhdpf4eI3CK1T6dBRKaLRqJ5VrYqERmHpsoYgfcSkSRE5vuvuMnj98X0bCpB3sIbGfKoZ3XQ9/t6W7k84gj/VNbvvou8gpmaKlI8TKxH6gyqxXPZIiJrRKRrLc5heNr6usX9bSJyRM3XuIFxUPFXA+Cgut6srIjRrjkgbpMXX3jBe2xqau37pRkVkpwsctxxKg2xcqV/G6+8MnJffeihGC4+W6xF7I3x7L9HrEVZ20TkvyJyjIV9I21LRWSZ9+8SREYhYgtyDxyINEdklS8fJIn8/eaYnk0JyCs+fP2c+R40BF+fcorKk5n44IPIx3TsKFLZTaxFbRiiGSmxPpdiEflVvCnxsWw2UbmolyzubxdNjzywOKj4qwFwUF3v779H7Ac5vn9/8okeV1ZmTU4t0mbycPPmImPHijzyiH82jNstcuqpkaN5X389hov/Q6z1k4s9+2eKdS54UzSLJta+bG7bRaWLPH8XINKf4HxtRzMdt/jwgbu1yKUXRyfp4dn2ejja5Os3A76vN742DJGLL/afYz37bOTj+vUVcTWzeF8TRaRJjM8k0dOomWJtvhVqs4tmXD5lcX+HiMQyj6w7HFTc1UBoyGtevny5pKeny+TJk4PvMGdO0Hd/uqePzgn87ocf9LicnLrrmyDSqpXIaaeJPPWUyleZcDpFhg+PzNemRFxUmCfW+smdnv2XWtwfUcnN2vRlc6sQkfe9f+9ApDPBs87tiPREM2dMPqjsK3LSSbFLgxyIzWYTueUWmT9/vqSnp8ujjz4qO268MfJxx48UcVuVN20pIjYpK0O+/RZJT9ftmWeQ0tJIx3bwvA9TxJo/LdRmF826eVCs+XDsIpIe+nVuAByKyD5Y8N13EZddWuEJKnO7NQrbRHZ2iCOigLmyVFKiUYYvvKD/N1caCwo0MkUk9DlE4M03tfhCVPgYLVoSCeuB39DokpuJXH/UBdyIhuPVFoJGdnmuPw4N1H4N8C1KnOD5ueVo4e1qvAr/fEwr3ZpFwOx2S5E+v6Gy+3FocPeZAd/XJh4mIhYvhgsu8EaZnHaaFkQK1+6iIvg/9s46TqqyfePfMzMbdJekICAqIlJiB3ZiYedPX7vbV7HrtbEwMEDsxi5UQEEBSQnp7lhiY2ae3x/XnJ3YmTnnzM4ui+71+ZzP7sw8p8+5nvu5n/u+7oKJuI+wW1OOA1yKCtwszHB9H4q5eQdV6XWDcDn2V41/BN5/37FJMyJxFcbAq6/qy1BI0Rzlhf0+btwIP/+sqK7YKMI5czSd7xRt8OCD2oYnvAKuZvh/QlW1GwDnkD4qzIr8/n+o4Go28Gf035rA98D/UMS1jVqoi5iIgoNLI2Feh8cGwcMPK8MEXPP1zyhmLQ/lDx1B/NWqUL7++mtF9tn99NlnK0IpHZYtAzMXd/fUoAJdmWI6ihJZneH6FrppnwP5LtcJ4a04cDX+cXjrLcciXnF5e6+9pr/r1mWePRMLm4fXrYPvvoNnnom3pceNgy+/dI7mvfPODI7nedKHy9l4H72XbVFItFOIXW3gDMTZ2cBESvuIhsCvwF1A85gm9YDrkX29o30cfrDehteHKuuwVi21dRmV+T2Kba6JysMelPB7hfG1MXoub7st+t1118FVV6Vfb+ks8K13uZNCotlJXmEBo9Cz4HZ/ieuD+v/vUIS4GzdCEFjk2Koa2y/y8pQhUhxrs8birbeS2lplIrJB7d54Q/8vX56dA7S5efVq8fLgwfF88sUX8Pvv6fnaspRln85nkhTP4o6vX0ZR0T1QSHQ6vvOjfO1jyI59bRBfR+5IK+AP4GbikzWboKRrO3MGP5AHOcNU+P7SSyHyLGQcRV9ZCIfhmWfYe+xY2rVrR3FxMa/vsAMzjz46/XqLfgcrxXNeBquBMPn5SjS44AIlcpWUuInKtlDh89Nx509Ltj7IDzKS5AXeU623/fB1tSO7IrHa/cBuFPD+ypWsW7dOX9gpi9lCKASFhZKSWLAAiorgmmvcGdCWBa+/7nGHP+Lu8fKjFwzgdmCfFOvZ3w1CUhNZcByxO2XSfQKoyPZfyNM8J7Krl1HuOCBhmLdRGhCS6ViyBD7+WPIAzzwD334LXbpEthnQNYyQ+mZ0v0E13k9B9WvddHNZQTisSZbPPot+9+uv6TudUAi2eEkTb0xm9NIUyZIUkDrF0gn3oZt3MjEiAC5QK8P9VeMfgdWrXTk1DRoovzt3LoWFhXKm5Lt1wLlEKAQFBXD44XKSb94sWQo3BnRREbz7rscdfo/7SaqfIn//h7g4GW/Y7/4byGtRXr7OQXnnCfcnH7gOZcEtivxdDTxNjHO7M3KSnqz7e9NNGhy9+66c2s89B199JTkOiPJ1xEm2lmhS9Kmo2nkXKtF4MkZOuN9+i37nxNfBoPwdrtE4gwOz0JW4D6VYZsLXfuAZJIHSD9kNbpFlG6ka2xfWrHHFh8VIuu3d6dMJh8PZt61BNtWqVXDYYbKzN2yQfe0Gq1bJseIJ35Be4s1GCfIeA7yIHB/JeMMfWd5HzuxVSdp4QR2gBWVYsg5wB3rdFwDzgJXAw8TMOuyBeOAgcdx994mvhw0TX7/4onKzmzaNHLo/jq+XIjUpCzgb2diZiG2VCw89BH//Hf3866/pJ122eOXOhs5NysAP7AXcQGYyUqAOdwi6eb2RZIgbu8FPtX39z4blZDuvXp2Ur21HdhybGRMN5kuUkyov7LjaBQsUxGVz9003uVt35kzJV3jCd7jj640ouA4k79CA5J6BiPOYDyP/lzfwsW1kewkc1Ri4H1iBuHo+Iti7iNFk2gsYA+wpB/Yzz+jevfaaeHDIEE1iJAaPZCrtVQHw3XorZxx6KB07dqSkpIS3R43ij3QrePKFQOzUaZs2cP31cPPN0CCtmmMA+cOu8bivWNRHz9HfSCDzR9yP87Yfvq52ZFckPGgpTQWm+nysWhUxIE85JfuzWcYowu/xx6VhNWyYu/UsC+Z61cspxp2h5COqiZyPDPRbKKv71BWFS1+OXsryRmQfiqYcu5P0NbDQJFZ7InKwPjRD+j3ybg+Ib5+TI33a666Dyy6Dfv2ka/vtt3DeeXDCCbDnnoCi+4qQmd+1nGeRMfx+6fqCtFuHDnXWhvocd30xNZGT3yvZ+9HM8lC3O0qBXkAjYB3xmoDp4EP6v88DDyJjfV3M72tR9sDSchxXNao0GjZ0pa1mobjg6cCaNWvEjyeeKAdoNhEKSafziSdgjz3cOzsCAUVve4Jbr6dFlK/roSm5K4BE3ea9kPvoNBS6cZ3H40mErfXaK/nPPkTnOxIJ6vUBhwCj0Z06Mr59fr762Ouvly764Yfrmn36qXSo+/dXLQk0VA8BHSLLNkEgIIc7yKkzYoRzpOfXuKTRZsDFZGYOng18RuaTjiEUL1kXjZLc1imwUNbOM4ivhxEfpbgK8fWKDI+rGlUeDRu6cmQHUAbc9GCQjRs3qkbCIYdk374OhaT/ausjx048pYPPl6F97bVtc8TF56OMtVgchCb9D0Oq0o94PJ5EXIGufG+ScoMfaINiQnJB73N/FAI4Hg3gY1C7Npx5pvj6oouka7toEbzzDpxxhvi6QwcMGkGAwlRalPMsMobfr0xNgGnTFOmZzrYoRpffkUbtycPz8a6RHUJu/bFkXtwnhPrVmug+uZ14DKEo06eAh4B3ibc5liO+zjSrpxrbGrYj26Ti5BReu6QR2RDNwmjXDnbdNfuOz2AQpkyB55+Hzp1hxgz361YKX3dAfHgKZd/1o9B73BsFfr3p8XgScX3kby+S3AndpHbI3106zDkPea5GoTzFGDRooPoCN9wA55+vOmzLlsmpPWCAxkstthk7l0UoRO6bb3LaaafRPScHs2EDIxC7JX2alwCzcUGjfuBA5C+KHx86+/KDSKx8XqqjcAEL9e25wFdEa405IYiClJ5As8wfE30uDJqJnkG8j2TbodqRXZFwSk+IQSOAHXaQYwTkDK0IhEIi7kmTvK3nOeKwM+4erxLidTz+RDmGBTHfNUBG7hGRz8+T+YsNIhe7QMkOwPE4G4Vh4HGUQu3ytfH55NB+6SX48EPYay+KLYspkZ8PxV35hwpBKBSdVV6+XFFETnCVzepHJXTOJXX0T6r1OqI0KU+hhElwKHA0OmC3BkQYpX9dDtyJUmtboBjMo9DUdBd0Tj2QdE55nsFqVDmcfLLrpg0BWreO8vXVV3sv4OcGxqiY6/z53tZxKghYBqkiq8tsnJjUFOQYmYjSIW00R3x9QOTzUy63nQo1gHsi/++GKsy44evnIm1dsqzfr4ylV1+FDz6ALl0oAGZGtnBoBkeeNQSDMGaM/p83z11k/jO44Gsf4rz/Q85ktyahHd23B+XnwV3QRMWzHvYPChW6CvH12ei5OwsZ7k0RXzdHDu9Py3mM1ahyGDDAuQ16ohoAtGsX5etrr/VeINsNLEtSISs8TKAYk4F97ZavIZ6vxwCTiLeL2gInIacIwGMetp0MDVDUL2gQ3wHn99oPvIBsK5fIzYVTT5UEwQcfQIsWrEYCcQHKyolUKkKh6ERGbGR2OjyNy8t+DeLsXNzzpQ/ZxE1dtk+FYuTRugKXHUwEAeAmNKF9B3LsNEfOsL2Qrd0lcnyHo+njamxP6NixI7feeivnnHNO8gbHHpv065SO7IMP1l/L0gSWZzkPF/D7FXzmVYqvwvwhFrBT5H+Dwt4mEz/D1Rm9P7tF2vyP8nkSWhGVJumPu2yPOshe29X9bmrUkFP7zTcl4xgpDlpl8Pvv+P1+jmvatHTk8hOyHJNaCk+62WgIVcGMBvI4y4mA7ud56P6Wx027Ft3fOxFfu+3Xc5E+4w1IKaE/8n38H5q0aI34unHkN68ZCtlFtSO7IlGvHrRs6appQ4Cdd2atrbW6005ygDrB5xMZe4kuKSnxZsQHg4pYc401ROPYnFAPvQigtMZ9USRfbKe1Djky+iGHyTsut50MeUjKpEvMd4+gQXyqa2ihyMJ9UvzuEnXqkOvzcTlyjbYv39ayh9zE6JwU+Au4MV0DP+pk70POp2/QFE0qmrFifjsUhaTUd3csjvgKVXf3AhNZgpG/RcB7wJfEP49/IsfLlVQ7s/9BaN3addp5I4Dddovyde/e0qZ2gs3XDtqucSgq8uYk98zXi1DMohtObYecE6BU9cNQ1HMslqNB64loePIBmWdY1EbCHq1jvnsGGVrp+rxriJ8gzQB16lDH7+cKFMfW3Kl9RcMeyNn6g074GXg6Hbf7gL6I1BshzqxD6usa0a7FQo6vrykbiZ8p3gJewnu/bvM1SLTrTaJSZTZ+RZPV95bj+KpR5bDHHq6zYBoBdO0a5eujj9bkoxMCAW98bYz42ot9bQwc6mWa7C8UCee0Dx9yTu8W+fwAsrXHJ7RbiAatFyJlabe2ezI0Ro5y2xlioffaR/rh5r2U28larx5NLIvLUc2Z+uXbWvlhR2C75ev3gQ/T2R8WCvS4AKUefUL6ftC+5nam4wdkR8DQICfWe7jv18Mxf+11NqBo0lgniC3c1g8FolRje4Hf7ycvL4+cnBQK9Mcck/TrlI7s2InK885zN3Hpla9DIWWpe+HrnBzYf3/37RmLbGyn8F0/er9boPfgWlSHZnpCu9lowv5WFK07nczHoW3ReLZm5HMeMBhxTTrn+JMx62SIbEvGlAe23Axg5eVxELL5LRSm8xZJmG4wMK4B6fu185Ht2R14E2P8DBrk48knVVojHrZtnYsi5F9GfF1eH0MQ9a/f4L5ft9/GcMw6q1Atpakx7cLACOQb8ypnmT1UO7IrGrfe6qpZo5wc6NkzGjFSVCSNoXS5B8cfr+iPM8/0FE3oCX6/nPGuo8s/QanKLtMquR/NefVGKTQhkr9sYTQgvR0ZQF5RF7gMzVDtm/DbTsgZs0vkc4D4V8Mgo+1MJMLqHYWFhWw+7DAIhahFNPZlm8HvL5U6oWVLTZw4pW75/TBufyT90S7hx1w0gzgaTU6ArudU4G40mwci6/0RwV+HCHYGchY3RvcirXCUS4TRBEhFOJptg+RZpAFcjX8MnIoyRdCoTh3o3DnK1wUFMHx4egP63HNVBOqMM5QaXRHw+6FbNznWXeEVZMy6TTl7ED3zuyD5IENyvjbIwPkfmhDyikaoysxaykZ9dEfOynaRzwHKGt3Po+iBzLQDN2/eTOGRR0IoRD1gz4y2kkUEAtCnj/7fbTd3smWBAIw+Hjn+E9M4a6KJuG+JFljsg56Dm1FFH9Aw8zDkCLkOOcPmocnkOigi26WjJi0M3vp1L7xuP593on6mGv8YnOtOYq5R8+bQvHmUr1euVE2TdDbP1VcrEvCMMzxODHpAICBd7Q5uRYseRNy7wKGdfV53Iy5sh2xnKOtQsd+lV1F/kAlaIFt+JfGTjqDY6C+JclAyvr4PZVdklqq8YcMGSo45BoyhEZEav9sSgUC0D95rL3cRnIEA/HQu4thEfq8H3Ea8M/pQZF9fRdRtn48iry9GfP0oSgN/EfH0XmQvD3Szh7ZepExC6Jm8nGh1imps98jNlSZ1ApI6svfaC5o0iX6eP18FddPx9e23y34//XQ48MDyH28y+P3afmM3NUVsZ/ReiBfTwYfe6xtR5ndzolnjibaO/S49hGTdMkEbZBfOpyzXnIyckvb3yfj6eiQB64UDEnDiid4CeioSlhX1hxx0EFgWPVD4Yg4Ssy3j0TI++OEqZC8nOuUbo/vzMtFrdyqrV//Ili3d2bw5N+LHr4Uc3f9BfP00ki/9H/KV7E32fBhegonS7TPxtyDi7DOR7O42gPmHYcOGDQYwGzZs2NaHIhQUGNOwoT3fk3yxLLPg0kvNwIEDzeOPP671HnvMGJ8v/XpgzHvvqX04bMyuuxpjWc7ruF0sy5j8fGNGj3Z5siONMZYxBheLZYy53xhzZsxnN+vVMsbs6LItxpi3jTEbjTFhF8cfNsa8ZYypkeJ4AsaYBsaYaS6vhzFbt241P/74o3nwwQfNJ598YkzPnsYEAtm7R+VZ7GfHGGMGDXL37JSuEzLG/GSMGWqMed8Ys8bF1Sgx7u7DrcYYv3F/j7fV4jPG7ObynNyhyvFXBaPKne+yZcbUqOH4Hky/6SYzcOBAM3jwYK13003G+P3O78/PP6t9SYkxzZtn9322LGPq1TNmmlt++sC4f9b9xpjnjDFHeFgHY0wLY0wdD+2/N8Zscnn8YWPMM8aYHJOar3cwxixwuT1jNm3aZL755htz3333me++/tqYdu3c9cOVsfz0U/RA//tfd8dlP2+mxBjznTHmDWPMx0Z9ohPc8vX5kWtdXj6t6MVvjOnn4nzco8rxVwWjyp3vjBmuePf3u+82AwcONG+++abWO/dcd3bY9OlqX1BgTK1a2X2ffT71AQvc8tNg4/5ZzzWyzfYy7m1rnzFmF+Pe9vIZYyYaYza7PP6gMea+yHrJjslvjOlkjFnlcnt6HkeMGGHuuece8+uPPxrToEF2x0DlWf76K3qgF13kzj6wnzdTZIz50oivPzPGbHFxNdzy9VFm+7CvA8aYs1ycjztUOe6qBFTmOa9YscJ8/PHH5ocffkjdaMyYMs/8TDADwbwY+/3XX8evd8QRzu9PICD73Rj9dfO+eeXrnXYyZpVbfrrXuH/W6xhj3jPGdDHu+dpvjNnPwz5qGWNmGGO2ujz+ImPMdZF1U/F1L+PeXk/AihXyL21rngY9K/azY4wxxx1X+vxMjDyfD4DZFLtOTk7MOpuNePoNY8xXkWtXFn/88YcZOHCgefXVV4342g32NNsHX/uNMde7PCdneOGuKjId8g9G7doq0lWnTnL5D8uCI46g0f33A7Bx40aCxcUqGONUeMzvh0GDotu58Ua9Yk5wOwu2004werQKQ7rCdeB69qgnmsUZHvnsdr3NaJbK6Rx8KFpsAIocc4pCWINmwc5D8iXJjieIqgqf6Op4x44dy5NPPsnIkSMpLCxk2bJlhIYPz0BfqwJQu7Yi+m385z9Kb031bFgWnHMOnHRS5Asfiqw+C6WZu9HVSjazmww3ocjsLBfPyzrCKCImsyj9alRBNG+uSL28vLJ8bUeDnH02ja69FoC1a9ditm6FwYOd0xMDAVX0tv+/7rr0ESZeK3vvsQeMG6dCY44II+02N7BQscRpREtpucWyyLpO77I/0u5g3FXLXo6iDa9GsTyp+Hol0k9OD2MMI0eO5KmnnmL06NGUlJSweNkyzIcfZr8oXCZo3hz22y/6+dZboUeP9Md2ww0x6wRQka6zUQSIGwkdt3x9P5IFqOp8HQK+I7OMrmpUSXTuLM3NZPJ6ti1z3XU0PPNMIFKcd80aZc84yTUFAqonA7KXLrkkve3s83mLMNtvPxUBbNPGReOtRHWnnWChlPRPUESrW9s6TLQwrtO7HIjsYw/cpZgvQHbdHZH9JDumEIroutz5SMNhvv76a5566il+//13QqEQi1evVi2abBeFywRdusDOO0c/P/QQtG+fnq8ffljrAcpwPALx9TG4k3Byy9dPkl5CqqogiCJD3T6/1diWKCgoYOLEicycOTN1o759o0WrI1xZGpFtv7cPPaQsFRtz5sDXXzvb1+EwvPyy/m/eXJHT6d43v98bVxx3HPz6q8to7NXIPnWLq1A07izcP+8hJMe5L87vsh/p2ncmmoGXDjNRBvvjkc+p+HoCkjjJAE2bwrBhma2bbey9t54ZG88+q+MLBOiGcomKiIjW2c/Miy/GrFMT8fTZSOM/uaTfwoULAWjTpg3u7eUXcZZSrAqI9edVLqod2ZWB3r3hzz/h4ovji3B17qwX5tNPqVm/PjvvvDPGGDbPnAkLnFIHEbH/8kvU4X3OOdEikYkGtU3aF1/s7CAHtf3222i6hSMmIlJzi98RSWZipIxA3V+6xzdMNJXSCX8igr8Z5zT4ECL5H9O22rx5M19++SWFhYU0aNCAU045hYsvvhj/3LmwaZPL46pAbNoEEydGP+fkwKefKpW2VoIjqUEDuPdeFUFL2fGPAc5AsiC1gK5IeqMgRft0qI8qIR/BNiyH6QHrtvUBVCObOOww+OMPOPvseP34PfaA11+H116jQaNGtG/fnsLCQkJ//gkbXDjHgkGlR9q47rqoJFTie2Vr/Z1/vjtjOzcXvv8eOrnVhf4WpRy7gUGCyy/hLUXYhl24Kd15hJGjww1+QoVh78FZ8y2Ijn1K2larV69m5MiRFBcX07RpU8444wzOOeccrKlTVVNiW2P5cpgbM2FWsyb88IP688SJ0WbNNBH+yCMpNmaQQ/cElLJeG00sDyGzQrstkOxXomRXtpGtvqDakf2PwoABcjCcdFK846JvXxUBfPRRmjZrRps2bdi8ebPaunmng0H4Jmbi7v77lbKebIIxENDkp5PzxEb9+nLOtGrl5gyRtJ1bW8p+vz8gM63rCaTnefvcr3W5vU9RvYIncLb3Q0gsemnaVgsWLODXX38lFArRsmVLzjvvPE4++WQYP97d+KaiMXu2JkxsNGyo5+7008vqurdpIxnJm1L1f2EkIXA4SmGvgwrYvkUSZWEX6Ij4unsG63pBNvi6mMykyapR2Qi51Zm+9FIYORKOPBIsq9SdF+zUCb76Cm6+Ob79Tz+5C9ALh+Pt62eflcxessnFQEAazccd567OQtu26ktcObEBXsMb936OnNKZ8PUSh/V8SFboUpfbex3JVw1x0TaE5KgyGeejwJuqMPE4aRIUxti+rVrp2I49FsvnKxU3nAbQsSN89JF025MiiKT39kdcXRc4lPnzX2TaNOlLt23b1sPB9UBjns5ODcuJbLiDPRZNzRKqHdmVhfbtNRO5dq2c1MuWwV9/YS65BAIBLMvilFNO4ZhjjqGu2+IgIIK3I0ssSxF/w4bJ6WLDsqTxN3KkBrhNmjjPVB57rMjbNaY6NymD9RmsAxqIFiNDKfE87E7pIaT1lAqFyIH9HSKcNWnaJiKAkzZVrVq16BKJriguLqZly5ZYlgVPPFE1IvwCAfj88/jv8vLk/FixQkT9yivw2Wd6Vm+/PUW0kUHaffugwdZ6YAui/CtRhdv5GRxgY3SNZwMPA73ILl350CxnisIkntAsC9uoRpXCbrtp4mbdOunzrVwJEyZgzj4bfD5ycnIYMGAAJ5xwAgEvhWKKi6P/+/3w9tvwwgua1Iz9vn9/+O03ePRRTX6mM/b8fmnFNvCiLT8Vb+/TJsS5mWA1Mu5S8bWFog4OTLONzWiy9FOkDboJ95OgfjT5mRqNGjWiXbt2AJSUlNCqVSsNwx99tGro+FmWBnmxqF1bNsWyZfDeezBkiJxjixfDlVemeGbCSD/1UDR42kj02l6Iqjc46TkmQxs0uTsN1T3olsE20sFCkUTlHfT4KasJWY3tHr16wTvvwPr1MG8erF4No0Zh+vcHy6J27doMGDCAY445Jp6DnVAU40TLy1N25aOPxtvGOTmqUzN+PNx3n/PA3OeDK65wXwQQ0HvlxW5c4qFtIpYinrAoGzUWiBzHO6RXot6Aikq+hSbMivEWGZ5ey75Vq1Y0j0TDhUIhdthhBwX2PPGEy31UMIJBTTTGolEjGDoUli5Vvz9kiNrMm5dG670YZTweh4ogFqC+71cUOHIwmTmRdkbBRH+gKPmd0zf3BPv5r52FbdUmOzUYqlHRsAvpNmzoIjv3gANgxAhYt47ikSPh5pvJufrq5LUIMuXrunXh55/hnnugRUyNkPx8+L//gwkTYOBA50hvy1KAlyc7cCrebJUZZD6+nR/zfyJf+5HdNALVwkmFNYgLnkdZ6amyZpJhC2ULbLtZbYsyntxMUlQ0Nm6U4zoWrVrBhx+yeuJEfj71VDj+eHo9/TTMmAEnnJBiQ5tQodrTUHDfJqCApUt/4K23/kMwOIzOndvTvn17jwfYCz1Tv6CAS6/rp4P9nNbLwraaODepAFT1XNB/HvLzS1MJp02bxqRJkzjttNPw+Xz4/X569uyZrJxparRsGR81aFkyqs88UwPajRsVoRVbHOqTT6Bfv+TV1f1+aNcOXnrJ44lVtnPWILLthgzvlYiwT0AO1FRyKOtQMZWXKF9klnORg/79+7Nu3TqWL1/OL7/8wrGHHKIIn/ISd506Ki5XHlgWbE5xDrVqpSHqRAxGBYggvpiAfY6LULGwqaRKt4lHCA1i3kL3NIwM7gKy68i+Az0n/0UFGbwUQrDhR4U8EosbVeMfg5o1oW1bjDFMGD+eefPmcdJJJ2FZFnl5eeyxxx6QLpUyER07xn/2+STrc/HFsHChjLsWLRSxZ+P99yUDFA4n5+vdd4fHHvN4Yl7fpWxEuYVRQcFZiIdrAaei9zBVdNgyJF3xKjKYM4EPJ772+XyceuqpvPTSS6xbt47ffvuNgzt0gMmTM9xnDGrW1H0tD3y+1NuoX99Dsed7Ed9BPOfZ9/cvJD0yBncDsRLgYxRFuS7yeRy6VxbZSQv3A4+g4p3nognOTCKXAsg+cCNdU43tErVrQ+3aGGMYPWoUGzZs4OhIofJatWqx2267KbvBDSwrRuohgtxcZdJcc40CUoqKYIcdiFRuEl57Tdk8Pl9Zvvb5FNX93/96PDEf3hwj2cgiMci+mYTsr3pISu4KUjs+5yGOeZPMJz6d+TonJ4fTTz+dl156ieXLlzNx4kT6+HywpDwOfHTPc3K8Oc9SIRVfN2miLAJXuAZN3kI859n//4qKbH2KOxQiuY5P0STmVsTXdmBQNvg6DxWSOx05dcaSmf0QQHxfBSI2q+GIVatWAdDYddQyUK8eRU2aQH4+eakm9txETIO4decEXqpVS0FYt9yigJSSEmjdOpp13K4dPPmkCvv6fGWzOSxLttXlznJH8fDj7bnNJBPORuw7uzcaL29FE/YXIImQdinWnY74+n0yGwPbyKDo448/lt+PEQjonmUjCyeJP2Tz5s28/fPPFHfpQrt27TjgnHMcJqrPRdnkEMvXBQVhgkFo1242p5zyM5Z1jsuD2oT60q/QNd6E7m82s47qogmME1Ek/jwy6wd8wPlZPC73qHZkVzKMMSxYsIDff/+dadOmATB+/Hh69eoVbfTtt+43eE6aFyJV2mLfvpp9uusuRd7axnatWnDhhXDnnfGOb1ewq2FX5uyaQUS8HBnZTs6ZVShyeC6ZDYRj9+ucEpqbm8vpp5/Ob7/9Rr9+/RQllIkTOxDQwKlTJ927RYuSVn/2hFDIY8R90o2gTjAdgiiq+mPktEqHOcBRyNHlp+w9yhZ5WygdvhGqvPwOMuq9PhOhyPrV+KciHA4zd+5cxo4dy+zZswHYddddS7MtAG98/X//l/x7y0r9Ph55JIwaBXffrYhAm0Pq15du6+23y4HjCfuQXWPILWYh57STNBQo0mQfNKFVHiM7iBu+rlmzJmeccQZTpkzhwAMPhEj/7Bk1aiiCp107RR6NGiWJmPIgFHKppZsOm4FHHdoEUX32n4EDHNpORny9BN3LxOcpW7ZACNgRGdz3AF+jdHOvz28IuD5Lx1SNqohQKMSsWbMYO3Ys8+fPB6Br164RTcoIfvrJ3caM0QRjMvh8sOOOyX8780w5t+++O35fTZsqU+Kmm+KDT1xhb8rHgZnAQu/2+shnJ76eirIbCyjfsYZxw9f16tXjtNNOY/78+fTu3VvSWpmgXj3xdatWCvAZNgxuuy2zbcWi3Pb1CpzlvEJoYm86ckKkwyg0kbeG5GO1bPF1IdAF6cY+AhwU2baX7VvoebsiS8dUjYqG7chu0sRbVGZRJIo6pSM7MVI2FcLh1Hzt90OHDsl/u+oq2Wr33aeaBTZat4Zrr9XvnrPy9sadNEc24UMTUlsQZzgd8xg00VRC+fuWDIK53MgxJkPTprovO+ygCP7774/WiisPEvh669atvPHGG6xevZp69epx0kkn4Uv7HMwAPkz6S+fOUiJp2tQQCLyG/CYtkraN4nMU2W072CvKt7YBRXznIbnf/hlsw4f4/qIsHpd7VDuyKwmbN29m0qRJjB8/XgVnIthvv/3o0aNHfOP3308+O5gMzTKUNdh1V6Ujr1ghPbecHKXTJ+oju0Z7FHn7HeVzEntFMYrgPSPy2U6JTDZrdiHld2Lb+3A3o1avXj0Ot9Ol6tfXdfaiubr//oq27Nkz+t0uuyiy8++/M4/u9vvhjDOc26XFTzhpGUZ2hjr1dI7s1chxsizyuSKfIT9RKZm26DyOxHs67mOowEM1/mnYuHEjEydOZMKECWyIGFw+n49+/fqxc2LUx9tvu99w06aZHVDv3pICWrJEqci5uYrEzrhwbC+UzTKFynVor0Ppcf0in0OkjjY8lfI7sUGZIO4i4Jo0acLBBx+sD17vlWVJX/2JJ+IjOVu1kvMq04lMkLMltjhvRvgURXQ4IYA0HtM5sudHfrc18Sr6GVob+dsV2RjHxnznBhaK6t8ry8dVjaqAdevWMWHCBCZOnMimSA2SQCDAUUcdRevWCYPst95yv+FM+fqgg7TMn6/Ag5o1xdc5mUqZHQW0RPZWZQWLGBSdNZWojEgqB0kIyV9kEhCQiAbA0a5atmrVilZ2wE4LJ8dAAnw+ceqTT8ZPEl50kZwjW7Zkztdt2sh2Lxfexh2vBpCu7cNp2kxGclK29EJFP0O2fb0v6ndOwVvUZgBFiWZT8qQaFQVjTMaO7OJI9kNKR/Y777jfWKb+kOOO0zJ7tqTa6tYVX2csK3c6qiFQzohjTwijIITlQPOY75KdwxZkQ2USEJCI9kBf76t55etAAE47DR5/XFktNq65RhIlTsWbU8HnU+H0XaITgUVFRQwbNowVK1ZQu3ZtzjnnHOrUcSqQPhTxlo5j0yYdkp1cGzVDDCqKmC6o4meUGVlZvrQ1wE6Rfb6JIqu91CaoAXyBs3O+YlDtyK4EbNmyhSeeeIJg5EXLzc2la9eu9OzZkxbJXuY1a9w5sX2+8heiatYsc/Ivg6dR6ngBlfcCWki+4l4kc7EERfsdhioBHxppMw/pRJXTgDM+4Ayw2nleNZyTw3f77Uf9kSPpne7+Whbss4+q4iamtoLu++efq+r96tXOGl/Jtn/llRlE3SfCbbG4ELDQoc0zVN4gLUS8llNXFDUyHPed+lXAdVk+rmpUBaxZs4ZnnnkGExnE1qhRg27dutGjR4/kRvpaDw618kpMtGyppdywkMTEfmgysDKd2XNQAciXUZZMHnKCXEW0YODvkaWcMBZwJVhe9MOFYKNGfNGtGx0mT2bXdA4Ny4Kjj4annlItjETk50vf+uCDZd165WtQhGDGkxY2lpA80yURQdSnpsNDKJKjspxqsenKewN7omfI7XN7H0r7rMY/DYsWLeKVV14p/VyrVi26d+9Ojx49aJCsbsD69e43vrGcxYvatdNSbvjR5NIReNMvzQamoUmg11B0dg00yXgVeg9Bqc/zsrS/28hEF7l4p534tE0bui9cSIrYS8GyFMTx8MPJ+9LGjVUb5qijNL7KhK/vuScLtRVsvnbiOINzEMadyDFRWc9NrJ10BMqomY57vn4BOdqqsT2gsLCQUCiEZVk08jiutCOyc5NlqRjjTX4i0yhfGx07lpX/ywg1UTbF6VQuV4Ps5hFoPLsJFRw8C0n42f6Ed/AWCJAOA8lI9nP//RVVvdRFMNzll0vPPNn4q317TXYMGJCZzEg4rG1HUFxczPDhw1myZAk1a9bknHPOcflMR/0hhYUqh7Bli0QT4g/bjzNf30TlBoTGHuApwA0oqNDts/seGktuG1SBKkb/PBQUFJTKhoBSltu0aUPLli057rjjuOGGGzi2ZUta3H67Ij7q1lV13eeeE2m3aOGuIGBVqM4dh04oXWWPStynQZrXdxElhxKUfnw4mhU1KCqgHFpr9vv8ZRh2/gkGD/YcrTFlyhTGtGrFF+Ewn5OGpoyRXEAyJ7aNjh1h4kTNRno1mE88UUZ8ueE0QxmLdIUEwsCTZN7ht8JbalOA+PSZVbiPfgE9R59R+QZKNSoC69evZ8aMGaWfGzZsSNOmTWnbti0nnngi1113HUfUqUOTq67SILdePRUXe/VVWSzNm7t/B6tCoddS9EQz/5Ud9XQdSjleFflcBHyEDKH7I999RLnm2e1XeZiB3T71FjUfwbhx45jQoQPvGcMPOLzt996b3IltY889xdf/+Y/n4+DSS+HGG72vVwZ1cMdxPtLz9RaUYZMp/3Ul3jHthLpoYtrGbBSV7ZavfbjXkK1GVcfq1av5+++/Sz+3bNmSevXqsdNOO3Hqqady3bXX0s8YGpx3nibr69fXoPmdd+SY9BK44VkCpCLRD9m17Sp5v+ehQIP1kc9bUdRWT1SkF7LG108A3YeVLUTuAj/9/DNTO3dmGFKOTslOlgUPPZR+Qvigg1S88+yzPR8H99yTpnijF7jla4v0tvhyxH+Z6p72ddh+IlqjosE2fkNR/W75OkA1X29fqFGjBrfeeivXXnstOR6zToq2bIEZM8i76y4VLG/QQJltn36qsbAXx3i5J/uziQEoqyBbgYJu0R/ZZ3b2XQFyqu8eOR6QBEY53H/2q3wbsM9g93JdsfD74VQnuVHUBz/0UHInto0TT4TffvNQ2ysGgwcrEAUIBoO88847LFiwgPz8fM4++2yaus7KEkcWF8Obb0rswJhkQz5Dej6djuoKZIIc4BA0EezG3+VDk9GxY5cReAsqrAJ8bf5h2LBhgwHMhg0bKm2fhYWFZu7cuWbUqFHmzTffNHfffbe5++67zcaNG0vbFBUVRVd44AFjwJhAQH9jl9atjXnllbLfp1pq1DDmu+8q7VzdYzdjDJWwWMYYv0ObQcaYe4wxgcz2EcaY6RhzDMZYMdf++us9XZFwcbEZecghZiCYgWCGgNmU7J76fMZcc437DT/4oPvnxbK8bTst1htj8o3zNfQZYx5Js521LraRbtnFGFNojBlmjKnl4lguStj/mxnud7PL6+Qe24K/tiW2xflu2bLFzJ492/z000/mjTfeMHfddZe5//774zi69P9w2Jhrry3L15alv126GPPkk+7fv3r1jPn990o7V3cIG2Oam8rja59Dm3eMMVcYY3Iy3884jDkk4V49/LCnqxLassV81b17KV+/CWZrKk598EH3G77mmugxuVm8bDstFhnna28vr6fZzl8ut5FqOcSIO583xuQ6tLWMMXck7P8JD+dhL/kur5E3VPN1xWPTpk1m5syZ5scffzRDhgwxAwcONI8++qgJhUKlbUr5uqTEmLPOSs3XffoYc/fdsrHcvHvNmxszY0alnas7hIw7uysbXG0v6dp8b4w5xXh/J2OW7zCmb+Sa+3y6X0OGeLoqJRs2mA87dCjl6w/AFKe6r6+84n7Dp53m/nkBz8edGn8a99fwyzTb+dHDdhIXvzHmTGPMBmPMw8Z5rIXReCsWtxrvY6/WLq+Re/zbuNqY7eCct241n/XoYQaC+TH2HbP/P/JIY66+2hi/392716GDMYsXb+uzSsAmU/Fcbb+rTnweMMZMNMbsW759fYAxe8TcK7/fmI8/9nZZ1q/X/XJzXz/7zP12Dz7Ym309YoQxxphgMGiGDx9uBg4caO6//36zcOFCb+djvjHBIGboUMzAgZgHH8QsX57qGo5Ps51hKdZxs+QYY64zxqwyxtxs0vfd9vJOwv4vMN75uqenK+UGXrirOiK7HJg/fz7Dhw/n4Ycf5vXXX+fbb79l1qxZhMNhWrZsyeaYKqilaTNDh0YLiSTT9Fm0SFG2HTu6q9ZbVATHHqv1qhROw/uMn4XSLrzA4JyC8SBKh8xAQ8mggIbrUDCMifntscfgm2/cbWfkSKy2bTng++85Hc2XLQCeQzHscTXSw2F45RXdWze46CL3xd6M0bYz1ZOKQz3g/3C+Z2E0I/w40shN9numCKACQ3moevsUFKGdeEy2bvoBwFMJv7nRjU2G6mrq2xNmzZrFG2+8wSOPPMKwYcP44YcfmDNnDsYYWrVqlZyvH39cmscQ/86YCBH89Zf0NJs3dxdtvWmTCpR4SW+vcFgoVdxrRJ2PzPg63fvuQ1HZeWSsjT0buBn40d5l5F7dfLOiot3gk0/wtWrF4RMn0h9dmVmIr39PPDJj4Nln3R/fVVe569ttvPCC+7Zp0QpF67i5Z4+iSubJuHFNku/cwo8KeNYELkFXs2GSY7JthxNRWnwsCsjMtqjG9oSpU6cyZMgQ/ve//zF8+HBGjhzJggULsCyLFi1asCVGpqmUr2+7TeFQkJyvx45VJk2dOu6yaFatUnRgcbFz20qDD0kxZcLXXt4bk/A31TYfAfId2qXBHyg7/dfI53BY9+uii2DBAnfbeO01Ai1bcsKcORwROarJiMEmkdDj+Hze+PqGG6LPjxN8vizydTckteV0ny3gDiT9Upjk9/nlOIYwisiui9LdRwK1KMvX9udLgMsTfiugmn//2SjOlB//8x+KJkwAIC82w9z+/8sv4bvvZC9ZLp6hBQvgmGPcv6+VglpojOrVVk5VOyYV7HozqWBfkycjx5ThO/ktcqn8Gflsy3mcfrq7cY0xGlc1awZz5ji39/ulge0WN9/s/v77/ZJwBb744gtmzpxJIBDg9NNPL1tbwxGH8PnnO/D33xY5Oar5nDz5y4+UAt5F6gGJmO1xv7EoQXzdGMn/fYpqBCX2IfazeCdla5dtwrtPZtvye7Uj2wPC4TAlMZrUGzduLHVc169fn1122YVDDz2Uyy67jAsvvJDmzZvHb8AYVTJ3QkEBrFwp54jzQcnIHjw4fj+jR8N118EFF8i4j5E6qRy4cXAmojXSUktVrNGG18d2KdLQ9ggTOYwWqJ7kEuDGmEPz++Hpp523M3q0BkMrVgDQGdV2bYLKn3wDfJy4TkEBLF/u7jgbNYIhHiokFxRk0ZH2EEoxdbonfyPdpc7I2RyL8tBQELg05nML4B6UXhObvrML0t37Ck1qxKKVx31aSGsscTvVqEoIhUKldQlA2tdz587FGEPDhg3p2rUrhx9+OFdddRXnnHNOWT3VoiJ44AHnHa1aJc61q3qkPyhYtw7eeCP6nTEy1q++Wnw9cKA7Ay+ruBTvmmy7Ak1xfn+99ANh5IJ4Ds+OEbt5RySfvACIVfIIBOCZZ5y3M2IE9O+v+4TcCRcA9VEps8/RnGYcFi+WzIwb7LgjPPigu7agSeqsDcwGo6IuTvdkKnJIdKWs9q13vfEoDPGVzTsgvt6feD7dExXPeZeyRnhrvD2rflS7oxpVGcFgkHCMM2P58uUsXLgQy7Jo0qQJ3bp148gjj+Taa6/ljDPOoHbi5P26dbLHnN6V+fOhYUMVYHRCKAQLF8KHH8Z/99lncMUVcOGFmshc7LZeSLZwJd4n+vZBwQdOfB37uxPvhBAbvu2ibQLs5j2BUchEPC2hzYsv4ojXX4fzz4dNm7BQOdezkatmLRI9+Tm2fTgMMVJijujRQ32zG4TDWe67hyNpgnTObANMQAW6egErEn4vTwGufHQ1beyGZBz7IgeJjX2AD1C/nTh288rXgcj2qrE9wK4B9tlnn8X5RxyxYAEMHcryCF/XT9Vu2jTo1MldodxgEP78E0aOjH5XXAzvvguXXQb/93/w6KPyr1Qqrsa7fX0Uev+cbLVYvnZyQAaBYcgbnSFfH4riD6ZEDhHU5xYWioud8OijcP317gP1QiGYOtX9cR52mDvJEnvbs2czc+ZMxo8fj2VZDBgwgB133NH9/iL488/JTJhwApaVx4ABflL7wUPAaCQ9cxDRguk2vPojbFjIq3R8zHd90CTnnkh2xG53KPKFJPNHtsabT6YK8HXW48G3MbKdShMOh82SJUvM119/bR599FEzatSo0t+KiorM999/b1auXOluY2PGuE93sCxjdt/dffuWLbWPefOM6d5d3wUC0cVO01m3LivXxR2GG2/pCT2MMXONMf9njGlplCZR00g6wk5990cWr2mMHtuH03z/csx19/slP5AO3bsnTU0MgpkI5ikw82O+3wqmCIxZssT9pV63zv2zAsYUFLjftiM2G6V/NzLO19ZvjGlqJCdiI2gylxG4NrL//xk9I3YqTezfI4wxy9Icf7ExpomHfVrGmOc8XSG3qPKpgFlGRfD1ggULzIgRI8zDDz9sJk6cWPrbxo0bzU8//WTWrl2begOx+Phjb3zdt6/7tt27ax9TpxrTqVM8X9tplKedZszm7MvXpMYg4+3dO84YM9UYc7YxpplROlotY0xXY0xjE33f3ciJVABf29/dH3PtmzRJfwmCQcl7JUlNLAEzFszjYFbGfL858pspLnZ/qWfOdP9s5WdbFmOdMeZ6Y0xd446vdzSSbopd303KYrLlwcj6d5n4/sLent9IpmBdmuPfYIyp4XG/77u+Ol5QzdflQygUMnPmzDGffPKJeeCBB8ysWbNKf1u1apUZPXq0+329+KL7lGLLMubAA9219fmMOeoo7ePXX41p1aosX/t8xlxyiTcOKDfuMO6ff8sYc7ExZqzR+9XIiK/rGGN2N8bUj7RzkvrJ0pKMr0ORv1fHXPtdd01/CTZvNqZu3aT3rQjMLxG+3hjz/SYwodq1vV3qn392z9f2WCxrWGaMucy44zy/0TgqFLP+HBfrpVqGGGNWGmNuMvH9hc3XOUap6OnslMXGe///s6cr5Ab/Nq42pnLO+dtvvzUDBw40L7zwggk7jYVjce+9psDnMwPB3AVmixNfH3SQu/cvEDDmggu0j6+/ls0Xy9c+n/7edpsxoVD6Y8wawsaY/xhvfH2HkWzT8Ub8HIj87WbE21WAr0MYc2bMte/XL/1lWLkyuaSu09Khg7fL/f77rre9qVs388gjj5iBAweab775xtt+IgiFQubll182AwcONN99N9QYc55xd2/8xpgjE7b2q4v1kj0vljHmEyMJwUtNvMyqzdf5xphrjHweqTA5g/1nX37NC3eVozrHPxfGGBYvXsz06dP566+/WB8TvTpr1iz22UezD7m5uRx88MHuN+wlasMYmDzZfftVqxTxu+++pZG/ZeQjvvkGDj0UfvmlkooinA7MQBFXTvCh4l+diI806QDch1Kig5HfF+I99cFDe0PqgHALuBDV+vsEzegFg6lni8ePT5nO7kdlMXcnfv7rF2Bigwb0mTmTnf1+mjZtihWbVmWM7uGwYZpZrl8fTjkFuneHSZPSFwH1+VSozq0UiSvUQCmFA1DF2xmQcrY3BKxEs47/h9IVW6JoEhfRN4BuQj5wK4oObIgKxsXCxPz9Ds1M/o4iSBORg2Ytr3K5/9bAGS7bVqOiEQ6HWbBgAdOnT2fGjBkUxFQ5nzVrFnvssQcAderUYf/993e/4cWLlc5oUj3LMTAGfv3VuZ3ddsUKmDsX9tsPNkZm5BP5+t13Ye1a+OKLSioSeQWKxB3s1BCx11TEXrF80xWlmvdDRQFboyJh24Cv7e9uQ2HUY4CtW9Nv65tvUsp0BVAJq8T8k28si7mtW9Nn3Dg6d+5Mo0aN4vk6HIZvv1WxubVrVTB0wABo3dpZEiwQkBRNVlEPRQidDRyBtLNSIYQispui5+MaFPVxNCoK4wQL3aC6qB9fj9IeE6OT7HcshAoR/YVuWLKiOHWB65EEjYt3k12BY120q0ZlIBQKMW/evFK+jpUImTVrFh07dgSgcePGNG7soSjo4sV6X9xEBRoDo0a52244DEuXKtLv4IOjkWSJfD14sLLdhg51lwZfbtyDwuI+dtn+ByTxFvvO7A48huyjVUAbou9sBSEVX9uk+jjwBcqwjpH7Sop33432nwnIRcIcexPP1x/7fKxp144+Y8fSqVOnsplYwaAi7j/6SNtu0UJ8Xbduyn2VIhCQtEFW0QTZyecCB6M8zlQIAeMj69yAMq3ao17rDxf7su99I/RcTEYDnsTnwf5cgiRNZqMoz7wk22wZ2cYruOvX92WbR/hVwxW2bNnCuHHjADjwwAPj7R4nLF7MAp8PwmGa4ZDfaoyK+QUCzrKYwaDs65EjVcQvFIp+byMcVrZlYaEkQiscFhI6mo5G+E4wwFuUzSTviaRBdkUpLJ2zd4jpDiUVX4dRXclvUPfhxNevvpreP5EMgQAcckjq34uK4IMPVCB482Zo2xaOP97Vs2J8PkZ06MDmzZtp2rQpBx10kLdji8Dn83HWWWcxYcIE9tqrJ+Kvc1Dkc7pI/BBK998BDVTOR31xW5RS6gR/ZBstgKeRU+r4JO1svi5E0qrzUeHPZOPKrsAxkeNyk0VwApXyHKZBtSM7AcYYnn32WVavXl36XU5ODp06daJr166lRnZGqOOl8jNyXoTcPEhAvXrwyCOSo0i1Tigkx+obb8DFF3s7loxxK3rB1ju0CwOLKWvozEQ6mS8hp8i8LB9fLO6L7MeBQILI5/kJqqSbLuVp/HjHvSYmcs6xLLb06sWPP/3Ejz/9RN26denYsSMdO3Zkx/x88k45Bf74I0rUgYBSepo0ce4kwmH3aZKOCCMj9gnk1PKCLei5eA6lOl0PvE5Zh3QsLJTk3xc5zO+grH5qMgSRvMxtwMsp2lyBtGMeJto5pMIi5Bj5mmp5kW2LkpISnnrqKTZtimr55ufn07lzZ7p27Ur79u3TrO2A2rXdObEzQYMGcMcdGhin4utwWI7VESNkmFUK7gdeJUG1PwlCiCcT+WYScDgykjah5O6KwrPAf8Fal75ZCXAZ8KslIzcdxo93NIBj+boEmG8MG3v04Ntvv+Xbb7+lQYMGpXzdLhQip39/pbLH8vUrr8hB4jRREgzClVemP2bXKEHySk8BXtPfNwIPIC/TJ4h7vyC9YyKAtF32QhPRFyCpECeEkCP7IfQ8JsNdiNOH4MzX05EO4PtUm7zbFps2beKZZ56hMEaGp2bNmuy8887svvvutHV6P9Ohdm1vg2S3dUIsS5NP11+vNPVU+zBG+tyXXw59+7o/jnLhMfQ+OvVTBpibpN2vSNbnG+ToLHaxrUzxOnARWA59Swj5X2/0Q4cO6dtOmCD7O83kRSxfbwaWhsNs3mMPvvzyS7788ksaN25cytdt1q0j0L+/Jhhj+fqFF6BlS9W4SPeMBYOSMMgKtiIb+Rk0NvKCtcjefRilkN9DVAcgGSzkhL4cOVKORDbuSBf7CiNtmBfQBGkyDEIBLJ8Q9YClOo5RwMVoLFatrV2VMWbMGIqLi2nRogWdOnXytnKdOsyPvEvt3LTfutXdBKHfL/v68sujevup8PjjcMklqklW4bAQX/d22X5uku9+RPbUL8jRXZHvxzvAAGeVVz+ap3o04I6vvSIYhEsvTf7bqFFw4okK5LT9ZYGAJMZatkzvD0PTwH+1bYvP56N///4EvNSuQfaMLXGWl1dI375fI0fyKk/bgWVILux+FHh3L3KEp4KFgjwuQ1O1BwD7oYlHJxg0+f0eZbW8bAxHzuyfcebrj4HbSW2rVzz+1RrZoVCIOXPm8OOPP5Z+Z1kWzZo1Iy8vj913350BAwZw0003ccrxx7PzH3/g32cfaevVrq1Zoo8/dm8877eft0hYyxIhO5F3IKCI3Jdfduf4dqMTmjXko8pb6WCfX7LraHdCl6AXz4VOVkYIIDN3gXPfEAAOBHJ88J//ODT2Bsvn4+K+fTnxvvvo1KkTOTk5bNy4kfHjx/P266/zSp8+igyC6EDM/rt6dfoCRpalCgSnpSIvLwijiL4LgfLorwdRdPMbyHhONkPoQ/E1HyNH9IXIieJCnzxuP8NIXmwSdNMfAn5DTvJ0D4FBGlc3eNh/NcqLYDDIrFmzGBUTSZeTk0Pjxo2pUaMG3bt358wzz+SGG26g/+GHs9MPP+Dbc0+oUUOTiMceC19/7d45fcQR3ory+f1Qq5ZzO59Pjul333Xma7+/kvm6EfIiuDGQkx17GL0fZ6G0lYqMJF9J6vc5BjlEx/BZ5uscy+KKY47h2FtuoUOHDvj9ftatW8e4ceN4c/Bghu+1F/z9txon8vWKFc4F5667Ln00imsUI8fE1SQfILlFYWQ7XwCHkTpUpzbwPXLCnIV4240T20YIRTClmtj0R7b5A+kdNKDn8VPkiK9GZaG4uJjp06czduzY0u9q165NnTp1qF27Nr169eLcc8/lhhtu4LgDD6TdJ59g7bKL+LpePUXB/uImei2CY491H/hhw43uqjFw0EHwww/O2w8E4LnnvB1DudAeZcK5Gcols6/DyDY6BfF1eQpvO2E+zhOkRPk6FFLBxyyiFnD1uedyxGWX0TbiwFi9ejW//vorbzz1FB/vv7+i76EsXy9b5jwWe+gh2H33LBzpJqSfehvendix2ICiAsehQQuU5WwLZTX+ior8noKquf3kcV9Pk3oSJA9l2nyOHC6pYK//Cu4yw6qxTbB6NVvuuYdxp54K993HgTfeiHXBBa4Ct0px3HHM8+LIdotQCLp2henTnX0zfn98fbEKRy/0Xruxi5MdewhNcJ2GbBqvutteMN1dMx9K7AsGVTMi27j1Vohk1cbhzz+lMLAmUnw8MfLe5vFksCw2Al+ccALUrcuBBx5IixbeagksWbKEQYMGRcajq9AE4L14d2LHYgXi6flE67ok63NaocybB5E9fh1la4+lg5/0/pM6yH5/H+iepp3N1w8gft82+FeGp6xbt44//viDiRMnlqY17rbbbjRp0gSAI488kvz8/OjszIYNcmr89psGnjY5/vSTjNvjjoP33gO7cnoq1KqlSOjHH3d3oOEw9OunbTvhmGPcGdDGSDg/HHZXtT0ruAm9mIPRI2dHwtgvqNsIkIke2tpohojFyUAPkTyNOQV8QOM8uLQVijavn7xdr14etumDCy7A9+ST7F6rFrv36kVJSQkLFixg9uzZzHrxRTrEFKkIopiFNkBzoJExNDSGOiShvkaNFFF0881ZSnt9Es0IQ/kjeMJoNi8HXdgQOoMclCJ5FpIq+BZ4E6iJdyMb5BT5Axn2qdAHRZS+7eKYX4kcd/2Y7w1yhs9Czvf9yLx4QzUAVq1axR9//MGkSZMoLCzEsiy6d+9OrYjT+MQTT6RWrVr4bfmN5cvl/PvrL322HddffaXo5vPP16SfE/81ayZnyvDh7pzfoRAceaTS3FK1tyzJOvXq5S4i0M6iqVT8D2Un2KlntrGcbmY+FgYZ2zNdto9FE2A17jjFRbE2G3lAy/pwbgPkJEgxoez2voCcVlddReChh+iRk0OP3r0pLi5m3rx5zJ49m9lPPEGHgoJSe2ELinXvgHqlhuEwjUhRP75FC7j99ixG991JRgV+kqIYFYnJQc9HEJ1BLuqJzkdRQx8hR3YdNOjyinXoGUrlGLLQoPB35CBJ96wZFIl+C/FFysIoumkeyq45iOTyU9Vwi2XLlvH7778zZcoUSkpKyM3NZc899yQn4jQ+66yzqFOnDj6bf+fOhQMPjErvGaOU7w8/1GTfTTfJQehkt+y8s3j/++/dH+zRR8Onn6Z2ePj9km5r08bd9oJBiKTaVx5eQZN6PxDP106ZCjbCyEbOxGFaH+dsSxse5AxrAF1aQP8cNHmWYt2ePd1JyQDk5cGtt5J7xx3s5fOxV9++FBYWMmfOHGbPns3f999Ph6KiUofIGjT11gExQqNwmIao1ynzJLZvD3fdBWefnfhLhrgC2arZmFjYhDJYcoiOv+zgkNYoMGR3NDG4EvG11+KddsT/CtQHJIMPzVD8gKKu0z2bFnKq/4f4qx1EUamLI8fZjzRlAqtREZg8GQ45hDFr1lBsDC2ATgUFkrp87TX43//gBucgn0177MHqJk2wVq3CdR7OYYepMHqqCUW/X5JtNWu6kwUMhZTdXKl4HwUBjCfepnbL1yFkFzXzsE9bMqgmskTdwMGfFbvpmsC+O8EBW1HmX4oJ4p493fmzQEGf996bOoP8ttvE/ekypFI8J2bnnfnksMMorF+fli1bsu+++7o7pghWrFjBsGHDKCoqYs6cOfTtey9+/9+Un68NGv8MRFxtPxM+NIhpjzixDeLHtYgHX8cbX4fQxGWI1JMqAeAkZMdPIn1xaR/KNjgx4fsi5BBfgWRg+5Fy7FUOVIon89lnn6Vdu3bk5+fTp0+fUk2lVHjvvffYeeedyc/Pp2vXrnzxxRflPoZwOMysWbN48803efrppxk9ejRbtmyhVq1a9OjRI2pUo6iRuBSD00+H33+3NxT93n5JRoyAa65xdyD33pt8dikVnngimlaR6HgJBPTdG284p3RsU/hQdNW3yJCpjV7KXZER5QYh9DJ4JQq36+QAZ5Jc4y0JVgEjtsIOlyDD7T/IYExA9+6qeu5m0mDMGHjppbiozpycHHbaaSeOPPJIrpo8mdjYvIXo7H5HsTSvocTvB9DVjk3iCZ17LgVXXIFxdGKXIPP9EOSA7YCM6tio6xAirWynoJZEFiLbLkbR/GOQ8/lRZAQMJXOJGTdOqvdwR41FKDLRxmfALijV5zwUad4WpdU7aOFWIVQFvg6FQkybNo3XXnuNZ599lrFjx1JYWEidOnXo3bs3oRgDpW7dulEndjgs58SsWdFyHjZsB+Vrr4mH3WDQIPdOjBo19P6edJI+J75rgYAmOz/8UBNLblEpequxyEFphZ8gx15N5EjojiaV3KIA7xHZbp3Y9XHOnIggjF6/79dB3bMRX99I0mjfQw+V/IjTNff7JRfy2GNxUZ25ubl07tyZYw4/nGvGj6dvjL0wB3Ubv6Er+ypitAdRUnZs/EvJ1Vez6dxzXVyJrciI3RdpkXaKnFusdMhmJMOS7WjLEuL51HZwf4xCdJ4GPogc3+rElT3swwlv4+7c1hKvT/km6t8ORM7309A1PJvMj7dyURW4GpQtM2nSJF5++WUGDx7MhAkTKCkpoUGDBvTs2ZNgzORQvXr1ovZ2UZGCNZYtS83XjzwiaQc3eP1199zatKls5wMO0PuejK9r1JB9X8ODhFil83VNJHP2NpJdqxFZ+lJ2YJkKgYS/buGgGV2KdihAwAWCyE/57TLIPQnx9T0kdfKccoqi951Qo4YmSgYOjLPF8/Pz2XXXXTnhoIO4ftIkdo+xK2Yj+3oMYrRX0BTvw6iaS2xeS9Htt7PlpJMwjhPeBYjteyOu6YImGWMnEVYgbsp2tGUiXwcRX7+CxmUvEOVrt86uZPtwwnCcz82gPmxqzOfnkAPnMCRTdQp6Ni5B17Xqo6rwdcZYvx769SO0di2TIs/6gUSsMJuvb7xRwRwOmL9gAZx6Ks1yc50FGi1LE5Vvvw3duiUfT9uSIp9/7q2mTKXzdUM0kfMqsqnzEYcfRPogq1gEIuu5deHZvJROutOGD0WOu5RAKUHm0id/g3UU4rUnSWrHn3eeu3vTqJEyFq+5Jvn9WbhQgUleM7AiRzXi1FOZU78+OTk59O/fP87/F491SDq1OzqvrqxZcwdDhz7P1q1badWqFaed1h2//xuyy9cGXVh7m/Y1uBPVIDoBTTx+gDw/me7byR9ikD/EqV0Y9ZQrYj4/iLS/j0Z83R/x9Q24ew7do8Id2e+88w7XXXcdAwcOZMKECXTr1o3DDz+clTGRpbEYM2YMp59+OhdeeCETJ07khBNO4IQTTmDqVK8avPGYNWsWw4cPZ/bs2aXGRvfu3Tn55JPp06cPubm5ccZ2KSZPhi+/TP/ChMNyYKQ4pzjUrCmHpZMmk8+nl75lS3j2WWnvde8e//sxx8Do0XK0t2unyBEn+HxypFdaNDboJfsCzcx0RAPcNSgVoomH7XiIwPMEH3Kot0HORwdjPowmwfa0vyhCxuDBJDUAn3kmOumQCjfeCH36pP69pARr7ty4I2sdOdq90FVtGDmTEkQnsSbliqee4rG77+b+++/n6aef5vXXX+eTTz5h3rx5Mca3nR4zAEU8L0Hm+mBgNyS9AXKdp0nbySquIup8CEeW8nQYbooSrMadY8QiGo00FGljzUxoE0YO7t5sD87sqsLXf/75J++99x7z588v/a53796cfPLJ9OzZE5/PF+fMLsUPP0iHLV1UrTHw6KPOhUlAhvGff0LzVFFGEViWjK769WVsDx4sw9tGIKDo7nHjVLxvt92cM3hARl86XqgQlKA0sdHIgHsZPedeIlcMimNzGd0ct54TLFR0cEdSyxElNN8R+XgBOXYfB46jzMDb54Pnn0/u2IrFww+nnzxetQprw4a4I+uElJp7I/dpg8ihFaNyi7GMM/+ee3j0gQd44IEHGDRoEG+88QafffYZi+MKRi9AhVnOQ9EVS5H75YnI3ux6AN+TdJI1qzCR5Tzgz8h35eXrALpxTvCiw25L0TyBJmXmJ/weRJlGfZGNUnVRVbja3vZHH30U93zus88+9O/fn+7duxMOh5Pz9QcfwLx5zlkQ993nbtDasqX4um5d57a33SbJqa++UpZku3bR3/LzlbkzYQLstZeCEdw4PAKBStTHtlGInNh/oEn0N5GD+RckLeEGYeRs9srXbifHbga6IaPZYewRQH6UlvYXG1BE8Tll91ejhsZHTnjhBemcp8LcuVglJXF83Q3Fo/VELFQP8XUhYtrYp2H6zTfzyEMP8eCDD/Lss88ydOhQvvjiC1asWBHTahqyPy9D92opKoz+AOoR7NTsz/B+H7zClpQ5A/UZIJ4uD1/XxV2UqNvJD4jy9W1Iv3tZwu9FqJ87kPRFMLc9qhJfZ4zXXoPVq/GHw1yKpqvLKGNbFtxzj2M09Pz586FxY3YcNEh8mw7GwJ13yr7++WcFosRKQdSqJU3siRNhl12UWecmi3Kb2NebEEdPRY7rj9BEzLdEHYFusBvegxPcZujcjBzrrZ2b56DTaGh/sQq4FtW9SkDjxrKdU8G2u19/Xb6yVPjrr4zqFxngM8ti/PPPYwHHHXdcmoLSvyFevh5FJC+loGAqb7xxP5s2PUCzZus588wzycuraAlFiErKDCA66WnzdaYBKq1xDtwsxpUcWCnWoat8IeLsRNt8M7K9j8HdpKc7WMZ5Crlc6NOnD7169eKZiM5nOBymdevWXHnlldxyyy1l2g8YMIDNmzczYsSI0u/22msv9thjD15wEZWxceNG6tWrx4YNG6gbY8yGQiEGDx6cstOwcdFFF9GypSyoadOmMfWWW6j5xRfUDIepi4wZe4mjXp9P0dNXXeV4jIweLSN59uyyv9npMEcdJSM/keCXLVNl9KZNo47rYFBG/u23yyB3uqVDhmj/lYIf0OB2EdF0kxIUlf0gMsBHu9zW8ci6fZ7sRgMfgAqi5CNH5J7IXPVKED4ken9P2Z9++QXOOENRIXYEXzCo/2+7TZ10uoFSKKS2Dvc2hFxOa9EUQf3I9zMsi3f79SO8995l1mndujWHH96PVq1OwjmF5FU0q3Zk2uOoevAjY/c7F237o8GEm07/PVQsqRXpiTmAIpJGpGmTmr8qC1WFr4uKihg8eDBr16Z3Ul1zzTXUj/Dg+PHjmXPttdQYPZpa4XAcV9clSZf91lvu9OK//FJanUuWlP3Nlpo66ywZ+bHRBsZona1b5Qi3i/2WlOi388/XMTjx9eefqz+oFHyEsktWEc/XDVDBpoG4KxRooYJNq1E8WzajFU5CEeN+pP25T2T7XvsEC02qXlH2p88/1/1ZtSqer2vUgAcfdO7nly+PH2ilQBDx9RoUu2CLW00APjv+eEyS7K327dtzxBEH0LTpIciZnY6vP4ts/TzHY6laCCC3/5su2u6FngM39/9n1H91dmjvB85FE9SpsS35urK5GlKf78aNG3n11VdZty69Zv3tt99eKjEyevRoll56KTWmTqWWMWX4usw03/ffw8EHOx/k22+rQGpMwfZS2AWhrr1W2RSxNlc4LPusuFjvrp0ZZ0tXHHEE/PijM1///rtSqCsFryJ9zPXE83UzFDd8Pu4meixku44kmnKcLVyKMkIsZGcfReb2+7soEjcBw4bBFVdIBtLm65ISRWsPGuQs+TF5siI9HVCChuprkdvfHp39Anx/xhlJA5Q6d+7MEUf0oUGDvVF/mOzaWmj88AuK1rw1RbuqCj+qv/CYi7btUL/lBjPQ1S47bim7/5tJV3Ds32ZbQwWc8+67S5rUjdto6lTYddekPy1dupQhQ4YQDAY5w7Lo9PjjKnyeCJuvH3hAWsmxCIVUlDUY1ASmnTVTXCy7vFs36WSng2XBnDmwo5sJ8/LCICfenSjgLRD5Logyd19GDj630apPIo6fRXYnvu6OHCPI/vKShZmIkci/koBBg+CWWzQ2stUPSkrk6B4yRPUu0uG775Q96RHT0IjdAk58+226DhiQouUCJLe0mVge/uILxSI1amRx/vm51K49ERUcf4psOmYrHj40gepUv86gUYmbSUILjRt/QT4Up7ZPkLo4sDfuqlCN7OLiYsaPH8+tMQTk8/no168fv/76a9J1fv31V6677rq47w4//HA+/vjjpO2LioooKoq++BuTkSHg9/u59NJLmTp1KjNmzKCwsJCioiIKCwvZsmULW7duxRhDjZgUwuXLl/PX/PkpNXguJDpfNd/nY9HYsdSbPJmmTZvStGnT5OkKo0fLGE8VgWKMZhafeip5CkaLFlpCITlBBg0C+1o6OTp9Pth7bxX8qxQMR2m69jHFvuibUJVWL2k956E0hQ2IYGP1tjOFhVwItknaGaVpHkM0csCt0R1G6W//pcwwbL/9YP58Rf/88IM6206d5ABr0MB5036/Bkfjx6ctYOFH5doSk2t39vm4vV49Np5/PhuBDRs2sGjRIiZOnMiiRYswZiTS7HLCnWxLUf/M4QPuc9n2LOR8c0IdNCh7GudBRxBlJczDXZRh5aMq8XVeXh5XXnkl48ePZ+7cuaVcXVhYyNatW5Py9ZIlS5i+aFHK9+MqokEDs3w+Vo4aRb1dd6V58+Y0btwYK9lE0mefwQknpObVcFiTUHfdVXYiyrKgVUQfvbhYBtqgQdFirU58bVmqv3DEEanbZBVPE29YxPL1OrwZtAa4CKVOnwx8Sfb4ug3RCIje6F09BQ0AvE4+Po0ivRLu3dFHaxLik0/UZ9sFhE47LTohkQ5Nm0qiZEH6AXsAaBxZYrFnIMDuLVqw8YIL2BAKsXHjRubPn8+kSZOYN28efv9GnCcUfGjiwS3vVRVYaNrpDpftz0WObCe0RA6RG4lqe6dCCNkYj6JJnKqFyuBqcM/XdevW5aqrrmLMmDEsWbKk1L62ubqwsBC/31/qxAZYuHAhM5cuTcmBtxKdfJwGbBg5knrNmtG8eXMaNmyYnK9fey19kIYx8PTTcnQnwueLykht2aJI30GDYGYkyyoQcHbgXHRRJTqx/0u84y6Wr1eiwA+3sKOorkM29q+412xNBws5aex7dQQq7H0B0Ygyt/Ajh0ESR/ZZZ8HJJ0t/1da87dFD0iNuZGE6dZLTe0P6CPYclGeUqKK/n8/HXjvuyMYLL2RDSQkbN27k77//Ztq0acyZM4ecnL9JX6vHfq7uQxN425MT24c48lqX7c9DRdHS3XsfciR1RpKPTrZDCAU43YlrechKRFXj60yxZfFi5htDF1yM3JcsSerI3rRpE2+//TbBYJBOs2ax01tvJVk5AstSjZrTTy/7m98fzaLZsEF8/eyzGmfbvzvhv/+tRCf2JcjxbCOWrxchbnT73lsoQ+UUJLUzjezwNci+tnEmCoS4NrJPL9sPoOCXJI7sK6+MBvJMmaJ7tffeGmu5KcC8557KaC12Hy1cjDw7RI6o68qVqsWRNBvgaRKd2CUlmu8EOOooQ+3aIWQf7sz2x9etUaCRE+zn7CXS868fheU3QtfOzbP4FPIBZkEdwlQglixZYgAzZsyYuO9vvPFG07t376Tr5OTkmOHDh8d99+yzz5qmTZsmbT9w4EA7pzVu2bBhg6djDYfDZuvWrSYUCpV+t3jxYjOuf38z0u83n4MZDuYFMA+DGQhmfVTVz3zr85mBBx1kBg4caAYOHGjuu+8+M2TIEPPNN9+YadOmmaKiImPCYWM6djTG5ytdL+lSo4Yx69enPtjiYmP691dbvz/9tmKXQMCYxYs9XZfMMN0Y088YQ5aXZZHth40xo4wxpxpjcrKw3YAxZkXCOaw3xgwyxuxjjNnZGOP3sL0JmV02J7zxhvt7nW456CBjPvvMGGNMQUGBGTdunDHmxNJzHDMGM3kyprg41fl9Z4zZyRhjebgm23KpY4z52sOFLjbGtDd6LlJt0zLG3BFpf5CHY3kl7Z43bNiQEX9lA9sjX4fD4dLv5s+fb8YecIAZaVlmBJg3wTwH5sEIXxfHvAMfgRl4zDGlfP3AAw+Y119/3Xz33XdmxowZpqSkxJiiImMaNzbGslK/S5alNkVFqQ9282ZjDjxQ7Z24P3apWdOYggJP1yUz/G6M6Wuy/97Z9yZkjPnWGHOM8caj6d7nzQnnsMoY84gxprcxprPH7VVQn/joo+mfHTeLz2fM0Ucb88MPxhhj1q1bZyZMmGB0v3zGGMzIkZi//sIEg6nOb4IxppHHa7Itl8bGmF89XOiNxpgmxvnZGhRpv7OHYxmRds/bJPSWUgABAABJREFUiq8rg6uNyR5fh0Ihs2XLlrjv/v77b/PbLruYH8F8BmYYmGfBPBBZYt+DYWAGnnZaKV8/9NBDZujQoebHH380s2bNkt2+fr1sZ6f3qVMn2eKpsGaNMd2769318v42amRMSYmn65IZfjDG7G6y+87lxmw/aIz51MiuyYaN1zKyzVgsMcbcbYzpYWRLetlecQbXzAVuusnbeCrZ4vcbc8opxowda4wxZtWqVWby5MlG9qSO/5tvMH//jQmFkp2bZYyZYYzJ93hNtuXSxhgz1cOFXmqMqW3s/iv18m6kfUMPxzIu5V7/6ba1Mdnj61T4umlTMxDMx27ehV/L9uElJSXm5ZdfNgMHDjSD7rnHbHXiV7/fmP32S39QixYZ06GDN9sajGnfPn0/kDV8YozpYJyfXS9c2zBm+0XGmLeNMX08rJ9q8Rn1LYnXZa4x5hZjTHcTy2XOS51MLpg7nHeefFou7/c3aBz4JDFjwZwcY84915jJk2M2HDLG1C1zLsGg/CLvvx/L3XnGmJlm+/GFYIzpYoyZ7+FC/2XkZ0t3jpaRXRIyzrweu6Q+Di98XZlCyRWCW2+9lQ0bNpQuixZlpkNrWRb5+flxUdQtW7ak10UXcUAoxFHA6Sjp+iak/hIb7L5DOMweJ5xAu3btyMvLo6SkhAULFjB69GjeffddtmzZAiNHwuzZLA6HmU8a5ZnCQhg6NPXB/ve/YM/KehG7D4Xgo4/ct88IU5DO8g9Z3q6faGSUhdLJs6WzE6Ss5EQ9lHI+CviLlFV4k8KLplACjJEMyY03wiWXSBvSjuo7/XRFZ5ZX3/znn5W6c/vt1K5dm169eqHovhCbNytg/IMPJGU1dKgk3Ves0KEJC9AbYFLtoQqhFirR4yIluRQ5wDcoPTfxWtuz/ANQtCO4L4xjK+L+e5Ftvo6Nymvbti29zz+fA4zhaKT+eClwC4rui32D2/p8dDvhBNq0aUNOTg5FRUXMnTuXX375hbffflt6rh99BKtXM98YFpKCaYxRCnuaKBkuvVTvHKTNpiiDLVuUy1ahGIUKBY7N8nbrE43Z8aFq1QeQHc4oQIVFYtEYRdqOJb7MrRuU450Mh+Gbb+C663SfH3lE8l8Al10mrUYvhYeSbf+rr5TF9eST1K9fn+7du6PMjjBr1sisePtt8fXw4TB2rB7JKF8vRddme0BDlDLrstAQoMyYb1CfnXit7c9Xosh7kNagW2S3KM32hmzxtc/ni8ueAejQoQN9zjuPA30+jkGxX5chrk5U19wpL4+uRx9Nq1atCAQCbN26lb///puRI0fy/vvvqx944w0oLORvpCKZ1DIOh1UI2ObjZDj9dIVe2UNgt1izBkaNct8+I4xAkU9TsrzdtjH/+4FjkTp0NoaIS4gvZQvKgrwTaUV/43F75eDrYFBZNtdcI35+8kndN5B0QYcO5eNr227o2xeGDqVx48Z07doVuz7KokVK8Bk6VF3FO+8ogDyqyGNQJuileMtW3VbYAUXg7eJhnRbA56ggaeK1tpPE7yUaee/lflfzdTb4Ohk2bNjAuI4dwbKc73azZmUyU4wxjBgxgkWLFpGfn8/p69eT7zSWDYU0Hk4lEWKMxrILFnizrQHmznWWHik3XkeZMW7k+LzYxrvF/J+LxqOdKb/IQhiYjDJ6YrEjkoKdgDLt3aKc/pniYhm3V10lpYIXXohK0Nx/vzIfA87nvArlGIFEUUvHgiUlqj/Xo4fkBAGpBZTNZPD7lZR50kmxLpgilAFyGhWvk50NdERR8m2dGsZgZ+B99GwlXusA6qeeQ5rqQbxlWWXHH1Kh0iKNGzfG7/cnFLyAFStW0DxF8azmzZt7ap+Xl0deXgWmEh1+OLRvL6KMcRrHCUcEAuyy777sEtHNNMawevVqFi9ezJIlS1izZg316tWTBRMIMCoYZAa6+LuhuiY7EGO2WJYM4iuSaHcWFCjd0YuBHYt3302+3azAoPTzLXh7mC3Sk3gApacn3ufByNDOVOw+Fk7OyA7IGHe67hbSgMsAs2YpPXLKFJGzZUWlC848E158UQ6za66BV16RUe73OxdKSoT9HD/wgDTPBgxADl/tdr/9ZFxv3Cj5sDmRPrh2bdnn++xTE3WcM1EN96qMzSil6yMkQeBQVKQUHZBe+IuIpBcTnUC5CmlA2b3ZzkiWxU0F4DQF4rYx/hF8feqpcP31GhnGGLZxe/T76X7KKXS/8EJAWoUrV65kyZIlLF68mMLCQh3j6NGQk8P3JSUsQpzfDQ3v40oa5eSo7amnlj2epUul3+nVyAZZSx9+mHy7WUEIGWAlZJ+vz0vy/WCP+0mHdHxdA1UIWOViO/lIMzkDTJigezNnTjQdMhRSzYNLL1XNjO++04Tk22/rd58vc76+9lrx9cEHYxc+rlED9tlHNY42b1YXMmuWmtetCwceCHvuWQM5smchPb+qjLXIhhgBDMP94GAPVDzpeeAFdO99yOl3FUrbtS2szqRxdSZgJ5f7r1xUBldDJfD1+efDwIEK3oixaePsa5+PPpdcQp+zJG0UCoVYsWJFqX3t8/nkyB49GiyLL4xhLWKBPRBfx0mtBQKyrw84oOzxTJmiialMEAiIrw88MLP1HbEZTc+GyW4QgQ9paccijNKJs5UynY6vmyMeLnSxnSZkXPR95EjZ0UuXxvP1TTdJr/Wuu/RcXHghjBgh+zsTvrbbn3ee+LpbN3R+JdSvr9pykydLHvavv7SAFAYPPRR22aUGKqw+B/g0s3OtNCwFTkAThU/h3vm+P+LrZ1AdgvXIbjg+sq3Yd7MDcq65GXtVTdm+fwJfjxw5kuCee9JuzJj0vaJlyfGY4GAcO3Ysf/75J5Zlccopp9DoggvcB+KNHq0ijon48ceoVJ9X+P2adEqh411+rEDyehWBcxI+b0JFqrOllZ2Or9vhzu9iUa7x7iefiIvXrImvU3PddfJdXH21ZHXPO0/Pgc+nZy/hmTJI1DOMLL8yxUmDQa130kmSEWvrdTxQE/WVi5E+dFXG3yio6D5UE8MtjkMcPAhNzmxGVtqpyL7uFWmXiyYqE4vyJoPdtvyo0Ijs3NxcevTowffff1/6XTgc5vvvv6dvisreffv2jWsP8O2336ZsX+Hw+eDTTzUqTDbz4/fDDjvIWRGBZVk0adKE7t27c8wxx3DuuefK0I68YHVQNHcQ+BO9Ai+iua5ikEG/YIH03hILQn76qSygTGAMrF+f2bquMBY97F6NXycDJUxy/bW/yZ5jpI3D75e62IYfvfBuKncnYOFCeSTsGeJgULOFoZDu2/DhcOKJegaff17G+HPPKTr/6qulF+U1UtvnU1gIoOh2H3l5sP/+8plcfrkCwDt2VD+yaRNYlh84BLAoKLidr79+gGnTerJkiRwpmc6vVDy+AXqgqLw3cRe50QjFhy2KtA8CP6Fic7HX+iLcGRCt8RYZXrn4R/B1jRriyPz85JFVfj907qx3JwKfz0fz5s3p0aMHxx9/PAPsAiARvq6HStMWA78jV9kQxHRB0EM/cya8/35ZTeR33sn8XMJhR83O8uFzFC3nhUN9pOdru2jV5Ul+c1vgyQ3SRRRYiK+dnKABpK/sQkM1EdOmiShtPcaSEi3hsJ6bZ5+FCy7Q7N+bbyoU76mnxNeXXCLu9crXgYAK1AHqZ/zUrAn9+sENN2izhx6qefdAQBORfn8tVAzRx+rVD/Hdd3fx11+7sGyZzIiqy9dvo6jsK1FNBjf82gIVWl6JnGIlSJv9SOIdLJfgbKP4gO5Ip7Xq4R/B1aDiTu+/L15Oxtc+H+y1lwauEfj9fnbYYQd69+5N//79Of744/VDMEgoHKYxGlpuRVFYg5Aq81/EMN2kSXI6L0sYcA0f7irCKyWyrEkbj7dQNoqXl9aJA30oiOHChO8LkHMxW2iV5rcaiIedrrufjCOVx4yBww5TEV6I5+uSErj3Xjm0mzSR/TBnjrj2jjvkKMkEPp84H5B9HaBOHTjySCVcXnSR5iTbtlXTdesgN7c5qiuRy5Ilg/jxx9uYMWNHli/XXE/VxSBgP1Rj40vc2RTtkMbsOsTXxSjyL3GC6RIX2/Ijnm/p7nArGds7X69atYo///wTGjak35NPyp+RjK8tS/VFbrop7us5c+bw9ddSKD788MPp0KFDtIiuG/z2m4K47OwJG2++mTlf+3wVzNcv490X4sRtfuRfSCxSv5TsFRv0U7YKQCyaoYwdN0EGbvwmSfD559C/P6yNFCq2+doYGa7XXguPPqqaFj/8IL/JI48o6C+hgOM0lL8YQOEMSWGMfC6DB6Owp4Pizu/33zXHuWlT7Eo+NFXeBPWh3yFvnpMvaVvCth3+i4I8rkMFOd3YFDujos0FyLoqBIYSdWLbuARn13IA5eDVdnPQzvAglJIR3n77bZOXl2dee+01M336dHPxxReb+vXrm+XLlxtjjDn77LPNLbfcUtp+9OjRJhAImEcffdT89ddfZuDAgSYnJ8dMmTLF1f4qTAdr7lxp8uTmRnV3atUy5sorjVmRqK+cAu+/X7puGMxCMB+CuTei3TMQzJBk+j4HHmjM+PHaxuOPe9eCitWbOvLI7F6XONxj0usKJ1v8xpjjjDR2EtcNGOntvJ5if+087ivdMsikx0aTXjfZZ6QzON5hOyngVu/po4+Sr//bb9J1BO+6rHPnGmNWRo4/uQ5SSQlm3jyf2bDh1NJdTpw4sVSzcuDAK83Agbua++6zzDPPYIYNw8yfH12/qAhTUJBOx7WyFvv+NTDGfJDZvSqDsDHmMOOs0TrMcUvbUsfPmH8QX0+bZsyAAfHvVL16xtx8c/r6A7F47rnSdykMZi6Yd8DcHcPX7yS+S5ZlzFFHGTNzprZxyy3SYcuErwMBYy64ILvXJQ5XGO81BixjzAkm/l2KfbdyjfRVk6G2x32lW95zOLflxpimJvU76TfS75vtsJ0UOPJId3qqo0cnX//bb43p0sX7M2FZxmzcaIyZZdJp0RUXY/7+22c2b766dJejRo2K4ev/mIEDO5kHHrDMc89hhg/HLFsWXX/rVsymTal0XLcFXzczxnyf2b0qgxJjTE+Tnq8tY8yXjlvalnxd2VxtTAWe77hxxhx7bLzt0rSpMXffbUyCtnZK3HVX6TsZAjMT1Um4K4avP09mE59yinRWjRHfetDdLMPXMdc7+zjFeNOftJfjTJTzEjmwljHm5yT72prBftItIx3O7W8jPk7H102NeD0D7LGHu3GT3W8n4v33jWnXzvszUaNGRId3TNrrU1iImTkTU1z8YOkuv/766xi+vsAMHNjePPgg5vnnMW+9hVm7Nrr+li2YzZurEl+3M+n0qr1hk5GOeqqxlz12HJt2K/8229qY7J3zW2+9ZQYOHGjefvttffHjj8Ycckj8s966teqCJNQJWL16tXnwwQfNwIEDzccffxyta3PZZd65NidHY+VVq7SNY47x/k7ai88nf0qFYV+T2Tt0hIlyXiIHNjTG/JlkXwsz3FeqxekZm2Bk66fqjwJG/pKNThepLIJBY1q1cvZj+P2pfW9DhhjTooUpBPNopO8f6eaZaNUqsoGPS88lFMI89hhm4EDMlCmJ5/laipP42qi+WmVybyaLzaldjLSws4GVRvZ6qr7cZ4ypaVQLIjW8cFeFSosADBgwgFWrVnHnnXeyfPly9thjD7766iuaNVPU6sKFC+N0qffee2+GDx/Of//7X2677TY6duzIxx9/zG677ZZqF5WDHXeEV19VuvDs2ZrN23lnqFUr/XorVmi9qVP1qtSuDZs2YaH4zNbA4Sgy+3fi43+KgNnAzj//TGDffeH775V/lkmaOihSLNPoAlcoxHu0hEGzPHeg1LR30MxiDpp1vAbYM8W6R6N09Wyk0zyOFBpTzSTVAX5EFYJnEq3Kap9vDSRfkepY02D9ekUCuUlhvP9+VfZNRJ8+SnUfPx7GjZN8jNvnZM2aSOXmYeiaWyRGVAQCftq164BkNoTGjRuz5557smrVKtavr0NBwcmUlGxh1aqVrFpl6N37A5SCooDVDz7Qerm5CpiNXfbbD1q31u9r18K8eQFyc8Pk5obJyYkWF95xR036Zw77Gq9HcjUfo+jG8sBCkSQnAd8SX2Hdj57xJ9EMZNXGP4avd9lFcg6rV0sLLycHunRJUaE6BosWwZAhemBB0R4lJaVJqzui+egJSEwmlq8LgKXGsNNXX+EfPVrpkOXh62AQzklMIcwmCsFzino+8BqKR38KvT8hxH/noIisLinWPSLSvrx8bQGPofc3FZqhSIPDUMqfnQppy6LURxHpGUhHLFgg3Wrj4to98IDS1BPRr5+iuseMUXrkjS41rI1R6F6djigt+zKSSb3k5Pjp0GFP4P7S71q0aMEee+zB6tWrWb++Nps2NaeoqIAVK9awYkWQAw54B/ve/PmnThHE1zVqxPP1IYdInhBk4ixZEiA315CTEyI3V/LutWsrYCY7fL0KWUo/oMi/8iCAogaPBsYRX2HdF/n8Kmnid6oE/jFcDdKS//RTRcwuWKCHbJddoinFqTB7tuzr+fNl30a41odSiDuheM/xwESga8yqa4F1oRA7fvghvl9+kbh8/fqZn0MwCGefnfn6jijCewZiY2SbfI+0jL9CXFEH+D+U8ZBMjiEfyaj9RvnlRfzAE5SNtI1FBxTRdhSwhiin2bzdAviajLId//jDvfzAI4/Ayy+X/f6kkxQhOHKk0tjvu8/d9rZulc5rXl/gblRXpSxf5+X56NSpH7Hq8G3atKGgoIA1a9awfn1NtmxpTWHhBpYvX8vy5YUceeS7pW3HjJGUsLYV5Wmbt486SknFAEuWWKxY4S+1rwMBHWb9+tCy3AHNNl8vAg5Ez0/XlK3doRbi/cOAGcTztYVsj/fwVleh8rG98vWiRYuYMWMGlmVxyCGH6MsDD9SyeDEsWSI/SJcuZaK0CwsLeeuttygsLKR169Yc3aYN1o03ap2iIu+yPSUlyn4fNUp2U/362qeXWmE2LAtOS4xszia8plBYSMP4c+RLeIqoVEVDFOl6ORKiTUSryLp/492mT4Qf2ZYvpGnTHcm/nYg9xtd+7XezA+LrOt53//XXeq6cEApJZvfee8v+dv75cPbZ/PTwwxR89hkNx45lHzf7Li1WcByyrZ9jzhwF7teoIZdfFGcAqfr7wyLLXGA+4sPz3BxBEviI9hnZUiCwYb9/s1B/P56MpXFL0QSNvQ6l7NgLpEcxAgm9ZAeWMW5GY9sPNm7cSL169diwYQN17Z57W8AYuOceGTzhcHQ0l4Zw7cfU7gp+R5QWADpaFl2bNKHj+PHktG/vLS0H5JBp21YpGLm5zu0zwqsoRdHLI3U70uuxEULEWAvn1JXpQDb1rf4PFaBpnaZNEPgMnetCJDxwMnLi1Mtst2PGSFbELaZOddb1atJETjw3mD9fzwagAc8dREsjgAY15yGnSMOUmwkGgyxfvrx0adv2AwKB19m61TBypHMWV6NGeqzV7jDkLFtOrOHfqxccfXQO6kRed3d+KWGhAdJCslOowSDpkcHo2cxDZP4f3KYbVRn+qiRUmfMNBqWtPWhQVPLBstIa2rZJYQ89RkaWXKCzz0fXTp3o8NFH+LukcuymQSAA3bvLuVI+T2AaPIyKtnoxjp5Gzg8bQZRmVgvndLKf0OA2W7gZSU6lc24UIUfOUKTb1gRN1p2OXRfAMz7+WE4NN/D5YN48eXRToaREA0E3fbrPp4nPOvYA4RPUZ02OaVQHyR3dQ7pzLCkpYdmyZaV83bHjKxjzGYWFhs8/dx4bNmokH01BASjVdDRyD0b5WuPdfFS4axjlG2T5UFWRP8lOIbQwGmy9hAaAtZAEwIW41U2vMvxVSagy51tYKG2GYcOizhMHvg4RHRKCbOvfkXXTxeej69570+7hh/F5scVs+P3SYUs2aZU1XI/414vz5y3i09BLkIOlNs7v0HtIAzNbeBjxUoM0bTajY34bTV61QM6CZDVyXOLFF+E//3HXNjdXsn2NGqVus2pVdBbPCTVqSHOvtA8figoZxkpGNkB96u0kqMPHoaioqJSvly1bxm67PU5x8SgKC+Gzz5wPo0YNdTHi6xPQxEFcrjxHHw29etVBPPgu5ZvE8CM91q/KsY1YlKCx1xAkU1YPOdLOI924xEaV4a5KRDbOefHixYwYMYIddtiB445zH/RTVFTEW2+9xfz586mbm8vFv/xC7a++km0bDmemP2/D75fe/YknJg/scoLPJ+m3l17KbP+ucCZ6h9yeow9NsB8W811xZKmFM18/i3gkGy4925l9Jumd0RuQcNf7kf9bo3oLx5FxCb5775XvzM2zUbeu5MFqlq2bsHHjRp588knCK1Zw5nPP0dHNvtu0iZGHNMBzvP/+QKZOXUOfPpKFkm14HeqP3coDGiRDMtmhXSIs1CcMQfc21r62/zYC9kXO4fLwtS338Vo5thGLQqJjr6XoOE/D+ZkSvHBXhUdk/2tx991a0sGytEQSGyzi3Wk+NHexEfjLGP5auZK8226jywEH0PWHH9gxHHZ+jWwDaocdVMSmwpzYoMHqFTgXTgSd6X9RhELi92473F2QxtoNafbhZRZrSGS5H7glRZsAKvQX48goKlI09Nat0K6dREorEnfdJf30dDjrLDnl0nkjfD5V6y11YoP0rw9BipJ/A3kEgz0oKPCxceNGNmxYzMaNG0uXxo0b069fPwACgQCvv/46JRGHzB9/NCDWqdGqlWyPwkJdqhdfjD+cqPzZ/kBfdtzxNEpK/qS4+BdWrlwO5NG0aX/kaK+HInfKM3A0iGC/RIZ7eWEhR92BWdhWNSoVV14pfTRjUr8zsQ5lY8pwbw4yNzcDU8JhpsyYQY1Bg9i1Vy+6jh9Pm3DY2f1m76NTJ41OK8yJDZp8c1vwIw94hHgnNogP3UZdHADcFNlOMngt3PsIyqR5ltRFdfKQ4RSTDbFli6ojFhfDTjtFU0EqAuEw/O9/4uJUyMlRkd/33ktvvAcCsqTrxF7v44kWYlkA1KKkpCcFBSE2bFgZx9UbN26kdevW7LvvvgAYYxgyJFr8ccKEVsQOgjp10hjR5uvEMV+Ur48A9mTHHY+nuPgPSkpGs3LlaiCfRo3OQvc8FzlvxpL5QCscOc8/KKvLlwl8SFf1yCxsqxqVBmPg9NMVwQ2p+drni2ZNGFNmqjqPaInBieEwE0eNovann7Jbx450nTuXHUIhZ772+fSO9+olvdYKxYWI79ygFoqoS4w4zIksbnAychK+luL3spHF6XELsveHkjqbphYKKPm/6FcbNsDkcbrPO+8MaYrdlRvFxaqfcccdqds0aQIHHQQ//5zevg4EZIfH9eFno2K245HtWYfi4p5s3FjExo2Ly/B1586d6dGjBwBbtmzhtddeK93SpEmdgFGln7t3V6JPYaECC2PKNrF1q11ayUJjl660a3cUJSW/sXXrGNau3QDUpEGD/6A+PohyGGaSOV+HUG2aeWSnCGMOclyfmIVtVcMtWrVqxX/+85/ScZ0bhMNh3nvvPebPn09eTg6nffIJtceP14+2jZOYqej3R79ziq8MheCtt5RBseOOqjHlJirbjt4+/PD0NllWcBEw3GXbBsghfFjC97mkm9yKx3/QWPYLyu/MDqGI5JuBD9CEVDLUQ3wRMy5Yswamjtb/u+2WflKwvNi4EYYOTTpRuXjxYsLhMC26dqXjLruoqm6658rvT8iosigpuZjZszcAc9h1174oirgv3l2nFvAA3vwMPsR5H6JMpePR8/Qecmi3QLUljkeTCHugYJ1Mo7aDke0/jpuJQWfko77urCxsKz2qHdkVgWXL3KWe1aolQp0yRSmSCS9ZDyRUsQLVd57i87Hhr7/489BDmTxjBjcsWULNxBfT59ML6fOJsHfcES69VLOP9TKMGHaN2sjJeKtDu14oHqZJFvZ5PXqh70RVvm3koZS28R62ZRPArehcrkjffOtWSX0891xMSgrSybj7bhm7brDLLsoHLHJTgBBVWl65Mn1UyOWX67jC4dTkHQ7DzTeXfiwsLGTJkiUYY9hppy5AF4wxPPTQ/QTLOFiCwExatQqjcgqHAV3Ij0g31KhRg/z8puTndyI/fwb5+bL/7ciQBg00mW6M/Dg5OZCb25mcnIfJydmb/Px86tRJ5SBbiSZNvnBxsZwQQEIR2XBkV2O7xLRp8EK6NLoImjTRuz1+vAznBEN8H2BvNDydAkz1+dg0bRp/HHggUxYs4MbVqwkkGu8+nwa8lqXtde4sWaCzz04aZZBdtEAG6FOkN3wPQ5El2eg/HkKD2vtQoUkbNVF2ze8etmVQlNbFaPJzQPrm69eLl19+OVq1xbLUB999N/R2mZrcvXt0AtoNhgyBhx9Ofz+vvda5MGgopKyBCLZu3crixYvJzc2lbdtuQDcKCwt56KGHkqxcjNKyc1FE81Hk5OyIz+cjEAiQn58f4esW5OcvIz9fE481a0YP+7jjZFqIqyEnpwe5uQ+Sk9Od/Px8ateuTdmicaDUyktQmnk2MIHsOLKrsV3ip5+UFZEOPp+iq7p3Vwq6XeQvBv1Q6eVFiK+nAZumTOG3o4/mr9de45qNG8s6WyxLtprtNOnWTZOgp51WwUEioMCN05H8XrrB6gDgFTLOOCmFFdlOFxQwsirmt7oold2LfW1QhswAlAmRyjkSwYoVKt71xhvRSoc+Hxx/vKL2nLISbUQcwa7x7LMqyptuEvmmmyQx4oQrow6eTZs2sXjxYurUqUPLlj0BWLNmDYMGPZZkxULgL2rXrkePHn2B48jPl3MhLy8vwtfNyM9/j/z8AvLzFUNTq5aW+vXhmGNsnrY5+yBycu4iJ2cXatasSc2aNUk+ATwdOcVmOJ+fIwzqb7LhyK5GZWH9+vXMnz+fPfbYAwDLssj1wG/fffcdf//9Nzk5OZzTqBE7jBuXfgW/XzPnnTtLvmf9euedlJRIvu/zz1V4e/36soEAliVtnWBQ3NG7t97JE09MXqwyqzgA9TA/kT5S9jLkPMww46QUASRJcg8qvroh5rdGKFr6Tw/bMyhj42hgDPJIpcH8+ZoAfOedaHZhIKDii/feG5EvdYGePb1F6j/zTFJH9sqVKwFo3qIF3HJLeplGyxJZJmxnxowZFBUVU79+V1q3vpDUUfErkWziGiTndQJl/VtHo3vs0s/DaSiosl3kcy3E14mcPRY9Q0soP0pQEGMGWWnbENWO7IrAkCHuBrmbNmnG/qefZDwlmfG0UCJDc+AQy2JR+/ZM2Wcfirt1o+aiRZpVXLiQD4F6eXl0O/NMGt9xh6yabYKbEYE+RLyWma0bfDqK8Mim0X9GZLu/IpmI1YjMx5P5zOTtaFBeI/nPW7Yo/GHs2LKDnTFj9NuwYYocckL9+nDGGdJ6dINQCGbNSu/I3mknRfidfLKexdiOwe/HhEKsuuEGFu+4I4s//ZTFixezatUqjDG0bNmSnXaSdqxlWdSpU4eCggLq1q1LvXp1qVv3Z+rWfZe6dTfTqJEfEXgYOIBrr30Fn69DzIEsR2RcduC1++6J39yHZhfTYRWwFxp+Zlsvqhr/SgweLIPLyXhauRKuu05cvWhR0iYW0DKyHObzMb9LF6bssw95e+1FYOpUePZZzMqVvA3sULMm3S64gPq3316xUWZp8SgyVl8mXtvd/v9ylM7uNoXOCRZyal6E9P+WIdf/3SjSNlPchCa3Uhzn2rWw777izdjIHWPg229Vf+Kzz+TUdkLbtnDYYdLyc4MtW6T516lT6ja9esErr2jC2e+PfxYDAcLBICvvv5/FtWqx6KOPWLx4MWsiIdGdO3embSSrJi8vj9zcXIwx1KtXj7p1a1O37lfUrfsJdesW0rSpH01KXIVlHcV///sSPl+LmAOZjJ6FsgOvPcuUf3gcZc+kwwKkXbrWoV01quESzz/vzNfhsAbW33yjwWkSRzaILdpGliN9PubsvjtTevak8YEHYv32G7zwAqH16xkG7FS3Lrv/5z/UufVWzcRvEwxBA+EPKVuLIwTchYI6spXJ40Pcei0SzlqNdD/vRRNKXmHb47eQlu+XLIG+fRUUFHufw2FF4n/9Nfzwg2rDOKFHD0UGTp3q7hBXrFAUeDq99COOUKbNjTeWfRYDAULhMMufeorFW7aw+IMPWLx4MesiwS577rknLSNi1HawRm5uboSva1K37ofUrfs19eqV0Ly5H0kyXUF+/inceefz+Hyxz97XJEsp9/vlD4rH8zjrkk5F0/Fusmqr8U/EmjVreP3119m4cSN+v5+uXb1pnE+aNIkxY8YAcMIJJ9DyssucdaxDIQXz/fyzgkXcOLJBwWRduijD7tFHZUPZQQo77KCgkKuucq5lViGwkGP5eMSdyWonPYVjwJwn5CBuvi2yz/VoivZB5GT1ijA65oGkzX6eORP23lsR0rFcGAzKsf3ll9I1dyOzeNhh0KyZeNgNZiSfcLMd2U2bNlUUxtSpiuBPfBYDAS0ffVQmO/PPSG2Fbt26YSWd2NyCgoHeQBxs98OXIYmVp4j3Ie2B6rI4+aXsuhJOElajUQa9R6nhfxiqHdnZhDEi0YkT3bXPyYHJkyVF4SItxgLa7L47bY4+OvrlddexYfp0Jr/4ItSpw+i8PA5YsID92rSJKxxRebAQaZ6DUht/RmS4J3ApiqSqiHR5Cxlge6BIkTWUL71mIypc9mLyn++4I7kTG6L38txz1Sm3auW8u7vugtdecx/lF3Dx6h53nCRPHn9cxSSLijTzeNhhPNe+Patq1Yqm50bQoEEDmjRpgjGmlLgvueQScnNzI5//i/TBbcQ+t6Pw+fqiqEpbruQU4jXQU6Ex0aKLE5FG4mqiukq2F+VW5MTORoFPItspY/FX498Am68nTHAXAWBZ4muXkQW+UIj2e+5J++MjkzMnngi33cay8eOZOXw4M+vU4Zf8fPrNn0+fZs1SGEoVDT/SCFZhExlZNpdeSvkLNaXb74FoYqojcqaXh68XImd4Cjmvq64q68S2EQrpWTjpJOmjutGSfPRR945scMfX552n7JwnnoD33y+NIjLHHcdjzZuzuaiojAZvo0aNaBDjVLMsi+uvvz7C16DIuthI79jz/xqfbx90zxtHvhuANP7TwUJFMvdD9+xXlH66Hk25n4miR0GDtLWUT7svEdV8/a9EOCy+Hj/efcTWlCma1P/lF8d1/OEwnfbai042Xx9/PNx9N3N/+YV5n37KvLp1+blmTY5csIBu9etvI77OR7qTvyLH5CQ0jDsQ8bUrJdAMkIPqfcwBLsB9VFkyGBRk8hIpJaHOPbesE9tGKCRb9vjjNaHsVBAU4KGHFKLsFm74+oYb5C1+4gnxcjgMOTkUn3wy/2vQgJKVK+XAicCyLJo0aRKn95mbm8utt95KXl4e4sgTUbaq3RfavGmwrPexrBlITqR25PvTUZ2EdPCh/rxzZLs/IK3pAhSleQ5gyyFegJwz2eJri6jtXo2qjhUrVjB06FA2bdpEkyZNaOcxIG7JkiV8FhFs33+ffdi1dWsVWnUj+xEMyinZsaOc2m7WsWU8W7WCJ5/Ue75kid7fVq0qIeraCXXR+/YD8iVMRxx+GF5qJ3lHDSSZNh7JGZUn6CuMOGkESTOXbds50YltIxjUxODJJ8uZ7NRv+v3yr1zh0sGf4h7HObItS1mR+++v5+S779QoP1+R2tdem1jJEWMMtWvXJicnh27duiXZQxG6j78Svb7BmL+vIDm9r4kGbp6BIqjTnhDqB5oiHv4CSTRtRTx9LgqVCiNbu4TsBfXlErXdtx9UF3vMBpYtU3rD4MGxwpHOCARg4EBJf7Ro4VzsyeeTEH2CY7SkpISZM2fy559/8vfffwPSterfvz+NKlKfqEpiCMnTmzPFA8h5OpNSbaLNdaD5o7DJIWrB74Pb/+uslW7j0EOjBJsOtWppttLFLHNJSQlTp05l7qxZnHjwwVh16kB+Pu+++y6zZ8+mZcuWtGrVitatW9OyZctIengqPAVc47DHAJqBvgtNaLgtdnEAigZcT7RavRVZgqiYwXlo4JMtyrLjZ+eTnWKP5ce/rSDNNjnf+fPh6acVveFUgTQRgwfDIYfI2HbqOvPz9Z4mnFdRURF//fUXEyZMYOHChQC0b9+eE0444V9xz+PxEMp+yZYh9hLSV52EomE2wopa0OpBCDoMjCxg0DOSZXKD3XeXo8wJzZvL4eLCOVJUVMSkSZNYsXgxx+6/v/Sw8/J49dVXWb58Oa1atSpdWrZsGUkPT4VbUIG1dPCjCPlzEF9/Svp7YeviHogiMgtIztdHIiP/WqdT9gAfsDua6KwaqObrSsCMGfDUU/D667bQr3t89JEi89xE7jZurImsBMfo1q1bmTZtGhMmTGDp0qUA7LLLLhxzzDEO798/EdehDJ1sOTo/RGnYY5GzZDPMyIMuyeSRkuDdd+GUU5zbGQMtW2qslg6WpclEl9HbW7duZcKECWxZv55D+/RRX5+byzPPPMPmzZtLubp169bssMMOpdJ7SQ4QOZFfc9ijD0VH7of6zm8c2tucvB9yam0mnq9BfD8AObpdjlVcwY/6gGxIAJYf/zauBm/nvHTpUoYOHcrWrVtp3rw5Z599NrU8RDIXFBTw4osvUjBrFjtPn86AsWOxPOhqA5IKWbsWjj02fTvLkg0+Y0YF15HZ3uG14GQ6+JBDfn8U7f0tUAS/GNj/CXeb+OknOZOdUFSk/tiOrk8Fv18VxRP8JsFgkAceeIBwOMz1119fVqZ061YV4a1Xz3EitKSkhJwybYKo1oBTjS4LBQi1RDV9RqVvXqqL3RPZuVspy9cG+UFyUEHObCGA9KxdKgNUMLxwV7Uju7yYOlVayOvWuZtBTMS330qG4tZbNWOU6nZYFlxyiXSP02DKlCl8/vnnFBYWkpOTw+GHH06PHj22UfTItsABiCyyKTuxb2SbfsAHX4fgCJfb37U1TF3o0KhE2/7uBzmz08Hv18SHQ6GKDRs28Pvvv8vI3iKH+3nnnVc6w75lyxby8/M9RO0/i/sUKJuMQ6TvQGOJ2WvhICfUAXZAExDp9j0CFVKoGvi3GduVfr5jxkg+YuvWzPh60iQ5MC+4QI6VZBkZNu66SxOVKWCM4Y8//uCbb76hpKSE/Px8jjnmGHbbbTfvx7XdojMwK4vb8yEjcBwyzCwYGoRzXHCLBRzSA751kjgp1raHv63qtWkPx6eJzP/+N22ztWvXMm7cOCZOnEhRpFbC5ZdfTpMm0tnbvHkzNWvW9NCP34V7p0Qu4mrbCZ0KtlMkTPb5uinSSZ+f4ncfup8jUbGdqoFqvq5gfPGFMllCIW+6mSCbeeFCOTCPOUYZFOk4/7nnZFulQDgcZvTo0fz444+Ew2Fq167N8ccfT8eOFRUFXRXREFjn2Mo98oFOKIghwtePBeEm42zC+4HTj4ahTs6EYiAHnnhSUdTp+mzLUr2Miy9Ou8UVK1Ywbtw4Jk+eTElJCX6/n2uuuabUYeKNrw3KiHJRpwOQbbsJcWKq59nmZ7uAcjb52kKR3EEkC5YMfhQVOpaqEuH3b+NqcH/OS5Ys4Y033qCoqIhWrVpx5plnUqNGClnNJAgGg7z66qss+fJLmn78MRf6fOR5ta/twI9atSQrNGFCer5+/31FAlcjBQpRRHg2ZScaoOy92ZTy9c0lUplz6p4DwNUXwqMvp2lkEF/nwq23Sb7J6Tn66CNVJY/B8uXLeeGFF6hRowY33XRTlv1fIeBUNAnrBAtdr1XES+0ma1dRfO1HNQrWoyz3ZAgA9dFkZ0VlCXiDF76ulhYpD7ZulZ5PJk5sn09amwcfrM/33y9dqBdeiNdcs/8/80xFpTiga9eutGnTho8//ph58+bx888/07Vr10jq2vaIENJgfhY5J2yZksuQbEXiTFl5qramwuiYYwnJhnSLTUsoJWZWoHSTMSgtpQQ5cZYBPjhkbzj/QHjtp+QTGn6/npkUzjFjDAsXLmTs2LHMmDGDcMRgr1+/Pr1796ZZs2albb1FEs0griqxI8LonJ2I2KT4PxsoQNc2tkOITERQgjqXV6hKTuxqVDBWr4ajjpJmcbrBbDLYopO2sPvzzyta4L33kvP11VcrPS4NLMuiV69e7Ljjjnz44YcsXbqUn376iS5duuDf5imRmaIYRYA8i6KifcjxeDmSDkqcOFuZ5f2HiRaMjNyTTbizCw1QMJXoxNpCpBc9nihfT0fGoA8G9IO3esEX45M/T34/dO0K11yTfHfGMGfOHMaNG8fs2bOxYwoaN25Mnz59qBdTnNlLZJT6Ky+RdcW4v0Am5v9swn4OUvH1DsCbVCUndjUqGHPnyoldXOxecs2G3w9HHx3NXnznHejfX5Fbyfj63nvTOrEBfD4f++23HzvttBMffvghq1at4pdffmGnnXbajgNFtqD36jlk59kyJVegaNrY8wqTXSc2yNliZ7VE7kkBevWduugwsPnXmC9mo4ycKYjTSpCDfAMQgEuPhPe6wLgZycdrPh8ccIAknpLtLhxm1qxZjB07lnnz5pV+37x5c/r06RPn+PPG1x/j3okNukCQPirefl/CCZ+zAYP6RijL1/ZkaHtkB1QNJ3Y1UmPz5s28/fbbFBUV0a5dO04//XRP/gJjDJ999hlL/viDGh9/zGnGeHdiBwKSE7IdVl98IVv999/jNY39fvUFzz77L3Vib0RZGy8A85Bf4QjE1/sltF1P9rWT10W2C3F87ab7s4BNsQVypyD7emZkW0WoGOUmIA9uORY+aQ2zFiXna8tSNs5xx5X5KVZWJJO+ee3atZSUlMT5TKJ4GXdObBA32kWS3bwTFcHXISQJlhgwGMvXuyLJsqrhxPaKakd2efDOO86pasng82l55RX9tb97/nm46CJFhowZI8Lu1Uupzr17u06hqVevHueccw6//fYbzZo1246d2IVIK+hL4mezfkOD9RdQOmJs2kj9CjiOBFJxIXkNRCoJhZGhugy4ARFVMgs9DNav8FIIWu4Cj81TpXa/X04SY1Rg5pVXlHJTBqtZsOB5XnvtW1QZd2d23LEnffr0oVOnTuXUS38eXX8vEVFVIdEj8RhCSOfxApTO6kJbsRr/HAwZAgUFmTmxc3Pjs2Hy8sT/11yj78ePF4fvt58cIkk11ZKjcePGXHjhhfz888/svPPO27ETewOSlPiVaGQBwI/Ad8iR/R7xhX7rEjWMs4UkfO2GjvxA2yIU9fsj0vZPFfUWBv/38EEIru8KL86UNJg96LKN7BdegKRyTUuYNm0Q778/BkWu7UKnTr3o06cP7du3L6djbBDxhYXcoCrwNcQfRwjJVJ2Pnqvt9b2oRkZ49lk5mTNxYtetC489Fv2udu1ogcDnn4dp0+Q86ddPfN3ZqQheFC1atODiiy/mxx9/pFevXtuxE3s5KhQ1nXi+/gplql2AHMO27ehDWRPZLgSYcH/tYF8n+IFWa9GE6YvIGZ8q6i0I+V/CN0G4Yg8YNkV2gM3Xfj+cf76ChXKTFaKfy++/P8mXX/4J1MLn60qXLr3o3bs3bdq0Kecz8BTx1397gn3vbAfJaei5OYiKqYVUjWyjZs2a9OzZk+nTp3t2YgOMGzeOSZMm4fvtN07x+WiYiRO7WTNlMNpo3Bh+/VUO7cGDVd+kRg05ty+5RAFd/zrMRe+VXWjeIB/Jh2jS6GYkD2e/d3XIfuacvd8YtMYddYWB1vOQA/42VAcrlZ1aBPU+hl+CcFE3+HiybGqfT3ydlycN7QcfjPrQYrBy5e/AKJo2/Uvb4lSUTeQOo0ePZvz48ey///4cbAebAjr3J11vxz0q2v5ODECxsyvPRVK8e7E983W1tEh50K8f/PijO8eI368XMRgUCQ8ZEo3GrkYKXIhmH1NdXz9yjsTOjj2OHMYV+FgblBH/t4vdvOGHsw8EvvewAwsKroePusLixRqEHXNMpLDFZmA4MtwXoIFFPWA6xgQZPNhHy5bQu3eYZs0OQ9V0k80qJiKECmT6EeHHklq7yL7+CWgCLKGqOrH/bemPlXq+u+4K06e7a2vrGQeDcnIMHapJxWqkwdGosEmqgYwPFbiJlce6GXgszTpZQDGSqEuVVReLr3xw+MHI8e4Bax+Aj5rC8uXQoIEKkbVsiZz7r6PaDUtRka5awHSCQcNzz1l06mTo1cvQqNHJKNqjXsrdRBFEfJ0XaR/L17VRP7G9w0KyA39RVY3sar6uQDRtCqtWObcD6VwaI77u3l3FrROKN1UjFgYVXp9Eeq/xXUiT2cb5wDCHdcqJDahmbKGLtuOBPQ9GE48ebP7lzyu+ZM0aaNJE0fpNmqDouVeAoZH/6yFny0y2boUXXrDYfXdDz54W9eqdhzRK3UgwlKCit/nE83uhy/W3B/iBfYCftvWBJMW/javB2zkHg0ECboqcJuCpp55i3erVHPbgg+zt1omdkyO/SSgkzeRhw6B1a8/7/vegCGU3LCQ99z6Hiv7aOBJpWVegfb0IaIsz/VpIOa7NPsQXSHSBhW/Cp2tV06hFC2Vq1auHxvIvAm+hgJiGQIj33/+bqVMtDj/cR9++YTTevwzpVDuP/Z9++nHWrl3KWWedzU47xQYlLYyc7D8BAeAkNKFQ9VAtLVJZWL7cfXTfkUfKwN57b8mRlCtC1hs+/PBDCgoKOOigg2jTZntJHVhMeic2iJw/Qqkp9SPtpxCNyqggZ7aF7Pt08qgBNFN5CsAvHndgoM4LcM5y5PSwMQdF0Cwg2UyrZcHFF4djHq3vkWE5jtSzkatQ8Z7nkWMEYCckJXIxMrw9Fliq0liFKrafuK0PpBqVDbdOEZCh1KWL6h/sv3+lFpR58803CYfDHHrooTRv3rzS9ls+TMG5qFMYRfjdhQbwr6PojAqeS89F9STT1R0MoDqCh4KcIh7RcBBcuIj4qOFJQD+ivBqbZqi5kiuuMDF8/RGKuvkFTVAmw2IUEfISSjMF2A24GhXDDeDOA7Q9wKC+fTSqU1GNfxXWrnXf9owzNNF/5JGVPuH48ssvU6NGDY4++mjq169fqfvOHD8gL7ATHgNuRA6DNxCXVaATG+TnvRbVMkzVNfgRte4JOhcv8EHz5+CSScRPkP2CJmM3Ex13RPm6Rg24+mqbrw0abyxE/V4q58jfwBOogJZtR/dGfH06/yzbOgT8jCT9Om3jY6mGExYvXkzz5s1LndeZOLGLi4tZt24dFBezh5dI7IsuUhHe446T/Fo1HPABsg2dcD8at09HklFhKtSJDfJznE96d40P1RFsA1GpVrfwQ5tX4YpvE74fAZyM+iP7HGPHeAafz/6+GGW+LENO71TjuanAY2zZMhQIUb/+Y6ju2nUoaPKfxNdB9FytQgF+2y+qHdnlQePGcnC4CWr/v/9TlNY2wLx580od2dsP3nLZzo9Y9HfEoj7itTwrCGcgn8LNxGfH2PzYCgX15Ud0tT1jEyLqAZHPm5ETe3Hkc/T8Jk2CDh0UuB0/PxJCU6APAI8m2cc8pKu1POEY5wDXoOjAn9EM5Grcz6BWRDpTthBAnVW1I/tfh4YN3Tuzr70W9tqrYo8nCcLhMPPmzSMYDHLUUduTfvsbuJOzCCFZn9+IVuKuhEmCq5Ev5lHiD9PO6N4ZqVT57EIrXrEMOUIOjHxehfh6PbFcaAxMnKg5kho1kvH1nyjK76Yk+5iMUks3EM/X01AV89dR9E1LohqmTqjKXG1jGtWO7H8h6tZV/Rk3uPPOSMZa5WLr1q0sXiybLD8/v9L3nznc8nUBcDAq2mdralaCDMa9iFJfI/4w7RiVPsA7JHzpFmE08foXUQ3nuSh6cSux5xYOi6+7dpXiSDxfh5GRPxylaCdiFNKvLSL+Ov+BomDeRrqktXFfeGd74etqR3ZVxqpVq3jjjTdo2LAhZ599tkdN9/jtANRu0ICasVrW6WBZkoT4l0TFZwev4o53lyCZiD+Iuvcqga+fIxojFkvH9v9HAoNJ+NItQohnYx2uE9EYPkg6Pox3zRnUaZwbOaBEjABOJBQKU1io41MpsV9Qlsn5KOPfq2xfVUYQTTxu347sygsL/ifi9NPdtatTBw49tGKPJQUKCgooKCjAsqztKLoPlIbtRhMzjNJUgpH/Y2fnEpGDqu72IiuOzJuQ3+EClApZH+iGSH0KqndCDpnJWPiIL4Q2HEVix5/bqlUq2vvUU6phVxYh5JBOnEkMA8egApSJ18ueCJgCtEBeeTcdoQ85wKuyoW2o1lr9l+KMM9xlwrRqtc1kRFatWkUwGCQvL4+GDd1rum17LMH9e/9bpG2I9HydizJJ9kWFx8oBC/gf6ioGAE2JdgWvo3nQ5qBI6Ezn91fE/P8iKowTf24LF8Knn8Izz0hSuyzCyJGdyLeFyCmS6MSG6HUfhWSkdsedMz4XSb1UTdmOKKr5+l+JM86ISjylgs8He+yxTZzYAMsiNXIaNmy4nTmyF+F+MD4u8tfma5ubEnkjDxXRPgTYu3yH50dqTN+jQLjGiK/3RXKwI4F6PlRjIdOIw1i+fgo5nON5d8YM+OwzyfQmj1fyoZoEiViLoru3UvY62/v4DNnWfXE3FK+Fwhqr+rC9mq+rMoqLi3n33XcpLi6mRo0acUVKvaK0qN4OO0iex4mv/X44/PBqJ7ZnLMa9M3pC5G+QeL5ORD4yhI9GWX3lQB6SahqBshobRpZ+iOY+BfL9lI+vY/0hD5MuYNFOoC3L2QFUiD4R87Gju7duDZVuQ126ff1eRQ6ePrgbIzRCNV6qOh9W9eNzRlXvEas2zjxTepjpnCOWpWKNNVOlClcsbEO7cePG5CYtYlJVUQd3jhE3wkz2edtV18cjXe0sDOC7oZnGZZFNTwQuQUEWABzu4hiTIUx84crYojtR/Bop2t6hQ7pHbANKIYnFdyj9yGkwU4hS3mvgTHjvodSmHRzaVQQ64+5+hqiO7vuX4qKLVCTESSbk+utlcG8DLF26FFBBse2riFhd3L1/TtkyPmQVg97Vtcj7/E25jq4UeyGJ1xWRTf8GnINseqBs5XcvqB/z/4skG0CMGaO/XbpIJjI5FlFW3uR91Mk4DQI2otFELunNOx+K3r4Xd5rc2UZX3BvQ5XSKVWP7xOWXO7cJh+HGGyv+WFLA5usddtgWNk95UB/3w79UfG0i27Dt6xKUuTcSGFOOY4vAQsHgdvbz2simTyESG2IBe5D5MLZB5G8Yec3jbWFjYHQkC3633VKZDWE0nvgr4fvXUDS7k/NpFeJhP+nPIxd1Vnexbeq77IE7540fSadUoyrCGMPnn3/OqlWrqF27NieddBK+csicljqymzZV4XOniOxQCK67LuP9/XvhxfGfjnN8RPmjCDmHv0ZZyuWED/nEv0QKVGtQ3eBjIr8RAHYsxw5svt6IOoVMoqKDyPeRWPPrBezobjsgMD8/mWtvIZJGMaQe71jIAfQncCfbJrCvG+74uhblnsSoAqh2ZJcHtWurqm6tWmVnIi1Ly1FHwT33bJvjY3s2tE8gO+kbBukjQdQJEI75rTzwEyXXVGhOZueRi3oFGwtI7KA2bYLJk/X/Pvs4be9slF9vn/M7eIs8LCTamcbShm2Av4yi3Gsiw7w2lQcf6ticqm37UMrj/hV+RNWogmjRQukLubll+dq2WM45B666qvKPLYJqvg4jAxuifJ0tjT8/Cu1LBQuJ+CUNlXZAfaKyIqCMonisWQMzZ8os6NvXaXv9kJPZxlt4M9eKEAcnSrfYjqf3EQ82RqONypzkzkXn49T/+tHEwi4O7arxj0SXLiqy6/eX5Wt7ovGGG9xnRlYAYicety8cT3bSzcNE7Wt7e9niax/pU54tVM/Fqx1vIYfK7pHPG0km7bF4MSxZokevt6NvdldUZ8bGMI/HVYJmUxOdIz7kbPgKORzao/DGyhy610WBNE79ewCNAbanzN9/FyZOnMikSZOwLIuTTz6Z2rXLN06Lc2Tvsw8MimQnpOLrRx7ZZtnp2zdOJjvvfJiofWvzU7ZkMiyc7etd8R4B7ENR0PaYaDlOx5w6IhtkG3ckRpsKFfdVv2U7stPHnoYoGyxi29oN0YxrK1TEYXjaY80+dkAR60731Y/kBCrTV1MxqHZklxd9+sCECdLAjk3R6dwZnn0WPv44XehVhcOOyN7+HCN74j6FY1uhFyKudMT8MjLsvLxqPlS4K1ZaoKyG2e+/QzAoJYRWrdxs92ngwcj/Xov2GBSV/QrRTqUjcD0wG7gwpm0XKq+yrx85zhMHEonwoWfpVap+Kn01KgyHHw5//KG09Vhe7tYNXn8dXnutUgvxJmL75evDgA5U7TS1A4AtpOZigwbsbqPLbVioOG7sRFrZdF07e6ZTJ2jUyM1270T9ByhyxovjyYec8s8APRBf7wzcgfRg+8e07UnqYsDZRi7S290VVXNLBT+6huk4vRr/eJx2mtIY+vePz5LZay/44AP43/8qtRBvIrbficdTkdOhKg8Bj0A1BlLd3xDShfI6vjLIbrXPPbm0gp09s/vuilVy3uZlwCeRzx4KSwPiu71QEYduSNJvN1TfZh6qjWBj35THnH3UQkWLewI3pGkXQEE9/6uMg6pGBli+fDlffKGC3Icccgjt2rUr9zbjHNmgLJoffoDDDovn5YMPhq++2qbZM9s3zif5RFdVgYWCWdakaVOMAs68TqCGEV/bcFY3cDYJgqjQ2ajI52gtjnr14KCDnNQlA2gy+B4UaNECZa08iWqM9YhpexCVNy5qhPj6MBS8mOpCBND44M5KOq6KRVX2Em4/2GkneP55eOIJWLFC6evNmm1TA9vGihXSgdv+IkZAM2Z7k1zH2X50t5Xo/v6IyG7AOVXe1l1Np1cV234vVOk8FicgR7SuQ0mJHNmg6D73j9pDSMe6Ed6LFixFEwxOaaN/oIIv2UQrooUuQdfpMNRhfIZS8Y9HkX7XolnbAFEt3k7ICV+dpv6vx267yWn9/POwcqVGqU22fbGLUChUWjxn++NrHxrE74dSqhN5xS4Uti342occtzuhoi3pONiPot4iqS5pud0m3aORgzgWxyIxV53vli0qygtuorFjcRcaxDTFW9GeMEoXPQE5WNLhK8SX2UQLJIViI4CuSRfkfPoERRnVAW5DA4lYvu6G0vN3zfJxVWO7Q+/e8O67UFCgtIa6dVW4dxtjy5YtFBQUANsjX9dA7+ChKEIt0b72o3exgouEJYUPafdvJb0UlZ3e3RN3UiY2f54HXBrzfR7SMPkJ+zqsXSt9bPBS89lCjoHjEF97qRsRQjbsl4CT9MI7qPh7NtGEeOd7LuLnNkg/vDG6J42Qc70A8XU4svRFfF1ZASzV8AJjDCNGjCAYDNKpUyf2cU7hdcTWrVtL+a9JrP180EFaNmzQi9SgAdSvX+79/bvRGEl3noDet0S+3pZFYC1kp/6KODZVRo5dw2x/xLVOsPn6JqQnZaMlch7/hdM5J4/Ihqgs1n3I/m2AXUesQQM44ACnYwtG1nsHuN2h7RDH4/SOhkhry0YN4DRUI+d+ZH/fi67Vk6iP9xPl634oqC9dBP32g6o8Hb/9IT8f2raF5s23mRO7qKiIjRs3AhAMBjn66KO3w0KPNtoi/bn/ED8Ll4cqz17ItokADCAifdVF2zCKgHuFaIq0j+irF/ucNETp6QejAjux5Hc+sR3ErFnRFJjOnb0cewGqynAamTmV3FRXH5/BdtMhHwmRxxZ8C6OO5AFUvOEhFCH/OKoy/AnqXO8DfkZ64NVO7GrEoGZNaNdumzqxt27dyqZNeqdKSko49thjt8NCjzZ2Re/+WcRLVdRCztT+bJu5czul8VWc095DSNvuTRRhDvF8HYsmyBHUExVHiOXr84jl16lTo8Ud23oa6y9BDo4zyMyp5MbhMZ7s9qNNUCR1rN54ENVaeAjx9b0o4vA9dL3fBQYiPv89ckxds3hM1djuUaeO+HobcuOmTZvYEjG8wuEwRx111HZY6NHG3uhdO5l4Xq6HAjQOYNvY1wZljwzH2UYNonN4EwU7QGq96RZIsHUnygZanE1s3zBpkpwgfj/YwabujnsyKpJ+ltuVEtZPLMqeDNnkawsFeTxFfBRhMbr+jyC+HogyMMcCM1Eq/p0ohX0KsrG3TcHVajjDsixOOeUUdtllF/r375+V+itr1ij61ufzsWBBouYwCm3dccdqJ3bWcBTSZz6KeL9BUzTW3Y1t49IzyGH6Ne7s68ko89Eed9lBLolog8YMDYFZMd9byB5O7RxOLy0SeyzfoAC9s/HOqW64GlR8M1uObFtu7xHUR9ooROOb/yG+vhXx8VKU0fMy4utHUQb9l/yTJKCqI7L/ISgpKeGzzz5j6tSp7Lbbbpx44okEAgF22mknDj744O2s0GMsmqMX82FgBiKETsjYnoOKalU2gqhC2Lu4J6imiMDHopnLMNLos9MJH0UzbD8ho/A+dJ5vICmPt4iddW3WTMoIu+7qdc4kgPS2T0POnZl4c2i70TCZ7uWAHGBHqB9N8o7GEK9pOxER/XgUGVONalQ9bN26lU8++YSZM2fSt29fDjvsMPLz89l5553ZuHHjdlboMRY7IoPqCWQw+ZDBVQtx33vb4JhCyLHgpVbF/7N33uFN3NkaflXcbdxxwdhgesfU0NKAdJKQHtJIr5vNZnezfe/u3u3lbnqym0ZCQnpIQjo11BBTjDGY4gIYNzDuVZY0949jjSVbsmRbLljzPo8ebGk0mjH2N2fO75zvjEWC501IIKpDFsomIwHhfxC7j/Utj98hrYVvIrr6DvZ6nZgojjWzZ3fl+I+3HP8TOO9OcoUBue64Y38n9ukOHZKAvhrnem2rCLGxGViILNxe72R7DY2+p6amhtWrV5OXl8fixYuZN28eoaGhjB071v2b+zXjEa0qQwoubEUagbR2uvU2RqRo4Ycebt+MFIAcQ2zmslr2MQ+5Hj2BJF6LkM6TL4FfIxYdbyIFM+9hr9dDhkhc7b4yzxknkIXM3+PZwEcbIUiHijsy8Z5eK0iCfxnOk2Bt9XoN0hm5md6zN9HwBuHh4dxwww1e2190dDSxsbGcPn2aVatWMXXqVC655JKzdFHvbGEm4pFfgsSFgYhe+yHJ5Hv64JgGIbGvp7mQCkQf7wC+QOJsW1dMJPAoUmx3HNGaT4GfI1ZTryMJ8A87/ARbuqupqcPNWo75JNKh8yRgpblZobJSkuAdL2J62oWVhfcS2ZaWxz046rXS5nUbbyK/K58zkNO9A/fMfIi6ujpWrVpFYWEhABUVrX4/Op2OBQsWuHrrWUQoUvlmzwikLflPvXgcRiSxeg4i4OUdb65i8121vdfGrUg1iQ17EcpFAvS1wPPYi2FMDDzwgBQndS7nZUUCZj3wGdLmcxL3QmtAbgyGudmuCbnYeIs0JJkEngXvZuSm7PdIsklDo39RWVnJW2+9pdqI2Ou10Whk7tyB0DkQgQTd9sxCArBX6L02SAOSVB2F6J6nLdk2vb6AVn9SBQmmv7Hbzl6T9iMa+RVth30lJYl9pGfe2G0JQQL9r5HrQTnuf362wVvhbrYrp9XX1RvMBTa0fO2pXucjnTT/62ZbDY3e59SpU7z11ltUVVUBUF7eGvOFhIQwffp0V289i4ihfZvx5Ygd0Of0nsWIHrgXSS53pl0+DNH6S1oeIPozG8cOQXtN+g6JxT9CNLv1s0aPhkce6apeByMJmS+Ai5Frjid6fRfuKyrzafV19Qbn0xpfe/J/bEF+ni8jcyE0ziYURWHz5s0MGjSItLS0bu0rKCiI++67j40bN7Jjxw4yMjLIzc3lyiuvZNSoUV46Yg3nxNO+ovY2pIjkO7y30OUJP8GzggkbgbRWYV9l93wjUgSRY/ecfZHdOmTx8XmkYM01tnF1DR4VTQcj15uPgKUcPmzigw+k+Wv5clfv0QP3ebDv3YgFire4kNbFZU/02orcr3yEzMUYmGjWImc5ZWVlvPzyyxQWFhIUFMTy5cu5++673b9xwPC/SDuybRCCH50f/uIJtmzxBKRFWocIgyftKPG0T8KDVPG95eR5Gxak2uQuoKrdq9HRXXGwsQKXtnw9DKk2/Cnuh0hYkCoWd3yATIH3Fgl0fr3NjFSyf4dU8Td3vLmGRi9RVFTEyy+/zOnTpxk0aBD3338/N954Y18fVi+hA15EAl8/JPzwo2fW0216Nhfx7gSp+HX3WTYbkuFOXrsXxyR2WyyI9dJDSGu2I11LihiRimWQ1tF9eBZAK0glojtW4D191CPa29mw0kLrzckRevcmTEPDNfn5+bz66qtUVVURHR3ND37wA5YsWdLXh9VL6JEOGpuFX0/qtU0zrkC6eYKQqmx38bUB0ce2lcwKkoTvyObOVvTg3JO6a3o9iNZClbmIXt/k5j22+5ZHPdj/f/DewLcApOqxK/t7EqkMz6FvfNQ1usLhw4fZuHEja9as4fDhw93en5+fHxdddBF33nkn0dHR1NTU8NZbb/Hpp5/S2NjohSPW8Bx/ZEHuWuRv2kDP6bVNl+9CPKKTkLkm7mI/o93x2WNBktQ57d7RihnpGvod7s4puMWJ1n0ieygytwXEsmUPISFSuFLr0kVVjxSI3Otu58iwdW/ZQEXQ3sLQEwzINTUTWQjtKy/1nkNLZJ/FnDhxgldeeYWKigoiIyO55557vDKJ+OxCh/gBlSA3w48gN/re/tXWt+x/B62VKw/gWRCYgHjM2QcO2UjVsDssSIu+awoK4IMP4Ngxd/syIp6u9qvlMYhty5/dvHcMUr3hjnV498L5OV3z8m5EBtCMQ37+v8G7CXYNjc5x9OhRVqxYQW1tLXFxcdxzzz1n4ZCw7mJA/N2KkODqYaTN0Nv4I+3k65FuHpBrg7skqYIkI36PtKrb2IJUkrvDgrtqkbw8eOcdmTPaMQbgZlq9BEHaR19EBvZ2xGykm8Ud6zzYxlOsiH1MVxIb5cgg4TGIN+JfEA3X0OgbMjMzefPNN2lsbCQ5OZm7776b6K5lN89iAhD7vhNInPgQ7hOzXSEUaRdfTet8hR/hmeeqguiF/XDZ1YiFiDtsHtvO43hFkaGPb74ps0Y7xlalZz/PJxXxmr65g/fZOn1GenC8X+K9xLGtG6aziQ0FSShNQe4lRiGD6PtikLNGZxgzZgxpaWlYrVbef/99597WXSA5OZkHHniAc845B51Ox549e3j++efJzc31yv41PCUUGUCYi1jpPYR0JHqbGESLXkZ0Twf8GPfaZAYqkQ68M3bPv4Rns7UswC63W9kqsm1zxJyjQxYP7RPNEwgNfQcY1kEi24pcAz2pQv8K7xVmNCK2LJ3FghT1TUGuRxPp3a7YnkdLZPcmRUXwhz/AwoVw7rnSa7xvX5d2ZbFYWL16NQ0NDQwZMoR77rnHB4Nse8KRxPL/4bl3UWewtOzX5guXjgj3sJbvO/pT2kerOf91SKvhC5347I6T5fv2yTCx77/vaCsDMtHW2YDK40iityMO436aOkglojcrNLwhtmeQG505eG4Fo+Hz5OfDL34hE9jPOw8ef1ymrHaBpqYmVq9ejclkIjU1lTvvvJNBgwZ5+YDPJmKQINJWfeftqpEmJDHgh2jIJiQ5bZu06EqvdYhf8x+RoO9eRNOe9dqRpadLciQ9vaOtDEiC4Eknr2Ugw7k6YjuSeHKHN5PF3goni5Dun4VAh3ciGhqtHDoEP/qRaPUFF8CvfgVdTNTU1NTw6aefYrFYmDBhArfffjvBwcHu3zhgSUQ6aZ5E9NDbel2NLLzpEb1e0/JZtpksrmJgHeLX/Gukuu4JJFZ3p4/2WHAVs+p0sH075OTA7g7zLHrESstZccpaZMZNR6xGugjd0b7Tp+t4q3M1H1lYvRqt+7F/o9PpWLJkCWPGjMFsNvP2229TWlrqlX37+flxySWXsHz5cqKioqiurmblypVs2LABxdnUvYwMePBByYUsXAj/+79QXNx+O40uMByxXX0SmeXi7aG9p5GOEx2in28j+hXn5n16xCLvp0g+5S+I9v67E5/dhLvksPuKbD2yeNh+DkNo6BfAMRobwexybe4FRNfd4U299pb3fDZi8XgnA6WbRktk9xbPPAPJyfD738OGDbBlC/z3vzB1Ktx2G5g69wtvMBi44YYbmDRpEsuXLyckJKRnjvusJKuH9nsHIl6jEL/X1bS2wnQkCFZaqxU+RloeP+3kZw/F1Z/rrFny76FDUO206NgfGU6ZjlT02XMIsUjxpJriOSSJ0hEj8V7rYyreuwBbkGR8XwzD0DirUBT4n/+BESPgH/+ATZtg82bR8DFj4LHHwNq5ACAgIIDrr7+e6dOnc8stt2gDcRzIpGequZYiFcdDEJ/rNbRWWbv6/1NoHZiiAK8i2vl5Jz/b9aKyTa/37XM1jCYYWZTdjkxst2cvUt3nyQLfb5DKuY4YjfeSUlO9tB9ore7+sRf3qTEgsVjE0HjcOHj2WdHqTZvgb3+D4cOleMRZIqUDwsLCuOaaa5g7dy7XXXcdRqM2TqiVDHpGrxcj1k3RyKDur5D5LeBa75SWY7Eimv1PZIF0cyc/2/X908yWUQ+7d8uvWnsGIUn+DThWYyuIht/l4TE8gCzidcQYvBcTe2sWh9Ly+JLenVek0RX0ej3XXXcdycnJNDY2snLlSoc5Ld0lJSWFBx54gFktgc7mzZv55JNPsNj+eJqaYNkySEuDl1+WXMiGDfC730mO5PnnvXYsGuDdYd42rEihwadIEeEyJNZ2tyhiy4VYkUWvXyKDHDtbINSxBnZckR2D2JN8guNingKsJzDwRxhadl/X4UidmxBrqo4YhffSrF2aPOwE27X0dQbKHDEtkd0brFgBjz4qUZB9AsS23LNqFdzn3vfSarVSUlKifp+QkMC1116Ln19PeEKfzdhaXbxNNeLb15GPk87NZ1sQs/72nteuUZCpus6TL4MHQ0qK/Grt2dP21UBk5a1tpbqp5flxSAWip8eRhgx5cXVh9OYq3x+QZJS3biIttE5D1tBwwT/+0Zr8sL9zten1U09JpbYbzGYzp+z8I4YPH86SJUswGLxdHXG201M/jxIkOdJRlY+7EMiKtGp2tnLZdffKsGEyrNdkgszMtq+GIlr/D2RgmI06ZDDONGTx0RMsyEDk3+E6EXQv3ktK/QvxOfTm4uNrSCuqhoYLnniiNflhX0JlsbQuSv7f/7ndjclkoqys9cZ0/PjxXHTRReg6P4hkgNNTep2HDEfsKKnmTq8VxAKwM+jpyKpp/HgIDRVrkfa2whGI1v8RxyR2OWLFN4/WZLw7GpCClY66f+7He0mp55BEi7d+v63AM0jFpEZ/xs/Pj5tvvpm4uDhqa2t58803aW72XjW9v78/l112GUuWLEGv15ORkcHbb79NU1MT3HUXvPuubGiv11arfP/ww+Llo+EleirNtxuJSTvK9nry2Z2pxgbp4HyQjnTLdUX2YCR5/isck9iFSGy9CJ2uEltdqGt7ERCNT0Sso1zhOm/TOXSIXrcdyNzdff6TgWAxoiWye5rmZvjZzzrexmqF11+H7PbTTRVF4dixY2zevJnXXnuNl19+mZMnPQ2MfJV59N3AKFt1gjuseB5AJiOrlv91+R5b1ciuXeA4Y6MR8bGai+MNwt141srojOcQX3JnDEOC7e4Gx9ciq7yP493/Sx2SzNbQcEJNjVSGuOP//g/sFhVtWK1WcnNz2bRpE6+88gqvvvoqp0+f9v5xDijm03ehiKdBZmcq6GciwfJfnL6q07Xq9c6dEiK0UosE9guRxIbtGK+h81XhNn6PJJmdMR1ZLOzuz/9RJHHzM7yr101IZaaGhhMKC+HJJ91XXP/P/zgtrzKbzRw5coT169fz3//+l9dff52qqs4UGfgi59EzyWxP42ZP8He/icoSZGi888VHgwGmTZOvd+xoW5VdiejrUloXBE1IQn5bJ47BhhUpFHEVm1+M3N909+f/N8Tq8Od4N5FRTtfOW6O3CQoK4tZbbyUqKop58+b1SEHc9OnTuemmm/Dz8yMnJ4fX//xnmletct/R+MQTHfk6aHSKBfRMfO0tvTbTuXyBrTDvNpdb2Cqym5vb/hqdQnT+LlqPvxqJXVs7+UNbxup0nMgGqSq/FfjCxes3AuPpfjHea0hnqTc7FG2zDg54cZ99g5bI7mm++MKTqU5gNEqbTQtWq5WsrCxeeOEFVqxYwYYNGygoKEBRFGrcTx3xcSb29QF4QC2eB5AvIEJ/L658T8eNg0GDRHhXrGgrwBakdcfmB5UBvEnXVwoV5ELSPpEnNgHDaW0ztw+4PZWbacD7yDnPoTWB7+pi0JkKfAOdq4bX8CneeaftSpBzbIuPLVgsFvbs2cOzzz7LypUr2bRpE8XFxSiKQq37aMjHmUD/92rzNNjW0erP+nNcBZ5TpkBgIJSVSfGR46+czVbjty3fr0Na7ruTIP4dcs2xR2n5nOmIxQg46rWnmrqYVi/vK2hN4LtKtnQ27NT0WsMFr70mK0PuqKuD995Tv21ubmbnzp08/fTTrFq1ii1btlBWVobFYqGu435iDcbQd4UinhKAZzpjRPRKhyz23Yoz3Zs+XW7RCgqkmNRx8VFBEhm2ysL3kIFk3fkZ/Yz2nTIKMnR4MVK5DV3T65sRL3GQpJAtga/pta8RFhbGQw89xDTbSk0PMHr0aJYvXw5A0VdfUelJR2JxMXz9dY8dk2+RSv+PryPwbHEuGImrjcAKZGGvve7Zr8k4bzR4HRkGD1Lol4u93k6ZAhdeKJ2TnvEz2udzrMC3SNW6bUddSbn+GLG1BdFtWwLf1c+rs4ucZ79ea8ZvPc3hw7Kk79xcrRWzWa3Irqio4K233lLbHAMCAhg1ahRJSUmMGjXKx4c6OsOWZDAgK2TLEMHoz+JtRaqXC+g44P01cJnd9+/i7NwMBrjlFli5UgpFDx+W4LsV20CGfyK+SEa611KuIKuEtsrsI8ByYEfL8dkE24BYmsQD5yBVhQUuPluPtA2twvHidA8wCUmWfNDyXiNi82KbHJyODDHwZGpyvNuz0/BRDh+WO1Z3bZZ6vZjSA6Wlpbz99ttUVlYCEBwcrOr16NGjCQ8P7+GDPtsw06oRNcgCnY7+3eLWhGhNGR1rzLPI4hst273vdKvAQLGJXLVK5tEdOwZjx9pvYUV0+vfIQmZ39boeuXbc3fL9XiSJsQ/RaJveGpHKjwREr99Gquxc6XUUckNhr9c/B2Yjev1Zy7n4A5fSapeyGfEr9+Qarem1hgs8Hb7r56fq9fHjx3n//ffVBcawsDBGjhxJUlISY8aMIdRWjqXRQjOiEXrEw9lNh2m/oA4IQ64vHWnMO4i9HkgHzBqcXYfCw+GGG2QtJCcHiorEzq8VBXgaSQo/T/fvP0qQTpQrWr7/FrgPibPt9dof0UebXr+CLFg6u6cwIAlwe+sVW3v5BcgC7LqW54OR+46wlnP7CueFK87Q9Ppswt7/v7a2lg8//JDLLruM2NhYr32GTVP1ZWVEusuFgNzQHj4Ml1/utWPwHZqROE6HVNt21rqjL6hDjtmK6/sAPeLDb1vEO4PMJWi/vf3IOX+nzTl65OdyO9Jh7sjs2Z4dtaAg1dzpyOw0kOvIw0iuwz6xHESrXs9G7heacX6t0CNFmX9s89zrwOXI9WZ7y/PhyPDK4Jbj+QipNPeEs1+vtUR2T+Pv79mgGZ0OAgIACA8Px2q1EhQUxDnnnMPs2bO14WDtqEduoJ9FEpg6pAp4DuJ31N/RIYHiBsTz1D6RY/PZ/g+OwwlrEV8q58TFif1Y+yS2DTMSqO6n+76oemR4Ishq5hxaV/astAqzCfEIvAf4H6Tl/nIkkWJLztiC/mgk8THGyefNpnUycg0SYNu3wm1FWqjc4Qdc58F2Gj6Jn5/ng8FaIqTIyEhMJhOhoaHMnTuXGTNm4O88evJhqpDKh+eAfORvfg7yt+5pwNWX6JDE71uInrVNvPshieKlds8dA0643GNyMixfDidPtk1i26hBAlVvDMM00jpQZy9i52LzMrW/sWxCjvlnwEPAI0gCOgcJyC12/w5FKhETnXzeBS0PE3LdGoRjuPkhnulwBFJ1o6HhBD8/zyqyFUXV65iYGJqamoiIiGD+/PlMnTpVG+bYjtPAiy2PIkSvLwRi6ZlBj97GilSyPYUsxLW9pgchRRUX2D23j46q00aPhttuk4HqjklsGyeRxFEW3S+iMSDx9RXAJqQK27ZPe71uRK4zf0WGtt+O3FfY/s+stOr1GESvI9p8lq7lc65o2V8Dotf2CZgXkMSMu9hoGBKra5yNfP311+Tn5/Paa69x2223kZCQ4P5NHmCb7RUTFORZ0slqdSyr1XBDIRJbv4QUWxgRHVCQv+P+rtkmpNv8f5HcTlv9DEdmi6XZPbcNSQK3xzZE3WgE5w0AVqQzvQD3A9E95TCSyP4Ix9jWXq8bkBldLwKLkGrtq5FrlE2vbXmRWcgwzba5Px1iWXJjy/4aaa/Xw5AZYx1dh/TADGSOztmNFr31NOef36EflBm5rcxUFO5YsAAjMlX4xhtvJCIigoCW5LaGPWcQD1H7SVkKEoju7ZMj6jwKknzdAXyNXIDykGFfVyNVikPbvMeEO6KiYM6c1u8bG6G8HBLVXEMdjgng7mBL1v0A8QrsSDR/h0z5HYMk49cjSelCJLC+BhF/d7/vfkgVYFvmIRUp6biucNcj/t3O3q+hAVxwAfz1ry5fNiG/YblmM7eddx46ZLDNrbfeSmxsrDZ41ykFiAfdMVo1wgp8x9njp6kgSeX9iMf+a8h5RQDXI5XOg9u8x71ex8fLw0ZtrUxaH6zuylt6rdCq13cjAXBHSYnHED0eiSy0foF0ypxC2iRvBK7EfQjpj3O9vbJl38fo+CbrJ3TOn1zDpzj/fHj1VZcvNyDmOafMZm44/3wAQkJCWL58OfHx8drgXaccQvT6NI56vZH+byliz25kAc5WAFGKFEvcgrRqR7bZ3v2QwrYJ7PJyac6KiLA9Y6ss7C42vbYireQWnOu1giQ27kES0VOQheKPkW6gcqTi7lZkQdBda3sgzvX2VqQ7qIyOfwd+6cFnaPRXLrvsMsrLyyksLGTFihXccsstJCcnd3u/paWlAMTPmCGd5+48shVFtF3DA9KRhS77TgwzErP19wS2PUeQeHAFrZ2A8Uin9zIkN2KP6/jalsh2nz5rxFk3qMUi2t7QIAUnnuGPRBx3tttfK7bf++VIQnsBsgD6HvAJspCa3PL6ubi3iwpqebTlPsQqqw7XeRkrotdnP9oVp6eZOlUmO7UJmJuR2/inaDFbMBjItCujjYuL05LYLrkBqXpoO1ixP1uJOCMTqXDJQpLZeS3P/YH2SWyQVckIj/fe3Axvvy02kjk5tmeH4plAusOMVLMcQNp93P3sjcgqJC2fvQi5uViPVOfdgvskdkfYhjiOobWi3Ybtb+8KpI1SQ8MFixbBsGFyd2pHE+JO+SSwFsgLCuLIpEnq64mJiVoS2ylWpAPjBO014mxKioD8BsQjN/ObEL3eg9grtU1ig1h0eF6Z39go1lCvvSZerMJQRGe9odfnI3q7F/eVdRbAliA0IAPR3m55/7vIwmN3EjZ+iO93Iu3DUJte34XrocIaGsD110NkZLuq7HrkN/VJ5C/1YGQkJ0ePVl8fMmSIlsR2SiOSFHFmoXS26fUniH76IQUjeUjS5zHaJ7FBvGQ919maGnjjDXjlFfsxSEnIMMzuYkX0+k0k0dGRXitI9847Ld/7I/dI7yN/BW8hXTXdud0PQyKfSCf7sV0HfoZjB6nG2UZQUBC33347KSkpNDU1sXLlSvLyul+xaktkx914o5TJdoTBAHPngl18reGKcmSBypmd0NmUxAaxRRoNpCAzBvKQ4pH7aJ/EBimEcI7NWqTjFJqRVosPR06dgueek3kInqFHuhz/jfsOUytSwPdly/dByMLqR4hev4ZcQ7oT8ye07D+Y9p7Ztr+/fyIV4Wc/WiK7N3jtNQgOVpPZjUiT9VdI+BEOXPbb3zJ53ry+O8azhr2IHcfZFlS7wox4IN2K62SwLYg1IKLu2Q2Yokh3li2hnZUVjSSQ78V9IsMTomkdQuAOM1LR05PEAd8DzyAT2fWIaM9Fki8f0blp9ho+h14Pb70lfzgtyewaZAlmPZIgidbpuPrvf2fk+PF9eKBnC2vxjpVRf6EJ+CkyONeVhtqeD0MGa3mW8LW5HzQ0SIIkN3ck0kr5UAef1RmiafXIdocVSdz3JMORLqq/0ZpE8kO6rdYgUZIWomp0QGCg/LHo9apen0FcgLcATTodcUYj1z/7LIlDhvTlkZ4lvI8kTgdKfF2LxLt/6mAbm7YOReaueL7A4e8vCe3XXtNx8uScln080sVjtUeHJCF+5OH2RqTDsyeZhBSu/A5ZpAUpPrkCiY7+SvcXXDX6moCAAG699VZGjhxJc3Mzb731FocPH3b/xg6wWYvEjx4NL70kTzqzhDIYIDQUXn65W5/nO7yGVPEOFL0uRzoc/9vBNja9nop0oLSPEW0V2a4dHo3IYl8o0lHuSGTLOmddnaPftmts9i1/dLdhC370vF7PAw4iAyJthTZByHnvwNUg+rMR7S6hN5gwAXbsgLlzaUbqmkqBEGDJkCE8+uGHzPrtbzWfPo94i4HpiPMOknD9O9LSWYYE38mISAYiliPTkaUP93+6/v5w880wcaK0ynz4YTO7dt2N9AOMc/d2D7iGjjy729MbyawQxMvvIHKeJmSw2A10fpqvhk8ydy58+y1MnUojUhNVgfRCXJuaysNr1zL1kUe0ij6PeJOBqdfPIJ6xzyA3EoXIYN54RJuDkXbIS5DFM/c3+EFB4sE6YoQsPq5adYYDBx5BrDycVXx3loVIO6OnuBl46hUiEPsQ29T4JqQ76Qq0pIiGR1xxBXz1FYwZQy2iOLXIX81N48fzwLZtTFi2DL1eu91xzxsMzNtC29D0l5F26zzkRj4aOd8wZJHvVjzVnbAwuPNOSEqChgaFN97IITf3Z8BknLd7dwYFaTsv93B7K70TXw8GfkPrYkcjsBq5FmoMFPz8/LjpppsYN24cFouFdevWYfFkSKMTTCYT5eXyexwXFwe33w4fftjq02Of0J43D777DsZ54/7UF1jB2deJ7gn3I/mFt5CY8CBS0GHLfUQAj+LKt9+9tYgZsdB6FonRHTU/MFAeAJWVnhxvM9JB0+DJxnbH0NMMBf6MZBwtSCnWW4gN68BBpyieTrY6O6iuriY8PJyqqioGDRrU14fTjq/+8x++++wzAvV67rz9duKuucazYTUaLdyGLAUMlBXItuhoTVy3HXpgGwJwB2LHUevRHq1W+OIL2LULdDodd9yhMGzYeOTi0FvoEY/st3rxM88++rt+eZv+fr4f/v3v7N+8mVB/f+6+/34iL7pI0+tOsRgZMDuQCUB0uxnH65JNrx9EbDrce7CCLDp+9BEcOAAGg4777tMTF5eMeJ92l/Z+gM7RIy34//LCZw5c+rt+eZt+fb6Kwhu/+Q15e/cSFRLC3Y89RsjcuX19VGcZE5Gq24FMEKLLVtrrtQWp0HsOT+8xTCZpQc/NhYAAHQ8+6E9ERCRQ4t3D7hAd8BfE3kPDGf1au3qI7p6z1Wpl3bp1zJo1i4hWI/hOcfz4cV577TVCQ0P5yU9+Yr9z2LRJPLP9/GDBAi2B3WlikaK3gUwokiDW4Zj8NbY89zBi0tsa1+7ZA59+KgN6ly3raN+6lv3raGsJ8p//QHGxvN/OlcyLvIr4aWs4ozPaNRBLpfoVZrOZ8vJyBrdMbzr3ttso9vfnggsuIG7YsL49uLOSCAZ2pZaCiLWzJLVNxF9HrDMOebRHvR4uv1wSJHv3Krz7LixbdpChzmy4ewwrktDR0Oi/mEwmqquriYmJAWDR/fdTERXFFVdcQaT9VD4ND7F5ag7EqhEbrhLUNr1+AamMKHCxnSMGA1x7LZjNcPiwwptvWrjttny7AZDdwdO6BStiY6Wh0X9pbGykvr6eqKgo0Om47LHHWL16Nddeey0hUdpQ584TieeLXWcrrqrmbHr9DFL5V+nR3mydj6+/DgUFCitXNnHbbSV0Me/XRXRoSRENb6PX67nooou69N68vDzWr19PUVER0FKN7bhzuPBCeWh0kQgGfiLbVcGeGdG9Z5B7jNaFx+qWnLT7MXNKy/7bX+8GDZJEdlVVJw/XIwKRgeka3qBHe8jKy8u55ZZbGDRoEBEREdx9993U1nZcRXr++eej0+kcHg888EBPHqbXsVqt5OTk8PHHH/OPf/yDlStXYm2Z0hscHMzy5csZpiWxu8h1DBy/1e7Queo8nQ4uuUTaIPV6aYvsXcYink0a/RVf1Wuz2czhw4f54IMP+Mc//sH777+vvhYeHs7dd99NvJbE7iLXMbCT2J6gB0653crhHXq48kqIjZXZSKHOZt30KAuQwbka/RFf1WqA5uZmDhw4wLvvvss///lPPvvsM/W1mJgY7rnnHklsa3QB7eZaOiLrOvUOoxGuuQYiIqS4NDi4Rw6sA67DO/ZTGj3B2a7XZ86c4dtvv6W4uNjttoqisHPnTlauXElhYSGKohAbG8v8+fN74Uh9jZvxbctMWwK6NYktBXvydWpqZ/bhSH29/NszWv4wYj+o4Q16tCL7lltuobi4mLVr19Lc3Mydd97Jfffdx6pVqzp837333ssf/vAH9fvg3o8KukR9fT3ffvstWVlZ1NW1BkIBAQFUVVUR2eIgr9Na07vBucjQkWz6NqEdhoyB6yuakAuY5xYrAQFwxx3i+dS71SIgVeTa731/xtf0urq6mk2bNnHw4EEaGxvV500mEw0NDQQFic+lptfd4WpkMFQJfWsHFYU4nfdFpaGVruh1SAjcfbcE1L37J6UDVvbmB2p0El/TamhNphw6dAiT3QSmuro6LBaLOrNA0+vucDviJ11D3y5AxiD+0H1xDLb7is51EkVGwj33iGOC6yFjPYGRjoejafQ1Z7teHzp0iI0bN1JQUMCtt97qcjuLxcJXX31Feno6AFOmTGHhwoU+Y+XS+9yHzNWy0rddNNFIB0tfxPiOn5mdLVXUISEwaVLX93rmjPwbHd2NQ3NKCGIDpeEteiyRnZ2drQrajBkzAHjmmWe47LLL+Oc//0liYqLL9wYHB591FXD5+fl8+OGH6iprcHAwEyZMYOLEiSQnJ2vBtdfQAZ8g1b2n6LvkyHvAt8A/6LuLSOfP3c9PqvxsHDoEmZlw9dU9FXwbgDnArJ7YuYaX8DW9PnToEB9//LGawA4LC2PixIlMnDiRxMRETa+9hj/wBTIIpYa+W3z8CngFueHX0TcJks7rtf3QGRDvv5MnxSqqZ2aNGpDFh5Se2LmGF/A1rQbIyMjg888/p7lZBpBGREQwadIkJk6cyODBgzW99hqDgDXAxYjnf1/otR7YBPwv8C6dXQD0Hp2/RrTtnNmyBRobYdGinhqtoUcGo4X3xM41vMBA0OucnBwARo0a5XKbhoYG3n//ffLy8tDpdCxatIi5c+dq2tyjJAHvI4MRoW/02h/Yjgxf/Jq+02sdiqKwY4d8N2uWdMp0BUWBiy6SZLZ3E9l64AnAz5s79Xl6LJG9Y8cOIiIiVOEGWLRoEXq9np07d7J06VKX733rrbd48803iY+PZ8mSJfzmN79xuRLZ1NREU1OrR2V1dbXT7XoaPz8/6uvriY2N5aKLLmLEiBG9MiXdYrHQ2NhIY2MjDQ0NamWK7WE0Gp1+fXZPcB8O7EGSyC/T1qS/5wlFAv1LgB8Cv0SmB/d2Mvs8YAtdTco0NcEnn0BDA1RUyFAD71qOGJFhFG96c6caPYCv6bXBYKCxsZEhQ4awePFikpOTe02vGxoaVM2212tXWn326/VkRK//juhkZyZ7e4OhwMyWxy+AHyPDcnubGcBeuhrk19TI0F6zGcrL4cYboaVpwEsYgFTgRW/uVMPL9JZWQ//RaxBLkeHDh7Nw4UKGDBnSKwkSs9nsoNdWq9WtVhuNxrM8ebMA2I3o9SrA1PHmXicNmAC8A/wBeARY28vHADAeOEJXk0OnT8OGDZIUOXNGrEe8WyxiQH5Wf/XmTjW8zNmu101NTRw/fhxwncg+c+YMq1at4syZM/j7+3PttdcyZoxmTdY7LAG+A/4GfETvJ5EXA6ORYpFM4AFgRy8fgw5IoaCggMJCC0Yj2P25dX5vOpg61VvHZkMPXAj83Ns79nl6LJFdUlKiDjhUP8xoJCoqipIS19Ocly1bRkpKComJiWRmZvKzn/2Mw4cP89FHHznd/i9/+Qu///3vvXrsnlJfX69eVJKSktRj9/Pr/mqLxWKhrKyM4uJiTp06RX19vRpQ2wfW9i2WnUGv1xMaGsqgQYMcHmFhYQ5fG7u6pNXjxAP/Aq5EksquBm55G1sFhO1GJRr4vJc+255w4GPkovEuXRnQExAgQ2reeUeGGrz0knyfkOCN4wsAbkGqalxXHGj0D3xNr0eNGsWyZcsYMWKE2pLeHcxmM6dPn6a4uJjTp0876LW9ZtsqCjuLwWBwqtf2Wh0WFuaVc+kZhgHPI0Hv9fResK1HEiE2ooAv6f2BZilIMuYGupqUCQuT5PUHH8CxY/Dyy7L46J2KkRDgbuB/kJ+RRn+lt7Qa+o9eT5kyhcDAQMaMGeOVJHFzczOnTp1S9dpZbN3Q0IDZ3LUkptFoVDXZlWaHhob24wXKccBrSOfjvb382T+w+zoU2NDLn69DFh0/By4H0ru0l9hYSV5//LF0Pr72msTX3nFZiEBi/18j2q3RXznb9TovLw+r1UpUVJTT2QN5eXm89957NDY2Eh4ezrJly9oPdtToYaYjXeJ/RYo1epOH7b7W0ftJbANwGWbzv1m7dgFQzJQpYi3SfxiM3If8DKlg1/Amnc5S/vznP+dvf/tbh9tkZ2d3+YDuu+8+9etJkyaRkJDAwoULyc3NZcSIEe22/8UvfsHjjz+ufl9dXc3QoUO7/PmeYLVa2bx5M9u3b+eee+5RL1IjR47s0v6am5spLS2luLiYkpISNXndmSA6ICCAoKAgDAYDFovF4WE2m7FYHBMHVquV6upqtyu2ISEhREVFkZiYSEJCAomJicTExPSTALwZuInOVUx0lMBwl9zQIwb99omRT+nsIC/vMLbleFYh1StPAWc6vZfkZLj3Xli1SipIXn0Vrr0Wxo7tzrG9hrSnR3RnJxpeQNNrSTKvX7+ejIwMHnjgAcLDpQ139OjRXdpfU1OTqtc2zT59+nQ7jXWFTqcjICCAwMDAdnpt0+q2+7JYLFRVVVHVwQhtnU5HSEgI0dHRJCYmqpodHR3dTyoEqxEPVm/ZerjTawMQiSRobbyJVIT3dvfMGGRS+efAr5Cq587PWBg1Cu66S/T6zBlJZt94I3R9drQOqeJZhCSNNPqK/qbV0Dd63dTUxFdffUVOTg4PPfQQQUFB6HQ6xnYxKGlsbHSIrUtKSigrK1MHsLtDp9MRGBhIYGAger3eqVa31Wuz2UxFRQUVFRUd7jc0NJSYmBhVrxMTE4mIiOgnel0IPNSF93V1kdCItMrfYPfcS13cV3dQgJHIteNb4HFkxkvnO4kmTZJ5NPbFIsuWdadYJAD4DJiPXE80+gpf0eujR48Czqux09PT+fLLL7FarQwdOpQbb7yR0N6fTK0BQBbSHd5ZOjcLoBUjMBEpJLTxQsvzvWlxYsFqTeHDD9MpKLiNgIBvmDfvAJIf6honT4LJBPHx3Z1PE4HE/DPR7ER6jk4nsn/84x+zfPnyDrdJTU0lPj6eU6ccE3xms5ny8vJOeT7Nnj0bEI8mZ+IdEBBAQECAx/vrLmfOnOGjjz6isLAQgAMHDrRbbXWHyWTi4MGD5OXlUVxcTFlZGYrSPlgLCAggPj6e+Ph4wsLCCAoKIjAwUP3X9nVAQIDbxLKiKFitVjXobm5upqamRk1m239te5jNZurq6qirq6OgoEDdl5+fHwkJCWpiOzExkejo6D5Ibn+CDBHrDAoi9s8jwwlsIq4HrgWuQCpQLDhWDeqRyocvkOpCG98iAtV10ewauxDv6YnISmzXf/aRkTJU7P33ITcX3n0XFi+GOXO64utnAI6jJbH7B76u1yUlJXz00UfquR06dEg9Rk9pbGwkKyuL/Px8SkpKKC8vd6rXQUFBql6Hhoa202nb153Ra1uypK1eO9Nti8VCbW0ttbW1aisoyM+8rV5HRUX1QbLkTaCOziUmApAKvReBWlr12gjchgSIjyDJE5te284rCliHdM3Y+Jber8am5TguRIYEd69NPi5OFh/feUcC7jfegCVLIC2tq3ssRkti9z39Tauh9/X6xIkTrF69moqKCnQ6HTk5OUzq5MSm+vp6MjMzOX78OCUlJS6TySEhIcTHxxMXF0doaKjT2Nqm1+60UlEUh6S2yWRyqtf2um21WqmpqaGmpob8/Hx1X0FBQQ5anZCQ0EfJ7ZfofOdMFFJc8irQSKteByKdjPFIxaB9ssN2XkOA9YC9X9IG+maewTtAFVIckk53rhdDh8oQSO8UizQhC8JaEruv8QW9VhTFqT+21Wrlq6++4vvvvwekY2bJkiX9uIPbF3geuf/2NImsQ6zkFiCxuZlWvQ5FbFObgH/iqNe2bcYg3Y329zLrO/H53kFR4MsvnyU7exMGQwk333yGqKjuxffbtsnQyEsugXPO6c6eKpGflZbE7kk6rTqxsbHE2k+Lc8GcOXOorKxk9+7dTJ8+HYANGzZgtVo7lUjIyMgAIME7fgddoqmpiSNHjpCTk8PBgwdpbm4mMDCQyy+/vMMgW1EU6urqOH36NGVlZZw+fZrTp09TVFTk4GMFEBoaSnx8vJpwiI+PJzIy0mvBq06nUz38QILlQYMGMWTIEJfH3tDQQHV1tXrMRUVFFBcXYzKZOHHiBCdOnFC39/f3Jzo6mqioKKKjox0eQd418rTjCzq3+qcHlgN/An6LrJQVIAnqS5FAGsR7+j9ItXMl4vO8HLgHaNsy1VOibbs4uAriLcDBlkdH23lGYCDccgt8+SWkp8vU36796umRGwB31AH5LduPQBJWGt7GF/W6vr5e1evs7GwsFguhoaFceeWVHVZhK4pCTU2Ng1bbtK+tJcigQYNUnbb9Gx4e3mN6DaiV5K6Ovb6+nqqqKrVl3qbXTU1NHDt2jGPHjqnbBwQEOGi0vW4HBvbUTXJnLZh0SDXcn4HfIUPISpBFsssRXQZYiATxHyDJ7iGIVi9HqursMdMzSWx3i5lWvNlyGRoKd9whMw6yssQ/u2sY8Eyvq5EFSj+kWlG7YfU2vqjVADU1NRw5coSjR49y+PBhFEUhIiKCpUuXkpLieuiooihUVVU56HVZWRmFhYXtKqQjIiLa6XVYWJhX9dpoNKqJnODgYCIiIjo89rq6OqqqqigtLVW1uqSkhIaGBvLy8sjLy1O3DwoKchpfR0VF9eBCwyd0Pq78LZIA+RNSOVwGxCA+rrbr16WIXn+KJLuHIUnuW2m/oNZTBSLBQH0HryvI/YV3sBWLfPAB5ORAXV139lbpwTblwEkk4T2S7hS6aDjHF/S6urqapqYm/Pz8GDZsGFVVVXz//fccOnSIM2ekA3jRokXMmzevnZaWl5dz4sQJTCYTzc3N6sP2/axZs9RBl0ePHmXr1q2EhIQQGhra7t+ezSMMFD6mc/kIBbH+vBmZh/A5oi0JSEGfzZvjWuBZpACjGRiFdOrcSPsFtZ6apxCBK9377jvJWeh0WVxzTXe6E1s5fVr+jYnp/r480+vTQBHyMx9B6+KuhifoFGelZV7i0ksvpbS0lBdffJHm5mbuvPNOZsyYwapVqwAoLCxk4cKFvPHGG8yaNYvc3FxWrVrFZZddRnR0NJmZmfzoRz8iKSmJb7/91qPPrK6uJjw8nKqqKgZ5x4yMl19+mZMnT6rfDx8+nKuvvtohsaAoCmVlZeTl5VFaWqoG1Q0NztvRoqKimDRpEklJSWpQfTZgtVopLy9XE9tFRUWUlJR06NVtC8LtH3FxcV5oeb8JmdjrabB9FeIn7c3A/2ngMXq/wk+or4dduySxERcHgwdDdyzaFUX8/MaMga4V2BuQxNMTLl4/2fL6ClpbNSOA+5AhCLbEkxWxbLEiiwf91fvXu/SEfnnKQNBrRVF4+umnHarwxo4dy5IlSwixM01TFIXS0lLy8vI4deqUmgxpu8BoY/DgwUycOJEhQ4YQHx/vsK/+jNVqVb277fW6I9sqmz1JW73u/sLquchwWk+5C/gv3v3b/zXiI9gTHt3uWzSrq2HvXggPF72Oje36ZHUQvc7OhnHjurrwCGIFtdzFa0cRvbYf+jYYuZH5Ca03OxZEr3Utr/tG4qSv9LovtBq8f75ms5l//etfDnHy1KlTufTSSx0StIqiUFRURH5+vkPS2lXcmZiYyIQJE0hMTCQ+Pv6sSYJYLBZOnTqlJraLioooLS3t0LYqLCysXZI7ISGBQYMGdVOvRyN//57yM+AvePcm/D5En3qiYMSAu+tAeTlkZkJUlOh1TAx0ZwyF1QqHD4ted50vkMUAZ+xD9PpDWs9tKNLV9ENa/VmbEb32QxaEB37ixNdia+jaOdfW1lJTU6MmzC0WCwcPHuTIkSMcOHBAtWTy8/PjqquuYvDgwZw6dYrS0lKmTJlCTEv2b9euXXz22WcuP+e6665j4sSJgFiwvPvuuy63veqqq0hraTmrqqpi69atjB49muHDh2tV4CqReJY0tfFPZPC5N7kS0aeeiK/b63V5OTz/vAxA7371tJCdLV3pej08/rjkVrrHLsTD3Bk7EL3+nNYc0igkp/QArXG0CUl2+yMLw5pe29OjCvDWW2/xyCOPsHDhQvR6Pddeey1PP/20+npzczOHDx+mvl5Wxv39/Vm3bh1PPvkkdXV1DB06lGuvvZZf//rXPXmY7aiuriY4OFgVyBkzZtDQ0MC4ceMYOXIkKSkp6HQ6TCYT+fn55OTkcPToUSorK9vtS6fTERkZSUxMjLqCO3jwYBISElwGmbZJ6fbJ7YKCAqqrq1EURX0A6teTJk1Sq/dKS0upq6tT24z8/f3Vf7tbgaLX64mJiSEmJobJkycDkiw5c+YM5eXllJeXc+bMGfVRXV1NQ0MDJ0+edFgMAElwJyUlMXToUJKSkhgyZEgnq0tS8Nzf6VHg33TvBvsUkoA9gIjqfOAa4Kf0/mR3aGiQtnL7eSE6nQz/WrIEbMVMVqs878l/vU7X3SDbiqzwOuMw8jMrx/H/rBK5qH4IfIMsTjyLJL1BhPtBJBD3ymQzDSecrXpdUVGhtl7rdDpmzJhBZmYmY8eOZeTIkSQlJaHT6WhsbCQvL4+jR4+Sk5NDjZMyVr1eT1RUlINex8XFMXjwYJfa2dzcTFNTk4M3YH5+PnUtZVdt9Vqn06naCagdOjadtj38/Py8otdxcXHExcUxtWUMt22QcEVFhYNWnzlzhtraWtVOyr7jBiTBbdProUOHkpiY2MnBxqlI4OZJUuKPiAVUd87/JJIEOYosXl6IVP39uRv77Aj3SewVKyT4tqHXS3Lk2mslUQKi154uIup0MH58145WCASWungtHal2r8Px3E4Bf0AqNlcjP+PnkUAbpCL+YcTy5exYoD/bOFu1GqRSzzY0zGg0kpaWxvHjxxkzZgyjRo1SEyj19fXk5uZy9OhRcnNzVT21x2AwEBUVpWp1TEwMCQkJajKlLYqiqJWB9ouROTk5NDY2qtvY67W/vz/j7IKigoICzGazg1b7+/t7Ra8NBoPalWnDNki4oqKiXXxdV1en2pPYd9yAJLhtWp2UlERCQkInkz7DgTw8S0q8jOMsgq6Qi8TXxxF7kUuRxcyXurlfV3R8XmfOyIDG2trW5wwGWXy8+WZZjITO6bVe3934OgbRZGesQyopm3HU6wJkkeErxPLleaTj1NaJk4okuh9AsyzpGc4GvT59+jQ7duwgMzOT6Oho7r//fnJzc9m+fbtqfWSxWDAajWpiafXq1Q6LbLZcB8hiYmpqKoGBgfj5+akaaXvYD4RMTk7muuuuU2NPWxxq+9c+F3LkyBHS09NJT0/Hz8+P1NRU9dpxthQE9gwpyN+0J0V1nwOXdfPzDgBvIJXEYUih4H1I52RP4KjXYikiSezUVOikY6RTGhvhi5ZGnPnzu5vE1iHdMNNcvP4+kitRcPw/O4rEz5uQheGnEN22xT8TkFzInWidkUKPVmT3Bd1ZdS0vL2fbtm1kZGRwySWXMHPmTEAStbYA9cyZM2oi5NixYw4ibjAYGDZsGElJSWpQHR0drd7s25IYNnbs2EFBQQENDQ3U19fT0NBAQ0MDzc3N6PV6fvOb36jbv//++xw4cMDlsf/yl7/E319W2z/55BP27t3rdLuAgAAeeeQRVfCzs7MpLi5m0KBBhIeHqxPVAwMDvdJ2aTKZ1ODb9m9ZWZnTqkCdTkdcXJxDsqTjKsBswJO7+EDEBzTCg22P0SrME5DEtwL8HmmXtCICpUMSMmHIBcH1arIjIbQKUtdpapIkdmGhTOeNi4PS0taWxQcfbE2MfPcdbN4sgwuSk2HatI4npzc3g8Xij9H4q5ZqwX8gLfvu0CPC/KaT16zIgMocOr7QhiItn22TQgZkENAWpMJkYNKXVSN9QXfO99SpU2zZsoWsrCyuv/56xrdk9Oz1+tSpUxw9epSjR49SUFDgMODLz8+P4cOHM2TIEDVxHRUVpd7st9XrTZs2UVpaquq0TbPNZjNhYWH8+Met1Q2vvfaag0+1PX5+fvzqV79Sv1+1ahVHjhxpt51Op8Pf358nnnhCXaTct28f5eXlDlpt02tv0NTU1C5ZUlZW5rQqUK/XEx8fryZKhg4d6sZe5VvgfA+OIhrRYE+mex9FEqgRwDhadflx4DlaE+G256OBeUhbuycEID6B3aOuTpIiZWWSAImMlAXIltwZP/lJa9C8fr1UbcfHS5tkWlrHE9hFr0Pw8/sdBsNpJPD15Jh1SEXOP5y81ggk05qcdkVIy7Ztk0J65P/jWwby4qOm155TWFjIli1bOHToEHfeeadqG2KxWDAYDGrVta0wpLCw0GEWQUBAAKmpqSQkJKiJ68jISFUb2+r1119/TUVFharXNs22WCzEx8fzwAMPqNs+++yzlJWVOT3uiIgIHnvsMfX7l156SZ2RY49OpyM8PNxh2/T0dOrq6hz0Ojw8XI3Vu0tjY2O7xciysjJOnTrVbpilwWAgMTHRIb7uOPHzPo6DF52hQ1qhj+B+0VEBDgEVSEJ2VMt7GpEEyEpau29sep2IxI0b8SxB477K2hMqK8XLurpaCkNCQiS+bmqSZPQvf9naSfPpp2IXEh8vCZUpU6CjBgCTCRQlCqPxDxgM2UhS2dOK878jhTNtKUfi4o7sUkAsVZpw/BnZ/t/mAl/T2mUzsPA1rQbPzzk9PZ0vvvhCnc0C0jVuK87T6/VMmDCB8PBwtm7d6vBef39/Bg8eTFxcHJMnT+7QDsobnDx5koyMDI4cOUJ1dbXDa4mJiSxdutQjy5eBx3PIglRHOqlHZmtt7WAbG1YkWV2D2I0Mb3m+GikIWYMkUhVa9do2JHc3PT3b4NAhmRNjMEi+wxs2IJ99Jh3u0dGyz9Z13yFIDmgrkrz39NxWAHc4eT4f6Xhyp/uBLdvYb2eb8XMFMqh9YPpv95uK7LMF+4SILXAuKChQE9nFxcVkZGQ4rbqOjIxk5MiRjBo1imHDhuHv74/ZbKasrIyysjKys7PVNsiamhqeeOIJNdg+ceJEh1ONTSaTWqEcGxvLsGHD1KpDoN3XNsLCwhg8eDBNTU2YTCaamprUi5PN78rGkSNHnCa9/f39GTRoEHfccYca7NbW1uLn59epqml/f391AJo9FouF0tJSCgoKKCgo4OTJk1RWVlJSUkJJSQm7du0CpApw3LhxTJw4Ua2Eb2UccB1SFeYqeNUBP8J9EvsrpApwm91zyS3vLUOS2M6oRYYtJiLJl97BaJRp6BUV4pU6eLCsUNbWSoLEXtRLS8WCJC9PHps3i3XIzJkwfLh9pXYgMIy9ey/miy8CGT9+LDfccAMynGc1MnBtOxII2w9Ms1XFn4dYAThjHZ61qbpKmFuAQuBqpFVn4LfWaDjHPiFio6CgQE1knzhxgszMTHJyctoFujExMapep6SkYDQaMZlMnDlzhpKSEvbv36/ajCiKwg9+8AP1vXl5ee2qlG20tSSxddw402tDm97k8PBwYmNjVa1uampSqwLNZrPD9gcOHHCa9A4ICGDQoEHcd999qr7X1NSo1YKeYj8Y0h6z2UxxcbGq1QUFBdTU1Kh2JTt37gTEO3z8+PGqDYujXp+LDJbZTsfJht/gPon9AVJZbX/tGo3c5H+PVAg6C+grkNbHKOTm3x3eSWT7+0sCu7kZ7rxTtFtRJFFy6pRj5Udpqeh4To48Nm6ECRNEr5OS7PU6GBjB1q2L+PbbQGbNGs9ll12GVEu/gyRIdtHeZ9aW7LkG19XpH+A+iQ2uF2WtSNLqNrzpNatxdqEoCsePH2fLli3k5uYCooMFBQWkpKSgKAp5eXlkZWWRk5PTruo6Li6OUaNGMXLkSIYOHYrBYKCpqYmysjJOnjzJ3r17Vb0ODQ3lrrvuUt975MgR1ce1LW31OikpidDQUKd6HdqmLCsyMtJBq00mU7tOSRsZGRlOk96BgYFERUVx3333qc9VVVURHBzcqS6XwMBAhgwZ0m7WjclkoqioSNXqkydPqkPbCwoK2LFjh3ouEyZMYOLEicTFxbXR66uRQpEjuL7hVhC96SgeU5Ab+r8jmmBjCmIn9w6tVXxtrwuliGYH4T5JC1II4Ynnf8cEBEBYmPy7fLkkshVFEtzl5Y52UKWlouPV1XDkiCxETpokeu14GQ0FxvDNN+eya1cwF1wwkfPOexj4G/A6UnWXQfufgU2v70fsnJzxGp79fJxtY/ud3YEkwl71YD8aA4WcnBy++OILTCYTRqMRq9WK0WiksrISs9nMqFGjVCtVi8XCiRMn1AXFwYMH9/og2qSkJJKSklR7wCNHjnD48GEKCwspKSlxSHqVl5cTEhLSqwOL+47bEdu8YlzH1wrwP272Y0U6ov+NFPbZmIt0dvwd+K7lubbXhXykY8+IZ13q4XRFr00mqcYGmDvXO0ns48cliQ3S0W40DgImIkUxVyIJ47uRn8sriGYfoH1S2za37Tc4T2KDdMV4snjZ6OQ5m15/jsyk+IsH+xnY+HRFdlFREZs3b3ZIiIwaNYoFCxaQnJxMcXExGzdudEgc2KqubcmQtj7P77//PgcPHmwX0Nr40Y9+pHprHzlyhMrKSoKCgggODiYoKEh9eDIp3VNsCRFb8G1f5ZyVlcXx48eprq6mqqqK6upqtb0J4Fe/+pUaWK9Zs4bdu3cTGRmptqvHxcV5bTBlTU2NQ6KkqKjIoQowLCyMiRMnMnHiRBITE1s+rx65If8ax2oMm5jcgyRgOzK2+w/SVuedao7ewmqVwLqlS9clzc0yvKC4GPbvB/sO1NhYuO8+m6/2f4F72b59O9988w2TJ4/nmmsMyOoqiM/TRUji/hlgP3IDMw0JgG/C9ergHchKpjfYilRVDjx8rWqkM+d77NgxNm/erA7B0ul0jBs3jgULFpCQkMCJEyfYsGGDQ4u1reralgyJjHQc/rdixYp2Ldk2dDodv/zlL1X9y8rKoqGhQdVoe832hm2TDZte25IkUXZ/4Hv27KGoqEjVapt1E0gS+he/+IW67TvvvMPhw4eJiopy0Oq4uLhuD6a0DVqzaXVBQQElJSUOVYARERFMnDiRSZMm2VmzlCMdLDtxrtc/R5KrHR3bH5Egsa2tlP3iWkd4up13MZslQd3BDDhAgvRTp6CoSPxZ7R25kpJkaJj8130MXMXatWvZtm0bc+fO4KKLqhFd1iM3HvORSsdnkYVEPaKdjyKJKlc98YuRxUdvcAiZcD/w0PTaOYqikJOTw+bNmykoKACkqm/y5MnMmzePmJgYcnNz2bhxo0Oi11Z1bdNr+89QFIUXXniBU6dOOf3MgIAAfv7zn6u6lpGRgdlsdoirbZrtDRsQ++Oy2UtZLBaHIY/fffcdp06dUrW6urpatTCJiori0UcfVbd9+eWXKSwsJCYmpp1ed3cwpaIoVFRUOMTXpaWlDvcpMTExql5HR9u6KAoRLcjGUW+NiHb/E7nRd/nJiNY8S3vd9dQW0NPtvEtTk8TO7trLm5okmV1YCBkZ8rWN0aNh2TLbd9uBOXz88cdkZGSwePE85s0rQCz3/BHrqynIIuwLiMWKEViExNeX4Pq6OIHWwe/dwYj8nw/2wr76F76m1eD+nE+dOsUrr7xCYWEhlZWVjBgxApBCMz8/P5qbm4mNjeUHP/gB+q4NTeo1amtrKS4uZtSoUYBo3ksvvUR1dTWLFi1iypQpvZpw7xuOItZDJxGtsOmmLf/xCq6Tq7Rsvwy5x4eu6XVPxNeO+1y/HrZskVj64Ye7NxfMRkWFVGSHh8OVV4J0j4+w26ISWXTNR4r+LkUGFf8HyZ0UtTx/BaLX53bwaYPxrFDEHaFACQOxi0aryPYAq9XKp59+SklJSbuESGlpKe+8846a4Nbr9UyaNIkJEyaoVdeNjY1qoH755Zc7VE4rikJgYKCDb5/ta/v/kNGjR/fKuep0OtWXqu2QMlti2J7m5maqq6vVCmwbtS1mcRUVFVRUVDgsAPj7+/PTn/7UpY2KJ4SFhTF+/Hi1stJsNnP8+HGysrLIzs6mpqaGHTt2sGPHDiIjI9Vjj4v7AklkP4dU6OmRyr+HkJv2jo4jC/Ffhv6VxDYiq5WV2I7LbIY9e6TSQ6eTFkd3SWwQkU9MlMf06ZLUTk+HfftEtFv/i8+oq/CQjdH4b6SNyLZBMzIY5gWkcsR2YfHk/znLg208wYhcTAZmIlvDOSaTiY8//pjKykqHhEhsbCwnT55k5cqVasWfwWAgLS2NcePGqVXX9fX1HD16lE2bNnHVVVepQXlsbCzHjh0jODjYqV7be4q21cmewl6v2zJt2jSmTXP0XDOZTA4JbRu1tbUoiqK2nB882HqjGxYWxuOPP65qdGf1WqfTERERoSarQa4bturKw4cPU1lZydatW9m6dSuxsbGqXkdHb0WsPZ5Hbr79kJv1h3HtJ2djE5LEhvZBtafBc08ksfWIzVQtNr1uapKFw+nTRa9tXTTu8PeXhHVSEsyaJQnt9HTZV3S0fUV2nZ1e78Vo/CdSIW2v10lItd4hHG2x3NG+6r9rGBCLgt73YtboO+rr61m9ejX19fWqD/a8efMIDw8nPz+fTz/9VE1w+/n5MX36dMaOHatWXdfW1nLkyBEKCwtZsmQJIJoTExPDqVOnCA0NbafVbX2xbTMBehqbBZSzzpdznEyfampqorq62mFQpaIoql7bhllmZbXGTG2tULqi11FRUURFRTFlyhT1OHJzc8nKyuLIkSOUlZWxadMmNm3aREJCAhMnTmTChAlEROxBOjT+iyRKgpCb9Qdwb+1nm3cC7XXX0+R0TySxdUhHS6stUl2ddMC0/HgICJCHOwICxLIvOVmGjRUUiF4fPCiFIjYUpZHq6irM5mZgO0bj35BuH1t7/h8Ru5U3kWHpndHr9lX/XcOCLJDe52Y7jYHAli1bKCsro6ioiAkTJqi6otfrURQFo9HI4MGDaWho6PcDzkNDQ9UkNkgirKmpidraWj7++GPS09O59NJLSUpK6sOj7GlGIYuOq5DZAgVIkvNapKMj1c37n8e1TaqnOtwT8bWCdEc2U1ZmZft2efaSS7yTxAax+7v1VmitnbR1bVmRyud/IlXmNr3+A7Lw+DZS5W7F8xlsld45aGqBtUhRiu/i0xXZlZWVbNmyhXPOOYfY2FhOnz7Npk2bVC9qnU7HpEmTOO+884iOjqayspLDhw9z+PBhjh07plaf3XDDDWrytaGhAYvFQkhIyIBc/auvr+fUqVOUlJRQWlpKaWmpemNh7w343nvv0dTURGpqKqmpqcTHx3fr52E2m9Wg+9ChQzQ3t7ZLDx48mIkTJzJ58mSHahjPeBCpgOiJqehdxYBcfL5GWlkOYrHIJN0jRySRffnl3f+UpiYZGGn7kVVXw5NP6vH3j6CxsZxZs+Ayp/MgdMjF7vpOfNoMWiu7u4MBuBF4ywv76n/4WtVIZ863tLSUXbt2MW/ePCIiIigqKmLjxo0cPSqWNXq9nmnTprFgwQLCw8M5c+aMqtcnTpxQq8/s/Vltrez9PUjvKnV1dZSWljro9enTp4mPj+fee+9Vt1uxYgX+/v6qXsfGxnZLr5ubmzly5AhZWVkcPXrUYR5CQkICkyZNYtKkSV0YzrMU+Iz+p9cxSHL+eqAAk0nhzTfhxAk4/3x5dJeGBqkQtP2ZlJTAiy/qCQiIoKmpnAsvhHPbFYHoWx5f4XpImDNGIIPeuosfskDxby/sq/+h6bVrTpw4waFDh5gzZw5hYWEcP36cjRs3qh0wRqORWbNmMW/ePIKDgzl16pSq1/ZV2o888oiapK6trcVgMBDUkQnxWYotmd1Wr8vKyhg1ahQ333yzut2LL75IVFSUqtdRUVHd0uumpiYOHTpEVlYWubm5Dp01Q4cOVSu1g4ODO7nnOYjVU+9XVLvGiAxGW4m0jJ+hvl7h9delmvryyyXG7i61tbLoaAstcnPhzTeN+PmFYTJVsGSJLHI6YkA0cyvSAekp0XhmleUOI5Kg+YW7Dc86fE2rwf05l5eX84tf/AJ/f38qKytJTU1Fp9NhNBqZMmUKc+bMcTk492zAbDazc+dONm/erNpJTZkyhUWLFvn4YEhnWBGP62P0RceiawzAVOAfKMqVvPFGLfn50u1y8832hR1dw2IRn+326JAK6zgcLVbaHlsYco0b5WIbZwTiDctC4RVkKPLAQqvIdsGZM2coLi5WK8giIiK45JJLVM/V/fv3q8mOCRMmcP755xMbG0tubi7vvfcepfY9Y0gr3pgxYxwGCwzEANue4OBghg0bxrBhw9TnrFarWq0N0pZ09OhRmpub1SrJ4OBgUlNTGTZsGEOGDGnnweoOo9HImDFjGDNmDCaTySFJcurUKTZs2MDGjRsZPXo0U6dOZfjw4R4OQPuQ/pUUAfHz/hKYCezGal3Fhx/ew5EjCkYjjPdkvqUHtK04EftfK42NEhB3vNJ5P3IT4Kn32Cy8k8jWIUkjjYFOaWkpFRUVjB07FhC/1EWLFnHy5Em++uorh46ZKVOmcN555xEREcGBAwd444032vmjxsfHM2bMGNXaCQZuAttGSEiImuywYbFYHOyj6uvrOX78OIqiqDZaYWFhDno9eHDnWo39/PyYMGECEyZMoLGxUU2S5OXlUVxcTHFxMevWrWPcuHFMnTqVlJQUD7y8rYiXan/qnAEZhPMNMrMhi+bmFbz99qOcOAGBgTKPwBsEBTkOETtxAnQ6K01NotdGp9GcLYF0L9Iq6WnFyES8k8i2Il08GgMZRVE4efIkJpNJbU9PTk5m8ODBHD9+nJ07d6qWUAaDgRkzZjB//nzCwsLYvXs3W7ZsaTd/ZsiQIYwZM8bB37StX/VAQqfTERYWRlhYGCNHjlSfN5vNqh0JSPLJluS2zdiJiIggNTWVlJQUkpKS7KxBPCMgIIApU6YwZcoU6uvryc7OJisri2PHjqnWUWvXrlULRoYOHeqBl/cZWr1U+xMjkSKRZOAIjY3Ps3LlryktFV/sVHdFix7S9le1oAAUxYzJVAG40msLkkR6mM797EYhdl3dxYKm1wOburo6mpqa0Ol0fPDBByQkJNDY2Eh4eDjBwcHMmjWLWbNmDYjY2Gg0Mm/ePKZMmcK6devIyMhg3759ZGdnc88993Q6rh3YHEZsM/ob0xE/6BgOHFhDfv4vMRp3cOml3U9iKwq8/rp0zixeLPG63atAA66T2CB6WYPMLvikE5+ciPd+1lo+ZMBXZDc1NXHgwAEyMjI4ceIEOp2OpUuX0tzcTGZmJidPnlR9mBVFIT4+nuTkZFJTUxk3bhwggeOzz0p7XHJyMmPGjGH06NGdDhZ9BUVRKCsrIzc3l7y8PI4dO+bQRjlmzBi1ugTg+++/JzY2loSEBA+Tz63YkiSZmZnqjRLITUFiYiKpqakMHz68g8A7COeG+n2FDhHEJeozubm5rFy5DPieG2+Ell/LHqGmRuxL8vPh4ovbDqtpy5vALR7uORNpw/EG3wGzvbSv/oWvVY20Pd/6+nqysrLIyMigqKgIg8HADTfcQGVlJfv376eoqEitFlMUhaSkJBITExk3bpyarC0sLOSll15S5xnY9Lrz3Rq+gW1ojk2vjx8/7lBBPW3aNK4U0zgsFgvp6ekkJiYSHx/fqUGSIEnzgwcPkpmZ6TA4U6/Xk5SUxPDhw0lNTSUpKandUEyZh9Dfbq6MwLeIH7Wwb98+Vq++Gcjmrruk5bynqKyUATVFRVJJ2HFI8g3id+sJa5F5CN1Fh9gRjHC34VmJr+t1bW0tmZmZZGRkcOrUKfz9/bnxxhvVwbltfZiHDh1KQkICkydPVlu8jxw5wqpVqzAajYwYMYLRo0czevRorWLOBVarleLiYlWvCwoKHGbJLFiwgIULpfuisbGRzMxMEhMTiYuL69QgSZC5NQcOHGDfvn0UFxerzxuNRoYOHarqdWJiohMP3WPA8C6eZU8RhAzAba0GkZkwN2EwFPDAA452IN6mrExsR86cgauuksS5azLwPGZeAdzZzaMDqQYvRiq8Bxa+ptXQes75+fmcPHmSnTt3sm/fPnXWy/DhwwkJCeHee++lsrKyS/fgZxOFhYV8+eWXKIrCPffco3axWCwWJ/Gmr/E9/e++OgKZ+SKxwiuvvEJBQQHnn/8y55/ffTulrVth3Tqx83v4YbFa7Ro64IR6nO75E96x2wtHPLIH3t9sZ/R6wCayMzIyyM3NJTs7m+bmZnU4laIohISE4O/vj8VioaamRp3WGxwcrIr4qFGjuOWW1iRdfn4+8fHxA77iuiewWCwUFhaSm5vLyZMnSU1NZd488TiuqanhX//6l7ptdHQ0CQkJJCYmkpCQ0KkL65kzZ9i1a5fTafX2gfeIESPshkV6q4XaW+hp9bmSi2x9fT3PP/9Hamv/SlqawlVXdfTe3mzhvA8ZdOAp59C9qhEjUqW+Dc98A88+fC3Ytp3v7t27ycnJ4fDhw1gsFnU4lU6nc9DrqqoqLBaLqte2ar20tDSusvvDyM3NJSkpyUemlXsXs9lMQUEBubm5FBYWMmnSJNWXu6SkhBdffBFo9ay1aXVnk9slJSXs3r2bo0ePtqvG9PPzIyUlRdXruLi4luqLCMS3v79gQAYqblKfqays5IUXfk1T03PMnw+LFrl6b28Pnfwd7ifW21CQa2N3qkYMSNfOR93YR//GV/V6586d5OTkkJOTg9VqxWq1qvMLQkJC8PPzw2w2qzG3wWBQdRxg/vz5LGr5w7ANhhw2bFinE60aMiPhxIkT5ObmUlxczOzZs9UiHCmCWAnIYmFsbKyDXnua3FYUhcLCQvU6XVNT4/B6QEAAw4YNY/jw4YwcObLFjqAWiKR/dTwagOuQOStCaWkp//3vT7FYVnLxxTBnTp8dXBteRDofPaEJ6QyqcLNdR9ccPRLTv+DhZ55d+JpWQ+s5L126lJKSEqqqqqivrycgIID4+HiuvvpqbrjhBhITE/v6UHsNRVGor69XK86bmpp47rnnmDt3LrNnzx6QlrCeUYB0qfQnjMiss6cAeP3118nPz2fpUiNTpvymw3cKrvXuxAlYsQKsVhnuOM3deB63rMZzr+oKRK/d2Yt0pNc6xLv7dx5+5tmFlsgOD+fnP/85AQEBNDQ00NDQgKIohIaGqomNyMhIsrOzCQ8PJzAwUBWvwMBAkpOTGTlyJLNmzerLU/EJysvLWbt2LcXFxe2SGeCYoLL9qnpyoamuriYvL4/8/Hzy8/OprnZMfkRHR5OWlsbUqWsJDf0j/cvDD2ALkiAByCY//2XeeONTFCWHpUtbB9K0YgAmI9UUJb10jPNbjtNTTiDJ7BLai7MOqbYcBhxoea7txOSRSPVjfBeO9ezA14LttnpdV1eHyWTCarUSFhamJj4iIiLIzs4mMjLSYWErODiY5ORkxo0bpw6x0ug5SkpK2LhxI0VFRe2SGdA+QQWe6XVFRQX5+fmqZtu8y23ExcUxbdo0Jk16neDgl+hfyRGQYYo2D5E9HDz4Ku+99xlwnFtvBTungBb0iH7uRgY09gbXIcPXPOUgMlS3mvbXRz2SpIpAkt32r9v+v6cD65CqkYGJL+u1v78/tbW1mM1mrFYr4eHh6nDc8PBwDh8+TFRUlMPCVlhYGMnJyUycOFFNtmr0HMePH2fr1q0UFRW101SAiy++mDktmVtPB0jaBgjb9PrYsWPtBg0nJSWRlpbGxIl/JSDgY/qXXhuR4YiDkRhzB+npr/L5519gMBRz110wZEjb9+iAyxHLv96ytnqMzs0W+A64EOkwbRtf65HEiYLE39Y2r1mRgctrGIjVfeB7Wg2t55ycnExwcDChoaEMGTKE1NRU5syZo9qn+jJ79+7lk0/EFiIlJYWrrrqKqKioPj6qvuJ8xJ/fGxrnrUKNEOAUEMyaNZ+we/eHnHeelQsuyKA1V+CMm5FBjO2pq4P//Efmgk2eDEuXdt+mBP4P+FEntv8SKfSw2UnZo0cKSc4AVTj+f9j0+gZkVtjAdIjWPLKRlrqGhgb0ej2RkZE0NzfT0NDA/PnzmTp1KomJibzzzjsUFRWRkpJCcnIyKSkpDB482IdX5HqfqKgobrzxRkAqj4uKiiguLqaoqIiioiKHKcRFRUW88847jBw5klGjRjFixAiXFZeDBg1i6tSpTJ06tV3gnZuby5kzZ1i3bh0bNjQyalQQ06Y1MGqUlXbdkZ0iBGnNq+zOThCh2oskbm8D1jF8uIHzzoNNm+D48baJ7FDgHuB/kUnFj3fz8z3lhPtNHEhGEje/A96g1dLFiAxJ+13LNi8DzwBHWl4fingGPsBATor4MtXV1fj5+WE0GomMjKSpqQmTycR5553H1KlTiYuL4+WXX6a2ttZBr6OjozW97kXi4+NVW6ja2tp2ej169Gh126NHj/LFF18watQoRo0axbBhw1xWa0dGRhIZGcm0adNQFIVTp06pep2Xl0dpaSlffvkl33wTwLhxetLSdKSmKt0MPqMRDfJGIjkD8EeC552MH29g5kxpIz9xom0iOwLRs98gFdJ/p3cqs493cvvxtOr1O4BtwHIAYin1e0SPXwSepfV6MAL4AeLLrXWwDUQqKyvx9/cnICCAsLAwdcj5BRdcwNSpU4mKiuLpp59Gr9erWp2cnExkZKSm171ISkoKKSkpKIpCTU2NqtM2zbbX64yMDLZu3arqdUpKirowYY+tEycmJoaZM2ditVopKSlxWIg8efJkyyyLWCZMsDJtGgwd2p1kgS0Re4buWwGakQRIKbAMyGLGDAP5+ZCdLV7WjonswUiC4qdInP0GvVP4ktvJ7c8B0hG9/ojWYwxBbEf+B0kuPQc8j5w/wAREr5cj9y8aA43p06czefJk5syZw4QJExgyZIimwy1MnToVs9nM2rVrOX78OC+88AKLFy9m5syZPvgz+hVwsRf2Y0Du5U/SGjd2lTrEpqqSqKiHgCIqKvQtnwHtE+bJwM+AB5HK57XYJ4KtVvjgA0lix8TAFVd4I4kNYqHXGS5Fust/hwxjt51DONKJ82vEf/sZpPPd1m0zE9Hrm/F85s3AZsBWZP/sZz8jICCAyspK1T8uKiqKH/3oR0RGRgLSUuLv7++DYnX2YF8l8u2337Jx40b1Nb1eT0pKihp4x8TEePR/afNN37t3LwUFBUARsJLQ0CamTlVIS3PnNdoRq5EBAY8gCe2uBLw64C9IUvo4tmoWqxWOHJHhYTqdHvHP+ytSNWfzjrUi7YGvIELfk9UjSUg7UleoBrKQ4x1L+4EFCtKaagUGMVCtRNria1Uj9nrt7+9PRYVcrBVFYfDgwfz0pz9V7ZwaGxsHtH/fQMBerz///HPS09PV14xGI8OGDVP12tOql4aGBvbv38+ePXsoKSlBKoBXERFhUfW669523yLV1I8jHtxdDYeeRxK7Z7DptdksswZkLVYHLECC1rm0DsltRhbxPqHnraFmIj6IXeEM8nMCSXxEtHldQYJuHbKwqun1QMSVXttmkvzkJz9Rk5+aXvdv2nbMvPfeexw8eFB93c/Pj9TUVFWvwz0U2draWvbt28fevXspKytDbPI+ICZGIS1NYcqU9oMQPScTSUz8AtHOrur160gyoA5bjNzYKLMGWoc9XokM8ZpDa81XPXAJUrVINz7fE64CPu7ie0uRQhAjMAnRZHusSAzuR/+bO9Ez+JpWg6NH9rBhw/r6cPo1FRUVfPrpp+Tni53asGHDuOqqq9R8ke/wMpJDMNC9ThoDktx9A/gD3Ytt3waWk51t4t13FZKS4J572m5zG5K8nk1rgrccqTLPavleYd068cb294d77/XWTAQdUrjRGatVe04i9zX+SF6nbdxk02t/ILiLn3F2oVmLhIdz33334e/vT0hIiBpMDxkyhMsuu4wh7fvGNM4CzGYzx48f5+jRoxw9erSdD/att97qMO3dE06fPs3evXvZt28bdXVbgT1ADSkpQaSlRTFhwkn8/DojwP9FBC0XSVic6tTxtHIbsIqOEtGKAjrdW0hVicMrwAfA07QG3GHAFcBpYD3eCcCnI4NzNLyFrwXbtvO9//77MRqNDBo0SK3aTUlJYcmSJS1+mxpnG83NzeTn56t63dY66oEHHiA+vnM2QcXFxezZs4f9+7fS2LgNyECnayA1NZhp04IZO7YUg6Ez2vYxkjDYhySa29uluEcHXIMko10H/qLX64CFbV6xIINzn0auPwBRSMLkJLC5C8fk7BgvR1rHNbyFr+t1eHg4fn5+6HQ6UlNTueqqq3zi5zAQaWpqIi8vT9Vre+sonU7Hj370o0793yqKwsmTJ9mzZw8HDmzGZNoBZKLXNzF6dBhpaTBqVEUnuyC3I4nlLcjgWnceo87wQ7T+W9zH1/sQyz57TEihyDNIkh7E7m4hkrjp6mKhPXrgLqSYRcMb+JpWg2+ec3dQFIX09HTWrl1Lc3MzkydP5pprrunrw+oDDiDFGe8hBWXxSO6gs92LuUAqEncupWuFdYMQy9EsSkutvPACBAfDE0+03U6PFP61HbhYhySYnwXyycmBDz+M4Ior5jFhQgGyONpdDEgV+J+8sC8N0BLZasVIYGAggYGBTJkyhbS0tE7fNGv0b8rLyx2S2j/4wQ/UyenZ2dmqf64nVdoWi4UjR46wZ88ecnJyWqpV8ggNXcn8+TBjBjjpsnTCO8CNLV//FPFN6kwiXI+0dBcg3kjOaWiATz7RMWHCJCZN2tfB/uqRVsxwxPP0eeSi0ojcBNR38vhs6JBze6wL79Vwha8Fnm31OiQkhKlTp5KWlqYlsAcQiqJQVlam6nVTUxP33nuvqs2ZmZnq4EhPaG5u5tChQ+zZs0etoIH9RER8xLnnivWSZ0PoNyIVG9C6eNgZPTQA5yItgiaXW9XUwOrVeubNW8iIEd90sL+6lv2EI4uEzyE+041Ip09TJ4/PHmeLnhrdwVf12jbTYNCgQaSlpZGWlkZERERfH56Gl1AUhZKSElWvAwICuPXWW9XX9+zZQ1JSEoMHD/Zof+27IAG+Iybma84/HyZM8LS9+wASH4O0wHekpc4wAkuQBUzXt74VFaLXl1xyC4mJb7jYytY1aEGSLZuR+HozsqBZ0/JvV/Xa2aKnRlfxNa0G3zxnb2Cb3XXFFVeoQyE1foV0gHdGz07T2m09Gdjfyc80ADchsSuYTPDnP8srP/sZBAW13fZXSGekMxRsg+IbG40EBtr0eidyTpUt/3Y1Jeps0VOjq2ge2UhbyLx58xg7dqw2CX2AEhUVxezZs5k9ezZWq1VNYlutVr744gtqamqIjY1l+vTpTJkyRbUocIbBYGDcuHGMGzeO6upq9u3bx+7d4VRWruerr4rYtg3OPRfS0jpKaAfg6C9lRcTVU+HXI3+Sv0A8SF2zZw8cOqSQl7efxMQyoqNdJf2CWx5/QjyXjLRWDXZ1GIMeqfC+owvv1dBoz4gRI5g/fz6jR4/G4FkGUuMsQqfTERsbS2xsLHPnzsVqtapJbJPJxGeffYbJZCIhIYHp06czadIkl/MPQNreJ02axKRJk6ioqGDv3r3s2RNIZeVGPv20gi1b4LzzZJCL64q/KKS6z+FIO3FWBsQD+nYkIe6aHTsgL89Kael2HnighrCwMBdbhiB6/TjwJI563VXrEQMQB1zbhfdqaLRnzJgxzJs3jxEjRqhxl8bAQafTkZCQQEJCAueeey5Wa6vu1NTU8Nlnn2G1WklOTmb69OmMHz++w/usgIAApk2bxrRp09QuyL17dZSVbeGDD+rZvBnOPx/GjXOV0NYhlX32A0I7q4VGZEDtIsQC0DWbNsGJE1bef38t99/vyiJHh8TBZuQaYBu8ZdNrW+zf2TjbiAwOvrAT79HQ0PAW9rO7bHz66ackJiYyffp0H7WjfRDpQvGka9EAzMLRMrSz1dhGpLp6IjYN9fcXW6raWllsdEzpWJCBt+0xmUzU1dW12MQ0EBh4LTJs0d5+VY/odGf12lbMoiWx+4oBW5GtrUD6Lg0NDaxdu5b9+/fT3CyDBoxGIykpKQwfPpzRo0d7VElisVjIyFjP5s23UVUlFiFhYVI9MmECJCXZB90GZBDMi3Z7eAapWPY04E5BWswjEF8711it8MYbcOwYREc/xY033tTBOb0K3N3B3nQtD9txBiIDFo/SPnliRBL2XyPe3BrexNf0y9fOV6M9NTU1rF27loMHD2I2SxLAz8+P4cOHq3od7cHQgubmZnbt+pStW++mrk66WSIiYOJE0ev4eHu91gG/RTyrbfwaqTjxNOAei3TgnMFd5VxzM7z8MpSWBhEf/3/cdNNNHVSw/hVZzHRFW70ORW4YjtE+CDcg15ONuLumaHQeX9MvXztfjfbYqhUPHz6sJrgDAgJITU1l+PDhjBkzxiM/7aamJnbuXMX27Q/R2CgDHGNiWvW6vXfpc8BDdt/fB7yG5z6u05BW+XRkUJZrGhrgP/+BysoYUlL+zvXXX0+oS2PvxxBbqI5upe3j6EhksbIQ53qdiFR1D+vwGDU6hy9qly+ec0+Ql5fHG29IZ8bQoUM577zzGDFihA8mtLcjC4ENHmz7PnCd3fdXAl/geXx9HuKN/R5S2CH6+eqrMkD96qth6tS271mIdLI4smbNGg4cOMB1113HyJG/adlnR3kZe12Oa9m2jPYarwdGIzZVnnUnaXiGZi2iCbcGEihnZmaye/fuliFhwty5c7nooosA1EC8o6ois/ld9u69ic2bpUXcRng4jB8vQfeQIYPR6fJwHJxShgSlnkztfQ2p6tAj7eWDEdsP19TU6PjPf+Kprb2P4OBgbr/9dif2ORYkID7pwTE8jawspracx9vAU0jgDxJ834lMcB/hwf40Oouv6Zevna+Ga+rr61s6YXa3DAkTFi9ezLx5smhmq+Tu6AbCZHqG9PRH2bYN6u0kNCqqdREyLm4kOt1BxC/VRg4wyoMjNSCt6ZcjAW8pMAR3AXpZmZ6XX06lsfEWwsPDueOOO5wMvKxH/Ag9qXp5E0lOj2o5j9cQvT7Q8no4Mq/hsZbj0/A2vqZfvna+Gq6pqakhIyOD3bt3O8w/uPrqq5nakmGwWCzo9foO9bqx8dfs2PEnvvsOmuwsrwcPFq0ePx5iY2cjSRT7OP072nfUOCMAmQtjK7w4iAys7ZiTJw2sWDERs/lqYmNjueOOO5wks08h2upJMv1TYDiS+LAivq1PA3ktr0cjifpHaT/8XKO7+KJ2+eI59wSKorBz507Wr1+vFsclJCSwYMECxo0b52MJ7QdxLNhzxhJkZoz9z+VTZB6NOyKATcjQQ5Ak8fnqq7ZhjeHh8OCD0NosY0ByE/9ot8d//etf1NTUsGzZHEaPvsSDY/BDivXiEL1uQBZSn0UWIEFyO48ADyPWUhreREtka8KtYYfNnzUvL4+8vDzOPfdcdeBnbm4uH330EWPHjmXcuHEMHz68jbWBFUnaHsdsVsjNhQMH4PBhx6A7MhLmzv2ItLQlGB28R36CeEm7+jPTI96sK9o8/wgS6HYcINfWPs3bbwdSWFhIUFAQd9xxR5tk9gY889kzIBcfZy2XVYiQRyFTczV6Cl/TL187Xw33KIpCaWmpqteXXXaZmvDdt28f69evV/U6JSWlzSJkI5AAVNLcDEeOiF4fPSpV0TZiY/XMn7+eSZPObfP+W5EFPFfVGjrgCaRq2p7rkOR2x8nsysq3ePPNcsrKyhg0aBDLly9vk8x+G898rI1IB9ALbZ5XEK8/E5IYGbDucf0CX9MvXztfDfcoikJRURF5eXnk5+dz/fXXqzZ+27dvJz09XbXtS0pKapP0KUf02kRTk8TVBw5ATg5Y7KQ0MTGQ+fO3MW5cmt37FeAipNukI939F1LRZ898YAfuuiVPn/6ClSuzqa6uJiYmhjvuuKONLdRT2FcLusaVf6uC/AwsiF5rtmo9hS9qly+ec09SXV3Njh072LVrl5rQjomJ4ZZbbmmxrRjo5CP5EHdpw6FIh6B9bG0BZiA+2R3p9UokDrehIMnkXEChqQlefFGsRaZMgaVL7d97FBjpsDez2cwf//hHAJ54op7g4P9z8/kgcf4zSJLaHivSgQmi15qtWk+hJbI14dbwkC+//JKdO3eq3wcGBjJ69GjGjRvHiBEj8PffjExHd8RslmDbltQ2mXTAHMLCrmHevHlMnz69xTPQgiQcVuDon2f7+irgXaRqxJ5CII3WILctBmAqsJXGRli5ciWFhYUMHjyYBx980C7Yfw2Zfu4Jk5GBBRp9ha/pl6+dr0b3eP/99zlw4ID6fXBwMGPGjGHcuHGkpqZiNL6Hs/kCJpNjUlscTBYTGXk5CxYsYMqUKS0LmI3ADchAXGd6fTeywNg24XAI8QSsx7le6xHP06+orW1gxYoVlJWVMWzYMJYvX2633V+B3+BZhd8liM+fRl/ha/rla+er0T1WrFjBsWPH1O/DwsIcFiENhmeQRLDjbWhjY2tSOzfXltS+msGDF7NgwQImTJjQsgBZhRRgbMHR79Sm1z8D/kL72QffAwtwPYxRjwxtf4vy8gpef/11qqqqmDhxItddZ98u/zhSpeeu69KIXJdWuNlOo6fwRe3yxXPuDerr69m5cyc7d+4kKCiIH/zgB2pBhKIoA7hC+5fA3/HMHuQrHGeGgXQvXgRk0l6vLUg19Y+d7Otr4DLkOqFQUCAWI4oC110HEyfqgB8C/273zrKyMp599ln8/f35xS8OoNO968Hx+yHV3X/z4Dw1egItka0Jt4aHWCwWjh8/TnZ2NtnZ2dTW1qqv+fn5cc89FuLi/kBHwtfcDHv3wtatY6iuvgmAkJAQ5s6dy8yZM/H390PaIp8HtiGB80xkte8CXA8YO4r4Sh1ChN42iMCM+FS9i1RJQ2NjI5988gkLFy4kJsa+LfFdZOqvJ8xtOT6NvsLX9MvXzleje5jNZvLy8sjOzubQoUM0NLR69QUEBPDww6cYNOg5OkosNDVBerqe7dunUl+/BIDw8HDmz59PWloaRqMBaUV/DtiNJDXmI23fc3Ct13uBq4ETtNfr65AkhlhP1dbWsmbNGi6//PI2v/fPIAG5u7BMD1yD+BBq9BW+pl++dr4a3cNkMpGTk0N2djZHjhyhya6NMSQkhEcfzSIgYBUdLdzV18POnQZ27pxLY6MMQIyOjmbBggVMnjwZvV5BvFdfALIQ7V2I6HVaB0f3LXA9cJpWvQaJz+9G9F86ECsqKvj666+56qqr2gyN/w2y+Ohu4dGIeHo/52Y7jZ7CF7XLF8+5N2lqaqKiokLtgrZYLLz66qtMmDCB6dOndziw/OzkckRr3WFAdPEnTl4zId2LLyI5jkDgUkSvx3awz0+AO5DFSyMbN1r59lsrgYE6HnroBwwa9G+cVUjn5OTw5ptvMnjwYB56KAPP5ioYkZk5/+NmO42eQktka8Kt0QUURaGg4Huys98kOzufgIBoHnhgLDrdrwEr9fUQHOz6/WbzxWRk/JGtW7eqnoHBwcGcc845zJo1y8Xkc6dHgrQ9Pg/sRGw9QhCv6wmIl/ZUt3tpbm7Gz68Kz3y69UjlyhMeHqNGT+Br+uVr56vhPaxWK8ePbyY7+12ys08QG5vM7beHAU8CzW702ojJtIzdux9g27Zt6gJmWFhYm44aT1AQC6cXkGR2E+KZNxzpcrmDjgN0QfT6OJ75dIME5Ms93FajJ/A1/fK189XwHmazmfz8tWRnf8ShQ4WMGDGBa689g7SSm93otR+NjY+yc+cSvvvuO3UBMzIykvnz5zN16tQ2loAdYUE6Wf6DzBMwIQMYhyOJ7zvxZNCi6PUupADEEz5Hqgo1+gJf1C5fPOe+ZN++faxeLfacQUFBzJw5k9mzZxMSEuLmnf2V3cjg2WZgHKKZnztsYcsg2orQs7Ph8GEdev1y9Ppr0Ov16kOn0zF16lRiWyb5Njc3U1VV1ab4ri3NiOXpS0ji2wxEY7Gk8uqrUFiYSmrqFG677TanlfDp6el8/vnnjBkzhptvDkaKTTwhHbFC0egLtES2JtwanaYCuB/4EFBQFD2NjRaCgvwBEyYTPPkkJCbCggWQnNwq3IIe8b/7NRaLhczMTLZs2UJ5eTkgliXnnHMOs2fPblPR0ZZmJPHxNo6Tzm2tkncB/8Wdl15ubi6rV6/m5ptvZsiQXwJv4bqqXIdUnhQA7UbFa/QivqZfvna+Gt6iCLFs+goARdHT1GQhMDAIaKC2Fp56CkaOhPnzYUi7WYc6pCLkPpqbm9m7dy9bt26luroaaNtR09FcgHqkMvprnOu1zU+741bTrKwsvvnmG2677TZiY29FEuOuqkb0yCDHQqCja4lGT+Nr+uVr56vhLXKRBPEWQI/VCs3NVgICQoA6ysrghRdkuOP8+TLosT0fA1fR1NREeno6O3bsoK6uDmjbUdPRXIAKxJLpe0STbbe/BkS7/wb81O3ZfP/993z33XfcccfthIefj1SCu4qvDUBSy89A88DuK3xRu3zxnPsS273/1q1bOXNGvJSNRiNpaWnMnTv3LPLR3od0pdg6EnUoioXKyhDKyuo4fRrKylD/veUWSEqSd6anw+efg+Qqhrbb87Jlyxg9ejQgce8HH3zAkCFDmDx5MhMnTmyT9C9CLPkO016v4cyZ/+PFF2tobm7m4osvZs6c9sN/165dy7Zt25g9ezaXXroYWaQswbVeG5FBk7s8+1Fp9AhaIlsTbo1OUY1MNM/GlbgdPQpvvw3WljxFcrIktEeOtCW0DcBJoHXQotVqJSsriy1btnD69GlA2t/nzZvH3LlznQTcCnAusLWDY9Uh3k3/crmFoii8+eab5ObmEhAQwG23XUFS0g3Iambb87O14rwHXNvB52r0Br6mX752vhreoBTxoy7CVbJ33z5YbTe3dsQI0euUFJtehyDBbKi6jdlsZt++fWzZskXtqAkKCuL8889n5syZbYZCgiQ+JgEH3Rzv3+io08VqtfLSSy9RXFxMaGgod9xxEbGxl7ccX9vzM7Q8vkQCfI2+xNf0y9fOV8Mb5CNWepW4iq+3b4dvvmn9fuxY0WtZgNQBcUihRWvMbDKZ2L17N9u3b6empgaQjpoLL7yQqVOnOqnOMwGpyAJgR3Tc6dLc3MwLL7xAeXk5kZGRLF8+j/Dwi5H7CGd6HQRsAqa7+VyNnsQXtcsXz7k/YLVaOXToENu2baOwUPRGr9fz6KOPEhER0bcH55ZMpMukEZteZ2RIcrrZRWP31VfD1KnydXm5joMHh2G1vobVqqAoClarVX1MmzZNrcj+9ttv+fbbb7G2JFb0ej0jR45kypQpjB49GD+/0ch1wxU6du36F599VoXBYOC+++4jLi7O8WwyMzl06BDjxo1j0qRJyCLmBUjnZNvrkREpEvmOtkMjNXoXLZGtCbdGp/g1UjXX8QCAigrYtk38sG0T1ePj4ZxzYPz4v+Hv7zxZoSgKBw8eZPPmzZSWlgLi8bd48WJGjx5tlyB5FPFIdYcRSeK4rp42mUy89dZbHD9+nICAAJYtu5yUlP8CryJWJTbmAX8EzvfgczV6Gl/TL187Xw1vcC/iN92xz93p07B1K+zf37oAOXQozJ4NY8e+htG43On7LBYL+/fvZ8uWLWpVTXx8PIsXLyY1NbUlQaIgC3+rne7DkUFAMeDal6q+vp433niDkpISQkJCuO22i4mP/zewCknA2FgM/Bmt5bF/4Gv65Wvnq+ENrkR8VTuOr4uKRK+zs1vb1VNTYdYsHaNHr0Gvv9zp+8xmM3v27GHbtm1UVVUBkJyczKJFixg6dGiLXluQIpHtHhxvEnCMjqqnq6qqWLFiBRUVFURERHD77ecRFfVX4CNar0u6lnP/MzDeg8/V6El8Ubt88Zz7E4qicPz4cbZu3YqiKNx2223qa0eOHCExMZHQ0NAO9tDzx9fU1ERVVRXV1dVUV1dz5swyjh8/yoIFCmNbHPGOHYMVK8BggOhoiI2FmJjWf2NiQOry9Eh+4lvgHI+Ooba2lqysLDIzMykqKmp51kxg4H949NGyDu1cpVJ8Mm+//QRHjhwhLi6O22+/3QMrlyxkcOVntFZ5G5GZCX8BUjw6do2eQ0tka8Kt4TEmIAEod7OdHggAGqipMfDdd5CebsFkCkCnW8SPf/yO2wuSoihkZWXx9ddfq56sERERzJgxg7Q0HSEh8z08Zj3wT6Qy2zUmk4lVq1Zx7Ngx9Ho9CxYs4Nxz0zAYdiPnPQIY7eFnavQGvqZfvna+Gt2lCul6aXSznR4ZIlNPZaWhZQHSgtkcjJ/fEp54YqVbD2yr1cqePXtYv3696skaExPDzJkzmTKllMDAqzpx3G8Ct3S4RX19PStXrqS4uBij0ciFF17IOeeMRq/PQCynxiI+rhr9BV/TL187X43ucgJp5fZkeK3o9enTRrZts5KZacVqDSMs7EYef/y/Tv1P7bFYLOzcuZNNmzZhMsniX3x8PDNnzmTSpH34+9/dieP+Blk0dE11dTUrVqygvLwcf39/LrnkEtLSEtHpMpHznQi087TS6CN8Ubt88Zz7K2azWe3Crq2t5Z///CcAgwcPJjo6mrCwMEJDQwkLCyMxMbFdZbGnKIqCxWKhrq6O2tpah0dKSgrDhg0DoKioiNdee41mhzLrYsS6VAr0LrnEduxSyBcdDVJ3p0PyIY2AH6J3ZqSK+XU8nxvgyOnTp8nMzCQz8ykGDVrD3XaS/dFHEBYmxxUW5vi+2trtvPDCVurq6vDz8+P2229n6ND2tibtOYkktfXI3DGnnlYafYCWyNaEW8NjDiABpyf4IQGuDD9oaBjBrl1JVFTUc+WVV6pbffrpp4SFhTF16lSnnliNjY1s3bqV3bt3qwkSo3ENEybsYdYsZ36ubTECD+BJ9bbJZGLNmjXs378fgCFDhnD77bcPwGnKAwNf0y9fO1+N7rIRzy01EoBXkIG5Vmprx/D997E0NytcfPHF6lbvvfceCQkJTJkyxenvYF1dHZs3b2bv3r1qgsTf/20mTz7CzJng/n7DgEw//43bI25oaOCjjz7i6NGjAIwYMYKbb77Zje+rRl/ha/rla+er0V3eBW7ycNspiE5mADoqK8fz/fdhBAQEc9555wGyuLhq1SpGjBjB5MmTnVbeVVVV8e2335KZmYnZLNXRgYEvkZZWxIwZkoxxz3+A+9xuVV1dzQcffMCJEycAmDBhAtddd53bpLtG7+OL2uWL53w2UFJSwscff0xJSYnT1xcsWMDChQsBqKio4NVXXyU0NJSAgADMZjMWi0X9d9asWZxzjlQ/nzp1ihdeeAFXab22+33qqacACA4OZtCgQQwatIOIiJUkJSkMGwYd/8pcjMzzOojkRuYjlh3d1T4ripJCXd1JbLWBZWXw7LPytcEgNiZz59pr+WoKC2fy2WefUVxcTGRkJA8++KA636a2tpacnBym2vxPNPo9ndEu7e5Iw8fpuD3dEStwHjYbjqAg8fGzp6qqir1796IoCt9++y3Dhw8nLS2NcePGqRWAgYGBLFq0iPPOO4+srCzS09MpKsph3z7xdk1MhFmzZPCN86JBK86HfJUgfoQBSHLeH39/f6699lrGjBnD559/Tnx8vNtKRA0NDY3+SWf02gxc2vKA0FC4sE0OvLi4mIMHD3Lw4EE2bNjAqFGjSEtLY/To0RgM0loeEhLCpZdeyoUXXkhmZibff/89p0/nsWsX7NolvtuzZomvq8FpN7orvS5oeYQgem0gKCiIZcuWsWfPHr7++msSExPV49DQ0NA4u3BhquoUM7C05QEREXDRRY5b5Ofnk5OTQ05ODuvWrWPMmDGkpaUxYsQI1aIvPDycK6+8ksWLF7N3717S07dRUVHEjh2wY4fMtZk5E0aNslUXOsOZXucjFYuDEKsQPYMGDWL58uV89913bNiwwc7KRENDQ8M58fHxPPDAA9TX13PixAmqq6upqamhtraWmpoah2rsmpoa9eGM+vp69Wu9Xq8msfV6PaGhoerDVultIzw8nB/+8IeEhoba5QTqke5BT+pbrcDNnTtxjyhAp2tNYoMkrJctE+upEydg927YswfGj4d58yAxMYghQ4awfPlyXnjhBSoqyvnmm9e44opJNDQE89RTn9HcbCYhIaHLle4a/RetIlvDx6lC2klMbrbTAeOQCm7XmM1mDh06xN69e8nLy1MvKoGBgUyaNImZM2cyuM1IdkVRKCyMIz39NFlZrf7boaHS2jNhgm1AmT0bkNVPkOm6vwc+p/UCFA08CPwCmzdrdXU1YWFhWqDdj/E1/fK189XoLp62qhsQT9QNHW5lMpk4ePAge/bsUavqQJLXkydPZubMmURFRTm8R3wP/fn+ezOHDrX6b0dEwOWXS4KkPftp7fz5FvhfYL3d64nAD4AfI9Ut8reh/U30b3xNv3ztfDW6y15gmgfbGYEbgLc63KqxsZH9+/ezd+9eOz9VGDRoEFOmTGHmzJntfi8VpZKcnEi+/x5yclr9t2Nj4YorZCHSER3Scm5L+nwO/AnYYbfNcOBx4CFsA9M1ve7f+KJ2+eI5DzSam5spKyujpqYGk8mE0WjEYDCo/4aHhxMeHg5Ix0p9fT1Go5GAgIAu3Ot/DVziwXZGJF79v07u3xOO0pHl6YkTktA+csT2jIEbb/yOceNkbkx+/jO8/vqfgFJuuUXi8fffH8KBAzOYMuV2li69pgeOWcPbaNYimnBrdIo7kVXIjqr9dMCzSODqGZWVlWRkZJCRkUFlZSUAV155JdOmOQvsLwQ2U1dnYe9eSE+Hlrk1jBolCZLWYccpSHWIDvgKGShjpf0wHT0yKX0D4OjfbbFYSE9PZ+bMmVrFXz/C1/TL185XwxtcCqzF3fAweB+4zuO9njlzhr1795KRkaHOMLj55psZM2aMk63HA4eorlbYvVsqRFrewsSJsgDZWlEyG5mCDvA2cCui3c70ehGwBvB3eKW5uZk9e/Ywa9YsbSGyH+Fr+uVr56vhDdKATCRG7YhvkcVHzygpKSEjI4N9+/apFn333HMPSUlJbbZUkGKVMioqJLbeuxda3sL06bBokXRYCtcAH7Z8/SySsNG3OX7bwN+bkXsHx9LuxsZGsrKymDFDG8rbX/BF7fLFc9boDhYkv1DowbbZyNwWb1OPFOJ1PAentBS2bYP8/Lk8+uimlqry/6Gm5g9s26bju+8UwsLgoYfE3/u//wW9/hx++MMvCQ+P6IHj1vAmWiJbE26NTpGDJHzrcJ4cMSJDDHYhbeCdQ1EU8vPz2bdvH5dddpnqT11UVERISEjLaup7wI3qe8xmEenNm6VC289P2uJnz9ah1+9BBhNUIBPWG3BdoWhAvP6etx0NsIMPPvgnWVlFTJ48lqVL/4pOF9/p89LwPr6mX752vhreYDcwD2lbd5YcMQAzkVkGnbdRslqt5OTkcPDgQa688kq1Zf3EiRNERUW1DPV9FngUm+6aTLBpk7SuKwoEBkpbfFqaHzpdNjJY9zhyHelowVSPeGn/ruV7BUVZzxtv/Jv8/DPMmTOdiy76AzqdR0avGj2Mr+mXr52vhjdYD1yEaKWzOFUPXAZ8Slf8Vc1mM4cPHyYvL48rrrhCXejLz88nPj6eoKAg4LfAn7HF9w0NsG6dLECCLDpeeimMHx+KTpcDxCHV5NNdHLM9z9Fa4GLBbP6Ml19+jpKSahYtOpf5838DhHXwfo3ewBe1yxfPWaO7OOYi2qMD7gJe7sFjeACZb+POSjCO5uYD+PlFA9+gKBfz/POyOLlrl3hrT5oE114Lr78O+fkwZ86vufji/215fzPwMbY5OpJXuR7n1lIavUlntMulQ5iGhu8wEhkiZrP8sFUo2yzkp7S83vkkNoBOpyM1NZWlS5eqSWyLxcJHH33EM888w7p162hqugyYoX620QjnnQcPPiitj83N8PXX8PLLd1JcbPN4WkHHSWyQwP01oBI4jAj1PCZN+hS9Pp3MzNf54oshKMrDdM7PUENDQ6MvmI50ooS3fG8LY2x6fR7wJV1JYoN4C44ePZqrr75aTWKbTCbee+89nn76aTZv3kxz8y3IdUM+099fEtf33QcJCdDYCJ9+quP1139IWZntOF/EfVLEigzxNSEJ+zHodIuZMuVrIJ0dO57n22/jgV/jvsJRQ0NDo69ZCHyEWNzpaE1W2/R6KTIUsmudJkajkQkTJrBkyRI1iV1XV8c777zD008/zc6dO7FYHgRiscXXQUGwZAnceSfExEg3zfvv63n77Z9TVRXYsudnaL0XcIUO+Dei6xuBYRiNVzN58gYgnXXr/kF6eizwLzzzndXQ0NDoS25AcgYBONfru4EXevgYnkDyLR3pbwjwXUsSG+BJTpzQc/o0rF8P558vMxD274cDB8RLG3Ts3v1GSwfPx8AQ5HyfRopT7kCGxL/aI2el0TNoFdkaGiomRNw+RLyzE4HbkOGO3m3nrq2t5YMPPuDYsWOAeLKef/5Upk37HQbDduSiIauRigJ79wbyzTc30tg4DL1ezznnnMP55/8ef//tHn7ic0ilXxW2qpT9++Gjj2T/CxbAwoU3Iq3vWut6X+Fr+uVr56vhTRqQ6pE1SDdNMlIpMgtva1h5eTkffvghhYXScjlo0CAWLpzI5MmPo9MdQAJuC6DDalXYuTOUDRtuprlZhjWee+65zJ9/NwZDroef+CrwCNCETa937oQvv5RXL7kEzjnnESTZotFX+Jp++dr5aniTGmAlsA7R7pHAPUihiHcpLS3lgw8+4PTp0wBERUWxePEoxo59EJ3uOPZ6bTYrbN0ayZYtN2OxxOLv78+FF17IrFkXo9dXe/iJbwLLkcVFWWDcsEE6KnU6WLoUJk/+X2QBUqMv8EXt8sVz1vAW5Uix3GYkNzIeuBdwZrXXE+xBbARP0WrtZPt3BPANkNqyrQkIRFEU3nhDKq+HDoVhw2DLFlm4fPBBeOstsSS58MJfce65f255r6sU6H+R89XoCzRrEU24Nc4CFEXhyJEjrF27lrKyMgAiIsJJS9MxffpOQkMLkJbEK4DbqK3V89VXX5GVlQVAWNh/OOecEqZPl1b2jpmNVPg5turs2gWffSZfz5kDixZ9hcFwsfdOUqNT+Jp++dr5apy9KIpCVlYW69evV2ceREdHMn16M2lpOwgKKgaiEI/Vm6isNPH5559z9OhRACIj/8WcObVMnSoV3B0zGRks7Gh1tXmzJEhArKYWLMhAp/N+IkjDM3xNv3ztfDXOXqxWK3v37mXjxo3qzIO4uBimT69l6tTv8Pc/hXRh3ghcw+nT1axZs0Yd+hsb+7/MnWtl0iTpkOyYYcgg4tYuGUWBr76SBUi9Hi69VMeMGcfR6YZ6/Vw13OOL2uWL56wxkGgEPkAKVspoLS68nNYKcZCO80j5qhJeeAGammDCBElcl5XBkCEwZozE0HPnDuLCC2vouEsmCCgBtL+bvkBLZGvCrXEWYbFY2LNnD5s2baKurg5wNbRGOHr0KJ9//jmVlc8Bufj7K8yfL60zruc2th1W08r27fDNNwA6JkyYwfXXf9/NM9LoKr6mX752vhpnP2azmZ07d7JlyxYaG2UgzaOPPkpUVFS7bRVF4cCBA3z11VfU1v4LKCEoSNoeZ86UBEdnUBTxdt22DUDHrFmXcNllX3T3lDS6iK/pl6+dr8bZT1NTE9u3b2f79u00NzdjMBj48Y9/THBwcLttFUVhz549rF27lsbGPwM1hIbKMMgpU6S6ujMoCnz6qQyXBB0XXng75567wgtnpdFZfFG7fPGcNXwRC1L0JxN8MzNh9WrRX50OampkDoLBIHmSCy7wRMt1SMfjwz165BrO0RLZmnBrnIU0NzeTnZ1Nfn4+V155per3d+DAAQYPHkxsbKy6rdlsJivr32zf/gSnTslzsbHi+5ec3HbPEciKpWuys2HNGrjpphiSk09765Q0Oomv6Zevna/GwKGpqYmsrCxOnTrFpZdeqj6/b98+kpOTiYyMVJ8zmUzs2/cbduz4O+Xl8lxiouh1QoL9XnVI1UnHU+P37oW1a2H58vEMHnzAa+ek0Tl8Tb987Xw1Bg4NDQ1kZmZSV1fHhRdeqD6/e/duRo8eTVhY60DGxsZG9ux5iO++W0F1tdwiDxsGV1whntqtGIDhQC6uqvsUBb77ThYf7713IeHh67x9ahoe4Iva5YvnrOGrPIgMoJSu8+PH4ZNPoLxcNDssDPLzdUA0yclnuPpqhYAAsFjA+Z+GEbgFsVfR6G36xbDHP/3pT8ydO5fg4GAiIiI8eo+iKPz2t78lISGBoKAgFi1apLblamgMdPz8/Jg8eTJXXXWVw9CaTz75hOeff57Vq1dTUVEByICbqVMf48EHR3HttQZCQuD0aXj1VakAaWiw3/N1bj973Dh47DFITm4t6W5u1oY/+gqaXmtodI6AgACmT5/ukMQuLy/nk08+4dlnn+Xzzz+nulo8Vv39/Zk589c88kgcV1yhJzAQiorgv/+VIb4mk20PCrDY7WenpYleDx6s6bUvoum1hkbnCAoKYvbs2Q5J7MLCQtasWcPTTz/N2rVrqa+vByAwMJC5c//ED38YxuLFevz84NgxaVnftAnMqkOfFRnS7roeTKcT275HH4Xw8NZ2eE2vfQdNrzU0eprHkOSz5E5SUsQXe84cuPlmuP12uOIKPX5+UZw4ofD738Mvf9k6d6Y9A6rGd0DTY4lsk8nE9ddfz4MPPujxe/7+97/z9NNP8+KLL7Jz505CQkK4+OKL1fZdDQ1fw2w2k5qaiqIo7Nu3j2eeeYY1a9ZQVVUF+KHTrWXSpBQeeQSmT5f37NkDzz6rZ/9+UJQfI5N53ePvrwNmAlBQUMBTTz1FTk5Oj5yXRv9C02sNje5jtVoZPnw4FouF9PR0nn76ab7++usWy6gw9PoNzJgRyyOP6Jg4Uar1duyA557Tc+QIwN/oeFJ7K6LXswCxm3ryySc5efJkD52ZRn9C02sNje6j0+lISkqiubmZbdu28eSTT7Jx48aWv4kEDIZvmDcvjIce0jFypFTvbdoEL76o59gxHVIBWOHRZ4leS5C+f/9+nnrqKXUYpcbARtNrDY2eZgzwCRCILYb284OLL4boaAM6nR8zZrzP2LFNVFaKrV9WFmRkQEGBs/1ZgbReOnaN7tDj1iIrVqzgscceU4cjuUJRFBITE/nxj3/MT37yEwCqqqqIi4tjxYoV3HTTTR59ntZKozEQKSwsZOPGjWpi2WAwMGPGDM4991xCQhTgDeAFTpw4ypo1Ok6fTgVmMWLEhVx++e+Jisr18JPeBm5izZo17N69G39/f+68804SHPvfNXqIvtYvTa81NLrPsWPH2LBhgzo4zN/fn9mzZzN//nwCAuqBV4H/cvToMT7/3Ehl5ShgFuPHX8gllzzIoEGVHn7SDuAc3nnnHQ4dOkRwcDD33HOPU79uDe/T1/ql6bWGRvdQFIWcnBw2bNhAcXExINXbc+fO5ZxzzsHPrxx4CUV5iYMHS/jySz9qa8cBs0hLW8DixbcRHGzu8DNaOYaiJPPaa69x4sQJIiIiuOeeewgNDe2p09NooT9ol6bXGho9zQngP4glSDlirXoL8BCVlY08/fQELBY4dEg610NCZAbCXXe19c3WAWewDZHU6F36hbVIZ8nPz6ekpIRFixapz4WHhzN79mx27NjRh0emodH3DBkyhFtvvZU777yTlJQULBYLu3btamlPDAUeAvaTnNzIAw/UsnDhixiNI8jNzeX55/PZskWqSdwzAoDLLruM1NRUTCYTq1ataqkA19AQNL3W0HDNsGHDuPPOO7n11ltJTEzEZDLx/fffY7VakcD4x8BhRo1q4uGHK5k//5/o9UkcPJjBc89V8v33YHU+m7cN0m1zzTXXkJiYSH19PW+99ZbaIq+hAZpea2i4QqfTMWrUKO677z5uuOEGYmNjaWhoID09vcXiLw74NTrdcSZMaOKRR8qYOfN36HSD2bt3G88+a2bfPumucU88Op2Om266iejoaCorK3nrrbcwtXpLaWhoeq2h0WWSgT8hc2YagGLgn0AqERHl3HEHREXJbJqaGigpgcOH5eGIH1oS++yg3ySyS0pKAIiLi3N4Pi4uTn3NGU1NTVRXVzs8NDQGKikpKSxfvpzbb7+dxYsXO/itlZWVAVKtvWDBAh566CFSU1Mxmw2sXw8vvggtBYIdEKTu44YbbmDw4MHU1NTw5ptvai1tGiqaXmtodIxOp2PkyJHce++93HTTTVx88cUEBQWpr9v02s/Pj0WLFnH//feTlJRCUxN88QW88ooE2R0TCEjF97Jly4iIiODMmTO8/fbbmgerhoqm1xoaHaPT6Rg/fjwPPvgg11xzDRdffDFGo3haK4qi6nVgYCCXX345d911F3Fx8dTXw+rV8MYbcOZMh5+AJEcgODiYW265hZCQEIqLi/nggw9aFjk1NDS91tDoGQJV7+wRIySh7ecHeXmwbl3b4hGtS+ZsoVOJ7J///OfodLoOH4cOHeqpY3XKX/7yF8LDw9XH0KFDe/XzNTR6G51OR2pqKuecc476XGFhIc899xwffvih2rYWFRXFbbfdxjXXLCAkRM/p0/Daa3RQnR0PjFW/CwwM5JZbbmHQoEGcPn2ad955R0uOnEVoeq2h0ffodDrGjh3LtGnT1OeOHj3Ks88+y2effUZNTQ0gN6l33/0Al18+iYAAHYWF8NJLkJ7urNpPB0wAYtRnQkNDueWWWwgMDKSgoICPPvoIi2dtOBr9AE2vNTT6Hr1ez+TJk5kwYYL6XGZmJs8//7zDQMihQ4dy330/Y9GiRPz8ID8f/vMfyMx0ptcG4Hzsb7mjoqK4+eab8fPz48iRI3z++ef0sNOnhhfR9FpD42xjMhCFvz8sXAipqdDcLAuQOTmwa5dtOyNwcd8dpkan6FQi+8c//jHZ2dkdPlJTU7t0IPHx8QCUlpY6PF9aWqq+5oxf/OIXVFVVqY8C567tGhoDGtuQr/379/P000/z8ccfU1ZWhk6nY/LkX/PII1YmT5YAe/16mb6e62CbrQceRgS8lfDwcJYtW0ZAQADHjh1j+/btvXVKGt1E02sNjf6JTa937drFU089xRdffEFVVRU6nY6ZM3/FI48ojBkjC46ffy4Jbcc/FQX4IbYJ7TZiY2O5+eabMRgMZGdns3fv3t46JY1uoum1hkb/5OTJk1itVnUg5Nq1a6mtrcVgMDJ//s956CEYNgxMJvjoI1ixom03jQXRa0eSkpK49tpr0el07N69u9cTnxpdR9NrDY2zDX/gQUDPuHEwZgzEx4PZLIMfWxsYzMAP+uwoNTqH0f0mrcTGxhIbG9sjBzJ8+HDi4+NZv349U6dOBcTse+fOnR1O+g0ICCAgIKBHjklD42xh9uzZJCUlsWHDBnJzc8nIyGDfvn1MmDCBBQsWEBf3OEuX/h+pqbB2LZSVwcqVIuQXX6wjKmou8BOn+46Pj+eWW25h+/btzJs3r3dPTKPLaHqtodE/ueCCCxg+fDjr16+noKCA77//nl27djFlyhTmz19IdPSt3HTTm+zcCRs3QlGRWI1MniyDaQYNuhK4y+m+U1JSuPHGG8nKynKoAtfo32h6raHRP7n88ssZNWoUGzZsoKSkhG3btrFz506mTZvGvHk3Exn5Bbff/jVbtihs3QrHj0t19vTpcOGFEBx8N3Cl032PHTuWpUuXUlBQwNixY51uo9H/0PRaQ+Ns5JfAWnS63SxdaqG6WuLq4mL4/nuxHBk+/JfAnL4+UA0P6TGP7BMnTpCRkcGJEyewWCxkZGSQkZFBbW2tus3YsWNZvXo1IO23jz32GH/84x/59NNP2b9/P7fffjuJiYlcffXVPXWYGhoDhiFDhnDbbbdx7733MmbMGBRFISsri1WrVmG1/h2d7hmmTo3nBz+AOXNAr4fDh40899w5rFv3c0wm13KQnJzMTTfdpHoGWq1WioqKeuvUNHoYTa81NHqXYcOGcdddd7F8+XJSU1OxWq3s3buXDz74EEV5DZ3uT5xzThSPPgrTpslE9czMAJ599ny2bHkMs9l1G/ro0aO55ppr0OtF081mc4femhpnF5pea2j0LqNHj+b+++9n2bJlJCUlYTab+f7771mz5ivgE/T6n3HeeWE88ghMnCjdj7t2BfH005ewc+fdWK2u9Xry5MlcfvnlLcMlxev49OnTvXRmGj2NptcaGv2FYGAD8ADR0YE89hg8/rgsOppMYaxceQW7dl3NrlafEY1+TqcqsjvDb3/7W15//XX1+7S0NAA2btzI+eefD/w/e2cdHtXVhPF3JU4EhyABgrtrIEggeHErNNCWUgr0o1ihLQWKFSuupYXiFKe4u0twJ0BwCJCEeHbP98ewSTbryVqS+T3PfWDvnnvu3LvZ956dM2cGuHPnDsLDw5PajBgxAlFRUfjmm2/w4cMH+Pn5Yc+ePXB2draUmQyT6ShQoAC6d++OV69e4fjx4/Dx8YFUKgMwEEL0g0KxB4GBH1C1qsCePbF48OA5Tpw4jytXbiMgIAAVK1ZMGlDr4sCBAzhz5gxatGiBGjVqWOfCGIvBes0w1kcikaBIkSIoUqQInj59imPHjqFSpUqQSOQAfoIQQyGR7ELbtpGoXl1g9+5ohIa+wsGDR3Hp0lUEBgaiVKlSevVaCIH//vsPN27cQLt27VC+fHnrXSBjEVivGcb6SCQSlCxZEiVKlMCjR49w7Ngx+Pn5gZasT0Zi4ig4Ox9Ap04fUb26wJ49H/Hy5Rvs3r0XFy9eRvPmzQ2mm1Aqldi4cSOePHmCzp07o3jx4la5NsZysF4zjD3hBmAegEmQSg/BySkSn3+eD3/+eRebN2/FkSM/omTJkvjw4QOaNGli0B/C2BaJyGTVJSIiIuDp6Ynw8HB4eHjY2hyGsSuuXbuGHTt2oEWLFqhUqRIA4O7du9i7dy/evXsHgPL2tWjRAgUKFNDahxAC27ZtQ3BwMACgXr16CAgIYLE3A1lNv7La9TKMKZw+fRonTpxA69atUaZMGQghcO3aNezfvz+pSKSvry+aN2+uc5lzYmIiNm7cmJR/tWnTppwiykxkNf3KatfLMKZw4MABXLt2DZ999lnSKptLly7h0KFDSUUiy5Qpg2bNmiF79uxa+4iLi8PatWvx6NEjSKVStGnTJsnxyaSdrKhdWfGaGSatrFu3Dlu3bsXdu3chl8tRsWJFtGvXDi1btkxa3chYB1O0iz8ZhslCXL16FXFxcdi6dSvWrVuHqKgolCpVCt999x0CAgLg6OiIp0+fYunSpTh06JDWKuoSiQSfffYZmjRpAgA4efIkzp8/b+1LYRiGybQolUpcv34dUVFRWL9+PTZv3ozY2FhUrFgRgwYNQv369SGTyfDgwQMsXLgQp0+f1qrXcrkcXbp0QZ06lPNv//79uH79urUvh2EYJtOSkJCAW7duITw8HCtWrMCuXbuQmJiI6tWrY9CgQahVqxakUilu3bqF+fPnJwWCpMbJyQm9evVC5cqVoVQq8d9//+Hhw4fWvRiGYZgsRseOHdGmTRuULVsWSqUSV65cwcaNG7Fp0yYolUpbm8fogCOyGSYLoVQqcerUKRw+fBgKhQKurq5o1aoVypUrBwCIjIzE/v37cfXqVQAUPdK+fXs4Ojpq7e/UqVPYt28fpFIpevXqhaJFi1rtWjIjWU2/str1MowpJCYm4siRIzh58iSEEPDw8EDbtm2Tlpu/f/8ee/fuTYq2rlKlClq1apVUyyA1+/btw6lTp+Dg4IAvv/wS+fPnt9q1ZEaymn5ltetlGFOIj4/H/v37kwI7cuTIgfbt26NQoUIAgNevX2P37t0ICQkBANStWxcBAQFao/2EENi6dSuuXLkCFxcX9O3bFzly5LDexWQysqJ2ZcVrZpj0oFAosGXLFuzcuRPXr1+HEAKlSpXC8OHDkwqvMpaHI7IZhtGKVCqFn58fvvnmG+TLlw/R0dHYsGEDNm7ciJiYGLi7u6NDhw5o3749ZDIZbt26hb/++gsfPnzQ2l+dOnVQsWJFKJVKbNiwAe/fv7fuBTEMw2RS5HI5AgIC8OWXXyJnzpyIiIjAqlWrsGPHDsTHxyN79uzo2rUrmjdvDolEgsuXL2PFihWIiorS2l9AQACKFy+OhISEpBU5DMMwTPpxdHREq1at0KtXL3h4eODdu3f4+++/sX//fiQmJiJPnjz44osv4O/vD4ACQdauXYvY2FiNviQSCdq0aYMCBQogJiYG69atQ1xcnLUviWEYJssgk8nQsWNHdOrUCZUrV0ZiYiJu3LiBbdu2aV3xyNgeixV7tBWqP7SIiAgbW8Iw9ouLiwu6du2KkydP4tSpU7h48SJKliyJIkWKAACKFi2Kjh07YvPmzXjy5Alu3ryps0iYv78/QkND8erVK9y9exdlypSx4pVkLlS6lVUemKzXDGMYT09PdO/eHUePHsWFCxdw6tQplCpVCnnz5gUAlC1bFk5OTti2bRvu3buHu3fvwtfXV2tfTZs2xfPnz/Hu3Tvcu3fPYPExRjes1wzDpCZ37tzo2bNnUhqn48ePo1SpUvDy8gIAVKtWDa6urtixYwdu3ryJqlWr6qxJ07JlSyxfvhyvX79GSEgIvL29rXglmYesptUA6zXDpBU/Pz8olUp8+PABly9fxvPnz/Hq1Su4urra2rQsgSl6nelSizx9+jRpGRfDMExGJDQ0FAULFrS1GRaH9ZphmIwO6zXDMIz9k1W0GmC9ZhgmY2OMXmc6R7ZSqcTz58/h7u4OiURia3NMIiIiAoUKFUJoaCjns0oB3xdN+J5oJ6PfFyEEIiMj4e3tnSWqJLNeZz74vmjC90Q7Gf2+sF5nHDL635ql4PuiCd8T7WTk+5LVtBpgvc6M8H3RhO+JdjLyfTFFrzNdahGpVJrhZ1s9PDwy3B+dNeD7ognfE+1k5Pvi6elpaxOsBut15oXviyZ8T7STke8L63XGIiP/rVkSvi+a8D3RTka9L1lJqwHW68wM3xdN+J5oJ6PeF2P1OmtMSzIMwzAMwzAMwzAMwzAMwzAZFnZkMwzDMAzDMAzDMAzDMAzDMHYNO7LtCCcnJ4wZMwZOTk62NsWu4PuiCd8T7fB9YawF/61ph++LJnxPtMP3hbEW/LemHb4vmvA90Q7fF8Za8N+advi+aML3RDtZ5b5kumKPDMMwDMMwDMMwDMMwDMMwTOaCI7IZhmEYhmEYhmEYhmEYhmEYu4Yd2QzDMAzDMAzDMAzDMAzDMIxdw45shmEYhmEYhmEYhmEYhmEYxq5hRzbDMAzDMAzDMAzDMAzDMAxj17Aj206ZOHEi6tatC1dXV3h5ednaHJsxf/58FClSBM7OzqhVqxbOnTtna5NszrFjx9CmTRt4e3tDIpFg69attjbJ5kyePBk1atSAu7s78uTJg3bt2uHOnTu2NovJIrBeE6zXmrBea8J6zdgS1muC9Vod1mrtsF4ztoT1mmC9Vof1WpOsqNXsyLZT4uPj0blzZ/Tv39/WptiM9evXY8iQIRgzZgwuXbqESpUqITAwEK9fv7a1aTYlKioKlSpVwvz5821tit1w9OhRDBgwAGfOnMH+/fuRkJCAZs2aISoqytamMVkA1mvWa12wXmvCes3YEtZr1mttsFZrh/WasSWs16zX2mC91iQrarVECCFsbQSjm+XLl2Pw4MH48OGDrU2xOrVq1UKNGjUwb948AIBSqUShQoUwaNAgjBw50sbW2QcSiQRbtmxBu3btbG2KXfHmzRvkyZMHR48eRYMGDWxtDpNFYL1mvdYH67V2WK8ZW8B6zXqtC9Zq3bBeM7aA9Zr1Whes19rJClrNEdmMXRIfH4+LFy8iICAgaZ9UKkVAQABOnz5tQ8uYjEB4eDgAIEeOHDa2hGEyP6zXTHpgvWYY68F6zaQH1muGsR6s10xayQpazY5sxi55+/YtFAoF8ubNq7Y/b968ePnypY2sYjICSqUSgwcPRr169VC+fHlbm8MwmR7WayatsF4zjHVhvWbSCus1w1gX1msmLWQVrWZHthUZOXIkJBKJ3u327du2NpNhMjQDBgzA9evXsW7dOlubwmRgWK8ZxvKwXjPmgPWaYSwP6zVjDlivGcayZBWtltvagKzE0KFD0bt3b71tihUrZh1j7JxcuXJBJpPh1atXavtfvXqFfPny2cgqxt4ZOHAgduzYgWPHjqFgwYK2NofJwLBeGw/rNZMWWK8Zc8F6bTys10xaYL1mzAXrtfGwXjOmkpW0mh3ZViR37tzInTu3rc3IEDg6OqJatWo4ePBgUvJ+pVKJgwcPYuDAgbY1jrE7hBAYNGgQtmzZgiNHjqBo0aK2NonJ4LBeGw/rNWMKrNeMuWG9Nh7Wa8YUWK8Zc8N6bTys14yxZEWtZke2nfLkyRO8e/cOT548gUKhQHBwMACgePHiyJYtm22NsxJDhgxBUFAQqlevjpo1a2LWrFmIiopCnz59bG2aTfn48SPu37+f9DokJATBwcHIkSMHChcubEPLbMeAAQOwZs0abNu2De7u7kl5wzw9PeHi4mJj65jMDus167UuWK81Yb1mbAnrNeu1NlirtcN6zdgS1mvWa22wXmuSJbVaMHZJUFCQAKCxHT582NamWZW5c+eKwoULC0dHR1GzZk1x5swZW5tkcw4fPqz1byMoKMjWptkMbfcDgFi2bJmtTWOyAKzXBOu1JqzXmrBeM7aE9ZpgvVaHtVo7rNeMLWG9Jliv1WG91iQrarVECCHS7w5nGIZhGIZhGIZhGIZhGIZhGMsgtbUBDMMwDMMwDMMwDMMwDMMwDKMPdmQzDMMwDMMwDMMwDMMwDMMwdg07shmGYRiGYRiGYRiGYRiGYRi7hh3ZDMMwDMMwDMMwDMMwDMMwjF3DjmyGYRiGYRiGYRiGYRiGYRjGrmFHtp3SsGFDNGzY0NZmmIXly5dDIpHg0aNHJh/bu3dvFClSxGC7IkWKoHXr1qYbZwdIJBKMHTvWrH0WKVIEvXv3NmufDMNoh/WaYL1OG6zXDMNkJRo2bIjy5cvb2ow0wXrNMEx6yAgaYspvAWOu59GjR5BIJJg+fbp5DLQiR44cgUQiwZEjR2xtCpMKdmSbCdUXXrU5OzujZMmSGDhwIF69emVr8xgmy/DixQuMHDkSjRo1gru7u96HT8OGDdW+t6qtefPm1jWasSqs1wxjHxir16ofQbq2vn37Wt94hrFzUj/r5HI5ChQogN69e+PZs2ca7VOPiRwdHVG0aFF88803CA0N1dt3ym3kyJHWukSGYRi74Nq1a+jUqRN8fHzg7OyMAgUKoGnTppg7d66tTWOYTInc1gZkNn777TcULVoUsbGxOHHiBBYuXIhdu3bh+vXrcHV1tbV5NqFXr17o1q0bnJycbG0KkwW4c+cOpkyZghIlSqBChQo4ffq03vYFCxbE5MmT1fZ5e3tb0kTGTmC91oT1mrEmxup17ty5sXLlSo39e/bswerVq9GsWTNLm8owGZaUz7ozZ85g+fLlOHHiBK5fvw5nZ2e1tinHRPHx8bh58yYWLVqEvXv34tatWxrPRlXfKcmo0dYMwzBp4dSpU2jUqBEKFy6Mvn37Il++fAgNDcWZM2cwe/ZsDBo0KKntnTt3IJXadywp/xZgMgLsyDYzLVq0QPXq1QEAX3/9NXLmzIk//vgD27ZtQ/fu3W1snW2QyWSQyWS2NiNdREVFwc3NzdZm2D32cJ+qVauGsLAw5MiRAxs3bkTnzp31tvf09ETPnj2tZB1jT7Bea8J6nXWwh/tkrF67ublp1enly5fDw8MDbdq0sbSpDJNhSf2sy5UrF6ZMmYLt27ejS5cuam21jYmKFi2KgQMH4uTJk2jatKnOvu0Fe9A2hmGyDhMnToSnpyfOnz8PLy8vtfdev36t9jojOIcz4m+B6OjoLBuElFWx7+mgTEDjxo0BACEhIQCAxMREjB8/Hr6+vnByckKRIkXw008/IS4uTmcfHz9+hJubG/73v/9pvPf06VPIZLKk6AnVUr+TJ09iyJAhyJ07N9zc3NC+fXu8efNG4/gFCxagXLlycHJygre3NwYMGIAPHz6otVHlsrt69Sr8/f3h6uqK4sWLY+PGjQCAo0ePolatWnBxcUGpUqVw4MABteO15Vnatm0bWrVqBW9vbzg5OcHX1xfjx4+HQqEwfFON5J9//oFcLsfw4cOT9p09exbNmzeHp6cnXF1d4e/vj5MnT6odN3bsWEgkEty8eRM9evRA9uzZ4efnByA5t+uJEydQs2ZNODs7o1ixYlixYoXG+T98+IDBgwejUKFCcHJyQvHixTFlyhQolUqzXaMQAhMmTEDBggXh6uqKRo0a4caNG1rbGmtPWFgYevXqBQ8PD3h5eSEoKAhXrlyBRCLB8uXLk9r17t0b2bJlw4MHD9CyZUu4u7vj888/BwAolUrMmjUL5cqVg7OzM/LmzYt+/frh/fv3Gnbt3r0b9evXh5ubG9zd3dGqVSuNa0hISMDt27fx4sULg/fE3d0dOXLkMNguJYmJifj48aNJxzCZD9Zr1mvWa/vXaxUvXrzA4cOH0aFDB42oUoZhdFO/fn0AwIMHD4xqny9fPgCAXG65+Kd9+/bB1dUV3bt3R2JiIgDg9u3b6NSpE3LkyAFnZ2dUr14d27dvVztO9cw6evQovvvuO+TJkwcFCxYEkPw8vHnzJho1agRXV1cUKFAAU6dO1Th/XFwcxowZg+LFi8PJyQmFChXCiBEj9D7vGYZhANLScuXKaTixASBPnjxqr7XllFaN2V1cXFCwYEFMmDABy5Yt0xiPq8a1R44cQfXq1eHi4oIKFSokpWTbvHkzKlSoAGdnZ1SrVg2XL1/WsOfQoUNJ4zgvLy989tlnuHXrllobbb8FTBnDGoMQAt988w0cHR2xefPmpP2rVq1CtWrV4OLighw5cqBbt24aqa1U2n7x4kU0aNAArq6u+Omnn9RycS9ZsiTp91uNGjVw/vx5DRuMecYw9gs7si2MapCYM2dOABQJ8euvv6Jq1aqYOXMm/P39MXnyZHTr1k1nH9myZUP79u2xfv16DcfB2rVrIYRI+kGqYtCgQbhy5QrGjBmD/v3747///sPAgQPV2owdOxYDBgyAt7c3ZsyYgY4dO2Lx4sVo1qwZEhIS1Nq+f/8erVu3Rq1atTB16lQ4OTmhW7duWL9+Pbp164aWLVvi999/R1RUFDp16oTIyEi992X58uXIli0bhgwZgtmzZ6NatWr49ddfzZZXb8mSJejTpw9GjhyJadOmASDhbtCgASIiIjBmzBhMmjQJHz58QOPGjXHu3DmNPjp37ozo6GhMmjRJLf/m/fv30alTJzRt2hQzZsxA9uzZ0bt3bzUxj46Ohr+/P1atWoUvvvgCc+bMQb169TBq1CgMGTLELNcIAL/++itGjx6NSpUqYdq0aShWrBiaNWuGqKgotXbG2qNUKtGmTRusXbsWQUFBmDhxIl68eIGgoCCt509MTERgYCDy5MmD6dOno2PHjgCAfv36Yfjw4ahXrx5mz56NPn36YPXq1QgMDFT721q5ciVatWqFbNmyYcqUKRg9ejRu3rwJPz8/tYfns2fPUKZMGYwaNcps907F3bt3k5wy+fLlw+jRozX+/pmsAeu1dlivzQPrtXlZt24dlEqlxveJYRj9qL6v2bNn13hPoVDg7du3ePv2LV68eIFDhw4lOXjr1aun0T48PDypvWozlR07dqBt27bo3LkzVq1aBblcjhs3bqB27dq4desWRo4ciRkzZsDNzQ3t2rXDli1bNPr47rvvcPPmTY1n0/v379G8eXNUqlQJM2bMQOnSpfHjjz9i9+7dSW2USiXatm2L6dOno02bNpg7dy7atWuHmTNnomvXriZfD8MwWQsfHx9cvHgR169fN/nYZ8+eJTmFR40ahR9++AGrV6/G7Nmztba/f/8+evTogTZt2mDy5Ml4//492rRpg9WrV+OHH35Az549MW7cODx48ABdunRRC4A4cOAAAgMD8fr1a4wdOxZDhgzBqVOnUK9ePYOFHY0dwxqDQqFA7969sWLFCmzZsgUdOnQAQJHtX3zxBUqUKIE//vgDgwcPxsGDB9GgQQONwJ2wsDC0aNEClStXxqxZs9CoUaOk99asWYNp06ahX79+mDBhAh49eoQOHTqojWlNfcYwdohgzMKyZcsEAHHgwAHx5s0bERoaKtatWydy5swpXFxcxNOnT0VwcLAAIL7++mu1Y4cNGyYAiEOHDiXt8/f3F/7+/kmv9+7dKwCI3bt3qx1bsWJFtXYqOwICAoRSqUza/8MPPwiZTCY+fPgghBDi9evXwtHRUTRr1kwoFIqkdvPmzRMAxN9//61mCwCxZs2apH23b98WAIRUKhVnzpzRsHPZsmUaNoWEhCTti46O1riH/fr1E66uriI2NjZpX1BQkPDx8dFomxofHx/RqlUrIYQQs2fPFhKJRIwfPz7pfaVSKUqUKCECAwPV7kt0dLQoWrSoaNq0adK+MWPGCACie/fuWs8DQBw7dixp3+vXr4WTk5MYOnRo0r7x48cLNzc3cffuXbXjR44cKWQymXjy5EnSPgBizJgxBq8xNarPsFWrVmrX9NNPPwkAIigoyGR7Nm3aJACIWbNmJbVRKBSicePGGp9rUFCQACBGjhyp1ufx48cFALF69Wq1/Xv27FHbHxkZKby8vETfvn3V2r18+VJ4enqq7Q8JCdG4JmPYsGGDACAOHz6s9f0vv/xSjB07VmzatEmsWLFCtG3bVgAQXbp0Mek8TMaC9VrdTtZr1uuMoNepqVatmsifP7/ad4JhmGS0Pes2btwocufOLZycnERoaKhae9XzI/VWpkwZ8fDhQ619a9sM4e/vL8qVKyeEIB1zcHAQffv2VfsuN2nSRFSoUEHtGaNUKkXdunVFiRIlNOzw8/MTiYmJWq9nxYoVSfvi4uJEvnz5RMeOHZP2rVy5UkilUnH8+HG14xctWiQAiJMnTybt8/HxMVnbGIbJ3Ozbt0/IZDIhk8lEnTp1xIgRI8TevXtFfHy8RtvUGjJo0CAhkUjE5cuXk/aFhYWJHDlyaIzHVePaU6dOJe1TjeVdXFzE48ePk/YvXrxYY0xVuXJlkSdPHhEWFpa078qVK0IqlYovvvgiaV/q3wKmjGG1oRoXTps2TSQkJIiuXbsKFxcXsXfv3qQ2jx49EjKZTEycOFHt2GvXrgm5XK62X6XtixYt0nqenDlzinfv3iXt37ZtmwAg/vvvv6R9xj5jDh8+bNLYlLEeHJFtZgICApA7d24UKlQI3bp1Q7Zs2bBlyxYUKFAAu3btAgCNCK+hQ4cCAHbu3Km3X29vb6xevTpp3/Xr13H16lWteSO/+eYbSCSSpNf169eHQqHA48ePAdCMXHx8PAYPHqxWcKBv377w8PDQsCVbtmxqUYilSpWCl5cXypQpg1q1aiXtV/3/4cOHOq8FAFxcXJL+HxkZibdv36J+/fqIjo7G7du39R6rj6lTp+J///sfpkyZgl9++SVpf3BwMO7du4cePXogLCwsKWokKioKTZo0wbFjxzSWbH/77bdaz1G2bNmkZZkAFaEqVaqU2jVv2LAB9evXR/bs2dWiVAICAqBQKHDs2LE0X6MK1Wc4aNAgtc968ODBGm2NtWfPnj1wcHBQi2iUSqUYMGCATjv69++vcS5PT080bdpU7VzVqlVDtmzZcPjwYQDA/v378eHDB3Tv3l2tnUwmQ61atZLaAbSUSgihtlTeHPz1118YM2YMOnTogF69emHbtm3o27cv/v33X5w5c8as52LsD9Zr1muA9Tqj6HVK7t69i4sXL6Jbt252XzSJYWxNymddp06d4Obmhu3btyel4EhJkSJFsH//fuzfvx+7d+/GrFmzEB4ejhYtWmhNeTV//vyk9qrNWNauXYuuXbuiX79+WLx4cdJ3+d27dzh06BC6dOmS9Mx5+/YtwsLCEBgYiHv37uHZs2dqffXt21drTtds2bKpPXcdHR1Rs2ZNjWdAmTJlULp0aTV9U6UbS6lvDMMwqWnatClOnz6Ntm3b4sqVK5g6dSoCAwNRoEABg6kq9uzZgzp16qBy5cpJ+3LkyKFztVnZsmVRp06dpNeqsXzjxo1RuHBhjf0qrXvx4gWCg4PRu3dvtZRuFStWRNOmTZN+92jDlDGsPuLj49G5c2fs2LEDu3btUivUvXnzZiiVSnTp0kVNh/Ply4cSJUpo6LCTkxP69Omj9Txdu3ZVW3Gk+h2guhdpecYw9gcXezQz8+fPR8mSJSGXy5E3b16UKlUqaWD2+PFjSKVSFC9eXO2YfPnywcvLK8lpoQ2pVIrPP/8cCxcuTEpmv3r1ajg7O2stjpRSyIDk5YOqnJeqc5UqVUqtnaOjI4oVK6ZhS8GCBdWEC6CCMIUKFdLYl/I8urhx4wZ++eUXHDp0CBEREWrvhYeH6z1WF0ePHsXOnTvx448/quVZBYB79+4BgM4l16rzphS91FXYVaS+twDd35TXfO/ePVy9ehW5c+fW2kfqwg9pQfUZlShRQm1/7ty5NZaLGmvP48ePkT9/fo1iCan/ZlXI5XKNH0L37t1DeHi4Rk6w1OdSfSaqHwqp8fDw0Lrf0gwdOhR//vknDhw4gNq1a9vEBsY6sF6zXqvOx3qdsfRaNUnEaUUYxjCqZ114eDj+/vtvHDt2TGfBMTc3NwQEBCS9bt68Ofz8/FC9enX8/vvvmDFjhlr7mjVrpqnYY0hICHr27InOnTtj7ty5au/dv38fQgiMHj0ao0eP1nr869evUaBAgaTXup4B2p6H2bNnx9WrV5Ne37t3D7du3bLoM4BhmMxNjRo1sHnzZsTHx+PKlSvYsmULZs6ciU6dOiE4OBhly5bVetzjx4/VHNMqdI3lUo9rVWN5Q2N8Xb8lAKBMmTLYu3evzkK5poxh9TF58mR8/PgRu3fvRsOGDdXeu3fvHoQQGudQ4eDgoPa6QIECcHR01NrW0O+qtDxjGPuDHdlmxpgBXeoBlbF88cUXmDZtGrZu3Yru3btjzZo1aN26dZJQpURXpVkhRJrOrau/tJznw4cP8Pf3h4eHB3777Tf4+vrC2dkZly5dwo8//pjm4lrlypXDhw8fsHLlSvTr109tUKvqc9q0aWozninJli2b2uuUUYgpMeaalUolmjZtihEjRmhtW7JkSZ3XYQksZY+Tk5NGNJxSqUSePHnUolFTovqhoPpMVq5cmVRIKCWWLCqkD9VA4N27dzY5P2M9WK8Nn4f1mvVa1Q6wH71es2YNSpUqhWrVqln1vAyTEUn5rGvXrh38/PzQo0cP3LlzR0NLtVGtWjV4enqaZXWKivz58yN//vzYtWsXLly4oPYsVunNsGHDEBgYqPX41E6e9D4DKlSogD/++ENr29QOIoZhGF04OjqiRo0aqFGjBkqWLIk+ffpgw4YNGDNmjFn6N+cY39oEBgZiz549mDp1Kho2bKhWqFupVEIikWD37t06V9ekRJfmA4bvRVqeMYz9wY5sK+Lj4wOlUol79+6hTJkySftfvXqFDx8+wMfHR+/x5cuXR5UqVbB69WoULFgQT5480YhiMMUWALhz5w6KFSuWtD8+Ph4hISFq0Rjm5siRIwgLC8PmzZvRoEGDpP0hISHp6jdXrlzYuHEj/Pz80KRJE5w4cQLe3t4AAF9fXwAUNWbJa1Ph6+uLjx8/WvRcqs/w3r17ap/hmzdvNCIsjbXHx8cHhw8fTooiVXH//n2j7fL19cWBAwdQr149vQ8Z1WeSJ08eq3wmxqJadqQrMofJGrBeE6zX5oH12nycPXsW9+/fx2+//WZTOxgmIyKTyTB58mQ0atQI8+bNM7por0KhwMePH81mh7OzM3bs2IHGjRujefPmOHr0KMqVKwcASRrp4OBgtWfAlStX0KRJkzRPXjMMw6RGNUH34sULnW18fHy0jttMGcsZQ8rfEqm5ffs2cuXKpTUaO+Wxxoxh9VG7dm18++23aN26NTp37owtW7YkBUL4+vpCCIGiRYtaPIDE2s8YxjJwYkEr0rJlSwDArFmz1ParIgBatWplsI9evXph3759mDVrFnLmzIkWLVqkyZaAgAA4Ojpizpw5ajN1f/31F8LDw42yJa2oZslSnjc+Ph4LFixId98FCxbEgQMHEBMTg6ZNmyIsLAwARZP4+vpi+vTpWgfi2vL+pYcuXbrg9OnT2Lt3r8Z7Hz58QGJiYrrPERAQAAcHB8ydO1ftXqb++zLFnsDAQCQkJODPP/9Mel+pVGL+/PlG29WlSxcoFAqMHz9e473ExMSkqsOBgYHw8PDApEmT1KoIq0j5mSQkJOD27dt6BwKmEhERgbi4OLV9QghMmDAhyT4m68J6TbBes16rzmVLvU7JmjVrAAA9evSwSP8Mk9lp2LAhatasiVmzZiE2NtZg+8OHD+Pjx4+oVKmSWe3w9PTE3r17kSdPHjRt2hQPHjwAQBNmDRs2xOLFi7XqiCWeAc+ePVPTUhUxMTGIiooy6/kYhslcHD58WGvksyrvtLZ0HioCAwNx+vRpBAcHJ+179+6dzpVyaSV//vyoXLky/vnnn6SxHUA1fPbt25f0u0cbpoxhDREQEIB169Zhz5496NWrV1J0dIcOHSCTyTBu3DiNeymESPqNYA6s/YxhLANHZFuRSpUqISgoCEuWLElarn3u3Dn8888/aNeuHRo1amSwjx49emDEiBHYsmUL+vfvr5EvyFhy586NUaNGYdy4cUiKNwMAAQAASURBVGjevDnatm2LO3fuYMGCBahRo4bWgmTmom7dusiePTuCgoLw/fffQyKRYOXKlWZb+lK8eHHs27cPDRs2RGBgIA4dOgQPDw8sXboULVq0QLly5dCnTx8UKFAAz549w+HDh+Hh4YH//vvPLOcHgOHDh2P79u1o3bo1evfujWrVqiEqKgrXrl3Dxo0b8ejRI+TKlUvn8RKJBP7+/jhy5IjONrlz58awYcMwefJktG7dGi1btsTly5exe/dujb6Ntaddu3aoWbMmhg4divv376N06dLYvn17UpoNYyJV/P390a9fP0yePBnBwcFo1qwZHBwccO/ePWzYsAGzZ89Gp06d4OHhgYULF6JXr16oWrUqunXrhty5c+PJkyfYuXMn6tWrh3nz5gEAnj17hjJlyiAoKMioAmIqZ/SNGzcA0HL4EydOAEBSUblLly6he/fu6N69O4oXL46YmBhs2bIFJ0+exDfffIOqVasaPA+TeWG9JlivWa/tQa9VKBQKrF+/HrVr106KEmcYxnSGDx+Ozp07Y/ny5WrFcsPDw7Fq1SoANJl1584dLFy4EC4uLkZHb5tCrly5sH//fvj5+SEgIAAnTpxAgQIFMH/+fPj5+aFChQro27cvihUrhlevXuH06dN4+vQprly5YjYbevXqhX///RfffvstDh8+jHr16kGhUOD27dv4999/sXfv3jTlAWcYJmswaNAgREdHo3379ihdujTi4+Nx6tQprF+/HkWKFNFZlBAARowYgVWrVqFp06YYNGgQ3NzcsHTpUhQuXBjv3r0z6yqRadOmoUWLFqhTpw6++uorxMTEYO7cufD09MTYsWN1HmfKGNYY2rVrh2XLluGLL76Ah4cHFi9eDF9fX0yYMAGjRo3Co0eP0K5dO7i7uyMkJARbtmzBN998g2HDhqXj6tWx5jOGsRCCMQvLli0TAMT58+f1tktISBDjxo0TRYsWFQ4ODqJQoUJi1KhRIjY2Vq2dv7+/8Pf319pHy5YtBQBx6tQpo+04fPiwACAOHz6stn/evHmidOnSwsHBQeTNm1f0799fvH//XsOWcuXKaZzLx8dHtGrVSmM/ADFgwAANm0JCQpL2nTx5UtSuXVu4uLgIb29vMWLECLF3714NG4OCgoSPj4/W+2DIlrNnzwp3d3fRoEEDER0dLYQQ4vLly6JDhw4iZ86cwsnJSfj4+IguXbqIgwcPJh03ZswYAUC8efPG6GvW9nlFRkaKUaNGieLFiwtHR0eRK1cuUbduXTF9+nQRHx+vdr/GjBmjdhwA0a1bN4PXrVAoxLhx40T+/PmFi4uLaNiwobh+/brw8fERQUFBabLnzZs3okePHsLd3V14enqK3r17i5MnTwoAYt26dUntgoKChJubm07blixZIqpVqyZcXFyEu7u7qFChghgxYoR4/vy5WrvDhw+LwMBA4enpKZydnYWvr6/o3bu3uHDhQlKbkJAQAUDjmnQBQOem4uHDh6Jz586iSJEiwtnZWbi6uopq1aqJRYsWCaVSadR5mIwJ63UyrNcE67V967WKPXv2CABizpw5RvXNMFkZfc86hUIhfH19ha+vr0hMTBRCkDam/P5JJBKRI0cO0bZtW3Hx4kWj+zaEtufU/fv3Rf78+UWZMmWS9PzBgwfiiy++EPny5RMODg6iQIEConXr1mLjxo1G2aHreajtWRUfHy+mTJkiypUrJ5ycnET27NlFtWrVxLhx40R4eHhSO216zTBM1mb37t3iyy+/FKVLlxbZsmUTjo6Oonjx4mLQoEHi1atXam21acjly5dF/fr1hZOTkyhYsKCYPHmymDNnjgAgXr58qXasMWN5IZLHYtOmTVPbf+DAAVGvXj3h4uIiPDw8RJs2bcTNmzfV2mj7LWDKGDY1umxZsGCBACCGDRuWtG/Tpk3Cz89PuLm5CTc3N1G6dGkxYMAAcefOnaQ2urRd13lU9yjl+F0I454xun6TMbZHIoQdZYBnjKJ9+/a4du2a2XMnMfbBrl270Lp1a1y5cgUVKlSwtTkAgK1bt6J9+/Y4ceIE6tWrZ2tzGCbDwHqduWG9ZhiGYRiGYczJ4MGDsXjxYnz8+FFn8UKGycpwjuwMxosXL7Bz50706tXL1qYwFuLw4cPo1q2bzZwiMTExaq8VCgXmzp0LDw8PTrfBMCbAep35Yb1mGIZhGIZh0krqsVxYWBhWrlwJPz8/dmIzjA44IjuDEBISgpMnT2Lp0qU4f/48Hjx4gHz58tnaLCYT8vXXXyMmJgZ16tRBXFwcNm/ejFOnTmHSpEkYNWqUrc1jGLuH9ZqxFqzXDMMwDMMwGZfKlSujYcOGKFOmDF69eoW//voLz58/x8GDB9GgQQNbm8cwdgkXe8wgHD16FH369EHhwoXxzz//sFOEsRiNGzfGjBkzsGPHDsTGxqJ48eKYO3cuBg4caGvTGCZDwHrNWAvWa4ZhGIZhmIxLy5YtsXHjRixZsgQSiQRVq1bFX3/9xU5shtEDR2QzDMMwDMMwDMMwDMMwDMMwdg3nyGYYhmEYhmEYhmEYhmEYhmHsGnZkMwzDMAzDMAzDMAzDMAzDMHZNpsuRrVQq8fz5c7i7u0MikdjaHIZhGKMRQiAyMhLe3t6QSjP/PCPrNcMwGRXWa4ZhGPsnq2k1wHrNMEzGxBS9znSO7OfPn6NQoUK2NoNhGCbNhIaGomDBgrY2w+KwXjMMk9FhvWYYhrF/sopWA6zXDMNkbIzR60znyHZ3dwdAF+/h4WFjaxiGYYwnIiIChQoVStKxzA7rNcMwGRXW64zHmjVrMHXqVDg6OmLBggWoXr26rU1iGMbCZDWtBjKHXjMMk/UwRa8znSNbtXzGw8ODhZthmAxJVlkGyHrNMExGh/U649CxY0f8888/ePHiBXbu3InGjRvb2iSGYaxEVtFqIHPoNcMwWRdj9DprJIpiGIZhGIZhGCbLkjt3bjRs2BAAcOLECbx48cK2BjEMwzAMwzAmw45shmEYhmEYhmEyPZ07d0a2bNnw9u1b/Pfff7Y2h2EYhmEYhjGRTJdahEkDQgCnTwPnzgFKJVC5MtCoEZCFlmAxDMNkCJRK4MgRIDgYkEqBmjWBOnVYrxmGYYygUqVKKFOmDM6fP4+tW7ciKCgITk5OljmZQgHs3QvcugXI5UCDBkCVKpY5F8MwDJN24uOBnTuBBw8AJycgIAAoU8bWVjEMowN2ZGd1Tp4EvvkGuHmTnCIAOUqKFQPmzweaN7etfQzDMAyxezcwcCDw8KG6XpcrByxZAtSta1v7GIZh7ByZTIbOnTsjODgYT548QXBwMGrVqmX+E61bBwwdCjx/DshkFDSiVAI1agBLlwIVK5r/nAzDMIzpLFoE/PILEBZGeq1Ukmb7+wN//QX4+traQoZhUmHR1CLHjh1DmzZt4O3tDYlEgq1bt+ptf+TIEUgkEo3t5cuXljQz63L0KEVe375Nr5VK2gAgJARo2RLYts129jEMYzVYr+2crVuBVq1ImwF1vb51C2jYEDh2zFbWMQxjRViv00fz5s3RuXNntGzZEomJieY/wV9/Ad27kxMboMhslV5fukSTjleumP+8DMPYHazXds7kyUD//uTEBkivhaD/nzgB1KqVPPZmGMZusKgjOyoqCpUqVcL8+fNNOu7OnTt48eJF0pYnTx4LWZiFUSqBoCD1wXVKVALeuzcQG2tV0xiGsT6s13ZMTAzQpw/9X6XNKVEqScuDgrTrOcMwmQrW6/Th4eGB9u3bw9XVFXfv3jVv52/fklNEFwoFjav79jXveRmGsUtYr+2YBw+An3/W/b5CAXz4APzvf1YziWEY47BoapEWLVqgRYsWJh+XJ08eeHl5md8gJpl9+4DHj/W3EYLEe8MGoFcvq5jFMIxtYL22Y/79l7RYH0ol8OgRsH8/EBhoDasYhrERrNfpp3jx4gCAJ0+eIDY2Fs7OzubpeNkycn7oQ6EAzp8HLl/mnNkMk8lhvbZjFi2iVH36NFuhAHbsAJ48AQoXtp5tDMPoxaIR2WmlcuXKyJ8/P5o2bYqTJ0/a2pzMybFjVHjGEHI5L1dnGEYnrNdW4Phx1muGYdIN63Uynp6euHv3LjZt2oS///7bfB0fPWrcyhiplPWaYRidsF5bgUOHDE88AhTcd+qU5e1hGMZo7MqRnT9/fixatAibNm3Cpk2bUKhQITRs2BCXLl3SeUxcXBwiIiLUNsYIEhIAicT4tgzDMClgvbYiCQnaU4qkRiIBLJHvlWGYDA3rtSZSqRRSqRQRERE4ePCg+To2VoNZrxmG0QLrtRWJjze+LftDGMausGhqEVMpVaoUSpUqlfS6bt26ePDgAWbOnImVK1dqPWby5MkYN26ctUzMPJQta5wgK5XUlmEYJgWs11akbFnjHNkJCUCZMpa3h2GYDAXrtXYaNmyIEydO4MGDB3j79i1y5cqV/k7LlgUOHjTspFYoWK8ZhtGA9dqKVKwI3L5t3KQi6zXD2BV2FZGtjZo1a+L+/fs63x81ahTCw8OTttDQUCtal4Hp0gXIls1wO6mUCj4yDMMYgPXaQgQFkRYbwt2dtJ1hGMYArNdAgwYN4OLigsjISJw7d848nfbta5xTpEABrmfAMIxRsF5biH79DOu1REIO72rVrGMTwzBGYfeO7ODgYOTPn1/n+05OTvDw8FDbGCNwcwMmTDDc7scfAa6SzDCMEbBeW4h8+YARIwy3mzgRcHW1vD0Mw2R40qrX7969s5aJFsfX1xf58+eHQqHA/v37zdNpmTLAV18ZTt83fTogk5nnnAzDZGp4fG0h6tcHWrXSHSwikdA2fbrxKVkZhrEKFk0t8vHjR7XZw5CQEAQHByNHjhwoXLgwRo0ahWfPnmHFihUAgFmzZqFo0aIoV64cYmNjsXTpUhw6dAj79u2zpJlZl++/B2JjgZ9/pteqYgcyGaUUGT4c+O0329lnaW7fpmrFhw/TtVepAnz7LVC3Lj+smCwH67WdM348pQ6ZPl29wrpUSno1aRIwcKBtbbQkwcHAwoXA6dP0umZN4LvvgKpVbWoWw9gCW+r1kSNH0DuTrNSTyWSoUaMGHj58iEuXLiEhIQEODg7p73jhQvr3r7+oCK8q4k8qpTH2ggVAt27pP489IgRw5gzdg8uX6Zr9/Wl8zakKmSwIj6/tGIkE+PdfoGdPYMuWZL1W+QFcXIAVK4CmTW1rp6UQggpeLlkC3LgBODgAzZpRpHqxYra2jmH0YlFH9oULF9CoUaOk10OGDAEABAUFYfny5Xjx4gWePHmS9H58fDyGDh2KZ8+ewdXVFRUrVsSBAwfU+mDMiERCEde9egFLl9LAUwhy6H7zDVCkiK0ttAxCAGPGkGMo5Q+MO3eAVauADh2A1asBZ2fb2skwVoT12s6RSoGpU4H+/YE//yQHgUQC1K4NfP014O1tawstg0JBDvpFi9T1+tYtchL17UsOE45sZLIQttTrxExWoDAgIAAbN27Eq1evcPfuXZQrVy79nTo40Lh62DDS6xs3SL/8/YEvvwRy5kz/OeyRuDhKhbV+vbpe37wJzJ0LjBxJk64cLMJkIXh8bee4ugKbN9O4eulS4P59cmAHBABffAFk1uj2yEjyeRw4oK7X164B06bRNnSobW1kGD1IhDCmglTGISIiAp6enggPD+dlNZkNIYCdO4F584CjR8nBUaoUReV98QWlSzGGP/7QL8xSKUXKrF5tHrsZxkiymn5ltevNUigU9MNg7lzg3Dla5VOxIjmlu3cHnJyM62fkSHLg6xqqSCTADz8AM2aYz3aGMYKspl+q623btm1SxGBm4N27d2jTpg2USiXGjh2LwKyYtzo+Hli3jvT66lXS1Ro1gEGDyNEhNzLuqU8fil5UKnW3mTLFuFRZDGMmsppWA1nzmrMM0dGkswsW0OpymQxo0IDG161bGzdRKATQogU5sVUrPLWxbBnXSmOsiinaxY5sJmOgUJCQrlpFgq0SXZVYly5NS2Py5VM/TqkE9u4FNm0CwsMpCmblSnoIGOLmTa5QzFiVrKZfWe16swyxseT82L1bXa+lUtLkWrVIlz091Y9LTAS2bwf++w/4+BHIkYOirvUNsgFysjx9CuTNa5nrYRgtZDX9Ul1vvXr1ULNmTQwYMAC+vr62Nsss7Ny5E+fPn0f16tXRunVrW5tjXcLDgebNaVWmSqOBZO0ODKQl9y4u6sfFxQEbN5KWx8aSni9davh82bIBL18aH3zCMOkkq2k1kDWvOUvw8iXQpAmtSgSSgzxUet29Ozm5U08+RkUBa9cCR45QmkJXV2D5csPny58fCA3lVY+M1TBFuyyaWoRhzMaYMckR0imdGioBv3ePijVcuJDs3L5zB2jTht6Ty+k4iUR/pIgKuZwcKNOnm/c6GIZhMjuDBpFzA1DXa5X2XrhAq152705+78IFoF074Nkz0/VaqaSB+/DhZrsEhmG04+joiD179uDx48eYO3cuvDNBWqOSJUvi/PnzuHfvHoQQkGSl1Beffw6cP0//T6m3Ku3ev59WPi5blvze4cNA585AWBg5OITQvWomNR8/kgM8KMg89jMMw2QFhCC/xt27mnqr0ut16wAfH2Dy5OT3tmwhvY2MTNZrY8bWAPDiBbBvH0VvM4ydoaNEK8PYEZGRwMyZ+gfJiYnApUsUlQ1QdF79+sDDh8nvmyLcCgXw4IHhdsHByfnEvb2Bxo2BDRtotpNhGCar8eIFOTz0aa1CAezZQ3n4AFoa2agRRZoApuu1VGqcXp8+TQV9ChcGChSgyc8dOwxHfDMMk0SjRo0gkUhw/fp1LFiwAAmZYLxTpEgRSCQS3L9/H7dv37a1Odbjxg1K2adPA1UThc+e0euzZylK+/17eq1QUBtjHdkODob1WlWArFMnoFAh2jp2BA4eNP48DMMwmYkjRyjoQ1+dCiGA2bOBiAh6vWcPaefHj/RapdfGIpEY1mulkp4jrVoBBQvSGLtnz+Ti7AxjIdiRzdg/27YZlwpELqfBNkA5+N6/T7uDQghKLaLrB42qYGSVKuS0efyYHDjHjgFdugB161KkCsMwTFZi7VrjHA1yOaV5AoBff6Wl6WnVa4UCuHgRCAnR/r5SSRGFdetSEbLQUOD5c4oab9OGltVHRaXt3AyTxQgKCkL16tWRmJiIPXv2YOfOnbY2Kd3IZDKcPn0aO3fuxJIlS2xtjvVYudL4/Ndr19K/w4eb7gxJSWIicPIkabA24uNpxU6TJjT+f/qUtu3bqfhat27UhmEYJithrF7HxABbt9JY/H//o31pnQAUghzob99qf//jR5rYbN2axtTPntEYe/16GnP375/2ZwXDGIAd2Yz98+KFcbmZEhNJQKOjgb//1j9jaQz371OO7G++0exr4ULgt9+Sz6tC5YgJDiYHCUeOMAyTlTBWr4Wgtq9eUVHI9Oi1ELQix9cXGDVKU3d/+400G9Cu14cPU/QIwzAG8fLywvfff48iRYpACIGVK1fioWr1WwZFKpWiQoUKAIBLly4hLi7OxhZZiRcvjBunymTU9vZt4Pjx9DkmhCDNLVxYe/q+//2PUo8A6nqt+v/GjcnOGYbRgRACV65cQWhoqK1NYRjz8Py5cWNluZz0+sQJ7WlITGXzZlp1/vffmu/16kV6DqgHo6jsXLQo2V/CMGaGHdmM/ePpadygWSoFvLyAJ0+Mi+A2hOqcS5dSzlcVCQnAuHH6j01MpCU1KnFnGIbJChir1xIJ4OFBtQzMkdpDtbT999/V9TkyEpg6Vf+xCgVFr6hSnTAMo5eqVavizz//ROnSpREWFoZ58+YhNjbW1maliyZNmkAul+P169dZJ72Ih0dyXRl9CEFtzaWRQpDuDh8OLFiQvP/ZM2DJEv3PEKWS2uiK6GayPA8fPsSSJUuwZcsWrFu3DuvWrbO1SQyTfjw9yddhCIWC9PrqVeP03RBCkO/jq68ofaqKa9do7GxoDD91Ko3FGcbMsCObsX9atzZOiJVKoEMH40TeFISgGUVVjqh9+4DXrw0fpyoYyTAMk1Vo1844x3RiItC+vfn1GgAmTUpO7bRxI6UtMYRcrl7MjGEYnUgkEhQrVgzffPMNnJ2dcenSJWzdutXWZqWLqlWrwsvLC7GxsTh69KitzbEO7dsbF+Gn0mtjVtuYyk8/0VJ4AFi1yrjxvkSSnEqQYUAR2CEhIVi1ahVWrFiBe/fuJeW8v3nzpq3NY5j007698YEibdpYRq+HDUu2Ydky41KdxMaqO8AZxkywI5uxPDExwPLlVHyxcGFK1/HzzxQ5bQze3oYH0DIZkCcPFTQoWhTImdMspqv1/+ef9P/Hj40baCcmJhebZBiGyQhERlIajpo1Sa8rVgQmTkwuxGiI8uWBevX067VcDpQqRcVxK1QAnJ3NY7sKhSLZyfH4sXEDbYWC2jIMYzQNGjRArVq18Pz5cxw8eBDh4eG2NinN5M6dG76+vhBC4OjRoxAZITXcu3fAjBlA1apUELFqVeCPP2i/MTRqBJQoYViv69enZ0GNGuaJ8EtJeDgtXQdIg42Z3JRKWa+ZJO7evYuFCxdi2bJlOHXqFIKDg/HixQtkz54dkZGReGLs702GsSQvXwITJpCWFi5M4+yFC42PVu7QgXwd+jRSJqN2BQsCdeqYP8XpkydUdBcgDTYmcEUuZ71mLIKRFT4YxkgiI2lAGhoKZMtGToq+fakIl1SaPIs3ZQotNVm+HPj8c939PXhAor99u26xlMupCvqAAcDu3TQw79+fovLMVWBAoUgu/OjqavyDIVs285yfYRjG3Lx7R3r98iWlZSpZkvLdvXlD7wtBWn7jBjmzN24EWrbU3d+1a9TuzBn9eu3mRksUd+0iZ/YXX1AKJ3PptUymrtfGpqZydTXP+RkmiyCRSNCgQQOcOXMG9+7dw2+//YaxY8fC3d3d1qaZjOpazp07h0ePHuH58+coUKCArc1KRlVPICwMyJULKFCA9DoykrRaCErNERxMOUl37qRJRV2cPUt6fe+e7jYyGZA9O9CpE7BnD42v27QBduwwn147OJg+vhaC9ZpJIiIiAufOncPr16/h5eWFUqVKwc3NDZGRkShYsCCcnJxsbSKT1XjyhIrVhocD+fJRqo/evYG4uGTtfPoUuHCB0uHt308+E10cOkR+DX0rwmUyei4EBAAHDgANGwK1agHnz5tPr6VS0uumTUmDpVLDzmylkvWasQjsyGbMg1JJQjx9OuWnlstJ2IRIjt5IKaIq0evViwS+SRPNPi9fJhGOjta99FEmAxwdqc2YMbTP2ZkKd+XNS8UOzIFUSoNtgMQ7pVNeFxIJpUVhGIaxJ+LjKTfpokWU904mU9fr1I4EpZKWBrZrR07qqlU1+zxyBGjRgrTa0KRjeDgwYgTtc3cnR7a7O+03F6oo7JYtgR9/NNxeoQBatTLf+Rkmi9CkSRNER0dj/vz5uHjxIoYNG4YePXrA39/f1qaZjJ+fHxYsWJDkGGvfvr2tTQKioqhOy8qVpFMyme4xsUq7IyOB5s3Jqe3rq9lu82aga1f9TmNHR3oevHmTXFwxe3Zyxjg4kEPGHAihrtczZhg+JjGR9ToLo1Qq8eHDB8THx+P06dO4du0alEolvLy8UKJECTRs2BDVq1dHZGQkLly4gNKlS+P333+3tdlMVuDdO+Cbb0hjJRLyFxjS67dvKajjxg2KuE7N0qXUp75IbGdnej48eQJ8+y3ty5eP/CHnz6fvmlLbrPKHtGxJ6aAMkWp8rVAocO3aNVSoUAEyS6Q/YbIMnFqEST9CAP36AePHJxdZTExMFmh9A2WJRHvhxPh4Er2oKP35+xQKzcKOsbGUt8kcBcRUCAE0aED/L1CAUpjoE1+JBHBxAYKCzGcDwzBMelEogC5dgHnzSGeFME6vVRF/2n4MhocDbdtSf/r0OjExOReqClUqExeXtF2PNhISAJUTrXx5WhavL72IVArkzk3LMRmGMZnWrVvjq6++AgDs27cPv/76K06dOmVjq0ynVKlSaNKkCWrXro1s9rCiLi6OHNL//JOs08bktFZNPs6apfleaCjQrRs9C/SNk+PjNZ3V799Tn15eJlyEARITk/W6USNaGWQolWDJktSWyXIkJiZiw4YNmDhxImbOnInDhw/jypUr+PDhAzw9PVGlShU0atQI7u7u8Pb2Rtu2bZEvXz5bm81kBSIiyFewdStptVJpnF4rFOQAX7JE871r18iJrSqQq4vYWBr7puTlSwow9PQ06TL0ktIf0rEjjZ31OdjlcsDPj8biAD5+/IiWLVuiXbt2KFu2LFq2bImVK1ciLCwsY6TzYuwKdmQz6efoUZotTIsAKZXA8ePJhRRVbN1K0dRpdUYrFBRFYmwuP0PtnJ0palDF/PmAj4/2wbZUSvvXrTPvYJ9hGCa9bNpEyx3TsswwMZGiTFLnX125Evj4Me1LF5VKGnCbo/CjVErL7tu1S963YgXVTdDmzFat6tm8mf5lGMZkJBIJOnXqhK+//hrZs2fH48ePMXr0aFy+fNnWppmEs7MzPv/8c/j6+uL58+e2Nodqs5w8mXa9XrZM07mxZAn1l1angRCU5sQcqJzSKke2REIprNzctI+vZTJ6b+NG8+fqZuyehIQErFu3DkeOHMH58+dx7tw5PH36FD4+PqhatSrq1auH8p8cZgxjdaZNo7QbafFdKJXA4sWa++fNS3/Rxvfv03e8CpmMAkPKlqXXKcfO2myUy2nsvXIlAHJit2vXDnfu3AEAxMXF4ebNmzh27Bjmzp2LmTNnYurUqZg6dSpu3bplHpuZTA07spn0M3++ccW09PHokfrrzZvTL9yqCEJDSCRkv7bzSSS0LV2qPqOZOzflF/zqK81CZX5+lMuqTZv02c8wDGNu5s5Nn7YqFEBqB8+//6bPJhXGOmukUu1Ob5Ver1yp7pQuUoTyEHbrpv6skkgoVdSpU6TbDMOkGYlEgh49euC7776Dl5cXnj17hgkTJiT9aM0olChRAgDw+PFjxJkrfUZaEAKYMyd9fURFaTox1q9P/4pFU53I2trLZLREfcUK9fcrVKCl8O3aqeu8VEr7zp/Xn0uWyZTExcVh9erVOHbsGG7cuAGJRIK8efOievXqaNasGQYNGoSePXuiePHitjaVyYrEx9PqwvRo69OnmuPgf/81LqpbH+aY9FNNIqZ2tvv50Ri6WTP188jllL7q/HmgSBGEh4fjs88+w/379yGXy/Hbb79h7ty5aNeuHWrXrg2ZTIaIiAjs2LEDCxYsQIsWLVClShX06NEDhw4dSr/9TKaEc2Qz6efo0fSLbOoiAB8+mDc1iD4cHanIwtChJLgqZ4hSSVHXM2eqR/epyJWLBH3qVODcOXqIlSxJFeAZhmHsDSGA06fTr62p04B8+GD+yui6yJED2LAB+P57yieocnQolaS/CxZQrsHUFCxIDu6ZM4GLF+kelCtHGs8wjFmQSqX48ssv4eHhgU2bNuHVq1cYO3Ysfv/9d/hkkO+ap6cnIiIicO3aNRQqVAh9+vSxjSHv3+svxGgsqfU6IiL9fRqj91IpULQopSIZPJhWXkqlyUEmFSpQdHiNGprHlixJUdfPnwNXr9K+ihUBb+/0285kOGJjY7Fq1SqcOXMGISEhyJ07N5ydnVGjRg307t0bXrz6lbE1Dx9SId704OSkGaTx8WP6+gSM02uZDKhZExg4kGrYPHumrte1a9MKoTJlNI+tUoWKtz9+TONymQyoVo38JKCVFN9++y0ePHgAuVyOiRMnomvXrgCANp+C/hISEhAaGoqIiAgkJCTg5cuXeP/+PU6dOoXz589jw4YNqFy5cvrvBZOpYEc2k37S68TOnl29eFhEhHmLfhlixgxaKnPuHBWYPHmSrql8eXKIGFru7ulJUX0MwzD2jCpnX1qRSMgxUbRo8r537zSXrlsCVRHKhQtJl69do8KTqiI2VapQZIihyJNcuYDAQMvbyzBZFKlUii5duqBSpUr4+eef8eLFC/z888+YPXs2cubMaWvzDCKRSPDixQvcu3cP27dvR69evSBP76rDtJDesbVUCtSqRYV0Vbx8aZ2UHKqAkEWLgIAAqnlz5Ag5pWUycopUr264H29vdl5ncaKjo7Fy5UqcOXMGoaGhqFSpEpo3bw6ZTIYaNWrAw8PD1iYyTPr1Wi6ngukpefKEVn2bw5mtD6mUVsfMnUsO6K5dgX37gDt3aL+/f1KOa734+GgEh8THx2Pt2rUoWrQoHj16hGHDhqFjx44ahzo4OKBYsWL4448/AAAvX77Etm3bsHz5crx48QLfffcdDh48CBdz1tNhMjzsyGbST4UKwIkTaXOQSKXAd9/RLCRAM3pdu9JySEsgk9E5ExJocD9tGhWqVFGlCm0MwzCZDamUIt3u3k17BPX//pc8ubdmDfDll7QaxRKk1GsvL3KKdOlC70kkQJ06tDEMY3eUKlUKP/30EwYNGoRr165h69at6N27N2TpTRtnYaRSKerWrZuUf/fhw4coWbKk9Q3JmZO2tEb5KZW0ckXFvHnADz9YbrVjSr3OmxdYvpyc2ADpdaNGXKCRMRkhBK5fv467d++iZs2a+Oyzz9CgQQNIOEc6Y08UKUJO59jYtB2fmJis10IAv/0GjBtnNvM0SKnXhQsDa9eSE1v1XosWmo51EwkODsbJkyfx5s0bZMuWDevXr0fhwoWNOjZfvnzo168f6tSpg06dOuH58+dYsGABhg4dmi6bmMwF58hm0s9336XdiV27NvDzz/T65Engs8/IiW2pZeoKBeVx+vtvikxJ6cRmGIbJ7AwYkLbjJBKgZUvSewD47z+gZ08gLs5yeq1U0jNhzRoq/qtyYjMMkyEoV64c6tWrBy8vL6xevRpTpkxBdHS0rc0ySK1ateDm5oaIiAicPXvWNkbIZED//mmvadC7NwWGAFT0cdAgcpZYQq9VTsVu3YAtW4DQUF75wqQZIQSUSiXCwsKwfPlyhH2azMmbNy87sRn7JFs2oFevtNcM+/HH5Im+qVOBsWONr/VlKhIJPVd69wb27KG0T7Vrm/UUs2bNQufOnbF161a4urqiV69eRjuxU1KxYkUMHjwYjRs3RnR0NF6Zq9AwkylgR3ZmITYWCAmhwWN6lo6nhQ4dKDWIrhQcqiWGKXF3B4YModzUqmUio0alr5K6MUgktFSmd2/NvNwMwzDWIDqa8uk9e2a93NIq+vSh1CC6nCMSiaaW58gBjBlDDgq5nGweNszytkok5MDu3j151Q7DMBkGJycnjB8/Hm3atIFEIsHevXvRuXNn/PfffxDW1j4TKFmyJPLnz4+4uDicOnIE4v59Cn6wts3ff0/pkHTptbbCt/nzU8q8v/4iDU1IoJynlkR1X6KjqaaMLVKxMJmC+Ph4bN68GYsXL8bs2bOxd+9evHnzBtWrV0eVKlXsWjcYOyAighyzr19b/9yjRpFvQZ8/JPV7RYpQrYDJk+l1RAQ5sS2JKs2goyNNOBpKoWoC4eHh6Nq1K2bNmoWEhATExcXh66+/RqFChdLcZ//+/dGsWTMoFAps27YNSmv7uRi7hR3ZGZ2nT2mpd+7cQLFitDykSBGazYuJsfz5T50CWrcGLl3SdKCrhDFXLuD4ccplunkzsHcv/SCYNi3ZmXz3LrWxtDgJAdy/T9HfDMMw1uT+feCbb2i5uK8vFSAsWZKWfFsjz/S+fbRU8OFDzeXlKr0uVIj0/NQpYNMm4OBBciaPGUO58gB6Lz3pSYxFqSStvnPHsudhGMZiODk5YciQIejTpw8UCgVu3LiB0aNHY/HixUhMb15RC+Hl5YWyefJA8vYt7v79N56XKEEO4kqVaEWfNX5Ib9oENG8OvHqlqdcqx3apUsDt21R0fdMm+vfJEwoUUWn6jh3A27eWt1ehoMnON28sfy4mUyKEwIYNG7B582YsX74cR48ehVQqhZ+fH7799lsEBgZCakanG5OJOHOGAuuyZweKF6f0RrVrA//+a/mxqhCUSqlVK3JEp34+qCb2qlen8ffBg+QPOXWKnO59+yYH/K1ZQysdLU1iIq3UMeO5zpw5gyZNmuDs2bOQSCRo3rw5Dhw4gBw5cqSrX4lEglatWsHZ2Rk3btzA77//biaLmYwOT5lnZG7eBBo0oMKIKX8MhIbSrOCmTcCBA+qFXszJ5s36l3rnzEnO6m7dkqPpdBV3sbajom9f+jdHDrqGoCDKwcowDGMJzpyhorCxsep6/eABRd399x9tjo6WOf+SJcC33+ou9FWgADBzJqXyMBRNd+uW+e3TR8eOdM/y5gU+/xzo0YOWcTIMkyGQSqXo2bMnvL29MWbMGISGhmLOnDl4/fo1hg0bBld7WyG3dy9qrV2LvQoF3gC4BqAAANy4AXz1FY2tV60yaySbGpMmUdo9Xf37+gKzZ1OqPKkUKFFCd1+3bpGmW2PSQKmkYryJifRM6d0b6NSJcscyjAEOHTqErVu34v79+3BycoKPjw/q1KmDrl27ptsZxmRi1q6lVHdSqboT+fx5Sq908iQwa5ZlCt0KQbUHZs/W3X+FCnT++vWpTaqCiGrcvk16bY3gluhooEYNOlfRovRsa9s2OWjFBEJCQhAUFIS4uDi4uLjg559/Rs+ePc1mqru7O0qXLo0lS5YAAPz9/VGvXj2z9c9kTHhaM6OSmEj5Sj980D44VSqBixfTng/VEM+f03JvpVJ34ZiwMBpAG7Mk3NrLEO/coYfF6dP0ACpcmCqqMwzDmJuPHylSIyZGU69VOfAOHAB++cUy5795k3KtqpYTauPpU+DxY+O0OA2D3HRx4wZp9vHjVNegWDGKGmcYJkPRuHFjLFy4EOXLl4e7uzsOHTqEkSNH4uXLl7Y2LZkXL4D27VFRoUAOAAoAj1XvqfRz3Trgjz8sc/7jx5Nrx+jS67t3KcraGEe6g4N1U6Jcv07j68OHKWdsqVJkL8Po4caNG1i9ejWePXsGJycnVK9eHV27dkXfvn3Zic3o5vZt0hmlUnN8rdLPOXOAlSstc/7Nm8mJDejW2cuXKYjFGEe6tcfX167RPdy3jyYdK1emtIcmMnHiRMTFxSFnzpzYtm2bWZ3YKtq0aYNixYpBqVRi+PDhiLdUoXkmw8CO7IzKjh3kdNBXfVyhoFlKS/xAWLrUcNEYpRJYuNC4FCc1a1pXvFV2q5xIUVG05P7GDevZYG6USnKGjRhBRX1mzuQlngxjD6xZA7x/r1+vlUpgwQLSInMzf75hh4cQFDGiz0YVqqgSa6PS7XfvgCZNaPVRRkWhoAj8oUMpIn/BApqYZphMTvny5bFmzRoMHToUzs7OuHr1KgYNGoTg4GBbm0YsXQrExaEEgP8B6AAgf+o2QpAj2xi9NJXZsw1PKEqlxjvS/f0tY6chVE6kZ8+oiNm7d9a3wVzEx1OKgiFDKJ3j339b5lmdRXn58iWWLl2Khw8fwtfXF+PHj0f//v3RqlUryDnfOqOP+fMNj0elUlohbokJvZkzDRfklcmSnd2G8Pe3TjR2alTPiLt3gYAAcrwbSXR0NCIjI+Hk5IRvv/0WJUuWtIiJMpkMc+fOhYODA54/f47Ro0drbxgTA6xYAQweTMGK1krXwlgddmRnVP7917hK5goFsG1b+s8XGUlO6Zo1Ka/rpEnG5QiMiKAIup079Q+kc+akJeO2GrCoZnIzat6lixcp6qVpU3JGLV5Mxdi8vYHhw23zI4ZhGGLtWuPaRUVRAdz08u4dOTmqVCG9XrLEuGXloaHkVD14UP+Av1gxKhBjzDPIEigU9Ewy9oeBvXHkCC0tbdsWmDsXWLQIGDiQcvBOmmT9gnIMY2U8PDzQpUsXjB49Gl5eXggODsbcuXPtIzJ7zRpAqYQDgKoAZADuAdD4Vr54AZw9m/7zvXoFTJhAy88LFqS0gIb0WqmkKL+RIynPqj7NqFGDouxsqdcvX1LxyYzItm2UJqVrV6pnsXAh8PXXQL58pN1MukhISMDSpUtx9epV5MiRA506dUJAQADKlStna9OYjMCaNcbp5fXrlMovvTx5QitmypSh39gnTxr+ja1QALt3k85fvqy/bYsW9BywVS74xESK0F6/3uhDTp8+jTJlymDgwIH48ssvLWgcUKZMGQQFBQEANm7ciHPnzqk3+OcfGksHBVGAyPz55F/Kn59WUjGZCnZkZ1TevTPOOSmTUSSgPh4/ppmrpUuBY8c0B8TXrlH+vQEDgAsXKLrClJmt1aupIKSPD0Wg6eL330lo0uPMVkV1pyVaMDGRRC4iIu3ntwXXrtEMbkgIvU5IoE3lnJ8xg9IKMAxjG8LCjHdOGopau3uXisr89Rc5UVL3e+oUOZqHDQOCg0mvTcmNungxRWOUKEGFw3Qxbx7g6Zk+50h68qYqFMCff2a8SboTJyiv7YsX9Fql10JQBMzPP1NhTYbJAtSrVw99+vSBt7c3Hjx4gP/97384efIkYk2IBjM7KcbMPgAcAEQACNHW1pBeX71K0bt//w1cuaL5/u7dlJt0zBhytJi6pHvaNKBePaBiRd3pliQSKurl5JQ+vU5PXQLVCs2Mxn//Ae3b0zMcUNfrjx9pbD1vnm1tzOAkJCQgLCwMr169QpUqVdC6dWtIbLHii8mYREYa31afXgtBObX/+ovG2Ldva7ZZs4bqE0yZQu+rxnHGIATpfNWqFBSoK92STEZpUKTS9DmzPT3TvnJSKjV6ki46OhpnP03oNm3aFDIrTJiOGjUKRYoUgUKhwNChQ6FQ/Q5YvpzqMoSH02uVXgO04rF7d3ZmZzLYkZ1RyZvXOIevQgHkyaP9vcePgTZtaBAdFEQFEP39yYGxeTO1efOGCre8fZuchsNUVJHbz59TIbEtW3Rf05kzVKU9reK7eTOwYQM9aNJCYmKackPZlCFDyAGiy6EjBDl8Llywrl0MwxD58xs/INWl17dukRaXKgX06UMRYbVrkwNDFcX98CFFSkdGpj2qV6UjISHk0NZVO8DXlxzp9eun7TxSKfX9118UfZIWIiIyVjoOIYDvvqN7rG9F04QJwKNHVjOLYWzJZ599hkmTJiFXrlx49eoVRo0ahY4dO+L48eMQtlidkDdv0n8jQQ7szQCmAtD41urS6/PngTp1gEqVqIDWV19RVHTNmslR3Jcv05g4Nta4FY7aUB136xZpsa70LJUr0ySnroLrhnBwoJV/f/wB5M6dtj4eP85Yq00UClpRCui3e+hQwwFDjFaio6OxcOFC3Lx5E97e3vDy8oLUVpGoTMbElPzpuvT60CHS6po1aWzdpw9FXDdsSBOMqjY9e5KfIK0BFCq9vnSJng+6IsQbNqQaA2XLpu08bm70TBgzhhzaabHz/n2jmg4ePBiXL19Gnjx5UKpUKdPPlQZkMhnmzJkDBweHpMLRiIqitKq6EIJ8S999x2lGMhH8tMiofP65cVF2jo4UTZCax49JsPfs0RygPXwIdOxIESSLFxsf/W0I1Xm++kq3iHh7UwTEnj2m9z93LkV+d+pEM53Hj9M1rFplWj+qKMEbNygtR9euwJdfkgPeGlXfTeHBA8qLbejzkctpiQ3DMNZHVYjGENmzU3qg1Fy/Tk7rY8c037txgyb/tm2jtELpcYqkRKmk7csvdfdXvDgNtlesML3/VauAWrWo/0ePSMf++osm3UxBpdcXL1I+vK5daVJ2zx7z3Adzcu4craAxZJdUSs9ehski1KtXD3PmzEG1atXw/v173LhxAwMHDsSkSZMQaUrEnTn44oukiUc5gFgAHwF8+LQBoB/ExYppdwyfOkVO5dRLngHSqQYNSMt//520wBzOXYWCxtX6Vt9VqkTBIlOnmta3VAps3w6ULEn5Rp89o0jyv/6iFX/G4uhI900IGp8PGEB6/d13tPrH3pzcu3ZRxKUhuxISaDk7YzSJiYnYuHEjZs6ciX379kEIgcaNG6NPnz4cjc2YRlCQ4ZUmUimNoYsU0Xxv505aJaetRtaJE+RwvnIFGDvWfOk+FAoKxBg6VHcbPz9a0TNsmGl9OzpScEv+/OTIfvmS9HvpUuDXX43vRzW2ViqpEGS/fqTX339PE7UADh06hP379+P8+fPw9va26ne3YsWK6NChA0qXLo2YmBjErVhBq2T0IQRNOm7aZB0jGcsjMhnh4eECgAgPD7e1KZZFoRCiXDkh5HJVnLTmJpUKMXCg9uNbthRCJtN9LCCEg4MQ3t7626R1W7VK//V9+60QEonx/fn4CBEVpb2vW7eM76dIESHCw4Vo355ey+Vkh1RKr/PnF+LcuXR9dGbl33+Nv7YyZWxtLWOALKNfn8gy1xsTI0SBAvo1VyIRYvx47cdXrWr42GzZhHB1tYxe79+v//o++8y0/ipXFiI+Xntfx44Z30/NmkK8fStEo0ba9drXV4ibN9P10ZmVuXONf641bmxraxkDZBn9+oQ1rjchIUGsW7dO1K1bVxQpUkRUqFBB9OzZU1y4cMFi59QgLEwILy8hpFKhBMT3gCgOiEBA3En5HV28WPPYxEQhChVK1iBtm1QqRL58+tukZ7tyRf/11aplWn/NmtFvDm1s2GBcHxKJEG3bCvH0KT3PUuq16tlWqZIQjx+n++MzG6NH0+8gQ9cmkwnx+ee2tjbDkJCQIJYuXSqaNWsmypQpIwICAsTkyZNFZGSkxc6Z1bRaiCx0zSEhQjg7Gx5bbdmieWxUlBCenvqPlcmEKFXKMlotlQoRGqr72pRK8kuY0mdQkO7+Zs0yXq+/+UaIO3eSrz3V+Dqxbl3hV6uW8PHxEa1atUrfZ5hGEhISxOzZs8WYMWPE/lat9PvEVJuDgxA//GATexnjMEW7OCI7oyKVUrSAtoIAqteBgcD06ZrHhoRQNIUxxQlMyf9kLA4OFLFy8iRFd/ToQZHPqhzPAOWHEsL4PkNDgXHj6Jj4ePX3Fi82fha1fXvatm+n14mJ1Kcqgu7FC8pHePWq8bYxDJO1cXamiIacOTUjR1SvP/8c+OknzWMvXKBliPr0WgiKRIiONp/NKuRyiko5cICW7ansfP48+dwqvTSWK1eAOXPo2NTV2RcuNF6vu3Sh9CeqSPXUev3gARU6e/zYNPsYhrEJcrkcXbt2xapVq9C6dWsULFgQoaGh+OmnnzBv3jxERUVZ3ogcOWhFR7ZskMhkKAzKkx0O4K1Km4YMoZUfqdm7l8aj+lZdKJUUJWepFSMnTtDKxu++I73+7TdKDwhQKiZTC1Tu25dUAFNDrxcsMC4VoBBA584Uqa7KFa7Sa9Wz7coVyh+rykfNZDoSExPxzz//4N9//8XDhw+RM2dONGnSBAMHDkS29ORgZ7IuRYoAW7dSDYDUKVdVrydPBtq10zx2/XrKp6zP36BQAHfumMnYVCiV5A/591+KeO7Zk1bMqGp13b1repq5f/4hzVbVyUqJsSv9hKD7Vb9+coqRVOPr2adOIfT8ecilUvz++++m2Wgm5HI5mjdvDgA48fIl7tnbKkzG8ljBsW5VsswMpIp374T4/XchChZMnm2qXl2IFSuESEjQfszff5s2W2jutnI5Rbtoe69qVZqdTMvMpoNDcvSEp6cQgwcLcf++EHXqGN/Ht98a165gQd0RKtbk7l3j77m+WVrGLshq+pXVrle8fCnEr78KkTt38nezfn2KalMqtR/z+++GV8+YqtWqiAtjtcPDQ/t7/v5C3L6dNr12cUm+rly5hBg1irS/aFHz63XFilb9mHVy8qRx9spkQowYYWtrGQNkNf2yxfU+evRIDBw4UPj7+4vy5cuLX375RURERFjn5I8fCzF8uNjo6ioqAqIiIP6tXFmIXbt0HzNkiHFRvMZEjqV1y5ZNu95/9pkQ+/aZ3p9EIoS7e/IzxttbiN9+E+L1a+3n0rX17Wvcc6pJE+t8vobYssW465JKhZgxw9bW2j2qSOxWrVqJChUqCD8/PzF58mSrfJ+zmlYLkQWv+c4dWoXu5pY8jurQQYgjR3Qf07OnceNrY9qk1ANTVpRrW0kplQrRuzet+jFVr6VSIbJnT9baokWFmDaN9NqUfr74Qud1hwGiDCB8APF9yZLW+4y1oFQqxcSJE0V5b28RYOy1rVxpU5sZ/ZiiXRIhhLCdG938REREwNPTE+Hh4fDw8LC1OdYlJoZmHx0c9LdbvBj49lvj+syenQqH6csNLZEAPj7AyJGUny+9f1KuruaJLFTdi6JFgZs3jTsmTx7g9Wvj2i5YoD8fobVo3JgiEg1F2J89S3nRGbslq+lXVrveJISgXNYODoaL9o4fTxF1hvLzSySk1+Hh+rVAKqW8rm3bUr689EYweHomVwhPDzIZkC0b6b+xK4FMOffOnUDLlmm3zxwIAZQvT9Xu9d13iQS4dy/tRYsZq5DV9MtW1xsfH48pU6Zg/fr1yJkzJ7y9vdGrVy/UrVsXXl5eFj//6VOnMHTIEHwID8eXX32FYfpylg4cCCxZohm5nBoHB8DFxXBhXrmcdMvHh1arpLdOS65cydHZ6UEqpaKPkZHGj9ednem5ZwzBwZTT25YkJtKq19ev9X9GDg70zMqZ03q2ZTCUSiVWrFiBjRs3Ijo6GjVq1EDVqlXRsmVLuLu7W/z8WU2rgax5zQDouxodTXpjKHd2ly6UL9nQOFg1Vo+J0d9OLqe6Lx8+AJs3p1+v8+YFXr1KXx8A6bWPj/rKd0PIZDp/S/QFsB+AB4BTALI9e0Y1zmzEmTNn0L1rV4gnTzAFQFd9jb28SK9VOcAZu8MU7eLUItZCqQR27KCiXB4e9IO9bl1g9WrNVBhpxcXFsBMbAEqUMK4/uZwcn4aEWAhaEvP552RDejHX8vjERCp+c+eO8UvVjXViA8C8eWmzy9z88QcVd9D1wJZIqBhGjRrWtYsxCoVCgZs3b2Lt2rU4c+aMrc1hANKODRsAf3/A3Z22xo1pYGqOwrcSCWmlISc2QHptzGBYJqPiMIbsUyppAq5PH+OWhBvCHE5sgOyOjCQni7F6bcq5TSlKZikkEmD+fLo+fdc4fDg7se0UhUKB69evY8WKFQgODra1OVkCR0dHDBs2DMOGDYOnpydevHiBqVOnolWrVpg0aRJeh4ZSwdlatQA3Nxpjt2pFKfTMEKuTJ29eeGbPjoTERISGhupvXLKkcc8IhQJo0sRwu8REShHSr595io2bw4kN0HPk7VuyyVi9NtaJDQAzZ6bNLnOSski6vmfl77+zE9sAR48exfr16xEVFYVatWph2LBh6Nq1q1Wc2IydERVFAXWVK5Nee3mRQ9lcBV8lEurXkBMboPG1MePghARK12pI6xITaXzdv7959NocTmyA9Do0lHwFxqLjOXYbwMFP/x8EIBsALFqUPvvSSe3atVGnXj0gRw4sM9R4zhx2YmcmLB4fbmXscilNfLwQnTtrLk9RLfuoXVuIDx+sZ49CQcURjVl+cfKkED/+aLhd1apUNGHOHNOXwWTkLSbGep+bPs6coQJDAC1rlcvp70smE2LQIN1pZhibcP/+ffHLL7+IVq1aidKlS4vy5csLf39/8cMPP9ifflkQu9TrqCha2pxar1X/b97cut/7mBhKlWSMHt25Q8sRDbULCKDn0i+/2F5DrbW5uFjvMzPEvn3J6WVS6rWDA6We0ZVmhrEJV69eFSNHjhTNmzcXpUqVEpUqVRL+/v5izJgx9qdfFsQe9Pr58+fit99+E35+fqJIkSKimI+PaJQtm1gFiOiUy7lVqTt69Ej3+Cc8PFx89dVXonLlymL06NEiQV9/b98an1rkxQshWrQw3LZ7d9KEvn1NW7KekbeCBdP1mZmVf/9NToeoSmEokdAzZdYs1msjWLFihShXrpxo27atePXqldXPbw/aZW3s8ppDQ4UoUYK+P9r0+n//s+736f594zTVw4OKANeoYbjt4MF0DW3bWq6grw23VYD4EhCdAJGo2l+zpvU+Mx2cOHFC+Pj4iCI5c4qbquKfKVPOursL8c8/tjaTMQJTtMuIcDAm3QwbBmzcSP9POcOlWspy/jzQtSsVl7EGUikwZQrQrZv+ds7OFDVYsqThPoODgblzgR9/pFnI4cPNE7lo78TF2cfMXq1atGRo717aYmOBYsWAL74A8ue3tXVMCm7cuIF+/frh6dOnSfucnZ1RrFgxFC1a1IaWMQBoWeDhw/T/lBqm+v++fRQd988/1rHH2RmYMIEKLerD05O0vVQpijARQnfbAweAVasoZQkATJyov31mwNBSf2vStCnw7BmwbRtFIcXHA6VLk15zZJ9dcfbsWQwaNAivU6zWcnBwQIkSJVCoUCEbWpY1yZ8/P3755Re0bdsWc+fMwem1axEaE4M/AewXAl8C8AMgVUXDrV0LFCpEUbNpxMPDA3379kXBggVRunRpyPWtpMmZk9LsjR+vv9Ncueg3QKlSNPbXp79r19KKxwULKEp44cK0XUhGwp70unNnoE0bWqV15gx9bhUr0meSlVI2pJFz585h8+bNyJUrFypWrMhR2FkVhYJWpYeEaOqdSq9nzwYKF6ZiutbA1xf4+mtg6VL9Gpw3L42rixWjAuz62s6aRdqwbh2tfFy/3uxm24obAO4BKAKgP4CkmHdTVttYiHr16qFQoUIIDQ3F3HbtsKBWLeDSJfrcatQgP5urq63NZMwM58i2NG/fUt4gYwZlly4BVapY3iYVCxYAAwbofl8qpRQoBQpQeg5DOaQKFgQePwYuXiTHaub609Ike3bTlsEzWZ7r169jxIgRiI6OhkwmQ/ny5dGgQQMEBgYiW7Zs9qdfFsburvfBA6B4ccPtJBLSOms5soQAxo2jTRcyGTlHpFLDOaalUso/eukSOVFatDCvvfZIiRJUAZ5hjOTUqVMYO3Ys4uPj4ejoiIoVK8Lf3x8BAQFwcXGxP/2yMPZ2vYknTmB//fo4D+AsgChQvsTyAKYASEp05+wMvHxJk30molAo8PLlS9y7dw9HjhxBlSpV8Nlnn+k/SKmkXNn6HM4yGeUsffOGUirpQyYDmjUDdu2iFCpBQSZfR4ZCIqE0WceO2doSJh1ER0fjyJEjWL16NZ49e4bixYtj/PjxyG+D4Bp70y5rYHfXvH07YEg7AZoMfP7ctDQY6SEhgQL7Nm/W3UYqBSpUAG7cMJwyRC4HevUC/v4bmD6dAvsyAbcALAHgCaABgMaqN6RSoGNH4N9/bWVaErNmzcKsWbPg6uqKixcvwsUc6W4Zq2M3ObKPHTuGNm3awNvbGxKJBFu3bjV4zJEjR1C1alU4OTmhePHiWL58uSVNtDz//mtcniS5nAao1sRQ5JdSSbmsbt0yriDY06f08Jk92zy5V+0ZqZSiMtmJzRjJkSNHMHToUERHR6NgwYLYsGEDZs+ejY4dOyJbtmy2No/1GgBWrjQur55USvUNrIVEYlivFQpyihhTKFGpBC5fpkjg6dMzv14D9lGYl8kwbN26FaNHj0Z8fDxKliyJrVu3Yvr06WjTpo1d/DhivQbkq1ejhVyOXwHMA1AHQASAQwCGg/J4RgOIio2lgl4mEB0djePHj2PWrFlYvnw5njx5gsTEROTKlcvwwVIpkCOH/vGhQkGRiYac2Kq2x4/ThOaUKcZfREZFCBpfMxmWhIQELFq0CKNHj8atW7eQL18+DBs2zCZObHuA9RrA8uXGja/Dwmjlo7VwcCC91mebUglcuWKcPycxkVZ1JibaR20WM6AA8C2AbQDeAPBP+aZSCXzzjS3M0qBfv35wcXFBdHR0xv++MEZhUS9cVFQUKlWqhPnz5xvVPiQkBK1atUKjRo0QHByMwYMH4+uvv8bevXstaaZlefbMuIJeSiW1tSaqolP6MDU9SGQkOe+NcXxnVKRSKk4xcKCtLWEyCMHBwZg0aRKeP38Ob29vzJs3Dzly5LC1WWqwXoM02BinrlRqfb2eN8+wbabq7suXwMGDmXv1jExGkfN9+tjaEiaDcOzYMcyePRuvX79GiRIlkiJ87AnWa1DgxCfHQlEAEwC0BJAbwHUAEwF8AaCXRIL5mzfjzp07UBrQyDdv3mDHjh2YOXMmDh48iMjISDg5OeHKlSs4ceIEjh49atiuxEQqfmVIj03R3dhY4N494OZN44/JiMhkQLlyQKdOtraESSNKpRKrVq3Cxo0b8f79e+TNmxfff/89SpcubWvTbAbrNajYoLE+BWuOryMiKNWeIdtMCfgID6c0RC9fps82O2EUgMcgp2EQUqQUkUqB+vWBxo11HWpVXFxc0KVLF/j5+cHJycnW5jBWwKI5slu0aIEWJixZXrRoEYoWLYoZn2awypQpgxMnTmDmzJkIDAy0lJmWxd3dOOeCVEpt00pEBDmQQ0Ior3Xz5kD16rrbx8RQbm5zO5z79rWv3HaWIHduykNdoICtLWHsHIVCgYMHD+KPP/5AfHw8KlWqhOnTp8PLy8vWpmnAeg3jNViI9Ol1WBjlzXv6lPpp25Z+vOtrb4m0GFkhSrlwYWD/fpp8ZBg9KBQKbN++HfPnz4cQArVq1cLMmTPtzokNsF4DIO2UyZIcEDIA4wBcAbDh078PAbwTArfOn8fm775D5cqVERgYiOrVq6tNJr99+xZ79uzB/fv3k/bly5cP1atXRy6FAr8PGQKEhiLvpUuUgsrXV7ddd+6QZpuTxERg9Gjz9mlPqOo6lC1L42t2QmRYduzYgfXr1+Ply5fw8fHBt99+i7p169raLJvCeg1K7WSofouK9IyvHz2iumTv3tHv9c6dKfWpLs6dMy7HsykTj+/fA0uWGN/ejjkC4FOVNwQBqAkkf45161LKGDtanf7DDz9g9uzZePLkCcLCwpCT685kauyq2OPp06cREBCgti8wMBCDBw/WeUxcXBzi4uKSXkdERFjKvLTx2WfAqFGG2yUmAu3amd6/UkkFu6ZMocKDcjntGz2aHNmrV2sWa/z3X1oGYonk/CdPmr9Pe6F2bXLUd+uWXDBACOD0acqbJZcD9eoZVxyTybQoFArs3bsXGzduxPnz56FQKJAnTx4ULVoUs2fPto9cdWYg0+r1zJmG2yUmGpfrLzUJCZQvb8EC6kOl1z/9BDRsSKlNUg+4Fy8GfvjB9HMZw65dlunX1kgkdD/79gU6dEh2iiiVVFzx3j3a17Ah5allsiwKhQLbtm3Dli1bcPHiRchkMuTMmRPlypXDjBkz4GwPxZzNQKbV61QpniQAKgOoBIog2wlgP4CQHDkQFhaGixcv4urVq8ifPz/q1q2L7t27w9PTE3K5HNevX0dERARy5MiBPHnyIDYiAju+/hq4ehURQkAqkaDw06eUS7VVK1oqn/JHsir1x6+/WuZ67SAHqUWQSoHAQEon0qpV8irWxEQqTPzkCQXoBARw8XI75+TJk1i2bBliY2PRsGFDNGzYEG3atLG1WRmOTKnX7dsDhw4ZbufgQHpgKh8+AF99BWzZQmNA1STnsGH0u33xYqr7pUKpJP/M9Ommn8sYVq60TL9WZjoAJYBSAH4C6PNp04b0OiAg2YkdH0+TkM+f00REYKBNipd7eXmhRIkSuHv3Ls6dO2fSBBKT8bArR/bLly+RN29etX158+ZFREQEYmJitOYlnDx5MsbpK4Bla8qUoSUXx47pzq0kk1F0b8uWpvf/v//RknMVKaOhL18G6tShyOtixWjfli0k6IxpzJwJpB5A7NlDDqbbt9X3N2pEjqosvIwuq6FUKnHp0iXs378fp0+fxtWrV5Pec3BwQK1atTB69Gi7yIVtLjKlXjdoQJHRt2/rXmYolwMVKwI1a5rWtxBAz57Ahg3JkR0p9frECdLrCxeoQjoA/Pkn8O23pl9HVkW19HPFCrrXKfn3X+DHHylaJ2X7Vq1Ir61VuJOxOUqlEmfOnMGBAwdw8uRJ3LlzJ+k9FxcXNG7cGCNHjoSjtYpNWYFMqdft2pFj8/VrDb2WACgCYIBMhu6NGuHod99BIpHg9OnTuHfvHu7fv4+bN28mpRoJCwtLKiwkl8vx7s0bWm7+6BHcAWQDUEoI5FGdYPduel6cPg2oJqcnTQJ++cUaV545kEpJg//7T7Pg8J9/AmPGqNd8kMko5ci8eVTYmLErbty4gXnz5uH9+/coWbIkxo4dC29vb1ublSHJlHrdqxc5jqOidK8Gl8lo7GaqAzQqinwtV6/S+FoI9XOsX09jv0OHkgMbBg8mLcnMqfXSyTMAqmRWwwDInJ0p/3ft2smNhKBc4JMnUxS8CgcH+sxnzUpfhH0aKFeuHJYvX47Nmzejbt268ExDoWcmY2BXjuy0MGrUKAwZMiTpdUREBArZ2w/SlSvJQfHsmaZzRC4H3NxoaYYxRRBScuGCuhM7NQoFpRwZPpwK3SgUwIAB9J4pwm3sUqDMhOqaCxYEJk4EvvhC/f1Nm2i5kjaOHQNq1aIfOGXLGj5XeDilDZBKyfnt7EwRgzExdP7cudN/PYzZUTmvDxw4gN27d0OSIn+ah4cHfHx8EBgYiF69evFD9BN2r9cSCUXb1atH0R2pJx9lMhpgb9hgeoHE3bv1R9QlJlI+vXHjyLEaFWW5SOzMhkqvixWjAXXqaPnFi7VPCAhBn0uNGrS8tHBhw+cKC6PUAg4ONFEtk5F+x8dTdLed5b5nCKVSibNnz2L//v3Yt28f5Clql7i7u6NEiRJo1aoVunbtmqkmHNOD3eu1gwONnRs1ovFS6vG1TAb4+CDHqlVo/8kp1LZtW9y9exczZ87E5cuXsWHDBjg6OsLR0RGurq6Qy+Vwd3dH44QEeD96hDwABICFAD4CSHKfKhSUQuSPP4CxY0m7x4610oVnQLT9jihbFpgzhz6/lEyYoD2NikJBKQMuXADOnjXO2fXqFTmwnJ3pfEol6bVCQc+LTLJCzh7Yt28frl27hjJlymDo0KHsxLYydq/XHh40vm7dmsa72vS6QgVyfJrK/PlUjFGXg1yhoN/kf/0FfPcdcOsWMHeu6efJKnyKZl8KisbOBaBxtWpU+yFl2lohgO+/1+6LSkgA/vkHCA4mv4ibm+HzPntGKRddXUmv4+IAVbovX1/j+gCl4nnx4gUiIyOxaNEi/Pjjj0Ydx2Q87MqRnS9fPrx69Upt36tXr+Dh4aGzSryTk5P9J3T39qaB12+/AX//DURH0365nKKjx4wBihc3vd8FC6gPfVV0ExOBrVtpqcfFi+rRDcaSVZzYEgk93DZvBo4coc9J5diIjaWBMEAFLVWObW33RqEgJ1Tv3uQc0cXjx/Q3sXo1iTUAODrS9vFjsk1t2lCUT40a5rhKJp0oFArMnDkTJ06cwIcPHwDQgNHLywtVq1aFv78/mjRpAjcjH7gZlUyr1yVLklaOG6f+3XR2puiCMWPSlh9/3jy1fK5aSUyk5epTppDTOyoqTZdgMhlxstLRkQbI69cDx4/TvStShBzKCQnk5ALo2aeawNWGQkHO6YEDySmmi1u3gPHjaRJD9cx1dqYJyJTP9E6dSK/15TxnrIZCocDkyZNx9uxZREZGAgA+fvyIPHnyoGrVqmjUqBEaNGigU7MyC5lWr6tXp/H1uHHq381s2WiZ+ejRag5PqVSK0qVL4/vvv8fevXtx69YtODs7w83NDU5OTpBIJFAoFKi9axekUimgVGIjyIkNpHBkA6QdCxbQ933ZMtNrzqRVdzOiXnt6UiTf+vXkUJJISK+joug+qgJ5rl/XnwtcoSDH9KhR+nPQXrxIer19e/K9cnWlz0iVVtHJCfj8c/r8ihY1x1VmWS5duoTTp0/Dzc0NhQoVQokSJWxtUoYm0+p1QAB9/8eNU/9uZs9OwQY//aSe/sMYlEoaXxujv3PnkiN7yRLD/pPUqIJXMpr2poWCBYH16xHSpw8cQkLQOE8eyKpWpcA7IZLvxZEjhgMqr1wBfv+d9FgXx47R+wcOJO/Llo3G8/Hx9NrVFfjyS/obMZBiytHREU2bNsXmzZuxdetWdmRnZoSVACC2bNmit82IESNE+fLl1fZ1795dBAYGGn2e8PBwAUCEh4enxUzLExkpxLlzQpw+LURYWPr6Kl5ctYDG8LZtmxDjxgkhlxt/THo2BwchJBLrnMucW4sW9K9MRvbLZPQ6e3Yh9uyh+75ggfHXdumS9s/u5k0hcuQw7vOQyajd9u3p+3th0s29e/dE06ZNhY+Pj6hSpYoICAgQP/zwg9i4caP48OFDuvu3F/1ivf7E+/dCnDlDW3pt9PQ0XodOnxZiwADSUWvonkrnMtrWpAn9K5er63W+fHQPhRBi7FghpFLDfUkkQjx+rP2zO3NGCDc34/RaLhfCxUWIY8fS9/fCpJvg4GDh5+cnfHx8RLVq1USzZs3EiBEjxPbt28XHjx/T3b+96Bfr9SfevKHv/blzQhjx+SqVSvHhwwcRGhoqbt++LS5cuCCOHDki9u3erfadXgWIMYBYqes7//ChEJ07G6cz5tgy4tgaEMLPT12vVXpatKgQ16/Th/Ldd8bprLMzPZ+1sWcPPTuNea7J5UJ4eQlx5Yr5/g6zEO/fvxcXL14U3bp1E/7+/qJXr17i/v37tjZLA3vSLtbrT7x4IcSpU0JcuCBEbGz6+jFFhz5+TNYi3rRvTk7iZblyYgwgRgPipUorASHKlxciJITufYcOxul1zpxCxMVp//zWrKFnp7F6nT8/PXMN8PDhQ1G0aFHh4+MjDh48mPa/L8bqmKJdsKQhkZGR4vLly+Ly5csCgPjjjz/E5cuXxeNPPxZHjhwpevXqldT+4cOHwtXVVQwfPlzcunVLzJ8/X8hkMrFH5UA0ArsXbnNStKjxorRlixDjx1vPkR0QIISHh/UG9ubadP1AkErp3h07JkSnTsZdl1QqxPTpmp+bQiFEyZKmfRYSiRBOTvTAZmzCsmXLRKlSpYSPj48oWrSoGDJkiIiMjDTrOWypX6zXFsbd3fjv+8mTQgwaZD1HdseO5BjIaHqty16ZTAhXVyGuXhWibl3j+1uxQvNzi40VIndu05z9Uik5R8ysD4xxKBQKMXPmTFG8eHHh4+MjihcvLsaOHStiYmLMeh7W60xKfLzGdzoBEEpd3/d794To0sV6+tm7N+lRRtNrXRoqk1FgR0iIEMWKGd/f3r2an11YGGm/KfdGJhOiUCEhEhKs/qeWkYmOjha//PKLqFWrlqhfv77o3r27uHbtmq3N0oqttYv12oI8fWqaDoWHC1G/vvV0r39/+g2fwfR6h1QqxgBifer35HIhChakiWNTftdcvqz52YWEmO6XksuFqFxZCKXS4J9Gy5YthY+Pj+jZs6fZ/+wYy2GKdlk0tciFCxfQKEXuM1XupqCgICxfvhwvXrzAkydPkt4vWrQodu7ciR9++AGzZ89GwYIFsXTpUgSmpXqtvXP7dnIByNKlgYYNkyu/Gku1akBoqHFLY8qXp2UZpiyjSQ/16lFupEWLgKlTk5fn2ztCaN+vWrI0fDiQJ49xS5ik0uTrFgI4cwbYv58++7t3TbcrIYHuZ+nStPxSJgP8/IAmTUz/22GM5t27d5g0aRLOnz8PhUKBPHnyYOrUqWjYsKGtTTMrrNd6CA6mnJxKJVCpEtU8MDVHdsWKpAH6UosAtNyxVClKJZTWHH6mLj1v1gyYNo2Wyc+aZb3nRHrRlw8xLo6WjJvy7FEtYRSClsEfO0af/Zs3ptsVHk7pBjw8SO+dnKgYUb16pv/tMEbz/PlzTJw4EdeuXYMQAgULFsTcuXNRpUoVW5tmVlivdSAEafXly/Q9q1kTqFrVtD4cHCjd34MHSTqq88eSuzstw65Zk/I3p4VPKUyMpl07YMQIWtK9aJHpKU1sha5nn6qez+TJpum1qq1CQcXXz50DTp2ifOmmPP8UCvottX49pYl69AhwcaEClNWqGd9PFkKhUGDJkiXYuXMnwsPDUblyZYwYMQLly5e3tWl2Ceu1DoQAjh4Fbt6ksa+fn3G1pVKSNy/VJklZaFAXBQuSZtepQ1phaDyuDUMpAlMTFAR8/TWNrVeuNP18NuANgC1KJbwBaCQ1TUykNLVz5qgXrDeESq8TEiitTHAwFd809fmVmEjH7tkDPHxIebXd3ak2Tqq/na5du+LXX3/FuXPnEBkZCXcrF51krIDl/erWxe5nIG/fFsLfX3OGKUcOIZYvN62vgweNizRo3JjaKxRC+PhYZ1niqlXJdt69S9Fp+iLaXFxsPvto9H354gvjZxA3bKCowAoVkmcS0zMrqzrWwUF9WebRo+b6C2VSsG7dOtGqVSvh7+8vGjVqJMaPHy+io6Mtdj671y8zY/fXe+GCEDVqaH4P8+cXYutW0/pas8bw91suF6JHD2ofE0O6aQ3t279f/ZqdnfXrtatrxtBricT4pY8A6ejJk0L4+iZ/Hul5XqruYUq9LltWd8opJl38+eefIjAwUPj7+4vGjRuLGTNmiDhdy1nNgN3rl5mx++s9fJiWPaf+HhYpYvoYadYsw999mUyIH36g9m/fCuHoaB3tS5kG48ABw9HZ9qDXxmzOzkI0bGj86pdbt4TYvZuiA1V6ndZzqyImJRL1tCQ1atBvGCYJpVIp1q5dK+rWrSuKFCkimjdvLs6cOWNrs/Ri99plAez+mrdvTx5rpdxKlRIiONi0vn76ybBuSKVC/P47tX/wIH1jO1N+xz99mmzn+vWG29uBP+RXQPgAoj70rETKmVOIcuWMu49SqRCvXgmxdi2tcATSt+JUIknW7JR63bCh2v2Oi4sT5cuXFz4+PmLGjBlm+KNlrIHdpBaxBXYt3LduGXbotmghRGKicf0plUK0batbUKVSSkdx4ULyMfv2Jed/tpQIurkJERWlbuvOnSR6KW1TDRiHDaNrHjQoYyy9mTbNuHY5ctBSGnd3y+agVQk5O7PNRmRkpBg9erSoXbu2qFy5sujUqZM4f/68xc9r1/plAez6es+epQGlPk364gujlrcJIWi5et26+pdXe3io/2heuzZ50GYp/ShQQPOZs3Il2ZJSYwByNEycSJOiPXpkjFytf/xhuI1EQj+oTp4kZ5Qln0OqtCeck9VsvH37VgwZMkTUrFlTVK1aVfTo0UNcV+XctSB2rV8WwK6vd+9ewxNPw4YZ319kJE066XKOyuVC5M0rxPPnycfMmWNZLZNIhKhUSfOZM2eOuvNDpV/u7lTTJSEhuf6LvW/TpxtuI5XSs3TXruTfEpayRy6nsbwROVmzCocOHRKtWrUSfn5+onXr1mLnzp22Nskgdq1dFsKur3nNmmRnpK7v3tSpxvf3+jVNaOnT6+LFhUhZy+iXX9KuC46OhnVHKhUidU5zpZLqtqgmPVOmHMmRg+5LTIwQtWvbTIMTAVEV5Mj+yVD7SZMM9ymTUfrClSstb79cLkThwuQ0/8SQIUNEgwYNxMSJE9P5R8tYC3Zk26tw+/kZ59Ds3j15oBoSQgO7n36iH+Shoep9xsSQQ0H1BVblcgZo1ktbwanduymiEDBtRkwup9zXhq4hpVgolWS7SrBTt+3Rg/KSFipkM9E2eVuxgiLbDbVbuNC4+2WOTSqlvNvGOtUYnezfv1+0b99e+Pv7C39/f/HDDz+IqNQTMxbCrvXLAtjt9SqVQpQoYZxDM6Vz5PZtivj46Sch5s5VG0wJISg3X8uW2vW6cGHtOeTWraMBruoYYzXBzU2IatUM68+ffyafKyFBiG++0a3XgwYJsXix+qSkvW/btyffP33bhg0UzWmNyVSZjMYDTLrZunWraN26ddKqmZ9//tmiUdgpsVv9shB2e71xcaRJxjg0U9YtuXyZxqs//STEokWaxQNfvRKiXj3tel2mDOXGTs3Chcl5Q03Ra29vcrQY0uuUK4FiYqhmiza9lkjIYTJ7thDZstleh43dDhwwHEEuk1G7/PmtM5kql9N9ZsTVq1dFx44dhb+/vxg4cKB4/fq1UGaA3x12q10WxG6v+f1746OOV66kY5RKKgz5229C/PyzEH//rVmD5NEjzdXPKg2uUUOIZ8/U2yuVQkyeTAEaKYvPGtqkUjpP3rz6x4tSqRDHjyefLzw8uUB5at2SSmkV0MSJ1lvZo2PbDHJi+wLihaH2x47p9yOp6nudPEm/SaxxDXK5EAMGJN32Dx8+iLFjx4oxY8aIsLAwy/xNM2bFFO2SCCGE9RKZWJ6IiAh4enoiPDwcHh4etjYnmRs3KE+1sezeDfz5J7BlC+X5S5mTqVs3YPFiIFu25PZ371I+zpCQ5Nxu7doBjo7a+09MBHbuBI4fB/bupZzL+pDLgY4dyaa2bYEjR7TnYZXJKBd3vnxkZ3w8MGWKUZcsAMQCiAQQ8enfKACKT1tDAKpM0JcBPAagTPG+I4BsANwAVAPg/Klt/Kfj5AUKAI0aUS6+Bw/oMzEViYTyye7frz+vU1AQ5WctUcL0c6SHI0cAf3/rnjOD8/HjRxw6dAhHjhzB9evXce/ePeTLlw958+bFkCFD0KBBA6vZYrf6ZSHs9noPH6Z8xsZy/Djw22+kCzIZ5TxVKOjfvn2BmTMpR7KKq1ephsDTp5TbrV070myZTHv/8fH0LDh7FvjvP+D+ff32yOXAd9+RBgUGJueLTa3Xcjng5gYUKAD06kX55v7806hLFgBioF2vpQBSfmvOAHj56T2VZjshWa9rIjkHbdyn/8uKFqV8ie/eAffumV5XAKDnX9WqwPnz+nMa/vgj5derW9f0c6SHGzdMzweZxfnw4QP27duHEydO4Nq1a3j06BG8vb3h7e2NH3/8EdWrV7eaLXarXxbCbq93/XoabxqDVAqcPg0MHkz/qvQ6MZH0YsgQYPz4ZC0WgnIvr14NvHoFZM8OdO5Mzwddue6jo4ENG4CLF0m3nz3T1N7UNo0fD3z+ORAQoFvfHRxIr318gD59KIf/li36+7YGUimNdWvVAl6/Bu7cod8ipuLlBeTPT1qvT69nzgSKFqXnprWQySiPdv781junnZGYmIh+/frh6tWrKFu2LCZMmIBChQrZ2iyjsFvtsiB2e81z5pD+GqNbrq40Hu/bl8bNcjnpbmIivTd6NNULUGmxEJRze/16Gjvmzg306KG/rk1EBLBuHfX/77/A27eGbfvzTxovBgRQvmhtODqSXhcvDnz1FT1DTpywvV7LZEC5ckCVKsDz51S3KzQ06e3PAFwB5cbeoKsPiQQoXJj8IM+f69frNWuAjx+Bfv2sd+2urvS8/uQnW7VqFe7fv4/69eujSZMm1rGBSTOmaJdFiz0yKdDl+NVFjx4krqo5ppRO0/XrqRjJoUMklEePUpGuo0epXcWKJPb6CgDK5fRFX7WKvuz6kEppAP3LLyQKTZuS40abcCkUQGQkbRMmaL3eVwAegZweKV1F/wK4pccMP5CzGiAndrCetpVT/P+gRIKzP/4IZ09PuLm5wdPTE8VXrkTV27fhbErBBpmMCvrs3au/nURCP5DOnDG+b3Mgk9F5s7QjOxrAOgCrQH9puQD0APA5yG0GKJVKrF27FlevXsWTJ0/w8uVLhIeH412KQiG+vr6YP38+PD09rX4FjB1w5IhpBV1atwaiouj/CkXycUolTTo+fZo8Kbl3LzB/PjlHANIUmUx/AUBHR9Lh5cuB9+/12yKTkXN8yBAgZ06avAsO1v7sSUykooTh4cBPP2lt8wxAKIAEAPVT7F8G4IlGa8IB6o7sBwDu6WgrAVA7xev/nJxw/ccf4eLqCjc3N3h5eaHkzJmoLJXC0ZSiMHI5UL8+cPCg/nZSKRX9yZvX9KJr6eXMmSzuyI4AsBLAegBhALwB9ALQBaqp6MTERPz999+4f/8+Hj16hNevX+P9+/cIDw9P6qVixYqYMWMGXF1drX4FjB1gil4rleSETlkoUHVcXBzw++80Jl66lPZv307j6ytXSB/8/XVPOKpwdaW+/v47+bmgC5mMAj/69SPd9vPT7chOSAA+fKBt8GDD12oNfHzIaZ3SkVSunOkFh2UyoHZtKuBlqN2pU/QZOTiYVmwsPSgUNDHRurV1zmeHXLhwEC9enERs7BMEBDxDoUJvAPQB0A701GcYIzhyxPi20dGkuarvecpC5FFRwMiRNH6dNIk0d+NGYOFC4NYtGjc3a5bs/NaFuzuNq//6C4iN1W+PXE6O6R49SN9q1KBnhDbi42k7f542e6BmTRp3qu5HQgIVwPxECIBrn/7/jb5+JBLS+T179I+ZVX6Jjx/p/9YqJB8dTQVEa9YEAFSuXBmHDx/GtGnTUL9+fTjqCvLMVLwAsBTAfyDfSHEAXwNoAcDAGCYDwY5saxEfb9rATp+zQqEgYVi6FLh0iQbLcnmyQBw9Sk7u+vUp6lpVpfXVK2DFCopGfvMG2LrVOHs8PEioy5cHpk4Ffv7ZuGtI1Xc4gANIFkkAqAeKzAMoMg8AXAB4AHAHuR7loK9cysdQWZCLUgaK/pOBIvmiPm0uqoZyOaKqVwecnBAbG4vY2FiEvX2Lh4cO4aRSiUAAFVL1rRWZjJz4+fOr32td1333Lj1IrYlEknGq11uEKwACQQ5sKSj2UwLgOICfAOwCUAszZ87Epk2bEB8fj2yfZmvz5MmD/Pnzo3z58mjSpAmaNWtmm0tg7IP4eNPap3CqaaBUUhT1hg0U9bFtm7rTZc8e0unPPqNJSlXk9pMnVOH8yROKeNixQ78NqudL7ty0osfHBxg2DPjjD+OuIZVevwWwH8CdT6/loMlElVaq9NoVpNcen/bJoPmTtjIAn0/vqTQ7FqTVCUheaQO5HFF+foBEgpiYGMTExODt06e4f+kSToGGX6WMuRa5nO6DUmnYwaVU0sSsvogdS5Gl9foEgNYgZzZAMf63QaOEnwDsgxBlMG7cOOzbtw8A4OJCT/Z8+fKhSJEiqFChAgIDA1G/fn2N3pksRHy8aU7T6Gjd7YWgMXWXLuQcOXZMXUO2bCEt79OHovJUTu179yji7sULcuzu36/fBtWkmY8PTW7mzEmrYtasMf46bI1USpGGKXXz/n3Tx74yGeDrS5HrhiYTFQpg0yagf/+02ZwesqheCyFw585i/PHHAERHK1GnDhAYGAPgNYDdAEoC2Ad6yjOMAeLiTNNrQ+0nTwZatQIGDEiecFR9V9esIb/Hjz9SO5VWXbtG4/G3b0mvjh/Xb4Oqz7JlaXzt7EyrKA0FStgTEgnw5Zfqen3uHK2i+cQfoF/O3gCa6upHJqOVjsHBhjVRoSBfVceO6TIdgOmToyls8/X1xalTpxATE4N//vkHffv2Tb89ds0qAF8ieR0sQOPrbQCqg/whuW1jmrmxdJ4Ta2O3OaF27jRvDiCJxHDeT5mM8rEmJgoxZEhyzihT8mIPGSLEx490De/epSl3Uywg9gNiPCDGfNpWAWIXIKJTtIsBRLy5cyVJJEJ55oyIjo4Wb968EY8ePRJnjh4Vcz/ZMR0Qccb0U6YMFWGoVMn4c5cta95rMWb77z+b/pnbjmdCiBxCCJkQAlo2mRDCXWzbtlj4+/uLBg0aiP79+4v//vtPPE1ZUdrG2K1+WQi7vd5ly8z7vZTJKJ+evnyeUqkQX30lRGysEF9+SW1lMtP0etIkOl4Iqq+QhvyhUYDYCYhxnzRyHCDWAmI3IBJStItO9dosm4ODUN6+LaKiosTr169FSEiIOLlpk5j5yZZ5gFAY00/VqkJs3kyFLI09d/Xq1tfrs2dt+VduQ24JIVyFEFKhW6/ziOXL5wh/f39Rv3598cMPP4hdu3aJV6nzztsQu9UvC2G31ztlinlzJcvlQuTLpz//qURCubUjIoTo0CFZ543NsyqTUV7u+Hi6hvPnra8/6d1cXYV4+VL9szh3zvR+6tWjwo3G5s0FhGjQwPrX++CB9f+2bUx8fLyYMeN70b49hL8/RLduEPfuQQg1vZYLIYoJISL1dWVT7Fa7LIjdXvOQIebVa6mUaoIZqm8ya5YQb94k56mWy43XaycnqlejUNA1mNunY40tRw7NvOI7diS9Hw+IWqD82DN09SGRCNGsGem1Kedu1sw69WdUm4ODEKnyYQcFBQkfHx/RvHlzK/2h24rdgjJHp9Zp1SYTQlQVQiTYykCDcLFHIy/eqiQmkiPDFuLVoUP6HhqNGwtx7RoVjTGxnxeAmIpkB/YyQDy39vVPmaL+WSiVItHNTRwDxM0U7ZTQ4UhPa2EzicS4h6u5Nm9v+jvLkvwodDuxaTtyRCIaNvQW/v7+YsKECbYzVQ92q18Wwm6v9+NH035Um2tTDRLTqhkSiRCtWwvx8CEVxDGx0GwIICYjWa9XA+K1te/B33+rfxaRkSJOKhX7P9mnapf4adO4fk/PtJ/b09M6xcNUxYIyQJEsy9BbkPNDU6dV29atEA0a+Ah/f38xf/5825mqB7vVLwtht9f78qV1fySrNmdnIWrVSntBb6lUiG7dhHjxgiYxTSkOaQ+bVCrEtm3qn8Xjx8Yf7+iYvkKUzs7WuU6ZjAq3ZzEUCoVYuHChqFbNQxQtCvHZZxCXLkEIrZotEUIstKG1+rFb7bIgdnvNt27ZRq9y5qSgtLTqtVxOQSbv39M4O6392GpzcFAvPimEEBcuJL1/FhCjATEAOgL8XF3Tp7nWul9yuRC9emn82R09elT4+PiIIkWKiIcPH1rnb90mVBG6g0RSbptsZaBBTNEuPUmUGbMikwHTp9vmvJs309c7rRw9SrnrDh82nBswFblAS9JzAugOIAiA1UuljBpFOcVVSCSQ9e6N+nI5yqRodgXAfAB3U7QDAISFpe28QlCxCYnEOkvWZ882+fPJHCgBLAEtodFOaCgwaJDA48fPUbBgfvz4449Ws47JgLi5ARMnWv+8Egmwb1/alzALQcsea9Sg9FOm1AAAkBeUOiQfSKt7wAaLz/r3J91UkS0bHNu3R4BcjiIpmp0BsAhUbyEJIfSneTFEbGz6npXGoHoezJpl/VQmdsFHAGsA6E7Pdf06pb58+jQUZcuWxbfffms165gMSN68lEbJ2sTGUgFeE3U2CaWScrrWqkU5VK2VP9RcCAH07p2cbxygAmD16hk3Fk1IoNypaSVlAWVLoaoRNHWq5c9lRwghsH79eqxYsRRhYRHw9QV++IHqw+lmobXMYzIypUsDPXta/7xhYVTYMK16nZhIRdr9/Cita1r7sRUKBfDFF+q/L6pWBUqUgBLAKVCavy+QXI9MjZgYwznEdSGRALlype1YU1ClgR0zRuOtBg0aIH/+/BBCYNGiRZa3xSZcBXAZyelEdCED/YLK+LAj25r07EkFtayJOYRWoSDxOnzYYNNXAHYg+SskB5Vu+g6U29QmP9slEiq4lpJBg2iA+smRIACcA/AB9BN7HYBwczg0hKCcVM7O6e9LGxJJctHOTp0scw67JxLAe63vKJXAhQvA559T7dRs2YDff/8BcjmXB2AMMHgw5f+0JubIwalQUDGwK1cMOkqfAtgD0j+Aagt8CSryUjT9lqSN+Hj6sZCS4cPV7o0CwAUAbwAsB7AFlG873cTFUZ5FBwsWrvL0pDzpjRsbbpspeQ5Aew56pZLmzb/8kn4z5cypxKRJYyDVV7iaYQDKf9qmja2tMJ3ERMoNHRpqa0tMRwiq57Nxo/r+n34y7rdHesfY4eHJY3lzo3p25s5N+c71e3AzHXv27MGqVasQExOOQoXoNuuvIy8APLSSdUyG56+/qC6JtUmv5igU5AyPiDDc1t5QKql+w6FDyfskEuDnn7EDwEtQzRudSpeeeycE1WkbODDtfehD9QwoVIgGkb6+Wps1b94cAHDgwAEoMtpEhFHoKBStgQIpwjYzNPzrwNpMnAjs2pVcgBGwXsRuelAoaNCoI2IkCsB20PzOBdB8kApVUUaboVCoC7eKPn1I/KRSSAD0BhUzk0qluA1gHsi5na7HnhBU6dzLKz29aMfRkaozv3pFntosi/rcsVIJnDxJATSdOwNDhtBvRLkcmDMHKFjQZi46JiMhkVCRkpUrARcX9f32jkJB0Sc6Bp7hADaC6lmfQXJBR4AisG0+MDh2TP21szNViZdIAKkUMpCzvQYAiVSKKwDmgmIR0oVEQuHAlph49PAAli+nYnCtWpm//wyD+r1VKGiOfMIEoEMH8oG9fk0fwdKlgJdXJilIw1gWqZSKks+aRWMjFRlFrz98sIxD1tLI5eqF0oQAcuQA2rWj16mvydyrBh88sMxKxLx5qahnaChFYGYhjh07hkWLFiEqKgoNG9bA3LnGzhFpjeNkGE0cHYFTp4DRo9W/vxlFr2NiMuYKaLlcfXwtBBQFCmC8uzs2gkZnamEc5n4mvXxp/s9YIgGKFAF27KBiwxUr6mzar18/yGQyhIWFYe/evea1wy4wZZWSi+EmGQAOS7QFLVrQ0umdO2mLjKQIrZgYW1umHy0VYwUoJcdeACrry8KG0Xy6SEigfx8/pijLgweTnCKqSD9HAAEuLqjo54ed+/fjMaiu6wsArZDGL4sQtATJEnh6Av36WabvDIULFIqauHDhPA4dEjh/np5lOXLQuw4OQOXKQFAQ0LBhWdDUCsMYSc+eQJcuwKZNpBuRkZSuKaMtAwetlDkP4CAoJlYCoDKoQrndIESyXt+8SXp95kzyChqlEpBI4CIEWnl4oHL16thx6BBeANgMWhXUBGl0xgtBg3xLpBcpVIhEKMtTCAkJRXD27CMcPEgrZp48AbJnp3ddXWm168CBQMWKjWEH0ypMRuJ//wP69gXWrQNOnKAAjC1bLJ8yKL2oMnxmRFR6fe4c3furV5OCRNRWGeXIAVSvTumzzMWuXebrKyXly2fJVY53797FlClTEBkZiTJlymDkyF+QN+9eAO8MHCkH0NwKFjKZit9+o7RQq1aRfrx9S34ReyejRvNKJMm/XQ4cAPr3x+r79/EG5MDumLJtvnyUBubYMfOsFgU0V++YA6kUqFvXqACRfPnyoXz58rh79y4uXryIli1bmt8em1IP5MyOM9BOBqCF5c2xAuzIthVyOfDZZ7Tt2EGDbnsn1SD7PSiNyINPr/MBaAmgsCXOXbMm8Pw5RbOZ+gCRy2mGLjSUchG+fUv7hdDsa+hQ5PHzQ+/9+3EawH4AwQAqws6c83I50LBh8uuoKJrpdHEB8ufPGLPaRvEMwHrQoicvAB0AlAYAvHv3Dvv27cP27dtx9epz5MghkiaPnZ3pI2/cGGjSRLUAQgLgf7BRghsmI+PoCHTvTtvff1OkVgbjNWjVzNNPrwuD9DqfJU7WpAlw+TI5kUzVa5kMKFcOuHWLlp5GfUoaknIgrXoWTZiAAl5e6HvoEI4AOAaKMK+AdFyXJZxJcrl6KpHISFpJ4+5OkX+ZhocANgAIA00YdgE+ZTZ/8+YNdu7ciZ07d+LmzRjkypX8mHJ2prTujRrRlrwAYpCV7WcyBa6ulJ/myy8p5ci2bRnX8WANPvuMnBpxcaZP0CqVQNmylCvc3z/ZqZ1Sr1Vf9HnzKI3KwYP2/XlIpep5ND58oN8NXl7WyfNqNW6CEnOFA8gPpbILjh8/jmfPnsHNzQ1DhgxB3ryFAPQHMBn6864mAhhgeZOZzIeHB/Ddd7T98AONlzJgoIjV6N6dAmuUStPvU0IC6fWePUDr1oAQ+OvTW3UBFACSg/z++YeeCydPms+RbQmUSqB+/eTXYWGU8ipHjuSIthSMGzcOmzdvhqOjIxQKBWQZJrL+EsjrFgWgEKjyXM5UbbwA9AQlXdT3jFWCdD3jw6Eu9sDTp4bb2CHbQE5sOYAAAH1hISe2XE4hWpcvUwSyqcu+ExOBb7+lWd+wMP0D6AkTgOhoSECi/jmAZrAzJzZA1zRgADl7+vQhsS5eHChQgJxAixfb9w8Fg0SDys0VBjAcwCwAvwIog+PHa6Jjx9Zo2LAhRo4ciVOnTuHjRykSE3OiRg1g6FBaqj5nDq1uTXZitwZlAGaYdPD0aYZbUihAqUSegubqWwHoAws5seVyKvZ15QpFs5uab1qhoKi+b78lJ7Y+HfvhB8DREVIAjQF0An3LLXJd6UH1DLp0CejWjfS6RAmKeKlWjaKRMmo0JgCqLtEeQHEAP4P0+icAxbBrlx8++6wVGjZsiLFjx+L8+fOIinKCROKFOnWoFvPRo8C0aUDLlimd2F8C+MwG18JkKp49y5gpO6xJ06ZAcDA5tE19tslkVEAsKIicJNocHipt+/pr0j57H5tKpWTr8eOUUyNnTtLr3LnJYbJ1q60tTCcvQeuWygH4P3tnHSdV9f7x98Qu3Z0roISCgIKIAQb6tQsDsTuwEVvX7i5ExUBFscBExcJCEVBJaemOpZaNmc/vj2cuM7s7cSd2wZ98Xq/zmt2Zc889995zPvc5z3kiF3gSaSDvv9+C997LpU6dWhx++OG0aNEiVP9mYG/iB4m8CVs17cROpIElS3ZspemOgBNPtOTAhx2WvNFazZpw3HHbkj5+HgyyAFshD3LqSPYMzj7bZNQdma+dPGH9+5ty/tBDbbNxt92Mt//3P1PGR2DPPfekZs2a5OfnM3fu3BgN70iYB/TAOPge4AngKqAJcB1lE6c/DLQmPl8/BuyW8Z5uD+y0yN4REBkvu6Lh85nQ5lhRJIEjga8wq77Se0IZR9Wq8NZb8MILJYm7tOtiaXi9FsqloMBcWhK9IP1+S+zSqRNMncquErtG/JyHua63db7IzjaSr2iiv+gie9nsvbc9u8hd2b//hssug9Gj7Zr/dYkNizB11FjCFiBBgkF46SUYMeJ3gsHK+P1tqVKlCnvssQfHHHMMp5xyEtWqPQU8jilWHNQErgDuZCfl7UTaqFFj+wnafr+VJDOHezC+/hVTYtcsh65tg2R8PWSIWXRE8k8ivvZ4THiePr1snOxYmD4dmjaFpUvpWOqnldiW2C7OF35/dE+c8sbtt8OsWRa0H0ry9Z9/wllnmTb3xRf/hd40m4GDgSnYlkkACFBcbOGKP/30Z6A6fv8uVK9enT333JPjjjuOE088ikqV7gOeBzZFtFcPW1INYqf3zE6kjRo1tt8mkc9nhheOV8mOiipV4LHHzMovGb4GuOoqCwUwc2b8epKFT3Sybm/aFL++c36Pp+L5+oknLGTJhReWvQfjxpki6ZZbLOfRvw5rMPfzhaH/AyxZEuCVV8yofuvWJfTsmc11111F1apVQ3WqAd8CNwKvAJHyRxPgduDSCur/Tvy/Ro0a7ninPODzGTfl5VX8uZNBdjbcc4+t8SOt16OEfy2DG2+05COrVgG2WgbYC0rKz05yxlq1knseFfnsHFn55Zfh+eft2kpvxH7zjYWyeuIJuOaaUBe9dOzYkZ9++olRo0Zxww03VEx/U8IioCfh0E6RSusizGhkFTCMsLxcFxgHXAu8XeqYVsC9QP9y63GFQ//PkJeXJ0B5eXnbuyvusWqVlJXlRMgr/+LzSR6P/V29upSTI3m9CY/bCJpaUX0sXW6+Obn6fr99Nm0avla3pX176b33ynxfAHoedCfoJ1DQOc+hh7q6f0mXdu2s7x5P+HqqVZPuvFNavVqqUSP+eT0eq/uvw2uSKFEKCtCNN6LOnVHv3uiGGzxatepaBYPBKMdvlfRpqJ2PJW2psJ6ni38lf6WBf+X1zp5dcbzn9VpxOKx2bal5c1ectg40c3vx9aBBydX3+eyzefPkz3XwwdLzz5f5fhPoCdDdoEnO91WqSL17l881t2sXfmYOX9euLT35pDRvnpSdnfi5Pf/89h7dKeBhSV5F8vXGjejSS1HXrsbXd9+N1q27P8bxmySNkvH155IKKqTXmcC/kr/SwL/yeseN2358Xb++1Lhx8jJoRRafTxowILk+OmuIFi2SP9fpp0u5ue7OV6uW1LNn+Vz3bruV5euGDaXXXpMmTXLXv/ff396jOwVcL8knh6tXr0aXX47atTP5+qqr0Jo1SHo7xvHrJX0g4+sxkoorpNfp4l/JXWniX3nNo0ZVLPdF8nWTJlKDBtufk+OVqlWl/v0T6xwi+ct5LzVrVqLOR6Ac0C6gCdHayMqSrrlGuvRSd3zYqJG0997lc91t2oSvxVkvtGghjRwpjRnjro2xY7cNs/Hjx6tNmzZq3bq1Vq5cuf3Ge0KcJckvldKJlC3fxjh+paR3Jb0uaaykQDn3NzNIhrs8krS9lOjlgQ0bNlCrVi3y8vKoWTMDdmfBoFkDJOsenSzOOw/eeKP8LA+8XrNaSyXGNOFIxZuAs6jAUBs+H7RpY5YcixYlrr///raj6vWGE8oke71t2li2wIsusp2+EILAaCxZGkBX4BivF1/v3ubWctFFyZ0nEV56ydxkPvvMrFeaNzdLkGrVbHdx4ECj53ioU8eeeaVkMtlub3QD/sCxxl66FG69FebPhy1bzDP/2mvB46mLpeKsqEzpq4CNQEOgermcIeP8tYMj49cbCNicKG8vhCOPNHe18orj5/NBTg78809K1g1OpOIi4ALMZqpC4PdbHoIpU8zyLhEOOsgsFoNB42ufL3m+PuAAs94+5pgSib+KsPBXU0P/7wf08Xrx9usHHTqYlXQm8dFH5s741Vf2vmrTxlw4K1WCm26CRx+Nf20eD7RqZe+ef41VdhCTBhZu+2bePOPrZcuMrwcMgHPO8WCujrOpGCtrYb5T+UAjoGr86iliJ1+nieJiG+vlGapJMs+1yZPLT772+WCXXWzw/5uWVD6f8eZnnyV+l3k8FsC+UiXjt++/T56vvV7o29dyAvXoYZleE/Xvqqusb8884/48bvDrr7auGzsWCgstqdlRR9l3551n4Z7i3ROv167hl18y269yxVaMD+3dvHGjGZV/8ok5dh5wgEVXbNrUi1kB/lRB/RImyxdigcGSDB/pAv81roZy4msniWt5obgYWre2hV958bUja82bVz7tlxd8PtM1vPFG4rpZWSZfZ2fD2rXmSVLKWvp8zM+iO7ZeiNrGxRfD449bXO1EYTi8XiOUP/6Ad991fVmuMHeu5QEbN86uoVMnOPxwO+dRR5ncHW+8+P32rhs5EoBAIEC3bt1Yt24dl112GTfeeGNm+5sRrMFWb4kiJvixMHzlkEgzKoLAUsz7sgnloYNJhrt2Bo6LhmAQRoywt7rfb0Swyy7w8MOW9KM88OSTFtu4vAT6YNBiu6bwYvgDcybbgDksZDwQip/o1+33m1L6+uvdKbH9flP+DBliSiZnEyIZeDz2HABWrizRLy/mln8UthT/AxgWDLLlu++2uelkFI0b28v2iitMEXLmmabEBhg+3N2Cad06E9T/NdgKTMRRYo8YYV738+ebvuvee+G66xw9z1pgQTn3R9gWzr6YArsNUAfoF+rnTmx3FBXBa69ZHH2/34Sv9u0tsVR5uXS/+iq0aFF+fB0ImJCdpBJbwC/AG5STCs8DZMdQPPn9Fpvu1FPdKbH9fuja1ZKxjRlj3yXL114vdOxohLB6dQkFsJOB/aDQ/78AI4JBCkeMKJ/3eOPGpiC/+mrj61NOCW8gDh+e+Noke+aTJ2e+b+WGhUQqsYcMMW/8Zcvs1f3EExY610bmXBwFSvkhCAzF0jM3wZTndbCI8DPK+dw74Qr5+TB4sC2Ms7KMBzp3hqFDTaGYaXg8lpy3Xr3y2+AMBGyhvaMpsb1YUoRofO0o37t1c/ee8XhMcXDttabEhuT5WjKO9HpNvk6EQMCMSdatS+48btC4sckM115rLunHH2/jUTLBM5FiPxg0pcqyZZnvW7lhIg4Hb91qeWR++cVuc9eulq+gaVMwHh1fAf0pBJ7BgjU2wzZF62JJI+dXwPl3IiE2bLCwQ61bh/m6Z093Mk0q8PvNKKBatfLja0fW2tHg8xhfR9so8Plgzz2hYUN3647iYksK2b+/8RSU4Pm1WAaq47Cgm1HhJIYEdzqOYNDWXZnma6/X1hb77WcGfIMGwRFH2PebNlls7ERjsbgYPv7YwswCPp+PXr16ATB69OjM9jdj+IbESmyw0CE/l3NfwAI1PgTkYMkmd8H0ItdjG5HbBzsV2aVRVAQnn2xmn+PGhQXTBQvsLd+1KyxcGL+NVJCXZ4JUp06mON8BIMwC+SNs36U9ltAxozm7fcANXrh3v5Lk7MTFy8sziww3KC6G2bNtkRQMpraokGwnuKjIYpdGIcd9sCSQlTA16kvAqpdeSv5c8VC3ri0aYmHt2ti/lUZ5LALKBcLs/e3x3XSTlfnzbQ367LPRbkm6sbgCwGeY3erJwJWEBXhhsbX7EbbDB3tpfIAptz9M8/w7kRa2bLFBcd55llzQwaxZxhs9e5qCM9PYsMHeEx067DAx6IPASCxvgYAumPquVqZP9JAfrtu3pNWww9fLl9ukdWOxU1xsi4mnnkp9QyAYtPdxMAhTp5bhfA+myD4Z2y+dCQwNBMh7803350hkHe3xmPV19+6x6ySjOE+G27crirHs6KZ/vOwy25NYuNCch154wRykSiJdvi7CbIfOBU4BBmKxucG4vB9wITA94phC4E0sCuS3aZ5/J9LC2rU2KAYMsFweDqZOtR2QQw5xFzs5WWzZYhtsu+76r0r8mA9Mw3IbRCIPKHDTQBB4uQqc263k915vWPn+wAPuOuP1Wv0nnkidryV7R2zd6modJeDbjRv58sMPcSXNu7EW9XpNIZKTE/33QMA2W9ziX8PXWzA51169Q4ZYUvRKlYy777jDHIrCCIK7ux4HW7HYrWdhfH0z5pXj/HYkcDW2yekgH3gR83ndaSyyXbF4sW323HCDLcTA5vD48XDGGXDCCZnffJRs/X3qqbbR9q/xTssAAoJRNeH4ziW/dzxf/vgjrN9IBL/f5OtHHonKic62fjcs5WtMrF5tnO3GOAUsWaez0ZkI2dmJ109+v3mix7LKzctzr+sJBs0NJYTzzjsPgAULFjBr1ix3bVQY1mLc6BaZiEu+CRiCabhOxRIBO+/pPKAXlsR9ccQxeVic7q6Eub2CUe6BTioYaceEGjQofiwgv1/afXcpkKE4M/n50rnn2jl9PotJ5MT/2c5lHCgXiwk9llBM6EwWH1IdpCVIqiytnGixmCD1e9Crl8X8TqdfHo/0yCNS69Zx660APRm6R0Pd3p8aNSzWkxOTL1Z58MH442a//dzHNPw2VuykHQ1fS0J5eeiEE1BOjpUTTkDr1iGViQlVXenFv54qqVWoLb8s0pITi6q3pCeinDOyeCRlSZqTRh9K4l8Z0y4NpH29Z50VP1acz2cxkTPXYenEE8Nt70B8/XWIi+4CjU/ER6nEbPUhNUNa75FUW1o8VerXL3wvkm7PJ512msX9T/f6hw2zfA9x6iwCPRK6R++4bbdZM4uZmOj6Xn01/rhJ8C4pUaZOzdx4LVcMl4RWrEB9+oT5+qyz0JYt0fiyqaRoOQ3cYpykxqG2SvP1cZJyQ99FOzeyON7VJK1Kow8lsZOvk8Thh8efSz6fdOqpmevwypWWwwRM5tqB+DpaCYAWgr4FvQi6HnQu6DjQ7aAXQCNBt4EGgO4DvRWqPw20OtSGXS9SB6QCr6Rm0pzp0hFH2G+p5HTJypIuuywz8b4//dRVvTkYX+cSI4Zr6dKxo70HEl3fp5/GHzc1ari/lhUrMjdeyxVPyOHCYcPQIYdYeewxVFgYjSu7pHm+LyXVCbXnk3GzE5v7HElXqHRuhZLFJ6mBMpXj5r/G1VKa1xwMSp07x1+rer3SlVdmrsMLFkjdu5fk6/LIP7UjFh/S/khBn6SO0pTJts6HFOV1n3T99TF/fzzEq7+7aWv06OTO7ba/BxyQOHeM12t5LmJh82b37/SsLKmgZA6W/fffXzk5ORo0aFDmxnFGcLPi82Nk8Uk6Is3zjZDJxw5PexXm7WsknarI3ArR+7CbMhWDOxnuIiNn3IGQFnHn5VkyKDcT4vPP0+9sICAdc8wOSdTLMIVILujXeAQDloylSpXoZOJBqozkLfWdB6ke0sSISTD7tPT67fVK999vCbbSvQctWkjnnJNQ4bwJ9J7Xqzy37VauLM2da+2Xfu7O/2edlXij5IUX3L0sGjeWiorSH6vliE2bNmncuHF68MHdNXCgR8cdh7p1Q61aoVtuQYGAM0Yii09GrqlivkzIjkXMXkmVFF8x4tS7Io1+lMR/TdhO63oXL3bPnRMmpN/ZrVuN63ZARcg8wgv+KbHqOf0+5JBwkpvSdbI8pgDxRfKSw4lIM51x75F+OyP9vr/4YvpteL3SXntJRx2V8NmsB72XlaUtbttu0UL680+pXr3YfD1wYOKxc9dd7pLzdOxoC8gdGHl5eRo7dqweeKCFrrkGHX20JXVs3Ro9/DAKBktzJDKejJXs0Q0mS6qi+HydFeO3yOKRdE8a/SiJnXydBCZPdjfnPB5p/vz0O7thg9Shww7J19HKWNC9oCtB/UF9QHuDutSooc6gA0AHgY4A7QXqDertQQeHvjsZU3oPAq0BBdshLUabN4fm5Ef90+/nsGHpt+H3G1d37ZqQEwtBj1WurFzQg5i8Hbftbt2kH380ZXbp5+6c66GHEo+dAQMSG5v4fFKfPumP0wpBUFJrSR5t3oyuvBK1aWOf0TcdkfRyGuf7UbbJGEsR44nzW+nyUhr9COO/xtVSmtf89dfu5nOlStLatel3dsUKS/adaN7tqMXp93HHxa5TO7Rm90fySOizB9KaiHE/+NT0Nw3feivq939hCR73wpLCJ7yu885zl9jX67WEj1lZ7vp33HHSJ5+YMrv0c3cSVA4dmnjsnHxy4nHj90tnnFHm0DvvvFM5OTnq1q1b+mM4YyhQeBPQbfkkjfN9JOPkRPoON+XjNPoRRjLc9e/xsasIfPyxO5cyn88SgbhBUZHFaZXK/vb55/Dpp+7cRMozGU4UNMScCPbEQmlsQ2TSy65d4fXXLdHWuHHmxl8afdvCP8C9QEcsDNpewFOYN9leTsUAVB8V/TqrYqHTGibotM8HF1wAjRolqOgCixbZWEgQJ6+a38/Jhx9OpNNL3EhSNWtarLHJk82ls3bt8G/OOHj7bTj//PiuPGecYTGjEo2LG24w16xff4XRo2HixOhjsQLxzz//cN1113HqqadyyimncMwxx3DjjTfy1luzmDBB5OVBkybm+njffbE8RWsCN6TRi/uxxI2x4moFMefdRPcqCDwLfJ6g3k5kHCNGuKvn98Nbb7mrW1hobujR5shbbxnPuYkLWMF83RLogQW76Rj5Q2SYqp49LQHLmDEWN79Ll7INXdreMkXeDHQAmocafhnzRWwbqieg0gfR3T5rYHwdLwaVxwO1ahmP1a3r5hJjIxiESZOgatWEz6aWz8fJxxxDlYjv4vJ1rVoWv3f6dLjttnCOAgiPkWeftTwGW7fGbueii6x/8dzeJQtfVlQEP/9sfD158nbn67///psrrriC0047jb59+3L88cdz2223MXz4Iv74wyJBtGplosCgQbE8gZsBl6XRi1uxECHx+NpNLEFhESErIp7gTpTAW2+5C8Pk9VoyQDcoKDA5Ldocee45mDnTHV9v53Ajc4GxwLceD9Oxkb6lVi2q7rEHrfv0YZ8jjqBH3brsjqXC2wc4Cdh7v3q0PhlWNIQpWfCLD76rDtcdCLcdD29+Z5Gebr0V3vzhHb4HFlHKCbkWxtd14nTQ57OcEH37pp/4vrjYuG2XXRKufbK8Xq459lgaYQEnvo5X2eOx5OYHHGB8ffXVlljFgTNG7rrLbkg82f7KK629eGENAgEjvPx8WwN98UXJcDk7FDYC8ygsFIMHw7Rpxtndu0OVKtHqd8bcy1PFQGyUxXq+ivNbaVwB/JvyRvw/wZtvuuPrwsJtCfQSIj9/W4ziMnjgAYs37yaB+o4SHsrhQp/PEnt//73F937nHeO3SHg88EgHmOyxGK1tsDDDh2ARKn/CwsMDyA/+D6K/1+pifB0v/53PZ/qZQw6J+vNb2AysBtROdI3FxbbW2n33xGFegkFLMOl2jVSrliVgnDbNdB6R7xbJ2rvuOnjoofhy8MCBic8ZDFo+hI0bLabSl1/C3LlceOGFeL1eVq1axc8/7yhy4UJgXRL1D8PCNKWCIOCE783EWuMMbBFZgciI6nwHQlo7kI8+6t564+CDY7cTDErvvy8deGC4fr160q23SsuWhesdcYS78/l8YReTCi5R3dPffTe2le+0adIrr0gvvyz9/rukb+V6Jyev1Hk6Ir2OVBBR5w+kczCLbqeex2PlzTetDw8+mBkrdzc7w/XrS//8I7VqJXk8moKFYvkcVFy6rscj7bmnWfMXFZlbfqwdV59P2ntvadOm2OPsjz+kOnXKjiHn/4svlh57zNzjI39v08aez3aw/NuwYYMOP/xw5eTkqE2bNurdu7d69+6to48+WqedVknPPovGjLHwIvHHy6vp9EJS5QTtJ1v8Mtf39PBfsxpJ63pvuMHdzr/XK51+eux2iovN0qxbt/AxTZtK994rrVkTrtelizteqVy5ZFvbm6+//TY2X0+caFwwdKhZTOoduR7zc0qdZx+k95CKIur8jNQ3yvPw+8NeTdddlxmryURteDzSLrtIS5Zs89r5DbNi/y7WvevZU/r+e3NH7NMn9vP3eu33wsLY4+z776WqVcv203nP3HyzWW7Xr1/y9z32kEaMcDUlMo0VK1bogAMOUE5Ojtq2bbuNr4899lj1748GD0bffBPPqs8pX6XRi8XKjKVIZKkqaXoafTLs5OskcO657mSqrCzp6qtjt7N1q3mk7bFH+JhWrUzW2bjR6gQCZeWeWKVOHfOEqGCuzgNNBf0Nugd0E+ha0MPXXKOPRo7Uiy++qGeffVbffvutFi9erEBxsdZ/9ZXm3X+/5j70kDRrlgKBJ7VqFbrmGnTeeeiUU9ARR6CDDkK9e6NDD0WdO9vfh3VDp2EhSe4HjdwDzXkZKdLjbQzS/6LwapUqYffu/v0zYzXphq87d5YWLdLC7OxtYQ63xjvmsMOk336zcbDXXrHP4fGY/B3P83HUKBuLpa/V+f+RR0wGqVWr5O/du2fGYzeDCAbXa8wYCyNy+OE2Lp5+GhVFvqtLlHS48a8YbaZT6kpalEaf/ntcLaV5zUce6W4e+/3mCR0LGzdKTzxRMrxahw7S4MHG5ZK0ZYu7cD5er1lt77ZbZkIcpVsqVZLmzYvOI4GA9N135nX4+usWNkW3yZXnWNAjvVvqXMcgfRdRpxjpI6QDovBqrVqmi5HCHpgRdXqCckC3ZJqvDzpImjXL/bPp29fWHatXm14i3jniyQSS6Z08nuh87fNJQ4aYp03VqiV/79VLV518si677DKNGTPG3dwod8xWcvy4Po1zjUnyXImKR1ILSel5aewMLZIqcb/8srvJ5/XaBIyGQMBCUkSb+D6fLVInT7a6deu6J5Gzz3bvrpFi2QD6CHPni0tmScWcnSzXE2BexHkOR8pHKh27rTj0OYywMrtjx5Ix71atMkVFRYRsad3aXtTPPith7qG5ofIqUVwhHZJt2NDdOLv77vi397PPzEUzcmwcdJD04YfSmWdGb9d5yWyHmFDPPPOM2rRpo912200DBgzQmDFjtHTpUgWDQUnHKn4MJqd4JC1NoxflIWj7JB2WRp8M/zVhO63rvf9+dwpQv1+6/PLobRQUSEcfHZ5vpedfy5bm5h4MJscnp55a7i6Sq0GfEGXDrPS1n3ZaEjfV4tQnLEGPKamd85yGKbBL87WzUH40om6PHtLYseFTzp1ryv+KWJjstZcpm2+/XfJ4NDqCr4cTRUniPMMmTRK37fGYgi0WgkHpnXdMAeeMW4/H3OxHj7aFY7Qx5tyXhx9O4jlmBnfeeadatWql9u3ba9CgQfruu++0cuXKEF93lzv38MqS4mzIJsRXLs6RbPFLOiuNPhl28nUSuOYad5zo80l33hm9jY0bw/lBIvnC+b9DB3NRX7UqOV44+ugKV4xMD/HOU6HPe0DzvF4FQzFnA67y8LwlCRUXozVr0KxZ6Jdf0PDh6MYb0QUXoIED0U03oAsPtfAj+4AObIJOPBE9+hDasMHmRCCAli0KhSG5MaKvBx0kTZoUPuXEieUeriUAehf0XffuKiwoUOCii5Tr8SgX4oeFcsZXs2bunufIkbFvbSBgfN62bZiXfT7plFMs7EKPHtHvg9dr537lFZcTo3wRDAY1evTnOu64ymrf3jY57rkH5efH4saGkorTOOObMdpNp/gkpbde+a9xtZTmNffv726eezzS889Hb2PlSpN3YvH1vvtaCKhp09zzg9cr7bNPhXJ13L7cd18SN/UJuZKZir3S4Ij7lRv6vvTGUyG2EXlBxH096ihp5szwKceMKdHnPzAl9i6gmZm+H2efbec8/nj3azOwzQk366uff459a4uKbHNxl13CYy0ryzbQv/9eat8+ep98Pk3z+ZTbr58ef/zxkGy7vbFVUi2548YOaZ7rcbnTuyRTvJIeSatXOxXZqRL3ihXulQ/vvBO9jfvvj3+cz2eL4i1bklNku4jXvK1EWqq4LOsJC9Qj3Ryzbp3LmxqU1E4JLaqCXunOUNuNkTYTVlpHrY808Qyz+o5GPOPGSTVrxo6Tl6ni8UhPPWVC7xkWM3YGZvGSiyVUWJJO+w0bRremzMuT/vc/lXgZOORdu7Ypqd20P3q0y+eYPhYvXqxDDjlErVq1Uv/+/VVYxnrxC7kjyaqSnpfUX6b8vlRmDe32BTTF5XlSKf+4vh/R8F8TttO63pkz3c+jWAlPr746Pif4/SYAFRcnxx39+rnfeHSS2yRRVoEeDXHMV4nqZ2Ul4X1RKEuwlGCcBz3SZaH22xEWqOMd88vl4U3c0vjiC1Nml37HlYdy6e23bQPjyCMlj0d/YEqkXNAzoXub8rugQ4fo93rFClu0RfK1M54aNZKuuMLdtWYi1rtLzJgxQwcccIBatWqlyy67LIpibZjccWI9Sc9KOk2WlPEqSX8m0ZNvXJ4n2ZKl9CxZdvJ1UvjpJ/dzKVbC0379EieLPPDA5BXZxxzjnmt69coID80Occ69oc8nMLnxlZo1tXnzZrdPRBY7vuz4LipCc+agZctM0T33f2gY6PBaaJ99rJx0Eho0CL30EvrwQ/v70UfRqFFo6qsXastff0U/7dtvG4+VE1+vjrg3gTFjVLhunXKbNVMuCSyykyleb2zP2n/+Ca+jnPHm8HWrVqYcSaSo8fnMWnM749tvv9WJJ56o3Xarr733trwzayJj8ZYpLSU9KekUScfLFMgzo7YdHW/HaTudUktS6vl+/mtcLaV5zR9+6G4e+Xzm5RYNBx+cmK9POSV5RXaPHu7rH354ZvgiVtlzzyRu6mK5jg1/YKj9Y13UDXqkrx6InVviuee2WStfjSmye5fX/ZgyxSysYymOUy0+X2zP2mnTTIEdydfOZ8eO0oknxu1LEeh+v1+5N9yg+ZnIz5ERDJI7BXNHSQ9L6ivj69uUnB7iSbnPV5BMaZXCNYexU5GdzssqkYDiKKJLZT6VZN+5VU6/+qotpN3uWg0f7q5dj0d68kmzmnapeFkHepKwML3OzXkWLkzipr6m+APeIwWrSH12tz7fRnwl9rbSVHEtBxYtMnftBg2sz1lZtmCJFo4j1eLxSDk5Fkrmgw8srEm7dloJepqwpc2f6Zzj41LB84uLbTEVz22y9A54rLF85JFJPMfUEQwGlZubq969e+u0007T7Nmzo9QKyBQdbt3IHZL3hz57S1pTutEo2Cqptov2U3Fn/8blHYmO/5qwnfb1JgrP5PdLu+8eXbm4bp0pT93MQcfzwQ2n1qxpbmxu5/fw4aYAdakEWAF6JMQtz+EiARaEXThd4SElnHfBulK7kJXyM5S1xC5TvJI6Ke5m05w5ZrXpJOutXNkE0KpVM7cB6fPZc3zvPePsu+6ScnK0GPRY6J7ej7n7p3yOP/8seV1btkidOsXeiHYs+BK16/ebfFIBCAQCuuaaa9S7d2+de+65WrQomlt3gaT95Z4nHWHZ4evj5c5Se42k7CTaT6ZMcXlHomMnXyeBYNDmXjyDDL8/tnJxwQL3itLffnMfWqRFC+mBB9xzzBdf2OZTmlz0T4hvbgx9PhD6fDw7O0mrsIGKP/b9UqClVLua/gG9eDEadB0691x07LEWduToo9EJJ6ADD0RHHYXOPhtdd11L3XnnnRo6dKjGjh2r9evXlzzt1KnSJZdYYkWQqlWzpFtZWWkrtKeF7sUQr1c69FAFR4zQhjfe0LrrrlMwA/e+RIkM9yhZ4rqcnNjj1Odzd30+n3TjjUk8x8zj559/1mmnnabOnTtrr706a9Cgelq50i03lubrc2Wcnwjz5O6dkIp8vSLle/Ff42opzWsuKjKPxET6kH79oh8/aZK7+efxSDNmuA8tstdeyYWj+/VX46ZMckZkadkyyRt7huIrKP1SYSfJH7q+HyhriR3tGJ0d/7S//y6ddZb28niUA7q/UiXj60wa9/n91uaIERaC9vrrTd+SqfazsqTS76FFiyx0b6zx4HKcPAnqmZOjM6IkhNw+WCkL0ZHo2TvF4VNf6O/rZDqVRBifwjnc1nVz/ujYqchO52W1caO5rUSb3H6/LbL/+CP6saNHu5uMjiXAp5+6q3vIIdLmzeZ+kUiAysoKW365KGsx5XUuZpG93i1ZxYvdXAZB2e6SM8kiB7tf5nr8tfTGG9b+NLcTBUm/uOtCUVFYmTVlitS4sTtlb7LF45GOPVbq1Uv5Xq/eIuy6nrJlds2a0uLF4Wv56KPM9dfrNcV4OWPq1Knq06ePDj744ARxqDYploVR4uKTtLdMUZ0IN8jdbufJSfbhRxfnjo3/mrCd9vWuXCm1axfTZUyNG5uCNBpee83dHPH5zM3ylVfczadTTjGPiZo1E9evXt1ib7ucr8tBD4f4ZDBos1v+SEoxEpB0jlRiMRs5x2pJ+t1i0no80upk5keMZ1EakV4ov/xi793y4Gu/3xZinTppo8ejV0L39i7s3ZhSm02amDLEwUsvZa6/deok8RxTx08//aRDDjlEhx56qMaPHx+n5lKl7pbohGNyI+yeq7BCJV45Psk+JGNpWBY7+TpJ/POPKZhj8XWbNmUViw4eftjdotvvtw0xN8ppj0e69FJp+fLEHo8ejxlFtG+fkbm8NMQ1A0KfN4U+P2/cOMmbWiDpGCkmXzeS9LcpVbM9UhHauBFNmoTefNMsdC+80BTZV12FrrwSnXGGxdo+/PBD1L9/f1199dUlLNXy8vK0KXINEMnXX3xhMbXTUJB8G7oXo0r/VqmSdN557tZCbkuHDlJ+frj/992XOeVO27ZJPsvMYfz48erfv/+2zcghQ4Zo2bLvlBw/RhavTAnnBkfI3Xvh0CT7sD61m6H/HldLGbjmKVNM5ojGjV6vbUyWViw6uP5696GkHnhAuvZad0rH226T/v47cT2v16x0HUvd8igej4W6SgobJe0nU/SVVgx6JbWWtMi88BsnszlfSYm8kr/77jvl5OSoVatWWua8Z99+2/RG5REuqmpVC+voZi3kthxwQMmY5FddlZG+vwPKyc7Wbrvtpo1Oro3tjnTiV3tkm9yJEJTUWYn52tGvuD1/ltx7yZfFTkV2ui+rzZuNWCMtOqpUkS67LL6r2Ouvu584HTrYZDzmGHdCU506FrrCjfWWSyFsDWErtKex5DOu+n7qqSne2E8l9VF4oFeRdJm2LSaDQSOl5clM1k+VEjZssGQTPfeSLqxsu57LsDjdzyDtngYp+nzbnkEQE8q/TJe8Gze2RDbPPCMdemhmd1GT2pRIjEAgoPnz52vmzJmaNWuWPv74Y1133XXq3r27BgwYoOK4ivMv5f7ZxyrDXPRyraRdFZu8vbLFYbFM2eLmvNWVXizY/56wnZHrXb/eYh5HJsmrUcOsNpbGiaX+yCPu59Ehh5jHzX77uROaGjUy5bebtl32YRnooRBfv0CCWKGR5aqrUripQUkjZBa3zviuKdvlX2BVAgFz9UtojR1Z4ilF42DNGlOc9+goXZEt/Ybx9Rykh5Fap8F/fv+2d2oxlqj3x3Q5tUUL83Z5+WVzPc2U0qVy5dTuXxwUFRVpzpw5mj17tmbMmKGRI0fq0ksv1T777KObb745gXXoG3L/7GOVL1z0crGkxoqtzPZIOl+mFO/q8rwJPLpcYCdfp4AVK0zJEbm4rVtXuuWWkhtApZGMYuSMM0zG69DBHV+3bGlybazfS8d3zcBcXhPi8rNBd4AuCv0/b6CbxWdpFMkSYHdReHzXk3SrpOVWpaBAOvGgiN+tbN6Mfv8dvf022rQJ/fUXeucddM456JhjDtFJJ52kk046SQ8//LA+++wzLVy4UJ988olyc3M1ZMgQff311/rnn39KynXLl1uy5B7tpIFZlqR9OdLfSHchNYt/b94J3Ytx0X4vj9w3bdqYAcpbb7nLh+C2NG+ewrNMHzNmzNAZZ5yhXr166eyzz9af27yEHlP6buQTXfTgb9mGdzzlyM0yvm7p4pxeScmEcCiL/xpXSxm65gULyibJa9LE5ne8tePZZ7ubq1lZpsRescLmixuOb9tWOuGE2L97veFzl3fug5deSuGmbpWFW2un8BhvKulebUuSt2GDdHKniN/dlIgNuSj46KOPdNJJJ+mss0rlB1mwQLr1VmnfNtKtPmkKxtdTkW5Cqp/G/SkPvm7fXjrpJLP8djyC0iwFoN0rV1ZOTo6ejxXzvcJxo9wZcMQqHm1br8XFeJlBaTy+fkI2vmq7OK9P0uGpX7aS4y6PJPH/CBs2bKBWrVrk5eVRs2bN9BoLBGDBAiguhubNoWrV+PVHjIB+/dy1feCB8MMPUFAAl14Kr78OXi8EgzatYiEnBzZvhtWrISvLvisqgurV7XuXj1PAC8AKoD5wDlDDXc/hiSfgmmvc1o6CrcAWoCbgL9UxQV4O1FwEXjdtjQe6p9iPpUAfYAYEAF/o6yIgC7geeCzFpktBgCf093JgKrAfkGBElYTHE/47U9O2dm1Yu7Zk2ymgoKCA2bNnM2HCBH7//XcWLlzIpk2bqFevHuvWrSMQCFBQUMDVV19Nv7hz5FXg/DR64gW6Ab+5qLsSOBcYjT18L1Ac+vti4AkgGxtjPRK05QOuDB2TOjLKX/8CZPR6i4pg4ULj0BYtoHLl+PUffxwGDkzcrtcLJ59s/L5xI5x7Lnz4Ifh8ifl6t91g5UrIyyvJ17Vq2XcuUQw8DWwAmgFnAlXcHvzBB3DSSa7PVRZbMM6uRZgkQwgGoaA2VNnosq1/gJwU+zEbOBS0CIIRXSnGyPVC4LUUmy6FSL6eDywE9gUqJdOI8z7PJHbdFWbPTruZ/Px8Zs2axfjx45k4cSILFy6koKCA2rVrs27dOoLBIIWFhdx+++0ceeSRcVp6CLgNewipwA8cBXzkou4C4CzgR0rydSXgOuDu0PefAcckaMsL3AvcnFKvHezk6zRQUGB87fFAy5aQnR2//vXXw2MuBDKfDy67DJ55BlatgtNPh2++Ab/fZPp4fL377ibzb95ckq/r1jU5KYPYBDwKTAFaYCzbBrj+t9/w7bNPGi1vBgoxvi4lRBflg7cG+AJxW5Dg4Ydh0aKLWb06j7Vr11KzZk0aNWpE3bp1WbBgAQANGzakWrVqeDweKlWqROvWrWnTpg3dunUD/gAOw1T2EV0pxuTt04g57Z8G1gJnA62BfOB7TCzvk9zNcI9M87XXCz17wk8/Za5Nl/jyyy+59dZbqVq1Ko8++ij7bBtP1wHPYoucVODH5PMhLupOxySVPwjzdRFQHbgdGIS9ZV8BLnDR3lDSWRv817gaMnzNW7bA4sXGozk5xrPxcMYZMHx44nZ9PsjNhdtvt/fBySfD77/beYoTyBWdOpk8VFBg9SU7pn5905FUBJYuhSZNUjxY2JsgiOlDSq3DtyyCqi1dtlU11Fb0tbwknnrqKdavX88pp5zCHnvsUarGWOAYCG4Gj6wZhbq2BTg2VGVHgc9n7/NMwe/n/GbN+BbYY489+OyzzzLXdso4E3gHe2GmAh9wCyYbJ8JvmCZwJsbzHoyva2Ny/sWheg8Ct2IDIx4+IbEcHhvJcJc/7q//dfh80Lq1+/ozZrive/rp9lmpErz6Ktx9N9x4I7z9dvzjQgIknTvD/vubcr1TJ/j1V3jppcTEH4IHOAFT4Z2KiRausU1BNA0TaBxB5QBssCci3sqhIuAHTHk5H6gBnmOh9sVALvEnigfYBdg7mZ5HoAg4HApnmT4zC2gYaja0fuFW4BlsTZAmIl8t32FU8TumHOmJ3Y2EyPSek88HF17oWoktiYKCAipHKAgnTJjAt99+y+TJk1m9ejXr1q1j7dq1BAIBqlatSnZ2Ng0bNqRZs2b06NGDo48+OsFZXG+nxEAQG5du0BD4HFOQjcLUhE2AU4AGEfX2wRQeD8Roxwe0A+5Murc7kUFkZUGbNu7ru+XrYBBOPdX+rlHDFMOzZ9tm3uefxz/WUTp27w49ekCVKvb3iBHw0Ueu+doPnIix5Wm45IsymAC8iC0wKwGHYNrfRgmOqxoqQeBL4A1gMVAbvH2hygWgZ8ATT9jyYvMoVSX2RuBQ2LoEVmE3oD5GrH7sVZILDCOxfOUCDiMK+BpYgol5+2PbpglUboZMK7G9Xrj44sT1QijN15L4+eefGTt2LNOmTWPNmjWsXbuWdevWIYlq1aqRnZ1NkyZNaNGiBT179uSQQw5JcJbqpC5kg2m1/nJZNwebAVMwZfUWTAV4Kqa0c3AUpvB4JUY7Xuyte20K/d2JjKFSJdvoc4vp093VCwTCfN2gAXz9NUyZApdfnlipOH26zbP994e99zZZ94ADTKs7blxGF87OplgBJoLWA9oCvsJCjHl+wpR3s4BqwJHYxnvdBC1XC5Vi4GPgbcxkpQFknQb0A40AT+x3j8fj58ILD2Pq1P5MmTKFlStXsm7dOlauXMmcOXNo2LAhLVq0YO3ataxfvx6/30/NmjWZMWMGq1evplu35sChsCWPLz8Af3VouCs0agT16oEvC9NlRlFkFwLrQn87b6Z8jH+zKUdFdqb5OhiEiy7KbJsu8Msvv/Dqq69StWpV2rdvT7NmzSJ+rYGNrVSRDF/vDkzCDEG+xkZ6a+BkbHw6OAcbCJ/E6JsHU4ick1qXdyIzqFoV2rZ1Xz8Zvj7lFPu7ZUsYP94U2RdfDH/9FX/dO2WKKbAPOsh0IlWqwMEHwxVXwJo1mV8zR8PGjdCkETbGX8U23GsCx2OKyHhrWk/E7wXAh8D7wBqgKVQ9A9sM/DaBfO3HNvljr+UXL17M+vXryc7Opm2Z5zgbOBI2bYW1su7XDjXnw8T/m9ixFNmZVGIDFBdz5iWX8O2QIfz9998sX76cxo0bZ/YcSaMG8Z5pYgQxs0k36AHMwAxFfsB0ZB2wlWekCc81wKfAOGIvts4HEul6MoedFtmZQjBoVtvLliWu6/XCunVQun8HHpicsOz1mjX3DTfYzr+bc5dCpOWZa7z6Mpz7G/ASRqCOQOwLtejG0mktpkr/MaINpyfVQu3kE18rMYTwLlEirMFeMiOAdbAIeHwuvIxtYgLsClwFXIJJzI9jVtkZniGzgG8xy2wwy8rDgK6kR1lJweuFatVMEMhJrFzaunUrI0aM4J9//uH222/H6/Xy8ccf8+abb7Jy5UoAqlSpQrVq1di4cSPNmzenU6dOdOnShd12240mTZrg9boxsV8PNMZe6qmiBqaUziQEPAfcgy07HfiB/sCTQJ20z/JfsxrZbte7ZQs0bGiWd4mQnQ2bNoUt9MAE5HbtYM4c98Ky328W4FdfDbvsAoXJ75ClxNefj4Qj3wQ+oCRfe0PlORLz6BJMMPkL4/lA6NggpljZhAk+8e7FSIzz3WAZRs4jgQ0wOwiPzjdF9dZQlU7A1ZhuxwfciJk4ZlAfIWxb7HvAse+pARyBLdMrjK99PtMAzZhh1qEJsGnTJt5++23Wr1/PoEGDABg+fDjvvvsu69evB6BatWpUqlSJ/Px8mjdvTufOnenSpQu77rorjRo1wuNqg3MB0Ir0XpJtgDlpHB8NQcxy5BHsneKgMiZkP0KS/lBRsZOvKwgrVkCzZu5k45o1Yf36khv0hYV2fDJWetnZcNttcNZZ0KpV0l1OBGEmIG9hHLMHZpe6+8TvYa+7MSkxkq892ILyDUwZGA+zMZaaR5ivnc/GmAyTyFDkB+AAJLFixQqmTJnC1KlTWbt2LS1atKBWrVrMnj2b4uJipHVs3DiOevUW0KtXFgfW8sIji9A78EBxyBakGbAvVO8BZ54FjW8m6sbjSmy7tRK21eTHxPWhmKx8Y4IrD1+Cp2IUWdHg95tSbupUU65VAJYsWcJ3333HV199xcKFC2ndujWDBg2iQ4cOEbUmkbrxj4P9sU2WTKIIuAOzFt8U8X11YAAmd2dFOc49/mtcDdvxmv/+G0qMuzho3hwWLSr5XV4eNG4MW7dGPyYaqlWDe+4xRXbXru6PSxeL/4BmF2Bzy+FY591THVNOJ9p++wPbgF9OWK522mqJ+QTGgqNt/hN7i0TH1Vdfzbx58zjppJM477z9MJ/8MUAR/LoRHl1m4rbDxwcBAwkb1R4JfEVG5esdBn4/7LkngV9/pXuPHqxdu5YLL7yQ2267bTt37AvsxqcKL3AS8F5murMNWzCPmlcIL8jAdj8GYbserkIqxMROi+ztgZUr3SuSo7mjFxQk74IWDMLzzydlib0ZUw/XD/2f0kL8hVvgxJUhI6jI8zqLjFuw5f4VMRoowibnxND/ThvOPdkS6lllTKEZuXhxyP06wK21wxhsVymkGJ8C9MaM/CK7PxdTjHyIGeq+4bL5WIghSLcFdvN6mVGpEt/l57MKs5v5E/PeaVDmiDRR2gXH6zXL0tGjXSux33jjDZYsWQLA5s2bqVGjBjNmzKBevXpUr16dPn360KpVK8aNG0f79u05+OCDqZKSAF8b00y9TGqWfj6gVwrHJYIHG8+XYDvvi7ANl8Mphye2E+WNOXPcKbHBeDar1CJqyZLkQzwUF8NDD8GTT7pWYm/A5Mbaof9T4utnLoWDV4bMuCMJLxgql2BkflqMBjYBB2NeMxCel45Em4ctMrNC30Wew1HEPIB7JfZ7wBmh8wThZ+B/2KsgsulpmEH5aMz77g3SF7JLcbYH6Ajs7vMxuUoVxm7axLpQD3fDlh7pb1+VQiRfO8q4+vXNstSFEnvjxo28/vrrrA4p7QKhtmbNmrXNkrJXr140btyY3377jb333pv99tuPSpWSCpwSQg5wHGahkQpf+7GXcabhxeSQgZgXwXJsjP+P8GzaiX8Npkxxb+BRqVJZL7MpU5J3NS8shDvugAdieWKlBw+wF6YuXobZQ7UCeOpUeGV1KHRSJOEJI8HTsDEdSzmyEptTq0L/B0p9rsJkF0fOLs3XAcxI5ADrp8dD48aNady4MX369GHx4sVUq1aNunXrsnXrVn7//Tb++utpvF4PRUVi2WdQ/FiopWLr5UpgxVJY8QFs+gdG+ODi4VAlCl83xGbuOmAwxrOO71Sz0pVjhQPx+aBOnYoJLxAZAsHpT4sWFs6mgpTYBQUFvP7663zyyScUFRXRoUMHrrrqqlJKbLAR1wNbe6USDspH+fB1FiYj3IYpb1Zjq9QjKGm9vROpoMIV2ZMmua8brV+//JKcEhtMnr/uOlNoVyQe7wOPrgsJ5w7HOjLkZswA5BdibyDNx+RrZwPH4TOnraWYschaSm5sQliFN4J4Suz8/Hy+/PJLtm7dyimnVMI280NtvYEtuR39uYMfMQuOOzAj3C9J36gvVjgQn89k3BUr0jyBC0TytdOfPfaA0aPxZWXRq1cvRo0axZgxY3YARfbhmKHHP6QmXwvnPZ5ZVMUMoO7DBsZ6zJv9fyQZgDEjSE9lvhOZQ7KkHYmiIteWB79je95jUj8bTFhp0Rfi4jZMcRwNIzF3s1gT02HTvTCbDMdt2IOJxZ9hwavdqHUmY+rhkBK7EJONNlBWjhPhaCfXY96Y6RC3BIceasTp9ZoyzG8vHk+7duw+diyXZWXxP8wAfCEWciTjGDTIXMLq17cYkA8+CHPnmhV/AuTn5zNs2DCWLFlC1apVufjii6lRowbBYJCtW7fSqFEjnn76afr378/ixYvZsGEDv//+O7/99hvBlF01HwU6UyYerysEiL2Bkg5WYKTdI9T+8NC50g2FshM7PKJZpubH4jYXKHDvbfAj8BSmy00ZX66AixMR2Q3E1gK/hlnMxlr4BkK/HYkpxR1LVy9mzvE9tkPvBmOBfqH2giYfHY3Rd+nTO939ELgfc7pJFwcfbM/b5yvB196uXenyzTcMwAxVfJjN44IMnLIEvF6LBdy6tYVF6NwZnn4aZs2Cjh0THr5x40Zee+01Vq9eTa1atbjyyivx+Xzkh8Zr06ZNeeqppzjllFOYM2cOmzZt4qeffuKPP/4gdee8lzAVXCp8XYxZ3GUaCzEZpDsmQ7yPjcedSpH/94gWuzUd+ToZrk8h10gLzLihEaG8B2+shJticbEzR+Px6bOY6jgeX2/BNgvPIrzwzMKU5L8Ry0jE4/HQokUL6oY21IqKPuCPPx5j0ybo1Uv4NsL0R+GtYthabKqSfbC3wAWymVhnIqz7CkYWxhavvZgP0BrgV2yrtD5mjlICBx5on6X4mt69LQRYeaNGDQtZk5NjfN2tGwwdapbYu+xS/ucHiouLee+99/jhhx9Yu3YtTZo04bTTTqNLly4xjhiBGV+kYscm3HvBJoPZ2KbjPpjN/afYuEwtiNpOlMRTTz21vbsQG/4o4zAdvnZroAKJ43y7weNr4LFYfB3E+DY3TgMPYQrvWPqQYkwQHgD0JTxvK2Ma6D8wq9vYGDZsGFu3bqVq1QL69XN4sdjUI+dS1v6EiO7cjUWnyoRzixOr3+83vnbu/zHHGG+WN5o3h3POsY3Ghg1hv/0sjvv48fY/cP7551O9enVq1qy5zXtx+8GLhT2tQWp8XYnyCck0BbgcC9F3G2bcVx2XQRczjp2hRTKFYNBcF5cvT1y3Vi2zCKxfP/xdMGiuw+U4cQIeD082a8bG9es5edMmEi+LEyBhnsU3MWG5NA7GVDRudpjmY1ZfmzHiTnYy98Nc6kMs/Q5wuovDKmFr87+TPF0kqlSx8ZCfD2+9ZfHNq1SBo44yAdzjsVhezz9PnsQ4LMSI82rdhC1s0n7VLlxoxJ0kHCX2smXLqFq1Kueccw6NGlnUwi1btvDwww8DcPvtt+Pz+SgsLGT06NH88ccfAOTk5NC3b98U5+FmTDs1mHDERDAlWWkrfQceLMzHG2TW6f8jbIFXRFh75mxf52AkvmtGzvRfc3/8V4QWadECpk2zRauDTZuMr1MID+IWBT4fj7VqReGiRZxTUEBazu0ezOMkbiNfYQxUGrtjRJhIVMjCFCg1sflbleTZ6yDMbTk0v5/GrEESnboudo3pKLMbNDBL++XLTbhdssSe+QknWFxzsEREH3zAamz50Icw02zE1KRpWwds3WpWpUliw4YNvP7666xZs4ZatWpx7rnnUqeO2YuvWrWK5557jipVqnDjjeacn5+fz8cff8yMUKz4tm3bcsIJJ1A1UVLrqFiLuX9HxuryYmPCye4WDddiMbwyidcwU30izut4cu2BjfOmGTnTTr6uICQTWqRjR4uxGpnsd8kS4/HyXO74/ZZU9+OPXStiirEtls8x5j3L+SEbM9OO64DxJ7bhH4kgphJ3Y4lcC7PO9mF8nSx7ia1b2zN8+CwWLrRILPtPh1+GQ4EsgMmZlM2/swwYWgd2y4OTgvEDRszCZivYvdkWCd/jMeOMGTPMKOPtty2xZ506Fm/X2fTbf3+z7iwvVKtmssB2QkFBAe+88w6jR4/mr7/+on79+px44olcddVV+KMpCLdhKXAXJWN1OQm+HOVbNDxIEsFdXOJRbCPdS1m+7okZLu0M25cKnGtu27YtEydOpHr1pLJhpY5kQov06hVOxuvgzz/LPzyIz2dho954I/14y7UxYou57+LBNtebl/p+M7ZF5+Z9sQumD3E2It3z9RFHHMHff8/g0ENXMHRohCHNhcDrxHfO8GE2hb+7OlV0eL2Wa2LsWNvke+89C6/boIHli9t1V3s377ab8Xl5oWXLcJ65OHjllVdYuHAhhx9+OPvtt1/59cc15mJ8/Q7hRL3ZhB9crI2UoaSTILcshPlLPUhJ7wDn76Mwf9WKDdu30yI7U/B6YcAA+0yEDRsskUzkhHISOWVihzAG/pbYuG4d1TdtwuUrJjb8xM6lBJh4Gsu+eDru3SRmYS+B6iSvxF5HCSU2mDGCm1FfgPmUpzNDbrzR3KYaNTKXp6eeMmvoXr2MtLdssZhebdtSy+PhCMJqn2JsOf4QRl0TKBnp0zWyskzhliTiKbGd3wEqVaqELzRms7OzOf744+nbty/Z2dksWLCAwYMHM3OmGztzxxT+LKAbYReVidgb9CfMRmceZlLvwR6OI3xXxoTh18isEvtXLB5lISVfFs7fi7GkeXkZPOdOlDuqVoXzz3fHt4sXw777lnRTrl4d+vePbk2SIfwVCFC4ZAkNCgrYJd3GvNjUiAkPsfl6Nu7MMYowFzgvZkGQ7LtsHmaRHfFueMvlqddiHnTpvD7vvtv4skUL4+6nn4b77jMldiBgfP3009C0KfU9Hg4jzDRbsbiuD2Ni3B+YYjtp1K6dthK7du3aJZTYEObryHBPVapU4dRTT+Xoo4/G7/cza9YsBg8ezD///OPijE7iz1Mxl9kTMOXwNMyi82dsZTcDi6kKYb4Ge5/fj3lWZRKfYYJ7gJIyhvP3TExlWH4bUDtRDmjUCPr2dcfXU6fCIYeUVDA2awaHH15+8rUTkujLL5OyJgxgEs4CzDhuW6T4Ikzwi4tofJ2HOyW2U3cVYb5OVtgdT+XKszjzTMuxXFgIP34KB8pULMuxZXTpvcUmwEXr4NRDICvB42iL+b8NoGQ6VyTjZo/HlCC3327cfNddpsQuLjYDkldfNU5NwVLeFZo0KZ92XWDLli289tprfP7556xatYp99tmHXr16cdZZZ0VRYhdjln0nYFqpM7EkE7OwpF2/YJvQk4AuoWN8hPm6DvA8mVdiv47FVBXR+Xo8Frrq/5W9XYUjPz+fRx55pOJO2L69GWu54dsffoDjjy9pFNK5sxVXeZVSgNdrfXv//cwkDVyPORHEhDBlZGksxp0SG0y2LsbmpXu+nj9/fmgNns8555TyBn2HxBGGAtgSvIfrU5aEw7133WWfHTva308/bby9664WVaCgAEaMsA3o8uBrj8cU2S7QqVMnAKZMmZL5frhCAWYGfxTG15dhIZ3mYVz9K/ae/xloFzomkq8bYV7jmVRig206Phj6O3LgOH9/AZyd4XMmRoUosp977jl22WUXKleuTI8ePRg/fnzMuq+99hoej6dEqVw55jbXjoUrr7QdpUTkLcHSpeZOEWkhcuWVpvjM9CQOCTXjATZvZm+irPfr17dQE9kuXQOKSeBXLWK7GSSj/HFi9n2MKTmPBs7DXdaBJZRh6dUuDgObGZ1IXTFy1VVG0gUF8M8/ZhUdCMCPP5pVX6VKZs3RsqW98I89tsRLeyHmTV+I2UJ+iqUTfBajikVlThgFfj+cdpop7Vxg6+bNFI8dCx99ROH337N182aqVavGueeeW0KJDdEVIw46derEpZdeStOmTcnPz+ftt99m1qxZcc68CVNO98berBMxgr4LW8r8gSlDmmIE/SmmXHsMC+D1MrZscnYJM4m7CceciYYAJoy8luHzbj/8Z/j6lltMQZJIGS3BzJnQr1/J72+4oWzs7EzA50OEDCDy8+lOlK2Zxo2hRw/3ihkPCUgjHl8nQ4J+jLVGYK4vR2Nu6j+ReDH6T9mvkglxeoCLU8TC3Xdb4uT8fJg3zzYvJPjiC/Ogyc42vu7Y0RZdhx1W4j09D9M9bcVUuR9h7DQYC+Plwk/LnuUFF7jucv6GDQS+/RY++oiCn35ia35+VCU2mNIDyvK1x+Ohe/fuXHjhhdSvX39bfO3FixfHOfNqYD+Ms0diyo8fsXAHbbGBth8W7bYVtjkxFVPz52IeM8uxhNCZXrDclqDNYmwj/cMMn3f74D/D1QD332/ysRvOGz8eLrmk5He5ueWzQHb6EwxakrJoaNHCNsRKKWYqAe0x2voWk2SCYDQaL78XEJ2vk30fZWGS5mvYptTRmNp4YpxjHMyzXmSbUV379lCcb9fRAzMmX4cps5eUOrIR4DkWCNj1TiBx6snwPx7LDdS3r3lUzZtn+YmCQQsn0ru3dapqVZOtzzrLjEcyDa8XLnKbpwfb4PjmG/joI5gwIS3vgEAgwNChQ/nqq69Yu3YtXbt2ZeDAgdxzzz00aFA6Z8siYE8sMMunmDz9PZbZfndM/u6JKas7Yk/jdyxm9Z3Yu3wZpkzJJAIYXyeq8xPwXYbPvX2wPfn6gw8+YFNFeg88+aTNQzfK6C++gJtvDv/v8dhGVXl40Dj9KS6O7U3RujXstZf7Nn1UAF87ydk3YpLlyVjQpmsxqTM6Xn75ZSTRqFEVevWKeBYBzCDcLc4itRw0fr95OB50EGzcaBbXK1fa/X/jDQs3kp1t3uonnmgGnT16pHCiBJBcy9d77LEHxZs3881bbzHx8cdh8uTM9ycm/sbk6P6YscgfwDeY+XxXTDjogW1m7Is9+x+x0Kd3YRuWi3EXeiAZbAHuTVAniBmPVvAGgMoZ77zzjrKzs/XKK69o2rRpuuiii1S7dm2tWLEiav1XX31VNWvW1LJly7aV5cuXuz5fXl6eAOXl5bk7YPFiKTdX6tVL6tlTuuQSaeJE1+crgxUrpP32k2zaJC5ff13y+EmTpCpV3B+fqHi9Uu/eWgHKBd0FyotV98cfpUcekTweF+0inYKkeOWnGDfpLEn+BMciqbKk3yW1Dv3vC306x3aU9E+chzG7bJsnIflc3rv7kLKSvN/Z2TZ+li6VrrtOqlkz/Jvzt89X8hi/X6pUScrKKvF9ELQENBY0NPTsckPl64h660FTQDNAs0DzQAtBS3w+rfjmG+Xn52+7I5s3b9bcuXM1YcIEjRkzRu+++66GvPCCHjz2WOXWqKE5Ee2ua9hQK3JzpUCgzJ2dOXOmcnNzNWTIkJh3v7i4WF988YWGDh2qQKiNYDCov//+W2vWrFEwGJQUlHR4xLONVd6L85zLC0skeRL0i1CdDhk5Y9L8lWHs8Hw9d650443SgQdK++8vXXWVNH266/OVwfz50u67u5/fkyeXPP7778vM27SK3y/tv7/mheb5faCtsXh9+nRp4ED7O1G7WUgDEo3jmTFu0mFKPD+RVF/SL5IaKzpf95S0Ms7D+Llsmz2RPC7v3aNJ1I3k5OnTpXnzpMsuK/nurVUrfK8jj/H5pOrVy7wnAyHe/Rb0IujOCL4eF1FvdQRfz3b42uPR0ipVtGL8eBUUFGy7Ixs3btTs2bP1+++/66uvvtKIESP0wnPP6YHDD1dulSpaFtHuiubNte6JJ6RgsMydnTRpknJzc/Xmm2/GvPsFBQUaNWqUhg8fHuJmqaioSDNnztS6detC3xVK6hZnPHgkeSV9G+c5lxf+itGn0sUr6aCMnHF78nVFc7WUwvVOny5dfbVx9YEHSjfcYByeKqZOlVq2dDe3vV6T7yMxapQ7vnRbKleWunePLzN7PCYXLlsmnXlmmfOPBR0P2gN0IWgVSH6ku+KNYb+k6M9Z6iQb4/GO90jaTdLXkuooPC8i+foISfGe88gSbRYXow8ahTnvV9CQiPfY7NL35RH7/DhU511QcaL73bixcfW0adK559p9dcPXdepk7pk7bdatK61alXjM5udLN90U7p9T2rWThg9PfHzUJvN16623aq+99tLll1+umTNjvbs3StpVsddbXkmVJE1KqR/pYUyMPkUb6/3SPtt/TbaWwtfctm1b5eTk6O67745/wMSJpgPp2dN0Irm5ZTk0GYwbJ9Wv725OVakilX42r76a2XlbvbrUqVP8d4DXa3N140bpsMPctetBeiHeGK4haXOUG1QsqWmc45zik3SApA8kVVNYzork69Ml5as0unfvrpycHN1221Fl262RxL27L4X73battGSJ9Pvv0qmnltR9OHxY+t3p9UoNG2aer1u2lLZsSTxm8/KkK6/U4R6PckCXOm106SJ9+mni49PCCkmNFFu+9kmqKSkNGSplvBWjT6WLX9LVaZ8tGb4m7bMlwD777KMBAwZs+z8QCKhp06Z64IEHotZ/9dVXVatWrZTPl9TL6qmnbIBHkprfb5/9+klbt6bWiWeecakM9krnnVf2+BdeyNwEbttW6thRn2LC4ohY9fx+I5pZs9y3/Xo80t1dpqR08JekC2WE7mYy+CSdKamBYk9qv6RdJK2N8SACknJKHvOBy2vLInklNtiL8quvpEaNyiqs0yz5oGmgj0CLI76fQnjxkAvK9XiU6/Uq97TTlJubqz///HPbHfnjjz+Um5sbLnfcody999527KRo5z7zzDLK7D///FO5ubkaNmxY/LkgU2hLpsTesGHDtnPfe++9GjLkeo0ciX76Cc2ahTZujDUeWpcaTxWBX2L0JVqpnJEzbm9he4fl62BQuuMO49XIeeXw9eWXS6FxljRuu83dXPV6pZtvLnv8nXe643s35cADpSZNNCI0Hz+Nx9dXXin98ov7tkfH49pDSl3Ur5LOkFQ1xjHR2rhcxu/xhLA9JcUSJvMl1Sp5zGDcKaerYpuryd7vhg2lL74wodoZSxkqm0GTQR9iymvn+3HR+DorS7nnnKPc3FzNnj172x356aefSvL17bcrt337bcf+He3cAweWubM///yzcnNz9cEHH8S492EUFxcrGAwqGAxq2bJl285933336aWXLtVHH6FffkFz5qDNm6M9Z69s06KiMSpKX2KV5hk54/bk64rmaimJ6y0ulgYMKMnRYDzr8RiXR9lwcYWLLnKnjPZ4pCeeKHv8ZZdlhq+9XqlvX6laNXd1773XFOmlflsMOgfUHnQyJs8JpInxuLZ/qYv6VtIJMjnEzfj3SLpeUrZiK719knrLlC3RsDp0fPiYYC760oueBm3CNmGHETai+QuMz+uGr3866O5QnbdARfHu4667Sh9/bBsIGebrpJ573bruDJ62bjWFYLTx6ozBhx5K3E4IwWBQGzdu1DPPPKOTTz5ZBx98sG6++WZtjblWfU6JjTF8srFT0XgxQb8iy95pn+2/JltL4WseOHCgcnJy1LFjR22JpszbutV0HqX52uu18tRTqXfiuOPc8220jZ2TTsoMX2dlSRdc4E7W93ikF1+Uhgxxd24P0j/x5te1ERcUlPSppP/J+NONsRSSbpFxdaz6XkknK3KdPG/ePPXo0UNt2rTRggU/lD32cmzTNN61+ZCapnjPu3e3Z+r3bx++9nisNG9uuq1EyMuT9txT8vn0GCgH1InQBqvXa20NHZq4nZSRq8Sb0H5Jl5ZjH2LhHrkzQEXScWmfLRm+Lr8An0BhYSETJ07k5giXEa/XS58+fRg3blzM4zZt2kROTg7BYJC99tqL+++/nz322CNq3YKCAgoKwnF/NmzY4K5zr70GV19d9vviUCiKd981l8E333TXXiRWrzZ3iqKi+PWCQRg5Es48E1q1glAmcM44AwYOTC77bjT4fNCrF8GXX2Z26KuYuRmLi2HUKHjnHYsl+O234XtRGl4P1JZ5IpY9KeZCE5lw71XMLcJL4oBMThstMdeJtcTP5rsQeAFzUy7TUcx97npwfM6Pw7ydF8ZpFsLx9JNFfj4cfbQ920zE3opAZcwRcPdS31fBLqkYKK5Zk+Lu3Qnsvz/FtWpRXFxMdkS4mHr16tGgQQPq1KlD7dq1qfPXX9SZOJE6WL6KqNFZ33zTxsRZ21IRbXNVr1y5MmvXrmXEiBGsWLECsLjZlStXJjs7m6KiIgoKCigsLCQYDCKJCRMm0KRJE5o0acLSpV+ydKkH5/nst5+dqizmYTG0eyd51xJhCxaL6svQ322wuFKdsTvrFv8iF+0Y2KH5+pFHLPwDlJxXDkcNHmyuaY8+6q69SKxZY+6GieZrMGjvjaOOgpwcSwTo85kr3D33pD/fvV7o0oXCH39kfuiruHz9/vsWd79zZ4sLG+v8Pi+0DELUeeXDoo8OifjuUSxuZWQyj3jwYS7JazA39Vj3IYBFgn2b6LHbKgOXAo+wzYfxDOB2zEc93u3d4qKb0bBmTTjEV4b5uioWnapTqe9rYGl7ioFAnToU77svxT16UFy9OoFAgKyIcDX169enYcOG1KlTx8p331Hn77+pjfF11GAwjz1mJBpBpJF8vWLFCoYPH05eKAxC5cqVqVSpEtnZ2RQWFlJYWLhtjhYUFPDnn3/SvHlzGjduzOLFX7J4cZivDzvM8qmVRBCLuzoD0s/GUQp5mGzxPRbCph0mW7QjOQ5Ohtt3PFQEV0MafH3DDRb+AUrKkc4cu/tuC9Vzww3u2ovE2rU2XxNBsvfCvvtaCLcqVSwU1JVX2vfpIhi0kCFu5PRg0Pj6xhuheXMLhRG6F02wxIh+LErxcq+HjnvLQmOWgT9U23nPCQvp8zDu+doL9MJCAgWI7S8ewMICjcZc2EujHuHk2nYtnkvg8EegVz5UDj2i/piz8xQsoE++oMfacCsdMCfod7CIzW9htB91cTpvnrmfS3ZPKxIej4UcuPBCK/XrJz7mwQfhp5+i99UZwzfeCH36JAxlMH/+fD7++GPy8/P57bff2Lx5M927d+eMM86gUsy8Cm7GuRO6cQUW9CWTWI2t/8aFztMJCzWWQ3J8nX7ysO2J7c3XV199NZ999hlbtmzhgw8+4Mwzzyx54Pnnm84DSvK1M26vvtrk3fPOc3nFEVi1yh1fg8mzu+5qfJ2VZfGSr74aPsxAKLCiIrsGt3LeyJF2TwYNshAksfjG74GjZEO6DHzAblgITDCuvQAL5eQkNE0ED3ASNkeBmPHzgljq4N+BfQCYPXs2RxxxBK1ataJlywOx3FNfs+09cSWW3CUs0pVFAFgWr0IcTJhg+i1HtVyR8HqhXTsLGXjOOVCrVuJjbr4Zpk2DQIBzsawAGwi9AZ3nf/HFcOihtgbMKITxdaL3WjGWW+BxMi/HLsWCgTmhxbph47VJ6Fxu4/JWrHxdrjGyV69eTSAQKBNft1GjRixfHj1qZLt27XjllVf46KOPePPNNwkGg+y3334xYzY+8MAD1KpVa1tp0aJF4o4VFZnwEA/BILz1likIkkW9eu7Jcv16mxStW1tSktq1LQ5n7wwo7CQ48US8WNS7kyF+0rDCQuv3K69YDNZosWN9PsjKhg8ehspOkPnICHbdsWD0jlD2IzYRgsQXsj0Rn8dgAvRbJCb6IPAcYZItCB13Oqa1nh3qU2io+7Eg0w0oG/rViZ119NEWzzAZtA59BgI2vjKsFImHNsA5wAUdOnBJXh4DBg/mqsMP57ojjuCGQYPoEJE9ukWLFgwYMID+/ftz1FFH0fOLL2jv89GIGEpssPvy9NMlvgqErm/GjBkMHTp0mxIbTJjKy8tj1apVrF+/nvz8fAKBAAq9yLp160bTpk3p27cvp50W5OCDhTNt468Jne2Y5Vispv2xcdYfi6EX60W5Esv2XLrxLzCCvhCL6/QZ9urqgsUT3AWL85oIfiy25L8bOyxfb9wYThQSC5LF5Fu6NHF7pVGvnnsha9kyi7vZsiXUqWMxWw8+OP0YnB6P8e3BB5MNXIPtE8YdfZs22XEjRpiQFi12rM8HVavBhw+DdxfnZBEVDsKS8+0a+n8kpsSG+HztiA5+jGtHUSaxbszjno34fzMWGfZUjK83YaqN0LXUwKZptNyRzvWedZblpkgGDiUGArZwq0C+3gM4F7jw4IO5ZM0aBjz2GFf36cPA447jhhtuICdCQG7Xrh2XX345p59+Okf873/0+Ogj2no8NCR2RHN8vph8PWnSJF577bVtSmyArVu3buPrvLw88vPzCQaDBINBsrKy6N69O40aNaJ///6ccsoWevcWDkXEv20OXy/AMp3viwnG52HJaqLNOWHxWP+hbBKkdzC+vgpTiX2CZY5oj8kY3XAnQPuAY13U23FREVwNKfL10qXGxYk49a67jNuTRd267nMDzJpluV+aNbPjatSwJL09eqQXL9vrNVk9mTiqGzYYx3/4oSloQtfgxbbNK2E5w+ZUrQZv348prKGkbHwkxtdOksGXMCU2uOPrbOBiTGb+lsTytQ+TiRysB57GVhPHAzWB5mwj5ybAp3Z5+E06n4tJ4D1D8vWX++7L1lJxnHfFQrBmY5JamTSWnUOfjoFIRSuxwQKBz5pl64OZM2H+/Pj1i4rg2WcT99Xvh+eei1tl8+bNjBgxgm+++YYvv/yS/Px8evTowSWXXBJXsWnpQ93INkHYtn0+C7gOi8PaHYuN/Vec45ZgHF86ge5gLK/NTZh88DGWx6YVJmMchDsVhJd/u3y9vfm6Vq1aXHvttfTt25c1a9ZskwcA03EMH554nN50U2LjvGho0MB90sbffrOYyY0bm1xerZqdt2PH9BI/+nwms++yi7t2JOPr6tVtA9Lni/7O8fuheQ4MuQPLCgBhvvZjcu3PmNkBWBzj10N/x+Nep49VgRuw+TiVxIpEP87mVSAQ4K+/fgZ+pkePN7FEr+1D/QxdS3ssBH5knsDIawPL9eUyz9Y27B36dDYcK1qJ7fHANddYbOtevUw5HTfvC/a8X3llm1BbF5PVwUxvSmDIkNLfZAD5mK7CbV2HN/4CLse4ugcWMz1aImgI5/RaSEl5QZhOpQUWZ/ujUMkNffcAliTdzXs3iG2YVBwqJNljMujZsydnn302Xbp0oXfv3nz44Yc0aNCAITEGzs0330xeXt62smiRizR4o0dbsPlE8PvhpZeSvAIsCUk6WLDA+ujs+KdK4E8/bTtSWEqBjiRIrVSvnl1zs2bw++9w9tmWlNCBx2MmWD//DAcNwiyufsIE3SGYtd04wlmvAR4i8TDzYpm6hmAL2FHYZHBp/cMSTCHyEyZUnwm8hy10X8bSXOZg2hAsjv5fwG3VoUH1cDNdusDrr1syltmzcY1HMd7YO1HFckaVKtC1K7RtCwccAHvsYRl4Xn45+otk61bLGO3GEnXCBLOECmHvvfemQ4cOBINB1qxZUya5WCIceOCBdOrUicqVK7N8efgdE1+RnY3tZLfECPYXLBHCe8AhoeIoaIKhul0wK5PW2KvpXCw5ws/YhsnGiPoQJvdPMAXdABKP3+JQvf8eKoSvR4wwTwc3eO019513cNppsb1P3GDmTPjuO2gYUjsny9eOQmXYMBwNYSXKel6UOaZ5c/u7XTubn6ecUnLz0euFE06wxGddBmEqhW8wRfJLGGl9TViJDSZoJ+q/BxNUXsYSSb0BrMKdNWAQe2+AJZ5qgllofYDNuSHY/GzFNoutvbFXy3W1oHaEQL3ffvDeezB0KMyZ4+LcIbwVai/TBhXJIhCADh1g992Nr9u2tXfQiBHR6y9aZGMt0aIgELDkSRH1evbsSZs2bSguLmbDhg3UrFkzqa4eddRR7LrrrmRlZbNkCTj7lmvWxDuqEmY10hpTtv2GWXq8iSUX64sJ5GAuUM9jK6um2POviylR5hHm43wokXzXGXOvAgMxS/9ESk5hlv//LSTL1ZAiX7/6qjslcX5+7LEeD/36pcfXf/5pChNHqZSsQtvjMW4dMcL9At/rDVtwde9u5z/66G3nbo/ZNxfVrMm0vn0JtroR49bPgWcwK6l/MGVg01CjQRInX3LQF5OHlmGKjgRK2G1wvGjA5m1TbJv1w1BfnsOUmLuyLXHZwaFDLq3DT5WzGI750h3epw/1Lr2U4P77s3DVqjJnyiG8v7gu8ocx2L6XC4O6csX69WZwtOeextetW5s7yuefR6//11/mnZsIxcXw8cdxq3z22WfMnj2bTZs24fF46NKlC+eccw6tW7eOe1yc7c4YdW/BvFuewdZNE7D3fBfM4MOZd/nYwqcVtubaBbMOug6z6nsVU64UYePU4etA6O9HMTnkJOLztQfTsEXz4Pr/jUzz9bnnnkuDBg1Yt24dkyOT1730UuKE52A6k9Gjk7+Q009Pb+Pp119N2e5sfiXL116vJRN87z1TRrvpi88X5uvDDjOvioMPLlmncmWzZB8/HhrfhXHrKGzuvIbx93DCCu58LAW4G6XuOZiguhzb/PnbxTFg89Oe7aefXsKCBXdTvfo37Lbb15hi8hnMS6It2+T8kzDnnLPrQaUQh3u95qn4/fe2rnAbHcCP0cYYks87nElIJi+3aGE6kf33t78PO8x0HtHw00+mE4mAo8mbgJnYACZff/RROXQ62RvmxTalu2DruQnYzX8WkyhuIjzW8oC7gWaYYjoH2yi/FfOkfRhzfQ1ScoPF+f8W7KEeQAxfqYg+1QJOS/Ja0kO5hhapX78+Pp+vhLUmwIoVK2jcuHGMo0oiKyuLrl27MifGQrVSpUpx3KpiYNYsI6pECrziYls4JoumTY28hw9PfSdKMiGoe3ezKPn8c7MAcGs51rAhv8+dy9oOHTgMFzsWPp+5yzlo3NgUBI8+CpMm2b1o376UO4UHs4ot41scwlpMEE90D4LAn5i46yDZST0N2zFyrAKc++QIXgux3aqbgY3QsAnceSDkes0qKCvLFMEOItyzEqInNpM64y7Ze3lh0qSy382ebZnVJ00yq49IIcCtctDBli3bwt9UqVKF0047jaeffpq1a9dy9NFHs+uuYYWYJDZt2sSGDRu2lcLCQtq0aUPdunWZPHkygwcPZtWqGtuOadUK9o65GeDBnm20LPHOM/4RsxL6GhMEhlNy5BdiwsFwbHzFm0sBzBT0KmA/TGkeSwC6HRsE/27s0HztJlQTpMbXHTuaV8y336ZnObBqlYVzaNkSvv4aFi50JzRL0KYNY8eMwfPaaxxIgg1HB5F83aoVvP22uWb+9Ze12akTNGkScYCX8IZPNMzGHYEJU4JHZgBPRpTwYR4UJxCeU6U3kuZh1ocXA1tMCH24p8n0GzfaIsIZR1u2JPfceoS62xHTwWwvRBOop0wxRd3ff0NubsnfkuFrxzMoFFaqZs2anHnmmTz44IMA9O/fv8ScDgaDZfi6uLiYtm3bUqNGDf744w+effZZ1q1rDCzG4xG77mo6neiojFn2DYzym/OMP8J4+k2Mt78sVS8fU6K8TmLLUYXq/YR5c82IcozjHvsU5u7770VFcDWkwddulA1+f2p8ffDBxm1Tp6bH1ytW2Cam3w9jx8KSJe5DlnTuDN98YyGv3CAYhAsi+HKPPWwxvGQJTJtGh+JiLlu9mmeHDWNlfj7Lli2jWbNmGAfGwi+YsiQRvJgV1jkR3yXD135so/GsKL85c2xWqP0TgK2wa2t4phsd71jNt489xtzsbPKuu46cH35gzbffsgBTpZSGs72WF/llD4xO2mJe89sL0RTWv/5qGxLPPQeXX17yt2T4upQCJRLTpk1jwoQJzJs3D4/Hw2677cb+++9fQt6OjcMwnk208VMXW6s9EPo/sr7z9yuYhej9QB/sYUTKNxswa/2XKev9GA2PhtoYjxkjleZrL8bXr2FK8n8vdgS+zs7OZv/99+err75i2LBhtG/fnipVqhgHu9kY9PmM25PFSSeZcdySJckfC2FOXrHCODQvz4zpli1zd3wwaIrMV15xb0kbCMC554b/32cfGDMG/vnH7pffb4vV2rUjDsrG5JhYGE0pZosBX6he/4jvktGH+IEXeOaZocyZA6eeqghjcmeOzcA2nQ4ACqFTexjaGV4MmHxdrZrpRMAU9W7hJRwPsSnbV75+772y3333na3zhg+3d38ktpSNT9gPW3Jswcx1LotTN31kYbq0ccS3fPZgxiGPY1wL0fn6Icx482IslNisUu2uCdUZTKmt4xi4HZM5+mDjszRneEPlXSo6FFS5KrKzs7PZe++9+eabbzjhhBMAWzB98803XHHFFa7aCAQCTJkyhaOOOiqTHXMnsHo8JS2So8HZTR871haO7dqZq/MLL9ikScXVPRK//25ttWljrhIuMWvlSj5/4gmE7ZfHcz7D6zUlbmlBDMx9/tBDk+vzNqzEfVyljVhYEOd+N8YsbxcmOM6LXeHhlHVFjkQAm4SFmGVXCB4sPEBp7LKLKRMSjRMP4Xgt28HbMSGc/g8ebCERTo+49po1zdXWjXtv5cpRYwI2b96ctWvXsnjx4hKCtcfjoUaNGtSoUSO0IAvj1VdfZcECe8NlZ+9L584/0L17cJtBa1n4gSOw3exEwbzGYpYgjjNQ6YfikK8bFzk/9qL4CiPxIUTsy2K7mrdTUqH378X/C76OiAcfFQUF5ir4668m4O65p7mav/22WcSuX596PyX46itTYDdsaPExXeLPuXP5bu5cwFhvl3iVfT7bUIoWr7BhQ7M6SAkuFwZAWRe4DthOfCJB3YfNmyOJr5wMYqF+bsJCjoTgpWysuypVzJsovnmwIZuwx/6OyNfOxsedd5rVX+S7t0kTW0C5WXQ2aFBmLng8Hpo3b87cuXNZvHhxiQW01+ulZs2aZSy1JfHcc8+xOmRZWKXKAXTt+jvduoVTepSFD1uE3ZOgk0HMm6YqxrHR5ngx7iz9wfh6OKbMvglTgETKBG1DfTrFZXs7LnZYrrbOuasnJa67ebPlbfnjD/u/e3c49VT45BMzrIijAHR1/vffN94YONC88dxaek+caMUN/H7biDv55LK/NWsGzZpRGdhz3jza/PwztWvXpl69ei4ajh6SoCyCmJVsJLphC+dEcpAfqE9iCytH4XgjZg1mqNugAa06dGD+/Pn88ccf5OTkMKlaNRbE4LE9sfffNkmzDuA4Te7IfH3FFaYs69w5/FvLlu7a8HhixlvdvHkzn3zyCX///TdNmzalbt26tGrVisOjJ5KJgiuwTYh48GEWz/cnqCfMAn8pZv0X7YEECHs5JoIH88oaj+UxeoeSXL8npkaqWDf18sCOwtfdunXjpptuYuHChTRq1IibbrrJdBweT2IZ2w1fr19vIVmnTTM59YADLKb9F1+Yt1m6IdzeftvOcdJJ1qZbvv76aytu4PfbuiCa3mOXXaykhOXEX786CGAbO5HYz+U5LEbI1KmXEVpORH3tGJ7G+Dpi4e3zlVLOY9zkZnxE6kJgx+TrQMCu5ayzzKMzMlRalOeajZmofYP5cF8Gdo8SesKkiqtCZ0qEs7EQIInG0r1YCLE5xOZrN0psMFn6V4z7BxKOnOCgJ6YYj2XYWo5IO7VkArzzzjuqVKmSXnvtNU2fPl0XX3yxateureXLl0uSzjrrLN10003b6t9111368ssvNXfuXE2cOFH9+vVT5cqVNW3aNFfnc5XpcvJk9xlPH388djtjxkiNGlndrCwrXq+UnS3dead0992ZybZ72GFS69au21oKug/LAj4KFEx0TFaW9Mor4esKBFzd68RYKncZTpGUpchsu4ZHlDiDazLFJ+kQd11/8snE99uHdGRE+x3SfM7lWbxeyyBcGtdckzibsN8vXXRR1Nv022+/KTc3V2+88UbMWxkMlnyukyZN0jPPPKPffvstlG09XvZyn6TGkka5fMZ+SZVd1nVT2kT0fJOkzyS9I+lHSZmaJ2Fs78zqOyRff/21+3H+1lux23n/falOnTDnZWXZHK9SxbKyDxhg8yTduXbWWeHzuCjzQHeF+HqMm2OqVJE++ih8XRnj6z/lfl40iXL89bL5mqm555fU313Xb7klcTZ6P9K5obaLkBql+ZzLs/j90rHHlr3Ofv0S87XPJ912W9Tb9O233yo3N1cjR46MeStL8/WPP/6owYMHa9KkSSosLJR0X5xn5pO0q6Q3knjGbjOhuykHRPR8vaSPJY2Q9KvKyhfpY3vydUVzteTyet96y/04HzMmdjsvvSRVr64SfA1SzZrSG29IfftmRr6+/nqpUqXym8s1a0pjx4avKwZfFxYW6u6779Ydd9yh1atXu3gaX8r9vOgS5fizlNm555d0bZmzTJkyRbm5uXrssce0du1a5ebm6q699lJBIr72Id0UansTUtVyej6Z4utoMvJBByV+L3k80tNPR33C7777rs4//3wdddRRuvfee7Vu3Tpt2rQp/rAogaCkq+I8M5+kvSQ9I8nj4hl7XdZzU7ySTo3o60qZnP+upD+SuEZ3+K/J1lL0ax40aJBycnK055572vrriSfc8+hff0U/UTAoPfywVLmytRXJ1/XqSZ98Iu23X2bm2kMPZYb3Y5UGDaQ//wxfV8bka7cykUfSEVGOP0xu5esBA1BODjrwwETz70F3XT/mGBc8hvQ4UhBpGZK3nJ5PJko0GTkYlDp0KDO2/gJdDbobtNn5/p133N23pBGQ1E+xOdYr6VBJd8ndWMgUVyPT0V0R0dfFkj6U8bV7TnKLZPiajJ89Cp555hm1bNlS2dnZ2mefffTrr79u+613794655xztv1/zTXXbKvbqFEjHXXUUZo0aZLrc7m++P32SzwxK1eW1q6Nfvz335vwEk/xccEFmZl0NWq4rrse9CimFHkdVOx2UoO0667hc9WqJV1+uTRjhut7Hx3dlVgZ7ZdN3tLYImkfxZ6wqUzSBu66nZdnL7R4pO1H+gVTivwQcS8rVUqsbNheZcWKktc5f74tFmONY6/XFGd//x31Ni1ZskS5ubl68MEHyyhAJCk/P1/Dhg3TxIkTt30XCASi1H1PUusoz/dYSQslDUvhWWeitI85RMoD21vYlnZAvg4GpTZt4vO11yvVrStt3Rq9jZEjTUCJJwBfdllm5pizuemirAQ9EOLr93Cx6RjJ1+3a2dwEWyxcf73N55QRkLSLEs8Jv6Rrohy/TlJbZVY5soe7ri9dGlZ6RR0fSFWQpiMVIr0bcS8rVUosC2yP4vVKRUUlr/PPP22jPNY49vlsE2XJkqi3adasWcrNzdUzzzwT9feNGzfq5Zdf1oyI9350vn5ZUrNSz8ov6XRJqyQ9qsxuargtB0cfH+WE7c3XFcnVksvr3brVuDiebOzzGadHkRkkmRI70fwYMCAz86x16/Kdxw637L57WGHeuLF0++3GWxH39uKLL9aRRx6p8ePHu3ga+ZJqK/Gc8Eq6P8rxSyQ1VXy+TlbG7lPmLEVFRXrwwQeVm5urWbNm6YknnlDugAGa4yi6ot4zpDpIizG+fpowJ2Zn75h8XadO2Vv83XeJ50GzZrbeKIVgMKjnnntOBx98sK677jpNmDAh8ZCIiqCkxyTVL/WssiVdKGmDpEEyRYWbsZTMeIhXfHK9UZ0BbG+ulnYMvl6zZo3at2+vnJwcPfjgg6bjqFw5MYf17Bn7RPfdF/tYj8fmwCWXZEYB3bFj+c5jr9fK7ruHlfEtW0r33y+52mCMhdWyOedmbrwc5fiZMr6PJ1d5VVCAOnY0Rfajjyaay2e66/qvvybgMaRmSOuQipFui3j2ifRk26u0a1f2Ot9/P2rdF7A12m8+nym7Cwrc3beUUCwpV1ItlXxeVWUbxVslnSN366xMbjxmKfq6r3ywwymyKxKuL376dFPWRhOIHIVHLOu+YNBILtHk9HikffapMKVmPui50IR7LvR/Wm36/Vbeey+NJ/KO3E2ScTGO3yAjW59sQvpDn1lKTWFS112333wzwbNFehNTYm9C2pOwUPrzz7YpUHp8OP/XrFkh4yFq+eabstf6yy9S7dplFX1erymHvvsu5m0qLi7WPffco9zcXK1atarEb+vWrdOzzz6r3NxcPfDAA9qyZUuCmx6U9L2kl2SK6wURv7kdR5ksfkmXJehzZrEjCNsVCdfX++uvJmxH42uv13hq9OjoxxYVmeIgkRCdlSW1bVthi+SNoCdCfD0UVJRumz6fKba//jqNJ/K0Es8Ln0yojoZVko6XcbRXYb6urNQEqrbuuv3UU/HvjRfpC0wpsgqpVWjctG1rfN2kSVm+dsbB9uTraBvJo0fbc47sr8Pd9epJEZuGpbF582bl5uYqNze3DB+vWLHClEy5uXr88cdVVFqJXgbFkr6SedS8KWlZxG9PK7PWIG6KV7YAqDjs5OsY+OKL2AtYn8+4PEKJUwIbN0pVqyaeG7Vq2aZhunydSIlTXsXnM7nr998lmUX2+eefrx49emjQoEFaG8uIpgRuVXzlokdSFUkrYhy/UGbh5cwfR6auFqfNeCX6RtLo0aOVm5urt99+Wx9++KFyDzxQ30S5J0HQn6Af/KjwZ4yvF2DeMx6P1K2bGRHVqVP2uW9vvvb5yhqKSNLw4SZbRPbXmRctWkgzo79Li4uL9dxzz+mII47QFVdckaQldjQUyjwKX5T0tqQ1Eb/dpopXjHgkPZ/mNbnHf42rpdjXPHDgwG1W2QUFBabriGXo4fMZ106fHv0kS5e68zpo2VKqVi19pWYS3o4ZLV6vyYkxjLrc4UIlUkSbjmJzjONnSNo3oq4zZ2tua+P1102J3bYt2rgx0Rx0sZEUDJq3Sbx7Uw1pJqYPmYJUM/TM+/QxWaBKldh8nYShZkZLrVrSunVlr/fZZ+1ZR/R3nMejXNDjDRpIixcnvmcZwRZJIyUNkRn6bYj47WK55+tMbj6+Xz6XGgXJ8HXCHID/b9Ghg8VJPfDA8HdOgpo2bWDUKIudGg2//grTpydO5OX1WkKARo3cZQVOEyOxyKXVgTOw/ChpobjYYgqdfrplek8JpwKXxPjNyUDwJLBvjDo1sDD7i7D4bHdhsYpfwH3szEhUSVxl7lw455z4dTxY4KTZWBz9JfUs7tKNN1qM3M8+g4ceKhn7bs89LeHE6tWWcGB74NBDLWZZZCzgnj1h3jx47DGbF3XrWr8HDbIEowcdFLM5n89H06ZNAVi8ePG27xctWsRLL73EqlWrqFGjBuecc44lFokLD9Aby45+FhYt0UEv4mc3d5BJSismIr3DTmxP9OhhWaW7dSv72+67WyKWI46Ifuxnn8Hy5SaSxEMgYHOjZs1y52thESHXY2mW+pGBhBWBgMWMPfZYS0qTEgYAJ8b4zYfNr9eJnqoLLLrpKCxZ41MYX7+CxWpLBS7i7Y4fD1dfHb+OgO+xhO77AQVNLcb41VdbEqLvv7e41JGJl3r0sPi8a9fa5/bA7rvD2WeXTC5zxBHGy/fcA7vtZnksWrWCu++2d9dee8VsrmrVqtvi70by9Zw5cxg6dCjr16+nbt26nH322fgTzgEflkzsIkziiExadQi4yo/hKq1pEoiWDHgnKhz/+59x8h5RsrPsvTf8+KPNr2h4+213ifLy8uCyyyzGq8+NbBADbpIIlwcCocRahx8Oa9aQlZVFx44dWb9+Pd9//z1znSCncXEHsWNS+kPlfUrEQS2BFlhy7L+xHCR3YwmxryaTKZT2DmXx3rBhA83nz4cff4yZB+wz4Jti2PAtltZmP6BqK7j4YktwvGYN/PIL3HCDcR/Y2u3ggy1f0bp18PTTGeu7awQCFvP8qqtKjqnTTzdevvlm4+m6dY23n3gCZsyw3ByAJCZMmMDnn3/O+vXrefXVV5k1axaFhYVUq1atTKLA5JEFHIVxZD9M8nBwCO7WU0Hc8bobVAHOzFBbO5EMbrnlFipXrkxeXh5PPPGE6TpGjTLdR2kceKDpPDp0iN7Y0KGJZWvJ1sW33GJcnQ5fb3aTSLQcEAzCypWWgybl3AxPALvH+M2PaW0+IXayvPZYMsA/gUewnB/vYTkMjK8//thq7r03VK8epYkScDGXX34ZXnopfp3NWOjkL7AlfLMO9m4+7TTLSzR+vOURqFHD6nu9liT3m29MF3HHHYn7kWnk5VnemTvuKKnLGzDA8qNddZXF0K5blz3atePLVq14umpVxi1MlLctU6iCJU++GDgZ04U5SIavMwEvJkMcl6jidsF/V5ENlizmu+9s0L70Ejz/vCVtnDULjovzwCZOdJeVPRCwDLcTJsD551vCvHKCsCSxTbA0S7Uy1nCI6J54IsVePYYpMqLdr9ZYJt8ESgjAruwy4BZMECtMoT+QMJv2F1/Y4itRUoog8JYfqsyDAUMtQcJrrxn5nX66KSB+/90EgAULYPJkW9idd55lA042g/Ohh5pAkY4A4OCTT+CQQ0oqR1asMOX6jBmmuFmwAB5+GM48E6ZMiduckzRsSeiali5dyuuvv87mzZtp0qQJF110EU2aNEmz002AviRWZgdxpfxyhZuBThlqayfSxt5723z680/LPv7CC/b/5MlxN1uYONGdYtrjgUWLrH6/fuWqzC4GWmGqvzPIYI5nCQoL7V2WNILAbcDHROfrjpg2+AwXbe2CJZq6BTgX491UxI2C+D+/844l2UoEAYOrQ7NlMOBJe9ZDh5rQeuqp0LGjKYenTzelw5Qp8OmnJoj7fMnz9XHHWWI6b5oilmTJk449tqRyZPFiWwTMnm2Km3nzIDfX3i8JFGAOXy8NJaKeN28ew4cPp6CggJycHC688EKXyebiYQ/gQBLztVzUcYvHgGYJa+1EBeGgg+Cvv4yjX3jBOPvPP+G336JvSDqYONGdnJOVZYvR8ePhhBNSn2vpJiBLB4GAXcOrrwKWjK1KlSps3LiRqVOnJji4CJOdfyI6X/fAlB5uksO1A67BZJ7+WNLeVBSW0RfODRo0YMCAAVxUVETr668HYDFll+IewEk3m/dCQ9h9JVx2L2zaZOPn0kuhb1/brNu0yd7XM2fC1KnwwQfGk16v8bWbNZqD004zQ5N0UVwMzz5rcnOkcm/ePEs2N3++ydczZ5qhyCWXwDJLsvzjjz/y6aef8uOPP/Lggw+yaNEi5s2bx+67787+++9P63JLMAZwELY5nSkudoMXKamc2YmKQt26dTnmmGMAGD58OIWFhSazzJplOpDBg00n8vffpiNp3z52Y5MmJVZkg8nTXq8ZpBx+eHLzMxKFqa79M4BAwDjnvfdSODgfuACYQnRZ+FBMG+wmsWNn4DosqfXJmElMMcXF9sgAjj8+hS5GQjJjiYsvTlzX64EnO0H35XDxTbB0qa1BLrrIOrLfflCtGqxaZTqGqVNNrj3kEBsTySqHzz4b2rVL7boisXWrXWNpQ5iZM02+XrQI1q6lxt9/U/Off9Dq1bwyeHD6500bJwINcLemyoQy24MZMGVloK3M47+tyHbQrp3t9F96KfTqlTrBxkLjxiaErVhhJH7bbTZ5M3gex5b1EkyhnVEUF5uVTNIvkCeAQZjAHe1FNxuztI6GSZh1yI3As8DqUr/XSbIvDuIop3780QThggTKEweFxXD/A3DBBSaoRiIQgPfft0y4OTkmJDdoYLu5Y8Ykv+jq3h1++MGE3gsuSO7Y0ggEbEHpEPLkyWYdNXp0SYFEMuF7331NKR8FmzZt2rbgqlu3LsXFxYwcOZLi4mLatGnDeeedR82aNaMemzyexBTaiYTtdC2sfMCjwH1ptrMT5YLOnU24uuQSG7eZ5utWreCNN8yK+4cfwkJOBs+ThYmtlwLpqgzLIBDYphhJDrcAD2CZrEvztQczZy7Nw4Tq/gzkYnz9IqYIiUStULvJIs6m1EcfmSWR28z1eZvs3XvNNWUV00VF8Prr0LSpWSV16gT165sQ/ssvyfP1QQeZgm3hwnhp490hGLRNRscq/McfTXk/dmzZeh9/DPvsY4J4FKxdu5ZZs2YBUKdOHbZu3cqoUaMIBoN07NiRs88+m6pVM7WtMhR77m42H9NBNvAypojbiR0KHo9x9CWXGGd37pz5c+yxh8laS5fanDj33MyfozwRDG7j691224369euzdetW/vrrrwQHXox5J4qyfO0FfgM2RTshZoV9O6YIeR3YUqpOdVLj69gL3QYff4zniiuoK1E11Ho0G+P6oc8VS1bCtdcaZ69aVbJSfr4pjBs0sPXbHntAvXph79Fk+frYY23TZe5ck9HTeddL8O67JueDcfKhh9r7IBLFxTBiBHTvTt6MGfzwww8AVKlShUqVKhEMBunQoQPNmjXj8MMPT70/ruABhmNcmoiv05WDqmFWpG42xHeivOBYZRcWFvLll1/alx6P6UAuvdR0IplQFjpw1pb77AOff26y0Xff2SbkvwlerxmtJYUgpnB+P+L/SPiAH4huoBfArLRvxTYa36GsgYd5Oy9ebPsRhxwS3xbT4CGuPuTBB91bSgcFv0+xcfPQQ7Y5G4mNG+H++80bpUMHM/SrX98MPGfOTJ6vzzrLNPbTp5t8ka7ByLPPhqMOvPqq3bxSBnzHSrB5M+NGjKAwbe+YdJENvI2958tbjVsXMziN4fG8A2CnIjsVdOvmbgfS5zMFpIOaNW0Bes89MG2aWU/FE5gyraBJB0VFZckpLtZjxJsI11NSiJ6HWZLsjSmyn8CsTpoC1xK24XCpbC4BL7BP7J8HDUocLqY0Xn7ZPqONh2CwrFL8u+9sN3r69OTO88MPcOWVpoB57jkLV5OOdbZk5B0MmkXi5s3RLZMCAbuGk08u83swGOSTTz5hy5YtNGrUiH322YcpU6awatUqqlevTt++fcnOzpR1NJgS+zfgeOJTV+SzSIXiPgIGknm3953YLujWzZ2yMxgsaSlYr555QTz5pFmd9O0b//gdia/XrHH3jtqGBcDDcX532rqakgqOKcCewAHA/RhfX4rZmt9NWGDfkERfHPiIydfBoCmkk8XQobF/CwZLuowGg7bgOvDAkqGY3ODjj2HgQBPgX3zRrFHSEba9XuPrwkLj4qKi2HydlwdnlFUSFBcXM2rUKIqKimjVqhWdOnXi999/Z8OGDdStW5fjjjsOXyY8frZhN4yvDyM+l0aO02TnkBf4EbN02on/F+jWzZ2VdFGReek4aNTIlDCvvgo//xw71NSOiJBVbqNGjcjJyUESs2fPZuPGjTEOmAS8Rmyr6WCoXFvq+18wy9vDgAeBxzGPmcbA0xHtrUnhInxADEv7rVshZIkN4SBEy6JUdXwqFoNZ7cWCVDIETXGxbWjss49Zfybz/hs2DG691Xj2pZfs+HTe536/yel5eaZcDwajry2Ki2HFCr4+80yKi4upWrUqgUCAQCCAx+OhSpUq7LPPPlSqVCn1vrjG3pgFfyKL0HT4OhsLi5Dm5u5OpI26dety2223ccoppzB//nyCya59Hey9t3sP9Ui+bt7cNvw//NA2ffZzY4m8AyAYTN5DjzHA58TetA9gSuybS30/GguxeRwWSuQx4HRsLfxGRD1TrM6YAdnZpodNGMkTgK7Rv1671kLtJYtRo+LzbqQXeEGBGQzttZdtSLqF12trsnvuMU/4wYOTXOtEgd9v7SxebFbkTnTsCJwLVAI2FRby7qmnpne+jOBQ4DtiPsOoSIavPdim49+YvLDjYqciOxX06GGuyIkWpsGgWaJEQ/v2tqieORMclzFnEem069K1fRWmTijXSH8ej5uASxF4E3fK5g3Y7jyYdXZPTEgHI/cijPyLsJir52CC1HNJ9MVBELg8+k9TppjLa7Iv82SFXWeBdt998d1rS+OXX8w9t2tXC3vw/vumHEkn/ME//1iYkZkz4y8cAwHbPXd27YHNmzfzxhtvMHPmTLxeLyeeeCI+n48uXbpw/PHHc/zxx8ex7BMwEXtJ/0pylj9NgQ+AO13W9xMm71pYeJJsyu5EO/WeB45Ooj87scPjqKMsFlqiuZqVFTs2fteu5k44aVI4jrLD06V5OwGWADNILcK/a1SrliQ3vUxicUAYR38V+n8GFp91Ruj/YsLeN1sxC+3rQ/+/nERfHASIydfffWf8lawAm6yitrjY3gn33AO77ur+uO+/tzitHTqYQvv9922FkSpfB4MWomzkSIvTGO89FQhYeIYJE7Z9lZeXxyuvvMLChQvJzs7m+OOPx+PxcMABB3DEEUdw4oknxtl0DGA8PRpzfU3mnu8aOm4AiYVoDyUze9THXCi9ROdrP2ZFGGdzeif+fTj9dHDjFVCnTmxvh/32Mw+z77+3xS6E+TCjmzUZQi0LBujxeOjcuTPZ2dmsXLmShTFdroeQOIZ1EPgDk7XANpUOAeaH/nf4GmAjtkn5EKZQGZHCRQQwK/EoGDkSrV/P25j6vFro62hxspuHPpdAanxdXGxh8ZJRjnz1lVkStm4NzzwDb75p7/NU+bq42DZT3njDlO1x3lOLi4uZMmkSwXXrKCgowOPx4PV68Xq91K9fn169eiV58iIs3Mxo4C+S4+vOmGXoKSSWBzyY5b6DZsCxob+j8bUT/zeJ9+hOlCtOPfVUqlevztq1a5k8eXJqjVxwQWJZ0+MxT8dDD43+W58+Nl8++si43+MJt1kB+cWSRt26ieuUwPMk9nQIYEGmHVb8AjiG8HZfEWG+XgecjYVtzQO+JRAwRTbEDmdeElmYPiUK3ngj+dwRHpI31igutk3OF15w984Hk30/+8wU7S1a2Ht+8GAbL6m+24uLzdPxxRdjVqlOeJv2vR9/tJB+GcFWjHNHE15LucUBmEzem8R87aVkKKfWgOPpU3qO+UJ1v8FCmOzY2KnITgUej8X/8XrjT1wnuUc87LabKRJHjjSLv1694KSTbOHrcuH8O6ba+8z1BSQJvx+OPNLtFl8If+Eu3lpWqC5YfNa1xFbxCFu4jgHGx6gTD9nEVPlPm5Zac6nuYvv9tnhJ5p46VqWffGJuOhMmWKyodKw1vvnGnaCQlWXxw7FY2C+++Bzz539CdvavnHJKAY0bm+WQx+Oha9eu7LbbbqEDgxhBn4TF2N0FC6bQDYvd2BPIwSyDkrmXn+Bud7EQGy8bsLF1NXBeqC+O0qQytss9np3JHf8fwtlth/gC98MPJxZQu3Y1Berw4eYS2auXeTR89llYYZIAv2Bqgu9c1U4Bfj+cckqSB03G3YaSL1QXzNpvS4LjngDGAqkkSKmKKVCj8MLUqckJzV6Mr1ONh+v1WnioZBZVDl+/9pqFBRk/3p5LOguzL75wd7zPt42v582bx5AhT7F06WiqVPmNfv2KqV3bLOQ9Hg/77rsvLVq0cDoNfIgtoHbHuLkuxtNHAd0xRcRLJKcg+dhFfWFxJP/CFGvLMev+c7AkR46ivRpmgf0nluRoJ/5foVo1d8n6nn02sezTu7dZzw0dCsccY/+fcYbJPTuKB43PZ8r7ELp37079+vUJBoNMj+m5Nwn3W6GTsbl1MWHDkFi4FVtUx7IEj4c6oWOjzPOpU/FkZZGPmbc46s/pUc7UFPB4zadzUyp8LRn39umT3HGBgB372GO2Efjzz5aQLNVxIpmSJV4VwDEPyf7nHwKBAJUrV6ZWrSw8nj847rgl+P2vED0IC9jdfAuzmNsds96sg+UnOArogsm6yWxMCFtNJpLHhT29xVgIm/kYL5+BvSOcMDO1sXwZUwkrTnZiR0B2djb7778/xcXFPPXUUxYrO1k0bgz3xknm7SilBw9OLLMdd5x5pzzzjOkcDjrIQkVFGFFtd3g8JvMnhUm4k6+FzZMAcCHRw0ZF4gpMvi5i9Gh7zU2cGD1nZ1nUx3LeRMHUqckphX2hbqaiDwkGYcMG03sle1wgYJ40mzZZGNRDDkn+/A4k063EeeecHfqcKrF85MiIX5Zjm8sPYZsLsZTcmzGjnoOADhhf18UU0UdhHN4ds953i02YV2Kiex/E5OsNoX7MAM7HNi13Iayva4CFiJyGRUf4F0D/z5CXlydAeXl55X+yb76RmjQxJ4SsLCsej1SpknTPPVIwGK67dq306KNSz55SixZS+/bSeedJkyfHbv/ss629sKNDmVIMegiUC5odp17aZcyYJG/OxZL8kkhQsiQNlLQm9Hei+n5Jx7moF6t4JPWRVFCyu+++mfw9aVaO99tN+eab8Njaf3/J603u+MaNpSuvtHGbqK7fL11wgSZOnKC77z5MubnZevpptHKlT5JHf/6J8vMPlbQ44qaukdQz4rklejb9JQXijKktkt6W9LCkOkk88/ckTZO0R0RfsiR5JfkkXS2pKM55Kw4Vyl87ACr0ej/8UKpbV2X4ulo16dlnS9Zdvtw4vFs34+vdd5cuv1yaNSt2+4cdlnAe5YPuCfH10vLiBY9HmjQpyZtzgowbE80ln2z+zXVZ3y/pLBf14pXTVYYXnnlI8iRzT5Bqpnlfk+XX0sV51y9dKu2xR3LteTxSx45Sv37ujsvKUvCmm/TTT2N1550HKjfXrxdeQOvW+RQMogkTUEHBiZJWR9zUxQpzpC/O83Ce+7UJxlSepGGh8ZKdxPMeK+lXSa1C/2eFiifUzp2SImSr7YidfF2OGDpUqlFj23jeJqfUri299VbJugsXSrfcInXpIjVvLu25pzRwoLRgQez2O3XKHOemw9VZWdI//5To2t13363evXsrNzc3Ruf3kfv59Jqk8S7reiVdlETb0crVKjM/b79W8nv0Vejd9zFoaOjvMVHuy3Ne++3vdO6tz5f6sV6vtDgky86ZI+XkJNeezyf16SP17h233grQvaBbQLcddphyc2/VlCn9VFCQpWnTkL0/PaHPcyVtjLipsyTlRDy3WM/D4esHY4wlB6slDZV0f5LPe4akryQ1Cf3v8DWSqkp6qux42A74r3G15O6a8/Pz1bVrV+Xk5OjBBxONkRgIBk2/UaVKmNMcvm7QQPr005L1Z82SrrnGOLh5c6lrV+m220zujtW+o2vZnsXrlapXtzV3Umgp9/Ppc0mfuKzrkXS5JHT++SgnBx1zTDJzF9l8L4VL+kv++LqnEqVyBu6t35/6sVWqSM4Y//NPG3PJ8LXfL515ptS2bdx6xaC9QDmgu08+WdIG2frGpzBPeyRVknSlSuqZJklqEPHcYj0Pb+j3lxOMqWWShki6JcnnvVamE6kb+j+Sr2vJZPbtj2T4mgroT4Wiwl9WRUXSyJFGygMGSE8/XZbk3nhDys6OPUH+9z9p/fqSxxQXSz16JJyAMzCB71FQIPK3Vq3cLXgjFeWllebO8ffdl8KNeVXuJ9b7kr5Non5DmYCUzOSNLB5Jd0T0dbO0cK/kFCOPIp2I5E/imEyXtm2luXOlYcOSP9brNUXdE0+4GidFXq8+PvNM5ebuq9xc9PbbKD/f7ufs2Sg3Fz3+uFdbtzaVEWyxTIkdTyESrbwSZSwFJT0gqWaoTjyhPVp5XVLtOH3xSDpTO4XtikeFX29BgfT229JVV0lXXCG9+KK0cWPJOk89FV8I6tdP2rKl5DH5+dKuuyacRxNCfP0cKBj5W8uW7gSveBubXq/9PmRICjfmIbmfVz9IesdlXSTtruR5oHSJ3GhYK/3R2j3XeZBeReqJ5E2SJzNZunc35cijjybcoI763IcMkW66yZXAvxU04uKLlJvbSbm5aORIVFho9/LPP42vn33Wo+LidpLWS8qX1E7uNhwjy2dRxlKRpJskVQnVSZavR4SOjTdmro8+jCsYO/m6nLF5s/TKK7bhfuWVJuvk54d/DwalO+6IPx8uu0wqLCzZ7rp1UsOGqc/lJk0Sz0OPJ/489/msvPdemcsePXq0Bg4cqA8++CDGjblO7jl1hqSn5X4eHuyyXrzybkRfl0hf1JdA00Pvv+cJr10eCPHVtvviR4uGojW7lHpHpluS5dw+faSVK6UbbkhNKT5qlHT++QnHyTpjAguUAAEAAElEQVRCxkj9TtWwYZ0UDMZScvgk7Svj6rWSmiYxBpwyPspYypd0mcKbjcny9fuy90a84x6Oct6KxX+NqyX31zxw4EDl5OSoS5cuKigoiFs3wQml5583XcjVVxu3RXJvcbH9Fms+eL3SrbdKgVKGC0uWhDc1Uyn16rnj63i/+/1S5crS11+ncGPOkDvZyi9puaTb5M6wzyfpRBUXoz33NEX2008nM3ed8n1EX/+WhlVzf28rI32DVDvFZ5Mpvj7lFHuvn3NOakrxX36RjjoqIdffCzoe9OS1V0jqrtgc7JV0lEweXigzvkuGr70yg6HSyFNJ5XkyfO2TGQMmMkJ6Ncp5KxY7Fdk70stq5Eh3E3affaStW5M7DjQCEwa/LEMulaUjj9Q2Ana+dybppZdKgwdLzzwjPfKI1KhR2fYrVbJd0pSwRVJ1JZ5Y9SUVSvraRd3IY3ZJon60UkeSc7+vl+SVjkXyuSC8T0JtfJGmhV4mis/nftPCKX6/1Lq1bbisWJGQ9NeDXvR4lDvwdN15Jxo7FgWDdg+2bEGPPmqKkc8/R2HLkc9SeCZeSZ1UUqGcL7MWTfU51w8d7+YF8kOc8Vwx2OH4q5yxw13viy8mnj8ej3FrpLA9ZIgrweuVEF//VPq3evXMqyKSo52/vV6zLnz+ebMcv+8+qU6dsu1XrWobUylhpdwJ2u1k83O4i7pO2V22kZTqHEZmnevwQkiI605ivvYgjQ+1MSxJwbg8Sna2WYsky/F77WWbJzNnJqy/CvSs36/cW07R3Xej8ePDfL1+PXrgAePrsWOx+6gblNzGs1N8kv5XahxtkNQ7xWfskdRW0n5yx9fTow/lCsQOx1/ljB3ueu+9190cOuecksfdc096HhZt2oQtukvztc9nyvXnnrNy++1mxVe6jZo1TTEfBXPmzNHNN9+se++9N8aFz5K7+dQ7VP9JuV/w9pE7JUq80jOir4dJAZ+0C9rgsfffnZh30tOh9+E4555kIc0KtfGIR/KWD2dvCZ0/Yd3q1aM/u3jF65UOPdSUdj//nLD+VFBulSq6/rrD9dVXYa6OXrySHlNyG89O8Us6u9Q4Wimpi9x5V5UuPkkHSNrVRV8cBd32ww7HXRUAt9e8cuVKtW3bVjk5OXr66afLr0NXXuluDt1wQ8njrrgidQ8Lr9eMCFq3Dv8f+VvlytL995suZPBgk7UrVy7bTv36ZS3LXeNnJZ5PHkmnherfIveK7P767jtTYrdujdasSXYeI+nE0HmDkjpJ+V6pDomN+2ogLQu1MQjJt511InXrJq/E9nrNOCkYdKV32wC6s1495d5xqFavdsObb8iiDiS76eiTNKjUOJovqY2S535kHNxXYUvseKW6pE1lh3EFIhm+3hkjuzwRDMJ11yWuJ1n8zHfeCX/33HMJYxRtAWaG/u5c+setWy0r7MEHWwKTXXaBTp3g8sth+nSLV3XppdCuncXyXrWq7AkKCy0p4ahRia+hDCpjsZATYU8sltoeuAvZ7sOytLoKAhUH67AM3Vuw2EZBeBLLBxjvtt+ChQ8FOCwIB+y5fZMHBQIwf35ysanatIEffrBkSQ0bwpVXxowDuAx4EVjSoAFV6s/kjDN89OoVrv7FF7BxI9Sr54QkLMbimD+LuxjpkQhiMcyXY7Gtb8fiNY1Ksh0HHiwG1Mckjk/mJ7UEojvx/wYFBXDjjYnrSRb7MjJu37PPJjxsLZbGxQN0Kv3jmjVQowYceKDlVWjVCjp3tkSBc+bAo4/CZZdB/fpw222wfn3ZE2zdCjfcYHM7adSiZCKQWOgWuoIyb5wY8IeOaZJCnyIxH8uevRJ4GwgYMVUiPs08gYWcAzhVsPuu2zd5UGFh9HdtPOy1F4wZY/kU2raF/v1jxpr8B4tevapZM2rUmcy553rp3t34WoKPP7Zh0qwZHHAAGC8OwZIRJSsOBrDEn0VYzL3rML4em2Q7DoTlKvgFd3z9Qorn2Yn/F1i3Du6+213d118PJz8NBk2+TjW/CcDcuSZT77+/fbZqZfP09tstMfZdd5msLVmi2E2byraxebPJ4H/9VeandevWMW7cOCZMmEBeXl6UDjSkZGLUaBBh8uuCuxwkjnxd00XdeBgHrAZmAWPAG4DXoIYPanusZ0uB/SJqBwBeA5z0Khd6oVnTjMvXc7FIpi8QNVtOSWzeHP3ZxcMhh1jSOp8Peva0BHelrmEzljWiAEvpFszJobB4Ej//DD/9FK/xIPAMMJjkcsqAyeYfhf5eC1yCRST/E5LKd+AgAPwPmOOiL0FgaArn2ImKQIMGDTjssMMAGDZsGIFUc4nEwz//WOxrN3jkEasPsGULvPpq6vlNgkH4/Xfo0gX23df4unVr6N4dHngAFi0yHcgVV1h87sceMyGpNNats2Tw8+al0IkWJF4PC9g39HdnXLBT6JguvP++/bfrrinkoQSMF4KY7DUFKgfD+dmjqQa82OW8BzQOfXd1dcv7tT31IevXh3PTuEXfviYfeDyWR6Nz57hrhBrArl27gGc8f/6ZiDe9wFPYzUx2/AaAkaG/l2K5B9pgb7BUZJcApm9b66LuJmyd9e/ATkV2eWLsWFMyukUkyU+cGJe4i4F3saHZGGgUrdL331sf5s2zl0L9+pbp1UlpW1xsxBwMRhfqFZqk558fndjjYizRc5JHq7csdBUn4i6z7xXA8Un2Jxo2YsQdSjfTGssttk/oZy/hZK41gUeBbTktfOA9Bj753oRV2DGzK5eG1wuzZm1LBAZYkrszzoha/XtM6G68ciUXnzSdXXcNj8miInASXZ9wguWDNBQSTliRCvKw53s/RqjJwqG1k7Gsvm5IvxhbTu3EfxajRrnPRO3xmDIEjDunTg3zZRRsxfgajGaiqgnGjLEEU//8Y++N1q1NMeIkDN68GS680P6Odi4n+cm556agpBlF7AQlpettwpKS7E9iEaIYS6DaF3fJWeNhA/A125KcdQF+CnUF7NXhUHA9THa82jnWA5UugK9/gN1DB2xPgdstvF7444+SmxNDh8L//he1+teYciRnwQIuOW8OLVqEx8GGDaZ/83rhxBMjdeF5mMIpFeFYmGB8CPB06OzJwunI5VhySTfYydf/ebzxhm0MuYHXCy+ENj7WrIHly9M//2efwbhxYb7u3NkUIk2b2u/Ll8M118Q+PhCwzdNLLinzU8uWLcnKymLOnDm89tprUQ5+A3urJMKb2FzphSXgS8TBAUzB2Zf0l4cbsaSBoXZ6A19D89BiZYkX9vRZ6ta86jDrSaB/+OhJ887h7euuZ0WzZvZFMsl946Bq6HM9Lpb0cd7pUeHzmSba2TTxeOCDD6BbtxLVZmApwYZhdyk4629q1VpNtWplqkbBP7hbW0VDPnbV+2GK5SSVPkB4jXYnloDXzXMRlkx9J3ZU3HDDDWRlZbFq1SreeOONzJ/g5Zfdz2GPB156yf6eP99k33QxapQZDC5YYJzdq5cZitSvb7/PmBF/YzQQMEXptdemcPIXcbdZ5CTRPgFLApgIPuA8xo2rBaST6zCIvU8+ZZsQfRKm3w7RL37CUz8H24GLFEOb3Qvffhe+n86zrsikysmue3w++OorM+4E0+F8+WXCbJntJ3/DX39t5M47E4kgQWACJmOngs1YMt3uWMLeVGR0Z1H0TKgfbvRUfuD3FM61fbBTkV2eiJlxPAYcrSAkJHwfZpNRCTguViVHQe3sUP3wAxx2WFgp/e67tgMZb/JLptxxtvxc423cTRgBTtv3AlWIrcz2An2Ao7Gsr+kSZFOMKCKwG6bb/gN4ELgDWwssBwYCHueajgLegdp1bLPgq69MO7DnntCjBxx/vBH4jqbcDoaiDl58sb24wfq4555RXzhLQ59HAXWqlVw4bdxoTfl80Lx56SOzSn/hEn5sF/JLUiNtMM3WUOAdbJPELVKxStmJ/zeYPt29oC3ZZqODBMJaFmarWg2bS1ERCJTk648/Nk5xNjSHDDHrsHiL62DQBP9vvnF3HdswHHfiwGbCGbUfw+ZrrOO8mIVtD4yv051fTSjD112BvzCd5n1ALmYlshS4AMLvoLOBwdCkiT23jz6Co482L6X99rO/Ycfk60AA+vWzdzVA5cqmjC81VoPYawpMJqhereRG4oYN9lmtWnitEUaqfF0TeByYSOobl/tgXP0sqStoduI/hxkz3C+Sg8GSysVMwJGvHX5+/XUzDHH4+YknElsRBgLw229lrLIbNGhAnTp12LhxI+PGjUNlOH8Y7uTf5dhunwdbyHoSHHctZvV1IKnLX2DcXx/j6wie6g27fAxtboLaV0DWXdD1bjvtxHoQlv2v4++/D2bm+vXMef1181Y9/HDj6wMPdNz/UtqMXB/6rB7qYUYRCJhm4/jjw5bctWrBbruV4Gtny3hN6LOqz37edVdzvEmMVPm6ObaQmUPqfN0LU3jlArNxN052ytY7Olq2bMn+++8PwNCh5WA9P326e0VjMGgb+FA+fB0MwuOPw/XXh39/8MHE8n8gAJ98YlbcSWEY7ubJdGybKxszDEiEu/n555msWePB67XXT2qoEiqbKfF+OBbbN/scuAu4GxiD0UcfML72YsL3VbaZO28evPKKadU7doSDDjLPJdjxjEcCAePpY48Nr7saNYIWLeKOhXaVbTgvWgTvvVdenfNiOwYXY56oqfL1/4DvgAGYwYrbzct/D2fvVGSXJ7JSFTYwF5g4i2oPcCRwKaaOdYVAACZNgrfeMivcs892d5zfn8jfLQpW4W7i+TAXRID2mIV26S1A5z6chFkE5mM7lum84FoAe4U+o6ALMAiLbnEGxvHUAM4BfsO2KqtZXa/XNgjefdcWJL/+aru/EyfCmWdCpUqhy9mBlCReb0mL0mefLaMg24xZi3gIWfxPpQQHLgjpHJo2jSZr/I/kQ4v4gVMwV/d0SPRLLKSIgAeSOHd3bJmzkNQswXfiXw2/P7kdfaeu1wtdu8YVfHyYv8lFuAu4BBhff/21Wf7dcktJoTse/H748Ue3ZwlhOe4EbQ/G7WAK6q8IX5HD175QvQswX/HVmKldOuJGN6AlUfnag3lk3gjchjliZBPq18WYpvs1ti3+/X447jhTZk+ebFbwn35q77iTTgq/t7Oz0+hvBiGZ+8vLIV/PrVvt71JjdTVGz5UI2fLMpMQjdfjaMXAMww8cgbuN50j4sPfhEFIXssEUbadh73U3izcI8/VajK+3pHH+nfhXwu9PzmLWmS/16kHLlpnvTzBoCtdffrEwUA8/7K5/Hk8Z+drj8dC5c2c8Hg+LFy9mzZo1pQ5aiXsZyeHrI4APCfsDOXzt+InfgLkdzsO8I9KRr4/G5OWWlF44d+sOZz0AnZ4CboW9BlgX5s6tzvr1l2CL7cdo08ZijMxduBBOO83CeU2ebAY5Y8aY8ciRR4bfuy75ugPm03khyUuorhAM2q7hW2/Z/6tXw4gRJfjaUWQ7wQOKi4CN0NRVBK6amBYp2d57scXMW6TO19WBb7Hnuwqz8nF77q6hYxbhzptgJyoaN954I16vly1btjA9WUO8REhVH9K6NdRMN9RRFEjw1FMwZQqcfjoMG+ZO/pdsjZ8U3IRzcODw9RnAq5gPiYeSfJ2FrW1vZP7872nRYj277w6NG0drzw3OCZ2jBWW4wYcpm24JlT6hLpAD3ISF/buFbe+LqlXhvPOMo6dMgW+/tfXIyJG2CekoC3YU+ToQgMWLbYMCzG3x66/jjoXqK2DvPe3v/2PvvMOjqtYu/jszk4RO6L2DVEHEAlbsiGLBgldRAQv2z3vtFfXarl3BXrAgKiIiigVERUCahS69994Tkszs7481JzOZTDlnMgkIWc8zT5LJPmXOnLP2u9+y3mHDYg4LogGyVd2ufwLIz/U9yVXO2Mf+BiUSLQa+c7idH/H1BsTXDivf9hNKHdnFiRNPdDe+cePQ7zffXEjrx1Aw78kCqrg9J49HGqv33ONOc8qt7hBVcWZo+SlYQtMWRffaIm9EWeRV/hal2pVHxtMyipYx8hS6gh1RBq8To/0VVK9+jLPxHTtK2ysrS69bbinZMpt4yMsLhRLXrJGuYwTs7L6qyDnCaxTwdfj9kvUNv231nZ+KJjg3zmgL0dFlFD0rryvK8PsOhZOdIA8t4KqgCboyKq+dgEp6zkbKxichzavtRTzHUhxwOOkkd+NbtAj9fuuthQyfAOJr+ynwAJluz8nr1b6fftq508aykuDrGjgvEQ7n66OA/6Ky9TRkdHcGfkXllOlIz3MzRePrJ4I/TyeGkFYUfIh079s7G3788XI47Nsnvr74YtdnWWwIBEIW85w5EEU31+brWgRnp1cpME0ZozVGYb6+FOlbu7lnPGhuPpHkyyZtHIPm909xJm8DOteJKFjRCD1ZV6Ig8/vAGYivT0HluikoTS7FgQW39rUtqWdZssVSJFVRAF6vkhfeesv5NjH4ukOHDqSnp7Nt2zaW23qx+XCTSxweOu2KygwbIb6ugJ6R35FytAdVWGSRfDKBFTwGKPmkXJyx0nRt2hSM+Rd//nkRtkh2s2B598qVK8nNjaIXe8YZcj7k5iq45+J+qE4Sc7FbfPGFfk6bpnMMw/bgz33oKmcBTIe6CR1RXuSC/z/cOaO96D5ohjPt3VjYjTj/V1T16NTBEUD8XhMFN6ogCZs/0cKiK+Lrs9D6rtTRvT/QunVrHnjgAXr06MGMGTNSu/Ojj048Jhy2BFyZMnDddcWTzWvrIif2RhaEa/s608XYcL4+F62l6yC+rojWonOD71vs3PkFp51m8fjjhXbkEF5UpQFynjvxUVhIePRx9DwnGm5Jf/Tnn3XtsrMTyneUKHw+OdrBWRLQPuhdFTAwd248pTIPyoS+DXfrHx/QhMR9MBJhFeJUm2edwouC2rXR91sNuB2YhSpxT0B8fS7wBUWbU4qOUkd2caJ1a6hQwfn4cN3Lbt0kQh90fBqU+/Y1cqslna8aCLjXBwwEoG1blwdqgvOF8UXBn2uRY/lKVF6zFxlOf6EMgJeC4950eS6RuBERNoiQHyX+FbVJpVdyh7MsTcaWdWCV1tilj9EWCYQcI/m29TcoYd7oMxx1lHqZnnyyPcDO7HkKkZ/dPDHRxOhFrvIvca6RGg+LkKTBw7jLMgyT9iGAsu5PQs71MSglfSIqv22AFGlLcdDgpJPcVU1ccEHo98sv14MQdI4YdPd8jVqNJg2/X0EmN5mHubkq6XOFxjgztMogLgY9Z21QXdBStBzfhRoNdEU6rqC2WkVxYj8KnBn83UfISRILPhT8jK4jnRDhfF0czq5kYWuDxFhE2SJK+Xw9BJhrYQeUTzwR7rorXIPVi5zRD6F5N44+ZAF4kAPse1LjDvoT3VPP484knRP2ey6SM+sM9EVZg3PQhNUfzSv/HM2/UjhAOP86Qa8w++2mm8SRqX6+/X7pr7qt7IliX7du3ZoKFSqQnZ3N7Nmzw/5jUKcFJ6iOHI8gO7o5cCeqYshCQaifgS7IwMtBWYDJZoCB+N4mmQqotLEw9u7VC7x06nQcUJe//vqLQPDaVatWjcqVK5OXl8cKu5wkGjyeUNXjgQJjQsHGKHy9Hc2I+wh1FfBMh9rGQ2yb1YscwP9BgbqbHZ6MhRwR4+Ls2w0mouCH24aTC8N+z0aO8E7oc/yK+PpHtP5rgZo7l6KkccEFF2BZFgsXLmTDhg2p23GMPkwxceWVod/vvTeh3ENSCARkX7vVVnblDwkQ6mAbDxZwGEriA9kuTZAW/VrE19tRgtZRwEQ2b17Ixo0z8HgMLVu6OKUCx/wczQug+v5riW+HeYDeaM2QBGy+PlCS+kAcvSvYKy2GPyQSZ30NVTO1qV0sWRA+5AfpjypSe5HYF2L/vz7iaz9Fd9OORfP7YJwHP/NQsqiN3UiarAOazychvv4elcC2R07z/YMDaJV2kOKSS5yPve220O+WJe3OoAPjV0KtjVoTvN0vuEBRLa+3eMs0fD7nMiRsQQ/Ngw7GepGURCYyiloTMl7CJxY/Mt7/jdz4S0jOlV8NZWtFRqYuRk5yu3wnEgG0EP6ZIjlkjjoqiUhuMcKuQ6pbV6l6ESjkGAkA/euAZXeU8AVlwG0aqYSa+9jdMm+g4CRpw4Mynquiifsh9J12RwSeKlr6C3cLssjv1h/lfyb42ouikTOSPblSHGiwLDjtNOdj+/YN/Z2WJjmoQACDTM2Z6E5uaY+/9NKQMV6cC+/MTElkOMJqoB3SJ04EDzLKAih7rwMh4yWSr/2oXPF73OnUh6MOCgdEOq5vJDS/xFqY10OzZhEkio46yn2zr+KCxxNqRGDP+RGwA4/51en7PPB/bZGzAArzdTXk8G0V/Psh5FyIlG/xIm6vigIXTyG+Pp6kFzNRMQ9386sbvt6OsvldNN8uxYGN9HQ44ghnYzMyoHtYd4Jy5VQxF8uB4fMpOFm7tp69MkXNjIoBy1KJRJQuXfXr16d69er4/X7+svViWYCcG06EOS3k9NwGPICkoLYQeiZs2C7VnsjGTVampzHi3Osj3n847D3x9ejRUl75808AD61a1aV8+S3s2rWLRYsW6ewtKz8re8mSJYkPf8wxB06iiNeruR6I9DDtQ1d4L0rf8KO6pZr7LNIePZGQ08sb8bMBur71CGmev4CynMORhuzr6iig+wpyIh9O6vg6gIIhbrcJRzhfm4gx61AwfBOlKFlUq1aNNm3asHv3bp577rnU7bhOnWjNlKKjShXp4dvIzFRiYCy+zsiQo7xatRBfF4ej1ONRZnl7h1V+TEcW2c8Oxhok77QGuBU4DTkQIz9zIPh+Nz755FnWrjU0buxUWz8crdEa+cKI919BkhYQ3b5OC75mRfmfCxx77IEjt+rzhZo025VbCeDd5OPUMs0AD99/D4X5uiUKRmSitdPHKCiRGbGndEJ8fRSq+p+L5vkmFE22D3Rf5eC+ijxy7ROI8r59botRJf7+qXwsdWQXNx54wNm4M84oWKr+44/qqIvy22wa7IZyp7As6Xp+9ZWcozt2qKlIceChhzRBJMRmFJlxoh9ly3qcj4j+JmAn8R0PFlpsu3Had0Zl6TOC5xerG8L/AbNRNDJyRgggiYlzguebZNnbRRdpgj4Q4PHAtdfq9zJloF+/QpNKIceIxwNX3wqMISdnEsb0Q1mPFyAHyBqCHSDCcDFafE1Cpf7DUHR5O1pULUBNY2yl92roGh8gC5KYCCAn+ROJBpbin4RHHkk8xrKULRLOiZ98Av/7HyDX4DTEVhcQchPy9dcwebKy9tasKVoPhXh45hmHjpeVaHE718FYCxkq7RAj3Evi8nMLPR9unuVTgWdRQHMt0VsZW0jOZDqqloicD/KQTv6pQB+SNgSvvvrA0fELBMTRADVqKFAR5rQxRKmgCQTg8tuBKezbNxZjrkR8fRFq7rkKafeFox+SY/oZ+AA1Yt6EMje3oHvlbkLSBi2A4zjwTUk/ch29sL9PpBSpxKOPJh5jWUoSCefEV15Rc8ZYMAa+/x4WLBBfz5kTe2xR8cILUTMN09PTOf3006levTpr1qwhN3cGckw6lV7rhbixHvAkqlqIxde2c9tN+TGIn19GAaJlhLK/w+FBWdq/ou5hPqoG1an+/huMycXrHUmHDoOAMfzxx+/5W9qObNu5HRfXX+8+s7K44PdDnz76vWVLOOGE/O94uz0EuYlao9n0ImPgojtQptt3KIvvTCT9NBJVQIU7WSyU3LMazXcfBMdtDR5lE3JU3YIcJSCubkbR9M9LAn50/m/s7xM5JNG8eXNGjBjB8OHDUysxMmBA4jGWJb9JOCcOGEDQWxgdeXnqM7BunZ69X34pniQEjweefdbh4MnoedvocPwtqLKxEapmjme3Kvj4wQcjGDPGTZH9pYjj16LEgQ5RxqQju+97VHkRab/vQ2v5DiihJUncdNOBk9iXlxfqlHn88XDYYYkDIXl5XH/Hk1hWA1avrs7vv5+K+PoKxMezKCi74kVB3fUo4e99VLO7gxBfT0O9hezEwu4UlHI8UJGHkluc9kxIMcxBhh07dhjA7NixY3+fSgiPP26MaLXwy+MxpkoVYxYuLLjN6acb4/WaRWAGBF+/RG7r8xnTv39omzvvNMbrjX0sty/LMmbAAGMCAYcftLcxxjLG4OB1jDHmG2OMx8U29qu7McbnYFwVY0y2w3M3xpgVxpijE+zTY4y5ysU+IzB0aOq+n6K80tON2bgx7KOv0H0YvH/2gXkkeN/tsu+1hg2N2bLFGGPMyJEjzf/+9z8zY8aM5K9FTPxujEkz7u+L/fHyGmM2peyTH5D8VYw4ID/vrbfGfm68XmPq1jVm7drQ+EDAmHbtjPF4zMwwvp4ebduHHgptd+WVeq5S9Ux7vca88oqLD3qacX6fn2WM+djF+PDXCUbPSbwxljGmiTHG7+L8FxhjWpr4PGEZY+5ysc8IvPxy8XOxk1elSsbs3h06rzlzjClbVvYDmG3Be+4xMHn2vdC2rTF79xpjjPn444/Nc889ZxYsWJD8tYiJseafwdUYY8oZdzZBfByQ/FWMOOA+r99vzGWXxX5uPB5jWrUyZtu20Da5ucbUqZP4mbMsYwYODG13xhmpta/T040ZMiTux1u+fLk588wzzYUXXmA2b25pnN/nVxhjXnEx3n55jTFtjOzceOM8xphjXX5ZM4wx9Ywxltm9G/Pf/2IGDMAsX659bt6svx955Eyzfft2Y4wxe/bsMY8++qiZOnWqCThZhzzwQPFzsZNX7drG5OWFzmviRM31lmW2gvkBzP+CnD3K5usTTii4TbHhE7P/edjpq07KPvUBx10lgKJ85lNPPdU0atTI9OrVK3UnlJMj34ZlRX9uPB5jOnfOt1uMMbJ7KlRw9tx99pm2CQSMad8+3z5KyatcOWO++cbhB801xtQ2zu/z240xD7sYj5k6FdOoEaZxY69ZvTrReJ8x5jwXX1TAGDPBGFPVJLbtPnKx3whce21qeTfZV5s2Bf1co0bFvkft+7RnT2MCAXP66aebo48+2rzzzjvJX4e4eNkUH7+m8mUZYzqk7FO74a4DPY3m4MD998OgQaFsXJ8vFG089lhl6YVnY2/ZAj/+SJ7fn6/CeyRS6y2AvDz46CM9WgD33acyxVjldR6PIk1Oy+8+/VQZio5KdDaiZh7G2b6ZBdwX/N3pNjZ2klgywoukLZyU8GcBV6Gyu0Q6mgGk/brcwX6joEuXZGqAUg+/v2Czz4YNYfz4fLmRTR4PBvBYlvLPmzfX/4OpNKtWrWLv3r1s3Wp3Y/ajKOPt6Lo/hzreJoNOKLMkg39G5ojbEstSHNB4+WV4/PFQf4Nwvj7lFJg6VWWSNhYsgDlz2BcI5FfOnEhIJTQffn/BLMAnn1RWd6zyOsuCVq2cl9/9/LMaQzrCQqTB5hRziKV1mhhpOMuK/j+cZfbuQFUbLVFFR7z5w6BSyW0O9hsFXbseGOWPkbp9bduqaitoU2wMztHpHg+7AY48EsaNy59rVq1axa5du9i+fbu9Q5R1cxuSainCNeJ0NCf6OPAzs/dSWq5+EMHjkQ18992hcnKbry0Lzj9fmXqZmaFtfvtNmXtO8OGHod9ffhnKl49vPx92mDO+sCyYOTOhbmzdunXp3Lkz7dtXwetd4OycAVVO3O9ivA0/yuBOlNkcQHztBBtQZt8RqGrPUL58SBVmclAzsVo1LV+M+ZUZM6YBUK5cOS655BI6dOiAFeS4devWMWtWjLL2008/MLRXIzPDjz8eRo2C8uWpYlmcaVnqBmNZEgbp2lUVtjHvrWyU7XYLql59C/WjSAaXoSx6iwOfr9cRUhEvRUnihhtuAGD69OksXLgwwWiHSEtTZeL11+t3m6/t/lG9e8PYsQXXyN9+G+rnFA8eD3z8sX63LDXcTUuLr6vduLEz3e20NFi6FM45J/FYQJm2TtOkLcTXTzocL9gftWnTStSrl+gz5CFbzwmWoUq9E1F1RyL/zAAHY2KgW7fktks1Ivm6Rw8YMqSwlrc9t190kf5vWTz77LN0796dnTt35vd3kPTLO0j//xaUwZ6V5MndipQI4MCuVDcoK7vkcaDPYgcHLAtuvlnG87Bh8NhjKk+ZOVNGdaRK/+bNgAp5dyChi1OJ4dLbuxf2BSf6qlVh0iQZcyCCtonc54P+/VWeYxKQjmVJh9ONvje/4E6POBtJeSRTCvhbgv97kevfiU63HzlFhuCcjD2EGpm5xIsvQo7TTt/FCGMkhxCOww+HZctg2DCqnHcelZs3J9C2LW9fdRXzhw/XpB9Ew4YqmRk/fjyjRj1LdnYTpBn9GvAecA/Su76D5Er7u6NgweOo+UWqNYVTSX0HWKOhUhQNdmnj+vUyVh59VOXfCxbIyI7U+dskx9h6pBBWGfV0joogtwPaz+TJCmaCDHnbuC9TRg1uhg5NXH7n9aqfwonRyrpjYQzugkQbUDliMvg5wbE8qHnVTQ72lY20A792cfwcJGmUBJ50t7goNmRlwciRBd877jhYtQref58aZ59NuaZNyWrXjreuv57ln30GtWrlD7X5+ttvv2XMmKfIyamH+lO8gWShbkeSMU+Q3KLkClQWez+SG0m1JEspX5ciBnw+yTqtXw/vviu+fvll2TIjRhSWxdvkMJBhDIQ3O2vdWva13UjX5mtQ0PN//4NXX3XG1xdeqCBlwo/mo1y5cqxZ8xcrVrjh6yVoMZ0MxhL/ebMINa9KhO1IS398of/Y097ChaE+W3JuZzN37vD8ca1btyYj2FNi48aNvPvuu4wcOZJVq6I0l3rkkQOjQe/GjQosh+Pss2HtWnjtNTjnHPa0aoW/fXsm3HILX992G4GKFWPsbBji5iuRA/sdlCxSG/dSMDZuQ8Hs21Hj0FQ7SFK1Pw8KhJeipNGzZ0/q1auH3+/n6aefTt2Oy5SBN97Qs/DGG3pmX30VVq9WooedQGLDKV8HAgU1No49Vs9g82CPJp8vxNeZmfDmm7LvEskR+XyS4QyzpxLje5zbLAZJALlbJ0+apJ+nnLINcXK8+eHfyG5OhHWox9lfLs5kKaEObi5gDDz44IEReJw/Hwo0VEY9MtauheefV3+N005TAOavv+THCwZb2rVrR5kyZdixYwfLli0D3kTcfD3wNuLsqxGHR/hcHMFCjdhnB/fZkNS7blOVrLN/pBgPgFSjQwgZGc6cw8Esq1qotdYO1Ps75j7DG4fVqiVn9cKFWvju3KnswUsvlbYmSG8qllaVZckQfP11lwSTbLQpGYRPPNWQy99GWaQx9DQhnaFIzEAG4M/Bbd1molkk1aE1Lw/ee69gJrRbeDyp0QH0eqXTG4m0NLjkEspdcgnX7d7N559/zooVK/j08885eeNGunbtimVZ9OjRg8qVK/PLL5/w55/vsmCBnzPPhPbtc8NumwDwIsocecvFyWWjbNEtSM/vRDRZphJtkDE/BOl3J/ud1CbYzq8UBxvKl3fWaT3Ym6ARcB3KdY3pKgvPDARo0kQZg7NmqQPWnj3QqJH42u55cNNN4uNoAUg7SPnSS04+URiykDHkpot1UWCfe2U0o9mohBzYjxJ9wWqQkfxa8Kcd3nUDH0nx9bZt8MUXRdPxs6zEgWMniMXXZcvC1VdT5eqruX77dj799FPWr1/Phx99xJlnnsmxxx6LZVlceumljB07lilTPuG33z5i7lzD2WdDy5bhfL0PBX/3IcPZKfYAP6LvpQ3qS+FUx9cpOiG+foLEWfixYCGN2eqJBpbin4jKlQs24I2F8uWd7zPSCd6unRayU6eq4iE7W46Siy/Wfo3R7yNGRLfTvF6Ne+opx6cwf/58li3bzKxZ0KGD062Szda1EUDzQzkKOsSrogaS9xJ9MW1Ql4jXgT9RpWb0BlA1aqgf4qpVyuk54QTl9Hg8Fhs3rmTz5s1Ur149YpsatGzZkrlz5/LZZ5/Rv39/KtoO4GXLVDVYFKSKr0GOuUhUrEh2nz7kXnEFe95/n5zVq1mZlcW+2bM5t0ePKDsZjjKobYRX5uxFGX8BlPXnFNvRd7Qb8eoqUl9VeGLwnG4k+QoYL6pDPgACE4cgvF4v/fr147///S8TJkxg5cqV+QHxlKB6dTkGE8FpY3TL0j7D0aWLnJTjx8Ovv8qWa9NGgcSMDFW6vfUWTJgQfV3u82kOeNBJUlw43PpDNiceEobJk5UTE+o5H0DPSzoFm/XWQckFN8fYkx/p8b+BssI3kJwvZyXSA3eBadP03RwoWLOmcBPPqlXh3//WKwZ8Ph/t27dnzJgxvPnmDTzzzI9h/w3n6x0oAGxRkNMTYRNKFM1GQYZVJLWeiYuz0Or1XyTvy/MF91PyKHVkH4Awq1fnx9YyKdzjtAAuvTS6w/mww1RuGQ0PPaQmVo8+qmxuu1wiN1cTwfvvq/mkKzRxOT5VyEBOz3XI3X8Kco5Eg0GNqp5Dt35RnDMuFkM2tm51ViIVDbVra8F00kmajJ95Jrn92AgEIGYGiFChQgWuuuqqoANkCuPHj2ft2rVcdNFFlClThpNPPpmGDe9i9Gg/mzcbvvxSt1XBpr8GRSVvQFny8eBH5VUv4L7Drlv8F7XiawCcneQ+PMhAKKXRQxlmzZp8vq6RaHAsx3j79rE7ob/yip7V55/Xc2uXH+fmqtP2p5+qk7orpKIbtlt4kHzTcyh/vQri61gBxzxkXL1P0fg6QFJ8vWZN8k7s+vWhaVPNo8uXK1O0KHDA15mZmVxzzTV8/fXXzJo1i++//541a9Zw3nnnkZaWRrduZ9GkyY189x1s367bpl8/qUoVxOOo6XGiRes+VPL4OslnfzrFS2ihFCB2w2YnuJ0DX66qFMUKp7IiEJ2vLQs6d9Yr2v8+/lgST++8E0oMMUZc0rQpDB8u+9wBLMuiadOmTJ6cw3vvGXr2dOeHLxos9MzdjgKINRBfx8q6ykJZ2l/jlK+PPFKO7L//liO7bFlo2tSweHEa8+bN46STCgoqWpbF+eefz6ZNm9i4cSPDhg2jT58+eL1elf4ni8aNFVQ+5xw5tb76Kvl92YjB15MmTWLChAmsW7eO8uXL4/P5KF++fL50Sgi5yBGcyLF+F9CbBCtFxNF3ofk0yYb1jvE20BzJFCQrSebHuXxNKYoDffr04Y033mDTpk08/fTTvPZashUARYBTvjYGLoviILQsSfd07Vr4f2lpkvTp1w8+/1xcHc7X7dopmaFuXZcn3YTitDOGDtXPZs2gXj0IccSFiIN3Iif2ScRen+5AzXcnICd4UdYDSUxKReHrFi3E2RdeKGkxW5+qKEhgX8dDZmYmI0d+iceziltuiWZT27CQz6AnibOXt6BM+k8oeiJRPHhRo+BqwXN7nuQSRfKQDErJo9QDc4AhOzubj+64g5Mti8OcZAbYQnNuYFkqW7/hBpXOz5snZ/aJJ8IFF4TKb1zhBETey5LYtihYix4gB5mTPIOcKFA0YshDMhouUaaMu/H2hPrAA5KjsQ3d7dtVOmtLyiQDv1/6kQng9Xrp1q0bdevWZdSoUSxatIi33nqLyy67jJo1t9KkyXRuvFHzyJIlBatljbFP2YcyKt+Jc6QAMsY/I2m9LcfwAXYkuBu6J+5Ejjan2e4elHl4Z8rPrhT/HOzatYuP77+fsy2LRk74uksX9wfxeuHpp+GOO2S0LVqkbJLTT1e5stOeBwXQAy18tyexbbIIADORQ+R0B+PvQgYWFI2v/YBTbcMwuOVrW+fxmWcKZnCsXKlKnKJm+jnQZ0xLS+PCCy+kXr16/PDDD8yePZtNmzbRq1cvqlSZQ8uWy2naVMlJmzcrI9JGiK89qILm8ThHykVz4E8kJw/mFguQU+1KYB7wP7QocHpNLXS+DjJ2S3Fw4+23nWfennyy+/2np6ts/aGHxNcrVsj7fM456rHgspS6Xbt2+P3l2bxZu2rTxv0pJQc/khl5F8nEJcI1qE8KOOXrtm219Ai3G9u2tVi8uHlURzZAeno6vXr14u2332bVqlX88MMPdO/ePbneMxkZ+q6uDguOnXpq0R3ZZcqEJB4jYOuo+v1+cnJyKFu2LOWjRie+wlmm5j6kwRpPA3cPcDKqRi0pvm6OsvfnAYOT2Edf4LxUnlQpXMLr9XLVVVfx4osvsmLFCvbt25cv81NieP9952NPcyKfEYHy5eGzzyQz8vHHkpOoWBF69lSwMinpiz4oWap48Mcf+lkw3zAPyRC9DiRyyhrkTLVlWovixC6LuMXtZknwdfny8uKfF8YLTZsWXWu7WjU45pikNz/uuOOoUQM2bTK8+SY88USskQbpjo8gflb2FuRfWEbxJxz5UcV7NZRIuBAYlcR+7kUZ4yWPUkf2AQRjDCNHjmTNihV8awxNSfAFFVVbKDMTbnFTkhYPHrTwdeJQTiUspAe4GBlLSxGxnoWik3bUaw/xF+ZO4UWacqe637RSJWVO/vFHYnmQypXhttvguusKehtA39sbbzgro40Gn0/n4SII0r59e2rUqMFnn33G1q1beeeddzj/fB9t28p3c8IJ6mdj35I5OVrDHXsstG2bh2VNS3CET4OvkkCAgtHQO4DVKOvPKc5B5+vS2VWKgwZ+v5/PP/+c9atX870xXI+DHIw90cusHaFGDfjPf5LfvgAyUJOW2CVzxYclaL74EJXIVUSO9XMIaWtuBAZR9KCWDxmEMbLd46FpU6VWrHRQdl2rlvj6mmsKayk2bCj93FgVUong9ar5jMOyXsuyOPbYY6lVq5buz/Xreeutt7j44l00a+YhLS3AaaeFO651Ww4dqqSlFi38wB8JjvIqqoQq7qCjDTu4biHZsFXAUBfb90HahaUm7yGPRYucB5Xym1kngfr11YC9iGjTpg3ly1diz55Mfvttewk6skHP93JU8fgxqqTJBC5Cmqu27MMCktH/TE9Xa5YQfLRseS4eTybr169n69atVA02GA9HtWrV6NmzJ0OHDmXatGnUrVuXI448UnbzDgfSUw0bwu23Q58++VKO+ejYEe68E557LtqWieH1yja3pcEi4A9KGOTl5ZGbm0uFChUoVy5aVdKfiPdyo/wvHJ7g2Hh4HOnelhRf2/a1BwVCVqOgiFPchXi+tHpmf6N///7s2rWLnJwcpk+fzgknxOwAk3oYI8kgp9i0KYns6SCaNYOHH05u20JogmyOD0h14GjjRsXI1qwpGH8TclFy33rk1N6CpNQuQ70K7OdpEkpCKCq8QD9iV8HHwYknKmkyspF5NLRsKb7u3buwhvqZZ8KVV8rhkAw8HvnB0oum79ytWxU++mglP/ygvMPY+UVpiK/jObLvQr6skgg6Qoiv05CT/VgSrwHC8T+Sr7wpOkrFp/YXjJHG3l13qQzx+eeZ9PXXzJ8/H29aGpfiYMllTJEfvtTicqSJXJLGh0GNF1ugh2lY8O/LUBaJrZn3JUUuf84FdgRg4CmwOopeqRPccoszjeuXXxYbRjqxbfTpo2aNtWu7P4fq1Qs3enSAOnXqcP3119O0aVNycnL4/POpjB0b+jjhcZVp01QyOny45pfNmxNl6BRFKsWeRJ3edwGga9jfubhzinhRA7lYkgilOOjg96sE8Y47xNcDB/Ljl1+ycuVKMtLTuRiHd19JZ7PExf8BD+yH4z6DHMsvAZ+jUufzkfFvN5kZQpGNuFxgo4FBnZ03DAqHbeA6wQcfwP33x24IdNdd0jmPdJo4QdOmyiJ1icaNG9O/f3/q1atHVlYWQ4b8zsSJJt+HF87XEyZoYfTxx0pO2rEj3uIiADxL8k4RW3fYKV9bSHPVxi5gpIvj+dA5lzYNO2SQm6tS8X//G/7v//T82LJubjj4AODr+vXrU7t2bXJzK/Hbb4exd2/ibVKL24BjUPDqc+SYPBPp4S8KjhlMURv8mVwILINyHx5Jk5o1AZg3b17M8Ycddhhdg3IBCxYswGRkSCLACUaO1L0Ri4+feUY65smUmx9xRFzpv0AgQCAQwBhDbm4uXq83RkZ2qpBN8kFhi5BgmlO+zgDCpc7W4c5pZt9Hpe6JAwHp6emcE6wGmzx5MrlOHI9ukZUFH34oZ+Xtt2vRmJ0tI8VNhfgB5Q95HSXTpRZz58o0Pf30WMv/nmh9+xbi6zeR/XQ0YPst3qPIQf08YF46vNsiuQSdatXgoosSj7MsGDNGCgKRTmz7/4MHS2XAbRUlKIv//vvdbxeBG25oiderSsfvvivKnrYiH1Yy659wvnaKqqh3jI35uHNiexBn77+gY+lMsT8wY4YiTKefriZdb77JsrvuYtyFF8L339O9e3fqOs22/uijomWNpBy3o9KEkmyoNDX4048efttpugUZ3NNRVkkRiDsAfAF0MvDvd1UL+csvye8vEZxoaV92mbzFZ57pLjv///5PDeWSQLly5ejduzfHH388UIdJk1Q1P3duwV4ZnTsru8/ng6VLLV5/vRw//vgjO3fujLLXvUhyIFnUQo07nZSVedGEHq7X/SPKAHUKPzCGxJkypTgoMGGC9Nh69ICBA+HNN5l3221MvuwyGD+eC845h2pO5T0GDy5aVnZKYaFMrdmoiqWkjvl78Pc8CvL1WlSiuADxdREcI3nIFuzoh/97QXz9Z6KstShw2ljXCV/fcIP0Ho86yh1fP/BA4SZGDlGpUiX69u3LkUceiTF1+fFHw4cfqhd0+Ec75RQ47jgtkP7+22LQID8TJkxgT9R7dQX6rpJFW6Sje6yDsV6UqR8+X42gYEOjRMjDneO7FP9ofPONhEMvvRRefVUBpP79FWQaOBDOOivUFyYR3n1X5WX7EeXLl6dNmzakp2ewdGkdZs16l5JbunmBWcHfI/l6CZIUXItKoJPP9p0xHQZdDn8ekQc3DaDNww/Dli1xHdkAJ598MhdeeCGXXHKJNKadNlJPNAfb8ovr1yuQ6AZPPRXd4RJEIBDA7/djWRY5OTn5GtmF0QlnNmYgODYWZpJ8Eo+FdNE/QYGLRPBRWK/7Y9zdG36UeFSKAwXt2rUjMzOThQsXpl4ne8gQqFNH6cWvvabXVVfpvY8/lp/EKV+/845zm63YkYEcyaMTDXQMvx9mz9bvbdtGG+FD/hcozNczkWb2dlTBXgS5vj2oldUxWXDdv6FTJ0myuIUTvjaGhNFbr1e8u25d4QbNifDccykJgNSr1zW/zVF8NZxc4vP1RJL/bnxII/0dCtrMseBFfRjCP//7uPOVBZAM1v5DqSO7pDFvnkoqbKH7vDy25OYy3BhMIMARU6dy5OzZygRxstj94w85Mouil5xyNEd6lMVdxms7OmJNXAFkFN2FHDVJTHAGJd92Qg1dlyDyzcqS5qHTsqcdO1Su6DRjZOBAZ+WvPp+yP5yWylqWsgeLoNfq8Xg444wzuOSSG0lLa8zq1Raffw7//a8cJPZpde0KN98Mhx1m8Pu9TJz4LS+88AKvvfYaWwsEX4ri2PMCzVAEeiyKPscbWxZlFIUjmQ7AhuJvmFOK/Y7Jk2VI20Zabi7rcnPlFvP7Of6XX2i9bZvz52nMGGnvHTDGNkA79PwULaMuMTzouYllvPqRg3IAWgQkydd7gJZIsnUtutY7dkhQcLPD7vAbN8KNNzqTBvB41JDTCTIypMXo9H7xet1pREaBz+ejR48enHvujXi91Vm2TDIijz0WUk3JyJAZccMN0KiRITfXz7hxo3juued466232LVrV9geHV7D6GeDpLnOBSYDMcUE0f1YFRgY8f4q3NsWyXZiL8U/Ct9+K/1M+znPzdXLXgzfdpvsN6dNXD/+2LnNVozo0qULlSpVYuvWrfzyy0ZU0VLcyzcLcXIsvs5DySLPILsqiYysoGRo1lmwZTj8tRMwhlZbtmB99BFrV6xg+/btsc/QsujQoQOe1avl/HLCwz6f7GsnKFcOHn3U2Vh73++9F3eI3+/Pd2QbY7AsK4Yj+zygJomvqwfZotti/H9ForNOsO/GqMJ1DvGbL3pRFexTEe+vwr1tUeJlB6WIA6/Xi2VZjB07lrfffpvdTgL3TvDRR5KFsOWAbL4G9YLq3VsObad8/eKLyUu4FQss4GygXkr2Nn48DBqkZUnLltFG+IntBM1DCSKvkXQ1sUGPc23gHmRrG6MGWWef7XxdM3++GjV+/nnisT6fghtOkJnpLrva603I185xBVddpeqBGTMUA42OMoirYz1D8YO38eFHla3XIGmSf8UZ60VJJfdEvL8S92uvXYmHFCNKHdkljbvukhM0GInaifo770F5pecA1rhx0Lq1s8Wu3y9n9qefFn7/998lXzJnTtEbTbnGjbiPKlVHt6ST29JpYz4/khcZ5XB8BCwUrPoZeBkpmIAIe98+ZfwkwrZtEpB+6SXnGSMLFsCGDc7GdugAN93kbKwxmkSiZka7Q40aNUhLO5/wspKZYYnVxqhYoHJluOyy32nY8CUsaxQ5OXtZtGhR2J6KQkN+4Nqwv69HUXBbkiV8EdAZmAIUEGUkqY7LVAJiZ92U4iDBLbfIiA4aaBtRUV4OWt6dBtLP6dzZ2f78fjmzf/ih4Pu5uTB1qvh6wYJUnb0L3Ij7piLRnrFYcNqYzw8MR/rLSTQ5sdDjPBVJbNqn6PdrYeTEaF27Vj0E3n7b2bwZCChr3+li6/TT4VyHzYL9fpg0ydnYOLAsi9q16xAInEv49zVnTmhMIKCpqm5di549J1K37gsY8z179uxixYpwZ0hR+DoPaSrauB9lj9iSLOH7PhWYhp60cJTH/VzupFldKf7R8PsViYH4z+0HHzhv4hgIyJltd9eykZ0Nv/0GP/0USkopRpx88slcccUVVKtWjdmzZ7Nx41W4fwZs49UpXzuBHz2/k0i6KVVVaD8NPF1hTTnlC5YPBGi0YwfMncuCRPPhwoXQqRPbP/6Yn9EyPC7y8grPv/Fw2WXOG4Hl5SWs1MzJycmXFOnYsSP33XcfRx11VJSRacAbDg5qkDOiDmowF3nvp5KvX0TN0W1JFnvfFnK8T6FwaXv5KOcUDx6cZROWoiRxzTXXUK5cOXbv3s1Ap4GgeMjKcibd9s47EKXpa1QYAy+8oK644di9GyZOhJ9/VhVzicICbsb9c9i60DuffqoCIY8nlupVoucsgBwZM1yeSxgaoCKduwgVXuTlwaxZznj1jz9kX49y2FAwL8+dVseNN0rv3An8ft0TKUElzjvvZapW1W0Y++PlAjehaEA0/1FREoo8hPrUeZBE40OEfBX2PehDUsC/UrgxaHnc3at237j9h1JHdklixQo9kGHOzEooH64BcCVhKo5//eV8sevxKEwHMrxfegmaNBFZnH66uqkcfnhSusjJ42gUxXeTpVEbZdVGM+oiEcCdcTTBxdggwnefiXw9s1EyGeh7fDcyuzcKbrtNzmOnTmwbbrLsH3zQ3b6dOl1iYNasWbz99tvs3ZuJ19uPRo2qcvzxcO65Xvbske9l4EAF3KdPh7S0AP36Gf7znxlceukYjj46vLQmWX1AH4oonocygx4GjkBRSNtYaYQc3bNQyU60eqwzcJfh5w3us7QRzUGNP/6QHEVYlkENVG/SAhVw5U+gv/0G55/vbL/hGQa5ufD44yqF79xZfN2qlRbO33yTso+SGN2B03F3T7dGkg2Rz1TkPmwntlO+9lMkQxsUE70DJTfYvYkCAWd8ffXVcma74WtjnDWtAVXFuMny8/uLFIg2xjB16lQGDx6MMY1IS7uaxo0r0bUrnH66l5075Xt56SWZCJMnG2rWNFx/fYB//3sKl132O20L1LHG0AFPCC+SjjkBNSO6E9071wN20LY5cAvS3h1DYSc26F5148TzBI9RioMaY8bISeHkWRk/3rl97fOpuTYoq/u++yROevzx0tds1kyO8WKUmqtZsybnnnsuDRs2pEaNGlSocDWSR3PD18chvaXIRX5R+XoPKlVMAsFDl28O9S8HbobFzfVec8uCv/5iyZI4+zYGLr4Ytm1jYiDAeBzOHG7kYnw+GDDA+fgEtnXbtm2pV68e5cuXp0qVKmRkZJAes7T9QtT3x3YcR7NT7bXQPmQDR/a9aOL41AvCA1yKyptWIGdcS+TB2oa+vNbBv1cgyadoc8O5uEtqCgDXJXnOpSguVKhQgXODnPnZZ5/lNy1NGsOGOU+o+vVX2cZO4PGEeops26b1d+3aqoQ/9VTJanbvrkS/EsON6Dl0w9fnI217BeH9fpgyRf8566zwcW7XoRuBJHrGhB+qESq8mEnIh+mkejAvT+ukrCx3ValufCFly7prslxEX0g4vN4bueuua7nkEh95eWBMNBern1Dp6C2oV1A4omrGOICF7rNaSF6mH5rr/4uyvz1AB+TYXg18CERrSOyWr/0UDHaWPEpbuJck/vwTjGEXuo3tFnVnB38WisM4jUIFAkqtCgRUpjM0SuO6efPg8sth8WJ46KFkzt4lLNSxdzVyIDqBD3ieUMOvamjR+iDKXV+Iyoyn4T4bxalR7gFjdy+M+Fda8LDDER8sQFl+OTmxNZY2blQY1e2kX7Zs7MZhoP1NnKis7cxMOOEEqFrVmV56jRrJNR1DndZ/+OEHpk+fDkDTpk256KK7KFfuNVauHMK33z7EvHmr8j9uRoYSxu3DVaxoqFhxLHAByuxohUpt7GxpJ7Cz8Q9DRn53pHMdDStRxpCFZEeiTfo1UdDlE5xlFWUAtzo811L8YxE0dLehb7wcunt6Iq4uZKKMHetsv3l5Kl3IzZUz5ccfCxt1f/whTe7XXlOGQbHDi5zSxwJzHYy3y5lfAv4OvlcbBZUeRIGkpcjaXYD7bD0XfB1rLvChivdvEVWsJ7GO34IF+j7combN+I1mcnK0GNu6Vfx7xBEix0QGumUpsOFGU7vAYXMYNWoUc4Kp123atOG88+4lI+Mtlix5hxEjHmbhws35t1+5ctCxo36CqmkqV/4UXecn0QqmHlq9OM1E9aLv/2hU1tqFUF+LSCxBi7fKSL89GlqioMsvJDa4LRSFvsbhuZbiH4vff5fT0enC9LffnI3Ly1Ot8J49EpP/44/CfD1xopzan3wibe5iQNOmTWnTpg179+5l/frtNG06FgXunWQYepEDYxB6xizkILkQOT7nIVvpQaTHVPJ83bwlrFwFi++Eo+6E5rsNP+7YwfLly/H7/Xij9aGYNClfNLYV6r6wJHg2MRnTshJn7GVlia937JC0weGHa7tEQRKvV2PjoE2bNmzbto2dO3eSmZkZf38AXAz0QE16/o/E0k5PofXSAyhLuwNyhMeSHomED/HqWeh+OBzJikTCoMZgc9GcEEt25LjgPuaR+L7yoPuyl8NzLUVJ4q677mLkyJFs376dd955h/79+ye/M2U4OUsAsCz4+29n/G4LSW/ZosYfS5YUXH8bo6DnuHEwerRzB3mRkIkqw9ujZn6J4EH+jm9Rg0aLH3+sxc6de/D5qnHVVc+i2pV7gz/d8rVT/0mMSkp78VMH+AHFs/L8Ia26WBg1Sl3F3cDrhcMOiz9m1y7x9d690LChNLudwOeTgyKFuPDCgSxdWpeNG/9i5cofadQokazdf1Bg4T/I53UiWnE6dd7bfH05cBVyXkezzQMoE3MmWhD1jrG/84C6KLnECV+3Bbo5PNfiQWlGdgnCGMNMVEwwkhA9eIlRTOAmYmVr/URzYuvg+vnww3rgSwTpyDno9DabgVjRnti2oEYhXVH5w7HI2Vlc+rLdUUaYFdsKtpVPbgv+nZYWv6vyDz+4j/j5fMoKjOYYMUapzg0bSoS6Vy+FZ+vVgzZtdB/Eg9crGRKP+0d/+/btDB48ON+JffLJJ9O7dzfKl3+NNWu6MHjwXcyeLSd2vXoKvN5xh4LfVatG7m00mv1ORQunex2eRRVE9EORE+0IYjuxIXSvvI0WcbHwCsqzdVLWkw2UZLZsKfYHjDFMQ6638JBiGjEYLVFDknB4vdK2j+bEhtB7N9+sIGSJoDziWycIoLK0CYSMnQ3oOTsVaIi41MniNVn0AmqDiePktWXx7YTcqFqkYfjmG/fc6PEo2BDN2ez3wxNPQN260uju1UtZQa1by4B20sTo5pvdnU8QmzZt4u2332bOnDl4PB7OOussLrnkBMqUeYYFC45hyJCHmT9fTuxGjdRA/j//0WlWqhS5t6EoO/oC5BBxytfV0f3wJcrAPpzYTmwI3StPAJ/FGfc+Cpwkun4GOXXGODjXUhxScNMk3euV9mZEhU4+AgHZZr17q+FUMSE7O5upU6fy559/Iv14BxUmgJ6r71DjczvbejVKDDkbOVgykVO8uPi6H1Axps+7eXPAA8u2gP9y5ZWVL1eOnJwcVsWSAxg1Kp9DGyE22IEDFf9YweF9+0IZ9926ia9POkmJIu3aJbav/X5HfL1t2zZ27drF77//zvjx4+OMXA7ch5q0PYrz/gSvIufyVcgh8h+cZW7WQuug7xHXdyC6E9uGfa/cDvwUY4yF5P4qk5ivAyjgEu+alGJ/oUaNGnTt2hWADz74oOhZ2U5hjBygTnwilqXn9OabCzuxbdh9Enr2dNaoOyWoh2Q9nCCAKhzmYPP1Z5+tB3bRqtVOqlbtHhy3heLj65so2AQwCtKQmX8euu6JAnNhfO0Y4ZJhkdi1C269VUl/556rIHLnzuLtpk0T2/J5eSlOFFpAmTL3cvjhQwkEfmXUKCe9WQxKEqmJHEsZaMHihK/rAhchvmyDkkXiJZjYDUD7IId2NPiQh7IMiX13ARQAj2fTFz9KHdlusGOHMuT699fN/8EHitw7wK5du/h01Sq+RG6wbBy0H/J64ztJw8cdf7y0oRJlbrlpdJIS1EclMk51fyJJ2TZszkCLV7f6QU4z2bzIUb4YrARZF2nA1YDPCxdcEP+a79rlLpvO61U29p13Fv6fMSqTuu22wpmF27crK8jjiX08n0/ZJU50ySKwaNEi3nzzTdasWUPZsmW54oorOO64zXg8jYB7qVdvOvXqbaJTJz0e112nzL7EzYB/QdnY7VDmSTxcjSbuX9DC61ycdXW38SyxJ/0qqPnYzSRuhBFAGdlOnX6l2C/YvFnNX66/XsGbzz5zXFK8detWPli3jm/RHbYLB3ea1+vMCerzqczxlVcSG+Zer/NGJylBB5QxG8/YDOeX8OfJdpAsR4vhDxLsp6joBKxNzNc+oC+67pdcEn/srl2JnRXh8HqhevXoxnAgoCqohx5SdlA4NmyAadP0ezy+bt1aQU2XmD17Nm+//TabNm2iYsWK9OnThyOPnIVlNQIepUWLGVSvvpnOnbXe69tXiYSJ1xijkFPlDOSgjoe7UKbJGCTKcynOg9Ae4H9x/l8POeWuIuFiizyUfeJCF7cUJY+1a+Hpp2U83HorfP21u0q2jh1TWiacD69Xi+N33ol/Psbo/3ZZe8pPw4vH42HPnj0MGzaMadOmoS4NzYhvF4fzS/jzZ/P1TBQU/CDBfoqKtsCOmCZ5nTqqBNm3D1Z3B8vjoVlQyzymvMju3fn8mUZIiGhxrFPw+aBxYzWGjEROjrIunnmmsOTBypX5md8x+drrVQZoHImxuXPnsmXLFrZt28bu3bvZunVrRP+BcDyHvttnURXqwpj7jQ6DNFLPQtl6RyYY/xwqW/oKdQHpj/NMe7uaNhZaonz5S0h8j+1Da8ZpDo9dipLEPffcg8fjYe2KFYy64gq49lr4v/+LnZQRC0ce6VyOzYZTR3a7dupdE4+vAwHxx5Ah7s6hSLgEZd3GWycU5mu/XwnsAOecsxU5Ot9LsJ+ioimOsoLzkBkGauAYD7t3u5vTfT7N69E4dfduJfO9/nphP9yiRepdEe9+8XjUGPqEE2KPcQyDkjtaAYM47LDFjBixgxdfVCzFGQIo2e4SFERoQfTJ0n7vfZSt/ymqQ4qUlIoHi/hBlaORc/q8GOcQjl3Amajydv+g1JHtFK+8EnICvveetDb79NF7kY0Ww2CMYebMmbz66qss2LYNb/PmnIYUdh31je3Y0VkWQK9eKr1JVPqWl6eoWIk2f3wNObSjrZKd3IJ+lCkyyeF4G94Yx4wGW2PO4URcHkjzw20JnML167u71pmZkiiIVvr43XchLfRYyM0tfDz7/jnsMGXjV6/u+HQCgQA//fQTH3/8MVlZWdSrV4/rrruOlSu/4dVXe7F7dzYQwLJkz/TooUfCOezMoJZIsyUa6gEvoNLFUUhH/VHcObFB99D0OP/PROQ+0uH+7iO2YzyX4qscKEVcGAOPPKIs2DvvhMGD5YS47DKVCnz/fZxNpSf8+uuvsxxIr12b7iiEkjCkaIwkIxJ5A/PylJW7cWPiz5KXB198kXhcSvERehZi8XUiPstDJWyzcKe15sPBVQ6Di0yaWsiovSlB9kX9+u6cYbVrq1lMNBmoDz+UDmQ8/peQXsH3bL4+8kg1k0uURV5gd3l8++23fPHFF+Tk5NCkSROuvfZaZs9+i7ffvoF9+5SRYScsdesmpRPnMKiUvBmxM/Caosz8ixGX/oSMbDd8GEASY/GyS2qjjFQnWakWaiwZC7m467lRipQhL0+OkAYN4IEHpLP55ptaZDZq5FwC5Oyzxflu0LZtYvs6ENA4JxU3gQB8+aW7c3CBk046Cb/fz6xZs/jqq68wxkJ2U1miOwi9JL6v/aiqza0ElBv7GrTgjQ3LUpFKxyOhTAPA56PZNdLejOnIrl+/gLMiKK8d25HdtKn4ukKURt0vvSSd83jOj2j9Cuz759RT4dtvY87/+/btY8SIEQwcOJC1a9eyd+9eypQpQ/Wo9vjbKBAYoGgZlwatm5oDf8QY0xY5Q7ogvv4FNY90gzyU8R9P87gJqux5OsG+DPrc8fpI5FDK1/sHzerV42i/nzJr1zLts8+U0PfaayrlatWqYAfpeLjssujPYTw0bJg4WcTn0xrXqcPUadPBlCAD8bUPN3w9cqRyLNLSlBuh52gF7mwqL+70tHc4G+ZDS/RKFeHyf8UfW7++u0SRI47Qei1aQucjj0iiMdr3HM/mto9/8cXy3SUp21cQTxFKvPDTqhVUrKipxF3eqEE+jtYocBntcxwFfI34dCSqjHWhCQ6Irz+JsX8bbVEl5R3E97sFkO8sVuKJobj5ukQc2a+++iqNGzemTJkyHHvsscFMgtj4/PPPadWqFWXKlOHwww/n22+/LYnTjI2XXpKhnZWlByQvLxRJ3LkT/vUv+PzzQptlZWXxySef8OWXX5KdnU3dunXp//bbnJie7uzC5+XpYW3UKLZzxLKUZXb00c4/T06Oe83mIqE2iq73pnD2VALto3x4CKnfOYU3eGwnCCDdTYfIAQYAJ5yGFuwx5Fq6dYumqxEdt94Ky5fDscdG//8rr7ibBGwEAsp0mj1bTUATYg/wPnv23M2QIRfz668fA4ajjz6aSy65hK+//poJE15i507D33+Htkp+PjAUNta9SE5mKCp/fQ9llFyAon+fkxwxOinNHIqzBdoqCjpztqIJrQG6z9NQc7Mv+Cc5tf/xfH3//Wqml5urez+cr7duVQnauHGFNtu5cycffPAB3333Hbm5uTRu0oQb33uPYzweZ+ZfIKCqmKpV4zuzb75ZnO4UbiRLUoJmKHvKVgMPRyuH+/AC63DfRLUWzswSD8oMdoidwFsBaN0RtVWO0ejn4otjtYMvjEcfVc+JNm0K/88YVQMkIeEEKKtzypT4fRLysR14ix077mDw4IuZNk0Ls5NOOokePXowbNhnTJ/+Blu2FMwOKZr9HslnXiQj8jWaGJ9GFU4XoqzRZEvFtyQewhASZ/kFgD9RcMXGetQcrRYhvj4bldX/M5wk/3iuBlXMDBwo/ozk6/XrpT3955+J9+P1hpoyOoHPp2yucuXi21WPPhpNayc2dsV32BYF7du3p1GjRuzbt4+///6btWvXInm1aejeDX+oLZQg4AQ+5Gh2QwrpqBzaCceVIXFGsFTyzj8PaqUBn+XQrPN5wNesWzeT1atXF96gd++ojuzlyEQvgNdek5Mt2tzr9zurkIqEZek+Gj5curuVozXPEpYuXYrf76dq1XRyciawd+90ypSZQfXqkQHZXNxl1zlBJJ95kJ36C3ADclYcj/j6FEJ9L9wew4kO9xAS32e2FE64nu4KJE9VBTkEM4i79joA8Y/n60AALr6YJ1au5BL0DWzKywsF/5cuVYbr4pihpBDKldMz5xQVK8ppnpYW366y9+nE9jKmWPk6OrqivmGR9quXfGnTCGzdqhhc5842xcTpDRMTZVFlnBO+ro5j34wfmaAjd0KF+khmKEbg8aqrnCWKeDxyMk+Zov4zkdi7F956y70fy7JU8f7TT6rQLVvWwUargRdRIsRzwLKI/+9EDRUL4oIL9HPcOHe9haPDQmuvqYij+yHfwoXBnxtibxoTtjZEInxM4nstLzgufC6bjyrcKyGmKEvctVdRYIoZn376qUlPTzfvvfeemTt3rrnuuutMZmam2bBhQ9TxkyZNMl6v1zzzzDNm3rx55sEHHzRpaWlm9uzZjo63Y8cOA5gdO3ak5gNs2WJMeroxorzYr5o1jcnJKbBpbm6uGTRokHnsscfMr7/+avx+v/4xZYoxXm/8/Xm9xrRrZ0wgYMz69cZ066b3PR5j0tKMsSyd17//reNu2aL/JTpPMKZGjdRcG1fINsbMMsb8ZIz5zBjzpTFmrjHmJWMMDl8NXYy1Xx4HY7zGmGOD53lc4m1yMWZl+Hu+4M8no3/055+P/334fMZ06GCMfX9Eg9/v/PuNfHk8Ue/PwggYY/5njClvli/HPP+8xwwYYJnHH8fMnNncLFv2rXnuuefMgAG3mieewMye7fa7cPvyGmPKpXifkxNcA2OM6exwX5Yx5vXgNouNMfVN4XvHG/x5uTEmL+GRU85fLvGP5+ulS8WN8Z4HyzKmVStxaxiysrLM888/b5544gkzdepUE7D/P3p04n36fMacdlroHE44weTzuM3X5coZ8+ijepYXLXL27FqWMW3apObauMIeY8xMY8xYY8wwY8xIY8wiY8xdxvmzdriLsZHPS7yXzxhzvhFfNTN6DuOMz8WYFZHbW8aYt6J/9Hvuif99e73GnHFG/Mu3aZOz7zfW/lu2LHR/FkaeMeY+EwhkmAULMP/7n/j6qacw8+e3NwsWjDVPP/20GTCgn3n6acyiRank0VjfXYUU73NJgmtgjDGNXezvi+A2M4wxVU3h+83++zaj+ys+9idflzRXG1MMn3faNGfPw8knO9/ne+852+cVV2j87NnGdOwYej8tTb9XrmzMyy/rOZw0ydmz6/EYc+qpqbk2MfDMM8+YNm3amCOPPNJ88803wXd3GmP+MsZ8b8TXXxljVhjZHU6eC48x5miTkEuT4muvMaa/MWaf0TOXYLyfAnz9xRfitVde6Wf27dtX+IJcdVW+bRwA8yKYJ8CsCf9OeveOf1HnznX2/ca6l046Kf7+jTFffTXcDBhwlBk+3DIDBmDOPtsyDz+MWbIEY8zpxpi1wZEjXX4Hyb48JrV8bRljnPCCm2NOCG4z3hhT3hS+3+y11+MJj3qo2dbGFMNnHj06/77/BMwAMCOjPQ+9ejnf5xNPOHvG/vMfjf/tN9lH9vs+n36vXt2YDz7QmBEjnD27Pl9oHihRbDXG/GmM+cYY87kx5mtjzDpjzGkm8hnIy8M8/TRmwACbK+z7votx5t+I5GInYx4yxmwzxmQkHh8gij+krDHmx+gf/ayz4vu/LMuYO+6If/l+/tnZ9xvrO7/00vj7N8YYs8sYc0XwGnuMMWnBn5Yx5sLg9THGmDdNtHlz+3bMYYdhGjXCvPNOqvg1lXxdxiS2cfe53OeC4HZfBa+XL+L/9trrjQTHdcddJBxRRBxzzDHm5ptvzv/b7/ebunXrmqeeeirq+EsvvdScc845Bd479thjTf/+/R0dL+XE/eKLiZ0Y9mv4cLN3796Qw9oYs3bt2sIT1a5dxvTvH3s/Xq8xmZkyrsKxcKExzz1nzIABxrz5pjFbtxb8/wUXOHOQ33dfaq6NI2w3xtxrjMk0oZs5zRhztTFmoTHmAlP4YYj16mKM6WAKPxxFJYdKRk51Y7TQLcr+7IVyGAIBBRxsEg03sMGY1q2NWbu28Hbh2LfP2T0Y7zVsWNxD5OXdb2bNEukOGKDXwIGYn37CvP66ZQYMSDMDBtxoBg26yWzcmKrrX5KvBsaYOMGCfHR1sc93jTG5Rg61eEaCZYx5OOGR97ex/Y/n63vvTcyB9uvXX82ePXtCDmtjzMqVK83WSF7dssWYyy6LvR+fz5jatY1ZsaLgdrNmGfO//4mvBw8W74ejc2dnTveXXkrNtXGEDcaY/zMFDaayxpgbjTGrjAJ+Tp4L29hrYJwZz05fHmNMLSMnjTEKJMUZH0h0juMLX4K8PDk+7PkyfO4EfW/btsW/jKtWObsH471++SXOAQImJ6ef+eMPzOuvh/j6jTcwP/6IGTjQYwYMKGcGDLjdvPVWX7NtW3Fza6pfHmPMkfGvcT5autjv10ZOvxom8X05KOGR9ydflzRXG1MMn7dv34I2UbzX33872+fataHEj1g2cIsWxmzeXHC7qVONeeopYx55xJiPPzZm797Q//x+Y5o2dXaeQ4em5trEwJQpU8zxxx9vWrRoYe6++wYTCFxrtCi179tKxpj/GGM2GdklTp+3a40xlY1750ii/TYLnosxxjxi4jrLA3LcrF2L2bRJ7+3di3n+ecyAAZb5/vsoC+CsLGO6d8//bjeDyQvn627dCn6X0fD7786+23ivyPVaGLKz95pnnmljBgzA/Pwz5sEHMd26ibN37MBoTdMkeJ2eM6mdM0vi5TPGdI9/jfPhIJiR/5pm5OCvYBLfl/HXN4eabW1MMXzm7t3zn6uVYB4AcymYBdFs4hgO+kJYutSYLl1iP1derzFHHWXM7t2hbQIBY8aPlxP80UeNGT68YKJWdrZ8KE6e2x9jOFyLBfONnKPhPoyqxpgHjIJA1Uzkfb1ggXji2Wcxfn84r95h5Gh2G3yM97LtLnutcqOJ+9zFtK89RuuGlYUvwfbtoe87PDnPtgMuv9yY3Nz4l/Hbb519t/HuqXXr4hwg2xhzgonNw14jX9Quo+SetKjjrr5ajuzTTy8JDnbz8hlj+sW/xsYY+Uvc2APLjTF/B69HvPvSMkpqjQ033FWs0iI5OTn88ccfnH56SLLB4/Fw+umnM3ny5KjbTJ48ucB4gLPOOivm+GLHn386KlExPh+zvv+eV199tcC51qlTh5rhpRHbt6v0Jl5DmK5d1QgqsmS5RQu44w7JjVx/vUra3nhDWlMXXaRmOfFKLSxLeps33ZTw86QGW1Ajv2dQ7YmNXFSG0Ak1gnKKS1An32qkromYQcL69rXuSUgfzu3j4SGq/ptlSXJg4kSVrlerplLVI4+U3voffyQWlk5Pj15i4xQ+n8ppomDnzp389NMHvPjik3zxhfraeL2SZ7/uOlVyrV9v8HrzOPLIiVx33QUudVUPFNyNs+/0LIfjLFSGOQqVUsUrczLAS0BJy0Q4x0HD1w7KzQKWxfSRIxk4cCAzZ4a6Nzdo0IAqVaqEBq5dK9mmKNJR+ejRA37/Xfp94Tj8cLj7bvF1nz6qL3vxRXXWvugiNSsxJvZ+PR4980k0+0sOqxAnD6RgiVgW0uzsiPOyMIP4+mugAqnj6wAq8bOvdX/UyRGilivHrWD2okZakW97pW89Zgyccw5UqaJ6zi5d4JNP1GcgUXf26tWhTJn4Y+IhDl9v3bqVMWNe4vnn32PUKFi3TsOPPRauuUaVm5s3B0hLy6ZLlxn07Xt6wtM98BDAuU5rd5w1qctA5fMfI4mpRDzxtIMx+wcHBVeD7FynmvQzZiQes2iRDJexY6P/37IkMjp5suywcBxzDNx7LwwYoDE7d8KTT0q6r1evxMf2eqF5c+jZM/HYIqBt27Y0atSI3Nw9LF78Dhs3vkfBEuGdqNdHR2KWeBdCALgM2TLppJavn0Kl6iDuPhcRc3S+HjdOEum26kLZspJLB5g69S02bdpUcJsyZaRz+9VXcMopVMvMxJuZqXXUyJHwzTeJS8gbNiya1pJlSXs7Bn766Un27JlH1apSMtiyRUuAKlWkmKDS7JXAE+j6/3Ok6IQ8JPvhBGfh7P6qgpq6v4VskHjXxIPuswMTBw1fT5+eb183QIJGU4mijpuX50wr+88/xdd2J8NIeDxqpP3zzwV7hVgWnHSSZAQfflj29Lp14u6LLoIrrpB0STx4vbLtT03UtDpVmIrklT6lYO+YrcjWOJJoUmoDB0pxtFWrcFdUAHXu+QzZPqlq0mtQPypbu/w55MOJsR6OSZkBJO70ZuF/Va4M48dLOuT44/V3lSrqcfHDD2q+majPkCOJ1Djw+2HChDgDBqPeArHsPz/qAzQI2ZXR13G2q23xYpg1K+qQ/QQD3OZgnAdJlyS6vyyk2d0ArR8Nsa5JaL9R1l5JIlXWSlRs3rwZv99PrQidx1q1ajF//vyo26xfvz7q+PXr10cdv2/fPvbtC3VW3RnZbbqocGDcrAK+N4Y1CxZAvXrMnj2bLl264InmAL/2WhF8LC02rxdWr47e7C8cw4ZB377S7bYsZ9puHo8aBtavn3hskZCLhOT/j4IO7HDkIS1mNwbbeaiR1J/I4BuMDJyi4j3gMUKNxuxJ5TniNweMRCA4fgnSmY3A8cfrlSz699fCKhl9c78fRozQvdWzJ6ZXL1Zs3Mi0adOYP38+gcC3gIXPZ9i5U1JW7dpp0/btJRvbrp2hbNnZaFFSjgPZKVsY1yO9Jie4Bmmnxrs3fUiruwnwH0T0ib6XnUj37yKH51GyOCj42gGWAD8AG+fNg4oVmTlzJh06dMCKxvW9eimyE+uZ83ph0yY1kYyHN96A22+XM9spX/t8WtUXuxcyG/gA+Dex+TQP6V+64Z4LkTbqH8DjSHu+qGJxFvA6cCshZ8i7wAnIAJ/rYl95wLdojsqMOIyl5kVnnJHcaZYpIxJ97z13zSNt+P1qKD1rFvTqhbnwQhavXMm0adNYvHgxxgzH5utduxTraNpUm3bqpPhHmzYBMjImIsPSCT8dSHgQuNTh2BtQkDAevMDlyDnyvsP9rgYmo3vrwEJJcDUcGPa1YwQC6n+weXNsvvZ4ZDNHOrHDYQw89ZScIoFAKI8rEcqVgx9/dK6xnyQqVDAcd1w2y5evZetWmD8/mpS+H1jrYq8e4FTEp9MQX39B0TnDC7yKgpogG3sE4vCXieZot6fScEns5s2hVSvD/Pkz+e670Vx55dUF52uvV95u2+ONGpWvXLmSxk76ytSooYD06NHJ2dfGwPPPq1lk7966D4PHXbt2LdOmSRe6UyfDuHGaEho3Vg/R0Mfwo7nsF+I7AQ5EvIySOpzgFrQ+jAcP4vUMxNeJvhO7OfBCnPddKjkcrHzdC6kD/4o6TjjtSAVAdracl7t3J37m4jWFDASUMPLCC+J3m7MToXp1Pe+pnIOiYiviwEeIvab0E62x9aZNctnk5akVWwjlgMODr4mIr0dTdN7wIm4+Oew449DzPZCCmvWJ4Ec+mscL/ystTWsrJwHiaGjVSpkb06e772tg48EHFejs00d9OAr465x0aAwgR/aHRP2MKDbepAksWyZJ70GDkjvV1MKLzrmDw/G3AbGDtAXHWWgtmWjN40e9aLagxNSioUSaPRYnnnrqKSpXrpz/atCgQWoPcNRRMR+UHcjUexdY4/eT3rAhp59+Otdee210J/aKFXImxiNtvx8WLIidUQLw9dfKwrabTzp9kP3+EmhskIUypK4mthPbhlsCstOA66KJ4RuX28fCRtS1PRyXIoN+FWoQFdmkMtH+igC/H/76S5l/S8Mmt5tuklMrmYaPxsDGjeSMHs3v/frxes2avP/f/zJv3jwCgQCNG2+gQweDZWk99uuvIVugUiUFrkNJLXOQszdVUeDiRCVkCL+B80ZGNYB3iJk1hA+R7+vBv9fibMFnkVxThoMHxc7XxxwT8/nYgpZPHwEbjaFskyZ0796d3r17R3di//mnqijiOSL9fo3566/YYwYPVlbJvn3u+DonJxVdQhJgO2o6cwOJg4JuFvhpyIkNCuoNDr6KCoOaiIQ3f7NQ85PZqM3XVBf7C+CsoWAc5OQoI3/CBFi1KvT+nXfKqZVMw0djYM0asr76isn/+hcDa9Xi4xdfZFFQ6Lp58zW0a2cwRrz8a1i/q+rVleQkf1oe4qeLKOa8hRShJrKqCjfPiY3DUNA5FrxAY0IZIOtwvuCL7TQ4FFDsfN2lS+LsKxudOsX//5gxsHBhYvvaLjuLhWeegQceEO87dYqAHDLF7hRZBxzFjTeOoGNHvRNOOQXhxr6uRsjWORxl+qUiY8qPGr2GX28fCkQuQo7sgg3s7Dyb9etDPT9BjSB9Pj9Lly5gwYIFcY+ak5PD66+/zgcffMCGDRE2V3a20r0nTlQWp42HHtL3l+x3uGwZfPmluny1bau/gaysLMqXX03r1oY//9QtdeaZykk58cTInexCy/IT+WfY141QVa2T7D4bxxG/2saLGpjaDS83xR5aCKV8Xax83blzAb7uA1RFqWvPhI/z+ZQBFQ/DhsHGjfH5OhCAd95RJXss3HWXnNjGaF9O+Xr7djlUixWLUVXBABLzceHzHjxY01BmJhRMzg/PSD4WVT7eg7tmvdGQh+yvcD9RmeC+VyDO/tjF/jYX8XzQvDplCkyapCC1jccec/5dR8PChboHzzxT68b8eWIvMA9nNuIa1FC5JbH4un9/8Xz9+snFSFOLdijwcbmLbc5HT3oseFAQ8yaUqLTH4X4NKbk/KGZHdvXq1fF6vYUMiQ0bNlC7dvTYXe3atV2Nv++++9ixY0f+a1Vsqy45XHll1AyLOSgWMxtRx5GZmdw2aBAnnHACvliG+YgRzowkny92KXsgAP/3f/rd7UPs88WXNEkJbgGil0QnDw+KHkV2jh9M6hbnsSKN9ZFhn+liX27GhiEvD559Vl3VjzwSTj5ZmfnHH6+wbO3aKjevVs21wZ2H4qrPG8M3wMY9e0j/6COOqlWLa665hkqVLGbO1MKhYUNV1sbefQBlsB/GgW9s70ROuvddbncVMJLC2R0WcA7KvLflDarhjEoNSd8bJYCDgq+vuy6qo3g6Cn0tADyWReeGDbntuec45phj8MYKDH3+uTMnSzy+3rdPclDJwOdTVm6x4goKOoVTAS/K7ovEYFLHF9H42kIL606EqmucIDO5U8jOhkcfVQrh0Uer1LVhQ2VxT5ggKbDvv1ftuEvnSA5y77xgDD8AW3fupMz779OleXP69euHx2OYM0eGcYsWUj+IDT/KWK7Ngc/XG1EQ/EuX2/0HhagaRbzvQ3ljUwhlflR1sd8qiYfsB5QEV0MJ8PVNNyWuWPB6lTHVokX8cU752rJki0fDtm3KxE4GHg+8/35y2zqCAXoAS/B4pFB4/PGJVekSw4uSTyLxHqlbIkbLDrdQheUxBd6tVEmUGQgU9DNXqQLHHecB0vj+++/JDfdyRyA9PZ2aNWtijOEnW6Jp505lbtaurWy+E08Ud593noLWRx2lDL1kg48Q8lQsWSJpk23baNasGbfc4iEtTZIiFStKscrrjZW8b2dmV+bA5+sVwL9wlrEXjqfQCjqSezJQUPoXwJaSiFz3xUMpXxcrX998cwG+9qLZFVRruhvEwZdeqoh6PHz2mbPnLDtb699oWL5ccn3JODRzciRvUWzIQVW760k2U/qHH/TzxBPD83Oi8bUfZcKmopIjj+jBIy/QHFWrO0Xl5E9j0ya45RaVG3XpogmvTh0lcS5YIAf0hx/qfksmuQ9C9/LMmYoUZCWSMIoGg6pNM4g2X156KRxxhG7jv/9O7jRThzkoqeUPF9vYVa9PUJhfywG3o9VKetjLKTJdjI2NYnVkp6en06lTJ8aNG5f/XiAQYNy4cXTp0iXqNl26dCkwHmDs2LExx2dkZFCpUqUCr5QiM1PRvgjUQbd7IyRacN4HH1AhUQn49u3OHji/H7ZujU7Ov/yiSH8yxJ2XJw3BYsM6RKap1ncLIJmSSPxC4hIGp6iY4P+XkdhpbqHIXCv3h8/Lk7bXPffAmggnzZQp0L27hAPbt5eR/MYbio43bpxwJbMF0dAEYB9azp8N/CcQ4IixYxkxYgSzZlXG4/FwyimqtIl/K7dHBDQJOcIO9MKObGQcD0Dn7LQq4Tzg7+A2g1EkeiVycIdnOlyKs3s+g+gLxgMDBwVfN2wY1RFRF31Dh1kWN3k8dBsyhLKJNPS2b3fmgLSs2Hz95ZdyjiSDvDw968WGecgAcZMm4ORZ96OMu0hMdHmseIjH117U6yARX3tRCWUSpW1ZWXJYP/ZYwSwRkJ7jKafA8OEyvpct02LrqKPE14V1AApgHVIWnIYynWoBPYzhP/v20fznnxk2bBgLF9bA57M4+2wFHcPlIwvCAtoii2Uaknsp7qzRomIPcDHKsp6Mcwmr3qg892fkhPsEBTw+JqTRC3K8OLmPq6LMyAMPJcHVUAJ8fcQRqlaJxbO2t+/FFxPva9s2ZylPXm9svv7oo+SrYCyrYAVdyvErWoDqM7ZqpQLL3+O2LfCQ+Hn3U1h2bS9a9KbKlo/H19UI1+G0rFBWdri8CPg44YSeVKqUyfbt2xNqBZ9yyilYlsWCBQtYPXcuHHec1nI7doQGGQPffqv/jRsnD/OKFfD447o3GzeWQ85tlnZenk7+rbeCn6MFs2bpcC1bxlOfyUDOohaIr890d9z9gm1I9/pNVA3l5Pmx0D23Cgm9vQsMQ7PfWxS8X/6FM43WZijj8MDDQcPXZ5yhHgBhDujbkKJyFvCSZSkS9cQTife1ZYuz6kTL0thoePvt5INOPl9+1UTxYCSwDPc2rz7PkiWh6aRPn/D/G5ScFY6V6NlJFeLxtZ2BnIgTfejZTQJ2b6I33oC9YfZfXp4qqo46Sr3FevfWRbr/fmmhNm4s54Xbe8LWdP/0UxRAc1rJUAVZ6EcSS4bO4wkVk+1PefsQNqD59iPU88iJD82D+lusQ0oI7yKJsA3A82jeAt0Tl+Bs7XUcunYpgIO2lUXCp59+ajIyMsz7779v5s2bZ66//nqTmZlp1q9fb4wx5sorrzT33ntv/vhJkyYZn89nnnvuOfP333+bAQMGmLS0NDN79mxHxyuuzsQrn3rKTChbVmp5aWnGpKWZ9WAC1aoZ8+WXznYycGDBLq3xXpalzqodOxrz3nvqwmuMMS+/7Hwf0V5duqT0uhTES8Z9x3OvMaZBnO0sY8x5xpi8KMer7fJY8V4/JPhsC0zBTsOxXu8kukjR8eyz+s4T3RNz5hTeNhAw5t57Ncbu1B58zQDzBJgBYP4HZi4YW/VxPZhHPR4z4O67zYsv/tusXJnos9kdjSOx0ajjfboJfacHctf1ssaYG4wx651/P3Gx1xhTPcFn9hh1gI6P/d1Z/aDg60DALL77bjM1PV3PTBhfm3r1jPkpfrfkfDz0UKiTthO+Tksz5rjjjPnkk1DX7Qce0PvJcLVlGdOzZ+quSyHcb5xxWvjLa4ypZ+LzfD9jTCDK8aJ39k7uNSPBZ5tsnHVzH5XoIkXHnXcmnofT0oxZs6bwtrm5xlx3ncaE3V8BMFPAPBbk6+fBLA7j62VgBqSnmwEPPmgGDbrRrF/v5LvqHuXkVxljepnQd3+g83VFY8y/jTHbnX8/cbHJGFPOxL+HLWPMIwn3tD/5uqS52phi+rx5ebJf0tL0TKWlhZ6LZs2M+f13Z/vp3989X59+ujEjRxrj92sf113nfB+RL5/PmBtuSN11KYRrTThfjxyJ6doV869/EYcLLGNMLRP/+b4vyrF2xBnv9uUxxqxM8Nm+LrDNxImYAQMwn30W+Vkmm9mzZ5sBAwaYxx9/3GzfHp8TRo4caQYMGGDeP+64QrZxofuhYkVjdu4svJOsLM3DEXyd6PUNmJm1apndu3eb557rZQYMwLzwgj7XBx9gAoHI6+QzmjsjscgYc07wOlrmwOfrqsaYB43s4lRgkXFmp7wWdy+Hmm1tTDF95n37xHNebz5f321ZphGYDmXKmH2zZjnbzwUXxH8mI5/PjAxjevQwZswYrXmNMeb885PjavtZHjAgddelEM4xyT2nVY0xPnP//ZhGjTCdO0f+/8Uox1qYxHFivdKNMdsSfLZ3HezHZ+Q3SQJnnBGfaz0eY+rWNSYnp/C227cbc8opoe/Y6f3g8Rhz1FHBnfzPJPZleU30uXOmMebk4BiPMcZntm3DnHUWpnlzzPjxJc3HiV51jDFPGWOiXMukMM04W3sNj7sXN9xF0U7YGQYOHGgaNmxo0tPTzTHHHGOmTJmS/7+TTz7ZXH311QXGDxs2zBx22GEmPT3dtG3b1owePdrxsYpK3Dt37jQLFy40U6ZMMd99950ZOnSoGTRokBkwYIB55IEHzJoXXjDm9tuN+c9/jBk2LPqDFInly40ZPdqYoUOdE3f4wwXGHHusHtBBgxI7POPt6/HHk7ouznCfSc5Z8aMx5i5jTPmI98sbY+4xsR+wM03qDLqzHHy+T4LHizSqbMK7wUR34CRAXp4cbE4m8+uui72fhQt1X3bubPaBGYEcIgPADAazI2J/ATCfgxn+zDMmKyvLGHOliU1AnuDnHh/ng+w0xrxhjLneGHNNnH0dCC+fUQBldZzP4wZTjRwu0QxujzHmBGPMnoR72d/GtjH/LL7etm2bmT9/vpk8ebIZPXq0GTJkiHnllVfMgAEDzGMPPGC2PvecMf/3f8bccYcxo0bpWUuEhQuN+eYbY955xz3H2vx+1llaAD/8cPKOETDm7beTui7OcI1x78jGGPO7EddlRLyfaYx5whjjj3G89iY1nGAZY/o4+HyDguMj5wj77wEO9hEFe/bI6eHk+3voodj7mTXLmJtuMqZTJ7MHzNAwvh4KZk8Uvv4AzDfvv29ycrKN5qxY85/XKGA3M84H2WoUfL7OGHNVjP0cKC+vMaZN8JxTgTFG92/k/W+ZUPA8N+Fe9jdflyRXG1PMn3fzZiVq3HabMXffbczYsSGHRTzMmWPM118b8+KLyfP15ZdrbnDjDI/2+uqr1F+XfPQw4ffqwoWYs8/GtGmDuekmjN8f7bnxGWPmGWN6m8L3ek1jzEAT3WYNmNQliljGmLsdfL5HjP2sL18uh+/zz4fz9SCdWSBg3nvvPTNgwADz+eefx93jtm3bzGP33GMGWJZZ4uT7e/XV2DubNs2Yfv2MOfzwhPtZGOTxR8C8+9ZbZsCAB8yTT9YzjzximQEDMNOmReO3KsaYpXE+zXojB8u1xphLjbvvoKRfHmNMF+PE5nWGz0z8tVes4HkI+5urjTnI+HrtWiVg3Xqr2XjLLaZFgwam4xFHmPHj46wRAwFj/vxTtvgjj7jnV5ubb7tN+7rwwuT9IWDM5Mmpvy756GTcPzfljQI3F5jOneXIvv9++38NjDEfxjjWXlPYf1KU13MJPlvAKDEr/Bm0Xz6jZ/WThFcoKubPd/79DY/hDA0EjPnlF2OuuMKYVq2c769CheAOdhhjWpjY6yOfUULPxjgfZKUx5r9G66zzTLdu+j4vv3x/c3O0l2UUeEmVM/u14H5jrb3ujb1pEG64yzLGmNTkdh8Y2LlzJ5UrV2bHjh1JldVMmDChUDkPgGVZdOzYkVNPPZUK8TrohuOvv1Ty8MMPeky0o9DvbuD1Qrdu8N//Sj85GaSlqclNHI2touEZVH7gtJTGi/RMp6CShN2ok+lmVAp8NiGdtGj4CrggyXONhnFE13YNxxT0Ob8iVHbZCfg3EtBPomz7r7+cf6c+n0oj48gibN++nY9q1GBLXh4W0BUVSHtQIV9tQgqyfsAzaxbW4YejQvZbgLeDo03w8/hRCc0nqITQKc7DvXQB6L7ohprIGKKXvtRA90lR6MuHGt0Vft6Tw2Lgf8AQJGcC0tG+FV3XMjG2C6Go/PVPQ1E/7/fff8+UKVMKve/xeDjmmGM4+eSTKRvqUhofEyeKrydMCN9RyMxxA48H+vaVeHG3bu62Bc0TFSpIJDS2bkQRcSfqRu5UnsnW5hsV/HsbKgvegVjlLOLf42+hkshUmBxeVGbfIcG4nxBf21wCYsM7ET8lgR9+cP6dVqggyYM42r0bly9nSJMm7ESf6kykGmshBdIGhIQw/IB3wwaoWROV//cBPkdcFgiOzEPfx5dAZxcf7FikJu/2+/GghjBfhR0/ErWR7mJRpGVsRU43zYbiYTbi688InfNhSMbsepz03yjl6/2I775Tg74/wvQek+VryxL3t2wJV13l/ly8XtnVK1Ykr9eZEFchG0z3al6eJMZ//FEyI6+/rvYqIXhQU+63gn9vRDy4B9klpxO/l8DjOGtS5gRlkUxbowTjRgHPkZMzgSlToEEDaNz4TCzrbuC0/FHr16/nzTffxBjDv/71L1q2bBlzj9/dcQdTX3iB6sCNJBCpqFNH0n7xpESWLYOmTWP+Owtd8W3ISt308MMEjKFcOYvs7CE0b76UK67wYlmGEF82CX52p9IYASSlsdzh+HBYSCd1OLoa0Tg5FXztQfqpzxdhH+GYCjyNrpN9T7ZH/RGuItHa64DirhJCSX7mYcOGMW/ePOrXr88111xTuIH6sGHqKTJvXui9ZPka4OWXJQN1zz3OG6jb8HrVkHXGjGJs0HsGWls6/WwWanD6X5YvX87ZZ59OdvYOxo37P5o27Yx8E/EkM24DXic1cqs1gLnBn7Fg0Hz0AiHNZQ+yq+/Bne0Zhueec/6dtmkDc+fGHzN1qmRYnaBq1TAZm3XIvzSNwvZ1O9Rgs7Gz/ZLNkCFVefDBLNLSdEpV3bRqoSeS8ojF1zWQiGxR5moL9S6I14jXDaKtvboAd6D5Jz7ccFepIzuItWvXMm7cONq1a8eUKVOoWrUqVapUoUqVKlStWpUaNWq4mwgmTpSeVG5ubN0+j8c9Ac+bB1dfreYkTlug2pPFRx/BFVe4O54rLEbabk7RFhF9sjo5fkTuk4j+cFu4X5SfiNrCHZ5g3Ha0MKiI9EeLgF9/VWNHp3jgAWn4RcHu3bt577332DpwIJWWLOEiY/KXDguQCl0TwhS/q1eX4Z4eLtC/DGmMLkbC/acj3aPEjtiC+AV1s3UDL9AG6ekuA56loKOhIzKOz0adzddT9IXWPKB1EfcRjj1ImzUdLRid63UdasZ2sp936dKlTJ06laZNmzJjxowCXF2lShVq1qzpPOAI8M03cOGF4uNYnOw2COn1KnB4/PH66ZTrPR69Ro2Cs892fjzXmIIMC6foggKNyd6XWchZ+jfRjW0P7p5lC7l9X0NNw+JhS/CVCdR0cYwoGD48UXfFgnjlFbg1mmY4bNu2jXfffZfdzz1HtY0budiY/NlkBnINt0PK1h7LgubN1eimwOLrb6ThvxI1XzkHLSbcNLwEzQ69Eo4qCA/SBRyDmoY+Q0FHw/HI0dAJ8fVOisbXPmA1KdPWA3RO65CzrQFugtGlfL2f8MEHChRalnsbOhbKl1fzsBYtlCzglOu9XtlP48apKVWxoXDixltvyZ+TkQFPPQVnFcgz6I4WvzEFmRNgK9L+XENq+NqDzv9VCjf5i8RGZGNXI1YPg9GjRzN9+nQ8Hg89evSgY8eOUcftfuEFBt5xB4fhZPmMdFJ7xeHBQEARg4IC3oDSFz5CVywLSG/QAK6+mry8PDIyMihXrhw33tiFihVHoAaYlRC7n4X7xo6DiN6LIh4s9B18jnoJPEdBR8MZKMhbB4VT91G0wHMFZKOnMhi/DWmzVkTdT5zx9QHDXSWIkvzMu3fv5qWXXiIvL48+ffrQuHHj0D+ffx7uvDP5RL5oqF1bjuiGDd31NfB61XF10iQ5QosNb6OAuFNcid0Qffz48YwbN46KFSty1113Odx+FVofbye6P8QtX/tQct7LJG7Ktw71nqrpYGwCDBigySxOM98C+Okn9aSJhaws3Ss7d8bfj8+nNeCwYWFvGqR9PRQF9qogG7krbpMW/f776dTpKbZvl+nivKf0daj/wCgUFLQTrTyo+fNd6HvtStF9IXXQfZTKYPzm4CuTxPN+CG6460Dv0lYiCAQCjBgxgiVLljB58mR69+5Nr169OPPMMzn66KNp1qyZu0kgJ0cNEXJy4juxnWYK2vD55Ix+800Zzk4zP9q3h9Gji9mJDWpS0p3ED0E6cj5Mo2gLUi+Kip0R/NvOoLJv68q4X8z/hhw2MxKMywQOgzlblBbToIGcwkcfrQYUe/Y4P6Td2cYpXn896sSdnZ3NkCFD2Lp1K5mnnMK1YU7s6cgd7EdX3wLdPzfeGOHEBrm6/4uirR+gCTaaEzsbOU82Ed3Y7YqCFU6RhnJmJiIDvwPKbt4GLEEG8Z/B85kI1KfoxG3fQ6lEeZTZ15hSik09cnNzGTFiBAsWLGDOnDlcffXVXHrppZxxxhl06tSJpk2bunNib9+uhavfH9sp4vEou9YNjJFRNHhwyDntBJ07q2FgsTqxQU7lTiTOPK0AfIgCU0VZDJVFgcujg3/bx7XnC7dNFw3wI1pwJ2qyVg04DKavkBVZt674+oQT4OOPYd8+54etV8/dab78ctTF265du/jwww/ZvXs3tc48k2uDTmyD2rqNDP6ez9cAt90WJYOoNXIgf4oCkBcRfd7bi3K8YzRO4hLczcdlkBH9A3KWdUFZ4DZfb0I8fUHwZz2Kztd5KJiSSlRCzYsacuA3wiwFK1fCNdfomYoXdKyYqIF3BPbsgTFj4N13Q/twglNOgd9+K2YnNihA1Zhw+7pDB/VW27s3PDG9OgpKjSJ5Jzao2el4Qs3LI/nabWVnIHhOxyJHZDzUBNMCxs+BSy+VI6JmTTjtNBgxAvLyOOusszj88MMJBAJ89dVX/Pzzz0TLy6rQrBnXElolgGqIfkfO5gKwLAUe48HjUWAyYj7fh6zVNYS1Ez/6aHbt2kV6ejoZGRlcfvnlVKx4IvAissjfJvaaaTfi6+0xTuQmFLh0iorAY+je8KIEle/RfLAYBS7GoOSTKZA/GxUFu9FslkpUQfdkPUr5+sBBhQoV6NixI7t37+aZZ54J/WPGDDmxIbYT265AdIP169Wgb+BA59tYFnTvDtOmFbMTG+QErkriNWBD1EDvA8CLMYZZs2bh8Xg480w3zV4boGfNblRoc4rN2y79DOSh6rcTULA/HupAoDl8PwV69FBD81q14NxzVTnlJthcv75zJ7ZlwaBB8ceULQvXXZfYX5aXBzdHNj22UFPCQYiv30D8GI13diK+jn6tvN5H8gPNX3/tJA+1GvAScmJbqOrxV+QUtvl6JApe/EVqkjvWkdj35RbVEV8XlxJEqZcFUBn6pZdeSsWKFdm4cSODBw9m+/btye9wxAjYtCn+wxsIyHD+4w89PGkOHa7r1kHHjsr4bhU0ML3e0PZVqqgz96hR8Pnnkq34668ScIrY+ABlZUcjDS+K2M1BDks3RlgsVAK+Q2Zpf+BcVIZxPDIAHRJiPvzIQXslCY24F16Aww+X43r1apWk/PknXH+9ggfLlzs7ZNOm7hZBW7fCzJkF3srNzWXo0KGsX7+eChUqcNVTT1Gpb18CyM0wGi0jOgIXA16vV+d+993Oj5uPRehaV0GlojWR0/ldCkeCj8MZzVjAk8BACjvLKqCMy1roO7kJfcd/UHR4UAZ1Kf4pSEtL47LLLqNMmTKsWrWK999/n927dye/ww8+UNQ+XqaIzddLlmhh7SSI6PWKr7t2hbFjoUkTve/zhaQmatdWWt3IkeLruXOVKXJC4e7XqYeFMvZqE5uvm6BajiuRS7WoqIEqaCYCfZFzpidwFHJ8uoUf8Xz/+MOMkXTAMcfAkCH6XrZsURvx3r31/saNzg7ZuXPc0vJCWLJEzrcwZGVl8dFHH7Ft2zaqVKlC71deoey55+K3LL5CRXkg9jwXsDwe3UfXu8nwsTELfX+ZyBFWHZV9fkrBOc4iJGriBG+jUu/IIGclxNfV0WKoF9AbZY4XFbYEWSkOWbz5ZuIxxmhhumEDnHiis/16vXKO9OwpPq5bV++H83WjRkomGTECvvgCFi8Wtx9xRDKfxCV8yOFRGds50by5TjM7W8WaWVntkH12CanJqmoEzATGomfY5uu2KKPYLfKQq/fO+MP8fgLXXcf8rl0Z/cUX+Dds0Jpq/Hi46CI49VR8e/fSs2dPTjrpJADGjx/Pl19+SW6kE6RbN2pUrlzAqhyDruRzKNduNpADum9++02RgXi47TY49tgCzuzvUK3IbnTly7ZpQ9Pu3alduzYZGRn07t2b+o6SVqYgK70y4usqyHnyTcQ4D6pedIoRwIMUDlxXQTIlVZBrvxuaT5e72Hc8lPL1oYI2bdowcuRIvv32W8aOHas3Bw2KK60G6LkrW1aVMIcd5vyA69bJJvrgAyUmgI5l2+ctWyqZZPhwcfaKFfKNtHBTOZ4syqNntizRk0U8SNpyPuJV2V3z5s1jw4YNpKWl0cr28ThGG+Tk/Ar4FyG+bo6SztzCHzy/x+IP27cPLr5Yfqbvv5ctvXGjZPi6d9ec6jRZ5OKLnfvDjJGjPBEeekj3Vbx12003QXAucYdxqEI8E/F1JrLaf4kYl85tt9XB54PNm2VixMcvSOYu0h6vhvi6Mlr7nISq1Ncnce7R8M/zh5Q6soOoWbMm/fr1o0qVKmzdupX33nuPTZuSWVgD337r3NExdqzEcpyW22Rm6ueRR8Ls2XJ6/Pe/8OCD8NlnIvZ//1tRsYsvLiEDOxzVkSF2f/B3GxWAm1FGbXFMIp1Q1GwUWpz/VoR9+ZGzPU6m7mefwR136Pe8sLJLO3ixcqWkZbKzC28bDQ895O4Uw/br9/sZNmwYK1eupEyZMlx55ZVUrVaNnNdeY9jFFzM5mHF9mmVxHuDx+ZSdP368+yg4k5A7/D1COtAgPa1rkdMivAz1cpxl4XnRQgn0/c1E7pwZFHS2vIaiolA0/T4beSizoxT/JNSvX5++fftSoUIF1q9fz+DBg9mxY0dyO/smcoEYA4GAnpkqVZxl6wUCIb7u2hUWLZKg6SOPwMMPy5JZtUrZAuefL74u9iyRSDREAaF/I8PIRiZyNkxH5buphIUCjW+hjIKNaF5IFn6UmT0t9pBBg1SuCNH5et48ZY84yRyxLMk7uUEYX+fk5DB06FA2btxIxYoVueqqq6iYmUnWkCF8dOaZzPD58ADnWhZnAlZGhipnvv02SvVMIoxGQYJPKRjUnY4WOjdRkF974ywLrzwqiQdd/z8QX8+N2P4x4Ivg76mQgDC4zywqxUGFr75yJquXlQW//y4Hh5NqGL8fKgc58Lzz5PT45hvVAA8YoAX60qUKfF14oRbnzZoV7bO4RluUfdUfKEfVqoqppaV5WLOmMcuWDabIpd2F4EHZu4NRNu98ihaU8iP38bLYQx55BN59l1HA9ECAVfmbBr/3336Df/0Ly7I49dRTOe+88/B4PMyaNYuXXnqJCRMmkG1zbkYG3HJL/q5tBqkVPJOFiKGeRYIbfwMmjt2elZXFvKVL+frf/2bnlVfmO11qWha7Acvno9wJJ9Du4Ye5um9f+vTpwxVXXEGDBg1i7jOEj9Dc+BUF+XICKiOPrEe/GmeBxzqoQhI0D0xDfL0wYtztyIFiSE0vCyjl60MHTZo0oW1bVeG+/PLLenPUqII2Vyxs2gQLF8q+dgqbr6+6CtaulcP6oYfgscdkq//9t2TgLrpInO3oGUwluiDbKDIRpAFKAhiDHN0hPPPMM3z66aesX7+ejIxkKmq8SFruI1RJOY24XJsQfpRgFquSD1WofPWVfg//ru3fv/5ajmInqFIlvrRTJJzIylSurOTPSy4J+eZsm6ByZa0NBg1KQi/9RTQ3jiXElwZVupyCfFIh1Kt3TX47tMGDY+3Tg6Rt7Wr2bCRv8jOFv8erCflIUsXX/zx/SKlGdgTsct9NmzZRrlw5evfuTd26Dhbyc+fCO+8oQ+Ovv6Q7nAhpaXDffSLYGPpuhfDrr84zTPY7clGpRQARt0splaQwAUWoUoF05Lg9Kvj3MmALmGrQqpscU4ken48+0sLHCerXd3bfgBzlDRpgjGHEiBHMnj2btLQ0rrzySho2bAjAJ598woIFC/AZwwWVKtEuLU11qN27B5uFucUyFPGN55y3gEdQ5sf3yFn1PSq8jLfNWaj85A/kDNka9v/mwN3IGGiIs8xNp/roGaicxoXxVIw41HT8ivp5t2zZwocffsiOHTuoXLkyV155JdWrV0+84e+/y5JYuVJZuVviGGk2LEtljC1aRIqRxsbff4cqZw547EN8baFMvFRkYCfCFyj7LBWogCpzWqJnfzGwA3KrQd1jlAaRCD/8AE7LOStWBCeVAGlpur8qVsTv9zN06FCWLFlC2bJl6du3LzVr1sQYw7vvvsvq1avJMIZLKlemudcL1arJwW4HRFzhd5R5ncjp9wbQDwWB30EZJokqmS5BmfzTkesnPIjUDvH/WcgoTpDdCDjn66ooE7QokgmpQylflwCM0SL0ww+VqPHLL86l2z7/XEGkK69MPNbnU2VdrVTqrxcn9gKrmDFjEY899i5btmzl1ltv5eKLU8Wn0fA6SkhJxbKxOnLK2xJxC4E9sLMS1GoP2dl8iVIajkPdEArhr7/yk3WWLl3KqFGj8qtpMzIyOOaYY+jcuTPlbV3cCIfaJpSyMoeQm6ZamTLcsmsXVjCLNC8vj9WrV7NkyRKWLl3K2rVr8yVMLrjgAo5o0ABGj2bWnDl8tnAh3lataNi8OX379lXlo2P8gDL7El3bEcFxw1EV5K8kDhL2Qeuv6SgQET5vHQs8jHi7Kc4SRJzo7VrB/S3iQJAAOdS4GvbPZ/7l55/pc9llWHv38ln79hwzbZozRzbI+fz775IiSbS2rlBBFTTF1gw91diNajYykH1dOLiak5PDEUccwd69e3nggQe47rrrinjMR5FMaCqSvpoi/qiKEsAWANmwOg0adUycBGJZCg47CSasX6/Gu45Oq6mqHp1i3Tplce/eLZ9L9+5Qxm3/L1CQ4GoH435FvSaGAu/xyy9TGDBABfFPPRVLAe1G9J1NQ9c5XASrK/peKwb36wRO7GsPmguKkgSaOrjhrsRt2Q8xVKxYkb59+zJkyBDWrl3LpEmTuCReY6fsbGlufvqpDGGnhA0a26iRDLETToApU2Jv7/MpW69ESs5ThTTkhCxJvIFu61R07s1Bi/H/oQY1M/T2dAonMkSDB3jnVeeO7AceSBy19HqlydigAXl5eYwcOZI5c+bg9Xrp1atXvhMboGvXrmzYsIGePXsWeD85zEXR5UQZ5gZFKUcjEo7VZRdC5JqOnN1jiG4cL0ZNM/rjfAFVNbjf9XG2sVCznAPDiV0K96hWrRr9+vXjo48+YvPmzUybNo3u3bvH3mDnTkmD/PCDe742Rnx9+ukqWVyyJD5fd+36D3JigwxsF2WdKcGrxOcIN9iNlFDvA15BC3bkH3Dgw8YLvPeGc0f2HXeoGiqeAe/zwWWXQcWK7Nu3j88//5wlS5aQlpbGFVdcQc1gQNGyLE477TRGjRrFZZddRq0iO9OmIIM30XW1UKfyl5FDOt53YTsvMlDuYizjeC5qJ+wUFnJm7UalkvE4/j4OFCd2KUoAGzfCBRco2OiWr0GNwDp00LO6ZUvsTG6vF/71r3+QExskzdeSI45oSceOfzFnzhzSXVdsuEUCPVJX2Iwcsn0RX6/Q28PJz3togRzZCxGzF3CH+oDBb8HLrwHQtGlTbr31VubMmcPEiRPZtGkTEyZMYPLkyRx55JEcd+WVZH74YYF7oAbKm+uKLMU5Hg+VLrqogBP76aefJi/ivqtRowZNmzYlMzOTmatXM8uyWFq+PL4OHdi+fTsbNmxgzZo1LuzuH5BWdiL71ouqXG5HUgHxHMo2l6cD7xObr6chCQKn8CCn1npUhh7rnA3KIN//TuxSlBCWL6frrbfSfONGFgPP//Ybn7nZvmFDefgeflgVNfF61txwwz/IiQ1KtIi/Hhg+fDh79+7NlyIqGgKogjkVtjWoD81FKAN5EPlSFkMssBysyz3AR+/D/Q6qz2vXVoLnV1/Ft6/t+8AN6tSBfv3cbVMIn+LMie1DQcI5aL6z6NoVrr5aOVTTp8Opp9pjw/n6dWLz9a/AyS7O1YPuuyXIpxXruwoALpUBDhCUOrKjoFy5clx99dWMHz+eU+J1QzUGLr88ekmFE5Qpo3JykCP8+OOVERJpbPt8Ko8cMSKJ0oeDAXuR0P409BB2RJIV0UJZf5IaJ7aNrahrbFj0dFWssREIAMsjS+aXos/hR87WSSjilg5XdoZnGsHqNdHvJcvS65FHyMrK4pNPPmHlypV4PB569uxJ8+bN2bt3L+XKSXu8Tp063HrrrS6zQqJhJ5q8diUaGMR2lA0I8SdRH8r8s7O1E2V4uMkCipdhawc6LkdOnFL8k1G5cmX69u3Lb7/9xqkhq6Aw8vKU3frbb6G/3aBmTWViezzi/BNOUKPIyP14vXJ4Dxnibv8HDXaiJjEzEG92Bi4lekXOTFJnaIPI+SYKLJ5X4SwhwQ8s/yXizb9R1qCFSvZ/RhxeFm7sDK9VU8+CaA4yj0dz9z33sHPnzvweBrbGe/369QvwdZMmTbjllltSwNdrUQDWiSahQQ4k+5jxvgvbaWLvN54Dww0M8SdVm69vB+5wue9S/GOxd6+a+/0dlLFww9eWpWDj0Ufr92++0b6ysgrvx+OR88RN07ADDMcccwx+J3IrUbEFZZf9jZJPTkYNWiOd4oHgmFQW8c6h0DO9inzTsDlips2oXqQHYZa4H1hVsPGr1zubDh3m0L59VRYs8DFhwuesWbOGadOG83ul+hyelsYJgQA1IrI9LaCO10udihVDElTA4sWLycvLo3z58jRt2pRmzZrRqFEjNm3axKxZs/j444/zNbmNMezevZvKlSsTCATY57iB8HzUyMuJ9JIfzas2XzvZxi69TxVfB1BySSzYfP0EqqIsxSGBLVvg5JNh7VpuRmJ1ds5XwvQIr1f2dOPG+nvkSNnqeXmFbSuPR8d5/PHUnv8BgBEjRgDQsWNHypaNVcG+DvUiW4L6k5xJ9IaxW5BsXyrxC2oAHMYZq4xIOdH04zGw8itCzlKDfCGL0LxTDiW0rQcy4cFTNG8bEz073+tV4Pmaa4rweZLBFOAKh2Pz0DWzvxt9ji5dQo7sE0+01ansz5iIr91K9AWAeXH+70Nf3usosPzPQ6kjOwYyMjIKdIw1xrBw4UJatmwZGjR5Mnz5ZfIHuesuST0A1Kunu/rppyVRsjPY+bR8eUWP7r031HzmkMJHqJRxF6Hb1Q/8B7VquTFifHHJvoeRh5sgcPkc5FwvhxbiY4hOUF6oMBR+LgdnVIfF60XU9iTu8YjtPvmEbW3a8PG777J582bKlClDr169aNKkCb///iNjxnzDVVddQf36R2uvRXaKgBY5ibrMR8IJ2bptxFlUWKgR2cnALcg5fygGhg4+lC9fnjPOOCP/b7/fz9KlS2kR3tTl669hwoTkDzJgQKgJScuWauz61FPw/vtykID01q6/XnxdtWryx/rH4hXgXlS5YfP1G6hpyRsUztQtLr4O49jyOFurW0CFbcixuxktxWLdL16oNQR+qgxnZsK6LXKY2Qa3ZUG5cjBqFBuqV+fjd95h586dVKhQgcsvv5w6deowYcIofvttPP369aVGjXbaa0r4+g3cN2xx4gRLZYDYCezgwVmIr48v4eOXYr/io48k2ZeM+qEx0km1Ez+OPlol6089BUOHhnQ1a9RQFdyddybRL+TAgdfrZf78+ezbt48ePXpgOUp4MSi79wn0/Nvc8xqS/fgINf6zYeFcAqgIKE+++VgGOa+/QuHEvSgk6gVNHeVXoMSJGcghrsQRy1IxVMuW6rk+YYKHpUtnMvPysswcmkar7BwODx6qDAqxlq1cmbQffsAKK30/7LDD+Pe//0358uVZvfpP5s2bwpgxI9i7NzRvVa1alQYNGrBt27b8xJJLL720oO0RFy/hnlud8HUqA8RO4EHVjeejNZvTsvdSHBR47TUl4gUCXAg8j4Q0nkYdleIiEFAWto3TT4epU+HJJ9VU114H168vPebbb0+iX8iBjd27dzNz5kyAGCoAeYjjXkUc7EF8PAhVtH2GRJhspMKWjIYI/ndqXxug/FzkqP0BuIfCvRbs+cUHR74Ho+rARdsgOyeUme3x6Pd69UI95qIezG69WwslDaYKT+Peb1CQi1u2VJx+zBjIzVWLu9T0kHEDD6pJugT50Uq6P1PqUOrIdoiJEycybtw4rrnmmlDTjjfecF/uaI+/4QY5RsJRowY8/7wijbbmT5Mm/7DymVTiY+CqsL/Dr/NeQo2qwuU4TkIx4GJcdJ+AyDuRr8AL9LSQY+Ez4pfhBYmucRbM2Qsj7oZ3/1AzuAoV1KzimmvYl5nJR2++wNatE6hcOZsrruhEzZpjWbJkKN98Mx6AuXNfpn79jmjSu5yiO2vfLeL2Bwq8QGu0LCrFwYyxY8cydepUbrnlFqpVq6Y3X3utYHDICWy+fughNdwLR4MG2uczz8CyZTKwmjVLUm/tYMBLyPlrIzxQtRM1F/Qiw8nG8UiGqBj5+kycq5ecb6HP8QbxA23BnbXbBYu98On98MFE6e9VqSI5kT592J2WxkdvPMPu3VOpXj2P3r2PJTNzFLNnv8u4capaWbDgBWrUOB64CzkBiop3KXknRnHAg+bzT/b3iZRif+DVV91v4/OJ3196SY2dwnHYYeqL8NJL0upMS4PmzUPByX8w9u3bx/r168nOzmb69Okcc8wxDrZ6gIIVaeEL6a3AucjhcFrwPQs4BmXRFeOi+xxEhUEcgZzNw1EuYnhG9qrOAarueYTy5QcRzba2LC2hmjQJsGYNTJyYzd81fMyfdSLzZy+TN6F8eWjfHtq3x/vdd5T5+QvKlv2bsmWzKVOmMoFAOqtW/UJOzur8/Vao0IJ27fpSpkwXpk+fnu+A8ng8XHzxxQUTnuLCjxJFDga+ttDc/vr+PpFSlDSMkS0cJgPRF3gcuROziNEhy+vVQ/r+++EaC0KHDvDZZ6p4W7VKdnXz5qFmfQcZ3n//fXJzc6lYsSIXXHBBlBH9UcNdm+fCOXgd4umJQKfge1WQBNAyijX4eA7qlJsIeUCPbCS18UyMQSZsMNBtI6yoDIPvgGE/wI4dcmD37SuJyDJlUEXLCGAbUBMZ++8Ds4P78qC57D5UHVoUbAO+pqjzn8ej23jtWsVp7rtvf93W/ZHe9j8bpY5sh1i5ciUAixYtCjmyZ8xw7sSuUkWq7iedpAyQLl1ijy1bFtq1K9oJ/+OxD+kXJ8KdQG+UabsSZQEUc+ZYBaQ2MpD49qcFXO9BJLsnwWAbBjIs+NdI+Nd8Cjqh8xg9oidbt46mcmXDtdd6qVhxPH5/gO+DFZadOtkSrzPRdfkNRWzjObP/Rk0ZZ6JJ4CTgWtTpHGANxZ6FUyLIQ2VBM9DyqBQHI4wxrFixAmMMixcvDjmyZ8927sSuWlXVMmeeKQd2sKFUVFSooNL0QxrbUIZFLNj8cTMqW09DpZHHUeyBpdoojW8Y8eX6ywFXWcgRnIMzYzWg7fpNgH6/FviPMVmM/Phsdu/+lZo1oW9fL2XL/kxOjmHMGI056SS77cUUdF0eRYZ+PPwJvI14uyxawPQFgve5rV34j4cfCQqsQs2iS3FIYf5859nY1auLr3v0UJJIvN4ElSvLcXkQ4bDDDiM9PZ05c+YwdOhQjj766ARZ2ctQZlksBBAp3oLKki3EN6cgripGtA4eZgL5pnwrlNJityLGC6YqfLID9j47iNq1/TRpImWCypVVDFOunOIaNurVg169DJtO9TNlimHjRkn0ZWVlkZ2djd+/F7//E/bs+Zs9e+zsc80BeXlK4s/IkL/t5JOX4PHcz4oVj/HLL37S0tJo3LgxXbp0oWnTpmEfxiAb/D0035VHMgBXojXLDgo28vonw48cSE8DlffvqZSiZLFjhxr0haEPErfYi0JfBVR9a9bUg3rxxapgtCVFoqFq1UOiuvHbb78FJBNVuDJvOvHz2m3D9g4kZWGQI/dMlJRRjDgJJfMuILZ97UUND04GVdI79Sf4ofpOuGsn3DU94n+bUOLHmOABLKL7fgIoWWY0So7sFed4AeAnJN2yEvHYBaiStByqTE9NEPc//5ETe9s2xXFKXCElX0P9AQrLiP2zUOrIdog2bdqwaNEili1bFnrTTSbHoEHS0y6FQ3yBnCOJkI3ivjMRoZUQHkf26R8UJm8P4unBQANDfL3maDAoq3wicGL+ezNnXsisWd9gWUrQrlhRpD19OmzaJMP9jDPsalqbbF8DjkZmRSTyUDb72xRskPkTcqg8jyQBKqJJ42CAF2UZHbGfz6MUxQXLsmjTpg3r1q1j+fLlHHvssfqHz8V0N2yYNFVL4RAf4EwqaBMqZR+H+K2EMBD5fxdTmK9tG3gYUDmA814ANgLI6zKfUDMfP5Mnn8rixVNIS9N6rWxZ8euECbBrl2LbJ51E/nhhAHAUcnZEIgs5QL6gIF+PQcboO8H/l0/iMxyoMOhe6bOfz6MUJQ6vV3W3TvDTT4d0MLFhw4bUqlWLRYsWsWLFCjZv3kyNGjXibPE2iYVNDeK0p1E+dGS/l2LEByh5biP5NNcw+MILpMOeT6DiQti7wc/69fKjTZ4c2kX79tCzp373++Hjj5UjVK5cgAoVfqNy5Tvx+yvh9/upU6cqLVr0JytrATt3wrffGrKyDNnZsGePnNhly8q2zsoCj0f2df36D9Onz5fUr38uvkL2xQ7UHG0cIb62gO9Q0PdTQi0sD4ZEEdB6bBLR569SHLSIYlt70V0wHJgKdCHMXTZr1j+ssW7xIjs7mxYtWuD3+7nyymi68q9T0OaLBj/Sr34WOb3np/5Eo8FCX/LxyOyMPEUfciEMD451zXV56PM8jZzJIG49kZBWf6IEJfv/vVHGevMoYzag9PI/CF1rD8rAvhMl3DSNsl1yqFFD+tjjxsEHH+wPRzZIQnEWWnP8c1FcApUHHRoHI4Zr1qwhx9bX69rVWT2AZcFxxyUeV4ow/IWy9hLBQg7XcXHGhN/mXtQsslOMsQ5RHvX9upPCyQedka+0N8jJkUzNiEWoNAa2bPma0aO/AXTb2c3Q9+yBX37R76edFk3VwEITW7TJ41bk/ICCs08AEf/tKKJ7movPcLiLsfsDHg6eDJhSxEKTJk0AWL58OcbO6uva1ZkzOz0djizVd3SHP3FmTnhRkOy3OGPC9+NDFnLCdkHxUQ2YjOJ2kUpdp6BG4N3tYycb35+T/9uaNe/w44/KXOzWTQlIoOwL29ly1lnRbkcv8GKUfRvUYMbuyRHJ1zkoZ/ESpGvr9DMc6HxtUcrXhyiOP96ZfZ2ZKdmQQxgZGRm0bt2ajIwMNmzYUDDhJiqiZWBEgwXcj6rYYiGcr9NR75HaDvYdBw1Qv/CrgIyI0zkHmAIVToMbb0zjrrssLr5Y1Yi1aqlAyuNRYoeNvXth6VJJrk+fDuPHB/jpp5GMHz+eiRMnsnjxm6Sn/0HlygFq1pRC1PbtkJ2tW7BcOSWFduokfVMbXq+Pxo2HR3Fi+1E5+y/Bv22+NsHXHqT+fSvQFecc3MrF2P2FUr4+5FChArRtG+pJEEQbJHCxBHgTQlo/tkFUCgDmz59PlSpV6NGjByeffHKUEdNxXml+N0qPjoVwvs4AzkPVIUVAa8TXl1DQ9PQBF6PTb2sFj5dMRvMelCFt43miZ6UkgiG69FEW8nPMDP5tX2v7XLehdPKXgLY4d502Il41/J136pFYuRKCCfn7Af98vi7NyHaIKlWqkJmZyfbt21m5ciXNmzdXyfmL0RadYfB6VZ4er3SmFEVAIlK0UOOaXeiB9SMneUa8jZyhHAoSPoJIfC/QBJXQACK7liRPuDJY8/LyGD78UXJyLBo3NpwYTNLOy1PfouxsqFMHOnaMtZ95qDNw+GLPNi0SRUfH4py0L0HaV80cjk8lKqEvINFkn0sqo6qlODBRt25dMjIyyMrKYv369dSpUwduvllpWfHg88EVVyhdthQu4FSH3+bBeLxdG2UK5KDneRIxFBbdoQrqRfkk8uPkIK5ubA+wkKNgYZIHEF/v27ePL754hkDAok0bkx8TycoSX+flSUo9uoyqH/gRNTDLDHt/OiEndjwMJ3Hmjo2bgX4UOaibFKqhrJpE52nQpFqKQw633KJ0pXjweiUlkpECe+4fjg4dOlC2bFl27tzJ7NmzE+hkO+XraHqskaiDstnyEKn+iLuO6HF2+y6qRJ+BqLE1UC98UDPKl59Pu3YF1RiNKSDXS0aGsrP37hUP790Lfn8rvN52eL0e6tUL9b9IS1Nlo9erV3q62mFEVzfIQ6U8H1Hwmn6Hs4qjt9Hc5mR98BiqrjzbwdhUoxqak5ycZ6l9fUjittvExWGwV44/oNSFa42h7K23FnJ4H+qYM0dJEIcffrjDRr2JEG9dXxdpavuRhOsoiuzIBj32Q4GXCeXgtUOy1fnnVBsJRCUDO4CXi5zRyfQV8COufj7i/aHA3ATbGjQZVcSZM/5tFNi9OuaI1q2lWvnXX/D669A9ZYUsmci+dpL93jhVB91vKM3IdgE7K3v58uV6o3lzeDSOULrXK92+V14p9nM7+HA0zkrVE8Gg+sTIqNO+FOw7OOGUQQ0gzyTMiQ3KKL+Q5DW7paM+btw41q1bRNmyhp49lW0Cur2aNVPJ4wUXhN6Pjq4o7dDGuzh//AOECDFaNoiFPvwQRIpJNGkqMh7D2XWugMo9S3Eww+Px0DBYtpDP1126yJkdCz6fUrqefLL4T/Cgw9GkrgHYWuQQCUcqsgaCfFcBJVecQYQNVwE4i+Q+hwc4BmMMo0ePZuvWFVSubOjRI7RmK1MGGjWSNGT4+9FxNAq42ngT53kHdkkkxOb4y5FX/0j2T7MXp3xdF31RpTjkcN55augU60HxeqFFC7j33pI9rwMULVq0oEaNGmRnZzNt2rTQvBcVR5O6zN41FH6WE3VCdwIPYCkAeQpK9C7gxK6BDO/CvGhZBZP509MlNdK5M5xyCpxzTlnOO+9GzjnnHLp1O5HDD1+BbeN6PCoG6NwZjj5aPefiS/TmIh5dFPbeGzi/vtmEqk9j8fXtwINofropxpjixCMkdhxZqMLniOI+mVIciOjbV1WPEQvRa1CoZhcwqEGDwk3TD3EsW7aM1157jQULFtCmTZsYo7qQurzT1RR+lnemYL9Bjb4awKnBV4HE+yZo3knmc9QgZKyvQokuyWIT8oesCXvvNZz7Q/YQSoSMtE3sv59CfcZ6U7C5fWHcGmwFN2eOFHeKDg9qbJkIXmRb//P7z5Q6sl3ALlcvULb34INyVGdm6m+fL0TkxxwDU6bI4V0Kl7iAUPOqAxEWIuQjiJ3dkoecBW6zhbxIn6Q9ixYtYvLkyYDhggsUF8k/A0tG+U03OZEbW49WAhOCf8/HncPGA3QgomUHcjQ8CXxDSAHtBiQHUFLog7S8e5GY0u4nJdlCpTjgEZWvX3kF/vtflUJCQb7u2lV8XbuIZdGHJK4kJVUuxQYLLadaEpsjslC2hlt4UZl4PWbNmsWsWbPweGxd7LAzsOCcc+C660LmQmwsRU4a27Kdg7uAqAdpCEZmZTZBguEfEboOD1Nk6RZXuA+4EWcl9f91MKYUByU8HhgyBO64Q1EgywrxtWUpGjRxoiJDpaBhw4bUrVuXzMxMtm7dyldffRWSQSyE60hd4LE4YCHNvvrE5uttKNfTbaKID2XJ2cZ0Kq7DLORssm2N2TjPGLTlRrqhsvVwtEENFF9A18RC/F2S0gyvAP2RkzqeE8qg5kGl2baHJNLSYPRoif36fPl8XcGyVENQrhyfVquG301vsUMA77//PmvXrmXp0qVx+hrcRPIJcSWFWshnE4uvVyLpDrefw4vsRfu+SQVfT0KN5u3eXwtc7DeAgpfnU1hr+0jUw8YOrnuADwlpexfGqaeqvUebNrB4ccxhLvAJul4NiW072xw9IBUH3O8odWS7QJMmTTjiiCNCzcNAZH3rreo08tln8Nhj8MwzMGMG/PbbIa/dlzzSia5ldKCgKco8nkHs8g0/co64CWR4kUPoDXbt2sXIkSMBOPbY1rRs6SU7G374IdQDybKgYkUn+zXB87ku+LsPdwanH01C76EJaRL67CsRaYcbJxtQe4/iRhpywtyEHPPvIQFFKCzUBRI0L83eOlTQvHlzOnXqRMdwzR2PR8HH9evhww9VUfP887BgAYwdC/Xr778T/kejMlpsx8L+Xtx2QFll8QzWPFQ+fTjOz9eL/dm3bNnC6NGjAejatRkNGnjYvRvGjFGzMRBf2zGU+AigqqHbgn+77Sqeh0TBf0AyUpOQc2UxcAsFTb/5JC+n4gZlUWnmhcHzGIFddVTQ4La7bz6NpE9KccgiLQ2efVaixe+8A488Ai+9BMuWwZdfQrUDOdmhZFGmTBnuvfdeunXrxu7du8nOzmbPnliZ0Q2Jv4jd30vDk9BifA3x+XoN4mun5+tDmiWPhL1XkaJnpQVQKbedCZcMX09EVTgLgr//jQKYV1NwPvoNVZkWNyqhSqDOKItzDHKsQ2G+9qJS+vNK4LxKccCibFl46y1Yu1ZaCY88Aq++yt0zZ5JWty5btm3j/fff399neUBhXFA+q2vXrnFGHYH4MJZdur/5+gLk2N1GbL72o6qVljhPTvAGx98R9l4Dii6FYs8djwf/dpslHkD+jwVIkmQi+my/Az0jxo5Gsqex8dJLqv6ZP1/SV8mhOkpQaYLmop8Itkem4P3hQb6TYZRswmHxoVQj2wUqVarEBRdcEP2fGRkqgyxFCnEJetj6I4K0naW5iMha4bxpTSrhRSUyXwZ/j3d8P9KovgUYRHT9UjvTIoDKZ54D2vLVV5+yZ88eateuzRlnPEQgcB5Dh6oxwI4dydxuAUJGclekp+oWq1CmYDzD/3tSHz0eiwzlCej7r4qu5WPBF0ib+/bg6020KPCiLPIbkTOrFIcKatasSY8ePaL/s3x5iNodvBTJ40b0vN2JCknD+boq0sf7m5LPBPQhx8hQZMTFO34ecupeBXxAYr5uDbyEMY344ot3ycnJoUmTJpxwwt3k5FzLhx/Cxo0KPJ5zDi5hd6GfjxrRTMbdXJeHgootiK9b+jWJr4sb+JAR/SwwLbjfaujc7wwb1xYtUO4F3kILggwkU3UjJZslXooDGpmZ0K80qJEILVu2pF27duTk5FCpUiUqx81Wfxjp4j2Cgmb2cjAXcbUX2XslDS+qHnyDxJwUQE7d84CRROdrT9jYI5GIa3hGs4X6BRQ1ySEPZeNtQCXby6OcSzzsDr4OIz73fYXzPghOUAE5Wx5HySoGlfLvRWsvG0cDD6Dv5y0UjCyHrv31qLFZKUoB1KgB/UP3Tm3kqB07dizvvfceffr0weukke9Bjjlz5rB69Wosy6JPnz4JRg9ESRPPI1sqXDO6CcouToVESDI4A7gHZ/JDHuRDGE9ivj4J8XW44zoDJTi8jDMN6Fjwo+S3p5B21TdRziUe1qLPE0sOxsZXJPITNW2qqvoNG+CPP+CEE+Ltry5amzyG1gYexNfbUWWsjZNQNc12JCW7El3Hi5DsycFTeby/wzj/GPj9fv7+++/9fRqHIC5BjQmGImfwzajUbj16kEvaiU3wmGej6JuT4wdQFtpcJLvRAXVBuAJ9hpuBjsjxswS4kA0b6rJ48Xt4vQEuvvhifL5s/vhDTuwyZchv+OgeXpQt3RtlyLnNlHQiy7HW7UnFgR006IeCGhuQPtZCFCAIx1LUBf4tdL8sRI6zNyh1Yh9ayM3NZcGCeJ27S1E8uB5x83uoUuIW4DPECfewf8rZ81DZ9iyHx89CDtffUTbc4cFXP6QnbZdZe1HG3OksW9aItWu/ICPDR8+ePfF49vLbb3JiV6woefbkMQ1V0iSD2CWNIawidd+LFy0KeiIH+abgaz4FNWRB/N0PBT5HIsfIXOBFSp3YpSiFe1iWxbnnnkuZMmVYs2YNf/31V7zRiJPXo+rCG1EFyFdo0ft/7J8loh85OtYkGhjEBmTjTUTycu2QvXcD4uu+KOnFg7i0C3I+vEWI93ak6NzzUALFjbh3NNvyV4mwIol9x4Ktk3ouatJp8/U85IgPxx/o+v5NqNJnNvAEpU7sUiTCvffei9frZc2aNYwYMWJ/n84Bgddeew2ABg0a0Lp16wSjvcjpuhZVP96AkrbGoLXuDewfGTYLZU3vdjDWIFvwR3TeF6CEhiPR3PMY8ovYVew/A+2D/x9KyHG9naI5sW3sDp7PLbjnVKcN6FeQyE9kWVIi/vtvuOeeeFnZHpSY1wNVWW5C898cVDUTjknBcbvRdVyC5qYHOZic2FCake0I2dnZDBs2jKVLl3Leeedx5JFH7u9TOsSQAfwr+ArHGcBR6OEsKYe2B0VFLwHudrGdHbkbGPH+j8iILNh88q+/NgE/07LlCqpXv5Ps7Ef5+Wf979RToU6dpE4+iACKzL2Lmn45RV00qcSDITmd2VgoixwcdqQ5nsPFntiGIf2r2+KMLcXBit27d/PJJ5+wdu1aevXqRatWrfb3KR1iKIecB5G4BDkWUrkQTwQvqh45E3dBOwvoBLwT8f4wogVQ//prDbCG9u03UrHif9ix40kmTdL/unVL1CwsEQKoy9lLKFDnBB60QKibYJwf+DzpMysIC3Vm+41Qc04nfD0IlThelqLzKEUpDl3MmDGD9evXs2/fPsaOHcu2bduoVq1aQYmtAqiMHK+R6Ac8A2yh5OxrL0rqOMLldh7EIZGl0q+ijPNIp8cCFJD8GVXvRdrlRUEABTofQhr/TmAHABNJkuwFvkv+1ArAQjIr36DvN5FjyObyh5B9fWqKzqMUhwKaNWvGsccey++//87kyZO55JL4TfAOdmzdujVfVsTdtaiOgoyRuAXJse6h5BJGfChJxI00k52VfQaFG3k/SnT/wQzk4J6MqkKGuD3ROAggLrseBTedwIekVBJhEzrnxGjTBmbPhr17YeBAuLuQe8lCVeefBv9OxNf2nH0TCt4evMl8pRnZDjB8+HCWLl1Keno6FZwJXJaiROBBJXFtw/62URyRSU9wv58jB2tnnMWCfER3AP+OHCwFndhr18Kff+r3jh2XA1cyfvxc9u5VxdZRRyV5+oDIzSa0y1AmXL2Yo0PwICdKous6HWVspAq9kBPbzULKoIj1gdzMqBTFAWMMQ4cOZc2aNZQpU4ayZZ1GzUtR/CiDAncNCMlz2CgOU8TuN/B58PejHB6nEjIYI/Ed4qOCXLR0Kcydq987dpwJ9GPcuPXk5kKjRjJQiwabr29BjWOc6AIHULZOIuf9dygjMxWwkGTVPtw3Eo6nr16KUpTCKapXr07t2rXZsmUL8+fP58MPP2Ts2LFkZ2e73FMVYBzim5Li68rAx8GfTXAWfGyAnDuRGIw4M9qC337vM7TQd5JN6AQWyggHOWUGIumORPAT3TkViU9J3bmmocqXAO742oeqZkpRCnd48sknueyyy6hUqRKrV0dmkB5aePbZZ9m3bx+VK1emf5gMS/JogColKlKYn4ujR40PZfa+iSRRMx1s40FBymjzxxMU7F0QjvCkhztJ3do+A0nvWSgI8DhapyRCHppbEuFdnCbtlC2rpBeAYcNCfXVCqECoit5NNroXXbeDF6WO7ARYs2YNixcvxuPx0KdPHw4rbd54gKEmKhf8CDgWabHWongc2ScAvyK9UpAkSCKS8gInUthZsCO4n4KEtHUrfPwx5ORIN6lZswBbtnzD1GDvxG7d1K8uOVhI/D88CnoeKiPtnWDbNhRsuBALH5PaQo/hJJcNtAI5ow5HDvhIGZJSHIxYvHgxa9euJT09nWuvvZZGjUpLXg8sNEblyG+icsEqiK+LwxQ5A5iCHNggwzORAexB+qwrI95fg8ogC2LdOvj0UwgEoF07qFPHsHr1SGbNUrngWWfpZ3LwoKzw8EzKK1EpYbcE254M9HFwjI9J3VwZAEbhPts+gAKgLZDT/m4kE1WKUpTCLVq2bEmTJk1o3Lgxe/bsYevWrWzZsoXx48cnsbd2qGz9peDvVVAWbyrKuiNxPuKBw5Ct6sRRYKFkkBUR7/+NdEATwRDqEVBUeIHuhBps2Z9hM5LHi4dLUGVmInxI6pxSfpSR7ta+zkNZ3C3RHP4IzmVgSnEoo3HjxnTq1AmACRMm7Oez2X/w+/1s3ryZChUq0LNnT9LT3TaHjYUuSMLtCcSjmagqL9V8baFEuGnB/aejCpdEtqSd/RzJF78hyYtE8KB+WamwWX0oy9vuI+FB2d4bkS0aD7cCxzg4xvu4ufZ33KH+1ps3wyefRP7Xj3N5xHDkBc+jJZqH/ocyxQ8elDqyE2BSsD748MMPp27dRGW6DrBoEQweDG+/DZMmgSkOg/BQQwZyxP6GyiBfAnKK4TgvoixsEDlVRc7teLCNxXbIITEy+P6HRDZm2LMHhgzRzzp1oFcvOa1/+ilAIACHHQbNoiUKOoJt/A6k8GO/D5W/xDOQ5+CspPH/2zvv8KjKtA/fU5KQTgKhhN67FJHepGMBFAQBC2LF3nZX3N1P17Ku7toLoqgUAQWkgyhIky4d6T1ACIQkpNeZ+f54MpNJMpmSTDKTzHtfV66QOWfOec+Q/M57fu9TruHeSOiy1C48j4z7SyRq/++UzwOYwlvYunUrAF27dqVGDWciVx3w55/w7bcwc6Z04VC4gWCk5vMeIBGYhvtT1zXI332H/J+NSITfTdjXOSOwBJn09UYiEsk/VuF7SlJSwaJj48YwerSY1uvXS4ZNp05Q+imDNv/LVuTbDWCfg/dvQXohOOIK7v3sy3LfPY1M1D9AHiQ+cseAFL6CyQR79ohWf/ttQZqEj6HRaBg2bBg1atQgLy+PWrVqcfbsWXbt2kVCQkIpjhiOlGk7hOj1Q7j/0dEP6atgbkqbhyxqNXFwLhMS9daEgoVLEO1wdh6a4sK+JaFDzJx3bGyLQ+qw2mOpE/uA6LW75rCuRvYV5SRS1vFNZIF6jhvGpKjq9OnTB5PJxNKlS9n82WfihXz3HZw+7emhVRh//vkn9erV44EHHuBvf/ubm48ehTSuPQEkIf283F1FOAzRa3ON02zEC4nCscn8PyR6fCQS1AJirjqDubmvO/Q6DCmTVJTzFF8YLcpMRIsdcc2lUdWrBz3yLabvvnPprQ4wN7HfA7yKLLaudOcJPIoysu2QkJBgafDYu3fR2msucvIkDB4sbuSUKfDYY9KatE0bWLPGDaNVFLCW8in//ipS+/NdJDKlK9Jgxowm/7wlGSWHkKaPnyBpjwXk5IgpkpgIEREwaRIEBMi24cM1dO7sz9ChpRmz+aYSgtR3HVlkuyn/es7geFL7gBP7ROA+WXGmUZkzmCME/41KYa+6xMTEcOHCBXQ6HT3L1l1Pavv06gUdOsDDD8Ojj0pNn86dYetWx+9XuIC7an5aY0L0OgcxysMQY/oQBRpm1uuS2ImYIwsoqtfmRce0NOk2fu+9oM8/1KhR0KGDjoGlKiFq1usIYA2SzVP0uv6J4wmyCRjnxPlq4D69jnLTcQzIg8oLuLffgqLKsnmzrBzdcoto9cMPS4pE795w4ICnR1fhREdH07FjR5o1a0ZiYiIGg4GkpCR+/fVXNxx9Je5feMwFXkP0+kkkPX4wkplhNi00iOFdEhuBfki5wYrSDbNe1wY2UbBwasaIZJikOjhOHlK2yhHmMi/uwJW6tvYwIuOfTPncyxVViRo1anBy40Z2L1nCf595RryQKVOgRQsYMqTKG9omk8kSINmzZ0+qVXOmlEVZWIX7e9IkI8/SmUgQYSjSWDCOgnuDlpL12oTMb3sgEdaumqqlvf+Y5/tNgN+RBThr8pAST44CMjIRP8QR1V0Ym/DSSxIQc+YMbNlivaWJy8eyjRFZeLgb54JdvB9lZNth27ZtmEwmWrVqRa1atUp/oOPHoXt32LSp+LaTJ+GOO6QojsJNZFI+9ZF/RVayXsF2pLAJicooyew1j+l5rFPXDQb48UepjR0UBPfdB9al2ENDTYwadQc1a7r656pHhPpV5AYztsj2tUi9qn85ebxkpJvwFjv7jMV9N83HkEh2d9b3eoOCRmSKqoR5ctixY0dCQ0NLf6Ddu2WRcffu4tsOHYJbb4X160t/fEURMiifTIn5SNrjf5AGOEUxYb8enjF/nweRch5CTg7Mnw8JCVC9uui19bNIRASMGXMboaGupj/6Ifr6DpJ6WbQRziIkUny6k8e7hOi7vejtsbjvXvlX3N8N/e+oXgcKu/zyiwSJ/Pln8W27dsmC5J49FT8uDzNo0CCqV69OYGAgERERnD17luPHj3PmzJkyHjnDLeMrzseIfkwHbNXzNut1SfNgAwWGsKtzvFtxPV09AGiDNJS8QPFU82+ARkgAiTMcQoz4k3b2ccbsdpY3kOwod6HBufIACp9mwQIe//13MBg4Amyz3rZxI3TrJr5IFWXevHmsXbsWgFtucVRyyB242hvBWV5B9HoeshBZFCOikfb0OguYiOvz/5txPVixGrLQOAeJVrduXmPuq1UXWRB1hvWIeW+v1vsEXL2vdOpU0Ffnk0+st7zr8rFKxpT/9YabjudZlJFth9atW1O/fn369HFUPsIBDz8Mqam2qrcXlBaZPBmSy1JGQVGAs01iXMWE1LuzhzOTfA1ms9dkghUrZPXNz08isc0VEdIsPV2qAV8jtaVc+ZPNQybY/0bS/6xvFj8i9fxsPPzZ5SxS27ukyJ5bkTIeZY2Ir4HU3nsW95pcKUgap6Kq0b59e+rUqVO27BmjESZOFLfSll4bjQX75NqavClcpxnl09MApNSUPZxpnJWHeXxGIyxaBJcvS3OW++4D85pJgV7XQCbLnXHtunKRzJhpiDlizedIhLWr0UoHkZRPG4syAIxBzP6yfv6NkXqwT+PeaeVFYIMbj6eoUmRnixabdbkoBoNo+aRJPlfGLzw8nF69etGqVSuCgoIIDQ3l2rVrrF+/HlOZPosWlN+jY5KD7anYX9gyIYuWrsz/WyFNFJvimg5mI7W4n0HMHGteR2p0u9rQbivS6+dECdsfxHYzN1fpghhID+PeHgn7EENeobBBUhJMmcIAoDXy1/o/6+0GA6SkwCPO1LevnHz55ZccOnTI0pC+/HFXJK8tUhxsT8O+Xhtx7KkUZSDwE86VMbEmC9GmR5AodTMmJAvopVKMZTWi1yX1CHgif4yu+VGPPy4BMUFB5ueK4cDtSOCJu6oNGJAMmlg3Hc9zKCPbDi1btuThhx+mQYMypGAdOgTbt9s2RcyYTJCVBXNVGq17GI/7Ux/diRGJGNFy9CgcPCi1sMeNkxpJIM9kX30ljcQyMqYi9bhXI8LoCubo6P9QYI4kIBNi81hKM/5JlJx+M5OylRgJAA4gtRkfQmp8uUuq9IhZpKhqdOjQgccff7xstbE3bJBVJXt6bTRCfDwsVQsi7uEevFuvTYhu6NizR9pc+PmJf1azpuyRmwuffiq/Erm5ryAphZtwrryHNWa9fomCSL6zyIKeeSyukoOkf9p6rx5pBBNM6TU2DKm9Vw14ESm55c6FCdX4UVECP/0k9dhsmdhmDAaJ8CtVs8PKTZ8+ffjLX/7CuHHjaNSoEdnZ2YwZMwZN6TvQIinJ3p4lEYbzevZ/SNN4cykpVzCXQXqIgn4Kf+B8lmNRTIhZ/3AJ20ORSG8/Sq+xdYDNyOfzOpIFpPRaUQHMni2Lj0jhMJAnvQPW+xgM8PvvVbLHwapVq7h06RJarZYXX3yxgs46uoLOUxbCcd7sfQXJdNmLcw0XrTEgASNjkPr+IL7Kly4ex4wJKfP3fAnb6wJfIFrrvMaOHAlPPw1Nm8Lu3fUp6K32AXKvcpeZbUJqgldulJFdhEOHDllS1IEyTvgQY0Tr5Me8QUUeuYc3KJ+IbHeSg8mkwdy4uW9fKRFmJiZGFqbPn6+Fv/+/81/1R1ZASytibyIi/l3+99JG5ZhXUZdYvZaH3AzaIp2T4yleI8vZeqxzgfr5/9YjEdTPA4H5r2mstoXkf7dXO7Ho2CtiFVxR3phMJnbv3s1eqyaMbtFrPyd+l/R6pdduwYR0WPd2MjEYDJinBkOGgPX69smT8nwWE9MMvd78gBKM6GBpTAINYjKYEF0ty++1Aelkb50ymYVMipsBQ5H7io7C95baTh5/OaLtIBr9G2LsmP+OzGP3Rz6ToudxhNJrRQls2FBQnN4ePqrX/v7+BAcH06NHD8LDw2nYsCFxcXFlOGI2laPPiLPlBe9FIpNBgi8uUTqt1QJv5f/7M8pmNBiQggvW2ZKpyH2yAbLwm43oqPV82pnOwlokm9JcuzAi/1z3UHCfMl9/NaRPjQ7X7mFKrxUlsH69JTNmGDL7MGGjRapGI2VGqhhffimGaefOnWnTpk0FnDEZ+KoCzlNWDDjnR7xAwWJjFKUzYc3n+W/+908p20JeHuJRWEc2X0fK4tVGIsANyHzYWq/tB8j26gWg448/7iMnx6zJ0Uhd6+EU6LT5e2D+l70+bbao/HqtjOx88vLyWL16NUuWLGH9+vVcuuRqSlgJ5OSIKDvCHJWtcIGrSKTxeKQW0UdIat4yyqfmqns5dWo0cXEa/P01lk61ZqTcY13atv0Cvd4sNDlISZDS1qC+htR1WkvZI2r0FBgjuUgTyycpnBKZh/w/BAGLkTrdP+W/t+hE33wjeQ2ZVFsTALyf//75SC3F+UhkeWr++Wc4OW4jYtwoKjM5OTn89NNPrFmzhjVr1pCQ4KiEhJPkR4u4fV8FUibidSRKeRLyN7sa2O7BMTmLkUOHRpOcDCEhGrp0KbxV9LoJ7dtPR6MxT6viEb0tTbS5CUlb34d8RmWNWLfW63SkkdpfKNyd3by4GYGYHbFI9J+tppjmnz8FBhTZFoKUwrqClFj5GKnvnYSkmuYhi6rOTD+1SCqpQmGD7GznSoZoND6t13q9nvr165Oammrp/WO0F8UOyOLXNGQ+dj/yt7wAOF7Oo3UHORRENZf0/DUBuR4zxxDzuDTPDgYkA+ci0sSsrH1iNBTodQISHPJ/iKaaycnfry5yD70EvJe/zZZe65ASKEUbUtZAPoeLwLdIM/pliAmWnn8tz+Kc2VMtf6wKhQ2KaPDT+d//QP76LGi14p1UIQ4dOsSR/CjzZ555phzOcBjJ5LsHybhehGRHX7H3Ji8hDckahJL1+jkKL6JupfTXlod8PsmUfo5ujSF/PCA62hWpaZ1otY/Z32uGlDg5j8zBobi26mnVyp/AwAfYtOkA//nPf6y21UeaY55F/n8/Re45KUhp21zk3ubMYmpNpA9Z5cZd8emVmhs3brBo0SIuX5Y6N/369SM62pnVbSdo0cJ+mroZvR5atXLPOas85ii+f1HYkP0RefDV4u2pjyYT/P57LPAQt9xyhMDA3Zgn0HFx9Th48CagK+3adbJ6Vwq2myq4wiXc16zHPCl5ncI1p6zJQ/4vHkUM5NGIOfMBYkabJ+NDkKjrYXbOF4YItC3GI6u19moo6oFbgI52zqHwduLj41m4cCHx8fFotVoGDx5MZGSkew7esiXkOfEQajTKvgonMCCNAD9EtNmE/M0voCCqzLv12mjUsHVrCnA/vXodQa8vaKB4/nxTTpxoD3SiXTtrkyDeDWd2l15rKCgF9RxifNgybAzIfeZhpATTFKTnwYfIImQe8v81EtFbe/1DaiAGmC0eRowZe//vOqSZTn07+yh8Gus0Nnvk5fm0Xv/+++8cOXKEmJgY/Pz8+PLLLwkMDGTy5Mk29s5GStjNQv4GzXr9PQXRXt4eKKJBqvAuRQyFnVbbOiH3o6JzyWtuOO8l3NNcTUuBXk9GbD5bWmlA7jNPIvPqvyAmyofIAqgRiQQch5R96mLjGGbqIpk0tngCCRSyhy5/rOEO9lP4LK1awaZNljn2XciTYBqwBWmdCohn4qy2VxI++OADTCYTjRs3ZsCAAW48stkEXo7oswH5W5xDgX5XBgYjHsF/EVPeTG+knMgdRfa/StnIQ4xwdz17ZCOf9V3IfcCW72ekwMBeiyw89kO01VyaqhpwP1rtC+Tm/sSxYxu4cOECL774IiEhIVbHakzJJaieRvwVe2iBp5BMycqNz0dknzp1ihkzZnD58mUCAwOZNGkSt956K1pny4E44o47Cgpp2iMvr0o3OHAv7wD/pMAkNX+ZKKhZ592cPw8XL+5Ar99Ijx4fIYK6l9TUPcyf/wK5ud1o2rQ5TZs2tXqXO5q8BAMt3XAcY/5xMnGcamoEbiAPQiARId8hpvM1JOrjZ+yb2I4IQowx80JGUXSIET6rDOdQeJo///yTr7/+mvj4eEJDQ5k8eTI9e/Yse0kRM/feCwEBjvfTaKRBr8IJXkQerK312ZxKaNZw7+boURMJCRsIDNxL165zkeYue0hI2MWPPz6K0diZDh1uok6dOlbvqu6GM5v1uqy/37lIk7Z4RHvtPdwYkKiSFfk/d0eaoaUhDw/piKldlibYUfnj0GD72vSIsVK06aVCYcWUKc5FZAcGwvjx5T8eL6V9+/b4+/vj7+9PZmYm69ev5/z588TExBTZ04RE883J/9lar6Egy87bMSFm9U9Ir4HzSB3/s0htVFsBEdXdcN5gJOKurBgQ3T+OBInYu0fmIVWGzSUxb0W026zXacjc256J7YiWyD0cbOu1Drm/FCsSoVAU8OijxQJFPkWWq+Oxah1YuzaMGFGxYytH4uPjLSVrbS8elhYDMIqCQDKzPudZba8sPIQsOK5Dgij2ADFIpHNRExskc7CsVEd6BriDlsDvSO1ue5+7AfiFgsymO5Co8HTED0lBysG04fnnnyckJISMjAz++9//2jyabXoCr9rZrkPqi//NhWN6Lz5tZG/bto358+eTmZlJdHQ0jz/+OC3cvQro5wfvOLi5a7XSOapdO/eeu0pyHSk/Ubkx18bu3PkcoaG9gc3k5LRn/vw9pKSkEhUVxbhx44oYdAGI6JU2kUKPRD4/QtnNIyPSMOFFnI9AKbpC6I8YGoE29i0NI4ANSNS1NRrgNmA3crNRVEbWrVvH4sWLycnJoUmTJjzxxBM0bNjQvScJD4d//MP+PhoNPPss1K3r3nNXSU4jqcqVwfywjWTPyL+7dz+Kv38n4AgZGW2YN28nmZlZ1K9fn5EjRxZ5ZzRiApeliWIv4HHK/vlpkAceZ7VfR0GzSTMBSKMZd9XUm4Q8gBWd9+iR7uy7ca7uq8JnqV8fnnrKcfm+//s/KBTN5FtERkbSqlUr6tevT3x8PP7+/qSlpbF169Yie+5CMhu9f3HRMSbEwG2DGLo3A03s7H8TEuVW2kXDBoiWudqQ3RbmufqDjna02v/HIq8FInrtroi755BgkaJGvT8yzu24ZzFAUWXp2BHGjSvUN6wj8leZh1UXj//8x7neB5WE7du3ExkZSWRkJPffX1KWWmlYjTzzVibDuiRMSGPEdkh0883YryPdj9LrjRbojJjY7tDrUCQTpqQI6aLokNIm1gQhfkhBj6aQkBDuuusuAJYsWUJmZqYLY3oLKd9YNKMxCInY/g33eS+exaeN7ODgYEwmE7fccgtTpkyhevXq5XOiRx6B//1PxFtnVQvHLNT33APffls+565yzKGyT7IvX4azZ+XXoXdvkOu5F4PhY/z9UwkKCmLixIlUq3YZ+AeSNvQIUmf6WUpff68LEvndG3BHKYb7kBqqzmBCav2VN32RVd1DyKTbHI2zAvdEyig8RVBQECCln+6//36Cg4PL50SvvgrTpsm/ben144+DS6vjvszXlK2Riuc5dQquXgV/f+jeHSS6+XYMhu8ICMiievXq3Hvvvfj5nUQiHCYh5vNqpPxGae9X3ZAUxZGU3Tw25Y9rpZP7G5BF4/LmNkSr/0AWOhcj0eALkIhshcIBH3xQkM1obX6Ytfsf/4C//rXix+Vl9OzZk8DAQIxGI3Xq1OHSpUucPHmSH3/8kfPnz2MymRvLVh0DSUhH6uz/QOGapXsRfZ6ElObYBLxM6RcNb0H0+j7K/midl3+c3U7ub6LwtZUX9wInkejveUjD9yvIc4A7IiQVVZ7ZsyHfnEOvR4MUlchC2qRueeqpKpXtaDQaOXfuHCNGjODTTz9Fp3PnfPgLKvv8ujgJyHP8Cgpi9E1IZPYziF4/i2TWPEvpFh6NiJEdB0wt43hBsssfQgJ3nEGL9IxxzN/+9jeCgoJITU3l/fffd2FMGuAxxP/YiCzqLkeu+SPE0K4aaEwmZ/LyKg8pKSmEh4eTnJxMWFhYoW3Z2dkkJiZSNz+SzmQyce7cuSLlG8qRixdhxgypEZWbCx06wBNPQNeuFXP+KsFkZAJV1mYqnmPBAjhxAjp1gtGjC28zGCAxcSBRUWGI6JgnxBrkmmsj0WplSbnugaRA/uZoRzeiAfpjteausIE9/aqK2LvejIwM0tLSqFWrFiATwpiYGBo3blwxgzt1SvR6+3apiX3LLaLXKnPGBUYgteAqJyYTfPMNXLoki45DhhTenpOjJS1tBJGROUhKpJ6CmrJ5SITfQKSJVmkZhEzuD5ThGK6iRUyLeRV4zsqH0msv4vBh+PJL2Lu3IErgiSegmVrABnne+frrrzlx4gSJiYkYjUbq1q1LtWqySBYdHc0jj3yGVnvYwZEqM/7A3UjK+naK63U7pLb2T6U8vgYplHAg/xxlxdl65DrE5PnQ0Y4+i1drVznh1df8xx+i13/+CX5+jIqP52B6Oi3atGHdunWeHp3bOHr0KAsXLiQoKIgXXngBPz8/x29ymjqUvVa0NxOINK88mP9VVK+7IVHZv5by+DpknrsaKX9aUWiRiOlpTu09bdo0FixYQFhYGLt27SIwsGpEUtvDFe2qakvvJZKTk8OMGTNITEzkzjvvpHPnzmi12oozsQEaNIC33qq481VJKvfq47VrYmJrNNAnv8Robq5UoAEJIoqK2mD1jqIpQ/FI9EMnSm9s/GHjuOWNiZIbfykUhUlPT+fLL78kNTWVcePG0aZNG7RabcWZ2CDNZv73v4o7X5Wkcid9XbggJrZeDz17ymvWeu3vbyQycrXVO4ousF5ETJGmSH3W0rCJitdrIzCxgs+pUJSBDh3gc1VTvSQ0Gg09evQgNjaWy5cv07JlS9q2bUtISAgHDx6kZs2aaLWVe37tmBwkMttMUb0+jiwa1qR0GSkmxBRxl147G2dmQOm1olJxyy3ylc+ru3Zx7733curUKRYtWsQ999zjwcG5j//85z9ERETQr18/N5vYUNn9EMdkUtCvAYrr9T6kME01Stdk14Bk/1V0lr9k4TvLK6+8wrJly0hJSeGjjz5i2jTnDHBfoVyfMhMTE5k0aRJhYWFUr16dhx9+mLS0NLvvGTBgABqNptDXE0+UvYaNyWQiOzsbgJUrV/LJJ5+wc+dOcnJyHLxT4V30pDJHYx/OD3Zp2VJ6gOblwRdfwIoV4Fz5IyOS2n6+DKPwRD2tYFwRbkXF4016bTAYLHq9cOFCPv/8c/bu3UteXuX92/dNelGZzexDh+R7x45SYjczEz7+GNauFUPbMQYktT2+DKPwhF7XAoZ74LwKZ/AmrVZUHtq1a0dgYCBNmzYlOzubq1evcscdd/Diiy8yePBgpO6onpwcSE/39Gg9gQHR6tQyHqOiaUXx3jAKb0HptWO6d+9Oz/xogf/9738YDJW/7vO6devYsmULK1eudH//NUBKcPhMPKoN8pByHqUxsc14olRtX+z3ayhMeHg4I0eOpH79+mRkZGA0Vu7yuu6mXJ8wJ02axJEjR1i3bh2rVq1iy5YtPPbYYw7f9+ijj3LlyhXL13vvvVfmsQQEBPDkk08yYMAAgoKCuHHjBmvXruWLL76w0blb4b1MALyhaY8GV1dDTSY4elT+3aGDfN+zB5KS4PRpV3pbGJA0mMpkEL1JVarJVBXxJr0OCwvj6aefpnfv3gQEBHD9+nVWrlzJjBkziIuLK/PxFRXFI3iHTmlxVa8NBjh2TP7dvr18374d0tKkx4HzpQ7zEGOktE3EPMFnVP1on8qLN2m1ovKg0+l45plneP311wkODiYpKYkrV64QGBiYn747lZSUPL79VkrgObdYVx5o8ZxeGpDI7crEd54egMIOSq+d4+2338bPz4+rV6/y0UcfeXo4Zearr74CZAGxQQN7jQtLy1N4R2CfJ/XaXGqkMuG6Xr/55puMHDkSnU7Hn3/+WQ5jqryU2xPmsWPHWLt2LTNnzqR79+706dOHTz/9lB9++IHY2Fi77w0KCqJOnTqWL3fVdgoODmbAgAG88MIL3HHHHVSvXp0bN26waNEiFelXaQhGOrF6mqeR5oHOC2hcHCQkiGHdogVkZ8OWLbJtwICCdHXnqSyrcjWRz0vhrXijXoeFhTFkyBBefPFFhg0bRkhICPHx8fz0009UsdYOVZjagDeUZ/kHUk/Qeb0+d04isIOCoFEjSE2FnTtl26BBUobXNSrD76wGaIn0YVB4I96o1YrKQ1BQEP7+/pYIwfnz53Pjxo38ra3JzX2e5GQpqbR8uQRgVDzvILVPPbUIavLguV1Bg0T39fT0QBQloPTaeZo0acLtt98OwKxZs0hOTvbwiErP5cuX2bdvHwBTpkwpp7P0AR7G80buf5F61p7U68oQeKFFan673rfD39/fkrGwZcsWFZVtRbn91u3YsYPq1avT1aqR4eDBg9Fqtezatcvue+fNm0fNmjVp374906ZNIyMjo8R9s7OzSUlJKfTlCD8/P7p27crUqVPp2LEjI0eORO98OKzC40wEFiImCYAfFS/kHyBdzz8FHKcMZWTA4sXy75YtISAAduyQ12vUkMaPrlMT7xZv8//JdOT/SOGteLNeBwQE0LNnT5588knatGnDqFGj0Gg8PXFTOM9zwFdARP7PFa3XgcC/gMPAu0B9h+9IThYTB6S3p1Yri465udLqomXL0owjFO82R7T5X9Px/IORoiQqSquhdHqtqByMHDmSqKgoUlNTmTNnjqXUQY0aHzBu3Ctotf78+Sds2lTRc8w6wF+BY8BrSJkjT+CJ5wpX0CG1YT/y8DgU9lB67Rr/+te/CAkJITU1lX/961+eHk6p+fjjjzEYDERFRTFy5MhyOosGCeybhmiBhop/1m4PvIjo9V8pmOcrCqMDwoB/l/oI3bp1IyUlhQULFvDZZ5+5bWSVnXJ7qoqLi6NWrcITEL1eT2RkpN3U8IkTJ/L999+zceNGpk2bxty5c7nvvvtK3P+dd94hPDzc8uVK+kZAQAB33XVXodpFx44d4/Dhqty1u6pwD3AJmIcY2hUVNqIF7kDqUoUgqT31sfenlJsL8+dLNHZ4OIwYIfUHt2+X7QMHlia6T4M0rYnAu8xs6xtpGNJIQUX3eTuVQa+DgoIYP3489esXGJH79+/n5MmTTh9D4SkeBa4AXyKRdhWl1zoKmmBFAC8B4djTzMxM+P57icCuVUv0OTER9u6V7YMGSbNe16gGLEEyirxJr7UU6HUksAoY6LnhKBxSUVoNZdNrhfeyatUqPvnkE/r06UP16tVJTExk7ty5ZGVlARqaNHmHO+/cCAxh82a9pVdA+aMFzNGLtYG/IXPtil4ArAksBvzxPr02B13VBX4DunhuOAqHKL12jfDwcCZPnkyDBg3w9/cnvRIW6zcYDPzyyy8AlnIQ5YcOeBuIA/5JxRvZj+Z/b4gY2UYqdgFQgwQTzkE+C2/V66bA70DzUh8tICCA3NxcLl++zOzZs6tEHXl34PLs4JVXXinWgKDo1/Hjx0s9oMcee4xhw4bRoUMHJk2axJw5c1i6dClnzpyxuf+0adNITk62fF28eLHU505JSWH58uX89NNPLFmyxNJsTOGt6IHvEYPEFcoiskbgWaufDwIbKanMh9EokdiXLkFgINx3H4SGwu+/Q04O1K0LbduWZhx9gUHAAeAJvCfiWQPcB8xC/l9Ug0dPUpX1Oj4+ntWrVzN//nzWrFlDrucKeiqcwg/4Gkhy8X1lMTEMFC5rtAE4QkkNufLypDZsfDyEhcGkSaLbGzeKljdvDo0buzoGDbL4ORjYDzyA90y29Yhx9CMQi2rw6Dm8TavBvXqt8B7y8vLIzs7m2rVrPPDAA4SEhHD16lXmzZtHTo7Uh+7c+WZ69z4M5LB8OTj/X18WvdYC1rWDf0J0qSLTqDXAOESz9wJ34z2R2UHA48AKpOG7KiniKZRelx8vvfQS9913H9WqVWPTpk2eHo7LzJ07l+TkZPz9/Xnqqacq6KwmJJvOVd+qtNqmQfToAavXZgEpVGwZPRNwPxKwsgPvmsPWBJ4E1gMnkOj1svH3v/8df39/EhISmD59epmPVxVwuZ7GSy+9xOTJk+3u07RpU+rUqcO1a9cKvZ6Xl0diYiJ16tRx+nzdu3cH4PTp0zRrVryuTEBAAAEBAU4fzx4hISH06NGDzZs3c+jQIS5evMjdd9/t0qqmwWAgIyODrKwsMjMzS/yemZmJn58frVq1olWrVm67Bt/iIPBzKd7XFDiDmAlmQ0ODpKB3AzbZeI8GEcxpwBCr139E/oyK11g3mWDNGjhxQupiT5gAUVESoW2u1T94cGmi+wC2IKuvXZHGAd5S490E3Aw86OmBKKjaeh0REUHXrl3ZuXMnu3fv5vz584wdO7ZY9Is98vLyLHpsS6OtX6tWrRqtW7emRYsW+Lle0F7Bb4gx4Cr1gIsU6LVZMMOANsBuihsd2vzXPgQ6Wb3+AyXptdEIS5ZATIyUfpo0STJoMjJEw0GisV3HhBgyHyPR6N/jPfWycxCDXWXNeBpv02pwr14rvIcmTZpw4MABzp07x5AhQ7j//vv57rvvuHjxIgsXLmTChAnodIsZPDiOhAQ4fhxWrYInnnA0X9UCNYB4CjTY/L02UibkKMUXErWIJn4LNLJ6fYHV+ysKE5Ku3xO4hmi3lpIWPyuWNMRk7+fpgfg8Sq/LD41Gw9ChQ5k9ezZ79+6lc+fOREdHe3pYTmEymdixYwd6vZ6ePXsSGRlZQWf+DriOa3PLakAAYj5DQa1pA9AEmWtfoLj26fK3LUTmtGbmuXh+d/E2Ms/fCayhsLfjSa4BU4HWbjtinTp1GDx4MGvWrGHWrFlMnTq1nCP+vR+XjeyoqCiioqIc7tezZ09u3LjB3r17ufnmmwHYsGEDRqPRIsjOcODAAQDq1q3r6lBdRqvVMmDAAJo2bcqSJUtISkrim2++YfDgwfTp06fQvgaDgfT0dNLT00lLSyM9PZ34+Hj27dtHZmam0+c8cuQIer2e5s2b06hRIyIjI4mIiCAiIkKZJQ6ZQ0mmhG10QCvEAF+LTJrPI7VL70LM13DgE+B9pHSJmRbAqxRefQRIpKQVzd9/hz17ZOI/Zgw0bCiv+/nBU0/BkSPQtKm98ZrN85J4y+rc3mKM6IGznh6EIp+qrNd6vZ7hw4fTvHlzli1bxrVr1/jiiy8YOXIkXboUTrfNy8srptdxcXHs37/fEoHmDIcOHcLPz4+WLVvSsGFDIiIiiIyMpHr16qrPgkNm45pe65HMk1+AZfnvv4wYJfcAk5BJ+LuIZsdbvbcD8H9INJ01iSWe/5df4OhR0Ong3nuhdn4LhqAgePZZOHVKMmhs48hsMQHP29nuKfTIoq7C01RlrVZ4F03zJ55XrlwhPT2d2rVrW6I+T58+zdKlSxkz5hs0Gi13321k9WopsWTfxNYhJus3iMExH3mQr41o9T2IRr6JRA5aN3LrAbxO4SAR8t9fHia2o/uQAYny80bOooxsz6P0unxp0qQJkZGRzJs3j23btllKdXg727dvp27dukyYMIEHHijqF5Qn37i4vw7J5n4DMaAXIfPjesBkYBSycPYa4pVYl3i5Nf99RTNC4ikfArAfaZ6NjNfsg3iDiW3mLO40skGistetW8f169eZOXMmjz/+uFuPX9nQmEzl15N6xIgRXL16lS+//JLc3Fweeughunbtyvz58wHp6jpo0CDmzJlDt27dOHPmDPPnz+e2226jRo0aHDp0iBdeeIH69euzefNmp86ZkpJCeHg4ycnJLnf4Nb9Ho9GQlZXFO++8Q0ZGBgkJCQwcOJDc3FyLGWLLrDaZTKSlpaHT6QgLCyMkJISgoCCqVatGYGCg5bv538nJyRw9epTr16/bHE9oaCiRkZFERkbStm1bmjdvrpqcFWI8UsfOmYmuFlk53IZzomJAogeTkIl4R2wb1n8H3qPopDg2Fr7+WqKyb7sNunVz4pRVAj1SJ+vtErabgO3Ig8xe5P+lL5J+c1NFDNCrKYt+lZXKpNcmk8nyXoD09HTee+890tPTSUpKYsiQIWRkZFj0Wmp/FsZoNJKeno5er7fotVmfrfXa/D0hIYEjR45w48aNYsfSaDSEhYURERFBjRo1uOmmm2jUqFGx/XybfkiNOGfQAtFIqqDj5oyQC+wBUpGJeLsS9nsUSX8srNenT0tdbICxY6F92TMAKwlapHHxcyVsNyLlWL4E/kTKwwxGokxK1fGySuEpvfaEVoNn708K9/LOO++QnZ3NmDFj6NChAyDRnt/nC+HUqbOpXfu8k0fTInqwDam174gsRK8zgMaUrCUjgdW438z2tgAQV1hAySX7DMjn9TVwEom4vAMpR9KwQkbnrfja3Boqv17v3LmTCRMmYDKZ+Pe//83EiRMdv8mDxMbGMnPmTIxGI3fccUehBp/lT3UKLw7aQ4tkn/+GlAdxRBqwDzGMmyPR2ra4BdF1d6NDtLoiM3PcxW+U3HcmB1iKLEJcQPqu3QU8gjQ9LpnHHnuMX3/9lVq1arFjx44qF5XtinaVawjZvHnzePrppxk0aBBarZYxY8bwySefWLbn5uZy4sQJSydef39/1q9fz0cffUR6ejoNGjRgzJgx/OMf/yiX8aWlpXH27FnOnTvH+fPnSUpK4sknnyQtLY2TJ0+Snp7OoUOHCAkJYfXq1RgMBvLy8ixfRqOR6OhounXrRnBwMNWqVePnn3+mfv365OXlkZqaisFgsBRkr1WrFv3797ecPyYmhv79+3P9+nWOHTtGfHw8iYmJJCUlkZWVRWpqKqmpqVy4cIH9+/dTr149+vfvT4sWLZShDUgktbNphzchzbZKEuCi6BChL0oM0p1Xh5TQGE/RLrQmE/z8s3zv0KGwiZ2VBdWqOTmESkkeMLSEbdlIRPtCCv+/HUdSOV9AIuEvAF8hhrcRaWbzOFJGQFFeeLtep6SkcObMGYtep6am8sILLxAXF8fJkydJSEjg5MmThIaGsmLFikJabdbrxo0b07lzZ4KDgwHYtGkT9erVIzc3l5SUFAwGA0aj/F7Wr1+fHj16AGKcx8TEMGjQIK5cucKJEyeIj48nKSmJxMREcnJyLHUJz58/z969e2ncuDEDBgygsetFlasoYTjOMjHTFykD4mzqrR+264WeAU4hER1dEQNgZqE9DAbRa4AePQqb2FVfr42UrNepSET7egrr9VHgI2Sx8lWk9t8M5AFGi0RXPo7z91qFq3i7Viu8n4CAALKzsy2LwYDlvujv70+NGhFIxqIs9EVGypdt7kAyZqo7efZqQB8brx/PP6e5zN8EYKWTx3SFymhggzyyDyhh23XgNuAPCuv1n8B/gC8QXT6I6PVh5L7ZD1ngrVdeg/Z5lF6Xjh49etCnTx9+//133n//fcaOHYu/v7+nh2WT1NRUxo4dS5MmTRg1apQl+r7iCMF5I/sBRA8CXTh20SwQE6IhlxEvphvSH2sv7tdXb4qwdoVgbPtIIOUShyDzZ+vnov1I1tL3SMm/XcjC5AnkvjkUmMK0adPYsGED165dY+7cuQ7LHFVlyjUi2xM46+Jfu3aNb775huzsbHJyckhMTCQxMZF69eoVmtjl5eVx9OhRIiIiCAgIwM/PD39/f/z9/dHr9bRq1arQKuHHH39Menq6zXT1Nm3aMH78eECMkbfeeovg4GA6d+5M586dqV69umVbZmYmSUlJJCUlcfHiRfbt22dpZhYdHc2AAQOUoc0KJJ3EGf6k5Cg9Z9iPRF+vpUBw/JEGA6eRyEER24MHYelS8PeHZ56R5o4gxvYXX8jro0dLvWzvpjmQidyonEGHlGA5iu3o9SlINKQ9ybkVqVFuXZPQnAY6FfgU72mU5n4qewSFqzh7vTExMcyZM8fSpCohIYGkpCQaN25sefgGyM7O5uTJk0RERFh02t/fHz8/P/R6PV26dGHUqFGWfT/99FNycnJs6nXXrl254447AMjMzOTdd98lMjKSzp0706lTJ0Lz/7BNJhMZGRmWRcgLFy5w4MABywJmo0aNLIa2b+v1TAo6nNtDi5R1KksK7VbgH4B19FIQkjK5CYlWk6js7dvh118hOFj02mxcGwzw4YdQo4aUhvL+P8e2SGqns+mdeqA3tntCmIDbkbIu9haKb0WaHVun6uvy3/MP4F94T6M096P0WlEZMZlMvP322+Tl5fHcc88REREBwMaNG9m8eXP+s8oZ4J9kZhr59FPIzobJk6F4y6BApARISBlGtBYpBfWH1WvhwMPIgmYclTMazx4dkcAYZ5sf6xFjY4GNbQZkAXEf9j+nfkh/HWu91iIa/T4lZ+ZUfnxRu6rCNZuj1bOysrj//vt58803PT0km0yePJlNmzYRGBjI5s2bXerV4x6eBz7DselbG5lflyWOdREytzti9VpNZH7/BRXf8LEi6Ix4PalO7q9DGs1/ZGNbBqL/Zyj5c9IgJvguiuu1HpjJk0/u4Pz58wwfPpxnnnmmSj1fek1Etjfz66+/cvbsWdLS0vDz8yMsLIxatWoRFxfH9evXGTt2LK1ataJp06asXbuWwMBAQkJCqFatmuUrICCAkJDCk7fnnpOJgLkmqzm9PSMjo9C+ubm5BAQEkJKSwubNm9myZQtNmzalS5cutG7dmqCgIIKCgqhXrx7t27enX79+bN++nd27dxMbG8v8+fOJjo6mf//+tGzZskr9AjvP7Ui63GVKFm/zw7ojEzsNqen3DSLyocik8XEkQmQokr5uLTo5yKpZFFK39RrZ2bBunWzt16/AxAY4dw7i48Px80v2clOkJVIXawIipuuQyDt7KUM65IHmB2wbF2eQZhSO2Jj/3fr/0yzgXyIrkh84cRxFVcFkMvHzzz9z9uxZMjMz8ff3t+h1TEwMoaGh3HXXXbRs2ZJGjRqxfPlyIiMjLVkyAQEBFs221uCAgABefvllAEvZKGu9Nj/cm7cHBASQmJjIb7/9xsaNG2nRogU333wzzZs3Jzg4mODgYBo0aMBNN91Ev3792Lp1K/v27ePChQvMnj2bRo0a0b9/f5o0aeKjej0B+AsyyS3pYVuH1FJ1ZGLfQCIAZwNXgYj84z+CTPzGUHyCmIFEojVCTO0UUlNh0ybZOnhw4ejro0chLS0MkykFq7USL6QT8lAxMv/nRUhEx2E779Eh0ZPflrB9N841UjbrtXWpFrN2v4lEpPzNieMoFIqKwmg00qlTJ9LT0wvdE0/kd7Vt1aoVEvn7Bnv2ZJORIYEX9YoF7eqAx3BsYl9DtGYeUoe1FhIVOBlYjgQ5FL0nJiMmQFsgAfs1Us3URu4H3kxvpL6sOd18JvBfZHG1JHRIia2PSti+BudS+rfkf7fWa/O9+Hkka+ohJ46jUFQM9erVY/z48cyePZuFCxfy6KOP0tDccMpL+PHHH9mUP5F8+eWXPWBiQ0Gglz00wLM4tv4uIVnRi5D5ej1Eoychz+F/pbheX0cyP7ohC5LOGNkROL+Q5ymGIHPZ7sg1fYB8zhfsvEeH3LfeKGH7fMQUt4cJeZaB4nqdAzzIe+/9wEcfnSQxMZFz585Zel/4Gj4ZkX3+/Hn+85//cPz4cdq2bUtKSgpZWVkEBwdTo0YNwsLCePnll4uZ1O4mLy+P48ePs2/fPs6eLWiQFxQUxMiRI2ndungt5/T0dLZv384ff/xhiSKsW7cu/fv3p1WrVj5okBwA+iMmRdHmLXokNd1RndXjSN3P2PyfzX8S5s68gUijA3vmizy8r1sH27ZJFN/UqWDu/xYfD99+C5mZ0KULjBxZwqE8yqtI8wfrkJtMCpqBRSI1ED9AugOb0SBG/weIeJd07HfcMEYtEsVSNdMgq0IEhSs4c71Hjx7l/fff59y5c7Rp04YbN26QnZ1NaGgoNWrUICIigr/85S/lnnKYk5PD0aNH2bdvHzExMZbXw8LCuPvuu22WEElJSWHr1q3s3bvXEqHdsGFDBgwY4KOG9mZgOLIoaKsTekskmtpendU9wDBkAmw9fdEiJUQMFF90LHoeOfeyZXDggBg0jzxS0Mzs4kWYMwdyc6FvXxg0yMnLq1D+h2QEWZv+acA5CozqXxHz46DVPlokk+kDpD6tLR5CsmfKSiBiLIU62rFSovRaUVW4ceMGH330ERqNhr/85S8EBQVhMi3lk0/GkpRkYvRoE506Wb/D2TqrvyF6k0nBHNp83wtFNMteFLGz5QO9ne+Q0h/WJlcyYoj4I5/FMsQkOWG1jx4pYfhBkfdaMxQJOCkrtRATy88Nx/IufFG7qso15+Tk0KtXL65fv07v3r2ZN2+ep4dkIS4ujiFDhpCamkr37t358ccfPTiab5FgDg3FNVMDjEA0xt7f909IUIiRgjm6Wa9rIIa1PZwtH+jtrAB6IddsJgHRx8D8rwVIBLq1qV0NeBBpQh+ObdpTOJq9NGiAVvz88/vs2rWbBg0a8PDDD5fxmN6Dish2gEajIT4+noyMDJKTk2nYsCEBAQEEBgbStm1bOnToQFCQMwXwy4Zer6d9+/a0b9+epKQk9u/fz/79+0lNTS0UDZiamkpgYCB6vZ7g4GCGDBlC7969LRHaV65c4YcffqBOnToMHDiQli19qQlTJ8TYeB2pvWw2swORaI/XkCiNkriBREZco7j4mkXcUSqJ7Hf9OuzM93eHDy8wsW/cgLlzxcSuX1+2Ocbc3MD8VRE0pMDEvoqsrs5EHjRAom4eQW6EN5BFBA1Se9bRSuBWN41RgzwQ+FatOF9Go9EQFxdHeno6aWlpNGrUCH9/f4KDg2nfvj0dOnTAz6/8H7z8/f3p1KkTnTp1Ij4+nv3793PgwAFSU1OJtCoempKSQkhICFqtlrCwMG677Tb69OljidA2l0lp0KABgwYN8rEa2v2RRbDXkYmiebIdhqQl/gP7dVYvIRESqRTXRSPSRMyRXopeX7woJjZIQ16ziX3tGsyfLyZ28+YwYICDwwHW5njF0YYCE/sCslA4G/kMQKJdnkBKh8QgJZ/0SC1xRwuB2900xiwkS8eZkjIKhcJTmKOxGzZsaHn+OX++E0lJkwkI+J22bU9Z7V0DadA9Dft1Vo8i9bNzKGysmDXalo4XpTxMbE/odWcKjOjjSI+BH5FFV5DnlKeQGrNHkYi9AKSWuKMIz31uGuM1JLrb2ZKNCkX54+/vz1/+8hf+9re/WQL/vCX6dOrUqaSmphIWFsb06dM9PJopSNDemxR+5o5GIrFfxL6JvR1ZNDNSWJfN/3ZkYlvv6048YY53pcDE3of0QltKwf2oEfKZnkQi0C8gGYj9cdwrwlE0tjOYgOP07u3PggVnWbJkCdWrV2fMmDFuOHblwieN7NjYWEJCQggPD6dVq1YW87pZs2bo9Z75SCIiIhg4cCADBgwgJiaG2rULzNd169Zx+fJl7rzzTovpERQUxODBg+nVqxc7duxg165dxMXFMX/+fG6++WaGDx9eIeaOd9ACSVn8GBEVLVJKxJkosO+Q+ntlE0mTCdaulbqqLVtCixbyenq6mNgpKVCrFkyaJDWyHWNAagb+GxHOiohIeQtJZWmEpOBfo/BkPw2JFlmERGaPd+HYzjahcIYTjndRVBkuX75MWFgYRqOxkF43adIErVbrkTFFRUUxdOhQBg4caBmfmeXLl5Oens7IkSOJjo4GsBjaffv2tURoX7x4kVmzZtGnTx9uvfXWKtd1umQ6IhPCOGRC5w90wLnGM58h5kdJJoRzOm5uyAvQuXNByrz1omODBjBuHDj332JE9Npcv7EiJt3PIw2M6wOfIJ+LdVZSEvBe/j5bkYbHzpLpniGiR0wbhULhLWRnZ2M0GqlWrZolK+j4cfk7tc4E3bt3L9CAm276EH//jkiZvWqIljgzkf0vokklzV89FbmnQUoevUvFmST3I+npdZFsmlwK6/VVZIF3FRLFfosLxy6ajVpadIheKyNb4V2MHz+ePXv24Ofnx8qVK3n00UcrJODQHtOnT2f//v1oNBreeOONQgEtnmNo/tc5JPAjGJlzOzORfSv/uzdFVGuRe85DwOcVeN5RyOJjTWQeDYXvYxeAl5E+MiuRklHO4j4/JyzsEjk5OaSkpPDZZ5/5pJHtGRfAg2RmZrJlyxYaN27M5MmTefDBBy31sD1lYluj1WoLRegZjUYuXrxIQkICs2bNYuXKlWRlZVm2BwUFMWjQIJ5//nl69eqFRqNh7969zJw5k4SEBA9cgSepiaSC9MD5VOYZbjnzqVPS2V2ng2HDCl7/+WdISIDq1eG++yDQoVdjvtm8gdQ93UTJXcrdzSVgDjKZvoJts8iATLjHunhsd62ea6iKaY8K2yQnJ7Nz505atGjB5MmTefjhhxk9ejTNmjXzmIltjV6vp1GjRpafc3JyuHLlCnFxcXz99df8+uuvlia9AKGhoYwYMYLnnnvO0tV869atzJ49m+Rkdy72VAbqINFm3XDOxDYhdfvKHkm3fz/ExkJAQOGyIcuWQWqqLDpOnOjMoqO5/NTniF6vpeQu5e7mFBKB/S/EtLZlZhiQ0lCu1j21V4rLFUw4Z3gpFIqK4uDBg7z77rssXrwYkOeiCxckPVrqY0NGRgbHjh0DoEuXLogm9EEi1Zz5m85AaoG6y2R1B3pEs+chGYeLgeIlHMuHw0i5pjeRhUJbn4sRich+wcVj28s6dQWl1wrv5V//+he1a9cmKSmJRYsWFZpbVzRpaWksX74cgMGDBzN69GiPjcU2TYC+QBecM7GvIPPXis5UsYceed5fhgTRfYv75qaO+CP/fP9GtNqWXpuA9ZRcC7skSio5Uhr8ePXVV9FoNJw7d46lS5e68diVA887AeVEdnY2p06d4qeffuL1119n0qRJ9OrVizvuuIPU1FSioqKYMGFCIRPCG9FqtTz++ON07doVkAiJzz77jL1792I0FqzqBAUFMXToUO677z6Cg4O5evUqM2bMsExEFSURQ1lXHw0GicYG6NlT6mObGTFC0tPvvx8nGzz6AXOBf+b/3BuJzuhapjE6jzM3sTyknMtuF447oXTDsXnugQ73UlQusrKyOH78OD/++CP/+Mc/GD9+PD169ODee+8lOzubxo0bM27cuEKZKt6Iv78/Tz31FB06dMBkMrF9+3Y+//xzDh8+jHU7itDQUO68807GjRtHQEAAMTExzJgxo1CvBEVRsnBHY5isLPjtN/n3gAFg3Qpj9Gho1szZRUeQ2rArkEY7IJEwOym59rS7ccYkygNWA678bt1TuuHYPPetbjqWQqFwB4mJiQD5dbBN/P777xiNRmrVqmWJKrx69Sp6vZ66detSt66j5ru2iEdKingT1ZEGtePyfx6D1CqtXkHnd0avDUhAiSuBSLeXbjjFMKL0WuGtBAUFMWHCBPR6PT/88AMPPPCApfdMRbNq1Sp69OjBqFGj+OSTTzwyBvdyCe+KxAYpibITKSeoQQIyzlJxi23O6LURyRTNcrSjFe7yMDRAX2666Sa6dZMAmg8++MBjfxOeoso2e2zdujU5OTnF/kM1Gg133nknL7zwAk2aNPHQKEvHhQsXWLFihSXSulatWtxzzz1ERUUV2i81NZXFixdbIiz69evHgAEDvCKC0fuogXRRLz07dsAvv4gh8swzEuVXevTAnUg6uDUbAEcdxyqyjpQG+AuSmukMeUAUUlu7LOesjjTlrFaG43gvVaU5i7OYr7dVq1bk5OQUWpwD8PPz4+677+b5558v5cO05zh58iSrV6+2RFrXq1ePcePGER5eeDU+MTGRRYsWceXKFTQaDUOHDqVHjx4+2AjSEQZkAlu2tLz162HrVqhZUxrylq2iiw54nOIpjwuQRoz2qOi6f+8jNRKdIRXJcCqLEaVFylSdpqrGTPiqXvvK9VZFYmNj+eabbzAYDNx+++2cPHmSU6ek/vVtt91meSAGLCnLNWvWLMWZruG+SGF3oUVKQL1W5PWPkVJN3sRc4D4n941FIhXLcj/RIdGbrgSoVB58Ubuq6jUvXryYv/zlL5hMJsaOHcv//ve/Cj3/iRMnWLBggSXQ0NsDbJzjT6TEnzdhznacWuT1V5GMGm+yL39BAlmcwR2ftQ5pHrwCgGPHjnHHHXdgMBh4/fXXmTx5chmP71lc0a6q+XQBpKenAxL51qxZMwYOHMiTTz7J9OnTeffddyudiQ3QqFEjnnzySYYPH05gYCBpaWmEhhYvoREaGsqDDz5Iz549AdiyZQsLFiwoVJJEYeZOylIq/uBBWJffLPzWWzUEBEBaGhwvdVnQPCSN5pLVayYkTag/Bd2Di6JFTJ6KKo9jQsTYWfTAN07uZ8tZ0iDXOJeqamL7MhkZGWg0GsLDw2nZsiVDhgzhmWeeYfr06bz11luVzsQGaNmyJU8//TQDBw7E39+fjIwMgoODi+0XGRnJlClT6NixIyaTiV9++YUlS5Z4NG3SO9EhkRmld5537hQTG2DwYA06HSQmwrlzpT2iAUk/tC4LY0KaEHei5CmWDqldWJG4clMKRVI5HaHF9jVqkeyi70vYrlAoKpqsrCwWLVqEwWAgOjqarVu3curUKfR6PaNHjyYqKoo//vjDsr+/v38pTWyQwIWbcM/fv4aS576uYI6es16gMwD9kPJ39vS6ouvfupJBE43z6e22Pkcdkl30nQvnVCg8w9ixY7n33nsBMbU/+uijCjt3YmIizz33HCkpKfTq1auKmNggzcMdNQF3FnfpNcCHFDasc5EMlFqUrNd6RBMrkssu7NseaexrD3v3TT0ShFkwR2/Tpg39+/cH4PPPP/epqOwqG5E9f/58unfvToMGDapk08PMzEzi4+Np2LAhACaTia1bt9KpU6dC5vahQ4dYsWIFeXl5REZGcu+991KrlqMO2L7EHlxrqlKAORIb4KabYPToILTaDBYtgiNHoF8/GFjqDJKvgEeQFMP3kfp61mgpuFnkIZEvi/Pft4CKqUvYEtcbLy5CIhiTKDCkDEiN3P8gNc6fROpTQUHUYlukoZmjqPTKTVWNoCgJ8/UuXLiQ7t27Ex0d7RW9CtxNWloaycnJ1MvvKmgwGNi2bRtdu3a1NKwxmUz88ccfrF27FqPRSJ06dRg/fjwRERGeHLqXsYbSpFGbTLBhA/z+u/zco4eGYcOCgHRmz4bz56UMVPfupR3XMuAOpOfChxTvSq5DdEyLaHNjYDnSLGYDFVOXsA/wu4vv+QqJ4k6nsF6HIZEy9YBnkPR86wjzLsB0Kq5euGfwVb32leutSphMJhYvXsyRI0cIDAzEYDCQk5NDREQE48aN4+zZs6xfvx6AKVOm0KBBAzecdRau1+e3hQ4JYEh3w7EAtgM3I5HYnwIXbZzPWq/bInptLkVSEXo9BpnTO4sJaUr2GpBNYb2ugfxfGBE9P0Nhve4LfIlcZ9XEF7Wrql/zgw8+yObNm9Fqtfz3v/+tkEZ3jz32GL/++isRERHs2LGDatWqUmDVe8A0yt6M0NygMaPMIxLOIMb1+8i8Mz7/dbOGFdXr7oh2dkeayruvuWLJPAd85ML+RuDvSENkIwXGtQGZVy9AmitPQ0xy87VqgGGIXhcujRwTE8OgQYPIzc3lb3/7G1OnFo1krzy4ol1VzzHI5/bbb6+Swm0mMDDQYmKDpBX89ttvbN26lTFjxtCyZUsAbrrpJqKiovjxxx9JTExk5syZjB49mrZtq+6ExTW6IsX8X8XZVO/ipog0eNRoMjh+/O8cObIArfYsbdqUdkxaIA1ZsZtO8ZU5LSJ8XZGIlxFIh10/oDnSIPIK5W9ml+YmdQ8SBb8YqX1lRK5hEgUNOncDB4Bd+ds7Aj1x3wqvwtsYNmxYldbrkJAQQqyKMe/bt48NGzawa9cuxo0bR6NGjdBoNHTr1o3atWuzcOFC4uLi+Oqrr7jnnnto2tRdzVIrOyOQCePHTr/DaITVq2HvXvl54EDo29eERpPB3r3TOH/+e/z8LpJ/yywlqcC9wE82tukQHesJtEO0enj+69ORyfYNyt8cKU1G1mNIiZQfgH2IBt8CjKegQedhRKsPWG3vUsaxKhQKd7J//36OHDmCRqMhMDCQxMREateuzb333ssvv/zC8fw0wk6dOlGnTh03nfUB4FdEP8oSM2VA5rMzkAf4/WUcVxKiwZspbnKYDeC+SJTiPUjdaA3SXLc3YhSXt167enwN8DckUOR7xHDXIwuYd1FQV/ZO5LqPIs8MvanKBrai6vL1118zatQojh07xquvvkq9evXo0aNHuZ1v27ZtlsW+J598soqZ2CBNZtcjfbnKYv4agQDgf0gAWqlT1PO5CowFDhYZl9nE1iIZ660RL6E7oofzKCj3Ud5mdraL+2uBd5DPfC7SvD0ACda7Hbmuvsj8ez1i5vsj9bVtPw82bNiQiRMncvLkSbKysjAYDOjKVjuxUlBlI7Kr6gpkSVy+fJk1a9Zw+fJlNBoNt956K3379rXUWc3IyGDRokWcy8+h7tOnDwMHDlR1sy3MR1LzrCOM9RQ1g4uaIoMGQZ8+oNFIE7HPPx9Hamob+vTJZPDg/1L6yfvTSAqkPTRIRHlR0+AK8ASwkoIVPBNiPORYvVbWiXhpIrIV9vA1/fK16zVz7tw51qxZQ3x8PFqtlhEjRtC1a1eLXicnJ7Nw4UKLng8ZMoSePXuqutmA6NcMJIPjgtXrxfU6Lw+WLIGjR0Wjb78d8vsmk5ICn3/+ANnZTRg2LImePcvSsGcqYrCUpPea/PGdpHgjyDOI+fCb1b4mpPRIptV+ZZ2I90MMDIW78DX98rXrrUokJiayeLFE+MbGxqLX67nrrrvYsGEDCQkJ6HQ6RowYwc033+zm+4wB+CD/K87qdR2uz0F3Iwtl0xD9Ly1TKIhQtoUWmS/HULykyCFkfr0j/2ezXocgASjm6MCy6LUGaUj5QxmOobDGF7XLF645OTmZESNGEBsbS2hoKOvWrXPjQlwBBoOBgQMHcuHCBVq1asUv5nTsKkcO8DaSqWLdXL00PV0uAA2Ahyl92SINYmIvoeT7hbn000XEDLZmG5LlfYiCYDh367UWCTz0fNPPnJwcPvnkE9LS0or1vKhMqBrZPki9evWYMmUK3bp1w2QysWHDBhYuXEhOjtSCCwoK4v7776dXr14AbN26lR9++IHsbFdXkaoqE4FjiDG8HEn3/hDrKOC8PFi8WExsjQbuvBP69pV/g9TKTk3NpkaNGvTv/xYyWS4N4UhUtaM/Tx2265jWzb+G88BMJHpxJRL1twxZoeyCrO6V9oFFR1Uv86FQlBdNmjThscceo3379hiNRlavXs3KlSvJyxMjNjw8nIceeojOnTtjMpn49ddfWbp0qWW7b6NBjISziJmwDNiCZNUUaGZ2NsybJya2Tgf33FNgYptMsGYNZGfnUa9ePbp3/xCJVCsNjRG9tTfJN0+UZ9jY1gyJuDiRv/0TJIrxBhJZNxDoTFlqg8vn4q5O6QqForIRGRnJbbfdRlycmMktW7Zk2bJlJCQkEB4ezpQpUwotproPHdIY/CKi08uQ0h6P43pSsHls/0YyXFxFi2QyLsS+cWFEMg5n29h2EzL+Q0hGzafIAmEiot/98vcpCyYkwlChUNgjPDycefPmUb16dVq2bMmKFSssvoe7WLVqFX379uXChQvo9Xreffddtx7fu/AH/oUExG1A5rZ/AHfj+hzUXP50JhL45irmvjhLsb/oaUDKjdgqxdQbyRbcjZQl+RzJBo9HFld7I5mSZcGIt+i1v7+/pVb2L7/8wo0bNzw7oApAGdlVCJ1Ox2233cbIkSPR6XQcO3aMmTNnkpiYCIBWq2Xo0KGMGTMGvV7PyZMn+fbbb0lOTnZwZF9Bg9TNG4mkEj6IuSGXLVPk5psL3nn+vDlKux4jR47Mr8seRumq90xFGik6WiHMQ2pOl0RDZCX0GaSjeSfErFmPCLs5Ors0GCjeSVihUDiLn58fY8aMYciQIWg0Gvbt28fs2bNJTU0FQK/XM3LkSG6//Xa0Wi2HDh1izpw5lkbGCi3QAynV0Rcxt2WinZ4Os2dLE0d/f5g0CayraR09CsePa9Bqoxk5cmR+ZlIYpZsSPQDEOrGfAfsRdi2RUh5PI/UFWyALrJsQ06QsGTQapOeCQqHwJa5duwZIpNbSpUsxGo20bt2asLAwcnNzadasGY8//rilf0P5oUd0ehRiQj+Fa5oWhKSOg+hZUCnGYARuQyLxHGECfrSzvQNyz3kKSEHm248DW5GyHmUhCLivjMdQKHyDJk2a8PPPP9O9e3diY2NZvHgxRmPZS0mkpKTw3nvv8fTTTxMbG4ufnx9Tp06lU6dOZR+01xOA+CAjkcW/Z3FNr2shQXUg8+rSmuA341yZVC22S/uZj3UL4llMRXrY1EP6BeygbKVPNMi1jizDMdxLly5duHDhAnPmzOGf//ynp4dT7igjuwrSpUsXJk+eTGhoKPHx8SQlJRXa3qFDByZPnkxISAhXr17l66+/JjbWmQdxXyMUWERGhtauKWIwwIoVGqABXbuOoFEjcwF+V1K5zJEmLyD1R50lHcdm9J9InbyT+T/nIZ1/i+KX/2Uejz15+AcykVcoFKVFo9HQu3dvJk2aRLVq1bhy5YrFyDZvv+WWWyzbY2JimDlzJtevX/fgqL2VusAskpPh228hNhaCgmDyZLAuMZ6dDWvWaIDW9O17m1XX+VCcnxKZ9/s3oq3O4syi8TYk2yUm/2d36PWHuK8jvUKhqAzs3buX6dOns379elatWkVCQgJhYWGMHDmS4cOH89BDDzFp0iRLw+GKpS3O9zrQA5ORdHAz4bim11qkea0rkYFJjndhJWJiXM3/OZeS9do6sMXW2K0jGENtbFcoFLaoW7cuEyZMQK/Xs2/fPp599lkMhtIt/hsMBn7//Xc+/fRT0tLSiIyMpGvXrqxevZqXXnrJzSOvLPRDnvudQYeU87DWu+ounEub/94FQE2c03kjkhXjiFnIIqF5X1t6raG4XtvKVDIb9HMpmIt7Hp1OR8eOHcnNzWXt2rWWksJVFWVkV1EaNGjAY489xt13302zZs2Kba9fvz6PPPIItWvXJi0tjVmzZnH+/PmKH6iXk5HRjzlzHivRFAGJ0B4xQk+DBg8xZMgQqy0jO2RHHQAAM4dJREFUcb7h4iAk3eUDwJX6XjVxXB7kWaTRl6Ob+gPA80iDhFNICRLzxNq8mhqJPHy84cIYFQqFPZo3b85jjz3G2LFjiY6OLra9WbNmPPzww0RERJCUlMS3337LlStXPDBS7yYl5Q5mzRpPQgKEh8OUKVD04/T3hxEjAmnceDJ9+/a12jIa5/X6LiSrZRoFUSfO4GhfE/AootX2Ioq0+fu9gEShHAZ65W+z1uu6SHr8My6MUaFQVGYyMjJYvHgxK1euJDU1lZ9//plDhw5x/fp1BgwYYDGuGzVq5OE+Oc8gi4GOiASKRpaNwvm6pg8hpQMfxfn5tRbHi395+ccE+wElAYix8zKwBklz72R1HvP/QSMkjX6Ck2NUKBRmGjRowPDhw1mzZg2rVq1i7NixzJkzh7Q0ZzIwhF27djF8+HBWr15Nbm4ujRs3ZsmSJSxevJiWZesIXgV4E/EIHNEYmZtaczfOW47PIx7EWGQO64zO63Cs16lIBo0jwpDMyL8BG5ESK+ZsIGu9bomUARxa9AAe55lnnqFWrVrk5uby5ptveno45Ypq9uhDJCUlce7cObp0KWgOmJ2dzQ8//MC5c+fQ6/Xcc889tGrVyoOj9B4yMzOZM2cOV678j5CQMzz4oImoqJL2DsJkuopGE1Lk9V5IfamSDBI90oH2OIUN6SGIgNozn3VIasx7dvY5CTjz/6lHBP6jIq+fQYQ6A2gC3EFB93OFu/E1/fK163WFq1evEh8fT/v27S2vpaenM2/ePGJjYwkICGDixIlWGSC+TUpKCrNmfUdi4n+IiLjK5MkmwsNL2rsWJtMlNBrrKAojopXnKFl39Uha/Bar10xIdspR7JsZWkSr7UX0bMO5CG8t8BZipFtzBLlv5CDXMozSlbdSOIOv6ZevXW9l5NixY6xatYrU1FQuXrwISLRiTEwMYWFhdOnShSlTpnhJo3cDMq+8jH2zohViRFvPkbOQRmKJdt6rQxYdrUvw5eW/L87mOwozB7jfzvYlwBgnjgMSZf1wkdf2IppvQO4hA1HxZeWDL2qXL14zwD//+U/mzp1r+Vmv19OsWTP69OnD2LFjadOmTbH3GAwG3njjDebNm0deXh7Nmzfngw8+oEOHDqrJuoUMIBoppWRvrtsfKYlnTQJSfinTznt1SOkP695facjiozMlFdcic96S+BJZUHTG9lxB4b45JkSr9+b/3AWZq3vv78acOXP4v//7P3Q6HatWrbL5e++tqGaPimJkZ2czd+5cVqxYwcaNGzGvXwQEBDBp0iRat25NXl4eP/74I4cOHfLwaD1Pamoqc+fO5cqVIwQHny5mYmdkwNy5kr6e/woazXwbR/oBqZ9ky0zQIyt/yyguhq9gf2KvQQzlJx1cyS4H283kIbX9itIMubG8hKyoKhNboShvUlNT+f7771m8eDG7dhX8DQcHB/Pggw/SuHFji6afPHnSzpF8g6SkJGbPnk1i4mGqV48rZmInJ0vN7IQE8yvX0GhWFzmKFtHiknob6JAJdVGd1yApl/YmxzoktfIhB1eyE+dqCRrz9y1KOySS5EXgdpSJrVD4Dn/88Qc//vgjV69e5dSpU0RERBAUFMT58+dp0KABtWvXpkmTJnhP/NIapAmko4i7ExTXu2qI2VAN25qpQ/oMfFnkdT3FFwBtvbcBcI+D/XbhXEq5Htt6fTOSMfkCMBj1SK5QlJ0333yTf//733Tv3p2goCDy8vI4ceIE33zzDY8++ihffvklGzZsICYmhpycHE6ePMnQoUOZPXs2eXl5NG7cmE8//ZSbbrpJmdiFWICUx3N0/9iMRFRbUwNZUNRjW6/NjXj/U+T1EOA57BvGeqA9EgBoD2fn134U12sNYlw/l//V18GYPM+kSZOoX78+BoOBf/3rX54eTrmh7po+gr+/Px07dgRg8+bNrF692tIMQa/XM27cODp27IjRaGTJkiXs3r3bk8P1KCdPnmT69OnExsYSFHSRBx+kkImdmAjffANnzsCSJSAfowaZlBelIbKC9ygQaPW6PxLpsRewtUo2COmIrqG4GaFDJu8rkRQee7jS8KIszcQUCoW7CAkJsaye//zzz2zYsKHY4mPLli3Jy8vjhx9+4PDhw54crkc5fPgwX375JQkJCYSHX2TyZF0hEzsuDmbOlB4Hy5eDfIx6bOt1O0ST76Pwol0Q0shrD9I4tyj3IhHS5mNbo0PM8V+QFHl7KL1WKBSuk5SUxJo1a7hw4QLXrl2jcePGXLt2DaPRSIsWLWjQoAGPPPIIgwYNQqdztfFWefEzzi226YGiC48g2TG7kaho62sKR8zhHYiBUpRnEAMZihsbWiT4ZB0yz7aHK3pd9uZzCoXCOSZOnMiPP/7I4cOH+fbbbxk1ahTR0dE0bNiQuLg4tmzZwttvv81NN93EnXfeyZkzZ9DpdEyaNInffvutUkWvVhxrcM421CDR0UW5DYlqHkFhE7gmEgyyEQi28b43KCi3ZK3X5tKnjZF7iaOxGXEuGtu8b+VGp9PxwgtS4mXXrl3s3bvXwTsqJypcx0fQaDT079+f4OBgVq9ezZ49e0hLS+Puu+/G398frVbL6NGjqVatGrt27WLNmjVkZmbSr18/n1mRzMvLY/369ezcuQnIpk6dxowd25maNVdiNg0uXoQFCyQiu3p1GD8eJEPTRMmd0OsAXyBp5cfy922J/eYHRqRe3pPIZPwokkpZE4nqexLHJjYU1OFzhB6JDlEoFJ5Go9EwYsQIQkJC2LBhA1u2bCElJYU777wTnU6Hn58f48ePZ/ny5Rw6dIglS5aQlZXFLbfc4umhVxjZ2dn8/PPPHDiwA8ihYcNWjBnTmvDwgpJMp0/DwoWQkyOLkXffDXI7MyEpjrZoAnyHNEg8gUyO21C40VhR8hAT/FEkSu8EUt6jTv5rT+BcLe2OOGdQ63Be2xUKRVWnevXq1K5dm5MnT1pKiTRq1Ihq1arRu3dv+vfvj17v6Uc+E3AdyAaikFR1Z9BQsl63A37MP+5pJJquHfZN6GzEBE9GjPDTiO42QDIQH8G2AV6Ujthu7FgUQ/6+CoWiItHpdAwcOJCBAwcCUp7v9OnTnDx5kr1795KVlQVArVq1+PDDD+ndu7cnh+tlmIBryPy2FqLXzhi8WkrW9luQILwrwAWkf0B77Ge2ZCF1qE1IMMm5/HE0R0qiPoRzzXE7IT3AHJFLVdHrMWPG8MUXX3DmzBlmz57NzTdXPZ/H07MaRQXTtWtXgoKCWLJkCcePH+fbb79l4sSJhIWFodFoGD58OIGBgWzatImNGzeSlZXF0KFDq7yZff36dRYv/j/i4tYAF+jRAwYP1qLXd8dsLBw9KhHYeXnSQGziRAixeBvmWtf2CEFE3BGrEePjEmJYaJAbSSOk67orjQU65p9zL/ZvQHk4LlOiUCgqCo1GQ79+/SyLjwcOHCApKYnx48cTFBSETqfjrrvuolq1auzevZvVq1eTlZVFnz59qrxex8ZeZvHiV0lMXI9GE0v//tCvnx9a7c2Y+xHs3QurV0vGTJMmsuhYrZC34ai2eHWguxOjmY80p4mnIFrEgNR1nQX0cPKqQNLLGyLp9vYiR4wUNBlTKBS+zrZt24iLi6NFixbcfvvt7Nu3D4PBwOjRo202EK5YDMji4EdIHX+QDMV2OBchZ8Bx4EbN/C9HfA78HTGxrfW6M1ITu30J77PFWKSUU7KD/fyRZuoKhcKTBAcH07FjRzp27Mgdd9zBqlWrSExM5IEHHiAwMNDxAXyCbGAG8AnSJwskq7AJopmOgi2c0eu6ONf8/N/5XxmIz2LKP34fRK+bODiGNQ/iuGwrSObkXS4c17t5/fXXWbBgATVq1ODatWvUqlXL00NyK6rZo49y8eJFfvjhB9LT02nTpg3jx48vtH3nzp2sXSupIWbB9/NzphZc5cJkMrF//35+/vlFcnM3ExSkYfRoEwXNiXWYTAZ27IB16yQtvVUrGDMG/IuVi96Jc8aHPWYgJnZJaJHVzNtcOOZW4FZEvG0JuAaZZM9y4ZiK8sDX9MvXrre0nD59mkWLFpGdnU3Xrl254447LNtMJhMbN25kyxZpQNijRw+GDBniRenj7sNkMrFjx3Z+++1ZDIZ9hIdruPtuEwX9LkWvf/sNtuaX/O/YEUaOhOIfx2mkB0BZeAN4rYRtWiTKZCMS/ecsK4FR+f8uaXr2V+BdF46pKA98Tb987Xq9nRs3brBy5UqaNGnCunXr0Gg0DBs2jJ49e5KSkkJQUJAXRGHnIrWmlyNzTWtNc8YUAdHRKzgXJW2Pp5DsSFvokBJSO4G2LhzzO2CKg33+h/0mv4ryxhe1yxevWVFWMpDSH7/n/2yt11qci8gOR5rpOirN5Ih7gMUlbNMjhvMeJJPGWd5FzGx7OGryW/lYuHAhR48eten3eSOq2aPCIQ0aNODRRx+lZcuWhUwRMz169OCuu+5Cq9Vy8OBBvvrqK65eveqBkZYfWVlZLF68mBUr3iE3dzNNm8LUqdYmNpgn2efPi4ndrZtE9hU2sXVIJF23Mo7oN+yb2CA3kSk4l85opg9SPyoi/2dzswVztPfjwNcujVShUFQczZs35+GHH6ZVq1YMGVK4oYlGo2HgwIEMGybdunfu3Mm3335LYmKiJ4ZabqSlpfH999/z669vYTDso00beOIJaxMbwIDBABcuyE8DBsDo0UVNbC0wibKb2D9QsokNotW5wMM4X5cPpFP6QgpSJc16rc3/96vAO64OVqFQVCEyMjKYO3cuu3fv5sMPP+TEiRMEBQXRo4dkgISFhXmBiQ2y2Lci/99FddAZE1uD1LMuq4n9PiWb2OaxZCBmtys8hGRKBiJjtZ5b+wP/RZrvKhQKhbfzPBL8ZqK4XjtbN/rvlN3EfoGSTWyQzMtEJKjDFf6KNJT0Q+bU1nodCHxDVTOxAW699VY0Gg3btm2zBD1VFVREtqIQ58+fp1GjRpbU9LNnz7JkyRLS0tLQarV06NCBXr16Ubt2bQ+PtPRkZ2fzxx9/sGPHDtLT09Fqv2LgwDh69zZRUkZ+Tg4cOwY33aRDozFPvs3RJH2RKLpw2292ingkpTzLyf1/Au528Rw5+e9bj6QONUdM8YYuHkdRXviafvna9boTk8nEhQsXaNy4seW1Y8eOsXz5crKystDr9XTq1IlevXoRGemoyaD3kpmZyc6dO9m1axdZWZno9R8xfHgKN99MiXqdkSHNHdu102MuNSImcB4FRnFZJtpnkNIhzjZc/B1ZUHSFDMQs/x0Zd1vENKnj4nEU5YWv6ZevXa+3cvXqVRYtWsShQ4e4cOECQUFB+Pv706ZNGx5//HHq1nWmHn9FkImkjzsqvWHGll5PBmZSvCmjK+xBAk2cfdw9jui7K6QAc5Ga2yakVMmDOG7wq6gIfFG7fPGaFWXhOhCN84Fy1hk1Zr1+GekHVpbyhr8Cw5zcVw9cRmp4u0ICkoV+EDG0uyNN3p2ptV05efnll/npp59o1KgRmzZt8vRw7OKKdnnDcr3CSzhw4ADLli2jU6dOlqZiTZs2ZerUqaxYsYITJ05w8OBBDh48SIsWLejdu3ch09ubMZlMXLp0iWPHjrF//34yM6VxTI0aGu6++wr16hXePz4ejhyB/v3FLPH3h44dQ4B7kcjpPKSW3lSkzEdZ0/i/xXkTW4+smLpqZPsjnX8nONpRoVB4Odu3b2fdunX07NmTIUOGoNVqadOmDdHR0Sxbtoxz586xZ88e9u7dS5s2bejduzf1igqdl2I0GomJieHo0aMcPHiQ7OxsAOrUyebuu1MoWuItNlayZnr1kp+DgqBdu/pAf0QrjUgz26eAQZRtkg1SZ9XZ6BRd/hhcNbKDkIVGR2nrCoXCFzCZTOzatYvVq1dz7Ngxrl69ip+fn0X7R40a5UUmNshc2VkTuwPQAvgDMRZ6I31belF2vf4Q17JituO6kR2G3F9cjehWKBQKb2AFBQuJ9jDrcyhwGPEkbkW0r4sbxuFK2bw85J5xu4vnqIGvlXu67777WLJkCefPn2f+/PlMnDjR00NyC8rIVljIy8tDq9UWayoWHBzMhAkTiI2NZdu2bRw9epRTp05x6tQp6tWrR+/evWndujVarXdVqjGbIceOHePYsWOkpKRYttWoUYN+/frRoUMeWu3rVu+BHTtg40Zp6litGvSw9OrKQFIIy8O4n+PCvuZmBwqFwlcxGEQDduzYQWJiImPGjMHf35/w8HAeeOABYmJi2LZtGydPnuTo0aMcPXqUxo0b07t3b5o3b+51C5AGg4Hz589z9OhRjh8/Tnp6umVb7dq16d+/P23axKDRFExy8/Jg82bYtk20OzQUOnQwb80Evi+n0c7FNWNE6bVCoSg95lJ4f/zxB0ePHiU7OxutVkuTJk3o0KEDY8eOpX79+p4eZhFcKW+Vh2QMups8YJGL71F6rVAofI1ExKR2pH9GpDTH6nIYw3Vgg4vvUXrtDJ06daJ37978/vvvfPTRR4wdOxb/4s3eKh3KyFZY6Nq1K9WrV2fRokVcuHCBmTNnMnHiRGrWlE7g0dHR3HPPPSQmJrJjxw7279/P5cuXWbhwIZGRkfTs2ZN27doRFBTksWuwZ4YEBATQsmVL2rVrR8uWLfON94uW7devw7JlcOmS/NyiBbQt1POlOuVjYoOIt7MYKNxZPRdYijSKPIGkzI9AosVdaVqjUCgqC/369SMyMpJly5Zx4sQJvv32WyZMmEB4eDgajYZGjRrRqFEjrl27xvbt2zl06BDnz5/n/Pnz1KpVi169etG6dWuqVStrLbvSk5eXx5kzZzh27BgnTpywZMoABAYG0rp1a9q1a0ezZs3yjfeC7VeuwNKlcO2a/Ny+PTQrVPa6ZjmO/IYL+xbV60yktMnXwHkk8no00h+hqVtGp1AoqhZarZZ9+/Zx+PBhAIKDg2nbti19+vThtttuIyAgwMMjtEWUk/tpgPIqV5iGaz1lANoVef/3SNbkZSTyehzwGFA5MpwUCoXCMVE4ZwrrKD+9TijFe6z1OgkpGTIHuIZEXk9EetU4ez+qurzxxhsMGzaMa9eu8f777zNt2jRPD6nMqBrZimJcu3aN+fPnc+PGDapVq8a4ceNo2rT4A3Z6ejq7d+9m9+7dFgNCo9FQr149mjdvTosWLahbt265R2qnpqZy6dIlTpw4YdMMadWqFW3btqVp06Y2m98YjT3YuXM3GzaYyMuDgAAYPhw6dbKuwaoHnkZSFMuDtsAxJ/cNQIzvEESohyJ1nmzVq/oP8De3jlRRfviafvna9ZYHly5dYsGCBaSnpxMSEsKECRNslhBJTk5m165d7Nmzh5ycHEDMkQYNGlj0unbt2uUaqW0ymUhJSeHixYscP36ckydPWsYCYs60adOGtm3b0qhRI3S6oiWbjBgMzdmy5Ry//y5R2MHBcPvtRRcdtcBbQHlN0mri/IS7BtLBXY8Y14ORGtvWHeB1SIT3V8iEW1EZ8DX98rXr9RYSExNZvHgxZ86cwWg00qJFC+Lj4xk5ciQdClJQvJBspEZ2khP7zqR8tC8XWSx0JmUepKTIMcRcP4LotbnRvflx2dwg7AfgLreNVFF++KJ2+eI1K8pCEqLX2U7suxK4oxzGEI9r9a4HABvz/70TCeIzl7My67UWaeS4AhhY9iFWcv7617+ycOFCAgMD2bJlC1FR3mfwu6JdyshW2CQ9PZ0ffviBixcvotVqee655wgPt93MMCcnh/3797Nv3z6uXr1aaFtQUBDNmjWjRYsWNGvWjODg4DKNKysri9jYWC5fvmz5bl0yBMQMad26NW3btqVx48Y2zJDCLF36CgcPSrp68+Zw551Q+FI1SBrNn0gNv/LgbeD/cK7u6gdIR18D0sDmEPYn6bOQpjNmDEgzm3SgPtLcQeEN+Jp++dr1lhc3btxgwYIFXL16lYCAAF544YUSI62zsrLYs2cP+/fvJyGhsBkbEhJiMbWbNm1KYGBgmcaVkZFh0WmzZqelpRXaJywszGJeN2jQwOHC5/ffT+H06e8AaNcObrtNzOwCtIhxcQbXG8A4y3PAFzhnjsxDIkIykcjsGDvv0yAPCNb1/nIRYyUbaET5XZPCVXxNv3ztej3NhQsXLH0Crl69Sp06dRg5ciRt2rQhKyvLo9k0zvMWMrct6VFThyz2nUN0uzy4Fylb4oxe/4IEhyQgASYJ2I5S1CBj3wL0tHo9G9HrPCTDRjV79AZ8Ubt88ZoVZeUZZG5bkhehQ3TtGGXvDVYSA5C+Mo6iwzXALuAWJEjkJsTXsDV2LdInbD/Q2ur1DCST3Yj4O1X/7yQzM5MePXqQnJzMsGHDmDFjhqeHVAxlZCvhdgt5eXmsWbOGgIAAhg1zroNsSkoKp0+f5vTp05w5c8bSpAskWrtu3bo0b96cWrVqodVq0el0aLXaYl/m13Nycrhy5YrFCClqvJiPGxUVRZMmTWjTpg0NGzZ0KQr84sWLzJv3CEOH/krnzjo0Gmvx1CNiuRgY6fQxXecqcnPIwr6ZPRJYlj+m1Ti3ItoQeUgwAp8AH2FdUkUm7f8A+ro4ZoW78TX98rXrLU+ys7NZvnw50dHR9OnjXGPBpKQkTp8+zalTpzh37hy5uQUp2BqNhvr169OiRQtq1KhhU6eLanh2dnahRcakpOKReFqtllq1atG0aVPatm1LvXr1XIoCP3HiOMuXP8Ltt2+jXTvrLBQQvfYHfgb6OX1M1zmJpDMasF8r+zGk5BPAdzhu3KgFOgN7kHvBf4HPkMwb8/Y7EWPIHU11FGXB1/TL167Xk1y8eJEZM2awY8cOcnNzqVGjBp988gkNGjTw9NBcxADcDyygcNYg+T+HITVRO5XjGHYhZrOjx93Xgdfy//0f4O/Yn4/rgOHAKiAFeAf4koLSU3rgHkSvW9t4v6Ki8EXt8sVrVpSVbGAUsqBnnTUIond1gM1As+JvdRvOehtfAY/m//tFxN+wZ37rkaC+mcic+m3gG8T8Bsl2vw/4JxI0UnWZMWMG7733Hh06dGDWrFlUr17d00MqhDKylXC7FZPJZDEarl+/ztatWxk6dKjDWtgGg4FLly5ZjJK4uDi3jCciIoLo6Gjq1atHvXr1qFu3rksF6xMTE7ly5Qrt2hXUVcrOziYgYBti8q5GxLsaMAmJfm5n40ju5jdEvPOwHTkyEWkyZjbp70Ki95ypafUrIvKrKT6ZN6e1fw9McHnUCvfha/rla9dbEVjr9cWLFzl8+DCDBg1yWEM1Ly+PmJgYTp06xenTp4mPj3fLeGrUqEG9evUsml2nTh38/Pycfv/Vq1dJSUmhRYuCbJjs7CwCAtYBHyO6CRCMpKY/S/lOss0spkAvrfVag+jp8xQuRdUT2I1zWTd/IFHfO23sb05rXwE4t8CsKB98Tb987Xo9RWxsLF9++SXbt28nISGBOnXq0KdPH6ZMmULdunU9PbxSYET6AnyMaBpIz5nHkQjAiqg1/RXSh0CHbb1+G3jV6vUmSJSfIzRIdOLdSGRf0fm4HjFIfgO6l2LcCnfgi9rli9escAd5SI3pT5CypSCZgE8CT1G+/WfM/BtZSCy6+GkOevkKeCT/30bkfpLqxHEDgMNIyajL2NbrMCQivE0pxl05MBgMfPHFFyQkJNC+fXvGjh3r6SEVQhnZSrjLBZPJxKxZs7hw4QLBwcH07t2bm266iZCQEKfen5qaypkzZzh9+jRpaWkYjcZCXwaDodhrGo2GOnXqWEyQ6Ohol8uTmEwmEhISiI2N5dKlS+zfvx+TycQTTzxhaWRZmBxkhS6Uiu+Hegx4HzGVzdHs3RBT5F4KN5vsiJQVcYa7kYaQ9v7c9UikYRPnh6twK76mX752vRWJ0Whk+vTpxMfHExYWRt++fWnfvr3T5UJu3LjB6dOnOXv2LBkZGXZ12vyl0+moU6dOoUVGV8uTGI1Grl+/zuXLl7l48SIHDx7E39+fJ598ktDQUBvvyELKdoRRfqmOJbEP0euFFJgjA5DFz6IZPHUoqLXqiJFIlF9JprcWWWi9iEpd9xy+pl++dr2eIDY2lq+++ort27dz7do1ateuTZ8+fXj88cepVasqlBXKROa2YRQEZVQUW4H/IQEgRmQ+PQKJ5htUZF9/nG8SOQSJKi8pqESH6PRFxEhRVDS+qF2+eM0Kd5OOzG3DKOw/VAS/IKVUf83/WYcE8L0E9LDaLxkxsp2lGzJ3L6nUlB7xQY5T8feoiiMuLo4ZM2ZgMpl4+OGHvSrbSxnZSrjLjUuXLrFixQquXZNUZ61WS7NmzejUqROtWrWy2UzRU5w+fZrt27cTGxtLVlZWoW1NmjRh1KhRXpdOUUAWUpsvCIgoYZ9ewA4njxeGpD7aQwe8jKRUKjyBr+mXr11vRXP27FlWrlxpKfGh0+lo2bIlnTp1onnz5g77B1QkR44cYffu3Vy5cqVQA0iA1q1bc+edd5a5x0L5kQEkIouftntJSOmoc04eLwDHDXc0iIn+gpPHVLgbX9MvX7veiubw4cPMmjWLPXv2kJCQQHR0NL169eKJJ56gTp06nh5eFSINKf8Rjmi2LcJwLsIPiqfgl8T3SJanoqLxRe3yxWtWVEVS8r8ikMzLomQhzRzdza/IImXVZcWKFfz0009cu3aNVatWec0zoSva5T2uo6JSUL9+fR5//HH279/PgQMHuHTpEqdOneLUqVN07NiRu+6SDt5Go5Fz585Rs2ZNwsLCXKqB6gxGo5HU1FRu3LjBjRs3SEpK4sqVK/Tq1YtGjaS2UU5ODmfPngVAr9dTt25d6tWrR6NGjWjdurXbx+RequE43fIOpPafowm0DscmNkg0yUKUka1QVA2aNm3K1KlT2bt3LwcPHiQuLo5jx45x7NgxevXqxdChQwHRykuXLhEVFUVISEi56HVKSopFq816PWTIEEuUYUZGBhcuXADA39/fotdNmzalWbNmXq7XQThuVDYS+BzHDccCkahFR5iARSgjW6Go/MTHx/PJJ59w5MgRkpOTadSoEf369eOhhx6idu3anh5eFSMk/8setyPloxzpdQQFNbHtoQWWoIxshUKhcIUw7DdhrAb0x3GDSC1QG6mP7agkqx7JYq/aRnanTp146aWXyM3N5dNPP+X555/39JBcRhnZCpfR6XR07dqVrl27cv36dQ4ePMihQ4eoUaOGZZ8bN24wd+5cQEyJqKgoatasafler149S5p4Tk5OsXqsZtPCYDAQFhZGeLhEucXExLBs2TKSk5MxGIoLkdmoBmjYsCF33nkn9erVIyoqymtWmtzHI8C/kPRHex3h+yNpj87gjOGtUCgqC/7+/vTs2ZOePXsSFxfHwYMHOXz4cCG9vnr1KnPmzAGgWrVqFq221mtzNHRmZiaJiYmW91obzHl5eURGRlrKTZ04cYK1a9eSnJyM0Vh8wa1169YWI7t58+aMGjWKevXqUbNmTZca9lYOngQ+dbCPFtHrtU4eM7lMI1IoFJ4nLy+PHTt2kJeXR9OmTQkPD6dLly5MmDDBYS8aRXnxDPCDg300SN1rZ/TaiNJrhUKhKA+eR5pQ2sMItAWuOHE8E77ghzRs2JDhw4ezcuVKvvnmGx555BGnywV7C+VmZL/99tusXr2aAwcO4O/vz40bNxy+x2Qy8dprr/H1119z48YNevfuzfTp0ws1eVJ4FzVr1mTQoEEMHDiwUDp4VlYWUVFRJCQkkJOTw+XLl7l8+bJl+9ChQ+nVqxcA165dY+bMmSWew3pff39/i4mi1WoJDw+nevXqREREEBUVRbNmBU2+QkJCuPnmm916vd5FLaQhw0RkQm2rKVgzYCjOG9kV0XRH4W0ovfYN6tSpQ506dRgyZAh5eQWRZjk5OdSoUYPExESysrK4dOkSly5dsmy/66676NixIyCLiQsWLCjxHNb76vX6QmVNwsPDiYiIoHr16tSqVYsmTQrq8UdERBARUVIZpapAS8TIfoqCBmPW6IAu+fs5Y4xoAO+paaeoOJReVw2uX79OZmYma9asITY2lsaNGzN48GC6dOmCv79/FQy+qEz0Al7P/7Kl1xpkbu3sQ78WqO+msSkqE0qvFYryZhQwFZhuZ59JQIwLx4wu04gqC2+++SYbNmwgNTWV119/nf/973+eHpJLlJuRnZOTwz333EPPnj355ptvnHrPe++9xyeffMLs2bNp0qQJ//znPxk2bBhHjx6lWrVq5TVUhRvQaDQEBBQ0MYmOjuapp57CYDCQmJjI9evXiY+PJz4+nuvXrxdqAKbT6Sy1qq1LtptMJrRabaGIvxo1ajB58mQiIiIIDQ2tglF7rjIeqAH8AykzYqYaMBnp/HuvC8d70G0jU1QelF77FlqtFn9/f8vPzZo145lnniEvL4+EhIRiem2t7X5+fsX02vxdp9MV0vB69eoxZcoUqlevTmhoqJeXB6kIngTqAq8hndPNhAKPIRk2vZw8lgml176J0uvKz6VLl/j88885cuQIeXl51K5dm7///e80b97c00NTWHgNafr1JnDa6vVI4GlgGs43RzcCD7h1dIrKgdJrhaK80SCl+9oC7yGNdc3UQRr6TkVKiziDAV/R6+rVq/PAAw8wffp0VqxYwbPPPkvDhg09PSynKfdmj7NmzeL55593uAJpMpmIjo7mpZde4uWXXwYgOTmZ2rVrM2vWLO691zkzTjU3UPguR4EzSKOw7hQ0HQvCuZqrAL8Dfdw/NIVTeFq/lF4rFBWBCTiIRIcEIea1WaddKSVwAag8E86qhqf1S+l15eTy5ct89NFHbN26leTkZBo0aECvXr14+eWXvbihrS9jAvYAsUit1l7IPPs8zhvZIGUAVUVPT+AN2qX0WqGoCAxIYF88sujYE9Hd3Yg34gx6RK99A4PBQI8ePYiPj6dPnz58//33Hh2PK9rlNeGs586dIy4ujsGDB1teCw8Pp3v37uzYsaPE92VnZ5OSklLoS6HwTdoCdyLpjuFWrztqVmNNeXT+VVQ1lF4rFGVBA3RCGkAOpsC8dnXi7DVTOIUXo/Tae4iNjeXjjz9my5YtJCUl0bJlS0aOHMkLL7ygTGyvRQPcgqSv34qY2ODa3BocN2ZXKJReKxRlQ4csNo4C+lKweOjK/DrA8S5VCJ1OZ1k027ZtG/v27fPwiJzHa56C4uLiAIp1565du7Zlmy3eeecdwsPDLV8NGqiakQpFYVojE3FH+AFNy3ksiqqA0muFojwIRdIgnSEc59MkFb6M0mvv4MqVK3z88cds3ryZ5ORk2rRpw4QJE3jsscdUxGSlpB7OZ9A0Avwd7qVQKL1WKMqDFojJ7QgNEhjoW4wfP56uXbvSo0cPjh8/7unhOI1LRvYrr7yCRqOx+1XRFz9t2jSSk5MtXxcvXnT8JoXCp3jKiX30SL3tqtxszbdQeq1QVDY0SB0/R1MzHfAosvioqAoova7axMbG8uGHH7Jp0yaSk5Np1aoVEyZM4J577sHPT/0dV04CgYdwXC5Ei3PzcEVlQem1QlHZqAXchWO9NuGrej19+nTatGnDyZMnOX/+vKeH4xQuFet66aWXmDx5st19mjYtXURnnToShXT16lXq1q1ref3q1at06tSpxPcFBAQUakSlUCiKcj/wCXAS26mQOqQ55D8rclCKckbptUJRGXkKmAlcoWS9jgReqMhBKcoZpddVm4sXL3L48GGCgoKoW7cuEyZMYOzYsapheaXnr8B8IAWpzVoUPdAAWXhUVBWUXisUlZHXgdVImSdbpZ70QDsksM/3iIqK4uabb+aPP/5g6dKlPPvss+h0zkSxew6XjOyoqCiioqLKZSBNmjShTp06/PbbbxahTklJYdeuXUydOrVczqlQ+AZBwAakfvYfyJ99HhIlYgRqAiuBlp4aoKIcUHqtUFRGagCbgduA4xTotQ4xShoCa4BoTw1QUQ4ova667Nu3j7Vr13LTTTfRqVMnevToQaNGjZSJXSVoCGxB9PoiBTpt1u3WiF5X99D4FOWB0muFojLSDvgN6U9znQIfxKzX3YDlSHCfbzJgwADmzp3L3r17yc3N5a9//aunh2SXcptFxcTEcODAAWJiYjAYDBw4cIADBw6QlpZm2ad169YsXboUAI1Gw/PPP89bb73FihUrOHz4MA888ADR0dGMHj26vIapUPgItZEuvhuB+5CGkGOQSJIYpJGNwldReq1QeBNNgCOIATIe0etxwFIks6a154am8DhKrysH+/fvZ+7cuXz22WdkZmbSp08fxo8fT5MmTZSJXaVoD5wBFgNjEb2eAPwCHEQishW+itJrhcKb6IksOs4F7kb0+gFkQXIrEtznuwQHBxMdHU1ubi5z5swhMTHR00Oyi0sR2a7wf//3f8yePdvyc+fOnQHYuHEjAwYMAODEiRMkJydb9vnrX/9Keno6jz32GDdu3KBPnz6sXbuWatV8d2VEoXAfGmBA/pdCUYDSa4XC29ACI/K/FIoClF57P9u3b2f69OkcOHCA0NBQAgMDGT58uDKwqyx+SHDIGE8PROFlKL1WKLyNakhQ332eHohX8sYbb7Bu3TpSU1N55ZVX+Oqrrzw9pBLRmEwmk6cH4U5SUlIIDw8nOTlZdQFXKBSVCl/TL1+7XoVCUXXwNf3ytestDSaTiQ0bNvD1119z+PBhdDodXbt25amnnuLmm2/29PAUCp/EF7XLF69ZoVC4hxkzZvDOO++g1Wr54Ycf6NatW4Wd2xXtUqEBCoVCoVAoFAqFQlFKTCYTa9asYfr06Rw8eBB/f3969erFSy+9pExshUKhUCgUlYJHHnmE5s2bYzQamTZtGgaDrWbGnkcZ2QqFQqFQKBQKhUJRCkwmE2vXrmXmzJkcPnyYoKAg+vbty8svv0y7du08PTyFQqFQKBQKp9DpdLz77rtotVrOnDnD119/7ekh2aTcamR7CnOllJSUFA+PRKFQKFzDrFtVrOJTiSi9VigUlRWl1wozJ06c4Pvvv+fYsWMEBQXRq1cvnnjiCWrVqqU+L4XCw/iaVoPSa4VCUTZatGjBgAEDWL9+PWvWrGHChAloNJpyP68rel3lamRfunSJBg1Uh2iFQlF5uXjxIvXr1/f0MModpdcKhaKyo/RaoVAovB9f0WpQeq1QKCo3zuh1lTOyjUYjsbGxhIaGVsiqgTtJSUmhQYMGXLx4UTVmsEJ9LsVRn4ltKvvnYjKZSE1NJTo6Gq226ld+Unpd9VCfS3HUZ2Kbyv65KL2uPFT237XyQn0uxVGfiW0q8+fia1oNSq+rIupzKY76TGxTmT8XV/S6ypUW0Wq1lX61NSwsrNL90lUE6nMpjvpMbFOZP5fw8HBPD6HCUHpddVGfS3HUZ2Kbyvy5KL2uXFTm37XyRH0uxVGfiW0q6+fiS1oNSq+rMupzKY76TGxTWT8XZ/XaN5YlFQqFQqFQKBQKhUKhUCgUCoVCUWlRRrZCoVAoFAqFQqFQKBQKhUKhUCi8GmVkexEBAQG89tprBAQEeHooXoX6XIqjPhPbqM9FUVGo3zXbqM+lOOozsY36XBQVhfpds436XIqjPhPbqM9FUVGo3zXbqM+lOOozsY2vfC5VrtmjQqFQKBQKhUKhUCgUCoVCoVAoqhYqIluhUCgUCoVCoVAoFAqFQqFQKBRejTKyFQqFQqFQKBQKhUKhUCgUCoVC4dUoI1uhUCgUCoVCoVAoFAqFQqFQKBRejTKyFQqFQqFQKBQKhUKhUCgUCoVC4dUoI9tLefvtt+nVqxdBQUFUr17d08PxGJ9//jmNGzemWrVqdO/end27d3t6SB5ny5Yt3HnnnURHR6PRaFi2bJmnh+Rx3nnnHW655RZCQ0OpVasWo0eP5sSJE54elsJHUHotKL0ujtLr4ii9VngSpdeC0uvCKK22jdJrhSdRei0ovS6M0uvi+KJWKyPbS8nJyeGee+5h6tSpnh6Kx/jxxx958cUXee2119i3bx8dO3Zk2LBhXLt2zdND8yjp6el07NiRzz//3NND8Ro2b97MU089xc6dO1m3bh25ubkMHTqU9PR0Tw9N4QMovVZ6XRJKr4uj9FrhSZReK722hdJq2yi9VngSpddKr22h9Lo4vqjVGpPJZPL0IBQlM2vWLJ5//nlu3Ljh6aFUON27d+eWW27hs88+A8BoNNKgQQOeeeYZXnnlFQ+PzjvQaDQsXbqU0aNHe3ooXkV8fDy1atVi8+bN9OvXz9PDUfgISq+VXttD6bVtlF4rPIHSa6XXJaG0umSUXis8gdJrpdclofTaNr6g1SoiW+GV5OTksHfvXgYPHmx5TavVMnjwYHbs2OHBkSkqA8nJyQBERkZ6eCQKRdVH6bWiLCi9VigqDqXXirKg9FqhqDiUXitKiy9otTKyFV7J9evXMRgM1K5du9DrtWvXJi4uzkOjUlQGjEYjzz//PL1796Z9+/aeHo5CUeVReq0oLUqvFYqKRem1orQovVYoKhal14rS4CtarYzsCuSVV15Bo9HY/Tp+/Linh6lQVGqeeuop/vzzT3744QdPD0VRiVF6rVCUP0qvFe5A6bVCUf4ovVa4A6XXCkX54itarff0AHyJl156icmTJ9vdp2nTphUzGC+nZs2a6HQ6rl69Wuj1q1evUqdOHQ+NSuHtPP3006xatYotW7ZQv359Tw9HUYlReu08Sq8VpUHptcJdKL12HqXXitKg9FrhLpReO4/Sa4Wr+JJWKyO7AomKiiIqKsrTw6gU+Pv7c/PNN/Pbb79ZivcbjUZ+++03nn76ac8OTuF1mEwmnnnmGZYuXcqmTZto0qSJp4ekqOQovXYepdcKV1B6rXA3Sq+dR+m1whWUXivcjdJr51F6rXAWX9RqZWR7KTExMSQmJhITE4PBYODAgQMANG/enJCQEM8OroJ48cUXefDBB+natSvdunXjo48+Ij09nYceesjTQ/MoaWlpnD592vLzuXPnOHDgAJGRkTRs2NCDI/McTz31FPPnz2f58uWEhoZa6oaFh4cTGBjo4dEpqjpKr5Vel4TS6+IovVZ4EqXXSq9tobTaNkqvFZ5E6bXSa1sovS6OT2q1SeGVPPjggyag2NfGjRs9PbQK5dNPPzU1bNjQ5O/vb+rWrZtp586dnh6Sx9m4caPN340HH3zQ00PzGLY+D8D03XffeXpoCh9A6bWg9Lo4Sq+Lo/Ra4UmUXgtKrwujtNo2Sq8VnkTptaD0ujBKr4vji1qtMZlMprLb4QqFQqFQKBQKhUKhUCgUCoVCoVCUD1pPD0ChUCgUCoVCoVAoFAqFQqFQKBQKeygjW6FQKBQKhUKhUCgUCoVCoVAoFF6NMrIVCoVCoVAoFAqFQqFQKBQKhULh1SgjW6FQKBQKhUKhUCgUCoVCoVAoFF6NMrIVCoVCoVAoFAqFQqFQKBQKhULh1SgjW6FQKBQKhUKhUCgUCoVCoVAoFF6NMrIVCoVCoVAoFAqFQqFQKBQKhULh1SgjW6FQKBQKhUKhUCgUCoVCoVAoFF6NMrIVCoVCoVAoFAqFQqFQKBQKhULh1SgjW6FQKBQKhUKhUCgUCoVCoVAoFF6NMrIVCoVCoVAoFAqFQqFQKBQKhULh1SgjW6FQKBQKhUKhUCgUCoVCoVAoFF7N/wPUKwUXEhP/vgAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "It is obvious that among the polynomial kernels, the kernel of the third degree turned out to be the best, since the cubic parabola is indeed a good dividing surface. But the RBF kernel showed the highest speed among all kernels, it is almost equal to 1. Note that among the new models, only degrees 3 and 5, as well as RBF, performed better than the linear kernel and logistic regression." + ], + "metadata": { + "id": "yqYeSzlmOaHO" + } + }, + { + "cell_type": "markdown", + "metadata": { + "nbgrader": { + "grade": false, + "grade_id": "cell-ba9a59e3ec57f514", + "locked": true, + "schema_version": 2, + "solution": false + }, + "id": "hMSZx_x1FLpN" + }, + "source": [ + "## 1.3 Simpler solution (of a kind)\n", + "What is we could use Logisitc Regression to successfully solve this task?\n", + "\n", + "Feature generation is a thing to help here. Different techniques of feature generation are used in real life, couple of them will be covered in additional lectures.\n", + "\n", + "In particular case simple `PolynomialFeatures` ([link](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html)) are able to save the day.\n", + "\n", + "Generate the set of new features, train LR on it, plot decision regions, calculate metric.\n", + "\n", + "* Comare SVM's results with this solution (quality, borders type)\n", + "* What degree of PolynomialFeatures have you used? Compare with same SVM kernel parameter." + ] + }, + { + "cell_type": "markdown", + "source": [ + "From the analysis above it follows that to generate new features it is worth choosing a polynomial of degree 3." + ], + "metadata": { + "id": "JAadShgtWtH3" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2019-03-13T23:26:22.869584Z", + "start_time": "2019-03-13T23:26:22.866757Z" + }, + "nbgrader": { + "grade": true, + "grade_id": "cell-58a1e03cab2ca349", + "locked": false, + "points": 15, + "schema_version": 2, + "solution": true + }, + "id": "tdbh74m-FLpN" + }, + "outputs": [], + "source": [ + "from sklearn.preprocessing import PolynomialFeatures\n", + "\n", + "poly = PolynomialFeatures(degree=3)\n", + "extended_moons_points = np.hstack((moons_points[:, 1][:, np.newaxis], poly.fit_transform(moons_points[:, 0][:, np.newaxis])))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2019-03-13T23:26:22.846438Z", + "start_time": "2019-03-13T23:26:22.482543Z" + }, + "nbgrader": { + "grade": true, + "grade_id": "cell-550546e70e191bc3", + "locked": false, + "points": 10, + "schema_version": 2, + "solution": true + }, + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "4c4396cd-c57b-43a0-9285-232028dbdbca", + "id": "_qBKo5MxWZak" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "logreg accuracy score: 0.956\n" + ] + } + ], + "source": [ + "lr = LogisticRegression(penalty='l2', solver='saga', max_iter=500, tol=0.0001, fit_intercept=False)\n", + "lr.fit(extended_moons_points, moons_labels)\n", + "print(f'logreg accuracy score: {accuracy_score(moons_labels, lr.predict(extended_moons_points))}')" + ] + }, + { + "cell_type": "code", + "source": [ + "lr.coef_" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "PSWm3NZEawSi", + "outputId": "ea88fab3-16fc-4885-9429-6f12af42d330" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([[-4.87856415, 1.9986668 , -0.80221894, -3.88960806, 2.91188963]])" + ] + }, + "metadata": {}, + "execution_count": 64 + } + ] + }, + { + "cell_type": "code", + "source": [ + "def cubic_logreg_plot_decisions(dataset, target, estimator):\n", + " plt.scatter(dataset[:, 0], dataset[:, 1], c=target, cmap='autumn')\n", + "\n", + " b = estimator.intercept_[0]\n", + " wy, d, w1, w2, w3 = estimator.coef_.T\n", + " # Calculate the intercept and gradient of the decision boundary.\n", + " d = -d/wy\n", + " a = -w1/wy\n", + " b = -w2/wy\n", + " c = -w3/wy\n", + "\n", + " # Plot the data and the classification with the decision boundary.\n", + " xmin, xmax = -2, 3\n", + " ymin, ymax = -1.5, 2\n", + "\n", + " plt.ylim(ymin, ymax)\n", + " plt.xlim(xmin, xmax)\n", + "\n", + " xd = np.linspace(xmin, xmax, 500)\n", + " yd = d + a * xd + b * xd ** 2 + c * xd ** 3\n", + " plt.plot(xd, yd, 'k', lw=1, ls='--')\n", + " plt.fill_between(xd, yd, ymin, color='tab:blue', alpha=0.2)\n", + " plt.fill_between(xd, yd, ymax, color='tab:orange', alpha=0.2)" + ], + "metadata": { + "id": "qfgHhOuHaV8A" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "cubic_logreg_plot_decisions(moons_points, moons_labels, lr)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 435 + }, + "id": "aobsUth7ahnb", + "outputId": "2a720857-0d8b-436c-db39-53915b7dcc79" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGiCAYAAAASgEe5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADf20lEQVR4nOydd5gTVReH30mWXfrSexdEEKmCgICAFAEFLIAoUgSxgKJYUbEDNpRPRBGwAaI06V06AiIgVUCRXpbOLmULm8z3x0lI2cxkkm0s3Pd58uxmMpm5SWbmnjnldzRd13UUCoVCoVAosii2zB6AQqFQKBQKRWpQxoxCoVAoFIosjTJmFAqFQqFQZGmUMaNQKBQKhSJLo4wZhUKhUCgUWRplzCgUCoVCocjSKGNGoVAoFApFlkYZMwqFQqFQKLI0yphRKBQKhUKRpVHGjEKhUCgUiixNuhozw4YNo27duuTJk4ciRYrQsWNH9uzZE/R9U6dO5ZZbbiF79uzcdtttzJ8/Pz2HqVAoFAqFIguTrsbMypUr6devH+vXr2fJkiVcuXKFVq1acenSJcP3rF27lq5du9K7d2/++usvOnbsSMeOHdmxY0d6DlWhUCgUCkUWRcvIRpOnTp2iSJEirFy5kiZNmgRcp0uXLly6dIm5c+deXVa/fn1q1qzJ6NGjM2qoCoVCoVAosggRGbmz2NhYAAoUKGC4zrp16xg4cKDPstatWzNz5syA6ycmJpKYmHj1udPp5OzZsxQsWBBN01I/aIVCoVAoFOmOrutcuHCBEiVKYLOFFjjKMGPG6XTy/PPPc+edd1KtWjXD9WJiYihatKjPsqJFixITExNw/WHDhvHuu++m6VgVCoVCoVBkDocPH6ZUqVIhvSfDjJl+/fqxY8cO1qxZk6bbHTRokI8nJzY2ljJlynD4z3nkzZMnTfelUCgUihuLum0foVzl6rwzXKU5pDcnTp/j/iY1yBPG3J0hxkz//v2ZO3cuq1atCmptFStWjBMnTvgsO3HiBMWKFQu4flRUFFFRUSmW582di7x5coc/aIVCoVDc0MTGXmDvgaM82P0pcufJm9nDue65mJAMEFaKSLpWM+m6Tv/+/ZkxYwbLli2jfPnyQd/ToEEDli5d6rNsyZIlNGjQIL2GqVAoFApFCtb+uRmnU6dmXTX/XOukq2emX79+TJo0iVmzZpEnT56reS/R0dHkyJEDgO7du1OyZEmGDRsGwIABA7jrrrsYPnw47dq145dffmHjxo2MGTMmPYeqUCgUCoUPv/+5hdy5cnFz1RqZPRRFENLVM/P1118TGxtL06ZNKV68+NXH5MmTr65z6NAhjh8/fvV5w4YNmTRpEmPGjKFGjRpMmzaNmTNnmiYNKxQKhUKR1pQqkp/7H3wAe0SGFv4qwiBDdWYygri4OKKjo4ndtYK8eVWMU6FQKBThse+/f4jJVYU8Rcpm9lBuCGJOnaVV7QrExsaGPH+r3kwKhUKhUPgRc+IUa7f+gxaRPbOHorCAMmYUCoVCofBjzuLlPPbsWyQ5lfhqVkAZMwqFQqFQ+LFu01bKlClNgUJFMnsoCgsoY0ahUCgUCj/+3LqLqrepKqasgjJmFAqFQqHw4vz5OP7ee5Bat9fP7KEoLKKMGYVCoVAovNh/6BA3lStDnQaNM3soCouo4nmFQqFQKLwoV6IgP377NbkrqjBTVkF5ZhQKhUKh8OLQ4aNcicqX2cNQhIAyZhQKhUKhcJGUmESDh55lxow5mT0URQgoY0ahUCgUChcbt+4gPiGRarVvz+yhKEJAGTMKhUKhULhYue5PoiIjqV5HdcrOSihjRqFQKBQKF2s3buWWqlXIniNnZg9FEQLKmFEoFAqFwsXeg8eoXqtOZg9DESKqNFuhUCgUCuBKUhJTx37MufyqJDuroTwzCoVCoVAA8ZcvkEgkefIVyuyhKEJEeWYUCoVCoQCee+tTDp9LYMSPzTN7KIoQUZ4ZhUKhUCiA3zftIK/yymRJlDGjUCgUihueEyfPsPfAUWrWVSXZWRFlzCgUCoXihmfFuvUA3H5nk0weiSIclDGjUCgUihue3zdsoXDhQpQuVymzh6IIA5UArFAoFIobngHdO1K/zcNompbZQ1GEgfLMKBQKheKGxulwckWzU6HKbZk9FEWYKGNGoVAoFDc0S1b9zuOvfEx8kiOzh6IIE2XMKBQKheKGZsnKtez+dz8Fi5TI7KEowkQZMwqFQqG4oVn1xxZq1K6j8mWyMMqYUSgUCsUNy6VLl9ny915q11P6MlkZZcwoFAqF4oZl1bo/uZLsoF6jZpk9FEUqUMaMQqFQKG5YqlQowdB3X6fyrTUzeyiKVKCMGYVCoVDcsERF2GnU6j7sEUp2LSujjBmFQqFQ3JDEX06g/7tfcOjoycweiiKVKGNGoVAoFDckq/74k18XrkKLiMrsoShSiTJmFAqFQnFDsvz3DeTJk5uqNW7P7KEoUokyZhQKhUJxQ7Jmw1aq16ip8mWuA5Qxo1AoFIobjoT4RDZu36P0Za4TlDmqUCgUihuOS5cu8MJT3anX+r7MHooiDVDGjEKhUChuOGxcocMDD5CzfLXMHooiDVBhJoVCoVDccIz5aSZb9x5Hs6lp8HpA/YoKhUKhuKGIv5zA2yN+4O9d/2b2UBRphDJmFAqFQnFDsXztHyQmXaHBXXdn9lAUaYQyZhQKhUJxQ/HbqnXkz5+PKkpf5rpBJQArFG527oQpU+HvvyEqEpo2hQcegAIFMntkCoUiDVmx/i9q314Xm8qXuW5QxoxCATB2HHwzGux2cDhk2Z5/YMJEGPUlVFMVDwrF9YAj2UGjejUoW6dFZg9FkYakq1m6atUq7rvvPkqUKIGmacycOdN0/RUrVqBpWopHTExMeg5TcaOzcqUYMuAxZAB0J1y+DM8NgMvxmTM2hUKRpiQkXKRX9640a90+s4eiSEPS1Zi5dOkSNWrUYNSoUSG9b8+ePRw/fvzqo0iRIuk0QoUCmDgRbPbAr+lOuBAHCxdk7JgUCkW6sGjZanbuP0m27DkzeyiKNCRdw0xt2rShTZs2Ib+vSJEi5MuXz9K6iYmJJCYmXn0eFxcX8v4UNzBOJ2zZArpuvI5mgz83Sv6MQqHI0rz60TfcUuN2arTsmtlDUaQh12T2U82aNSlevDgtW7bk999/N1132LBhREdHX32ULl06g0apuGHQdcDE2FEoFFmCQ0ePs/fAUe64867MHooijbmmjJnixYszevRopk+fzvTp0yldujRNmzZl8+bNhu8ZNGgQsbGxVx+HDx/OwBErsjw2G9x6q3hfDNGhVq0MG5JCoUgfFi1bDUCDpq0yeSSKtOaaqmaqXLkylStXvvq8YcOG/Pfff3z++edMmDAh4HuioqKIiorKqCEqrkce7QaDXgv8mmaDHDmgXbuMHZNCoUhzlv2+gZtuqkCR4qUyeyiKNOaa8swEol69euzduzezh6G4nmnRArp1k//tXonANjtEZoPPP4NcuTJnbAqFIs0oXDAfrdupKqbrkWvKMxOILVu2ULx48cwehuJ6RgOefx4a3glTJsPfu1yiec2gc2coXiyzR6hQKFJJUlICT/bowqWidTN7KIp0IF2NmYsXL/p4Vfbv38+WLVsoUKAAZcqUYdCgQRw9epTx48cDMGLECMqXL8+tt95KQkIC48aNY9myZSxevDg9h6lQCPXqykOhUFx3bNv+N8cvQ+lyeTN7KIp0IF2NmY0bN9KsWbOrzwcOHAhAjx49+OGHHzh+/DiHDh26+npSUhIvvvgiR48eJWfOnFSvXp3ffvvNZxsKhSILc/YsrFolIoTly8Md9SQJW6FIZ94dMY4Dpy4yaf5DmT0URTqg6bqZwEbWIy4ujujoaGJ3rSBvXmWBKxTXBMnJMPwz+HW6qCxrNhEkLFYM3nsfaqtqMUX6cSXpCgWrNaNztx4MeHNYZg9HYUDMqbO0ql2B2NjYkOdvdUukUNzoOBywbRv88QecPJk++xgyFKZN9bSL0J3y98RJ6NcPdu9On/0qFMDqPzZy4dJlGjW/J7OHokgnrvkEYIVCkU7owNQpMO5bOHtGlmka3HknvPIqlEijxPsDB2DObIMxOMXAGTMWPhueNvtTKPxYsGw1efPmoUbdhpk9FEU6oYwZheJGZcw3MHas7zJdh7XroGdP6VlVpLC1bR08CL/OgP/2Qo6c0KyplLxHRsKiRVLm7nQEfq/TAatXw6VLqgRekS4kJSXRtPndRGTLltlDUaQTyphRKG5EYmJg3LjArzkdEHsevv3WWEzQm/Hj4YsvRKPHnQ+zfBmM/gZGj4bzsWDTwGmyDd0JFy4oY0aR5jiSHTzdsxPnC6i8rOsZlTOjUNyIzJtn3sLB4YC5c+BKsvl2li0XQ8b9HvDKh4mB556FYkXBYWbJANkiIX9+a2M3IyYGxo6Dd9+DESNULo6C/w7s5+RFJ1G58mX2UBTpiPLMKBQ3IjExIhZoRmIixMVCwYLG6/zwg6cyyR+HQ/JlCheRXByjukm7HVq2hJ07AQ1uuQVy5rD0Ma6iA9+Og2++kfG4P9vEidCsOQz5QEJeihuOtz4ZzeZ/DjF9qWpJcj2jPDMKxY1IvnzB17HbIXdu49cvXIS/dwY2ZLy3sWMH9Hsm8Os2O0REwJIl0Lcv9H0CWrWEzz6HpKTgY3QzY4aEtHRdwmQOh8dTtGIFDB1qfVuK6wZd11m2djN177gzs4eiSGeUMaNQ3Ii0aeOZ7ANht0Pzu8GsiWtykBCUmytXoEcPGDwYihT1LNc0MZaSkuCKl+GSkAA//wwvvgjOIOEpkHWM8n9AjK158+DECWvjVVw3bNyyg1Nnz9OwaYvMHooinVHGjEJxI1KhArS7VwwKf9zekif6mG8jOtrXOAmEwwElS8j/HTpIHs74CRIOevFFCWMF0u3UnbBuHaxYGfyz/PMPnLRgqKxeHXwdxXXFvN9Wkj17FPUa353ZQ1GkM8qYUShuVAa/CZ06ezqFuw2bkiXE2KhQwfz9Ng26dg1sEHnz1dcwf77rPTaoWgXq1IGlS82TkG12CR8FIyEh+Dqazdp6iuuK4zEnqVvvDrLnyJnZQ1GkMyoBWKG4Fjl/HmbPge3bZFK/ox7c0yb0xFgzIiLglZehTx/4/XeIj4ebKkDtOsGTg910fRg2bYQ1a4zXcTrg7behXDmoWtWz/Ogx83wbpwOOHg0+hrLlPGXhZtu6qWLwbSmuG5wOJwOf7Mrp6BqZPRRFBqA8MwpFZpGcLEm0/nkha9ZAu3YwcqQkry5bBsOGwX33wd+7wt/flWSYPRt69JTqoYcekmqkCDvcdy907iQeE6uGDIhBNHy4COSZYbPBpEm+y/LnN/fqaDYoYKFcO38+ye9xe5gCbadYMbjjjuDbUlw3HD95jAuObOTIUyCzh6LIAJRnRqHIaPbtg2+/g6W/iUGTOzfcf7+o7p47By+9JF6Gq7kkrr8XLkgfo1kzIdQmqvEJ8Gx/2LLFU0p97hyM+gqmTJUEWu/2BU4nLFoM06bB/v2QKye0bg2dO0ORIr7bttsh7oL5/h0O8f54c9+9MHyP8Xt0J9x7r7XP9+JA8WKdPOWrNGy3gz0ChgyRsJjihmHwR1+zdtt/TP1tQ2YPRZEBKM+MQpGRbN0Kjz0Gvy3xVANdvAg/TYLHuounRNcDJ8U6HbLunDmh73fkSNi2Xf73Du3oTjhzGl7zUvpNToaXXpacmm3bJEn3+HFJ3O3cObAQnZXKpmS/MFD79lCiZGCPis0O5cvDPRYbAxYqJOPr0lnaKYCnImv8j1BDhRpuJHRdZ8nqjVS9Tf3uNwrKmFEoMgqnE15/A5KupMzvcDpEMXfxEvPcD90poadQuHQJZs407o3kcIhejDuENWEirF7l2Z/3GC/HwwsDU46xRnUxQIyw2eG223yX5cwpvaGquyYcTfOEnerUkSTk7NktfURAQlIvvggrlsNvv8HqNTBsKFRUuTI3Gn9t+5sjMado2rJtZg9FkUGoMJNCkVGsXy8GixHeQm9mJIYgJgewdy8kJZqvo9nEa1T5ZtF4CeQZAjFoTp2EVaulmaSb+x+AH8cbb9/pkMonf4oUhrFj4N+98NdfYszUqQMVygf7VMbY7dZEARXXLbMWLSNH9uzUb9oqs4eiyCCUZ0ahyCj+/dfce+HGrFzZbodq1ULbr9n2rqJLTsmJk3D2jPmqERGwdYvvshLF4Z13ZF/eYSP35+3eAxo3Mt5mpYqSgNzpodQZMgoFsHPPf9xerx45cqrGpTcKyjOjUGQUUVHmpchuzNZxOOChB0Pbb+WbIVduuHTRZJ861K0LdguGj65LUq0/bdtI+fXPk2DN7zLW226T8u1GJoaMQpGGOJIdfPDa05zIVTX4yorrBmXMKBQZRZMmUsZsRpGi0KwZTP7Ft4GjzS6hmoEvBhezc6MD/+yBM2ehZQvJmwmE3S7aMlFR8MOPxo0j3Tgcontz6rR4aHQkZ6ZIERHEe/99a+NTKNKBM2dOcUmPIm+BIOrUiusKZcwoFBlFiRLQqjUsXmxsLPTpI2XaNWqIh2PHTgn/1K0rVVBWtVLWrYfPhktZtRu3d8ZtGLmNlrLlZNsPd5XcmmCNI0uVhpmzpDmke13NBnc3lwTnvHmsjVGhSAeefHUI55LsjJzYPLOHoshAlDGjUGQkg9+Ey5elWshuvyohg+6Evk+KIaMhnaNbtfS8HopEyuo1MPCFlMsvXxaj47bbxKjJn1/E+ZrfDR3aQ0K8ceIvSHJu4cIQmU2qhfxLvJcth8NH4PvvIDIyhAErFGlDUmISS9f9RedHe2T2UBQZjDJmFIqMJHt2+OwzKYVeuBBi46QX0n3tfUXr3ISq8+Z0wocfyv/+honuFGMm9jxMnSbbPnIEHn1UBPTMsNlFzC9bNhjygcG+HbBnNyxYIE0lFYoMZtma9Vy4eJmmrSyKLSquG5Qxo8iaJF0RGX5bFirIO30aEhOhcBG49VZ5pDWbNpuXf+tOOHAAdv0tEv+P94ZzZ4Nv1+mQUNewYeY5NZpNQlDKmFFkAnMWr6BQoYLcVqd+Zg9FkcEoY0aRdbiSDFOnwuTJcPSIeAsaNZI2ANVvC/r2TGPZMhj3rSTjgrQveOBByY9Jy8aRYG7IeLNrFwz/TAwZs9CSN9ki4OQJ85wa3QknT1rbnkKRxvyx9W8aNGqCzahPl+K6RRkziqzBlWQYMAD+9Oqz4nTA72tg9WoYOlQqdq41fv4Fhn/qq/Vy8SJMnAh//gljxkCOEFRug5HfQmNGkFCUVSNG06TtQImSUm1l1u1as/n2brqSDKtWwqHDYsQ1ayqtBxSKNCYpKYHvR7zLqTyqJPtGJAv56BU3NL/8IpO/f98ihwPQ4a23IC4u04YXkBMnJD8GUk7+Tof0OPp5Usr3pYZ6d0B0vuDrWTVk3Ov27ClVVR3aB/fM3N9R/l+1SppTvvoqjP4aPv4I2raDjz+xpnSsUIRA3LlzxNtyUbBoqcweiiITUMaM4tpHR3RXjCZRXYfkKzB3boYOKyizZnt6DQVCd8KUKZ6KpbQgWwQ896z5OmZjCkT3HtCxo/zfshXcWi2wkrHNDrfcIs0hN26EF1+CCy4D090F3OmAqVPgk09CG4NCEYSOT7zKiHGTsVlR2VZcdyhjRnHtE38ZYoLkgmg22PNPxozHCH+j5ODB4B6Q06chMSFtx9Ghg+i95M4tz93GS5688jcUr8zb74hx5LZ/IrPBV6OkbNx70tBs0KIFfD1ayrK/+tp4X7oO06cH/01vVJyuMvdnn/PkVs2YCQlpfJxcRxw/cYp1f+2kXMUqmT0URSahcmYU1z4RFg5TjczRNjl1Gib9BLPnQFwsFCwIDzwgAnQ5c0poxiyiYrdDUhLMmwcHDkKunKL7cnOl1I3rgfuhXVv4fS2cOSMNHatVk7CPFTRNvDD3BihxzZULPvgAnn8etm0T4+S26rIPgJOnYNvWYDuAJb/BY91C+VTXP0lXpPP3urUeccPDh2HLFvhpouRYFSiQ2aO85vh17iJA4+52HTN7KIpMQhkzimufyEjJBdm4US7ugXA4pF1Aajh6FI4fl5yTihWDa7wcOgy9HxetGPe4Tp+WyqV586FfP5jxq/H77XaoUgXatBGDxm4Xw2DcOGjcGIYMTV21U1QUNG/meT5rlmeCNCNbJHTrBk89af4dFCoEzQOorF6wkLtkt4nxp/Dlq1HSXR08v5M7vHr4MLzxJnz9VeaM7RpmxsIV3Fb9NooUV/kyNyoqzKTIGvTqZZwzY7dD+fJwZ8Pwtv3PP/BEXwnPPPWUNEbs9JAksJrx5pu+howbp0OMoiVLxBsSKIbvDv3s2CHaM7oOycmexNjf18Ibb4T3eQIxcaL0TLJiyMydA/2e8e1+HQqFiwTv1O1wQMmS4W3/euVyPEybZnycOxxSzbdvX8aO6xon/nICf27bTdMW92T2UBSZiDJmFFmDurfD4LdkgtVs8nBPtqVLw6hR4Qno/fOPGEpb/cIiBw+Ku3/x4sDv27NHVHyNjAOnA1asgMGDpc8SyHjdIbNcuaBMWeNJ3+mQlgf/7g35I6Xg7DkYOdLaug0aiFGVGjb+Gbw7eGQktGplvo7DIZ9/z54bI1/EyufUNNi4KWPGk0VIdiQwf+q3PPho78weiiITUWEmRdah/X3QsAHMni2TXPYouOsuCcmE60UY/ploofgbJe7E1WEfQtNmkvjqzd+7gm9bd0qS65gxsHMHrFwl4aRKFaHO7XBfEMl1ux2WLZX1U8PCBZJUaoU1a+Cvv2DcWLjpptD3pQMjv5RJ1yzR+NlnJacoEE4dfvoJJkyAs2dkWY6c8OAD4jnLnoa6PNcSlhOz07L8Letz6fwZ9NxFyFeoSPCVFdctyphRZC0KFYLHH0+bbR07Dps2mq9zIQ7WrE6ZG+Jv3BiRLVLyTqpVk4ebo0eDv1fT4OIla/sxY/kK6xOl0wGXLok2jLt/Uyj8+y8cPhR8PXellT86MHQIzJzpuzz+shg4f22BsWOtf/9Zico3Q2SUdC43QtehZq2MG9M1TvzlBKq3fYIBr71J+3J1Mns4ikxEhZkUNy4xx4OvY7PDsWMpl9e7I3AujDc5cxm3WShUKLiHweGQXCBvdGDzX/DW29D1EU/ZrlFoKDlZ+jCFgtMh/Zv+2uy7/NIlOHdePCdGWEnqtdmNBQ63bklpyLjRdfFwvf9+8H1kRXLlcnVNN7gs2+1Qq1bqK92uI+YvW8Gps+e5uVrtzB6KIpNRxozixiVfvuDrOB2B1ytcCNq2MZ54NA26djU2WKKioH0Hc4MoKgru8SqldjpF6bjvEzB/Hvz7j5TsDvlANF7+CaCz8/eu8PJNbHbY6TKC1qyB3n0kpNeyhXzu776XMmJ/SlhI6nWaJP/OnBk8ZLhgPmz4M/h+siLP9oeaNeV/72NL06BYcRgyJFOGda3y6/xllClTmsrVlLfqRkcZM4obl/IVoMJN5oq4kVFwV9PAr732GtR3ded1T8DuCeiee8ToMOPJvlCyREqDRrPJmAYP9s0r+e47mcgDcfEi9OghLRS8STQJWZihO0VNeMpUj56Mm9On4euvYcBzkm/kTYni0l3byEjTNOkfdeednmVOHdaukzYHv6+11urghx9C/URZg+zZpfT6vfehZg3phVX5Fhj4ougZFVF5IW6uJF1h4Yo/aNK8JVqoqtaK6w5lzChC5+Qp0UIZPFgSZDf8mTVzEjWCS/8/3gvyGOR3ZM8OX3wh30Fhl2Ccu4pn7TqY9LP59xIdLZNyp06Qw0tPpmYNqc7yFri7cBG+/c58rFeupGwTcFOF4OGwQOg6VKrk2Z5/dZLuFN2fadNSvnfgixAVGdhIQ5OSdndV18mT4sF67lmYPk26eFvhzw0pDanrhYgI8X6NHSseuJ8milxArlyZPbJrig1/beNc3EVaKKE8BaDpeija5tc+cXFxREdHE7trBXnz5s3s4Vx/TJ4sFUBuNORO+rbq8L8RkBW/899+g6HDJN/DLSqXLRIeewyefto8CfbsWej2GJw5Hdij0K2beDaCkZQk+iGr18C+/8TTU78+tGwpr3fvAf9ZKNO22WHlSt9O3K+9JvL4wTRm3Gg2uKUy1K4DP/9s/D5Ng1KlYMYMeb56jVQg/fWXGDu5csOli571y5aDl1/yeLOSk6HLw3DkcHiNJ1etTp2ooCJLcybmML8fvETZOvdgC0eWQXHNEXPqLK1qVyA2Njbk+VtVMymss3yFcYPAnTvhpZdhzDcZOqQ0oUULCSUtXiQ5Gzt2wpUk+O5b2L4dnngCahvE5H/4UcIuRhP+xInSX6dMafMx/LEBXntVjBo0MRQWLpQy5+bNxcCxgtMh5czeOSlNm4rmjVF1tr8qsO6EXbukq7fZvY6uiyqt0wnjx8OXX4oh5PbieBsymg0OHoBRX8FNFSXnaMUKWRYOxUv4erMUNxROp5PzFy5SsMytypBRACrMpAiFb8eZi7xt3gR/h1g5c61w+ZK0Idi6TQwZN5s2wZNPimfDH6cuLQLMPB52O8yZbb7vffvgpRfFkNF1MQbc2zx3DqZNDa05ZJ48nv+Xr5BwYCDPh80Ozz0nPZyyRabMHbKyT5tdQk1fful6j1Fnc9fyf/aIVkxSkowtnBCYpsHDXUIvG1dcN/y2ci0NHuzPubj4zB6K4hpBGTMKa5w547pTNxFfs9tlgsqKjB4t2i+BWhOgwzvvQLxfVVD8ZV/vQyB0gneH/mmSa90AxoPTEZohkz+/KBe/+y5s3gxDhxpvG+T3KlJUjJ1wIs5OB3z8sfX1HQ7xxvy2FOLjrYe+3Gga1G8AXbqE9j7FdcUvMxdgi8hGmYq3ZPZQFNcI6WrMrFq1ivvuu48SJUqgaRozjfQjvFixYgW1a9cmKiqKihUr8sP1WrWQ1bBSFaNp4VfPZCYJCaIqbDSx6rp4bpYs8V3urjoyQ9chT5DY7/Ll4eWMBOJ8rOSszJ8PfftKQq2RkeJ0wPZt8OuvoRsVqUGzwaJF1pKTc+T0altRBl56CT7/zFondcV1SXJyMrN/+527W7VRVUyKq6SrMXPp0iVq1KjBqFGjLK2/f/9+2rVrR7NmzdiyZQvPP/88ffr0YdGiRek5TIUVChcxVm11k5wsFTBZjZMngxthERGwf7/vsl+nB/dm6E6YO9fcY5WWfYfcnrNQjKNYi92r7fbgxpsVdCdcuCACcWbfn6ZJ24P1f8Aff0gH8i5dlCFzg7Nw2WrOnI/jng6dMnsoimuIdDVm2rRpwwcffMD9999vaf3Ro0dTvnx5hg8fTpUqVejfvz8PPfQQn3/+ueF7EhMTiYuL83ko0oFsEXD/A+b6Iblzi6haRpGYmHpDIC4ueBgIJD/Gv5fQ1ABlyYG4fAleeVmqbwIRFWltO+lFtiDGgc1VWfXAA8G7YVtBs0G5clCiBAwc6Fnmv069O+CB+yU3JtzeW4rrjsUrfqdkyRLUqHdn8JUVNwzXVM7MunXraNHCdzJs3bo169atM3zPsGHDiI6OvvooXTpI1YgifJ7oI1Lq/hOP3S4dq4cMSf8mgDoSoujWTYTXGjUSWf/580PTujl6VEqWW7SEZ54Jvr7TAc2beT3X4eiREMatw+uD4PLllK/lzGT9kKQk89edDni8NzzRN23CUbpTjBQQ/ZTPPvPtW1W4MPR7BkaMUF4YhQ+6U2dArwf55oeJKsSk8OGaulLExMRQtGhRn2VFixYlLi6O+Ph4cgQoxRw0aBAD3Xd3iM6MMmjSiZw5YcxYafg3daqUANvsUtbcsydUrZL+Y/jiC5gw3teg2rtXZP7//htefCl4lcuRI6LbcumitcnZZhejybuLtE2TdgOh5AglJMDXo+HFgb7Lb7oJTljwDqUXpqEem5R233abdPAO1g3bCjly+BovTZrI4+JFEcKLjpbvN1QSEsTQXbFC/q9cWbxJZcqkbryKa4Zz509z0RlFsTJZMJytSFeuKWMmHKKiooiKisrsYdw45MwhHpo+faQaJSoy40IAf20RQwZ8q6rc///yi0yK9eqZb2f4cJk4g5VUg+Se3NkQPvgg5TqtWolHKJT8lLlz4IUXfCfrjh1h7e/Wt5Ea3Joydrvow5gZJnY7PNxV2iT06SNNHtOC6OjAy4PlZJlx6BA8+RScOunRutm0WQzvFwbCI13D37bimuHJV4ZyNgFGjM/AcLYiS3BNhZmKFSvGCb/eMidOnCBv3rwBvTKKTERDDJuMzGWYMsV8f3a7rGPG6dPSODGYR+aO+vBoN6meadpUOkj7d6Z+7DGwR4SWR3LhAly84Lus6V1Qt17a5KOYERklbQOGfRjckNFs4nF74XkJH+7alXbjOHcubavekpOhXz+RDwCPcesua/9sOPyeBsaiDhw7DoePpGylcO68vBao+aYiTYi/nMCClRsof3PVzB6K4hrkmvLMNGjQgPnzfRvpLVmyhAYNGmTSiBTXFLt3m3tBHA7Ys8d8G0ePBg+T2O3iJZgzWyZeN/nzS9+hNvfI8woV4Iv/wauvQex5Sx8BkPCUNzYbjPgcPvscZs+SHktpjd0Od9whuUbBDBkAdAkpHTkCK1ek7VgSE+HQYahUMeVrMTGwdCnEXZBWCXffHbxlwYoVcPy48es2O/w43re5ZSjoiDL0Dz948qTyRkPnTlC1Knz/g5S4g+Q/dewoqtFGPb0UYTFj4RIuXY6nzf0PZ/ZQFNcg6WrMXLx4kb17Pf1k9u/fz5YtWyhQoABlypRh0KBBHD16lPHjJXTw1FNP8eWXX/LKK6/w+OOPs2zZMqZMmcK8efPSc5iKrIKV5OJg61gJZTgc0trAn3PnYPCbYLdJiAng9tthwQLJJ/noY7gQpJrOZk9pzIAsG/SaeBh2bIejx+CjD4OP1U2u3FI1ZWSkOBzwyCOuMdigShXYvcdEBFGD26rBhg3WxxAK/h42h0NaZUyfLvu222TZxx9Jona7dsbbWrtOtmdk6LrVqZOuQGS20Mf6xf+k55R3wmlcLHz7rXzf3ssvX5Jw5/r10g4jNaEzhQ+TZy6kYsWbuPnWGpk9FMU1SLr6tTdu3EitWrWoVUv62gwcOJBatWrx1ltvAXD8+HEOHTp0df3y5cszb948lixZQo0aNRg+fDjjxo2jtXf3YMWNy93NzUMxNrvcyZtR4SYoUzZ1eimffy7eDTeR2eCee3yTWsMlbx5o2BA6PSSl8IHGabNDvnwymY4YIerFS5ZIA9CICF9Dwf3/s89C3ds9y7s+EkTN2Qat74EzFrtYh0KhQlDWLyn30+FiyLjbOSQny//x8fD228Zl7eBa18J+wxEm3LVbDBlIaSi6n/svdzrgwAH47vvQ96cISEJ8Ihu27eGe+6zJfChuPFTXbEXW4exZePBBuHQ5Zc6LzS5emWnToEhh8+389pvc7aeG0aPFK+PNyC+l4aKZkXBTRZj8i7V9OJ3wzRiY9JNM6m5q1ZZ+S4GaVx46LJVmq1fJ5F2jBnTuAtVvk9eTk0VbJ0dOMcp+nW68/1KlxENk9nnCYeBAj5cI4OQp8bwY7UfTpOLr518CV6pNmSJeHaNLmaaJevD06aH3cxo6DGbNDM8Qyp1bQmZKIyfVXDh/hp1HzuIsWZc80QUyeziKdEJ1zVZkHocOS7PFw4elwWHLFiJ2Fk5pbTAKFJCuywOek5CP3S535E6H7HvEiOCGDEiX7DfflAkwKckVonACuoz9j/XBt3E2gMfi/o4w/kfj92gadOkcfNtubDZ4+impJtq0CRIToGJFEZwzokxpKf32L/8+d17CHjNnSU8pzQaNG0PZcnDoYGBD4EgIOjpu3J6k7Dk8+9GdnjDQ/Q9IhZQ3y5eZb1PXpfz+8OHABlzbtlKyn5hobNB07WpuyBw8KIbwli1iGN95p2jh7N8ffquJixfh/HkoWFCenz0HM2fA6jXSzPS26uKBq1AhvO3fQBw5eoQruSuRTxkyCgOUMaMIDx0YOwbGjJGLv/uuetZMKFZMvBTly6X9fqtWkfYAS5bIBK/rULu25LCEItjXsSO0bCnbOXoM8kWLkXP0qDVjpkiRlMtKlZKy688+80zibjQNGt4JHTpYH6ObnDmgcSPr6+8/IN/RyZNQqKBo5LzzLpw44fFo6U5YvTr1XpfSZaBUSWk5oDuhVGkRwruvvSTmLloIsXFQrqx859VreIyKo0cl0ffkKTF+g9kMFw2aeubODR99JA02dd1jfLh/g7vvhgcfMN7u7Nnw/gfyG7m/n7//FsO0UqWUv2UouKswt26FZ58TD5t7W//+Kx3RX34ZOodg5N5g7Nm7n+pt+zBi9Hc0KZMGoVzFdYkKMynCY/YceO9d83VefjnrdTd26tChvVTVBDo1NA2Kl5DqFiPv06rVUvmybas8L1oMHn5YJnmrirZOXZJI58+TkuNixcRAqFXL2MPgdMKQoWJQZgTFi0tIK3t22bfDGbw1AsDatfDlKPjHVXlmRYhPs8HixZA/X+DXDx2SqqKNf0r5va5DpZvh4S7Qpq3xb/X33+L5Cvhb2yDCHl51mc0uYcivRonBdt99ov5sZBSNGSNGuSIFrw/5nP99P43fNu0hd7CmrYosjQozKTIWHUk+DcYnn0CRotCsqfF2/tsrORzFikOJ4mk3xnCxafDKqzDwhZSTrDuE8srL5mG0Jo3lcfmyTIR5o0PL1YhPkLySPzd4vAKaBnPmQLNmMGyYxyhyOmWSnzpNJuYrQVoTpCX58nm8YTabPIKxeAm88To+X0gwQ8ZmF62fQIaMDoz5BsaO9QgB2lyVUBER0LiJ+W81aZJn/RTbdkKyLp/zwgXr4Sb3cdOnjzyfO9e80sxuhwkTlTETAF3XmTRrMXc1v1sZMgpTlDGjCJ3Dh6z1JdI0GDcusDGzapXkORw44Fl2++3SjiCQ/khGEHdBWjTcVk3ybz4dLp/VTanS8PJLUm0UDKdTvAXxCVC6lHh6Nm4Uj0vuXBJusLsaOFb0+7zDhsm64LmTd0+Ey5fDu+/C++/L5PrqqxLOSYs2A6Fgt0PNWqG9JzFRBPjAetjGZpcKr+cHBH59zmwxZMBjbLj/7twp/bC+/NJ4++vWmxspui7hQ4dDhAPdncOTk6Uqq1gx2LHDs9zhkDL7d9+F2q7vZ8Mf5r+NwyHrKFKwYu0GDh49wasfKAVnhTnKmFGETrDGhG50HfbshlOnoXAhz/JFiyQB15/Nf8HjvaSk1cygOX8eNm+WsMatVaX7cmo4eFASi5cv93hB6jeQiVd3StiiUCGoeqs1D8usWdLDyr/fUqA8mhEjoG5dqZrJn0++qwULzCf7BQug75OSOLtypSzL6GixU5fk1VBYtlz6YVnFbofmzaWsPNBv7NTh2+9MxuiQUN2/e42PJ6u9ubr3EG/kf3vld6xVWwysW2+V8u1lyyAhXkr/W7fy7bDusGC4Oa+raH+asemvrZQqWYIGTTNKnuMkcAyIBsoRevmbIrNQxowidEqWkvBCQoK19RO91ktKgg8/Cjz5Oh2QmCTy819/HWA7ieItmTPb01pA06TyZPBgT9VIKOzbB70el4nI2wvyxx/iHfn6K7jrLuvb+/4HGGXgCfA3UNzfwabNUrU0YaKElqx4LcaMkfyQ9DRiihYTg8xbkM4dynnrrdAbOB45IqEf/7YQ/owYIfsuWgTM4uZHDgf3EGo2SXQ2MmZq1pK+WEbeGc0GSYmu0KLdY/xs2SLNVRs1gl69pPO60bxXs4YYVUa/q80ONaqbf44bEN2pc/89d1GvQ2/s6d49/QDwGbAWj2hRBaA/EML5r8g0rqneTIosQo7s0L6DtV5COXP5Vv6sWmWukut0wJ9/SljGZ7ku1SozZ/pOhroO69ZB797G1S4A+/bDx59Iv6UePWHsOPG4DB0qIR//yczpkP288441QTYQr0ogIywYToeUHi9fFnyid7PlLzh1KvR9WUXTJBH6m2/ES5U9O2SLlKTffv08LR1CIW8ea16KcuXE+AiWAGjFQ6g7YfJkjwfLn0ceCZ4Ls3u3/PX24uiulhCrV8Pjj8OTT0qYMilJ8pe6doUmd8G990o1V4TdWKjR6fDV3VEA8O++/ziVoJGrYCo9r0E5APQA1uN7su8HBgIL0nn/irRAGTOK8HjmabgpiD6GzS7luJGRnmXHjsvyYBz3MmauJItGitHdrcMh5dXTDQTgpk8XfZfp0yTstXOHeDY6dJA7bKNQg+4Ub8LYsSJ+duq0+ZjnzwvfU6LZpAN3VYtN9Kx8h2b7CoZ7ok66Iq0AEhPlez5+XHJQ7r9fcoJCoVnz4OO6ubLkqPhz6rQYfLGxnmVuD2Ewzp4RQ/jXX1O+Vvd28aqAr7idzWV85Iu29n1t2SJl+X37SguGvXsl6TcmRtobREXJdgKpM/fqJd3eFT70e/1Dnn3jEyKz50rnPX0OxJNSG8B9Ln8IWPRCKzINZcwowiN3bsltaWvQM8dmF2Pnyb6+y/NFWwujREfL31mzxAswerT5+roTZsxIuXzrVkmo9dYfca9vNfdnzDeSaNuuHbzxprEH6OgxaQMQDrpThO1WrQq+rqZJcmm4bRmaNvXon5hx8aJUdSUkyPfndHi+wxMn4cmnJMHZKkUKQ6dOgcesaYAO/Z7xXf7XFmna2OYeKW9v0VKqzQ4dFg9hh47BDTu3gfnxx/Id+/P442LcNrlLKpeyRXoM3HPnrB2vTgds3QI7/3a1ZNB9X7scL0Zax/uhcBFpWtrwTvjqK/F0KXzYf/gIy9b9xd1t26fznk4Dv2MucnQRWJ7O41CkFmXMKMInZw7Rmhk/Hu5q6pmk8uWTRN5vv4VcrruqY8fh69GwchWmSXWaJpL/5cuLR+X99yXh1wqB+ghN/MlYTj5UL4rTISJ7z/QTb5E/0dHhe2bsdkka/eqr4OvqOnTqDD26h7Y/zSZJzJ98LB20zWT27XZZ36jDttMBp06KKF4ovDhQxq7ZfD0VOXPBBx/4drZeuw6eehK2bPUs053SxbtHd0ncfuZpqQazYtQ5nDBvbuDXateWxp6ly3gMtnB+SyPDx+kQpeW2bWDBfDmOPv8M6tULfR83AGPGTyEqMor7OnVP5z3FEDyOHAEcTedxKFKLSgBWpJ6qVWH4pzLBJybIxOSt7TF+Aoz8wlXNoxP04vHcs7Kd/30R2jiiIlMu++OP8OXoA+F0wN87YclikdH3ps098L1JdY0ZDod4QLyTTI14pp8oIVepInL7EycG377NLobluy6hwy4PS0m32XhOnzb/7jRNttGxY/D9u7HbJZm2Z0/pNH7hIpQsCc2b+YaMHA4ZayBjyuGQ/lyffgojR0r5/3ffilCh6b5tcNAkNLbmd9i+zfpnCRXNBtu3S78shSEOh4MJ0xfSvFVr8ubLn857i7YyIovrKTIT5ZlRpB3ZIiT85G3ILF4CX/zPE6bQA0xO7jBB3mgJCd15p6joXr4U2v7Pn5eQxD//eJalR7WPZpMeR/5UqCDds63kWPhsT5Nw3f59wQ2ZCjeJ1wvEwdX87uD7i4wSg+OniZ4WE3Vvlyou8A3TuP9//nlwBElG1vXQwkzeFCksYaMn+oi3wj/3Ze06OHPa+Pdzl13HxIiH8PHewb0zukvjx4iFC1OXi2QFu7p/DMaBg4fIly+aBx/tmQF7Kw1UxrwE2w7cnQFjUaQGdWYp0g+3UnAwQbfOnaB2HWl86JbDP3MmvJ44W7ZIQuV330HlylIW+8cGYyNBs4nOyyaXoJ3dFryiSHdKiMWbQ4dEgbdJE5mw5s9HvgDNpV1j8Fmi88Gjj0LPHpIPEoz8fneqP/zg+n5N3vPhh6JI7E+/Z0Qg8KdJku+haXB7Xej2qIShlvwmn8mspPjmm4OP+e+/YcZMESCMzgetWkq5u1m57eFDwX9/XZf+TsWKiUHToKEYOEa/tcMhSc0//yz7bnIXdOsmXi4QY9iK7ky46E64Q4WVgpEnSuObsaPJW75uBu2xP/CcwWsa8AigGlxe6yhjRpF+nDopImNm2OwiapaQIIqt99wjZbmFCoXX3E/XJdz1yScSfuj6iJRuB0LTpGT2nXcgWzbJ/zhxUkJIJ04a71/TJIkTxDPw7rtSTu4mIkJCULdWlSTjChWgTh3J8bh4SdRe58yF8+cgT24Zw+XLYkAsW2oe2ql7u+d/9+Rs9j3Z7bBqZWBjBsT4Mqqk6dIF3hpsvG2nw7yBo45U9kyd6tGqsdlh6W/SN+nrryS/KhC5c1v7/XPn9vzfp480CQ1kPLuXHTzkalOQLOP47TcYOkSajJYs6aupYxV3o9VmzaW8PpDhbrNDvbqqQ3YQjp84xco/t1OmYYiCjKmiIVKxNASIQ6ZFB+KR6QY8Y/xWxTWDCjMp0g8r1UJOh5T+zpkDEydIM8ZBr4vMf67cwd9vtM0tW6TipWEDKZeFlGWxNpso7xYpLOq7Dz8MA56TSTGYR+DECdEu6fW4qBF7k5wsnpl160XXpmFDKc0tVAjef09Ua0/ESLnzkSPSYbxbN2jXNvhE6lOyfiX4hO/UrYsb+nPPPdJZXNN8Qzjeoahy5Yzf//PPYsiA53O5PR/7/oPXXjN+b5MmwZtyliwlRpGb6rfBJ596ks4jIjxjdRsY3t+XwxX2HDwYzp6D+zuGl19VsyaMGgUfDoN72sgy97Hm3n/Fip5WDmZYSCm7nhn94y/0fGEIDltUCO86AvwCTAD+AMLpcN4CWIQYNU8DrwMLgWcRo0ZxraO6ZivSj6QrElIwE7MLhGYTwbZbq8GQD8Lf/6hR4u0A2LRJ9D62bpOJpkkT8TxUKB9g3ElipPz7r3l4yjuMZIR3N+QXBhqrzdrtIk63fTvExaZ83Xu9BQuhQH7Z/b33pmyb4D/Op5/25Nn4oyNJr0uWyO9Uugy0v08ML5AE3F9/lVCUu09VzZoiPNi4kfF+nU7xTp0Oos0zaZJxqOqLkTBhvHGI8p135PP7k5goHpf/9kkJ+vz5YjQaetpsEnLr2VOM218N9Ir8KVoMfp7kK+6nA39tFpmAw4chfwFo00YahJp1FF+/XhK5N26Uz1u9hoT7QlGfzuI4nU4q1G/HLbfV5pOxP1t4x2XgXeA35L5cQzwqpRCjpEq6jVWRPqSma7YyZhTpy/++gJ9+Cj0XQbPBvHkSkvn4k9CTgUEmh1tuCf19IGquQ4fIpBgudrsk9r79lpSmd2ifNgnJb77pqSD68Uf4cpTxRG23y2QeqNXD5cvw0svyHbs9CU5dvDADXxBPlRsdV3NMm3iZgvHff2IsmmGzixHRo0fg151O+HyEGKHoKb+73LnhlVdSVpX5byNY+bOmQdNmUrLu1MVDOO5ba8fc9z9I3lFqGD9BkuS9K9nc//fqdcPo0Mz/bSXterzANxOn0OCuVkHW1pHwzyZSasTYgShgEpLgq8gqpMaYUWEmRfryxBOSiBtqhQ86rF4ld96zZ0HpEC5KmibrVw7BkDl0GKZNE+n7nTshTx7xaKQGhwNOu1oO/L0zbQwZmyu/xk3XrpLk7P/9usMbgwYZ96x64w1Pd26HwxN2cTqk7NnbkNOQJNtAhsyxY6IhNGgQvP+BeBmuXAn+WTTMk61tNtGleeyxwN/dxYvSI2qZiaCZZgteoaTZJGcKpBKve3fjLt3+nAugbRQKe/aIIQO+Br/7/++/9/xG1znfjJ9C2bJlqN/EQiI8m4ANBBa7cwBJwPi0HJ7iGkclACvSl5w5JNTyyy+SP3HyhLUkS83mUp5FJsmjx6zvU9el07J/teW58zB1CsyaLcm3RYqI52T7dgn/uPNCdF08Op06hfBBA2C3exKFrZb8Bqv8cjqgbFnP88hICadNnAiTp0g5M0CtWtCrp+QeBWLvXkkeNhvH2HFwdwvzqtXx40Xrxa0hZNNg1kyoUjV4M1KHQ7pOm3HxosszYzLOkSMljBNonBpw003w7z8BXnThdEjDSG+KW+wHVLSotfWMmDLV/Hyw2+Xz33574NevE64kX6FM6RJUb9oezZKq9UJk+jIyhpOB+Ujui+p8fSOgjJmsTnIynDwpyY6Fi1yb522O7DKx9uoplUZxsZIoaZZr4nSIpsrOHb6VQka43fLu0ENzvz5A27ZBv/4Q7+XVOHwYvvFqk+BtRPz7L4z4n5VPZ4zDAffdJ//XrhW8Y7TdLmXiG/4MHJbTNChUABo08F0eGSmS/D17yXcbGSlqwmasXGku0KfrUokWEwPFiwVeZ9Ei+MIlbKi7tuPe3J49ULgwJJ0y/izFikG9O8zHuWq1dK02Qtcll+efPeIB9GfpUnNDRtOgUGFo4acjUq8uFCwkfZ0CGZeaTdp13Bxgn6GwY4e5Ye9wiKfwOufi+dN0696DqPINLaydDOzF2JBxk+BaJ1tqh5fOOIHdSNuE0kDxzB1OFkWFmbIqSVdgzFipOGnfXvIGOj0Ec+de29UQ2SIk7NGsmbGcvmaTie6OO2D5CnPZfTe9H5fkzUWLUuZQbN4sXbW9DZlgOBziFQhWUaVpgb0umk0+Y82a8jxfPrivvXG4TbOJ4TNokHSX9v/MNsCuw7tnwPYyEMBTZdNkP8EMGXCpDVuwfI08KzqSV2LWCfpEjFQ7BVpH16Xr97hx5sdrXKy1EKV3A8qrY9AlZ8vsTl/XYfhw32aoIN+/u9rK//2aTb67V15J/c1DpIWJNuJan4xTR2JCEkNHjefUlZzYg1WwEY/kymy3sOUCXPuGzHygPfAYUkV1L/L5DmTimLImypjJilxJlhLisWN9+xYdPCgVHsGaMmYUh4+IG33Sz9Lw0XvSeuklKFAwwKRtl/yF9z+QfITt22VSCkbHjlI55c7pcOpyV9+vv5Rmh9tnJ5gh1b2HGF3eE15klCTPDh3mO9m99KJHNM1tALn/1q0r30nJkjBhIrS+R/RnQLZxB/AtUA9gDdAdOG48rqQkyf/p1EkaGrZqDSNGSEk5SOglmDhgVJQYlYE4ESOKxWbfq90u1Tj33hf49eRkaeL53bfG2yhRwpreTKCw0O7dcOxo8N/eXaXlT7Om8NnnUuHlTcWKkiPkrlJLDU3uMjfWbHZpDHodM3H6bD4dM5kEp5VAwUfAFgvr2YEHUzWu8DiPlIl/gZSKnzRZdwowmJTn8UagJxBiV/obHBVmyorMnuUp4fTG/fzbcTKx33RTxo8NxKPxzjvSt0fTuFq+XLGiqNGWKyfaLu6qkTmzPX2JmjeTCo558yVXIFD7A39y5xbDyI3TCW8OhsWLwusq7c2VJHj9DWkKGB8vE7TTKSGjx3uLJo2GKNHu3i2GWK3aIobnT1SUlBuvWwuz50j+UJGiUgrdoKHHU1K8GLz3Ery2GM46IC/yuIoDuAB8Bbyfcj/xCdKAcccOea7rcDZRjMpZs+CbMRKGyxsNFy4ENhZsdvH45cie8jWwpiGkaeLh2rzZPBfo2++k8il3gO+sYUNRPT5/3liMrkZ1KF0q5WtmJe7eYwzk1XHTuJHk0+zeLcZ1kSJyHKcVD9wveUcJCSl/B02T461L57Tb3zXI1+OnUef2OlSuVjPImmeABZh3uAYxZEoBj6bB6EJhAvAlEjayuf5+4RrHc/j6Di4AIwy240DKzkchxpvCCsqYyYpMmWr+ut0Ov86Al1/KmPF443TCcwN8J1K3S2bffpn8f/4FCheScNOrr0jFSlyciJ1FRcnd8M+TrHlTbHa4/wFfDY+fJomK79X9h4k7r6PF3TKZzpktDQ5LloQn+/om15YsKY+g49Wk95R3d+iALIKcyWAYMXIAi4HXAL9+Q199BTv/TvnZna4GjS+/LDooQ4ZI1Y7ulztjs0PZMvC0ifJpsWISgrtkoiGUnCxVYUePGK8DkhOzarX0aPInIkKqrl5+OaVBZLNLmObllwNvt4SFJF5dD76eBlQJs8Q/GAULwpcjYcAAuORdCq5J49RPP4VSAQy164S1f25m045/+HjkNxbW/ovgeTIAtRAjIE+qxhYav+JrnHgbphOQUnHv6sjFSMWVEQ5gGXAOSO9mm9cHKsyUFTl0yHySdjhg376MG483a36HbVsDJ306HaLf4l+dEhEBBQqIIXPmjMsjY9GQuakC9OnttQ+nNFRMK/mkxk3ggQfg668lYfjsGSmz7t9fQg3pxlGCK486gFO+i+ITYOYM48Rep0OMiw1/QIP6opPSpLEn1JEnj5RCf/e95O4YERkpirlGVVqaTfow3VwpyGdwrWvmRWnaVDxa/h6ROrVlnEaie2XKiPic4Rg18ej5J1QbsX2HeOlatpLHG296jPbUUKOG5Lq99JKE5ZrcBc89JzpLRtVo1wkjxkygaNEitGhn0hbjKlaVfR8C8oU/qJBJBoJdCyYgCb5ujhP8/HYCnYA54Q/tBkJ5ZrIiOXJI+MMIzRbYZR8qZ8+KimpUlDTjC5qcByxYYF4l43TIhfvZ/oFfX7rMWo5ErtzQubM0aMzl5Zk4diy46qwVbHYJ082bJwaYvww+SDivYkVo2SL1+0tBNNYyuaN9nx4+JOGwQJQAqgHYYN9GmSirVpG7/6QkCXXkzi36Llbo21fCnXv+8f1+7Hb5/j780DjnxhvdKeG2BQth3lwxaEuUlDyoO+8Ub1ZigvzO7rBhlaqSlxTMWHrlZUn+voLvMenezhuvW0swnzJV+kx5l1H/tkRCma+8Ksn3qSF3bgm1BRMaBMkH2/AHbNoM6FKGX7+BtYTua4gryVe4v21z6rbuTEQ2K4m61RA3mdl5oQG3pcn4rLMDCYGZkQj8DrR2Pc+HNePsHPCO6/0Z2a8q66GMmaxI61YiMW9U0qk7U5aahsLp0zLBLVvumQDy55dclq6PmFdwnD8XXO3X7C78QpxMpsF0aEaOlF48/oSTI5M7NzicnmqnbNmgTVvJxXg/QE7K1X3ZJN8hXYyZVkjM3Ag7UJsULuhAE3MB4C3gqpSKE5zjkQvwq0B28bT4V/QEI2dO0aL5+WfR7zl1Sgzeli0lMbqSy5NSq5a0kTAq0c6XT6qa/tnj6ZT93z5YuQLubCTb+eEHV0NH10S2eze8+KKIMj75pPEYb7lFOqh//rmv+Fylm+G5Z6UlwfDhsHuP3CQ0bSrtB7xzhfbsEXVg8D0u3f9//JEcK1Y6iKeWw0ekJ9bBA57f+vvvJRT1+QgoXy79x5BGXDh3mgpVa1HFUjk2iDXeGDEKAl0f7K7XLRjQaYrVdi3eYcRWQCjSDyOAtpjEnW94lDGTFXnkUWnM6NRTejHsdihVWjr4hsO582K0nDzpO/mcOweffQanTksllRElSoJ9s7kxYna3XqqUBUE9DUoZ5KcULy76JqdOBX49EJcuSfnrs8/CbbdBxUoSYvngA3NBM90Ju/6W0I5RomzYlADuB2aQ8k7U7Tl5KuXbypf3/fy5kCoof+kKmxMpCz0GfE3YEecc2aXv0+O9RC4gIiKlh+DlV1yv4+cdce2zeAkxTsBzPLvXW/s7/L7Gd5n3/2PHioepRg3jMVauLBV+x45LNVf+fJKEPn6ChAvdv7Gmyf7GjhX9oTKuKqbJU8wNbJtN1hn8pskXZcKePZIQfiJGbhratpOSfn+7/MJF6PuEeEzBdzzHjstrU6cadyK/hoiNvUD7Pq/R+/k3uL1SKNPQYKAPUukTyENTEIghYw2aMsFXSbFeEeBh4GeseWDjgeVAu9CGdgOhcmayIqVLieprPleIISLCc5dWsZLkd1jRrwjE+PFw4qTxhXvCeMnZMaJDB3NjRLNJwq4RTZuKp8TIw2KzQ6PGkmMT8HUbPPpoaB4aXZew3aivIDrakyvi1K1dZ6yExcLiVaALcsep4Ymx5wc+BwJM4DYbPNbd8/wBoCQGty0ORBZ+TdoMNzJb4FDHzZUkt8Vfxfbmm6Vv1d87zcX7zLDbPZ25g1GiONSqKYbMqtWeNgLu49W9rzNnpB+Su3T9ryDGucMhLRxCxekUg/nRR2HaVKn+mz0bnugjvbH8K8bmzBavaaCxOB1wPhZmzAx9HJnA1z/+zPrNOylaNtSKywJI/kk/wP8GwgHMRM6Z3V7LzwPTEat+HmIYpCVlkKRjo3ClDamu8i/lfx7ogTWfQgTmZd4KZcxkVWrUgPkLRMvk4YclaXPMGJG1L1I4vG3qmCePgkwes2cbv37bbS5xuACTmjth9yGT2G9UFLz+uvwfqN9QrlzwwgvG7wd45BERE3S/x00wA8fpkATPM674d5485t+FpkH5CtZE6sLCDryEeFAGAf2B4cgF2cQ137WrpxVDRyv7yIAEw5srwVejJAfpu++k2u6nicG1boLhcISXhPvjj8aJwU4HHD8uKslgrRXFiRjx7PlUJAVh3LdSKg8eA8X9d83v8NHHvusvXGRu3OlOWLjQ+v4ziStJVxg1fjrNW7SkdDkLCeIpyIUYKIH6fzkQY+Vl1/9fI3kqw4AxSLy1FTArjP2aMQjIQUqDxu56vE3K6dYOPAv8YGH7DsSQUxihwkxZmWwRoifTykpjNgvEx4vuiBk6InFvhIa420uXEvG3C3GusbryUF54Qfo1mdGqlRgtX47ySNFrmuh9PP88lCntu/6lS5JUvGKl3M1WuQV6PS4GzbTpIu6WO7eUJR85bD4h/LdX8oIq3wzr1gX5LnTolhFaFgURF4tFNODVV0VRuGhvsJk1fXSQoXd8RYv69jOyIogYDHfy6OnT0ix08RLJf6pwE3TuJBVp3h6jxETYusV8m3Y7rF0Hd98NDRtIJVuwXLD16yUZeNSXwcecmCjd5I2ORd0pNw3PPO1pFHrRQm6GlXUymZ9nzOPI8VN8OMpiM88UJCDhV6Pfw4GET99BbgTcuA3ny8B7iPERrDu3VW4CfkSMp+WuMbjVLp8Gqpq8twqS3Pw3xknBkUCYqQM3CMqYUXjIHgXZIoNUSiElt2bYbNIrqNtjkg+QnCwembx5JTdi1iw4clTCZPfcI6Wx/hU0bi2Ww0fEICpWLHBoae9e6W7tVkLWddixXcq7X3hBxO7c9OljrPbqzdkzwQ0ZkLLe9h2Cr5dZVK2KuLf3m6xkB1LZLDFsLsLt+aAwKSrMQ+LQIUkg/mmSGLZuo+PMWfhjvRjR777rMWgcFsKCOuBwTX6dOsOUKcGbgOq67O/vv+W7d+e0BUrK3rbdXKMH5L0LFkC3bvK8QnkpqzfM3bFniQTg7ybPolbt2lSvazXx15/D+CbTBsKOaLmY8SXQgrQLUJRD9G3ikOT6fFjXiBmAGD1eulw+PEHG6uZkPZQxo/CQ7IDovOalzQ5HYHGzQERmg9uqyf9OHT76SPIb3AmXNrtcrKvXkPyFQOXkgZRd3SQlSbuC2DjfScZ9sf/8cwkDNXTpiFS9VdojBEswtsrZM2L4hVoFlKF0QKomjCZhB9IbJiOJQSaSJVDGIaKu2xBB441+q2o2lxFhogTtcEiCr7sSyo3bqFkwH251lXKDVC2VLmPupdOdUM117JYpLcfua69ZC4tNmAAXL4mnRnfCTRWh68Ni+LoNKrMbBm9WrvQYMw8+JHk1Rjgd5iHca4DLly7w0dsvcTKyXCq2YiHsh5PgCW9HgT2IZyQtSSHZbYHayHn6Ab7tDXIhhky3tBnadYzKmVF4mDjRky9iRKNGYhSEyk8/eRI13caEe7LZvl2SVkd9BWvWSGKkFZYsgTOnjd3/NrskLLt58AHr27ZKchoZRunGA0BZAk8ANsQNHu4dcjjEIH2lluATJqiGGDPNXM81TR433yyS/1ZEEM0SsX+a5AlpaUhelRGaDbLn8G1Y2rSpGM5WWLIE/vjDM559/0mi71uDPWOoWMlakrq38V2/PrS7N/D7NA1atBDBvWuY//b+y5U8pSlXOTVaMGUJ7k3UsdYF1ELLiwyjPjAb+Aap2voU8S49Ruo7ml7/KGNGITid0pgw2KTRqFHo51VyMoz/0fh13Snhn/E/Sk5Mh47w797g212/3jw50+kQbRH3ZFC2rLH0fTiULi13+YYcQjwQg4APsdYgLxT2AyOR5MIvgECqzzmBcUATfH+4CKT0+zMy9jIwAplA/IxAGzK8d2xQILdHCHHPbsmDSS3Hj4knzc2DD4iKL/gmmtvtUh34yccpE7u9xRmD4W1gu8+phQth4QL5v0hhEQoMRnIyXHZV32jA22/LOVK4iGedgoWkxHzIkGtaOO+3lb9Tp8NTHDwZQpJ0QOyIQWxEBJLDYiUf61prFWEDbkcy95uRsmJLYYQKMymEc+fEy2FGRITkqITKv3tl+8FwGx0xx6VctXJluKsJ3H+/JwnSZ30LTSh13Xedzp2hUGHpCZXalgfFS8D+/ZLLkIIvkSoFO567xGlAA+ATUneRcgIfu7bnbcyNRy6Cg/yW53Pt8wSw0/VaTVKoB6cZ55DEy+OufbcGSsPGFTD5N9jqGkIjRGrDXZ2rAbmcUO8yLA6SnxIO3h4Nm028JY0bw+Rf4L//pNt58+bitQmUe1LCX6wn1P3b4JfJHo9PkyYiNhiM2POexqU2Tc6Nrl1F7Vp3jcuKinEmM/SLbyldujTVbrfYPsKULkjuzC/INJaMHFQOoDxi5HdDclcCHUd2RNrgWjNmFOGijBmFYEVOXNclQThUrphV0xjsR3eIIN3uXaL++tnnUK8u7D8A27fJZFS2DKZ3X5pN2g34t2Fo3gw6d4EpFjxRhtvWYNNGqZZ54EF47VWvJOYpeMot/cNQfyCVFEPD2y8AYxHdjEDbn4UYEIFCIkVJ/2TfichEoiN3mTowGsbcAmN2e+YbEI/6bKRq1l2okQyUclpvw2MFTRMhyQJ+BrFNgzb3yMMKdevKNs4GCcUaoTtF5dhNu7bBjRlNk+qsx3v5LrfZslQDyrV/bmb5+i289/Fn2Ky2yzBFQ8qv70WaPB5CjPNWQFNkansTGOha1/uAsiPVQa+kwTgU1wrKmFEIefNKLsyuXca5Bw4HNG4U+DUzypcPXiVlhK5LGevzz4s0/batntc0zZX0aaLQa5Qb8fzz4i1avEjuap26TG4OB9xc2XfSMRqX25M041coWMAlq+8AvjN5oxPJF+mPqPyGSjxiMBgZYTqiKtqLFN200505BOwcvB4xZMDX9nJXr76OGDVFEPsnrauLdR26d0992oHdDoMGSb+ncI1g75uB/BYqXex2OHc2vH1dQ7w3fDSlSpag3YNpnchaBXjD4LXGSCLWSMQjCZ5y6QFARYP3ZRaxwBGkZLw8Kk8mNFTOjMLD472MDRmbXVoF5MhpLRTtTZ7cchdqRXwsELoOSYmSDOm/XNfFqPHetvv/9h3g3nsDbzNbBAwdIpL2D3WSXlZdHoaff5Fk5UGDrOU0uMcxcaK0NeBfwEqjy3BVdzcRXME0EfgzzO2Hi44kLgZgEsZXGh2xeX71WrY0jYbkDr106ixNK9OCZk3FS1imrO/yihVFuDIYNpscl08/LY0ig50TDqf14/Aa5UJcHLrNTu9+L5Atwyv/6iLh11mIDswCxLi5lgyZM0jCbyskF6gTEi6em4ljynpoup7WgenMJS4ujujoaGJ3rSBv3lDL4xRMnAj/+594PJyOlOWuIBfyV16W6gqrXLgoMu3/7Usf+f876os3JemK5Np06QzN7055c3PkiOTwRGaDWrXNBfycTtj7n/Tr+dKCENqIEdAoL/B4kBXdyp/h3KX+BrxmYb0PAIvhkzRhN4afpwmiU2ZGHURvbIYGw9LgklS4MNSsBQ89CLXrpP1Nro5oJp09I8ZGoUKiRPzOO9JINdhl1X1eFSgoGklmFXkL5gfOGcsinDiyj72J0eQpWwctTUJM1xPnkGqlU3hE/bx5Dml5cGMQc+osrWpXIDY2NuT5O0OOrFGjRlGuXDmyZ8/OHXfcwYYNGwzX/eGHH9A0zeeRPbvK6M4wunWDmTOh+2NQpUpgw+PwIXj2udD60eTJLf15+vcT705aYrOLp2XJEum0POYbUW71nsCOx8Az/eQO/eWXYMAAUU4eNcq8geDNlaSzshUSEzEug/bGAYQj4w7W7ygz+s7TxFqxcpWxAbHN4OM0MGQ0TYzyYUOhTjoYMiDbrHKLaCT9NBHuaQ0vPC/JuqGUkZ87B3absYem7xNZ2pBZ++dmfpyzClt06VQYMomIl6If8ChizK8ndBfxtci3iAK3kX7RKFKnKHnjkO7GzOTJkxk4cCBvv/02mzdvpkaNGrRu3ZqTJ40l1PPmzcvx48evPg4ePJjew1R4U7KkuMFPGpxEukul8pNPQ7ue5MwBPXpAh/ZpW33hdJjr45w5A716Spm2NwkJklz8wQfm269o0TCoWBFJQmyNsUFjRzo/1rO2zRSUw7ypnR0RbTEb81lgMjAaacyXFkkqpTG0Gupjbt9pGtTvCfk/gdr1zEMvVpJeG96ZOgNg504YPBha3wOtWsMbb8L2AP2f4hOgb1/pkRauEKPuBDTpaeZNvnwiI9C7T3jbNcPplLFngC3w6gf/45tJc8iRt1CYWziLeC7eBjYgHsBliGHzBsZGQFYgGQl/BTt2VLjJCuluzHz22Wc88cQT9OrVi6pVqzJ69Ghy5szJd98ZJ0lqmkaxYsWuPooWzdox47C5eBEWL4Zff4VNm9Kmj41VNvxpXqqt63DwgFQchUrjxmmnwgsy+RUzKZudMAHOngvsytd1mDNH2i4YUamiqMEaTbI2u4SsyrrzKAYiyb2Bms5FIuU7qXEXvIVImwfafi6kJ00gdCQhsg3SsPIHYAhifFkoETalMFJrHeA7egTj6iTNBtmzQ3tXiOrjj6WJKojBa7P7llQfOWI+DJsdGtR35S8ZcPYsjB0n5c333y/5UZs3y2u//go9e8p5d+a0hJF+WyLG8BS/72jmTNj7b/CeTcG4kgRPPyXNNz8fIQ1jFy6ELl3S1qu0bz+89ba0CWncSET2Rn0lIeB0YPHyNazZuJ0nn3sZu39FoWUGAe6bWfdB5P6+FwPfp2aImUwsweOvGpIUrAhGuhozSUlJbNq0iRYtWnh2aLPRokUL1pn0vrl48SJly5aldOnSdOjQgZ07dxqum5iYSFxcnM8jy+PURZ69VWvpID10qFTK3H8/bP4rY8ZwymLzwZgToW+7bj2odHNo3hkztVSnAzoa9EjSkV5QwTqBzwnSOfqdd6Tdgv+Y7XbImwfeestrYT4k2bCH63+AKKSM9CfMm875swMxOr7HI7pX2rWd+13bdW+/o2t5OYNtjUMqrRzIxJCMfEGJiG5Nau8AX0Zk3P2+o+p2GOQySry/P80GUZGSa5Q/nyzLk1sm8zFj4YEHxMPiH7bRDP4H+Z2HDxc9oeMBGqL+/bdsd8wY+PdfaSC5bJl4WN55R84170o18Pz/8ceSJ+Pm119JU8qUFiOjdu2UcgKpZdt2eKwbLFrokUqIPS/dw3v0gNi0VcLVdZ3Xhn5B5co3c88DXcPcyj9Ifwsj74uOZJeHUSV5TZALa1Owyv20QroaM6dPn8bhcKTwrBQtWpQYg87LlStX5rvvvmPWrFlMnDgRp9NJw4YNOWJwRzZs2DCio6OvPkqXLh1wvSzFyJHSOC8p0Xf5sWPQ7xm5IKc3gZo6BuKTj2HLltC2bdPgiy+gbDl5rpkchhERcjdZsWJgz4hmgzsbQQMDSf4rV4J3Anc6jUNqbsqVkzyMDh0hymVAZM8uE+NPPwXoIZUXeAZJ2P0dqV4aDJQx389V3LL/PZHM2NFAH6ArcqdWFMkdWAWscP0dBBh5qC7i0b4x4mtSJ/BSApgAtAXcukUa0AAe+EHaWXTqJCX2t1aDJ/uKd6NOHd/NaEDtWmLwng7wu3jbNi0Q4b1nvF/X4eQJGPiC77qJiZIrdTneNxfMbazMnWt+LNrtopLtJiYmbYT9IqPkO0kvnE7pK5V0JaVH1OkQb9f/vkjTXU6ZPZ+//t7LgNfeRrPStiEgGwg+RcUBYQh5XhNkB+7CPAabTMYm8mddrjmdmQYNGtCggUchsmHDhlSpUoVvvvmG999/P8X6gwYNYuDAgVefx8XFZW2D5uQpmTQDoTvBocHXX4vBk57cUV+6Y8eeN1/v9Bl4+hn4dpw0fDx1UgyhunXh4CExyMqW8yiYuilcCH6eBKtXw7Ll0u04KVHulE+chNy54J42ohNTvBg0aSzN/pYt81yQI6NElv7Z54xl3LNlg1y5zTsU22xSjRKMEsXh9UEikHf5ssjdW0pqjAq+ig+Xgb6IYi/4xtT3uV6bjCfUFKBBZwp+RzwwZrgVglPTN6cYkt/wKpLvkNczvnLASy9Z39SUyeav21y7G+B6vg1PxbvDIZ6XvzaLpwMkQTyYErVZpZ3D4esZzZcP4oOFCSzQqFHgJqtpxdq1YtwZ4XRIxdQLL6Q8T8NAd+rcXrUcQ4YNo1GLdqnYkiufyNJ61wLHEU/RAuTmoSTwEOJBNSpi6YMctG6NAm9sSClg5fQY7HVHuhozhQoVwm63c+KE74l04sQJihWzViGSLVs2atWqxV4DGf2oqCiiokKdLK5hlgRpW+90SBXR2XNQwGp7+TDIFiHVGe+8Y76e7pT+Mb17+yr9epd0Z8smhsnzAyDaS0LfbpcGfk2bptxufAKsXgVzZsO2bfDXX3JnHRkF9RtA61YiBx9sEtCA9vdJvoNRno7DYaxHEwibLX0nH+YhF8ZAd/0ORMdmFqGVdl9AvoxgnoRg+ROHkTYKW5HLx51IeMv/WMxOeKKAXuzfb+75cAL/uf53ID01veV77HbYsMFjzGza5OnYHi7eRnP79hKuSq3UwL//BO6LmJQk7UN0HW66STyB4fDPv8E/95UrUqVYNZQQaGCOHTvMeT0XrR+0oLtjSnWCJ8dmByqYvB4DTEU8pAnAzYiOS2OsGUqJwHnkxsGsCnM38CSiAeUe80EkN20h4lkNJANxC6J78yZyXkfg6fjdCvHmKqyQrmGmyMhI6tSpw9KlHhUsp9PJ0qVLfbwvZjgcDrZv307x4qnsi5JVOOsq1TRD10WbIr25914xZoJdRHVnypYF3hf4K1fEhf94b2vJhlOnQatWki80ZowYb4kur0JSoui+vP+BCN4Zbc/phNVrYMhQ8XZFRgYOIWg2aThYtUrwcWUYC4K87kQMnlAoTeob780CHkT64exAcni+BjqQ9k00EcPVDA3P/GAnpe2kab5J86kNCdntUinlptNDUKhg6ivzDh/2VbZOToavvpZzoHt3yWlp2Ur0n5LCyA/JHmWteCANBO3Ono2lZpsezFixncgcqTX4ayASBkb33HbEgjUyMrYhhssEJDR7Gmkn8gKiw2T2ncQA7yOtEdoi4aBXEFFMf5xIvpi3IYNr+zqwCzlPjKiLnM/DEYPoBeRcG4JqNGmddK9mGjhwIGPHjuXHH39k165dPP3001y6dIlevaTXSPfu3Rk0aNDV9d977z0WL17Mvn372Lx5M926dePgwYP06ZMOJYrXIkWLBL9z1GxyEc0I7r1X8kRSe8HWnXDoIIwfb77erzPgow/N3fe6LhUg330rfXVWrvR9/eRJUfN94XmYPQuWL5cybP+LV7ZsIq733nvhfKJ0JJbghkeoie51kZiM0Snvbj5pFKLdgUwATnwv2E7kjvc5ZNxpSIu7zY87HWks7B6Gv+p/cjLUqO55XruO+bnlNnYD5Xi4l3Xu5FmWLx98+520ATF6n1VGjoTHukPfJ0VJ+PvvpJrRTfxlmPgTPP9C6J6lRo2De4+KFYMKN5mvY4F3hn/JhUvxNG7VPtXbEmv1YySJ3vu4df9/G1KiHYgExChIIGUPDRBJgpkG7z2CeD3n4kkudiK5aT0QrySIt3Mc4kE5hrEXyQHMcI3FiAjEcHocKf8rabKuIhDpnjPTpUsXTp06xVtvvUVMTAw1a9Zk4cKFV5OCDx065NN47Ny5czzxxBPExMSQP39+6tSpw9q1a6maBu7PLEHr1vDZZ3IhDoTNFZpJC3Xjs+cg+YpUjJhNGiWKp01ZuFv2/5lnAnt4ryRbU9r1JjERXnkFvv9BvCsOh2z/8GF53fvC7+7l1PtxSSiuVy9tvsc0pwxyQTW6ONoxNjqMsCEl3c/i2+3Rvb0oAisLb0HuGn832bbboJmNaIKkEY8+CgsWyO/m71WxI7aZu0GlDV9nlc0uE7S3B7hVS/FuXLhgUKbvhK6PSPNHp+5Zx2aX8NLQoVJ+n5AgzR/37BGD5rnnRENpxw5Jhl8QzLMWgK3bghscuhM2/CG5P/eEkBRaprSoYa9YYVzV17uPcd6ZRXbs/ofRE2fSvXdfSpQJ1Ek+HMognsBpiHERh0z0DwLtEKmDQCxGwkNGaEjlX0dSXow+du3H/7tyIBb0W4jYXR/MjRhvLiPNMG+2sK4iHFQ7g2uRCRPhfyNSLrfZJeQz/keprgmXpUvljtLdTDF/fulf07NHYFfz2bPQpk3aacOM/FK0QPxZuw6eezb07dntcrEeNhSWrxCFX7N1GzWG4Z9KOWp8vEjKR1roGp5hrAGeD7LOMKBlGNveBnwJuHRV0JD8gWeR5nZuEpHqqFWkNH6MqIfo2KQh69aLsZpw2XND7kCSiUcixVvJSHpCN+AKcp7kzi1K0P6Chzt2QL/+8ru7J3Z3PknXrjDwRTgRA9Onwx8bxIi6o550Ri9YAD79FGbOSml4VKwoNyGFCsETfaVha2r1ZwKh2aBmTRg7JrT3XY6X5OsNf3gaq2qafI4+fcQjlApbRtd1WnTqw679x5mxciM5c6ZnTpkV3keMn2CieivxTaCPQSQUgk2LNYHtWDsv3EzFPL9HkZp2BtdcNZMC0YPIlQu++cZXuK5GdSmxTI0hM34CfPE/3/yRc+dg7FhRyP3yy5QTe4ECoggcqtfEiPnzAxsz4eYBORywYrlcf1auME92dDhg1Sp44glJKgbImQs6dJBlefPIsosXYd8+2dbNlSUhOsO4E7gbUTr1v6jagIau18OhOjAGkUg/h4jdBUok/xiv0iCL206HqpJKFSVv5I/1cCkWyp2DduflK7C5EprPVYQvs0OuI1K51rYNPPRQYBXgatVg2jT4dTr8tlS8LLdUFmO+bl2Z0IsVg3795OEm6YpoPW3fFnic//0nRszkX+Drr0T8bu7c8DrFm6E7gwsHBiJnDmndsWWLdIqPjROl7w7trakqB+HcudPkiY7m+deeuAYMGbBumfmvd4DghoxG6DliRZBWJ4r0Qhkz1yoP3C8Xmu3bpWy5dGkoY1WjxIAjR2CkS0/C/85Sd0oZ6/Tp0PXhlO/t2VNCMt+M8TWwoqI8yblWiTkeeHlqkryvXJG76MTE4CEx3QlbvBIuL18S/ZB1a8Vr9N13MG+eR+cnb7T0rOrZw2IpdmrRgKGIUN7PXLgQx569EdxcLj/JV+7hpSHH2LO/B3EXL3Ph4mXiE5L4bHB/6te+lZ9mLGbKvGVE58lFofzRlC1ZjEb1atK2RSOyZYsiMjK7S/ejsOsRiNPIXW2oxkkqj09/fvpJ9E90XZLidR3+dYCjHtS906X3czsULgefh7DdwoXEMHnySevvmTPb2JABGduJGJgzV86fN16X8NO//8iNw8aNIl/gcMpncTjDr4LKFx18nUBoQK2a8khDdKfOhfNneXHwB+QrUy1Ntx0+tyN5KkbYkOTiXH7LrfSNCyeY0YPgPdsUqUEZM9cydru4lNOKGTNdJdMmd9pTpgQ2ZkAE4jp0kN41ly5D2TKiJfPcc4BurVrEZg98xxwbK60RgmnCBELTpJO3TRN3/29Lg7/HfyJxOuDQYfECxMb6hgjiYuVu+/BhUfpNj8aFXly4eJE5i5axZNU+1m3Oxd4DsWSL1Fk+ZwTOqIKcSBhB9vwlKFw2mtx5cpM9R04iKzTkZJ7S5Cx3mkrVL3AhNpbDZ07z5861xMQlUbFqNQ7u30evAW9zW+UK1KpWifq1a9DiroYUSZFM/gehuc/dpKEXYv4C+NzLQkn2+r2Wb4QPCsH7GZi4PW2atfUWLPCcP3lye8rCa9WU6qfFi0VHKWcO0YsKFc0G5cpLtVOePNJQtUTmVnp+NHIMl4mkwxNWurlnFHcDI5Cs8EDHshMRpfSnKlAIMeiNsBp2tbn28zDQxcL6itSgcmZuJAa+CKtWmq+jadKXKZQJe916+OQTqVaywucjRLbdzdRpksPicLrKaUOcSDVNmvJ17ixaIqHccYfKd99B9erB1wuRU2fOsmXrdm6tWJL9x8/S6IGnKFUqP7XrVqJq9Tu5tWYrqtWsG1aPG13XcVxJ5NihfcyaMoldO7fxz66/OXnqNMWLFmL9r1+SK2dOtu45RKN6txMZNR+pXAqVmkh1RyrQkVDIwIFwwaRiS9Ng1mzzidzhgBMn5KagSNHUGaGNGrkq4oJQqpSoGgdDR24Mjh+zXjKu2bh60xARIecLumzn1ddCC4VeuiTvz5MnVd/L9l17qNPmMbo82p1X3v8s/A2lC3uRUuc4PF7GCCSPpifQn8AffirwocE2NST5eC7m1UkguTddES0ZhRVUzozCGjlziGfEzFiIjAz94tagvoSndv0teSb/+5/E5P33Y7NLE8E7vVoPLF0qpdhuwjGt69cXrxHIROIt2JeW2O2S/JlGxoyu6yxfs56R301i3rL1REfnZdqsb4mqOJuFa8tRonQkktcyG6maqAxYbDPhhaZpRERmp0zFqjz7usdIObT/X47s/5dD2SoSe2gv9z7cn+g8uWjVqAr3t8nGfa2vhKAN6C36EibHjkuSqjsxPdj+VqyARwL0/Um6It3Qp0z25GGVLSd6LffdF97knSu3NWPG3aIjGBrw6COSUGy6niusqfuFpbyrHWfNEuPujTeC7/e336Qf065d8rxUKXjkUXjowZBDqE6nk74vvU+RIkXoP+hakzcA6Rz/K3L+uEXzKiNGxhHEmElAwk0Puv6CqPaeR3LLNDwHTDJwH6IpkxPRrwl0wbK59vF2Gn8ehRnKmLmRaH63dOM1wm4Xoa5w0BD10KpVoc7t8OabsHWL1+s2aNlSLrjui6aONNQMVHprFbeeTESE3IkvWZI+hgzI9t0l36lAd+ocPHSA9o+/zPY9+yhVqiRPD3iJ+7q0p0DxgcB5cuX3d2VvAZ5CLqBpo3hdpnwlypSXC3jeYjcxceZCfps7gxW/zWXqgkQKF7CzZV4+ogtcJmfORNO2RfJjhpuUjLSHeLKvaARZwaZBQnzK5cnJ8Pzz8OefvsfBoYPw3ruictuvnyR4z58PGzfJ67VqiaaSkZx/27YiKxDs2HrwAWvjB+lTtXWbJOR632TY7NKA8+VXJMSpI0b6oYOBzxNdl9cf7y2tP4wYOw6+Ge2b/H/0qKe/2gcfhFSe/fX3k1i/5W++/HbCNZL0G4hoRC7ALRlwCPHWuHt+6YiG0lTk/HoCuZg9gYhBzkMqnPIh3ebLud7XD1HpXoLH2+M+Z+sh7TwUGYkyZm4k7moiwlgHD6Ss9tFschHtFopEvgHFi0my4969kl9jt4umS5EivusdPiyS9amhRQtPh+GEBGN9nrTAZpcy9jDRdZ2Fy1Zxa4VinE3KRtXad9D7hTdp2qajS2tpLBLjDzRhJiPa/b8h+hrBuID0b5oBnEEqltoj8fuUn0HTNKrXqU/1OvUZ+PYJ9u6OYPdWnX2OAtj3XqZn/310bGXnmV4Oypb2H58dyTNIRUO8uXNDa9zocECFAAnHs+fAnxtSbsf9/PvvJb9q+KcSanG3eFi+DL76Cj7/DG6/PeV2H+4CM371FbLzp1kzKfu3is0mBkTzZjBlqpwv2bOLHk7nLp4Q2rHjgaUafNBg6W/G5+8//4ghA74Gmft7WbxI9KtaWSv3T7qSxC9zfqNNu3tp0uo+S+/JfJIRb8wZfD0q7mvGaMRYcX8HRYBeBtuKQOQRHkbUemOQc+BeRKAyIwoFFN4oY+ZGwm6Hr0bJnevu3fJc08QAyJ1LGjnelHoV0KtUrJhS58Ob1Dbpi4iACl7aKDlySg5AsC7ZZp4gsxCV0yF6O2Gwcct2+r/xIX9s2cWYb8dRu1Fr3vi4hd9awSqIbMB8ghszp4HeSGjKvb2TSHXUbOA7jLtrHwC2U/GWCCreAnCB44egcvW8jPzxPMPHOmnTNJJ+veCe5m4RseKI6EsqpNdDEZrTEHuscQAv2dSp5u+12eGD96XiTXfLzbtISJCu2tOmp/RwFC0KY8bCiy9Knos3djs82k062sfGws8/S+jn7FmRNejQQTRs8ucLMB5NDPIW/seCF2YG1NUx2MzXmzbdXLJAs4lYoEVj5tyJIwz9aCj2IrdaWv/aYDVw1OR1GzAe6/pNGpInVjNVo1KkDcqYudEoVEhE+TZvgjVrJL/gllvkIpbRDTuLlxCDJBxvis0Ore/xbVxp0+D+ByQcYJYXVKu2fH63MedwSK7QgOdF2yeQQqzNLt9TkxDuvIHz5+N4bchwxv0yj5KlSvLF2B+o36qjwdrBWhQ4MVc1dTMMuVP0N4wciOfnLcQLFIiUBkLxMjDky/y8cj4vM35KYPqkcwwebqdq+YrkzfswkdnLkDPXOSSPIMw2G7FxFqvhEEfQB4B9KpLI6RUaMQrFuDE7LnSnqFBPmwbP9k/5+s2VxEhZv156KV24KNpPzZpL8m1MjIR6Tp/27OfMacnfmTdP2m+4lM+D4tRlP39uECMrWB5YcrK5dMM/e8xFL3WneIYs8PP0OTjs2bj5ri7kiA7fU+nBiXRrPwMURRJm06NkcD2ekJDROP5Gmq1eq2EzhRHKmLkR0YA6deSRmeTNI3k0CxeFnueSP7/kyvjTswcsWyqu+UATV98noe8TsGu3rHc5HsqXE3n43LmhXl145VXY959v8mX9+hISCKFH1aWLsXwwYjQ//rqYvs8+T+/+rxBp2rSzJHIhNfouIgjexiAGUTU1mtCTEfXffQRWI81juOXofHZ69stFj2dycvKojUNaNrYu+oG3hx7gqUcjGdD3CoULNgEGEnJvmbJlRQcpWCVbY0RFvgqItykOyYtwkTNn6LpH3jgd0svL35i5dEmMpFy5oWEDefjz7ru+hoz3Nk+fgvfeh1EWhCcPHxHv6cEDnhCq2fmhaeKVbN7ceJ0cOYPnplm4mdl7YC99Bw2l8V01+ah9c0IzXs8jnsF1yDFeA/Hq/YAk5LopjyTZ3hHCtq1gtUoy2HonEWXseGSsDVAaMpmPMmYUoRF3QdR2Y2LkzvTmm0VVtXy50Ld16jT8ty+8hN0zp0UTp29f3+V588J330tF1aKFHq9PsWLSf6ZjR3le5RZ5+FOunAjobd3iyfepXz8k1eWE+EQWLV9GxYoVafPIkzR9dCBlb6ps4Z0PYl4SnQzcH2Qbu7FWEvY3gY2Z24BsSF+AwGiaRtFSOnCRsnWdNGqWj0++Ocfn30LPB9fx8rOPUa7URFK2sTZiHTx4GFYHmUTeQxoY++CnVt2qNUybmrrWG26xRB05hn4cL+J3INVKjz4qx5F3suyhQ5J0bITDISrGh49AaRPF3cuXRVrALUwZzGvpLtd+8w3z7vbNm8NGk/HZ7eahLsDpnEjP50aRK5eTQcNOAo8i1UFvEbz8eAvSjDQej7G+mcCG+wGkvcZIwjdoLiKenrx4csSqYS6kpyHHrFFJ8BVEGXsmcnDYEMOnMHLeBsi1UmQYyphRWENHknq//VbUdv2pVQveeUck0q2QlARPPQVHUlEdNGYMtGmbcnIokB/efQdeHCiTTFR2yQWyWqmhIWKFNWqG7O3ed/AQD/V5iT0HjvLrwmWUKF8lhHe3Q/JmtpHyIq8h3XnrBdmG1R5TRqe+HWneZ2zMeFP2Jjvv/y8//V/Ly/ivLzF+yhmyReXgzWdGEV3gbbIF6vXlw2zgPbjTJqkKv5HSFtOARvjlF9sRw8tPsfWRrtIpPSExpZFst8uxkJBg7AGy28U4B2nf8eMPvtU/hw7C0CHS42nwYM/xsXt3kM/p4qtRkmjbrFngPmhz58GpkyY5Xa4dul+vUkVajQRqD+JNu7Zy/p49l/KzazbxAHUxEMsEYBzD/vctv29KZNR3pclXwP2d7EXys35ESqEDcQ4xThLwPa6NbmLcuUyfIFVGoZyEx5H+YIvxhJNuRUqqGyGex0sm+37EZH/vAou83uv+Hs8gicXfIaJ7isxApVwrrPH991JGHciQAWkP0LOXeFus8NtvgauqQsFml4nLiLx5ZWKqVNG6IfPPPzJJ3XmnVGB16iQ5FBbyeuYtWU7dtt05diaOr8dPDdGQATEiOhi8lguZNIJ9jhoEL92OQCoujAg976VocTsvv5eXBevK0r53cf65EMOAt4fyxMDBHDxslHR5HmnbAGhOGAI8jW+xVV6kSvYT/K5WDgJWmpQsCaO+km7WIJO0OzR4U0VX8q/JMedwiPjitu1iyEDg6p/Zs2D1as/yCItG5G9LRZ6gdWs5B/xZstj8/boOxYrDL79IBdj4H4MbMiDht2++gaKuikK73fO95M4FI0eaeIzOcv7894ya4KBrt0I0bulthDkQw9eswehMUhoywXAC+xFPo1WOIt1GvQ0ZkHycD5FqvlsQg9/bmHcfWHcDnQy2vR9YQODP4HQ9jPLQFBmB8swognPpEowLouyqO6WS46eJEu8PxqLFqRe30/Xwmu4ZsWaNVKuAx8g6cECqvFaths+Ge3IY/Pjh52n0fmUYtevU4ePRP1GoiMVETx+2I91+A30n8cjd7QzMjZXcyAX5J4wFvdphbrC0QS7Mof820fltkD8RpzMRe8EiTBz7CxNmLKbng/fwxsCnKV3Cu0rIr3rLBjyOqMwfcg2/jA2yORFPjNO1ko7kVNwZeBDVbxMNmZUrxIMSEQEN7xTvoYZ4BEePTqnt4nRAr8elBcHgt8wFJm12qf5xJ4TfXgeyZTM29t24j/eLF2HQIMnB8TZGLl4Kngh9/jwsWyZSBy1aYFnZsGxZmDFDGq2uWgX79kuye5480m2+YEFZxw9H8gJizxbkm7H5KFHlUoANO5BKofOIHos/vxN+E9ITuBKkDIgHFgJbgT/xVfv1x4mEtgoinUpXId3hbwI6A60xvr9fiHkbAwfSmFUlD2cWyjOjCM6q1Z48AjOcDqn2sEJcXOrF7Wwa5HYlrJ45I6WznbvAfe2lvcGGDdYVhS9dksnF6fT1FumuEt5162DSzynepjt1zsQcpnT5cjze92nGTF4QpiEDIohndEo6kAt7gLv5FPQHmrn+j/D7Ww94Jcj7H0RcIuEnNdps0Hfga8xbu41uj/flp9nLuKXx/ezcsR1Hsvv7PUBAT1MEks5zEy5D5m0kxNYU8cbMxvgO2kW2CJnon38e+veH2rU8u+rTR1pq1KolBrVmk6qkTz+V8mqAHdvNPThOB/z7r+d53rxSSWeuLOhB1wFNtG28qXhT8CTz+MvSVmPIEMkRmjzZ2j5BDLtChWDZclEBPnwI/t4paskPdYJffXNKdF1n8IdL2XkqmlK3JhKZ3ejzOZFwUiBSo/1kZnRvRGKPQxDJgkAVfP44kLBQHkTwbhUiWdAG8+kwluBeUSdizCgyA+WZUQQnLta6F+XCBTEGgl2Qy5WTi6iZ7kWePNJ00mgdhwNat4K/d8EzT0vzS/cYT56QqpTOXcSwCXYdWrBAcimM7op1p0wajz12dVsJ8Yk8P3gI9z94P9E3N+G5ep2D7MQMHbmwml34ba51gunMZEMSFf9CJv4YJEnRqqCXhtylTg86amNqAYXIlx8GvDGE7k+9wOKZP3MxW3727fuH337fTM8uEeQI2qRYQ5Jp0liYrXEjeejIb+4dhnTqEHMi+DayZ5f3x56X5506wepVcNygK7w/ulNagBw7BiVcydIPPmhNc8cd9kxKlL5oOXJCewvfUdwFaQwbH+97PrvPsWFD4aYK0nYEGDpiNMO+3sInVUtTuq5Z/pNb/CcQNZCE81BCyu5kXCMdmyPAAKS5qR7ith2Ih/M5rN/PXyK4URaF8XegSG+UZ0YRnOIlrHtR8uS1Vr784APBdS+6dpU7yUB3uzY71K4Dt90GA56TEutAF+cpkyW3wHA/wNatsGAhQS2eEzFXmx9evhTPvd378f20Rew5aydXfhMZecsEuyA7sZqYK5+lNvAOomz6PlIZEuyU/wfpTTOV8O+oNeAZnyX5CxaiS+9niSx3B6uOwLNvfU7FRov45gc7yVeM3Gd2JByQCjE+K0P1z6f64w+4YqEDeOEiUiXkFr3r9JB1Q8Ybb5HHGjWhk8so1oJZ4F58/ZV4FYMxd46rzNxgXZsNJv4EwJzFy3jrs3E80v1hWnc067tlR5Jr8xm8/hDhNV17AePj9RfkXAjXu3sRsCraOQXx/JgRgdxkZLBWl+IqyphRBKdhA/OyT2/uNtG68KZaNePqCc0GdetCz57w9ddQyOVqtts9hs2dDUV6fulSOBegQuPqtjQR0QvE37tkAurdW0qxrRhsEdm4dOkybR97hjUbd/Dp19/SrE3H4O8LioZUg5idkjbM8wdSSzLwPOZaN8GIQLJ1awd+NVsU9Zq2Y8rCFVSsUpun3kigWnM7sxf5J9C62gwYysmnIzt3iLEcjL82m3f2toLNLh7ItesknHvqFLzyCrz+uvXKQJD3bd8efL31f5jn5DgcsH49u/75j8eee5u69e7gpXdGYvw72BFPYD+TnZYG3kR+U+9ggPs79jcACiHCj80wZimheWP8icCakXweGB5kHQ0x5J5IxXgUqUWFmRTBiYiAJndJ/5ZgdAqSy+DNSy9JwuH4H0W3BsSz06mT5DVki5AO1XPnwu9rRcU0MgoaN/bo2mzabC7Truvw317R78jpFdPYt1/E85IsejpsdrjtNhyRkdzbuQ9/bN3N52N+pNHd4bU3CExXpPzTcBBAR4vbcjfQ2490s25A8MTElUheTjAiSOnaz4fktLyMlUmiUpXqfDlhBpvXL+B/Q5/j980at99iJ2+BOHLnSUAmuHfIFKl4ewZdFjWbGCydOnmE/jQbNL0LBr0uOTinTkoy85cWxPaCtfGA4KKEgEN3snTVKgoUKswn30wkIls2pAljTqT82DsvpDyiM1MpwJa86YAkQf2EiOY5kPBTVySPaz0eBeC6BJ+aLHQwNyUXEnbNheTdPEjgjvRGFUzeaEjCvHfvOff5Nw/JJSqKVFP5l69fQaQY4pG+UCYaRApTlDGjsEbPnsGNmfLl4WYr4nAuNORCXrEibNokxkvbdlCksO96drtUjQRqJRCu6vnYsWLIWLi4A+B0oHfvwcljB7m7ZUse7vcGDZuF2WE8IBeQO9UqwC7EcHFfRCOQi/9gJPclGDsRQ2Cf17IopHPwkxh7fzZjLvfupgOSQHkHIhSmE26ycO36bfhh1h7i49ay7+wyRr06l4sXnAx7402q3VI9rG2mmgb1rSn1pgZNk35KRw77ekp0J6xcBXv/gwnjpWLp1mrWtlnKwkRYvQb8scHQC+nQbJxsUIc6Tdrwc6eXyJnHra6sAT2ALkjV0EWgLHK8Wj0JqyEel0CE1iYEbkZywsL1zsS6/p4CxiBhq29IaWwcwfdcDIQTX32nJOB1YDlyPrmr8H5CQm6vIt/Zz8C3+LYouQN4DTBpTaEIiAozKaxxcyUpbzWr1nimX2jGxd+74KGHxEPyzWi5+7zvXvjkU+v9mmrXMc+90WxiLHl7ZRISpJWBFUPGJqEtx/MD+eHwEQ7FZ6N1t/5paMicQVz0dyN3uLvcO8bjlm8EjEPuJIPxH9AXOOi3PBG5cJq5zK3+eH2RMvF6eJolhY+m2cgZ3Yi8Zd/klvp9+XNHLLVa9ab3C69z9PiBVG07LG65Rfp3hdC6ImRuvVWO8UAhH6dDJAemTZPndepA8eLG557La2hJpfr++8WICpCP49R1Ho638ea5bGQrVsXLkPEmO2J4tEEE4tKjh5IVOpO6MJM3TqSk+1lSGvLG7T08aIiHx80niJcT1/acXtudhni3RiPn4nm/bW1E+o35NTNVBEUZMwrrDBsKt7sku92iW5pN/r7yCjRran1b+w+IEXPYTwHY4ZCk3ffet7adFndD/gLGOQ66UyqQvLlgUiHlRtNkAunRHX3mDJ7+aze9X/uU3Wcge6581sYWlAmIi3s9KS/MDuT0/Aa56NU02IYO/IHc7XVGDI2kANtzrzsZ4wtlHcy9MhriBg+zmWQQNJuNB7r1Yfbqr3ny2WpMnb+EW+56kH3/dUJ3/kLaTV4W+Ogj8TTKwORvWhk3vXpJWwSz7elO+GmS/G/T4PU3Aq+n2SAym8gKWKFwIRg6VBJ9vfdvs/P8lUimnUuifPP7iMp9rVflNMdj3KeFQeVEei7dgxgcbiOzFebnhB2oj6cFwmmkgtDMkzMeuTkJhAOpnFICfKGijBmFdXLlEl2M776Xkud290L/flJK2jnEsuRvx4nAWCDviK7D/Hmwb1/K1/yJjIQvvoBcOX3vXN0X6ocfltCVN9F5IVsQmX3NJv13+vXjg8mzGPvLXF56/S1q178r+JgsMQsYQXBJ969NtuFEwknPACsQr8x5k22CnPJGlRmNkcZ/RpOsjoSq0vNu/Gdy5HyVJ1+MZ/aqMrw4qDRnk7Oz77+fGDOhB1esVBmlBQXyS+L4a69B6dKQM5doydSombrtliwlHsyYmOAG9bmzMHUa/O8LKb8OFBrSndC+g/RIs0rz5vDTT3DvfVCgIOSN5r3CpRl5JpEBL71Gh4czIek6ZDREf+h1JNzlJoLUHZ/nkFDYKNfzChiL6Wmuh3d/uPUED9NeMtiem2REpC+1eUE3FpquB5ObzFrExcURHR1N7K4V5M1r1DBMkakkJUGTJuahJLtdPCr9+xuv483ZczBzBixZIhoat9wiIaw6twe+tr33Psyba6Jzo8GcOUz5YzMP9xvMoz0f55X3glU1WMWB3FWetLj+QgLnykxADKJQiECSHY2E8/5D8mpi8c3ZSQYeQCaPtDZmkpFGhAcQ2XnfS9KVBDu/L3YyoP9eypfKzwevvMDD97dDC6V0ORzWrIGXX5FjxG10h6tarWniDRk1Srybb7wpTSytYKZE7GbqtPCavQLjJ/9Kj4Ef0KP3E7z4zidhbSNz0ZEya7vr73Qk8TYVfd8AyW8pB9yFeEjn4arlR47ZfEj3U28l6hmYN4t1Y6Ym7GY+kjh84xBz6iytalcgNjY25PlbGTOKjOfsOWjV0nwdu13uHAe/mT5jOB4D3bpJBUigieLx3iT06sH9vV/kEtkZOX4GNltaOTJ3IMmUVvmFlNUiyYiuhcVeWFexI67025DqjUakLI09j7jKFyGTQ0Xkwl6PtDVkdMSl/w3G6rEetm3S+WLoBTZsOEWdajcz/O0XuauhWY+pVHDsuGghGeW1BCMyylc1u1w5eOVVqOca7++/w4ABaTJU7HbxjLpbcYRA7NlT7D12khnr9tP58WdTaSAmIAZ6Dqwlqqc3fYFNqXi/+3zXEI/k/Yho5SWkiusuUjZ23Yn047CybTOj2I7k3Zjp+1x/pMaYUdVMiownT56UF3t/dKBYWgjRGVC8GPzwAwwbBhv+8CyPzge9e5Pc6SGOH9rHy+8OIWexymloyIB1sS6QC2mgieEIoRsyIHeD85C7Ph0p1x6AeF3c5EMuyFYuyqlhPPCF5bWr19EYN70AqxZ9yhcff8DqDZuoWr4I0QWKERmVxmJl06eDwxmeIdP3SejTG7Zuk1BR0aJQ9VZfO7BBgzQbKg4H7N0b8ts+/GIM5SuUpVSdNnTpnRqF5VjEIJ2FJzRSFdFdaZKK7aaWHqTOmPE2Nn5AGsE+GeQ9VZFKq/8I7HmJQPLfNppsIwLR2LmxDJnUoowZRcaTmCBN+UyNGSfca6V6JxWULgVfjYKjR2H/fsiRA6rXIBno8uRAmre9j4b3NiMiMq0VaMvgEYULRk6khDMn4r2IRmL4qcW974tIbxsNufNMLxJc+8qLTAo7gZFhbCeSJq07cOfd7bh8/gT/xh3i0zdfI1eOKD547TnKliqRNsNd+7u1ajfvJFqHQ4Qg+/SRpN1aNY3fZ7NBg4awbm2qh4pmk5wei+i6zoA3hjLyx+k81f85nmlbLhU7j0O6gx7Gd/LejSj4vkn6HlfeHAbmIFpJBRDP5cOIZzMt+BF4FHO9Jg0JM/VBblq8Q+l2RBDwfSTBdwYprwF2ZFpWAnyhoowZRcYzYyZcDtR914umTcV7khGULOmjtvrGe58wY/HvNH/46XQwZACKIRUQGwgeN7+Ep/LBLVY3CpkgovHoZaSWL5E8Hn+3eWr5Dxn/MuTCnh0Jba0idIn7CKSKBewREeQpVBJHvqKUrd6A70ePYtr8FTzdrSODX3iG/PlTGWJ2WMiLKVhI+iGdPiN6MO3aQZnS1vfRqxesXxee98cb3Ql3321p1aTEJLo/N4jJc5cz4OXX6P3ca6nbN9+S0pABj1fjQ8TLkC+V+3GTjBw7exCjuAkSBh0BTESMAbcLbDxi0LwGfIZU+YH1Gwl/EpHu4MGEMm8CJrn2PwcRxMuLeD+7Id/VrcBRxHPkbfCURvJwbgpjfDc2yphRZDyzZ5lfwDXNujJvGjNj/mI+GfMLfZ55liYtgjV0TA2vIm5wKw3s3HivNwMRIdtJ+K0HvDmPlHg3SoNtudmBuOWv4JnsErDW+dsf9wT1qM9Se0QEjz/7Gg88+gRjRwzlq4kTmDhjMVsX/kjRYiWx2cMMD9apAwcPGCeI2+1Qrx70M5PxD0LtWjD4LfjAlTBqVcDRfxzFiotEQRAcyQ66PPkSc5at451hn/JAtz6h78+HZGAm5ga5EwlpPpLKfYGIOr4KnMVj2H+FVDO5dZX8xzIf0YpZhYjY7UVyxCohyexGMgaB0LDeFbu4a6yvIJWGk/EYOO7z1W1UFUHUgRsgqsiZpd2TtVEJwIqMp/nd0onbjJsrw6SfMmY8LvYfPEKdNo9wc9Xb+OaXeWmcJxOIo4h41mLCa+oYgSjwrid4QqEV3iHtulPriPfoGKnTh7G5thWF3OWbK8UeO7SfNUvm0P6uGuRxxDL7t3U83fMR8uSxHoYBpN1Fl87mRvcPP0iPsdRy4gTMmAG7dsOhQylVgQPhrnAqXx6+GBnUi5mYkEDM0YMs2noUPboUDZvdk/pxc5rgIc8IpAWHRR0cQ/5DknDDaS4ZgSSz5/NbvgMxOGKwVl0E4hWtH8K+v0Y8k2bbtyP5MT9xo7czSE0CsNKZUWQ8RYuYdwS22UWwLgPRnTp79+6mbPkKfDjqhwwwZABKIvHzZYSSCOshGVEOHgrUQuLxqRF2M/rOExGDaTkplYWN2ETg8INVNKQstS3S72kRViTvS5QpT+fezxFRph5L9sbz+idjKF+/He9+Moq4OKt31UCF8sZCdQADnk8bQwYkQfipp+B/I6BDeyzdmd9yC/zvfzB5SlBDZuyEKbTr/iz7kwtRt+2jaWTIgPVu5iEakgH5kfC7ZCcj/aD8qYZU7f0PqXwqifGUaEPCw6FUz23EEyI2Ow8ciMfyxxC2rfBHGTOKtMPhkFYBwXx99wdJCHQ6oEWLNBuWFc6fO0GBUhUZ88tsChbOaG2HXBgbEma4dTVaI/1lFiHdjUM1aDTkQu3f6VpHqjhaIS0XXkLi/oHaJfizj9S5y+2I8vG7EH8fzF0O48bCtKlwPngZd0RkDpq268Ks5eto1KwFH3z5I+Xqt2PUdxNwJFs0sP7ZE3i5psG6ddZbboRCq9ZYyuf4e6eMwWb8HZ87F8eDvZ+n72sfEpG3CDlKViEiMi0rZHIjXgqz4y0ZSO257ESO7dR4Ho0E6OxIaLUPkleTg5Sfx45MlW8FeM2MX7CeyZGMhMTSImR8Y6KMGUXq2blTOmA3aAiNGkHbtvD9D55OwP7c1x5uusm4BQHAW4Pl7veff9JjxD78+dc22vR4mWNXotOwVUGolCFw114zHPiqn4IkGJbE+kXUPRkOIuXl4Auk4sjfo7EFMZrM+sfkILwkS1zjGAlUESHEli3h3Xdh7DhpM9D6Hvj6K0vidWXK38z7X3zHrOXruKvFPcQ5Itm3/x/+3LiBPXv3G79x23aYOjXwa7ou5fzzjZSUU0GJ4vDAg+aeSze//AIHAxuVC5aupHrLTixavZF3PxzOJ2N+JmfOYF3Tw+EJ5HcONF47kgdSNZX7uEJ4YVhv/BtIGq3zI2LceH+emsjNwh0h7nM7oY07AfGCKsJBGTOK1LFiBTz+OKxe7UlgPHVSSp6fejqwQZMjO4wZK5OUYU8lXe48e/aCHTvSbfiXL8Xz2HODORUbT/Hyqb3opoYIJEkyFG9GDmSy8CYP8D3irfE2aAohvZv8L+rlEKPFP/H3KKIwHAh3/xij/jIgqqjh1hc8BdQThdwPPnB5+3RwJHv+fvstjDPbvy+ly1XivRFjuaf7QE7lqcY7X0+jarOH6NC9P8tWr+Nq6uDJUzBlKnz8kXlTVc0mqrvpwSsvSxuOYNjtMGeOz6Lk5GROHT/I7xu3U7BoCSbPX8H9j/ZOn3ECMtF/jEgHgPzm7t+9AfBRGuwjNXUqdqQyyGpIsDzioVmCSCIsQAyZGmHsO9TKwNxYD90p/FEJwIrwuXwZWrUSg8XoMKpUCYYMgQoVAr9+5gz07g1HjwW+09Zsop46ZUq6JPm/MHgYoybMYMKMhVStcXva7yAkHIgr26LMPfmApSavn0daBLirN9wVIP8hSq0FEYGvQF/sGMRYMQvJRCIqpf59rmKAqa5HkBL8q2PCta9HgBdkUYcOEHPM2PMeFQWLFkPu0D0Oly5dYPr4Mfz847ccPXqMWyqU5uvbK9FkzWpsWBTLy5UbVq4Ied8WBwh3BekDZrND61bw/vskxCfyv3HjOXD4GN37PImevxy5CxRP/5YPV4lHDIB9iJHdHDnm9iJiescQKYF7kLyTUMblQNSnQyUCOfbHALeE8f7U8jHSWsGKd8aOHPvPp+eArnlUArAic1i40NyQAfj3X+j2GGwyUOI8cxaOHDEOGehO2L8Pdlr0zpw7L1L0ScEbEq77czMjf5hOzyeevgYMGZAL2gdIiMXKiRws9yMfcudcBc/drYZ4ZxoClfFMKjpiGPVxvfYtweP3SYhomjc7EA/QBFIaMhoeHZA+SE7BI4huRw+k3PxFIBlOjIBRx0SKZy2SJ+3fSzExEVavCjLGwOTKlYfuT7/IvLU7+GLsjxQhgoR9R/ivbAkmZMvBKj2CoPd5udIisdWA7NlFJdsMDZKjoxk3cSqVGrfn9Y+/4eglG5Gla5GnYIkMNGRADJj2yGT8JHKMfQZ0AaYg5cnzgKddj1BUsO2kbOcRiJp4PBvZkONqIpljyICcBxDccItAVL7TW3H7+kbpzCjCZ88/4uoOlgh55Yp0H56/ALL5HXKHLFbHHDpsXj2yfr2ErrZtlec5ckLHDvBEX8ibJ8XqulNn646d3FrtVp4cmE79n8JCQ4yJuxAXt9F3a0Nc4mmBDnyCaGFYLVEFuXx4f7dJyGSWYLANHQk9DEISjkFaKXiTBDwLxTZ5HDaRQEvX40Xgd9dyTZPeWqnAZrPR9NZaNL1kIzlR52TevAw5dZI9l5MoG2Wnc94IutsdVNP8DDubHdoGE09LBXY7tGkDc+cE1LpxonEmR3bq/7KEfcdP0bhJEz7/7j0qV6uZfmMKiUlIqTF4jmH3383Au4QWgnoM8VoakR0xnnIhRnQurE1vB4B/gT8RnaVziGFxP5LsntPwncEphySxv4JxJZaGhHhfJfScOYU3yphRhE9UlDV3vO6Ec+ckv6alX2WD1RBBbpO74PkL4O238LkDir8sZavr1sF336cwaM6fjaHOnU35tvOLad/XJ014EFEPNcIJdAqwfD8pJd2D3ZmuQAwZCM2QaYlvk8qlmDeM1FzjM6sWG49MdrrvDW0E8pGHIpGKeOTY81JuDpvFi8FuJyLZQd6zl/k5dzHW5U1mXuJFvjobyycOJ0urFaKWfoW42HhKO53YcuWU5o7pSa+e8Ntv0gXe6UDXddYRwU/JNvrdVJT4mg1on7sUtRs0o+YdaSl2mFqSkSo4IxyIcOI0RFogD8GnorZI4vmv+GoquSuNPkbCWHj9NUIH5iJh1CMBXr+MKArPQtoO5AuyPTMaIefjbOAv5KCuDVRAEuvPIV6ts4h4niJclDGjCJ+md1kXtouIgD27UxoztetAnrxwwT9c4UWu3KK2GogLFyVJVNdJUT3jdIhH59tv4YXnry7euetfhowcx+MvvUfRHOlR4ZEW3IaEYCaRUn7dfTfXymuZE/gUMUrceSia6/2tkTtho4TEnwnNI2NHjBh/Bdltrn0beZN0JLH4HIHvQh1ISMIgvGVDbpRbAbM1KFgwbRo2xsX5VA9FaDYa65E0jizA5YL5WG1LJputAHtyQ68DuzmTDE0qVqLp7EU0b9yAKjffFFpIJylJQrQzZ0myfJGioi9zzz0Q6ZV/VKoUjBvHyhdeZtbhGOZecvBv/BUKZYugQcW7uHXgEB7Pmdl5gYmIgaojnsLswD/I5ByMYa6HhmgI9cQ40VZDFHsbIsf4bsRl1wzpv2TVS7kb8YIEMmLcuM+1g4j3aJjFbRtREKn+6+V6noBY5QvwPdZvRfqkhdASQ3EVZcwowqdWbekGvHt3cCl2XQ+cAxCZDfr2heGfGr/38V6SQxCIBQvgikl+jNMh6qr9+0M2yYPo98ZQ/jl0ggFFrvWLxkDkDu5HRIAO5ML4MBJf9z59f8DjXfE3JpYgd6uvGuxnJ6GJ21VAjKNyfsutpuAZrXceOGP+VgdS6TvXBoMHm5f3W6VkScO2BTk1G631SDgdj976EV64C1Yc/o+/Nm5gxrv/w+n8nF9Gvk3Terexbuse4i4nUqtaFSqVK0f2HAGO97gL8MzTcs5oNvFaxpyArVtwTpnCgdffZMehI/y5ZSdPd23LZc1J//hsHE6I4I4q1ehfvzGNej9NtiIZrYXkTzLitZgMuEN9uRFvYSgKuSDGw2pgDTLJtzRYT0OMl2ahDtbFAaSU3Gq+jgPxNp5GqgHTAh2JlW4gpdG+G2na+XMa7u/GQRkz1yM6sGkjTJ8Oe/+DXDml6ui+9pAnDT0RGjBihBgKRgJjbhwOaGyg4PrwwxIW+uYbcOpgt0mjP5smpdndexhv98CB4Hk7ly/B2TNQtCiTps9m5R9b+eyrcemku5GWuDtZd0SqjxyIK9r/tE3EXD3UibjnnySwy9zKZaAy0BUxZKoSOKnxdsw7FGvIHbRRGMBiKWveQvDVEKiTRknb99wDn38uuV2BsNuhbVu0556nAZ5i+PNnz7Bx7QqK1LiNf5KTGD11FIuWLL/6toL5o3n5ic70eqg12/Yc4OfZS8mxexccjyFZz0bJbDaeKpaLJA3u3n2egyt3kbBcehjlzpmD25JzUCoqNx916knxTo8Qkf9ayalwIobxSnw9hhcRWQADfR5T3Nt5G9FzcXuc/kOaSmZDqqDyhbFtN98Suo6LA9iFFfVpa2xA1LSN9hWLeFOfS6P93TgoY+Z6Qwc+/BCmT5OLsPuOc+dO+HE8jPkGyvoLraWCAvlh4kQYORImjA+8js0uTfWqGORuaIhWzf0PiLbIqdMSQmjdSv6akTOHtbydHDmIi7vIy0O+5M5GjWlx30PB33PN4Jb2N2IbwRvguSXdAyWtNkJyGIwMQg2pVAnWt6kxUALJ1zFKAO6OcXVHXkQP5G8MQ00RQMv3EcMpjcgbDS++KOeNpvkeT/YIyBcNTz+d4m35ChSkxb0PXn3+yXczePnYYf75extHDx8g5ugR8lSsw57kEmw7dYDVm3aTcPQYmqZhB8rmiKSprSQ4NWrm1Gidx05ZWyQVqlWn3Lad2GctBw3yOBzw4yR44w1om57NT62yCsmzMiKEthE+6EgC+DzkWHobyZNxE4Ek5Q7E2PC9glTUxSOGtzvRPAnpgRZOe4008P5dZT7moVgHkl+jjJlQyRBjZtSoUXzyySfExMRQo0YNRo4cST2jHAhg6tSpDB48mAMHDlCpUiU++ugj2rZtmxFDzfr8Ol0MGfB1neu6JOEOGAC//gpp2XvIpsGA58Tr8/XXHve5zSZjqFJFlFuDkT+fNbEwb+5uIQ3/DMdmh1q1IG9efp00hbOxFxjzgUlIK0ty3uJ6RpLujyIX+kDYkfCBexI9hZRQb0GMkjsQQycfcjkZiXiA3OEiHc/Fuxtwb5Ax9kLc8IGIQCaoukjFyjTE43QK8fa0R0qBw/BgPNQJ8uaF0aOl2SPIzUDTu+CFFySvxQJFSpSmSImU4cuWpavSMn9Zqerz5qhM/G9EuDwROrBzj5xDDq8JLzER3n4bChSA+mmQJ3R1Z9sQDZh8iIFoxTs2g9ByrELB7hrT96Q8rpOR3/wUUn3nbRTrSPWU9/s0RLzxVSTZKhwV4SigehjvM+KshXEEacJ7lYOIF2cpcm5XQMrB25C2BljWIN2NmcmTJzNw4EBGjx7NHXfcwYgRI2jdujV79uyhSJGU2dtr166la9euDBs2jHvvvZdJkybRsWNHNm/eTLW0aux2vaID4yekvLt043SIpsvva6FxOlQ/PP64hLNmzYKDh0SHo2VLqF/ftIdMqqhyi7RR+OOPlHk7miZG1RN9SExIoP7tNZg2dzFlb6qcPmPJNKyK7BlpdVRFhFzeRg4iB56JIjfSKTgP0mhykOt1t+dkA5I78T+kSiMSuZj+geQaZEf0PzphbVJoivSA+sw1BieSY+NAWj58gVzs+yAXc/c4TiIT2UwknBBG9+FWreX43bdPBCFLloTMCO04DbxSmgZjx6aRMfMnkmx62GtZPqA/Eto04xDpY8i4OYAYJIH24USOw21IsnACkkg7DhFr9EZHvJE9kZyy7Bgb9IGwIVWFaRmOLoq5ZwakNDwYGxHvjcNrW7uQc3gF0mH+xgq8pLsC8B133EHdunX58ssvAXA6nZQuXZpnn32W1/zvUoAuXbpw6dIl5s6de3VZ/fr1qVmzJqNHjw66vxtaAfjkqeDaFxER0OVhn+qeVBMbC7PnSJ6ODtSpDe3bQ758abcPMy5chH79pPmeZhPDyemU0vG33oZWLfl52q+UvO1Oom+qhy0tkkbTlXPIpLwKcY9XQ4yBQP1lTiNlq8EmlwpIpZCZUXkCuevegdzZ3enadm5E2bWraz/+lwwbcgf7GDKpuI0QO3KhrQx8SWgek2PId+CtKNsYuUC/gSQ1B/rMEYhI4A8h7CuDOHUS2rUzNlassmRJKo2szYhwnZPA4bxXEA+XET2QpHGrU4cNSVw/izUjKArz3JYIxAvXG/ECmlUmudd/APmsMwnuGXGXfjdGSr79Fa5Tw3bEuDLbd18kUdmIBESf4BLG2jUvIB7XrMU1qwCclJTEpk2baOHVAdlms9GiRQvWrQvUkh3WrVvnsz5A69atDddPTEwkLi7O53HjYvHikpb2658b4d574YsvYM0a+H0NjPxSlv3xR9rtx43/0Jcth86dxJAB8cTYI2TSWLQIWrVkwdKVPDLgA/7YcTALGDLbkYTfr5C7z93IBbgLUuXgz1asTRDtCa5EWhTpi/Ql4mnpjNztvo9cGJMJfIw5kQvsGNf/boPHPWn8h1xcQznuSgDPIOXm7yMVLBFI+MrIkMG1z+1I0ug1RuEi4qm0GxyDmmatweSlUNRzAzECY0MGJFQYb/L+UPN2dMSYjsR8yrEhv3GwJN1k5Dh4kZTeGKP1ZyP5WnkxD8EURbRvvkS8g2lpyIDcmLQj8LkYgTSJDRZqX4hUkBn9fjpyrbiuOhUFJV2NmdOnT+NwOCha1DfeXLRoUWJiAh+EMTExIa0/bNgwoqOjrz5Kl77Wy23TkUKFoWgx83WSk6FmzbTZX0wMPD8AEhJ92xHoTkhMghcGwjGzzsoWOXRI+js1bgx1b5eqrPHjRVDs1Vfg9Gnf9ZMSYe5cWLYcR7KDV4Z8QZWqVWjVIZ1FzlJFHBKy6UfKOy63UfApEh7wxuoFK8hxEZDViBEzF/EQmWE2jmTE27M1jDH48y/WjLedabCvdGDQILjZ1ZfBnbfm/lu8ePAbjRw5oIiVMIQRB5Hvxsw7FI95gm87xNgMpTN7A2A05oJ2TqzltUS4trnb4vogxnYuxHsY6PjRgDeRBN0PXeNNj+lRQ5SMe+OrLmxDQqzf4auqHYidBP/uj2M99+b6IMsH1QYNGsTAgQOvPo+Li7txDRqbBo8+ImWmgS6KNjsUKgR3NUmb/U2fDleSA/dV0p1iOE2dJsnB4bJtGzzzjJTNuhOajx+T6qkI1+FrNAGMGMG4U7Hs2LOfcZN+xZaWSc9pxjnkTnkhwS/MEUjPo7pey6rjq4gaCBuhJzHGAq8ROKwUDhGIcVQzldux6lm7Ri9tufPAd9+J6vCsWXDiJBQtIk0172wE97Yz7ndmt0v49uw5mDJZwk3x8dLMtXNnaNrUvNM3EFTHR3aEhC+NyIXkSb2CGKlmx5+GeDfuQzxsgSZYDU9o0grJeBLOrRozEcgE/4XB6zoijleLlPpJaU0EEubriXgRryCNx6waqVn8HEgn0vXTFipUCLvdzokTJ3yWnzhxgmLFAt8pFitWLKT1o6KiiLom5egziYcfhh07YfEiMV7cSbGaTRJyR4wwdnOHyspV5mJ5TgesWhW+MeNwwCuviJfH32DSdWNdEBcXz5/nneFjaNq8OfUaNw9vDOlKHFK9cwxr3oZkxHvjTRGgBVLREGgbdiREE6rI2lzE3Z+WrupQNT4CUQ25ozULtWiE12U5FVy8KI8C+YM3iMwWCe3ulYc/b78Nr7/uK6sA8rxkSWjUSMKqiYme1zdvhj//hLZt4d13gxg0VsTYHBbWK4poG+1AklGXk9KwcU8vHyJJvSsMthVAvdsQDckXCUVULgKRjf4VTx6X0TheRBLZ70aOofS8AcpBeMdpfcy1fGxIC5NrXUcrbUnXW9XIyEjq1KnD0qVLry5zOp0sXbqUBgYy5A0aNPBZH2DJkiWG6yv8sNlE3v/TT6FuXShcGMqUhSf6wLSpcLOV7rMWCWJMAJa6VxuyerWEkIw6agchPn8uere4ixfeHBL+GNKVH7FuyLgJdNF/HU+lks3v701Iwmyo7CB4jk0ouBOBU0sOJH/IaGx2ZOIKJ6wWBjt2wHPPQrOm4lVp1gyGDU0Z+rRKy1Yib+AdCs7p6gP1zTfw5mBISPA1dNz/z58P06YF2UEZxCA0u/TnREIeVqiGp1poOFLenRvID3RAcjcaI8Zxau+dI5C8l3cQD58Vr4wdKTfvjdwImL3HiRhds5Fwb0/Me41lFo2RlgdGN6VOJEn7xiLd/VADBw6kR48e3H777dSrV48RI0Zw6dIlevWSPhXdu3enZMmSDBsm/S8GDBjAXXfdxfDhw2nXrh2//PILGzduZMyYMek91OsHmyYu56ZN03c/1avDsaOGUvDY7VAjFRoNu3ZLKClYV+4AJGsasfkK0KZdZ/JWqhL+GNINtypvKIaMHenZ5E8eJNa+AGmOdxK5c+2IlEkbtIIIui8rxozb1d8QUTY1Mjzdd4tpwVNIj6fFXvt3657UIDzjLQzWrxfdJnRPWCgxUXourVkDP/4oeWyhcntdecSelzBSwYLizZk/T5YZoWnw00/QqRPmv90LSBUQBP69nkOMxlDQEAOoqcHrVvRVgvEOHtHHO5Dy++OYn0OlgQ8ILXTkHuceRKDvO9LWsE8tdiRB+UkkAdrdu819LjyNeGtvLNLdmOnSpQunTp3irbfeIiYmhpo1a7Jw4cKrSb6HDh3yyWVo2LAhkyZN4s033+T111+nUqVKzJw5U2nMXIt07gTz5hq/7nBAZ1eJ58WLsHyFtBUoXBiaNhP1XjOyRUh7gzAYfCUbew4lMLjR3WG9P/2JR8JMoeDAuNwyCjFeOoY/JB/qI8aRGXbkLvFRpBy6D6J1YUR/YDqpd39HID18OiHG23HEeGuLJG5mQMVacjIMflNCqf75LY5kOH0GPh8hievhEp1PHm62bpVKPYeBUaDroiMVG+v7vhTURLSDhiGeCDf5kd+oY9hDNqYwoeW4+JMXCf24sSHVRn2R88htlLkn9gqIWF4dPIZIXWTytzqGZKSicDGiSr0dObYaIV6nfGF9krShFHIuLQKWIWHXSkgJeiAJh+ufdNeZyWhuaJ2ZzODHHyUZ1zs/x/3/M89Ar8fhp4nw1dfSENKtCpwjh9zVPmTSVmD3bujWLfgY/EQCj+s2Kp500KF5SwZ9PyWVHzC9SEZ0XKxWbyQjLvbnyJi7xESknPscxne+o/BtKvgFMB7j/AcNeBlzDZMswvJl8PLL5uvY7ZLoa2pYhMCHw2DmzOCeyuXLpRN9UHQknHgMqTK6nfS7v91B6kIf7yPGqj9nEFXg+UgbhTLAQ0ineP/P8i+ilRTKlOfOAfJWPHa3b/8C4y7finC4ZnVmFNcJx47D5MlSDr12ra/oV48e8OWXcEc9SXzMFgn16sIXI0UReMpkSTpOclVouENS8fHSC2f2bOP93nKL5P2YacM88iiULuOz6IP/t3fm4U3V2R9+k5S2lKUFKRRkFxUEAQXZBQQExhkWF0ZGHAEVFdEZlVFBHXEddGR+oyKjzKjgjuMC4oqKLC7sWkVlGRBkk922FOiW5PfHySVpmuUmTXoTet7nyYNN7nKyeL+fe9YatSE1lQmPBqtcSARSkOnA4RaPOoi34Sngz1SduzsNESuZeKtNwFsW+xcqTkdeTPiFItjYhCRj2zbxkoTC6YQ5c2J3zu7dQwsZu10qm0wJGZDv8Wxk4e9BfB317Qk8FywcjZEE4mDjbE5Bwi3vIL+/OUjpeKD3cjrSIdce5PVAGNc6p99zx5Abi+pV/pzIVK/aLSUyiookmXjRIvnbZhePS6McSXLs6MmH6dFDHv6UlEgyYyiemiUN7oJVWD3yCNz8J2mKZ3h8jEqPq6+RAYC33iqv79vPz2Uunrv+LsaMv5YGDasoCTRqrkaqQAI1MHMgeQFPYl28vg3SsO8DZEJyMRJOuoTAOQjhmrm58XY3dlM1ZbBxIiPDXGL6yy+LIO8dg/EhfftCTg4cOBA4T83lkpuLhMSG5LysJ3zH3lTgUSTs1Z7Y3nMPQ37DbyAjN3ZjviTcFxfSD+o9krHT7smIemaUwLiRBl+LPhaPitvtDSPt3y8i4qefQh9j5SrJlQnF4UPwzTfBX8/MhLlzxLszdCj07Qej/yD9a26c6HUatG8PAy5g0Z691MzIYNyNYUIACUFrpNOvkSSagvwvaUPa9/8d6xMPayG5KU8hvUVuI7gAOY3wl5SfkZDBQ8jcm4mE7mmSoPTvb66TtsMRehBqJDhSxAualVW+U7DhIRo3Tv4fSVhSkDBQOGxAX8RrFI8lqg0yY2wB0hoh2hwrN5L0riQC6plRAvPD91IaHQijId6cOfDgg8GPUWDSBRtuBIXdLv01+oS+uy0tK6Vvry689cHlZNW3YEBgVHQC3kUG4v0PCe/0JapBiZZQinQl3o643CO9y/0aSRx+BRFOleTgQXh3oYSBataEAQOgWzcTzeQiJKexeBR9ZsgFxOkUsV5UBOnRVJX50bIVvPU2vPcuLF4sAzHPOAMuvQySokiiM6Gr3oJV7FUGN/IbfRP5fywDCfGORMTMKiTB19cms8nKla3QUmKFihklMIsWVWzc5YvTKR1Ip03zduL1p8mp5s7VpEl0NvqxdPnnpDY8nfotW8fkeFWHUSERh0nmceUtJK+mMnkDZUjY4V3Cz6QJw/y34ZFHRWzbPC67t94Sr90TT0BWvcod35+77xahsnt3+G3LSomuRD4AtWuLd3L0H2JzPNM4ga+QbtUFiOAeQWQl9yORYaSlBM6vClWxFw1uJOfmTcoLlM1IN+3ZnseryCDWA4g36Hxk8OomgifAO4i8s7YSLzTMpAQmvyB8LmdZGRwvCv56585watPgd8U2O7RpA2dWvv/IvgMHGTnhbl555xMcwcSVEkNeQ8qjzQqZUOEyN7KwRNJzx48vv5AyaGeZ5I44nd4S5o2b4LbbiPngvRqpUm0Xbjhk48YiQJKaI0jjuVuQQZ9fIX2SxgCPYf6zPQURFw7K30sb/z0e8UzGigWIkIHyXhQX8p7+7Dn31Ugrgi8QL+kMZHJ1qN+kDckfUxIBFTNKYE414S2pU0dGJATDbpO7V7utoqCxOyDFIa3bY5AW8thTz+ECRl89qfIHU8JwFMmhiYRwi91epNplSVQW8fzz3oGN/jjLZMZXbiwGXfpx0UUSPgomaGw2GTFiee5TZbkTCcWAd4E3xME8Ak9098f4DfTz7DMSGcdRD2m6+C+kz00oyoBPgaeRZnZbwpzvJYJ/9k7kd7fM87cNaRZoCKvz8ZaT++bVpHj+fojIx4Qo8UJvYaszxcXw/gew8B3JNcjJgeEjJIlw2HB49tng+9odMPJiESqh6HYePDMbnnwC1q/3Pt+po/SZiUGc//DhfGa/tpCLL7uc7EaNK308JRxLkCnEkWA0MwvFIaQPzeMEDrkV4Z34fAYnJjAfKZCGcqFw2GDp4thNjDeoVRumT4fJf5G/DW+QIW5694bLKxk+s5QfkTEFuWG2ewH4PRWXlE1I76GlyOT11kifoeFIEu7UEMcsQcqtP0F6yNQGvkFCXCnI72kW8lt5GG8zxmOe8/3seYQiBVhH+YZ8Bjak/LoL8Drlm+b9gdiM51BihYqZ6kp+Plx/PWzdKn+73TLBNzdX8gz+NQsmTIBAYyQcDinPHnuVuXOd01mShXftgkOeDsAxypMBmPn8SxQVlzJu0uSYHVMJxSHKNxEzg9kwhBv4J9JQ0BDKZcid+H/xln/XQHqP3CaiPBw2NxR/gQwSjDF9zoeXX5Iy7MWLpSVBq9Zw+e9lGna4fjQJy9fAjZhLcj0IbKX8Ar8cEaf4HGMLIjzeRDr4BmqfsA/YhoSjdhJ4KrevTSuQ7/UBpPx7DZGFFH23LQM24hVeWchvsXcEx1OsIFn/L1MqywMPwk/bypeXGn0zNmyAvz8G990HDRrAc8/Dvr3ymsMBg4fArbdIiWgkNG0qjxjicrpo3KAe46+9jsZNW8T02CcvG5EEyBpIs7RIE2MbEJmQSUHumvNMbr8duaNvi6dHAOIN8l10SpEeH5uh3mwp4c8Pkb/jBE7fgSym4dq953uOXx9ZSI96zn8Qee8XUKHy6vQz4P4H5IGb5A8ruRBh4MS8MPAdPHsE+d6C7b8J+B3S9+VOJDn6O2AmIqL8bQmFE5nc/dsIbDUoQ6Zku5Ek4LnIHCmQ3+0gRCglS3Vk9UXFTHVkzy+wfFnwPhkuJ3z0oYSBLrlEwklb/gdFxdCiuSwcCUJhwa906dmb80brVPXwbAf+ijf3AeQSMBK5YKeaPM4FyOJjJtRkQ6qUipDqJ7OLzT5EzKxCZs8EwglsBMcHMOpimDM3sMayecwd6kCSPG8OcrzPkA6yxufTAGmwtsZjv1ENMx3J7QhWTZTsQgZEUJio0jpBGuX7D72PNFkM9X27EUG6FelyPTfM9uGIdF8HIlIuQEKbL/u9XoaEuL5HQmWJc91TKqIJwNWR3NzwDb+cTvjek+Nit0kvi45nJ5SQcbvd3PHwE2zYV0JKaqRTfqsbe5GKjU1+z5chVSn3YH4xyEByCUJhNP+7FBEPIyM4PkhY6RhSjRLunustGHep6A7/K5rD89yDQIYN6UAciBeRkMhGn+cOAp/jFW1GaKMIqXZ5k9jiRJJRp3lseRoZomkF4XJNfHEgHhbfiq0NmFteXEge1LPI51uJiraIsCPetSeQUJa/kDFwIt/BK1VklxItKmaqI+FKSb0bxtWMyrJw0WJmv/YeR0sS287E4EUkXBJosXAhiZY/RHC8yxEB5B+iqo8kU16PCJGpiBhph8wAMstPSMnvHkLnbLiBXyC9ITyTBjcgDhWQq1sf4Dmgv7FtoByNHcjYCIis6d/TlA+tmGEn0qp/IJKHMQZYiHiirkA6LH+EhLXmIImysVpI3UQmWM1gQzo/+3u7apCY149MJBfmOmSkwZnI5x9KMDuJzKuoWIGGmaojnTtXmDRdAYcDzo51J87Y8s9/v8IZZ55BzwsGW21KguNGmtKFEgUpSGggUHVZPpLMaTRK6+3Z/mLkjnytZ5tTkVk6wRaxB5BkzTAdnwFZQD5AJjmHSzbOEnvSh8PV8+HqMnHqpOJ3hXMheRr+vI0on0i9AnnIezcb4swFJiHfg2/ztvsRr8Zxz3PGa4Y9/wc0QcIh0bASEbNrkd9Ce0REDSL4d9UHCR2FSq52IOMoLqei+OkNzI/S3njyf0gXYl/2EF7E5iHC1WwoVqlq1DNTHWmcA/0vCD6N2u6Ai34L9bKq1KxIWPPNdyxb9S1XXnsjNtOepupKKeGHQDrxJj4auJDeH0OQZNDHEc/BbxBxA6IWeni26UDou/EUZDE3+32VIQtwKJFhR7wXIE3dsuQ8GQS4VRuPiAJ/fgpzjlDkmdyuGMlLKqFi8zaQ0uNgNtgRL000vIx85sbnaIR1piAl18FuaOoAV4Y59lTkMw3kxTkfmcOUSPfLtZDxIf5kEX4pTEe8TUqiomKmuvLXe6T7Lngb2hn/tm8Ptyf2oMZ/PP0CjRo15KKLq7qlezJSA1mcQuFAGpj5MguJ0RihFGPh/RVZmNcEOdbPiBciUL7HxQTu6RGMcN6kBkheDsjAzrmIp8RXMNUH/oKUGQeiJtEPGzQ5soPFiPCJdkLzD5gXTgZbkDJ3KC+UDBteQzxVMwicI3MDEvqyIUtFis+/f0a+y2CkIL+feE+ub4GU6JsRyH8Ost1Qwv/OzJ5DsYpEks1KVVK3rkyjXvSxNM07cECa5o0YCYMGQY3E/WmUlpUycexl9L/salLT0qw2JwmwIQm4rxL87r8MCRkZHCJ4UqRRevwU0izNYBWSe+KbRNsVuBXv/B4H0vDuU9PWV8RowNcWqSzK8nmtMeJB2uux55DnfF0JvhgNiMIeO9AM80MRf8D88MJg/Aich3kPwRsmzrnXs90byHgKX6FpR0TrGOBjxHPXCPHMZZk4fxPPcd9H8p9M9AMyjQMJuz2C/KaPIMnawRiNV/T60xnpQLyKiv9/OJBwm8meWoplJO6KpcSf1FQY9jt5JBEFhw+Qlt2cHudpObZ5/ggsQhYk/8XNhgwMPMPnucWEDr24kJLVPcii9TkSgvLnGyT88xwiPpxI87toqYPkaXQi+IDDn5HypW98nquNLEjjqeiQHoCERMIlGxvYPY+7MH+3Hq3nx5ebERFxBTDOxDF/wPzkZxvyft6i4sT2HKJfzFOR8E4p5rpAm8WJlHTbkGVsBpKjMxcRaCCfTzvEI3NuiGPZELH1IPL/iPGcC/G8TUeEq5LIaJhJSSqKi0rod/lNLM/dpgMlI+IUJO+iB+UX4FrAtchC5ks+5hbgPGQxfAhZqPzDKE5kIXvU8/evSMlztBwBLiS4kNmDCJbv/J4vRPJ/Hg+wTw2kMqml5+8UvPd5NZHqF186IJOWu5o3mx5UzitjkIfYeh/hhUEkyapGpVOsy83zkVLzSCqpzOL7/lKAUYgXaDWSI7Qa8RyGEjIG6Uhn4neRfKJbke/4bSKbCq5Yha4GSlIxb8F7/LB5Oy3PqPxMp+pHDtJXYw+ST5GKuNjTg2wbbvG1IXk2qwgtUJyIuHgXmUpcWUKJrGcJXoIOEmr7PYG9D68hC+AXiAA7C0lsTgd24e0AHE0X6x5AK6Q0u7Kixo1Ueg1Hwk7B6IvMEzKbp+NEvstY8j7yWcZayDiQJONgr0VLY+CySuyvWIV6ZpSk4umX3qJT586062jmbksJTBNkoetBYCEDkjsRqhGhAym/bYCIIzPhlvuQAYDRYkfukoM1bixFOvyGEgt2pOtssNd6IMnCU5HQm/H5NEWEX7TjOOxIaXqwHK9IL8UpSB+fUIxEPG+RLO6xFh2bIzy/GeyIN+2SCPcrRTobf4n8ZpWTCfXMKEnDmm++ZVXuBh7+x5PhN1YqSQbShfYBKuY6OBChc4vn77qYXwQr45VwAWNDvH4EKX0OhQ04UAkbDNyIB6gGwQWKL4eRGUTBRkBEWuVUhjT7C0UWUlF0M9LbJ9x35AC6RWhHOEqJbVdfO/J5P44kI/tjTNr+CHnPLRBR9yOSt5Xns20PRLTGdl6cYg0qZpSk4c2Fizilfn2GDP+91aZUE0YgomYWEh4x6IJ4L1p5/u6D+VlNZjCmJBv/GhU5NwChGiTWJnz1jhvJH4qWEiRU9V+kay9AdyRPJ1TIZ7Zn+1gt7HbMVRS1RzxRHyCL/Oow24+qnFnl2Ix44mLl7bEjPXNGEvi9H0J+Iz/h/e38iIQ3A7EGEcevEP8SciXeqJhRkoKysjLG/2EYvS+9jtT0YKERJfZciHSK3Yx4Pk5F8goM3EiOSW1iJ2ZciDBIQ7ritkFCCuGmXaciOS6LCC5onEjPkGg4hlQRbfV73kg2nUb58naDImRBjaWHwoWUSJshA8kDuQypVpqOeGGMzygF+R4fJHZVO27gXsJ7yiLBhfQSygry+h14vVWGpyuUsHUiieH/QQawKsmM5swoScGunT9zhNo0PyOxRyycnNiQGTZdKS9kQCpr7kLuimPJGs/5/o0sUuGEjMEExEsUKE/DGHzZMgp7diNCxV/IgCyKbqSiK9DncJDY9lhJQeYhDYpi30sRT8QgxEN1CtI07nUim50Vjh+B/xE+fNaByKquVoQ4Xy6RhzHLEK9VLL8fxQpUzCgJj9vtZtCYPzPzhfk4UrSleOLwPZKHAPEZwvcskXt7mnn28xc/aYhX5c4o7ChFetvkhdnOhQwt9Mfs0EZ/HHiTnY3x3yCJyM8Q3ZygY8A8pEngIc/jA0SU5kdpZyACib5A/IbIPFbB/v9fSfSJxiWUnxf2KxISjEUpvVJVaJhJSXg+XvoFW3/ew+T+OlAysXiTyne1DUUhcice6YDF05G8lg1I/kQ6ktdS2/N6HvAZsng3RkZqhwpdLkE8M2bYEuC5+ogA+Y7IE32fRxbXb5HFujvlmxtGQhnwJ8+xfO0wpqZvQoROqCo2s5gNBa8gsjEBwUZhOCM8ji8pSDPGzxBxbnSwzkJyiMZh/v0oVqFiRokcN7BuLfxvC6SnQ58+kN0gbqd77pW3OfXUJvQeYDZHQKkaNhH/u9d1SAl4KC/EQY8tDqAjXk9IO8/DwIV4NF5AFj8jb6Q24rEJlkuzHG9CaSjsBF/0rsM7ZDOQF8v3ed8clpaexzlhzm2GJZTviuzPLqSx4OQYnKsH8p2Fypmpg4g/s7+hLGTsQCDOjuA4vjiQDtBvIRO1fYMVeYi4WYN8Ljo6JZFRMaNExo8/wt13w86dMpjS7ZJ/hw+HO++QEQkx5NDhPN79bAVjJ0zU6dgJR7Thk0h4DWm8dhMVZ+vkISMUvvV5zo7kgzxIxcvbbLxhMfAufoVIAmgG4qXxpwRzYbSyIPuDeFT+hpS6FyGLqBsRVT2Q8uC1iKjpjngEWpo4pxkOIILvDRPb/hf5/NpTueWhLnA5Mt8r2Gc3FvMdh1OQoZnBMiO6IZ/hL5gPWzmQsNVwxGMFFQWrC/GovUH4KeKKlaiYUcyzfTtcfz0Ue+623C7vvwsXwpEj8PdHg+4eDWtzc8nIyOCSMdfE9LhKLBiACIl45Mv4UoAIASfSvRdEgFxM+VwHkMXnY2Q+0yt4Qw/5lB+KGYingH5UDFecjng1wr3P0wjuOQApK+/jY98xpP/MdkSYDUGqthp4zrUGaQKYjzQ6HIH5RGiQcMmTRNbVtwy4GvGCjEeGTEZ7E3ETUgG3AO9SY4y8GIOEb35CPo9QXpWmwD8I/d7tnm0mUL4DtGF7NhXnkjVDxOUyQr9HFyLyVMwkMja32x3vK1GVUlBQQGZmJvkbllK3bl2rzTm5uHcaLPoInCHufF56GdrFbpbJju2b2U4L6jVvF35jpYo5gvT8KKDiHW0shwoa1EIWvnSkm3Cw/iEG9wPGENV3EG9NOJtep+KieRD4LaEX3GzgJc+/ZpiDiCffnCNjQvNjyMDENT6vG/+ORnr8hBMYPyChrco2rbsSmVNUGbYhScaHkPEXv8PbqO57QjdCtCFekVYhtvFlP/IdfoAI3qaIR284Ih6/Qsr9T0OGldqQ5pBmxOoq9P4/vuw9cJjB57YmPz8/4vVbq5kUc5SVwceLQgsZhwM+/DBmp9z288/8tL+QjPra0CoxWYkssIFySeJxaTmK5K8AfGJi+zk+/12AOZsC5ZQ0AO5BFr5AFTMdEGFlVsh8hQgZKC+QnEgI6s9IrpDv68a/85DQTTj+Rmy6776MeI4qQyskX+hepKmdb8fdDog4g/JCIQX5vO/FvJABEUs3Ix6tz5Ew5WVI/k4Wkhd1KZKQbQjCDML/NmoQ+7EMSixRMaOY43iRCJpQuIH82JV3Tn/yOUZfP5WU9DoxO6YSK5YjreCPBnk90qqd/ia2seMdaGmmZNt3bMGpmFvYFwR5fhjS86Yn3stmCyRx+DmClwwH4iWCL4wuggtEgxcJ7SXajISYYtGkL4XwHjBfDiNC4h28VUHh+AMSAhyECMcGSO+blxGPSrwZQOjPKgWxTXP2Ehn1mSnmqJUBGbXgWLDFy0NObLwox48V8cYHS7lo5GU4UvRnmli4kenbxn8H2yYSVprYxugAC+aqi0oREeJGRjCYGbmwEclnaRHgtXM9D6fn3NH0PHIjww4rIzQOI9Vb7YO8vqsSx/bHhSTVhqMEmIGIGF+h1Q5pJtgyzP4dgIejsC8W9EFCi9upKBLtiIi5qoptUiJFPTOKOex2GDEC7CFcrW4XDA/Uzj1yXl/4PnkFhVx65dUxOZ5iFifinr8P8To8A+z122YLcuGPZU5METIfJ9QlqTYy7RvM9VopQaYj/4IMHjTbgC/cIEqjCiZaYvG5lYZ4LZa5gmZmQLmRLtDzqSgGNgPXUPE3lEg4kNJr4zeVgvc+PwOpooq2t49SVaiYUcwzfjxkZ0tuTCDGjYNTT43Jqea8/i5ndzyb09t1jMnxFDMcQhI+b0FCBYuRpm3DkNwDg7w4nNsBtEYuScEuSylIvglI0mYkRNKDZHeE20eCDemFU5n8ixRCezo6A/VM2lKf0MtAGeFnWa1HEmgDecqcSKL4SybssZJTkPDdf5Cw12XIrK1FSGhRSXRUzCjmqV8P5s6Ffv2lt8yJ50+B22+HGyfF5DTHjx0jLT2dS0ara7fqcCMixmhDX4a3D4oLCSEs9bzmP58pFjiRMu9RBE+kzcdbedIZb1JurHkAadQ3GqmKieWwRJCy5GjDTA4knyQrxDYpwI0mjuVGKsRqElxctSd4OMs4xj/CnMeJ5N0keuGsDQkj3oL8zoajnX+TBy3NVqLj0CHpO5OWBu3aBffWRMGvh/ay+WAZaa16ab5MlbEOKeUNhh04C2+vlmuQO/JYToI2yrlD5bbYgEbI4mhHWv1PQnJI4kULJNzWMIbHfAqptopkHIQdaI4kHGeZ2H4g4b1oTZCFezLBc5DuomLDQoP/IJ+NGbS0WQmNlmYrVc8pp0CXLtChQ0yFDMC7Hy+nsMYpKmSqlOWEXmhcSE+QPM/ftxP7clXjvipUbosbyb/42vN3PaRSKRIPTSbeOU1m2IX0Wonlfd9NSEfi3pi/DGcgPVmyTG7fldDfaQqSC/I+oT+/vxE4QftXZKinGTLD2KIolUPFjJJQrP76W8b+5RG+W7/BalOqGaESSn0xQi5tEQ+Bf05TC6RjLsjiFa/eHL5JuvUiOE8K4rH4GAlTmcGJVDm9jkyXfhLpc+P/mbk8z09AhmMORcJzwaqLuiIdh82WsRcijQCnA3cjgvI/BE9Ybklor4+RD7OE8B62W5FJ0r58jDnb7Ui3ZkWJHyqVlYTipTcWkplZl76DY1MVpZjlDMIvaFlIwqhBW+TOfBdSMZSFt3vuemSxW4B4WmIdzfbNq7kIGRRoBhcyMygN6QIbCY/hTVAuQz6Lx5D8HRcy3+kjRFgZn+UbSJXPTCQfw5/Vftub4U3PPi4kj+lZz7l/57PNK4T3moxCPgcz5y5FPmPfXJzDmCuRr4eOAlDijXpmlIShrLSMNz5cxsAhvyE1TSfUVi1DkDBGsHCDHZmLlIIMRLwd8Tz8Flk4sxGPjA1vxU5npHV8rIVMQ8pPke4EnE/oy5nD8/p9eAVX/aBbB8doagcScpuElKm/hQgZKC8OyhBv1m0EDp85ie7zMfYz7LkPb/fifcDjYfbvDGxAug2bwY28vyM+zzXAnBB6EnPVVYoSPXEVM4cPH2bMmDHUrVuXrKwsrrnmGgoLC0Pu079/f2w2W7nHDTfcEE8zlQRh0dLl7DtwmGGXXWG1KdWQmkhuhIOKDls7Ik7GIl1wr0dybA4g+StvI96O5X77GbOFYs1tlA8r2YBHEGHlH25KRQYKjkK8JL/1ea0p8r6ivQwaQuJlyg+1DLTdEaTM159OxEbsOfAmZy8MYYtBLpIDFQm7kU64dyPf+2BCf78OJCcodrPaFCUYcQ0zjRkzhl9++YVPPvmE0tJSxo8fz3XXXcerr74acr8JEybwwAMPnPg7IyMjnmYqCcLxwkL69Tufc3v0Db+xEgf6IAviC8BnyELdGPHIXI54ZGZ7tvXNxShDFs87kSqjBp7n41EoeRtwYYDnjeGTk5Bk1WJkEW1P+YX9CPAeEp4pQiqjzIRKglGGhNPCdMYmBfgOmXzty++AWR57o7XBsONLzzF+rsRxzJznE+S38AISdnoiwHZGY8Gb42iLoniJm5jZsGEDH330EWvWrKFr164AzJw5k4suuogZM2bQpEmToPtmZGSQE6O2+Epy4HK66Nj+dKb3HoXNpjNQrKMtkmDqQkIIvp1uXyV4focbWegWANd6nuuIuVwWB96QSTiGhHk9G2nyZ1CAeER2IeEeI1RiCK2NHruziL4Z4DGT2wXyANVBkoRvpXwIKxpcnkcklVrR4EQqmWYiIwhqIuXZeT7bnI4kWJ/uv7OixIW4hZlWrFhBVlbWCSEDMGjQIOx2O6tWrQq57yuvvEKDBg3o0KEDU6dO5dix4BeL4uJiCgoKyj2U5OOLVatZ8eNO0utGk8egxB475YXMQSQnI1SOhIvyU6cvRERCqMvMxZ5HIG+Lvz3n4vX6mOFNRPw8ikyb/i8ibnw9Rr75LzcjYZRIaYbMIArXSbdbkNd6eOy7DMkHikaM2JDqpRTCD06MBU5EJG5DQngfIZVejyHv5RXkM1GUqiFunpm9e/fSsGH5JlMpKSnUr1+fvXuDz+m44ooraNGiBU2aNOG7777jzjvvZNOmTbz99tsBt58+fTr3339/TG1Xqp6Hnnie3YePMW+45kclFhuRO3AzgyCh/IKehiSi3oiEUYwF1vDu/A5pyGbsUwfx5PiHp4yk4okR2P0J4mEyCOfxcAArkDDatUhOidkwmdG1eEqIY2cj5drBaIEkVRtjGpYj9u83aQNIG34w7ymqLG4kf+pVRGQGE2uKEn8i9sxMmTKlQoKu/2PjRrOj3yty3XXXMWTIEM4++2zGjBnDiy++yPz589m6dWvA7adOnUp+fv6Jx86dO6M+t2IN+w8eYsmKbxg6THtRJBbfA1cjibxmsAPn+T13NpJ4+0ekud0pSH+VGUiOi+8l6HYkP8eBiBfjXisTaZkfqLQ5EG4k7BFJuNKJdEF2Iu3sze57FtId90K8HZQNuw0RVg/p+BvJvWNfJLdnFhI2qxNkO+Mc/fH2cllL/Pr7+JOH9BtSFGuJ2DMzefJkxo0bF3Kb1q1bk5OTw/795e8qysrKOHz4cET5MN27dwdgy5YtnHZaxb4QaWlppGkZb1Lzxjsf4XS5GHrJaKtNUU7gBh5E+ouYbYyWjsyz8ScHCeGESwZNAe5ABNQSJKm2OVJ2HcmU6u2eR6S4PY8OSKXTjjDbZyHVXcb153qkCd6bwP8Qb1AK8hk+igie3yAl8IE4gsyC2ox8lv2QXJ93Q9jQBKkyG4lXwLiJz8yqQDiR6qnbqNwkcUWpHBGLmezsbLKzgw2C89KzZ0/y8vJYt24dXbp0AeCzzz7D5XKdEChmyM3NBaBx43gMt1MSgTff/5TO53Qmp0kzq01RTrAR2GJyW6Ny5XHMt9oPRQMkdBMt4SqLAmFHklVTkAaA4YQMSH5NTb/n2iKly/9AJo0bs5dsiMfkeSSU1dRvv08QT1UxXlEyj9DOcxsSvjLmJhkiprNn36qiCBkCGkk+k6LElrglALdr146hQ4cyYcIEVq9ezZdffslNN93E6NGjT1Qy7d69m7Zt27J69WoAtm7dyoMPPsi6devYvn07Cxcu5KqrrqJv37507OjfNl05GSgpLaHtGa25+PI/Wm2KUg6z4dpTkRyTd4Au8TMnIk4l8jCLC2/OSbDxAP6sInAjvAWIkAFvro7h9TmINKo75PPat0juUDHeqjDjtVBeMTeS2zMN8eJ0RRoZbkWERTjvjP/lP1oPtx2Zvq0o1hHXPjOvvPIKN910EwMHDsRut3PppZfy5JNPnni9tLSUTZs2nahWSk1N5dNPP+Xxxx/n6NGjNGvWjEsvvZR77jE7Q0VJNo4fyefqq8dRo2Uvq01RyhEsR8OfO5D+NIlEPSTZ1szMISMZeSTecQBmK+p2Ibk/vtcnN9J/xZgA7k8ZEgIbjHh1Rnj+thF9n5kP8b7PA0gOS0PP8QMlA9uQZoKzEI/aUSQBuYbn/XwcwbkdiJDy91BFihPxiIGEJXXSjhIZNrfbHY/OVpZRUFBAZmYm+RuWRjxCXKl6/vXcCzQ8ux9ndh1gtSlKOUqQsuZQrQ7qIOW5iZizthe4Cgl/+FYy2RGRYZQ/t0UaAvanvCdjHJIAHe7ymIJ8Blmev/cjeTFmqUzDvlCkIEnETRCvWSHyXhxI7s7VBJ9NtQPJBVqCeJ6C2Wj3nGcucGaUdroQL9bLeCu3GgBXIPOcqiqRWUkE9h44zOBzW5Ofnx/x+q2zmRTL2HvgIH+6byar131ntSlKBVLxVucEYwLWCJkCYBmy2AZr85ADvIgIC9+7fCPcU4p4R+5DvDj+IZlbAjwXiDKkCsogUmESDyEDYtdyRJQtRUJiS5AuwQ8Teshmc+Ahz/7LPP+OwFs5ZQiMBkiVVrRCxo1MAf8n5UvQDyLtAO6h4udTgoizscj3dznwEuVnRinVEfXlKZbx3wXv4waGDP+91aYoARmN3JnPRhZHIyTjQCp3qnqGVjGy8C1AxAjI4toPSbr1Dw/lII3o1uAVPYanpchznMVIUm4Lv307A9cA/zFhl28oKxtZ5A+a2C/elCH5M12R7yxST7UDrwfrXkTcLkeGh54G9KRynpMVSPl5INxIuGsI4jXDc95JSI6R4S06hAyy/C8yJbxRJexRkhkVM4plvPXBEjqd05mGjYOPtlCsxAaMBy5Bqm0OIAu10dk3FriA1Z7jFyKiYgSSxOu/3e3IAuh7t+4GvkCSkF+kfPfcrYjoCpSkCyJCjgAPELhXyjBkgQwVarIhvWYMHEgi8VNh9qssNZHFPRypMTxnDtIHKFa8aWKb5/GKmcfxDsf0/Q24EM/OXWjPm+qLihnFEn7Zf4Av137PbXfda7UpSlgyEQ9HrClAKnu+Qy5FLkQcPI/cgY/32XYlEiIJRBlSfTUfac5n8B+8HpxgOJGKoHFIAzgH4nEYhQir3p5zB+og7EBGEfiXWV8JrEfCO/HKiTEjZNJJ7InVP5jYxmgPcATpZxMsobsM+R43A2dU2jIl+dCcGcUSDh3Yz9AL+zN0hIaYqi9T8C5oZXiHW7oRz8aHPtsuJHRIw4WIGYMiZPK32RlF6xFBtB3pWPx7JAT1V8Qj4X+ptCMTxQOJ8RTg70huSkfMV4ZBZB6vcDk9RcAck8fai4QT70TyiJYR//lOZoZqFnu224Tky4TChoSglOqIihnFEurXSePOaQ+SnaMhpurJRiQpNdiCaaN8iGdviG0NfPvDFJrYPhhlnn3vQgTBy8h8qaZIeKep5++XCd4ozoH0fHkO8dC0MXnuZxFRUZvw+ShmwljPIxOuQ/FfJKT2HCLgPkQ6+l5BfHN/zHaCd1J1HY2VZEXFjFLl7D94iBffWUqpPd1qUxTL+JzQi7Ub8ZLs8fzdMMz2UD4BuC6Vq7Qyqp5eQDw8mYi35QukmmY8kXlcxpjYJh3x9nRFBMaVVP4S7ULsneux4RLE+7IGeX+fI6MWfL1ihsdkOxIGjFfuTz8T25yKfI/tkM8nFG4qzgZTqgsqZpQqZ/77n3DXo0/jtMUyOVFJLkowd7dthBYGE9rTYkca3xmkUrEsO1KcwNtIgvDDiKdiLLA7imMNRsRPsPfsQBKfjQW7EfAnKp/Aa0dyh2Yh3rCfEU/RDcAjiDcm2DJQ5tlnbSVtCMYown8/RsVchmf7YLY6gF5Ay5hYpiQfKmaUKuedRUs5q/1ZOoupWnMG4XMmMhBPRSGhcz/syOJ/qd/zExABEcvGaxuRhnPhQjf+pCO9WxwB7HEAzRCB4U8zKhdiKUMEocvvOZBqovWETlC2I+XY8aAeMszURuCl6HzKJ57fiAgW8H6Gxn6tPMdSqisqZpQq5ciRoyxZmUu/gUOtNkWxlP5IsmuoO+2RiAh4AplCHQwXUu2y0u/5HCS80o3Y5VyUIULm9Sj27YN4Qnrjfd91kHDSXAL3gTFTRRbuMh5MrJj5TFx4Q33xYDAiVPvh9dK0RJLDZ1Dec5MK/B/Sa6g30uvmXCRh+UVi1y5ASUa0NFupUj74dClFxSVcOOwSq01RLKUGkqtxM7Jg+o8cOA3pEVOINFYLl8x7FEnYzaD8rKimSGXUHiQHJBXpLHuQ6HNBnMC7BPakhKMDshgXeR7hPEcjkOZx3xBYlAxFwkalBP6MQpWGm33/8RQzAGcjwsWNvIdQy5IDGdPQN842KcmGemaUKiUtBYYPH8ZpZ7a32hTFcroiregH413AGiCdZp9DKnq2EL4kF7wL80wCL9JNkBBFV0TMBAttmCXPhD1rEE/Co0hpuW/zvnTEkxAuBFYD6XA7lvINAXOQRN6HkM/Kv59MPeS9xuISvyMGxzCDDb2/VqJFB00qVYbb5WbL1k0czOxI7Qb+jcaU6o0L8S74VyB9jyzkkfAW4RNBVyEdZTdHeGyDFkhycCAOIFVAm/AuzmWIGHkUabQXDcVI8rGRY+MvVLYgvXLqIOMYliDhmmDYkM87WIdkg1Sk87KixBcdNKkkBd+s/56PV/1ISkam1aYoCYedwKXUZxBZCTTIpOxwdEemNbch8nwaO3BxkNfKgInIKAXjbyOEdgwZYLml4m6mSANaI0Iq0KW7DTI0sysiovojnq5g3h+jlDnU+3cgYSBFSWxUzChVxn9eeYv7Hnua1PRaVpuiJA2pSH8Us4LDhlRAmWEvIiwicU47kMoZ/8opg6XANgJXark853o5gvNVBiNEVYvyl3pD3AxH8owcBP98ncisKUVJbFTMKFWC2+3m/c9W0qf/AOx2/dkpkXA1cJGJ7YxZSQ1NHvdIhHakIPk9/0ESjQPxGaHzYMqQoZqxJh8Jna1FPEAGZyLjGa5DvDo5yOypJ5BRDA2BvyE2++arGO/hSryDHhUlcdFsK6VKWJu7np2/7Of2ocOsNkVJOhzA/Uho51/A10G2SUfa8JulEXIJDNfv5iokLHUG5bsMB+I44SuvShAPTSzKxQuRJOP38b6PdKTB3CTEO9MA6bkzIcgxBgKvIGG3ZZ7jdABGIyXQOkpASXxUzChVwtvvf0KtWhn06jfYalOUpMQGnINUK80EFlA+cfU8YDLifTBLXWAA4k0JJmhqIl6NmiaP2QqZ7h1q5lRzYiMQipFGchv9zleEiJPtiNAx4wltgwzV/GsM7FKUqkf9/UqVkF0vk1GjryA1XecxKdHyK+IlmYdXyBiXMDdSfh0pf0ISjP3v62yex1TMCxkQ71GojrogXpNY8C7wI4GFkwuZu/RVjM6lKImNihkl7pSWlDDkwn5MvPVOq01Rkpq/IrOFfDGEwxrEYxMpjZHusf0pn+tyOtLc7rcRHq8ZIpCg4uXVDnQhePJwpMwP87oD8WApysmPhpmUuPPV6rXszC+lQ8uBVpuiJC3bCd3rxIUs7hMp31zODE2Q/i95SIVTbaRzcLRchUx7ngNs8DxXH/g90jOnRiWO7cteQldiOYluKKaiJB8qZpS487en5rK3oJSXfzPealOUpCVQ0q8/xYh4OC/Kc2QRu/k+Az2PPKQZYH1iO/ASxNa8EK/bgVNifE5FSUw0zKTElWNHj/P5mvX07q9eGaUymO0Fk2gNzbOAbGIvZACGEfoS7gJ+F4fzKkrioWJGiSuLln3B8aJiLhiiJdlKZTjHxDapQLt4G5JAXIK3vNwfBzKvSW8ilOqBihklrnzw6XIaNWrImR06W22KktDsR8qJ/4XkvhT6vd4aCR8F83DYkY62kY4+iBWlSHO6y5GBlgOBvwO74njOusCzSE8Yf3ohn2Ws8nMUJbHRnBklrmRl1mbYxZdhs2njLSUQTmTg4zzP33bPczOQvjGX+Gz7EHAtXoHg9mzvAjoic4+soBi4AfjO77m3kPLpfxG/+UY5yNTs/wHfImKvK1JVpSjVBxUzStwoLjrOH/9wCSU53aw2RUlYZiGdZ41cF6PUugh4GKksMhotNkC8N+8BC5G+M40RwTMYa7wQh5GmetsCvFaGvK+/IB1643m5Pd3zUJTqiYoZJW6s/vobDpfVpFVrnZKtBCIPESehknZnARfi7ZhbCwnlXB5Xy8xxBBhP6FCSEziIjAnQ/BVFiReaM6PEjSmPPM0jTz6LTQdLKgFZSvi5SLuAzfE3JSrmAXtMbJeCdOpVFCVe6CqjxIXDh/NZnbuR3hdcaLUpSsJSiLlLkH8ycKIwn/CjCwzUCa4o8UTFjBIX3v90CWVOJxcM0T4XSjCaE14M2JBuuonIAZPblQE942mIolR7VMwoceGDxZ/TsmULmrc+w2pTlISlF9KhNlilmwMRATlVZlFk1DWxjQ1oD3SK4LhHkBlU+dEYpSjVEhUzSlyoUaMGgy/SRnlKKFKAe5HLkP+lKAVJ9p1c1UZFwHDCd/ZtBPwfwQWbLz8hlU8DkAqtQcCtSNm1oiih0ECuEnOKjh/jL3+6luLGWpKthKMP8AxStZTrec4O9AVuRkJRicoYpI9MAVK15E8bZCJ3moljbQauQfrTGKE3F/AlsBqYTeDmeIqigIoZJQ78uGkTea5aNKhpxg2vKOcijd/2I6GVbGI38DGeNACeB+6mfLWSHRgK3IU5IQPSELCYiqLIiZSuP4hUT5nx8LhQp7tS3VAxo8ScP097HGdaXWbPG2q1KUpS0dDzSCaaAy8h07p/RBr39SCy97EF+CHE6y6fbYJ5Zw4jPXsWIP176gIjgCsR0aUoJzcq35WYcuTIUVZ9u4HuvftZbYqiVCHtgEuRPJpIBdnPldxuLxLyegkRMiChr1eBK4jvfChFSQxUzCgx5ePlX1BaWkafgUOsNkVRkoRaldzuQeAQgUNU+cD9UdqlKMmDihklpnyy9CsaNczm9HYdrTZFUZKEcwk/7TsDCV/5swtYSeAEZJAeN18TeHaUopw8qJhRYsqv+YX0PL+/TslWFNOkAhPCbDMeSA/w/CaT59gYkUWKkmxoArASM0pKirj3LzdQ2LCr1aYoSpJxBXAUqeoyqpFcSPXSVYiYCYTZS7gVE8UVpepQMaPEjN27dlPgrEHNDJ2SrSiRYQOuQ5rlLULK1BsgJd7ZIfYzM4SzBnBeZQ1UlIQmbmGmhx9+mF69epGRkUFWVpapfdxuN/feey+NGzemZs2aDBo0iP/9T7tfJgu33v9PbrrzIRwpqpEVJToaIJVJtwJ/JLSQKQJeNnHM4YDeYCgnN3ETMyUlJYwaNYqJEyea3ufvf/87Tz75JM888wyrVq2iVq1aDBkyhKKioniZqcSIstIylq3+jk7natdfRakacjE3UVzDvsrJT9xuoe+/X8oB586da2p7t9vN448/zj333MOIESMAePHFF2nUqBELFixg9OjRAfcrLi6muLj4xN8FBQWVM1yJihXrviGvoJDe/S+02hRFqSYcM7ldSVytUJREIGGqmbZt28bevXsZNGjQiecyMzPp3r07K1asCLrf9OnTyczMPPFo1qxZVZir+LFoyRdkZNSkc/c+VpuiKNWEVjHeTlGSl4QRM3v37gWgUaNG5Z5v1KjRidcCMXXqVPLz8088du7cGVc7lcBs/mkHXc7rRmqa2Vk0iqJUjlZAJ4JP7nYApwNnVZlFimIVEYmZKVOmYLPZQj42bqzafgZpaWnUrVu33EOpWlxOFw/ccQMP/WOm1aYoSjXjHqShnn/GgAMZcnkf5oZTKkpyE1HOzOTJkxk3blzIbVq3bh2VITk5OQDs27ePxo0bn3h+3759dO7cOapjKlVDXv4hjrtTqZ2pA+0UpWppjVQ0zQY+Rjr+pgADkFJvDTEp1YOIxEx2djbZ2aFKBaOnVatW5OTksHjx4hPipaCggFWrVkVUEaVUPdNmPMPStZt49aOvrDZFUaohTZH5THcjgyYzgZpWGqQoVU7ccmZ27NhBbm4uO3bswOl0kpubS25uLoWF3lLCtm3bMn/+fABsNhu33HILDz30EAsXLmT9+vVcddVVNGnShJEjR8bLTCUGLFv5LY2btbDaDEWp5qQDOaiQUaojcSvNvvfee3nhhRdO/H3OOecAsGTJEvr37w/Apk2byM/PP7HNHXfcwdGjR7nuuuvIy8ujT58+fPTRR6SnB5pJoiQCBw4d5vvN2xhxZbjZMoqiKIoSH2xut9tttRGxpKCggMzMTPI3LNVk4Crgtbfe5Yo/TeO9z9fSvGUbq81RFEVRkpS9Bw4z+NzW5OfnR7x+J0xptpKcfLHma5o0aaxCRlEURbEMHaKjVIrJ1/6eC/9wo9VmKIqiKNUY9cwoUVNaUsJxp4MmLU+32hRFURSlGqNiRomaV99+j8tv/Ctuew2rTVEURVGqMSpmlKj5dPlKjhWXklGrjtWmKIqiKNUYFTNK1Cxf8x1duvW02gxFURSlmqNiRomKzT9tY8ee/XTr3c9qUxRFUZRqjooZJSo+XfoVNpuN7n0HWW2KoiiKUs3R0mwlKn7bvyv2fz1FvVN0uKSiKIpiLeqZUaLC5YaO3XpbbYaiKIqiqJhRImfjlq2MnzKD/Yfyw2+sKIqiKHFGxYwSMZ8tX8nyFV9zSqNmVpuiKIqiKCpmlMhZvvJr2pzehqz69a02RVEURVFUzCiR89XXP9C5y3lWm6EoiqIogIoZJUK2bv+Znb/sp2vP8602RVEURVEAFTNKhKSn2Hng7lvpfr72l1EURVESA+0zo0REqt3JBUOHk9kg22pTFEVRFAVQz4wSIfc9+SI/bt1ltRmKoiiKcgIVM4ppdu3+hX+9tID9Bw9bbYqiKIqinEDFjGKaJV+uAqBbnwEWW6IoiqIoXlTMKKZZvnIdTZueSuNTtVmeoiiKkjiomFFM8+Xa9XQ6t6vVZiiKoihKObSaSTFFaWkpI4b2p1mXC602RVEURVHKoWJGMUVR0VEuu2wk9ua9rDZFURRFUcqhYSbFFB9+uozV328jJTXdalMURVEUpRwqZhRT/G3Wy8x//xOrzVAURVGUCqiYUcJy5MhRvt+0jc5de1htiqIoiqJUQMWMEpYvVq/F6XLRpUcfq01RFEVRlAqomFHC8sWqr6lduxZtzz7XalMURVEUpQIqZpSwNMiqw++Gj8Bu15+LoiiKknhoabYSErfLzW8v7EOPzE5Wm6IoiqIoAdFbbSUku/bsIXfzLhxptaw2RVEURVEComJGCckb733MFTdMwWXTn4qiKIqSmOgKpYRkxdpvaXPG6dSqXddqUxRFURQlICpmlJCsyt1Ix85axaQoiqIkLipmlKDs2LWHnb/sp/N5Oo9JURRFSVxUzChB2fbzzzRtkkPXXv2sNkVRFEVRgqKl2UpQ2p/WlNfnvUydps2tNkVRFEVRgqKeGSUov+w/hCs9y2ozFEVRFCUkKmaUgBQWHuPcYRNYtOhTq01RFEVRlJComFEC8uWadZSVOTmrk1YyKYqiKImNihklIF+u/ppatTJo17GL1aYoiqIoSkjiJmYefvhhevXqRUZGBllZWab2GTduHDabrdxj6NCh8TJRCcGKdes5q30HHA6H1aYoiqIoSkjiJmZKSkoYNWoUEydOjGi/oUOH8ssvv5x4vPbaa3GyUAnFxq076XhuV6vNUBRFUZSwxK00+/777wdg7ty5Ee2XlpZGTk6O6e2Li4spLi4+8Xd+fj4AOw/kU+e4M6JzK0JZaTGvzX6EXzLasefAYavNURRFUaoBh3/NA8Dtdke8b8L1mVm6dCkNGzakXr16DBgwgIceeohTTjkl6PbTp08/IZx86dB3RDzNVBRFURQlDhw6dIjMzMyI9rG5o5FAETB37lxuueUW8vLywm47b948MjIyaNWqFVu3buWuu+6idu3arFixImjuhr9nJi8vjxYtWrBjx46IPwwl9hQUFNCsWTN27txJ3bo6rNJK9LtIHPS7SBz0u0gc8vPzad68Ob/++qvpXFuDiDwzU6ZM4dFHHw25zYYNG2jbtm1ERhiMHj36xH+fffbZdOzYkdNOO42lS5cycODAgPukpaWRlpZW4fnMzEz9YSYQdevW1e8jQdDvInHQ7yJx0O8icbDbI0/njUjMTJ48mXHjxoXcpnXr1hEbEepYDRo0YMuWLUHFjKIoiqIo1ZuIxEx2djbZ2dnxsqUCu3bt4tChQzRu3LjKzqkoiqIoSnIRt9LsHTt2kJuby44dO3A6neTm5pKbm0thYeGJbdq2bcv8+fMBKCws5Pbbb2flypVs376dxYsXM2LECNq0acOQIUNMnzctLY1p06YFDD0pVY9+H4mDfheJg34XiYN+F4lDZb6LuCUAjxs3jhdeeKHC80uWLKF///5ycpuNOXPmMG7cOI4fP87IkSP55ptvyMvLo0mTJgwePJgHH3yQRo0axcNERVEURVFOAuJezaQoiqIoihJPdDaToiiKoihJjYoZRVEURVGSGhUziqIoiqIkNSpmFEVRFEVJak5qMbN9+3auueYaWrVqRc2aNTnttNOYNm0aJSUlVptWLXn44Yfp1asXGRkZEbeqVirHrFmzaNmyJenp6XTv3p3Vq1dbbVK1ZPny5QwbNowmTZpgs9lYsGCB1SZVW6ZPn855551HnTp1aNiwISNHjmTTpk1Wm1Utefrpp+nYseOJLsw9e/bkww8/jOgYJ7WY2bhxIy6Xi9mzZ/PDDz/wz3/+k2eeeYa77rrLatOqJSUlJYwaNYqJEydabUq14vXXX+e2225j2rRpfP3113Tq1IkhQ4awf/9+q02rdhw9epROnToxa9Ysq02p9ixbtoxJkyaxcuVKPvnkE0pLSxk8eDBHjx612rRqR9OmTXnkkUdYt24da9euZcCAAYwYMYIffvjB9DGqXWn2Y489xtNPP81PP/1ktSnVlkiGjyqVp3v37px33nk89dRTALhcLpo1a8bNN9/MlClTLLau+mKz2Zg/fz4jR4602hQFOHDgAA0bNmTZsmX07dvXanOqPfXr1+exxx7jmmuuMbX9Se2ZCUR+fj7169e32gxFqRJKSkpYt24dgwYNOvGc3W5n0KBBrFixwkLLFCWxyM/PB9D1wWKcTifz5s3j6NGj9OzZ0/R+Ec1mSna2bNnCzJkzmTFjhtWmKEqVcPDgQZxOZ4Uu2o0aNWLjxo0WWaUoiYXL5eKWW26hd+/edOjQwWpzqiXr16+nZ8+eFBUVUbt2bebPn89ZZ51lev+k9MxMmTIFm80W8uF/od69ezdDhw5l1KhRTJgwwSLLTz6i+S4URVESiUmTJvH9998zb948q02ptpx55pnk5uayatUqJk6cyNixY/nxxx9N75+UnpnJkyczbty4kNu0bt36xH/v2bOHCy64gF69evHvf/87ztZVLyL9LpSqpUGDBjgcDvbt21fu+X379pGTk2ORVYqSONx000289957LF++nKZNm1ptTrUlNTWVNm3aANClSxfWrFnDE088wezZs03tn5RiJjs7m+zsbFPb7t69mwsuuIAuXbowZ84c7PakdEYlLJF8F0rVk5qaSpcuXVi8ePGJRFOXy8XixYu56aabrDVOUSzE7XZz8803M3/+fJYuXUqrVq2sNknxweVyUVxcbHr7pBQzZtm9ezf9+/enRYsWzJgxgwMHDpx4Te9Kq54dO3Zw+PBhduzYgdPpJDc3F4A2bdpQu3Zta407ibntttsYO3YsXbt2pVu3bjz++OMcPXqU8ePHW21ataOwsJAtW7ac+Hvbtm3k5uZSv359mjdvbqFl1Y9Jkybx6quv8s4771CnTh327t0LQGZmJjVr1rTYuurF1KlT+c1vfkPz5s05cuQIr776KkuXLmXRokXmD+I+iZkzZ44bCPhQqp6xY8cG/C6WLFlitWknPTNnznQ3b97cnZqa6u7WrZt75cqVVptULVmyZEnA/wfGjh1rtWnVjmBrw5w5c6w2rdpx9dVXu1u0aOFOTU11Z2dnuwcOHOj++OOPIzpGteszoyiKoijKyYUmkCiKoiiKktSomFEURVEUJalRMaMoiqIoSlKjYkZRFEVRlKRGxYyiKIqiKEmNihlFURRFUZIaFTOKoiiKoiQ1KmYURVEURUlqVMwoiqIoipLUqJhRFEVRFCWpUTGjKIqiKEpS8//aGs2Dh7jbmwAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "nbgrader": { + "grade": false, + "grade_id": "cell-868839a4a8358c59", + "locked": true, + "schema_version": 2, + "solution": false + }, + "id": "ujIDdb8VFLpO" + }, + "source": [ + "## 1.4 Harder problem\n", + "\n", + "Let's make this task a bit more challenging via upgrading dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2019-03-13T23:26:23.084319Z", + "start_time": "2019-03-13T23:26:22.876842Z" + }, + "nbgrader": { + "grade": false, + "grade_id": "cell-86be614f32559cea", + "locked": true, + "schema_version": 2, + "solution": false + }, + "colab": { + "base_uri": "https://localhost:8080/", + "height": 463 + }, + "id": "VmCfB-TIFLpO", + "outputId": "f6fe348b-0750-4902-9f15-7fa4b5f287dd" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 88 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAAGsCAYAAABO5qdvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5gURROH357ZvZy4I+co+QOUDJIRBFFQEBBEkWBAQcEAihnFBCIqYAAxkxQQyaCCCCpRRHLO4XK+vd3p74/ZC8vGS3DAvM9zys70dPfe7U5NV1f9SkgpJQYGBgYGBjcoytWegIGBgYGBwdXEMIQGBgYGBjc0hiE0MDAwMLihMQyhgYGBgcENjWEIDQwMDAxuaAxDaGBgYGBwQ2MYQgMDAwODGxrT1Z5AYaNpGmfPniU0NBQhxNWejoGBgYHBVUJKSVJSEuXLl0dR3K/7rjtDePbsWSpVqnS1p2FgYGBgUEw4deoUFStWdHv+ujOEoaGhgP7Gw8LCrvJsDAwMDAyuFomJiVSqVCnbLrjjujOEWe7QsLAwwxAaGBgYGHjdJjOCZQwMDAwMbmgMQ2hgYGBgcENjGEIDAwMDgxsawxAaGBgYGNzQGIbQwMDAwOCGxjCEBgYGBgY3NIYhNDAwMDC4oTEMoYGBgYHBDY1hCA0MDAwMbmgMQ2hgcA0hpSQlMZXUpLSrPRUDg+uG605izcDgekRKycrZv/DD+8s4ue8MADUaV+XeZ+6i44A2RqUVA4MCYBhCA4NijpSS9x/+hJWfrye3vTu6+wSTB33Asd0nGDZ50NWboIHBNY7hGjUwKOb8tXwHKz9fD4CUOcelpr+Y9/YS9m45cDWmZmBwXWAYQgODYs7Sj1ehqO6/qqpJYdmsNVdwRgYG1xeGITQwKOYc+ec4mk1ze95m1Ti889gVnJGBwfWFYQgNDIo5AUH+3tsEB1yBmRgYXJ8YhtDAoJjTvl8rj65RoQja9W11BWdkYHB9YRhCA4NiTq/HuuEf6IeiOKdIKKpCaIkQug3tcMXnZWBwvWCkTxgYFHNKVyrJW6snMvHOt0iKSUY1KYDAZrURUTqcyStfICwy9GpPM19En41lzdzfOH3wLEGhgbTr14qGt9Y18iINrihCytwB2dc+iYmJhIeHk5CQQFhY2NWejoFBoZGRlsFv8zezZ9N+hBA07tSAW+9pgdnPfLWnli8WT1/BrHFfAiAAhG7cG7ary2tLniMkIviqzs/g2sdXe2AYQgMDgyvO7z/8yWv9prg8p6gKTTo34K1VL17hWRlcb/hqD4w9QgMDgyuKlJJvXl/k1v2p2TS2r9ltpIQYXDEMQ2hgYHBFiT4Ty9HdJ/DkjFJNCpuXbr2CszK4kTEMoYGBwRUlIzXDaxshBBlpliswGwMDwxAaGBhcYUpViiIwxLMAgDXTRrWGla/QjAxudAxDaGBgcEXxD/Tn9mGd3YoECCEIjgiiXd+WV3hmBjcqhiE0MDDwGZvNxsWTl7h0OsbjHp83hrzSj8p1KzgZQ8WkoKgKz3/7JH4BfgWdroGBTxgJ9QYGBl6xWW388P7PLJ6+gugzsQCUq1GGfuPu5I6Hu+Y5AT44PJhpmyax8N2fWPbJGhKjk1AUQateTRk44W5qN61RFG/DwMAlRh6hgYGBRzRNY1L/qWz68S+HeogIQMKdj3Xj8Q+H5VsNRtM0UhPT8Av0w8//2hQHMCieGHmEBgYGhcLvP/zF7z9cZgQB7K9/mrGaPZv257t/RVEIiQg2jKDBVcNwjRoYXIekpaTz9/IdxF9KpFSlKJp1b5xvKbZls1ajqIrbmohZhYEb3lq3IFM2MLhqGIbQ4IZASnlDCDlLKVk8fQVzX5xHWnI6QgiklISXDOXxD4fRoX+bPPd5cu9pr4WBj+85WZBpGxhcVQxDaHDdcuHEJRZNWcbarzeQkpBKVPkS9BzZlT6je7gVdN69cS8/vP8z29f8g6Zp1G15E3eP6Unru5pdcUOanprB3yt2EHchgZIVImneo4nXVd3i6SuY+dTc7NdZIQAJMUm8MXAaZn8zbXo3z9M8AkMCiLuQ4L6BgODwoDz1aWBQnDCCZQyuS479e4Kx7V8mNTkNzZqzmlEUhfI1yzBt0yTCSzp+PpbNXM30UZ+jmJTsa7Jcgv3G9WLku0Ou2PyXzVzN5xO+JTUxLXtVFxoZwqgPHqLzoFtdXpOWkk7/ciNIS0533amA8jXKMvfA9DwZ9bkvzuP7txa7XxUKeHz6MO4a1d3nPl1x8eQltq3+h7TkdEIig6nWoDJVG1Q29g4N8o2v9sBYERpcd0gpmTTgfVKT0pxu3pqmcfboBWaOncv4r0ZnHz+5/wzTH/9cb5PLcGZdv3DKMhp3akjz25sU+fyXzVrD9FGfZ7/OelZNik3mrfunY/Iz0b6fc0X6rSt3ujeCABLOHj7Pwe1H85SecMejt7H041Uuf5+KqhBZNoIu97fzub/LSUtOY+rIT9gwf7NTbmJQWCB9n+rFfS/cjWpS8z2GgYEnjKhRg2uOxJgk5r40j/4VRnCb6V76lhnG5+O/Ie5CPAD//bGfk/vOuF3BaFaN3+ZtJiE6MfvYz7PWuFU6Af2Gv+TDFYX6PlxhSbcw5/nvPLb59Nmv0TTn95ZwKdFe2M8zCZcSvTcCkuNTmPfWYsa2ewlLemb2ccWkoJp1o1S+Rhne+/UVgsPy5xrVNI2Xer/DxoVbXCbopyam8dWrC5g86IMCJfAbGHjCWBEaXFNEn43lyTYTuXQ6JtvQJVxKZOGUZaz9eiPTNr3Owe1HEYpAau5vnDarjeN7TtGoQ30A9v550GEleDmaTWP/X4cKPH9rppULJy6hmlTKVCnl5KLctuYfkuNTPPZx8cQl9v15iPqtazscL125ZHZKgydKVy7ptU3s+TieavcS545ecPg9CiEICPKn08C2tL6rGbfc1ghFyf/z9M71/7Lrlz1e221YuIXbHux4RVbkBjcexorQ4Jri/Yc/4dKZGGeXp00j/lIC7zz4MWZ/s0+rB7N/znOgL/tQJr/8PzdaMjL56pUF9C8/kgdvGs391UfxwE1PsOKzdQ5z9XW15qrdLbc1IryUhyrcAqo2qETV+pW89v/+yE84f/yi08OElJKM1AzOH79Is+5NCmQEAdZ/+zuqyXsfqklhxWfrCjSWgYE7DENocM1w4cQl/l6xw+3KTbNq7Pl9H+Wql/baV1hUKLVuqZ79unmPmxGKe7+ialJo1atp3ieNvgp8sddkvpm0iMSYpOzj545e4P2HP+HTZ74G9Pd37thFn/p0taozmU2MmTEChG70LkdKOL7nFKPbvMA/G/5z2/eFE5f4c/l2t79nm1Vj2+p/OHvkvE9z9UT8pURsHlbiucc8fehcgcczMHBFkRrCjRs30qtXL8qXL48QgiVLlni95rfffuPmm2/G39+fmjVrMnfu3KKcosE1xOGdx3xy/cWdT6B9v9Ye9/z6PX2nQyrC7cM6ERgSgOLKGAr9P71H98j7pIE1X25gx7p/nV219peLpi5jRMOnGFz9Mb5/80ePfQlFUK1hZWo0rury/K33tOS1Jc9RoVY5t33s/+sQz3Z5jb9X7nR5/uC2Iz79nvf/fdh7Iy+UqVzSpxWhEILwkqEe20SfjeWrVxbweMsJPNb0OWY8+QWnDpwp8BwNrn+K1BCmpKTQqFEjPv74Y5/aHzt2jJ49e9KxY0d27drFk08+yfDhw1m9enVRTtPgGsFX16TJz8S4zx/hf+3rAWTfaLOiDns9ehv3PnOnwzXhJcOYvGoigWGB+r6d3R4qisBkNjFx/lNUa5C/+njLZq72uNoEOP7faa/GRygCRVEYNf0hj+kPrXo1Zc6+D6h5czWX40pNIjXJ1BEzsdlsTud9jc4sjCjO7g918mlFKKWk8yD3kak71v/Lg7We4NtJP3Dg78Mc2nGUpR+vYlj9p1g155cCz9Pg+uaK5REKIVi8eDG9e/d22+a5555j+fLl7NmTs3k+YMAA4uPjWbVqlU/jGHmE1y8pian0LzfCY+Vy1aQy78wnRJQKR0rJrl/3sP6b30mMTaJM5VJ0H9aJGo2quh8jIcW+gtuNzWqjfus63D68E5FlS+R73r1CB5Oe4r0quzdqNqnGY9OG+iRldubwOR68abTXdm+ueJ5m3R0DUBJjkuhfYSRWi9Xtdbl/z67ItGSSHJdCUFgg/oH+HucwZfgMVs351e15oQrKVy/LrJ3vEhDk3FfchXjurzEKS3qm6wApAR9ueZM6zWt5nIfB9cc1mUe4ZcsWunTp4nCsW7duPPnkk26vycjIICMj5yaTmOhbsIHBtUdwWBB3jerOwinLXAbDCEXQ7aGO2TdnIQRNOjWkSaeGvo8RHkyf0T3ok083qCsCQwLzbQiFIqjbohZPffqIT0EuWZw76n2vUQjB2SMXnI6HRYVy+7BO/PzJWpeGRQi47cEOLo3gpdMxfPfGD6z5cgOWdAuqSeHWvi0ZPLEvVeo5z1/TNGo0rkZIib9JjnMdLVu3eS1eXDjOpREEWPH5evdGEFBVhR8/WM7z3z7p8ryBQbEKljl//jxlypRxOFamTBkSExNJS0tzec3kyZMJDw/P/qlUyfebhcG1xwOv96d5D30Fo6i62y/L9dm8x82Mmja0yOdgs9o4uf8MJ/adJtOS6bV9p4FtPO5XekJqEpvVlicjCBBawrWEnEPfUhJ/McHlQ8UjUx5wO6Z/kD/9n73L6fj54xd5rOlzrJi9Hku6vmq3WTU2LvyTUc0ncGCr456ilJJpj3zKx6PnuEwZqXlzNT78azIf/PEGJctHun0f29f+4yVVRg/uMTBwR7EyhPlhwoQJJCQkZP+cOnXqak/JoBDJtGRycv8ZTh08y9IZqxhW7yn+Wr4D0KMkK95Ujs6DbuW9X1/h9aXPFWlVc5vNxoJ3lzKw8iMMq/ckw+s/xYAKD/P1qwuxZrp3I/Ye3QP/IL9sw50XFFWhZIWoPF9X65bqlK5Symu7b15fxKO3PMu5Y44rw31/HuKYGyFtS0YmL/d512l/8cPHPycxJskp2lSzaWRmZPLW/dMdjO6OdbtZ+fl6/YULO3Z4xzESLnrQOM3VvzeMZHwDTxQrQ1i2bFkuXHD8Ql64cIGwsDACAwNdXuPv709YWJjDj8G1jyUjk7kvzqN/uREMq/ckD9UZw0ePz+Z8rvQCS3omZw6dJzEmmQZt6xSpKLaUkvcemsFn478h7nx89vHEmCS+fm0hr9zznsvAE4CyVUvz7rqXKVEmIs/jajaNbkM75vk6RVEY9sZAn9oe33OScR1edliVzXtrsdscQc2qceK/Uw6rrIsnL/H3yp3u1XxsGqcPnuPf3/dlH1s2a43HiFFFVfhp1hqv82/Ytq7HFbdqUmjQto7XfgxuXIqVIWzVqhXr1693OLZ27VpatXLWVTS4frFmWpl4x2S+m/wjSW72jbKQUvLnz9v5bd7mIp3TjnW7Wff1RpcrFyklf/28nd8X/Yk108rqub/yRKvnuafUQzxw0xN8/epCSlcpxbfHZ/LSoqc9Jr3nRlEEjTs2yHYF55VO993Kk7NG4u9mby0Lm1Uj+nQMqz4ehhY/lozE39i+9h+PKy3VpLJl6dbs1yf2nfGeciHgxN7T2S+P/3vSY8SoZtM4/q/38k49H+7qMm8yC5tV4+4xPb32Y3DjUqSGMDk5mV27drFr1y5AT4/YtWsXJ0/qH+4JEyYwZEiOov8jjzzC0aNHefbZZ9m/fz8zZsxgwYIFPPXUU0U5TYNixtqvNrBzvYu8OzcoimDZzKJNsVn+6Tqvq5elM1Yx4fY3eO+hGRzYepjEmCTOHj7PN5MWMbz+U3z1ykJOHzhL71HdUVThJYFf5bahHXl92XhUNf9pCj1HdmXBuc8oW9WzyIBEsm5+EqSvJPPiI87V6J0ukGSk50TvBgZ7Nrb2QRwCXoLCXHt5chMU6r1N2aqlGf/1aBRVcfgbZf37wdcH5ClgyuDGo0ijRrdt20bHjjlunbFjxwLwwAMPMHfuXM6dO5dtFAGqVavG8uXLeeqpp/jggw+oWLEin3/+Od26dSvKaRoUMxZPz5u4taZJTu4v2sTpk/tOe129HN5xLDu1I7cR12waiTFJfPfmDyiqQLNJgiOCCA4L4uLJ6Ox2UeVL0K5faxq2rUODW+tSorTr1IS8EhQa6DWPESlIijcBNgKDoVR5C5fOmnGn4q1JSfX/Vc1+XadFLcJLhXmUiDOZVYfVbYf+bTi867jbBx6hCDoM8K2QcIf+bahSryKLp6/k75U7sFk1GrSpTe/RPWjUvr5PfRjcuBSpIezQoYPHTWpXqjEdOnRg507XihcG1z9xF+I5vifvAU++rBwKQmhkCELgcaWUkWbxuorVbPr51MQ00pMzGDf7UUIigokoHU69VjcVWLvTHRVvKseFE5fcujsVVVKhmp7iIQTc9VA0s98o5/b9qiaVbg92yH5tMpsY9MI9zHjyC5fthRDc8chtDjUguw/rxIL3fiIxJsnp9yaEIDg8iB4j9HSqjLQMNizYwtbVu7BarNRuWoNuD3VyeFio1rAKYz97xOvvwsDgcorVHqGBwSfPfJXnCD9FVeg4sG0RzUin44C2nrfABD67csGu7iIlv837g7Z9WtCgTZ0iM4Kgu0g97flpNkHP+2OyX981LJpGrZNx2vgTupF65otRhEU5Sp71fuJ27nv+boQQdjelmu2e7Dz4Vh5+z7GwcVhkKHeP6eHy9yalJCg0kA0LNrPvr4M8UOsJ3h36MRsXbOGPxX8xZ+L33Ff5ETYu2pLH34SBgTNGhXqDYkNSXDL9ygzHZnUdfekKRVUIDA3g83+n5ivNwFdSk9IY+b9xeuWLy1ykiqoQFBboNiHcGz9EzyEs0rOOZkHRNI1X+77HlqXbnB40hJA075LIy3OOk3s70pIhGHNHTY7+51hr8K01L3JLl/+5HevCiUus/WoDF09GE14qjM6DbnWZk3jx5CXur/G4T+kPLstqCT069qO/JlPr5uquLzS4ofHVHhgrQoNiw9kjF3w2glmFYSPLleC99a8UqREE3fU65bdXs2/oqknJ1tosV70MU357zedo0MtJiU8ttHm6Q1EUXpw/lsEv9nVItg8JtzJwzAVe+tzRCAL4+UvSU5wDdSrXqeBxrDJVSjH4xb6M/ewRhr15n9vE/OWf+l5WyeVqW+pu3EVTl/ncT2GSmpTGsX9P6DUbr6/1xA1HsZJYM7ixCfAl8hCo36Y29VvVpl7r2rS845ZCEX/2hTJVSjFrx7v8+/s+dv2yByklDdrWoUnnhiiKQt+n7mD2C9/5VLkhC7O/iYgyhRMU4w2T2cSQV+5lwIQ+nNx3Gi3+dSpX+xM/f2cxAKsVdm0K4exxx7+JalYJjQwplPkc3H7Ep9WgJ2xWjS0/bSuU+fhKQnQis5//jnVfbyAzQ//dValXkftfvpf2/YxUr2sRwxAaFBsq16lA+RplOHv0gntjIuC5L5+gXPUybhoULUII/teuHv9rV8/pXL9n7uT4f6eyi816q6qgmBS6DG5HYHBAnuYgpQaW35Hpv5CSEMuuDZl8N1UjMValwa11uOvx26nX8ia31/v5m6nZuBrS9hYydgDYzgKavW/QNIg5Z2bqWMdqG6pJoUP/1m41P/OKyc+MEKLAq6lMD+LghU1ibBKjW7/A+WMXHYz4yX1nmNR/KnHnH6L3E7dfsfkYFA6Ga9Sg2CCEYMgr/d0aQaEIOg1se9WMoDdUVeW5r57g7bUv0faeltRoXJWKN7muCygUQXhUGENeuTdPY0jbBWTMnci4EWgpC/BXVtOq8y+8v2QDdZscYsOCLYxp/QIL3l3qtS+hlkZELUaEjAGlAuBPcmI4X79XllHdbiLmvJkyFS10GxhDz/tjqXOzjcEv9svTfD3RosfNyLwsn12gKMJjNRFvZKRlsO+vQ+z98yBpKele23/3xo9ORhByJNxmjZtL3IX4fM/H4OpgBMsYFDsWTV3GZ899A1IiFAWQ2Kwabfo0Z8I3o72W9Slu/DrvD2ZP+JYLJy45HPcP8qffuF4MfqmvT0nzUtqQMXeB9QjguJeqaYCEcX1qsnebvgf43i+v0KhD3nLoNE3j+8mL+enjRTz66mFu7ZmAUPSVohCAuQkifArCVDFP/boiLTmNITWf0PVJC+AiHf/1aDoPujVP12RaMvnqlYX8NGMVqYm6oH9AsD89R3bloTcGutSstWZauafUQ9ntXSEUwbA3B7kUJTe48vhqDwxDaFAsiT0fx5ovN3D+6AWCI4LpOKANNZtUu9rTyhcXT0Xz2C3PkhSX4nzDF3DHw7cxZsYIr/3I9F+Q8e7z5KxW2Lo+jFeGVkM1KbToeQuvLn42z/OV0ooteiDC+i9CXG6gVFBKIUouRSj5r9GYxbF/T/Bs19eJ90FcOzdZUaRd7m/HM1+MylPqiaZpvHL3u/y5bLtzBK0iaNShPpNXvoDJ7LhzFHchnnvLef47ZeVXPvWpkc9YHLgm6xEaGGQRWbYEA57rfbWnUSjMe2sJyfEujCCAhJ9nraH3E7dTpa7nVZbMWAeoXL4azMJkguZdElFUfQX9z4b/8jfhjF9QbP+4EZWxgXYRUr+DkFH56z8X1RpW4asjH/Hr93/w6bNfeY2gzTKA1RtWps+YnnQd0j7P+Zd//rzdbYCN1CS7ftnDhgVbnFaZASEBrtM4HHsgODzIw3mD4oixR2hwQ2BJt7D807U81uw57in1EA/VHcO8txaTFJdcpOPabDbWfPmbx8AZ1aSw9svfvHcm0/EWkqqqYDLrbfJbjUOmLcHzrUFDpi7KV9+uCAwOoMfwznywaRJmf7PLNkIRdLqvLasz57Mqcx6zdr5Htwc75kuEYPln6zxWq1AUwc+frnU5z7otPFe5t1k12vf3TRbOoPhgGEKD65K0lPTs4IfUpDTGdXyZaY9+yuEdx0iMSeLUgbPMmfg9Dzd+2mnvrjBJT04nI9VzdXopIfpsrNe+hMl9JCjo+4QXTpuxpAtUk8LNXfIpNK1FkxVF6hYZl7++PVClXiWmbniV8jXLAjmGXDUp3PFwV56e8xhCiAKJkAOcO3zes8qOJjl35LzTcUtGJif2eta0rVCrLLWb1ijQ/AyuPIZr1OC6QUrJuq83smjqMo7uPgFA9f9VISwqhANbj4DEIUpRapLYc3G8MeB9pm95s0jmFBAcgF+gH5Y0i9s2QkCkL7UKA/tC8nQ8Gamf5pQEBDarRp/R+Ss9dPqIQtnyuqvVFRKBUMrmq29v1Glei7kHprN7w16O/3cK/yB/WvRokq9aju4ILxXG6YPnPKZthJV0VvrZ9ONfpCR4Vg9KjEnGmml12l/MD5mWTDIzrASGBBRprU0DwxAaXCdIKZn51FwWT1/hUGnh2J6THvd0bFaNfX8d4vDOYwUOxpHSAunrwHYCRAgE3IZqKkPXwe1Y9cUvbt2jNqtG1wc6eO1fqCUhbBIycQK6M8dmHxekBrv/DGbZV6VBwOPTh9GgTd6L0cZdiGfG+ATe/M7jG0UE+Vb0Nz8IoQeseIp4jbuYwM8z17Dumw0kxaZQvmYZ7nj4NjoPaoVJ/o7M2AzYEOYmENgDIXJyNbsMbseeP/a7H18RdL2/g9Pxg9uOoJpVbJnu1Y+SYpO5dDqGctXyn+Kz/+9DfD95MX8u24amSUqUjeDOR7txz9g78pxzauAbhiE0uC7Y9eue7PJNuQ2fL0LYQgj2/LG/QIZQpq9FJjwPMgH9a2WDpDeQgQMZMGEEGxdtISUxzWXUaLcHO1KtQWVX3TrPNehuUMshUz4Bi16MODUllDULKrJmYRW6DG7AnY91o/r/quTrfaz5cgM7N4awaUU4rbsncPkWnM0Kp44EUaX13VwZPR9nTh04w9j2LzukXRzcnsK8N6dxS9NxRJVOIevWJtPmQ9JkKDED4dcMgM6D27Fo6jLOHrng9PdQTQpR5SO5fVgnp3HNfiafVIPMfvm/rW7+aSuv9X0P0F20AHHn4/nq1QVs+Wkr7/36CoEhRVtp5UbE2CM0uC74acZqj4VzPSNRPQRPeL06Ywsy/gmQWbX4rOh3TA3SvqN0iU94f9MkJ2Foc4CZe5++i6c+eThP4wn/ViiRcxFldiNKbyekxjbueX4pn+yczpOzRubbCAKcOXQOoai8+UgVFs0sRVpKzu/Fmgm/LolgXO9qJMYVTBotv0gpefWe95xyDwMCrbyz8DARkVmuS6v9B5BJyNjhSKte+zQgyJ/3fn2Veq30PVchRHaEbIWbyjN1w2uEROTosWbR7PYmHrVwhRBUqVeRqPKRpKWks+Lz9UwZNoP3R85iw4LNWDM9K+CkJafx1uDpaDbNyXsgNcnhXcf57s3FHvswyB/GitCg0NA0jeN7TpGekk6FWuUcas8VNYd3HPMqaeYOKaFxpwb5Hlsmv5/1L1dnIW0elW96mI/+mszR3Sc49u9J/AL9uLlzA4LDnW+4viJEAIjCdZVlhf7brILZb5Tn2/fLULtJKqoJjvwbSEKsCaEIn3VhfUFKibRFQ+YuSF8BtkMgQhEBPSCwD0LJ0TbdvXEvJ/aeduqj8z1xRJW14norTQMsyNSvEWEvABBVrgSDJvbltX7vkZaUjqIIUODk3tO88+BHvPzD004VQRreWpdat1TnyK7jLoNtpJQMGN+H3Rv38nKfd0iJT83WwV3x+XpKVYpi8qqJbtNkfp23WQ/wcrPq1GwaP3+yhgdevbdQ9iANcjBWhAaFwqovfmVIjcd5uPHTjGkzkf7lR/DGfe/7FA1ZGOT3xqyoCs26N6ZSbc8VFdwhbef1G7jHKEsB6SsBPXin86BbufXuFh6NoJRWZMYGZOp3yLTlSC1/JZ7ySvt7WzmsetJTVf75I5QdG0JJiDWhqAotetxcKHtVUmrIlG+QlzpDdBtIGAUZy8F6EDJ3IJMmIaN7ZK/kAPZuPugy9aFNjwSPRZPBphtZO4d3HePFXpNJT9YjejVNZhdN3rNpPxN7TkbTHP+mQghe/2k8lWqXB/Q0C9A1YwGGvHwv9VvX5oUeb5JmV5+xWW3Zv8+Ys3E80/lVUhJd50oe233Cq2ciOS6F2PPxHtsY5B3jscKgwMx7azGzn3eMrrBZNTYu+pM9v++n+7DO7Pl9L2kpGdRsXJW+Y3tR8abyhTqHdn1bcXLfGaeb1+VkiWErikDTJNUaVGL816PzP7DmiyKKgtQSXOenu0Cm/4pMnAha7rSOQGTIw6DWQpAMajUwNyr0aMI6zWvRrHtjtq/d7bTqEUIghOC+F+4p8DhSSmTCBEh35+qzWzXtEjJuJJRcgRCK2/y/wGDNaT/TucscLdF5by/R5+DCemo2PYBq5/p/uaVrI4dzUeVKMGvnu/yxZCu//7CF1MQ0KtWuQI+RXahStyIznvyCzExr9v7e5f3GXYhn3dcbuWtUd4dzyfEp7N962Cevhn+gs/ybQcEwJNYMCkT0mRgGVXnU5RffE4WtGxp7Po6H6j5JWnJa9pN9FooqCAwJ5ImPhrPpxz85d/QCEWUi6Hp/e27t2xI/N0ncviC1BOTFlrhTe8km8H5E2PMI4TnERGb8gYwbhm4IvPxO1RqI8MkIv8Z5mLF30pLTeOv+D9m8dCuKqqAoAmumjZASwYz/6gla9LylwGPI9F+R8b7vjYoScxD+bTm4/Qijmo13Oj/67VN0GxjrNuUDFDA3QYn6HpvNRs/A+7yKHHR7sGOepNISY5K4v8Yoj1qkCGjUvj7v/fJK9qGkuGTGtJnI6YNnPQZ3CUVQp1nNIkv1uR4xJNYMrghrvtxgV2POmyH8Y/HfvD3kI15aOK5Q5hFZtgRvr3mRF3pOJiE6MTtwxmbVCI0M5Y3lz1O7aY08izN7QyjhSP9ukLEaj8Yw7Wtk5naInINQIt02k0nv4JMRBLAdQ8beD1HzEWbHslDSehJkPChlEWppX95KNoEhgbzy41guHV5AyqUfUZVUUKtStt7j+AU7l5/KDzL1WzzJxTliQlq2IPzbctMtNajfpg77/tyHZstZDS//Ooqe93tyw2uIoEEAWC1WrysvqUlSk9O5ePISpw+eIyAkgNrNarhN5t+wYDNvP/ARmRmZnt+KhPQUR4GFLybO48yhc14jnKUmC2U1buCMYQgNCsT5Yxfz7Z77/Yc/ObbnpM+pA96o3awm352cyYYFW9ht19n8X4f6tO/XymU1gcuRMgNsl0AJ8misLkeEPo20bLFHjXq4sVsPIOMeg8jvXf7OpPUoWPf5PK6+L2lFJr2PiPxM7yNjMzJpClj/zZod0q8dIuw5hKmmT71KWzQybiglQw9QMlSxj3MMktahaaMQIaML7pK1HsA3I5g9q+x/vbRwLE+3H8mpQyAUidQEx/cF8s3UMgweeyGnUgagh4NK8O8BAT0AMJsTiSzrR+z5DNwIqgJwYOthBlV7LHvoqPIlGPLyvfQY0cWh3d4/D/LGfdN8qquomhRqNK6a/TotJZ01c3/1Wn1DCMETHw2j5R0FX40bOGMYQgOXnDt6gWUzV/P3ql1ITeN/7epx56juTkZLr1aeP++6EIIN8zcXmiEE8Avwo+uQ9nQd0t7na6QWj0z+GNIWgtQDGaT5FkTI4wh/77qRwlQRohYhk96CDGeNyhxskLkDMv8BV+5MLT+BRTawbERqsWDZiYy/XAhbgmUTMmYbRC5AmD1rZUopkfGPgfVw1qRyxgFI+RjUShB0dz7mmguRF2FqK8J8c/aryLIlmLmlN799M51ffixBYqxKheoZNGiecpkRBNQKiKAHIWgQQijIzAMQez+9hvjz1XtlkG7sj6ZJzh+76PDRjjkbx/sPf0JiTBIDxvfJPr7gnaUoisBm9f49sFk1ej1yW/briycukeFBdQh0l+hdo7rT69FuXvs3yB/GHqGBE5t/2srr/abYI+n0O4VqUrDZNJ6cOZKeI7tmtz286xiP3pz3Uj9ZKKqCyazyv/b16Tv2DqfghKJGavHImHvBdgrHFYpeB1GEv4sIvNO3vmznkZfaeWmlQvAIlNCxztdbTyOjnRO5fSJyKcQPBS0O1w8mql5LMPRZUEJBre56VWrZiYzt72EgAWoVRMnVBVoVakkfQMpMvGqaooJSBlFqvcP+qtRSkTG9Xfzd7NeIUhD1DUKtlD1PKW16hKp2gfRUybg+NTi6N9DBxSqEvfaihyoTiir4/tQnRJYtgaZp9AgY6HPqzpCX7+X+l3OKG58/fpH7q3uu4qGoCkNeuZdBhls0z/hqD4z0CQMHLp68xOv3TsVqtTm4a2xWDSRMe/RTDmw7kn28ZuNq3HpPCwdZs7yg2TQs6ZnsWLeb8d0mMf8d75XVCxOZ/LGbm6le6VYmvIDUktxfn3kALXESWuwIZMKrPowoQLpeAQhTRTA3J+9fSwG2A/YVpbvnWhtkbkPG3ouMvh0Z3ROZ7rx6lRkbwaNmjATbcbB5Fp/2OuOg+0AE4/m9KiBCECVmOQUZCSUIEfkNmJvktM3qy1QPUXIeiqmyo7HO+A20s4CNgCCN9348wt0jLhEUmvO3r3xTJoqqeNyv02ySEQ3HsfTjVfb0CO9GMKREMBPnj3UwggBlqpSiSv1KHh8qNJtG67uaeR3DIP8YhtDAgZ8/WasbQDf3AVVVWDx9ucOx8V+Ppsvgdnp4vSI8lrhxR5bR/Xz8NxzYethL68JBSovuDvW4V2WB9GUurpVoiW8jY3pB6rdg2QCWX30Y1eoU2JIbETYBMOP7V1MF/44ILS4P1wC2I8j4Uci0Hy87YcHTvlkOXoJCvCDUUojIr0GJsh9RyZm/Akp5CH4UUXI5wuxaM1WopVGivkNELUWEjkeEPoeI+gGl5A8I1Tk9R2ZuJ/duUGCwxoiXzjF/9398sXkf327/j1fnHva6Xwd6hOhHo2fz7tAZlK9V1qMhEwLuefIO2vdr5eKc4P6X+rndX1RUhZZ33FKo2wcGzhh7hAYO7Fj/r8cbgc2qsWPtbodjfgF+PDv3cR58rT+bf9pGRqqFcjXK8N0biziy60SexldNCj/NWM0zX7gP7Dh98CxLPlzJH0v+JtNipXazGvR+/HaadmucN3eddil7T9DDjJDWo86mIfVbSJ1tf5FlSL3dQBUQYRDQ3W0LYa4PUd8hE1/T9xK99YcfImQsZO7xYfzc6DdemfAq+HdDKMH28Rsi8SwFhggDNX8CBA7dmOtBqd+QqfPAsgWEP/h3RwR0Rgjfb03CXBfMdX1p6fKon7+kfFV9lZ6coCCE8CnwBQm/fr+JbkM7cu7wBbfNFFWhuwvt0iza92tF7LmhzBr3pS5orgj0CiI2Gnesz4Rvx3ifi0GBMAyhgSM+3ADcNSlduRS9H789+3Wz7o358qX5/DRjFZkZXm6udmxWjf82H3B7fuuqnbzU+x2klqPHuG31P/y9Yid9xvTg0akP+m4MhS/ixTbI2IJMWwEBXRDCT99rSvnUtzGyUQEVEfEBQniOYBXmhoiohUjrEbCdRooIsOyClI/sot52THUR4ZMQ5puQamlINJP3lVoapK+CIPv+k39nUEra3ayuDKsCQQO9vgdfkJkHkUmTwPJnzsH0X5BpTSBkFJibFqpggPBrgUz5zGObkBJlad6zCVtX7vJpZaioCueOXKBZ98ZsXbVTf7yQOec0TePJTx6hZHnPUch9RvegXb9WrJn7G2cOnSMoLJAO/VtTt+VNDr8Dm9VGcnwKgSEBPkVCG/iGESxj4MBnz33DoqnL3N4EVJNCu76teP67J33u02azcf74RRIuJjJ58HQ9Gs8DVRtU4rPdU52OJ8YkcV+VR7CkZbp9Yp847yna39va57lpMffpkZweV1P2FAK1MqLEXJBpyBhvtf4EiFB7SoUfBPREBA9DmD0X1/WElBawbAWZrAes2F2GUksB7QIy9XtI/TKPvZogeCRK6JM541h2IGOHortJs1a79puxuQkicq5DWaN8vRfrYWRMP7vaixvXtH8n+4ODa9EFKa2Q+R/INDBV95ovKaWGjO7uZk/YTvAojhzqxZg2L2DNtPlUvSQ0MoQF5z7jpxmrWfLhCs4dvYgQcEvXRvR/rjeNO+ZfxzaLuAvxfD95Mavm/EJacjqqSeHWvi257/l7DLepB3y1B4YhNHDg3LELDK092mMAwAeb36Bey/zd0D95+it+/GC5W0OrqAr9n72Lh964z+ncwinL+Oy5r91H8ymC2i1qMf2PN3yej8zYjIwbipTSjWBzblTdJRg+BWL7eW0rQh6H4If1fxdBYVVpi0EmT4W0pehGC1BK2yvMS3LXLHSPou+tBQ917Nt6HJnyhb4/KtNArYQIGgxB/d0aJqf5yXTI2AhavP5782uZHfSixQ4Hyx9e5icgsB9K+KTL+pWQ9h0yeUYuGTpFN5xhLyLUcu7nZD2OjB1sv87Nrc+vLQcODGXSfd9z8cQl121yUapiFN+dnJU9t4w0CyazWmjC2NFnYnii1QvEnotz+N6oJgXVZOKddS9Rv3XtQhnresOIGjXIF+WqlWHCt0/av2Q5H4+sf4/64KF8G0GAO0d1QzW7NgxCEZj9TNyRK88qN3u3HPCYsqhpkv1/HfKqN+owpn9r9uweRkaaQGqgaZ68wzawnYTUrwBvxsAG5gYIYSo6IxjTF9J+INsIAmgXAQ382uqGWK2E1+CXgNudDglTVZTwV1HK7EApuw+l1BpE8BCfjKCUEpnyJfJia2T848jEifrDxqVOyIzfkLaLYPkd70ZaQtoPSFuM49HkD5GJr16mxapBxq/ImH56/24QpqqIkish5HkQEa4bWf6gdrURfL3lD0a8nObx16eoioMHQghBQJB/oVaHmPnUXCcjCPo2giXDwuv9p+bpM2/gjGEIr3HSUzNY8uFKRv5vHH2iHmRonTHMe2sxSXHJ+e6zfb9WfLp7Kj1HdqVc9dKUqVKKzoPa8dHfb9H7CeebZl4oV60Mry15Dr9As0PKhVAE/oF+vL5sPKUrlXR5rVCE13t6ljB0Xpjx3EXuu7kBHz1fASHwvjJMXwZKKdxPxh716Fe4cm65kcnTQDuHW5eu5XekCEGEvY4+T1dzFRB4H0ItW7iTS52DTHpDd+HmRjuPjHsEmb4G30UYbPaVo460ndWT+t211WKQKbM89iiUUIRfQ12CziX2WpKkcft9RyhRKhPFRUaJUAR+AWbuetx98FNBibuYwKbFf7vfr5QQcyaW1+81jGFBMFyj1zBJcck83fEVjv17EonMvrcIRVC6Ukne//11SlWM8tzJVSIhOpFVc37lnw3/IYSgcYf6dBvakbCoULfX/PzJWj547FO391BFVWjcsT5vr3nJ53lkWjLpEaC7Yc1+Gj8f/9fLFbkHLAvaBRwnpIIIQER+hTA39L2vPCC1VOTF5jisBF0iECVXITP3Q8J44DIxaP9eiIi38xSh6X1uyciLrYF0941EWK4ixt4RYW8igvrq/Sd/jEz+EI97uiIQUXobQrgXU9cSJtpX095l3k4e8ueFQdW5eNoP1azqqZRWG6GRIby25FkatPUlYjV/7N64l3EdXvap7YOvDWDQRCPpPjeG6PYNwMej53D8v1NOgSNSk0SfieHtIdN57xdfkrwLF03TULzUxAkvGUb/Z++i/7N3ZR+LuxDPsX9PEFEmghKlw52u6TyoLXNe+I6UhFSXT8iaTaPvON9UYLLIvXrMtCicOeZHuSoW7yV97MEwIuR+PUhFO6MniAfeiQh6CGEqmgAGaT2JtOzAuxG0t0/9Fmyn0Y1gbnF0FTJWgaUP+LctvAlmrMOjEYQ8GUEAzPVzLrWdITt4yW3/aSCTQHiI1LRdxFet08q1Mpi7eR9b1pRn57aBaFZJ/TZ1aH9vq0KrnuIO/yDf+5//7hLuGXsHAXm4xkDHMITXKHEXE/ht/h9uXSY2q8Y/v+3lxN5TVKlX6YrM54epy1g55xcSo5MIjQyh+9CO9B3Xi8iyJTxee3jXMWY//x3bVu/S79MCmnVvwrA376NGo6rZ7QJDAnlzxfOM7z6J1MS07KAZoQqkTdK4UwO2r/mH+IsJ2ULbUmaCZbuedpAr0jILk9lEg7Z12LvlIJpNY8nskjz62lkf3rEE2zFEyAhEyAh7sE3h7wVmj5a5F5n4BmRuzctVkL7O7kK1v87GBmjI+Ceg1KbsPMICo8Xge1UJb6j6PmvuHEGlBN7dqqpdtcZTk5LkZZ6qCdr2OMutQ24vsoccV9RsUpXgiCBS4r3lu0JaUjr//LqnUMpk3WgYe4TXKIe2H/VJ2mnvloNFPpeLJy/x2C3PsnDKMhKjdTmypNhkfpi2nEdufpZzx9wnG+/76xBjWk/Uk/Sz7m8Stq/5h9GtX3BSmanTvBZfHvyQYW8Ool6rm6jaoDIRJXWXx78b97H0o5W888BHDKgwku1LRiAvNETGDUHGP4GMuRPt0p3ITEdBgH5P35n9QPHzlyX5a10YUvqQUpkrl67IjWDMQMjcnveLsyNIXfYMMsWlck5+kSKUwjGCCijhiPB3HY6KgDu89K9CQHevQT0isI+Xftxd6LmeZGGTmWHFku57bujlJZ4MfMMwhNcovsqY5UfuLK9MHTGL2AvxTqtTzaaREJ3Iu0NdBzdIKZkyfCZWS6bLa60WK1NHzHJy/Wa5VadufA3VpJAQoxtfm9WGNVO/uSUnJDOxfyzH9l2WdGzbj4y5D5m5N/tQ6zubZadrCKHy2rCqrF0Q4T1oxr/ogiRyIxMnAxnkTTkGdFeoNxeqiszMw76oB6S06Io7+cYucCDCIehBXTrNVNWxiTCjS9C5w4QIftT7UOam4N8F3+Tk0NuplfUgqCvI5qVbycyDIaxSv+i9P9cjhiG8RqnbspZPRq7hrUW3kQ9w9sh5tq/djeZmdapZNf7duI8T+047nTu47Qgn/jvltrq9ZtM4uvsEh3ceyz4mLVvR4sagXWzHX/Pu4Miu4y7HlppAaoJFs1xFoFqQ8c/r9QftDJzQh5k73qHb0E5Ury9YtyiSlETF46pQBD/o/mQhIa2nIfMv8m4EFe/uQUDf6/RkWPJA+s95rKd42UxKfIoosx+lzFaUsPEItYzDeSk1vZ6jp99FwO0+iRYIIRAR0yBwEL7tEElE8MgiXfm7Ivp0jE/fcyGg5s3VqFq/EhlpGZw6cIYLJy75JhVnYOwRXqsoim96iMf/O0X5GoUcHp+LI7uOAxJFAU1zf5M4vOMYVepWdDh25tA5N60dOXPoHLVurm4v3fMxWUEfm5ZVQlGlQxmd3CgmSZe+8a47te1FXmiBDH4IEfIYQpio2bgaT33yMDI1DJnoJVIvcKBbMehCRfPtd+SIABGMKDFbT2PI/Bf3xsMKfi0LMMEcZOqPeA1k8YRaASE83PQtW/TKF57IWI+UFp8k4ITwQ4S/hAx9Aix/Im2XIGWOvUJF1vuw7yMGDYNAbyIKhU9E6XCfpN6k1L9jAyqOJCkuBYu9xmHluhUYNLEvnQYWYkDUdYhhCIspmZZMNv34NxsW/EFSXAqV61Sgx4gu1Lq5OgBHd5/0Sf5pw4LNpCamUbZqKeq3qVOoT7TSsou6dT9k+YndmMxw4qA/P80pyYpvo5yMk9nf+aMWFOqbQyI4PAiZ/muu/DH9facmK3hKnbp/3HkatfaUT5kKKR8hbccgfGrO7ybgLkiZqyfPO+0jCVAq6nX9rgSK50CjbPy72OXKTHox4cA+CCUMgke6KNZ7GekbPQqBg13NxXpAj/hUK7qs7pCdzJ9nFPBrrpehyj2e7QjYLoFaGmGqYZfC8xLgIpPAegzMviutCKWEvpIEZFB/SF+JTFupv1dTTQi8V/9sWH5HquURJveC8IVNmz7N+eDRT33eJ4w5G+fw+tT+s0we9AEXT0Yz4LneRTDD6wMjj7AYEns+jme7vMaJvadRFIGmSb0wrlWj37hejHjnfhZN+YlPn/0mT/2Wr1mWMTNHcnPngue3ybTlyIRxSATCfmPSNH2t9ufaMF4bXjXbGJr9Tcw/+xmhJUJyrtdSsEaPZfvabQgFDu4KZOV3UVw64/gkHxIRyPxzszElD4XMvx3OzZlcloUzSrtcEfoFaMz75z+CQ327MYsSXzhUo5e2S8j4cZD5Jzn7SBLMzRARU53cdkWFlBIZfQfYDuM+6MUPUXqzbvguv16LQ15shWcDZUKU+h2hus45lemrkUlTHFdjfq0RYRMdjIIW+6BdQDsvxlAF4YeInJ+jnZqxGZn0Flj355piA73CRNqPeAtyESVXFJqxkunr9LnYTjrMRYS9iPBr4v7CQmT+O0v5fHzevuuXI4TgqyMfUbaqZz3W6w1DYu0aRUrJy73f4fRBPYQ/a/8sK0J04ZRlrPhsHYqa9+i1c0cv8Pztk9i9ca/3xp7mqMUiE54FZLYRBFAUEAq07JpIz/t1WSyhCHqO7OpoBDP3I6M7o2q/0qxTEs06JjFg9EW+3LKPLn1jHcYa9Fwp/PzNkLnNaR49BsW6XRFWrpXusxEEFZm60OGIUEuhRH2FiFqOCHsJEfoiImoZStS3V8wIgj0aNWgAnlIGRMijLo0gAJZteDdMVrdpGTJtsZ5iYbusnJblL2TMvUhrTlSvCOzrw1iX4dcCEbkglxH8HRn3kL76dJjiXp+MIEopUKvmaQpSpiFTF6ElTEBLeB6ZthQpLfrDXvwou0i341xk7GCkZVeexskv9z5zJ49MeYDA0PwLnQtFsGrOL4U4q+sLwxAWM/b9eZD9fx92nxohYN7bSyhd2bUMmSekJtE0yWfPfl2wSab+AFhxd3OWQJ/h0QC06d2cke/en2sOKci4B3UhZnLkzFQVFBXGTTtFvabJqCbJA8+dp8+I9Fy9OlK2soVhz5+z93PZ+Tz5OWzON3o7wlwLETQIETwYkQd3W2EhMzZB0mRcf1UFBI+C4Mc89OBjioB0LpMlZZpeF1F/5dyvTEMmvp1zKKAbmG9xM1cFTA2h9G5EyZWIyO8QpX5DiZyb/XuVUkMmvmQf6/LxNPsxfzf964jgh/KklCMtO5EX2yETn4e0JZC2GJnwDPJie/s+sbu52JCJk5z684W05DQO7TjKsT0nsdm8/32EENzz1B0sOPc5Ly16mr5je+V9UCmzH64NnDH2CIsZW1ftynaDukTC+WMXqVy/IiElgkmOS8lT/1KT7P/7MKcPnaNiLfcq/a7ItGRy4O/DlCu5mYhw4Wx87CgKVKiewfQ/XqZOy/qO+5Lpy+y17pwRAqQGT39wipAwG+FRgGpf6Sil7XJmjtw76hJlKln4/oMyHNunh9+HlAim+W16AIFvW6IKKJ7rxV0NpExHxo9BN2auftcC0Dzv+5ob4qgo467d/5yPpa/R8wzdYgPLRqTtIkItrUuaZQXopC2G7AK/KgT00lfWSgAoNVx3l7kNbGc8jKcBGaCUswcRZb0v+75hwD0QNNTD9Y5I23lk3FD73qr9/WSfjMPz6lYD626k9Yi+f+kDKYmpfPHC96ya8wsZ9mCWkhWjGPBcb+58rJvX/fuAIH9uvbsF5aqXZtHUvOV+CkUQHBaUp2tuJAxDWMywWW0+3b0VIXjio+FMHvRBvsaJPRfnsyHUNI2F7y1j/jtLSIpNZtz7J+l0t4bJY9S9oE7Luk5fbpmxEU83ZkXFQeJMBPTQ/xF4F7gphtv+zgTa9UogNvomrCGzKVkhEpNZQUb3ANsxl9dc9g4RgXd5b3alSV+hB3+4RYPU75Ahj7vV1RRqBaR/R8jYgOvVoQp+bVyrpdjOoN8iPBVVlmA7B/ZagEIJQoS/gQwdB5Z/9PPmRm73H53H84HAe0AtD+nLdc+CqRoisL8ecOPhuyNt5yF9rS4GbqqKtPwL0l1+po8uXts58MEQpqWk83THVzi6+4RDFGj06Rg+emI2549d5OH3hvg0ZI1GVSlfowxnj17w2fNhs2p5qtN5o2EYwmJG7WY1sWV6dpeERARTpmppKtWugF+Amc+e+4azh8/naZyo8j5GIwKzxn7J4ukrsl//vT6M2/rHebjCfnN1pcIhM/H27dVs8N/foTS8tQb46QEsImS0rpvpZoUiBJSsOQIRmLN/JyNmQUx3L+OpemSgl6jJq4HM3I9XQyQT9GhNtYLbJiJsEjJ2oH2vK/cNXgG1PCL8TdcXKhH45Fp1EdkqlEgI6Oj9Wi/9uCTlIzDVR5SY4bH2YBZSZupuzLT54FCnsQCpHln46En46ePVHPnnuNtI70VTl9F1SHuq/6+K176EEAydNJA3Bk7zbYqqQu3mNWncqeAFgq9XjD3CYkbLO26hZIVIt0m0QhH0evQ2PYAEaNunBXMPTOfjrW/x5soXmLHtbQKC3ctLKYqgbqubMJlNzHtrMTOfmsvC934i5pxrw3Zi7ykHIwiweVU4Z475YXV7f9YQISNdnzI3xNPHzmaDQ7uDePWh6lgCPs7OKxPCDxH5HYiQy66wrwCChkGAo+C2Yq4GEbPxWDvQrwUi8kuf8s6uOMKMb4/8XuTE1JKIqB8RIeNArQIiCNTKiJCnEFGL3Vd29++G51uEokdQ+qi9KWUmMv1XZOo8ZPoaB0EDAPxa66oyvmDdrwesaN41OGXiK5A2j5x9xizjXhAjKECtBibfBCt+nrXGY7qTalJYOXu9z6N36N+Gpz55GP9AP30qZtVBJEc1q9n3kEYd6vPGzxO8CuHfyBjpE8WQA1sP80yXV8lIs2Srpgihf4X/164ek1e+gF+A+xv3spmrmT7qc6fjQhEoiqDt3S3YuPDP7NeaTQMhGPxiXwa/2NfBvfTpM3pF+cv3LMtUyuCt+UcpX9WCzQqqKavmnUCETUIEuS4HI23nkZc6IjUb7nKnJz9Wmd+WlODZuY/TdUh7x+u1WEhdhExfpVcZMNdFBN2H8GuKlDb7PqIApUy2EZVaIqQtQVq26blhIlwXc/bvgDDXcvt7vNpIyzZk7H0eWggw1UUpuaTI5qAlvefGJW3/W5eY7ZB24g6ZthyZ9Lrj/rAIRYQ+gwgakNMudZ49YMY3RNhrDtc7jWs9iYzuSh6jp3wZGRExExHQyafWt5nu9Zr327zHzbzx84Q8zSIlMZWNC7dw4fglwkqG0urOpuz/6zBH/zmOX4AfLXvdkp17fCNilGG6hqndrCaf/jOFxR+sYP13v5OWlEb5mmW587HudH+oI2Y/1/tBiTFJrP7iV7av203luhW4eDLaQYS3Uu3y3NS0Buu+2ajrLdskWrbnS/LVKws4uvsEYz97JDvd4eKpaJcSaBdO+TOifW3a3J5Ay9sS6XBvU9SAehDYz2N6gVDLksLLBMiXsFnBZP8E6sYUVnwTyW9LIlDNKvv+OuRkCIUSCSEjHVacUtqQKbORKV/Yk7oBtSIED9cVYJQwCB6CCPZtD6bYYL4FzI0gcw+uXZQSEeKDrmYBECFjkaiQ8jmQSbY7UUQgwif5ZgTTVyMTnnJxIinb6GUZMxE0AGQmMnkKSG+rPYFMW+bREJK+Ep+ChfKCEokIe9lnIwgQFBpIWnIKLbokUr1eGpYMhb/WhnHykJ4SoagKoSXyXgEkOCyI24d1djgWXjIM/yA/LGkW/AKLoaejGGIYwmJKUGggYSVDCQ4PwpppRVEVPf3BjdzSv7/v44U73iQ9JSOnPJEQKKpCnzE96HBvayrWLk//ciM83hM2/fgXfy3fzuPTh9FjRBfCosJQFAWb5nwjtmYqbPipBH+uLUPnRz8GMiF9FZrlT0AizE0hsAdCBDpcp5l78mSPr7l75EVadE3CZJYc2h3Iktkl2bA0AtCXv6rJuytHSg0ZP1avrZf7jdnO6C6xzAMQ9soV14gsDIQQEDELGTdMz6NDRXfn6cZIhD6LCOhWxHNQEKFPIYOHQvp6fU9SrQT+HTwWvs1CSg2Z9DaejJFMeg8C7852T4vg+yHwHuSltjhVuXe8Up+Px/ETKZS9QICA3oiA28G/rU/vPTeDnqtGh9sXEFXGijVTz7cdPvEcW9aE8c7jlUlN1t2dBcFms/HlS/P5cdry7KhUgAZt6zBu9mN5jhK/kTBco8WQ88cv8tStLxJzLi6XUdPP1bq5Ou+sf9khFDruQjwP1HqCjNQM59WbAFVVmLXzPU7sPc2k/lPdjiuEpHHbZCrVSic9VaH9oOcJiazEmDYT3V6jmhS6P9SZMR+2RcYNt5f9yQqSsYEIR5T4BOF3c/Y1UkoeafIMx/Z4lomb9PMEWvS42e15sK824p/w2EZEfoPwa+6xTXFGSpsu75W+CrRUMFVHBPZ1kCQrrkjLLmTsvV7b6W5Gx5WNFjMQMnfi3oip4N8FpcSH7sdPnZcrH9Dt6F7O21uVmI3wv9VrO6c5WA+jXeqNplm4XAfDZoU9f4cw++3b+GDzG6j5EMrIYurIWayavd5JKD5rtTlj+zuUrpT3/ONrGcM1eg3zxsBpxF6IdzASWR/uQzuP8XSnV1AUBWumlfqtaqOYFNJTM1wbFfuhpR+tpHYz97JT9Zql8Oz0k5SrYtGl0gRotlGooYNpc9fNbF6206l/RVUICA5gwLPtkbGDcz29587HStKVQkquQqi6+LcQggHj+/DmfdNczkU1KZSrUZam3Rp5+jXp3ad8i+cnfhWZ+v01bQiFUPUVmH+Hqz2VvKPF5LudCBqITPBUg9Hm2S0KENATEt9AL2PlChUCeuiC3lq0+35EiXyLk8vkTxDC5mQEQd8OaNQ6mbdX3F4gI3hsz0lWfu462EazaSTHpzDvrSWM/nh4vse4njHCiIoZh3ceY/9fh9yWNZKa5PCOYxzcdoSj/5xgxefrWPrRKo8rK5tVY8uybVSs7bqWWvV6abw9/wilK+ruFEXRDaFqksjUb5j4eTxdh7RHKPqyNMvNWKl2eaZueI0ypTfY891c7WNpINORqd85HO04oA1DXtZXClku0Kz+S1aI4s0Vz/t2Y7AdxrPbywbWoi9ObOAGH9Ib3LYL6AF+7XBbM9CvIzJzDzL5Q2T6WqQLdRyhhCLCXsx6dfmgoEQgQsd5FVEXoc/k2R0KumuY9BV4TkMxEWjyPWLUFStnr/dYrslm1Vjz5W9OSjbnj1/k61cX8v7IWcx9cR6nDnjO5Tzyz3E2LtrCjvX/Ys30lF96bWGsCIsZ/20+oEeI5iFR1hesmTbqt65NxdrlOXvonIMLdfDY86gm6fKJVQiJyFzM05+uZuikgWxbtYuMNAs1GlelfuvaCCHQolfhVYUjfRWEjnU4ev/L/Wh7d3N+/mQtx/49SWBoALfe04oO/VsTEOQ6JUBKqZfaSZkLmbvQAzg8IUCEemljUGSY6oLpJrC6e2ARoJQEv1bOZ4QJSsxAJs+E1G9y9gNFpJ7jaPkVLBuQKIBV1xmN+ADh19Sxn6B7QQlHJk3TK1oAoIB/F0TYeFBKIzO2uHkDKoS+gAjqm6+3rxdG9vYZ1fRo5nyQnprB3BfnsfSjVV7LNWWkZpCekkFwWBBSSmZP+Jb57y5FURSEvazbt2/8QI+RXRj98XCHB9EDWw8z7ZFPHWqDhpcM5YFX+3PHI7ddk3vwuTEMYTFDUZVCD/RWTQr1Wt2EEIJnvhjFM51eJTMjEyklgcE2WnZLdGkEc/WATFtGyfKj6f6Qi0g5meZ9Em7aVGtYhSc+8s1dI6VEJr0DqbPxWo4nF9nqNAZXHCEEhL6o68s6ubDtHoawl9zqgwrhhwgdgwx5FKzHkQhIfNm+d4i9P3ufWgwydiiUXOxUfUIEdAP/28B2FLRkMFXSI5Cxp4ikL3HzDjTvNRA94g9KlBcXsQDVt1zM3FgyMhnf7XX2bTnotri1w0wC/bJzjBe+9xPz31kK6K7T3F+llZ+tIyQ8mBFvDwbg8K5jjO3wMlaL4wowITqJ6aM+Jz0lg35PO+bwXmsYrtFiRpPODQs95clm1ej9hG4M6rW8ielb3qB5Tz0IJSTc9d6FIwKka31QAMz1yQmQcYUC5np5mbJrLL/bjSD4ZgRVfZUQ2KfgYxvkG+GvixZguixnU61sD5LxHvkqhB/CfBNCi7ZXInHjhseKTP7MTR8CYaqB8GuUbQSllgwpX+H+Sych9Rs0m4f9Q4/zFhA4AM+3Ws1euUMnIy2DNV/+xuv9p/Jyn3f4+rWFRJ91/v6tnvML/20+4JMRVEwKtz3YEVVVsaRb+H7yYrdtpYTF05eTHK+rOM0e/y1Wi9XtivOLF78nKc5TdG/xxzCExYyKtcrRoufNHv39nsidcpDVx6AX7nGoQVijUVUm/TSe8V8/QVK8GUuGN7eGhlA8SHgF3Ydnw6SBluyTCognZMrXeDa4oK8y7KsLtZIeMaoYrtGrjfBrjoj6CRG1FBHxCSLqB0TJNXnKxQOQ6cvx/BmwQfpyfA6Gt2wF0r000iBupL7flw9E8ENgqo67eYuQJ7LVeU7uP8ODN43m3aEfs+mHP9m8dCvfvLaIwVUf1fN/c7Fs5hp3u6cOKKpCSHgwA57T9XT3/HEg28i5IzPDyrbVu4g9H8e2tf94dLtaLTY2LHDnWr42MAxhMeTZLx+nRqOqQI4xywokcYeiKtRuVoNWvZoSGBJAQLA/TTo1YNLPE3jwddeRdZ0HtePNla/zz5bqHuTS7HgQpRZ+N0PwCM/XZ25Dxo/2/Qblso9/8LoSFOEQ9ACixGeIkqsQpqr5H8+gUBFCIMx1EQEdEeaG+dtXkkl4d5n4si+Xu60PWPdAxq8+9umIUEIRkd9DYD8c5PDUSoiwNxEhj+szSbfwXNfXiD0fD+TUItU0DZtV450HPuK/zTl1Gs8du+BTLEGdFrX44I9JlK5cCoD0FG+GH3u7DH0uXsZQTArRZ3yMDi6mGHuExZCwyFA+2DyJPxb/zbpvNhJ3Pp7I8iXYunKXHvXl4oOp2TSGvNKf5rfnrWp2w1vrIm1zsF3qjZSJCOFsaETIGPd6lNltnkZa/nGqIp+DBMtGyNwBfrfkaY45g5i83wNlAiKgCyK/YxgUb9TKuI0izUKJ8l071ketUFCQqfOdch19RSjhiPDXkKHP6tXuhT+o1bJlAAF+m7+Z6DPutyAUVbBwyk/Ub/0MAMHhQQ7KUU5jCvhf+/q898srDser1PMt/7RK/UpElPau/apZNSLL+i7iXxwxVoTFFLOfmQ792zBp2QQ+3vo2ry8dz0sLx6GqqoP7M+vf97/UL89GMAuhlkMtucieLJzrJqOUQoS9BsGP+NCLtK/YPKEH3eQb/054d42CTJhQsJWnQbFFBPbDc4SyAoEDfe/PVFkX+/ZKQYNm7OMpIQhzPX2v8jKx3b9W7EDx4PmxWTX+Wr4j+7PdZXA7j1soUkLPkV2djleoWY6bmtZwW+1NURWqNqhEneY1KVk+ksadGngcRzUptL/XOer3WsIwhNcQre9qxqe7p9BzZFdKVy5JZNkIWvZqynu/vMKQV7yrd3hCmCqhRH6KKLUBUWIuInIhotRGRNAAH11YFtwnLWch7QVP8znHoCH4sCTUb1iZnhKxDa5VhKlytivRGRVMNfQ9ubz0Gf4GPu09+1omKp9YLVavgS82a47HpvcTtxMcFujSSCkmhWoNKtP2bmchibVfbeDg9iMu3apCEfgH+vHcl09kf++HTx6Eoiput2cGTexLeMlrU8UrC8MQXmNUrlOBJz4azrfHZzL/7Ge88sMzNOpQv9D6F2pZhH9rPbLOVT1Bt/iDiPDWuy6Gnd+5mW/ShbR9wXo83+MYFHOCH0eEvXnZZ8kfAvsjIr9HKJeX6vKMUCtAsDfxcokI7J3XmeaJmk2qeVx5CUVQvWHlbANVskIUUza8Rtlq+raFalKyr2/Qug6Tlk/AkmZB03JW0Cf2nebdhz52+zwpNcnTX4yiZpNq2cdqN6vJu+teokLNsg5tg8ICGfnuEAZNdF1p5lrC2CM0yDPSehyZtlSv9KCURgTehTBVRQYNsJfscee6siECff/SSJmpy7aJ4BxBZr9bkW4q1TuQx5uhwbWDEAKC+kLg3frqX2boqRhK3qs3ZPcZ/CAy7Qd79ZLL98lVvfBxQNHmyt0+vDPfvvGD23gwqUl6j+7pcKxag8p8sf8Ddv2yh31/HUI1qUSWDef3H/5icLXHkJokonQ4dz7Wjb7jerFsxmoURWBzs/JUTQp/LttGu3sc5eQatK3LnH0fsHfLQc4eOU9weBC3dP0f/oGea2FeKxii2wZeiT4Tw8ZFf5IUm0TZ8n9za9cVBARl1R+0FzoNvB9CRkHsvWA7g8tvc/AIlNBnvI4nbeeRybMg7Uf00HYzBPTSSw6p5ZEX23pxsQYgSm/O88rA4MZGWk/rAu7W/8hxlmlgboyImJ6tleu5j1PI1K8hfbleRspUExE0SP/8+uBhWffNRt554COEKnJqkSoCqUk6DmzL+K+f8Fhgd9Piv3j9Xl1Y//KUh/BSYQQE+3Ph+CWPcyhVqSTfnZjpda7XAr7aA8MQGrjFZrUxc+xcfpqxGtA1SG1WjcBgjccnn6FL38uMUfDjiKBByKTJdn1Fe06GUhIR/AgE3e91v1FaT+rVCrQEHI2pCiJQr1KfuR2Z+KrbPkTIaA/7SAYG7pHSHvSVuQ0Q4NcCYW7g/TrrKV31KGP1ZWfsajr+nRERH7pV0MnN3i0HWDhlGX/+vB2b1Ub1hpXpPbontz3Q3qMRTE1Ko3/5EaSnZhRIlKN0lZJ8e+zGMoSGa9TALZ88/RU/fbwqe1Ndf8AUpKUovDu6MiFhNlrelksjMXU2BA9HiXgPqT0P1qN6mLiprk83AEAv1OpkBNFfyzRkwjMQuRShJSOTP7C3y6rTBwQPg+DHCvK2DW5ghBDg11j/8RGZuRsZMwRwJRhh/1xm/AKpX+qfTy/Ua1WblxfVzo4O9TXf8pfvNhXYCKomhWa3Nc5/B9coVyRY5uOPP6Zq1aoEBATQokUL/v7bXa4ZzJ07V0+8zfUTEBBwJaZpkIuYc3EszWUEHREIIfnirbKO52UaWP7UWyiRCL+m9sRpZyMoZRoyZS7ape5o5xuiXWyDlvAiWDbjPmneBtYDCNseRMjDiNKbEKEvQPBQvUhtqQ0ooc84haUbGBQVUtqQcY8D3vR2JTLlyzyp02Td/3zl6O4TqKb8l3ICPYn/riduL1Af1yJFviKcP38+Y8eOZdasWbRo0YJp06bRrVs3Dhw4QOnSrpO0w8LCOHAgR0HhWlc2vxbZ9ONfHks7SSk4vj+QM0f9qFgjlzqHDwLcUktGxg6x78UASNAuQdpC3yaXeQjM/9P1IoOH+CQzZWBQJGRsAO28b22188iU2fqDm48ekrzgH+iXp9Vg1t4j6OkWSHh27uNUa5B3AfBrnSJ/dJ46dSojRoxg6NCh1KtXj1mzZhEUFMScOXPcXiOEoGzZstk/ZcqUKeppGlxGcnyKT3qnyYmXPYGa3Bf/zUImvwfWvejf2tzfXB+floXhITAoHsjM3eRpPZH8LjLuUT0i2l2fWiwyeRZadE+0i+3QYoci09d4XU226d3MIc/QGy173EyNRlWp/r8q9B51O7P/e5/Og271+frriSJdEVosFrZv386ECROyjymKQpcuXdiyxb1Ia3JyMlWqVEHTNG6++WbefPNN6td3nSuXkZFBRkZOIndiYv7qehVnpJT88v3vfPv6D5w7dhGAqvUr8eCkgbTIp5qMNyrULOv1SyUUSZmKWV9oFcwNEObaSJkO6SuQ6ev1FaK5DiKwP8JURVf7T/0Bn42eE37g3zaf1xoYFC5CmJF53ZSzbLTvFzrnxErrEWTsYNDiyP6OWC4hLX+Af3eImOp2NVm/TR1ualqDg9uOuDx/OSOnPEDFWj4WTr7OKdIVYXR0NDabzWlFV6ZMGc6fd+1OqF27NnPmzGHp0qV88803aJpG69atOX36tMv2kydPJjw8PPunUqVKhf4+riaapjG++yTeGvwhpw6cxWqxYrVYObzzGBN7vsmHj39eJOO2vqsZwRFBbmUdFVXSsmsCJUpZ0SM6gxDhk/Woz0vdkQnjIWM9WDZByhfI6NuQKV+C9QjeFWjcISBoMELxrn9oYHBF8G+Hr3Uxc5DIlK+cVnhSasi4R0CLx/FB0d5/xmpImY07hBC0sJdX80bjjg0MI5iLYhdV0KpVK4YMGULjxo1p3749P/74I6VKleKTTz5x2X7ChAkkJCRk/5w6deoKz7ho+ea1RexYu9vt+Z9mrGbT4r8KfVy/AD/GfvoIAuEkraSoEBxmY+TL59Bz/O5CRC0GtSoy7iHQLthbZn2ZbYBEJr2BzNyVh1mouX6AgD6I0KcL8K4MDAoXYW4I5qb4ooHrgHYeZLzjMcsmsJ3AvWGVyNQvkdJ9qZgLJy45aBE7bxrqrx+d9mDe5nudU6Su0ZIlS6KqKhcuXHA4fuHCBcqW9Z6cCmA2m2nSpAmHDx92ed7f3x9//yunbnBsz0nWfbWB2AvxBIcFIlSVI7uOITVJw1vrcsfDXbPLnRQUm9XGoqneRaq/fX0Rbfu0KJQxc9OubyveXBnE3BfncWCr/vtXVIXWdzVj+Fv9KV8tEJSwbNUXmb5GV9Z3iwJpq0CU8K45GvG5XqlCO69XEwjojTDX8nyNgcFVQER8iIx7EKwHyBGZ8AWzwytp2YZ+S/ZQE02LRqb9CIH3uEzQ15VeBIoqGfLMOZLjTaz6PpLkBBOhEVa63htLQqzJSS7tRqdIDaGfnx+33HIL69evp3fv3oDu6lu/fj2PP+5bwrPNZuPff/+lR48eRThTH+ZhtTHtkU9YNedXVJOCpkmnqMq9Ww6y4L2fmPDNGNr3c6/GHn02ln837kNKSf3WtSlTxbXhPLH3NGnJ3muHHfnnBFLKIomubXpbI5re1ojzxy+SHJdCqUpRbgV2ZcZG9Cdjd0+0Gli3Q8iTkDzNTRsV/FqjBLSDgHYFnr+BQVEj1CiI+hEyfkGmr9B1bq37PFyhgLmhi4LRPn5/Eycikz+E8HcQ/o73mbZ9mrNs5mpGvnyWPiOiURQY8dI5bDZQc9lNwXrg6t5TixNFnj4xduxYHnjgAZo2bUrz5s2ZNm0aKSkpDB06FIAhQ4ZQoUIFJk+eDMBrr71Gy5YtqVmzJvHx8bz77rucOHGC4cN9FFsuIua88D2rv9ALc9qsrgM9NJsGGkweNI0q9SpStb7jfmVKYiofPPoZv83/I8eICmh1R1PGfv4IEaXCnfvzhSuQP1C2ammo6qWRh0g4BwIH6zJsaQvJMZx2BQ5TXUTElIJM1cDgiiOEGQK6IQK66bmF0T09uDk1RPBI5z78miNTfFR00S4h44ZB5PcIv0bZhxt3asAtXSrQe9g/5BahyW0EpQSS34eA243UNDtFvkfYv39/3nvvPV566SUaN27Mrl27WLVqVXYAzcmTJzl37lx2+7i4OEaMGEHdunXp0aMHiYmJbN68mXr16hX1VN2SkpDC4g9X+FQNOssrsmT6CofDmZZMxnd7nQ0LNjuuJKVeh2xch5dJu6xydKU65TH7O7pPXFGzcdVi8YHWpai8GG8RBjIFETYJETkfAvuAuRn4d0FEfISIWoBQIq7EdA0MigQhVIj4EAi8/Iz+39DnEAHOdQIlfvh+S9YAiUye7nBUURRe/LoRioctSyHQjbT1gPtGNxiG1qgP/P7jX7zW9708XVOyYhTfn5yV/fqX7zcxedAH7i8Q8Pj0Ydw1qrvD4Y9Hz2bJR6s8jvXGiudp3r1o0iiykJkHkClzIGONrvZvugkRdD8E9s7eq5Baki6ITTru90kEYNZ1FwM6FumcDQyuBlrKN5D0Jq73+hT7Z9/REGqp30PiK+RdH00gSv/l8PAoUz5HJk3BWzSriPwO4dfU5bn4Swmsmfsbx/acxD/Aj9a9m9O0WyOPWqfFEUNrtBDJSM17uP/lOXhr5v6Kogi3hTcFsGrOL06GcPjbg/l3036O7Dru8rq+Y+8ociOoJc+B5Ldx+JJa9yETJ0DGOmTgYATpYKqKiJiGjB9FdlUKJySQiYx/HEquQpiur3QXgxsbmfIlJL3hoYWGjB8LpX/PNl4ydSEkvpzfEXVt3txeFLUK3oygpsGjTd4nPT2CTgPb0uuxbpQsH4mUks/Hf8vC937K0TpVBMs/W0f1/1XhzZUvEFWuaAsUXw2uLfN+laj+vyp5aq+aFBq0qeNw7NKZWI/Vp6WEmLOxTsf9A/358M83eWTKEKLKl0BRFUxmlRpNqvLW6hd5+L0H8jS3vKKlLYHkt3AXhk3Geogfiox/FBl9OzJlFoS/b/8yukMCGjLt+yKZs4HB1UBqyfaVmDcskLbEfk2sLjSfb0ygRDke8u8ASiTuggdsVvh7fRjH91k4f+wi895ewvAGT3Fox1Fe6v02C95dSm5HYdZWzvH/TvH87W84FPq9XjBWhD5Q/X9VqNO8Jge3H/UpgMVm1egz2jEiq3Slkpw+cNbt9UIISlaMcnnO7Gfmnqd6cc9TvfI++QIgtQRIeD5vF2XuhsTx+l6gR2y6TmPos/men4FBcUKmr0bfFvCGQGbu0c1U2mLynpCfhQoBPZ3qbgphhrDJyPhH0Y1hzj3HaoXURJVPXi6ffUyzaaQlpfNsl9dIjk9xO5pm0zi6+wTb1/xDsyL2Ql1pjBWhjzz9xSiCwwIvS1Z1JOvc0EkDaXhrXYdz3Yd29GhEJZLbh3UunMkWFmlL8JjT5BIbyHS7RJQXZH5vAAYGxQeZvhYtZgAkTvDeOIus3FvrEfKcjA/6NSIMEfqk6+4DOiIivwbzLdnHbFbBpp/DeaJHLc4ed8y91myaRyOYhaIqbF66NR/zLd4YK0IfqVK3IjO2v8O8t5aw9usNWNIsmP3NlKoURWJ0EghoeGtd+ozuQZNODZ2ub9OnOQ3a1mHvloNOBlFRFarWr0TXIe2v1NvxCWndR94ShLOwkVMn0J2xU8GveQFmZ2Bw9ZHJM5DJ08jbmkJD+HfQ/ymC8zGqAL9bEWETEWoF9638miGivkXaLhJ9+igjG79NckLBbvlS08hIt3hveI1hGMI8ULZqaZ6cNZInPhpGWnI6gSEBPtf/MplNvLnieT4e8wXrvt6YHUwjFMGt97RkzMwRBARdOYUc3/Ajf4YwC08rPhsiaFA++zUwuPrIzP/sRhDyJCKvVgH/TgB63mHql96vCX4cEdAJtBQwVUGovivDCLU0UogCG0HQYxmqNchbzMS1gGEI84FqUgmJyPuTXGBIIE/Pfozhbw3ivz8OIKWkTotalCwfWQSzLDjCvyMybV4R9a7AZXsbBgbXEjL1Ozx7PVyglEKUmJNTQcJ8i55Hm7kdt8ZUKY8IGYkoQPmxUpVKUq56ab16TQEr2Hd7sEP+OyimGHuEV4GIUuG06d2ctn1aFFsjCCD9WoJSkbxL16ggSuNt70OmGlGjBtcwmXvw2QiKEAgehSj1q0PKkBACUWImEOT+Wu08MmlqgaYqhKD57Te7NYKqSSGybITXfsbNfoywqMul4a59DENYTMgKV46/lMCGhVv45ftNnD50zstVRTUXGzJ5FlzqANpp8vYIqaAbQAuebxIaWP4swCwNDK4y4nLlGFdtIhBRPyBKb0cJHZMtUO+A7TSQ7KETDVLnITXvwSzu+Ob1RSz9eJVbBarIciV4//fXueNhPdH/8oozqlll3OeP0vX+4hXHUFgYrtGriDXTyvJP17H045WcOnAWRVH0HJ1cdqdJ54Y888UoSrlJrShspJTIhBcg/UfXDUQEBA2CwHsR6YuQyZ/hEDKuVkaEv6Un1V9XmkUGBo6IgK7IzJ24/6CruvKS2Tl4zgHLVrzvxaeDdT/45YoCtdn4c9l2Vs35hYsno4mqEEm3BzrQpk9zTOacW/ueP/bz5cvzAXAnJPb8t2MoX6Mso2eMoO3dLVg2cw2Hdx0jINif9v1a0+vR25y0kK8nDEN4lci0ZPLinW+zY+0/+sdfuhbZ3r3hP55sO5GZ299x6ZJIT80g+nQMASEBheNmzdzm3ggCyHiEWhJhKgchT0DQUL2OmpYMpqpgvgUhBNKvFaSvxP2qUAG/lgWfr4HB1SLwHkj+BGQSzp9zAZgQQYN96MjXrYecdumpGbx451vs+mUPiqqg2TSO/3eKrSt3UrdlLSavmkhwmO5uXfLRSlST4rZYgGpSWD33Nxq0rYsQglu6NuKWro1ctr1eMVyjV4kfp61gx7rdupC3hwdBm1Uj+kwsSy/TG02MSWL6qM/pW+ohhtYZw8CKDzOq+Xj+/Hl7geYlUxfgeW9PIFNzAmiEEoII6I4I6ovwa5rtehFBD+A+kk4ACiJoYIHmamBwNRFKBCJybi55MxX9lipABCFKfIYwVfbekV9zvLpPRBCYctSqPhn3Jbt/+w/IeYDO+v+BrUeY9sin2W33bT7o1giCfo/Zu/nGFuA2DOFVQErJko9WOtUzdIdm01g5e33268SYJEa3foHln64lIy0np+fwjqO8eOdbrJrzi5txNbT0X9ES30BLfAuZsdnZVeKxQjaABNspr3MWfo0QYS+jG73chlWvOC8iPvCYA2VgcC0gzPX0AJjwtyDgDgi4AxH2EqLU7wh/3zwewlxHjxx1+wCqQNB9CEVf4SXGJLHqi1/dSjZqNo0NCzYTfSYGAJO/d8efya9onIPRZ2NZ981GVs/9leP/eb9vXC0M1+hVICkumejTMXm6Ju5iQva/v3l9EeeOXnBypWZ9MT547DNa925GWGSOK1XL3AuxD4DM6UemzgGlHER+nfPkqpQguzagO4T3vQIpJfi1hvApkLFRrzaPCv7tEUGDEKbrLxfJ4MZEiAAIvBsReHf++4h4Hxk7GGzHydkvtKdm+LVFhDyZ3XbvloNYLZ4Vn6Qm2bV8LJ3v70/LO5qw5MPVbpWtFFWhVS/XVSjyS1pKOtMf+4xfvtvkMG6DW+sy/qsn3BYjv1oYK8KrgDkfT1+RZSIAfW9x1ZxfPMq12TJtrP/m9+zXmvUcxPR1MII5J88hY+5GanrUmgjohefkYAUCe3ucq5b6EzK6KzL6NkgYC+krwK8FIup7lLDnDSNoYHAZQi2NiFqCCHsNzE1ArQp+rfWSTSU+cYg29VX0WmYeQCY8Sa+By1FNisuIUaEIzH4mej7sXB8xv2iaxkt3vc0v325yuk/t23KAJ9tOJP6Si3vRVcQwhFeBwJBA6repjaL69utXFMHtw3Ud0viLiaQlexb2VU0Kpw+ezTmQOBGPmqEyEZlsr4wdcBuYauPaTaOCCHcbACClFS3uEUh8Gmwnc52xQNqPyJj+SC3e49wNDG5UhBKECBqAEjUPpdQalMjZiIBugIZMX4WW+Cpa4ivc1OCYU3qDK+rcrD/clq/0Hy9/FYo5wOxwnVAE/gF+vL5sfKFGpW9f8w+7ftnj0mDbrBqx5+P56ePVhTZeYWAYwqvEwPF9fKpkIRRB6SqluOtxvU5hYIh3dQkpJUFhuRJ0LVu8Tyj1M7T45wEbIvLLXDqgCtkfE7UaIupbhOrs1pDSiowbARmu9yfBBrbTyJRP3Zw3MDC4HJl5AHmpEzJ+NKTOh9QFRAZNpF2vFBTVtTFUVEnTjolUqJYVP6DR7NYNfH1oIg9NGkiz7o1pdnsThk8exLcnZrrURvZ5flJy7tgFju4+QUqCnue49qsNHh/yL495KA4Ye4RXiRY9b+HR9x9k5lNzPbar1rAyb654gdASuhxZSEQwTTo14J8Ne90aUptVo11ffaNeSis+V5BI/wGpnUGUmIMS+SUy84CeGiFt4NcEzE3dJuSS9iNY/vAygE1PDA4Zl13V3sDAwDVSi0XGDgGZaD+S8z1+/M1jpCVX5uJZExdO+pGWooKQCKBclQyennZ5YIqkRMReBoy/hwHj+xTK/P5Y8jdfvjyfY//q3h+TWaXDgDacP37R60N+QnSix/NXGsMQXkVKVSrptc3Rf07wyt3v0HfsnbTr2xIhBINf6seuTq+4zMFVVIVm3RtT6+bq9iMqvgtnS331mLERAjoizLXBXNun9yJTv/GpHTJZ/2KL66/KtYFBoZK6CGQ8rr67YSWsvP71UQAs6Qq/LA5n1beRtLsrge4DYwkKcWWICq/s2YrP1/P+yFkOD8bWTBu/fr8Jk58ZRRVoNvf3nKhyxUta0nCNXkV2/fIvqtn7ymj/X4eZ1H8qn4//FoD/tavHiwvGZbtJTWY12xXRosfNvPD9k9nXCiHA3DgPs1KRaR4S6t1hPexjQ0XPiTIwMPCITF+JLw+wfgEa3QfGMe3nI9w9ItqNEUQPwikEkuNT+Gj0bH2Ol6Vf2awamekWj0ZQKIKeI7sUylwKC2NFeBXxNY8wiwXvLqX57U1o1KE+t97dgqbdGrFhwRZO7j1FYGggbe9uQbUGLhJ4QydC7D0+jmID7bxPLaXUwLIZmbHOx74F+HdBiOJWbsrAoBgi868t6oiiKz6ZaxVKb+u//R1rhvvtFk2TCEW4vL8pJoVy1crQ69HbCmUuhYVhCK8i9VrXZtmsNXm65qtXFjDlt1cBCAwOoPvQjl6vUfwaopnqg/U/H0ZQ9dxCL0hbNDJuGFj3oX+MfHG7KIiQR31oZ2BggKmuXbyioC5NrVCLYJ89fB7VpGDNdD8vqUmadG7If3/sx5KeCegrwdZ3NmP0jBEEh+enIHHRYRjCq0i7vi2ZNfZLkmKTfc4N2vvnwXyNJQJ7I5N8MYQ2RJDnxGApNbsRzJqLL8E4CkTMRJjr+9DWwMBABA1EZqwsnM5SZiODhyMUzwZISkl6agb+gX4oiuuds5CIYLeqNrnZuf5fbnuwA+3vbY1m1ajZpColK1yZ4gF5xdgjvIr4Bfjx2k/P4R/s53NOodVi5ewR31yXDgT2ARGK5z+5AL824NfOc1+WP+wrQW9PqvaxlFIQtRIloIPP0zUwuOHxawGBWTm7ea0JejnpkPGr27MJ0Yl89tw33B01lDtD76dXyGCmDJ/JmcPOpeDa3dvKp9QvgDVzfyMxOomWd9xSbI0gGIbwqlOv5U18vud9+o3rhV+A2adrYs/H53kcoYQhSnxuD1Rx9aVSILA/osRMhPD8sZDp6/HJmRDQFxExE1FqI4q5Wp7nbGBwIyK1ZGTaCkhbBAE9IHQSqNW9X+itX1u0y+Mx5+IY1Ww8i6YuIzle35e0pGey9qvfePSWZzm4/QiWdEt2YEyVuhXpMKCNT0n9QhH8OG15gede1Biu0WJA6UolGf7WYKIqRDJjzBde25es4Bh6LLV4SF8FWgwoZSCgG0JxLtkk/JpAqXWQ+gMy41d9M14tA37tEIE9EYqPKQ0yDV+i2UTYcy7nYWBg4IyUGjJ5OqTMBjJyTqjVIOwtMFWG+FGQuQvPMohucJO7O2PMHC6diXFa5dmsGmnJ6TzefDxSQmhkCD1HdKHf03fyzJzHMJlU1n2z0fN70iSHdhzFZrOhqsU3d1hId5Uar1ESExMJDw8nISGBsLCwqzaPiycvsWzWWnau10stNe7YgDse6Uq5amXcXpOWnEbf0sOyN5cvRyiCBm3rMPW31wB76HLKLGTyR+j7dKr9//6I0GcQwUMK/X0ByJTZyKR38GgMlVKIUpvcJ+AbGBg4oCW+CalzXZxRADMiagGoFZEJ4yDjN3JUn3wUzIhagmKu53Ao7kI8Ayo+7LOrU1EVSlWK4oV5T1GuWmmmDJvJX8t3uC34C/p9a5Vlnts9x6LEV3tgrAiLgM0/beX1e6ei2bTsD9jhncf44f1lTPj2Sdr3a+XyusCQQB6Z8gDTR33udE4oApNZZeQ79+ccTJ2DTH4/V6usL0QGMmkSiEBEUL9Cele5J9oHkqYCrg22XmtwsGEEDQx8RNrOQOqXbs5qgBWZPB2lxExEiU+RmQchYz1SWkBaIPUzLyP4I0zO7tUTe0/7bARBl0e7cPwSo1s+D0D5mmU9GkFFVWjUof5VMYJ5oXjP7hrk3NELvN5vCtZMq8MHTLNp2KwakwdN48S+026v7/VoN56e8xiR5RzdlNUbVua9X1+lTnM9F0jKNPtK0D0yeapdYq1wEUokIvxNnGsNgp6z1ASCHyr0cQ0MrlvSfsZzQIwNMn5Baro0mTDfhAh5FCV0DCJ0rD3lyd3tXEDw/Xq5qMvwNS7BHeePXtBHcPPQq9k07n3mrgKNcSUwVoSFzLKZq/XQYg9ew6UfrWL0x8Pdnu/2YEe6DG7Hnj/2kxSbTNlqpanZ+LJgk4xN3hNutRiwbAf/Fnl4B74hAu8CpSwy5RO7xqjU3aFBgyH4ISNp3sAgD0gtBq91QJGgxYPi6OITQoUSH9l1SdMu60OAuQki5AmXPd7UtAbhpcJIuJQ/7c+sNIrLV4WqScFm03h0yoM0va1Rvvq+khiGsJDZunqX51qBVo1tq3d67Uc1qTRq7yHnTvPxgyvz9wGXtguQ+S+ggF8Tl4E0wr8Fwr8FUqbr7hkR4jXi1MDAwBmhlkF6DYBRQXGj0Zl5CKQVJ0NqbgolPkWIQJeXmcwmBjzXm0+e/irPc3ZAQLu+rUiKSSIjzcJNTWtwxyO3Ual2efb9dSj7gb5ynQoFG6eIMAxhIeOLv92WB5+8W0wupNRcoVbKU7dSi0cmvAIZq8j5UpmQgfcgwp53+YUSIgBcuF0MDAx8JOBOSHrXQwMVArojlBCnMzJ9DTJxvOvLMrdB8jQIe8Ftz/c8dQex5+JYOGUZiklB2jTyGkJpMqlElSvBi/PHZh/7dd4fPN/jTS6euJR9rG7LWjz+4TBuuqVG3gYoYozH90Lmf+3qoZrc/1oVVXhe6fmK+Ra7kXM3lgKmeiDT0OKfQYvuiRbTT4/4dFMcV2qpyNj7IWM1jk+WVkhbiIx7uEj2HA0MbnSEWsqt+1IviB2ECBnjdEZKiUx6H/f7ixJSv0HaLrk5r+/vjXx3CHP2TaPf2F50GNCGirXL+5QnmHseQaE5D8mr5vzCm/dNczCCAAe2HuGpdi9xeOcxn/u+EhiGMB+cPXKeT5/5ijFtXmBch5eZ99Zi4i8lAHDnqO4eldc1myQ9JYNz9k3m/CKEggh7A4fCudno4daYbkLG9of0n8F6CDL/QSa9g7zUTa81aCfbv5/2g102zZVijAaWPz0U3jUwMCgQwY8hQic6lygzN0FEzUeYqjpfYzui/3jM67UhL3VCi5+AzDzksoWUNireVJ7hbw3m+W+fZNaOd2h2u16tQjV5z/+zWTVutddATU/NYMZTrvOhNZuG1WLlk2cK6IotZIw8wjyyeu6vTB0+E4TIdoMKRRAQ7M+by5+nQdu6eq2uh2ehKK5rcqkmBf8gf6b89qpzEEwekZYdyKT3dBdIFn6tdXkmh9QKhxmAiIDA2yHtJ5BJeiI+VtBcq09kX+ffDqXEJwWas4GBgXukzATLDr12p6k6wuT+HiEtO/WHXZ9QAUVXj/Jvh5Q2SPsBmfql/qBs/36L4OEIv2ZIKdm75SDrv9nI8b2n+HfjPpe9KqpC026N6DyoHVtX7eTMofPs80ET+dvjMyhduZSPc88fvtoDwxDmgf1/H2J0qxdc5s3oxjCAr498RHjJMA5sO8KkAVM5f/Siy74UVaFc9TJ8sf+DQsm3k7azuhFTSiPUsmjRd4F1P56fFL1FqbnAVBul5LICzNTAwMAVUkuB9J+R1gMgAhD+ncF8s8f7g7RdQl5qi2+FtwEEiEAouQESX4KMlTgW7lYBDRE22Ul8/5fvNzF1xEwy0iyYTCpSSmxWjUYd6nPm0Dmiz8SiqIpeQMCH6UzbNIn6rX0r/J1ffLUHhms0D/ww7WcU1fWHUmqS9JR0Vs3RhW3LVS9N9KkYt31pNo0zh86x69c9hTI3oZZHmP+HUMsitWS7KLa3T2Neg3YU+8rRwMCgMJHp65GX2iATX4TUeZDyBTJ2oP6jxbq9TqilwL8Tzvm8bkfSUyySXrcbQfuxbGyARCa+gLQ5ivt3GtiWBec+Z8yMkdz5WHcGjO/D9C1vcPrg2Wz9Y83mmxEEOPbvCR/nXPQYhjAPbFu1C5vVvfGQmmT72l0AnNx3xmO9LtBXhYd3Hi/EGRY1GiLQc4kmAwODvCEt/yDjH7fnAIKuEGW/d2T+Yw9S8yBhFjrBXlnGV2OoQMYGPCfwS2TqAqejQaGB3PFwVx59/0EefG0Ax/ecIuZsXJ7UabKY+dRcEqLzl95V2BiGMA94CoLJIsv4mf29KzZomkb8xYQCz8sJEWxXqy9MiTMFzI0hoGsh9mlgYCBTsvbcXd1fbJD5D1i2uL1emCojohaBf1d8u6VLkAluxstCA+terz1tWbYt31s7mRYra+b+lq9rCxvDEOaBeq1u8lg3UFEV6reuA0CNRlWIKB3uuUMJC95dyqO3PMvx/04V2jyFEIjgh/B938AbCgT0QJSYgxAFk2QyMDDIQUqLPRLbk/fIhExf7bEfYaqMUmI6ovQWMNXG80OwhvcUcgV8UIeypFk8rlY9IqXLQuNpyWlsWbaN3+b/Uaj3RU8YhjAP9BnT06MLQAi442F9xWQym+j/rG8ae0d3n+DJWycWOKXCgcB++g/g6DLx4U8uQiBqJSL8PUT4VESp31AiprpM5jUwMCgA0oL3vXrpXU7RjlBKIEKewv1DsKrnH/t3xLMrVUP4d/A4VnpqBqGRoXnKN8yNlPDv7/s4d0y/72maxpcvz+feciN46a63eWPgNEY0HMvo1i9wcv+ZfI3hK4YhzAPNb2/CwAl9ABxWhqpJQVEVnv3yCcpUyQkHvuepO7h7TE+n9pej2fS6X/PeWlwo85QyE9KXgfUEiCi9GK8IAaUCBA8Hv/Z4/NPLZITlV0TgnYjAOxBq2UKZl4GBwWWIYFBKemkkESbflVhEQCdE6HgcRfHtxkopo3t2gkfg0VgqZfWiwC6wWW3MeeE77i03nN/m/4HU8u95SoxO4sk2E4k5F8fHo+fwzaRFpKdkOLQ5sPUwY9q8kG0wiwIjfSIfbF29iyUfrmDvloOoqkKLnrfQZ3QPajZxne9zbM9J3nnwI11NwcNv2y/AzE9JXxeogKXUUpFxw+15hVnpEfbwaLUGIvIbEP7I2EH2yFL3iKgfEeYG+Z6LgYGBd2Tyx8jkD3G/MlQRpTbqEaJ56dd6DJk6X0+jEoEI/64Q2CO7CoVM+xmZ8BxZkaL6fUIDpTwi8guX+YtSSt68bxobFmzxHMAjhM8uU0VVuG1Ie1Z98avbNqpJ4bYHOjD2s0d96jMLI4/wKhfmvZy3hkzn1+//8BpdtSRuLsHhwfkeR0t4GdLm4/pLpYJfa5TI2WhxT9nDp91/+Qi4CyXirXzPxcDAwDvZ0obW/3D8PuoPsiLsVUTQwKIZ2xYNaYuQmf+B8NPdoQHdEMLPZft/NvzH0x1f8dpvlXoVuXtMTzLSMpjx5Fyv7c3+ZmxWm8f7o9nfxNKErzD7+R6nYBTmLWaULB+Jt+CqgGB/AkJ8F6+WUgPLFmTGryAzwVQN0hbh3rjZwPI70noMMnd5aGdvm7nD57kYGBjkD6EEQeTXyJSZeg6htEeSmxsigh9DBHQsurHVkhDyiM/x5avm/KKXWPKQRla+Rlk+35OjarXl5+3sXPevx34zMzI9ajTrbaykJKQSUcpLEGI+MAxhIRJzLo7zxy4SEhFE5boVHcKKb3uwI/PfWer2WkVV6PZgR5/dotJ2Hhk3AqwHyPkz+iiIbdkGvkR/unkqNDAwKFyEEoQIHYcMGa3XERV+CHcll/KJ1BL0CFUtSa9e49cWIfJmAi6cuOTRCAJEn8kREklPzSAwJFBXnPG42tNXhJ4w+5sIDg/K03x9xTCEhcCZw+eYNfZL/lq+I9svXqlOeYZOuo9b79aL4lauU4G7RnVn6cernK5XVIWwqFAGjO/t03hSZiJjHwRbljJDPipC+HeC1C9xH7at2BUrDAwMrhRCmKGQg9Ok1JDJ0yHlc8BCdsyAUgrCJyP82/ncV4kyEV6NWqbFyqNNn6VE6XD2/LGftKR0j30qqkLn+9p63SPsPKhdntyiecGIGi0gZw6f44kWE/h75U6HzeHTB87yWt/3HP64j30wlAde7U9QmGNNv0Yd6jN98xuUrBDl26AZ68F2FM+5Rx7wa4oIug89osyVU0QAfkW2L2FgYHDlkMlTIGUGuhGE7Ig9LRoZNxJp2epzX10Gt/Ma5yA1yeEdx9i6apd3I2hSiCgVxoOTBtLr0dtc3o4UVSEwNJD7Xig6VSsjWKaAvNr3PTYv3er2w+Ef5M/C858RGJJj/NJTM9izaT+WNAtVG1SifI28PQFq8WMhfSV5N4Q5wTIAMuN3ZNxj6F+Q3B8Df4iYhRLQJo/9GxgYFCd0Ue5bcR8PoIC5CUrU9z71Z7Vm8Ez7J9j7dyyareDKVY061Gfc7EcpV60MNpuNr19dyKKpP5ORmpNCUbdFLcbNeYwqdSvmuX8javQKGMLEmCT6lR3u+QlJwLjPH6P70MLb8NbiHtVXhT7jmD4h1JyVp7TFIJNnQPpSkLl0/9SKiJCnEYGuc4kMDAyKPzLlK2TSG3hTmRKlNiDUcp77kpnIuMdIidnE+2Mr8vuK8FzdCsIiM0mM9SX2AMpULsXkVS9QqXYFp9NpyWns/GUPGakWqtavSLWGVbz36QYjavQKcPFUtFc3gWpSOV/YiaCmmpDxG76vCBUIGYsIHowQjm5ZtEv2SFPHJFZsp5EJT4JMRQT1LfCUDQwMrjxSi0PfAvESR6DFgRdDSOo8sGwkOFQy8bMTnD9lZufGUGw2wU2NU6lRL437m9cj5rwXYyghOSHFpREECAwJpPWdzTz3UcgYhrAAhEV6lxzTbBohEcHEnIvj6D/HWT33V7av+QcpoWG7utw9pidNOjXM07gi8F5kyqd5m6yMdzaCgEx6C9016tqgy6RJus6oUjTRWgYGBoWP1GIhbSlkbsd7MJ1AigCQVo9RpDL1a4fXZStlcvugnBJRNht0HxjDt+973+oJjwr12uZKYhjCAlC6cinqtqzF/r8Pu5cZkpJ5by/hk6e/cjr198qd/LlsOw+9cV+2dJsvCFMlCB2PTJqMb8V1bZD2I4Q+4zg123mwbPZ8qUyFjLXIgF56wq8WD2oFhKm6z/M1MDC4cuju0LfQPUbe4iHt2ybR3ZEiEBnYFxH8iJOKjZRWsB333JOAanU9B8eAXsT8tgeLLjcyPxhRowVk6CR7ZKWbfWMpIeGS65pbmj0fZ84L37Fnk2e5s8sRwUMRETPA7ONqUnNR7umywpuuUZEZG5DRXZEx9yDjhiGju6PF3IvM9Jwka2BgcGWRact0Lw5W9A08b9snuR7gZRqkfoeM6eNUlFd3r3peN0kNMtI9mxTVpBBVrgS9HrnNy7yuLIYhLCBNOjXk5UVPExapL/VVk6KXQcqDIrtqUljiIr/QGyKgC0rUQgjojdeinK78/0oJH0axQfrPYDvteDhzNzLmPmTmHh9na2BgUJRIKZHJH1CwOqQ20GKQia85HBVC2POK3d9nVBP8tVZXfcl9/xOCbHGRmk2qM3Xja4QZrtHiT/TZWA78fRghBPVa3+RV0qdN7+Y079GEP5dtZ/fv+0iOS2HHun+IPRfv03g2q8ae3/O2IsyNCBqITF/ioYWCCBzgfJ2pCtLUwF6A04dSMA5oQCYycTIi6ts8zdfAwKAIsB4C20nv7fy7QsZaDw1skLEeaTvvUHlGBI9AZqwj252aC4lKWmpJUi2tqdogkdJVStFjWGcq3FSO3b/tRbNp1G11E7Wb+l5F40piGMJcJMUl88Gjn7Fx0ZbsPT/VpNL1gfY8Nm0ogcHudUAvHL/EgneXsv/vw/kaWzXlv+KEXjm+D6QvwdlgqWCqDm6S40Xo08i4h3D14faOBplbkdaTCFPlvM7awMAgH0gtURfKTvsZZDKYaugPw/iyylJB2vD+fZdgPeqgciP8GkHENGT800AmOQ5FG0KtRHCVL5i80jkStGq9Sj6/t6uFYQjtpKdm8HTHVzj+3ymHwBeb1caaub9x5uA53l3/skuDFX0mhifbTiQpzrfimZejmvRSTvlFCAHhb4KpIjJlLsgk+xkTBNyBCHvebVFd4d8aImYiE18ALZqcL4g/+DUDyx94NZDaecAwhAYGRY20HkfGDtbTnrK+l7ZTyIz14H873oPnbKCWx6eHXuH84C8CukPplpD2IzJzr71iRSfw75Bn3dLixLU780Jm7Ze/cfTfEy4/H5pN49/f9/HHkr9p17eV0/mF7y0jKS7Fa06hS4T+n7se7573a3N3I1QIeQKCR0Lmv3o1CnMdxGX7gFJa9MoTMlVPsDdV0tXt/TdCxu9gOwVKhF7BOmMd0rLJ++CFLA5sYGDgjJQaMu5hXZTb4UZlD4jJWKkX1NUu4NrQCVCiIHgEpH2HR4OpRLoNxBNKBAQ/VKCdyOKGYQjtrJi93qOzQFEVVs35xaUhXD3313wZQaEIVFXh+e+fypd8kMs+hT/4NXU6LqWE1C+RyTNBxuUc92ut1zszVYHLyr1I/y6AHzkahU6jgekmUIun39/A4LrCshlsxzy30dxFguu6wiL8HYSpHFpgP0hbiFtjaL4ZGTcUqaWBuQEiaADCXLcAk9exZlr5b/MBUhJSqVCrXKHd9wqKYQjtxJyJxZPYnGbTuHgqxum4zWojJSHV+wACVFWv4xUQ5E+VBpVoelsjeozoQulKJQswc9/Q1ec/dj5h+RMZ0w9KLkaojv59oYRCyOPI5KkuetSfB0XoMw7lpgwMDIoGafkL/Zadj2ozogSEPAJ+un6wCHsRKZMhfTmOkaA2IMAu4Wi/IVr3ItO+19WpQh7RH6pliu4WzUOptp8/WcuXL88n/mJOKlfdVjfx5MyRVP9f/mXUCgPDENqJLFeCuIsJbpeEiiIoWd453UA1qYRFhZIYk+TiqpxrK9erxM2dG9K8RxOadG6Ioly5zBXNesq1EdTPgoxHJk1FRExxPh38MAIVmfwRkEZOCZcoRNhreSrhYmBgUBAKIAst4yBpEjJzH4S/gRB+iIj3kZkjkGnLQIsFpbS+SpQJuHK9yuSpSOshsGzJjieQ/h31BHy/xh6HX/jeT3z67NdOxw/8fZgn207kwz/fpMpVDKox8gjtdB/aCeHB661pkm5DXdfn6zG8M4rq/lepaZKH3hjII1Mf4Jauja6oEQQgYbz3Nuk/I2WG02EhBCJkBKL0ZkT4VEToi4iITxClNiICuhTBZA0MDFwh/JqRr9UgkL2PmP4DpOaoXAlzPZSw51Ai3kaYa4CMxWMSfvoyuxEEkJCxARk7AJm+xu0liTFJzJnourqFZtPISLMw5wXfql8UFYYhtNNtaAcq1Snv0qApqkKdFjW59Z4WLq+9Z+wdRJUv4dEYvnTX2wyr/xS/fPd7nufma4EQKTOQ1mNI6+nsa6SWbNcb9Ho10vKf27NCCUYE3qELdwd0vKYjxAwMrkn8bgWlfIG7kSlzkNLZ2MmMzXgV5nDCBkhk/DP6vcYFv83fjC3TvXHVbBpbftpGQrRrBa4rgWEI7QSGBDLlt1dpfnsTB2EGoQja39uat1a/iMns+uYfUSqcp+eMwttW2ekDZ5g8eDrz31nqdT7S8g9a3Gi08w2QF+qgRd+JTF3o+gOspaIlvYO82BIZ3Q0Z3QkZ3R2ZthQsW/GeLG/Hut+3dgYGBlce22k9b7CgaOfBdsbVCfLnfpVAmq5A5YJLp2NQTZ5NjZSS2PPx+Ri7cDAe63MRUSqc138az7ljF9i35SAIwf/a1fVaOV5KyadPf+kx2EZvp/9/9vPf0qF/a8pUKeW6XdoKZMJYdItsN3zWA3quX8YmiJiqp0sAUqYhY4eAdQ8OBs92HJnwDAT09P7G7QjhQy0xAwODq4JMekcPUimc3pyOCHNjZPqyfPZnQloPuNxcKlE6HJsPUfURpYq+kLo7rsiK8OOPP6Zq1aoEBATQokUL/v77b4/tFy5cSJ06dQgICKBhw4asWLHiSkwzm3LVytDpvlvpNLCtVyMIcGDrYY78c8LnFAohBKvm/OLynLTF6AbMSTDX/sHNWGkPe7aT8g1Y/8V51Wdvn77cpzkB4Jf/pH4DA4OiQ9piIGMdvtcg9YBSElQXtQADe4MIJP9apa6Vt9r3b+0xslxRFW7p+j9KlInI57gFp8gN4fz58xk7diwvv/wyO3bsoFGjRnTr1o2LFy+6bL9582YGDhzIsGHD2LlzJ71796Z3797s2VN8xZ2P/nMiz9ecOXzO9Ym0RWT53V0jkCk5m90y9VsPbQFUULwU3ATwa22UVjIwKK5oZ/B5i8MjAhH0gMs9fqGEICI+Bsw47hX6sm9oRQR0dnkmqlwJ+j97l+vZKAJFVXKq+FwlitwQTp06lREjRjB06FDq1avHrFmzCAoKYs6cOS7bf/DBB3Tv3p1nnnmGunXr8vrrr3PzzTfz0UcfuWyfkZFBYmKiw8+VxhyQN5eiEIKgUNeFbqV1L141AG2HkdKq7xdqZ72MZtO1RhUPK1ulAiL8XW/TNjAwuFqIQnIb+neF4GHuh/Fvgyj5MwTdB0opEOG61GLwox46VcHcBMzuPUpDJw3kwdcG4B/k73C8XLXSvLP2JWo3q5nXd1KoFOkeocViYfv27UyYMCH7mKIodOnShS1btri8ZsuWLYwdO9bhWLdu3ViyZInL9pMnT+bVV18ttDnnh6a3NUI16cnyvmCz2ujQv7Wbs2b05xNPLhDF/iPQ3RGeimGqoJRCRL2NTPkMUufb2ws9yTbofkTwAw5apHrCbLy9TbiRMG9gcLVRq4Ba2bfqEq4QJRDhr4L/bQjhef0jTFURYS9C2IsOx6VaDpn4KvqDurD/WHXlmRIzPd4nhBAMmngPfcb0YOuqXaQm6soyDW+tWyzuL0VqCKOjo7HZbJQpU8bheJkyZdi/33WE4vnz5122P3/etXTQhAkTHAxnYmIilSpd2cTMEmUi6D6sMys+W+e+Ur0dRVWo1+omGnWo7/K88G+PTP/JQw8q+N2a/WGWAT0gfSnuDacNEXA7Qi2NCHsBGfo8unK82ekDKKUGaQuQKXNyqlGrNSF4OAT2KRYfWAODGxEhBDLofkh6I3/XR3yA8G9ZsDkEDQD/LpD2A9J6GEQwIuA28Gvl8d5w8eQlfpqxmk2L/8aSZqHWLdXpdF9bMjMyWThlGSaTSkSZcFrecQtBoYEFmmN+ueajRv39/fH39/fesIh5bNpQEi4lsunHv1BNKjabLdvDKRSBEALNptGkc0MmznvK/QcnoBskTbEL57oybhoiZHj2KxEyHJm+HH2wy1ekKpjqQC71F31cZ1kkKSUyYSKkL8Jhs9x2BJk4Hqz7EGEveP9FGBgYFAki6H5k8gwHrWDPqIANEfJUgY1g9hzUkhDysM/hNLs37uX5Hm+SmZGZHUx46XQMm5dudWrrF2Bm8Iv9GDC+9xV/6C5SQ1iyZElUVeXChQsOxy9cuEDZsmVdXlO2bNk8tS8u+PmbeWnhOA5sPcy6rzcSfymBqHKRRFUoQXJcCn4BfrS6syk1GlX12I8QfhA5Fxn7AGjnyCmroq8ARdgkhF/znPammhA5Bxn/hC6ThInsiFNzE0SJj7JTLTyS8ZvdCILjHqX936lfIgNus6tbGBgYXGmEUCBsPDLhOfeN1OogE0Fq4NcUEXQ/wt+1EEhRk5qUxkt3vU1mugXNi6cMwJKeyZwXvkOzaQyaeM8VmGEORWoI/fz8uOWWW1i/fj29e/cGQNM01q9fz+OPP+7ymlatWrF+/XqefPLJ7GNr166lVSvnqg/FDSEEdZrXok7zWgXrx1QVSq2B9JXIjF9BZoCpLiKov0PF6Oz2fs2g1EZIX4e0/gf46eov5v/5PKYefao/QbpGRaZ+bxhCA4OriAjsA1o8Muld9O+qSvaDb8DdiPDXi00+8PpvfyclMTXPOfrfvrGIux7vTkhEcNFMzAVF7hodO3YsDzzwAE2bNqV58+ZMmzaNlJQUhg4dCsCQIUOoUKECkydPBmDMmDG0b9+eKVOm0LNnT+bNm8e2bdv49NNPi3qqxQoh/CGwNyKwt4/t/SCwB4Ie+RvQegDPATo2yNyXv74NDAwKDRE8FALvgrSlSNsZvT5gwB36A3QxYs+mfSiKkucSdZkWK5t+/IvuD7nWdi4KitwQ9u/fn0uXLvHSSy9x/vx5GjduzKpVq7IDYk6ePOkgQt26dWu+++47Jk6cyPPPP0+tWrVYsmQJDRo0KOqp3tgI1+kceW5jYGBQ5AglEoKHFuviuPnd51NVhfhLVzYNTkhfFZ2vERITEwkPDych4f/tnXd4FFUXh987s5vd9EYg9CYgHQRFOggIghQbvQmCYEcsoAiCBRXsYkXhw4agFBUFERAEEZQivfde0vvuzv3+mM2GkG0pQIB5nydiZu7cubOZnTP33HN+J5GwsCsn2XO1oSW/A6kf4zlpV+i1B4Mf8LDfwMDAIIdfP1/GW8M+LtCxY79+nNv6tCj0GPy1B4bo9jWAlBoyfT7auXvQTtVBO90QLeFpvfaYn4igPs4Zn7tbQgURAYGXdwHbwMDg6qVtnxaERYeiqPmbGQaFBdKs++WNRTAM4VWOlA5k4mg9ksy+HcjShXkzfkSe7452qhZa3P3IzFVe+xFqKUTU/0DJLj5swuU5V0ogor5EuPYZGBhcz2iaxvz3FjGg6kN0De3PvaWG8u5Dn5Ecn1Mdwxpk4dVfniMwJBCh+G8MR759P9agy5sSZ7hGryD7/zvExqVbcDg0at5ajXqtauXLr65pGraEbzFlTvRRAkpPwRAhoxAh3qSSQMosyFiCzPoXEHrotaV9sYlEMzAwuLJkpmcyrM6TnDyYVy/aHGDivb9f5YYGlV3b4s8k8stnv7Nm/jqS41NJjkshNTEtz7ElK8Yw/PX+tO7pSXUr//hrDwxDeAWIP5PIK73f4r8/duiBQkIvTlmxVjkm/PAU5Wu4UYa/gP3/HWL26/P584d1OGwOokra6Dr4HHcPP4c1yHuEloiajQi4qSgvx8DA4AohbVuRad+D4ygoUQhrF7C08i93uIA81e5F/lvhuYh3YIiVeedneKzfKqVkx9o97N1wgJSEVEpVLkmFGmWo1qhKrsDJosAwhMXUEGZl2nj45mc5svN4nrBiRVUIiw7l0/+meixJsvH3LTx/52Q0TUNzaZtKFAWq1E5nyg/7CQrxZAxVsN6BEvFWkV2PgYHBpUHatur1R3GAuT4ENM+RVpQaMulFSJ9NTv6v81/zTYjI6bn0g4uKhLOJ3FfKd8DcU188RMfBbYv8/PnFCJYppiz+fBmHth11m1ujOTSSzifz44dL3B6blZHFy73fxmF3XGAEAQSaJjiwPZAv3yzl9lgdB2RtKtwFGBgYXFKk4yza+d7I8/cgU95DpkxDxg9FnrsdaXNqNKdOdxpByMn/df5r24xMfOaSjO2fX/17fqyYveaSnP9ScdVrjRZXNE1j07Kt/PPrJmxZdqo3rkqLu29h+pivvR/n0Fj65UoGTeyVZ9/qeetIjktxc1T2OQW/fhXN/c+eIsDqYaJvrPUZGBRbpMxCxg8C+0HnlgtELhzHkXEDkNHzdEPoEQ0yf0faDyNMFYt0fLYs/woDa3b/CwinJqWxdNZK/vhuDSkJaVSqVY4uD3agQds6l01z1DCEl4Czx87zfJdXObj1CKpJ99X/+OESPnj0czJSM30enxKf6nb7/v8Oo5pVHDbPN1l6qsrZE2bKVslys1cFi/vimQYGBsWAjMVg3+dhpwNkCqS87yyT5h2Z8iGET0QI95XjC0K91jX9ate4UwO/2p08cJon20zg3PHz+gYJx3YfZ+XctXQa0pZRn44o8nVDdxiu0SLGlmXjmfYTObzjGKDXHnQ43478MYIApau4d28GWM3gx5Ku2eKujQBUPV/QwMCgWCLTf8b7Y9kBmSv96yxjPvJMM2efRUO5amUof6P3YD7VrNL94U4++9I0jXFdJxN/Kl7XI3U+trLrui7+YgUL3v+1sEP2C8MQFjGr563n2J6T+dbXu5A7H+zgdvutXRt7Lf4rFKh0oySmzMUzRgGYIeRx0M7pKRIGBgbFD5mIZ3Wn7DYZ6AW8/ekvRc8zzliBlHZkxlK0hNFocQ+iJb2GtO/P9xBf+20c1mD3eX5CwPg5T2IJ9J0HuHn5No7sPO71mfb9Wz+haQV/lvqLYQiLmFU/rC3U8QGBZjoMauN2X43GVanftjaK6v7PJjXoN2EUSqm1EPI0mGrrVeixAFmQMgUZ1xt5pjky5UOk9N+Pb2BgcBlQK6NHf3pCgKkiWLv7aJcbmfwG8vzdyISHIeMXyFqhl1Y7dwcy5f18DbFkuRJ8dehD2vRujtmqG2RFVajToiYfb5pCs+63+OhBZ9Pyba6lI0+cPXqe04fO5mt8BcFYIyxiCvtHGzSxNwEWz2974+eOZlzX19i5dg+qSUVqGgiBlJIHJvejTa/mSJkJWX87lWbcIBORKe+A/Rgi4tVCjdfAwKDoEEE9kRnzvLSQiKC+YL0Dad/iXE/0NWOS4NhPzrwnd5SpTHkf1HJ6iSc/CY8O4/lvnvC7vfthSfxRDb8cGX6GISxi/JYGEuSq0yWEoGbT6vR4xLtvPSwqlHf+fInNy7excs5fpCWnU656Ge4YehslK8QAIJPegCw/wpczvkfaeuerbqGBgcElxNwQAntfkBpxIQqYG0Hg3c4C3t9B2tfI1E/1Yrw+8SyoL1M+BmvRVoZPOp/MgS2HUU0q1RpVyfNsrNPiRma/vsBrH5GlwilVMabIxuQJwxAWMQ3a1mbrn77FrqNLR3H+RBwAQWFB3PlgBwZMuI8Aa4DPYxVF4ab29bipfV4DJrUkSP8O32+JoBfb/R4RbhhCA4PigBACwl4EU2Vk6nTQnB4mEQJBvREhjyFEAFLaAZteikktg0x8shBnleA4CNoJUL0HwvhDSkIqHz05k+Vf/4ndGeEeFBbIXY92ZsCE+1zu0MadGhBbuSRnjpxzG1MhhOCux7r4dJ8WBYayTBFz7vh5+lQY4bUqc0z5aGbt/4Azh89hy7JTunJJvwygP8jMP5Dxw/0/IKAFStQXRXJuAwODokNKh26gpB1MlRDCinScQqZ+DGnzgXTADNY7IGMZkIb7B0/2LM/Hoz56MYq5SqHGnJ6awagW4zjoRjRECEHrnk157psnXDPPg9uO8FTbF0lJSHW1V1S9mG/zu27hhe+eLJQhNJRlrhAlykZzx9B2Xn3fA1/shclkokzVWCrWLJdvI3hs70nWLFjPv7/9R2b6RSkZMp8RVlnr0E7fipYwJl9lmwwMDC4tQqgI0w0I8426EbQfQZ6/C9K+QzeCADbIWATY0Q3dxQ8eFbDi0wgCOI4Vesy/fraMA1uOuJ3hSSn547u/2LJqh2tb5ToVmL7tLfq/cC/lqpchMjaCuq1qMu67J3lhTuGMYH4wZoSXgKxMG28O/ZDl36zWa3EJgXRoCEVhyCt96fVM9wL1u3fjAV7q+RYnD5x2bTNbzfR6pgcDxt+LoihIxxnk2Vb45xq9EBWQiPC3EIGdCzQ+AwODS4cWd78eBIe7aG8VlFjdherY7dwmwHIbhDwJ57ujG0tPCLB0RIl8r1BjHFLzcY7uOeHR7qomhba9W/DsrEcLdR5/8dceGGuEl4AAi5mxXz1On7F3s+Lb1SSdTya2cik6DGxFVGzBavrtWr+Xx5o9j9Ry32G2DBtfTZpL/OkEnvhoOEItibR0gswluP/CeMIZQZb4FAQ0RKilCzROAwODokfaj/gIgHOAdhwRNReUCNASQC2LUEsAoIkQH2o00ouijY6maWxYuoVdf+9FURVu6lCPG2+5IVeAzdlj571OPh12TTeUxQzDEF5CKtUuz/0vF42Sy4S7puQxghey6JOl3PtkV8pVK40IfxEZt9d5Y+d3wq8h075DhD5RmOEaGBgUJT6MVE67vYige4GLNEaVSHAkeD/WS7WKg9uO8OLdUzix7xSqSUFKmDl+NjVvrc7470dTokwUAKFRIT4VtI7sPEZ6SjqBIYF+XNDlwVgjLCISziaya/1eju4+XuR5L/s2HyLuZLzPdj99pFetEEoEImouIvR5Z0J9ftDAtqEAozQwMLhk+KsX6qGdCOyK98e9QFjvdLvn/Ml4RreZwClnIV6HXXOtAe75dx/PtJtIVoauVtVxcFuf1ejTkzP45bNl3q/jMmMYwkJy6tAZJt47lZ6lh/Horc8xpOYTDKv7JKvnryuyc/z3h+cimBdyaNtR1/8LJQgRPFCPKMv3xN9wFBgYFCsCGoEI9dHIDJYW7ncF9gYRhvtHvgpKDHhIqF/4wa+kJqa5DYBx2DWO7j7Byjm6ola3hzthDvD9/Fj06VKfbS4nhiEsBKcPn+WRJmNZ++M/udyWR3YeZ+I9U1k8Y0WRnMeTrt/FhEW7cW2o5fG+SH4xAsx10ZLfRUt4Ei1xAjLz78ui7mBgYOAeISyIYG9pUQKC+iGUCPd71RKIqC/1gBpAf9l1RmSKMAjsBdJ91ZtlX//pVTtZKILl3/4JQGTJcJ+i3ADnjsf5bHM5MQxhIfji+W9IiU/JIxqbbTQ+eGQ6qUlpHo9PSUjl4NbDnDl6zut5GnXwL+H9nlFuXBv2vX4dq6MAJkj9BFI/0jUJ0+cg4wci4/ohteR89GVgYFCkBA+DoMHOX9QLfgBrd0To014PF+YaiJhliIiPwdoxx40qEyH1A+TZNmiJz+UR5U9N9PwMA5CaJDkux4jGVi7pUQ85m/CYKxPR7wnDEBaQlIRUVs5Z61U5PTMjy+UyuJAzR88xuf+73FtyKMPrP0W/iiN5pMlY/v3tP7f9xFYqSaPbvRvDirXLceMt1XJtk/Yj4FW38EKcFSqwoQfYaM6f7KrXG5EJT/jZl4GBQVEjhIIS9hxELdSl2DChfz8VfTZn3+VHHyqopSFjKcjsXEQN13c+fR4y8dlcx5S5Idbrup9QBJkZWSyctpj4M4ncPrCNzxlkpyG3+Rzr5cQwhAXk3PE4V51BT5hMaq6cP9CN4CO3jGHlnL9yHb9nw36eu+MVVs75y21f42Y/SaU65d3ui61Skvf/npx3R8ZP+KVQb24IwU+CGotnJQANsv5Ey9rouz8DAwMApJaCTJuNljQRLXkKMmuT12UGKdN19RjN/SxMaimQNAZsG4Hs6EwNMpcjz/dCZv7he0wp09ANqDtjpUHGIqRtt2tL1xG3e41Yl5rkyI5jTHv8C/qUe5A9G/ZTq1l1t7NC1aRQomwUXUfc7nOclxPDEBaQkMhgn200TRISkbvd9Ge/IvF8cl53qiaRSN4a/jEZaXnDj0MigvlowxuMmz2K2s1rULJCCW685Qaenz2K/+15n8DgvNFiUovDH3l3Ef4mIvAOcBzGZ7pFwmN6dQsDAwOvyIwlesmzpAm6GkzqDGRcL+cyQ0LutvYjaAlPI083Qp5thTzTCC1hVJ56gTLlA7DvJq8RcwAOZMJopMzwPCaZDpm/4z3HWEVm/OT6rf2AVjRoW8frrFBzaEhN4rA7+PrlH2jUvj6t7muaR8S7VtMavPPnS4RF+wr8ubwY4YEFpESZKGo3r8HOtXvQPLwtaQ6N2MoxpKdmEBhsJSkumVXfr0Xz5E6VkJaUzp8//E2HAa3z7DaZTbTu2YzWPZv5NUahlkb6VJgxgRIFjuN+9Yl2BtJ/hKD7/GtvYHAdIrM2IBMeJ6f0+gUBa7ZNyPgREPUtQgikfR/yfC+QaeQqkZSxGJm5AqK+QZhr6Wt3XgX1JchkfW0/8G73TbQUL8dnI/SEfCfmADOvLBrLlxPn8uNHv5HmJe4hm7lv/sicU9MZ9np/Ni/fhsPuoOat1alU271X60pjzAgLweBJvXV1Py+Trpd7vU2v0sOYPuYrTuw/5XVNEUA1q5zYd6poBmjt6qOBCtauCCXIqTrvX4KrTJ9T6KEZGFzLyJSPyFNrzYVDd23a/tXbJo67yAhe0E5mIBPH6O5UxymPkZ05qEjbHs+7lXB8f881hFou15YAawBDJ/dj7qnPGP35SB/HQ0ZqJv8u3kzJ8iW4fVAb7hjartgaQTAMYaFo0LYOE75/ipAIPW3BU6RUekoGc6b+yOfPfeOzT82hERweVCTjE2opRMhjHvYqIEIQIY84G5v0XCV/cJwskvEZGFyLSJkBWX/i3f1oQmYsRtr3Odf7PLXV9CAY+zYQ/qRROSDjR49rhUIEQNBd+Iwd8JBTGGANICzKP7emr2jT4oRhCAtJ8x63MPvEp4ybPYqmXRt7bCc1yeZl2yhdpZR35QUJLe+5tcjGJ4OGgqm++53BIxCm8sisjcgzLSFrtR89Cj351sDAwD0yHd/ShlKfBV60BugR+z6EWgpMNfG57q+dR8Y/iEz/0e1uEfwwKCXwZAxFyOP6uTwQGRvu35h9KMwUJwxDWAQEWMy07tmM8yfivBo5RVUIjwn1GoHVtFvjoq3InPQi2Le42aFByhtoaXORcffruUR+omsZGhgYuEWE+yFtqCFMN4Dw0/vjbCdCHsYvI4tEJo1H01L0KFTHaVe0qlBjENFzwdKBXCZAKY0IewUR4t31mZVu82vImT40R4sTRrBMEXLq0FmvRk5zaCScSfLax5ZVO0hLTicotPCCtNJ+1JlH6OWLk/wmkIX/ZZsCkNIE0oYQ5kKP0cDgWkMIBRnUVxel8BLYItN/huBBQDDgbe3PCgHN9b6tt0PoOGTyy74HItPgTFNkdpqFWh6Ch0JgH4Qai4h8D+k4D45DIALBdCNC+DE38nOipxgzwuuPzPRMTGbvfnehCNKS01FNnj/2lIRUln21qogG9Rve71oJMo78lWvKguQXkPFDjTQKAwMPiOAHwFQDr49Y+05IfAZMVb13FjwUcUFlCBE8EEx1/BzJBd9Rx1Fk0ovIpPEXzA6jEQGNEOZa/hlBoNpNVbAE+i4mXq91LT/HeOUxDGERsHLOX/QqM9ynfp7UJKmJaV4jRwWCf5ZsLhJtT10Sraj/xM5xZa1HJr9TxH0bGFwbCCUYEfU1BD+gF8t1i/M5YN+iF9BF4JI5RNV/DxyACMldxFbaj+jBMwUl/TvIyqt45S9BoYF0Gd7B4zKQYlJo2K4uFWsV3yjRizFco4XknyWbeaXPO0gffntFVahwY1mO7vaeryelZMNv/3G72pPg8CDa9WvJvaO7Urpy7sVrqaVB5mKk/TBCCQNrJ4SaW+xWmCoi8yW4nR80SP8WGfoYQhSfumIGBsUFoYQgQp9CkxLSpuN5iUIBLQERsxzSf0Q6TusFda3dEKYKeZvbthZyZCoy7VuExXs+cmpiKitm/8XxvScJDg+idc+mlK+hP2OGTu7Loe1H2Pj7VhRVQXNoek4kkrJVYxn7lado9eKJkNdYWYGkpCTCw8NJTEwkLOzSC7s+dPOz7Nt00OvaIECj2+sz5stHefHuKV6T8C9GMSlYgyy8uWIiNzSsDIBM/wmZ9IIz98iESysw8F5E2AQ9RBqnXNOZZs527s6n6i4Wu3uNU38Q0d8jzP6JghsYXI9ocYMhy710Yg4BKLH+zfJkxhJkwqO+G3pDrYwSs8Tj7t/+9wfvPvQZWRlZmEwqmibRHBptejfn6S8eIsAagMPuYM2C9fzy2e+cPHCGiJJh3D6oDe36t8Ia5F/FnEuNv/bAmBEWglOHzrB3wwHvjQT0fqYHQyf3A+Dux7vw0prd3o+5AM2ukZGayUs932TG7vcQtj+RiU+RY9gumPGlf49EIML1hXQhAiHsFWTiKHSXy4UuWVVXlIl4W48szSrouqThXTcw8E4AnpPrneQn8CzgZvRHdyG8PcKzROTfP29gyv3TXL/bbTkxBCvn/IWiCMZ+9TiqSaXVvU1pdW/TfJ1aSt2oqiY/dJAvE8ZTrBCkxPtSeQDVpGK25NzkLe+5le6PdAI8J+BfjObQOLH/NJuXb3Ouy3kKgJGQPhfpOOHaIgI7IyI/B3PdC9qZwHonIvoHFFM5ROSHEJBX0s0nIhxM1fN/nIHBdYSwtsZ7yoMKlrb+96dEOSXUCvr4FojALh73znrxO4/rf1KTLP9mNSf251/96vCOo0y5fxp3BvejU0Bv+lR4kG8nzyc91bM26uXCMISFoGSFEj6NmcPmoHSVnPU9IQQPvzuEifOfoV7rWgSFBhIU5nuNTVEV9vy7Cezb8Z7qICDj19xbLC1QouciYlYhohchSq5DiZiCUGP1HKOsDZC1wecYLj6PCB7ocsMaGBh4wNrdmVfo6VkhEcH356tLETYOArLX+PIzs3J6ggLv0c8sHc5qF3FIKTlz5Cx7N3pf6lFUhVXf/52v8W5ZtYOHGj/Lsq9XkZWh5yGeOxbHjBe+ZXTrCaQlp/vo4dJiuEYLQVh0KM173MKaBes91t8KDLXS8t7cSjFCCJp1v5lm3W8GYN+mg4xs9IzXc0kpMZv9cYUoSC3F7ZxRqLHOUksg7QeQSa86paDys0ysAg6wdIRg35qDnpAyAzL/AMcZUEuCpQ1C5K2gYWBwtSOUEIiaiYy/H1wVYSS6YVQQ4W8gcnls/OhTWCFyOmStQabP13VIhRWy1qO7TD28LKuxiMjPQAQhUz5Cpn0JmrMwuKkGMsO3WIaiCL+Et7Ox2+y81PMt7Fn2PLERUpPs/+8QsyZ8x4i3BvvdZ1FjGMJCMuyN/vz3x3ZSElNzVZUQikBKyRMfDfe5cFy5bgUiYyOIP5XgsY3UJDd3bgFMxXvenx1hquj1fNJ+CHn+Pi9BNB5QSoG5LiKoFwS0ylNixV9k2nfI5NdBpuBauxQhEPoMIqh3gfo0MCjOCHNNKLEMMn5CZv6pC1IE1IPA+7zKmXntUyhgaYmwtHRtk/YDyJRPnbVIbUCgnqdoroOwtAZLG0DTq19krSbX99++l5iwV+g/ugxfvelZ3cpuc7iiR/3hr4X/kHDGs3KV5tD4Zfoy7n+lD5bAKxNkY7hGC0npyqX4YP1kmnW7OZdfvUrdCrz84xhu69vSy9E6qkml9zM9PO5XVIWmXRtToWYNsN6BZ1eI0BfBrR29nk8mv+FB7d47IuIDlMgPEZbWhTCC85wRrynOLc6XB5miJ/qmzStQvwYGxR2hBCOCeqNETkOJ+hQR8kiBjaDHc5iqoES8hii1BVFyI6LUJpQS81DCJyGs7fQK9ek/ePAE6d/FAaNPUKmmB7EMAUFhgXm8XN7Yt+kgqg+xkfSUDI7uuXJi/saMsAgoXbkUE75/ioSziZw5co6QiGDKVI3NVx93Pd6Z04fPMu/dRagmBYddQzEpaHaNWk2r8+wsZ5WI4AcgY7GHXiQi7CWveX1Si4PM5fgvqQaggFoFCpkmIaUNmTLFe5uUKRDY1ZBvMzAoBEKoHhP5ZdrXeItilVKlxwMpvP9sYC7xD6EIkDB6+sh8pUeYLWaf6WUArw94j7dXvZSnmPnlwJgRFiERMeFUb1Q130YQ9HXDkW8P5pPNU+k6siNNutxEu74tefXX53nzj4kEhwfrajNJk/BqxHwltztOeT8+DypgRoRPLvAs0EXWetDOe2+jnXeucxgYGFwS7AfxtiQihIM298TkEf+XmqR8jTKufGZ/ufXORh5jKC7kyM7jvDnso3z1XVQYM8JiRpV6FXn43SFu9yWe/IMwZaOXoxVkykcIazsvTfwsoQKAgICWiNBR+hpHYdHii7adgcE1hrQf1iO4BWC+GWG6BDJlwgoyy+NuzQEbft/Pif15jdfxfSd5osU4Pt40hahYXxU2dKrdVIUGbevw38rtPosSrJm3ntOHzxZtBR4/MGaEVwEHtx1hbKeXWfzROOxeK6BoYN+iuz89INSyYK6P9z+9AlFfIUqu1dcyisIIAqhliradgcE1gtTi0OIeQJ7rgEwao1elP9ceLX4EUktAOo6jJb+NFvcAWvwjyLQf9MjrgmDtjLeUC0WF1Ysi3O5z2DUSzyUz/71f3e73xAtzn6TsDb49ZVJKtqzaka++iwLDEBZzDmw5zGNNn2Pjsq0EWCVS+uGe9FEVQoQ8mf1/7hsEDUKY60PGMrTzvdDOtEI7dw8y7VukLES+j7khqBU8nxeh7zc3LPg5DAyuMqSWhjzfD7LWXLwHMlciz3VDnm0HqZ/oClCZS5FJY5FnOyD9Lex7ASJ4MLozMO/j326H4wcCWL3Is+dIc2gsmbE8X+cMiwpl2BsD/Gt8BUQ/DUNYzPng0c/JyrChOTQO7LBiMnu/SxxaOKnJQTjsniNChaUpIuIDEBHOLU6le0x6ME7wSOT5Psik58G2GbRTYN+GTJqAPH+va8YppR1pP4y0H0FK3xGoQghE2ERyVPZz7QX0/YVeizQwuJrImA+O/biP4nbo3z80ctb2nc8A7Rwy7n6kFzenO4SpCiLqcxChzi0m7Hb9O3d0r5Vne1bFluXdNCSeS87XOQFqNqnmtQRdNrWb18h334XFWCMsxhzfd5Ktf+50/f7HgghGvHgCa7CGctH9dPaEme8+KMVvc2LITHuAgMAAOgxoTe8xPYitVDJP38LaHiytnEntR/UvhbU9QolCS3gK7NnuCZn7X/sBZMJYCGiATJuVE/yixELwEAga6LWumbA0h8iZyORXwb4rZ4epBiJ0LMKSP91CA4OrHZn2Az61SN3iNJIZiyGwW76OFAG3QMk/IWMxjvTNLPx4Kf+sCGXz6hC/vE7Rpf1bH7yQyFIRtO3dguXfrnYbPKOaFG7qUL9AwYaFxag+UYzZsPQ/xnTMXYm6Sfskxn9xEACT8zXm+MEARnWrRnKCiubIuYlVk0JgaCDvrH6ZijXL+XVO6TiHPNsS3zmGHr641nsQ4a/6NauTtr2gnQGlJMJcza/xGRhcK0iZBZnLkYljQfrWLXaPAtYuKBFvFngcDoeDzpY+/lfEURQGvtiTfuPu8dgmJSGV8yfiCIkMyWU0UxNTebrdJPZuPKCLjmjStVJSvnoZ3lw5iciS+Qno846/9sBwjRZjQiLz5gGt+z2MUV2rsXZxOA6n4trbT1UiOcGcywiCvrCdlpTOlMHT8vTjEdt/+Jdo7+FLk/GD30U/hbkawtLcMIIG1x0ycx3ybCtkwmOFMIIAEqTXCDqfqKrKLV1uQvHDbamaFGIrx7gKB1zMyYOneaXv29xbcggP1HmS3mWH82Sb8S7PVnB4MO+sfolRn46geuOqRJWO4IYGlXn43SFM++e1IjWC+cGYEV4hdq3fy8Jpi9m5dg8mi5mmXRvTdUQHSlbICRvWNI2BNzzC6UNn3fahqJLAYIXUJN9/wo83TaFq/Uo+28mM5ciEEX5fR15UsHRAiXyvEH0YGFy7SNse5Pm78aoJ6jcCETIaETK8UL1sW7OLJ1uP9574LqDFXU14bNoDRJaKyLP7xP5TPHrrc6QmpuZKxM8uTDBpwTM06dKoUOPML8aMsBgz+7X5PHrrc6z4djXH953i8PajzJmykCE1n2DT8pzq04qiMPTVfh770RyCxp38W1M7sOWwf4MLaEDhlo4dYN9XiOMNDK5tZOqn6F4Xf4ygtyUGZ4BbkG+hbG/8+9t/vD384zxGMNuAlaxQgqc+H8mrvzxH15EdyUh1H5X+0ZMzSUnIbQRBjzKVmmTKkA+x2wpRQ/ESYgTLXGb+/e0/Pn/uG4BcN4zm0MjKtDG+++t8fegjwqL1iK62vZuTnpLBR6NmkJGaiWpSnUUtFXo924Oat1Zn5Rxf1a/BEuhfuSShRCGt3fVItoK+rRY0v8nA4BpHSs1ZJs1fnd9wMN8Atn/JvS6vAhIR8aZen7CA/LN4E8/fOdntSofm0Bgw4T4q1CzLjOe/5cT+06599VrX4uF3h1Clni7wf/5kPOt+3ognB6OUksSzSaxbtJHmPW4p8HgvFYYhvMz88NZPKKriNmpKapLM9CyWzFjBfU/lRIF1fqAdbXs3Y/W89Zw5co7wmDBa3tOEkMhgPhk9y+c5zRYzN7X3XydUhI1DOg6AbRM5le2zq0REgvSh/CITkdKh6x0aGBhcQBZ6VQh/SQLbBggapCvO2HcCAWBthwgegjDXKfBINE3jvYen68uMbgyYEIIfP1xC4tmkPBPTbat38Xjz53nvr1eoXLciJw+c9mgEs1FMCseuoLC2NwxDeJn5b9UOr7p7UpP8t3J7LkMIEBgSSIeBuavIv/vQpyz6ZKnX8wkh6P5Ip3wJ2QolGKK+gowlyPQ54DgJSilE0D26BFTqh947kMlg3wvmG/0+p4HB9YEFlBI5NQB9oqEX2/5ZL6xdADH6Y3tOsPanDWSlZ1G5XgWadL4J1aSy46/dnDp4xuNx2bM4/ZeLRuXQyMqw8clTs3htyQsEhwf5HId0SL/aXQkMQ3i58SM2yZ/4pRP7T/HzJ0t9ph61H9CKByZ7Xmf0hBBmCLwTEXhn7h0pHyNds0Rv5C/J18DgekAIAUF9kSkf4P/Sg9TzdTNXgTcd4YtIT0nn9UEfsGb+ehRFIBQFh91BdJlInv92FGeP+RDA94Hm0NiwdAtnj52nUu3ylK1WmuP7Tnp8JglV0LzHzYU656XCCJa5zNRtWdO1CO0OoQjqt67ts5/l36xGuTirPk9n8PC796Oa8ueilPZ9aIkTdGm1M811bUNnRQjpOInvL7BFL9tkYGCQl6DBYKpG/h6/ii584SdSSibeM5W1P/4LgKZJl9pU3KkEnu34EhkpRbOWf/boOYQQDJ7Uy7MRFIJuIzu6jTYtDhiG8DJz75NdPbpGhRAEWAPoeH9bn/0knk1CUXwkrUtIjs9fjpLM+A15rhukz9FVK7SzkLkMGdcfLf5RSP/WRw8qBN6NUNzXQjMwuN4RSggi6hsI6u+7bJoLLV+VY7b/tZsNS7d4jEXQ7A42r9hGZKnC5+2FldDTEtr0as7jHw0nwGpGCIHJrKKoCkII7hzRgRFvDir0uS4Vhmv0MnNzp4YMfqk3M1+Y7SrAC3qosslsYtKCZwgv4Tv/MaZ8tM8aXyazSniM/7mU0nEKmTAKPaLtwlc7Z4Rb5hLfnagVEaFP+X1OA4NLjZQ2yFiMTPsOHMdAiUIE3uV8Ybv8RWABhBKqB6WFjkbaj0L8cNBOeDkiACz+u0X/mL0G1aR61Bx22DVW/fA3oz55kKlDPK/5ewrs069BcEODypSrVtq17c4HO9C2dzNWzP6LUwdPExYdSuuezS57WaX8YhjCK0C/5++h4W11WPBBdkK9iWbdbqbryNvd6oK6o13/Vs40DPe+CNWk0LZPCwKDrX6PS6Z9R14jmE8CeyKUUN/tDAwuA1JmIOOHQdY6XJHP2klk8nZImwVRXyNU/75zns8hCywUL0QgwlwdGTZGV5nxRPAwhOL/S21KQqrPWAOHzUHLe24F4JPR/8vlPQqNDGbEW4M5eeA0X730vZtx6/8Ondw371DDg7nzwQ5+j7U4YBjCK0StpjWo1bTgKusHthwmpny0W9UZRVUICgtiwIT78tep7V8Kp3ShIvAvYVZmbUamfq6LfmMHUy1E8ECwdvUq2m1gkB9k8lTI+sf520XVGxzHkAlPIqK/yn+/jlPI1C8gfR7IJKRSEhHUSy9hlg+DlY2wdoKw15DJk0CmoT+aHYCqG8GQR/PVX+kqpXy2CY0MxhpsoePgtrTt04J/F2/m/Ml4oktH0rhTAwIsZqSUKIrCt6/Px5Zhc+mDhseEM+qTB2nUoX6+r7U4YkisXYX8/MlS3h35qUe3RYPbavP4Rw/mcln4gxY3yG+dUE+IiA/1yhZekOk/IhOfRn9Dz3bdON/WrXcjwicbpZgMCo3UUpBnmgI+6nNG/4wwV/e/X/s+5Pm+eppQrsR4BdQKiOjZuZLcpW03Mn2Bvt6ultLdskoJSP8BmbkStCwwVwVrVzDXRWQuA8dxUCLBenuBEuZPHTrDgKoPe3TuKKpCz6e7M/TVvDM60KPSd6zdgxCCuq1qEhQayNqf/iU5LoXSVUpxc6cGmMzFfx7lrz0o/ldikIuzx87z/iPTAdwaQSEETe+8Od9GEEAENENmraPgs0ITMusfMFVDmCq6bSEdp5CJz6J/Qy98iDjPmTEPLE0hsHsBx2Bg4MS2HV9GEATY/gE/DaGUUl9Hz2MEATRwHEUmvYSIeFuv15k4Tr+nL6gIL1M/A8zkSqy3b4T0uXqN0JBHIHhEoV4GYyuVZPDE3swcPztPoRhFVShTtRQ9n85buin+TCJTh3zI+l82urYJIWh1362M+uRBgsOvzJrqpcbwQV1lLP7ce2VoiWTBtF8L1LcMaMqFX9j8Y4e0WchzHZFp89w3SZ+L9zVIBZnqWy3HwMAnfhuSfBgc239g341niTQHZPyqlzNLnuqUKnRud/2AR3UZmYBMfhmZNDFnk5TIrI1oyW+iJU3WPSrSl4GHfuPuYfT0kbkCVcwWE7cPasO7a14h9KLqNukp6YxuPZ4Nv23OPSQpWTX3b4bVG83R3cd9nvdq5JIawri4OPr160dYWBgREREMHTqUlJQUr8e0adNGr2R+wc+IEYWphnBtcXD7Ee8K8RJO7j+dL3FbKTPQEp6EuHvBzzU+z7eOLiYsk8YibVvynitrG95nnNoFRYHdjDVrI1r8Y2inG6Gdvgktbhgyc42fYza4rjDVAnwFi0kIyIf2pX07vg2nhszaBGlfUeDAs/RvkFkbkI7zyLjeyLjekDod0r5EJj6FPNMCmel7GaPTkNuYte8Dpm97i2n/vMbcU9MZPX2kS8v4QhZ/sYJje07mEc0G3RiePXqeITWf4PVB75OVcW0JZlxSQ9ivXz+2b9/O0qVL+fnnn1m1ahXDh/suFzJs2DBOnjzp+nnjjTcu5TCvKqxBFoTq/YuoqEq+kuhlwlOQ8Uv2b/4dpFTE+wNBQabOzLtZmH0cB5489jJtNjKuD2Qu1V1TMgWyViPj70em+JB9M7juEEoIBPXC82NOhYCmCNMN+ejVjF/fEcduCqeupOr3e/wQcL1QOnC9qMokZPwwpG2Pz54URaFirfJUb1TVq2tz8YzlSD+ubdnXfzJ16LX1fbtkhnDnzp0sXryY6dOn06RJE1q0aMH777/P7NmzOXHCW74MBAUFERsb6/q5VoNeCkKz7jejuXljuxDNofH+I9P9kmqTth2Q+Rv5WxdUQCbi/YHg0CWhLkJYWvs4TgVL6zxbpX0fMmkCedcW9f+XKe+41G8MDLIRoU9BwK3O37Ifd84XMbUCIjyfld0tLfH5IifCQPEdtekdh9MNuxP3blj9eyBTpxfyPDnEn0rwy8ZLTbLi2zUc3nmsyM59pblkhnDt2rVERETQuHFj17b27dujKArr1q3zeuzXX39NiRIlqFOnDmPHjiUtLc1j28zMTJKSknL9XMs07dqYCjXL+qwm/dNHv7Hgfd9rhTLjV/K/LuivyoWbL3DgnaDEeDmnhggemmerTPsG77eraqwtGuRBCAsicjoi4l3dIKrlwVwfETYJET0foZbIX39qaT2608u9qFeF8C2T6ONMoKXi/bvpXI8sosD/EuWi/Q7QUVSFVXMKF2FenLhkhvDUqVOULJk7UdVkMhEVFcWpU6c8Hte3b1+++uorVqxYwdixY/nyyy/p37+/x/aTJ08mPDzc9VO+fPkiu4biiGpSef23F/xSavhw1AzeHfEpJw+e9txISyJfwQKooJR2qlx4N0yYb8qzVYhARORMcIWEZ59bAVRE+OuIgIZ5u8vagPcabg6wbfSy3+B6RQgTwnoHStRMlJhlKNFzEEG9EUrBKiGIsEkXzDLV3P+qNZG2vXrVFrUKBQ8+k6CWxHfdwkwKX+Ve546h7fxyjQIoiiAlIX/yjcWZfBvCMWPG5Almufhn165dBR7Q8OHD6dixI3Xr1qVfv37MmjWL+fPns3//frftx44dS2Jiouvn6FH/hWmvVkqUjaZ9v1YIP7RGF33+OyNveoZ9mw+6bSJMFfDvi+S8VZRSiKiZiOB+eDegDkSwe21BYa6GiPkdEfYKWNpDQGsIHomIWYEI7OGhP38yfXLaSJmBTJuNdv5eXTz8/H3ItO+QRtFgg0IilCBE5AxE5P8gsAcEtAFzLX2nYw9k/gpp34HjgPOIAhhDEQYBTXwfq5Yrsrqftw9qTdX6lbwWBcjGYdcoXbWw7t/iQ77zCEePHs3gwYO9tqlSpQqxsbGcOZO71pXdbicuLo7Y2Fi/z9ekSRMA9u3bR9WqVfPst1gsWCwWv/u7VshWfHBo3t8YpUOSnpLBy73eZsaud/O6Pqw9IPlNPBtDAWoF3Z1kaaMn+ApntfvwKcjEp/Q2rjdXVf//4JEISyuP4xIiEILuQwT5qX5jae2M2PM0ThUsuli51BKQcQPBvgtXEpV2Gmn7D9K+gagvC6T+YWCQjRACLE0RlqbItDnIpHHOPW5yC5WyejI9mehRrH68jJmq64Yw7Ytcm08dNbP0uyhOHQ0gLNLBbf3vpEY+ZTwddgfnT8RhCjBxZOdxdv69F0VVaHR7PaYuf5H3Hp7Oitmrva4XqmaVdv1a5u/ExZh8G8KYmBhiYnx/8k2bNiUhIYENGzbQqFEjAJYvX46maS7j5g+bN28GoHTp/CeIX8vc2KSaR0Hdi9EcGsf3nuS/P7ZTv01tbJk2zBZdIV6o0RA6Bpn8Mnkyb1FBiUVEzdbbXYypGlg6QtbfzgRjE5gbI0KGICwt8jSX9iPI9Pn6Q0GJQQT28Jh4fzEiqJczMCAT999QCU6jKhNf0AsDZ2+/8F/7HmTSBETE236d18DAG1JqPiKWJWjHIPpXhFoSiRXONAbSvXds+xcS/gURDDIVKeHLqaX4+p1SZFdfE0Iw79O1NOvxBs9/8wQB1gCvXWamZzL7tQX8+OESks4nu7YLRffkTR/zFfVa1WLcnCfp9Ux3nm4/iZT4lFzpWkIIpJQ8/O6QPHmIVzOXVGLtjjvu4PTp03z88cfYbDbuv/9+GjduzDfffAPA8ePHadeuHbNmzeKWW25h//79fPPNN3Tu3Jno6Gi2bNnCqFGjKFeuHCtXrvTrnNeDxBqAw+FgULVHOXv0vM8qFKDf7PVa1+LA5kMkx6diCbLQYUArej7TndKVSyHTf0amvA+ObBeqCazdEKGjEWreFx+Z8gky5U1cM8BsN6kShYj8Xy7JKik1ZPKrusgxKjkG1wGBAxBhz/ulLyoz/0bGP4jHdRERrM9w0z2LkTsHiYhZiVCvHdeOwZVB2vYgz9/po5WCCH0GETwEAC1pIqTNxvf6Xw4/zSrPB2PcS60piqBd/1Y8M/MRj8dnZWQxpuPLbFuzy2sesmpSKH9jWab98zpJ55OZPuYr/pj9l+ulu2Lt8gx6sadLrLu44689uKSGMC4ujkceeYSffvoJRVG45557eO+99wgJ0d8kDh06ROXKlVmxYgVt2rTh6NGj9O/fn23btpGamkr58uW56667GDdunN9G7XoxhAD/Lv2P8d1ew5bpXxJ8tmBuNqpJwRpi5e2Vk6hct6IefeY4pIv+quU9ug9lxjJkwkgPZ1FBiUbELHe5UGXKB8iU9zyPK+RRv0WFpRanR5CmTAc8RxP7QkS8j7B2LPDxBsUbaduDzPgZtASEWg4CexS6yoT782xBnr/XRysVEfIYIkT/zkjHSeS5HiCT8McYOhwwoHEtzp82e2wjhOCrQx9Ssrz7KNgf3v6ZT56a5XeE6divHuO2vrrrMzk+hdOHzhIYaqVM1dirSge4WGiNRkVFuWZ/7qhUqVKuP0z58uX9nvld7xzbe5LX+r3nVgXCExe/CTrsGunJGYzr9hoVa5Zj17q9KCaVW+9sxN2Pd6FKPQ+GMPUzXCLZeXCAdgYyFkNgN6SW5mzvZVyp0yFoiF+14YQSBSIU6cu1ZHBdImUWMnEMZPxMtvdBokHKWxDyJCLEt6BHvlArAwF4T553gOlG/VmXtRaZsQjMdcC+BzQvEd1ODmwP9GoEdSTrft5A15HuX+4WfrjY74hQoQiWfbPaZQhDI0OuKTeoOwyt0auUNwZ9QHJ8il9uUW9oDo0zh8/x75LNJMenkng2iSUzVjDipqdZMnNFnvZSZjnTFLydV0Vm/aX/b9Y6kD6MlkzX1xn9RK+bWBjcp3YYXP3IpIkXqCRlK7FogIZMmYpMy1tbrzAIJRSs3fAc3algd5Ri40oTcTu7IOMHI9PnQdZq0M7pTSy3ez1HRrrvx7RQFDLT3RtjTdM4uf+036JRUpMkxyX7bngNYRjCq5ADWw6z8+89Po2g4kOK7UIu9phITTJ1yIfs+ffitBV/DK8EmS0F5af70pexzDWEkxS8eLAC1jvdrnsaXN1IxylI/wFv96hM+QApiybvLhsR9rSeqJ/ncary+/fR9LupCrZzTxAWtk9v7yp+7XSLZv6GLt3mnvJVM1FU7/e75tCoVKeC+/EJQUCg90CaXKM2KZQtQPWaqxnDEF6F7N98yK929VvX5sE33efy+cuknrklqISwgnoD3nMIpR7+DXpkqT/kR+9RRPhqoOdhATm3uPNfc11E2AT/z2Vw9ZC5HJ8vSNoJZ1qNe6T9CFrSq2hn2qCdaYoW9wAyY4XXtTWhRCKi50Lw8AvuTTO/L2zDlMfKEBF9nlvaJaN6W4gSAXh6HEeUsNOyS4LHF1tFVShVMYab2td137UQtLr3VlQfalTZOOwadwxt51fbawXDEF6FmC3+Le3e91Q3uj3UkZCIgtcQO33oLEd25S69IoIH4/2BIyFlKtr5nvrszVwfz64jVTestv+Q6fORjnM+xySC7sb7rSsh7EVE+BtgbgxqRTDfjAifioj6WhdjNrj2kOn4pZLkwUshM/9GnusCaV/qBlM7D1lrkAkPIpMmuTWGeomkzZC5HGGuAyWWI0puxhG1kU/H667KJu2TcPiKZ5Op6GuN7u5rlQdfKUWJstF5kt1Vk4I5wMRz3zyOonj+TvR8qhuKqvgW4RBw++A21G1Z08eAry0MQ3gV0rBdXUxm72oS1mALdVrcSIDFTK9nClfkdvf6fbk3BN4L1rudv3i5hWxbkPHDdOUNEUReY+hMxHfsQya9gEx8Fnm2JVriOO/11oL66RW+3RpXVU/+t3ZCBPZAif4KJWYpSvSXiMBuOWIABtcepqr4dt0roFbKs1VqKc5I6CzcibqT/jVkLMx9TNZ/yHOdkXE99Xs34RE41xzSZrLx9+0kntV1j80WmWfpwS3hr4Ca7ZJUcX23LG0pUfMTPlj/Gnc9egdBYYF6C7NK657N+GD9a9RqWsNr15XrVuTln8bmHGtS8kR/RpQMY+ir/Rg9feRVFRlaFBgV6q9CwkuE0WV4B378aInbnCAh4K7HOhMYot/0PZ/pzrnjcSycthjVpKBpEkURfkecXuxSEUKB8MlgbYtM/RJsm3EfNefsP/VDiPpWV3XJ+ImcoqTung4OSP8eqZ2HiA/dfiGFEgVR3yITRzlL1GTnJQqwtEWEv4YQxq193RHQUq/6oJ3FvUFUwdLevdB2+gLnTNGTxdLLimVLAErbTmRcf/IU2JXpyJR3iDuQIyixf3sgJl9Bn1gRltvA2gWy1oBth+4utbRBmCoDEFkSRrw1mGFTBpCWlI412II5wGfHLm5qX4/vjn/Kqrl/s3fjAcwBJhq2r0doVAgms0rFWuUwma/P780lzSO8ElwveYS2LBuT+73Lnz+sQzWpaA4HiqrisDtoP6AVT33+UJ6ahIe2H2XJjBWcOXqO8BJhlKkWyydP/s/reYQi+PboJ0SXjnS7X0oH8sytzrJMnshJKNa0ZDh3J2in8LWeI6K+cwlwS/shPVrUvhtEMMLaAaydwL4PbJvQa8s1c2qnGlyvyKz1yLgh5K4GD6781ujvEWpeiUctYTRkLMLXjFKU2oYQAWjxDzrLjLnPA9zwRwjP9dUlIRVV8vW/OwgvYUd168hRIag3irF2XeQUizxCg4KTlWlDUUSuNzS7zc7BrUewZdmpWLMsL8wZza71+1j6vz+IO51ATNlobh/chmo3VXHbZ6Xa5Xlw6sBc29b9tIHNK7a5bS8UQbt+LT0aQUA3gF6NIICCtO9HACJzJVI76aM9gIpMX4gIaIhM/RyZ/Aa6q8ih95e5BFLeRUTNQgT189qTtO9Hps0Fx2EQYYjALhDQwi81G4OrCxFwC0TPQaZ84Aye0QArBN6NCHnIS1K9wJ/1RSlt+jp25h+cPGxm699hSAl1bkmlbJUcr0iDFilElrQRf8aE5hC8/GBFJn97AGmWmHI9dRUwVUWEPFnwi84nKQmpLJmxglXfryU9JYOqDSrRdcTtPt2r1zLGjLAYIaXk9y9X8cPbP7H/v8MA1GlxI/c82ZWT+07x3ZSFF6w7mLl9YGuGvdHfa9VpX2Rl2niu8yv8t2K7a1u2nmD9NrV56acxBAZbPY9ZS0OeaYj32Z0JgvqjhD2HljAKMn7FrzQMS0dEYDdkwsMeGqigVkSUWORWgV9KiUx5G1I/JkcKzvmvuQEi8jOEX3UVDa5GpJaqa+AqUT7XhmXaD8iksV5aCBAhIJNJilOZOqo8634PA5ljPBu3TeLpd48SUUKPjFn1UzivPFiJbLd9hWoZ3PfQGdr0SCDAIrHZIgiIHAhBgy9bANfhHUd56raJJJ5NcgX/qCYFh12j51PdeOD1/tfU+mCxkFi7ElythlBKybsPfcaiT5bmkkJTVMVjvqCiKlSuU563V7/s1Vj5QtM0Ni3byuIZKzh75BxRZSLpOKgNjTs1QHXvy8l9fNwQyFqLN7koEfUtIqARWvxIyFzmx6iEHtTgOI531Q4QkZ/qlTEuQqbNRiaN93CU7kpVoj73YywGVztSS4PMxUj7MYQSAdZOuWaHUmYgz7YBLQFvlViyMuCxLtU4vMeK5shtMBRVUrZyJh8s3os1SO9j9S/hfPJiGc4cyzHEZaqE8Oi0kTTueEuRXqMv7DY7g6o9yrnjcR6fKc/87xE6DGh9Wcd1KTFco1cZf/+8gUWfLAVyS6F5S5rXHBoHth7h549+476nuhX43Iqi0KhDfRp1qF+g40XIQ8i4v8hbvQL0KM5GOUouphshcwW+Z4RSd2X6bGdCZq7MYwj1qgAfeTnOAVl/Im27Eebr1yV0PSDT5yGTJjmDYUxIHJD8KjJoICL0WYRQ9fzYyM+RcYOdGqDZ93G2JwFAsmJ+FAd3WnHnRtUcgqP7LSydG0nXQecBaNE5kWadEtn5bxBxZ82UiLVRs+0klKDLawQB1v74L2eOeE5PEopgzpSFtO/f6pqaFfqDsUhSTFg4bbFfBTEvRmqSnz5ecglG5B67zc7SL1fyRItx9Cz9AENqPcHsN4+Srr6GXmsN9Pcr50zSfDMiMif6UwT1zMfZ/FQAkTY3m7Y4FWi8oUDmH/kYj8HVhsz4TdcedeUO2tGNnAZpM5HJU1xthbk2IuY3ROjTYG6gv7SZanCh0fttTiTelpYFsGR27ioRigK1b0mjZZdEajZKRwQ0KJqL84KUkq1/7mThtMUs/mI5cafi2bR8G6qXtCupSQ5tO3pNVZ73F2NGWEzYt+lggXVDvb3lFSVZGVk8f+dkNi/f5nLfxp9OZMYL37JwWgRvr5xPbOn1SPs+EFaEpQMiIPcsU6ilIWwSMukF9MeGu2t2N7P0hB1hdqOokey52kUOCr7crkWFlFmQtUFfs1IrI8x+Ku4YFBgpJTL5bbzeT2mzkMHDXPU2hRIJwQ8ggh8AQIt/BOw7Xc3jzpiRmufZkpSC+LOeHqsqWFpe8sjmvRsPMLn/uxzddQIhdPlERVUoV720X18rb2WarlUMQ1hMCLD6nw90MYUJlskPM1+YzX9/6EE1F35Zsg3ii/d+yMcbp6D4cKuIoJ6gltOrTmStASQoJSGgA2R8i98zQYSeqG/NXQ9OOs6AbY0fx9vBVNvPc+mlfchahdSyQAkEFISwQEBzhKm8+2OkhPRvkMnvgYzP2W6qhwh/CWG+vhQ8LiuO/fqP90aQuRSCervfLazkRCtDqXJZnDocgObBGApFULKciZxZpMz5f7UCImxy/q4hnxzbc4LRbSa4BLizI0A0h6YrRHmxcUIISlctRWjU9ae8ZBjCYkKLu5qw8MPFaPkoqwT6m16HAa0u0ahyyEjL5OdPlnp8W9QcGgf+O8yOtXuo3cz3mpuwNENYmiGlDXAghFV/g8/wXLYrN7ryhoh4P2/5Jtt/+PXqK8LB4jswQGqJyIQnIetPLp5d6P8nkJbbEeGT80b/pX6GTJmat1P7NmRcb4j63pgdXio0X2k9AAponistCGs7ZMaPrt879Ylj05+hHttLTdJ5xIOIsHPItDngOAVqDCLwPrb+W4f5789gy8odCAEN29fl7sfvpGaTovv7fzt5PlkZWe69S87b9uK6pK7dUnLvqDuvu/VBMNYIrxiZ6Zn8OW8diz5dyj+LN9F15O2YTKpvLcALUFSFoNBA7h7lq0J24Tm84xjpKRk+x7NttS5oLKXUv5CajwRlYdYDFdDfSPWgGl+3ZQBYeyCiFyAsLdzs9/O2DhrkNu3iQqR0IOMfgOyyUm4NrITMpcj4B3NVNpBaHDLlHQ89ayCzkClv+TfWawRp24ZMeR8t+U1k+i+6y7gg/WhxyPSf9UAYmwcRbbUcvnMDHeDNVWlpr2vVOte8W3RJoO6tKShK3vtAURVq3lqNtn3aIoL6opRYgFLqb5QSP/HDJ5GMbjuZtT/+Q9L5ZBLPJfPn93/zWLPnWPTpUr+u2RcOu4Pl3672qhilqAqqquSKR8j+//YDWtHlwQ5FMparDWNGeAVY8MGvzBj3LWlJOaWHImMj6D32LuZO/Yn0lHSXgK7m0AgrEUaFG8uwbfUuhCIQQqA5NMpULcX4uaM9VqUuShR/DLSUOGx2vn75B378aAlxJ+NRzSot77mVPmPuokq9ij67EMFDvOQNKiACETGr9DpwnghoiH5re1M6FoggX5XF9WALfYbpCw1s/+h15izOGXr6IrxXIHdA5nKkFqfLxgFS2p116szO/Ldr4+1cagnI+MfA9jc5BXPtkBQJEe8hLE3860dmIZNegfS5XPj3leYGiPApCFPOPSbUUsiA1s6ZvLu/g3B6Bdo6+5Zg24BMX6D/DZSSiMC7IXIGxA8Fx0FMZpWXvzrMpxNjWTI7ErtN/56azCodBrZmxFuDCbDkXubYuW4vnzw1CyCXkcr+/3dGfkqtZjWo7KGMkr9kpGZgz/Kl7g1N7mxE+epl+GPOX2SmZVK5bgW6PdSJZt1vvmbut/xi5BFeZha8/yvTHv8i7w4BAsHz340i8UwSO9buRiiChrfVpXXPplgCLRzZdZx/F2/GlmWnxs1Vqd+m9mW7cbMybfQuM4zkeO8RZeVrlOHY3pO5XC+qSUEoCq/8PJab2tfzeS4t+R1dnzRX6LoCWBBRn+nqIb76SHzeS206Bax3oES87fF4mbEUmfqZU0fVX1SwdkGJmOq8jqmQ+gXeDTKI6EVgqgipnyLTvgItTt9huhERPAIR2DkfYyh+SKkh43qBbRt5DZICmBDR8xDm6j76kciEhzyUW1JBCUdEL0SopXKOsR9Enr/PWd3hwnMrgNRd69bbdQObMEpfL7xYfMHaBcImI7LWIDNXgMxEmGuTlN6BPf+eQUqocXNVwku4f968NuA9/vhujceZmmpS6PxAex77cJjX6/eFw+HgrqjBpCd79twIRdD72R4MeaVvoc51tWDkERZD0lMz+OJ5D2tgzjX1WRO+Y/q2t+n2UMc8TSrcWJYKN5a9tIP0QIDFzF2PdeHLSXPdlqNRTQoRMeEc33cqz/qDw64hFMnLvd9m9vFP87wxX4wS+gTS0hyZ+jXYt6C7QjsggvrqUad+IEKfR9oPg209+kNPy/nXXBcR9pLHY2Xq9Ask3fKDQy/dkz0GpQTSZ+CPQIpQiH8AstaR6wFv341MfAIcRxAhI/I5lmJE1hovs2oNcCBTP0NETPHQxoltgxcxBgdoicjUGYiwMa6twlQZor/X/54uyTXAVAcROgphaQ6ATHrtgr4duf/N+AXU0rperjWnTl94MNzcyff3ccuqnV7dlQ67xpZVO3z2Y7fZSY5PJTgskABrXqUcVVXpdP9tLJy22GMEutQkh3cew2F35NEivp4x1ggvI+sXbfS6zial5MjO4+z/79DlG1Q+6Pv83bS8R3dhZVekyJ6RxlYqSXJCitcvYHJcCqvnrfPvZObGHD05mm07P+BM6iyU0NF+G0H9hEm62ytXioYZAvsgor7xKGkl7fudRhD8j17NRnWuSzmxdvHRXtE1T7OW5TWC+mj0/6a8hbQfyOdYnD3ILGTaXLRzd6Odbox29ja05Hf9qvtYVMiMX/FcjxLAARm/eC1+CyDTF/ruJ/37PFuFqRJK5IeIkn8houcjSixHKfF9jhHU4iF9Np7/3hJSv0JqKV7H5wl/CuJ6yyE+dyKO9x6eTo+IQfSMfYBuYQN4pe/bHN5xNE/bPmPvIio2wuvS6F8L/2HGuG/9Gfp1g2EILyPxZxL9cmUmnEm6DKPJP6pJZdx3T/LqL89xa9fGVKxdnrqtavLkZyPoNLQdWel5E9svxGRW2b/5kM/zrP91E8Prj+aBOk8yus0EBlR5mNFtJ7Bv80G/xikdZ5Dn74Wsi11omZD+LaTO9Hxs2nd4f9h6wwGB3fRADulAqDEQ/KCHtk6XYOgoZOpXPvpV9QjEfCJlBjJuKDLpebBv118OHMcg9SPk+Tv1fM/LgZaC75cKG3lKGuXp5xze11wBmZQrYOlChBKlJ82byuXekbkWX+5ryICsf/RTaAnI1C/QEh5HSxiFTPseKdM9Hnlzp4YoXoyhoircckdDt/vOHDnLw42fZdFnS10pEQ67xp/f/83Dt4xl1/q9udpHlorg1V+f9/6ckfoSTVqy5zFfbxiu0ctITLlon2+9ADHloy/DaAqGEIKbOzXk5k45X9wT+09x/42P+zxWSukzX/LPeet46b4382zftnoXTzQfxzurX+aGhpW9nydlmtNF6f6hKVPehMAeuqG6GPtOj8f5RCkNcf2RSBAhyMBeEDxcTw1J/RgufFiqFfR0C3MdpOMQ3tM9HHq5qXwik9/VA3j03y7Yo+luxPiHocTiS7/ObKoEmTm5eG5RSnkVxpb2o7oggS+UqAJUFfFhgF1kITNXIuMfBTLJnnbJjEWQ8iZEfo4w18pzVPdHOvHLZ0vd5vULoc8Yu47Ul0I0TWPj71tZNXct6Snp7N14kPgziW6XG6TMYnL/95i5+71cf8Nju0/4TIrPTM9iy8od3HpnIz+v/drGMISXkZvvaEhoVAjJce5dLIoiuOGmKlSsWc7t/iuFlJJtq3ex/79DWAIDuPmOhpQokyMj9dNHv/nVj8Ou0bRbY4/77TY77478VDckF32PNYeGLcvOtMe/4O1VXtb3ZBakz8OnMUtfACFughNEMPlTtkFP6pcZoJ3OOU6mQNoMfd0pejYiaKAeUaql6oEx5ptyHl7C6gzm8IQCF+dKekBqcXqx5PS5oJ3x0tIBjoO6S9Zyq199FxQReC8y9RMvLRSwdkJLHA8ZS4AMMFVHBPUHa1eQyci4vk4NUG+oEJgfCT8nZn9EFQSSIIgfQY5M2wX3iJaAjLsfYpYilNxBGRVrluP5b0fxSt93kJp0LR8oioJqVpnww1OUqhhDUlwy47pMZue6va4C2t4MmuaQnNh3ii0rd1C/Tc412DL9M+xZGZdHVelqwDCEl5EAi5lH3hvC5P555b+EIlBUhYfeuf8KjMwz+zYfZHK/dzmy87irPJNQBLcPasNj0x4gwBrAllU7/JKHq9+2NtUbVfW4f/2vm1xlptyhOTS2rd7Fif2nKFM1b3FVvVEc+tu6NxSk45jbZRRh6YDMXO7lWBUst0HoGITjuP4ojH8MSCev8dTAcRSZNAUR/jLCmjcACgDLHZAxH8/GW0NYO3m9IgDpOI4839tLhXY312Lb5JchlFKC46hu4NWyucpXSZkFGb8hs9YDEhHQWK/uICwAuqRYyChnzuTFLxkKqOUh7RuyA2cAsG1FJj4NGct1Q6WdwfvLiaKnOwQP9uO6cyNMNyDNjZ0Fnt39DfRKJWT+7hyju3E4QCZA+nwIHpRnb8t7buV/e97n50+W8t8f2xFCrxjfZXh7SpTVPUCT7p3K7n91JRxvwTW5xi4Eh7YfzWUIqzao5NexVer71+56wDCEl5nb+rbEbDHz6TNfcupgzht7lXoVeeT9oX6pslwuTuw/xeg2E8hI1Q1LtltXapLf/vcHyfEpvPjD036JAKhmlfFzR3ttc+rgGY+qF7naHTrr2RCKEHzP6CQoEe53BXaGlPecD96LH4oCUPVoQ1N5MJWH9F+QJHg5lwMyfkBmzEMGtESEDM+T/iFChjjVS5xi0LnQay5iae/lHM6rSnjGuY7mb5CPxJ8wAZnxGzLlPbDvcW4xIa2ddXFqLU4XHNDOkv04kenfQfJkiPzMpQMrQkaAWhqZ8qE+EwV99m29yzmDz55lZeO8hszFerSojxm6JITNm8bxz28/ITVJnZY1adatsd+RkSL8NWRcH+eL1EVpFkoMIvwV5Pm7sWVp/LsijPizJqJK2mnUJhlzQPbYJDLzd4QbQwhQqmIMQ191n7bwz+JN/PeH78jRi5FSYgmy5NpWsVZ56rS4kR1r97h9QVVNCnVb1aJctXwEn13jGIbwCtDynltpftct7P5nP4lnkyhZoYRfyeaXm9mvzSczLdPtl0lqkr8W/MPuf/bRqH099m444LVuYtvezQmL0pPgj+w6zu9friThTBIx5aLpMKg1sZVKEhYd6pfgb1i0Zy1EoYQgLbc5q0p4mmE5EFb3ajxCBELUl8j4IeA4gv4Vkc6+TKBWRCZNBEsbpLU7ZCzFP1eqhKw1yLg/IexVRNA9Oec03QCR05EJj4JMJOdradddhJGfIIT3tVVp23vBeqC/aGBp5r3ftO8uEEjPxg4Zi5BZa0HLBFJztru6TtBLGpX4xZXXJwK7g7Wbs8ZkJqhlIX0BMj0Nr2hnfV7JycN2xtzxqau6wrx3F1GibBQv/TSGGxp4X1MG56w1egEybSakzdVndyIagu5DBA9GKFH89l0An0yoRXJC9j0hCIu0M/zFE3S4z6kjK72rL2WkZZKSkEpYVIgrBeL7t37i06e/9DlGd6gmhSad8wbaPD3jYR5vPo6k88m5vpeKqhAeE87o6SMLdL5rFSOh3sAtmqbRNaQ/WRme1xtUk0rXEbfT85nuDLzhYexZntflPvz3darUq8g7Iz9l8efLnSHluqtV0zR6Pd2d3mPvolfpYZ7PKaBstdLM2Pmu1wAPaduOPN8T3XhdbJyFM+ndu7SZlHbI/AOZ+SfY9zpnJRdXy8jnWqILFRGzAqHmntVKmQEZvyJt2wCzXmMxoIlfwSwyfZ5ebigfY8BcHyV6tuc+tUTkmeZ4rtDh6/oVCB6JEuo5kEpLfE53JxY0QAnQNIg/a+K32VH8+k0Up4/qMyRFVQgOC2T69reJio3MV59Sylyf++9freL1ge/jSvjNaQkInv3gMLfdnQxBfVHCXsjT3+EdR/nype9Z/cPfOOwaZouJdv1aUbluBT4aNTPf1wz6csqdD3bgsWnuE/HPnYjj+6k/snjGClIT0wiOCOKOIe2476mu+f48rlaMCvWGISwU6akZdAsd4LWNogha9WzGmC8fZVC1Rzl9yP2bu8ms8vHmqSz+Yjk/vPWzx8jZ4W8MICvTxswXPD+cJ/zwFM27lYfM1YANTHXAXC+PsZCZ65CJTzkDWFR0AyYg8B5E2ASECEDatiBTZ0DmSnTNyXqI4IFgae/qT2Zt1lVRCmTwPKEgQh5GhDxaZD3K9B/16/WJ03ipVRBRX7oiZ3V5sU3OqFmLLhOX8Rsy+SUKde1qFZSYxR53a4kvOBWAfEuDeUPTQGogFPj85dJ8/7FefV5RBP3G3cvAFwsQROPEYXfQp/yDxJ/2JOItiSpp56t/d2CK/UWf4V/A7n/2Mbrti9iybLlE9RVVIKXzs/fzI1ZUBSH0NcR2/Voy+vORmAN8eAukxG6zYzKbrjsJNUNZxqBQWIMsBIcHkZro2W0lFEHJ8iX45bPfPRpBAE2TfPr0LDb8tsVr+si3r83n22OfgISvX/0BW4YNRVXQHBoh4ZKHX02kWfPRyLPZa6vOh7qpJkS8jTBVyRmbpQnE/AGZq/RSPCIILLe5ZmEyfSEy8RkuLLGD7R9kwjoIGgShz+nBQakzcrcpEiTStsunHHS+CLiVHAUdTwgwN0EE3QXWzq5gFmnbhUwYDY695MzyFFCrUOhr95JfByAsLfQ1xUKiKLiWO4eNP8mpowGsXhSBpklWzF5dKEP43x/bvRhBAEHcGTNbtwzjpnK5jaCUktcHvY8t05Zn6UBz+P+CoSiCG5tUo0LNckTEhHFbv5Z+a5MKIXway+sdwxAauEUIQZdh7fn+7Z89rv057BqdhrRlVMu8rqAL0Rwa63/Z5POcyXEp7Fy7h37j7qH7I51Y8/0PJBybQamyqdzaIZEAq7zoOe98kNj3IM/3gRI/5tKZFEIFa1ugba7zSMdxpxsxe+3PNVL9n7T/QUATsLaHrFUUrREEXVjW4rtZfnpUSyKtPSBjAR6NoVIBEfpIrmAdaT/iTE3INljZD2fNWcuvMDNhFcw3em9iuU1X43GcpKg+Z80BfR47zepFEQA+q6b4IuGMP+WcIDEp73rr9jW7OLrrRKHOj4CqDSrz2pJxBIYEem2qaRobfvuPzSu2g9SDhm7p3BBVNeTUvGEYQgOP3Pd0N/6Y8xfnT8S5Dee+Z9Sd2LPsJJ7zXM8tv2Sm6RGqweEmOnSd5gwe8RUF6dAVRVJnIsKe9XkOXaXF+9qWTJuFsLb349wFQUNYbivyXkX4BKR2ylkyys36nXYMGdcfQp5ChAwH0Isjy3TcG6HCuoMdiCDv4s5CmCHyc2TcQKcbu6DrrjkoKtxQN4PIGBuJcRYq1nZfNNlfSpTzT+DCnRDG4R3HCnVugLa9mjPqsxEEBlu9tju25wTjur7G8b0nXUFDc6b+SKlKMbz045hCV7e4ljEk1gw8EhETzntrX6Vpt5tzpUiERYcyfMpAHpw6kINbjxTpOStkiwlk/IJe0d1fQ+RwhuH7gW2Tj341yNqs/6+5PgWXXHOH0GdA1tuLsE9nzyIQEfkFhL2Cx1w3QKZMRWb9o7up0xfgfSZWCAduYC8I8F00WpgqI0osgeCHgaKbKZsD9OT1biM95G/6SZ0WN1KqUozH9TUhBKWrlHKb+mT1Yby8IRRBeEwYz/zvEZ9GMCUhldFtX+TkgdMAOGwOHDb973r26Hmevu1FEs76N7O9HjFmhAZeiS4dyYTvn+L8yXgO7zhGgNVMjZurutYcLs5hKiiKqlC/TW1KV9FdmzLrX3zXFLwI6e8X3Y/1EmfBXhE0GJn1t/9j8ImKiJzpVU7MF9K2G+z7QQSC5VY95cOJEArSvpfcJazyjkGmfomIqAv4chsKUMqAdkL/fxT8+ptYuyHCJvkfnKHFQdos/JM78z1rTIpXOX/GTNvezb2qGfmDoig8+sEDvNDtNYQz0tk1EiFAwKMfDHV7rTd3aoApwOS1TuCFNUZd51QVFEUw9qvHMJl9P6aXzFhB/KkEt2vwmkMjKS6FRZ/+Tr/n73FztIFhCA38Irp0JNGl84ZcN7itDpbAAJcgcEFQTQohEcE88bHurjt58DQ/vXuO7X9VRlE1GrVJ5o6+cUTG+HgAKyX9Op+wtEJmrcbzw1R1FWvF0haCH4DU6Xg3Ln6iltVz1gqAtO1BJj7nLE3lRARD8HAIfjBHYzNrvY9xOpw5hxYQYT6ky4SuEhPUFzJ/Q2qpkPErOA7g1Rhl/Yc+6/ZvNi3TZoBM8zHubMJA2J3t847B4YDl88sz7LXB9HjsDleRa9CDV7as3MG6RRuwZdqp2rAybXo1w+rjha5J55t4ZdFzfDRqRq41v/I3lmHEW4O5uWMD9yONDqXHI5344e1FHgPFBr3Yi8RzSSz+YjnpKRkIRXDrnY3o+/w91GjsWYnpQlbMXu01EE1qkhXfrjYMoQcMQ2hQKILDgrj7iS58+9r8Ai3tmCwmOg5sQ9/n76ZkhRiWff0nbwz+AJBojiBAsv2fYGa/V5KXvjxI/WaeNDkVRFAf/04aeBekvK/Lhbl1kWouqS4hBIQ8DeabkWlfOuvqqRDQGkxlIWMROA47j7Oiy7t5MbDmgs1OpP0QMq638+F/4Y5UZMrboCVeUIfPH+PjbKOUAIc3Q+hABN3jVNIZqmdSZizC5x9bO4w8dzsyoDmIQETArWBppQcwuSN9If4ZQQEB9RHB9yPjh5NLlg2QUqApdejx7CwUNbc+a9ypeF7o9jp7/t2PalIRAuw2Bx8/OZNx3z1J49vrez3zzR0b0Hj7O+zdeIC4kwlEl4nkhoaVvc569248QFJcCsERQaTEp+pSioqiFxnWJH3G3kXf5+9GCMHwKQNIjkvBGmL16Qq9mNRE35UkUpN8CBdcxxiG0KDQDJrUi8Tzyfzy6e96bhT6G6i3Z6VQBLWb1eCN38e73Kz7Nh3k9UHvX6QuI5AaZGUqvDCgMi/OOERGmkJECTs33pSmh82jgloBgvr7NV6hhEHUF8i4ISCTyRmonuSvV4Wol9NeCLC2RVjb5ulLhjzu0vaUjlMQ5y1M34EI9m+Mec6T8r4zqMXD2mbaF2jmGghrdz0H0L7dc1tUfe3OtsE5s/NB1ga4MDdOjXUafx/rt46jzjp/Jn3Gp1aEyE/1YrkXI/0NuNIVeoj8DKK+guQ3wbYRsINaFiWoPwFB/V2pIa6h2B2M6fgyh3cec/2eTVpyOi90e41p61/zqfAkhPCql3shs1+bz+fPfYNqUlzBZlKToMIdQ26j7/P3ULJ8CVd7k9lEZKkIv/q+mIq1y3HywCmPGqWKqlCxVuGChq5ljGAZg0KjqiqjPn6Q6dvfpudT3WnXryWhkSE+4yweeK1/rvymee8uQvGgWyo1QWa6wtjeVZk4pDKjulVjcNMbWf1LJFjvQER/i1BC/R6zMNdDxCxHhD4HAS31PLzg4YiY3xGBPfzvRwiEWhKhxqIENECEZketXjjzca43hj6H8KvSQW6kTNfdkb5mTInPIs91goDmeH/HlYjggcj0efgze5RJLyO1HEMlAu8jf9G0Tpe2Q49avbAvF0p+dC8dyOS3IX4w2Nbn9K+UBUuHPEYQYN2ijRzceiRXQns2UpNITWPO1IX5GIN31v+6ic+f+0Yf7UXnlA6NlXPXEhLhX0URf+g64navQt2aQ6PriKIP0LpWMAyhQZFRsWY5hk7ux229W+ilprzMCKPLRFKrafVc29b/uslv1X2A08csvPRABVYtuQehRPk+4CKEEoYIHoQS9TlK1CyU0CcRatl895Orz+ChiMhZYGmtr9+JELC0RUR9VaDKCABoifgdNOQ4CglPwAXiAnkIe0P/N3M1/rkjsyDj55xfrR3B3JD8R5Q6dFHw9Pl59oig3vj3OBL6umbaRfUdAWwbkHE99Zn5Rfw572+vVeAddo1Vc//2q16oP8x980eP59M0SUpCKr9/uapIzgV6JYuO9+f1WAAgoE2vZoUOGrqWMQyhQZGzYekWVx6TJ84diyP+dEKubb5LOV304HU+sz547AvstsJJdBUlwnIrSuTHKKU2oZTaiBL5YZ6KE/nrMAz/UzgcIM+AfbenziB9LvJ8N2fenj+oSMfRnB6EWU/TCGjn5/G5kRmL8m4MGuB0v/p6JEkvwT0OveBw6md59qSnZPi8v2yZNux2B2sWrGfsHa8woMrDPNT4Gb5/6ydSErzVi7xohM6AHG/nE0KwecVWv/v0hRCCJz8bwUPv3E/JCjnu1hJloxj++gDGfPVYrqAhg9wYa4QGRY4/tQkhr8uodvMa/JPPWSFA4tkkNvz2H026XJvVtoUShLTe4Z971IWnmY0E2zofbS5GQ4jcOo1CCYbIt5Bnbs0bwONrXFreNBehBEPUN8jkN5zao+5KYKGvBTuO4tk164D075Ghz+UKzKlwY1nWOuX63CIgtlJJXun9Nmvmr3dJ+506BPs2HeKHdxbx1h8TXek9F6NpGpuXb2PNgvVkpGb6rqIioahVnhVF4a7HOtP9kU6cPXoeKSUx5aMNVRk/MF4RDIqcmrdWdyXzeiK6TCRRpSNybbv78S75NoLZnD0W53X/if2nWPrlSpZ9/Sdnj50v0DmuJCLkUb2S/RX5ykqwds6zVQirnjSf3zE5DiOzNubtTwlDCX8ZUXI9hE4C8824ZsJqFUTYi2Cq68dw0/O4Te94oB2a5n2GVq56Gf5aoJeyutBgSimJPxXPhLvecOs6jT+dwCO3jOHZ219i0ae/s+zrVX65WOs09yE/V0AURaFUxRhiK5U0jKCfGIbQoMhpcfctRJQM97hGIoTgrse65PmSNrytrkscWTHl79aMLBXudnv86QSe6/wKg6o9yhuDPuC1Ae/Rr9JIXu79FqmJ/ru7rjTCVBkR9Y0uMH7Zkcjz3dASxyHtuaNMRchjYKpN/tYLNWT8MPdBM4BQQlGCe6NEf40otQNRagdKzK96eoxa0o9zWXWxgQsoXbkUw98Y6Ow/9/FCEdRqWoPd/+zzaMAcdo2DW4+w9c+dua9E03iu86sc2HLY2c7h82VOKAJLYAC3D27j4zoMLheGITQocswBZl768VksQQG5jGF2RGjT7o2590n3hXEHjL+P15eO55Y7GhISGYyi+n7AqiaVmzs1yLM9LTmdUa3Gs/H3Lbm2S03y5w/rGNPp5WK1tugLYa6JUmI+hPjWUy3kmfJukmmQ/gPyXA9k1oaclkowIvorRMhTetQm4Hs9U+o5nG6CZvKMRAiEyFnBEYHd8e4eViHwbrf5iveN7sr475/ihgaVXNvCS4TSf9y9PPzu/XqAl7eeTQpbVuauIr9h6Rb2bTrotydDURVMASZenP+0HlltUCww1ggNLgk33lKN6VvfYsH7v7Ji9hrSUzOoWLMc3R7qRJvezby6bG5qV5eb2ukusF5lhxF3MsHrucKic6p9X8jiz5dzYt8pj7JTu9btY/W8dbTp1Tx/F+cnUkvQK5YrUYWSVLsYEXw/0rYFMhfjdp1PRDoDSgqogqOUB+2om74dgEQmPAoxK3XBbHSNU0KGIUKGIaWmtzldx+f5ZdZfev3HfCDMNZHWu5xVNi4enwoiFBHivlAtQMu7m9Dy7iYknE3ElmknKjYC1aRyaPtRj8d4468F61FNaq68RHeoJpXIUuG07tmMbg91pEzVWK/tDS4vhiE0uGSUrBDD8CkDGT4lfw+7CwmPCSPuVILXuI6kuBQm3TeV6o1voMPA1i4puMUzliO9HKgogiUz/yhyQygz1yBTpoHtX32DCEEG9kKEPJQn11FKCVl/64o1wgQBLRHmvOLNFyKEAhFvQVpdZOpM0Jz1GZUyiOAhuppLfD9nUMqFD2gFRARIT+upQq/bqJ3D8weu6fszl+tpFO7GBkifdQylXkk3n0gpyTC9gCkgElPWV8AF0n7mOojw1xFqWTRNw5ZpI8Aa4Fb5JSImtyu9bLVYwqJDSTrvObHfYdeo2yq3azozPcuv9UApJZnpWdz9eGdKVojx2d7g8mK4Rg2KNbcPbIPwsSbksDn484d1fPH8N/StMILZr+kuN18GVNMk5094D7LJLzJ9ATJ+iFPtJHtjCqTNQMb1ybUuJm17kOc6IuMHIVPeRSZPRZ7vihY3CKl5H5cQKiL4AUTMSkSJ5YiYFbpAQPBAFHNVRPRCCL5fnx0iQCmFCHkESvwK1u7OXi78+qtAAISOA3xFgZqQtm3em5gb4t1FqiAC/I/yzcq0MWfKQvpVGkn3sPu5s+RGxg/rzY6dzyPCpyKif0SJnsvxA1amDv2QriH9uTO4P/eWHMoXz39Dcrx3t6c5wMxdj3X2KJemmhQq161AvVa1cm2vVLu8X4ZQc2ikJqUx982f/L5mg8uHkEWVQVpMSEpKIjw8nMTERMLCwnwfYFCsSU1MZcRNz3DmyNl8VfQePX0kC6ctZv/mgx7D1BVV4eZODXj5p7FFMlapJSLPNCfXLCUXKgQPQQl9Guk4hTzX1al36iZVQCkBYa8iLC1zxLSLCCk1yFyCTP1SzzcUVrB2RAQNBBTkufY+elD12W3Io57PkfE7MuEhD3sFEICI+QOh+q71l5Vp47k7XmHLqh250hIUVdfsfO7rx2nTqzm71u/l6XYTsWXacq3ZKapC6SqleHfNy4SX8PxMcNgdvNTrrVzpEwgQCKLLRrlNn0g4m0ifcg9i9xElnU1gqJWFCbP8r8phUCj8tQfGjNCgWBMcHsxbKycRVTp/yjFfTppLp/u9F7/VHBqdhhRhgdz0hXgvI+SAtNlIadMFvN0aQdBz7c5CwjDkuQ5I2w43bQqOEArCegdK9DcopTaglFyDEjYeYaoEanldE9TrLNwBljbez2Ftr1fFAPLKzZkQEe/5ZQQB5r39cx4jCPrfT0rJG4OnkXAuiVf6vENWhi1P4Irm0Dh58DSfPDXL63lUk8r4uaN5cd7T3NS+HrGVS1KtYWUenDqQz7a86TaHMCImnCc/G+l30Gx6cobP9USDy4+xRmhQ7IkpF80tnRqwZOYKv6Pzzhw5xw2NKlOlXkUObjuaJ5FaUQT1Wtemadeik52S9v3oD3ovkagyGbR4PwriOnGc0KvKR/+IMJUrmoF6QQgBwSORSWM8tFDB3BBh9p3Pp4Q+hQxoekHVjgCwtkME9Ud4k4C7ACklC6Yt9pygLsGeZWfmC7M5dfCMx340u8aKb1cz4q1BhEV51qRVFIXmPW6heQ//lYA6DGxNiXJRTLl/GmePes9RDYsO9au+oMHlxZgRGlwVlCgbnW8lDs2uMXXFRFr3bJYrjcMUYKLzsPa89NMYVFMRJhwLvWyUX+085NDlxQEyHZn2v8KMLH8E3uWsFg85sznnv6YaiMgP/O5KWJrrcnMl16KUXOmcefpnBAFSE9M4f9z7eqmiCvb+u9+rlijoJZeO7T7htU1BaXhbXSYt9J7WoqgKXYb7cjsbXAmMVxODq4L2A1sxa9Icv9srqkK56qUJiQjmua8fZ8SbA9n9z34URVCzaXWvs4KCIqwdkWmfexsVBNyCUEKQalnfxW1dOPQZZNjzRTNQHwghEKGPIwO7INPmgv0QKKEIa2ewtPZcU/ASYLb484gSBFgDfMuagds0m6LihgaV6TysHb9MX5bnz6qaFEqUjeaeUe7zZw2uLIYhNLgqKF25FD1Hd2PO1B99tlVMCs2735KrtltUbGSRukHdYq4P5ibOtAl3WpkS4ZxpiaA+yORX/O9beo96vBQI0w2IsKIJJMpIy2TJjBX8Mv13zh2LI7JUOB3vv43OD9xGcLjnckSWQAsN29Xlvz+2e9QJddgdlCgf7TN6M7pMJJXrVSjUdfjisQ+HUaJsNN+/9RNpSbrMmxCCJl0a8ei0B7wG6xhcOYyoUYOrBiklc6b8yLeT55Ga6D7EXzEpRJYM5721r+Yqenq5kFqSnnCetRbNoaBpElWV2O0qR08+QtVbHkIIgZQZyLgBYNuKX7X91PIoMcs87t678QAbf9+K5tCo1bQ69VrXKjaRicnxKTx924vsd8qQZc+WhCIoXbkkb616yZX76Y5Ny7fyTIdJ3gs9C+HTED7y/lC6P9wpn6MvGJnpmez8ey9ZGTYq161ATDn/AoMMihZ/7YFhCA2uGA67g/Mn41FNKlGxEX4/uLMysti2ehcHtx5h/a+b2Lx8K5omMVvNNO9+Mw+81o9SFUt67ePwzmP8On0Zx/acICQimFb3NaVJl5uKRKR484ptzHzueW5tfx5rkIPDe6ys/DGa5HjBXY91ZuTbg/UHt5aKTHkb0r4DMr30KBChTyOCH8izJ+5UPJPue4vta3a51sg0h0bFWuWY8MNTlK9RuPqKRcHk/u/yx3d/uZ3RqSaF+m1q8/pv4732sWTmCt5+8BM0h+a6T7xWORFOF68i0OwavZ/twZBX+xablwODy4NhCA1DWGyxZdmYM+VHFrz/Kwln9JI8FWqWpfeYu2jfv1W+HlZ2m51ZL87lx48Wk5qgzxLDY8K4+/Eu9Hqme55gGCkls16cw1cvfY9iUtDsmitn7IaGlXltybhCua9SE1PpU2EkGakZHtesxn79OLf1aZEzJi0Vmfg8ZP7iprUKpuqIqG8RSlCuPVkZWYxs9AzH9p7MU3ldNSmERoXy6ZY3iSzpXpD8chB/OoHe5R70WZprxq53KVe9jM++lsxYwaHtR9n6507OHjvvdV3w5k4NqFKvIp2G3Oazb4NrEyOP0KBYYrfZGd/9df434TuXEQQ4uus4bwz6gP+N/87vvhwOB5Pue5PZr813GUHQ6xPOfOFbJvd/L4+77Lf//cFXL30P4DIe2Q/pA1sPM/GeqQW+NoClX64iPSXd4wNaUQQ/vP1zrm1CCUZEvI0IfR6UC+W3LBDUCxH1dR4jCPDHd39xZOfxPEYQdDmwpPPJ/PzRb4W6nsKyev56v+pTbv/LUyHhHCJLRdB7zF3c/3Jvzhw559UIqiaFGjffwAOv9TeMoIFPjGAZg8vKbzP/4N8l/+XZnm2vvn7lB1rd15Qq9Sr67GvN/PWs/fFft/ukhJVz/qLDgFaugr1SSr55dV523EoeNLvG1j93svuffVRtUIk1C/5h6aw/OH8inpIVStBpyG3c0rmhV/fp9r92e12v0jTJnn/347A7cs1W9fy9QRDUD+x7AZteg0/xXKFg+Td/IhTh0SBoDo2lX65kwIT7PPaRTVpyOktnreSPOX+RmpBKpdrl6fJgB+q1Ktxa45KZK/xq5yv1IZu3H/yEXz773Wc7IQSJ5/xNUTG43jEMocFl5cePlnh9eKsmhUWfLuXRD/Kuh13MTx//liOF5QZFVVj02e8uQ3jq4BlO7DvltU/VpLB6/nqmPf4FO//ei6IoaJrGgS2H+WvhPzTu2IDnZz/B6nnr+XX675w9ep6o0hF0HNyW9gNbI5ySXN7Evr0hhAnM/tUcTDqf4jNlIMWHxiboRYtHt5nAuWzdVQlHdh5jxew13Dnidh6b9kCBjGHcqXh2r9/nu6GA+m1q+2z20aiZfhlB0F8CYisZ4tYG/mEYQoPLyrHdJ7w+vB12ze+SOMf2nPDqdtMcGkd3HXf9bsvyo/agEKxZsJ5je/TE6+yq5tnn2bD0P+6v8TgJZxJdBv3c8fPs/nc/C6ct5o6ht7Hi2zUeu1dUhVpNqxdJIn/Z6rHs33LIrWsUnFGZPsr9aJrGuK6TiT+dkGuWnK3g8/PHv1G5TgW6PZS30oQvfKmsZFOxVnmfEb62LBsLPvjV73MLRdB+QCu/2xtc3xhrhAaXFUuwxet+oQiCwvKuh7kjNMJHYVMBIRcUP42tFENQWKCXA/RKFkd3HfdorKUmXWub2W2kBCQc3X2Cf5b8R2h0iMeCwppDo2G7un5VLPBF5wfaezSC2ePrOuJ2r31s/H0rR3ed8CxdJ2DO1IWuF4L8EBrlX+HZjoPb+myz9MtVfq01ZjP4pT5ExXpOyTAwuBDDEBpcVtr0bIZi8nzbSU3S+r6mfvV1W7+WCMW7y65dv5au/w+wBtBlWHuP61FC4LM/b2gOjQ1L/2P09JEEhga67Usogi8nzuXNBz7KY1w2Ld/KEy3H0T18IHdFDeblPm+x4+89Hs/XoG0d2vdv5VbwWddSrUW7/i3z7ryAzcu3opq9zE4lnD50lnPHcmZ3UkocDt86qWWqxlK9URXvn6kAzeEgNcl76aezR875PB+AJSiA0dNH0vvZHn61NzAAwxAaXGbufqIL5gAzipuHo2JSKHNDLK3uvdWvvjoPa0dkqQi3hk0xKZQoG8Vt/Vrk2j7gxZ5Ub1wlz5qXalJQVJV8C5pejIS0xHS+2PkuoZF5Z0TZs8glM1aw8IPFgB79OvaOV3im/SS2r9lNWnI6KQmprPxuLY83e96jS1AIwVMzHmLIy30JL5EjGRcYYuWeUXfy6i/PYQ4wex+uH7JkoAf57P5nH5Pue5PO1j50Mvfm/pqPs3DaYuw2zy7nIa/21V2uHmyhEILpY7+mV+lhLP92tcd+KtYu79c4ez7TvWgrihhcFxh5hAaXnW1rdvHiXVNIPJekz0aknlxfuW4FXv55bL4UYY7tPcmLd73B4R3HUE0KUuZOtA6LDqXryNu576luJJxJxGHXiIoN59fPV/DTR4s5dfAM1mArbXs3Z9X3f5OSkFro63vmf48QERPGc51f9dquZIUSfHlgGq8NeM/ruiLA4x8Po8uwDh6DVuw2O4e261U2KtQshzXIuws6mzUL1vPi3VO8tomICeORDx7g1b7vIETO+mF2rb6bOzVg4oJnPFZVWD1/HW8P/8Rr9XfQjeJrv73ATe3yVraw2+x0CxuALdOz0RWK4KfkL7EE+nftBtc+RkK9YQiLNVmZNlbPW8fu9ftQTQqNOzWk4W11ChSdKKVky8od/PTJb6yc85dTtSXnthZCoJoUV/HU4PAguo64nf7j7yXAGoAQgtSkNHpEDCr8hQn46sCH/PjhEn5452ccPgq2vrVqEk+28q6qkk256qUZ992TVK1fqfDjdOKwOxhQ9WHOn4j3ugYnFAFSup0wCyF4cOpAr4LStiwb89/7lc+e+dJjG0UV1G5+I2/9Mcnt/oXTFvPBo55Fzfs+fzf3v9TH4/4L0TSN04fO4nBGlxqlka5NjIR6g2JNgMXMbX1aMPLtwQyfMpCb2tUtcL6aEIJqjaqw7qcNeurCRe4+KWWuCuKpiWnMmbKQsXe8QmpSGsnxKZgtJlQva5fZmC1mj2teiqrQrNvNlKoY47eLdc2C9X61Azix/zSj20zg5MHTfh/jC9Wk8tKPYwgKC/Sayyc190YQ9M93/vu/eA0AMgeYSYlP8foZaw7J1lU7Pc4cuz/ciUc/eABLYO4KEmaLmSGv9vXLCEop+fHDJQys+ggDb3iE+2s8Rq8yw5n14hxsWd6KKhtcy1wyQ/jKK6/QrFkzgoKCiIiI8OsYKSXjx4+ndOnSBAYG0r59e/bu3XuphmhwDbH8m9VkpGf6HY2pafpD966owdwdfT99y4+gbPXSHqM9s3lhzihqN6sB4FrnzDaMleuUZ/TnIwGo26qWz9lgibJRXl19ecbs0EhPzWDu1J/8PsYfqtavxPRtb3P3410K3MfpQ2dJT8nw2iY9JcOvlx1v/XR7qCMLk2bx8s9jGPHmQCYueJZFaV/TZ8xdfo3zwydm8P4j0zl9+KxrW9L5ZL56+XvGd3/DqB5/nXLJDGFWVhb33XcfI0eO9PuYN954g/fee4+PP/6YdevWERwcTMeOHcnI8P4FMzA4tO0IpoLk5jntZuK5ZI7uOoGmSfdRmKpC/ba1ufXOxkxZNoHnvnmC+m3rULZaLHVa3MhTXzzEe2tfddU5vPmOBpSqFON5liXg7se76Ouh+ZgIa3aN379cmc+L9E106UhiykUXKmr25AHvM9UKN5b1nKbhJDDESmRshNc2qqpyyx030X5Aa2reWs3v8e1Yu5sF77sPPJKa5N8lm1n29Z9+92dw7XDJDOHEiRMZNWoUdevmXfh2h5SSd955h3HjxtG9e3fq1avHrFmzOHHiBAsWLLhUwzS4RrAEWQof8KlJhBCu4q2qWXUZssYd6zNx/jMIITCZTbTt3Zw3lo5n5u73eeuPSXQc3DZX0VdVVXn5p7GERgbnMi7Z/bXp2Yy7R3WhXf+WKPl0CaenZPiVvpBfzhw9h+qn1Jk7RrV8gX2bDnrcf1vfFgRYPUexKqpCpyG3EWDx3EZKydJZKxlWbzT3lhxKz9gHGFD1Yea9u8jnZ7Lo09+9umaFIvjxw8Ve+zC4Nik2a4QHDx7k1KlTtG/f3rUtPDycJk2asHbtWo/HZWZmkpSUlOvH4PqjeY+bi8StJTWJOcDE2K8fp/czPRg0sRefbnmTV35+jmA/E/2zqVS7PNO3v83gSb2pWKscMeWiadiuLhPnP8PYrx9HVVVKlImi/wu+tUAvJDI2okjKRV1MYLAFRz6S1i8mMz2L1we979E9HRwezKhPR4AARcn96FFUPXWm//h7vZ7j87Ff88bgDziy45hr2+lDZ/noyZm81v89r4n/h3ce8zojlZrk2J6TXs9vcG1SbEKlTp3SNSBLlSqVa3upUqVc+9wxefJkJk6ceEnHZlD8qXlrdeq2rMn2v3bnS4HEHamJadRpcWOuUkkFJSImnL7P3U3f5+722Kb/+HsJiQzmy0lzSY7zrQ3arFvjQo/rQk4ePM3nY7/mz+//9juv0B2aQ+PQtqPsWr+Pmk3cuyzb9WtJRMkwvpw0l+1rcipOKKqg2k2VOX8i3uVevpid6/by3RsLAfIaW6lX42hx960eBRlCIoK96twCBIV6Vx4yuDbJ14xwzJgxerFLLz+7du26VGN1y9ixY0lMTHT9HD3qn06lwbWFEIIX5z9NrabVAT0asjB6nhdHJl5KhNAL9n534lOmLn+RJl1u8tp+xew1nD3mn46nL04eOM0jt4zlzx/W6eujRcBhH1qxDdrWITzGGcru9ArbsxysmruWhxo/yz+LN7k9btEnv3l1bSqq4tW12aZXc69GUFEVbutb+Jcfg6uPfM0IR48ezeDBg722qVKlSoEGEhuriwOfPn2a0qVLu7afPn2aBg0aeDzOYrFgsRgJtAYQFhXKWysnsfXPnfz5w99kpGRQolw0637ZyN4NB9wm3F+MUAQ3NqlWqOK8BcUcYKZ+m9qcOnSGdYs2emyXkZrJwg9+5YHX+hf6nJ88PYvUxNRCz6Iv79sXIAAAECZJREFUJDDE6nX/wmmLWbvQWT7rIqFvISST7nuT7058lmd2dmDLEa+uTc2hcXDrEY/72/Zuxrev/sCpw2fzaLQqqkJgiJXuj9zhdewG1yb5MoQxMTHExFya0iaVK1cmNjaWZcuWuQxfUlIS69aty1fkqcH1jRCCeq1qUa9VLde2gS/2ZNf6ffy7eDO2LBt//fgvR3cdd/vwl5qk3/P3XM4h52HlnL981hlc9vWfhTaE8WcS+WvhP4Vyh16MUASNbq/vcb+UknnvLvJYpkpKSUZaJsu+WkXXkbkrXgSGWj3WkszG6kXU3RJoYcryFxnf/XX2bz6kewyELrQeXSaSSQueJaZctNfrM7g2uWRrhEeOHCEuLo4jR47gcDjYvHkzADfccAMhIboG44033sjkyZO56667EELwxBNP8PLLL1OtWjUqV67MCy+8QJkyZejRo8elGqbBdYAQgppNqrnWre4d3ZXx3V9n+5rdTvepRNMkiqrw6PtDadLZu2vyUpMcn+rTOKUlpxf6PKcPnSlSIwj6i8TxvSepcfMNbvenJqZx+tBZt/uyUVWF3f/sp+tF77+t7m3KllU7PB6nqAptezX32nfJ8iX4aMMbbFm1g02/b8Vhd1CzaXWadL6pSEpjGVydXDJDOH78eP73v/+5fm/YsCEAK1asoE2bNgDs3r2bxMREV5tnnnmG1NRUhg8fTkJCAi1atGDx4sVYrd5dLQYG+SEsKpS3V73EllU7+PP7v0lPzaDCjeW4fVBrIktFXOnhUbFmWfZu2O/RDSgUQdlqpd3uyw8hEcGF7uNiFFVh+Ter3RrCrX/uZMYLs/3oRWAKyPtoaj+gFd9Onkf86cQ8s3lFVbAEBtDt4U6+exeC+q1rU7+172LABtcHhtaogUExY8ffe3i82fNe24yePrLQVRaklDzY4CkObTtaJPURISfg5Nn/PZpr+98/b2DCXW8A3tdos5k4/xmadb85z/Zje07wXOdXOXngtKt8lMPmILxEGJN+fJZat1YvgqswuFbw1x4Um/QJAwMDnVq3Vqf7I51cZZouRCiChrfVKZLq60IIBr/Umwk93vD7GEVVfBqyUhVzxxHYsmxMuX8aUtN8ih4oqkJs5ZIeI2fLVS/DjN3vsm7RRjYu3YLm0KjT4kZa3HOr10R8AwNvGDNCA4MLkFKyZsF65r/3C3s2HMBkVmnatTF3P9GFGxpUvqzj+PHDJcyZ+iNnnLqYoVEhdHuoI32fv6dIH/pLZ63kvYc/IyMtE9Wk6oZOwp0jb6fX093YsnIndpud6o2rsnTWSua/94tnYyhg1r4PKF05Jx941fdreannW36NpVTFGKYsm0DpKqV8NzYw8IFRhskwhAb5RErJ+49M56ePfss188lOuxg3exQt7/GvaHBRoWkapw6ewWF3EFu5pM9CuwUlPTWDP7//mxP7TxEaGUKr+5q6jaBMOJvII7eM5dzx827XMPs9fw+DX+qda9vXr/zAlxPn+lT+6T/+XvqMuSuXVJ2BQWEwXKMGBvlk5Zy/+Omj34Dc61gOuwYCXu33Ll83r0FUbORlG5OiKJSpGnvJzxMYbOX2QW18touICefdv17ho1Ez9CR85+cUVTqSfs/fQ9eRt+c5Jig00Kv0WTZte7cwjKDBFcEwhAYGTua99wuKItwrrEi9iO2vny+/LHmGmqaRmpiGJTCg2BmH6NKRjJv9JPFnEjm2+wQBgQHc0KCSx/SDFnc34aMnZ3rsTwgof2NZytcoc4lGbGDgHcMQGhg42fPPPq8yY1KT7Fp3aetjpiWnM2fKQn766DeSzicjFEGTzjfR9/l7POp3XikiS4YTWTLcZ7uYctF0GnIbi79Y7jZvUUoYNLFXgQszGxgUlmJTfcLA4ErjrUI76FGW2SH7l4LUpDSebPUC374631WlXWqS9b9u4omW4/jrx38u2bkvNY9+MJQOA1sD+udsMqsIITBbTDz+0XBa3eteKNvA4HJgzAgNDJw0ur0+//y6yWMiu0TS+PYGl+z8X036noPbjuZZT9McGkLAawPe57sTnxIYfPUJTJgDzDz9xcP0fe5uVs5ZS0p8CqWrlKJtnxaXJLHfwCA/GIbQwMDJfaO78ffPG9zuU1SFkIhg2vW7NNUJsjJt/DL9d49pCVJCenI6K7/7q9CJ9FeSsjeU9lqSysDgSmC4Rg0MnNRrVYsnPhqOUESOm1ToLtHg8CBeWzKOwJBLU6/u/Ik40pK864eazCqHtnmurmBgYFAwjBmhgcEFdBnegYbt6rLok6XsXL+XAIuZW+9sTIeBrQgOv3QuPGuQ71JiUkoCLmOdRAOD6wXDEBoYXESZqrEMe2PAZT1nZKkIqjeuyr6NBzxGrjrsGs3vanJZx2VgcD1guEYNDIoJ/V+416MRVFSFBrfVoUbjqpd5VAYG1z6GITQwKCY07dqYxz4chmpSEIpANSmuJPXazWowfu7oKzxCA4NrE0Nr1MCgmBF/OoElM//g6O7jBIUE0vLeW6nbsqaRcG5gkE8MrVEDg6uUyFIR9H62x5UehoHBdYPhGjUwMDAwuK4xDKGBgYGBwXWNYQgNDAwMDK5rDENoYGBgYHBdYxhCAwMDA4PrGsMQGhgYGBhc1xiG0MDAwMDgusYwhAYGBgYG1zWGITQwMDAwuK4xDKGBgYGBwXXNNSexli2dmpSUdIVHYmBgYGBwJcm2A74kta85Q5icnAxA+fLlr/BIDAwMDAyKA8nJyYSHh3vcf81Vn9A0jRMnThAaGlos1PqTkpIoX748R48eNaphFADj8yscxudXcIzPrnAUh89PSklycjJlypRBUTyvBF5zM0JFUShXrtyVHkYewsLCjC9TITA+v8JhfH4Fx/jsCseV/vy8zQSzMYJlDAwMDAyuawxDaGBgYGBwXWMYwkuMxWJhwoQJWCyWKz2UqxLj8yscxudXcIzPrnBcTZ/fNRcsY2BgYGBgkB+MGaGBgYGBwXWNYQgNDAwMDK5rDENoYGBgYHBdYxhCAwMDA4PrGsMQGhgYGBhc1xiG8BLwyiuv0KxZM4KCgoiIiPDrGCkl48ePp3Tp0gQGBtK+fXv27t17aQdaTImLi6Nfv36EhYURERHB0KFDSUlJ8XpMmzZtEELk+hkxYsRlGvGVZdq0aVSqVAmr1UqTJk1Yv3691/Zz587lxhtvxGq1UrduXX755ZfLNNLiR34+u5kzZ+a5x6xW62UcbfFi1apVdO3alTJlyiCEYMGCBT6P+eOPP7jpppuwWCzccMMNzJw585KP0x8MQ3gJyMrK4r777mPkyJF+H/PGG2/w3nvv8fHHH7Nu3TqCg4Pp2LEjGRkZl3CkxZN+/fqxfft2li5dys8//8yqVasYPny4z+OGDRvGyZMnXT9vvPHGZRjtleW7777jySefZMKECWzcuJH69evTsWNHzpw547b9X3/9RZ8+fRg6dCibNm2iR48e9OjRg23btl3mkV958vvZgS4XduE9dvjw4cs44uJFamoq9evXZ9q0aX61P3jwIF26dKFt27Zs3ryZJ554ggceeIAlS5Zc4pH6gTS4ZMyYMUOGh4f7bKdpmoyNjZVTpkxxbUtISJAWi0V+++23l3CExY8dO3ZIQP7zzz+ubb/++qsUQsjjx497PK5169by8ccfvwwjLF7ccsst8uGHH3b97nA4ZJkyZeTkyZPdtu/Zs6fs0qVLrm1NmjSRDz744CUdZ3Ekv5+dv9/n6xFAzp8/32ubZ555RtauXTvXtl69esmOHTtewpH5hzEjLAYcPHiQU6dO0b59e9e28PBwmjRpwtq1a6/gyC4/a9euJSIigsaNG7u2tW/fHkVRWLdunddjv/76a0qUKEGdOnUYO3YsaWlpl3q4V5SsrCw2bNiQ675RFIX27dt7vG/Wrl2bqz1Ax44dr7v7rCCfHUBKSgoVK1akfPnydO/ene3bt1+O4V4TFOd775qrPnE1curUKQBKlSqVa3upUqVc+64XTp06RcmSJXNtM5lMREVFef0s+vbtS8WKFSlTpgxbtmzh2WefZffu3cybN+9SD/mKce7cORwOh9v7ZteuXW6POXXqlHGfUbDPrkaNGnzxxRfUq1ePxMREpk6dSrNmzdi+fXuxrHhT3PB07yUlJZGenk5gYOAVGpmxRug3Y8aMybNQfvGPpy+QwaX//IYPH07Hjh2pW7cu/fr1Y9asWcyfP5/9+/cX4VUYXM80bdqUgQMH0qBBA1q3bs28efOIiYnhk08+udJDMygkxozQT0aPHs3gwYO9tqlSpUqB+o6NjQXg9OnTlC5d2rX99OnTNGjQoEB9Fjf8/fxiY2PzBCvY7Xbi4uJcn5M/NGnSBIB9+/ZRtWrVfI/3aqBEiRKoqsrp06dzbT99+rTHzyo2NjZf7a9VCvLZXYzZbKZhw4bs27fvUgzxmsPTvRcWFnZFZ4NgGEK/iYmJISYm5pL0XblyZWJjY1m2bJnL8CUlJbFu3bp8RZ4WZ/z9/Jo2bUpCQgIbNmygUaNGACxfvhxN01zGzR82b94MkOvF4lojICCARo0asWzZMnr06AGApmksW7aMRx55xO0xTZs2ZdmyZTzxxBOubUuXLqVp06aXYcTFh4J8dhfjcDjYunUrnTt3voQjvXZo2rRpnlSdYnPvXelonWuRw4cPy02bNsmJEyfKkJAQuWnTJrlp0yaZnJzsalOjRg05b9481++vvfaajIiIkAsXLpRbtmyR3bt3l5UrV5bp6elX4hKuKJ06dZINGzaU69atk6tXr5bVqlWTffr0ce0/duyYrFGjhly3bp2UUsp9+/bJSZMmyX///VcePHhQLly4UFapUkW2atXqSl3CZWP27NnSYrHImTNnyh07dsjhw4fLiIgIeerUKSmllAMGDJBjxoxxtV+zZo00mUxy6tSpcufOnXLChAnSbDbLrVu3XqlLuGLk97ObOHGiXLJkidy/f7/csGGD7N27t7RarXL79u1X6hKuKMnJya5nGyDfeustuWnTJnn48GEppZRjxoyRAwYMcLU/cOCADAoKkk8//bTcuXOnnDZtmlRVVS5evPhKXYILwxBeAgYNGiSBPD8rVqxwtQHkjBkzXL9rmiZfeOEFWapUKWmxWGS7du3k7t27L//giwHnz5+Xffr0kSEhITIsLEzef//9uV4iDh48mOvzPHLkiGzVqpWMioqSFotF3nDDDfLpp5+WiYmJV+gKLi/vv/++rFChggwICJC33HKL/Pvvv137WrduLQcNGpSr/Zw5c2T16tVlQECArF27tly0aNFlHnHxIT+f3RNPPOFqW6pUKdm5c2e5cePGKzDq4sGKFSvcPueyP7NBgwbJ1q1b5zmmQYMGMiAgQFapUiXXM/BKYtQjNDAwMDC4rjGiRg0MDAwMrmsMQ2hgYGBgcF1jGEIDAwMDg+sawxAaGBgYGFzXGIbQwMDAwOC6xjCEBgYGBgbXNYYhNDAwMDC4rjEMoYGBgYHBdY1hCA0MDAwMrmsMQ2hgYGBgcF1jGEIDAwMDg+ua/wPd4tmVYbh6wQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "from sklearn.datasets import make_circles\n", + "\n", + "circles_points, circles_labels = make_circles(n_samples=500, noise=0.06, random_state=42)\n", + "\n", + "plt.figure(figsize=(5, 5))\n", + "plt.scatter(circles_points[:, 0], circles_points[:, 1], c=circles_labels)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "nbgrader": { + "grade": false, + "grade_id": "cell-e7e5a8e0da66afbe", + "locked": true, + "schema_version": 2, + "solution": false + }, + "id": "iykC1703FLpP" + }, + "source": [ + "And even more:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2019-03-13T23:26:23.326325Z", + "start_time": "2019-03-13T23:26:23.086480Z" + }, + "nbgrader": { + "grade": false, + "grade_id": "cell-7a98ef8e43822e61", + "locked": true, + "schema_version": 2, + "solution": false + }, + "colab": { + "base_uri": "https://localhost:8080/", + "height": 463 + }, + "id": "7aYUWTv5FLpP", + "outputId": "52f5ed16-8061-42bc-8f28-57af95ad9dec" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 89 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbUAAAGsCAYAAABaczmOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXgUVxeH35ndKHEFgru7u7s7tAVKKRQoLbSUQksFKsBHvaUChVKgFC3u7u5OsBBPIG6b3Z35/thkSchaQoLO+zxpycydO3c3u3PuPfec3xFkWZZRUFBQUFB4ARCf9gAUFBQUFBTyC8WoKSgoKCi8MChGTUFBQUHhhUExagoKCgoKLwyKUVNQUFBQeGFQjJqCgoKCwguDYtQUFBQUFF4Y1E97AJaQJImwsDBcXV0RBOFpD0dBQUFB4SkhyzKJiYkULVoUUTS/HnumjVpYWBjFixd/2sNQUFBQUHhGCA4OplixYmbPP9NGzdXVFTC8CDc3t6c8GgUFBQWFp0VCQgLFixc32gVzPNNGLdPl6Obmphg1BQUFBQWrW1FKoIiCgoKCwguDYtQUFBQUFF4YFKOmoKCgoPDCoBg1BQUFBYUXBsWoKSgoKCi8MChGTUFBQUHhhUExagoKCgoKLwyKUVNQUFBQeGFQjJqCgoKCwguDYtQUFJ4SsiyTFJdMWormaQ9FQeGF4ZmWyVJQeBHRpmtZ99NW1v68hejgBwBUb1GZwVP7UL9jrac7OAWF5xxlpaag8ATRaXV80mM286csNRo0gMuHr/NR56/Y+Nv2pzg6BYXnH8WoKSg8QTb9sZMzO88jS3K245JeAuCX8QuICr7/NIamoPBCoBg1BYUnyLpftgIWVMYFga1/7n5i41FQeNFQ9tQUFJ4Qer2e0BvhFttIksSdS/ee0IgUFF48lJWagsITQhRF1HYqq20cnR2e0IgUFF48FKOmoPCEEASBpn0aolKb/9pJeommvRo8wVEpKLxYKEZNQeEJMmBSD8M/TGyriWqRYhWK0LhHvSc7KAWFFwhlT01B4QlSoW5ZPl01ia9f+YH0VC2iSgAE9Do9xcoXYebWj1HbPZ9fy7BbEexYtI/Ie9G4+7jR7tUWlKtd+mkPS+ElQ5BlWbbe7OmQkJCAu7s78fHxuLm5Pe3hKCjkG0lxyexaeoCbZ+5g56CmUbe61OtUC5XK8p7bs4gsy/z54VJWfrMBUSUaFqEC6HUSLQc05sPF47Gzt3vaw1R4zrHVHjyfU0IFheccF49C9Hq789MeRr6w5vtNrPxmA/Aw3y6TA6uP4erlwru/jnoaQ1N4CVH21BQUFPKMNl3Lv7PWmj0vSzJb/txNbGTckxuUwkuNYtQUFBTyzPUTN0m4n2ixjaSTOLH17BMakcLLjmLUFBQU8kxaSrrVNoIA6anW2yko5AeKUVNQUMgzpaoWQxAsyH4Bsgylq5d4QiNSeNlRjJqCgkKe8QnwplH3uogq048SUSVSvFJRqjat9IRHpvCyohg1BYWXFJ1WR8TdKB6Exz5WP2///Aae/u45DJtKLeLgZM/Upe9aXc0pKOQXSki/gsJLRlqKhmVfrWHT7ztIjE0GoGzNkgz+qC8t+zfOdX9+xX349dRsls9ax7aFe0hNSkNtr6bN4GYMntqbYhWK5vdLUFAwi5J8raDwEqFJ1fBBuxlcP3EzW06ZIArIksybs19lwAc989y/Xq8nJSEVJxfH51YZReHZxFZ7oLgfFRReItb/so1rxwNzJElnFi2dP2Up4Xci89y/SqXC1dNFMWgKTw3FqCkoPOMkxiaxa+kB1s/dxumd55EkyfpFZtjw6/YcVbezIooi2xbsyXP/CgpPG2U6pfDcIcvySxF4oNfrWfTJCtZ8vxGtRocgGMLj/Ur48MFf46jVulru+tPpiQyKtthGlmTuXQt9nGErKDxVFKOm8Fxw93Iwq77ZwP6VR0hPS6dImcL0GNuR7mM6YO9ob/KaIxtOsvbHLVw+cg1RFKndrjr9JnanZquqT3j0BgHj45vPkBSXTED5ItRuW82qePEfkxaz9qctkLGwytz9jg55wNROX/LdgS+o3LC8zWMQVSJ2Dmq0Gp2FNgJOro4296mg8KyhBIooPPOc3XORj7t+jaSX0OsyXG+Coehm1SYVmbV9Gg5O2atFL5j6D8tnr0NUicb9I1EtIukkxv004omJCUuSxJLpq1gxZz3aNK1xteVTzJtJC8ZQt31Nk9dFBd/n1VJjMff1FFUitdtUY9b2T3I1nlmv/cS+FYcfvo8m+HLjFBp2rZurfh/l3rVQzu+7jCZFg0+AFyUqF6Nk1WLPZRUChWcDW+2BYtQUnmnS09IZFDCapPhkk3tBoigw+KM+DJ8xyHjs9M7zTOn4pflOBZh/4TtKVS1eEEPOxp9TlrLif+tzDkEUEEWRb/Z+TjUTicmrvtnAn1OWIlnY/wJYGfEnnn7uNo/n9oUgxjWYgl6rz2EwRbVI6WolmHtyVp6NT2xkHDNf+4mzuy7mOOdV2IPBH/Wh57hOL4X7WCF/UaIfFZ4LooLv89vERfT2Hk4H9QBeKTmGZV//R3JCCmAoXZIYm2Q2uEGSZDb+tgOd9qFLbd0vWxHV5j/aokpk42/b8/eFmCAmIpZV3240eU6WZGRZ5q9p/5o8HxedYFalIysJDyyLCWfyIDyWhR8v4+OuXyOIgrHytkotolIbDFjFeuWYuW1ang1aWoqGSW0+5/zeyybPx0TEMfedhfw55Z889a+gYAvKnprCU+Pu5WAmtviElIRUo4swKvg+iz5dzp5lB/nuwAwCT99GbadCp9Wb7SfhQSL3Q2MoXMoPgKvHApEsuNckncSVozcee/zpaelEBT/A0dkenwDvHOf3rzxq1n0IhtpjF/Zf4X7ogxzX+5XwsegiBINx9irsYXWc966F8l6LT0iMTX4Yym8ouI2btyttBjejeb/GVGlc4bFWUHv+Oci9q9aDTFbOWU+HYS0pWaXgV8oKLx/KSk3hqSDLMl8M+DabQTOek2SCr4fx+/t/Y+egxhYHuZ3Dw8rKdvbW52pZ2+eW5Phkfp3wF/383uD1iu8wuPhbvFV7Egf/O56tXbyNq614E6VbWg9qisrCalMQBRp0qY2rp4vFvmVZZkb/b7MbNDAEn8iGe6drdFRtUvGxXYI7/t5nUx8qtchWJW1AoYBQjJrCU+HSoWvcuxqaw6BlIukl9i47RLVmldHrzK/SBFGgTI2S2VYsjbrVtWoQGnXLWyBEckIKE5p/wvq520hNSjMev33xHjP6fcO6n7cCEHQ1hJjIOPQWVphgCHbxLuqZ47ibtysjZ71q9jpZkjm26TRTO33J7QtBZttdPnyNoMvBFt/n7X/tMbp7H4e4qHiLK9NM9DqJiMdI8FZQsESBGrXffvuNGjVq4ObmhpubG40bN2br1q0FeUuF54TA07cNezsW0Gn1OLk6UrF+ObN7ZLIkM3hq72wrhF7vdMEQHpmzvSAKOBZyoPPItnka98r/rTdpjDP3/H6d8BevV36XkVUnsvXP3Rb7ElUijXvUw8PXdKBH34ndeP/PMfgEeJnuQIYzuy/yTpOPuXn2jskmV4/ftLpaTE/TEnQ52GIbWyhc2s+mlalKLVpdYYbeDOf39/9mXP0PebvRVBZ9spyo4PuPPUaFF58CNWrFihVj1qxZnD59mlOnTtGmTRt69uzJ5cumN5IVXh7U9mps8SvaOdgxY/1kSlYuBmB8aIoqEQQY8dUQWg1smu2akpWL8enq97Gzt3toODNSAJxcHPl6y8e5ihjMRJIkNv2x0+yqBwzuvpDrYVb7ElUiDs72jPh6iMV2nUa0YfHtX/As7GHStSfpJbQaLT+NnW/yepVatGn1lBks8jh0HtnO4nuTiV4n0XpwM7Pnd/9zkBGVJ7D2py3cOH2b6ydu8u+stQyv8I5SQVvBKk88pN/Ly4s5c+bwxhtvWG2rhPS/uITdimBYhfHGxGJTuHm7sjz0D+zs7dDr9BzffIYDq4+SkphKiUoBdB7ZloByRcxeHxsZx5Y/d3P5yHVEUaBO2xp0GN4KF49CeRpzYmwSfbxfz9O1j1KjZRXG/zLSprSCM7sv8mH7GVbb/Xn5e6PxzyToSjAjq71n8bqs77MpNKkaUhJScfEsZLYNGBRLpnb+irN7Lpr9uwqiQLVmlfhmz+eIYs459e0LQbxV5wOT0a6CYJgMLbrxM37FfSy+JoUXD1vtwROLftTr9axatYrk5GQaNzZd3kKj0aDRaIy/JyQkPKnhKTxhipYtTLPeDTmy/qTZ2X3/97sbH6IqtYomPevTpGd9m+/h6e/BKx/3zZfxAjg4OyCKgtXcMXOIKpEmPevz5uxXKVq2sM3Xhd+KsKldxO3IHEatZJXi1OtYkzO7Lpp9n/tO7GbSWAVdDeGfL1dzYNVR9DoJO0c7OrzWkiHT+po0KpIkUa1ZJa4cvY4mJd3kvRp1rcuHS8abNGgA637egigK6E28x7JsWOVt+n0HI76yvMJVeHkp8ECRixcv4uLigoODA2+99RZr166lSpUqJtvOnDkTd3d340/x4krI74vMxHmjKV+nNACCyuBaywzw6Da6PQMm570Eiq2ka7QEXQkm+Hooer3loA57Bzsada9n076ROewc1LkyaAAuVvafMjEVRQkwdem7eJhxt3r6u9PtrfY5jl8/dYu3G0wxGjQAbZqWrX/tYWy9D3Mo+eu0Oj7pMZulM1abNGh12tdgwZUfmLH+Qwq5OZt9DSe3n7OYyiDpJU7tOG/2vIJCgRu1ihUrcu7cOY4fP86YMWMYNmwYV65cMdl26tSpxMfHG3+Cgx9/81rh2SEtRWMwIDfCWPb1Gt6oMpHrJ28B4OjkQKmqxek8sh1zT87i3d9GmZ3N5wfpaeks+GgZAwqPZGS19xhReQKvlRnHup+3WtyDGvJRHwRByFP4uyCAV+GckY7WqN+pFg7ODlbbzXl9LpPbz8iRkH188xlizFS3jr+fyOyhP2c7Jssys4f+RHqaNoeBkXQSiTFJ/DQm+x7ejkX7OL3zvNn37szOCxajWI3927AnZ0sbhZeXAjdq9vb2lCtXjrp16zJz5kxq1qzJjz/+aLKtg4ODMVIy80fh+ScpLplfxi+gn98bBgNS6V3+mracuKh4Y5vU5DTuXg5GpRapULdsgY5Hm67loy5fs+J/60iOfxjKHh38gLnvLmTuOwvNXluxfjmmr/0AZ3enXN9Xr5PoMKxVrq9zdnWy2Y16ft9lpnT80mhAZFnmn6/WmIwEBYOBOLHlLHezRD9ePnKd4GthFtMATu08T8TdKOOx9b9uQzB3Ewwr8C3zdlkdf/UWVSymY4hqkRotTHt6FBTgKeSpSZKUbd9M4cUmM69r4+870KRY+LtnTPDX/7KNS4evFeiYdv69n/P7LpuV3lo/dxtXjt0gNTmNdT9vZVSt9+nrO4I3q7/Hmu83Ub1FFVaEzuP9BWOwd7QtiVsQoOPrrSlTo2SexjxoSi9e+7Q/ajvLUYqSXiLwzG1ee/Mnpi/ZwZ69FwgNDLcYkCOqRI5uOGX8/e4lGzwkMgRnKVETfD3M4gpXr5O4e8V6v73Hd7GspCLJ9Bjb0fr4FF5aCjRQZOrUqXTu3JkSJUqQmJjIsmXL2LdvH9u3F7zunsKzwao5Gwi+Zj7J+lFUapHN83aaFPnNLzb+vgNBFMwaNZVaZN3PW7lzMYigyyHIyCBDQkyioRzMz1voMKwV9g529H6ni0nB4qw4ONnT+50uDP9ikMV2lhAEgaGfD6Dn2514rcy4bInfjyILEHLwOoHOApuiT+BhrW9RQJP6cMLhWMi6qxPI5hJ1dHZAm6a1eA9nV+ur26pNKjJqzlDmfbAYlVo0GjiVWkTSy7y/YCzFKhS1aXwKLycFatSioqIYOnQo4eHhuLu7U6NGDbZv30779jk3phVePCRJYv3cbbnaA9HrJIIuhxTgqCAkMNxi9We9TuL0jvMkxSVnX33IICMTeTeaJdNXGUvZePi5IYgisRFxxqZFyvrTZlAzytctQ6021SwGR+QGdx83tOnm66EBCDIIaTpDBKGbI7JKRLDwN9Br9ZStWcr4e4POta3qbbr5uFK50cNabq0GNmXL/J1mV1myJNOin+mo50fp/353Kjcqz7qft3Bh/xUEUaReh5r0fqcL5WqXtqkPhZeXAjVqCxYsKMjuFZ5xAk/fIikuOVfXCIJAIff8MQDmKOTmRJqFlQ6Cber3maLJCQ+ScHC25+PlE1HbqfAr4UP5OmUKrLxK4dJ+hNwIM+tSlAWQ3DMKfdqp0FT0w+FqBIKJ9qIo4ObjRuMe9YzH3Lxd6TGuE2t/3GLWpThkap9saQB9JnRlx6K9SPr0HDn1gihQpIw/zfs1AgzamTuXHODiwasAVG9emfavtaCQ+8P8wWpNKxXoal3hxUXRflQoMOa++1eur5FlmVYDmxTAaB7Sdkhzy2H5uUxDk/QS6anpnN97iWa9G1KhbtkCrRfWfXQHi0EZggxplf2Nv6c0KIHewynHyxIEAZWdimnLJ6K2yz6/fXP2q7Qf1hJ4WJ4mU8Vl0JTe9JnQNVv7YuWL0HpwM5MiMbIkY+9gx77lhzm96wJDSo5h7rsLObjmGAfXHGPuuwsZUnKM0cgpKDwOSpFQhQLBFiWLRxHVIr4B3sy/9B1OhRwLaGSG8jajar5PamJaDteoqBbx8vfgfmhMrvt1cnFkQ8KS/BqmWTSpGt5v9TmBZ25nG7+MIcgxtWphUpqVyXaNkK7DfcVZVCkP973sHO2Ye3wmpaubD14JuhLM7n8OEheVgG9xb9oPbWks8ZOVK0ev827TaTaNP7P6d1ZEUcDeyZ6FV3/Et1jOMj4KCkqRUIWnStAV2/fFMnUHi1cM4Ju9nxeoQQPwK+7DN3s+Nz48VWqVMYy8Qp0yzNw2zWqUoSlSk9KQpILPoXJwcmDO7k/pMbZjtmAN2dmO5MalSGmac99JFgUEbfax6dN1Fg0aGBRJRnw1hPfmv8Vrn/Y3adAA1v2yzWIofraxmJhGS5JMepqWTb/vsKmP/CYhJpHbF4IU0eQXAKVIqEKB4GijYWrYpQ6lq5egdrsa1G5TrUDddlkpV6s0f9/8mVPbz3P12A1UahV1O9SkcsPyCIJAh9dbs+3P3bmSxPIO8CrQhPGsOLk4Me7HEYz4ajDB18OYvGALobIOk6EdkozD9WjERwI/PPxzL+psjmvHA60WNbWGpJc4vO4Er385OJ9GZZ3wO5EsmPoPB9ccN656Kzcqz/AvBlOnbfUnNg6F/EMxagoFQo2WVXBydSQ10XxAhoOTPR/9O8GmUO+CQKVS0bBLHRp2qZPj3JjvhhMWGMG5vZcQVaLVCE5RFOj+Vodcj0Gr07P3/E2OX71HbHQ8yZfDSNh7DZUM9TvWoufbnS2KHju5OFGhblm+KzqEN75dSWKq5qEhzlgSqR4kU+j43ezjVYl0fiNv5XdMYeeQP4+SdAtpAflN+O1I3m44leT47AVUr5+4yZSOX/Dpqvdp1rvhExuPQv6guB8VCgRHZwcGTu5lvoEA/d7r/tQMmjUcnR2YtWMa09dOpmGXOpStWZLCpU273gRRoHjFAHq/0yVX97gd/oAen/7FlD+3sP7wJfZdC+KkWseNlqUJ0WjYumA3o2tNYs+yg1b7KlPEm5XTXmNY+3r4uBfCwU6Fix4KHbuL+4ZLCFoJnYcTaZX8SK/ij2s5v1yP1xJNetR/LE1MMASkVGyQdzWZ5Phkrhy9zvWTN9GmWzeOf0xaTHJ8ck4pMElGlmW+G/kb6ZonZ2QV8gclUEShwJAkiXkfLGHND5sQRRFBEJBlGUkv0WNsR8b++Doq1ePX8XpSyLLM+rnbWDpjVQ7xYFcvF4ZNH0iPsR1tcqEmpWro/fkiYpNSc7o4JRkkCY9V51AlaBBVIguu/ECx8ubL7JhCm65l/uSlrF+8l9hmpdEFeBhWbxnja16tNNOHdcTD5fEnFlH3ohlReQLpGq3FHEBrfH/wi1yH8qckpjJ/8hK2/73PmADu6uVC34ndGDSll8nPWGxkHAMDRlkd67TlE2k5oGCjcRVsQwkUUXjqiKLIW98OY3HgL7zycV86Dm/F4Km9+ev6T4z/ZeRzZdDAEAJfvXllUpPSclTtToxJ4pfxC1g5Z4NNfW06doWYhBTTe3aiAKJIWrWHRmzTb7lX4bGzt2PozCHYjWmJVMwj80UYzx+5cpe3flxDutZyMrct+JXw5ctNU3FwsjerM2mOzBXeq5/0y7VB06Rq+KDN52z5c3c2RZPEmCQWfbqc79783WSuXcTdaKsGTaVWEXrTtrI/Cs8OilFTKHCKlPFn6OcDmDjvLYbPGJTrFcezxJ9T/kGn1Zt9IC76dDkJMdYTt/ecu2m5gSigKWOIzpT0Euf2Xsr1WAHWHblMeGwCpoarl2RuhESz48yNPPX9KLVaV2PZvd8ZNWcoamt7bILhRxAFqjapyPS1kxk2fWCu77ll/m4Cz9wxvecpG6oHXD5yPccpWxL8Jb1U4EIACvmPYtQUnjuSE1JY9e1GRlabSF/fEYyuPYn1c7eRZkkwOR+IjYzj1I5zFoNG9Fo9+1cetdpXqkZrPcc76x5VHqNCNxy5bFnMWBDYeNR0Kai84OrpQv/3uvP15o9yrGaz8spHfdmuXcG29OV8t39Groq/ZmXTHzsM2pxmUKlFti7YneN48YpF8SnmZbFvQRRo1kcJFHneUIyawjONLMskJ6QYBXcfhMcytu5k5n+4hKArISQ8SOTOhSB+eWcBE5p+TGJsUoGNJSYizqraiKgWeWBD4nbF4n6oLDz0kWRUMYayOKJKpG77mrkY6UNiElMsDlmSZR4kpFhokTdqt6nOF+s/xKuIoX5c5j6jvaMdQz8fwLAZAxFF8bFTICKDoi3+TfQ6iTATLsS4qHhiwuMs9l2zVVW8i+S+/p3C00UJ6Vd4JtHr9Gz4dTtrf9pM+G1D3a5qzSqRmpRGZFD2/ZDMLZM7l4L5+e0FfPTPuwUyJnPVo7Mi6SQ8C3tYbdevRQ3+O3TRfANRwPFShNFFZ6o6tS2okjWGwBMzBlQUBIp6F0wQVsOudVkW9Bundpwn/HYkrp4uNOpWJ5vG4+Pi4lHIZKXtTESViLtvzte3beFei6VygGz1/h6XdI0WvVaHYyHHJ5aL+bKiGDWFZw69Xs+M/t9ydMOpbK6ly0euW9zcl/QS+1cdYcx3w/D093isMSSnpbPnbCCRcUl4uTrTtnZ5vIt4Urttdc7vu2zWBalSizZpV1Yq7sdb3Rrz+6ajiIKAJGfPLbMPjMbxXiwqtYppK96jSGl/C72Z5ua5O6TsvQ4tzIfJS7JMn2YFl2SsUqtM5gFmJeJuFOt/2cb+VUdIS9ZQpkZJeoztSP3uddl99ibnb4chCgL1KxanZc2y2GUJMGo/tBUr56y3WNC07ZDmOY7fOH3LtLRJFu5cvIder3+sgKZTO86zYvY6455okTJ+9H6nKz3GdjQq6SjkL4pRU3jm2Pn3fo6sP5njuC2h4pJO4vrJWzTqVjfP91994DzfrTlAWroOlSgiSRKzl+/hza6NGPH1EN5r8QnIssnIxVem9cPdx7aVz6iujShbxJtFO09y+W4kAG6CCveb9/GN1lD/3a50H9OBomUL5+l1bJm3C+fbD0ir5I/e1yXnak2ScY1Lo3n1p1fO5dLha0zt9CXpaVqjYbp48CqnrgaRtrMG6SKoRYOQ8qoDFyjs6cov43tTpoghiKbX+M5s/XMXibHJOXU8VSLlapUyuV+ntlcjCCKybH5/VKV+PPfoxt+289O4P7Pl74XfieK3iYs4u/sin62ZpBi2AkAxagrPHOt+2WqxiKc1HicJeNOxK3z97x7j7/oMLUetXuLXDUdQ927G/3Z9xrcjfyPkepixnbObE69+0p9+73XL1f3a1ilP2zrlSdVo0UsShRzt8809FXwjDCldj/vmyyQ3Lo2mgu/D4BOdHserkTifC0X1hKS9HkWTquHTnrPRpKZn+1trndQkdKlKpkSzLoueZlR8EqO+X83az4fh6uyIdxFPvjvwBTP6f0vQ5WBjLiRAlcYVmL5usknD0aBTbfYtP2x2bKJapH6n2giCQGJsEjv/3s+tC3dxcLSncY961O1Q06LBiwyK5pfxhtJb2YxtRk2+o5tOsW3hHrqOUmpL5jeKUVMwiU6r4/aFIHRaPSWrFMu3Ipe2cPdycJ4Nmp2DmiqNK+TpWr0k8fO6QxbbzN9ynIGzR7Pwyg9cPR5I2M0ICrk7U6dddRycbKsYbQonBzvrjXKJi0chRJWApJVwOXAL5+NB6HwM+1nqqCRErR5nb5d8vadekrgfn8zpwBB2nLpB6IN4vFyd6d6oCh3qVsA+S4mb/SuPkhiTM7AnrWoRUIsm9wElSSY2MYUNR6/wSluDW7NEpQAGfNCDH0b9gTZdhygKyMClQ9f4aex8PvhrXI6/TcsBjVnw0T/ERsabdF1Keon+k3qwf9VR/jfsZ7QaHaLKkIew8fcdlK5egq+3foxPUdMRlFvm78qIWDX9ORYQWPfLVsWoFQCKUVPIhiRJrP52Iyu/2UB8dAJgKFHScVgrRs5+9YkYN3tHO1ItVF02hyAKdH6jLS4eeQtEuHA7nOh4y0VNUzVajly+S9s65anSqAJVGlk3oBqtjsOX7/IgPhlfDxeaVCmZ7eFeULQa0IRD/x03/i5qdNiHPgx+UKlF2pjYb8oL6Vodi3ed5t89Z4lNSs127o4Qw8nrwSzedZo/JvTDM0PB5MqR66jUKvS67H/r9DLeZgNbwGAmdp0NNBq1E1vPMuf1uUb7kdUtfHD1MQRR5ONlE7L1Ye9oz+ydn/Jh+xk8CIs1rvAyV/kT/xiNSq3iq8HfG1Z+Muh1D/sNuhrC1E5f8vvZOSb33G5fCLKY+iHLMkFXQpBlWQkcyWcUo6aQjZ/GzmfzvF3ZjmnTtGz5czeXDl+ncbe6XDx0Db1OT5XGFej3Xjd8AvK3/lXzPo3Y/c8Bq6rvmULDmf+v07Y6o78Zmuf7JqRYqIadhXgb2wGsO3yJ79YcICn1YQ6dm7MD43o0xdPViTStjgoBvlQo5pvr8Vqjae8GlKpWnOBroTneS1ElYu9kn6PYZ17Q6vSMn7uOUzdCTEYUZgbB3Al/wCd/beOX8b2NYzCFbEMJm9Qsmox/f7Yim9sx270lmX3LDzP0s/4UrxiQ7VzJysVYdONn9i0/zLFNp0nXaClfuzRdR7XDr4Qvn/ScZXCD60z0q5O4eymYU9vO0bBr9v3b+6EPuHfVeuklOwc7xaAVAIpRUzBy7URgDoOWiaSXuHvpHncv3TMeu3rsBmu+30TPcZ0Y88PwfJO96vdeN/YsO2jyQSWqRHwCvBjx5WB2/3uImLAY/Er60mlEGxp2rfNYYyjmY1splpS0dJtm2BuOXmbG0p05jiekaJi5fE+2Y9VLF2b60I6UKmw5ITg3qO3U/G/np3zeZw5Xjt4w1DsTBPRaPV6FPfhszaQ8RVU+yppDFzl1PdhqMrlekjly5S53I2IoVdiL2m2rs9FE/TRVTAo6RzuzqzWVKFAhwAeA6JAH3Dh1y+J9RZXIwTXHGfJRnxznHJ0d6DSiDZ1GtMl2POJuFMc3nbYYIKlSixxaeyKbUYu4G8U7jT8iLsPLYf5aFc16N7DYRiFvKEZNwcjWP3ejUou5rou1fu42HJzteXP2a/kyjtLVS/L52sl8OeA70lI1qFQiIKDX6SlcypeZ26ZRtGxh2r7aIl/ul0nZoj5UKenPtXtRD0PsTfDdmgMcuxrEnNHdcbI3vRem1ev54T/r6vqZXAmK5PVvVrDso1co4vUwelKWZe5GxpKqSaeot3uuxYc9/T2YtedzFq8+yO6TN9BKeioW9+PtYe0o5pc/icUr9p3LVftTN4IpVdiLxj3q4V/Sl4h70QhZ3m7HyxEkZWpVmkAvyfRrYUhGT0lMNdsuE1EUSE1MJeRGGJFB0bh5u1Kudmmzk5L/ftjM7+8vshbxjyzJpKdlz5H7ccx84u8n2rAnLNPvve5Wx66QexSjpmAk7HZkngs9rvl+MwM+6GlzOLs1Gnapw/KweexeepBrJwOxs1PTsGtdw2rMhjDoVI2WmMQU3JwdcHW2vZL2R4Pb8Ma3q9Dq9RYLhB67eo+v/tnNl693Mnn+5PVg4pKsP3Az0UsySakaFu88zYcDWwOw4/R1ftt4lKDIWMCwQmlXpzwT+7bEz8O2AI+gyFje+nE1kbFJCIIhNSv4Tii7Pv+bqYPb0Ld5DZvHaApZlrkXGWtd8isDAYw6lGo7NV9v/Zg36k9GTk43nrcLisH+ehTpFTJcshnGJ3P8wzrUo0YZg36o1skOUa1C0pnfg9Vp9exffZTls9cZjwWUL8Kbs1+laa/sq6WDa47x23uLbHotMlCqagnj7xF3ozi145xV1Rm1vZpPVrxH+TplbLqPQu5QjNpLwJ2LQayfu52LB64gqkUadKpNtzEdcrie3H1cbSqIaQq9Ts+R9SfztfBkITdneoztSA862nxNeEwCf2w6ytYT19DqJQSgSdVSjOnemColred7VSlZmL8+GMj3qw9w8kaw2XaSLLP15FXG92qKv6drjvOxNqwgHkUvyWw4cpkP+rdi9cELzFq+J5vgvV6S2XUmkDOBoSydMgRfK4YtXatjzE9ruJ8R/JK58shchX61bDfFfT1oUKmEuS6sIggC9nZqNDYq/ctArbJFjb+XqBRA5z9GsOb3Hdjduo+g1aPzLoTOyzmH3mXZoj4Ma1+PLg0MSv4nrt3j3V/XYVfOG/vrUdlWew8HaLhpxJ2obIdDb4bzeZ85TP3nXdoMbmYYmyyz9IvVZvfnHkUUBTq+3sr4e9CVEKsGDeDN2a/mWetSwTqK9uMLzsbfdzCq1iS2LdzNvWuh3L0UzOrvNzGi8gSObTqdrW3rQc3yZNAy+eGteXR3fZUvB33HtROBjzv0XBN6P55XZy5j8/GraDNehwwcvRrE8DkrOHndvJHKSqXifozp0dhqO1mGw5fvmjxX2IShs4XUdC1RcYl8s2qf4R6PnNdLMjGJKfzw30Eu3A4nJDrObF97zt0kIiYRvZkVp0oU+HvnqTyNMyvt6pS3rGOZ5X61yhbNERTzWteGODQsTXKv6sT3rUlyq3JIvgaDLQpQMcCH3f97i5XTXqNrw8qG3LGUNN77fQPpOj3J9UsgFbJHfmQIgiiAjOmcx4xffx4331gI9EFYDLcvBFk1aIIggAATfh+NV+GHLlxHZ9tSOvLLm6FgGsWovcBcPR7IT+PmZ4QjPzRWkl5Cr9Uxo/83RIc8MB5v1K0uFeuXzXPysqSXSEvWcOi/47zT5GObKjbnJ3NW7iMhJS3HQ1ySDOofnyzaZkymfhRZljl/K4wv/tnJO3PXsWDrCav3E4B0M26v2uUCKOLlmmtxfWcHO/acu2l2nGAwbFtPXmP4nOX0+PQvhv3vX04H5oy2O3z5rkVjo5dkjl0NsngvWxjavh6iIFh8rYIAfh6ufD0iZ7VtX3cXFrw/wBgkk7WvxlVK8fvE/ng+UiF907GrhkoHMsjO9sT3roGmkj+y6uEg1EUMgT+W9reS4lIYUeld9vx7yOYqD77FvJi9/ZMcwSWVG1fA1dNyOonaTkW9jnkTp1awDcWovcCs/XFzRpBFTuQMQ7d53sPoPJVaxcxt06jbwfClE0QhTwZOr5OQJZn/Df+F+6EPrF+QD0THJXHw0m2zqxJJlomKS+LYlaAc57R6PVMXbOH1b1aw4chlDl26w9Erd63eUwYqFTcdii+KAlMHt0XA8sM+KypRoFfTaoTej8+Vysflu5G89cNqjl/N/tq0Or31YAcZi3uHtlA+wIcfxvbC2cEeMLyOzCAMlShQ0s+Td3s3Z/nHr1DYy/QKtnRhL1ZOe40F7w9gQp/mTOrXijWfDePnt3vjXijnnui5W6HZAj1kZ3uSW5QlZlgDYgfVJmZoPR7UDshxnSki70Uz85Uf2bpgD85u1gNxhn85mDrtcu5F2jvYMWhKb7PXCYJA9zEdlZVaAaPsqb3AnNl90WLgh6SXOLP7IsNnDDIec/V04evNHxF0NYTT28+j0+ooWq4wv7yzgAehsbm6vyzB1j/38Npn/c22CTxzm7U/beHUjvMgy9RoVZXe47tQtUnFXN3rXlSc1Qe4KAjciYylabXsWoe/rDvMzoxCmZlG0dpzXhQFSvt7UbNMUbNtmlUrzU9v9+LbVfu5E2G5HI1KFPBwcWJY+3qsOXTRpj2dTCRZRgBmLN3Jxi/eQMxYnVUp6W98XaYQgFKFvbDLB/3BxlVKsmPWKP7Zc4bLdyNxdbana8MqNKhY3OZcLEEQqF0ugNrlbDBG5vq0UyG5GwyT7Kw13eZRMt7qlf9bT5shzdm34rBJN7wgCji7OdGyv3nXdP9JPYiPTmDlNxsQVaJxmHqdRNtXmjNqTv5ECCuYRzFqLzK2PBjNPL1LVi5GycrFjL9Xb16ZeZOWsOufAzbvu0mSxLWT5is8b1u4h+/e/B1RJRiN76E1x9i/4ghjvhueq8RgW2SmJFlm95kblPb3pHGVUoiiQFKqhpX7z9n0VmWiEgWcHeyZ+UYXqw/sJlVK0fjTktwIieZ+fDJebs7sOXuTZXvOkpr+8KFbp3wxPn21Pb4eLnSoW4F5m4/ZPiAMf+rwmEROB4ZQv2JxALo3rsqvG44YVmymrgGGtKmdq/uY40xgCN+u3s/Vew8DMvadu0X9isUZ1bURFYv75ct9MqlfoRg7T5s32KIgUL1+eYRLD7h3NdSmSYJKLSKqBMrUKMnt83ezrWBVahFBEPj434nYO9qb7UMQBN7832t0Hd2eHX/vIzrkAR6+7rR7tTmlq5fM1labriUlIZVC7s6on4DCzMuCIOdmSviESUhIwN3dnfj4eNzclCV7bvliwLccXnfC7GpNVIkMnNyTEV8NsblPnVZH6M0IUhJSeL/V52g15mfDgiDQpFd9Pl/zQY5zQVdDeLP6exb3O346+jWVG5a3aVySJNN12p9EWikSKgoGO161lD8/j+vNxTvhvPvreqv9F3K0JzktHWcHO7o3rspr7eo+Vh2ylLR0ztwMRaPVUT7AhxIZOWOJKWncT0jh1/WH2XP+Vq5WbACfvtqeXk2rGX/ffTaQD//cjMDDVWjme9C+bgW+HtH5sQWNT90IZsyP/yHJstnx9mtegymD2hhXkY+i0eq4ei8SvV6mXICPSZdjVlLS0un88Z8kp6abzSn8fGgH/GPSmNZjluGADW9l+Tpl+Hbf56z+bhMbf9tObGQ8okqkWe8GDJrSO1/C8MNuRbDs6//Ys+wgWo0Oe0d72r/WgiEf98GvRP4ry7wo2GoPFKP2AnPp8DUmNv/E9EnBsIf2942f8S+Zty/S9L5zOLLxFJIFF+fEP0bT5c12OY7/Mn4BG//YYfZaQ12ypkxZ8o7N41l/5DLTl+RUqDDZv2hwdQ1sVYsP5m2y2n7G8I50qlcJ9WNUALDEvag45m44zO6zgcYVgo97IR7EJxuj7WzZ+/pmdHfa1CqX7djVe5Es2XmafRduodXpKRfgw+DWtenWsIpZI/MoiSlpHLkSRKpGS+nCXtQoU8QY+t5n+t/ci4q1utp9u2dTRnTKnhemlyQWbD3BP7vPkJghJaZWiXSuX4lJ/VtazDG8eCecsT/9R6pGa9KwiYJA+7oVaFXIjfnv/mXUMjWLYPBIfLdvBmAIHkpL0WDvYJdvJWLuXLrHxOafkJaclm2yqVKLFHIvxI+Hv6RYBfMu7ZcZW+2BsuZ9ganWtBJjvhvOb+8tyqYUolIbFDo+XjYhzwYNDPsHh9flrHsGhlWgm7crrYc0M3n+woErFo2hXidxfv/lXI2nZ5Oq7F13nAPxsRhKRmecMOEi1Esyp26EUD5DbskaVUr4F5hBuxsRw7A5y0lO1WTzBmfml7WrXY4yRX1YtucMiRYi9Jwd7GhcpWSO45VL+PP1GzmjDm1BLxlK7vyz+0y2SM/Shb2YPqyjQZg30ra91iW7TvNau7rGPTxZlvl88Q42H7+arZ1OL7H5xFWuBkexaNJAnM24+6qXLsK66cNZffACi3ecIjU9e66cJMtsP3WdnaKAw+DaeB4LQnMyyKxbXkCgRb+H+2WCIOBkZcWYW+YM/4XUpLQcLny9TiIxNok5r8/lx8Nf5es9XzaU6MdniISYRJZ9/R/DK75Db+/hjK41ifVzt6FJtS3U2BR9JnTll+MzaTOkOX4lfShS1p9uozsw/+K3NO/b6LHGW6VxRT74axyiSjRGSWauKty8XJi94xOzDwVbii/mtkCjTqsjeNEhPJecxvFsiMGYWdnz+nfvOQp7upoVhVeJAnXKBRiLUhYEs1bsJekRg5aVnWcCqVTMl0n9WlrsZ3S3xmZlu/LKNyv38df2kzlSF4IiY3nzu1WcvRlqc1/xyWlcDoow/n7hdngOg5aJJMncCrvPmkMXLfbp7VaIEr6eOQzao32larRElfM2hPyb+FuLKhEPf3faD7X8Hj8ON8/eIfDMHbN70rIkc+XoDf6c+k+BjeFlQFmpPSNEBkUzscUn3A+NMe4zJcclM/edBWz/ay9zdn9KIfe8lVSpWL8ckxe9nZ/DNdJ+aEtqtq7Klnm7uH7qJnb2djToUoe2rzTDyYJOYf1Otbhz6Z7ZL7gqo0hjboi4E0XC/UREwDEwmrS6xW27LjYRT1cn4pPSsrmxRFHA09WZ6cNsVzTJLWEP4jlx7Z7VdpP/3Myu2aOY1K8lP6w9iC7L+yYKAq+2q8OrGaVY8ovg6DhW7j9v8pwky6RrdSzddSZXfaZnKSm07sglVKJgNg1DlmHNwQu81s5yFfN1Ry4hCoJFvU4AnasDCV2r4LrtGqJGZ3ApCqDX6vEt5s1XWz4q0NJKdy5a/zsDrJi9jlJVi9Mun7VNXxYUo/aM8PWQH4gJj80WOJH5Hb11/i6/v7+Y9/8c88THJUmS1RWTX3Efhn8xKNux6JAHRNyJwqeYN66eOeWcur3VgdXfb0KWJJPeIFmGnm+b1lU0R9acOjFJA+k6sLf+EVeJAlVK+FO5hD9rD18kJiEFDxcnejWtxpA2tfF2y9tkwhq3wx9w8OIdm9pqdXr+O3SRnadv5EiWFgT47+BFOtevlK9RhttOXrNYgVwG7idYrj+XFZUoUK7oQ3dvSHS8WYOWSWRsotV+I2MTrRq0THSF3Yh/rS7FY9Jp4eWFqBKp074mTXrUy7d9M3M4OJuPmnyUJdNX0vaV5kppmjygGLVngFvn73LlqPnwZEkvsWvpAd7836u4mUlezU/C70Sy6puN7Fq6n9TENLyLetJtdAd6v9vF6kz23N5LLJz2L1czXo9KLdKsbyNGznyFwqUePnD9S/ry2epJzOj/DXqdZFyxCaKAADToUpudf++jatNKNOpWF5VaRVq6jjM3Q0hL11GuqLcxYjCTwqX98C3uTXTwAwS9jOPVKNKqF7FYcBIM+2t3ImL4+e3ejO3RpMALN564do/v1hzgRki0zdcIAqw7fJng+znz8fSSTEq6lknzNrF++us2B39Y40FCimEFZLNcsXkMYswV8Mry+fFydUIUBYsBMLaIUft5uBASHW+zYZNUKoJ8nRj/y6gC2yc1Rd32NWzWVg27FUnQlRBKVbXN26DwEMWoPQNcOXLdKLxqDl26jptn71KnbfUCHcvNc3d4v9VnpKVojIEcD8JiWTJ9JXuXH+L7g1+YNaxH1p/k875zsh3T6yQOrTnG2V0X+eX4TIqUeSii3KhbXRbd+JnNf+zk9M7zaFLSeRAWQ2JsMie3nePktnOs+nYj3gFe2A+sy+Xk5GxvUWZuVwk/D8CwB9f//R78OuEvAJxP3UNbxA29b8ZKy4KhcsyyoitIg3bkyl3embsu16H6oiAQHB1n9sEtSTKh9+M5fu2eyWCRvODsYJfNzZlXREEgwMedyQNaZTvepUFldp4xrxEqigLdG1Wx2n+PJlU5dcN6Uc6sCIJhXE+SlMScASKWSEu2vRitwkOUQJFnAFEl2pRDY07yKr+QZZkvB35PWrImR2SiJMmE3Ahn3qTFJq9N12j5ZsSvyLKcw12l10kkxSXzxwc5r/Ur7sPrXw5m9s5PSYpLJjnBoG6v1+rRZ+y/3A+LIfSXPZCcvXbVmcAQhv3vXyJiHrqoer7diW6j2wOGGZv7xkuoQ+Ktvvb2dSpYbfO4SJLM18t2G96jXC5+9JJsdSWiEoVsgRiPQ1xSqtkgDluwz6he7eNWiDe7NGTJh4PxdM2+yndytLMYx+Pm5MCg1rWs3qtDnQpUKeFv8wpVJQo0qFgi31a0trJryQGDyLINqNQqipa1XlVCISfKSu0ZoLYNqy9BFKhQv2yBjuPc3kuEBoabPS/pJXYvO8Tob4fl2Cc7uuEUiRYSnyW9xJH1J4mNjMPT3wNZljlw8TarDlzgZuh91BdC0YSalpISZECrx+FaZI7gj/jkNGYv38Oc0d1Rq0REUeSdX9+k9eBmbJm/i907z+FwJRxdUTfDFM7EU1StEunTvGBXwABnb4YS9sBKrpQJVKKAl6sz0fGW969kGezyqfr4in3neJCQkufr//t8OIU93cwajlSNlg/+2IQlF8Wg1rXxdbdeN87eTs1vE/ry1T+72HUm0Krx10sywzrUs9pvfhMd8gCVSkQnma/9BobveuMe9XDzdiUlMZXokAcUcnPCJ6DgInBfJBSj9gxgi2iwLMmE34qkTI38cS2Z4ubZuwgZPn9z80lduo6gKyFUa1op2/HQwHBEtWgx90yWZCLuRuPu685ni7ez+fhV4yPN7ew91JiMtjZca68mvYzpL/X+i7fpOGUeb3ZtxMCWNREEgRotqlCjRRWc1x5k8a7TFsUc3+3dzKaH5+MSHpM7g5b53vi4FWLuO31468eHtdFMIckyjSrnvTZaVtYfuWzzHtWj2KlVeLo6W1wJbT15zZhsbQoB2HbqGqO62pZ24urkwKyRXYmMTeTczTDCYxL4e+cpEjJceDKGyYEkyUzq34pGlQvue2QOTz93mxLoZUnm0H/HGVx8NHFR8egyPBaVG5Zn6PSB1OugqPxbQjFqT4DUpFT2LDvE0Q2n0KSmU652abqOamdUDji1w3TY9KNsXbCbSg3KU6JyQL5XzT1y5S7Lw8O4P6KhQW0kOgmnC+HY37qfw9DYmdJZtFdZNGiZFHJ3ZuWB80bXVuZXXEjXmzVoAMnNyxiFak0Rm5TK/1bsJTouifG9HiZ8D25Tm/VHLpssSSMIUL1UEQa1zh/9Q2t4WEhxyEqHuhVISEnDwU5Nq5rl6FCvAk72dgzvUI9vVu23eO3BS3esRkDqJYnrwdGkpmsp5e9pMrozNilvqzSVKNC1YeVs+XKyLHM9JJqE5DSK+bpT1Nud87fDLIfzA3cjYklOS6eQBa3FR/H3dKVjfYMYdr8WNdhy4hr7z98iTaujSkl/ejWtRlKqhiNX7lLSz5MAH/c8vc680PbV5iyevtLm9vcf8VxcO3mTqZ2/ZOrSh4VNFXKiGLUC5t61UD5oO52YiFgEDLJCFw5cYfX3Gxn7/ev0fqeLIVDEBtb9vBXYCkC52qV5f8EYytUqbfkiG1iy6zTfrzlg2DjPmF3rfVxIalcBB39XCh25YzQ4nv7ulKtVKtv1cUmpbEqMJaFTJRAE7MLicbgehZj2MCFWBopXCqBYhSIsXrw1xxj0nk6oYlNMVi/WO9uTXtrbahQjwF/bT9KzSVVjZKSvuwsLJw1kyp+buR4SjSAY3HQC0KZmOT4b2uGxtQ9tpUHF4rg5O5BgQRXE170QX5nRY2xQ0Xok3D+7zzCsfT2TyvuyLLPm0EXmbz5mdGWKgkCrWmWZPKA1flkqafu4uxB63/peZFYyKw2MzrK62n7qOr+sP5ytr3oVDO+D1egoeKx9LxcnBwa0rMmAloaVzdpDFxn745psbtz6FYszZVAbSmfUcitIipYtTLe3OrDpjx027aE/SuZe9fejfqdx97oW80BfZhSjVoCka7RM6fAFcVHxIIOc8UnOjID6dcJfFKtYNE9SPLcvBPFei0/55cQsSlSyrW6UKQJD7/P9mgOGcWV1N2U8TDTVi2AfEof9PYMU0sDJvbLl8xy/do+Jv60nLV0HJQyGRFvcg5S6xXHdcQ37kHhkDI+vykMaE5OYSoSJ3KO0KoVxuGW69prO38UmgwaGB+v6I5ezrdZK+nuy7KNXuHQ3gstBkahVIo0qlaCYr4dNfeYX9nZqejSpajFheXzvZmaN7PFrwUa9RXPEJ6cRGBpNlZI5gwz+3Hqc3zYezXZMkmX2n7/FpTsRLJ0yBJ+MBP8+zaoxd/0Rm12QoiDQskZZ3u/fEv+Mqt/rDl9ixtKdOdqeuRmCnUq0WJxUFAQql/TLtUJKYkoam45d5VpwFGq1SItqZWhWvTRLd53hx7U5i9aeCQxh+P+Ws2TKEGMUbUHy9s8jKOTmxH8/bkarMa+CYom0FA37Vx7NUaRUwYBi1AqQQ/8dz1ZZ+lFElcjKOetp1NWyYoIpJL1Eelo6S2es4qNlE/I8xtUHzlt0AyFJBsN2L5be73TJVg4mPCaBCb+uJ12X8eXMGoShEknsWBn3lWdRpWhJaVEWdaXCZqPddEXcSKvij+OVSKMRNJKLWa0sY3KFIQgC1UsXoXrpIrZ3ls9sOHqZf3adMa4Ws6ISBaYMbEO3huZD2PWSZMPaBnT6nC0iYhL5fdNRE60NgRMPEpJZsO0EHw5sDUC/FjVZf+QyofdzJkgLArSsUZY5b3bjVvgDUjTpFPf1yObGTElLZ87KfSbvJ0kyOiTs1Sp0kmRyn0mSZYa1z10wx77zt5i6YAvpWl3GCk9g7aFLFPN1J9xMgI5ekknRpPPbxsPMfMP2UkeZJMQkEnEnCsdCjhSvWNRqOohKpWLkrFcZNKU3J7ed49SOc+xYtC9X91SrVQRfD8v1WF8WlJD+AuTU9nMWg0AkvcS5PZdoObAJoir3bha9TuLA6qOkJqXm+trU5DTO77vMiYt3LKs6iCJCMU/mnf+GsT+8nu1Lu/rABbR6M9WVRQFUAkkdKxEztD7plfxwcXLAy9UZB1O1owSB5GZlSGpWBsnVwXjYs7AHzhX8basNZ+gG90LPnlsmKi6JL5buRMb0S9FLslVXW/XSRayunBzsVJQtmjOgZtOxKxYfuHpJZsORy2j1hqAEVycHFr4/kJY1y2abiDjYqRjSpg6zR3ZFpRKpUMyXWmUDcuzL7T4bmK1enKn7aXV63Jwcsk1gVBnvweiujWiXizSLq/ci+WDeRtK1OuSM/jNXgqYM86Nj2XUm0GLgyqM8CI9l1tCfGFD4TcbVn8IbVSYwosoE9q04bNP1Lh6FaD2oKU161Lf5nplIkkwh94KT83reUVZqBYhep7fpYezm7crrXw5hQR6ETPU6icSYJJv969p0LYumLWfDb9tJS9YQ36MaFHa1mJjs5u6co8AhwIELty1HcwkCek8nEEX0kkz7uhUQBIHGVUqy7/wtk+01VQujqeJPkxJF+OSVdvgU80IvyXSYMs/iXlQmekmmc4PcVc1+Eqw9dNHiR0EQDOLKvZuZTy2oVbYo5Yp6cycixuRDWhQFejapZjKwIuxBAoKVdV5qupbEZI1R9cPLzZlvRnUnMjaRa/eiUKlEapYtiquTg9k+MgmPSUStEi0mb8vA+F7NSEvXsftcIKkaLZWK+9GvRQ0ql/A3ex0YBJUPXrpDulZHhWK+bDp22dhnjvvYMB/SSzIxCSk2vbbYyDjGN5pKTHhstvIxoTfC+GrwD8RFJdBrfGfrNwXqdqiJk4sjqUm2J1pLeokW/R5PjPxFRjFqBUjFeuXY+6/5mZsgCJSoHIC9gx2DPuyFq2chFk9fRUy4baU8wJCk6eptm3SWJEl8MeA7jm06bdx0tg+KQVfY/PUqUaD1I/W5MnlUud0UYrIWUS/Rtl0t42b8x0PacvDibfOzZ0FgRP/mxrI4KhXMGtmFsT+ttXwvQaBRlZLULPPs1aO6ERJtcZUly3Ar7D6ShRWbIAjMfrMbI79dSXzyQ/HlzNaVS/jxTi/TUXHuLo7YEpRhqsyLv6ercZ/MVjxcnCzumWXyxT+7aFS5JN+N7oGbDXvLyWnpfLpoG3vP30IUBAQBq/qRtiCA1cKkmSzJ+I4+Wnw388/7+6S/aTWoCR6+1iMrHZ0deGVaP/6cstS2cYoCrQY2UWquWUBxPxYg7Ye1xN7JvGqCLMv0efehH7/rqPYsC/qNHw9/ycxt0/j+4AyLLiNRJdJqYBOigqJZMn0Vv01cxIZft5MUZzqX6dT28xzdcCqb4ofDtSiEdL3JPC5BMEhPDWpVy2R/NcsUMbqLTCJJqCMS8D9wh89ea2887O1WiJ/f7o3dI67ZzJc6eUAr6pQvlu1co8ql+HxoB4vSRh3qVWDOqG7PpAisnVplVZZJrRKtVcqhdGEvVkx7jRGdGuDv6YqTgx1linozeWBr5k8cYLb2WKd6FS0+/FWiQNva5bPJhVkiNV3L7jOBrD54gcOX7uRYkbWtXc5mGaqT1+/xztx1VnO4ZFnmvd83sP/ibcCw75YfBk0UBZpULWVTykV6Wjo7/t5ntpo8ZIgULM0ZlGKOAR/0YOhnA1CpVQiigMoue+Sq2k5l3MZoNbAJkxaMtbnvlxFlpVaAuHq68MmK9/i8zxxkWTZ+ETJFXNsMaUanN7JHMKnUKqo0fug+6z+pByvnrM/Rt6gScXC2JzE2mZHV3jPUNBMF9DqJ399fxPhfRtL5jbbZrtm6YHcOQVVRo8Nt02USulRBdjR8HDKlfBzUauaM7k4pM+HOA1rVYpMlKSVRxPFyOGmRSdw4FkiNFg+DIBpVLsn6GSNYc/ACBy/eRqeXqFUugAEta1KhmC9avZ7ouCTs1Cp83AohCAI9GlelSZVSrD9ymWvBkSSmaPBxL0SVkv60qlmWot5PLucotzSvXoYdp82LVqtEgRY1ytpkkH3cCzG2RxPG9mhi8/0rFvejfd0K7DoTmCN6UhQE1CqRkZ0bWu1HlmWW7z3H3A2HSdE83DPzdnPmo8Ftjat6b7dCDG1fj7+2my4imxW9JHPhTrhV3cozgaGcvB5stb/cIAigEgTGdG9svTEQF52AJjXdYhtRJRJ2y3a5MkEQeO2z/nQf24H9K48SGxGHd4AXDbrU5uyui4TcCMPZzZkW/RopKzQbUIxaAdOwa11+Pf0/1ny/icNrT6DVaClToyS9xnem1aCmZsu6RIc8YMv8Xdw4fYuAcoWJCn6ANstDpELdMrj5uHFq21nAMDvMVN/RanR89+bv3Dp3lzdmvWJMGYi4E2VSUFV9PxnPZafRlPNBLu1D4571qFmmKN0bV7XokqlWqjCD6lZi+elrhpVe5qpNkkAUcToRhF1kEqJK5Nrx7EYNoLCXK+N6NmVcz6bGY6npWuauP8yqA+eNe2jlAnwY2bkBHepWxMe9EG90bmDlXX/2aFenPHM3HCY6Lsnk6kKWYWj73EfB5oYvhnWkkKM9GzLUQjJrkPl7uvDViM42VQFftucs367OmQAek5DCpHkb+XFsL5pVM+ROjuvRFJUo8veOk2itCPmqRIHtp65bNGrbTl2zHKmbB4p4uTF9aEeTKRCmKOTmBALIokB6aW/07k4I6Trs78SgSsrY85VlXDxyX67Iw9ednuOyl1tq3KMeFw5cRdJLqG1cRb/sKO/SE8DFoxAevm44uToanPeCYaUmS7JJB/CB1UeZ+cqPSJKczQg5ONkzaGpvmvZqgL2jHcMrvGPxvuvnbmPH4v189M+7NOpWFw9/d7OlPgSdhOO1KIpJauaM6k5yWjpbT17j4p1w1KJI4yolaVmzbA5twV61K7B5+hrSahRFW9QNELALj8fxYjj2wXGAYXZvS60qjVbH2B/XcPFORLb9p1th95ny5xbCHiQwvEPuo8WeBRzs1Pz+bj/G/LiG8JgEg2STbEheUIkCXwzrVODpBvZ2aj59tT1vdWvMgYu3SUvXUbaINw0r2Sbum6rR8uuGIybPZaZh/PDfAZpWLYUgCIiiwNgeTRjYqhbtP/zDYt+SJJNkJfowIUWTayFoc7zStg7NqpWmfoXiuUrwLuReiOK96nLeXYXsoAa9BIJASuNSOFyLotCh2+h1Eq0GNbXemQU0qRp+nfAX2//aZwg4AxCgUde6vDf/LTz9PR6r/xcZxagVMDdO32JyuxmkJj0sO3H9RCCzj91g38ojfL5mEuosIe53Lgbx9ZAf0OulHPv66RotK+esp9vo9uxYtM9ibSZZFNAW9yDV1YEpHyzke09n2r/WklPbzpkdqyAKdBzeimNXg5g0byMpaVrjntnaw5co4uXG3PG9s7kjS1cvgU+aRMJW825IWZKpa4Ne3cr957lwJzzHgyvz95/XHqJd7fJPPGk6vyjh58G66cPZc/YmBy/dRqvTU6mEHz0bV8tWZ6yg8fNwoV/zGrm+7sCF2xbD9GUZbofHEBh6nwrFfI3Hvd2c8fNwISrOvOC1KAoUsxJYUczH3bDnaMGw2alVaG0IYOrbrLpZt7olTly7x3k/h4cu3Cz7wppKfiAKdPH1pXS1vGtwSpLEpz1nc27PpewTUBlObD3LxBafMvfkrAKt0v08U6CBIjNnzqR+/fq4urri5+dHr169uH7dNkmoFwG9Ts9nvf6XzaABxg/q8c2nmdRmOm/V+YAx9SYzf/IS/vlqjaGRqWrQkkxasoZtC/eSkphqtoyFppQXsa/UJbFTZVKalCahVTneXLKVm64qytYubTJ3TqUW8Qnwolrv+rz763pSM1ydhnwfw2Ci4hIZ/cNq4zkAO3s7+r/f3awSsagSqduhhk3FDlfsO2dxJi6KAmsPX7Laz7OMnVpFx/oV+fL1zsx+sxuvd2zwRA3a4xCTmGI1kAUgNjGnbmS/FjUsBo7oJZneTS1XSujZpKpF16MoCAxuVcti4U9BgIrFfPNk0AB+23TUsO9p6rUIApoKfrz67Wt56juTk1vPcmbXRdNJ6XqJsFsRbP4jp1KLgoECNWr79+9n3LhxHDt2jJ07d6LVaunQoQPJybaXgH+eObrxFPdDY8wXBpTh8uFr3Dp3l5tn7rD6+03sX3nUYmSVLMkc33ya4hUDjPXGspJezIOkDhWRnTLkhTK+fJIg8PvmY1T7qBsNOmcR8M34blZqUJ4fDn7BhtPXkSTJbIJwdHwyW09ey3Z8wOSedHrdoEShyqijlZlMXqZGST76Z4LZ1/Owb8lqWRZJkrkbaXu6g0L+4u/lapP7z1T4/5DWtSkX4JPD1Zf5W4/GVdh55gbzNh/j+NUgk1JgJfw8zQazqESBEv4evNG5AW+aaZN5r3d6N7f+IkwQHZ/E+VthFlMzRFFg3+U7eeo/k03zdll0icqSzJY/d+c4fvdyMAs+Wsb3o37nn6/WEBV833wfssyVYzc4sPoolw5dRbIh/eJ5oUDdj9u2bcv2+6JFi/Dz8+P06dO0aNGiIG/9THDlyHVUdiqTxscUtlbF1abraN63IT+PdyY5PsW4qpOBlEYlDf8w86VYsu8cu5ZPICEs1uDe0EtUaVKRsjVLAbDrzA2Ls2FBgD3nbtInS5KwKIq8N38MnUa0Zeufuwi9GYGbjytthzSnSc/62dyrWdFLEluOX2X5vnMEhpr/Aj68j0AhUxUCFJ4IzaqWwr2QI/FmKjKLgkCVkv4mV0HOjvb8+V5/ft1whHVHLhm0QgF/DxdUKpENR68YXd16SaaEnwffvdWDMkWyq6OM6d4YP08XFmw9TmRG/T47tYquDSvzbu/mqESRMzdDTY7PwU7NVyM657kyeKINyf+iKNjUzhTx9xOY/+FSjm06ZVULLTYizvhvbbqWb9/4jd3/HDRMKgUBWZL5+7MVvPZpf179pF+2qNoTW88y992FhN18GKHpV8KHt74dRvO+z39S9xPdU4uPN2jyeXmZXvprNBo0mocfiISE3BdUfJawtaJ1blCpRao2roi9oz0fLBzH9H7fAIaZl97DCb235agrrU7P3vO36NG4KgHlcgYmaLSWRVZlmWzux0wEQaBqk4pUbWKbmodekpi6YAu7zgSa1EI0fY1M2zrlbepfIf+xt1PzwYBWTPtrW45zomAIeJnUv5XZ612cHJg8sDXjezUjODoOWZb5cP5mQh8YngtZJ1Oh9+MZ+d0qVn3yWjYJLkEQ6Ne8Bn2aVudW+APStTpK+Hng6myI0v1w/mazYf9pWl2eirRm4ufhYlUlRa+X8rTnmxCTyDtNPibibpRNzwzPwg/v8dvERez595Dh/o94eRZ/vhIPXze6j+kIwMnt55jWfWaOe0Tdu8+M/t8ybflEWg6wPVXkWeSJJV9LksSECRNo2rQp1apVM9lm5syZuLu7G3+KF7e+D/MsU6d9zYeRS/mEJMl0H9MBgKa9GjBn92dUbmR40GfmmVlCJQrEJprXiiwX4Gtx70MlClQq7mv2vK2sPXSRXWcCAdsMmkoUKB/gYwwXV3g6dGlQmTlvdqOot1u24xWL+TJvYn9qlLEewenkYEeFYr5cDY7iXnScSc+AXpJJSE5j1YELJvsQMz4PVUsVNhq00Pvx7Dpzw6J78LeNR2wKJDGFi5MDHetVtCg44GCnpmO9hxO75Phk1v2ylen9vuHzvnNY/d1GEmJyVqlYMXu9IeXGhpqEgijQZaQhBzUmIpbN83ZlE1R4lKVfrkGv0yPLMnPfWWioGGLmPZo74a98f2Y9aZ6YURs3bhyXLl1i+fLlZttMnTqV+Ph4409wcP4mWj5parepRsmqxRHVeXubswZ0GNwKMOG3UdkSMGu2rMqPh7/ijZmvICZZTgoFw8OiiAVZrUGtall8KOglmYSUNIuzVVtYtuesxaKgkDn7N7wHVUr489s7fZ9Y7TMF87StU54NM0aw+MPB/Di2JyunvcY/H71CzbK5SwzeeuKaxcATSZbZcsJCcv8jHLp0x3zp9AxSNFo+/Xu7zX0+yts9m+Lh4pTDsGW+jimD2xi1Ny8dvsYrpcYy992FHF57giPrTjDvgyW8UmIMZ3Y9NNZ6vZ7N83batP0gqkWKlPGn66h2ABzffMbqdTHhsdw4fZvrJ28SGhhusXRRbEQcZ3ZftDqOZ5kn8oR4++232bRpE3v37qVYsWJm2zk4OODm5pbt53lGEAS+3DgF32Lext8N/7B8nUot0qBzbWq1roqDswNOLo407lGfHw5+SZc325m8ZtCHvfhy6bu4JaablLzKxMXJgZY1ypo937FeRTrUtayOvuX4NbNlRWxBo9VxNzLWqpelsJcrQ9vXZeGkASyaPOi5iRJ8GRBFgWqlCtO8ehnK2ZC0bYqE5DSrq/Tc7E9pdfoM0WbLbD91nRsh0Tb3mxV/T1eWfDiEdnXKZzNs5Yr68P1bPejRuCpgUPH/qPNXpCSmGldGcsb/NanpTOsxi/DbkQCkJKQa9sZtoF7HWvxw8AsKZdS9S0vWmI2CzkpachoPwmwLsnrwSMXt540C3VOTZZnx48ezdu1a9u3bR+nSL5/rqHApP+Zf/I69/x5m/8rDJMen4OnvwbFNp81eI+llRs56xaQyviWa9KjPH7VLMnzOcrQ6KduKKzO958OBrU2XfslAFAW+GtGZa8FR3IuKM9lGBlYfPM+wDvVyuKFsQRSt6cUbiI5LokfjqpT098z1PRSefUoV9uRm2H2zgUmiIFAiF/tTFYr52lTUVBQMBUwnZ9SOyy2FvVyZ+UZXpgxKIzwmgUKO9hk5dA+Ny5Z5u9Ckppt0C8qyjF6rZ8Ov2xn9zVAcCzmgUosWo54FUaD9ay354K9x2Y6XrFrcousRDJPp4hWLEhVsvrZjVrLu1z2PFOhKbdy4cSxdupRly5bh6upKREQEERERpKbmvv7X84xTIUe6jGzL7B2f8svxWXyxYQrvzB0JwsMQeDD8WxAEJs4bnWuDlknF4n789cGgHHsbxXw9mDOqG10bVrbaR1xSqlmDlomAwI7Tecs5tFOpqFexuNU5tV6Smb1iT57uofDs06dZDYuRtpIs07eF7Uni9SsWp7gNyviSDCEmCsnmFvdCjlQq7kdxX48cmp1HNpy06BaU9BKH158ADLmezfo0zPYseBRZkuk6un2O47VaV8WriPlJn0ot0qh7XXwCvKnUoBxFyvhZ9BS5+7hSt33uE/OfJQp0pfbbb78B0KpVq2zH//rrL4YPH16Qt37m6T6mIxXqlWXtz1s4t+cSCAJ129Wg1/jOlK9T5rH6rlTcj4WTBnIvKo7wB/G4uzhRsZivzer15kK2syKKgk3tzDG8Q32r4rSSLHP86j3CYxIo4vV8u6IVclKvQjG6NarMpmM5980EQaB+xeJ0blDJ5v4EQWDWyK68MnOZxXYqUbC5zExe0ZqIEM7RJu1hm8FT+3Bk/UlkSc6RdC2KBgGDyg1zRv7+O3Ot2VJVoijg7uPG2z+NMPbz1nfD+az3/zDnKhn9zTCzKTjPCwXuflQwT8X65Ziy2LJ+4+NQws+DEn4eub7O172QVeFYvV6i6GMYmsZVStK2djl2n71psZ0MBEfFKUbtBUQQBD5/rSNli/iwZNdpYjKUSFycHOjfogajuzbKoTVqjcol/OnSoBJbT1wz697WSzKd6ttuLPNCpQblCLkRZtalqFKLVGzwsE5h2ZqlmLltGl8N/oHYiDhUahWyJCFJMk37NODdX0eSkpiKs6uTcXJ6ZtcFFn1iPvBOBr7YOAW/Eg+jlZv0qM9nqycx952F3M+yd+bh587ob4bS7tXnP3/4+TbJCo/N9eAotp26TkJyGkW93eneuAp+Hi60q1PBYiK2Wq2iU33bK0xrdXqS09JxcXIwyhg1r17GqlEDcHEyXSNM4flHFAWGdajHK23rEBRpqOhd0t/T4r6vNcZ0b8KBC7dJ1qTnCEQRRYHqpQrTuHLe3Pu20n1sJ7Yv2mf2vF4n0evt7NWxa7asyr/3fufYptPcvRSMvZM9hdyd2bV0P/38RgJQuLQfvd/pQs9xnVjzwyaLe3ECAsc2nqZC3eyBYc16N6Rxj3qc33eFB6ExePi7U7tNted+hZaJID/Dy6mEhATc3d2Jj49/7iMhnxVCAsM5su4ESYmpHI28z2lZk1GUUDCurN/u2ZT2dSvw2qxlJKZqTBq2qYPa0L+ldZHi2+EPWLD1BDtP30AnSTjZ29GzSVVGdGqASiXScco8i+kBhT1d2fTlG7lSUldQuBYcxeT5mwiJjkcUBWPkYfPqpfny9c64OjlY7eNGSDT/7jnL/osG8emqpQozuFUtWtQoY5Mr/9+Za1n48bJswuOZ/x40pTdvfD3E4vXrft7K3HcXmhQuL1LGn5iIODRWokNrtqrKN3s+tzrW5wFb7YFi1F4SUpPT+GbEXA6sOoaoEpEBWS8hOapJalMBbXGPbO0/H9qB2uUC+GblPg5dvmOc8Qb4uDOuRxOb3DeX7kYw6vtVaHX6bIZRJQp4uxXi78mD+HfPWRbvMh8JOmNYR7o1qmL2vIKCOSRJ5uT1e1y9F4WdWkXTqqVsEjK+ERLNN6v2cepGSLbjmfXnBrWqxQcDWtlk2E5sPcvq7zZyYf9lZBmqNqlInwldadbbckHW8NuRDKsw3mpkozVqtanGnF2fPVYfzwq22oMXY72pYJWvB//Aia0PC4pmIqTpcN12lfhe1dH7uhiOAfM2H2PDjBH8OK4XUXFJhETH4eLkQPkAH5u+zJIk89HCLaRr9TnCrPWSzIOEZGav2MucUd1I1+lZsf8cAoYaXHpJQi2KTOjTQjFoCnlGFAUaVi5Jw1y4Gg9cvM17v20wmRqQeWz5vnPUKR9AuzqW8zkBGnSuTYPOtY1eEFuDtbbM34UgCMiPobMniAJ12j7fkYx5QTFqLwHXT90ymxcnYHDLOJ0OJqmTIdxfBsIeJHAr/AHlA3zw83DBz8PFbP/xyWms3H+OtYcvEZuYgpdrIepXLEZItPmwab0kc+DCbWISUpg8sDVD29dj+6nrxCWnUsTLjU71KuJWwBFqCgpZSUxJY8r8zVZz3URB4J89Z20yapnYaswyuX0hyGaBc5P3EwXsHe3p9EabPPfxvKIYtZeA/SsOo1KrzGq6CTLYB8WCVg92D6PN0iwUhMwkOi6J179ZQURMovFhEB6TwMajV6xeK8mGUjK+Hi4U9nJlWId6Nr4iBYX8Z/Pxq1YFvcHwuT1/K4ztp67ToW6FXBssW3Bwtjdbpd4UokpA0ssZ/xaxs1czY/2HePpZz9t70VCM2ktAUpx1CR4BEHR65AyjphIFitug5vD5kh1ExibmmN3a6jRxtFc+ggrPBpfuRiCIgs37WFMXbOHU9WA+GtLWrGGLiElk1YHz7Dl7E41WR+WSfgxoWYsGFYtbNIZNejbg4JrjNo+9SY8GhN4MR2WnomGXOnQd1d4oz/eyoTxRnjB6vZ4Nc7ex+vtNPAiLRVSJVG5Yjje+foUqjW0Pkc8NRcsVtloEULITkTMMjEoUaFenAh4uTiSmath8/CpHrwQhSRLVSxehd9Nq+Hq4EBwdx9ErQXkel5erM5VL+Of5egWF/MROrbJBOTI7aw5dpEGlErQ3oZd69mYob/+8Fo1OZ1xxRccnsffcLV5tW4eJfVuYNWwt+jVi/pSlxNig12jnoGbSwjFGPciXHUXy/AmiSdUwutYH/DphEVFB99Fr9WjTtFzYf5V3m05j9febCuS+7Ye2tDgrlAXQVPIHlYhKFPB1d+G9fi24fDeC7tMWMGfFXg5dvM3hy3eZt/kYXactYNeZG1wJinyscY3s0tCYs6ag8LRpWrWURcEBU4iCwLK9Z3McT05L591f16HR6rK5EDP7X7r7DDtO3TDbr72jPXXaVDd7PivtXmupGLQsKE+UJ8g3I34l6LJ5aag/3v+bG6dv5ft9vYt4MnrOUICcpT5EAcnFgdTaxXCyt6N/i5osnTIEB7WasT//R1JquiH8P6O5JMvo9RJTFmwhKi7J5jGoREMRyUwx4zc6NWCgDXluCgpPipY1y1LU281ivbRHkWSZqyYmd1tPXCUpNd1s0IkoCCzZbT6VBSAyKHslAfmRf8sYAlDenP2qzeN9GXhp3Y+yLHP12A32Lj9MUlwyrp4uaNN13LkYhEqlon6nWnR6ow0eNgik2kJCTCL7Vx212m7l/9YzbcV7+XLPrPSZ0BUPf3eWzFhFyPUwANT2atq+0pxXZwzEztURt0KORlmipbvPkJSqMVkaRMYwG7oSFGG1ErCdSuTXd/pw4OIdY2Rjj8ZVKOr98m1gKzzb2KlU/PpOH0b/sIbI2JyFPM1hyttw9maYMa/NFJIscyUokuPX7pndX3Ms5IAgCEgqgeSGJVDHpOIQGI2gk5Cc7dBU9MNVI+HqaT4y+WXkpTRqqclpfNH/W05uO4dKrULSSzl0Ki8eusqyr//jy01TqdHCfK5U2K0Irh0PRKVWUaNVVbPRRpcOXbNpA/rsnku5ezG5oM3gZrQe1JTQmxFoUjQULuVr1m1x6OJti7Wu9JLMsav36Nm4KmsPXzL55RUFgd7NqlO3QnHqVni+q5grvByU8PNk7efD2Xn6OnvP3+JuRAx3I83va6lEkRbVTQiQC5gVDc7KmB/XUMrfk1kju1KhWPaK8s36NOLktnMktqmAtqQXGlEguUVZQ5kBUQBZJk0QOHcrlFplA3L/Yl9QXkr345zX53J6p6HybGaZ80eRJZm0FA3Tus0kzkS+1f2wGKZ2/pJh5ccz89Wf+HLQ9wwuNoo5I+aSZkK6xuackwJWgxIEgWLli1C2ZimLfvh0G0q66/QSkwa0olHlEgBGt03m/xtXKcnEvs+/QKrCy4WjvZrujavy3Vs9WPzhYDxcnMzKtMmyzKvt6uQ4Xq98MZvD8YOj4xj53UpCHymH03pwU1yrFkVb2ttgxDLJ/LcgIAgC8zYfs+2FvSS8dEYtJDCcg6uP2WRkMg3b1j+z1/RKiktmYvNPcpQ91+skdi0+wCfdZ6HXZzcKlRqUs8lgPSsKANVLF7G6t+Dl6kyqRstP43rz6zt9aF+3AnXKB9ChbkV+e6cPP47t9VjCtAoKTxsXJwe+fqMzahPfBZUo8OXrnahSsnCOc7lJVdFLMqkaLYt3Zt9jcyrkSP33u1isZC/JBo9JYqrtFcJfdF66J86xjadylYsiSzKntp9j8NTexmMbf9tBZFC0yT4kSeLc3kuc2naOhl3rGo/7BHhTt31NTu84b/F+Qz7uY+MryTvnboWyZOdpjl4NQi/JVC9VmCFt69C6Zlmjb79v8xostbKRHRwdR89P/2LuO31oVLkkjQpY+VxB4UkiSTJzNxxm0Y6TJl3xapVIkUcqv8uyzNz1h1m4/WSu7qWXZDYfv8LUwY8ogDjYobZTWdy3BkhJSzcr0hx1L5rtf+0j9FY4Lu6FaDWwCVWbViqQpPFngZdupaZJSUcUc/eydY+oDGxbuNuiURRVItv/3pfj+NSl7+ATYF5QdfwvIyldrUSuxpZb5qzcy4hvVrL3/C3S0nVodXrO3gpl0h8bmb1iL0cu32X/hVuoVQIfD2kHGPbGzJGcls7bP/9Hclp6gY5bQeFJ892a/fy13bRBA0jX6vlg3qZsBuf3TUdzbdAySdFocxivEn4e6K3kmIp6iTGVJjCi8rssn72OxFhDVLJer2fmqz/ySqmxLJ6+kt1LD7Lht+1MbPEpUzp+QUpiap7G+azz0hm10jVKmJWLMoWoEqnWNLsifUyk5VLwkl7ifkhMjuPuPm4suPIDQ6b1xc3bBVEUsHNQU715Jeaemk2PsR1tHldemLvhMP/uPZfjeOaXduX+87z9y1om/raB7tMWsvfcTea82Q0PFyezfUqyTGKKIUFbQeFFIfR+PMv25Mw/y4oM3I9P5uDF2wAEht5n/hbbVUAexcvVOUckZdeGlVFZmoRLMvZXIkmMTiD4ehgLP17G6FqTCLsZzth6H7Jn2aHsY86YjJ/be5lZr/6U57E+y7x07seGXergVcSTuMg4mzdyu73VIdvv3kU8CQ0MN9teVIn4lTAtUePs6sTrMwbx+oxBtg86H7gTEcOCrSdsbi8Dx64GERh6n4SUNMuNBTh+NYgBSt6ZwgvCxqOXLYbkZ6ISBa7ei6J1rXL8d+giomBxC8wsoiDQt3nOZGsPFyc+HNiar5btRhDIvmqUZMREDU5nHua+ypJMTHgsE1t+Rky4+ahNSS9xdOMpgq6GULJysdwP+BnmpVupqdQqPv53Aip7NSq1+ZevUosIosCkhWMpUia7lFPnN9oiWAiikPQSHYe3zrcx5wdrDl7I9TWZJWKsuT9kmVwrMVgjRafhv3vH+ezCSj67sIpNIadJ01sXWFZQyCuyLLP+yGUGfLGEeVuOWzVomdfYqw25nbfC7ufJoKlEgWK+7rzSJmcUJRj2t78d3Z3yAVlC/nUSDtcicV93ATEt+/aIXidZNGiZCKLA0Q2ncj/gZ5yXbqUGUKNFFeYen8m/M9dyYM0x9Fo9joUc8PR3J+FBEiq1Ifm6z4SuOUqhA3Qb3Y6tC3YTcScyRyl1QRSo274mdTs8W6uWq/ei8nSdXpKNKiCW1BFqli3yGKPLztmYO7x/ZglJujREBBBga9hZfr6xjR/qDqeyu5KTo5C/yLLMjKU7WX/kck7VHQtIMjStVgqAQo72OVdTVlCJAh3qVmRS/5YWSy21rlWO1rXKER6TwNmDV/mu/3cIuryXpskkPfXF2wt/KY0aQOnqJflo2QQma3VoUjQ4uTrZHEBSyL0Q3x/8gh9G/8HRDaeMeW5qezWd32jDW98Oy3UwSkHjoFZZb2QGa25aURTo2bhanvvPSnhqLO+eWkS6ZJh9SsjGBNb49BTePrmANS3ex8Ne0bpTyD/2nLvJ+iOXgdwZpXoVihlFudvVqcD+C7etXjPtlXaUK+qDVqenTBEvPF2dbb5fES83oj1d88WgyZJM6eoFG5j2NHhpjVomajs1avfcvw2efu5MXzuZqHvRXD91G5VapFqzSrh5uRbAKB+fljXLcuzavTxda6cS0VqRwsqvEjKr7x0nXdIZjNkjSMgk6TSsDznFsDIt8+V+CgoAK/adz1X9MoCyRbz435vdjL+3q1OeeZuPEXo/zqwbslqpwvRqUs1sMrctlK9bBkcXR9KSrOx1W8HVsxCNe7x4NQyfreXEc4hfCV+a92lIkx71n1mDBtC2djlcnRxyLViiEgVcnR0tXpearmPLyWuPMzwjeyIumTRomcjI7IkoOCkxhZeT6yFRNhs0DxdHPhzUmuXTXssWGexgp+bX8X0semku3Y1g+T7LUZXWcHR2oFZr854RUSUa4gAsfGkFQeDT1ZNQv4DiCIpRKwAy3ZFRwffZu/ww+1YcJjrkwVMZi0ar4/s1B+j52SISUzUmzYW5z75KFCjkaE9MYopFCTtREDgbGJoPowWNZD0YxJY2Cgq5wRblmzKFvVj1yWvsmTOGgS1rmQy1vx4abTVR+p/dZ3K1IsyKLMt89+ZvHNtoPsCjVNXifH/wCxp0yQg8eeQL7uBsz1dbPrJoGJ9nXjwz/ZRITUpl3c/b2PT7DqKC76NSi9mCSARRoHnfRkz8YzQuHk9mP0ir1/PO3HWcvhFiMsjDz8OFV9rWoVO9ivy59Tj/HbqULdKxYnE/PnutAwO/XPJExgtQyS2Ao/dvoJdNPxhUgkgltxcnUESWZRK0qdiJKpzVphUhFAqeNrXKsebgBbNRvAKGKMSyRX0s9nMmMMRq5YrwmETuJyTj5/FQXT9do2X/yiPsWrKfuKgEipb1p/PIdtTrWDPbym/PskNsW7jXbN+iSmT6usl4F/FkxrrJHFl3ks3zdhJyIxwXLxfav9aSzm+0wdnVfO7p845i1PKB5Phk3m/1Gbcv3jMmNz4aFSlLMof+O074rUh+OPwl9g52OftJSCEmPBYXTxezav+5YfvJ65y8br5+W1RcEqULe+Hr4cLUwW15q1tjjl+7h0arp2JxXyoV9wMM+wBXgiItltGoXT5/DE3/Eo04FG3elamXJfqVaJQv93qaaCUd/949woqgI0RrEgCo6VGS18u2oolvwVRAVzDP4Na1WXf4EpKszxEokumC79aostV+BEGwqswP2RdPcdHxfNB2OncvBRsl/IKuBHNo7Qma9m7AtOUTjW7C/37cbHnvT5bZvfQgr0zri0qlonnfRjTv+/x/X3KD4n7MBxZMXcadS8FW9SQlvUTgmdvsW3442/HIoGhmDf2Jvj4jGFF5AgMKj2Ryu+lcPnL9sca1+uAFixJXKlHgv0MPRZk9XZ3pVL8SPZtUNRo0gKHt61oM53d1dqBL/Uomz+eWRj7lGVCisaHvLF/9zH+/UbY11TyebhmbdEnHptAzvHViPv0OfMfbJxeyM/wCOsk2pRqdpOe904uZe2O70aABXIy7x4TTf7MqyHrdPYX8paS/Jz+M7YmTvR0Chs91pqC3h4sTf0zoh6uz+ZD7TOpVKIbOQl6nAAT4uOOTpULGzFd/4t5Vg/v+0UnxkXUnWfz5SsM5Webm2TsWXZeSJHP95E2r43yRUVZqj0lKYirbF+21ubSMIAps+2sPHYa1AiD8diTjG00lKS452+ru/P4rvN/qU77YOJX6HWvl6Eer07P7bCAXbofjaK+mbe3yVC2VXS08JDreYgKpXpK5FxVndcxta5fn9Y71+Wv7SVSiYHTRiIKAo72an8b2wtnR3vqLtwFBEHi/cjequBdj2d1D3Eg0KLdUdg/g1dLNaVvYthL3BUV8egrjTi7gRmI4AgIyMiEpDzjx4Ca1PUvxQ93hOKkfvhc6Sc/28POsvneMu8nROKnsKensw5nYOzkm9JkBMt9e3URzv8oUdvJ4ci9MgUaVS7Jt5ptsPn6VC7fDUYkCDSqXoH2dCjZXm2hWrTQB3m5ExCaadGXKwGvt6hrFhIOuBHNmp3lhBFmWWT93G69M64uDkwMqtWjxWSOIAmr7vKfvWCLsVgSXDl1DEASqNa9EkdL+1i96CihG7TEJDQwnPc32wAVZkrPpQv468S8SY5NzfFAlvYQgCMwZ/gv/Bv+BKkue2aGLt/lg/mY0WYSWF+04Rfmi3vw+sT+eGRFZ7oUciUlMMTsWQcDY1hKSLNO1YWVK+Hlw6NIdrgdH42Cnpk3tcvRrXgNfj/ytvCsIAl0CatMloDbpkg4BsBOfjY/ql5f+41ZSJGCIxISHxuh8bBDfX9vMR9UMFR10kp7JZ//hUPQ1owFM1mm4r7FeVXl9yElGl29v9rwsy5yJucPmsDPcT0vE19GNrgF1qO1Z6oVVX38SuDg5MLBVLQa2qpWn61WiyI/jejHq+1XEJqUaXZmZk8HeTavRv8XD8lJn91xCEASTNR0zSUlIZcLnS3n1tTbU61ibE1tO59jeyESWZOp3qp2nsZsjLjqeOa//yoktZx4eFKBx9/pMWjjmmYv6fjaeFM8x6lzmZ4migG9xgy7kg/BYjm86Y/YDLcsysZHxHN9yhiY96gNw4XYY7/663qTbPjDsAcNm/cvaGcNRiSJdG1bm1w1HzK7WZBm6NDDvNpRlmX/3nGXRjlPcT0gGwNnBjr7Na/BW98Y42efcF8xv7J8RYwYQlhLLgagrZrdMJGQ2h55hbIWOeNg7s/TOQQ5n7A/Ktmy0ZOln2d3DOKrs6VO8Aa522Sce6ZKOj879y4Goq6gEEb0soRJENoaeppVfFb6qNeiZmQS8jJQp4s2az4az/sgltp+6TnJaOuUCfOjfvAYNKpXINumQJdmmCtlnA0M5Pncddct6ojezUhNVIm7errQa1DTfXktqchrvt/qMkBuPaN3KcHzzaT5oM52fj32NfT55avIDZU/tMSlROQCfYqbFi00hSTKdRhhqJoXfirA4QwPDBzU0ywdq+pKdFj//IQ/i2XLC8CDt06w63m7OJot9qkSBkn6edDJj1FI1Wl6b/S/frN5vNGhgKI/xz+4zjP1xDemPlOR50TlrwmX4KFpZz+X4YPSyxIqgI7kwZdlJ1afz640dDD0yl/tpCdnO/XB1MwejDH/jzCjRzP/vj7rKz9e35fGuCvmFeyFHhravxz9TX2Hd9Nf5ZlR3GlYuSZpWx/ojl5n5727+t2Iv6X4uVvfiZZWI1tMwsTmTmkSNMW0RRQExQ9FfEAxScq5eLvxv5yc4WZDbyi27lhzg3rVQky5PSS9x+0IQex+JEXjaKEbtMVGpVAye0tt6QwwGqlLDcrQa2AQAJxvCaiVJwtnN0C4tXcediJwlbR7l87+389Pag7g4ObDg/QHGMGRREIyBI9VLF2Hee/1MrrZSNVpenbWMK0GRpscky1y4Hc66DFmh5w1ZlrmREM6hqGtciQ+xOrEwXpeL/u+nJfAgPSnvg8SwuotIi+OLS/8Zj8Wlp7Au5KTZlZ+MzH/BJ0jUvpi1sp5nTl4PptOU+UxfsoO1hy+x+sAFZu8/jVjE3WigHkUWQFPJDznDIyTLcEyl448r3zNwck/qtq9Bw651ePfXUSy59Qulq+e9UK8kSYTcCOPOxSBSkw1qJdv/2mNReMEQI2A+xeBpoPgo8oHuYzoQfD2UdT9vtdiuVpuqfLpqEnYZhqR09RIUKeNP+G3TxgMMhjBTyiYyxvpeDBgevn/vOEVsUiqfvdaBfz96hQu3wzl7KxRREKhfsbhRr84UC7edsMl4rtx//pkvN3Nfk8j52LtIskx1jxKEpsTw7dWN3Ex6+J4Xd/ZmQqUuNPczH7Kt0WuJSbP+/osI2ItqhFxrt5hGL0scvX+DkJQHFHP25nTMLXRmcvgySZd0nIm5Q0v/KvkyBoXH525EDON/WWvMX8uaxxbbphwu+wIhTYcYm4ogPZyy6PxcSW6Y3VClpmuJliVGfDUkX8YmyzJbF+zh35n/EXHHIHzu4OxA5xFtuB8WY1ELU5ZkYsKsVwR4kihGLR8QBAH/kr5WN3zP7LzIF/2/ZcAHPanTrgaiKDJ8xkBmminWJwgCPcZ0xKuwJwDOTrbvYcnA+iOXGdKmDuUDfKhZtig1yxa1ep1OL7HahjI1MoZCis8qyToN/7uynu1h57PJbglZ/ptJSMoDJp1ZwqxaQ2hdOKfKQoI2lXEnF3A9IczqfSVk3j61kGLOXvg4uNoUFGILl+NCKObsjdbGtAGtbHshXIWCZ9mes+glyeT+ts7Fgbhuhs+dqNVjfyUS+zv30VT0R1PBF0ys4iQr5aByw9+freCfL9dk+1poUjRs+G27IZ/Wwp6fqBLxK2k5If1Jo7gf84mzey7a5MY6s/siH3b4gg2/bgegzZDmvP3zG9g5qBEEAbWdyuCKEKDzm21569thxmt93V2yqRBYQyUKbDp2JVevIy4plfhk24RSXZyenc3hrOgkPe+eWpTDoIHhu/mo607O+JlzdaNJJZOvL/1HYKL5orCmCEmJyTeDBhglmSq721bQsfILpLryIrDzzA2bag5KdirSahYloVcNNJX9TRo0tUqkYpY80sch+HqowaBBDsMl6SU0qekW/e6SXqLLyHb5Mpb8Qlmp5RPWNnsfbffz+D+p26EGAeWK0HNcJ9oMacbefw8TcScSN29XWg5sYjIPZFL/Vkyev8m2e0G2IA9LaPV69p+/xcGLd2xqLwBdGlhXWHga7I28zIW4oFxfd1+TyIn7N2nsW8F4LCI1jr2RV3IVvZgVEcGiQLMtqASROp6lAShZyId6XmU4G3vXpAFWCSL1vcsS4Oz1WPdUyF/S0vNHr1QQDN87DxtScWxh65+7c0j6ZUWWZdT2aiS9lCNYRBQFqjSpSPO+DfNlLPmFYtTyiapNKnFqx3mbjRsyLJ+5lvcXjAXA1dOFHmM7Wr2sXZ3yeLo4EZtkPRBAAHzdretMBkXGMvan/wiPSTAp0moKRwc7BrfO33yY/GJj6Ok8G5PItOwu1f2PYdAAm8agFlToZb3JliICXYrWxsvh4Qr90+r9eOPY7zzQJGbrX0TA18GNadX65Hm8CgVDmSLeXA+OylNl7KzIMtSvYNtq3RbCbkWYTRHIRJeuo26HGpzbcxm9zuDWVtupaD+sFWO+H/7MKf0r7sd8ovPINoY/bi7iA45tPmO9kal7NaiELeWY9JJM90aWgwVS0tIZ9f0qouISM66x7qu3U6tY8F5/Cj9jSZeZRKUl5Hl1lGk80vTpfH5hFd9es21VnFdEBPoUb0BD7/IAqDI+QJmyYHW8yvBBle7Zrins5MHSpm8zvGwrvB1cERHwcXBlRNnWLG7yNn6Oj68bqpC/DGhZ67ENWia/bjpqk8q/JEmkJqdZ3BYp5FEIlZnIy6yc3nGBgZN78uXGKXy5aSorwubz3ry38jV9IL94tkzsc4xXYU+mLZ/IjP7fArLZ5XxW4qPjSUvR4OicO3X2AS1rsnL/eavSXH2aVbOqKr7l5DWi4627KDODYEr5ezL/vQF4u9lerfdJ4+foxp2kyFybNTe1E418yiPLMlPOLuPY/cACGV8mKkGksKMHI8u1wc3OiWP3A9kYeprI1Hj8HN3pFlCHxr4VUAk5Hzqe9i68Vb49b1lQHVF4dujasDJ7zwVy8NKdXFXWNkX4gwQu3g2nZhnTgV+RQdEsn7WWnYv3o0lNx8nVkc4j2jLww57GoLNMWg1owo5F+2y677Kv/+O7/TOo3vzZ3HbIRDFq+UiTnvX54/w3rP9lG1vm77Rq2GQZkmKTcm3USvh58r83uzF5/iYkSc4RUWWnFhnarh5vdW9sta+9524iCJZL2NurVfRuVp22tctRt3wxm2WYrsSH8M+dgxyIuoZe1lPetQiDSjWhY5GaiCYe1PnBrcRIUnXpeVqnjavYEXtRzbnYuxy5fyPfx5YVtSDSyr8q71bsjIe9wUXcxLeiotD/ghGTkMKxa0Gk6/S82bURdcoX49+9Z4mMfbwcxthE09sPQVeCmdD8E1ISU5Eynj+piWms+2Ur+1Ye4YdDX+Bd1MtYJaRuh5pUblSe6ydvWZ0kq9Qi637eohi1l42SlYvxztyRCALGCEdzqO3VuHlnd+FFxyWx+2wgiakaivt60LpWOZNiqq1qlmXDjBGsOXiBkzeC0aTrCPBxp0WNMrSrXd5mgeFUjdbqzFGtEvlwYGub+stkZ/gFPjm/AkEQjAEN1xPC+OzCKo7dD+Sz6v3y3bCdi73L+JMLLeZxCQgIAtkmAi5qR8ZX7ETv4g0A2BZ2zig/VWDIsCviIvsir9CxSA1GlG1D8UK2K9MoPNtotDrmrNzH+iOXskU9Vi3pz6/j++Jkr2bUj6sJf5BgU1Tko3iZEW6YPfRnUhJSTWrJxkTEMqzc28gy+AR40WNsJ3q/24WvNn/EV4N/4PSO8xbvqddJXDyUPxXuCxLFqNlA0NUQNv22g8tHrqO2U9Gwa126vNkWT38Ps9cM+KCnRaMmqkTaDmlm1EzT6SW+Xb2fVfvPIyOjEkR0koSLkz2fvNKe9nUr5OijsJcr43o+ns5bxeJ+XLwTbvaLJQoC5ay4MB/lviaRzy6sMuxrZTEemftcW8POUd+7HN0C6uR94Jl9yhJJOg0qBD469y9aSW9xP621fxUmVe7BtYRQotLi8XJwpbFPeRxUD3MA49JTLFY3yA90ZCThynq2hZ9nX+QV5jcaTTnXwlaufHaIT09he/h5wlJjcbNzon3hGophxhAxOPXPLRy4eDvH5+hacBRvfLeSfz96hQXvDeD9PzZy6W5EhpSdYNOeNmDyOxl45jaBZyxEL8sPo/Pvh8bw1yf/cvC/Y3ywcBwf/zuBic0/IehKiMX7ZhVWf1ZRjJoVNv6+g5/GzUelehj2eu3kTZbPXstXmz+iRgvTgRj+JX0Z8EFPVs5Zn+OcqBIp5ObEK5/0Mx77ZtW+DINmIHO1kZyazpQFm3FxcqBxlbxL4Jijb7PqrNh3zux5SZZzrVi+IeQUkoVVjojAirtHrBq1NL0WnaSnkNohh8szRadh6Z2DrL53jDhtii2asAgY3JO/3NhK3xKNaOZnWveyiJMHoiCgL2DDlolelkjNCExZ2nT8E7nn47L63jG+v7oZnaxHJYhIsszvgTvpFlCHqVV7vdSCyudvh7Hvwi2T5/SSTGJKGkt2nWZS/1b8PXkQF+6Ec+LaPXR6idjEFFYfvGjy2kz8PFxwMlFk+Nb53KWxyJJM4OnbjKr5PghQtIy/sUipKVRqkYadn82I56wo0Y8WuHT4Gj+Nmw9y9krWsiSjSU1nWreZJDwwn2A7ctYrjJz1KoXcswdVVG1akR+PfGXMQ4uMTWT1gQsmH8qZx+ZuKBjR0HIBPrydsdrLWlA0818d6lagY73c7fNcjQ+1uFqSkLmRGGbW8J24f5OxJ/6kxc7PaLN7Bt33zWbx7QNoJYOAcrJOw+gT81l4ay9xWkNpHVvMjwwEpdxne/gF3jj2O/MCd5ls1y2gbsG6Hk1geE/CuRof+kTvmxd2hl/gf1c2oM1IQ9DJkvHvvTn0LN9cLdiI0WedzcevWkyN0UsyG44aRBEEQaBmmaK82aURY7o3YXzv5jhaqfwxolMDk/va9o6PUTVDhoi70RZTkmQZeo7vnPd7PCFe3umUDaz5fhOiSjRuuGZFlmTSUjRsW7iHAR/0NHm9IAgMnNyT3u905tKha6QmpVGicgDFK2ZXe9h1xnKUnSzDlaBIwh7EU9Q7/8O1R3RqQKnCXizecYoLdwzKGcV8PRjSpjb9WtRAtCV/IAt2ospqnphKEE3qI64LPsnXl9dmq3odpUlg7o3tHH8QyA91h7Hw1l4CE8LzHLafabD+vLWH8m5FaO1fNdv5sq7+DCrZlOVBeZtIZMpj2bJ6fJTbSZFUcivK0fs3WHXvGNcTwnAQ7WhbuBr9SjR66oVD5YwVmdnzyKwPPskbZVu/tKkFMQkpVt2ISaka9JKUw/i5Ojnwvze78d7vG9BLsjEcPzOYq12d8vRtbrpQbr0ONVHbqdBp8yaRllnDUZazl8MRVSKCKDB16buUrlYiT30/SRSjZoEzOy+YNGiZyJLMmV0XzBq1TOwd7anTrobZ8wkpaYiigKS3/AhMTNFAHrYsgqPjCAy9j71aRZ1yASaDSNrUKkebWuVI1WgNe3mO9nkuNtnEpwK7Isy7UFSCSBPfijn6j05LYPYVg7s2p7yVzKkHt1gRdIS1wSceW6UDDG7Qf+4cpKVfZU4+uMWpB7eRkelQpAYTK3XBz9GNBbf2kKzT2NxnedfCzK03ggPR11hy+wBBKfdzNSYHUc3/rqxnTfCJbEZx8Z0DLLt7iJm1XqGl/9OLPruTHEVwygOLbWQMSev9S1qPvn0R8fN0RSWKFg2bh4uTydWcLMtcD45GluVs+WWyDG1rlWfmiC5mV4Fu3q50Hd2eDXO321x5wtT9Adq92pLIoChkSaZ688p0HdUe76KeXDx4lbTkNIpXCqBwqfyR6spvFKNmAVtEQ61l49tCcV+PbKrdphBFAX/P3CU7h8ck8MXSnRy7es94zNFezZA2dRjTvbHJL4cpX31uaVekBr8G7iBGk2TS+OhliVdKNctxfEPIKatfxhVBR0nS2aZNaQ0JmQtx9+iydxYxWcrELL5zgMKOHvzW4A32R17hfC4kt1J16XTY+zUAnnaFGFCiEW38q/HR+X+JSbecDygiEJISw5rgE0DOVZ5Olph8dgnLmr5D2acUUJKiS7faRhSEXE0EXjR6NK5icZ9aFAV6N80pnA3w796zZrcadp8LZMX+cwxpY34vevQ3Q4mPTmDfiiOo1CokvT7XeXGCKFC+dmk+/PttwGDo1v28lX++WkN8dEZtPwHqta/J+LkjKVr22QpuUvbULFC1SUWzdY4ARFGkerPHnzW3rV0eZwvGRCUKtK5Zliv3Inn/jw30m7GYN75dyeqDF0jVmNaUe5CQzPD/Lefk9eBsx9PSdfy17QQzluR0IWklHTvDL/DZhZVMPbeMv27t40EeRHkdVXb8Un+EUZ0jcz0mIiAi8Em1vtT2Kp3juptJERbXXzI5ZazMkZs1ZoyJumcRaXEMPPQj1xNyt8cVkvqwZE+sNplV947zW+BOqwYNDFW+fw3cYbGNDHx4dlmuxpSfFHXyzOYaNoVelijp4vuERvTsUbmEPz0aVzX5LqlEAT8PF15tm9MwabQ6/th0zGLff2w6ZrE4r529HR//O5G5J2fRY2xHWgxogndRT4vPsUeRJRkn14dKIYs/X8mvE/56aNAAZIM4+zuNPybqXrTNfT8JXvqV2q3zd9n0+w5unruLk4sDTXs1pP3Qlji7OtFnQjdO7zRfhkWSJOKi44mNisfTL+/7B04Odnw0pC3T/tqWIxFaJQq4ODmg1et5++e1qEQBvSQjCHD2ZiiLd5xi/nv9jas4WZYRBIHFO0/zIDHFpJyODGw8doVBrWsZ66qFpsTw9smFhKbGGKPZ9kZcZv7N3XxavS+ditbK1Wsq4+LPmubvsyPiAoejrpEu6ajkHkCvYvXN7gs5ivZWow5FBCq5FeVqQqhFA1jHszTJ+nSu5dIoZSVdevzK3jKyzSu9NMk20dt7Kfe5kxRFaZcn7/7xcnChlX8V9kddNRlMIwAe9oVo7ms6svRl4ZNX2+Hv6cLS3WeME09BgCZVS/HxkHZ4uuZU5Dl1PZjEVMsr3MRUDW0n/0HPJlUZ0qYORb3dcrTR6SXK1ylDhbplAYi/n8BHXb7mxqlbFsWLM1GpVTTqbqjhGB3y4KGK/yNIeomkuCSWfrmG9+a9ZbHPJ4kg59X5+gRISEjA3d2d+Ph43Nxy/vEel3++XMOiT5cb/9CCYHjge/l7MGfP55SoFMCiT5fzz5drEFQCsok9L1El4lXYgx8Pf4lficebnR64eJtf1h/mZqhhH0YUBFrWKEOAjwdLd582eY1KFCjl70XVUv7sPB1ImlZLcV8PImITSbewYawSBQa0rMkHA1qjlXT0P/g9kWnxZh5UAvMajqKmZ/6nFGRlb+RlPjz7j8U2bmonplTrxUfn/rXYroSzN4saj6P7/tmk6DT5sAP3bDGjxoBcTzTyi4jUOIYf/ZV4bUq2z4uIgCAIfFPnNZoqyiiAQdzg/O0w0nV6ygf4UMTL/HNs28lrfLTQcqHhTFSigJO9HfPe60+l4n5otDpW7j/Pin3nCHuQgJ1KpF2dCgzrUI8KxXyRJInTOy9wYNVRbl8M4sZJ0ykHgiDQ7a32lKlRiosHr3D3cjB3LtyzuC1g52jHuphFxpzbgsJWe1CgRu3AgQPMmTOH06dPEx4eztq1a+nVq5fN1xekUTu45liGTmNORJWIT4AXfwf+jNpOzdk9F/liwHckxpiWthHVIrVbV2PW9k8ee1yyLBMcHU9SahqFPd1wLeRAxynzibOiyi8KgjHR06acLcEQHDJnVHd2hl/g4/PLzbZVCSLNfCsyp85ruXw1uUMn6Rly+CeCkqPNjl8AWvpVYX/UFauv8fcGIwGBsSf+zJfAkmeJmbUG07aw6Si4J0Fkahy/B+5iR/h5Y0HS+t5lGVWuXYFPfp4HYpNS2XL8KsHRcbg4OdChbgUqFLM86b0SFMGrsyxP1rIiigKFPV1ZOW0ob//yH+dvh+Xw8oiCwA9je+XIcV317UYWTP0HSZJQqUSD3J4k0ahbPS4evEJyfAqiKBriCmz46vwb8gc+RQu23JGt9qBA3Y/JycnUrFmTESNG0KfPs1UOY8X/1hsiDk245yS9RNS9+xxee4KWA5rgVdjDrEEDkHSGWVDYrYjH3jQVBIESfh7G3wND71s1aJBd9smWx7coCHi7GTQHD0Zdy2YUH0UvSxyKvm50beaWuPRkrsaHohJEqnoUp5DatNalWlTxabW+jDj+u9m+ZGBflG2FT/++tZ9p1fu+cAZNjUg9r7JPdQz+Th58VqMfH1Tpzn1NIm52TkYNy5ed1Qcv8L8Ve40h+7Iss3DbCdrUKseXr3c2m4dWuYQ/5Yp6czs8xiZFG0mSCXuQwJf/7OTC7fAcASF6SUYSZD78cxPbZ43Cyf7hvn3/97vTfmgL9vxziIi7Ubj7uFGrdVWmdv6KtBQNyFjVgsxKaGB4gRs1WylQo9a5c2c6d372kvVSk9O4fvKmxTYqtYozuy7QckATbp69a1O/t87dzfdIoIJaSOslmW4ZZWnSJZ3VCCm9LKGXJdSC7TI5Sdo0vr26kW3h541uKgfRjj7FGxjFgzORZIk/b+7h7zv7c/9izHD0QSDzb5pOsH6e6V2iAe72ztxKjGB/1FXS9FrKuvjTunDVbO/pk8BZ7UAJM5OUl5E9527y9bLdxt+zRjXvO3+LzxdvZ9bIriavFQSBT15tz5vfrUInSTaVlxEF2Hv+llkjKMuQlJrOztM36NE4ez6mh687fSY8HMuiT5ajSU23vSZkFr4e/AP/BP32TNRWe6aiHzUaDQkJCdl+CgLbZiAPy8fYOdj2h4qLzv/xlvT3xMUpfx8agmBQCqla0hAkUsGtiMV4NgEoWcgXtWi7QUvTaxlz8k+2hp3Ltu+ikbQsDzrC5DNLsymK/HBtC3/e2oNWylviqDnWh5zK1/6eFpmJ6q38qjCyXFveO72YwYd/Yl7gLpbeOcAnF1bQZe9MjkbbXl1AK+nQZXm/9bJkUd5MwTKyLPP7xiOYc2ZIssyO0ze4FxVrto/qpYuwaPIgGlayLclZxhA1aQm1SuR6cJTVvg6tPZ6r1VlWYiLiOLL+ZJ6uzW+evlnNwsyZM5k+fXqB38fZ1YmA8kUIvRlu1len10lUbmQo3FirdTXU9mp06ZY/PD+Nnc+B1UeZvOhtfIvlj7Crg52agS1rsnD7iceuwwRgpxLp27wGE/u2MLoSewTU5c+bu83P9oCBuUyk3RR6musJYWb6kzly/wZH7wfS1LcioSkxLA86kqv+beVFcDwGOHlS37scXQPqUN29OO+eXsTJB4aNfomHpYcStWm8d2YxCxq9RRV309WRZVlma9g5lt09xI1Eg3pMcWdv9JJEWFosAgL1vcvyWunmNPQp/2Re4AtC2IMEboZZTkwXBYE9Z28yvGN9s20qFfdj7vg+RMYmMmTmP2bLzIDlklFZ29jZIESsSbWeg2gOlVrFlaM3aNEv+3Mi4UEiFw5cQa+TqFC3DEXK+Of5HrbyTK3Upk6dSnx8vPEnODjY+kV5QBAE+k7oavaJJ4gCzm5OtBliSBB283al66h2CDbIRV08cIWJzT8h8THrJWVlVNdGNK5s2OgVc7mnVdzXg+Ufv8qM4R2ZPbIrO2aPZvLA1tk+5D6Obkyr1hcBUJnQf2zhV5lexcx/CU2xLvikxdWfCoH1wYaZ3daws7l+Xbmh4HrOX1RmRhqbnkKHIjWo6VmSS/EhHH9w0+Q+oZxx7K9be032I8sy/7uygc8vruJmYoTxeHDKA8LSYo19nIq5xfhTf7GigCYaLyopZnJGsyKKgk3tAPw9XXmzc0Oz51WiQJ3yAVQs5mt2dQiGavbNq5exeK+kuGR8i3nnWhLPeA+dnmObThN/3+CtSk9L56dx8xlY9E2m9/2GLwd+x9Dyb/NRl694EG5+pZofPFNGzcHBATc3t2w/BUXX0e2NRitrYqJKLWJnr2b62sk4uTysWTT6m6E0690gR/tH0eskooLvs/E3y0m0tpKq0bL+yCUSUjR4ujjh7GiHi5M9pfw9Gdu9CeUDfDLKVpgmJDqO2+EP6NawCu3rVsDdTPn1LgG1+aPhKJr4VDQm13raF6KNfzWGlm5hsvqyJSLS4iyukvTIhKUaPtwPNElWE3ofBw+75yOAQTSjh5mqT2fi6cWEpsSwK+Kixb+FXpY4GHWNNL3hwZmmT2dz6Bl+u7GDLy6uYU3wcSCnDFlWMld+313dxO2kSA5FXWNe4C4W3NzD5bjgAtvnfd4p4uWKnZUkZ51eonRh2wMqBraqxeDWtQCM3/PMCWDZoj7MebMbIzs3NLtiU4kCVUv6U6dcgMnzqclp/DhmHgOKjOTiwas27eOZI+xWBO+3+ozkxBSm9/uGTX/szK5DKcPpXRd4t+nH+Trpf5QnlqcmCMIzFdIPhuTpg6uPsW7uNu5cDMLB0Z4W/RrT653OBJQrkqO9LMtcPR7IzFd+JOKOZR91kTL+LL75y2ON70FCMm9+v5q7ETHGMP3MKMW65Yvx09u9SErV8Nqsf4mKM/8hUYsim796A18PF6v3jEtP5pPzKzj+IHsgjZudEx9X7U3rwqblfR6l/8HvCEo2r3soItDIpzw/1BvOgpt7mH9zd4FFKdb1KoODqC7watYFiUoQGFSyKQnaVLaEnbVaRWBHm2mcjrnFlxf/I1mvQS2IFounmkJEwFFlT4peYzSkelmiukcJZtd+BR+H3Mm2vQxMX7yDTcevmKxPKAAuzg7smDXKZOFfS1y9F8naQ5e4FxWLWyFHOtatSIuaZbBTGTwuS3ad5of/DhgEiSUZMUOkoUIxX+aO722MdM6KNl3LB22nc/VYoMW9NHNR4iYRoMfYTmyYu818E1Fg2PSBvPJxX9v6zOCZCOlPSkri5s2HD8c7d+5w7tw5vLy8KFHi6as9i6JIywFNaDmgiU3tBUGgSqMKePp7WDVqcVG2yTlZ4pNF2wmOynQLGcicRZ+9GcoPaw4ydXAbfN0LER2XZNYkSLLM2sOXGNW1kcX7aSUd404u5FYW11QmCdpUPjy3jBFlW/NW+faAoabZvsgrRGsS8LI3KE242hlWt90C6vLrjR1Gl1iOMSHTNaOeWueitZlXgFGKdT1LM7xsK3ZFXGTx7QPcTMr5+p519LLM3sjL9AyoZzWYw0XtyLWEED46t5zMT05uDRoY/kYpek3G/R9efyU+hLdPLmBJk7df6rppphjfqxknbwQTGZuYzbBluvVmDOuYa4MGhnD/ykPM70e91q4ubWqVY93hS9yJiMHZwY62dcrTrFppswLIe/89zOXD163eu2KDcvSd2I0bJ2+x8psNVtvv+eegobqJGUMpSzJb/9yda6NmKwX6iTx16hStW7c2/v7ee+8BMGzYMBYtWlSQty5Q/Ep4c/2U6ZI0mXjnMmdDq9dz4PxtTt4IRpahmI87x66al1eSZJn1Ry7xds8mXAuOsrjGkWSZS3etP8h3R1wiMCN4wBwLb+2ltmcpQlNi+PH6VlL16agEEb0sMfvKekaV+z97Zx1exdG28d/sHot7ghPc3a04xVsK1OWtUXfvW3/r7u5eqtBSpAWKFHd3Cxr35MjufH/siXE8IUD7cV9XWrI7OzsnZ3eemUfuexiXNRnAeQ178lPaco6V5HnswBQEraLrlUu+1AuP45LUAXy5b1HAMR6PkXU7MeuIfxn693fPZe6xTZzXsBd5juKQ73G6wK45ybQX+P2uBXBew558uGseAqiNXEZN6uwpTGf+sc2MqNupFu5wekJKCc4NoGeCWhdMbTzqNuOjw/n83ot4//dlTF+6mVJ3clnPVg2ZMqY3nZt5dwOeCNRPjOEmtzZiMPj9gz/9ioIqqkKXIRWkEgMn92XRz8s5svuY706l4dIMlEWZfSw36HGGilo1aoMGDfrH+t+P7c8g81A2cSkxHrVnZ185hAVTl/q8VgjB6GuHBX2v3YczueXNXziaU4DJ7ZMPxNoP4HBpbDmQjklV0PykwgsRXPbTrMPrghrva9tmVtntlK3iHbqLN3fMwqQoXNS4H6PqdeHT3X95XN8xthEvdbu8vETgUHE2SdYoeiY0Z23O3qDS+oWbA/LmliP569iWgLyJuwuP8cLWwKvMk4VQtdZUodAkMpkf0vwT3oapVsbW68rnexfWaHyBoCCYc2TD/xujJkv/RBY8A1ql5DW1OUQ/jLBWzfiLjw7n/guHcMfEs8gpKCHCZiYq3Hssu7rIyCvk7037KHU4aV4/kW4tGoRMjHBsv39RUF3TObq/gqy4MLeI6IQoju5N932dgLAIG8UFJX4NW024cgPhjO/gOGxftZv37v6MjQu3lh9r1aM51z5/KZ0GGjuLbsM70nNMV1bOXOvx5SqqQv0WdRkzJTijlldUypRXfiCv2JBTCcaYHY++7VJZuGGPVz8+GCm9/dqlBuwnJwgmeSCg++79nXNZlbWHxRnbPM4JBJvzDrK/KJPmUSk8uekn5hzZgEC4yYyD+/wSyXUthrEmZ2/QRMCnEkNS2pFgjeKs5DbkO0v4fM9CdhQc8emePR6a1CnRHAiE32uKNTszj6w7QaP2DR1JgTMw082/AbJ0FjL3Ns8T2m5kzlUQ97GHYQOjHKdO/ImNOzqcLp77bj7TlmxGl7KcAL1RcixPXzWKto2DJ3+ITYkh83C239XV0b3p3Nb/IaxhFjYt3orTHpjke8glAwLG1EZfE/yiP1ScVtmPpxpblu3gjgEPefiZd6zezX3Dn2DVHMPNpSgKj/5wN+fePApzJQl1oQj6T+jJKwufIDwqjGAwbckmcotKqpV1ZDGptG2UzOXDuvusMVMUQXxUOKN6BGZNbxB+YmhuijW7V4MGhjHSpM5bO2bx3/Xf8eeRjVWOB4tmkSl0jkvl631/e80YPJ0QoVp5tMNk7mk7nl6JLRhetyMNIkL7Wwtgc97BoJJpPtnzF2otv9qqUGgc8e+Xl5HShcx/AmPmP/5vLwEdmf+/k+aReujTWfziNmjG+IzjBzPyuPZlI6ksWJx9xeCA747m1NiyZDtr524MaNAUVaFx24Zc9fRF9BzdxWsJlGpSSG6UyLgbRwQ9zlBxxqhVwus3foDm1Dy2zVKX6JrkleveKxcOtVjN3PjqlUw9/AFP/vYAj/9yL1/vf4eHp95FTGLwmZp/rN5RraJqRQjO6dueqHAbnZrV49HLRqC4CUwrI9Jq4a1bJgQl/jm+QffQB1IN6EhWZ+9lUfrWamc87i1M59EN37Mt/1DQu51ThSLNzozDa6ocaxKRHJIpDuUTKgiizLZaLZPQpM65DUOrXfxHwrHEiKH5hARtF7iC4yOtCbYeOMafa3Z6NaC6lDhcLj6evSLo/vpf2JfwOjHIE1AjKoSgz/juvPzX40REhfPoD3czZsowTOaqYY8uQzvy6uIniT7BO9jKOON+dGPPhv3sXrfP53kpJen7M9iwYAudB1ektUfGRtBrtG8l2kAIthCzDGUp/V2a1+f2iQPKj4/v047uLRvy1rS/WbBhd3m/+SV2Hv5sNndPGkjPANQ7PROac1ZSGxZmbPXb7nSAjmRBkMTGpxoCmH5wNZMaGdmnW/IOsj3/cK2VMOhIcp21mxBzfqM+PllL/lXQgsyU1Y6CuV3gdjXAzBXbyvUUvQ5Bl8xauZ2HLx1enurvC0WlDm55/1cODWtB+NztWA7nlz+NAtCtJpQgXI1CEbTq3pyHp95RRXrLYrNw29tTuPJ/F7F+wRY0p4uW3ZudFJXsM0bNjSN7/GT0VMLRvekwOHC7YNGyQSIH0nN8PqjHw2xSeeDCIYzq1drjwT2QnsPs1ds9VnK7D2dy4xs/8cZNEzwkKCpDCMGzXS7m8Y0/MDtARuEZBA8J5QrifxzZwMPrv6uW2sHpgBRbDBc27kuKLZZf0lbSMDyBLvGpKCEW558OkK5dyOIfQT8MIg4RNh7MXap+N0qQdHfBtqsBglHrcGk6JaVOzBH+jdr7M5ax81AmeriZgnHtUXOKMR0x2ECcdaOR4RbivliFCBDjl7rEaXf41JKMTohiwHm+WVFqA2eMmhtR8YELkwHCo8PIPJzNliXbmfnRPLYs3Y5qUuk5qgsTbhtDq+6hSYJMGtCJ2auCLwq2O104XC4Pgyal5Jlv5iGl9HBnGr9Lnv5mLtOfuNLvhGpSVP7X6QKuajqYT/f8xdqcfdg1JznO4JJI/u1QEWgh7rAEgmRbNIeLs3l0w/fGDs2HzzlctdA0sg5b89JCvk9t49qmQzCpKu/vmkuJVsETWD8sjv+2P4/uCadWDidYSCmNTMbiTwEVY9khkCVfg2UQxL2OEO5sResAEDEgfdWdClAbgLljrY33SHY+M1dsY8/RwJI0YVYzmpvh3xfllcPp4qfFG6v0pcWFo8VVVeN2NE3AujPj+MurQFEEsbWYyVgd/L9Wvq4MTdO4pPENZB32zUtmspiw2MwU53uumFSTIbR3zyc3MfyygUHfV0rJi9//xTfz1wUt7tk+tQ6f3XtRlePrdx/myhe/C3i/j+46nw5N6rJ531GK7U4ap8R5lYSvjGAUqf+/4KmOF/Dwhqm14joUCFpG1eWcht15Ycv008qkWRUzFzTu47VUQCBQheC9XlPoEHvqSRUCQRZ9hCx4zsdZBWzjUWKfr2hfPBWZ/5CP9gIR+ybCNvzEj1NKXv9lMZ//sQqBQAiC9ujERNiYNKAjV4zo7qHykZaRyzmPfOK/A03HtukIEct818qW4f4vbmXoJQMCtqspgrUH/zyfQS1BVVWueupiv200p+bVoIHB+Sh1yYtXvc3RfYFlHsoghODuyYN45LLhpAbBCSclZFdi7XbpGnOPbuSjtD9R2hci6tpB+H7wp/29iZEPfMCVL37HTW/8xLiHPuKmN34iLSPX5zUtomrfD366Q2DsSD6txfoviWR7wWHOrtMpaF20UDk5Q0VZssltrUfx1b7FXttIt1LA2ztm1+pYTgR03YEs9Edfp0PpdGSlWJoIPx8R/aSxY6sMJRER+2q1DJp07kDPfwY99zb0/CeQDk93/8ezVvLZnFVIaSSCBGvQwCgV+mT2Sq568TsKSuxVztmCYTQRIPyQS4CR7di0Y2MGTPLPVHSyccaoVcKIKwZx2ztTCIs0XA+qSQEBikkxONWC3NTOeO+PkO4rhODcvu354ZHL6dysnl/GekUI6ruzK3fkH+GcBS/wwLpvWFG6A9GkBLVnPuqwbIjyHuSdvmwL2QUVSQQSWLHtAFc89w2Hs7zrwdUPi6d1dP3TPHH+xKBduHfpEAk4dI2dBUdqVUlbADbVzI0tzw6qfadY3zHSUNEoPJEJDXtiVSoyZdvHNuT17lcipfTr+irLaE0vrTk9XG1BSgm5t4EM5ErXwf5XlSMi/HxE8t+I2HcQ0f9DxH2ASFqIsHmKIEspkfYl6HkPG0ar4GWk64D7nI6e9ygyaywUfw6ls6H4G2T2ZPScW5DScOuWOJx8EkImo9dPISV7jmbz/oyqBftJsZEBmf1RFCz7jfIARa2k3CFE+XVdh3Xg+T8fwRJEZvXJxL8+pnZ491F2r9+PxWqiw1ltA9aPjb1uOEMvHcDin5azZcl2HKUO/pq6FIcrOK0hXdPZ9Lf3Gq1AEEJw/sBOrNvtXYcMjAf1vP4dyLYXcuPKDyl0GkXbOjrli3abjtovF21uPDgDr1s0XVJQYuf9GUt57PKqk2m2vZA713zOtvxD1fpM/xxIEkylvNZsIVfuGEGa3ZMANsMenAjsJan92Z5/mDXZe0M2gBKjzqxzXGrAtgJBakQSa3L2BmwboVgo0n0/wwqCEXU7MqXFMO5oPYaM0nzCTRYS3KTFG3L2owqBK8DCLsdRRLLt9IqxlKN0BjjmBm6HAOn5txLCArahfq+UegEy5zpwrqJKvK7oPYi81ei75Bt36+OYc+xzkHmPI2KfYuX2tKAyo4d0bs68dbt8ntd1yc+LN3LzOf2qcE5eM7oX97z/m9drVEXQKDycxm0aUZBSSKPW9RkzZTgRsRFsXbYDRVHoPKQ9jVrXHuVXTfCvNWrpBzJ4+dp3Wf3HhvJj1jAL594yiiufvAjVD23Uvk1pfPPMT6Rt821c/EE1B68QfTyGdm1B98WbWLPzoMfKWBGC7q0aMqRzCz7b9xeFzlKvk6ZQQFokonEpcldF8NdrzM6kQ7iOpgl+X7GV+y4cQpjFWHnpUuf21Z8F5IM8HeErPmnwcXhfol6YtJMIVXJj/XQe2NPkuLOSZrZ8Ykx2jjgiOOLwLWfTNb4pyzJ3VntH98XeheWyPP4gkaTb88u5N/3hoib9+XD3PJ/ndSQd44xdn0010zCiajZfsi0m4D0EEGsOZ2nGDvKcxdQNi6NjbKPTJtNTFn9OcARlEsxtqneP3DvAudb9W1WjJQtfA/yp2EtkyfccybdRUjo5qPs5XBomVfHLRFRsd5KeW0jDpNjyY0O7tOCeyYN46YcFxgFhLJI0Xaddah1eu/FcrzJVoSbCnQr8K41azrFcbuv3ENlHc6sct5c4mPrCdDIPZXP/F7d6vXbPhv3cPeQxXI7qUS8JRdBzZJdqXQtgVlVev+lc3vhlET8t3lQu1W6zmDivfwduObc/JlXhjyMbA06aSv1StF3hRNostG6UwrrdhyoefquO0rYQ0cBevsOT+Soz9q9lUgtDN25l1u5/1A6tbHK/oFEffkpbgSb1Kn8jAcSa7OS6rO6jAhUdDYWz4w5wcfIOBNA3ei9QYdQGRB/mpnobSbUVlB9bXZDIK4c6s6s0tsoYIkxWeiY042O1+i4Zu+5idhA8nAarRyJLg5DUWZyxjYHJbX3W9ikI7lnzBe/0vJb2sQ09zg+t054Xt/6KQ/fu1lYQNIlM5rIlb1apkWsQHs/9bc+lZ2LzgGOsdTg3EVQZu9oEzKETEUjnDnAEirna/Z4VAlIsX2BzZgKpAe+ZHBsRVFjEWxztoiFdGNq1BdOWbGLfsRwirBaGdW1Bj1YNT5uFSHXwrzRqP7z8G9lHc70SakopmfvVIibcOppWPTxftE8f+RaXw4Wuhb7KForAFmHl7CtrVshms5i45/zB3DCuL9vTjJTa1o2SibBZytuUuAK/HLGxNu69dgz92zfl8z9WsWbXQeOkVUc9KwdslVyWAFEaz+/+Baw6kxr1ZkH6lqB2AacaZqFiVc10j2/KRan96BLfhFH1u/D2jjmscOvCCaBPYkv+W+9n5mU5mJ3TkALNQqqtgAkJe+gVdaw8ViD10nL9sWGxafyv8XKPqbBzZBYftJjPtTsHVzFs1zQbglU1MyilHVvyqs92Ekw6f/f4ZgxOaeczgaMyduQfYVv+YcJUS5V0/DLoSBy6i0c3TOWHAXd6TGpR5jCG1+nAjMNrPa5VEChCYXehZ63noeIcblv9KW/1uIqu8f7Vl2sfKhCooFhA2Hhkwf+QmBDWAWDphwgmIcc+z32PwITcgdCn8SxSk6awP1PxWv2hKIJWDZKYOKAjPy3e5LMfIaBVg2SfWorJsZFcO/r0SvSoKf6VRm3mR3P9MkSrJpU5n/3lYdQKc4tY9ttqv8zVPiHAFmHl6d//GxJNlj9Ehlnp1tKTtcGl6ahFFmOm9vGuqUKhc1JjhnVtCcDIHq149zdDWUBpVeRp0KB8Un956wyG1elIiSu43eqNLUbw9s7glL5tivmEExBHmcOYNeTBKsfaxjTgzR5XkVmaT7ajiARrJAnWKPS8PUxWvmdy0m4fvSlkaPWRgFlo3NNgjVuctWorVUgsis4d9ddz8+5BKEJwdbPBXJxqqKmf06A7n+9ZQJHLXmuJJQeKMvglbSXRpjAKXKV+DWjZGLwZtDJIIK04i1e3/c4dbcZUOffboTVeDVpZ374c7hKjbvLVbTP5vO9Nfj9PrcN6ltvw+DM6Egpfo2xqlMWfGmz88R8gVP8xJCntcILSqRQh6dVkM/syOnicUxWB1Wzi0ctG0LJBEr1aN2LVjjSv2ZFSQuOUOK588Ts0TadL8/pMOqtjFVdkdWEvsbP57+3YSxw06dCIOqnJNe7zROBfZ9Q0TaMg279UuObSyDrsSfyZl5kflEETikAIga7phMeE07RDI/qM687ZVw4+YQbNF6SUPPr5bPbvK0X1JAYvhyb1clomgEbJcUzo155flm5ENCz1MGjHXzvr8FqaRiWjHw7899iVfwSzogYlGWOvBUZ9Xy4xgERbNIm2iu9EhF+ILPnWT286pdbJaHIHZ8UcIcbke7yqkHSLyuDhNr3oV3cIcZaK1XCsJYK3elzNbas/JcdRhCoUI4MQWZ4mr7tJcntEpjM8Lo0o1ckhRwS/ZqWy3x74OTpSmsvvh9eecKP5zf6/2V+UQf3weDrHpdInsQUvbf3V7zVO6fu715Fsyz/EvsJ0UiNP3cQnIq5C2oPNTK70TGl7kdmXQ+LvCOE7JibMbZABd4JlL55/74cmFRIivVOdpcRFceuEAbRsYLB4PH/tGO58dzqrdx5yC4LKcsIFRVH4Y/WO8vj81gPH+GreGh67fARje7VF1yVFdgc2iykgtVYZdF3nm6d/ZuqL0ypKnAR0H9GZO96b4pNd5GThX2fUVFUlMjaCwlzfabuqSSEuJdbjeGxyDKpJQfNTnyGEoE2vFrTv15p+5/WiTa8WJ9X/vGp7GjNXbAMs6PutiEZ297iM81Ia/57QoAc9jmN4eOCioehhLmaY/ItxKsDB4myubj6Yd3b8gcvPhAXwx7GNQU+rtbFnqVxHJ7VMQ/NKiQK1mcd3I8xtIfJ2ZOGrGJ+07Lt2JxBYhtA8ohupEdnUs+5EkwLVT90fwJi6dRAWT/dO65j6TBt4L38e3ciqrN1IoHNcY9rHNOS21Z9S6szhuSaL6RaViUsKFCQ6gkuTd/DZsVa8c6Q9gVb+tbULXJK5A5NQ+P7AMiJUK0Waf3d3MMi0F5xao2bphrQMBsf8EK/UjGeqdCaEneu7mXUwKImgZ+PdaKlgGw+OxUgtw29KvaropOd7T0Y6llPA/R/OYO+RLK4b24eocBvv3zGZtbsOMXftTgpLHSTFRPDV3DU4XFoV92XZbu7Rz+awfMsBFmzYTWGpA5OiMLxbS64e1ZOmdf1Tfr1168dMf/u4mkQJa/7cwC19/ss7q58jvk6c3z5qE//KOrWzrxyMovr+aJpLZ/gVgzyOR0SH039ib7/XCkVw8xtXc+3zl9G2d8uTHlB94qs/y0aCvi4KfUMkFFcab5GCujmG+9ud6zE2k6owZMDxWX2e0IEos404SyQPtp8A4Jfx3d+0WptM8WXomdAc6TqInnMjMqM/MvsCZOZoZObZyNKZHu1F5I2I2LeqUhuJeCAcHPMQORN5qfEP6NKCEozREL5fYJtqZmz9rjzWcTKPtevHuXGraCbf4YuOVm5teJAfMptz+fah3LWnH7NzGqFL4+91Rcp2WthObc2Xyx1LLT4BBg0gyVq7XoygoKaAT2epPyjIUv/F5UKYEbFlrsvj76GAqRki+iFEwjSKnMl+1Tk0XeGPzd6Ta8oM03szljHfnc4vhKBriwbcc/5gHr/8bKxmE06X7vMeUkpmrNhKYanhjnbpOnNWb+eSZ75m/R7fWd/7t6R5GjQ3dE0nNz2Pqc9P8/3BTgL+lUZt0l3jiE6IMoqnj4NQBAMmGjssb/jP4xcQFmnzyZumazo3dr+Pm3s9wMrZ60Ial8HLGNzKusTuZN/RbNJzK1ypBzNyOZRZeaITyH1haH/G45qVgGtWAtrceOy7LBSVeo+dzA5CQFIiGVbH8OWPrd+VN3tcRZf41KDGfTzK1K1rE2uytuHMmgz2+VRZIWv7kbm3IYs93Y3CNhwlYSokbwTrKJBZQIW7p74lk2vrrEX3a5QFmFqAyX9mn5TSKMDNGIwsfB1X8Y+8sGMdT+9PZWFePXaUxLGyIJnHD/Tkqh1DyHVZKHSpHLAHx0da26jpXlBB0Ca6Po0jT73+mhEXq84n0kH6D2sACEsPRMLPYBsHuDNglURE5E2I+G8RShRCTcSU8C6lThVfof935vUkr8S/WrYiBJ//udrruSVb9gfkiTwemi5xujQe+Oh3n/qOcz79y+u8WgZd0/n9o7nlEl2nAv9Ko5ZYL57X/n6SNr1bVjluspg456aRPPDVbT53WA1a1uP6l68I+EDsWL2bB0c/xbxvAmeeLdu6n5ve+IleN79Oj5tf46oXv2PuWu+6SDkFxTz51Z8Mvvsdznv8M0Y+8AGXPvs1izftZfHmfT7uIMCuGD/uSXjLfu+qA3sLA1N4mYRC08iU8t97JjTnqU4X+bnCN/zFu04UVuWk8WZaQzwTANxCivlPIXXvhdPCuRrsnrs5gHDVFdD1KCLvDrxbL/4Eit6lTFTyo6MtmZ9nJB1o7ldQd/9/b2k0j+zrybaSeOyy+tEBfzvkcNXi89yJhsFZKLit9eiTdk+/8Oc+9AsVTC0DNwOEuQVK7POIlI3GT9LfiMhbEErFIuVo5kGO5EVzvFMov8TCMzMG8PmSwGVBupSs333Ya42aFoBd31+fR7MLWLbNO+djxqGsgPqPJQWl2ItPzO6+OvjXxdTKUK9ZHV5Z+D/2bU5j19q9mK1mugxpT3SCf3E6p8PJh/d/FZAWS+oSBLwy5V36jO9OmJdCRYAv/1zNyz8urKKDtGHPEdbt/o3LhnXjjolnlbfNKSjm8ue+4WhOQZVMpq0HjnHrW78wontwLxX4XotGmmwBy09dUufRjd/zSPuJ5Tst80nYcVUXEsGPWU24ss5mH4kdDoNNItzTMMviqQRMw1ZSQM8x+imLw4loiH4CYfNfviGlA1n4Tvnvdl1hakZznwXgGgorCuswNO6g3379IcpkI9Jk40hpbvl3XVaa0T2+KQ3C4vnl0Kpq9+8PcZYIchwV8exG4Qnc1+4cusYHdnvXJqSWBSVTDReiiAaZG2IPGiLswpCuMMoAPBNL9NLFNDTfDglVDY+ug83sYufRxJDu4y3rtUvz+mw5cMznjssfFEWw61AmfdumepyLTYrxT68FWMIsWMP9FZnXLv61Rq0Mqe0aktrOs5jUF5b8spK8jODokJBQWmRnwdSljPRSm7bjYAYv/2gUY1Y2UmW7wC/+XE3vNo3LNc7e/W2ph0GDCpWSeRt2IBqUgk2HEgV51AqaF8l0RdCmofeA/PC6HVmbsy/gR5t9eB31wuK4voVB1hplDqNdTAO25h2qVe7D6sIpVVYUpDDcqzFQkVqadzOi7SVgXZG0Q9LfUPCMwQkos0HmQ+ErSJkHYRf4rmNyrKkiW7KjJJYi3X9htkCS67RgQscVojNFQTCsTgeEEKzL3mdkXioKds1JgauUVdl7WMWekPoMFlEmGzMG3c+anL3kOQxGkXYxDarsZHWp83fGdn5OW8mBokxiLOGMqteZ0fW6EG6qnYlQOjcjs69wuw+PSwyqDJFgfLdVjhvtROStCLP3kEVIY5E6zpwHUdFRjvtqFQVUJPePWcjF700mUJKQIgStGyV7zVqcdFZHvpq3xstVwYxRVqHUqoxhl53Fz6//7vNa1aQw4vKBKMd/uJOIf6X7sSbYvX5fSDRXJrPKoZ3eaaS+X7ge1UdsDgzj8+1fRu1PqcPF9KVbfDJxi6bFyOEZqF0LUNoUoXYvQB2ZiUj1VA04t297on3sHEfX60IdW2zABA4JfLl3UZUi7yuaDjqhBu1Ep5DYdV/fm46oxLAuXQfQ8/+Hnt4PXEFo2YkoKHwVSn8CWYm+SjuAzH8Umf+w7129rPr9aDLwpxYYGaxWEbrrNt4ayc8HVzLt4Cr2FKWT5ywm015Agas05L5CgYJgTP2umBSVngnNGV63I+1jqzJTuHSN+9Z+zV1rvmBJ5nYOFGeyKfcAL2yZziV/v8GxWiBDltKOzLnmOIMGVQxXxPWIpEWI5IWIyLtAqbQgNLVExLyMiLy5Gvd2IvXiqs+GYyVmcdTDoJVBVSQt62TRqk5mwP51KblsaDev5xomxfLY5SNQhKgyB/mbjyoGDgM6eC+Ub9mtGYMv7OfV5a6oCmFRYVxw37mB71GL+Nfv1EKFxWYJqfha1yUR0d5JkjftPepXLkLTJZv3GRIXmXmF5ZRYx0OklqB2qHDplD1PwgRqp0I0TSDTDCPWrnEyd04a6POe4SYr7/S8hinL3w9I0OvQXZy74EWaRCThQifBGkXXuCZBEegGA7Mw4ZC+J24BnN+oD8m2GN7YMStgf83DfE2KEmxGTEc6ViKzrwacBMf8oIClO5SU6clV/j7d/y75HmxnG8W9ZWdcaeBcj9Srsv63CMvDIjQc0vfCSUewpiCJIhka1VaiNYpMt8J2GQvMydhVCyBMtXBRaj+/7T7aPY+F6VuNcbkn+rLRHS3N5YG1X/NxnxtO7OBKZ4HuXXnBgAD7X4ioO43xRFwLpg4Gf6OIANtohCm0BBfpWIksfN9NmSVBqQsRl0P4ZaAFRztXL7aA7Uf93/fiIV38hiTG9mpLs7oJfDN/LUs270fTjeLregnRfD3PeyG9IgRn92jlV2Pxnk9vIjoxihnv/YHLWfEONenQiPu/uPWUF2GfMWrHofe4bnz2aGCxzTLoms5Zk71XQVv8kCaXwexuExHmw/WiSJQ2vmvupASlbSHxBQlcfXZPJvTvUN4nGEY3r6gEk0klyn2P+uHxXN1sMM9uCZx6m+MsIsdPzV918UKXS7gnoPCoINNRwF1tx7E8axers/d4pexSETQLy6F1uDejJiBsMsLUEClLkDk3YsTGggmkq6DEgZ6L/7ibiiz+GmE9C6lnI/MedGdiehqUCNXF+IS9/JTZtDw5pGpPOjGqnWWFdQhuL1t2D1Fu0E42JFCk2Xlsw/dc1uQs+ie39mjj0F1M3b/UJ+uJJnU25aWxJe8gbWM8WXSqPTbHcvx/dxJc25B6Ebh2IfPuAu0A5e7JwmfRwy5ARD9osPQD0r4QWfQJOFYaXVh6IiKuQlj7oxd+CIXPYzjB3J9VP4IseB7sCyDskqDG7S/zsUFiDA9cNJTebQKTRbdplMITV4ys+omlJMJm4cPfl1fK8jbIjAd0aMLDl/jXhzNbzNz8+tVc9shkVs9Zj6PUSZOOjU8bsuMzRu04NO/chK7DO7Ju3ia/VFtglAcMvWQA9Zp5F9E8q2MzNu0/5tM1pSqCwZ2MdPC4yDC6Nq/Put2Hq2ReiiQHwuJ7tS0EYJM8dfdQulcqtna6NL6au4Zv5q8lI68IhKR5mxhG9WrFhM5dTujEESoahSdy39qvA7ZThCBcNQzxA+3O5apl75DvLKli2FShEKaaeazdKNBWu92DKobREhB2ISL6v0bjkplV4lt+7mxcrzZBxL1pSIn43dVp4NyGXvon5D1gxNv87JBurLuRbcWxbCpOKIvYuO8qiLfGcFZyG35MC0ZLS2IWOu3CslhXfOopitbn7Gdtzufc1moUlzSpqoS8u+BYQBeogmB19p5T8mxK127IvgxjwQMV358GJd8gZSEi9kVk4dvuwv1KhtKxFOlYjFTqgl4Wijh+7pDgWA6WfiAifZYHSAmZheGsP+B9TlGE4M1bJtAoufrFzUIIbhjXl/F92jF96WYOZeYRExHGqJ6taZ/qXxB4/9aDTHtzFitnrUV36XQ4qw1nTe5DfmY+3z77M9YIK4n1E+g1ugsW28nLsq2MM0bNCx769g4eHvcsm5dsRzWp6FpFVb6iCHBTZA29ZAB3vH+9z34m9GvPp3NWUmJ3epQICGE8oBcM6lx+7LqxfbjhtR+rhrD9GLTKyKvEjO50adz61i+s2H4AKSWiWQlKi2L2WTN5J3s3782bydn1OtEyqi47C46c9LSPA8WB4wVgrN6H1enAsdI8HLqL93pO4fsDS/n10GpKNScWxcSoep35T9NB1A+PR8qRBrefax8okWAdjlArJnvpXIfxyAeIVUVMMYhszd2NLFjhW2amHHoG5N4YxKdSCVc13m7+N78XjOLnzLocKS0mxhzOmPpdOa9hL/YUHg3CqEn6Rx3mkcYree9o+9PCqJW5Ol/bPpO+Sa1oUok9JFhi5xBLqwJCmLsjS37w18KoNSz+BMMl7W0hK6F0OnrxACO2ClRd5Lj/rQeSaJJQ/DVE3g4FT3ofjYA35/ZCk1V38aoi0KXksctH1MigVUb9xBhuGNc36PYLvl/KM5e8ahSmuFmX5n61iLlfeTIURcZGcN1LV3hNoKttnDFqXhAVF8kri/7H2nmbWPDd3xQXlJDcKInoxEgKc4qJiA5jwKTe1G9e128/8dHhvHXLedzy5s8UltgrEq6EwGJSeXHKWBqnVDygPVo15JmrR/P4F3MotjsxqQp6SXBJK3XDKvr5afFGVmw7YBDxti9EaVZ1hawjmX14Pcm2GMyKqUa1ZGVilutz9tWKcXxsw/fkOA33p1lRGVW3M98PuJNw1UKYaqlS3C2E2Yht+UIwTOuAiLgGoVTii7SNQhZuw7/LMsi/oaUXIuY5rEo059UL47xWnk1aRtcLgktTcGO9zUSbXGQ4/QvfnmwoCL7et5j/tj+v/FjTyJSAdFs6Mihx1JAQNhoKnnPv0H0YrPDLIP8x/O/GVXetYQ1Z+PUjYDsPgRNn3iuowoGmC0yqpNhu5tU/+jBjveG+bV4vkaz8IhRF0LdtKhcN6UJrH1nNtY2j+9J55pLXjPq3IF70wtwiXrr6bUxmlWGXnhX4ghOIM0bNB4QQdB3aga5DPVmyQ0HHpnWZ8dTVzFi+lZXb05BS0rFpPc7p247YSM/JaHi3lvRv34Q5q3ew71g24VYz0ywLyHDke13tKggaRybRJrqCQfzbv9YZ/4hyeRi0MuhI0kvz6JfUikUZ1VPqBkPSxKyotbbbKzNoAE5dY8bhtazI2s0nfW4gyhzaZC4s/ZHF/tyeCphaVTFoAIRPhqKPQBbgOaGVrVSC/Au49iHUFL9NtucdRvPDyCCQdI3MoIktnzyXmSV5dRCARTHj0J2nvOBCRzLt4CqOluRyY8uzaRNTH5tqZmKjXnyxd5HX51gVCs0j69DBi5ZbTSCEDeLeR+ZcCbKYCsPmNk5hl4J1KPBw4M60I9RcVkYgFAsi4mpM1vOZveQtth/YQkZ+JIt2NqXYbkIRcOXZPbhxfN/TRtfst3fnGGGUEB+uD+77gsEX9vMrynyiccaonQREhlm5YFDnKq5Gfwizmjmnb7vy3ztlJnLb6k+Rsmo2W5mO1f1tzyl/+KWUHDiWY+zSGpUidd8bFB3J5tw06tpiSbfnoVXD91Os2U+EfFTQ0KROhj2f93f+yQNuXspgIUUcVUmMj4eOiJji/VTsy0a8TD9GxWvjcv87BOUB6Xunokmdl7b8yg9py/13geA/yVvJcVm5YvtQXG6eQV8KCMJteE+2sVuZtZtrlr/L2z2uoVNcY6a0GMbW/EOszPKU/VGFwv3tzqmVSVxYOkHiTIMurXQmyFIwt0aEX2rEuHAhsQH+Yn4a4Fk+ExpUtzabEWtSTFGMOut+OmfnM3PFNmITi0iKjWR0zzYk+9A/O1VY/9fmgDkG3pB9JJcNC7fQZUjNNgeh4Eyd2j8APROb81aPq2gdU1XPqV1sQ97teS1dKrE1CCGwlBVOhmsBE+iynUW81PUyos3hJ4F6+MRAkzq/H15Licu3NtjxkK4DkHuV/0bh1yPCKnTEZOl89KzJyPTekHMV6MVgHQZh50HY+YiYV0D4d0F7QPhO039v558BDRqAgs6c3EZM2jqSDFd4wPYSSYRq5a42Y2kUHhpbRU2gI9F0nf9t/BEpJSahoLhN7PFw6RqPbJhKobN26umEmoISdRtK0iyU5L9Q4t5FWPsjhDDc1uHnEZjouKbLAh0R6bloqhsfzVUje3LP+YP5z4gep51BA2q02AiazOIE4cxO7R+CrvFN+bTPjRwoyiTTXkCyLZoG4d4lIoZ0bs6c1duRDsUdw/Pdb5hqoXl0XX4YcCe/HVrDn0c2kGkv4Ghp3ilY2wcPu+4i015AQ5N/mYwyyOLPQfpP5RfmJpXaf4vMf4Sq674CIxHF1AYR/xUIK+TdF9rAhXehyUJnKV8HoWBdhp3OzpTowRcrF2kOXt8+k25xTYNK1Km8u/Ollh0MdCQHijPZkHuAIlcpy91K5N7aHSzO5ueDK7isSdUYjJQuQPGrPm2k5G9xjzka4ZiL1DMQSgqEnYNQ6/kdp4i4AVn6h1s2pjZcDyZEzNMIS89a6Lv20XVYR7av2l2t3Vpyo5O3kIIzRu20g8Pp4qe/N/H9gvWkZeQSbrUwskcrLhnalYZJsTSKSKRRhP+H5IoR3fljzQ70Q1aUVN8rX1UojKlvEKdGmcMYmNyWYpedzXkHaRyRRInLzsa8A17NQCD+yJOBiFBolUp+w/9kJZAlsxBhE5BaBjL/cffx4z+9Dq6tUPwRmHtSkQIeJLTNSMdKhKVHlcNLM7cFnbAjgKMl2X70pj0h3bumYFk7Ki9oSjUnnWNTWZe7L+j7HY+0okz+ztyOikDz8eRIJL+kreSyJmchpQ4lPyKLP3Ozvgikpa+RxGOtKPKW0oEseAmKv6Gy+9C4g2p8jsJXkRHX+CefVhIh6gEjduraXO3P6RWmToj49xBK/Int9yRizHXDmfriNKTuW87GG+o1r+NBLF/bOGPUTiOUOlzc9MZPrNtlsA5IIL+4lKkL1jN1wXqsJpUBHZty6dBudGzq2+3VskESr1w/nns//A17ejEiyelBQqogsKlmLkkdgEvXeHbzL0w/5CljYVFMDEhuzbrs/WQ5jOLeCJOVAYmtmXV0/Qn77KFAQdAhthHx1lDcNIHiIdKdCAKU/IR/k60bCSdR1Sk2LUVm/wcSpyNMxvVSOijJ/xAITm9MQ0GXdkLVBdOR7C0KrNJwPCSSdbn7aB1dj90Fx/yqXPtChMlKemm+T4NWhkx7AVLqyLx7oXQ6FW4GCY5lSMffEP0YIvxipNSQOdeDYwned+CVxln0gUFkHHmd5+cr+RVZ8BzoIfxtRByY2oBzDWDH+/NihogrEZF3IMTpSwjudDj56qmfmPXxPIpyi4iIDmfElYO4+MGJ2NzExEkNEnj0h7t5bOKL6Joe1I5NURVufeuak57sciamdgIgpWTT4q189/w0vn9xOjvXhE4Yq2ka705bzPrdh33m0tldGvPW7uTKF7/lt2Vb/PbXr30T5jx7HXelnkN9R3J5h2Wcjw3DE3iv5xTqh8fz3JZpXg0aGEwQc49u4qZWI/iu/+183e9WZg1+EGc1XTSxpnAfUZXgoSO5tsXQ0C5SUwM0UIx6JdyFuIHGqGeB8K935RtOZNHH5b/JwndJNQXLmi85L2EXdS3FJz0Guj3/CEJAs4iUkL7DMNVC78SWJFmjA3KOxlkioPQ3t0GDqm+C8czJ/MeNGKn9T3AsJjh2GJBF7yGlsZuTeiGy6BP09LMMFpFQDBqA2gDUOhhJQj4MtYhARN52Whu07GO5nF/3Wr763w9kHcqmtMhO1pEcvnn6Zy6sP4WMQxUUY73GdOOTba8x6c5xNOnQiJTGSYRFen8HUts35NnZD9FteKeT9VHKcWanVkMc2nWExye+yN6NB8oVs3VNp12/1jw89U4S6vovlNywcAvfPf8LK2etQ+qS6Ggbpe3rUto2BQ+xJaCMSvKxL+bQtUUDvxxtETYLF53VlYvoyuHiHJZkbsepa7SKrkuXuCYIIThSksO0g4En1Hd2/MH0QfeiCoVcRxHzj1bPRZPrKvZ6XABmxYTAiJf5Q7QpjI6xjUK7sam54Tb0CR1sQ4x/KoGTL4yi3fahjaEySqZDzFNI6YDiL2kXnktTWx77SqO80meBkSByVZ2tXJWyjZ9zevHCgRNThBssJBKnrrO7yLtWny9c1uQswkwWxtbvyrxjm/y2tWtOXIWfofrNUlWQJd+Bcxv+s1mPgywExwqkqRUy+2LQ0kL4FJUhwDYMCt/Ar0tb5hoxWH+1k2VNpWTVjoP8tnwLmXlFJMdGMq53W7o0r1+rO53b+z1EYY53GryivGLu6P8wX+59u/xYndRkrn3uUq597lIAdF1n7dyN7N96kKLcYhq0qkdq2waktg9M4VVbOGPUaoC8zHzuOOsR8tKNOEXlLfm25Tu4Z+jjvLP6Oaw+eB3/+HwBL1z5FkIR5STKSn4p4Uv2Yj6YS8GIVl4NWxl+WryRm8/xTyJbhnrhcUxq1Nvj+Lyj/ieZMmTY89mQs58u8U04VJx9wolyR9brwk0tRrAx9wDPbplWhSHleOS7SvjjyEbGNfDOUO4VjiA+p2MtWAcirGcHqGdTwTrQ4IXETEgp/eWwG3Ej7QDIXISARxqt5IZdg3DoFeKhAAoSq+LiveZ/0dLNbzm24Rh+yUlnd+HRkBWOa4LqJA853KUGfZJa0j2+KauyfXsychxFSNdWEP4MlQbOzaAdJmiDVgZZjMy9y31tdaCCkmAoNwQsuDeBawe6PpxVO/azfs8xBIIerRrSsWnd8knf7nRx7/u/sWjT3nLdRVURTFuymaFdmvP0VaOr8LmeKOxcvYcje/wvUI7tz2DLsu207e2FJQBQFIVuwzudkh2ZL5xxP9YAXz/9EzlHc70K8WkunbRth5j/7RKv12YfzeGla99BSlnFGAr3j/lADratvh84XZds2huIlicwCkOQJMlzGnGpMNOJ5XRTEOQ5ivghbRkPrP/Gr0ED4++zKN3frqsqpNRBD0JZoEyGxtIbTJ3w93qIiOsR5dRK1YCS7M7mq7hH6/BcPm45l8GxB1Hdk7VZaIyM28+Xrf6kZbg75mcbiy1yMu/0vIZhKR2quPQCufdOBb7fv4xSzYkqFP7T1LeCBBiuZXtAOyUM16+SQKgCRlKawLmCamc4KskQ9xkUvR24LRr2whm4jrSle+zZDG10K5lHP+CZL97kzwUXYz82Fj1rEktW3MfWfUY4oUzVo+z/89bt4o1fgs+KDQVzv/akt/KG+d/8XSv3ry2c2akFAc2lsWT6KjYs2AwSOg5sS/sBrfnljZl+rxOKYO5XC73yn836eH7AYKtt0xFK23tPCBGAJQTdN19oGELdUv1ww93VJCKZhuEJpBX7k/QIHjqSJZk7WJIZhLYZRgTDV6GxR1vpRBa8G0RLBYTNaG9fgjHp+fh+oh4Cc3tkUFyPPhD+H+P/aiNQkgzuSKCJrYAnU1dQoq2mQLMQbbJjU3RjfKZ2iIjLwDYeIRSizWE82flCbrePYUveQYQ7gWZZ5g4+3j2ffUUZ7k8mTqmwa5FmZ0f+ETrGNWJXobFb8bfjW5BXj1HxhxB+mPWFdQggkU7vsWBPqGDugJCZNftL6Eeh6FPQg+EvlSj6Hso2WY0Scrln1EKEAJcGJgnSCf2bbOTHm03c8uVYNhysSigspaHLeO2Y3uUqGycKLh9SV57tgl8A5GbkMfPDefz9y3LsJQ5a9WjOuOtH0KpH8+oOM2ScMWoBsHfTAf475mky0rIM8VAJv7w5k/CY8IBGSeqS/EzvciB7Nuzze60A1LxS0HSfLsh+7Zp4PR4KhtRpx2Mbvw/YLly10iLKMLBCCHontiDtwIkxamUIdvJVELSK9l93BCD1AmTWBaB5r42qCh2UaGTGAHetki+oUPwp0tI3yInNWxeNEBFGTEIIE0RcZWTfVUKYqhGmVsrYFPGI6AcQlu4e3SVaozgruU357yPrdebsup04WpqLQ3Px0e75zD6y7pSWYJQZMbNQCVQM8nV6S0bFH8J74YgKSjzYxhrsv0WfgLafgLyNIhwR/ZQ7W7EmkFAanDSVlGCq9OpW1ucsM3QCQxjUZnby2iUzGPvqpRTZqxovu1Pj8zmrmDK2t1eV6+qi56guTHszsE5hn3HBufm3r9zFfWf/j+L8kvJwStq2Q8z+ZD6XP3Y+lz0yuUbjDRZn3I9+kJeZzz1DHiPrkDHJaU4NzWW8PMV5/l1kZajfwvtOy2KzVNIy8g4pqPomuKEIQUyEjTG92nheFCJsqoV+Sd795ZVxQeMKNm+H7mL2Ef/p/JZKGV9qkETCoewmzm0QuIhV5j0YpEFTQSQYDOp+DRqAZkyiJYG04HzAMgCRMN3gJCxD+JVgGeL/OpmNzL4K6Qrm8xgLj7phcTSOTGJInfan1KBZFTPNo4wdSK/EFgHHkq7VRY95BbBgTPsK5eULIgGi7jUKraWGiP8Syguay5z3lWEC21hEwk8Icwuw9DpBnyowQsmTUBWIsDoY22m71/MfzVrB6Ac+ZMW2AydodNBjZBci4/wrUETGRdBjZJeAfZUUlfLg6KcpKSipIrKsudn8P39sKkumrazZgIPEmZ2aH8z8cC75WYU+9dCCwehrh3k93ntsN/74fIHP64QiMLVIBiHK16tl70iEzcKN5/Rj37Ec2jRKRvWlDR8k7m07nvMXverTpZdsjebKZoPKf1+SsYN8p/+6L4fUeKP7lSRaowlTzUxc9LJXgU8wjJ5NNVPk8s2LWBn3tTuHeuH+M/+kdgjsc4LqDxEBMkRev+LPCSrzTmkC5rbGT/hkFCW2Yox6MSCRpTPAMT/ADXXAiSz8EBH7bEhD7Z/UilhzOLkBYpW1hRbRdcoL5RtFJHJWchsWp2/zuYi5JHUA5rBBSGsvKPkJ6dwAUjGyF50rIe8e95U2CL8AEfceuNKMWJmUhlK52shg5hcxiErZrMKUirScBY6/OamkpUGiR5NDfLeio9dzOYUl3PLmz3x674U0rZvAH2t2sGjDHhwujZYNkpjQrwN14qOCvpcQguf/eIRbej9QbnwqQzWpPP/HI0FlMc7/5m/ys3yL1CqqwvcvTafvOT18tjlROGPU/GDeN4trZNDi68TSbbj3B7TvOT2o17wOx/ale32gkPDChzeT1LY+3y9cz6KNe0nPLaTU4aSgxM7TX88FICkmgmvH9GZi/w7VTqGtGxbHe72u5a7Vn5PlKCzX7JVA86g6vNz1cmxqBWfhvsLga3qaRRmM9De3PJvXtnvGIFWhEGmyMbROe35JW+l3t9YgLJ4H20+oIobqE44VBM15IqvLTefPoKmgNkYk/l6F3klKQ5tLFn0ErlDVETQo/Q0pnwnpu9aRPhcUJwP5jqoLhsc6TOa21Z+yMfdAuctZFQqa1BlXvxtXNDVosoQSBxFXQ3mR9SKq/s1LofgLpGsbIu5jYydWBZ6lGdK116gxwwrUppEPnXPHcMz4vkaXEiHh9V8Ws/9oDkdzClCEobO2aONePpq1gocuHsa5/YIvNWnRtSmf7niD12/6gDV/bkRzapjMKl2HdeS2d64luVFSUP2sm78RRVV8hmR0TWfT4m1oLq3WGfvPGDU/yD6SU6Prb/ZTTW8ym3j+j0e4b8T/OLTzCKpJQUpj0lNVhXs+uYn2/VqTV1TKks372XnIe/wmI6+Ip7+eS25BCdeMrr5rpW1MA34ddB8L07eyKTcNVSj0SmxOt/imHp9ha96hoPqMs1QwflzSZABR5jDe3/kn6XbDiAigV0Jz7m47DpNQ+f3QWuy6yyOJQEFgVc2812sKSbbgWDdOuNpkQFTW2RKgJCDi3vXgK5QFz0Hxx1Tf8+/AyLgMPgN1V8HRgKrTtYni4zTUIs023u81hSUZO5h9eB3ZjkIahCcwvkF32nuTnrHPBYcvr4ZuKEqX/g5h5/gdhyz6BFnwDLVH8uZ+T2yjjPGECClhfZp/gmxNlyzfegDVHZYoK+fQ3bIwT3z5B/UTY+jRKngJnzqpyTw9478hj7cypOQUvHPeccao+UFYVBh5PhI9AmHg5D70C7DVTmmcxEebX2Hpr6tY+usqHKVOmnduwtlXDiI2KQaAhz+dxc5DGQHv9+5vSzmnbzuSasDwbVJUhtRpz5A6xkpPSsnR0lw0qVPHFlsuyLkpL3DRaoRqpUVU1Uyu8Q26M6Z+V7bnH6bIZadReAIpYbHl51/tfgV3rv6CEs1O2QQhkYSbrLza7YrgDRqApXPwbU8ETJ1B22e4MYUw6pjsfyKVyQjF+C6lY4XboEHI9VW4p2ElEUWEVlJRkzq2CNXKuAbd+P7Asmrt9hQEqRGeq31VKAxIbs2A5NYB+5DFU/Hv6lWQxd8h/Bg1WTrfbdCg1gyauTMi5iVQ6yCdm5FaGiJYthNAl2ZmbQpul6V5KSMCQyH78z9WhWTUgkHm4WwObD2ELdxCy+7NMJmrmo72/Vrz13e+U/8VRdC8a9OToqt2xqj5QctuzTi6N7CrLSYpulxeIS4lhvNuG8Pke8ajBBHrUk0q/Sf0ov8Ez13W/mM5LN4URH2VG78t38KVZ9ecBVxKQ+Tx8z0LOFhiJE7EmsOZ3LgP/2k6MGAdGRj++jxnCbGWqi4gVSi0jWng9Zqu8U35bdB9/H54LWtz9iIQdI1vwqh6XUIjLwaEqamRoehYRnUMSOgoBJkFKCB10HYjC16Aoi8g4WuEWh9Z9BU1UU7WJXxzrCFN2MqA5OCThJpGJmMWCs4gjdL4+t24rsVwdCTxlgjMiol4ayRv7wgyRll5zEjOa1TD5AwtDf/foR6QHUQWvFCzMQSEApa+CJP72Y77BLLGG3HAAHDTLqDEvcnkQRG8PX1JtRcimi5ZsmUfmq7XONYOkHEwi7du/Zgl01aWh2JikqK5+MHzmHDr6HIvzrDLzuKjB7+mtKi0SqJIGXRdMvGOsTUeTzA4Y9T8YOKdY1n4w1K/bdoPaM2Lcx8rr8yv2zTlhK1Glm87ELSjRFEER/wEakPB69tn8tVxMii5zmI+2DWX6QdXEWMOJ8PuPw5V5CrlmmXvhqxQHWm2cX7jPpzfuE+1xl4ZIuZ5Nx3SicsY84mywu0qk68EPR2Zcysi8UdwrqW6Bk2TsKc0mk+ONKLk0Je81v0/9Eo8Pobkie35h3ll64ygDNptrUYzom5HrzviK5oMJMdexDf7QyvE7ZXQgsEp7QI39Acl3tgF+3sT9Hxk0acQdp6HcrmUpUFmwdYEGsJWKYNVrW8UoQUDCWv2p3D7t5sZ0bWl3xq+YOYDKQ0j4oeMKCjkHMvl1j4Pkn0st0puQV5GPu/c8Sk5x/K4+umLAYiIDueJX+7lobHP4HS4ymNrqklBc+lMuHU0gy8Mjv2opjiT0u8HbXq1oPOQ9n6D8pc9PBnVpNKgZT0atKwXskHbs2E/i39ezvq/NnsUQ+q6HjRhgkvTmb50MyPuf58Xps4nLSM3pHGUYUveQQ+DVhnHSvPIdhQGHJYEDhZn8eXeCtaCbHshH+6ay6SFLzNy3tNct/x95hxZX2tJDEJNRiT8ApF3EyrzROjwNdVo4NqInv+0UbhbTWhSMDO7MUW6GYnkje2B64u25h3immXvsi5nX1D3sKlmny5eIQR3tBnD1P63Myi5bVD9CaBbQpOgSzp89hN2LoGn8hJkwTPIzBFIZ9Uifql75zYMCKUeInkZ2MbhXxFBBXNPhLmyurPd/RMYQoAuBSV2J78t30KE1bt7WVUEkeHBeSyOZNdcmPObZ34m+2guurdENuDb536uQrPVeXB7Ptj0MhNvH0OdJsnE142lx6guPD3zv9zwyn9OGhfkGaPmB0IIHvvxbjoNNlaaiqqguqspLTYz931+C12Hec9uDIQVM9dyfr1rua7z3Tw+8UXuHvIYE5Ou4rf3Klw8HZvWCyn26nBpZOYVMXXBes7/3xes3nkw5HH9krYy4CSkSR0liIlKR/Jz2gqklOwpPMaFi1/lw13zOFCcSbajkPU5+3lo/Xfct/YrXHrtpFcLJRIlcgqEX0TwUi02TqwTQ0DxpzXqwaJIbq2/kfMTdyKBHQVHAmahvrT1V5y6FlT9n0koZNl97/TTirL4cNdcfjiwnPaxjWgeWcdn2zKoQqHgRChZh40HtSmBpysJejYyaxx61vnoJTPdAqPVYeJQwNQSmT4USn/F7w7b3B4R9+ZxB62G1E0Q0HTYdiTJ/W9JicNJ60bJNHDH1QFMqsLIHq35+K7zA/YnBPz8d3Ccrj7HpGnM+nieX4IJRVGY/WnVUpS6TVKY8sLlfLH7Lb479AH/m3Y/Pc7ufFLJjc+4HwMgIiaC5/94hG0rdrH4x2WUFJbSqE0Dhl12FpGx/gsXfWHB1CU8eeErHseL80t47YYPKCksZfJd42nbOIW2jVPYnpbuMzDsDZrQkUml3Dr9a565eDz96rQMerW8tzA9qJ2TJnVizOEB42u5zmJKNDt3r/mSAldJlQm27N+L0rfx2Z4FXN08QAFyDSAibkGWLgA9mMzNUk7seq+syjC471BK34W719XdzLSsJtiliWxHEak++thfZKhNBwtN6iTbYjyOu3SNF7ZM5+eDxmJHYCSeBGMoNSmpWykRqNoonRdQtbwqJDjXQd5tyMKmEPcpiFiDNT8oqIAZHH8FaCdAqQ9x3yKUqgsmIQQy/AIo+phALueywusyaLpke1o6M5+6hsJSB6UOJ/UTY4mJsHnlmT0eUhrxeH9wOV0s/XU1e9bvwxpmoc/47jRuW5FcUpxfQkmh/wWJ1PWAhMinAmeMWhAQQtCmVwva9AocwwgETdN4/j/Hr+qq4sP7v2L0NUOJiIng2atHc/VLU8nKLw4ieCwRzUpQWhUjzBIncPf6z0neFs2D7SfQNwjmkEhTcBphqlCoFxZHoavUrxE0C5W12fs56IcnUiL5bv8Srmg6sDzD8kRDqAmQ8D0y+xLQgkm+8aH3bRsPek41ineDX5T4W9RGqC76xxxhbm5Dkk2+VayPlIRWjmJWTAyt45l598b2Wfxy0GCCCNVNbFIURtStGXu7LPocWfAk1XYfa3sha2xotYhKfdCDWRBI0A8inCvA6hkDFhFXI0tmuN3O/v9253Xbyt87G7Ngu0F9JyXsO5ZDj5bx4NwE0onU2qKo9bCaTdj98DaqiiDcavZ5fv2CzTx14SvkHMtDNatIXfLRg1/Te2w37v/yViKiwwmLtGEyq355H6WEjYu2omka6gmk76opTor78a233iI1NRWbzUavXr1YsWLFybhttZF5KIttK3ZyZO+JX4XM+2oRjlL/AWRd05nnZsZukBTLdw9dxvXj+vh9UAFE8xLU9kUIc9UJNMOez52rP2dFVuBg+bC6HQK2ASNDslV0Xb8TnSqMSW1j3oGAO8VcZzGHigNRVNUMQk1ExL1F9ddy0qiZEiZOOBuF2hJi3wrYTJeQYCqlc0QG9YrPR8+62CgoPg4x5mA04SpwQ4sRHgk9uY4iph5YWu0E+NtbjSbaR5KQlA5k8VfoGaPRj7ZFP9YdPe+RKp9FalnIgjL2lOqOQoZg0BRABGnQymBCOrwrcQglHpHwHVgDC9pquuCi3hvKf1cVjcYRHyHT+yJzrkXm3ojMGIyecz0T+6aU16l570syvGtLr+f2btzPA6OeKs/W1pxauYtxxcy1PDrheaSUmMwmBl3YDxGAyi8jLYul04MVuD05qHWj9t1333HnnXfy6KOPsmbNGjp16sTZZ59NenrosvK1jd3r93HfiCe4qOH13NL7QS5vdjO39n2QDQv9q0yHgg0Lgutr3+aKFOXYyDCuGdWLzs38kPiadJTW3gPiZewgb26fHfC+w+p0oL4tsPikjmRiw170TGjuVe5EQWAWKhem9gUpg2NmqWW/u5QSnFtAOT4eVHbfIIydLAQRSfDxuWCggm0gwhSYoFoRkOm0cVt99wToXIvMugDpqho/bR1djwZh8QH7izWH80C7c7mkSX+Pc4sztlcriccsVJ7oeD6TfWSwSmlH5lyDzH8CtN2AyzA8Jd8jM89BOtyTZOk0Ti6VlU71jKfvMQo1BSXuLbD4z/xTFUnnhkcoe1ufmbSARPO3GK7wMkiwL+CWgW8RG+5A8fK+qIqgRf1E+rX3/ix98+zP6C7NqxtT13TWz9/MxkWGrNPFD57nd8xg5BnM/GhuwHYnE7Vu1F5++WWuvfZarrzyStq2bcu7775LeHg4H3/8ceCLTyJ2rtnDbX3/y7r5VRWdt63Yxb3DHmfVHP8EvsEiLCq49PbYZM/4Rr3EGJ9OGFHX4ffblEi25R9i3g7/1EwWxUT7OP+q0qpQ6B7flFYx9Xm+yyUMTDGy4QSifEdmUy0oQnDZkjf5fO/CgDGYRGsUDcIDT8LVgZQS6ViLzJ6MzLvbS1xNgqkbQb8OtrGc2MlWQYRfjDA1d6tpex+HLqFQM3Fp8nbahJe5FzWQBcjCqvpeQghubjXS713PadCd3wc/wISG3msbi112RDXcfk6pcaAok/nHNmPXPL0SsvC9SjRmlZ8LDXAgc24ydnLaAU7s4qE24EKYOwduJsII5EKV7vMdGxxjSJvtCK/vjIZZHOPTmx1EuTMhTapSznueFBPJ+N7tKCzxzLzUNI2FPyzzTsvnhmpS+etbw0vUsFV9ImP97/h1TefY/mqqVdQSatWoORwOVq9ezbBhFaS+iqIwbNgwli71rP+y2+3k5+dX+TlZeOPmD6vUV5RB6hJdk7x87Ttomu+JLDcjj70b95N91H8sY8BET/Vpbxh7XVUiZCklOw9m+DYNVj2oRebdn03jvg9m4HR5/ywL07cGZOBvGJ7A052N+pRwk5XnulzCjwPu4rbWo7g0dQBx5ghKNDvFmhH8dgWx2r8kdUCNU7+9Qep5yOxLkdkXgLPMvePlD+VajUFBFQBKIsI6EGzncMLKBMLGI9T6AIjo/2K8lsfRa0ljlxapumgbkXtcB5rBJymrjn9InfY81mFyeZy0bEdtUUxc32I4D7abUB7DPFycw6zD65h1eB3HSoz+UyOTqqV0DfDh7nnct/YrRs1/hp8OLK/0OZxQ/BW+Y0w6yBwonQMihtph/zhREIZoqDVwgpOw+H/vXZpg5d4GCAR3jc3CvzHXqRs2k9nPXMtTV46ib9vUcmXs9LxCXvpxASPuf583p/1dZUfmKHGgBdBGk7pOUX5F8ldigwS/7RVFEF8n1m+bk41aTRTJzMxE0zRSUlKqHE9JSWHbNs8dwzPPPMPjjz9em0Pyiv1bD7J12U6f56WUZKRlsX7+Zo8U/r2bDvDxg1+zfMaachdb12EduOqpi70K47Xv35r6LepwaKfvmqWeo7sQlxxb5diqHQdZv8eP0nWJQlA2oVTlz7U7iI0M44GLPF/G7w8s9atrpiDoEtfEgymkYUQCF0f05941X5LvKglpKoo2h3FRat/ADUOElBKZc4O76DkQgmDcB4M1QgiIeQappkDR51R1EVUDzop3QVi6QfznhmuuEuFxYM+sA/R8UKuKvo6u34UhddqzKH0rR0tziTNHMDClbXn8LNdRxP82/VRFSVwgGJLSjvvbnUPdsFiOleRVW2S00FXKs1umARjMItpRw2j5hQnp3IgIOw9Z9E617nvSEPVQcO3CJkDhayCL8PacmVTJV0s7oioCi5JJQE+AnonFbCI6wsaiTXvKS3/KjJhL0/l4llFOc8u5hmvZFmEjJjHKL/WflJB+IJOZH83lrMl9GHnlEN698zOf4QNdl5z9H08R5FOJ06pO7YEHHiAvL6/8Jy0tMMfgicDRINNSj09f3bVuL7f2eZAVM9dW+dLXzd/M7QMeLvdNV4YQguf/fJSEet7jVq17teCJafd5HP99xVa/wWF51Ip0Cp8LW6mDnmmGYhUp4YdF60nP8Xy4t+Uf9juB6UhmHl7LhAUvcsvKT5h/dFN53CWjNJ+F6VtDjsPkO0tw1EadmnOV8ROUq1AnmJ2XCK8Q91Si7oa4wMkdgW9d9bkSlu6IhGnGT+y7YJtA4FfVBIp32RGbamZ43Y5c1uQsxjboVm7QSjUH16/4gCUZVTW8JJJ5xzZxy6pP+G+781AVxWvcNBS8tWO24YoU/pOdyiHMCHMrsI7iNJumyiElRtnAsbbox3qgFzyP1CpccUWlDo7lFGB3uhBKFCLuA7cbsuLzuHTj7/rKnD4s39MQly7ZdkjHpQX4eytxSCl5/edFfpt9/sdqcgoNlQQhBGOvG4Hih2pESsmWZTt4ecq7nF/3WqSEus1SyutzqwxBVWjepQkDJgXnfTpZqNWdWmJiIqqqcuxY1Zf22LFj1KnjWbxptVqxWk+sZHkwiIwLjgT4+Lq0165/H0ep08NlqWs6UkpevPptPt3+ukfhYXLDRD7d8Qbzvl7Eb+/OIT+rkJTGiVz834l0HdbRa6FiTkGJ/1o1TaBvikDt4sk1J93xb31zxfilhNvfmcZn913IkswdzDu2mRLNjjMI41KqOzlUks2RkhyWZ+2kf1JrnutyMXsL06u9oq8NN5MsnYPxiAcnW4+IcnP1eTPKCpjagrlqirqotoOuEvRMdO0oilrxTgghwNzG+DGlIkt/9tOBCrYxCBHau/PboTXs8VHALTEWOFvyDvFx7xv4cNdcFqZvQyKDViivjAJXKcsydxoK3Woz0Pbg+zt3GS5eQMQ+j8yzQukvId3vZEBUlomReVD0CbJkOrtK3+btGXtZuNHYQVnNKmN6tWXKmN4kJf5hJMSU/snhrEyW74pj6sp27DxWscP+bX1LxnX2F/tWIWwSB9Jzfap3lEHXdeau3cmkAYaHafLd41j00zIO7jjiWybGHXNzlDh4985PueXNq/l72krW/FGRnYkwNCHv/vhGLAGysk82atWoWSwWunXrxty5czn33HMB9x957lxuvvnm2rx1SGjdqzmJDRLIPOi7lspsNROdEInT4cRsMbNvcxrbVvhOkZe65PCuo2xavI0OAzzJZ23hVkZfM4zR13gXET0eKXFRqIqCpvveBSXkJnJnx9G8vHkGuVqlTMg8E9rGSMit+vBtSz/G+X+9xiFnVrmeVSgom9j+ztjOB7vmBlUHdzwUBM2i6mBTQ2OeDwoyFL0sBcIuANdWcCymqjtSgJKCiPVcoKAGzlgMChkD0a1DEZE3HEe35CZnDrsQSr7jeEOgS4USGYkt/IaQ9zO/HlwdsM17u/5gZL1OvND1MgqdpeQ7S4g1h/PjweW8v3Mudt0ZdFl5jqPI+PtFXofMu9dHKxVMrcHcHQAhrIZhc92CLP4GSn+rEd1Y7UJDaplkpt3B4k3jyl2CdqfGtCWbWLBhN5/fdxF1428gU7uMc1/70Gvt6ep99Vi0oxF9m6ehKsefV0GJR4RfQV5GYLe3ogjyKhVRR8RE8OriJ/n4wa+Z89lfAcuLAL5/6Vc+2/kGh3YeYfPf2xGKoNOgdtRJTQ547alAre/r77zzTj744AM+++wztm7dyg033EBRURFXXnllbd86aKiqylVPXeS3jdPu5N7h/+PCBtcx9YVpHNxxOKi+D+06MS/gOX3b+jVoihCcN6ADI+t15qMuN6EtjEVbFo1rXhzawjjIOX41JVF75XHYYRjymvAvSiTfH1hGs8gUn3VJvqAjuSTVM538RECYmhGc61GACENEXIaIex8R87IxqSopYGqNiLoXkfhrBQN7lXs0dKdr1zRLT4J9npGeb1/oeZ/oRyFiCmWUT1lOK68e6sjwjecwdMNwBv31CU9s/IEDRcFnovmjxSqDJvVy/s5Is4164XGEm61c1uQsZg15kMc7Tuai1OCIalPKGEts50DETe6jZX8391SkNnbr0Amk1JH2BegFr0HpNIRtOCJpASJhBiL2DUTcR2AJ9dkRYDkLTK3wPf0FR0DgtXeh06tZGnVicqsc13RJbmEJL37/FwB7jmT7IVMQ3Df1bKatbY0uj3uuzJ0Q8d8i1CTqxkcFdApruqR+YlW6rqi4SG57Zwo/pH/EFU9cEPAzHd2bzq61e2nYqj4jrxrC2f8ZfNoaNDgJjCIXXHABGRkZPPLIIxw9epTOnTsza9Ysj+SRU43hlw2ktMjOe3d/jr3EjqJ4V3HNzyzgg/u+pN+E4CReImJCK4L1hbaN63BO33ZMW7LZ45wioG5CNBcN7gJAQmQ4TcPqsPuw750nCU5EnCvgCltxO9gCtSty2UkrzuLyJgN5c0dgst2yneH5jfowql7ngO2rhbAJUPAShqimH4gYw5iVuf/CxiLCgpfJENGPIbPOdxf51iQ2qAM6MudGZNJ8FLVCh0wIFRF1FzJiCsfy53HN1jVk2V1o7m/GqWvMPLyOeUc3816va2kV7aem0Y1kW0y5YKs//HpoNXe1GeuxS40wWRlVrwsj63ZmeeYu9hSm+3xSEiyR9HArlgshEFG3IW2jkSVTwbULRCTCNhJswxHCgnRuM5J89EOAyd3v62DqgIh7G2E+2+hYiUFm+Sbg9oCprZHcoe0H+x9Q+ifIbAz3cg/Q94Lu570JEi1TsjiUU7UsR9MlC9bvISOvEJvZ/9Tr0Ew8/dsgft04nCcuiqFRcgSY2iPMFUXVSbGR9GnbmOXbDvgMTUTaLAzq5JmwBhAWGUZ4kCVGRXm1qRJ+YnFSIrA333wz+/fvx263s3z5cnr1qqG+Ui1h3PUjmHrkA+75+CY69G/jt5r+759XEBXvPxZni7DS/eya0QRVxu3nDaBhUqzHcVVRuPXcfsRE2Ji/bhfD73/fi0GTiHp2lL65qCOyUHvkB0WWPCC5NS2j6gWVJiCl5NIm/Tm/kVF0qwojwaAsVb9ReIIhDGqLoV9SK97ofqXXyfJEQShxiOj/YSSAHP+oCyNlPOpxRPJCRA1ERYWpMSLxJ3ea/4mILzggYzDSuREA6UpDFn6AXvAilM7kxd05ZDm0coNWBk3qlGp2Hlr/dVDF7uMbdA9qNCWaA5f0U2AsBHe3GYcihEddW9lv97Qd70GBJswtUKL/ixL/CUrcG4iwMQhhQS/+Dpk1oVI9oYvyxYJrCzL7MqOA27kDWfQtwU1jFiP9XkuDrLMh91oomWqww0TcD5HPGEwiejonogbRoXnfuetSciA9l7apKcRFBjYomw+4mPxCNqvTelQxaGW4c9JArGYTiuL9737fhUOwWXwbUFtEcHHY6vLcngqc4X48DuFRYYy4YhAf3PelV7G7MqgmhWadUlk33zcb9rjrRxAWUX1XRmVIKbnn/d84lOXJ9+fSdR76ZBYldhdPfPmH54QmJErPfJQ6DqQOQgleef2uNuPIdhTyn6Vv+20XoVppFlUHRSjc3XYcExv14teDq400cksEo+p1oV1Mg5PK1g0gws8DNdkoTna6mSpENIRfiIi4HqEErxQupQPsC0A7CEoMWIeVa3cJtT4i9lmkfAxZ9BkUvlTDkTuQWVcibUPczBqGYT7mMLEoY0x5oe7x0IH9Rdmsy95El4QO7nFLozxAz0QqyQg9B5zrGBkjeMdsJcfpXyIl2hyGWfE/VXRLaMpbPa7ixS2/squwIjGsfng8t7ceYySIBAFZ+AYUvuGnhQbaPmTBS1D8JWW728BwuA3WcdDToehZz+PexuaHaLoySp0qa/fX9Xk+3GrGrKpcNbInL/2wwG9fupRIXfL4F3/w06NXkJVfjNmkEB8VjhCCpnUT+Py+i3hh6l8s31ZB75VaJ55bzu3PoE7N/PYf7PuYfTQ3qHanA84YNS/QXBq56b7JYgE0Tae4oMTneSFgya+ruOa5S4NSwA6ENbsOsWqHdykZKY2H/41pi93aTFXPKy2LESlGYW5ZLVswz3KMOZxEaxR1wmJpF9OAbfmHvcbeBIKJjXphUyt2KU0ik7m19ajgPlwtQ1j7I6z9kXoeyFIj0B5sarkbsnQ2Mu8Rd41VWRKJBSKvg4ibyycHIWxI1y5qonBdgfxKWX8S0Nlrj/dp0MogkOzM/JkuCR2Q9kXI/GeqiGQaj4eCBXi2cSzX7fJdPKwgmNCgp3uh5AAsRrzLtQ/siwAnmDuAuTtd45vyVb9b2VlwlPTSPOKtkbSJrh/0xCmdGwyjFhACij/n5CiaV7prEB9Dl/Dt8o4UO7wnPqXERdKqgRGPunhIFzLzi/hsjn/uRCnhUGYeA+54C4ebNKFlgySuGtmDEd1a0bRuAu/cNpGj2QUczsojJsJG07oJQf3dg9V/PNmL0ZrgjFHzgpLCEsxWM06771iMqqoc3n0UoQivOzop4dCOI6yavZ6eo7rUeEx/rN6BqgifvnNNl2Tle/F7C4loWhIyraKCYFKjXuUuo2c6X8x1K97naEluudOrLLW7d2ILprQILovzVEIoMYAn/VggSPtCZO6tlY6UTaYOYxKWEhFlnJd6IeiF1BYThlUENpQSgU1biV76J+Te5KOV8Rk6RWZzbsJefslK5fg6PVUoJFojuTBpCzLjUdCzATNSSQT9iLu9MPpSm0Ls6whzS1pG16VltPedinTuBMcCQxXa3A4s/RHulZYs+prgFgPH02udOpR5PDQdTCos2d2Rd+f7jrdfN7ZPuatQCMGt5/bn16WbyfazQC6DoxIL0M5DGdz/4e8cyszjyrON+9WJj6JOvPdaRV/ocFabgKpIJouJ1j29x+VOR5wxasfh59d/58P7v/Rr0MDYzRXm+FfUVc0qq2avo8fImovkFZbYq/caR2oIi/8rK7tV3K8b7WMbcUXTQeVt6oTF8lW/W/nt4GpmHF5LnqOYBuHxnNeoF4NT2tUKxdXpACklsuCFst+8Nyp6D902Coo+cgtKBk6Tri7ahWcTo9rJ03zHQhR0+kTtg/wydh7/3/89DVaTZC7m64yOFLmp4ASCvolNuLfOz8Q5dlFhyJ1ug1bWb9msvt+Q9UmcjlA9DZrU85C5d4JjEeVs+GigJCGjHkTYRoNrI0Fnq54mRk0I4/3ZcLAur8zuy9YjyfRtm8qSLftQFYEQwmD5EHDz+H6c27eqvM+qHQeDMmjHo8yYvvnL3wzt0oJGyYFJyL2hbpMU+oztzvLf13hNjFMUwYgrBhGdEJqxPJU4Y9Qq4fcP5/L27Z8EbKeoCu37tw7IuK9rOjPe/4OfX/+dmKRoRl01hPPuGEvccWTF+UWlzFm9nWM5hSREhzOiWyvio6tmTTZKjgv4HtfoVdcBBeqFxTGpUR8mNeqFVa3qoos02bgwtR8XBpnC/a+Atgdc2wM0ckL2he66uNpllTcrkstTtvPGYe+K6wLJuPh9JJgdHkwlvqAKuLrOdi5pkMgW8SAO3UWzqDoklT4LpbsJzs1XRqz8FiLmySpnpNSQOdeCO/GlSn96BuTdgSx40S3pEwwkQdOanQToUnAsL5KtR5JRFUFcVBg/PHI5s1ZuJ6+ohLoJ0Yzt1ZbEGM9ki837jqJ4CRkEC0UR/LR4I7efd5bfdjnpecz/ejEZB7OITY5h8EX9SG5oFHzf/fGN3DP0cfZs2F/ueVIUwxi37duK61++onqDO0U4Y9TccDldfPLQNwHbCSEYdEFfbnvnWq5ud6ffgm2py/LixryMfKa+OJ0/v1zIa38/SXIjI137iz9X8+Yvi3FpOqpqFFe/9MMCrhrZk+vH9inf4Z3Ttx3vz1jm816KEHRsWpcNe45UrX8pVJF2gbD6fmuEANfiGObcdxOJ0cEnTvy/gJ4bXDtZey7H43Fx0g6ynVa+ymiF6i6BN/Y9CoNjDnJXg3WgtgbNk6bNN3RsIo/u7rR7qecjc6cTmpHWoWQqup6DiH4cUcZD6VhkKFH7vbQs0zGIpZm5FziX+29zEiGloYcGRhhgw54jNK2bwI3jA/OZqmrZrrV6z46mS/Ye8a1DKKXk22d/4bNHv0XXJapqlCp99MBXnHf7GKa8cBnRCVG8vvQp5n/zN7M/+4vswzkkN05k1NVDOWtSb0wByg9ON/w7fUbVwOa/twdMDgG47d0pPPDlbYRHhXPeraNDcivqmk7OsVxevNogaf1h0QZe+XEhTs2YmFya7n5BJB/8vpxPZq8svzYlLorbzhsAeAasVUWQWieOZ64eTfP6iVUjI1Kg7wnzme0odZC5KmSba011+h8NNXC9l4GT5w4TAm6pv5GpbWZxafIOhselMTlpN5+0nMvTTZZjUXRCd4GqoKZW/Krtq0YfbtjnIbMvNBJzwFB/Dro4vcxE+0DETRD3PihJvtucSChJYOqAv6nSpEqW7m5Y/rslyOQLgN5tGgehaO9neEIQbvPNxvPrO3P4+L9fo7l0pC5xOQ0tNSklP77yG58/OhUAa5iVkVcN4ZUFT/DZzjd44c9HGXJR/4AGTUrpV73kVOCMUXOjIMeTM9EbTOaKB/a828fQZ7ybzieAQmwZNJfO2rkb2bftIO/+6l0xtwwfzVxBSaXY3mXDuvH0VaNITanQHbNZTEw6qxOf3H0BKXFRfHTX+bRuVLXaX+4MRx4yHvyy5EUp3X75UgV9ZQxN6yYQc4LKD/5NEGpdsPTl9NL1UgAbjayF3FBvE483Xsnt9ddX0ljDyHYUodQWaUaxejlqwsGqGWUPxV8av+p5hLTjE2Wud5UKAxcBcZ+jRN2GooRB9Is1GF8I0DNAz8GXq9OlC9Lzw5m31djhKkIwMEAafWW0qJ9Iz1YN/ZKV+x2elAzr0sL72Jwuvnjie7/Xf//S9CpSM8Fiy7IdPDbxBUbZLmKk+UKubHMb096ahcsZJM9qLeKfta+sRdRr5kmw7A11m1YwoagmlUd+uIt5Xy9m+luz2LflIIoiKM4PHPidN2ttwABxicPJks37GNq14qEd2aM1Z3dvxeGsfOxOF3XjowlzE4oezMhl1+FMtqcdV48jBfrqaGSaA5FaCpEaOAX6QRsyzQouhSsmdf9Hpe2eTIioB5DZ54O0U3VyO0UJC9bh4FhplCf4hApqC3CtC77f3NuRkbdA+GVgao5h2PzXsPmGjiz+DhF5E5gagSPYEgcThF+KUFORDkNzUVi6gW08QqlkpF2+60NPOPQKSjyJikArj4HlFdu4+ctxODUVIcBsUsvJg4PFM9eM4cbXfmT7wQwUIYLeuamKoHFKHGd1agqAU9PIzi/GZjETE2Fjy9IdAb1PjlInK2euZdAFwcfJF0xdwlMXv4qiiHLB0UM7jvDWrR+zYuZaHv/5nlPqsjxj1Nxo2rExzbs0Yc+G/V6zgIQiqNsk2YOcWFVVhl82kOGXGazii39ezuMTA68inUFOhgWlnpOKEIL6iRXJJhv3HuHlHxeyfrc/PkqBTLci0ytW4GUlApcO7crY3m2DGo/XMZbYWbRxD3mFpdRPiqFv21RMfuQt/mkQ5lYQ/x2y4Em3YrMbamNE1D3IwnfBtZnaT1wQoDZCxL6OPBbo+9JAiUBEP4EseN4d8wtghGUesuBJhCwE62Cqb9Dc0DOMUYdNRhZ/HuRFGkJJRIRPRIRP9D5MqUPRxzUbGwCKsZv1oXFWgYpzwnIWBcXH2JqWz7wtTfh9Q0tKHBaEgDCLmVduOCfktPq4yDA+v/8iFqzfzcyV28ktLMFiUlm53Sim9pVE0qJ+Eq/deA52h4u3Zy3hx0UbyxWvOzerR/+E4JTkg1mElyEvM59nL3/DcDu6KgZWRviwcuYafn1nDhNuHR10nycaZ4xaJdz+7hTuHPQoruMUsBVFoKgKd35wQ8DdTKdB7TBbTTjtvrfhZquJfiO78N723QHH1MgLLVZlrN99mCmvfO9flsYL6idE07FpPSYP7EjnZvWrnCvVHNg1F1FmG4qfVH0pJR/OXM7Hs1Zgd2rl6c3xUeE8fMmwkNwwpzuEuTUi/kukKw20Q6DEgqmV8TwICzJnykkYhURETDGKn0UCSO+yMe4RG3ExPR8Sf0M4N4KWgdSOQvH7/u9S+Kbb5VbDDEMl1hiJuRUy/EooDpxZDIBtpP/zjqUga87PCOEgA5M6V0CAYwlRJjs9mgjqJyYSEWlhX3ZTurVowLg+7artwjerKsO6tmRY1woqrM37jvLJ7JX8tX43upREhlloUieedql1GNK5Od1aNKDY7uSqF79j9+GsKju8DXuOsG73YSJaJmHbkeH33g1aBRs3hjmf/oXm0nzrNgI/v/H7GaN2uqBVj+a8tvhJPrjvC9b8ubH8eLv+rbnmmUto2yewtEpUXCRjrxvBL2/O9FqULRTB2OtH0L51Q9qn1mHL/mNe3Q1CQIPEWLo0r+9xrgxSSp7+Zi6aLkMKNgsBH999AUmxVTMdV2Xt5pM9f7EyyzC2CZZIJjXuzSWpA6qwhZThvRnLqmRklg0hp6CYu977lbdumUCvNo2DHtc/AcLUEEwNqx6zDoSYF5D5D4MsweB/1DjhO7ewy5AiCpkxIoBBA5CgHUIWvmQoLse+COGXQGYwk40Gzs3UzKipEFax0xJR9yOVBCh8HYOZxPd1Upr8c6Y413JCGFvCRkHJzwStt4ekbPcqkNSP2sgtA9cjYl5AhHWr2Vi8oF1qHV68bhxOTcPp1Aizmj0W1R/PWsHuI1ke73/Z78UDm2M7mAvFnkk/iiKo0zTFqzSWL+xat9dYVPmxakd2H6O4sITwILgtawP/Hh/RCULzLk14bs4jfJP2Lm+ueJav9r/Dy389EZRBK8O1z19KfzeLf5libNn/+0/oybXPGerJV4/qiS/iWUUIHrlsuN+d4faDGew8lBmSQVMVQf/2TTwM2u+H1nLjyo9Ynb2n/FiWo5D3d87l5pUfU6pVfSnyikr5ZNYKvMEoyZW8/nMI7On/cIiw8YikJYjopyHiSjB34YQnl2j7IO9Wd2ZisJCAE5l7uyGaqgX2DhhuyjLDXB0ooMQhwo36JikdyPwnofBV/Bs0ABdk9kPPfwopfWVfnoi/qwKipolRGiCReQ8gdd9p9TWFWVUJt1k85gKXpvPjog1GcbcvKAKtXT0P5WpFVVDNKvd8clNIsXSzxRwUO9GT57+MIwCBRW3hjFHzgcT6CbTq3qy8QDEUmC1mHp56F68ufpKz/zOYXmO6cvZ/BvPq4id5eOpdmC1mHE4XL0z9y+cDIqUkzOKfn/BwVmDZkMpQFUFUmJW7Jw+qcjzXUcSTm34C8DCQEsnG3AN8s+/vKsfnrd2Jy4dyLhi7tq1p6RxIzw1pjP9kCCUCET4JJepuQ+LkRCeROBbV4GIJhf7djlXaWntSbUeOiIS4rxBqksHIkns3lHxJ8DsiHYo/R+Y95H105p7UeJdm6eUWYz0R2XouKPnpBPQTGvKLSskv9h/3VFWFjhN7EH2cppqu6bTo1owGLX0TL3tD73HdypND/GHVnPV89vC3IfV9onDGqNUShBC069uKO96/nid/fYA73r+edn1bla+KfpyzmsNZ+T6DwEIIvvjTP9FpTHjwK01VURjetSVf3H+xh3zNb4fW+BUJNURAl1bZVeYUlnjIXXhDTuE/R4epupBSQ7r2I117K3YXeianC+NFObSN+K0BqwQRNhkR/Vj17iMLEGXF0c71YJ9F6AZeQunPBldk2RHp5trMvaF64yqHClFPgG2UIT9U42lQIJ3bPI7uOJjBL0s2MWP5VjLz/FPqVQf+JGXK4HJqrJi2ihwvLPvblu/k7sGPURrAMFZGn3Hdqd+iLkL1/xxJXTL9ndmUFAVW5z7ROBNTO8nYuGgrH9z/JSsigCYJhsKnF2i6ZP46/66iTs3qkRgT4feFibBZ+ODOydRPjCEqzHvt0e6CYyhCoPlxY2baCyhy2Yk0G4a0bnx0UMkpdeL+OZxxoUJKHYo/QxZ9XEFJJeKQ4ZPAPufUDs4X1NagbcevwY24BqEmQ/hkpHMLlHwV8m1k0ReI8AuRJT9T/diciiz9BWG+ByldyOwbwempCl6BYO6jQvxUFLM71hv3FjL7aqpotlVBMGUbRrJQGdIycnnok5ls3Fuheq8ognG923LfBUM4nJXHT4s3su9oNpFhVoZ1bcHATs0wq6G5VcNtFnq1bsTKHWm+XZCKwLLHe1KNruns33qQuV8uZMyU4UHdUzWpPDv7IW7ueT95mf6TbEqL7OxaszekmN2JwBmjdhKx+o/1/HfM00hdIoe3CrhodmoaUkqfPm+TqnDruf155LPZPvu4aXxfGiTGMG3JZn5bvoXcwhIaJMYwoX8HhndriVlVvSaBHA8BmCsxjgzq3Ixwq5liH35zRRH0aNmQlH+pUZNSGu6x0h+OO5EDRR+cmkEFA20rFYTCXiZC21hE5N0VvwsLxjQRiptOgrbL2Nnr6VR/xyrdygAgC98JYNAAS29j95X/FAYbyvFGKhwSfkIxNy0/Iiw9IXGaoYFXOsNI9DGlgqm9oSQgJDi3gbbXz+fQEFZDpSIjr5CrXviO3KKqafK6Lpm+ZDNrdh4kLSOvvJxGEYI5q3fQzC0f440f0h+uGdWLldvTvH+busR0NB/TMd/GRyCY9cn8oI0aQJ3UZC7+70TeufPTgPY+GLHaE40z7seTBF3Xefnad9E1ia5LTFlFfh8IIaBJchzF+cXouu9JYWzvtjx48VDC3QXYZcwEVrOJOyeexaBOzbjoqS95+YcFbE/L4FhOIWt3HeahT2Zx0+s/U+pwMTClrV/3o4Kgd2KLKgTHYRYz914w2Ht7IbCYVO6Y6J9k9R8NxzJPg/aPgY7Hw6emQuy7iKh7oeQHZPFXSMcaINyzbVAwAaWgpBCsy9PrOPUCQ5+u6K0AbVVQklDCL3CrkI+kIqHEArZJiKQZVQxaGYSpKUrM4ygpq1DqbEZJnIES+xxK3Msosa8gYp7A999ABbU5WI061a/mriGnqMSrF0MCaRlGMXTZ+bIY9r5j2dzxzrSQjUC3lg14+upRWM1GxqhJVcA9X5iO5BM1e5vfv76UkuwjOX5aeEfHgW0DPhYWm5lmnVND7rumOLNTO0lYN38z6Qcyy3+3bkunpEsDr23VnGJsaw9RsDeLc5+YQURMOKOvGcr5955DbJKnHtikAR0Z07MNf63fTXquwfQ/uHNzImwW/vPCtxzNKajy/JW9SGt2HuS1nxdiMasIpxk9yom3sjQJVWRoyjC+TzvCLGbe+GUxBzMrmAs6NavHvecPomWDk8TPdwogi7/jxAiBngYQ0cYOp3QmMvdGDKPnXvurjaneZ3Qi0/uCdRQ1SpixzzUUxwPu9jRwGUKowtQcEfsKUj5t1OkpsQhRfdovYekBMc8j8x6k4m/hls5RUxHxHyOEYUCnL93iPxvR1+h1yeb9x1i/57BH3WggjOjWir5tU5m5Yhvrtx5g3mcLsOzNwpReGHA5oSiClMahv6fNOzehXd9WbFux02viiKIqjLp6KBHHqY2cDAh5KvaHQSI/P5+YmBjy8vKIjo4OfMFpjN8/+JNXrnuvyrHSNikUndXMWFm51bFNxwqI/m0zQpdVqAQUVSGpQQKvL32K+DrBaSdtS0vn4qf9x0OEMFwQukVD7Z2HiHWV80MKYaQTP9J+EmfX6+SzDykl29LSySsqpV5CDI2SY4Ma3z8ZeuZYcO041cM4CSjjX6xuluBJpBKz9EGJ/6zWupd6NhT/iHRtA2E1XI7WgQihUuJw8ufqHTz6efVjqaoiuGJED24+p/rSTsf2Z3BpkxtDuua+z29h2KW+vSp5mfnkpucRmxxDTKUsyvS0TO4c+Ajp+zONujVJuXRNhwFteHrmf7GF14RDtCqCtQdndmonCZFxnr5y29ZjKPmllHaqj7OBsQOLmb8ToUuPwm1d08k4mMU7d37Kf7++I6h7rt15qJzlwxekNLIbsStoC2IRSU5EHTuooOerfHLJlbSr559xQAhBm0Ypftv86yBiOJ3EKmsPGqCCiDPihSHjJKoX2MbUbv9KPERe67H7mbN6O0988YfP+HLQ/QuB01WznX9yo0Qat2vIgS0HA7oyFVWhda8WDDy/j9fzu9fv4+P/fs2KmWsNgyUEvcZ05aqnLqJJh8YkN0zkvbUvMOvj+cz+dD55mfnUSU1mzJThDL6oH+YAJUm1hTNGrYaQUrLmzw38+u4c9m7YT1hUGAMn92X0tUOrrGp6jOyMLcJKaVHV9FnLoTwsh/KQiiA6IZKCvFKf04Cu6Sz8YRk3vZbn1Q15PELnJxbIDAsyw8jkUhXBn8t3025C8DQ6/18gwsYinSsDNzzxd+bkG1LNzY94GkNEQ9i4k37bZVv388BHv5+Qr8Sl6bRtXLPFoRCCSx6ayNMXveq3ncliYvjlA7nh5Su8Gp+ty3dy95DHcDlc5Z9NSsmKmWtZO28TLy94nJbdmhERE8HEO8Yy8Y6xNRr3icSZRJEaQErJ6zd9yP1nP8nSX1dxePcxdq/bxycPf8NVbW5n78b95W3DIsO45KFJPvsSuqT70I4oiv+vRHfppG3zR1xcga4tGvjdpQWCpksOHKvO6vz/AWzjQanPyZekERB+5Um+JxhMIKeT/M5xiHsfIU4+LdO7vy5FIGps0xQhiIsMY0jn5jXqZ97Xi/jg3i88+3cTjKe2a8iD39zO/6bfx+AL+1GU51lHKqXkpWvewWV3epC765qO0+7klSnveVx3uuDMTq0G+P2DP/ntXcOHrlcKlkpdUphbxINjnuGL3W+WyzBccO85uBwuvnrqR1xOF6qqomka1jAr171wGQDzv/vb80bHwRLmWxSwMlo2SKJri/qs3304ZMLjMpSxfp9BVQglAuK/QObeAK7tJ+/GEVehRN2LNLc32PfL6uNqHTawnQulp4Ylwi8ibkCxdD3pt83ILWTD3iNBt0+JiyQmIoydhzJwh6AAwyNiUlVevG4c5hAERo/H7x/O5ZUp73qecHtsbn9vCppT4907PyvPeBRC0HtcN25+/SqSGxkJIztW7Wb/5jSf99E1nV1r97Jr3V6ad25S7fHWFs4YtWpCSsn3L/3q0xukazqZB7NYMm0lZ00yfNZCCC59eBLjbzqbRT8sIzc9n8QG8QyY2BtFVXju8jcCujES6sXRvEtq0ON89uoxXPvy9+xPzymPrymKQNclMRFW8or8G63M/NPc7XQKIUwNIGE6MvsiN8lusAuH6roQYxCRtxs9hI1DlswGx5+cHOaSUrAvAKKB0OjZag1KAiLiBkP/7ThIKY2aM2FCiOAWgaGiIMQFX0ZeEdn5xVwytBuLN+7hQEYu4RYzZ/doxaVDu9E4JbgEMG8oKSrlnTt8qCC4H7Vvn/2Fo3urEmFLKVk+Yw3bV+zirZXPklg/gYM7gjPUh3YcOWPU/k3Iy8zn0E7/X75qUtmwYEu5UStDdHxUlWJHKSUPjn6aNX+sD3jfix44DzUE5oHEmAi+fvASfl+xld+WbSW7oJiGSUbx9dy1O5m10v8uY+/RHApK7D7ZSM7AEaJBs4ClJzgWU1ES4P6/0tBIQaeAqobKtpgvGgAAbtRJREFUyEAUcS9jEA27oR/h5Bg0N2Twu5JaR9wnCEtPhKgaD5LSBcVfI4s/NdS3AWnpg4i4DmHt627jcIusFoGpGcJUPYmklLgozKqC0w8HamXougQBq7an8dNj/6nWPXeu2cPqPzagazptereg8+D2CCH4++cVHvH6KvfWdA+DVvlcXmY+Xz35I7e9M4WImODS8MODbHeyccaoVRPBxqqCqZhY/9dmVs1eF7DdRQ9MYPyNZwd340oIs5qZOKAjE49T5F26ZX9QSruuGmZk/ashiwll1yUib4KI68DxN7L4R0NVWUlGhJ0H1oFIPQuK3jMIcmURIMDSH9SGyLxHQD+MFOHumF4U/5pauZCgIiy9EKLq9CWlC5lzAzgWVG3uWIp0LEVGPo4QxYaoq6yoq5TmroiYJxGm0OJZETYLo3q2ZsbyrUG793V3+cuOgxkh1XHmHMvlickvsWnxtvL4mK7pNGhVj8d+vJuMtCxUkxIU2bA3aC6dOZ8v4IZXr6TL0PaER4f5FQ+Nioug06B21bpXbeOMUasmYpOiqde8Dkd2H/NpuDSXRseBgb/4uV8uDPhAhkeFcdVTF4c8zo17j/Dt/HWs2pEGAvq0acyFg7vQqkGSm1DZ/8uYHGvEAc7AB0S0kd5faZL0DhUReStEXG/QnlkHIKwDys9K+wJk9n+gjAhYbQFhk42i6Nzr3Az97udDFkHJVIzX9/+fQcM63MOgAcjibz0NWmUUPup9+eFcj8y6ABJ+RJhSQxrNTeP7sWzrAbLyi0KKWx/KzAvaqDnsTu4Z9gQHtx8CqJK8cXjXUe4c+CgX3HcuWpA7Rp/3KXFQkF1IQt04Ln5wIh/e/6XPtpc8NAmL9dSk7AfCmezHakIIwaQ7x/nWQ1MVEurF0e/cHgH7ys3MD7jCKi4oCZlC59u/1nHF898yZ/V2MvKKyMgtYsbyrVzyzFfc8/5vLNu63+/1QsCFgzoHxcb//xVCqBB+Af5fJQEJvyMivSuny6KPkDnXQuUSAW0XFD4NOf9xJ6Ic/3xoGPyGp3FGYlBQQKQAwcS9BCAQkT5Uxou8JEkEBQ1ksaEAECKSYiP54r6LGNWztUFRFSSiQ1DIXvTDMvZvTvM6R+iaTmFuEdlHc8oT0qoLRVXKXY/n3zOeSx+ehGpSEIrAZFYRikA1qVzx+AWcd3vt1gTWBGd2ajXA2OuGs3PNHmZ+OLfKTksogojoMJ6a8WBQD1pSg0RUk2rIpPtAfN3YkMT8tuw/yvPfzQeosoIs+/e8dbsC9tGjZUMuGXrys8r+aRAR1yFL57rFOyt/h0ZCiIj6L8LsPaAunTuRBc+5f6s8abm/M7+inqeZtE1IMIPaBJQYtzH3ZRBU9zkniEicES/w61KN6Uu/ITO/iDpxUUzo156R3Vui6oHUwP1BM2jC9CeMzNYQkBQbyRNXjOSe8wdz4FgOU179gRI/hdiJ0RF0ahp87ee8bxaXM3V4g67pLPx+GZc+NIlPH/HMThUGbZDP68EQMe43oWc5A4gQgisev4DxN57N/G//JvtIDgn14hl0YT/ikgPXyJ5KnDFqNYAQgjveu44B5/Vi+tuz2bvxAGGRNgZd0I/RU4YF/eWPvGowv77jm2lfURXGXBs8izbAN/PXlTOBVxcXDupcoxTj/y8QShQkfIssfA2KfwDcGlKmFojIWxA233FQWfItp0dcTAGlLgYz/rGTMB4naDtBK3s+jzfQwnDrhp8P0okwtyLXOYhrX/6VPUfWl2fypucUsm73YX5ctIGPLq8+dbIBF1LPDtmolSEqzEq71DpcP7YPr/zoW1HgpnP6hbSry88q8GuQAIryirj4v+ehmhS+fPJH7JU00hLqxXHH+9cz/5vFzP1qkYfHR1EVVJOJS73U0calxHLebafvrswbzhi1GkIIQY+RXegxsku1rpdScnDHEaLiIynILvQ4r5oUkhslMeG20SH1u3rHwRoZNAB7kAkiS7bs48s/V7N6x0Ek0LlZfS4d1pWzOngyov9bIZQYRPQjyKh7QDsCIgyUOoF3187NnHqDBqAiYp8HpS4y9/qTxGvp7/mUIHPB1BYlzHj2H/v4F/a7yQDK5uWymPCmfcdwuKxYTdWvq9R0wdC7viY2OonzB3Zi8sBOWKvh0rt0aFecLo33ZizD5dJQFAVN17GaTdx+3gDO6RtagkWDlnXZuXq3zxCFEIK6TVMQQnDh/RM45+aRrPh9LfnZhdRtmkKXoe1RVZUuQ9sTFmVjxgd/orv08t1fcqNE7v/iVpp0aBzyZz0dccaonWJ88tA3fPPMzwgfcau+5/TgljevISouMqR+T0QcrEmd+IBtPpm9gjd++bvKrnDNzoOs2pHGlDG9uX6sd165fyuECANTCMZc2DgtOCTDJiIsPYxVfNQjUPgWOJed+nGVTIew0aRl5LJo016fzXQpmbG+GRO6banWbs2lCf7a1oRCh4WizDxe+Wkhc9fu5O3bJhLmppGSUrJhzxFmr9pOfnEpDZNiGd+3Haqi8OOiDazeeRCpS1o1TGZ0zzZM7N+Beet2kVVQTEpsJEO6tCDCFnrN3OhrhvHnF753fhLJuOtHlP8eFhnGwPP7lv++d+N+dq3dh9lq4orHL+DShyexfMYaSovsNG7XkM6D2wVkMvon4YxRO4XYtmIn3zzzM+Db3z30krOIS4kNue8+bRvzy9+bqr1bC7OYmL9uF3GRYSTFejeom/cd5Y1fDAaUyvcpWz2/P2MZPVs1pGsL7xI7ZwDCOhTpWHqqhwGOFYbwaf7jUPI1hkvU37MjwDwYnPNqd1yasWNcu+tQwKZvz+vJuC77MCue1E8GIgBPMgFNFzg1lfcXGEld0v2fjXuP8uHvy7nl3P4Ulzq45/3fWLp1P6qi4KYB5/0ZyxBCGH87d39rdx/m27/WUScuilsn9Oea/r1C/NBV0b5/a0ZeNZhZH8/3OKcogrZ9WzH8ikEe5w7tOsLzV7zJlqUVu26TWWXUtcO4/qUrTtvsxZri32Oe/4H49Z05qH5iVoqqMP3tWdXqu3frxgHT9f2hxOHig9+XM+7hj1myZZ/XNlMXrC8XJfUGVRFMXRC4oPz/NcLOBSWOmr+KNbxeFkPxV26DBr5dou7v23YuIv51sA6mVjMwpbPyXf0itziMTblvgJLqPiIqrjR1gMQZEHETUDXzcF9mLFM+PYc9GVU9E7qU/LBwA06XxiOfzWb5tgMAaLqOphtiv9LdztubdjSngAc/nslnc1ZV9KlLlmzZx6s/LeSVHxfy1/rduAKk4gshuOP967nm2UuJrRSnD4u0cd7tY3lm1kMeBirzcDa39XuI7SurJoS5nBq/vjObW3o/QPbRfyev65md2inErnV7/WY86prOng3+0+6PR25hCfd/OIMVbon3mkCXEqemcec70/nl8SupEx9V5fyGvUf87gQ1Xfrlxvt7016+nr+WDXuOoAhB33aNuWRoN9qn1qnhyP85EEoUxH2OzLkS9AwqdkghZjZGP4HQc5Gls8G1McRRGOrNsujDwE1tExGR1yFM7vhLzAvInKvBuR7DsFYSGD0RUOoC0KV5/YC9mlWFZo26IyJmg2MFOFcbY7H0BXNHI74ZdRsy4mpw/M2clWv4dlE+69OS8GU2C0rsrNpxMKhsYV94/ZdFjOjeEqdL57a3jbhgWaLIF3+upk5cFK/eeI7fujVFUbjg3nOYeMcYDmw9hObSaNi6vk+9sh9enE5BdqEHITEAEvas38+FDa9j8p3jufqZi/9V7sd/zyf5ByIsMnCtir+d3PFwaTo3v/ETq3e66YGCuMakKjStE+8zBicluHSdHxZt8DhnCWJsvtq8Oe1vbnnrF1ZsO0BRqYOCEjt/rtnJFc9/w/Slm4MY+b8HwtwSkTQPEfM82MaCbTQi6iGDSSTIV1SYWyMip6Ak/gjhl4c4Ag1sIw12E78wgZpQYdAAoUQj4r9BxL4F1hFg6gYiiprmIZb3H34uAA2SYhnQoYlPz4AiBOP6tCU2MgwhBMLaCxF5o1EbaOlUJWFHKJEI29nsyj6LTYdSAo519c6DKKHrOFXcD8H3C9Yz5ZXvOZiRCxjvatkOLT2vkCmvfE9mXmCeVZPZRNOOjWnRtalfAc5Zn8z3btAqQWqSqS9M47NHvgv+w/wDcMaonUIMOK93wOy4rMM5fPvcL0H1t3jTXrYcSA8pjiYlHMst9CtBr+uSvzd7BukHdmzm92VXFcHAjp68eku27OPjWSsAzxo6KeGJL/4gzf3y/3+BEFZE2LkosS+gxL6MiLgcEXU3Qbn21GaGe62sL9uo0G5uOwcswcZ9PCdKIUwI23CUuNcRYaNAFhDcksrf9KOA2tAYmxuPXX42TeomuO/pbuX+R8emdblr0qDgPoIb/Ts08fuuCGEkS5lNSkg1ot6wfNsBMnILvd5P1yWFJQ6vC8fqQNM0r5IyvjD1xekU5HhmXv9TccaonUKcfeVgohOjyrncfOGjB75iyfTAgpRzVm0PeUWp6XpQOy5vFDyTzuqIxax6vacQoCoK5w/s5HHum3lr/cbihIAfFp6YF/yfDGFua+x+AiFsQtVJ19wF1PoE3C0p9RBRDyFinkOY6oOSEOBGLoTZfzG+LAm06hcgIkBJMdyCUY+D2sp9rqzQGjC1Q8R/WaVmLDYyjM/vvYhHLh1Op6b1aJAYQ9cWDXjqylG8d8ckwkJMfOjYpC4dm9b1+SxKCVeN7EnL+kloevUL3YUw6un8QZeSWSu3VfselaGqKtEJUYEbuuFyuFg6fVXghv8QnDFqpxCRsRG8OO+xoFixn5j0Ih/e/yU56b45BvOKS0NKDlEVQbvGKfRo1TBgwkeX5p4ZjMmxkbxx0wRsFhNu0gLAeImtZhOv3ngO9RM9C9CDicWt3xOcEOq/DVLLQjpWIp2bkFIDRyB9PQVcVSdDIRRE1AP+L4v6r+HyjLjcaC9MBtekT6hGfMs6yH+/2lEC1p+pTVCSF6HEf4wScREicbrhwoy8DRF5ByL+e0TCDwi1rsfVNouJc/u15+O7L2D6/67i/TsmMapna8whKFeUQQjBy9eNp1m9ROMTut+Bsv93alqPvzftZdWOg8RG2KrtgtR0idViCrh3LSp1VKt/bxh19ZCAi+UyKIqgMPffIzF1JlHkFCO1XUN6j+3Gn18u9MsaoLl0pr44nblfLeK1JU+R3DDRo03DpFhWKAcCuh/Lasqa10vk1RvP4WBGHnNW+y621aXk/IEdvZ7r1rIBvz91DdOXbWH1jjSkhK4t6jO+TztiI70TIatBBKUrMy4UFJfyy5LNzFi2hbziUhomxTFxQAeGdmkREjPD6QyppSPznwb7LMpdfEoyyEDaZTro2R5HhW0ExL6GzP+fOwGl7EQcIvo+QxWg7N5SIguehuLPfdxDARGBiHvX4Lr0ByUBtAJ/DUBNrjpWIcDSzfg5yYiPDufL+y9m8aa9/LFmB4XFdo5kF7DrcCab9h1h494jCGEYJkWIarH0NEiMoU2jZI7lFPi8VhGCpnUD7ZSDx8Q7xzH368VkH8kJGFvTdUm9Zv+e5KwzRu00gRAC74nBFZC6JPtYLi9f8w7Pzn7Y4/yEfu0DptC3qJ9I60bJDOvSgr7tUlEVhYToCG6bMIDXfl5U5aVV3WKiD140tHw16w3RETYuHdqVS4PkiezfPpWZK7b5fMGFgP7tDK7Ew1l5XP3SVNJzC8tZJDJyi1i1I42+7VJ55frx/3gqL6lnI7POd9NTVZqAguIyVEH1zgQhbCPBOgwcy0A7BmoiWPpW0SCTstRgqHdt9X0LS39EzFMINSXgaETYRGThy/jeremIsAkB+zmZMKkKgzo1Y1CnZrw17e/yIu/y57MSe0lqchxpGblouiTCZglqd9WucQq926byx5qdVY6r2cVYd6QjSpzo4RaGDusZ8tgddic5R3OxhFnYvmIXu9fvwxpmofe47ry+5ClevvZdv7JWQghik6PpMbJzyPc+XXHGqJ0GaN2zBX984UcyoxJ0l87qPzZwePdR6jZNwWl3YraaEULQqmEylwztyldz13hcpyiC1g2S+OCu88sZEsogpaRzs3r0aduYzfuOUlTqwGJS6dc+lcuGdadDE0830I6DGcxauY284lIaJMYwtndbkmKCYz25eEhXfl/uPX4gMFyXY3q3QUrJXe/9SmZeURX9ujIX69It+3j3t6Xccm7/oO57ukIWvlcDvkUNEe7bbSiECay+/z4y9x7/Bg3AuQmUwOwyAIRfCCXfut2Qx38eBcwdwTo0uL5OMopLHXw1z/PdqYzDWfnMeW4KZlWl1O7i7AfeD+hWnL16B7NX7yDSZqGw1IHQJeELd2Pbno50ezSFEHww6RWO3biFm16/KmCKfX52AV8+8QOzPp5HSWFp+XFFVZBS8t7dnzNgUm8e+f5ONi/ZzqMTXsBpd1bxBglFIITgrg9vCCnL+nSHkKHqmZxE5OfnExMTQ15eHtHR0ad6OLWGovxiLmpwHaVF9qDlZbqP6MTGxduwF9uJjI1g9DVDmXzPeGISo/luwXo+nb2S9FwjOB1mMXNuv3bcNL4f4cfR9EgpefbbeXy/cAOqm6OuTDi0UXIs798xmeRKjCJ2p4uHP53Fn2t2oioCgVtkVMDN5/TjPyMCS+0AzFq5jYc/nWVUZHnZscVGhjGyeyu+/Wud334ibRbmPHcdNss/c30mpYZM7wEyUPaZjyqtsItQYh6v3r1du5CZwXGKirhPy5WjA/arHTWMZZk2nNEDWEcaOz4lNMq3k4WFG/dw+9vTArZ7YcpYhnZpAcAtb/7Msq37Q3JJxq0+iFh1wGcaz+WPns9lj/peqORnF3Bb3/9yePcxv65FRVXoOqwDT//+X9K2H+aD+75g+W9ryueYNn1acvVTF5+2Yp/HI1h7cMaonSaY9fE8Xp7yf+2dZ3gUVRuG75nZzaaSEAg1hN5777036YLSQUUEKxbgUxEVsYCiSBOkKCIICNJ77106JLSEQBrpfXdnvh9LloRsS0gIhrmvS0N2zpw5k2T3nXPO+z7PfLtq3GmID5cGzd8/9G/76cg0CpcshFGWuR0Sid4oU7pIQauZYX/uOct3q/dZPCaJApV8fVg+8WVzdt2UZdvZfPyK1YSUz4Z14oWmjr1J7kfGsnzXaZNqg5U3pyNlvMsnvky10vaXxp5FFDnGFNRsIoLo97CO7OFyl1gIwe0VcB2JIGRvX1GJn/PQQ8x+Zp/gNdvsNqAYbqAkLIbkLaAkgeSH4DoYXF9CEB49NCmGAEg9B4IETk0sJn7YHaOicOFWCLvP+pOUoqdccW+6NaqaJT8yR9l5+jofLdpst92XI7vQrVFVAK4FhTHiu5XoDbJDSVpCioGCv59EMFpv6+LhzF/3F1mtQ5vz9mI2zN1ud68sjVmHvqR6M1OGaVRYDA+CIylQyJ0ifo47bz8LOBoP/puPt/mMy0ev8fNbix3aV0vj8dmNbJR5cC+ST3t/i87FiVsXA3F21dGqf1P6vNUNl3KZP/SNssyyndZTeY2ywpXAMP69eY865Uty70Esm45fxtZ795fNx+jRuJpDgsrFvQsgPJwVWsORn8YTlhDlLYILprehwVYjcG6D4P4mGAJA0IKmcoa9seygyHE4XCQt+ZnOST2JEjnq4XgfLi8a75gSTZK3g/diBMEUcARNBRTJD4yBoCSjKEb7iSbpiEtMZsKCTZy6HoQkig8TNmRm/X2Qj4d0oEfjao7frAM46kRdqaQPBqPMwQs32ffvDWqXK0HAvQgi45LsnqsNjrEZ0ACS4pI5v/8yjbpmdv5ITU5l2+I9Dgc0SSOx989D5qBWsIjnM++H9qSoQS2PMRqMfPHi9+iTU20WQDuCbFTwP33T7DWVEJ3Iup+2sHHedr7cPJn6HTJmMN4NjzEvUVpDEgWOXwmkTvmSHLhw0+4Y7j2IJeBehEMfEEZZfiLRZTB5WJXPwayxp40gOKE4dzXNeqzuqRkRXF4wSWo5Zc/iyOK1NWVQHJHjkiojaKuiKKkoUeMxOW5bMDTVn0GJn4fg8a6pbfw8SFwOysMyFLEouI0C1+F2Z5eKovD+L5s4E2BSx0lfJ5ZqMDJl6XYKF3CjSdWcs0spXbQgDSr5cjYg2OLfpCQKVC1emGuHrjLu2HnCk1OQRMH8kCcKAh3qVWDHaf9M55px0M4pJclyAkpkSDTJCY7b6yiKQrwDSiX5ifyRD/0f5viWM0QER9oNaKLk+HTk8YmPQW9kctdpmQRMHSsofZQNmZyid6hWJynVuutvehJT9CTacAh+NALrrw9qWwenJ7Sxz2sE97GAFstvRxF0HRG0NXL+ws49AOtSS2nXF7ymmf6ZvAOUKKwvV8qQuAJZTkSJeh0S5j4KaAByKErcdJTYT+zuHV+8HcLJa0FW3xeCILBo63GLx56ET4Z0pICrc6a6TUkAj0uhRH63nc/+3k94oik5wygryMqj/2wGNMDo7ZgBadkapSy+7uxm7/eVmeJl/5tL89lFDWp5zI1ztx3KPGrRp7HNzWN7yEaZLwf+kOG1Uj5eFLChHwemwFexpGkmVK5EIYdq4PyKFHRoTC5OWrR26sxEQcDN2Sm93rp5abN17fK80u3JbD2eBQRNBQTv38C85yRiVph3fgHB6/vcua7ojuD5xaNrZUIHBRcjaE0zfEV/CbuLO0oMJK6A1ENYXTxOWg162woWe84F2KxnlBWFM/7BxCYkW21z/W44ny/fSZdJC+n40QI+XLjJroVNKR8v/vzfEAa0qo3rw31oZycNdSMMSAcCiCvogtHbFaxpUIoCBVx1Vh/+jIXdMPi4WS2MFiWRWq2r4VuphMXjXj6eVG9e2WEBYlmW6TyyrUNt8wv/7UfcfIBWp3Uo43H454Nw93Llj2lrka044Nrj4uGrxEXFmw1HtRqJAa1qs3j7SZtj+GjRFv45conRXRvj4+nGg9hEi/tgkihQr4Ive8764+bsRPPqZfBwtb6hr5FEujSswpYTV6wGS1lR+HFcL/yDH7D5+BWi45PwK+JF/5a1aFmzXI6YoT4LCE51oPBuSD1icp0WnEHXNlvJFVm6rksvEL1Q4maDIU2aTGPKVCwwCUFKt4wsaHFolzPJXgahhJK4EsHJeoJMUoreob3SpFS9xaSRrSdM2bVphdMAe88FsOuMP2/3acnwTg0ynSPLCqf97xISGUuz6mV4u09LjLJMalwyL/m+BkBq6YJglMFKUJJlhdjEFEQB8zZAegQBGrzdBf8ZW0mOT87gZi1qRNw93Xhv4es273nopwOY2OVLm23SGDblRYqVKWK/YT4i14LatGnT2Lx5M+fOncPJyYno6OjcutR/miY96vPrpD9stilaxgffSsURRZEuI9ux9dfdDmdJpkeRFW5dCKRWq0cb7K92a8zF2yEcvxqIKIC1bo9dDeT41SDGvdCMeRuPICgZxYgFTG/ok9eDOHk9CDAp9A/tUJ+xPZtZDT6jujRi91l/klMNmQKlIAi0r1uBuhV8qVvB16KOZH5CEERTTZmNurJcua6uNYKuNYoxxFRaIBazmHYv6FqjJMy31RNI5cB4w84VjWCwvT9brnghi3qj6XF3dsLbI7PE3N3waD5Zts3095TuTyrt7/XHdQepWbZYBvPagxdu8tWfuwlNp9Ho6ebMW71boLlw71HwkUSHcmu+fqU70//cQ1R8kknEQFEQEOjdvDofDWxHxEtt+XP6OnYvP0Bqsh6dixOdhrdh0MTedrMS63eszUfL3uSHMQvQJ+sRJcH0s0p3r0XL+DD4f/3oOvrZrAnMTXItpX/KlCl4eXlx9+5dfv3112wFteclpX9y9684veNfqxlN7y4YQ7dXOwAmBYGvXp7F4XUnkDQSsiwjikKGJz5bpE/vTUNvNLLl+FVWH/iX63fDrZoWCgJ4ubnw47heLNl+kv3/3nQojXlw+3pM6N/a6vErgaFMXryVO6FR5hR+URDo1aw6Hw1s+5/fM8svKIqCEjkA9JewmtTi/g7Ez7LfmVMzRO+lVg/HJaXQ6aNfSNFbzgoVRYEh7evxTt9WmY79sPYAK/acsTr7l0SBNrUr8N1rPQCTa8RbP6/P4F6dnlr3kwjedA5khaSaxUlsWsZmym3Rgu5smfYKBlnm4IVb3A6JxNXZiba1y1O0YEahYaPBSEJsIm4FXLNcAJ0Qk8CeFYcIvBKMawEX6neqjc5Vh87FCb+qJfOVRxo8Ayn9U6eaCkKXLl2aW5fIN0z+420+7jmdS4evIWlEZKOMKIkYDTIvT+5L11cePW056bRMWfM+V08EsOv3/USHx+LjWwhRElk9Y4PN67gWcKFivbKZXtdKEr2aVad1rXJ0/GiB1fMVBaLikwiNimfmmBe4FxnLoC9/J95KplYaK/acYXC7emaT0atBYaw7dJGg8Gg83Zzp0qAyqz8Zyvmb9/EPjkDnpKFF9bIU9nRsU13l6SAIAnjNR4kaYVoiNZuCSoARwf0tFEWPQ9WFTi1tHvZw0fHZ0E5MXrLlUYH/Q0RRoFwxb0Z3tbyfai17MQ2jrHAmzXNQUfh+zX4UG8U016JicJMVk9rN9XASG5U23bIVd4qX2tZFEAS0kkS7OhVs3qekkSjg7biifnrcPN3oObZzts7NzzxTj8ApKSmkpDxKV42NtSfm+t8gNTkVSSNleBJLSUrh9sUgFEWhbE0/vt//Oef2XGTvysPERydQonwxuo5uZ3HDWBAEqjauSNXGFTO8fmT9CYIDQqyOo987PXB6TFEkPcERMQ4kgojcCjEJ6G47cZWEZEeyFwW2nbrK8I4N+O6vfazcd86sMSmKAttPXaN6maL8PL5vhiUhS1y6HcKGo5cJj4nH28OVHk2qUrtciSf2u1JxDEEqDIXWQcoelORtIMeDphyC64sImvIosd9gCnZ2UtcdWGLt3LAy3gVcWbT1OCevmZa0PVx09GtZk1FdGuHuYjnJyZG/BUEQSE41cD04nJv3I5EeJKAJj0cRBQwlPZHTZRmmli+M2+FbICuIKQbc9/oT374SKDKkzYYUBUEUaFTZj5fa5lzZhT0e3I9iy8JdHN98Gn2qgepNK9Pzjc6UreH31MbwrPFMBbXp06ebZ3j/dQx6Axvn7WDd7C3cvxGKIAo07FKHfu/24OyuC2yYt53EWFOxpmsBF14Y25lhU1+k3mO1ZFlh9vHpvNvyE+5cvmt+TRAFFFmh3cstGPxxP5vnO+JHJSuyOStsz7kAh5JcRFEgKi6JP/eeNctepQXPtJTtq4FhTF68hTlv9rXYh8EoM/X3HWw+fsUs5yWJAn8fukCb2uX5enQ3dZnyKSEIWnDubFYYyXBMWxHFroalcwb3bFs0rFyKhpVLEZeUQnKKHi8PF7s2M02q+nHpdojVpXFREDDKMs3eno0Yl0yB3f5oQx85CyiCKZDFtyoPWglFpyGxkR9ux+4AoLv5ADH+Akm1S6Iv4w2iQFFPN4Z0asiLrWs/NYHt8wcu87/uX5GarDdvXdy5FMTGBTsYN2sUvd/MollsPiFLe2oTJ07km2++sdnmypUrVKlSxfz90qVLeeeddxzaU7M0UytVqtR/bk/NoDcwpfe3nNx21rSk8fAnnBZgLK3OCKJAg851+GLDR0jZ8IZKw2gwcmTDKXb/cYDo0BiKly9Kl1HtqNWqmt0nWEVR6PPZUoLCoq0uxQgCbPpyNMW9C9B/6jJuhmS2PbFE+eLe3AqJsrsHt/qToRYdAWavP8TS7SctjksQBPq3rMmkl56/TfFnDUVJQglr8VDL0tJvSwTXoYgF/pfta8QkJLPzzHUiYhIo7OlGp3qVMmRAhkfH0/OTxeiNRqvqNwJAkh7PNf8iJqUiPNZOEUBfrABxPaublxl1l0NwPRmImPxon69ENV8+XDSW6k0qZft+skPsgziGlH2D5MQUq0ljM/dNzZAU9l8nV/bUJkyYwIgRI2y2KVeuXFa6zIBOp0Ony3px4bPGpvk7TQHt8TfKY1YWjx87ufUsh9edoFX/ptm+tqSRaNm3MS37Zr1+SxAExvZoxqTFW6we79GkKsW9TX9QVUsX5U5YlEOKII4ENFEQOHzpdqaglpicyoo9Z60GWkVRWHf4Iq/3bEZBKx5uKk8HQXABzxko0W88fCX9rE0ETXmT3Fc2UBSFpTtOMn/jUQxGGUkSMRplvvtrH2N7NmV4xwYIgoCPlzvfj32B9+ZtwGB8pMmYJtQNpregy8X7FgMagKCA0/1YtEHR6P1MdZcp1YqRUrkImpA4xBQDRk9nZkwfRfXylmvKcpPtS/fZDGiSRmTN9xvzVVBzlCwFNR8fH3x8/lsimHnB+p+3OKjgmBFREtm0YOcTBbWskJSQzI6l+9i2eA8P7kVSqIQ3XUa1453eLfh54xGMsvJQBkjBKCt0blCJ/6WbDQ1oVZvNx+3YljzEIbFXAfQWsjh3n/W3mgWXhsEoc+JKIJ0bVrbZTiX3EZzbgvdKlIR5kLIXUEDwBNdBCG6vmeS+ssGfe88ye/0jJ/C0LF29wchP6w7h4qRlYJs6ADSrVoZ/Ph/J2oMXOHL5tqneTG/kTmikuWxFdy3MYkBLQxFAdz3MHNQAkEQMJU3aiTqthgolrfsM5hRGo5EzO88THBCCu5cbTXrU5+yeC3ZNhc/uvpDrY3sWybVNiMDAQCIjIwkMDMRoNHLu3DkAKlSogLv7s2k9kRPoU/UE+1tP1rCFbJS5ZyPRIyeJfRDHhLZTuH3JtAGPYlLw/vmtXyldrRRrNk3kYMBdgiNi8HDV0blB5UzOvLXKFeeVro1ZtPV4hqfg7GKUFaqXySzp46gcUqrBduDLKZJS9ZwNCCYl1UDFkoXx9fF6Ktf9LyE41UZwmo+iJJuU/IUCWRIzfpwUvYEFm47ZbDN/01H6tqhp3tMqWtCDN15oxhsvmCxzXvzi9wx1mKKdJCdBATHRchtREOjbogZuNhKvcoLTO/9lxuh5RNx9YBI8VxS0zloKl7Dvb5edWtb8QK4FtU8//ZRly5aZv69b15QRtHfvXtq0aZNbl81zJI2UyRbGYQQoUDh7T7FZ5YcxCwi8EpxxKfThv4OuBrP4vWV8tvYDu/288UIzKvkW5redp7l42xSQSxb2pGWNsna90NIjiQLFvAvQqHLGrK1Lt0MICo+xclZGKpdyTDkhzc7ktL9JW9BZp0UAXHVOtKxZlkIFLJcSGGWZhVuO8/uu0ySl06xsXMWPT4Z0pESh/86+79NCEJxN6ihPyMlrQcQl2RbyjUlI5tT1uzStZjkJxUWX8eNOdnVCjEuxWkstSiJOhdzMwQQeqYTUKlec8blsTnvx8FX+1/0r5Ieq/mlj0CfruX8z1GblhCiJVG9exfLBfE6uBbWlS5c+lzVqoijSqHs9Tmw567A9RBoCAh2HWi9SzinCgiI4vO6E1cxF2ShzZP1JwgLDHfJc6lCvEh3qVUJvMKIoCk5aDfcjYx0OapIo4KJzYsZrPTIpj5y7cc+hWWD54oUccga4HxnL+ws2ciUwzKKMkSQK9G1Rk/cHtMmUxfb1yj2sPZh5SefU9SCGf/snKyYPdtj9WyVrxCZa13hMT1yS9Xbt6lTk4u1Q8999ctWiuJ4ItNpeNspM/W4k1zGw8dhlouOTKFnYk74talI4IpGpPb/m+qkbaJw0NOvViD5vdaV0NctCxNlh8eQVKArWM4wVrAY22SjT953uOTaW/xJqDnQOkBCTwImt50iKS8K3cgkGftCL45ts28I/jqgR8fEtRKcRbXJnkOm4etzfbiq+oihcOeZPET8fFEUhNTkVJ2cnmxmU6YNAUS8PihZ0zyA7ZAlXnZZezWowuH09izMd0UGPuVe720+MSUhO5dXvVxMaZUrftvQjMMoKaw6eJzFFzxcjuphf9w+OsBjQ0s6Jjk9i2Y5TvD+gjd1x5AcUxaSTmKakX7t8CZpWK21ThNga9yNjOeMfjIJC7XIlKGVhOdfSa5bwLWy9Xa9m1Vm64yRxSSnIskJK9WLoroUhxSZn2lsTBIGW/RrTtFMdmgkCIzqbdCoVRWHuO0uYM3sroiSaH1y3Ld7N9iV7mLL2A5r0qO/QWG0REfyACwft7FcLpvcHkmDWg5U0JtGGwR/3o3G3ek88jv8ialB7AmRZ5rcpf/HXzA3o063PlyhflMGf9GPl9HUYjTKCIJiEVQ0yxcoWwc3TlRvnbptnJbKsUKleOT5ZPQG3Apm17HIawcEPnsT4JBZ+tJwtC3cRH52AzsWJDkNbM/CjXnbtLEwyRvWZuWa/xeOSKFC0oAf/fD7S5gdhw8qlbJqSgikwtqpZ3mYbRVFYc+A89x7YL+hXFNh8/AojOzc07yNuOnbZXDBuCaOssP7wRSb0b20O/HqDkQexibjotHjmglNzXnHvQSzvzvsH/+AIk3knYJBlShQqwA9je1HRweSJuMRkPl++82G946PXm1cvw9RhnfFO916oUaYYZYt5cyfUchatKAiUK+5NVT/TErQsKxy9fJvtp64Rm5iCr48nfZrXYP7b/Rj/8zoexCYiOmtJ6FML5wM3cLr1wBzYdK46eo3rwsgvB2V6iDuw+ijrZ281XSPdSozRICMI8MWLM1kROB/Pwk+2FB0TEWe3jaSR6DqqHaIkcnTjKQx6I9WaVqL3+K7UaZsLVkX/EXJN+zEneNa1H+dPWMbaHzZlel0UBSStxJebJuF/+hY3/r2Fk86JJj3r07RnAySNxLVTNzi//zIAtVpVpXJD23I6OUlUaDSDSo2xqfYviAKFihckMiQ6w5tX0og4uznz/f7PKVfLdgGtLCt8umwbW05czRAQREHA082ZX97tb7Em7XHG/LCGMwF3LQYUQYCRnRsxvldzi+cqisI/Ry+xfNdpbt53rKYOTEF3RKeGjHvY76Rft7Dz9HW7y6CHZ43HIMss2nKcvw9dICHZJCFWt0JJXuvWmMY5aGqZFySl6BnwxW+ERsVl+n1IooC7i47VnwyzK3GmNxgZ+d1Krt4Nz7T/LIkCpXy8WD7xZVzTJWKcuxHMmFlrMcpyhnNEQUAjifzy7gBqlStOXGIyb/68nvO37pv/7tK+DutYn7E9mrL7XAAnrpoUfeqUL0Ej36LcvXwXjVaiWtNKuFgpDXmr+f+4dtzfus+bKDD6q8EM/LCXzfu3R3R4DC8We9Xuikp6Xdj8Tp5rP+Z3woIi+HvWZovHZFkBg8zfszbz5cZJFttUblCeyg1szy5yi4JFvWj/ckt2/3HQ4r6fKIkUKlGQB/eiMh03GmSS4pOZPuRHfvl3ps3lSFEU+GJEFzo3qMzqA+e5ce8B7i5OdGlYmd7NazpcU/bV6K6MmbWGm/cjzftgaR9SrWuVZ0yPJhbPUxSFr1fuYfWB8w7ZmKRHQCA6Icn8vbeHq6kPG58xzk4a9AYjo2f+xa3QjMav/964xxs//c3nI7rQvXHVrA3mGWLziStWZ7tGWSEuMYXVB/5lbM9mNvvZcfo6lwPDrPZzJzSKDccuM+hhij5AnfIlWTzhRX5af8gsmwXQoHIp3urdgmqlTasHkxdv5eKdEHNf6b/+tvM0JQp58mLr2nRrlPH3UNKORYuiKFw7EWAzCUxRFC4fvWazHzBJ5yXEJuHu5YrWKbOSj5ePJ0161Of4ljM29+aDrgWjKIoqE5cONahlk71/HjYphBitJ1sc33KG2AdxFCj0dDIas8KbP4/m3o0QLh2+Zt4bSPtavm5Z/E9Ztw+RjTK3LwZx5dh1qjW1XRcmCALNq5ehuFEgKS6ZEhWKUai4YyaiaUTHJ1HIw42b9yPNy1Q6rYYhHerzWrcmVm1tjl0JZPUBk0dYVtcjZEUxF5kD9GhSlT/3nrXaXhIFejapzuLtJzIFtLT+AL5YvpNWNcva9JmzRmJyKusOX2Td4YuEx8RTuIAbvZpVp2+LmlZ1EHOaHaeuWUywSUNWFLaeuGo3qG08dsluAtA/hy9mCGoA1csUY8E7/QmLjudBbAKFC7jh4/UoOefGvQgOX7pt89pLtp+gX8ua2dr/E0TBpqylgGDVABRMQeiPL9ey768jGPVGnJy1dBzampc/7keRUhlXLV75Zgjn9l0kKc568sua7zdRokJxer7eKcv3kl/JX94ET5HosBj7BpWKqR7sWcTF3YUZez7j41XvUa9DLUpXL0W9DrX4eNV7lK/lgBiqYHLttsfO3/czrMJ4xtb7kPdaf8pLvmP4tPc33L8V6tA4b9yLYPi3KzkTcDfD60mpehZuPsbO09etnvvXfpNwcnbpULci0fFJyLJCVb+idGlY2eKMTxJN7tyD29fj74MXbD7J6w1GNp+4muWxRMUnMezbP/l+7X5u3X9AXGIKt0Ii+XHdQQZPX0FETEKW+8wOsYkpdh8Q4pNtuzYAhEcn2AxoChARa/2eini5U9WvaIaABnDw4i2rrtNphEbFc/uhvFt4dDwLtxzjg1828vGSrew6cx290XLUEgSBuu1r2gxaCopV/daAs7cY13Aie1cdxqg3XSM1Wc/WJXt4o8FH3LuRsUbVr0pJJi1/2+a9APw5/W9kOXvGwfkRdaaWTXx87ZsYipJIwaKeT2lEWUej1dB6QFNaD3ikYHL+wGW2Ld5r/2QFtHYKT//+cTPz3l2a8TRF4cSWM1w+ep25J7+2WzIwc81+UvSGTPs3ykMJza/+3E2bOuXRWRAzvhYU7pCElyWKeXvQ+zPT2L09XBnUpg6TX2pPQXcX1hw4jz7d775yqSJ8MaILzk4aux/okiRyKwt7e2lMW7GLO6FRmaXXFLj3IIbPft/Bz+P7ZLnfrFK2mDc37kVY/bmKgkCZorZn4pfvhHLvge3aQ0GAYgWzvsJheJiwYS9hNtVgZP2Ri0z7Y5cpbR4FURDYcuIqfkW8mPtWP4vZuAMmvMCpbecs9ilKAm6ebnQYYrLVMegNHN1wiqObTqFP1nNu70WL0layQSYuKp4fx/7CNzs+zXDs7vX7dutew4MecOfy3edamT89alDLJm1fbsEvH/5m/c0tibTs3wS3Z8wTzGg0cmbXBYKv38fN05XGPepl8HNa9+Nmc1qwLURJpGGXOlaPx0TEsvDD3y2PwSATHxXP0k9X8eHS8Vb7CI2K49gV63VECiYzyf3nb9CpfuZlUEdcBx7H3cWJ+KRU7qfbN4qMS2TepqMcvnybeW/147XuTTl25Q6pegMVfX2o8rDoO86BWipFAVdnx8Z170EsK/acYfPxK8QkWO/bKCscuXSboPBoh1Pfs0v/lrXYfsr6npGsKDStVprJv27h8CWTPFWNssV5uV1dWtYoS3BEDK/9sJpUvW0lf0WBPi1qZnl8Vf2K2H2Q0Wk1hMck8PnvOzO8bnz4xBAcEcO4n/5m9afD0Dw2K6vXviZvzBrJ3HeXmJbrH75PBFHAtYAr07d9jIu7CyG3w/io0xfcCwgxeSTKik2FD9kgc2bXBe7fDKV4uUeZxfoUvWnJ0849pTpgAfW8oAa1bFKwiCcjPh/Er5NXZDomSiIu7s6M+HxQHozMOmd2nee7UXMzSO5onDT0f68nI74YiCRJnD9wxSEX7U7D29jcG9uz4pDNmazRILN35WHe/Hm01Uyz+5H20+8lUeBehOV2HepV5NetJ6wucwkCvNi6Ni+3q8f9B7HoDUbemfcPkPlBX1EULty8z287TvFKt8Z0bpA5iHq4OtOgki9n/IOtXtMoy3SoW9HisfRcCQxlzA9rSErVOzzbvHDrvkNBTZYV7oRFoTcY8S3smSHDMClFz7aTV7l4JwSNKNK0Whla1Chr/nCvV7EkfZrXYN3hi5n6FQSoWLIw8zYezZDtevp6ECeuBjKsY32SUvSk6A02J1KCIFDZ1ydTIocjNKlWmmIFPQiLjrec+i8KvNC0Oiv3nrVaomF8+PM5dPEWbWpnTubq81Y36nWoyab5O7lywh8nZy1Nezak88g2FPD2wKA38FHHzwm5E27qz0FXeoDAK3czBLXydcrYPV+r0+BbsZjD18jvqEHtCRj4UW/cPF35bepqosMeLafUaFGFt+a8gm/F4nk4uoxcPnqNyd2+Mq+9p6UKG1INrPxmHfoUPa/PHG56KrSDh7c7b/482mabkFthSJKIQbb+RG5INRAVGmM1qBVwIJlClhWrNWD9W9bizz1nSUzRZ/qAEwUBNxcnXuvWhIIerpTy8WLpjpM294tkRWH+5qMs2nqcdnUrMLJzw0zSXK92a8LrP66xeL4oCjSsVIrqZWx/ABllmfcXbLQ4bltIgu0t8jQ3g1+3Hud+pGmvV6fV0KtZdcb1as7lO6G8v2AjCcmpD/ciBVYfOE8pHy9+frMPpXy8EASB/73cgfIlCvHbztOERZuK673cXejeqAorHibTpA8W6TMPdVqN3SBd3NudIX6+LP7wdySNRIPOtU17WQ4kdkiiyHev9WDMrDWZlq1FQaBCicK83rMJHT5YgKI34hQYhZBiQC7gjL6EJzz8+5dEgQPnb1oMagClq5Vi3E+jLB7btGAn9244tmf8ODrXjAk/DTrXpohfYSKCI61mKncY2vqZWxHKS9Q6tRzAoDdw5Zg/ibGJlKxU4pkKZml80H4q5w9ctpoeLIgCK+7MY+FHy9n/1xGrT4eCKDD4434M/2wgANdO3WD/qsPERyfiW6k4HYe1pmBRL/74ci2/Tf3LtlSYAGvDF1u1s1cUhYFf/s6N+w+sBhuNJLLj69fwshIYL90O4a0564mKTzJ/UBtlGZ1Wg18RLwoXcKNt3Qp0rFuR9xZs4FzAPYccFiRRQBAEZr3Ri2bVymQ4tv3kNab+voMUvQFJEs0uB02q+vHNqz3wsJOpeOjiLd6as96BUTxCFAS2Tn/FpkzX3A1HWLT1eCZlJVEU8PPxIjgiBoMsW5QO8/FyZ+2U4bikSz83yjLBEbEoikKJwgWYv/Eoy3aesl7Dhd2tLgBc78fisuEiGq2EAhj1RkpX82Xa5skULe2YS0hQeDTLd51m8/ErJKboKVbQg/6tapmyKQXo0GYSrqfvIhhks9qU0c2JhFbl0fsVRBQFOjeozLSR1o02E+OSSIxLwrOwB1onLbIs88sHv1usXXUEj4JurLy3EKfHls2vHPfnww5T0afoM7wvRUmkVOUS/HDwCzwK5n95NkfjgRrUngMiQ6IYWOI1m20EUeC1b4dSs2VVxje2XFsHoNVp+e3Gz7gVcOHLgT9wYutZpIfyWIosI4gCr88cQcOudRhR6S2r/YiSSL32NZm+7WOb4zp44SbvzLW8JAgwuksjc4G0NVL0Bnaeuc5Z/2CuBoVxJTCMtG2KtPT09KK1jiII4ObsxI6vx+DslHHRIz4pha0nrnIzJBJXnZb2dStQrbRjS0QLNh1l0dYTGB3MaBMFgS4Nq/DlyC5W29wOiaTv1GVWjwM2U/UBpgztRK9m1a0ef/X71Zz2v2v1uEMoCmJsMrprYThfDUNMMu0VSRqRIn4+LLwwE10Wyxcer+P6Y9paln6yMnM7AAFie1THWNKTd/u2YkiHzJJXl49eY/mXazm57Swo4OLhTLfR7dG56ljx1d9ZGlt6Xv1mCC9+YLlo++71e/z13T/sXnGI1KRUChbzoufrnej7TvenokL0LKAWX6uYiX1gW38RTFl5MeGxlKpSEjdPVxJiEi220+q0SBqJb4b/zKkd/wImt20zssKctxfzSfH36DK6HdsX780ULISHs5xhUwdy8/4DzgQEg6JQr6JvJnubljXLMf2Vbny1YjexiSnmfRCtJDK8U0Ne72HK3Dx+5Q7Ld5/hTEAwAiZ5rcHt69GgUil0Wg09GldDp9GY94LMfq3mr1l/tlMUiE9KZefpa/RsmvHD3t1Fx4DWtbPcJ5h+F47MadJmPrXLl2DyS+3Mr8uywolrgdwOjcLdxYlWNcqx7vBFmzJfafdj9VoC7DnrbzOoPZ5UkS0EAbmAM0kN/EiqXwr3vQHobkRgNMjcvxnKvlVH6DyibRa7fBTQ4qLiWf6F5eVhAdPPwO34HZIG1KVHk8wGm8c2nWZK329NP/iHP6+kuGT+/mmLY9PQdEgaCUVRkGWZF9/vxYD3X7Da1rdSCd5bOJZ3f3kdg95gsWBbxYQa1J4DvIt7ZRBftYTRIFPErzBLP11pNaABJMUnMeftxRxed8JqG0EQ+P3z1cw99Q1Ozlo2zd+JLMuIomkMiqsTSvcavLV2Dw/iMl6rQaVSTBvVJcMyWqf6lWlTqzz7z98k+EEMnq7OtK1TwbzkuHjbCX7+53CGD+1DF2+x//xNJvRvzeD2JmHXpTtO5ojvW3o0ksj14Igc6w9MBpdzNxyxe92m1UrTq1kNWtUsZw4oJ68FMWXZdkKi4sxBT6uRKO7tke3yBjB92Cel2s6wa1a9DCeuBWa50D0TgmCO2PHtKiLGJaMNi0cQBQ6sPprloJaeg2uPY7BhOCsAmrB43uvQMNOSdmpyKl8P+wnFmHmJNkveZQLU61CLIqUK4+NbiI7DW9vVUjWfKghqQLODGtSeAwp4e9C8dyMOrz9hNbBpnCRa9m/CS75jbPalyAr7V9n+wFUUhdsXg4gIjuTN2a8w+H/9+G3eNtbsPoPR04UUXy/Thnxc5uB5NuAur36/mhWTBmfIynPSauhYv1Km9v/evMfP/5jckC0lJ8xcs5/6lXzxLezJFSuyTE+CooCTJvvml5aoVroo9SqU5N+b96wGoiqlijC2ZzNzOQGYsh/Hzf7bvKeVdqbeYCQwLPqJxiSJgl2h4heaVmfhlmMkJmctwcUqggCKTFLtEmh3XkeRFRLjkuyfZ4PosBgkyX7JSo2ihTK9dmDNMRKirT/wOUrj7vWZ+vcH5mV7axj0Bg6vP8m1E/4PE2bqUKt1NVUSyw6qoshzwqivXsbFw9mqGsJr3w7jyjF/DHbqh7JCSqKpENnoomVlZDhJNUuQ4lfQnGFmCaOsEBQWzcZjlx26xqp9tlVDJFHgr/3/Zs+01QGMskzrWjmv4fndaz3MS7GW7u5KYChDpq9gy4lH9iRzNxxBVpQcnYmmYZQV+rW0rJSRhqebMz+P74urszbLWptWEUX0pb1RMO2rlan+ZH5lPr6FHEqxL1wys7P0nct3kbRP9gDz4vsvOBTQLh+7zst+r/PlwO/5+6ctrJ65kffbfcbY+h8SfvfBE40hv6MGtecE34rF+enIV9RunXGfwKdUIT5cOp7eb3bl1oVAy5+g2UDrrKVoadOT/bpDFzEY5SxtOTga1P69YX02A6YP43MBwXi46ihZ2DOnbg8wTSTqlC9BzbI5XyNU0MOV5ZNe5rVujS3+3IyyKXh9umw7d8OjiYxN5PjVQLvBO7vB5s3ezTPtd1qiVrnibPxiNH1b1MyZPTYwPwQZDTLdX+v4RF216NsIZzfriSaiJFKnXY1MOowAzm66rC0zPtZvhbplefXboXYD2v2boXzU8XOz/YxRbzTvW9++GMiHHaaSmqIWW1tDDWrPEX5VSvLtrin8duNnvtnxCbOPfcXyW3PpOKw1AM6uOSOKK0oinYa2Ntefnfa/m6XZgwJExjq2zKOR7D85ayQRQRAY3K5uVvfybeLm7MTM11/I9nKQoihcuHWf7aeucezKnUyag1pJ4trdcLv6lWsPXcjgKGANjSSaRZpFQXBY0Hd010aM7NzIobYAwRHR/HPkkkPZm3Z/dLKCFJmIAAya2IcKdcs6PA5LuLi78PrM4RaPiZKIxknDmO+GWTzeok8juyUqoiQiajL+XE12TTo+WDLOoTH+/eNmUlP0Fq9lNMjcvX6fg2uOOdTX84i6p/YcUrxsUYsb00161mfee0ufqG9REilWtggjp70EwK0Ld4hYe5oC/iEoGhF9mUKkVPJB0Vn/0xMFwaLuniVa1izLqn3nbGoRtnq4PDigdW3OBASz64x/jiSM1C5XwmH7nMc57X+XaX/s4nZolPm1gu4ujO/VPIM81NmAYJszUVlWOON/l5GdGtq9J6MsM7RDfepV9OXQxZuk6o38tf9fouKtB0QBOH/zXpbsTRZsOoaiKA4ljBTz8iAsJt76PQpQ8kEybywZZ374Mt+P0ciJLWc5t+ciiqJQvXkVmvduiMaCDmh6ur/WEZ2rjl8nryAi3VJepfrlGP/zK1YDZ+lqpWjeuxFHN56yHNwUGD97FNdP3WT3HwfQpxjQaCXaDGrO4I/7O1y/unflYbteh/tXH6H94JYO9fe8oQY1FTMlyhejzaDm7F91OFsZbC4eznR7pQMv/68vBbw9WPXtPyyauBxBFNDKiikT714sLmeCiO1ZHaO3ZRUEWVHo29Ix3b8XW9dh9f5/kVEyzcIEAbQakX4P+5JEka9Hd2d77Wus2n+OG/ce4KzV0K5uRVx0GraeuEr4Q7V7nVYi1WC0+nMQBYFa5bJXZP/vjXuM/XFtpplMVHwSX/yxixSD0Wy54qiKhotOi4erzqZGpCiIdGlYBU83Z3PSx9Idp2z2rQAnr91l0LTl1ClfEldnLS1qlKVehZIWg1x8UgqHLt1y6O9HEKBlrXJUL12Uz37fgSg8yl5Nq5lrVb0sM+a8nWlGHnQtmI97TOfejVDzPte6n7ZQqERBvtgwkYr1ytm8dochrWj7UnOuHg8gLjKe4uWKULqa9f06RVE4v/8ygiigc3EiKT4ZQRQy2DaNmzWSnq93BuDNOa8QHxWPu5cbTnaEvx8nOd62hqgiKzmSsJJfUYOaSgYmLBpLcnwyxzadRpREFBSrnnFpiJJI25da8MHiN8z7Bcc2nWbRxOXAo3Rn80dgigGPTZeJ71AJIdWI7O6EsZAbCAKiIFCnQgmLmY6W8CvixYwxPfngl00YjLJ5piIKAk4aie/HvpDBF00UBbo2qkLXRlUy9fVm7xZExCQgiSJnAu4ycdEWi9cUHvbTu3kNh8b4ON+v3W8SuLXyY/1+9X7KFi1Ioyp+NKtWhu2nrtqciTarVoYdp6/bDGhgmqldvHWf5jUezUQKe7oSbEU7Mz3+wREEBEcgiiLLdpyieumizHqjF4UKZHwwiU9KdfiBSFFMpRcTB7XD082FhVuOcTkwDEVRKFesEC+1q0uvZtUzLZMmxCTwfrupZmk6Y7rkpqjQGD7oMJVFF3+gcInMyR7pkSSJ6s1s+wGaxqnw07hFbJq/I4PYtyIraJwl+kzoSb93e+Dl88iRw0mnxbtY1nwD0yhZqTi3zgdarZ2UNCKlq/lmq+/nAXVPTSUDzq46vtgwkZ+PT6fPm11pM7AZTi62nzQ1Womhn/bPsAG+6tv1VjMtBQWkJD2eGy9RYPtVvNaex3P1v7iExdO/VS1mj++D1oG9sjRa1izHpi9H83qPpjSqXIrGVfx444VmbPpyNE2qlna4H0kUKVrQg8KebnSsV4mBD4un0/vmSaKAIApMG9nVpiSVNYLCo7lwK8TmMqFBlhn709+M+G4VPRpXtRrQBAGctBJ9WtRg/eELdn3EAD5fvjPDDLFP85oOnQemWVvauVeDwnjjp78xPLYMV9DDBV0WMgSTUw1MW7GL93/ZyKU7oeYP8lJFvGhbu7zFfb/tS/cRFRJtcQlQNsokxSWzaf4Oh8dgj03zd5j7ezxzUp9i4ODa4zlqBNzrjS4W1h0eYTTIdHutQ45dL7+hBjUVi1RuWIHXvx9BzRbVSLXjEVahXjlKVni0FKdP1XPx0FXbm+qPoY1JwmPjJbqXLJ5BX9BRCnu68Uq3xsx/pz/z3u7HqC6N8H4C+SBBEPhwYFtmjOlJvQolcdFpKeCqo2ujKiyf+LLDM8nHyYqZ5+U7IcxYs5+iVnzFREHgh9dfICg8msuBYQ7tEYbHJGSw8xnQqhYlC3vaqrKwiFFW8A+O4PDFWxle12k1dG9czSFzVkkUkBXZnB2bnoMXbjJ65l/EJ6VkOm//X0dsKsDIRpMDRE6gKAqrZ26wmhUsG2WC/e9z0orHWnboNKIN9drXzCwu/vDbgR/2okKdJ0uYyc+oy48qNjmz6zwCgs0nx+snAzIkEmQn7VmRFWRk5r6zhHmnv832eHMSQRBoV6cC7epUyLE+H1+us4VRVrh5/4HVmZRRVli05TinA4Id7lPA5BeWhoerM4vff5F3523g4u0Q6ydaQBIFdp31p/VjSvZjujfh4IWbPIhNsGkDZpQVoq3sH6XZv6w/fDGT/qIjBdhJ8cnoU/XsW3WErb/uJjzwAd7Fveg8sh3tB7dwWD8yIjiS+zdtF+1LWolzey7SuFs9h/q0h0ar4YuNk1j19Xr+mbPVnNrvW7E4Az/sTeeR2VdUeR5Qg5qKTYwGo11dxMdro5ycnShdvRSBl+9mSVNRkRUCzt7i9qWgJy6yfVbxK+JFjTLFuHwn1OHsS1vtshLQwLSEWOCx0o1CBdyYMaYnXScvzFKCkFFWiLVgjOrj5c5vH73E92sOsOvs9Ux9pmVplvLxJDgixmrgUxT4+9CFTEGtbA0/gq4GWy2iFiURv8olmNBmCleO+Zudo0MDw7l89DrrZ29hxp7PrC4ZGg1Gjmw4xekd/xIf7djMOqd14Z10WoZOGcBLk/sQfvcBkkbCx7eQqibiAOryo4pNqjWpZNNjTZREKjeqkOnN1v/dHtl+o9tTTLh5/g47lu1j78rDxDiQ5PCs8W6/Vnn24aTTamhRI/PSVREvd1rXKu/QsmF6Tl0L4nZIZKbXixb04JtXu7PrmzG83bcl1fyKmGvSqvoVYfqobni4OtszdDZno6an+5iONlVBZKOMIIpcO3nD9H2abNjDr3cu32XG6HkWz717/R7DK73J5/1nsG3xHg6utV8PZtQbqdEic+JRTqDRaihetihFShVWA5qDqNYzKjaJDo9hcOmx6FP0Vp/iP175Lq1fbJbhNVmWmfnKPHYs3WdXTPlx5p351uKewd3r9/h2+M9cOe5vfk2jlej6agdenzk8kw/Vs8zJa0FMW7HriTUZs0MBVx0vNK3OkA71KeL1KNklIiaBEd+tJCQyzuFZpChA8UKerJ86wm4xtywrKCjmdu8v2Mi+8zdsqqD4FfFi/dSRGV5TFIU5by3mnznbMpu0CZhqyTZYqSVL1+63gJ8z1GsmxScxquo7RFpJQrGEKIl4Fy/I8ptz7CqFqDwZjsYDdaamYhMvH08+XvUeoiQhpVNKSMts7P1mV1oNaJrpPFEUef/XN/h0zfvUbFkFNy9XhyS43Au6Ub52mUyvRwQ/4J0WH3Pt1I0Mrxv0RjbN38HXQ37M8SWg3KRh5VKs+2wEg9rUyVHprsex1HdsYgp/7j3LoGnLuZOu+LuwpxvLJ77M6K6N8PYwFZWLdmZusmLaozt04ZbNdml9pQ98PZtUsxnQBMFy2YQgCIz7aRTvLhiTIUGpiF9hxs4cQefhbewHJQUuHrqa4aXdfxwi4p5lh+lHF093P5Jo8hXcOFENaM8Q6p6ail2a9mzAgnPfse6nrRz55wT6VAOVG5Sn95vdaNy9ntVlEUEQaNm3MS37NkaWZTprBtq9lm+l4hb7++u7DcRFJVj8wFFkhYNrj3P1RABVG1fM+g3aQVEUouOT0BtlChVwdVheyh6CIPB235ZcDgzl4mNp/mnFx646LcmphmyrnxTxdicsKj7TLNsoK8QlJjP51y38MXmw+XUvdxfG9mzG2J7NkGWFsOg4uv3vV5vX0EgiJ64FZkoYsUeLmmVpUMmXM/7Bme5PEgWKeRegXwvLRfiCINDt1Q50faU9kSHRKIqCdzEvRFHk+ObTWRpHGofWHbebFIUCGicNPr6F6DCkFT1e75jtejSV3EENaioOUbpaKd6Z/xrvzLftoG0NURRtmo+mcetCINOH/EjVxpVoP6QlHgXdURSF7Uv32nyCljQiO3/bn+NBbfupayzZfpLrd8MB8PZwZVCbOgzv1ADtY0/nBqPM4Yu38L8XgbOTlja1yuHr42Wzf51Ww7y3+7Foy3HWHDhP3MMU9nLFCjGqSyNKFCrA2J/WojcYH6ltPPxf4QJuRMQkWPwIlkSBIl7uhETGWf2INsoKV4LCuHwnlGqlM8umiaKQ6R6tkR2dX1EQ+HpYF2ZtOMTWU9cy1OM1rlKaKcM64uHqjNFoxKg3otVpMz3wCIJAoeIZg0rlRhWQNFJG89rHEci0D5Ycn+zQbF95WKvX770ez43r9H8JNaipPDU6Dm3NhvnbberapSSmsmfFIfb+eZhfPvydd38ZQ9tBzUmMtZ3GLRtlokKjc3S8i7YeZ+6GIxlEdyPjEpm36Qin/e/y0/je5iLxU9eDmLx4q1mRRFYUvl+zn84NKvPp0I42a+9cnLS82bsFr/doSmhUHE5aDT6ebuYP8JX/G8LyXWfYevIqSSl6ShYuwIBWtenZtDof/LKJU9eDzDM7MAUjdxcdIzo1ZPrKPXbv80qg5aAGUNDdleLeHtyPjLN6vsEoU6dcCbvXSSMhJoHVMzaycf4OYh/EIWkluvdqSMV+DfEuW4QaZYtRyseLa6duMPfr+RzdcBKjQaawbyF6jetCn7e62kzJ9/LxpMPQVuz8bb/FByFREmncrV4m/dNytctw9YS/XWsao0Em5FYY237dQ793ezh83ypPBzVRROWpERYYzpi6H5AQk+h4LZsAX2/7mGmDfiAuynp6taQR6fl6Z8b9NCpHxnorJJJ+U5fZbDNpUDsGtK7N9bvhDP3mT4zpZLrSDZ8yRb35dFhHapW1vLT6JOiNRjYfu8LqA/8SFB6Nm7OO7o2rMrB1bW6FRPL6j2vt9jF1WCd6Nq1u9fiKPWeYsXq/xWOiIFDQw4Ut015xaFYXFxXPOy0+5u71+xkCjqQRETUSX2/7mFqtqnF04ymm9vsOBTI8BAmiQLWmlfhmxyc2A1tiXBITO3/BlWP+CKKAIivmr2Vr+llM6b95/g5j6rxv9x5MA4Ey1Uux8Pz3jrVXeWLURBGVZ44ifj58v/9zXD0cV7YXRZE/pq2l6+j2VmW3wPT03GlEmxwYpYm/D12wmd4uAKv2/wuYZnSynDmggSkx71ZoJCO/W8Xg6Su49yAmU5snQStJ9G5egz8mDebA9+PY+tUrjO/VHB8vd2qWK46bHTFdURDsSokNbFOHzg1MGonpE0dEQcBFp2XW2F4OL1P+OmlFpoAGpt+fMdXAtEE/EB8dz/TBPyIb5UyzekVWuHz0Oqu++cfmdVw9XJi5byofLhtPzZZVKVamCFUbV+TdX15n9rGvLNaolatVmhFfDHLoPlBMOpMqzx5qUFN5qpSt4UelBo4nFMhGmQsHrtBldDtTIoCFwCYIJmkhe8rsWeHm/Qc2LV8UIDA0ilS9gT3nAmy2TcM/OJzRM1eb981yGxcnLYPbW1e5EAWB7o2r4uNlW8NSEkWmjezKd6/1oH5FX7w9XChZ2JPhnRqw5tNhVC/jmElqYlwSO37bZ3VvVJYVIkOi+XXynyQlJFstIVFkhQ1zt9neMwO0Tlo6Dm3NzL1T+f3mHH48PI1ur7S3OcMb/L9+fLp6Am6etvfKBEGgiF9mI1GVvEfdU1N56viUKpRB7dwRdK46fjwyjVljFnBy+zlzbZKzm46+b3dn2NQXc3SMbs5Odv3JnJ00JKbo7bpNp2F8mE244cglm8EmJ3m1W2NCIuPYcPQSkmiydkn72qSqH5Neau9QP6Io0L5uRdrXzX4izr0bIeiTbTs2S1qJ66dumBI99NaDVkxEHNHhsZmSRHKClv2aIGkkpvSxLtemoNDjCV24VXIHNaipPHU6j2jLjqX7HG7v5ulKwaKeaJ20fLXlf9y/Fcqt84FonbXUaFEFFzfnHB9j+zoV2XXG3+pxSRTo2KASHq463JydSLAj+mxGgc3Hrzy1oCaJIp8N68SAVrXYcPQSIZFxeBdwpXvjqtSv6PtUVSp0dtwewDQLc3LW4ohFuZNz7hXbN+5Rj/oda3Fm94VM+7+iJFKhThk6DG2Va9dXyT5qUFN56tRsWZWW/Rpz6O8TdlOoRUmk+6sd0KbLHrTm3J2TtKtbgdJFCnI3IjrT0qIomIqIh7SvjySK9Glegz/3nnVoCVIBohPsC/LmNNXLFHN4mdAecVHxbF6wkx3L9hETEUfRMj50f7UDHYe1tmmI6VupBMXLF+X+jVCrbWSjKcvRaLhqtY0gClRpXBGPglm3/nEUSZL4/J+PWPjRcrYs3EXqwxmmpJFoP6Qlb8wamWXzT5Wng5r9qJInGPQGFk9ewYa520lJsjzLESURv6olmXXwC9w8HVe3zylCo+J4a856/IMjEBRQFBlEEa0MH3RpTP8+JmmwqPgkhn29gpCoOLuBTRQEGlT2Zf7b/S0eVxSF8wcuc/nIdURJpG77GlSqn7Wi5twk9E4477b6hIjgyEfmr4KpYLlKowp8u/NTXNytJwJtX7qXGaPm2ryGI7JqX2yYSJMe9W22ySkSYhK4eiIAWVaoVL8cnoXVz6K8wNF4oAY1lRxBn6on8n40OlenDA7A9kiMS+LS4atcP32Dk9vOcenwNcCUvdbqxaa89u1Qu0/k104GsH3JXsKCIsw1SrXbVM+RpbXdKw7y5aTfSC3lhSIIaMLicQmMRE4x8vrM4eY6pcjYRGb9fYCtJ627VKfxzSvdLfqx3b1+j8/6fsedy3fNCTGyUaZ68yp8uvq9Z0K54q1m/+P6qQCL+6GiJNJ1dDvemT/GZh9/TFvL0k9XIoqiqbhOEGwGMUEUMsh9vfHjKHqN65LdW1D5j6IGNZWnQkJsIn98sYbNC3eZC6SrNKrAkE/607h71p6kE+OSWPTRcnYs22eevRUp7cNLE/vQ/bUOmYKU0Wjkh9cWsH3JXnPiSdrXBp3r8Nnf7zvsm2WJezdCGFnlbZsfuLMOfUn1ZpXN30fHJ/H+go2csWAJIwjQvHpZfhj7QiapraiwGMbUnkDMg7hMaeySRqREheLMP/Ntni55BZy9xdj6H9pso9Vp+Ov+Ity9bM+sQ26HsW3xHu7dCOXktnPER8VbbSuKAk17NaR87TJ0GdUOH99C2Rq/yn8btU5NJddJjEvivVafsnbW5gyKH9dO3eDjnl+zZeEuh/tKTkzhg3afsXnhrgzLkWF3wvlx7C/8OumPTOf88cVati/dC2CeOaR9PbPzX356Y1F2bsvMxnk7bB6XNCLrZm/J8JqXuwvz3unHq90a45EuoLq76BjZuREzx/S0qB25ad4OYsJjLaqtGA0yQVeD2bfqSDbvJGfY8ZvlAuz06FMM3Dh32267YmWKMOLzQXQZ1dZmQAOTn1yTHg0Y+ukANaCp2EVNFFHJNiu/XsftS0GZZjJpey0/jV9Es94NHVqO3Dh3O/5nb1lVGln17T90GNrabB6anJjC2lmbrGbJybLCruUHGDntJdy93Ni38jB7/jxEXGQ8pSqXoPtrHanVuprNJcrz+y/ZnKUZDTLn913K9LpWkhjbsxmjujTi5v0HKAqUL1EIndb6223X8v22FetFgd1/HKTT8DZW26QRHR7D1kV7OLLhJKlJqVRuVIEXxnamQt3Mdj6OoigK+1cddqitrSL5NGRZ5uMeX3Ny21n7/Ykisf9B3zyVvEENairZwmg0smnBTpsf+rJRZuey/Qx4/wW7/W2Yt92mdJakEdm6aDdjfxgBwJVj1x3Sg9z/1xE2zN3OvYAQU0KDonDrwh32rjxMl9HtGDNjGDuX7WfHb/uICYulWNkidHu1A20GNrNpjmrGRlDUaTVU9XMsS9OWBBiYHhRiH1jXX0zj6gl/Jnb+ksS4pHSmmEFsXbSb0V+9zKCJfRwaz+NcP3WDyJBou+2cXJyoUM9+8Py01zcOBTQw/R6LliniUFsVFTWoqWSLhOhE4iJtLxuJokDglbt2+1IUhdDbYTbbGA0ywQH3zd8bUg0OjXPdj1sIvxthvk5aXwDbft3D4XUniI9KMNmNKPDgXiQXDl5h66+7qd2mBv5nblkN3JJGpEGn2g6Nwx4lyhflenSC1cAuaURKVipu8VgaSfFJTO72FUlxyRn6SbvfXyevoGyt0jTulvUauZDb4Q61q9uuht26wYh7kRzffMaxCwvg7ulG0xcaONZe5blH3VNTyRZOLk62JikPEXB2t18YLQgCLnb0IEVJzJB8ULZWaYdmUqF3wpGN1meAcZHxpmD3sEnaEuDFg1eIDotB0ohW79NokKnd1roQcFboMaaTzZmq0SDT/dUONvvYs+IQcVHxyLLlICxKIqtnbMjW+Dy8HasJ62ZnjACrvlnv2EUf/tzfnPPKf8rVXCVvUYOaSrZwdtXRoEtdOyLDRlpbcMW2RLuXWmRw1n4c2SjTZmBz8/eFS3jTvHcjq+cIouDY8qG168kK+/86wke/v4XGSWOxL0EUmDFyLr9PXZ3p2P6/jjC2/oe8UGAo/YqMYtbrv3D7UpDV67Uf0pLabapbdpoWoP3gltRpm9kFOj3n9l60uUcoG2XOH7icIegpimI1CKandutqeBWxvTeq1WmIfRBHqh11lQf3o2weT6NAIQ+mrvuQdi+1cKi9igqoQU3lCRj8v36mf1j4HBUlkZqtqlK9eZXMBy3Qf0JPtDqtxSApSiLl65ahQZc6GV5/a84rFC3tk+kcURLRaCSHpJZskZKUSsEinsw7/S0abWYV+rSZ1W9T/+LIhpMPz0lhTN0P+HLQDwScvUVSfDKxEXFs/mUnY+pM4NC64xavpXXSMm3zJPq92wMXj0ezW8/CHoz68mU+WDrObt2dQxqUioKiKJze+S8TO39BF+1AumgH8kaDj9i1/IBVhRdJIzF6+mCLx9IwGmRmjp7HIN8xnN1zwWo7v8qOea+9/+tYmr3Q0KG2KippqHVqKk/EoXXH+Xb4zyQlJKPRSCiKgtEgU6ddDT5dPSFLUkZXjvvz+YCZRNx9gKSRkGU5w5KcT6lC9HmzGz3f6ER40AMEQcC9oBsb5mxn88KdRIVE417QnbaDWrD5lx1ZEky2xvf7P+f2pSB+GrfQapAUJZHqzSozc99UxjeZxPWTN6z2J4gCX2ycSOOu1ve1khNTCLxiKsAuXc03g0SYLf6etZn5E5ZZDUyCKFC+dhk6j2jLnLcXZ1DuSPMa6z6mI2/PfdVqAN04bzsLP1pOUnyyzXvUaCXmnvrWnK2antgHcfQrMsrmQ4ezm44Nsb8/VW1KlWcbtfha5amRFJ/E3pVHuH0xEJ2rjhZ9GlG5YYVs9WU0Gjmx5Swb5m7n1PZzGRyd09BoJQwPFdwLFvOi3zs96D+hB6IoIghC1swebeDspuOv+wuZ+co8Dqw5ZnPPSxAFvtv1Ke+3m+pQ35UbVeCTVe9RtLTPE48zjbioeF72e52UpFTHTVgtMGXt+7To09jq8aSEZJZ8vJJ1P2622kbSiHQY0or3F4+zeHzuO0tY99MWi8cAPlgyzqHyBTBJroXeCUcURYqW8TEplajkO9Tia5Wnhou7C91eac8bs0Yy+quXsx3QwCQkW6Z6KU7vNBlwWnrkMqSzJIkKiWbRpOV8M8w0W4yPTsC1gGMmpDoXJwTJ8kxAEAW6v9YRF3cXq75eGVBMdXGOEnDmJu+2+oQ4O4XHWcGjoDuf/f0BGicNoo39SVuIksj62VtttnFxcyYmPMauaeu+v45aPT72hxEMmtQH6bFlXRcPZz5cNt6hgGbQG/jjy7UM8h3DiEpvMazCeIaUfYN1P21xaJ9QJX+Sa0Ht9u3bjB49mrJly+Li4kL58uWZMmUKqakOWnSoPLdsWbgra8tOCuz98xC9Cgyjj/cIJrSZQmFfb4t7fen5Zucn+FYoDgLmRJC0D+r6HWox6quXAZOrgK2lMlESqdKkEtHhjhcIGw0yEcGRbF202+FzHKF+x9osPD8zQ1JNVpCNMv5nbtptlxSXbFd0ODUpxfpSqCAwetrLbIz7nY//eo8xM4fzzc5P+Cf6NzoObW33+kajkc/7z2TZZ6uISfdzDw96wNx3lvDj2F/sOkCo5E9yLahdvXoVWZZZsGABly5d4ocffmD+/PlMnjw5ty6pkk+4dTHQ7gemLcICI4gIjrQaiARRoMuodlRvVoW5p7/l3fljqNakEiUrFqde+5p8uuZ9vtw8yZxG3nFoK5zdna1mU8pGmf7v9sCnZCG7gTQ9iqywY9m+LN6dfUpWKI5nIQ+b2aS2MKQaiAh+YLNNqSolbSuHCFC8fDG7DydaJy2t+jWh/eCWVKjjuOLJ/r+OcnTjKavLrFsW7ub8gcsO96eSf8i14usuXbrQpcsjJe1y5cpx7do15s2bx4wZM3Lrsir5AGc3HaIoOOwobZGHp2p1GvQpBjRaCVk2pa93Gt6Gt+a+YrqWq45ur3awWV/l5unGF/98xP+6f4U+1WAOuGniyQM/7EXLfk0oWtqHjfNt60U+jiMqIdkh/O6DbD8Y6FP0jGs4kZ+OfmV1z6/bq+35a8Y/VvsQEOj1hm0lfaPRyD8/b2PtrM2E3TEVd5epUYoXP+hFhyGtbAbEjfN32PwbkTQimxbsoHbrnKkjVPnv8FQVRWJiYvD29rZ6PCUlhZSUFPP3sbGq3tvzSLNejdhvYz/GUQQBipUtwsAPe3MvIAQ3T1da9m+SLYPR2m2qs/jKLDbM3c7h9SdISdJTuWF5eo3rYq4fq9ywAh2HtWanA8K/YJoxFssls1Odq86U0Wij8NwaigIxEbHMeXsxn6//yGKbkhWKM3ray/w6eYVZfiwNQRSo0bwKPcZ2snoNWZaZPvhH9q8+mmFGfefSXb4d/jN3LgXxytdDrJ4fdDXY5kOP0SATeDmzU4JK/uepBbWAgABmz55tc5Y2ffp0pk51LHtMJf/Ssl9jln1alNA74U+Ulq8ocPf6fToNb5MjqeFF/Hx45eshNj9sJ/w6liKlCrPmh42kJNreP1ZkhRZ9Gz3xuNITcO4Wv078g1M7/n2ifowGmWMbTxNxL5LCJSw/iA6a2IdiZYvwx5drMxSWa3UaytQoReT9KIpZ0Ww8sPqoxQeXtOC46tt/aNmvidWkI7cCLhn20h5HEATcvFytHlfJv2R50X3ixIkIgmDzv6tXM1qxBwcH06VLFwYMGMCrr75qte9JkyYRExNj/i8oyLoCg0r+Reuk5dtdUyhRwaR1KGmkbO8PaXXap1rrJEkSI74YxOrQX5m+7WMq2hH3/efnbSTF2xZmdpSrJ/x5u9nHnNltvfA5KyiKQtBV27Odxt3roXPN6PGWmqRn8y+7GFPnfatJJxvmbresnvIQSSPaXMpt93JLm3t6CgptB6lKJM8jWZ6pTZgwgREjRthsU65cOfO/7927R9u2bWnWrBm//PKLzfN0Oh06XfZNHVXyD0VL+7DwwkxObTvH8c1n0Kca8PH1Zvefh7jnH2KxOPtxJI1Iy77W661yExc3Zxp0qs3FQ1fwP3vLatJKWFAEu5YfpOfr1pfqHEFRFGaNWYAhVf9ke5GP4WJHu3PpJ6vwP3Mr0+uyUSY5IYWp/Wbw242fM9WO3b4UZHf58Ob5O1aP9xzbiX/mbCMhJjHT3qGoEfEpWYgOQ1raHLtK/iTLQc3HxwcfH8cKRoODg2nbti3169dnyZIlalGkSpaQJInG3etncNAe8ukAzu6+wIUDVzDKJmub6LDoTMuUpsmZQP8JPZ/uoB9j36ojNssBBEzlCE8a1G6cu82Nf60Hgezg7KajYv1yVo8nJSSzZdEuqwkpslEm9E44p7b/S6OudTP1bcvlQRBsB1TvYgWZufczPun1DaG3w031bopJb9SvSkm+2DARF3fH6hVV8he5tqcWHBxMmzZtKF26NDNmzCA8/JF1RbFixXLrsir5HFEUqd+xNvU7mixferzWkUldviTo2j0kjQQoGI0yTi5O/O/Pd7OUJp4bJMQk2jyuKBAfbdtLzRGC/e/bb5RFUhJTiQqNsbqnFux/n+SEFIvH0pA0ItdOBmQKam1ebMbaWZutBkQFaD2gmc2+y9YszTL/2Zzceo5LR64higJ12tWgTtsaqrzWc0yuBbWdO3cSEBBAQEAAvr6+GY6pRZEqOUXR0j4svPg9J7ee4/jm0+hTDFSsX44OQ1ri5ulmv4NcplTlEsQ+iLP64S1qRPyqlHzi67h55fy9KigcWH2Uvm93z3TsyIaT/Dpphf0+FNA6Zf6Y6TW+K5sW7CQlMSXTMqQoiRQs6kmHoa3s9i9JEk161KdJj/p226o8H+RaUBsxYoTdvTcVlZzgWf5g6zm2MxcOXrF6XDbIdB/T8YmvU7tNNTy83e0at2YFSSNZrKPbtGAnP479xaFCc9koZ3JXANPDyNfbP+bTXt8SExFrlssy6o0ULe3DV1sm42rHY09FxRKq87WKSi7SakAT9vxZn+Obz1hMaukyqq1dnzRH0DppGfbZi8x5a/ET95WG0WDMlJIfFRbDz2/9avrGzoKLKInUalXN6hJwtaaVWRE0n4NrjnHp8FUkjUTdDjVp3L0ekpTZ6kdFxRHUoKaSbzEajOxafoB/5mwj6GowOlcdbV5sRt93ulOi/NPZ15UkiSlr3mfl1+tZP3sLMRGmmU/hkt4MmPACvd/qmmP7P73GdSE5IYVlU1Zh1BsRNSKyQUbSiAz+uD+tBzbj0qGrIAjUbFmFhR8u5+jGU1aXRnXOTrR6zOR112/7HVYqKVvTj49XvWuzjZNOS/vBLWk/WM1UVMkZVOsZlXyJQW/gs34zOL7ptNkrDEyzB61Oy9fbP6aGgwamOTmmkFthD5VEiuTabCQ2Mo79fx3lQXAk3sUL0mZgMwoU8sjU7q7/fcY3nphZnFgAFHj3l9fp9kr7DOd8/+p8dizbh9FgxBbvL36DDkNaPUzeUVF5chyNB+pMTSVfsub7TZzYfAYgw7KfbJRJTU5lSu9v+fPuArNo8dNAo9XgW8kx1+cnoYC3h0MlAr4VizP76FfMfXsJp3b+a15OLFG+GKOmvUzrx2ZpAK4etuvWwJSO32pAUzWgqeQJalBTyXcYjUbWz95iNctWkRViH8RxcM2xp7LsZTQYSYhNxMXd2WEX66dFqcolmb7tY8KCIgi5FYabpyvlapW2uiTa6mEqvjVESaRBlzq4uNkPfioquYFaDa2S74gKjeHBvSibbSStxNXj/rk8jmjmvrOEPt4j6Fd4FD09hvL10J+4c+Vurl43OxQpVZharapRvnYZm3t8VRtXpG77mhYlqtJOGzy5b24NU0XFLmpQU8l3OLTspZBtPUlHiAh+wBsNJ/LPnG0kxScDpnT1fasOM67hRK6eyN2AmlsIgsCUte9Tr2MtwPQz1DxMx3fxcGHKmvep1rRyXg5R5TlHXX5UyXd4+RSgdPVSBF6+a3UJ0mgwUr9znVwbw89vLSYyJCpTpqDRIKMoqXz18o8svf7Tf1I6zq2AK9O3/I8b/97m8LoTpCSmULp6KVoNaIqzq6rdqpK3qEFNJd8hCAKDPurNN8NmWzwuakR8Kxan/sPZRk7z4H4UR/45aVVsWTYq3L8Zyr/7LlG3Xc1cGcPToHztMpSvXSavh6GikoH/3mOiiooDtB/cksEf9wMeLTMKD61OipQqzLTNk3NtlhR0Ndime0DaWG5fVK2VVFRyGnWmppIvEQSBEZ8PomW/JmxesJPbl4Jw9XChZf8mtBnYDJ1L7i2T6RxYglNkBZ2Lk912KioqWUMNair5mvK1y/DWXOvGtLlBpfrlKFjUk6jQGKttREmkUfd6T3FUKirPB+ryo4pKDiNpJF7+Xz+rxwVRoPOINlYtXVRUVLKPGtRUVHKBXuO6MPh//UAwzcpEjWguNWjZrwnjf34lj0eoopI/UbUfVVRykfu3QtmxdB+hgeF4FipAu5dbULGedTdpFRUVyzgaD9SgpqKioqLyzONoPFCXH1VUVFRU8g1qUFNRUVFRyTeoQU1FRUVFJd+gBjUVFRUVlXyDGtRUVFRUVPINalBTUVFRUck3qEFNRUVFRSXfoAY1FRUVFZV8gxrUVFRUVFTyDWpQU1FRUVHJNzzT1jNpCl6xsbF5PBIVFRUVlbwkLQ7YU3Z8poNaXFwcAKVKlcrjkaioqKioPAvExcXh6elp9fgzLWgsyzL37t3Dw8MDQRDyejjExsZSqlQpgoKCnkuBZfX+n9/7f57vHdT7fxbuX1EU4uLiKFGiBKJofefsmZ6piaKIr69vXg8jEwUKFHgu/7DTUO//+b3/5/neQb3/vL5/WzO0NNREERUVFRWVfIMa1FRUVFRU8g1qUMsCOp2OKVOmoNPp8nooeYJ6/8/v/T/P9w7q/f+X7v+ZThRRUVFRUVHJCupMTUVFRUUl36AGNRUVFRWVfIMa1FRUVFRU8g1qUFNRUVFRyTeoQU1FRUVFJd+gBrVscPv2bUaPHk3ZsmVxcXGhfPnyTJkyhdTU1Lwe2lNj2rRpNGvWDFdXV7y8vPJ6OLnOnDlzKFOmDM7OzjRu3JgTJ07k9ZCeGgcOHKBnz56UKFECQRBYv359Xg/pqTF9+nQaNmyIh4cHRYoUoXfv3ly7di2vh/XUmDdvHrVq1TIriTRt2pStW7fm9bBsoga1bHD16lVkWWbBggVcunSJH374gfnz5zN58uS8HtpTIzU1lQEDBjB27Ni8Hkqus2rVKt577z2mTJnCmTNnqF27Np07dyYsLCyvh/ZUSEhIoHbt2syZMyevh/LU2b9/P+PGjePYsWPs3LkTvV5Pp06dSEhIyOuhPRV8fX35+uuvOX36NKdOnaJdu3b06tWLS5cu5fXQrKOo5AjffvutUrZs2bwexlNnyZIliqenZ14PI1dp1KiRMm7cOPP3RqNRKVGihDJ9+vQ8HFXeACjr1q3L62HkGWFhYQqg7N+/P6+HkmcULFhQWbRoUV4PwyrqTC2HiImJwdvbO6+HoZLDpKamcvr0aTp06GB+TRRFOnTowNGjR/NwZCp5QUxMDMBz+V43Go2sXLmShIQEmjZtmtfDscozrdL/XyEgIIDZs2czY8aMvB6KSg4TERGB0WikaNGiGV4vWrQoV69ezaNRqeQFsizzzjvv0Lx5c2rUqJHXw3lqXLhwgaZNm5KcnIy7uzvr1q2jWrVqeT0sq6gztXRMnDgRQRBs/vf4B1lwcDBdunRhwIABvPrqq3k08pwhO/evovK8MG7cOC5evMjKlSvzeihPlcqVK3Pu3DmOHz/O2LFjGT58OJcvX87rYVlFnamlY8KECYwYMcJmm3Llypn/fe/ePdq2bUuzZs345Zdfcnl0uU9W7/95oHDhwkiSRGhoaIbXQ0NDKVasWB6NSuVpM378eDZt2sSBAweeSY/H3MTJyYkKFSoAUL9+fU6ePMmPP/7IggUL8nhkllGDWjp8fHzw8fFxqG1wcDBt27alfv36LFmyxKYT63+FrNz/84KTkxP169dn9+7d9O7dGzAtQ+3evZvx48fn7eBUch1FUXjzzTdZt24d+/bto2zZsnk9pDxHlmVSUlLyehhWUYNaNggODqZNmzaULl2aGTNmEB4ebj72vDy9BwYGEhkZSWBgIEajkXPnzgFQoUIF3N3d83ZwOcx7773H8OHDadCgAY0aNWLWrFkkJCQwcuTIvB7aUyE+Pp6AgADz97du3eLcuXN4e3vj5+eXhyPLfcaNG8eKFSv4559/8PDwICQkBDA5MLu4uOTx6HKfSZMm0bVrV/z8/IiLi2PFihXs27eP7du35/XQrJPX6Zf/RZYsWaIAFv97Xhg+fLjF+9+7d29eDy1XmD17tuLn56c4OTkpjRo1Uo4dO5bXQ3pq7N271+Lvevjw4Xk9tFzH2vt8yZIleT20p8KoUaOU0qVLK05OToqPj4/Svn17ZceOHXk9LJuofmoqKioqKvmG//5GkIqKioqKykPUoKaioqKikm9Qg5qKioqKSr5BDWoqKioqKvkGNaipqKioqOQb1KCmoqKiopJvUIOaioqKikq+QQ1qKioqKir5BjWoqaioqKjkG9SgpqKioqKSb1CDmoqKiopKvuH/ALSmsXYylNQAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "points = np.vstack((circles_points*2.5 + 0.5, moons_points))\n", + "labels = np.hstack((circles_labels, moons_labels + 2)) # + 2 to distinct moons classes\n", + "\n", + "plt.figure(figsize=(5, 5))\n", + "plt.scatter(points[:, 0], points[:, 1], c=labels)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "nbgrader": { + "grade": false, + "grade_id": "cell-7c2a785a2d63ce73", + "locked": true, + "schema_version": 2, + "solution": false + }, + "id": "JjIdouIAFLpQ" + }, + "source": [ + "Now do your best using all the approaches above!\n", + "\n", + "Tune LR with generated features, SVM with appropriate kernel of your choice. You may add some of your loved models to demonstrate their (and your) strength. Again plot decision regions, calculate metric.\n", + "\n", + "Justify the results in a few phrases." + ] + }, + { + "cell_type": "code", + "source": [ + "def plot_svc_decision_function_extended(model, degree=None, ax=None):\n", + " \"\"\"Plot the decision function for a 2D SVC\"\"\"\n", + " if ax is None:\n", + " ax = plt.gca()\n", + " xlim = (-2, 3)\n", + " ylim = (-2, 3)\n", + "\n", + " # create grid to evaluate model\n", + " x = np.linspace(xlim[0], xlim[1], 30)\n", + "\n", + " y = np.linspace(ylim[0], ylim[1], 30)\n", + " Y, X = np.meshgrid(y, x)\n", + "\n", + " yx = np.vstack([Y.ravel(), X.ravel()]).T\n", + " if degree:\n", + " P = model.predict(np.hstack((yx[:, 0][:, np.newaxis], poly.fit_transform(yx[:, 1][:, np.newaxis])))).reshape(X.shape)\n", + " else:\n", + " P = model.predict(yx).reshape(X.shape)\n", + "\n", + " # plot decision boundary and margins\n", + " plt.contourf(X, Y, P, cmap=plt.cm.coolwarm, alpha=0.8)\n", + "\n", + "\n", + " # plot support vectors\n", + " # print(\"support vectors: \", model.support_vectors_)\n", + " ax.set_xlim(xlim)\n", + " ax.set_ylim(ylim)" + ], + "metadata": { + "id": "iil7BnxMg12u" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2019-03-13T23:26:23.330584Z", + "start_time": "2019-03-13T23:26:23.328232Z" + }, + "nbgrader": { + "grade": true, + "grade_id": "cell-e61b36ea61909c83", + "locked": false, + "points": 40, + "schema_version": 2, + "solution": true + }, + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "jkFZqwf-FLpQ", + "outputId": "5798d6bd-cb1b-4e6d-cbc3-bec34a091dd5" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "RBF SVC. Degree: 1. Accuracy score: 0.953\n", + "RBF SVC. Degree: 2. Accuracy score: 0.953\n", + "RBF SVC. Degree: 3. Accuracy score: 0.95\n", + "RBF SVC. Degree: 4. Accuracy score: 0.939\n", + "RBF SVC. Degree: 5. Accuracy score: 0.856\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABakAAAOECAYAAACrWL0YAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADBIElEQVR4nOzdf3hcVb3v8U+akLRNkyEtDRT6C1K0tFLEgvyWAqWVAorPowiPB1pEDmJBERXBe6B65dBT5SocxFJFAwflKnDEi1jgICIioqKn/NQq9LS0lJZCm6Zt2iYm2fePuCczOzOZPTP7x1p7v1/PMw90MpnZk5n5ZOW711rfGsdxHAEAAAAAAAAAEIMRcR8AAAAAAAAAACC9KFIDAAAAAAAAAGJDkRoAAAAAAAAAEBuK1AAAAAAAAACA2FCkBgAAAAAAAADEhiI1AAAAAAAAACA2FKkBAAAAAAAAALGhSA0AAAAAAAAAiA1FagAAAAAAAABAbChSI3RTp07VokWLSt5u165d+sQnPqEDDjhANTU1uvLKK0M/tqRYt26dampqdOedd8Z9KAAsRl6Hj7wGEATyOnzkNYAgkNfhI6+TgyL1MNauXavLL79c73jHOzR69GiNHj1aM2bM0OLFi/XCCy/EfXiBWrlypb785S/Hegw33nij7rzzTl122WW6++67dcEFF4TyON/+9rcJr4T5wx/+oE996lOaPXu29tlnH9XU1MR9SIgYeR0t8hqV6O/v15133qkPfOADmjRpkhobG/Wud71LN9xwg/bu3Rv34SEi5HW0yGtU6rvf/a5OPvlk7b///mpoaNDBBx+siy66SOvWrYv70BAR8jpa5DWC8Pe//10zZsxQTU2NbrrpprgPp2x1cR+AqR566CF99KMfVV1dnT72sY/piCOO0IgRI7R69Wr95Cc/0fLly7V27VpNmTIl7kMNxMqVK3XbbbfFGsy//OUvdeyxx2rJkiWhPs63v/1t7bfffr7OZsIOK1eu1B133KFZs2bpkEMO0d/+9re4DwkRIq+jR16jErt379ZFF12kY489Vp/85CfV2tqqZ555RkuWLNHjjz+uX/7yl5xkTDjyOnrkNSq1atUqHXzwwfrABz6glpYWrV27Vt/97nf10EMP6fnnn9eBBx4Y9yEiROR19MhrBOHWW2/V+vXr4z6MilGkLmDNmjU677zzNGXKFD3++OOaMGFC3teXLVumb3/72xoxwtyJ6F1dXWpsbIz7MMqyZcsWzZgxI+7DqIjjONq7d69GjRoV96FEypTnfdlll+mLX/yiRo0apcsvv5widYqQ1/Egr+1jwvOur6/X008/reOPPz573SWXXKKpU6dmC9Vz586N7fgQLvI6HuS1fUx53t/+9reHXHfOOefoqKOO0n/8x3/ommuuieGoEAXyOh7ktX1Me95btmzR//7f/1tf/OIXdf3118d9OBUxN1Vi9LWvfU1dXV1qb28fEsiSVFdXp09/+tOaNGlS3vWrV6/Whz/8YY0dO1YjR47UUUcdpQcffDDvNnfeeadqamr09NNP66qrrtL48ePV2NioD33oQ3rrrbeGPNbDDz+sk046SY2NjWpqatKZZ56pl19+Oe82ixYt0pgxY7RmzRotWLBATU1N+tjHPiZJeuqpp/SRj3xEkydPVkNDgyZNmqTPfvaz2rNnT97333bbbZKkmpqa7MXV39+vm2++WTNnztTIkSO1//7769JLL1VHR0fecTiOoxtuuEETJ07U6NGjdcoppww51kJ+9atfqaamRmvXrtXPf/7z7OO7S8m6u7u1ZMkSTZs2Lfscrr76anV3d+fdT3t7u0499VS1traqoaFBM2bM0PLly/NuM3XqVL388st68skns48zZ84cSdKXv/zlgjO43Ncsd2nb1KlTddZZZ+nRRx/VUUcdpVGjRmnFihWSpO3bt+vKK6/UpEmT1NDQoGnTpmnZsmXq7+/Pu98f/ehHmj17tpqamtTc3KzDDz9ct9xyS8mf1/bt27Vo0SJlMhntu+++WrhwobZv317wtn7ek5L0wgsv6OSTT9aoUaM0ceJE3XDDDWpvbw/left9P3V2dmr16tXq7Ows+TPZf//9jfnFgGiR1+R1LvI62OcddF7X19fnFahdH/rQhyRJf/nLX4b9ftiNvCavc5HXwT7vMMbXhUydOjV7XEgu8pq8zkVeB/u8w8zra665Ru985zv1T//0T76/xzgOhjjwwAOdadOmlfU9L730kpPJZJwZM2Y4y5Ytc771rW8573vf+5yamhrnJz/5SfZ27e3tjiTnyCOPdE499VTn1ltvdT73uc85tbW1zrnnnpt3n//xH//h1NTUOO9///udW2+91Vm2bJkzdepUZ99993XWrl2bvd3ChQudhoYGp62tzVm4cKFz++23O//xH//hOI7jXHHFFc6CBQucG2+80VmxYoVz8cUXO7W1tc6HP/zh7Pf/9re/dU4//XRHknP33XdnL65PfOITTl1dnXPJJZc4t99+u/PFL37RaWxsdI4++minp6cne7t/+Zd/cSQ5CxYscL71rW85H//4x50DDzzQ2W+//ZyFCxcW/dlt3rzZufvuu5399tvPefe73519/F27djl9fX3OvHnznNGjRztXXnmls2LFCufyyy936urqnA9+8IN593P00Uc7ixYtcr75zW86t956qzNv3jxHkvOtb30re5sHHnjAmThxojN9+vTs4/zXf/2X4ziOs2TJEqfQR8J9zXJ/5lOmTHGmTZvmtLS0ONdcc41z++23O0888YTT1dXlzJo1yxk3bpzzpS99ybn99tudCy+80KmpqXE+85nPZL//v/7rvxxJzmmnnebcdtttzm233eZcfvnlzkc+8pGiPyfHcZz+/n7nfe97nzNixAjnU5/6lHPrrbc6p556qjNr1ixHktPe3p69rd/35Ouvv+6MHTvWGTdunPOVr3zFuemmm5zp06c7RxxxRODP23H8v5/cn3vuc/Jj8eLFBV9HJBN5TV7nIq+De96OE35ee3/G99xzT0XfDzuQ1+R1LvI6uOftOOHm9dtvv+28+eabzrPPPuucffbZjqTs64tkIq/J61zkdXDP23HCy+vf//73zogRI5zf/va3ztq1ax1Jzte//nVf32sSKjkenZ2djiTnnHPOGfK1jo4O56233spedu/enf3aaaed5hx++OHO3r17s9f19/c7xx9/vHPooYdmr3PfaHPnznX6+/uz13/2s591amtrne3btzuO4zg7d+509t13X+eSSy7JO4bNmzc7mUwm7/qFCxc6kpxrrrlmyDHnHqNr6dKlTk1NjfPaa69lrytW2HvqqaccSc4Pf/jDvOsfeeSRvOu3bNni1NfXO2eeeWbe8/rSl77kSBo2lF1TpkxxzjzzzLzr7r77bmfEiBHOU089lXf97bff7khynn766WGf6/z5851DDjkk77qZM2c6J5988pDblhvKkpxHHnkk77Zf/epXncbGRudvf/tb3vXXXHONU1tb66xfv95xHMf5zGc+4zQ3Nzu9vb1DHm84P/3pTx1Jzte+9rXsdb29vc5JJ500JMD8vievuOIKp6amxlm1alX2uq1btzpjx44N/Hn7fT85DkVqlEZe5yOvyWvb8to1d+5cp7m52eno6Kjo+2E+8jofeU1e25TXDQ0NjiRHkjNu3Djn3//9331/L+xDXucjr8lrG/K6v7/fee973+ucf/75juM4Vhep2e7DY8eOHZKkMWPGDPnanDlzNH78+OzFXRKybds2/fKXv9S5556rnTt36u2339bbb7+trVu3av78+XrllVe0cePGvPv653/+57ylFCeddJL6+vr02muvSZIee+wxbd++Xeeff372/t5++23V1tbqmGOO0RNPPDHk+C677LIh1+VugdDV1aW3335bxx9/vBzH0apVq0r+PO677z5lMhmdfvrpeccxe/ZsjRkzJnscv/jFL9TT06Mrrrgi73ldeeWVJR+j1OMfdthhmj59et7jn3rqqZKU93PIfa6dnZ16++23dfLJJ+t//ud/Kl7SNpyDDz5Y8+fPH3K8J510klpaWvKOd+7cuerr69Ovf/1rSdK+++6rrq4uPfbYY2U95sqVK1VXV5f3WtfW1uqKK67Iu10578lHHnlExx13nN797ndnv3/s2LHZJVJBPm+/7ydpYNmV4zg0dEBR5HU+8ro48rr85x1VXt944436xS9+oX/7t3/TvvvuW/b3ww7kdT7yujjyuvznHXZeP/zww1q5cqX+z//5P5o8ebK6urp8fy/sQ17nI6+LI6/Lf95h5fWdd96pF198UcuWLSt5W9PRONGjqalJkrRr164hX1uxYoV27typN998M2+Pl1dffVWO4+i6667TddddV/B+t2zZooMOOij778mTJ+d9vaWlRZKy+9C88sorkpQNH6/m5ua8f9fV1WnixIlDbrd+/Xpdf/31evDBBwvucVPKK6+8os7OTrW2thb8+pYtWyQp+8vk0EMPzfv6+PHjs8+tEq+88or+8pe/aPz48cM+viQ9/fTTWrJkiZ555hnt3r0773adnZ3KZDIVH0chBx98cMHjfeGFF0oe76c+9Snde++9OuOMM3TQQQdp3rx5Ovfcc/X+979/2Md87bXXNGHChCGDhne+8515/y7nPfnaa6/puOOOG/L1adOmFfy+ap633/cT4Ad5nY+8Lo68HmRSXv/4xz/Wv/zLv+jiiy8u+IclkoO8zkdeF0deDzIlr0855RRJ0hlnnKEPfvCDete73qUxY8bo8ssvr+p+YSbyOh95XRx5PSjOvN6xY4euvfZafeELXxiyT7yNKFJ7ZDIZTZgwQS+99NKQrx1zzDGSlLdxuqTsRuif//znh5xRcXnf4LW1tQVv5zhO3n3efffdOuCAA4bcrq4u/6VraGgY0l23r69Pp59+urZt26YvfvGLmj59uhobG7Vx40YtWrRoyAbuhfT396u1tVU//OEPC3692IcwKP39/Tr88MP1jW98o+DX3Q/hmjVrdNppp2n69On6xje+oUmTJqm+vl4rV67UN7/5TV/PtVCTAGng51hIoUZ9/f39Ov3003X11VcX/J53vOMdkqTW1lY999xzevTRR/Xwww/r4YcfVnt7uy688ELdddddJY+1lErek35V87zjfj8hWcjrfHF/vsjryqQ1rx977DFdeOGFOvPMM3X77bdXdV8wH3mdj7wmr71MzutcbW1tOvLII/XDH/6QInVCkdf5yGvy2su0vL7pppvU09Ojj370o9nP5uuvvy5p4KTPunXrdOCBB6q+vr7s+44DReoCzjzzTN1xxx36wx/+oPe+970lb3/IIYdIkvbZZx/NnTs3kGNoa2uTNPDhrfQ+X3zxRf3tb3/TXXfdpQsvvDB7faElFcUCqa2tTb/4xS90wgknFPwwuqZMmSJp4MyQ+/OQpLfeemvIGctytLW16fnnn9dpp51W9Bgl6Wc/+5m6u7v14IMP5p2VLbQMqNj9uGc4t2/fnrfk2D0r6vd4d+3a5es1q6+v19lnn62zzz5b/f39+tSnPqUVK1bouuuuKxqYU6ZM0eOPP65du3blnT3861//mne7ct6TU6ZM0auvvjrk+kLXFeP3eft9PwF+kdf5x0Fek9elmJDXv//97/WhD31IRx11lO69994hf2gimcjr/OMgr8nrUkzI60L27Nmj7u7u0B8H8SGv84+DvCavS4kzr9evX6+Ojg7NnDlzyNduvPFG3XjjjVq1alXediYmY0/qAq6++mqNHj1aH//4x/Xmm28O+bp7ds/V2tqqOXPmaMWKFdq0adOQ27/11ltlH8P8+fPV3NysG2+8UX//+98ruk/37GTu8TqOo1tuuWXIbRsbGyUNBFKuc889V319ffrqV7865Ht6e3uzt587d6722Wcf3XrrrXmPd/PNN5c8zuGce+652rhxo7773e8O+dqePXuye6IVeq6dnZ1qb28f8n2NjY1Dnqc0+IvQ3S9IGti3qpwzeeeee66eeeYZPfroo0O+tn37dvX29kqStm7dmve1ESNGaNasWZI07KBvwYIF6u3t1fLly7PX9fX16dZbb827XTnvyfnz5+uZZ57Rc889l71u27ZtRc/uFeL3eft9P0kDr9/q1atD2T8LyUFeDyKvyWs/4s7rv/zlLzrzzDM1depUPfTQQ5ywTBHyehB5TV77EWde9/b2Fiys/eEPf9CLL76oo446yvfzgH3I60HkNXntR5x5/elPf1oPPPBA3mXFihWSBva1fuCBBwpuUWIqpq4UcOihh+qee+7R+eefr3e+85362Mc+piOOOEKO42jt2rW65557NGLEiLw9j2677TadeOKJOvzww3XJJZfokEMO0ZtvvqlnnnlGr7/+up5//vmyjqG5uVnLly/XBRdcoPe85z0677zzNH78eK1fv14///nPdcIJJ+hb3/rWsPcxffp0tbW16fOf/7w2btyo5uZm/ed//mfBAcfs2bMlDbzB58+fr9raWp133nk6+eSTdemll2rp0qV67rnnNG/ePO2zzz565ZVXdN999+mWW27Rhz/8YY0fP16f//zntXTpUp111llasGCBVq1apYcfflj77bdfWc891wUXXKB7771Xn/zkJ/XEE0/ohBNOUF9fn1avXq17771Xjz76qI466ijNmzcveybu0ksv1a5du/Td735Xra2tQ0Jp9uzZWr58uW644QZNmzZNra2tOvXUUzVv3jxNnjxZF198sb7whS+otrZW3//+97M/dz++8IUv6MEHH9RZZ52lRYsWafbs2erq6tKLL76o+++/X+vWrdN+++2nT3ziE9q2bZtOPfVUTZw4Ua+99ppuvfVWvfvd79Zhhx1W9P7PPvtsnXDCCbrmmmu0bt06zZgxQz/5yU8KBpff9+TVV1+tH/zgBzr99NN1xRVXqLGxUXfccYcmT56sbdu2DXvGttzn7ff9JEkPPPCALrroIrW3t5dsFvDaa6/p7rvvliT98Y9/lCTdcMMNkgbOjF5wwQUlnwPsRF6T1+S1PXm9c+dOzZ8/Xx0dHfrCF76gn//853lfb2trK7gnIJKBvCavyWt78nrXrl2aNGmSPvrRj2rmzJlqbGzUiy++qPb2dmUymaJ7vCIZyGvymry2J6/f85736D3veU/ede62HzNnztQ555xT8viN4qCoV1991bnsssucadOmOSNHjnRGjRrlTJ8+3fnkJz/pPPfcc0Nuv2bNGufCCy90DjjgAGefffZxDjroIOess85y7r///uxt2tvbHUnOs88+m/e9TzzxhCPJeeKJJ4ZcP3/+fCeTyTgjR4502tranEWLFjl//OMfs7dZuHCh09jYWPA5/PnPf3bmzp3rjBkzxtlvv/2cSy65xHn++ecdSU57e3v2dr29vc4VV1zhjB8/3qmpqXG8b43vfOc7zuzZs51Ro0Y5TU1NzuGHH+5cffXVzhtvvJG9TV9fn/OVr3zFmTBhgjNq1Chnzpw5zksvveRMmTLFWbhwYakftzNlyhTnzDPPHHJ9T0+Ps2zZMmfmzJlOQ0OD09LS4syePdv5yle+4nR2dmZv9+CDDzqzZs1yRo4c6UydOtVZtmyZ8/3vf9+R5KxduzZ7u82bNztnnnmm09TU5EhyTj755OzX/vSnPznHHHOMU19f70yePNn5xje+kX3Ncu+j2LE6juPs3LnTufbaa51p06Y59fX1zn777eccf/zxzk033eT09PQ4juM4999/vzNv3jyntbU1+1iXXnqps2nTppI/p61btzoXXHCB09zc7GQyGeeCCy5wVq1aNeQ1dRx/70nHcZxVq1Y5J510ktPQ0OBMnDjRWbp0qfPv//7vjiRn8+bNgT1vl5/3k/tz9z6nQtzPT6FL7uuL5CKvB5HX5HUQz9sVZF6vXbu2aFZL8vXeg/3I60HkNXkdxPN2BZnX3d3dzmc+8xln1qxZTnNzs7PPPvs4U6ZMcS6++OK81wzJRl4PIq/J6yCetyvoeoiXO+b++te/Xvb3xq3GcTxrNQBA0pVXXqkVK1Zo165dRRtbAADiR14DgB3IawCwA3kdD/akBqA9e/bk/Xvr1q26++67deKJJxLIAGAQ8hoA7EBeA4AdyGtzsCc1AB133HGaM2eODjvsML355pv63ve+px07drDfHAAYhrwGADuQ1wBgB/LaHBSpAWjBggW6//779Z3vfEc1NTV6z3veo+9973t63/veF/ehAQBykNcAYAfyGgDsQF6bI9Q9qZcvX67ly5fndZa8/vrrdcYZZ4T1kACACpDXAGAH8hoA7EBeA0B5Qi1S/+xnP1Ntba0OPfRQOY6ju+66S1//+te1atUqzZw5M6yHBQCUibwGADuQ1wBgB/IaAMoTapG6kLFjx+rrX/+6Lr744igfFgBQJvIaAOxAXgOAHchrACgusj2p+/r6dN9996mrq0vHHXdcwdt0d3eru7s7++/+/n5t27ZN48aNU01NTVSHCgBVcRxHO3fu1IEHHqgRI0bEfThlI68BpAV5TV4DsAN5TV4DsENVee2E7IUXXnAaGxud2tpaJ5PJOD//+c+L3nbJkiWOJC5cuHBJxGXDhg1hR2ygyGsuXLik9UJec+HChYsdF/KaCxcuXOy4VJLXoW/30dPTo/Xr16uzs1P333+/7rjjDj355JOaMWPGkNt6zxx2dnZq8uTJ+sQXf6v6hjFhHiYABKane5fuWHa8tm/frkwmE/fh+EZeAzBFXfNYHXRAffbfTc11Gr/v4EyMt7b3a+eO3uy/N27uUe+ObWU/DnlNXgOwA3lNXgOwQzV5Hfp2H/X19Zo2bZokafbs2Xr22Wd1yy23aMWKFUNu29DQoIaGhqH30TBGDSObwj5UAAiUbcvyyGsApqgb1axRoweL1KMa6zR6zGCRetTf+9XbO1ikbhjVo9qev1f8eOQ1ANiBvAYAO1SS15Fv5tTf3593dhAAYCbyGgDsQF4DgB3IawAoLtSZ1Ndee63OOOMMTZ48WTt37tQ999yjX/3qV3r00UfDfFgAQJnIawCwA3kNAHYgrwGgPKEWqbds2aILL7xQmzZtUiaT0axZs/Too4/q9NNPD/NhAQBlIq8BwA7kNQDYgbwGgPKEWqT+3ve+F+bdAwACQl4DgB3IawCwA3kNAOWJfE9qAAAAAAAAAABcFKkBAAAAAAAAALGhSA0AAAAAAAAAiA1FagAAAAAAAABAbChSAwAAAAAAAABiQ5EaAAAAAAAAABAbitQAAAAAAAAAgNhQpAYAAAAAAAAAxIYiNQAAAAAAAAAgNhSpAQAAAAAAAACxoUgNAAAAAAAAAIhNXdwHAFSqLjMu7kOIXW/n1rgPAUCK2ZTD5CUAlGZTroeF3xcAgka2xotctwdFalht0oT6uA8hNhs29aguM47ABRALd7BtQw6TlwBQmk25HpYNm3riPgQACUO2xou/A+zCdh+wEmci+SUHID62Dbbd4+R3BwAMz5ZcDxO/KwAEjWyND38H2IUiNaxjW3EkbIQtgCjZmsEMUAGgOLJxAL8rAASJLDGDbX+3pBlFaljF1uJIWBhIA4iDrRls63EDQJgYX+djfA0gCGSrech187EnNaxRKOSbMul+C+/s7NWkCfXsswQgEt6BnU0ZvLOzN/v/5CUADPCOr23K9TC4vysYXwOoBtlqFuom9uCTAqsUKlC3tqRzQcCWjv7s/xO4AMJWbLBtQwZv6ehXU6aOASoA5Cg2y8+GXA9D7u8KaXB8DQDlIFvNwt8BduFTAisUm72X9qDPPSPLMiIAYbG5QC0NHqd73CzlBoABrFAc5P1d4eJ3BYByka3m8P69wt8BZrPjr0ukmu3FkbAwkAYQhaTMBqFQDQCDmABSGL8rAFSDbDUXE/zswCcFRqNAPTwG0gCikJTZIMVmUsBM3mX27jZXudtdFbodgOExvh4e42sAlSBbzcUEP3vwaYGxkjJ7L2wMpAGEJamzQRigms/dJ9AtQLt7xLoFavff7tfZVxDwhyKKPywPB1AOstV81E3swCcGRkvK7L2wMZAGELSkDrYZoNqjWKGaAjVQGSaAlI/l4QBKIVvtwd8B5uNTAyMldfZe2BhIAwhCUgvULgao9vAWoN0CdbGvAxgeE0D8Y3k4AL/IVnswwc9sfHpQlTA/yEktjoSltWWEtnT0qylTl/dHfLmvEX/wA8lUbhYkfTaINzMnTajXhk09Vg1Q05TXGzb15L0n2YcaqG4czvjanyB+V6Qpq4EkIFvTIbdu4mY74keRGhUrtqwlSIR8eQoNpMtBMAPJVE1eJ3k2iJuZLptWoKQpr3s7t6ouMy5bqGabDyCYXGd87U8142u3oE1eAXYgW9NhuAl+5HW8+PSgIlEUqF2EfHmKLU30y6ZZhABKY7Bdmq2F+DTltXd/av6AAMj1KFX682IZOWAfsjUd2P7PTHyCULGwC9S2Fg1MwEAaQC4G28VVe2IvLmnMa7cwTYEaaVft5z7puR6mSn5XpDGvARuRrelDodo8fIpQtig+sGkpjoSNgTSQbpV+jtOWwRSq7UGBGmnH9k3xqeZ3RRrzGrAJ2ZpeNFI0C58mlMUb3mEGclqKI2HJ3WfJL2/jAPZkAuxVbV6nLYMrycw4kddA+gQxDk9btgctiPE1ALOQrZBopGgKO/4SgxGKhTeBbK5yXhtv4wCCGbAXeV0ZW34+5DWQPsVm+dmSW0lSzfhaojEXYBKyFRKNFE3CJw++EN7JV2wJI8tcALuQ18lHXgPplJvrtqz6SDv2OwXMR7ZCIq9NwV+s8I3wTj6CGUgG8jr5yGsgPbyfa1bH2IW8BsxEtsKLvI4fnz6URHinC8EM2Iu8ThfyGkg+tm9KBhpzAWYhW1EMeR0vPoEYFuGdTgQzYB/yOp3IayC5yPXkyV3d5N2WC0A0yFb4QV7Hg08hiiK8QTADdiCvQV4DyUJ/geShnwAQP7IVfpDX8eGTiIIIbxDMgB3Ia5DXQDLRXyB52KYJiB/ZCj/I63jwiUyRcj9MhDdaW0ZoS0e/mjJ12tnZq0kT6rVhU4/qMuPU27k17sMDEou8RrnIa8Bs1fxRy+qYZCGvgXjQuwXlIq+jx1+yKVFspp0fhHe6EcxAtMhrVIq8BsxGrsPl5rWLvAbCxdZ4qBR5HS0+kSnCwBiVojEXEA0K1KgWeQ2Yp9LPH7mefPQTAMJHgRpBIK+jwacyBRgYIygEMxA+CtQIAnkNmKGak48SuZ5k9BMAwkfvFgSBvI4On8yEY2CMoBDMQLiq/SyR13CR14AZglgdg2SjMRcQPnq3IAjkdTT4hCZYsWUtQKXY7xQIB3mNoJHXQLwKFajLzXZOPqYDeQ2Eg0aJCBp5HT7+Ck4olrUgLAQzECz2yUNYyGsgXoUK1GQ7CqExFxAsxtcIC3kdLj6hCcayFoSFxlxAMDihiLCR10D0mL2HStFPAKgeBWpEgbwOB5/SBGJgjKgQzED1OKGIKJDXQDQojqBS9BMAqscEEESBvA4Pn9SEYWCMqBDMQHU4oYiokNdANBiHo1o05gKqxwQQRKHYakVUhxFTgjAwRtQYSAOVIa8RNfIaCBez9xAU8hqoDBNAAPvxaU0IBsaICwNpoDwUqIOxpaM/r2kJSiOvgXAxew9BoZ8AUB7G10Ay8IlNEAbGiAsDacAfTigGI7c4TaG6POQ1EDxm7yEs9BMASqNADSQHlUxDVfPHIqGMuDRl6rSzs1fSwCBhw6aemI8ICF+5ec0Jxeq4RWk3a5oyddrS0c/vvDKR10ijME/GUBxB0FpbRmhLR39eXksD7+Pezq0xHhkQvmrG1xIZDNiKv44NVsnZcgbGiAsDaaRRsZnRfpDX5fMWqN3/p1BdHvIaaVRNXvtFriNo3rx2TyqS10iyIMbXAOzECMpAdZlxFDxgJfY7RRqR19HKLaoOdx2GR14jjaLYLoFcR9DIa6QJE0CAdOPTa5hqBxsEMuLGQBppUel7mgF0Zbx7T2/Y1DNkiwr2py4PeY20iOI9zew9hIl+AkgTCtRAevEJNgjLWpAUDKSRdNUuG2cAXR7vNh+5xWn3/92vUaguD3mNpGObDyQJjRSRZEwAAcCn2BAsa0ESMZBGEnFCMVrFCtS9nVuz+3FSqK4eeY0kokCNJPGufnFxUhFJwAQQABKNE42SG8jlFjIIZZiGxlxIokIDaPI6PIUaJUrKy5Dezq15f6DTSLF85DWSKIi89ousQVRopIgk8uY1kzqA9OLTbwBvo0RmZCApGEgjicjraOUWTb17UOfasKkn+9q4hWr4R14jichrJBF5jSQpNoOarAbSiU9+zLzLsxhAI2lozIWkIK+jVahRoqSCf4B7t/0odh8YHnmNpCCvkXT0E0CSRLHiBYAdGKnFqNiyFgbQSBoG0rAdeR09vwXTusw4Xp8AkdewHXmANKGfAGzGCUUkAX0CgsWnPyYMoJFGDKRhI/I6PrmF6qZMXV7B1FucnjShPnu73O9FZchr2Ii8RprQSBE2I6+RBEzuCB5rKWKUhH2XWEodDhvfC6XQmAs2StI+eSbktZ+f29iRO7L/v21vc/Z73PyY8Y8Mcbf2cIvThR4j977KsW1vc0XflxTkNWyUpLxOmkqz2A/ymv2pYR8K1EiSgfft4JjZzWFUhiJ1DIo1SrSNW/DI/QMW1bP1/eAHA2nYiLwOhp+fnVvIyIyWOncP/rtQsXqS536LFaczo8s7TvdxKXyQ17BPEvI6aXJzPWjk9QDyGjbhhCKSiskdwSAJIpaUfZdMKHgkmQkzHsNCYy7YgrwOnp9scwsZmdGD/z925I5socO7BUjudbm3y/3+cuQ+ZtqR17BFUvI6acIsUOfeL3nNknPYhROKSBrGzMFh5BahpCxrMangkUTuzzUNhWoXIQ7TkNfBq/QYChWrW1tG5F2CKE57HxMDyGuYLil5nTRhF6hd5HU++gnAZJxQRJJRqA5GqGmwdOlSHX300WpqalJra6vOOecc/fWvfw3zIY2VlAG0SQWPJEtDoVpiIG0S8noQeR2PUjPhChWrgy5Ol3tMaUJem4O8HpSUvE6qKAvI5DWNFE1DVucjr5EGTO6oXqhrK5588kktXrxYRx99tHp7e/WlL31J8+bN05///Gc1NjaG+dBGSsq+S7kFDzaED577PtnZ2aumTJ22dPRb+14ZDo25zEJeD0jaPnmm5fWMEpmWGS21dK3J/rujsa3gbaSBvUhz/11I7n2Vo6OxLW9fbPY7Ja9NQl4PSFpeJ4m3YFxpFvtBXudjf2pzkNWDKFAjTWikWJ1Qi9SPPPJI3r/vvPNOtba26k9/+pPe9773hfnQRklao0SX+0FjwBOcusw4bdjUM6RQnVQMpM1BXg8ir8NRlxlXNNPcgoZbyBhZX6u9PX1DChu5RetCxelChZCR9bVlHaf7uBQ+8pHX5iCvByUhr5PGu81Hbq4HjbwujLw2A1k9gBOKSCsmd1Qm0mTo7OyUJI0dO7bg17u7u7Vjx468i+2Ssu+Sd9m4CQWPJHJ/nt4zbUne9oO9m8xEXpPXYXCPpVCmuQUNt5Axsr427yINFDuGuxT7vnJ4v4fGXIPIazOR1/bmddJEWaAudL/k9SCWnJunVFZLycxriROKSB/GzJWLbCTX39+vK6+8UieccILe9a53FbzN0qVLlclkspdJkyZFdXihSMqyFpMLHknkLVSnYX9qBtJmIa/J6zC4x1DpHtnFis/VFqWLyZ2VTWOuQeS1Wchre/M6aYo1SgyrQJ2LvC6OfgJm8JPVUnLz2kVeI00oVFcmsnRYvHixXnrpJf3oRz8qeptrr71WnZ2d2cuGDRuiOrzAJWUAXazxlgkFjyRLY6FaYiBtCvKavI6Sd6sPv4IuSnvvWxp6TMzOG0Rem4G8tjOvkyq3QBzmPtS5yOviaKRoDj9ZLZHXQNIwuaN8kSTE5ZdfroceekhPPPGEJk6cWPR2DQ0Nam5uzrvYLCn7LpnWeCstvIWlpBeqGUibIW15nbR98mzI60Jbfni3+jCBt/DBMvJB5LUZyOsBtuZ1khRrlBhVppPXxTGTL35+s1pKbl5ToEaatbaMYHJHGUJNCcdxdPnll+uBBx7QL3/5Sx188MFhPhxC0pSpY2ATo9xCU6XL5G1R7EwjwpfmvE7CPnkmNkosJvfnXeks6qhQ+CiOvI4PeT3A1rxOmqj3oS6GvC6OvI5HWrOaE4pAYUzu8CfUpFi8eLF+8IMf6J577lFTU5M2b96szZs3a8+ePWE+LALU2jIi7wx8U6Yur1DNBytcaWykiHikMa+Tsk+eyftQ53J/3u7PefqEXZKkqU48BQ2/aMwF05DX9uZ10phSoHaR1zBJGrPaxQlFIB+rWvwLNTGWL18uSZozZ07e9e3t7Vq0aFGYD40q5A7ktu0dWGLkfqi2dPQPFKr/8fUNm3oS+cEyqbjT27lVdZlx2rCpR5Mm1GtnZ6+aMnVlFar5Iw6lpC2vk7IM0bYC9YzpAxUDWwrUuVq61qijsU3SQOGjc3fMB4TUIq/tzOswmFB8jaNRYinkNUyQtqyWOKGYBCb8XnFrUEnT2jIiW0/b2dmrSRPqs/U00/52i1OoRWrHccK8e4Qgd0ZE5+7Bf+cWq90PliTZ3W+4MBODolCh2i+3oM3gAMNJU14npeBhS6PEYgXqzGhJXWYUNEoZWV+rvT19eYUPaeB3ZFIH0jAXeW1fXofBO4s5bqZs20RewxRpymqJvE4CE36vuDWopOa1W09zUageirUXGMINJfe/3mK1d1Z10szI1OnPq3cbFxRuobpcuTOvGSQg7ZK2T57pjRK9P2/355wZbU5Bwy9v4SP3ZG5SB9JAnJKW10EyoZCQK+5tPrzIayBaFKjtZ8rvlTTk9cDnoi77d1xuodovk+pUQUtehREVK7a0o1SxOmm2dPQbfUbLnU1dDgrVwKAk7JNnW6NE9+fsbZRoSkHDLwofQLSSkNdhibuQ4DI1z8lrIBqcULSfKQVqV1ry2t32Qyqvoa2pdaqgkByQ5C+YMqPzG5CYsF9RWHIbRJqkWCNFP9wApOki0iop++TZtg+1bY0SS6ExFxC+pOR1GEzKGlML1C7yGogGJxTtZ0qB2mXa8QTN20ixHElvukiCoGhnblfufm65t8udWZ0kYydIqzeNGQgMA89S5e5P7ZcbZO6MaiBtkrIM0bYCtc2NEkuhMRcQjqTkdRhKjdnjYEOek9dAODihaD9vPceE3ytp6SfgbaRYDnflfxJRrUq5YjOo3QGnu0wuV+4gL4k6dw8UVFZvGqMZ00cbuz+1X7kNF11s+4E0SUrBg0aJ5qAxFxCOpOR1GIoVqJOQqWEir4FwkNf2M/H3Stq2afI2UiyXaXWqIJAgyCs2ewvSI+tr8y7ubXIvSeP+PNzCiltosXU5hXeLELb9QJokbZ88GiWaI/d3osQycqBaScvrIJWaVILhkddAsChQ28/EAnXu46cpr1tbRrDtRw5mUqdYsaUdwwWT92uFZlonQmObOncPntkyuZGiH7lbhEyaUE8jRaRKEvbJo1GimWjMBQQrCXkdluEmlaA08hoIBicU7Wf6iU83r11pyetyxz07O3utr1MVwugvpYI6c2ZKkAXJHcB21rRp7Mgd2qKB/aknycyZi365hWoXhWokXVL2ybNtH+qkNUosJa0DaSBIScnrMFQyqQSFkddAMDihaD8bTnymqZ9AueOd3AlMSStUM/JLIVOXdpjC/Tm4hRW30OL+ArZ9OUVuob3cDfoBWyRlGaLt+1AnvUCdK3eAn9SeDUAYkpLXYWDMHg7yGqgMJxTtZ8uJT++2H64kb/tRrtwTRN6VDTYjTUJQLLxNYPrSDlMUK1Tbvj91MabtT+39zCTt541wJang4R5zoc+EKZ+LYRslKh2/X9LwHIshr1GNJOV10ChQhyPNhQ/yGkFgmw972fZ7xXtcnFQclOTPXXKfWUxsGGzbsLTDBG4oJqWRYrH9w0xrpOgtyiW1IQDCkcR98nI/E02ZOk2aUG/M5yJNjRIxlPdzZcr7EnZIYl4HhUkl4UprY65c5DWQLrYVqJFe5kzxTQDTC9S2LO0wTUvXmmEbKZYrjmX6xf4QdJm2P7X7c3YlbZ8lhCsJ++S5ee3ukel+Lrd09A+ewJEqzqEgpalRIgprytRlT3i6eQ34kYS89qvcAiiTSsKV1kaK5DUQLJtObnHiEzZI9mgwQqbPBuHMWWVyB7CFGimWq1BBKaqia6l9ikwrVEsMpFGepOyTl5/XwxerK8mhoKWtUSLyuScVc/NaEicVMayk5LVfxWZG+8GYPTxpa6RIXgPBqibb48SJT5gsmSPBmJg6G4QCdXVKNVIsh7tM37tcP/cStHLu06RGisPtxQt4mb6SxS9vXmdGD1zGjtyRN1PDuwVIXChQQ2KbJpQnKXldLgrU5kpTI0XyGgiG7QVqfq/AVOZUUi1m8mwQ9rQLhjvTYqqzRutq2jR9wi6t3jSm7OKQtwjsnd0c1tL9cru9mjKb2jvjg20/UEhSCh7DDXYHrxucWV1oC5A45DVK7OL3S1qR1/AjKXldjkqXglNIiIZ32w9XUmdTS+Q1UC0K1EB4KFJXyYbBNnvaBcMdxLpLAadP2FXW4DW3kFRsxnK5xeQwmLbtBwNpDMf0rZbKVWqwO1yxOk40SoREPwEML2l57Ue1hQwKCdFI4/7U5DVQGQrUQLgoUlfB9AI1jRLDkdtIsazZMS0Dg1w/xeo4uPs9T5pQb2yh2sVAGrlM3WqpHMXyWlLezC6Xt1gdN36/IBf9BFBMEvLar2Lb7cFMaSxUS+Q1UAlbJwEyTocNkj06DJHps0HYhzocuQNYFSgcFZNX0DawWF1oQGpaoVpiII18Jm+1VI7h8jqbNzlyi9YmzOLg9wty0ZgLhSQlr/1iuz070UhxAHkNFMYkQCB8yRwZRsTU2SAUqMPl/hzLOWvqNj+TBl+f1pYRRjQ/cwu97mA0t/Abd/E8F40Ukcv0lSx+lcrrkfW1eRf3NrmXOPH7BYXQmAu5kpLX5bJ1ph1opCiR14AXNRYgGuZUVi1i8mwQZm5Eo9gMx5I824RE1fysVLHZLVD3dm5VXWacNmzqyTsJY8psavanhpScgkclee39WkU5FDB+v6AQ8hpScvK6HMy0sxuNFMlrwIsCNRAditRlsmGwzcyNaJT7S8m7TYh3+WBY76FCy/hchbbL8BaqTdv2g4F0upm+1VK5qs1rBscwGf0E0i1pee0HhYxkSOP+1OQ1UBiTAIFoJXeUGALTC9TM3DCbd6l+7vYfZTVgLFOxbTK823zk8m794Ra4cwevcfJ+5liamC6mbrVUDvIaaZL7OfUWLJFsSchrvyhQJ4v3dfNu25dU5DUwFJMAgeiYUV21gOmzQRgY28G7r2yhvarDUKxQXYrpg1MG0pDMyWG/yOvk8v7hkvRihh/0E0Au2/LaL2bapUPa9qd2kdeQim95mmRMKjED4+vikpjXyRwphsTU2SAUPOwTx+yMchqjmLzvuouBNGxEXieXt6luWmbd+UFjLqQBM+2QBOQ1CjF9RXkYGLObgfF1cUnNa3MqrQYzuWDHzA275TZlcfe7C5Of/eZsGoSwPzVsQl4nXxr3MfWLvIZNqvnjl0IGbEdeI5ctK8rDQIHaDO742sX4elAS+wmYkSwGs6Fgx8wNO3nPCrqiOCtYbJsMG97vXkk9g4hkIq+TL637mPpBPwHYxN2Sze9FopCB5CCvkcuGFeVhXHKR6/HL/dsp6dsvlaO1ZUSitkE1t/JkANMLduyRZL84lq+U2ibD1LPkw2EgDdOR1+nDQLq4JA2kkTyVjsHIdSQReZ1uJq8od4U9xmJSiRninOBni6Rsg2pOuhjG9IIdeyQlhwmFavd9bupZcr8YSMNE5HX6MJAujn4CMFmxbZn8IteRJOR1utk2YS8MjNnNwv7UxSVpdbkZCWMoUwt2FDySx6RGirnXmTII8YOBNExEXqcXA+nikjSQRnJUU6Bmph2SirxOJ1sK1GHOombMbibG18UlJa/NqbwaxORlLTTeSra4GylKZr3fy0WjF5iEvAaNFIsjr2GSQnldbuGZbEdSkdfpYuuK8jCQ62aikWJxSWikaEbSGMT0s4YSjbeSyoRGiia+38uVlDOISAbyGjRSLI5+AjBJobweWV/r+wIkGXmdLrasKHeVk9XkenLQ/6Uw2xsp2luJCoHpBWoabyWfCftTm/J+rwYDacSNvIYXA+nibB5Iw37kNeAfeZ1sJq8odzEBBBL9X/ywdRtUc9ImZrYua2EAnTxxFqqThoE04kBew4uBdHH0E0CcyGvAP/I62ZiwB9uwP3VxNq8uNyNxDGHLshYCOfniaqRoyiAkCAykEQfyGsUwkC7O5oE07EVeA+Ujr5PJlgI1eQ0vxtfF2ZrXZqROzExe1kLjrXRjeXh1bA1m2Im8RikMpIsjrxEl8hqoHHmdTKwoh63o/1KcjdugmpE8BjA1lCX2XUorlocHo1gwA2Egr1FKsYE0yGtEi88eUDnyGlHghCIqxe/4QbY1UjRnTwsMwb5LGFlfq709fWrpWqOOxjZlRkuduwfeG9v2Nsd9eAD+gbwGAACVcscRjO+BfEwAgWkqmTRoQrY3Zeq0s7M3+++6zDj1dm6N8YgKM2e6MPKwrAUulocDZiOvAQBApXLH9IzvgQFMAIGJcv/u83sxgU3bNDGT2kAUPODlzqh2MaMaMAN5DQAAKuWOI6Y6A+OHdTVtjO+ReoyvYaK8vO7y/32dhuR6a8sIbenoz86onjShXhs29Rg3o5qZ1IZh3yUMh0aKgDnIawAAUK3ccYRbrGZGNdKKAjVM5r4vR9bX+rpIZuW6DY0UKVIbiH2XUAiNFAHzkNcAAKAS7hjeW4RjIgrSigkgMJU3r/0ytVBtciNFtvswCPsuoRQaKQJmIK8BAEClvNt8NG94QZK0d9IstXStMWZ5OBA1JoDANMXy2re2I7W3p8+42o2pjRSZSW0IlrXALxopAvEirwEAQKWGK3i4/2/SrDsgCkwAgYmK5XVtwyhfF0mqX7NKI+tr1dK1xpiVMiY3UqRIbQAKHiiX971BoRqIBnkNAAAq5S14uOOH3IIGhWqkDeNrmGi4ArVfuYVqafC9bUKum1qoZrsPQ7DvEirhbvshKbt8BEA42CcPAABUKzNaUtfA+MEtXHQ9+ztJUuPRx6qve092i7+pzhqtY+sPJBgFapgsN6+lgaKzm9flGDnrCDVveEE7Js0yKtdbW0ZoS0d/9t+TJtRrw6aeWLf+YCZ1zMaO3MG+S6gIjRSB6JHXAACgEt7GW26Beu8Lz2dv4xY/3OXhEo0UkVxMAIGpiuW1m9Ejmlp8X6TBnDdxpYxpjRSZSR0j9l1CtWikCESDvAYAAJUq2ijxH4WL1596WZI08aSZ2vvC8xo56wjVr1lFI0UkHhNAYBq/ee3X5AUnqn9nh2obRuWtlDGtdmNKI0VmUseEZS0ICo0UgXCR1wAAoFKlCh7uTDtpsPhh8qw7IAhMAIGJ/Baoa8cf6OsiSetX/kZS/koZSTRSLCL1RWrvDz13mnvYWNaCoNBIsXxxNwRA+chrIJ3Ia/vEmdeVYPYewuaOI3L3NZXyC9RuQcOG5eHFkNfwgwkgMFmpvHaz2g/3tsVOQJrYSNEV17YfqS5Su79E3R++O4D2vjiALXL/yDLlrJwJTNtnCeUjr5E09BMojry2m+l5zew9mG79yt8MFkP+URxx35+mFarJa5SLAjXSplSh2rRcj5sZo8UYeAfQLlMG0EC5aKRYmncmF7M97EBeI2nYpqk473JDF3ltB1sK1BRHYKrhloeb1kiRvEa5aJSItErCSpmomDFijEluwcP0ZYiAHxQ+ijNpnyWUj7xG0pDXxZHXdjL9hCIFatii2Ky73H1MJTN+X5DXKBeNEpFmw62U4W+BAWaMGiNWbJ88UwbRQDUofBTHQNo+5DWSjLwujry2k6knFJm9B9vYtDycvIYfbLWEtCu1UsakRopxSt1f+aYvQwSCQCPF4hhI24O8RhoUy2sUb+BCXpvHhhOKzN6DbWxaHk5eYzisZAEG2LRSJi7mjBwjQMEDaUMjxcJM6VyL4shrpA39BIqjMZfZTM9rZu/BdjRShM0oUAP5bFopEwczRo8RMH2fPCBoNFIsjUYvZiKvkTZs+1EcjbnMZkuBmuIIbEUjRdiMrZaAwmxaKRM1M0aQETF1nzwgLBQ+imPbD7OR10gb8ro48tpMpp9QpECNpLBpeTh5DS+2WgKKo5HiUGaMIkNmwz55QFgofBTHQNo85DXSjLwujrw2k6knFJm9h6SxaXk4eQ2JrZaAUmikWFji/+o3fRkiEAUaKRbHQNoc5DVAI8Xh0JjLHDacUGT2HpLGpuXh5HW6sZIF8MemlTJRMWckGQIKHkA+GikWRiPF+JHXQD76CRRHY654mZ7XzN5D0tFIESajQA2Ux6aVMlEwYzQZAtP3yQOiRiPF0mj0Eg/yGsjHth/F0ZgrXrYUqCmOIKlopAiTsdUSUBmbVsqEzYwRZUhMPVubhjcWzMQy8uKYTR0v0/c1dbFkHFEhr4sjr+Nl6glFCtRIC5uWh5PX5iu2fVOlGK8A1SnVSDHpzKkEpAz75MFWYQ54t+1tDu2+YRcTih7MBgEAO5DXSJva8Qeq76039PpTL2viSTO194XnNXLWEWre8IJ2TJqlqc4aratp09iROxhfoyjTV8cASB+K1BFjnzzYrNgfgUHo3C0G0jAOJxQBwA7kNdLGLVSPaGpR/84OCtUoCwVqACYKNYF+/etf6+yzz9aBBx6ompoa/fSnPw3z4YzHMkQkQWb0wHs36Eua9lkyEXmdjxOKAExFXucjr5F2NjVSTBtT85p+MABMFWoKdXV16YgjjtBtt90W5sNYgQI1bOe+h3Pfu0FeJJqDxYm8HkReAzAZeT2IvEba2dRIMY1MzmtT+8EASLdQ0+iMM87QGWecEeZDWIF98mA79z3szsYI4707sr524I/LxjZ17g787lECeT2AggcA05HXA8hrYECx/anr16zS3kmz1NK1Rp1s+xELE/O6WKNEZlEDMAGnzCLCPnmwlbdA3bzhhdAei4E04sQJRQCwA3kN5KORIvxgH2oApjOqSN3d3a3u7u7sv3fssH/JP/vkwWZ5fwR2Db5v3f3ugtTXvYeBtEWSmNcSJxQBJA95DaQDjRTtF2ZeU6AGYAOjEmnp0qXKZDLZy6RJk+I+pKqwDBFJ4DZKlAb2twuLW/h2Z2rT6MVsSc1rF3kNICnIayBdaKRor7DymkaJAGxh1Ezqa6+9VldddVX23zt27LB2IE2BGrbzNkp0i8d7X3g+tMdsPPpY9XXv0cj6Wu3t6VNmtNS5W8z4MBB5DQB2IK+B9HBnU69f+RtNPGmmup79XXZ/arUdmTe+hnnCzGsaJQKwgVHp1NDQoIaGhrgPo2rskwfbFduH2i1Qu7MzgtS/s2PIQJpGiuZKal5T8ACQNOQ1kC40UrRXGHlNo0QANgm1SL1r1y69+uqr2X+vXbtWzz33nMaOHavJkyeH+dCxY5882KpYgdpdLjiiqUXrV/4mlMdmIB2fNOY1JxQB2Ii8HkReA4XRSNEMcec1+1ADsE2oReo//vGPOuWUU7L/dpeuLFy4UHfeeWeYDx0b9smDzYZrlNj17O8kKVugrh1/YKCPzUA6XmnMa4kTigDsQ16T14AfNFKMX5x5TYEagI1CLVLPmTNHjuOE+RBGYpYHTJHb6LCn7cjs/7d0rVFHY1v237knVwo1SnQL1K8/9bKk4AvU7n3mDqRrG0YV3J86bE2ZOu3s7M3+uy4zTr2dW8N/4JilNa+9yGuYplheU1Agr9OiWIM38hpJEdYKxdz7n7zgRMbXMYg7r2mUCPhHQ1kzGLUnNYDguAVmdzCaLVj/o2lKdhbSP4of7gC1WKPEMAvUpmhtGaEtHf3ZgfSkCfXasKknNQNpAGZxiwiF8jrugXTcRXLyOl28E0AAW3gbkXsngIS1QtHlTgKJk5vXLvIagKmGm7AX9glFDKBIDSSYu4+0+99ssfofs6q9xY80F6hdDKQBmMSdLVqoWB0Xt0huSqHaRV4DMEmpRuRpGl9L+bOp3bwGABN4TyimPa/jxHoPIIFyt/nI5Rar69esUv2aVRpZX5stgHgDObdRopS+QHb3bZOGLpUDgKgVyuu4uLNa457N7SKvAZiGAnU+d5uJ3LyWBvdNBoC4kNdmYSY1kDC523wUMmRWtZTdAmS4Rolp4l1G7mJ2HoC4DdkCJC6NbZHsY1oKeQ3ANMUKHmmfAMI2TQBMU6pAnda8jhNFaiBBvAVqt9Dsajz62Oz/F9oCJMpGiaZjIA3AVHE3jHOL5J01bUZt+0FeAzBFZrSkLjEBxIO8BmAKt0BdKK+lgQJ1mvM6LhSpgYQoNoPaPfvXv7MjOzj2FqtzZ1WzrGUQA2kAJiq2pVNkjy9px6RZmuqs0ToK1QCQVapRIuNr+gkAMIefRolpzus4UKQGEiS3QO2dRV2oWC0NFKy9M68ZQA9iIA3AFLnF6WJbOkWhr3uPmje8YGyh2kVeA4gS+5qWh0aKAOJCo0Rz0TgRSADvrDq32OwWpnONaGrJXtzbupfc7yGQ89GYC0CcclfLxFmgdo9BGlwW6RZkaKQIIK0oUJeHRooA4kJem42Z1IDliu1DXahA7ZV7m/6dHZLSvU9eMTTmAhAX7+xp7yqZuIycdUS2n8Henj5lRotGigBSiUaJlWGbJgBRo1Gi+ShSAxbzU6D2Fp0nLzix4H3lNgYglIdiIA0gSoW29ijnJGSY+nd2aO8Lz2cL1XsnzaKRIoBUo1FiZchrAFGhUaIdKFIDlirVKFEautl/31tvlAxeCtTFMZAGEIVSJyBNGEBPPGlmtlBt8v7U5DWAMNEosXr0EwAQFRolmo8iNWCx4RolFgpZArd6DKQBhGW4rT28szvizPO+t97QiKaWvBnVJheqXeQ1gCCxr2mwaKQIICw0SrQHRWpUxduwLw49bUfGfQiRK/Zz9y4BT0LImriUXGIgDfuQ13YYbnWMZE6ur1/5G01ecKL6d3aotmGU+rr3aGR9rfb29BlVqJbIayRXJblODgdruGXjkjmZXUrcee09qejipCKSgryOX1LyOukoUqNixbabiFJf9x7Vr1mVygCP8+cepvUrf6OJJ81U17O/U+PRx+YVPtzGXKYOpAFTkdcIUu34A7PbR7l5bXojRSBpKsn1vu49YR0ODFcor91JIGpsMyKvvTipiKQgrwH/RsR9ALCTCQWP3Mc3YYYgqueevXSX27hL3d3Xt6VrzcAZUAC+kdcIgzev3eWSuXktDS6vBBCcanKdDE6fYnntLncnr4HwkNdAeShSo2ymFDxcFD6ShYE0EBzyGmEqldfuPq3kNRC8SnKdDE4v8hqIXjXjcPIaaUWRGmUxreDhMu14UB0G0kD1yGtEwc1rdz8/8hoIV7UFCwof6eXNa/e9QF4D4alm3EteI43Ykxplyw1adzuGODUefWz2/9nvNDncPU9HNLXkNeZq3vCCdkyaZVxjLsBE5DWiYlMjRcBW3pOP5ea6m8HuZ5QcTicb+r8AtvMWlslrwB+K1PCtWNC6Z+Pj0L+zIzvAIsCTiYE0UD7yGlGyqZEiYKtiBWq/uZ6bwe790Jgrfdy8fv2pl61rpAjYgrwGKsd2H/Cl2qANi/v47vGwJCZZaKQIlI+8RhxopAiEp9j2TeXkujeDvfeN9KD/CxCeIMbh5DXSjCI1SjK14OGi8JFsDKQB/2zJaxd5nSz0EwDCE8T2TYyZ4SKvgeAFcULR+z3kNdKGIjWGFWTQhqlY4QPJwEAaKM2WvJbyCyzkdbLQSBEIVtDbN1H4gItGikDwguwHQ14jjdiTGiUNF7TrV/4m6sMZYvKCE7P/n7t3k0RjriShkSJQmg157X6Gyetko5EiUL1Sq2PKzXV3zOzmsIs+AelG/xegeqVOKJLXgD8UqVGU36B1z8LHwW3UVKjwQYAnEwNpYCjyGiahkSJQPb/bN/nN9dwMdtGYCzRSBKrn94QieQ2UxnYfKCjooA2L+/ju8bAkJtlopAgMZVteu8jrZKORIlA5P9s3lTsrr9SY2fvYSA/6vwCVC/qEYu5tyWukEUVqFFVqX9O4Cx4uCh/pUmz/vJH1tXm3YyCNNLElr6X8wgqNFJOtVF5zUhEozs/2TeVmO5M7UAx5DZQvjBOKLvIaaUWRGonhp/CBdGAgDZjJO+B20UgRAAaEvX0TkzsAIDhhnFDM3jd5jRSiSI1E8FP4kAhwAIgbSxgBoLAot29iVQsAVC7KfjDkNdKEIjUSgyUxAGAH8hoA8oWxr2kxrGoBgMpFeUKRvEbaUKRGolD4AAA7sIQRAAaEua9pMaxqAYDyRXlC0Xtf5DXSgCI1EofCBwDYgyWMABDuvqZFH5PJHQDgWxwnFF3kNdKCIjUSi0aKAGA2ljACSLso9zUthMkdAOBfHCcUs49NXiMFKFIjkWikCAB2YAkjgLSKcl/TUljVAgDFxX1CMRd5jSSjSI3EYkkMANiBvAaQNnHsa1oMq1oAoDiTTiiS10g6itRINAofAGAHljACSIs49zUthlUtADCUSScUvY9FXiOJKFIj8Sh8AIA9WMIIIA3i3Ne06DExuQMAskw8oegir5FUFKmRGjRSBACzsYQRQNKZtK9pIUzuAIBBJp5QdJHXSCKK1EgFGikCgB1YwgggqUza17QUVrUASDPTTyjmIq+RJIkuUm/Y1BP3IcAgxc40Zr9OgAOx8eb1lo7+mI7ELsUG0Lbzm9dJktTXEsAAE/c1LYZVLYNautYMuW7syB0aO3JH3tf5+wFIDptOKJLXg8rNa8baZkpskbq3c6skCh8oT1oCHDCJN693dvZKIq9LMXmfPJSH1xJINhs/46xqkUbW10oaKGy4xY3M6MGvu//v3q62YZS6nv2dRjS1GPd6AvDHphOKLvK6dF5Pddbk3c59fclr8yS2SC0NFj5cFD4AwEzkdWVM3icP5eG1BJLNxs84jbkGChre4kdm9EDxo9isPFNfTwDDs/GEoou8Hj6v3a+T1+ZLdJHalTub2i18AADMQ177Y9M+eRgeryWQbLZ/xmnMNaBQ8UOSmje8IEna+8LzkqTXn3pZkrmvJ4Dh2XhC0UVeDyiW1+7zJq/NlvgiNdt+AIAdyGt/bNonD8PjtQSSLUmfcRpzDXALHxIFaiBJbD+hmIu8HkBe2ynxRWqJ/U4BwBbk9fBs3CcPhfFaAsmWpM84jbnyjayvzRY8cvc1lex4PQHkS9IJRfI6X25euwVq8tpsqShSSxQ+AMAW5HVhNu+Th3y8lkCyJfEzTmOuoWiUCNgvSScUXeT1IO/rS16bLzVFaonGXABgC/K6MJv3yUM+Xksg2ZL4Gacx18Bzo/EWkAxJPKHoIq/zX1/y2h6pKlK7aMwFAHYgrwckaZ+8tOO1BJIt6Z/xtDbmyi1O1zaMYl9TICGSeELRRV7nF6jJazukrkhNYy4AsAN5PSBJ++SlHa8lkGxp+oynqTFX7utKwQNIhqSfUMxFXpPXNkldkVpiv1MAsEXa8zqJ++SlFa8lkGxp+oynpTFXodl43tc1Ca8nkDZpOqFIXpPXtkllkVqi8AEAtkhrXid5n7y04bUEki2Nn/GkN+YqNhtvRFMLjbcAi6XphKIryXntLU6T1/ZLbZFaojEXANgirXmd5H3y0obXEki2NH7Gk9iYq9RsvPUrf5PY1xNIujSeUHQlNa+l/OI0eW2/VBepXTTmAgA7pCWvS+2T50r6gGu4pYmSHQPpYseYttcSSKq053WSGnOVmo3nqh1/YGJfT5N4e5IAQUjjCUVXUvNaEnmdIKkvUntn5wEAzJS2vB5ulkcaJGkgnYS9/gAUl/a8lpLTmIvXMh7elXFugTptYz9ELy0nFHOR1zBZ6ovUAADAXEkZSANAUqWlMRfC4RaovSvkKFADwSOvYTqK1AAAwEgMpAHADkluzIXw5Rao2eYDCBd5DZNRpAYAAMZiIA0AdkhiYy6Ei20+gHiQ1zAVRWoAAGA0BtIAYIck9RNAuLzbfFCgBqJFXsNEFKkBAIDxGEgDgD3oJ4DhUKAGzEFewyQUqQEAgDUYSAOA2egngOHQKBEwB3kN01CkBgAAVmAgDQB2oJ8AhkOjRMAc5DVMQpEaAABYg4E0ANiBfgLwolEiYCbyGqagSA0AAKzCQBoA7EA/AbjYhxowG3kNE1CkBgAA1mEgDQD2oJ9AulGgBuxBXiNOFKkBAIC1GEgDgNnoJ5BuNEoE7EFeI24UqVGxvrfeiPsQKjJc4NrK+xy8zzFtOneHe//F9tMDgtTXvSfv3/07O2I6EnPZOJAmr6NFXgfP+zP0/oyBQpLQT4C8rhyNEs1AXsMP8hpxiqRIfdttt2nq1KkaOXKkjjnmGP3hD3+I4mFRpeEKJJMXnBj14QSi1PJwl8mB6z0299iHzCD0PNekcE+OuO9H9326t6dP0mCBetve5lAeP+mzQchrM/S0HSlp4P3d171HjUcfK2ngfZ+bxX1vvWHtCcOgmDyQLpXX7jGnPa/DkuS8jiurvT8792dL4QN+mNxPoFheu8jrYB8vCTnsV5xj69wTAt7fhcBwyGvEJfQi9Y9//GNdddVVWrJkif77v/9bRxxxhObPn68tW7aE/dCoQm6BRFJegSSXrcURW5eHu8fknRmY+xySfNbQfb9NPGmmJGnkrCMkSTsmzZIkdTS2SQqvQO1K6mwQ8tosPW1H5mVx49HH5mXx5AUnZk8Y2prFQTFxIO0nr6XkDqBL5fW6GvK6UiZkNYUPVMrEfgLevE7rBJC48zqJ4sxr90QAq19QKfIacQi9SP2Nb3xDl1xyiS666CLNmDFDt99+u0aPHq3vf//7YT80qlSqUG1rccTG5eG5co8tTWcNvQNo9/3ovk87Gtti2+YjKbNByGszlZpVbevKlqCZOJD2k9dJVKzgkZvXUrgFjyTnddxZTeEDQTBlwggTQOLP6yQzLa9Z/YJKkNeIUqhF6p6eHv3pT3/S3LlzBx9wxAjNnTtXzzzzTJgPjYC4AxRXUgvVJi0PLybty8alwfdb49HHxr7NR5IKHhJ5bTo/s6pty+GwmDCQJq/z81oaeA/Htc1HkvLalKym8IFqmDZhJO0TQIrldRQTQJKMvEYSkNeIWqhF6rffflt9fX3af//9867ff//9tXnz5iG37+7u1o4dO/IuMEPu/tTuAMaV1EK1Sdt+lFrWkvRALrZPXlTLEJNc8HCR12bZ29OXLejlGm5WtWRfDgfNhIE0eT38vqbkdXXKzWopvLym8IFqmDBhhBOKA3/HxdXnJelMzGsXeY1ykNeIUiSNE/1aunSpMplM9jJp0qS4Dwkauu2HKw2NFE0oVKd936W498lLcuOtapDX4cktTrvF6tzrvLOq3c+E+xmhUB3fQJoCNXltojDzmsIHqhHnhBHyOv+EIvtQmyHs8TX9BFAp8hpRCbVIvd9++6m2tlZvvvlm3vVvvvmmDjjggCG3v/baa9XZ2Zm9bNiwIczDQxlopBhv59q07rtEo8TokNdmcIvRHY1teRf3a8WK1RSq88UxkKZRohmNt5Ke1+VmtRRNXlP4QKXimDDCBBAz8jrpTMtr+gmgWuQ1ohBqkbq+vl6zZ8/W448/nr2uv79fjz/+uI477rght29oaFBzc3PeBeagkWI80rrvEo0So0Vem8MtSnuv8xar3YK1+5lwPyO2rmwJWhwDaRol0igxbOVmtRR+XlP4QBCimjDCBJD48zotbMhrVr+gEuQ1whT6dh9XXXWVvvvd7+quu+7SX/7yF1122WXq6urSRRddFPZDIwQ0UoxuNjX7LtEoMWrkdbwK7UHtNdzsavczQiPFfFEMpMlrGiVGycSspvCBakQ9YSTtE0BolBgd8hpJQ14jbKEXqT/60Y/qpptu0vXXX693v/vdeu655/TII48MaSAAu9BIMVxp33eJRonxIK/jk7vNhzRQ1Cv1h2Jusdr9bLgzomikOCCKgTR5TaPEqJma1RQ+UI0oJoxwQpFGiVEzPa9d5DXKQV4jTJE0Trz88sv12muvqbu7W7///e91zDHHRPGwCAmNFKPpXJvWfZfi3icv7Y23yOvoFSpQu9xidbFL7vd5C9XsTz0gzIE0BWryOi6mZjWFD1QjzAkj5DWNEuNial5L9BNA5chrhCWSIjWSh0aK0XSuLXQMSd53iUaJSBtvgdq1bW9zyYs0WKx2v59GioWFMZCmUaIZjbfIazNR+EClwpgwwgQQM/IaZqGfAKpFXiMMdXEfAOzV03ZkXuA0Hn2sup79nfp3dmhEU4smLzhR61f+Rn1vvWFViNSOP1B9b72h9St/kzcjvOvZ32WL8bUNo9TXvSeUQnXa911ylyG6+1D3tB0pRbRPXloab8EsuQXqct7j7h+TY0fuUOduqUX/KHr/I5vdTHazOO3cbHeNaGpR/86ObLZXkus0SizQeOsfea3dNEpMq97OrarLjNOGTT2aNKE+e/2Wjn61tlQ2P6Zzt5QZHdQRRivJWRCm3HG4m9euavPavc/cx0q64cbXYec1zOXN652dvWrK1FWV10gf8hpBInlC4C0y+GmGZTM/+1Pbxs/y8NqGUaFcXCxrKSzKWXkSBY+kizOvvY9V6V6Q7u29s7FRWKmVMuS1P3E2SnSR1+Yqtu1HJXJXjuQyYXxdbM9MVxqyIAx++wlUk9cuXiOkXZB5bTK/eY3ykNcIGkXqgHkH0m7RwISBdBjcpeVJ5Hcf0zCkseABRM1bDI4yr4vtQ81MpnD5GUiXK215HXejRKRTnHldDEuSwxXGODxteQ1gAHkdLvIaQaJIHQITB9Jh8zZRTIpS+yyFgV+aQLRyZ+dFMRuZAnW8ghxIp20Azb6miFvUeV1M2nuIRIW8BlAt8joa5DWCQpE6RKYMpMNWaDa1t4Gi7YZbHh4GfmkC0Yh6GflwjRIRnSAH0mk5oUiBGnEzbdsPliRHI4gJI0wAAdKNvI4GeY0g0DgxJNv2NmebWeU2eknibOqR9bV5/3abdSXFcI0Uw8YvTSB83rzuaGxTS9ea0PK60kaJCNZwjRQrkeQTiiY0SgSk4fPaOx4NS7F9TZnxFa5CjbnKyWsmgADpQ17Hg7xGNShSh6jQQDpp3D8M6jWw5Yd3GU1SeAvVUcym5pcmEJ048pptPszgHUhXeh9SsvN68oIT1b+zQ41HH6u+7j2xNEoEpHgL1aX2NU1DFsSh0IQR8hrAcMjreJDXqBbbfYSs2NLEpHALOUluoOgq1nArDAQyEL0oi8UUqM0QRK4nPa9plAgTxdH/hcZb8SKvAfhFXseLvEY1KFJHIA1/uLl/FCS1gaIrypAkkIF4hH1SkQK1WaoZSCd9AM0+1DBdVP1faLxlBvIaQCnktRnIa1SKInWE0jabOmnNE3OF+YuNX5pAfKJa/UJRzyzVDKSTOoCmQA3TRd1IkcZbZqjmZ8zrA6QDeW0G8hqVoEgdkaRv++HVePSxcR9CaMLc9oNfmkD8wszrtPwOsFG5uZvkE4reArX7O909Ge2enKZAjbh58zqMbT9ovGWmcjI4yXkNYBB5bSbyGuWgcWKEchu9JE2LNGwDxb633kjUL4PchgBh3DeAeIWZ1xT2zFZOric5r2mUCFuE2UiRxltmqmQczmsEJBt5bSbyGuWiSB2xJBYnxo7ckf2DoKftyCFnMCcvODGRZ8QITyDZkpjXGB65TqNE2MktVLuCKFTTeMts/NwBuMhrs/FzRznY7gOBcGdVeRsoJnlfagTLLYwAAOJRah9qtvmA6YJupEjjLdiu2IlHICxxrbYir5EUxSaKpAVFalTN/WPV/WPA/WPW/eM2+yGjCIkS3OXl0tBQDnvAs6WjP+/fGzb1hPuAQMBKnSwkg+HH5AUnSiq+D7UJyGsUEkYjxb7uPXlFvf6dHdlMdT8rZCtM5b43C+U62zchDMVOYkdRZCOvYTPvCcVC4/C05DVFagSmc/fgH7Huh8n9cPGLAcPxhrJ39l7Yy8vdgsfOzl5JgwWP3s6toTweEDT3s+F+VrwnC92ZsWQwbEdeYzhBNlLsaTsyO57t696jkbOOyI5r3eIH41uYbrgJIGzfhLAEvaqlFG9eNx59LHkN6+SeUCw2YS8NeU2RGoHw/lFQaCaf+6EDcpVaXh51gdpFwQO2KbWqhUI1bEdew48gC9VS6eIHhQ+YKO4JIEivMFa1+JWb1eQ1bFFsW6a05jVFagSm1Ew+lpzDq1iB2ru8POxAzi14sGwcthtuVQuFatiOvIYf3nFDtYVqqXDxQxoY35KtMEncE0CAoE8WlsN7YtGb1xSqYRLyeiiK1AgUS87hlwn75BXb15RZebDVcKtavNsvATYhr1GJQkvO9/b0+b54DTermmyFCUyZAALEWaiWCue1xApvmIOG5YVRpEbgWHIOv+LcJ499TZFUxU4W0kgRtiKvUYlCS847Gtt8XyQVLVh7Z+lJZCviZ8IEECBXGKtayuXtLSCR14ift0Cd5kaJXhSpERoaKaKYuPfJo+CBpGNVC5KCvEY1iu2N6kexgrUrd5Ye2QpT0CgRJoq6kaIXeQ0T0SixMIrUCAWNFFFM3Psu0XgLacGqFtiOvEYQqilUu4abXU3hAyaIewIIUEycjRS9yGuYgEaJw6NIjdDQSBFepuyTR+MtpAmNFGEz8hpBCGpcUWx2NdmKOMU9AQQoJe79qV2F8poV3ogSeV0aRWqEiiXncJmwTx6Nt5A2NFKErchrhCHIcYa3WC2RrYieKRNAgFLiLFTnrn5hhTfiQqNEfyhSI3QsOYeLRolA9GikCNuQ1whDboEkiIvLO74lWxEVEyaAAOWIo5Gie9+5JxZZ4Y2o0SjRP4rUiAyNFNMr7n3yKHgg7VjVAluQ1wjTtr3NgVyk/II12Yq40CgRNoqikWLu7Gm3AEheI040SvSHIjUiQSPF9DJl3yUabyHtWNWCakU1w4O8hukKFa3JVkQp7gkgQKWiaKTonT3tLQB6J86R1wgTjRLLQ5H6H7zNeLx7IaJ6xX4puLOpkTzsk4cwkNfVoZEiCik2gPb+0UheoxxpymuyFVExZQKIH8X6C8A8UeZ1mPtT5xaocx8j9/OQO3GOFd4IE3ldPorUGpyh474I7gyeJA+kgbCxTx7CQF5Xh0aKKIR98hAG7wz4JOc12Yqo2DQBhO2b7BFHXodRqPZToPZugccKb4TFpkaJJuU1Rep/SNNAGogK++QhDOR1dWikiELYJw9hyZ2J493KJUnIVoTNhAkgWzr6fV8ktm+yTdR5HWQjRT8Fau/jFtufmrxGtWyaAGJSgVqiSD1EWgbSQJjYJw9RIK8rRyNFuNgnD2Hyrn5xJfWkItmKsMU5ASS3kOH34mKbD/PFmdfVNlL0Fqhdw30WyGuEzYYJICaeUKRInSNtA2kgDDbtuwR7kdfVo9kXyGtEIW3bNJGtCEPcE0CKFTL8iHtWHvyLI6+Ha6To9yLlF6j9zlClkSLCYNsEENNOKFKk9kjbQBoIkk375MF+5HUwaPaVTjbtkwf7pTGvyVYExZQTihSo08GEQnVHY1vZF1clM1RppIigmJLXfhRrlBh3XlOkLiCNA2mgWibsk4f0Ia+rQ7OvdLJpnzwkR5r6CZCtCIoJE0Aq/YyaUvBA+UxopFiJSgrUNFJEUGyaAGLaPtS5KFIXkaaBNBAUGiUiDuR1dWj2lU427JOHZEpLPwGyFdUyYQJIoUKG34tkRsEDlYu7kWI5qhm70EgR1bJpAojJBWqJInVJaRlIA9WIe588QCKvq0HzmPSwbZ88JEva+gmQraiWKY0SpfxCht8L7GVKI8VyVPNZIK9RLRsmgJjYKNGLIvUw0jaQBiph075LSC7yuno0+0o+8homSNs2TWQrKhH3BBDTZ9ohGibsT+1HUDNUaaSIStg2AcS0RoleFKlLSNtAGiiHCfvkAS7yOhg0+0omm/bJQ/KlMa/JVvhlyglFk2faITpxF6r9XHK/Jwg0UoRfpuS1H6Y2SvSiSO1DGgfSQCkm7JMHeJHX1aHZVzLZtE8e0iNN/QTIVvhlwgSQYoUMpFdcjRTLuQT5uBKNFFGaTRNAbFodQ5Hap2LBDKQZjRJhIvK6OjT7Siab9slDuqSlnwDZilJMmABiUyED0Ut7XtNIES6bJoDYlusUqQGULe598srBbBCgfDSPSQ72yYPJTP0DKSxkK0oxYQII23ygkLT1fyGvUYpNE0BsyvW6uA8AgBnK/QVr075Ltpw1BEyybW+zxo7coY7GNrV0rdGOSbPUvOEFjZx1hPa+8LwmnjRTrz/1svreekO14w+M+3BTJcl57SKvkVTlZKtfZLCZKile2TABBOnV27lVdZlx2rCpR5Mm1GtnZ6+aMnXa0tGv1pbkzX/05nVP25GqX7OKsXDKMQEkXBSpAQxZXliKdwDd03ak1NM3sO/SbjMCmQI1EIzO3ZI8g/PGo49V17O/Y3Aeg2rzOm+fPPIaiE2pbB3R1OLrftav/A0ZbLBy9q6lQA0bpK1QLQ3kdYv+MUvWk9eTF5xIDqcIjRLDR5EaSLncoHUHx364y1pMbJRo47IWwETuDJLcwXm9Bpt95Q7OEb4g8to9oWhqXtsygAaq4Sdb/X7GOVloJu9MO79MngACuNxCtSvJhWo3r9fVtGmqsyYvr6XBRoqMhZPPV6NEQ/La5vE1RWogxYpt+O/rew1vlGjbshbAVN7Bubs0vVCzLwok4Qkyr9knD4jfcNlazuebVS3mqTavTZwAAhTizqaWBgvVSVQsr91tPxgLJ1+hXGcCSDiSdZoLgG9BFDxY1gKkA81j4pXUvJY4oYh0K5at7ufWDzcPytlWAuFJ8gQQIBeNFBkLpw2NEqNBkRpIMW/Q+r1IZhY8bD9rCJjM/Yx3NDI4j0NS89pFXiOtimVruZ/z3Jl8iIe3Z0BS8hooxluodv8GS3qh2s3rnrYjJTEWTjoaJUYrmesxAAyrWNC6v2h9MWyfPArUQDRopBitavPaneFBXgNm82arX/VrVmWXnJPB8Zu84MSq89q0ggcwHBop0kgxyWiUGL1kpgaAooYL2r09fb4vkjn75CVhWQtgA3cA5n723SzI3UOVJefBCSKvJbFPHmC4Qtnq98KqFjN4TyhWk9eSGQUPwC/v7/Akz6j2bvuROxaWBhspwn6+GiXKjLxO0viamdRAivgNWj9M2XfJZfuyFsAWNFKMRhLzmhOKQHG52ZoZ7f/7cle1MKM6HmHkNWAjGinSSDEpaJQYH2ZSAylRrJGLuwTRxoKHlJxlLYBNaB4TrmIFD9vzWuKEIjAc74xqv/b29GXzgVUt0UpyXgPloJEiY+GkoVFiPChSAylSKmj9XqT4A1lK3llDwCY0UgxXbl5LAwWPJOS1i7wGCsstVPu5DLfkXCKDw1SoUaJkf14DlaKRIo0Uk4BGifFK5vqLCCW5IQCSw7ag9YMCNWAGGikGq1he29xQi7wGylPO53u4JedkcPgKNUq0Oa+BarmNFF00UqSRok1olBi/ZKZEiHLPTHin1AMmsilo/UrishYELy3LDeNEI8VgpSGvkzKARrDI68qx5DwewzVKlOzOa1cSZuTBDEmum9BIMTlsapToSmI9hCJ1GdK2zxLsZ2PQ+pW0ZS0IVtqWG8apWIGEJeflSUOB2pWEATSCQ15XjyXn0SKvAeQqdbIwdyxczgXVK/fnPVz/LlMaJSYd232UyV2+4nauTcPyFdjJpo605UjqshYEj7yOTqku5yw5H96wjbf+kdfabVfBw8UJRfhBXgfDz5JzVIe8BlCIn7HwiKYW3/dHXlfP2zfAj/6dHUY3SkwDRn0VYMYHbGFDR9pysGwc5fK+N8jr8NBIsTqlGm/ZhhOKKBd5XR0/S84lMrgafhsl2oa8BoJRalVL/84O3xeJvK5G7gnFsn/uCejfZTNmUlcojQ0BYA8aJQL53Nl50mBeIxw0UiwPjRKBfOR15VjVEr6kNUokr4HgFVvV4hdj5mC4eV3Ozz4JdRPbUU2tEo0UYRr2yQPy0U8gOjRSLE8a8pqCB8pBXlePRorhSHKjRPIaCE6pVS1+uGNm8roy3rz2/X2eArXN/btsRpG6CgykYRoaJQKFsU1TdGik6E8aCtQuCh4oB3ldPRopBou8BlCO4cbCfi8UqitTKK/9/swlGiWagCJ1lRhIwxRJ7UjLPnkICnkdHWbyDc9PXkt2FTxcnFBEEMjrYOSuanHzhVUt5Rm2UaLIawCFFRoL97Qd6esisQqxEsPltd+Lzf27koIidQAYSMMUNEoEhkdjrujQSHF43rym8RaQj7yuDo0Uq0ejRADV8I6F/cotVEvktR+lJoD4YXN/gSShSB0QBtKIE40SgfLQTyA6nbuHLjlP8xJGGiUC5SGvK8eqlurRKBFAtXJXtfi9kNflKzZhz+9FsjPXk4YidcAYSCNq7JMHlId+AtGhkWK+NOQ1BQ8EibyuHoXqytAoEUAQcjO4o9H/RSKv/So1Ya/cn7tNuZ5EoRWp//Vf/1XHH3+8Ro8erX333TeshzEKA2lEjUaJCAJ5zeqXMNFIcUAaCtQuCh7hIa/J60rQSLE85DWCkMa8RmG5kzb8XliF6I+fvC7n5474hVak7unp0Uc+8hFddtllYT2EkRhIIyo0SkRQyGvyOmxpn8lHo0QEhbwmr6tBI8XSaJSIoKQ1r128x/Jt29vs+yKxCtGPcibslfvzR3xCK1J/5Stf0Wc/+1kdfvjhYT2EsRhID69Q4ErpmU0XJBolIgjk9SDyOjzFZvKlZcBNo0QEgbweRF6Xh0aKpdEoEUEir4cir/1hFWJpSZ2w51exXE+CurgPIKl6O7eqLjMu+++dnb1qytRpS0e/WlvSuxX4tr3NGjtyhzoa29TStUY7Js1S84YXNHLWEdr7wvOaeNJMvf7Uy+p76w3Vjj8w7sONVCW/ZGiUCARjw6YeTZpQL2kwr4Eg0CgRCBZ5XTl3HL6upk1TneHH4eUwecxe7nOhUSIQHPK6cmHldZK4eZ2UCXt+JX37JqNSoru7W93d3dl/79ixI8ajCQbBXFjnbkn/KFT3tB2p+jWr1Hj0sep69nepLlSXM5MwyY1cXEkJ2iRKUl67JxVz81pS6k8qonpp2NeUgof5yGvk8lP4GNHU4vv+1q/8TYhHWx3vzGg/bBhflzsblby2B3mNXH4m+JWT10mTpAl75Ury9k1lpcM111yjmpqaYS+rV6+u+GCWLl2qTCaTvUyaNKni+zIBjRQLY5+loXJn2vm9SDRKRHHkdXnYpglBS0OB2kXBozrkdXnI6+qVaqRY7njU5Jl87ky7asbXJuV1bg77veQir6tDXpeHvA7GcI0Uy8m3pF0ks/M6DGnYvqmsab2f+9zntGjRomFvc8ghh1R8MNdee62uuuqq7L937NiRiGDOPYPIth8Dis3iKLTPUtJnUxfbT8nX9/5jX1P19Fm771IagjYO5HX5yGsEpVCue/Nau+0cQHNCMXjkdfnI62B07pZa9I8JIzkrG/0yeQWkd6slv8/L/VvExLwudqLQD/I6GOR1+cjr6rh1k9y8rlf+BL+08s6gNimvw5CW1YxlFanHjx+v8ePHh3UsamhoUENDQ2j3HxeCubBy9lkyadAbpGoL1JLd+y6lJWjjQF5Xhn4CCIp3nzwab6EY8roy5HV1vOPw3MJHbcMoX/dh6lZ91YyvJTMbJQZRoCavq0deV4a8rs5wE/z85nVS2T5hz6801U1C2yB5/fr12rZtm9avX6++vj4999xzkqRp06ZpzJgxYT2ssQjmwtLcSLHYTLty2LysJU1Bazryeij6CaBSNEpEmMjrocjrypVa2eiHW6ievOBErV/5m9jH7IW2Wip3fG1qXlOgtgt5PRR5Xbkg8jqJbJ6w51fattsLLRWuv/563XXXXdl/H3nkwN45TzzxhObMmRPWwxqPYC4srY0UC3WkdfeZKsXUAbQfaQta05HX+Wj0gkqlYR9qCh7xIq/zkdfVK1T4GFlf6+t769esytuqzy1Ux2XYrZZ8MnF8XWwli1/kdTzI63zkdfUKTfDzm9dJZGJehyVN2+2FlgZ33nmnHMcZckljILtopFhYGhspFptpV26BmkaJCAJ5PRSNXlCuNBSoXRQ84kNeD0VeV8/bSNGvQg0XpXgbKbp/M1SyQtHEgsdwJwr9XhAP8noo8joYuY0U08rEvA5DGrfbYxpvxNifurA0NVIctpDxj7D1w9Z9l9IYtLATeQ2/aJQIxIu8DkZeI0Wf9hqyVV+xCSCVjK9NyWtWsiCJyOvqFGqkmFYm5XUY0vo7gCJ1DAjmwtLQSLHUTLtyzojauO9SWoMW9qKfAPyiUSIQL/K6Ornj8Mxo/9+Xu1VfXGP2MMbXcWPMjCQjr6tTaV4njSl5HYY0/w6gSB0TgrmwJDdS9DPTrtygpUANRIN+AiiGRomAWcjryuXO0PMrO5PP01MmqkaKfgrUto6v2WoJSUdeV66SvE4iU/I6SGnfbo8UiBnBXFhSGykWapRIR1rAbDR6QTFp2IeaAjVsQl5Xr5y8yl0BubenT/VSpI0Uy5kAYmMOu9hqCUlEXlfPplxDedK83R6f/hjRSLGwJDZSHHafPNlZyChXmoMW9qPRS/Bys10yo+FWOdJQoHZRoIZNyOvouPnm5p2bf1E2UizUKNHmCSCcKESakNdAPrbbYyZ17NifurByGinaIkmFjHIQtEgK8joYw62UyV0ebgMaJQJmIq+jU05PmTAkaQIIBWqkEXkNDOB3wACK1AYgmAvzM+gd0dQS92H64g6gCzZysayQUcmZ7bQHLZKDfgLVKdSRvNDycFuY3iixmplI5DVsR15Hx9tTplAjxTDG7MXG1xSoAbsMl9d+keuISpgz/fkdQJHaGAykCyvVSNEdnNogiEaJpvAuBfcjzUGL5KGfQOVKnYC0Kdcl8xslktdIO/I6OrknIL2NFMPK9iRMAHGx1RLSzpvXflE3QVSKbY0XhrT+DmCUZhgG0oUVWx5ukyTtk1eptAYtkoVGL9UbrlBd2zAq7sPzzeTl5ZXmNQVqJAl5HR1vrueulAlzzJ6ECSA0SgSK57UfTPBDlMIuUKf9dwCfYIPQSLGw4Rop2sLkQoZf1Zw1THvQInlo9FI9N/86GvMbbtmS7SbnerWzPChQI0nI6+gUa6QYVq4naQIIS7yB4vUQP6KY2Yp0i2LcwO8AZlIbh/2pCyvVSNEGJhYy/AqiQJ3moEUykdfBKLRSxpZsN7FRIicUgaHI6+hEPWZP0viaMTNQ3YxqiZUyCEcU23zwO2AARWoDMZAurNCgd2R9bdyH5Ys7w8OkQoZfhQK53EJG2oMWyUU/geoUaqSotiPjPizfTG2USF4DQ5HX0SnUSDEMpvYC8IMCNVBcbj3EL+omCEuxvA4DvwMoUhuLgXRh3kHv3p4+awrVtu6TJxUueBCgwCD6CVSu0D6mNuS6qcUR8hoYHnkdndwTkEHnus0TQFw0SgSKK+fzwAQ/hKXYDGryOjyMygzHQLqw3OXh7iDVdDbvk+ei4AEMRWOu6hUqVNvApAI1eQ2URl5HJ4pct3UCCI0SgWAxwQ9hqmaFIspHxdNgDKQLy10ern803DKdzQVqliECpbFNU/VyV8rYwKRcJ68B/8jr6OQWqjOjg79/k3LYL/IaCA8T/BAkJoDEg0+t4RhIF5ZXqLYEA2gg2cjrYJDr5SGvgfKR19EJe8xuQg77RV4D4WGCH4JEXseHIrUFGEgXZtOg1CbsuwRUjuWG1SHXy0NeA5Ujr6NDtlPwAKJA3QRBIK/jxSfVEt4PhPuB8S5BAILAvktAdXI/N94CIhAk8hqoDnmNqHBCEQif+7lys526CcrBBJD4UaS2DANphIl9l4DqeQfHLgbHCBJ5DVSPvEYUaJQIRIsJfqgGE0DixXYfFhlun6VysNQFhbCsBQjOcMsNy0Fep0u57w/yGqheEHlNVqMYxtdAfGikiHIwAcQMfEotU2ggXQ6CGYUwgAaCR16jHMWWF5ZCXgPVqyav2e8UxTC+BuJDI0WUg7w2B59OCxVbmugXy1yQi32XgPBU+zkir9Oh0gK1i7wGqlfp54hl5CiEggcQP/anhh/ktVkoUluKgTSCxL5LQLgq+VyR1+lQTYGavAaCR14jKEwAAeJHoRrDYcKeeShSW46BNKrBvksIWl3z2LgPwTjVrH4hr5MtiAI1eQ0Eh7xGEGiUCJiFRooYDhP2zMKGlxbL3WfJL2/jAPZkSi+WtSAsdZlxvI88yGsUU83AmM8ZELwg8hrpxfgaMBeNFJGLCXtm4lNpuXI+QN7GAQRzejGARlgOOqBeb3dSqC6EvEYuBsaAuarJa4nGXGnF+BowF40UkYu8NhefxhQptoSRZS7pwr5LCFvuwA+VIa+TjYExkBzsdwqJXAdsQF5DIq9NR5E6ZQhmSOy7hGjUZcbFfQhWI6+TiYExkDzkNSQmgAA2IK/TjQl75qNInUIEc3qxvBxha2oe2JLCnU1Nobo65HWyMDAGkovGXOlFo0TALuR1ujFhz2wUqVOKYE4fZu8hKu7eyRSqg0FeJwsDYyDZcj/X3hNSSB7G14C9yOt0YcKeHShSpxzBnA4MoBGV8fvm/1phf+rgkNd2Y2AMJB/9BNKF8TVgL/I6Xchre1CkTjGCOR1YXg7Yj7y2GwNjID3YpikdyHXAfuR1OpDXdqmL+wAQr97OrarLjNOGTT2aNKFeOzt71ZSp05aOfrW2cA7DVOX+4mR5OWC/4fLaL3I9egyMgfQhr80SVsGJCSCA/chrs5DXoEgNCtWWKTYz2g+KI4DdCuW1X+R69FjJAqSXm9cu8joe1Yyb/WICCGA38toM5DUktvvAP9CYyy4UqIH0qvQzTK7Hg5UsQLpV8rknr4MRZcGD8TVgP/I6PuQ1XBSpkYfGXGar9JcfgQwkDwNps9EoEUCxfgJ+kNfVoeABoBzkdXzIa+SiSI0sGnOZrdrwJpCB5GAgbTb2oQbgIq+jR8EDQCWCyGuUh7yGF3tSIw/7U5upWMEDQHrl5rVfkybUS1I22xE8CtQAvMjr6EWx1RK5DiRPNXktibpJBchr5GLEgyEoVJuFxlsAiiknB3Jz3UWuB4u8BlAMeR0NtloCUK1K85q6SXnIaxTCJwcF0UjRLDTeAlAt7xJGcj0c5DWAapHXlWElC4CokdeVIa9RDEVqDItGivHi7CKAIDGQDg95DSBI5HV5KHgAiAsT/MpDXmM4FKlRFI0U40V4AwgDA+ngkdcAwkBe+8NWSwBMwAS/0hgzoxSK1BgWszjiQXgDCBsD6WCQ1wDCRl6XxlZLAOLEBD//OKGI4VCkRkkUqqPFbBAkUV1mXNyHgBwMpINBXgMIG3k9PLZaAmAK6ibDK5bXQC6K1PCF5YbRYjYIbNeUqcv+/6QJ9TEeCYphIB0M8hpA2MjrwljJAsA05HVh5DX8qit9E2DQhk092YLTzs5eNWXqUh+4YSK8YaPWlhHa0tGvpkxdXgGvLjOO97Jheju3qi4zLpvt5HrlyGsAYSKvC6PgAcA0bl67yOsB5DX8oEgN37yDY4l98cJEeMNm3kL1pAn12rCph0K1gQoNpFEe8hpAFMjr4ZHBAExC3WQoxswohe0+UJZi++IhWIQ3kqC1ZeBXjLv1hztIY39qM5HrlSGvAUSNvM7HzwOAaaibFMeYGcOhSI2yEbjRILyRBG6h2kWh2kzkenXIawBRIa/zcaIQgKnI63z8HOAHRWpUhIFgeAhvJBGNFM3HQLp8/KwAxIG8HkCBGoDpyOsB5DX8okiNqqQ9bINGeCOJvNt+uJhNbR4G0v6R1wDilPa8JoMB2CLtOUVeoxw0TkTFchspIjiEN5KIRor2INv9470LIE5pz2syGIBN0prVEnkN/yhSoyqEDQC/KFTbg9cDAOxAXgOA+chqwB+2+wAARIZGigAAAAAAwIsiNQAgcjRSBAAAAAAALorUAIBI0UgRAAAAAADkokgNAIhcsW0/AAAAAABA+lCkBgAAAAAAAADEhiI1AAAAAAAAACA2FKkBAAAAAAAAALGhSA0AAAAAAAAAiA1FagAAAAAAAABAbChSAwAAAAAAAABiQ5EaAAAAAAAAABAbitQAAAAAAAAAgNiEVqRet26dLr74Yh188MEaNWqU2tratGTJEvX09IT1kACACpDXAGA+shoA7EBeA0Bl6sK649WrV6u/v18rVqzQtGnT9NJLL+mSSy5RV1eXbrrpprAeFgBQJvIaAMxHVgOAHchrAKhMaEXq97///Xr/+9+f/fchhxyiv/71r1q+fDnBDAAGIa8BwHxkNQDYgbwGgMqEVqQupLOzU2PHji369e7ubnV3d+fdXpJ6uneFfmwAEBQ3sxzHiflIKldpXu/u2uH7MfZ09WvP7t7B+9zTo969Oys4WgCojO15XSqrJcbXAJKBvAYAO1SV105EXnnlFae5udn5zne+U/Q2S5YscSRx4cKFSyIua9asiSpiA0Vec+HCJW0XG/PaT1Y7DnnNhQuXZF3Iay5cuHCx41JJXtc4Tnml7WuuuUbLli0b9jZ/+ctfNH369Oy/N27cqJNPPllz5szRHXfcUfT7vGcOt2/frilTpmj9+vXKZDLlHKa1duzYoUmTJmnDhg1qbm6O+3AikbbnnLbnK6XvOXd2dmry5Mnq6OjQvvvuG9txkNfhStv7Om3PV+I5p+E5m5DXYWa1RF5L6Xtfp+35SjznNDxn8pq8TqK0PV+J55yG51xNXpe93cfnPvc5LVq0aNjbHHLIIdn/f+ONN3TKKafo+OOP13e+851hv6+hoUENDQ1Drs9kMql4IXM1NzfznBMubc9XSt9zHjFiRKyPT15HI23v67Q9X4nnnAZx5nWYWS2R17nS9r5O2/OVeM5pQF6nQ9re12l7vhLPOQ0qyeuyi9Tjx4/X+PHjfd1248aNOuWUUzR79my1t7fHXrABgDQhrwHAfGQ1ANiBvAaAcIXWOHHjxo2aM2eOpkyZoptuuklvvfVW9msHHHBAWA8LACgTeQ0A5iOrAcAO5DUAVCa0IvVjjz2mV199Va+++qomTpyY9zW/22A3NDRoyZIlBZe8JBXPOfnS9nyl9D1n254veV2ZtD3ntD1fieecBjY93yCyWrLrOQclbc85bc9X4jmngU3Pl7yuXNqec9qer8RzToNqnm/ZjRMBAAAAAAAAAAgKGyMBAAAAAAAAAGJDkRoAAAAAAAAAEBuK1AAAAAAAAACA2FCkBgAAAAAAAADExpoi9bp163TxxRfr4IMP1qhRo9TW1qYlS5aop6cn7kMLzb/+67/q+OOP1+jRo7XvvvvGfTihuO222zR16lSNHDlSxxxzjP7whz/EfUih+fWvf62zzz5bBx54oGpqavTTn/407kMK1dKlS3X00UerqalJra2tOuecc/TXv/417sMK1fLlyzVr1iw1NzerublZxx13nB5++OG4DytSacxqibxOGvKavE4D8pq8TgLymrxOA/KavE4C8pq89sOaIvXq1avV39+vFStW6OWXX9Y3v/lN3X777frSl74U96GFpqenRx/5yEd02WWXxX0oofjxj3+sq666SkuWLNF///d/64gjjtD8+fO1ZcuWuA8tFF1dXTriiCN02223xX0okXjyySe1ePFi/e53v9Njjz2mv//975o3b566urriPrTQTJw4Uf/2b/+mP/3pT/rjH/+oU089VR/84Af18ssvx31okUljVkvkddKQ1+R1GpDX5HUSkNfkdRqQ1+R1EpDX5LUvjsW+9rWvOQcffHDchxG69vZ2J5PJxH0YgXvve9/rLF68OPvvvr4+58ADD3SWLl0a41FFQ5LzwAMPxH0YkdqyZYsjyXnyySfjPpRItbS0OHfccUfchxGrtGS145DXSURepwd5TV4nAXn9QNyHESnyOr3Ia/uR1w/EfRiRIq/9sWYmdSGdnZ0aO3Zs3IeBCvT09OhPf/qT5s6dm71uxIgRmjt3rp555pkYjwxh6ezslKTUfGb7+vr0ox/9SF1dXTruuOPiPpxYkdV2I6/Th7xOL/LabuR1+pDX6UVe2428Th/y2p+6EI8pVK+++qpuvfVW3XTTTXEfCirw9ttvq6+vT/vvv3/e9fvvv79Wr14d01EhLP39/bryyit1wgkn6F3velfchxOqF198Uccdd5z27t2rMWPG6IEHHtCMGTPiPqzYkNX2I6/Thbwmr8lre5HX6UJek9fktb3I63Qhr/3ndewzqa+55hrV1NQMe/F+SDdu3Kj3v//9+shHPqJLLrkkpiOvTCXPF7Dd4sWL9dJLL+lHP/pR3IcSune+85167rnn9Pvf/16XXXaZFi5cqD//+c9xH1bV0pbVEnmNdCKvyWvyGrADeU1ek9eAHchr/3kd+0zqz33uc1q0aNGwtznkkEOy///GG2/olFNO0fHHH6/vfOc7IR9d8Mp9vkm13377qba2Vm+++Wbe9W+++aYOOOCAmI4KYbj88sv10EMP6de//rUmTpwY9+GErr6+XtOmTZMkzZ49W88++6xuueUWrVixIuYjq07asloir13kdXqQ1+Q1eW038jo9yGvymry2G3mdHuR1eXkde5F6/PjxGj9+vK/bbty4Uaeccopmz56t9vZ2jRgR+0TwspXzfJOsvr5es2fP1uOPP65zzjlH0sASiMcff1yXX355vAeHQDiOoyuuuEIPPPCAfvWrX+nggw+O+5Bi0d/fr+7u7rgPo2ppy2qJvHaR18lHXg8gr8lr25HXyUdeDyCvyWvbkdfJR14PKDevYy9S+7Vx40bNmTNHU6ZM0U033aS33nor+7Wknmlav369tm3bpvXr16uvr0/PPfecJGnatGkaM2ZMvAcXgKuuukoLFy7UUUcdpfe+9726+eab1dXVpYsuuijuQwvFrl279Oqrr2b/vXbtWj333HMaO3asJk+eHOORhWPx4sW655579P/+3/9TU1OTNm/eLEnKZDIaNWpUzEcXjmuvvVZnnHGGJk+erJ07d+qee+7Rr371Kz366KNxH1pk0pjVEnmdNOQ1eZ0G5DV5nQTkNXmdBuQ1eZ0E5DV57Ytjifb2dkdSwUtSLVy4sODzfeKJJ+I+tMDceuutzuTJk536+nrnve99r/O73/0u7kMKzRNPPFHw9Vy4cGHchxaKYp/X9vb2uA8tNB//+MedKVOmOPX19c748eOd0047zfmv//qvuA8rUmnMaschr5OGvCav04C8Jq+TgLwmr9OAvCavk4C8Jq/9qHEcx/Ff0gYAAAAAAAAAIDh2bmQEAAAAAAAAAEgEitQAAAAAAAAAgNhQpAYAAAAAAAAAxIYiNQAAAAAAAAAgNhSpAQAAAAAAAACxoUgNAAAAAAAAAIgNRWoAAAAAAAAAQGwoUgMAAAAAAAAAYkORGgAAAAAAAAAQG4rUAAAAAAAAAIDYUKQGAAAAAAAAAMSGIjUAAAAAAAAAIDYUqQEAAAAAAAAAsaFIDQAAAAAAAACIDUVqAAAAAAAAAEBsKFIDAAAAAAAAAGJDkRoAAAAAAAAAEBuK1AAAAAAAAACA2FCkBgAAAAAAAADEhiI1AAAAAAAAACA2FKkBAAAAAAAAALGhSA0AAAAAAAAAiA1FagAAAAAAAABAbChSAwAAAAAAAABiQ5EaAAAAAAAAABAbitQAAAAAAAAAgNhQpAYAAAAAAAAAxIYiNQAAAAAAAAAgNhSpAQAAAAAAAACxoUgNAAAAAAAAAIgNRWoAAAAAAAAAQGwoUgMAAAAAAAAAYkORGqGbOnWqFi1aVPJ2u3bt0ic+8QkdcMABqqmp0ZVXXhn6sSXFunXrVFNTozvvvDPuQwEAAAAAAADKQpF6GGvXrtXll1+ud7zjHRo9erRGjx6tGTNmaPHixXrhhRfiPrxArVy5Ul/+8pdjPYYbb7xRd955py677DLdfffduuCCC0J5nG9/+9sUcxNm0aJFqqmpGXKZPn163IcGAAAAAACAEuriPgBTPfTQQ/roRz+quro6fexjH9MRRxyhESNGaPXq1frJT36i5cuXa+3atZoyZUrchxqIlStX6rbbbou1UP3LX/5Sxx57rJYsWRLq43z729/Wfvvt52t2N+zR0NCgO+64I++6TCYT09EAAAAAAADAL4rUBaxZs0bnnXeepkyZoscff1wTJkzI+/qyZcv07W9/WyNGmDsRvaurS42NjXEfRlm2bNmiGTNmxH0YFXEcR3v37tWoUaPiPpRImfS86+rq9E//9E9xHwYAAAAAAADKZG6VNUZf+9rX1NXVpfb29iEFammgGPbpT39akyZNyrt+9erV+vCHP6yxY8dq5MiROuqoo/Tggw/m3ebOO+9UTU2Nnn76aV111VUaP368Ghsb9aEPfUhvvfXWkMd6+OGHddJJJ6mxsVFNTU0688wz9fLLL+fdZtGiRRozZozWrFmjBQsWqKmpSR/72MckSU899ZQ+8pGPaPLkyWpoaNCkSZP02c9+Vnv27Mn7/ttuu02S8rZKcPX39+vmm2/WzJkzNXLkSO2///669NJL1dHRkXccjuPohhtu0MSJEzV69GidcsopQ461kF/96leqqanR2rVr9fOf/zz7+OvWrZMkdXd3a8mSJZo2bVr2OVx99dXq7u7Ou5/29nadeuqpam1tVUNDg2bMmKHly5fn3Wbq1Kl6+eWX9eSTT2YfZ86cOZKkL3/5y3nP2+W+Zu7xuPdz1lln6dFHH9VRRx2lUaNGacWKFZKk7du368orr9SkSZPU0NCgadOmadmyZerv78+73x/96EeaPXu2mpqa1NzcrMMPP1y33HJLyZ/X9u3btWjRImUyGe27775auHChtm/fXvC2ft6TkvTCCy/o5JNP1qhRozRx4kTdcMMNam9vD+V5+30/dXZ2avXq1ers7Cz5M3H19fVpx44dvm8PAAAAAACA+DGTuoCHHnpI06ZN0zHHHOP7e15++WWdcMIJOuigg3TNNdeosbFR9957r8455xz953/+pz70oQ/l3f6KK65QS0uLlixZonXr1unmm2/W5Zdfrh//+MfZ29x9991auHCh5s+fr2XLlmn37t1avny5TjzxRK1atUpTp07N3ra3t1fz58/XiSeeqJtuukmjR4+WJN13333avXu3LrvsMo0bN05/+MMfdOutt+r111/XfffdJ0m69NJL9cYbb+ixxx7T3XffPeS5XXrppbrzzjt10UUX6dOf/rTWrl2rb33rW1q1apWefvpp7bPPPpKk66+/XjfccIMWLFigBQsW6L//+781b9489fT0DPuzO+yww3T33Xfrs5/9rCZOnKjPfe5zkqTx48erv79fH/jAB/Sb3/xG//zP/6zDDjtML774or75zW/qb3/7m376059m72f58uWaOXOmPvCBD6iurk4/+9nP9KlPfUr9/f1avHixJOnmm2/WFVdcoTFjxuh//a//JUnaf//9/bzEQ/z1r3/V+eefr0svvVSXXHKJ3vnOd2r37t06+eSTtXHjRl166aWaPHmyfvvb3+raa6/Vpk2bdPPNN0uSHnvsMZ1//vk67bTTtGzZMknSX/7yFz399NP6zGc+U/QxHcfRBz/4Qf3mN7/RJz/5SR122GF64IEHtHDhwiG39fue3Lhxo0455RTV1NTo2muvVWNjo+644w41NDQE/rwl/++nBx54QBdddJHa29t9bc2ye/duNTc3a/fu3WppadH555+vZcuWacyYMSW/FwAAAAAAADFykKezs9OR5JxzzjlDvtbR0eG89dZb2cvu3buzXzvttNOcww8/3Nm7d2/2uv7+fuf44493Dj300Ox17e3tjiRn7ty5Tn9/f/b6z372s05tba2zfft2x3EcZ+fOnc6+++7rXHLJJXnHsHnzZieTyeRdv3DhQkeSc8011ww55txjdC1dutSpqalxXnvttex1ixcvdgq9HZ566ilHkvPDH/4w7/pHHnkk7/otW7Y49fX1zplnnpn3vL70pS85kpyFCxcOuW+vKVOmOGeeeWbedXfffbczYsQI56mnnsq7/vbbb3ckOU8//fSwz3X+/PnOIYccknfdzJkznZNPPnnIbZcsWVLwZ+C+ZmvXrs07VknOI488knfbr371q05jY6Pzt7/9Le/6a665xqmtrXXWr1/vOI7jfOYzn3Gam5ud3t7eIY83nJ/+9KeOJOdrX/ta9rre3l7npJNOciQ57e3t2ev9vievuOIKp6amxlm1alX2uq1btzpjx44N/Hn7fT85zuDPPfc5FXPNNdc4X/ziF50f//jHzv/9v/83+5k44YQTnL///e8lvx8AAAAAAADxYbsPD3ergEKzL+fMmaPx48dnL+4WGdu2bdMvf/lLnXvuudq5c6fefvttvf3229q6davmz5+vV155RRs3bsy7r3/+53/O21ripJNOUl9fn1577TVJAzNtt2/frvPPPz97f2+//bZqa2t1zDHH6IknnhhyfJdddtmQ63L3Cu7q6tLbb7+t448/Xo7jaNWqVSV/Hvfdd58ymYxOP/30vOOYPXu2xowZkz2OX/ziF+rp6dEVV1yR97yuvPLKko9R6vEPO+wwTZ8+Pe/xTz31VEnK+znkPtfOzk69/fbbOvnkk/U///M/ZW0Z4dfBBx+s+fPnDznek046SS0tLXnHO3fuXPX19enXv/61JGnfffdVV1eXHnvssbIec+XKlaqrq8t7rWtra3XFFVfk3a6c9+Qjjzyi4447Tu9+97uz3z927NjsljFBPm+/7ydpYBsax3F8zaJeunSp/u3f/k3nnnuuzjvvPN15553613/9Vz399NO6//77S34/AAAAAAAA4sN2Hx5NTU2SpF27dg352ooVK7Rz5069+eabeQ3aXn31VTmOo+uuu07XXXddwfvdsmWLDjrooOy/J0+enPf1lpYWScruy/vKK69IUrYY69Xc3Jz377q6Ok2cOHHI7davX6/rr79eDz74YME9f0t55ZVX1NnZqdbW1oJf37JliyRli+uHHnpo3tfHjx+ffW6VeOWVV/SXv/xF48ePH/bxJenpp5/WkiVL9Mwzz2j37t15t+vs7FQmk6n4OAo5+OCDCx7vCy+8UPJ4P/WpT+nee+/VGWecoYMOOkjz5s3Tueeeq/e///3DPuZrr72mCRMmDDmJ8s53vjPv3+W8J1977TUdd9xxQ74+bdq0gt9XzfP2+34Kwmc/+1ldd911+sUvfqHzzjsvsPsFAAAAAABAsChSe2QyGU2YMEEvvfTSkK+5e1TnNpKTlG0M9/nPf37IDFOXt+BXW1tb8HaO4+Td5913360DDjhgyO3q6vJfuoaGBo0YkT8xvq+vT6effrq2bdumL37xi5o+fboaGxu1ceNGLVq0aEhDu0L6+/vV2tqqH/7whwW/XqwoGZT+/n4dfvjh+sY3vlHw627zyjVr1ui0007T9OnT9Y1vfEOTJk1SfX29Vq5cqW9+85u+nmuhponSwM+xkNyZ27nHe/rpp+vqq68u+D3veMc7JEmtra167rnn9Oijj+rhhx/Www8/rPb2dl144YW66667Sh5rKZW8J/2q5nlH+X4aNWqUxo0bp23btgV2nwAAAAAAAAgeReoCzjzzTN1xxx36wx/+oPe+970lb3/IIYdIkvbZZx/NnTs3kGNoa2uTNFDMrPQ+X3zxRf3tb3/TXXfdpQsvvDB7faEtJooVaNva2vSLX/xCJ5xwQsHipGvKlCmSBmbKuj8PSXrrrbeGzOAuR1tbm55//nmddtppRY9Rkn72s5+pu7tbDz74YN4s9ULbohS7H3fG9/bt27Xvvvtmr3dnifs93l27dvl6zerr63X22Wfr7LPPVn9/vz71qU9pxYoVuu6664oWkKdMmaLHH39cu3btyptN/de//jXvduW8J6dMmaJXX311yPWFrivG7/P2+34KgrvNSdgnUgAAAAAAAFAd9qQu4Oqrr9bo0aP18Y9/XG+++eaQr7uznV2tra2aM2eOVqxYoU2bNg25/VtvvVX2McyfP1/Nzc268cYb9fe//72i+3Rna+cer+M4uuWWW4bctrGxUdJAgTbXueeeq76+Pn31q18d8j29vb3Z28+dO1f77LOPbr311rzHu/nmm0se53DOPfdcbdy4Ud/97neHfG3Pnj3q6uqSVPi5dnZ2qr29fcj3NTY2Dnme0uCJAXf/ZGlgH+9yZjafe+65euaZZ/Too48O+dr27dvV29srSdq6dWve10aMGKFZs2ZJkrq7u4ve/4IFC9Tb26vly5dnr+vr69Ott96ad7ty3pPz58/XM888o+eeey573bZt24rOdi7E7/P2+36SBl6/1atXl9yWZu/evdq5c+eQ67/61a/KcZySW6gAAAAAAAAgXsykLuDQQw/VPffco/PPP1/vfOc79bGPfUxHHHGEHMfR2rVrdc8992jEiBF5e0DfdtttOvHEE3X44Yfrkksu0SGHHKI333xTzzzzjF5//XU9//zzZR1Dc3Ozli9frgsuuEDvec97dN5552n8+PFav369fv7zn+uEE07Qt771rWHvY/r06Wpra9PnP/95bdy4Uc3NzfrP//zPgjObZ8+eLUn69Kc/rfnz56u2tlbnnXeeTj75ZF166aVaunSpnnvuOc2bN0/77LOPXnnlFd1333265ZZb9OEPf1jjx4/X5z//eS1dulRnnXWWFixYoFWrVunhhx/WfvvtV9Zzz3XBBRfo3nvv1Sc/+Uk98cQTOuGEE9TX16fVq1fr3nvv1aOPPqqjjjpK8+bNy85MvvTSS7Vr1y5997vfVWtr65Ai7ezZs7V8+XLdcMMNmjZtmlpbW3Xqqadq3rx5mjx5si6++GJ94QtfUG1trb7//e9nf+5+fOELX9CDDz6os846S4sWLdLs2bPV1dWlF198Uffff7/WrVun/fbbT5/4xCe0bds2nXrqqZo4caJee+013XrrrXr3u9+tww47rOj9n3322TrhhBN0zTXXaN26dZoxY4Z+8pOfFCzk+n1PXn311frBD36g008/XVdccYUaGxt1xx13aPLkydq2bduwM9jLfd5+30+S9MADD+iiiy5Se3v7sM0TN2/erCOPPFLnn3++pk+fLkl69NFHtXLlSr3//e/XBz/4wZLHDwAAAAAAgBg5KOrVV191LrvsMmfatGnOyJEjnVGjRjnTp093PvnJTzrPPffckNuvWbPGufDCC50DDjjA2WeffZyDDjrIOeuss5z7778/e5v29nZHkvPss8/mfe8TTzzhSHKeeOKJIdfPnz/fyWQyzsiRI522tjZn0aJFzh//+MfsbRYuXOg0NjYWfA5//vOfnblz5zpjxoxx9ttvP+eSSy5xnn/+eUeS097enr1db2+vc8UVVzjjx493ampqHO9b4zvf+Y4ze/ZsZ9SoUU5TU5Nz+OGHO1dffbXzxhtvZG/T19fnfOUrX3EmTJjgjBo1ypkzZ47z0ksvOVOmTHEWLlxY6sftTJkyxTnzzDOHXN/T0+MsW7bMmTlzptPQ0OC0tLQ4s2fPdr7yla84nZ2d2ds9+OCDzqxZs5yRI0c6U6dOdZYtW+Z8//vfdyQ5a9euzd5u8+bNzplnnuk0NTU5kpyTTz45+7U//elPzjHHHOPU19c7kydPdr7xjW9kX7Pc+yh2rI7jODt37nSuvfZaZ9q0aU59fb2z3377Occff7xz0003OT09PY7jOM7999/vzJs3z2ltbc0+1qWXXups2rSp5M9p69atzgUXXOA0Nzc7mUzGueCCC5xVq1YNeU0dx9970nEcZ9WqVc5JJ53kNDQ0OBMnTnSWLl3q/Pu//7sjydm8eXNgz9vl5/3k/ty9z8mro6PD+ad/+idn2rRpzujRo52GhgZn5syZzo033jjkcQEAAAAAAGCeGsfx7F0BAJKuvPJKrVixQrt27Sra6BMAAAAAAACoFntSA9CePXvy/r1161bdfffdOvHEEylQAwAAAAAAIFTsSQ1Axx13nObMmaPDDjtMb775pr73ve9px44duu666+I+NAAAAAAAACQcRWoAWrBgge6//3595zvfUU1Njd7znvfoe9/7nt73vvfFfWgAAAAAAABIuFD3pF6+fLmWL1+udevWSZJmzpyp66+/XmeccUZYDwkAAAAAAAAAsEioReqf/exnqq2t1aGHHirHcXTXXXfp61//ulatWqWZM2eG9bAAAAAAAAAAAEuEWqQuZOzYsfr617+uiy++OMqHBQAAAAAAAAAYKLI9qfv6+nTfffepq6tLxx13XMHbdHd3q7u7O/vv/v5+bdu2TePGjVNNTU1UhwoAVXEcRzt37tSBBx6oESNGxH04AAAAAAAARgu9SP3iiy/quOOO0969ezVmzBg98MADmjFjRsHbLl26VF/5ylfCPiQAiMSGDRs0ceLEuA8DAAAAAADAaKFv99HT06P169ers7NT999/v+644w49+eSTBQvV3pnUnZ2dmjx5sj7xxd+qvmFMmIcJAIHp6d6lO5Ydr+3btyuTycR9OAAAAAAAAEYLfSZ1fX29pk2bJkmaPXu2nn32Wd1yyy1asWLFkNs2NDSooaFh6H00jFHDyKawDxUAAsU2RQAAAAAAAKVFvllqf39/3mxpAAAAAAAAAEB6hTqT+tprr9UZZ5yhyZMna+fOnbrnnnv0q1/9So8++miYDwsAAAAAAAAAsESoReotW7bowgsv1KZNm5TJZDRr1iw9+uijOv3008N8WBioLjMu7kMoS2/n1rgPAQAAAAAAAEiFUIvU3/ve98K8e1jCLVBPmlAf85H4s2FTj+oy4yhUAwAAAAAAABGIfE9qpJMtBWpp8Fhtm/0NAAAAAAAA2IgiNUJla6HXpqI6AAAAAAAAYDOK1AiNbdt8FGJrkR0AAAAAAACwRah7UiO9vAXqpoxdb7Wdnb2aNKGe/akBAAAAAACAkNlVOYQVis2gbm2xY+L+lo5+NWXqKFQDAAAAAAAAEbCjagjr5BaobZtF7S2m00gRAAAAAAAACA9FagTKW8h1C9S2zKLOlVtct3lfbQAAAAAAAMBk9lUOYaxi+1DbWKB2j9k7C5zZ1AAAAAAAAECw7KsewkhJKlC7vIVqtv0AAAAAAAAAgmdvBRHGsL1R4nAoVAMAAAAAAADhsr+KCCPY3CixFBopAgAAAAAAAOFJVjURkUtSo8RSmjJ12tnZK2mgUL1hU08iC9W9nVvjPgQAAAAAAACkCEVqVCyJ+1AX09oyQls6+ocUqpPGLbxTqAYAAAAAAEBUkldNRCTSVKB2efenTqIkFt4BAAAAAABgtuRWFBGaJDdKLCUNhWqJ/bYBAAAAAAAQneRXFRGKJDdKLCXpxXgaQwIAAAAAACBK6aouomppapRYSlKL8zs7e/MaQ7I/NQAAAAAAAMKUzCobQpHGfaiLSepz3tLRn/1/CtUAAAAAAACIQjIrbQgcBer0yJ0hTiNFAAAAAAAAhI0KI0pKc6PEtCnWGJL9qQEAAAAAABAWqozwJc2NEtPGW6imkSIAAAAAAADCRJEaw6JRYjpRqAYAAAAAAEBUqDSiKPahTjfv60yhGgAAAAAAAGGg2oiCKFDDRSNFAAAAAAAAhInNhVOk3BmwNEpEa8sIbenoV1OmTjs7e7PXhzWburdzayj3CwAAAAAAAHNRpE4J78zoctAoMd28heqwZlNv2NSjusw4CtUAAAAAAAApw9TYFAiiQM0s6nTzNlIMA3teAwAAAAAApBOVx5SgQI1qRfE+YM9rAAAAAACA9KH6mHCVzkqlQI1iotj+hdnUAAAAAAAA6cFmwwnm3eaj3OIiBWp45e5PHQZ3z2v2pwYAAAAAAEgPitQJVaxATeEZ1QrrPeRtzkihGgAAAAAAIB2oWCZQsUaJFKhhMu/7k0aKAAAAAAAA6UDVMqFyC9RR7CEMBCX3/UojRQAAAAAAgOSjSJ0w3lmnbPMBm/A+BQAAAAAASB8qQgnCPtQAAAAAAAAAbEP1MiEoUAMAAAAAAACwERXMBKBRIgAAAAAAAABb0VEvYt49o4NCo0QAAAAAAAAANqKaGaFiM56DxDYfAAAAAAAAAGxCJTMiFKgBAAAAAAAAYCiqmRGgQA0AAAAAAAAAhVHRjEiYBWoXBWoAAAAAAAAAtmFP6pB5GyXS1BAAAAAAAAAABlExDZF3mw+25AAAAAAAAACAfFRLQ0KBGgAAAAAAAABKo2IaAgrUAAAAAAAAAOAPVdOQeBslUqAGAAAAAAAAgKGonAaMRokAAAAAAAAA4B9F6gCxzQcAAAAAAAAAlIfqaUAoUAMAAAAAAABA+aigBoACNQAAAAAAAABUhipqQGiUCAAAAAAAAADlo5JaJRolAgAAAAAAAEDlKFJXgW0+AAAAAAAAAKA6VFMrRIEaAAAAAAAAAKpHRbUCFKgBAAAAAAAAIBhUVStEo0QAAAAAAAAAqB6V1TLRKBEAAAAAAAAAgkORugxs8wEAAAAAAAAAwaK66hMFagAAAAAAAAAIHhVWHyhQAwAAAAAAAEA42FDZJxolFjZ25I64DyEU2/Y2x30IAAAAAAAAQCpQpC6BRonFuQXqzOiYDyRgnbsHnhuFagAAAAAAACB8TAceBtt8FJfUArU0+JySOkscAAAAAAAAMAnV1iIoUBeX5AK1i0I1AAAAAAAAEI1QK65Lly7V0UcfraamJrW2tuqcc87RX//61zAfMhAUqItLQ4HalYbnCAAAAAAAAMQt1A2Wn3zySS1evFhHH320ent79aUvfUnz5s3Tn//8ZzU2Nob50FWjUWJxucXblq418R1IiDoa27L/z/7UAAAAAAAAQHhCLVI/8sgjef++88471draqj/96U963/veF+ZDV4xGicV5t75wC9Qj62vjOJzQ7O3pU0vXGnU0tikzmkaKAAAAAAAAQJginR7c2dkpSRo7dmzBr3d3d2vHjh15lyixzUdx3m0+klqglgafk/sc2Z8aAAAAAAAACE9k1df+/n5deeWVOuGEE/Sud72r4G2WLl2qTCaTvUyaNCmqw6NAPYw0Fahd3udGoRoAAAAAAAAIR2QV2MWLF+ull17Sj370o6K3ufbaa9XZ2Zm9bNiwIZJjo0BdXLFGiUkuUOfK3XObRooAAAAAAABA8CLZcPnyyy/XQw89pF//+teaOHFi0ds1NDSooaEhikMagkaJxaWhUWIhI+tr8/andrE/NQAAAAAAABCcUCuxjuPo8ssv1wMPPKBf/vKXOvjgg8N8OAQsLY0Sh8P+1AAAAAAAAEC4Qi1SL168WD/4wQ90zz33qKmpSZs3b9bmzZu1Z8+eMB8WAUjjPtTFUKgGAAAAAAAAwhPqdh/Lly+XJM2ZMyfv+vb2di1atCjMh7aeCQVQCtSD3K0/XJnRUufu8F4nthMBAAAAAABAWoRapHYcJ8y7T6xizQrjlOYCda7c/anDen06d4dzvwAAAAAAAICJ6A5oGNMK1GlqlFiKd9uPMJkwkx4AAAAAAACIAkVqg5haoGYW9aAoCtXseQ0AAAAAAIA0oUhtGArU5qNQDQAAAAAAAAQn1D2p4Z+3GGnCNhsUqItzGymG8Trl7nntNmekkSIAAAAAAACSiiK1AbzbfDCL2Q5hvD5u4dtbqAYAAAAAAACSiu0+YkaBGrmKbSXCth8AAAAAAABIKorUMSrWKJECdbp5C9XsTw0AAAAAAIAko0gds9wCtQn7UMMMFKoBAAAAAACQFhSpY1KsUSKzqOHyvhe8M+4BAAAAAACAJKBIHSO2+QAKa8rk93Sty4yL6UgAAAAAAAAQNorUAEIxduSO7KUcrS0DseQWqidNqJdEoRoAAAAAACCpKFIDCE2le2m7hWoXhWoAAAAAAIDkokgNIHBuUbqla42mOmvyritH7rYfbqEaAAAAAAAAyUKRGkCg3GK0W5yWKmv66N32w8VsagAAAAAAgGShSA0gMN4CtdsMtKWrstnU7E8NAAAAAACQfBSpAQTCLUC7s6ZH1teqfs0qNW94QZIq3vaDQjUAAAAAAECyUaQGEJjM6MFZ0/VrVmWvD6pQ7aJQDQAAAAAAkBwUqQFULbdRojRYlN77wvOqbRglaXDrDxopAgAAAAAAIBdFagBV8e5DnVuglqSuZ38naWBmtVuoppEiAAAAAAAAXBSpAVSsWIHanT09oqlF0mDB2t0ChEaKAAAAAAAAcFGkBlCRQo0SpYECtTt7ev3K3+j1p16WNFioppEiAAAAAAAAclGkBixTyV7OYSnUKNEtULvFaWlwRnVQ+1PTSBEAAAAAACA5KFIDhnOLwFJlezmHYbhGidJggbp2/IFF76Oa/aldNFIEAAAAAACwH0VqwGBuITe3UC3FO5u6VKNEPwXqINBIEQAAAAAAIBkoUgOG8xaq3ZnHcRSq/TZKDLtA7WJ/agAAAAAAAPtRpAYsYEKh2m+jxKhRqAYAAAAAALAbRWrAEm5R2BVHodpPo8SoZlHnopEiAAAAAACAvShSA5aJo5FiEI0So0AjRQAAAAAAAPtQpAYsEkcjRVMaJZZCI0UAAAAAAAA7UaQGLBPl/tSmNUoshf2pAQAAAAAA7EORGrBQFIVqUxsllkKhGgAAAAAAwC4UqQFLRdFI0dRGiaXQSBEAAAAAAMAeFKkBy4XRSNGWRoml0EgRAAAAAADAfBSpAYuF0UjRlkaJpdBIEQAAAAAAwA4UqQHLBbk/tW2NEkthf2oAAAAAAADzUaSOgbd46J0FC5Sr2P7U5bC1UWIpxfanBgAAAAAAgBkoUkfMWwh0eYuMQBxsbZQIAAAAAAAAe1GkjkFugZpZ1DBBUholAgAAAAAAwD4UqSNUbJsPZlEjTklplAgAAAAAAAA7UaSOiHebDwrUMEHSGiUCAAAAAADAPhSpI0CBGiZKaqNEAAAAAAAA2IUidcholAiT0SgRAAAAAAAAcaNIHQEaJcI0NEoEAAAAAACAKShSh4hGiTARjRIBAAAAAABgEorUIWEfapiIRokAAAAAAAAwDUXqEFCghololAgAAAAAAAATUaQOGI0SYTIaJQIAAAAAAMA0FKlDQKNEmIZGiQAAAAAAADAVReoIMIsaJii0zYfEPtQAAAAAAACIF0VqAAAAAAAAAEBsKFIDAAAAAAAAAGJDkRoAAAAAAAAAEBuK1AAAAAAAAPj/7d1dbNX1/cDxTyn/lgehwkSUUFQw2aILSBhDmG6wuPmQmHljdrMEjOGCqInBi8GWyMxi2CLZo8SHLRNvjF7pkmUPMWzqlvjsmNOJCUxGh4Ko2EKx7Wj7v4BfOT19PKW/8/ud83u9kmZtaXu+pz3//8Xbbz4fgMyI1AAAAAAAZEakBgAAAAAgMyI1AAAAAACZEakBAAAAAMiMSA0AAAAAQGZEagAAAAAAMiNSAwAAAACQGZEaAAAAAIDMiNQAAAAAAGRGpAYAAAAAIDMiNQAAAAAAmUk1Ur/wwgtx8803x4IFC6KhoSGeeeaZNB8OAAAAAIAak2qk7uzsjGXLlsXOnTvTfBgAAAAAAGrU1DR/+I033hg33nhjmg8BAAAAAEANM5MaAAAAAIDMpHqTulLd3d3R3d098HFHR0eGpwEAAAAAIG25ukm9ffv2aGlpGXhrbW3N+kgAAAAAAKQoV5F669at0d7ePvDW1taW9ZEAAAAAAEhRrsZ9NDc3R3Nzc9bHAAAAAACgSlKN1CdOnIh9+/YNfPzee+/Fnj17Yu7cubFo0aI0HxoAAAAAgBqQaqR+7bXXYt26dQMfb968OSIi1q9fH7t27UrzoQEAAAAAqAGpRuq1a9dGf39/mg8BAAAAAEANy9XiRAAAAAAAikWkBgAAAAAgMyI1AAAAAACZEakBAAAAAMiMSA0AAAAAQGZEagAAAAAAMiNSAwAAAACQGZEaAAAAAIDMiNQAAAAAAGRGpAYAAAAAIDMiNQAAAAAAmRGpAQAAAADIzNSsD0AxNO3/e8Xf07NkeQonAQAAAADyRKQmdUmgbmyePu7v6e3+LJr2/12oBgAAAIA6Z9wHqZpIoC79+oncwAYAAAAAaodITeoqDdTn+n0AAAAAQO0QqUnNZN2CdpsaAAAAAOqXmdSkonzMR+erL1X8M2auvDoam6ebTw0AAAAAdUykZtKNFKinzJoz7p/Rd/xYdL76klANAAAAAHXOuA8m1UiLEisJ1MN9vUWKAAAAAFCfRGomXWmgnsiYj1Kl32+RIgAAAADUH5GaSVN+y3kiYz5KJd9XHrrdpgYAAACA+mEmNZNirDnUB3//t4p/5qKbrokps+aYTw0AAAAAdUyk5pyNd1Fi47wF4/6ZvUffH3hfqAYAAACA+mXcB+dkPIsSJ3KLuvz7LFIEAAAAgPokUnPORluUmITmSm5Rl359eeC2SHF0czr3D/p47rSOmDutY9C/CfsAAAAA5IlIzYSNtShxooE6UR6qLVIc3bSmxog4G6NbZpz9t+T95Gsam6cP/B4netMdAAAAACaDSM2EjHdR4kQDdWKsUG3sx2CloXpO5/5omXE6UJffok5+f//969sRce5/JwAAAACYKJGaiqWxKHE05T9HqB7dtKbGIbE6ImJ225sREdH15j8iQqAGAAAAIB9EaiqS5qLEsVikWJnSWC1QAwAAAJBXIjUVS2NR4piPaZHihCWBOvn9JIFfoAYAAAAgD0Rqxi3tRYljsUixcqU33y1KBAAAACCPRGrGpVqLEsdikeL4DReojfkAAAAAIG9EasZU7UWJY7FIcXRN+/8uUAMAAABQM0RqRpXlosSxWKQ4VOnfS6AGAAAAoBaI1Iwpi0WJY57JIsVBhrs9XX7jXaAGAAAAII9EakaU9aLEsVikODROl96enjJrTkyZNceiRAAAAAByTaRmWHlZlDiWIi9SHC5Ol/6dDv7+b7n5OwEAAADASERqhsjbosSxFHGR4mizwkv/To3zFuTm7wQAAAAAwxGpGSTPixLHUrRFikWauQ0AAABA/RKpGSKPixLHYpEiAAAAANQmkZoBeV+UOBaLFAEAAACg9ojURETtLEocS5EXKQIAAABALRKpqblFiWMp4iJFAAAAAKhVInXB1fKixLEUbZEiAAAAANQikZqaXJQ4FosUAQAAAKA2iNQFVuuLEsdikSIAAAAA5J9IXVD1sihxLBYpAgAAAEC+idQFVG+LEsdikSIAAAAA5JdIXTD1vChxLBYpAgAAAED+iNQFVI+LEsdikSIAAAAA5JNIXSAj3RKu1zEf5SxSBAAAAID8EakLpui3hS1SBAAAAIB8EakpHIsUAQAAACA/RGoKyyJFAAAAAMieSE0hWaQIAAAAAPkgUlNYFikCAAAAQPZEagrNIkUAAAAAyJZITeFZpAgAAAAA2RGp4QyLFAEAAACg+kRqCIsUAQAAACArIjWcYZEiAAAAAFSfSA0lLFIEAAAAgOoSqaGMRYoAAAAAUD0idcH0dn+W9RFqRi0tUiwfSVI+WxsAAAAA8qoqkXrnzp1x6aWXxrRp02LVqlXxyiuvVONhKdOzZHnWR6gZeV6kWB7GkzMNCellN8IBAAAAII9Sj9RPPfVUbN68ObZt2xZvvPFGLFu2LK6//vr48MMP035oOCd5XKSYPFZ5IC8N1G5RAwAAAFBLUo/UP/nJT2Ljxo1x2223xRVXXBEPP/xwzJgxI37zm9+k/dCMwMiP8cvjIsXSQD3SmA+3qAEAAACoFalG6p6ennj99dfjuuuuO/uAU6bEddddFy+++GKaD80Ihhv50Xf8WAYnqR15WaQ41pgPgRoAAACAWpRqpP7oo4+it7c35s+fP+jz8+fPj8OHDw/5+u7u7ujo6Bj0xuTp6umNrp7eiDh7m3rmyquzPFJNyXKRYvmYD4EaAAAAgHpRlcWJ47V9+/ZoaWkZeGttbc36SHUjidMRFihORJaLFMcK1OVnBAAAAIBakmqkvuCCC6KxsTGOHDky6PNHjhyJiy66aMjXb926Ndrb2wfe2tra0jxeYSSB+tjMJRmfpLZlsUjRokQAAAAA6l2qkbqpqSlWrFgRu3fvHvhcX19f7N69O1avXj3k65ubm2P27NmD3pgcpYG6fORHhLnU45XFIkWLEgEAAACoZ6mP+9i8eXP86le/iscffzzeeeed2LRpU3R2dsZtt92W9kMTg8d8RJyN1aUjP8rnUvcefT/9g9Wwai1StCgRAAAAgCJIPVJ/+9vfjh07dsS9994bV111VezZsyf++Mc/DlmmyOQrH/PRfnLov5Xepo6IWHTTNdU5XB1Ic5GiRYkAAAAAFEVVFifeeeed8Z///Ce6u7vj5ZdfjlWrVlXjYQttpEDdfnL429RUJs1FihYlAgAAAFAkVYnUVNdIixI/6Rp9xre51JVJY5GiRYkAAAAAFM3UrA9AOkoDdemYj+TjOXE6ZjfF6ZEfM1dePSSuMrbGeQui9+j7cfD3f4tFN10TU2bNib7jx6Lz1Zdi5sqro7F5evR2f1ZRqLYoEQAAAIAicZO6IJJb1Mn/Hmg4HbE7WpdGxNnZ1MltassTx288ixQreUuYQw0AAABAEYjUBZSE6uS2dRKqpy1dFhERC6+9MiKE6kqNtkixUgI1AAAAAEUhUhfYcEsUZ668OiKE6kqNZ5HieFmUCAAAAECRiNQFldymTuZVJ8sWk/nUERGLbromk7PVqvEuUhwPixIBAAAAKAqLEwvsk67ZMXdaRxxoWBKX9u+PjtalMbvtzWHnU7vFOz6jLVKcCGM+AAAAAKh3blIX3EiLFM2nnrjhFilW+hYhUAMAAABQDCI1Fimm5FzGdAjUAAAAABSFSM0AixQnz0iLFCfyMwAAAACgnonURIRFimmYaKi2KBEAAACAIrE4kQEWKU6+0kWKlX4fAAAAABSBSM0gI4XqaUuXRdeb/4iF114Z//3r20J1BfyeAAAAAGBkxn0whEWKAAAAAEC1iNSMaLRFiuZTAwAAAACTQaROQbJ8MJEsIawlyW1qAAAAAIA0idSTLIm7SahObiLXYqgGAAAAAEibSJ2C8lvIQjUAAAAAwPBE6hSVjv1IQjUAAAAAAGeJ1CkpH/uRcJsaAAAAAOAskTpF5lMDAAAAAIxOpE6ZUA0AAAAAMDKRugosUgQAAAAAGJ5IXUUWKQIAAAAADCZSV4lFigAAAAAAQ4nUVWQ+NQAAAADAYCJ1lQnVAAAAAABnidQZGGmRIgAAAABA0YjUdab8Rnb5DGwAAAAAgDwRqetIEqiTm9lJoC6/uQ0AAAAAkBcidZ0oD9QJgRoAAAAAyDORuo6UBmpjPgAAAACAWiBS14GR5lC7RQ0AAAAA5J1IXePMoQYAAAAAaplIXcMEagAAAACg1onUNcqiRAAAAACgHojUNcyiRAAAAACg1onUNciiRAAAAACgXojUNcYcagAAAACgnojUNUSgBgAAAADqjUhdYyxKBAAAAADqiUgNAAAAAEBmRGoAAAAAADIjUgMAAAAAkBmRGgAAAACAzIjUAAAAAABkRqQGAAAAACAzIjUAAAAAAJkRqQEAAAAAyIxIDQAAAABAZkRqAAAAAAAyI1IDAAAAAJAZkRoAAAAAgMyI1DWiq6c36yMAAAAAAEw6kfqMtg96Bn384bG+1B+z/eTgj8cK0cdmLhnxewEAAAAAapFIHRGn2j+OiLOh+nj7qYhIN1R/0jU7Is7G5iRADxeqyz+XfE/yMwAAAAAAapVIfUYSqhN5CdXJ+8m/CdQAAAAAQD0RqcuUjv1IQnWaymNzaagWqAEAAACAeidSlygf+5Go9nzq0tnTpe9HCNQAAAAAQH0RqcvkYT51xOk4bVEiAAAAAFDvROph5CVUJ4z5AAAAAADqlUg9gjwsUix9X6AGAAAAAOqRSD2GLBcpCtQAAAAAQL0TqUeRh0WKAjUAAAAAUM9E6jFkOZ8aAAAAAKDepRap77///lizZk3MmDEjzj///LQepiqyCtViNQAAAABQ71KL1D09PXHrrbfGpk2b0nqIqhppkSIAAAAAABM3Na0ffN9990VExK5du9J6CKqg/WTEnIjo6umNpojo7f4sIiL6jh+LiIjeo+9H47wF2R0QAAAAAKhpuZpJ3d3dHR0dHYPeyE4ybuRAw5KIiOhoXRoREdOWLouIiIXXXhkRp0M1AAAAAMBE5CpSb9++PVpaWgbeWltbsz5S4SWh+tjM06G6Z8nyiBCqAQAAAIDJUVGk3rJlSzQ0NIz6tnfv3gkfZuvWrdHe3j7w1tbWNuGfxeRqP3k6VHf19A6E6pkrr46IiEU3XRMRQjUAAAAAULmKZlLfc889sWHDhlG/ZvHixRM+THNzczQ3N0/4+0nHJ12zY+60jlHnUy+66Zo4+Pu/ZXpOAAAAAKD2VBSp582bF/PmzUvrLORYEqoPNCyJS/v3R0fr0pjd9mZMW7osut78h0WKAAAAAMCEpDaT+uDBg7Fnz544ePBg9Pb2xp49e2LPnj1x4sSJtB6SlFmkCAAAAABMttQi9b333hvLly+Pbdu2xYkTJ2L58uWxfPnyeO2119J6SKrAIkUAAAAAYDKlFql37doV/f39Q97Wrl2b1kNSRRYpAgAAAACTIbVITf1KblO3nzz9cVdPb0QMXaQIAAAAADAWkZoJGWs+dekiRQAAAACAkYjUTJhFigAAAADAuRKpz9GHx/qyPkKmLFIEAAAAAM6FSF2htg96Bt4/3n4qw5PkS+l8aosUAQAAAIDxEqkrcKr944gYHKoj3KYuH/thkSIAAAAAMF5Tsz5ArTnV/nFMbflctH3QE60XN8Xx9lMxq2VqaqH6wjm18d8RPumaHXOndcSBhiVxaf/+6GhdGrPb3oxpS5dF15v/GLRIsXHegoxPCwAAAADkhUg9AcOF6jQk8bteQvXCa6+M//71baEaAAAAABhQG/Uzh5LRH2mqxZnXFikCAAAAAJUQqc9R+XzqNNTizOv2k6dDtUWKAAAAAMBoROpzMNIixcmU3KaupVCd3KZuP3n6Y4sUAQAAAICRmEl9jkrnU6ehfDljvcyntkgRAAAAAIgQqSdFWvOpp7Z8buD9egzVFikCAAAAALVROwus9Ia2RYoAAAAAQL0RqXNspJnXtTSfOmGRIgAAAAAwHJE658pDtUWKAAAAAEA9EalrQD2F6gMNp8d+dLQujYizYz9KFykCAAAAAMVhcWKNONX+sUWKBVCvkX7gP0KcuT0/cJu+7+wNewAAAACKSaSuMW0f9ETrxU0RcTZU15IkVB+buSTmdO6PniXLo2n/34cN1WnIc/xOnnO9jT5JAnVyaz65RX+gYUlE49lb9gAAAAAUU20VzoJLblOXhuqIysd+5OHmdfvJiDlx5kbtmVA9c+XV0fnqS6lF2oO//1sqP3cyJIF64bVXDkTdejJsoA6BGgAAAACRuuaUh+pkPvV45eHmdfnYj66e3miKwYsU05LHUSKlgToiYubKq7M8zqRL/q4CNQAAAADDyb5YUrGRblSPVx7mWI82n7qxefqkP17nqy/leub1wmuvjOjri2lXLR+IuvVEoAYAAABgJCJ1jSpfpDheeVq4OFKo7u3+bNJDdTJKJG+huvfo+xG9p5cITrtqefQsWZ7xiSZX6YLEtkaBGgAAAIChROoaN5Hb1HkM1eWLFNO4TZy3UJ0E6oVrl8a0pcuir79/IOrWEwsSAQAAABiNSF3DSsd+VCKZZZ2XUB0xdJFiGsqXM2a5SHFgDnVJoD6xaNnAOIx6I1ADAAAAMBKRusadav+4oq8vHRGShOqsDbdIcVpTYyqPVb6cMYvb1IMWJfb1RUQMCtSCLgAAAABFkn2hpOrKR4Tk4Tb1cKF6snWVLGfsevMfmY79KF2U2NG6NHr7IqIxYu8H50VEX1XPUg1Zv74AAAAAyC+RumBKR4TkbexHaahumTH5P39O59nljFmF6vJFiUmgbmtcciZQn77hXk+S11ci69cZAAAAAPkiUhdQLYTq9pMp/PCy5YzVXqQ43KLEiLOBuud//bFv/+QvjMzcmZnprRc3DQrWWb/WAAAAAMgHkbqg8h6qJ1sSvkuXM1ZzkeJoixL/d2ayyb79n1U8Y7xWDCz4PPN6E6sBAAAASKhDBVYeROttzESpJHwnywmTmdfDLVJMy0iLEvd/eF5d/+4jTr/Wktdb2wc9cbz91MBzLh0FAgAAAEDxuElNLhcppqF8OeNo86nTksyhLj1TRF/Mapk6MBajnuX5Bj8AAAAA2RCpC65o0XA8oXrKrDmT/rh9x48N3KKOOHujO+L0uIsi3SYu2msOAAAAgNEpQgwawxARdT+GIRn9cWzm6VDcs2R5RETMXHl1RJwOypP9FjHSLerBprZ8LtXnnhdFe80BAAAAMDI3qYmIYt5uHWmRYhqS2dcRg29Rl2q9uGkg2hZB8ppLFOE1BwAAAMBQIjUDRoqG9ah87EdXT280xemY3Ng8PZXHHOsWdTKXupLb1OXLL2tR6Uz0en7NAQAAADA8NYghir5IsfTW82Qb6RZ1Mpe69Pc+lrYzQbuWQ3X5Df5Evb7mAAAAABhKpGaQoo39GC5UT2tqnPTH6erpHfSYkyEZD1JvobreX3MAAAAADKYAMUTRltqVL1JMy0i3qEtVOuqikpvXeVa01xwAAAAAZ4nUDKuI0bD95On/7erpnfS33jO/ttFuUZ/LreFK5ljnVflt8CK85gAAAAAw7oNRFHWRYsuMyf/57SfHP+ajkt/x8fZTdTP2I2GRIgAAAECxqD+MqShL7ZJQndyozkIlv9cPj/XFrJapdRWqLVIEAAAAKB6RmlEVbandZC01rIYL50wZNAqjXkN1vb/mAAAAAIpO8WFMRZxPTbZGmk8NAAAAQP0RqRkXoTp/yn/3yd+mlm9RAwAAAFA8xn0wbiMtUqwkVOd9XEOtRffkPxYI1AAAAADUKpGaipUutatkDEOtzBWu1dESAjUAAAAAtSjftZDcKR/7UYm8jwjJ67nGMpG/BQAAAADkhUhNxSYjVOdNEqjzer6RGPMBAAAAQK0TqZmQcwnVEfm6tSxQAwAAAEB2zKRmwpJFipWE6taLmwYtXMx6PvVwgbqWxmcI1AAAAADUOpGac1JJJE2Cdt5C9XCBWvwFAAAAgOow7oOqKQ+/WS9SLH9cgRoAAAAAqk+kpupKx2lkNQe6fMyHQA0AAAAA2RCpqaqRFi5W8za1QA0AAAAA+SFSU3XlobqaYz+GW5RYeiYAAAAAoLpEajKRZageblEiAAAAAJANkZrMVHuRokWJAAAAAJA/U7M+ALR90BOtFzdFxOlQPatlamqh2hxqAAAAAMgXkZpMnWr/OKa2fG5IqE6TQA0AAAAA+WHcB5krn09dzccEAAAAALIlUpML1QrVFiUCAAAAQL6I1ORG2rebjfkAAAAAgPwRqcmdNG47C9QAAAAAkE8WJ5IrpYsU0/jZAAAAAEC+pBapDxw4ED/84Q/jz3/+cxw+fDgWLFgQ3/nOd+L73/9+NDU1pfWw1AExGQAAAACKI7VIvXfv3ujr64tHHnkkLr/88njrrbdi48aN0dnZGTt27EjrYQEAAAAAqCGpReobbrghbrjhhoGPFy9eHO+++2489NBDIjUAAAAAABFR5ZnU7e3tMXfu3BH/vbu7O7q7uwd9fURET/eJ1M8G5Etv0//FZyfPjgaaOnVqnPy/ie16/ayzLz47eWrg4+7PeuJU1/FzPuNIkv+f1d/fn9pjAAAAANSLhv4qVZR9+/bFihUrYseOHbFx48Zhv+YHP/hB3HfffdU4DkDq9u/fH4sXL876GAAAAAC5VnGk3rJlS/z4xz8e9Wveeeed+MIXvjDw8aFDh+JrX/tarF27Nn7961+P+H3lN6k//fTTuOSSS+LgwYPR0tJSyTFrVkdHR7S2tkZbW1vMnj076+NURdGec9Geb0TxnnN7e3ssWrQojh07Fueff37WxwEAAADItYrHfdxzzz2xYcOGUb+m9Obg+++/H+vWrYs1a9bEo48+Our3NTc3R3Nz85DPt7S0FCJslZo9e7bnXOeK9nwjivecp0yZ2HgSAAAAgCKpOFLPmzcv5s2bN66vPXToUKxbty5WrFgRjz32mGADAAAAAMAgqS1OPHToUKxduzYuueSS2LFjRxw9enTg3y666KK0HhYAAAAAgBqSWqR+9tlnY9++fbFv375YuHDhoH8b7xjs5ubm2LZt27AjQOqV51z/ivZ8I4r3nIv2fAEAAADORcWLEwEAAAAAYLIYEg0AAAAAQGZEagAAAAAAMiNSAwAAAACQGZEaAAAAAIDM1EykPnDgQNx+++1x2WWXxfTp02PJkiWxbdu26Onpyfpoqbn//vtjzZo1MWPGjDj//POzPk4qdu7cGZdeemlMmzYtVq1aFa+88krWR0rNCy+8EDfffHMsWLAgGhoa4plnnsn6SKnavn17rFy5MmbNmhUXXnhh3HLLLfHuu+9mfaxUPfTQQ7F06dKYPXt2zJ49O1avXh1/+MMfsj4WAAAAQK7VTKTeu3dv9PX1xSOPPBJvv/12/PSnP42HH344vve972V9tNT09PTErbfeGps2bcr6KKl46qmnYvPmzbFt27Z44403YtmyZXH99dfHhx9+mPXRUtHZ2RnLli2LnTt3Zn2Uqnj++efjjjvuiJdeeimeffbZ+N///hff/OY3o7OzM+ujpWbhwoXxox/9KF5//fV47bXX4utf/3p861vfirfffjvrowEAAADkVkN/f39/1oeYqAceeCAeeuih+Pe//531UVK1a9euuPvuu+PTTz/N+iiTatWqVbFy5cp48MEHIyKir68vWltb46677ootW7ZkfLp0NTQ0xNNPPx233HJL1kepmqNHj8aFF14Yzz//fHz1q1/N+jhVM3fu3HjggQfi9ttvz/ooAAAAALlUMzeph9Pe3h5z587N+hhMQE9PT7z++utx3XXXDXxuypQpcd1118WLL76Y4clIS3t7e0REYf5vtre3N5588sno7OyM1atXZ30cAAAAgNyamvUBJmrfvn3xy1/+Mnbs2JH1UZiAjz76KHp7e2P+/PmDPj9//vzYu3dvRqciLX19fXH33XfHV77ylfjiF7+Y9XFS9c9//jNWr14dXV1dcd5558XTTz8dV1xxRdbHAgAAAMitzG9Sb9myJRoaGkZ9K4+Whw4dihtuuCFuvfXW2LhxY0Ynn5iJPF+odXfccUe89dZb8eSTT2Z9lNR9/vOfjz179sTLL78cmzZtivXr18e//vWvrI8FAAAAkFuZ36S+5557YsOGDaN+zeLFiwfef//992PdunWxZs2aePTRR1M+3eSr9PnWqwsuuCAaGxvjyJEjgz5/5MiRuOiiizI6FWm4884743e/+1288MILsXDhwqyPk7qmpqa4/PLLIyJixYoV8eqrr8bPf/7zeOSRRzI+GQAAAEA+ZR6p582bF/PmzRvX1x46dCjWrVsXK1asiMceeyymTMn8InjFKnm+9aypqSlWrFgRu3fvHlge2NfXF7t3744777wz28MxKfr7++Ouu+6Kp59+Op577rm47LLLsj5SJvr6+qK7uzvrYwAAAADkVuaRerwOHToUa9eujUsuuSR27NgRR48eHfi3er15e/Dgwfjkk0/i4MGD0dvbG3v27ImIiMsvvzzOO++8bA83CTZv3hzr16+PL33pS/HlL385fvazn0VnZ2fcdtttWR8tFSdOnIh9+/YNfPzee+/Fnj17Yu7cubFo0aIMT5aOO+64I5544on47W9/G7NmzYrDhw9HRERLS0tMnz4949OlY+vWrXHjjTfGokWL4vjx4/HEE0/Ec889F3/605+yPhoAAABAbjX09/f3Z32I8di1a9eI8bJGnkLFNmzYEI8//viQz//lL3+JtWvXVv9AKXjwwQfjgQceiMOHD8dVV10Vv/jFL2LVqlVZHysVzz33XKxbt27I59evXx+7du2q/oFS1tDQMOznH3vssTFH3tSq22+/PXbv3h0ffPBBtLS0xNKlS+O73/1ufOMb38j6aAAAAAC5VTORGgAAAACA+lN7Q50BAAAAAKgbIjUAAAAAAJkRqQEAAAAAyIxIDQAAAABAZkRqAAAAAAAyI1IDAAAAAJAZkRoAAAAAgMyI1AAAAAAAZEakBgAAAAAgMyI1AAAAAACZEakBAAAAAMiMSA0AAAAAQGb+H0XmLogoDIQYAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "rbf_svm = SVC(kernel='rbf', decision_function_shape='ovo', C=1e4)\n", + "features_degree_list = np.arange(1, 6)\n", + "\n", + "plt.figure(figsize=(18, 6))\n", + "plt.subplots_adjust(top=1.5)\n", + "\n", + "for i, features_degree in enumerate(features_degree_list):\n", + " plt.subplot(2, 4, i + 1)\n", + " poly = PolynomialFeatures(degree=features_degree)\n", + " extended_points = np.hstack((points[:, 1][:, np.newaxis], poly.fit_transform(points[:, 0][:, np.newaxis])))\n", + " rbf_svm.fit(extended_points, labels)\n", + " print(f'RBF SVC. Degree: {features_degree}. Accuracy score: {accuracy_score(labels, rbf_svm.predict(extended_points))}')\n", + "\n", + " # plt.scatter(points[:, 0], points[:, 1], c=labels, s=25, cmap='autumn')\n", + " plot_svc_decision_function_extended(rbf_svm, features_degree)\n", + " plt.title(f'Generated features degree: {features_degree}')" + ] + }, + { + "cell_type": "markdown", + "source": [ + "Miracle! SVM with RBF kernel does a great job!" + ], + "metadata": { + "id": "VHvwMl2twkiD" + } + }, + { + "cell_type": "code", + "source": [ + "# !pip install catboost" + ], + "metadata": { + "id": "F_rDnBSd0Vrt" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "from catboost import CatBoostClassifier\n", + "\n", + "classifier = CatBoostClassifier()\n", + "upd_points = np.hstack((points[:, 1][:, np.newaxis], points[:, 0][:, np.newaxis]))\n", + "classifier.fit(upd_points, labels)\n", + "print(f'Accuracy score: {accuracy_score(labels, classifier.predict(upd_points))}')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "55y2H1UIx8K4", + "outputId": "1856aa3c-1cb0-455b-c3cb-864738fe883a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Learning rate set to 0.079127\n", + "0:\tlearn: 1.2959089\ttotal: 6.81ms\tremaining: 6.81s\n", + "1:\tlearn: 1.2214809\ttotal: 14.7ms\tremaining: 7.31s\n", + "2:\tlearn: 1.1524157\ttotal: 20.5ms\tremaining: 6.81s\n", + "3:\tlearn: 1.0890761\ttotal: 23.9ms\tremaining: 5.95s\n", + "4:\tlearn: 1.0353230\ttotal: 27.4ms\tremaining: 5.46s\n", + "5:\tlearn: 0.9919093\ttotal: 29.7ms\tremaining: 4.92s\n", + "6:\tlearn: 0.9502458\ttotal: 31.7ms\tremaining: 4.5s\n", + "7:\tlearn: 0.9145745\ttotal: 33.8ms\tremaining: 4.19s\n", + "8:\tlearn: 0.8835443\ttotal: 37.3ms\tremaining: 4.1s\n", + "9:\tlearn: 0.8538864\ttotal: 39.4ms\tremaining: 3.9s\n", + "10:\tlearn: 0.8261989\ttotal: 42.8ms\tremaining: 3.85s\n", + "11:\tlearn: 0.8041542\ttotal: 44.9ms\tremaining: 3.7s\n", + "12:\tlearn: 0.7785746\ttotal: 58.9ms\tremaining: 4.47s\n", + "13:\tlearn: 0.7547946\ttotal: 64.2ms\tremaining: 4.52s\n", + "14:\tlearn: 0.7372895\ttotal: 70.8ms\tremaining: 4.65s\n", + "15:\tlearn: 0.7131515\ttotal: 75.4ms\tremaining: 4.64s\n", + "16:\tlearn: 0.6936299\ttotal: 82ms\tremaining: 4.74s\n", + "17:\tlearn: 0.6744285\ttotal: 87.1ms\tremaining: 4.75s\n", + "18:\tlearn: 0.6551355\ttotal: 92.6ms\tremaining: 4.78s\n", + "19:\tlearn: 0.6428448\ttotal: 97.6ms\tremaining: 4.78s\n", + "20:\tlearn: 0.6280216\ttotal: 103ms\tremaining: 4.8s\n", + "21:\tlearn: 0.6168815\ttotal: 108ms\tremaining: 4.79s\n", + "22:\tlearn: 0.6031740\ttotal: 114ms\tremaining: 4.86s\n", + "23:\tlearn: 0.5917626\ttotal: 121ms\tremaining: 4.91s\n", + "24:\tlearn: 0.5784460\ttotal: 131ms\tremaining: 5.09s\n", + "25:\tlearn: 0.5696554\ttotal: 136ms\tremaining: 5.08s\n", + "26:\tlearn: 0.5566658\ttotal: 141ms\tremaining: 5.08s\n", + "27:\tlearn: 0.5461246\ttotal: 146ms\tremaining: 5.08s\n", + "28:\tlearn: 0.5366656\ttotal: 152ms\tremaining: 5.08s\n", + "29:\tlearn: 0.5293741\ttotal: 157ms\tremaining: 5.07s\n", + "30:\tlearn: 0.5178818\ttotal: 163ms\tremaining: 5.1s\n", + "31:\tlearn: 0.5092171\ttotal: 168ms\tremaining: 5.08s\n", + "32:\tlearn: 0.4987514\ttotal: 174ms\tremaining: 5.11s\n", + "33:\tlearn: 0.4910205\ttotal: 183ms\tremaining: 5.2s\n", + "34:\tlearn: 0.4860464\ttotal: 189ms\tremaining: 5.2s\n", + "35:\tlearn: 0.4796016\ttotal: 194ms\tremaining: 5.19s\n", + "36:\tlearn: 0.4742975\ttotal: 200ms\tremaining: 5.21s\n", + "37:\tlearn: 0.4696931\ttotal: 205ms\tremaining: 5.19s\n", + "38:\tlearn: 0.4639236\ttotal: 212ms\tremaining: 5.22s\n", + "39:\tlearn: 0.4585126\ttotal: 217ms\tremaining: 5.21s\n", + "40:\tlearn: 0.4502850\ttotal: 230ms\tremaining: 5.39s\n", + "41:\tlearn: 0.4443803\ttotal: 237ms\tremaining: 5.4s\n", + "42:\tlearn: 0.4390827\ttotal: 246ms\tremaining: 5.48s\n", + "43:\tlearn: 0.4319583\ttotal: 254ms\tremaining: 5.52s\n", + "44:\tlearn: 0.4246327\ttotal: 260ms\tremaining: 5.52s\n", + "45:\tlearn: 0.4175956\ttotal: 265ms\tremaining: 5.5s\n", + "46:\tlearn: 0.4131553\ttotal: 272ms\tremaining: 5.51s\n", + "47:\tlearn: 0.4077195\ttotal: 277ms\tremaining: 5.49s\n", + "48:\tlearn: 0.4014196\ttotal: 284ms\tremaining: 5.51s\n", + "49:\tlearn: 0.3958484\ttotal: 289ms\tremaining: 5.49s\n", + "50:\tlearn: 0.3908093\ttotal: 295ms\tremaining: 5.48s\n", + "51:\tlearn: 0.3869909\ttotal: 300ms\tremaining: 5.46s\n", + "52:\tlearn: 0.3820959\ttotal: 306ms\tremaining: 5.47s\n", + "53:\tlearn: 0.3787709\ttotal: 311ms\tremaining: 5.45s\n", + "54:\tlearn: 0.3746985\ttotal: 317ms\tremaining: 5.45s\n", + "55:\tlearn: 0.3709298\ttotal: 322ms\tremaining: 5.43s\n", + "56:\tlearn: 0.3640137\ttotal: 329ms\tremaining: 5.44s\n", + "57:\tlearn: 0.3601699\ttotal: 333ms\tremaining: 5.41s\n", + "58:\tlearn: 0.3562712\ttotal: 340ms\tremaining: 5.42s\n", + "59:\tlearn: 0.3532538\ttotal: 345ms\tremaining: 5.4s\n", + "60:\tlearn: 0.3497550\ttotal: 352ms\tremaining: 5.42s\n", + "61:\tlearn: 0.3466841\ttotal: 357ms\tremaining: 5.39s\n", + "62:\tlearn: 0.3420507\ttotal: 365ms\tremaining: 5.43s\n", + "63:\tlearn: 0.3398000\ttotal: 370ms\tremaining: 5.41s\n", + "64:\tlearn: 0.3355152\ttotal: 377ms\tremaining: 5.43s\n", + "65:\tlearn: 0.3317476\ttotal: 382ms\tremaining: 5.4s\n", + "66:\tlearn: 0.3281931\ttotal: 388ms\tremaining: 5.41s\n", + "67:\tlearn: 0.3254783\ttotal: 393ms\tremaining: 5.39s\n", + "68:\tlearn: 0.3221254\ttotal: 399ms\tremaining: 5.39s\n", + "69:\tlearn: 0.3192801\ttotal: 416ms\tremaining: 5.52s\n", + "70:\tlearn: 0.3167525\ttotal: 425ms\tremaining: 5.56s\n", + "71:\tlearn: 0.3147236\ttotal: 432ms\tremaining: 5.57s\n", + "72:\tlearn: 0.3132862\ttotal: 444ms\tremaining: 5.64s\n", + "73:\tlearn: 0.3098897\ttotal: 454ms\tremaining: 5.68s\n", + "74:\tlearn: 0.3072620\ttotal: 465ms\tremaining: 5.74s\n", + "75:\tlearn: 0.3037059\ttotal: 483ms\tremaining: 5.87s\n", + "76:\tlearn: 0.3008951\ttotal: 504ms\tremaining: 6.04s\n", + "77:\tlearn: 0.2986011\ttotal: 515ms\tremaining: 6.08s\n", + "78:\tlearn: 0.2964714\ttotal: 527ms\tremaining: 6.15s\n", + "79:\tlearn: 0.2942431\ttotal: 536ms\tremaining: 6.16s\n", + "80:\tlearn: 0.2917400\ttotal: 545ms\tremaining: 6.18s\n", + "81:\tlearn: 0.2902369\ttotal: 549ms\tremaining: 6.15s\n", + "82:\tlearn: 0.2883275\ttotal: 556ms\tremaining: 6.14s\n", + "83:\tlearn: 0.2857862\ttotal: 561ms\tremaining: 6.12s\n", + "84:\tlearn: 0.2831428\ttotal: 569ms\tremaining: 6.12s\n", + "85:\tlearn: 0.2797126\ttotal: 573ms\tremaining: 6.09s\n", + "86:\tlearn: 0.2786449\ttotal: 580ms\tremaining: 6.08s\n", + "87:\tlearn: 0.2763999\ttotal: 585ms\tremaining: 6.06s\n", + "88:\tlearn: 0.2737685\ttotal: 591ms\tremaining: 6.05s\n", + "89:\tlearn: 0.2724340\ttotal: 596ms\tremaining: 6.02s\n", + "90:\tlearn: 0.2698293\ttotal: 614ms\tremaining: 6.13s\n", + "91:\tlearn: 0.2678390\ttotal: 622ms\tremaining: 6.14s\n", + "92:\tlearn: 0.2653945\ttotal: 628ms\tremaining: 6.12s\n", + "93:\tlearn: 0.2632351\ttotal: 635ms\tremaining: 6.12s\n", + "94:\tlearn: 0.2607745\ttotal: 639ms\tremaining: 6.09s\n", + "95:\tlearn: 0.2592601\ttotal: 646ms\tremaining: 6.08s\n", + "96:\tlearn: 0.2571755\ttotal: 651ms\tremaining: 6.06s\n", + "97:\tlearn: 0.2556167\ttotal: 659ms\tremaining: 6.07s\n", + "98:\tlearn: 0.2540136\ttotal: 666ms\tremaining: 6.06s\n", + "99:\tlearn: 0.2524164\ttotal: 671ms\tremaining: 6.04s\n", + "100:\tlearn: 0.2508608\ttotal: 682ms\tremaining: 6.07s\n", + "101:\tlearn: 0.2498483\ttotal: 687ms\tremaining: 6.05s\n", + "102:\tlearn: 0.2483965\ttotal: 694ms\tremaining: 6.04s\n", + "103:\tlearn: 0.2462942\ttotal: 699ms\tremaining: 6.02s\n", + "104:\tlearn: 0.2429115\ttotal: 706ms\tremaining: 6.02s\n", + "105:\tlearn: 0.2410248\ttotal: 710ms\tremaining: 5.99s\n", + "106:\tlearn: 0.2386981\ttotal: 721ms\tremaining: 6.02s\n", + "107:\tlearn: 0.2375745\ttotal: 724ms\tremaining: 5.98s\n", + "108:\tlearn: 0.2361874\ttotal: 726ms\tremaining: 5.93s\n", + "109:\tlearn: 0.2348988\ttotal: 728ms\tremaining: 5.89s\n", + "110:\tlearn: 0.2327042\ttotal: 732ms\tremaining: 5.86s\n", + "111:\tlearn: 0.2308091\ttotal: 734ms\tremaining: 5.82s\n", + "112:\tlearn: 0.2296714\ttotal: 736ms\tremaining: 5.78s\n", + "113:\tlearn: 0.2290758\ttotal: 738ms\tremaining: 5.74s\n", + "114:\tlearn: 0.2276527\ttotal: 741ms\tremaining: 5.71s\n", + "115:\tlearn: 0.2259893\ttotal: 744ms\tremaining: 5.67s\n", + "116:\tlearn: 0.2249081\ttotal: 746ms\tremaining: 5.63s\n", + "117:\tlearn: 0.2235528\ttotal: 748ms\tremaining: 5.59s\n", + "118:\tlearn: 0.2213985\ttotal: 751ms\tremaining: 5.56s\n", + "119:\tlearn: 0.2194802\ttotal: 753ms\tremaining: 5.52s\n", + "120:\tlearn: 0.2188234\ttotal: 755ms\tremaining: 5.49s\n", + "121:\tlearn: 0.2178495\ttotal: 758ms\tremaining: 5.45s\n", + "122:\tlearn: 0.2167662\ttotal: 760ms\tremaining: 5.42s\n", + "123:\tlearn: 0.2156517\ttotal: 763ms\tremaining: 5.39s\n", + "124:\tlearn: 0.2143210\ttotal: 765ms\tremaining: 5.36s\n", + "125:\tlearn: 0.2131445\ttotal: 768ms\tremaining: 5.32s\n", + "126:\tlearn: 0.2121457\ttotal: 770ms\tremaining: 5.29s\n", + "127:\tlearn: 0.2108670\ttotal: 772ms\tremaining: 5.26s\n", + "128:\tlearn: 0.2101744\ttotal: 775ms\tremaining: 5.23s\n", + "129:\tlearn: 0.2087427\ttotal: 777ms\tremaining: 5.2s\n", + "130:\tlearn: 0.2079528\ttotal: 779ms\tremaining: 5.17s\n", + "131:\tlearn: 0.2062675\ttotal: 785ms\tremaining: 5.16s\n", + "132:\tlearn: 0.2052944\ttotal: 789ms\tremaining: 5.14s\n", + "133:\tlearn: 0.2045555\ttotal: 792ms\tremaining: 5.12s\n", + "134:\tlearn: 0.2035059\ttotal: 794ms\tremaining: 5.08s\n", + "135:\tlearn: 0.2029574\ttotal: 796ms\tremaining: 5.05s\n", + "136:\tlearn: 0.2018337\ttotal: 798ms\tremaining: 5.03s\n", + "137:\tlearn: 0.2011871\ttotal: 802ms\tremaining: 5.01s\n", + "138:\tlearn: 0.2000485\ttotal: 804ms\tremaining: 4.98s\n", + "139:\tlearn: 0.1990269\ttotal: 806ms\tremaining: 4.95s\n", + "140:\tlearn: 0.1982215\ttotal: 812ms\tremaining: 4.95s\n", + "141:\tlearn: 0.1973401\ttotal: 816ms\tremaining: 4.93s\n", + "142:\tlearn: 0.1964732\ttotal: 819ms\tremaining: 4.91s\n", + "143:\tlearn: 0.1958084\ttotal: 821ms\tremaining: 4.88s\n", + "144:\tlearn: 0.1947088\ttotal: 823ms\tremaining: 4.85s\n", + "145:\tlearn: 0.1940992\ttotal: 825ms\tremaining: 4.83s\n", + "146:\tlearn: 0.1931253\ttotal: 828ms\tremaining: 4.81s\n", + "147:\tlearn: 0.1924420\ttotal: 836ms\tremaining: 4.81s\n", + "148:\tlearn: 0.1916421\ttotal: 842ms\tremaining: 4.81s\n", + "149:\tlearn: 0.1901457\ttotal: 848ms\tremaining: 4.8s\n", + "150:\tlearn: 0.1896768\ttotal: 853ms\tremaining: 4.79s\n", + "151:\tlearn: 0.1888420\ttotal: 858ms\tremaining: 4.79s\n", + "152:\tlearn: 0.1881668\ttotal: 864ms\tremaining: 4.78s\n", + "153:\tlearn: 0.1871827\ttotal: 869ms\tremaining: 4.77s\n", + "154:\tlearn: 0.1861617\ttotal: 875ms\tremaining: 4.77s\n", + "155:\tlearn: 0.1855258\ttotal: 880ms\tremaining: 4.76s\n", + "156:\tlearn: 0.1848502\ttotal: 886ms\tremaining: 4.76s\n", + "157:\tlearn: 0.1841901\ttotal: 891ms\tremaining: 4.75s\n", + "158:\tlearn: 0.1835669\ttotal: 898ms\tremaining: 4.75s\n", + "159:\tlearn: 0.1828731\ttotal: 903ms\tremaining: 4.74s\n", + "160:\tlearn: 0.1818463\ttotal: 909ms\tremaining: 4.74s\n", + "161:\tlearn: 0.1812524\ttotal: 916ms\tremaining: 4.74s\n", + "162:\tlearn: 0.1807731\ttotal: 921ms\tremaining: 4.73s\n", + "163:\tlearn: 0.1802617\ttotal: 927ms\tremaining: 4.73s\n", + "164:\tlearn: 0.1792684\ttotal: 932ms\tremaining: 4.71s\n", + "165:\tlearn: 0.1783233\ttotal: 938ms\tremaining: 4.71s\n", + "166:\tlearn: 0.1775047\ttotal: 944ms\tremaining: 4.71s\n", + "167:\tlearn: 0.1768690\ttotal: 950ms\tremaining: 4.71s\n", + "168:\tlearn: 0.1764797\ttotal: 955ms\tremaining: 4.7s\n", + "169:\tlearn: 0.1761398\ttotal: 962ms\tremaining: 4.69s\n", + "170:\tlearn: 0.1754493\ttotal: 967ms\tremaining: 4.69s\n", + "171:\tlearn: 0.1749799\ttotal: 969ms\tremaining: 4.66s\n", + "172:\tlearn: 0.1746578\ttotal: 972ms\tremaining: 4.65s\n", + "173:\tlearn: 0.1738674\ttotal: 974ms\tremaining: 4.63s\n", + "174:\tlearn: 0.1734760\ttotal: 977ms\tremaining: 4.6s\n", + "175:\tlearn: 0.1729060\ttotal: 979ms\tremaining: 4.58s\n", + "176:\tlearn: 0.1723674\ttotal: 981ms\tremaining: 4.56s\n", + "177:\tlearn: 0.1719094\ttotal: 983ms\tremaining: 4.54s\n", + "178:\tlearn: 0.1715006\ttotal: 987ms\tremaining: 4.53s\n", + "179:\tlearn: 0.1705298\ttotal: 989ms\tremaining: 4.5s\n", + "180:\tlearn: 0.1700893\ttotal: 991ms\tremaining: 4.48s\n", + "181:\tlearn: 0.1687443\ttotal: 993ms\tremaining: 4.46s\n", + "182:\tlearn: 0.1682591\ttotal: 995ms\tremaining: 4.44s\n", + "183:\tlearn: 0.1671452\ttotal: 998ms\tremaining: 4.43s\n", + "184:\tlearn: 0.1667959\ttotal: 1s\tremaining: 4.41s\n", + "185:\tlearn: 0.1662169\ttotal: 1s\tremaining: 4.39s\n", + "186:\tlearn: 0.1657461\ttotal: 1s\tremaining: 4.37s\n", + "187:\tlearn: 0.1653178\ttotal: 1.01s\tremaining: 4.35s\n", + "188:\tlearn: 0.1646199\ttotal: 1.01s\tremaining: 4.33s\n", + "189:\tlearn: 0.1641075\ttotal: 1.01s\tremaining: 4.32s\n", + "190:\tlearn: 0.1637228\ttotal: 1.01s\tremaining: 4.3s\n", + "191:\tlearn: 0.1633519\ttotal: 1.02s\tremaining: 4.28s\n", + "192:\tlearn: 0.1628243\ttotal: 1.02s\tremaining: 4.26s\n", + "193:\tlearn: 0.1624029\ttotal: 1.02s\tremaining: 4.25s\n", + "194:\tlearn: 0.1620446\ttotal: 1.02s\tremaining: 4.23s\n", + "195:\tlearn: 0.1610857\ttotal: 1.03s\tremaining: 4.21s\n", + "196:\tlearn: 0.1601060\ttotal: 1.03s\tremaining: 4.19s\n", + "197:\tlearn: 0.1598167\ttotal: 1.03s\tremaining: 4.17s\n", + "198:\tlearn: 0.1594270\ttotal: 1.03s\tremaining: 4.16s\n", + "199:\tlearn: 0.1590345\ttotal: 1.03s\tremaining: 4.14s\n", + "200:\tlearn: 0.1586521\ttotal: 1.04s\tremaining: 4.13s\n", + "201:\tlearn: 0.1579626\ttotal: 1.04s\tremaining: 4.11s\n", + "202:\tlearn: 0.1575290\ttotal: 1.04s\tremaining: 4.1s\n", + "203:\tlearn: 0.1570463\ttotal: 1.04s\tremaining: 4.08s\n", + "204:\tlearn: 0.1565607\ttotal: 1.05s\tremaining: 4.06s\n", + "205:\tlearn: 0.1561710\ttotal: 1.05s\tremaining: 4.05s\n", + "206:\tlearn: 0.1558048\ttotal: 1.05s\tremaining: 4.04s\n", + "207:\tlearn: 0.1553911\ttotal: 1.05s\tremaining: 4.02s\n", + "208:\tlearn: 0.1550966\ttotal: 1.06s\tremaining: 4s\n", + "209:\tlearn: 0.1548118\ttotal: 1.06s\tremaining: 3.98s\n", + "210:\tlearn: 0.1545590\ttotal: 1.06s\tremaining: 3.97s\n", + "211:\tlearn: 0.1540188\ttotal: 1.07s\tremaining: 3.98s\n", + "212:\tlearn: 0.1536672\ttotal: 1.07s\tremaining: 3.97s\n", + "213:\tlearn: 0.1533918\ttotal: 1.08s\tremaining: 3.96s\n", + "214:\tlearn: 0.1527556\ttotal: 1.08s\tremaining: 3.94s\n", + "215:\tlearn: 0.1521216\ttotal: 1.08s\tremaining: 3.93s\n", + "216:\tlearn: 0.1518219\ttotal: 1.08s\tremaining: 3.92s\n", + "217:\tlearn: 0.1513153\ttotal: 1.09s\tremaining: 3.9s\n", + "218:\tlearn: 0.1509842\ttotal: 1.09s\tremaining: 3.89s\n", + "219:\tlearn: 0.1505587\ttotal: 1.09s\tremaining: 3.87s\n", + "220:\tlearn: 0.1502698\ttotal: 1.09s\tremaining: 3.86s\n", + "221:\tlearn: 0.1500299\ttotal: 1.1s\tremaining: 3.85s\n", + "222:\tlearn: 0.1495751\ttotal: 1.1s\tremaining: 3.83s\n", + "223:\tlearn: 0.1493585\ttotal: 1.1s\tremaining: 3.82s\n", + "224:\tlearn: 0.1489244\ttotal: 1.1s\tremaining: 3.81s\n", + "225:\tlearn: 0.1486587\ttotal: 1.11s\tremaining: 3.79s\n", + "226:\tlearn: 0.1483187\ttotal: 1.11s\tremaining: 3.78s\n", + "227:\tlearn: 0.1479916\ttotal: 1.11s\tremaining: 3.76s\n", + "228:\tlearn: 0.1476748\ttotal: 1.11s\tremaining: 3.75s\n", + "229:\tlearn: 0.1473783\ttotal: 1.12s\tremaining: 3.74s\n", + "230:\tlearn: 0.1469113\ttotal: 1.12s\tremaining: 3.73s\n", + "231:\tlearn: 0.1466304\ttotal: 1.12s\tremaining: 3.71s\n", + "232:\tlearn: 0.1463627\ttotal: 1.12s\tremaining: 3.7s\n", + "233:\tlearn: 0.1460894\ttotal: 1.13s\tremaining: 3.69s\n", + "234:\tlearn: 0.1456879\ttotal: 1.13s\tremaining: 3.67s\n", + "235:\tlearn: 0.1454066\ttotal: 1.13s\tremaining: 3.66s\n", + "236:\tlearn: 0.1452336\ttotal: 1.13s\tremaining: 3.65s\n", + "237:\tlearn: 0.1449794\ttotal: 1.14s\tremaining: 3.64s\n", + "238:\tlearn: 0.1447982\ttotal: 1.14s\tremaining: 3.63s\n", + "239:\tlearn: 0.1443590\ttotal: 1.14s\tremaining: 3.62s\n", + "240:\tlearn: 0.1435314\ttotal: 1.15s\tremaining: 3.61s\n", + "241:\tlearn: 0.1431742\ttotal: 1.15s\tremaining: 3.6s\n", + "242:\tlearn: 0.1428907\ttotal: 1.15s\tremaining: 3.58s\n", + "243:\tlearn: 0.1425408\ttotal: 1.15s\tremaining: 3.57s\n", + "244:\tlearn: 0.1420185\ttotal: 1.16s\tremaining: 3.56s\n", + "245:\tlearn: 0.1417661\ttotal: 1.16s\tremaining: 3.55s\n", + "246:\tlearn: 0.1415110\ttotal: 1.16s\tremaining: 3.54s\n", + "247:\tlearn: 0.1409944\ttotal: 1.16s\tremaining: 3.53s\n", + "248:\tlearn: 0.1406725\ttotal: 1.17s\tremaining: 3.52s\n", + "249:\tlearn: 0.1403749\ttotal: 1.18s\tremaining: 3.53s\n", + "250:\tlearn: 0.1401069\ttotal: 1.19s\tremaining: 3.54s\n", + "251:\tlearn: 0.1398255\ttotal: 1.19s\tremaining: 3.53s\n", + "252:\tlearn: 0.1394787\ttotal: 1.19s\tremaining: 3.52s\n", + "253:\tlearn: 0.1392162\ttotal: 1.19s\tremaining: 3.51s\n", + "254:\tlearn: 0.1387153\ttotal: 1.2s\tremaining: 3.49s\n", + "255:\tlearn: 0.1385513\ttotal: 1.2s\tremaining: 3.48s\n", + "256:\tlearn: 0.1383299\ttotal: 1.2s\tremaining: 3.47s\n", + "257:\tlearn: 0.1380486\ttotal: 1.2s\tremaining: 3.46s\n", + "258:\tlearn: 0.1378761\ttotal: 1.2s\tremaining: 3.45s\n", + "259:\tlearn: 0.1375329\ttotal: 1.21s\tremaining: 3.44s\n", + "260:\tlearn: 0.1373380\ttotal: 1.21s\tremaining: 3.42s\n", + "261:\tlearn: 0.1370860\ttotal: 1.21s\tremaining: 3.42s\n", + "262:\tlearn: 0.1368529\ttotal: 1.22s\tremaining: 3.41s\n", + "263:\tlearn: 0.1363636\ttotal: 1.22s\tremaining: 3.4s\n", + "264:\tlearn: 0.1361763\ttotal: 1.22s\tremaining: 3.39s\n", + "265:\tlearn: 0.1359204\ttotal: 1.22s\tremaining: 3.38s\n", + "266:\tlearn: 0.1357268\ttotal: 1.23s\tremaining: 3.37s\n", + "267:\tlearn: 0.1353882\ttotal: 1.23s\tremaining: 3.36s\n", + "268:\tlearn: 0.1351275\ttotal: 1.23s\tremaining: 3.35s\n", + "269:\tlearn: 0.1347062\ttotal: 1.23s\tremaining: 3.33s\n", + "270:\tlearn: 0.1343077\ttotal: 1.24s\tremaining: 3.33s\n", + "271:\tlearn: 0.1338227\ttotal: 1.24s\tremaining: 3.33s\n", + "272:\tlearn: 0.1335093\ttotal: 1.25s\tremaining: 3.33s\n", + "273:\tlearn: 0.1332317\ttotal: 1.26s\tremaining: 3.33s\n", + "274:\tlearn: 0.1329299\ttotal: 1.27s\tremaining: 3.34s\n", + "275:\tlearn: 0.1326921\ttotal: 1.28s\tremaining: 3.36s\n", + "276:\tlearn: 0.1323903\ttotal: 1.29s\tremaining: 3.36s\n", + "277:\tlearn: 0.1321784\ttotal: 1.3s\tremaining: 3.38s\n", + "278:\tlearn: 0.1319027\ttotal: 1.31s\tremaining: 3.38s\n", + "279:\tlearn: 0.1316179\ttotal: 1.32s\tremaining: 3.38s\n", + "280:\tlearn: 0.1313922\ttotal: 1.32s\tremaining: 3.38s\n", + "281:\tlearn: 0.1309448\ttotal: 1.33s\tremaining: 3.38s\n", + "282:\tlearn: 0.1306065\ttotal: 1.33s\tremaining: 3.38s\n", + "283:\tlearn: 0.1301890\ttotal: 1.34s\tremaining: 3.38s\n", + "284:\tlearn: 0.1299561\ttotal: 1.34s\tremaining: 3.37s\n", + "285:\tlearn: 0.1297269\ttotal: 1.35s\tremaining: 3.37s\n", + "286:\tlearn: 0.1295963\ttotal: 1.35s\tremaining: 3.36s\n", + "287:\tlearn: 0.1292723\ttotal: 1.35s\tremaining: 3.35s\n", + "288:\tlearn: 0.1291040\ttotal: 1.36s\tremaining: 3.34s\n", + "289:\tlearn: 0.1287361\ttotal: 1.36s\tremaining: 3.33s\n", + "290:\tlearn: 0.1284628\ttotal: 1.36s\tremaining: 3.32s\n", + "291:\tlearn: 0.1279971\ttotal: 1.36s\tremaining: 3.31s\n", + "292:\tlearn: 0.1278259\ttotal: 1.37s\tremaining: 3.3s\n", + "293:\tlearn: 0.1275389\ttotal: 1.37s\tremaining: 3.29s\n", + "294:\tlearn: 0.1271355\ttotal: 1.37s\tremaining: 3.27s\n", + "295:\tlearn: 0.1270207\ttotal: 1.37s\tremaining: 3.27s\n", + "296:\tlearn: 0.1266130\ttotal: 1.38s\tremaining: 3.26s\n", + "297:\tlearn: 0.1262955\ttotal: 1.38s\tremaining: 3.25s\n", + "298:\tlearn: 0.1258245\ttotal: 1.39s\tremaining: 3.25s\n", + "299:\tlearn: 0.1255384\ttotal: 1.39s\tremaining: 3.24s\n", + "300:\tlearn: 0.1252229\ttotal: 1.39s\tremaining: 3.23s\n", + "301:\tlearn: 0.1250062\ttotal: 1.39s\tremaining: 3.22s\n", + "302:\tlearn: 0.1248039\ttotal: 1.4s\tremaining: 3.21s\n", + "303:\tlearn: 0.1244766\ttotal: 1.4s\tremaining: 3.2s\n", + "304:\tlearn: 0.1242299\ttotal: 1.4s\tremaining: 3.19s\n", + "305:\tlearn: 0.1241197\ttotal: 1.4s\tremaining: 3.18s\n", + "306:\tlearn: 0.1239863\ttotal: 1.41s\tremaining: 3.17s\n", + "307:\tlearn: 0.1238526\ttotal: 1.41s\tremaining: 3.18s\n", + "308:\tlearn: 0.1235945\ttotal: 1.42s\tremaining: 3.17s\n", + "309:\tlearn: 0.1234739\ttotal: 1.42s\tremaining: 3.16s\n", + "310:\tlearn: 0.1233509\ttotal: 1.42s\tremaining: 3.15s\n", + "311:\tlearn: 0.1230199\ttotal: 1.42s\tremaining: 3.14s\n", + "312:\tlearn: 0.1227818\ttotal: 1.43s\tremaining: 3.13s\n", + "313:\tlearn: 0.1225237\ttotal: 1.43s\tremaining: 3.12s\n", + "314:\tlearn: 0.1222996\ttotal: 1.44s\tremaining: 3.12s\n", + "315:\tlearn: 0.1221290\ttotal: 1.44s\tremaining: 3.11s\n", + "316:\tlearn: 0.1217690\ttotal: 1.44s\tremaining: 3.11s\n", + "317:\tlearn: 0.1214937\ttotal: 1.44s\tremaining: 3.1s\n", + "318:\tlearn: 0.1212486\ttotal: 1.45s\tremaining: 3.09s\n", + "319:\tlearn: 0.1210128\ttotal: 1.45s\tremaining: 3.08s\n", + "320:\tlearn: 0.1208361\ttotal: 1.45s\tremaining: 3.07s\n", + "321:\tlearn: 0.1206051\ttotal: 1.45s\tremaining: 3.06s\n", + "322:\tlearn: 0.1204995\ttotal: 1.46s\tremaining: 3.05s\n", + "323:\tlearn: 0.1202224\ttotal: 1.46s\tremaining: 3.04s\n", + "324:\tlearn: 0.1200639\ttotal: 1.46s\tremaining: 3.03s\n", + "325:\tlearn: 0.1198445\ttotal: 1.47s\tremaining: 3.03s\n", + "326:\tlearn: 0.1196699\ttotal: 1.48s\tremaining: 3.04s\n", + "327:\tlearn: 0.1194706\ttotal: 1.48s\tremaining: 3.03s\n", + "328:\tlearn: 0.1192237\ttotal: 1.48s\tremaining: 3.02s\n", + "329:\tlearn: 0.1188678\ttotal: 1.48s\tremaining: 3.01s\n", + "330:\tlearn: 0.1186686\ttotal: 1.49s\tremaining: 3s\n", + "331:\tlearn: 0.1184714\ttotal: 1.49s\tremaining: 2.99s\n", + "332:\tlearn: 0.1182867\ttotal: 1.49s\tremaining: 2.98s\n", + "333:\tlearn: 0.1181905\ttotal: 1.49s\tremaining: 2.98s\n", + "334:\tlearn: 0.1179812\ttotal: 1.5s\tremaining: 2.98s\n", + "335:\tlearn: 0.1178469\ttotal: 1.5s\tremaining: 2.97s\n", + "336:\tlearn: 0.1176935\ttotal: 1.51s\tremaining: 2.97s\n", + "337:\tlearn: 0.1173319\ttotal: 1.52s\tremaining: 2.97s\n", + "338:\tlearn: 0.1171148\ttotal: 1.52s\tremaining: 2.97s\n", + "339:\tlearn: 0.1169033\ttotal: 1.53s\tremaining: 2.97s\n", + "340:\tlearn: 0.1166610\ttotal: 1.53s\tremaining: 2.96s\n", + "341:\tlearn: 0.1164437\ttotal: 1.54s\tremaining: 2.96s\n", + "342:\tlearn: 0.1163593\ttotal: 1.54s\tremaining: 2.96s\n", + "343:\tlearn: 0.1161029\ttotal: 1.55s\tremaining: 2.95s\n", + "344:\tlearn: 0.1159817\ttotal: 1.55s\tremaining: 2.95s\n", + "345:\tlearn: 0.1157937\ttotal: 1.56s\tremaining: 2.95s\n", + "346:\tlearn: 0.1155790\ttotal: 1.57s\tremaining: 2.95s\n", + "347:\tlearn: 0.1153122\ttotal: 1.57s\tremaining: 2.94s\n", + "348:\tlearn: 0.1151673\ttotal: 1.58s\tremaining: 2.95s\n", + "349:\tlearn: 0.1150100\ttotal: 1.59s\tremaining: 2.95s\n", + "350:\tlearn: 0.1148563\ttotal: 1.59s\tremaining: 2.94s\n", + "351:\tlearn: 0.1146787\ttotal: 1.6s\tremaining: 2.94s\n", + "352:\tlearn: 0.1145505\ttotal: 1.6s\tremaining: 2.94s\n", + "353:\tlearn: 0.1143486\ttotal: 1.61s\tremaining: 2.94s\n", + "354:\tlearn: 0.1140707\ttotal: 1.61s\tremaining: 2.93s\n", + "355:\tlearn: 0.1138709\ttotal: 1.62s\tremaining: 2.93s\n", + "356:\tlearn: 0.1136429\ttotal: 1.64s\tremaining: 2.96s\n", + "357:\tlearn: 0.1133291\ttotal: 1.65s\tremaining: 2.95s\n", + "358:\tlearn: 0.1132170\ttotal: 1.65s\tremaining: 2.95s\n", + "359:\tlearn: 0.1128818\ttotal: 1.66s\tremaining: 2.95s\n", + "360:\tlearn: 0.1126880\ttotal: 1.67s\tremaining: 2.95s\n", + "361:\tlearn: 0.1125311\ttotal: 1.68s\tremaining: 2.96s\n", + "362:\tlearn: 0.1123430\ttotal: 1.69s\tremaining: 2.96s\n", + "363:\tlearn: 0.1121392\ttotal: 1.69s\tremaining: 2.95s\n", + "364:\tlearn: 0.1119299\ttotal: 1.7s\tremaining: 2.95s\n", + "365:\tlearn: 0.1117828\ttotal: 1.7s\tremaining: 2.95s\n", + "366:\tlearn: 0.1116225\ttotal: 1.71s\tremaining: 2.95s\n", + "367:\tlearn: 0.1114235\ttotal: 1.72s\tremaining: 2.95s\n", + "368:\tlearn: 0.1112805\ttotal: 1.72s\tremaining: 2.94s\n", + "369:\tlearn: 0.1111429\ttotal: 1.73s\tremaining: 2.94s\n", + "370:\tlearn: 0.1109570\ttotal: 1.73s\tremaining: 2.94s\n", + "371:\tlearn: 0.1108481\ttotal: 1.73s\tremaining: 2.93s\n", + "372:\tlearn: 0.1106359\ttotal: 1.74s\tremaining: 2.92s\n", + "373:\tlearn: 0.1105023\ttotal: 1.74s\tremaining: 2.91s\n", + "374:\tlearn: 0.1103203\ttotal: 1.74s\tremaining: 2.9s\n", + "375:\tlearn: 0.1101388\ttotal: 1.74s\tremaining: 2.89s\n", + "376:\tlearn: 0.1100839\ttotal: 1.75s\tremaining: 2.88s\n", + "377:\tlearn: 0.1098753\ttotal: 1.75s\tremaining: 2.88s\n", + "378:\tlearn: 0.1097017\ttotal: 1.75s\tremaining: 2.87s\n", + "379:\tlearn: 0.1094342\ttotal: 1.76s\tremaining: 2.87s\n", + "380:\tlearn: 0.1092690\ttotal: 1.76s\tremaining: 2.86s\n", + "381:\tlearn: 0.1090282\ttotal: 1.76s\tremaining: 2.85s\n", + "382:\tlearn: 0.1088353\ttotal: 1.77s\tremaining: 2.85s\n", + "383:\tlearn: 0.1087221\ttotal: 1.77s\tremaining: 2.84s\n", + "384:\tlearn: 0.1085451\ttotal: 1.77s\tremaining: 2.83s\n", + "385:\tlearn: 0.1083861\ttotal: 1.77s\tremaining: 2.82s\n", + "386:\tlearn: 0.1081982\ttotal: 1.78s\tremaining: 2.81s\n", + "387:\tlearn: 0.1080621\ttotal: 1.78s\tremaining: 2.81s\n", + "388:\tlearn: 0.1078497\ttotal: 1.78s\tremaining: 2.8s\n", + "389:\tlearn: 0.1077588\ttotal: 1.78s\tremaining: 2.79s\n", + "390:\tlearn: 0.1075791\ttotal: 1.79s\tremaining: 2.78s\n", + "391:\tlearn: 0.1073439\ttotal: 1.79s\tremaining: 2.77s\n", + "392:\tlearn: 0.1071850\ttotal: 1.79s\tremaining: 2.77s\n", + "393:\tlearn: 0.1070269\ttotal: 1.79s\tremaining: 2.76s\n", + "394:\tlearn: 0.1068774\ttotal: 1.8s\tremaining: 2.75s\n", + "395:\tlearn: 0.1064973\ttotal: 1.8s\tremaining: 2.74s\n", + "396:\tlearn: 0.1063613\ttotal: 1.8s\tremaining: 2.73s\n", + "397:\tlearn: 0.1060743\ttotal: 1.8s\tremaining: 2.73s\n", + "398:\tlearn: 0.1059140\ttotal: 1.81s\tremaining: 2.72s\n", + "399:\tlearn: 0.1057711\ttotal: 1.81s\tremaining: 2.72s\n", + "400:\tlearn: 0.1056602\ttotal: 1.81s\tremaining: 2.71s\n", + "401:\tlearn: 0.1054928\ttotal: 1.81s\tremaining: 2.7s\n", + "402:\tlearn: 0.1052749\ttotal: 1.82s\tremaining: 2.69s\n", + "403:\tlearn: 0.1051196\ttotal: 1.82s\tremaining: 2.69s\n", + "404:\tlearn: 0.1049463\ttotal: 1.83s\tremaining: 2.68s\n", + "405:\tlearn: 0.1048502\ttotal: 1.83s\tremaining: 2.68s\n", + "406:\tlearn: 0.1046702\ttotal: 1.83s\tremaining: 2.67s\n", + "407:\tlearn: 0.1045636\ttotal: 1.83s\tremaining: 2.66s\n", + "408:\tlearn: 0.1043588\ttotal: 1.84s\tremaining: 2.65s\n", + "409:\tlearn: 0.1042497\ttotal: 1.84s\tremaining: 2.65s\n", + "410:\tlearn: 0.1040851\ttotal: 1.84s\tremaining: 2.64s\n", + "411:\tlearn: 0.1039647\ttotal: 1.84s\tremaining: 2.63s\n", + "412:\tlearn: 0.1037919\ttotal: 1.85s\tremaining: 2.62s\n", + "413:\tlearn: 0.1036258\ttotal: 1.85s\tremaining: 2.62s\n", + "414:\tlearn: 0.1035191\ttotal: 1.85s\tremaining: 2.61s\n", + "415:\tlearn: 0.1034525\ttotal: 1.85s\tremaining: 2.6s\n", + "416:\tlearn: 0.1032562\ttotal: 1.86s\tremaining: 2.6s\n", + "417:\tlearn: 0.1030816\ttotal: 1.86s\tremaining: 2.59s\n", + "418:\tlearn: 0.1029151\ttotal: 1.86s\tremaining: 2.58s\n", + "419:\tlearn: 0.1027855\ttotal: 1.86s\tremaining: 2.57s\n", + "420:\tlearn: 0.1026818\ttotal: 1.87s\tremaining: 2.57s\n", + "421:\tlearn: 0.1025336\ttotal: 1.87s\tremaining: 2.56s\n", + "422:\tlearn: 0.1024146\ttotal: 1.87s\tremaining: 2.55s\n", + "423:\tlearn: 0.1022499\ttotal: 1.87s\tremaining: 2.55s\n", + "424:\tlearn: 0.1021822\ttotal: 1.88s\tremaining: 2.54s\n", + "425:\tlearn: 0.1020562\ttotal: 1.88s\tremaining: 2.53s\n", + "426:\tlearn: 0.1019687\ttotal: 1.88s\tremaining: 2.52s\n", + "427:\tlearn: 0.1018126\ttotal: 1.89s\tremaining: 2.52s\n", + "428:\tlearn: 0.1016359\ttotal: 1.89s\tremaining: 2.51s\n", + "429:\tlearn: 0.1014920\ttotal: 1.89s\tremaining: 2.5s\n", + "430:\tlearn: 0.1013147\ttotal: 1.89s\tremaining: 2.5s\n", + "431:\tlearn: 0.1011050\ttotal: 1.89s\tremaining: 2.49s\n", + "432:\tlearn: 0.1009617\ttotal: 1.9s\tremaining: 2.49s\n", + "433:\tlearn: 0.1008176\ttotal: 1.9s\tremaining: 2.48s\n", + "434:\tlearn: 0.1006949\ttotal: 1.9s\tremaining: 2.47s\n", + "435:\tlearn: 0.1005106\ttotal: 1.91s\tremaining: 2.46s\n", + "436:\tlearn: 0.1003753\ttotal: 1.91s\tremaining: 2.46s\n", + "437:\tlearn: 0.1002684\ttotal: 1.91s\tremaining: 2.45s\n", + "438:\tlearn: 0.0999438\ttotal: 1.91s\tremaining: 2.44s\n", + "439:\tlearn: 0.0997566\ttotal: 1.92s\tremaining: 2.44s\n", + "440:\tlearn: 0.0995978\ttotal: 1.92s\tremaining: 2.43s\n", + "441:\tlearn: 0.0994563\ttotal: 1.92s\tremaining: 2.42s\n", + "442:\tlearn: 0.0993647\ttotal: 1.92s\tremaining: 2.42s\n", + "443:\tlearn: 0.0992442\ttotal: 1.93s\tremaining: 2.41s\n", + "444:\tlearn: 0.0991435\ttotal: 1.93s\tremaining: 2.41s\n", + "445:\tlearn: 0.0990358\ttotal: 1.94s\tremaining: 2.41s\n", + "446:\tlearn: 0.0989293\ttotal: 1.94s\tremaining: 2.4s\n", + "447:\tlearn: 0.0987387\ttotal: 1.94s\tremaining: 2.39s\n", + "448:\tlearn: 0.0985844\ttotal: 1.95s\tremaining: 2.39s\n", + "449:\tlearn: 0.0984699\ttotal: 1.95s\tremaining: 2.38s\n", + "450:\tlearn: 0.0983939\ttotal: 1.95s\tremaining: 2.37s\n", + "451:\tlearn: 0.0982824\ttotal: 1.95s\tremaining: 2.37s\n", + "452:\tlearn: 0.0980966\ttotal: 1.96s\tremaining: 2.36s\n", + "453:\tlearn: 0.0978980\ttotal: 1.96s\tremaining: 2.35s\n", + "454:\tlearn: 0.0977813\ttotal: 1.96s\tremaining: 2.35s\n", + "455:\tlearn: 0.0976547\ttotal: 1.96s\tremaining: 2.34s\n", + "456:\tlearn: 0.0975854\ttotal: 1.97s\tremaining: 2.33s\n", + "457:\tlearn: 0.0974960\ttotal: 1.97s\tremaining: 2.33s\n", + "458:\tlearn: 0.0973511\ttotal: 1.97s\tremaining: 2.32s\n", + "459:\tlearn: 0.0972668\ttotal: 1.97s\tremaining: 2.31s\n", + "460:\tlearn: 0.0971482\ttotal: 1.97s\tremaining: 2.31s\n", + "461:\tlearn: 0.0969072\ttotal: 1.98s\tremaining: 2.3s\n", + "462:\tlearn: 0.0967424\ttotal: 1.98s\tremaining: 2.3s\n", + "463:\tlearn: 0.0966153\ttotal: 1.98s\tremaining: 2.29s\n", + "464:\tlearn: 0.0965003\ttotal: 1.98s\tremaining: 2.28s\n", + "465:\tlearn: 0.0963278\ttotal: 1.99s\tremaining: 2.28s\n", + "466:\tlearn: 0.0962317\ttotal: 1.99s\tremaining: 2.27s\n", + "467:\tlearn: 0.0961061\ttotal: 1.99s\tremaining: 2.26s\n", + "468:\tlearn: 0.0960010\ttotal: 1.99s\tremaining: 2.26s\n", + "469:\tlearn: 0.0959290\ttotal: 2s\tremaining: 2.25s\n", + "470:\tlearn: 0.0957587\ttotal: 2s\tremaining: 2.25s\n", + "471:\tlearn: 0.0955289\ttotal: 2s\tremaining: 2.24s\n", + "472:\tlearn: 0.0953730\ttotal: 2s\tremaining: 2.23s\n", + "473:\tlearn: 0.0952983\ttotal: 2s\tremaining: 2.23s\n", + "474:\tlearn: 0.0951988\ttotal: 2.01s\tremaining: 2.22s\n", + "475:\tlearn: 0.0950285\ttotal: 2.01s\tremaining: 2.21s\n", + "476:\tlearn: 0.0949102\ttotal: 2.02s\tremaining: 2.22s\n", + "477:\tlearn: 0.0948083\ttotal: 2.03s\tremaining: 2.22s\n", + "478:\tlearn: 0.0946577\ttotal: 2.04s\tremaining: 2.21s\n", + "479:\tlearn: 0.0945629\ttotal: 2.04s\tremaining: 2.21s\n", + "480:\tlearn: 0.0944648\ttotal: 2.05s\tremaining: 2.21s\n", + "481:\tlearn: 0.0942909\ttotal: 2.06s\tremaining: 2.21s\n", + "482:\tlearn: 0.0942206\ttotal: 2.06s\tremaining: 2.21s\n", + "483:\tlearn: 0.0940930\ttotal: 2.07s\tremaining: 2.2s\n", + "484:\tlearn: 0.0939632\ttotal: 2.07s\tremaining: 2.2s\n", + "485:\tlearn: 0.0938012\ttotal: 2.08s\tremaining: 2.2s\n", + "486:\tlearn: 0.0936591\ttotal: 2.08s\tremaining: 2.19s\n", + "487:\tlearn: 0.0935614\ttotal: 2.08s\tremaining: 2.18s\n", + "488:\tlearn: 0.0934356\ttotal: 2.08s\tremaining: 2.18s\n", + "489:\tlearn: 0.0933610\ttotal: 2.09s\tremaining: 2.17s\n", + "490:\tlearn: 0.0932067\ttotal: 2.09s\tremaining: 2.16s\n", + "491:\tlearn: 0.0930995\ttotal: 2.09s\tremaining: 2.16s\n", + "492:\tlearn: 0.0930241\ttotal: 2.09s\tremaining: 2.15s\n", + "493:\tlearn: 0.0928673\ttotal: 2.1s\tremaining: 2.15s\n", + "494:\tlearn: 0.0927228\ttotal: 2.1s\tremaining: 2.14s\n", + "495:\tlearn: 0.0925866\ttotal: 2.1s\tremaining: 2.13s\n", + "496:\tlearn: 0.0923955\ttotal: 2.11s\tremaining: 2.13s\n", + "497:\tlearn: 0.0922730\ttotal: 2.11s\tremaining: 2.13s\n", + "498:\tlearn: 0.0921602\ttotal: 2.12s\tremaining: 2.13s\n", + "499:\tlearn: 0.0920961\ttotal: 2.13s\tremaining: 2.13s\n", + "500:\tlearn: 0.0919898\ttotal: 2.13s\tremaining: 2.12s\n", + "501:\tlearn: 0.0918316\ttotal: 2.14s\tremaining: 2.12s\n", + "502:\tlearn: 0.0917063\ttotal: 2.14s\tremaining: 2.12s\n", + "503:\tlearn: 0.0915426\ttotal: 2.15s\tremaining: 2.12s\n", + "504:\tlearn: 0.0913782\ttotal: 2.16s\tremaining: 2.11s\n", + "505:\tlearn: 0.0913060\ttotal: 2.16s\tremaining: 2.11s\n", + "506:\tlearn: 0.0912261\ttotal: 2.17s\tremaining: 2.11s\n", + "507:\tlearn: 0.0911137\ttotal: 2.19s\tremaining: 2.12s\n", + "508:\tlearn: 0.0910054\ttotal: 2.2s\tremaining: 2.12s\n", + "509:\tlearn: 0.0908797\ttotal: 2.2s\tremaining: 2.12s\n", + "510:\tlearn: 0.0907636\ttotal: 2.21s\tremaining: 2.11s\n", + "511:\tlearn: 0.0906300\ttotal: 2.21s\tremaining: 2.11s\n", + "512:\tlearn: 0.0904772\ttotal: 2.22s\tremaining: 2.11s\n", + "513:\tlearn: 0.0903564\ttotal: 2.23s\tremaining: 2.11s\n", + "514:\tlearn: 0.0902763\ttotal: 2.23s\tremaining: 2.1s\n", + "515:\tlearn: 0.0901764\ttotal: 2.24s\tremaining: 2.1s\n", + "516:\tlearn: 0.0900650\ttotal: 2.25s\tremaining: 2.1s\n", + "517:\tlearn: 0.0899991\ttotal: 2.25s\tremaining: 2.09s\n", + "518:\tlearn: 0.0898707\ttotal: 2.26s\tremaining: 2.09s\n", + "519:\tlearn: 0.0897334\ttotal: 2.26s\tremaining: 2.09s\n", + "520:\tlearn: 0.0895497\ttotal: 2.27s\tremaining: 2.08s\n", + "521:\tlearn: 0.0894531\ttotal: 2.27s\tremaining: 2.08s\n", + "522:\tlearn: 0.0893391\ttotal: 2.28s\tremaining: 2.08s\n", + "523:\tlearn: 0.0892627\ttotal: 2.29s\tremaining: 2.08s\n", + "524:\tlearn: 0.0891778\ttotal: 2.3s\tremaining: 2.08s\n", + "525:\tlearn: 0.0890829\ttotal: 2.31s\tremaining: 2.08s\n", + "526:\tlearn: 0.0890056\ttotal: 2.31s\tremaining: 2.07s\n", + "527:\tlearn: 0.0888851\ttotal: 2.32s\tremaining: 2.07s\n", + "528:\tlearn: 0.0887776\ttotal: 2.32s\tremaining: 2.07s\n", + "529:\tlearn: 0.0886951\ttotal: 2.33s\tremaining: 2.06s\n", + "530:\tlearn: 0.0885691\ttotal: 2.33s\tremaining: 2.06s\n", + "531:\tlearn: 0.0884592\ttotal: 2.34s\tremaining: 2.06s\n", + "532:\tlearn: 0.0883485\ttotal: 2.35s\tremaining: 2.06s\n", + "533:\tlearn: 0.0882308\ttotal: 2.36s\tremaining: 2.06s\n", + "534:\tlearn: 0.0881707\ttotal: 2.36s\tremaining: 2.05s\n", + "535:\tlearn: 0.0881171\ttotal: 2.37s\tremaining: 2.05s\n", + "536:\tlearn: 0.0879827\ttotal: 2.38s\tremaining: 2.05s\n", + "537:\tlearn: 0.0878631\ttotal: 2.38s\tremaining: 2.04s\n", + "538:\tlearn: 0.0877661\ttotal: 2.38s\tremaining: 2.04s\n", + "539:\tlearn: 0.0876360\ttotal: 2.39s\tremaining: 2.04s\n", + "540:\tlearn: 0.0873916\ttotal: 2.4s\tremaining: 2.03s\n", + "541:\tlearn: 0.0872793\ttotal: 2.4s\tremaining: 2.03s\n", + "542:\tlearn: 0.0871409\ttotal: 2.41s\tremaining: 2.03s\n", + "543:\tlearn: 0.0870356\ttotal: 2.42s\tremaining: 2.02s\n", + "544:\tlearn: 0.0869378\ttotal: 2.42s\tremaining: 2.02s\n", + "545:\tlearn: 0.0868609\ttotal: 2.43s\tremaining: 2.02s\n", + "546:\tlearn: 0.0867523\ttotal: 2.44s\tremaining: 2.02s\n", + "547:\tlearn: 0.0866755\ttotal: 2.44s\tremaining: 2.01s\n", + "548:\tlearn: 0.0865493\ttotal: 2.45s\tremaining: 2.01s\n", + "549:\tlearn: 0.0864594\ttotal: 2.45s\tremaining: 2.01s\n", + "550:\tlearn: 0.0863861\ttotal: 2.46s\tremaining: 2s\n", + "551:\tlearn: 0.0863074\ttotal: 2.46s\tremaining: 2s\n", + "552:\tlearn: 0.0861169\ttotal: 2.47s\tremaining: 2s\n", + "553:\tlearn: 0.0860465\ttotal: 2.48s\tremaining: 1.99s\n", + "554:\tlearn: 0.0859025\ttotal: 2.5s\tremaining: 2s\n", + "555:\tlearn: 0.0857979\ttotal: 2.5s\tremaining: 2s\n", + "556:\tlearn: 0.0857194\ttotal: 2.5s\tremaining: 1.99s\n", + "557:\tlearn: 0.0856554\ttotal: 2.51s\tremaining: 1.99s\n", + "558:\tlearn: 0.0855635\ttotal: 2.52s\tremaining: 1.99s\n", + "559:\tlearn: 0.0854861\ttotal: 2.52s\tremaining: 1.98s\n", + "560:\tlearn: 0.0854254\ttotal: 2.53s\tremaining: 1.98s\n", + "561:\tlearn: 0.0853526\ttotal: 2.53s\tremaining: 1.97s\n", + "562:\tlearn: 0.0852504\ttotal: 2.53s\tremaining: 1.97s\n", + "563:\tlearn: 0.0851227\ttotal: 2.54s\tremaining: 1.96s\n", + "564:\tlearn: 0.0850575\ttotal: 2.54s\tremaining: 1.95s\n", + "565:\tlearn: 0.0849424\ttotal: 2.54s\tremaining: 1.95s\n", + "566:\tlearn: 0.0848572\ttotal: 2.54s\tremaining: 1.94s\n", + "567:\tlearn: 0.0847811\ttotal: 2.55s\tremaining: 1.94s\n", + "568:\tlearn: 0.0846414\ttotal: 2.55s\tremaining: 1.93s\n", + "569:\tlearn: 0.0845766\ttotal: 2.55s\tremaining: 1.93s\n", + "570:\tlearn: 0.0844828\ttotal: 2.56s\tremaining: 1.92s\n", + "571:\tlearn: 0.0844137\ttotal: 2.56s\tremaining: 1.91s\n", + "572:\tlearn: 0.0843158\ttotal: 2.56s\tremaining: 1.91s\n", + "573:\tlearn: 0.0842344\ttotal: 2.56s\tremaining: 1.9s\n", + "574:\tlearn: 0.0841617\ttotal: 2.57s\tremaining: 1.9s\n", + "575:\tlearn: 0.0840451\ttotal: 2.57s\tremaining: 1.89s\n", + "576:\tlearn: 0.0839175\ttotal: 2.58s\tremaining: 1.89s\n", + "577:\tlearn: 0.0837861\ttotal: 2.59s\tremaining: 1.89s\n", + "578:\tlearn: 0.0836804\ttotal: 2.59s\tremaining: 1.88s\n", + "579:\tlearn: 0.0835777\ttotal: 2.6s\tremaining: 1.88s\n", + "580:\tlearn: 0.0834783\ttotal: 2.6s\tremaining: 1.88s\n", + "581:\tlearn: 0.0834231\ttotal: 2.61s\tremaining: 1.87s\n", + "582:\tlearn: 0.0833405\ttotal: 2.61s\tremaining: 1.86s\n", + "583:\tlearn: 0.0832638\ttotal: 2.61s\tremaining: 1.86s\n", + "584:\tlearn: 0.0831156\ttotal: 2.61s\tremaining: 1.85s\n", + "585:\tlearn: 0.0830030\ttotal: 2.62s\tremaining: 1.85s\n", + "586:\tlearn: 0.0828963\ttotal: 2.62s\tremaining: 1.84s\n", + "587:\tlearn: 0.0828237\ttotal: 2.62s\tremaining: 1.84s\n", + "588:\tlearn: 0.0827022\ttotal: 2.62s\tremaining: 1.83s\n", + "589:\tlearn: 0.0826352\ttotal: 2.63s\tremaining: 1.82s\n", + "590:\tlearn: 0.0825443\ttotal: 2.63s\tremaining: 1.82s\n", + "591:\tlearn: 0.0824395\ttotal: 2.63s\tremaining: 1.81s\n", + "592:\tlearn: 0.0822920\ttotal: 2.63s\tremaining: 1.81s\n", + "593:\tlearn: 0.0821688\ttotal: 2.63s\tremaining: 1.8s\n", + "594:\tlearn: 0.0821143\ttotal: 2.64s\tremaining: 1.79s\n", + "595:\tlearn: 0.0820408\ttotal: 2.64s\tremaining: 1.79s\n", + "596:\tlearn: 0.0819461\ttotal: 2.64s\tremaining: 1.78s\n", + "597:\tlearn: 0.0818814\ttotal: 2.65s\tremaining: 1.78s\n", + "598:\tlearn: 0.0817622\ttotal: 2.65s\tremaining: 1.77s\n", + "599:\tlearn: 0.0816752\ttotal: 2.65s\tremaining: 1.77s\n", + "600:\tlearn: 0.0816008\ttotal: 2.65s\tremaining: 1.76s\n", + "601:\tlearn: 0.0815369\ttotal: 2.66s\tremaining: 1.76s\n", + "602:\tlearn: 0.0814624\ttotal: 2.66s\tremaining: 1.75s\n", + "603:\tlearn: 0.0813817\ttotal: 2.66s\tremaining: 1.74s\n", + "604:\tlearn: 0.0813063\ttotal: 2.66s\tremaining: 1.74s\n", + "605:\tlearn: 0.0812045\ttotal: 2.67s\tremaining: 1.73s\n", + "606:\tlearn: 0.0811262\ttotal: 2.67s\tremaining: 1.73s\n", + "607:\tlearn: 0.0810592\ttotal: 2.67s\tremaining: 1.72s\n", + "608:\tlearn: 0.0809376\ttotal: 2.67s\tremaining: 1.72s\n", + "609:\tlearn: 0.0808828\ttotal: 2.68s\tremaining: 1.71s\n", + "610:\tlearn: 0.0808133\ttotal: 2.68s\tremaining: 1.71s\n", + "611:\tlearn: 0.0807465\ttotal: 2.68s\tremaining: 1.7s\n", + "612:\tlearn: 0.0806753\ttotal: 2.68s\tremaining: 1.69s\n", + "613:\tlearn: 0.0805728\ttotal: 2.69s\tremaining: 1.69s\n", + "614:\tlearn: 0.0804596\ttotal: 2.69s\tremaining: 1.68s\n", + "615:\tlearn: 0.0803565\ttotal: 2.69s\tremaining: 1.68s\n", + "616:\tlearn: 0.0802994\ttotal: 2.69s\tremaining: 1.67s\n", + "617:\tlearn: 0.0802064\ttotal: 2.7s\tremaining: 1.67s\n", + "618:\tlearn: 0.0800975\ttotal: 2.7s\tremaining: 1.66s\n", + "619:\tlearn: 0.0800351\ttotal: 2.7s\tremaining: 1.66s\n", + "620:\tlearn: 0.0799261\ttotal: 2.7s\tremaining: 1.65s\n", + "621:\tlearn: 0.0798666\ttotal: 2.71s\tremaining: 1.64s\n", + "622:\tlearn: 0.0797829\ttotal: 2.71s\tremaining: 1.64s\n", + "623:\tlearn: 0.0796714\ttotal: 2.71s\tremaining: 1.63s\n", + "624:\tlearn: 0.0795660\ttotal: 2.71s\tremaining: 1.63s\n", + "625:\tlearn: 0.0795043\ttotal: 2.71s\tremaining: 1.62s\n", + "626:\tlearn: 0.0794379\ttotal: 2.72s\tremaining: 1.62s\n", + "627:\tlearn: 0.0793351\ttotal: 2.72s\tremaining: 1.61s\n", + "628:\tlearn: 0.0792678\ttotal: 2.72s\tremaining: 1.61s\n", + "629:\tlearn: 0.0792026\ttotal: 2.73s\tremaining: 1.6s\n", + "630:\tlearn: 0.0791066\ttotal: 2.73s\tremaining: 1.59s\n", + "631:\tlearn: 0.0790414\ttotal: 2.73s\tremaining: 1.59s\n", + "632:\tlearn: 0.0789828\ttotal: 2.73s\tremaining: 1.58s\n", + "633:\tlearn: 0.0788892\ttotal: 2.73s\tremaining: 1.58s\n", + "634:\tlearn: 0.0788063\ttotal: 2.74s\tremaining: 1.57s\n", + "635:\tlearn: 0.0787030\ttotal: 2.74s\tremaining: 1.57s\n", + "636:\tlearn: 0.0786382\ttotal: 2.75s\tremaining: 1.56s\n", + "637:\tlearn: 0.0785366\ttotal: 2.75s\tremaining: 1.56s\n", + "638:\tlearn: 0.0784427\ttotal: 2.75s\tremaining: 1.55s\n", + "639:\tlearn: 0.0783647\ttotal: 2.75s\tremaining: 1.55s\n", + "640:\tlearn: 0.0782923\ttotal: 2.76s\tremaining: 1.54s\n", + "641:\tlearn: 0.0782246\ttotal: 2.76s\tremaining: 1.54s\n", + "642:\tlearn: 0.0781398\ttotal: 2.76s\tremaining: 1.53s\n", + "643:\tlearn: 0.0780541\ttotal: 2.77s\tremaining: 1.53s\n", + "644:\tlearn: 0.0780053\ttotal: 2.77s\tremaining: 1.52s\n", + "645:\tlearn: 0.0779471\ttotal: 2.77s\tremaining: 1.52s\n", + "646:\tlearn: 0.0778585\ttotal: 2.77s\tremaining: 1.51s\n", + "647:\tlearn: 0.0777599\ttotal: 2.77s\tremaining: 1.51s\n", + "648:\tlearn: 0.0775591\ttotal: 2.78s\tremaining: 1.5s\n", + "649:\tlearn: 0.0774398\ttotal: 2.78s\tremaining: 1.5s\n", + "650:\tlearn: 0.0772899\ttotal: 2.78s\tremaining: 1.49s\n", + "651:\tlearn: 0.0771875\ttotal: 2.78s\tremaining: 1.49s\n", + "652:\tlearn: 0.0771351\ttotal: 2.79s\tremaining: 1.48s\n", + "653:\tlearn: 0.0770460\ttotal: 2.79s\tremaining: 1.48s\n", + "654:\tlearn: 0.0769966\ttotal: 2.8s\tremaining: 1.47s\n", + "655:\tlearn: 0.0768929\ttotal: 2.8s\tremaining: 1.47s\n", + "656:\tlearn: 0.0767858\ttotal: 2.8s\tremaining: 1.46s\n", + "657:\tlearn: 0.0767145\ttotal: 2.8s\tremaining: 1.46s\n", + "658:\tlearn: 0.0766502\ttotal: 2.81s\tremaining: 1.45s\n", + "659:\tlearn: 0.0765604\ttotal: 2.81s\tremaining: 1.45s\n", + "660:\tlearn: 0.0764643\ttotal: 2.81s\tremaining: 1.44s\n", + "661:\tlearn: 0.0763837\ttotal: 2.81s\tremaining: 1.44s\n", + "662:\tlearn: 0.0763275\ttotal: 2.81s\tremaining: 1.43s\n", + "663:\tlearn: 0.0762560\ttotal: 2.82s\tremaining: 1.43s\n", + "664:\tlearn: 0.0761727\ttotal: 2.82s\tremaining: 1.42s\n", + "665:\tlearn: 0.0761146\ttotal: 2.83s\tremaining: 1.42s\n", + "666:\tlearn: 0.0759808\ttotal: 2.83s\tremaining: 1.41s\n", + "667:\tlearn: 0.0759216\ttotal: 2.83s\tremaining: 1.41s\n", + "668:\tlearn: 0.0758432\ttotal: 2.83s\tremaining: 1.4s\n", + "669:\tlearn: 0.0757010\ttotal: 2.84s\tremaining: 1.4s\n", + "670:\tlearn: 0.0756276\ttotal: 2.85s\tremaining: 1.4s\n", + "671:\tlearn: 0.0755637\ttotal: 2.86s\tremaining: 1.39s\n", + "672:\tlearn: 0.0755159\ttotal: 2.86s\tremaining: 1.39s\n", + "673:\tlearn: 0.0754652\ttotal: 2.86s\tremaining: 1.38s\n", + "674:\tlearn: 0.0753850\ttotal: 2.86s\tremaining: 1.38s\n", + "675:\tlearn: 0.0753090\ttotal: 2.87s\tremaining: 1.37s\n", + "676:\tlearn: 0.0752180\ttotal: 2.87s\tremaining: 1.37s\n", + "677:\tlearn: 0.0751450\ttotal: 2.87s\tremaining: 1.36s\n", + "678:\tlearn: 0.0750765\ttotal: 2.87s\tremaining: 1.36s\n", + "679:\tlearn: 0.0749644\ttotal: 2.88s\tremaining: 1.35s\n", + "680:\tlearn: 0.0749088\ttotal: 2.88s\tremaining: 1.35s\n", + "681:\tlearn: 0.0748607\ttotal: 2.88s\tremaining: 1.34s\n", + "682:\tlearn: 0.0747445\ttotal: 2.88s\tremaining: 1.34s\n", + "683:\tlearn: 0.0746717\ttotal: 2.88s\tremaining: 1.33s\n", + "684:\tlearn: 0.0745924\ttotal: 2.89s\tremaining: 1.33s\n", + "685:\tlearn: 0.0745277\ttotal: 2.89s\tremaining: 1.32s\n", + "686:\tlearn: 0.0744493\ttotal: 2.89s\tremaining: 1.32s\n", + "687:\tlearn: 0.0743293\ttotal: 2.89s\tremaining: 1.31s\n", + "688:\tlearn: 0.0742509\ttotal: 2.9s\tremaining: 1.31s\n", + "689:\tlearn: 0.0741803\ttotal: 2.9s\tremaining: 1.3s\n", + "690:\tlearn: 0.0740739\ttotal: 2.9s\tremaining: 1.3s\n", + "691:\tlearn: 0.0739950\ttotal: 2.9s\tremaining: 1.29s\n", + "692:\tlearn: 0.0738349\ttotal: 2.91s\tremaining: 1.29s\n", + "693:\tlearn: 0.0737550\ttotal: 2.91s\tremaining: 1.28s\n", + "694:\tlearn: 0.0736621\ttotal: 2.91s\tremaining: 1.28s\n", + "695:\tlearn: 0.0735729\ttotal: 2.92s\tremaining: 1.27s\n", + "696:\tlearn: 0.0734402\ttotal: 2.92s\tremaining: 1.27s\n", + "697:\tlearn: 0.0733778\ttotal: 2.92s\tremaining: 1.26s\n", + "698:\tlearn: 0.0732947\ttotal: 2.92s\tremaining: 1.26s\n", + "699:\tlearn: 0.0732288\ttotal: 2.92s\tremaining: 1.25s\n", + "700:\tlearn: 0.0731627\ttotal: 2.93s\tremaining: 1.25s\n", + "701:\tlearn: 0.0730953\ttotal: 2.93s\tremaining: 1.24s\n", + "702:\tlearn: 0.0730364\ttotal: 2.94s\tremaining: 1.24s\n", + "703:\tlearn: 0.0729544\ttotal: 2.94s\tremaining: 1.24s\n", + "704:\tlearn: 0.0728753\ttotal: 2.95s\tremaining: 1.23s\n", + "705:\tlearn: 0.0727651\ttotal: 2.95s\tremaining: 1.23s\n", + "706:\tlearn: 0.0726887\ttotal: 2.96s\tremaining: 1.23s\n", + "707:\tlearn: 0.0725906\ttotal: 2.97s\tremaining: 1.23s\n", + "708:\tlearn: 0.0725241\ttotal: 2.97s\tremaining: 1.22s\n", + "709:\tlearn: 0.0724748\ttotal: 2.98s\tremaining: 1.22s\n", + "710:\tlearn: 0.0723669\ttotal: 2.98s\tremaining: 1.21s\n", + "711:\tlearn: 0.0722889\ttotal: 2.99s\tremaining: 1.21s\n", + "712:\tlearn: 0.0722267\ttotal: 3s\tremaining: 1.21s\n", + "713:\tlearn: 0.0721705\ttotal: 3.01s\tremaining: 1.2s\n", + "714:\tlearn: 0.0720792\ttotal: 3.01s\tremaining: 1.2s\n", + "715:\tlearn: 0.0720185\ttotal: 3.02s\tremaining: 1.2s\n", + "716:\tlearn: 0.0718847\ttotal: 3.02s\tremaining: 1.19s\n", + "717:\tlearn: 0.0718519\ttotal: 3.03s\tremaining: 1.19s\n", + "718:\tlearn: 0.0717669\ttotal: 3.04s\tremaining: 1.19s\n", + "719:\tlearn: 0.0717396\ttotal: 3.04s\tremaining: 1.18s\n", + "720:\tlearn: 0.0716751\ttotal: 3.05s\tremaining: 1.18s\n", + "721:\tlearn: 0.0715775\ttotal: 3.05s\tremaining: 1.17s\n", + "722:\tlearn: 0.0714898\ttotal: 3.06s\tremaining: 1.17s\n", + "723:\tlearn: 0.0714107\ttotal: 3.06s\tremaining: 1.17s\n", + "724:\tlearn: 0.0713289\ttotal: 3.06s\tremaining: 1.16s\n", + "725:\tlearn: 0.0712843\ttotal: 3.07s\tremaining: 1.16s\n", + "726:\tlearn: 0.0712276\ttotal: 3.08s\tremaining: 1.16s\n", + "727:\tlearn: 0.0711714\ttotal: 3.08s\tremaining: 1.15s\n", + "728:\tlearn: 0.0710879\ttotal: 3.09s\tremaining: 1.15s\n", + "729:\tlearn: 0.0709838\ttotal: 3.1s\tremaining: 1.14s\n", + "730:\tlearn: 0.0709259\ttotal: 3.1s\tremaining: 1.14s\n", + "731:\tlearn: 0.0708800\ttotal: 3.11s\tremaining: 1.14s\n", + "732:\tlearn: 0.0708077\ttotal: 3.12s\tremaining: 1.14s\n", + "733:\tlearn: 0.0707495\ttotal: 3.13s\tremaining: 1.13s\n", + "734:\tlearn: 0.0706945\ttotal: 3.13s\tremaining: 1.13s\n", + "735:\tlearn: 0.0706338\ttotal: 3.14s\tremaining: 1.13s\n", + "736:\tlearn: 0.0705648\ttotal: 3.14s\tremaining: 1.12s\n", + "737:\tlearn: 0.0705034\ttotal: 3.14s\tremaining: 1.11s\n", + "738:\tlearn: 0.0704336\ttotal: 3.16s\tremaining: 1.11s\n", + "739:\tlearn: 0.0703907\ttotal: 3.16s\tremaining: 1.11s\n", + "740:\tlearn: 0.0702961\ttotal: 3.16s\tremaining: 1.1s\n", + "741:\tlearn: 0.0701839\ttotal: 3.16s\tremaining: 1.1s\n", + "742:\tlearn: 0.0700681\ttotal: 3.17s\tremaining: 1.09s\n", + "743:\tlearn: 0.0700110\ttotal: 3.17s\tremaining: 1.09s\n", + "744:\tlearn: 0.0699675\ttotal: 3.17s\tremaining: 1.08s\n", + "745:\tlearn: 0.0698830\ttotal: 3.17s\tremaining: 1.08s\n", + "746:\tlearn: 0.0698316\ttotal: 3.18s\tremaining: 1.07s\n", + "747:\tlearn: 0.0697637\ttotal: 3.18s\tremaining: 1.07s\n", + "748:\tlearn: 0.0697024\ttotal: 3.18s\tremaining: 1.06s\n", + "749:\tlearn: 0.0696250\ttotal: 3.18s\tremaining: 1.06s\n", + "750:\tlearn: 0.0695616\ttotal: 3.19s\tremaining: 1.06s\n", + "751:\tlearn: 0.0694971\ttotal: 3.19s\tremaining: 1.05s\n", + "752:\tlearn: 0.0693720\ttotal: 3.19s\tremaining: 1.05s\n", + "753:\tlearn: 0.0692833\ttotal: 3.19s\tremaining: 1.04s\n", + "754:\tlearn: 0.0692302\ttotal: 3.19s\tremaining: 1.04s\n", + "755:\tlearn: 0.0691834\ttotal: 3.2s\tremaining: 1.03s\n", + "756:\tlearn: 0.0691097\ttotal: 3.21s\tremaining: 1.03s\n", + "757:\tlearn: 0.0689715\ttotal: 3.21s\tremaining: 1.02s\n", + "758:\tlearn: 0.0689262\ttotal: 3.21s\tremaining: 1.02s\n", + "759:\tlearn: 0.0688585\ttotal: 3.21s\tremaining: 1.01s\n", + "760:\tlearn: 0.0687907\ttotal: 3.22s\tremaining: 1.01s\n", + "761:\tlearn: 0.0687679\ttotal: 3.22s\tremaining: 1s\n", + "762:\tlearn: 0.0686877\ttotal: 3.22s\tremaining: 1s\n", + "763:\tlearn: 0.0686086\ttotal: 3.22s\tremaining: 995ms\n", + "764:\tlearn: 0.0685407\ttotal: 3.22s\tremaining: 990ms\n", + "765:\tlearn: 0.0684078\ttotal: 3.23s\tremaining: 986ms\n", + "766:\tlearn: 0.0683421\ttotal: 3.23s\tremaining: 981ms\n", + "767:\tlearn: 0.0682599\ttotal: 3.24s\tremaining: 979ms\n", + "768:\tlearn: 0.0682031\ttotal: 3.25s\tremaining: 976ms\n", + "769:\tlearn: 0.0681032\ttotal: 3.26s\tremaining: 974ms\n", + "770:\tlearn: 0.0680396\ttotal: 3.26s\tremaining: 970ms\n", + "771:\tlearn: 0.0679983\ttotal: 3.27s\tremaining: 965ms\n", + "772:\tlearn: 0.0679302\ttotal: 3.27s\tremaining: 961ms\n", + "773:\tlearn: 0.0678792\ttotal: 3.27s\tremaining: 956ms\n", + "774:\tlearn: 0.0678239\ttotal: 3.27s\tremaining: 951ms\n", + "775:\tlearn: 0.0677492\ttotal: 3.28s\tremaining: 946ms\n", + "776:\tlearn: 0.0676609\ttotal: 3.28s\tremaining: 941ms\n", + "777:\tlearn: 0.0675923\ttotal: 3.28s\tremaining: 937ms\n", + "778:\tlearn: 0.0675496\ttotal: 3.29s\tremaining: 932ms\n", + "779:\tlearn: 0.0674600\ttotal: 3.29s\tremaining: 927ms\n", + "780:\tlearn: 0.0673923\ttotal: 3.29s\tremaining: 923ms\n", + "781:\tlearn: 0.0673166\ttotal: 3.29s\tremaining: 918ms\n", + "782:\tlearn: 0.0672582\ttotal: 3.29s\tremaining: 913ms\n", + "783:\tlearn: 0.0671924\ttotal: 3.3s\tremaining: 909ms\n", + "784:\tlearn: 0.0671647\ttotal: 3.3s\tremaining: 904ms\n", + "785:\tlearn: 0.0670636\ttotal: 3.3s\tremaining: 900ms\n", + "786:\tlearn: 0.0670048\ttotal: 3.31s\tremaining: 895ms\n", + "787:\tlearn: 0.0669711\ttotal: 3.31s\tremaining: 891ms\n", + "788:\tlearn: 0.0669255\ttotal: 3.31s\tremaining: 886ms\n", + "789:\tlearn: 0.0668589\ttotal: 3.31s\tremaining: 881ms\n", + "790:\tlearn: 0.0667376\ttotal: 3.32s\tremaining: 877ms\n", + "791:\tlearn: 0.0666754\ttotal: 3.32s\tremaining: 872ms\n", + "792:\tlearn: 0.0666140\ttotal: 3.32s\tremaining: 868ms\n", + "793:\tlearn: 0.0665509\ttotal: 3.33s\tremaining: 863ms\n", + "794:\tlearn: 0.0665027\ttotal: 3.33s\tremaining: 858ms\n", + "795:\tlearn: 0.0664623\ttotal: 3.33s\tremaining: 854ms\n", + "796:\tlearn: 0.0664217\ttotal: 3.33s\tremaining: 849ms\n", + "797:\tlearn: 0.0663709\ttotal: 3.34s\tremaining: 845ms\n", + "798:\tlearn: 0.0662993\ttotal: 3.34s\tremaining: 840ms\n", + "799:\tlearn: 0.0662492\ttotal: 3.34s\tremaining: 836ms\n", + "800:\tlearn: 0.0661880\ttotal: 3.35s\tremaining: 831ms\n", + "801:\tlearn: 0.0661201\ttotal: 3.35s\tremaining: 827ms\n", + "802:\tlearn: 0.0660543\ttotal: 3.35s\tremaining: 823ms\n", + "803:\tlearn: 0.0659953\ttotal: 3.36s\tremaining: 818ms\n", + "804:\tlearn: 0.0659364\ttotal: 3.36s\tremaining: 814ms\n", + "805:\tlearn: 0.0658562\ttotal: 3.36s\tremaining: 809ms\n", + "806:\tlearn: 0.0657869\ttotal: 3.37s\tremaining: 805ms\n", + "807:\tlearn: 0.0657388\ttotal: 3.37s\tremaining: 800ms\n", + "808:\tlearn: 0.0656998\ttotal: 3.37s\tremaining: 796ms\n", + "809:\tlearn: 0.0656334\ttotal: 3.39s\tremaining: 795ms\n", + "810:\tlearn: 0.0655863\ttotal: 3.39s\tremaining: 790ms\n", + "811:\tlearn: 0.0654606\ttotal: 3.4s\tremaining: 787ms\n", + "812:\tlearn: 0.0654097\ttotal: 3.4s\tremaining: 782ms\n", + "813:\tlearn: 0.0653603\ttotal: 3.4s\tremaining: 777ms\n", + "814:\tlearn: 0.0652445\ttotal: 3.4s\tremaining: 773ms\n", + "815:\tlearn: 0.0651750\ttotal: 3.41s\tremaining: 768ms\n", + "816:\tlearn: 0.0651127\ttotal: 3.41s\tremaining: 764ms\n", + "817:\tlearn: 0.0650691\ttotal: 3.41s\tremaining: 759ms\n", + "818:\tlearn: 0.0650300\ttotal: 3.41s\tremaining: 754ms\n", + "819:\tlearn: 0.0649973\ttotal: 3.42s\tremaining: 750ms\n", + "820:\tlearn: 0.0649590\ttotal: 3.42s\tremaining: 746ms\n", + "821:\tlearn: 0.0648135\ttotal: 3.42s\tremaining: 741ms\n", + "822:\tlearn: 0.0647390\ttotal: 3.42s\tremaining: 736ms\n", + "823:\tlearn: 0.0646472\ttotal: 3.42s\tremaining: 732ms\n", + "824:\tlearn: 0.0645546\ttotal: 3.43s\tremaining: 727ms\n", + "825:\tlearn: 0.0644997\ttotal: 3.43s\tremaining: 723ms\n", + "826:\tlearn: 0.0644399\ttotal: 3.43s\tremaining: 718ms\n", + "827:\tlearn: 0.0643896\ttotal: 3.44s\tremaining: 714ms\n", + "828:\tlearn: 0.0643479\ttotal: 3.44s\tremaining: 709ms\n", + "829:\tlearn: 0.0642964\ttotal: 3.45s\tremaining: 706ms\n", + "830:\tlearn: 0.0642400\ttotal: 3.45s\tremaining: 702ms\n", + "831:\tlearn: 0.0641568\ttotal: 3.45s\tremaining: 698ms\n", + "832:\tlearn: 0.0641196\ttotal: 3.46s\tremaining: 693ms\n", + "833:\tlearn: 0.0640903\ttotal: 3.46s\tremaining: 688ms\n", + "834:\tlearn: 0.0640376\ttotal: 3.46s\tremaining: 684ms\n", + "835:\tlearn: 0.0639472\ttotal: 3.46s\tremaining: 679ms\n", + "836:\tlearn: 0.0638715\ttotal: 3.47s\tremaining: 675ms\n", + "837:\tlearn: 0.0638315\ttotal: 3.47s\tremaining: 671ms\n", + "838:\tlearn: 0.0637828\ttotal: 3.48s\tremaining: 667ms\n", + "839:\tlearn: 0.0637423\ttotal: 3.48s\tremaining: 663ms\n", + "840:\tlearn: 0.0636831\ttotal: 3.49s\tremaining: 660ms\n", + "841:\tlearn: 0.0636106\ttotal: 3.49s\tremaining: 656ms\n", + "842:\tlearn: 0.0635776\ttotal: 3.5s\tremaining: 652ms\n", + "843:\tlearn: 0.0635038\ttotal: 3.5s\tremaining: 648ms\n", + "844:\tlearn: 0.0634212\ttotal: 3.51s\tremaining: 644ms\n", + "845:\tlearn: 0.0632847\ttotal: 3.52s\tremaining: 640ms\n", + "846:\tlearn: 0.0632323\ttotal: 3.52s\tremaining: 636ms\n", + "847:\tlearn: 0.0631660\ttotal: 3.53s\tremaining: 632ms\n", + "848:\tlearn: 0.0631233\ttotal: 3.53s\tremaining: 628ms\n", + "849:\tlearn: 0.0630537\ttotal: 3.53s\tremaining: 623ms\n", + "850:\tlearn: 0.0629932\ttotal: 3.54s\tremaining: 619ms\n", + "851:\tlearn: 0.0629468\ttotal: 3.54s\tremaining: 615ms\n", + "852:\tlearn: 0.0628553\ttotal: 3.54s\tremaining: 610ms\n", + "853:\tlearn: 0.0628091\ttotal: 3.54s\tremaining: 606ms\n", + "854:\tlearn: 0.0627405\ttotal: 3.54s\tremaining: 601ms\n", + "855:\tlearn: 0.0626894\ttotal: 3.55s\tremaining: 597ms\n", + "856:\tlearn: 0.0626533\ttotal: 3.55s\tremaining: 592ms\n", + "857:\tlearn: 0.0625696\ttotal: 3.55s\tremaining: 588ms\n", + "858:\tlearn: 0.0625242\ttotal: 3.55s\tremaining: 584ms\n", + "859:\tlearn: 0.0624821\ttotal: 3.56s\tremaining: 579ms\n", + "860:\tlearn: 0.0623977\ttotal: 3.57s\tremaining: 576ms\n", + "861:\tlearn: 0.0623258\ttotal: 3.57s\tremaining: 572ms\n", + "862:\tlearn: 0.0622861\ttotal: 3.57s\tremaining: 567ms\n", + "863:\tlearn: 0.0622286\ttotal: 3.58s\tremaining: 563ms\n", + "864:\tlearn: 0.0621965\ttotal: 3.58s\tremaining: 558ms\n", + "865:\tlearn: 0.0621278\ttotal: 3.58s\tremaining: 554ms\n", + "866:\tlearn: 0.0620712\ttotal: 3.58s\tremaining: 550ms\n", + "867:\tlearn: 0.0620370\ttotal: 3.58s\tremaining: 545ms\n", + "868:\tlearn: 0.0619481\ttotal: 3.59s\tremaining: 541ms\n", + "869:\tlearn: 0.0618722\ttotal: 3.59s\tremaining: 536ms\n", + "870:\tlearn: 0.0618149\ttotal: 3.59s\tremaining: 532ms\n", + "871:\tlearn: 0.0617508\ttotal: 3.6s\tremaining: 528ms\n", + "872:\tlearn: 0.0616969\ttotal: 3.6s\tremaining: 523ms\n", + "873:\tlearn: 0.0616486\ttotal: 3.6s\tremaining: 519ms\n", + "874:\tlearn: 0.0616178\ttotal: 3.6s\tremaining: 515ms\n", + "875:\tlearn: 0.0615748\ttotal: 3.6s\tremaining: 510ms\n", + "876:\tlearn: 0.0615333\ttotal: 3.61s\tremaining: 506ms\n", + "877:\tlearn: 0.0614777\ttotal: 3.61s\tremaining: 502ms\n", + "878:\tlearn: 0.0614071\ttotal: 3.61s\tremaining: 497ms\n", + "879:\tlearn: 0.0613686\ttotal: 3.62s\tremaining: 493ms\n", + "880:\tlearn: 0.0613217\ttotal: 3.62s\tremaining: 489ms\n", + "881:\tlearn: 0.0612694\ttotal: 3.62s\tremaining: 485ms\n", + "882:\tlearn: 0.0612138\ttotal: 3.62s\tremaining: 480ms\n", + "883:\tlearn: 0.0611567\ttotal: 3.63s\tremaining: 476ms\n", + "884:\tlearn: 0.0611048\ttotal: 3.63s\tremaining: 471ms\n", + "885:\tlearn: 0.0610621\ttotal: 3.63s\tremaining: 467ms\n", + "886:\tlearn: 0.0609719\ttotal: 3.63s\tremaining: 463ms\n", + "887:\tlearn: 0.0609159\ttotal: 3.64s\tremaining: 459ms\n", + "888:\tlearn: 0.0608601\ttotal: 3.64s\tremaining: 454ms\n", + "889:\tlearn: 0.0608110\ttotal: 3.64s\tremaining: 450ms\n", + "890:\tlearn: 0.0607442\ttotal: 3.64s\tremaining: 446ms\n", + "891:\tlearn: 0.0606917\ttotal: 3.65s\tremaining: 442ms\n", + "892:\tlearn: 0.0606488\ttotal: 3.65s\tremaining: 437ms\n", + "893:\tlearn: 0.0605452\ttotal: 3.65s\tremaining: 433ms\n", + "894:\tlearn: 0.0605030\ttotal: 3.65s\tremaining: 429ms\n", + "895:\tlearn: 0.0604475\ttotal: 3.66s\tremaining: 425ms\n", + "896:\tlearn: 0.0603845\ttotal: 3.67s\tremaining: 421ms\n", + "897:\tlearn: 0.0603415\ttotal: 3.67s\tremaining: 417ms\n", + "898:\tlearn: 0.0602985\ttotal: 3.68s\tremaining: 413ms\n", + "899:\tlearn: 0.0602249\ttotal: 3.68s\tremaining: 409ms\n", + "900:\tlearn: 0.0601695\ttotal: 3.69s\tremaining: 405ms\n", + "901:\tlearn: 0.0601108\ttotal: 3.69s\tremaining: 401ms\n", + "902:\tlearn: 0.0600484\ttotal: 3.7s\tremaining: 398ms\n", + "903:\tlearn: 0.0599664\ttotal: 3.71s\tremaining: 394ms\n", + "904:\tlearn: 0.0598957\ttotal: 3.71s\tremaining: 390ms\n", + "905:\tlearn: 0.0598173\ttotal: 3.72s\tremaining: 386ms\n", + "906:\tlearn: 0.0597718\ttotal: 3.73s\tremaining: 382ms\n", + "907:\tlearn: 0.0597097\ttotal: 3.73s\tremaining: 378ms\n", + "908:\tlearn: 0.0596650\ttotal: 3.74s\tremaining: 374ms\n", + "909:\tlearn: 0.0595839\ttotal: 3.75s\tremaining: 371ms\n", + "910:\tlearn: 0.0595382\ttotal: 3.76s\tremaining: 367ms\n", + "911:\tlearn: 0.0594688\ttotal: 3.76s\tremaining: 363ms\n", + "912:\tlearn: 0.0594363\ttotal: 3.77s\tremaining: 359ms\n", + "913:\tlearn: 0.0593526\ttotal: 3.77s\tremaining: 355ms\n", + "914:\tlearn: 0.0593180\ttotal: 3.78s\tremaining: 351ms\n", + "915:\tlearn: 0.0592548\ttotal: 3.79s\tremaining: 347ms\n", + "916:\tlearn: 0.0592103\ttotal: 3.79s\tremaining: 343ms\n", + "917:\tlearn: 0.0591284\ttotal: 3.8s\tremaining: 339ms\n", + "918:\tlearn: 0.0590781\ttotal: 3.8s\tremaining: 335ms\n", + "919:\tlearn: 0.0590352\ttotal: 3.82s\tremaining: 332ms\n", + "920:\tlearn: 0.0589658\ttotal: 3.82s\tremaining: 328ms\n", + "921:\tlearn: 0.0589135\ttotal: 3.83s\tremaining: 324ms\n", + "922:\tlearn: 0.0588733\ttotal: 3.84s\tremaining: 320ms\n", + "923:\tlearn: 0.0588284\ttotal: 3.85s\tremaining: 316ms\n", + "924:\tlearn: 0.0587960\ttotal: 3.85s\tremaining: 312ms\n", + "925:\tlearn: 0.0587465\ttotal: 3.86s\tremaining: 308ms\n", + "926:\tlearn: 0.0587088\ttotal: 3.86s\tremaining: 304ms\n", + "927:\tlearn: 0.0586529\ttotal: 3.87s\tremaining: 300ms\n", + "928:\tlearn: 0.0585946\ttotal: 3.88s\tremaining: 297ms\n", + "929:\tlearn: 0.0585440\ttotal: 3.88s\tremaining: 292ms\n", + "930:\tlearn: 0.0584846\ttotal: 3.89s\tremaining: 289ms\n", + "931:\tlearn: 0.0584368\ttotal: 3.9s\tremaining: 284ms\n", + "932:\tlearn: 0.0583846\ttotal: 3.9s\tremaining: 280ms\n", + "933:\tlearn: 0.0583529\ttotal: 3.91s\tremaining: 276ms\n", + "934:\tlearn: 0.0583323\ttotal: 3.92s\tremaining: 272ms\n", + "935:\tlearn: 0.0582632\ttotal: 3.92s\tremaining: 268ms\n", + "936:\tlearn: 0.0582164\ttotal: 3.93s\tremaining: 264ms\n", + "937:\tlearn: 0.0581632\ttotal: 3.94s\tremaining: 261ms\n", + "938:\tlearn: 0.0581093\ttotal: 3.95s\tremaining: 257ms\n", + "939:\tlearn: 0.0580710\ttotal: 3.95s\tremaining: 252ms\n", + "940:\tlearn: 0.0580270\ttotal: 3.96s\tremaining: 248ms\n", + "941:\tlearn: 0.0579703\ttotal: 3.96s\tremaining: 244ms\n", + "942:\tlearn: 0.0579286\ttotal: 3.97s\tremaining: 240ms\n", + "943:\tlearn: 0.0578646\ttotal: 3.98s\tremaining: 236ms\n", + "944:\tlearn: 0.0578356\ttotal: 3.98s\tremaining: 232ms\n", + "945:\tlearn: 0.0578088\ttotal: 3.99s\tremaining: 228ms\n", + "946:\tlearn: 0.0577653\ttotal: 3.99s\tremaining: 224ms\n", + "947:\tlearn: 0.0577144\ttotal: 4s\tremaining: 219ms\n", + "948:\tlearn: 0.0576738\ttotal: 4s\tremaining: 215ms\n", + "949:\tlearn: 0.0576271\ttotal: 4.01s\tremaining: 211ms\n", + "950:\tlearn: 0.0575627\ttotal: 4.02s\tremaining: 207ms\n", + "951:\tlearn: 0.0575239\ttotal: 4.02s\tremaining: 203ms\n", + "952:\tlearn: 0.0574778\ttotal: 4.03s\tremaining: 199ms\n", + "953:\tlearn: 0.0574224\ttotal: 4.04s\tremaining: 195ms\n", + "954:\tlearn: 0.0573738\ttotal: 4.04s\tremaining: 190ms\n", + "955:\tlearn: 0.0573214\ttotal: 4.05s\tremaining: 186ms\n", + "956:\tlearn: 0.0572800\ttotal: 4.05s\tremaining: 182ms\n", + "957:\tlearn: 0.0572226\ttotal: 4.05s\tremaining: 178ms\n", + "958:\tlearn: 0.0571762\ttotal: 4.06s\tremaining: 173ms\n", + "959:\tlearn: 0.0571041\ttotal: 4.06s\tremaining: 169ms\n", + "960:\tlearn: 0.0570648\ttotal: 4.06s\tremaining: 165ms\n", + "961:\tlearn: 0.0570135\ttotal: 4.06s\tremaining: 161ms\n", + "962:\tlearn: 0.0569868\ttotal: 4.07s\tremaining: 156ms\n", + "963:\tlearn: 0.0569308\ttotal: 4.07s\tremaining: 152ms\n", + "964:\tlearn: 0.0568632\ttotal: 4.07s\tremaining: 148ms\n", + "965:\tlearn: 0.0567984\ttotal: 4.07s\tremaining: 143ms\n", + "966:\tlearn: 0.0567464\ttotal: 4.08s\tremaining: 139ms\n", + "967:\tlearn: 0.0567178\ttotal: 4.08s\tremaining: 135ms\n", + "968:\tlearn: 0.0566781\ttotal: 4.08s\tremaining: 131ms\n", + "969:\tlearn: 0.0566306\ttotal: 4.08s\tremaining: 126ms\n", + "970:\tlearn: 0.0565733\ttotal: 4.08s\tremaining: 122ms\n", + "971:\tlearn: 0.0564641\ttotal: 4.09s\tremaining: 118ms\n", + "972:\tlearn: 0.0564283\ttotal: 4.09s\tremaining: 114ms\n", + "973:\tlearn: 0.0563755\ttotal: 4.09s\tremaining: 109ms\n", + "974:\tlearn: 0.0563456\ttotal: 4.1s\tremaining: 105ms\n", + "975:\tlearn: 0.0562711\ttotal: 4.1s\tremaining: 101ms\n", + "976:\tlearn: 0.0562396\ttotal: 4.1s\tremaining: 96.6ms\n", + "977:\tlearn: 0.0561651\ttotal: 4.1s\tremaining: 92.3ms\n", + "978:\tlearn: 0.0561364\ttotal: 4.11s\tremaining: 88.1ms\n", + "979:\tlearn: 0.0560924\ttotal: 4.11s\tremaining: 83.8ms\n", + "980:\tlearn: 0.0560600\ttotal: 4.11s\tremaining: 79.6ms\n", + "981:\tlearn: 0.0560172\ttotal: 4.11s\tremaining: 75.4ms\n", + "982:\tlearn: 0.0559629\ttotal: 4.12s\tremaining: 71.2ms\n", + "983:\tlearn: 0.0558918\ttotal: 4.13s\tremaining: 67.1ms\n", + "984:\tlearn: 0.0558557\ttotal: 4.13s\tremaining: 62.9ms\n", + "985:\tlearn: 0.0558152\ttotal: 4.13s\tremaining: 58.6ms\n", + "986:\tlearn: 0.0557662\ttotal: 4.13s\tremaining: 54.4ms\n", + "987:\tlearn: 0.0557455\ttotal: 4.13s\tremaining: 50.2ms\n", + "988:\tlearn: 0.0556952\ttotal: 4.14s\tremaining: 46.1ms\n", + "989:\tlearn: 0.0556264\ttotal: 4.14s\tremaining: 41.9ms\n", + "990:\tlearn: 0.0555831\ttotal: 4.14s\tremaining: 37.7ms\n", + "991:\tlearn: 0.0555131\ttotal: 4.15s\tremaining: 33.5ms\n", + "992:\tlearn: 0.0554769\ttotal: 4.15s\tremaining: 29.3ms\n", + "993:\tlearn: 0.0554331\ttotal: 4.15s\tremaining: 25.1ms\n", + "994:\tlearn: 0.0553659\ttotal: 4.16s\tremaining: 20.9ms\n", + "995:\tlearn: 0.0553095\ttotal: 4.16s\tremaining: 16.7ms\n", + "996:\tlearn: 0.0552717\ttotal: 4.16s\tremaining: 12.5ms\n", + "997:\tlearn: 0.0552334\ttotal: 4.17s\tremaining: 8.35ms\n", + "998:\tlearn: 0.0551617\ttotal: 4.17s\tremaining: 4.17ms\n", + "999:\tlearn: 0.0551305\ttotal: 4.17s\tremaining: 0us\n", + "Accuracy score: 0.998\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "plot_svc_decision_function_extended(classifier)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 435 + }, + "id": "9nn0MnzO2btG", + "outputId": "ad7b053a-3c2e-48ba-b836-c82f4f9e2750" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiYAAAGiCAYAAADTBw0VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAqk0lEQVR4nO3db2xUdeLv8Q9t0yliO1uwRQgt8mezRg0sQVT8F9jlp2Bi1idkny26XB54wcTggwv7QOJNDGsguxrXi5rdBZ8QzW6CZv27hlW45sqKKNfVVRNZTXv5L5QpVulI2/ugnuHM9JwzZ2bOn+855/1KJkJn2jnS6ZlPv5/v+X4njY2NjQkAAMAATXEfAAAAgIVgAgAAjEEwAQAAxiCYAAAAYxBMAACAMQgmAADAGAQTAABgDIIJAAAwBsEEAAAYg2ACAACMEWow2bFjhxYsWKCOjg51dHRo6dKleu2118J8SgAAkGCTwtwr529/+5uam5v14x//WGNjY3ruuee0bds2ffjhh7r22mvDeloAAJBQoQYTJ1OnTtW2bdu0du3aKJ8WAAAkQEtUTzQyMqK//OUvGhoa0tKlSx0fMzw8rOHh4dLfR0dHdfbsWU2bNk2TJk2K6lABAEADxsbGdP78ec2cOVNNTTXOGhkL2UcffTQ2ZcqUsebm5rF8Pj/2yiuvuD52y5YtY5K4cePGjRs3bim49ff315wbQq9yisWi+vr6VCgU9Ne//lV//OMftW/fPl1zzTUTHls5YlIoFNTb26v/9j/+j1pzl4d5mAAAICDF4W/0x8du1rlz55TP52v63NCrnNbWVs2fP1+StHjxYh08eFBPPPGEnnnmmQmPzeVyyuVyE79G7nLl2trDPlQAABCgeqZhRL6OyejoaNmoCAAAgCXUEZPNmzdr1apV6u3t1fnz57V79269/fbbeuONN8J8WgAAkFChBpNTp07pV7/6lY4fP658Pq8FCxbojTfe0H/913+F+bQAACChQg0mf/rTn8L88gAAIGXYKwcAABiDYAIAAIxBMAEAAMYgmAAAAGMQTAAAgDEIJgAAwBgEEwAAYAyCCQAAMAbBBAAAGINgAgAAjEEwAQAAxiCYAAAAYxBMAACAMQgmAADAGAQTAABgDIIJAAAwBsEEAAAYg2ACAACMQTABAADGIJgAAABjEEwAAIAxCCYAAMAYBBMAAGCMlrgPAEiDlvy0uA8BiMXFwpm4DwEpQzABGmAPJD0zWmM8EiB6/ceLaslPI5wgUFQ5QJ2sUNIzo5VQgkyyXvct+WmMGiIwBBOgDvZQAmSZPZgTThAEgglQA/tvhoQS4BLCCYLCHBPAJ69A0p7nRwnZdL5wsfTnnhmtpXknEhNjUR/OpoAPfkJJdycDkMiWUwOjas+3TAgnEhNjUT/OpIAHr+qmPd9CKEGmWa97pxFDqh3Ui7MpUIXXVTfdnU2EEmSaPZxUBhSu2kE9OKMCABpiD+hO4YTRE9SCYAIACATVDoJAMAEABIZqB40imAAAAkW1g0ZwuTAAIBTdnU2OlxRLE9c8aRSXJacHwQQAEBp7OJEmLsgWBBZ1SxeqHABAqLyqnSBQD6ULwQQAEAmvibFBIJykA8EEABCZKEZPJK78STLmmAAAIlc596RR7NeTHgQTAEAsgtrOwWtyLeEkeahyAACJVm3dFIl5J0lCMAFceJ3IwujGATTGbQQmqMuSEQ3OrkAFeyCpPKHZAwm7CgNA8AgmgI0VSpx+w7JCCYEEAMLDGRb4AaEEAOLHiEkGMQnMnVt1QyABgGgQTDLGa1QA5QglABA9gklGeE3oRDkmuAJAfAgmGcAoiX+MkgBAvDj7phyhxD9CCQDEjxGTlPK7FgfKEUoAIF68Q6UQl70CAJKKYJIybqGECZ0AgCQgmKSEn+qGQAIgy9hlOBl4p0oB+ygJoQRA1rXnWzx3GWaRSbPxbpVg9h8wp0BCKAGQNd2dTaVznlM4sQcUmIl3rITyO0pCKAGQRW7hRBLhxHC8ayUQV90AQHX2cEK1kxy8eyUI1Q0A1IZqJ3l4B0sIqhsAqB/VTnKE+i62detWLVmyRO3t7eru7tY999yjzz//PMynTCWqGwBoHNVOMoT6brZv3z6tX79eBw4c0Jtvvqnvv/9ed9xxh4aGhsJ82tSgugGAYFHtmC/UBdZef/31sr/v2rVL3d3dOnTokG6//fYwnzrxGCUBgPB0dzbp1MCo2vMtOl+4WHZfz4xW9R8vsiBbTCJd+bVQKEiSpk6d6nj/8PCwhoeHS38fHByM5LhMQygBgPDZw4mksoBiDyeSCCgRiuzdbXR0VA8++KBuueUWXXfddY6P2bp1q/L5fOnW09MT1eEZgeoGAKJFtWOeyN7h1q9fr48//ljPP/+862M2b96sQqFQuvX390d1eLHjqhsAiA9X7Zgjkipnw4YNevnll7V//37NmjXL9XG5XE65XC6KQzKSU3VjIZAAQLj8zDtB+EJ9txsbG9OGDRu0Z88e/eMf/9CcOXPCfDoAABrCL4HxC3XEZP369dq9e7deeukltbe368SJE5KkfD6vyZMnh/nUAAAggUKNhjt27FChUNCyZcs0Y8aM0u2FF14I82kBAEBChTpiMjY2FuaXBwAAKUOZBgAAjEEwAQAAxiCYAAAAYxBMAACAMQgmAADAGAQTAABgDIIJAAAwBsEEAACf2MgvfASTmLXkp7m+0NvzLY47XQIAwsUuw/EhmMTIenH3zGidsLOw9UPR3dnEplIAECHrnEs4iQe/jsfEHkoq2UMJkmFq22Dch4CEOHuhI+5DgA/dnU06NTBaOh+fL1ws3dczo1X9x4ul8/jFwplYjjGtCCYRs6dst1ESiVCSJFYoyV8W84HAeIVvL71eCCjms87DVkCpDCeSSgGFcBIc3v0iRHWTLlPbBgklqEn+skuvFUbZkoNqJ1q8A0aE6iZd7IGEUIJaEU6Sxx5OKgOKPZwQUBrHO2HI7C9Up1ESQknyMEqCINjDCQElGewj2k7hhNGTYDDHJESMkqSL/c2jMpR0Dh2J+GiQVANT5pX+bL2OrLknzDtJBr8TY5l3Uh+CSUi8RkkshJLk8BolsUJJW2tzlIeEBLpQHCm9XioDCuEkWapNjOWqnfrxzhiwatWNxATXpHELJZ1DRwglqElba3PptVI5yka1k0xUO8Hj3TFAfq+6QTJ4XXVjDySEEtTKK5wwMTZ5/E6MhT+8SwaECa7p4nXVDaMkCII9nHiNniAZqk2Mlbhqxy/eKQPgNclVorpJGqobRIVqJ32odhrHu2VA3EIJkoPqBnGh2kkXr19Eea+ojmACiOoG8aPaAcZxuTASK+iTtNfaJIQSRMF6nVmXFbtdUiyx1w7Si2CCRAp79VVGSRCnttZm13AiseYJ0o0qB4lDKEEWUO0gqxgxQWJ4LQkfBKobmIZqB1nEiAkSIezdfLnqBibjqh1kCSMmMJ6ffWqCQCCByezzTiT22kF6EUxgLL+7+RIokBVUO8gCqhwYye+6IoQSZBHVDtKMYALj+KluCCTIOr9X7RBQkDQEExij2pLwhBKgXLW9dhg9QRIRTGAEqhugfm7hRCKcxKlyIz/4QzBB7KhugMZR7ZjFbZdhS0t+GrsMuyCYIDZUN0CwqHbM4hZOema0lnYZJpxMRDBBLKhugPBQ7ZjDHk6cAopEOKlEMEHkqG6A8FHtmKO7s8lz9ESi2rEjmCAyVDdAtKh2zEK14w/BBJGgugHiQ7VjDqqd6ggmCB2jJED8qHbMQbXjjWCC0FSrbiRGSYAoUe2YhWrHGcEEofBb3QCIHtWOOah2JiKYIHBUN4D5qHbMQbVTjmCCwFDdAMlCtWMWqp1xBBMEguoGSC6qHXP4rXbSHFAIJmgY1Q2QfFQ75qhW7aR99IStD1E3+wmKURIg+ayf1wvFEXUOHdHAlHml+6yf8cK34z/7Zy90VP16fkOMn6+VRd2dTTo1MKr2fIvOFy6W3dczo1X9x4tqyU/TxcKZmI4wHAQT1IVl5YH0amttdgwn0vjPvBVO/HA6R9jVEnSyyB5OJJUFFHs4kZSagEIwQc2qTXCVCCVA0tnDiSTH0ZNGdQ4dkabMI5xUYdU6TqMnVq2TptETggl8o7oBssWr2qmV08Ta0sdt4USi2nGTlWqHYAJfqG6A7PIaPXHjFESczhHW1+384esyeuItC9UOwQRVUd0A8Bo9cRsN8TovtB75cPy/korzFl0KPoyeVJX2aodgAldUNwAqVY6e2D9ejRVGLM25yRoZ/m784xXhRGJibDVprXYIJnBEdQPATS0/+05hpPLvjuFEYmKsD2msdggmmIDqBkCj7IHEHkaGDh6Y8NgpS24qhROqndqlrdohmKCE6gZAI7xGR+yBpKm9s/Tn0fMDpfvsAYVqp3ZpqXYIJpBEdQOgPn7DiFQeSPpefaf05967bi0FFNdwIlHt+JCGaodgknF+RkkkQgmAcm5VjeQ+OiKVB5LmrpkaOX1Mfa++4xpOqHZql/Rqh038MszvjsCEEgBOmnOTJ4QSS1N754RQUvq8rplq7ppZ+rM0Hlisxw8dPKALH/3f0tduPfJh2SaD9nMWmwq6swKKEyugmIhgklFUNwBMYQ8n/+9/f1IWUNzCiRVQJMJJ2hBMMsa+bbnTKAmhBEAc7KMolaMn9nDS0f/RhNETqfzchmQjmGQI1Q0A09VT7Vw1xuhJmoQaTPbv36+7775bM2fO1KRJk/Tiiy+G+XTwQHUDIClqqXbcRk+QXKEGk6GhIS1cuFBPPfVUmE8DD1Q3AJLIb7XjNDFWotpJslAvF161apVWrVoV5lPAA6MkAJLO7ZJiyX1BNnYqTjaj5pgMDw9rcHCw7Ib6EEoApAXVTrYYFUy2bt2qfD5fuvX09MR9SIlDdQMgjah2ssOoYLJ582YVCoXSrb+/P+5DShSuugGQdly1k35GBZNcLqeOjo6yG/yhugGQFVQ76WZUMEHtqG4AZBHVTnqFGky++eYbHT58WIcPH5Ykffnllzp8+LD6+vrCfNrMoboBkFVUO+kTajB5//33tWjRIi1atEiStHHjRi1atEgPP/xwmE+LHxBIAGSB32rHazn7NGvPt6g977w6SEt+mlry0yI+Im+hBpNly5ZpbGxswm3Xrl1hPi0AIGOqVTteOxVL6a12ujubSrsMV4aTnhmtpV2GTQonzDEBAKSGWzjx2qk4C9WOWziRZFw4IZgAAFKFaseZPZw4jZ5IZlQ7BBMAQOpQ7ThLQrVDMAEApBbVjjOTqx2CCQAg1ah2nFmjJ6ZVOwQTAEDqUe24M63aIZgAADKDaseZ34mxUSCYAAAyhWrHWbWJsVI01Q7BBACQOV7Vjtdy9lQ74Y+eEEwAAJlVGU68diqWqHak8Ksd58XzAdSk9ciHcR9CKIrzFsV9CAhY2K/VoYMHXO/re/WdUJ+7Xs1dMzVy+ljp+HrvulWj5wc0dPCApiy5SSPD343vVKzxn4kLxZHxjVKnzFPh2/FwcvZCR7z/EyGwwsmpgdEJ9/XMaFX/8aJa8tN0sXAm0OclmAANsk701m9XaWGdjAkn6RH2a9UKJdaog8UeSKwRCtNYx2UFFHs4kVQWUOQSTiSlMqC4scJJ0KhygDq1HvkwtaFEUtkwdlpHhLIi7NeqdVWL5B5K7HM6TEa1Ez+CCVAH+0k+jaHEUrm+A5In7NeqPZB4hZIksYcTpzVPpGxetRMVgglQozSPkrghnCRTnNVNUkOJhat24sMcE8An+5ty5Ynea8Jfkk1ZclPpz825yZc6djEx1mRRvVYrA4mU3FESN/aJsb133SpJjhNj7fNOOiUNpHxibJgIJoAPXr95uv3WmHT2k6/F+v9nYqy54nytpi2UWIK4akfK1sTYRlDlAFW4nei9JvylgX3ouhLVjpnieq2mobqpppFqh7kntSGYAC6sKxmcJg16TfhLk8q9ROy4asccXlfdhP1aTdpVN43yu5y9PZwwMbY2BBPAQRarGzeVl0zacdVO/LyuuqG6CUe1nYql6lftEFDcMccEsPE7adBrAak0sSb7SeP/z07zTqTyibHMO4lOtVESKfzXatZCiV3lxFi/C7JJYmKsB4IJ8IN6R0nS+ltj5ZUI0sR5J1y1Ew8/ATpLr9U4+Z0YWxZOpNQvZ98IqhxA9YWStE/4sw9VV6LaiU+91U2aX6txo9oJFsEE+EE980nSPuGvcgVMO78TYxE8rwXTCCXxsf/72r8PlSHSCieSyq7aMZHTBn6WMPbJkQgmQFVZmeTqpvK3QbtqE2MlrtoxBaEEtTg1MFoKJecLF8vu6z9eLIWSoHcWlggmAHyi2gGywR5InEKJNB5IwgglEsEEQA2odoB0cxslkRTqKIkdwQRATah2gPSJs7qpRDABUBeqHSAd4q5uKhFMANSNagdINhOqm0oEEwANodoBksek6qYSwQRAIKh2gGQwrbqpRDABEBiqHcBsJlY3lQgmAAJFtQOYx+TqphLBBEAoqHYAM5he3VQimAAIjd9qZ8LnEU6AQCShuqlEMAEQKq+NDr32IfLaqA6Af06hxGJaKJEIJgAAwCAEEwAAYAyCCQAAMAbBBAAAGINgAgAAjEEwAQAAxiCYAAAAYxBMAACAMQgmAADAGAQTAABgDIIJAAAwBsEEAAAYg2ACAACMQTABAADGIJgAAABjEEwAAIAxCCYAAMAYBBMAAGAMggkAADAGwQQAABiDYAIAAIxBMAEAAMYgmAAAAGMQTAAAgDEIJgAABGDk9DH3+4a/K/35QnGk7L7Ct6EdUiK1xH0AAAAknRVKeu+6VaPnB8rv+yGUFOctKoWSgSnzygLJ2Qsd0RxoAkQyYvLUU0/pqquuUltbm2688Ua99957UTwtAAChGjl9zDGUTFlyk9oWLKwaSs5e6CCUVAg9mLzwwgvauHGjtmzZog8++EALFy7UnXfeqVOnToX91AAAhMYeSCpDiT2QDPYscA0lmCj0YPK73/1O69at03333adrrrlGTz/9tC677DL9+c9/nvDY4eFhDQ4Olt0AADBN5SiJWyixB5KvJhFK/Ag1mBSLRR06dEgrVqy49IRNTVqxYoXefffdCY/funWr8vl86dbT0xPm4QEAUBOqm/CFGky+/vprjYyMaPr06WUfnz59uk6cODHh8Zs3b1ahUCjd+vv7wzw8AAB8o7qJhlFX5eRyOeVyubgPAwCAMm6jJFKVq24IJTULNZhcccUVam5u1smTJ8s+fvLkSV155ZVhPjUAAA2zr03iNkoieVc3qE2oVU5ra6sWL16svXv3lj42OjqqvXv3aunSpWE+NQAADbGPksy67Vqqm4iEXuVs3LhRa9as0fXXX68bbrhBjz/+uIaGhnTfffeF/dQAANSF6iY+oQeTX/7ylzp9+rQefvhhnThxQj/96U/1+uuvT5gQCwBA3Khu4hfJ5NcNGzZow4YNUTwVAAB1qWltEkJJaIy6Kgf1KXwr5S+b+HErzbe1Nkd8RNFoPfJhqF9/6OAB1/v6Xn0n1OdOq75X31HvXbdO+Lj1b20NlduF/X1OA16rjaO6MQfBJOHOXujQ1LbBCeFkYMo8SVLn0BFdKI6kLpxYb1bNucmhfH3rRN/U3jnhPutE39w1M5TnTqvmrpkaOX1sQjix/o1Hzw9o6OCBsnAS1vc3TXitNobqxjyRbOKHcFk/GE5bZ1sBpXKb7SSLK5T0vfoOJ/oGWf9uTr/FW//eXr/9oxyv1cZw1Y2ZGDFJCfvIiTRx9MQaOZGSW+3Yh/TDCCX2N0SnE73EST4IleGkcvTEGjmRnKsd8FoNAtWNuRgxSRH7HgyVoycDU+YlevTEPkoSZihpau/kRB8Rt9ET+/eA0ZOJeK02xmuvm5Hh7zQy/J2K8xax102MGDFJIbd5J9LE0ZNGRTH64lbdBP2m5XaSlzjRh8U+70TyHj3BJbxW61PrjsAS1U0cCCYpVa3aCULY9ZBXdeM14S8I/OYZHevf2GtiLNzxWvWn2iiJRHVjCqqcFPOqdoIQZj3kVd0QStLJa2IsnPFara5adSOJ6sYwjJhkgNfoSRDs9VAQIyd+qpswQgnD4fHzqnZwCa9Vf6hukolgkhHWD5jb3JNGBXHlD9UNJO9qB7xW/aK6SS6CScZUjp40KqhF3bzWJvGzgFQQONGbpXL0BJfwWnXnZ8G04rxFksTaJIYimGRQUD94ftZN8RNO6qluGMrOBr63qAXVTToQTFA3r3rIT7VTb3XDUDaASiyYlh5clYOG1buomzWcKqms95UunVDsv/VYrDkH9tn2AGCfj1S5arD9fGNfMiGtV92cGhjVqYFRx/v6jxfVf7wY8RH5x4gJAlHvkvj2k0XrkQ9L4aQ5N7l0Yhk6eKAsnDS1d5ZOQH2vvlMKJ4ygAIBKgeR84eKE+6xAcrFwJtJjqgXBBIGpVu1I3hNjrZBiDyhS+W8+lSGlMqAQTgBkWdJDiUQwQQj8LonvNjHWbRRFcg8pvXfdSjgBkFn22qYylNhrG9NDicQcE4TEPu/Eae6JND7vpNqKsdaKjFZYsc9FmbLkprK5KMw9AZBF9lESt1BysXAmEaFEIpggRLXsdmy/uXEKKCPD35WFk1m3XVsWUAAgzdyqG/sE16QEEgtVDkJXrdqxc9v5uNqE2bYFC9Wcm1yqd6h2AKSZn+omaYHEwogJIuFV7dhZIyn2m+Q+qlI5ikK1AyDt/FY3SUUwQWTq3e3YT1BxCydUOwDSJI3VTSWCCSJXTzixcwsq9nDStmCh6+gJACSNfcG0NExw9UIwQSwqq51ab3b2cDLYs4BqB0CqpL26qcTkV8Sm3mWgHXdHrljATfMWlSbGTllyU2lS7KzbrlVTeycTYwEkQrVREildoURixAQJZM1VcZqz4lbteK15AiDZvH6O7Qs0JkmWqptKBJOAeG2K5LWZEhpXOfJivwTZfmmxVL5yrH3DLwDJVLmrsH3LispdhS8UR0rnh3rnuEUha9VNJaqcAFgvkJb8NPUfL6pnRmvpPutF1Z5v0amBUXV3kgUBIAiVoUQa/+XDvkK0FUqk8V9a7IHExF2Fs1jdVCKYBOhi4YxjOJHGX2SEEwBonL26cQolki2QOIQSkwOJlL4F02pFMAmYPZxImjB6YoUTSQQUAKiRW3XjGEqkCdWNyaEkyTsCB4lgEgKqHQAIHtVNNhBMQkS1AwCNo7rJFoJJyKh2AKB+VDfZQzCJANUOANSO6iabCCYRotoBgOrsgUQS1U3GEEwiRrUDAO6cRkkkqpssIZjEgGoHAMpVm+BarboxMZBIVDf1IJjEiGoHANJd3TBKUjve8WJmvTCd9tmxXtDss+NP5d4X1m9VkvdGXmzkB8SnnqtuvppkdiixOIUSC6HEHSMmBrBGTpxYIyfwdvZCh6a2DV4KJ1PmqXPoyPjJbN4itR75UCPD36k5N1nSpd/Ieu+6VX2vvqOR08fU3DUzpqMHkiXoMJ+m6gaN4x0PqWGdqEoBxSWctC1YqObcZA0dPKDR8wNl4UQSAQXwUFm7BCEN1Q2CQ5WD1LFOWoVvL83Yv1Ac0WDPAhXnLZI0Xu1MWXKTJJXCiXWipdoBnAUdStJW3SAYjJgglezVTmHSPOUvk+PoyZQlN5VGTiSqHcCJ2xUzQaC6QSWCCVKLagdonNfk1EC+PtUNKhBMkHplE2Nt4eRCzwK1tTY7jp5YQ9WMniDL/CwJHwTHURJCSWYRTJAJVDuAf3538w0K1Q3smPyKzDh7ocN1Yqx9UmzbgoUTJsZK4ydrJsYi7eyjJLNuuzbUUHKhOEIowQSMmCBz6ql2Zt12rZraOxk9QarVuptvEKhuUIlggkyqpdqR5DgxlnCCtKiluqncPK9RjJKgEsEEmeX3qh1JEybGctUO0qLWJeGl8tolCIQS2BFMkHlUO8iqWqsbahdEgcmvBnHayM/CRn7hsk+K/WrSPNeJsVOW3OQ6MRZICvtEbq/qxmuxM0KJs1MDo67n6/7jRc/zPMYxYmIIayO//uNF9cxoLbvP2sjv1MCoujvJkmEJqtoJAiMwCEs9u/lKzAXxwwokTrsKW4GEXYWrI5gYxB5OJJUFFHs4kURACVEj1U4QqIcQlrqrmx8QStwRSoJDMDGM9cJ1Gj2xXvCMnoSv3qt2gsCVPwia36tuWBK+dvbapjKU2GsbQol/BBNDUe3Er9ZqJwhc+YOgUd2Eh1GScPCuZrCLhTO6WDjjOGHK+kHwmmiFYLitFjvYs6BsYmwQ7BNrZ912LZNr0RC36qZtwULP6oZQUh2hJDyMmCSA2+gJ1U50/FY7QfDa7ZiRE/hBdRMeqpvwEUwSwu/EWMJJeKpVO0Fx2+2Yagd+UN2Eh1GSaPAuliBWtSNNXPOEaic6btVOULfKdVMkqh34Q3UTHkJJdBgxSSCqnfg5VTtBcKqHqHZQDdVNeKhuosc7V0LZR068Rk8QHvvql0HtG+I1udZtxVlGT7LNPkoy67ZrfVU3hBJ/7KMkbqHEPpKNYDBikmDV1jxhQbZolC3IFoQfwonbuins1wOp+igJC6Y1huomPqEFk0cffVSvvPKKDh8+rNbWVp07dy6sp8o8qp34BXWCLws4LuumeFU7EhNjs8A+SiKJ6iZAVDfxC+2dqlgsavXq1br//vvDegrYUO2kQ2U9VEu1w8TYbKjnqpuvJhFK/KC6MUNoIyaPPPKIJGnXrl2+P2d4eFjDw8Olvw8ODgZ9WKlGtZMetSyJb18OP4wNBWGeeqobAok3qhtzGDXHZOvWraVAg/r5rXaCQMAJj98l8Z2qHaQb1c24oEeBqW7MYFQw2bx5szZu3Fj6++DgoHp6emI8ouSqtiBbEBiBiUY9ux0j/byqm8K3kjISSoI6n1VilCQ+NQWTTZs26bHHHvN8zKeffqqrr766roPJ5XLK5XJ1fS4m8qp2gsDk2ujUutsx0i3r1Q2hJN1qCiYPPfSQ7r33Xs/HzJ07t5HjQQi8dioOAkviR6OW3Y6bc5NjPFKEiepmXBihhEBihpqCSVdXl7q6usI6FoTIq9oJApNro+O32kF6Ud0Ej1BijtDmmPT19ens2bPq6+vTyMiIDh8+LEmaP3++Lr/88rCeFh4qq50gsG5KPKpVO0g3qptxQZ3HLIQSM4QWTB5++GE999xzpb8vWjR+snzrrbe0bNmysJ4WPgT1w+dWD1HtRMOz2kHqZSGU+FnsjDCRPpPGxsbG4j4IN4ODg8rn8/rvD3+kXFt73IcDBy35aaU/VwaU9vyl3EtACdfUtvE1f4LaTBBmy8Ky8qwrkmzDF87rf/3PBSoUCuroqO01yrsFGmJfBdFpxVlWnY2GfbXYwPbsgZHsoyRZCyX2la0JJell1DomSC6vK3+odqIxodpBamUtkEiMkmQJwQSBqbaoG1ftRCOtb1pIN0IJLLw7IFBUOwDq5XUpMKEkOwgmCIVbOJHY7RgA4I5ggtDYw4nT6Ik0Hk4IKAAAC8EEoaLaAQDUgmCCSFDtAAD8IJggMlQ7AIBqCCaIFNUOAMALwQSx8Dt6AgDIFoIJYlNt9ESi2gGArCGYIHZUOwAAC8EERqDaAQBIBBMYhGoHAEAwgXHc9sSwVzsA0sPrlw2ntY+QbgQTAEBs2FUYlVriPgAAQLRMq0MJJbAjmABARtgDiam1qL26IZRkE8EEADLAqzIxBaMkkJhjAgCpRyhBkjBiAgApRXWDJCKYAEAK+bnaxRQEEtgRTAAgZdxCCaMTSAKCCQCkhFd1wxwOJAXBBABSgIXKkBYEEwBIOKobpAnBBAASiuoGacQ6JjBW//Gi69UDpi2pDcTFa3NLQgmSiGACI10snCmdVCvDiXUSPjUwSkABgJShyoHRLhbOqCU/Tf3Hi+qZ0Vr6uBVO2vMtgYWT7k5yOgDEjWAC49nDiSTHgNIoe8AhoABAfDgDIxG8qp0g2Ht66iEAiA/BBIkSZjiRRDgBgJgRTJA49nAS1uiJxORaAIgDc0yQSFY4sc89aZTX5FrmnQBANAgmSLSg1mlwuvJHGg8ohBMAiA5nWkDe9RDVDgBEh2AC/KDaom5MjAWA8BFMgApeV/4QTgAgXAQTwAHVDgDEg2ACuKDagam8QnFYl9EDUSGYAFVQ7cAk1mvNaVdh6zVqD9VA0nC5MOBDtf16gtxMEKjGaY8oeygBkoxgAvhUuahbGJsJArWyj+QRSpAGVDlAjcLerwfwi+oGaUQwAeoQ9n49QDVUN0grgglQJ6+rdoCw2MMwoQRpxBwToEGVE2OBsBFIkGYEEyAAvFEAQDCocgAAgDEIJgAAwBgEEwAAYAyCCQAAMAbBBAAAGINgAgAAjEEwAQAAxiCYAAAAYxBMAACAMQgmAADAGAQTAABgDIIJAAAwBsEEAAAYI7Rg8tVXX2nt2rWaM2eOJk+erHnz5mnLli0qFtkaHgAAOGsJ6wt/9tlnGh0d1TPPPKP58+fr448/1rp16zQ0NKTt27eH9bQAACDBQgsmK1eu1MqVK0t/nzt3rj7//HPt2LHDNZgMDw9reHi49PdCoSBJKg5/E9ZhAgCAgFnv22NjYzV/bmjBxEmhUNDUqVNd79+6daseeeSRCR//42M3h3lYAAAgBGfOnFE+n6/pcyaN1RNn6vDFF19o8eLF2r59u9atW+f4mMoRk3Pnzmn27Nnq6+ur+X8MwRocHFRPT4/6+/vV0dER9+FkHt8Pc/C9MAffC3MUCgX19vZqYGBAP/rRj2r63JpHTDZt2qTHHnvM8zGffvqprr766tLfjx49qpUrV2r16tWuoUSScrmccrnchI/n83leZIbo6Ojge2EQvh/m4HthDr4X5mhqqv0am5qDyUMPPaR7773X8zFz584t/fnYsWNavny5br75Zj377LM1HyAAAMiOmoNJV1eXurq6fD326NGjWr58uRYvXqydO3fWlZwAAEB2hDb59ejRo1q2bJlmz56t7du36/Tp06X7rrzySl9fI5fLacuWLY71DqLF98IsfD/MwffCHHwvzNHI9yK0ya+7du3Sfffd53hfRPNtAQBAwkR2VQ4AAEA1TPoAAADGIJgAAABjEEwAAIAxCCYAAMAYiQkmX331ldauXas5c+Zo8uTJmjdvnrZs2aJisRj3oWXSo48+qptvvlmXXXZZzcsNozFPPfWUrrrqKrW1tenGG2/Ue++9F/chZdL+/ft19913a+bMmZo0aZJefPHFuA8ps7Zu3aolS5aovb1d3d3duueee/T555/HfViZtGPHDi1YsKC0+u7SpUv12muv1fQ1EhNMPvvsM42OjuqZZ57RJ598ot///vd6+umn9Zvf/CbuQ8ukYrGo1atX6/7774/7UDLlhRde0MaNG7VlyxZ98MEHWrhwoe68806dOnUq7kPLnKGhIS1cuFBPPfVU3IeSefv27dP69et14MABvfnmm/r+++91xx13aGhoKO5Dy5xZs2bpt7/9rQ4dOqT3339fP/vZz/SLX/xCn3zyie+vkejLhbdt26YdO3boP//5T9yHklm7du3Sgw8+qHPnzsV9KJlw4403asmSJfrDH/4gSRodHVVPT48eeOABbdq0Keajy65JkyZpz549uueee+I+FEg6ffq0uru7tW/fPt1+++1xH07mTZ06Vdu2bdPatWt9PT4xIyZOCoWCpk6dGvdhAJEoFos6dOiQVqxYUfpYU1OTVqxYoXfffTfGIwPMUigUJIn3h5iNjIzo+eef19DQkJYuXer780Jbkj5sX3zxhZ588klt37497kMBIvH1119rZGRE06dPL/v49OnT9dlnn8V0VIBZRkdH9eCDD+qWW27RddddF/fhZNK//vUvLV26VBcuXNDll1+uPXv26JprrvH9+bGPmGzatEmTJk3yvFWedI8ePaqVK1dq9erVWrduXUxHnj71fC8AwCTr16/Xxx9/rOeffz7uQ8msn/zkJzp8+LD++c9/6v7779eaNWv073//2/fnxz5i8tBDD+nee+/1fMzcuXNLfz527JiWL1+um2++Wc8++2zIR5cttX4vEK0rrrhCzc3NOnnyZNnHT5486XtjTCDNNmzYoJdffln79+/XrFmz4j6czGptbdX8+fMlSYsXL9bBgwf1xBNP6JlnnvH1+bEHk66uLnV1dfl67NGjR7V8+XItXrxYO3fuVFNT7AM+qVLL9wLRa21t1eLFi7V3797SJMvR0VHt3btXGzZsiPfggBiNjY3pgQce0J49e/T2229rzpw5cR8SbEZHRzU8POz78bEHE7+OHj2qZcuWafbs2dq+fbtOnz5duo/fFqPX19ens2fPqq+vTyMjIzp8+LAkaf78+br88svjPbgU27hxo9asWaPrr79eN9xwgx5//HENDQ257uSN8HzzzTf64osvSn//8ssvdfjwYU2dOlW9vb0xHln2rF+/Xrt379ZLL72k9vZ2nThxQpKUz+c1efLkmI8uWzZv3qxVq1apt7dX58+f1+7du/X222/rjTfe8P9FxhJi586dY5Icb4jemjVrHL8Xb731VtyHlnpPPvnkWG9v71hra+vYDTfcMHbgwIG4DymT3nrrLcefgTVr1sR9aJnj9t6wc+fOuA8tc37961+PzZ49e6y1tXWsq6tr7Oc///nY3//+95q+RqLXMQEAAOnCJA0AAGAMggkAADAGwQQAABiDYAIAAIxBMAEAAMYgmAAAAGMQTAAAgDEIJgAAwBgEEwAAYAyCCQAAMAbBBAAAGOP/A90X6YTVLDs8AAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Gradient boosting beat all models above." + ], + "metadata": { + "id": "8Q-quQXJ1y96" + } } - }, - "source": [ - "Now do your best using all the approaches above!\n", - "\n", - "Tune LR with generated features, SVM with appropriate kernel of your choice. You may add some of your loved models to demonstrate their (and your) strength. Again plot decision regions, calculate metric.\n", - "\n", - "Justify the results in a few phrases." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "ExecuteTime": { - "end_time": "2019-03-13T23:26:23.330584Z", - "start_time": "2019-03-13T23:26:23.328232Z" - }, - "nbgrader": { - "grade": true, - "grade_id": "cell-e61b36ea61909c83", - "locked": false, - "points": 40, - "schema_version": 2, - "solution": true + ], + "metadata": { + "celltoolbar": "Create Assignment", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": false, + "sideBar": true, + "skip_h1_title": false, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": {}, + "toc_section_display": true, + "toc_window_display": false + }, + "colab": { + "provenance": [] } - }, - "outputs": [], - "source": [ - "### YOUR CODE HERE" - ] - } - ], - "metadata": { - "celltoolbar": "Create Assignment", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.7" }, - "toc": { - "base_numbering": 1, - "nav_menu": {}, - "number_sections": false, - "sideBar": true, - "skip_h1_title": false, - "title_cell": "Table of Contents", - "title_sidebar": "Contents", - "toc_cell": false, - "toc_position": {}, - "toc_section_display": true, - "toc_window_display": false - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/homeworks/lab02_deep_learning/lab02_part2_overfitting.ipynb b/homeworks/lab02_deep_learning/lab02_part2_overfitting.ipynb index 52271642a..d10ec2ceb 100644 --- a/homeworks/lab02_deep_learning/lab02_part2_overfitting.ipynb +++ b/homeworks/lab02_deep_learning/lab02_part2_overfitting.ipynb @@ -1,1423 +1,4148 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "NFmOh482SyEF" - }, - "source": [ - "## Lab 2\n", - "### Part 2: Dealing with overfitting" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "AjzAuO3oSvsI" - }, - "source": [ - "Today we work with [Fashion-MNIST dataset](https://github.com/zalandoresearch/fashion-mnist) (*hint: it is available in `torchvision`*).\n", - "\n", - "Your goal for today:\n", - "1. Train a FC (fully-connected) network that achieves >= 0.885 test accuracy.\n", - "2. Cause considerable overfitting by modifying the network (e.g. increasing the number of network parameters and/or layers) and demonstrate in in the appropriate way (e.g. plot loss and accurasy on train and validation set w.r.t. network complexity).\n", - "3. Try to deal with overfitting (at least partially) by using regularization techniques (Dropout/Batchnorm/...) and demonstrate the results.\n", - "\n", - "__Please, write a small report describing your ideas, tries and achieved results in the end of this file.__\n", - "\n", - "*Note*: Tasks 2 and 3 are interrelated, in task 3 your goal is to make the network from task 2 less prone to overfitting. Task 1 is independent from 2 and 3.\n", - "\n", - "*Note 2*: We recomment to use Google Colab or other machine with GPU acceleration." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": {}, - "colab_type": "code", - "id": "_KBld6VOSwhW" - }, - "outputs": [], - "source": [ - "import torch\n", - "import torch.nn as nn\n", - "import torchvision\n", - "import torchvision.transforms as transforms\n", - "import torchsummary\n", - "from IPython.display import clear_output\n", - "from matplotlib import pyplot as plt\n", - "from matplotlib.pyplot import figure\n", - "import numpy as np\n", - "import os\n", - "\n", - "\n", - "device = 'cuda:0' if torch.cuda.is_available() else 'cpu'" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 35 + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "NFmOh482SyEF" + }, + "source": [ + "## Lab 2\n", + "### Part 2: Dealing with overfitting" + ] }, - "colab_type": "code", - "id": "EdLOG0XqS_g5", - "outputId": "1a58887c-24fc-4315-bb85-bdc88f4f485e" - }, - "outputs": [], - "source": [ - "# Technical function\n", - "def mkdir(path):\n", - " if not os.path.exists(root_path):\n", - " os.mkdir(root_path)\n", - " print('Directory', path, 'is created!')\n", - " else:\n", - " print('Directory', path, 'already exists!')\n", - " \n", - "root_path = 'fmnist'\n", - "mkdir(root_path)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 397, - "referenced_widgets": [ - "a00cbbf2385c426bb848399f3c13b70f", - "4c7a7ac1286649c4804fefd359a1be74", - "9faad8d0c45746ab8e06e120bb3ec0b6", - "590134f878a74adb98fd129816fde03c", - "92685fe1840a4555a6962c006ea90c23", - "aa0dc032d1644bad8e741cf1696d9a70", - "4296a7e9ab704f019451001dd12c4f46", - "29b0a8c468e6410fb390b903559d6ef5", - "fb66cde27d0849bba4947c024e198f7f", - "bebcff464bfc44ffa82e311a39cae7d7", - "b9d32ac7b88c4f4e900b160f05c016a3", - "b2f66cc8930240a5b74d5480377496ed", - "c1d770aa9eb34e4d942967c507f94009", - "f280e146d6c54fb59f8ce36f2d1cc6a3", - "9761d073bcef4c15ad64b01d7bef3561", - "56418812bda04e7293dd8839018ae839", - "e6efdf93b1444984810dd32d506227d5", - "583e6f0878e04a0bbebf5d80d9d712dc", - "0078023356f142bdbe4e13a42df460fb", - "01658e0aebd84db9912ea456bd1ad030", - "54a1be4ee00c44a0b72192135f62fa16", - "df2e6c22b8af4a2e95bdd85fb48290a6", - "835f930bb1504982aa56c835dc7b7df7", - "30540b2b63064d828fd8502fd6d08877", - "e734818e32a54c71b6397ef84b35bf07", - "029f1768c5734beab39a592b44f75a9d", - "bf33fa62bd4546bdbe142239f472fbb3", - "ca04c2ebb96f48109ef440c260aa125a", - "26a1b39d42ee490b8732f0e3856c9114", - "545f1e0393b64b1b94710674213f4af8", - "181b94c37c72459ca284267bc7675469", - "748c2a2536394a50aab12eef92442fcb" - ] + { + "cell_type": "markdown", + "metadata": { + "id": "AjzAuO3oSvsI" + }, + "source": [ + "Today we work with [Fashion-MNIST dataset](https://github.com/zalandoresearch/fashion-mnist) (*hint: it is available in `torchvision`*).\n", + "\n", + "Your goal for today:\n", + "1. Train a FC (fully-connected) network that achieves >= 0.885 test accuracy.\n", + "2. Cause considerable overfitting by modifying the network (e.g. increasing the number of network parameters and/or layers) and demonstrate in in the appropriate way (e.g. plot loss and accurasy on train and validation set w.r.t. network complexity).\n", + "3. Try to deal with overfitting (at least partially) by using regularization techniques (Dropout/Batchnorm/...) and demonstrate the results.\n", + "\n", + "__Please, write a small report describing your ideas, tries and achieved results in the end of this file.__\n", + "\n", + "*Note*: Tasks 2 and 3 are interrelated, in task 3 your goal is to make the network from task 2 less prone to overfitting. Task 1 is independent from 2 and 3.\n", + "\n", + "*Note 2*: We recomment to use Google Colab or other machine with GPU acceleration." + ] }, - "colab_type": "code", - "id": "qt6LE7XaTDT9", - "outputId": "ab967f1e-8bf2-4199-cbd7-75806359ee1b" - }, - "outputs": [], - "source": [ - "download = True\n", - "train_transform = transforms.ToTensor()\n", - "test_transform = transforms.ToTensor()\n", - "transforms.Compose((transforms.ToTensor()))\n", - "\n", - "\n", - "fmnist_dataset_train = torchvision.datasets.FashionMNIST(root_path, \n", - " train=True, \n", - " transform=train_transform,\n", - " target_transform=None,\n", - " download=download)\n", - "fmnist_dataset_test = torchvision.datasets.FashionMNIST(root_path, \n", - " train=False, \n", - " transform=test_transform,\n", - " target_transform=None,\n", - " download=download)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": {}, - "colab_type": "code", - "id": "71YP0SPwTIxD" - }, - "outputs": [], - "source": [ - "train_loader = torch.utils.data.DataLoader(fmnist_dataset_train, \n", - " batch_size=128,\n", - " shuffle=True,\n", - " num_workers=2)\n", - "test_loader = torch.utils.data.DataLoader(fmnist_dataset_test,\n", - " batch_size=256,\n", - " shuffle=False,\n", - " num_workers=2)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 35 + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "_KBld6VOSwhW" + }, + "outputs": [], + "source": [ + "import torch\n", + "import torch.nn as nn\n", + "import torchvision\n", + "import torchvision.transforms as transforms\n", + "import torchsummary\n", + "from IPython.display import clear_output\n", + "from matplotlib import pyplot as plt\n", + "from matplotlib.pyplot import figure\n", + "import numpy as np\n", + "import os\n", + "\n", + "\n", + "device = 'cuda:0' if torch.cuda.is_available() else 'cpu'" + ] }, - "colab_type": "code", - "id": "v_YFmF7NTWrQ", - "outputId": "6b517f52-5fc5-482e-cc8e-cd6b3f1b72f1" - }, - "outputs": [], - "source": [ - "len(fmnist_dataset_test)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 71 + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "EdLOG0XqS_g5", + "outputId": "f77d7396-3514-4f6f-f58c-605563eee90f" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Directory fmnist is created!\n" + ] + } + ], + "source": [ + "# Technical function\n", + "def mkdir(path):\n", + " if not os.path.exists(root_path):\n", + " os.mkdir(root_path)\n", + " print('Directory', path, 'is created!')\n", + " else:\n", + " print('Directory', path, 'already exists!')\n", + "\n", + "root_path = 'fmnist'\n", + "mkdir(root_path)" + ] }, - "colab_type": "code", - "id": "aHca15bOTY4B", - "outputId": "7eb477ef-816d-418c-f5c3-ade63d4cf915" - }, - "outputs": [], - "source": [ - "for img, label in train_loader:\n", - " print(img.shape)\n", - "# print(img)\n", - " print(label.shape)\n", - " print(label.size(0))\n", - " break" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "b6OOOffHTfX5" - }, - "source": [ - "### Task 1\n", - "Train a network that achieves $\\geq 0.885$ test accuracy. It's fine to use only Linear (`nn.Linear`) layers and activations/dropout/batchnorm. Convolutional layers might be a great use, but we will meet them a bit later." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": {}, - "colab_type": "code", - "id": "ftpkTjxlTcFx" - }, - "outputs": [], - "source": [ - "class TinyNeuralNetwork(nn.Module):\n", - " def __init__(self, input_shape=28*28, num_classes=10, input_channels=1):\n", - " super(self.__class__, self).__init__()\n", - " self.model = nn.Sequential(\n", - " nn.Flatten(), # This layer converts image into a vector to use Linear layers afterwards\n", - " # Your network structure comes here\n", - " nn.Linear(input_shape, num_classes)\n", - " )\n", - " \n", - " def forward(self, inp): \n", - " out = self.model(inp)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "torchsummary.summary(TinyNeuralNetwork().to(device), (28*28,))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "544PGKEnjPr5" - }, - "source": [ - "Your experiments come here:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 607 + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "qt6LE7XaTDT9", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "e48e8bd3-1086-446b-c72d-ceecb91c258d" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz\n", + "Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to fmnist/FashionMNIST/raw/train-images-idx3-ubyte.gz\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 26421880/26421880 [00:02<00:00, 11446401.98it/s]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Extracting fmnist/FashionMNIST/raw/train-images-idx3-ubyte.gz to fmnist/FashionMNIST/raw\n", + "\n", + "Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz\n", + "Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz to fmnist/FashionMNIST/raw/train-labels-idx1-ubyte.gz\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 29515/29515 [00:00<00:00, 169484.75it/s]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Extracting fmnist/FashionMNIST/raw/train-labels-idx1-ubyte.gz to fmnist/FashionMNIST/raw\n", + "\n", + "Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz\n", + "Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz to fmnist/FashionMNIST/raw/t10k-images-idx3-ubyte.gz\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 4422102/4422102 [00:01<00:00, 3207687.83it/s]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Extracting fmnist/FashionMNIST/raw/t10k-images-idx3-ubyte.gz to fmnist/FashionMNIST/raw\n", + "\n", + "Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz\n", + "Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz to fmnist/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 5148/5148 [00:00<00:00, 6701513.65it/s]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Extracting fmnist/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz to fmnist/FashionMNIST/raw\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + } + ], + "source": [ + "download = True\n", + "train_transform = transforms.ToTensor()\n", + "test_transform = transforms.ToTensor()\n", + "transforms.Compose((transforms.ToTensor()))\n", + "\n", + "\n", + "fmnist_dataset_train = torchvision.datasets.FashionMNIST(root_path,\n", + " train=True,\n", + " transform=train_transform,\n", + " target_transform=None,\n", + " download=download)\n", + "fmnist_dataset_test = torchvision.datasets.FashionMNIST(root_path,\n", + " train=False,\n", + " transform=test_transform,\n", + " target_transform=None,\n", + " download=download)" + ] }, - "colab_type": "code", - "id": "i3POFj90Ti-6", - "outputId": "82e7e921-541b-4657-f78d-563de48b07c7" - }, - "outputs": [], - "source": [ - "model = TinyNeuralNetwork().to(device)\n", - "opt = # YOUR CODE HERE\n", - "loss_func = # YOUR CODE HERE\n", - "\n", - "# Your experiments, training and validation loops here" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "L7ISqkjmCPB1" - }, - "source": [ - "### Task 2: Overfit it.\n", - "Build a network that will overfit to this dataset. Demonstrate the overfitting in the appropriate way (e.g. plot loss and accurasy on train and test set w.r.t. network complexity).\n", - "\n", - "*Note:* you also might decrease the size of `train` dataset to enforce the overfitting and speed up the computations." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": {}, - "colab_type": "code", - "id": "H12uAWiGBwJx" - }, - "outputs": [], - "source": [ - "class OverfittingNeuralNetwork(nn.Module):\n", - " def __init__(self, input_shape=28*28, num_classes=10, input_channels=1):\n", - " super(self.__class__, self).__init__()\n", - " self.model = nn.Sequential(\n", - " nn.Flatten(), # This layer converts image into a vector to use Linear layers afterwards\n", - " # Your network structure comes here\n", - " nn.Linear(input_shape, num_classes)\n", - " )\n", - " \n", - " def forward(self, inp): \n", - " out = self.model(inp)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 449 + { + "cell_type": "code", + "source": [ + "from sklearn.model_selection import train_test_split" + ], + "metadata": { + "id": "xkMx1ilEHFiV" + }, + "execution_count": 4, + "outputs": [] }, - "colab_type": "code", - "id": "JgXAKCpvCwqH", - "outputId": "8d29ad18-3f0c-4161-8bcd-004d24ba771c" - }, - "outputs": [], - "source": [ - "torchsummary.summary(OverfittingNeuralNetwork().to(device), (28*28,))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model = OverfittingNeuralNetwork().to(device)\n", - "opt = # YOUR CODE HERE\n", - "loss_func = # YOUR CODE HERE\n", - "\n", - "# Your experiments, come here" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Task 3: Fix it.\n", - "Fix the overfitted network from the previous step (at least partially) by using regularization techniques (Dropout/Batchnorm/...) and demonstrate the results. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "class FixedNeuralNetwork(nn.Module):\n", - " def __init__(self, input_shape=28*28, num_classes=10, input_channels=1):\n", - " super(self.__class__, self).__init__()\n", - " self.model = nn.Sequential(\n", - " nn.Flatten(), # This layer converts image into a vector to use Linear layers afterwards\n", - " # Your network structure comes here\n", - " nn.Linear(input_shape, num_classes)\n", - " )\n", - " \n", - " def forward(self, inp): \n", - " out = self.model(inp)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "torchsummary.summary(FixedNeuralNetwork().to(device), (28*28,))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model = FixedNeuralNetwork().to(device)\n", - "opt = # YOUR CODE HERE\n", - "loss_func = # YOUR CODE HERE\n", - "\n", - "# Your experiments, come here" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "dMui_uLJ7G0d" - }, - "source": [ - "### Conclusions:\n", - "_Write down small report with your conclusions and your ideas._" - ] - } - ], - "metadata": { - "accelerator": "GPU", - "colab": { - "collapsed_sections": [], - "name": "Overfit it.ipynb", - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.7" - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "0078023356f142bdbe4e13a42df460fb": { - "model_module": "@jupyter-widgets/controls", - "model_name": "IntProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "IntProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_df2e6c22b8af4a2e95bdd85fb48290a6", - "max": 1, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_54a1be4ee00c44a0b72192135f62fa16", - "value": 1 - } + { + "cell_type": "code", + "source": [ + "fmnist_dataset_train, fmnist_dataset_val = train_test_split(fmnist_dataset_train, test_size=0.1)" + ], + "metadata": { + "id": "1zjce6sHHIXn" + }, + "execution_count": 5, + "outputs": [] }, - "01658e0aebd84db9912ea456bd1ad030": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_30540b2b63064d828fd8502fd6d08877", - "placeholder": "​", - "style": "IPY_MODEL_835f930bb1504982aa56c835dc7b7df7", - "value": "4423680it [00:01, 3086127.05it/s]" - } + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "id": "71YP0SPwTIxD" + }, + "outputs": [], + "source": [ + "train_loader = torch.utils.data.DataLoader(fmnist_dataset_train,\n", + " batch_size=128,\n", + " shuffle=True,\n", + " num_workers=2)\n", + "\n", + "val_loader = torch.utils.data.DataLoader(fmnist_dataset_val,\n", + " batch_size=128,\n", + " shuffle=False,\n", + " num_workers=2)\n", + "\n", + "test_loader = torch.utils.data.DataLoader(fmnist_dataset_test,\n", + " batch_size=256,\n", + " shuffle=False,\n", + " num_workers=2)" + ] }, - "029f1768c5734beab39a592b44f75a9d": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } + { + "cell_type": "code", + "source": [ + "def to_device(data, device):\n", + " \"\"\"Move tensor(s) to chosen device\"\"\"\n", + " if isinstance(data, (list,tuple)):\n", + " return [to_device(x, device) for x in data]\n", + " return data.to(device, non_blocking=True)\n", + "\n", + "class DeviceDataLoader():\n", + " \"\"\"Wrap a dataloader to move data to a device\"\"\"\n", + " def __init__(self, dl, device):\n", + " self.dl = dl\n", + " self.device = device\n", + "\n", + " def __iter__(self):\n", + " \"\"\"Yield a batch of data after moving it to device\"\"\"\n", + " for b in self.dl:\n", + " yield to_device(b, self.device)\n", + "\n", + " def __len__(self):\n", + " \"\"\"Number of batches\"\"\"\n", + " return len(self.dl)" + ], + "metadata": { + "id": "_277h9XE-xsT" + }, + "execution_count": 7, + "outputs": [] }, - "181b94c37c72459ca284267bc7675469": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } + { + "cell_type": "code", + "source": [ + "train_loader = DeviceDataLoader(train_loader, device)\n", + "val_loader = DeviceDataLoader(val_loader, device)\n", + "test_loader = DeviceDataLoader(test_loader, device)" + ], + "metadata": { + "id": "71N21L3i-0t8" + }, + "execution_count": 8, + "outputs": [] }, - "26a1b39d42ee490b8732f0e3856c9114": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } + { + "cell_type": "code", + "source": [ + "from torchvision.utils import make_grid\n", + "\n", + "def show_images(img, nmax=64):\n", + " fig, ax = plt.subplots(figsize=(8, 8))\n", + " ax.set_xticks([]); ax.set_yticks([])\n", + " ax.imshow(make_grid(img.detach().cpu()[:nmax], nrow=8).permute(1, 2, 0))\n", + " plt.show()" + ], + "metadata": { + "id": "EF5BCxC3-N--" + }, + "execution_count": 9, + "outputs": [] }, - "29b0a8c468e6410fb390b903559d6ef5": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 671 + }, + "id": "aHca15bOTY4B", + "outputId": "188e56a3-4aa8-4e87-9810-b4749d6f1294" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "torch.Size([128, 1, 28, 28])\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnwAAAJ8CAYAAABk7XxWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9WW9l2XXed+48zwPnYhVr7OqpWi2p1YoU2LIceQgcwHAM5MkPectfynOQAEFsIzaC2AnsjhRZUkvuQerq6q6ZVZzJO89jHphvcZ3Nc1ks1iWLVToLIEjee+655+yz91rf+tawrfF4PIYrrrjiiiuuuOKKK6+teF72BbjiiiuuuOKKK664crriAj5XXHHFFVdcccWV11xcwOeKK6644oorrrjymosL+FxxxRVXXHHFFVdec3EBnyuuuOKKK6644sprLi7gc8UVV1xxxRVXXHnNxQV8rrjiiiuuuOKKK6+5uIDPFVdcccUVV1xx5TUX33EOGo1GWF9fRzweh2VZp31NrrjiiiuuuOKKK648Q8bjMer1Oubm5uDxHM3hHQvwra+vY3FxcSoX54orrrjiiiuuuOLK9OTJkydYWFg48phjhXTj8fhULsgVV1xxxRVXXHHFlenKcXDasQCfG8Z1xRVXXHHFFVdcOZ9yHJzmFm244oorrrjiiiuuvOZyrBw+V1x5XcWyLASDQfh8Png8Hni9XnndsiyMx2M51uv1wuPxwOPxyPE8ttfroVQqodPpvJT7OEsJBAIIhULw+XyIx+MIBAIYDofo9/u28eJYWZYlv1utFnZ2dtDv91/iHUxfOF84hyzLgt/vh9/vB7Bf+DYej9Hv99Hv9zEajeS15/kOnjsUCiEYDGI8HsvPcDjEYDDAaDSS33zvVZVIJIJCoYBgMGi7H/7NcdfsBv8fDAbY29tDs9mUz7xOwvnGH6/XC6/Xi1QqhUgkAgDy7PXY8TU9dlyfvV4P3W4Xw+EQzWZT5qo57q68muICPld+q8Xn82Fubg7ZbBahUAixWMwG/mhILctCNBpFNBpFMBhEJpNBMBgUELi1tYW/+qu/wv3791/2LU1VtCGloi8UClhZWUEqlcK3vvUtLC4uolqtYnt7G4PBQIBwIBBANBqF1+tFMBhEIBDAl19+if/0n/4TNjY2Jn4fgfarZFgCgQD8fj8CgQASiQT8fj8KhQJyuRxGoxE6nQ6GwyG2t7extbWFfr8vBvW44vf7Zf6trKxgYWEBo9EIvV4Pw+EQlUoFtVoNnU4HOzs76HQ6GAwGrzS4vnTpEv7iL/4CCwsL6Ha76Pf7GAwGaLfbGA6HAqo1ePH5fAgEAtjb28N//a//Fb/+9a/R6/XQ6XQmzimneX5ehffp9XoRi8XEAYvFYkgkEvjhD3+It956S3TXeDxGp9NBt9vFaDQSx4zz1ev1IhwOw+PxYGNjA2tra6hUKvj000+xs7NjA4GtVuuVnk+/7eICPld+q8WyLMTjceRyOUQiEaTTafh8Pvh8Pni9XmFiACCZTCKRSCASiWBmZgbhcBherxc+nw+PHz+WtkXn3WAcVyblhJB1KRQKeOutt3D16lXs7u7iyZMn6Pf7whaEQiEkEgn4fD5EIhGEQiGMRiNhH476vldpHGl8/X4/QqGQgLJ8Po/5+XkbW9Lr9VCr1eDxeNBut5/rewicw+Ew8vk8lpaWMBwOBdjReDebTdRqNWH5XkUhqEmn07h16xYuX76MTqeDTqeDfr+PRqMh9xwMBm0sFQHQxsYG/s//+T/ChHa7Xcc59SrlqJtMciAQQDgcRiQSQTKZRDabxc2bN/Hhhx9iNBphOBxiNBqh2WyK08FxCAaDCAaD4kh4PB48fPgQsVgMOzs7WF1dRavVgs/ng2VZ6Pf76Ha7GAwGr8zadMUuLuBz5bUWKvNJrFEoFMKtW7fw/vvvIxAIIBKJCGvHz9JohsNhhEIhBAIBxONx+P1+OTYQCOCHP/whVlZWcP/+ffzmN7/BYDA425s9oZCRM8dHh3703zQqkUgET58+xfb2NhqNBiqVCobDoYxdNBqVcBwBcjgcxtzcHAaDASqVCqrVqu37JgE9PovzZGiCwSASiQQCgQBmZ2eRyWTkOj0eD/L5PHK5HLrdrgCVbDaLSCSCXq+HSqUiRpisCT+vX+Mci0ajwiwHg0HUajUEAgGkUimZg9FoFJ1OB/F4HJ1OB6VSCTs7OxgMBmi1WjInz+N4EtCGQiG88847uHLlCi5fvoy5uTnEYjEboPN4PBgOh3K8yfD5fD7k83lZk19//TV+/vOfC/DRLJWe2+dN4vG4MMaca3QyvV4v4vG4pKT4/X5EIhGUy2X85je/QSgUQjKZhM/nQygUQjwex2AwEKaPP+12G1tbW+j1etjZ2UGlUkG/38fFixeRz+fR7XbRbrcxGAzQaDRkPpPtK5VKaDabL3uoXDmGuIDPlddWdI6dNqTayIXDYXzve9/Dn//5nx861hSn12mEaJRKpRL++3//77h79+4hwHcejazOszPHhmK+NjMzg29961sYDAb4x3/8x0NhbM3ONBoNxGIxRKNRZLNZxGIxXLp0CaFQCPfv30etVnMEmeb5mFupGdeXLZFIBPPz84jFYnjzzTdx8eJFtNttCW3Pz89jZmYGtVoNe3t7aLfbmJ2dRTqdxmAwkJzPdruNVqsF4GA+dbtdyT3T+ZLFYhE+nw/1eh2lUgmZTEbY6UwmI6COxvj+/fvCJjIcquf4eZqLfr8f8Xgc6XQa/+bf/Bv86Z/+qYBq5qeRdQ+Hw8JShcNhAPb1DgCxWAx//ud/jvF4jL/9278V56RUKjmGJU3g97LHhmtoeXkZ0WgUS0tL4mgS+EUiEfj9fvT7fQlZb29vY3t7G/l8HleuXEEsFkMqlUKhUMBwOJRweK1WQ6PRQKvVwu3bt1Eul4WFDgQCuHHjBkKhkITDh8OhAL5KpYLNzU00m03cuXPHBXyviLiAz5XfGpmkwKlATSaLYub36ORlslIejwexWAzj8RiRSEQM98s2Gi8qZBLIvvj9fqTTacTjcfR6PUmOBw4YOjIODK0Fg0EAQK/XAwAkEgl0Oh1UKhXU63UMBgP0ej0pNiDwNMfuvOX1EYTRCFMIonUOFV/Xr4XDYclBM4uFAoEAfL599cz3yWRxnMn86XHRAJ6FI5FIBOPxWL7jPEgwGBQ2PRQKwe/3IxgMIh6PI5lMIpfLIR6PSzjRLDTgffO3ZvIpHo9H8vvS6TQWFhYkzaDVaqHX66HVaklYnPPzZYh5j1xz4XAYsVhMUiKYN8w8Y/2sPR6PbQ212200Gg2Mx2PUajWEQiHJHaVT0Gq10Gg00G630el0bMyfeT3A/pynExKNRgEcRD5YNHSe1qgrdnEBnyuvrExK8NceujYGfE3LeDxGs9lEuVy2va+VKI2GVoYMi2i2JBKJ2MJ8Pp/PpgDPY6hSK3anCttMJoNsNot4PI7r168jk8ngvffew4ULF9BsNlEsFoWpajab8Hq9uHDhAvL5PLLZLC5evIhgMIhOp4O1tTUMBgO888476Ha7uHHjBnZ3d1Gv1/HgwQPU63WUy2WUSiUBgQRHw+HwpY6TkySTSdy4cUMA7P379yUpHgAqlQrG4zF6vR48Hg+CwSAqlQo2NjYQDodx+fJlJJNJ9Ho9tNttmyOhi4aYN9VqtbC3t4fRaIRUKoWZmRn4fD5Uq1U0Gg35bKfTwdbWFjqdDjweD5aXl1GtVrG7uysA4GWP4/LyMj744AOk02lcv34ds7OzshZ8Ph+WlpbQ6/VkHgCwVYwS6LHqmaFcXRUOHMzvy5cv4z/8h/9gq5B+8uQJPv74YwmBPnjwAMDZzzEzckCnKhQKYXFxEZcuXRKnlEU6tVrNBvo1+KNUq1Xcvn0bXq8XX3/9NSKRCNrtNnZ3d9Hv9yU1oNfroVqtotfryfkGgwG2t7dtQHQ8HkteqN/vx9zcnIR3w+Ew6vU6NjY23KKOcywu4HPllZdJTNpRQEsfQ4Orj9XGh6CRCdD0nhlapOI1vXCv1zsxTKqv3bze05Cj2Ebzdd3uIRwOI5PJIJPJ4Pr165ibm8OlS5eQSqUkhygWiwEA2u02fD4f0uk0ZmdnkcvlsLCwAJ/Ph9XVVdRqNfj9fszMzMDj8SCbzUpostvtYm9vT8JGTBI/i7E5qYRCIRSLRSQSCTx69Ah7e3sCPLxeL9rttrAuwP5c6nQ62N7eRiqVQigUQiaTsYXjaFCZjM99MjnfGLJNp9PCKDMJX4eDGaqLx+NIpVIAYGMhX6aQcXvjjTdQLBbx4Ycf4vLlyxgOh8L0Euzp8L25lrgmGaYmi0kwCEDYrmw2i4WFBcl19Hq9uH37NprNJjY2NvDkyZNzw8h7vV5Eo1FEIhGkUilkMhl4PB70+33J7aSDAECY3FAoJI6Cx+MRFn08HkteY6PRwObmJnq9HtLpNJLJpO27qcuY28ecXL1HK0Pp0WgU/X5f5jAAbG1tnd1AufLc4gI+V15pOU7CNcMiLB5gpW0ikUAqlcK1a9cQjUYlHGIyXfq7aED4m4pU/1y+fBl/9Ed/hGazKaGjcrmM9fV19Ho91Ot16dd3FgbmqJytUCiEdDot7URisZhU7fn9fmH4IpEI8vk8QqEQBoMBdnd30ev1UCwWAUAYPsuykMvlEAwG4fF4hJ2i4SBoAfYNOL93ZWUFMzMzWFhYkKTxer0uYbdGo4Fer4e9vT35/MsS9sJj4YDueccQJdk5Xiudhmg0KuO4t7eHbrcr7TR8Ph+i0SgCgQAajQb29vaEfWm1WnIsADHuOgmfrWE0YGdVZr/fl6rO4XAojOlZSiQSwZtvvolisYgbN27gxo0bSKVSCIfDAmboVLGdDK9Zh665DjnerNLVxVZ0trrdrqQeMDTO/yORCG7cuIHZ2VmMRiPkcjns7e3hq6++eqk5aT6fD4lEAolEApZloVKpyNrROkhHLwgI9TiMRiNbAVU4HLaxhFyjgL1fH9u26NCuybATnHMNZ7NZDAYDKa5hvqgr50tcwOfKKysmMGPY1QQ1iUQCi4uLSKfT+P73v4+LFy9idnYWV65cQSgUQiQSQSAQwGAwsOWx6Pw8AGLcdXsCAiPmrPn9fnzrW9/CpUuX0O12USqV0Gq18MUXX+Cjjz5CuVzGo0ePzg3gi8ViuHbtGpLJJC5evIgLFy5I2xmylcFgUFqLMMT25MkTeL1eXLp0CdevXxejwGa3jUZDigXIxHi9XgFyTLxnS4lisWgLz/f7fZTLZbTbbWxubuLx48eo1Wr49NNPXyrg01WgvB8aPhrYaDQKn8+HZrOJer1uA4GpVArZbBb9fh9ra2vodDq4fPkyisUi4vE4VlZWkMlk8OWXX+L+/fuo1+synpFIBNlsFn6/X/qmkYkhy0UWj3lefG6dTgc+nw/hcFh6qp3mGAGH51oikcCf/Mmf4MMPP0Qul8Pi4iL8fr8w5jqkrYsHmOdI9kpXHHN+6hw+rlkNlsfjsYBdzrFEIoHvf//7GAwGuHr1Kp48eYJf//rX2N7ePnXAdxSzzx6O2WwW4/EYW1tbAuQ0mDfPwxQTDXqZWpJKpZBOp9Hr9RCLxYQlJLOsgR0BH38IxHUqAHWgZVlIJpNSob61tSVFRS7gO3/iAj5XXkthONLn8yGTyaBQKMhvtsvIZrMIBAIAcAjcaeWmvV8dZtId7nX+jA7VMbS3u7uLYrGIQCCAer0uuUc6NHOWwvYyyWQS6XRaDAK79CeTSakOZS4igQIZAjImNLgs4KjX67b8Shofv99vMyy60IAsjj4P+6y1222kUilYliUJ7Dq366yF+VQEVGSbzB0PgAMjTDDI8QIOWq8Q3DC/jMf3ej1bHiMA27lpiPlMdIoBRTM1+tpOK3ypn7v5GudbPp+X+eX1eqUClNfrlGc7Go1s+WpazGp8p3Els6WdQl2IlEwm0W63hWl1ui9eyzTHyin3mGuF1bcE8/oYs6jMzCfWhS36O7ge9bGmaLDHH84t/ua80+CSrWG4ll05f+ICPldeaTELNKjckskkPvzwQ8k5u3HjBiKRCHK5nC1sZm7/pSssaShpcJvNJhqNhuTrMdeG1Wos5qAi9Pv9stNCPB7HpUuX0Gw28cUXX2BtbQ0PHjzAj3/8Y9Tr9VMdIxoDjk0gEMCtW7dw/fp1pFIpXLp0SZoFM7+JIUQ9vgy7kVkajUaoVquStJ1MJuV7CIzJhKVSKSQSCdRqNWlCTBAJwBb6NHOTCoUC4vE4ms0m/H4/tra2sL6+jq+//vrMQZ/P5xP2JZ1Oy84Wo9HINoYEypxLnU5HQA9ZYbYbaTQauH37NiKRCLrdLvL5PB4+fIi9vT10Oh3J5yMQGQ6HwpKafdVMIXAmeGbe32mypBp4AQcVualUCslkEvF4XBpE8xrNXDEye6PRCLVaDcA+QxiPx20MIL+PRTGWZWF3dxerq6sC+ghOYrGYgCMA0l+OYDibzSKVSsnzM8d02qDPPF8gEJBeoLwGE7hp8KXZPK45zQTymOFwiFKphHa7jW63i3K5jMFgIHPUdG7199A5c/qb10fnxOPxyPixQtiV8yUu4HPllZWjwiLhcBhvvPEGrl+/jqtXr+Kdd96Bz+cTxkQnyhOUMORFhonnpZLrdrtotVoIBoPCUPCHoTWGQxj6I4DK5/O4ceMGut0ucrkcHj9+jGAwiI8//vjUAZ85Pqyk/eY3v4lEIoG5uTkEg0G0Wi0Zk16vd8jAaOPC13nPmnkCDqojPR6PNH7VeUUAbOEjXYFJNoc9xhKJBLLZrLTOSKVSGI/HePDgwZkDPo/Hg2QyiUKhIIat1+vB5/PZdi7QjoSu3AUgwIStLLrdLp4+fSrhbRZ2MCyWTqfFqaAB73a7AvQ4V50AH7+b25CxYvq0GT7+PR6PJSeUeWShUEhAsAYYnCuaNWdB1XA4RCgUAnCQSzsYDCSszvClZVmo1+tYXV3FYDCwtbQhqOR9s78cq07JHvMzTuzbNMfJFD2HqJMo+jlzjWgwyNcpurem3mmj0+kI4IvFYpITan5ef48T+NMOMp8H0xno2Lhy/sQFfK680mIarmg0ilgshtnZWSwuLuLChQtIJpO2CjcdBgPsG4tTaFA000fGiUwLgQrDsjy32cNKf9dwOEQymcTCwgLW1taQz+dtCpmf4fmnKTSKVPTch5OGROfpTOqFx+vjNdIQdTodVKtV8fb5ut6aybIs+Z8J4+bz08ae5+dexuPxWJgi5sk5ha1OUyzLkn5xBCiTwmN8X+eEdrtd1Go1Ab5sbMv3uVtJs9lEOBwWlhQ4yCE1jb+ZcqDnoP5uAqKzyIHUz4NgioVTfr/flhph5pjqYgO9dRyZPgC2IinmLTJXr9vtyhziThTxeFycLx3iJnBhGDUYDEoRDYuuTnt8KHQSdWqDTjMhCNWAj86RGbbl2NL51Ll4OheQn+N618ypPpcJ+Mg6a9Cn02KmDZBdmY64gM+VV150rlgul8PFixexvLyM999/H2+++aaweWQ7zFwnKs9erydhJjOHhcczrw04yGMx90TVCldXzpH5mZ+fx9LSElqtFq5du4ZYLIbV1VVsbm7arovnmpYEAgFkMhkkEgnk83nk83kAkM3RNdgjCDH7e5n5PxoscowbjYb8XyqVxDDpEB8T6AmqOWbcG5X3TmBAg5ROp5FIJLCxsYFQKGSrAtZjd1oAUDN8HKejjDermjlXms2m9DuLxWIIhUISVhyNRnj69ClGo5HkUerwea/Xk7HVDJBZ6KCLSDjGwH6VLAHfaRlkp3XDvZfz+byAPh3y5b1oxlfnKbKqvdlsYnd3F5FIBIuLizbWs9frYXNzUyq66ZjNzs4imUzKjhyWZdkcM4IVNgnnbiatVgtbW1unCvhMBlEXfvH5mOkmfM4M35prEziYD/oZaxCpq5q57sgW611f9HXoNcr0hXQ6DY/HI+kfwEGxkAv4zqe4gM+V10rIYLE/XCwWk55kVFYEeFpMZku/rn/rpHST/TNZCuBgdwWdWM2eWdFo1HGnhtMShrZYsMEcKV0swHvUY2IaDy06jKib2nIMaJgI3GhodH86imnYzLwiAIcqolnleZZC8M5rNueLyXZoo0ygQebPBNC6yIDMk84lNfPdJuVf6TAcr0UzO6cpJgBmcQTz0szCC/6v54O+X+bicT7pFiX6XJr55NxgXhxb1AAHjpqe85rl4xoxd/k4bXGaL3wdgIBg7SQ5rU8TcPM1nl8DMq3DOH56v2XOP5OFdzqPfh4u4Duf4gI+V15ZMRWxZe23CFhaWsLs7Oyh0BFwOA/tqPOZ59aGlCwB3wMO+rMRONJr1/uA0lj1+33EYjG88cYbyGQyKJVKePLkie06pm1ootGotKdJp9NSBUjjaiar83UdHuJvHaIej8eSezQej6V9C42MCSRpUDQzR1bvKCCoJZFIYGFhAfF4HBsbG6hWq4dCq6dhqE2AZva0o4HUzAwAWwEBc8+YY6bbXnAODYdD2U2B84777vJ4Ms2aveEzI2urW2PoKtezNMisWs9kMgKkNKjQYVXOv0ajgU6nI9t/kbVkY24AtsbEZIfZsDibzcr5ea5ms2l7NmwerMEhC7uazSYqlcqZjREAabfDiuJ+v28DV7FYDD6fD+VyWXZM0Q7lJCcWsG/3p8GfThHQAJuf93g88hx8Ph9mZmYQj8cRDoeFIdQRATqR52kbP1cOxAV8rrzSYhr1WCyGYrGIbDYrbTNMwKfZvJOIVsbaK9fXpMOh5r6XNMrhcFg2Rv/ss88m3tO0hDtDZDIZ2aeUQEOzj7w+vmeOoTYkfI8MjgaCwAHI0J81z8uKZoI9/VzMPCYKG0EHAgGUy2VUq1U5nt9zWmLmMJrMlGloCeAYcu12u2JstUOgGRgCZ30OFmpw3Dhmug+ddkjM9AUzP/KshEVOiURCcje142WydMD+ri3lclnumWkZBB+cc+PxGPF4HAAkRzEYDEqRxu7uLlqtFsrlMjY3NzEcDm2tWKLRqIw5AVcqlZK9Z89SdJsYvQ743Fj0oqMVdCxNRwQ4nMunX9cRBwI+MwWAxxH8BoNBcbL0euXnx+OxAPaznmOuHE9cwOeKo+j8EHqdlPF4LBWd50mYY8ctg3RxxVEAwIlRcwqVTFKsPJ6KTodAqKydxO/3Ix6Po9vtirE6TaBCYKV3LjCvUYdmAGdAY4avTQCtt3nSgMdkRJ3G0wyH6xC6Po75cd1u99jPeVpiMp1mioAGqOb4TTqfGV7kefS4aPCrx4THTrrOly0EVGZu16S/gf05FIlEBPyyyTJ793G+cucaADa2iq1/dnZ20Gw2JcfM5/MhHo8LeNItTIB90MWdeXSaxVFpDdMQhk91k2kAkrvJXVgSiQTq9TqCwaCALIa5zf6Bev7oOaXXuLkWj7q2QCCAdDqNmZkZcV443sxVpi5xQ7rnU1zA91ssR7EhHo9H8l/m5+eRyWTk9cFggIcPH2JjY+NMr/dZYlkWMpkMrly5InuV6nwypxDwpPwnbYSpLJ0SpPVngQMDz9d0mIreOCUSiWBhYQHhcFhYitMUtjphD0HN6vHemHNH4+F0n07VtTpfj33EdH4gDQQNkwbB+jv0ebRhN0NTBPaWZW8B8Sxw9aKi54bOqdPNt/X96W2wJonpIOjwpgmKnBiU85Q35XSfBFEEawAc15VeWwwb6mIg3VOQLWtqtZoUwZA9rNVqKJVKtvY28Xgc2WwW4XAYi4uLKBaL0rxbf3cgEEA+n7f17XPKiTsNYYUw27J4PB7ZGs7v96NYLGJ+fh7D4RBbW1vodDoSrmYFsulAmc6Ddqj0eOvjTGFVfTwex9WrV3Hjxg1sbm7i3r17suNGu92Wyl2uXVfOn7y2gG8SW6KNmRmq+m0S05CYY0UGhQudFYMEBawwNOW4eXF83dy79kWFzABbBhxXUT/rup0Uocm+TDIMk7xnGild+XuaopkWDRg0awQc5O7o9ybdF483w9jMn9RgxyxScGL3NLOqjZT+ThoU5g2epXFxYnb12Ey6p6POwePMczrNm6NY5kly1kyf+X1kriYxfE73ovNdOQfIEuuGyWTA6Byw1yYjEK1WC+12W9g8hm2j0ajkOGqnz+PxyJZ/Z1FIpcWJCdUpEKw0ZtGV7r/otEa0mI6b+bo5r8xjdJ9SglKeSzu5+pmddsTivIg53mcVaTiJvHaAz7IOQpDskaZBXS6Xw9tvv41IJIKvvvoKd+/ePbcP5zTlWfc8Pz+Pb3zjG4jFYtL4lczDeDzGm2++KfukEhyQ2qcS1l65Ztn4d7PZxG9+8xtsbW1N7b54PU6AhqyMuSCdDLIOeR7HiJues74Gp+/TivI4Yb9pCMNZ3D5Kb0Cvr1WLEwtgJoDrnD8+e10sQBZRhyS1jEYHbSF4vBm+NP8Ph8PIZDKSw3YWMgmo8h4A2PKu9JzXITfNBJoMjMkSaqNp5vrp48wQMr9X9+XTYXZd/XvaYxaPx7G0tIR8Po9wOGxbD+a6MJ1wr9eLRCIhjibnWTQatTHmeqzT6bRsvzc7O4tut4t4PI5MJiOFHTzW/HwoFML8/DxCoZBs53cWwmfJHD4dYdD7Nnc6HXg8+62BCPp4jNm0WqdZ6DHmnDJZVZMl5nNgwUgoFEKlUsHTp09RKpVsERCT9afTpyunXzXRc2OSsCCJz2w8Hssezrp5/XmR1xbwRSIR2RxaSyaTwQcffCCd++/du3euHsh5kdnZWXz/+9+XXDjtQesEYhoyy7JkvJlDw22f9I4AVEKDwQB7e3vY3Nw8FcCnPUwTlJq5ZJPOw9+mYgRwKEynAd9xQ2yatTiLOcg8oFgsJlWiOvxiFhxQzHvn/ZkAnvfPMJQOS5oNq81wMEGiNlwcQx3a5TUwpAvgTLr6TwKhFA1W9Ht6TtAQm2yuPp95z5Zl2UCjDh1rY2sCPg3E2dtOrwXdbuO0514sFsP8/Dyy2azssjHpe82dHHR1KvvPccx4PPVJo9FAr9dDOBwWJ4D3yO3ddKGBdug4XoFAALOzs4hEIkgkEqc6LqYwT87ch5nrgfrU4/EgkUjA7/fbtobjfKGO1s93UtTBdNy03uTcZd5vMBhErVbDxsaGFI7wXGaEgGzqcVIazqNom+GUDkQJBoOHHBk20WdO6Xm691ca8NGQmN3TaTTozbFsnP2t2ASUeV5UJM96MB6PR7beCYVCYji5SOr1OjY3N23bKL1K4vF4ZJ9ZVmKZysfJ0OjXaMwYatPsmgkQ+v3+1EOZZo6YGR7Tis2JgdNKywnsPW+YQrOKFK1MWR14FlVtOoTMZ6IVNV/jNZpjQjEBoJPh1OyhPp9mYjRj48Qw6Hlmhm31NlRnEdLVY2dZ1iFwR2aGY/ssBln/5jF6HM1iEP1bAzc95vrzHDNdxTnJKTltg2SmWTgBTXMsAHsvPj1fzGP4t64cpaOv2Wh9fpNl5A8ZY7138VmJ1je8Lw0CK5UKxuOxVKUzmqIdKaf70/fN76FoNlWvN+Ag3YYgEgAqlYoUaGgdan6HPuerKpPWBVlrFtEUi0UEg0GUSiVUKhVpnXScdeU0709Tzh3gOw6NSvF6vULfc19Ey7KEfYpEIshkMpLkWiqVkEql8N5772FpaQm3b9/GL37xC7RaLZnIR0kgEMDy8jKy2SyWlpbw1ltvIRQKCTD69NNP8V/+y3/B3t7eVMbirCUQCGBlZQX5fB7Ly8uSw8IeWFQ8VL66qS5woCCYVE/PWldwkb1gPkgkEpnqPdC4ML+QC0+H2NgH7ahqMjMkrH87iZPx1gUImknTYCEajaLX650JS8WdNjKZDCzLEsBNQ8lxMkOsJmjj/ZoGm+dgKoXeU1YbaB3259zQW2TRyPAZccsr4KASUzN8ZxHSDYfDyGazUvDS6XREX/h8PhQKBWSzWbl/07N3cjS4HsjCcRw5TvzfTMYnmNPziSCBn2HLEgAyBwmguD61I3aaEolEUCwWkUqlbEydDjea4FODwkajcQgEm0CDoV+v14udnR3ZtYZbq3FMNODUz4hr1ePxSL9A7kxyVqIdZrKy7DM4HA7xxRdfyE4qDO3G43EhLViJzHliRg/MaIcmSTjH6LTohtfMaRwOh7h9+zZarRZmZ2dx5coVGwttpqe86mBvEgbx+/2yR3s0GsXMzAw8Hg9+8pOf4PPPP5dioOOwe1zHuh3Oacq5AnzHmSD6GI/HI1vi6GRRHYJkHgGNCTdjT6fTknzKhf4sIQOWSqUwMzODy5cvIxKJSFXVzs7OmSf6TlO8Xq9Us3GvUODA09Z90/iaGb7iBDdZFx2aYOsBtl2YlmiWUTOTfE+zHEc9byeAN4nlolCZml42x0mHJLUyeRkMH+e8nvd6fPSPfr7m/6bo43jPGkzo8dDsDcOUZld/J3DD99mugy1mTlu83oNdSjTDx+sMhUJIJBLo9/uo1+sTd2yhmKDFifHSO2ro5wTYmSuTMdMAmoCa36FB/Fm1z9AFYCbbfxTbyXnEe9D36JT7SL0CQLY7pEOugYgT86X1ApthnzXDB9hZcl5PMBhEt9tFtVqVfZh5fdFoVNIztO5xCuc6rWcey9QLvQ71NbE6vFqtYm9vD9Fo1Pb8eL6j7ul1ENqXVCqF2dlZRKNRFAoFAPvYgqHc47J7TukhpynnCvCZE0iLz+eTRFUKPVXLsqR6aDze3zy72WxK2IeDHwgEUCqV8Hd/93fI5XL4/PPPpaz9OE14x+OxrRRed8dn41kz0fpVEDIoiUQC8/PzuHjxImKxmLAYOszAJqjM03MKxVFR6zGg4qJy4jOahldD4M+QG/PFTAOn55epCI+S4y5Gbbz4NxkpvUemBlMce167LnKZthC0sHmr3gpNM6/8e9I1aEPhBFS4g4HJQvG7NFgiOOdvXfDB9csUDbJnGiybFcenJSZrqz14JtHPzc2hVquhXq/bWCyTZdGik+vN9ULR7J75Gtl2guB+v49QKITr16/D5/Ph3r17uHPnzqFcPr2122kLx0zn3/EaTOCrHclJ987jtFDvD4f7e1uzoMxpzWuwrJ1XAiw9pmdZ3KJbOPF6NcPL6mSKyRQfpc/M90w9pHUAq4DZ1orpCpyjfI7sLqBbOOloho4QvQ6Sy+WwsrKCRCKBN954Q5pQz87OwuPx4ObNm9jd3UW9Xsfjx4+fuQ8z1705v8xUjWnKuQJ8gHOeAZVDNpu1JdIyPMRdC9LpNEajEdbW1tBoNBAIBGznCwaD2Nvbw9/8zd8gGAxidXUVtVrtWO1Z+ADa7TYajQba7bZN0XJRmAntr4L4/X7EYjGkUiksLCxgZWUFvV5PlAurngl4AdiMHYGMvneCCRp9Gn7dRb7RaEwN8DHswGvV30OvzGTfjqLtjxPGdTpe/02AwmvkGBEEasaN7BHn82kDvm63a2NRgAO2cRKIN387zXGyXdpQ6u/ROVmajWdahBnmpZPA56mNuL7esxDOJ+6WQfF4PEilUpifn4ff78fq6qoAPnNrP44dx4rXbj5zs0+hE+DjWtPzyev1IplM4s0330QymUS73cYXX3wha5LCqsKzAMu8RuoEski6qpTPlXPELE6ZxADq8CwBH9uxcA7qCISOAvD+CWI4hsDB9n9nUdyiQZLe/YbXx3Hq9XpoNpvynLVO0fnIpjzr2jW7qZ0oEhh8Jno/Y5Isuo2ME+A7K6fiLCSXy+HDDz9ENpvF7Oys4JHFxUV4vV5sbW2h3W5jY2NDdnh5ljgRTZplfa0Bn04k1vleTFwFIHlHZmPXwWAgDTqdPESWlbO9CHCQ78XFrdG2vgY+ALOCioqfOVjj8VgqmnRF2XmXcDiMXC6HdDoti9i89uN6j5NYH/1DVmtaidFkD8numaEyfQ3HvSd+Rv8+jugQk2mUjjqWc/oolnsaYhpQXp++Fv2jn6X+zPN8B1/jc9GG2CnEZH6neS00zFyXDOVx7Z+GaBbZiS0ma61z8fS9OemVo0I5x50DHA8TzDAHzePxCLOn9elZhHSd5hOvWc8h/b+2Aea5jhKOA3U/w8cEJPpeTTujmRb9bLgmgcOAfFqix8jUk+a9m7vV6DFzOq/5N+fApHlnri/9eX0NZvWp6SDq7zgLh+I0RM8dtiW7cOEC0um05IXy3ujARiIRFAoF2TnpuN9DJ5nYhOPY6XSEkJqWnCvAR4ZGezVMWu31etje3sbW1hay2aywee12WxJWS6WSLWRBQ+D3+zE7O4tcLndoUsdiMXS7XZTLZQFwTIiNRqOy6An2mHfW6/Wwt7cnIJPtRxKJBDqdDqrV6rkCfEcZ64WFBXz44YeIx+MoFAo2D1IrUv15fYzpofN9ADaFy79TqRRyuRwikYjkCr6IB+33+5HNZpFKpSRx22TS9HXyPsydL7RiO8oYTxIer0MzzOnQTI8ZuvP5fLIRfKPRQKvVOhXg4mRcyELy2qjIyADpKlqeYxKA1QaFylBvtxYIBGy5fTqPSwMX8/wEW7pak6AmHA4jkUggk8mg0+mgXq+fSvgtHA6jUChI41vzvtmfrNVqwbL2d/+gDqORHAwGokf0fORaMvOmjiP6+ZHpjsViUpzj8XhQLpfh9XqRy+UQi8VEX52mQaZjp58TC7g0aNFAEIBESrTDbDoFWvRndb/BYrEobKfeL1ePN8OUmrXldVuWJfnMTD05jdAk5wrHSoeaNRNqWZY0lKbDbN6PqbtMR8kEfCbgZ1i80+mIztZRMuqzZrMpES7qEjL0fB60v6aOfVUkEokgnU4jlUrhj/7oj/DOO+8cWrPAfguqnZ0deDweFAoF5HI53LlzBz/5yU+wsbHxzCgSn+OlS5fwjW98A4FAQFLG1tfX8etf/xrNZnNqDPO5AXz0qHQIh7kx+XwezWYTm5ubaLVaUu1FBckF2+l0MB6PbUwPz5XJZDA/P49+vy+hRFLTzFVjuJJGieFB3cpChy2ZJ8LwARV6KBSSjc/PegyPw76Y7Bv7ZMViMVGO+j4B56Ry03PXhtoMN+gfNjVtNpuSdP8iIXA+K7aUMZUYr8csIJjE/h1HQR11jDakkxg+U/lSiXOrp9MSJxZBFx8QeJjPn+/r3+br+n/zsxpoaifCfCb8bQI+rmV+FjjYwYHr8zTDRwTlzFtyMpSNRkNCvTrkBtjb80xidDR4eV6Gj4aVwFo7z9yLlUCe4IL67zREAxE6eswx1OBejw0A0esE904pA5NYcD0vWE2ttylzYledmHgd0QmHw8cu6jvpOPH79LXxPf3DsCrXll635ucmfddRuo4OHhsGO6U68Ro0y2c6kvq+XkWGj+uImw5cv34d3/nOd9BoNLCzs2PLzyUO8Hg8AhBLpZKtkJRiRkp0ZCedTuPSpUsIhUIolUqiS6hrpsUuvzTARw9Yh5QI7rhXIkEcE8yj0agAQ1YrsXgiFAohmUzC691vCswiimg0Kg9vPB7L++PxGMlkEsA+JUum8MmTJ3j06BF8Pp80VKRB4bE0iKzKbbVaCIfD2NraOnNWz8nYHsW+8L1AIICZmRlEo1EBe2TcuK0QFzQBtJmArpUm/9bJv3xWuliBi4TPYnZ2FpcvX0a1WsX29vaJmC22ZGBI2mlMCBaogJyU4nGUppPocXUyUCbw1Tk6fI9MFXMOpy3mNZiKWRtnPhsNsMxwq8m6HBWONVli4DAA18Zfv6aNuJ7DTOGgUuTuCRzfaYtuI8QxJNgMBALIZrPIZDKo1+uoVqu29BANIkxQp8Hs8+Ts6LHVbZNSqRSSyaTsqJJOp4W1j8fjiEQiYtT5vE9DPB6P9N5j71J9/91uF7VaTRxOvQerCUomrSlTeJwOO/b7fQFvnNvMr+I4AHaAzufAhHwaYbOJ/7TGiSDcKYyqWSWyjE4FVTzeDJXr9/Vvvq9BI3/z+ziOOlrG8TnK+Tfn+3ln+Dh2oVAIFy9eRCaTQSKRQKFQQCKRQDQaRa1Wk3QyHQHR9o956cFgEN/97nexvLyMWq2GarVq06PRaBTxeFxyqn0+HxYWFjA7Oytb/zFacVTx3EnkpQA+UpmRSEQWpWVZyOVyWFxcRKPRQL1eR7vdRqvVQr1eh2VZSCQSiMfjEr5lgu5gMEAymcT8/DyCwSCSyaRs4E7GSod6WUGYyWSQSqUEaY/HY/ziF79Ap9OB3+/H0tKSxOvJILCbe7fbxdraGoCDoobd3d0zrUgymaRnTQz9fjgcxpUrV1AsFnHhwgUkk0nZrioajUprCSo+tvJgCJtejlZIerFrhpVGhd4hz+v3+3HhwgVUKhU8fvxYnunzChncQqEgG55r4fPl30eN51GG5CiQSEXI451AMRWg7tPG96LRKDKZjLQpmaaYjIbJcphMjAZ8DInr4gBzrJzAHo8hY8P+YTq0ppldJ1CpDZKuBAQOnDRuHJ9MJk8NLAMHhU0EfJZlSdgnGAxidnYWhUIBHo8Ha2trtjZGgH2nDfO56DV03NCNNvB0egk8c7kcMpkM0uk0isUiFhcXAUB6lvJzuo3JtIVOWDweRywWk7Al77/dbmN7exsAkM/nMRqNRF+bbCfgzPqa4IZziMCI7CbnHEPF6+vrePr0qTghHo8Hc3NzyOfz4jCMRiMkk0ksLy8jHA7j0aNHqNfrUx8nskm6Ub3Wpbq4hYV0k0C6nhPm+nFi9zQzTJ2j16euVGZak3l+fsZkKM3CktOWo/T2cT7L9K5vfvObuH79OuLxOHK5HPx+P6LRKEqlkkQUtB7Vjj6fTzgcxh/+4R9iMBjgyZMnePz4sa37QrFYxNLSkq1Ahp0NAMgez/zOaYVzgZcI+DjJzeRt0yMG7N6/Zgs4GTlgZOOYB6K9St3qQisAhhRpmHTen07SNmU4HEqlo/aInJTVyxaON++TuS1UyNxYXINHy7Ikf0O3DKGRJuDTi4DPhoBPL3zgIPFZVzMzBP4i1Zb8PnrxpuLjGJherv6tv3taCsoEiiZI0t9Hav80qk7NnDF9DaZ37hRqNMV8zylcbeYrOoVrnQCik0x6nZ+lLjnNit1+v49ms2nLCaWy5prSDJEO32od53Rv5o/TeOrfTufg+/xunbJCPUsw1O/3BYCfRr4jr0mvbfM9sv36NR0CNJmoo8ZgkrHnd+hG5wAkfYdOjFlERCEAZXjuNMRcf073wL91jutR53KaQ897TVqfAwcpOkcdb+rQ8xzSJfFDu0F2PJvNIplMSnoT17aTLTHXq9afOoqYTqdt0bF0Oi3RSB5v5j9y/RDP6NzXF7rvFz7DCcSy9sO3xWLxUHXtxsaGJN7SADJk0Wq1bCFTr9eLbDaLYDCITCaDYrEoII+TjzlRmuHjefW2bOydNRwOJReMOTvtdhuVSkWADqnbcrks10FjoxPTjyN6ITnR8UctXCfD6iThcBjz8/PCInHHAPYRSqVSUjHLfEafz4dcLichcCo9epfMYWBSNj1jTsqjFno0GkUkEkG320UkEpEQ/EmNNQFsNpuVRUoxq8m0UjwK1FCOqzjN45wKD3Tul2b4GG7L5/MSopyWkD0MhUKIx+O23VK41SDXAwGzrlbkvTmNoWYR9HzVXeNNNoCgAzi8b6rTszEZbNNA+v1+pNNpzM7OPte6e17Z2trCz372M9mJwO/3Y3l5GTMzM7bmz9RTTLRmEYwZDnQC2nxeFO388n9TtHPV6XSwt7cHr9eLjY0NdDod9Ho9JBIJ9Ho9NBoN1Go17O7uYmNjQ9p8nIb4/X7kcjnk83kkEgmZF+Y8ISBliIvPz1yXx9GHGlwDkOIU6inOoXa7jXq9LpXVPp9PWupopyiVSmFpaQmj0ejUdnOhs6fJCZ0KoEGrbm1jjg+dZ6c8Vq4b/m06WfpHR2S4TunkmLmreo1qcob6IxAIvHBOspOjPikn+jjCa81kMvje976H+fl5iQ4FAgEkEgnBHkwz4Lmd8iz1NRKcab04Pz8vreT4GVbQA5DnyWglj/N4PIjFYrhw4QIikQi2t7dRKpVOOowiLzWkG4/HJUeAjFm9XpfJopUovTImIFPJRSIRxGIxJBIJ2WRbh1J0RRhFe+cEKmyvMh6PbUbQ7/ej2Wyi2Wzacq/YBNOyLFuoS1PZxxkH87cT6DtKjnMMS8vZHHZhYUESRTn5OJ5kBgj06AkxV4mJ4AR8bG3D18ymwaaXCMDGomrg/SKAj/eh540JVPjbCew5GZfjiHnss0CSeY98nZT+tNkEOiHcEUbPTSpOrieTqTLv0WkMncZBP3Pz8xogOoFxJ0Vq3o8eT4/nIP/RKX9zWkIdQO+djcoJyLQxIoNGY64N7qR7cZqTHBsa8UmFTQTwbIbOlBjqQm5zyE3duVsCt846DfF49nP4EomEgCWnOUIDzHVLR8KJQTlKJjlv1Edad7Org94CUPf+o7C4jGD0NESzO05AzQn4metRO47mGjOBsjmeTsCRJIg+jxPQ0efgc9PHU5+86PjwuiaB1ucRzrFIJIIrV67g2rVrmJmZwdLSEgBI7YAmN7Rjaq5PrRP1/NERSIZqzfnFz+vWcuPx2EYepVIpDIdDVKvVE92vKVMBfNoTnyQ0LKyaGo/HtpwI84EyHKHRsg5L6jJ24KC5J9m3brd7KITJXnyJRELOReC2vb0tibzFYhGBQAD5fF6Swc3u+fSsgYMHye/T1/WsMXH6bf49SRhyIMPI33yN1xSNRrG4uIhYLCbjYIIAAmPNPPE+2u22KGXmRNKT0+ymBtp8lvRK+RrBfigUQrValY2mJxmz4wgXMJ+vCUS0gqBC0687hZGmLea5zfsNBAKO1z8NISs1qTcUnyWfOfOpdOjeNBKAvW8XXzcZKxPQ6dd0Dox2CrgNl26HpFkPfd3AQQuFnZ2dUzPMWsh8bG9v45//+Z9t64r5YzqM6sRcPusZm06CCYD0M+Ma7vV6KJVK6Pf7+PzzzxGNRnH79m08fvxYnOler4dqtWrLpT0NIWvNvEHN0FLfNBoNcRQ1w2sW8JgAR/+tx0SzpJxbOszG43XLELKMLMqhkJ2Nx+OiT09DdFqLqZe0XdBrTYM5PZ4abPBedbGT09wzw4QaOHLdO609AIfmt55LtPVscXZSMZ0e/ZqTsDKbOXl0zhgJZPoHc/75bFldr8GdnndO88jJAdYOC6/HZO9JXjEawNQK/dx4nYwgMN/1RWUqgI9GH3CuDOLE4G4YNCqlUkmSoU0vWQMQeoJ8kKSXzYIAbvi+tbWFSqUi7BMfeKFQkIft8/nQbrfRbDZRqVTw4MED1Go1zMzM4OLFi9LLiUqgUqlIHyQCHXquOpeHhvK4k5ye20kkHA5jbm4OwWBQKt3i8Tjm5uYk7MSfZDIpwIyLmiE+gjJ6v0yy14uATIHp7TqxOdoB6HQ60i6Hc4JVSs1mE7Vazbad1knE59vfdi+TyUg7Bq0UtcLiXDW3ejqKseJ1P0smsWJOBttkANmHb9psAgGUBpPaWACwGT6CQh7L6nWOnenJm2OrPWOn48zx4rOioqVHzKIuMsoMaWkjSMXMNk27u7unDvjI7ne7XTx48ABPnz61gdz5+Xl897vfRSqVshWqmD/HAX08Vo87hQ4u585oNJLUE6/Xi0ePHsGyLKytreHp06diZBiNeBEH6zji8/lkRwKGtAjANDj1eDzChuqx0XpR61MnIEzR5+fxZvEAjSl3tWG6kM/nQzweFyM8Go2kIf3Ozs6pVTN7vV5Ja2FnBFN38TfXgHaQeb9seQPYm0TrELkeP47XJIZP21P+mCF5E3TyWVGPRKNR6W14UnEiQ44S2oJgMIilpSUsLCwgk8ng7bffli4ODKfqCAd3xTBBrjkvnX60s6L1I8efY8N7IObo9Xqo1+vodDq24hxN1KysrCCXy2F1dfXEY2gbnxf5sAYPGvCZ9DF/635M2uDqxFnt1Znn0kyWDj/xeDMvyilJXS+ebreLVqsley8yf80UGjHdRJILw1Q+pifwLKG3STEntlaAFH4vm1KzsSkNu85DIOBjw2jev1aE/DFzQ7R3RQOjc0h4jNPer3xfAz6em96fbvj7IsJz6p1QJom+XyfnZJI4sQzPEvMzk5SWvn4zT2YaolMYJl2HqViPy0Q5iQa2+jXOMW0oJnnKlnVQ/MDPmuuZoiMH0x47J+F9OYVEWfXPXN5Jou950vtOjJZ5HU5GWzMItVpNmuTSgJ+FaOZKOwD6XrTONlksfY9aXmReaiPOuaR1nukoMqpxmsVA/F7db828Z9MW8nNO4Ne8TnOeOa03/T2TnBEn4GXaZyfg+Dy20En4eRMQ6XvX1xUKhSRViZXq+of9KUejkdQEcB44jZO26ebrTmPu9Jz4ukmmUH/ovHc9B+isTzOv+8Rn4cXQI08kErCsg3w2nW/AAWDViWVZtv0OSfua4UQN3HRVDStyAdi+gz2XlpaWROFyMAeDAdbX14W6tywL5XIZlUoFnU5HEPfu7q54d+z91263EYvFJJ+PADWRSMg46KpfAqpniWVZmJ+fx8WLF2FZByFRzWqygIQer9frlTAJ9+8kW8l2MqSpdSm9uZAJeHThBcEbv0fn1Zm/uQg4/qYnSoNjhgt1OJj3+KK5Hj6fzwZ0ATu410qJSfStVkuKhZyaW5pOgn7tWaKNlvZ+ORc1u8ZjotGo7M04TZbKsg7CAxrwOxkRMtg6F5PPzckYOAE0/b2a5eZ5mD/F/E+Oj07NoDO2t7eHarWKYrGIQqEgAIYOBO+DbPZp5vCZY0oxjXMwGESxWESxWMTW1pawRRxT04s3DYr+bTqQk0Af1yB32KjVarhz546APc7z02T0TGHecLFYRDwet4FTgkG2YKHx5Xvj8VjyqQE7q2caeBOA8Lf5N4tWaODZHJ8GV69NGmK2+2Fu+GmI1+u1Ncmm/dSg1ATEjC7xR0eVuE71OTiG/K3XpZOjxzCwHm8zf1DPaX1+zSy+KFj2eDwShcrn81heXpYIHVuhMcWIz5H2j3iBET6yeroy3bxHbaP0utP2yckumCkIPI5zezQayc4ZzWZT0si0HTD1KBtsx+NxAJha0dCJZzENCQc9mUzCsiwZeOay6EFg3h2VFHvWdTod24KmAeBvfk4XDrDsWYecCFS4L6xe5AR1VDYAsLOzIwCPCqbRaAjgI+1Po6IfCAsFeD5NrR83h8+yLKTTaaysrNgmLRcTwR09EoKzubk5abA6OzsLr3d/42ZWDfM6ueBM9tMMnzPEARxU32pGhc+Bz0wvFK0weO1sYUHlqp8rj510PScRhvuftTcv56xlWXIfJshzYhSex1BOYsoACFtlsjIEogzLHzcd4LiiGXEnoEfRLJDJlpsglWJ62SY45hzRIR8nIM73ud7YfB2A9IbUIJHnAg6KgMxdVk5TTANH8fv90vC4UqnIveoxdQoPmYDPibmZdG88L40h8/SmlfdzEqGzmkwmbU4Y74H6nK+b1ZxOuWV6DCbNYXN+8zdtAAEKdbZ2Snk8wQ3JjNNsy0L7pncc0qFE8560E6YLraijtaNpgjt+n16LXJ+mHtSgh8eazKupJ/Tzm4YjTzIlGo1iZmYG169fRywWQ7FYRCKRkNxdj8cjRZeMlJj3xd86fcUsotDgTs83/RrF1GOm7tNs3Wi0Xy2+u7uLcrksc87j8cgmBybgow0Oh8Ni95/XFjnJCzN8DB2ag6MnK/9mSHY8HksDUA4Qz8nB0nlx2lgRdGjPg7/JKpXLZQk/8jV25ec5AQjK5rVpphAA9vb20Gg05J6pNDRrqO+NAOdZRocNUsPhMJaWljA/P3+oMooPnAyfbiZKlmowGEji82g0kudg9gfTLIBe8Bxv7YlxoegJSIXCa6IBNxk+LiZdxKGZQn6GgJ0eTLPZfCGgQ8BEwOek9M3QjenlTlpIJlNw1PN1+j4+Cz4HXq8TaKE3ehqAT3fy1/OM3+33+2WN6PsdjUZSgKCr0fX96v/1XOC8Aw72VDbXiOnlck72+33s7Oyg3W6LUucxFP7N+XVWIV0n4bVzrM0WH1pMoGs6YFxnprNEI3GcsCzXnX7OZynaCdPpPhqEmIVivG6tp3QkQq8jp3no5MxopobzlxEN3WPVBPB0DrVjf5pjZQIKfT0mu0aGjyksBAJ01k2na5Kjxt8mKNLHaOCo5ym/76iuDCcV5mOz3VokEkEulxO73e12pWsGx0ODdL1++GMyjVx75j2ax2jQpsdNzzOnuWFGdTR45WdJFlE3Eqhy3pEAmqZOOzHgY0gzHo/bBpeLg/vK8lh9zHg8Fhpay6Qb05/jpOb+dXpw6CW2Wi0bkzgejyVmrr9HezBUSqPRSHb4KJfLh1go/jY9Mb7G8x71kOLxON5++23k83lcv34db775po0Z1N4Uz8NJrj2KXq+H7e1tATyksvkMzHEjUDMBmH5tEmjRgFjfI4s5TIo/nU7LuHJs+SzYQqXT6aBYLMKyLEl+P4kwpMtkXSdvlEpAG1C9eE3PWMtxvCp9DI02jb/ufWeOH783EomcakiXaQcmOLcsS8Ijm5ub2NraEmaDYZFEIoHBYCDbC/G8kxhaMvxkzjUjwXHh3NJAWj+bTqeDX//619jc3EQmk8Hv/u7vHsq74v9kOs6S4TOFa4Qgh2PqZCg1w2DmGnMdEbzqyAEBH8d/ktCQhEKhU22ufJR4vQdVuoxQ6GdMx5q6iVETUx/zfQDimDKKoB0wk3HSc4Tn4lgwWlOv1+V8TuMZDoclVeS0Qrq0YdohMx3CXq8n98txYPUwu03QHkxiRjmWTgDHHD8z+sK1q0ETSRTOWQ3iXzR9YH5+Hu+//74UeXL+8Lz1el1sPIuU9I8GTtQLTPsw9Y2ekxwv/tbspgm89HF6/ZpMPfP2fD4fUqnUIZ2gnVW+x/MwevmiETAtLxTS1f3w9A2bXphTiFMzHk7iRDPryWm+p7+PW5Noj4/tJbRwsZjn1qFJDRQIrHRoErD3yTrOuFEh65YT2qudlDtnXpep2Hg+3heFypTfYU42rRScJrW+V70wnDxAnpPfwTlijtVRrNrzCr/HLExw+nG6fh7vdL/PC/bMv02FYrKE2ms/jaINvSadxobf7fV6pWqM48j0Cb1Wef3HeX7aOeG1OI27uZZpwBqNBiqVCtrttrynr0Efbzpk05pbxxXTgB7nePMz5vxzWmNOY6jPqa9Fz7uXIVz7k+a+EzAw9Y+5fo8aX6e5Zr4PHIAsM3xnio6SnKZMevb6f9NZpBOg57smIZzux8mmHDWek+YeYG+DZt7DUc/0OEJAq/d27/V6tm4PBGG0hWZ+MokTHQEkaHcCd+Y4mJjgqDHUusecK3r8dOjetL2aFKOTwz6RLLqahrxQSJfJkJx8wOGEWeAgdw94drXQJECnj9OLX7Nik0AimS2+r5k48+HrMAIZSv39TgrCXAiTPBwm2VqWhfv37+Pp06e4d+8efvrTnyIYDCKXy0lrlXQ6jUAgIJQ2KWH9HTo3i/lfGrBqFkdfH187qi2JyZKZE51jp0N9ThOYFUmj0X5iNj0e/n/79m1sbW3h6dOnJ57UlnUQ0uX9O/2YRlQvThPQOrF+RxmaSdfFgglTYRPY8VmwACoWi02d4eOc4vhw/PV3BwIBVKtV3L9/X5Kkmceqc1mZW6rDwzpdQIMvJ2VJxaff43ktyxKQWa/XUalUsLa2hkqlYqvk1+vfPC9bXGhG/yyEz5QMRCQSkb6eOqzD43SRF714jqE51+j98289LzVjpseDBXLMHzprob7S3QEA2JgiXb3PqATvhQySNtp0kgFnUMG1S72o56AmIoCDrbWSyaSkLfA8z1rv0xTaMB1hcgLGWhczzEzWXrNJw+HQFuql6HmlgYXWl+Yc4rlpv7Uz2uv1pNAxHo9L0Z9pK0/qcPBaCerIkJmMOcdFt5Hhb0acotEolpaWEIvF5MfUTZqw0IBazyv9N0XrdaYJ8Bp0GgJbgTFlh/Ocz5Z9Mvv9Pvb29tBsNrGzs4O7d++iVqvh/v37U3FiX4jho1LRRo3sGmPpnDh6AWpFZQ6o9hKO8uicPBk9gU0Aohe/znNwui/+NheNlknMxSTmg+PFnlncYJ0VYcznSyQSsuG5znNkyxVOFAJS5q1xY/d+vy+FKhwnfV9cCOb9mhPZDI+Y90qjz/ONx2Nb/qb2sLjw2HOP/Q+bzSYePnyIra0t7OzsHNnG4ijR3hM9IyfAx+em72ESk+cUsqccl/3jd9BI68pXHdLVa4ngflqi5x2NpRm20TvKrK2tiVMSi8UwOztra9isGWWnczmtNy0EPIA9/KPDnNz5pV6vY3d3F/V6Xd53Yg01m0xDyLV1FqJ12ng8RqvVQr1eF6WvdZFm8XWbKq4XJ7Ch55DpDGjjoa+HIJGFcWctOqyshcbPsixbAZieY5wPZkNa3cLCZJwpHGOnEKwOmRI0xWIxjEYjW2ssHnMWYupSJyfTnPOMBug8UTpNBHymztI2V4cd9ZhovaMBmy4M4Tn7/T7q9TrG47E08u/3+zZ7wmd7kjHR+nEwGMDv90uPUt4DQR71O4vOmHrSaDTQbDaRTCYRiUQkVYIdRczQNe0I15vuIqCPofCZUK/T2eT/dOS8Xq/YQB1VHI/H0oO23W5LVf3q6ip2dnbw5MkT/OpXv0Kj0ZiaLjsx4NOegQZzHDBNsz4rdKjDRPzfBCpO3+90HsAeKjANkUmPHyVOoNI8l7mQNKVsCnN8PB4PUqkULMsS4OPz+SQ3sVQqwbL2Watut4tYLCYMlgbEOuTGJF69N7FOqtVJ9Efleeix5DNwAnz6fvm+Xow634rfycrdbrcr/fk2NzdRLpclP/Gk4uR96XvRCb68B85bvfD1vDCNCb+H75nfof82QYl+Xb9m5jadhqFxAhH6O6nQu90uKpWKOA7a69fX5nSNnC9a4WtgqD9jrhU9p8xrpRNZqVSk1dIkxUvgEAgEJAx8VkIgw7F0ArW8dxPw6XWj57HJCJtsvSl67OlAMM9qGuzA8wrHxCw6MIX3rMOEel3o45yiDoBzGya+rsN6eozoIDDHyum8/J/PymTbXlRMe8JrNHPzdA6f1ve8L21zNCNMcZpf+vv1/DLfM1l7y7JkGz8Asue6qX+P0hdHSaPRwPr6uo3FDIfDKJfLAtQ1MNMOM3OOyZpxv/ZisSiAzEwx08ye3k+cDgnnpC7a5Dav2t6S4RsOh8Lu62gKQ7P6efPcuhnz5uambH/IvMxprd8XAnyMq2svVSdOc4FywvI1p3NpY/gsFu6413fU9x31mvasTMbCRPtcnFwwfr8f3W73kMcIQLZ105sib21tYXNzUzySUqmE7e1tfPnll7IQzbw43hOT8T2eg71tTWPJHyqMkyTUTmIsncbaXOQmiNc0tvZwdD7I84r2RjXboZ8jQ8na84xEIuIlkvU02TtzXuh7dmIFJzkUek5r5UjjYeYUTVNMwAYcGGMqSp/Ph1qthkePHiGZTGJmZka2xNJsvfnjdH98HtrYatCh2UF9PaZhoVSrVTx48ACRSATdbteWaqGdCo9nf8Nx5r3QIJ220OBwZ5BwOCwhQidjTXaGKR5sJ8H3TTaTwITPwpxjZkiXBRMAbOFc0+k9TfF4DlJ+dN+xSceSBWH1pbndGq+frAntjR4LvYuIBlB8ja/r6ttUKoXxeGxjIs357fV6pbMAndVpCh0AAhQCHILler1ui9qwPyDnBFkuziHOQ9Om8t5MYKYBMcee16XBrnZQ6KzHYjHMzc3ZCtMmMdXHlc3NTRkHnZfOaGI2m5UivYWFBYTDYeTzeansTaVS8ownpccQq+jQKm1CIBBAo9FAuVyWdirMJ37y5AlarRY2Nzexu7uLTqcj2xnq8TZZWW3/JjkqJGcI8thl5CQ2e5K8MMOn95cFDucKeDweG9XrdB6nAZiWUnqec+hrMT93lFetf5wMlj6Wk5e5BK1WS5rJkuXqdrtoNBoTx0EDPobfaFi4QM370hPyZXj7Wpy8yJNO6kkAxPwuJ7CrQxsUvUCdGL5nyaT5y+/X12Vej3kvp/mc9PrknKXBJZNmAudnKXCneWqGG/X5nF5zeo/5LVrHTLons3jnrEQzd5qBnMSO66pCkz0x9aFmIJwcLZ5b/20WTJjHnLZQ15kOjNM1axBCwKHXn7kmJq0Lc92Za99cVzT6mh0zr41/czynnSZgOsjUERw7OsOm00AH0cyh5X2ZjoE5nub4aOCjr8205Vpfk+whWHJKLTDH8jhCRl+DMt08nuFcAk+ywwAELJMBZRU2mTmOp45EEejqVIBOp4NGoyH9e8m4sXnykydPsL29jXa7bWPiTkpamKLHzonEOamcGPD1+31sb2+jWq1KuJFUM5G57ilmPnw9gTSDRXHaqu1ZrMtxZJLycGIEnRSV+VA1yGPrFAI2LePxfjL3aDSSdgCxWEw8GTb4JNJn/orOUdBhWTPkzWRR/Zr2MujBamNkjoM5mUzlYCpTc+ydJqIZCjQnMK+H7ObzhEu4OXYmkzlUlEPlZoYyTGPMcTW/17xXrRCd5ooJ7qhAtNesGT4K5xIZCK/XK417uRvIi4pmOExAqw1Gu91Go9GQuaJBiQk4dOqCyc5pJlczfDyWYRiTxeG46OcxHo+xu7uLzz77DMlkEhcuXEA6nbblok4CUWcllmUJe09WVDNLACS9hfmSmi3h2jLzt8x70/fk9Dw5JjTAZuXfWYt53XpOkE2xrIMeaTS4nIvtdlvYTR0Gn+R4aPbefP58JnosuMc6n58Zfqf4fPu7huTzeezt7R3JVp5UtL4i+xgMBrG7u4vt7W3UajXZl9bn8wkTxd1CLMuS3aeodyYBPpOBm+TYmTl8Pp/PllpEwEedxnOZaV4893HHjCFTj8cjvWcjkYjMA56zVCphd3cXlmUJwNMMn9YpTo4/f+stEskMctvV4XCIRqMhLHWlUkG/30etVrOlKE1KC3oe4bwlk8m96zkODB+zz/BJ5MSAbzAYyGBrb44JnLxYIm6GYXSegZ5QpgdhKgn+PclbOa7o7zE9mknC46istAEFDoxfu91GuVyWLapMaTQaaDQaqNfrkpyu8wrYV4miJxtBoGZV+ZrJTHLC6TAv71kX0GgDbYYj9TPQ42VWHJrjZE52bXTM56vB/u7uLqrV6rEBn2Xtb0eWy+WQTCYPleXrezC/mz8a7JmAzQn4Hjd/h/OEoMYMlWgjrcMpBHzxeFzyUKYB+Eygat4njQMdlWg0CgCOYM+JNXEKxZqADzhY+3zm+rxmmFtf797eHm7fvo1sNot8Po9CoeAYVaAumXZrm+MI9R3BsjmveM8EezrkpEGy6RDx/kzA5+Sgaf3k9JmzFCcHS1/jJMDH4gWmuJgMjzb4k4CKdtAoToCPXRAIGCZFGXw+nzQDbrfbUwXQ5jPkHCbgY69VAjteD0O+BB0AZO5RtzkBPn6Hfj7mvZg2XYNtgiqmwmjAR6bNdFyedy06MWVmWhMAlMtlPH78WLZpZSoVtxbV96vBIgExx5SpaU7Pxvzb6TU9bvz9vPNDz3+G5BOJBGZmZuDz+cT5r1arqNfrZw/4KJr5AmDbA5E30O/3bf36AHvOjl7w5iSZxPAdxTQdJSaYPM6D0QZTK3ITJNErcOr5p4UJnDwfq5qZy6MVFhM9zcRnLkjd8sDpnkzQ5mSYj7rvSb+dxs5kHPR5aNR47XpxWNY+O/o8i4T3r3cJMZWb9vi1IaBi0gmxRzkAen7p8TfHYtIPz2kyq/qcGkDRizZZ4pMIz+uU46nfBzARzJrG22n96XOa7IF2mI6T32POLRp/5iwxX1avQz3PtVE4TdFjQPZDt9fQwNUEwkeBMicAo42wBi76GjTDp/Of9PWeNRDW96Svg8DGnCcUjqcmBpzmmRYnHanXnHYC9Ziba9k8L5+vGSJ/UTHXgdMa6vf7Yuy1g2Oyw+a9mvrMjEpRzLGadC2anGFfVT3eTmNmRpP09z2v0GYyT567TOmm3SzYYisgbY+45vTew7yHfr8vIJbb75lrS2MGE9jxOLKQGtNo8KpzcqknnJwXEmBc6wAk5Uv3IjyJTKV9uDZuzWbTMVR71KR2eo//O93cJGT9PPK8KNwJbJrvaQ/7KMDHcDgXhDlO9KL0QtPhDG189V65JhM66T7MhFITuJrncFLKNNx8H7ArXKfFYn7PeHyQaM3Q9fNIOBxGKpWytavRya/aMzXHcTAYoFKpYDQaCQPNxW+CRH2PFCfAx2fPcaDCZmsMs6+T/rzOK2H4qNlsnshb1GI6Itpz53XwdT3+GjSbTB/v1Qn06fOThebz5f1zvjuNrWlIAKBer2NtbU1AaygUkrwmAieeg2tnUrL2NMRcX5ZlSWpBPB63gS+G4bQB6Pf7Mg9Zccjr1+NtVvFqQ6HD3nyOeqcbGh/uxON03WclTgCfTAbfN++H0Q49X5yYW56XDhzXGteZ7hqhoxwcY63H9FZWmklkiJXbXE5DTGbbiewA9qNCm5ubtntjv0ldlEDAo8+hHY5JRXGcE7rggmPA93luVsHGYjHpGUeCR+sTjr15by8y9/SuE6bt9Hq98mzC4TByuZwN1LVaLWxsbKDT6SCVSqFYLNrGm8d1Oh2srq6iUqnYgBq/Q1+/ZjS5m9Dy8jIWFxcRCoXkGlqtlhQikWBgyo6+BrKMukrXsvZ3DRuNRtjc3ESpVJLznFSmul+MVtauTBYawEmi262wTJzAzgyBO4VVAedcRG2o9eR1YuaeBfhMg20aau0tmyBBKyKd7Pq8CkEzfLxmDXw1q2leM8NGBBCk+Z/FXk0SJ2bPZHOOYrB5rGXtM3xsRzAN0QyfFqdrcBJ9zRyno8RkVXQ6BA2UEwun55i+lsFggFarJay4DoNqlo/nNQsFTlsIIsjwmfdtGjud/8i1rB0+06kzwbQGKXrcNJtIfXGawPd5xAT1fE58z3zmzAd30jeTzq3DxSaANp04DeYoWg+a+m3axUDm83b6ASA92ujc8D2zol/PGScdQ3By1PXo+zbnl3aWyXQ6pbiY53FiZk8iTrgiEAiIY8CcN6ZI6S02uSbIBNIhNBnbdrvtuJOWBtY8F1/Tzn0kEkE6nUYkEsHMzAxCoRDq9TpqtZqwh8PhUBx6/fyY/9/pdCQ/kDaKc2AaXQdOZ4NAV15ImB9hWQdtCHQIxGlRTwqnmgvNXKROQM98z1TW5mv6GjTL6PQ+3zNZsePm7ulzcsEz1Kcrxj2eg55K7XYb1WoVACQniHsxm6CZhtPcO/KoMdWf1QqBz09/l2bLdBsJXjMAUVxOrX2eVzTDpxPhx+OxreGvye7ympjXp4sBnJhkna/H82rjoEPB2hiYYT0dguK5WbUXi8UQCoWQyWQwGo2kyEeHYKYNlo8rnIsEKWZhFcOrGuSEQiGEw2Fks1m5z1KphGazaWP4aNz9fr80WtfOE++fc4lbUzHX6zyIXkccF7JlZj7jJICgnSKKdty0DtFzjIbZSTfxWM5fzk99zVzPGpxPYzyc7tkcJ/170r3pFjUENcBBw24Ndp3u33RyCZA1y8+1TN3UarXkfExL0mkKppPCc06TDCKIYkFDs9lErVZDrVazMXLUH/1+H1tbW1IQYj7LwWCAUqkkjqXWReYz16lB7K23vr6OXq8Hv9+PBw8eSIs23Rd3NBoJKDWBPe+jXC7bunSMRqOp9RV1Ad85FNObOUu2YhpyVmGjQCBg21JOF7PoPmeNRgN7e3s2798M9VI0++JUKe7ESmnAwuP4PVzEOu+G7C0VBhUmz82eX9MCfCwi4o8GfGSMTLDOOdjpdKSjvjYcJhOsjTEZCL0pPA0Sx0wbK5P90sYX2M9f6Xa70nssl8uh2+2KIdfNegmizhLwkZUlINVsNnCwE4zeYtLj8UiIzO/3I5FI2PJz9BhxDMn8sz/beHzQ5Z/6gqxeMpmUPngvW3+YgJ7/MwSp+5g+C+zx81yzOlTmxDZpUKXHyOna+L4T6NT6YhqiQ576+/T60mDPZB41CUCnybwvzh3zPp3YfH4P749RKII49uykbqrX67Zx0+kV+r70OtdO4TSEeX0AbEWSk+bPeLyfcra1teV43LMiHc+StbU1rK+vHzq3k4NxlDg5JtOyqS7gewXkrADUqyQEFWTx9GLVTJLH47E1dCVlr9k2wHnvYBPEAUcnvpvhDMCe18hkepba83ymotFVnNMU8160x28yvDof1cng6HOY5zGfgSmmQTXPaTIaPDeNO/M9dR6WeX1nDXK0oeP1moypZuMIwtknjEaTDguv3+vd7zXG4jfdpskcI30NL2K4TkNM1sxkWHTOI+/PTM2gaOBortmjvtvpWJNdM9e6ZuynWf1tAjf9t2br9LxmEYu504SZG6xzwvVrPJ/JWJmsJtM2dPoF5xYZPuaYc1x1dbgZxp1WWPcoOS44Os118bxRqpchLuBz5ZUVdsqPxWIAIP2UWIRA5VWr1fDgwQOMx2PMzc0J4OK+tUw+pjEGDhSfBjza8zrKuOgwEvsyNptNlEolCbfl83kBo7pgw+PZ3y0ikUgIAzINBeUE1DTzoQ0sw2R6BxLAviOCZvz4ng4xArCNp87hc8pP4996H2TzvofDIXZ3d/HkyRN0Oh1hu5jj5HSfZyEcS+18aOU/Go0k9MTrY9iIxjsYDKLf76NUKkm/ToKaVqslOUl6P2aem/+ThfH7/cJ6vay9dLVoMKLBA3cjYeJ7o9HA9va2dCsgg0VGXI+ryYLodaefvwZQei47hY81Y6VBOnCQZjGNog1eq+5vxxxQvs5rICMWCAREd83NzSGZTIpu4zwhQONndZSC98y1bQIkfoZMNL+XHTYINGdmZmR+ff311+K8sJsEGWwNFnWhnCsvV1zA58orKWT4jmqFAewrnF6vh0qlAmB/30caSBoVMitHeWjHAV1maIZGhsZsb29PemsR4GjvmIqbhntaDN9RLBvvzfR8TRBoMiH6PE5spRNg04zJpB/gcB8+CnNZGGIms2EWQJ014AMm98rjb83aEWRXKhXJi+Km6wSGOsw/Ho+lT5jOfzPD4RpEOK2FlyUmqAIOrpVzguuk2Wyi1+sdWtcma+nExh81RwHnUC6fF/83gSR/61y5aY6JGfokUDPXkNe73+OWDi5zkdmKRAM+HV41WT8nZ0qvW81kch7p8DHnaTgclnPr/DTtSJospisvX1zA58orK+y55NTsVivsUqmEO3fuwO/349KlS8hkMhJKo8fLVhn0shnWMPPJzPCHVpY6R4XXwdDH9vY21tbWpDu+Kfqz0y48YAsTc8sqKmGymzrHSSdi60R501Dx2icls+tQGe+x1+vZjInTcU4gZTgcolqtYnt7G+FwWJhaE2S9DICjK8a14WXyNceHOYbAwTNvt9vS3oIsi27BooE/75dzhEnhg8FAikZ4LfzsywDAWsznwfAk97HVfRU1I0Snh/OCThoA+a1DkPq3DkHqFAntkGjRDpY5XqYTNo3xNHPd+Brvi6CNa9bj8SAcDiMWi8Hr3d8JgvNes6E8j86VNJ8B8+n0ewSZegz0bhW6IIhtrAiQyfDxfa0TzRxFV16uuIDPlVdSLMuyFW0AzoAPALa2tvCrX/0KsVgMP/zhD1EsFqXvEXOner2ehG0YtmTo4zgFNDoERE+aBj4UCqHX6+H+/fvw+/2o1WryGW2AaNim2fOL7Em325Vwqc5LAvar2LgXMz9jhrmdmCSdR+XkwWtFrxkZGisdEtbjOomZYkj36dOnyOfzSKVSYpDMez5LoXFkjhWdiV6vJyE3jlUmk5FUAhp0jrWeL/o+OK81W6L7oe3t7aHb7cpaIOAjmDoPYj4T7nfKkKCZ9G9uzQkcFL9oFkkDEoYiNRvH39yFgfNKF7vw+RF4Ojl43D1qGoVUvBeTMeR10wnQW36R4Usmk5LGQDBFIKrBsBn6Bg6qkU2m3UxB4PXx+eg0DjqwoVDIxj43Gg2pItdREzN9w5WXK+dDG7jiyglEVzDq0KjpTbKPEY2FrnLUieFmcrFWjGbe3iSPVYM4MhL8fLPZlC7xTp/TuTfTVJC6ktVJ2esmxuY96OO10Njq8TZDd9owm2OpQ8WTxs8U5sI1m00kEgnHY15W+FIzU7xnHeLl8zQrM/V1m2FGc+w1wNFzRLPQ+rm+LLaT16tbTXCemGFV8zp1zp25npnHaI6RWXClXyOg63a7UnWq+69pdssUrVNOM6RrvgbAVvnK91h1zXAu54L+4bEEdvrezJC11nNODpbJII7HY1tlNT/La+U1kGmdFGJ35eWJC/hceWUlGAwiHo9LXhx3eTGTt3u9HqrVqrwei8WE9eK2djqERkWvldYkxeyk0KhALcuytepYXV2F1+uVLdN0aJTKnYpzWjl8o9EIrVZLvpcsHxmNwWCAer0u2zfx+qnETbaD162T6DlOOtdHgxJtUAgwAXtDUwp7//V6vUOsw2AwwObmpozNysrKoZ5hL0NojGOxmOTkjUYj2RPZsixpFcNQrDmHOF/JEmqWkz9MnNcFIpZl2SqXOd46D1BfpwZZpyGaadrb28P6+rqtlyDvUxcPcJ4BkJA0C520c8CcRjJ9GsxwXum1y7ZCDK2XSiUAQDablWfFfmgaJPJvNrtlQ17qmhcVPm8+Q53Hx5zjarUqbZQItObn57GysoJisYhkMinn0ltxmc4Vxbw3Pa/MQg5Tt5Hd9Hg8spNMOp22PadyuYxUKiU7TPA73ZDu+RIX8LnySopWmmTNer2ezRBSCO5YLEHAQNaL4IfgAbDngmnwOIntcgJ8uncaAFQqFVGS5mc1C+dUbXhSofFvt9sCCjRrMB6PbXlgFBNw6POZ7B7PZSp30wCZbKITW6INtlNIt16vo1QqodFoHFlkc9ai5yK3dWIfSJ/Ph0QicWjPcMA+njTeetyAw30LzV0fWOmtx0vnYJqG/DRFz912u41arSYpCgBkXeiiIH2NXINk5Rn2Bva3i2P+J79LAxidk0tnrl6vS/PwcrksAMbj8Ug+pXZezLnKcDPB+rRas2iAZzJhXJPcDhGAzKFsNotEIiFOJB0jp9QGJyaUf5ssKJ+JuZ7pwBFgMycyHA7bHOpWq4VYLGbLl3RDuedPXMDnyisrzOHTCcR+v1+S+RuNhvyYytwp/KVBhhki0wZYgyB9DMUMW2mlTuagVqsJQPV4PGJcvF6veNFkgl5UtOFyCnVxv0ezXYMpuvJTn8cMi3MMdNK5HiMd1tRghM9gEsM3Ho/RbrfRaDQkx8nn80kO3FGNe6ct+tqHwyE2Nzdx+/ZtxONxzM/Pi0Ohwa9TPp1p8PUY6ipc3XeQOVLME2RqA8Fit9vFzs6OzDM9fqctkUgEyWQSmUzGVjBBEMDr1Cw41xPf93g8kkurAV80GpUcMad+g1yzuiKV7Hk4HJYm1MlkEpFIxAbeNDgiw6qZ6Gg0in6/PxWGj9+hi3w0oNf6gNfQ7/exu7uLtbU12YUJ2N9rlzmxJrjSa8EEeVp/cR6ZxVcahOvcSY/Hg52dHRnvbrcrhUf6GO2onIfiIVdcwOfKKyoMk6VSKVsVWSgUQjabRa/Xw8bGBur1Osrl8iEFx/wW7fXqog+tQPm3U1GIUz4Wz0ego5XdaDRCrVbDzs6OJDkDkAISn8+HbDaLaDQqrMiLCBWyDm+xUpbgs1qtChNylGiAp39zZxO9VRtf73a7GI8PKk/JsJh5Q/xNtoDsjpbhcIhGowGfzyfXS4DDohSTQTsNMQ3pYDDA3bt3UavVMDc3J6CdhpgGUzdZBg5ypFjwwXskC0bmSQNGjiEZWW6Vx/P4fD40Gg08fvwY5XIZu7u7tjl+mmJZFhKJBJaWljA/Py/OGH/MULTJqpFFYwiTY8FegqlUSkKZJvupz8U+fgAQj8dtYEeHQDlHNcvK58VQM4+nnpnGziWWZcnaZ/sZDYx9Pp8UlfH6ut0uVldX0el0MDMzg06nA8uyhAXUjoL+HifAR8eOwEwDPg2kTfZQh80fP34sf1OH6CIq82ea+Y+unFxcwOfKKytUYBp0aUNJg8dKSS1OeSVmOFIrL5NN0IDPTMw33zcVL3NeNGPBHx0mPQ3RjIZmNjVTp18D7C0wNBPldG4nA6NZVadrAA7Az7PuXbeY0UKjbYY7z0LIPNZqNUSjUdRqNTGOZhjWKZStcxmd2GcA4gwQLPH+ec9meL7dbttCgmclOrRt5uuRcaPzQebdzL3Tc0UXZOicRHOc9LG6BRHHSK9btsBh3i9wUDXrNIepD6a5+w2/T+ff6SIfkz0fjUayVyxD5AT+Rzk6pj7SIJffyzEzwR1ZcxME81r0tTn17HQqVHLl5YoL+Fx5JWU0GqFareLp06eIxWKYmZmRnnxerxflchl/+Zd/ic8++wyrq6vCElAR6ZwcChPudchIhzOYK8XzAAfGmoaV+6EOh0NbThe/p9vt4pNPPsFgMMDKygr+5b/8l4jFYrKvaqvVkt0WprFhtmVZUihARoFsC38IogjwmCvH+2azar2DCQ23ZmcYjuM4MZfKDI0TCOj/CXwbjQZCodChlhy8rkajYWO2eD8M7xcKBWmvc1pigv7xeIxKpSJNoTudjoQ2mcSeSqVkHhD4tVot2Z2A7B+ZG94b75ssKXOnGEIjy9nv91GtVrG2toZ6vY719XU0Gg0BN5wL5j1MW3QzdAKtcrksu4fwGra2tnD//n0MBgNb5SnXne6vyXnC/E0Ajo4Ex4khfn2fes7u7OygXq9jd3cX9+/fBwB8//vfx61btxAMBpFIJIQ5ZliVLOw0AJ9lWYhEIkin00gmk4jFYsIcEhixGELrlYcPH2J9fV32s+U9a6Dl9F2Uo1JaTLCmnTV9Dr5Wr9fl2jRYJ+im3mRlMbe3dOXligv4XHllpd1uo1wuA9gHXuyTZVkWms0mPv74Y/zjP/6jHG+CDG2UaFCZO0TPW3v+GvBp75UhmFarJQpPv6c93H6/j8ePH4vn/MEHH0iycygUEnbGNNYvIlS8BLhmFa3OtQMONiVvtVoSphuNRiiXyxI+YoVvu922hW0026LZBN1YVwuNHI0pARyfjRYyabp5s96eisaaYePTFP1ceF0cM26F9tZbb2FhYeFQBW84HJYeZQz76rwxzkXmcHJOsdG4dlqYD9fr9bC1tYUnT56g1WqhXC5L1bUea/Papy36uvh9zWYTm5ubsn6GwyEePnyITz75BP1+X6pmtROWSqUQj8dtz7jf74sTpJ0Ns2iD+W/6Pjlm/X4fDx48wM7ODp48eYJ//ud/BgBkMhnMzs4KcxYIBORaOW91Qc2LCJ2waDQq+9Lq+Uo9oXP4BoMBdnZ2Xuh7T0OcCl6AA+aZDu80dw5y5eTiAj5XXkkZjUZYX1/HZ599hmg0ivX1dVGgsVgMT548we7uru0z3W4XDx48wCeffCI5MjrJOxAIoNFoSNsHM8RjNkLVIcRer4dSqSTnZMiETNnjx48lHMJq3S+//BL/63/9L8TjcdlSq9VqYXt7W4zkixpnggHLslCr1bC7uyv37PV6sbe3h6dPn6JardpCkdVqFYPBAJ9//jn+9m//VhrCjsdjRKNRyY0iQKGhpWFlixudL6SvCTioLmXhyHg8xuPHj/Hw4UPs7Oyg1WoduheCvUajgZ2dHXQ6HVQqFbRaLVSrVayvr6Ner780NmE0Gkm/t62tLWHlstksQqGQtGoBIFWPGnjrPCodvgQgOVXj8f7uMbVaDd1uF9VqVQAfi4HMnSTo2Jx2WK3RaGBjYwPdbhc//elP8eDBA9RqNZRKJVvIdmtrCxsbGxgOh2i1WsLMkyVmE2kdEtRNqZ2KsHSKglm1rBm+ra0tVKtV7O7uSt7q/fv3pe1KIpEQAE7Ax7X/8OHDQ2P7vELAF4vFEIvFEI1GEQqFZHwmgSjzHMDpgnen75j0GtlZNsxm1W+n0xFdsbe3Zwuvu3L24gI+V15JIRi5e/euAAydeM2N6LU0m0189NFHWFtbk625fD6fhJQ0S0Wvm0p/PN7vKK8T8TWbwXCjZp76/T62trbQaDTwm9/8RvJtnj59io2NDXz99df48Y9/bMsP1DlN7XZ7KoCv2Wyi1WpJGG1vb08YzO3tbXzyySeoVCrY2tqSPLC1tTV4PB5sbW3h7//+75FIJHDz5k3kcjnMzs5ieXnZltvH6lodymEIWOdP6vARq/s6nY5UlX711Ve4ffu2sFTmvbBCcXd3F19//TVisZgwIVtbW7h9+7aE616GMHRlWRa+/PJL3Lt3D9FoFEtLSxJynpmZQSgUQrFYRCQSsT17FivoHDcNABlmZHiv1Wphd3dXqrB1WA2w51XqIpnTkPF4jO3tbZTLZXi9Xnz66ae23St4DMeJLJwZ4gfsubH6PrhWJn2/09/mMVxfvAYA+Oijj/Dzn//8ULWrDttzLTk1Tn8eIWteLBal1UowGBT9wqImHa7l5/RY6OvS1/o8oN4cp2d9h1MYWIO9WCwmTdHp9FYqFYTD4XPJUP62iQv4XHllhWG048pgMEC5XMb6+jpisZhst9TpdGTLIBof5iFpA8FqUDJ7JuBjkrxm/ba3t1GtVlGpVERB0siwuu20hd/b6XSkTQevv1KpoFar2ap0mQcFQHLDkskkCoWCMC3pdNoW4iJQ8XgO+hz2+32pPtZGg4acQLTT6aBcLgvIq1Qqh/oCUngeMnsEOcw75A/H+GWILjLg/bNwiAn3g8EAyWTyEJvDudbpdCRFgM+KIc1er4d6vY5arSbFImddnDFJdNoDG4y/CsJ5c1ZiVrIDkIIb3S/zeQD6abO3GgRq4fyl06dTCRjVcFm98yHW+BhPolarSTm8K668quL3+1EoFCSfioUBuqJQ5/hp5o0et9lSg4yArmDTbVzI+lWrVWxtbb1wOOhFJJlMYn5+XhLkLWu/rcPOzo6EuE2gxPEIBAIoFAoSMk8kEjYWRlcZ6vvXYM8MKepiETIn5XJZwn8MjTpJLpfD0tKS5LCNx2O0Wi3s7e2h3+/bdg552eLz+RCPxyVHNBqNwufzyTzUYFgDPzJgfFa6mXK1WrUVsEwaJ+Bswn+uHF+8Xi9mZ2eRz+dltw+GQMkQP378WNaE6fg45baehjgV+ZivWdZ+v9BAIIBkMomFhQVbPqJOOSiVSoeiLq5MT6rVqqSLTBIX8LniioNM8mSPOu63yaBOk034bRo3V1wx5XXTIa/b/bwqchzA54Z0XXHFQY6rqH5bFdpv63274sq05XVbS6/b/bxO4ra+dsUVV1xxxRVXXHnNxWX4XHHFlVdSmD9oVimeJzF3HeBrwNHXbR5L0bsbTGrZ4YorrrjiJC7gc8UVV86FHNWjy3wvFoshk8nA4/Gg1WrJXrrTaGUzLeFuEdFoFAsLC7KVXiQSkbY7g8FAKnIBSOUzmyyzKbXP50Or1UKlUkG328Xm5iZKpdKxijZcef1lUhsV7RS9yLpw++e9HuICPldcceWli2a0jgP6IpEI5ubm4PF4UCqV0Gg00G63paXFyxZWL6ZSKeRyObz77rvIZrNIp9PIZrMYDoeyGwYbE4/HY4RCIangzWQyUsUZDAZRLpexurqKRqOBL774QtreHFXN7Mpvh7CzAHCwCwmZZWA6PRhd0Pfqiwv4XHHFlXMjxzUoqVQK165dg9frxYMHD7C9vS27iZwV4NONvrkdnN4KLJFIyA930tC9CdlihX0dAUgPR739HXcX4X15vV4kk0nMzs6i2+0iGo3KVlxsc0Pg64Z9fztk0nMm8OPc5E4i3NHEZAXZa7Tf79v2y31dhLu1BINB5PN5hMNh2ZOavVa5zjg2bNmlt9nk+3pXoc3NTWlef17FBXyuuOLKVEV3459WtbP5/vXr1/Hv//2/RzAYxN/8zd/g008/xcbGBnZ3d8/MSPl8PoTDYfj9fhSLRWQyGYTDYWQyGQGA2rA2Gg3pS6bvazgcIhAISL9D3dCaW/H1+30xxB6PB9euXcPNmzelCXOv18Pu7i5KpRKazSbW1takEfiL7gzhyvkXziPggO1jQ2SPx4NUKoVUKoWZmRl885vfRCqVkj1u9a4e6+vrePr0KSqVCj799FPZsWZSH75XSSzLQj6fx9LSEmZnZ/Gv//W/xsWLF7Gzs4P19XW0223ZGUnn3nInplAohEQiYevZyvU+Go3wn//zf8Zf/uVfiiOnvxc4H+PlAj5XXDmn4tTZ/rwzNvqajxsCMj9jinnPlmUhlUrh8uXLCAaDmJmZQSKRQLVatW3HdVqim3PTaMbjcaTTaUSjURQKBdlthAxdu92Wxtzcco7vk+Uzf3jfbIrNz1uWJXvy9vt92V4OgOx2wq3taMzP85xxZTpigjK9fzL3cc5ms1haWkImk5GGybqpPHd08Xq9CIfD8Hq9r81OGZZlIRKJIJvNYnZ2Fjdv3sSNGzewvr6OeDyOVquFcDiMarVqW5+xWAzBYBCRSER2GOIajUajKBaLGI1G+Oijj6TpNNfeeRMX8LniypSETA73k9VbZen9TY8jlmVhZmYGhUJBgIVlWVhbW8PTp0/Pbc7W8yi5cDiMUCiEcDiM2dlZhMNhBINBhEIhCZV4PB7xwEejkbyWzWbRaDTQ7/eRyWRw9epVjEYjfPHFFxKe0fvJPu+1TRKfz4eZmRmkUimEw2GkUin4/X7E43HZMUF7+GTpBoOBGFYaYjPkqkNv9Xpd9hLW4Vwex3AbASS3bcvlckilUshms7K/8MbGBnq9Hmq12kvdcs6V0xPTORyPxwJuwuEwbt68iUuXLsHn82Fvbw97e3uoVCoCbriu+Bnu8Vyr1bC6uoqvv/5a5vCkavPzKl6vF9FoFIFAAG+88QZ+53d+B/l8HplMRkBgoVBAr9dDIpGw7ZfOsWGaBXUT120wGEQ4HMZ4PMZ7772HP/uzP8P29jZ+9rOfYW9vT67hvIyRC/hccWUKovfhJYgZj8fC7JgboT9LPB4P5ufn8eabbwqDZFkWfvGLXwj4Oa9yXFYvHA4jnU4jk8ngvffeQzabRSKRQCqVgs/nky3Ibt++jY8//hiDwQDhcBg+nw/5fF5CmdlsFjdu3ECz2UQ4HBYgqL/rea7tKPH5fFhcXMTy8jJisRhyuZzspTwajdDr9dBsNgV0Om06T7DXarUwGAxs4SPum8scv/F4bDM8rNzl3q/aMIVCIQk/JZNJ+Hw+fPnll/B4PGg0Go5b57nyeohZtDEajRCJRHDhwgWkUil85zvfwbvvvov19XUBI19++SW+/vpryTcNBoP49re/jQ8//BA+nw8XLlzAaDTCj3/8Yzx48EBSAwj6XpXwrs/nQzKZRDQaxVtvvYU/+IM/kC0igf0CsGKxCAACfLlVJGBvgcSfwWCA4XAoINCyLHzrW9/CwsICvvzyS9y7d08A33kaGxfwueLKEUIj7PV6EY/HEY/HARz0Q/P5fKIkaKyZ78HWG8y/YsuQUCg0cQ/V4XAoeVozMzPI5XJyHob2zpMCmSQmgNH5bHwtm80ilUohnU4LM8VQpQZ8uVwOCwsLGAwGMnapVAoAxMuORqPixfv9ftnMfVri8/nEm2cojOFYgjOGxfTG9/r5ArABORrOQCCAYDAohkSzwrxHs72G2Y+PrAO/g/fu9/uRSCRgWRaCwaDMwfPsMLhyMtHOhcfjQTgcRj6fRyqVQrfbxZMnT7C9vY29vT2pbO92u/B6vWi321I5vrm5Kex1IBBALBZDPp9Hs9mUvcH5Pfp7z5Mw7SEWiyESiWBmZgaxWAzZbFb0ENeIuRa0Y2aGx/UPP0sgTCYxnU5jeXkZw+EQ1WoVlUpF1vPLHit3L11XXFFiGtZwOIxsNotoNIrvfve7+Na3viV5VaPRCLlcDvl83gZk+DMajSRxvlQqYX19HZZlYXl5Gfl8XpQFq8PIDm1tbWEwGCCXyyGbzeLp06f467/+a6yurooCedmK4yhh7gsZvGAwiNnZWWSzWYRCIXmNbUr4dzAYlJw4r9eLUCgEr9eLVquFRqOB8XgsY0zwxTC6ZVn42c9+hv/4H/+j9Kir1WoAptOLLJvNYnFxUdrBpNNpAU6mIaAB4TzQVbaNRgONRgM+nw/pdBqhUEhyivr9Ph4+fIhyuWxj/VjIwTkGHLA4mmnhWOhwON+vVCr4+OOPsbW1hU6nI47DeTbarjxbdM6qdiC8Xi9u3bqFP/uzP0MsFsNPfvITfPrpp+h2u1IE1Gw20Wq1pErc4/EIw57L5fCDH/wAi4uL2NjYwKNHj1CtVvHxxx/j6dOnjm1gzpP4fD58+OGH+OY3v4l4PI7l5WXE43EUi0XMzs7aKpSBw7nDulk6f+vCGO2QaWduNBqh0WjgwYMHqFar+Id/+Af8/d//vfTaPM0CKncvXVdceQ4xm5cCB15bIpHAxYsX8f7770uodjQaYW5uDgsLC9KOQysOAr5er4ft7W08fPgQHo8HN2/exPz8vLB5PI492VZXV9HpdBCJRBCJRFCpVLC7u4vV1dVzXbShixkIyuLxOMLhsChaJjkT6KTTaWkXwTCK/jyTpmdmZmzKt9vtotlsCmMaCASksTHPNU0JBoNIp9OIRCISVu71ejIPTHbFDHmRuet0Omg2mwgEArY+e+l0Gr1eT8LDugWEDttqZoHfa+ZUWZaFXq8nxS2pVMpWbehkdNwea6+u0LnUOotpIAsLCwiHw1J1O6l1C1MgdnZ2sLOzg0ajgVarhfF4jHg8jgsXLqBUKuGLL74AcLLirLMSAthCoYBr164hlUphZWXFFp3RgI3ri+/pkLXWZ04Ons7P9fv9CAaD8Pv9eOutt9DtdvHo0SOEw2GMRiN0Op2XNiYUF/C54sr/Fw2m+DsWi+HKlSsSVozFYqIQ6O01m02bkecP87QYiuXrBCsmzc8wJtmeSqUiIZher3cuwJ5W7gwTer1eFAoFXLhwQcKruqotGAxKyFb3ASOjp9lRDbgHg4EYM10EwWPY/4oGi4DZLE7QoOikwmcTiUTg9/sFiOkEbjJuvE6du8mqvXw+L/l/ly9fRiqVQq1Ww87ODnq9njCIg8HAVpTR6XSkGMjJwDrlU5GJ5o4eyWQSw+EQu7u7ApY5Ni97XrlyMuEcBCBFTZcuXcLMzAzm5+dRLpdRqVTQaDRsnwHs+s7MMW21Wvj888+xtbWFubk5LC8vS6oKP6tTDs6LFItF3Lp1C9lsFu+99x4uXrwoDiHXp6njdX611j9cG/yc6WSZ60afh7m3165dw5/8yZ+gWq3iq6++QrlcRrlcxu7u7ktJq3ABnyuuKDEXYTKZxDvvvIOFhQVcunQJqVTK1r5gPB6jXq/bPkswMBqN0Gw2BfBROXc6HamO4/H0yskkDQYDfPbZZ1hbW8P29ja63e5LV6xm+IisUSgUwvXr1/Gv/tW/QjKZRDabRTweF9aN7KcZlux2u+L1ciy0UiUTxcao2jiFw2FpaMwcyWaziVKphL29PVv+nqngTyKBQACJREIAnw7dM9RDgEpDwJAZx87j8eDKlSt46623kMlkcOvWLeTzeXz00Uf4q7/6KwyHQ2FCm80myuUyut0uGo0GarWabTw16+dkwPm72+3CsixJEYjFYhiNRtja2jqXBtuV4wv1BivDgf15evPmTbz77rsYj8fY2dlBu91GrVYToMJ5owEK5y3XXr1ex09/+lP4/X786Ec/wve+9z0pfADsff/OkywsLODf/bt/h0uXLiGdTiOVSkkO9KTQs3YoqaOccu70PXMNAge6S7dNYmXve++9h3feeQc7Ozv4u7/7Ozx69Aj37t1DuVx2AZ8r50+YE+Lz+Q4Z49+GxG+GFrmfKUUbWjOXQ7M+mvHTYoaO6TGbRvx527m8LPH7/YjFYlJ0EYvFbG0MgAOFSaDMMDYACan0ej0bmzkej6XgBTgYt1wuJ5XLereLWCyGRCKBZrMpn+F3n0T4PHSzVQpDRwRUfIbaeJABZYPmTCaDdDqNWCyGwWAg18kx4WdYoKLnH5vp6ga7JuAze/rx+PF4LK19yBK68uqLyfp7PB7puddut1Eul8XpfB5hXnG/35dwr55v5yHaQKEDSGeZQI85vpMcPp37qltqaSdOC51cfsbU4U4sOyMZ8XgcmUwGjUYDGxsbL239uYDPlSOF5fn5fF7Yhn6/j93dXduOAa+r0EAyJMBkdw3mTGHSPBc9P6sNbyQSkS2wGHqjQmGVKY89rwaa1w0cVMUlk0lh/ehZ6xzFVquFnZ0ddLtdtFottNtt+Hw+xONx+Hw+7OzsYGtrS7Z26vV6aLVawqKyT92HH36If/tv/61U7bIY5nd/93extbWFTz75BF999dUL3R/bVdCA6rAOwR7vc29vTxLgubtBJpNBKpVCIpHAtWvXkEgkkM1mkcvl0Gg08E//9E/Y3d3F5uYmOp2OMHhs4ByPx9Hv9xGNRlGv19FqtVAqlTAYDGwsnw490WnQQJt9xbhLwNbW1rmcT648n9Dx1syVx+NBMpnEzMwMHj16hDt37kgIUX/OBD/awaJQB3W7XdTrdTSbTXFeBoOB6KyXLX6/H2+++SauXr2Kq1evYmlpCdlsFt1uV5hNk6nTTlEkEkE0GrUBv0kgkediJfxgMECr1ZIWLVyP2oGjE/f222/j4sWL6HQ6+OUvf3kIhJ9FAZUL+Fw5UrxeL9LpNObn58XgdDodMcCvu9DrI7tHJofvHfUZynA4FEWgQR2PJRgkUAAOlC1DNufRQOtQJgBpmkxQxr50g8EA9XpdQpOPHj1Cq9WSn0AgIO0Snjx5gsePH6PT6WBvbw/tdhuNRkOcC55/ZmZGQqgMw6TTaaysrCCRSODhw4cvfH+Wtd/bju1eeM9k0qjI+Zx0XpPX60UkEkE+n0c+n8fNmzeRy+WErdvY2MDjx4+loe1gMBBwz3tkgcV4vN96huFqvkYmwgzH0XAx1DcYDASc8vvP43xy5fnFqaVIOByWHnM7OzuSs0nRYEbn7ZnC1wjuuEOMz+dzZMteFvhjC6sbN25gcXERqVQKkUhEUkY0Q29es44MHEfPcqzIfDJdR+fvUpezyTp11OzsLPL5PHK5nC09htfixBBOW1zA5wqAw95FJBJBMpmUooWVlRUJEfR6PRSLRVQqFWFs2FJEh9FeB6GC05vZa8POxczXuC8qWbp6vY5Op4ONjQ3cuXMHXq8X+XxeGn3yfGYxBJlFhirOi4E25wnDHqVSCV9//bUUZLCdyt7eHvr9vjB87XYbu7u70oam2+3C5/NhY2MDXq8XpVJJ9sMlm6w9Yc2U8lrINLApciwWQ6FQQDwex2AwkCbIJ7lXDcB43xq4c0cC5hJqsE+GwefzyV6d7Nu4vb2N7e1tlMtlxONxFAoFBINB2RNX3yfvnw2VGfbmfWtHQYfdCLr5Gs/p9/uRTCbPpFWEKycTp+jBcXJRTb2h9RY/e9R5nF5jRT2LHyYd56TDzHOfBpBhJX8ul5O2JGxoriMt+jdD336/Hzs7O/jNb34ju9F0Oh0kk0nZ5ajb7WIwGIj9G4/Hsnc2i9CCwSC63a5EbHQRH3Ukn0UymcTc3Byq1Sqq1eqZVu+6gM8VR0mlUrh69SoymQy+/e1v44033kC73Ua1WpXco06ng83NTfzyl79EuVzGxsbGawf4yMbpTe3N5N1AIGDrtcYedL1eD41GA6VSCXfv3sVPfvIT+P1+XL58GZcvXxZmSCsFAhkqJDYOnXabkRcRrczp6a6treFnP/uZgJbBYIC9vT08ePAA3W5XwItuiKwNgGY29ZZjZqiJ79F7BoB2u41utysJ681mE5988glyuZyw0icBfHyO8XjcVp3Ia2DIl8eyiS1BPHsHttttqV7m2JVKJTx69Ajr6+u4fv06Ll68CI/Hg0qlYtuSSefQsr3NYDCQsLjOq9XMHllpPU4c21AohGKxiFarJZvFu3J+xMwZNXMxKZNAl9Ybuocj5XnXQjwex+LiImq1GsLhsON3mn+bIJPfexqFHkyfWFpakvVI5ysYDNraX/Ea2Ug/FArhn//5n/Hf/tt/E6d1d3cXV65cwQcffIBAIIBKpSL9Ue/cuYPxeIzf+Z3fwfvvv4/5+Xl88MEHSCaT2N3dRa1WkzXL3F5GIqjHi8Uirl69Kt/nAj5XXroEAgHp4UXFoXNGGG4aDAbIZDIAIA1jz0Nex7REsyU6v8O8T11xqwERlY25p65Tw17TE9VJxOeF4QPgaHQ6nQ4qlQoCgQA6nY40my6Xy1PdHWRSrhHD5gTf8Xhc+s9VKpUTfx+Bk8mQ6NCtmcjOH16Pz+eTsBjbrbApNBtNk8U1nzcdDrKmDNOSOeQ1UTTDp8ECr1nn+PFvV14P0eFDFguwl6cuOHteYZ9M9sU8T/qd90xWk3bKqY0TRTuZZPD0/sK1Wg3lchlbW1sIBAKo1WpotVool8uo1+uwLAudTkeKWvR6M6/NtAu6Pyn7bpri5vC5cupiTrJisYjvfOc7SCaTCAaD2NrasimTQqEgPeOi0aiUmbM58FkkoJ6F+Hw+qfykUZ7kebMUn+E9hiw7nQ7i8bhtX1zu1MF8LM16acbmPBVtaEBqPtdKpYI7d+7A4/FIDgvDtk75PpPO/az3OTY675E/Onx748YNeDwePHz4EP/zf/5PdLvd575fzfDRwdFAPR6PCxDT7RwYun3jjTfw9ttvYzweo9PpYDAYYHNzE6urq7AsC4uLi1hZWZFwGZt8m2OlexR6PB7J9/N4PBKGYp4e5wvDeWQ2xuOxhKYCgYC0fvltKb56lcRksPXr+rcW5pPGYjGkUilks1ksLS3h/fffx/b2NlqtFtbX1090PcFgUHba8nq9h/YFd7oep73Dp20L6FBFIhHZHYTdJLTe4boB7E2XyYi3221sbm6i1Wphfn4ey8vL6Ha7+NWvfoXxeCw7lwSDQXzjG99AKBTCxYsXkUgkpKmybslCu6BbtGjSIJvN4vr169KMf3Nz88zspAv4XHGUZDKJy5cvI5FIyDZVumluJpNBPp+XXmiVSgWfffaZo5fzKoM+hlZ1Hpf22rRy1mwPq7gY8gyHw1hcXEQgEEA4HBYFofdVBewNTc8bw3dUDg4LMI4jkwzZpGNMRlGDYg3A9HjOz89LCOWjjz461nU5XQObzereXDqsrPsLMk+OFXrpdBpXr15Fp9PB6uoq6vU6qtUqHj16hFgshosXL2JmZkZSBhhmCgaDtmvgWBDQDQYDYSKazSZqtZptDvKaaGg4n9gImtu68RhXzp88b74bAUkoFJKq01wuh4sXLyIWi+Gzzz478bX4/X5EIhH0ej2ZT8+6vtPK19Oi020ikYjspMHIk+mcaxJCp870+31Uq1X0+33ZAvLhw4d4+PAh+v0+MpkM4vE4ZmZmcPHiRcm5JaOo9Y5JdOgIEa8hFothbm5ObIses9MWF/C5IsKcpGAwKBtnkyrXyeja8LFKU+dIaHmVwR5w0PpA9x00mS5dwAEchBgZ/mYInAqC/aEA2HICtYeov/8slOc05DgVbpNC4k7HHuecPMZU5pFIBJZliYNykt5hGvBpRpHAiSFanbfEa2Dotdlsot/vC1sbj8elAXI6nUYymbQZhOFwiE6nI+AOgMw9GgiywSzc0PPMKW2Aoh0Jp0KkV2GOHUfI9liWZRsf6ihWnNJQH0fM8PhpSigUwszMjA0MAPbtHvVcA4BoNCo9HhOJBDqdjuRrJhIJXLlyRZq/mzl9WnQfSa7TxcVF6RV56dIlfPDBB9LsXOsnM2JhvscUj2kJGXHu7EN2j6JTLfTWhNSz1NGpVAo3b97EYDDAwsICUqkUOp0Ovv76a/R6PWmvxN1L2GtUr59JesoM947HYymCYd7xWYoL+FwR8fv9WFpaQj6fx4ULF6SfGml8bvFEgMewZbvdlrwtyutiPGggGA4zwR4NrW7IyeP4uV6vh2w2i4WFBcmrmZRjpcMP/P5XYSwn5bE45fs9656cPnPU92pnhEwX96nd2NiQ3TFo+I8rDOkmEgm0223U63UMh0O0223pD8j8RIZuyLAxN2h3d1euLxwOo1AoYDAYIBaLYWlpCblcTgzlYDCQqj3uCwxAvoe7fXCesI8hc4mYoK4ZDj3WfI35WP1+X5w63V7nVZfFxUV88MEH8Hq9KJfLaLfb0sux1+uhVCqh0WhIZwEzFOeUgsAG21zvpympVAoffvghZmZm5DXNZpPFAw5Cp9z6kYU9DPMnk0mEw2H83u/9Hr7zne+I06HzPzUDpqu/eZ/ZbFb6P37/+9/H22+/LX00tXPB8WR/UYJq2o5f/epXqFQqU9NnwWAQmUxGGDjm72oHiR0UuBb0PdMRW1pawh//8R9jPB4jlUohFArBsix88cUX6HQ6uHDhAmZnZ7G0tIT33nsP0WhUdACZeQ0o9W8d+eEzjMfjuHjxouyjfZby2gA+s1caE5KZ/6QbVJ6kYu+3QbxerzAPuhElPULmlQGwGSkqwdeJJaCY+WLaa9UslAaCVC76eBp8Koij5DyEb08iZ3ndGmw7fbdONGdu5fNWCRLEmh66yaBp5sxss0MAqhlcAkKybHSUzHMToPE+9RzUDLs5J53mqBOI0Tm5/J5Xbf3qZ0TDm0wmkc/nRVexMIY5j3RadQhOn2/SGExKyp+23mPKTKFQkNc0a0bAp59ZNptFoVCQezW7CLABOJ0Gs5cex4pOvNZ5ZLgBSASIjj7nKXN2NeDTwJH7RE8zxYfFR+FwWAC5fkaT/jejAWYRk3bGde4s9brGEdoG6PPqtB/9DHndevecs5TXBvCx8aJlWbh37x62t7exsLCA9957D8FgEF9//TVWV1elmnAa3uxxcpFeJQkGg3jjjTfw5ptvIpvNCltFo6DDP0x0bTabsguAZvheF2FId1KlLY0NjwUOb7VGLy8YDNqqyEwAosEFgcF5Kto4SjS4mfS+k5g5L8cVNmbWAAo4vJ9xKBRCoVBAs9nE3t4eSqXSM8+twYNTQrZ+RvpHF6wwvygajaLT6WB9fR3NZhObm5vY2NiQXTeGwyFarRYajQYsa79pLvOlVldXARz076pWq7h37x4Gg4H0KhyNRmLsdJiPhlhvjcXjOKc9Hg/m5+cRjUaxt7eHJ0+evHIsXyqVQiaTQTQalb2uV1ZW8Oabb0oRGfet9nq96Pf7uHv3Lra2trCzsyO7JEwCxnxNh8uBg3Ciz+eT/pLPmy5ggkXOuVQqhbfffhtXr161pZMwTMu8NeoLAnc6k+brHo9HgJp2BEwnBoCknAyHQzSbTSnyCYfD8jkCFfa4a7VaUizF/FXTSep0Onj48CF+/vOfn/xhGxKPx3HlyhXk83lkMhlbvipw0CNVg1IygLz+YDCI9fV1/O///b8FwI7HYzx9+hQ7OzsYDAa4c+cOnjx5gtu3b+OTTz5BOBzGysoK5ufnRffrtWXqBd2UnWNIHcOUEbKgpy2vDeDLZrN4++234fF4JDl6fn4e3/ve94StIq1fr9dPRbFN03t5GRIIBLC8vIy3335bJqs2XlQmo9FImizzh73WXjehcSST6QT4nPLu+Fsn7bK9Bg21BnyaqdD5fWSnzjvgA+yJ2s+63udhVpyE1alsIqwbrOrzBwIBZDIZ1Ot1W+PUZ10bja829nzPZArM1zkO7J3HMGKpVMLGxgbW1taQTCZx8eJFBINB1Go1lEol+P1+LC4uIhgMSo+88Xgse+82m01UKhVJMidLRaOuW2aYeUpOoSXLsmzNatfX118pwGdZ+wnwMzMzyGaz+Pa3v425uTnMzMxgaWlJWmbs7u4iGo0imUzKa8yPe/DggZzvqHlhRoUY7ud5nrf/qMkI8ZzcZvDSpUu4efOmNPMlAOv3+zI3mRfq8/kkxMrzmPqEeWe9Xu+Q/eM8ASD9IuksjMdjAUacNz6fT8YTAKrVqnw374u7uvC1druNfD4/VT0WiUQwPz+PmZkZJBKJQ6wa9S7H2GTmqV/39vbwq1/9CtVqVUL9ZDDH47G0UOK5Q6EQfvCDH0h7FeAA8NEm8PudogM8j2bYAfsuTqclryTgYzgkGAxibm4OiUQCly5dkpyHCxcuYDQaSQJmJBLB4uKiNE9k09IXEc0CRCIRBINBdDodqZg7z2IqGnoZpPy1onBinUajkVQn8b1YLIYbN26g3W7blAW/p9vtYmNjQyj/8z5GWjQIM8O6WjRI1mzAcUI/OgxIZcxQAzvcM9fqVUhJeF7F5XT8UewflaUGO065WFTQDPscR9jeIhaLCZuhASCAQ8aDa0O/z2vQbJvP50MikUAsFpPrIRNI49Tr9WRNAbDtTcxwGqsLdcGQ1klkBbm2LcuyhZAIBLXj9io4q2RBZ2dnxeAvLS3JPs7M1axUKrJWqNP4fzQaRTabRbPZlGrLRqPxTNBmWftFQCxoy+VyCIVCWFtbQ7VafW6d5sRIOeWDad3L66De1YVEBLPaMeUcZCibwFB3B9DhYq4hslAseNIsKL+D+assYnICNxrY6uuexlzjzjN8HkflBmu2TbdQGgwGSCQSuHr1qvTfa7fbssMOAInuMEfR7/djdnYWhUIByWRSxpcg0skZ5JhoEsDn8yGZTMre2hzH05RXEvARnORyOfzpn/4p3nzzTUmGHwwGiMfjuHnzJmZnZ3Hx4kXZD/Ott97C559/jnv37tlQO/D8oSVtjC9evIh8Po/NzU3cvn37XO824eRZJhIJzM3NoVAoIBaL2TwP7SXRgJBVCIVCArwty8LKygr+8A//EL1eT8rc+T1bW1v467/+a9y/fx+dTgfNZvPcGBgndo6igQUVnVNulGZQdH4jz+E0v8zXNDgADtipVCqFeDwu4cGz7Mx+FnIcxs08RufvMJSlj6MR8/l8SKVSaLVa2NzcPNb1JBIJLC0tyfaCBEwMWTuxvlwPlmVJmFDn4jHsx/YRbIjr8exvCxWPx+X51+t1BAIBzM/PSyoAjRTZnK+//hrNZhOWddDni6E+VtbzM3yfBVhs5cKdctji5bw7YQS1xWIRf/zHf4zFxUXMz89jYWEBo9FIjGaz2ZTQPVuKAJA9T4vFIrLZLBKJhBTK3L17F0+ePJnolFEPrqys4N1330UkEkGhUEAoFMI//dM/YXV19bkLgkwnkrrU3MaPx5kpIQyV0pngvrEE+zoc3Gg0pCdouVy2RRlYcDEejyVETieEhUO6IteyLAGOXGdcaxogsiiCjhDnItfPi+r/aDSK5eVlzM3NyTaK1M8m4NKV8Bwf2qfl5WX86Z/+KVqtFp4+fYpqtYqFhQXcuHEDfr8f5XJZUkLu37+P8XiM9957D9evX0ckEpGIF50LPl/NsmpHkOMUiURw4cIF1Go1+V4X8CnREz8ejyOdTmNubg7Ly8syGfv9PrLZLCzLQjqdlkWSTqcRiUSwtrZ2pKf/LO+DE4lKldvYJJNJ1Gq1ieXu51lYuRWLxSRfTAMYM08JOAhx+P1+2Xg6HA4jl8tJCIt7gFKZ8fyvWq6fGRo4yovU46MZPvM4p9CGCSLpjTKse1Q7hVdNTKX8vELjQQNjhnP4HQBsxx1HzKRqbTDIWjhdjy7AAOwsoA4j0VHUBogMBZk2DdB0JaBmeZiLxP9NVp5hP5N1ICPU7XbRbrfRbDYdG2S/TDHDcjrMzp5oCwsLmJmZwczMzKH2NO12Wz5jMuPBYBDhcBjJZBKZTEbOGQqFbGBKXwuvI5FIoFAoIBKJIJ/Pi/6fRqiS1+s0T/keARZw4NRoYGdZljxbRll01IBMoJlWwuevmULOaQJKXgedH31+DQZNRkuPoQa6Lyo+n096DhJUPmsO63Ar7z0SiWBubk5y+CKRCJaWlnD16lUJ+TYaDcRiMQHY2WzWlkpCoDnp2ZljwefJ0HipVDoT3f7KAD5S6JFIBO+++y7+xb/4F0LNs/WBzkVg4un29rbkHEQiEdlUmpVMevFQJoE+euPMdXvnnXcQDAalRHua+QmnJU73lcvl8PbbbyOTySCbzdoYE/0D4NB4aeXK8eSeslSwPJa7Fmim5DzIUeCDIftoNGrLE9MAWCtHtuPodDoyJwg4CNo4hnp8dAhEn5+KgWwWlfF5GbtpyLPux+m9UCiEXC6HXC5nCynpYzmmOg/qONLtdlGpVNDtdiWhWifARyIRjMf7O20QKMRiMdTrdQF1ZE3q9To6nY6EiU2jSoeJ+VA0KHoemDlUuv8ljyGwYZNogp9yuYy9vT30+30prCLb2O/3UalUJA3jrObUcZxq7gWbzWZx7do10bt+vx/xeByZTAaj0ci2dR+LGsjqEui0Wi0B1QTSrGYla3758mVsb29jMBig3W7bCpA0+FxeXsbKyoo84+dt9XPUPfP5aUZXjxXBfbvdlpC13uoykUig3+/jyy+/xObmJnK5HFZWVsRxoCOTSqVsoWTOKwDSvFnrrGq1io2NDViWJYw314MWslYELnRm2BaJtpfP5UXHze/3I5FICPAyw9im7dLCMOxgMIDf70c+n8dwOEQ6nUa/35cG6F6vF5lMBslkEul0Gvl8HqPRSDpZmGk4BJ5m6g/BoLY1DA2TlT6Lit1XBvD5/X4Ui0VkMhl897vfxV/8xV8AAD799FOsr68fYmHYk2pnZwderxcLCwtIp9O2fCjtLZnipJQI+KLRKK5evYof/vCH8Pv9+OSTT/D48eNXAvABh8FtNpvFjRs3kEqlkE6nZeNnvm+yA9pbYfUY/9YVUaZXQ8N4XkPeTkaIzKVe3ICdstc5Nlzwep9FE/CZCoAKgoBPe3o05lTE53XsXlSc1ttRQFz34KpUKmi1Wrax4/nIRDwv4KtWq+h2uxKy0eEttpdgnh/bZEQiEQyHQ2FiCPi63a4APu5IQvBBZ1Q3CqYT1Wg0AEAAH0PDuk2L6XBogzoajcRYc2stM4f2LB0HM8x2FFPO9lCXLl3C7/3e70n4lOPA8G2lUsH29jY8Ho8AJa7X4XCIUqmETqeDcDgs6zAejyMcDiOdTmNpaQnj8RjVahXNZhPdbld62HFdaz3G/cX7/b5U+R6VO3aUmJ/h82MhhpnLx//7/T7K5bJtPtNxaLVauHfvHj7++GPcuHEDS0tLkqbDMWIxhbaZJiunC8aazSaePn1q00vc3ULbBjKn7NvKnFMN+Mi2TiMthQUuLDoyAZ++L1OP0PHivXCMmKbEbRoBCINoWRYuX76M8XgsvWd1OBw4aKRvAmpegx4vn8+HQqEAj8eD9fX11x/wHYepSCQS8sN9J+PxuFTb0WulUrSsg2ajugKy2+2iXq+j3+/LfoO1Wu25wos+n09YsEKhgHQ6LYtomlT1WYuZp2YKDYr2mnSyupM4eTl6j8/zBo4nzUMNtuiVml6jGUrg3COA04pb/0wqADEVg37/dWL2jhPWfVb43HRGdP8xzbTRmz+OsI8YgQBZHxoAtqEIhUJYXV1FKBSS47QR1q0WkskkotGo9Dlj6kS73cbOzg7q9bpNfzDcShDIthgM+zKcpsOALMLg9fb7fezt7QnLyOTz44S+TkP089bfT91JRi8QCEjIrFAoSKGY/jH7YhJEUDfp9cb1x7VL5l2zVEwRACDAXYt26ji+29vbqFQqx6r8dhoLMxRqFiLxXjgXec9sIM18MH6W+jWTyWBubg6ZTMbWsscMe+r1Y4JbzsXxeCxsOsdGdw7QRX1O4WhTL5qvvYjwnhk1mRSt0+PtpG9IUuhCKB3GBmDT+wSLZgGdto1aTEdHXyNJEGKX05aXBvh0MuMkz9vj8eDKlSv45je/iWw2i2984xsoFApoNBr4xS9+IQqu1+shlUpJLpn2gLkwSqWSbBS+vLyMRCKBe/fuodFoODILThIOh/Huu+/i+vXrWFlZwcrKCobDIe7cuSPJtmcNZPTCdLpuJwVrChPOCVxNj4RKiIpWAz8eZy5mM/Q0HA5lWyn2HHsVxO/3SyJzvV4X1kWzSTQwNEYMm7GKmR47YG/kzB/N7FHpa+WhjdzrBPiAkyt/PV7UIVzvwEFLG7YwYejvOKLDqpVKxVY9CRzsbnD//n3cvXsXoVAI+XxetmTi+iDDF4vFcO3aNTGWgUAAzWYTd+/exebmJtbW1vDo0SMAQCaTkZDxaDSSRsLRaFSYiMFggHq9DsCey1iv17G9vY1ms4knT55IGw+yhjRm055DTg6Q/q3FfI3Mv9/vx9WrV/GDH/xAdjsgC2pZloAc5jpyfdF28DmzwS93kyDzyudqWZZsMUbWieuY4EHn8uk17PHst/yqVCrY3d3F//2//xerq6vY2dl57rxkM92FkQBWZBP0scii0+lge3tbcjwJZLmtGMPTkUgE77//vhQdsfqb40n9xPvSOW28Dv7muioWi5iZmRHnSYMfy7IOMZJmNEg/ew3UX1R0ug3nuhPY0nrUKQqgwV29Xj/E6h4lBLqAvThPM7PUUdpWcwyz2SxisZjkkp62nBngM9k8U0mYx1LJplIpLC4uIpfLYXl5GYVCAQ8ePMCDBw8OLTIuWKJ1PmiGSJibQQo4EokIkHmW98FFn8lkMDs7K/thcksjPeHPizzrWvQ4c+wmeWgm62Q+PyfKXCvN887wmcL70wn8OpxqesTmj67e1IrVZPc0U2r+OF2TK8+ea3wNsG+Nd1zAzM8AOLJ9E/M06ezFYjFbVEE7nEzOpoGqVCq4f/8+ut0u9vb2cO/ePQDA7Ows4vG4bf4x/06zfEwX0MwKc4Hq9Tp2dnbEOTmvYjJTqVQKy8vLyGaztnxY9h40dbqumCcTpitVGXY0GSCdQ6uLYXRRAZ8fQ/R0hhuNBjqdDhqNBra2trC2tnbiljYmqNB5wPpe2VKlVquhXq+L06ABBe/BsvZ7K+qUAT3Oehyc9LkTeA+FQojH45IiYFbs6u8+imBwima8iJj3bTKmTt89ieHTc0nbvEnXbTa4NtlSijnG+noAiD18bRi+Sd6fqZgBCJPEzYzT6TRWVlZkI+nt7W3U63XUajVbjyoubMbhteKnQU0mk+h2u8jlckgmk+h0OpidncW1a9ckrMJSc7YM4bVls1kUi0WkUiksLS0hmUzC5/Oh0WhgOBxKYnG325WwwFnJs7xpE2gDB72sFhYWkEgkcO3aNczNzUnyOHt96bJ7Tdub36t7OOnfAGyAkp43c0jOiziFM7gVUbFYFI9be21OC5sLnwYZgPRo1AuarCcNDr9TJ2mPx2NZD8lkElevXkUgEMDdu3enuh/lqyQej0fasHg8Huzu7mI0GokR1l68nqvcS3Xa1eE6hKqZj2AwiNFohFqthocPHyIcDqNUKiESieDSpUu4evUqhsMhZmZmEIlEsLu7K/OK3j7PCUBAY6/Xk1DuaDSSUBCLrFiIcNbV3Mdh8oCDJH6mwZC1XFhYQCaTwcLCAjyeg+3PTGDHYhOOO/US1w17srGDA/NvNRiZBDqOCglq1ujBgwf45JNPJJRLpoy5npwHxxWtnzXg472TxfN49nfL0MAiGAwin8+Lzu52u7AsC9Fo9NDuDWycbwIyE4w4gY5+vy/OA/WSFs1MmYVoeizJqPJZnqRog7aLbWN09T3Xn66sd7pG83z6OJMh5L2Yf5uMqAaUk0gAJ/3E63olAd8kVkIvNrOkXAurlGZnZ/H7v//7WF5eRiAQkETd7e1tScBl1VahUJCEek2pkvLm5NSl65cuXcJoNMKNGzdQKpVQqVRw+/Ztoeq3t7dtoPHq1at45513EIvFMD8/L3sRspdfPp+XvMKXBfiO+z7HKRKJ4Pr165ifn8cbb7yBxcVFhMNhUZD0Js1eYwyBaKrcpNL1c+XE5gJl7tN5Yqs00KIRyWazmJ+fx+zsrK2FhgaFuuhCe3rj8VgYGLYQIsjld5g9+pxSHHRV3Y0bN5BOp9FsNvHVV185KqbXXTwej/Sw83q9sr2YbkmhGS+CaRZAEEAdR45iKigsHtAMIgBhX6rVKjY3N2FZFr788kv4fD5873vfw8zMDHw+n+wK8fDhQzlnLBZDNptFu91GrVYT5qrdbktIEdg3TIlEQtgxRiCOSi1xcrynJccNfzGSwPw89kddXFyUdcZdDrrdro2lYqK87vPJcHY4HMbi4qI0YM7lcrb1SRYFOAjJ671fmePJ/C3ggIAg2zcajXD37l38wz/8gxRlUS9q9uw4QEbbRArv1ePxiI5gUQ/HjGzlYDBAOBxGsVhEoVBAp9ORcCQ3G2i329LbjeNOu3jU8+PfBNpMC9DPTzu8GjA5AR397Nk946QOCW1XNBqV5uW8H4Jvs8KZjoZmh3lN/K17zT4r2qfvVT9Dfb+TwJ4OpdPxYcj9lQN8k6hUJ+XJG2YohBU3sVhMKmpjsZjkwXCS8+HRs9UDTiPI79MPV088KgICzGg0Ks0mqUB1qI0hXAIiehV8nw/trFD6cYVGT3vWvD6GmFKplFRikXHiYqaX2O12peeXSduPx+NDBlePtV5U9Din0cZgmmIuXCrNubk5pNNpMQ6aUeBx/G16dnph6xCNFifqX68Rzl967dwP8zzNsbMQMsOhUEgcrtnZWVl35ho380d137HTEDNcRKNBD16z4LVaDZubm1K1SyOsmycTPOiWMOY9TjKswLND/9MCe6bh0rmO2gHnetC6ktWVbJWld8OgnmAYl2Or84eZ90dQpgv2GNrW64lAUq9TvTc2x03rLJ6XVbHch50FMfr5mtWhJx1Pp8IHjmU4HIZlWUJe6I4TZPKGwyFqtZowcuYz4fmciACn10y9aMqkc5qRHmB6W0Vyb1/OGfN6zFDrca5fX/ek98xjjnIK9VzSBIkpBKj65zRztace0nW6UBotPVAET4VCAbdu3UI6ncbs7CxmZmYQjUYxPz+PUCiEL7/8Er/5zW8QCARsHlw2m5XwGYsA9ADrnCl+JxWKbjrp9/uRTqfx7rvvimKmcuWDSiQSSKfTNmWhv4dsI6uizlKOmnRMWA4Gg9JuhfeXy+Vw/fp1LC0tAQC++OILhEIhXLp0CZlMRjr9k6nQeyUCEOaP+UXD4dBW3GFS616vF41GA+VyWULF50VMZR0IBPD222/jhz/8IZLJJNrtNjY2Ng5Vxek5p40Nq0LpfZqsi6byJ4XD6FnTGBHofPrpp791gG9lZQUffPAB0uk0bt26hfn5eQl9ApC2LDpkwnzLRqOBWq323DtJPO/8NPN4+Bqru5k/fO/ePezs7CCRSODmzZvIZDLo9XoSguS2a2z1wgIFMpkMhbHVDGDPSZvmPT1L2IYjEolgYWFBWJdEImELpzIUSxBMI8d1kclkpI1Wo9Gw3TNg74NH4DMzM3No/2QAsovI6uqqfNY0vLrPHHvKUUfRUQOAdDqNVCqF9fV1fPzxx3j69Cnu3r0rDfZTqZTse8z0npM6FUcRGcC+Tpqbm7M5zrRdoVBIIgrdbhe//vWvsbm5icXFRXzzm9+U3FLNMk0SDc5NB988TjNoph3SxXp8LRgMIpFIYDweY3d390TjxCKmmZkZWTMcPz5jhq/NamIzjcyMCB5XNMg1GUPOHf4mONX5vBwfy7Jk60MSMNyF6nmiEc8jZ4ZOTODFG02lUrI12dLSEhYWFiThlkZvZ2cH4XAY8/PzkrDKnljMzdELW7dk4MMgw0XKngPPY9PptBhoXcquldNoNDr0MOi1srrqvBhjTaGHw2GpfCPjwS7z7GO2u7uLUCiEYrEolV/Mk2S4w2QTdHjS7FvFa9AsY7/ft7WUOE+ir9nr9SKfz+Py5cvweA7aXejCFpO95OLnb03fOxX0HMX2UTTLzDye8zTHTls4rqlUCisrK+IcXrhwQfpkkWnhvKQi5TxnuPW0FKh5vSYD7PP55DroPJVKJaRSKczOziIQCGAwGNiSt2mwTOeJjoTOldVV3mcpvDfmT3OrsnQ6LY5vPB6H3+9Hq9WSptTmmmE4SzvjmuEDYHPEaMgTiYTsL0ydznxKAjDAbtT5P3MfmZvLNW32vWOeocfjwcbGBh4+fIjd3V3J1WbepO6NOA2GT18Hhbl8ZH8ZcdGVzAAk9enBgwfSE4852c+bw+pUiGAWOJp6UL+nC/b0fHmRbhYE7MxTNHWqtv9OetrpfGaER8skdlD/P4ll1/YPsKcOUbjOiWs4n05Lpg74tLekK4V8Pp80uiQVzTyWN998E8lkEs1mE19++aVNCYzHY1y9ehXBYBDZbFbyGUjPawrcfLBO3gnDDwCk/F57fybqp0IlSGR4U4MbbkbNfXxTqZStb9e05DjeCDeUZvdwlnsz5MJFx3vXnqLfv7/xOHOH+J31et3WDsAcy2QyaQM5NEA6dMLGrw8fPsTe3t65zEHLZrNYWVlBJpPB1atXZRcH9m8kK2ACW9OQhUIhZLNZWQPAQW834GAzbq1MtfLUuUdUmFp5v87C/Bzuk5lMJnHz5k1cu3ZNcmdbrRZqtRr29vZsubnAgWdNNuxlOBc6zMTEe3r5uhfe06dPxdkigGDeFZ0jFgKQLdFhSA0ugelXQU4SDWwJ1NgShXlxPt/BVor6mszqRu0gjcdjeU2nzfCzmrkZDg+a9/IY6jQCUD4LExQQXNMh1gCBbVk8nv2K3Pv37+PBgwfY2NjA9va27Nqhi7i4znWbpWeJ1h2UcDiMTCYjuZl6rADIvGFe32AwwOPHj4WE6HQ66Ha78Hq9yOVy8Pl82NraQrPZRCwWk5AwIwdO9lGzVE7XrAGQqbuc0g20kH17kZCux+NBMpmUIkpt+3UIdzAY4OnTp9je3pat0qLRqBAO5j07gT6nv7UN1mOgdbe+HqakAQf7f9MB1DqLNoOO7Gk12J960QbZDDYU5OQMBoO4evUqfu/3fg/JZFIUGHd5CAQC+Oijj/Dxxx/D4/GIdzg3N4dbt27JoqL3w4ReemmAc3sGJ8BnAlEaY5Py5f9kCzQA1MhdN21Mp9Po9XpS9fs8Y/c87zspDGAfxM7NzSEajWJubk62btFNpskYEcCSares/d5h5XJZEqSpIDTDR1DDcYzH4wD2wykM79Lb5d+NRgMPHz7E7du3nxlWeFkyMzODH/zgB5idncU777yD+fl5VKtVMWasKgTsYWDNsFiWJSEnjhNw0IR3PB5LJR8VIEUbRQDildO7597NryvDZ1n76RPcH/VHP/qRsP/z8/OSr1ev17G5uYl79+5hOBwik8lIhT7HjgwRqz3P8h5Mp9GyLOkFx23eRqORXD/BB8HsaDRCq9WShHvqHLP9hXZ2tZE9TcBngj0y4Lu7u/D5fCiVSqKTyUgxB5NgTbdCAWDTF9Tv3FqN6ws4IBN06oQeC/Y5ZMcGk53SoTx9L3yNerFYLMLr9eLjjz/Gb37zGzx69AiPHj3C06dP5VnR8eM1M3py3AbfToxQLBZDoVCQELcJ+KiHufd5vV7Hl19+iQcPHtjC0z6fT9jjJ0+eSKoOt+8DDgocnKIOTuyVzoUzj3e6H6fXNIM9CVQ+S7xeL7LZLBYXF8Wp5vVxvGh37ty5g5///OdSfMfQdrPZPHReJ5Zy0jGmmHNIpwf0ej1xgJLJpPTgZFN1npfzDgDK5TIqlcqJxudZMhXAp7dU0aEJ9kBiHhlpeO0NEQGzcIAeCkMwmiY3jStf078pGrXzf/3bSZzOZVLTkyY9v4vKYFIZ+DTEaUKSKk8kEshkMpIUzeehi15ogLg4zORa3q+Ze6m/28nA6HNpr5ShKCos4Hhs5VkJHYlEIoF8Po98Pi85RZMSus3rN2l65uE4MTCTxPQitdfIvSJ1n67zCJpPItqZYy5voVCQ3RYCgYCAJPYB29rawvr6usw57kaRTCbF+ZrWPqfHESe94qSvNAthhrwAHKoYNdem/i4nMHMWosEe56Kpp2mI2ReVOsEEfDSMbFjN8dJbW1G0QSdLxXPxPeo4E5ROGh8TdPV6PTlXuVyW+RaLxZDL5ST0RgPO/pxk2U4a2aHtoFOnQamOlky6B83a6bY8OsLglLPmBHCOspHPCn0eNQ9NHXoS0ePEtC9zDdF2NRoN7OzsyDZ72jl61nccZ0yOeiacg9zhiyDdLMrhORgFYKX6aclUAN/Fixfx3nvvSbsU3YKCD4geGFmgra0t7O3twefz4Ze//CU8Hg8qlYoAAiq7er2OjY0N8dx0Ja32MM3wBnB4r0C9eMhuUdE4NV7UTJ9JZdPT08olEokglUpJs1AnMT2q43rlR73v9XqxuLiI2dlZFItFfOMb30A8Hpd9O30+H5aXl23hFY9nP/mZioIVcQSIHH+tnAkaOV4E5SzCYK4Uz21Zljy/7e1tUYQcO7JdLxO4+P1+6QN269YtfPe730U+n8d4PMba2prkyuhefMDk9AE9hhTNLJgGxlToWiFScRPIA/tbdDEpnqkEpyFOTtWLnOeoc0QiEVy+fBnJZBK3bt3C+++/j1gshtnZWUSjUWxtbeGLL75AtVrFL3/5S6ytrUlys8fjweLiIjKZDK5cuYLf/d3fRSwWw87ODmq1mrTdOE0x5wB/dB80rcTJ5ukWEDwH9wQmWOI8muSwTpqHpyWMkNBAsbCEgJzV/uZnzJQZsn2M0ui9zS3LEgdWpwbxNa4xrkvqGt2RwDwOOOys6hC5meM2Go2k2CcYDOJHP/qRrcBD5yju7u5iY2MDlUoFP/3pTx0ZpGeJZVnS55Xby1EfsJJbF+dw3afTaczNzWFvbw9PnjyR+xgOh0in01LoSCCr8131dz/r2px+U7TuMj93nNeeRzye/WKZmZkZxOPxQ7sa0aa02208ePAAP//5z9FoNOSZmOM46VqOQwzxbydwyOe3ubmJzz//HMlkEul0GtlsVvol8hqYw8uo0P379088Ps+SFwZ8lmUhk8ng2rVrsketprcJLrQC7Pf7skh4w+PxWLb30pOSCJmhL4JJ3V+P36HDHRxQ7dVo48MHb3qm+n2KVmDasJv5KMyN02Fmc6z072kJF8Hc3Bzm5+dx+fJlJBIJrK2tYWNjQ/o1hcNhAa8MY5PFYuhQGxntfRBMm30UdX4jWRXdLkG3CdDsHpWYzr96GcKckJmZGczNzeHChQvIZrPY2NjA3t6e7XrN1gamaEbvqPszQf9RHiUNI9tOcH5R0Z2FHBXmeNbnjiOBQAD5fB6FQgFXr17Fe++9Z2sU2+l08PjxY2xvb+Of/umfcPfuXfkstxTL5XLiQTOXiz3bzoL9cmIvNIDhMYA9BMQ1xnXJsL/WZyYzM8lBnAaDcpz7NBPN9d69urBEO4cm6NYsOPWFTvWgzqGjz+gRQR/BFiuDnZwmOuFOKT+mDiQzxxAcQ+1erxczMzO4du2ahNwA2ELW6+vriEQi2NnZwaeffnricQ2FQkgmk4jH4zI3eB9mXjTHiax2pVJBrVaTHaWYNsJiRJPhO+41HfU/x9Tp70mff9G5yXEisUS7Q8CnWzGVSiWsrq4im83aWvLosXS6F77nBGyPEk2mEMPU63U8fvxY8sHN9mic8z6fD4lEAu12W1jZ05AXAnwmba5pfm3k9MJnmIUshVYMuhcNE351g0X2wGM1i/bgqCD1dQHOIMsc7EkyCQDq82hvlBV5ugmreT5zoum/nXIqtGds0vwaDKTTaUn2rVQq0jOKoQYqVs1QmrteaGZCJ/U6sQdO100FPR4fbDp///59fPrpp5IXqJmN4zCbTmKCpJOcg+OWSCTwzjvv4K233sKFCxck35HspTYiTkpAV4M5hUx4vfp+OVdZbU6FTudDGyQCRjLGnU7HVsl32vIiYMlpvCiWZUnbi2KxiHfeeQfFYhHFYlEM8KNHj1Cr1fDgwQNh+NjsXIsOfXJsWLWpc3PPUkzmzuk9J0eSjoLTWptkoPQ5nteoT0PI9tEA6/xdzmftKHINaOCrw9y8F94PX6dh17mt9XrdFlHSY0Xd7MTwAQehP+2ssoffeDzGwsIC5ubmkMvlJNSmSYJWqwWvd7/dFPfZfhHGnfvh6rxfp3x0MqrD4RCpVErSPVqtlsz30WiEeDyOQqEgu1ExVUA7ps8jk1i8ScfpHw1epzFH+XmdU6/z9xj147x0ut9J9+Jkp53EXON08Knbgf289rW1NVvRnjkuug3caev1EwM+Kid6ejqXgguDiFtvCUSPt1Ao2MrqTaXNBUbApwElQZ8OtemJpHMYKPrhHOV5TPJCTKNB2tiyLGnJwpJqp0og8zomjacO/WiFZeaF0dNhnt78/DwKhQI8nv0WApZlCbM2Ho+xtbUF4CCcGo/HcfPmTaRSqUMMAwG4k2LQCpjPUo87czHX1tZQq9Xwy1/+En/3d38n46GV80kMMYGuk7f2POCEVd/FYhG///u/jz/4gz9At9sV+l+3hNC5jASrXKQ6+VyDOg0U9f3SsbEsy5ZzRkNCtoTGh9VabD7OBOAXaW1wHJkWKzYJ9Hk8HiwsLODatWtYXFzED3/4Q8zNzYkDuL29jf/xP/4H7t69i+3tbTx9+lQYJPP82mmk49XtdlGtVqWv21nIsxgNE5DofFeu+0lzyTT6kxzQaRnU4wrXo06xcQJYOoymc4SBA6PN9/lb37tOJ9FAzfwenk873JOei34+HDMCPo/Hg5WVFVy/fh3xeFwYRV18xc4Fe3t72N3dRblcPnH7H+qDdDqNSCQCyzposGyCYHY98Hg8KBQK0gEjkUjIDhwMKVJnhcNh6TCh7/d5xXRkncZXn18fQ0f3RUGNdhb4rIlBdI9KEkfMV9fX7UQAPet+J72uwSfHl/q5Uqngzp07aDabElbWNlPP62k0pX6WvBDDxwvjXns0vpxYeg9Is8ozGAwe8sYmeQt68euFrMNnWtHp5F59Hiev25y0x7kGYJ9pYTNibhdGZu1ZeWkErTqko1/TxzEfzAxZAxCm08xT0VVtOm+Pk8r80WBbJ8CaIFh73KYhH4/HkhNZr9dly7pqtSohEoL4kzJ7Ts/leYQsp8fjkX1yC4WC7OoCQBr0OrEs5vjosdHXY8417eGa3h09Ud3IWq8feoUEhcyrfBlMzknFVI5kpuPxOHK5nIx/JBJBtVpFpVIRI7q7u4tKpXIkcNPPhd9hOppnKU7GwHzdSfTccCrWOI5M0qPTFA3amONqRh/Ma+D7Ws/odBxTv2qdpJlCfod5HDAZ8JmiwYhmzTju1LWRSEQAmKl7zb/19z+P6FxIMnFkeY8q2NE6mNfLnVnYuJuFLyYbZuog89xO3zdJjrKbzyJXXkSc1hXnmAbK5nN2uh7922T3zDF6lph6nw48ezXq52bOm0lrZ5ryQoCPk/LBgwdoNBq29gIsEydLpzf4JhtkIn29ETirfnkuUzQAmTRAetHo9gYafJrH8X8aYx5PEMeE2Ha7jXq9bjPAOzs7+Prrr9FqtRz76PBaE4kEVlZWJJnWieqlp8yx0/t1sr8Ym4f6/X60223s7u4iEokgl8vJxtocRz3+ZEVZAakbwzL/SedQmQodOFCq3Gmj1+vhq6++wt27d1Gv1/HgwQPU63Vsb2/L89ZVeQwtnGTOmdXDx12QgUAAFy9eRCaTwZtvvonf+Z3fkUTpvb09ecYEhgQO/A725KNyJXh1MkxkuDnW2kiSRa3Vatje3rY9UyoIjhFDBGS5AUjV2TSquaYBMp5H2G8qGo3i1q1b+P73vy89wtrtNn71q1/hxz/+MSqVCr744gt5LrxWLVynzGfU4TRW6DG14CzEZK2Pyt3U/7+oUeV3n4XBYGiKa4WMs9bXBEe6obGZX61TcHgfJuDTjupRr5nspxbtoJk6jDIej6WHXSgUQjqdRjQaxbe//W18+OGHkofMgjQ64azSHQwG0obLKXf7KCkWi/jOd76DfD6PW7duIZvNylrUbWe0cOzG47EUOjIqYFn7kZ94PC47G41GI6kA5f2f1PF+FrDT4MusSJ2GmHZfRwUDgYDcc6lUkhC7ztPntelzmASQaVe0w24SHVq0k0ICqtfroVKpSJ9h7rhjRqn4mXMb0gUOFNz29jbW19dt73F/WiZkM7+MOUt6snFw2HCVuXC6Qk0fT+CmH6KpDEwvkkCNXo9TyEAPvs6TIHPFv0mps0/WcQsPOMnC4bBUY7GSVl+3zklknh2/j6Cj0+nYKtn4uvb2crmctBJggjGT/jWg7Xa7h7wkvRh0OF0Xy3Cs2OT20aNH+MUvfoFarYaHDx+i2Wweapugk5FPCi5OyhD6fD4Ui0UsLCzg1q1b+NGPfoRYLIa9vT1hkHhtmkXjvRKYMfeO4FXn2pjhKioizik9J9vtNra3t23tHPT85JwhWOfYB4PBiXkpzyumITxtwOfz+ZBKpZBMJnHhwgW88cYbtlDMo0eP8OMf/xjNZhOVSkUYClMx6+tk+FsDu06ng1qtJn3tzlK0bpk0pibbq1/Xv83Xnf43GefTFOpSAOL4MtRJh45Aj5EH3abKZNe41sz7MYGdfl3fp8n8aZ3FayRrN8lBGo322/0AQDwex8LCAlKpFC5fvoyrV6+i2Wzi7t270vuVbccIDHd2dqTg8HnXZCKRwFtvvYXFxUUsLy/besXRaTSvm2NGO8QUIpIP1PO6eMMpf++otX4Stk8fYwKqaeoVc91osDQejyWnktW7ThGXo5wjfQ/PAn0mSWQyrwTjuiiI85HnMOfvacoLF21wkPlbG0e9yTQT9lltaFKb9EyoJHSyLcXJ09Pv6ff524nh03uUatBnPjTdsoQMGIEj/+fi0woNONhr1jbY///+Y7EY8vk8isWiraqNi5MGDICADLJBDAHSq+YOGWRWo9GojZnTfdvIWDn1OCSLqvPxmG/He2ErjMFggHK5LFVhu7u7aLVauHv3LkqlEtrttih8M6fopGCNotnfWCyGaDR6aI5wQTE8wsav0WgU169fRz6fx8LCgihMbtGlRQN/rST5HpWnVgg6/4rCdaCBHEONVNb831z4Ok+SOTvcmkvnGb6I6Hs8bbAH7BvUK1euIJ/PY2ZmBoFAAK1WC48ePUK1WsWTJ0/kmTyLtXJS4ny91+vZkthPW46a1yYLp1+fBAaPYhLMY53A0lkIv4tzm7qJ+oeMGBtKa+dRrymn13j+SWNghogpei5ova7HyTznaLRf8MDtE6nvNzc3cefOHbRaLTx8+FCcwtFov6pya2sLgUAA9+7dw1dffSWpB88joVAIs7Oz/4+9//qNLMuuxOF1w3sfQZ/J9JVVmeVLXWqpIXVLkCBAgDCA3uZ1gPmT5n2AwUBPIwnCjKDWaDTTvqu6svvXWVXpmfRkeO/N98Bvbe44eYNkJn1WbIAgGeaac8/ZZ+21nbQULRaLMmZk8cz74zUDkP2UgGIwGGB3dxelUklajuqWkHpstZhjc9DcO+i9g+Ye9xR6+Y4jet/Wz5hguVqtig6xu6bjrBG7dXvY/sa6gJVKZczTqbHQWcTfnkjSBgEFFw43sFKpBMuyZBIfhmD1zR5mKR30wA56wEedAHbIXb+uLRiCU021m/W/LGsvKDcSiSCTyUiwOseE2aGs4UdXVrVaRbvdxvb2Np48eYLRaCRVxsmSEFjxmehyB3Q9UglrMMl7IXjUCjcQCCAajWI02mt0zVZWz549kwrvL1++lDp7dInQCta9eDmpdYDqm25MdFUHAgFcu3YNV69eHVuAdIOyKbvf78fS0hJu3boFv9+PZDKJQCAglheDaVnwW7tyeUwzPpKgmdS8LiGhXViDwUAAcKvVkvhAzvFGoyGKWcedanBO5oqG1ObmJlZXV8cCsI8jZwkQACCdTuPP//zPcfXqVczNzUk5i//zf/4PVlZW8Pz5cxSLRRknO3YDeDXD1bSYG40GisWijPlpiqkbTJm0idrFGR/GPuhjcnw0Y3MWbnkKN1vqFRPM2oEIXZaCz5bvU3fpjU8/W7vYO7v5a6ev7ZhA/j0cDsfAGt3U33zzjcRlb21tCVvMHwKsra0tvHz5cizJ6qgSiUTw/vvv49atW3KcQCCA5eVlBAIBabPF8eJ1c32wJE2xWESpVEK73cbKygqq1Sri8TiWl5cliUOHlkwylsw59yZzyQ6gAnu6OxwOi+fnTUTvHSRxdJZrr9dDLpfDzs6OJLqZBt9RjamjiJ3xYDdmvK719XVkMhksLCwIUNe1Oi+0S1eLGbSrF91pK9zzED4YbbXaKSQt+j1tKRJk6B6/LPJJdkhn8LKzSSAQeKXdlulCtWMAdFyavi7zNYJXFiAlECXbuLOzg3q9Lm5JCl3KJmg3gd5hm5oWGhfBYBCxWAzBYBCpVAqZTGZsvhEceTweJJNJ+P1+saCpcLxeL+r1usR9meDBZGT0M6No5s/uPjQ4JGNgtvnScXuaJdfsIs+j2WY7RvI4opOfdBayvobjiq6flkwmJc6U4QCFQgHZbBa1Wk2eyVGVn934a7B8loCW12N3XeY65Gv6b/N7dvPK7n5fZy2dtLyO0aDrwWmQro0sU5/q35oVNM89yajXbBDPxd9c16wPq9dquVyG0+lEu91GPp8f6wZC70C320U+n5fwnqMK3dys7sA+5swQBvbWoy4Ppa9dG+vajQ7sFe8ulUpi7Gtvmd28OUiOM6fMua/d+yc1V815Rw/KJIP4uMyePoZei5Pmnn6/0+mg2WxKkwPTaDmKoXdceWPAR7eJefEauNjR83Y3ye9NEhNAHiaTlCzPa7fw7X7r7xx0Hm11MSvQnGyj0UiC8QeDAf7hH/4B4XBYWnl5PB6EQiFZ/FeuXBm770ajge9///sYjUbSm5gARoNPLnDGCmqQxevSJXJ4bAYl53I56YbCmEG6xqhIut2uAD+yXJpJpHAMtEXGZ64/RzZsEohxu9145513cPXqVaTTady7dw+RSERiwYB9xkfT436/X0AiLXIyEVTqBFoEyDqYlschICdA5/lGo5GUCOJ6GA6HwhzqMIJmsykAjy5ZvR7oKrdjP8mYngYbx5Y/Ho8H169fx5UrV9BqtbC+vo5GoyHZshwLymGslnmODz/8ELdv38aNGzdw/fp1JJNJ7O7u4tmzZ1hZWcGzZ8/w8uXLsU4NBLvAZP1AIKCTwKhca7WarLnTFL32eD0AxoyJwwCaHbtngsFJY64Nz5PeUE9azExRLWZ/XOBV8GvOh9f11lDMc9P9V6/X8fz5c4nTZeYru9rwGDo06HXnmNvtxt27d8VDsbGxIaWstre3xQPk9XrH4qvt7oEgKhgMIp1Oo1qt4uuvv8b6+roYV/F4fGzt2u2PduM4aR+dNLcO0wUMQWKC55uIXu9mLCKNhlqtJr3jtZHwpuc77L54fHp9zFApZnnncjmsrq5K2R3G+JEp5n1dWMBnbtAOx35Worn5U6GZ7ofXsWa1r978HGWSgtCf1R0fTFQ96TuT3AaaBaF1oYP2tTBwtl6vY3NzE5Zl4dq1a7hx4wZCoRCWl5cRjUaRSqUwMzMjhTh1TSUCCzPj2A7wmSVZtHXK34PBAIVCQZTOs2fPUCgUsLOzg6dPn8r9TNpsdIaerpjPazTPDWBsbhBIAZjIxjidTly9ehWfffYZ5ufn8fnnnyMWi41tinpjNRe4jotsNptj7JVlWeLu0N81g73pftMxodrK1uEMpVJJ6h4yi5oBu+12G7lcDvl8XhSgw+F4JXkH2G/BxR+78T+uMDGI8Y2ffPIJKpUKPB4PisUi+v0+CoXCRGv2KArR5XLh1q1b+JM/+RPMzMxgfn4egUAAz58/x9OnT7G6uoqNjQ3s7OyMfc/OKLQ7p8kIARD3mrlhnpZoBkrPoYM+b/5vN3fNjXbS2HPtn4Vb6DhyGkbLSQrDL05TnE4nlpeX8Qd/8Afw+XzI5XIoFArym54VXboLGHdFaoOUBjdDcNrtNrLZLK5duya91VkuDDhaDJ7dnnxcto8ERTAYPBYI0+vMnE+MmWaM80GhZIfNw0n6xvyMvhczoVRXdCiXy9jd3ZVQLobBcT++0DF8dsKNkJu4Zl2AV91lr8Pw6e+Yr036/CTwRkVsBzZfF/ABGAMBdgkl+rrM2JR+vy9xIk6nUxiVXC4nCQcEcARJdgBMA1fT3ayvWTNbBFilUgm5XA7tdhs7OzviwtUTUR/PZMD4v3YVm2Bd/2asjgleJ4llWdK8PBqNjrkdze/ZPT89F7XBYd6T/u6kxWeO8XA4lFiRWq0mLlc+21wuJ/GZLN2Qy+VQq9WQTCaRSCREsZvjZbrm33Sj1PfA+w6HwwgEAohEIrhy5Yq4yrnRzM7OIhgMolwuv7LWjnodzMoPhUKIx+NIJBIIBoNiROzs7ODZs2fY2dk5sE2cVrqTxsG8Rp09fRYAQ7PDdsBMX6O+ZhO0me+bm/ykjYvHOC6jMZXTF4fDId6dTqeDra0tqUoRiUQQCoVExwGv7k2TWE3qOHbYiMViY4yRGbqiv2vONfM9828tR33tpFy6dgyfXvdsfkCPjB6DSee1wxh8XY+PHQ4wcY7+rmbtGMfN/VcfQ+v7SwX4dBPqi2Bl2k3g1/n8Ub+nFfykz2oWjNm0LEUBAN9++618jhOajCmTIJzOvar2ZmNxPWF1KRr+EIxwMejrpTvVLlOYlhlZMCaEaJCrM5hZRkMnkRDQMJaEySQESTojcxLDNzs7i3fffVfK+jBOg+fTi9pUlHoz5rhqEKiVgY6f0RunVpb6+RUKBRQKBSk+rnsSt9ttPHz4EBsbG5J0Q5cVALz77ru4ffs2QqGQPBetILSb8qiAz1TkfE0rLJfLheXlZSwvLyOTyeDevXsIh8PCQvp8Pnz88ccA9lzNv/vd78bAtd059Ot8LRgMYnFxEfF4HLdu3cLt27cxGu213Wu1Wvj1r3+Nf/zHf5Ri3QeJBuxHUdqsnXlWMXxcG8A4s2cH5rRxcRCANQ1kzk8+R/7osTmJTgZTOV1xOp2Yn5/H/fv38eTJE/zzP/8z8vk8Pv/8c3z22WdIpVJiEJtGoDmPgHEdDgBXrlyB2+3G9evXJYtXZ/zbuULN42k5Cujj9/U1m9dL96ZdfPdRxbIsaYtJD5bWzfSwFAoF9Pt9qfyhr0PnG/C3GT99mJj7p/6tv0+Gz7Is5PN5dLtd3L179xXjmWE7dtVJTlJOFPABF5+yP2/hgiPwoetJZ37qz7LIJ4tp0oVKAKYzdC3LGgNv3MBZ/JHs3kFsiqlQuImw9AvPp13KdpXt9X0SPGmQqjNa7Vg581gej0fYTmCfwdFKzLTCzEWuGT2KqVT5vaNcE8ebmVb8ze4l7XYbpVJJElzYHkwXy9YuY319ZhIQr/WooO+gz1nWflu+WCyGTCaDcDiMQqGAdrsNh8MhdTNZF1MDvoOUvha6iyORiLhyqJCZoczC068rJtA0QSiV91mUZNHPzc5wmXStkzZaPX/tAPVBz/e0XUJTORnh+nO5XLIO+v0+gsGgGLUUO+ZX/zaBv9/vRywWe6Wl2GEyieXjOY4yr/TctNtLToLF0vpeXx+wH1vJckzm+ezGzgSAdveixQ4QT1qPBJPcD5xOpzRa0N8/yp5zEnLigG8qk0UXbmaQJjclh8Mh3RT0pCTbw0lDAAeMu2+0K1lbHDw+EzXIMPL7AGxBmZ6Aur2bLluiS5ToOEZeL60xXeOP18oM2Vqt9kpAtBaORbVaxdbWlmTnEvDyeky2xNwoeW7dj5Xf0TF6ZnYq42MIcnm/KysrwiDxdbJKT548wbfffotGo4H19XWUy2Vx+9KdEwqFpNOJySaa90/21AwInvR5U6lxPLRSrFarUkdMJ/H0er0xNnd2dhbvvfcearWaxHkeVTElEgl89NFHUuza5/OhWq3i0aNHyOfz2N3dPZabWlvHOmFDGwNn5dKl8UVDy3Tlmut6kphxymRn7Fhr/taGwVE35qmcn2gDljUK6/U63G43MpkMIpGI6JuDQgK0ntLzg+W/2Kve1K12c+Qwlu8gOQjsnDTDRy8iS+Swbi+vgR2MWO+OTKAGdabBr3XjcXSFNtbN1xjew/I5OjGNe4puwXZaMgV8ZyjchOhaBfYD891ut2Tp2m3amrljtqcGKHYtZDTzoBM5eA5uFLofbyAQkAViF7unmS0qG7vsUu3SNbtzMOu32+2ONZU2RS/OWq2G3d1dRKNRBINBWJYlZWkAvKLQgFc3z9FoNFYglkCLoNoEyQR8BLwMV2g0GlhbW0OtVkMoFEI4HJZx6PV6ePz4Mf7+7/9eXOd6XOgOTiQS0pDdBNiT5o4uznyY2IE9rdTYeowN13nvuiQKu+Tcvn0bhUJBsosPOw8lFovh/v37mJ+fx9zcHHw+H7rdLp49e4bNzU3kcrljgzHNHGgDSoO+sxACZJ2pz+szAd9B9zyJodbf08fT63QK9i6HaMDndDrHAF8qlRKG7zDjDhjva8xjs5MSf+vM6EnXM+m1N1mfmuXWOo2A7zhdggj46Ikw47iZFFmtVhGJROD3+4UU4H0RIOrrPGk9pA0zkjVsg1epVMb2KI0JpoDvLRe9OenuHcC41cXPmJPTtPgnAT59Pt1iR09UMkmm2FlHdoyiKZZlSaYUQSnLGBC0HjS5PR6PBDHTYnU4HJKBxYWvr4sA0wSsHEMCWzOuj5m2ZiyH0+kUMM3rZnu1QCCA4XCvLVO73cbm5qYAqcPuzRwnip1bj8/+qC38tJhgj68RbNdqNZTLZWlnyBgSno8t+kajkbjT7YAFz0Gmmt+LRqMIhUIYjfbK/1QqFeRyOWSz2YlA/3XFDlCZzMdpC6/Bzu19VBBmGnp239f3aMfSnJVraCpvLsPhEKVSCRsbG6IrzHlqB+TshHNdG/UEkuyda6czDmP8zM+8jpjGB/+mJ+m4pUf0nmMm15leMBIqB4Haw+5F34N5HebaNNcenwtdzJOIGR7vJMDnQTIFfOcstFAIYEzLR4M2M5iT7BRgz3DZTSS6HfVm4vF4hPVixwmTqbBbXOZ57Vyj2rVGhkqDl4O6RSQSCdy/fx/xeBw3b97E7Ows2u22xMJ5PB4BKPwdi8Wk3VwkEnklYNdufDQNbwLoTqeDSqWCbrcrdDwtcZfLhRcvXuDZs2fI5/P4xS9+ge3tbalpyONoVyPPb7KPfJ2f5bXQimWCymHdNY4CCLnh1Go1WJaFb775BslkUmp2sYzMYDBAPB7Hhx9+iM3NTTx48ODQ83g8Hty5cwdXrlzBe++9h1u3biEajaJer2N1dRVPnjzBF198gbW1NSlDc1xhPCwBl67Afxagj2uUljwwHow9iQXVa9CM/zM3Db2GtaFlnksz1lO5mNLr9fDw4UMEAgG8ePHilXZsNLx1ooUW0/CmocqapNFoVF4DMAaOeHz9+zTENLQBiBeLgPRNhZ4UZuES6AL7LcxqtRpSqdRY1vOk69MgjWuNnzHXnPma/q5dWSTGalIfsfAyRYdTHSVk57gyBXwXQDh57DZRTpyDmKvDlDuBHrBPIWtxOBxjTBxjDnQvQhPw2bEOzBDUbl5mCRPw2bGUk8Tj8QiAYz1CFoAmy8aNnrWOmM1sMiV246U3Sv7Wf1vWfiu6drst/TaZNOP1ejEYDFAul5HP57G+vo719fVD70uf2+51O2tSlxk5ipjPyDwfO5KwwLbL5ZKYQv0M2dWl0WiIYrV7fjyfy+VCLBbD7OwsUqmUlH+pVCqo1WqoVCqS2XwcMS1kM2nnLKxlLXbzSr9+kDvNjtG3+5wdeDXny5Tdu/hC997GxoYUNdct54Bxo9BOzLlmWZa4LnXdVjO7/iC9M0lMluuobJfe1zgvT6Isi94r7Rg+7jkAbM930DiY93wYw2d+1jTwqBOpU00j1O47pylTwHfBhRNNg7RJAagHHUMHiZpuArI5evLZuZAP2rzMTZeTWh/ndcAeAFQqFTx69Eg6QdCii0QiiMfjAvgYKD8c7tXEI1O6s7MjrCNZDwIaXeNOt63jNTPOkB0bBoMBgsEgrly5gm63i7W1NbTbbTx48AC//vWvpXah3djr3/oZ6HhBrRhZDoesEdlWXczaTuhOZdcWFnVmKza7ZxePxxEKhaQoajKZHLPK/X4/gsEg+v0+bt26JZtVPp8XFsGyLEQiEaTTaUQiEXz44Ye4desWZmdnpWXU5uYmnjx5gpWVlbEscTuQdBTRGw+tZP0MySKftsWsr4c/eo6bzLG+bjtFb7eh2rH3FB03dNYgdypvJqPRXrvKnZ0duN1u/OhHP4LX68W77747lsTF+WwaoZMYYxr1Wg/r+WfG8ZneF23Um3JUQKLXs9ZpPN+k4x9VuLbZNvGgz+ni61oXcLzs4hq1vtYg0nxP/62Zdo4z+x/ncjmsra2hXq9Lj/fRaCQVGjjm7HjUbrclyfE0ZAr4LoEcxACehJDNoxzFApokb7qB20mlUsHXX38tZUz6/T5mZmbw4YcfirvW4/FIZXnWc8tms2OMIpNinE6nMIU6UYXHJ6vV7/eRzWYlm2ow2Gsfd//+fSwvLyObzeLBgwfY3t7GF198gV/84hcTEyrsNmAT7Jmgj8ch2KOCOywukG6dcDiM2dlZ3LhxA06nE9VqVRSQmaHm8/kE8EUiEaRSKVFYg8EA0WgUiUQCDocDd+/ehdfrxcrKiigwAuj5+Xm89957iMfj+OSTT3D79m3JkOt0OlhbW8ODBw/GiixPYsUOEjvQqgu66rVCJX8WYmfw2LHKdmyAOUfsQCDFNNY04DMNiKlcTGHc7/b2Nq5du4a//Mu/lA402iDVLnpgPDyAz1eDGLJami3UgI8/fI+GPg1m9my3Axx2gM9ujpmAT8cda8B3HEaLXhczi9kUdlbSPdM1eDNdtJPu0TTazdfMuN3RaCRZxNlsFi9fvkSn05GKFdSvGvDR4ObnTkumgG8qr8hxNouT3Gi0NcdOFaPRCGtrawiHw/D7/fD7/RgMBrKoAUhrIgIA7Q63o/g1AONvuoe1O7ter2NtbQ3ZbBbb29vY2dmRfsMHAQs7AK0ZIO2q12yqqfgPc9eR4YvH40gmk0in09KthYDPjGXRvXQZW6M/x/M5nU7E43HMzMyMsZ7coBYWFjA7Oyv9jXWBbFaYLxaL0n/5JMV04Zog+izAjz7/QSz4JLftQYDPPMZh55/KxRey0j6fT7rQ+P3+V1y6/Ntk6EzwoUH+JBeu3fwgANR1Uc0+twfNOf1bn1PrN1OXHEdGo71KC/V6HaFQSF7XPd/tPFIa7GodqF+fdM8HgT7uDZpNNQGtadhrhpLPqtvtSjkZxn+fhkwB31QuvPR6PTx//hw7OzvweDz46U9/CrfbjXg8jlgshkgkgtu3byMSiSAYDCKZTEqAMONauCjtmDi+rpmZTCaDubk5icHo9/v44osv8Hd/93eoVCp4/vy5NOk+iHnVLdhM1wDL4LC8jNfrle8x2459ir1eL/r9/oHxL16vFzdv3sT169exuLgoLiJd0Nu0+LWyZ1eX4XAoJR0sy0K73YbL5cIHH3yAO3fuSK/l0Wi/32cikcDCwgJ8Ph9mZmYQiURQr9exu7uLcrmMR48e4cGDB+h0OsLwnRQ4YYY7f/g8z5LhA/DKRmO+ZoJ2E5ya3z3qJkTmZAr2LofQMEun05ifn8etW7cwPz8/5mJlYt1hhoAdGLHTR5pN5pogm8ee7TzHUYCZaWDZGbQ0uqnXyHodh4Hu9/vY3d3Fs2fPYFkW7t69C8uyUCwW0e12sbOzI4BJF/mn8czMZY6Jec+HhVLY/Z6UgMeuSzoenOFClUpFQpQcDgdyuRx+85vfSD/l05Ip4JvKhZfRaK8dV6VSkdcsy0I6nUYikUAmk8Hs7Cy8Xi+CwSB8Ph88Hg+i0agscIKuZrMpoMAutpAL1+fzCePFkiXFYhEPHjxAo9E4tP+rvk47JcrzUOnqGDQqCL5HoHdYsDNduul0GjMzM5ibm5PYRwJZu3ggHpPubGCfJbUsSwBFOp0GsFdfL5FIjAE+uoN1ra16vS6lWIrFom3dvTdR/OZGaFrQdq7ysxS7523n3jWZSfPzehM5iK2ZsnuXT9heMhgMIhqNIhaLoV6vS+a6+XyPwgybr+lj6DqVTKjT3gNdnNhO7NatdtXaGdHau8JrP+56pLu0Uqmg2WzKcel1IKjk66aeY/gHMM7EHQT4DgN+GvBxnbL0mV7v/BxDqFiP0OFwoNVqYXd3F/l8Hq1W643H5zCZAr6pXErhwqfl9Jvf/EYyQkOhkLgyqVgDgQCAfXDANnGafSP4syxLLMNOp4NSqYRWq4WvvvoKxWLxSOVR9HVqIegE9rqH1Go1OBwOiTXRoJMtglqtlrQj032QTel0Onjy5IkwkM+fP4fX65WWdH6/H9FoFG63G36/XzKbWd+Qbfv0deuEALKj7CNsWftZd2RS+/2+9LFcWVnBT3/6U+Tzeayuro6xXQeN0euIZVmSbBKPxxGJRMaU+lkJ2QRgHyzrZ2nnlqcbyI5hmAQadWKKZlB0WYdpL92LLcPhfh2+WCyG9fX1sbVhgghtAOpQj8PYOJMdNEtmscd6vV7Hy5cvUa/XxwCa3XH0a5PWs35fM3w7OzvIZrNStP5NxLIsBINBWev0kOjXuf6q1Sq2t7cRDofx4sWLV8rScAzp5tXrdJJBZYaJaADN5DiGILVaLayurr6SOKbHjbHkjCM/7ZJKU8A3lUsrjUYDzWZTSqLYxWxYloVEIiHxbMyCC4fDSKVSkhjBxczFy4Wdz+fx9ddfo1aryWJ+HTbFzt1Sr9fRarWkrt9oNJLXmF1K65g9d1mouNFoTDx3q9XCgwcP4HA44Pf7JWN3fn5e4oSuX7+OQCCAZDKJaDQKr9cr5VhYs4qbit5sBoOBFLz2+XySyMHEF5bLoVulXC7jyy+/xN/93d8hm82O1Z4y3Z2mTHKrmO8B+6zm7Ows0um0ZCazYflZAB8CX55TF6gms2rXTcUEhTyWHSAmODRZGIJ0llZiJuAU8F1cGQ6HyOVyqNfr8Pl8ePbsGdrttsS/kgUiYNKdj2hYaHboTZ41r6FcLmNtbQ1///d/j42NDYmLBo5Wr49AVMfFmcwi18Pu7i5yuZwUe38ToTchk8kgmUxKn+5IJAIAyGQykglbLpfRaDTgdDrx9ddfo9VqjbXj1Ear7kRlAj4z/k7vD4zHGwwGUnqq0Whgc3MTjUYDjx8/ti2szTXPKgj0ihzGtB5XpoBvKpdW9KKcFKulaXz2O2X3DCpQzfBpwEdLvFqtvnFXCDulSZdDq9VCPp9Ht9tFoVBApVJ5BfARTFWrVbTb7Vcab5vnIrDi2NDFSmGyC4OcvV4vGo0G3G631MnTmwzZBHYa0Zl8muGjm4WAjx01arXaqbooeM+sk1ipVKQUzVm5ObWbxq6t2iR3nN1GfRhItQPLpquIIQtTubjCAvj1eh3b29sAIOuP72sdQCaeOowgX/fhnhRGYCfD4RC7u7vY3d3F9vY28vk8CoUCfD6fGC4my2Uem7/teoHz8wRRAFAsFsUV+6axtaPRXkkTXdOT8Y6WZYkOBfb3BBrMbJFpAj4SAdRndoCPe4IJ+HQ1iFqtJvoul8tNbBva6XQE8LpcLtHvLCFzWtU4gCngm8pbLqPRXksvAjztHqFLd1Is1Gi014LsIJB1lPPbuXWHwyFWV1fxD//wD+I61okjwKudNlgo+SgKgZ8l88OEl0ePHr0SzKwzmKn86PoNBoPSu9guLodu3lKphO3tbWnZRqVmdhHgmBw2ZkeVXq8nda64WTocDjx//vyVpvGnJcPhEIVCAaurq2NlNMjKAYezlgfFevIzdvOI/Z1Z6qNaraJcLh9rzk7ldIV6pd/v49mzZ/jv//2/S89XgiNTBzCJi724o9EonE6nfE+HVVA0uDHjzIbDIV68eIHV1VXUajXp+EFwqa/1IJk0b/ldXj8AMUYIdt9Eut0uHj58iK2tLSwsLGB9fR2BQEDiCJ8/f45SqSRjOBqNsLOzg3/6p39CIBCwjV22i/Uz78PcI/TY8Dw6UYzGca1WG9PXo9EIq6ur+PGPf4xAICBx5k+ePMG3334roPG0ZAr4pvLWi668fhGEiqJcLr+xa+Mw0Zmfr7v5e71eJJNJ+Hw+RKNRRKPRseLVuvdwq9VCr9eTOD0q9INA6UmCsOFwKADH4XAgFovB6XSiWCyeqqWsZTTaiyctlUpS5sYs/cDP2ckkd6529fJvO+OEm0ytVkOxWJQaiVO5uMJ4y2KxiGKxeOjnCfjcbjfC4bC0QDTriur5wzADHd9J1n4wGODJkyd49uyZGGlnmdH+ptLv97Gzs4NCoYBqtYrRaCQei36/P5b0wPVRr9fx6NGjc77yfSmVSnj69Kl0hfJ4PFhfX0c2mxWW77RkCvimMpWpjAktVLoq2u32mBXMTYNMBcEGmabTZNUYE2eysACQz+fx7NkzOBwOsfLPQobDIYrFIl6+fCm11egWsiu3QjGD6vVv/b5dwLcGfGQ36vU66vX6WE3KqbwdQmA/HA6FMXM6nZJoYcfw6dfMTP3RaIRcLod2u31m3WhOQjgOwF7S28bGBtxut6yBarV64ed+o9HA1taW6AqXy4VCoYBWqzVWQus0xBod4UlXq1VpzDyVqUzl7ZdJrg870TGP57Fx8Bo1C3lY66WTFm66Z5UoYjfOZrb5VN4uMV2Q/Pug9XnQXNR1Ki8L4KOY2bUAxhjvi3w/OuyDz48M7HHijiuViiSvTJIpwzeVqUzlFTkrd+hJCJUks6zPQ3QNw6lM5TREs7uXaX2ehtCouYyGDWNvz0NOL/93KlOZylSmMpWpTGUqF0KmgG8qU5nKVKYylalM5S2XS+fStSxL6hCx5IbOwGQ2k5mxRJeLDnY+6zifqVxs0YU32duW80QXvtUxNPV6/VTT6M9beM9erxfz8/MIBoPiSun1eshms6jX66/tZrKsvX7FqVRqbDyz2Sx2d3cvdAzOVKYylalcRrlUgI8BjtFoFHNzcxgMBlhbW5P6WywZMTs7i2QyOZaRxIKILJ44GAyktdVU3n45rDQGsFfGIBQKCbhJpVLSfmgwGEjtOofDIYU6V1ZW0Gg03tqYGtbsy2Qy+LM/+zMsLy+PFTn+yU9+gpWVFQwGg9eKS3E6nXj33Xfxve99T+qFjUYj/OxnP0M+n58aYlOZylSmcsJyaQCfbuPERu29Xg/lcnms3ZXH44HP55P2MGYfUAK+4XAohSB1S62pfDeFxgJ7zIZCIUSjUenYQMDn8XikP6RlWVIbiyUTLuMc0sWozRZgXq8XXq8X8XgcmUwGMzMzAvi8Xi8SiQRKpZIwfjpjVzPsugUUO4Akk0nMzs6OAb5UKoV4PC7rUv9odl7XGZzKVL7rojPU7TwRk8TUV9R1Ztehy6jXpvKqXHjAx04A4XAY9+7dQyqVwq1bt/Dhhx+i1+vh4cOH2NnZQb1el42Hlcf1JqSbLHMRkOnTlcan8nbKQUVv2V93dnYW9+7dQzAYRCKRQDQalfZHg8FAwA+ND2Av44oAKJfLnWobsdMQr9eLWCwGr9eLa9eu4erVq/B6vYhEImPGUzAYxM2bNxGLxaT9W6fTwbVr11Aul6XmF4vJNhqNsXIpsVgMoVBIavxZloWrV69iaWlpDAjOzc3hT/7kT9BqtbCzsyO9kre2toRt7Xa70rrtMmbpTWUqJy2pVEr6ZM/MzCAajSIQCCCRSMDlcklNTW3M6SxXEiOlUgmFQgH1eh3Pnz+XfrSVSmUK+t4CuRSAz+12IxKJ4N1338Xy8jI+/PBD/PEf/zF6vR7m5uawsbGBfD6PtbU1tNtt6dfX6/Wkr6TP5xOGkCwNW9nkcjlsbW1NAd93VNxut3SXuH37tihLn88nPWeHw6Et4GN3g2q1ikqlcukAn9vtFjB27949fPLJJwgGg5ibm4Pf7xdDSffX5YYxGo3w/vvvy/pifN/a2hry+bz0q3Q6nVhYWEA6nUa320W1Wh1jTDXDfu/ePfj9fjQaDTx69AjFYhEvXrzAN998I6C60WjA4XCgUChMAd9UpgIgFovhzp07iMfjuH37Nubm5hCPx3HlyhV4PB7xZukesuxApEmQtbU1rK6uSo9vdoxhV4upXG65kIDP6/UilUpJcgZbPHk8HvR6PZRKJbx8+RK9Xk8aPxeLRZTLZXS7XekSYCZp0AVEa4cTny46r9cr7MXbJOy/6Ha7ZZPVonu2VioVqdR/kdqRnbSwZ6zL5RKAF4lERPFpFwndh+w1C2AsBIB9edmCrNPpoNVqXQoF6XQ6EQwGEYlEkEwmMTc3J+CN90twpyvyT+o3ORwOJb6PDLvL5UIsFkMmkxn7nmbgOZ6cd8PhEH6/X+J1e70e2u02EomEGGbUAVOZyndJGALBWONIJILl5WXcuXMH4XAYc3NzSCQSCAaDY/qM+x2NNnbL4d8AEIlEMDMzA5/Ph3v37mFubg6FQgE7OzvodDqSpNXr9STcZSqXRy4k4IvFYvijP/ojzMzMIBwOIxqNykZSq9Xw6NEjrK+vo9frYXNzE9VqFdVqFYVCAf1+/5V4IQBjII4MBV2/7H/Z7/fRaDQuLdM3KTHB7/fjxo0biEQiSCQSSKfTAmSAffDTbDbx29/+Ftvb22g0GiiXy29tnJTf70c6nYbX68Xs7Cyi0ShisZg0LyeI42d10dN+vy8M8nA4lKbmTqcT3W4XOzs7WF9fvxTsk8/nw+zsLFKpFO7evYtPPvkEwF7/XQI8zgG9hnRjdP72er1ot9vY3t7G8+fPUa/XkcvlBFQvLy8LeGbWvI6RBCDAbjQaIZFIIB6PY3FxER9//PFYVvC//uu/4sGDB5eOUZ3KVF5XTL3u9/sRj8eRTqfxt3/7t7h37x6i0SgymYwYaQRzem3p7g4AxuJ1adgtLCxIQuTHH3+Mfr+PUqmEbDaLYrGIf/3Xf8XTp09RLpexs7Pz1pEjb7tcOMBHIJZIJMYAX6fTEeakXq/Lhlsul6WHJF1vBHI6XkG3LNH9ODX483g80jf0slkumjnh31z4gUBAxjEWiyEWi42NCRtvk0kl4G21WtJ+57IDPz0XdGkfui2DwaC4a6kATSbUTBTQoMflciEQCMDj8cDv90sPS7vepxdJeK9ut1tYTgZpkwk3gZ95D5oFHQ6HYv23Wi3UajW4XC4JrZj0Y4JjXSKHa5MAm03HDwtIn8pU3kYhQRGLxbC4uIibN28KG85YPK5fGlR2PZoBjBlsZAEJDOPxOIA91i8UCiEcDiOVSiGbzaLT6ZxJC8GpnKxcKMDHOLtYLIZEIoFEIoF+v49CoTA2ebmpdLtdNJtNqcXHTD+7bEOCQGAf8AGQQFa6sdrt9nkOwWuJZli42TLT1Ov14sMPP8S9e/cAQJoy1+t1fPvtt5KtPBqNEAwGEQ6H4fV68f3vfx/hcBjZbBYrKyuo1Wp4+PAhNjY25JzA5eq9SCDDeDUmIcRiMTgcDrRaLezu7sLpdCIajSISiWBpaQmzs7My13S2GpMGOp2OxO2NRiP4/X5RmLFYDP1+H91uF/1+X5KK9GsXQRqNBp49e4Z8Po9PPvkE1WoVwD7DR9EljrSiJwjkWuz3+8Igt1otLC0tSdIG16kOINfH1785zpqJrtfr+Prrr7GxsYGnT59O3blT+U6IqWtv3ryJv/iLv0AikcDi4iIcDgf6/T5qtZow7S6XSwCcw+EYM8ZYRsrn88Hn873SM5ufbbfbEnbh8/mQTCbxR3/0R7h9+zZ+85vfYHt7e7oGL5lcGMBH1iUUCiESiSAejyMejyOXy42VfSBQ4cbZarXQbDYBQGhpTnINiAj4TDaBm4nP55OM3csiOgCXSoExWaFQCJ9//jn+w3/4D6hWq/jd736HYrGIYrGIJ0+ejDF3sVgMyWQSmUwGf/3Xf40PP/wQ6+vrePjwIXK5HPL5vAC+yyh+vx+pVAp+vx9Xr15FLBaDx+NBIBBAr9fD48ePkcvlkEgkEA6HkUwmsbS0hOXlZfT7fbRarbHG1t1uF+VyGa1WC8+ePRNrNx6PIxAIIBaLYWlpSQA2Y1+63a4AqYsC+JrNpgRpM9udG4hmMAH7RuyaDeT7yWQSkUhkrDZfNBpFs9mUe2cha3Ozoei4Pl5HvV7HkydP8M0332BlZWW62UzlOyeWZeHatWv4q7/6K4TDYfEkUNeQqdN7oQaMw+FQDC96f/Q+qXtSNxoNdDodiRf0er347LPPZF3/+Mc/vrThT99VuTCADxgHMNwY6FIaDocymQn+yJSQLbALUOVx+b5ZH4yf93g86Pf7rwCoiy68To5NLBbDO++8I/T+s2fPUKvVsL6+jnK5jEKhIBsvQUy9XpdsyidPnsCyLAHRHo8H8Xgcs7Oz6HQ6UoT4ojN97JZBVi8Wi8Hn80mMHhtYk22i9dtqtdBqtdDtdsdqwWnww7FyOp0YDodotVpwOBxot9tjCpdzjYo1mUyOuUJ4zvMUAisCUDIDVPzmWjFdQ6bbGhh3x+o1yXHW37H7PoXXoTewarWK3d1dVKvVSx9mMJWpHCbUMx6PB+l0GoFAAIuLi/D7/fB4PLK+9HrS+x/XF3WVrllrrlPuu7runrn+XS6XxOQuLi7C5/OhVCrJfjGViy0XCvBxYtPNxu4YvV4PDocDPp8PTqcT7XYb1WpV6p+12+2xTZhZtzruiK9zUgP7QJATmJP3sgg3a8uyxI377rvv4j//5/+M2dlZ/O///b/xX/7Lf5FyFoyroguSi7parSKbzeLly5d4+fIlAoEA3nnnHfzxH/8xgsGg1D/c2NjAV199JWUxtEV40cTr9WJ5eRnRaFSyTy3LEiDX7XbF0mUHlmazid3dXfR6PaTTaUSj0TGFx4Bo/dNut5HL5QBA3LqMh6Qi9Xg8mJmZwfz8PLrdLp4+fYrd3V20Wi3JZj0v0eERBKbMNNbJFRQ7AKjXFdl000VrgludWGWKjkEFIOEWxWIRKysr+PLLL9HpdM4dLE9lKqctnPszMzP467/+a1y/fh1XrlxBLBaTWrPaYNLxx5o5N2OIh8OhxAJqjxiTFrmvEFCSDPF6vXC73bh58yb+6q/+CrlcDj/5yU/w5MmT8xmgqbyWXCjAR0tes3jalcb3AbzCzpgxRrRotKVi5zrieXV25mUJRtWMiMvlgs/nQyKRwM2bNzE/P48f//jHePz4sSS6HMWNWCwWAezFvXW7XXFROhwONJtNiYME7F18F0WcTidCoZCwe5FIBKPRCJVKRUIDWAKEc2wwGIwZEZ1OZ8z65dwzM3bptuTnOf9owDBcIRwOo9frIRQKCdC7CGPIMAlgnynmc7ZztWqxCwY3g8DpBtffnbQWzfc5llyX9XodhULheDc8lbdezISei5gwdRRhMlUsFsO1a9fEe6OTwjQTr9eNXscAJL6dY6Nra+r1rvdNzSByD3Y6nQiHw1hcXJQi7VznF9H4n8q+XBjA53A4MDc3h3feeUcKuLIsCNuk0Q3JIpL9fl+SFFhGQ7OEelPRlg6BIf8HIBP2omT+mRviQQrL4/Hgk08+wQcffIBYLIZHjx7h6dOneP78ubBYOp7DXJRmwC4AbG5u4t/+7d8Qi8Xw0Ucf4b333oPT6cTPf/5zuR5+9iK5wAk02A4slUrB6XSiUqmI+1W7NZilzBZpTA5qNpvSYYNlQhjkXK/XJaGl3+/jo48+wmg0EuWps5oJBqlEh8OhFDYuFAqSyHHeMhqNkMvl8OTJE+k04vF4BAiayRp2Ys4hsyXa6wrnJdlBtq+bylQOknQ6jYWFhbGwnkKhgPX19Qux1o4qDocDt2/fxueff45kMonFxcUxBl4bVXqtVatVtFotMTK1e9fr9SKdTqPX68l7g8FAEq5qtZokbuk9k8en/qQXaGFhQZKztre38f/9f//f1L17geVCAb6FhQV8/PHHAvZKpZKUzKDLrd/vC/syGAzEtcZN23QVaQBnsn3A/kZMC+ciAD5tpelNb5Lrz+Px4Hvf+x7+9m//Ftvb2/jZz36GXC6Hx48fS1Atx0m7ACg61oqb88bGBra3t5HJZPCDH/wAP/jBD1Cv1+Hz+cY+p6+Xr5+nkK0l2zkzM4NqtYpisTgWD6rjW8jCEfC12200Gg0JGyAoCwQC8Pv9KBaL+PLLL1EqlZBMJvHpp59iOByiXq+j2+2iVquhXC6PsdS6qn04HEYkEgGwV9m+0+mc65gBe+sgm83i0aNHSCaTCIfDCAaDAo6Bo4E+fs6cZ4cxeub39dwnQ8iYyqlM5SCZmZnBxx9/LHU0AeDJkyeXrm6cw+HA3bt38bd/+7fS+cflcmE0GgngY2UAGkPMrh0Oh1J5gQmLNIRnZmZE7zkcDvR6PdF1LHHmcDgQDAYlFpnjRq9EIBDA7Ows+v0+IpEIPvjgA3z55Zd49uzZFPBdYDl3wMcYJ2YB6YKRnMDcqLlpMoED2LdCGF9Ft6926erAdDMYVVPXR93QzkrMoHg7IXPn8/mknEq5XJYWVCaTOWnzNs/BsafrnGCF9ZjIsh5FzpIB5PPX7lcz8YLKjyCf8Z5er1fANeMdycgRaPD1arWKUqkEn88ndQ3J8HW7XUkC0skxg8FgLOlDu4vPGyiPRiPUajVsb2/bumCPKkcFhObnzXOZoO91AONUvttCdp9xtEz2WVpaknAN6i67hCHzNXqR9Lrt9/uoVqtS7uokgaTeE4PBoMQF6/hzXht1CoAxRpO6hbrPTOAAXnXfAhBjmYYz91S7WEAaz2QS/X7/hSBMpjJZzh3wBQIBzM/PS3snLh7+0Frp9/uoVCpS2oJuXl1viBt9LBZDIBCQ9HFWC2dRZc2asTOHDsg/L9Ebmlnk1m7zZQwGCyYnk0k8e/YMv//97yU7l98zuyTo3wdl3Q4GA3GH9Ho93L59G/F4HCsrK9je3p54bXYbtb6n0wI4DEQOBAICXAi86JZloWGfzycJFdFoFNVqFVtbW+h0OigWi3A4HEin07h37x4CgQCePn2KlZUVZLNZPHv2TNoNEXCnUqmxTGAyUjx3t9sdi1Pl89Pg8LxkMBjgyZMnaLfbuHXrFu7evYtYLDbG1B2kzO0AmR1AO2hj5d8a7JnJWFPQN5WDxLIsJJNJvPfeewiFQlKT7ubNm3jvvfek7uTu7u7Y2tTZqTpufDQaIRKJSOwca3iWSiX8/Oc/x9bWFiqVCkql0omxz16vF4uLiwiHw5iZmUEoFILT6ZRmAzpGD4DsYbqmHrAH3ngv9O7oeHW9P9JgDQaDUnBeF1zn+NCl2+l0JNTF7XYjlUohHA5PAd8Fl3MHfC6XC+FwGOFwWBqpa2ZOM3vstsEJbFkWPB7PWI9AdjyIRCLyHVLWduyeTvjQ710UOYgN0QHtHo9H3K2sqTbpOIedx3xdZ5MmEgkAwO7u7oHHswN8Z8FkMYaTwN1045rj5fP5kE6nkU6n4XK5sL29LbX3arWaFACPRqNYX1+X+L5yuYxisTjW25XAr9PpiEVuFj41ExsIZM67DdtoNEKpVMJotFeIm+ymXZLGQYkbh53jdV7jGE1Zvqm8jvj9fglLYGwuOw0xphmAGPzai8TXuDeMRiMkk0ncuHEDqVRK6sRms1k8efJEeo+fpHBPjMfj0tOa7J7OnqXnChj3cOkatBqwmeuK96zLmvl8PoRCIYxGIym8rI+hDWjuxTRa2aloKhdXzh3w6U1Yx5Fpq0KzH7qQpN4QOPl5PI/HI+2yWJQyl8sJq8LjcPFrFuG8xHThut1uzM7OIhwOS1LKYDDA5uYmisUiQqEQUqkUYrEYut0u1tfXkc1mT7RcRbfbxaNHjyR2JJPJIBwOY21tTT5jV2JDg2nTHXCawueuE320+5ouGMbqOZ1OdDodrK6uolQqYW1tTfrhejweVCoV3L17F4PBANVqVYqRMiu61+uhWCzKRuL1el8psMxnSut8NNrPOPd6vTK/zzO+iAxks9kca6nHawWOF6tpx+xp0fOe84SAuF6vo1qtYm1tDY1G401v8VKJZoIZh9XtdlGv1w9kkuyez1Ge2UHhHZdNer0ems2muF6pu0KhEHw+H+7du4elpaUxUGf+TbKBsbtMmCC4cbvd4oE66fJA9DrMzMxIq0MKmTjGHZPsYOwe90QN+vRrDDmxrP0SVcB+MiPLsmimk+fT7RP5A+zXvaXuDQaDEgp0WUXXMjTnBLCPF4g7LsuauRCAz+12j7U+AyCLTS9Cy7JecbmahZq5CNhbcGFhAYPBABsbGxgMBlJLyOVySYFdHlf34D0v0RPH6/Xi1q1bWFpaEtay3W7jpz/9KZrNJmKxGK5evSq9hp8+fYqNjY0jx9YdRTqdDh48eICVlRXcvHkTf/qnfwqXy4WHDx/KOJmlbLSVPGkhnEaSh2VZUibA7/fLvCDwZGweMM78PXv2TABgtVoVho+u3T/8wz/EaDRCoVBApVJBs9mE2+2G3+9Ht9tFNpsFAKyvrwvrzJqRZKBHo/1Aaw34fD6fxEqed/IGE04ajYZY8tq9ahpkR312k8CeCUrMOUGlWi6X8eTJE2xubn5nKvuTLXa5XML0sI3fJMCnWR1tFE8Cc/p1M/TismxgdtLtdlGtViWpz+FwIBKJIJVKwe12Y3l5WdyW2vvA35znjFPW+oyhRh6PR2p5vmm86yTx+Xy4cuUKlpaWkEgkXqkby1ItGoz0+300m02J0TMBn/4+91kCPpfLhWAwKNUMWIuW3yXbSMCj45J5DobIRCIRNBoNKX912UTvaQTV2tXPvwmC+dphHho7QuQ85NwBH4BXLAaNqDnQetOxU2haYbEjBK2SSVYPz0W5CC4jgha/349IJIJ0Oo1MJiMWh8PhEPAXiUSk9ysVmNfrRSqVQrfbleBkPZbmufjbvG9uti6XC6FQSDJUCZZjsRjS6fTYsVk6gywqj033gdmf9TREu0m1lcp7NOeVWXNKGxQsyZLL5eB2u1Eul8Wip5FgVrSnEBRxDMw5zdcvUmwaAShdM7zuN1VWB31uEstnJ9zMyDy+rWJZloC8UCiEeDwuMakMiGdh8JMQu2d7mcSM8SQTGgqFAOzvK3oe6+/Y6UOtA7h+7TZ1uj/ZnvEkw1X0salH9TXqPZFihoxonab1uy5Jpj1nNEZLpRI2NzcBQMqdORyOV8bUbv/VCXOX0bVL4GrWUNXjxfuiF4ngn3uFHdlykdbYuQM+1v5hrJgZvE73G3vEsnQGB1ZbZIyVev78ObrdLpaXlxEIBAT4BQKBVyajac2adY3OSnS8182bN/HRRx8hHo/jk08+wcLCAp49e4Yvv/wSrVYLCwsLmJ+fl56tgUAAV69eRTqdhsPhwH/8j/8RlUoFjx8/FvZKgy3NlnKRMk6EYxMKhZBMJuH1erGwsIBEIoFgMCjdJ77//e/jxo0bqNfr2N7eRrPZxObmJnZ2diT1n+1/PB4PGo0Gvv32WynsfFoWDmM4OU8IsOjW0YWWme2dTqdl8bbbbfT7feRyOZTLZXQ6HfzDP/zDWDmadrstGwvLBmkXHOesHk8AY5ai7pAyGo3OnblyOByYmZnB4uIibty4IX06NSi2A61vIod9VzNNDMfY3d2VbjFvq/h8PrzzzjvIZDK4efMmvve978Hv90tlgi+//BIbGxsTY8bsmNfDnpUGCKfBup+0mNdIwzMcDuPu3btIJBJIJpMC2nS4EJk6JljoLjvUvWTP9B7Az2qQ4/F4cPPmTfh8Pjx79kxqxp6EeDweZDIZLCwsjHX7oT5hpQCSA4wBpl7T3hWTLaeesixLDPROp4N8Po9ut4uf/exn+L//9//C7Xbjxo0biEajuHPnjsQI0uA1izbzuH6/H36//1L1pNcJdEySofBZu1wu8fxYloXZ2Vkkk0kBer1eT5L63nT9nAULeO6Aj8wPB9Qs1KqtGdKselKbNHWv15OCtl6vF/V6XTZVu4LMPIcWsoHH3dheVzjxUqmUKK87d+5gbm4OxWIR9XodrVYLs7OziEajiEajmJubg9/vRzweF0Xl9XpFkVWrVXQ6HTQajVdaZNGaoQtSs5/xeBzz8/MIBAJYWlpCMpkEsA9arl69isXFRRSLRXg8HolvKxQK8Pv9ooSpAEqlElZWVk59DHWMpo5Bm1R2x7IsAbJU7LrIb7/fxzfffIPRaC94Ox6PS7YbW6hx3Om+Zfaanp/A+ObKzYFg+7wtYsvaK7mTyWSQSCReCcA2WXg7mbRW7F6f5Fo0PzMajSR2zZzDb5u4XC5kMhlcvXoV9+/fx5/+6Z8iEAhIIV2utYPkNIH4eYvdPPH7/QLy7t69i/n5+TG9bcZiscgwQyjYk1nHSzLuj6L3G+35SKVSGA6HyOVyJ8risEtQJBIRvax1Fw1T6mq32z3GvJmJFgDEG2FXkqXb7aJSqaDRaODp06f45S9/KfHJmUwGsVgMzWYTHo9HDGa9f+iyMAzPOm999jqi3dKRSASxWGwMd5A0YmyoZVmYn5/H7Oys4JdOpyOhPce9Fi0nvSYvBODTgcis8cbXNHOiF55m9bTLjFZPIBBAKBRCNBqV1jR6U+f59IQFILFZTqcTrVbrxF2Qk+KUPB4PkskkAoEA5ubmEIvF4PV68fLlS2xubuLrr7+WIr0cM8uycPPmTYRCIQHMtFq1+4uAmLEHZPO0kmPMGz8fiUSQTCbh9/sl2JlZWsC+AgEghY3Z+5hBzX6/HzMzM5ibm0Oz2YTL5UKxWJQsYsaMnSRrw/miu4pQQdO9A+yzR1R4nU5HFjzHIBQKveIOYSA4i52ydRsLL/P5cMzpFtFWt+7EQRbtvBXkaLSXpbu6ugqv1zvWoUWXfzgKUNPHPOq5zfACvU7YCzqfz19ahs9c9z6fD4uLi1LXMhaLSTapZe3VjXv27JkYrQR88Xgc/X4f9Xr9O1fglvNEM21sORaLxYSV5trW4R0AJLylVquh2WyOJUoxnMGyLEl+oK7UYEqHBVE3MiP/pIQ6mR4pnRxBne12u0WXmC5+7WLVMWk6rEnPR6fTKUbrvXv30Ol04PF4cP36dcRiMczPz48ZzHrPNatqXEbxer0IhUJj1R00E0rP0Gg0EkOYIJkeJa/Xi1gshng8LsBwEnbQxgjL4Oj5w8RC7rcn6Wk8d8DX7XZRKpWEKk0mk2i326jVagL4aI0QSXMxAuPtl7i5M6CVnRaCwSAKhQIajQZarRby+fwYa6iL9Ho8HkmOoDVzUsLFohcHFU04HMadO3eQSCRw69YtzM7Ootvt4re//S22t7exsrKChw8fot/vo1wuIxaLjdXfY+A/y4k0m03ZHKn4gL3YA9ZL4thRcVmWJSAonU5jcXERfr9fmDqCGY4zQVU2m8XOzg7y+TxqtZrEgUUiEdy8eRMffvghRqMRPv30U7Tbbfz2t7/FT37yE1QqFaysrJw44KOFSZaO82U0GkkpAQJ/y7LQarXgcDiQSCSQyWTg8XiQTqfR7Xbh9XoRjUYlfiqXy6HX66HRaGAwGCCTyWBmZgbNZhOPHj1CuVwey+Tj2NHIIGtIly67AZxn/UdgDwBvb28jl8sBgMQrstwCMM62HwRQzTgiil2c02FxZKPRSOZJoVC4cCDnqG5QrceGwyFCoRA+++wzXL16FcvLy3jnnXfQ6XTwxRdfYGNjA/l8Hl9++SUsy5LM8EKhIFn7L1++PPGxuAwuXdPgmJ2dxUcffYRAIIB4PC4MXa/XE11ArxA7NeVyOVSr1bEEPq7zTqcjXXJCodBYaRPqPWDPUA+HwxiNRrLfnJQwhpM9ajU5QeOVISu7u7uo1+tjrmu6X7XxpIGaea0ulwvRaBQA8MMf/hA/+MEPpDSMx+MRF7JmOIHxOn2XDfBpAzMQCCCTyYzNFRIWANBqtUQXck602220Wi3EYjHMzMxIZjXJje3t7UOxg8vlQjqdlrEH9vQwiZNOp3No8uPryrkDPofDIXFenEjmDXKScsMh0NATV09qc2Fw0/L7/a9UKtdKjhYcU+7PItiSqey09KPRqKB+xgfociDa0tQWnC5YbRfDww1aZx/x+9qy0Zu63ZiazCqvQz87rQCYbchj9Xo9xGIxhEIh9Ho9YRv1MzmO6GviMTXDSYuZbhx9bo6hzqTVrlq6cHVQN2NoLMuSjcbtdksAOTvIMIbQjK0xn+N5Cq1KgtM3eR5HiReb9L8duwfsu7DOIunnNMTu2dK6Z2hGJBJBq9WSUIR2u41yuQyHwzHWXYj9T1lyisfiHNdB+XoOm2EwvC7tPeHapcvzIomdsQBAigUzK56fPSiUQsfQ2uk3O+bqoP3oNIAO9y+T0QT2jVo9LvrHBHp2IM/ufDRAORb0dGlDmWI3Lryeo5zvPMT0ItAlHY1GJTFSkzxmkqf+0Y0h2ByCrLJ5/5PmB9csyQg+O+KW08Ag5w74otEo3n33XUSjUcRiMRQKBenp12q1hIEjg8UNWVtaHCS/3y8Ki++xMnoqlUKv10M+n5cq6xxwMlvAngKJRqOSlXmSQkVCsSwLCwsLePfddxEKhbC8vIxIJILZ2VlEIhFhBKiAaXlcv34dt2/fxuzsLOr1+tiGqBkuuh01FR0KhaRyO4EM6Wu6itrtNorFInZ2dhAIBISyZuCzzloLBoO4desWkskkOp2OWDa1Wk3cUXSXBoNBscp5r/l8XixvU6m8rvB5Ms6JAIExMdwwR6ORzDH9PKrVKr7++usxEOz3+9FoNMS9Mzc3J+dwOBzSbFz/JJNJ3LlzRwwZl8slta10nCqAsQr45y0aOOgNx6y3BRwv88zuGdsZb9xQW60WSqUSyuXyhSn1cJCRoo0NDTb0/5yTDDMhU5PL5SSxCdjTR9euXUMmk0EqlcL8/Dw6nY4kC3k8HtFX8XgckUhENujhcCh6lbUlWVKIhjAZQ3pV6vU6/v3f/x2PHj067SE8shw011gKhMyM2fuZ7jFurNogJKvHPuwMr9BsO12+2nDmfpTL5bCzs3OiXTaAfZeuz+cTYMFrACCeg16vh0Ag8EoCo53rlt/Xr2mmXhMHNPjpTSPbx3ml9b82qEkmEDReFNGGDX/8fj+uXLmCSCSCjz76CD/4wQ/QarXwP//n/5S6s/wO9z8AYnyRhMnn85LVXK1WZb8DIOysnbGg3fPEH9z/+Oy5v5gk1XHk3AEfM0wZv8YB0yVFgP3abpxsOt2eIIdIWW9cZFmo1Bjsqq0mDfjoEtb0/UmK+fATiYTE4c3OziIYDCIej4sLVQNdXl8mk8G1a9cQCARknNgj0uv1IpFIyGatA2zpPiZLpS047eZst9toNBool8sCUGhRsvgzF77OyH327Jmcs9VqodFojGV1kfWKRqNIpVKwLGuMqTgJ165mNHhPuqYZFxnHiplXrKlVKpXEneP3+xEIBOS+M5mMlMqIxWJwuVx4+fIlstksms2m/HAj1c3bmThkJj/ooPLzFnPDMIHLSVju5vw/iCHgeflsaBictxw0BpPGyGRDHI690hvs01wul1Gv18fqILZaLfh8PolR41xhnblWq4VAIICZmRn4fD7Mzc1hZmYGw+FQQg7oZmq1Wnj69CkqlcpYshGNtVqthkKhgHw+j2+++eZCAb6DhFm1rKuqGWBtYAH7YROc5/yu1+sV45c/OgFCC/cVAKjValJ0/SRZPs3yaGaWomODTe/MJGbPDLOYxMRpDw0BHUkCvmZX6kaDPrMu63mLNmK5htjSNZPJ4KOPPsJf/MVfoFgs4he/+MUYo25meLOKQ7PZRLVaHYvX473r2PlJOs7Usdx7AYghxxrBJynnBvgIQNhDNxKJSCCkTsyYNHF1jSQ9+fg9UvzMUN3c3MSLFy/EwmVyiOm60JPjtCaty+VCJBKB1+tFMpmUBI3hcCjtbEg3s41Xs9l8JXiX16iDeMnEkQ1kQDEBD+lo7e7hfRMcMf6Mz4iTnRbNYDAQ5kC7RvUzImjXFjeBDpNyWA2fzOwkt83riFZoWsFzMfGeRqORbBC08F0ul1SI5/u8P7rBu92ugDev1yv9Lfk5glqtYPQmwTHQGcQXBfARlBDQMwFHs492G8RBLgs7ZcfvTXJ9mGt9UrjCeYl2i9q9Z7J6ssWJuQABAABJREFUdtJut/HixQv0+33E43FkMhn0ej1Eo1EMBgMpXMvCy/Pz82NZ5FeuXJF5yYBzdt3hfOz1euLhcDqd0rWBgI8Z9D6fD9VqFeVyGeVy+cK5c00hA0aQpssvaRcc2RmueSZgMOzC5XKJC4+G9Wi011oQsO+mwP9ZDWJ7e3usbedJiOnW42uaHdJjocNF7I5FMdeXyarzM+YPz8P7p1eCOluH9dg1UTgLOciFSjzA66KebrfbUmg6n8+jXq8jHA5jfn5eCA6d9Md9hHsrj8l5RbDMPY2gjd/hZzT5QV1r7smcn5q5PolwlnMBfGR26Gqdm5tDIpHAy5cvsbW1JQBFp31rJUrgw4HgZsvge5/PJ1lvDIB88OABfvWrXyESieDatWuIx+MoFAooFouvWE8EPKe1Cfv9fiwvLyMWi+HGjRtYXFwEsEcJN5tNJBIJ+P1+uN1ulEolrK+vCxAkW2eODxW3doEzGYTjTWXFLLRutysKg9/hBh8IBCT5Yjjca5pdKBTw5MkTDAYDfPrpp1haWoLL5cKLFy/GQAtrK1qWNVaiRANHHThNN1S1Wj2R8eWiIpB0Op0SZ6HjI+myv3LlClKplChuurSr1aq4Y51OJ3Z3d2VM2+02QqEQisWiMITM9uKz4zzinCLQYx1JAnUNCM9TNCAnAGDgNmDPXulNwW69TFpDR2ELqSDp7j/pjLXjyCRwCuBI11itVvHTn/4UgUAA7733Hv7gD/4AXq8Xi4uLWFpawurqKsrlMjweD65evYr3339fMnVZLoMeD24ooVAIwWBQ6vS1220Bkwxh8Pl84najnoxEItje3sbGxgay2eyFa19nbuB0X7NcBll1bszavZjJZCQhjUxNKBRCq9VCvV5HPp+XBA+HY68jx5UrV+Dz+cYMIOpfXk+r1cLKygq+/vrrAzMy30QY106XLhMadWkVHRKiY8D4/Unz0wR7/K3ZfD3u2mULQAxf3f2D18V9iezjWQqfny5FQ2FSigZodJc2Gg2sra3h6dOnGI32Wod++OGHqFQqkqDHtaLb6AUCATEseK8sHTUajaSDUqPRELZdh2UxrKrX68leyWehx5HZ0yc1x84N8NG9SKTLQePi4+cmUdRmQK0OuAf2e+5ysVQqFRQKBUHQB8UZnDbbQoDGat0EA8CrlDuLJps19DS40jEbpttIF1fW5UG06HPq2EidpEFwzZgCZrialiH/ZgKDWQRUAz8zjvKkx12Pi1YEHCcuXq3UWGBZB0wTnAGQeCAaF51OxzbQV1+DZvp4Pp2BflGSNija9ayVPsUO5JjvHVX0nLU7Hq/F7IpynmKGjHADNIGeLvthymAwELdso9GQtUB9wHALDV76/b6cj8w93Utk7pi9STHdWQQDvDZ25Gk0GqhWq6jVaheW4aOOoGeIzKZeT1qXUe9pg4XMPIAxoKe9RDpbU+soU49RD55G6S475n+SvrVbc3YstLm3vI5oRp5jYZfMYOq6sxZ9Xh3GROObv4F9A5deNBrg0Wh0rMewPjafiw4P4vHI6JFw0Iw8PRTUEXbPwHztNPaGcwF8DocD8XhcmD26MhkrpqlhnUFlKipNsZuAYjAYYHd3F7/4xS/Q7/fx8OFDrK+vywSIRCIoFou2i/W0NxZaHIlEQiwFWpf9fl9chrQKODa8Jt5fs9nE+vo6hsOhMHJ+vx/JZFJYpUgkMubitgOHOu6NjClbOXERu1wuNJtNvHjxAq1WC/F4HA6HA+VyWYo7cyz7/b7EN7Cem643xxgKgkEGVp/kmOvkFR0fwfOwXmG/38fa2hqKxSKCwSDm5+dhWXv9I4vFItrtNgqFgtyDw7FXg2lzc1PYP/bf5ZxkrIdlWcKYaiVBwHtSSRAnLQzSjkajYzXGTMOA46hdaZSDXLYUvq9dZtxIgP3WT1wDmmU5KzGv3+l0IpFISJHqO3fuwOv1SmcWsjOj0QgrKytYW1uT+WeyJzTknM69YuvhcFiK7dZqNSQSCViWhUKhgEePHonlT/CngbB2SdbrdSlhE41GhWXY2tpCLpdDs9kUVoGM9+rqKn7/+9+jVqudSAHZ44qeGxw3JpCl02l8/vnnyGQyUkaJHgt6KQDIWmVsMOck2TPWZ6VOGI1Gwn5qBsxMqCJLs7S0hG63i+3tbbx8+fLE5qZ26VJ/aXcu152ZAGau00n6lHuAXV1N7SIG9vcaGri6JAzPp0kCViU4a4+FWRrG6XTi7t27uHPnjnRXIcA3ry2bzeLf//3fEQgEcOPGDdy4cQNOpxM7OztiDLGOLLtwUJ9Tl49GIzFCuN6Hw6HMr1arhbW1NdRqNfR6PdTrdSnlwooVnKcEmyytdpKejXNj+KgwI5GIbUFfonMNRsjUEFxQAQMYOwYVYKlUklZEKysryGazSKVSUgqFsQjautPA8bSEE4c0MxeaThDQ4NbMTCSordfr2NjYkFIn4XBYfmjJsO0XXR5UaJrF0cqVFitjATXg7nQ62NzcRK1Ww+zsrCSNMI6NCm8wGEhXBN0uz4xh0F1TTsNKpvHAJuGcP9pNwxiLQqGAK1eu4J133hGXhM/nQ7lcRrFYHGMke70ecrmcMMisUcXz0gXJuanHUTMsGtxcJMCnGWg7V48GfCbzbPdZO7FjK3SMKucm5z+f01mLeU8Oh0OSjm7duoU//f93w1hZWREjgKEEzIydVC5J956mazUWi0n3iHA4LHU319bWEIvFsLCwIMaTTgDSmwwDyuv1ulQ7YPztzs4OcrkcNjc3x9bc7u4uVlZWxhLlzktMbw51M+uOzszM4IMPPsDS0pLMHRpcupAyXWY6xs/hcEgheQIYzdCaxW4dDscriSCj0V55p5mZGdmo19bWThzw2ZVl0frDjlU2r9OO6bNjNfV71JP6M9RnrDyg90rqCM2omiD5uONx2Jw092yHw4Hl5WX80R/9EarVKn7/+9+jXC7begtLpRK2trakBu7CwoIUVQYgrlzu2QR6AGR+MVQgEAiMJTVy76zVatjd3UWtVhNWnmxzNBqVeHLt/aL3SDODx5VzS9rQGyCwH/diJkxowMfNWrsmtFIwN6HRaCSASscUcOHYuds0wDmtTdjOpavdEWTqdG0pLUwyYKcHBn5HIhEp2EnAQheQGeOiWRkN+LQLgz88Xzqdxr1799BoNHDt2jXMzMxIGReznIGudcVMMq0YdPKE7m97HDHZGHNxM/YnlUqhUqmMJVJY1l4B5lwuJ11FaHmxpAtd4nQp8X64QXBT573rmEv9o4GnqXwugpguJc12TFp/dsewc1lM+pxek/xfj+N5gRDzHsmKxeNxKTNkWXuuWMYNM/M2lUohnU5L/CsteBNEVqtVvHz5UuLSotEowuEw5ubmhP3O5/MCAshAuVwudDodbG1tSekmZg2ur6+LscVC7E+fPkWxWBQjRrNDjDM6T7Cn5xkwzsiRBV1cXEQmkxEwpwEvMN4XVZMB/AzDMPhZneGqvSo6pMGchwR8iUQC/X4fu7u7J7J+9To4yOXHPc5k+Oye3WFsn7538zt6T9JJdZMMOhILJ520cdC1631bG88Mk6J3TMf0V6vVMe8L96PhcIjNzU04HA4Ui0XEYjEEg0G5ZzLs1E2WZUkBZhp4WsiiMgGOBkE4HJY4fRZe1j2R+VxN7+VJyLnG8DHmRC9G0tj80UGpmhUhWDA3Iz5k1ohjg2OyZxrMaNpc09PM4DmtTdjtdiOZTGJ2dlbcQ9oiisViSCaTkiWphUkODEYmm5BKpYQxjMVisCwLpVIJu7u7wh6a2bRmPAHHlpmrjHkgo+Hz+TA/P4/BYIBwOIxAIIBcLicxboyN0e4lbVFTCXBT1Cnux2UW7FzVGrjwnLdu3cL169elqwHZuX6/j3w+j9/97nfwer24deuWdBohrc86ZaFQCDMzMwgEAtje3hbanZYg3Y8EtcyGZLkfALKoLyLDp11KFNMYoELVNcDs3Livcz4abWT4dKb3eYmpbMns3LhxA8lkUsB7PB5HOByWDjMAJJyhWCyKe0azo9ysV1dX8eMf/xizs7OYm5vDtWvXsLS0BIfDgXq9jsePH+Ply5cAgE8//VSMPALBX/7yl9jc3MTOzg6y2awwDIzrY+IVy9ow9kzLabDsRxU79yn3BHpjfD4f3nvvPXz66aeim+r1+li2qAbE1Hej0X7ICIkAlonSRg1/k/k340Z10WoCm9u3b2NpaQnFYvFEAI7ekzQRodcV1wYBBPdEHaOsjevDmCET0GnRDCPvn4y0nXeChjBb3J22aCORWILPkt67QqEAj8eD5eVlOBwOPHz4ECsrKxJWRqBFYPezn/0Mw+FQEqVYRcTn80myYbfbRSgUkq4s1WpV+n0zzpZlu1jqq9VqiRt8cXERn376qZRl8ng8ssdQX5BI0bjnJOTcGD472t583Zzkdu/p49Ei0WyLXjwUTUVPCow9zcBTTlC/3y9dGLTS0/WV7K6BlgaAsQw9unJphWi3OJWhHgO9YDXg0yyOBt1cyLRwOaHtrDrtoiPA5usadAP7yv04YjeX9Os6dpDtzvQztixL2BAyJWbAvK63xU1FW4k8NzdUbjB6/O0SZy4S2DuqHMRE6M+Yote5/pzdutag6Kxlkl5yufZ6Z0YikbH+02RvdV9qsu3tdvvAWM1ms4lsNitlQpg8FIvFJPi7VqtJ9q0GKcAeQ8gSIRsbG+fukj0p4T0y3o5tJO3cmnw2Wm+Z4JGASNdZ43f5P0MI9LHNcAPOfRqyjMM+rth5nOzWCe9FAwFtkNmxdXbHsxO7fVizTHaMoQakOpnhpGSSHtHXSKNeG/gAxBXN8jy665N26fPZl0olNBoNJBIJeL1e6YbDrNpKpSK5BsQXvD6yw/oZMJ6br7P2YyKReKXSBgCpOdrpdMaysi+1S1fT5Hrz0xszJ452K5kZpOZmwEGjZcfNmr50ANJNolqtSnICRS/y09xoWJh3aWkJTqdTXJ86fmLS+aloEomE1ITjfXChcfFrxpQTy1QMJitjAm2tXFmug3S2ZVlCj/M8puiFSEZPx8gwI3E0Go3Fwr2OaBexBrXaPc+NuNlsIp/Po9FoiIKiW5336XDs9c3VDKSODWIcpK65x+O43W40Gg08ffoUsVgMs7OzSCaT8Hq9SKfT8Hq9YsHpGlu6Tth5MS2Ufr+PSqWCYrEo4QWcN3rzNDcTOzA3SezcweZaZqaqLmB9FmJnPLADTiwWw/vvv4/79++PbYg6HpSsZ6fTkVhVOxDLYzebTezu7ooBpevv6Vpc7NHZbreRSCQQiUQQjUYxPz8vsX7HuVde31kBRjsDjbqJxnAqlcL9+/cRjUZx5cqVMSAHjLNZB81RfT4zaxnYZ9y73a7EWTE+S4NJej0cDoe49EOhkOifN2VjeM9M3CEY1UCTxjw9CibrSN1ngj47sGcH7Mz3tAdIgw96gcgSa+Od43MSjCd1gFmTTrPl1PGMYWddSjK9jL9Op9PweDx45513MDs7O6Z/qtWqlNdiMmShUMCLFy8QDocl16BarY55dLg3uN3usURLYI/ddzgcKJVKKBQKcLlc0izh6tWrAiDpGaJ3w+PxIBwOy/263W60223s7u5KGMZx6pGeG8PHIGO7RakZEc1C8W+CQC4KPen5/nA4HDsG32NCAdtqsb+uLsB5EozTQeLxeJBOpzE/Py/XwuvWC90O9FHRxONxaa2jNxA9JlQSmlHjfdmxYOZ57ABfvV4f67XabDbHFKIp2mqlu1O7b2l16ayv1xUCThN0mgwlaymVSqWx62ZNSGbuDof7bZO4mHlcnoegTwNp1l5ija54PI4PP/wQo9ForAMKM5h1mRgC44tQfoRMZ7lclvgSYJwpMUEL5XVAn933KA6HQ+pKasB0FqJ1Ce+R9TtTqRTu3r2Le/fuSR03uk/ZGollVrrdrgS5m8fTwsQfXcibmfycFzSIdnZ20Ol0JJwjHA5jZmYG/X4fL1++fGWzP+p96tfOYv5NYm2ot1hJYWFhAZ9++ql05jF/uBZNNyeNUq3HTbZf3z/BHVvMMbuXDJFO5LIsS+KadVs2OxLidYRxoKwbqI/Fc3q9XvEeaP1hhrNwPM3xNhnDSUwcdb7eOzTgA/ZjI/V37PTwmwpBMOPZGRtbKBTkfV5fJBKRbl3JZFKMJyZqkAC6efMm4vE4BoO94uadTkcSH2kwcI9YXV1FMBhEp9NBPB5HtVrF7u6ugD3eP1lCGgmavKDhTINlfn4e0WhU7qXZbEoPbY5bKBQaYxeZzU+S4Dgu3nMDfCZFrF8H7GvQ2AETO2bK/LxpAenaV3xYZJ1O08LlYtGdLAiozHuyux8KFRYnsQaH5sK3Y1Ls/jfHUf9NBotgkoypBloHWXU8Hq+T7mGWJjkuyNFKnOOpjQB9/kqlgsFgIGUpeB/mczeVqJ4b/J8Lz3xemsFmCYxerzcGbE1lqZ/p62zapyl2Y6LHctI1vg44M+eqfk0Hy5+l2LmtyPx4PB7pSMEsutFoJKCUFjiTfjgHuD60e9CUfr+PXC6HtbU1yUa1rL3sVIIAzVgwPpkbw5swoaZ+OM95R+PK7XZLfHM6nRYdweujLrcDFXrdmzpBl2Ti31yHrVZLjFGWWTLXqNYFmv1ifDDDPt6kjiF1kVkn7qDnYXpn9OtkSnXYxVHXpZ3Xh+NpHkvrThrQxwV8PB/LijEJkYZPv98Xts8kNkgk8Tlz/e3u7o4ZU3oemEl2fJ+96cni0aDTzLRJFvEamDAFQCpnBINBKaSsSRMNoCmc49rA0OVy3lTOFfBx4egJxIdoxn0Brwb1AuNp5LpEhJ4MlmUJYgb26u50Oh1Eo1FEIhFpv3aS6c92omNRmKHbarXGPqNBlh2AooJhFXZgv1YS3bjM9uE4aLCiQYm5metnoRUmrSu6OAleGBjNhaHrV5miN/BQKIRr164hHA7jiy++OHZgvrb0NYCm1cR76nQ6ePLkCXq9HqrVqlwzgFfqWmnmTpeb4f/tdlvi8fR4URi7sb29La7aZDIJv9+P58+fj4EFvbhZQua8Rc8PzhsdX6QzFk+CfdPno2FB65cuj7MUkwmvVCp48uQJotGoJFRwHdKlxKxuugTpBiZzU6lUxurCaZ0H7Ll2f/3rXyOXy+G9997DD3/4QzidTqTTaSwvL6PdbuP3v/+9uNfYZWJxcRGRSAS//e1vX+tZnJRxOwl0HAZWTAmHw7h+/TrC4TDeeecdXL16VY7NLjjaYOQGaP5o4EGGletqOByKrmdrrV6vh1KpJJ1+tFuZrmXO/9FoJPFYXAOhUAiLi4sIhUJYX19/4/XLsjNMMCQosNsftWfLTAIiANEhUZPkIONSG9Lmj95HOGaMlWPC2psKY2GZZMdsdXpfaAixJI7e36jbSeIwmWJ9fR0AcOfOHbz77rtiXDidTumQwesmTigWi5I0Wa/XZTzcbvdYjVAaCHwWnU4HOzs7aLVaSCQSuHHjBqLRKBYWFiRrv1wuC84ha0ssoOcuwWEkEkEgEJBEtjfFKefO8Nm9Zlr6FDvK2mRXTCXK/zmIlrVXfoO18LhpA6dbcJlKSHcW0YtxEpMyieHTgMyO5dTHtRvHSddop7z1ebS7hGN6VBpfM3wulwvtdluCZY879toC1cBBX9NgsNfdgFa4NiDMuacZN7vyBzp93u5Z8TNk+BirqIPF9f1qNuKiyEFMsF1ogP7OQXNs0vH1OTjup9HJ4DCxm4cEcqPRSBg+HTfLtnq6dhZdjcViUYCDeS96nZLhczqdmJ2dlWOwnV+325U4vUqlIsCFGxQ3sINYxLOSo7LUWucwUSUajSKTyWB+fl7ca5oRAeznn0kMaJ3A98nIdDodWZvdbhelUgmVSmXMsOFmbDJeenxHo5Ek8ujam28imuEz90FT7MZWG/KmgT/pO3bH1ec1CQC7vUZ/XicKvqkQVDHjPZFIoNlsAsDY/tHtdqXlGN3vBH3AvhHf6XSkhR7jqpn06PF4xhg6PgMCxtFoJC5Xxmmb84B6imB4MBiIFzGZTApLSR1gGvucM2aWtSYseM/HCX0CzhHwadFWC4PmNbDgDXLC6bg+zTDYgRVgbyGlUilcu3YNlrXXZq3ZbApVrMuV2LE1JyV+v1/qd7VaLVQqFSmMCuy37TKr8ptid42mUuPk0bEqJpC0A93aeqMFk8vlYFkWcrkc1tfXx2rR8TMsfTDpWjULy96EjKM7rtvODKYmsCRzxkQRWnvcuDl3+F0N/PU1ayaai5GKhAqfz48bBil4npMMEBWHqZB1DN9JMGbHEZYpCIfDY+V09HwxAcVhQM5ONIC2OxZjqo4TpPymYp5Pu2r5fIPBoCTikEXSGxINocFgr/f03Nwcnj17hkePHmE0GokFz+S1wWAgrqfFxUVUKhUp9soxefHihbBTzWYTTqdTskXv37+PWq2GYrGIb775BtVqVQCj9qjo+7PTCRzzNx2rowiz3L1eL+bn5xGPxxGPx7G8vCzZizs7O+KO6/V6EsvFRCIK1yn1no4VZmtNxubxOfLzXKeZTEayolmqg+eirmOMHoEB7900Ft9ETEIA2PcoaH2vk01MsKtdhPye3kOPAhw5PtSp3GO4Bg9a9zqjWpd0eV0JBALIZDLiCuWz1jFz1Jf0njCuTj9fJkRwv7KsvZCIhw8fSrkxGmVM3LMsC9FoVPS7ZVniCmYChcMx3lKTYQjlcllYfOrQTCaDa9euSam3bDYr40swae4xfN6j0WjsPJOe4evIuZdlAcaDwTkY/M0NUgMU07LQx7Q7D90ilrXnGlhdXUW/38fi4qIoZE5svahOcuO1LEsCStm8u1QqoVariVLiZnKYsrUDcHxdA2dgvISDXYD2QW47Xkc2m0Wz2ZT4osFgIE3ZCfh0azXzHNqC6ff7UhqFmbLHZXE0aNPsGZUCFy+VfqVSEQuSm7ff7xfQqlk7AGNKnsqWlhYVELDvguGmwbiPWq0myotKymRcea3HteBOQggiWFXedBmZiv9NwB5lEqNAS50K77yFDBx1BbPpZmZm4PV6xfUM7DeYZyF0n8+Hzz//HPl8HoPBAE+fPsVwOBybI1yz29vb2NnZwbVr16RVG9swMhCcG1mz2UQgEEA8HofT6cRHH32EeDyOly9fYmdnB/V6XUrIAPsFwjVTZsZmaT38uuPzOsIkpnA4jE8//RTXr19HMBhEKpUCAKytrWF7exvVahUbGxvodruvxC3aPR+90RO80l1GwGdm1jscDgF7dOmZyX7aCCGbo0G0Oa5vIgzr0B2INODTSROm7tdrkvpEA77DXLsUjh/3XIJcXeSaYu7BdOl2Op1juXSDwSDm5uZEB5FVo67QnhztyiXYZ6Y7e1XTKHe5XFK+iIkeXq8Xs7OzkgFOEqNarSKXy0lcJucN54veE+i52drawtramuhPv9+P2dlZ3Lp1C4PBADs7OygUCgKKGbZCZliXaCEOIHN56QHfJDmKFWJ+ZtIi46KxLEvaFfFBTWKkTlOoZBj7wzIhujMIwe5BisPOfall0nftxk2zpNo61Ocgo6Dj1Uint1qtMYbP7llNAucnBWy0VWS6GPR7HH9mftIFRkbZzgWilboGfNrlqy0wKlbN8NhludmB9ZMck+OIvpajXM+kz0yab/z7oHV71mLer/6tgRB1iu5xqdklfRwyy6PRXpzXYDAQ1w5ZBzIpJlPU6XRQLBYBQLJBCQyHw6FkCLPjiy7pollIAnYAkuClx157ALiRMdv8qMBPG4o0vOxAhl6joVAIyWRSMuQZK0XGg23hNPigZ4C1S/XmqJlns66pZs84DtQFute1aexP2mfs1sdxGT5gnGyY5JY1z223Ts3v6WucJHZGm2aazGNqMKzf0wTNm4peT/wxDWR9bvO6+UxJLGhSg+uIYRg6cVI/XxoD3Pu0m9i8N8bU0TPncrmkSwe9Opy/w+FQ4kpp9AH72EAncJD51wlExw3VOHfAN2ky6YmvC9hOmkiagaCwvITP58Ps7Czi8TiePHmCBw8eoFKpiBVoLtbT2HjJQjFp48qVK7h69So6nQ5evnw5plhZJ2jScai8tJIzEzP0uExa+CbY0wqZDJhlWcKOdTodBAIBjEYj1Go1vHjxQoJWm82mMBymaPcDr9FuIR9nbHV2mMlA0XImW0K6PZFIANjrpcjSOLxerWzIHHChEix6vV5ks1nk83lYliUuULbN43kI8LnINRDU59QB0ectBwFfvn8U0fPxKMacPo+5sZyG8D4JkPSGTwDjdDrRarUkqL9SqWBnZweWZUlPac1EajaIyUFLS0tYWFjAixcvsLS0JAYUXULaxcMCsL/61a8QDocxOzuLaDSKra0tMa6ePn2KnZ0d8Rq43W5UKhVUq1WUSiX4fD55nXFAumuP3Xons0TGstlsolQqHWoYc4NjM/i5uTlhynTSlMOxX2pHM+yBQACWZUmLuU6ng2w2K7GPdJuT4SOrQlaEAFPfiwbR2r1m7i0cC8Z7WZY1ppf4LPW6NA03YFwHv6loly51JDAes20HtrhWTLaRetFcd3ZA0QSUemxZFoT3Tj1GA4L60eFwiKfkOAwf9xQCf7/fL8wqx0kXTAbGa+hyb2RHGm2s6eek9bqZaEOwOBzulYFhrCfLufE5US/0ej3U63U4nU7E43F89tlnyGQy4iUBgLm5ubH5MRwOpUWqNixp7NDDwdAEXXvxTeXcAR/FtJ74t968Jyl+uwHg4JF+DwaDmJmZwe7u7hjDdxKW2VGFlrjX60U4HEY0GoXb7ZaCrbzPw7K8qLQOstwO2pA5rpOOrcEHgLE4AiojTj66SybF/Uza5E963O1YTz2ntEVPSp0Lulwuo9fryfPR12jnAtNM4XA4lKBeZg4yyJ5Kk8c1i5dOYj8uitixFwcBONPYsPsMP2f32zzXpO+fpOgNlLF3+jUCFB32wax+umPo4teFtIH9Ljg+n0+KKOuq/boWJDdRbvKdTkdcmjRAmP1LQFitVsVLwM2n3W6jXq/LPDQB7KQ5p2P9uBa4iR8E+Li2aOgkEgnMzc1JU3gajfwc2Uq9WVOXdDodFAqFsXAXfoddS8Lh8Bho00kCXGs6xo06jFmfejw0WNH7jAncTMbvIPbvTYXjwXvRBMZBrJ6+l0lGvZ0RbMcMmq8fxOLxGej7N5/HmwqTMBjiousOmtfGa+Dr+plr1lrHxRPU07um1x2P43a7hZXnOtdJZNTjBHo0xLgWZmdnsbCwMLb2aNhpcGqur8FgIGCPRdzNun+XEvBxkPVv/aM/1+/3xzZZljXg+yZDxaB4slN8iAzCDQQCUg/HHMCTZp/Me9aFE0ejEfL5PL799ltYloVMJvNKbMpRRC9yU6Hrv00gbQeMKIxDGw73ihCXSiVRmm63WzauVqslSR12Vp22QLmx6fgYrdjedLz1salohsOhNK32+/2IRqNiobVaLdlcCF71RsH7p3A+aTcSRYNE9nCmG8DtdiMej0sMCjd13YrOjLe8aKBPy2FATL9mB/705+zAnnkevbGflrDkEF08OjDfBETseZ3L5STBolQqSaafGWvI43g8Him6/fXXX0tfTT1G/CznU7PZxNraGtxuN3K5HPx+P+r1OrLZ7FgvWJfLhZ2dHQGd/GHtRw2sKPo13h83FV7LYcyqw+HA3NycZDyym0w0GpV4OK4brm8ah3xNM6KWZUlAvM/nk2OTmWMtQuoPPisN0il2YImFa6mntCvbBD6mPtQ6zPSiaOBx3LWrDUOeV4MbzQJxD9GxegQvpntQ61e7H96ruSfofdC8DnPcCPjI8PEe3kSYmc3yJqydR0BPdpFsox53zWryuWh8oQEtmy5QODf0M3W5XEin04hGo2i1WojFYuj1emMgkIRIMplENBpFOp1GJBKRREB6vvhbkwj6twaffHYEfdzLLi3Dp/30B/nstWKgG4BJDgSGekKORuP97ei25QOmX71er0uGjwZ9+lpOC/DxoY1GI2xtbeHLL7+Ez+fDZ599JjWYDhJzodoxLgdZhVzcWimax6LbhDWqXr58KQknDEadmZlBpVIRSlq7jPS1cgNhmzu6zrTyOk5sAo+ti9sOBnu18ixrL3h+bm5OXEXlcllqcJnKTCsPbSFqwKfZVVq1TMXXrj/tvgIgbAfbsmllxDHXQPMiyOuwsXZz8jjnMzeu0xBm2ur4TF0rT8ffcC5sbm5iZWUFXq8XDx48EMCkAR9dRjqj3e7Zci3qDdzhcKDRaCCfz48ZiSZQ0+fRz4esmMnAcB7recbnpMskaaNskjgcDty4cQOfffaZMJhMkOLGpQP9ydJw7ZGJBPZjFHXSQjqdRiwWkzAYbu501zIBSgNLxlTq2EleK5kYAOKOY6iFqT9Nw8Zk/wgc+L4GascBfDruUl+HqZf4zAEI4NWlPsxWkfyOaVzbMev6R4NIE3SaewnnVSgUEiPnTYVMNZ9TtVpFOBxGIpEYm9MMGyDw53wgaOM8p45lIijHkXpZA3Zm3OoM70QiAY/HI0l/7XYbKysr2NzcHItvn5mZwb1796T1qd/vl8QRPZYme6x1Dt/Tz5Rgj73cLyXgA+wnIWAfPwSMuzLtbtpuselzaBrVDM7Vk/e4AGTSvTKLSINJZhXx+o9Sz27SojsM8PG45ucmsTH8no4t0ZlEpvt30vibCpLs20l2NzGVIjBuSfF1/Qx0jAyv1c76JYjUz0VvAjQ0tNGgNx5mWemxMpkrbTWft2hlfxSGzXx2dkzgYc/Xbv6eBcNnPm87L4M2LgGIa0frKwIazZDoMi6DwUBAgTZI9fHNzZaAifOVwIKf52+TLQTGq/ZT7NxBdmOu9aApBCWskUa3LWsSMhyF48VjmFmGlrWf1EFDnuCOGzk3c7I4mmE317mp4/X16nvja5Pm1esYK3bz5jhi6gCTaTQ/O8kYM4HYQYaY+Z4+t2YSDxPqx5OIQ+Y16/JDZH55bLKamsXjGtO6Q3tRtM7W9877B/bnqa7WoPcQPQ+5lpncQWOFpcC4xzF8TAM+Ho/zUBtKvD/eP5NGTmKfPBfApzcUKkouTBOIaUBIt51+iBp8cGPWacxc1KxuzVIgOnCYrCAVLLNPTzqLl7Ep1WpVJmCj0UA2m0U8HkcgEEA6nUY4HJ64YDR40/dsgg5gP7hVuz70M+BzMBUx/6YVubCwINmFrF1kWZa4pvTENa+bZVu4EF0uF+r1Ora3t7G7u3siVgs3DTIA2pVB0MVnWigUkM1mJfGCC4sLTWdMA/tsib43xoBSedCa5vuk4YfDIfL5PKrVqjTvZmwI3VOaKeSzOm/QxziScrks7YAmyXEVkDbe9AZlWZaUx9AszElLp9ORyvx8xgRbvCZTqIu4fvXn7DZZ6iQGs3Pt2xmWeo7xf90yzTSE7QwHYD8OWOsIOwOFulUbTDwms4K1hMNh3Lp1C9FoFO+99x5u3rwp59MuaX2NLJOiO0CQEXQ6naJbyLi5XC7xJJgGv2bdWW9PZ0+bGymPy/I0lmVJKSzqJm346Xmg9w/z+QP7xiOLOL9u/UJTzKQN81j6mhg/rL1iOpSJ10fWiNnN2rjVBoC+d36GtQz1HmsHGPlDdpjP8LgyGAyQz+dRqVTg8/mkKDkZTI4Xz8s9joYCx4txdRoYcv1pIKeNEH2/rVZrbM2wlmw8HpcevgCk9Fu73cbGxgYsaz/hkWMF7HsRAch+RTyk9UKpVMLa2pqUFDqurgUuSGs1bR3ZxY5o5aYtXNM6oSLgd/R7/X5fAAqwb+VpUMTvm0kUJ3W/OsGBx+52u2g0GqKYWKLgoA1O368J1jRQ0QyJ6S7UG4p5XA20HQ4HIpGILCK6IjWrcRA7pWMSeOxOp4NSqYRyuTzmenlT0UrQjHUh6CMIazabqNfrwiCYbIZmI4F9d7F2DWigDOzH+GllSouMwf3s7gLshybo+pIm63yeQga23W6/AmaPytgdRfR96uPxfLrK/GmNCa1ovbmbMTZ2MW127JodWOP96M2bz9yu/qTJwmvwwmOZTIWpB7Q71W7Nm/dvMh28Vzsd6PP5MDMzg2QyKb/7/b4UnNXjqI0ZznEa2ExsYjwwi/UysJ3Ah/pYjzHHHoAwKCYxwDEhAIlGo5idnR0bL4JwO9BjMl56fPQ4a+LisIL5B4lmpeyMd7vP6vmpjX7N7pkg2Fy/5riaBj//Nr9rd2006I/r2qYMh0MhaJrNJprNJlwuFyKRiAA4AiYCQMbT6nlPhpghB5o559o2r5csNucJsG+Uc46RMIjFYsJActx0Fr6uMgLsl1whLjGfJfdVGt2skHESciGydDUVr6lknZkCjFtAenLr4+gf7T7Tk5ibPmMN+Fmt8E9iQzOFLCMrclerVfh8Ply9ehWJREIKQR7VOuIi1laWtiJMq81UYGaGkylakWjmQI8lLXeyZEcVk2E4LsOn79F0S5kKWYNa06ql6KB4Xu8kxaiBtgafehGTDdCboB7j05hvbypU3HqdHSTmOnyT8+kxBPZBJ42v0xofsiCTNnitkygmi65f0xsugFf0lAZ/B60Xu+PpeWKOhwk6gVfddOac5/XRyNGvkXUwnwvjYDudDtLpNOLx+Nj1kZHlcQBIfC3jd7vd7lgdTHbc0DGb+ph248570ow+X9ObNT02+XweDx48GNPtrJZgF8ttdy59HfrauLaPSxJow5y6S4+J6WLVRq0+r3Zfah2vv6fvAxg3dPkd8154TSYzxvc04DvJWGTeCw2ker0u2fEmoaFLcFFcLheKxeIrSUT6Psw1pkMvTBYcgCT+6f2G81w/Aw3u+Dk+R7vXaOCwpBxZ1pMin84d8OlJpDdH3qSOeWOsCBG7nWWtaW7tZ+fne70eyuWy1Jeiu8rMajrppI3RaCRNmjOZDHZ3d5FIJBAKhfD+++8jEokgnU6PFSHl9yaJttq0wiIbql0gXBQm+2XHDvA4tD7oeiFDxs3Y6dyvBm4XkMprPEhhmpvpm4q+R+2asyxLAnDJrJpMDO9RK05d30s/Bx3/Y26m/GHc0XA4FEuPrh/OMQIFWuA6duO8xbL246o0IOB7wOEZu5TDwOCkjWgwGIhVz8Sr0xACSv38zExJ/tabI9cYgYWZfQ+MM296ztnF3NmtEc5Fjr95bL3Z8jc/p1k189lxnZj3Yrqz7EJaGo0GVlZWpM0Z3bDM0tWuU1PXmIyTXi88t8lImh4bk63SZUD4myVi+v0+dnd3Ua/X8dvf/hb/8i//gm63i+XlZaTTaSwtLeHjjz+WbEodzqHnJcdRzwP9HhPE7FzgryNa13IP4lykC1ezUpwjZmyYzn7WdRDt1qweX36Ouss04vn8uDebSUFkZnWI1kkJ1xcASabQ98G/zTkE7Htp9B6hP6+fqR2Y1YX17Vz8Gihzb9BJefq7+vsm+OR46/CH42blmnLugA+wzwQ0QYFe6HZKbJJlppWOZg01o2h+77SEi6fdbiOfzyObzWI4HCKTyUjMirbmTEuDi1FT/ubY6UmswZ4dO6V/NJNjjimVqU4Xn3Qcu3vWroHDPv+moq0lXrueN6br3jy3Hgfes6nkDxrHw8bEvB59fjtQcV7CMTDH6TDgdpCY69pcu5OOa6cXTkP086USNjc6EwDYbfx2rwGvximaoIDv253DvE7tLp50HH3ug65xkg7RG5EpZCAAoFaroVQqCVPHOn6cP2b5EwC2QMBk5/X16/XIe+T/JqAk0NE9VIvFImq1GvL5PHK5HLrdrsRLM7aYrCO9F9ow5jn1dVEPaiN60jN7HdHrTo/BJF3J89k9KxNU6zlmp/v0d/Rrduc0z2cHuk5DjrpXm6CMxosJ+Ewmmc9WM94EuQfFuvN/fXyuA83m6bnC85pM4Gg0Gsu4Pmndd26ATy8WU5HpH7pcyLbowHZz0+RxyLDoGCmWOWCsCWP6qtXqKwzVaQASLdvb2/hv/+2/IZlM4pNPPsHf/M3fjLkXXC6XVNZOJpO4du2auLNTqZQUW6Vio+XDSUW3MMt/0MLRwdumYtObnbmYaTH7/X6EQiGMRvsMYqfTGUsMMceMSSlkBHSm4knFehCQ8vy8DwZk+3w+LCwsoNVq4cmTJzI+5oLSMaK8J7prRqORfI/Zyvo+9Oarx5ZMEZUO55cuCUC301kBnEmiS1XQPWG6dI/7vCZ931S8VJjaxXfawnVhx2zYAXQytwQdJrAyNwT9npaDNlf9Gf2/HZNkd42m0QFA6k7yOHbgAICtl4PMa6fTwePHj7GzsyO6xuVySR2+YDCIq1evSr1Ollhh2AoNQW2YmuCEeka7e7W7czjc64KQy+VQr9fx7NkzScyrVqtjcdvsoepwOFCv19FsNuF0OjE3N4doNCoF+V0ul8QTmgYgAOmCwNhD1nE8bnaqZVmyB/j9fgAYGx/qFO3R4d44qVC/NoK13tc6X+tBjquea/qzXBu6bqlpzF0Eo1V7JIDxeWxnpE9aV/zMJM+VKfrYjAueZORT7Iws01NwknKuDJ+dEjQVj3brctKb7jSKVl76c6PRSGroNJvNMV85gZWZMXeaG0ylUsHPf/5zeDwe3LlzB5988glcLheq1apkRfGaQqEQUqmUKBYqTloBpNf1wtTuDrMmkab+9UKeZNnxOGamIL/HGAPWG9NCa6VSqUj8jtlb9qTGWSelmNYaC982m01JjjGtaB5DF97kuBAAcOPRm49dQL25UWglzfHTLiw7l915CO/f7MF6VmICE/0czkq04TiVV2U0Gkm82vb2Nra3t8fej8Vi8jMajZDJZMRIpQFEdyvnvJ3rm+fyeDzSwUb3IKXOKRQKqFQqyOfz+P3vf4+trS3kcjlsbm7auqS9Xq/oLIfDgVgshkQigVqthmq1KgW27fQAsM9wejweBAIBabE4aU96HeHYUNfq/Ux7azg2BM26UoKd/tbgXjOlPJ4ZRzxpP+YxOK523pKLAvrsDJWpnBPg08BEuyd1ACofkKZGa7Ua3G63lPLQxzJRvTlhmQ2r47g8Ho+UfmB2j2ZvTmuj0fdarVaxtbUlII5xGyz0uLS0hF6vJ9lmjPFjaReyTwQ3ZGe4eYfDYQD7MYo6nsYMWqVCYAyGTlxgtiY3Ql0g1OfzSTV0U/h9HsPr9aLRaODFixfIZrNS1uI4YoJdzQKQktcxfGQ82cOTn9NKVWcJ6tI9uvgrmWSv1ztGyXPsdVwq+6oS4HGO6e4bp8kqH2UMWVNKN6e3YwY4Z05aqZuMlgbWU7kcwi4ElmVhbW0NlUoFu7u72Nragsfjkc4z2hAi86+9BBpMaENOr6Vut4tsNoudnR3UajXs7OygXC4LW24nw+FeuQun04nV1VU8fvwYsVgM29vbyOfzY5nCdixRvV5HrVaDy+XC6uoq3G43Hj16NFbq5U1lkoEziQRhshyNba0/eByTwTXZLNM7ZLc/mOE+k/SUBpHcr/QeNZXzl3Nj+HSMhwYsnIRkuuiiHQ6H2N3dRaVSkQxb4NVFoierdgeR5i+XyxKcGwwGkUwm0Wq1UKlUMBwOxXXJhIXTElpn29vb+N3vfidATYMWy7LwySef4NNPP33FBU73BMePgCYUCknNpUAggNnZ2bFgX8A+3ojKQfcYBiBZT4FAYKw+Ga1bBjzTJWH3nDVY9fv9yOVy+H//7/+hVCohn8+fyHhS2fA8zOYiC1qpVATwUaknEgk4HI6xeoJUfOFwWMq2cG7pOmKMt2SfT4JKsrLRaHRMIbfbbWxvb4ubmJmJ7OdbKpXOhdHSwvIV4XBYQJ8OGuYYaxA4SV5HwZvzUc+90Wh0IjW9pnI2wiSbUqmEbDY7lkVJQ8rlciEcDiOVSsHj8SAWi8l60LUXPR6PeAjY8YeAbnNzU1pNUbfRYLarb0jp9XpYW1vD1taWxPNFo1HZV0z3JvU0Q2cY66c9T1tbW9je3n7tSgWm0DjWANdk9xgaQs8UPT3Uv2ZsI/c6jr9m83g/fC4Oh0PuSe8F+n3zenTogja6A4EAotGoeNamDNvFkHPTpKalYCp8vaEQeDFWgZN4kiVk9xoXqFkNn2K34Zy2jEYj6e/a7/cldoSLhkUk6Q7hAtNp6dwMdaNlZjXqjhIm4DPvn//rtHu+r8G4LilhMrN2cQ6mtQ5AlHi1Wn2l/+ibCo+t4/Dsnv1Bbn+KaRVTAeuaSjqw35xz+rno42tL18y+s4tLPWuhEWa6syh2LAFfp2hweFw5bwA8ldcXrUPs1jbnFlk4GozBYBBer1digjXgKxaL6Ha7KBQKKJVKaDQaAvjeRKgnq9UqstksWq2W9Ngm4cDf/GEoEA04gq5+v49SqXSidVsnzXc7MHrYfsX3TfJiktF/FPesqRPM39SZrHs3Xb8XR84V8HGT05YUwYam9qkkCGD0xmk3KXW2DAEULU+d/VIoFPDs2TOpjN1oNJDL5UQJTAqGPUlhpX+6UbXFpN2rOrvIXPhaAZRKJezu7mIwGKBaraJarQoo0xYjn4HpqiOQobuRLvRYLCYlWIC9ivuBQACNRkNcKrlc7hXlQIbPsiyUSiUAkO4TBLonIdry1IkXdOlWq1W02200Gg20Wi243W5J769UKuKG4jEISvXxqPwdDgfK5bIEgNdqNWEY6ALWbbUYe8RioX6/H+12eyxtn67g02SVDxs/Fv5mnKPT6Ty0LMBJKHPzGDyfmU03lcsv1FNkfZxOJ3K53IF9UMmusfQJ3ZnHlVwuh1/84heSpWtnzOpYOdO4pQGpe6CehFCf64oSlmW90mpPG4rcK7QO03uluX/QEKbu4bHJqDPsRMf5TYoVN0GiZe11yUmlUqhWq6jVaiem56dyPDnXLF0qck5oTm5gv6cdM8C4wExLyg7w6UmvA+Y1wzcajVCpVLCxsYFOp4Pd3V20Wi3k83kUCoUTUyoHCRdas9kEAClvoO+HbVm0W4RAjK2FuPAdDgdqtRrW1tbQbDZRLBYFZFG0u9ik6LXQJUwLnODMBHz1eh2bm5uo1Wool8uv3KMGTLVaDb1eD5VKRYDXSVD9GrRqV4NuP8T4TRbM5A+wl0lcr9fHxqTdbovCsytATCWnXTycW7pgOL+vY0N1gU5uIhyr82T5mKFLt9tZAy0aHRxnnfgylbdDONdbrdYbM3QnJZVKBZVK5VyvwU40S6rZRgJMrV+0kaiTKfj/pCLfGsya8Xo6oUx7lszQDp7Hzqvm9/sRiUQE1E/lYsi5tlY7iI7WMXmctNrVqJkwO9ekmY1K61GXaiHgY3xIp9NBvV4Xa+8sXLu9Xg/1el3qWEWj0QOpdMuyJClDx2R4vV54PB40m03s7u6iWCyKdWWyhhro8TVz0eq+luypqt00LLNCkMw4SNNNvr29ja+++gpOp1PK36ytrY2VwjmuaMub9wPsx4DRmBiN9lo6sZctY/T6/b4wDAQ6OlOVbDONAA0CdXNsMhGs9G66zk3rmKIB93kyWTpp46SuR8+9g8TOVcxr0MkbdqEDU5nK2ySm94rMmtaV1P1mUWC9J9rpVjtyhMc2GUxttOpWYPzbZEI1C8trmsrFknPvpasVvR3bpANw7YCe3YaiYy10Rm4oFBI33WAwwMuXL7Gzs/NK3IYGmKct9XodOzs7AIBEIoErV66MLUreu74uLmw2YwcgjZyLxSIePHiAly9fjhVwpJgxF+br+n+dJWcyj5rqJ+tqZscNBgN88cUXePr0KYD958UEGg3SjiPaIgYgzce1a5KgLJFICOhj0kYikZAMbbpddQs/snGMO2QNLrfbLYCv2+1K30PTKjatZ91vUgPA82SyLMtCIBBAIpFANBody1KfFBt7FOB1VKVv5xbivCPbTEZ76h6aytsuOmZa1+OjHqa7m8l6ujOOFjNcR3vUAMjxzH1C6y2dTMmqAixRxffo2ta9X+08R1M5X7kQDN8kFuAgBhB4tW4X/zaTCOwYPuD83QrapcuAYXNz1UyLvh/+1swdlUClUkGhUBhrR3NeclZuE23R6sBhzi0N/nXHDc3W6f6euvAwAR8VK4Ehv8fz6SQMKmrtfjFjJrWBMwmIn5VwvMgU2ylqvR7t1qW5Died5zDRsaYc19MulTSVqVwkMWMIyaiZhhaBmBnfDYwb7aZBxffN1801bl4Hq1dQz5nkhNmzfCoXSy4Ew6cpYm7admVR9KbI9zixNJvS6XTQbDZlA2fA/HA4lGB7fZzD3MunJaPRCNlsFqPRCGtrayiXy4jH4wgGg1JslNlrjGXUYIG1BXUW7dOnT6X0jMmeHZWVsZNJi/d1jkflc9JuOQLnbrcr1q9lWfLMGc/YbrdlnH0+H8Lh8Bi7xjHm3zpmknF9tFwJisjuMTaRrmoyio1GA71eD9FodAxc8rp1/b7zllAohHQ6jVgsNhaorTccrfyBo7VHs/vb/I6d+5sAOhqNYn5+Hj6fD1tbW6ceWzuVqZyH0OjS+oGvA/v9ZHV/+WAwKCEkpuFIfWNZ4z2H6RXi3qk9XHxdM3ysNToajSQOOxaLwefzTdxT7IzZqZy/nDvgA+zjCHQtOC1m7Jk+HjfPTqeDVqsl9cT8fr8cKxAIjGX/EfCdFxNWKBRQLBbhcDjwzTffwOVyIZlMYm5uDj6fD5lMRmrCxePxsWrqBHy9Xg+5XA7lclnax5n3Y27MrwMwDlqwrwMi9eI/yfEejfYTegj4tPuDlfir1Sq+/fZb7OzsSLwas2Z1sWrTINCMF++XgFoXQGX8py6Nw7G5fv26KF4zzkZnUJ+X0KWbTCYRjUZfcdfQFaTjRvV39Q/FZAr0a/q7WvTnWOg6Go1iZmYGTqcThULhVO5/KlM5b+F+ZAI+/q0LyTOsgTpM6xEdw0ySgGDPBGHc/0yjU+s4ttbs9XrIZrOoVCqwLAvpdFp0rCl2+mAq5y/n3lpNu7b0JNSZkSYFrSetji9jdwPWc9KdAuzkIrAqwHgFedZ8KpfLslgbjQb8fj/q9foY8NAxTWwSzg4ch53vPOQgd+BxRRsCZoyndlVqi5bjzZhOxvqZrnKCNG2YmMqXzLL+3xQ9xwmidFwfs6/PS0nSla3b35Fl4/tmwgllknK3A33md+xcSXrTczgcY32hpzKVt03MkAoz7GQ02ot97vf7yOfz0tKOTJvdPqf3VTJ8PIf2WJihVdqoHY1GUqew3W7j5cuXUiz/6tWrYy5j6komrgWDQTQajemavUBy7oWXuclwYnOj4Wu6DpHe0HXcFCcaW7nQRez3+2Vj5/c1O6GZvfMGf3RLWpYl4E0DX11ORX+H96O7OrDciHn841zbSQif40mPtXb/aTBCq9fr9SKdTgtjxGthyRsmWtiBFv3apHgX7eacZGBo44TXRuU7HA4RDoclAPs8yhhY1l6lfmYvszyLyahzrHVZGfN5mmtskuhMc10HTAO+wWAgSTI6SWkqU3nbxO/3Ix6Pi57SAJDdRcrlMh49eoSvvvoKLpcL7777LmZmZgCMV7YYjUbiARqNRggEAvD5fPD5fIjH43C5XFK2i2uav7WOYtweQ1Z+9rOf4eXLl/jLv/xL3Lt3b6xeLjuluN1upNNpLCwsSE3XqVwMuTBPQrMdujyGFjMAVW/SBIncIDiB7YpRajlvoKeFmx3dgm+jnNZ4a2tWBxGzrAAZIh3crGs+noVoYEhmUc97MmvnKSbrxtf0e1yfwOQ6mEcFfHRH6RAOHo8GEDeNadLGVN5msTPsqafYP7hYLGJ3d1f6+KbT6Vf6cBPw6ZahwWBQ2mES2BUKBRQKBViWJQSLZvR5HIZIlctlrK6u4sWLF9jZ2UGr1UIgEBhLTON9MGRmUgLYVM5HzgXwDYdDVCoVbG9vS5yBLvJIa4FUtg4mBcbddxT2ex0Oh9ja2pLkDG4SZBMKhYIUOj7vuKmpnKwwqHhra2ssHo9JFCdV6PlNpFwu4/Hjx/D7/dja2kKxWBxjnQuFAqrVKkql0rlc42AwwOPHjzEajZBMJrG2toZ4PA5gn0GNRCJjfZH12tGA22TiAYyxn/pvuo5Y2LvZbKLZbKLX60mizfPnz/H111+j0WigVqud+dhMZSqnLcPhECsrK/jJT34yFs7AZDQ2B2g0Gtje3kY2m4XD4cCDBw/w4sULAK+GsrC/92g0kjJT7KbjcDjQaDTQaDRkf9T7r3kchg+xkP+TJ0/wX//rf5VySYPBAPF4HFeuXIHD4cDDhw/x4sULZLPZt5a8uIxyLoCPgfSDwWAsM5JCRsbO0qG7R7t86LYLBoMYDofY2dlBuVyWQso8Dxk+cwJeJJZvKm8mVE5sJ+dyuRCLxeD1ekVpNpvNI9Vwm2QEHGeelEolfPvtt/B4PCiXy5JdzWxeluZhEs5Zy2AwwDfffINHjx4hFovhyZMniEajY23hFhYWEAwGEQqFJOtYB4jr8Aq9gfD4/NEtqTqdjtQw7Ha7KBaLyOfzqNVq+Pbbb1EqldBqtaTG40nUbZzKVC6aDAYDPH/+XNY+QdTu7i62t7fHmg7oahbb29sHkhYmS2/+/To6Ta+/b7/9Fs+ePRtj8xcWFvDhhx/C6/Via2sL+XxeEtmmcjHk3AAfY82o/M0gbZZl0S4mE/Dpya/7CzabTdlIGBvEc5jupynYu/zC8ic6Y8zlckmhUFqoRwVTp8H8djodFAoFuN1u1Go16crBedtut8WVf15zkoCs1WqhVCpJBxKWZWAmbyAQEAZdB2wT8DEOSIdc6DZRXPNcn91uF7VaDd1uF5VKBaVSSdg8PrNpseWpvO2iuxXRTVqv14Wls5Pz8ljQYNNSr9dRKBTg9XpRrVZlH54aaRdHrNERdpdqtYpoNHqiJ9abgl29PbsAejNOSL+m2Qa2RuPmMuk7U3k7xOVyIRQKSYcNAJKZpuPR+v0+qtWqbVLLaYvf75e6f5ybZqIHY9nOE/QBe7F1wWBwrJ8uY2S5bjX7rjOa+b/5nja0uAFo965Z5kbXMJwye1P5LggTpYDxeO7z0FdvIkz6Yn1SruPz1mffFalUKohEIgd+5twA31SmMpWpTGUqU5nKVI4vRwF80/SZqUxlKlOZylSmMpW3XKaAbypTmcpUpjKVqUzlLZcLU4dvKicjOnaN8Va6sC3jxCYJS5kw+B6ABM3r2nVTmQqLNZs9OvX7ZnecbrcrJVh0tuFUpmInZiwusJ/0N40L2xeXyyU9dRlrq+PndLysKbp9pK5X22q1JHnkbU6a0mWmmBjKMjQ6fliXd9Odm4C9OclKCxdZpoDvLRO/349MJgOfz4dkMolEIoFWq4XNzU00m01UKhXJBDPF7XYjk8kgFAohHA4jnU5jOBxiY2NDaqIdpXXbVL4b4vV6cevWLaRSKUSjUWQyGbhcLgk45ybEpJpAIIDV1VX827/9G3K5HOr1Our1OgD7gs9TmYrf78fMzAw8Ho+Alk6ng1wuNzGZ4bs4lzKZDO7cuYNQKITl5WWkUimUy2VsbGyg3W6jXq+j2WyOFTlnQlYwGMSVK1dkjQaDQVSrVXz11VfIZrMolUrI5XJvrXF2+/ZtfP/734fL5ZIKCpubm3j06BHa7ba0L/V6vdLK7t1338Xy8rKAwMFggF/96lf46quvLvQ4TQHfJZVJGccskBsKhTA/P4/5+XnUajW0Wi24XC50Oh1UKhXbYzocDoRCIcTjcSSTSVy5cgXD4VBKhgCYFr79jslBme0ulwupVApLS0tIp9NYXl6WTOnRaASPxyOtlhKJBCKRCB4+fIjf/e53UrLBPM9U3l55kyoJbrcbkUhE2mQOh0M0Gg0Ui8UDz8G/vyuALxQKYXFxEYlEAvfv38fS0hKy2SwCgQDq9TqKxSKq1ap4ewj4nE4notEo7t69i1gshmg0ilgshnw+j93dXfR6PXQ6nbd2fVqWhXQ6jffffx9ut3usMcPq6qqMV7/fh8vlkjqky8vLeP/998UT1uv18PLlyws/TlPA9xaIw+GQDTUajeL69esyMVnA+v79++j3+6hUKiiXy9JOx+l0Sg9ep9OJWCwGv98Pr9crnUuuXr2KZDKJcrmMcDgsFden4O+7I+bm6XA44PP5cOvWLdy7d08Kn2tmhT13+ZufSafTUm6iXC7bllsCpuWTvqvidDoxPz+PdDqNYDCITCYz1ru53W4jlUqh1WphZ2cHW1tbY+5ezfC9LaCPRhPdj+FwWHpM+/1+zM/P486dOwgGg5iZmUE4HJZSSt1uF9VqVTpr7OzsoNfrIZPJIJVKIRAIYG5uTlqhMUzj888/x+3bt5HP57G1tSUF0tvtNmq1GvL5vLg+z6NY/FGFvdTZXpM6KRAIwO1248MPP8Tc3Bzcbjfi8Th6vR7i8TjS6TQ6nY6Ul/F4PAgEAuLZWFpaknP0ej3cv39f6v+yyD/1XLfbRS6Xk/7t5yVTwHcJxbQinE4nrly5ghs3biAej+PGjRsIBAISU0CLJBgMSnFfl8slnRTa7TaazaYUAGarq2KxiNFohMXFRXi9XmSzWTx+/Bi1Wg3ffPPNFPB9R8Su5qXT6UQ4HMb3vvc9/OhHP0K1WkU+nx+rMcjvOZ1O+P1++P1+xGIxLC8vw+fzoVarYXNzc+L5jtqTdyqXSw6qrwrsgZt79+7h008/HWu9yfgyeh16vR5++tOfYnd31zbG7G0Be8BenNmNGzeQSqUwPz+Pa9euIRwO4/bt2wLaIpEILMtCq9VCp9PBwsICPvnkEzgcDnltZ2cHX375JZrNJj755BN88MEH0q+afXPb7TZmZ2fx3nvvwel0olKpoFgsotFo4PHjx8jlclhZWcGDBw9Qr9cF+F1UCQaDePfdd5FMJhGNRhGPx+H3+zE3N4dQKIRUKoXZ2Vnp/+t2u8fiixmj3O/3Ja6P8fGMk+z3+wgGg7h//760v2MIVblcRrlcxldffTUFfFN5c2EwvNvtRiAQQDQaFVaP7a0obHjPgFNtMdbrdViWNbZZ62LYZGj8fr/U+aESnhbF/e4K5xINCSb5kOHjj07eMH+m8t0Rs82XCcjYQz0QCCAcDiMUCgGAJA7oPq/UYWS72KbvbYkvZmFzMm6RSASpVArpdBqpVAqpVAqhUAjJZBLJZFL0MxMOer3eGFjmMem96ff78Pv9CAaDACAtHtnhyul0CgNG8fl8SKVS0rM8nU7D7/ej3+/DsqyxRIeLINQxXq8XiUQCmUwGsVhMvFjpdFri1clqcl7RVauTH3u9nsRBUrdxvjkcDkQiEQwGAwSDQWmXSUaRbOt5GyFTwHcJhRPG5/MhGo0iGAzi2rVruH37NkajkbSlIp3c6XSk9VgsFkM8HkcwGEQikYDb7Uaj0cDq6ira7TaKxaKwfb1eD5Zlod1ui0tlaWkJnU4H2WwWhUJBsi7fFkX7XRc7EGYGvxPgU8GzI4buvgFA5hC/0+/30Ww2sbOzg83NzTGGeDgcTmR+NDi8KJvJVI4vpvs+k8nggw8+QCQSwdWrV+F2u7Gzs4Pf/OY3qFQqMg8ikQjeeecdhMNhzM/P4y/+4i+EQcnlcq8c+7KJx+NBPB6Hz+fDe++9hw8++ADBYBALCwuSWBEOh8WAbzQaaDabqFarAvgI3qjDm82m6HdmOFerVWHYze4/zKhnyM9wOITL5cKVK1cwOzuL5eVlfPDBB2i1WlhZWUE2m8Xq6ip+/etfSyLWeYvP54PP58OVK1fw53/+57h165b0/HY6nfD5fNI1iKC43W5LzKLuMsTMZVa7oFA3OhwOxGIxhEIhDIdDLC0tYTAYCGO6uroq7Oh5Zj1PAd8lFiZoMKN2bm4OjUYDW1tb0quVkyubzWI4HGJhYUEsGGDP6ut0Osjn82g0GshmswIO+Tlai6FQCDMzMxgOh4jH4wiFQtLYfgr4Lrcc1FzdDmTpHtZkVnRvXYpujUb3B/vlmj1CDwJzU8D3dokdyxeNRnHnzh3xPDgcDtTrdTx8+BC7u7vy3ZmZGSSTSdlkFxcXkc1m8eTJE+RyuUsN9oA9nUzm6e7du/jRj34kHhwa3gDG1p9duS0CPpIArVYLtVpNPtdsNlEqlQBAMnd120QNfMh4pVKpsXXe7XYxOzuLra0teDwe/Pa3vz2zcTpIWM4nEAggmUzi3r17uH//vuyJZOdoiLJ8DX+bngiGEpjeLD0+mh1kKSF+JxgMIhaLjfV7Pw+ZAr5LLKSqI5GIWHqtVuuVtHvtrmWPUqfTiVarBZ/Ph1arhVarJRYdKWgufC4OLozhcAiv14t4PA6n04lyuXyhYzim8npiut74N5UZXUFzc3PSc5cbCzcNh8MxFsdH0Of1erG0tASPxyPHIxDkbyrdafze2yemMaGTx+ie9fv9Ug5ka2vrlfIr7XYbGxsbaDQauHbtGmZmZiQb/G0wDAKBAG7duoV0Oo2FhQUpbaQZcwCil3XohCkcB7orAWBubg6DwUD2Df1ZvWeYz4r7h65Lx+OMRiMUi0XcunUL+Xwe+Xx+YjWIsxDLshCPx7GwsCDxeQR3WleZIUkakJlGiV0YijlGHB96LOge9/l8mJ+fx/Xr11EsFrGzs3MuoVBTwHeJJRQK4dq1a4hGo3C5XCgUCpJxawaW0tro9/viii2VSnA4HFKbj0xeOBwey3RjTEin05F4v3A4jCtXriCXy2F3d/fcg1Gncjyx2yDN+CrGh87MzODKlSuS5ed2u4VlIOAjE6ENhm63i3A4jM8++wz1eh2PHj1CIpEQVxOzdovF4li9sEnXN5XLKTqTm/MqEAggnU5jZmYGXq8XP/3pT/HTn/4UvV4PrVZrjAms1Wp48OABPB4PQqEQ/vAP/xCj0Qh+vx8ul2uM7bqM4QCJRAI/+tGPcOvWLcRiMYTDYQD7jJ0pBGoavOn3gD1ygKzplStXhJ1juS0d7w2MF03X46ldkQRBc3NzuHLlCvx+P+r1OnK5HH71q1+dK+DjfX766adYWlqSsj6dTkc8CwS3+jt2VQJMPThJGGuqQWQgEIDH40EkEhHX/MOHD5HP52Xsz1KmgO8Si85+ZBaR3iSBccqZSrbX66Hb7aLdbguzR8uE7Ay/C+xbd1z4DGRlGv9ld6FMZVz4fHXlfZaAILObTCYRi8XGCi1Pcv/q+cNajzqelOEH/E0WmbFIGvxNE4Qut5gAzLIs+Hw+hMNh+Hw+AJBae6VSyZa5Gg6HUseRmyZdji6XS/SgPudlAHv0qvj9flljBGmajTKZJrtQCrsyNVzH+pgEkAeBYm386+MSNPGYoVAIiUQCg8FAnuV5CecVExnJ3GkdMmlOHKc0lN05GAcYDoeRSCQQCATObc+cAr5LLAzujcVisqHq9jlk9PTrjGGo1+t4+vQpvF4varWabPL8HietdhtwM2YNtmQyiWazeaDVM5XLIwR34XAYN2/eRDgcRjKZlBpWqVRKDAydDZ7NZoUFHo1GYkRotrnVagmAY0bcrVu3MDMzg16vh1qtJoYIN3J2d8lms9jY2JCi4VM2+WLKUYAVwQk3RI/Hg/fffx/vvPMORqMRnj59Kklhhx1rNBqhVCrhxYsXaDQaiEajWF5eRqlUkpjly8LwORwOLC4uSsmVdDqNcDiM0Wi/jRyBg8vlGsskZXwZ9TTXHvAqeGHiFIAx16Y2pDRA5DnJ2HMN83jMzh0Oh3C73VheXkYkEsFXX311rkCbyT2s58hsY90yVM8L01h9k+vmmGkjhf+73W7Mzs4CAFZWVmzZ2LOQKeC7xOJ2uxEOhxGJRCR+Ty9cE7jpn36/j42NjVcCdfk+Y/b0dxhDQgXAkhxTwPd2CONNQqEQbt68iUwmg+XlZdy4cUNa9rEYN+cHa0xpBdnpdCQ2TzNzzBgkK8zisJrdI+hknFatVsPTp08lG5jZhlO5WDKp1Ir5GW6KwF6igNvtxvXr1/EHf/AHkuXJOUWZFJ8G7Ll3t7a2pBwG49N0tu5l8EBY1l7Hhzt37mBhYUFKh7DKgs4WJaPGMjbMpGVYBYEcjwvsAxidIarBHtepGb/H9UjAZ/bj5V7CThSzs7MIBAJSUue8xLL2Wsax7aMJ+PQ9nFRPb+1WN3+7XC4kEgkBolOGbypHFtbYY7AzrQhzMXID167YSbS8Gbyr3zdT9hnAr+vz+f1+aUEzlcsjVO5OpxOZTAbpdBqJRALz8/NIJpOIRCJSj6rb7UqgNtlj7T4zN3rNOuuNhBuLdvWaYQgM4rcsC5lMBlevXkWtVkOz2RwrO3GRWZuTEMuypBgsN3tgf+NlbTAzlOO85KBrmOT6154HsrymS1b/Ns/B+eT3+2FZe3XX9Hcug0uXhlA4HEYgEBADXOtm3gvj0PRrGkjzWFoOyjA1Y245dpxjLMRP0QDcdM8zGYt71EmBqTcRJqrYhR29zpywc/Ee5va1e9/tdotXZAr4pnIkYQyU3+9HNBqFz+eTTcC07DwejzQdJ+1uAj4tWnmQbdGZWVTIo9EIPp9P6kGlUilYloVyuYxqtXq2AzKVYwnnidfrxSeffILvf//7CAaDmJ2dhd/vFxfSaDQSJk+DNJM91opMzxd9PnMTNlkYAr50Oo3RaCSlN0qlkhyv2WzK9Rwn5uaiC8chkUjA6/UiHA5LjTQyrCsrK8Lun9f9H/W8ev7wfyaEtVotaf+lDUfz+eq5w3nndDqRTCYxHA5RLBbHwA8N4ossZH7m5uaQTqfHasTRBUlPSqlUws7ODrrdLhqNhiRDpVIpeL1ezM3NSZgPjXX2Q9frj/sD47G1p4ZhPwy3KJfLUlzY6/WOFcHWHSmYTez3++Hz+QTAn/X4T4rhA/bdrKZeOso1mkD3oM9p4EzGkdc1BXxTOZJwoTL7R2cWmRuoHcVsTnT9Pf05O8tSf17XZiL4azQap3TX3w3RyphxTqdtHZM1YjLG/Py8tEBzu91jG7Q2Gsz2aRQ7I8Ludb7G13XRZs0WUBFznodCIdlILoOr7rjCeNlgMAifzyelNNjjs9frwePxCLt+0ethTpoH2qA86D7MjZnf1SwVDWCT5bvowrpxBFSA/bWz2D0L6hPIBQIBYUuBcXBNNh7YX2tkVe1AjF6LbCnGuUidQeZfG3s6eYYM33kxrJwTR2XUDvqM3XtHCV8AxkvjcNzOS6aA75IJA2OvXr2KZDKJwWAg9D7jOagw9KZsxmbo36bFrX9TkTATmC5ky7KkPc/t27fRaDTw9ddfS//dt1GoyMw4meMKrT7GRLKR98bGBra2tk6VuQmHw7hz544EvMdiMWGQ2C6Nz5yuMrvr0f/z86wfZsfeAUCr1ZJ4PDs3n2Z5mAW4uLiI4XCIzc1NlEqlC+PKPK6YmwcLn/t8PmnkDuyPC+OqotEobty4gU6ng93d3SMlO5yH6M1P6xbdTg0AisUiCoWC6DR+Rx9Dv95sNpHP5xEIBJBKpcTjcdnAHo2ZdDotYRQ0dNxut7Tq6vV60tuWpUei0Sja7Tbq9Tq63S6+/fbbsaxUO1YVgIBrs+sEE0H4Gqs5DAYDZLNZ9Pt9zM/P486dO3C73Wi32wLs+H02A2AXnrN263LfIjNOgKuNVB3GdJBhqt83/9fr1iRYTIaPreqmDN9UjiwulwtLS0u4f/++gDpumqToSWFzQzWVnxnzoS1CM8aGG71plRDw+Xw+XL9+Hb1eDzs7O5ciXuZNhTEhtIxPkk0hoEmn07h37570qNzZ2QGAU2NuQqEQbt++jUwmg8XFRUQiEfT7fdRqNXm+jI0io3xQWACwrwzJSJnFTDmXKpUKarXaK9nkZiV8gptgMIj5+Xk4nU50u108ffr0VMbkvESvHW7C7F+dTCbR6XRkvLgpu91u6eHZ6/WQz+fP1bVrJ6Z7S7/GZ+v3+wHsuSsLhcLYfDeZZD1O7XYbpVIJ/X5fXKG6/6v+zkUWDVAYw8fXyZRRn1cqFZTLZQQCASwsLOD69etYX1/HN998g2aziWKxKN4WjjOZJR2iU61WUavVxrJ9uYewUDB77Y5GI3Q6Hayvr6NcLsOyLLz77rvwer3CNGuGjyVanE6nhGKctdBTwT64pleC88gEx4eBPjvwZ/5o9zjnPN3c51my5q0GfAyCdTgcUirCLOh62UTHL+kNlRYhGRnTYjEnNcXOAub/pPtJjdOC0SxPu91GuVyWFmuXdVwnCVkUt9uNWCwmm2uz2RSmRY+XXUAz/570usPhQCAQkFI3i4uL8Pl8yGazKJfLwmKYHQdOQlwul2TV0YWqwwGYQTsajVCpVF6JA9UbOZuoM9ygWq1KSyx+R5dFMAu/6vOa8YF8j8D4PK3ksxCzrlyz2ZTWVmTF6Mol85PJZISJYWILY+PskmPOUsxNlqEgdFUzyF8/d1PsQgh4j5wPBC7m9y6DXjKTDDQrpt2p+v1arYZ8Po9mswm32y01/AjUgP0uOdwjqKeCwaB0yeD4MOGCrKvf7x8DiYz3JaAxgZIGmH6/H61W69xKkNhlJFNOg5iw86LpuWwyrechbzXgSyaTuH//PrxeL1ZXV7G7uytW8kWPdZkkvV4P6+vrGAwGmJubE4uQwbeaLQHGi5taloV2uy2sn111dv7f6/XQbrcF7DGmi2wPm0yz6n2hUMDu7u6lUKyvI4lEAp9++imSySRu3bqF69evCwPG+CkmxrRaLQGBBIL6twY12hoG9qu0h0IhzM/Pw+VyYX5+Hrdu3cLm5iZ+/OMfC9t3ksLOGfPz81IuQAN89ttsNptYXV19JSmH7tt2u41arQaXy4Vr164hk8lgd3cX3377rYAQJgIx4zQej0sxZwacR6NRRKPRsdggXRqCbrutra23qhyQuW5cLheCwSA8Ho+wesvLy/jss88QjUYRj8cRDodRKpXw6NEj1Ot1zMzM4P3330e320W5XBZG5uXLlwIMzyOLnnNd3yPneSKRQCKRQDAYhNfrHYtBmyR6AyXjRXekdulygwVwrpvsUYQ6Oh6PSxiEzm53uVxIp9OwLAvVahVutxv9fh+PHz/G2tqa9Nplf3W/3z92/4xlA/bBD126nC+ssUodwLaJLNLf7XbRarWESNFA0IwDj0QiyGQywqCdhzDWUVezsDMoT0o0s6eJETOO8jw6bFDeKsCnA10BSLsen8+HSqWCarUKy7LQbDYvnNvjqDIa7TXCLhaLiEQiAPaDU71e75hrjJ/nRKTyoJuMYhfXB+zHHjCeiFYf4yFI5RcKBWSzWSno+TaJ1+tFJpPBzMwMlpeXcefOHfT7fVSrVfR6PWlZpGNs7MAdWVgNtDXgI4D2+/1IJpNwOp2oVqtSW4t9ME9ayByw9IcZa9Xr9dBoNFCv17G7uyvN1oHxjhyNRgOVSkVcjGQonz17JgYWAR+Zq9nZWant53Q6EQgEhPnRzKkeN6/XK0zDd4HhY401xrQlEgmkUimkUinEYjF4PB5sbW0BgLA7nU4HXq8XrVYLlUpFjL1Op/MKmNJjeJCb/iREn8vtdiMYDArQs2Pm7MS8NhaDp6FFY0J//qKDPQrLXNGFq1l0HVPH2Fhm0DYaDSSTScTjcUm+0lm6AKQcCDBek284HKLT6Ugsnt4D9FiSFaSuM8sDUUyGj4bjWQsNB22Aa7GLwdPv2b12VDG9ZtSl1IFThs9GDguiNCWdTmN5eVncnCwUy8DShYUF5PN55HI5PHz4ENVqVWIY3kR03Ak3+rOQwWAg1hiVfSwWw9WrVxGLxdBsNiV4l9lrukBnp9MZC/oG9hUKsG+ZaCuIPRyZVDAcDvG73/0OX3/9tTTKbjab52q5HEd4z3abg8/nw9zcHBYWFhAKhSQWhJYcNyrL2qsDxoQZvmYXM8m5rZWQCf5o8c/OzopFf1r3TmOBLECtVsMXX3yBQqEgfZbb7TZyudwYqNeAlj1PyRiGQiGJNSJDpV2zDocDvV4PpVIJbrcbq6ursqaCwaAUFfd6vVheXsbdu3dlLmvAbFdi4W2VVquFzc1N1Ot1NJtN1Go1FItF2fRpgDEUw+v1Yn5+Hh6PR7pXMOyCcYCxWAw+nw/dblf0WDabPdHySpq143Py+XxIpVKIx+NihHc6nQNjQvXxKGRxIpEIYrEY5ufnEY1GZW2dZ5bo6wiNQiYYUH/rfZCgK5VK4eOPP5ZnWq/XUalUkM1m4fP58Id/+IdSokaHMWmXOc9J453MKNdSs9nEt99+i0qlIi3BnE6neB9CodBYUXVTzzH2lOVczms8zWxivbeZ80KPtX7PDMGxOxdFu7X5o93lJGd0FvNZzs0LC/goR12smUwG3/ve9xCLxbC0tCRuAsa8NBoNtNttvHjxQjLaNjY2UK/X32jAGdsFTG5qfRoyHA5RKpVQKpXgcrmwvr6OZrMp98wFTGaIQIKNxRmMr10smormhqpjNEhDW5YloOfp06f4X//rf8l7l8WKthMCB7v4Cp/Ph8XFRVy9elVipuim0MHOtGq10jOtSM2g6DlnxraRzWHgNEHRad27Bnwejwf1eh2//OUv8ezZMwFtZuwexTTM/H4/lpaWEIvFUC6XUSqVJhpVxWLRll0m2F1YWJDG8e+9995YfCrnKDt1XPQN/TjCMWk2m1hfX0exWESz2RSDlYCcQf3atbmwsIClpSW0Wi28fPkS1WpVAADBdDweF/DYaDTQ6XROHPCZz8fn8yGTyUhWeL1el2zPg45jSrfbRa1WQ6fTQSKRwOLiooDISee+qMIYPgC2+wn1djqdxuLiIprNJh48eICtrS2srq7i97//PXw+H27fvo27d+9KDTytvzVwZLwe426BfUa00Wjg4cOHWFlZwY0bN3D//n1EIhEsLS1JAhGNDGDf+OO6JOA7z05MGlyZLmdthEwil0xwdxDYM+ebXZYu9TtBKFnaKeBTctBguN1uzM3NIRwO48aNG8IsMKh7OBwin88D2A8K5yZK1xAXA4GQnRAQseG73+9HIBBALBaTsihnWYOOY9LpdKQFUT6fRzablSBZr9crbB6w7y7QAIUuNh1wqxWknrS0+ra2tuS8rIh/mcEe8GovRcvaK5JJFxldKGYcklagZmwej2tah9oC1J8xAaL+IRBjeYaTHm8NdOkWCwaDCIfDwvpokDtpE9UsnsnG8T1dNoggk2PIcje9Xg9ut1ti1YLB4BgDrcEej/02iHaR07VHNoUB9gRynU4HpVJpDCSZ80YDY9Z4owE3GAwE6Lvd7rGQkOMyMkfxznAe+Hy+sQLAr+umJ3jVP5d1Pth5AShaT3Be6BJZjP/j/OAz1nUzTSNfs31aL3G+UAfoBCkapnqeaCaSotm1sxSOkTYOJ5FGk94z98GjAD+K9hYBr3Yl4Ro/TX1+kFxYwHcU1JtMJvGf/tN/wueffy4PmQqt3+9jbW0Nv/71r9HtdvHee+/h2rVrCIfD+Ou//msMh0N8++23ePz4MbLZLH75y18KODSFhY5jsRj+7M/+DDdv3pSHVqvV8D/+x/+Q3o1nKaVSCQ8ePIDP50OtVsOLFy+QSCRw+/ZtJBIJ7O7uol6vw+12y6ZRq9UkDqPT6UhBTS4O3VOXsVS00F6+fIl//ud/lv6m55Fqf5KiLTC96FwuF+7evYvbt29jYWEB8Xh8rJcksF/1nnNNW7gssKlf0+c02+EBeOVzvA6n0ynAJ5FISDzdSdw7nzPnwWg0gsfjQSKRwMcff4yFhQV8+eWXkowTCoVkM9HN2enSZQ9dv9+PcDgsfZ6BPday0+kgGAxiaWlJfi8sLKDX60m8Yi6Xw+7uLuLxOH74wx9icXFRYhp1gV2v1wu/3y+uyMuahKXF6XSOJWExS5L9VVm2AwDW1tawu7sra5v6SLPF2oigcazbl/FZEXwz499sy/U6oo0Zu9cIQLxeryRspNNpqT9nxwYdtBdww2y326hWq1IxwG4TN11vhx37rEVXWzDHizqFcXWm0bW0tISbN2/C4/EgmUxKUpkOQeHcYPwr4x9JfIxGI1mziUQC77//PhYXFwWQ6+oP9BrpGEqKZVnSCeqsGT4mm7AbFXWoJjU0ANPGKF97kzlhemnIoppAGtjzgiQSCTgcDhQKhTNNpLqwgO8w4aS6d+8e/uRP/kRcEt1uV7IK6/U6nj9/jmaziUwmg/n5eQQCAVy7dg0ej0dcsWYxRPOBk2oPh8O4fv067t+/L5OlVCrJpnbWwoxbFrok2L17964EwGv6nowKJyXjfXRmEX/TEtExD5VKBY8fP0apVEK1Wr1QyvI4Yt4H2zRdvXpVskIJOLQ1a1nWWDkSHbtnZ11qK9mM3yBjpVlA0v5kQnw+nzRSP+7YazZBly9gcPjMzAxcLheePn06BhrMIGzeo5lRqFlJt9stLiUyd5FIBAsLC7h58ya63e5Ysd1Wq4V4PI6lpSVcv359jPnRDB/H53VZoYsqZGpYR5PjHY/HMTs7C6/XK7FT3W4XuVwOwWBQCrpywzFZPmB/IwT2M/D5PPg+QxZOKubKZDa0kOFjH27Gv77us+SmSk+N9mpMup6Lqre0rtWi3YST4lbD4bAUbNfeHV0qSut5h8Mx1jKTIUCBQEBAITPnqR9MsER9ZeeW1CzWWa5PXrvpzTLlIObvMLGL++Pf2pDXHg89bkxM0x1VzkouDeBjFp/b7cb8/LyUfvD5fNjd3UWhUMD6+jo6nQ4qlQparRZ6vR4+/fRTWJaFmzdvygRmgHAoFMLNmzcRj8cxHA7lGKurq2Mb+9WrV3Hnzh2htwuFAtrttgROW5aF+fl5KRFw1mwD4/oAyGJnZmcsFpP4jH6/j0AggLm5Ocn8Y6V1DVAASAo+gDFrsNFonGmSynmIw+FAIpHA1atXJXFAs3Ja2XHj4vf4mgbL5oLXjcXNNH7TFUBwQ1brpFwkBAcsaExLnKVmbt68iYWFBTx9+lSAANkCDRB5X2QIyLbU63U0Gg20Wi2ZZ6PRXhmN7e1tlMtl+Zt9O/v9PtxuNzKZDFKpFMLhsCRGabDN6w4EAjJPT6NG4VkL5wbnE8dTt8AKBAIYDofiCnU4HNKrlKCAYhdArueUPgfLtpxE6RY7wGKCLYbCNJtN6Z97WAzfQcKySGw5Ngk06Ws4LB71LITPgzqBesEEI3xOmjUC9hlOlk5pNBp4+vQpdnZ2EA6HMTMzI/Gw6XRaajoOh0OZa7lcDj//+c+Rz+cRj8eRSqWkPicTOXguDSLNPUOPMQkSMshnJYxfJeFB0YYPy2hpnWI++6OAVK43glqW62JyVbvdxuzsLObm5sb0O8eW8bZnKZcK8DGe53vf+x7+6q/+CoFAAIFAAOvr69jY2MA333wjm02n08GVK1fwox/9SDZtj8cjWV3D4RDRaFRcSvfu3UO73ca//du/4V/+5V/Q6/VkQn/66af4y7/8SzgcDmxtbWF7exvFYhGbm5vixrp27RoKhQIajca5AL7d3V3kcjkBtAR3BB/AnmVPyr7f70tzbCoaYH/RMiicCqXf70vdPR3QbecmuSwy6XqdTidmZ2fxzjvvjIE3YN8y1IDPDtSZ/+vXtZtBx9BotkLHUVKJsXTKSQgZJJ/PJ3PC6dzrYOH3+/H+++/D5XLhwYMHEu9KUGWX3KKt2mazKWWQmFHKzzebTaytrcGyLDx79uyVeMf3338fH330kWRwhkIhcTnrJCRuKIPB4I0z7S+aWJYlXQ7oetVZ8g6HA6FQCACk56rT6ZQaaWQ2KHrz0saHdh0CkGers33f5NrN82oxX2O5Hxbo9vv9xyrcPhgMpDSQnUsXOLgWn96QzxrwkQUn6NPC66Ee1vGaXHNkNxuNBmq1Gv7pn/4JP/vZz3D9+nX84Ac/kBI+165dQ6PRQC6XQ7fbRTKZRCQSQbVaxT/+4z/im2++QTweRzKZRDKZxB//8R9jYWFBmHTG7pEkYN1XPW68Pp/Ph1gsJmz1WQmJoVAoJIyx1sW6W5Ke53Zg/yDQp4E3mbpSqYRKpYJ8Po8vvvgCpVIJ3/ve97C4uCjeNmbHB4NBdDqdM49xvPCAj2Ua/H4/5ufnEQ6HkUwmJdhYB+tyUjL2jMkV2pfPDRrA2GZOUJhKpTA3NyetYizLQjKZRCgUkodLRK/r/Oj07/MQXdyx2+2+EmhPpoBjBEAWLC09rVhIh2slqa3Mt0HMRc65Ew6HpfOFnftSb546bkMDO7vga5Pe5/uHxY/weJPcE29679pFpAOwJ1m5ejM0XU92jAo/ZxefyHPpoHK6h8gi8Pv6OrQ7lwDnrN0iJy26dJIGwJrhIyNfLpcxGu3VR+Qa5fe5to/CZJnn4et27tfXEX0uGkXa9c7XwuHwWAZlv9+Hy+USb8uk6zDXLK8/kUjIXPD7/UilUtJhhHqNOvE8ertOEo6Jjo876vjbPTtgL5lPM+z0+HDPooeLhZrp3mUcrmbMTYPW7sdOdGLJWQr3YsYcUnidNG5oIHS73bH97yD9p8XUhQ6HQ9jTRqOBcrksxc914hqfN/HCd9KlO4lKdzgcuHfvnpRbeeedd6SwKOvoMXbF7Xbjzp07cjy6P/ggqeToFuNrjC2iW+vzzz/H8vKyMFqDwQCpVEpa0MzNzUkpgWw2CwDCPFyEYrDdbhfFYlEYIV0rEIBU79cTLRgMIplMAoAsArJMh1m82r1w2SWZTOLdd99FMpnEzZs3kUgkxjYIbSzo2DsN+OwUODAeJwfssw2mcjlMgZ6EguAmrIPAtdseAHK5HCzLEqXV7XbHWE3TMuVmod8nC6dLqZj3SpDH4szVahVra2uy/kymlOs5Go0inU7D5XLJOryswkbzfCaMv6KrtlqtolQqYWtrC7/+9a8lXIP1Cpm0oWNDWYCdCRpkkjg36apjHC9d+3Q5va7YxXCxi0oymcTs7Kz0+fZ6vUin07h69aqwlI1GA+l0Gn/zN38jbKUucwS8Cv5Ho/2EI5ZPCoVCeP/995FMJsdKtpRKJezs7KDVamF3d/eVsjPnVa/vqOy91ivAeEY8ny3juHmcfr8vSV7tdlvW19OnT1Gv1xEOhyXBb35+HuVyWeKF2QuXbmDGuvN9YDzsRBuMAORZn7VL1+12C0vJrlDUdwBQq9VQr9fHalpev34d7777LizLkmQXra8o5tzTlQccDgfK5TJWVlaws7ODR4/+f+y9149lV3Ye/p2bc66cujoHdrM5JEUO+dNIY1kzsiTLAQPYsAADfjHgJ/8nfvGjXww/GDDgJMt+0EgYWZgkzXCYO7DZqXK4Oed7fg/lb9W6u8+tqq6u1GQtoFBVN5ywz95rf+tb6SGKxSJu3749ZNgwHCORSEgIy0nKmQB8o8SyLExOTuLu3btIp9O4c+cOMpkMvv76a3z++ecyYKRIWRxSgzqzZAHBIQBhE6hoPR6PZA7SAtCdEwaDgZRGKBQK8Hq9shD44E9ybJyUky4Tw82cip+TzRRuGvw+AFkg3xQ27yASCoUwOzuL8fFxpNNphEIhGQ8CPu2K5TPXsSzagtNiWS/2VdxPtNtAM3xHsTFxTpvHpKVfr9dh27bE39Go0aymqQAJLEzQZ4JlkynV/V5Z8ofJCSbg4zUQ8JyGW+SohbG2brdb2E3+EPiyn/KTJ0/Q6/Vw6dIlzMzMSPcbzjfOMwJ46jjzeVNnaUbfKSnnsKI9LJlMBgsLC1I6JBQKib4mu9TpdBCJRHDr1i1YliVB7Sabbs45JudxU+eekUql0O12USgU0Gw2sbGxIWEsLGVlymnoOm18OTH4pnGkyRFtLHLf08+PsX00ILi+crmcZMUzcSYajSIejw+tW4ZMkSE0WWQdumReG6/npJM26NKlMcRr45gQ/NfrdaytraFSqSCTyQyNv9bRowxxk+GzLAvNZhOFQkEaPHDucdwIJL81SRujJqwpiUQCb775pvTCZRDp/fv3AQBLS0t49OgRfD4fbt26JVXFy+UyPB4PpqamkEwmRVkyuBLYpXz1BtfpdCRejZQsAzB12rrb7UYsFpNNbG5uTqqdVyqVF1yAJym0iFmHMBKJDAV0a3eKKc1mE7lcTjYJAEObBUEN44tYr+ubUApDSzQaxeXLlzE5OYl4PD5UI2mUG4PzSCsHPbfNgGfzexRtJZtK5rjiikxXjVmPz+1248aNG/hH/+gfiWFkbr78TYbP4/Fgfn4e6XQaY2NjEh6hNzNTUXIj7vV6iMVi0jUhEAhIfJqudUhA7ff7hxq5v27Ccef9c/3SU0BdFYvFpAsJgTDv27Z3Wi1y7Zpr0uVySR1DMnzNZvOFLHsTXB/2fi5evIjLly9LmRcC83g8Dq/XK3VMzQ4IBKl6TvI1PSfNNehy7WSVa7aLuo5lasLhsIxzu93GxMQEms2mxHN3Oh1sbm6OLMt1nELPkJmQpcdA6xe32/1Cdi1rr8bjcYRCIXzwwQfSovHixYuIRCKIRqMS2865xPhXl8uFN998ExMTEwIAdQkgHUfKZEUdHmWCcAACCk86zEkDPjOGj/s9ATAZQE2COOl5p+vXuprzNBwOY3x8XIC0036rAR+rP5yknDjg03VqzHY7lOnpafzLf/kvcfPmTbEocrkcfvzjH2NpaQnZbBbr6+vIZDK4efMm5ufnsbW1hadPn8LtdmNxcVGyZiuVikxWWrqkmcl8sXxLpVLB9vY2Njc30el0UC6Xxbqu1WoIhUJ48803MT09jUQigZs3b2IwGODhw4dYX19HsVg8EcCnJyIVAWsPpVIp6avIa6cre1QsFetXud1u2Wj1wqAbOBAICKvyTah9Zs67dDqNd999V5gTBvUyXk0rN82Amj9awWgQZcZ8aDFjS80YpaMWXoNW3ARtvIZAIIDf/u3fxjvvvCP3TGBB8KpZZG5EzOKmW4dKjcpRZ/iasWT8oSHGtmxkGHXGcigUQrPZfG0ZPm4IDMMIBoMYGxtDKpUS1oXeC2ZKp9Np9Pv9oZqIxWJRYvzIKDBLMZVKIZlMythZloVKpYKVlRUMBgMBmHouHHaDdrlcePfdd/Ev/sW/GNrw2PrLsizxkOgOPXzmBPI8v65lBgxvxpyLZMcYB8iYZM45huKw5p9t21K5oFQqYWVlBZVKBT/96U+Rz+dPxaWr2wk6iWmEmXGdtVoNLpdLSvf8s3/2z/CDH/xAmDpgx6gvFotoNptSgqzX6yGXy8Hj8eCHP/whbNtGLBZDPB5Hu93G6uqqrD+GelSrVanBF41GXwDpFAL6k2axWPaJa8gEpfRe9Pt9MS6j0ejIOEXAmd3TsclsYJBIJHDx4kUxMpyScCxrJzGLRe2/dUkbmnHjALJIMOlktg/K5/PSt1W7uFgKolgsSjxIu90W66fX6wlTQDesy7XTzqdWq6FSqQjNnc/npZ5fpVKRwq60BEulkiSBZDIZAJD+veFwWFiQ49qonURbtDpOx2SRnBhWHRhuft48B8/jFEu213fPsnABcmNlsgaBjXlP2sXK/0eBPifApxlBfQ36f/2+3hCP4973cxUx400LS7QAu/0hNeADdjYYMlJmRijjQ003NbDLhOpOAaOU8CgD5nUQghVdioOgR9cv1ACMIJwuWM1y6R8yCATc3JgJiKgvbdsWNlFnjr+seDweidfKZDIYGxuDz+eT9UNvySj946SjTP2k36N+5WujRIdeWNZu68NIJIJYLAbL2mlXx5pzY2NjUuaHhMRx6zTq1P2AtvYg8H+nMeT9maQAAZs2Bpi0x3nldrvFO6TjBXmNwG5CiNN5tGiP2kmKHk/TY2J+jmCU+sk0LPb6rhbOM6/XO1RTclSR7IM+8+OQIwd82g/uVLqB1j0HIBqNYnFxUdq4RCIRJJNJbG9vS+/bx48fo1arYWVlBbVaDZcvX8bv/u7vyoR7+vQpPv/8c/zVX/0VLMuS+l5k+LrdLkqlkriNWq2WuFGYpFAsFoUFpGLUv/n5Tz/9FPfv38fk5CQuXbqEaDSKa9eu4c0330Q0GsUXX3whNaG4yI5aNHAAIAwf0+y1VaFdbxqk6NpNmonRBVy1lc7nxgDjVqsl5zCVy2mKk3vB6X2+5/P58MYbb2B2dhY3b96U0iS6erzehIBdq1zH7pnznecxAZtmsPSx+WNuNLZty7xkHOarjjHnA8E7Y7cYYwLs9odmHE+320Uul5N5zeevDRzev04YaDQacl+8dpPh0zGBBCQEEbFYTOKQKDy+CQLPiphzzEl8Ph8mJiaEMW+1WtL+LBKJwLZtYW7owvV6vVhYWIBl7WYzk9Ggq6/f7yMcDmNhYUHGLx6Po9Fo4NGjRygWi5L0xufV7XbF/XUYkDM9PY0f/ehHWFhYkHqn/X5fimkXi0XkcjnYti2JdprN03Ndx8yaa0WDEH5Hrwm+xrXb6/UkjorPhW5lslks7TMzM4Mf/vCHWF5exl//9V8jn89Lr2IALxh4RyX0vrB94ygZpdeYrd7r9aQsF2vQkkUFduJEWeYoHo9jMBgIC9Xr9VAul4diHLlPWpYlAKbb7eLZs2eo1+u4dOmSdCAyr00bECedRa9ZXw2otEFF3Z1MJiXkgAYQP3NQoX7mOAWDQdTrdUxPTwsTTzIFwNDeehoVBo4U8O2ngJ0WC4tCJhIJZDIZpNNpWJaFcrmMYrGITz/9FH/3d38nKfWWZeHu3bt4++234fP5UC6XsbW1hWfPnuHTTz+Fbe9k0rrdbmEHWZWebXdyuZy4ixicTkVH37oTo9DtdpHP5wUg9no9jI2N4d1338WtW7eQzWYRjUYFZB4X4DPFsnYr9OusKCeKWm9G3NSpcAgAaIFo9wo3WKeU97MiTlaZaVnpv217J8ZkdnYWt27dwszMjLg2W62WZInqIGh+R4+PmaGmzzWqXh1Fs9S61hbnuhnEf1TlJEywZbo+eD2MkQIgBhSZcypHzbgAuxuzZvM0Y2eWXNGGBseIAf6RSETAJb+ruwecNbB3UHG7d1rmxeNxyQzUcbIMm+D4WNZOKZNMJgOXyyXdbjweDxKJxFCXCoabMKYrEomgWCxidXVV9BZrI7JuHxmPwxgUyWQS3/ve9/Dmm2/KZkujmsWV6RqkC576SrO8em1wHej5otk9XqMZGwtgaP0yvpobO2uw2baNYDCIRCIBj8eDixcvwuVy4fPPP8dXX301VHeU56YcJeAzAcqoz5jC+c+1wwxcMqs06NnjneE4lmVJRQaCYmbz0rBiPUR21yDjXK/XkcvlsL6+jmg06mh0cWx0zOhJihPDx+vSDDo72OjuM9o7o7/H4zo9d2IHy7LEO5RIJJBMJlGr1SQ8Su/JOvnltWf4tLX2wsn+30Jnyn4kEsHY2BguXLiAWCwmNfM4WQeDgcS1cNBcLhcymYy4ihgvxCBhWilra2sy4fkaj8lyLSxDoK+XrhQ+SGY2keZnn0uCUgB48uSJFIAmIDhu5G6OL9kBWmw6M2tUlhuVpdvtlk4Lo6hsuuA0ODwNMZWL6Qrdi13R73MuBYNBTE1N4fLly4jH48Jy6M/ououmO81k/0w3rumO0tdNoDeKDdTXTTfqUcVNaqC6F4jSAdtkDbQVrMeTopkYbtD6f96TnpM6HkaPM9kL87q4Pk/C7faqolkFzg8yJjQ4GcaiY6gY00WgwpItAIbcsayrRta21+vhs88+G3IN1+t1YfhqtRrC4bDoBs4pr9cr466v9SCi1wHBPfV9KBRCNBodmkf8vM7m1GBTM8J6bWmAMSqsQteS4/WzbAkTfXQ8qgZdBANORu1xeDA0QHHSXea9mqJjcc3iyGSdeA7eq2ZROT7U6Xr/07GRZPUZAqVrHDoBPr2mTxLUUF8zTEcnBvH+zeoEehy0mHuL/q3vmeuI7xHf1Ov1F2LB9TVqI/ek5EgB3350dyAQwOTkJEKhEG7duoXFxUXEYjHMzc1JRh5j7/L5PPr9PpLJJK5evQoAslCvXLmCsbExWJYllgl7CTabTWxvb6NUKkngNzccTuhkMikBzSyHwEnASdzv96UTxfb2NlZXV8VdYlmWBLVub2/D7/fjyZMnyGaz6Pf7+9LzRy0u104mHkseaBcGJ7sO2gYgLjfGNZI5IIDWVrd2ZbLWUz6fl/ObLubjEK34qIidMoX3m4OmWzaRSOD27dv4/ve/PxQCQDaTAcoul0vOR6Whr4vHprHCeUdFwrk36ho5/8i4aUXQ7/clO+6oWtrpTYTJGk4WO107/GFSgFmoVH+Plr1mY3hfZjwjr8NMCCH7xNI4rCOpx4QFxo+K9TwqMZ+tz+fD+Pi4ZEYSNJP9isViGBsbQywWw/T0NKanp4fc5sxqbTab0rqRfXXpdWAtPY/Hg3q9jqWlJSkrRU8Dn2kgEJAMzFarJeudoJTxf7pY8V5iAna6VAki+P12u43NzU2Jsa7X68JQmmBerzUdjqLnjGbHqc8Gg8GQW5L3HgqFpM0YE17I5pNYYHYqwfeouqpHqes0QBmVrOWUDUvRII37DsMuSIJQV2kWyzR+o9Go3Btf45osFosolUool8vIZrPY2toaaiFKfch9U3//pAEN5zGbNZDB1i5dAkHTowEcjr01DRO/34/p6WkJlWKcKGP/Gev3Wmfp6oU4Ct0zgDgcDiORSCCdTkvBY/a302CDbgYG2HLAmByhF4fL5RI2QLuPuEHSX84NiQuE7ce4qPg9WqO0/jRD4XK5hrpZVKtVqe1jUsInJVz4OoCe12puyBRu2LxH83k5sWejkjZOmmU5yBjr+9HWlWXtusAZN8oepXpM9Lk4p2nNOV2L0xhzc9DvjWLpRj0fnZV3lC5dihOzaLImGtzpa3ViI/RYmc9Jf88cLyeWwPzR759l0fetN3XTdWTbtpTC4IatWRuKyTBwQ9VJLgAkIYOt7WhAcyPU8UO2vVs7kcfU5z7oOJsghfOE16g7GejwBx3TqeOc9Jwzx9KcB+YaIUglG651Fpk7rev0s9D3bgbU6zl61PPP3CtNUGbqBS1O16+vlXuXZkxNHaL3bVOXARjSPzREtCGwny44SeHz1ga0+bycdAqwv/vW6VxOOpNhMDSgzHJJo+bYSciRAD4qLK/XKwVrE4kEJicnxUrgJst6TIzPYTwKAKnoT5cH/eyctAR6DEJm7EGj0RjKQiKy15Nbu+f4IBqNhgRr0jWkNz9af/V6XR4OFYplWeJCZW06gq2jCKx/GSGINS0aYLcIpl7U/I5eEJ1ORyxe80cvDG0dnaRoVw//3gv8MJidc5MBykzXT6VSmJqaEjfa0tKSuML1MyRTa7KjGvhp9zDHkK43jh0BuW3bojB5X5ZlSfwl3Xy6RR5jTTnPj3JumZumVu40gEwwyPvRYwFA3Ehm1r3eaPTa0Kyz3pD4GjMmWQOQ5+Nmc5xzcS9FvNf40/Ak2NHPnRn/9Xod0WgUd+/exdjY2BDQqtVqeP78uWys+rnE43HMzs4OgZZ6vY56vS6hJ2T10uk04vH4ECCgLib41POY4LHf74suoT7eb77x3jSTqJ9tMBgUYMuYOI4FdThjGMm8aYaIr/G+gV09wJ7fjBcko8n4Wxr00WhU9LSO0+Yz08ckOBzl0j3K9aeNAc2I89mY7J4mNzwez1CcOoE1w3O4H5nXrNeLCdLp8u50Otje3pZwAf4Ui8WhTiUaZJoAeS9m8riE+78uc0OjQidlasZYj8N+12oap/wuMBxPGovFAEBcuhwnGh2vddKG1+sVCnVmZgbJZBIzMzO4cePGUPFDWpeWZQ0Bimq1OsTM6TRxtklh1h7jWBijQTcwNxuNrs2HZ9u2LAoqS9aTY4yeuTC4GVF5acuRrg8uPk1rnzQLwXgZPcnJsDhZyvyfGzLHTwfycgPQi1ondpy06IW1n7jdbimVE4/HpdXO/Py8GCOXLl2Cx+NBrVbD5uambDLArruYbl2d2KAVM8dQM8+MKeV1cPNjnFK1WhV3HRV4PB5HLBYTI4SAj7XV+GMGqB+FaFDBebMXo8h5oBUk573J3pmbqd6A9HF4Ts0CaVczP0flrQHfaczFUaI3Yx2nQ6DKummRSASXL1/G1atXh8o+5XI5CVOhTiLQv3jxIm7cuCFhFfzhnCOIYkIIN30zvITPmnOMIJuvU087MbROojdUDfQImHTpl3A4LHOYQJUuSAJN6nBevwmgtTHearUEMDL5RRsOBHf0Iukfk2nV4Rdm0P9xiZNOdWI4TcBHbw4z4WkU0XVIHWXuRSZzx986NINMdLFYRLFYlO9wjIvFoiQUabCnr1EbfCcpDDfRYVWcn+a+puVl9msnZpBjzbkdCoUAQGLqOZ90rOhrFcOnXQRjY2OYmZlBIBDA2NiYxED0+32xEs3+dNrtquty6Unkdrul9h0AbG1twbZtaR3GdHIuel3B3WQUeC4uEg3eTDedSfnq4p7ctLkZMdbP7XZLP9DTEM0SaIrdpPBHKXAz8NTp/YO4GI5LeE4WrdQuGi5yKmqCKzJ8LEXg9/sxPj4uYQQmJa/jVrgBOil+PZ80ACQ40S42zmsNdDSo4TgyPq9er0tJIrImjAFhPMhRxPHxHs3Nzsm15RSeYbJ05rx3miN6I+B3TcZZX0u73X4hmF2DUz1+pyFaV+kyFIyb4sbi8/mkKO7W1pZsAKVSSVp+0fgtl8uo1WovsKGWtdO6aX19XRLHyPAQZGrdR4ZZgyRdh48/1GGaYaXxSCNwr/vnvTP+TccoAi8+YxbMJtDT80aH9Oi5qZli3gOvmwyUznDXDCE3fyaGaI8T8GL4AJ/hXvFV5ndfRXhOU8+YBiWAoVqymh2iPup2u0NxsvpY5to12TjzvgimGWOaSqVkjHT3Gydm7LT2CIqTvjI9LXvFU496vk73YwJozn2GMGhSSOt8p2s8CTk04PN6vZiYmEA0GsXNmzfxzjvviNUE7PZ07Xa72NzcRLlcFqtVB4dzA2cWFevB0Xovl8tYW1tDvV7Hs2fPUC6XUa/XpZAnLTcW/bQsSyxi0vxUENwoOcia2tcbvekCNYGUZVnSzLzT6WBtbQ3r6+tDD/ykhQpOM1HcSMwEA9OS1OwKP6cBpF4UWhlTTuJ+eW+pVArXr19HNBpFOp0WF+3U1JTEQTHTm8wvFbi2jHlffF5649KuCCpTLfo5a/cnN3INSPRcctrEaEDkcjmUSiVUKhUsLy+j1WrJd3K5HKLRKCYnJ5HNZqVswmGF90qwTKZHX6dmQlisXD9zrmGuVRp1Bzk3la1+DhSOjW3bKJfLaDQaEmvLTY2bDY93HErzIOOrDQ265Nk71uPxIJvNyrP7zne+g0wmg/v374sh8fjxY6yvr4sLqtPpYHV1FeVyeahsCbAz/4vFIv72b/8WbrdbXLZ+vx/xeFzmPI1sFo/n8zErFRAYMSyFnxkMBpLMZNs2CoXCyPvnXAkEAkin0xgfH0epVJIQHV67jhPmtXJDZAkVGt8sI9Lr9SRJj+tLM5Nktehq1GCQyT4+nw+JREK6EOmCw8CLCSCc98ywdOo7bupEk417WeF6MF3I2kNDd3uhUECv10MymcT4+LisI64L6gVeixNTqN/T16DXIfViqVRCNpvF+Pg4bt26hc3NTTFUyKqa+525x5w08ON4MRyA10ajR7u8tRH0qufUx+r3+5KroNvmaa8IQedrA/jcbrek2zMeiplknHy0vqrVKkqlkqR100VK6p7Aj5sQANk8Go0GyuUyqtUqNjY2UCgUpK4TFR8p7EQiMeRCIuDRgbzaIqE1ZAI7E/BpEKhjZ3gu7VLmoj1J0KcVl15wmhHh5/R3KKOUlhOoO40FTGbA7/fLfIvH4xgfH0cmk0E4HMbs7KyEFYRCIfR6O9X92d+Vi8u0xvTY6GfN+TkqJtMpLo3H08qax3YaPz2OzBDmDwvx0l1Hd9eo9kuHHVfL2s1y5BzXwM/J2DENgIPOCZMhNuejOcYcT7JW5nif1DwcZdkTTBEokE2ia79UKolrkbGi4XBYer9SV1LXUW+yNy5rhHGMCdq4YWjgouetZQ1nO/Nv6mOOo46ZM40UzYbtNS6aFdP9fbXHRn+W10xjwrJ2PS3auNJMIeegdskx7EGDDj2/uOlzY9UdiLQxZ16fNpz3crc5zdfDiBPbY+pivs7YRLYC02uP7KhO+tHHGmWgm7qJ71M/knFlL16Xa7d00lksi6Sfo9PrXLPaGHEa6/3O4fSanr+c51xHGheM0oEnIYcGfIFAAFeuXMHc3ByuXr2Kubk52LaNtbU1cT18/vnnElRLK46Mm3aF0N/OQEb+7Xa7pRwES7U0m02xar3enWbjLG64vb0tllCtVhvaeKlwgd0Jr4OfqXwGg92+gSaTpS1UWuUej0eKigLD8VAnKRwzXb2ei9YpjkOzU3SHAHhBiQLDCuIkqWhmaAeDQbzzzju4ceOGuDYZ00mGgi40vaFpFs4EKBo46DhM3q92Z2ngT/BBFz+BEceOohe2GarAMed6IAvO+U0Gi9fj8XikH2qlUjmSzYb3w7GgEcbNXm/gnBt6I+FGoDMeCRC064JGFWOrTDcUx8zckDTrzHHWcXCarT+OucjjMmyF18VQFl2yg2PJe+H7nJOVSgX379/H6uoqarUaUqnUkMHBQHh+tt1uIx6PS09njnulUsHGxsZQBQK6/Dkf6ToaGxsTkMdYOT0n+ayB4cQbgknGA+83tqNACo+r1xDBL6+TBgzHTifQMZxBrxttmOoQHT3fLMsSzw2Zff7oshic1zr22/wxAZApTvrxZUWzPaPYboYhkfhgfBgNiXg8jn6/j5WVFQSDQczOziKRSKDVaqFarQ7pPj2G5vzlOcnW0wOhO6OEQiHZR1may6mkjJ4bJy1ax+tEIhom+lkeBrCaANppnjiFreikEf29k5RXAnwXL17EtWvXMD8/j+npaalZ1+v1sLW1hY8++kiAF7BLPe/FJI0S/Z3x8XFMTEwI4PP5fGg0Gshms5JdVK1WhyYs2wyZFDeAIdTPmENaydqiYdawzvx0u91StZ7HdWKEjluoyLRVzk1z1KTWm45p1Y2KRTxJwMfxTiaT+N3f/V388Ic/RKvVQqFQGMp84gbA+zSBngZi2o2oXSZmVxENNHS2IBk2cwO17d0YPmDYotSLH9hdB7VaDdvb22i32+LS5fjrOURDw+PxYGNj40jGXjPZnCccH+3S1YwNN0aOrWmlmvFRGlRqI4Tzh89Mf05vGibgI1h2Cs84KsZFi9vtljABXofb7ZYK/QQmOmTEtne79RDwVatVPHr0CD6fD6lUCul0Gv1+X543uwXpdep2uzE5OTlUEH17exvZbHbItakBn2XtdkWgy5S6UG9yek4DL+or03gcJfuxFFxffH68LxpMNNQZ1kADn2vJrBunGS2uKyfvC5lWGi36RwM+reNMdtvUccdlwPNZ6AB+c48iGKtWq8jn8xgbG5NrDgaD0h5ubW0NoVAI09PT0v+az94kL7ToZ2jbu60cqfPIUHk8HqlTaFmWJHSkUikp5D0KDJ2U6GdIo0jPGa2/qfcOw7aZgJnHdPJ8cA1wXzqOxLuDyqEBH5Vcs9lEqVTC5uYmWq0WVldXha3gxqUtKlqipiXDY3JhOdGs+nO08m17J8iY2W8cVG5aBISM4WJ8h4610g+DFpOeALSktQuX59Obj76Hk2T4OME1dczx0huoCXRN9xg3Ye1iMc9zklR0MBjE5OSkxOmZbCUBhLkpmPEoJmAZxbxpRa/BiD6Xfq7mWGjQYp6P68W2bcnSpVuKIIjhDPq6gd3Mz16vd2QuXe2yNa9Xb3bctLXl6hQUbv5vAl/NhDp9h5/V960D8c3NWLubTTbmZUQ/QwJWvcHRg8DNQd8Hr5UbC4PcS6WSgBlWC+CaoiE6GAwk8QzYzeqjt4PFiLXREQ6HMTExgW63K22ceK3c0Miocl4FAgHEYjG5Fp11r9ePDvZ30iWjxk67SPX4cz6ZjJzWQdpA6Pd3i0kz7lbHG5r6i+CO96yPp+N0eS1mMgmfJ3U3x8uyLDHoQ6GQuNX1fZIEYGH+V5X9jGiOI/chxqfb9k6HlnQ6jXq9PtQDV7vDTb1E0eNJcM9i4Mz2Jgtrgiay0R6PB7FYzNElfRoMFueBGcNn6vHjJmT0vmOOudYxJz1GhwZ8ZPMCgQA2Nzfx8OFDNBoNfPrpp9jY2BA3LgCJXdGbo8kqUWlqFKwnLF/j5zY3NwHsPkgdeM7AzGQyifn5+aE+k5lMBjdv3kQ4HEaz2ZQM3+XlZTSbTSwsLODixYvCJlAxM+mkUCggn89jc3MTS0tLkjVFAKmV1EkKLWZz0ZmgSIMQzbjq7L5arSY1wJyszZOaqOPj4/jt3/5tjI+PI5lMIpfLidt2FOigO1Jfn07DNwGI/hyTNizLGiqsrY0QgjPtytTsBbA7F7X13mw2pV7W5uYmSqWSMCmWZYkbkKWCdFyS271TYmZUuaGXFSp4uu002+mU5c55wnvVylzPL722NUNA5onPwoydNDclHo/jT0aBRlwwGJTMZV0SSTOVBxVuYNpbEAwGJXmMY0RmkeCBbnfqrGq1ikqlIlnUZNomJiaEweVv3jcZ1Gg0ivn5eQQCAczNzQmba9s77jUyhtPT01hYWACwm7HJDX4w2O0WwezVXm+n1zdr/fF8fK7dbhfZbFbiAmlMcR2M6jShx473abJhWmdoJlRnt5OF5HnD4TDS6TRs2xbdzDHWLmwn1l3vLdoA45xrt9uoVCryHTJ8nNfay8MuJNPT08jn8/KMqFt8Ph9qtRru37+PfD7/SuCB12O6RbUhwjWn49lZGWJ+fh4TExN48OABvvzyS7hcLly9ehXT09MCnLXnRh+TBjT3S6/Xi0KhgCdPnoixwFAofo+vtdttPHnyBMViEYlEAuPj40OhQaclBKlM0NEAX89FAI5xmtpg2UvMuWb+TT2kw2B4XF4jEwRPUl6J4SPLRanX69jY2MD6+voQc6HBiA4q1oqHn9UMAgdHLwS9AWlloS1w0vnBYFAy2WgZ+f1+pFIpxGIx2Vy11U4r2rIsScbQBXOZ/cYm0zqWidd8Gi5dfQ160zMtDGBXmWgww3E3GT7zuyfp0g0EApiYmMD4+Dh8Pt9QfN4oa5XXuB8Labo0NZOiGT49FznftOiFr11kJqVPho+JS9VqdYihIYOg55EG6dzU+P6rimZn9Pg5sTXagDEZPqc5Yr6mQZ2T1cvPmAahfgb6GGbwvVaqLwv4OOaMJebmR8DHOEYCWFYf0NfHNcNSKOVyWTJEI5GIfIZGBLNndYsvZvWNj48jnU6LftGGChuzu1w78XxsUaZr6ZkZqAQTZCvJzhDAMtvSnO8mczdq7MwNzRRtdJqGJ+cDdREBJM/P7FReH0vQ8L40WDLPyTXI/3kcgicT8OnYKt3/NxaLwev1IpFIDCXmcK5opvQwMsr41O9TaEhql2s4HJbe8NSP9B7wGWkwz9dM4Xh3u10BxslkciiWk/qHc6harQ5lUZu65DREX6MTmNPGrclCOukkJ6ZyrzVhMql6vpsM9X5JUcchh949Op0O1tfX0Wq1kEgkkMlkEAgEpLBtrVZDsViUhV4ul4csfu3q0nFkfI/oXCt1nVjBRcxSA0z48Pl8mJubk7Zt8Xh8yJph0DfjRnTQMBU2+0iyLART//v9/lBKN5W3zoajkiKQPQnhBGKxVA1MnCae06auFyuVlwY/2u2oS70c932ZWVVkBkzRoE3fO+9ZAwkAouA18CFbsp+CNEGnnss8XigUkjnCjZWsSywWExcej1Wr1YYMCAbf6w0Y2C1P86qGhR5XHcvCsTDHUI+Vef9OAE+7ofQ5TQva/B6P3e12USqV0Ol0kEqlJI4uEAhIfT7qFoI1pzIR+4nP55M1zc2bGyfXFZ8vQQK7W1Bn8Bkxe7Lf74txyBhmr9crng6yKfF4XOJUM5kMfD6fVB0AIOfY3t4W5k1ntppGL3WsNqLpluRm7na7pYsHCz2T4eP4k70kczhKnHTJqOeqjStgF9ADGDJ6NLjgGuDc10BGrwvtYud7BCGageQc5lzX4QKVSkUM+Uwmg1gshkgkglu3bg3dC5mZfD6ParWKcDiMUqmEXC53KNBH8KqTNrSeppBFZrULAizuPewJ3ul0sLGxgXw+j6mpKdy+fRvBYBD1en0oKYb3QgYwl8uh1+shl8uh0WhIwhyNFl5XIBCQec4YPr6ugdRpgT6C80wmg2g0KnuF1tV7GSimOAEyk2hwYvm0EcNr4HljsZgkVJnGynHLKwG+lZUV5HI5LC4uYmxsDMFgEBcuXMBgMEA+n8fq6iparRay2ayUUeEiZlCwZutMBAzsDi4zkjQq1t062LYtHA7j8uXLmJ2dlWulkua5Go3GUNq+y7XbDsu2d2r1tFotlEolFAqFoQcaiUTE9UPWKZ/PS7kZxlpRMZ2UEPCRugdejCPQAMaJ2eH/3EBMJc3nx3pzxy2afdGAj3NIb1J6ozeTN3S5H83UUfHRiiWLALzoUjHHU8f3mULXa7/flzJC/AGARCKBYDAo8a8sXZTL5WRtaFCnr4FzlmDqsIpVu7b05stnzo2EPxrw8ZooTnGNBB76GTBOzJyTppXNdcp6X3NzcwKCCPi0YUXAZ1mWbGoHFcb56mfMWDwtDI4nOC+Xy2I8AhA2SDOA7PxApjoUCmFmZgZzc3PiaWDyF91mFD7bTqcj+kUbkTrOkPHJNEz13GUGp9vtllJS9Mx0u10UCgU0m82hNcKKCnuNpX7Oe7nFeE96XunnrI1VzfBxPbJOq8vlEsDHdWp6Mvhbuy91trT2BpmGILtI+Hw+jI2Nwev14s6dO4hGoxLK0+l0BLDTk+Xz+bC0tIRCoXAowEd9pg08He6g74ldLprN5pDngLX53nrrLVSrVfzsZz/Do0eP8M477+A73/kO4vH40HE4DmyBWq1WsbKyIslDdBfH43FMTk4O9RkPBoMyV1lvkcfSlQ30MzlJYWJUJpMZ6hmtQ8ScrtEkQCij7kf/rY9pgj+uK5PFdbl2Srs5kRfHKa/k0uWiqtVqyOfzAp4syxrqSardrXozoPLSlo1pHWi3AY+j3TpMyKAlxw1JW786YLfT6UjvRcYrsUOGZe0ErWazWYllo0I3Hyg/r12c3ISPopjjy4p2mWlFBjgH1ZsA2/yOaWFql95JxfB1Oh1xj8Xjcck809fCa9TsEbAbDsBFbopmJ8zfPLb5zJ0YDIIfp/EYDAZDZYnYjogZnHTb6YxEns+0lLUri3UnXzVmhsfX69S00p3WpR6XUe4Oc07xPMAwc2wy0eb9m/FgThu2dke97Lw02Setr/Rn6E7jeXW2H7Bb4onv6eumXuI907Ckd4I6A9hNVGFMILNwybZpY4Y6kOy7rjDAtcGQGxpP/BxBnXYJc+x0vbu9Nm0eU+sDE+zt9X3Nuutz6Weh42G1J0iz6qaLzgw70dfkdD2j5oyOOdT6wQS7r6oLTaMSGNZtOmzAKfyJXgEmmNDFy2oZNAL4vHSYSqvVEgOAdfbY595MbLSs3fh4hiiYwJvH1e7nkwR+zWYTa2trAva49nSJKRNvvAzjN0rMfUF7C3Regg6F29zcFHxxUvJKgI8TpNVqYX19HR6PR2hUPvBerye1xbQ1ytp6DJamW1WX1AAw1LKHQe/hcBjRaBRu927FeSJpj8eDSqUiyoILBNh5GOVyGZ9//rkoej4YBlovLS1JCze6NsxNR288ejF0uzv9B3U8z0mItpJHsTBOm7tWgGTstPuKGxStamDX3X0SDF8+n8dHH32EVCqFO3fu4PLly0MggYtYhwqYSl3ft96EuFFppsu8fx1zpoXxeBwHDTw4n8j0LC0tYX19Xa6bll04HEalUsHW1pYAFZ1dqK13fa2pVApzc3Oo1+tS1+0wojcQrhMqcJ2hqePUTFAGDJe54fjqe9AMLDcmJmEQyPAzNKKYJGEq4sFgIN16dLA9A8lt25am7gcVPn/NfnDc+T4NQW6cjA/mNWsAQhZEzzteo8vlQrlcfkHJMw6NG7B2g49ipDTQ0WwPX+N62NzcFMBEtoubv9ZxmuHTMXN7bdZ0+9Elrq+Z12iuHxOkcy3RI6INBj7/Uqk0dJ8MeqfRxGegv6vdvDpeXF+HBmx6vtIAazabyOVyQ8YK78dMrDqs6OvgmAEYcvEyc7Zer0slCu51zWYTlUoF0WgU09PT6HQ6uHLlihzrz/7sz+Dz+fDuu+/i5s2bsv44rtvb2ygWi3jy5Amq1SouXryIu3fvyjzhemKy2NjYGBYWFrC9vY2nT58OhULp58/Ev3K5fKJlSJaXl/Ef/+N/RCKRED2WTCbxxhtvSIMIev+YSATsFkrez0AxjU+9x2pii8fb2trCxsYGGo0G1tbWUK1WpXFEqVTC6urqsYzDKDk04CNIAnbKlJTLZRlcMhBkIfSGoWOEtDXKxW9aS0TnVEKM1wN247l0cVLL2smwrFarQ5l1dCG3222USiV5MDw3ASQ3Yb0Ba4tfAwJtLQEQcESL+SSFzJu2tkdZnqNYG9N6NSezPs9JMHytVkvK/Vy8eFGugc+CLIsJtvQ8IjvjpOy5Keo4IHND0speHw8YBpN6wwB244gqlYoUKDXnerVaFdcgu4Q4uRwIKLgWotEoAAxtsi8rTswe1+kohs8U3g/XyCjGmN/XgM7lcsn6NxWpTiYx55nJutDY0QzbQUXPdW2hO7nVdBwrXfb63rQRNWqcgN2STgQ6BIQcQ7aF1KWkNODnRrJfYhXHularSbFuGkis08fxNOc418t+8ZAcd6d6faPmjpOe0X1ZdfiIGS9Kjwznj17zPKceg/3mLz9nAj7tFTJjW8kka7bxVcXUtxqwksHTP5wz5j4aDofh9/uRTCaRTqeRzWbx5MkTWJaFS5cuyf3y2fd6O+3TyuWy9HD2er2YmpqCbe+01SNDxefCRMhisYhWqyVJG+az57XuZzQctVSrVdy7d2+ondn4+Dji8Tg6nY6UkNHXepDr0wBP6yoteq5xLjUaDWxvb6NSqeDrr79GsVhEvV6XjP5qtXq0A7CPHE3K3/8TWqhcJBwcKjaCLc3wDQY7lead4iwAiKXV6/Uk7oTWuDn4/DErqWtGhyyBfijcSF0ul0xUYNf1pEEEHzLBIq09BkKPUsLHKbwHsgQa/OrnYE5GPjN9HIoT4OPYEiwft7BjS6lUQjAYRC6XG+q0kUwmkUgkJCBeJwRRsfG56/qPnA8MgNcWttPz1SyOdo3pzZoMCud2rVaTuFFuTtyo+F0GGA8GAwlL0ECU7jYmgRBsFovFI6sBRtFAFdgtV2KCNv2+BjJkmHgMvaHz8xxHMlz9fn+oLIx+LrZtSzFXXVaJTLYJ9s2i4wcRfU9k7uiOpX7RTIteA+Yx9gI4WkyAQSNYd8ogc6wTGMx56pQAY7Jg/G1WSOCx+ay0QcFjc36OGk9tvJgGoGlIOulDrYP4vPW46HXFZ0CwR5CvjTl9fPM5mM/GSf+ZbA3PYQIxJvmwRR51zGHFBHu8Ho5rtVoVw7BaraJer7/gtne7dztxAMDY2BgCgQAePXqEhw8fol6v45e//CWWlpYQj8exuLgIn8+HBw8e4NGjR/D7/RgfH8f4+DhSqdTQvsp5TwODgM/t3umpq71ZpqHH105SmGXMZ8d5U61WJQaXTDaBKuOLgReZc2DY6OY9aUNR/9Ao5N7SarWwsbGBYrGIx48fI5fLDSVNvTYuXScZDAbS/FoLJw/dInyNYND8jpNFyOMDO/11GTA6SkYBmlFAzFRYB3lNv7efJXncoqvrazejHgeTtTAVM39r5kYzHHozPgmXLjNX3W43Njc3JTB+bm4O4XAY09PTElQ8MTEhRUK5cbOBuh4HEziYc8KcN9po0EwgrWS9MdFoyGazKJfLQ4CPBb+1u9br9UrVfBopeqNnLTK6sIAdhba1tSUK47BiPntt2PB6NNDiewRCVJBUgvp4GhTyc7w3ZqcR3BDg0DVH9szl2ilVYlnWUBN7Ml8aDLHsE2MkX3YcOLd5Xu2a0Rs675Esi3ZZ6h8y0KPAGucAx5dAht/hucxntZdBxtfMdckx5HPRwEo/K/P6qcv3Gk8amWaGqQaRvCen+abBKzdmGj0EPD6fD7FYTMaIyTq6Z7sZy+qkh510nWnI830NOvV8sG1b3NjNZlNY+f06kuwlWtfyeXDe2bYtdV/z+TxKpZK03tOAm6xjPp+Hx+PBzMwMotEoer0e/vIv/xKFQgFfffUVisUi5ubm8L3vfQ+xWAy//OUv8etf/xqXL1/Gv/7X/xpXrlwZAnwcD3rKer2e1Ep0u93I5XKS/avvZ795epzCBBstlmWhXC5LUhXXna5Buxfg0+w+74fzk/pAgz1NINXrdSwtLWF7extffvklNjc3XwDTJylHCviA/TNzzBvcDyQ5vXdaoOosi3bJOVmrpox6zdykTBZBu1KOW/Tmoy0hluugi4oxUwQCBH0sL6CBB69bAz7z/vX9amXvFNdHJUBQ53a7USwWhbLXBWd1FhufkY6V1McCICw4wR/dwIcpP2KKqZh5L06MjeniNA0hkxEwLV7NOvF/Exzoe9ExgDy/ZjM1O6bZqcPMScYyapCqlb4JoHjNmsk3r5/rxlxPevzM180wBHMs+b+Wg2ykeh1rwGeW3dHvH9Sl6ySj9LX5rM3x4vNz+uE48ZoYD/oyyXH76bv97sM0CjVr/6rGrxMrxrnc7+8U0W42m47x5Pq3qZeY4RyPxyU2lHX7GBsfiUTE0NHHGHX/2lMxKoxh1Fif1L7tNCdowI7yAjjtA6P0mt4ftT5zWuO6vqepx05DjhzwncvJi23bwnpqwKcVpp6sTps6RVuOLMHCDYKFR52YhOO+Pyb+MOvV4/Hgq6++koxXncBBgMc6Z6xFxtdNJk1nUY5iR00xmRHNCDABQjMRThajvj8dN0TWgpsbM8s7nY6UODKD0F9W+Jz13GBhX23xdjod1Ov1IVeFTpzRm7GOc+V90m1CFk5n6Ha73RfYff2MOC71eh3ZbFZilvjcGH7BxC+WHXkZYeFh/fw0kNTFsc22dnpj5rM1mXE9RnzfBNN6PuiN5mVjxExWUJ+fY2mCR53QwL910sZeAfe8Rn2dJrDks2YYjb5XrafogjMNBc4Ry7KkliXHDYAYRHrM9zJQ+BqfhRn6ojd5DVB5PF3xIRKJIJlMSrjFYcVJ13COV6tVPH/+HPl8fk/3n56/dPsGg0F873vfG2JBk8kkLl++DL/fj7m5Ody9e1d05/b2Ntzuna4+HH+tIyxrh5XWnhOn6zB/O7msT1ICgQAWFhZw9epV6eRiAjid5KPvnQwek8iol0ygPwogT01N4d1338XS0hI++eQTrK2tndyNO8g54PsGCCclFYK2AJ3YmL0sW35PT259TF0Q+ySF4IflcvYSgjhmjFMx00VEwMdNhpYfNx4TLFO04tcbwaiEHoJrDYjIoJgMEeP1GOeq3YbNZlNS+PdjxA8qTnOAoMzcPOmy4L3xHvS46LHh8TWrqWPsyGaybIM53jp+kjG39XpdFKwGlIyjpGvxZYUdeHjNWlwul2QtkyHQAEE/Z/P1vdaWHluCIFr+emPcC/CNYmFGsY4AXgBbei6SPeN4HyQW2Ym1M9cIf/N4Ttne5lozwSPBYqVSkYxdzYSb81jrJif2TL+un9uoMTbvjffHbO1XdemaYFPPoXa7jUKhIH1y9zoO74W6xOPxYHFxUeJgGX84OTkpczqRSIhByd7w+hmZOlC71vea405/n5Z4PDu9qcfGxqR0jTm3ndg5cy0Czuy9FvP/WCyG2dlZtNvtE6+55yTngO8bIpptMFkHwJmSNhWe3ogIVngc0+V1FhbyXqLjwriZEeiZbJ5mPDWoMK1VrSQ0C6CVAX/r45juD/0dvfHyh7F//Kx24R6lhcz7MrPoyaj2+31JPrEsS/pTajCg45x4TD23dJyLmfHo9XqH4hD1GPH5mSVYtEueG6Su+fUqot0y/J/jTsBubgjmfHkZwOdkNJjv7Qe4zP/N+Wm+Z37GHHMTxO0lJnujj6nZO46P07WZ+sf0HJixkhxbgm+nWEqeY79N2XyWJuDUIMyM9aMR86pJG/o8XOtaf9MApJFrZqPvBVg9Ho90ydCZ3s1mU9ZmIpFAv9+XBKlIJPKCoaHHlXVAaVzZti1JCGa/bd4DDSPtGThJMQG1UziGXvuj5o3TcbWMMnqc1slpyTng+4aIqSzpgqM4WTTaUtbuFE5SzWhwApuxcGdRuKgJVKrV6khLf6+/X+Z8o75rboajvqv/Nt29fO2owZ6T61Vn/JFNrVarQ4qe4I2fd2JY9OuDwUBYBwa98zyMcdTAiv+zfAEzlXVJDu1SYrabrqt1WDGfhwak+z3fvV57mfMelRzkmPvNyb1kFFjSWe0UAn9Tb2iA7OQO1zGWzF72eDzSdYmsuAbnJqDUuo3n5G8NSPm3NuA4f50AK3vujnJvHlQ4fjRyNNPdaDSwtbUl3TU02NLj58SQktEj0OH6Ym09n8+HqampoWun0alBux4TegCY+W3bO5U52MyAXhJdOolx1ZwbpyHaNW3GQu4F+kxxIknMOce5yDlzUjHvB5FzwPcNEFPp7sfw6e85ibZKdDCveS5O9rMqR82IfdOE42Mm+2jWTLtd9ZzYjyXhe/pcZmyVZkL13OXxudmT4dQZ0aZ1ftSAWF+309/nsv94mDrnZcDxqM14VEKHyegd1MDj/+ZxzPecjqGTTQ4rToBZjxdZP12DzwydML+v9bITc8m1Ynoi9HujGGJ9zxpAMTTA6f6cgPxJiqm3nPbCg4A985hOn3diDZ3Cg05LzgHfN0TMzdOkkU230SjFqCeqrlPHxW42ND+X11M4Hxj7qbtbMBuYdb9qtZowKnT9sM+qDrbXri2t/M15ptmaYDA4lL0WDocRiUSEXczn89je3sb6+jqCwaAUdidjyG4+r5rEci4vL2RizZgv1jLkZ/i6uanq3wTtTrGh+rgaYJkZq4wvNr9LcYrtM12iJljib83wabYrHA6/EsNHnUpvignUGMPYaDQkjjefzw+5mPW60tevmXiOiR4b3dKPovcJXh8NQM0m6lJFrVZLvCjmvsA1zm5Zr1JK6rDicrkQDAYRiUSkjqwT4ANefOZO4Uv6s5pBNsEkdWIoFBJm9LTlHPB9Q0S7J/RrpkJ1soS1aMBHN4z+jBmzdM56vJ7C+UAlTHcoN5lms4l6vS4/jAHy+/2SyEAjgHPFyRWtxdyYuNlpl5nf75fM2Ha7LT1lWYonGAxKdX+dcHDO5p68aNbW3ASBF8MQnJgzU0eNYok410wj1onJ0kI37yjWbz820Ok1nlN3eDmsEKgyVEEfn/fIZLVisYhqtYpareY43ub8NwG0CbL3iws29w59Lq3/GVLBe9BjyjX+quP0KsJrIOhyilHUMorVHfVZDdT5Gf4woexV3f5HJeeA7xsiTtaVuWBN5UzRcQ06e9WctG63e6gh9mkG4p7LqwlZWu0mZawdXUca+JslbwjU6Krh36aBAAy7g3TwOOeYBopUzB6PB/V6HcViUQo1A7sK1u/3I5FIwO12S2kVs67iuRyvaHdeq9UaiqPUWelOoGIUwHJyj45i6jjvTBen028ex5yfZrKRZsH0a7wXxp06JRIdRshu6/hT27ZlHbKHLkurvKxhY66HvcCs03H1eADDdUf5OjsL6W5B+tin5dLV5+YPMOy2Nu/PnJdOjDH/NhOGtJiu+YO4iU9CzgHfN0R0cWEqQg3aqJjNCcpJrVvQkUUhmGP/VrfbjVqtJmUSAoGAtNY5d6e9PsKNiqVMWHePiRJsZUirnp/jZ/1+vxS7dsrS1H/zR9d01CwAgSbnXygUQiwWQzabRT6fx9LSEiYmJoYYBo/HI+UOCPZse6cW5VkJjv6mi2aI2+22sLD6eehSLE4F4SlmTNl+ngkCfpfLNRQ75sR6aQbGzIQ2xQQ+ZggCwQ0NX66NVwEzrNXZaDReCKmw7Z1OG7lcTkqmjALQTrLXWnB6FqMAjrn2dP/kwWCAcrmMra0tJJNJabumyQIWwj9pl6Y2TnnN3Ot4j/peTTc/xXTT6rk/ysOgwft50sa5HKloSwYYnsBmkLO2eJyCSc2gXM3w6Nf5uXOg93qKfoZUiJpx08kSL+M61XEsgPMmrDcDihNQZAZmq9VCq9WSdlOM5wqFQrBte8iVdC4nJzqGzyzGDbzY79cEGSbAMBMxCCj4vt6Qtf4xM2hNV602gPW5+Xn9PzCaZTSPTUPpVTdzDShNkKkZRV6bE1vkdM/mfel7cfpb3yeAF67JZPv5eT0P9DPSHoLTWJ96L+OPE7un790cu73+p+zF4J0ldg84B3zfCLGsnX6jrJDearXQ6/UQiUTQ6/WkwKbP58PExARmZmZQrVaxtraGfr+PeDyOaDQK27ali0MwGEQ4HEav10MgEEAgEEA0GsXExAS63S7Gx8elp+Q5w/f6CZm6ZDKJ69evI5VKSdeAWq2G1dVVbG9vC+hLpVKYmZmBy+VCq9VCvV5/wWVBJc8ODWYWoGUNd10gY2hueN1uF+vr66hWq2i1WlheXsbPf/5zjI2NIZPJYHZ2VgBCpVLB119/jWq1KoWpz+X4xbZtmQNTU1MSnE5xuXa7lDiBQf33KGbONB70xsl51Ww2pe2gCSpHgR9zAzaBkhPDw+NTF3a7XbjdbjQaDcRisUNv6JoB1cwl76/b7YpXJRwOw+v1SqkVYLcQsgbCoVDowEV+RwE+lrXSGfpMwGCrMD1eZNL4PvUG27dFIhGUy+UhkH+cwj0xEokgFosNXRcTR5wSifTzJ0Bk+AoL05uhKZr44PFYK5EldExX92nJOeD7Bohl7dTMI0AjBR8MBgXwRaNRBAIBJJNJjI2NSVPyRqMh/RUJ9DqdjjSx7/V68Pv9omjGx8cxGOy06AmHwyPdNOdytoWullgshoWFBYyNjQ2VPMlms1hZWZG+pcwOjEQiEq+lN2MqPgKBdrst7CGDptnknfFInFfa/UdmL5fLSdHlzc1NtFotTE9P43d/93elFRQTPFyunXpl54bHyQqL7bKlHfuFMjQkHo/La2bbvb2YEvNvJ8DHuVKtVmXembXV9OdNd7EJBvUmz81an4vH9vv98Pv9EnPHWnyvAvgYC0bmWo8Re+kOBgPE43GEw2EEg8EhcKKBh9vtRjQaHQLfL3s9tr2bwav1OwtNB4PBoSQEAk32jeWa5Jxglu5JJ234fD5EIhEBwMwe3wvsO40rQTUBrQncCM51ZyHONc7Ho2CCj0LOAd83QAaDAfL5PJ4/f45er4darSaB1K1WC16vF+12Gz6fT2IY6vU68vk8KpUKstmsVFjf2NhApVIR66jX62F9fR3b29uyiQ8GAxQKBbRaLWFrzuX1EYKyXC6HRCKBQqEg7imPx4NarYZWq4V2uy1B491uF/fu3UM2m5W4TRPwESwSCOgNjJtRv98fKuliFmTlhrq9vY1SqSRurVarhUajgWq1OlQUulwuo1gsolKpnDN8JywEK+VyGR9//DHK5bLMA6/Xi1QqhUAgIJ876DEB56xY83UAQ6VFTICmZS9Xp/maE8NHg4ThD51OBxsbG6jValhfXz+0oUF9zdZmbCFoMqNMqLIsCysrK/jVr34Fv9+PUqkkRZk59pFI5KXbeJlu3n6/j2q1KvGYwA6wiUQi8Pl8ePjwoYDeYrGIjY0NDAYDpFIpBINB0QHZbBalUkkKqJ/k+qSh2mg0UCqVUCgUXnDp8scMdWIdUnrMyAyyl7Pp5gaARqMhXUxo6LICQqVSeeVOQEch54DvGyDdbhcPHjyQyvMEfAy0Z2V0Wn+xWAz9fh+lUkl6Na6srKDf72Nrawu1Wk2smV6vh9XVVRQKBYTDYTx69AiDwQAPHz5EPp8fWXDzXM6u9Pt9bGxsoFqtotPp4NKlSygWi+L22NjYkHZOm5ubWF9fh2VZuHfvngA0MwZGb5BmkL3T+3zNdPFw4+p2uygWiwIsu90uPB4PVldXMT4+jnK5jO3tbZTLZTx69AgrKytSk+9cTkbITC0tLeHf//t/j2AwiMnJSUxPTyMQCGByclKYJjOWT7NmZiC8GQNqzjcNbmKxmGRrMzGATItmzzQI1MfW9QJ5Dl2uxHyNOrXRaODx48colUpYXl4+dH25VquFjY0NdDodjI+Pi/eF3hOCJOprl8uFv/mbv8H6+jrcbreE7+j7cgLLo2L59FhQTDDslHGdzWZRq9Xgdrvx+PFj9Pt9zMzMoNfrIRgMCvh5/PgxHj9+LN1CTkpseyeJix6CJ0+ewOVyiTeL92XbNoLBIIDdrkEAJGyFdRDp4i4UCsLi0XWrvQyNRmOoEwxDDpaWlk70/kfJOeD7BgizujY3N9HtdiUOT9PrtDjIkpCJ0QxKv9/H9vY26vW6xCv0+33k83mUSiVRLnSlsLDnOavy+km73QYAVCoVFItFSYIIBoMSO8f6WrVaTZic0xAqWNblK5VKKBaLyOfzKJfLqNVq0vv3fC6evHBDsyxL3PUstGu6FjX4cgJ8TmBLAzUdI+VyuZBKpaQLC41a6jR9HqfzadCpf+vvmoCPrHS9XsfKygqKxSKKxeKhGT4CCZ/PJzUn6YkBIECS1wAA+XxeAK/WwfwOE6z2ExNUU0zXNgEfx4ZxuIzTZYH0QCCAXC6HYDCIer2OVquFQqEgmf8nzXDpzGoyfCw5BezORd0mst/vw+v1otlsolqtDnURqVaryOVyQz2DWdWCe2uz2ZTQFbfbLQzjOcN3Lkcm/X4f6+vrEutBKpouOh1TYPY15OcY39BoNIZ6lw4GAykJwEB/27alEK6pLM7l7AuZg8FggLW1Nfz1X/+1BISz/t3y8jLq9boYB6cp3GjK5TJ+9rOf4dGjR2KBt9ttrK+vD9UOPJfTEeoFMmHr6+tDfV/5Gf422SWnODyn38Cu25XxYTrmStfm02BRgyAnBtG8BqfXeJ5utythLa8SSlCv1/Hs2TNsbGygWCzi888/F7YSAL744osXWOtms4lcLidgzIm5POj1mGOrGXkzq167tvm71+thc3MTtVoNGxsbWFlZEcDT6/VQLBZRKpWGgNZJCZ9bNpvFX/zFXyCZTMLv90v8Ia+HeyIBnOnS5bOn90zHATJ8gclmBME8HmOgq9Uqstnsid6/k1j2AWZGpVJBPB4/ies5l1eQgwYOOwVDU0ZNB1rW+33uXF4/MctVjHL1nAXhRq+v6zxR42zJSSZxHee5Rs19Pf+OYn2Myh7m8V+H+e0UugG8HPg8TtmvLMwol/dRyUk8x3K5jFgstudnzhm+b5C8rFX3qt87l2+GvA4bCuV1utZvq5yknjgNnXTU5zyrxtXLyFm/h3O9sSOnnyd8LudyLudyLudyLudyLscq5wzfuZzLAcXJ5aLlrFu5Jy3meOlx+baOkVN9uZf9Pr/7bRtD7ZYz55JTmRUzPu/bLE4Z84eJ+fumiw5vOWiG8+sk54DvXM5lD2EArsfjweTkJCYmJl7IYGNSQbFYRKvVQrVaRbFYfC0VwmGFhZx1keVIJILx8XHpwcwMTmaEsyn8t0VcLhempqakU0itVhtqX6fLX+hCwSway3k3GAywtbWFQqEwlGX4TRTes8fjwaVLl7C4uIherydJY/zxeDyIRqPSM9Xn86HZbOLevXvY3t4+7ds4VXG73Zibm8P4+PhQGZF2uy31LJeWllCv10/7Uk9VAoEALl++jHQ6LXrctm3RZ9Rx/X4fS0tL2NjYOO1Lfmk5B3znci5KTOuXLaL8fj+uXLmCO3fuSMV5l8slafv1eh1PnjxBqVTC2toayuXyN3ojNoXlCQj0AoEApqamcOvWLfj9fmxsbCCfz6PdbqNcLqPT6WBra+tbA/iY9Tg3N4f3338f/X4fm5ubaDQakumpa34xc97j8UhrKJZK6vV6+Oyzz6RsxEGyk52C6V8HoQERDAZx9+5d/L2/9/fQbDbx7NkzKVRcq9Xg9/sxMzMjnRWi0SgKhQLy+fy3HvB5vV4sLi7i9u3b0m3J7XajXC6jWq2K8cC1+LrMjcPKKIY9EAjgzp07uHbtGgqFghSTpj5jfUT2Nj4HfOdyLt8AYfkagph0Oi0tlLjBsoimTtn3er2IRCKIx+NIJpNSx+4s1F86SiEY0f1SqQzJiOq2ai6XC8FgELFYDN1uF16vVzpxsE8l65yxbtXrtunQZaaZTs4hXbNramoKMzMz0juVJY8I+Mj0cUzdbrcAPh6/1+thcnJSOgDoeposf8GSEsBw/brXUXTrLpbAmJycHOoE4/V6MT4+Li0iWQ7j2xasT0aYTF4kEkEwGMTU1BRSqZSsU80eA8CFCxcQjUZlPHu9ntS2/KYLDYRUKoXx8XFkMhlZw4PBANFoVIzZQCCAdruNWCwmbQOpu14HOQd853IuSuhOGxsbEwVw+/ZtRCIRsfpqtRqeP38uBVPZx3hxcRETExNIpVKYnJxEvV7H/fv3X0uGQXfBMIuyxmIxTExMIBQKYWFhAclkUtinwWCA7e1tVCoVhMNh6W+bSCSkXy/rYLF9W6fTkcLeX331Fe7fv/9aKVEAAu7C4TCmpqYQDAaRyWSQTqcF/Hm9Xrz77rv47ne/Kx1sarUaOp2OdBRhDBFZZDas9/l8aLVawo4uLCygXC6j2WxKPbhsNotsNotGo4HNzU3ZsM1ODMBoluOsCceOc8a2bSQSCdy+fRuhUEhcuvysZVl48OABfvOb3yCXy33r3JQejwezs7NIp9OYn5/HO++8g1gsJsynbdtigM7MzCAQCKDT6eDtt99Gq9XCw4cPce/ePelgUywWT/mOnGXU/NVxiqPi7MzXLl++jO9+97tIpVJ45513MDs7K3X4LMtCPB5HMBiU0iq1Wg3Pnj3D06dP0Wg0UCwW9+zwc5bY9XPAdy7nYggLuiaTSYyNjWFxcRGRSAStVkvazC0vL6NUKiEUCiEcDiOZTOLy5cuIRqNSoLpSqeDp06enfTuHEic2iCDQ7/cjFoshGo1idnYW4+PjAlB0TBrjXQgSY7EYfD4fotGo9GRmr0oCle3t7aH3zjogMZk9zptIJILp6WlMTU0JyKVr7cKFCzI+GvABu03WNeBjDB/db51OB9FoVBgugjvdKaBYLErHCLNu4esgZq9SgrnBYACfz4fZ2VnpskFWlJ2AGFrBgr+vC7g9CnG5XIhGo8hkMpibm8OdO3cQj8elL2+325XiwWxLZ1kW5ubmJH60UCjA6/Xi+fPnp307jjKKqR5VC3Cv41iWhUQigcuXLyOVSmF2dhYTExNyDLfbLYCv3++j3W6jUqkgnU5L+7tKpfJSXX5Ocz2eA75zOZf/J9xkA4EAFhcXce3aNbjdbqyursK2bTx+/FiYPW7QdH1YloWHDx9iY2NDgCKbiTebzaHejK9DAWudoUaQR1YvGo0iHo/D6/Uin8+jXq8jFApJj+ZKpSKuoWKxCJfLhWq1ilgsNpSMQAucoMbn8+HChQvweDxoNBrCgJndDE4bwDCIO5FICEsSjUYRCoUkRsrv9yMajSISich4WpaF7e1tfPrpp+KeJHPHTYPgJRQKSY9YPoNarSatnbiB93o9hMNh+P1+YSPa7TYWFhbQbrdRr9clOWZ5eVnaLp6Fecf7Ijuq5waD5OkO5/rrdruYmZlBKBTC9PS0GBLNZhNffvklstksPv30U3z11Veo1+twu92yFjnfdKs1gmKO++siJoil+zYcDuPy5cu4dOkSAoEAHj58CMuyUCgUZI6RTWYrxUgkgvn5efn/vffeQ6FQwGAwwPr6OnK5nMSznQXZz4hxqpbA8YrFYojH4/D7/UilUhIburi4iHA4DACoVqvw+XwIBAIAdtvbcf3VajVkMhl88MEHqNfr2NraEva9Uqmg3W5LUtFe13cacg74zuVbK6bS9Hq9SCQSiEajuHnzJt577z2sr6/jl7/8JfL5PJaWlrC6uirZlAAkgJfUvtvtxt27dzE/Pw+fz4fx8XGxmhmnNcpdepZEgyu3241wOIxr165hYmJiCGyQXUokEhgfHx/aXKgEbdtGKpVCLBZDr9eTbF2yNolEArdu3UIikcD169fx5ptvolgs4he/+AXW19fFZUlFf5qMDeMRA4EALly4gO9973tIJBJIp9PSjUj36OQ4NRoN9Ho9rKysYHl5GdFoFG+++SYymYz0YyV70Gq1kEqlMBgM4Ha70W63h+YYkzrY/pCMKcdfj1GhUEAul0M2mxXDg/Ftpym8RpfLJUCZzDjH2OfzodPpSN/uL7/8Er/+9a9x8eJFpNNpXL58eSir8pe//CUePHiAx48f44svvgAATE1NYXp6Wp4FXZocA505PmqDPmui255xroVCIUxNTSGRSODOnTu4ffs2lpeX8etf/xrFYhGPHz/GysoKgBeNuampKfz+7/8+pqencfPmTXzwwQcolUrweDxYXl4WIH2WxmeUK9fpPb7vcrmQyWRw8eJFxGIx3LhxA6lUChcuXMD169dhWZb06maihmVZEnayvb0tbR2npqYwPz+Per2O7e1tNBoNPH36FEtLSxJqofsgnxU5B3znci7/T7h5srwDsNOnuFaryUbsFFummYNut4tms4larSbHDIVCqNfrr2XQPDMkQ6GQBDJ3u10BISztQKYEGG6+HggEJDaNY8dEDY4Zk15ardaQSzMcDksg+WmPnb4nurMTiQTC4TBCoZC4XU22SIN6y7LErcYG7exdrceDgeDsac0Nh0kI/KGLU5+DCQ5kxwKBAMLhsIBIzs1yuXyqjI1O7uFvzWZy7Cg0kPr9PjqdDorFIrLZrLDNzDQtlUrCBuuySZr14bPkOAGQ878urcxM8Xq9Mi+Z/FSr1cS1XalURsYzVioV5HI5eL1elMtlSQKKxWIYGxsTlyb7xZ718eEc8vl8kjhGVj6TySCZTA4x8kyEAoButytrTet627aH1qEuk+Tz+dDv9xGJRJBIJARY+v1+MTR0Bv5pzrHzXrrnci7/TxYWFvDee+8hHo8jk8kgkUhgaWkJf/VXf4VsNivgBnjRStbgZXx8HDMzMwgGgxgfH0c0GsXTp0/xm9/8Bq1WS753liw/J7EsCwsLC7h48aKwL263G8ViEdvb20Pu6enpaVy9ehVutxv5fB7VahXBYBDxeBwul0tYv1gshrm5Ofj9ftmIyIKRCUyn07Jpdbtd3Lt3D7/61a9OlWHw+/3iMnv//fdx6dIlBINBJBIJycQ154EGYvzNTcPj8Uj2N79D46LT6QjQ5nfMxAun/qsEMnSTauDUbrexvb2Ner2Ozz77DD//+c/FtXeSQqAViUSQSqUEcPE6zfHS48hYvlAoJG7dZDKJVCqFer2OL7/8Ukr/EPTxWWjmk8fRx2aGc7fbRb1eP5PZqaMKAAPArVu38P3vfx/BYFDCIDY3N3H//n1x67OygCmBQEAynO/evYt33nkHkUgEU1NTCIfD+PnPf47/83/+DyqVCtbW1lCtVofm3VkCgDo7/uLFi1hYWEA4HMb09LS4ryORyNBY0rBkVi4ARKNRSbhiCEWlUsHGxgY6nY7MLYb0aM9Nt9uV5KpyuYxSqYR6vY6nT59KcpoOUTkqOe+ley7n8hLC2nHxeByDwQClUgnFYhGFQkFi0XQldsC5+wZBTDQaxfT0NFKpFLa2thyruJ9lsSxL7sG2bVSrVTSbTZTLZWSzWXElkbFjgVzGv8TjcczNzUm9Qsb6zc7OIhKJYHNzE263W+L1CIYZ2xaPx+Hz+bC6unrqDJ8uczE/P4+bN28K2zQYDIZYTvPZ6kLdAIQFzOfzAmAikchQYWXbtqU8DZkBxjpqY4Gbjnm+Xq8Hl8slMamBQACxWAyDwQC5XA4ej0c2rpMUriEm/rjdbnQ6HWFFySBxk+WY0M3LbMm1tTXYti331+12kc/n0Wq1hB3u9/vCWJHN02wPwYH5jF6H2pDmcyOo8Xq9WF9fx/Pnz1EoFLC5uSlG6ihptVpYXl6WuRiPxzExMYHr169jdnYWz58/lwz7XC6HarUK4MWM2LMgOoGK7tt4PC4JdTSKut2uhIo0Gg20222ZD5wrwWAQLpdLyh8xLEOHANBQsywLqVQKiURiKJwjm81ia2sLpVIJuVwO7XYb/X5/JPg+bjkHfOfyrRZdt4ru3HA4jO3tbRQKBRQKBcd4J27sToCPgdE+n08YHQCyWXED19egj3tWhGMTjUaFfRoMBkgmk5KhRjdcMBhEoVAQxoa1vrh5MnuUYIRj4vP5YNs2xsbG0O12xZ1Ohotlb7hZnxabEI/HceXKFcTjcUQiEckOZdmZvWIzuQHozD89b8gqaXewZut08oI537RbkqKZRm5KrJnIONWFhQXUajXJjj4JIdAjA9PpdKTjgwbLesPk+Nm2LSEVfE0L6xFqtsVk9/g9utXIxuh4QtO1e5bWIzAMrnRyC4HrYDAQg4zrdS9Apt9jrPGjR49QrVZx/fp1ialcWFhAJBLB2tqafPesjA0Zbc7tS5cuSZZ8PB5HIBCQGGB+XoM2bchzHVqWhWQyKXOEwLBarYr+5jziPK1UKjI/9RoMhUJwuVy4ffs26vU61tfX8fTpU3Q6HdTr9RONpz0HfOfyrRITXNG9FA6HkclkkMlkEAqF8PjxY3z99deO2VZ6Y3JSegQDLpcLjUZDrDmWbKlUKvIaFc1ZUZ4UKsFQKIR0Oo1Op4NcLod+v4/JyUnMzMwIG9LtdlEqlYSJm5ubQyqVQr/fR6lUEhaKhYSpZBljRjZQbz4s3+L3+yV+UJfgOGkZHx/H+++/j1gsJvUFWVjbtm3ZeIHdZ6lduxpkEORqIMP4KjJPGtx5PDtq2nTf8rfJOmuwwlgksq5+vx9TU1O4c+cOSqUSPv300xMFfIx5BCBjRwZF3yuZFI7tYDCQzVGzfpwTTO7QoJBjYSaykNnUAIDxXDRM9DWcFTENS64fv98vzG+v10M2m8WzZ8+GjFLAOdGBP5wvq6ur2NrawszMDK5cuSIg+M0330Q2m8WDBw+wvLz8gkFzkuJkIJMlv3TpEv74j/8Y4+PjEoLD2nmVSmXouetSKgSBLIRuWRamp6dhWRaazSbq9boA6W63K+tdF17mOiKLrJnsTCaDW7duwefz4ZNPPkG/30e1WsX6+vo54DuXkxe9+HWw82GPRYWsg6bPUqyHFpZjYfA4rTrGvTgpNyclZypW3jvZHQb3coM2XSJnDfQBw+CBbJMuntzr9eTeuFFSGdLlyXtmcgPBjBZTievkhLMwLnQT0lrXLc0O8uycNls9lzQTYx7TiUU+qPA4+lrpLh8MBvLMTkpMBk1f1ygmigyl7jWsj+H0LMykmVGv6fPq8Xaao2dBTIaP4Q8EH4yH1czly7hcCaAbjYaAJCaehcNhAeTA2TFSCXwjkYiUQqIHgiECToyxef1k2GkkUW/pucrxNdl8vcZosNEwoTD8IBwOS06Efv8k5BzwnctQkVeyKayhdhiQFgwGpa5TtVpFpVJBt9uV8gpnKeDX5XIhFothfHxc6sixEPDKyopkZQH7KzhdHFYzLDpIn64BMjqvspkfpxCAVCoVrK6uSnwLY1Q2NzeHMi3HxsYwOzs7tLk0Gg3k83kMBgNcuXIFc3NzkvzB92u12lB8DJUiWR2v1ysFdE+D3aPiZicRv98vzIFmj7RrB3gxqUJvMOY90F2tRbuBzR99fPM75vl1FirZjkgkgps3byKfz+PevXuvOkT7Cq+bZWR8Pp8AC9u2xcVrMqG8duoMPR58LoyfZIwjs+v5fBgLqK9F1/ijaONEG6t7dVA4aTEBnNvtlrixcDgsa0l7JKiTRgEc/VtLs9nEo0ePUK/Xsbi4iBs3bqDf70tWqwbQJx2SYp6DCRrXr19HMpmEbe/EG1er1T07rfC6TUad86ZWq4mRzjnhJBwPfle7cxuNBhqNBrxeLwaDgQDT7373u5JVXigUjm5w9pFzwHcuQ50AotGoZA4etnQD688lEgnkcjnYti1dAQieTHbrtITMUywWk9ZgdAHkcrkXPr9XLIy5KXMDoxsqGo1KrIn+Hn+fFYuZMhjs9AwuFovSRYLdNEqlklShd7vd0nXDsizk83mJH6pWq7BtG9FoFBcuXJANmhtpu91Gq9VCoVBAp9NBJBKRBBBuzs1m89Rcubp8B4GJdkHqTcBpA6ToOeEEzHRdNf05DXD0/6aYc4fH0xsZ2Y5QKISxsTH4/X7JBD5uMWPkCOwIXMiamuDMBNJ83XRFkgUkcOR84W/NUuuyNTweE0WAXQA+aoM/K8JwFBb6piHC8XJy95sySud0u11sbm6i2+1KmEu73R7qMatllNv4JMTlcmF8fBxXr16V58+ak81mcygZw7xePR/0tev4XM3aAS8yhKbO159h5jeNjHa7jUgkgomJCeRyOSnMflLyrQF8gUBA4lhYwT6bzTpu6t8GYTyN1+vF1NQULly4AL/fj2QyiUAggEePHqFUKqHRaBzIrWZZFsbHx5FOp5FOp/HWW28hmUxibW0N8Xhc6kAxE/OsCN0iwWBwiAUZlagxio0bNT56U2MtKye3yFkDexSPxyPJE2wgzpgwunKZybaxsQEAUlvO7XZjdnYWwE7c1PPnz4cKL/d6PcnE1V1INFtDQ+Q0Nl8mOlBvOCVNaKWvRT/XUe+ZDAOwy8iZIRVmWIET8NOf0SVzTFZMf4+s26uEcBxETMBLBo+bqcle6Wsk2DWPxfvUrKAJHGk46OQWuu14704b9lkVk+XVxgiZcw1M9DzY77j8DrAzRoy/LZfLYqT5fD6Ew+Gh+NWXdRsflXAOcX0y3ALYNZy0e3XUOJhzTbv0taHFz+r1BDjrAP0ZbdDohD3G+LFt20mUnfpWAD6Xy4V4PC4tr+7cuYNAIICf//zn0kLm2yY+nw8TExOIxWJ4//338YMf/ACRSATpdBqhUAj/+3//b3z11VcyEfdzbbjdbty4cQPvvfceJiYmpBn1119/jQcPHmB9fR0bGxsnSl87iRkrZFmWlCLwer3ifh5VymAvpeYUh0SWwe/3SwFcup20lXgWNxrGxiSTSfh8PoRCoRfAAf8ul8t4+vQpBoOBxEMmk0m89dZbcLvdePr0KX7xi1+g1WqhVCrBtm3cvn0bN27cQK1Wk5ZfDMT3er0SiE1FftJZum63G4lEApFIRJhMcyPQG4u5aersXbOdHMeX32XdPB6HrjknNoG/99rIeV1k1Mh+afcxjR2WNTmuMi0mmOO1kY3hffD5A8PAUG/i5vOnftIuYx3DFolEhmKnBoMBNjY2UC6XxZgY5aI8CFA6STGvh8YjAU8kEhnyIJhxiwc9Nj0yKysr8Hg8ktHdbrcRCoWQyWRQrVaH2MTTEBrR1N/pdBq9Xg/ValX2K3NdaXFi6bhO+MO5oQ0TDeKcDDs937VBwX00FArJe9FoFKlUSkJajlu/fSsAHzcuVscfGxtDMBiUdk96kHURWK2InB6EE4171sEjJx8rs6dSKWQyGUxMTMjk46JmX06dbm4Ka4MFAgGkUilMTExgfHwcmUwGqVQKuVwOiUQC1Wr1xANUDyJaabI+k1k25WVkVJwMFYnJVp0loKcVFjdP9rjl5sgN1bSgbdseStAAdu6N49put6V9WKlUArDjNuJxTQZIK2IGjQM40U2G64Rle0wLntdryn4g3gkYMj6NAI3gZy+dYoJAp/PpzcfpM5rhOynRa2IUc7eX6Hva6940g0LAx3gsfQ0aiL8uYI9C8EHdotcfcHgPAtczXZtc8zQQWq3WC+vhpHUZDSXqJxrSpkG/3zwZJSab+jJyEMOMHpJgMCiJIMctZ28HPgbxeDy4fPky7t69i0wmgzfeeEPKTbzzzjuwLEvS2p8+fYqvv/4atm2Lki+XyxJ8rmNj+DcDg3Wvy9MQc9HpyUaFHg6HEYvFMDExgT/8wz/E4uIiJicnxToEdkDvpUuX8Kd/+qfY3t7Gj3/8Y3z55ZdD5+L9z8/P4/vf/z7GxsZw/fp1XL58Wc6h6XZmZ2o5bgVhWq1OTAPZ34mJCdTrdWSzWalMv5fspVT1femsVjJVZt00p2s9DaFVG4lEsLi4iGg0KiVWuKFYloW1tTU8ffoUXq8Xly9fRiaTGSqnwY2iXC4LS/zw4UM8ffpUxp2xeZ1OR+I7G42GKO52u418Po96vY50Oo0f/vCHqFar+M1vfjNUC+w4hXNjbGxMau9pFsx065jPXzOB/B7XA5ODdI0vn8+H+fl5CbVgqzZmoTIedBTjZ7pLCVhZBoYxfGQr2A4qnU4fK2PDcdAAliAFgLhgzRgrpw1Qh0jQUCMjyu4GbrcbsVgMwWAQly5dQiaTkTXYbrdRrVZRq9UQCASGiusSdJtZ9GdVXK6dYtTRaBSxWEzCI3SM8EGMAv266Z0AIPXiBoMB4vE4pqenAQDb29tDx3AyiMzjH6WEQiGptZfJZBCJRKSlHNcLr0W7VTmHdKiS3hPMECZTN3NNOt0nP8Ox0zF8rDHKlmsulwtzc3Pwer1YXl5GqVQ6duzwrQB8jCV68803kUqlcPXqVYRCIczPz6PZbMLj8SAcDsOyLPzt3/4t/H6/uKZcLhfW19fh8Xgktkhb4gCkBZRuFXXSYip+/q1jEGzbFmZzZmYG77//Pm7fvj3EMAA7C31mZgY/+MEPsL29jfv3748EfBMTE/i93/s9LC4uCqun09GplEcxW8cJbpwWo86k5WfC4TBSqdTQM9wr1tAEjsDo+9FuAr/fL5sVxSnG6zSsZWCXrWVlerK8sVhsyMBpNBp49uyZbKi6LRH7nLKsTbFYRKfTwdLSkriIyLiw4C5d6Bxz1uqrVCpoNBoYHx/HjRs3UCqV8OzZsxMDfG63G+FwGIlEAsFgcKgECJ/RKGYS2F0jOnmAgLbX66Fer0v7pWw2i2AwiOnpaQFozOxjRivHyonJMkVnFzPTkADT5XJJdxS2v+v3+8cWbqFdahqUkpEhGN4PMOjx1YDP5/Oh1WqhWCyi1WpJWY5oNIr5+XnMzMzIMRuNBp4/fy7fo47XMbtnleUzhUQF3Zrcw/bypIzSLXsBwV6vJ4we65VWq9V9gfHLMmovK36/H2NjY0gmk4jH4wiFQkLUmIyZdsFq0Kd/nEpBORni/Kx2A5uigSHXHMN6uK65fwaDQTSbTUci4KjltQd8e02qVCqFxcVFqb6dTCalhREVqg4Ytm1bWtQwhZqlSiKRyBAo0ufnQ9/e3kYwGES9XpfeoSclTsCBrwO7QGd8fBzXr1/H9PS0uMn0+5yktEh6vR4uX76MN998UzI2bdvG7OwsxsfHceXKFWQyGYTDYXHf2bYtmZVra2u4d+8eNjc3HVmz41QKGujqv/X5qDTJvtXrdVQqlT0DaE02ZxToY9A/67cxaYOMJzdz89mdBtizLEsy/pLJJILBILxer4BgzRoxDsXn80l/SbJfLFwbCoXQbDYlNiWdTgtDSCbRtm1sbGyg3W5LMpUGBzScWJiYxlkkEjnWmDM9Jrrws+leNRn0UQHyml3WiQIMstc1ILvdrhTl1vOVsUQEarrSv1OZF5a2AXYLCDsxFzRGjjMpRhvI2tjieywczPnC8aIu0eOnxWnT5oYfCoVkzZFRJQhgD162y+N1nIUiy/uBJ/M1uljZLo6Gpb7nvcCLeXyn9aQZMvajpUfM/I6TK/O41qhZH5D7MxOsmLXMNXeQ0AUN/PQaA3bd5zouVt/3XsmN2n3LpEAdq6zH8zjlGwH4aEWbD/P69ev4N//m32B6ehqxWEzAHqldVvnv9XpSw2h8fBzvvvuuKAZOJCpMum/JSrjdbkxMTCAej+PZs2f42c9+hlwuh1/+8pf44osvTnQs9MTk/7Qk6CK6ffs2/uk//adS/VvHDlHpkd1MpVJIpVL4h//wH+LWrVtYWlrCr371KwwGA/yTf/JP8Du/8zvSEUHHp7VaLeRyOdRqNfzsZz/Df/kv/wX1el1it5zczk4b11GMhz6XpuIpLtduHT4mlmSzWekXOUoOcq10CY6Pj0uz+GaziVQqhWQyiVarhWq1OqRUTktcLhcmJydx5coVYTwDgYD0EgYw9HwnJiYwGAywvLyMpaUluT8q4Xg8jnw+j62tLfR6Pdy4cQOTk5PSR5IdAX71q18hFArhwoULCIfDqFQqqFQqwhZysydDRTdOpVJBNps91k3a5XJJE3UG/Ov4Ra4bAI4t0bTwdbr2eV/UJ/V6XVrR5XI5iR3k2tUttFjfi/fO+Fqe1+v1IpVKwe/3o1KpSHkls7OAdvmaMYpHKQRWHCvqGGAHnEYiEZlrzAzVLmBzHQPDBaX1xkwvButqptNpCYovl8ti9HLzJyhispZJBOhrOCnRYMnJnaj1PIv4cgxt25bY7GazKR4nEzCbhvBewnnn9XqRTqcRCASwvb3tmBFr1jc8znELBAKYmJhAOp2WclEul0u6/FCX6K4Yevy0p4ai5wSTgTgPdC9rvW/pY5pjzfdYuiqZTKJSqQhxEg6HpWD0cRpdlG8E4NO/gV3FF4vFsLi4KPXBNLAwrR4+ZJ/Ph0QiIdYMrV9a2Axg7XQ6aDQa8Hg8mJ2dRTqdRrfbxcTEBACcWH2rgwoBGWMwyNA4Wc+2bQsF7XK5kMlkpJVUOp3GYDDA/Pw8rl27JhszlTQtnWq1Kq6qtbW1kYzZSbpNyC5pJa43U/06N6m9NhvAOaGH92TGMNLK5CZ7loq6AjuZ29w4tAFAVyszH23bFkOpVCoJI8WaUgQ2VLKDwQDhcFj65TLjj03Fgd3yL2ZnE14D4/0IKM2g8eMQDYh0th7wYmkUp83D3Fw4NpxnOuyBgItB8vp9fS5uPqaLlGK6cmkMm24s/Xmnws9HPY46JMAcG7pm9f3q7zpt0KYrTh/PLOmjGUzNtOiYTKexPGnZj91zen6avdLZ2D6fT9ar0/H2YqLM8eaz47iSmXJiXE9SnzNLl3GYupwT40RNN+1+bKS+F84t6kKOg+kV1B08Rh2bew+NCa5Hzs+TSmh87QGfjqcBdpTH1NQUEokE5ufnh1o58XNUgsvLy8hms6LYdZo3FQStUU4Y7RrhMcn4mZ89TdFjEggEMDMzg1gsJgkabKSuJ7H5fWBnfIvFItbX1xEIBPCDH/wAPp8PFy5cEIWi3TUAkMvl8Od//ud4+vQpHjx44Miq6VIIxzVW+pkDO71s33//fczPz6NaraJQKEi8x1dffQXLsvCHf/iH4gLjc6Vbkq8x7qrdbmNzcxMbGxsyr7jZsqbh2NgYxsfHJbat2WzC5/Mhk8kMxXyaG9lJCs/d6XRQq9VkE6RSn5qaQqfTQT6fR7PZlGx3untbrZYUqiawJRPFOVEqlbC2tiaxffxN8EO3La3fYDCIy5cvIx6PI5fLYWNjA/1+X1on2fZOt4/jFLrkI5GIzFe9xvUmwE41DHCn+5CfI/iyLEtK/tBQIEvOxK96vS4B3gCk24teZ3w2BOSDwUDcmAzaZ8wfdRNZSP0aN8jjZPi0juAPjWdeP+PoRjGk+ljArvei1WrBtm2JwSNzR2O8Xq+jVquh1+shEAgIqOYzYu9dswMQz8W94rjXpAnC9nLD6s9pdpNgLxgMSkayCRa1OB2PwsQXxvSyTmm/35fYW6fjOTHuxzV2ZPszmYzU8mQIjcvlQjqdfqFWoN7rzNAC27YloYLGAtfZKMCnj8Hj0uDlb4JShrHoUJ5WqyV64yT0/msP+JwsnsnJSczNzWF6evqF3p38m/Fln332mdSkC4VCmJiYkFgizd5owGdS4Tqw+rTBnpO14vf7MT09jXQ6Le5FXavJScHqRVEul7G1tYULFy7ggw8+QDQahdvtRq/Xk0mt2dNCoYAf//jH+Pjjj0fGDZ0k4OO9RSIRfPDBB3jvvfewtbWFp0+fSpzHkydPMDs7i9/7vd+T4GdgJyEnn8+j0+nIxluv17G6uoparQaXy4VsNislC1wul8R8JpNJKUSdy+WwtbUlcWipVErGz3xupwX4CG6ZZet2uwWwNhoNbG9vo1arIRqNIh6Pi8uDIIcKk+ETGvCxzh43W7J2vP92uw2Px4NarYZyuQy3242pqSnMzc0JILdtG2NjY9JG6riDnC1rN4ZPs2SaLeAmyzhN3X9Zu3PIEgIQtluzyaFQCN1uF7lcTpqwUw+RCSbrrEM0OC+BHcMuHo/LWqROorHCLF3dK9S8tuMaR7JPmklnzCefPe/TySVmAiCdBUkPA8eSQNDr9Ur2N+8TgMw9xktyjEaxYabheBzjo8UJ+I0SnUik3Y7sjHFYneLxeGQdswsRz7dXXdaTLO8TCAQwOTmJsbExif/U7C51LHV2r9cbYtN0iIP2+JjsMMUJ8GnhPGccJdcU9aLe80zD0anQ/3HIaw/4KMyAiUQiuHDhAi5duoSpqSlRmKbbwrZtVCoVrK2tiV8+HA4jHA7L57XbTgM9fp/CjYzgIJfLiZvrpMUEowCkGKXH45H2Ztw0zMBTjlO325WyGGRkqFCpOCkcm/X1dWxubuLBgwcjs5U1VX4cQgaBwf062J59Frn4CVS5Sfh8PnQ6HaHcB4OdNmDcFPTmTdCbyWQwNTUlcY+Md2HdR7INtm1LTCg39H6/j6mpKYkFJZtAw6FWq+1bHuZVRQNwbhRcM2RAyIIEAgHJ2CUTCGCohqFlWVJmRLvLeCxtYDCswOv1DnU4oZItlUqSGKLnDeebrll3lJsxlTqzOOm+1sCCn9OMFTdCJyPHCThoEMM5qLP/uamS1TMZBb7GuUMQ2O12pVUd2QpuLJynzNzl/Tm56I5SRjHYfJ5mz1sn96V5LL3xOm2+DMuJRqMyTvycflamx4bn1+c5SSBDZpm6xgzoJ8glEKPLWncYMZMLTGZ0PyErTcaez0InZ2mvGteCZp75bI+avdLkjdYBNMj18yQxoQ0DihnapfULf5xwg95fzf2MpJBZ/oX7Jo1Crj9NKh23YQF8gwBfJpPBjRs3kMlk8Cd/8id4++23ZTAbjYbEUfFh9ft9PH78GD/5yU8QCoVw6dIlJBIJAMD4+PhQyj5dVgDE9asfMDfsjY0NfPTRR9jY2Dh2d9N+oidNs9nE48ePEQgEcP36dVQqFSldEAwGpRaa3oTX1tbw4MEDVKtVrK+vC+jRdYS4YFhS48/+7M/w3/7bf0O5XMbKysrIa9NB268yuZ02EVL60WgU165dQzKZlAQbv9+PRqOBr776SjIZaSRwU9/c3BTXGl1l3Hhp8fr9fszOzsK2d4JuJyYmYFmWZLZyPEnVr66uIhKJYG5uTo5TrVbRarVw8eJFyYqmcmq1Wuh0Ovjyyy/x8OHDY1UAOt4rnU5LqaKlpSUBpsCOUp+cnITb7UYul8OTJ0/EZcQAcd5TLpcT5onrja5Kn8+HWCwm7eyCwSAajQbW1tbQaDTg9/tlg/7888/F+mXdKv1MmOVKQHpUQjcMg/7HxsbQaDTEiOH18B6YEUgQzA1Rb7jcnIAXXWkE2wQoBMV0S4bDYWFYuJloAMBroMG6vb2Njz/+GLlcDpcuXcLVq1eFie33+1Ink8XSadwdVxyfdodptx/vgc+Urm7zc/o4PJbOuuR8oC7gWAcCAUxNTeHixYvyGfZ25m+9Weu4SJ5PJ3cc1zo0jxsIBDA7Oyu6ZXJycsgVWSgUsL29jUAgIDUiPR6PGGcAZE3rJAMAwqjudy9MMmDyFhnher0u65xjzX2EyV5ut1t62TYaDWxtbR1p2zBt4DAcgQ0CqHO51jgu1WoV9XpddA7HXRuO2sBttVoyH81uLDrhiCBYGw40EKi7SJYwft6yLNTrddEZOhyBSaLHZWC89oCPk5kNwScmJjA/P4/FxUVUq1XJEtSon8KMOKbpk1UxW/WwOKoWJyu12WyiUChIrNNpibmhUNERuDKOjApNx5BRWbbbbclW1WUitDuWC4Djs7y8jI8//njfzdfJIn9V4GdunsFgUDZrAlKyUOVyeaidGkEf3YmdTgfVanUI8NDqpoJgPJB2zTJ+qtFooFaryaZFRUNXMecSlQ+ZUyqdRqOBdrstnz9OwKfnuW4/xY2BY+f3+6UeXaFQkOKmNBCo0DUrqjdsxpBpBpYlHvgdusgZf8R6fppV1qUm6AY8aqBiWZawZTognnPWXCtkV2gUjWL4+LcW6iQey0zg0J/h3+a1kmHRICifz2Nzc1NAOjchfk4/B/5/XDIqXMFkVfQmN2rOa3ZHA0mnOWBZlsxpsjwEO9TxZkiFCfgIPk9CeH6v1yuu1Ewmg5mZmaF79Hq9YnyT4eN8oS7nc9XdJ/RnTEBhusx1eRcNrDV7pfWGDmPRblVgl6E+qnGkzjJjQhmqoFk4zhNdANmptSXZb9PdauIGJ9ZZs9EcVz4Hzjt6kEKhkDDqOuQFGK7beVzyWgM+n88nlbZv376N3/u935Nae9vb2xgMBrJJA7txQqxbdOPGDfzRH/3R0IbbbDal00a1WpWHRVo2mUyKu45lKGgxh8PhF9LSz4oQfDx48AD/43/8D0xPT+MP//APEQqF4Ha7pSH2kydPUKlUsLq6iidPnsC2bSwuLkq7NG1B+Xw+ZLNZfPHFF8jlclhdXT3Qop6cnMSFCxcAQBIZarUaisXiS012J+DIukaMqWL8FWN2crkcBoOB9AymwuACJMAly6Y3gmKxKHEiTOxhtiiZZAI6xrRR4VABUGnTMqQrk65NHXd1EvGgPp9P4uJSqRSi0Sja7baU0SHjRrDM509WjUzW2NgY7t69C8uysLm5KVXjuTmQNaMBRZCXy+UkeJ/saKFQGNp4CEZcrp0yKYxPYjIF3TVHJYwzdLvd+Oyzz1AsFofARTAYFDcpXVibm5tSjDqdToubm/qA85oJLQQdnBd0nenMcLodueHyWWhwxnWtN6Rut4tisYitrS08fvx46Dr0emm323j+/LkwRseVNa7DR3TdSQJRboKWZTmWEdHXzDXFe6KxRtaVsVybm5vodDrY2NhAPB6XdVSpVCRUQsc8mmU4TlqHu91uzMzMSAmxS5cuIRaLIRaLSSwnr4nGKgDx0GhX4uTkJEKhkMTWasOLxqx+je5Qhp2Ew2H4/X6k02mZz3SHkn0PhUKYmpoCsBNrSl1KIoGgaXNzE16vF6VSCeVyed9yV/uJy+WSvXZsbEyK/RcKhaHeyDTkCXxjsRgASAkUYLeUEudSr9dDJBIRbw11j/7Ntcvz0Nun3bJ6vVF4/larNbS/kDxgsii9S8dVbupMAT5zYe8nPp8PFy9exNzcHN5//3388R//MUKhkLhUydzRPcJgairs27dvi3ttaWlJAq4fPnyIRqMh4IdxIEx+iEajAjSpsNhkncr4NEGf09gRYNy7dw9LS0u4cuUK3nrrLczPz0tWablcxqNHj/DkyRPkcjksLy8jHA7j+9//Pj788EMBKJ1OR4pF1mo1/N3f/R1WVlbw/PnzAwG2mZkZ/H//3/8H27bx9OlTqdfG+msvI7QcOd5c6Pyh4uMGyqB427YxMTEhAessUVMul0VJamUAYCjwVysTxrgwm5cMF7Ab30KXkwZ8zFDULi5aqbre23GK3+/HxMSEsAnRaFTYzWKxiHA4PAT06L4km8VQgGvXruH3f//34XK58Bd/8RdicPG+dfIDmZZarSYsKpVpq9US1wwZWM3qMEOY2cJut1vCLY5KdHbrRx99hEePHiEWi2FsbEwCxROJhADZwWCAtbU1fPLJJ5IUxeQKDfgJEPkdAl0dJkF3U6fTGcow7HQ6wrDSlc1r1aVsOM/J8PX7fZRKJWFU3e6dWn/VahWdTkcScTjnjkO4AXPu00jgRsq1SuOA7zsBL76mWWKW6eE9NZtNlMtlNJtNrK2tDdUJrdVq0lqNyTJ0+2lPxnHJKKbT7XbjwoULePvtt6XTDYGJKZlMRuLV8vm8eARopExPT+PKlSvi7aDBYds7WaGlUmkoSUAnUtFLBuy2DGUc3mCw01otGo3i0qVLsj6Zxcs1TaLF6/XiyZMnKJfLEuJEz8dhhXqBCYjstLG5uTmUWevx7DQO4LOPxWKwbVta0HGdaKBGfUaDXjPhGvABkPPQgCEhpEM4tNuZRffpLiao0+8T8OlErKOWMwX49Ma9F/jjIFEJT05OiqVGmlQPuqb/Achk1/Vz6Cqioq/X6yiXy6hUKuI2YoFmKmAdNErgwQ37JIN8X0a4QVSrVaytreHZs2dCxxPwMkB/ampK4uFo2ZiBrW63G+l0Gu12G6lUCrFYbIjGJstG5eP1erG4uIjp6Wn0ej1sbGyMzHo6jGgan6JpeC5cKj+Xy4VSqfQCo8tjmcflgtY0vuka0K4hHos9PF0ul9SU03OF42kG8J6ES5drhIlHZDq025UMKN28VJbssNLv97G5uQnLsgRAUHFyHNvttrjGAQy52PjDZAmu70AgIAwwsLtm9bM4rg16MBjIHAEghhFjhuiapwu1Xq8L46v1DjAc3G0mgen5o++Lz4fC58M6aDq0wjw2ARzXumbmOZ4MxdCB7schTm5o/bcJCM3vmp/n69TbXEvAcNH5Xq+HYrGIjY0N2axp+Ov1dRqMHiUQCIi3gRUiotGoAHs9V5xCBXhfvAe6YhkTSncvv09wQQMXgBhl/X5fDHmtuyg6DlPHtFFf6HnE50bjmEaQdg8fxXxzYtfM58pr1mtDM6L8nHbl8vo1HtHH0Mye/jGTZ+ii189M/zb3juOWMwX4KPrBcYC1JJNJzM3NIZPJ4MMPP8SNGzcQjUZRKpVkIjK4nhNe96UsFArodrvIZrPIZrOo1WrI5/PiViwUCmi1WtjY2EC9Xkc8Hke73ZZiluw/yfgQZhUyPqxUKp25oroUWm2rq6v4r//1v+JnP/sZJicnMT8/L5u12+3G1atXce3aNQkc1otFu0jj8Tj+wT/4B2g0GtJgvlarYXt7G51OB9evX8etW7cQjUaxuLiIeDyOiYkJzM7OSm229fX1I7s/M65KAyvbthGNRiU2bnV1FS6XC6urqxIPpovecu5Q0elUewo3FmA3M45KkGPW7Xaxvb0tdeeoWDTg0W4/HWelweVxiHatlUolPH/+HJVKRVw68/PzuHXrFrrdLpaWllCpVLC9vY1CoQCv14uFhQVMTEygVCrhP/2n/yRgv9/vI5VKYWFhAW63G0tLS1hdXUUmk8GlS5cQDoextraGjY0NqWtIlwqfEd1a9+7dw+PHj+H1esW4o1vlOEuKkB2rVqvI5/NinOgi2nTBFgoFiQ11u90Sm6mBCZ8zX9MbDwO7yTaTDdQuzHq9jmfPnsHl2qkxlkgkhvQjARxBebvdRj6fR6VSkefMjY3nNjOPj0PM+9dAmOwvS+0AkI2T3zVBDp8NAGFJ+aOTLNrtNj766CN8+eWXQ2uzUqkMFWQ2N9q9AOqriNNxZmdn8Sd/8icyr2Ox2FBikzaueK8E8/RW0f3ItUB2Tc8rCl2iAIbADdcUgaI2Hmj46bFptVrY2toaOoYO22BLu8FggOnpaYTDYWFeda3KlxUNumhEU3fTCNJAj/OIrJqei+acZEgAjSATiNEANJ8Dk46oEzRjmkgkJK6RjJ9prJlA8zjlzAE+Uyk4LT4dkD8zM4O5uTnYti3uJTIE3LD1w7ftnT6vpMAZ89FsNqUVTT6fR6vVErcAqX9OKt1WzXRVUNGeVeHEqtVqePToETY3NzE/P49utyvJDl6vF8lkEtevX5c2UCaLQODn8/mwuLiIXq+Hzz77DGNjY/D7/eJeGB8fx+XLl5FMJvHGG28gk8kgEokgkUhga2vryDuSaMtOLyLOI8ZWEZjati09j7nZ6pgxPRepVPUiBV5saafnGseMWb88jtvtFqUBQFhkgj3TUj1uls+ydgoC6znPWNV0Oi0uCK4Z3kswGEQikUA+n8eDBw/Q6XSQSqWkjWEsFhODqFqtSuhDIpFAuVweilnT7nK6mBOJBJ48eSIZq9oNo9n14xACopcR6iDNAGh2hpswj8/fmlUwwT7vj54Hjns4HJbvauNY/3BDOm1xYsEp2r1rfkf/dmJLqW81q6Td6AQl2rDh3jDKs+AEMI9LIpEIrl69KgY3r5/AS8fnaY8AWTnqK50xznvT+lqHRTDOThsLfF+vJz23yCJqwMcSXyzEzBAqXWSc5AsAiQ0EMJQQ97JisrscI82qm8wtx486A9gty6KTJcykFpPho0HL72gShKKL9esMZ9PzqI0/PeeOU9efOcAHDAcicyDZnSAUCuHNN9/Ehx9+KGwRMMzskJau1+t4/vz5UAB8vV7H9va2xHew5Ahfq1QqaDabQ/EKiURCqnmz+jiDZY+6JMRJSa/XQ7lcluuv1WpIpVL4/ve/j0uXLmFiYkI2LR1XRjE3MrfbjWvXruEP/uAP0Gq1hEWdn5/HhQsXBBhQ2XChsoQJLdZXFX0MHXfBzCwqe5O6B4Z7QTopD3ND0orR6dw8HpWKGZdERaDdB1rpa3eNU2X7oxY+T8bJ0LqvVCqS8MRgaV5LpVLB119/jXa7jYWFhSGAzev3er0CHAeDAb744gt4PDtdEPSmwZgWtjZ88uQJgJ3OLalUCpZlIZvNijGRSqWkDMlZEr3R6vHgczY3T63wOW90bTW6j8mQABC3HIG5uYHoeWYCrZPaXMzxGOVy02Pg5OoadUx9bK4xrlPNjupjcWxJCpjJNfqzxzE2NAp5zezAwzhwsm/cs6rVqvQXpug5pA0Dhh+QQdLgRY8vwaJ2hZu6h14cJrPQbctjMfFFxxszfpKGG0E8XdaMcXcC2QcV3jPJHOoOssLMcGYhc94fwzF4HXqMtUuXzKgGvtoQJ2DVRZlJAuh7ZucceisIdjnn6C3inOX7JJKOS8404NPi9/slW/T73/8+fvSjH0lRVnOiM5OvXC7j4cOHqNfrEj9WLpfx/Plz1Ot1rK+vY2trawiRs9Cwx+NBJpMR920qlZKCu3RBMBvzdQV8uVwOlrWTYfjw4UNcuHAB//yf/3P89m//NoDdVHXS2FoBcjMjoPF6vXjrrbfwxhtvvLDBAbuuT20hklVl3NhRKViel4qf5Qu4sAg694r/0lab02f0fXGj0J+nQtLAj6CTilgXCtUxW1TgVDBmXMhxiQZ86XRarrtYLAq7HY1GEQgEpPvGo0ePkM1mMTMzgxs3bsDt3qlHyaLJjCdKJpNiCPziF79Ao9GQDU4zaXQl1+t1fPbZZ8hms4hEIpicnES328Xa2hoqlQoWFxdx9+5dDAYDPH/+/NjGZNT82GuummBP/815oA0KGj185tzIaHCRUWWoBABhdlijj99zij/SYNKcq/vdy6sKz8e5qxkW/b7JAJrryek58DM6rpNzVncS4uc0KxYIBKQ2q1Osm76+VwEoppiuavaUdrlcErjf6/VQqVSkdeHW1hYsy5KyTwQNJptJzxJDDjg2vHfeP+9FxzOabnYa+jT6CG54PJIjmj0Eho1sgqKJiQn0ej3E4/Gh+NTDCp+vZVlSMoo6lKRMJBIRb4Vt2/LM6V0AIFnyfB6MeaV7VgNgzaKaiRmcNwR7TB6xbRuJRALxeFxqFZIsYoIG1zH1KuOcj0vOJODjouQDZLsmtlFJJBIC4JwGn1lL5XJZMgF1ORZaGsyQ1K1XqAhYgoXgTsdv7aVUR7miz6JQsXHSNxoNZLNZrK2tSW0lWoSmm0OPty61oAOIeQ4qCf7W3z8q4fk5V3RsJY0BAC/MF6fj8B5Hncd8tk6MgFYWeqxMMa9Bn18zFcflWtJlAQi8yIBw/LhZaLbAdJUz7EG7R2hI6QQfbgZUfMzO1HEsPJ8uYszxoItEd1A5jbXmtMYP8ow0oDBBPl/T/wOQseCGzc+Z4MHJPWSe+7jmkZM46UeKBmfmNb3MdfIYPJ8+r9bRJouuP2e+pq/3KMEeY9towNm2LQYowRFBvmkgc/5r/eXEkALDsXn8rh4nyiiG1Wk+Oel/gkoeQx+fBi33cY9np/NROp1GIBCQkBAd1vIqovcXXqO+R+pSMufAboFvCg0yc4y1aH2uQ7lMPMBj62PpOHinslujQgyOUo4E8I1aMAeh5J0kGAxibm4OkUgEFy9exJUrVyQVnEGQ7Lfpcrmkdg4R/+eff461tbUhiziTyWB2dhZutxvf+c535LN0l2xtbQljx4BL3eux0WhILFav18PU1JRslADE5UZLgm7Q45BRQOVVN758Po//8B/+A/78z/8cd+7cwd//+39f6kAR/PFHt8RiDS9NaXOhO8UxkVqnxboX07aXmEywZVmYm5vDhx9+OFTOgw3AgRdjVPSxeDzNylBZAMMZYVq5OgE+vXHzeXGOcPMmM8rvmfcSDoclfu64QgfC4TAuX76MVCqFZ8+eYXl5ecjosW1bEnRYvLter0u9NJ/Ph/HxcSmRYNs2nj17Jp0MzGDqZDKJd999Fy6XSxi+crmM+/fvo1KpoNFoYH19XQKnOfadTgd+vx937txBOBxGu92WuojHWeTcaU1pXecE+vSPCToYg0jwyg0oHA4PHYdsTb/fR6VSQaFQgMfjQSKRgNfrRSqVQjwel02XVQM0mDDFBOnHDZT1ZsfzcU3RW0IWWxuIptG1l24gg6yTGvQ9al1pbsoaCPG30/c14/cqwvp6umTP7Owsrl69ikwmIyFLbEvIXtOxWEzYXF0qBBgOC6Hwfw2otT7Wn+f80e5NjhXHS4eW8HhkqUw2lMLOOszO9Xq9uH37Nqanp5HL5fCrX/0KuVwOuVwO2Wz2peeiSbA0m02USiUEg0FpLKC9JGwJqYsuO4XscD8nOUSigPpaG60ez27TAv7Woo9r27awtoVCAYVCAba9E9/IwvUm03oc8sqAT1+cEzod9SBHWX4AJGkgmUziypUrePfddxGJRDA/Py9FNunG5YABu8pibW0N9+7dkwBL0qakVicnJ4f6wTYaDayursokZbeNQqGAZrMpBYHpgtNxCuaE0Jk6xyGjlOBRKO9Go4Ff//rXAHZqzt28eVOykpnZSkVFYEs3eKvVGrJUtbvXtGQ0YHwVls9ps43H41LUmdnWZtYk8OLmx9c0i+V0PnPDHMWqaPZGW82me0Urbn0cjhGV6nHR/GyplslksLKyIoksVIgEuYyVoWuxVCoB2O0WEolEEIlEhrInea+My2O5iUwmI0o4Foshm83i2bNnUiqkXC4PuboJxC3LwuTkJCYmJrC5uYmvv/56qDXRaYqTHtTPnq9zg6buMN392vUL7MwxguxwOCzVAZgFyeMfJNPvKIzCg4pmuPXY8Bo04DVZPlNX6N/mGuEGTObEKezBickb9Z75HPXvVxW2QguHw2IETU9PI5PJIJlMDr1Oz5NlWdJXl14tPa+cYp81CNPZoTomezAYDBVJ1qyqZVlDOkezXvr6aBDq8+oqDoxH414wNTWFqakpbGxsYHl5WQgUJ8NpLzHnALBbbkwXhAd2GeBAICA6xPyuNkpMd7QZc6mNBLp9udfrvcA09gBI2IauCUz8YCbPHJe8MuDTN2f+fxCGT1PV8/PzmJmZQTwex5UrVxCPxzE/Py80MAGEZe3WtiFAY6wDYwtYdJe9ADOZDHq9HvL5PFZXV8XFpK07HfRJ9oLlJdLptKDzZrOJubk5aSulFwiVsc7GexUxAcNJKexarYalpSU0m03ZoAmI2u02njx5gu3tbVQqFaysrKDX6+Hu3bt44403BPSSbQBeXAyvIqYry+fzSVFapsBrcOUUlO3kDtNU/SgmxGRuTPCnxdxAtFWqFYl5HVRM8XgcCwsLKBQK2NraeqXMtlHS7/fF0GG2HdlpXaOKMa0EFay5x842ALC5uSnuR7ZlSiaTLyQWcNwqlQqq1aowdYwZAnY2GZZWIjPmdu8UWQ4Gg2i1WkOuZ/OZnbTo+aBj+MzEIH3/TFYyg8epT3h/LB5PfUZjS5/b/D1q7pqvHac4uR01g6bja8moaMPIXDsmI2OyggfZb4DdjE3ONw1OtTeCe4J5LUcxJqzbWC6XYds7ZVFu3ryJa9euDcUPa52kEzRM4xF4EWQ76Th9DTQ4BoPBUKsvzk/dw5rf4Vrj3qmNDX6Pc5VhG4yN43fa7TZKpZIUjX6Z+UhDmNUk9HPheDAGn9jC6/UK4KO3zgSN3KtqtZrEBdIo570znl33StcgVz8nxvqxqgevhfOd1S/0ODGG78wnbTgpl4OKZovef/99cSMuLCxIaQed2aOBFSuNs8TIL3/5S/R6PQGJ8/Pz+K3f+i2EQiEUi0XUajWsrq7i5z//OUqlkgTtptNpvP322wIO2SKNzCDrs7GQZ6vVkiLDpMq5MKLRKGKxGDqdzpFs0FrpmJbEcUo+n8dnn32GiYkJXLt2bahVT71ex09+8hP85Cc/QaVSwfLyMizLwr/9t/8WH3744VAcCi0gJyV+GDE3RdveqUV18eJFJJNJYW+p0Fk/UWdGmsBTKyynYG8nN5NT7J0+rhPQ08BSu1J4Hv7mXJqYmMCFCxewtraGR48eCat2lMIAcYIpZuMyfo6WLF23wWBQSrOQYZ+YmECz2cTjx4+lDEgoFJK4Wyo9M2g8m82iUCjIxqfrXzEL17IslMtl5PN5MdgIAGmQafbiuBNbgBeNXP06r8GJKTZZP1r5HF/qQm6k/HtyclLaXCUSCYmtHGW87Ccvy6gcVvRmqdcShfqXAe0EsbqExajxM42mUW5sp2fEucjQCorO3teEwFG5dLnuAWB1dRVPnz6F3+/HF198gUgkgh/96EdSIotzRxvPJvunE78ILsz4Mt6zU6ydBhZmDCnHSc9nfsfUoxxH7dYkS0bDhnrY5/OhXq9jc3MTq6urL52sR8YzEolIPCSwG27DUA9myLJXN7EEO/notcnx4v7eaDQkXAmAxO/3+/2h3vL6mvg5GqCJRAKBQEBc8wDE8CVTD0CSQJlown6/xyVHGsOnrQrzb3Oj5GvsfRoKhZDJZDA2NiaNo+nO4sPRG7NlWeLa1cUSSTXrJsV8WKy5V61WpYUWlSuZA930WU8IPnTGUZCx0MJF+aquSj2uTqJrxXHRjXJnHOR4GsxwvKiAfT4f2u22lKsplUqoVCrY2toShi+fz4vltp+SPI6Nxu12IxaLIZlMDrlu9Ubg5M7hhuK0uVCcXDzm3/zfDBjW75mAca9noVlJZnYdtUvXZDNNJoqbiv4cDR+yT3pj4fVqMLTfs6YbhokidFnxWPxb10zTZRj0ZnjSsh+btBdI0OOjAQZ1HI/BZ8P1zuxL06DiMc1rOy22Exg9z01GW4vJRJlgbxSgexl2T3/HjD8z2cjjGD+eg2DNtnc6/NDVSv1pMpnaNe50bU6fNVll85lwTM3vaJ0wihV20l/6HDQUqc/09wkmdZbsywh1g44R1d46AEPx11qHmffJ6zY/4/R502Dba/z19Zjf5fWZ4+q0Rx21HAngo5XGOl0ETaQ1qcgJlPRrkUgE09PTCIVCuHz5Mi5cuCCMFhvQA5AUdVKqzLBlQLnX68WdO3fgdrtx8eJFjI+Pw7ZtPH78GP1+H7lcDqVSCcViURba8vIytra2MD4+Lj1F2X+Pk8WyrKEaQro1DRU1lTCbm8fjcRSLxUONpdPE0NaIz+fD5cuXMTExMeSaWFlZwdbWlhwD2HsyWdYuPc9YR7/fjytXriCTyeDu3bv4wQ9+gEAggLW1NTx48ADZbFbipp49e4b19XWxljm5dXkInYnEzWy/zXA/0d/n/UWjUbz11ltYWFiAx+ORLG3GSugsPm2h6ngpk4Hg3xrU7LeRmvEeTu/pzUaDJH6PjBvvKxQKDVmyRyGWteMujkQi4q7X7gaXyyXljqamppBKpdBoNPCrX/0KxWIRLpcLi4uLck3FYhHpdBpXr15Ft9vFr3/9ayl4SyOIxhfPb1k7SVPFYlHmHWPS+KMVJtmXVquFzc1NxONxjI+PS9zTKIbnpIUbNy117fbShoeT54JsCdcpv89xoydBb5ImID6Ie/M0hBswjXbdK5jPlrqc+kQzUHrd6Huj7jJZPnPjNAEHP0NgotenmTV+VGPJtcA9RHuw6B2amppCvV5HLpcbKsZuGgm8V+pbbfyYLlit6528CdrQ4N7rJHoec/z0eOlx0vOW65rf4TwwCxYfRDTDx3p7ZMyazabE6ZNEouuU18oYYk1u8Lp7vZ6UW0smk1I0ntfMEJVQKOR4XRxzYgPG+ZPFowHLknA8ZyQSGQppOc61eySAz+v1iuJNpVKSwcMBY1kTAiK+xgG8ePGi9NtjwUT2sKWQqmWxVtKyFGb2BgIBLCwsIJ1OI5/PS5X+QqEgWYCc3Pl8Hl9//TUqlQrm5+fRbDYlWUSj+GQyCQCSXcoNWDM6VLwMYtf98w4qTkypaR253W5MTEzg0qVL4j5jTAQBnz6e09/AcPsuWlxerxdTU1NYWFjAG2+8ge9+97uwbRv37t3DL3/5S6ysrODjjz9GvV53vH4qL2DYzaLBlLkZHWZzMj8fDAaxsLCAa9euoVAoSKcUtiXSAbEa8PE3nyU3VPP6NJu63zXzdacgXNNy1ta0/h4zwgeDwZCiOCqxrN0OGZFIRDYDuhYBDNVGZFukp0+f4tmzZ7h48SJu3boFy7JQrVZRr9dl3vR6PXz++efS3UErflr8HBOWbfH5fJicnEQymUSj0ZAWWzqY3+VyodvtolgsotlsSjFTXUj7LIjeAM1kBC16jfN7/DEBoQZzZjKYqS/OItjT18R5rTsW0HVG1+BeIMtk9DRTxveBYUZwr/EwWRx9jWYc5qsK9Y82rvQ1cE1qQkR/V98/r0kDPIIT3o8TS07GTd+TyaqaBi6Fc9uM9TPDFzRjxmvQYJ9jfBh2j0BN11HUBZU11mBJN9b4tG1bssM53tRJGqC1221JMKN30LZtwTk64VOPDe9f74G6wDfXM7EMAAkf4z51lAaGkxwa8LlcLimrwV6sekCcAB8fFCe8z+eTG7btnSDuUqmEer2O5eVlQb10VzabTYnZ4QByIlPx93o9PHz4EP3+Th/M1dVVib9jbBR7FpbLZbTbbUQiEbRaLeTzeXi9XikGW61Wxd2UyWR2BkxV2waGrRztYj5slq5WjBxjt9stjEYkEsGdO3ewsLAg52s0GlhZWdn3uCZ7qNP3+bwuXLiA69evw+Px4OOPP0ar1cJXX32FlZUViaNymgva5eAko6jwwwpZqmg0iomJCQk65vFdLpf0cuSmotk6JzDstFnqTVlbstoiNsGYqUi1QiEDZDIIHB/WfyQoMze4oxJ9TQxiZqgDG7rTKGNcHdudxePxoWQKlj969OgRgB0W+sKFC0MMCmtoMg6GYI/XQldtqVRCNpuV4+iNgwwJx47ZvGSEXpU9PkoZ9bzMNeLEvJvH0L+1saI/p4P8NQg87g1kL9H35sRO8T2G47RarRdAgzn39xo/PU5O80Af2wQlexnHryIul0sSyiYnJyVOfH5+XhIDWOGAIUxkv8gS65gujpt2l2rGToNKDbIYP6vHRocBOQFlU6frseZ5gBfr0GnQqf8nBtDtFg8jnBOsn2vbtsSWe71edDqdIT2hwyba7bbE1HFP4PGom8iyRyKRF4wLkgh6TpoeJ93ZSYNxM2kDwFB8OT0Dx6nDDj3qtMqj0Shu3ryJd999V6hMYId1YQNo3UPPXJyc0IPBABsbG9je3sbW1hZ+8YtfIJvNolqtSrPrsbExhEIhLC4u4ubNm7JINPir1Wr48Y9/jC+++EJizmzbloLN09PTeO+998R1OzU1hVarhWw2i2w2C4/Hg7GxMbTbbWkkzwxibsJsm8IsXG7iPF+pVDpUP11TwbtcLsmCvHnzJr73ve8hkUiIy5rnLJfLePz4MX7zm9/sy/LhJIgAAQAASURBVD7pTC9u5OxdOj09jQ8++ADvv/8+Pv/8c/zn//yfkc/nce/ePclsNnuLmpakeS/6mZuA81XE5dqtYTUxMSFZWFohsnp5p9ORunDaCtPxYtrt66S0qFx1GyFafczUNsdaW786DIHZsFRCdBfQ1TM9PS3GkBnoflTCc7daLTGytra2sL6+jvHxcUxPT0vbQjYHn5yclEzRaDQq/aiz2awk7wQCASwuLuK73/0uGo0G8vk8LMvCrVu3cPXqVaysrOCv//qvkcvlRPHSnedyubC6uirAkQZlOp3G5OSkMOherxe9Xg9ra2uSMef3+19ge05LnEC6k7HjtB70WuGxNFvstH70/DDjh05zLLQhaIIM6iKyxAT7BC38rsl8mmOggaEGL9r7YgIdnWnKjdgp7o3HehXxer24cOECZmdnMT4+jsXFRQQCAUxOTqLdbqNWq2FjYwO2vdOVQRMHBCS6ywUNdF01QRtvJD8IeLgedEay6SI25yl/dE9c/b5m7jhGfF27kHkczsdUKoVkMikJk06A/iCiDdVcLge/3y8JYMBOhQnL2qljSp1NMMWqAKZRQHBMwNftdqWNKueHrkWqx870CjF8RRs5BHskVtLpNGzbFibR5XIJeXOciWev5NLVi4bJCmaJAVM0g8UBJzhieZVisSgFGQn4SNHS5aVbD2mETbp0c3NTskoty5IkDqZIM56QKJ4B6XQrEEyxxhwVFScQs7y0pcrv6/ISLyMcM90+hywWN71EIiEZwr1eTwL6dZaPbjC/l9Ay5Hl0/EOv18Pm5iay2axkLo26ZlNZmu/z2ej/X1UIvumWBIaLYwK72VXa0uWPE0NishF6k+F48Th609JKy2QxuB70+Z3GTZeoILOma24dJeugr5PXxmx0AlFeh277RdeJdjVR8ff7OwWCWQA4HA4LIOb98W8ek0CX7CyVMtcoWQldt9AcZw0Qzgq7N0qc2Cmn//U8NOepBjD69YNunJohPG4waM5b85opZsasCTBMsGeeQ4dKmMffa90cB3NuCue+rp1IVyI3emaVcg4fJA5zL70wyvg0XbF8T/82j7HXOUzQ7eQeNw1op7qLLysm2DJ1+37rwYlp5h7BPV6HI406P89lHsec59qLozETvU9m7PdxzslDA75ut4vt7e0hF6xG7H6/XxIdyF7QJaM3u1AohLGxMXg8HmxubmJrawuVSgW1Wg2DwUCyL5mx6PF4UCqVcO/ePentqes3kfEiszg3NzdkybVaLTx69Ehq3vCHD6Jer2NtbQ2tVgu5XA7ValXiwthhgLQxXWF80J999pmMyV4Mn75/TlK32y3BnW+88Qbee+89GTe6xBYWFoQprVQqQ9nC3/ve9xCLxbC8vIy/+Zu/EWvHFDN2w7Is3Lx5E3/0R3+EaDSKTqeDjz76CJ9//jkeP36MUqkkMVW8dn4X2C2ro1vPjbrnoxTLspBKpXDp0iXpqdxoNKQ7hal8uKDr9bqUHGGIAOPVNIjXIQC0sHXvW4JLrRgItOme1KLLm6TTaalTx24JBERm6792uy2slnZTvIrwWuv1usScMu6WCVgTExOYnp7G1taWuE5ZNb/T6WBzcxNutxu3bt1CMBjEysoK7t+/P+Q2YVyobe9039jc3JTEK5/Ph7m5OczOzko/0Ww2i0AggBs3bgwxDPV6HU+fPh1ihdLpNGZnZ6VUC632kwAyB5G95vth2CMTDPL7TkzFQdbaSYE9czPje8Buv2rWUmWRdODFJCfzuHqfIZPDgvlOTJ0WzbrXajUhKpwSul5VBoMBKpUKtre3pUxINBqVwsS1Wk0Yzmq1Kl02dKkeDdR4fTreiyyarqvHcaBxRqNKi+kO1qBEM8VOxrAuwWIyzKPmINmzXC4nRuSrjDHdw8FgUDL3ycpp0oQxfezprV3nev/u9Xqin9jRRnfVCIVCUvhcA0zddEEzeRx7nkv/8DtOdTiPUw4N+BgjBwDb29t4+PDh0Ps6S1d3YCBAYYYMi8uSluVkYBNjtvbiOQeDAarVKqrV6hBI0nEPtVpNSnXMzs7C6/VK7bB2u42VlZWh66Kb0u12o9lsIpvNiouBCSJsBs/sw1arJW5CPqgnT55Ivb+9Yvi4QPWCcbvdEnR6+/Zt/OhHPxJQ2u/3BUADOx0xGo2GuJf9fj/u3r2L2dlZfPzxx/jNb34zEvA5LbILFy7gD/7gD+ByufDJJ5/g4cOHePLkCVZXV4fA3qh70TGV+332qDYay9qJ4Zuenka/30ehUEC32xUQRcDPmEs2q2bh7Gq1inw+L+5VxnnS7UoAqI0UvTjNbDW6JekmpbuS7gCWVyHgI6M6MzMjY0dFS0VBIKP7Rpsb/GGFbiPOLV6f1+uVAtaZTEaMF9u2pb0e3SfhcBjf+c53cOHCBfh8Pnz11VfCMHPeMq52fX0d1WpVxtbj8WB2dhbf+c53kM1msb6+jnK5jGQyienp6SFX0rNnz7CxsYF+vy/gN5FIIJ1OYzAYSJzrcXW3eVlxAmVHcTynzcBkGw56XSchJjtO0YwcdWm9XpckDs3aOR1PAz6GPnA+kx0+CLNHo52GlHZ1HiXgazQaso6Yncv7cblcos9ZXYDjYAI+Xp+ZFasBH99nAoION3GaKxps6Gsyf5zYdV0XVj8fE6zz2EzIKpVKEk50GOFx3W63eKTo9dOJXNyXtDHNmncaNGvA53a70Wg0JJmN46o9gvQ06vhIzkXqcuYqaK+J9qjov50Krx+XvJJL14ma1RaDTjPmYOoaY8yA4cMgs2emiNNa0VQtHxgTJDSKdrvdgrA1C0PRrIwOXOVD5+ThQqrVanj+/Dncbrc8PPrbNS1bLpcRjUbhdrtRqVRGZrNqep3XxWPyGsgs6bgLvfB1fUHL2nGNJRIJ+aGCGcU0BgIBzM3NSdID73l5eRnPnj0TYOsE0vRrHCNagjojSn+ev191QmtGkdYiz68DnDmevC5eE5kjuhzpFicjRdBG5avBHcfSdBtQ8TGRgYCJiSN06VCJxGIxCdylcuTCd7lcokCYuXXU2VuWZSEajSKZTEohX4JWspysWckfKjRdqsjr9SKXy8lzv3z5Mvr9nYKndMEytpJgTzOUlUoFGxsbknnLRA7OfSpNJhUNBgNhkvVaBHCs7QwPI6NA2qi5/6pK3tzUT4ItOMg1mRmfOmmKr2k3Gj/r5GrUf1PnDgaDoaS8/QC26e4jGNAGl3m+V1l39DqxXJTJ0BO0cE/UBYzNH319eg8xz8ffjAc0gbL+rN6v9fhQF+jfeuycjBr9XQ0WqV8Yn7+0tCRZ/IcRPQ46vIrFnWlQ0pOjQ0X2cpnr0AIdkqXxBgGcNlg0xuEz5d7MZ6AxDfGO3l9PyivxSlm6RNJ6MnHxkfHgZ4EXN3yChefPn8tAEFXr4OxqtSoTx+VyycADO+UjzGPqbhm6hQ6vg8kWfCBcTGT4qtWqXHcoFML6+jqePn0qGxvPT+aDyoKMomVZePz48Z6Az8yOImPKMhcEMHyPQJCAhSn9BMOJRAKZTAbFYhGLi4uwLEtc5E6SSqXwj//xP8b169fh9/uxvr6OQqGA//t//y8+//xzWShUqqY7hs+b88Dn86HX66FcLr/QY5Gf19b7YcXn80mmW6VSwZdffol4PI5r164hFosJkGMG12AwkPHSFmE8Hsfc3JyMLxUb4zWLxaK4WLa3tyVBoV6vy/Pg95rNJrzenf7PZBjpts1kMohEIgL6gN2sRK00aNlrJUxG2gR+ryputxuzs7NS+461qmjs1Go15HI5BAIBbG1tyRzifbhcLoyNjUkJllqthhs3buBP/uRP4Ha78ejRI2xsbCAYDCKVSsG2bal/qdfu0tKSdNhgKR1W4WddzFAoJCENGsj4fD7ZQMmg2rYtz/y0xNyguV7IWOmNkmvoMMDMBAPAi2DmtEGfBmXc3HTCBHWgLsI7KgbL9IaQwdGsvN579jJU9YbOMAaCA80+Ol3Hy0q/30exWES5XMbMzIww35yjgUAAExMT0rOc4SUcKz1/zE4ami3i2NBw433SANfJKbrMlBn7poX7pAnm+BpFv8f1qMEeXaD379+X7kyjPFAHER6XOpJev0qlAtveaVNH5j8YDKJWq8kPmzRwTDTg0vkBuhKHNoRJBHB9E9CR4CKmIcHF58NnR88nY/B5jL2A6FHKKydtmJSvUwbQXpaIZVkC2nQNO93OhBYDz8lB1qKVLIEjsBvIzwHVQjCo6XO697ipuFwuNJtN5HI5cUdx89WLicfgBuVUq2fU/XO8aCnoRcwJpCcCFy0/S+UQDAalCCWLP5uKjywYM5Tn5+eFZi8UCpIsw/OaGxR/6+vX18PNXIN88zm9imiAyXqNXEw6jpDXwuevx8j8m8JNg5sBN5Z6vS7zTsdfaPBCxRYKhYQ9Y7N0MnuMNWXXEhoNJrXvNA/0XHlVoVHEmpgmqNfXwx8AoqA0+1yr1aRcTyqVgtfrxdOnT6Wfrgb3JlPZarWGSqtolp4GDv8me6rngQYS3MzOouz1zPZaHwf52xQnkHQasheTqYGwBgrmZmcameZrJoAzQYsT6NPnBIazmp3W11FsvtyrdMs0novuPwIy083o5B3RsfJO16z3Xw0Gze853Z9mCJ32TL530Dmo2bh6vY7t7W0BVYcVTRqYrlEzVk4TPtRl3N+JV8x4PM1omvelvYh6jM25yz1E61COmw7bGTX+xyWvBPj0QuUDoM8ceNGHryenObH5PhkNXTdNgz19Xi36GKTotTghZ30N3DD0JkvFRPet08Mgu8DaZVNTU/B4PHj+/PnIcdPghMGkAIay1La2ttBsNqWGkxkzod3QZJu63S4SiQR+53d+Bzdu3MBf/uVfYnV1dQgovvvuu/jwww+RSCQwNzcHy7Lw9OlT6S+8ubk5NGamaEDF587MMx2LxnmhN2LNZnIhvizDwWdFV7sOTtZFhE2rs9VqCaDXLmD97Pk3zxONRhEOh5FMJoWFI/NZr9dfAEBMINLxNLQotWuEDJ+O/3BSrpxb4XAYmUxG2GdasocVWsblcnkok5l9caempjA7O4u5uTlhNm3bFgOoVCpJKYlIJIJ4PA7LsvD555+j3+/j888/x9LSEtLptFi6jG3lc2KMJTOBaUDpTjf6mfN+2V6M5+33+0MtFE8T5IwSbfw6sU5O4rTZO31m1HdN3XnSYgI302jXzI/WKfzttHdocdr0zXFyAo/6fw2YeE16Du313A4jOhyFuh/Y8bb0ej14vd4XarERkHINaCZI73X6c5oNpX7RxIw2xqkreb8kBGzbFg+WHj8nUE3w40QAaZCTSCQwMzMjniyzxNdBhOcjKcS9l0WY6d1jzDaNawAS4mWSEbxOssUm80mCQM8NPW8YNsR9hSDe5XKhWq0KyC0UCggGg8IgatCon+Nx6rBDAz4NOjSg4KagRQ+S6XvXE5QbqqaqdTcIvSlqBkxf00HFtP60BWVaP3ri6jY8/B6TJ5LJJCYmJiSjZ5QQJDHLmEGkupxKNpuVWkAMEjUVkLaWubjj8Ti++93volqt4uuvvx4aH5fLhbt37+Jf/at/BbfbjUKhgEajgeXlZfzVX/2VZEbznk363jwfAFFc5qarn5X5jHitZmzlQZ8b5wSDoQn0wuGwnEOfU5+LsWTArgtEB/mSoWXrHmbNktEidc9OMLx37XIhMGM7QII+xqeaz1Jv0JpZ1VXkU6mUxBey9dphxbZtSTrq9/uS3MKMeWbozszMoF6vo1wuD631XC6H1dVVeDweXL16FZlMBt1uF/fv30er1cKDBw+wvr6OSqUimebsXc2m52QYI5HIULY8Wedut4utrS0pq0TAwA0zHA5LPUzNkJxV0QbIQZS6qYtGvT9K9Hw6TXHSWZzjZLy1PnXSuU462QQ2o5jNUQyflr0AnxPTc1jR85fgAwASiQR6vZ6ExRCk8TskUJxYTB5H62Yd+rSXUc05oo9HPUhmHXAuF+JE5GimlJ/RzzAajUo9zf0aBewluuKBCfioL1lajHqY98ZnQPyi9zgNVDUGMeeG+cPv6XhQ7R1kibhisSiuXO453At4bWcW8AEvFrg0J56ThaoHWL/PAdcolwyRBnz7WVwHWZx7WcujrEQnwKcRPdmjUqkEl8vlGJTKLNxQKISZmRmZmDqBwLZtLC4uSsFlDaC1kjDHmpNRg83Z2VncvHlTgI3X60UmkxGW6tmzZygUCtjY2Dhw7T4nS1mDGI4hrUTNMujnrMd9v83L6Ro4N+g6Z1wIx1Nfm3kNVHKmYtcueypMKj9dGV7H02kXAZNuyAgzPEAH7ZpWNcVpsVPR+P1+6RVZrVZfMFYOI7xXrdypDAGgXC5LQWVdsobf46ZFBddsNlGpVISZj0QiQ8VhCcg9Ho8kaPCe+T7vne5uHXsbCASEmWSRZham1sc6azLKsNzvOwc5rtNrTobraYreQPk/9TxLhRDQjwIm+lgUfUzqPl2rcS92Tx+PjNYol+5e339ZYQw4YwU5FvQGOAEKrRPM/dK8Niegat6P/v8gBgWvwcn74ETs7DX3joot1eNiGs3Abn9lvR/pkC0CQP0dXh/1oc4ncBozzaia4TAEo3yfHku9L/A4moU1AfNxyCsxfDpeS9P15oBoAOg0efmjXbHm8YBhsOg04feSUYBO34/+nP6sPh+vh4uWC9br9aJareKzzz6DbdvY3t4eOr7b7cbFixdx7do1TE1N4Xd+53cwPj4+BHD5w84XVIrazbjXPdu2LcxJv9/HH/zBH2BhYQEAJJ6KCRqbm5v47//9v+Px48cSUD/qnvXxTdav3+9L0oJZ1No8jvns+fdeytYULhACIbI7X3/9NbLZLK5du4ZMJoNer4dCoSBdGAhk9ALVyoLKmJm47HWoQT5jBzWTzSQBxrNR0RAAa6aToFGPsZ4fBD+sBcg4w2QyiWvXrkkHmKWlpQOB81Fi27bUAAMgpSkI1AaDAe7du4fnz59LCaR2uy3dMdzunX7OzHb2er1oNBpYWlpCr7fTDJzxfByHWCyGaDQqnQU6nQ5SqRQSiYTUxyKTvba2Jm74Xq8nBbbJHmazWaRSKeTzeWF6z6JL19wAj2Kj2w8QaSP0NOMa9X0zHILPh+64cDgsgF4DQn2fJsvH17WBykxwGlUH9RzQCAkGg5KNbo7XUQAUSqfTkTAKFld3uYYz0Llv0mDmc+TY6PHg9QG7bm29L/M75tzThAVBt1PSgGYK9ZhSN5mhWzqURes9vVfoWqaHERNb6Jhf6leW+KG+ZriNbdtDjJ8mAbh22J2J9f10PoBprLAcnL5fnpf1+txut3hktre3h7qCaQOWJcXoYToueWWGD8CQNaGtLuBFVocTdZSFYDJWenLrSWJS/+ZxTNGvOSlBp0VtWhH6OBqNaxDIoH+T4SOQy2QymJqawpUrVzA9PS3n1sBCXwvH1oyNMEV/jgB0cnJSLGgqk3w+j1wuh3w+j2fPnuGrr77ad+ycxkn/1oGpDGjV7I3p2iUgomXzsuCdn2Xmq9vtFvckAQnHwwyS5t8mY8wx5PVqRcJnTLcBF6TH45GEA7bdIWA0DQwzhsYcZyf3CpULG34PBgMEg8EDj9FeYgY7a7cEAKlBSYuY7enq9bqAN117kWPf7/eHup/oZ+XxeMTKbTabopC1kVCv16Xckc641H1Hy+WyZFzzWZwF9+UoGWXoHOYYo0Trp/2YlpMWrjWt+00gs5+r27wXHlOvm5e9XzLoNHbM7x4l2AMwFAdMxpprjjFg+rmN8pQ5jQWPr6/b6XP6Pp10jhZeg35++rjcR3k+c49yel5HUWnA6dy8HwDC9PJ6NIuqwZQeV35X6/a9uoLoseN3NdPH0iuWZQm7x/qs9I4QsFLPnWmGT4u5YfNGTOuMYr5mToxR7zsBg70m6yg56IA6LSq+xvgIy7JQLpfRbDaHFp4J+AaDAdbW1mDbNlZWVtBut5FOp+V9AgpdcoCMHJkene3JjVmDFzP+rlwuo1wuo91uS9mLtbU1rKysSPs6fX59n07j6qQACXR6vR4ePnyIn/70p8JK+Xw+meS0fsiktVotFAoF3Lt3DxsbGwcup8Hq6uFwGFNTUxgfHxdF2mg0UK/XpSC23+9/AWCZytOcS9yEnGJ3dGa0GW9KN8CoTUvPaSeFzOPoayCIqtfryOfzKBQKqNVqr7wJuVwupNNpXLhwQc7NchA6E9nlcgm4Y5cZso90VZNt7ff7uHDhgsxDdvFIJBJwuVyi9Fg6Q2fCkVmMRCJSFobPj/W0crkcer0e0um0xOxEo9Gh8aar9zTFSRcCGNoc9tJ7Wpw+53Q+/V0TLJwFMQ0e296JV65UKrKW9Hobpfv163oz53rRmznHxTT4zPHXbAtDF44S5GlhUwBWo9BhDLZtCxul70XXFtV7Kr9jJnFwbJzmE7+jx0IzZQQdeg0R6JnAUCe9acBnJvXp/YmJC4x/Pqzo/VGHmmjgZ9s2vvjiCzx58gRjY2P48MMPMTY2JoanBlqagazVami321LXk2Nl5hFoTw6T8jQ2YPJHPp/H+vo64vE4SqUS4vG4zFuduKQTHs884AOcQZiZSXtYMQHfUR5zr+Pup2gpTsWNzWMOBgOsrq5ibW0NoVAIT548kVg7Wh66XhtdZczSTSQSmJiYkErhLCmiJxkncaPRGMr+LBaL+Oyzz5DP5/H48WN89dVXQyVFNNu6nztEW3rAjjXFtmZffvkl3O6djiEzMzMIBoOSVdrr9cTlWa1WpSXfV199Je7vgzxfj8cjZWcuXLiAS5cuoVqt4uHDh9KmiK31mD2s61HpMTM3Zae/OYa8dy5yZn5pxUY3714GCRlRJ6tUW6ZUwozbY7mc/TqfHERcrp06ehcvXkS9Xsf6+vpQ5rAJ+BYXF1Eul7G8vCzuCSq0crmMwWAgbe5s28bS0hKy2awwk16vF9lsVpJXdBkWADJn4vG4tFZkMpDX6xXQ63K5kMlkMDs7+0JSkGVZ0jT9tMXJI2ACPic2ScteYM+cX/p/J4botESvDdOj0263JRmIdfTM0JZR166Pp1kRE/DtlcwB7CZEeDweMUSPG/CxL3w6nX4hu9b0Htj2ruuU42iyeKYHRYMTpx89tjoGbRTg0wyfFg349Phq4kDvFTQC2aL0sICPz5kAiTrTCfB98skn+F//63/h+vXruHPnDmZnZ4fIEl23kTqvUqmg1WohEAhIbLAGsTrWmzqbgE/PJcYh5/N5rKysoFaroVgsisHKectMbXrgjttgPT5n8RHKcSzAgxzzoOc96Oe4aOgeI0MI7CwgBtH7/X40Gg14PB6JQavX62i325LZyyK+GvDRDUbXGq+NAfjsi+uUoPEyY+wEYgaDAWq1Gra3t4WhoYuOreboImS7OhYWftlzMw7E6/UiHo/LPZfLZWxvb2N5eVkYQBYVdmLVDvLbZE/0uJlsneki2cuQGLWhaUVMFrFUKqFUKr3AJL+KaCXPa2G5GXbRYHN3KjcqKLpibduWZ8pMYtu2sb6+PqR8ddwLC1PTiEkkEtIai4aK/o4uEcG4TfZ8JnN8ECbsrMtBrv11vT8TdDgBsb3Aqf6sGdbCOezEyJvixOjr0I3jZlj6/b4w32TKeU+8Picx9YkJ8vld02thjrvTZ0f9ABhitcxrcSJMRoE/DZK0Z+SwYt6TZmr5w3PSWKS3i5UV3G63GBk8FsulELzpuUBjje53XTeRY04w6Xa7xbNFY0aDSpP5JPhlKNZxgr7XAvB906Tb7UpLMIpWOPqHcX06JsCpBAUnv6n8yCjR7Wp2P6GYAbYvK4PBAMvLyxJIz0WlS6LogsVkkxqNxkudp91uS6/jUCiE69ev4+uvv8by8jIePXqE58+f46OPPsLs7Cz+9E//FPPz8ygUCqhWq7KQTcbBVHR6A9IKTwMkc+PRCkj/NhlTDegoGjBqq29lZQXPnj1DPp/HJ598In2AXzUGhkCtWCwOJcCsra3h+fPnmJycxK1btzA5OYlut4vV1VXpAzoxMSF9bPv9vvTIXVxcxNtvvy2vLS8vy1i53W7pwxuLxTA1NQXLsjA2NoZ0Oo1Wq4WtrS2sra2hXq8LsxeNRhEMBsVgCQaDuHXrFhYWFpDP57G6uvqCm+ubInvdz+t2r3oddLvdoYQEl8s1ZEBQfznFaDGeleuOzD2z4/VmuZ/RBUD0IddeJBIRVuc4hC06K5UKJiYmMDs7K2te6xM9DprJNsN2NODRTJTeA+h6dNpbKAQzwDBzx+MxRtk8r3kt3K+0fmU4B134uVxODMjDiN4/NAPK2GZ6dUh4tNttFItFfPnll6jVapibm5PQE5IfHPteryd9edn+Uo+px+ORmoksN8XrASDGcLlcxldffYVisYitrS15nu12e6hCAZlA7k2sZ6q7fBy1nAO+UxCnGL+TEid2yclifFmxbVsyOo9TaLVxoSeTSYRCIdRqNSkjsrW1JSwgs3hNBalBmwn2TMbBTEoy3zfZBv26E5PK7ztZ3lSaBGXb29vizmXm8FEIm80Du0H07XYbpVJJQgbi8bjEDRIYhkIhxGIxyYQmUx2NRqXdmu6KwfHUljFdV5lMBul0GqVSCc+fP0exWJTNSTc8t21b+iIzpKHRaLzAKLwOsh843es9k0nR8+ws379eBxqMcA3QvaUBjfl94EUmkICGpYB0Ioj+3l7XxaQkzlHTTXkUupFCly4ZIHONjLrGUQyfk+7QnwOGk/lG6T3zh+/TMDUNVw1MzevTXhQ+XzJbBDyvGuqlz6t1Jhk2/QwZI5rL5RAMBjE+Pi6hVJrJIznBuaT7eHP+Mqae9VpNYEbA1+l0pAMRGzbQQDEzlHVVBtZoPGf4zuXIRC9OE7C8DqLpe7/fL7UN+cPahpFIRFyBtm1LVpxTo3QTDPI339dxdhQnRWxuWKPGdRS7pxXzcQtBFZUdCzCzs8jVq1dx6dIlPHjwAJubm0OlDBjvxOzdbreL58+fi0t2bW0NLpdrqFQNi5PrzUP3jmZfXLp5gR3rvFAoIBqN4u2334bL5UKxWMQnn3wCy7KGnrFZxP20xcmQ2GvNvcx16+M4ueL4+mnH8FF0rFwikUAsFhPG12SxGF/lxMADu2wUN3WGtpAppBtSdy0yATJ/M4SBeiGVSkknHnPcjkJHut1uSTjScXa8JjJVjHFlGAXBMDBcBNlkA3nP2sNDAKx1ntZbpiucr1mWNeSudJrH+vxaB5J54zFY8sYp1v1lxeVyIRqNIpPJSCgIAKnZSXDX6XSkl71lWQKmdGKM6ZIFdhNCOF+ZGMJ7Y4IIXcec22asn64jCkDKaTUaDfj9fly7dk3KxViWJbHNTGA6LjkHfN9COYi746wKAR+trFgshng8jlgsJhml0WhUGmjTZUyrjokVWqHT7ayFnzE3HmDYRaXH0nTfmpaovgfTSjbdIMfN2mimjWA4Ho8jGo1iYmICb775Jt544w2Uy2X85je/EVccAR8VFDNvHzx4gB//+Mfo9/vCEPZ6Pak7lkwmMTU1JS6WTqcjcaWM7xwMBkgkErh+/ToajQbu3buHQqGACxcu4ObNm2g0GvjpT3+KZ8+eYWFhAXfu3IHX60WhUEC9Xn8hzOEsiAnMtOhge/37oMfl5033HF87K4BPx2+OjY0hk8kMsR6MoyNLo9lvE9DqjZmhLXTz6rXDJC29lsyEmW63K3Fd4+PjSKVSEkd9HMYwQxtYToisEa+JvdhpvGgjhnNFl7IiyNMAFxieRzoJxGRHTYZOs3l6TmqvhT6+E+OoP0uwVC6XUa1WjyT+2OXaadE2NTUlce+6RzFbQbIQPA0EtmEj6KO3QetxAlV+RpdOAXazb9kGT/+YCUO6RBuwU0Hg4cOHWFpawtjYGCzLEr0YCoWkmgaTPY5LzgHfubxWQsBHF2SxWESj0ZCkAYI9loXRsZDA8EaorV2njdGJpdGbkQnYtOuKnzcBoD6ejoHRbhDTCj8OYM7Cy6wlSGXJWJNcLoeNjQ3p7KFrhFHxafcEY+64cWsmAtjZXJmkQ5DIEiyWZSEUConLliCA59UKlKV3yBqw6HOj0Rhyk52EOIGCUYybeV0Hvc5RwN9kWZw25FHXfBJjZK4PMxGH8XdkTMzyKfo+nNyNeh2b98P1TiBpAha9xthjWwMHAk99H0chrMTAagyanSPA0+yeTmCybXvIxcrvakPVSZdxTHWcoDmuei7psTbPZz5f/qYRaN4rAbkJLF9F+MxqtZq4V/U8YJ1OAkxgB6hVKhUUi0VUKhWpdMDSUpxPABznlb52TQBodlonpdBzwRIv/C4ZTn1O3WXFyeV71HIO+M7ltRIqzVAohK+//hr/83/+T7TbbVy5cgVzc3NIpVLIZDKIRqNSGoZWmF7ApO7NTZsbj0420ZsWgaNZZZ6W8ajFaio7c6PSZRHYcQKAbERHuUn3ej08ffoU2Wx26J6YCfzgwQP8u3/376SAMl2xzK5jmZjBYCDM3xtvvIFr166h1+vhb/7mb/DgwYMhF8rq6iqeP38ubpd+v49CoYBSqYTJyUl88MEHmJiYwMbGBh49eoTBYCD1ymq1Gn72s5+h0WhgZWUF1WoVy8vL6HQ6sCxLlHur1TpUQ/ajFl0qRDMxZHQ0I2duLKPid8xN3GRTzM85JQM4nfO4xGSdzCzKer0uyVfcGLUxZwpdnmRT6L5lIW/LsqS2HT/X7/clplgbYwQJ3W4Xy8vL8Hq9Ykw0Gg2kUilhXcrl8pGBlWQyidu3b2NsbAyxWEwSBvjc2YmD4IExZmSb2JVGAw2GM5hMnQmazXkHDLuHnQC3U5yyFr6mO3HQUOM1u1wuZLNZR4b7MNLpdHD//n00Gg0sLi7igw8+QDQalfdLpRL+7u/+Dpubm3j+/Dls20ahUMBPfvITRCIRbG1tSc1UrlGWhNJhLjRKAAyBb3aHsSxL9BjX05MnT/Ds2TNks1n8+te/Rj6fl/70lmVJrVPOdbLelmXh6dOnUlLsOHXYOeA7l9dKdOBsLpfD/fv3xVXE36xXGI/HXwB1Glhp61BvzmS76M7Q8UDcjHT8n5nUMUpMC1wrQF6XBmD69aPcoAeDgRRy1tYtz9Vut/HTn/4UHo8Hb731Fn7rt35LmD3GsZRKJQCQDXhychLvv/8+Op0Ovvjii6Hq8S6XC+VyWZIyuFmx3EwqlcLMzAwuXryIcrmMXC4Hl2unVmAwGJSkjmaziVKpJDXc+FxYsugsiGaigGFwZrK/TkzMKEbPFA0SzWM5MYynIdwMTVadc6lerwvbq7OtR7nmdWIGf2iI6Bg+rm3Gj5kMlI7NYu/zcDgsrr5gMAifzydhBke19gKBACYnJzE+Pi66iMCYAIJzhUYeAR4Acfnq+URmCHDWL3sxzhokmkyxE2jU39WimVReCwHfURdD7/f72N7eRr/fRyQSgdvtlgxdzquVlRUsLy8LWG82m3jy5AncbjcmJydx5cqVoVq3rO0KYMiTwWdvxphyzAm0Ob82Nzfx6NEjqb1HHckxI3ur14U2UtiN46jqFzvJOeA7l9dKGPvFYP9cLicFfn0+H65cuSJKQPeJ1MqVoEUXTzZl1AbtcrnQarWQy+WkHITORqOS0HUQ+dtkCvR1URlQer0eHjx4gNX/n733fI4zy87Dn845J2SCIAnmCbszszsbZnbl1WotVa1L9geXv7msP8zlKn2yy1bJQfKWpN9qk7WzM7MTyeEwggAIoNE55+7fB9RzcPryBZhAoMHpU4VqEuj03vfeE57znHM2N6V9wFGLRjX1/3lNulqWBpIGWzerHQwGqFQquHXrljQi9fv9iMViWFxclNmUlUpFDPNwOBSOXqPRwIMHD6R1Qzgclu9ARJAokObT0Ml7mQryWYX3ntXKNNg0INr5OSwNa+XA8f313zUaQ2Nklb47CdGfrYMiPU2IvdAACJdTX4NGKnVKmNdKxFA72eRh9ft9QctZYKTPqUbw+RydyjzqaklSFrxe79jYQI3C0sHgXmeAyya+1Wp17LvrZtFWWQTeAzplgLWzZ94n/XOQ82f+W1dg8zW1Wg07OztjKdYXEV4zHSPOn+W6UT9znq752q2tLXz44YfS79bh2BvRyJYoVtXI2pllypX3gOduOBxibW0N6+vrT9TXjUZDpksFg0G43W6ZOnPUwb0pU4dvKqdKms0m1tfXLZEDh8OBH/zgB/D5fAiHw3C5XGPTK7SC1BVROt1G40H+CZ0ePnIe7M2bN5HP58UhAvaVpTYuVmkTnTam4tJIB4nBOzs72N3dHYucj0qslD2F18/UGRswA5CiDIfDgV6vh2w2i1qtht3dXfzud7+TlG80GsXc3ByuXbuGYDAoDrrX60U0GpWCmhs3bqBcLuOTTz7B2toagsGgICBMV7FnoG7YqgttXnZ68lmETnCn00EoFBJjpB0/q+pTypOMLK9VT0Tg371e72NV6FYO33Gtl4mc84zxzLBYiNfBs6lTgizOAsZn39JY67mkvGZWu7KFkzbQunpSrzX1AYuYgP0K16MSXbRBqgavCxhHgxuNBrrdrjgk5CvrIheTemLlLHD9NcdVP88MIPTYQwZzOniw4lByz1F4dnmN/Gwibi8io9EeT4+z08nZ5jo4HA6Z5GR+1nA4xNdff40HDx48lrq2KnwyqQ9PSu3rtTtMX5dKJdy+fRuhUAixWAw+nw+5XO6xEXEvQ6YO31ROlZjcIC06ddjv9xEOh6WIgE4Zo2E93ks7fCaaQoNERckpKcViEcVi8UCHT0eCT+vw8cDT4SOqdRLC78z2BkT0Dkr5kIDPa2P/Q41GHJRq4pp1Oh1xAohy6Go3M11+0o6e1ef3+32ZpsAfYHwO6kFpNr7n0zh8mszP37FqularjRVDPOk7vywxUSTtdB2EZvD70tEgysvf0SHk+dJImT7bekyg5rzps6i/J5+raRlHvVYc3cUKdl4jg0ztmOpMAXVVsVgcm9xgPtd05LQeMx2+g66Pa8zzZ6KQVs4fU+laTH3GIPhFRSPoui0U1+igfU+hnjopocNaLBZFr3m9XuHucQ+/LJk6fFM5dWKmtyij0Qh37txBvV6H3+/H4uKitGqJRqNwu91CyCZiR4WlUUIA0oQTgLQT2N7eRjabRaFQwEcffYRisTgWHeoUqTYu+m9WBlCnDfTvTqo5N5V9r9fD119/jUKhgFAohNXVVcRisbGUCrmOHGtns9kwPz+PdDoNAPjDH/4AYD+lpNvAbG9vw+fzIRgMSv+9fr+PbDaLVqsl6WyrYetWTtAkSKlUwgcffCBTSdLp9BhfVCMjViidKdrxs9oveiQdUeJ6vY4HDx5ID0S9L03U4mUJgwV9faRCDAZ7/RnL5fIY0qWFTgeNus1mk6bF7GfHSn1y33hdZsNuInoadTe/K0czOhwOaeV0VGMMKQ8fPsR/+2//DaFQSArPfD4fksmkOE10/nQ2YXNzU/bVzs7OYynXg3QM110jgebfTdF6ywxS+H58PAwhM53W4XAoHN4XEd6rfr+P7e1t3LhxA9lsVhzM27dvH0nq+GXK2toafvGLX8g+dTgcqFQq0u/0WadPPYtMHb6pvDIyGo2QzWaRzWbh9XqRzWYRCoWQSCQwMzMDv9+PwWCAeDw+NsCa6Vud+mXUSAPR7/exsbEhpNyvv/56jJT7KolGUbe3t7G9vY14PI6ZmRmEw2Exjjod12q1sLu7C7vdjqWlJSQSCZRKJdy/f1+cQu3ojEZ7jZfdbrfwcAKBAEqlkrRVMInPlMOQr5OWRqOBu3fvwuFwjKHA7L1mph41YvIkp49oD5FmOnl0nFhlrR1DU45rnbSh5zXY7XZUq1UAkIpYk7tK0RxaE5FhkMazyudrtE87yU8jNLR2u10CvaNGgvL5PD744AO43W5kMhnE43GEw2G0223pEcefeDwu3C46A5988gnu379/pN/ptImmepTLZRnHyJZP29vblgHEJEk+n0c+nz+Rz546fFN5JYVVgDQcHIzdbDaFKOv1eiWlYlbrauSBxmtjY0Nmx066Ujlq6Xa72Nrakj56HBnENSuVStLTbGdnB8Ph3qzKfD4vZHidChqNRpJ6rNfrePToESqVCur1Our1usyctBJ+rhWiMSlCJKJcLgtqpCsANcL3pOIKE+Ez+WiNRkMQaRNZPmnR34NVszTaOj35rKI5ePyc590PDHC4N4mEHTVvVqdJy+WyIJ29Xm+Ms8gJDE6nUxzjUqkkkyO+6cIgvFwu46uvvhrjRGaz2Ymp2J9EsY2e4nRUq1UpW57KVE6L6CHgNLamc2eFFgGPE3Q1708jLd8Usdv350taca/ogACQ3ntEXTSfyHwNuZNEbDTfiojNaRXdU86s+Dyo2vFJchA1gI+TvF48i7qQA3h6FM7q/YCjcfitdMHLqJg00/mkkZi8Tj5P0zxe9hSG0ya6oIz6ut/vS6HON00qlQrC4fChz5k6fFOZylSmMpWpTGUqp1iexuE72kZDU5nKVKYylalMZSpTmTiZOnxTmcpUpjKVqUxlKq+4TIs2XkEh/4NNSYH9aQSa96JL58mz8ng8MnicbQxeRb6ax+NBMBiE0+mUUUqaD2W2FdCtDTjJg9Wmup+Wbr0B7Fcbcv7sJE2FeF7htbrdbqTTaYRCobFG1hTdNkLz1PRkBa4dW+OUy2UUi8WJKTqYylSm8uqI1+sVfZ9IJKQnolWBGHXQYVxv/Tyrdjj5fB65XG5i9NnU4XvFhKN4HA4Hkskk4vH42KgeEsnZ2Jc9qvr9PlwuF9LpNILBIBqNBkqlEnq9HqrV6on1hHtZEovFcOHCBQQCAWkjooeWN5vNsUkPrPptNpvS48/v90tjYKfTiXA4DI/HA7fbDY/HI33A+v0+bty4gV/96lcvtcfScYnH40EgEEA8HsfPfvYzrK6uolKpIJvNjpHK2T5EO3xsRwIA9XodjUZDlK/L5cJHH32EDz744KU3IJ3KVKbyzRKbzSZzu5PJJN577z3Mzc2hXq9LmykNiDB41YV+enoNi2r0pBO2BWJx269//Wv84z/+48QU20wdvlMs3Fj8N4CxUWAejwc+n082IRvfOp1OiWrYoZ69rYLBoMwV5OBrjoXSCNgktX54HvF6vdIHa3Z2Ful0eqy1BQe793o9cYx58EOhEDKZDILBoLSXcLlciEaj0kfL5/NJa45er4ft7e0jH9V0UqLHV2UyGZw5cwalUknm7QKQfUWHj6IbXlcqFVSrVXi9XqTTabhcLoTD4bHZolOZylSmclTi8XgQDocRi8WwsLCAM2fOoFqtolgsjk1b0hXaZp9Ws/8ng1Nmhdg4ezgcIhqNwuFwvPSRaU8rU4fvFEs8HsfKyoo07XS5XOh0OqhUKuj3+5KaBSA9noLBoKTgnE6nlLAPBgP4/X5cunQJMzMz2N7eBrCXCr569SqCwSAqlQq2trakY36lUjnJy38hWVhYwJ/92Z8hHo8jnU4jHA6PpSXp3LbbbRQKBbTbbXz11Ve4c+cO4vE43nrrLczOzkqnfz1iiKPcdCqgXC4LsnXaxev1IpFIIJlMIp1OI5PJIBAIIBAIYDQaSU8xHf2ykTXTwWy8XKlUxFm22+2IxWKSXj/tbVmmMpWpTI7YbDZEo1EsLy8jlUohEolIYE4hWKJ1OO2BdvSsRmZy0o3L5RLQZHZ2FvF4HK1WC/V6/cSRvqnDd4olGo3i+vXriEajMqqnXC7jwYMHaDQakjLT/efC4TDS6bR06ne5XLLhQ6EQzp8/j+XlZXi9XhQKBYxGI7zxxhtYXl7Go0eP8Nlnn6FSqYhjeVplbm4O77//PjKZDPx+P9xut0wu0E5Lo9HA9vY26vU6arUa1tfXEYvF8Prrr+P8+fMy71X3nGNvLbvdDp/PB6fTia+++uqVcvii0ShisZg4foyabTYbQqGQDKCnUuQsT93culgsSmPiQCAAADICj6PYpjKVqUzlqCQcDmNxcRHxeFz0lO4P6fP54HK5hONts9keG/+n+dyav0d7y8yH0+lEJpNBLBaTMXlTh28qzy1M27Ih7mg0gtPpRCAQGIOgibQA+93eOUSaSB9TkSacDewXePBA9Hq9U++8MFXr9Xqxu7s7BssDkNR3p9NBuVxGu92WGY3tdhtra2vSiJlIFB/p8LlcLsRiMfj9ftRqtVcGrXK5XDIP1OncVyF07jRvj/uSCJ92+Jj60AUuTBcf1bD1qUxlKlMBIPYrkUggEolYplp10K4pT5qnRzuhbarOSPBvzGYEAgHhz5+0TB2+UyzkPDEdydFWc3NzwkMjF213dxedTgetVkuKE0qlElqtFhKJhKCERGNotPn/crmM4XCIZDIJv9+PtbW1k778F5JKpYLbt29jfX0dn332GR4+fAi32w2/3z82FcHpdMLv98Nms2FnZwcAsLOzg7/+67+WAhgSdHUVL193+fJlpNNp3L59+5VxYCKRCM6ePYtUKgW/3y/X3u12ZVzUcDgUnh8A2YfA+CxcplQ4vcThcEhkzaKZqUxlKlN5ESH4MTMzg9deew0ejwfAXvCuJ75wHKfX60W/3xdeMh05bRf5Q+4eARTaTKfTCa/Xi4WFBRSLReTz+RMfjzd1+J5RrEYinQRyww3sdrslHUmEhEaWz6EDogevc3MSqta8K1buEomhMR6NRvB6vRiNRsJvmAQi6vNIt9tFtVpFq9XCgwcPcOvWLXi93rHIbzgcwufzIR6Pw+l0ijJot9sypJvcSACyvnQCdQHMq4Twud1uQfiI4DH6HQwG4qhRYTItwhmXRPn0CDZG0ET9SEGYylSmMpUXFWYbfD6fpFjr9boE4drW9ft9OBwOdLtdma1MBM8sQtNUHgb8fA9+ZiAQQLvdniJ8p02cTicSiQQCgQC8Xi+CwSAGgwEePnyIfD5/LN/BbrcjGo3C7/cjmUzC6/VKFRENpOYbuFwuqUjtdDrSI478vU6ng0gkAq/XC7vdjmKxiFqthkajgXA4LL35+Ojz+eDz+RAOhxEIBKSy9TQ4fna7Xfh6fr9fDjhT40xPDgYDFItFVKtVOBwOWRumwgeDgQx+9/v9CAQCEs15PB7UajWUSiVEIhG5X5z5eNrFZrMhEAgIGZlcPf6N+4vBENMe7XYbjUZD1lO3NNA9I8PhsDjY5XL5JC5xKlOZyiskbrcbyWRSWklxbjcdOAIiVvpLi263wiCXXSyAPYoVKVLUe16vF6lUSkCSk5apw/cM4nQ6MTs7i1QqhVgshpmZGXQ6HTQajWNz+BwOB+LxuFRIer3eMUSECB3RElaOAhDjys0eCATQ7Xbhdrvh9XoxHA6Ry+XQ7XYF7WJajhs7EAig1+shEonI64kITrqwpUogEJBUJADhMOpGyvl8Ho8ePRpDn4DHB7VHo1H0+30JAHw+H3K5HDY2NtBsNsXhCwQClkrkNEowGMT8/LwEChRzADyw33iaDh8Rab3WdJZZRZdMJsf69U1lKlOZyvOKx+PB7OwsYrEYksmktBljNoKZBgBjBXfA482U6QzSJtAusjCSr2WGyOv1IpPJYDgcimN4kjJ1+A4RGq1AICCOwsLCAlKpFHw+n/C9tAF7WWk7Ol4ejweRSAThcBhut1t4Ue1227JalJuP18MNDUA2OUvR+Xc+VxttpueYBvb5fEilUtKUmFW/k8y5YrqQB5QOGQCJ+ug0mwcfgPxfH3yXyyUQPn942LlubEcSCoUEHbTq7H5ahGRkjYjyehlomM1KgfHO9XzUjU4pTIm/Kg7yUQjXkVQKFgxNZSqnRagzdIHbcQidMlbgap2ueXjAeLsV/Ryz/yx/x0wF7YbVZ1OfTYKceodPN2k9ymbA2mhdunQJ7777LiKRCC5cuIBkMolyuYydnR1UKhWEQiHpbce+dkctyWQSFy5cgN/vRyaTQSQSwXA4xObm5pgh5WEC9jebdlBoNHShAXlo2rEjujIcDtFqtYTPUKvVAEAc32KxiFu3bqFWq6FQKKBUKh35tR+VOBwOhEIhJBIJDIdDrK2tiaOeTCbH2rIEg0EkEomx0WCat0ZEKpfLyYSJarWKbrcrxTOj0QjVahW5XA4ulwtXr15FtVrF3bt3sbu7e9LL8dzicDgkKuaasR8hW9rQGeSe1NEvf7Rjpw0A9+OrkAI/CuG6BQIBpFIp2O127O7uvvBZ0w43cDJc5Kl8M8RmsyEcDiMajaLb7aJQKIi+eNl0IJfLJf1WI5GIcN4BPDY6lN9FT80gGqizPTqwp30gf08PQ2C3BqaMT1pOvcN3EEpwFO9LJCORSGB1dRWxWAznzp1DIpHA5uYmKpUKms2mpKle5sb1+XxIp9MIBAJIJpMIBoOo1+vibNCJ07NfaShooE3EhRuTHAam11hSDoz3HGLlpN1uRzAYRCqVgtvtlurVer3+0q7/KIQpbha1kKPHlCI5enR4NQRvt9sRiUQQjUbHKncbjYZEh91uVw4+92W325VeiMlkEm63G5ubmydy/UclVGTcb9wfOtDQ7Vr4Gqsf3ZLF3LdT2RNdoBUKheBwOFCpVI6kaErrztNchDWVo5fDHJRn3Sfk6QaDQbTbbZTL5Zdit62EhYyBQECycebMb01JMs/BQeie2ZDZnEuvdZwZXJ2UnHqHT0cIZsrI6rmmmJvO6/XC6/UiFArh0qVLSCQSuHjxIpaWluDxeFCv19FsNrG2toavvvoK9Xodbrcby8vL0ubkqNpvMKon6TSdTouzUq/X0Wq1xiISvVF1de5gMJAqUcLqo9FI5uuSwwdAKiwJveuNq9eX7+N2u3H27Fk0m030ej3kcrnH+vhNithsNni9XknFs+Kq0WhIBSkdj3K5LNMx6NwxdU0nbjgcolKpjFU/s/T/woULcLlcKJVK+Pjjj+Hz+TA3N4dYLIa7d++e8Eq8mOgqXU0foINMdFMrR6/Xi3A4LHtGjzDia7iv2BNy6vTtCRHRaDSKixcvSvBXKBRQr9fx6NEjoQk8S5pXp6WOA2mZymTIYY5WIpFAKpWSoJZUIhYoFotFmRrBVl2afsH31C2qCEak02mkUilUq1Xs7u4e257jnHNO8dF2j7bApKcww0CdRJvG1K2VY8c14JQO2t/DCkGOW069w2eVhrBC/Q5y9rRxAgC/349EIoG5uTn8/Oc/x+rqKkKhEGKxGDqdDu7cuYNCoYDbt2/j448/Rq/Xw+zsLC5duoT19XVsbW0dmcPncDgQjUYRCoUwOzuLhYUFuFwu7OzsoFwuy+bkOuhmtxpOHgwGqFQqY5MO2IB5MBjIgdZOHVO8Zrqc6J+e13v58mUMh0MUCgXcuXNHDvukCSO9cDiMTqcjZfkbGxsoFotSlAIA+XwepVIJfr9fKniZvuz1eqhUKuh2u/IeTqdTHL5Lly7h+9//PlqtFv7pn/4J9+7dwxtvvIHXX38d/X4fH3300QmvxIuJx+ORSvFarYZOpyNpbooZBZN/qpWjRo6pEKmEWdH7TRedaUgmk/jWt76FaDSKcrmMWq2Gzc1N/Pa3v0WxWESz2XxmXt/U0fvmiXY89L232+2YnZ3F9evX4ff7JaOUSqUwNzeHbreLW7duYXd3Fzs7O7hz5w56vZ5QOHSAR045x3m6XC6kUikkk0nk83ncu3fv2CgEbICfTqfh8XikgT6DSmZzCIKwpYrmswP7jeFNDp9O4WqeODNrk5SxONUOn+bZ6ZTS87wPf4LBoEQibEbMzTAYDNBsNqV/GzeslZd/lNenOQBWn6OVNqMK9oELBoNoNptotVqyTjSy7Kmn0TwdiZgwtr5W8v10ObvmaE0qyqevRZfP68ILYA/FCofD8Hq98Pl8gkox7cj/c/4urxuAoH1sdN1sNuUe6Kknp1HMew1g7Bzw/2Z1G/elDsB08Yb5OAnR8CSIzWaTVkiRSASxWEz6iPn9fgwGAywtLSEUCqHRaKDZbI452joDQCRa9xPjc6fyzRWn04lgMCiZJBYlxuNx+P1+2XO9Xk84pDabTQIM2iftCLVaLZkry2KJWCyGcDg8Vix3XKK5/tTxuthM6yzTxvJ12tnT/HgrfcXfMSvEzhknLafa4XM6nZiZmUEwGESlUkE2m5Wb+DT8AO2lkyj+2muv4ac//anM3CO3q1KpoFar4e7du9jc3JQJFdwotVrtyAs2yHvgqDT2fuMBJVmeDka/35eihGAwiIsXL+LChQuoVqv46quvUKlUUCgUUCgUhJvo9XqlBQmAsbmyur0LjTZRGhYpMBUK7BkVtmrR3LZJESqiarUKr9eLRCKBXq+HfD6ParUKANIh/cKFC5iZmRl7bT6fR7FYhN/vx4ULF+Dz+bCzs4Otra2x+/7o0SP88pe/RLfbxfr6OqrVKjY2NvCHP/wBo9Ho2Fr4HLUwkNCOPZ0HYP+s8Qzqdjc0Ctrx4GtMysCkBgsnIS6XCxcuXMDi4iKuXbuGN998E7FYTNDRdruNH//4x3LmOCWHBUQMMNrtNjY3N1Gv17G7u4uNjQ10u13UajUpVJq08zqVlyNm1iuRSOD999/HzMwMzpw5g5WVFQEaSCVgL7lkMinFiaQJWRX/kHJE0ec7FArhX/7lX471etldguloUnkIWrjd7jHAg5QlM8NF3jKfo0WP2eS61Go1bG1tyaSrk5ZT7fCxeCCRSGAwGCCXy4nSelqDodOgLpcLs7OzeP311+H1egXFaTabqNVqqFarKBQK2N3dlQh7NBpJZeZRe/HcVNyMGmr2eDwSqZhReyAQQCQSwdLSEq5cuSLp3EKhIB3EPR4P5ufnEQqFMBwOsb29LcgVuVisojIrfNmEmPwtfr/RaDSWCp404cFnn0G/349+vy8pW04UYYHF6uoqer3emBFlO5VkMolIJILBYIBGoyFIH9PnpVIJvV4P5XJZ5vGyovqkx+s8j2gCskaBdVU4sF/koxFj7hu32y0IKfk9umWQPjtTh29PHA4HEokEzpw5g8XFRczPzyMWi1mioXT42u02crmcBIj9fh/1eh3hcBjFYhFOpxOVSgWtVkv01tTZ++aIebb8fj9WV1exsrKC2dlZzM/PCzo1Go0QCoUQDodht9uRTCYfc4LM9xuN9roTsGUX9QGzHJVK5Vh7bBLY4XehXet0OmONkqmndE8+XqsJIpmIH3WaWVPQ6XRQrVZRr9cnoo3SqXD4TLSOhsTn8+HMmTNYWlqS7vzNZhOFQgG1Wk2cOLvdLlMQNMeNxigUCuHChQuIRqN44403ZHoFNwibxpLcr6MCIj/lchmVSuVIFafmA9jt9jGEz+VyjaVl6PDZbHvtQyKRCPr9PvL5vEDoPp8PoVBIJj+wTL3VaqFcLgvywh/dXJIbnw6P5g9yPVnswjFkk7DBtdAZIRrCA+v1ejEzM4N6vY58Po9+v49arYZ8Pi/OWrfbRbFYRKPREGd7OBwiHA7jzJkz6HQ6KBQKEkHWajUMBgOZIBEKhWRu7Gnkppn0AqJ83H9WQp4o07kul2vMOBDt01VsfL9vIrdMIwyBQACxWAyhUAhLS0uYm5tDNBod497SaWbABUAMaTwelyKOXq8nU3HS6bS0qGAQw727sbEh+73ZbJ7kUkzlJchBWS/y62ZnZ+H1esVeWDk85mv17xj0Un/q9xmNRtjd3cWjR4+wtrYm/WOPQ2jzdWaC122ieZqmQoBFO3LUTbolC7APJtBx1MUr05TuCwoduXA4jOvXr+P111/Ho0ePkEgkUC6X8emnn6Jerz9GGI3FYpKW1GmmpaUl/OVf/iUWFxfl5vT7fak85agsbmKNELEy9cGDB4IQHZXQiQoEArDb7TKpIBaLIRgMSjqXm4qHiDyMXq+HtbU14emFw2Fxwvx+P1ZWVhCLxQSVazQa2N7eRrVaHeOz8TAwJcrvRgWiZ8cmEgnUajUUi8WJgLC1EI0lssG2LJFIBJlMBtvb2+Lk5fN5uFwuNJtN7OzsCB+v1WrB7XZLuiyZTOLMmTNoNpu4c+eOVGqz7UAikRAeDJ3w0zhBQgcfJGnrXo5WhVJ6ni5H/PG9NL9F9+OjMtXTTV5VsSLP0/jMzMzg8uXLiEajuHbtGs6ePYtYLIbBYIBWq4VGo4F2uy0V07wfHo9HpuQAGEOeZ2dnJYAl/YRG6ssvv8Qvf/lL6as5dfheLTH71Wrx+XxYWlrChQsXUC6XUSwWYbfbpUqXjo1G7YFxzi3RrHw+j16vJyldcqFHoxHW1tbwhz/8Afl8Xvq5HodYBau0rawyZhCuHTtSVXSalo6bieQB+737dPN+ppEJ1py0nEqHj6IdokAgIKXjPp9PHLJIJAKPxyPEU934lbw9v98vCKBWkLrZIttxAJANz+iZBP2jRiU02Z0GUvc606k1Xc2n07J6OLQm29tsNvnuACQ9zc2qydx6Y2sugwlx64a8k5jSBcavQV+j2Q292+1KCsIcH6ffQzcQ1qkDFsbotTvtjoyOkinaEOgftr1ptVqCWFFMNG9S98pJCWkmTIOzhxgzFOb+1XpH820ZpPHfumKQJHvqOBYoMRieyqsnVueM+4V7jXvGfI0Z0Jm8W/6eNlHbT+5PdkZgYdFxiqmfDiq2MF8DYMzWmVW6wJPbvZFvOwl6/1Q6fFw8XVTACRSBQACrq6sIBAJIp9O4dOkS/H6/OHWNRkMQG/b7Go1G+OCDD/D555/LTWHFks/nQ7PZFE6Mx+NBIpFAq9XCvXv30G63UalUXgrRnBxFVkg1Gg1pz6DHoRFdY1PmZDKJeDyOSqUiKJbP54PD4RDksl6vI5fLwWazIRaLIZVKIRAIYG1tDc1mE51ORxBDnY7TDhK/A9uROJ1OSTuZhNZJEtNgNptNjEYjtNttMYjkOOnAgOgLkSr2N2Tl9vr6uhSA0Dksl8toNBpStUZC82kT7iH2hSSyx32igwm2sllfX8cHH3yAXq+H9957D+l0WoINOshsacNzbDrir7JYcZ9oLJvNJkqlkqz7zMyMVIyzWIacWZ5DAIK2cj2JSjNoZdCoU0xc8+mEk1dXrBw0BnCkL3F/6HYj1P10Bvl3k4bBPaQn7mg+HLNDzJQdJ93HCuHTwbl5Dkjz8fl8AqDotlzUfXRq9bki3Ytr2+/3hVs7RfieQqx4B4xMqfSA/TYabrcbmUwGNpsNZ86cwbe//W2EQiFBxAqFAprNJhqNhkS0g8EAd+/eFc6V1+uVlias0q3VamKcgsEgGo0Gdnd3pe3Gy/Debba9Kl2/3y/93vSB04fO6/WK48emuOyRxtJ4Rm9EXrLZLJrNJq5du4Zz584Jp4ETJ8gJNNE+E0WgkXE4HPD7/eIoTbJodKPT6QjiyXVtNBqo1WpSzavTsFwnXR3NCuhcLjdWhUo4n2kBRrqnTYgQkd+quaNcN6K8dIpbrRZu376NdruN69evj0XVVH6kQFgp3UmIiI9beNY6nQ4ajYYge9FoVAwvAOmvqfmUVo5yr9cTI6UzF1x3rV81l2kqr6boe8sgnXvHzEDo5v0aMTbbMPFMM+Wp7QHtAIM7Br/HGdCZ2S3dNsz8Hrx+6ju32y2t2Zie1bPjNaed16ltMyvkGeyftEy0w6c3p45OdGRRKBSk3QDJ9XTAyuUybt68KYOTvV4vKpWK8LRCoZC8z0GKkzeNqBcj8FqtJkUcdHR0xHAUKIV2rACMObj6MGolTZSA3CmimNFoFG63G/V6HaVSSb4jNywNSTKZRKPRQKlUkmkSB7XQ4CbX/Yh0yngShfeIBSz68JtRqz78drtdJkX4/X7hr7Ggp9Vqwe/3Ix6Pi6PNlgbsQ+X1emXvnDbRDh8RJjp8/X5/7L7rFE65XBZ0U4/+Y8DGwgMaH67ppCjIkxJylBnEUg+RQ0sERaMVVjpHn1lNSDfRHiL/k4JEHLUQqQEgxvqbJDp9yUdOn2CDZX22+XxtF63SoTqNq4v+9JkOBAICUhBMOM6zTZvIgEcjkgelWvv9/hidh+vAzh3tdlt4eWYBh7Z90z58zyEmyqeNA9OqTKsxnehwOLC+vo5PPvkEw+FQijZIKB2NRoIEaiPOG0gOFlOWJOOzaKNQKCCfz2MwGCAcDiMUCgnkOxgMZGO/qNCpAyAEd42kkKun212QlM2UcDAYxOLiojRq5RQDnc4kD/L8+fOIRCK4d+8etra2xg4xjYaO5ky0kWmhSXT4tHLKZDK4evUqHA4Htra2UCqVxsbpaNiee2R2dnasNx/bruRyOQBALBaTOcscy7a8vIyZmRn53Ha7jVKphEqlclLL8FzicDgQCATE6eX+onPGPco1ZiuQjY0NcSR05bvmvpIeQBJ1rVZDvV5/JR2Pp5VAIIC5uTmkUikZ7UeEgX/nmEWNiNKQ6uaydPSoM7m3tXQ6HRSLxYkstnpa0TrHNK7kcQNAqVR6KofP1GF0nq1kEoz5YULdzf1ht+9N1bhw4QLOnTuHdDqNcDiMfD4vfRlpX7ReNDtcMMvBdkAMBOnweb1e6eHndDpRrVaPvYBBFzoxkNTBKq9DAxa9Xg+lUklePxwOEY/Hsby8LG2N6EeYxRv8N1FNcsEnQZ9NtMN3EDmUvCqHwyHpVjp8o9FIJiO0Wi0UCoWxUmk6Kjy4dFDYi42RiuZtMbrWkQzf02azyWgyXdVzFBGkSSzVBHcTptZ8AlYo8/syDcdr5GElr4HXxxRyKBQaa03DddNRHu+P/tEO4aSKLrZgtAbso6esSqOzpxFfp9MprVW4B6jwuHbmVBTtAFPpTXq6+yDRRRsmqqTPJyNnRtWMrClWSlIbECLU3wSEz9Rt/B1TSaFQaGz/EClgM3YzBa7XVb/vk84k9/Gr0JNP602to0OhEACIc2KV0tPv8TS/Oy1i5ZCymjsYDI4V6mh9rrM3wOM2CYCcdepQ01brCljaxuN2kDUSp8U8N7xm2k5yDzlCjtekM1xarIKESSrWm2iHD3gcih6NRgiHw5idnZWqs2aziWKxiK2tLfT7fUmhsckjjUihUIDP50MikUAgEMCFCxfwzjvvCKJDhdrtduH3+3H27FlEo1Hcu3fvMSOdyWRw9uxZafkSDodRrVaxtbWFVquFBw8ejHUafxbRzhjRSuDxlC4dEACS0ia3UBcZLC8vI5PJCBdwZ2cH/X4fFy9exOrqKrxeLz777DOB39mna2FhQaKTWq0mzqA5O1D369NO5CQKkVFOHhiNRvj666+xvb2NcDiMCxcuwOFwoFwuo16vCyJXLBYRj8cBQCq7bTYbyuXyWNk+q1PJqWTETC7maeWmEeXkmQPG5+WyzyP5j/V6Xc4esM8l43sR1WObF+5XTnBhH8NXWcwzQkfP4XBgcXER3//+95FKpTAzMyMIX6VSwWi01wyX/SCtDK12eMzMBX+A/XYdbD+lm4tPilgZUSvh7xmAu91uKUZLp9NYWVnBYDDAp59+iocPH6LRaKBQKDwxODeRw9N4fmkDdcA7MzOD69evIx6PS/upZrMpXR501bbmqPH9AEjPPTaYp5PE5zHjRMeJGYHjXEMGM/weZoqaThntn8/nk2k09Xpd7MPbb7+N8+fPSzZQB1wHCRv387NPWibe4aPoQxcIBDA7OyueOFG+bDYriJbL5RIjMxrtTzeIxWKIx+NwuVxYWFjAm2++idFoJJ2wiUj4/X7Mzc0hFAoJ109/l3g8jnPnzkl1cDQaRS6Xg9frRbVafaHxWXScTP6EPnQ0wCw66Xa7Ml7us88+w2AwQCAQgN/vR6VSwU9/+lNJ4RaLRbjdbly4cAGRSASbm5u4e/cu3G43rl69ilAoJNyOer2OR48eodlsyhqYzi8PuBWncJJEpyLYM4rjzzY3N3H+/HksLCwgEAggn8+jVCohn89jc3NT0uS8TkbFnB6hR4z1ej2p/uZIvmg0Co/HMxGH/nmEThoRSrPIgnxROsGsBOfe4Pro1BCDA6L1uqptUlIgxyE0OtqpTqfTuH79OpLJ5BgKzZGFrKqlHITomSR1Itc6tcf3Zup9kvhtZkbhacTtdiMSiUjQnkgksLi4iCtXrgjVoN1uo1gsSsD2qoupd+x2O+LxOFZWVuDxeCSlT3oGCxYYgJgIPbCP7HESFfeWfo4uFqKzp4vajkMI5PBz6aiZ7aUACBKczWaxu7uLfD6PDz/8ELdu3YLX6x3rG6pT5FaBAB3Jk+AtHiSnxuHTwqpTu90uCkqnNZietFpgt9uNeDyOZDIJr9c7NlCcRE1W5DKaZkStizNYNWez2WSqBAnq5DI8r9AgWvW601C7dgxpOAeDgczC1SRtpteYmqTT02q1pNULm7iyhY1GCbWh11GSFSRuQv6TIia8rhFJKjadotQIicPhEIoAG5IS4ucj77vNZhsbu8c0mSbOn0bhWljdW9IshsO9Bt7FYnEMpSP/jEGKmXIDxrlopxVJeVbRKV1dGMNWEOQTMahgEEhekpkuMon5GoW1QgB1E21W5k+CYdKiuXPmnqDeY5N9nmOe61gshkwmg1gsBp/PJ50WnoVacRB3T1egnpa9Sh3PFl7RaFQcICLF1HeaP07hmaWzp6ktAB5zovhjRTs4LuG10dYfZJu0vidPn109mPljmyPaQA3EWImZ7j5pOZUOH1tlAJBRLlpJcYEpWqkGg0FcunQJc3NziEQiqNVqGI1GYqx3d3exvb0tfeui0Sh6vR4WFhbQ7/dFQXITDwYDbG1tSeqzVCpJJPO8QuRIz6jVSAoPIqH34XAoPdL43ejwcUMyxcbZsQBQqVTQbDYRiURw/fp1eDweJJNJBAIBlEolmSTi8/nQbrfHevFRaRJdBMZL0idRGOm1223pFed0OmVWJAMARqRUAFzjQqGAmzdvIhKJwGazyRziYDAo9IFms4lwOIxkMjm2NxgwnFanz0zpageDzp7P50Ov10M2m8WdO3ewubkp6UH2faSh0YEEHW0aDtM5eVXFNDwssmJWgfuTBHGec6ZgC4WCvA/vj063A/vBnlXLDe59cp7r9fpYD8mTENOxMx9NYZ/SUCiES5cuIRaLYWdnBw8fPoTf78f58+exuroqTfibzaac/cOoJ1ZoDb+f5ueyqnXS0uAHSSgUwtWrV5FIJHDlyhWsrKyg0+lge3tbRqHR9pBuQUCEe4xBSKPRkCCBe4aoMwEXzZ07qbNNdJHgEPUNsO/M024xkGcqlygfW8oUCgV4vV6xo9qR5HXz2m0227Ro41nkoMPIG8PnmFGDiThp0QaehQ0a+eHILSJ8wF51LNNObDxLb5+vYSuOoyA+awTP6vr4HBOB0pGtfp0VpE2ovdfrIRqNIhwOS/saXbDC69ZIjD4k3Oh6w0+y6FJ8M71os9nGOsXzmri23W5XZjSztQMVP/kxVorvsP14WkQrRSvumSY78wyxoz4dFB00WCF8ep2+CQ6fKdxLRPh0wMbCID3mkCly3e9MB7eUg/h9Vnt/EtObmmtFYfBERJSBRCqVQrvdxvb2tkwpYR81qxYjzyqa1qCpK5Pu8PGseb1eyXAxqKAjxiBXn3Ud3GkhqKCzaybffpLE7NtrJfpckNNKu87Aie1YaEe1nbfimmqndxJ02kQ7fFr0YvGwcUE1dwB4XEHo17IFC2fs6ve02+3I5/O4ceMGAODWrVtwuVwSHbhcLiwuLiISiUhjVO3BM0WqI57nERLadTm8Vuw6auf16j5TdPi4LuT+kJDtdDrRbDalf6Hb7cbrr78Ot9uNTqcjrVpmZmbg9/uRzWaFaEvU0XQAzB/+bZLSHRraZ9qVB5JpyPX1dbjd7jG+CRtwt9ttFAoFuS4GDzabTYpmyNnY2NiAzbZXuTszM4NgMDiGtJw2oTNChBvAY04EnY5yuYxHjx6hWCxKpXOlUsH29ja63a5MimHgptOWfP6kV3u/iByEYrlcLszNzWFubg4zMzNCmOd55xnXvDvN/9PtVvT6aZ4pP58/7C/aaDQm4pya34E9RJ1OpwTTfr8f8/Pzgih3u12EQiGsrKxgaWlJZo+zCGh7ext+vx/RaFS4pdTTz3LNdrsdV69exRtvvAEA4gw8fPgQt27dOnFn+aAUs91uRzqdRiwWw8rKCn7yk58I73xjY2NssADRXiu9PhqNhMfMQg1dDKGdPQbUDodDeOYED+hgHpfw/NAum3aKornGtAelUkkyWPV6Hffu3UOj0ZD1PEiX66yc2afvJOVUOHxW6JbeODrK4N81L0iLw7E3qog8LAo3eKlUwu3bt6XnXr/fh9/vl+kV0WgUgUBAnDuOlmKxB1G+FzHqmpunI3er1hX6utxuN0aj0dgkCDp9nBxBw9Hv9/Hw4UNks1mcP39e2j9ks1lpDJxKpYTLRzRBr7NV+vYg5GYShAgco3H2fSMfym6349GjR7I+TOEHg0HY7XZsb2+jXC7D6/UK14UNSz0eD7a3t9HpdFCpVFAsFuFyubC0tCQznE34/zSJmdK1+jv3QqVSwc7OjhQY2Gw2VKtVZLNZWQfNoSQnSP/+NKa9nyRWCIAWp9Mp1f+ZTGYsfc5UlE6B0+Hje2tjxnXVqUcGyTzHLOLSj5MmbrcbiUQCXq9Xikri8TiuXbuGaDSKra0tbG5uSq/RCxcujKUh+/0+stkswuEw7Ha7cLDa7fYzO3w2mw2rq6v4+c9/juFwiM3NTVSrVQDAnTt3TtTh0+fPtD12ux3JZBLLy8u4cuUK3nvvPWQyGayvr+PRo0fi5AyHQ3H2tP7WaUoGwbVaDZVKRTJHmkKgvwuDOp0t0s2Pj0OY4dINt00bRaGOJkWnUqmMOXwcPerz+ZBMJi05zSZ30aodzEnJRDt8Jkxsiok66Ocdhg5oGJ4FF2zKyBvMzU8ycDQaRTAYRDweRyKRgM1mk6IOHTE86bOfVsx0rv4cK74TN5dW8DxQVPQaEaSDSEifqcpsNotSqSTRGe+DCdvr67VKGdE4nXTUawrHgOnu52xvo/sUam4iX6PT10R96aiQyKvTcnxkxS4weamOZxGd/tP7Dhg3OKx2120gdHsCq/QGnT3yVF81hO+wa2F7mkgkgnQ6jfn5eQQCAen/pTmzmjfG82gVEGt9YFVcZT7veY3vk5zYZxGiQXReB4O9iTixWAx+v18CdfJhR6ORtNkKhULSQqnX68l0BxpkBuxutxvz8/Not9syBlE7gFo0z5QofzqdFg50IpGA3+8XZ/KkxVx7Fmh4vV7Mzc1hcXERiURCzqIer6cbJfM1ZpaI2Qv9Y8UNNfcE/6+zUOyecRyiMztPcrx0Cta8NvoJjUbjiSl8bZ8nSSba4QMwprD077hJmVJrtVqPRSSHbajRaG/0Wj6fF8+9Vqvh/v37aLVacDgcSKVSolBmZmYQiUTw5ptvYn5+Hrdv38b29rYYKEaVLGR4EWNlonka+eAh1PNuifYxHRYOhwFAnhMMBsXoUgmyQIOK8969e+j1evj000+xtbWFhYUFXLp06TGk0MrhMytb+f4s9piUFCaLV1ioUqlUYLfbpc0PK0hHoxGq1SrK5bL83+FwoNfrSYS6u7s7Nk+R94LEe7/fD7fbLVwZcj5PqyPD4hUWMxEd0dxNGg1Gxxp5J8LHSkkqUu4vFk0RyTqoGvi0ig7WTL0UjUYxNzeHTCaD733ve3jzzTel4AeAtAHyeDySrtQpSc01pd7TwR0DGBoh0wl81pSTqWeBo6lU1eeQoytnZmYEzaNjxs9ut9tIJBJYXl6Gw+HAzs4Ocrmc9GmlHqKdYB/NRCKBer2OBw8e4He/+x1KpRIePXqEXC435iiT2xyNRnH16lXEYjEsLi4KHWh+fh52ux0PHz60RL2PU6wc90QigevXryMajeLb3/42Ll++DIfDgUKhgGKxOHbWGMilUiksLS3J/iBKTySvWCzKLHr22WQQYjZp5vfh2rDHKzNnRzGJ6mlkMBhIKl9/pgZSdLBKXW62kGm1Wtje3kav18OFCxcAPN6VgveBdm/SuJ0T7/AB4wrGdPwOQvj067RoNIzp2Gq1ilwuJz3TuAlIBg6FQohEInL4o9Eo/H6/vJ+Gh80N8LzXq51WM11NJW1V/UQIXa8VRyrpamabzSak5uFwKCNvWKUcCATGDIGVw22uqf6OulfRJAkRRyowRp00pDrdRWRPN7blupLryPfh2uprZ7Ub2+WcZgdGXxewP8rPal9Q0ennEEkx51kCj3fgf9HzM4lipcN4nV6vF9FoFPF4HKlUCplMBuVyGdvb2xiNRpZFBzpw0BWHfNSIi9kSwwyInwd9tjJ05vU9y5oAkGwKz8tgMBDuHVE+GmGO3mPHhsFgIBxln88nXDRODAoEAkLN8Hg8Ysjv378Pt9stPGzqVpvNhnA4LAUOZ86cQTKZlNGC7PXn8XgQDAYnYr+aKBvTjolEArOzs5ibmxMUVDt7AMYQPgIEdMyI8LGDAdFQIvhm0ZC5J/h7p9MpFa7HaRc0lcdE3Hge+B01uGEidHQcTYTPzCzy8/g+k0JpAk6Bw6cjWA2tEi0hiqVTh1bpCworuHRatF6vyw1MpVJIJBLipVerVWnWyZRALpeTZrxUDuS58Ua/CJSreQ96M5m8OF1dxX/TGGjHr9fr4fbt29jc3JTndTodqaTc3t4Wg1sulzEcDoXLOBrttazhtZuIwEGpIirF44rinlW4Pqzuc7vd2N3dxe3bt9FsNgFA+HszMzNy30ejkVTlMo1LRy8YDALAmBO4s7Mzth6TpgCeVvQ10AnWf6ODS56OltFor7F5oVCQdjXAePqEZ5i8tEkwoEcp3CO89x6PB7OzswgGg7h+/TreffddcfoajcZYZ36NwPA88aybTp7J6+Mjg0FdBKIDQq/Xi1gsJqjOYedWf6Zp3K3Sy0xZU5f0+31JX+s0dSAQQCKRgNPpxNzcHIA9VIjfiU1xB4OBpGzj8Tji8ThsNhuSySQASPpWFwVRt+nAPBaL4e2330ar1cKVK1cEseK6M43s9XqRyWSEnsEK6UqlAofDgXa7LcHdi+r+5xXeB6/Xi8uXLwtifPnyZaEk6cCUjhppPdFoVPQdC/S4Z3QxIu0t0+kAxqqWWdTHgI8FIUyrnzt3DsViEZVKRdDaly3D4d6UDzr6Vqg0z1K9Xpcf8z52u12Uy2W55ybYogMp3bFjkuRUOXwUchDsdrtEG2bJ9WEO36NHj6QJLMdsUQFmMhlkMhk0Gg18/vnnktobDvd6YA0GA6RSqbFpAFqxHJXDpydWmIiARik10qc3r47cut0ubt68Kdfg9/ulkINrubm5KesGAMViEe12GzabDZ1OR1LnVg6ffh2/p56g8CxR/3EJI/1gMIgrV65gfn4en332GW7duiUVixwlNzc3JzN02VqEBlHTC4hOsCK62+0il8uh0WggFothdnZ2Yqq1nlW0w0dagb7/rCzXVaQUBlW5XA6ZTGbstdrh0w2qXzWHz9RHHo8HKysryGQy+PGPf4x/+2//LZxOJwqFAmq12ljloy64oDEmOqPPn64A1xxgTaAHMEYT4d71+/2Ix+PiND4pUDvIwdPC+0h+otZX0WgUq6urY2gc95DT6ZTeekSkGo2GOIk6ZUb0T6ODVkI9Z7PZpA9fIpHAwsKCONJmayW9R3WDf14Dn0+HT7c4eZliZlcodvveeMO33noL77zzDkKhkASr/L6mw0dEj9XNnCjE9yNi32w2pSK30+lI8aNGekmJAfbnyRNYsNvtCIVCWF1dxdbWFu7evSttz1620OEz9bZGvBkIUW/XarUDHT6bzTYW7POHSCdbtdGvmCSZeIePohVmp9ORwoJ6vS4ws6mE9GGgUuFILDpF3KSRSAT9fl9m8LIijGgPo0QN95ppTPMzX0QOgsb1euhHM518UHrZrBrSG998H/0cHn6ih1w7Uznq508yD4uGrdfroVqtwuv1ol6vA9jnQnENyM1jYKH5TzRYwP4YId3Hj/uLPeqsApjTIDrAsEJxTFoDf0/RaV4AY8/V721FIXiVhKlF8sFmZ2cRCoUkgG00Go+NN9MOmmngtZjn1Dz/+j7pFh7AfvsTGj1W6lsJ309P2zEDbt2zNBKJIJFIYDQawe/3o9lsCrfV6/WOtQJh2prniuduOBxKIZTWfUx183V0gg9LV9OJY7qba8XXmkE1nWZzf+tgx+PxCAL2IvIsdoSBNXnDsVgMkUhEmufT+dIghA6o3G63TFXSuvqgIJ4OInW72e+VvwMwRj/gGnIvVKvVY+U8al1vpXv19bLXnpWjRsSSfzeDd703dAP/SdJlE+HwPcmxMUn/2WwWjUZDkAYaZSpJUzE6nU4sLi5iYWEB0WgUiURirJ0GU3t2ux23b9/GzZs3UavV8ODBA5TLZYHE9WahMngZxlsrZY2o8W/6szX0bk4v4PPsdrtwDoF9/pVVZ36Kdnp42Pn5RARCoRDsdrsgoDpiYhrHHM0zKcLWAt1uF9lsFsPhUJz7QCAwxlfZ2tqC0+lELpcT5zAUCsHtdmNubg4XL15EvV7HRx99hGw2K+tus+3NXKZjTEUxaZXLTyOj0UgifN3OwnQidDCljWen05EZptqw8+xTIeugapIU5fMI10Wfw4sXL+Ktt95CKpXCD37wA8zNzaFUKuGDDz4Y4zay+tPhcEi1rg6izH8TYdFoi9YVXEsiEXScaLgymQy+/e1vo1AooF6vHzgLXDsZdMoYNOmqbL/fj+vXryOVSmFubg5nz54FsJc5YHaFTh4dPr2XWPgE7NFsbLY9riOrR3XjZY0q62IVLUT0+RwGZzzz+l6ZQax2aExneTgcCvJIp+9paSymI64DIL6/+T30751Op1QKv/baa/jJT36CcDiMcDgs2SimqfVnct2SySTm5+flujTvVq8lsD/CjqPYeP9Go5HsTwr3OlO91HfxeHyMK3hcQoQSwIEOOe97tVoVLr9p2zl/nRxSrcv13uX7kDI1SXLi1vh5ECCNvD2NsHI1nU4jGAzKNAmPxyNKhHySe/fuCceAN55FD6YjaXr3RyVmFHkYwqf/rfl7mu+n/69RmsOIsyYyoJ+r+Ro8QOb3nNSiDYrmMRUKBQkgaAx1cQL/xqIDwv8AhONXKpWkCpjrTW6Uz+eTliSntQ8fFaLZWR842HCZCJ9ufGoiUK8iwmeFrrH57czMDFZXVzE/P48vvvgCX3zxBXq93lgBGkf4cV3sdrs4RhR9trUTqNvnAPscQm2Y9Jr7fD6k02lxwA67Jn4Oi74cDoe0twL29orL5UIymcTc3BzOnDmD1dVVAPsOHwMqAKKP9TVp5IkOpv7xeDxjQQaF+9IEEUznmzqQTo0ZJJt7UKOaDGL5PFavUzc87d7Q++Igp0+LFbLu8/kQDoexsLCAN998U9BiBqssbtFBGfWb1+uVjg7mdCHTuaQuZ3sa3ffV6XTKNApd8KYDmNFoJOhgKBQ6ViCA38fk+ls9j90UNMeVMhgMxlLDJhCj7x15j1bvc5Jy7A6fFWz8stJ+5KX4fD7Mz88jk8mMGXP2X2u32/joo4/QbDbx9ddfY3t7W0iq/I46StZK07yZ5nOfV8wCDf07nW4wCbhaaenX6O+sv6u5/laOJD9TN37l7F6iPWZzSdPgT5pw4orL5RLD0263JSL2+XxicHn95LYA+/u40WhIs2oaKm1QWq3WWF+604pcmUqMQoM7GAxkFJHNZhurqOT+YDGL7m9lZezMgOW0ikbfWdDCPmStVgt3795FLpdDLpcbG2FonnOeOY2KaSSPlAGNPmmnhetNVKLVagl/l7O/2WZD92c7SPjZdBhIc+DrRqMRIpGIOAfD4VAKHBhka0eOqVodCGjHl4/asdVoJq/Zar9oHWeFeGq0zGrt+Bwztav1L+kaTxPMmd/RtIMHIXxa9Mg48o/n5uZQLpfHuGUsUNBIMEerkb9sldnRxXl0aLneuscr+aR8nZ7AwwCFum8wGMDj8UhroeNO6XY6HdhstjHuqg5e9A+v0ep9zB59JnquJ3VwEsskyUtz+KwO32Gb/Xnf/7DXhkIhmSJx9uxZLCwsCNIwGo2kHUepVMIvf/lLbGxsCKSr07U6KtSfb+XUaGP2vGJGC9pwaKWkI3Q6r/y+/K7mwdLpNiuHzzQUfA0PBw0XU7pUMJrDcxDKM0nicrlkluRgMJA+e/l8HoPBAJcuXcLy8jL6/b4YQRJ2tVQqFWxsbAjPj0RzFvTU6/Wx9TwOUvfLEBLl2aAceLzBdqlUEoSTVZLkozGy1sUZ3NN6n2gFPElykO46TKg3yGejwQP2AoUvvvgCAKT9E9E8nkmeRTp6PON6vUhH0Yg6kQg9J5xVpc1mE/l8HltbW1KsVS6XJYX8JKK5vk9+v18qe0Oh0Ni+DgQCiEQiUiBWKBSkMplpx0QiMdZWi+iT1ntatP47TK/ogNd0+PTv+D50Kg9C+Ij86N/r88ygkc85bO2svsOz2gqfzyftYt555x1cuXIF/X5f0vCaSsP14toFg0EsLCxIn1B9PQCkalqjdLr4jt+fjhyBAD3NBYAgiKzKJsLn8XiEqnBcwvS9vo8aLda9CPUceaszr6kn2s5rZ5CFKuVy+VgbTD+NvBSH71mNvOZEvOjiaISAXKtwOCyKVqcAWI3DfDur46xgX6uoSztiRykmymGFIpqKTCMiptI5yPk+DN076HVmythKgfG1k+zwac4jDzyNrOmw6/QLhc8zp0pohQjsp4pOql3DUYlOd1jNZKVoA2Cm2qweKXoPH4UeOCnRiIrWD9qJ1cEjn09HjnuPxtFqj+r3pjOnHSFylsgbJRWhWCyi0WhI4102yGbvUa/XK84eURyr+6Dvk06N6oC42+2iXq8LB7HVaoljx+/U7/fHRm7p9jNWn22VodCP+vemI8PXm8/nemr6ieks0vkxHT7ex0Kh8FiT3qcVjVZa6VXz3wCElkQ6Em2bdtT1vuP1cX1NlNJcKxM51e9j3gsNROh9QRBAp3X1NRynWDnx+hr0//UaHfZ++j35Wqt9N2l67NhSugcpD0YCNpvtmQivBy2kzWaTyHJpaQlXrlyR6LPRaMDtdiMajcJms2FtbQ3r6+soFovY2dlBrVYTvoP+DH24NbLGA05FpgsgXuRGM9JltMvr0geVRldD7Drq1OiJuWZWCtLkZWnHmNdMSF/P6j3IMdKKbBKF45I8Ho8geJqbo4nrpkGjIQUgSpd/t9n22tiUy2W4XC4sLy8jHo+jWq0in89LauG0Sa/XQzabRafTwfz8vOwVKkgabray4VSDQqEw1hsO2N9Pel/p6j/dhPk45GmyBU/7XahfnE6n6DON0PX7fdRqNWmKy0k+s7OzwqsbDodjI7tMJ4MOiG59oVtBENEgab9UKqHVamFzc1N6jLG/KPd+NBoVdJBINdO/+trJn3M6nWi1Wshms/I+ZsuPR48ejU1hID9Q7xUzVavTjyaapxE37UiYTpb+vk/j8PHR6u/6Mw8K+nd2drC+vj7GS7QSK7vg8/kwMzMjqU6/3y/6n4/kbXJtyM9j4Ri7S9Dx45pwtCNtrMfjkeezKtws/OF+s9lsY4U05tow9auvS6OCxWIR5XJ57JqZYj4JXpsOsnjd1Fs8dwCkeJOPBwnPnQ7kCAAAOHQgxEnKS3H4noQcadGb26zGfR6h8QiFQohGo8hkMggGgyiVSqhWq3II7HY7KpUK7t69KyifTlWZ12P+aAeQ13FU6ASdJR1VmWlefi6fY9UuxrwPB4mpNHXUC+xHvKZSPigK1wpkkja7Fios3SxYI83dbndMKZoKX8/kJWzPder3+/I7zgIdDAbSSmhS1+QwYXoagDgB2jDr9AhJ7GaBgRYzEmafOQYSR8GDPQlhBbvb7ZZxj9rhIVJKg8DUZyKREC7kcDiU/mgMhHm+mZIiV4jBBRE1NoxlMJrP55HL5dBsNrG+vi56jo6hXv9wOCyBIp0HMyWlnXw6r3zkZ/Ic5HK5Z9rrTK3y0dQh/L4m4nZa9woD6EgkIvsgEomM8bF5lnQAzZGgLJjhPSOlhwUFOtBgE2nuQT1FiFQd7fgcRK3QdoX3RdOYuDdbrZb03+N70yE6KR6zFYJpdqmgE3uY7gL2+XoA5L5o/8UKFZ0EeWkIn5WzoTdyLBZDOBxGIBDAzMwMnE4n7t69iwcPHoj3/DwpMJfLhcXFRZw5cwaxWGzMiaMCzefz6Pf72N3dRaFQGJv3etAN0srFhHKtnKAX2dAmvK9/rx0+RtI0klSCVilILQelQABYfq5+jonOmJC2Rhdp5Pi3SZJms4mtrS14PB5Uq1VxYqLRqKDMtVpNxl4xMAH2uRzcz/F4fCy1y55mdPai0agQ5p/E85lUIUJOjopOMQLjUTM5aSzg4OvNvcF9wSCNKIXeNychmpPEYEA7MhoNMQM9vo7nsd1uj61VIpHA1atXxZCzPUq1WgUASXVqxIaFMvrcMU3bbrdRLBZlb9GQ08jSoXC73ajX63C5XKhUKmPcW1N36KkwVnqACA0RI10RbKZ2+RpgnxZAFJHr4vP5pGmx5naaCIvWNwehL3o/mvfKRLP4/IOcRu0QWH0e36Ner6NcLoujc1AlKItc3G43ZmZmZEKIfm+eGf5oUIHfv9lsolarIRwOy7xz3U2A+5foMfeSzhgB+82Rh8PhWBsS2pVAIDDW91CnafXamZkvtiXpdDpj3Mhms4nhcK/P41GAO88jtVoN29vbgi6bY0e5fk9K6TLg0nuLa6CBg0mTl5rSNS/Y5XIhHA7D6/XiypUrWFlZQTKZxLVr1+B2u/G///f/FuNbKpXGumJbvZ+VuN1uXL16Fd/5znfQbDZRLBZRr9elI3utVsPDhw9lePbm5uYYUfqg69Cb2Xy+zvsfRcTJjajhYK2ouEEZ9fHzmC60Upb6Wg5y+EzFqP+mnT1docRDYkbhT8OFOEkpl8u4c+fOWDuI4XCvH9lgMJAoOhaLYW5uboxwT6Nns9mkArzdbqNcLqPZbEqPR7/fj9nZWWnb0m63H2uqe1qERRlswaG5VzqFz2KYeDwuBRzAePNgzdUaDveKGhiM+f3+x/b+yxbzPBB5I+rl8XjGpk8waNWTR6gT6OQR5a3X62No1cLCAt5//33Y7XZB3gaDAXZ3d2X8l0bVSC9g/0Iaz3q9LvNfC4UCer2e0C3YZoppvEAgIAR7orS5XE6+Y6/XQzAYFGPF69fBI4WpY6KARI0ikYj83eyHSj3R7/dlZjedELfbjdnZWUSjURnDZeVQaHSdiBXXVTtl2mDrTInO7Gh+KT/DqoJe9/jje5q60maz4eHDh7h16xZarZbcRysJBoNYWVlBJBLBu+++i+vXryOfz+Ozzz5DtVpFqVRCoVAYc4yLxSIKhcJYYM31TKfT+M53vgOHwyE9BW02m1ThRiIRzM/Pj/W80w4a+5C2222hm7CSnj33OBKPrzO7V+j3084r30cX5BCBzufzJzJyczQaoVgs4vbt2wiHw5ifn5dRcrr10dPYLZ5zrfe4HmbxzyTJS3P4NAStW3lEIhGZiUiYWRNJn1fJU/kGAgGJGHWbAB5apqZ0C4InpT6t0rka1jbTrS96k833fBoxoXar1x3mOB/0OvN35jqY763/P8npS+20WTnImuOhuR58rXZ2tSNuEqd1VddpTlUC4yi33i8mYqJTSVZ7h88zUysnvWesHAbtOPB7mS1UeD1cH3Mijw6SqIs06k3UtNfryaQNbUjZV42OC9GSVqslo650IY0OyKh3HQ4HwuEwnE4nisXiY1Ny+Fp9P6xSUvrc6/2s9Z9+T76vuZ76MzSaSeOrA0h97ujwsZJS3wP9qNPBT6NPrbIiB2U59LU9jb7n59IJi8Vi8tPtdqXROwtb6DTrvcJ9qa+BI+I4HYrOPH/PteK95j7Uc275Q74pddVoNJJiIN5jvU/1NZvOEuWgc6SrYc12Xi9bGFQQkTP1Df+vAxKrgjt9TVZ7TFfNT5IcmcNnOhORSASzs7OCgDDqCIVCY7yAfD6Pzc1NmffKwd16gZ/GQM7OzuLatWsIhUIIhUIoFosYDocy0J6ck3K5jC+//BL5fB6lUukxBWWlEDTCx15kg8FA8v3mzNgXNeomf8J0MrXi1ykUbTSt3lN/P33N5vPNtdDvy3XQfafIR2JkQ6NvVmpOkuhUEr9nuVzGzs4OBoMBZmZmsLy8LAgJMF5NTsXJViX1eh27u7vY3d2Ve+V2uzEcDrGxsSE0gldBrJw78oEGg4GksvP5/BjCp50iGiM6I0RaNYpynOJ0OiX1qc87Z2YHg0EkEomx6+x0OqhUKoKUaX4dURpgv9N/r9fD2toaPvzwQ9EdAMZmlG5sbAgnj44fzxZHYdlsNjG8wB7RnM+jIWXwkUgkMDc3B7vdjrNnz2I02muhoqcJkJ5AJ8rn88n3t3J6WIRDRFsbOq37qDf0VAby0rRB5L9JhdABuEb4rIIs3geN0ml+laYRHGSc+TwzkOHn6zXQqX0+r1aryT4wizZsNpu05FlaWsLbb7+NeDyOmZkZAHtFG0tLS0ilUuLEd7tdyXCRp+l2u5FKpeD3+yUYDQaDeOuttzA/P49PPvkE/+///T/0ej1cunQJc3NzGAwGcs/r9ToajQYajQZ2d3fHHD1+T2CcP65bmJl2TaPw2smxKjQkzYGTNjweD86dOyeIW7FYPJbzPhqNkMvlcOPGDaTTaczNzSEWi40FJDxrc3NzuHz5MorFIjY3N1EsFsfuKecUa24u30cXhuoJV5MgLw3hY/VROBzG5cuXMT8/P9bscXt7G/l8HuVyGbdv30atVpPy9uep0ItGo7h06ZLMym00GmNVSlQOjUYDm5ub2NnZsXyfg9A+HnRC1QDGFNZRI3w6OtBGUqcTaJRMbtFhaBtff9D3NHl5fF8+WqV1NedJf/9JTunSgDKKo2NKxb28vIz5+XlZT5PPxP/T6SNJuVQqyRpRIbJK8qR4Ky9L9H2msR8Oh3LOmUKjmAgJ74FOVR7VGXpWIWeJExPI6aQB5wxcp9MpQSlRFabTWLltCtGSwWCAXC6H+/fvy4QEt9stDh/Ts4VCAc1mU3h90WhUUBvqBY06kI9EZ49Oc7/fh9vtRiwWg9vtlgkHpCrYbDYUi0VZf7Pa+qC0Oj+X7VashI6e3W6XfUA9RIfCREmsnAheh3b4zB86euQ6slpWcxOt0Dl+TxPV457VBQYa3X4WRIrInt/vRyKRwMrKChKJhCBwHHGmq67b7TYCgQDa7bZ8P7/fj5WVFYTD4TH0aWZmBsFgEP1+H3fu3EGr1RI6Qjwel+/abrelN9zGxoZQCRiwcy8C++iVdpxN0EE7cryXbAJu5Vzb7Xs9AIPBIJrNJjKZDMrlMjqdzhjw8jJlNBqhVqvh0aNHcia1beS9osNGKg+dUn1Pma3k/tQ22Ol0IhAIYDAYyNmcFHlpDp/X65WZta1WC9vb22OOQrFYRLVaRb1eRy6Xkyhmbm4O3W4XxWJRIOaD8v0Oh0Oa50aj0ceQNiobANjc3MTu7i4ePXp0oGIGrMvzNapF5cyoldGp5vAdpcGySh/Q0B4mZopCX9Nh389MDev3Mx1HU5FapXgmVYgMAOMNXVktWqlUsL6+Lk2mAYxxVyi8Fx6PB6lUSvYDlSD3yHC4N23gpCrUjlJolDSCY7fb5dqI5LO3nCnmPub6631zEnvHKl3Ha6rX68hms7Db7RKUMqVKh8MUHQxyT7RaLayvr0tj6mAwKM4eUT7d2FUHaQxYAQjyqBFFXezCf1cqFezs7Mg+djqd+Oqrr2QeuXaSeA10mF6kfYbWDwyKgHHEjZ/LQF+Ldvi0s2WiTTrTwHQw0XfTGJv39qB9pgNtronVezyNOJ1OZDIZZDIZLCwsIBwOw+/3j303PcWCDpimh9hsNimEIgWKaC6wp8uSySTefvtt9Ho9XLx4EbOzs0ilUtKCha14eG5ZJKV5t9rZ1lw27ofRaCTfTaN52sHT6V99H3l9TC+T1sVU/nFJs9lEoVCQCVsmzYb33OVyIZFIAMBj35HXTL2ubaCVLZwkOTKHz7ywcDiMlZUVeDwerK+v4+7duxJdaKXGjW2z2XD58mVcuHABjUYDa2tr0i7lIMXDitxkMonZ2Vl4vV4x2Px7OBxGr9fDjRs38Otf/1rGnhwkvJkabaBS5WvJFaQC5eHTfdxeVExlZKYzNFdCP9+MqswUmU7p8nVa9HP1Ieb/9XvqKi/zR3/+JAqbbpOnwmvVAcLDhw8RDAYxPz8Pl8slHBlg3GlhemV1dRWdTgeBQADhcFiasrI6bWtra2wc0WmVbreLarWK0WgkRgjYb88QDodhs9mwsbFxYFsHGn2NEpBTcxL7xnQoeC7olLTbbeRyubFr0Er9IP1EpIy6qVwu46OPPhLUDYAY5E6nI04YdaRG18nx41SFSqUi+5gOosnLo0HXa61pKXRemZJ2OBzyfV50SoDuW6lnblO4xpVK5anut/ldtE4zdZz+94vIi77e7Xbj8uXLeP3115HJZDAzMwOv14tyuSx2iDqHyOdwOEQqlRI9yr+xatZEcrvdLlZWVvAf/+N/BLCPCI9GI6GcZLNZ7O7uAoCMt0skEojFYmNFMJpKRKnVaiiXywfaNZ0W19NdTKePNqPT6SASiSCTySCfzx9bcDcajaQoajjcK4ZiyyPuGQYPPp8Py8vLCIfDuHnz5mPvRRts0g20v6ArmidFXmrRhvbomfaoVCqiSHTqkGgIq/V8Pp8QWbmxKfr5fr9/LH1kbh4ihLVa7YW4Aryh+kaaSsX08l9EDlNaJgxtonim8LCZz3nSQbN6romAWilhq8+aRDEjMI3EsIkt/62VmU476hQQjTrTf/1+X5TKSXHTXoaQ22NOZaBBIOJptoEAHifwa+fqJITOJnWVRmgBSKrZ6t5pvWQ6LEwPcU9og0on0goB0PuJ68lgk45nr9dDs9mU1DIrv60cPv2+VulSGi7tRPAzjwqh0IiPlUyaUTxKIbKlqSNmytMsbhyNRmN9KQGM7VH9ep47t9stNpB9ILlPNCee70MOM/cl6QJ6/+nAzCwYMdFSLVYOOBFq2k3dguk4hQ4nAx0zyKOT7XDs9dNstVqPgSuAdTGjFh1ATpIcicNnKqnRaCRd2LkJY7EY7Ha7KC4S5rVjSBIlZ/DFYjHpz6QXLhQKyfM0TE4yMTd8uVzGjRs3UKvVsL6+/lSLrw0Xn08Dx+iYjgDbU7CMnQr4RSuPrDaLdkZ02oazYJvNpjzPKi2m+XXmgdb/NtFN8z2olLgupkIwnfhJdfpohL1er1SUsuee7jPndDqFn6VRCm2kSEinwqCSZZEQXz9ph/95pV6v49GjR9KCJhKJjFX3MV3Elh1aXC4X4vE4UqkUarWaNAomoqVJ4i9bbDabkLdZrOB07k2QYE8zInShUEiKNpgGrVQq2NrakiktNNw0yOFwGKFQaCydyp9AIIDZ2VlEIhEEg0FEIhHhnQUCAekR2u12BV3R6VuS++kokI+qW3AA43QFjfqRO8nzvLCwgMuXL0sXg+3tbbkXU3l+6fV6ePDgAQaDAc6fP4+5uTlptBwKhQCM2xldbKJF69jhcCj8Ph1EkHLCYEunpJPJJObm5sb2JzNT3E/9fl8K0DT/kaAKUWYi8doOaDSPepPXpjNudDgZFB83x402i2g6K3bNoku3231gSpfXpTNa+jq5no1G40SmihwmR+bw6YpSLmipVBIlGgqFYLPZhCsSjUaFN6CRETpr5Mqxgzz5LFTSCwsL8Hg8iMViUumn8+9+vx9bW1v47LPPUCqVZEzWk8TK2FDR8lBxXBK5fDwc7L/1ojwtnTIyHSgd3XHN9eHjc010zupQ8XtaoXJWkZx2OrkudPhMo3JSPKynFTrLukqXxQZsjcBoj/wj3XKFCplKVzvOnU4H9XpdED7u40k6+M8rDOby+TyGwyGWl5fH2j6MRiPpTWelzMkXikajwi8aDodSjXjclcyxWAwrKytjLUhY8OVwOJBIJOD3+5HJZHDu3Dk4HA7pFbq9vQ2bzYZWqyUIjnai4vG4cItJpKcxZMNupsO5b4goEBluNBrSS5TPo3CNSbiPRqOIRCJjZ4/nlUEKi2qolwOBANxuN+bn53Hx4kV0Oh188sknY6muqTy/9Pt9bG1todlswu12o9FowO/3i6PPNCfPFQND3jOKRgRpi+j8kRtar9cFPaPDRYQxnU5jdnZ27LvRFrOHaLvdlk4DTPMPh0PMzc2Jw0dbaAb+BFus0EqeaV3cwT6lug/qcQjPgS62MwuUdCELC5+s3kf/aHvAAJZo/CTJczt8LpdLZkFSqQwGA+FFRaNRQd5CoZDwFrg54vG4KCduBKJ+VLSaSEyUbTgcIhKJjHV5Z9RAA8Py80KhIA1Kn2XhTWeHCpoj29g8mhXA7JhvViU+r2jnTiNlViljs0L4IJj5MPhZP8fqNbqfmPn9tCLSv9No5CSKLiDS5HJyqXSPPh54q/SDRl2azab0TGNLDTqNen2OguN5ksJxXmx1ZCLGPJdW44m4Jhod5n4xqzdfdsCgHSadYqrX6+KI8YwDkJFoTH1Go1HMzs6OTRTQ+ow6ULef0T80to1GQ7jK5Hza7XbMzs6i2+0inU4/xjXlZ2j0kAEz/849pw2vTqdR5xJ19Xq9YuyYuZjkoO00yGg0kgbcOzs7+PzzzxGNRpFMJhGNRgHsB97UEx6PB8lkEh6PRxwHYB+tpbPEe6odFGC8nRZTwJxtS0eOVc0MRtkKiLOXdUsWm82G+fl5uN1uKcTSvQKJLOvAn84U96dpD+ignkQDZmC/ct48u1ovaRv/pPeyem8CQJMkz+3whUIhfPe738XCwoIooU6ng7W1NZRKJSwtLeHMmTMIBoNYXl5GMpnE9vY2/H4/Op0OMpkM4vG48PS4aRlZLywswGaz4cyZM1K+XSwWx9JtrDYily8SiUh5+s7ODra3t7G9vS0joZ5GrBQcG2YGAgHMz88/Vo1JB7DZbIoxeBFFyShIG0DthNL5YlsL/pt/14+E37VTSIdDI4hWPEnt8JHQbfUdtYNHtEv33ZpEo0FjC+ynQBqNhlRxM/hggQ5TeaawWrPX62F3d1daH+TzeaEphMNhWR+99qdVKpUK7t+/j0ajgbfeeuux4h6mgIgKaNFoHrlKmk/Ge3FQS5CjlnA4jIWFBQQCAQlg2V6n1+tJS53hcG8ygdvtRiQSkUA2kUiI8dMBEakldMDMdK/uzXf//n3cvHlTshMOx97oybfffhtut1v0C/Ucz70VRxKABCk6YNQIn6Z1UL9QF/B7sxffJJ7d0ySDwUDmuBeLRXz99dfweDw4c+aM9OLjuqfTaaRSKczMzODChQtIp9PIZrPY2dmR86En2fT7fezs7KBWqyEYDEqrHab7yYnv9/v47W9/i88//xz1eh1bW1vSAohtpOi86QwV7cGf//mf49KlS4hGo0in09LndnNzEwCQyWQEvAH2dOL9+/extbWFeDyOubk5BAIBoXPZbHvtgPjdTwJFHg73RkWWy2XxO6jD2E7F7/dLeteUwzh8nChTLBYl8J8UeW6Hj44OeS3ktxHF43gpn88nHJVGo4FgMAiXy4VgMCgdxrnImuPClAMPA6MNXfCh+X86emg2myiXy6jVakcCq2piMxW9XgdGOJqU+yKK0kT4DiLK6khfc/T4aJJmTQRPf57V6w5CFU2OoH60Qv8mUWgANd+Sjm232xVqAX90Ct18H76X7qdG59+qPcFpF9IsaEwoek8e5LTpdT+IrqD388sWzTkiiZ36iAUROn3GNhq6eTBTROY1ESHQDhavjevGgjaOFCOlwOVyIRaLSf82/p56kcEI11SvKx3Cgxw+8/oZrDebzbHClUlF50+bsNCPjbp5LrivaMsASLGAdsDI19MFREyF8u9Eohh8m5y/UqmE9fV1VKtV6cOXy+WeSHWic9ZsNuH1eiWIJ0KoU7aai8g+kpx4pdOoHDFJrvNJOXyaRqLPKPWYLpI5SLSN1Clh2pFJK0h6boev1+thZ2cHNptNiNuj0UiUUzAYlOrYzc1Nqc5lGwebzSbNHwGMKaVerydd4HlTHA4HZmZmJAI2eWScSdhoNAThYwuDFxUqf2BvogfbbzQajbEUlt/vRzKZFCLsYf3+DpODUqYa3eOhZ1qgVCqJkucjDQARBq6xNhA65UjFQ+RFTx0AIJEQ+SE61asRAm1Ej7sK62lFt4oAIM48I+cLFy5gYWFB9iK735tOM4sTgP1xbdzjDBQYcVvxQ0+j1Go1bGxsoN/vy9oMBoMxMjjnuHK/6H3CNBVT53SwrAqVXqaMRiM8ePAA//RP/4RAIIClpSWEQiFEIhHE43HpxUVKCnl4DAZ47/W5BPbRWwav/Cxg3+EbjUaSQg2FQlhaWpLzR5SN6WB+HlvD6LQrsw+6epPrqfUIv4O5/7jmumKR12U1aWMqLy5s16T1j81mQz6fx7179xCJRHD//n2ZiFIul+FwOBCNRuH1enH27FlcuXIFnU4Hv//977GxsYFMJoOVlRX4fD5Eo1EEAgGUy2Vsbm6iVqvh448/xq1bt6QBMws0niSj0Qhff/01/ut//a/Sai2RSGBzcxO3bt3CYDBAJpORdDL30qNHj5DL5eD3+5FOp2VE2WAwQKVSwVdffSXp4+PQiToLwZTrxsaGnLmlpSX5/trR5nx6ZtLoT9Ch1gEUr4MIH7MDk6TzX8jh4wDuZDIpTk8sFpNIhBAun8uGrHa7XaJnjXzQCWHBB9M+o9EIwWAQ6XRa+lexerdWq6HT6SCbzeKrr76SXn/P24LF5MEB+w7faDQS8na1WkU+nx8zVD6fD/F4HE6nU27488hBKJmJtrEYRnNxyClkRRV7eZloC50TM23DTcxxafp5Gk0FMGao9cang8l08iQK9xn3HonETE2srq7i2rVrKJfLuH//vkSrphAZ0oaTTgMA2Z+TVq31IsJ5rzabDfV6XSJ4zXkkAqX5YMB+9EvuENdF8/qOy8kYjUbY2NjA5uYm/H4/zp07h0gkgtXVVdEzROj01B7NHdY8RY0Cmii5yVnkOjkcDiwuLsqoRDrPRIS0E1itVoVywKCXzqJ2sAHIuuqCLqs0lDmJAtjvH3hQyngqLyaj0QilUgnlcvmxv/EM/e53vxurvtWj1V577TUp6Pm///f/4quvvsLS0hKuX7+OcDiMS5cuYXZ2Fvfu3cOvfvUrFItFrK+vI5vNPlfQef/+fWSzWfh8PqyuriKVSuHhw4f44osv0Ov1pO8fsN++rFqtikNphfKbWaOXKVxTk6K0tbUlHFmtd7QfQqCHhWlmNbIVoMRAuFwuHziJ5qTkuR0+lu9rh42oEB0+jQyRb0c+ExePzojmkGleFLB3A5rNJnZ3d6UvH9+jUqmMzaCkATrKjUTPvtVqYWNjA4FAQPL/Ok2Sy+VQqVSOlIyqnT9NLGUVnU6j6lSM+RozvarTCOaBtEo98kCYzqOZAtJph0nsQ0TRqIyuwKaRzefzWF9fl/vM9IMpVLx6dBpTngDGmnoep5J72cL1YyoQ2N+rOkDy+XxyXsz0ht4ndHJ0M+/jWCd+BxbsAEA2m8Xa2proJZttfzwWAwOi3X6/f4xaovWeRgGsJj6Y54w6lWdbk+ZtNhsqlYrMHdeFIZz3rAsv+HlaP1udaT6P689WOY1G45VqJTSJYrW2ej/q3oqa657L5fDgwQO0Wq2x5tu7u7toNBrweDySWSsWi2Ijn5c3rINjInL8XM2F1vptEtOZwHjauV6vw+l0SibQrIymPvN6vQgGg2Pzq3UQZ9pV/u049djTynM7fN1uF5ubm8LX0WNWKFwMXYXLNAV/dMsC7bxop4KLuL6+LqlScmtKpZIMneboqhd1tswbpEf3/O3f/i3+4R/+QVqx6Oez0aWZLnyez9cpIF2FDOxPOmBURYNDXpFuoKofTTTV6lp1alYbYyoL3X6Cz2F1NFEGOqUHjZyaBOH9s9vt0k+xXC5jd3dXqtX++Mc/jnH3zPTDaDRCtVrF+vq6jB+y2+3Sn81utyMSiYwZ4Rdt2TNJQkL6zs6O0DrYIoL7iL2/iEyZaUYaNCJ+7FnIlhDHJb1eD1tbW3A4HHj06BE+++yzMScpEAhIi5VwOCyObCKRkJYobBqvnUT2yWRlJNPZOh3OKt12uy30F+048jswzaSNTDqdxuuvv45YLIY333wTmUxGuFLsaqBbWlFMWgcrSSuVCtbW1mRPT1qV4TdB6PBpPT0YDFAul0Vf3b17F8PhUFCk7e1tSf1+9NFHQgHgFJYXsYl0XNiw2Ol0jrXtsQoOJknvWwXZ9F92d3dx/vx5tFotWW9NSeLIzDNnzkiKFoCcMV4nAzueKe2jTJI8t8PHNhRPI0SZmDLjQtJJYT87jUoxmtbOFNO8ZhuDlw2bMhLu9/tSmfSyhZtUG0iNIOh0mN6gOg3MiMWM8rmxrTgIpsOuxYpcb7aa0CikRjUmUUxkiSgfHQ46s6FQSNIrpmgnH4AQ8tnQk04AYK14TrOMRvu943TAp4MuVuya/bY02Vm3yDFb5RyXDIdD0SN6hB6FCBp5syzeGgwGQmYnhUGfAV4bG9vqhqzFYhHtdhuVSkX02IMHD56JCtLv9zEzMyM9H/l5NM7c38D4iCu99tTllUpFMhTkJ79K+/U0ibn2dAIBCOVJS6vVeml2kE4Mg3hTdKpzksV0SOmoUn+b7XGoz1h4qqd+mUCI/gwT4ZskeWmj1bQwtUDomc4LHQRGLnqR9axAvgeVJlNvWpm9SsJJBsFgUIwLHTESQtvttjTyHI32CODJZHKMQ6T/bULVGsUzEUWN7o1GI+Ev2Gx7FVt2ux2hUEhaTrCBJvlM7XYbDx8+RLFYFJL5pAkRPgYX8XhcaAJ0YrrdrjT3djgc0uKHYrPZEIlEcObMGYxGewVLnU4H6+vrki7IZDJIJpPY2tpCsVicOIj/RYSUit3dXdhsNiSTybG/+/1+LC4uwuv1Ip/PY2trC8D+HtOBCfeO5sdNEn+s1+uhWq3C4XCg0+lIsLq7uzs2tUVnOXSal1kC8mrp/BG1I2XgWQu9Go0G7t+/j52dHdTrdXz11VeSrrJKKZnovk4hMtDZ3d2dOntTeaWEPoje07RLrJ4eDodjXHgAYutSqZT0wgQgKXbqKAa6zOTwLL0yCN+ziM7rW1V+WSl2q99ZpSFfRaXENGE0GsXq6qogJJzusb29jZ2dHfh8PjQaDSnU4PxE8qX0eumu+XzUXEseCDra+nd0zKvVKra2tsT5o5FmKwtKu92WPkyT6uAwWiWlIJlMSnUt0eRarQafz4dkMgm73Y56vS7GkBKNRrG8vAy73S4GfDAYYH19HW63G3Nzc1hYWEC/38eDBw8OnKF6GoVppp2dHUG5gP3zHggEsLy8jFAohLt37wI4uHUP6QiT6vDp2cGs1gasZ0wfJla6y1y3Z5F6vY47d+7AZrPhyy+/HKvItfpM0+hZfbdXiXYwlakAB899J52hUqkAgLRX0+c6Eokgk8mgXq+PFaRyKg6zGxrZY3uuSSvWOxaHzxSrhZ/KvmhujVVBBpGCRqOBXC4nG49VQyZBV/OBzM/RqR2KrjYE9puz1ut1adQZj8fFyJk9u3RriEkVTbolwtftdqW3XCwWk3FIoVAIo9FIECoKaQqxWEwqUfv9vvA9nE4nFhYWkMlkkM1mDzW2p0X0NTAVSMRZ7wUWcbEXnR71pFv2kFZgVrZOYnX3pAaaPKeTfN6mMpVJEU2xASA2k3bTTOmyKIrTRGg3WHSqsxUH2dRJkRNx+KZyuGjOhObuMXqgs7e2toZKpQK3242ZmRkZ9gw83rxZV+8SrubG1UPrNe+IqCCN8c7ODm7evInRaIRwOIzFxUWJcPTnsi3MJAtJyH6/H8vLy3jnnXfGqi554DnvtdVqoVqt4osvvhgrzZ+ZmcGbb74pDXHtdju++93v4uc//7msBRsw//M///NEKoGnFR31ct9sbGyg1WohGo1KixquHdsU0THWnBiOhgL206WkZ7Cga5IQvqlMZSqnX3QnCdq/Vqsl84M5RYu6iu1wWKFM2g+dRNpnFrKYnORJ0/dTh28CRTtZ2nHTCB+5fNVq9TH0xKrjutmwGsAY54AVfays1e0x+FgqlSSlSf6CrmLl/0+DsdaRWDgcRjqdlqpL8rPcbjdarRby+Tyq1ar01tPCZttMB7Ppti6u4ezoSV+TZxXdmqnRaIwFE8D+FBoOJwf2AxE9ik9HzCwcetoU6VSmMpWpPK1Y6RUW3ulxghq58/l8CIVCAmSYRRtmv1xg3L5MkkwdvgkUveEYSdAJMxE49kdaX19HpVIZc8AOQviIvukyct2PS/9ec/wqlYqgMNlsFrdv3x6rYqWTuLu7O3Fk1YOk3+9jfX1dhpovLi5K2xm73Y5yuYwHDx6gUqlgfX39sbTe3bt38Xd/93cIh8MyqUEjV7u7u6jX67h58+aJDQp/WTIc7jU+7/V6yOfzMhtzfX0dhUIBtVoN2WwW9Xpd1q5cLuPjjz9GLpcTBckpJq1WC2tra1Ic86qt11SmMpXJk3K5jLt376JSqWBlZQUzMzMCfHS7XeRyOWSzWRQKBbGJ7HsYiUQQDodl0AFTw6/caLWpvFyho0ZyqHby6JTp2cXFYvExIrmWw9CSp+FU6nJzh8OBzc1NDAYDhEIhLCwswOPxyHxEc2zQJEu328WdO3fQ7/eRyWRkZiT5eNlsFn/84x9RKpVw7969x6q8Pv/8c+TzecTjcbzzzjuYnZ2VKLLVauHmzZvIZrPY3Nx87lF7kyrsw2ez7fXZW19fh9PpxD/90z/h5s2baDQaKBQKUpkK7DUn///+v/8PyWQS4XAY4XBYHL52u41bt25hbW1NilumMpWpTOWoxAp1y+Vy+PzzzzEzM4O33nprbBpQq9XCo0eP8PDhQ+zs7IheKpVK0gR9ZmZGUrq0gazSnTSZOnwTKHSsOMeVY+LY0JHVoETldIHFcQkHvhO1ocPXarWkJcRpkNFohHq9jmKxKK1XtMOXy+VQLBZRLpcfay46Go3QbrdlRNLu7i6AfYS21WrJ6+v1+sTB+0chVKCchGO322W92HNOR7nsP8fqOFaycRoA986kRcZTmcpUXh3Rupgtkur1OnK5HB49eiRoHSk9pVJJ+lyORnvNpvP5PABga2sLfr9fxuUVi8WJzU7YRk9hhQ7iL03l5Qj5TRzeToI7nT6O+qJTeNyOBEn45GaR20CiKieBnIa0Lqdh+Hy+sfQ0DzZL9om0mlGb2+2WmbEcbUUZDAYyS7fdbkvPxFdRYrEY5ufnYbPZsLu7Kx3+zf3JqmZO5yHnkSmUarUqkyamMpWpTOWoxazS1ZOslpaWEI1GBURhr1GCGZy2lEwmZawhp4cxjdtoNLC+vv7UgymOSiqVCsLh8KHPmTp8U5nKVKYylalMZSqnWJ7G4Zvs3hlTmcpUpjKVqUxlKlN5YZk6fFOZylSmMpWpTGUqr7hMZNGG7j1HjpSeR0lu0GGvZz84j8cjbUhsNpvMwHsVKgDJPdDNH3UVkh5qzd+bvYJM4d/ZI03fC/LzdH+5V0l0D0Hdr+mgHkv637qNzST2XzoKMbkvp+W9p3J6hTZA6zh9FvU51WePP9RTtBtTmco3WSbS4XO73UgkEvD5fLh06RKuXbuGTqeDe/fuoVKpYGtrC2tra5YHmAUFLpcLCwsL+Na3voVAICBTEDY3N/Gb3/xGKl9Ps4GJx+NYXV1FKBTC4uIiMpkMBoOB9O3L5/MoFotjv6PzpvvraWeQ/foSiYS0W4nFYggEAshms/j6669RrVZx9+5dbGxsiKNjymk04MFgEDMzM2OFGG63G8FgUJxpAOLwsmiGZN18Po9msynVXafp2p8knHdrt9ulUfdRvCcAmaFrt9tlLacyFQCIRCJYXV1FOBzGmTNnsLi4ONaYm+d0NBrJaCxNnr9x4way2SzK5TK2t7enTt9UvtEykQ6f0+lEJBJBKBTClStX8OMf/1j6o+3s7KDb7WJ9fd3ytTabTSpuMpkMvvWtbyEej8PlcsHpdOLGjRvSV+20G+RgMIizZ88ikUjg+vXrOH/+PPr9PhqNBnq9HtbX16VXENtj6NEyjHzp/HHtHA4HFhcXcfXqVQSDQczNzSEajeL+/ftwu93SamRra+uxOaimnKb5sR6PB8lkEn6/H36/Hx6PBz6fT6ZvAPstc9gah61Fms2mOCqcRPIqCdFPOr5HdV/1CCNWR08dvqlQ/H4/zpw5g2QyiTfffBPXr18fmyLk9Xrh8/nkTPZ6PbTbbTSbTZRKJfR6PQlws9nsSV/OVKZyojIRDh+V/vz8PGZnZxEIBDA/P49gMIilpSV4vV6MRiMkEgkxMoFAAMPhUAwFRcP5i4uL8Pv9cLlc8Pl88Hq90lzxzJkzY8Z6a2troo00URCPx4OLFy9idnYWyWQS586dQzAYlNFgg8EAbrcbg8EANpsNkUhEEJl+vy99gohODYdDxGIxpNPpsbFssVgMiURCWq8Mh0MEAgGcO3cO6XQabrcbKysrqNfr2N7eRrvdRi6XQ6FQGPvek+rs+f1+RCIRuN1uZDIZCTDS6bSU2geDQbjdboRCIVkDOsrsF9ftdqW7eiKRQKPRQKPRQLVaHUP9TmtbFs5KDgaDuHz5MmKxGNbX13H79m3pVUh6hFVzb16vmRK32WxIJBLSyoZB2draGu7du/dKUC6m8nzidDqxvLyMubk5zMzM4Fvf+hai0Sjm5+fh8/lETxHh4785vg/YT/VevnwZ8Xgc2WwWMzMzaDQauHfvnvTMnMpUvkkyMQ6f2+3Gd77zHfzpn/4pAoEAMpmMpGbp6Jw9exbpdFqG1btcLkSjUfh8PnmvXq+H7e1tlEolOJ1OuN1uOJ1OxGIxhEIhhEIhzM3NodPpYHd3F4VCAZubm/i7v/u7xxw+Ko1JSP16PB5Eo1GkUin81V/9Ff70T/9UUrWj0UiuU0/bWF1dFWTKZrNhOBzi448/xgcffCCdxAeDAV577TX8+Mc/hsfjkWulM6ObQCcSCbz33ntja7K5uYlf//rX2N3dxf/7f/8PpVLpUMRvUiQej+PKlSuIx+P40Y9+hCtXrgjn0W63I5PJyPxbBhREM7vdLsrlsvAZyQ+q1+vo9XpoNBqo1WqoVqv4wx/+gI2NDeRyOTx8+PBU9CbU4vV6EQ6Hsbi4iP/wH/4DLl++jF/84hcoFouo1Wqo1+vodrsStAGw5FSZZ8nhcODcuXN44403EAqFcPbsWXi9Xvz93/891tbWpg7fN1g8Hg/+1b/6V/jZz36GWCyGs2fPwu/3S4BBPh/3m549PhgMxuzB0tISgL3xWTs7O8jlcvjP//k/Tx2+qXwj5cQcPl1Y4fP5JHU2MzMDv98v6BLHiDkcDni9XgyHQ3i9XkHuONSY0uv1pMu/VgyMCvk55HJwIkIoFBKlQqM8ScPb3W43otEo4vE4ZmdnsbS0hFarhXK5jH6/P+bokePCdaXTMhwOEQwG4fF4AOw7MIFAANFoFF6vVwoP2GBYz+51u93ChyR3ZjgcYmZmBgAQDofhdrtlUsIkOn1EMP1+P+LxOJLJJGZmZjA7OyujcQBIcGBVrEG0lA4xDY7H40G/30cgEIDf74fP50MqlUKr1UKn05HiI702k8515DllE/CZmRnE43EEAgHpUP+87xsIBJBIJBAKhRCPxyWFPknnbirHLzabTdD2SCSCWCwGr9cr6LnWcfrc6KCDXGWv1ysoNX+v7cVUpvJNkhNx+Gw2m3CkFhcX8f777yOVSmFlZQWJRGKMvE3lT6fG4XDgxo0b+Oyzz9Dv9+VAUzjQvd1uY2VlBT/84Q8RDoeF48Gu/sPhEKFQCF6vF4FAQEY+ffHFF/j000/F0ZkUDtqlS5fw7/7dv0M6ncbS0pJcIyduAPtOAxGVWq0mjq7b7RbjPTs7O+aU+Xw+5PN5OBwOmXhgFnSQl8ZUsdPphMPhwGAwwJUrV3DmzBmUy2VUKhXUarUT6TT+JHG5XJifn0c4HMZrr72GP/3TP0UkEkEymUSz2USj0ZB0d6FQgMvlkj3HPev3+9Hv99FsNtHv94XXpqdFEHkOhUL4i7/4C/R6PXz66af4xS9+gVKphO3tbZTL5THDNakOcqfTkXva6/Vgs9kwMzODd955B4VCAR9//LEUqGhUzgoZN41zJpPB1atXpXq+0Wi8csUuU3l2oa6pVCoYDodiK0idoOgOAgDknDIjwd+7XK5Th6xPZSovQ07M4eMYq+XlZfzsZz8T6B3AGEeK6BwdDbvdjrW1Nfyv//W/nuhQfO9738N3v/tdQaKYguv3+xiNRqJIIpEIgsEgGo0Gms0mPv/888ecqJOWpaUl/MVf/AVSqRQGg4FUg7L61mwPAuwjeEQ2qRATicSYcfZ6vTIPttPpoN/vj7VlISrGFDKw36rE4/FgeXkZo9EIDx48wPr6OnK5HLLZ7EQ6fOl0GplMBpcvX8Z3vvMdBAIBGVXXaDRQKpXQ7XYF6SVK7HA4EI/HEYvFBOUjqkfElPeBRUNer1cczGAwiLt37yKbzaJarYrDp9PFk7LXtOiKR+6rRCKBK1euYHd3F3fu3MHW1hYAHOjcWf3fbrcjHo/j7NmzaLfbePDggQQxU5kK5yoDexMEmDmg7uZ5YcCldRyDL9qLgzoJTGUq3zQ5EYfPbrcjlUphYWEBCwsL8Pv9cDqdwtHg4dTpLrvdjmAwCL/fj6WlJbzxxhuoVCrY2NhApVKR93a5XFhaWkIymcTq6qrMeQXwmGPEtO5gMIDH44HNZkMqlcKZM2cE7dER5XGLrpolQgdAUqzAeFRLJ45VuPp9qPScTicCgcBYTz46LHyubntgphytUsf8eyQSkbYJbrf7ZS7Nc4nD4UA0GsXMzIyMCiQa0Ol0xnp2eb1eBIPBsXnFnU4HtVptrCekThFx/XWrllgsBrfbLY60RvImgRv6tDIcDtFoNOSsxeNx9Pt9MbIMzKx6GGqhA+3z+RAOh4WmAWBiUc6pHK/odL/H4xkryuPe4l4jwqf3mQ6kgP1zNqlB1VSOV56FRuNwOKQtmdvths/nw2g0wvb2NvL5/Mv+qkcuJ+LwuVwuXL9+Hd///veRTqeRSCTgdrvRarVQq9UA7B9aOiqspvR6vYIqbW9v46//+q/x6aefynsHAgH8/Oc/x3vvvSecM6aITVifRQtsA2O323Ht2jX0ej3kcjn8/ve/x/b29nEuzZjY7XbhKAYCAQD7zh4jXd2Umg4sHTwifADkbz6fT7hp3PjaqWG0bEXC18acqWKirwBw5swZeDwefP311/jDH/4wcW0Q3G43zp8/j9dffx2zs7PixNXrdRmQTQd/dnYWqVQK9XodW1tbaLfbgsxxvYF9pEqvZbVaRaFQEJSP1dGtVkv2HIX3Z9INUbfbxfb2Nh48eIBAIICLFy8iGo1Kv0wqQ82b5b81J4/IfiAQkEHlmrYxNcpTcTgcmJ2dxZUrV8boE9RJGs1joZUOhu12+1ixmtaF0/31zRYdHDxNgOl2u3Ht2jWcP38esVgMZ86cwWAwwN/8zd/gn//5n4/hGx+tnFhKNxwOY2ZmBtFoVIwCUTezxJ6vcbvd8Hq9SCQSY1wpjVAFAgHMzs7i3Llz0pNJc9G00HHSXdxDoRBSqRSGw6EojZMSInxmBa6+FqYstAOn/83n07Eg+qadt06nM1aool9r5ezpyFpzHFlsE4lEHrt/kyB2ux2BQGAMWeKeI/pG3iZRKPL0tHHRtACdGud90fuu3W6j3W4LenjaED6d0mehCh02PgYCAXg8Hvj9/rFAgLQAjb6w2px8SK4t9xNfM03DfXPEROt8Ph/8fj8CgYA0MQcwpnu4T4DDJwZZ/Z2UC6Z+p/LNkqfh5TOrFggEEIvFkEwmkUqlsLi4iMFggEQiIYVrzPacBjkxh0+ndDS3ziqdaLfbMRwOUS6XpZdZLBaD3W7HT3/6U5w/f14MUyAQwIULFyRF3G63H0MOrKoA6WiyByAwnuo8CSFHzu/3w+v1jhlGjbTpCFY7EXpT6+kaZpra7KNmro+J7PFRG3MWNTgcjol1+IB9rly73UapVJLD7/P5xMkfjUao1WrY3t6G3W5HOp0ec3y63a40dfV6vcI3rVQqkrrlGlYqFQwGA2ljwqbYFKt7NSnCAp/5+XnMzc3h4sWLWFlZEZpBOBzGn/3Zn+G1114box2YBtzcP+ztuLi4KNX0Fy5cwMLCAiqVCnZ3d1Gr1bCxsSE8rqm8muJ2u6W3ZzKZxMrKCiKRCC5evChnh5QeTSPR/R8PagfEf/Nv7Pf43nvvYWZmBg8fPsTvf//7x/bYs6T8pnK6xAwkTeePAej169fxk5/8RDJrACSb5na78bOf/Qxvv/027t+/j7//+7/H7u7uGB1tUuXEHD7293I4HJJuZQ80PoePvCnVahXAXvsPetjvv/8+3nzzTXFA6HCQw0H0Shueg/htdPhmZ2fR6/UmwuFjqowNRk1nj44VnWUrx4/vBezP19V/N5E7q+8BYIynpVO//GFkHg6HJ9bhAyCp3HK5LIgnW6q4XC6ZVtJutxGJRLC0tCSIg8/nQ6vVwsbGBprNJnq9Hur1OjqdjhSqsG0QAFSrVbRaLZRKJalC1Uphko2KzWZDOp3GtWvXMDs7i5WVFSwtLQnqEgwG8aMf/WhsT/J1h/2fe6/T6aDdbsPlcmF5eRl2ux27u7vY3NxEPp9HoVCYOnyvuLhcLqysrODy5cs4f/483n//fYRCIbTbbdRqtccyCxRSVLQOpGi+nunwuVwuvPvuu7h27Rr+5V/+BV988cWBDh/fayqvjph7go/MkjHTd+3aNfzVX/0VgsEgPvjgA9y7d0/8AZfLhT/5kz/B/Pw8fvOb3+CTTz5BpVI5FVmJE+3DZ5JteVBtNps8mmgTU3BssULEQKMJHHnFEU1WBkgXLejPPij9exJit9sF4WNRidUPxep7Wzl95rUf9LeD3kunVfTn8vtMGrxNDmQqlZKJGtr5J+LZ6/UEvdJoKtFnogrD4VB6EZo9Hlm5y7/xM0KhEFZWVqTVBAMccicnVdj/kqicmcrXQYIVpcDq/B4UbFDhejweuFwuy+BjKqdTTJ2iU2bxeFym3QD7vT/Jx9P7zexEwPfW+0xzl7Xws/m5bAuUTqfHSPhW+nEqr65wX7hcLiwsLCAajSIWiwmv+9GjR1hfX4fP50OpVBI6SiAQgM22N+DA6/Via2sLOzs7GAwGkrWcNDkxhM/hcEifM42ysZxeo1mm4m82m8LrcDgc8Pv9glwNBgOUy+WxQ08kyvwOZoqA/Csijid9w9gKZG5uDrFYbCxVptcH2C/m0Lwyk+tHOSyCtXIadcqXn08ezGAwGONJApCUJVsknLRDMzMzgytXriCdTuPKlSs4d+4cGo2GTMtgWxav1yvoMNfW6XSi1WqNTdWgU8do0Ol0otPpwG63o9FojDnDNF4XLlzApUuXUKvV8Ld/+7f4+OOP0Wg0kM/nJ3qgO9eETbXNs2SS5g8zlFZpNq41963L5UI4HEaz2ZxolHgqTy8mugvs8X2TySTi8Thee+01fPe734XD4ZDWWPoM8t+6Ryj1s9PpFAqFVUqXQYrWj+Sdvv322zh79izK5TL++q//Gr/4xS8eC0im8uqKeY/D4TD+9b/+13jjjTcwGo3wxz/+EfV6Hf/wD/+AL7/8Uuye3+/Hn//5n+Pdd9+Fy+XCf/pP/wn9fh9/93d/h3/4h39Ao9FANpt9rMXUJFAFTnzShlVkRqfiIH4T0RYSfEny1k6bdhwPM0L6Jkwawmez7XH4WBKukRQTrQQe566Y12C1DubrTTnofejU8O+mk6nv70mvpd/vRyqVQiqVQjQalXYrXE9yPV0ulyB3Oo1NZI/BAK9Pzzcmf1SL3k/BYBCZTAb1eh3JZFLmHk86ksBrJOJmhSrrR6vrOYhXqo26DkzoRE/62kzl+cXlcknhD0nxbL5NnpRZ8EOhvjHPj4kEmrqNOooovtfrRTKZRLVaRTKZFMfwpPXVVI5XqNM8Hg8WFhawurqK7e1t3LlzB8ViEZubm9jY2JDn+/1+bGxsYGVlRXq6ut1ufP7554JS67ZA5mcBJ+f0HavDR+PB6jyKRk5oiK2MBA+sfiRHz6pyUqeIKQctND+P6atqtXriCANnALNvnBVKeVBEelj6Vv9dv4+pLK0+Qzd1Nj+XCtftdiMYDAoX53nHbx2F2Gw2RCIRnD17FvF4HMPhUKZpMFUOAMFgEG63WxxrPZuT0x/IIWVwAQCxWEzaskSjUUQiEXQ6HeH3NZtNaelis+1VRMdiMVy8eBGPHj3C7u7uRFcK0tHl2QL2HX7z/h+G8unnaefOCmm34jpO5fSKlc6dmZnBD3/4QySTSSSTSdHj1OU8Y0T2dACpszm6HykL23RPUp4t7chxgpPL5YLX64Xdvjc7+9KlS6jX69je3hY60DdVNJjCQBfYd5b7/b7McT/tMjc3h5WVFaTTaczMzMDr9aJUKuHDDz9EoVBALpcbe36v18ONGzfQarVw7tw5GQ25vLyMf/Nv/g3W19fxP//n/0Sj0TihKzpYjt3hI7Ffl9Rrh88qHakdPNMR7HQ6j/Uy06nYJzl8GoWiw+fz+VAul0+8LYuZ0rVC+KwiUh3Zmkb4aVJvh/1dp421IzgajQSd8Xg8CAaDEu202+0TUQx0JGKxGM6fP49gMIjRaIRisSiNlW02m/TK0/0NuRfptHH6S6PRGEMX5ufnRTlyDnS5XEYulxPj1Gq10Ov1hHcaj8dx5coV2O123Lx5c+Imkmjhmhzm8GlEl39/FtEOH1EePTJwKqdfzPM/Pz+PP/mTP5EZynT4NHXCRPe8Xi/cbrcE93xkL1Vyuamb2BZJO4z6u7CIw263Y25uDlevXkU2m5VpO99kcTgcCAaD8Hq9aDabYkeZbWJA+yqc0YWFBbz//vuIx+OYn58Xrt6//Mu/oFAoPHaNvV4PX3zxBW7cuIE33ngDq6ur6Pf7WFlZwbe//W18/vnn+O1vf4vNzc2x101CxuJYHT7mwBklUJ42lWg6GCa6ZaYzzQP+NAtulWo+KSFaRsVkonLaWTVTrMDjFUnm683P0q8xnWR+huYPag6hfh/yM8n5Oglhzz2Xy2U5bUVzf4gsaFqA7rlnOrd8f5ttr0Cl2+0Kf284HKLZbI7xQLVzPhwOhTROdGES0t6HydPQA17U4eP7dzodVKtVaXUzlVdHqM/Iu/b7/XI2qXM0b8/UZ1oOsgGmMAjl5+tgjr+z2/emOCWTSbTb7RPTWZMgGnEHxmkpwOnoHfo04nA4EAqF4PF4kMlkMDs7i3A4DJvNJg3y9TADU2gfOPO5XC5Lf9FwOIz5+XlUKhX5sbKrJyHH6vC5XC5EIhFEo1EZvWU6a9qQWjlq+tAe5NxQDko3HeRI8j0nxenjKLBMJiOb0URZqJy8Xu+YYwGMj5LTchDKqf9v9Tw9RYEcG11NzRYJbrcb4XAYkUjkxNArn8+H1dVVQUiZxqFzRicPABqNBjqdjlyDFo0Wk5LA6+deLRaLsNvtKBQKcDgcY6kpog8AJFLk2mxtbYkBPKiy8KTlIKNq5dwdlsq1Qtn1vqNznc1mcfPmTelZOJVXR5xOJ2ZmZhAKhTA/P49YLIZwODw2v5t6jJXaRNkZcALjHD6TKqD3Fh1Lrc806seg1e12Y2VlBX6/H19++SU++ugjlEql41+gCRCt47rdrsxPJ0pKDvMkFDW+iASDQbzzzjuYnZ3FO++8g5/85Cew2WxYX1/Hw4cPLZE94HHbWKvVcPPmTZRKJUQiEVy+fBlnz57Fv//3/x7b29v41a9+hX/8x38UIOGkneUT4fCZ8xGtDMBBnB/+/6DI7jDjpP9/2MJPgrPH78G2LLqQQD9yTYiqmY6rGZ3pR/OzTNTQFO3w6R/T6PM+e73esSkqxynkP6bTaQSDwTGOp06Nj0Yj4dlxDfU16chMt2ChozYajSRlfRASpqtQiXKQP8T1PGlFcJg8jdNndd1mRGv+TiM6NOCNRgOFQkHS6FM5ejmM4vIyhah7LBZDKBQSvjQpAzabTfQFMwRWdJ7DvrPp9PE8a2TPbAZus9mEI729vX3iVJ6TFN1rlRkP7dhxHYGTL0B4EfF4PJidncXZs2exvLyMpaUl9Ho9PHz4UNqxPM11dbtdCfTb7TacTifC4TAuXryIdDqNO3fuwOl0Tsyc8GNP6bJHGY0l8GQHjGJlPIHHN5x2cnS6gJ/DxTffT7eBofFnlHkSXAW73Q6v1yujq3itOv1FuJjrqh0biv63GZXptQEeTxWb30ePzOJGNpWny+VCMplErVZDuVw+EeeZDbhTqZRMdNEV22b/R+4BOhm8ds0t7XQ66HQ6Eqxo55f7is/V76PT4fr5drsd4XAYvV4PtVpt4rh8o9EIlUoF6+vrcv3A+Dnk86zERKTN3+kxaly/Xq+HTqczsX2sJllYZa4daTpOLpcLoVBIkHm3241+v49sNiuNw1kh+7LE4/FgZWUFZ8+exdLSEmw225gh5LnR31/3qtQ/pJVQ9BnU6D0Rfa3DR6ORoO5E9p1OJ4LBIKLRqDTer9VqMtv9myLsIefz+bC0tCQ8ZxOJ18ACOcpmIQeD21AoBIfDgXK5jGq1Krzo47apNptNCjMymQxef/11nD17FolEQlKvH330EW7cuIH79+8/FY+z0WjgwYMHKJVK+Na3voVqtYp+vy89+l577TVUKhWUSiV8/vnn0uvxpOTYET4WRZhzEJ/E/6ES0A7cQTlxXe1ronU6arHidpipSY5+OymHT4+g4/fkmrVaLWSzWQyHQ8zOzkq7ESvSs15ns8jFytnTv+dz6QTzkTw4E+3zer2YnZ3FYDBANps9EYePTuf8/Dyi0ahwhbSzz+vSDgfvsx7Hx9doh4/rwcre0Wgk+4ROi047EdHT/flsNhsSiYS0fpk0hw8AisUibt++LUoa2EdxtdIHrNO3h917njE6k5xL2W63Hxv/N5UnC7mhdGDsdjtCoRBCoRD8fj+Wlpbk36FQCM1mE3/84x/x6NEjlMtlGUP5ssTr9eLq1at46623EIlEZN/rbIQu8NJBmP6dvj5Na9Gtk8z30XPTWYwAQHqlMZOSSqVw5swZOBwOrK+vo16vTwQyc1xCHRgMBnHhwgUsLi7C7/dLlqRYLKLZbI7NIy4UCqjVami32zIOj3YkHA5jaWkJbrcb9+7dw4MHD8RBPAmHb2FhQVK5P/jBD7C8vIxWq4VCoYBHjx7hl7/8JX7zm9+ILnqSMKXr9/vx3e9+F8ViUYKrUCiE733vezh37hzW1taQy+W+WQ4fMO64aVKujvIOS6mazz8oPWm+5kmvtTJaeuLCSYnT6Xxs6gDXh4aSTh7X80kOlhXy8iQxeTBsRkwDYUbbHC92UukRjW7ofca1o1OvkV0TRdCv0e+rRaODmuCs0+38DI0g64pmk+IwKTIajcZay5jTDZ4kVs8xU8Jso9FsNuVzvkkG1hSNzLGox/wBIE6xrhhnPzsdDJMv6vV6xdlj+qnX6yEQCCCZTGI4HCKfz7/UPqQ22974Re1wHabLD8o26DOkQQBzHfX5tQryzM8gny8SiaDRaGB3d/fI12ASxSrDw2CMFCyv14vhcIhAICA2kdxjr9cre5BBA+8L9Zvuq3jcAAC7g7hcLiQSCaTTaSQSCbFP5XIZu7u7yGazMgrzaYUAUrfbRa1WQy6Xg9/vRywWk7Go0WgU8XgcqVQK6XQarVbrxAKJY3X49MGiAmK7C0ZyhODJWdObg86FVeWQfq6uzNIcECvFwdfTmPGR6FooFAJwMq1F7HY7/H4/IpHI2LXSiSmVSigUCuj1epibmxM0ku0/KAcpVau0rRldA/sDpUejkUzVYPuCUCiExcVFQSCJnKZSKTE4J4Hw6fvHClqSuKnI/H6/oAJEAJiS0E6bdsY00ZvGlwRmvg8rg00lytey6joSiSCdTsPtdqNQKBz7Gj2N1Ot1dLtd6anIPaERPlOehPBpJN3tdqNer+PmzZvI5XLY3Nz8xqZyed7dbjcWFhZw+fJlOf9+v1+mngwGA3zxxRe4e/cu2u02isUiAOBHP/oRvv/976PX66FQKKDb7SIWiyGRSKDf76NUKqHVauHevXv48ssv4fF48Pbbb+OHP/whPvvsM1QqFdRqNUFgjlrIq52bmwOwr3d1wRLPGtPQOhuhMxc6GNf0IFbB66lENptNUHee7Xa7LTpA89ai0SjeeOMNLC4uol6v4969e69sAKKBF+ozAgyxWEwyEgz8HA4H0uk0nE6nODfsZ+rz+aSynjPJnU6nZPN0et6kHL1sCYfDeP3115FMJvH222/j3XffFZSbPfX+z//5P8jn82MNlq3ECiih0/fll1/ib/7mbzA/P4+f/OQnmJmZQTgcFmrYX/7lX+Ldd9/FRx99hH/+538+NItxEGj1onIiCJ+OYMmh0Gm1g9K8Vi0y+KPTt09T3GHeMDOy1QjRSRUekAPBEWasNNXcJ7YAoaOleSqmHISGWjl9OsXNNaVT3uv1kM/nsbm5iXQ6jfn5+TEUjWmTXq83Vj18nMK1Y8qw2+3KNAydrme6lWifvm5gnMRMA8TfaW6QfrTZbI/Nd+a68ntx/weDQfT7falanzTpdrvodrtoNBpjlXm89qdN3/LvVghfv9/H7u4uHj16JJzUb6Jwb3ACxOrqKsLhMNLpNMLhMILBIFKplPSeI1LAe7K6uorvfe976HQ6WF9fR7PZRDKZRCqVQrPZxNdff41isYhGo4G7d+8iHA7jpz/9KS5fvoxisQi/3y/8yZfh8NlsNmlboQNTk3OtAy0GkWYHhYM4saRamDxbHaBw/fhcPdXF5/Nhbm4OgUDgxILV4xK9znrKkMfjgc/nG8tuMYMUDAZllCl1HsdM8t9E9pj21faYKePjPONerxcLCwuYn5/HuXPncO7cubHOCdlsFp9++ilKpRIqlcpzfcZwOMTOzg6+/PJLtNtt/PCHP4TD4ZDsjcPhwNWrV7G4uIh8Pn9oRudl7rkTn6WrG/lqDpWZ2jWdMu0EHubQ6ZSAiXJpZ1BHkvw7D8BJTdxgZKXHeVEBDgYDVKtVPHjwAO12G5cuXXruz9D/tkp7mChXr9fDgwcP8Mc//hGrq6u4fv06PB6PRG+sxiPcfxJCGJ9cJRJwze78XEtyyKxaPVBIBtdGyUzl0qC0221xEhk507AQDWRjbXJbJ1n6/T6KxSK2t7elqTZb0DytmIEcDUCn00Eul8P29jZqtdqpcPislLKpZ/TvrIQOTSqVwtzcHJxOp1Rup9NpDId7PR3X1tbEGaSx/eKLL7C2toZ2u41yuQy73Y5isYhCoSBBCVPC3NPMqly4cAGj0d5M2XPnzkl6i3v3qBFWpnHT6TQikYiMIOQEGx0UadqAScOg46ADLpOKwdfpzA4Ay7GIwD5XV1M9MpkMgsEgwuHwka7DJIkGXYD9s8j7xNQtOcvaAQf2ENhoNCo6n3uH6LAukqHO1AUfL1vsdjsWFhYwNzeHTCaD1157DZlMBqlUCqPRCLVaDQ8ePEC5XMZXX32FYrGIer3+1PpMUwX4/2q1iu3tbfh8Pjmz4XAY4XAYHo8HkUgELpcLc3NzOH/+PKrVKnK53GPtp7QdPmo5MYSPkSyVkdnRX3PDrMrq+TsaaQDimNEQ89+mI2M1Hsx0AvV3PEmHr91uo9FoCNROaHw4HCKXy+GTTz5Bo9HA22+/La87qs2i0Sy32y0Ks9Pp4JNPPsF//+//He+99x5+/vOfw+fzYTTaK1xwOp2Ix+Nj0yyOWxwOB8LhMOLxOEajvWpTm8025tQxKiVPTRdZcG/ovcSiDRNR4N91cQepCYx0+W+bzSbv43Q6MT8/j0gkgi+++OLY1+hZpNvtYmNjA+FwGIuLi4jFYo9RLkwxHR9TuN71eh0PHz7E7du3kc/nJ97h07wv83dad+nnmU4UeVIOhwMXLlzAj3/8Y2lRwnXp9XqoVCpC+KZR7ff72NnZEeeOacxHjx5hY2NDHEOmNlnlykazc3Nz+NGPfiRNZ1mdyizCUTt8kUgES0tLWFhYQDqdRiwWAwBBc+lQ6HSfPos6NUunjD/6edw3umm6fmTQx7UBIGk1XXC2srKCfr8vfMhXUXit4XBYCsZ6vR5isRguX748lkEi6KFnG/v9fszMzKDX6yGXy0nRRq1WQ7fbFe4eU75E8o8L4XM4HLh+/Tp+9KMfIZlM4o033hCdNRgMUCgU8I//+I+4c+cOHjx4gK2trWfuLWgCA/l8HqVSCZ1OB59++inK5TIuXryIeDwOl8uFdDqNXq+Hixcv4p133kGhUMCHH35o2W/0SbrzeeXYOXw6zWWFJplyWFrW6rmmEjadPfO5VggfxYwkj0vMlMZBqGan05FxX+ZcQyu04aDPOug5Jkqq0yutVkv4PsB40Qb/f9Dw85ctXD86yZrPo7k/JsJ7UBrcSglYBQrma5gGAfAYJ5UOI2kDJ1kY9DSiU4g0nAedC43kWUWr+v80xu12W5DYSXf4DpOn/e7kmHo8HoRCIUQiEbjdbinCIuIMQJw//p4dCHw+n7wfg1PubytdS9qCx+MRagMLv1hh/jQ641mFqS1dnGTqdfMcPo1NMNF1/Rrzd08y5HrPalR+kpuiP6+Y9leL7sTANdT7jp0ZtDNN7j1/b5Uts/r/yxDuNZ/Ph3g8LgGGz+eTkXCNRgOlUkl+Wq3WWFDxLD6HFj19o1gsIhAIIJPJCH+cOt/v9yOZTAKAFI5Y7V3KUa7ZsbdlYcWPRs14sTSAWlFpRM6MrDU0rw245nvoNhjcjLoBryalMjrna3XT4+MUEkqTyaRwKXThRL1eR7vdRj6fx/b2NprNJqrVqihtpg4PGw2jxcrp0waDSqDT6Yhhtnrfg1LwxylmBazP50MgEEAwGITD4UAikUAoFJL1MVvu6Io/jdwBkKIPYLxSms/n/aECHA7320wMh0OEw2FxNnVbCfIvD3O+T1p6vR62t7cllWOmeKzkoGDL5PS0221J6b7sXnBHIVZOPvD4OTroeQAQCATw5ptvIp1OS78zjSYTDXa73Zibm5OWS5x4kEwmEY1GZW85nU68+eabuHbtmhRo9Ho9uFwuSQPztfV6HdlsVgzUYDDAl19+Kc78UTs3LpcLgUAAPp8P3W5XKiH52fxM8vqI+uneo8C+QdWIKR0P6noTxecepP6kcG0YiNE2aIPv8/kQi8XQbrdfmVF/pI8wxVqtVsfsL507zkN3uVwoFou4f/++7DPqwVgshtFoJNWtrBrnvWMxB3l8muf9siSZTOLb3/42EokEfvCDH+D111+HzWZDs9lErVbDV199hRs3bqBSqeD27dsyJWlhYUH0NYv3mPU5zOG34ppWKhX89re/RTAYxMOHD7G1tYVQKITl5WWEw2Ekk0n8+Mc/FkTQZrPJ3mcRK9sFHbUcO8LHihWTzK4dNBM50OlZK7RAO4em0LiYXEGN8OlohZ/F76orvo5LOJqMjVK5JjQIJNGzsXGz2ZTNwoPLa35asbo+7fDpitSn6aH0PBHSUYhG8li0QSIym6uSNM40hr7n+hHA2J5gWoO/51qb16gjYN4Xn88nylCnhJlym8S2LFroRLAaT5+7J4mJPOvAgAa/Wq2iXC6fGqN6EBr8NL8D9hy6M2fO4OzZs8LxAfBYM3NWtrLnGSsgr1y5grNnz4rTbLfbcebMGSwsLAiKwX3FVDE5051OB7u7u9K4vd1uY2NjQ1CcoxZ+B5fLJTwvBlq8/3xkxsCqebxG6rQ+p6NGu2IaaHPP6WCUgRcDfv1ZdFTpMLwKQlDF4XDIejOwoNPS6/WET+rz+bC9vY21tbUx9D2RSGBxcRE2mw35fB7VavWxz2A7FlKRnjbr9CISCoVw+fJlzM/P4+LFizhz5gyazSbW19dRq9Vw584d/O53v5P0c6/Xg9/vRyKRwGi0x+0jbUej3gf5FzrQoLRaLXz99deyF+12OxKJBILBIJxOp3S2yOfz+PDDD7G7uyszebvdrlB+XsY6HfukDZO8TsNnph/4f135SDkoFaeNCF9jknf5em3k+TyTVKqRteMUNm5khKXXZDAYoFQqIZvNolgsinGg88AN9qTNYq6nlZiO+HA4FEeT5FYiNIzYuWZU7rpB83EgfmwFQCPH78ZmoUxfAXtIKp/P9JhVhbfJ+aQhtuJwkRtDfqrP50O/35e5oU6nU1KXXFeu2yQLUXCtBJ/nPbTolNFxErpfVKinAoEAUqmUtOHxeDzSxFVPh2ABEZERVoCm02n4fD40m01B5OiAAft6ivuFRtjr9YrTxPUbjUa4desWbt26hW63i2KxKBMT/H6/OOydTgelUgn5fF64q91uVxC/lyEkrLMfIPnA3PPUv1pvWQXa2mkzKTj6TFo5FtSR+n30GTazRjabDcFgEIlEAi6XS4zxaRXuWd4Lp9MpzbY9Ho9wrt1ut0zDoO4ajUYIh8NjmTZys6kXOJqSaB4dRzp8tAtPK1aZgYOeRy40m2afP38e6XQafr8fjUZDUriVSgUOhwPz8/PSbWI0GkkmCICAGb1e77EqcqusFZ1bZoyIojOwn5ubQywWk/Vi1o3B2Llz52C327G7u4u1tTX0ej0sLS3B6XSiUCjg/v370g7rKJD3Y3f4iLbo9IV2rExUifC8Pog6LavhaB5oEpuB8R5o2iE0YWz9o6O/k6jSZe4/lUrJhAiuEcnzt27dkqiLa8i2ITotfZgc5vRxc3Pd6cAVCgXkcjmJePv9vqAzPNwApOUJuTvkCr1sg840TDAYFOSoUqlIB/RYLCaRezQaxXA4RK1WE5TE7N/FFC2d3WazKRWQZvUa0QJNTKaDFI/HMTc3B5vNht3dXQyHQ3EUmH6eZGG6g3xRrQQPk4OiY72uHM6uUZZJFuqq+fl5vPvuu4hEIpidnUUikcDOzg4+/PBDlMtlUdI+nw8zMzPw+/2Yn58fGys2HA5x8+ZNIW/ncjnU6/UxfcazGIvFZFpGuVxGvV4HsI+SfvDBB/joo4/G9ifvEZ1Jojo6XaWd+ZchwWAQ8/PzSKfTMvWGrYh47piKZdUouU08X7xOXdRHZ1rTegBIMKr3p7YfegSddvR0ZgAAUqkUzp49i1wuh2w2e6pRPgItoVAIc3NzMlqvVCrB7Xbj7NmziMViaDQayGazMj2I3RbYO9HkZXM/VatV+P1+uW8sBGEDfqJ9T5MR0PcFOHx0I4Op733ve/j+97+PdDqN1157DcFgEM1mE8ViEeVyGWtra2Kj3njjDWnRRWeUupz6mOCUDuTpCGrHTzt8rVYLrVZLzp/dbheAhHuK83aJeL///vv4wQ9+gBs3buBXv/oVhsMhvvWtb2F5eRkffvgh/st/+S/Y3d09MqrFiRVtAI+TEw8SkwujHT0zdWj1f+30me952Odo1PE4hY6xJvPriKfVaqFcLqPRaEhkbCqvp5Vn5Y2ZVVaM5Bix8ztrBXqchS+6pxTRDz2c3WzLop07/aNT6Pp5wOOd/s33MItt+J3oDGskQwc4k0wQ53Vp1MU8YweJlbNnojBcB42+T5rwOxIJCYVCiEaj0tw4lUqh2+2OoSGj0UgaJvv9fkSjUUQiEQyHQ5TLZZlhWyqV0Gg0pE+ednQobrdbGgbrrAcfK5UKHj16BLvdLmiy3v/k+TJtdFzONY0nDaMp+jxp1M98jn40aRGHid6fpg067PkauT3s+adBtF4zpzfR0QkEAsJhIxrV7XbHGsnTGSJPmWCM/hxgvKm2BnBMZ+5FrkX3Mk0kEpidnUU8HpeJMo1GA/V6XYL+SqUiaWrqZNor/tDu0paZ2Uai6qbDp7+X5kkyOCaa3u/34XA4JHsXCoXgcrnkew+HQyQSCWQyGcTj8bFs1VHIsTt8ugSfo5Q050lzM7RXrQ+2jkz5fH0geZOsuBrmYTdhf/0aXbF0nE4fESiWs2vD2O/3sb6+js8//xzZbBbdbnesh5tOkT2LQrd6rokyOJ1ORKPRsUi80+kgm80KKsnf62iZfbde9vxEplPj8bj0PCJ6QS4d9xrTEDSEJM+aDrYWNqTVaKBuUms63VpB6ucRYWHPQk6yWFhYkAqvl9H49kVEc85mZmYs95neK1rMaF23UXK5XIIAkZNaLBZPHOkznVqv1ytn8urVq5ifn5e0rMfjwWg0EsRtdnZWUOZAIDCGZmazWTx69AitVgsPHz5EtVqV4iuNslk5vZ1OB9VqFXb7Xp/LpaUlee92uw2fzyfpH3KztD6jgaZutUp9vgzh92s0GiiXyygUCmOj4fhd6ERw3TWXEdgPNu12+1hDW9IiyMnV7b24P80mwHwfGms95Unz0cLhsFRZvgpCfUc+J9OZkUgE0WgUnU4HtVpNAubRaIS5uTlcunRJAghmO0qlkoxEpL1kBk5nOPg+zJiZTqIph+1Hu31vPjQbZL/22muIxWJ45513cP78eQmG6vU6vvrqK3z22WcolUq4efMmKpXKmJOnawn4aBaNan2udZdGjjWyTF+F6CCDKx0wv/HGG/jhD38oCKPH40E0GsWFCxfEsWMWaGVlBZFIBGtra9je3n7h+3/sDea4mFQChCqpmPSC8oebR3OpTIdPO328CSa/z3T4tMLTN1cbsJNoLaK5OqYR7ff7yGazuHv3LhqNhqXnr1PTh4nVoTOjYb0mLHrodDoCUfd6PeEEhUKhsfXWURidm5ctHo9HphLoVBARDW0I6IQRdtdroveFVmTcZ3T8yBGxQqvI2XK73fJ8KkFW7/Jvfr8f6XRaItFJc/hcLhdmZ2dx9uxZxONxAIc3PT9MafMcE/Xk0HoOXi+VSifq8FnpApfLJXNpr127hqtXrwp9gs9jwQFn06ZSKSSTSbTbbWxtbaHZbCKXy2F9fR3VahU3btw41Lk1zy+LtdiCJZ1OjwU0Ho9H9vRh6XFtpI5jnXn+WO1KjpjZ90wPrLdCkanTqFP0FA1SDjTfSZ93s2CKFad64gKrM3VfNFYXn3aEj8JUK503riU7GdAp0lm4RCKB1157DW63WwLnUqmE7e1t1Ot1ofjoimtSsXQjbzpZ5LkdJgdlDWw2m3Bgl5eX8d5770nqfW5uTjjl7XYba2tr+Oijj1AqlfD111+jWq2OUQAOCkzNQOiwc6TF9De0k8dzSvtx/fp12Gx786/pxC4sLMj5pQ6cn59HMBiUpvcvKieS0iXyQ56XdubMQ8kF0g6bFSpnoghmGtdM15kpYP1anYo7CYfPRPjM708Fr6umzOt5FkVublzztRplDYfDQsbl31gYwVSA/r6811qJvEzRfEc6FIxi3W43gsGgtGXRDZLNEXD8m9Xa0Pnj/yka1eP18qBr9EYj3Xy95nUcJ5r8tOJ0OhGJRJBMJmUqg3ntWg67BnOPuN1uZDIZqZybxOsPBAKYm5tDNBpFNBqF3+9HuVzG5uam7BNG9Bx3ls/npSK8UCjIRJF8Po9GozF2fq30l/4/sHcP2OqCrWzIgeSEA8481m1ETOfpSZ9z1KLTiORwA/tcOwZU+kyQlqGFjpzWyXovEdHXCBONrdZB5GBqigIdIF2kx9YiOvA+TaKRJtMOap6Z1+tFs9lEuVyGw7E3acThcEijbpfLJc4Sp1HU63WxQU6nE4FAQHrxabSPyC05m7FYDE6nE8Vi8dBZsoD1frTZbNJHkpSKaDQqnMNut4tSqYR6vY5CoSAUCZ4djWzzM8wAz7ShOvjnd+Cj6S9YfW/zPYvFIr7++mskEgmx8zabTcAB9uBkmp1V00chx160wUMfCoUQj8dRqVQkNcmbSQeQm4ebVnvLB6FQWjQ6YxaE8GaZ47S088no5ziNMG98Op1GKpWSFCmVks1mk6o+E8UzN9azOn36dVxXtoEB9gzOwsICQqGQjB1iNEL+B6NtbczZQ+w40iJ0MKmsOQYskUjA6/Vibm4O8/PzEqGSo5JIJOQ7DwYD5PP5x9qPmOklvcZ6r3GUFCssW62W8En4XuSRAHv3jQ14Ocpo0sTj8eDs2bO4evWq8Fk0sv4s54PP5VmMRCJ48803sbi4iFarhZs3b77U1P9B3+mwa0in03j33XcRi8WwsrKCRCKB7e1t/OY3vxlD6brdLmq1Gvr9/ljvTEb3GtnSUx404mYaIa61x+NBKpVCJBJBqVTCZ599Jn272IR9bm5O+ukRVTffG9hHD00D+DKExjYQCCASiSAej0ul/3A4FB3LwJKv0YG+KebvmOZm+yNNDaINocOnC/E0ksW/Mfhjz7RarSap39Mgpu4lSMCAnFSlQCAg6c1sNotCoYCzZ8/iypUrYy3JXC4XHjx4IOg7eyXSVrIoiS1NAIw50qw6D4fDOHfunFAYrCZMPEkIOnCG+8rKCpLJpKT1q9Uq7ty5g2KxiFu3buHOnTuw2WzSjot+hbleOjjXwazeQ1aOM+lB1IMmWGXa1NFohDt37qBcLmNmZgbhcBjRaBQOhwOpVEqQap4DFpqw/+uLyokVbWh+HBeIf2ckpxfaNLjm+x70eVbIg/79YYUjmmx6nELSJzknpoNLvslBTp3piDwpsjf/ph/pANFh83q9EtUB40UbJueG16Kr4l626MCAe81EF1jByO9NdID7j9d6EOpiIlvcH1rJcYoBlSIVjX6O3ov6PEyikNgdDAYl9aadBuDJxRsHicvlkibC7Hs2aUKuYTAYFEOoK9R5rzudznP1Ezxob/GRBoVIFT+HlehMBTGtq9fwoID4uESjSjwbev9rfrYOIjRKZIWqUPhv/Xz+ns/XOkGn9fTampQfcs4mFXU/SEydQptKh4/XyKBYV8rb7XZp28Lr7vf70texWq1KpwINvphcdx0EUl+QEtRsNp+o56zsFq+JTjkrgNl2iNQB8oCr1SoajYbQMfR9NG2qdtS06IyOSQfTAAH3mM7a6CyQfr6mYnEUHc+2dg6ZmWJl71HIsTp8piOiUTZuCM2XMjlCXFhNytUIjI7W+HkUK0RCt3bRKA4/l+nA4zbC7JXECh7zWqwQPPP6NWp5kNOnNz03qpUyNRs6m+gDOXA6RUWFQPj9OJArm22vaCMajQqq2Gw2paGsrljUcx2ZvmWBCRE/v98/tiYkmvNwUmkS7dRKjo4e+Xrky1AB60Ibcv0mNX2kFbdumPusKLIpXB+73T4W7Z6EcX3Sdezu7uKDDz5AOBzG5cuXMTc3h3a7jStXroz168rlcvjiiy+EE/q0n22Swa3QOEb/DocDW1tbqNVq0kaDe5P0Cq0Drd77Wa//RYRG2OPxSKGU7ulGZI+FVOTp6czOQd+TRpiFKroAUJ9dHeiZlff6bGu7ovuIHtWePArnm5QV6mY6I+b39Pl8iEajcDqdMrdYN6KPRCKIxWISuDClTeeQfDxSBtjfkUUapi1nmpfoNtuI0Tb4fD6Z3fs0iKm2W5z8wZFp8XhcqBVutxvlchmlUgn37t3Dr3/9a+zs7GBjY0OcMNoA7dRZAUIH2VkduOvvp9+Hz9EIn/67tuWkrzx48ECmai0sLEhlsKZMRaNRhMPhI0Hij71oA9j3eGnY6PBx03LBzHSlLt7Q8LR2+gCIAtALxPfTCkT33DNRP2C/ivC4+/Ax5R0KhR77bG4+MxIxI44nVUKZr+WjCWcDEAWty88pdKoYAfLvVMSEo9mf6GULFVkgEBB+IRW5dvJ475mybrfbY/y/WCwmffr4OhYVaNSSylOvIcfP0aFhNaJGDID9PUkHkDzDSXL49L7SyN7zOnv6THKP2u12pNNp9Pt9RCKRE0NTDruefD6PP/7xj5IiYxui1dVVOXPD4RD379/H7du3n9nhexonjMEJ91gul0OlUsHDhw/RarWED6QnZjzpPh0H6sfqYqIVdFK4F7SDwf6AdEy0jjeNKICxKl3yIs1iGgCS3rZy+PgdqSe4dtR5R+XwmQ7G8649qVHaTuo2IrznbAfkdDrHWqxwbcPhMFKp1FjrEPZyZXDBIg/SBAqFgug2Fl9wilGr1Rrbeyxu42uZImfRyNOsk3b4qNdjsRhisZhU67pcLjSbTWSzWdy/fx+///3vsbm5OQYgEcHU91w7aua+0qJtrra7Gkk1QSqr66GPQptQr9exsbEhbVcWFxfFUSbgpH2Bo5BjT+la3UyrNAYXWL/GTA2Yzzd/rD5D33ArZahfr2/mcRohfu6TKunI0WCXdP39NQT9NIrloOjBai35fL63dgROOvWhnSoaSPJXdNTPNdap39Fon8OhD66uItcHnz+mc60jSLYJYDpBR+V8LTmSJxFcPEm0U6vPgtWZfR7hPn0RJ/JliBm9U6H3ej2Uy2Vks1kEg0Gk02k4HA6ZvQkAmUwGPp9vbKqLuZdMFMDq71a6TKMMej9xb3Nfm42X9bXwvfR+f5lCpJ/BjGlA9f4xg3et8/l7E7XUgZOpr/lI3p6m6Wgdpgv0CAjwd8fdlkvrf81bpzNlXh8Da2YamNVgxoNBN1P+umiF1xyPx6VNC7MYdCzZg489HO12+9i+1kGxCZxo/cbzMBwOZV48nR8t3MdavF4vksmkcLLZzJnncnd3F3fv3sXW1pZ0ZLAqWjHf3+qMmU6g6Tvo15s+jdW9POj3w+EQhUJBkE+2dXqZFKgTa8sCPO6kcUG5URhxaGif0KgJafM1+n2B/QVnBK4VgtlHDIBsXo3IHLcRZrSm0R4rQxiLxXD16lWkUilkMhl5HtEsTXy2ijpM0QfDKprR76Gdbj1uzTwQx2nEqeAI9XPcW61WQ7PZFJQK2B/BRuXFfcAeXHoNqViYdiL/z9x3Oo02Go0EKRyNRohEIgD29iGHY9OB4HdiymKSED5G1KzO1S1mtDwtcqEVqulAmwVUJyXacdCGl0b37t272NzclJ6EXq8XGxsb2NjYgNfrxQ9/+EM4HA5sb29LPy1eq+7lqPvi8ZH7ioiM/hvRaO5zrQOJrmvkWTuI+lo06sUU3csUn8+HZDIpY8q0I6DTtwDke2sEThdbsI8beVC8fiIiJu+PtkP3XwMe36+6zQvXlWPpjopm8bS60OFwCOeM7VK63a4UOuhr4DUnEgmcOXMGo9EI9+7dk36NiURCmvcyLUiHj+1Y3G43zp07JyPkSqUSnE4nksmkrAtRwmw2K6119Hg+0lY0UKH3tsPhkO/R7XYxOzsLn8+HbDaL7e3tx9bFDEKSySTeeusthMNhmUsbi8UE7f7ggw/wP/7H/5DiOOptjkyz0itWQZb+vfk8HYhw/a1E7z+r+8091u128dlnn+HmzZuo1+tYXl5GPB5HOp2G1+sVPXGUOvHYET79CBzcC8cqMrVCCE2uxkGHyiqq1p+vnRSd5j3u6A4YT4keJh6PRzr8c2MDT1Ys5vqb12eFwFo5fFybp0H4jsuI0zCwzYJG9/TB1ggff2hoaZjJNaESMx0UBg06IuR7a2SBilkjMjT22nk6zuKWpxU6xlT8VtHs83xfc49pp+igIOVliBUaROTDdPh0lXyr1UI6nZazyrSly+WS86gdOO4/IhqkG2huqd53mkTOfaZ5xqZR4brp2dvAfuBCQ68DSJ1uo1ghHi+6vjS+ZgBrpbOtSPFcYzqyLH7S68rX6h99zWahiL42rp1G+/U+OAobYO6xw3Q076Pb7ZZCKRL3TRvI66RDR8eXfyN3kfpGXy85xeTF0RnL5/Oy93WhG9O7wN6+Ynsd7k+t+/R95RnQ9BbyoyuVylOddd1QPxwOC3LJ75LL5fDgwYPH0F5NEeO160fKYb6D1f17UoCrn2cCIPr3pVJJuL/VahUej+cxpPQo9eCxO3xmYQawP+cP2OeLAY971FYInk6f8dEK4Tvo+/D5GqXh73kgjhvh42F8Ug/AcDiM1dVVGSkD7B9mq9c9z9ro52klE4/HsbS0BK/XK8aOaQTzPaiwj8uR4fXpxr7A3nxOKgDdy5AKQjtgRGI034gpD+3AsXGzVhja6LDlhHYSNWLE7zuJffhstr12BplMBslkcoyrCDx/Va5+PYXGLBKJYGZmRqYyvMyB9TabDTMzM5ifnxeOEI2ebi9ht9uFWG2326Vtgs/nQ6VSQblcxu7uLorFIgAgl8sJWnv+/HkMBgNBm/U+0XtLr4kOTvXvAoEAEokE7HY7SqWS9CxMJP7/9t6sN7Lsyg5eEcGY5yCDUzIzKytLNVepNXR1q9EWBBnuh7YNGDDgR7/5n/if+FVv3YABWZbUDatb1ZKgqcbMrMqJ8xDzPH4P/Nbmuoc3mMxMMhjMig0Egozhxr3nnnP22mtPi+h2u3jvvffw9ttve+K5WIQWONlPeTyy391u1xLUBoMBHj9+bLUCDw8PX7qtE8GD1sYkkCBAoYHGxC+OCdk8njfXDcM2lGHX3yNgJiDUmoTMsuZ3+Tm3jA0//zJznHOHbrvV1VWEQiFsbm7i4ODA9iG/mGx6H6rVKkajkbFxHL/RaGTdRXK5HG7evGnXtbi4aF4Fzuder2ddHWKxGDY2NnDnzh3zinDvoduX64Fjw/1PgR0rNiwsLFgzBb/wDA2ZYZIWs37PM75a2ofld4Djtca6kzSKksmk3UfFEgB854saVsqCTyKOgNNlufSzim3c7/npUuA4Kez//b//h2KxiH//7/+97TWa6HcRciWt1bi5K9NCUEWF64IEl81z3Y2A96Y+6zwUiKiFrUqZFuW0WT7XIp0kmUwGb7/9Nm7cuIFCoeCZVC5L4mdFTWL3+Lqf+wM4VoJLS0u4c+eOZ5ET8Llgcdpgj+evsWe0lhXwtVotD+ADYAyLlilgTEs0GjXQwznRbDZtQ1aWQuNjyA5qXCXPg7KwsGBW66y4dAn4VldXUSwW7drPssifZY264IZhFhyPbDaLGzduoFKpGCC/LAkEArhx4wY++ugjZDIZ3L59G5lMBtVqFUdHRwYwAoEA1tbW8MYbbyAUCqFUKqHRaGB/fx9ffPEFarUa9vb2cHBwgOFwiEKhgE6ng5s3b+LGjRvo9/vWPYVuSRXuM8pIMTFI5xqzyIfDIT755BN8/fXXCAaDKBaL6Pf7+PDDD/HDH/7QYrZCoeNCufV63bMnKpvK50QigUwmg06ng3/+53/GF198gb29PVSr1QsBfNzPCFbYnlEBn+7BwAkLyZ7hXMd0Ryrrrr/FZ9f1S2OMhpWboMFwDTXwLwLw5XI5FAoFbGxs4Lvf/S4WFhbw8ccfnzI63e8FAgHLkA2FQlZBgPvacDg0l3yhUMDt27et1MrNmzdtH9MM7lgshsXFRaTTady6dQtvvPGGGZv8DdYk5VzU0kMcO1ZfUICujDXvH58JgrgG1tfXEQwGsb29fW7AR/d2KpUyI353dxetVgv1et2yjDlOWjxfMYeKy+xp7UzX4NL14saEAycJRC5Y9DPoFH8AwM7ODn7xi1+gWCzi3XfftXqn1xrwAf4LyLU8/dCwS4uqcj3vglTLlhPQRemuVTJNsOInrotCRa0eZqpNCn7X/92xnHR9kyYtAMsAY4YuqfqrFnd+UWEC8Cx6ffA7qlCAEwOCY68AWF1GzJhzQS4/48ZDqmtG3W3cbGZJ6NJlNhwV80ULx45gZVoFqKmEyF4kk0kMBgMrLkuLX2OZ2Ph8OBxidXXVahPG43Gk02msra0hkUggm83auBFQaPapzjuNNSPg0+btfC8Wi1mpBhZm5562traGTCZjc5LnPSkRRB90HZLZyefznnixlx1jBvzrXqvAkwqUIRWue5Xf8XsoeKUowHDbOmo7T3UJ657I83ZLcbyIMISDTNt4PDbg1el0DHzyHLRuHBladTm7enA8Pi7zcXh4iEgkYrXyOJ4cZyUuOF78XWU8ee1kuQmcSIxwXJnZzBap/F/1kN4PZueyfh73zfMIdR3jiIPBINrtNnZ3d9FoNCxuj0YAdbyCd8UMSiDp52mUK/ur88F1DfPa9NkVV9/ys0qsjEYjq+5Qr9dRq9XMQFFvnzuuzytXlqXLCazZQtqahTfFjVsB4OkTyeO4SRt+i5g3WSe1GxSt39UYjmmKmzhCt6Ar8Xgca2trWF9fRzgctrY3ZwFZ91knnvs5jY3R44RCIayuruKdd97Bzs6OtZfqdDqnJv/LWsjPK1SgurnRRcFnd3x4jwk2xuOT4HqN61OAyO+w/RBjBwm8NaBc51codNxZgps5+4pSuc1a0gYZvuXlZWSzWaRSKYzHYyuf8bL3Vtd2IHDc3eDmzZuIxWJ48uTJBV2Fv4zHY1QqFTx+/BidTgfvv/8+stmsx6VD4MSs29HouEduIpHA3bt38d3vftdca3SdUpjkMxwOsbi4aOuZm7e23+NYMmbU9YRwL+TceO+99/DGG294jkNgzu4b7NHMe6YuZF3TwElXoXg8jrt37xob/sknn7xQRwQd43a7jaOjIywsLJg3gH2BCYZo+PDcGKfFc1OFTFHvjLJ5PAYZQpZX4fG45hjuwc9yz6Ci73Q6aDabxly9iAyHQ2OrR6ORsVOFQgFra2t2X8bjsackB/eMnZ0d7OzseIL3WX2AsdODwQCPHj3CwcGBR1/q9TFWLxwOW/mbcrmMvb09+xyT0fjQgt4E65xDjUYD5XIZ3W4XOzs7qFQqVltOa50qUC2Xy1ZPj3F8NKyeJWQkC4WCzZf79+/jH//xH3F0dIRarYZ0Oo3RaGTzVbtrtFotOx8m/mgCFfdg3n8CWpelBPxxzFlej0migHQ0GlmIxv3791EoFLC4uIi7d+9aORqubT2v55UrqwHhbvQcTAVqas2oK0mf3e+77JYf0PGjnF120e8cpiV6LnT/+YEA0td082jMmR7L72+/36S41oj7DMCofxbs1PpLfjKtMfSbE5r17J6HsnGqUMlkcZNQxQKcMK9a7oHt0jQpg5a2zi26l4PBoLmRGJtzFUlCZwkzBVkG4aLcC2pw6BqnQnhWra6LEsafssMH74PGlxGAad0xgna6Fnl/+/2+ZayXy2VzhZGJU1e/duwgUOFrXPeAf8Y8y67E43HLfm02mwY8GVdKQ4dGjAa0q5JSRjGbzaLb7SKdTl/IvWaCigInGrUEHyz3QTZDwx9cgKqsHoEQizZrSRH+NkEuv9tut9Fut82Q1tAL/gaJAO6pL6pgx+OxgbN6vY5yuWwxd2tra569iu477hsEHezcwvFTQMhrqtfrODw8BABbq2wRp7X3lBzp9XqeHuiMo+R9YSFlZcP4u+1226oNNJtN8/IQWGnyEeeVxiuygPh5vAVcF5lMBplMxkIU6vU6vvjiC+zv7yOdTlvHDRoVAKyqAO+FGgNcV7rPcyx4Da5e5EMrYKgnR/e1Sdfi/s+x4f0mEOf94p5EY+BFwCXlyly6utFrVW91owEnfnEVl8HTDcAPtOnx9G9lbLiZ6/d0Y5ym6GTkOXDDdgtbcjFzg9Ax9JtckyaKjpO7MJTSJtvFzK5yuWwp5Hqf/O7FNESVg7oXVBgfRWYOOEnWUfcZ2UIuZjaodxWlKgyNv+LmqgkZwWDQsjy5qXKTorU57TGbJAQ36XQayWQSAMyg8DvH5zlvNSoYV8XYrGklr4zHYzSbTezu7qLdbuNnP/sZ/vjHP5prJRAIGNPFdk4LCwvI5XJIJpOIxWLmQnVjf6joaY3rfqVKg3uP1g7T8QG8Y+4axOy7zT2A+wBZLJYWAeDZY123Fs+p1+vhiy++wM7ODp48eXKKtXwRUYNLs2YZE0qmRctgqftKx0T3bP5PkMJ1pUCR46jZywRVfkYWzxUAqtXqqeO8yLXn83mLKzs8PESlUkGj0cDjx489TBHj03QPCwaDWF9ft72X94/XzuLIFBoDDMXI5XKIRCJYWlpCLpfzEAh0kdKoUwOLYQNkEbXrBpN94vG4FVRuNpseFpLXpWEyjIGORCLWP3Z7e9sM6rNEXbpM0HD3Sl1XBLX0RFBXAidVOLhe1bWrLnC9B7q3u/gFOJ2UoeK+pues+oXeoa+++soMpO9+97sG3gngX2ZNXhng002HQMbPotMgWlehKDDSzVB/S4Ge/jbg7b7hd6P84iamIWpJcYHSZcpsP54fFxGLbfI6z3JDK6PCZ/1bN1Wej1q8gcBJMH+lUkEikbDOA/r9qwAueu1cGBq0rRYv2Rla4DovdePgs264PJ4G3Cs7SLDHzYzulEAggFqtZpa1MoFMFJkVwAfAsvpY6V1BqY6p3m93fvmJXiPZUW7qLAMzjVCKarWKer2Ozc1N3Lt3z3Nv1WVPl5hu+ul02sAW67WFw8c9d9Uy5/XyQfckcDxG7XbbFBPBnSo0rden4QXAsdtqfX0d0WjUmCsy7nQhslyHsv+8Z9oqj9nEf/zjH/HkyRNjgF5WCOS11h1Z7lAoZMwcw1fcMkgKuiYBPjKrjUbDE9KhYENZeRozynqR0U2n0wgEAjg6OnrpvZ8JbisrK6hWqxb+4uctKBaLlg2fz+et7NadO3c8167Xx+/q/FRAx+Pcvn3bMmNpZNZqNdRqNU9cqoYxaQcNusvZUaler1tbNhqvev/IMhJ4MiEkmUza9zudDr788sszx5f3mQxfKpXC0dHRqVqgSliQCWNogzLHGmLDcdJkISYequ7nHFEWXMN0+H0/IOh3bTqHNSuYTOOf//xnfPLJJwiFQvhv/+2/mdFGo/s8AHmSXHkdPsA7AGrNKeOin/UDKPpdd1MAvMkdrptCwaffpjJthk+vATi5Rk5WTkJlQfyYzUnAwQ8462uT/tc4SQInLiQq5/PQ2pctZ12PXwC7loNQ0ErlyIWtAbv6XW0px/f5rBuD+10qcNcqniXRjQ/wrq3zAlM/S9jvf67hadYj5D0CcMq9xD2D8V4a5wPAMgAJ+AgMm82mGQJu7K27hgB4+t9qIXkqEs4RfY0P1meLRCLGCjBGzmUZXdek37G73a4VKr8otlkNcwJLBZ7KgHMv0aQNgj/3mKojqIzJFPP7ZNW1nib3TX3Nz0C9CJcuz1WNTfdYvAa6vkejkWXh0qBX4kHjOzmHXPDIa2JCCBk5MqF8jckO/CwfZL9CoZAZJDw/LRav56/7Jl2kJFSoHzim1WrVDJTziEsSuXNIH5opq4SOq+eB4/XIa9bX1XOjuQYuacQx1+8+C/D5vcfzVp2grf6o87nnvKhMneHTBaaLn5YcF6NadS6DAHhZKdcC5HH9AKQeh3/r7wLeWoBXoYR1g6TQuup0OshkMtjY2MDi4qInzoeLUCfjs8AdP+9+RxUTv0PLjGOSSqUsmJRsWrvd9oBw93HZopuNH/3OWB+yCoyZoCXIjVSTLNT1pEBvPB5bHAvHTO+dMgzD4dACqDnf1KXrun1nReieVqtZDazzsHmTxAXN4/FxfbVCoYBWq+WbqDRNoRuf3gcqLV7rwsIC9vb2PEqBAEYVL3B2LK2yea5xwmf3PT6TVSFg0Dk4Hp8kAvA7rhGpBhrnbbVa9cz1lxWWVqnX61a3kCwXcNwxiKVAlNGJRCLmQuSa1rWs18eSRlxL7jUzhCMQCCCZTNq+T12ksWzcy6rVKg4ODiyG7kWECQ5cR7du3fLsTdxnOdc439hmixIOh7G4uOjJFh+Px8a4qYFKicfjyOfz5kIlc6m/TVBHZo7xugp42EtX5yGvgUYFjQW6dl3PG/cOPnjeX3311ZljqwCLxgATftwwAN5z7hv0mAAntX7preGxAXgSmzjf3bU7SWdyDvJeu8f2wy16nxS4MtZWja9SqWTzd3l5GeFwGEdHRy9crupKsnTdgVQLSDfKSXQoj8WJx0nLDVnj8Vym0N3keExOXsD/xk1T3M2d58RYFxbKZIFJfsdd8H7H1eO7v6eii5tCJgyAZ1NWJkNj+a6CIXXvr3sOtKAI6umSYGaXfo4LjRugsnT8m5m2yr5QgQeDQSuWGo/HzQghKABgm6WyErMkVBAaBuFaswrwn0d0nnO86A66qHZWLyuXUYLmmyZkK1jCg3FnvOd04avRSuNHgZnLFOvc1CxcgiuCDP6OMkDUG2qcqbIle9psNj1hNM8rBETNZtPK3Wg8I/fU4XCIvb09qyenoR7NZhOxWAztdhvpdNqujxnAZN3ceFECPrp7CRa5nymbR8M0nU5bsg6BIUuFUE8Gg8flflKpFADYuTYaDSsmzVItGl7QaDQMEDIBhTUWzxJXh+v4qLHlGgQa/qAATt3hZF3Z0s8NI+Bx3BqRfnqN+/uzjCQXDHJcWUhciScmF4VCIeu48jL74pUUXlbwBZwkZugg6qC4MXrKPlF0oCaBGV3kOgk42Eqtu6BwmkJQwgetIl5zLpezYstkpDQIehLD57IDfotBz8HNZlYGjPeRVeTpdtD7QGvGL3v4MmQ8HhtrNh6PUSgULDbMr7wOlQZjrvR1nSN+5TH4Gt15atHy+y7bwzFRpk9LA7is7iyIWtacE37r4jwbnft5io4ZXRezVIB6Li8nvV4P9Xrdaqixfif3NLoWXVYeOFGiCvrcucN1xzUUCoWM2eG+o4SAm+EKwGK6NH5QjewX1QWj0eiUB0DZJsCbRJhOp21fGo/HVmMulUrh3Xff9TChBEyMn+bxOK6amOYCXu5Nqj8IflT38Z4wfozjo+fPfZ5Mq8tgMfZZjWye97179/D555/77ntMeGHyCe/L0dERnj59iv39fYsfZEiEzg3WPiQYdRl6NWJdFp1zTufVswCfH2aYRMRMYs/1GL1eD+Vy2Y6RSqVsnbyoXElrNaVAgROLzF3s/IwbI6WKxwV5qngmMVn8rsZCMMA0GAyemYk4DXEtYv7NjWd1dRXdbhcbGxuedji0uFxArePg95oLErmZ+GVBccEzuH5vb88q9NNida0xXsM0wEy73UapVMJoNMLGxgYKhYLNFzephGOVz+etU4lmbPHBDYvjpoCP7dpUOIepMPjbfC+TySCZTCKdTlufy/39feureFXzzhXebzK4ypjwfV2rLwP6OG/IQEwraWMuly/tdhuHh4dW5295eRmlUsnK19TrdWMy0um0uSu5Hv08P+46JrBy6/ApU892ZEwYAE72ShquCgyZPe/XCeO8QtDGVoG7u7ue/ZE9cFlsmUY8WbhqtYpqtYrFxUX88Ic/xK1btyxzdjw+6VObyWRQLBYRDAYNBCnYYjiQli3xCznQtoLc67Sen1+JMN4PFi5nuTCWIqL+JstIINNut/EP//APuH//vq+LMhwOY319HcViEaurq5Z0sbm5iU8//RSbm5tWOoZsmI67zg+GGk3yOPm95no1dJzOOoafQaL/+31Hw1o45zudDra3ty2hi8XQX2ZfvDKXrioH93V3wNy/XQDj9/nz0qoUN/BSz2vabl0FHH4WAl9je7CFhQVzPfBa+DndEPmavufS1y6oVtGNlxabXx/ISdcyLXGBrII3vq7XorEdGkulY6CxNvp9BXt+bk4AFmuiCotzjSAZOInlmiXRNTDJKn2W6LqaBApdED5n914d4T7Bsimsuwec9uTwQSZoUmiNzkk1zLSAM+Ct60og6bpxJ+kCgpWLStrQPVDPn0BUz1/dg+5+NMkY1/1MWUIanOqBmaTTXN3qrnnVI36/T5c89zx1kZNBVabPz8DlsRh7uLS0ZPGHvD98P5FInCKSnoUBztrL3Gvi7+lY+LF4fHZxjR/ZMklc/UHCgK76iwj5uRKXLuPltPQI2TYGLrrZaMBkdoqvqcvXfV+DLF1mgYvADfJ3KfdpiboSlAVlHMfjx4/xm9/8BuVyGZFIBKlUCrVazYqt8jt0BftNVmWzdANw/1bRMeJ4Hh0dYXd319ySbrwXLZeLyvh7ltA6ZkZTo9GwgqCxWAxra2uIRqOW6j4ajSyeRkU3WVrLtVrNklY4j8lEqcHiFwzOwOBAIIB6vY5KpWJjQ5aD9blmCfQpqwv4KwE/5eFnCbtsvD6rEp5mlu5cLl+q1Sq+/vpr1Go1/OIXv8D+/j7y+TzW1taMVePa4D1vt9sWr0QvhhqojDlj8oeyRuqx4DHJmDFm0O2JHQgELP6Y+8JgMECpVLqQfsKuKKNWq9UQDAatP7N6EFgD7/Dw0FgejoOeP3voqreMelV/Uz0WukbdDFSCTjXsgZMSV2oAM4bQT6dw/1Swqmzs06dPT+13sVgMyWQSxWIRP/rRj/Dhhx/ixo0bZry//vrrCASOy+bcuHED3W7XknaU1dXrJrjUriHqanbdzrpXKcjmtWgYjl77JPetPqvw80w+0fukrmjmJbzsnjh1wKfWO2+MsiXKtLhU6CSErZ/Rz/I3/R6q0P1ADxcLN5hpii4OZT2YwXl0dISHDx9iPB6jWCwimUxapqmOncafuJaZgmpeM3+HY8FNgMLXAHgme7vd9gSccqGrIp8W4KMLkswZwR6DoYHjxcX4ltFoZO58VRQUBXyMxeGcYAYvC2JqKQnOHVZ6Zx0yupSYJEKrWNs4TZMNfZa4a9Zdg2eBPf7trjv3M/yf88cvSH8u11c0+/Szzz5Dt9vFt771LaytrVm4APcIhn6Q7dIyLcDJfKKuoCJnXFij0fCAFl2TdDdyH1WGnslTXLMALEbuWV6MFxWCBIKps1rY1Wo1Aza6RrjXqRFK9zRr4OnnVOepkcWYWZaBUV2obByTLfgaYzAZtsN9VmPPuX9yLF220xUWgs7n83j33Xfx0UcfebokLS8vIxQ6rm/Iun4si6R6TVleZnu7tSoJ4niPOQ9UaFS4nUK0PM0k5lPv9SRmkOPMuciqDvwdtoK7doAP8DJtLqjTiaUo3aVUKXpT/ZipSQPkghIdbBdYTgOkuKKLURUrNz9OvKOjI9y7dw+xWMyzmAiuuCD92D3XEnLHzA/86GvqIh2Px4hGoxarodcxbdFz5+auwdicY8yco6JQoOtS8fxfu5xoMVwuej9Knt9hAV++r27xwWBgBXtnrZfu84rL4vmxxHzW93S854Dv1ZTBYICdnR2Mx2Pk83kL8lcPAI1MAjxN5KDovkKWPRAIWJKWm/xBBoygRo0yEgzVahVHR0cYDof44x//iF6vh9/97nfY3Ny0nrJXKVT+alSTDXc9CwQJNH418crPE6bAmJm7+huaUKb3SsvJkFzgOWqBY2XPzqNTGQPIkl+8p/wuO9xoKzrN6nb1mp4Ds5l5Pn6snzKOqkepN5RMUdZPQ3J0H3TDqfyEBARwAjBv3ryJd955x/qKj0ajl65ecGUMn1pxfE9jNlwwpqCF701iG9QanHQOFKZ2M8ZKz+mqQJ/SyFxotNLC4TA6nQ7K5bJ1CFDwyu/7Pfv9jitnKVn3PVrDrIDearV8x+wiLJPzCjcvhgew2KjGj7Tbbes9yRgJt4Yhx54u81AoZK3VOE9d1ksTPhQMDodDrK6uIpVKebLi2D1lOBxaMDubzM+6nOd+ugaYvu6y6srwafbgXF4dabfb+POf/4wvvvgChULB2vYxpo/7GHDSD5bMusbc6f7CYssECDSe3A4nZJr0uwo4Nzc38cknn2Brawsff/wxyuWyxRxSwV+lkEnzIzUorpeGr7mfPWvfn7RXn6VbXN38rM89S9i2c3FxEfl8HrlczsDkeDxGJpOxlnDaHtM9Vz8jYRJxxP/9zl8ZUYJWGuoKJnUs1UiZZPTq35plTWEi5mAwwG9+8xsLMbg2SRvA6WDbs2hO/bxuBor2uRFMEr357mR22Sy/yX5VLJ/7++6iIiBkRtVVyWg0MlDldz+v4nw0DoNuDtfCVbcErTXAm7TC62F9LzfEgJ/h57QPo7Ks+h6Bjstgua7T6yJ+TB1f9/us3/rm99y1OpdXS8bjsbnUCKQmzQfGoulrPIb7ea4l7apBt6z+hpZXcY/DYr6VSgVbW1s4Ojq6wCu/GJmlUI9pCfdzul3VlTwajYyNPGsuua/5YQGKCwR5DtzvtVoBdZ7bpcNlmDWe1O/Z7zsAPAy0S5C9qFwJw0c2j42+ycYAkwEf3/MDiH5sn3usSYPsuvL0e1cFXpRi50RjHNrR0ZFv82S/878ot5hfnKPLKLoAyAU101Dg4/EYR0dH+OKLL1AsFrG+vm6uUmWNmPWk1qFmlAEnLLHbb5PXwo1G29+4RZR5nPF4bDGF6jbhcZltPYtJG8DLGT1nMRH6v/6G1uqcy6sprVYLu7u7ntAI9bToelIDzvXQ8L3hcGj6RFtlueyL6gmuM35G1+1crk4qlQq+/vprNBoN/Nu//ZvVcTw8PES328Xe3h6q1aoxtMQTbmgN77PqIk1k8TMwJzGTgJcE0Bh7jQ3nHKLxoTGjfsWhVVzswkSOfr+PP//5z/jqq6/Ms/eicmUuXfrDqSABf8Xix7hNYuE0MWAS8FNxkbd7zLO+e5nisj3c/FiTyc+94Efdn4cxmnR97pgoiOP3zgLffkB6GlKtVvHkyRPLfuUi1AKktPTVOuSc5IKm4nF7SwJewMc4DsZyDAYDT59jjhcBI93EWgOSSo89TGfJkn8Rl4wrLtibtNFOYj/n8upJp9PB0dGRrb1AIOBpLajxrW45JDfum3qk0Wig1+t5Wo8xhtYlFWig6n4wNzRmQ5rNpiWwff755wgEAiiVStje3kaz2cT9+/exu7vrYYG73a6FBbhemkAg4Aml4XfUgFe9xmc/8MfvqK7g+xonykYETILRzHI/vagAkg/O2eFwiAcPHmBzc9O8Ry8qUwV86k7TwfIDKxSN+aNidI/pWmz8Xzt4+C3kSazgRSi5lxG1ZInymXzgV/iS5+r32ouCh0mAeZJLRcEpx5r3lqDrsjfS8fi4HVKlUkEqlfKcC3CS6cxFH4vFLL5PWTpVQmqhKVDhBsLioqT2+Uw3MD/PAs2aNajWZqlUwqNHj7C3t3cq+eUq5Xldza6l/CJyVcz6XC5XaCgxe5SZ6+qR0BAdN2SCxwBO9hntz6qfd8N//MAcY8DC4TCWlpZw69YtNJvNK+/hPJdj6ff72N7eRjgcNoaPrSzZ35rlSrQ3s59HkAwxs235Pj8/CRvo/4C3v7XrRiYG4bwMBoPodrsetu+s0DGt+QqchDXQw3cRIVNTBXwEbbw5btV+XZC8MDIsrFXGwE1+Rv3rGnA5Ho+tcrtmKamSpVXAc3OP51fgchpCQMGNkYGbZ3Ug8AOmz4pvPK/ownAtIW7i2ktXv8csOlo8ly2VSgXNZtM2AY4jF512VCFbwAVIlm48Pqnb5MYIcePQThucwwS1Oh40brT1nfv7nU4H9+7dw89+9jMrzzIrwk3Hr73cJGPtLCPjWYzyHOy9uhIKhZDL5RCPx1EsFrG0tIRcLudJmnIVqRrd6gmi8a+JT26GJUNjuAewtAf1APVDIBDABx98gNdffx2RSAT/8A//MP3BmcspaTab+PWvf43f//73ngoexA+q21T/+e0lzwotep79Z5L3T5k7/b1JMXx+x9T/9Th+ZNeLyJWlA7o3yE3E0AKP4/HYSpG0Wi3P988CfGRbGJ+lgI9o3wV0k9D3NEUDNN3H8wLQizz3Z7GdvV4PrVbrVAzNNN3jHCcWPPbL6OZ56Hxg3BBZBmb0At7C25wfyhwr0OP/CoB5XD8XAZ+bzaaVhbjoIq8vI+4G5reJcnNyXz/v8V25ClZ9LtMRrg0tl8RwiWcpUo251j2eosy5u06V4VOWncdlLNh1L4v0KslodFwuZy4XJ1MFfNFoFEtLS1YsmMwbC9Lu7Oxgd3cX1WoVn3/+OWq1mi3O0WhkddMm+dndDYPH1o0AOMmIWVtbw+rqKpLJJG7evIlEIuFhINX/Py0Zj8d4+vQpfvGLXyCTyeD+/ftYXFxEp9NBo9FAtVrF9vb21M7H7/z0ud/vo1KpoN1u4xe/+AV2dnY8wc9fffUV7t27h06n4+l1eNnS6/Xw9OlTY0fZYJz18CKRiM0NMm4KCAm4tY+kFmcFTuLRaGyw6KgyxCzQqZnCmUzG5vxgMLDYvZdt4XRZQuXpB5r5vj4/77FcUOnnLpnL9Re6pobDIcrlMg4ODizmlWuDRhPDWAAv26HrFIAV21Xj340fDgQCnhpx9OrUajU8efLE9or9/X3cu3cPtVrtysZoLnO5TJkq4ItEIsjn81hcXPQo23g8jtFohEajgcePH+Pp06f43//7fz83sPGzDCdJOBzGX/7lX+K73/0ulpeXcfv2bavEztgADeadZiAvGyZHo1F8/vnnSKfTpgSZpXRV4o7xYDBArVZDIBDAr371K3z88cce5c2iln7fvUzp9XrY3t5GJBJBo9FApVKx6uyJRAK5XA6rq6vGNLhGgcaEaFV/jeWgG5iMbLVatTABtg7SQHIyG8ViEZlMxuI22AB8VkGOGxPj5z5x//YDhPo33dn6umalz+I4zOXlZDweW5HeSqWCo6MjjMdjFAoFWxvJZNJarcXjcd99lww+kzG4frV2o/s9Fk/Wsk3lchlPnz5FvV7Hn/70Jzx48AClUgmNRmMq4zGXuUxbpgr42u02tre3MRgMrJ8hy2aMx2Ps7e1hd3fXSo9cdnmKWq2G3d1djEYj6weryprBobVabaqZk1pstFqtemq4EYjOmjDuzQUCVxEDCRwDzYODA4RCIbRaLTQaDQSDx1XoY7EYyuUyarWaJ7ZT4y3oGo7FYsjn8wiHw9bf02Wn+HkCPs4jLRWhPS5rtRpSqZSB+Ha7jWq1OpMgh6BUYx2fZfz4BTMD3oLLfJ3HncTWz+XVEb3flUoF9+/fRzabRT6ft0LL6XTaw4ZT6G6Nx+P2P+CNvdbalzTWOY9Y9kjLuNTrdezu7lqJGJa8mLWySHOZy0XJVAHfzs4OfvrTnyKdTnvapiwuLiIQCOBPf/oTPvvsMzQajUu3skajER4+fIjDw0MsLS2h0+lgcXHRlDWt0E6ng4cPH041roquw0AggGq16ikJMh6PfevwzYL4MTNXpbhZwykSiXhS2ZUN0BZCwGmGajweW6cN1tHjg4CcafdUINq7WN29CpbcMi9kG2ZR2OeXY8UEKl0PrptWWyYq2HPHWZO2NPvNz208l1dDuH4+//xz7O/vm8HPrjjZbBbBYNBTb4xeltdffx2vvfYakskkbty4gXg8jlKphFKphE6ng729PbRaLVSrVZRKJU/GLmNjdV5pn1cac3xtLnN5FWWqgK/VamF7e9syTxOJBOLxuKVY7+3t4eDgwBbeZQoD5ekaYBFQMmj9fh/lctnSwKepfDQB5bptPrOipAeDwYVUy2dfRw0sJ3PHlmgakjBLCRcXIayXGYlETiUQAbCYKeCEwVMgdx7Ap0H0mqw0K3NpLhcnvKe1Ws1CQeLxOCKRCOLxOPL5PAKBAHZ3d1EqlTwJVmTLCQpTqRT29/exs7ODVqtl7tlSqYT9/f0rq7Iwl7nMqkwV8NEKY5cBPj958sQWeb1e9yiMyxSCqmaziQcPHliJDT6Y6dloNGaqGO5cpieMm3Tj2DgfWAdKQfqrIqPRCJ9//jl+8pOfWF/HSCTiyST2q285aSz8PkcXLxlEZuKXSiUcHBxc3sXNZSaEYSpaBovzQIHaaDSy+RCLxbC1tWXxufV6Hb1ez0IqNAFqDvbmMpcTCYzPsSJqtRqy2ezF/KATA+Rm513VInUVlxuDNN845vJNFC1eDpxd44ryomvFzd6ds3zfPDmrHppb0+ys2M/5vJnLN02q1SoymcyZn5l6Hb5ZBU+vGjszl7lchJB1mctcpiFn6QaGU8xlLnN5MZlXmJyptAMqAABkiUlEQVTLXOYyl7nMZS5zecXlyjptvKicpy3JXOZyHplUXuRF5tNFHuu6ynlqVX6TxuMihe7LucxlLrMhk0LAZlmuDeCLxWK4desW0um053XNnGR9Ou30wJgPxgc2Gg1sbW2h2+1O9wJmRLSXMDPYrstkfVlhl4toNIp8Po/19XWEQiFzW7J9H7uHMIGIjaspkUgEi4uL1q0jHo9bNi8LyEajUfR6PTx58gSVSsXqgL2qoQPFYhGvvfaa9SsFTloEalxVrVbD06dPZ7a00GXIwsICUqmUzY1wOGx1PlkWxM3u5tyKRCJYW1tDPp/H4eEhvvrqq2/s3jWXuVyGsM9yKBRCIpFAOBw+c79eWFjA3bt3sbGxgX6/j0ajgX6/j729Pezv7wOY3d7g1wbwJZNJfPvb38bNmzc9rxPIsen8eDxGPB739DUFTmKRNjc3US6Xv7GbJic3s+O0FdirLgsLCygWi8jn83jzzTfxgx/8ALFYDJ1OB71eD81mE/v7+2i327h//z42NzfRarWsLiOFxkcul0OhUMDi4iLi8TjW1taQTCaRSqWQyWRQr9fx85//HA8ePMDe3h7q9fq1HuezLNobN27gxz/+MdLptJVYYW9lrYf25MkTK6x+3mNfd2F3lUQiYfOj0+ng0aNHVtzdBXzRaBSLi4tIp9P467/+a3zrW9/CJ598gp2dnW/s3jWXuVyGRCIRa7m5vLyMZDJ55n4dDofxne98Bz/84Q/RbDaxtbWFZrOJ3/72tzg4OPAUlwdmaz+becBH5UFWplgseuorsedtJBIxIMPCtuxuoIPfaDQMDH5T2C0yUtFo1KrYj8djYxe0Aj5rojUaDZTL5WsbJB0MBo15Y1HXWCyGmzdvIpvNYnV1FYVCwZi4wWCARCJhJSFoPDSbTYRCIfR6PcsSzGazWF9fty4BhUIBsVjM2rYlEgmkUimEQiGsrKxY4eJer4dut4tms2m/2ev1ru0cDAaDSCQSNr+KxSJSqZRlUPZ6PcTjcQ+TXK/XkU6nrQWdX9eYWbWOzxJtzccWX1xLiUQC2WzWAF8ymfQoF7LLWqIklUphcXERyWTSlFE8HkcymbS5qL2cteD1PLlhLnM5v0SjUeRyOUSjUWSzWSSTSXS7XWvEoB5D1o1cXFy0jFjqEFYzmOV9a+YBXywWQyqVwvr6Or7zne/gvffeQ61WQ6lUwmAwQLPZRL/fRzQaRSKRMLdRu91GLBZDJpNBOBy2G5nP5/Hb3/7WlO4stim7aLl9+zb+x//4H3jjjTfQarXQbDatibgqhnA4jEKhgEQigX/6p3/C//pf/8to7VmexH5CRrhYLOKtt97CX/zFXyAWi5nbNRKJGABm8/Zer2e1F2u1GprNJhqNBra3tw28EDiurKyYyy0ajRrApIu43+8jkUjgP/2n/2T9co+OjlCv1/HrX/8aDx48wNHREb7++uuZY2wIVgBvTT13DiQSCfzgBz/ArVu38Pbbb+MHP/iBFVJnLU0CGQKUYrGIUqmEvb09PH78GJubmx7DS40znsOsM9CBQMAKyScSCaysrCAajSKTyVjtwnQ6be5czje6edPpNHK5HIbDIfb399FoNGxeAse1HrvdLpLJJN5//3202207Vq/Xs4LftVrNur3UarVvxN42l7m8rGxsbOCv/uqvEI/HzaXbbrfx4YcfIhAIYGlpCel02vZFGvL5fN7TtUX15KzuVzMP+MLhMOLxONLpNNbX1/Haa68Zbdrr9aw/aiaTweLiorXhCQQCBvCi0ShWVlZQKBRweHhoN1Xj/l5lyeVy+Hf/7t/he9/7nrUiGg6H1kwcOFZa0WgU6+vryGQyqNVq+MlPfmJdRq4b4ItEIlhfX8ft27fx/e9/H3/3d3+HWCxm77MFEwCkUinEYjFrrK5sSb1ex9bWFnq9HtLptClpGhJ+0mq1UK/XsbCwgOXlZaRSKSsIW61WzSAZj8d48uTJTAI+ZZAmSSQSwa1bt/D+++/j9ddfx+3btxGNRtFsNq3nMA0K7aSxsbGBhYUFlEqlU8dUcHhdmL5AIIBIJGJM3urqKpLJJJaWllAoFAy8kfFjrNDt27eRyWSwvLyMGzduYDAY4NGjRzYujIF8+PAh9vf3EYlEsLKygn6/b8ZGt9tFqVSyvXA0GqHT6Vx6a8q5zOVVkEAggEwmgzt37phHiN6/4XCIhYUF3Lx509q/LiwcQyZ2A4pGowC8ReRneb+aacBHEEJ3SK/XQ61Ws/ifwWCAnZ0dlMtl3L59G7du3TKGb3Nz02jXSCRiDeppKWez2ZnuS/uiQpdSKBTC8vIylpaW8OabbwIA6vW6xTjSDU5XLr83Ho+tldba2hpCoRCOjo6ujQJZWlpCsVjE8vIyvv3tb+P27dtYXV1Ft9v1uBa73a6B/U6n42kFpgs2EomgUChgOBwaO8M2a8qOangBfwuAsakMzA8Gg7h79y4WFhawurqK0WiEarVqraRmQdTFr8wbQyWWl5exsbGBQqGAd999F7dv30YulzNmr91umzGhvXK5Id69exfFYtESXciiaryf3znMmmSzWdy8edM8CWwVqQk9vA62awS8bR1pPOTzeYxGIxwdHVkLMY5nqVRCo9GwMAAAnt6wbE0GAPF4HJ1OB5FIxIAfe9LOZS7fdFlYWDD9yFj/XC5nnb9oaAaDQWPRydxzHQ8GAxwcHKBcLqNSqZiXMZVKYWNjw+LBCQpniVSaacAHHLvmisUistksWq0WDg8P0e12TbE+ePAADx8+RDQaxQ9/+EMAwNHRET799FO89tpr2NjYQDQaRa1WQ6PRQLPZNOVE18esKpQXEbIH0WgUH374Ib773e+iWCwiEAigVCohHo9b7AEBkIK94XCIZrOJeDyON998E7lcDp999tm1AHzBYBC3bt3C97//faytreE//If/gDt37limrcZIqZuQQMyNw1pYWLCQgkAgcEppa/um0Whk7mBtz8dsX8aThkIhfO9738P3vvc9fPXVV8jlctjf38evfvWrmQJ8bgyYxut9+9vfxt/93d8hn8/jW9/6FpaWlixbTTdFAj6u1V6vh0gkgu9///sIBAK4ffs23nzzTezs7ODnP/85dnd30e12jfGc9XW5urqKH//4x8jlcojFYsb46rzifGCsJuM4+/0+SqUSOp2OJ7mMrKZmCZJ1iMViSKfTCIVCNveCwaC5m9iHttPpoFAooN1u48mTJ2Z0zGUu33SJRCJIJpOIxWKWSLW6umrgjzpxYWEB8XjcCKdcLod2u41Op4N2u42vvvoK9+/fx2AwMMKgUCggmUyi1WpZwh8zeGdFZh7w6cBTYdNtGwwGrbk76VcAFp+mrZmomMkakr69zkJgoqweJygnNDP9qGwikYiVqgFgSkNLaQwGAywsLFhc0eLiosdFpxm+VOqzopzZgD2fz1tcVavVsjmirJPODTdOUZk+hgiwz6e2/1LAp+wURV3mnH+xWAwLCwvG7NBFNysSDAZtnjBmZWFhwTOvisWisVrcKLUfqo4L5w3HnSxpOp1GoVBAt9tFPp9Ht9u1DVXBol/ZkqsSum95/lQGXH+6R7kMpTu/aP3r3sS51ul0zLAFjvdBnUt6PDIS3BNHo5Gxi8pazMoanctcpiFcF5pAxSQohmAQ6AFefaCl3prNpjHm7XYb3W7XQKHuedwDgGOiSnWF7mdX2Xd9phFPIBBANpu1EhjMliRKH4/HxmZFo1HEYjHLokkkEmZ10xUXiUSQy+WwtraGcDiMw8PDq77El5JMJoNbt24hkUjg5s2bWFlZQSaTwc2bNy0jMJFIIBQKodPpmKXB5AKNq1LWdDAYIJ/P42//9m/R6XTw13/915a5enh4iE6ng6dPn1qA+fb29kzEoQUCASwvL+PDDz9EPp+3ekpu4gAVsypMBbyapECWJhAIGFvjB/T4v24wwAlYZFyIGiOxWAxvvPEGCoUCfve7301VKZ9VNiCdTuPdd9/1lJ1xLeJbt24ZK8wEAbpx9Xju7/R6PVQqFTNObt26hcXFRWSzWTSbTVSrVZTLZXQ6Hezu7lqpnO3t7ZnIPI1EInjnnXewvr6OmzdvYmNjA8lk0kr70BhVsKWGElm64XCIdDptrDHXHz+XTqctKFznEDOAOa46r4AT13ksFjNWNh6PW0b4nOmbyzdFOPfj8TiWl5cRj8eRy+WQy+UAnCRaMEmDgC0QCKBer2NnZwfD4RC///3vLWmP7t+1tTW8++67ePr0KX75y1+iVqshn88jm81iOBwin88bGcW9gSW/mHR6FQbYTAM+4PimLS0tIZVKGaMXi8Uspi8ajXpAHQADd1qehdmUiUTCmKt4PH6tLV/Wfsvlcvjggw8MPLz11ltIJBKWIMDYx3a7jVQqZcyDBqgyY5f0dDKZtNg/LoJyuYzHjx+j0WgYaDw6OsL+/v7MAD7GVbEsiqvkyIC431PAx2cFenzNj9kjEHGTDdTC1HlGF3I4HLaMzlQqdbmD4yOTkiJisRhu376NtbU1bGxsmFHBOoN0d49GIzQaDZszfiycu76GwyHa7bYZZmT5VldXMRwOcXh4iIODA9TrdSQSCZTLZfT7fezs7FzuYJxTQqEQ1tfX8c4776BYLFppHwJ5BfeaZcyx1rJIyWTSkixarRaGw6FvTT6KJhVRdHx1XhNsch8EMFOupbnM5TKFcz+VSiGdTuPmzZu21ywuLlocXqfTsQoNjGsPhUJot9s4PDxEu93G48ePcXh4iMXFRdy9exfZbBZvvvkm/uIv/gILCwv45S9/aaEZxCmFQgHASVhHq9VCMBhEtVq1UJ+rMGBnHvCpaAA0C+LG43ErJcIBTCQSKBQKiMfjaLfbplwJUggQ1bU568LuDcyMXFpasnpwBLELCwsYDocol8sWFE5XLGvM0XU4Go0sro2xBgDMfd7pdNDpdDwMVrfbtSDW1dVVALB6du12G1tbW2YVuYrpMoX3l656XkMgEPAkCwA4BdgAf+Djx4Tod5QFPOs69bd1vhF0M7ifjI4WK56G6BgwBGB1dRVvv/22lR7IZrMGINzYPJfxdMeWzwQ5CoLJfOkcYwmThYUF3Lp1yzbORqOBdrtt7N9ViWbkhsNhT7yj1vbU+05RA4HssTLKfuVwJo2tm8Xszl0dd7J9mkw0l7m8isIyR+Fw2LLk2Q0pFAqh3++jXq+bu3Y4HKLVaqFcLntCpMjW8zXW+K3VahgOh3jy5Ani8biVlWL3nHq97okFV68S4295zF6vh6OjI7Tb7amNz7UAfMq+kCGgGySfzwOAKctAIIBCoYA7d+5gYWHBsmhIx7IQL+OorovE43FjFP7rf/2v+Oijj9Dv9w2UcXL1+308fvwYwAnDFI/HDRjSJTQYDFCpVCyTr1KpIBqNWhA+mRaWE2HZB2YspdNpvP3228YU9vt9/OM//iN++tOfotvtWm2waQhbpiUSCeTzeaPdaRxw8SkrB+AUKFFR5s5PXGDD76i4zB4BH2M+GFMCACsrK7h16xZqtdpUWv+55x4KhfDOO+/go48+wsrKCv7mb/4GxWLR3NgcDzehwmU6FcQp40mGXb/L4+lYss4hANy8eRPj8dhY0Eqlgj/96U/Y3d31jOc03ZS8Z/l83opKUwhqCdb8DAnee85NHStVODruBIZ6LC3yqsXT3TnNeoBkEecs31xeZUkmk7hz547V7mUlBBo71Hc0uMbj40odR0dHAE6whiZIsX7raDTC9va26buHDx8aM8/s+N3dXU8MNAuts6TSaDTCjRs3DHj+7ne/w9bW1tTG5/ogHhFVKuFw2MAbNzla4LypgDd4Xq3j6yIs35DL5VAsFrG6uop2u41KpeLJBqTlwuw+N9hbS0SwZRgfTEzQQHkGlvd6PQ8zynjJhYUFJBIJDAYDFAoFZDIZYxenBfh4Pozn5HVrRi7lWffdVdIuGNRA3PPKpN+n5afZwASo0xa6I4rForHHrB9Io4Jzw70mV1wWimDG7W7jB9QIZDSBIZPJWGwM3ZNXtX4551k8GfCypHx2XfsqmsiiLB4/q0lUPL6OlfuePphYpGNI9uG67Xlzuf7C+Qzg1F58Gb/FUk/pdBrJZNITvwp4yxnxfKjnXANYDXUW1KeeZZ1VTSJVQ16/o4lXZANp1BIYPq9OeVGZecCnCoPKUTezRCIB4NiSZWxUOp3G6uoqms0mjo6O7MZSgRDEXKcA5tu3b+Pv//7vUSgUkM/nrR8p6Wl1DbnZfI1GA48ePTJ3Ed/jYzAY2OT86quv8PjxY2sBpgwDO5OoUmKGZiAQwJtvvoloNIrt7W387Gc/MybmsiWZTOKtt95CsVjEjRs3PO56l9VTZkQXtPvaJNekjh3FD8D4ufNcpc45HQ6Hsb6+jnfffRebm5vY2tqaGs3PdUQLlPGfvV7PWuv59Vt2r4/XwXXmAj79jrJUHBfdhBUQAcfs9sbGhrlm9BjTlmAwaMWSgRMDQF2xXA903+hc0jXK8jU8DkXHjcd3GUOOryouGm7s4hEKhUz5kT2cy1xUJsXxXpSw5WQ4HEapVEKlUrmU32GsKr17zPrf29szho8kCPcpvkZGzg2zIBtOg1wJDCafqdGu+zvHlaXfdD2TnBiPx9aek/r2sve1md8BVDmqXxyA0a0ADHgAsMEEgIODA9sQ1aWmbpLrICsrK/jBD36AfD5v2Yws8OjGAXGMOB6qvAGYlcH+gcPh0Gp7EWxoH2KOu2ap8jV+JhQK4ebNm7h9+zbu3buHjz/+eGqALxaL4datW9jY2LCCvm7pGY0fczMbdYH6MYJ+i9AP8PHvsxhk9zyoiJeWlqxmIJOPpiHKWBUKBdy8edMyt133n8s86jVqLUe/ODPAn+kk68xnnWM0ZCKRCJaXlxEIBMwt7B5vWhIIHHfwyeVyVmR6NBoZ4OMY+bGaCs54ra4B5X7fNUB0nvJ1Pvd6PXQ6HWsZyNAVuqOuU8zyXC5X3P1p0j73shKNRrG0tIRYLIZut4tqtXrhv0PiIRqNWkeuQqGAJ0+eGODjb7J6h+pCGt5qZOrf6qLl2uX+GA6HkUqlTOdwXHUP63a7HgOQVUVGo5EllQQCAYupv0yZecCnmyVvjNa+UbcFAzPr9bpNYGbf0O0XiUQubXJftFAZ04JQNysBq04yV8m6cT18nd9RBctn/iaVFb+nQIWvqRVD64nCrGmtv3ZZojXttLsBz1Ovha8pY6JMiv5N8fv7PIBPj8Nscf62ywqm02ksLy/j8PDQw8Retigw0GrzyrTpWKlMGqPzfNZlUPV7LjjiGuf4XbWo4enONeCEReY561i67N1ZxsGzPsPjkh3Vfp4659UgnMtcAG8yGf8H/MMSdL6rocp5ruVM1PNDpnl9fX1iK8WLEBqC6XTaU3lDmTmyeboW9Xr1WH6s51lr1iVB3P3NTydT3/IcCQovW64F4CNgIBPRbrfNsubryWQSi4uLBviYNMDq/6R7a7WaleaYddBH93QsFrPMWcbHkX3RBuuM0+FDA+nVwlDGjtYKs5KU8gZOT3o/pcusScb4saxLLpdDs9lEs9m81HGKRqO4efMm3njjDStkrOCWite9Hj8grP/z70ngTv9XlsoFy8DJ3A0EAhasr67M9fV1LC0todfrTbUIczgcRj6fRzqdRiaTsdhMMsTcmHit7mbogjaKC4b0NS3ezTAMLQiurl0aISy1NE0w7CdUapznanjyPTV8AoGAx03ENeSCskm/4yoSwJvty8KwWvyc61jn2zSz5udyPWTSulXvDcmUaDRqCYA05kmwZLNZ+5vgL5fLWd9xJjdVKhXcv3//Uhi+fD6P1dVVLC0tIRgMYjgcIhaLIZ/PW8UJrgPViW7oj77m7l2TCA8msrlgUI0+HfN+v2/tJ9kogPvgpZMjl3r0C5JJN4M3hEpduwOoW1Otax5Pn2dVaCkxKUUB3CRg4f7tuoLUClPFQbDoxh3xGPpdFVXqbjkINne/LEaVi4kJD6yg/jwu2LM+51p0HMdnHd/9Pv92Nwu1AmOxmF0HE0+mwcwQbLFIuetadLuS6N+TwJ4r7tpTBo/xo+4x3WPrmp5mkLOKbvquxc7XdOzUwHKPcRZzdxYL6I4TQR/HUc+D33ETQ+YyFxWdL5xD1Kd8jsViFhNK44s1OfP5vBX4J7NXKBSQzWYNOF5mNyHqSbZ+1DVJL5PqO79QHj/xY/jc8dL3XV0L4NRewWfiEm25OQ2ZecCnGxqtZ1qtAEw5BoPHtXM4QdPptLEW3W4Xm5ubGI2Om5PX63XfDM5Zk1AoZEka+Xze6vBxggMnE40BpQrA/BStikvR6+f8xoXgEPC6tVjzTvvP5vN5S1mv1WqXMjZvv/02vvWtb1lP1o2NDQCYGAhP68pNQngWAFSAxs/7MX1kUfyUNbM63ePwXLhRLi0t4Tvf+Q6Wlpbw+PFjq/N0WRKNRrG8vIxCoWDFn3lPOUYsncJxdWNp3Tmj56ssvCbMqLt4PB6bYdBqtdBsNu0cdCOMRqNIJpOWzcwak9MQMhqZTMbWoCZe6KatgG9SVjHXizt2LoNObwSFCovZ061WC0dHRxgMBlhbW8Py8rIpai0BM3fpzsUVArdoNGrx3NSxDIGi4U7Ap6+R1eNr6upl61LqA+5vZwGsFxUmUq2uriIcDqNWq6HVaiGRSGBxcdFi3smWEzsQ4KpBpAygfkbXvBsTqL/LJEpWNtBr5hrUHAK2juXxL1tmHvBxU2W6M90lZKRYV49dFeiSTKVS9ggEAtjd3cXe3p7V4bkOSRuky1dWVpDL5WzRKMOhriI/Ro7P7rUqU+GyEJOUqCp9TmQGoSpwjMVi1my60WhcCsMXCoXwxhtv4Mc//jFWVlZw9+5dLC0toVaroVqt2mfc63L7lwKnA+DdvxUM81m/77J17nkS9LmxcAr4COYLhQI++OADFItFdLtdbG1tXSqoiUQiWFpasrZpvF7ODa27x41Oe0a64M4dQ79xVADtMoitVstKHjBEQEFzPB5HMpn09LSchnBPYVFXnrMao3qvqSg4bn6bub6v3gplCpXVV1ZvNDrp0MHSTDdu3MDS0pL9lno3Zt24ncv0hSxdMpnErVu3kEwmPW5ZgjbG+KqblyBwEkNNnUwPFfuzX4YEAgGk02kUi0X0+32rs8e6rARVBHoM+dEwEk2yUDIoGAxakXXgBHdwzbKtaSKRwNbWlpWAYfch1yukXjUCPpJWc8AHeAZHJ5xfvI9SqvSHM56PAelar27WN8BAIGBZdozV4ySkMtA4JxfoucdyAYvL8PkxNPpdZcW4kKnY9HcZ65FKpS4t43Q8Hlsdwmg0imq16nEh61xxA/6pgPV8XTbUT9Stq9erCtbvPF3QwzELBLx1D9kZhSBiGgYJN3bd1JSlpDXPbDOdcwA8gMIvdILX7ma/uWuWIJxZubxnem94T6PR6NQLCKu7S69Pa2/RINMuLxwzBXC67lzg7Ocq0vWuRgoZZbLH7NYyGh23vOOYq3H3qolbqsc16l4mdlHHnkYtszOvK4jmtaj3iFmjfmWEJj38jDvd1/RBMKNkxUXvbQSXPC9N6NRzcg3986y74XBorUddQ384HBqBxNqz+tuujvC7Hy4xcZky84CPioY9dFOpFJrNpiemzQ1KJhPYarXw1VdfoVKpWAsw1qoiazjLQhffxsaG9f/t9/tIJpOIxWKebB9u8O7CAk67djV4nEpegYebdehOfFpUy8vLZlGpm1R7xB4cHFyKohmNRtja2sLvfvc7rK2tGRPKukbhcBjJZNISUJSd1NgJjokfM+XH/LksFTcGHl83MlU44/HYNh8CGpZgGQwGKJVKqFar2Nvbw9HRESqVylQYLLp019fXkUqlPGtIrdter4dSqWQKTzfWSSyVjiELn7pgaTweW9mgfr+PTCaDQqHgYcwoLD7OdmuVSmVqLD0BHRlHALYe6NJNp9OIRqMWu7S5uWnlkPh9zRTkMbQwrBpfqkT186PRyFgEACgUCgiHw3j99dfx3nvvodFo4N69e2b8XKY77SolEAhgZWUFr732GgKBgM3LarVqc7Ver9vYPq/Q5RmLxTzdXkqlkkfBXyeJxWJYXV1FIpHA66+/jtu3b1vXJYIaZZ/U+KPRoc8KVMjKK4BhYf7RaGQtLzVJ8CKEjCJDUqgX+Xq32zXWUvdjei90XatBTjcrjXD+lq6jZrOJhw8fIhgMmsHO73M8VBe75833dV+5TJl5wOcyfBoL5BcPpBb0cDhEs9lEo9GwCeayEbMstMbI8PH8/awCZZ8mTRy/OCL3oaJAkf+r8komk+h0Omi326cyOePxOHq93qXFJozHYyusHYlEcHR0ZAs3k8kYuHLbXfG7ev1+gI/zzY/tBE673nhf9Bju3y6zo64+FtFuNBqWVTYNZUI2lu4bBRpqpbquCd5v121IcdemyyoD3o4T3W4XvV7PEm907HWcyfBdBYBRVzevh9dPQ4vMN++xO546R3TeTGKN/danuoW4R7BRfC6XA3DiLtY5d51F5x7/p0GyuLiIQCDgYWHYrF7XkR8jpcdzn5mNyjZbiUTCsqIJBK6LcP6oGzefz2N5eRntdhvNZtNAjSbh+Rko+p6Kn/5RZlw7P7n382VFsYGLA/zWl8v0+elCrc3H1qJ0S/M47J8bCASMfFHvkjsW7jUrgTANmWnAx4V7eHhoQeRU6lRO0WjULOdKpWKTKhgMIpvN4t1330Wz2cStW7ewurqK/f19/OEPf5iaQn0ZIXCia1RTt8fjsZWjGY1GKJVKHsZSJ7bf3wCMEdTWMgpgFCAHAt76cYlEAoVCAY1Gw5IyVOnTFXhZ2Ufj8dhi9arVKvr9PtLpNLLZLHK5HDKZDN5//30sLi5iaWkJa2trBhZ00/JbaLpp8br93ncVMTc2BUHcbLSdTqlUQrPZxOHhIe7fv49Go4GtrS0cHBygVqvhyZMnFox/2UaJtiJSBkrnEsGL1pXTsjJuHJ6CQwXZCuCAY5Cr3VtYE5CF0901yixBlvuZJuDjtdJdSDaX51Cr1dDv95FIJDAcDs1ip1ehVqsZO845ofW73AQONUr1WXvsAjC3Mcec2d5+STXXVVxDKhKJYHFxEbFYDG+88Qbee+89A3yDwQCHh4fWio/j1Gw2LdaR844JBYyVZoZ8JpOx5vb9ft9+j8/5fB6NRgMPHjywPWiWJRQKYWNjA8vLy0gkEigWixZ28OTJEwwGA7RaLQ8rxlAP6loa7prFq8Yg5yeBEeevtvVjTb5ms2nx9Bchrk5jyZPx+Lj6AXvBt9ttX+MnGAx69B+vS+PV4/G4Zx1OAo7ufufupdQXPAb3iXnSxv8vrVYLBwcHNuCMV6GrjgVjx+MxSqUSFhYWrC5QLpfDBx98gMFgYIDv3r17+MMf/mATfJaF7As3IDeglDXUOC5+16PsDP+nuPXQAPgqdZ3QPBbrHmockiqpaQC+SqWCarWKQCCAL774whReNBrFysoK/v7v/x537tzBe++9hxs3biAYPEnT51hynN3F5rJ7LrvgxwhoPJa66LigWeH98PAQ29vbuHfvHn72s5+hVCphc3PTusKoMr9sYXFUZp8qo64WMu8z+0fyMxoawbFQC94P8PF/Mpk0PAjIk8mkbdw0cvj7jFOrVCpTZa1o6SvoozUPHBsd5XLZ3Ffcl5aWltBqtdBqtTzzTVkFAj4COgXdyiJy3mr4Cu+BMuvtdtvDgF5nwOfHCEejUayvryObzeLtt9/Ghx9+aGzecDjE/v4+8vk8ANi8Pjg4wKNHj9DpdFAul9FsNhGLxZDNZhGNRk0/ZDIZ3Lx5E9FoFIeHhzg6OjImMRgMYm9vD4uLizg6OsLOzs61AHwLCwt47bXX8MEHH1gFC4K9x48f22cI9hjvzjInXPfACfhWT5vu+zRq+JoSFRzbcrmMcrl8oQwp5/pwOESr1bIMfoLWbreLVqtlMZ8uY+7WqwXgAXyRSMRTGUDXkxsapoab7oH6m/Qg0VvB8KLLlpkHfP1+H61Wy+M21IFTmrjVapllwhZMRNAa16Yb9iyLuonUalLgpRaXWi8uqzcJ9Pn9P+k9P2ZLlZYefxrBqLrw3KSAWq2GnZ0ds+JTqZSxHzQW/Ch2v3HzGwe/Z36PrxHEUBltbm6i2+3i0aNH2NrawubmpvWXbLVaFlMyTXHnmLJ0ritajQE/htMdBz2G3zhrQoi6Pv3cRRSNgZy2uEpCX2McHsFZOBzG2toa0um0MRzq8vIbPx73rIey7G5AuRub7AKl6wr6XM8ERfcedaEznisYDCKXy5mC7/f76Ha7yGQyaLVa9jn2kV5cXPRkYjMTnHMVgH3HD1TPqtDgVMaOogYZx1N1ySTj1t0P3fAiHlvdq3S/kxC4qGtzDRs//eiCuklrzu9a3BAcdy09a3xc4bnw7/N856JkpgHfeDxGrVbDcDi0DhsaLwMcN1aPxWIolUrY2toya5lsBZXDaDRCu91Gq9Wy0h3TLOvwIhIMBs2FxSBtThayInQTktlyF6qfwtXFwLHReCN1RwInE1kLayo4IOhWQE7Lzo1juGhxN1wyJAcHB/jFL35hDGk+n8fKygr++3//7/jud79r7h/XDanH9dsA+J7f4tbFy7Fl94pPPvkEP//5z1Eul/HFF19gZ2cHrVbLgsuvAuwBx/c0kUhYEVXXDaHWPeeaW27EZZa1xRcffnE06XTayinVajVjAjQbWIVMC1soTZPh0xgk4MTAUGOTjPOjR48wGo3wX/7Lf8Fbb73lYQzUCPJTVurOdZk9snvD4dDc391u15jhvb09HB4eWvwa3XYXHSQ/DZmklPk3r0nL4nC8kskkbt68iXA4jPX1dQPdbLNJUKyAm4wsvQAUJhmQoc1kMsbKECzyvkx7fDgWk15T9ph6hOLGM3N81c1NFk+JBD8QOAnocFzIbN+8eROZTAaPHj3CF1988dKt1nSf5TVpBQAmjLBvLZlwAnUlT3S/U4DIdUSDmMaVhnT4ZSa7xoiOsRZK1/A0fv4yPTszDfgA2ObfbDY9ClonM2OPGo2GfYc3RN1snHwMEJ91hg+AubnceB5OECogN/1cF6EL+s5iGVSR62eBk6B11wKaxPARGF6W+AFJLtR2u43NzU0AJ6Dl1q1b+M//+T97ymv4jc2zfudZlpyOCWtYNRoNfPbZZ9jb28O9e/ewu7v7chd/QcIAYwYZu4ySy6CwpRgBvhsU7QJnP2aPD22Xpu4dLZnkKjGtWzVN8du8gRMFyKzNUqmEBw8eoNfroVqtGijTuabXRTmLzVMQqOuTY8BWi/SE0Hjg3qcxpddR3PNWo0TDDzTUhV4e7fjgssJ0obugh2PNMKJut4t2u21ggUCC+9s0Qi9eRBQQMQGFenAS48t5pXvkJHCn3+GzyyrrvE2lUkgmk2g2mxdSrmsSoFIjk9eioM7VSbqmFHSp3mMsot5vZQt1D5zEjCq41IoR7l7n7hUXKTMP+JTR0gXO9wCv/57PrutDLZZpUKcXIYHASVwTAWogEPBYMZPcRJPEVeQajM/NgJ/jswvmdKHp7+kGSivxsurw8dzOszhc5eCOm86V8xzT7zMuA6HjFAqF0G63sb29jb29PbRaLfueG5Cuz9MQMhpuVwuKXoNbX86dZ7SM/SxofZ/rlHErPAdu0AAmzmuy99PO0lVgrEqNZWp0bmmtNrcGJK/NnXP64LHdEA5XSbuvMS5V64Bp3cJpMqIXIX5ADzgO8zk6OrI6nK1Wy+LO1MgKhUJWsop7AOOimbylwfrASRkR4DgRh+WS7t27Z4k5/X4f1WrVOpxMG/D5ASs/KRQK+Na3voVUKoVCoWDJDExyazabBuxoRCnTOSnxR/dMlxzQtc5zZGwls4PT6fSprkMvIm4NUR6v1+uZ9457Ba9Bz1MTztyOGJPIEdcgA04MVGUbqW/0OjlXON6KSZjUNxqNzPt0GTLzgI+Dz2BpzVJzXZccJAV8fF/p0+sC+KgI4/G4LRoAnnEATrNsz7o+tYC0fIlS4u7nKfo77oZAhRMIBCx4nSDhsmSSlarvTZo/Onf0f7/j+jEy7gZwFuBrNBp4+PAh9vb2PEG8yjT6KfXLFm4+jHNyz1/PkS2UqDhdS1fnXygUMuXIa6WiIBgi48Bjk52huAaMgtNpBTnrOJGRVGVL5cLNnK5DulBdtsSPyZvE7qlL11XsfnNlMBjYuWhoC7sMXCfAd9Ya6PV62Nvbw8LCAg4ODtBoNCwsgYXqM5kMgOOkP4bvMMZ7eXnZDGfORQKUSCSCXC6HYDCIx48f4+DgADs7O/iXf/kX7O3tWZkvGj1X4SVSwOfuOyorKyv40Y9+ZFntjUYD9XodW1tbZrBx72d8H0s0uWBMdYKfkUzhelagxbq5uVwOS0tLyOfzto5ehnmmW51ly3heTAYD4GlH6gI+hgUwoQ6AR69S/MCvSxwQj/Ca3Nat/L3hcGix5Bo7zSQZlwG8aJl5wKcWL1GzKiT93CTl707IScBmFmWSpeVerwtWXMrdD8D4KRo/8QMyrlWnD24krvv3uojfOLhj/Tzf5eucv7MmGljtxpexRh4/R/EDxwrMqERdZtiPMeD/XJc6p9y5RgWlx56G8LfVPaT3chIY82MLzlLSKu7nnqUY3TWoTPy0x8sVNQSUSda9QkXjGP3iDwmuG40GDg8PrXc6FSnZEoYCKWimi1aF95NF5EejEXZ2dnBwcIDDw0Orkdlut829e5X6w92PdI5plq26NBk7xtAmvRc6R9yx9puv59EX/FsTFHi/aWTSOHoR0bjaZxlTHBv33NUon7QmXU+Fy/q5Muk9/V2/OrrTWKczD/iAE2XAPrj9ft+QsTI0VBYAfMHGeDy2mkNaaHLWxN0c3f65GjTKCcTJr8HumpTBMQoETlrd0OJQClzdaoAXqPB9dQMDJ8G5yryS2Zs2E/MscZlJV/yA8aTjuO+r683v85rcooBAf/dFrd0XFa6HRqNh1rDOu3q9jnq9bgkovJ+TNkgFGMFg0OPGcOOdOAZuHTDeI7rlKKFQyPpyXjZz7AoLjZMtq1arp0rvuBY9a391u11bV8oO6LqcFLfI9ecXvuGKflZjLslMXhXg01jrYrGIZDJp5xcMBg2okekYj8doNBqWYPfo0aNTAA04Xm8M/l9dXcV//I//0ebwysqKuX5rtZrNqfF4jN3dXQwGA2SzWayvr2NhYQHVatXqYf7qV79CqVSyDPpOp4ODgwMPkzvtdarC+6xzgfMoHA7j7t27WFlZQaFQQLPZRK/X84BVzeQej8ee9Q6c9Jp1WWl+nr/J9eqGLOj87ff7Vv+OZZbC4TA2NjbQ6/Wwv7+P3d3dFxpPJpyxZI6bjENjVcsWcexU17H2J9chr4vXwGQfJlroOOj18nXAG64SDJ4kFNE7orUyNcRFPQiXIdcC8AEn8TIcfA3CfRbjpZ/R48wi20JxLXRXCbibjm5ofGgSh3tcKihOZF3kblyZxqm4rjsApxSYgsqrKJ9x1ubht0j1e7qQnyWTjuH3mo6t3rurZpnVLUmAAJxsVN1uF6VSyWLBCPTOAs1qaHAuKXOowjHnmuRrdEeqwaDAYdpJG3T3MWlFQyz8NnzgZM+ie4Ybvx9z52coPIupcEX3BZ1v6lK+ClHwmclkzGXK+5jP5y1LnAX2y+UyarUaFhYWLPnKTw4ODnBwcIBqtYq//du/NaWcTCaNGez1evb7o9EI9XodzWbTxoThB81mE5ubm/inf/onbG5uzqwXSOeOC7aCwSAKhYJlKTNBkW2/6IbWuUIiQA34SfF7FNcrMGldc38hQOSekM1msbi4iEaj4csqnkfcMAtXJ6pXUM+L95R7ks4N10um+k8ZyknGvX7G1buqXzThR89nzvCJ6AC7A8NNRZkUjbVR9E4aeVYBHylvBtK68RrcLJWl082JwM+1AP1obE46LnY/5cXP0WLi4lVLyXXfaezSLMl5wOCk/5/3d0aj43IdBAiTmL9nnddlip9RQbfQwsICSqUSPv30UySTSSQSCYt18QMSfgDFj43i9wgMWdCUbFi327UOM2R8OEeZsT6t3pN6zowf1DmtIN4t9eMyd35ynjl3lpHi9xrHlqCZrNdVrUV25YnH41heXkY2mzW3KsEIQT7Z0HQ6jcXFResTTDDmskHJZNJaylUqFTx58gTJZBI3btwAAAOXnU4HzWYTACx2lCW9QqEQKpUKHj16hN3dXasMcZUs3nnEdeUyBm9xcRFra2toNBrY3983houGlRrw1BXucYHJrlwlDPjsftclAYCTpCIAVkB9f3//hdexMtjASfydglAFtYoBeI48Z/ehQNiPveS6d700BLQ6phxH6kTq9kAg4IkDVQxzWXKtAZ+rpOjmJerX/rkEegzeJbU9i8L4C2YfcRJw8lL5BAIn/Rw1i1ctVz8Ax7HTnqVueQIV/hYVMoPDtduAup0JGNxm87MiLhjxW9AvC/Y4pnQn1ev1mWQLgNNriS75cDiMra0t/PKXv8Ti4iI2NjZQKBQAwFN5Xzd5PnPT9BtffleZOrboY3P6XC6HjY0NxONxTy2veDxurt1pzitmb/L3XWtfW3bpOtJwCFf85p++5/c5nZ9+Y0tQx72QSQxkcK9Ccrkc7t69i0QigdXVVaTTaRweHlpbr1qtZgkVBKnvv/8+Xn/9dfR6Pbz33ntot9v42c9+hr29PQ/IIZsVi8Ws88XCwgLW19eRSCSwsrKCW7duYWdnB/fv3/cAPbZTG4/H2N/fxx//+Efs7Oyg2WzOLBngzhWuOYK9VCqFjY0NvPXWW7h37x5+/etfo1arWS9gZfbc2DceX4mSSaA3EAicCqHS76obk6LxwIVCAaPRCNvb2y88FszSjcfjAE7KsSlbqSwfAafb4tA9bxpwLjOon+P/moSmwE+9j9wPaSxSt5N95v4wjSoi1wrwnSXuZugygO5rs6p8gZMSEBqcrlYXLYHxeGzWMV3dBL6uMpikcHShuvFk+jlOYFqHWo6Cn3G/M0mZzaL4gb5nyXncvwp+pkHZP6+4AFc3QLp0K5WKuTInAQ8V19XhB170dWUEGfPDTVzH7CrnFIGqW3Rc2Q6uh8tghiatL31PDRmeo8ZTXtW8U1aDbCMNQndc9UHDlu3RUqmU9SoGYExgPp83w4EF6uv1OsbjsXXNINOpY6bZmzRaY7GY53iu+LnWSSS4jNY0hWOl7k31ZqlHxl2bk3SFn8tSP6P7n7pA3fWuIIbfu6jkKw1BcsMZ3GvShyvuOLgM3yR23GU+/f5X41A9I3zPL1zqsuRaAT538+IAubEHWoKF7yUSCbPo+PqsWnFs4M0geZ2EwDHjlkwm0Wg08OjRI09QLnsFslCkVgR3jwOcLEi6zjT5ggqeG3W9XkelUsF4PMbBwQH29/c9yR6amav3h2DhspTh88i0QQPHIxaLIZPJWFeJZ8V/TVPcWC91xVcqFXz99dem0FgiiP/zGvyUhrsJUvg5JgwNh0OLERwOj9vi0e3GealKjJb8NIXAQxNXlOFrtVo4PDxEtVr13FtVSC8jOsZqpOmxCToZ58gx5V6obSinafByD1DgRVfteHy6VlogcByq8vjxYwNg6XQad+/eRavV8ij1O3fu4I033sBgMMD+/r4Vv/7444+RzWbx0UcfWTu0d95551SsMffIO3fuWJHsH/3oR56exgAMtDDkgNcFAF9++SV+//vfo91uo1wu+yaYPK887/6UTqdx+/ZtJBIJHB4e4ve//z329/cBwFyeCvgItNmJgp4kfk7FD+QqOaAgT+cmQzYY+xuPxy90j1NihLqL4R7qdaJBpjUXVU9pi0demyZv0NDg3sP3GXOs8Xx+xi/1KAE5ax1SJ5KsoZ68zNCLawX4/BSLggsXTXOR0n3Jgpt+yQyzJKyLFI/HT2XMAifZPN1uF0+fPrVWSnrdnDy6ablWFoWLQ2lsLiAuDC4qZlPW63UDLlTIfiyMgvRZiIu5KMA3yaKd9HtkD2KxmKfw8lWLCyTc+9hqtXBwcGBZbGwirtay330/yxWkSkM74jBwms3PgdOxglpceJpzyW9NqtXe6/VQr9fRarVOMQMvO9/82FSXDSBTQIVB9opKzy2TNG3Ap0VmQ6GQ1U8DYHuyzod2u42joyNks1ksLS0hGo1iZWXFPBq8/rt37+LNN9+0eMDRaGThAblcDm+99RbW1tYQi8WwuLhoc2g4HBo4HAwGKBaLFu9HVyc/x3HkemAsIMcyGo3i6dOnlun7soDvvHNF538sFrNxYr09nqdejwrBGFlBF8z56Qs/5so9d91LmN2usXYXtW5dwoeAjvpd9w2XfXUJI46RfpZrie5yra/punwnietC53hrxr62fLvs7lTXBvC5TJQqJ9KjLC5Kd+NoNLIyGN1uF7VaDY1GwyjuWXXrquUCeGPvdJIOBgNUKhU0Gg2LS+Ek5aRxyz3oItZisRrDx82XopQ2N0HGVbkAm4uNGwLjwc67QC5bzqLNXYVK8XNPnmdT1k2FgM8N+r8q8QMkev0M7tb5o/Nq0oY/6Xco7nd0MwyHw+j3+6jVatbtgCCQjDzn/rQNNp3j7uvAsVuPQFWToM463lkus2d91wXnwAkz4YI8Nb60nM6LiI7DysoKisUiANh+2+l0LFGp3W5jOBwilUohm80aYKY7ly5Wnifjq4fDoSWsaR9UsiS8Fu777HPLOcO5RG8Oz8OdM8riaTA/40XVy8GH1uHjsTqdzqm18jJynnUFnMSwhcNh5HI5Y5/r9bqdk64XBW28Ts5XjrPOKT+XK/9375+7f3A8tPczcHxvmKDFMi0vOmY8R85pNR75cI0ifo/X4hISLgPsrjG/vVLPxz223/uqc92Ey8uWawX4SIcquNMSEKTamZQxGAyMOqXVd3BwgGazaa7IWRSyCdFoFIDXclH3CBm+arWKlZUV5PN5q+9DC4IBqmrBADArGjipo8cxdmvFKeAjmOaiVeqcFgoXIJUPLfmrzoxW8KUuQb9F/CzW7lm/o79H0JtOp9HpdF66afhFiNbeUvaH946uM64pAJ577caenAXqdMN1XZCcZ0zC6Ha72N7etvNgLB83c2WJ+LvTWMdcQ25LKCqEVquFo6MjYx9dJTjJ6HJBn6uUXeH46b2j0D3E99RNx/OnwfyiCWsEGbFYDB999BH+5m/+BuPx2Oqa7u7uYmtrC+12G7u7u2i1WlheXjaWjWxPNptFsVg0w3U0Oi6XQmBHJpXvc0zT6bSdB+dhqVRCMBjE4uIiisWisYIEjJVKBZFIBJ1Ox9jPUChk+xFZY2ZMapcEPjhPleXhGqhWq5awc1GK+zxzemFhwa53fX0d6+vrAI4ToNgNRPdjzVgFjnswk7XXvZ8uUX1w3mtipCZOKZAZj8cGOPlaIBCwkjnVatUeL8OG8jwikYgZG8Ph0BhL3mfdr1yXru6DBHtu9xU/sKfMIsVlN13Qp3tBr9ezOafJJpdtyF4rwOdn2boghs9EzXyfjBQX5ayCPeA0Ve0yLGop0FJyr8uPQXAnkm5amlzwLOEGqPFCOsFdBacKehryrOvwe88P7PE4k87b73X3t/VYanVetaj16grvrxsO4II6PZbf3OJ7/N8dV/0c5zsNN8bHqJWue4AfmJqmuL85ydXsjpm6xPyOM+k191h+yoHKVZMazsNMPI/o3pRMJpHP5zEejxGNRi3GqdFoIBKJoNFoIBgMWpwYAYWGnWg2pRrv3Fd0HyPgUOBBwxaAGcLsr6qeH8A7l3SOK7BT3aGvEcioN8TdP1+UsZ00zu7fev/ojmXGZywWO1VDE4DHdeiy8u4+xPdcPev3Nz+v31VAqeOjewGPoy0JX4bhc8OFyFK68eTu+brjyf8nne+k3/c77lnny99QNnGaeOTaAD7g7KQNF8lr8gGVCJm/WXXlUuj+Y+A6LUq6A3mdnU4Hh4eHKJfLyOfzALwgTsXd6HXzpEXD72uiB3DCAHIxBYNBNJtNa2mUy+WsDE6n07FNhu6QqyjP4gcERqPjVktMPHFBid8GoPKsRTkJEKmVTEv5qoVWrWZH6v2mm0yZcK43VZaqdN3xmQR81GChkuHcDgQCBvhckKznqYlZ0wjP4DUroFPXjIaR+M0Tv43dBbEuCPE7BwXIWsZhPB6jWq1ia2sL+XwexWLR1p1b7uEilMt4PLY6b5FIxEDH6uqqdSNhN4V8Pm/uVYI8dsFQJTsYDKxMijvuZHvJ6BQKBWN23ASofr+PUqnkGV8CUgUDGjOoc1H3Lx5bdQnvF5kkemKeZw66ANzde9R1yjEj65nJZFAoFMx7wvEnS7S0tIRUKmVhBrpv6zhx7dP9PSmbWe8Hx4CeCgUvTH5QBpCejUgkgtdeew23bt3C119/jf/zf/4PHj16hHK5/MLzUcuytFotS6jgPGPogO65uobUqHDDmjguur78YgD9DDc/Y4DHdI93GcbCWXItAZ+7UboKaxLgYx25WQd8XDCaOQvAJiCVQ6/XQ6VSQblctiB34LSraBLA0GNpMUqXoXMVfCBwXP+vUqnYIk8mk2g2m2Z567GmUV/oPEJGtNFoGGAAJgM+fU8t42cxMH5ARw2Tqx4HZQn84lw4t+h2cL8HnK60zznCY5xlFfsBY503jLH1A3x+ht40wgT8mBxes8binAXUzpo3BCD6+bPOxZ1P4/GxW/Xg4MD+VzbNj5V5WWm326hUKkgmk8hkMtbHNp1OG7Omc4T3k0YmWVzeU2aN8n01NOl6JLi5ceMGEokEWq2Wxf2pi7ZerwM40RmcTwp63PnM19WAcb1GnNuhUMiKNnOffh6l7ae73LkdDAY9VRey2awlr2xsbBgb6p5rNptFoVCw+8MseO1+pNfOcWdcnoZN8bq5//N+tFoty0jna6wuocAxlUpZTcQ7d+7gzp075nJmzcOXAXz8HRqorjHoZ2Tz9zRZw12/roE+ibF077n7OX3o2F8F2AOuEeCjEmJsgLIEWlgR8F+0LkKfZaF1oZYmN3lORIIVxtLRJULFoVaFbig6+XQj9rNWFATo8cjC1Ot1s9wZL6EbqFrMVwl0eJ0ar+aei7shTGLrzsPy+R2bm5ACm6sUvffuaxqjOR6PPQWHKTqPOOdcZlSVmMsSTvoclQ6D9rnhuu5lP0PvssfL/R0aSsrK6b3W69Q1xO/q336PZ52Pe+2sYTjJqPX7zvMKr4OZ+oyJDgaDNkc0S1JdrgBOuUN5XnxP4704rvRA0G1OcDseH9chZbypX0iLFsWlwaq/qQave26auKSt9Ph9Mob1et2Mo7PIBLJd3L85t/3OiWNIkKsMHwDLwHUL7us+R6+Wjosem59jzLgLjtRI0D1xNBpZLKbqkng8jmw2a271aDRqxaAJItkjmTGPF2msqf6aBND0cxqO5OIHl9Vz16Mf8HPF1YWqt3U/UQB62Xry2gA+1ucqlUqeDZXMlMb9kCHjInczYmZduAC5SFyqmlYfAGP42FCejAeZGVLWCjJcC4cB0a7FwUlJK46TdmHhuNl4rVYzizCbzZobxWUEY7GYBZNPS3QBMt6FcUSue9lvwfL6nxfsud9XIJNKpdButz39Ya9KXIZImYVut4ujoyPrDrK8vIylpSVPoVquJQVkwOlYPTdg3DUy+OB5JBIJ5PN5ZLNZi/1qNpu2hoETZppzkev+ssUFfVwXCgaomOlqU6XpAj5VUGdZ+5OAtOsiYuIIu5Po+brM0SQl9SwhABuNRtja2kKv10M8HsfOzo619eJcyefzVluRjJ12I3GBhJ9x7o4TcFxTleNMzw1dqxqEzzFhO0h3HHV89TdoYKubns8aUkMment7G7VazbKBJ0kul8O7776LZDKJZDJpSQ8uUHHXCN8jk9btdrG1tYXBYGCJD7FYzMZFk13o+WEtOd3/lD3MZDKmC7jXu+sUONEn8XjcvsNrSSaTlixDsKy6ejgcYmdnB7u7u9Yr+aIIGBI/PGf17qmhyHGkHk0mkxa6Qp3plrE5C/RR3PuohJQyoMlk0mPYUEjyqFFyGXJtAB9vFGlbReHK8PkFl+oxroNQAWpMojJ83LgBeMqj6EaujNxZv3PWRqjiMnzcDJkt7dYP0gXCTfiqRMdM54XffHAVkL7u99mzxGW1ZpXhc4EEjQxm0DEWR5OI9No5T3kMPZb+nv7t97u8R27MpwsY3WNMg+Fzr0PXmZZVIHOi2cznYeyexfD5gRQ/QEDDdxLjcBFjRTa33W6jWq2i2+0iHA6j0+lYRwwFTqow1T3oxxxpPKZ7DcrSaRY5s2859jwmgaYCzEnjydf0firg0xhmGtVsz0l34qTyGhz3aDSKXC5n4It9qXleLhPH9ziGWv6FiXr1et0qUiirqoY/r8sFlGo0acIMhcYaP6/jx0LykUgE6XTajJylpSWEQiE7P70Wzs1Op+Pp0vQy4t5Hv/vsx6bxvBgDrPfOjxxx5TxrmsLjqiGiVSLce3KZcm0AH+C1gBTwcOH3ej2zJIDjm01Wwu28McuiyljBG18n06fXpJa7a9UApwO+Adii06bvqnz9Yoo4KdmMvNlsmgLg+SpjQXZt2s3b1eJSsMXxuozYCT9LnWMZj8dRKBSMifX7zjRFFYMLuMbjsXVVCQQCKBaLKBQKnng5jclyXbrnkfH4pCe0WrfsiBONRnF0dITHjx+b5a3GHOf8tEIFdENWt6gb+xMKhZBIJJBKpTAcDq3zgjs+ukbOOxeVMdV7xuPV63UMh0MrEuueO/eNl2FEFRCxjEo4HEar1UI4HEapVMLOzo4lVpBFSiaTHsNQY+LcezjJ7awA++nTpwBgZS30/jCGzFXy7hgruOY9YL1WTcZRl65+npUR9vf3Pe+rhEIhLC4uIpVK4caNG9YfmuNEMKmMont+yjgSiNIdqqVk2u227bccg2w2a3GVjNNLpVI25rxOLdLMEJ1isYh4PG5jOxwOrQRNJpOxxCC9p+wdThc3vW0AUK/XbV+5iE45fiy33u9kMolisYhyuWyucO45bkIH1zHfV/3FseRcdX9nkvGghBQ9dNFo1NhhnUs8N5c4uWi5VoAP8JZxAGATnkHmnHhkvDSN/6pjyc4rfpu5MnwaA+IX1O4yfH5uWgCeQqMa8KobroI44MSdxhZhbhFSilrj2uPxKsQP8AGnWwi9rPiBN9e67/f7tgG6n52WKADQ9aCAotFooFqtIhg8rm+Wz+cN8HHj4/11DRT9Hb/fdoG4C/gymQyi0SjK5TK2trYsbEB/x3VJT2PMFFQ8C/Cx52utVrM9yhUFfeeZB7on8Pf1XBgMz3mmCkmZx5c1enktzWbTuvzUajUEg0EcHBx43ITRaBRLS0tYX183EMhwFI1NdpmYSR6a8fi4OgFBFst7qGLVGFBmiAKn24EpmCLL02w2sbe3ZyVD+Gg0Gp7/9d4RGPpJMBhEoVDA8vKy1coLh8M4ODjA3t6egTYyeLwWzgkNQzorLMLdv7m+6VYnq8hwIRrtJEpqtRr6/T5SqZTFGebzecsGZhWGp0+folKpIJ1OY3Fx0QwIraUInJAJyrg2Gg2USiVUq9ULA3xnJSQxxICgF4DHg6D7H+eO6gbGaPL6db/T33sW4ON9Y3yyy+5xfOhSv8z97NoBPhXXBaKslionZQVnwZ12HpnkzvJz7VD5TQK0Ctqe5RpyLW2eAyci4woJJHXMXZZPQfe0FbMfdU/ryW8c9fv6ty7qSUrZz7p0hbEuzWbTNp+rFM1kczcxjXuNxWIoFovWUN4NjFc2WF2YPNYkl8ukTZIKiRsj47OopHSeTTvr2Z0bej0K+DQ2ip9155x+352zfutx0ufUAHRLurif8zuPlxH9HSpHsodkd7rdrgEQFj9mRyB+lvuDAjA/41VZuFKpZKCMzJcGxzMEgcyje74us0dg1W63DfzwNbrK9X8/veMnoVAIuVwOq6urKBQKdl7MLtXf0fWl1+LeTzcxhuuGx2ZNvlQqZfOQew5jAMnC8b5ls1kAx/GRjD+tVCoWl8j7tbe3Z0Wdl5eXJ3ordK4pwUDm7yIMXZex9ftNlz13941A4CTOTr0XnE9+Rqzf+nTXqZ6fElCuDnLJnHnSxgTRweQi7PV6BnpisZjnPb52lUzTeUUnlFoaavUqg0can0G5fqDF3Zi4SXBy07JRC5uiY7i0tIRut4v9/X3PItFzAU5ac4VCxwVau93uVN3pulC5+SWTSc818zM63q7V5irYs35P/3YtvEQigfX1dSuBcJUSCATM6mdmpc4rxiU1m02srKxgdXXV4nS0Kjzgjc90lZUCQBeITNrwU6kUVldXDRywVlsulwNwMsdoLTODcZqiG7MCAADmCmPtOWXMz1IWGo6hLI67bt29i3N7NPL2IFaFpe5vVXQXpXSV4STQCwQCFhKg9dn8gLDbW1TPX12nGv+n2bdnAVzdM/2u152Temw/YOgaNJOOS4lEInjrrbfw/e9/30DZcDhELpfD0tKSh12LRCLG/ii403IqyjgRRHM9sMsS7zHLZWl4Tq/XQ7lc9sQjptNpvPHGG5aEEQ6HUa1W8dvf/hZ7e3vY39+3JBG6kj/66CNkMhlr6UbWlufthnwQqLMV6EV5V3SeK2iiAUHvlTJ4TIjUNcyYUI6na0jwmnhcXYd+RpQyyGQ/I5GI7aH6ea53bRt7WXItAZ+rMHRRuskF15XhA7yB4a6ycNkAZfjOEh0PXSR+YEYVtjJ8/I5frKBr3XDDd2shTVP8GD5XFPz5vfcs4Xf9wOF4PPa4+maF4fMbE73fw+HQXHLMAFTlrnNS54SftXte0RIRGqPkB5KmzfD5iR/Dx3IUz1Ns3I/hO2tO6meppHXt6zlNApwXKQrUJglBiAIXF/DxnDURj/1er0uVBZVAIIB0Oo1isWjrqt/vm4GuLCiBBnByf5WF5zONnWAwaK5rlkLR+0tgGAh4y9yQ2eN7oVAImUwG+Xze1nGr1UKpVMLm5iY2Nzfx1Vdf2ToMBAK4ffs2ms2mZQe7oFf3BSUvzlO+5rzirj33NzneCtY1lEWNXHdf4/H99NukxySDQg1g1wDU8TpLF1+UXL3meQ7xs66AE2DCm8YG3v1+38M4XfZgXpTopKTFqQpOA3fJpJE5UiXoWt8Unfxq+ftlcgEn2XNqRQKwbCvXrQt4mUlmeU4LbLuLj2NDIOG32Py+97K/rQYHy1S4SRtXJWQb3GLeZKtisRhSqRTy+byV2SCLpD1DdU0qS+PH9rmbvMt2jcdjK95Kt5e7OasVP82sZ40DVSbODbSmEqZbTZWBH4PljiHHg3uAyzJpmIqOu44DmQ0GhqvBdRa7etmiCpggJBAI2N7MzwBetlhj5q6bjEYji0VNp9NYXl62/XZlZQXdbtdi2hhTR7er647UOcc9XvfoTqczEUQQODLcIBAIIJPJWHLRo0eP8ODBAyvzVa/X8cUXX1jM3Xh8HINGtv/u3btYW1tDNpu1GEnqKP5NYyQajdr5HRwcWBmxlxXVicoo0uAKBoPG8BHwhsNhpNNpC4Fg5rOy6Vxj3Hu47rV8mYIz3gPd+11Cigwe9SBDZqY9p68V4KP4oXoAtoEwg5Q3TWnu6wD6FPDRKtKAa7WUaK0xRoziWjfAiTJRClwXDAADcMqcELwR8JHW1iBjin6HC0Qp9GmJKtpwOGyAT5XwWUyfez2U8yhLl4llIPni4qKxZlcp3Ig1xIEghso1kUig3+8jn89jZWUFwHGQPl26nEMayKxxQucBfK4lDhwXp81mswgEAsZe6FzkRquZ6tMCfEw+Ak4SF1yWkQYOu06488B9KHjTdarHVNbVz5vhMnxqEHL++8WxXYVMUvQXYWzNogyHQxwdHWFzcxM3btzA3bt3kUwmsby8jEAgYC5dZso2m030+33LgGZSCuMLXQNe91smjrhGAmP0uH8zkYP1NXd3d/HTn/4U29vb+Prrr3Hv3j1PMhIf8Xgct27dwvr6Ot544w3rdsIadgr4dJ0yvOoyAJ/qdv4+263RmKCOJODj/sIajSznpvuVGkrM0uXn3Hg71auuQeUaZgr4LiqW8XnkWgE+132kr+ln3L+pmIj0r8PG4gYtU2kqm0mlo2wdAI9F7DcB9W+XkXHfczcXv3Nw45jc37osN9J5RdkZPzrdlfO+5zePXMWljKkLrq9SdNPixgZ43c+j0cgYXXceuKDZdWu4f08acxfw8F5Ncn9o6IK+f9niXoML4BRIaayZ33X6xYPp73C89bfceae/67qCeA5uqSU/RnVWZJbO5SJlNDrOXN3f30cwGEQ+n7eC4m4Bds79QCDgKdDLGDQmu+h8I+hQZsoFavzdbDZr62c8HqNcLqPZbGJ/fx+Hh4colUqo1+sTO7UQtDUaDYtD06xgdy9QIMTrYGb1RTFbbliRAjJl8OgxUMNIx0rDl/zWpIJLDVtxP3eWKEutzKCf0XdZcm0AHxkEKm5a2kTuOvlcRUDr6OjoCLVabebjQDSDknFMrKFES4OFLTmByGIxsFZLCPjJeHzivmNJG1UeAE65UngPuFDY1ojlGTS5hOJ3P6YtdBOyTARZUiq9izgvBTwuk8xx1WDrqxRl+FgjjYk1vV4PsVgMd+7cQb/fx+Liom2GCvY1kHwSc6ubvp8Bow+yhiznEQgEjCUjGA0Ejiv8s5/qNBk+91rd5Baus+FwiEajgWg0esot54JBl313lSTHy+/76hJyXbp0vTebTStVpeD+quffN0l6vR4+//xzPH78GNFoFP/3//5fhMNhFItF5HI5FItFfPDBB5Z4EwwGkUgksLi4eCrBhvOG4Ilscjgctm4Ro9HICkJzHwqHw7h58yZWV1dRLpdx//591Go1/OEPf8Ann3xiupHF1t24Nc7RbreLBw8e4OnTp1hZWbG5x3PguQHeBD7qqmq1ilKpZIzmywo9XfQycX1Sd7ZaLezu7qJarSKVSqFYLJoO4BjyerU+nl/YBNc/9yStP6tubFfX6f1j0WkmcNAjeRbxctFybQAf4G0HRbein1XhPjgRNUZilkUBg1ohbqyVa+n5pfW7zIwyERwHpe85afU4/LyeF8eUC+esQNyrZvgY16EB4zpv9Pk8opuA+5rfsXRczwK+02RdFAAQONElxCDu8XhszeyVKVIGyu96/Jg+V3nwb3euMgYOwKn4PR1D973LFndNAiegT7PV1Z2qDLzf9ep77jgpq8r1xuP7MXw6FtwfaBDqfbvqtfhNk9FohFKphFKpZK+FQiHcuHEDxWIRrVYLd+7c8VRXIOhjDKuGSozHJ/GZwWAQqVTKauSRzWLohYY+rK2tYX19HcFgEA8ePEC328WTJ0/w29/+9pn6UA21arUKAEac6N7msorAiauZHVEuUgerAcRx00e/37exYFILdQDXj7Zr5LVMYtw4njomfmPltx8CJ0yn6nLdF+cMnyOTBtO90WpdMHZIb/6suw+UTeBCCwQC5gYgyOK1cAzICLpKhcekqOKhuOnmrmJTUMj3+VlaWW7/Tv7WVYvGdWjSxosCrLMWO3C6FhNwUmSWGwzBuV/CyzTGTDdAVTTKklPYYo1xbH7FQf2MCwKVQCDgsZo1cF/FXcuMuaRbWcHmtGP41KVDGY2OOwvQDaavq/VP9xKBobu5+61XddGp0UXRcfI7nrL7aijPGb6rF7p5eZ/c+GvNVGcRaa49XZ8LCwvI5XJWEgWAMUmcazTEHzx4gMHguPfuo0ePUK/X8fTp0zP3GgVArnz99df4yU9+gmQy6dnj1EWqoT+DwQCfffYZtra2LKHyZYXglvsL9wOOEVvPdTodK0PF5As/feauQ5d11/3J1XHP2g/pDm+1WhYqQ4bU3fvnDB9OM3gcFD+wpzeFaL7X66HRaKDVas28S1cZDFoFSt+zw4XS76SytXaQnxWlk1rHQWlpV7SWED+jC5quAD2ey9xcJfCju5slUdTt/KKMx1lg0W/xawvAQCBgGw8Dd6cJ+Gg8sA4fx4LzTtkgJkApANM6fH732N0kFbTQ+GJikBv4rMoslUpZYom7+VIZTqsOXyDgLS9EJcMsRta/U9aB95nlNrSlmct0KkPIZzdA349tUFaPwj3DTfbyK98yl+nLeDxGpVJBrVbDzs4OvvzyS8+eofOc4RZsk8Z1S9dksVhEKpXylHnh91utFsrlMlqtFv7t3/4Nn332mQfonCeefdL7n3zyCR48eHBqnZ91PI2hvwiGr9/vG9OocZF06Xa7XYtTjMfjlrji1thzwZaem3tfXGKE39NnfV1Jk1arhXq9jlDouDYt9wf1HMwZPkfcCabuiknuOsB/A51l8UP9nIwap6fiMgbn/Y1nsV2TQJsqfSp+PwB1VYBPjQKtZ+UnFwW2zrp2ZWIZsH0Rlu6LiHvfJ1m1wOlySK7l7zc/nuXyOGve+X3Gby0oMJ2G+J23FnYFTgAt4yHJfvPvSUy7Mn/A6ZZt+hr3ABoM7jlMOue5S3d2REH+WfFs3Fu5XzD+bDgcmiHUbrc9gI97XLvdRqVSQavVQqVSMXfsRQjbzV21+Okeridl64gPaKhNSlKkuJjCZdLdz/LZBX+6/kicuJ/l337nddFyrQCfC+7G45NmxtFoFOl02ixxP0pVXSqzKrxGjdcjQ8m+leVyGdVqFbVazawNTnKCQT/lwmd+hyCI4FGpaY4zZRLVTaWnbZJU+emCnMa4+1loLEWQy+VOlad4md9xxW8RU8iwxGIxZLNZLC0tWQkGd+ynIZxjAAygqAWr7aPIapHl1Xuq2ah67fo7wEnShm6cft/R79IS1xpy2uOUSUzTdOmqQh2NRmg0GqjVajb/O50Odnd30Wg08PTpU6ytraHVamFvb8+se/2+37pQw04/p50OGo0G2u22ZVmSZddz5ZzTRvFXnUA1l+cTjcNsNBqexATGu6q7HvCWauF80RjCV0W4TpjsQr3PJJFcLucpq0JvCmMdiRXc0BrqRjKGLCvG4/KeEEBqpjTPhaL3qNvtol6v2/l0Oh2P/tbQqMuSawX4gNNWNjdgunhUabkIfpKbc9bEj9WgNU+qXuMRlWnT+ARVTjyO6xY6K/Ddz6rxY4A0cNYNHp/EDl6muL/FmBitIXie709SipMofPc7LgDkRs3MWHWNTjreZYneQ62ZqGBEwwV4ftoJgGvKb63xN/x+z91k/cQ9PoVKzHUJX7a4LBkAzyatbE29XsdgMEClUjGGpV6vo9lsejJ9NejdvQYN8OZY8drJrjBEpdFoeJJE3PPVEjZzsHe9RPdWhg3M5Vhc3cJ5ra3UdP5z75/ULEC9BlrGReMC/codaXiQq29Vx9Jg4/kSgPK9ZyU/XoRcG8Cnrg8AHsVNpi8Wi3kQtx9rcF1FM4SYccwivtzIVTG4gfV+YIKLRYt2qlLwcz9pPB8BAINRXWU4baA3ScLhMJLJpHUicVm4SeN0Fut21nX5fUeNE60lNwkgXqYo+HSbefN8uEnpmuN3dUPiZ/zOfZLrQ9k+nScMYuac5jGVtVX2e9oAxlUodNVqfCuDs0ejER4+fIhg8Lh11uHhoWVOugzfJMDnxkcSBDIeiDXN3Ix9vt9oNIyh5e9MCyDPZS6XLTTkk8kkMpkMstmsxeoPBgN0u13rDBSJRDwYgnvWwsKCp3eyy4671QBUd/jtmzyuxkW7+xXB5Hg8ttJYqr8v02NxbQAfcGL1AidtnADYpkaXrgZ5q0KYFQDyLPFjxUgzj8djz6ROJpMYDofGmmiNLjercNLvkDkA4OlM4va/5fhrDTBWimeAfSwWO7WwrnrMo9EocrkcstnsKXf/ZSg/dXfrswbOs+SCfmeawuxXzfxzk1k4N/zcry5zqe8rUHGz9hR06GcImLRNkx/bqOPoB5ovS3QvYYkJsuwuw9doNBAIBPD73/8en3zyiWccnudcJxlpwOlkGf3sYDBArVazbgPxeNzDdsyzdOfyKsjCwoIBvWKxiMXFRcua7/V6aDabqFQqAGAeHjLjJIlYk5XrSV3mWqhZDVDNwHcxBuDdE9Xdzr8jkQji8ThCoRBSqZRlarselUsZs0s78iWJaw0ri+feABeszAoAeRlRgMZgXnUT6edUUbt/+z383neP57p2ARhVrSU+XIvpKlkFzXrWc+PfwOksM72OSeK+57oGXOGYaVyV31yehijj6Lo1COQ1Xs8vxMCVZ80xtX4nzTM9FterW8ZFreqrmFtu6MSkAHCCwWkLmXctIgv4J+TMZS7XWdz1p14odgUhE6hVCFxx9Zr7UDnrfdezqNn0mkcwad+YJ238/8LgR1bYp/jFqWhsD63ZVqtlrWNmvSyLClG/unFZsVw7ITBNnwpGXUD8HzhZILQ0+BvK6CjjosqNTA0LGSeTSYRCIdRqNeszms/njSLn71xFL12VYDBoAGs8HnuK5fopauB0EoHrsnQBo/t7LnvFz4VCISwtLeH27dsIBoN4/PixJUyc5R69SCHoZFAyf4+xKfV6HQ8fPkSj0UAqlbJm48lkEuFwGL1ezxIENHzCZY7c7FP3mtSlyY2YrlLO98FggEKhYIHPPH+NsZkGY8X5rA+t9D8pQ9YFty8jruKZdDwyfPR6uOVv5oBvLq+CtNtt7OzsmE7vdrtoNBoolUrodrs4OjrCaDTC4uIi/vIv/xKFQgGBQMATkkHdxr1PXbhKpOg+RaJFy9pMWous/woA5XIZlUoFqVQKuVzO4nzr9TparRZqtRo6nc6lVm64NoAvEAgYzarAQZWNy/Cp9U83qNaum1Xx29gZZzcYDCw+ZzgcWjFJFup04+j8auPxNSZ2KMjwi89Spc1xZRZTMBj0nI8uErqR/NisaQqtLLpzFezp9U4CfM8D9gB42CjX9RYMBpFOp7G0tIRKpeIBMdNUxhrD586XVquFp0+folwuY2lpCSsrK4hGo/ZZzQhVt6oLKjQOTePM3IdusGQX2UCerd7cmFRuvpMs9ssQBX3KJGgMn4qOxUUZmS6L7DcHR6ORZfCyBdc8YWMur5r0ej1UKhV0u13Tf0xo7HQ6Vsmi0+ngr/7qr5BKpawIMytLuDpR15OuGb7uxuKdlXymmKXf76NcLqPb7Vry5XA4RLPZtJq6rVZrnqVL6ff7ODw8xNbWFpaWlqwyOQefVi3/VlBI1uLg4ACVSmXmGb6FhQUkEgmjoQOBgBXbHA6HyGQySKVSaLfbKJVKCAQCKJfLVh5CEzkUfOnkJvPmFn7k5zTNnexhKpUyRc7aTloKhyBwMBggFot52tZ0Oh1PzNo0JRaLoVAoIJvNWncJDcL1u/5J4ucKpvCYWlKH1qQCEz+X8jQlEAgYQ8s5oO2bOp0OHj16hO3tbYuRCYfDxvSxjZNeqzJ8CpIVHHFjdF2/NAqCwaBtfsPh0BjtQCBg7af4HRZSHQwGxlRf9php/CXZAL96eZSLYvbcY7p/u+EHvIfsqarsMkNA5sBvLtddWHi52+0iFAoZYKpUKtbnmp69Tz/9FPv7+4hEIuYtYNYtACuRogYs9x7uXWrsAV4G393/qFdpuHa7XRwcHKDdbqNWq6FSqWA8Htv5d7td68k9Z/hwfEMePHiA8XiMd999FxsbGwiFQhZrxPpXzIpTBTYcDrG3t4cvv/zSMttmWaLRKPL5vGWVBgIBLC8vY319HcPhEKurq6jX6yiVSnj48CF6vR7ef/993L17F6HQcR9U1zpRhoWu1mQyaVlKLPFC9ku/n8lkAJxM8MFggFKphKdPn1pgON3tqVQKwWDQEiTS6bQp+lgsdiXjmclkcPv2bWSzWbsmBsoCMCWobKZflqSf8lawowkvbCZOpasJEXr8qxAaEMViEYVCAYlEArFYzABWrVbDv/7rv+LTTz/1MLaabKFJFO6xVfwAyqRz4mc0KJoBzz/84Q+tlM1oNEIul8PGxgZisZinLdVlCV3I0WgUo9HI/tZaZ64Q6F6UTBo/HXOu4Xq9boYZx5NrdBoAeS5zuWxpt9vY29tDIBDA9va2VWBw9/BGo4GjoyPEYjF8//vfxw9+8AOPd2NhYQHNZtPWNfdxYot+v2/1ZTWmmWAPOKkUwgdJl/39fezt7aHZbOLRo0dGSrkJaa5xfFlybQAf6U9tY6QbHRkBdZ+4sTZUvrPu0uWmzRgBrdPjVttnM+p6vY5KpYJIJIJUKuWZfPwsAQuvnxaMTjgX6LhuKfYvJHDWTgK0VOiS01i+q0yWGQwGaLfbxiLptQAnoG0SwPMDey5D52aS8j5xXPhZUviM1XDZrmmNkbK9fNDN0el0UKvVLrQy//MKreRQKIRGo+HpJnEVYNmdx+6amSXh/nGV4zWXuVy20IPyLKEhy7akWvDYLdOl8a66zv32Zr84b54X1x1xBx9XXUvx2gC+Xq+Hra0t9Pt9rK2tGSPFuLZ6vY6dnR0EAgFLzmAtnlqtZv1nZ73Txng8xubmJv75n//Z4qZCoRByuRz+8Ic/YDQ6boS9t7eHra0tA1i/+93vsLe3h0gkgnQ6jYWFBWSzWXO5uuwS2bdIJOKpredHX/O9RqOBg4MDtFot3Lt3D+PxGOVyGb/5zW9w//59PHjwADdu3DC2td1u20Ipl8sol8tXMp4ff/wx/uf//J9IpVJYXV1FOp1GPB73jJNmcQFe5s6NDXUVPq/RXeS9Xg+7u7uo1+uo1+s4PDxEu93G119/jf39faPzeZ4aK3mZMhwO8ejRI3z88cdYWVnBYDBAKpWy9ktff/31lbdN0nm3ubmJf/mXf7GeoqFQCNvb27h3754lMF22NJtNbG5uIpVKWW2vnZ0dK81ylYDKNT6Gw6GBZMYxMfzj6OgIzWZzpvfAuczlIkX3ki+//BLNZhOxWAzFYhGJRMLIFSayxeNxT+9rZfUYi66hHBrmRCKkWq2i1+uhXq+jVquZF+2q5doAvsFggIODA/R6PZTLZfR6PfPBk8Hhxl+v103hNptN1Go126Svw0Z3cHCAP/3pT+ZGCgaDSCQSyGQyGI/HODg4MBBLwPvll1/i3r17BvjC4TBWV1dRLBY9xyFICYfDyGaziEQivq5MbTBNNuro6AhfffWVJ5OoXq/j888/RywWw87ODpaXl63QrDaU73Q6qNfrVzKen376KT777DPE43G8++67WF5eRj6fx40bN2zhE/zFYjFLSqG1x9foXlTGVDN+1SVaKpXQarXw8OFDHB0dYX9/Hw8fPrTYKjesYBrZuZThcIidnR2EQiFUKhVkMhmk02kcHBzg8PAQ29vbV26JAicb7cHBAT799FMD6dFoFFtbW7h37561NrtsabfbODg4sO4WzAK87CDr84g7Z4bDIdrttrHxZJWpfMhwzGUu3xThXvLkyRM8efIEiUQCr732msXDZ7NZA3TxeNySKwBvzDXdwMQf+h7jB5vNJh4/fjyVmLznlWsD+OjSBYCvv/4a//qv/4pIJGJu2i+//BKVSgWBQABffvklQqGQuTybzSYODw+vzSbHQE8CjGAwiE6nYxt1tVo1a8LNMtUafRovoOU3GG/QaDQs1kzdvTwOrSKCGgJMZUkJdEajEcrlsoGgarXqcVmyI8BVCa28arWKQCBgoDUSieDo6MjiJQmMNXOUAbiajMExUBc7Y7nYSqvT6VjZgEqlYr85iQ2apju32Wzi6OgIAPDll18ikUgYw8eyBrMi9Xodm5ubZn1HIhEcHBygVCr5gufLEDJ80WjU7mOpVLpysDdJGK5RLpet9E+5XEaj0TDvyFzm8k0VFkgfj8cWdhMOh9Hv95FIJNDv983oTSaTloxI/UcmT0N66vW6VQKhLpi1UIrA+Bwrv1arIZvNTuN8JorG9CSTSUPkBCjtdttijuiiU1dbpVK5cjfVeYVADzhdZBY4qaWncWju9xmPoNmhbkkHgsFJsWnu3wST+h5/RxkwdW/qcRUAXoUwcF2rqTNo1y1A7JZl0f9dF5ouegAeup8LX8duFjYBBiez4wbZcs4pltmZBSHQ00QihmvQILnsc41EIkgmkx6XPpXCLNxPVzhn2bppNBqdqjs2l7l8U0XxhO4rNO51n1Y9qQ933avxT8N+mvquWq1aguUkuTaAby5zmctc5jKXucxlLqflPIBv3lRxLnOZy1zmMpe5zOUVlzngm8tc5jKXucxlLnN5xeVcgG8e4DuXucxlLnOZy1zmMptyHpx2LsB3VeU05jKXucxlLnOZy1zmcracB6edK2ljNBphe3vbivjOZS5zmctc5jKXuczlamU8HqNer2N9fd0qeUyScwG+ucxlLnOZy1zmMpe5XF+ZJ23MZS5zmctc5jKXubziMgd8c5nLXOYyl7nMZS6vuMwB31zmMpe5zGUuc5nLKy5zwDeXucxlLnOZy1zm8orLHPDNZS5zmctc5jKXubziMgd8c5nLXOYyl7nMZS6vuMwB31zmMpe5zGUuc5nLKy7/H4rXPTu5ePX6AAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "for img, label in train_loader:\n", + " print(img.shape)\n", + " show_images(img)\n", + " break" + ] }, - "30540b2b63064d828fd8502fd6d08877": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } + { + "cell_type": "markdown", + "metadata": { + "id": "b6OOOffHTfX5" + }, + "source": [ + "### Task 1\n", + "Train a network that achieves $\\geq 0.885$ test accuracy. It's fine to use only Linear (`nn.Linear`) layers and activations/dropout/batchnorm. Convolutional layers might be a great use, but we will meet them a bit later." + ] }, - "4296a7e9ab704f019451001dd12c4f46": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "ftpkTjxlTcFx" + }, + "outputs": [], + "source": [ + "import torch.nn.functional as F\n", + "\n", + "class TinyNeuralNetwork(nn.Module):\n", + " def __init__(self, input_shape=28*28, num_classes=10, input_channels=1):\n", + " super(self.__class__, self).__init__()\n", + " self.model = nn.Sequential(\n", + " nn.Flatten(), # This layer converts image into a vector to use Linear layers afterwards\n", + " nn.Linear(input_shape, 4096),\n", + " nn.ReLU(),\n", + " nn.Linear(4096, 4096),\n", + " nn.ReLU(),\n", + " nn.Linear(4096, 4096),\n", + " nn.ReLU(),\n", + " nn.Linear(4096, num_classes)\n", + " )\n", + "\n", + " def forward(self, inp):\n", + " out = self.model(inp)\n", + "\n", + " return F.softmax(out)" + ] }, - "4c7a7ac1286649c4804fefd359a1be74": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "v1hXBs6E8T1w", + "outputId": "1bfc58cb-87c1-47d7-d11f-5d5578731168" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "----------------------------------------------------------------\n", + " Layer (type) Output Shape Param #\n", + "================================================================\n", + " Flatten-1 [-1, 784] 0\n", + " Linear-2 [-1, 4096] 3,215,360\n", + " ReLU-3 [-1, 4096] 0\n", + " Linear-4 [-1, 4096] 16,781,312\n", + " ReLU-5 [-1, 4096] 0\n", + " Linear-6 [-1, 4096] 16,781,312\n", + " ReLU-7 [-1, 4096] 0\n", + " Linear-8 [-1, 10] 40,970\n", + "================================================================\n", + "Total params: 36,818,954\n", + "Trainable params: 36,818,954\n", + "Non-trainable params: 0\n", + "----------------------------------------------------------------\n", + "Input size (MB): 0.00\n", + "Forward/backward pass size (MB): 0.19\n", + "Params size (MB): 140.45\n", + "Estimated Total Size (MB): 140.65\n", + "----------------------------------------------------------------\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + ":20: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.\n", + " return F.softmax(out)\n" + ] + } + ], + "source": [ + "torchsummary.summary(TinyNeuralNetwork().to(device), (28*28,))" + ] }, - "545f1e0393b64b1b94710674213f4af8": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } + { + "cell_type": "markdown", + "metadata": { + "id": "544PGKEnjPr5" + }, + "source": [ + "Your experiments come here:" + ] }, - "54a1be4ee00c44a0b72192135f62fa16": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } + { + "cell_type": "code", + "source": [ + "def get_accuracy_score(model, data_loader):\n", + " model.eval()\n", + "\n", + " correct = 0\n", + " processed_size = 0\n", + " with torch.no_grad():\n", + " for x_batch, y_batch in data_loader:\n", + " y_pred = model.forward(x_batch)\n", + " preds = torch.argmax(y_pred, axis=1)\n", + " correct += torch.sum(preds == y_batch)\n", + " processed_size += len(x_batch)\n", + "\n", + " return correct / processed_size" + ], + "metadata": { + "id": "qMbu0Z3mh8lE" + }, + "execution_count": 13, + "outputs": [] }, - "56418812bda04e7293dd8839018ae839": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } + { + "cell_type": "code", + "source": [ + "def fit_epoch(model, optimizer, train_loader, criterion):\n", + " model.train()\n", + "\n", + " running_loss = 0.0\n", + " processed_size = 0\n", + "\n", + " for X, y in train_loader:\n", + " optimizer.zero_grad()\n", + " preds = model(X)\n", + " loss = criterion(preds, y)\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + " running_loss += loss.item()\n", + " processed_size += len(X)\n", + "\n", + " return running_loss / processed_size" + ], + "metadata": { + "id": "H1ytVX0O4tVp" + }, + "execution_count": 14, + "outputs": [] }, - "583e6f0878e04a0bbebf5d80d9d712dc": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } + { + "cell_type": "code", + "source": [ + "def eval_epoch(model, val_loader, criterion):\n", + " model.eval()\n", + "\n", + " running_loss = 0.0\n", + " processed_size = 0\n", + "\n", + " with torch.no_grad():\n", + " for X, y in val_loader:\n", + " preds = model(X)\n", + " loss = criterion(preds, y, reduction='sum')\n", + "\n", + " running_loss += loss.item()\n", + " processed_size += len(X)\n", + "\n", + " return running_loss / processed_size" + ], + "metadata": { + "id": "zv_LkvtO4xBx" + }, + "execution_count": 15, + "outputs": [] }, - "590134f878a74adb98fd129816fde03c": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_29b0a8c468e6410fb390b903559d6ef5", - "placeholder": "​", - "style": "IPY_MODEL_4296a7e9ab704f019451001dd12c4f46", - "value": "26427392it [00:02, 10150318.78it/s]" - } + { + "cell_type": "code", + "source": [ + "from tqdm import tqdm\n", + "\n", + "def train(model, optimizer, train_loader, val_loader, criterion, epochs, scheduler=None):\n", + " loss_history = []\n", + " score_history = []\n", + "\n", + " with tqdm(total=epochs) as pbar:\n", + " for epoch in range(epochs):\n", + " train_loss = fit_epoch(model, optimizer, train_loader, criterion)\n", + " val_loss = eval_epoch(model, val_loader, criterion)\n", + " loss_history.append((train_loss, val_loss))\n", + " print(f\"Train loss: {train_loss}, val loss: {val_loss}\")\n", + "\n", + " train_score = get_accuracy_score(model, train_loader)\n", + " val_score = get_accuracy_score(model, val_loader)\n", + " score_history.append((train_score, val_score))\n", + " print(f\"Train score: {train_score}, val score: {val_score}\")\n", + "\n", + " if scheduler is not None:\n", + " scheduler.step()\n", + "\n", + " pbar.update(1)\n", + "\n", + " return loss_history, score_history" + ], + "metadata": { + "id": "hIqxGUwo4Zkt" + }, + "execution_count": 16, + "outputs": [] }, - "748c2a2536394a50aab12eef92442fcb": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "i3POFj90Ti-6", + "outputId": "4e0a891f-30c8-469e-d1f7-b65df5120e2b" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 0%| | 0/100 [00:00:20: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.\n", + " return F.softmax(out)\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.013276640415191651, val loss: 1.654692626953125\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 1%| | 1/100 [00:13<21:49, 13.23s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8059999942779541, val score: 0.8076666593551636\n", + "Train loss: 0.012698641041914621, val loss: 1.6147206802368164\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 2%|▏ | 2/100 [00:24<19:24, 11.88s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8418332934379578, val score: 0.847000002861023\n", + "Train loss: 0.012569256998874522, val loss: 1.6125253117879232\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 3%|▎ | 3/100 [00:37<20:25, 12.64s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8419629335403442, val score: 0.8488333225250244\n", + "Train loss: 0.012494834553312371, val loss: 1.5912535909016927\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 4%|▍ | 4/100 [00:48<19:21, 12.10s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8710925579071045, val score: 0.8703333139419556\n", + "Train loss: 0.012428029051533451, val loss: 1.5989843292236328\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 5%|▌ | 5/100 [00:59<18:31, 11.70s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8622221946716309, val score: 0.8623332977294922\n", + "Train loss: 0.01240434221426646, val loss: 1.5843435719807943\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 6%|▌ | 6/100 [01:10<17:53, 11.41s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.878166675567627, val score: 0.8766666650772095\n", + "Train loss: 0.012381912573620125, val loss: 1.5806977920532226\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 7%|▋ | 7/100 [01:21<17:21, 11.20s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8836851716041565, val score: 0.8806666731834412\n", + "Train loss: 0.012347226950857375, val loss: 1.5921250940958658\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 8%|▊ | 8/100 [01:32<17:11, 11.21s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8801110982894897, val score: 0.8683333396911621\n", + "Train loss: 0.012331678339728603, val loss: 1.5792973429361978\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 9%|▉ | 9/100 [01:43<16:48, 11.08s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8862037062644958, val score: 0.8828333020210266\n", + "Train loss: 0.012300300949149662, val loss: 1.5848387603759766\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 10%|█ | 10/100 [01:55<16:53, 11.26s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8789073824882507, val score: 0.8763332962989807\n", + "Train loss: 0.012308881209956275, val loss: 1.5833558781941732\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 11%|█ | 11/100 [02:06<16:29, 11.12s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8839259147644043, val score: 0.8773333430290222\n", + "Train loss: 0.012296321517891354, val loss: 1.572127596537272\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 12%|█▏ | 12/100 [02:16<16:08, 11.01s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8953888416290283, val score: 0.8891666531562805\n", + "Train loss: 0.012284787758632943, val loss: 1.5893475748697916\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 13%|█▎ | 13/100 [02:28<16:02, 11.07s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8760185241699219, val score: 0.8711666464805603\n", + "Train loss: 0.01225543404287762, val loss: 1.584569132486979\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 14%|█▍ | 14/100 [02:38<15:47, 11.02s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8857036828994751, val score: 0.8761666417121887\n", + "Train loss: 0.012267153903290078, val loss: 1.5693989537556967\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 15%|█▌ | 15/100 [02:49<15:30, 10.95s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8984629511833191, val score: 0.8916666507720947\n", + "Train loss: 0.012252372022028323, val loss: 1.5805389353434245\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 16%|█▌ | 16/100 [03:00<15:14, 10.89s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8875370025634766, val score: 0.8801666498184204\n", + "Train loss: 0.012235163010932781, val loss: 1.57543465423584\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 17%|█▋ | 17/100 [03:11<15:00, 10.85s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8954814672470093, val score: 0.8858333230018616\n", + "Train loss: 0.012222593894711246, val loss: 1.5678384679158528\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 18%|█▊ | 18/100 [03:22<15:00, 10.99s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9029629230499268, val score: 0.8928333520889282\n", + "Train loss: 0.012211925976806216, val loss: 1.5687018025716146\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 19%|█▉ | 19/100 [03:33<14:42, 10.90s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9030555486679077, val score: 0.8921666741371155\n", + "Train loss: 0.012215344104501936, val loss: 1.5679605865478516\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 20%|██ | 20/100 [03:44<14:30, 10.88s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9067962765693665, val score: 0.8928333520889282\n", + "Train loss: 0.012208266582753924, val loss: 1.5650775604248046\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 21%|██ | 21/100 [03:54<14:16, 10.84s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9083333015441895, val score: 0.8963333368301392\n", + "Train loss: 0.012181372476948633, val loss: 1.5707033487955728\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 22%|██▏ | 22/100 [04:05<14:09, 10.89s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9040740728378296, val score: 0.8901666402816772\n", + "Train loss: 0.012198845717642043, val loss: 1.568174171447754\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 23%|██▎ | 23/100 [04:17<14:07, 11.01s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9069444537162781, val score: 0.8921666741371155\n", + "Train loss: 0.012194382482104832, val loss: 1.5800543950398762\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 24%|██▍ | 24/100 [04:27<13:48, 10.90s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9001110792160034, val score: 0.8794999718666077\n", + "Train loss: 0.012188232212154954, val loss: 1.5690537567138672\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 25%|██▌ | 25/100 [04:38<13:36, 10.88s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9052592515945435, val score: 0.890999972820282\n", + "Train loss: 0.012198032935460408, val loss: 1.5713317082722982\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 26%|██▌ | 26/100 [04:49<13:22, 10.84s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9054073691368103, val score: 0.8893333077430725\n", + "Train loss: 0.012190625254754667, val loss: 1.5690781021118163\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 27%|██▋ | 27/100 [05:00<13:16, 10.91s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9043888449668884, val score: 0.8926666378974915\n", + "Train loss: 0.012173486731670522, val loss: 1.5757533874511718\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 28%|██▊ | 28/100 [05:11<13:11, 11.00s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8994444012641907, val score: 0.8848333358764648\n", + "Train loss: 0.01218123616995635, val loss: 1.5686188837687174\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 29%|██▉ | 29/100 [05:22<12:56, 10.93s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9042962789535522, val score: 0.8923333287239075\n", + "Train loss: 0.012194673282128794, val loss: 1.5670087407430013\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 30%|███ | 30/100 [05:33<12:43, 10.91s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9073333144187927, val score: 0.893666684627533\n", + "Train loss: 0.012180464091124358, val loss: 1.5800190404256185\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 31%|███ | 31/100 [05:44<12:43, 11.07s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.89340740442276, val score: 0.8808333277702332\n", + "Train loss: 0.012177396736763142, val loss: 1.5753035685221355\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 32%|███▏ | 32/100 [05:55<12:36, 11.13s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8978148102760315, val score: 0.8856666684150696\n", + "Train loss: 0.012162116406140504, val loss: 1.5679511947631837\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 33%|███▎ | 33/100 [06:06<12:18, 11.02s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9087777733802795, val score: 0.8928333520889282\n", + "Train loss: 0.012168730384773679, val loss: 1.5714325434366863\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 34%|███▍ | 34/100 [06:17<12:03, 10.97s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.907444417476654, val score: 0.8886666297912598\n", + "Train loss: 0.01215623590239772, val loss: 1.5680080235799154\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 35%|███▌ | 35/100 [06:28<11:50, 10.94s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9087777733802795, val score: 0.8939999938011169\n", + "Train loss: 0.012156495476210559, val loss: 1.570765251159668\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 36%|███▌ | 36/100 [06:39<11:38, 10.92s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9075185060501099, val score: 0.890500009059906\n", + "Train loss: 0.012177339447869195, val loss: 1.5730693028767904\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 37%|███▋ | 37/100 [06:50<11:34, 11.02s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9012036919593811, val score: 0.887833297252655\n", + "Train loss: 0.012173745894873583, val loss: 1.578932139078776\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 38%|███▊ | 38/100 [07:01<11:16, 10.91s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8989444375038147, val score: 0.8818333148956299\n", + "Train loss: 0.012165740573847736, val loss: 1.5749232432047526\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 39%|███▉ | 39/100 [07:12<11:03, 10.88s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9030740261077881, val score: 0.8858333230018616\n", + "Train loss: 0.012155128320058188, val loss: 1.5767622680664062\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 40%|████ | 40/100 [07:22<10:49, 10.83s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9029814600944519, val score: 0.8840000033378601\n", + "Train loss: 0.012072056843174828, val loss: 1.5612370249430338\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 41%|████ | 41/100 [07:33<10:44, 10.93s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.920962929725647, val score: 0.8995000123977661\n", + "Train loss: 0.012030815846390194, val loss: 1.5598321126302084\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 42%|████▏ | 42/100 [07:45<10:40, 11.04s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.924648106098175, val score: 0.9013333320617676\n", + "Train loss: 0.012003932526818029, val loss: 1.5610172653198242\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 43%|████▎ | 43/100 [07:55<10:23, 10.93s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9257962703704834, val score: 0.8993332982063293\n", + "Train loss: 0.011994124586935396, val loss: 1.5570662434895832\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 44%|████▍ | 44/100 [08:06<10:09, 10.88s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9281851649284363, val score: 0.9038333296775818\n", + "Train loss: 0.011985951244831086, val loss: 1.5572569885253906\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 45%|████▌ | 45/100 [08:17<09:56, 10.84s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9286666512489319, val score: 0.903166651725769\n", + "Train loss: 0.011980338169468774, val loss: 1.5571032282511392\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 46%|████▌ | 46/100 [08:28<09:50, 10.94s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9287962913513184, val score: 0.903333306312561\n", + "Train loss: 0.01197101902961731, val loss: 1.5564115600585937\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 47%|████▋ | 47/100 [08:39<09:39, 10.93s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9309444427490234, val score: 0.9043333530426025\n", + "Train loss: 0.011965882764922248, val loss: 1.55674351755778\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 48%|████▊ | 48/100 [08:50<09:25, 10.88s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9319074153900146, val score: 0.9036666750907898\n", + "Train loss: 0.011959589618223685, val loss: 1.5568998540242514\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 49%|████▉ | 49/100 [09:01<09:13, 10.85s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9317777752876282, val score: 0.903499960899353\n", + "Train loss: 0.01195403082061697, val loss: 1.554929189046224\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 50%|█████ | 50/100 [09:11<09:00, 10.81s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.93235182762146, val score: 0.906000018119812\n", + "Train loss: 0.011951551126109228, val loss: 1.555930076599121\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 51%|█████ | 51/100 [09:23<08:57, 10.96s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9336296319961548, val score: 0.9054999947547913\n", + "Train loss: 0.011942896710501777, val loss: 1.5557699712117512\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 52%|█████▏ | 52/100 [09:33<08:43, 10.91s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9340925812721252, val score: 0.9051666855812073\n", + "Train loss: 0.011939652036737513, val loss: 1.5553779042561848\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 53%|█████▎ | 53/100 [09:44<08:31, 10.88s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9347037076950073, val score: 0.906000018119812\n", + "Train loss: 0.011930583430661095, val loss: 1.5564818216959635\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 54%|█████▍ | 54/100 [09:55<08:18, 10.83s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9350370168685913, val score: 0.9045000076293945\n", + "Train loss: 0.011929853295838391, val loss: 1.5537621409098308\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 55%|█████▌ | 55/100 [10:06<08:06, 10.82s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9357221722602844, val score: 0.9076666831970215\n", + "Train loss: 0.011926590416166517, val loss: 1.5546731236775717\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 56%|█████▌ | 56/100 [10:17<08:02, 10.97s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.936629593372345, val score: 0.90666663646698\n", + "Train loss: 0.011919321636358896, val loss: 1.5554751256306967\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 57%|█████▋ | 57/100 [10:29<08:00, 11.17s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9368518590927124, val score: 0.9051666855812073\n", + "Train loss: 0.011917273181456106, val loss: 1.5540503718058267\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 58%|█████▊ | 58/100 [10:39<07:45, 11.08s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9373332858085632, val score: 0.9068333506584167\n", + "Train loss: 0.011913020036838673, val loss: 1.5549631703694662\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 59%|█████▉ | 59/100 [10:50<07:29, 10.96s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9374444484710693, val score: 0.906166672706604\n", + "Train loss: 0.011911789103790565, val loss: 1.5540384826660156\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 60%|██████ | 60/100 [11:01<07:19, 10.99s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9382962584495544, val score: 0.9073333144187927\n", + "Train loss: 0.011905344550256375, val loss: 1.55516286722819\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 61%|██████ | 61/100 [11:12<07:09, 11.02s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9380740523338318, val score: 0.9048333168029785\n", + "Train loss: 0.011902389272495551, val loss: 1.5543119099934897\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 62%|██████▏ | 62/100 [11:23<06:56, 10.95s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9387221932411194, val score: 0.906333327293396\n", + "Train loss: 0.011903370671802097, val loss: 1.5551325225830077\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 63%|██████▎ | 63/100 [11:34<06:43, 10.92s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9387962818145752, val score: 0.9054999947547913\n", + "Train loss: 0.011900738166438208, val loss: 1.5551091918945312\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 64%|██████▍ | 64/100 [11:45<06:31, 10.88s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9393518567085266, val score: 0.9058333039283752\n", + "Train loss: 0.011895998848809135, val loss: 1.5561262995402019\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 65%|██████▌ | 65/100 [11:56<06:22, 10.94s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9394444227218628, val score: 0.9045000076293945\n", + "Train loss: 0.011895226173930698, val loss: 1.5548814697265625\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 66%|██████▌ | 66/100 [12:07<06:11, 10.92s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9400925636291504, val score: 0.906166672706604\n", + "Train loss: 0.0118916865211946, val loss: 1.554854990641276\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 67%|██████▋ | 67/100 [12:17<05:58, 10.88s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9404629468917847, val score: 0.9056666493415833\n", + "Train loss: 0.011890397987983845, val loss: 1.5556512807210285\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 68%|██████▊ | 68/100 [12:28<05:47, 10.86s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9407592415809631, val score: 0.9046666622161865\n", + "Train loss: 0.011892659430150632, val loss: 1.555245206197103\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 69%|██████▉ | 69/100 [12:39<05:36, 10.85s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9402592182159424, val score: 0.906166672706604\n", + "Train loss: 0.011886511005737163, val loss: 1.5565635604858399\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 70%|███████ | 70/100 [12:50<05:30, 11.01s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.939370334148407, val score: 0.9043333530426025\n", + "Train loss: 0.011884295403957367, val loss: 1.5556390279134114\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 71%|███████ | 71/100 [13:01<05:18, 10.97s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9415000081062317, val score: 0.9045000076293945\n", + "Train loss: 0.01188097608310205, val loss: 1.5557330881754556\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 72%|███████▏ | 72/100 [13:12<05:06, 10.95s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9415925741195679, val score: 0.9046666622161865\n", + "Train loss: 0.01187822546782317, val loss: 1.555884661356608\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 73%|███████▎ | 73/100 [13:23<04:54, 10.90s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9415370225906372, val score: 0.9046666622161865\n", + "Train loss: 0.011878398301424804, val loss: 1.5559385833740234\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 74%|███████▍ | 74/100 [13:34<04:43, 10.92s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9419629573822021, val score: 0.9051666855812073\n", + "Train loss: 0.01187981594050372, val loss: 1.5560416107177735\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 75%|███████▌ | 75/100 [13:45<04:35, 11.03s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9402222037315369, val score: 0.9046666622161865\n", + "Train loss: 0.011876048975520664, val loss: 1.5556108881632487\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 76%|███████▌ | 76/100 [13:56<04:22, 10.93s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9426481127738953, val score: 0.9046666622161865\n", + "Train loss: 0.011871233701705933, val loss: 1.5544990921020507\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 77%|███████▋ | 77/100 [14:07<04:10, 10.91s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9426851868629456, val score: 0.90666663646698\n", + "Train loss: 0.011870352195368873, val loss: 1.555875249226888\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 78%|███████▊ | 78/100 [14:18<03:59, 10.88s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.942981481552124, val score: 0.9049999713897705\n", + "Train loss: 0.01186890854217388, val loss: 1.5547129821777343\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 79%|███████▉ | 79/100 [14:29<03:49, 10.94s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9430184960365295, val score: 0.906499981880188\n", + "Train loss: 0.011865957807611537, val loss: 1.556121877034505\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 80%|████████ | 80/100 [14:40<03:40, 11.04s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9434444308280945, val score: 0.9051666855812073\n", + "Train loss: 0.011860200645747008, val loss: 1.5557141138712565\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 81%|████████ | 81/100 [14:51<03:27, 10.93s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9438148140907288, val score: 0.906000018119812\n", + "Train loss: 0.011858459737565783, val loss: 1.5561401011149087\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 82%|████████▏ | 82/100 [15:02<03:16, 10.89s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9439073801040649, val score: 0.9048333168029785\n", + "Train loss: 0.011857612612070861, val loss: 1.556311429341634\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 83%|████████▎ | 83/100 [15:12<03:05, 10.91s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9440184831619263, val score: 0.9039999842643738\n", + "Train loss: 0.011856806931672273, val loss: 1.5564685338338216\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 84%|████████▍ | 84/100 [15:24<02:56, 11.03s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9440925717353821, val score: 0.9045000076293945\n", + "Train loss: 0.011856182069690139, val loss: 1.5565487798055013\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 85%|████████▌ | 85/100 [15:35<02:46, 11.10s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9441666603088379, val score: 0.9041666388511658\n", + "Train loss: 0.011855910903877682, val loss: 1.556420878092448\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 86%|████████▌ | 86/100 [15:46<02:33, 10.98s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9442222118377686, val score: 0.9041666388511658\n", + "Train loss: 0.011855347549473799, val loss: 1.556646011352539\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 87%|████████▋ | 87/100 [15:57<02:22, 10.95s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9443147778511047, val score: 0.9039999842643738\n", + "Train loss: 0.011854898225378108, val loss: 1.556321393330892\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 88%|████████▊ | 88/100 [16:07<02:11, 10.92s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.944351851940155, val score: 0.9043333530426025\n", + "Train loss: 0.011854506293932596, val loss: 1.5562573013305665\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 89%|████████▉ | 89/100 [16:19<02:00, 11.00s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9443703293800354, val score: 0.9046666622161865\n", + "Train loss: 0.011854124901471315, val loss: 1.5562861455281576\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 90%|█████████ | 90/100 [16:30<01:50, 11.04s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9443888664245605, val score: 0.9043333530426025\n", + "Train loss: 0.011853813546675224, val loss: 1.5561280008951823\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 91%|█████████ | 91/100 [16:41<01:38, 10.96s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9444258809089661, val score: 0.9046666622161865\n", + "Train loss: 0.011853698937981216, val loss: 1.5562186330159504\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 92%|█████████▏| 92/100 [16:51<01:27, 10.91s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9444258809089661, val score: 0.9051666855812073\n", + "Train loss: 0.01185347055947339, val loss: 1.5560478515625\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 93%|█████████▎| 93/100 [17:02<01:16, 10.86s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9444444179534912, val score: 0.9049999713897705\n", + "Train loss: 0.011853230050316563, val loss: 1.5563323491414387\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 94%|█████████▍| 94/100 [17:13<01:05, 10.94s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9444814324378967, val score: 0.9046666622161865\n", + "Train loss: 0.011852969683982709, val loss: 1.5563433202107748\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 95%|█████████▌| 95/100 [17:24<00:54, 10.92s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9444814324378967, val score: 0.9046666622161865\n", + "Train loss: 0.011852763723444055, val loss: 1.5560573857625326\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 96%|█████████▌| 96/100 [17:35<00:43, 10.89s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9444814324378967, val score: 0.9051666855812073\n", + "Train loss: 0.011852665287476999, val loss: 1.55616566212972\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 97%|█████████▋| 97/100 [17:46<00:32, 10.87s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9444999694824219, val score: 0.9046666622161865\n", + "Train loss: 0.011852431798422778, val loss: 1.556259386698405\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 98%|█████████▊| 98/100 [17:56<00:21, 10.83s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9445370435714722, val score: 0.9046666622161865\n", + "Train loss: 0.01185215676051599, val loss: 1.5561924896240233\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 99%|█████████▉| 99/100 [18:08<00:10, 10.96s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9445740580558777, val score: 0.9046666622161865\n", + "Train loss: 0.011851896614940079, val loss: 1.5560156504313152\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 100/100 [18:19<00:00, 10.99s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9446110725402832, val score: 0.9045000076293945\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + } + ], + "source": [ + "model = TinyNeuralNetwork().to(device)\n", + "opt = torch.optim.AdamW(model.parameters(), lr=1e-4)\n", + "loss_func = F.cross_entropy\n", + "scheduler = torch.optim.lr_scheduler.StepLR(opt, step_size=40, gamma=0.1)\n", + "\n", + "loss_history, score_history = train(model, opt, train_loader, val_loader, loss_func, 100, scheduler)" + ] }, - "835f930bb1504982aa56c835dc7b7df7": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } + { + "cell_type": "code", + "source": [ + "import seaborn as sns\n", + "\n", + "def handle_history(loss_history, score_history):\n", + " sns.set(style=\"whitegrid\", font_scale=1.4)\n", + "\n", + " fig, ax = plt.subplots(nrows=2, ncols=2, figsize=(18, 8))\n", + " plt.tight_layout()\n", + " plt.subplots_adjust(top=1.5, right=1.5)\n", + "\n", + " tr_loss = np.array(loss_history)[:, 0]\n", + " val_loss = np.array(loss_history)[:, 1]\n", + "\n", + " tr_score = torch.Tensor(score_history)[:, 0]\n", + " val_score = torch.Tensor(score_history)[:, 1]\n", + "\n", + " val_argmax = torch.argmax(val_score)\n", + " tr_y = tr_score[val_argmax]\n", + "\n", + " ax[0][0].axhline(y = val_score[val_argmax], color = 'r', linestyle = '-')\n", + " ax[0][0].axhline(y = tr_y, color = 'r', linestyle = '-')\n", + "\n", + " ax[0][0].plot(tr_score, label='train')\n", + " ax[0][0].plot(val_score, label='val')\n", + " ax[0][0].set_ylabel('Score')\n", + " ax[0][0].set_xlabel('Epoch')\n", + " ax[0][0].legend()\n", + "\n", + " ax[0][1].remove()\n", + "\n", + " ax[1][0].plot(tr_loss)\n", + " ax[1][0].set_title('Train')\n", + " ax[1][0].set_ylabel('Loss')\n", + " ax[1][0].set_xlabel('Epoch')\n", + " ax[1][0].legend()\n", + " ax[1][0].set_yscale('log')\n", + "\n", + "\n", + " ax[1][1].plot(val_loss)\n", + " ax[1][1].set_title('Validation')\n", + " ax[1][1].set_ylabel('Loss')\n", + " ax[1][1].set_xlabel('Epoch')\n", + " ax[1][1].legend()\n", + " ax[1][1].set_yscale('log')\n", + "\n", + " plt.show()" + ], + "metadata": { + "id": "X4AT21t_ikM1" + }, + "execution_count": 30, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "handle_history(loss_history, score_history)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 528 + }, + "id": "y8KI1ooxik3n", + "outputId": "55965f9f-0c52-4920-a179-d17a129e12b4" + }, + "execution_count": 31, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", + "WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAACvoAAATHCAYAAAAm6DLZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxcdb3/8ffsM8lkT7N3S9M1DaU7hWIpO4iKAhdk0yvCxYv+1It41aso6s/rz3tx9+qlqMjlIhVZLIiylS4sbSnd09ItS5t9X2efOb8/JkkbmrZJm2Qm6ev5eMxjTs7yPZ8zzTczTd7zGZNhGIYAAAAAAAAAAAAAAAAAAAAAxBVzrAsAAAAAAAAAAAAAAAAAAAAAcCKCvgAAAAAAAAAAAAAAAAAAAEAcIugLAAAAAAAAAAAAAAAAAAAAxCGCvgAAAAAAAAAAAAAAAAAAAEAcIugLAAAAAAAAAAAAAAAAAAAAxCGCvgAAAAAAAAAAAAAAAAAAAEAcIugLAAAAAAAAAAAAAAAAAAAAxCGCvgAAAAAAAAAAAAAAAAAAAEAcssa6AGAotm/fLsMwZLPZYl0KAAAAAAAAMOYFg0GZTCbNnz8/1qUAAAAAAAAAAAZAR1+MKYZhyDCMWJcxYgzDUCAQGNfXCIwlzEkgfjAfgfjCnATiB/MRiC9jcU6O99+3AQAAAAAAAMBYR0dfjCm9nXxLSkpiXMnI8Hg82rdvn4qKipSQkBDrcoBzHnMSiB/MRyC+MCeB+MF8BOLLWJyTu3fvjnUJAAAAAAAAAIBToKMvAAAAAAAAAAAAAAAAAAAAEIcI+gIAAAAAAAAAAAAAAAAAAABxiKAvAAAAAAAAAAAAAAAAAAAAEIcI+gIAAAAAAAAAAAAAAAAAAABxiKAvAAAAAAAAAAAAAAAAAAAAEIcI+gIAAAAAAAAAAAAAAAAAAABxiKAvAAAAAAAAAAAAAAAAAAAAEIcI+gIAAAAAAAAAAAAAAAAAAABxiKAvAAAAAAAAAAAAAAAAAAAAEIcI+gIAAAAAAAAAAAAAAAAAAABxiKAvAAAAAAAAAAAAAAAAAAAAEIcI+gIAAAAAAAAAAAAAAAAAAABxiKAvAAAAAAAAAAAAAAAAAAAAEIcI+gIAAAAAAAAAAAAAAAAAAABxiKAvAAAAAAAAAAAAAAAAAAAAEIcI+gIAAAAAAAAAAAAAAAAAAABxiKAvAAAAAAAAAAAAAAAAAAAAEIcI+gIAAAAAAAAAAAAAAAAAAABxiKAvAAAAAAAAAAAAAAAAAAAAEIcI+gIAAAAAAAAAAAAAAAAAAABxyBrrAgAAAAAAAIBYMAxDhtFzL/VfjvSu69nng/sbkqFjX0tSJNJ/nWFIEcNQJGIcuz9u2TCkcM/XvWMMrm5J/c7/gfMOUP9A5w9H1Hfu47eNlN5aJUORDzyOMqRIzz9C5Ljr6VdzvzrV8xgafY9h77bjr7fv8e3bZ4B/kwHGPX5bSqJdX/vUEmWnJ4zYYwMAAAAAAAAAwMkQ9AUAAAAAAMCg9YZCg+GIwmFDoXCk59azHIqcuK5n32DP9nAkui0cMRQJRxSOGD1fR/rCmaFw/+VgKHoLhSIK9n0dVjAUUaB3fc/X4eMCn+EPhDaNfl/H+tHEWNDY6lVTm5egLwAAAAAAAAAgJgj6AgAAAAAAjEHhiKGWDp9qWwOyHG2Txeo5FoT9QAi29+tQz9eBUFjBYET+YM8+wXD01rMcDB3bFg3pRnrCttEw7gg2fR1TTCbJ1LNgji5E700mmUyS2SSZTSaZzdGbyWTq97Wld7+ebSbTEM4t9R1jkkkmc/9aTOrZ1jOo2WySxXzs/L3nPb4ec099Q6ljyHoeE0n9zmU2H1unnsf1hNr61akhbTOZjj3m0W3qW2c+bpvJfOJ5U90OZRHyBQAAAAAAAADECEFfAAAAAACAOBMOR9TS4VdTm1dN7V41t3vV1OaLLrd51dTuU0uHT5G+lrQNMa3XYjbJYjHLZjHJajXLajH3fW2xRL+2WcyyWEyyWnq3R5d7A6gW8we+tpj71lssZtms0TFs1mM3q9Vy7GtL7zqzrGbzcUHNDwRaPxDi7Ava6rjgrMnUE5o9FkY9tq4nSDuiaVgAAAAAAAAAAIAogr4AAAAAAACjLBSOqKnNq/oWj+pbPGpo8ai+1aP6Zo8aWj1q7fApMoiuuWazSQkOkxKcDtltx4VerRbZLNHQq63fzSK7zSy71SK7zSK71SybzSyHzSKb1RK9t5llt5r7xusN5vbdrKYPrDMRegUAAAAAAAAAABghBH0BAAAAAABOwzAMef0htXX51dYZvfkCYUUihiKG0XdvRAyFDUORiI6tMwz5g2E1tkaDvQ2tHjW3eU8b5LVaTEpPcSkzxanMFJcyUl3KTI0uZ6a6lJHilMMS0f7972v27NlKSEgYnQcDAAAAAAAAAAAAo4agLwAAAAAAGJe8/pAqajoUjkR6QrjqCeEeC+cax4VyQ5GIOroDau8J87Z2+qPLXX61d/oVCEWGtT6b1aystARlZyQoOy1BWekJyk5PUFaaS1lpCUpxO2Q2n7pTrsfjGdaaAAAAAAAAAAAAEF8I+gIAAAAAgHHnvffr9dM/bldbl39Yx3U5LEpxO5TqdsjlsMpsNkVvpoHu1bdstZo1ITUa4M3uCfQOJsgLAAAAAAAAAACAcxtBXwAAAAAAMG4EQ2E99te9WrOhTJKU4rbL7bL3BG51ymCuxWxSUqJdKW67UpMcSnU7ldqz3BvudTr4VQoAAAAAAAAAAABGD3+dGkcCgYB+//vfa82aNTp69KgSEhK0aNEife5zn1NxcfGQxurq6tKjjz6ql19+WVVVVXK5XCouLtanP/1prVixYlBj+P1+XX/99Sori/5xddeuXXI4HEO+LgAAAADA2OfxBdXQ6lVDi0d1Ld1qaPGqodWj+maPwpGIrrlwqq5cOlk2q/mMz3G0vlP/8cRWldd0SJKuWz5V/3hdsew2y3BdBgAAAAAAAAAAADCqCPqOE4FAQHfddZe2bNmijIwMrVy5Uo2NjXr11Ve1bt06/frXv9bFF188qLGam5t12223qby8XGlpabrooovU1dWlrVu36u2339ZXvvIV3X333acd55e//KXKy8vP9tIAAAAAACPgaH2nymvaFQxF+t/CYQVDEYU+sD4UifR1vbVYzD33JlnMPcvHrTebTeroDqihxaP6lm7Vt3jV6Qmcsp7fPLtLz75xUJ+8cqZWLpwoi2XwgV/DMPTK5ko98vweBYJhJSfa9cVb5mvJnJyzfZgAAAAAAAAAAACAmCLoO06sWrVKW7ZsUUlJiR577DG53W5J0osvvqj7779fDzzwgF577bW+9afy4IMPqry8XMuWLdMvfvELJSUlSZL27t2ru+66Sw8//LCWLVumuXPnnnSM0tJS/e53v9PNN9+sp556anguEgAAAABw1rz+kP737+/rhY2HFTFG99xJCTZlpScoOz1BWWnR++z0BNU1e/T06wfU0OrVz1bv0NOvH9StV83Sxefny2w2nXLMTk9Av/jTDr2zu1aSdP6MCfryJxcoPdk5GpcEAAAAAAAAAAAAjCiCvuNAKBTS448/Lkn69re/3S/Me91112nNmjVav369nnnmGX3qU5865Vh1dXV67bXXZLFY9L3vfa8v5CtJc+bM0X333afvfe97euSRR/Tzn/98wDGCwaC+8Y1vKD09XV/5ylcI+gIAAABAnHh3b51+/ewuNbZ6JUkzJ6cp0WWTzWKWzdp7sxy3bJbNYpbVapbVYpZhGApHordQOKJIxFA43Lsu0rccCkfkdtn6gry94d4Ep+2ktV2xdJJeeqtCf157UDVN3frP/31PT79+QLddPVsXzM2RyXRi4Hf34Sb9+H/fU1O7T1aLSXdcM0fXr5h22nAwAAAAAAAAAAAAMFYQ9B0Htm3bpra2NhUUFKikpOSE7ddee63Wr1+v119//bRB3z179kiSCgoKNHHixBO2L1u2TJK0YcMGBQIB2e32E/Z55JFH9P777+tXv/pVv6AwAAAAAIx34XBE7d0BtXf51drpV3uXX209962dfrV1+dXRHVBygl15ExKVP8GtvAlu5U9wKzPVJcsIBVRbO3x65PndenNnjSQpKz1B/3zDeVo4K3tEzncmnHarPrGySFcvm6wXNpbpuXWHVFnXqR88tkVFE1N1+9WztGBmlkwmk0LhiP74yn49/foBGYaUl5moB25fpKKJqbG+DAAAAAAAAAAAAGBYEfQdB/bt2ydJKi4uHnD7nDlzJEn79+8/7Vheb7SrU0pKyoDbU1NT+/arqKjQjBkz+m0/dOiQfv3rX+vKK6/U5ZdfPqj6AQAAACDeGYahbm9QTe0+NbV5o7d2r5rbfNH7dp/aOv3q9AQGPea2D/wXzWY1Ky8zsS/4mz8hujwxO0lJCSe+yXIwIhFDr245ot+/WKpub1Bmk/SxFUW69cqZcjri81cCCU6bbr5ipj580VQ9u+6QXthYpkNH2/SdVZs0Z2q6PnrxND23/pD2V7ZKki5fPEn3fLxErji9HgAAAAAAAAAAAOBs8FewcaCmJtqRKScnZ8Dtvevb2trU3d2txMTEk46Vnp4uSaqurh5we1VVVd9ydXV1v6BvOBzWN77xDTmdTn3zm98c2kUAAAAAQIwZhqGmNp/KqttUVt2uuhaPmtq8am73qqndJ38gPKhxzCYpOdGh1CSHUtx2pbqdSkmyK9XtUFqSQ0kJdrV3B1TT2KXqxi5VN3artqlbwVBElXWdqqzrPGHMwvwUzZs+QedPn6A5U9MHFdI9Wt+pX/15p0rLmiVJRQUpuu+m81VUkDqkxyVW3Al23XntHH304ml65o2D+utb5dpb3qK95S2SpESnVffdeL4unp8f40oBAAAAAAAAAACAkUPQdxzweDySJJfLNeD2hISEvuXTBX3nzZsnp9Op5uZmrV27Vpdeemm/7atXr+431vH+8Ic/aOfOnXrooYeUnT1yH/9qGEbfNY83vR2Ve+8BxBZzEogfzEcgvoyHORmJGKpr9qi8tlMVtZ0qr+1QRW2nOj3BUx6XlGBTRrJT6SmO6H2yQxkpTqUlO5SaaFeK26GkBJvMZtMgqpjQr56mdp9qmrpV2+RRbbNHtU3dqmnyqKndp7LqdpVVt+u5dYdksZg0c2Kq5hamq2RauqblJ8tiMfeNFQxF9PyGcj2/oVyhsCGHzaybLy/S1UsnymIxj7n/T9kt0icvL9RVS/L03Ppyvf5etaYXpOjzN87VhFTXmLue4TYe5iMwnozFOWkYhkymwTxvAQAAAAAAAABigaAv+nG73brjjju0atUqff3rX9e3vvUtLV++XN3d3Vq9erWeffZZ2Ww2BYNBmc3H/pBcWVmpn/3sZ1q4cKFuvvnmEa0xGAxq3759I3qOWKuoqIh1CQCOw5wE4gfzEYgvsZ6TEcNQIGQoHDYUihgKh6VQ3/Jx6yKGwhFDvoCh+raAaluDqm8NKhAyThjTZJImpNiUm2ZTZrJVyQmWnptVyS6LbNYPBqH80VtA6g5I3a1nd00OSVNSozdNS5CUoC5vWOX1fpXV+VRW51e7J6y9Fa3aW9GqP609LLvVpCnZDhVmO5SSaNXrO9vV1BGSJBXlOvXhxalKc3t04MD+sysuDlxYJC2emierWWqqrVBTbawrih+xno8A+htrc9Jut8e6BAAAAAAAAADASRD0HQd6O/aerFPI8d2NTtXNt9cXv/hFNTU16bnnntP999/fb9vtt9+unTt3avfu3UpOTpYU7frxzW9+U5FIRN/73vdGvAOIzWZTUVHRiJ4jVrxeryoqKjRlypSTdmgGMHqYk0D8YD4C8WW052QkYqih1auqhi4dbehWdWO3qhq7VN3YrUAwcsbj2qxmTc5J0tTcJE3JTdLUvCRNzHLLbrMMY/XDY3HPvWEYqm/xandZi3YfblZpWau6vEEdqPbpQLWvb/+URLs+/eGZWjY3my6N4xzPkUB8GYtz8tChQ7EuAQAAAAAAAABwCgR9x4G8vDxJUl1d3YDbe9enpqYOKuhrs9n0wx/+ULfddpvWrVunhoYGpaWlaeXKlZo/f74uvvhiSdL06dMlSZ2dndqyZYuSk5P1ne9856TjfuYzn5HZbNYXv/hFLVq0aCiX2I/JZOoLN49XLpdr3F8jMJYwJ4H4wXwE4suZzknDMBQKGwqHIwqFIwqGI9EOvOGI/MGwahq7daS+Q0frunS0vlNVDZ0KhE4d6LVaTLJZzbJaLLJZzQPcLHLYLJqUk6TC/BQV5qeoYIJbFov5lOPGo8LERBVOzNTHVkRD0GU17dp5oFE7Dzaqsq5Di+fk6NMfniN3At0ZzyU8RwLxZSzNSd4QAgAAAAAAAADxjaDvODB79mxJUmlp6YDb9+7dK0maOXPmkMYtKSlRSUlJv3VVVVVqaGhQYWGhsrOz+23r6OjQli1bTjre1q1bJUltbW1DqgMAAADA2OEPhlVR066y6nYd7rk1tXoV7An1RsO9xpDHtVvNKshO0qTsJE3suU3OSVJmqktWi1lm87kZUjKbTSoqSFVRQapuuHR6rMsBAAAAAAAAAAAAMMwI+o4DCxYsUGpqqqqqqrR79+4TwrkvvfSSJOmyyy4763M99thjkqRbbrmlb11ycrL2799/0mN6A8a7du2Sw+E46xoAAAAADB+vP6R95S06Ut8pl8Mqd4JNblfPLcEut8sml8M6YJC22xvU4ZomHa5u0+HqaLi3qr5TkaHneGW1mGS1RLvvZqcnHBfmTdbE7CRlpSfIco6GeQEAAAAAAAAAAACcuwj6jgNWq1V33nmnfv7zn+uhhx7SY489JrfbLUl68cUXtX79eqWlpemGG27oO2bXrl366le/Kkn6+9//3m+86upq2e12TZgwoW9dJBLR448/rieeeEKzZs3SrbfeOgpXBgAAAGC4+QIhvV/Rol2HmrTncLMOHGlV+DTJXLNJSnTZ5HbZleiyymm3qKq+XW3dVQPun+p2qDA/RdMKUlSYn6L8CW7ZbRZZzCbZrGZZLWZZLOa+cK/FbOJjwwEAAAAAAAAAAABgAAR9x4m7775bmzZt0pYtW3TllVdq8eLFampq0tatW2Wz2fSjH/2oL/wrSV6vV+Xl5QOOtXnzZn3zm9/UnDlzlJeXJ8MwtGvXLtXV1amoqEiPPPKIbDbbaF0aAAAAgLMQCIb1fuWxYO/+yhaFwv2DvVlpLhVNTFUgGFG3N6gub1Dd3oC6PEEFQhFFDKnTE1SnJ3jC+FnpCZqWHw30FuanaFp+itKTnQR3AQAAAAAAAAAAAGAYEPQdJ+x2u37729/qd7/7ndasWaO1a9cqISFBl112me677z4VFxcPeqzi4mJdc8012rFjhw4ePCiLxaIpU6bozjvv1B133CG73T6CVwIAAABgIN3eoBpaPfL5wwoEwwqEwgoEI8fug2EFQ2H5g5HofSCs8poOvV/ZomAo0m+szBSnSooydV5RpkqKJig7PeGk5w0Ew+ryBtXlCfQEgINqae9WR0udViydq6zMlJG+dAAAAAAAAAAAAAA4ZxH0HUfsdrvuvfde3Xvvvafdd+nSpdq/f/+A22bOnKmHH3542Oo62XkAAAAA9NflDaq2qUs1jd2qbe5WTWOXapu6VdPUrY7uwBmPm57sUMm0CSopylRJUYZyMxIH3XHXbrMo3WZRerKzb53H49G+fW1yJ/BJHwAAAAAAAAAAAAAwkgj6AgAAAMAIiUQMefyhY91wPcFod1xvQF09y83tXtU0dat2EGHeFLddCQ6bbDaz7DaL7Nbee4vsPetsVrMcPffZ6QkqKcpU/gT3oIO9AAAAAAAAAAAAAID4QdAXAAAAAM5SIBjW3vJm7TjQqNKyZrV1+dXlCarbF5RhDG2stCSHcjMTlZfpjt5PiC7nZCQowUkHXQAAAAAAAAAAAAA4lxD0BQAAAIAhikQMVdR2aMeBBm0/0Ki9Zc0KhCIn3d9us8jtssmdYIveu+xKdFnlTrAr1e0gzAsAAAAAAAAAAAAAGBBBX4w9hqGwzxfrKkZE2OeTEQgo7PMpbDbHuhzgnMecBOIH8xHxoKndp52HmrXjUJN2HW5Re3eg3/a0JIfOL8rQedMylJvuUqKrN9Rrk8062O/bsMK+8PAXP8yYk0D8YD4C8WVMzknDkEymWFcBAAAAAAAAADgJk2EM9YNkgdjZvXu3fPX1Cvzi17EuBQAAAONYWGY1OlJV58hQrSNDVa4sNdtT++1jiwQ1yVuvKZ5aTfHWKDPQLiIyAABgrLF/4XNyZmerpKQk1qUAAAAAAAAAAAZAR18AAAAA57SITGqyp6jOkREN9joz1eBIU9hk6befyYgox9+sqZ5aTfHUKt/XKIsiMaoaAAAAAAAAAAAAAHAuIOiLMceZlaUFq/831mWMCI/Ho/3792vmzJlKSEiIdTnAOY85CcQP5iPOViRiqNMbVGunXy0dPjV3+FVZ16lD1R0qq+1QIHhiYDfRaVVRfoqK8pM1vSBFcwvT5XbZYlB9/GFOAvGD+QjEl7E4J/ceOBDrEgAAAAAAAAAAp0DQF2OPySSL0xnrKkaEJRKRyW6Xxekct9cIjCXMSSB+MB9xKpGIoYZWj6oautTc7lNrp08tHT619C371drhUzhinHQMl8OqooJUFU1M1fSe+5yMBJlMplG8krGDOQnED+YjEF/G5Jzk9Q4AAAAAAAAAxDWCvgAAAADGDI8vqCN1nSqvaVd5bYcqajpUUdshrz80qONT3HalJTmVnuxUQZZb0ydGQ715mW6ZzYRcAAAAAAAAAAAAAADxhaAvAAAAgLgTDEXU0OrRkbpomLc31Fvb3D3g/laLWQVZbmWmupSW5FB6SjTMm5bkVEZK9D41ySGb1TzKVwIAAAAAAAAAAAAAwJkj6AsAAAAgJrz+kOqau1XT1K26pm7VNnerrrlbtc0eNbV6FDEGPi492aEpeSmampvcd5+f5ZbVQogXAAAAAAAAAAAAADC+EPQFAAAAMOJC4Yi27qvXO7trVdPYpbpmj9q6/Kc8xmG3KD/TrSl5yZraF+xNVorbMUpVAwAAAAAAAAAAAAAQWwR9AQAAAIyYytoOvfbuEa17r2rAYG9Sgl25mQnKyUhUbkaicjMTo8uZiUpLcshkMsWgagAAAAAAAAAAAAAA4gNBXwAAAADDqssT0Prt1Xrt3SM6dLStb31qkkOXLCjQjElpys1IVE5motwuW+wKBQAAAAAAAAAAAAAgzhH0BQAAAHDWwhFDOw826vUtR/TOnloFQxFJksVs0pLiHF2+eJIWzMqS1WKOcaUAAAAAAAAAAAAAAIwdBH0BAAAAnBGfP6Qj9Z3aXFqnte8eUVO7r2/blNxkXbZ4ki5ZUKDUJEcMqwQAAAAAAAAAAAAAYOwi6AsAAADglIKhsKoaulRZ16kjdR2qrO3UkfoO1bd4ZBjH9nO7bFqxoECXL56kaQUpMplMsSsaAAAAAAAAAAAAAIBxgKAvAAAAME51e4PacbBR7+2rV1VDl2xWsxx2ixw2ixx2i+y2Y8vH31stZtW3eFTZE+qtbe5WJGIMeI5Ut0NFE1N16aKJWlqcI7vNMspXCQAAAAAAAAAAAADA+EXQFwAAABgnDMNQRW2Htu6r13vvN+j9ihaFTxLQHapEl02Tc5I0OSdZk467T3E7hmV8AAAAAAAAAAAAAABwIoK+AAAAwBh2fNfebfsb1Nzu67c9f4JbC2dnadbkdEUihgLBsPzBsPyBE+/7tgXDykxxaXJukiblJGtyTpLSk50ymUwxukoAAAAAAAAAAAAAAM5NBH0BAACAMSYYCutvb1fo7d21J3TtddgtOq8oUwtnZWvhrCzlZCTGsFIAAAAAAAAAAAAAAHA2CPoCAAAAY8je8mb98ukdOlrf1beut2vvwlnZmluYIbvNEsMKAQAAAAAAAAAAAADAcCHoCwAAAIwB3d6g/vDSXv3t7QpJUmqSQzddNl1L5uTQtRcAAAAAAAAAAAAAgHGKoC8AAAAQ5zbtqdWvn9mllg6fJOmKJZP0mY8Uy51gj3FlAAAAAAAAAAAAAABgJBH0BQAAAOJUS4dP//3cLr29q1aSlJeZqM/fdL5KijJjXBkAAAAAAAAAAAAAABgNBH0BAACAOBOJGHplc6Uee7FU3b6QLGaTPrGySDdfMVMOmyXW5QEAAAAAAAAAAAAAgFFC0BcAAACII1UNnfrl0ztVWtYsSZo+MVVf+IfzNTUvJcaVAQAAAAAAAAAAAACA0UbQFwAAABhlkYihQCgsfyAsf/DY/Xv76rX6tQMKhiJy2i26/ZrZum55oSxmU6xLBgAAAAAAAAAAAAAAMUDQFwAAABgGwVBYdc0e1TR2qba5WzWN3apt6lZHd0D+YKhfqDcQipxyrIWzsvTPN8xTVnrCKFUPAAAAAAAAAAAAAADiEUFfAAAAYAhqm7p1pK6jX5i3pqlLjW1eGcbQx7NZzXLYLHLYLUpOtOsTK6drxfx8mUx08QUAAAAAAAAAAAAA4FxH0BcAAAAYhG5vUL95dpfWbas66T4uh0W5mW7lZSYqNzNReZlupSc75bBb+sK8x9/bbBZZzAR6AQAAAAAAAAAAAADAwAj6AgAAAKdRWtasHz/5nhpavTKbpCl5Kf3CvHkTosupbgedeAEAAAAAAAAAAAAAwLAh6AsAAACcRCgc0VOv7NfTrx9QxJByMhJ0/60LNWtKeqxLAwAAAAAAAAAAAAAA5wCCvgAAAMAAahq79PCT7+nAkTZJ0qWLJuqfPl6iBKcttoUBAAAAAAAAAAAAAIBzBkFfAAAA4DiGYejVLUe06vnd8gXCSnTZdN+N83Tx+fmxLg0AAAAAAAAAAAAAAJxjCPoCAAAAPTq6A/rl0zv0zu5aSVLJtEx9+ZMLNCHNFePKAAAAAAAAAAAAAADAuYigLwAAACBpx4EG/eSP29XS4ZPVYtLtV8/W9ZcUyWI2xbo0AAAAAAAAAAAAAABwjiLoCwAAgHNaMBTW4y/t0/PrD0uS8ie49ZXbFqpoYmpsCwMAAAAAAAAAAAAAAOc8gr4AAAA45xiGoQNHWrVxR43e3Fmt5nafJOmaZVP0mY8Uy+ngZTIAAAAAAAAAAAAAAIg9EgwAAAA4JxiGobLqdm3cUa2NO2vU0OLp25bitusLN52vpXNzY1ghAAAAAAAAAAAAAABAfwR9AQAAMK5V1nVEw73bq1XT1N233mm3aMmcHF08P18LZmbJbrPEsEoAAAAAAAAAAAAAAIATEfQFAADAuFPb1K0N26u0YUe1jtR19q23W81aNCdbF5+fr0Wzs+W083IYAAAAAAAAAAAAAADEL5INAAAAGFfWvXdUP3lquyIRQ5JktZi0YGa2Lj4/T0uKc5TgtMW4QgAAAAAAAAAAAAAAgMEh6AsAAIBxY+u+ev20J+RbMi1Tly4q0AVzc+VOsMe6NAAAAAAAAAAAAAAAgCEj6AsAAIBx4f2KFv37H95VOGLokgUF+vInF8hsNsW6LAAAAAAAAAAAAAAAgDNmjnUBAAAAwNmqrOvQQ49uUiAY1sJZWfriLfMJ+QIAAAAAAAAAAAAAgDGPoC8AAADGtIZWj779yDvq8gY1c3KavnbnYlktvMwFAAAAAAAAAAAAAABjHwkIAAAAjFntXX49+N/vqLndp4nZbj141wVyOqyxLgsAAAAAAAAAAAAAAGBYEPQFAADAmOT1h/TQo5tU3dilzFSXHrr7QiUn2mNdFgAAAAAAAAAAAAAAwLAh6AsAAIAxJxiK6AePbdHBo21KSrDru/cs04Q0V6zLAgAAAAAAAAAAAAAAGFYEfQEAADCmRCKGfvLHbdpxoFFOu0XfufsCTcxOinVZAAAAAAAAAAAAAAAAw84a6wIwfAKBgH7/+99rzZo1Onr0qBISErRo0SJ97nOfU3Fx8ZDG6urq0qOPPqqXX35ZVVVVcrlcKi4u1qc//WmtWLHihP29Xq/eeustvfHGG3rvvfdUU1Mjk8mkgoICrVy5Up/5zGeUnp4+XJcKAADOUYZhaNXzu7VxR7WsFpO+/uklmjEpLdZlAQAAAAAAAAAAAAAAjAg6+o4TgUBAd911l3784x+rtbVVK1euVGFhoV599VXdfPPN2rhx46DHam5u1o033qhf//rXam1t1UUXXaQZM2Zo69atuueee7Rq1aoTjnnxxRd133336c9//rMMw9All1yiCy64QE1NTVq1apU+9rGPqaKiYhivGAAAnIueXVeuF98ql8kkfemWBVowMyvWJQEAAAAAAAAAAAAAAIwYOvqOE6tWrdKWLVtUUlKixx57TG63W1I0gHv//ffrgQce0Guvvda3/lQefPBBlZeXa9myZfrFL36hpKToR2Hv3btXd911lx5++GEtW7ZMc+fO7TvGarXqpptu0p133qkZM2b0re/s7NSXvvQlvfnmm/ra176mp556apivHAAAnCvePdilv75bJUm6+2MlWrGgIMYVAQAAAAAAAAAAAAAAjCw6+o4DoVBIjz/+uCTp29/+dr8w73XXXacVK1aotbVVzzzzzGnHqqur02uvvSaLxaLvfe97fSFfSZozZ47uu+8+GYahRx55pN9xH//4x/X973+/X8hXkpKSkvSDH/xAkrR9+3ZVV1ef8XUCAIBz17v7GvTXd9skSTdfMUMfubgwtgUBAAAAAAAAAAAAAACMAoK+48C2bdvU1tamgoIClZSUnLD92muvlSS9/vrrpx1rz549kqSCggJNnDjxhO3Lli2TJG3YsEGBQGBQ9WVnZys9PV2S1NDQMKhjAAAAjvfs+nJJ0mWL8nXbVbNiXA0AAAAAAAAAAAAAAMDoIOg7Duzbt0+SVFxcPOD2OXPmSJL2799/2rG8Xq8kKSUlZcDtqampfftVVFQMqr729na1t7dLkjIzMwd1DAAAQK9QOKKj9V2SpI9ePEUmkynGFQEAAAAAAAAAAAAAAIwOgr7jQE1NjSQpJydnwO2969va2tTd3X3KsXo771ZXVw+4vaqqqm/5ZPt80OOPP65wOKwZM2YM2CUYAADgVKobuhQMRWS3mpSV6op1OQAAAAAAAAAAAAAAAKPGGusCcPY8Ho8kyeUaOPiSkJDQt9zd3a3ExMSTjjVv3jw5nU41Nzdr7dq1uvTSS/ttX716db+xTmfXrl165JFHJEn/+q//etr9B8MwjL5rHm96Oyr33gOILeYkEB/eL2+UJOWk2eT3+2Q209EXiDWeI4H4wXwE4stYnJOGYfCpGQAAAAAAAAAQxwj6oh+326077rhDq1at0te//nV961vf0vLly9Xd3a3Vq1fr2Weflc1mUzAYlNl86obQdXV1+vznP69AIKC77rpLy5cvH5Yag8Gg9u3bNyxjxauKiopYlwDgOMxJILbeK22TFA36Mh+B+MKcBOIH8xGIL2NtTtrt9liXAAAAAAAAAAA4CYK+40Bvx96TdQo5vvvtqbr59vriF7+opqYmPffcc7r//vv7bbv99tu1c+dO7d69W8nJyScdo7W1VZ/5zGdUX1+v66+/Xg888MBgLmVQbDabioqKhm28eOL1elVRUaEpU6actEMzgNHDnATiw583vSdJykmzMx+BOMFzJBA/mI9AfBmLc/LQoUOxLgEAAAAAAAAAcAoEfceBvLw8SdEOugPpXZ+amjqooK/NZtMPf/hD3XbbbVq3bp0aGhqUlpamlStXav78+br44oslSdOnTx/w+K6uLt111106fPiwLr/8cv3gBz8Y1o//M5lMfeHm8crlco37awTGEuYkEDuGYaiyrktStKMv8xGIL8xJIH4wH4H4Mpbm5HD+3g4AAAAAAAAAMPwI+o4Ds2fPliSVlpYOuH3v3r2SpJkzZw5p3JKSEpWUlPRbV1VVpYaGBhUWFio7O/uEY7xer/7pn/5JpaWluuiii/STn/xEFotlSOcFAADo1dzuU6cnILPZpAkptliXAwAAAAAAAAAAAAAAMKrMsS4AZ2/BggVKTU1VVVWVdu/efcL2l156SZJ02WWXnfW5HnvsMUnSLbfccsK2QCCgz3/+89q6dasWLlyoX/3qV7Lb7Wd9TgAAcO4qr2mXJOVnJspmodMYAAAAAAAAAAAAAAA4txD0HQesVqvuvPNOSdJDDz2krq6uvm0vvvii1q9fr7S0NN1www1963ft2qWrr75aV1999QnjVVdXq7Gxsd+6SCSixx57TE888YRmzZqlW2+9td/2cDisr3zlK3rzzTc1d+5cPfLII3K5XMN5mQAA4BxU1hP0nZKbFONKAAAAAAAAAAAAAAAARp811gVgeNx9993atGmTtmzZoiuvvFKLFy9WU1OTtm7dKpvNph/96Edyu919+3u9XpWXlw841ubNm/XNb35Tc+bMUV5engzD0K5du1RXV6eioiI98sgjstn6f3T2E088oZdfflmSNGHCBH3/+98fcOwbb7xRixYtGqarBgAA4115dYckaXKuW5I3tsUAAAAAAAAAAAAAAACMMoK+44Tdbtdvf/tb/e53v9OaNWu0du1aJSQk6LLLLtN9992n4uLiQY9VXFysa665Rjt27NDBgwdlsVg0ZcoU3Xnnnbrjjjtkt9tPOKajo6Nv+Y033jjp2EuWLCHoCwAABq2vo29OkhQg6AsAAAAAAAAAAAAAAM4tBH3HEbvdrnvvvVf33nvvafddunSp9u/fP+C2mTNn6uGHHx7Sub/whS/oC1/4wpCOAQAAOBWPL6japm5J0uScJFUfaYhxRQAAAAAAAAAAAAAAAKPLHOsCAAAAgIFU1EY/MSAzxankxBM/UQAAAAAAAAAAAAAAAGC8I+gLAACAuFRe3S5JmpqfEuNKAAAAAAAAAAAAAAAAYoOgLwAAAOJSWU20o29hHkFfAAAAAAAAAAAAAABwbiLoCwAAgLhUVkNHXwAAAAAAAAAAAAAAcG4j6AsAAIC4Ew5HVFlLR18AAAAAAAAAAAAAAHBuI+gLAACAuFPV2KVgKCKXw6rs9IRYlwMAAAAAAAAAAAAAABATBH0BAAAQd8qr2yVJU3KTZTabYlwNAAAAAAAAAAAAAABAbBD0BQAAQNwpq+mQJBXmp8S4EgAAAAAAAAAAAAAAgNgh6AsAAIC409vRd2oeQV8AAAAAAAAAAAAAAHDuIugLAACAuGIYhspqokHfwvzkGFcDAAAAAAAAAAAAAAAQOwR9AQAAEFdaOnzq6A7IbDZpUg5BXwAAAAAAAAAAAAAAcO4i6AsAAIC4UlYd7eZbkOWWw2aJcTUAAAAAAAAAAAAAAACxQ9AXAAAAcaWsJhr0LcxLiXElAAAAAAAAAAAAAAAAsUXQFwAAAHGlvKZDkjSVoC8AAAAAAAAAAAAAADjHEfQFAABAXCmv7unom58c40oAAAAAAAAAAAAAAABii6AvAAAA4obHF1Rtc7ckOvoCAAAAAAAAAAAAAAAQ9AUAAEDcqKztlGFIGSlOpbgdsS4HAAAAAAAAAAAAAAAgpgj6AgAAIG6U1bRLopsvAAAAAAAAAAAAAACARNAXAAAAcaS8J+hbmE/QFwAAAAAAAAAAAAAAgKAvAAAA4kZZdU/Ql46+AAAAAAAAAAAAAAAABH0BAAAQH8LhiCprOyRJU/OTY1wNAAAAAAAAAAAAAABA7BH0BQAAQFyobuxSIBSRy2FRTnpirMsBAAAAAAAAAAAAAACIOYK+AAAAiAtlNdFuvlNyU2Q2m2JcDQAAAAAAAAAAAAAAQOwR9AUAAEBcKK9ulyQV5qfEuBIAAAAAAAAAAAAAAID4QNAXAAAAcaGsJhr0nZqXHONKAAAAAAAAAAAAAAAA4gNBXwAAAMScYRgq7wv60tEXAAAAAAAAAAAAAABAIugLAACAONDS4VN7V0BmkzQ5l46+AAAAAAAAAAAAAAAAEkFfAACAM1bT2KW65u5hHzccjmh/ZYua273DPna8Kq/pkCTlZyXJYbPEuBoAAAAAAAAAAAAAAID4YI11AQAAAGNRfYtHX/jPNxQIRTR3WoauWjpZF56XJ/tZhFQbWjx6dcsRvbqlUs3tPplN0vkzsnTZ4olaOjd3XAdgy6rbJUmFeSkxrgQAAAAAAAAAAAAAACB+EPQFAOADwhFDm/fU6uV3ypWdFNLs2bGuCPHond21CoQikqQ9h5u153CzHnl+t1YunKgrL5isyTnJgxonFI5oS2mdXt5cqe37G2QY0fUuh1Vef0jb9jdo2/4GJTqtWn5+vi5fPEkzJ6fJZDKN1KXFRFlNT9A3f3CPGwAAAAAAAAAAAAAAwLmAoC8AAD38wbDWvntEz60/rNqm7r71s6fXa+XiqTGsDPFoc2mtJOmmy6bLZrXolc2Vamrzas3GMq3ZWKbZU9J15dLJWn5+npz2E19y1TZ165XNlXrt3SNq6/T3rZ83PVNXLZ2iC0py1NTm09qtR7V26xE1tHr18qZKvbypUvkTEnXpoklauXCiJqS5Ru2aR1J5T0ffqXT0BQAAAAAAAAAAAAAA6EPQF2OPYSjs88W6ihER9vlkBAIK+3wKm82xLgc4Z3R0B/TSpiN6adMRdXiCkiS3y6rJ2YkqrWjXfz1bqqnZSZqY5Y5xpYgXHZ6A9pY1S5Iun5+r7DSXblg+STsONumVd6v07v5G7ato0b6KFq36y26tmJerKxYVaGKWW5v31uuVrVXadbilb7xUt12XLcjX5YvylZuRGF0ZCirLbdEtl0zRP3xoskorWrV2W7Xe3lOv6sZu/c/f9umJv+/TedMydOmCPF0wO1sOuyUWD8dZ8/pDqm2OhusnZTgGfJ7nORKx5K85KN/RfXJOKpY9Z6pMJr4HmZNA/GA+AvFlTM5Jw5DG2SeGAAAAAAAAAMB4YjKM3g+IBuLf7t275auvV+AXv451KQDGgVarW++mztGu5CKFzNH3vqQEO7W4bZ/O6zgkqxHWU3mX60hCrtID7bqz6iU5I8EYV42QzDqcmK9J3nq5IoGY1LAnqVAvZi/XBH+L7jr64gnbuywu7U6eph3J09VuS+pbb4sEFTTbol8Yhgo9NZrXcVBF3Udl0eBekvlNVu13T9bu5Gk66srpW58U7NadVS8pKew9u4uLgWpnpv6n4Fq5Qx59vuLPsS4H6MeZJqVOk3qzveGA5G+XfG1SoF0yIjEtb9hYXdGbr1Ua5I8jAAAwTti/8Dk5s7NVUlIS61IAAAAAAAAAAAOgoy8A4JxT48jU5rRi7U+c1Ne1KMfXpKVtezWzq1Lm4xJO19dt0GMTr1OLPUV/zbpIn6hbp+HocxSRqd95MDg+s03P5qzUkYQclXQc0ocb3o5JHQcTJ0qSpndXDbjdHfZqWeseXdC6R5WuXO1Inq4D7okKmm1yhzw6r+Ogzus4pNRQ95DP7TBCOq/zsM7rPKw2q1t7kgq1I2WGOm2JejN9nq5p3HRW1xYL9fZ0SVK2v+U0ewKjy5UppUyNPlUEPZLFIVnsUsKE6M2ISIHOaOjX3xoNAY8lFofkypCc6ZItIbou0CW1HZbC/tjWBgAAAAAAAAAAAACIoqMvxpTdu3dLhqE5M2bEupQR4fF4tH//fs2cOVMJCQmxLgcYd8pqOvToX9/X3orWvnULZmTq4xdP0dyp6TJ94KNKe+ekNSlPDz2+U6GwodsuL9JNK6edcQ2GYegvb1Xqj68d0o0rpp7VWOealg6/vvuH91RR1ylJykh26NGvrjjh322kBYJh3fmDN+QLhPWfn7tARQUpgzquvTug+haPpuUly2IZ3o/w3VfZqq8/skVms0m/+D8XKX9C4rCOP9L+6/lSvfJulW5cUajbr5w+4D48R2K0dWx/Ra1r/yBJSpy7QhlXfFYyIvJVvS9v2XZ5y7Yr1Fbf7xhbRr5chfPlKpwvR94MmYbx47qNSESeA5vlOfSerEnpsmdPlT17qqypWTKZBn+eUGeLPPs3qXv/OwrUlR3bYLHKZLHKCPhksruUceXdSpy59KTjMCcxXoU9HTK7kkb99cXZYD4C8WUszsm9Bw5IJhMdfQEAAAAAAAAgTtHRF2OPySSL0xnrKkaEJRKRyW6Xxekct9cIxMrR+k59+/db1ekJymox6UPzC/SJS4o0OTf5pMf0zskZhRP0uRvm6Rd/2qEnXz+k6VMztXBW9pBrCIUj+s2zu/TypkpJ0p/WlemKCwuVkeI64+s6V1Q3dunBVVvU0OJRapJDXZ6Amjv8avJElJMxuqHW0vJ6+QJhpSc7Nb0wS2bz4IJA6U6n0jNO/v12NubOzNWSOTnasrdOT64t09c+tXhEzjNSKuq7JEnTJqef9PmP50iMFsMw1PbWM2pd/0dJUvKS65Rx+af6wrTumYvknrlIhmEo2FIjz8H35Dm0Vb4j+xRsrlawuVod774oa2q2UpZcp6R5K2W2n/nPeSMSVvfet9X61p8VbDqxi7jZkSB7zlQ5cqbJkVMoe26hbOm5/cK/YU+Huve9o669b8l3ZK/U21HeZJZraoncc5YrYeZSGQGv6p/7ifxV76vpxZ8rUHOV0q/4tMxW+wnnZU5ivAm2N6j51cfk2b9Z9qwpSrv4JiXMXDKkIP3JGIYhb/ku+av2yzllrpwTZw9rkJj5CMSXMTknx9CbGwAAAAAAAADgXETQFwAw7jW3e/XgI++o0xPUzElp+vqnFw85XHvl0sk6eLRNf3+nQv/5xHv6yZdXDClg2uUN6v/94V3tONgok0nKSHaqqd2nZ9cd0t0fo2vSqRw40qqHHt2kju6AcjMT9d17lunHT27TvooWlZY1j3rQd3NpnSRpaXHOoEO+o+HOa2fr3X11emtXjQ4cadWMSWmxLmlQwuGIKmo6JEmFeYPrjgyMFMMw1LL2cbVvWiNJSrv4ZqVefNOAgTyTySR7Rr7sGflKveCjCvu65S3bIc/BrfIcek+htno1v/JbtW54Sknzr1DKomtlTc4YfC2RsLpK31TbW39WsLlGkmR2Jirp/MsVCXgVqCtXoL5CEb9HvspS+SpLj9Vmd8qRPVX2nEIFW2rkLd8lRcJ9250TZytxzkVyz75QlsTj5p0zUXm3P6TWDavV9vaz6tj2snxV7yvrE/fLnpE/1IdTRjiorn3vqGPLiwq01MqZVyTnpGK5JhfLkVskk9U25DFHixEJy3NgqyL+btky8mRLz4tJl1fDMOSvel9hT6cSiubLZInfx2ysioQCan/nL2p7+1kZoYAkKdBQofpn/kP2rElKXX6TEmddcEaBXyMUVFfpRrVtfkHBxiPRlRtXy5aRr6T5lyup5BJZEkbmTUAAAAAAAAAAAAAYPwj6AgDGtS5PQN9+5B01tXmVPyFR37prqVLcjjMa657r56q8pl37K1v1f3+/Rf/xfy6W0376p9K65m5997ebdbS+U067RQ/cvkhWq1nffuQd/f3tCt24crrSksdIp6dRtnVfvX74+LvyB8Iqmpiqb991gVKTHJozNb0v6HvZ4kmjVk8kYmhLb9B3bs6onXcwJucma+XCiVq79agef2mvvn/vRbEuaVBqmroVCEXktFtGPbSNsxf2dqr51cfkrzssW2qObBm5sqXn9d0s7tQRDUYakbD8deXyHYkGXUMdzUqcvUzJC64ccnjOiITV9PdV6tz+qiQp44p/VMqS6wZ9vMWZKPeci+Sec5EiAZ+6dq9T+5YXFWypVfs7z6t98wtyz75QKUs/IkfutFPW0bVng9reekbBllpJktnpVsrSjyhl0TUyO4/NEyMcUqCpSoG6MvlrD8tfV6ZAfYWMgE++o/vkO7qvb197TmFffdaUCSc9v8liVfrK2+ScNEcNa36uQEOlqn/7VWVec4+SSlYM6rEIe7vUuf1VtW99SeHOlr713vJd8pbvUqskk9UuR8FMuSbNkXNysRx50wfsHDzgY2QYini7FO5qVairVRaXW/acwmH5XjPCIXXuXq+2t55RqK2+3zaz0y1bem5f8NeWntt3b7YP7/N4b0i6ffMLCtSVSZKsaTlKv+RWJc6+cNQDx+ORYRjyHNyq5ld/3/dv7ZxUrPRLPinP4e1qf/clBRqOqOHZh2WbMFFpvYFfs+W0Y4e729Wx7RV1vPd3hbvbJEkmm1OuKXPlrdijYHO1Wl77g1re+F8lzlyq5PlXyDm5eEhhYiMclL/mkLyVpeou362k1gZ1Ni+RZd5K2bMm8z0CAAAAAAAAAAAwjhD0BQCMW4FgWN///RZV1nUqPdmhh+658IxDvpJks1r09U8t1pd+vF4VtR365Z926v7bFpwySPF+RYu+//vNau8KKCPFqW99ZqmmFaTKMAzNnJSm/Uda9dz6w/rMR4rPuK7xau3WI/r56h0KRwwtmJmlr31qsVyO6EuXudMy9cwbh7SnrHlUazpU1aaWDp9cDovOK8oc1XMPxq1XzdKG7dXaebBJ2/c3aP7MrFiXdFpl1e2SpKl5KXHVIRmn56t6X/XP/UThjiZJUrDxqHSw/z4mu7N/IDIjT7a0XFmTM2RJTBlUYO54Rjgkf12ZfJWl8h4ple/o+zIC3n77BBoq1PbWM3KXXKKUJR+WPbNgUOM2rPm5uve+JZnMyrz2XiWff9mQajue2e5U8sKrlbTgSnkOvqf2LS/IV1mqrtKN6irdKOekOUpZ8hElTF/Y9xgY4ZC69mxQ61vPKNQafUOB2ZWklKUfVcqiq2V2JJxwHpPFKkf2FDmypyhp3qXRcSJhBZuq5a87LH99hSxOtxLnXDjkjrwJ0+ar4LM/VsNffipf5R41rvm5vBV7lHnVXScNtQZbatX+7l/VuXOtjKBfkmRJTFXyomvkKjxf/uoD8h3ZK++RUkU8HfJV7JavYnfPtdjkyJ8h5+RiOQtmSUYkGuTtbOkL9IZ7bqGuVikc6ndu24SJSj7/crlLVsjiShrStUrR0GTnrvVqe/sZhdoaJEnmhGTZsyYr2FKrcEeTIr4u+WsOyl9z8ITjLUnpsmdOlKtwnhKKFsqWkX9GQcuBQtImq10mu1Oh1jo1PPdjOTa/oPRL75BrMq8dzlSwpUZNr/xe3sPbJEX//TIu/3RfiNo5cbZSln5E7Vv+qo53/6pg41E1PPdj2TILlHbRjUqcc+GAP78CTVVq3/Kiunav7+sObEnKUMria5U0/wpZnImK+D3qKn1THdtfU6DusLr3vqXuvW/JmpYT/R4+b6Ws7tQTxjZCQflqDshXGZ1D/qr9feeQor/c6X73RXW/+6JsmQVyF18s95yLZEvPHZHHEAAAAAAAAAAAAKPHZBiGEesigMHavTsaBCgpGZ8fc+/xeLRv3z7Nnj1bCQknhjkADF44Yuj/Pf6u3tldqwSnVT+8b7mm5qWc/sDjnGxO7jncpH/7zduKRAzd/bG5+uiHBu7MuHF7tX7y1DYFQxEV5qfowbuWKiPF1bd96756PfToJjnsFv323644qxByL18gpE176tTlCcgXCMsXCMkfCMvrj977AiH5AuFj64JhTUh1afGcHC0pzlZepvusazhbhmHouXWH9PsX90qSLllYoP/zD/Nlsx7rctftDeqT33pJhiE99uCV/R7XkfQ/f9unP712QBedl6evfWrxqJxzqFY9v1trNpapqCBFD39xRdyHZx97sVTPvHFI1144RZ+7Yd5J9+M5Mn4YRkTt7/xFLeuelIxItMvoytsU7u5QsKWm51YbDUsakZMPZDLLkpAsiztN1qR0WdxpsrhTZXX3LqfJmpSmUEeTvJV75TuyR76j+2UEff2GMTsT5Zw4W85JxbK43Grf+ncF6g73bU8oWqiUpR+Rc/LcAYOXkaBfDc8+LM+h9ySzVVnXf1Hu2RcO2+PVy19bpvYtL6hr71tSJCwp2qE1Zcl1MllsJwRMU5d+VMkLr5bZMTo/307GiITV9tYzat34tGREZMssUPbH71fInal9+/Zp1qxZMjdXqn3zC/IceFdS9L+X9qzJSln6EbnnLJfJaus/pmEo2FwtX+UeeY/sla+ytK/r6VCYXUmyuFMVaq3vCzyaLDYlzl6mpPMvl3PSnNOGbY1wUJ0731Db288q1N4oSbIkpijlguuVvODKvlBzJOhXsKW259bzfd4cXY54O08Y15qWo4SihUqYvlCuSXNksthO2Od4Jw1JL75WyfOvlMliVdvmNWrftKZvDiQULVT6pbfLPmH0OtuPFMMwpHDohO+V4RYJ+NT21jNq27wmGhY3W5Wy9DqlLb9RZvvAcy3s61bHlr+q/d0XFfF1S5JsGXlKvehGuYuXSyazfBW71bb5hb7gsCTZc6Yp9YKPKHHWMpksA7/H2l9bpo4dr6prz8Zjb1owW5QwfZGS518hk9XWE+zdI3/1wX7BXin6s8I1qVjm3OmqbW5XRneV/BU7+wXhHbnTlFi8XO7ZF8manHE2Dx/ijBEOyYiEo28GGEMdnCOhgEwW25iqeajG4uvW8f77NgAAAAAAAAAY6wj6YkwZ7394GIt/DALikWEY+vWzu/S3tytktZj13XuWqeQMuq+eak6u2XBYq/6yR2azSd+/90KVTDs2vmEY+tNrB/TE39+XJC0tztFXblsop6N/yMMwDP3Lzzbo0NE23XjpdH3qw3PO4Gr7+48ntmrD9uozPn5itltL5uRoSXGOZk5Ol2WUQ6KRiKHfvVCqv2yIhvQ+fkmRPv3hOQOGVb/443Uqq27XV29fpIvnD61T5Zn6wn++oYraDv3LrQu0cuHEUTnnULV3+XX3D16V1x/WV+9YpIvPH53H5kw9+N9va/uBRn3+pnm66oIpJ92P58j4EO5uV8Oan8tbtkOSlFi8XBOuuXfAMKoRDirYWn8sGNlc0xeUDHe3nToEfApmp1vOSXPkmlws56Q50Y+oP66zpmEY8h3dN0DwdEo0eFp8UV/oMuL3qO5PP5TvSKlMVruyb3hACUULzqiuwQp1NKvjvb+pY9srfaHBXtGA6ceUvOCqk3bNjRVv5R41PP9ThbtaZbLalXTJ7appbFZq3S6F6sv79nNNW6DUpR+Rc0rJoENchmEo2FIjX2WpfEf2yldzUGabs1/g2+JOk9WdJktSejQQnpjWFwoN+7rVtWeDOre/pkBDRd+4tow8JZ1/uZJKLpElsf+bfYxQUB07XlfbO8/1daW2JKYq9cKPK2n+FTLbBv/mm7CnU8HWWvlrDspz6D15K0v7BS1NdpcSejr9JhQt7Kvl5N+rJw9Jh7pa1bbxaXVsfzU6h0xmJZ13idI+dMuYCHGGfd3RnwPN1X1vCuj92WAEfbK402XL6OkA3tsFPD1PttSsk4ZlB8MwDHW//46aX31M4c7opwG4Cucp48q7Bt3tOuLrVvvWv6l98wuK+LokSbb0XJmsjuO+70xKmLE4+uaCibMHPQciAZ+6972tju2vyl994KT7WRJT5Zw0R85JxXJNLpYts0Amk6nfc6TTbKh7/2Z17X1T3vLdx/2sNck5abbcc5YrcfYyWRKSB1UbYsswIgp3tvTMkxoF+uZMzbE31JjMMjtcMtmcMjtcMttdMtmdMtudxy27ZHYk9LyhJq3n52u6LInJMpnMpy9kqHWf7DVAc7XC3W0y2V09czw63+293f8z8gbsYD/WjMXXreP9920AAAAAAAAAMNYR9MWYMt7/8DAW/xgExKPVr+7XE39/XyaT9NU7Fmn5vDMLOp5qThqGoR8/uU3rtlUp1e3QT768QpmpLgVDYf3y6Z1au/WoJOn6FdP06euKTxqY3VJap+/9brNcDose/bcrlZxoP6NaJWnznlp9//dbZDZJF5Tkymm3yuWwymm3yGG3yuWI3jvtlp6bVXabRYer2rRlb532HG5WOHLsZUFyol2LZmdrSXGO5s+YoATnyHbZC4Yi+ulT2/qCyp/5SLE+fknRSffv7Vx7uk6ww6WuuVt3/+A1mc0mPfHQ1UpKOPN/q5H2x5ff15Ov7FdeZqJ+9dVLZbUMf4BjOBiGoTu+83e1dwX08Bc/pBmT0k66L8+RsffBoGfGVXcpad5lZ9SRz4iEFfZ0KNzVqnBnq0JdrQp3tSrU1RJd19WmUGeLwt1tfR17XZPn9gR7Jw06lBRsqVX7lhfVueuNY11S3WlKXni1EmdfqMa//Ez+2kMy2V3Kufkbck06+zdcDFYk4FXnrnXq2Po3GaGgkhdfEw34DiFgOtqiQe9fyFu2vd96k9Uud8kKpSy5TvbMghhVF/2Z4q89rM7tr6qr9M1j3Z/NViXOXKLk+VfIUTBTnb0B384WSZLFnR4N+J5/2bA8/hG/V97yXfIc2irPoW0f6FZskiN/ulyT58pbvlP+2mPdp4cSkg40V6vljf+VZ//m6KhWu1KWXKfUZdfL7Ew8q/qNcEiRgFdGwKdIwKtIz73h9ykS8kuD/hWCoXBn67FAb0uNwt3tZ1aUySxbWnZPADg3GrA9SQfeE8sw1Ll7nXwV0f9LWlMmKOOKf1TCjCVn9PMr4veofevf1b55TV83Z5PNoaR5lypl8YdlS88d8pjHCzRUqmPHa+ras1Emi1XOycVyTYq+scGWkT9gzSd7jgx3t6tr3zvq3vumfEf3HTvAbJEzf0Y0NDy5WM78mXH35oJ4YhiGjIA3+lzV2aKwp0NmuzMalHWnnVVY1jAMRXxdPc+B0fGDx4V5gy21J3RyHlYmsyyJqX1vqIi+qSL6hgrTEH4eRvzeoXX1PwVLYuqxkH96rizuVEkj8+ZDk8X6gTD0scD02XRKHouvW8f779sAAAAAAAAAYKwj6IsxZbz/4WEs/jEIiDcvb6rUL5/eIUn6p4+X6LrlhWc81unmpC8Q0ld/sVHlNR2aOSlN3/jHJfrR/2xVaVmzzGaT7v14ia65cOopz2EYhr704/Uqq2nXP1w+Q3dcM/uMau3yBnXfj15XS4dfN6ws0qevKz6jMba/36DNpXXa+n69ur3Bvm1Wi1kl0zJ00bx8XbFk0oAdds+GxxfUvz/2rnYcbJTFbNKXbpmvS07TMfftXTX69z+8q8k5SfrlA5cOaz0D+cuGw3r0L3tUMi1TP/jni0b8fGfD4wvqnn9/Te1dAf3zjfN0zbIpsS5pQC0dPn3qoZdlNkl/+vfr5LBZTrovz5H99XZANVltsiZPGNGPvzYiYbW9+Yxa33xaMiKyZRYo++P3y541acTO2XduIyLJdNbXF/Z2qnP7q2p/928Kd7X022Z2JSn3k9+SI3faWZ3jXGEYEbVvWqOWdU8qYnUoeeE1ylj64RM65sZaxO9V19431bn9NflrDx3bYLZKkWi3XUtSxrGAr3Vk3rxhGBH5a8vkObhVnkPvKVBX1m/72YakfVX71bL2f/pCnGZXklIvukH2zAJFAj4Zxwd1+4K7xy37fTKC0fve9UY4eJqznh2LO+1YYPf4MJ8rScG2+p7un7X9AsK9Qf2zYbLYlHLhx6Nh6GEKdHfuXi8ZEbnnXiyLK+msxzxTg3mODLU3qmvvW+ra+9YJ34cyW+TILerrlO6cOEvmQQSp+zo093VsrVGovUlmZ2Jf19j+AdK0aIDUMrJvHhusaMi2e+A3mvS9ASV6f8rvQbNFlsSUnutLP64DefS6TWZLv7HCXa0KdR5bPu2cM1tkS80+Yc7Y0vNkdrgU8XsVCfpk+L194fwTgvoBryK+boW62vrOGw3ej9yvBE12Z79a+2pPmaCwp+MDXb1rjnX8jxcmc7/OyNaULE247j5Zk07+xrReY/F163j/fRsAAAAAAAAAjHVn/tmXAADEmc17avVff94hSbrpsulnFfIdDKfdqm98eom+/JP12n+kVXf/31cVCEWU4LTqX+9crAUzs047hslk0i1XztAPHntXL2ws08dXTJP7DDrF/m7NHrV0+JU/IVGfvGrWmVyO3C6bLp6fr4vn5ysUjmhfeYu27K3T5tI61TZ1a/uBRm0/0KjGNo9uv/rMAskDCYcj+u5vN6u0rFlOu0Vf//SSQT12xYXRjyivrOtUR3fgrLohD8aW0jpJ0tK5OSN6nuGQ4LTpHy6foVXP79FTr7yvlQsL5LTH38u+supoZ8f8LPcpQ76IigT98lXukefge+o+9J7CHU2SosE+R06hHLmFsudMkyO3UNaUrGEJ/4Y6W9Xwl5/KV7lHkuQ+71JlXnXXqHV+HK6PE7e4kpR64SeUsvQj6tr7tto3v6BAfbks7nTl3vqg7BNO/cYCHGMymZW67HpZZyzT/rJK5RXPlSUOQ0xmh0vJ869Q8vwr5K8rV+eO19S5Z4MMv0fW5EylXvgJJc27VCbryAYOTSaznHlFcuYVKX3FLQp1NMtzeJt8R/bKlpGv5PlXnFVI2lkwU7l3fE+eA++q5Y0nFGyuVstrjw1P7RabTA6XzDanzA6nTHZXNCA7hJ8tFlfyccHEaODP7Dh5gNSSmCJn/ox+6wzD6Olyeiz4G2ypkxEefJdTa1KGUi+6Qba04XsONztcSll09bCNN9KsKROUuux6pS67XsHWOnkrS+U7UipfZalCHU3yV++Xv3q/9PazksksR+60nm7Cc2RNzlSwpa5fx9az6dBsTkiW1Z0qizs9Gige9LeUSWa781j31eM7sfYuO1x9+xh+X1+A9/hg7fGh3qF0yzU5EqJ1J6QoEvAdC8tGwtFOv50tkg6fdpyBmF3uvm66trScnnkTDchaUybIZDn56ziz48x+BhuRsMI9wd/QB4LNgwogH8dktR8L9PbcLO7Uk74WsSSmDPjcG+kNj7fWKthcq0BLdV/n7GFnHN/BvP+bIqLbIzL8HoX9HoUlBZurFWw6OqigLwAAAAAAAAAAwy3+Eh8AAJyBfeUt+tH/bFXEkC5fPOmMO+MOVU5Gor5y+0I99OgmBUIRZaW59OBnL9DknORBj7G0OFdTcpNVUduhNRvLdOsQg7rb9zfo1S1HZDJJX/iH+cMSmLRazCopylRJUaY+85FiVTV06Y33jurp1w/q6dcPasmcHM2YNDx/5H7mjUMqLWuWy2HV//3chZo+cXDjprgdmpjt1tH6Lu0rb9bSuWf3Udmn0ukJaE9ZsyRpaXH8B30l6ZplU/SXDWVqaPHohY1luumyGac/aJSV10QDQlPz4qsT6KmEvZ3q2PaqrEnpcuQUypaZL5N55ELKvaFAz8Gt8pbv6hdIMlntMiJhRbyd8pbvlLd8Z982s9MtR85U2XOnRUPAOYWypuUMKfzrKduhhr/8TBFPh0w2pzKvuUdJJSuG9fpGm8liU1LJCrnnfkiB+nJZUybEtAvnWGZ2JUkj+L0/nBw5U+W4+m6lX3qHgs01smdNjFlHUWtyRl8AebiYTCYlzlyihOkL1blzrTq2vSIZxgcCkT1B3X7L0W0mx7F9jg9OnipYOJpMJpOsyRmyJmfINYVOk8PBlpYjW1qOks+/TJIUbGuQr3KPvEf2ynekVKG2BvlrDspfc1Dt7zx/yrE+2KHZmjJBEb9H4c7WAQKkbVIkpIinQwFPh9RwZOQvdhDMzsTjuvAe15G3XyfitAHf5HLKsGxni0I91/zBsSxJ0VCvpafL8Uh1FT8Vk9nSN7fOvsf18DA7E+XIK5IjryhmNRhGREbQf0LHc7PdKXvOyL6RFAAAAAAAAACAk4mPv9wBAHAWjtZ36ru/jQZtF83O1udvmjeiH2P/QQtnZev+Wxdq9+Em3Xb1LKUlDa3Tpdls0s1XzND/e3yr1mw4rI99aJoSXYMLIHn9If3y6R2SpA9fNLWvy+1wMplMmpidpDuvnaP6Fo82bK/WT/64TT/9l0vOOlR8qKpNT778viTp3k+UDDrk26u4MFNH67u0p2xkg77v7atXJGJock6ScjISR+w8w8lmtei2q2bpJ3/cpmfWHtTVy6Yo6Qy6RY+k3o6+hWMk6GtEwmp49mF5K3b3rTNZ7bJnT40GCXOnyZ5TKHtmwRkH5AwjIn9tmTwHt8pz6L0TPl7dkpShhOkLlTh9kZyT58pkMivQUCl/XVn0VlumQGOlIr4ueSt2n1Cr2eH6QNhv4BBgqLNZHVv/JkmyZ01W1ifulz0j/4yuKR6ZTCY5COucc8x2pxy54/ff3WS2DHuIGOcGW2qWbKmXKmnepZKkUHujvEdK5avcK++RUkW8nbKl5fbrMjuYDs0fZBgRRbxdCnW29HWNjQT9gy/UiCgS8Pd0X412YD1h2X+sK6vJ7jwuwNsbsk3vt86SmBrtVH2G4jEsi7NjMpn7XhNJdO8FAAAAAAAAAMQHgr4AgDGtud2rBx95R13eoGZOStO/3rFIFsvwfNT7UKxYUKAVCwrO+PgLS/I0MTtJR+s79eKbZbr5ipmDOu7xv+5VQ6tXWekJuvPaOWd8/sG69xPnac/hJlU1dOmJv+3TXR+de8Zj+YNh/fjJbQpHDF14Xq5WLjzx43tPp7gwQ39/p0KlPd12R8qm0jpJ0pIx0s2314oFBXpu3SFV1HbombUH9enrimNdUj99HX3zx0bQt+2tZ+Wt2C2TzSFH7jT568pkBHzHPu68h8likz17iuw5U+XImSZLYoqMno+DPv5joSM94aS+Zb9P4c6mD3wUukmO/OlKKFqohOmLZM+afMIbGT7Y+c4IBxVoPCp/bZn8dYcVqCtXoL5CRiigcCggDeGj1pMXXKX0yz91ViEoAMDYYk2ZoKSSS5RUcsmwjmsymWVJSJYlIVnKnjKsYwMAAAAAAAAAAIxnBH0BAHGlpcOn59YdUrc3qGA4omAoolAookAw3Pd17y0Uiqij269uX0j5E9z61l1L5XSMzac2s9mkW66Yof944j09v/6wPnJxoRKcp+7qW1rWrBffKpckfeGmeXKNwrUnJdj1hX+Yr4ce3aS/bDisJcU5KpmWeUZjPf7SXh2t71RqkkP/fMOZdWEunhrtYHy4ul0eX/C0j9mZCIbC2vZ+vSTpghHsGjwSLGaT7rh2tr732816YWOZrlteqMzUwXfeG6pXN1fq8b/tUzAUkc1qjt4s5mPLVotsVrOsVrPsVrNqmrolSVPzkkespuHirdit1o1/kiRlXn2Pks67RIYRUbClVoHanm66dYflryuX4ff0feR55xmcy2R3KaHwfCVMX6iEaQtkSRxaENpkscmRU9jTsfZySZIRDinU2XxcqNirSNAnw98bPv5AV8RwUO7ZFypx5tIzuAIAAAAAAAAAAAAAADBcxmYaCgAwbv12zR5t2F49pGMyU1166J5lSnGP7Y6TF83L15Mv71d1Y5f++la5brpsxkn39QfD+vnq7ZKkK5ZM0vkzskarTC2ana0rl07WK5sr9bOntuvn918y5IDtzgONWrOhTJL0xZvnn/G/3YQ0l7LTE1Tf4tH7la1aMHP4H4fdh5rl9YeVnuxQUUHqsI8/0hbPztacqenaW96ip17dr8/fdP6InGf7/gb98ukdihhDOy47PUFpSc4RqWm4hLra1PD8TyUjIvd5K5V03iWSop0J7Rn5smfkyz33YknRjyUPtdZHg7+1hxWoK1PE75XJ4ZLZ5pTZ4ZLJ7pTZ7pLZ7uz7aGhz7zqXW47cQpkswxtaN1mssqVmD+uYAAAAAAAAAAAAAABg5BH0BQDEjYZWj97cWSNJuumy6UpKsB/XCdQsm8Uim+0DX1vNmpSTJLvNEuPqz57FbNLNV8zQj5/cpufWHdZ1ywtP2qX3yb+/r5qmbqUnO/WZj84d5Uqluz5arB0HGlTf4tHvXigdUni0yxvUT5/aJkm6ZtkULZp9duHD4sIM1bd4VFrWPCJB302ltZKkxXNyZDYPvetwrJlMJn3qw3P0r798U69uOaLrV0xTQVbSsJ6jpqlLP/qfrYoY0qWLJurGS6cr1K8Dd7hfN+6+r8MRzZs+YVhrGW5GJKzGNT9TuLtNtswCZV712VPubzKZZUvPlS09V+45F41SlQAAAAAAAAAAAAAAYLwi6AsAiBsvbCxTJGLovKJM3XntnFiXExMfOj9ff3xlv2qbuvW3t8v1iZXTT9jnwJFWPb/+kCTpn284T27X8Hb+HIwEp01fumWBvvHrt/TypkotK8nVwlmDC+z+97O71NTuU25moj7zkeKzrqW4MENrtx5VaVnzWY/1QYZhaEtpnSTpgrm5wz7+aJkzNUNL5uRoy946PfG39/W1Ty0etrE9vqC+/7vN6vIGNXNSmu67cd64CN73anv7OXnLd8lkcyj7E1+R2R7f3YcBAAAAAAAAAAAAAMD4Yo51ARhegUBA//3f/60Pf/jDOu+883TBBRfo85//vEpLS4c8VldXl37605/qmmuuUUlJiZYsWaJ//Md/1Pr160973H/+53/qiiuuUElJiZYvX64HHnhAR48ePdPLAnAO6PYG9fKmSknSxy8pinE1sWOxmPUPl82QJD277pB8gVC/7cFQRD9fvV0RQ/rQ/HwtjWH4tKQoUx+9uFCS9PPVO9TlCZz2mI07qrVuW5XMJulfbl0g50k6Fg/F3MIMSdL+ylYFguGzHu94h6va1dzuk9Nu0XlFmcM69mi749rZMpmkt3bV6MCR1mEZMxIx9PD/btPR+i6lJzv1jX9cMq5Cvt7KUrVuWC1Jyrzqs7JPmBjjigAAAAAAAAAAAAAAwLmGoO84EggEdNddd+nHP/6xWltbtXLlShUWFurVV1/VzTffrI0bNw56rObmZt1444369a9/rdbWVl100UWaMWOGtm7dqnvuuUerVq0a8LiOjg7dfPPNWrVqlcLhsC677DJlZWVpzZo1uv7667Vv377hulwA48wrmyvl9Yc0MTtJC2ZmxbqcmLpkYYGy0xPU3hXQ39+p7Lft6dcPqLKuUyluu+65viRGFR5zx7WzlT8hUS0dPv33c7tPuW9zu1f/9eedkqSbLp+hWZPTh6WG3MxEpSU5FApHhi3A2mtTaa0kaf7MrDEfYJ2Sm6yVC6NB1cdf2jssY/7vy+9ry9462axm/ds/LlF6cvx0uzUiZxf6Dne3q+H5n0hGRO7zLlHSvEuHqTIAAAAAAAAAAAAAAIDBI+g7jqxatUpbtmxRSUmJXnnlFf3sZz/Tk08+qYcffljBYFAPPPCAurq6BjXWgw8+qPLyci1btkyvvvqqfvOb3+iJJ57Q6tWrlZ6erocfflh79uw54bgf/vCHOnTokFauXKm///3v+ulPf6pnn31W//Iv/6Kuri595StfUTg8vN0WAYx9oXBEazYcliRdv2KazGZTjCuKLavFrJt6u/q+cVD+ni615TXt+tNrByRJ/3T9eUpxO2JWYy+n3aovf3KBzCZp3bYqvbWrZsD9DMPQz57ari5vUEUFKbrlipnDVoPJZFJxT1ff0rLmYRtXkjbvqZMkXTA3Z1jHjZVbr5olq8WsnQeb9M7u2rMaa+OO6r7vx8/fdL5mTEobjhLPWtjbpebX/6CK/7hdNU88qEBD5ekP+gDDiKhhzc8U7mqVLbNAmVfdPQKVAgAAAAAAAAAAAAAAnB5B33EiFArp8ccflyR9+9vfltvt7tt23XXXacWKFWptbdUzzzxz2rHq6ur02muvyWKx6Hvf+56SkpL6ts2ZM0f33XefDMPQI4880u+45uZmPf/887Jarfrud78ru93et+2ee+7RjBkzdOjQIb3xxhtne7kAxpk3d9aoqd2nVLdDlywoiHU5ceHSRROVleZSa6dfr2yqVDgc0c9Xb1c4YuiCuTlafn5erEvsM3Nyum64dLok6b/+vFOtnb4T9nnprXJtP9Aou9Wsf7l1oayW4X0JMrcn6LtnGIO+9S0eVdR2yGySFs7KHrZxYyk7PUHXXjhFkvTDP2zR718oVSA49DfglFW366dPbZcUDedfumjicJZ5RiKhgNo2/UVH/+uf1b5pjYxQQL7KUlU9+hU1vfJbhX3dgx6r7e3n5C3bKZPVruyP3y+zPX46FQMAAAAAAAAAAAAAgHMLQd9xYtu2bWpra1NBQYFKSk78KPdrr71WkvT666+fdqzeTr0FBQWaOPHE4M6yZcskSRs2bFAgEOhbv2HDBoXDYS1cuFBZWVn9jjGZTLrqqqsGXQOAc4dhGHp+/SFJ0oeXT5XdZolxRfHBZjXrxp6uvn9ee1B/ev2gDlW1K9Fl0+dumCeTKb66Hn/yypmakpusju6A/uvPO2UYRt+2qoZO/e7FvZKkT19XrInZSScb5owVT8uUJL1f0aJQODIsY24ujXa8nT01Iy66Jw+XO66drZULCxQxpGfXHdIXf7xO+ytbBn18W6df3//9ZgWCYS2YmaVPX1c8gtWenmFE1Ll7nap+/QW1vP64Ir5u2SZMUtb1X1birGWSEVHHuy/p6K8/r86da2UYp/7+8B7Zq9b1T0mSMq76rOxZk0bhKgAAAAAAAAAAAAAAAAZG0Hec2LdvnySpuHjgsM2cOXMkSfv37z/tWF6vV5KUkpIy4PbU1NS+/SoqKgZdQ+/6wdQA4Nyx53CzDle1y26z6JplU2JdTly5fPFEZaY41dLh05Mvvy9J+uxH5yo9Of66i9qsFv3LrQtktZi0aU+d3njvqCQpFI7ox09uUyAY1vnTJ+jDF00dkfNPyk6S22WTLxBWWXX7sIy5pbROknTB3JxhGS9eOO1W/cutC/WtzyxVWpJDVQ1d+uovNuoPf92rYOjU3X2DoYh++Pi7amz1Ki8zUQ/cvlAWc+xC556yHap+9AE1rvmFQh1NsiRlaMJ196ngs/8pd/FyZd/wFeV88kHZMvIV8XSo8cVfqeYP/yZ/7eEBxwt3t6vhuZ9IRkTukhVKmnfpKF8RAAAAAAAAAAAAAABAfwR9x4mamhpJUk7OwGGk3vVtbW3q7j71R1enp6dLkqqrqwfcXlVV1bd8/D6DreFk4wI4Nz27LtrN97LFE8dV19ThYLNadOOl0/u+XjAzS5ctPrHTeryYmpeiT145S5L0yHO71djq1Z9eO6CDR9uU6LLpi7fMl3mEQqFms0nFhRmSpNKy5rMer8sb1J7D0XGWFI+voG+vJcU5+tVXL9UlC6Ldff+89qC+9JP1Oni09aTHrHp+t0rLmuVyWPXNzyyVO8E+ihUf468rU+2TD6nuj99ToKFCZkeC0lferomf+4WS5l0qk/lYZ/CEwnkquPthpV92p0x2p/zVB1T9u39V40v/rbCns28/w4ioYc0vFO5qkS0jX5lX3x13nbMBAAAAAAAAAAAAAMC5xxrrAjA8PB6PJMnlcg24PSEhoW+5u7tbiYmJJx1r3rx5cjqdam5u1tq1a3Xppf272a1evbrfWB+s4fhzDVTD6YLGp2MYRt+5xpvebsq998B4V9XQpa376mUySVctyYu7uR0Pc/Kikgn6y4YEdXmD+sx1M+L+58M1S/P0zu4aHapq13d/+46O1HdJku66bpYS7CP783v6xCRtLq3TroMNumpJ3lmN9fbOWoUjhgomJCo1wRx335vDxSLpcx+frYUzM/Tomn06Utepr/x8o66/eIpuuKRQVuux94S9uuWo/vZOhUwm6f/cNFcZSZZRfVy8Xq/MnjY1v/hLBQ9u7rkAqxLmXS73ko/K7EqSLxiWggPXZD/vCmUWLlLnxqfke/9tdW5/RV373lbShTfKVbJS3Vv/Km/ZdsliU/K198kXMqTQ+Px3B4ZDPDxHAohiPgLxZSzOScMweJMbAAAAAAAAAMQxgr44gdvt1h133KFVq1bp61//ur71rW9p+fLl6u7u1urVq/Xss8/KZrMpGAzKbB79ptDBYFD79u0b9fOOpoqKiliXAIyKNZujnUNn5DvV1nBEbQ0xLugkYj0n//GyVEUiUlNthZpqY1rKoFx9vlO/qW1XRW20W+rcyS6l21q1b9/JO8UOB5cRkCTtKWtS6d69Mp/FH6rXbol2850ywTzun3MkKckk3XNVhv72Xpv2VHr17PpyvbmzSh+/IE256XZV1Pv1+NpGSdKl5yXLFWnSvn1No1qjraZUybtfVNAIS5L8ucXyTV+h1oRUqaLq1Acfb8olsiYXyrXvFVk7G9Sx9jG1bPmrLN1NMknqnn2FWhu7pMbx/+8ODIdYP0cCOIb5CMSXsTYn7fbYfFoHAAAAAAAAAOD0CPqOE73dck/WLeT4jnun6ubb64tf/KKampr03HPP6f777++37fbbb9fOnTu1e/duJScnn1DDybr79a4fzPlPxWazqaio6KzGiFder1cVFRWaMmXKSbszA+NFe1dAu/+0UZL0yavmavaUtBhXdCLm5JnrjBzRH17ar7Qkh75861K5E2wjfs4Z4Ygef2OdfIGwktInalJO0hmNEwpFVPbMeknSVctnacbE1GGsMr4tmi9t2lOvR1/Yp4a2oB59pVHXXjhJ67a1KWJIF5Zk6+4bSmLS7avhnd8qYoRlyZuh1Etuly176lmMNlvGssvl2bVWXW//WdauaIjZOetCZV9+C93MgEHgORKIH8xHIL6MxTl56NChWJcAAAAAAAAAADgFgr7jRF5e9CPK6+rqBtzeuz41NXVQQVubzaYf/vCHuu2227Ru3To1NDQoLS1NK1eu1Pz583XxxRdLkqZPnz7kGvLz8wd5VQMzmUx9oeLxyuVyjftrBJ7bcETBUEQzJqVqwey8uA7WMSeH7oZLZypvQrKm5qUoK/Ps3uAxFLOnpGvHgUYdrunWrMLsMxpj2/4Gef0hpSU5dN70XJnN8fu9ORIuXTJVC2bn6TfP7tJbu2r0wpuVkqRpBSn68q2L5LSP/svHsLdTkfZ6SVLGR78kd8aZ/dt+UOKFH1P6vEvUuvFPCvu6NOGae2V2jI0wBhAveI4E4gfzEYgvY2lOxvP/xwEAAAAAAAAABH3HjdmzZ0uSSktLB9y+d+9eSdLMmTOHNG5JSYlKSkr6rauqqlJDQ4MKCwuVnX0saHO6GnrXD7UGAKOjyxNQc4dPk3OST7/zWfIHw3rp7XJJ0vUrivij4jhkMpl04Xl5o37euYUZ2nGgUXvKmvXh5YVnNMaW0ugbU5YU55xzId9eqUkOfe1Ti7VxR7V+8+wu2W0WfePTS2IS8pUkf020w1g4IV1m15l1aj4ZS2KKMq++e1jHBAAAAAAAAAAAAAAAGC4EfceJBQsWKDU1VVVVVdq9e/cJ4dyXXnpJknTZZZed9bkee+wxSdItt9zSb/2HPvQhWSwWvffee2poaFBWVlbfNsMw9PLLLw9bDQCG34/+Z6t2HGzUj75wsWZNTh/Rc63delQd3QFlpbl0YUnuiJ4L55biwgxJUmlZswzDGHKI3DAMbT4u6Huuu/j8fC0ryVUkYshus8SsDl/1AUlSKHX0w+MAAAAAAAAAAAAAAACxZI51ARgeVqtVd955pyTpoYceUldXV9+2F198UevXr1daWppuuOGGvvW7du3S1VdfrauvvvqE8aqrq9XY2NhvXSQS0WOPPaYnnnhCs2bN0q233tpve0ZGhq6//nqFQiE9+OCDCgQCfdtWrVqlAwcOaNq0aVq5cuWwXDOA4dPlDWrnwUYZhrRhe/WInisSMfSX9dHunB/90DRZLDwVYfjMmJQmq8Ws1k6/apu6h3x8WXW7mtq8ctgtmjd9wghUOPZYLeaYhnwlyd8T9A2n5se0DgAAAAAAAAAAAAAAgNFGR99x5O6779amTZu0ZcsWXXnllVq8eLGampq0detW2Ww2/ehHP5Lb7e7b3+v1qry8fMCxNm/erG9+85uaM2eO8vLyZBiGdu3apbq6OhUVFemRRx6RzWY74bivfe1r2rlzp9544w1dffXVmjdvniorK1VaWqrExEQ9/PDDslhiGxYCcKI9h5sUMaLLm/fU6u6PzR1yJ9TBendvnaobu5XotOqKJZNG5Bw4d9ltFs2cnKbSsmbtKWtW3gT36Q86zmvvHpEkzZ8xQY4Yh1sRZRgR+Wuibw4IpdDRFwAAAAAAAAAAAAAAnFtooziO2O12/fa3v9WXv/xlpaamau3atTp06JAuu+wyrV69Wh/60IcGPVZxcbGuueYatba2av369XrrrbeUkZGhr371q3ruueeUnZ094HHJyclavXq1PvvZz8psNuvVV19VfX29PvKRj+j555/X7Nmzh+tyAQyjnQeOdfBuaPWqorZjxM713PrDkqSrl01RgvPENwwAZ6u4MEOSVFrWPKTjtuyt04tvRt8Ac+XSycNeF85MsKVWEV+XZLEpnJQV63IAAAAAAAAAAAAAAABGFR19xxm73a57771X995772n3Xbp0qfbv3z/gtpkzZ+rhhx8+oxrcbrceeOABPfDAA2d0PIDRt/NQNOib6LKp2xvUpj11mpqXMuznOXi0VaVlzbKYTbpueeGwjw9Ix4K+e4YQ9K1v8egnT26TJF23fKoWz8kZkdowdP7qg5IkW/ZUyUyXZQAAAAAAAAAAAAAAcG6hoy8AnOOa2706Wt8lk0m6+fIZkqQtpbUjcq7n10W7+V48P1+Zqa4ROQcwa3KazGaTGlo8amj1nHb/YCisHz7+rrq8Qc2clKbPfGTuKFSJwfJXH5Ak2XKnxbgSAAAAAAAAAAAAAACA0UfQFwDOcTsPNkmSphWkauXCiTKZpENV7Wpq8w7reRpaPHpzV40k6eMrioZ17JFihEOSYcS6DAxRgtOmafnRjtR7B9HV99G/7NGho21KSrDpq3cuks3Ky6N44usJ+tpzxsbPDQAAAAAAAAAAAAAAgOFEkgUAznE7DzZKks6fPkGpSQ7NmpwuSdpcWjes51mzsUyRiKF50zNV2BPCjGfe8l1q+M0/K3HHs7EuBWeguDBDklRa3nLK/dZvq9JLb1dIkv7l1oXKSksY6dIwBJGgX4GGSkl09AUAAAAAAAAAAAAAAOcmgr4AcA4zDEM7DhwL+krS0uIcSdLmPbXDdp5ub1CvbI6G9a4fA918fUf3qe7pH8oIeGWv3y9/5e5Yl4Qhmtsb9C1rOuk+R+s79cund0iSbr58hhbNzh6N0jAE/trDkhGRxZ0uszs91uUAAAAAAAAAAAAAAACMOoK+AHAOq2roUkuHTzarWbOmRkN0S+dGg767Dzep2xsclvO8vKlSXn9IE7OTtHBW1rCMOVJ81QdV+9T/lRH0y+SIdnft3PiUDCMS48owFLOnRoO+R+u71NbpP2G7zx/Sv//hXfkCYZ1XlKlPXjVrtEvEIPhrDkqSHPnTZTKZYlwNAAAAAAAAAAAAAADA6CPoCwAxFI4Y+skft2nV87HpGLvzYLSb75yp6XLYLJKkgqwk5U9wKxQ2tO39hrM+Rzgc0QtvlkmSrl8xLa7Dev66ctU99T0ZAa+ck+cq845/l2F1KNR4RF17NsS6PAxBcqJdk3OSJEl7y5v7bTMMQ7/6804dre9UerJDX7l9oSzm+P2+PJf5qw9Ikpz5M2JcCQAAAAAAAAAAAAAAQGwQ9AWAGDpQ2aq1W49qzcYytXed2HV0pPUGfedNn9Bv/QU9XX03ldae9Tk2ldapqc2rFLddlywoOOvxRkqg8ahq//hdRXzdcuTPVM4/fE2WpHR5C5dJklrX/VGRUCDGVWIoigujXX1Ly/oHff++qVLrtlXJbDbpq3csVlqSMxblYRB8PUFfR/70GFcCAAAAAAAAAAAAAAAQGwR9ASCG3t1X17d8pK5zVM8dDke0+1CTpBODvkuLcyVJ7+2rVygcOavzvNjTzfeqC6bI3tM1ON4EW2pV++RDing6ZM+Zptxb/k1mu0uS5J+8WGZ3ukIdTerY+rcYV4qhmFuYKUnac1zQ99DRNj3yXLSD9qeund0XBkb8CXU0K9zZIpnMcuRMi3U5AAAAAAAAAAAAAAAAMUHQFwBiaOu++r7litqOUT334ep2dftCSnTZNK0gtd+2GZPTlOp2qNsX0p7DTWd8joraDu053Cyz2aRrlk05u4JHSLC9QbX/+x2Fu1plmzBJuZ/8lszOxGM7WGxyX3iDJKntrWcU9o5uIBtnbk5huiSpvKZd3d6gujwB/fDxdxUKR7S0OEcfv6QoxhXiVHw10W6+9qzJMtvpugwAAAAAAAAAAAAAAM5NBH0BIEaa2rwqrzkW7q2sG92g744DjZKk84oyZTGb+m2zmE1aPCdbkrS5tO6EYwert5vvsrm5ykx1nfE4IyXU0azaJ76jUEeTbBl5yr3127IkJJ2wn2v2ctmzJini61bbW8/GoFKciYwUl3IzE2UY0t7yZv30qe2qb/EoOz1BX/rkAplMptMPEkMRX7cMw4h1GTHjr44GfR1502NcCQAAAAAAAAAAAAAAQOwQ9AWAGHm3p5tvb8a2cpQ7+u48GA36zps+YcDtF8zNlRQN+p5J2LDLE9C6bVWSpA8vn3qGVY6ccHe7ap98SKG2ellTs5V763dkdacOuK/JbFb6yjskSe1bX1KwrWEUK8XZmFuYIUn6zXO7tbm0TjarWV/71GK5XbYYV3Zq3ordqvzZZ1X7P99SxO+NdTkx4a8+KEly5hP0BQAAAAAAAAAAAAAA5y6CvgAQI1v3RoO+y8/PlyRV1nWOWvdOXyCkveUtkqR50zMH3GfejAmy2yxqbO3feXiwXnv3iPyBsKbkJveFLeNF2Nup2icfUrC5WpakDOXe9h1Zk09do2vafDmnlEjhkFrX/3GUKsXxjEhYnkPvqe7p/6fy/7hNHe+9fNpjinu+9xpaPJKke64vUVFB6kiWedYiQb8a//prGaGAfEf3qe5P/65I0B/rskaVEQ7JX3tYkuTInxHjagAAAAAAAAAAAAAAAGKHoC8AxEAgGNbOQ9GOuh/70DRZLSZ5/SE1to5O58595S0KhSPKTHEqf4J7wH0cNovmz4h2+928p3ZI40cihv76Vrkk6cMXTZXJZDq7godRxNetuj9+T4GGSlkSU5V3+3dkS8067XEmk0kZl0a7+nbt2SB/XdlIl4oeoY4mtW74k4786p9Vt/oH8hzYIiPgU8e2wQd9JemShQW66oLJI1nqsGh782mF2uplcafJ5EiQ70ip6v/8/2SEgrEubdQEGo/ICAVkdiTIlpEX63IAAAAAAAAAAAAAAABihqAvAMTA7sNN8gfCykhxavrEVBVkJUmSKuuG3jn3TOw8GA0Znzd9wilDuBfMzZEkbSqtG9L4771fr7pmjxJdNl2yoGBIxxqGoUBzjSKB4Q89hz0dql39A/lrD8uckKzc274tW/rgQ4SO3GlyF18sSWp5/fFR68B8LjIiYXXv36K61T/QkV9+Tq0bVyvc0SSz063khVdLkgINlQp3t59ynOz0BF26aKIWzsrSfTfMG/bQeairTRH/8H2v+usr1LZpjSQp85p/Uu7N/yaTzSFv2U7VP/uwjHBo2M4Vz/zVByRJjvzpMpl4uQoAAAAAAAAAAAAAAM5d1lgXAADnonf31kuSFs3Olun/s/fn4XXXdf7/fz9bTk72tUn3dKW0tGUre9lRVlER0XEXURy38eM4fp0fM477yDiL4uDCuM6oIwIyCCjIVgWBtkChtKULbdp0SdKkzX6ynOX3x2kCsWmbtNna3m/X5dXm/dqe79PzPu2FjzwTCDCtMp/qXS1U72phyfzKET+/N+h78r6OvQeyZH4lwQBs3tFM/d4OJhTnDGr/+/d1873sjGlkR4f2V03zs79lz6M/BQJESicRrZxJ1sSZRCtnEa2oIpidO6h9kh0tdNVupmvXZrprX6WrdjOJpnoAgtm5THznP5BVPm1ItQEUX/hO2l55mnj1auKbV5Ez65Qh73G0im9bQ/v65ZScfwPB6ODeC0PV01RH66pHaX3xcZJte/quZ09bQMEpl5Ez70yC4Sw6a16hu76a+NaXyZt/7gH3CwQCfPqdp45Yrdvv+H+EcgqY/P5/JpRbeET7pVNJGh78HqSS5JxwJrlzlwBQ+fbPZzoZb1xB/f99iwlv/hsCwdBw3MK41bljIwDRSXPGuBJJkiRJkiRJkiRJkqSxZdBXkkZZOp1mxbpM0HfJiRUAVE0s4I8v7GBbbeuIn9/a0c2rOzJdUBfNLjvo3MK8KPOqSli7ZQ/L19Ry9XkzD7n/jt1tPP9KPYEAXHnOjCHVluqO0/Tnu/d9laancQc9jTtgzZ/65kRKJpJVOZNo5UyiE2eRVTEDUkm6dmXCvF21m+ne9SqJloYBz4iUTaH86o8TrTz0vQy4vqiCwtOvyASSH/tvYjMWHfOhS4COTc9Re9etkEwQjGRTcuE7h3X/rl2vsueJnxPf/BKQ6ZQczCkgf9FF5J98KVml/Tsvx2YszAR9t7x00KDvSGp++v9Id3eS6O6k7p5/ZeJf/SOB0OH/06rluYfo2rmRQDSHsjfc2Hc9VrWQius+S+2vv0H7uj+zO5xF+TUfO6Y73XbtzHT0zZ48d4wrkSRJkiRJkiRJkiRJGlsGfSVplNXUtVK/p4NIOMjiOZmOutMrCwCo3tUy4ue/tKmBdBqmVuRTWhg75PwzF0xk7ZY9PPvy4IK+D+7r5nvavAomlg2u+26vluf/QCreRqRkIhPf/WW667bsF97t2bOLnj27aF/71CH3GygUHIrlDammgRSdcx2tqx6lu34rbS//kfxFFw16bTqZoHnlg7SuepSic68j/6Tzj7iekda+cSV1d/8LJBMAtLzwMEXnXUcwnDUs+6d6utj1v18h1ZF5/8dmLCL/lMvInbuEQCgy4JpY1UKan/0t8eqXhqWGoUq0NdH64mMABEIROretofGRn1D2xg8d3n4tjex54hcAlF70LsIFpf3Gc2afSsVb/h9193yTttVPEAhnUXbFhwkEAkd0H+NRMt5GT+NOAKKTDPpKkiRJkiRJkiRJkqTjm0FfSRplK/d18104q4zsaOZjePrETNB3e30biWSKcGjkOnW+uHE3ACfPLe93PdXdSTLeQqRwQr/rZ51UyY/vX8PqVxtoj/eQGxs4eAkQ70rwyIptAFwziFBwv/MT3TQ/838AFJ79FsL5xYTzi8mZfWrfnGR7M111W+jatZnu2kwH30RTPRAgUjqRaOUssibuC/ZWzCCYPbSg8WCFcvIpOvc69jz23+xZ9r/knngOwUj0kOviW16i4eEf0tOwHYCmP/9m3Ad92zesoO7ub0IqQe68s+jcuYlkSwPta58aUsD5YNpWLyPV0UK4oIyJ7/4ikeLKQ67JnjYfgiESTfX0NNURKaoYlloGq2XFA6STPUQnzaHo3Ouo+/U/07Lyd2RVzKDg5EuGvF/DQ/9FujtOdPIJ5J/6hgHn5M47kwnXfpL6e79F6wsPE4hkUXrp+4+5sG/Xzo0AhIsrCeXkj3E1kiRJkiRJkiRJkiRJY8ugrySNshX7gr5L5r8WTCwvihGLhoh3Jdm5u41p+zr8joQXN2SCvotnl/W7Xn/ft+nYuJLJH/hnopWvhXQnlecxtSKPmro2nnuljvNPmXLAvR9/roaOzgSTynL3CxIfSuuqx0i2NxEqKCN/4cDh11BuITkzTyZn5sl915LxNgLBEMHoobsTD6eC06+geeXvSLY00LLydxSd/eYDzk0076bx0Z/Svu5pAII5BaQ6WunZvY1E217CecWjVPXQtK9/lrp7/i0T8j3xHCZc+yman72PPY//nOblD5C38MIjDpmm0ymal/8WgIIzrh5UyBcgmBUjOmkOXdtfIb5lNZFTRi/om+psp/m53wNQdM5byZ27hOLzb2DvH39Fw+9/QFb5VLInD74Tbfsrz9KxYTkEQ5RfeTOBwIGD/nkLlpJO9LD7/v+kZfn9BMNZlFz0riO+p/Gka0cm6DuU11CSJEmSJEmSJEmSJOlYNXItIyVJ+2nr6Gbtlj0AnH7ia8HEYDDQF+7dWts6YufX7+1gZ0M7wWCAk2a9FvRNJ3uIb3oeUkna1j6137ozF0wE4NmXaw+4dzqd5v4ntwBw1XkzCAYHHwBNJxM0P3MvAEVnXUsgdOCuwX8pFMsb9ZAvQDASpeSCdwLQ9NTdJDv2/3NLJ3rY+9Td1Hz/U5mQbyBIwelXMvXm28iqnAFAvHr1qNY9WO2vPEPdPf+aCfnOP5cJb/4bAqEw+SdfRiCcRXfdFrq2rz/iczo2PU9P404C0Zwhd8KNzVgEQLz6pSOuYyhann+YdFcHkbIp5Mw9HYCi895GzglnQjJB3V23kmjdM6i9Ul0dNDz0X5k9zrqWrAnTDrkmf/HFlL7xJgCa/nwPe5+86zDvZHzq3LEBgOikOWNciSRJkiRJkiRJkiRJ0tgz6CtJo+iF9btJpdJMrcijsjS339j03qDvrpYRO/+ljZluvnOmFpEbey1M2123lXSyB8gEL//SmSdluqyufKWOnkRq4L03NVBT10osGuLSJYcOK75e28t/JNG8m1BuEflDDHuOpbyTlpI1oYpUVwdNT/UPW3Zseo6aH/wNe5/4BemeLrKnnsjkG/+FsjfeSCiW91pIdcvwhlQ7Nj3H1m/dxO77/5OevQcOZh9M27qn94V8k+QtWMqEaz9FIBgCIJSTT95JmY7LzSvuP+J6m5+9D4CCUy4lGM0Z0tpY1UIgE5ZOpwd+Xw63VKKb5uWZ+y46+8193XcDgSATrvkEkfKpJNv2UnfXraQS3Yfcb8/jPyfZtodwcSVF571t0HUUnn45JZe8D4C9y35J0zP3HcbdjD/pdJqunXb0lSRJkiRJkiRJkiRJ6mXQV5JG0Yp1meDl6SdW7jc2fWI+AFtrRy7ou2pDAwAnzynvd723gyZAz+5tJJp39xufO7WYovwoHZ0JXn61YcC9739yMwAXnTaVnOzBd+RNp5I0/fk3ABSeeQ3BSHTQa8daIBii5OJ3A9C88vf0NNXRs7eW2ju/Tu2vvkZiby2hvGImXPs3THzPl4lWVPWtjVW9FvRNp9PDVlPTs78l2baH1hcfo+a7n6D+t9+hZ8+uQa9vW/sU9b/5N0inyDvpfMrf9Im+kG+vgtOvAKD9lWdJtAz8fhiMrl2b6dy6BoIhCpdcNeT12ZPnEIhESXW00F2/7bDrGIq2l54g2d5EqKCMvAVL+40FozEqr///CGbn0bVzIw2/u+Ogf7ad29fT8txDAJRfefOQ3/tFZ72J4vPfAcCeR39K88rfD/Fuxp+ePbtIdbYRCGeRVTF9rMuRJEmSJEmSJEmSJEkacwZ9JWmUJFNpnnulHoAl8yv2G3+to2/riJyfTqd5cVMmwLv4L4K+vR00e3Vseq7f18FggDPmZ8LJz67Zv0ts/Z4Olu+7fvV5M4dUV/srz9CzZyfB7DwKTn3jkNaOB7GZJ2e686YS1N75dbZ//2/o2LgyE14961qm3nwbeSctJRAI9FuXPXUegVCEZGsjPXt2Dkstqa4OOretzew/bT6kU7S99Dg13/sk9fd9m+7Gg5/TtuZJ6u/9j0zId+GFlF/z8f1CvgDRiiqypy+AdKovqHo4erv55p14DuGCsiGvD4QiZE+dD2S6+o60dCpJ09P3ApmQbSAU3m9OpLiSCW/5fxAI0vbSY7Ss/N3AeyUT7H7we0CavEUX9nUnHqqi895G0TlvBaDxoTvY8/jPSaeSh7XXeNC1M/NNB1mVMwiEBv8NA5IkSZIkSZIkSZIkSccqg76SNEo2bttLS3s3udlhTqwq2W+8amIm6Fu7p53OrsSwn7+ttpWm1i6yIiHmVRX3G+vt6Js9bQEAHZue32/9mSe9FvT9yy6lD/55C6k0LJ5TxtSK/EHXlE6naXrqbgAKl1xFMBob/A2NE4FAgJKL3wNAz+4a0skeYjMWMeWmf6P0kvce8J6CkSjRqfOATFff4RDf8hKkkoSLK5n0ni8z6f1fJ2f2aZnA7+plbP/+p6i/9z/obti+39q2l/9E/f99KxPyXXQR5Vf/9YAh316Fp2c68La88AdSPV1DrjXR0kDb2qcye535piGv7xWbkQnIdo5C0Ld93dMkmuoIxvLJX3zJAeflzFzc955o/MOPBwwhNz1zHz27txHMKaD0kvcddk2BQIDiC/+KonPektn3z/dQ+6uvkuwYmW8YGGldOzLfdJA9ee4YVyJJkiRJkiRJkiRJkjQ+GPSVpFGyYl0dAKecMIFwaP+P38K8KEV5UdJp2FY3/CG9FzdmuvmeNLOUSPi1AGeyo4XE3kw33uLzbwAy3VH/Mry5eE450awQDU1xXt3R3He9qyfJw89uA4bezbdj40q667cSyMqmYMkVQ7+pcSJaOZOipW8nOnEWFdd9lsp3/iNZZVMOuS5WtQgYvqBvbyfmnNmnAZmwZOUNf8/kD3yDnDmnZwK/a/7E9u//DXW/+Te6d9cA0Lp6GfX3fRvSKfIXX3LIkC9AztzTCReWk4q30rbmySHX2rziAUinyJ6+gOjEob1vXq+3E2582xrSyeEPyPdKp9M0/fk3ABQuuZJgVvZB5xeeeQ15J50P6RR19/wrPU31fWM9e3bR9OSvASi99H2EcgqOqLZAIEDJRe9mwrV/QyCcRXzzi+z40d/RVbvliPYdC73fdBCdNGeMK5EkSZIkSZIkSZIkSRofDPpK0ihZuTYT9F0yv+KAc6ZPzHTD3VbbMuznr9oX9F08p6zf9a6dmQ6akdJJZE+bTyi/lHSim86tL/ebF42EOPWECQAsX1Pbd/1PL2yntaObCcUxlsyvHHQ9r+/mW3Da5YRig+8EPB6VnH8Dkz94K7nzziIQCAxqTWxGJujbufVl0qnkEZ2fTqf6OjH3Bn17RSfNpvLtn2fyjf9CztwzgDTta59i+w8+za5ffInd992WCfmefCllV91MIHDofx4EgiEKTrscgJYVD+7X5flgUl0dtLzwCHBk3XwBsiqqCMbySXd30rVr0xHtdTDxzavorq8mEMmm4PRDh9IDgQBlV95MVuVMUvFW6u66lVRPF+l0mobffZ90opvYjEXknXTBsNWYd9JSJr3/64SLKkg017Pzp39P68t/HLb9R1qqp4vu+q2AHX0lSZIkSZIkSZIkSZJ6GfSVpFHQ2Bxn885mAgE4bd5rQd90Os2eJ35B09P3AjC9MtPZs3rX8Hb0TSRTvPxqI5DpzPt6fR00J88lEAj0hUR7Q6Ovd+aCTJD32Zdr++r/7ZOZrqFXnjODUHBwAVeAzurVdO3cSCCcReEZ1wzxjo4N0coZBLNzSXV10LXr1SPaq7t2C8n2JgKRbGLT5h/gvJlUXv85Jn/oX8mddxaQJr7lRSBN/ilvoOzKjwwq5Nsr/+RLCISz6K6vprNm7aDXtb74GOmuDiKlk8iZfeqg1w0kEAgSqzoJgPiW1Ue018E0/fkeAApOvWzQofRgJErl2/6OYE4B3XVb2H3/f9K2+gni1asJhLMou+Ijgw6FD1a0oorJH/wGsZmnkE50s/v/vkXDwz8a0W7Hw6W7djOkkoTyigkVlB16gSRJkiRJkiRJkiRJ0nHAoK8kjYKV6zLdfOdOK6YwL9p3vbuumqan7mbPY/9NMt7G9ImZoO/WYe7ou3FbE/GuBPk5WcyYVNhvrGtHpqNv9qQ5AH3By45Nz+3XpfX0EysIBmDzzmbq93TwSvVeNu9oJisc5LIzpw+ppr37uvnmn3wp4byiw7mto14gGCJ7em9I9aUj2qtj03NApktwIBw56NxoRRUV132WKTf9G/mLL6H4/HdQdsVNQwr5AoRi+eQtzHSkbVnx4KDWpFNJmpffD0DhGdcM+cyBxKoynZHj1Uf2Gh5I5/ZX6Ny2FoLhIYfSw4XlVFz3WQiGaF/7FLsf+B4AxUuvJ1I8+A7YQxGK5VN5w+cpOvdtALSseIBdv/giibamETlvuPR908GkOcMegJYkSZIkSZIkSZIkSTpaGfSVpFGwYm0m6LvkxIp+1ztefaHv99311UyvzHQK3bpreIO+qzbuBmDRnDKCr+u6m06n6NqZCfpGJ88FIFa1kEAoQqJ5Nz0NNf32KcyLcuKMUgCeXVPL/U9tBuCCU6dQkJs16Ho6t6+nc+vLEAxTdPa1h39jx4CcGcMTUu3twNzbkXkwsiZMp/zqv6Z46fWHHbgtPP1KANrXLyfRvPuQ89tfeYZE826COQV9IeEjFataCEDn9g2kujuHZc/Xa/rzvQDkL7yAcEHpkNfHps2n7A0fzHyRSpA1YRqFZ75pGCvcXyAYouTCd1Lxtr8jkBWjc9tadvzos31h2vGo75sO9n0WSZIkSZIkSZIkSZIkyaCvJI247p5kX9D29L8I+sZfff61eXXVTKvMdPTd29pFc1vXsNXw4r7zF88p73e9p3Enqa4OAuEssiZkOvIGs7L7usz2hkdf76yTMl1IH1m+jade3AnAVefOGFI9Tb3dfBdeQLigbEhrjzWxfUHfzu3rDzukmmxvpmvnJuC1jsyjJWvCNLKrFkI6RfNzvz/o3HQ6TfOzvwWg4LTLCUaiB50/WOHiysz7KJWgs2bdsOzZq7t+Gx0bVwABCo8glJ5/6hspPPNNhHILKb/qYwRC4eEr8iByTziTyR/4ZyKlk0m27mHnf/8DLc8/PCpnD1VfR9/Jc8a4EkmSJEmSJEmSJEmSpPHDoK8kjbCXX22kqztJSUE2MycX9l1PdrbTuX1939ddddXEomEqSnIA2FbbOiznd3YlWL91DwAn/0XQt6s3WDdxFoFgqO96b1i0Y9Nz++135oKJAGze2UwylebEqhJmTSkadD1dtZsz+waCFJ3zliHdy7EoXDwxE1JNHn5ItePV54E0WRUzCOeXDG+Bg9Db1bd11SOkeg4cUO/a/gpdOzcSCEUoPO3yYTs/EAiQXdXbGXn1sO0L0PTMvQDkzjuTrNLJh71PIBCg9NL3Mf1vfkR00uxhqm5wssqmMPkD3yDnhDMhmaDhd99n9wPfJZ3oGdU6DibR0kiytRECQaITZ411OZIkSZIkSZIkSZIkSeOGQV9JGmEr1tUCsGR+BYFAoO96fMtLkE4BmWvdddUAVE3MdPXdWtsyLOev2dJIIplmQkkOlaU5/cY6d2wEIDp5br/rOXNOy4zXvEIy3tZvbGJZLlMr8vu+vvq8oXbzvQeAvPnnEimZOKS1x6JAINDX1Tde/dJh7dEbyM6Zfdqw1TUUOXNOI1w0gVS8jbaX/3TAeU3P3AdA3sILCOUWHnDeYdUwY/iDvj3N9X33U3T20R1KD0ZjVFz3WUouehcQoHXVIzQ89F9jXVafrp2Zz6Ks8mkEs2JjXI0kSZIkSZIkSZIkSdL4YdBXkkZQOp1mxdo6AE4/saLfWPzV5wHIOeEMALp315BO9jCtMhOird41PEHfVRt2A7B4dlm/oDG8rqPv5Dn9rkeKKoiUTYF0iviWF/fb86yTKgEoKYhy9sJJg66lu2E77a88A0DROW8d/E0c4/qCvluGHlJNJxN0bM78GfUGtEdbIBii4PQrAGhZ+QDpdHq/OT17dtKxYQUAhWdeM+w1ZFedBEB37RaSHcPTDbv5md9COkVsxqJR78I7EgKBAEXnvJWK6z8HQOuqR+mq3TLGVWV0HuCzSJIkSZIkSZIkSZIk6Xhn0FeSRtD2+jbq9nQQDgVZPKe873o6nabj1VUAFJxyGcHsXEgl6G7Y0dfRd1vt8IQVX9rYAMDJc8v7XU91d9K9exsA2ZPm7rcuZ/apAHRsen6/savOncHJc8v5yFsWEQkP/q+Spj//BkiTM/cMsiZMG/S6Y1329IUAdNdtIdnePKS1ndtfId3VQTCngOjEWSNR3qDkL76EQCRKd/02Oret2W+8efkDQJrYrFPJKpsy7OeH84qJlE8F0sS3vnzE+yXbm2ld9Qhw9Hfz/Uu5c5eQO/9cIE3joz8dMJg92no7+mZP3v+zSJIkSZIkSZIkSZIk6Xhm0FeSRlBvN9+Fs0qJRcN917vrt5Js20MgEiV7+gKyKqoy1+u2ML0yE/TdWttyxAG85rYuNu/MBEcXze4f9O3a9SqkU4TySwkXlO63Nmd2pjtsx6vPk06n+o2VFsb48kfO4ZxFg+/m29NUR9vLfwSg+NzrhnQfx7pwXhFZE6YDDDmk2rHpOQByZp1CIBga9toGK5SdS/7CCwFoXvFgv7FkRyutLz4GQNFZbxqxGmJVmcB0vPqlI96recWDpBPdRCfOInvfvseSkoveTSAUobN6dd97aKykU8nM5xEQnWRHX0mSJEmSJEmSJEmSpNcz6CtJI2jlukzQd8n8yn7X46++AEBs+kkEw1lkVcwAoKuumknleYRDATo6E+xuih/R+b3dfKsmFlCUH+039loHzYGDddlT5hGM5pDqaKFr56YjqgOg6el7IZ0iNnMx0Umzj3i/Y01sxiIA4luGFlLt7bjcG8weSwWnXwFAx4YV9DTV911vef4h0olusipmkD39pBE7P1aVeQ07q1cf0T6prjgtz/0OgKJz3kogEDji2sabSNEECs64CoA9j/6UdDIxZrV0128j3dNFIJpDpGzymNUhSZIkSZIkSZIkSZI0Hhn0lXRcamnv5tu/eoEX1tcfevJhaov3sHZLIwBL5lf0G+voDfrOOgWA6Os6+kbCQSaX5wGwdVfLEdXw4qbdACyeU77fWOeODZmzJ88dcG0gFCY2c3Gm3iPs+JloaXyto6vdfAfUG1KNb3lx0J2ce5rq6GnYDoEgsZknj2B1g5NVPpXYjMWQTtHy3O8BSCd6aFmZCc0WnnnNiIZmY9PmQyBIz55dJFoaDnuflhceJtXZTqR0EjknnDGMFY4vxee8lWBOAT2NO2l54Q9jVkfXvs+i7ElzCAT8p6kkSZIkSZIkSZIkSdLrmaaQdFz62YNr+cPybfzH/75ATyI1Ime8sL6eZCrNlAl5VJbm9l1PdXXQuf0VAHL2BX17O/p211WTTqeZPrEAgK21rUdUw6oNmaDvyXP7B33T6XRfuC46aeCOvvBal9jerrGHq/nZ+yCZIHvqicSmLTiivY5V2dPmQzBMonk3iaa6Qa3p2JgJYGdPnUcoO/cQs0dHwZIrAWhd9Qip7k7a1vyJZHsTofwS8uafO6JnB7NziU6cBQy9M3KvdKKH5md/C0DhWW8+poOnwexcSs6/AYC9f/wVyc72I94z2dFCy6pHSbY3D3pN585DfxZJkiRJkiRJkiRJkiQdr47d9IokHcDW2hb+8OxWAPa0dLLs+e0jcs7KdZmw5ukn9u/mG9/yEqSSREomEimuBCCrbDIEw6Q620m07GZ65b6g7xF09K1tbKduTwehYIAFM0v7jSVbG0m27YVAsC8YOZCcWacCAbprN5No3XtYdfQ019Py/MOA3XwPJpiVTfaUE4DBh1R7A9i9gezxIGf2qYSLK0l1ttP28h9p6g3NLrmKQCg84ufHZuzrjFy9+rDWt774GMm2vYTyS8hfeP5wljYu5Z9yGZGyKaTirTQ9ddcR7ZXqirPr51+g4YHb2Xb7x9j75F2kujsPua5rx0YAsg/QXVySJEmSJEmSJEmSJOl4ZtBX0nHnJ/evJZWGvFgEgHue2EQqlR7WM1KpNM+9kgn6njG/st9Yx6svABDb180XIBCKkFU+FYDu2mqq+jr6Hn7Q96kXdwKwYGYpsWj/gGXnvm6+WRVVBCPRA+4Ryi0kOmn2vrqfO6w6Gv/wE9KJbrKnLyA28+TD2uN40RdSHUTQN9XdSefWl4FMuHa8CASCFJ5+BQB7HvtvenZvI5CVTf4pl43K+bGqhUDmNUynh/Zc9zTX0/j4/wBQdPabCYQiw17feBMIhii95H0ANK94kJ69tYe1TzqVpP7ef6e7fhsEgqS74+xd9ktqvvtxWp5/mHQqOeC6ZLyNnsYdAH2fNZIkSZIkSZIkSZIkSXqNQV9Jx5UXN+xm5bo6QsEAX775HHKyw9TUtfZ13x0uG2v20tzWTW52mBNnlPRdT6fTdLy6rwvrrP7hzKyK6QB011UzrTIfgJq6NhLJ1GHV8McXMuG5pSdP3m+sa1/QN3vSnEPu0xsi7e0eOxQdm1fRsf5ZCAQpe8OHCAQCQ97jePL6brQHCkb2ilevJp3sIVxYTqRs6miUN2j5iy4iEMkm1dWR+XrxJYSyc0fl7OiUEwiEs0i2N9HTMPhu3elUkt33fYd0VwfRySdQcNrlI1jl+BKbdQqxGYshmWDPvqDzUO157L/p2PQcgXAWk973VSa8+dOEiyaQbNtLw+++z/YffJr29cv3C1937cx08w0XVxLKLTzie5EkSZIkSZIkSZIkSTrWGPSVdNxIpdL86LdrALjy3BnMnlLEFWdXAXD34xuH9awVazPB4ZNPmEA49NpHbc/ubSRb9xAIZ5E9bX6/NdGKGQB01VczoTiHWDREIpliV0P7kM+vqWtl885mQsEA5yyatN94547M/UYnzz3kXjmzTwMgvuVF0omeQdeQTvbQ+PAPAShYciVZE6YNeu3xKjpxFoFoDqnONrprtxx0bm/wOmfWqeMuQB3MziV/0YWZLwJBCs+4avTODmeRPXUekAlDD1bz8vvp3LaGQCSbCdd+kkAwNFIljjuBQIDSS98HgSDt656ms+aVIa1veeEPND/7WwDKr/k42ZPnkrfgPKZ+5NuUXvYBgrF8ehp3UHfXN9j13//Q11EcXgv6Zg/is0iSJEmSJEmSJEmSJOl4ZNBX0nHjiedr2LyzmZzsMDdcmgmVXbN0JuFQkLVb9rBuy55hO2vFvg7BS06s6He949UXAMievoBgJNpvLKuiCoDuui0EgwGmVRQAUL2rZcjn93bzPeWECRTkZvUbSycTdNduBiA6+dAdfbMqZxDKLSLd3Um8Zu2ga2he/gA9jTsJ5RZSsvTtQ6j++BUIhohNXwBAvPqlA85Lp9N0bHoOeC2IPd4UnvUmwoUTKDzjKiJFFYdeMIxiVQuBg7+Gr9dVV82eJ34BQOllHyBSXDlitY1XWROmk7/4YgAaH/kJ6fTgOonHq1fT8Ps7ACg+/wby5p/bNxYIRyg842qm/fV/UnTOWwmEs+isWcfOn3ye2rtupbtxZ1/oNzqI7uKSJEmSJEmSJEmSJEnHI4O+ko4LXT1J/vvBdQC8/ZK5FOZlQralhTEuOm0KAPc8MTxdfRub42ze0UwgAKfNGzjomzPr1P3WZU2oAiDRVE+ys53pEzNB3621Qwv6ptNp/vjCdgAuOGXyfuPd9VtJJ7oJZucRKZl4yP0CgSA5szP19naRPZRESyN7n/w1ACUXv4dgdu5gyz/uxaoWARDfcuCQaqYzdGOmM3TVSaNV2pBEiiqY9vHvUnrp+0f97Ox9r2Hn1jWkU8mDzk0lutl937cgmSBnzhLyT75kNEocl4oveAeBrGy6dm6kfe1Th5zf3biTuru/CakkuQvOo+i86wecF8zOpeSidzH1o9/JhIkDQTrWP8v273+qr+vyYLqLS5IkSZIkSZIkSZIkHY8M+koa19rjPaRS6SPe574/vkpDcyflxTGuWTqz39hbLpxNIADPrqmlpq71iM96evUuAOZOLaYo/7WuvamuOJ01rwCQM+vk/daFYnmEC8sB6K6vZnplPgBbh9jR99XtzexsaCcrEuLMk/YP8r6+g2YgMLi/Bnq7xsb3dZE9lD2P/Tfp7k6ik08gb+EFg6xcALEZ+0KqNa+Q6ukacE5vN9/s6Sft1xlaEK2cQTA7l1RXB127Nh907t5lv6S7fhvBnALKr/oogUBglKocf8J5xRSd/RYA9jz2Pwd8/wEk463U3fk1Up1tRCfPpfzqjx3ytQsXlFJ+9ceY8qF/zXympFOQTBAIRYhWTB/We5EkSZIkSZIkSZIkSTpWGPQdAw0NDaxevZoVK1aMdSnSuFa9q4Ubv/oHPvmvj9PUeuDA2aE0t3Xx60cz3Xrfc8WJZEVC/canVuRz5oJK0mm4d9mrR1TznpZOfv77TJh36V90041XvwSpBOHiSiIlkwZcn1VRBUB3XfXrOvoOLXy8bF833zPmVxCLhvcb7+oN+k6eM+g9YzMWQzBMz55d9OzZedC58a1raFvzJyBA2Rs/NOgwsTIipZMJ5ZeQTvbQuf2VAef0dlbuDWCrv0AwRPb0TKfjePWBOyPHt75M8zO/BaD8qr8mlFs4KvWNZ4VnXkOooIxESwMtKx4YcE46maDu7m/Ss2cX4YIyKt72OYLhrEGfkTVhGpU3/D0T3/0lcuYuofiidxEIRYbrFiRJkiRJkiRJkiRJko4ppq9G0X333cfVV1/N0qVLefvb38773ve+fuO33nor733ve6mrqxujCqXxI5VKc/tdL9Ie72FrbStf+MHTtMV7DmuvXz68nnhXgllTCrnglCkDzrnuokzo9bGVNexp6Tysc9LpNP/56xdpi/cwa0ohV507o994x6svAJAz65QD7pFVkVnTVVvN9MpM0Le2sZ3OrsSgakil0jy5agcA5x/gXrt2ZkLP2ZPnDmpPgGA0RmzaicBrIdOBpFNJGh76LwDyT72M6MSZB5yrgQUCgb6uvvEt+4dUk/FWOrevByBnzqmjWtvRJFa1EIB49eoBx1Od7dTfdxuQJv/kS8mdu2QUqxu/gpEoJRf+FQB7n7qHZHtzv/F0Ok3D7++gc+vLBLKyqbzh7wnnFR3WWbHpC6i8/v+j6MxrjrRsSZIkSZIkSZIkSZKkY5ZB31Hyla98hc997nNs2rSJUChEOBwmnU73mzN37lyWL1/Oo48+OkZVSuPHoyu2sa56D9lZIYryomze2cyX/uuZQQdee22vb+X3T1cD8MFrFhAMvvaj5bvrt5FKdAMwr6qE+TNKSCRT3PfHw+vq+/hz21m+tpZwKMCn33Eq4dBrH7HpdHpQQd9oX0ffLRTlRynKi5JOQ0394Lr6rt3SSENzJ7nZYU4/ccJ+48mOVnr27MqcNWn2YG8NgNi+7rEdm5474JyW535Pz+5tBGN5lFzwV0PaX6+JVfUGffcPqcY3r4J0ikj5VCKF+/8ZK6M36NtV8wqpnv07gjc8/EOSLQ2Eiyoovez9o1zd+JZ30lKiE2eR7o6z54//22+sefn9tK56BAJBKt78/8iaMH2MqpQkSZIkSZIkSZIkSTo+GPQdBY8++ij/8z//Q0lJCd/5zndYtWoVCxcu3G/eRRddRCAQ4Iknnhj9IqVxpKW9mx/fvxaAv3rjPL70kbPJjUVYV72Hr/5kOT2J5KD3+ukDa0mm0iyZX8Gi2eV91+NbXmL7HZ+m/u5v9l3r7er7u6er6egcWvfgxuY4P7h3dV/N0ycW9Bvvaagh2dJAIBQhe/pJB9ynt6Nvd0MN6WQP0yrzAdi6q2VQdfzxhUw337MXTiISDu033tvNN1IyiVAsf1B79sqZnekeG9+6llRXfL/xRFsTe5ZlQoElF76LUM7Q9tdreoO+3bWbSXb0D3n3dlTO2Re81sAipZMJ5ZWQTvbQta8Dcq+2dX+mbfUyCASZcO2nCGbFxqjK8SkQCFJy6fsBaH3hEbp3bwOgfeNK9jzyUwBKLnkvOXN8D0qSJEmSJEmSJEmSJI00g76j4Be/+AWBQIBbb72VSy+9lHA4POC8wsJCJk6cyPr16wccl44XP3twLa0d3UyvzOeapTOZMamQf/rQWWRnhVi1YTf/8j/PkUymDrnPms2NPPNyLcEAvP+q+f3G2vd1pe3Y9BzxrWsAOP3ECqZW5NHRmeD3T28ddL3pdJrv/PpF2uM9zJlaxFsv3L9TbserqwDInr6AYCR6wL3CheUEozmQTNDdsIOqfYHhrbWH7uibSKZ48sWdAJx/yuQB53Tu2ABAdPLcQ+73lyIlkwgXV0IqQXzLS/uN73n856S7OsiqnEX+yZcMeX+9JpxfTKR8KpAmvvXlvuvpVPK1ztD7gtcaWCAQIDYj80018erXOiMnWhppePD7ABSd81ayp5wwJvWNd7Fp88k54UxIp2h85Gd01VVTf++/A2nyT7mMwjOuHusSJUmSJEmSJEmSJEmSjgsGfUfByy+/TGlpKeeee+4h55aVlbFnz55RqEoan17ZuoeHnsmEbD963WLCoczH1LyqEm75wJmEQ0GeXr2Lb/3qBVKp9AH3SafT/Oi3mYDkG86qYlpl/w67XTXr+n6/54lfkE6nCQYDfSHd//vjq/QkDh0mBnh0xTZWrqsjHAryN+84hVBo/4/W+Kv7urDOOuWgewUCAbIqqgDorqvuq7t6EB19V23YTWtHN0V5URbNLhtwTtfOfUHfSXMOud9AtfWGSzv2BaV7de7YQNtLjwFQdvmHCAT37yasoent6vv6UHXXzo2k4q0Es3PJnjJvrEo7avS9hvuCvul0mt0P/CepzjayKmdRvPT6sSxv3Cu9+D0QDBPf/AK7fv4F0t2dZFctpOyNHyIQCIx1eZIkSZIkSZIkSZIkSccFg76joL29nQkTJgxqbiKRIBQ6vIBcd3c33//+97nqqqtYtGgRZ511Fh//+MdZs2bNkPdqaWnh3//937n66qtZvHgxJ510Epdeein/8A//QE1NzQHXbd68mc9//vNcfPHFnHTSSZx88sm86U1v4jvf+Q7t7e2HdV86fiSTKb57VybUeOmSaSyYWdpvfPHccj733tMJBgM8/tx2fnDvatLpgcO+T67ayYZtTWRnhfirN/Tv2Jnq7qSrdkvmi2CYru2vEN+8CoALTp1CSUE2e1o6Wfb89kPW3NAU547/ywSK3335vP0CxZnz4sT3BYtjsw7dhfW1oO8WqibmA7Ct9tBB3z++kKn3vMWTBgwbp9MpunZuAiD7MDr6AuTMPg2Ajlef73vt06kkDb//LwDyFl182Hurv9iM3pDqa0Hfjo2ZgHVs5smGqQchVpXp6Nu161WSne20rPwd8c0vEghnMeHaTxIIDdxhXxmRkokULrkCgFS8jUjJJCre+re+bpIkSZIkSZIkSZIkSaPIoO8oKCkpYceOHYecl0wmqa6upqKiYshndHd3c+ONN/Jv//Zv7N27l4suuoiZM2fyhz/8gRtuuIE//elPg96roaGBt771rXzve9+jsbGRs88+mwsvvJBEIsGdd97Jtddey0svvbTfupUrV/KWt7yFe+65h0gkwsUXX8ySJUvYsWMHt912G9dffz3Nzc1DvjcdPx54agubdzaTF4vw/qvnDzjnrJMm8ul3nEIgkJn/379bt9+cnkSSnzy4FoDrLp5DcUF2v/GunRshnSKUX9oXYtvzxC9Jp9NEwiGuPX8WAPc8semQXYNvu3MVHZ0JTphezJv3dQP+S/HqlyGZIFw0gUjJxEO+DtGKGZk667cytSIT9N3T0kVLe/cB13T1JHnm5V0AnH/KlAHn9DTuJNXZTiCcRdaEaYesYyCxaQsIRLJJtu2le19YunXVo3TXvkowmkPJRe86rH21v9i0BRAIkthbS09THQAdm/Z1hp596MC4IFxQSqR0EqRTtD7/EHse+28ASi5+D1llAz8n6q/o3LcRyishmFNA5Q2fJxTLG+uSJEmSJEmSJEmSJEmSjisGfUfBySefTEtLC8uWLTvovN/+9rd0dHRw+umnD/mMO+64g+XLl7Nw4UIefvhhvvWtb/GLX/yCf/3Xf6Wnp4fPfvaztLW1DWqv22+/nZqaGs477zweffRRvve97/Gd73yHRx55hLe//e20t7fz1a9+db91//RP/0RnZyd//dd/ze9//3u+/e1vc8cdd/Doo4+yYMECXn31Vf7rv/5ryPem40Njc5z/+f0rALzvqvkU5kUPOPfC06by0bdmup3++tGN3PXYxn7jDzy1hfo9HZQURHnzvtDu63XWZM7JnjqPorPfQiCSTXftq3SsXw7A5WdPJyc7TE1dKyvX1R2wjoef3cbz6+vJCgf5m3ecQig48I+y73h1Xzhz1qmD+nH3r+/oG4uGqSjJAWDrQbr6rlxbR7wryYTiGPOqigec07VjAwDRibMOuyNnIBwhNiPTJbXj1edJdrSy54mfA1B8wTsI5xUd1r7aXzAaI7qvO3J8y2oSLY1011cDAXJmnjKmtR1NYlWZz4o9j/+cdKKb2MzFFJx++RhXdfQIxfKY+pH/YOpHv0OkZNJYlyNJkiRJkiRJkiRJknTcMeg7Cv7qr/6KdDrNP/3TP7F27doB5zz99NN89atfJRAI8M53vnNI+ycSCX72s58B8IUvfIG8vNe67V199dVccMEF7N27l7vvvntQ+61YsQKAD3/4w+Tk5PRdD4fDfOITnwBg9erVpNOvdTrdu3cvGzduJBKJ8NGPfrRfmLGoqIgPfvCDALz44otDujcdP3503xriXQnmTiviDWdOP+T8K86ZwfuuynT9/ekDa3nwz/u6y3Z0879/yARa3335iWRH9w+0dm7fF/SdMo9QbiGFZ1wFwJ4//pJ0KklOdoQrzq4C4O7HN+63HqB+bwc/vO/lzDlXnMiUCfkDzkun08RffQGA2KzBhTOzyqZCMEQq3kaytZHplQUAbN114KDvshe2A7D05MkHDBN37szcS3TynEHVcSA5s08DoGPTc+xZ9gtS8TYi5dMoOM3w5HDLmbEYgHj1S3Rseg7I/PmFcgvHsqyjSqxqYd/vg9l5lF/1MQIB//kzFMHsXELZuWNdhiRJkiRJkiRJkiRJ0nHJpMsoOOuss3j3u9/Nrl27ePvb38473vEOtm7dCsDnP/953vrWt/LBD36Q1tZWbrzxRk466aQh7f/888/T1NTElClTWLhw4X7jV155JQCPPvrooPaLRCKHnFNYWNgvTDiYNQDFxQN3GtXxbdWGev64agfBAPz1dYsJ7uuMm2hpYMeP/z8aH/3ZgOvedvEcrr8kE1r93j0v8fhzNdz5yAba4z1UTSzg4iXT9luTTiXp3L4eyHT0BSg861qC2bn07K6hbe1TAFyzdCbhUJC1W/awbsue/nuk09z2q1XEuxKcWFXCmwboGtyrp3EHiebdEAoTmz64ZzsQjpBVNgWArtotTJ+YCRFvrW0dcH57vKev8/AFp0454L5dO/YFfSfNHVQdB5Iz69S+/Vqf/wMAZW/8EIFg6Ij21f5iMzLdaOPVq/uCvr1Baw1O9vSTYN97s+zKjxAuKB3jiiRJkiRJkiRJkiRJkqTBM+g7Sm655RY+85nPkJWVxapVq2hsbCSdTvOb3/yGtWvXEo1G+fSnP83f/u3fDnnvdevWAbBgwYIBx+fPz3Q9Xb9+/aD2W7p0KQA/+MEPiMfjfdcTiQS33XYbANdff32/NXl5eZxyyin09PTw3e9+t1+336amJn70ox8NuE7qSST53j0vAXDVeTOZNaUIgFR3nNpffZ2unRtpXv4Aqa74gOvfc8WJXH3uDNJp+I//fYH7n9wMwAeuXkAouH9n2+7dNaS74wSyYmRNyHQODmXnUnjWtQDs/eOvSCcTlBbGuOi0TGj2nif6d/X9/TNbWbVxN1mREJ96xykDntOro7eb77QFBLOyB/uykFUxI1NvXfUhO/o+vXoXPYkUUyvyqJpYMOCcVHcn3fWZbzDInnxkQd9wQem++tJAmtwF5xGbPvDnj45MdNJsAlnZpDpa6NjYG/Q9dYyrOrqEYnlUvPUzlF/zCfJOPGesy5EkSZIkSZIkSZIkSZKGZP+faa8Rc9NNN3HDDTewbNkyXnnlFVpaWsjJyWHu3LlcdNFFlJSUHNa+O3fuBKCysnLA8d7rTU1NtLe3k5t78B+/fdNNN/HCCy/w5JNPcvHFF7N48WIikQirV6+mqamJG2+8kU996lP7rfvqV7/Khz70IW6//XYefPBBTjjhBDo7O3nuueeIxWLceuutnHfeeYd1j6+XTqfp6Og44n3Go95g9esD1se6u5/YzI7d7RTlZfHW86fR0dFBOpWi6bfforu+OjMplaBp4/NkzzxlwD3e9YZZtLR38sdVu0gBi2aVMG9a3oDvk/ZXXwQgUjmLeGdX3/XIgosIPvtbEntraVz5MDkLL+SKs6bwh+XbeHZNLRu37mZyeS71e+P86L6XAXjnZbMpzg0e9P3YtmElAOFpC4b0vg0UTwKgY+cmKs64AIDqXS20t7f366YN8Phz2wA4e0HFAd873dtfgXSKYG4x3eEY3Uf4DEWmL6S7bguBSJScc673mRxBWZPn0bVlFZAmmFtMIr+C5DH6eo+UwNSFhOCYfZ8eL8bD8yjpNT6T0vjh8yiNL0fjM5lOp/f7bw2SJEmSJEmSpPHDoO8o+M53vkMgEOCmm26ioKCAa665hmuuuWbY9u8NLsVisQHHc3Jy+n4/mKBvXl4ed9xxB1/60pe46667ePzxx/vGFixYwOLFiwmFQvutmzVrFr/85S/51Kc+xapVq6iuru4bO+ecc5g9e/ZQbuuAenp6+roYH6te/9ody/a0JbjniVoALlmUx9YtmwCIrX+M7C3Pkw6GSBROIrK3htoX/ki868AdcS+YF2RvUw6bdnZy7gmRA75Hcl9ZSRbQnFVM3V/MiU4/k5xXHqHpyV+zNVgKwTAnTMlm/fZO/ueBF7n6jCL++7EGOruTTCvPYnph28Hfi4luimrWEQC2J/NIDeF9G45DPtCxYxPNu7cRDEC8K8Ezz71MUe5rH91tnUlWv9oIQEVu+wHriW5+mhygM2/CsDw/gZzp5JZMp2vqKeypqQPqjnjP8Wwsn8lotIzeT/F48XReeeWVMatFGg+Ol78jpaOFz6Q0fvg8SuPL0fZMZmVljXUJkiRJkiRJkqQDMOg7Cm6//XamT5/Oxz72sbEuZVB27tzJRz7yEWpra/nyl7/MBRdcQCwWY9WqVXzta1/jk5/8JJ/4xCf4+Mc/3m/dM888wyc/+UnKysr4r//6LxYvXkw8HueJJ57gX/7lX1i2bBm33377EXf1jUQiwxYaHm/i8TjV1dVUVVUdMLh9rEin03zjf1aRSMJJM0u4/vJTCQQCdLy8jJYtzwBQ9MaPEAhHaPrtt8ht3UHViScedM+TFhy6C039U98nBUxafC7Raf33S8+Zxe7tz0HbXqZ17yL3lDfw7twm/uGOFbxU3UHVlAlsqesiGgnymXctobI0Z+BD9unc/AJN6STBgjLmnn7ekLrjpOJTqF/xC0LxJhbMqWJyeTM19W1kF1Ry4tzyvnkPPVtDOr2LmZMLOO+MhQfcb++mh+kCSueewrRDvI6DdsoZw7PPODYensme8nwaX3kEgIpTLiB79jD9+UlHmfHwPEp6jc+kNH74PErjy9H4TG7atGmsS5AkSZIkSZIkHYRB31FQUlJyyC66R6K3Y++BfiTg639U+WDq+NznPseGDRv41re+xeWXX953/fzzz2fGjBlcc801fPe73+Xqq6+mqqoKgKamJj71qU/R3d3NHXfcweTJkwEoKCjghhtuID8/n09/+tN84Qtf4OGHHx6wI/BgBQKBfl2Kj0WxWOyYv8enV+/ihQ0NhEMBPnb9yeTm5hLfuoaWR38MQNHSt1Ny6iUkO9tpCgRJ7t1FpKeNSOGEwz4z0dJAqrURAkEKZ55EMOsv/w+3HJLnXU/D739Ax4rfUrrkck6eN4n5M0pYu2UP9yzbAsD7r17AzKllhzyvY/taAHJnnzr0z4CcHBoLyki2NBBqrWfGpEJq6tvYtaebc1/33nj65XoALjpt6gHfM+l0mt21rwKQVzWf2DH+3hoJY/lMpqfOoW3yXJIdLRTNO4Ng1oE7W0vHg+Ph70jpaOIzKY0fPo/S+HI0PZND+cZkSZIkSZIkSdLoC451AceDU089lS1bttDd3T0i+0+aNAmA2traAcd7rxcVFR0ybLhr1y6WL19OJBLhsssu22986tSpLFq0iEQiwfLly/uuP/HEEzQ1NXHyySf3hXxf7w1veAORSITt27dTU1Mz6HvTsSneleAH964G4K0XzWHKhHx69uyi7u5bIZUkd/65FC99OwCh7Fyik+Zk1m1+6YjO7ax5BYCsihkDhHwz8k++mHDRBJLtTbQ893sArrtoTt/4wlllXHnOjEOelU6n6Xj1eQByZp16WPVGK6oA6K6rZvrEAgC21rb0jdfv7WBd9R4CAVh68v7PXa9kayPJtr0QCBKtnHVYtWjsBAIBJr3va0z96G2GfCVJkiRJkiRJkiRJkqTjjEHfUfChD32Irq4uvvWtb43I/ieemPkx7mvWrBlwfO3aTFfRE0444ZB79YaCc3NzD9h1t6AgEzhsamrqu1ZXVwdAfn7+gGvC4XBfF5Pm5uZD1qFj26/+sJ6GpjgTSnK4/pI5JONt1N75NVLxNqKT5lB+9cf6dZOJzVwMQHzLi0d0bmfNOgCyp8474JxAKNIXMm56+jekOts5/cQKTqwqoSgvyidvOJlg8NCdbnr27CTRVA+hMLGqkw6r3qy+oO8Wpldmnq2tu14L+v7phR0ALJhZSmnhgX8caOeOjZn9Jkw3KHqUCgQCBAL+lS1JkiRJkiRJkiRJkiQdb8JjXcDxoKysjM985jP867/+Kxs2bOC6665jzpw5xGIHDub1dukdjFNPPZWioiK2b9/O6tWrWbhwYb/xBx98EIBLLrnkkHuVl5cDmRDv1q1bmT59er/xRCLRFxyeMmXKfuvWrFlDIpEgHO7/1qquru4L+A7U8VfHj621Ldy77FUAPvKWhURDUPvrb9LTuJNQQRkV13+OYCTab03OzMU0/elO4tUvkU4lCQQHDqEfSuf29cDBg74AeSedT9Off0NP4w6alz9A8flv5+sfO49kMkVWZHBnx199AYDY1BMP2D34UKIVmc7BXXVbmX52JmBfU9dGMpkiFAryx31B3/NPmXLAPQC6dmzI7Dd5zkHnSZIkSZIkSZIkSZIkSZLGF4O+o+D1Adsnn3ySJ5988qDzA4FAX5h2MMLhMO9973v59re/zRe/+EV+8pOfkJeXB8D999/PsmXLKC4u5rrrrutb89JLL/F3f/d3APz+97/vuz5lyhTmz5/P2rVrueWWW/j2t79NcXExAD09Pdx6663s2LGD/Px8zjvvvL51559/PtnZ2ezYsYNvfvOb/O3f/m1f2HfPnj3ccsstAJxxxhmUlZUN+t507PnNE5tIptKcuaCSJSdW0PC7HxCvXk0gkk3l2z9POK94vzXRSXMIRHNIxdvoqt1C9qTZQz431dVBd/1WALKnHDzoGwiGKL7gHdTf8680PXsfBadfQSgnn9AQAsYdvUHfWacOudZevR19e3ZvY2JBFtlZITq7k+xsaAdg885mQsEA5y46+DcGdO3MdPTNnjz3sGuRJEmSJEmSJEmSJEmSJI0+g76jIJ1Oj+h8gJtuuolnnnmG5cuX84Y3vIElS5bQ0NDAypUriUQi3HrrrX3hX4B4PM6WLVsG3OsrX/kK73//+/v2WrRoEdnZ2axZs4Zdu3YRiUT4yle+QkFBQd+asrIybrnlFv7xH/+RH//4xzz00EPMnz+fzs5OXnzxRVpbWykrK+NLX/rSkO9Nx5ZXqvcCcMU5VbSseIDWFx4GAkx4898Q3Rds/UuBYIhY1UI61j9LfPOqwwr6du7YAOkU4aIJhPNLDjk/d95ZZE2ooru+mqZn7qX04vcM+qxUTxedW9cAkDPrlCHX2itcNIFANId0VwfJvbuYXlnA+m172VrbwtZdrQCccsIECnKzDrhHOpmga1emg3J0kh19JUmSJEmSJEmSJEmSJOloYtB3FLzyyisjfkZWVhY//OEP+dGPfsR9993HY489Rk5ODpdccgkf+9jHWLBgwaD3WrBgAffddx8//OEPeeqpp1ixYgWpVIry8nKuvfZaPvjBDzJv3v4dUa+//nrmzp3LT3/6U55//nmWLVtGKBRiypQpXH/99XzoQx+itLR0OG9bR5m2eA87drcBMD1RTeMjPwWg5JL3kjt3yUHX5sxYnAn6bnmR4vPeNuSzO2vWAYfu5tsrEAhSfOE7qbvz67SseJDCM64esNvwX0p2tNDy/MOkkz2ECsqIlE0Zcq2vryE6YTqdNevoqtvCtH1B3+pdLfzphR0AnH/K5IPu0V2/lXSim2B2LpHSg3f+lSRJkiRJkiRJkiRJkiSNLwZ9jyFZWVncfPPN3HzzzYece+aZZ7J+/foDjk+cOJFbbrllyDUsXryYf/u3fxvyOh0fNtVkuvkuLOmk9Xe3QTpF/uJLKDzzmkOujc1cDEDn9vWkuuIEo7Ehnd25PfN+z5564qDX5Mw+jejkuXTt2EDTU/dQ9sYb95uTTqfp2b2N9o3P0bFpJV3bNwCZrty5s08jEAgMqc6/lFVRRWfNOrrrqqmaeB4Ay57fTm1jB1nhIGcuqDzo+s4dGwGITppNIBA8olokSZIkSZIkSZIkSZIkSaPLoK+kUbN+217yAnHeGXqYdHec7OkLKLvipkGFYSPFlYSLK0nsrSW+9eVDdgB+vXQyQdeODcDgO/oCBAIBSi54J7t+8UVaXniYorPeRLiwnFSim87ql+nY9BwdG1eSaGnoty6rYgY5s0+j8MyrB33WgWRVVAHQXbeF6UuuBKC2sQOAJQsqycmOHHR9187MfUcnzT3iWiRJkiRJkiRJkiRJkiRJo8ug7yhraGjgqaeeYvPmzbS3t5Obm8usWbM499xzKS0tHevypBG1cVsTV8ReJDfZTLi4korrPksgdPCg6uvlzFhMy95a4lteHFLQt7uumnRPF8HsXCLlU4ZUc2zGIrKnn0Tn1pfZff9/EohkE69+iXRPV9+cQDiLWNVCcuacTs7sUwkXlA3pjIOJVswAoKuummmV+f3GLjhl8iHXd+3r6Js92aCvJEmSJEmSJEmSJEmSJB1tDPqOku7ubm699VZ+9atfkUgk9hsPh8O84x3v4LOf/SxZWVljUKE0stLpNOu37eXSyC4ASi99P6FY/iFW9RebsZiW5x8ivuXFIa3r3P4KANHJJxAIBIe0FqDkwney86f/P+LVq/uuhfJLyZlzGrmzTye76iSCkeiQ9x2MSPlUCARJxVvJp53CvCya27rJyQ5z2ryKg65Nxlvp2bMTgOikOSNSnyRJkiRJkiRJkiRJkiRp5Bj0HQWpVIqPfvSj/PnPfyadTlNaWsrMmTMpLy9n9+7dbN68mcbGRv7nf/6HLVu2cMcddxAIBMa6bGlYNTR1kmxrYkJxKxAge+qJQ94ju+okCATpadxJT3M9kcIJg1rXWZMJ+h7OmQDZU+ZRdM5b6Ny+ntiMxeTMOZ2sCdNH5TkNhrOIlE2hZ/c2uuq2ML2ygJc2NXD2wolkRUIHXdv09L0ARMqmEMoZWqhakiRJkiRJkiRJkiRJkjT2DPqOgrvvvpunnnqK/Px8Pve5z/HmN7+ZcPi1lz6ZTHLvvfdy66238tRTT3HPPfdw3XXXjWHF0vDbULOXmeF6ALImTCUUyxvyHqHsXKKT59C1fT3xzS8ROeXSQ65Jp9N9HX2zp54w5DN7lVz07sNee6SiFVX07N5Gd101V593Du2dPbz1wtkHXdO5YwPNz9wHQMmF7xqNMiVJkiRJkiRJkiRJkiRJw2zoP8NeQ3bfffcRCAT49re/zdve9rZ+IV+AUCjEddddx3/8x3+QTqe59957x6ZQaQRt3LaXmZFM0Dd7yuF11gXImXEyAPEtqwY1P9FUR7JtLwTDRCcePBw7XmVVzACgu24LZy+cxH98+kKmVRYccH6qp4vdv70N0inyTjqf3BPOGKVKJUmSJEmSJEmSJEmSJEnDyaDvKFi/fj1Tpkzh7LPPPui8s88+m6lTp7J+/fpRqkwaPRu2NfV19M2eevhB39jMxQDEt6wmnUoecn5vN9/oxJkEI9HDPncsRSuqAOiqqx7U/L3LfklP405CecWUvuHGkStMkiRJkiRJkiRJkiRJkjSiDPqOgng8TmFh4aDmFhYW0tnZOcIVSaMrmUqzbXs9k0N7AMiedvhB3+ik2QSjOaQ62+jatfmQ8ztrMkHf7CnzDvvMsZa1L+ib2FtLqit+0LmdNetofvZ+AMqv+iihWN5IlydJkiRJkiRJkiRJkiRJGiEGfUdBeXk5mzdvPmSANx6Ps3nzZsrKykapMml0bK9vpSJZRyiQJlRQRrjg8N/jgWCI7KqFAMS3vHjI+b0dfbOnHr1B31BOAaH8EgC667cecF6qu5P6334HSJO/+GJyZp82ShVKkiRJkiRJkiRJkiRJkkaCQd9RcOaZZxKPx/na17520Hlf//rXicfjnHXWWaNUmTQ6Nm7by8xwPQCxqYffzbdXzsyTAYhvXnXQecl4Kz27a4Cju6MvQLRiBgBddVsOOGfP4z8nsbeWUH4ppZe+f5QqkyRJkiRJkiRJkiRJkiSNlPBYF3A8+NCHPsT999/Pr3/9a1588UXe+973MmfOHMrLy9m9ezcbN27kpz/9KRs3biQSiXDjjTeOdcnSsNqwrYmZkUzQdzg668ZmLgagc8cGUl1xgtHYgPO6tm8AIFIyiVBu4RGfO5ayKqro2PQc3XXVA47Ht75My8oHASi/+q8JZueOYnWSJEmSJEmSJEmSJEmSpJFg0HcUzJo1i2984xt8/vOfZ/369dxyyy37zUmn00SjUf75n/+ZWbNmjUGV0sjZuK2Ri8K7Acgeho6+kaIKwsWVJPbWEt/6Mrlzlww4r3P7OgCiR3k3X4CsfR19uwfo6JvqirP7t/8JQP4pb+jreCxJkiRJkiRJkiRJkiRJOroFx7qA48WVV17Jb37zG9761rdSWlpKOp3u+19paSlve9vb+M1vfsMVV1wx1qVKw6qrJ0lPfTXRQAKycoiUTx2WfXNmZLr6xre8eMA5nTWvAMPTRXisRSuqAOiu30Y6lew31vjYz0g01xMunEDpJe8dg+okSZIkSZIkSZIkSZIkSSPBjr6jaObMmXzta18DoK2tjfb2dnJzc8nLyxvjyqSRs2VHM1XBOgBiU+cRCAzP9xfEZi6m5fmHiG8eOOibTvTQtXMTcGwEfcPFFQSyskl3d9LTuIOs8mkAdGx+kdbnHwag/Oq/JhiNjWWZkiRJkiRJkiRJkiRJkqRhZEffMZKXl0dFRYUhXx3z1m/by8xIPQCxaScO276x6SdBIEjPnp30NNXvN95Vu5l0sodgTgGRkknDdu5YCQSCZE2oAqCrrhqAVGc7ux+4HYCC068gVrVwjKqTJEmSJEmSJEmSJEmSJI0Eg76joKenh507d7J3796Dztu7dy87d+4kkUiMUmXSyNuwdQ8zw5kgbvbU4Qv6BrNziU6eC0B8y/5dfTu3v5I5c8oJBAKBYTt3LEUrqgDortsCQOMjPyXZ0kC4uJKSi949hpVJkiRJkiRJkiRJkiRJkkaCQd9RcPfdd3PJJZdwzz33HHTePffcwyWXXMK99947OoVJo2D3tm0UBDtJB8NkTZw1rHvnzFwMQHzzAEHfmnUAZE+ZN6xnjqWsvqBvNR2bnqP1xUeBAOVXf4xgVvaY1iZJkiRJkiRJkiRJkiRJGn4GfUfBH/7wBwKBAG95y1sOOu/Nb34zAA899NAoVCWNvJb2bvLbqgHIqpxFMJw1rPvHZp4MQLz6JdKpZN/1dDpN5/b1wPB2ER5rWRUzAOjatZndD3wPgMIzriI2bf5YliVJkiRJkiRJkiRJkiRJGiEGfUfB5s2bKS8vp6Sk5KDzSktLmTBhAq+++uooVSaNrI01e5kZrgcgZ/rwB26jE2cRzM4l1dlO167XnpuePTtJdbQQCEWIVs4c9nPHSlb5VAgESXW2kWzbQ6RkEsUX/tVYlyVJkiRJkiRJkiRJkiRJGiEGfUdBQ0MDFRUVg5o7YcIEGhsbR7gi6eB6EkmWPb+deFfiiPbZsK2JmZFM0HckOusGgiFiVQsBiG95qe96Z80rAEQnzSYQjgz7uWMlGIkSKZ2U+SIQpPxNnyAYiY5tUZIkSZIkSZIkSZIkSZKkEWPQdxTk5OTQ0NAwqLmNjY1Eowb3NLYeemYr3/z5c3zvnpcOPfkgtlVvpyLUAkD2lBOGo7T9xGYsBiC+eVXftd6gb/bUeSNy5ljKnjofgMKz3kT25LljXI0kSZIkSZIkSZIkSZIkaSQZ9B0Fc+fOZdeuXaxbt+6g89atW8fOnTuZNWvWKFUmDWxrbSsAT67aQVu857D2SKfTJHZuyPy+aDKhWP6w1fd6sZmZoG/njg2kujoA6Nq+L+g7Zfi7CI+10ovfTeU7/5GSi9411qVIkiRJkiRJkiRJkiRJkkaYQd9RcNlll5FOp/n85z/P3r17B5zT1NTE5z//eQKBAG984xtHuUKpv+7d2/ib/N9RxXb+tGrHYe1RvzdOZWInAHlV84ezvH4iRRWEiyshlSS+dQ3J9mZ69mTOjU459jreBrNzyZm5mEDAj29JkiRJkiRJkiRJkiRJOtaFx7qA48ENN9zAL3/5S9avX89VV13F29/+dk455RTy8/NpbW3l+eef56677qKxsZGZM2fyzne+c6xL1nFuctMqZkR289bACn7z7HyuOLtqyHts2LaXGZF6AHKmj1zQFyBn5sm0PPd74ptXQToFQKR86oh1EZYkSZIkSZIkSZIkSZIkaTQY9B0F0WiUH/zgB3zkIx9h8+bNfP/7399vTjqdZvbs2Xz3u98lGo2OQZXSa/J6GiEEE8PNJHe9wrbaU5hWWTCkPTZV13FeqBGA7KnzRqLMPrEZizNB3y0vEohkZc6cMrJnSpIkSZIkSZIkSZIkSZI00gz6jpKpU6fym9/8hjvvvJOHH36YDRs20N7eTm5uLieccAJvfOMbuf7668nKyhrrUnWca4/3UEpT39fnZ7/CIytq+OA1C4a0T0v1ekKBNIloEeGC8mGusr9Y1UkQCNKzZxfta/8MjHy4WJIkSZIkSZIkSZIkSZKkkWbQdxRFo1He85738J73vGesS5EOaHdDC6XBtr6vT4rU8B/PreO9V55IOBQc1B7JZIronlchCpHJJxAIBEaqXACC0Ryyp5xAZ806Ei0NgB19JUmSJEmSJEmSJEmSJElHP4O+Y+ill15i1apV9PT0UFVVxdKlS+3oqzG3d8c2CgNpOolSOHUWXTVrOSnxMs+/ch5nLKgc1B7b6lqZFqwFoHj2SSNZbp/YjMV01qwDIJRbRLioYlTOlSRJkiRJkiRJkiRJkiRppBj0HQG7du3i//7v/ygoKOCv/uqv9huPx+N8+tOfZtmyZf2uT548me985zvMm2cnUo2dtrptFAKtkVKmLbmS+pq1nBPdyO+Wbx500HdDdSNV4d0AxKbNH8FqXxObuZi9f/xfALKnnjjiXYQlSZIkSZIkSZIkSZIkSRppwbEu4Fj02GOP8a1vfYuampoBx7/0pS/xxBNPkE6nCQQClJaWArB9+3Y+8pGP0NHRMZrlSv0kGncA0J0zgdy5SyCnmPxgJz0bn6WptWtQe9RuWk92IEEimE1W+dSRLLdPdOIsgtm5AGRPNSwvSZIkSZIkSZIkSZIkSTr6GfQdAStXrgTgyiuv3G9s69at3HvvvQQCAd7whjewfPlynnzySR544AFmzJhBfX09v/71r0e7ZKlPsKU285vCSgKhMMVLLgfg3OgrPPH89kHtkdi5HoBk2UwCwdCI1PmXAsEQhWe+iUjpJHLnnT0qZ0qSJEmSJEmSJEmSJEmSNJIM+o6ATZs2EYvFWLhw4X5jDz30EOl0msLCQr72ta+Rl5cHwMyZM/n7v/970uk0TzzxxChXLL0mu3M3AFllUwDIP/lS0oEQVeEGXn52Bel0+qDrO7sSFMe3AVAwc8HIFvsXis97G1Nvvo1wQemonitJkiRJkiRJkiRJkiRJ0kgw6DsCGhsbmT59+oBjK1euJBAIcOGFF/aFfHstXbqUwsJCNm7cOBplSvtJp9MUJvcAUDBpGgDhvCKyTzgLgFltz/Pq9uaD7vHq9iZmhOsBKJmzf9hdkiRJkiRJkiRJkiRJkiQNjkHfEdDS0kIwOPBLu3btWgDOPPPMAccrKytpaWkZsdqkg+lpbiSLBMl0gJLJU/uul555FQCnZm1h2dOvHHSP6g2vUhiMkyRIdOLsEa1XkiRJkiRJkiRJkiRJkqRjmUHfERCLxaivr9/vem1tLQ0NDQDMnz9/wLXhcJh0Oj2i9UkHsnf7FgAaUgWUFb/WcTo6eS6JoqlEAim61j5Od0/ygHu0Vq8BIJ43hWAkOrIFS5IkSZIkSZIkSZIkSZJ0DDPoOwJmzJhBQ0MDa9as6Xd92bJlAOTm5jJ37twB19bV1VFUVDTSJUoDatm5FYC9wWJCodc+HgKBABXnXgPAkuA6nl2984B7RPa8mvl18rwRrFSSJEmSJEmSJEmSJEmSpGOfQd8RsHTpUtLpNF/+8pdpbGwEYNu2bfzgBz8gEAhw0UUXEQgE9ltXV1dHQ0MDVVVVo1yxlNFZvx2AjmjZfmP5C86jJxSjNNTO+qeeGHB9U2sXE5O7AKiYt3jE6pQkSZIkSZIkSZIkSZIk6Xhg0HcEvPvd76aoqIgXX3yRCy64gPPOO483vvGN7Nixg2AwyAc+8IEB1z300EMAnHHGGaNZrtQn1ZTp1JvMq9hvLBiJkn3SRQBManyWhqb4fnM2bdpGZagZgMKZC0awUkmSJEmSJEmSJEmSJEmSjn0GfUdAcXEx3/ve9ygtLSWRSNDQ0EA6nSYUCvH5z3+e+fPn77cmnU7zv//7vwQCAc4555wxqFqCSHs9AKGSSQOOTzrvatLAvMgunvrT8/uN169fDUBLpIxQTv6I1SlJkiRJkiRJkiRJkiRJ0vEgPNYFHKtOPvlkHn74YZYtW0ZNTQ25ubmcf/75TJ06dcD5TU1NvOtd7wLglFNOGc1SJQBSXR1kJ1oByKkY+H0aKaqgo2wBuQ1r6HrpD6SvPodAINA3nti1HoBk2eyRL1iSJEmSJEmSJEmSJEmSpGOcQd8RlJOTwxVXXDGoucXFxX1BX2ksdDfuBKA5FaOkrOSA86ZeeC177lrDgtQrrN2wkwUnTAYyXakL2rZCEApnLhiVmiVJkiRJkiRJkiRJkiRJOpYFx7oASeNDT+N2AOqShZQXxQ44r3DuKbRFSogFe9j4xO/6ru+q3cvkQAMAk0+yK7UkSZIkSZIkSZIkSZIkSUfKoK8kADp3Z4K+9ckCyg4S9A0EgmQtvAyAirqn6ejsAWDbyy8SCqRpC+SSXVo58gVLkiRJkiRJkiRJkiRJknSMM+grCYD2XdsAaKCYgtysg86dfeGVdBOmItTE80/8CYDW6jUAtOVXEQgERrZYSZIkSZIkSZIkSZIkSZKOAwZ9JQGQ2LMDgO6c8kMGdcOxPJomnAZA50sPARBp3AxA1uR5I1ilJEmSJEmSJEmSJEmSJEnHD4O+kkgnEwRad2e+KJg4qDUzLn4zANO7X2Xbpi1MSOwEoOLExSNRoiRJkiRJkiRJkiRJkiRJxx2DvpLoaaonkE7SlQ6TUzphUGsqZs2lNjKFUCBN9W9uJzvQQ2c6wqQ5J4xwtZIkSZIkSZIkSZIkSZIkHR8M+kqip3EHAPXJAsqKcwa9LrLwMgCmdG8GoDFrMqFwePgLlCRJkiRJkiRJkiRJkiTpOGTQV1K/oG95UWzQ6xZddBnN6deCwcmyWcNemyRJkiRJkiRJkiRJkiRJxyuDvpLobsgEfeuShZQXDz7oG82Osrv8jL6vC2eeNOy1SZIkSZIkSZIkSZIkSZJ0vDLoK4mexu1AJuhbNoSOvgAzL3oTnekw7akspi9cPBLlSZIkSZIkSZIkSZIkSZJ0XAqPdQEaPt3d3fz4xz/mvvvuo6amhpycHE4//XQ++tGPsmDBgiHt1dLSwg9/+EMeffRRampqSCaTVFZWcvbZZ/PhD3+YqVOnHnBta2srP/rRj3jkkUfYvj0TIK2oqOC0007jk5/8JBUVFUd0nxpe6XT6tY6+qaEHfWfNmcb9p3yKcDjEwtLCkShRkiRJkiRJkiRJkiRJkqTjkkHfY0R3dzc33ngjy5cvp7S0lIsuuojdu3fzhz/8gSeeeILvfve7LF26dFB7NTQ08I53vIOamhpKSko4++yzCYfDvPzyy9x555088MAD/OQnP2HRokX7rd20aRMf+MAHqK+vZ/r06SxdupSenh62bdvGXXfdxVve8haDvuNMqqOFdFc7qTR0RkvJzhrax0IgEOCaq84ZoeokSZIkSZIkSZIkSZIkSTp+GfQ9Rtxxxx0sX76chQsX8pOf/IS8vDwA7r//fj7zmc/w2c9+lkceeaTv+sHcfvvt1NTUcN5553HbbbeRk5MDQCKR4Itf/CJ33nknX/3qV/nVr37Vb11LSwsf/OAHaWpq4pvf/CbXXHNNv/Ft27YN6nyNru6GTNflPak8iovzx7gaSZIkSZIkSZIkSZIkSZLUKzjWBejIJRIJfvaznwHwhS98oV+Y9uqrr+aCCy5g79693H333YPab8WKFQB8+MMf7gv5AoTDYT7xiU8AsHr1atLpdL913/nOd6irq+Mzn/nMfiFfgGnTplFSUjK0m9OI62ncAUBdspDyotgYVyNJkiRJkiRJkiRJkiRJknoZ9D0GPP/88zQ1NTFlyhQWLly43/iVV14JwKOPPjqo/SKRyCHnFBYWEggE+r7u6urinnvuIRaLccMNNwyyco0H3fuCvvUGfSVJkiRJkiRJkiRJkiRJGlfCY12Ajty6desAWLBgwYDj8+fPB2D9+vWD2m/p0qWsWbOGH/zgByxatIhYLBP+TCQS3HbbbQBcf/31/da8/PLLtLa2ctpppxGLxXj66af505/+RFtbG1OmTOHSSy9l5syZh3V/Glk9Dfs6+qYKmFds0FeSJEmSJEmSJEmSJEmSpPHCoO8xYOfOnQBUVlYOON57vampifb2dnJzcw+630033cQLL7zAk08+ycUXX8zixYuJRCKsXr2apqYmbrzxRj71qU/1W7Np0yYASktL+eQnP8lDDz3Ub/zf//3fufnmm/dbdzjS6TQdHR1HvM94FI/H+/06GrobagCoSxayJBY6Zl9b6XCMxTMpaWA+j9L44jMpjR8+j9L4cjQ+k+l0ut9P7pIkSZIkSZIkjS8GfY8BvcHM3s67fyknJ6fv94MJ+ubl5XHHHXfwpS99ibvuuovHH3+8b2zBggUsXryYUCjUb01zczNA39zPfvazXHPNNYRCIX73u99x6623cvvttzNp0qT9ugEPVU9PT18X42NVdXX16ByU7KGopYEAmaBvW1Mt69btHZ2zpaPIqD2Tkg7J51EaX3wmpfHD51EaX462ZzIrK2usS5AkSZIkSZIkHYBBX+1n586dfOQjH6G2tpYvf/nLXHDBBcRiMVatWsXXvvY1PvnJT/KJT3yCj3/8431rUqkUkAnhfuITn+BDH/pQ39h73vMeEokE//zP/8ztt99+xEHfSCTC7Nmzj2iP8Soej1NdXU1VVdUBg9vDqWf3VhqB9lSU9nSU0xfPo7Qwe8TPlY4Wo/1MSjown0dpfPGZlMYPn0dpfDkan8nen9QlSZIkSZIkSRqfDPoeA3o79h7oRwL2dvwFDtnNF+Bzn/scGzZs4Fvf+haXX3553/Xzzz+fGTNmcM011/Dd736Xq6++mqqqqn41AAMGed/+9rfzz//8z+zcuZOamhqmTp06qHsbSCAQ6HfesSgWi43KPba17wGgLllAMBhkUkUxoaA/qlH6S6P1TEo6NJ9HaXzxmZTGD59HaXw5mp7JQMD/FiRJkiRJkiRJ41lwrAvQkZs0aRIAtbW1A473Xi8qKjpk0HfXrl0sX76cSCTCZZddtt/41KlTWbRoEYlEguXLl/ddnzx5MpD5MX8VFRX7rcvNzaWkpASA3bt3D+KuNBp6GnYAUJ8qpLQw25CvJEmSJEmSJEmSJEmSJEnjiEHfY8CJJ54IwJo1awYcX7t2LQAnnHDCIffqDQXn5uYSCoUGnFNQUABAU1NT37X58+cD0N3dTXt7+35rkskkra2tAEdNN5PjQXfjdgBqk4WUFR4dP05SkiRJkiRJkiRJkiRJkqTjhUHfY8Cpp55KUVER27dvZ/Xq1fuNP/jggwBccsklh9yrvLwcyIR4t27dut94IpHoCw5PmTKl7/rEiRNZsGABAM8+++x+61auXElPTw+xWIyZM2cO4q40Gvo6+iYLKS826CtJkiRJkiRJkiRJkiRJ0nhi0PcYEA6Hee973wvAF7/4Rdra2vrG7r//fpYtW0ZxcTHXXXdd3/WXXnqJyy+/nMsvv7zfXlOmTOnrznvLLbewd+/evrGenh6+8Y1vsGPHDvLz8znvvPP6rf3whz8MwK233sr27dv7rtfV1fHVr34VgLe97W1kZWUNx23rCKXTKXr27ASgLllAeZFBX0mSJEmSJEmSJEmSJEmSxpPwWBeg4XHTTTfxzDPPsHz5ct7whjewZMkSGhoaWLlyJZFIhFtvvZW8vLy++fF4nC1btgy411e+8hXe//739+21aNEisrOzWbNmDbt27SISifCVr3yFgoKCfusuv/xy3vnOd/LLX/6Sa665hlNPPZVgMMgLL7xAa2srJ598Mp/5zGdG9HXQ4CWaG0gnukkSYk8qz6CvJEmSJEmSJEmSJEmSJEnjjEHfY0RWVhY//OEP+dGPfsR9993HY489Rk5ODpdccgkf+9jHWLBgwaD3WrBgAffddx8//OEPeeqpp1ixYgWpVIry8nKuvfZaPvjBDzJv3rwB1/7TP/0Tp512Gj//+c954YUXSCQSVFVVcfXVV/O+972PaDQ6XLesI9TTuAOApkAhKYKUF+eMcUWSJEmSJEmSJEmSJEmSJOn1DPoeQ7Kysrj55pu5+eabDzn3zDPPZP369QccnzhxIrfccsth1XHNNddwzTXXHNZajZ7eoG9tshCAMjv6SpIkSZIkSZIkSZIkSZI0rgTHugBJY6O7IRP03d6VB0B5sUFfSZIkSZIkSZIkSZIkSZLGE4O+0nGqt6NvfbKQaFaIvFhkjCuSJEmSJEmSJEmSJEmSJEmvZ9BXOk71Bn3rkgWUF8UIBAJjXJEkSZIkSZIkSZIkSZIkSXo9g77ScSgZbyPZ3gRkOvqWF8XGtiBJkiRJkiRJkiRJkiRJkrQfg77Scai3m293pIAuIpQZ9JUkSZIkSZIkSZIkSZIkadwx6Csdh3qDvs3hUgDKi3PGshxJkiRJkiRJkiRJkiRJkjQAg77Scah7X9C3IV0EQHlR9hhWI0mSJEmSJEmSJEmSJEmSBmLQVzoO9TRkgr47uvMAKC+yo68kSZIkSZIkSZIkSZIkSeONQV/pONSzr6Pv5vZMwLe8ODaW5UiSJEmSJEmSJEmSJEmSpAEY9JWOM+lkDz17awHY3pkPQGmRQV9JkiRJkiRJkiRJkiRJksYbg77ScaZnbx2kUxCO0pyOUZiXRTQSGuuyJEmSJEmSJEmSJEmSJEnSXzDoKx1nehp2ZH7NqwAClNnNV5IkSZIkSZIkSZIkSZKkccmgr3Sc6W7MBH07omUAlBv0lSRJkiRJkiRJkiRJkiRpXDLoKx1nevYFffcGigEoL84Zy3IkSZIkSZIkSZIkSZIkSdIBGPSVjjM9DdsBqE0UAlBWaEdfSZIkSZIkSZIkSZIkSZLGI4O+0nEknU7Tva+j77bOXADKiw36SpIkSZIkSZIkSZIkSZI0Hhn0lY4jyba9pLvjEAiyuTUKQHmRQV9JkiRJkiRJkiRJkiRJksYjg77ScaRnXzffcFEFdc09gB19JUmSJEmSJEmSJEmSJEkarwz6SseR7oZM0JfCSlKpNKFggKL87LEtSpIkSZIkSZIkSZIkSZIkDcigr3Qc6e3o2xWbAEBpYTahYGAsS5IkSZIkSZIkSZIkSZIkSQdg0Fc6jvQGfVvCJQCUF+eMZTmSJEmSJEmSJEmSJEmSJOkgDPpKx5HufUHf3ekiAMoKY2NYjSRJkiRJkiRJkiRJkiRJOhiDvtJxItUdJ9nSAMDO7jwAyosN+kqSJEmSJEmSJEmSJEmSNF4Z9JWOEz2NuwAI5hSwqy0AGPSVJEmSJEmSJEmSJEmSJGk8M+grHSe6G7cDkFU6md1NcQDKigz6SpIkSZIkSZIkSZIkSZI0Xhn0lY4TPQ07AIiUTmb33kzQt9ygryRJkiRJkiRJkiRJkiRJ45ZBX+k40dOYCfoGiifR0t4NGPSVJEmSJEmSJEmSJEmSJGk8M+grHQe6dm2mc/t6ADqiZQDEoiFyY5GxLEuSJEmSJEmSJEmSJEmSJB1EeKwLkDRyeprq2PvEL2lb8ycAgjkF7M2aBDRQVhQjEAiMbYGSJEmSJEmSJEmSJEmSJOmADPpKx6BkRytNT91F83O/h2QCgLwFSym+8J1s2tAJQHlRzliWKEmSJEmSJEmSJEmSJEmSDsGgr3QMSfV00bLiQZr+fA+prg4AYlULKbn4vUQnzgRgd9N6AMqLY2NWpyRJkiRJkiRJkiRJkiRJOjSDvtIxIJ1K0rZ6GXuW/S/J1kYAsiZUUXLxu4nNPJlAINA3d/feTAC4rMigryRJkiRJkiRJkiRJkiRJ45lBX+kolk6nib/6Anse/2+667cBEC4oo/jCd5J30vkEAsH91uxuigNQbtBXkiRJkiRJkiRJkiRJkqRxzaCvdJRKdrZTf883iW95CYBgdi5F515HwelXEAxnHXBdw76grx19JUmSJEmSJEmSJEmSJEka3wz6Skep+OZVxLe8RCAUoWDJFRSd81ZCsfyDrkmn06919C026CtJkiRJkiRJkiRJkiRJ0nhm0Fc6SiXb9gKQc8IZlF7yvkGtaYv30NWdBKCs0KCvJEmSJEmSJEmSJEmSJEnjWXCsC5B0eJLtzQCEcgoHvWb33kw336K8KFmR0IjUJUmSJEmSJEmSJEmSJEmShodBX+kolexoASCUO5SgbwcAZcV285UkSZIkSZIkSZIkSZIkabwz6CsdpV7r6Fsw6DUNTZmOvuVFBn0lSZIkSZIkSZIkSZIkSRrvDPpKR6lkx76g71A6+hr0lSRJkiRJkiRJkiRJkiTpqGHQVzpKvdbR9zCCvsUGfSVJkiRJkiRJkiRJkiRJGu8M+kpHqdc6+hYMes3uvZmgb5kdfSVJkiRJkiRJkiRJkiRJGvcM+kpHoVRPF+nuTuAwO/oa9JUkSZIkSZIkSZIkSZIkadwz6CsdhVIdLZnfhMIEojmDWpNMptjTkgkH29FXkiRJkiRJkiRJkiRJkqTxz6CvdBRKtjcDmW6+gUBgUGv2tHSRSqUJhwIU52ePZHmSJEmSJEmSJEmSJEmSJGkYGPSVjkLJjn1B39zCQa9paIoDUFoYIxgcXDhYkiRJkiRJkiRJkiRJkiSNHYO+0lHo9R19B2t3UwcAZUWxEalJkiRJkiRJkiRJkiRJkiQNL4O+0lEo2dECHF5H3/Jig76SJEmSJEmSJEmSJEmSJB0NDPpKR6G+jr65BYNes3vvvqCvHX0lSZIkSZIkSZIkSZIkSToqGPSVjkLJjn1B35zBd/Td3WTQV5IkSZIkSZIkSZIkSZKko0l4rAvQ8Onu7ubHP/4x9913HzU1NeTk5HD66afz0Y9+lAULFgxpr5aWFn74wx/y6KOPUlNTQzKZpLKykrPPPpsPf/jDTJ069ZB7pNNp3ve+9/Hss88C8OCDDzJr1qzDujf119vRNx6IUbd1D109Sbp7UnR1J+nqSez7Ndnv1/Xb9gJQXpwzlqVLkiRJkiRJkiRJkiRJkqRBMuh7jOju7ubGG29k+fLllJaWctFFF7F7927+8Ic/8MQTT/Dd736XpUuXDmqvhoYG3vGOd1BTU0NJSQlnn3024XCYl19+mTvvvJMHHniAn/zkJyxatOig+/zqV7/i2WefJRAIkE6nh+M2tU9v0Pc/7n2VtT2dQ1o7qTx3JEqSJEmSJEmSJEmSJEmSJEnDzKDvMeKOO+5g+fLlLFy4kJ/85Cfk5eUBcP/99/OZz3yGz372szzyyCN91w/m9ttvp6amhvPOO4/bbruNnJxMB9hEIsEXv/hF7rzzTr761a/yq1/96oB71NbW8i//8i8sXbqUzZs3s2PHjuG5UQGQ7MgEfVtTUbKzQpQX5xDNChGN7Ptf1sC/Tp9YwKSyQ78HJEmSJEmSJEmSJEmSJEnS2DPoewxIJBL87Gc/A+ALX/hCvzDv1VdfzX333ceyZcu4++67ed/73nfI/VasWAHAhz/84b6QL0A4HOYTn/gEd955J6tXryadThMIBAbc4x//8R9JpVJ88Ytf5D3vec+R3J7+QjqdJtneAkBbOpsLTp3Cx68/eWyLkiRJkiRJkiRJkiRJkiRJwy441gXoyD3//PM0NTUxZcoUFi5cuN/4lVdeCcCjjz46qP0ikcgh5xQWFh4w5HvvvfeybNkyPvWpTzF58uRBnanBS3V1QCoBQFsqm6L86BhXJEmSJEmSJEmSJEmSJEmSRoJB32PAunXrAFiwYMGA4/Pnzwdg/fr1g9pv6dKlAPzgBz8gHo/3XU8kEtx2220AXH/99QOubWho4Otf/zoLFy7kve997+BuQEOS6mgGoCeQRQ9hivOzx7giSZIkSZIkSZIkSZIkSZI0EsJjXYCO3M6dOwGorKwccLz3elNTE+3t7eTm5h50v5tuuokXXniBJ598kosvvpjFixcTiURYvXo1TU1N3HjjjXzqU58acO2XvvQl2tra+MpXvkIwaI58JCTbWwDoIAZAsR19JUmSJEmSJEmSJEmSJEk6Jhn0PQZ0dHQAEIvFBhzPycnp+/1ggr55eXnccccdfOlLX+Kuu+7i8ccf7xtbsGABixcvJhQK7bfuoYce4qGHHuLDH/4w8+bNO5xbGZR0Ot13z8ea3g7Kr++k/Jc699YD0JrKdPKNZXHMvh7SWBvMMylpdPg8SuOLz6Q0fvg8SuPL0fhMptNpAoHAWJchSZIkSZIkSToAg77az86dO/nIRz5CbW0tX/7yl7nggguIxWKsWrWKr33ta3zyk5/kE5/4BB//+Mf71jQ1NfGlL32J6dOn97s+Enp6eli3bt2InjHWqqurDziWtW09uUBTIguAhroaUu27Rqcw6Th1sGdS0ujyeZTGF59JafzweZTGl6PtmczKyhrrEiRJkiRJkiRJB2DQ9xjQ27H3QJ1CXt/t9VDdfAE+97nPsWHDBr71rW9x+eWX910///zzmTFjBtdccw3f/e53ufrqq6mqqgLg61//Og0NDXzzm98kGo0ewd0cWiQSYfbs2SN6xliJx+NUV1dTVVV1wA7Nbc3raQNakpmOvqctnk921v4dliUducE8k5JGh8+jNL74TErjh8+jNL4cjc/kpk2bxroESZIkSZIkSdJBGPQ9BkyaNAmA2traAcd7rxcVFR0y6Ltr1y6WL19OJBLhsssu22986tSpLFq0iGeffZbly5f3BX0fffRRotEot99+O7fffnu/Nbt37wYyAeJYLMa73vWufgHioQoEAn3h5mNVLBY74D129GSC263pbGLRMCVF+aNZmnRcOtgzKWl0+TxK44vPpDR++DxK48vR9EwGAoGxLkGSJEmSJEmSdBAGfY8BJ554IgBr1qwZcHzt2rUAnHDCCYfcqzcUnJubSyg0cJfYgoICAJqamvpd7+rqYvny5Qfce/Xq1QBccsklh6xDB5ZsbwagLZVNcf7Idk+WJEmSJEmSJEmSJEmSJEljx6DvMeDUU0+lqKiI7du3s3r1ahYuXNhv/MEHHwQGF7AtLy8HMiHerVu3Mn369H7jiUSiLzg8ZcqUvusrV6484J4XX3wxO3bs4MEHH2TWrFmDuykdULIjE/RtTWdTXJA9xtVIkiRJkiRJkiRJkiRJkqSREhzrAnTkwuEw733vewH44he/SFtbW9/Y/fffz7JlyyguLua6667ru/7SSy9x+eWXc/nll/fba8qUKcyfPx+AW265hb179/aN9fT08I1vfIMdO3aQn5/PeeedN5K3pQPo7ejbnsqmyI6+kiRJkiRJkiRJkiRJkiQds+zoe4y46aabeOaZZ1i+fDlveMMbWLJkCQ0NDaxcuZJIJMKtt95KXl5e3/x4PM6WLVsG3OsrX/kK73//+/v2WrRoEdnZ2axZs4Zdu3YRiUT4yle+QkFBwWjdnl4n2dECZDr6zjXoK0mSJEmSJEmSJEmSJEnSMcuOvseIrKwsfvjDH/LpT3+aoqIiHnvsMTZt2sQll1zCr371K84///xB77VgwQLuu+8+3vOe91BWVsaKFStYtmwZgUCAa6+9lrvuumu/TsAaHelUklRHKwBtqWyK87PHuCJJkiRJkiRJkiRJkiRJkjRS7Oh7DMnKyuLmm2/m5ptvPuTcM888k/Xr1x9wfOLEidxyyy3DUtdjjz02LPsIkh2tQJo00J6OUmxHX0mSJEmSJEmSJEmSJEmSjll29JWOIqmOZgDiZJMiSHGBHX0lSZIkSZIkSZIkSZIkSTpWGfSVjiLJjhYA2tKZgK8dfSVJkiRJkiRJ/3/27jxOy7LeH/hnmH3YFxcWVxRQwt06lGYuRz0eTdPMOuWSW+6eMrPFcs+szq9Fw3M0Fak0LTHJJUtUPKaBprmgYW4JqCHqAAM4zPL8/sCZ5DAg+/Mw836/Xrwc7uu67/t7P3S9Jq758L0BAAAA6LwEfWE90jJ/cUffOc3vBn119AUAAAAAAAAAAIBOS9AX1iMtCxYHfee1VqesLOndvarIFQEAAAAAAAAAAABri6AvrEfaOvo2FGrSu3t1ysstYQAAAAAAAAAAAOispARhPdIW9J3XWps+PauLXA0AAAAAAAAAAACwNgn6wnqkZcE/O/r2FfQFAAAAAAAAAACATk3QF9YjLfPnJkkaWqvTt1dNkasBAAAAAAAAAAAA1iZBX1iP6OgLAAAAAAAAAAAAXYegL6xHWuYvDvrOa61Nn546+gIAAAAAAAAAAEBnJugL64nWpsYUFi1MoqMvAAAAAAAAAAAAdAWCvrCeaF0wN0nSkm5ZWKhM316CvgAAAAAAAAAAANCZCfrCeqJl/pwki7v5JmXp27OmuAUBAAAAAAAAAAAAa5WgL6wnWt7t6Du3ZXHAt29PHX0BAAAAAAAAAACgMxP0hfVEy4J3O/q21qSivFu611YWuSIAAAAAAAAAAABgbRL0hfVEy/zFQd95hZr07VWdsrKyIlcEAAAAAAAAAAAArE2CvrCeeG9H3749q4tcDQAAAAAAAAAAALC2CfrCeqJl/twk73b07VlT5GoAAAAAAAAAAACAtU3QF9YTLfPf09G3l6AvAAAAAAAAAAAAdHaCvrCeaFnwbtC3UJO+PauLXA0AAAAAAAAAAACwtgn6wnpiiY6+gr4AAAAAAAAAAADQ6Qn6wnqgUCi0d/SdV6hJn541Ra4IAAAAAAAAAAAAWNsEfWE9UGhckLQ0J3m3o28vHX0BAAAAAAAAAACgsxP0hfVAWzffdwoVaUpF+uroCwAAAAAAAAAAAJ2eoC+sB1rmz02yuJtvkvTpqaMvAAAAAAAAAAAAdHaCvrAeaOvoO69Qk+41FamuLC9yRQAAAAAAAAAAAMDaJugL64GW+YuDvg2tNenTs6bI1QAAAAAAAAAAAADrgqAvrAdaFsxNksxrrUnfXtVFrgYAAAAAAAAAAABYFwR9YT3Q3tG3UJu+OvoCAAAAAAAAAABAlyDoC+uBlgXvBn1ba9K3p46+AAAAAAAAAAAA0BUI+sJ64J8dfavTR9AXAAAAAAAAAAAAugRBX1gPtHX0nddak749a4pcDQAAAAAAAAAAALAuCPrCeuCfHX1r07eXjr4AAAAAAAAAAADQFQj6QokrtLakdcG8JDr6AgAAAAAAAAAAQFci6AslrnVhQ5JCkmR+oVpHXwAAAAAAAAAAAOgiBH2hxLXMn5MkaWitTsq6pVd3QV8AAAAAAAAAAADoCgR9ocS1LHg36FuoSe8e1SnvVlbkigAAAAAAAAAAAIB1QdAXSlzLgrlJknmtNenbs6bI1QAAAAAAAAAAAADriqAvlLiW+e929G2tSZ9e1UWuBgAAAAAAAAAAAFhXBH2hxLUFfecVatK3p6AvAAAAAAAAAAAAdBWCvlDiWhb8s6Nv3541Ra4GAAAAAAAAAAAAWFcEfaHEtXX0bdDRFwAAAAAAAAAAALoUQV8ocTr6AgAAAAAAAAAAQNck6Aslrq2j77xCTfr00tEXAAAAAAAAAAAAugpBXyhxLQvmJmnr6CvoCwAAAAAAAAAAAF2FoC+UsNbmRSk0LkiyuKNv3541Ra4IAAAAAAAAAAAAWFcEfaGEtb7bzbelUJaW8prU1VQUuSIAAAAAAAAAAABgXRH0hRLWMn9OksXdfPv0qk1ZWVmRKwIAAAAAAAAAAADWFUFfKGFtQd+G1pr07Vld5GoAAAAAAAAAAACAdUnQF0pYy4J/dvQV9AUAAAAAAAAAAICupaLYBQDL1rJgbpKkobU2fXvWFLkaAAAAYH1WKBTS1NSU1tbWYpfSaTU2Nrb/t1u3dd9joaKiIhUVtnwBAAAAADoTu76dyKJFi3LddddlwoQJmT59eurq6rLLLrvk5JNPzsiRI1fqWnPnzs0111yTiRMnZvr06WlpacnGG2+c0aNH58QTT8wmm2yyxPympqZMnjw5999/fyZPnrzEObvttluOP/74DB48eE0+bpfQMn9xR9+GVh19AQAAgFXT0tKS2bNnZ968eWlqaip2OZ1aa2trKioq8uqrrxYl6Jsk3bt3z4ABA1JXV1eU+wMAAAAAsGYJ+nYSixYtynHHHZcpU6akf//+2XPPPfPGG2/kD3/4Q+6///5ceeWV2X333VfoWrNnz86nP/3pTJ8+Pf369cvo0aNTUVGRp59+OjfffHPuuOOOjB07Ntttt137OY888kiOO+64JMnAgQPzkY98JEny5JNP5oYbbsiECRPy05/+NDvuuOOaf/hOrGXB4qDvvEJNBvfS0RcAAABYOS0tLZk+fXoaGxvTu3fv9OjRI+Xl5SkrKyt2aZ1SS0tLGhsbU11dnfLy8nV670KhkMbGxrz11luZPn16tthii1RVVa3TGgAAAAAAWPMEfTuJq6++OlOmTMmoUaMyduzY9OjRI0ly++2356yzzsrZZ5+de+65p/348owZMybTp0/Pbrvtlssvv7y9+0dzc3MuuOCC3Hzzzbnkkkty0003tZ9TVlaW/fbbL5///OeXCPM2Njbm/PPPz/jx43PWWWfl7rvvTmVl5Rp++s7rnx19q3X0BQAAAFba7Nmz09jYmE033TS1tbXFLqfTa2lpSZLU1NSs86BvktTW1qZnz5556aWXMmvWrAwZMmSd1wAAAAAAwJpVnPfHsUY1Nzdn3LhxSZLzzjtviTDvgQcemD322CNvv/12brnllhW63iOPPJIkOfHEE5d4xV9FRUVOP/30JMlTTz2VQqHQPjZ69Oj8+Mc/Xqpjb3V1dc4777z07NkzM2fOzOOPP75qD9lFtcyfmyRpKNSmr46+AAAAwEooFAqZN29eevfuLeTbhZSXl6d3795ZsGDBEvt3AAAAAACsnwR9O4HHHnss9fX1GTJkSEaNGrXU+AEHHJAkmThx4gpdb0U67vbu3XuFX/FYU1OTzTffPEkya9asFTqHxVoWLO7oO6+1Jn109AUAAABWQlNTU5qamlboDU90LrW1tWlpaUlTU1OxSwEAAAAAYDUJ+nYCzz77bJJk5MiRHY5vu+22SZJp06at0PV23333JMlVV12VhQsXth9vbm7O5ZdfniQ5/PDDV7i+lpaWzJw5M0kyYMCAFT6vqysUCmmZvzjo21CoSV9BXwAAAGAltLa2Jlnc4ZWupe3PvO1/AwAAAAAArL8qil0Aq+/VV19Nkmy88cYdjrcdr6+vz/z589O9e/flXu+EE07I448/ngcffDB77bVXtt9++1RWVuapp55KfX19jjvuuJx55pkrXN9tt92Wt956K/369ctOO+20wud1dYVFC5OWxV1XCtU9Ulnhh3IAAADAylvRtzLRefgzBwAAAADoPAR9O4EFCxYkWfxKvo7U1dW1f70iQd8ePXrk6quvzoUXXphf//rXue+++9rHRo4cme23336FO8HMmDEjl112WZLki1/8YqqqqlbovOUpFArtz9zZtHVQXrhwYZob5yZJGgsVqevRvdM+M5Sy965JoLisRygt1iSUDuuR5WlsbExra2taWlrS0tJS7HK6hEKh0P7fYn7mLS0taW1tzcKFC9+3q2+hUBAMBgAAAAAoYYK+LOXVV1/NF77whbz++uu56KKLsscee6S2tjZ/+ctf8u1vfztnnHFGTj/99Jx22mnLvU5DQ0NOOeWU1NfXZ//998+nPvWpNVJfU1NTnn322TVyrVL18ssvp/ztGemVZF5rTSq7NXf6Z4ZS9vLLLxe7BOBd1iOUFmsSSof1yLJUVFSksbGx2GV0OcX+zBsbG9Pc3JwXX3xxheaviX+cDwAAAADA2iHo2wm0dexdVvee93aCfb9uvklyzjnn5LnnnsuPfvSj7L///u3HP/rRj2aLLbbIQQcdlCuvvDIHHnhgNt988w6v0djYmJNPPjnTpk3L6NGj873vfW8lnmj5Kisrs9VWW62x65WShQsX5uWXX87mm2+essr5qU/SUKjJ4A37Zptttil2edDlvHdNLqtrOrBuWI9QWqxJKB3WI8vT2NiYV199NdXV1ampqSl2OV1CoVBIY2NjqqurO+yS+/Wvfz2/+c1vMnbs2Hzwgx9cq7VUVFRk0003TXV19XLnPf/882u1DgAAAAAAVo+gbycwaNCgJMnrr7/e4Xjb8T59+rxv0Pe1117LlClTUllZmX/9139danyTTTbJdtttl8mTJ2fKlCkdBn2bmppy+umnZ8qUKdlhhx0yZsyYNdoVpKysrD3c3FnV1tamufmdJIs7+g7o273TPzOUstraWmsQSoT1CKXFmoTSYT3SkW7duqVbt24pLy9PeXl5scspOcOHD8/gwYNz7733rrFrtrS0JFm8f9XRZ94W/m37c1lbysvL061bt9TW1r5vyLujQDIAAAAAAKWjW7ELYPW1dXqdOnVqh+PPPPNMksU/vHg/baHg7t27L/OHDb169UqS1NfXLzXW2tqas88+O5MmTcqIESNy1VVX+UHjKmpZMDdJ0tBak749l995BQAAAIDS96UvfSl33nlntttuu2KXAgAAAADAekLQtxPYaaed0qdPn8yYMSNPPfXUUuN33nlnkmTvvfd+32ttsMEGSRaHeP/+978vNd7c3NweHB4yZMgSY4VCIeeee27uuuuubLHFFrn22mvTu3fvlX4eFmtZMCdJ0lCoSd9egr4AAAAA67sNN9wwQ4cOTW1tbbFLAQAAAABgPSHo2wlUVFTkqKOOSpJccMEFaWhoaB+7/fbbM2nSpPTt2zeHHXZY+/Enn3wy+++/f/bff/8lrjVkyJBsu+22SZJzzz03b7/9dvtYU1NTLrvsssycOTM9e/bMbrvttsS53/nOd3LLLbdkyJAhuf7669O/f/81/qxdScv8d4O+rTXp03P5r1gEAAAAYMWMHz++/c1XM2fOzPDhw9t/7bXXXkmSr371qxk+fHgmT56chx56KMcee2w++MEPZvjw4Xn22WeTLH6L1ve+970cdthh+fCHP5wPfOAD2XPPPfP1r389zz33XIf3fu913+vII4/M8OHDM2PGjEyaNCn/8R//kR133DE77bRTjjvuuA7/cT8AAAAAAF1DRbELYM044YQT8qc//SlTpkzJvvvum1133TWzZ8/Oo48+msrKynz3u99Njx492ucvXLgwL730UofXuvjii3PMMce0X2u77bZLTU1Npk6dmtdeey2VlZW5+OKL06tXr/Zz7rnnnowdOzZJMnjw4PzgBz/o8Nr77LNP9tlnnzX34J1Yy4K5SZJ5hZr07amjLwAAAMCasOmmm+YTn/hEbr311tTV1WW//fZrH+vbt+8Sc++4447cfPPNGTFiRHbfffe89tprKSsrS5L893//d+65554MGzYs2223XaqqqvLSSy/ld7/7Xe6///789Kc/za677rpStd100025+uqrs8MOO+RjH/tYnnvuuTz44IP585//nFtuuSVDhw5d/Q8AAAAAAID1iqBvJ1FVVZVrrrkm1157bSZMmJB77703dXV12XvvvXPqqadm5MiRK3ytkSNHZsKECbnmmmvyxz/+MY888khaW1uzwQYb5OCDD86xxx6bESNGLHHO3Llz27/+vx1J3mvw4MGCviuoZX59ksUdffvq6AsAAACwRuyyyy7ZZZddcuutt6Zv3775zne+s8y5N910Uy699NIceuihS4195jOfybnnnpsNN9yw/VhLS0vuvvvunH322fnWt76VO++8sz0YvCLGjh2b6667LqNHj06SFAqFnH/++fnlL3+Zn/70p7n00ktX4kkBAAAAAOgMBH07kaqqqpx00kk56aST3nfuhz70oUybNm2Z4wMHDsy55567wvc+9NBDO/yBB6uuuWFOkmR+atOze1WRqwEAAAA6o0KhkMZFLcUuY4VVV5WvVHB2de22227L3PNqC+P+X3vssUf222+/3HHHHXn++eez9dZbr/D9jjzyyCWuW1ZWljPPPDO//OUvl/uP6wEAAAAA6LwEfaEEFVpb0/rOvJQl6VbXK+Xd1t0PsAAAAICuoVAo5JwrHsyzL79V7FJW2Dab98tlp+22zsK+7/dmqnnz5uW+++7LX//618ydOzdNTU1paWnJ888/nyR5+eWXVyrou8ceeyx1rF+/funTp09mzZq1csUDAAAAANApCPpCCSq805CyQiFJUt2zd5GrAQAAAOiaBg0atMyxP/zhD/n617+euXPnLnNOQ0PDGrlf9+7dU19fv1LXAgAAAACgcxD0hRLUsmDxD4jmt1ald6/uRa4GAAAA6IzKyspy2Wm7pXFRS7FLWWHVVeXrrJtvktTU1HR4/LXXXstZZ52V1tbWfOUrX8mee+6ZjTfeOFVVVWlsbMyVV16Zq6++OoV3/yH3ilqXzwYAAAAAwPpB0BdKUOvCxUHfeYXa9O1ZXeRqAAAAgM6qrKwsNdW2CFfW/fffn8bGxhx77LE57rjj2o+3tCwOTb/yyivFKg0AAAAAgE6mW7ELAJbW+m5H34bWmvQR9AUAAABY4yorK9Pc3LxK586ZMydJsvHGGy819vbbb+fhhx9erdoAAAAAAKCNoC+UoLag77xCTfr27PgVkQAAAACsug033DBvvvlme2h3ZWy55ZZJkt/85jdpaGhoPz5//vycf/75mTt37hqrEwAAAACArs17+aAEtS6cl2RxR9+hvXT0BQAAAFjT9t5774wbNy6f+MQnsuOOO6ampiZ9+/bNl7/85fc9d88998yIESPyzDPPZJ999skuu+ySQqGQRx55JOXl5fnEJz6RW2+9dR08BQAAAAAAnZ2OvlCC2jr6NrTq6AsAAACwNnzpS1/KUUcdlST53e9+l1//+te58847V+jcysrK/OIXv8gxxxyTXr16ZdKkSXnqqaey995754YbbsjAgQPXZukAAAAAAHQhZYVCoVDsImBFPfXUU0mSUaNGFbmStWPBggV59tlns/Hzv0/j84/mV/M/mCO/eGoGbdCj2KVBl9S2JrfZZpvU1dUVuxzo0qxHKC3WJJQO65Hleeedd/LSSy9liy22SE2Nf0i8LrS0tOSdd95JTU1NysvLi1bHyvzZd/b9NgAAAACA9Z2OvlCCmhvmJEnmtdamT8/qIlcDAAAAAAAAAAAAFIOgL5SglgWLg76N5XWpra4ocjUAAAAAAAAAAABAMQj6QgkqLJyXJOlW1ytlZWVFrgYAAAAAAAAAAAAoBkFfKDWtzSlrWpgkqerZt8jFAAAAAAAAAAAAAMUi6AslpmzRgiRJS6EstT17FbkaAAAAAAAAAAAAoFgEfaHEdGtcHPRtKNSkb6+aIlcDAAAAAAAAAAAAFIugL5SYskXzkyTzWgV9AQAAAAAAAAAAoCsT9IUS023Rezr69qwucjUAAAAAAAAAAABAsQj6Qolp6+jb0FqTvj119AUAAAAAAAAAAICuStAXSkxbR995hZr07aWjLwAAAAAAAAAAAHRVgr5Qahp19AUAAAAAAAAAAAAEfaH0vPPPoG/vHjr6AgAAAAAAAAAAQFcl6AslptC4IEnSXNUjlRWWKAAAAAAAAAAAAHRVUoRQYrotWtzRt1tdryJXAgAAAAAAAAAAABSToC+UkEKhkIrmxR19K3v0KW4xAAAAAKyyyZMnZ/jw4fnqV79a7FIAAAAAAFiPCfpCCSk0vZPyQkuSpKZX3yJXAwAAAAAAAAAAABSToC+UkNYFc5MkjYWK9Ozds8jVAAAAAAAAAAAAAMUk6AslpC3o29Bak749a4pcDQAAAAAAAAAAAFBMgr5QQloXLg76zivUpG+v6iJXAwAAAND5TJs2LcOHD89+++23zDlTp07N8OHDc+CBByZJ5syZk5///Oc5/vjjs9dee2XUqFHZZZdd8pnPfCbjx49fV6UDAAAAANAFVRS7AOCf3tvRd9Oegr4AAAAAa9rw4cMzYsSI/PWvf82TTz6Z7bbbbqk5t912W5Lk4x//eJLksccey0UXXZSBAwdms802yw477JDZs2fn8ccfz2OPPZannnoq55133jp9DgAAAAAAugZBXygh7UHfQk369qwpcjUAAABAZ1coFFJoaix2GSusrLI6ZWVlq32dgw8+OH/9619z2223LRX0bWlpyR133JFu3brl4IMPTpIMHTo0N954Y3baaacl5r7xxhs54YQTcsMNN+Tggw/OqFGjVrs2AAAAAAB4L0FfKCHN8+ckSea11qSPjr4AAADAWlQoFPLquG+kcca0YpeywqqHjMigoy5e7bDvQQcdlO9///u544478tWvfjWVlZXtYw8++GBmz56d0aNHZ6ONNkqSbLrpptl0002Xus4GG2yQs88+O8cee2zuvvtuQV8AAAAAANY4QV8oIY3zFgd9F6QmPeuqilwNAAAA0Pmtfnfc9dEGG2yQ0aNH58EHH8z//u//Zq+99mofmzBhQpLkkEMOWeKcQqGQRx55JI8++mhmzZqVxsbGFAqFzJ8/P0ny8ssvr6vyAQAAAADoQgR9oYQ0LWhIRZKWqh7p1q1r/qANAAAAWDfKysoy6KiLU2hqLHYpK6yssnq1u/m2Ofjgg/Pggw/mtttuaw/6NjQ05J577kldXV323Xff9rlvvPFGTj311DzxxBPLvF5DQ8MaqQsAAAAAAN5L0BdKyJyBu+T1V+ZkVs+hxS4FAAAA6ALKyspSVlVT7DKK4l//9V9TV1eX++67L/PmzUvPnj3z+9//Pu+8804+/vGPp66urn3uueeemyeeeCJ77bVXjj/++AwdOjQ9e/ZMeXl5Xnrppey///5FfBIAAAAAADqzbsUuAPin13tsk6sa9k5tz97FLgUAAACgU6utrc1+++2XxsbG/O53v0uS3HbbbUmSQw45pH3eggUL8sADD6R///654oorsvPOO6dPnz4pLy9PkrzyyivrvHYAAAAAALoOQV8oIfUNi5IkfXpWF7kSAAAAgM7v4IMPTpJMmDAh//jHPzJlypRstNFGGT16dPucefPmpbW1NRtuuGF7uPe9JkyYsM7qBQAAAACg6xH0hRIypy3o26OqyJUAAAAAdH4f+tCHsvHGG+eRRx7Jf//3f6e1tTUHHnhgunX757bpgAED0qtXrzz33HOZPHnyEuffcsstueOOO9Z12QAAAAAAdCGCvlBC6uc1JtHRFwAAAGBd6NatWw466KAUCoXccMMNSZJDDjlkiTnl5eX5whe+kJaWlhxzzDE56qijctZZZ+Wggw7K17/+9ZxwwglFqBwAAAAAgK5C0BdKSGth8X836ldb3EIAAAAAuoiDDz64/ettt902w4YNW2rO8ccfnx/84AcZOXJknn766UyaNCl9+vTJVVddlSOOOGJdlgsAAAAAQBdTUewCgH866t+GZUifpmw3tH+xSwEAAADoErbeeutMmzbtfecdcMABOeCAAzocazu/paWl/diHPvShFbouAAAAAAAsj46+UEI27Fub7bfonm7dyopdCgAAAAAAAAAAAFBkgr4AAAAAAAAAAAAAUIIERLEN7AABAABJREFUfQEAAAAAAAAAAACgBAn6AgAAAAAAAAAAAEAJEvQFAAAAAAAAAAAAgBIk6AsAAAAAAAAAAAAAJUjQFwAAAAAAAAAAAABKkKAvAAAAAHRihUKh2CWwjvkzBwAAAADoPAR9AQAAAKATqqioSJI0NjYWuRLWtaampiRJeXl5kSsBAAAAAGB1CfoCAAAAQCdUUVGR7t2756233kpLS0uxy2EdKRQKmTNnTqqrq1NZWVnscgAAAAAAWE0VxS4AAAAAAFg7BgwYkOnTp+ell15K7969U1tbm/Ly8pSVlRW7tE6ppaWlvYPyuu6mWygU0tTUlDlz5qShoSGDBw9ep/cHAAAAAGDtEPTtRBYtWpTrrrsuEyZMyPTp01NXV5dddtklJ598ckaOHLlS15o7d26uueaaTJw4MdOnT09LS0s23njjjB49OieeeGI22WSTtV4DAAAAAKunrq4uW2yxRWbNmpW33347s2fPLnZJnVpra2uam5tTUVGRbt2K8zK16urqDB48OL169SrK/QEAAAAAWLMEfTuJRYsW5bjjjsuUKVPSv3//7LnnnnnjjTfyhz/8Iffff3+uvPLK7L777it0rdmzZ+fTn/50pk+fnn79+mX06NGpqKjI008/nZtvvjl33HFHxo4dm+22226t1QAAAADAmlFVVZUhQ4a0d3xtbW0tdkmd1sKFC/Piiy9m0003TW1t7Tq/f3l5eSorK9f5fQEAAAAAWHsEfTuJq6++OlOmTMmoUaMyduzY9OjRI0ly++2356yzzsrZZ5+de+65p/348owZMybTp0/Pbrvtlssvvzx1dXVJkubm5lxwwQW5+eabc8kll+Smm25aazUAAAAAsGaVlZWlqqqq2GV0am0h6urq6tTU1BS5GgAAAAAAOoPivD+ONaq5uTnjxo1Lkpx33nlLBGkPPPDA7LHHHnn77bdzyy23rND1HnnkkSTJiSee2B7yTZKKioqcfvrpSZKnnnoqhUJhrdUAAAAAAAAAAAAA0NUJ+nYCjz32WOrr6zNkyJCMGjVqqfEDDjggSTJx4sQVut6KvN6vd+/eKSsrW2s1AAAAAAAAAAAAAHR1gr6dwLPPPpskGTlyZIfj2267bZJk2rRpK3S93XffPUly1VVXZeHChe3Hm5ubc/nllydJDj/88LVaAwAAAAAAAAAAAEBXV1HsAlh9r776apJk44037nC87Xh9fX3mz5+f7t27L/d6J5xwQh5//PE8+OCD2WuvvbL99tunsrIyTz31VOrr63PcccflzDPPXKs1AAAAAAAAAAAAAHR1gr6dwIIFC5IktbW1HY7X1dW1f70iIdsePXrk6quvzoUXXphf//rXue+++9rHRo4cme233z7l5eVrtYblKRQK7ffrbNo6KL+3kzJQPNYklA7rEUqLNQmlw3qE0rI+rslCoZCysrJilwEAAAAAwDII+rKUV199NV/4whfy+uuv56KLLsoee+yR2tra/OUvf8m3v/3tnHHGGTn99NNz2mmnFaW+pqamPPvss0W597ry8ssvF7sE4D2sSSgd1iOUFmsSSof1CKVlfVuTVVVVxS4BAAAAAIBlEPTtBNq65S6rU8h7u9+uSCfdc845J88991x+9KMfZf/9928//tGPfjRbbLFFDjrooFx55ZU58MADs/nmm6+VGpansrIyW2211Wpdo1QtXLgwL7/8cjbffPNldkcG1h1rEkqH9QilxZqE0mE9QmlZH9fk888/X+wSAAAAAABYDkHfTmDQoEFJktdff73D8bbjffr0ed+Q7WuvvZYpU6aksrIy//qv/7rU+CabbJLtttsukydPzpQpU9qDvmuyhuVpampKoVDICy+8sMrXKGWFQiFJMnPmTK9MhBJgTULpsB6htFiTUDqsRygt6+OabGpqWm9qBQAAAADoigR9O4FtttkmSTJ16tQOx5955pkkyfDhw9/3Wm2B3O7du6e8vLzDOb169UqS1NfXr5Ualqez/9ChrKzMqxKhhFiTUDqsRygt1iSUDusRSsv6uCbLyso6/Z4bAAAAAMD6TNC3E9hpp53Sp0+fzJgxI0899VRGjRq1xPidd96ZJNl7773f91obbLBBksUh3r///e/ZbLPNlhhvbm5uD+0OGTJkrdSwPDvuuONqnQ8AAAAAAAAAAACwvuhW7AJYfRUVFTnqqKOSJBdccEEaGhrax26//fZMmjQpffv2zWGHHdZ+/Mknn8z++++f/ffff4lrDRkyJNtuu22S5Nxzz83bb7/dPtbU1JTLLrssM2fOTM+ePbPbbrutVg0AAAAAAAAAAAAALFtZoVAoFLsIVt+iRYty3HHHZcqUKenfv3923XXXzJ49O48++mgqKyszZsyYfPSjH22fP3ny5PZg7rRp05a41tSpU3PMMcdk7ty56dWrV7bbbrvU1NRk6tSpee2111JZWZnvf//7S4WEV7YGAAAAAAAAAAAAAJZN0LcTWbRoUa699tpMmDAh06dPT11dXXbeeeeceuqpGTly5BJzlxf0TZLXXnst11xzTf74xz9m5syZaW1tzQYbbJBdd901xx57bEaMGLHaNQAAAAAAAAAAAACwbIK+AAAAAAAAAAAAAFCCuhW7AAAAAAAAAAAAAABgaYK+AAAAAAAAAAAAAFCCBH0BAAAAAAAAAAAAoAQJ+gIAAAAAAAAAAABACRL0BQAAAAAAAAAAAIASJOgLAAAAAAAAAAAAACVI0BcAAAAAAAAAAAAASlBFsQsAkkWLFuW6667LhAkTMn369NTV1WWXXXbJySefnJEjRxa7POhUmpqaMnny5Nx///2ZPHlypk+fnpaWlmy88cbZbbfdcvzxx2fw4MEdnvvKK6/k8ssvz8MPP5w5c+Zk4403zn777ZeTTz453bt3X8dPAp1ToVDI0UcfncmTJydJ7rzzzgwdOnSpedYjrF3z5s3Ltddem3vuuSczZsxIkmy00UbZeeedc8YZZ2SjjTZaYr41CWvHiy++mKuvvjqTJ0/OrFmzUlFRkU033TT77rtvPv/5z3e4vmbPnp0rrrgi999/f2bPnp0BAwbkYx/7WE4//fT079+/CE8B64+pU6fmoYceylNPPZWnn346M2fOTJJMnDgxQ4YMWeZ5q/J9sFAo5Je//GV+9atf5cUXX0xVVVU+8IEP5IQTTsjo0aPXyvMBAAAAALB+KisUCoViFwFd2aJFi3LcccdlypQp6d+/f3bddde88cYb+fOf/5zKyspceeWV2X333YtdJnQaDz30UD7/+c8nSQYOHNgepn/yyScza9as9OjRIz/96U+z4447LnHe1KlTc+SRR2b+/PkZOXJkNt100zz55JOZOXNmhg0blhtuuCE9e/Zc588Dnc0vf/nLnHfeeSkrK0uhUOgw6Gs9wtr1/PPP5/Of/3xmzZqVzTbbLCNGjEhTU1NeeeWVPP/88/nFL36RXXbZpX2+NQlrx6OPPprjjjsu77zzTjbffPMMHz48CxcuzGOPPZaGhoYMHTo0N954Y3r37t1+zsyZM3PEEUfkjTfeyJZbbpnhw4dn2rRpefHFF7PRRhvlpptuysCBA4v4VFDaTjnllEycOHGp48sL+q7K98FCoZCzzz47v/3tb9O9e/d85CMfyfz58/OnP/0pra2tueiii3L44YevlWcEAAAAAGD9I+gLRfaTn/wkP/7xjzNq1KiMHTs2PXr0SJLcfvvtOeuss9K3b9/cc8897ceB1fPwww/nxhtvzOc///klwryNjY05//zzM378+AwePDh33313KisrkyQtLS054IAD8vLLL+ess87KiSeemGRxUP+MM87IfffdlyOOOCIXXnhhUZ4JOovXX389//7v/54dd9wxL774YmbOnLlU0Nd6hLVr7ty5OfDAA/P222/n29/+dg466KAlxl955ZX06NEj/fr1S2JNwtp04IEH5m9/+1tOOeWUnHHGGSkrK0uS1NfX59hjj83UqVNz4okn5qyzzmo/5+ijj86f/vSnfPrTn87555/f/g9nzj///Pzyl7/MbrvtlmuuuaZYjwQl76qrrsqCBQvygQ98IKNGjcqhhx6a2bNnLzPou6rfB3/zm9/knHPOyZAhQ3LDDTe0d8p/5JFH2v9h6t13373Mt80AAAAAANC1dCt2AdCVNTc3Z9y4cUmS8847b4kw74EHHpg99tgjb7/9dm655ZZilQidzujRo/PjH/94qY691dXVOe+889KzZ8/MnDkzjz/+ePvYxIkT8/LLL2fYsGE54YQT2o9XVVXlwgsvTEVFRW655Za8/fbb6+w5oDP61re+ldbW1lxwwQXLnGM9wtp1xRVX5B//+EfOOuuspUK+SbLpppu2h3wTaxLWlrfffjt/+9vfUllZmZNPPrk95Jskffr0ybHHHpskeeKJJ9qPT506NX/605/Sp0+ffP3rX28/p6ysLF//+tfTp0+fPPjgg/nrX/+6bh8G1iMnnnhi/vM//zP77LNPe/h2eVb1+2Bb4P7ss89e4j677rprDj/88DQ1NeX6669fQ08FAAAAAMD6TtAXiuixxx5LfX19hgwZklGjRi01fsABByRJh6+NBNa8mpqabL755kmSWbNmtR+/7777kiT77bffEiGLJNlwww2z8847p7m5OZMmTVpntUJn85vf/CaTJk3KmWeeudzOZdYjrD2NjY0ZP358amtrc8QRR6zQOdYkrB1tb5Z4P3379m3/um097rXXXqmurl5iXnV1dfbaa68kyT333LOGqgRW5fvgjBkz8txzzy2xLt/LXhAAAAAAAP+XoC8U0bPPPpskGTlyZIfj2267bZJk2rRp66wm6MpaWloyc+bMJMmAAQPaj7et1Q984AMdnte2hnVHg1Uze/bsXHrppRk1alSOOuqo5c61HmHtefrppzNv3rxsu+22qa2tzcMPP5zvfve7+da3vpWrrroqL7744lLnWJOwdvTo0SM77rhjmpqacuWVV6ZQKLSP1dfX59prr02SHH744e3HV3Q9+vslrDmr8n2w7eutt946VVVVS53Tthc0Y8aMNDQ0rNF6AQAAAABYP1UUuwDoyl599dUkycYbb9zheNvx+vr6zJ8/P927d19ntUFXdNttt+Wtt95Kv379stNOO7Uff7+12vaq1bZ5wMq58MIL09DQkIsvvjjdui3/36FZj7D2PP/880mS/v3754wzzsjdd9+9xPgPfvCDnHTSSTnzzDPbj1mTsPZccsklOf744zNmzJjceeedGT58eN555538+c9/Tm1tbb773e9mt912a5/fts7a1t3/1bZO2/5hG7D6VuX74Pud07179/Ts2TPz5s3Lq6++mmHDhq3JkgEAAAAAWA8J+kIRLViwIElSW1vb4XhdXV3714K+sHbNmDEjl112WZLki1/84hKdld5vrbatzfnz56/lKqHzufvuu3P33XfnxBNPzIgRI953vvUIa8+cOXOS/PM15GeffXYOOuiglJeX56677sp3v/vdjBkzJoMGDWrvImpNwtozdOjQ3HjjjTnzzDPzl7/8JS+//HL72Ic//OFstdVWS8xvW4/v/Xvke7Udtx5hzVmV74Pvd06yeL3OmzfPegUAAAAAIEmy/JZpANAFNDQ05JRTTkl9fX3233//fOpTnyp2SdAl1NfX58ILL8xmm22W0047rdjlQJfX2tqaJGlqaspJJ52U448/PhtttFEGDBiQI488Ml/60peSJGPGjClmmdBl/OlPf8rHP/7xzJs3Lz/96U/zyCOP5IEHHsiFF16Yhx9+OJ/5zGfy4IMPFrtMAAAAAAAA1jJBXyiito5KCxcu7HC8rctLEt18YS1pbGzMySefnGnTpmX06NH53ve+t9Sc91urbV2WrFNYOZdeemlmz56dCy64INXV1St0jvUIa897u4C2dex9r7Z/CPPqq69m+vTpS5xjTcKaVV9fnzPPPDOLFi3K1Vdfnd133z29evXKRhttlCOOOCIXXnhhGhsbc95556WlpSXJP9fje/8e+V5tx61HWHNW5fvg+52TWK8AAAAAACxJ0BeKaNCgQUmS119/vcPxtuN9+vTxwx1YC5qamnL66adnypQp2WGHHTJmzJhUVVUtNe/91uo//vGPJeYBK2bixImprq7OmDFjcuSRRy7x64033kiSnHPOOTnyyCPzu9/9Lon1CGvT4MGDkyRVVVXZaKONlhrv3r17+vXrlyTta9SahLXj/vvvT319fXbYYYf2tfle++67byorKzNjxoz24H3bOmtbd/9X2zrt6HrAqlmV74Pvd878+fMzb968pc4DAAAAAKDrEvSFItpmm22SJFOnTu1w/JlnnkmSDB8+fJ3VBF1Fa2trzj777EyaNCkjRozIVVddtUQnw/dqW6tPP/10h+Nta3jEiBFrp1joxBobGzNlypSlfi1atChJ8tRTT2XKlCntQQjrEdaebbfdNkmyaNGi9g6E79XS0tIePGr7nmlNwtrRFg7s2bNnh+MVFRXt63DOnDlJVnw9+vslrDmr8n2w7eu//e1v7f+f973a9oKGDBmSHj16rNF6AQAAAABYPwn6QhHttNNO6dOnT2bMmJGnnnpqqfE777wzSbL33nuv69KgUysUCjn33HNz1113ZYsttsi1116b3r17L3P+nnvumSS5++67UygUlhibNWtW/vznP6eioiIf/ehH12rd0Nk8+uijmTZtWoe/2roN3nnnnZk2bVqOOeaYJNYjrE0DBw7MyJEjkySTJ09eavzRRx9NU1NTamtrs+WWWyaxJmFt2WCDDZIsDgk2NzcvNf7yyy+3B3zbvme2rcd77703jY2NS8xvbGzMvffemyTZZ5991lrd0NWsyvfBIUOGZNiwYUusy/eyFwQAAAAAwP8l6AtFVFFRkaOOOipJcsEFF6ShoaF97Pbbb8+kSZPSt2/fHHbYYcUqETql73znO7nlllsyZMiQXH/99enfv/9y5++1117ZfPPN89xzz+Xqq69uP75o0aJ861vfSnNzcw477LD215kDa4/1CGvXiSeemCT57ne/mxkzZrQf/8c//pFLLrkkSfLJT34yVVVVSaxJWFs++tGPpqamJjNnzsz3v//9JcK+b731Vs4999wkyQc/+MEMGDAgSTJy5Mj8y7/8S+rr6/Ptb3+7PXRYKBTy7W9/O/X19dltt9102IY1aFW/Dx533HFJku9973vtHbyT5JFHHsmvfvWrVFZW5uijj143DwEAAAAAQMkrK/zfdhPAOrVo0aIcd9xxmTJlSvr3759dd901s2fPzqOPPprKysqMGTNGBzRYg+65556ceuqpSZIPfehDGTRoUIfz9tlnnyW6nT399NM58sgjs2DBgowcOTKbbbZZnnjiicycOTPDhg3LDTfcsMxXKwMrb6+99srMmTNz5513ZujQoUuMWY+wdp1//vm58cYbU1dXl5122indunXL448/nnnz5mWHHXbI2LFjU1tb2z7fmoS141e/+lW+9a1vpbW1NYMGDcq2226bd955J0888UTmzZuXAQMG5Oc//3m22GKL9nNmzpyZI444Im+88UaGDh2a4cOHZ9q0aXnhhRey4YYb5uabb87AgQOL+FRQ2u6///6MGTOm/ffPPPNMmpqass0227T/I5c99tij/e+Uyap9HywUCvnyl7+c22+/PT169MiHP/zhLFiwIA8//HBaW1tz0UUX5fDDD183Dw0AAAAAQMkT9IUSsGjRolx77bWZMGFCpk+fnrq6uuy888459dRT21+fDKwZ48ePz9e+9rX3nXfaaafl9NNPX+LY3//+91x++eV5+OGHM2fOnGy88cbZb7/9csopp6R79+5rq2TokpYX9E2sR1jbfvvb3+YXv/hFnnvuuTQ3N2fzzTfPgQcemKOPPjrV1dVLzbcmYe144okncv311+exxx7L7NmzU15eniFDhuSjH/1ojj/++A7fTDF79uxcfvnluf/++/Pmm2+mf//++djHPpYzzjjjfd9kAV3divx98ROf+ES+853vLHFsVb4PFgqF3HjjjfnVr36VF198MZWVlRk1alROPPHEjB49eo09EwAAAAAA6z9BXwAAAAAAAAAAAAAoQd2KXQAAAAAAAAAAAAAAsDRBXwAAAAAAAAAAAAAoQYK+AAAAAAAAAAAAAFCCBH0BAAAAAAAAAAAAoAQJ+gIAAAAAAAAAAABACRL0BQAAAAAAAAAAAIASJOgLAAAAAAAAAAAAACVI0BcAAAAAAAAAAAAASpCgLwAAAAAAAAAAAACUIEFfAABgvTFjxowMHz48w4cPL3YpAAAAAAAAALDWVRS7AAAAYM068sgjM2XKlBWaO23atLVcDQAAAAAAAACwqgR9AQCgkxo4cGAGDhxY7DIAAAAAAAAAgFUk6AsAAJ3UYYcdltNPP73YZQAAAAAAAAAAq6hbsQsAAAAAAAAAAAAAAJamoy8AAJAZM2Zk7733TpJMmzYt9957b6677rr89a9/TXNzc7beeut87nOfy8c//vFlXuOFF17IT3/600yePDmzZs1KbW1thg8fnoMPPjiHHnpoysvLOzyvubk5v/3tb3P77bfnmWeeybx589K3b99sttlm2WuvvXL44YenZ8+eHZ776KOP5qqrrsoTTzyRhQsXZrPNNssRRxyRz372sykrK1v9DwYAAAAAAAAAikjQFwAAWMLPfvazXHzxxenTp0823XTTvP7663niiSfyxBNP5Mknn8y555671Dl33nlnvvKVr6SpqSl1dXUZNmxY5syZk0ceeSSPPPJI7rrrrowZMyY1NTVLnPfWW2/llFNOyeOPP54k2WCDDTJixIi89dZbeeyxx/LII49k5MiR+dCHPrTUPcePH59vfOMb6dWrV4YMGZJXX301zz33XC666KLMnDkz55xzztr5gAAAAAAAAABgHelW7AIAAIDSctlll+WUU07JH//4x9xyyy158MEHc/7556dbt2752c9+lrvuumuJ+S+88EK++tWvpqmpKYcffnj++Mc/Zvz48Zk4cWKuu+669OzZM3/84x/z3e9+d4nzCoVCzjzzzDz++OMZOHBgxo4dmwcffDC//vWvc++992by5Mk577zzMmDAgA7rPO+883LOOefkoYceyi233JKHH344X/rSl5Ik1113XV555ZW18wEBAAAAAAAAwDoi6AsAAJ3UFVdckeHDhy/z1ymnnNLheR/84Adz5plnpqJi8QtAysrK8pnPfCaf/OQnkyRjxoxZYv4111yTxsbGDBs2LBdddFHq6uraxz784Q+3d9a9+eabM2vWrPax++67L1OmTElVVVWuueaajB49eonr9uzZM//xH/+RoUOHdljnxz/+8RxzzDEpLy9vP/aFL3whw4YNS6FQyP3337+CnxQAAAAAAAAAlCZBXwAA6KQGDhyYnXbaaZm/ttpqqw7PO/roo5d7/Lnnnstrr73WfvyBBx5Ikhx11FEpKytb6rxDDjkk/fv3T1NTUx566KH247///e+TJPvuu+8yw7zL89nPfrbD4zvuuGOS6OgLAAAAAAAAwHqvotgFAAAAa8dhhx2W008/faXP23rrrTs8vsUWW6SioiLNzc154YUXMnDgwMybNy9vvPFGkmTYsGEdnldZWZktt9wyb775Zl588cX2488991ySfwZzV9bmm2/e4fH+/fsnSebPn79K1wUAAAAAAACAUqGjLwAAsIQBAwZ0eLy8vDx9+vRJ8s8Q7XvDtMs6L0k22GCDpeY3NDQkSXr27LlKddbV1XV4vFu3xX/NKRQKq3RdAAAAAAAAACgVgr4AAMASZs+e3eHxlpaW1NfXJ0m6d+++xH+Xd16S9q6/753fo0ePJMm8efNWq14AAAAAAAAA6KwEfQEAgCX87W9/6/D4Sy+9lObm5iTJ0KFDkyzuxtvWrfe5557r8Lzm5ua8+OKLSZItt9yy/fjw4cOTJI8//viaKRwAAAAAAAAAOhlBXwAAYAnjxo1b7vFhw4Zl4MCB7cf32GOP9vFCobDUebfddlvefPPNVFZW5iMf+Uj78f322y9J8vvf/749CAwAAAAAAAAA/JOgLwAAsITJkyfniiuuaO/eWygUcvPNN+fXv/51kuTkk09eYv6xxx6b6urqPPfcc/nWt76VBQsWtI89/PDDueyyy5IkRxxxRHv33yT52Mc+ln/5l3/JokWLcvzxx2fy5MlLXLehoSE33nhjXnjhhbXynAAAAAAAAABQ6iqKXQAAALB23HLLLXnooYeWO+eb3/xmtt122yWOnXPOObn44ovzs5/9LJtssklef/31vPHGG0mS//iP/8gBBxywxPyhQ4fmO9/5Tr7yla/k5ptvzu23354tt9wyc+bMyfTp05MkH/nIR3L22Wcvdf8f/OAHOfnkk/OXv/wlRx11VDbYYIMMHDgwb775Zl5//fW0tLRk3LhxGTp06Op8FAAAAAAAAACwXhL0BQCATuq1117La6+9ttw58+bNW+rYkUcemUGDBmXs2LF59tln09zcnO222y6f/exnc8ghh3R4nQMOOCDDhg3LNddckz/96U+ZNm1aampqsssuu+SQQw7JoYcemvLy8qXO69evX37+85/nN7/5TX77299m2rRpefbZZ9OvX7/svPPO2XvvvTNy5MhVen4AAAAAAAAAWN+VFQqFQrGLAAAAimvGjBnZe++9kyTTpk0rcjUAAAAAAAAAQJJ0K3YBAAAAAAAAAAAAAMDSBH0BAAAAAAAAAAAAoAQJ+gIAAAAAAAAAAABACRL0BQAAAAAAAAAAAIASVFYoFArFLgIAAAAAAAAAAAAAWJKOvgAAAAAAAAAAAABQggR9AQAAAAAAAAAAAKAECfoCAAAAAAAAAAAAQAkS9AUAAAAAAAAAAACAEiToCwAAAAAAAAAAAAAlSNAXAAAAAAAAAAAAAEqQoC8AAAAAAAAAAAAAlCBBXwAAAAAAAAAAAAAoQYK+AAAAAAAAAAAAAFCCBH0BAAAAAAAAAAAAoAQJ+gIAAAAAAAAAAABACRL0BQAAAAAAAAAAAIASJOgLAAAAAAAAAAAAACVI0BcAAAAAAAAAAAAASpCgLwAAAAAAAAAAAACUIEFfAAAAAAAAAAAAAChBgr4AAAAAAAAAAAAAUIIEfQEAAAAAAAAAAACgBAn6AgAARXPkkUdm+PDhGT9+fLFLAQAAAABYK8aPH5/hw4fnyCOPXGpsdfZI99prrwwfPjyTJ09eE2WusOHDh2f48OGZMWPGOr0vAEBXVVHsAgAAgHVj+PDhq3TepZdemkMPPXQNVwMAAAAAsO597Wtfy/jx47P99tvn5ptvXqFzPvWpT+WJJ57I4YcfnosvvngtV1g8M2bMyK233pqePXvmmGOOKXY5AAC8S9AXAAC6iJ122qnD44899liSZPPNN0+/fv2WGu/fv/9aq2ngwIHZYost0rNnz7V2DwAAAACANoceemjGjx+fJ554Ii+88EKGDh263PkvvPBCnnjiiSTJYYcdtsbrKaU90pkzZ+aKK67I4MGDlxv03WKLLZIklZWV66gyAICuTdAXAAC6iBtvvLHD422dfr/whS+s88693/3ud9fp/QAAAACArm3XXXfNZpttlr///e+59dZb8+Uvf3m582+55ZYkydChQ7Pjjjuu8XrWxz3S3/3ud8UuAQCgS+lW7AIAAAAAAAAAANaVtoYHt912W1paWpY5r6WlJRMmTFjiHAAAWNcEfQEAgGXaa6+9Mnz48EyePDkvvvhizjnnnHz0ox/NyJEj89WvfrV93qOPPprLLrssn/zkJ7PbbrvlAx/4QD784Q/nxBNPzL333rvM6x955JEZPnx4xo8fv8TxyZMnZ/jw4dlrr72SJBMnTsyRRx6ZXXbZJTvssEMOP/zw3HHHHWvnoQEAAACATu0Tn/hEysvLM2vWrDz44IPLnPfAAw/kjTfeSEVFRQ455JC8/vrruf7663Pcccdln332yXbbbZeddtophx56aMaMGZOGhoaVrmVZe6RtJk+enGOPPTa77LJLdtxxxxx22GH59a9/vdxrzp8/P7fddlu+9KUv5d/+7d+y8847Z7vttsu+++6b888/P9OnT++wjqOOOipJMnPmzAwfPnyJX5MnT26f23ZsxowZHd7/gQceyEknnZQPf/jD+cAHPpCPfOQjOeWUU/Lwww8v8xntBwMALFtFsQsAAABK31/+8pdceeWVaWlpyVZbbZXevXunrKysffzUU09NfX19+vTpkw022CAbbrhhXnvttUyaNCmTJk3KiSeemLPOOmuV7n3FFVfk8ssvz4ABA7Lppptm+vTpefLJJ/OlL30pb7/9dj73uc+tqccEAAAAALqAjTbaKB/5yEfywAMPZPz48dljjz06nNcWvv3oRz+aAQMG5LLLLsu1116bmpqaDBgwIMOGDUt9fX3++te/ZurUqbnjjjtyww03pHfv3mukzl/96lf55je/mUKhkJ49e2bLLbfMP/7xj3zjG9/Ic889t8zzpkyZkq985SupqKhI//79s9lmm2XhwoV59dVXc+ONN+b222/Ptddem+222679nLZnee6551JVVZUPfOADS1yzZ8+eK1TzJZdcknHjxiVJ+vfvnxEjRmTGjBmZOHFiJk6cmJNPPjn/+Z//uczz7QcDACxN0BcAAHhfP/rRj/Jv//ZvOe+889KrV68kyTvvvNM+/uUvfzn/8i//kk022WSJ8x566KF8+ctfzlVXXZW99947O+yww0rdd9asWbn66qvz/e9/PwcddFCSpLm5OZdcckluuOGG/Nd//VcOOeSQ9OjRY/UeEAAAAADoUg477LA88MADuffeezNnzpylwrlvvfVW7rvvvva5yeLA75577pmdd9455eXl7XNfe+21XHjhhbn33nvzX//1X7nwwgtXu74XXnghF1xwQQqFQo488sh85StfSVVVVQqFQm6++eZccMEFSzRjeK/NNtssP/7xj7Pbbrule/fu7ccbGhpyzTXXZMyYMfnqV7+aO+64o/0a3/zmNzN58uQcddRR2WCDDXLjjTeudM233nprxo0bl/Ly8nzzm9/MEUcckW7duqWlpSXjxo3LZZddliuvvDIjRozI/vvvv9T59oMBADrWrdgFAAAApW+LLbbIZZdd1h7yTZKampr2rw8//PClQr5J8uEPfzhf/OIXkyze5F1ZTU1N+cIXvtC+qZskFRUV+epXv5p+/fplwYIFS7wyDgAAAABgRey1117p27dvFi1alNtvv32p8d/+9rdpamrKgAED8rGPfSxJMnr06Hzwgx9cIuSbJAMHDsz/+3//L5WVlfntb3+blpaW1a7vmmuuSVNTU7bddtuce+65qaqqSpKUlZXliCOOyGGHHZbm5uYOz91yyy2z3377LRHyTZIePXrkzDPPzE477ZQXXnghTz755GrX+V5jxoxJkhxxxBH5zGc+k27dFkdSysvL8/nPf759n/cnP/lJh+fbDwYA6JiOvgAAwPs65JBDUlGx/L8+PP/88/nd736XadOmpb6+vn2TuaGhIUny7LPPrtK9/+M//mOpY9XV1dl2223z4IMP5pVXXlml6wIAAAAAXVdVVVUOOuigjBs3LuPHj89nP/vZJcbHjx+fJPn4xz++xN5oQ0ND7rzzzjz++OOZNWtWFi5cmEKhkGRxCHfBggV5+eWXM3To0NWq74EHHkiSfO5zn+tw/Oijj87NN9+8zPNbWlpy33335eGHH8706dMzf/78tLa2Jkn+/ve/J0meeeaZbL/99qtVZ5sXXnihfa/285//fIdzjjvuuEyYMCHPPfdcXn311QwaNGipOfaDAQCWJugLAAC8r6233nq549///vfz05/+tH1DuyP19fUrfd++ffumT58+HY71798/STJ//vyVvi4AAAAAwGGHHZZx48bl6aefzt/+9rf2fdBnnnkmf/3rX9vntHnkkUdy5pln5s0331zudVdlL/S95s2blzfeeCPJsvdmt9hii1RUVHTY1XfWrFn5whe+kGeeeWat1vleL730UpLFb4LbdNNNO5yz1VZbpby8PC0tLXnxxReXCvraDwYA6Fi3YhcAAACUvtra2mWO3XHHHbn66qtTVlaW0047Lbfddlv+/Oc/59lnn820adMyduzYJFnma+SWp66ubpljba99W164GAAAAABgWUaMGJGRI0cm+WcH3/d+vf3222errbZKsriT7xlnnJE333wzo0ePznXXXZeHHnooTz/9dKZNm5Zp06Zl4MCBSVZtL/S93htmbQu4/l/l5eXLDMV+7WtfyzPPPJNNNtkk/+///b/cd999eeqpp9rrPPjgg9dInR3VvKx6k6SioiJ9+/ZdYv572Q8GAOiYjr4AAMBqadv0PuaYY3L66acvNb4mu0IAAAAAAKxJhx12WKZOnZoJEybkrLPOSmtra37729+2j7WZNGlS3nrrrQwcODD//d//nZqamiWuUygUMmfOnDVSU/fu3du/fvPNNzN48OCl5rS0tHS49/rGG2/kwQcfTJJceeWVHXYEXht7tm01L6/bcXNzc95+++0l5gMA8P509AUAAFbLjBkzkiS77rprh+NPPPHEuiwHAAAAAGCFHXjggamurs7s2bPzwAMP5N577019fX1qa2vz7//+7+3z2vZBR40atVTIN0mee+65LFiwYI3U1LNnz2ywwQZJkueff77DOS+99FKHHXnb6uzTp0+HId/m5uY8/fTTHV6zrKxsVUvOlltumSR555138sorr3Q45/nnn09LS0uSZOjQoat8LwCArkbQFwAAWC21tbVJFneK+L/eeuut3Hrrreu6JAAAAACAFdK7d+/ss88+SZJbb721/Q1m++67b3r06NE+ry3c29E+aJJcc801a7Su3XffPUny85//vMPxcePGdXi8bb+2oaEhCxcuXGr8N7/5zTK77rY9Y0fnvZ8tt9wym222WZLkuuuu63BO2/Fhw4Zl4MCBK30PAICuStAXAABYLW2dfP/nf/4nL730Uvvx6dOn5wtf+MIqbQoDAAAAAKwrhx12WJLkvvvuy4MPPrjEsTZt+6CPP/54brrppvbjixYtyg9/+MP89re/TWVl5Rqr6dhjj01lZWWmTp2aSy+9NIsWLUqSFAqF/OpXv8qvf/3rVFRULHXeVlttlb59+6a5uTkXXnhhGhsb28d+97vf5eKLL051dXWH99x0001TVlaWt956K3/9619XuuaTTz45SXLTTTfll7/8ZQqFQpKktbU1119/fW677bYkyamnnrrS1wYA6MqW/n99AAAAK+H444/PXXfdlZkzZ+bAAw/M5ptvnm7duuX5559Pjx49cs455+TCCy8sdpkAAAAAAB0aPXp0Bg0alFdffTXJ4sDrBz/4wSXmbLvttjn44INz22235Vvf+lauuOKKbLjhhvn73/+eefPm5T//8z/zq1/9KjNnzlwjNW299dY599xzc/7552fs2LEZP358Nttss/zjH//IrFmzcvTRR+eee+5Z6n4VFRX58pe/nG984xsZP358/vCHP2TTTTfN7Nmz849//CO77bZb+vXrlwkTJix1zz59+uRjH/tY7rvvvnzyk5/M1ltv3d7V+Otf/3q22Wab5db8iU98Is8880zGjRuX8847L5dffnkGDhyYmTNn5q233kqSnHTSSdl///3XyGcEANBV6OgLAACslo022ig33XRTDjrooPTq1at9Y/uQQw7Jrbfemq222qrYJQIAAAAALFO3bt3yiU98ov33n/jEJ1JWVrbUvEsvvTRf/vKXs8UWW+Ttt9/O9OnTs+222+YnP/lJezfbNenTn/50rrvuunz4wx9OS0tLXnjhhWy44Ya5+OKL8/Wvf32Z533yk5/MT37yk+y4445pamrKSy+9lL59++YrX/lK/ud//ifl5eXLPPeyyy7L5z73uWy88cb529/+lilTpmTKlCmZO3fuCtX8jW98I1dddVX23HPPtLa25tlnn01ZWVn23nvvjB07Nl/84hdX+nMAAOjqygpt70oAAAAAAAAAAAAAAEqGjr4AAAAAAAAAAAAAUIIEfQEAAAAAAAAAAACgBAn6AgAAAAAAAAAAAEAJEvQFAAAAAAAAAAAAgBIk6AsAAAAAAAAAAAAAJUjQFwAAAAAAAAAAAABKUEWxC4CV8fjjj6dQKKSysrLYpQAAAADAeq+pqSllZWXZcccdi10KJc7eLAAAAACsOSuzN6ujL+uVQqGQQqFQ7DLWmkKhkEWLFnXqZ4T1iTUJpcN6hNJiTULpsB6htKyPa7Kz77ex5nSF/62sj2sYOivrEUqLNQmlw3qE0mJNQulYH9fjyuy36ejLeqWtW8SoUaOKXMnasWDBgjz77LPZaqutUldXV+xyoMuzJqF0WI9QWqxJKB3WI5SW9XFNPvXUU8UugfVEZ9+bTdbPNQydlfUIpcWahNJhPUJpsSahdKyP63Fl9mZ19AUAAAAAAAAAAACAEiToCwAAAAAAAAAAAAAlSNAXAAAAAAAAAAAAAEqQoC8AAAAAAAAAAAAAlCBBXwAAAAAAAAAAAAAoQYK+AAAAAAAAAAAAAFCCBH0BAAAAAAAAAAAAoAQJ+gIAAAAAAAAAAABACaoodgEAAAAAAHSsqakpLS0tKzS3vLw8lZWVa7kiAAAAAICuYUX3Z7t165bKysqUlZWtlToEfQEAAAAASszcuXMze/bsNDY2rtR51dXVGTBgQHr16rWWKgMAAAAA6NxWZX+2vLw8dXV12XDDDVNVVbVG6xH0BQAAAAAoIXPnzs3MmTPTo0ePDBgwYIU6QRQKhTQ1NWXOnDmZOXNmkgj7AgAAAACspJXdny0UCmlpacnChQszZ86cvPzyyxkyZEjq6urWWE2CvgAAAAAAJWT27Nnp0aNHhgwZslKvequtrU3Pnj0zY8aMzJ49W9AXAAAAAGAlrer+bI8ePdKvX7/8/e9/z+zZs7PpppuusZq6rbErAQAAAACwWpqamtLY2JjevXuv1CZym7KysvTu3TuNjY1pampaCxUCAAAAAHROq7s/W15enn79+mX+/Plpbm5eY3UJ+gIAAAAAlIiWlpYkSWVl5Spfo+3ctmsBAAAAAPD+1sT+bHV1dZII+gIAAAAAdGar0i1iTZwLAAAAANDVldr+rKAvAAAAAAAAAAAAAJQgQV8AAAAAAAAAAAAAKEGCvgAAAAAAAAAAAABQggR9AQAAAAAAAAAAAKAECfoCAAAAAAAAAAAAQAkS9IUS8vJr8/LgM3PT3NJa7FIAAAAAALqMpubWTHjw5bz21qJilwIAAAAASxD0hRJy08Tnc89f5uaJv71Z7FIAAAAAKKJCoVCUc6Grmvri7Pzi7r/l94/PKXYpAAAAABRZqe3PCvpCCelWVpYkqW9oLHIlAAAAABRDt26Lt2xbWlpW+Rpt57ZdC3h/Ze/uzTa8s+prDwAAAID1W6nuz9rphRJSV1ORJJn/TnORKwEAAACgGCorK1NeXp6FCxeu8jUWLlyY8vLyVFZWrsHKoHPrXrt4vbyzqLXIlQAAAABQLGtif3bevHmprKxco/uzgr5QQrq/G/RdsFDQFwAAAKArKisrS11dXebMmbNKXSNaWloyZ86c1NXVtXcoBd5fj/ag75p/tSIAAAAA64fV3Z9duHBh5s6dm549e67R/dmKNXYlYLXV1SzeTJ7/TlORKwEAAACgWDbccMO8/PLL+fvf/55+/fqlurr6fTeFC4VCGhsb89Zbb6W1tTUbbrjhOqoWOoe2jr5NLYU0N+vqCwAAANBVrez+bKFQSEtLS+bNm5e5c+emuro6AwYMWKM1CfpCCal7t6Pv/Hd09AUAAADoqqqqqjJkyJDMnj07r7322kqd271792y88capqqpaS9VB51RX/c8flyxobE6vItYCAAAAQPGs6v5sZWVl+vTpkwEDBqS8vHyN1iToCyWk+7tB34WCvgAAAABdWl1dXTbddNM0NzenuXnF9ooqKipSUWHLF1ZFeXm31FaXZ2FjizeuAQAAAHRxK7s/261bt1RWVr7vm9lWlV1fKCE6+gIAAADwXsK7sO7U1VQuDvoutD8LAAAAQOnsz3YrdgHAP3WvrUwSHSMAAAAAANaxtjeuLdCIAQAAAIASIugLJaTORjIAAAAAQFF44xoAAAAApUjQF0pIdxvJAAAAAABF8c+Ovt64BgAAAEDpEPSFEtK9pjJJ0rioJc0trUWuBgAAAACg66h7d39WIwYAAAAASomgL5SQ2ury9q/nL9Q1AgAAAABgXele+25H34WCvgAAAACUDkFfKCHl5d1SVVGWJFmgawQAAAAAwDrTvWZx0Hf+O5owAAAAAFA6KopdAF3DXXfdldtuuy1Tp05NQ0NDtthiixx77LE58MADi11ayamp6pZFzS06+gIAAAAArEN1NZVJkvmaMAAAAABQQgR9WSfGjh2bIUOG5Gtf+1r69u2bBx54IGeddVbefvvtHHnkkcUur6TUVJZlbiLoCwAAAACwDrV19PW2NQAAAABKiaAv68SVV16Zfv36tf9+9OjRmTVrVq677jpB3/+jpqpbkqTB6+EAAAAAANaZuneDvvPtzQIAAABQQroVuwC6hveGfNtss802mTVrVhGqKW01lYuXpY6+AAAAAADrTvfayiTJgoU6+gIAAABQOtabjr5Tp07NQw89lKeeeipPP/10Zs6cmSSZOHFihgwZstLXu+mmm/Lwww9n2rRpefPNNzN//vz07t07o0aNyqc//ensueeeS8xvamrK5MmTc//992fy5MmZPn16WlpasvHGG2e33XbL8ccfn8GDB6+RZ11Vq/MZLVq0KNddd10mTJiQ6dOnp66uLrvssktOPvnkjBw5cq3U+5e//CVbbLHFWrn2+qyto6+gLwAAAADAuvPPjr6CvgAAAACUjvUm6PuTn/wkEydOXGPXu+666zJ9+vQMGzYsO+20U2pqajJ9+vTcf//9uf/++3PsscfmnHPOaZ//yCOP5LjjjkuSDBw4MB/5yEeSJE8++WRuuOGGTJgwIT/96U+z4447rrEaV9aqfkaLFi3KcccdlylTpqR///7Zc88988Ybb+QPf/hD7r///lx55ZXZfffd12itDz/8cO655558+9vfXqPX7QyqK8uSCPoCAAAAAKxL3d8N+i54x94sAAAAAKVjvQn67rDDDhk2bFg+8IEPZNSoUTn00EMze/bsVb7epZdemmHDhqV79+5LHH/00Udzwgkn5Nprr83++++f7bffPklSVlaW/fbbL5///OeXCPM2Njbm/PPPz/jx43PWWWfl7rvvTmVl5SrXtTpW9TO6+uqrM2XKlIwaNSpjx45Njx49kiS33357zjrrrJx99tm555572o8nybx58zJr1qz3vfbQoUOXOjZjxoycddZZ2XvvvXPooYeuxBN2De0dfW0mAwAAAACsM91rFu/tNza1pqm5NZUV3YpcEQAAAACsR0HfE088cY1eb1mdd3fZZZf827/9W2655ZY8/PDD7UHf0aNHZ/To0UvNr66uznnnnZc//OEPmTlzZh5//PF88IMffN/7/+1vf8ujjz6az3zmM8udd+2112bffffNkCFD3veaq/IZNTc3Z9y4cUmS8847b4kw74EHHpgJEyZk0qRJueWWW3L00Ue3j/3ud7/Lueee+77XnzZt2hK/r6+vzwknnJBBgwbl+9///krX2xW0B3119AUAAAAAWGdqq8vbv17wTlN696guYjUAAAAAsNh6E/RdlyoqFn8sVVVVKzS/pqYmm2++eZ566qkV6nJbKBTy5S9/OX/961/T1NSUo446qsN5P/zhD3PllVfmgQceyNixY1e4/pXx2GOPpb6+PkOGDMmoUaOWGj/ggAMyadKkTJw4cYmg7+GHH57DDz98pe61cOHCnHTSSWlqasr//M//pLa2drXr74xqKtuCvs1FrgQAAAAAoOsoL++WqoqyLGouZP5CQV8AAAAASoP3Tv0fzz77bO66666Ul5dn9913X6FzWlpaMnPmzCTJgAED3nd+WVlZ/uu//iv9+/fPJZdckp/97GdLzWkL+Q4ZMiTf/va3V+4hVsKzzz6bJBk5cmSH49tuu22SpTvzrqzm5uaceeaZefnll/PTn/40/fv3X63rdWY1VWVJkvnv6OgLAAAAALAutb1xrcEb1wAAAAAoEV2+o+8tt9ySRx55JE1NTZk5c2b+8pe/pKKiIueff3623nrrFbrGbbfdlrfeeiv9+vXLTjvttELnbLXVVrn++utz1FFH5eKLL05ZWVk+97nPJflnyHfw4MEZN25cBg0atMrP935effXVJMnGG2/c4Xjb8fr6+syfPz/du3dfpftccMEFmTRpUr7xjW+kvr4+f/nLX9rHtt122xXuntwVtG0kz7eRDAAAAACwTtVUdcvcBS32ZwEAAAAoGV0+6PvYY4/l1ltvbf99bW1tvv71r+ewww5bofNnzJiRyy67LEnyxS9+caUCq1tvvXXGjh2bo48+OhdddFGSZPbs2UuEfAcPHrwST7PyFixYkGTxc3ekrq6u/evVCfr+8Y9/TJJccsklS41NnDgxQ4YMWaXrdkY1lTpGAAAAAAAUQ02lN64BAAAAUFq6fND3kksuySWXXJIFCxbk73//e372s5/lm9/8Zn7/+9/niiuuSE1NzTLPbWhoyCmnnJL6+vrsv//++dSnPrXS9x8+fPhSYd9Bgwbl+uuv71Th13vvvbfYJaw32jeSBX0BAAAAANYpb1wDAAAAoNR0K3YBpaKuri7bbLNNvv3tb+eTn/xk/vd//zfXXXfdMuc3Njbm5JNPzrRp0zJ69Oh873vfW+V7jxgxIvvuu2/77w855JBssskmq3y9ldHWsXfhwoUdjrd1/E2yyt18WTltG8kLG5vT0loocjUAAAAAAF1H2xvXBH0BAAAAKBWCvh045JBDkiQTJ07scLypqSmnn356pkyZkh122CFjxoxJVVXVKt/vRz/6UW6++eYMHjw4/fr1y5gxY/KLX/xila+3MgYNGpQkef311zscbzvep08fQd91pLryn8tyodfDAQAAAACsM22NGBoEfQEAAAAoEYK+HejXr1+S5K233lpqrLW1NWeffXYmTZqUESNG5KqrrmrvirsqfvzjH2fMmDEZPHhwxo0bl7Fjx6Zfv3658MIL10nYd5tttkmSTJ06tcPxZ555JkkyfPjwtV4Li1WUl7WHfW0mAwAAAACsOzVVZUl09AUAAACgdAj6dmDy5MlJks0222yJ44VCIeeee27uuuuubLHFFrn22mvTu3fvVb7PFVdckZ/85CftId8hQ4Zk+PDh7WHfiy66KDfccMNqPcv72WmnndKnT5/MmDEjTz311FLjd955Z5Jk7733Xqt1sKS6msokNpMBAAAAANalmnebMMxf2FzkSgAAAABgsU4d9P3KV76S/fffPz//+c+XOP7000/nD3/4Q5qbl96ou++++/LDH/4wSXL44YcvMfad73wnt9xyS4YMGZLrr78+/fv3X+XafvKTn+Tyyy/P4MGDc/3112fIkCHtY21h3759++bCCy9cq2HfioqKHHXUUUmSCy64IA0NDe1jt99+eyZNmpS+ffvmsMMOW2s1sLTuNRVJkvnvCPoCAAAAAKwrNVXvBn3tzQIAAABQIiqKXcCKuv/++zNmzJj238+ZMydJctppp6WqqipJsscee+TUU09tn/Paa6/lpZdeyttvv73EtV5//fWcdtpp6dWrV0aOHJn+/ftn3rx5eemll/LKK68kSY499tgccMAB7efcc889GTt2bJJk8ODB+cEPftBhnfvss0/22Wef5T5LoVDISy+9lEGDBuX666/PJptsstSctrDvMccck5deemm512uzKp9Rkpxwwgn505/+lClTpmTffffNrrvumtmzZ+fRRx9NZWVlvvvd76ZHjx4rVANrRl3tu0FfHX0BAAAAANaZ9qCvvVkAAAAASsR6E/R966238sQTTyx1/Nlnn23/esstt1yha40aNSqnnXZapkyZkpdeeil//vOf061bt2y44YY5+OCD86lPfSq77LLLEufMnTu3/evJkycv89qDBw9+36BvWVlZLrvsssyePTsbbbTRMucNHz48t956azbeeOMVeq5V/YyqqqpyzTXX5Nprr82ECRNy7733pq6uLnvvvXdOPfXUjBw5coXuz5rTvaYyic1kAAAAAIB1qaayLEnSYG8WAAAAgBKx3gR9Dz300Bx66KErdc7PfvazDo9vtNFGOf3009f6/ZenvLx8uSHfNisa8k1Wr8aqqqqcdNJJOemkk1bpfNasuurFS7NhYXORKwEAAAAA6Dp09AUAAACg1HQrdgHA0upqFwd9F7xjMxkAAAAAYF1pD/ramwUAAACgRAj6QgnqXrM46KtrBAAAAADAulNTufjHJo2LWtLU3FrkagAAAABA0BdKUl1NZZKkQdAXAAAAAGCdqa4sa//aG9cAAAAAKAWCvlCCdPQFAAAAAFj3yruVpba6PIn9WQAAAABKg6AvlKD2oK+OEQAAAAAA65Q3rgEAAABQSgR9oQTV1S7eSNYxAgAAAABg3fLGNQAAAABKiaAvlKC6ahvJAAAAAADFUOeNawAAAACUEEFfKEHtHSPeaS5yJQAAAAAAXYuOvgAAAACUEkFfKEF1tYs3khe805TW1kKRqwEAAAAA6DrqaiqTJA0LBH0BAAAAKD5BXyhBddWLg76FQrKwUVdfAAAAAIB1pXtt2xvXBH0BAAAAKD5BXyhBVZXlqapYvDy9Hg4AAAAAYN3pXrM46NtgbxYAAACAEiDoCyWqe+3i18PpGgEAAAAAsO7U1by7NyvoCwAAAEAJEPSFEtUW9NU1AgAAAABg3Wnr6CvoCwAAAEApEPSFEtVd1wgAAAAAgHWuTtAXAAAAgBIi6Aslqq2j74J3bCYDAAAAAKwrbXuz8+3NAgAAAFACBH2hRLVtJjfoGgEAAAAAsM5019EXAAAAgBIi6Aslqr1rxMLmIlcCAAAAANB1/LMJg71ZAAAAAIpP0BdKlK4RAAAAAADrXt27e7OLmlrS1NxS5GoAAAAA6OoEfaFE/bOjr6AvAAAAAMC6Uldd0f61N64BAAAAUGyCvlCierQFfd8R9AUAAAAAWFe6dStr7+prfxYAAACAYhP0hRJVV6OjLwAAAABAMXjjGgAAAAClQtAXSlR3HX0BAAAAAIqi+7uNGBoEfQEAAAAoMkFfKFE9dIwAAAAAANaA559/PkcffXS233777LbbbvnRj36UlpaWYpdV0nT0BQAAAKBUVBS7AKBjNpIBAAAAgNU1Z86cHHPMMdlqq60yZsyYvPLKK7nsssvS2tqaL37xi8Uur2RpxAAAAABAqRD0hRL13qBvoVBIWVlZkSsCAAAAANY3v/zlL9PY2JgrrrgiPXr0yEc+8pE0NDTkiiuuyAknnJAePXoUu8SSpBEDAAAAAKWiW7ELADrWtpHcWkgWNjYXuRoAAAAAYH30wAMPZLfddlsi0Pvv//7veeeddzJlypQiVlba2oO+7wj6AgAAAFBcOvpCiaqq6JaK8m5pbmnN/IXNqaupLHZJAAAAAPC+pk6dmoceeihPPfVUnn766cycOTNJMnHixAwZMmSVrztv3rxce+21ueeeezJjxowkyUYbbZSdd945Z5xxRjbaaKNlnlsoFHL00Udn8uTJSZI777wzQ4cOXeVaVtfqfEaLFi3KddddlwkTJmT69Ompq6vLLrvskpNPPjkjR45cav6LL76Yf/mXf1ni2KBBg1JbW5sXX3wxe+2115p7sE6k+7v7sQ06+gIAAABQZIK+UKLKysrSo7Yy9Q2Nmf9OUzZIbbFLAgAAAID39ZOf/CQTJ05co9d8/vnn8/nPfz6zZs3KZpttlt133z1NTU155ZVX8utf/zqf+MQnlhv0vemmmzJ58uSUlZWlUCis0dpWxap+RosWLcpxxx2XKVOmpH///tlzzz3zxhtv5A9/+EPuv//+XHnlldl9992XOGfu3Lnp2bPnUtfq1atX5s6du8rP0Nm1d/QV9AUAAACgyAR9oYTV1VQsDvraTAYAAABgPbHDDjtk2LBh+cAHPpBRo0bl0EMPzezZs1f5enPnzs2xxx6b+vr6fP/7389BBx20xPgrr7ySHj16LPP8119/Pd/73vey++6758UXX2zvnltMq/oZXX311ZkyZUpGjRqVsWPHtj/37bffnrPOOitnn3127rnnnuV+HqyYHrWLf3xibxYAAACAYhP0hRLW3jXiHZvJAAAAAKwfTjzxxDV6vSuuuCL/+Mc/8rWvfW2pkG+SbLrppss9/1vf+lZaW1tzwQUX5Mgjj1zp+//tb3/Lo48+ms985jPLnXfttddm3333zZAhQ973mqvyGTU3N2fcuHFJkvPOO2+JMO+BBx6YCRMmZNKkSbnlllty9NFHt4/16tUrDQ0NS11v7ty56dWr10rX0VXo6AsAAABAqehW7AKAZbOZDAAAAEBX1tjYmPHjx6e2tjZHHHHESp//m9/8JpMmTcqZZ56ZwYMHr/T5hUIhX/7yl3P++ee3h2w78sMf/jCXXXZZzj333JW+x4p67LHHUl9fnyFDhmTUqFFLjR9wwAFJkokTJy5xfMstt8yLL764xLHXXnstCxcuzJZbbrnW6l3facIAAAAAQKnQ0RdKmKAvAAAAAF3Z008/nXnz5mXnnXdObW1tHn744fzv//5vGhoaMmTIkOyzzz7LDKvOnj07l156aUaNGpWjjjpqle5fVlaW//qv/8pRRx2VSy65JGVlZUt1Bf7hD3+YK6+8MkOGDMm3v/3tVbrPinj22WeTJCNHjuxwfNttt02STJs2bYnjH/3oR3PNNdekoaGhvQvwnXfemZqamnzwgx9ca/Wu77rX2JsFAAAAoDQI+kIJ6yHoCwAAAEAX9vzzzydJ+vfvnzPOOCN33333EuM/+MEPctJJJ+XMM89c6twLL7wwDQ0Nufjii9Ot26q/3G6rrbbK9ddfn6OOOioXX3xxysrK8rnPfS7JP0O+gwcPzrhx4zJo0KBVvs/7efXVV5MkG2+8cYfjbcfr6+szf/78dO/ePUny6U9/Oj/72c9y+umn54QTTsj06dNzxRVX5JhjjmkP/rK0tiYMDQubi1wJAAAAAF2doC+UsLauEQ2CvgAAAAB0QXPmzEmS3HfffUmSs88+OwcddFDKy8tz11135bvf/W7GjBmTQYMG5fDDD28/7+67787dd9+dE088MSNGjFjtOrbeeuuMHTs2Rx99dC666KIkizsGvzfkO3jw4NW+z/IsWLAgSVJbW9vheF1dXfvX7w369u7dO2PHjs2FF16Yk046Kb169crRRx+d008/fa3Wu75ra8KwqKklTc0tqawoL3JFAAAAAHRVgr5Qwrrr6AsAAABAF9ba2pokaWpqyumnn57jjz++fezII49Mc3NzvvOd72TMmDHtQd/6+vpceOGF2WyzzXLaaaetsVqGDx++VNh30KBBuf766zNkyJA1dp+1Yauttsq4ceOKXcZ6pfbdJgxJMn9hc/r0FPQFAAAAoDhW/X1lwFrXvWZxFn/BO14PBwAAAEDX894ute/t2NvmU5/6VJLk1VdfzfTp05Mkl156aWbPnp0LLrgg1dXVa7SeESNGZN99923//SGHHJJNNtlkjd5jWdo+i4ULF3Y43tbxN0l7N19WXXm3stS9uz87/x2NGAAAAAAoHh19oYTp6AsAAABAVzZ48OAkSVVVVTbaaKOlxrt3755+/frlrbfeyhtvvJFNNtkkEydOTHV1dcaMGZMxY8YsMf+NN95Ikpxzzjmpra3NZz/72ey///4rXM+PfvSj3HzzzRk8eHAWLlyYMWPGZMCAAfnsZz+7Gk+5YgYNGpQkef311zscbzvep08fQd81pHttZRa802x/FgAAAICiEvSFEtYW9G3QMQIAAACALmjbbbfN/2fvzqOjLNP8/38q+wZkJSFVIIQlQEjL5kIrOgqDtEK3HUXbtgVc4AsN6jgR++c007KILajTLhBGRUgAtbVFW4ZBHRYJyhaRxYDIYoJkAZKQPWRP/f4IVRoTyF5PKnm/zuGc5Lmfuu/rqXPwj4uP1yNJFRUVKikpqRdgra6uVlFRkaS603/Ly8uVlJR02X2Tk5MlSePGjWtyLa+++qri4uJkNpu1du1alZSUaPr06Vq0aJEktXvYd8iQIZKko0ePNrj+7bffSpIiIyPbtY6uxNfLXdkqVTFBXwAAAAAAABiIoC/QgTHRFwAAAAAAAF1Zr169FBUVpaNHj2rfvn269dZb66zv379flZWV8vb2VkREhP3a5dx6663KyMjQ5s2b1b9//ybXsXz5cq1YscIe8rVYLJKk+Ph4TZ8+XYsXL5bJZNLvf//7Fjxl04wcOVL+/v5KT09XcnKyoqOj66xv3rxZUvPCy7gy+rMAAAAAAADoCFyMLgDA5dFIBgAAAAAAQFfw1FNPaeLEiVq/fn29tZkzZ0qSli1bpvT0dPv18+fPa8mSJZKku+++Wx4eHu1S24oVK/Taa6/JbDYrISHBHvKVaqfnxsfHKyAgQIsWLdI777zTLjVIkpubm6ZOnSpJWrhwoYqLi+1rmzZtUmJiogICAnTXXXe1Ww1djR/9WQAAAAAAAHQATPQFOrCfNpKtVqtMJpPBFQEAAAAAAABXtmPHDsXFxdl/LygokCTNnTvXHsa9+eabNWfOHPs9Z8+eVWpqqvLy8urtN3HiRN1333169913NXnyZI0cOVIuLi46ePCgioqKNHz4cMXGxrbLs1itVqWmpio8PFwJCQnq3bt3vXtsYd/p06crNTW1Sfu25DuSpBkzZmjv3r1KSkrShAkTdM011ygnJ0f79++Xu7u7li1bJj8/v5Y+Ln6GQQwAAAAAAADoCAj6Ah2Yr1dtI7m6xqryimp5efJXFgAAAAAAAB1bbm6uDh8+XO/6sWPH7D9HREQ0a88FCxZo1KhRevvtt3Xw4EFVVVWpb9++mjRpkqZNmyZPT89W190Qk8mkpUuXKicnR6GhoZe9LzIyUh999JHCwsKatG9LvyMPDw+99dZbWr16tTZu3Kjt27fLx8dH48aN05w5cxQVFdWk89E09qBvGUFfAAAAAAAAGIfUIBzik08+0ccff6yjR4+quLhY/fr100MPPaRJkyYZXVqH5unhKhcXk2pqrCopqyToCwAAAAAAgA4vJiZGMTExzfrMunXrGr1n8uTJmjx5ckvLkiRt37692Z9xdXW9YsjXpqkhX6ll35GNh4eHZs2apVmzZrXo82g62yCGYib6AgAAAAAAwECkBuEQ8fHxslgsevrppxUQEKCdO3cqNjZWeXl5euCBB4wur8MymUzy9XJX0cUKlZRWKqiHt9ElAQAAAAAAAECXYJ/oS9AXAAAAAAAABiLoC4dYuXKlAgMD7b+PGTNGWVlZWrNmDUHfRvh524K+VUaXAgAAAAAAAABdhp937T+hEPQFAAAAAACAkVyMLgBdw09DvjZDhgxRVlaWAdU4F19bM7mMZjIAAAAAAAAAOAoTfQEAAAAAANARdOqJvkePHtXu3buVnJysI0eOKCMjQ5K0bds2WSyWZu/33nvvac+ePTp+/LguXLigkpIS9ejRQ9HR0frd736nW265pa0foVla+rwVFRVas2aNNm7cqLS0NPn4+Gj06NGaPXu2oqKi2q3eQ4cOqV+/fu22f2dhayYX00wGAAAAAAAAAIexB30ZwgAAAAAAAAADdeqg74oVK7Rt27Y222/NmjVKS0vToEGDNHLkSHl5eSktLU07duzQjh079NBDD+lPf/pTm53XXC153oqKCj388MNKSkpSUFCQbrnlFmVnZ2vLli3asWOHVq5cqbFjx7Z5rXv27NHWrVv13HPPtfnenQ1TIwAAAAAAAADA8Xy96M0CAAAAAADAeJ066Dt8+HANGjRIw4YNU3R0tGJiYpSTk9Pi/f76179q0KBB8vX1rXN9//79mjFjhlavXq2JEyfq6quvbm3pLdKS533zzTeVlJSk6OhoxcfHy8/PT5K0adMmxcbGat68edq6dav9uiQVFRUpKyur0Xr69+/f4PX09HTFxsZq3LhxiomJacYTdk00kwEAAAAAAADA8X5821qVwZUAAAAAAACgK+vUQd+ZM2e26X4jRoxo8Pro0aP1q1/9Shs2bNCePXuaFPQ9efKk9u/fr/vuu++K961evVoTJkyQxWJpdM/mPm9VVZXWrl0rSXrmmWfqhHknTZqkjRs3KjExURs2bNC0adPsa59++qnmz5/f6P7Hjx+vdy0/P18zZsxQeHi4XnzxxWbV21Ux0RcAAAAAAAAAHM/vUm+2orJalVXVcndzNbgiAAAAAAAAdEWdOujrSG5utV+lh4dHo/darVY9+eST+u6771RZWampU6c2eN/LL7+slStXaufOnYqPj2/LciVJBw4cUH5+viwWi6Kjo+ut33777UpMTNS2bdvqBH2nTJmiKVOmNPu80tJSzZo1S5WVlXr99dfl7e3dqvq7CnvQt4ygLwAAAAAAAAA4ivelt61JUklplfy7EfQFAAAAAACA47kYXUBncOzYMX3yySdydXXV2LFjG73fZDLppZdeUlBQkJYsWaJ169bVu8cW8rVYLHruuefao2wdO3ZMkhQVFdXg+tChQyU1PJm3uaqqqvT444/r9OnTWrVqlYKCglq9Z1fh68VEXwAAAAAAAABwNFcXk3y8aod8MIgBAAAAAAAARmGibwts2LBBX331lSorK5WRkaFDhw7Jzc1NCxYs0MCBA5u0x4ABA5SQkKCpU6fq2Weflclk0h/+8AdJP4Z8zWaz1q5dq/Dw8HZ5jszMTElSWFhYg+u26/n5+SopKZGvr2+Lz1q4cKESExP15z//Wfn5+Tp06JB9bejQoU2ahNxV2Sf6EvQFAAAAAAAAAIfy9XbXxbIq+rMAAAAAAAAwDEHfFjhw4IA++ugj++/e3t76j//4D911113N2mfgwIGKj4/XtGnTtHjxYklSTk5OnZCv2Wxu09p/6uLFi5Jq62+Ij4+P/efWBn137dolSVqyZEm9tW3btslisbR4787Ozxb0ZWIEAAAAAAAAADiUr5e7slWqYoK+AAAAAAAAMAhB3xZYsmSJlixZoosXL+qHH37QunXr9J//+Z/6v//7Py1fvlxeXl5N3isyMrJe2Dc8PFwJCQmdKvy6fft2o0twWkz0BQAAAAAAAABj0J8FAAAAAACA0VyMLsCZ+fj4aMiQIXruued0991364svvtCaNWuavc/gwYM1YcIE++933nmnevfu3ZalNsg2sbe0tLTBddvEX0mtmuaL1vmxkVxlcCUAAAAAAAAA0LX4EfQFAAAAAACAwQj6tpE777xTkrRt27Zmf/aVV17R+++/L7PZrMDAQMXFxentt99u4wrrCw8PlySdO3euwXXbdX9/f4K+BvL1qm0k82o4AAAAAAAAAHAsJvoCAAAAAADAaG5GF9BZBAYGSpJyc3Ob9blXX31VcXFxMpvNWrt2rUpKSjR9+nQtWrRIknT//fe3ea02Q4YMkSQdPXq0wfVvv/1WkhQZGdluNaBxvt61f02rqmtUUVktD3dXgysCAAAAAAAAgK7BHvQtI+gLAAAAAAAAYzDRt43s27dPknTVVVc1+TPLly/XihUr7CFfi8WiyMhIxcfHKzAwUIsXL9Y777zTXiVr5MiR8vf3V3p6upKTk+utb968WZI0bty4dqsBjfPycJOLqfZnpkYAAAAAAAAAgOPwxjUAAAAAAAAYjaDvzzz11FOaOHGi1q9fX+f6kSNHtGXLFlVVVdX7zOeff66XX35ZkjRlypQmnbNixQq99tprMpvNSkhIkMVisa/Zwr4BAQFatGhRu4V93dzcNHXqVEnSwoULVVxcbF/btGmTEhMTFRAQoLvuuqtdzkfTuLiY5EMzGQAAAAAAAAAczj7Rl94sAAAAAAAADOJmdAHtaceOHYqLi7P/XlBQIEmaO3euPDw8JEk333yz5syZY7/n7NmzSk1NVV5eXp29zp07p7lz56p79+6KiopSUFCQioqKlJqaqjNnzkiSHnroId1+++2N1mW1WpWamqrw8HAlJCSod+/e9e6xhX2nT5+u1NTUdnveGTNmaO/evUpKStKECRN0zTXXKCcnR/v375e7u7uWLVsmPz+/Jp2P9uPr7a7i0kpeDwcAAAAAAAAADuTnXfvPKAR9AQAAAAAAYJROHfTNzc3V4cOH610/duyY/eeIiIgm7RUdHa25c+cqKSlJqamp+vrrr+Xi4qKePXvqN7/5je655x6NHj26SXuZTCYtXbpUOTk5Cg0Nvex9kZGR+uijjxQWFtakfVvyvB4eHnrrrbe0evVqbdy4Udu3b5ePj4/GjRunOXPmKCoqqklno30xNQIAAAAAAAAAHI/eLAAAAAAAAIzWqYO+MTExiomJadZn1q1b1+D10NBQPfroo21RliTJ1dX1iiFfm6aGfKWWPa9UG/adNWuWZs2a1ezPwjH8aCYDAAAAAAAAgMPZg768bQ0AAAAAAAAGcTG6AACNY2oEAAAAAAAAADierxe9WQAAAAAAABiLoC/gBHy8aodvl5RVGVwJAAAAAAAAAHQdtiEMxaX0ZgEAAAAAAGAMgr6AE2CiLwAAAAAAAAA4nt+l3mxFZbUqq6oNrgYAAAAAAABdEUFfwAn48Xo4AAAAAAAAAHA470u9WUkqYaovAAAAAAAADEDQF3ACTPQFAAAAAAAAAMdzdTHJx8tNklRSRn8WAAAAAAAAjkfQF3ACtqBvMY1kAAAAAAAAAHAoBjEAAAAAAADASAR9ASdAIxkAAAAAAAAAjOHrdWkQA/1ZAAAAAAAAGICgL+AECPoCAAAAAAAAgDHozwIAAAAAAMBIBH0BJ2CbGHGxjEYyAAAAAAAAADiSH0FfAAAAAAAAGIigL+AEbBMjikurDK4EAAAAAAAAALoWJvoCAAAAAADASAR9ASdgayRXVFarsqra4GoAAAAAAAAAoOuwB3154xoAAAAAAAAMQNAXcAI+nm4ymWp/LmGqLwAAAAAAAAA4jK+X7Y1rBH0BAAAAAADgeAR9ASfg4mKSj6ebJKZGAAAAAAAAAIAj2Sf6EvQFAAAAAACAAQj6Ak6CZjIAAAAAAAAAOJ6f96UhDPRmAQAAAAAAYACCvoCTsAV9eT0cAAAAAAAAADgOQxgAAAAAAABgJIK+gJOwNZMvltFMBgAAAAAAAABHsQd96c0CAAAAAADAAAR9ASfh68XUCAAAAAAAAABwNHqzAAAAAAAAMBJBX8BJ8Ho4AAAAAAAAAHA8W2+2uLTK4EoAAAAAAADQFRH0BZzEj81kgr4AAAAAAAAA4Ch+l3qzFZXVqqyqNrgaAAAAAAAAdDUEfQEnwevhAAAAAAAAAMDxvC/1ZiWphKm+AAAAAAAAcDCCvoCTsE30pZEMAAAAAAAAAI7j6mKSj5ebJKmkjEEMAAAAAAAAcCyCvoCT8POmkQwAAAAAAAAARvhxEAP9WQAAAAAAADgWQV/ASdBIBgAAAAAAAABj+HrV9meL6c8CAAAAAADAwQj6Ak7C51IjmYm+AAAAAAAAAOBYDGIAAAAAAACAUQj6Ak6CRjIAAAAAAAAAGMOP/iwAAAAAAAAMQtAXcBI0kgEAAAAAAADAGAxiAAAAAAAAgFEI+gJOwtZILquoVlV1jcHVAAAAAAAAAEDXYQ/6lhH0BQAAAAAAgGMR9AWchI+nm/1npkYAAAAAAAAAgOP4etUGfYvpzQIAAAAAAMDBCPoCTsLV1UXel8K+TI0AAAAAAAAAAMexT/Ql6AsAAAAAAAAHI+gLOBGayQAAAAAAAADgeH7el4Yw0JsFAAAAAACAgxH0BZyIr1dtM/liaZXBlQAAAAAAAABA18EQBgAAAAAAABiFoC/gRGzN5OIymskAAAAAAAAA4Cj2oC+9WQAAAAAAADgYQV/AiTA1AgAAAAAAAAAcz9eL3iwAAAAAAACMQdAXcCIEfQEAAAAAAADA8exvWyutMrgSAAAAAAAAdDUEfQEn4sfUCAAAAAAAAABwOL9LQd+KympVVlUbXA0AAAAAAAC6EoK+gBNhoi8AAAAAAAAAOJ73pSEMklTCVF8AAAAAAAA4EEFfwInYXw9XRtAXAAAAAAAAABzF1cUkHy83SVIJ/VkAAAAAAAA4EEFfwIn4XJoacZGJEQAAAAAAAADgULxxDQAAAAAAAEYg6As4ET9bI5mJEQAAAAAAAADgUL6XBjEUE/QFAAAAAACAAxH0BZyIr/elV8PRSAYAAAAAAAAAh2KiLwAAAAAAAIxA0BdwIrZGMhMjAAAAAAAAAMCx/Aj6AgAAAAAAwAAEfQEnwsQIAAAAAAAAADAG/VkAAAAAAAAYgaAv4ER8vWobyaXlVaqurjG4GgAAAAAAAADoOuxB3zKCvgAAAAAAAHAcgr6AE7E1kiXpYnmVgZUAAAAAAAAAQNdiG8RQzERfAAAAAAAAOJCb0QWga/jkk0/08ccf6+jRoyouLla/fv300EMPadKkSUaX5lTcXF3k5eGqsopqlZRWqpuPh9ElAQAAAAAAAECXYJ/oS9AXAAAAAAAADkTQFw4RHx8vi8Wip59+WgEBAdq5c6diY2OVl5enBx54wOjynIqPl7s96AsAAAAAAAAAcAw/79p/UqE3CwAAAAAAAEci6AuHWLlypQIDA+2/jxkzRllZWVqzZg1B32by9XZXbmGZSspoJgMAAAAAAACAozDRFwAAAAAAAEZwMboAdA0/DfnaDBkyRFlZWQZU49z8aCYDAAAAAAAAgMPZg74MYQAAAAAAAIADOdVE36NHj2r37t1KTk7WkSNHlJGRIUnatm2bLBZLk/eprKzUvn37tGPHDu3bt09paWmqrq5WWFiYbrzxRj3yyCMym80NfjYlJUVvvvmm9u3bp6ysLLm5ualPnz6aMGGCHnzwQfn6+rbJs7ZEa76fiooKrVmzRhs3blRaWpp8fHw0evRozZ49W1FRUe1S76FDh9SvX7922bszY2oEAAAAAAAAADierxe9WQAAAAAAADieUwV9V6xYoW3btrV6n6+++koPP/ywJKlXr1664YYbJEnffPON3nnnHW3cuFGrVq3SiBEj6nxu//79evjhh1VWVqa+ffvq1ltvVWlpqQ4cOKDXXntNmzdv1rvvvqsePXq0usaWaOn3U1FRoYcfflhJSUkKCgrSLbfcouzsbG3ZskU7duzQypUrNXbs2Datdc+ePdq6dauee+65Nt23K7A1k4tLqwyuBAAAAAAAAAC6DtsQBnqzAAAAAAAAcCSnCvoOHz5cgwYN0rBhwxQdHa2YmBjl5OQ0ex+TyaTbbrtNDz74YJ0wb3l5uRYsWKAPP/xQsbGx+uyzz+Tu7m5fX7BggcrKyvTHP/5Rjz32mEwmkyQpPz9fDz30kI4ePapVq1YpNja29Q/bAi39ft58800lJSUpOjpa8fHx8vPzkyRt2rRJsbGxmjdvnrZu3Wq/LklFRUXKyspqdO/+/fvXu5aenq7Y2FiNGzdOMTExzXhCSJKvd+1fW6ZGAAAAAAAAAIDj+F0K+lZUVquyqlrubq4GVwQAAAAAAICuwKmCvjNnzmyTfcaMGaMxY8bUu+7p6alnnnlGW7ZsUUZGhg4ePKhrr71WkpSXl6eTJ0/K3d1ds2fPtod8Jcnf318PPfSQYmNjdfjw4SbVcPLkSe3fv1/33XffFe9bvXq1JkyYIIvF0uieLfl+qqqqtHbtWknSM888UyfMO2nSJG3cuFGJiYnasGGDpk2bZl/79NNPNX/+/Eb3P378eJ3f8/PzNWPGDIWHh+vFF19sdr34cWrExTKCvgAAAAAAAAAad+rUKS1evFiHDh1St27dNGXKFM2dO1eurgRVm8Pb68fBICWlVfLvxvcHAAAAAACA9udUQV9H8PLyUt++fZWcnFxnYu1PJ/teSUBAQKP3WK1WPfnkk/ruu+9UWVmpqVOnNnjfyy+/rJUrV2rnzp2Kj49v0vnNdeDAAeXn58tisSg6Orre+u23367ExERt27atTtB3ypQpmjJlSrPOKi0t1axZs1RZWanXX39d3t7era6/K/L1sr0ejqAvAAAAAAAAgCsrKCjQ9OnTNWDAAMXFxenMmTNaunSpampq9MQTTxhdnlNxdTHJx8tNF8uqVFJWKf9unkaXBAAAAAAAgC7AxegCOprq6mplZGRIkoKDg+3X/fz8NGLECFVWVmrlypWyWq32tfz8fK1evVqSmhR+NZlMeumllxQUFKQlS5Zo3bp19e6xhXwtFouee+651j7WZR07dkySFBUV1eD60KFDJdWfzNtcVVVVevzxx3X69GmtWrVKQUFBrdqvK7NN9C0h6AsAAAAAAACgEX//+99VXl6u5cuX64YbbtB9992nOXPmKD4+XsXFxUaX53TozwIAAAAAAMDRCPr+zMcff6zc3FwFBgZq5MiRddaWLFmi8PBwxcXFaeLEiXrsscc0c+ZMjRs3TllZWVq2bJluvPHGJp0zYMAAJSQkKDAwUM8++6zWr19vX7OFfM1ms9auXavw8PA2fcafyszMlCSFhYU1uG67np+fr5KSkhafs3DhQiUmJuqPf/yj8vPzdejQIfufioqKFu/bFdkbyWU0kgEAAAAAAABc2c6dO3XjjTfKz8/Pfu2OO+5QWVmZkpKSDKzMOfHGNQAAAAAAADiam9EFdCTp6elaunSpJOmJJ56Qh4dHnfX+/fvr3Xff1eOPP65Dhw7p9OnT9rVf/vKXGjBgQLPOGzhwoOLj4zVt2jQtXrxYkpSTk1Mn5Gs2m1v3UI24ePGiJMnb27vBdR8fH/vPJSUl8vX1bdE5u3btklQblv65bdu2yWKxtGjfroiJEQAAAAAAAOjIjh49qt27dys5OVlHjhyxv0GttX3AoqIirV69Wlu3blV6erokKTQ0VKNGjdJjjz2m0NBQSVJlZaX27dunHTt2aN++fUpLS1N1dbXCwsJ044036pFHHmn3vmtjWvMdVVRUaM2aNdq4caPS0tLk4+Oj0aNHa/bs2Q2+uS0lJUXXX399nWvh4eHy9vZWSkqKbr311rZ7sC6A/iwAAAAAAAAcjaDvJcXFxfZpsxMnTtQ999xT7569e/fqscceU3BwsFatWqWrr75apaWl2rFjh1544QUlJiYqLi6uyVN9JSkyMrJe2Dc8PFwJCQmdKvy6fft2o0voNPxoJAMAAAAAAKADW7FihbZt29ame546dUoPPvigsrKydNVVV2ns2LGqrKzUmTNn9MEHH+i3v/2tPej71Vdf6eGHH5Yk9erVSzfccIMk6ZtvvtE777yjjRs3atWqVRoxYkSb1tgcLf2OKioq9PDDDyspKUlBQUG65ZZblJ2drS1btmjHjh1auXKlxo4dW+czhYWF6tatW729unfvrsLCwhY/Q1dFfxYAAAAAAACORtBXUnl5uWbPnq3jx49rzJgxeuGFF+rdk5+fr8cff1wVFRV688037RMfunfvrnvvvVfdunXTE088oWeeeUb/93//J1dX1yafP3jwYE2YMEHvv/++JOnOO+9U79692+bhGmGb2FtaWtrgum3ir6QWT/NF22JiBAAAAAAAADqy4cOHa9CgQRo2bJiio6MVExOjnJycFu9XWFiohx56SPn5+XrxxRc1efLkOutnzpyRn5+f/XeTyaTbbrtNDz74YJ0wb3l5uRYsWKAPP/xQsbGx+uyzz+Tu7t7iulqjpd/Rm2++qaSkJEVHRys+Pt7+3Js2bVJsbKzmzZunrVu31vk+0LbozwIAAAAAAMDRunzQt7KyUo8++qiSkpI0fPhwxcXFycPDo959O3bsUH5+vsaMGdPga90mTJggd3d3paenKy0tTX379m1yDa+88oref/99mc1mlZaWKi4uTsHBwbr//vtb82hNEh4eLkk6d+5cg+u26/7+/gR9Owhfr9pG8sXyKtXUWOXiYjK4IgAAAAAAAOBHM2fObNP9li9frvPnz+vpp5+uF/KVpD59+tT5fcyYMRozZky9+zw9PfXMM89oy5YtysjI0MGDB3Xttdc2ev7Jkye1f/9+3XfffVe8b/Xq1ZowYUKT3tTWku+oqqpKa9eulSQ988wzdcK8kyZN0saNG5WYmKgNGzZo2rRp9rXu3buruLi43n6FhYXq3r17s+vo6uxB3zKCvgAAAAAAAHAMF6MLMFJNTY3mzZunxMREDR48WG+88YZ9wu3PnT9/XpIafMWZJLm5udk/W1BQ0OQaXn31VcXFxclsNmvt2rWKj49XYGCgFi1apLfffruZT9R8Q4YMkSQdPXq0wfVvv/1WkhQZGdnutaBpfL1r8/lWq1RaXmVwNQAAAAAAAED7KS8v14cffihvb2/de++9rd7Py8vLPqQhKyur0futVquefPJJLViwwB6ybcjLL7+spUuXav78+a2u8XIOHDig/Px8WSwWRUdH11u//fbbJUnbtm2rcz0iIkIpKSl1rp09e1alpaWKiIhot3o7K9sghmIm+gIAAAAAAMBBumzQ12q1av78+frkk0/Ur18/rV69Wj169Ljs/SEhIZJqA7FVVfXDladPn7YHfBua+NuQ5cuXa8WKFfaQr8ViUWRkpD3su3jxYr3zzjsteLqmGzlypPz9/ZWenq7k5OR665s3b5YkjRs3rl3rQNO5u7nKw632ry6vhwMAAAAAAEBnduTIERUVFWno0KHy9vbWnj17tGzZMv3lL3/RG2+8US/A2pjq6mplZGRIkoKDgxu932Qy6aWXXlJQUJCWLFmidevW1bvn5Zdf1sqVK2WxWPTcc881q57mOHbsmCQpKiqqwfWhQ4dKko4fP17n+k033aQvv/yyzlTfzZs3y8vLq0kTjVGXfaIvvVkAAAAAAAA4SKcP+j711FOaOHGi1q9fX+f6888/rw0bNshisSghIUFBQUFX3Oemm26Sl5eXMjIy9OKLL9YJ++bm5tonNVx77bVNahCvWLFCr732msxmsxISEuq8zs0W9g0ICNCiRYvaNezr5uamqVOnSpIWLlxYp9m7adMmJSYmKiAgQHfddVe71YDm4/VwAAAAAAAA6ApOnTolSQoKCtJjjz2m6dOn66233tJ7772nl156SXfccYdeeeWVJu/38ccfKzc3V4GBgRo5cmSTPjNgwAAlJCQoMDBQzz77bJ1esy3kaxvmEB4e3rwHbIbMzExJUlhYWIPrtuv5+fkqKSmxX//d734nDw8PPfroo9q9e7fee+89LV++XNOnT5efn1+71dtZ+V164xpBXwAAAAAAADiKm9EFNMeOHTsUFxdn/902QXfu3Lny8PCQJN18882aM2eO/Z6zZ88qNTVVeXl59mtbt25VfHy8pNrpu3/7298aPG/8+PEaP368pNrpDvPnz9df/vIXrVmzRp999pmGDh2qsrIyHT58WEVFRQoODtaiRYsafQ6r1arU1FSFh4crISFBvXv3rnePLew7ffp0paamNrqn1LLvR5JmzJihvXv3KikpSRMmTNA111yjnJwc7d+/X+7u7lq2bBkN3w7G19tdeUXlvB4OAAAAAAAAnZqtx/n5559LkubNm6fJkyfL1dVVn3zyiZYtW6a4uDiFh4drypQpV9wrPT1dS5culSQ98cQT9p5pUwwcOFDx8fGaNm2aFi9eLEnKycmpE/Jt6pveWurixYuSJG9v7wbXfXx87D+XlJTI19dXktSjRw/Fx8dr0aJFmjVrlrp3765p06bp0Ucfbdd6Oysm+gIAAAAAAMDRnCrom5ubq8OHD9e7bntlmSRFREQ0uk9hYaH953379l32PrPZbA/6StKUKVM0aNAgJSQk6MCBA0pMTJSrq6ssFoumTJmiRx55pNHJwFLt696WLl2qnJwchYaGXva+yMhIffTRR5ed0PBzLf1+PDw89NZbb2n16tXauHGjtm/fLh8fH40bN05z5sy57KvgYByayQAAAAAAAOgKampqJEmVlZV69NFH9cgjj9jXHnjgAVVVVen5559XXFzcFYO+xcXF+uMf/6j8/HxNnDhR99xzT7NrsQ1n+GnY1zbM4advbOuIBgwYoLVr1xpdRqfA29YAAAAAAADgaE4V9I2JiVFMTEyzPrNu3bo22cfm6quv1n/913+16LM/5erqesWQr01TQ75S657Lw8NDs2bN0qxZs1r0eTgWQV8AAAAAAAB0BT+dUttQkPeee+7R888/r8zMTKWlpTX49rTy8nLNnj1bx48f15gxY/TCCy+0uJ7BgwdrwoQJev/99yVJd955Z4Nntgfbd1FaWtrgum3iryT7NF+0PV8verMAAAAAAABwLBejCwDQfH40kwEAAAAAANAFmM1mSbWDChoanODr66vAwEBJUnZ2dr112yTgpKQkDR8+XHFxcfLw8GhxPa+88oref/99mc1mBQYGKi4uTm+//XaL92uO8PBwSdK5c+caXLdd9/f3J+jbjmxDGIpLqwyuBAAAAAAAAF0FQV/ACfnYXw9HMxkAAAAAAACd19ChQyVJFRUVKikpqbdeXV2toqIiSXWn/0pSTU2N5s2bp8TERA0ePFhvvPFGvXua49VXX1VcXJzMZrPWrl2r+Ph4BQYGatGiRQ4J+w4ZMkSSdPTo0QbXv/32W0lSZGRku9fSlfld6s1WVFarsqra4GoAAAAAAADQFRD0BZyQr5ebJCb6AgAAAAAAoHPr1auXoqKiJEn79u2rt75//35VVlbK29tbERER9utWq1Xz58/XJ598on79+mn16tXq0aNHi+tYvny5VqxYYQ/5WiwWRUZG2sO+ixcv1jvvvNPi/Zti5MiR8vf3V3p6upKTk+utb968WZI0bty4dq2jq/O+9LY1SSphqi8AAAAAAAAcgKAv4IRsr4cj6AsAAAAAAIDO4KmnntLEiRO1fv36emszZ86UJC1btkzp6en26+fPn9eSJUskSXfffbc8PDzsa88//7w2bNggi8WihIQEBQUFtbi2FStW6LXXXpPZbFZCQoIsFot9zRb2DQgI0KJFi9o17Ovm5qapU6dKkhYuXKji4mL72qZNm5SYmKiAgADddddd7VYDJFcXk3xsgxjK6M8CAAAAAACg/bkZXQCA5rO9Ho5GMgAAAAAAADqaHTt2KC4uzv57QUGBJGnu3Ln2MO7NN9+sOXPm2O85e/asUlNTlZeXV2+/iRMn6r777tO7776ryZMna+TIkXJxcdHBgwdVVFSk4cOHKzY21n7/1q1bFR8fL0kym83629/+1mCd48eP1/jx46/4LFarVampqQoPD1dCQoJ69+5d7x5b2Hf69OlKTU294n42LfmOJGnGjBnau3evkpKSNGHCBF1zzTXKycnR/v375e7urmXLlsnPz69JNaDlfL3ddbGsikEMAAAAAAAAcAiCvoATYqIvAAAAAAAAOqrc3FwdPny43vVjx47Zf46IiGjWngsWLNCoUaP09ttv6+DBg6qqqlLfvn01adIkTZs2TZ6envZ7CwsL7T/v27fvsnuazeZGg74mk0lLly5VTk6OQkNDL3tfZGSkPvroI4WFhTXpeVr6HXl4eOitt97S6tWrtXHjRm3fvl0+Pj4aN26c5syZo6ioqCadj9bx9XJXtkpVTH8WAAAAAAAADkDQF3BCtqAvjWQAAAAAAAB0NDExMYqJiWnWZ9atW9foPZMnT9bkyZPb5fwrcXV1vWLI16apIV+pdTV6eHho1qxZmjVrVos+j9ZjEAMAAAAAAAAcycXoAgA0H41kAAAAAAAAADCGH/1ZAAAAAAAAOBBBX8AJ+XrVNpIvltFIBgAAAAAAAABHYhADAAAAAAAAHImgL+CEftpItlqtBlcDAAAAAAAAAF2HvT/LIAYAAAAAAAA4AEFfwAnZGsk1Vqm0vMrgagAAAAAAAACg67C9ca2Yib4AAAAAAABwAIK+gBPycHORm2vtX9+SUoK+AAAAAAAAAOAoP33jGgAAAAAAANDeCPoCTshkMsmP18MBAAAAAAAAgMP5ebtJIugLAAAAAAAAxyDoCzgpX5rJAAAAAAAAAOBwvt4ekujNAgAAAAAAwDEI+gJOitfDAQAAAAAAAIDj8bY1AAAAAAAAOBJBX8BJ+XrRTAYAAAAAAAAAR2MIAwAAAAAAAByJoC/gpHxoJgMAAAAAAACAw9mCvsWlVQZXAgAAAAAAgK6AoC/gpPwI+gIAAAAAAACAw9mCvhWV1aqsqja4GgAAAAAAAHR2BH0BJ+XrZZsaQdAXAAAAAAAAABzFx9NNJlPtzyVM9QUAAAAAAEA7I+gLOClfJvoCAAAAAAAAgMO5uJjk4+kmScrOv2hwNQAAAAAAAOjsCPoCTsoe9C0j6AsAAAAAAAAAjtQ3vIck6dnVSUrNLDC4GgAAAAAAAHRmBH0BJ2UL+haVEPQFAAAAAAAAAEeK/f0o9QnrptzCMv1p+Zc6fCLb6JIAAAAAAADQSRH0BZyUpaefJOlUer6qqmsMrgYAAAAAAAAAuo6QAG8tnTtWURFBKi2v0oJVe7TjQLrRZQEAAAAAAKATIugLOKmI8B7q7uuh0vIqHf8hz+hyAAAAAAAAAKBL8fN216KZY3TD1eGqqrbqpbe/1oefn5LVajW6NAAAAAAAAHQiBH0BJ+XiYtLVA0MkSYd4LRwAAAAAAAAAOJyHu6ue+sNo/fqmCEnSmk1HterjI6qpIewLAAAAAACAtkHQF3BiPwZ9swyuBAAAAAAAAAC6JhcXk2b8JloP/zpKkrTxixQtW79fFZXVBlcGAAAAAACAzoCgL+DERgyqDfqeSMtXSWmlwdUAAAAAAAAAQNd1580DNO8Po+TmatKuw5n6yxt7VHyxwuiyAAAAAAAA4OQI+gJOrGegj8KDfVVTY9U3p3KMLgcAAAAAAAAAurSbRli0cOYY+Xi56WjKBf1pxZfKzis1uiwAAAAAAAA4MYK+gJMbfmmq76ETWQZXAgAAAAAAAAD4xYAQLZ07VoHdvXTmXJHmvbZTp88WGl0WAAAAAAAAnBRBX8DJDR/UU5J06ES2wZUAAAAAAAAAACSpb6/ueuGxseod2k0XCsr0/y3/QqfS840uCwAAAAAAAE6IoC/g5H4xIFguLiZl5pQoK/ei0eUAAAAAAAAAACT1DPDRsrk3akjfQJWUVel/vkgxuiQAAAAAAAA4IYK+gJPz9XbXoN7+kqRDJ5nqCwAAAAAAAAAdhZ+Phybd2E+SdJ5BDQAAAAAAAGgBgr5AJzB8UE9J0qETBH0BAAAAAAAAoCMJ8feRJGXnlxpcCQAAAAAAAJwRQV+gExg+KESSdPhktmpqrAZXAwAAAAAAAACwCfb3liTlFpSqmv4tAAAAAAAAmomgL9AJRF4VIG9PNxWWVCgls8DocgAAAAAAAAAAlwR295SLi0lV1VblF5UZXQ4AAAAAAACcDEFfoBNwc3VRdP9gSdKhE9kGVwMAAAAAAAAAsHF1dVFgdy9JUk5+qcHVAAAAAAAAwNkQ9AU6ieGDQiRJh05kGVwJAAAAAAAAAOCnQvy9JUnZBH0BAAAAAADQTAR9gU7CFvT9NjVX5ZXVBlcDAAAAAAAAALCxBX2Z6AsAAAAAAIDmIugLdBKWnn4K7uGlyqoaHU25YHQ5AAAAAAAAAIBLgm0TffMI+gIAAAAAAKB5CPoCnYTJZNLwQT0lSYdOZBtcDQAAAAAAAADAJiTgUtCXib4AAAAAAABoJoK+QCcyfFCIJOnQiSyDKwEAAAAAAAAA2Ngn+hL0BQAAAAAAQDMR9AU6kasH1gZ9UzMLlVdUZnA1AAAAAAAAAABJCrkU9M0h6AsAAAAAAIBmIugLdCL+3TzVL7y7JOnwyRyDqwEAAAAAAAAASD9O9M0vKldlVbXB1QAAAAAAAMCZEPQFOpnhg3pKkg6dyDK4EgAAAAAAAACAJHX39ZCHu6skKSeft7EBAAAAAACg6Qj6wiE++eQTzZo1S2PHjtWIESMUExOjTZs2GV1WpzR8UIgk6dCJbFmtVoOrAQAAAAAAAACYTCaF+HtJkrLzLxpcDQAAAAAAAJyJm9EFoGuIj4+XxWLR008/rYCAAO3cuVOxsbHKy8vTAw88YHR5nUpURJDc3Vx0oaBM6VnF6h3azeiSAAAAAAAAAKDLC/H3UUZ2iXLyS40uBQAAAAAAAE6EoC8cYuXKlQoMDLT/PmbMGGVlZWnNmjUEfduYp7urhvYL1OGTOTp4IougLwAAAAAAAAB0AMH+3pKkbIK+AAAAAAAAaAYXowtA1/DTkK/NkCFDlJWVZUA1nd/wQT0lSYdOZBtcCQAAAAAAAABAkkICLgV98wj6AgAAAAAAoOmcaqLv0aNHtXv3biUnJ+vIkSPKyMiQJG3btk0Wi6XJ+1RWVmrfvn3asWOH9u3bp7S0NFVXVyssLEw33nijHnnkEZnN5st+vqioSKtXr9bWrVuVnp4uSQoNDdWoUaP02GOPKTQ0tHUP2kKt+X4qKiq0Zs0abdy4UWlpafLx8dHo0aM1e/ZsRUVFtUu9hw4dUr9+/dpl765u+KAQJfyvdOT7HFVV18jNlUw/AAAAAAAAABjJNtE3h4m+AAAAAAAAaAanCvquWLFC27Zta/U+X331lR5++GFJUq9evXTDDTdIkr755hu988472rhxo1atWqURI0bU++ypU6f04IMPKisrS1dddZXGjh2ryspKnTlzRh988IF++9vfGhb0ben3U1FRoYcfflhJSUkKCgrSLbfcouzsbG3ZskU7duzQypUrNXbs2Datdc+ePdq6dauee+65Nt0XtSLCe6i7r4cKSyp0/Ic8RUUEGV0SAAAAAAAAAHRpIZeCvtkEfQEAAAAAANAMThX0HT58uAYNGqRhw4YpOjpaMTExysnJafY+JpNJt912mx588ME6Yd7y8nItWLBAH374oWJjY/XZZ5/J3d3dvl5YWKiHHnpI+fn5evHFFzV58uQ6+545c0Z+fn4tf8BWaun38+abbyopKUnR0dGKj4+3P8OmTZsUGxurefPmaevWrXWeraioSFlZWY3u3b9//3rX0tPTFRsbq3HjxikmJqYZT4imcnEx6eqBIfriUIYOncgm6AsAAAAAAAAABmOiLwAAAAAAAFrCqYK+M2fObJN9xowZozFjxtS77unpqWeeeUZbtmxRRkaGDh48qGuvvda+vnz5cp0/f15PP/10vZCvJPXp06fJNZw8eVL79+/Xfffdd8X7Vq9erQkTJshisTS6Z0u+n6qqKq1du1aS9Mwzz9QJ806aNEkbN25UYmKiNmzYoGnTptnXPv30U82fP7/R/Y8fP17n9/z8fM2YMUPh4eF68cUXm10vmm74IFvQN0v3TxxsdDkAAAAAAAAA0KXZJvpeLKtSSWmlfL3dG/kEAAAAAAAA4ICgb0FBgc6fP6++ffvKw8OjvY9rNS8vL/Xt21fJycl1JtaWl5frww8/lLe3t+69995WnWG1WvXkk0/qu+++U2VlpaZOndrgfS+//LJWrlypnTt3Kj4+vlVnXs6BAweUn58vi8Wi6Ojoeuu33367EhMTtW3btjpB3ylTpmjKlCnNOqu0tFSzZs1SZWWlXn/9dXl7e7e6flze8EEhkqQTafk0jQEAAAAAANAkztbPBZyJl6ebuvm4q+hipXLyS+nZAgAAAAAAoElcWrvBt99+q1deeUVffvllnetlZWX693//d11//fX6zW9+o7Fjx+rTTz9t7XHtrrq6WhkZGZKk4OBg+/UjR46oqKhIQ4cOlbe3t/bs2aNly5bpL3/5i9544w2lpKQ0+QyTyaSXXnpJQUFBWrJkidatW1fvHlvI12Kx6Lnnnmv9g13GsWPHJElRUVENrg8dOlRS/cm8zVVVVaXHH39cp0+f1qpVqxQUFNSq/dC4ngE+Mof4qqbGqm9O5RhdDgAAAAAAADqAztbPBZxNiL+PJCk7v9TgSgAAAAAAAOAsWh30/eCDD/Tf//3fslqtda6/8sor2rx5s6xWq6xWqwoKCvTkk0/qxIkTrT2yXX388cfKzc1VYGCgRo4cab9+6tQpSVJQUJAee+wxTZ8+XW+99Zbee+89vfTSS7rjjjv0yiuvNPmcAQMGKCEhQYGBgXr22We1fv16+5ot5Gs2m7V27VqFh4e33QP+TGZmpiQpLCyswXXb9fz8fJWUlLT4nIULFyoxMVF//OMflZ+fr0OHDtn/VFRUtHhfXNnwQT0lSYdOZDVyJwAAAAAAALqCztbPBZxNsH/tm+4I+gIAAAAAAKCpWh303b9/vzw9PXXDDTfYr1VUVOgf//iH3Nzc9Prrr+urr77SAw88oKqqKq1du7a1R7ab9PR0LV26VJL0xBNP1Hk1XUFBgSTp888/1/bt2zVv3jzt3LlTu3bt0vz58+Xm5qa4uDj94x//aPJ5AwcOVHx8vAICArR48WKtX7++XsjXbDa37UP+zMWLFyVJ3t7eDa77+PjYf25N0HfXrl2SpCVLlujee++t8ycrixBqexk+KESSdOhEtsGVAAAAAAAAoCNoqJ9bWVnplP1cwBkF+3tJkrLzLhpcCQAAAAAAAJyFW2s3yMnJUWhoqFxcfswMHzp0SMXFxZowYYJuvvlmSVJsbKw++OADffXVV609sl0UFxfbp81OnDhR99xzT531mpoaSbVN70cffVSPPPKIfc3W9H7++ecVFxenKVOmNPncyMhIxcfHa9q0aVq8eLEkKTw8XAkJCbJYLG3wZB3D9u3bjS6hS4ruHywXF5Myc0qUlXtRPQN9Gv8QAAAAAAAAOq2G+rknTpxwun4u4KxCAmp7tDlM9AUAAAAAAEATtXqib2FhoXr06FHn2sGDB2UymTR27Fj7NS8vL/Xp00fnzp1r7ZFtrry8XLNnz9bx48c1ZswYvfDCC/Xu+elk24aCvLZgcGZmptLS0pp1/uDBgzVhwgT773feead69+7drD1ayvZcpaUNNxVtE38lydfX1yE1oe34ersrsk+AJOkgU30BAAAAAAC6vIb6ucePH3eqfi7gzIL9a9+ul03QFwAAAAAAAE3U6qCvl5eXcnNz61zbv3+/JGnkyJF1rru7u9eZFNER2Cb0JiUlafjw4YqLi5OHh0e9+8xmsyTJw8NDoaGh9dZ9fX0VGBgoScrObl6g8pVXXtH7778vs9mswMBAxcXF6e23327B0zRfeHi4JF22YW+77u/vT9DXSQ0fFCJJOnQiy+BKAAAAAAAAYLSG+rnHjh2T5Bz9XMDZhVwK+jLRFwAAAAAAAE3V6i5tRESEMjIydPLkSUlSbm6u9u3bp4CAAPXv37/OvefPn7eHYTuCmpoazZs3T4mJiRo8eLDeeOONOpN7f2ro0KGSpIqKCpWUlNRbr66uVlFRkSRddo+GvPrqq4qLi5PZbNbatWsVHx+vwMBALVq0yCFh3yFDhkiSjh492uD6t99+K0mKjIxs91rQPmxB38Mnc1RTYzW4GgAAAAAAABjp5/3cwsJCHT161Cn6uUBn8NOgL/1aAAAAAAAANEWrg76/+tWvZLVaNWPGDD3//POaNm2aKisrdfvtt9e5LzMzU9nZ2brqqqtae2SbsFqtmj9/vj755BP169dPq1evrvfKup/q1auXoqKiJEn79u2rt75//35VVlbK29tbERERTaph+fLlWrFihT3ka7FYFBkZaQ/7Ll68WO+8807LHrCJRo4cKX9/f6Wnpys5Obne+ubNmyVJ48aNa9c60H4G9QmQt6ebii5WKCWjwOhyAAAAAAAAYKCf93MXLFigqqqqDt/PBTqLwB5ecjFJVdVWFRSXG10OAAAAAAAAnECrg77333+/rrnmGp07d07x8fE6efKk+vbtqzlz5tS5zxYYve6661p7ZLM89dRTmjhxotavX1/n+vPPP68NGzbIYrEoISFBQUFBje41c+ZMSdKyZcuUnp5uv37+/HktWbJEknT33XfLw8Oj0b1WrFih1157TWazWQkJCbJYLPY1W9g3ICBAixYtatewr5ubm6ZOnSpJWrhwoYqLi+1rmzZtUmJiogICAnTXXXe1Ww1oX26uLoruHyxJOngiy+BqAAAAAAAAYKSf93PT0tLUq1evDtPPBTo7N1cXBXT3kiRl55caXA0AAAAAAACcgVtrN/Dw8FBCQoK2b9+ulJQUmc1mjR8/Xp6ennUPuhQove2221p81o4dOxQXF2f/vaCgdjrp3Llz7eHam2++uU5T+uzZs0pNTVVeXp792tatWxUfHy9JMpvN+tvf/tbgeePHj9f48ePtv0+cOFH33Xef3n33XU2ePFkjR46Ui4uLDh48qKKiIg0fPlyxsbGNPofValVqaqrCw8OVkJCg3r1717vHFvadPn26UlNTG91Tatn3I0kzZszQ3r17lZSUpAkTJuiaa65RTk6O9u/fL3d3dy1btkx+fn5NqgEd0/BBIUr69pwOncjWlHGDjC4HAAAAAAAABvl5P7e6ulrXXnutAgIC6tzXFv1cAA0L8ffWhYIyZeeXalCfgMY/AAAAAAAAgC6t1UFfSXJxcakTiG3I9OnTW31Obm6uDh8+XO/6sWPH7D9HREQ0uk9hYaH953379l32Plto+acWLFigUaNG6e2339bBgwdVVVWlvn37atKkSZo2bVq9gHNDTCaTli5dqpycHIWGhl72vsjISH300UcKCwtrdE+p5d+Ph4eH3nrrLa1evVobN27U9u3b5ePjo3HjxmnOnDmKiopq0vnouIYPCpEkfZuaq7KKKnl5tMlffQAAAAAAADihn/Zzk5OTG7ynLfq5ABoW7O8t/ZCn7Dwm+gIAAAAAAKBxTpX2i4mJUUxMTLM+s27dujbZ56cmT56syZMnt/jzkuTq6nrFkK9NU0O+Uuuey8PDQ7NmzdKsWbNa9Hl0bJaefuoZ6KOs3IvaeTBDE667yuiSAAAAAAAAAKBLCgnwkSTl5BP0BQAAAAAAQONcWrtBbm6u9uzZo9TU1Hprf//73/XrX/9a1113nWbMmKGUlJTWHgegBUwmkybd0E+S9OHnp1RTYzW4IgAAAAAAABiBfi5gvGB/L0lSdv5FgysBAAAAAACAM2h10Hft2rV66KGHdPjw4TrX33vvPS1cuFAnTpxQQUGBvvjiC02dOlV5eXmtPRJAC9x2/VXy9XZXRnax9h09a3Q5AAAAAAAAMAD9XMB4If5M9AUAAAAAAEDTtTrou3fvXrm6uupf//Vf61x//fXXJUkPPfSQli9frtGjR+vChQuKj49v7ZEAWsDHy123/7KvJGnD9lOyWpnqCwAAAAAA0NXQzwWMF+LvLUnKziPoCwAAAAAAgMa1OuibmZmpkJAQ+fr62q999913yszM1MiRI/XUU09p/Pjx+tvf/iZXV1clJia29kgALTR5bITc3Vx0/EyejqRcMLocAAAAAAAAOFhD/dzTp0/TzwUcKCSgNuibX1yuyqoag6sBAAAAAABAR9fqoG9+fr5CQkLqXPv6668lSbfeeqv9WkhIiPr06aMzZ8609kgALRTQzUvjr+kjSdqw/aTB1QAAAAAAAMDRGurnHjt2TBL9XMBRuvt6yMPNRVardKGAqb4AAAAAAAC4slYHfV1cXFRSUlLn2oEDB2QymTRq1Kg617t166bKysrWHgmgFX77LwPkYpK+/i5LqZkFRpcDAAAAAAAAB2qon3v8+HH6uYADmUwmBfvXTvXNzifoCwAAAAAAgCtrddDXbDbrhx9+UH5+viSpsrJSu3btkpeXl4YNG1bn3ry8PAUEBLT2SACt0CvYV7/8Rbgk6cPPTxlcDQAAAAAAABzp5/3cqqoqffPNN/RzAQezBX1zCPoCAAAAAACgEa0O+t54442qqqpSbGystm/frvnz5ys/P19jx46Vm5ub/b6ioiKlpaWpV69erT0SQCvddetASdLOQxnKyr1ocDUAAAAAAABwlJ/3c1euXKmioiL6uYCDhQRcmuibR9AXAAAAAAAAV+bW+C1XNmPGDP3v//6vdu3apd27d8tqtcrT01Nz5sypc9/27dtltVrrvf4NgOMNsPhr+MAQHTqZrX/u/F4z74w2uiQAAAAAAAA4QEP9XHd3d/q5gIMx0RcAAAAAAABN1eqgb3BwsDZs2KBVq1YpNTVV4eHhmjZtmvr371/nvq+//lqDBw/WLbfc0tojAbSBmFsG6NDJbP3fvh/0u3+NVHdfD6NLAgAAAAAAQDv7eT/Xy8tLd9xxhyIjI+vcRz8XaF8hl4K+2QR9AQAAAAAA0IhWB30lKTQ0VH/+85+veM+iRYva4igAbWT4oBBFmHsoJaNA//tliu67bbDRJQEAAAAAAMABftrPTU5ObvAe+rlA+wrx95HERF8AAAAAAAA0zsXoAgAYw2Qy6e5bBkqS/ufLVJWVVxlcEQAAAAAAAAB0DcH+XpKk7LyLBlcCAAAAAACAjq5NJvra5OTkaNeuXUpJSVFJSYl8fX3Vv39/3XDDDQoKCmrLowC0gV/+opfCgnx07sJFbUk6o8ljI4wuCQAAAAAAAA6Sk5OjnTt3KiMjQx9//DH9XMCBgv29JUklZVW6WFYpHy93gysCAAAAAABAR9UmQd+KigotW7ZM7733nqqq6k8FdXNz0+9+9zvNmzdPHh4ebXEkgDbg6uqi3/7LAK3c8I3+mXhKv/plX7m5MugbAAAAAACgM6Of2/WcOnVKixcv1qFDh9StWzdNmTJFc+fOlaurq9GldVk+Xu7y9XZXSWmlsvNLdVUYQV8AAAAAAAA0rNVB35qaGs2ePVu7d++W1WpVUFCQIiIiFBISouzsbKWkpOjChQtav369UlNT9eabb8pkMrVF7QDawLhr+ujdz44rK69UXx7K0L+M6m10SQAAAAAAAGgnP+/n9ujRQ+Hh4erXrx/93E6qoKBA06dP14ABAxQXF6czZ85o6dKlqqmp0RNPPGF0eV1aiL+3SkorlZNfqqvCuhtdDgAAAAAAADqoVgd9N2zYoF27dqlbt27605/+pDvvvFNubj9uW11drX/+859atmyZdu3apQ8//FB33XVXa48F0EY83V01aWw/rf/kO234/JRuHmnhH28AAAAAAAA6qZ/3cwcMGCBXV1dFR0dLop/bGf39739XeXm5li9fLj8/P91www0qLi7W8uXLNWPGDPn5+RldYpcV7O+t02cLlZ1XanQpAAAAAAAA6MBcWrvBxo0bZTKZ9Oqrr+ruu++uE/KVJFdXV9111116+eWXZbVa9c9//rO1RwJoY3f8sp+8PFx1+myhDhzPMrocAAAAAAAAtJOf93NdXV3rrNPP7Xx27typG2+8sU6g94477lBZWZmSkpIMrAwhAd6SpJx8gr4AAAAAAAC4vFZP9D1+/LgsFovGjBlzxfvGjBmj3r176/jx4609EkAb8/Px0G3X99XHO7/Xhu2nNGpwqNElAQAAAAAAoB105H7u0aNHtXv3biUnJ+vIkSPKyMiQJG3btk0Wi6XF+xYVFWn16tXaunWr0tPTJUmhoaEaNWqUHnvsMYWGGtMLa+nzVlRUaM2aNdq4caPS0tLk4+Oj0aNHa/bs2YqKiqp3f0pKiq6//vo618LDw+Xt7a2UlBTdeuutbftgaLIQ/9qgbzZBXwAAAAAAAFxBq4O+paWl6tOnT5Pu7dGjh86fP9/aIwG0g9/c1F+bvkxR8vc5OnEmT4P6BBhdEgAAAAAAANpYR+7nrlixQtu2bWvTPU+dOqUHH3xQWVlZuuqqqzR27FhVVlbqzJkz+uCDD/Tb3/7WsKBvS563oqJCDz/8sJKSkhQUFKRbbrlF2dnZ2rJli3bs2KGVK1dq7NixdT5TWFiobt261dure/fuKiwsbNUzoHVsQV8m+gIAAAAAAOBKWh30DQkJUUpKisrKyuTl5XXZ+0pLS5WSkqLg4ODWHgmgHYQEeOvmkRZt35+mD7af1H9Mv9bokgAAAAAAANDGOnI/d/jw4Ro0aJCGDRum6OhoxcTEKCcnp8X7FRYW6qGHHlJ+fr5efPFFTZ48uc76mTNn5Ofn19qyW6wlz/vmm28qKSlJ0dHRio+Pt9e/adMmxcbGat68edq6dauhz4WmC7ZN9M0j6AsAAAAAAIDLc2ntBtddd51KS0v13HPPXfG+v/71ryotLa33ijAAHcddtwyQJO09clbpWUUGVwMAAAAAAIC21pH7uTNnztS//du/afz48W0yZXf58uU6f/68YmNj64V8JalPnz4KDAxs0l4nT57Uu+++2+h9q1evVnp6epP2bO7zVlVVae3atZKkZ555pk6Yd9KkSbr55puVl5enDRs21Plc9+7dVVxcXG+/wsJCde/evUm1on2EBPhIknIKSlVTYzW4GgAAAAAAAHRUrQ76PvLII3Jzc9M//vEP/eY3v9GGDRv0zTff6OzZs/rmm2+0YcMG/frXv9Y//vEPubu76+GHH26LugG0gz5h3XXt0DBZrdJHO743uhwAAAAAAAC0sZ/3c7dv365Tp051un5ueXm5PvzwQ3l7e+vee+9t1V5Wq1VPPvmkFixYYA/aNuTll1/W0qVLNX/+/FaddzkHDhxQfn6+LBaLoqOj663ffvvtkqRt27bVuR4REaGUlJQ6186ePavS0lJFRES0S61omqAeXjKZpMqqGhWUlBtdDgAAAAAAADoot9Zu0L9/fy1dulRPP/20jh8/3mAT02q1ytPTU88//7z69+/f2iMBtKO7bh2gpG/Pafv+NN0/cbACu1/+FY4AAAAAAABwLj/v5544caLePZ2hn3vkyBEVFRVp1KhR8vb21p49e/TFF1+ouLhYFotF48ePb3LI1WQy6aWXXtLUqVO1ZMkSmUwmPfDAA3Xuefnll7Vy5UpZLJZGpyW31LFjxyRJUVFRDa4PHTpUknT8+PE612+66Sa99dZbKi4utk8B3rx5s7y8vHTttde2S61oGjdXFwV081JuYZly8ksV0I1eLAAAAAAAAOpr9URfqXZSwEcffaSYmBgFBQXJarXa/wQFBenuu+/WRx99pF/96ldtcRyAdjS0X5CG9A1UVXWN/pnIVF8AAAAAAIDO5qf93B49enTKfu6pU6ckSUFBQXrsscc0ffp0vfXWW3rvvff00ksv6Y477tArr7zS5P0GDBighIQEBQYG6tlnn9X69evta7aQr9ls1tq1axUeHt7mzyNJmZmZkqSwsLAG123X8/PzVVJSYr/+u9/9Th4eHnr00Ue1e/duvffee1q+fLmmT59uD/7COCH+3pKk7LxSgysBAAAAAABAR9Xqib42ERER9kkFxcXFKikpka+vb51GYUxMjAoLC7V169a2OhZAO7hn/CAtXLVX/7srVb+9ub8CmOoLAAAAAADQqdj6ucnJybp48aL69u3bqfq5BQUFkqTPP/9ckjRv3jxNnjxZrq6u+uSTT7Rs2TLFxcUpPDxcU6ZMadKeAwcOVHx8vKZNm6bFixdLknJycuqEfM1mc/s8kKSLFy9Kkry9vRtc9/Hxsf9s689LUo8ePRQfH69FixZp1qxZ6t69u6ZNm6ZHH3203WpF0wUHeOv4mTzl5BP0BQAAAAAAQMPaLOj7U35+fg1OAsjMzLQ3WAF0XKMG91TkVQE6/kOe/rH9pGbeGW10SQAAAAAAAGgnPj4+Cg0NrXfdmfu5NTU1kqTKyko9+uijeuSRR+xrDzzwgKqqqvT8888rLi6uyUFfSYqMjKwX9g0PD1dCQoIsFkvbPkQbGjBggNauXWt0GWiAfaIvQV8AAAAAAABchovRBQDoeEwmk/4wcbAk6ZPdp3ltHAAAAAAAAJzKT6fbNhTkveeeeyTVhpnT0tKatffgwYM1YcIE++933nmnevfu3cJKm872TKWlDffqbBN/Jdmn+aLjI+gLAAAAAACAxhD0BdCgqweGaFj/IFVV1+j9bSeMLgcAAAAAAABoMrPZLEny8PBocFqxr6+vAgMDJUnZ2dnN2vuVV17R+++/L7PZrMDAQMXFxentt99ufdGNCA8PlySdO3euwXXbdX9/f4K+TiT4UtA3p4VB3/SsIr3+4TcqLKloy7IAAAAAAADQgRD0BdCg2qm+QyRJW/b9oHMXSgyuCAAAAAAAAGiaoUOHSpIqKipUUlK/r1VdXa2ioiJJdaf/NubVV19VXFyczGaz1q5dq/j4eAUGBmrRokXtHvYdMqS2V3f06NEG17/99ltJUmRkZLvWgbZlC/q29K1qb358RJt2pep/v0xpy7IAAAAAAADQgRD0BXBZURFBGjEoRNU1Vr37f8eNLgcAAAAAAABokl69eikqKkqStG/fvnrr+/fvV2Vlpby9vRUREdGkPZcvX64VK1bYQ74Wi0WRkZH2sO/ixYv1zjvvtOlz/NTIkSPl7++v9PR0JScn11vfvHmzJGncuHHtVgPaXkhAbdA3r6hMVdU1zfpsSWmlvjlZO5H69LnCNq8NAAAAAAAAHQNBXwBX9Idf1U4K2fF1mtKzigyuBgAAAAAAAPjRU089pYkTJ2r9+vX11mbOnClJWrZsmdLT0+3Xz58/ryVLlkiS7r77bnl4eDR6zooVK/Taa6/JbDYrISFBFovFvmYL+wYEBGjRokXtFvZ1c3PT1KlTJUkLFy5UcXGxfW3Tpk1KTExUQECA7rrrrnY5H+2jh6+n3FxdZLVKFwrKmvXZ/cfOq6raKklKO0/vFgAAAAAAoLNyM7oAAB3boD4Bui4qTPuOntO7nx3XvAdGG10SAAAAAAAAOqEdO3YoLi7O/ntBQYEkae7cufYw7s0336w5c+bY7zl79qxSU1OVl5dXb7+JEyfqvvvu07vvvqvJkydr5MiRcnFx0cGDB1VUVKThw4crNja20bqsVqtSU1MVHh6uhIQE9e7du949trDv9OnTlZqa2m7PO2PGDO3du1dJSUmaMGGCrrnmGuXk5Gj//v1yd3fXsmXL5Ofn16Tz0TG4uJgU4u+tsxdKlJNfqtBAnyZ/ds+Rs/afM7NLVFlVI3c35rsAAAAAAAB0Ns0O+i5fvrzFh5WVNe//RgfQMdw/cbD2HT2nnYcyNGX8IPXt1d3okgAAAAAAANAEjfVzs7KyJEmJiYn11hzdz83NzdXhw4frXT927Jj954iIiGbtuWDBAo0aNUpvv/22Dh48qKqqKvXt21eTJk3StGnT5Onp2egeJpNJS5cuVU5OjkJDQy97X2RkpD766COFhYU1qbaWPK+Hh4feeustrV69Whs3btT27dvl4+OjcePGac6cOYqKimrS2ehYgi8FfbPzLkoKatJnKiqrdeC78/bfq2usyswp1lVh9G4BAAAAAAA6mxYFfU0mU4sOs1qtLf4sAOP0C++hG64O167DmXrns+/0H9OvNbokAAAAAAAANIEz9XNjYmIUExPTrM+sW7eu0XsmT56syZMnt7QsSZKrq+sVQ742TQ35Si17Xqk27Dtr1izNmjWr2Z9FxxQS4C1Jys4vbfJnDp/MVml5tYJ6eCmoh5dOnMnXmXNFBH0BAAAAAAA6oWYHfa+55pr2qANAB3f/bYO155tM7Uk+q1Np+RrQ29/okgAAAAAAANCIxvq5JSUlkiRfX19HlAOgAcH+zQ/67kk+K0m6flgvVVRW68SZfKWdL2qX+gAAAAAAAGCsZgd9mzIhAUDn0zu0m24eadHnX6dr/afHtGDGGKNLAgAAAAAAQCMa6+cmJydLkqKjox1RDoAGhFwK+uY0MehbXWNV0rfnJEljhvVSSmaBJOnMOYK+AAAAAAAAnZGL0QUAcB6/mxApFxeTvv4uS8dSc40uBwAAAAAAAACcnn2ib17Tgr7fnc5VQXGF/LzdFdU/SH3CukmSzjDRFwAAAAAAoFMi6AugycKD/TT+mj6SpPWfHjO4GgAAAAAAAABwfiEBzZvouyf5rCTpmqGhcnN1Ue/Q2qBvZnaxKqtq2qdIAAAAAAAAGIagL4BmufdfB8nN1UXfnMrRN6eyjS4HAAAAAAAAAJxayKWJvsWllSotr7rivVarVXuO1AZ9x0T3sn/e29NV1TVWZeYUt2+xAAAAAAAAcDiCvgCapWeAj267/ipJ0vpPvpPVajW4IgAAAAAAAABwXj5e7vL1cpPU+FTf1MxCZeVelIe7q0ZE9pQkmUwm+1TftPNF7VssAAAAAAAAHI6gL4BmmzJuoDzcXHTsdK4OHM8yuhwAAAAAAAAAcGrBl6b6ZuddOei799I03xGDQuTl4Wa/3ie0uyTpzDmCvgAAAAAAAJ0NQV8AzRbUw1u339BPkrT+k2NM9QUAAAAAAACAVggJ8JEkZTcy0XdPcm3Qd0x0rzrX+4TVTvQ9w0RfAAAAAACAToegL4AWufvWgfLycNWp9ALtPXLO6HIAAAAAAAAAwGnZJ/rmX7zsPeculOj02UK5uJh0bVRYnbXeoZeCvkz0BQAAAAAA6HQI+gJokR5+npo8NkKS9M5n36mmhqm+AAAAAAAAANASIZeCvjlXmOhrm+Y7LCJI3Xw86qzZJvpmZherqrqmnaoEAAAAAACAEQj6AmixmH8ZIF8vN50+W6hdhzONLgcAAAAAAAAAnJJ9om/e5YO+e4/UBn2vH9ar3lqIv7e8PV1VXWNVZnZx+xQJAAAAAAAAQxD0hUN88sknmjVrlsaOHasRI0YoJiZGmzZtMrostJKfj4d+c/MASVL85m915lyhwRUBAAAAAAAAgPNpbKJvXlGZjp3OldRw0NdkMql3aO1U37TzBH0BAAAAAAA6E4K+cIj4+Hj5+vrq6aefVlxcnK677jrFxsZq3bp1RpeGVvrNTREK6uGlrNyL+re/Jerjnd+rpsZqdFkAAAAAAAAA4DRCAn4M+lqt9furSUfPyWqVBvT2t9/7c7agLwMZAAAAAAAAOhc3owtA17By5UoFBgbafx8zZoyysrK0Zs0aPfDAAwZWhtby8XLXS4/fpFffO6QDx7O06uMjSjp6To//boR6BvgYXR4AAAAAAAAAdHhBPbwkSRVVNSosqVAPP88663uSz0qSxjQwzdemT2h3SdKZ80XtVCUAAAAAAACMwERfOMRPQ742Q4YMUVZWlgHVoK0F9fDWghnXa/Zdv5Cnh6u+OZWjR1/8XNv3pzU4fQIAAAAAAAAA8CN3N1cFdKsN92bnldZZu1hWqcMncyRJY6KvEPQNuzTRl6AvAAAAAABAp+JUE32PHj2q3bt3Kzk5WUeOHFFGRoYkadu2bbJYLE3ep7KyUvv27dOOHTu0b98+paWlqbq6WmFhYbrxxhv1yCOPyGw2N7qP1WrVtGnTtG/fPknS5s2b1b9//5Y9XBtozfdTUVGhNWvWaOPGjUpLS5OPj49Gjx6t2bNnKyoqql3qPXTokPr169cue8PxTCaTbv9lPw0fGKL/eueAjp/J09/ePaB9R8/qj3ddXW8CBQAAAAAAAADgR8H+3sorKld2fqkG9Pa3X//6WJaqqmtkDvGVpaffZT/fJ7Q26JuZXayq6hq5uTLrBQAAAAAAoDNwqqDvihUrtG3btlbv89VXX+nhhx+WJPXq1Us33HCDJOmbb77RO++8o40bN2rVqlUaMWLEFfd57733tG/fPplMpg4xtbSl309FRYUefvhhJSUlKSgoSLfccouys7O1ZcsW7dixQytXrtTYsWPbtNY9e/Zo69ateu6559p0XxgvPMRPS+feqA+2n9S7/3dcu785q2OpuXrs3hEaPSTU6PIAAAAAAAAAoEMKCfDWybR85eTXnei758hZSdL1w3rJZDJd9vPB/t7y8nBVWUW1zuaUqPel4C8AAAAAAACcm1MFfYcPH65BgwZp2LBhio6OVkxMjHJycpq9j8lk0m233aYHH3ywTpi3vLxcCxYs0IcffqjY2Fh99tlncnd3b3CPc+fO6YUXXtDYsWOVkpJin55rpJZ+P2+++aaSkpIUHR2t+Ph4+fnVTgTYtGmTYmNjNW/ePG3dutV+XZKKioqUlZXV6N4NTThOT09XbGysxo0bp5iYmGY8IZyFq6uL7v3XSI0aHKr/evdrpZ0v1sJVezVxTF89NDlK3p5O9Z8eAAAAAAAAAGh3wf7ekqTsnwR9K6uqtf/YeUnSmOheV/y8i4tJvUO76WRavs6cKyLoCwAAAAAA0Ek4Vdpu5syZbbLPmDFjNGbMmHrXPT099cwzz2jLli3KyMjQwYMHde211za4x1/+8hfV1NRo4cKFeuCBB5pdw8mTJ7V//37dd999V7xv9erVmjBhgiwWS6N7tuT7qaqq0tq1ayVJzzzzTJ0w76RJk7Rx40YlJiZqw4YNmjZtmn3t008/1fz58xvd//jx43V+z8/P14wZMxQeHq4XX3yx2fXCuQzo7a+/PfEvWrv5W23cmaJP95zW4RPZ+vffj9TgvoFGlwcAAAAAAAAAHUaIv48k1Znoe/hkjkrLqxTY3UsDewc0ukefsEtB3/NFuqHdKgUAAAAAAIAjOVXQ1xG8vLzUt29fJScnX3Zi7T//+U8lJibq6aefltlsbvYZVqtVTz75pL777jtVVlZq6tSpDd738ssva+XKldq5c6fi4+ObfU5THDhwQPn5+bJYLIqOjq63fvvttysxMVHbtm2rE/SdMmWKpkyZ0qyzSktLNWvWLFVWVur111+Xt7d3q+tHx+fp7qoZv4nWtUPD9PLfD+rshRL9afkXuvPmAfr9xMHydHc1ukQAAAAAAAAAMFyIbaJv3kX7tb1HzkqSrhsWJhcXU6N79Lk0xffMucJ2qBAAAAAAAABGcDG6gI6murpaGRkZkqTg4OB66zk5OfrrX/+q6OjoywZ0G2MymfTSSy8pKChIS5Ys0bp16+rdYwv5WiwWPffccy06pymOHTsmSYqKimpwfejQoZLqT+ZtrqqqKj3++OM6ffq0Vq1apaCgoFbtB+dz9cAQvfbkLbpllEU1VunDHaf02Iuf62jKBaNLAwAAAAAAAADDhQTUBn1tE32ra6zad+ScJGnMsF5N2qNPWHdJUtr5onaoEAAAAAAAAEYg6PszH3/8sXJzcxUYGKiRI0fWW1+0aJGKi4v17LPPysWl5V/fgAEDlJCQoMDAQD377LNav369fc0W8jWbzVq7dq3Cw8NbfE5jMjMzJUlhYWENrtuu5+fnq6SkpMXnLFy4UImJifrjH/+o/Px8HTp0yP6noqKixfvCufh5u+vffz9K8x+8VoHdPZWZU6Kn477U6x99o9LyKqPLAwAAAAAAAADDBF+a6JtbWKbq6hp9dzpX+cXl8vV2V/SA+oNJGtL70kTfjOxiVVXXtFutAAAAAAAAcBw3owvoSNLT07V06VJJ0hNPPCEPD48665999pk+++wzzZw5U4MHD271eQMHDlR8fLymTZumxYsXS6qdGPzTkK/ZbG71OVdy8WLtK8C8vb0bXPfx8bH/XFJSIl9f3xads2vXLknSkiVL6q1t27ZNFoulRfvCOV03rJei+gdr9cYj2pJ0Rpu+TFXSt+f12JThunpQiNHlAQAAAAAAAIDD+ft5ys3VpKpqqy4UlmnvkbOSpGuGhsrNtWmDR0L8veXl4aqyimqdzSmxB38BAAAAAADgvAj6XlJcXGyfNjtx4kTdc889ddbz8/O1aNEiXXXVVZo7d26bnRsZGVkv7BseHq6EhIROFX7dvn270SWgg/Hzdtdj947QjcPNWv6PQ8rKvaj5r+/WbddfpQcnRcnX293oEgEAAAAAAADAYVxcTArq4a3zuReVnVdqD/peP6xXs/awhHbTqbR8nTlfRNAXAAAAAACgE2ja/wLeyZWXl2v27Nk6fvy4xowZoxdeeKHePX/961+Vk5OjhQsXytPTs03PHzx4sCZMmGD//c4771Tv3r3b9IzLsU3sLS0tbXDdNvFXUoun+QJXMjKyp5Y/eYtu/2VfSdJne3/Q3Be2a/+x88YWBgAAAAAAAAAOFhJQ+/a9/cfO69yFi/Jwc9GoyJ7N2qPPpXBv2vmiNq8PAAAAAAAAjtflJ/pWVlbq0UcfVVJSkoYPH664uDh5eHjUu2/btm3y9PRUXFyc4uLi6qxlZ2dLkv70pz/J29tb999/vyZOnNjkGl555RW9//77MpvNKi0tVVxcnIKDg3X//fe37uGaIDw8XJJ07ty5Btdt1/39/Qn6ot34eLlr9l1X68bhZr323iGdvVCihav26tbRvfXIb4apm0/9v5MAAAAAAAAA0NkE+9cGfT/be1qSNCKyp7w8m/dPObag75lzjgv6VtdY9enuVF09KESWnkwRBgAAAAAAaEtdOuhbU1OjefPmKTExUYMHD9Ybb7xhn3DbkPLyciUlJV12PTk5WZI0bty4Jtfw6quvKi4uTmazWWvXrlVJSYmmT5+uRYsWSVK7h32HDBkiSTp69GiD699++60kKTIysl3rACQpun+wXn3yX/T2p9/p453fa/v+NB04nqXH7x2h0UNCjS4PAAAAAAAAANpVyKWgb9HFSknS9cN6NXuPPmG2oG9h2xXWiC8OZei/P0rWLwYEa8nsGxx2LgAAAAAAQFfQZYO+VqtV8+fP1yeffKJ+/fpp9erV6tGjx2Xv379//2XXbr31VmVkZGjz5s3q379/k2tYvny5VqxYYQ/5WiwWSVJ8fLymT5+uxYsXy2Qy6fe//33TH6yZRo4cKX9/f6Wnpys5OVnR0dF11jdv3iypeeFloDW8PNz08K+H6Yarw/XqeweVdr5Yi1fv01MPjNYNvwg3ujwAAAAAAAAAaDe2oK8kuZika6PCmr1H70sTfTOyi1VdXSNXV5c2q+9yvk29IEk6mZavmhqrXFxM7X4mAAAAAABAV9H+3R2DPfXUU5o4caLWr19f5/rzzz+vDRs2yGKxKCEhQUFBQQ6ta8WKFXrttddkNpuVkJBgD/lKtdNz4+PjFRAQoEWLFumdd95ptzrc3Nw0depUSdLChQtVXFxsX9u0aZMSExMVEBCgu+66q91qABoy+KpAvfzEv+hfRllUU2PVC+v2a++Rs0aXBQAAAAAAAADtJiTgx7cORkUEq7uvR7P36BngI08PV1VVW5WZU9KW5V3WyTN5kqTS8iqdy3XMmQAAAAAAAF2FU0303bFjh+Li4uy/FxQUSJLmzp0rD4/aZtfNN9+sOXPm2O85e/asUlNTlZeXZ7+2detWxcfHS5LMZrP+9re/NXje+PHjNX78+LZ+DFmtVqWmpio8PFwJCQnq3bt3vXtsYd/p06crNTW1Sfu25PuRpBkzZmjv3r1KSkrShAkTdM011ygnJ0f79++Xu7u7li1bJj8/v5Y+LtBiHu6u+rffjZS1Rko8mK6la7/S09Ov1bVDmz/FAgAAAAAAAAA6uuCfTPS9PrplfVAXF5N6h3bTqbR8pZ0vsk/4bS8VldVKzSy0/56aUajwYP5NAQAAAAAAoK04VdA3NzdXhw8frnf92LFj9p8jIiIa3aew8MeG0759+y57n9lsbpegr8lk0tKlS5WTk6PQ0NDL3hcZGamPPvpIYWFNa+a19Pvx8PDQW2+9pdWrV2vjxo3avn27fHx8NG7cOM2ZM0dRUVFNOh9oD64uJj1x3whV19Toy8OZ+mv8V5r/0LUaNfjyf3cAAAAAAAAAwBn1DPCWq4tJ1TVWXT+sV4v36XMp6HvmfJF+2Yb1NSQlo0DVNdYff88s0A1Xh7fzqQAAAAAAAF2HUwV9Y2JiFBMT06zPrFu3rk32uZLt27c3+zOurq5XDPnaNDXkK7XuuTw8PDRr1izNmjWrRZ8H2pOrq4ti7x+lGqtVu785qyVrkvSfD12nEZE9jS4NAAAAAAAAANqMj5e7Yn8/SpLUM8Cnxfv0uTTFN+1cUZvUdSUnztS+UdFkkqzW2uAvAAAAAAAA2o6L0QUAQFO4ubroyftH67qoMFVW1ejZ1ft0+GS20WUBAAAAAAAAQJsaO8KssSPMrdqjd1ht0PfMeUcEffMlSSMvDWYg6AsAAAAAANC2CPoCcBrubi7609RrdM3QUFVU1Wjx6n1K/j7H6LIAAAAAAAAAoEOxTfRNzypWdXVNu55lm+g74bqrZDJJuYVlyi8qb9czAQAAAAAAuhKCvgCcirubi56edo1GDu6p8opqLVq1V0dTLhhdFgAAAAAAAAB0GD0DfOTp4aqq6hqdvVDSbucUllTY9//FgGCFB/tKklIymeoLAAAAAADQVgj6AnA67m6u+o/p12r4oBCVVVRr4ao9+u50rtFlAQAAAAAAAECH4OJiUu+efpKktPNF7XbOybTaab7mEF/5+XioX3gPSVJqBkFfAAAAAACAtkLQF4BT8nR31Z8fvFa/GBCs0vJqPfPmHvsr4gAAAAAAAACgq+sd2k2SdOZc+wV9T/xQ25Md2CdAkhRhrg36phD0BQAAAAAAaDMEfQE4LS8PN/3nQ9dpWP8gXSyr0l9e361TaflGlwUAAAAAAAAAhusT1l1SOwd9L/VjB/X+WdA3k6AvAAAAAABAWyHoC8CpeXm66S8PX6+h/QJVUlal+a/v1gfbT6q4tNLo0gAAAAAAAADAMH3CLk30Pd8+QV+r1Wp/y1rkVXWDvhnZxSorr2qXc430xcEMpRJiBgAAAAAADkbQF4DT8/Z00zOPXK8hfQNVUlqphP/9Vg8t/kxvbTyi7LxSo8sDAAAAAAAAAIfrE1ob9E3PKlZ1dU2b738+96IKSyrk5mpSv/Da6cEB3bwU0M1TVqt0+lxhm59ppO/T87Vs/X79eeUuXSxj0AQAAAAAAHAcgr4AOgUfL3ctmX2DHr93hPqEdVNpebX+mfi9Zjy3RS+98zVTFgAAAAAAAAB0KT0DfOTh7qqq6hqdy73Y5vvbpvn2C+8hdzdX+/V+l6b6pmZ0rp7sD5eCy0UXK/U/X6QYXA0AAAAAAOhKCPoC6DTc3Vw0/to+Wv7kLXrmkesV3T9Y1TVW7fg6XY+9tEN/eX23Dp3IktVqNbpUAAAAAAAAAGhXLi4m9Q71kySdaYfpuscvBX0j+wTUud7/UtD3+04W9D2b82NY+qPE71VcylRfAAAAAADgGG5GFwAAbc1kMmn0kFCNHhKqk2l5+mjH99p1OEMHT2Tr4IlsRYT30G9vGaAbrw6Xmyv/vwMAAAAAAACAzqlPaDd9n16gM+eLNCa6bfc+eSZfkjTwZ0HffuGXJvp2sresnc0psf9cUlqpjTu/1+9vG2xgRQAAAAAAoKsg4QagUxvYO0BPPTBarz89XpNu7CdPD1elZBbopbe/1sy/btXubzKNLhEAAAAAAAAA2kXv0G6SpDPnitp036rqGn2fni9JGtTHv86abaLv6cxCVVfXtOm5Rjp7oViSdNMIsyTp453fq+hihZElAQAAAACALoKgL4AuISzIV//vt7/Q6vkT9IeJg+Xv56nsvFI9v/Yrbd6danR5AAAAAAAAANDmrgrrLklKO9+2Qd/TZwtVUVUjX293hQf71VkLC/KVl4erKqpqlJFd3KbnGsk20ffuWweqb6/uulhWpX8mfm9wVQAAAAAAoCsg6AugS+nu66F7/zVSb83/V/3ql31ltUorN3yjv285LqvVanR5AAAAAAAAANBmbBN907OKVV3Tdv3Pk2fyJEkDe/vLxcVUZ83FxaR+4bVTfVMyC9vsTCMVXaxQ0cVKSVKvIF/9/rZISdL/fPG9CorLjSwNAAAAAAB0AQR9AXRJHu6umh3zC937r4MkSW9/+p1WfXxENW3Y7AYAAAAAAAAAI/UM9JGHu6sqq2p0/kJJm+174ky+JGlQn4AG1yPMl4K+GQVtdqaRbNN8A7t7ycvTTdcP66UIcw+Vllfrox2nDK4OAAAAAAB0dgR9AXRZJpNJf5g4RDN+M0yStPGLFL389wOqqq4xuDIAAAAAAAAAaD1XF5MsPf0kST+cK2qzfY9fmugbeZmgr22ib2onC/r2CvaVVNtbvv+2wZKkTbtSlV/EVF8AAAAAANB+CPoC6PJ+fVN/PXHfSLm4mPT51+n6a/xXKq+sNrosAAAAAAAAAGi1PmHdJElnzhe2yX4XyyqVnlUbGh7Y27/BeyLM3SVJKZkFslqd/y1qZy9NQw6/FPSVpGuGhmpAb3+VV1TrQ6b6AgAAAACAdkTQFwAk3Tq6t/784LXycHNR0rfn9Mwbe1RSWml0WQAAAAAAAADQKn1Ca4O+aeeK22S/U+n5slqlkABvBXT3avCeq8K6y8XFpMKSCl0oKGuTc43084m+Ut2pvv+7K1V5hc7/nAAAAAAAoGMi6AsAl1w7NEwLZ46Rj5ebjqZc0H/E7VJeUcuas51hSgUAAAAAAAAA52cL+rbVRN/jP+RJkgb1CbjsPR7ururd009S7VRfZ2cL+oYF+da5PmpwT0VeFaCKymp98PlJI0oDAAAAAABdAEFfAPiJYf2D9dc/3ih/P0+lZBboT8u/1Pnci41+rvhihfYeOas3/5msx176XHc+9T/6/1Z8qS37ftDFMiYDAwAAAAAAADBGn7DukqT0rGJV17R+QMHJtHxJ0qDelw/6SlKEuYckKTWj8wR9fzrRV6o71feT3ad1oaDU4bUBAAAAAIDOz83oAgCgo4kw99DSuTfqP1/frbM5JXrqtS+0aOYYXdWru/2ektJKHU29oORTOfrmVI5SMwv08yG+R1Mu6GjKBf33R8kaM6yXbr2mt64eGCJXF5ODnwgAAAAAAABAV9Uz0Ecebi6qqKrR+QslCg/xa9V+J87YJvr6X/G+CHMPff51ur538qDvxbJK5ReXS5J6/WyiryQNHxSiof0C9W1qrj7YdlL/L+YXji4RAAAAAAB0cgR9AaAB4SF+WvboWP3ljT06c65I/9+KL/XQ5CilZxUr+fscfZ+er58PvzCH+Cp6QIh+0T9YvcO66atvz2nbV2nKyC5W4sF0JR5MV2B3L90yyqJbR/e2T9IAAAAAAAAAgPbi6mKSJbSbUjIKdOZ8UauCvhcKSnWhoEwuJmmAxf+K9/YLvzTRN9O5g762ab49/Dzk6+1eb91kMun+iYP155W79eneHxRzy0CFBHg7ukwAAAAAANCJEfQFgMsI6uGt5+fcqIWr9ur4D3l69f1DddZ7Bfsqun+wogcEK7p/kIJ61G3e9u3VXXffOlAn0/K17asz2nkwQ7mFZdrw+Slt+PyUBvT2162jeuumEWb18PN04JMBAAAAAAAA6Er62IK+54p0/bBeLd7HNs23T1h3eXle+Z+YIsy1Qd9zFy6qpLSywZCsMzh7oTbo29A0X5tfDAhRdP9gJX+fo39sO6E/3n21o8oDAAAAAABdAEFfALiCbj4eevb//VJ/+/sBpWYWKqpf0KVgb3CTpjKYTCYN6hOgQX0C9Mhvhinp2/P6fH+a9h87r1Np+TqVlq/V/3NEowaHauxws66NCpN3Iw1yAAAAAAAAAGiOPmHdJElp54tatc+JM/mSpEF9Ahq9t5uPh0ICvJWdV6rUzAIN6x/cqrONYpvo2yv48kFfSfr9bZF6Oi5HW5J+0F23DlRooI8jygMAAAAAAF0AaTIAaISXp5uennZtq/dxd3PVDb8I1w2/CFd+Ubl2HkzXtv1pSsko0L6j57Tv6Dl5uLvqmiG1od9RQ3rKy4P/TAMAAAAAAABond6htUHfM+daG/StnejblKCvJEWE91B2XqlSOkXQ1++K9w3rH6zhA0N06GS23t96Qo/eM9wB1QEAAAAAgK6ABBkAGMC/m6d+fVN//fqm/vrhbKF2HsrQF4cydDanRLu+ydSubzLl5eGqa6PCakO/g3vK3c3V6LIBAAAAAAAAOCHbRN/0rCJV11jl6mJq9h7VNVadTMuXJA3q49+kz0SYe2jf0XNKySho9nkdxdkLTZvoK0m/v22wDp3M1tavzujuWwc26TMAAAAAAACNIegLAAa7qld3PdCru/4wcbC+zyjQl5dCv1l5pdp5MEM7D2bI18tN1w3rpbHDzRo+KERuri5Glw0AAAAAAADASYQG+srDzUUVVTU6n1ui8Eam0zYkI6tIpeVV8vJwVZ+w7k36TL/wHpKk1IzCZp/XUdgm+oY3IbQ7pF+gRg7uqQPfZem9rcf1b78b2d7lAQAAAACALoCkGAB0ECaTSQMs/po+KUqr/vyveuGxsfr1TREK6uGlkrIqbd+fpoWr9mraws+098hZo8sFAAAAAAAA4CRcXUyy9Kyd6pt2rqhFe5w4kydJ6m/xb/JE4P7m2qDvmfOFqqyqadG5VqtVp88WqrKqukWfb42yiipdKCiT1LSJvpJ0/22DJUmf709TZnZxu9UGAAAAAAC6DoK+ANABmUwmDb4qUDN+E63V8yfo+Tk36o4b+sm/m6cKSyr0XHySNn7xvdFlAgAAAAAAAHASfcJqg75nzrc06JsvSRrUJ6DJnwkJ8Javt7uqqq1Ka+G5G79I0aMvfq65L3yug8ezWrRHS52/cFGS5Oftrm4+Hk36zKA+AbpmaKhqrNK7W463Z3kAAAAAAKCLIOgLAB2ci4tJURFBmhXzC635zwm67fqrZLVKb/7ziN78Z7Kqa6xGlwgAAAAAAACgg+sdeino29KJvmm1E30jmxH0NZlMigivneqbklHQ7DMrq2r04eenJEmZOSX6yxt7tHTtV7pQUNrsvVoiM6dEUtOn+dr8/tJU38QD6crMYaovAAAAAABoHYK+AOBE3FxdNOfuqzX9jqGSaqdZPJ+QpLKKKoMrAwAAAAAAANCR2Sb6pmQWyGpt3vCA8spqnc4slCQN7OPfrM9GmHvYz22uXd9kKrewTAHdPPXrsRFyMUlfHs7U7KXbtXHn96qurmn2ns1xtoVB3wEWf0VFBMlqlb5NudAepQEAAAAAgC6EoC8AOBmTyaS7bh2op/4wWu5uLtp75Jz+I26X8orKjC4NAAAAAAAAQAc1qE+A3FxddOZckT7/Oq1Zn01JL1B1jVX+3TwV4u/drM9GmLvX7tHMib5Wq1Uf7/xeknTHDf00485o/de/3azIPgEqLa/Smx8f0b+/vFPf/ZDbrH2b4+yFlgV9Jalfr9rnTs9ioi8AAAAAAGgdgr4A4KTGjjBr8f/7pbr5uOtkWr6efPULpZ1v2Wv3AAAA/n/27ju+yvp+//jrnJO99zonCQkhYYU9ZakgjqpVrLW2iqjV4qpt1Y5v/dU6q1atdcC31SJo1X5t1ZZSBRUFZG8IKyRk7713cn5/nORISoDsE+B6Ph48gHPf9+d+34eh3LnOdYuIiIiIyPktwMeN71+eAMCf/3mI0sr6bh97PLscgIQofwwGQ4/OG2v2AyC9h03CxzLKSc2uwNnJyBUzhwEw3OLH8w/M4b7vjMfL3Zm0vEp+/urXvPb3/VTXNfVoru7IL7GFdCN6EfS1hHgBkF2ooK+IiIiIiIiI9I2CviIi57AxsYG88OO5hAd6UlRWxyOvfk1SakmP1iiramD1phM8/Momfvj057zz6dEe3eQXERERERERERGRc8Oii+OIi/Sjtr6Z1/9xoNvB2+OZtqDviCi/Hp/TEuKFk8lIXUMLhWV13T5u9de2Nt+LJ1nw9XK1v240Grhi5jCW/2I+l06JxGqFddszuee59azfldWjMPHZ5JfYGn3DAnsR9A31BiC7SOUMIiIiIiIiItI3CvqKiJzjIoK9+P2P5zAy2p/a+mZ+8+etZ330XlVtE+u2Z/Dr5VtY8sQ63vjXIZIzyyksq+ODL45z51Of8+K7e0hpb+oQERERERERERGRc5/JZOQnN03EyWRk15FCNuzN6dZxHY2+8ZH+PT6nk8lIdLgt9JqWW9mtY4rK69ialA/ANXNiu9zHz9uVn948id/dO4vIUG8qa5p4+W/7+NWyLf3y5LPmllaKK2yFCOG9aPSNbA/6FpbW0tzS2ud5REREREREROTCpaCviMh5wNfLlafumcWs8RG0tFp56b29/O3z5E7tFfWNLWzYk83jb25n8W/X8trfD3AwtQSrFUZG+3P3dYn8/NYpjIkNpLXNyoa9Ofzs5U38/NWv2XIgj9bWNgdeoYiIiIiIiIiIiPSH6HAfbl6YAMCfP06irKrhjPtX1jRSUGpr4h0R1fOgL0BshC/Q/aDvJ1vSaWuzMi4uiJj2Y09n7PAgXnnoYpZ8azSuLiYOp5Xy6P9upaWP9zMLSuuwWsHd1YTfSY3C3eXv7YqHmxNtVsgrru3TLCIiIiIiIiJyYXNy9AAiItI/XJ1N/PyWKbwdcIQPv0rl3bXHKCitZfqYMDbuy2XXkUKamr9pjoiJ8GHuRAtzJpgJDfCwvz5ngpnU7ApWf32Cr/fncjSjjKMZZQT7u3P1rFgWTo/Cy8PFEZcoIiIiIiIiIiIi/WDRJXFsTcrjRE4ly/5xgF/fPg2DwdDlvinZFQCYg73wcnfu1flize1B37yzB30bGltYuz0TgG/PHd6t9Z1MRm64dARzJpj58UsbKKtqICOvirhIv17NC5Bfagvnhgd6nfa9ORODwUBkiDfJWeVkF1UTHe7T61lERERERERE5MKmoK+IyHnEaDSw5OoxhAZ48L8fHWT9rmzW78q2bw8P8mTuRDPzJlrsj47rSlykHz/7/mSWXD2GT7am8+nWDIrL63lrzWHe/+wY86dGcc2cWMzBXoNxWSIiIiIiIiIiItKPnExGHrxpIj97eSM7DhewaV8u8yZZutz3eFY5APFRfr0+X0fQN70bjb5f7cmmtr6Z8EBPpowK7dF5QgI8SIjyZ29yEclZ5X0L+pa0B32DPHu9hiXUi+SscnKKanq9hoiIiIiIiIiIgr4iIuehKy+KIdjfgxf+uhs3VyfmTLCFe4dbfHvUPhHg48YtV4ziu/Pj2bg3h9Vfp5GRX8V/tqTzny3pzEwM5/uXj2SY2ihERERERERERETOKTERvtx0WQLvrj3Gnz4+yLgRQfh7u52yX0fQNyHKv9fn6rh/WFLZQGVNI75erl3u19ZmZfXXaQBcPScGo7HnTbrx7UHf41nlfGtWTK9n7o+gb2SIrWwhu7C612uIiIiIiIiIiCjoKyJynpoyKpS/PnElJqOhV4+WO5mLs4nLpkezYFoUB1NLWL0pjV1HC9iWlM+2pHxmj4/g+5ePPGNLsIiIiIiIiIiIiAwt37l0BNsO5pOWV8nyDw/yq9umdrqXaLVaOZ5VAcCIPgR9PdycCQ/yJL+klvS8SibEh3S5377jReQU1eDh5sSCqVG9OldCtG3O5MzyXs8L/dToG2J7IlpOoRp9RURERERERKT3jI4eQEREBo6TydjnkO/JDAYD40cE8//unM5rD1/CrPERAGw+kMd9v/+SF9/dQ16xblqLiIiIiIiIiIicC5xMRn5y80RMRgPbkvLZvD+v0/aC0jqq65pwMhmJiejbU71izb4ApOVWnXaf1Ztsbb4LpkXh4ebcq/OMiPQDILe4hpq6pl6tAZBf2g+Nvu3FCDnFNbS1WXu9joiIiIiIiIhc2BT0FRGRXokK8+GXi6fyykMXM2NsGFYrbNibwz3Pf8nLf9tLQfuNcBERERERERERcazU1FRuu+02xo8fz+zZs/njH/9Ia2uro8eSISImwpebFsQDsPyjg1RUN9q3Hc+yteION/vi7GTq03liIzqCvpVdbs8urGZvchEGA1wzO7bX5/H1ciU80BbOPZ5d0as1WlrbKCqrAyCiD0Hf0AAPnExGmppbKa6o7/U6IiIiIiIiInJhU9BXRET6JCbCl1/fPp0//GQeU0eH0tZmZf2ubJY+u57X/r7ffkNcREREREREREQGX2VlJUuWLMFgMLBs2TLuu+8+3nrrLV555RVHjyZDyHfmxxMT4UN1XRP/+9FB++sdQd8RUX59Poe90Tev66Dvv7+2tflOHxNGWGDvw7UA8VH+wDfz91RxeT2tbVZcnE34e7v1eg6TyUhEsO1asgure72OiIiIiIiIiFzYFPQVEZF+ERfpx2/unMELP57DpIQQWtusrNueyY+e/YLlHx6gRI0VIiIiIiIiIiKD7m9/+xuNjY289tprzJo1i5tvvpn77ruPlStXUlNT4+jxZIhwdjLyk+9NwmQ0sOVgHpsP5ALfBGU7grN90RH0zS2qpqGppdO26rom1u/OBuDaucP7fK74aD8AkjN7F/TNL7E9rSw80AOj0dCnWSJDvAHIKdKfNxERERERERHpHQV9RUSkXyVEB/D43TN59r7ZjIsLoqXVyidbM7jz6c954i/b2XIgj+YWPRpSRERERERERGQwbNq0idmzZ+Pl5WV/7Vvf+hYNDQ3s3LnTgZPJUBNr9uXG+fEALP/wIKWV9ZzItbXvJvRD0Nff2xU/L1farJBV0Lnddt32TJqaW4mJ8GFsbGCfz5VwUqOv1Wrt8fH5JbZQbnhQ35qFASyhtj97OUVq9BURERERERGR3nFy9AAiInJ+GhMbyNP3zCIptYR31x3jcFopu44UsutIIV7uzsydaGb+1ChGRPphMPStFUNEREREREREho7Dhw+zdetWkpKSOHToELm5tmbQ9evXY7FYerzeL3/5Sz7++OPTbr/pppt44oknTnk9LS2NN954gx07dlBUVISTkxNRUVEsXLiQ22+/HU/Pvgf4eqsv71FTUxNvvfUWq1evJjs7Gw8PD6ZMmcI999zDmDFjTtk/LS2NGTNmdHotIiICd3d30tLSuPTSS/vvwuSc990F8Ww/lE9GfhVPvLmD5pY2PN2d+yXwajAYiDX7sje5iLTcSntLcEtrG//ZnAbAtXOG98u9wlizL04mI1W1TRSW1REW2LP580rbG32DvM6y59lZ2ht9swsV9BURERERERGR3lHQV0REBlRiXBDPxs0mu7CaL3dn89WebEorG/hkawafbM0gMtSLS6dEcclkC4G+7o4eV0RERERERET66PXXX2f9+vX9vu7s2bMJDg4+5fWJEyee8tru3bu58847aWhoYNiwYVx66aXU19ezd+9eXn31VT755BPef/99fH19+33O7ujte9TU1MSdd97Jzp07CQwM5JJLLqG4uJjPP/+cDRs2sHz5cubMmdPpmKqqKry9vU9Zy8fHh6qqql5fg5yfnJ2MPPi9iTz0x02k5dnafOP78YP6MRE+9qBvh21J+ZRUNuDn5crcieZ+OY+zk4lYsw/HsypIzizvcdA3v6Qj6Nv3gHNkiC0snF1Y0+e1REREREREROTCpKCvDIpPP/2Uf/3rXxw+fJiamhpiYmK44447uPrqqx09mogMkshQb2771mhuuXIUB1KK+XJXNtuS8sgurGHVf47wzidHmBAfwvypkUwfG46rs8nRI4uIiIiIiIhIL0yYMIH4+HjGjh1LYmIiixYtoqSkpM/r3n333UyfPr1b+/72t7+loaGBe++9lx//+Mf2kGJFRQV33HEHhw8f5s033+Shhx7q81y90dv36I033mDnzp0kJiaycuVKvLxsAcI1a9bw0EMP8cgjj/DFF1/YXxfpjTiLHzdeOoL/++I4APHR/v22dqzZFq7vCBEDrN50AoArLxqGSz/eE4yP8ud4VgXHs8qZN6lnbeIdQd+IHgaEu2JuD/pW1zVRWdOIr5drn9cUERERERERkQuLgr4yKFauXInFYuFXv/oV/v7+bNq0iYceeojy8nJuvfVWR48nIoPIZDQwKSGESQkh1NaPY/OBPL7cncWR9DL2JhexN7kIDzcnpo0JY+bYcCYlhODmqv9ciYiIiIiIiJwr7r77boeev7y8nJSUFJydnbnnnns6NZH6+flxxx138NBDD3HgwIFurZeSksLu3bu5+eabz7jfihUrWLhwIRbL2QOFvXmPWlpaePvttwF47LHHOoV5r776alavXs3GjRv58MMPue222+zbfHx8qKk5tUm0qqoKHx+fHs8hF4abLotnx+ECMvKrGD/i1Cbt3uoI+mbkV9HaZuVETgXHMstxMhm4cuawfjsPQEKUP2tIJzmrvEfHtbZZKSitAyCsHxp93VycCPF3p6i8npyimn4J+r78t73kFNXwxN0z8XBz7vN6IiIiIiIiIjK0KTklg2L58uUEBATYfz5z5kyKiop46623FPQVuYB5ujtz+YxoLp8RTV5JDV/uzubL3dkUl9ezYU8OG/bk4OJsYmJ8MDMTw5k2JgxvDxdHjy0iIiIiIiIiQ5izc/dCb/7+Z28ptVqtPPzwwxw7dozm5mYWL17c5X4vv/wyy5cvZ9OmTaxcubIn43bb3r17qaiowGKxkJiYeMr2q666io0bN7J+/fpOQd/Y2FjS0tI67Zufn099fT2xsbEDMquc+5ydTPzuvtlkFVQxOiaw39YND/LC1cVEY1MrecU1rN5k+705d6IFfx+3fjsPfNNEnJZbSXNLG85Oxm4dV1pRT0trG04mA0F+7v0yiyXUm6LyerILqxkT27f3s6q2ifW7sgFYuy2DRZeM6I8RRURERERERGQI695dDZE+Ojnk22HUqFEUFRU5YBoRGYoigry45YpRvPk/l/HsfbP59tzhhAR40NTcyo7DBbz8t33c8thafr18C//ZnEZpZf1Z17RardQ1NJNdWM2BlGK+2pPNp9syOJZRRmNz6yBclYiIiIiIiIj0l88//5ynnnqK3/zmNyxfvpyDBw92uZ+XlxcTJ06kubmZ5cuXY7Va7dsqKipYsWIFADfeeONZz2kwGHjxxRcJDAzk6aef5p133jlln46Qr8Vi4Zlnnunl1Z3d0aNHARgzZkyX20ePHg1AcnJyp9fnzp3L5s2bO7X6fvLJJ7i5uTFt2rQBmlbOB17uzv0a8gXb075iwm1N0ruPFrL5QC4A18zp/9B5eKAn3h4uNLe0kZ5X2e3j8ktqAQgN8MRkNJxl7+6JDPEGIKfo1Hbtnjp+UkPxPzeeoEn3OQdUcXk9yz48QEnF2e9Hy6kqaxr599dp1DU0O3oUERERERGRc9o51eh7+PBhtm7dSlJSEocOHSI313YDaP369d16HFqH5uZmduzYwYYNG9ixYwfZ2dm0trYSFhbG7Nmz+eEPf4jZbO7zMYOtL+9PU1MTb731FqtXryY7OxsPDw+mTJnCPffcc9obx321f/9+YmJiBmRtETl3GY0GxsQGMiY2kDuvHUN6XhXbkvLZfiifjPwqDqaWcDC1hP/9OIn4KD9mjA0nNMCDsqpGyqoaKKtsoLSqnrLKBsqqGmho6vpGt8loYFiEDyMi/YmP9CM+yh9LqHe/3bwXERERERERkf713yHbl19+mXnz5vH888/j5+fXadvTTz/ND3/4Q5YtW8Ynn3xCQkICDQ0N7NmzB3d3d55//nlmz57drfPGxcWxatUqFi9ezFNPPYXBYOCWW26xz7B8+XLMZjNvv/02ERER/XKtXcnLywMgLCysy+0dr1dUVFBbW4unpycA3/ve93jnnXd44IEHuOuuu8jOzua1115jyZIleHl5Ddi8IqcTY/blWGY573+WTGublTGxgcRZ/Pr9PAaDgfgoP/YcK+J4VjnxUWdv8QbIK7UFfcODPPttFkuI7c9adlF1n9c6OehbXt3I+t3ZXDlzWJ/Xla59sP44a7dlYLXCfd8Z7+hxzjkffHGc1V+nkZJdzs++P9nR44iIiIiIiJyzzqmg7+uvv8769ev7vM6uXbu48847AQgPD2fWrFkAHDx4kPfee4/Vq1fz5ptvMnHixD4dM9h6+/40NTVx5513snPnTgIDA7nkkksoLi7m888/Z8OGDSxfvpw5c+b066zbtm3jiy++GNCGCxE59xkMBmLNvsSaffnBFSPJK6lhe1IB2w/lcyyzjONZFRzPqjjrOp5uTgT4uhHg44aTyciJnEoqaho5kVPJiZxK1m6z7efmYmK4xRb6jY/yIzLYrVPrj4iIiIiIiIgMvpEjR/LYY48xY8YMwsPDKSsrY+fOnbz00kts3LiRpUuX8t5772E0fvMAu+HDh/P+++/z4IMPsn//fjIyMuzbLrroIuLi4no0w4gRI1i5ciW33XYbTz75JAAlJSWdQr4DXQRRV1cHgLu7e5fbPTw87D8+Oejr6+vLypUreeKJJ1i6dCk+Pj7cdtttPPDAAwM6r8jpxEb4AlDf2ALAtQPQ5tshIcqfPceKSM4q5+puHtPR6BvRj0HfyND2Rt/Cvgd9k9uDvtFh3mQWVPPRVyksnBaFyaSHeA6ElGzb+52cWebgSc5NHcH0jXtzuHF+vP3PgoiIiIiIiPTMORX0nTBhAvHx8YwdO5bExEQWLVpESUlJj9cxGAxcfvnl3H777Z2CuY2Njfz2t7/lo48+4qGHHmLdunU4Ozv3+pjB1tv354033mDnzp0kJiaycuVKe4vDmjVreOihh3jkkUf44osvOrU7VFdXU1RUdNa1hw8ffsprOTk5PPTQQ8yfP59Fixb14ApF5EIXEeTFokviWHRJHOVVDWw/XMDOwwXUN7YQ6ONmD/MGtP84sP3Hbq6d/3NntVoprqgnJauClOxyjmdVkJpTTn1jK4fTSjmcVmrfNzbMlV9FN3X6YpmIiIiIiIiIDJ4lS5Z0+rnZbOb666/noosu4tprr2Xfvn2sW7eOK6+80r7P9u3b+fGPf0xQUBBvvvkm48ePp76+ng0bNvD73/+ejRs3smzZsm63+gIkJCScEvaNiIhg1apVPXrinCPExcXx9ttvO3oMEQBizb72H4cEeDB9bPiAnSs+2tbiezyz/Cx7fiO/pAYYmEbfovJ6GppacHPp3ZfnrFar/VqWLhrH71btoqC0js0H8pg3aWj/PXQuampuJTO/CoDM/CrqG1twdz2nvrTqUG1tVjLa3782K7z/WTI/v3WKg6cSERERERE5N51T/xq9++67+2WdmTNnMnPmzFNed3V15bHHHuPzzz8nNzeXffv2MW3atF4fcyYpKSns3r2bm2+++Yz7rVixgoULF3brRnFv3p+Wlhb7Dd7HHnusU5j36quvZvXq1WzcuJEPP/yQ2267zb5t7dq1PProo2ddPzk5udPPKyoquOuuu4iIiOCFF17o8bwiIh38fdy4cuawXj2WzmAwEOLvQYi/B7PG2x6p2dpmJaeompSsCo5nl5OSVU56XhVpBY38avkOfn3H9AF5hKCIiIiIiIiI9E5oaCiLFi1ixYoVbNq0yR70raio4MEHH6SpqYk33njD3rTr4+PDTTfdhLe3Nz/96U957LHH+OyzzzCZTN0+58iRI1m4cCEffPABANdddx2RkZH9f3Fd6PgQcn19fZfbOxp/AXubr8hQFB3ug9FgC/5dMzsGk9EwYOeKj7IFffNKaqmua8Lbw+Wsx3Q0+vZn0NfXyxUfTxeqapvILapheC/vM+aV1FJT34yzk5GE6ACunRPLX9ce4x9fpjB3ohmDYeDeywtRRn4VLa22J761WSE1u4LEuCAHT3XuKCitpaGpFZPRQGubla/35/LdBfEMC/dx9GgiIiIiIiLnHD3H57+4ubkxbNgwgG411vbmGKvVysMPP8xvf/vbM7YovPzyyzz33HPdCtT21t69e6moqMBisZCYmHjK9quuugqA9evXd3r9xhtvJDk5+azfTlZfX8/SpUtpbm7mT3/602kfMSci4ggmo4HoMB8WTIvi3hvG84efXszz980gwNuJksoGfvHq13y1J9vRY4qIiIiIiIjISbq6L7thwwYqKiqYMGGCPeR7soULF+Ls7ExOTg7Z2T37t/4f//hHPvjgA8xmMwEBASxbtox33323T9fQXRERtg8rFxQUdLm943U/Pz8FfWVIc3U2cfnMYYyM9ueyadEDei5vDxci2gO7x7PO3uprtVrJL7WF5vsz6AvftPpmF9X0eo3k9jbfOIsfzk5GvjUrBndXExn5Vew+Wtgvc8o3TuRUdPr5scwyxwxyjkrPs7X5xph9mTXO9t+w99Ydc+RI55yGphZ2HimgtbXN0aOIiIiIiIiDnVONvoOhtbWV3NxcAIKCuvep3J4eYzAYePHFF1m8eDFPP/00BoOBW2+9tdM+L7/8MsuXL8disfDMM8/08Cq67+jRowCMGTOmy+2jR48GTm3m7amWlhYefPBBMjIy+Nvf/kZgYGCf1hMRGQyWEC/uujyEzw42se94CS+9t5fUnAruuHoMJlPvPivT2trGl7uz+XxnFi7ORsICPQkN8CAs0JOwQNv3Xu7OA96+0dZmJS2vkn3JRRgNBhKi/YmL9Ov1YwNFREREREREHKGyshKgU6lAYaEt7Obt7d3lMU5OTnh4eFBZWWk/vjteeeUVli1bhtls5u2336a2tpYlS5bwxBNPAPCDH/ygt5fRLaNGjQLg8OHDXW4/cuQIAAkJCQM6h0h/uPeG8YN2rvhof/JKajmeWc7kkaFn3LesqoGm5laMRtsTwfpTZKg3R9LLyCmq7vUaye1B046mYi8PF66cGcNHG1L5+/oUpo4O65dZxSYluwIAbw9nquua7UFr6Z60PNt/Y2PCffj2vOFsTcpjW1I+qTkVenpeN735r0Os257JtXNiueu6UwubRERERETkwqE0z3/517/+RVlZGQEBAUyaNGnAjomLi2PVqlUsXryYp556CoPBwC233AJ8E/LtuGHc0dQwEPLy8gAIC+v65k/H6xUVFdTW1va6CeLxxx9n48aN/PrXv6aiooL9+/fbt40ePRoXl7M/LktExBHcXYz8/AcT+OfmLP7v8+Os3pRGem4Vv1g8BV8v126v09ZmZfOBXN5bd4zc4lr76wdSSk7Z19PNidCO4G+A7fuIYC+Ghfv06Jz/ra6hmf3Hi9l9tJDdRwspr27stN1oNBAT4cPI6AASov0ZGR1AWKDHkHvkX0V1I0mpJQy3+BIR7OXocURERERERMRBrFYrn332GQBjx461vx4cHAzYArEtLS04OXW+DZ6RkWEP+HbV+NuV1157jddff91+z9ZisQCwcuVKlixZwpNPPonBYOD73/9+n6/rdCZNmoSfnx85OTkkJSWd8oS2Tz75BID58+cP2Awi56KEKH827MkhuRuNvvkltvt2of4eOPXyg/6nYwmxffggp7D3jb4drcQJ7UFfgG/PG86/N6dxNKOMw2mljIlV0Up/SW1v9L1sWjQfbUglOascq9U65O6XDlXp7UHfWLMv0WE+zJ1gYeO+HN5de4zHfjjDwdMNfdV1TXy12/bkgTWb01gwLYqYCF8HTyUiIiIiIo6ioO9JcnJyeO655wD46U9/2q3waW+O6TBixAhWrlzJbbfdxpNPPglASUlJp5Bvd28091Zdne0RVCc3XpzMw+ObT6z3Jei7ZcsWAJ5++ulTtq1fv95+Y1xEZCgyGg3ccsUohpt9+cP7e0k6UcJPX97I/yyZdtbmAavVys7DBfx17TEy8m2PKvPxdGHRxXH4+7hSUFpHQWktBaV1FJbVUlbVSG1DC2m5laTlntoqFODjRkyEDzERvgwL9yEmwgdzsFeXDcNWq5Wcohp7sPdIeiktrVb7djcXE+NHBGM0GkjOLKOsqpETOZWcyKnkP1vSAfD1ciEhyhb8TYj2Jz7KH3fXwf/fh7Y2K0mpJazdnsH2Q/n265g0MoRrZscyKSEEo1E32EVERERERM5VP//5zzl48CC33HKLvRABbC21J06c4PLLL+9077Wmpobf/e53JCUl4eHhwQ033GDfNnfuXNzc3MjNzeWFF17g4Ycftod9y8rKePTRRwGYNm1at57Q9vrrr/Pqq69iNptZtWpVp3uZCQkJ9rBvR7PvQIV9nZycWLx4Ma+88gqPP/44K1euxMvL9gHYNWvWsHHjRvz9/Tu9FyLyTfvt8ayKs4Y0O4K+4UG9+1rImVhCbH9es3vZ6NvY3Ep6nu3+YkL0N0HfAB835k+NYu22DP6+/jhjYmf2fVihsbmVzALbr9XlM6JZ/fUJKqobKSqvJzSgf9uez1cdv187wqk3X57A1/tz2H20kGOZZYyMDnDkeEPe+l3ZNLW0AdBmheUfHuTZ+2brPriIiIiIyAVKQd92NTU13HvvvVRUVHDFFVfw3e9+d0CO+W8dN4JPDvtGRESccsP4XPfll186egQRkT6bmRiBOdiLp9/aSV5JLb949Wvu/+4ELpkc2eX+B44X886nR+1tIR5uTlx/cRzXzonFw825y2MamlooKqujoMwWAC4srSO/tJacwhryS2spq2qgrKqBPceK7Me4OBmJCvO2hX8jfAj0dedQagm7jxVSUFrXaX1zsCeTR4UydVQoY2IDcXYyAbZQcHFFPcmZ5RzLLCM5s5wTOZVU1jSx80gBO48UAOBkMnL5jGhunD+CQN+uPyTSnyqqG1m/K4t1OzLtX2gBiAjyJL+0lr3Hith7rIiwQA++NSuGBVOj8PJQS7yIiIiIiIgjbdiwgWXLltl/3tGee//999vDuvPmzeO+++6z75Ofn096ejrl5Z0bN/Py8nj44Yd58sknGTt2LP7+/pSUlHD06FEqKyvx8PDg5Zdftrf4AgQFBfHoo4/ym9/8hrfeeot169YxevRoGhoaOHDgANXV1QQFBdmDuWditVpJT0+337ONjDz1HsDJYd/09PQBe48A7rrrLrZv387OnTtZuHAhU6dOpaSkhN27d+Ps7Mzzzz9vD/+KiE1MhC/OTkaq65rIL60lIuj0f0bySwcu6BsZamv0zSuupbW1rcsP7p/JiZwKWtus+Hm7Euzf+b7coovj+Gx7BnuOFZGWW0msWa2ffZWeV0lb+/sdHuRJTIQvKdkVJGeWKejbDdV1TZRU1AMwLNwHAHOwF5dMiWT9rmzeW3uMJ350kSNHHNLa2qx8utX2/xQ3LYjnX5tOcDSjjK/2ZDN/apSDpxMREREREUdQ0BdobGzknnvuITk5mZkzZ/L73/9+QI45nZEjR7Jw4UI++OADAK677roubxgPhI7G3vr6+i63dzT+Ar1u8xUROZ9Ehfnw4k/m8eK7e9h9tJCX3ttLak4Fd1w9xn5z/mh6GX9de5SDqSUAuLqYuGZ2LIsuicP7LCFUNxcnosJ8iArzOWVbXUMzmfnVpOdXkp5XRUZeJRn5VTQ0tZKaU0lqzqkNwE4mI4nDA5kyOpQpo0JP+4UMg8FAiL8HIf4ezJlga5NvbmnlRG4lyZnl9gBwcXk9/9mSzmc7MrnyomF855IR+Pu49eg9PJvTtfd6uDlx8SQLl88YRqzZl7ySGj7dmsHnO7MoKK3jL6sP89e1x7h4koVvzYrRY8xEREREREQcpKysjAMHDpzy+tGjR+0/jo2N7dZaCQkJ3HrrrSQlJXH8+HEqKipwdnbGbDZz3XXXsXjx4i4LE2688Ubi4+NZtWoVe/fuZePGjZhMJiwWCzfeeCM//OEPCQw8++PtDQYDzz33HCUlJYSGhp5xzo8//piwsLBuXVdv3yMXFxf+8pe/sGLFClavXs2XX36Jh4cH8+fP57777mPMmDHdOr/IhcTZyUis2ZfkzHKOZ5afMeibN4CNvsF+7rg4m2hqbqWwrI6I4J6F8o+3lwkkRPmf0kocHuTJ7AlmNu3L5R9fpvDzW6f029wXqtTsCgDiLH4YDAYSov3bg77lzJ14/hT1DJT0PNu96tAADzzdvym9+N5lCWzYk8O+48UcTitlTOzZ/1t8ITqYWkxeSS3urk7ccOkI3F2dWPmfI7y15jDTx4bj5d51kYiIiIiIiJy/Lvigb3NzMw888AA7d+5kwoQJLFu2rNMj4PrrmDP54x//yAcffIDZbKa+vp5ly5YRFBTED37wg16v2V0REREAFBQUdLm943U/Pz8FfUVE2nm5O/P/7pjOe58d4/8+P87qTWmk51Zx02Xx/HPjCXYfLQRsIdsrLxrGjZf2TxjWw82ZUTEBjIr55pFmbW1WCspqSc+rIj2vkoy8KorL6xkR5cfUUaGMGxGMu2vv/nPv7GRiZHRAp0eoJaWW8Ne1RzmSXsbqTWms3ZbJ1bNiWHRJHL5ern26vtO198ZH+XHFjGHMmWDG7aRriQjy4s5rx/KDy0eycV8Oazank5FfxbrtmazbnsmY2ECumR3L9LFhOPWwIUVERERERER6b9GiRSxatKhHx7zzzjtdvh4ZGcmjjz7aqznGjx/PSy+91KtjT2Yymc4Y8u3Q3ZAv9O496uDi4sLSpUtZunRpr44XuRAlRPnbPsyeVc7Fp3k6F2C/JzUQQV+j0YAl2Iu0vEqyC6t7HPRNzmwP+kb7d7n9O5eOYNO+XLYcyCXvypFnDDTL2aW0B31HRPoBkBAdwJrN6fZfBzmz9LwqAGIiOhdahAV6smBaFOu2Z/Lu2mM8c+8sR4w35H2yNQOASyZbcHd14tq5w/liVxY5RTW8++lRfrRonGMHFBERERGRQXdBB33b2tp45JFH2LhxIyNHjuTPf/6zveG2P485k1deeYVly5ZhNpt5++23qa2tZcmSJfbHxg102HfUqFEAHD58uMvtR44cAWyNFCIi8g2j0cAtV4xiuNmXP7y/l6QTJSSdKLFvWzA1ipsuiyfEf2Af42Y0GogI8iIiyItZ4yIG9FwAiXFBPHvfbPYfL+bdtcdIzirnow2pfLotnatnx3L9xWdvLe5Q19DM8axyjqaXcSSjjEMnSk7b3nsmbq5OXD5jGAunR3M4rZQ1W9LZlpTP4bRSDqeVEujrxszEcAJ93fH3dsXP2xU/L1f8fdzw9XTp8WMSRURERERERETk3BIfZQvHdrTidsVqtX4T9A0cmOITS6gt6JtTVMP0Hh6b3D57x7X8t5gIX6aMCmX30UI++iqV+2+c0LdhL3CpORUAxLUHfUe2B6xP5FbS3NKKs5PJQZOdG9JybY2+XT117aYFCazflU3SiRIOpBQzfkTwYI83pJVW1rPjsK2I6aqLYgBbM/nS68fx6J+28snWdC6bHn3W++YiIiIiInJ+uWCDvlarlUcffZRPP/2UmJgYVqxYga/vmf9B1JtjzuS1117j9ddft4d8Ox4xt3LlSpYsWcKTTz6JwWDg+9//fq/PcTaTJk3Cz8+PnJwckpKSSExM7LT9k08+AWD+/PkDNoOIyLlsZmIE5mAvnlm5k7ySWuZOsPD9yxN63MhxLjEYDExMCGFCfDB7jhXx7tqjpOZU8vf1KfxnSzrfnjuca+cOP+XxYcXl9RzNKLUHezPyKmmzdl77dO293Z1r7PAgxg4PorSynk+3ZbBuWyallQ2s2Zx+mmPAx9MFPy9bANjf241AXzfmTbJ0eRP6fFBaWc9Xe3JwMhkJ8nMj0MedQF83Anzd1HwsIiIiIiIiIueljhbctNyq04Y0K2uaqG9swWCA0ICB+fB+ZKg3ANlF1T06rryqgeLyegyGbxpmu3Lj/BHsPlrI+l3Z3LwwgUBf976Me8FqaGwhp9D2axRn8QNsvyd8vVyorGniRG5lp6egyaky7I2+p95jDfZ354oZ0azZks67a48xLi4Ig8Ew2CMOWZ9tz6StzcromACiw79pRB4fH8ycCWa+3p/L/350kGfvm43RqPdNRERERORCcd4HfX/+859z8OBBbrnlFm655Rb7688++ywffvghFouFVatWERgYeNa1enPM6bz++uu8+uqrmM1mVq1aZQ/5gq09tyPs29HsO1BhXycnJxYvXswrr7zC448/zsqVK/HysoXT1qxZw8aNG/H39+eGG24YkPOLiJwPosJ8ePXhS6mpa8Lfx83R4wwag8HAlFGhTB4ZwvZDBby37hgZ+VW8/1kyq79O4/p5w/F0d7YHe0sq6k9ZI8TfnVHDAhkVE0Di8ECiwny6OFPPBfq6c8sVo7hpQTzbkvI5kVNJRU0j5VUNVNQ0UlHdSGVNI21W2xdxKmuayCz45gssH36VysT4YBZdEsf4EcHnxY3m1jYrn25N551Pj1LX0HLKdoMBfL1cCfJ1I9DXnQBfN4J8bSFgc4gXw81+ODspCCwiIiIiIiIi557QAA98PF2oqm0iLbeShC5Cmh1tvkF+7rg4D0xbqyXE9vWXnMKaHh3X0eYbFeqNh5vzafcbHRPImNhADqeV8s+NJ7jz2rG9H/YCltZeUBDg40ZA+/1eg8FAQlQAO48UkJxZrqDvGTS3tJHVHpSOiej6fu+NC+L5bEcmRzPK2JtcxOSRoYM54pDV0trG2u2ZwDdtvie745ox7DpSwNGMMr7cnc2CaVGDPaKIiIiIiDjIORX03bBhA8uWLbP/vLLS9tiX+++/HxcX22PC582bx3333WffJz8/n/T0dMrLv3kc0xdffMHKlSsBMJvN/OEPf+jyfAsWLGDBggW9PuZ0rFYr6enpREREsGrVKiIjI0/Z5+Swb3p61y2E/6037w/AXXfdxfbt29m5cycLFy5k6tSplJSUsHv3bpydnXn++eft4V8REemas5Pxggr5nsxgMDAzMZzpY8LYmpTHe+uOkV1Yw1/XHuu0n9FoICbCh1HDAhjdHu4N8hvYVhFnJxNzJ1qYO9FyyrbWNivVtU2UVzdQUd3YHgRu5Hh2OdsO5rHveDH7jhcTG+HL9RcPZ/YE8znbeJuaU8Hr/zhAanYFYHvkYHigJyUV9ZRWNVBWWU9Lq9X2PlQ3kppTecoaLs4mRkb7t3/BKICE6ADce9i6LCIiIiIiIiLiCAaDgfgof3YfLSQ5q7zroG+pLXwbHug5YHNEhnzT6Gu1Wrv94fLkTNvXuOKj/M+673cuHcHhtFLWbsvguwvi8fZw6f3AF6iOe2j/3Z6cEO1vD/rK6eUUVdPS2oaHm9Np27EDfNy4alYM/9x4gr+uPcakhJDzomyhr3YeLqCsqgFfLxcuGhd+yvYgP3duXpjAW2uOsPI/h5kxNgyvPvwZb2xuxXWAPtggIiIiIiL965xKZ5SVlXHgwIFTXj969Kj9x7GxsWddp6qqyv7jHTt2nHY/s9lsD+325pjTMRgMPPfcc5SUlBAaevpPqCYkJPDxxx8TFhZ2xvU69Pb9cXFx4S9/+QsrVqxg9erVfPnll3h4eDB//nzuu+8+xowZ063zi4jIhc1oNDB7vJmZiRF8vT+XT7ak4+ZiYlRMIKOHBRAf7T+kgqEmowE/b1f8vF1P2VZQWsu/Np3g851ZpOVV8uJ7e1n1yVG+PTeWhdOjz9ic8t+q65o4kVPBiZxKquuamD4mnJHD/AflxnVdQzPvrjvGmq/TaLOCp5sTi781mstnDMN00mPd2tqsVNU2UVJZT1llA6WV9ZR0fF9RT1puFdV1TRxMLeFgaglg+/UebvZlTGwgo2MCGR0TgK/Xqe+liIiIiIiIiMhQkBBtC/oez6yAOaduz2tv9A0PGrigb0SwJ0YD1DW0UF7daG+LPZvj7Y2+CdFnD/pOHhlCbIQvaXmVrNmczs0LE/o084UoJacCsH1Y/mQd739yZtkgT3RuSc+zfU01JsL3jPdAb7hkBGu3ZZCaXcHOwwVMH3tqsPVC8+nWDAAumxaNs1PXAdxr5gzni11Z9rKNpYvG9fg8pZX1vPjuXo5llvHST+YxLLx/nrQnIiIiIiIDZ+ikbbph0aJFLFq0qEfHvPPOO/2yTm+OOROTyXTGkG+H7oZ8oW8zuri4sHTpUpYuXdqr40VERDqYjAYunmTh4kmntuieK8ICPfnR9eP4/uUj+WRrOms2p1NSUc9fVh/mb58lc8XMYVwzJ5ZA386NxJU1jZzIqSQ1p4ITuRWk5lRSVFbXaZ8Pv0olIsiTS6dGcsnkSEL8u2616Aur1cr2Q/n8+eMkSiobAJg7wcwPvz22y+Zp48mh5y5+2drarOQUVXM4vYwjaaUcTi+luLyelOwKUrIr+OfGEwBEhnoxJjaIqaNDmTAieMAecykiIiIiIiIi0lMdbbgdodn/lt8e9I0YwKCvs5OJ0EBP8ktqyS6s7lbQt7XNSkp2R9D31Cbi/2YwGPjOpSN4/q+7+ffXaVw/bzhuQ+jD9+cC+1OxLH6dXh8R6YfBAEXl9ZRVNXQ7qH2hSc+zPS0s5izhUT9vV66eHcs/vkzh3XXHmDo6DKPxwm31zSuuYX9KMQYDXDFz2Gn3c3Yy8qPrx/Ho/27l063pLJgWdcrv1TM5kFLMC3/dQ0VNIwAHU4oV9BUREREROQfoX/YiIiIip+Ht4cJNCxK4fl4cX+3J4Z8bU8kpquHDr1L516YTzJ1oITzIk9TsCk7kVlJSUd/lOmGBHgy3+OFsMrL9UD55JbX89dNjvLv2GOPigrh0ShQXJYb3yxddisrq+NPHSew8UmA/9z2LxjNpZEiv1zQaDUSF+RAV5sOV7TeZi8rr2kO/ZRxOKyW7sJrswhqyC2tYuy0Dd1cTk0aGMnNsOFNGheLp3v0WZBERERERERGR/tYR9M0vraWypvGUJxPlD0KjL0BkiDf5JbXkFFYzfkTwWffPLqymvrEVd1cTkaHe3TrHReMjCF9rCxSv25HJt+cO7+vYF4y6hmZyi2uAU4O+Hm7ORIf5kJFfRXJmGTMTIxww4dDXEfQdFuF71n2vvziO/2xJJz2vim1J+cwaf+G+p59uywBg8shQQgPOXA4xfkQwcyeY2bQ/l//96CDP3z/nrCHptjYrf19/nPfWHaPNaivsaG2zklNU01+XICIiIiIiA0hBXxEREZGzcHE2cfmMaC6bFsXuo4V8tCGVw2mlfLk7+5R9zcGeDLf4Mdzsx3CLL8PNvnh5uNi31ze2sPVgHut3ZZN0ooQDKbZv//uRiVnjzFw6NZIxMYE9bq9oaW1j9aY03vvsGI1NrTiZDCy6ZATfXRCP6wA064b4exAy2YOLJ0cCtjbjoxllHDhezPZD+ZRUNrDlQB5bDuThZDIwbkQwM8eGM31sGP7eajsRERERERERkcHl5e6MOdiL3OIaUrIrmDKq81MXvwn6eg3oHJGhXuw8QrfDdcmZtjbfOIs/pm7eLzIZDdxwSRyv/f0A/9yQylUXxeDsZOz1zBeSE7mVWK0Q7O9ue/rVf0mI9m8P+pYr6NsFq9VKel4VALHms7fE+ni68O25w/nb58m8u+4YMxLDu/37/HzS2NzKFzuzALjqomHdOuaOa8ew62gByZnlrN+VxWXTo0+7b2VNIy+9v5e9x4oAWDA1ivhof5b944A92C4iIiIiIkObgr4iIiIi3WQ0Gpg2JoxpY8JIzixj7bZMWtraiLP4MdzsS6zZFw+3MzfXurs6MX9qFPOnRlFYVsdXe7L5clc2+aW1fLEriy92ZRES4MGlkyMxh3hhtVqxWq20tdlulLdZ+ea19h+3tln5YmcWGfm2m+hjYgO594ZxRIUN3iPXfL1cmTE2nBljw7n7+kRSsivYfiifbUn55BTVsPdYEXuPFbHswwOMjA5gZmI4MxPDCQsc2JYcEREREREREZEOCdH+5BbXkJxZ3inoW13XRE19MwBhZ2nS7CtLiK2VN7uoulv7H8+yBX0Tov17dJ5Lp0Ty3rpkSiob2LAn+4whQPnGiZwK4NQ23w4JUf6s257JsfYA9lBVWdNIRXUj0eGDd38QoKyqgaraJowGun1v8tvzhvPvzWlkF1bz9f5cLp5kGeAph56v9+VSU99MiL87k0aGnv0AINDXnZsXjmTFvw+z8j9HmJEYjvdJhRMdjmWW8dzbuympqMfFycg9N4xjwbRo+98tOd38u0hERERERBxLQV8RERGRXkiIDiAhOqBPa4QGePC9yxK4aUE8R9LL+HJ3Nl/vz6WorI6/fZ7c4/W8PZy5/eoxzJ8a1eNG4P5kMBiIj/InPsqfxVeNJruw2h76Tcmu4GhGGUczyljx78NcedEw7r1hvMNmFREREREREZELR3yUP1/uzrYH3Dp0tPkG+Ljh5jqwXzqzhNoag7MLu9voWwbYZu8JZycT180bzop/H+bDr1K4dGrUBdmU2lMp2RXAGYK+7YHrlOwKWlvbMJmGXlOy1Wrlt29sIy23khd/Mu+01zIQOtp8zSFe3X7KmJe7M9fPG85f1x7j/XXHmDM+Yki+rwPp023pAFwxc1iP/pxeMyeWz3dmkV1YzTufHu10n9VqtfLvzWm89e/DtLRaCQ/y5Fe3TSUmwhcAc7Dt76KyqkbqGprPWmAhIiIiIiKOpaCviIiIiIMZDAbGxAYyJjaQu64by/ZDBWw9mEddQzMGgwGjwYDBQKcfG42dXwv2c2fRJXH4ep36SEFHiwz1JjLUmxvnx1NcXs/2Q/lsP5RP0okSPt2awTWzY4kM9Xb0mCIiIiIiIiJynktoD8sezyrHarViMNgCdR1B3/CggX/yUGR7o29ZVcNZw3V1Dc1kFdraNnva6Atw+YxoPvjiOLnFtWxPymfW+IjeDX0BSe0I+kb6dbndEuKNh5sTdQ0tZORXMXwQQ7TddSK3ktScSgC+2pM9yEFf23k7wqTddc2cWP61KY28klq+2pPDgmlRAzHekJSaU8HxrAqcTAYum9az5m0nk5F7Fo3jf5ZvYe22DBZOiyYu0o+6hmZe+WA/Ww7kATBrXAQ/vmlCp79vPN2dCfBxpayqkZyimh5/mEBERERERAaXgr4iIiIiQ4ibixMXT7Kct4+oC/Z355o5sVwzJ5Yn/7KDnUcKWLc9kx9+e6yjRxMRERERERGR89ywCB9cnIzU1DeTV1Jrb7TML7UFfSMGIejbk3Bdak4FVqvtfkqAj1uPz+Xh5sxVs2L44IvjrN+dpaDvWXT8voDTN/oajbYnWe0/XkxyVvmQDPp+tSfb/uMtB/K485qxg/b0r45G354GfT3cnLnhkjhW/ucIH6w/zvypkfYg/vnu060ZAFw0LgI/756XOCTGBTFvooWN+3JY/tEB7r9xAs+u2kVeSS0mo4E7rh3DNbNju3w/zcHeCvqKiIiIiJwjLqznnoiIiIjIkHHFTFtDxZe7s2hqbnXwNCIiIiIiIiJyvnMyGe3BzOTMcvvrg9noC7ZWWIDs9rbe0+mYsS8BvLkTzADsP15MXUNzr9e5EJzIqQAgNMADH0+X0+7X0a588u+hoaK1tY1N+3LtPy+tbOBYZtmgnT8tt6PR16fHx35rVgyuLibyS2pJbf+1ON/V1DezYW8OAFddFNPrdW6/ZjTurk4cz6rgJy9tIK+kliA/d569fzbXzhl+2tC0JcT2YYfc4ppen1tERERERAaHgr4iIiIi4hCTRoYS5OdOdV0zWw/mOXocEREREREREbkAjIjyA+B4liODvrZwXU7RmcN1HUHShD4EfaPCvAkP8qS5pY29yUW9XudCkJpdAUBcpN8Z9xsZHQBA8iAGaLvrQEoJFdWNeHu42EPemw8Mzn23hqYW8ktsv6dje9joC+Dm6sSUUaGArYn4QtBRgBAV5s3omIBerxPo6873Lx8JQJsVJiWE8PJP59l/r56O2f530Zk/dCAiIiIiIo6noK+IiIiIOITJaGDhdFur79rtmQ6eRkREREREREQuBB2h2eSugr6BgxP0jQw9e6Ov1Wq1h5E7GmR7w2AwMHNsOADbkvJ7vc6FIKW9RXZEe+vz6XQ0LOcW11JV2zTAU/XMV3uzAZg70czFky0AbDmQS2ubdcDPnVVQTZsV/Lxc8fdx69UasxIjANialI/VOvAzO5LVamXttgwArpo57LStu9119ewYbrosnh9dn8hjP5yBr5frWY+xN/qe5UMHIiIiIiLieAr6ioiIiIjDLJwehdFo4HBaKVkFVY4eR0RERERERETOcx0hzYy8SpqaW6lraKaiphFwRKPv6YO+xeX1lFc3YjIaGH6W4OnZzEy0BX13Hy2kuaWtT2udz060B33jzvJ++3i6ENH+e+XkZmhHq29ssYe5L55sYUJ8CJ5uTpRVNXI0vXTAz5+WWwlATIRPr9eYPCoEFycj+SW1ZOSf3/cKD50oJbuwBjcXE5dMiezzek4mI7dcMYqrZ8diNHYvNGwObg/6FtcOShhcRERERER6T0FfEREREXGYQF93prY/km+dWn1FREREREREZICFBnjg6+VCS6uVtNxKe5uvr5cLHm7OgzJDR6NvfmndaYO3HY3DwyJ8cHU29el88VH+BPi4UtfQwsHU4j6tdb6qrmuioLQOgOEW37Pu39GynJw5dIK+2w/l09jUSnigJwlR/jg7GZnRHvLefCBvwM+fntcR9D37+3c6Hm7OTBoZAsCWQZjZkT7Zmg7AxZMjB+3vnv8W7O+Bi5ORltY2isrqHDKDiIiIiIh0j4K+IiIiIuJQV8wcBsD63dk0Nrc6dhgREREREREROa8ZDAZ7q29yVjn5pbagb3jg4LT5AgT4uOHu6kRbm5X8kpou9+loik1on7UvjEYD08fYAp8dja/SWWp2BWBrdfbycDnr/gnRAQAkZ5YN5Fg9smFPDmBr8zUYbI2ucyaYAdhyMG/AG1vT82wNvH1p9AW4aFwEAFuTzt+gb1lVg/3P4lUXDXPYHCajgQh7q2/XfxeJiIiIiMjQoKCviIiIiDjUxIQQQvzdqa1vZsuBXEePIyIiIiIiIiLnuY7w7PHMcnujb3jQ4AV9DQYDlhBbuC67qOtwXUdTbEdzbF91NLvuOFww4IHPc1FqTgUAIyx+3dq/49fleFY5bUPg/SyvamD/8SIALp5ksb8+fkQwXu7OVFQ3cjitZMDO39ZmJSO/vdHX3PtGX4Bpo8NwMhnILqwhq6CqP8Ybcj7fkUlrm5WR0f59akDuD+b2v4tyiqodOoeIiIiIiJyZgr4iIiIi4lAmo4GFM6IBWLst08HTiIiIiIiIiMj5rlOjrz3o6zWoM0SGegNdh+uaW9o40R48je+HRl+AxOFBeLo5UVHdOKRaaIeKlPZG37hIv27tPyzcBxdnE7UNLUOiCXXT/lzarLYAckdDK4CTycjM9pD35v0D15BbWFZHfWMrzk5GLMF9+7Pk6e7MhPgQALYcPP8aqFvbrKzdbrsHeuVFMQ6eBvuvV85pPnQgIiIiIiJDg4K+IiIiIuJwl02LxmQ0cDSjjMz887OpQ0RERERERESGhhHt4dnCsjqOtYdeB7PRF7A3+uYUnhquy8ivpKmlDS93ZyL6KYDs7GRk6ugwALYlnX/hyb7qaPTtbtDXyWRkRPu+QyE4vWFPNgCXnNTm22H2BDMAW5PyaG1tG5Dzp+XZ2nyjwrwxmfr+5edZ42zh5K0HBy6c7Ci7jxRQUlGPt4cLs8dHOHqcb/4uUtBXRERERGRIU9BXRERERBwuwMeNaWNsX2xauy3DscOIiIiIiIiIyHnNy93ZHm7Lbg/aRgx60NfW6JvdRaPv8cxywNbmazQa+u2cM9qbXbcfysdqtfbbuue6iupGisvrARhu9u32cSOjbYHxY+2/Xo6SXVhNak4lJqPBHuo92bi4ILw9XKisaeLQidIBmSG9PegbG9H99+9Mpo8Nx2Q0kJFfNSQak/uL1WrlP1vSAbhsWhQuziYHT/TN30Xn0/ssIiIiInI+UtBXRERERIaEK2YOA+CrPdk0NLU4dhgREREREREROa/Ft7f6dhjsRt/I0G9aNNvaOoduk7O+Cfr2p8kJIbg4GSkorSNDT1Sy62jzNQd74eHm3O3jEtqDvskODvp+1d7mO2lkCL5erqdsdzIZuai9IffrA7kDMkNGnu3307AIn35Zz9vDhXFxQcD50+prtVpZ9Z8j7DtejMHwzb1QR4sItv3dV1HdSE19s4OnERERERGR01HQV0RERESGhAkjggkL9KC2oYXN+wfmiw4iIiIiIiIiIvBNSBNsDb/eHi6Dev6wQE+cTAYam1opqazvtK0jOHryjP3BzdWJiQkhAGxPyu/Xtc9lJ9qDviMi/Xp0XEcQO6ugiroGxwQk28JBlVAAAIYNSURBVNqsbNybA8AlkyJPu9+c8bam360H82lpbev3OdLaG31j+qnRF2DW+Ajg/Aj6trVZ+fPHSXz4VSoAP7x27KB/uOB0PNycCfR1AyC3i4ZxEREREREZGhT0FREREZEhwWg0sHB6NABrt2U6eBoREREREREROZ+d3JbriMCdk8loP29OYY399eq6JvJKaoH+b/QFmDHW1uy67ZCCvh1SsisAiOth0DfQ151gf3farN+0Ag+2oxllFJXX4+7qxLSxYafdb+zwQHy9XKiua+Jgakm/zlBT10RxuS2s3p9B3xljwzEaIDWnkoLS2n5bd7C1tll57e/7WbMlHYMB7v3OeK6dO9zRY3ViDv6mYVxERERERIYmBX1FREREZMhYMC0Kk9FAclY56e1NICIiIiIiIiIi/W1YuA8uTrYvkzmqWdMS4g1A9kktmsezyu0z+Xj2f8vwtDFhGI0G0vOqzunwZH/qCOnGWfx6fGxCexi7o4V5sH21JxuAWeMicHU2nXY/k8nIRYm2htz+fpJWen4VACH+7ni5O/fbur5erowdHgTYmojPRS2tbbz03h4+35mF0QA/+d4krpw5zNFjncISoqCviIiIiMhQp6CviIiIiAwZ/t5uzEi0Nct8ui3DscOIiIiIiIiIyHnLyWRkeHuw01FB38hQW9D35HBdR2A0Ibr/23wBfDxdGBsbCMB2tfpSVtVAaWUDRgPEmnveRpsQHQA4Jujb3NLK5gN5AFw82XLW/edMMAOwLSmf5pa2fpsjPdf2Yf3+bPPtcNE4Wzh5a1Jev6890JpbWnnu7V1s2peLyWjgkVuncOmUSEeP1SVze9A3t1hBXxERERGRoUpBXxEREREZUq6cMQyADXtyqG9scewwIiIiIiIiInLeumZOLBFBnvYA5GCLbA/XZRd+0+ib3N7o29EUOxBmjLV9yHpbkoK+HW2+llBv3F2denz8yOhvGn2tVmt/jnZWu44UUlvfTKCvm7359kxGxwbi5+1KTX0zB1KK+22O9Dxbo+9ABH1nJoZjMNje3+Ly+n5ff6A0NLXw1Fs72X6oAGcnI/9z+zRmj3fM3zPd0dEunnNSu7iIiIiIiAwtCvqKiIiIyJCSGBdEeJAn9Y0tbNrXv48SFBERERERERHpMGeCmT/9agHRYT4OOf9/h+usVivH25th4wch6Hs0o4zy6oYBO8+5IDW7AoC49nbnnoo1++JkMlBR00hhWV3/DdYNG/bmAHDxJAsmo+Gs+5uMBma1N+RuPtB/99zS8zsaffv/z1GAjxujhtlak7edI62+dQ3NPPHmDvYeK8LVxcRv7pzOtNFhjh7rjCzBtg8d5JfU0traf23PIiIiIiLSfxT0FREREZEhxWg0cMWMaADWbs9w7DAiIiIiIiIiIgPE0t7oW1nTRFVtE3kltdTUN+PsZByQdtQOwf7uxEX6YbXCzsMFA3aec0FKH4O+Ls4mYs22X6vk9pB2d9U3tnAss4y2tp43AVfXNbHrSCEAF0+O7PZxs8fbgr7bk/Jpbmnt8Xn/W0trG5n5tqD6QP2e7Qgnb+1DA3V5dQNPrdjBugG+11hT38xv/ryNpBMluLs68fhdM5kQHzKg5+wPQX7uuDibaGm1DnpgXUREREREukdBXxEREREZcuZPjcLJZCQ1u8L+CEURERERERERkfOJm6sTwf7ugK3VtyMoOtzsi7PTwH4Jb2Z7q++2PoQnz3VWq5UT7fedRkT69XqdhGhb42xyVveDvqWV9fzs5Y088srX/PH/9vW4RXXLgTxaWtsYFu7DsPDuN+mOjgkkwMeV2oYW9h0v7tE5u5JbVENLaxvurk6EBnj0eb2uzEy0BX2PpJdSXtXzBmqr1cor/7efHYcLWPbhQY5llvX3iABU1jTy6+VbSM4sx8vdmaeWXsSY2MABOVd/MxoN9lbfnOIaB08jIiIiIiJdUdBXRERERIYcXy9XLkq0fcFp7bYMxw4jIiIiIiIiIjJAOsJ12YU1HG8PisZH+w/4eWe233c5kFJCXUPzgJ9vKCqraqC8uhGj0cCwiO6HZf9bQpTt1yu5mwHSgtJafvHaZnKKbIHKL3dn89w7u3vUsLthbw4Al0y29GhWo9HArPFmADbvz+3RsV1Jz6sEYFi4D0ajoc/rdSXY352EKH+sVth2qOfB9M92ZLL7qK39uK3Nykvv7qW+saVfZyyrauB/lm8hLbcSXy8Xnrl3FvFRA//nuD+Z2xvGcwoV9BURERERGYoU9BURERGRIemKmcMA2LQvp99vvouIiIiIiIiIDAWRod5AR6OvLSg6MipgUM5rDvaipbXNHoI8V1mtVpJSex5YTsmuACAq1Bs3F6denz+hPZidlltJU/OZw7rZhdX84rXNFJbVER7oyb03jMPZyci2pHye+MsOGrpxD6ywrI7DaaUYDDB3Ys+CvgCzx9sacnccLjjrvGeTllcFQEwfgtLdcdE428xbDuT16Lj8klre/NchAG5aEE+Qnzv5pbX8ZfWhfputtLKeX72+mayCagJ83PjdvbOJifDtt/UHi6Uj6FtU7eBJRERERESkKwr6ioiIiMiQNHZ4IOZgL+obW9l8sMDR44iIiIiIiIiI9DtLe9A3LbeS9PbQ5GA0+gLMGBsGwLaknrekDiXrd2XxP8u38IvXNlNd19Tt41Lbg74jIv36dP7QAA/8vFxpabWSllt52v1O5FTwy9c3U1bVQFSYN8/eP5srL4rhsTtn4OZiYv/xYv7fn7ZSU3/mwPKGvdkAjIsLIsjPvcfzjowOINDXjbqGFvYmF/X4+JN1NPrGmgc22HrROFsD9aETJVTWNHbrmNY2K394fy8NTa2MiQ3k5stH8rObJ2EwwLrtmezoRTvwf6traOa3b2wnr6SWEH93nr1vtj28f64xt7eL5xar0VdEREREZChS0FdEREREhiSDwcAVM6MBWL87x8HTiIiIiIiIiIj0v44WzUMnSmhts+Ln5UqIf8/Dm70xM9EWntxzrLDPza6OYrVa+XjjCQAy8qv47Rvbut3sm5JTAUBcH4O+BoPB3up7LLO8y32Oppfx6+VbqKptIs7iyzP3zCLAxw2A8fHBPLn0IjzdnTmWWc7/LNtMeXVDl+tYrVY27LHdJ7t4UmSv5jUaDcwebwZg8/6eNeT+9ywdQd+BbrANC/RkuMWXNitsP9S9QoCPN6RyNKMMd1cTP/neRExGA4lxQVw3Lw6AVz7YT3lV1+9zd7S0tvHsql1k5Ffh5+3KM/fOJjzIs9frOdo3jb4K+oqIiIiIDEUK+oqIiIjIkHXplCicTEbS86rJLe1+I4uIiIiIiIiIyLkgMsTW/tlmtf08Idofg8EwKOceEelPgI8b9Y2tHEgpHpRz9rekEyVkFVTj6mLC28OF41kVPLliBw1NLWc8zmq12ht94yx+fZ6jI+ibnFl2yrYDx4v5f3/eSm1DC6NjAnhq6Sx8vVw77TMyOoDf3TsLP29X0vOq+OVrmykqrztlrRM5leQU1eDiZLS33PbG7AkRAOw8kk9jL0Pe5dWNVNY0YTRAVNjAt9jOGmebeevBs4eT0/MqeXftUQDu+nYiYYHfBHBvvXIkw8J9qKpt4pUP9mO1Wns8i9VqZdk/DrDveDGuLiZ+c+d0QgM8erzOUNLR6FtV20RVre7DioiIiIgMNQr6ioiIiMiQ5ePpYr+Jvye11sHTiIiIiIiIiIj0L18vF7w9nO0/j4/yH7RzG40GZowNA2BbUv6gnbc/rdmcDsClkyN54kcz8XBz4tCJUp5dtYvmlrbTHldcXk9VbRMmo4Fh4T59nsMe9M3q3Oi783ABj/9lO41NrUyID+bxu2bi6e7c1RLERPjy3P2zCfF3J6+kll+8tpmcoupO+3y1NxuA6WPD8XDrep1uzRvlT7C/O/WNrew9VtirNTrafCOCvXBzcer1LN11Ufs9wgMpxdTUnT6I2tzSykvv7aWl1cr0MWEsmBbVabuzk4mHfzAZZycju48WsnZbRo9n+WD9cT7fmYXRAD+/ZQojIgfvz+1AcXN1IsjP1iaeq1ZfEREREZEhR0FfERERERnSrpgZDUBSZl23H70oIiIiIiIiInIuMBgMWEK+aUNNGMSgL8DMRFsr7M4jBbS29bzZ1JGKyurYccgWUL56dgxxFj8e++EMXF1M7DlWxAvv7qa1teuwb0pOBQDR4T64OJv6PEucxQ+jwRYgLq2sB2DTvhyeWbmT5pY2ZowN4zd3TsfN9cyB2IggL567fw6WEC9KKur55eubScu1BWpbW9vYtC8XgEsmW/o0r8FgsH+4/uv9Z2/I7Up6XhVgCygPBnOwF8PCfWhts7LjcMFp93t37TEy8qvw9XLhvhvHd9mQHR3uw23fGg3Am6sPnxKoPpMNe7L566fHALj7ukSmjQnr4ZUMXZb2Vt/c4u6/HyIiIiIiMjgU9BURERGRIW1MbCDmYE+aW6y89Z/kXj1OT0RERERERERkqLKE2MJ1BgOMiPIb1HOPHR6El7szlTVNHE0vHdRz99UnW9Nps8L4EUFEhdlaeUfHBPLrJdNwMhnZejCfVz7YT1sXAeYT7UHfEZF+/TKLh5uzfYbjWeWs257JC+/uobXNysWTLPxi8VScnboXKA7yc+fZ+2YTa/alsqaJ/1m2mSPppexPKaaiuhEfTxcmJoT0eeY5E8yALeTd0NTS4+PT2wPIMRF9b0Turo5W3y0Huw4nH04r5aMNqQDc953x+Hu7nXata2bHMn5EEE3Nrbz43l5aThMKP1nSiRL++H/7ALhu3nC+NTu2p5cwpHX8XZSjRl8RERERkSFHQV8RERERGdIMBgN3XD0SgwE27c9n9ddpjh5JRERERERERKTfRIZ627/3cHMe1HM7mYxMHR0KwLb2dtxzQWNzK5/tyATg6v8KW05MCOEXi6dgNBr4cnc2f/r44CkfHE/JrgBsTbz9JSHa1sb817XHeO3v+7Fa4YqZw/jpzZNwMvXsS7K+Xq48c88sRscEUNvQwm/+vI2/fnoUgLkTzD1erysjIv0ICfCgsamVPUeLenx8en5H0HdwGn0BZo2zNVDvSy4+5clfdQ3N/OH9vVitcOmUSGYmRpxxLaPRwE++NwlPd2dSsyv42+fJZ9w/u7Cap9/aSUurlYvGhXP71WP6djFDkIK+IiIiIiJDl4K+IiIiIjLkjY0N4PKJti8arPj3YQ4cL3bwRCIiIiIiIiIi/WPW+AiGhftw3dzhDjn/zERbeHJ7Uv458ySljXtzqK5rJiTAg6mjw07ZPmNsOD+9eRIGA3yyNYNV/zlivzar1UpqR9C3nxp9AUa2B32zCqoBW+PrvTeMw2g09Go9T3dnHr97JpNGhtDY1Epqji1Ye/FkS7/MazAYmDPeFob9+kBuj45tbG4ltz0MOpiNvlFhPlhCvGhpbWPnkcJO21b8+zCFZXUE+7tz93WJ3VovyM+d+74zHoC/f3Gco+llXe5XXt3Ab9/cTm19MyOj/fnZ9yf3+td1KDMr6CsiIiIiMmQp6CsiIiIi54TpCV7MnRBOW5uV597ZTUFpraNHEhERERERERHpsxB/D159+BIumx7tkPNPTAjBxdlEUXk9abmVDpmhJ6xWK2s225749K2LhmE6TeDy4kkW7r3BFuL88KtUPlh/HIDCsjpq6ptxMhmJDuu/kOrIYQH2H39/YQJ3XDMGg6FvYVA3FycevX06s8bZArnmYE/io/z7tObJZo83A7DrSCH1jS3dPi4zv4o2K/h4uhDg49Zv83RHx3ux9WCe/bVdRwpYt93W8PyT703E0737zdhzJpi5eLKFNiu89P6eU5qCGxpbeOIvOygqqyM80JNH75iOq7OpH65k6LGE2NrFC0praWltc/A0IiIiIiJyMgV9RUREROScYDAYuOvaUcRF+lFd18QzK3fS0IMvQIiIiIiIiIiIyKncXJyYlBAMwLZD+Wfd32q1kpJdzhv/TOLXy7fw10+PkpJdPmhtwEfSy0jPq8LF2XTWcPQVM4dx57VjAPjrp8dYvekEKe1tvsMifHB26r8vlVpCvLnvO+P5+S1TuPnykX0O+XZwdjLyyK1T+OnNk/j17dP7bV2A4RZfwgI9aGpuZdeRgm4fl55XBUBshG+/ztMds9pbiPcctYWTK2saeeWD/QB8e+5wxsUF93jNpdePI9jfnYLSOt781yH7661tVn7/1z2kZlfg7eHCb++aga+Xa79cx1AU6OuGm4uJ1jarShZERERERIYYBX1FRERE5Jzh4mzi10um4eflSnpeFa98sP+ceaSkiIiIiIiIiMhQNTMxHIDtSacP+haU1vJ/XyRz7/Nf8rOXN7H66zQOppbwf18c52cvb+L2Jz9j2YcH2JtcRHPLwLWB/ru9zffiSRa8PVzOuv918+L4/sIEAN741yE++MLW7DvC4tfvs10xcxhzJpr7fV2T0cClUyKJDPXu13UNBgNzJtjmXfbhQb7cndWte20Zebbm52ER/deI3F3Dwn0ID/SkqaWN3UcLWfbhASqqG4kM9eLWq0b1ak1Pd2d+evMkDAb4fGcW25LysVqtvPnPJHYeKcDZycj/u2M6EcFe/Xw1Q4vBYMAcYrvGnKIaB08jIiIiIiInc3L0ACIiIiIiPRHk584vb5vKo/+7ha/35xJr9uU7l45w9FgiIiIiIiIiIuesqaPDMBoNZBZUk1dSQ0SQLexXXdfE5gN5bNiTzZH0Mvv+Lk5GZowNZ3RMAAdPlLD3WBGllQ18ujWDT7dm4OHmxOSRoUwfE8bkUaF4uTv3y5wlFfVsaw8jXz07ptvHfW9hAnWNLfxz4wky8m1ttHGRfv0y07nu23OHs/94MSnZFfzh/X1sOZDPfTeOJ8DH7bTHpLUHfWMifAdrTDuDwcBF48L58KtUVvz7MCUV9ZiMBn5282RcnU29XjdxeBCLLo7jw69SefWD/aRkR7NmSzoAP/v+JEbFBPTXJQxp5mAvTuRUkqugr4iIiIjIkKKgr4iIiIicc8bEBnL39eNY9o8DvP3JEWIifJg8MtTRY4mIiIiIiIiInJO8PVxIHB7IgZQSvt6XS2SoNxv25rDrSCEtrbZ2XoMBxsUFccnkSGYmhuPhZgvvfmt2LE3NrRxMLWH7oXx2Hi6gvLqRr/fn8vX+XExGA4nDg5g+NoyLJ1nw6kYL7+l8ui2DtjYrY2IDexQyNRgM3HHNGBqaWlm7LQOAuAFo9D0X+Xq58vsH5vDRhlTeW3eMnUcKOPJ8KT9aNI55E80YDIZO+1utVntYOtY8+EFfgFnjI/jwq1RKKuoBW5C7P4LbP7hiJPuSi0nLq+Tv61MAuP3q0cwe3/8tzUOVJcTWGq1GXxERERGRoUVBXxERERE5J105cxgncipYtz2T37+zm5d+Mu+8f3yeiIiIiIiIiMhAmTk2nAMpJfx17bFOr8dE+HDxpEjmTTIT6Ove5bEuziamjAplyqhQ2m6wcjy7nB2HCthxOJ/swhr2pxSzP6WY1ZvSeOHBufh49jzs29TcyrrtGQBcMzu2x8cbDAbuWTQObw9n6htaiInw6fEa5yuTyciN8+OZOjqMl/+2lxM5lbz47h62HszjnhvG4e/9TbtvYVkddQ0tOJmMWEIccy8uzuJHiL87ReX1xEf5cWM/Pe3L2cnEz34wiZ/+YSPNLW1cedEwrr84rl/WPldY2u+v5hYr6CsiIiIiMpQo6CsiIiIi56wfXT+OrIJqjmaU8dRbO3jhx3PtbTIiIiIiIiIiItJ9MxLD+cu/D9Pc0kaQrxvzJlm4eHIkw8J7Fog1Gg2MjA5gZHQAt31rNHnFNWw/VMC/vz5Bfmktz67axRM/momTydijdTcfyKWypokgXzdmjA3r0bEnz7b4qtG9OvZCMCzchxd+PJcPv0zhb58nsy0pn0MnSrnnhnHMmWBrtU3PqwQgKtS7x7+G/cVgsP06fr4zk3u/Mx5TP84RHebDU0svIiO/isunR5/SaHy+s4Tagr7ZhdVYrdYL7vpFRERERIYqBX1FRERE5Jzl7GTkV7dN5Sd/2Eh2YQ1/eH8vv7ptGkajbkCLiIiIiIiIiPREoK87L/x4LvWNLYwaFtBv91cigr1YdEkck0eG8Mirm0g6UcKfPk7i3hvGdTtEaLVa+ffmdACumhXTr8FO6czJZOSmyxKYNiaMP7y/l/S8Kp5/ZzdbDuZxz6JxpOdVARBjdmwj8rxJFuZNsgzI2qNjAhkdEzggaw914UGeGAxQU99MVW0Tvl6ujh5JREREREQA/StYRERERM5p/j5u/Pr2aTiZjGw/VMD/fXHc0SOJiIiIiIiIiJyTYs2+jIkNHJAPUUeH+/DwLVMwGGDttgz+syW928cmZ5WTml2Bs5ORhdOj+302OVVMhC8vPjiP712WgNFoYMuBPO77/ZdsPpBr3y7nHzcXJ4L93AHIKapx8DQiIiIiItJBQV8REREROefFR/lz33fGA/DeumNsP5Tv4IlEREREREREROS/TRsdxpJvjQHgjX8dYl9yUbeOW/O1LRQ8d6JZDaODyNnJyA+uGMmLD85lWLgPlTVNZBfawp8xEY5t9JWBYwnxBhT0FREREREZShT0FREREZHzwoJpUVwzJxaAl97bQ1ZBlYMnEhERERERERGR/3b9xcO5dEokbW1Wnnt7FzlF1Wfcv7yqgS0HbS2yV8+OHYwR5b/EWfx46Sdz+e6CeIxGAy7OJmLNfo4eSwaIOcQLgNxiBX1FRERERIYKBX1FRERE5LxxxzVjSBweRH1jK79atoWkEyWOHklERERERERERE5iMBi4/8bxjBoWQG1DC0/+ZQc1dU2n3X/ttgxaWq2MGhZAnMVv8AaVTpydTNx65SiW/fxSXnpwLl7uzo4eSQaIpT3oe7YQvoiIiIiIDB4FfWVQfPrppyxdupQ5c+YwceJEFi1axJo1axw9loiIiJxnnExGfrF4CrFmX6pqm/h//7uVT7amY7VaHT2aiIiIiIiIiIi0c3Yy8T9LphHs705eSS3Pvb2blta2U/ZraWnj020ZAFw9O2aQp5SumIO9iA73cfQYMoDMwe2NvkVq9BURERERGSoU9JVBsXLlSjw9PfnVr37FsmXLmD59Og899BDvvPOOo0cTERGR84yvlyvP3T+buRPNtLZZWf7hQV7/xwGaW079YpGIiIiIiIiIiDiGn7cr/++O6bi5mNifUsyb/zp0yj47jhRSXt1IgI8rF42LcMCUIheejkbfgrI6mltaHTyNiIiIiIgAODl6ALkwLF++nICAAPvPZ86cSVFREW+99Ra33nqrAycTERGR85GbixMP/2Ayw82+rPzPEdZtzySroJpf3TYVfx83R48nIiIiIiIiIiJATIQvD/1gMs+s3Ml/tqQTFebNVRd909z76fZsAK6YGYOTSf1FIoMhwMcNd1cT9Y2t5JfUEhWmBmcREREREUfTv4hlUJwc8u0watQoioqKHDCNiIiIXAgMBgOLLhnBb+6cgaebE0czyvjpyxtJyS539GgiIiIiIiIiItJuxthwbr1yFAB/+jiJAynFAOSWNpGSXYmTycAVM6IdOaLIBcVgMGAO8QYgt7jGwdOIiIiIiAhcAI2+hw8fZuvWrSQlJXHo0CFyc3MBWL9+PRaLpdvrNDc3s2PHDjZs2MCOHTvIzs6mtbWVsLAwZs+ezQ9/+EPMZvNAXUa39PZam5qaeOutt1i9ejXZ2dl4eHgwZcoU7rnnHsaMGTNg8+7fv5+YmJiz7ygiIiLSB1NGhfLiT+bx1Iod5BTV8MvXNnP/dydwyeRIR48mIiIiIiIiIiLAdy4dQVZhNRv25PDsql089aOp7DxuCxjOHm/WE5pEBpkl2IvU7ApyihT0FREREREZCs77oO/rr7/O+vXr+7zOrl27uPPOOwEIDw9n1qxZABw8eJD33nuP1atX8+abbzJx4sQ+n6u3enOtTU1N3HnnnezcuZPAwEAuueQSiouL+fzzz9mwYQPLly9nzpw5/T7rtm3b+OKLL3jmmWf6fW0RERGR/2YO9uLFB+fywrt72HWkkJfe20tabiVLvjUakx77KCIiIiIiIiLiUAaDgQdunEB+SS3JmeU8985+isrrALh6tkpjRAabJcQLQEFfEREREZEh4rwP+k6YMIH4+HjGjh1LYmIiixYtoqSkpMfrGAwGLr/8cm6//fZOYd7GxkZ++9vf8tFHH/HQQw+xbt06nJ2d+/MSuq031/rGG2+wc+dOEhMTWblyJV5etn+0rVmzhoceeohHHnmEL774wv46QHV1NUVFRWedZ/jw4V2+npOTw0MPPcT8+fNZtGhRD65QREREpPc83Jx59PbpvLvuGB98cZx/bjxBZn4VP791Cl4eLo4eT0RERERERETkgubibOLXS6bxsz9uIr/UFvKNs/iQEB3g4MlELjyWEG8AchX0FREREREZEs77oO/dd9/dL+vMnDmTmTNnnvK6q6srjz32GJ9//jm5ubns27ePadOmnXW9lJQUdu/ezc0333zG/VasWMHChQuxWCxnXbOn19rS0sLbb78NwGOPPdYpzHv11VezevVqNm7cyIcffshtt91m37Z27VoeffTRs66fnJx8ymsVFRXcddddRERE8MILL/RoXhEREZG+MhoN3HrlKGIifHj5b/vYd7yYn728iV/fMY3oMB9HjyciIiIiIiIickHz93Hj0dun8YvXvqaxuY0rpkc5eiSRC5K5o9G3uAar1ergaURERERE5LwP+g4GNzc3hg0bRlJSUreabq1WKw8//DDHjh2jubmZxYsXd7nfyy+/zPLly9m0aRMrV67s56lh7969VFRUYLFYSExMPGX7VVddxcaNG1m/fn2noO+NN97IjTfe2OPz1dfXs3TpUpqbm/nTn/6Eu7t7n+YXERER6a3Z482Yg7146q2d5JfW8uMXNzA6JoCpo8KYOjoUS4gXBoPB0WOKiIiIiIiIiFxwhlv8ePT2yWzZc5xZ48IcPY7IBSkiyBODAWrrm6moacTV5OiJREREREQubEZHD3A+aG1tJTc3F4CgoKCz7m8wGHjxxRcJDAzk6aef5p133jlln46Qr8Vi4Zlnnun3mQGOHj0KwJgxY7rcPnr0aKDrZt6eamlp4cEHHyQjI4M333yTwMDAPq8pIiIi0hcxEb689OBcJiWE0NZm5dCJUt5ac5h7n/+Su3/3BX/+ZxL7kotobml19KgiIiIiIiIiIheU+Eg/ZiR4YzTqg9gijuDibCLE3wOAnKIaB08jIiIiIiJq9O0H//rXvygrKyMgIIBJkyZ165i4uDhWrVrF4sWLeeqppzAYDNxyyy3ANyFfs9nM22+/TURExIDMnZeXB0BYWNefhu54vaKigtraWjw9PXt9rscff5yNGzfy61//moqKCvbv32/fNnr0aFxcXHq9toiIiEhv+Xq58vjdMykorWX30UJ2HSnkYGoJBaV1/PvrNP79dRruriYmxIcwbXQok0eF4u/t5uixRURERERERERERAaUJcSLwrI6cotqGB7u4ehxREREREQuaAr69lFOTg7PPfccAD/96U97FFgdMWIEK1eu5LbbbuPJJ58EoKSkpFPI12w2D8jcAHV1dQC4u7t3ud3D45t/sPU16LtlyxYAnn766VO2rV+/HovF0uu1RURERPoqLNCTq2fHcvXsWOobW9h/vJhdRwrYfbSQ8upGtiXlsy0pH4ARkX6MHxFM4vAgRsUE4O6q/6UWERERERERERGR84s5xIs9x4raG31DHD2OiIiIiMgFTamEPqipqeHee++loqKCK664gu9+97s9XiMhIeGUsG9ERASrVq06r8KvX375paNHEBEREekWd1cnZiaGMzMxnLY2K2m5lew6UsDOo4WkZleQ0v7tH1+mYDQaiLP4kjg8iLHDgxgdE4CHm7OjL0FERERERERERESkTywh3gDkFtc4eBIREREREVHQt5caGxu55557SE5OZubMmfz+97/v9VojR45k4cKFfPDBBwBcd911REZG9teop9XR2FtfX9/l9o7GX6BPbb4iIiIi5yqj0UBcpB9xkX7cfPlIyqoa2HusiKQTJRxKK6WorI7jWRUcz6rgw69SMRog1uLH2NhAEocHMTo2EC93BX9FRERERERERETk3GIJ9gIgp6jawZOIiIiIiIiCvr3Q3NzMAw88wM6dO5kwYQLLli3DxcWl1+v98Y9/5IMPPsBsNlNfX8+yZcsICgriBz/4QT9OfaqIiAgACgoKutze8bqfn5+CviIiIiJAgI8bC6ZFsWBaFABF5XUcOlHKoRMlHDpRSn5pLanZFaRmV/DPjScwGGzNF9Fh3kSF+bR/7014oCcmk9HBVyMiIiIiIiIiIiLSNUuILehbVFZHU3Org6cREREREbmwKejbQ21tbTzyyCNs3LiRkSNH8uc//9nejNsbr7zyCsuWLcNsNvP2229TW1vLkiVLeOKJJwAGNOw7atQoAA4fPtzl9iNHjgCQkJAwYDOIiIiInMtC/D24dIoHl06xPY2htLKeJHvwt4Tc4lqyC6vJLqyGA3n245ydjFhCvIgO8yEqzNv+fYi/B0ajwVGXIyIiIiIiIiIiIgKAn7crnm5O1Da0UFDW9RNiRURERERkcCjo2wNWq5VHH32UTz/9lJiYGFasWIGvr2+v13vttdd4/fXX7SFfi8UCwMqVK1myZAlPPvkkBoOB73//+/11CZ1MmjQJPz8/cnJySEpKIjExsdP2Tz75BID58+cPyPlFREREzjeBvu5cPMnCxZNs/19XXtXAidxKsgqqySqsIrPAFvptbGolPa+K9LyqTse7u5pIHB7MpJEhTB4ZQlignqogIiIiIiIiIiIig89gMGAO8eJ4VgX5JbX46AFlIiIiIiIOo6BvF37+859z8OBBbrnlFm655Rb7688++ywffvghFouFVatWERgY2OtzvP7667z66quYzWZWrVplD/mCrUG3I+zb0ew7EGFfJycnFi9ezCuvvMLjjz/OypUr8fKyPYJlzZo1bNy4EX9/f2644YZ+P7eIiIjIhcDfx40pPm5MGRVqf62tzUpReR1ZBdVkFlTZv88pqqG+sZWdRwrYeaQAAHOwJ5NGhjIpIYSxwwNxc9H/vouIiIiIiIiIiMjgsIR4czyrgtziWnxCz76/iIiIiIgMjPM+KbBhwwaWLVtm/3llZSUA999/Py4uLgDMmzeP++67z75Pfn4+6enplJeX21/74osvWLlyJQBms5k//OEPXZ5vwYIFLFiw4IwzWa1W0tPTiYiIYNWqVURGRp6yz8lh3/T09AG71rvuuovt27ezc+dOFi5cyNSpUykpKWH37t04Ozvz/PPP28O/IiIiItJ3RqOBsEBPwgI9mTYmzP56a2sbGflV7E0uYm9yEUfTy8gtriW3OI1/f52Gi5ORscODmDQyhEkJIVhCvDAYDA68EhERERERERERETmfmYNtXyfOK6ljVKjJwdOIiIiIiFy4zvugb1lZGQcOHDjl9aNHj9p/HBsbe9Z1qqq+eazyjh07Truf2Ww+a9DXYDDw3HPPUVJSQmjo6T/6mJCQwMcff0xYWNhp9zlZb67VxcWFv/zlL6xYsYLVq1fz5Zdf4uHhwfz587nvvvsYM2ZMt84tIiIiIn1jMhkZbvFjuMWPG+fHU1vfzMHUYvYcK2LPsSJKKurtIWCAkAAPRkb7YwnxxhLihSXEi4hgL1yddcNdRERERERERERE+s4S0hH0rQV8HDuMiIiIiMgF7LwP+i5atIhFixb16Jh33nmnX9Y5E5PJdMaQb4fuhnyh9zO6uLiwdOlSli5d2uNjRURERGRgeLo7MzMxgpmJEVitVrILq9mbbAv9HjpRSlFZHUVldZ2OMRggxN8DS4gX5hCvTiFgPy9XNQCLiIiIiIiIiIhIt5lPCvpard4OnkZERERE5MJ13gd9RURERETOdQaDgagwH6LCfLhuXhwNjS0cSislI7+K3KIacoqqyS6qoba+mcKyOgrL6thzrKjTGl7uzsSafTt9swR7YTIZHXRVIiIiIiIiIiIiMpRFBHliNEB9Yys1DW2OHkdERERE5IKloK+IiIiIyDnGzdWJKaNCmTLqmydEWK1WKmuayCmqJre4hpyijm/VFJbVUVPfzMHUEg6mltiPcXEyEh3uQ6zZl+Ht4d/ocB/cXPTPBBERERGR80lqaipPPvkk+/fvx9vbmxtvvJH7778fk8nk6NFERERkCHN2MhEa4El+aS0lVc2OHkdERERE5IKlr+CLiIiIiJwHDAYDft6u+Hm7MnZ4UKdtTc2tZBdWk55XyYncStJyK0nPq6S+sZWU7ApSsivs+xoNtkfyRbc3CEeHeRMV5k14oKfaf0VEREREzkGVlZUsWbKEuLg4li1bRlZWFs899xxtbW389Kc/dfR4IiIiMsSZQ7zag74tjh5FREREROSCpaCviIiIiMh5zsXZxHCLH8Mtfixof62tzUpBaa09+JuWZ/u+orqR7MIasgtr4ECefQ0nkxFLiBdR7cHfqFBbCDg00BOT0eCYCxMRERERkbP629/+RmNjI6+99hpeXl7MmjWLmpoaXnvtNe666y68vLwcPaKIiIgMYZYQL3YfLVTQV0RERETEgRT0FRERERG5ABmNBiKCvYgI9mLOBLP99bKqBtJyK8kqqCKzoJqswmqyC6tpbGolI7+KjPyqTuu4OBkJDfTEx9MFH08XvD1c8PZwxsfTFR9PZ9vPT9rm5eGiYLCIiIiIyCDatGkTs2fP7hTo/da3vsULL7zAzp07ufTSSx04nYiIiAx1lhDb/0Mcyapjb3IxsydG9+v6jc2tuDqb+nVNEREREZHzjYK+IiIiIiJiF+DjRoCPG1NGhdpfa2uzUlReR1ZBNZkFVWQVVpNVUE1OYTVNLW1kF1Z3e32j0cAIix/j44MZPyKIkdEBuOhGvoiIiMh55fDhw2zdupWkpCQOHTpEbm4uAOvXr8disfR4vV/+8pd8/PHHp91+00038cQTT3S5rbq6mhUrVvDFF1+Qk5MDQGhoKJMnT+bHP/4xoaGhXR430PryHjU1NfHWW2+xevVqsrOz8fDwYMqUKdxzzz2MGTPmlP3T0tKYMWNGp9ciIiJwd3cnLS1NQV8RERE5oxljw3l/3TFKqxp57q/7Wb8nn7uuG0tEUN+eCpCcWcb7nyWz51gRt145iu8uiO+niUVEREREzj8K+oqIiIiIyBkZjQbCAj0JC/Rk2pgw++utbVYKy2opLqunqq6J6romqmqbqK5tsv28tv3n7T+ubWihrc1KclY5yVnlfPDFcVycjIyODWT8CFvwN9bsp8ZfERERkXPc66+/zvr16/t93dmzZxMcHHzK6xMnTuxy/9TUVG6//XaKioqIjo5mzpw5NDc3k5WVxT/+8Q+uv/56hwV9e/seNTU1ceedd7Jz504CAwO55JJLKC4u5vPPP2fDhg0sX76cOXPmdDqmqqoKb2/vU9by8fGhqqrqlNdFRERETubr5coLD1zEGx/tYkdyLbuPFrL/eDHXXzycG+fH4+7as8jBsQxbwHdvcpH9tfc/O8bMxHAiQ0/9fxYREREREVHQV0REREREeslkNBAR5NXt9o6W1jZKKuo5dKKEAyklHEgppry6kf3Hi9l/vBgAL3dnEuOC7MFfc7AXBoOCvyIiIiLnkgkTJhAfH8/YsWNJTExk0aJFlJSU9Hndu+++m+nTp3dr36qqKu644w4qKip44YUXuOaaazptz8rKwsurby10fdHb9+iNN95g586dJCYmsnLlSvs1rFmzhoceeohHHnmEL774wqHXJiIiIucfDzcnFk704zuXjeOdtSnsO17M39en8OXubG6/egxzJ5rPeg/vaHoZ7392jH3t9wGNRgOXTo6kuKKOAykl/Onjgzz5o4t0L1BEREREpAsK+oqIiIiIyKBwMhntzcALpkVjtVrJKqzmQEoxB1NKOJhaQk19M9uS8tmWlA+Au6sJf283AnzdCPB2w9/HjQAf1/bvbd/8fdzwdHPSFwFEREREhoi7777b0SPw2muvUVhYyK9+9atTQr4AUVFR3V4rJSWF3bt3c/PNN59xvxUrVrBw4UIsFstZ1+zNe9TS0sLbb78NwGOPPdYpzHv11VezevVqNm7cyIcffshtt91m3+bj40NNTc0p61VVVeHj49PjOUREROTCZQ725PG7Z7LjcAFv/usQhWV1vPDuHj7dlsGPrk8kJsL3lGMOp5Xyt8+S2Z9iC/iajAYunRLJdxfEExboSUFpLfc+/yUHUkrYvD+PORPNg31ZIiIiIiJDnoK+IiIiIiLiEAaDgegwH6LDfLh2znBaW9tIyangQEoxB46XcDSjjPrGVuoba8krqT3jWi5ORoL93Rk7PIiJCSGMHxGMl7vzIF2JiIiIiAwljY2NfPTRR7i7u3PTTTf1aS2r1crDDz/MsWPHaG5uZvHixV3u9/LLL7N8+XI2bdrEypUr+3TO09m7dy8VFRVYLBYSExNP2X7VVVexceNG1q9f3ynoGxsbS1paWqd98/Pzqa+vJzY2dkBmFRERkfOXwWBgxthwJiaE8PGGVP6+PoXDaaX85KUNXHlRDD+4YiTeHi4cTivl/c+OcSDF9tQCk9HA/KlR3Dh/BGGBnvb1wgI9ufHSEbz3WTJvrj7E5FEheLjpvp6IiIiIyMkU9BURERERkSHBZDIyMjqAkdEB3LQggcbmVkoq6imraqCssoHy6gbKqhopr2qwvVbVQHlVA7UNLTS1tJFbXEtucS3rtmdiNEB8lD+TEkKYmBDCiEg/TCajoy9RRERERPrg888/5/PPP6epqYnw8HBmzZrFuHHjTtnv0KFDVFdXM3nyZNzd3dm2bRtff/01NTU1WCwWFixY0O2Aq8Fg4MUXX2Tx4sU8/fTTGAwGbr311k77dIR8LRYLzzzzTL9ca1eOHj0KwJgxY7rcPnr0aACSk5M7vT537lz+8pe/UFNTY28B/uSTT3Bzc2PatGkDNq+IiIic31ydTXzvsgQunRzJijWH2XIgj/9sSWfTvlyiwrw5nFYK2AK+C6ZFceP8eEIDPLpc64ZLR/DlnmwKSut4/7Nk7rx27GBeioiIiIjIkKegr4iIiIiIDEmuzibMwV6Yg73OuF9DUwsV1Y1kF1az/3gxe5OLyCmq4VhmOccyy3nvs2Q83Z0ZPyLIFvyNDyHkNF9UEBEREZGh65133un085dffpl58+bx/PPP4+fnZ389NTUVgMDAQH784x+zbt26Tsf94Q9/YOnSpTz44IPdOm9cXByrVq1i8eLFPPXUUxgMBm655Rb7DMuXL8dsNvP2228TERHRhys8s7y8PADCwsK63N7xekVFBbW1tXh62pryvve97/HOO+/wwAMPcNddd5Gdnc1rr73GkiVL7MFfERERkd4KCfDgl4unciClmD//M4msgmoOp5XiZDKwYFo0N1464qz34lycTfzo+nE8/uZ2Vn+dxoKpUUSH+wzSFYiIiIiIDH0K+oqIiIiIyDnNzcWJsEAnwgI9mTraFm4oKq9jX3Ix+44XceB4MTX1zWw9mM/Wg/kAmIO9CA/yxMlkwMlk/OabkxEno8H2vcmIyWTA2WTE1cWEv7cbAT5uBPi64e/tqkcIioiIiAySkSNH8thjjzFjxgzCw8MpKytj586dvPTSS2zcuJGlS5fy3nvvYTTanuBQWVkJwFdffQXAI488wjXXXIPJZOLTTz/l+eefZ9myZURERHDjjTd2a4YRI0awcuVKbrvtNp588kkASkpKOoV8zWbzAFz9N+rq6gBwd3fvcruHxzcBmpODvr6+vqxcuZInnniCpUuX4uPjw2233cYDDzwwoPOKiIjIhWX8iGD++LOL+WxHJkVldVw1K4YQ/+5/2H7KqFBmjA1j+6EC/vfjgzxzzywMBsMATiwiIiIicu5Q0FdERERERM47If4eXD4jmstnRNPaZiU1u5y9ycXsSy4iOauc3OIacotr+nQONxcTAT5u+Pu0B4B93AjwcSXAx41hEb5EhnpjMuqLESIiIiJ9tWTJkk4/N5vNXH/99Vx00UVce+217Nu3j3Xr1nHllVcC0NbWBkBzczMPPPAAP/zhD+3H3nrrrbS0tPDss8+ybNmybgd9ARISEk4J+0ZERLBq1SosFksfr3JgxcXF8fbbbzt6DBERETnPOZmMXHVRTK+Pv+vbiexNLubQiVI27s3h4smR/TidiIiIiMi5S0FfERERERE5r5mMBhKiA0iIDuDmhQnU1Ddz+EQJ1XVNtLRaaWlto6W1jeaWNlrbrLS0tLW/9s22+oYWyqobKK9qoKyqkfrGFhqaWskrqSWvpLbL87q7OhEf5cfI6ABGDgsgPsofH0+XQb56ERERkfNXaGgoixYtYsWKFWzatMke9D252barIO93v/tdnn32WfLy8sjOziYysvsBkpEjR7Jw4UI++OADAK677roeHd8XHddVX1/f5faOxl/A3uYrIiIici4JCfDgpgXxvPPpUVb8+zBTR4fh6a6naomIiIiIKOgrIiIiIiIXFC93Z6aPDe/TGvWNLe2h345vjfafF1fUk5ZbQX1jCwdSSjiQUmI/zhzsSUJ0ACOj/Rk5LICoUG9MJmNfL0lERETkgjVs2DAAioqK7K+ZzWYAXFxcCA0NPeUYT09PAgICKCsro7i4uEdB3T/+8Y988MEHmM1m6uvrWbZsGUFBQfzgBz/o24V0Q0REBAAFBQVdbu943c/PT0FfEREROWddf/Fw1u/KIq+klvfWHeOu6xIdPZKIiIiIiMMp6CsiIiIiItJD7q5OuAd7ERHs1eX21jYrWQVVHMss51hGGcmZZeQW19q/fbk7GwA3FxORod54uTvj2f7t5B97unV+zcvdGV8vV4xGw2BeroiIiMiQVVlZCYC7u7v9tdGjRwPQ1NREbW3tKaHX1tZWqqurgc7tv2fzyiuvsGzZMsxmM2+//Ta1tbUsWbKEJ554AmDAw76jRo0C4PDhw11uP3LkCAAJCQkDOoeIiIjIQHJ2MvGjReN47M/bWLM5jQXTooiJ8HX0WCIiIiIiDqWgr4iIiIiISD8zGQ3ERPgSE+HLlTOHAVBV28TxrI7gbznJWeXUN7aQkl3Ro7WdnYyE+LsTGuBJaICH7Vug7fuwQE+83J0xGBQEFhERkfOf1Wrls88+A2Ds2LH218PDwxkzZgyHDx9mx44dXHrppZ2O2717N83Nzbi7uxMbG9utc7322mu8/vrr9pCvxWIBYOXKlSxZsoQnn3wSg8HA97///X66ulNNmjQJPz8/cnJySEpKIjGxc7vdJ598AsD8+fMHbAYRERGRwTApIYRZ4yLYcjCP5R8e5Nn7ZuuD7yIiIiJyQVPQV0REREREZBD4eLowZVQoU0bZHh/d2mYlu7CawtJaahtaqK1vprah2fZ9fTM17d+f/FptfTPNLW32ZuCueLg52QPAvl6uuDqbcHUx4epswqX9xy5O7a+5mHBt/7GHmxMRwV44mYyD+baIiIiIAPDzn/+cgwcPcsstt3DLLbfYXz9y5AgnTpzg8ssvx8XFxf56TU0Nv/vd70hKSsLDw4Mbbrih03p33303Dz74IM8//zzx8fH2YG5hYSFPP/00AN/5znc6rXk6r7/+Oq+++ipms5lVq1bZ1wJbe25H2Lej2Xegwr5OTk4sXryYV155hccff5yVK1fi5WV7wsSaNWvYuHEj/v7+p7wXIiIiIueiO68dy55jhRzNKOOrPdnMnxrl6JFERERERBxGQV8REREREREHMBkNDAv3YVi4T7ePaW1to6SygcKyWgpL6ygoq6OwtM7287I6yqsbqWtoIT2vivS8qh7P5OxkZFi4D8Mtfgw3+xJn8SM63BtnJ1OP1xIREZEL14YNG1i2bJn955WVlQDcf//99mDtvHnzuO++++z75Ofnk56eTnl5eae18vLyePjhh3nyyScZO3Ys/v7+lJSUcPToUSorK/Hw8ODll18mODi403FXXHEFN998M++//z7XXHMNkyZNwmg0sm/fPqqrq5kwYQIPPfTQWa/FarWSnp5OREQEq1atIjIy8pR9Tg77pqenD9h7BHDXXXexfft2du7cycKFC5k6dSolJSXs3r0bZ2dnnn/+eXv4V0RERORcFuzvzvcuS2Dlf47w1prDTB8ThpfH2T+kJSIiIvL/27vz+Kjqe//j79mX7BtZ2SEBApZNEBUXsNhatVZL/bUWXGtdqtxba5dbqxWrt9r2195q8de6oba11eJ+sSogqGwBWUUM+5KEbCSTTLZZz++PSYaERJaQkAFez8djnDPfs8z3DHyJ+cz7fA9wOiLoCwAAAACnCIvFHJ2tV8M6r/cFQqqsaVJFTZMqDjbK2xyQPxCSzx+SL9D68IcibYFQh3V1DX41+4Lavt+j7fs9h97TbNLArEQNzUvS0NwkDe2frMwk28k7aQAAcMqpqanRxo0bO7Vv3bo1ujxkyJBjOlZBQYFmzZqlzZs3a9u2bfJ4PLLZbMrNzdVVV12l2bNnd5hht71f/vKXmjBhgv72t79p/fr1CgaDGjRokC6//HJdf/31cjgcR31/k8mkRx99VNXV1crMzDxiP1977TVlZWUd03l19zOy2+165pln9Oyzz+rNN9/UkiVL5Ha7NX36dN15550qLCw8pvcHAAA4FVx5wVAtXrtP+ysa9Nd/f67brj6rr7sEAAAA9AmCvgAAAABwmnDYLOqfmaD+mQnHvW84bKiipkk7SjzaWeLRztI67SzxyNsU0K6yOu0qq9P7rduaTFK806L0pXVKTXQpOcGhlASnkhMcSo53RJ5blxPcdpnNJkmRGfFCYUOBYFj+QEiBYDiyHAwpEIgsB0NhuZxWJcU5lBhvl8PGbMIAAJxqrr76al199dXHtc+LL77YZXv//v113333dbsvV1xxha644opu7y9JFovliCHfNsca8pW69xm1sdvtuu2223Tbbbd1a38AAIBThc1q1ve/cZbu+38r9M6K3bpk0gANy0vu624BAAAAJx1BXwAAAACAzGaTstPjlJ0ep6ljcyVFgrlVnuZI8LekTjtL67SjxCOP1ydvc0jeZq92l3mPeFyL2SSXw6pAKKxAIKSwcXz9ctotSoyzKzHeocQ4u5Li7EqMcygp3q7EOLvSklzKTo9TZqpbVou5u6cPAAAAAACAGPSl4Rm6YGyuPtxQqv+3YJMeu2tq9KLyIwkEQ2pqCcrttMpm5UJyAAAAnNoI+gIAAAAAumQymdQvxa1+KW5NGZMTbS+rqNXajZ8rJSNHzX7J4/XJ0+CLPHt98jS0RMLATQGFwoYamgNdHt9qMclmtchuM8tmMctms8hqMamxOaj6Rp+CIUMt/pBa/M2qrG0+Yl/NZpMyU9zKzohTTnqcctLjlZMRee6X4pKFEDAAAAAAAMAp6aYrC7Vma7mK99XqlcXbNCg7UXWNftU3+lXX4FN963J9o091DZHlZl8wur/dala826Y4l03xLnvrs63T88DsRA3LSz6mIDEAAABwMhH0BQAAAAAcl+QEh3LT7BpZkCG32/2F2wWCYdU3+tTUEpTdZpHdapbNGgn02izmI35pYhiGmn3B1i9nfJEvb1q/uGn7wqau0aeq2mYdONgonz+kAwcbdeBgo9YddiyrxaTMVLcy0+LktFtktZhltUT60rZstZhkbetfa1u826a0JJfSkpxKT3LJ6eBXaAAAAAAAgJMtLcml71w6Qs+8uUV//ffnx72/PxhWTb1PNfW+o26bFG/X+IJ+OntklsYVZCjebe9Ol49JMBRWY3NADc0BNTT5W58Dykx1a8Sg1F57XwAAAJx6+JYSAAAAANArbFZza1D2+Pc1mUxyO21yO23KTo874raGYaimvkVlVY0qq27QgepGlVU3qqwqsuwPhlVa1ajSqsZunklEnNOqtGSX0lvDv2lJLqUnR55TEhxyOqxy2i1y2CxytAaKTaajzwATChutX+r41dAUkLfJL29TQI1NfnmbAzKZpMHZSRqck6T0ZOcxHRMAAAAAAOB0cvn5Q7Rl10HtKqtXUpxdSfEOJcbZldhuOSnOrsQ4h5LiI+0up03NvmCk7tLkV2NLJEjbFq49FLINqL7Rp+J9tapr8OuDT0r0wSclMptNGjEwRRNHZmriyEwNyk48prpMY3NAB6ojF6QfqG5U+cFG1Tf6D71na6i3xR/6wmNcdeFQ3XB5oSzMLgwAOEWEwobqG3zyBUJKT3bJyp0WgR5F0BcAAAAAcEozmUytgWKXxgxL77AuHDZ0sK5FZdUNqqxpkj8YVjAUVrD1ORBdNiLtobACwUhbfaNf1XXNOljXrGZfSI0tQTWWe7Wv3HtM/TKbJIfdIofNKnu7ALDDZpHPH5S36dCXSscqwW3T4JwkDclNij7n9YunYAYAAAAAAE5rVotZP79x8nHvF++yKd5lU2bqF9+Vqk0wFNbW3TVas7VCa7dWaH+FV5/trtFnu2v0wsKtSk9yakJr6HdYXrKqPc3RMG/00RrqPR5up7W1n3Y57BZt3VOj15ft1P4Kr+797kTFuWzHfd6xrKy6QVW1zTprWDoXtOO0Ue1p1qtLd6ixOaALx+XpS/kZBPXRq4KhsBqaWicQaf2eodkXlD8Qlj8QijyCX7AciHwX4nJY5XJa5XZY5Xba5HJY5Xa2Phw2uZzWaFuLP6Ta+hbV1vtU621Rrbf1ud3r+gafwkakf2aTlJ7iVnaaW1lpccpOi1NWeutzmltu5+n1sw04GQj6AgAAAABOW2azSRkpLmWkuE7oOE0tAR2sa1G1JxL8PVjXouq6lsiyp0Wehhb5/CH5AiEFQ5FKVtiQmn0hNfu+eHaW9lwOi+LddiW47Ip32yIPl13+YEh7yuq1r8Irb1NAm3ZUa9OO6uh+VotZA7MTNCQnSYNyEpWa6FSCy644d+SLrAS3XS6HVWYKywAAAAAAAF/IajFrzLB0jRmWrpuuKFRFTZPWtoZ+N+2oVnVdi95dtVfvrtp71GMlxzuUnR6n7PQ4ZaXFKTnBEQ0dx7kO1X3inFZZDruA+6MNpfrDP9brk88rde/jH+q+myYrJz2+t077pNm2r1b/WrJdqz49IMOQZn11pL51SX5fdws4IU0tAb36wQ69tmyn/IFIHXjJ2v1KT3bpy5MG6JKzB6jfMVxogDOTYRhq9kUmBfE2+uVtitz1r77Jr4Ymf+tz+xno/dHlI80K35fMJsliMSsQDKuypkmVNU3auL2603ZJ8XZlpcUpKzVObpdVNqtZNotZNqtFNqtZVos50nbYw2wyKWwYCocjE72EDEPhcOQRChut6yIPQ4bcjrafuTbFu+3Rn8UOu+W4LzYJhw35A5HvgUJhQ3Eumxw2S7c/q3DYkKfBp8raJlXVNKvK06TK2mbVN/oVNgwZhiGjNTjdcVkydOh1crxD/Vq/B8tIcatfilvpyU7ZrN3vW1dCobB8gVD0u7DDnw3DaP1zshz259butcUsm83ChRDdRNAXAAAAAICjcDttcjtt6p+ZcNRtg6HIlfFfVOzw+UOy28xKcNsV1xrEjXfbjjorrz8Q0r4Kr3aX1mlXWZ12l9VrV2mdmn1B7Syp086Sui/c12xS65dIhwpZ8e7ILS1Tk5xKTWx9JDmVluhUnMvGjCoAAAAAAOCMlpnq1tfOG6yvnTdYvkBIm3dU65OtFVqztUIVNU1KT3IqOz2+NczrVk675ROZqXDq2Fxlp8XpV8+t1v6KBv3ofz7UT68/W2cNy+jBszs5DMPQJ59X6tUPdmjzzo5Brxff2aqMFJcuntC/j3qHk2V/hVdL1u5Xgtumr0wZdFrM5BkKhfVe0T79/d+fy9PgkySNHJSqIblJWrauRNWeZr30XrH+8X6xxg7P0JcnD9Q5o7N6PHjXm4KhsFr8Ifn8QbX4Q2rxRZ5tVrMGZCbI6Tj9ImeGYejjDWXavKtaWalxGpidoIFZiUpLcnarXm4Yhmq9Pu0pq9eeA3XafaBeFQeb1NDsl7cxIG+TX6G2KXC7qf2s8C6nVXarWXabpfVhlt3abtlmaX1tlsViVosvqGZfUE0tQTW1RGYEbvIF1dz+dUukzWm3KCXBoeQEp1ISHEpNdCo5waGUBKdSElufExxKjHfIbJJq6ltUfrBJB6obVV7TqPLqJpUfPDTzfV1D5FG8t/aEzr+7rBZT5IIb16EgsNls6vK7nbY2fzDc6Th2m0UJ7sj3PG3f9STG2aOTsCS0Ljc2B1TlaY6EemubIw9Ps4KhzsfsCSaTlJLgUEaKWxnJLvVLcatfiksup63DmG72h9TiD0bHd/TZH1SLLyRfINhpkpueYLWYIhPfuO1KjLNHP8PIcuRza3udGGdXbkY8k9mIoC8AAAAAAD3Kaolcbd7TBWu7zaJheckalpccbQuHDVXWNmlXa/h3X7lXdQ2+1qv7I1f2+wMhhQ1FZgVoChzbe1nNSk1yKiXhUPg3JdGp5HiHkuLtSop3RB5x9pNa0G27Yt5us1DUAQAAAAAAJ43DZtHEkZmaODJTt7bOFnj4TLw9aVj/ZP3f/7hQDz+3Wtv2eXT/n1fq+98Yo6+eO7hbx9ux36N3V+9VTV1LhztJxbcGnBJaLw5vP9uwzdr98wuFwvpoQ6kWfLBDew7US5IsZpMuHJ+nqy8epsVr9uu1pTv0x3+uV1qS85QMMePIQmFDn3xeobc+2qUN26qi7f9askMzpw/XZecNPqGZMPuKYRhau7VCz729RfsrGiRJ2elxuuFrozRlTLZMJpNuuqJQKzcf0PtFe7Vxe7XWb6vS+m1VSnDbdfHEPM2YNFADsxNPqB+hUFgNzQE1tkRme22b5bVtuaklqGAorEAorFDIiCwHwwqGWh9BI7ocCLbN0tkW8IssHynUZzJJWWlxGpSdqME5Sa3PieqX4j4pddvK2iZ98nmlJhdmKTXR2SPH3F1Wpz+/tllbdh3stM7ttGpgVqIGZEWCv20B4KR4R3Qbnz+k0oO1raHeyGN3Wb28Tf6jvrfNam4NitqiAcf4dpOExLvtinfaonfxO9Ks8LEiLcmltCSXCoekdVrX1BJoDQA3qeJgo5p9IQWCIQVCYQWDkb+Tgba/s22vg2EFgiGFDUNmk0kWS2R2X7NZrc+Rh6X12dwazG7yBdXYFFBDsz/6vUkobCgYisym2xbUP14mU2RmXX8gpIN1IR2sa+nWccxmk9KSnNEwbkaKS8nxDpnNJplMJplMkqn1DU2t72tqtxw2pFpvi6pqmyMzKNc2q6q2Sf5gWDX1PtXU+3o8TG0ySU67RQ6bVXa7RQ6bRQ6bWTKZWv+8IqHowGF/dka7f1KCIUMer08e77F9/tMm9td/fnt8j57HqYigLwAAAAAApyiz2RS5vVVanM49K6fLbfyBUPS2XocCwH55mwKqa/Cppr5FNXUtkef6FnmbAvIHwyo/2KTyg01H7YPDblFSXLvwb7xdSXEO2WxmyZAMHbqtVPS5tU1S9FZavtYicrMv2Loc7DhjhD8Uvf2d1WJWRrJL6cmR21GlJ7s6vM5Idp0WM4MAAAAAAIDYYzKZZLH0fpAtNdGpR+44X0+8vEFL15Vo3oJN2lvu1S1fH33UO0NJUiAY0vKNZXp7+e5uhXzcTqtyM+LVPzNBAzITNCArQf0zE44Y5GvxBfV+0T69vmyHKmubJUkuh0WXnjNIV04dqowUlyTphq+NUmVtk5ZvLNMjzxXp0bumamDWiQUfERsamgNaVLRX/7t8d7S2aDZJE0dmqbSqQaVVDXr2rS16fdlO/Z8ZBfrypAHH9Pe5JxiGoe37PaqoaVJev3jl9Ys/rhl2d5R49NxbW7RpR2R26gS3Xd+eUaCvTBnUIRhvt1l04fg8XTg+T+UHG7WoaJ8Wrdmng3UtevPDXXrzw10qGJCiiybkyeWwRmcObauFftFd4pp9QTU0+dXYElCzL9Tjn88XMZtNctotkWCf3apmX1Aer08Hqht1oLpRKzcfiG7rclg1KDsx8shJ1JCcJA3vn9xjYdQWf1ALluzQqx9slz8Y1lOvb9aMyQN1zcXDo/++HK+GJr/+9u/PtXDFboWNyJ/fJWf3V32jX3vLvSqtalBTS1Bb99Ro656aDvsmxduVneZWVU2DahpKOgQZ25hNUm6/eA3MinwmuRnxh2YtbQ3yOmyWM+oOe26nTUPzkjW03aQmJ4thGGrxh6Lfk7R9Z9LY7FcoHAmw2m0WOdoCrNEga2S5bbZks0lq9gVV3+hXQ1NkdubII/JdjLddW0NTQC6HVRkph8K8bc9pic4eD2sbhqG6Br+qPIeCv5WtQWCfPySnwyKnwyqn3Sqn3SKXI/Lcvs3Z1ma3dvosbFbzcf99NQxDobARDf62+IORz63Rr/q2z65tubH182t93dQSUE56XI9+Rqcqgr4AAAAAAJzG7DaLUm2WY57ZwB8IRUO/tfU+HaxvjgaB6xr9qmvwtd5WyxeZ7cEfUqW/OfrlzckQDIV1oPU2X18kzmltDf66lZsRr9yMOOWkxysnI15pSU5mBAYAAAAAADHPYbPoh98ZrwFZCXph4Vb97/LdKqn06iezz1aC297lPtWeZr2zco/eW7U3OlOh1WLSeWflqnBIqhpbgp0uCG9/d6jG5sgdoZpagtq+36Pt+z0djm+3WdQ/M14DMhOiIeDMtDit3FSmtz7eHZ29MineriumDtHXzh2s+MP6ajab9MNvj1dNXYu27qnRg0+v0m/vvqDHZuY8mlDY0Kc7q7W7rE5nj8pSbkb8SXnf09m+8nq9/fFuLflkv3z+SAg13mXTjMkDddl5g5WZ6lYoFNYHn+zX398rVlVts+b9a6Ne/WC7rrt0hKaOy5OlF+p1beHejzaUasWmsg41TLPZpNyMOA3ITNTArAQNyI48Z6fFdQjeVdU268V3PtMHn5RIisy+euXUIfrm9HzFu4482UBWWpy++9WR+valI7S+uFLvrd6roi3lKt5Xq+J9Jz7LpsthUZyzbTZue+uyVW6nTTarOXr3OavVJJvFLIvlUJvNapK1tc1hs3QI9Tnt1kgY0G6R1dI51Ofx+rT3QL12H6jT7tYZbPeVe9Xs6xyIzUpz6+qLhmna2QO6PYuzYRj6aEOpnntri6pbZ05NTXSqpr5F/7t8t95dtUfTzx6gb04brqy0YwsEhsOG3i/apxcWfqb6xsi/W+d9KUc3XVGofinu6HaBYEilVY3ae6Be+yq8kedyr8prGlvr5Idm7E2Kt2twdpIGtgs7989MOCVnrz5dmUwmuRzWaPD2RLidtsiEI50nLe5TJpNJyQkOJSc4NLx/Sl93R1KkT1ZL5N8cl0NKjLOrX2x07ZRC0BcAAAAAAETZbZboLMFHYhiGmn3BSDGz0ac6r69DEDgQDB26tVT0FlOmTreWMrXeVisyI4Tl0BXjrUVll8Paod1us6i+0a9qT+RK9CpPs6o8za2vI8+R29YF1Vju1d5yr9Zureh0jjnpccppDf/mZsQpOz1eOelxcjmtslktvfLFAgAAAAAAwPEymUyaOT1f/TMT9Lu/faKN26t1z/98qF/cNFn9MxMkReo0n+48qLeX79KqT8sVDkemlUxLcuqrUwZpxjkDlZJwbCHaUNhQU0tAtfUtKqls0L4Kr/aXe7WvwquSygb5AyHtLKnTzpK6LvfPSnPrGxcN0/SjhPrsNovuu2myfvz4hyqtatSDT6/Sr+88Xy5H78RYQmFDn+0+qI83lGrFpgPREPTz//uZvnHRMH1rer6cvfTep6tQ2NDaz8r11se7tHF7dbR9YFaCrpg6RBeOz5PTfugztVjMumTSQF04Pk//XrlXLy/apvKDTfrd39fpX0u267tfHanJhVknPLNpW7h3+cYyfbyxtEO412m3aEBWgkqrGtXYHND+igbtr2jQ8k2H9rdazOqfGZmB1eWwavGaffIHw5KkC8fladZlI5WZ6j78bY/IYjZp4shMTRyZqVpviz5Yu1/ri6tkNpsis2QePnuo3SKHzRqtmdptFrkdVsW7I6HetnDvyZoN+XCREGGGvpSfEW0LhsIqrWrQnrJ67S6r054D9SreW6vyg02at2CT/v5usa68YIi+eu7gowak29ux36O/vL45Gh7ul+LSTVeM1rlnZWvT9mr9Y1GxPt15UO+u2qv3i/bp4gl5+tb0fOUcIcC/bV+t/t+rm6IXMvTPjNf3rzqrw/m0sVkt0VmK22vxBbW/0qtdJTWqO1iu8yeNUg7JRQC9yGQYXU0cDsSmzZs3S5LGjBnTxz3pHU1NTdq6datGjhwpt/v4/scQQM9jTAKxg/EIxBbGJGJdsy8YCf56mlVxsFFl1Y0qrWpQWVWDyg82KRQ+einEbDbJZjXLZjFHZr9otxx5WGS3mVsDyJEZLhx2i1z2jsHktltcuRxWJcVHrqKPd9l67FZsjEcgtpyKY/J0r7eh55wJf1dOxTEMnK4Yj0BsYUzGjt1ldXro2dWqqm1WnNOqOf9nvDzeFr29fLf2lXuj240emqbLzxuiyaOzejQIGAqFVVHTpL3lXu2viDz2VXhVVtWgvMwEXX3RMJ17Vs5xXUBdfrBRP/rjh6pr8GvCiH76xU2Te+w25uGwoa17avTxxshsrjX1vui6eJdNuRnx0VlV05NduuXKSHiwJ4KmhqEevaNUKGxoxcYyvbKkWGVVDZo4MlOXTBqksfkZJ/xn7PH6tHxTmT7aUKryg42RC/NNkf6bTabohfrRNnOkzeP1qdoTCdGaTdLk0dm64vwhGj007Zg+wxZfUG99vEsLPtgRnUk6f0CyZn91VJeByyMxDEM7SiLh3o82lqmypim6zmm3aNKoLJ0/NkfjR2TKYbPIMAzV1Ldo7wGv9lXUa+8Br/aWR2ZsbZuRuL3CIWm6+crCmJkd81TR4gvq/aJ9em3ZDlW1Bq5dDqu+OmWQrrxgiNKSvnhG1Vpvi15cuFWL1uyTYUgOu0Uzpw3XVRcN63QRwZZdB/WP94u1YVuVpMjfx6lj8/StS4ZrQNahgK7H69MLCz/T+0X7on35zqUjdPn5g7s9jvgZCcSOU3E8Hk+9jcuRAAAAAADAacXlsKp/6+0jDxcKhVVR26SyqkaVVTVEAsDVkeUqT7PaLocOhw35/CH51Lmwf6KsFlM09Jvc+pyS4OzwOistTv1SXD0WCAYAAAAAAKe+wTlJ+r9zLtQj84u0dU+NHplfFF3ntFt08YT++tp5gzXwsJkne4rFYlZORrxyMuI1ZUx2jxwzKy1O9998jn42b7k++bxST766SXd+80vdromEw4a27avVRxtLtXxjmQ7WtUTXxblsmjI6W+ePzdGXhmfIYjZp9ZZyPfXGp6qsadKvX1ijscMzdOs3xnRZVzqaugafPvikRIuK9mpfhVfj8vtpxuSBmlSYJZu1eyHCQDCkJWv3a8EHO3SgujHavnxTuZZvKldSvF1Tx+bqovF5yh+QcsyfW0NzQKs2l2nZ+lJt2l6lY7guvksJbptmTB6oy84drH7HOcut02HVzOn5+uqUQXp16Q69+dEubdvn0X1/XqGCASlKTXLKHA0Zm2Q2q93yoedQ2ND64kpVtAv3OlrDved9KUcTRvTrMLOwFJkpOy3JpbQkl8aP6BdtD4cNVdY2aV95JPhbVdusCSP6aVIPzDR8JnI6rLpi6hB99dxB+mhDqRYs2a695d7on/f0s/vr6ouGdZh9NxAM662Pdumfi4rV1BKUJF00Pk/Xf22U0pO7DgYXDknTQ98/V5/vrdE/39+mtVsrtGx9iT7cUKJzx+Tom9OHa+vuGv3t31vV2HrMaRP764avjVJK4rHNdg4AfY2gLwAAAAAAOGNYLGblpMcrJz1eGpnZYV0wFJY/EFIwZCgQDCkQDCsQDCsYCkeX27f7AyG1+NseQbX4gvK1vm72ty0HI69bAvI0+NXYHFAwZOhgXUuHL5q64nJYNTArQQNbbw3X9pzgtvfmRwQAAAAAAGJYcoJDD99+rub9a5MWrdmnnPQ4fe38wZo+cYDiXLa+7l635A9I0b3fnaBH5hfp3VV7lZnq1szp+cd1jP0VXi1es0/L1pdGZ5mVJLfTqnNGZ+v8L+VobH6/ToHbc0Zna1xBP/1r8XYt+GC7Nmyv0t2/+0Bfv2Corv1ygVyOI8dq2kKm7xftVdGWcgVDhxKz64orta64Uolxdk2b2F9fnjSgw+yiR9LsC+rfK/fo9WU7VVMfqSEluG26dHJ/xVu8qmhwasWnFapr8Ovtj3fr7Y93Kzs9TheNz9NF4/M6BCfbtPiCKvqsXB+uL9Unn1cqGApH1w3vn6wLxuWqcEiaJMkwIqHXsGEoHDY6vm43Y/GowamdQrTHK95t1+zLRumKqUP0yuLtemfFnuhMy8fDYbfo7JGZOv9LuZowsnO491iYzSZlpcUpKy1Okwqzjnt/dM1qMeviCf110fg8rd1aoX8t2a7Pdtfo3VV79d7qvTp3TI6umTZMHq9PT7/xqcpaQ+3D+ifr1q+P0cjBqcf0PiMGpuqBW87RjhKPXl60TSs3H9DyTWVavqksus2Q3CTd9o2zjvmYABArCPoCAAAAAAAoUnDuydtZdsUfCMnT4JPH6zv03LpcW9/S+uxTRU2jmn1Bfb63Vp/v7fjFRmqiMxr8zUlzyOf1K6m6UWnJZrmcVjlsFmYYAQAAAADgNGazWjTn/4zTd786QikJTpnNp34d4JzR2br1qjH682ub9cLCrcpIceui8XlH3KepJaCPN5ZpUdE+bd1TE213OSyaXBgJ944r6Ce7zXLE4zhsFl33lRGaNrG//vL6Zq3dWqEFH+zQsnUluvnro3XeWTmdai1l1Q1aVLRPS9bu73Ax97D+yfrypAEaOShVH20o1eI1+1VT36LXl+3U68t2asTAFM2YPFDnj83tMkRc3+jXWx/t0tsf71JDc0CSlJbk1FUXDtOl5wyUEfJr69at+uqFI3Tr1WO1YVuVlq0r0cpPD+hAdaNeeq9YL71XrPwBybpofH+dMzpbO0s9+nB9qYo+K5fPf+juVQOzEjR1XK6mjs2NXBTfx1ISnLr1qjG66sKh2rCtSsFQOBIujgaOFQ0et382DGlwTqImjsiU8yjBbPQtk8mks0dl6exRWdqy66AWfLBdaz6r6BTGTU5w6PrLRmraxAHd+vdtWF6y/uuGSdpzoF7/fL9YyzeVKd5l06yvjtSMcwbJchr8mwngzMNPOAAAAAAAgJPEbrOoX4pb/VKOfCvDQDCssqoG7TlQr73l9ZHnA/WqrG1WTX2LaupbtK648tAO7x1aNpskl9Mmt9Mql8Mqt8Mqt9MWWXZaZbOaZbNaZLNGgs3tnzstW82yWY783P4YVouJkDEAAAAAACdJWlLXt7E/VV1+/hBV1DTp9WU79T//WK+0JKfGDE3vsI1hGPpsd40WFe3TxxtL1dIaXDWbTZo4IlPTzu6viSMz5ThKuLcr2elxuv/mySraUq6/vPGpKmua9OgLazV2eIZu/cYYZSS7tGJzmd5bvU9bdh2M7pfgtuviCXm6ZNIADc5JirYPzknSdZeO0CfFlXpv1V6t2VoRvaj7qTc2a+rYPH158gAVDEjRwbpIGPjfq/ZEw7g56XG6ZtpwXTwhTzZr5HyamvzR41stZk0cmamJIzPV7Atq1acHtHRdiTYUV2rbPo+27fPoL69v7nCOWWluXTAuTxeMzdXA7GObXfhk65fi1ozJA/u6G+hlhUPSVDgkTXsP1GvBB9u1bH2pzCbp6xcM1bcuyZfbeeIzlA/KTtRPZp+tak+z3E5rjxwTAPoKQV8AAAAAAIAYY7OaNbB11t72mloC2nvAqz3lkeDvrtJalVR4FQyb1OIPRm6jaEiNzQE1ts76crKZTZKlNfRrMUcCwGazKfK6XbulNRRsNqn12SSTKfLFXNtyW7vZbJLFbGo9jlkWs0mWtuN8wXL7fbp8NkW2bTt+2/sevmzp1KYut7Uc4Rjm1vMytZ6XxWzqcM6EowEAAAAAiLjx8kJV1TZr+aYyPfxckR77wfkakJWog3XNWrJ2vxYV7VNZdWN0+9yMOH150kBdPLG/UhOdJ/z+JpNJk0dna2xBP/1r8XYt+GC7Nmyv0t2/+0A2q0XNvmDrdtK4gn768qQBmlyYFQ3iHs5iMWvSqCxNGpWlmvoWLVm7X++t3qsD1Y16b/Vevbd6r3LS41RZ26RgyJAkDclN0szpwzVlTM4xzzzqclh18YT+unhCf9XWt+ijDaVauq5E2/d7lJbk1NSxkZl7h/dPpg6BmDIwO1E//M4E3XB5oQzD6JULGNKTT6+LIgCcmQj6AgAAAAAAnCLcTptGDk7VyMGpkqSmpiZt3bpVI0eOlNPpki8QUlNLQE0tQTX7gmpuCarJF1CzL6imlsgjEAwrEAwpEAorGAxHXh9hORSKLAfb2qPPhoLBkMJGxz6GDSkcDCsQlKRQp3NAZ21h58j3bK3hX0kyHVrual37kLRM7Y/TPijd2qbW1+aOwWqTTDKZ1WXoukMAuzW03Km99QvHQ3047Lg6dG7m1i8STdFndXzd+p/oPpJM5kP7HjqPjsFpc2t7p7Z2Qevo+bULWUfbzYc+t64+g5QEhwoGpvBFKAAAAACcBGazST/8znjV1Ldo654a/fLpVRqUnahPtlZEaxBOu0VTx+bqkkkDNHJQaq/8vuawWXTdV0Zo2sT+euqNzVrzWYWCoaAyU9368qQBmjZxgDJSji88mJro1DenDdc1Fw/Tll0H9d7qvVq+sSwaXB49NE0zp+VrXEHGCZ1TSqJTV14wVFdeMFQNzQG5Hdbo7+9ArOqJoD4AnM4I+gIAAAAAAJwGzGaTXA6rXA6r0pKOvn1PCYUNBVvDwKFQJBAcChsKhYzocjDUts5QKBx5DocNGYbROgtxZDlsRG7BaYQjbdH2sBE5ZutxQ+Fw67OhUPv3aN0m3OE53Knt8PXhtvdra2u33KE9fKg/kfbI+YeNztuGW8/tWIQN6dDGx7gTTqq5t07RuIJ+fd0NAAAAADgj2G0W/fzGSfrx4x+prLpRVbXNkqRRg1P15UkDdN6XcuVynJy4S3Z6nO6/+Rxt21erYCisEQNTTzg0azKZNHpoukYPTdet3zhL6z+vVL9UlwoGpvZQrw+Jd9l6/JgAAODkI+gLAAAAAACAbrOYTbKYLXLYur5F5ZmsLbwcPiwg3BZu7vA6HHk2ZESzvkbrMSLHOrSurd0w1CEsLR06TvS1YRw6tnHoPdrC1O2D1oYRCS5LnUPXHYLY7ZbDYUNtOWWjNZwtQ+22PdRuRM/r0Hm0nVvbyvaZZ8Mwoufa1XkZhmS0Bay7eL/2+3QIlHfV/gXbGoaUGGfXoJzEXvybAgAAAAA4XFK8Qw/eOkXPvPmpcjPidcmkAcrrl9Bn/ckfkNIrx4132TR1XG6vHBsAAJw+CPoCAAAAAAAAvcBkMsliioShAQAAAADA8clKi9PPb5zc190AAADoc+a+7gAAAAAAAAAAAAAAAAAAAACAzgj6AgAAAAAAAAAAAAAAAAAAADGIoC8AAAAAAAAAAAAAAAAAAAAQgwj6AgAAAAAAAAAAAAAAAAAAADGIoC8AAAAAAAAAAAAAAAAAAAAQgwj6AgAAAAAAAAAAAAAAAAAAADHI2tcdwJnhnXfe0RtvvKEtW7aooaFBgwcP1k033aTLL7+8r7sGAAAAAAAAAAAAAAAAAAAQkwj64qSYP3++8vLy9LOf/UwpKSn68MMPdc8996i2tlazZs3q6+4BAAAAAAAAAAAAAAAAAADEHIK+OCmefPJJpaamRl9PmTJFlZWVeu655wj6AgAAAAAAAAAAAAAAAAAAdMHc1x3AmaF9yLfNyJEjVVlZ2Qe9AQAAAAAAAAAAAAAAAAAAiH2nzIy+W7Zs0YoVK7R582Z9+umnKi0tlSQtXrxYeXl5J+14u3bt0lNPPaXVq1ersrJSVqtVAwYM0IwZM3TjjTcqLi6ueyfYA07kM/L7/Xruuef05ptvav/+/XK73Zo4caJuv/12FRYW9kp/N2zYoMGDB/fKsQEAAAAAAAAAAAAAAAAAAE51p0zQ909/+pMWL17cp8dbu3atbr75ZrW0tGjQoEGaNm2ampubtW7dOj3++ONauHChXnrpJSUlJfVYP49Hdz8jv9+vm2++WUVFRUpLS9PFF1+sqqoqvf/++1q6dKmefPJJTZ06tUf7unLlSi1atEiPPPJIjx4XAAAAAAAAAAAAAAAAAADgdHHKBH3Hjh2r/Px8jR49WmPGjNHVV1+t6urqk3q8X/7yl2ppadEdd9yhu+++WyaTSZLk8Xh00003acuWLXr66ad1zz33dLtfJ6K7n9FTTz2loqIijRkzRvPnz1d8fLwk6e2339Y999yje++9V4sWLYq2S5LX61VlZeVRjz106NBObSUlJbrnnns0ffp0XX311cdxhgAAAAAAAAAAAAAAAAAAAGeOUyboe+utt/bp8Wpra7V9+3bZbDbdfvvt0ZCvJCUnJ+umm27SPffco40bNx7T8bZv3661a9fq29/+9hG3e/bZZzVjxgzl5eUd9Zjd+YyCwaBeeOEFSdIDDzzQIcx7+eWX680339SyZcu0YMECXX/99dF1//73v3Xfffcd9fjFxcUdXns8Hn3ve99TTk6Ofvvb3x53fwEAAAAAAAAAAAAAAAAAAM4Up0zQt6/ZbLZj2i4lJeWo2xiGoR/96Ef6/PPPFQgENHv27C63+8Mf/qAnn3xSH374oebPn3883T1m69atk8fjUV5ensaMGdNp/WWXXaZly5Zp8eLFHYK+M2fO1MyZM4/rvZqbm3XbbbcpEAjoz3/+s1wu1wn3HwAAAAAAAAAAAAAAAAAA4HRl7usOnCri4+M1btw4BQIBPfnkkzIMI7rO4/Ho2WeflaRjCr+aTCb97ne/U1pamh5++GG9+OKLnbZpC/nm5eXpkUce6bkTOczWrVslSYWFhV2uHzVqlKTOM/Mer2AwqDlz5mjPnj16+umnlZaWdkLHAwAAAAAAAAAAAAAAAAAAON0xo+9xePjhh3XLLbdo3rx5WrhwoQoKCtTS0qJPPvlELpdLjz32mM4///xjOtawYcP0/PPPa/bs2frVr34lk8mk7373u5IOhXxzc3P1wgsvKCcnp9fOqaysTJKUlZXV5fq2do/Ho8bGRsXFxXXrfR588EEtW7ZMP//5z+XxeLRhw4boulGjRslut3fruAAAAAAAAAAAAAAAAAAAAKcrgr7HYejQoXrppZc0Z84cbdiwQXv27ImuO/fcczVs2LDjOt7w4cM1f/58XX/99XrooYckSdXV1R1Cvrm5uT15Cp00NTVJklwuV5fr3W53dPlEgr7Lly+XFAlLH27x4sXKy8vr1nEBAAAAAAAAAAAAAAAAAABOVwR9j8OqVat09913Kz09XU8//bS+9KUvqbm5WUuXLtVvfvMbLVu2TPPmzTvmWX0lqaCgoFPYNycnR88///xpFX5dsmRJX3cBAAAAAAAAAAAAAAAAAADglGLu6w6cKjwej+bMmSO/36+nnnpKU6dOVWJiojIzM3Xttddq7ty58vl8euCBBxQKhY7r2CNGjNCMGTOir6+66ir179+/p0+hS20z9jY3N3e5vm3GX0ndns0XAAAAAAAAAAAAAAAAAAAAx48ZfY/R0qVL5fF4NGXKFOXm5nZaP2PGDNlsNpWUlGj//v0aNGjQMR/7f/7nf/Tyyy8rNzdXzc3NmjdvntLT03Xdddf14Bl0LScnR5JUXl7e5fq29uTk5JgI+gYCARmGoc2bN/d1V3qFYRiSpB07dshkMvVxbwAwJoHYwXgEYgtjEogdjEcgtpyKY9Lv958yfUXfOt1rs9KpOYaB0xXjEYgtjEkgdjAegdjCmARix6k4Ho+nNkvQ9xhVVFRIkhISErpcb7Va5Xa7VVdXp7q6umM+7h//+EfNmzdPubm5euGFF9TY2KgbbrhBc+fOlaReD/uOHDlSkrRly5Yu13/22WeSpIKCgl7tx7E6VQZhd5lMJtnt9r7uBoBWjEkgdjAegdjCmARiB+MRiC2n4pg0mUynfc0NPeNM+HtyKo5h4HTFeARiC2MSiB2MRyC2MCaB2HEqjsfjqc0S9D1GGRkZkiKB2GAwKKu140e3Z8+eaMC3qxl/u/LEE0/oT3/6UzTkm5eXJ0maP3++brjhBj300EMymUz6zne+04Nn0tH48eOVnJyskpISbd68WWPGjOmwfuHChZKk6dOn91ofjse4ceP6ugsAAAAAAAAAcMahNgsAAAAAAAD0DXNfd6A3/fjHP9ZXvvIV/fWvfz3hY11wwQVyOp0qLS3Vb3/7WwWDwei6mpoa3XfffZKkSZMmKT09/ajH+9Of/qTHH39cubm5ev7556MhXykye+78+fOVkpKiuXPn6u9///sJ9/+LWK1WzZ49W5L04IMPqqGhIbru7bff1rJly5SSkqJrrrmm1/oAAAAAAAAAAAAAAAAAAACAzk6ZGX2XLl2qefPmRV+3zZ77gx/8IDrl8oUXXqg777wzus2BAwe0e/du1dbWnvDx0tPTdd999+n+++/Xc889p3fffVejRo1SS0uLNm7cKK/Xq/T0dM2dO/eo52IYhnbv3q2cnBw9//zz6t+/f6dt2sK+N9xwg3bv3n3UY3bnnNp873vf06pVq1RUVKQZM2bo7LPPVnV1tdauXSubzabHHntM8fHxx9QHAAAAAAAAAAAAAAAAAAAA9IxTJuhbU1OjjRs3dmrfunVrdHnIkCG9eryZM2cqPz9fzz//vNatW6dly5bJYrEoLy9PM2fO1C233KK0tLSjvrfJZNKjjz6q6upqZWZmfuF2BQUFeu2115SVldVr5yRJdrtdzzzzjJ599lm9+eabWrJkidxut6ZPn64777xThYWFx/T+AAAAAAAAAAAAAAAAAAAA6DkmwzCMvu4EAAAAAAAAAAAAAAAAAAAAgI7Mfd0BAAAAAAAAAAAAAAAAAAAAAJ0R9AUAAAAAAAAAAAAAAAAAAABiEEFfAAAAAAAAAAAAAAAAAAAAIAYR9AUAAAAAAAAAAAAAAAAAAABiEEFfAAAAAAAAAAAAAAAAAAAAIAYR9AUAAAAAAAAAAAAAAAAAAABiEEFfAAAAAAAAAAAAAAAAAAAAIAYR9AUAAAAAAAAAAAAAAAAAAABikLWvOwBA8vv9eu655/Tmm29q//79crvdmjhxom6//XYVFhb2dfeA00ogENDq1au1dOlSrV69Wvv371coFFJWVpbOP/983XLLLcrNze1y33379unxxx/XypUrVVdXp6ysLF166aW6/fbbFRcXd5LPBDg9GYah66+/XqtXr5YkLVy4UEOHDu20HeMR6F1er1fPPvusFi1apJKSEklSZmamJkyYoLvvvluZmZkdtmdMAr1j165deuqpp7R69WpVVlbKarVqwIABmjFjhm688cYux1d1dbWeeOIJLV26VNXV1UpPT9dFF12ku+66S2lpaX1wFsCpY8uWLVqxYoU2b96sTz/9VKWlpZKkxYsXKy8v7wv3687PQcMw9I9//EOvvPKKdu3aJbvdrtGjR+t73/uepkyZ0ivnB6Br1GaBk4faLBDbqM0CsYHaLBA7qM8CJw+12aMzGYZh9HUngDOZ3+/XzTffrKKiIqWlpenss89WVVWVPvnkE9lsNj355JOaOnVqX3cTOG2sWLFCN954oyQpOzs7+oXNpk2bVFlZqfj4eD399NMaN25ch/22bNmiWbNmqbGxUYWFhRowYIA2bdqk0tJS5efn6+9//7sSEhJO+vkAp5t//OMfeuCBB2QymWQYRpfFZMYj0Lt27NihG2+8UZWVlRo4cKBGjBihQCCgffv2aceOHfrb3/6miRMnRrdnTAK9Y+3atbr55pvV0tKiQYMGqaCgQM3NzVq3bp0aGho0dOhQvfTSS0pKSoruU1paqmuvvVZVVVUaMmSICgoKVFxcrF27dikzM1P//Oc/lZ2d3YdnBcS2O+64Q4sXL+7UfqRicnd+DhqGoXvvvVdvvfWW4uLidN5556mxsVGrVq1SOBzWQw89pJkzZ/bKOQLoiNoscHJRmwViG7VZoO9RmwViB/VZ4OSiNnsMDAB96oknnjDy8/ONa665xvB6vdH2t956y8jPzzcmT57coR3AiVmxYoVx1113GevWrevQ3tLSYvz0pz818vPzjYsvvtjw+/3RdcFg0JgxY4aRn59v/PnPf462+3w+4/vf/76Rn59v/OIXvzhp5wCcrg4cOGCMHz/euPnmm42LL77YyM/PN3bs2NFhG8Yj0Lvq6uqMqVOnGqNHjzbefPPNTuv37t1rHDx4MPqaMQn0nq997WtGfn6+8Yc//MEIh8PR9traWuMb3/iGkZ+fb/z2t7/tsM/s2bON/Px84/7774/uEw6Hjfvvv9/Iz883brrpppN6DsCp5s9//rPx+9//3nj//feN8vJy49xzzzXy8/ON/fv3d7l9d38Ovvbaa0Z+fr4xbdo0o7y8PNpeVFRkFBYWGoWFhUZJSUnPnyCATqjNAicXtVkgdlGbBfoetVkgtlCfBU4uarNHZ+7roDFwJgsGg3rhhRckSQ888IDi4+Oj6y6//HJdeOGFqq2t1YIFC/qqi8BpZ8qUKfrjH//YaVYIh8OhBx54QAkJCSotLdX69euj6xYvXqw9e/YoPz9f3/ve96Ltdrtdc+fOldVq1YIFC1RbW3vSzgM4Hd1///0Kh8N68MEHv3AbxiPQu5544glVVFTonnvu0RVXXNFp/YABA5Samhp9zZgEekdtba22b98um82m22+/XSaTKbouOTlZN910kyRp48aN0fYtW7Zo1apVSk5O1n/9139F9zGZTPqv//ovJScn6+OPP9bnn39+ck8GOIXceuut+o//+A9dcsklnW6F2pXu/hx85plnJEn33ntvh/c5++yzNXPmTAUCAT3//PM9dFYAvgi1WeDkozYLxC5qs0DfozYLxA7qs8DJR2326Aj6An1o3bp18ng8ysvL05gxYzqtv+yyyySpy6nJAfQ8p9OpQYMGSZIqKyuj7R988IEk6dJLL+3wP/GS1K9fP02YMEHBYFDLli07aX0FTjevv/66li1bpjlz5ig3N/cLt2M8Ar3H5/Pp1Vdflcvl0rXXXntM+zAmgd5hs9mOabuUlJToctt4nDZtmhwOR4ftHA6Hpk2bJklatGhRD/USQHd+DpaUlGjbtm0dxmV71IKAk4faLBBbqM0CfYfaLND3qM0CsYX6LBD7zsTaLEFfoA9t3bpVklRYWNjl+lGjRkmSiouLT1qfgDNZKBRSaWmpJCk9PT3a3jZWR48e3eV+bWOYq++A7qmurtZ///d/a8yYMZo9e/YRt2U8Ar3n008/ldfr1ahRo+RyubRy5Uo99thjuv/++/WXv/xFu3bt6rQPYxLoHfHx8Ro3bpwCgYCefPJJGYYRXefxePTss89KkmbOnBltP9bxyO+XQM/pzs/BtuXhw4fLbrd32qetFlRSUqKGhoYe7S+AjqjNArGF2izQN6jNArGB2iwQW6jPArHvTKzNWvu6A8CZrKysTJKUlZXV5fq2do/Ho8bGRsXFxZ20vgFnojfeeEM1NTVKTU3V+PHjo+1HG6tt0/m3bQfg+MydO1cNDQ361a9+JbP5yNehMR6B3rNjxw5JUlpamu6++269++67Hdb//ve/12233aY5c+ZE2xiTQO95+OGHdcstt2jevHlauHChCgoK1NLSok8++UQul0uPPfaYzj///Oj2bePsi25p1TZO28ITAE5cd34OHm2fuLg4JSQkyOv1qqysTPn5+T3ZZQDtUJsFYgu1WaBvUJsFYgO1WSD2UJ8FYtuZWJsl6Av0oaamJkmSy+Xqcr3b7Y4uU0wGeldJSYkeffRRSdJ//ud/drh652hjtW1sNjY29nIvgdPPu+++q3fffVe33nqrRowYcdTtGY9A76mrq5N06FY39957r6644gpZLBa98847euyxxzRv3jzl5OREr1JnTAK9Z+jQoXrppZc0Z84cbdiwQXv27ImuO/fcczVs2LAO27eNx/a/R7bX1s54BHpOd34OHm0fKTJevV4v4xXoZdRmgdhBbRboG9RmgdhBbRaIPdRngdh2JtZmj3xZHgAAZ4CGhgbdcccd8ng8+spXvqJvfetbfd0l4Izg8Xg0d+5cDRw4UD/4wQ/6ujvAGS8cDkuSAoGAbrvtNt1yyy3KzMxUenq6Zs2apR/+8IeSpHnz5vVlN4EzxqpVq3TllVfK6/Xq6aef1po1a/Thhx9q7ty5Wrlypb797W/r448/7utuAgAAACeE2izQN6jNArGF2iwQe6jPAog1BH2BPtR2xU5zc3OX69uuJJDEjBFAL/H5fLr99ttVXFysKVOm6De/+U2nbY42Vtuu5GGcAsfnv//7v1VdXa0HH3xQDofjmPZhPAK9p/1V5m2zQrTX9mVrWVmZ9u/f32EfxiTQszwej+bMmSO/36+nnnpKU6dOVWJiojIzM3Xttddq7ty58vl8euCBBxQKhSQdGo/tf49sr62d8Qj0nO78HDzaPhLjFThZqM0CfY/aLNB3qM0CsYXaLBBbqM8Cse9MrM0S9AX6UE5OjiSpvLy8y/Vt7cnJyTH5DwhwqgsEArrrrrtUVFSksWPHat68eR1uC9fmaGO1oqKiw3YAjs3ixYvlcDg0b948zZo1q8OjqqpKkvSTn/xEs2bN0r///W9JjEegN+Xm5kqS7Ha7MjMzO62Pi4tTamqqJEXHKGMS6B1Lly6Vx+PR2LFjo2OzvRkzZshms6mkpCT65U7bOGsbd4drG6ddHQ9A93Tn5+DR9mlsbJTX6+20H4CeR20W6FvUZoG+RW0WiC3UZoHYQn0WiH1nYm2WoC/Qh0aOHClJ2rJlS5frP/vsM0lSQUHBSesTcKYIh8O69957tWzZMo0YMUJ/+ctfOlwt217bWP3000+7XN82hkeMGNE7nQVOYz6fT0VFRZ0efr9fkrR582YVFRVF/2eb8Qj0nlGjRkmS/H5/9CrX9kKhUPSX27afmYxJoHe0FaASEhK6XG+1WqPjsK6uTtKxj0d+vwR6Tnd+DrYtb9++Pfr/vO211YLy8vIUHx/fo/0F0BG1WaDvUJsFYgO1WSB2UJsFYgv1WSD2nYm1WYK+QB8aP368kpOTVVJSos2bN3dav3DhQknS9OnTT3bXgNOaYRi677779M4772jw4MF69tlnlZSU9IXbX3zxxZKkd999V4ZhdFhXWVmpTz75RFarVRdccEGv9hs43axdu1bFxcVdPtquZl24cKGKi4t1ww03SGI8Ar0pOztbhYWFkqTVq1d3Wr927VoFAgG5XC4NGTJEEmMS6C0ZGRmSIoWoYDDYaf2ePXuiBeS2n5lt43HJkiXy+Xwdtvf5fFqyZIkk6ZJLLum1fgNnmu78HMzLy1N+fn6HcdketSDg5KE2C/QNarNAbKA2C8QWarNAbKE+C8S+M7E2S9AX6ENWq1WzZ8+WJD344INqaGiIrnv77be1bNkypaSk6JprrumrLgKnpV//+tdasGCB8vLy9PzzzystLe2I20+bNk2DBg3Stm3b9NRTT0Xb/X6/7r//fgWDQV1zzTXRW+YA6D2MR6B33XrrrZKkxx57TCUlJdH2iooKPfzww5Kkb37zm9HbqTImgd5xwQUXyOl0qrS0VL/97W87FJNramp03333SZImTZqk9PR0SVJhYaHOOecceTwePfLII9HClmEYeuSRR+TxeHT++ecziwvQg7r7c/Dmm2+WJP3mN7/pcDvHNWvW6JVXXpHNZtP1119/ck4COINRmwX6BrVZ4NTFeAR6F7VZIHZQnwVi35lYmzUZh0eaAZxUfr9fN998s4qKipSWlqazzz5b1dXVWrt2rWw2m+bNm8dVdkAPWrRoke68805J0uTJk5WTk9PldpdcckmHq+k+/fRTzZo1S01NTSosLNTAgQO1ceNGlZaWKj8/X3//+9+/8NYdAI7ftGnTVFpaqoULF2ro0KEd1jEegd71y1/+Ui+99JLcbrfGjx8vs9ms9evXy+v1auzYsZo/f75cLld0e8Yk0DteeeUV3X///QqHw8rJydGoUaPU0tKijRs3yuv1Kj09XX/96181ePDg6D6lpaW69tprVVVVpaFDh6qgoEDFxcXauXOn+vXrp5dfflnZ2dl9eFZAbFu6dKnmzZsXff3ZZ58pEAho5MiR0S9SL7zwwujvlFL3fg4ahqEf/ehHevvttxUfH69zzz1XTU1NWrlypcLhsB566CHNnDnz5Jw0cIajNgucXNRmgVMDtVmg71CbBWIH9Vng5KI2e3QEfYEY4Pf79eyzz+rNN9/U/v375Xa7NWHCBN15553RW3QA6Bmvvvqqfvaznx11ux/84Ae66667OrTt3btXjz/+uFauXKm6ujplZWXp0ksv1R133KG4uLje6jJwRjpSMVliPAK97a233tLf/vY3bdu2TcFgUIMGDdLll1+u66+/Xg6Ho9P2jEmgd2zcuFHPP/+81q1bp+rqalksFuXl5emCCy7QLbfc0uXsZ9XV1Xr88ce1dOlSHTx4UGlpabrooot09913H3W2NOBMdyy/L37jG9/Qr3/96w5t3fk5aBiGXnrpJb3yyivatWuXbDabxowZo1tvvVVTpkzpsXMCcHTUZoGTh9oscGqgNgv0LWqzQOygPgucPNRmj46gLwAAAAAAAAAAAAAAAAAAABCDzH3dAQAAAAAAAAAAAAAAAAAAAACdEfQFAAAAAAAAAAAAAAAAAAAAYhBBXwAAAAAAAAAAAAAAAAAAACAGEfQFAAAAAAAAAAAAAAAAAAAAYhBBXwAAAAAAAAAAAAAAAAAAACAGEfQFAAAAAAAAAAAAAAAAAAAAYhBBXwAAAAAAAAAAAAAAAAAAACAGEfQFAAAAAAAAAAAAAAAAAAAAYhBBXwAAAACnjJKSEhUUFKigoKCvuwIAAAAAAAAAZxTqswAAAH3D2tcdAAAAANCzZs2apaKiomPatri4uJd7AwAAAAAAAABnDuqzAAAA6GkEfQEAAIDTVHZ2trKzs/u6GwAAAAAAAABwxqE+CwAAgJ5C0BcAAAA4TV1zzTW66667+robAAAAAAAAAHDGoT4LAACAnmLu6w4AAAAAAAAAAAAAAAAAAAAA6IwZfQEAAACopKRE06dPlyQVFxdryZIleu655/T5558rGAxq+PDh+u53v6srr7zyC4+xc+dOPf3001q9erUqKyvlcrlUUFCgr3/967r66qtlsVi63C8YDOqtt97S22+/rc8++0xer1cpKSkaOHCgpk2bppkzZyohIaHLfdeuXau//OUv2rhxo5qbmzVw4EBde+21uu6662QymU78gwEAAAAAAACAXkZ9FgAAAEdC0BcAAABABy+++KJ+9atfKTk5WQMGDFB5ebk2btyojRs3atOmTbrvvvs67bNw4UL9+Mc/ViAQkNvtVn5+vurq6rRmzRqtWbNG77zzjubNmyen09lhv5qaGt1xxx1av369JCkjI0MjRoxQTU2N1q1bpzVr1qiwsFCTJ0/u9J6vvvqqfv7znysxMVF5eXkqKyvTtm3b9NBDD6m0tFQ/+clPeucDAgAAAAAAAIBeQn0WAAAAhzP3dQcAAAAAxJZHH31Ud9xxh5YvX64FCxbo448/1i9/+UuZzWa9+OKLeueddzpsv3PnTv30pz9VIBDQzJkztXz5cr366qtavHixnnvuOSUkJGj58uV67LHHOuxnGIbmzJmj9evXKzs7W/Pnz9fHH3+sf/3rX1qyZIlWr16tBx54QOnp6V3284EHHtBPfvITrVixQgsWLNDKlSv1wx/+UJL03HPPad++fb3zAQEAAAAAAABAL6E+CwAAgMMR9AUAAABOU0888YQKCgq+8HHHHXd0ud+kSZM0Z84cWa2RG4CYTCZ9+9vf1je/+U1J0rx58zps/8wzz8jn8yk/P18PPfSQ3G53dN25554bnbnh5ZdfVmVlZXTdBx98oKKiItntdj3zzDOaMmVKh+MmJCToO9/5joYOHdplP6+88krdcMMNHW459/3vf1/5+fkyDENLly49xk8KAAAAAAAAAHoW9dmlx/hJAQAA4GgI+gIAAACnqezsbI0fP/4LH8OGDetyv+uvv/6I7du2bdOBAwei7R9++KEkafbs2TKZTJ32u+qqq5SWlqZAIKAVK1ZE29977z1J0owZM76wWHwk1113XZft48aNkyRmjAAAAAAAAADQZ6jPUp8FAADoKda+7gAAAACA3nHNNdforrvuOu79hg8f3mX74MGDZbVaFQwGtXPnTmVnZ8vr9aqqqkqSlJ+f3+V+NptNQ4YM0cGDB7Vr165o+7Zt2yQdKvwer0GDBnXZnpaWJklqbGzs1nEBAAAAAAAA4ERRn6U+CwAA0FOY0RcAAABAB+np6V22WywWJScnSzpUpG1frP2i/SQpIyOj0/YNDQ2SIreA6472t6Brz2yO/JpjGEa3jgsAAAAAAAAAfYX6LAAAAA5H0BcAAABAB9XV1V22h0IheTweSVJcXFyH5yPtJyk6q0T77ePj4yVJXq/3hPoLAAAAAAAAAKcL6rMAAAA4HEFfAAAAAB1s3769y/bdu3crGAxKkoYOHSopMttD22wQbbd6O1wwGIzeEm7IkCHR9oKCAknS+vXre6bjAAAAAAAAAHCKoz4LAACAwxH0BQAAANDBCy+8cMT2/Px8ZWdnR9svvPDC6Pqubsf2xhtv6ODBg7LZbDrvvPOi7Zdeeqkk6b333osWmgEAAAAAAADgTEZ9FgAAAIcj6AsAAACgg9WrV+uJJ56Izg5hGIZefvll/etf/5Ik3X777R22v+mmm+RwOLRt2zbdf//9ampqiq5buXKlHn30UUnStddeG51dQpIuuuginXPOOfL7/brlllu0evXqDsdtaGjQSy+9pJ07d/bKeQIAAAAAAABArKE+CwAAgMNZ+7oDAAAAAHrHggULtGLFiiNu84tf/EKjRo3q0PaTn/xEv/rVr/Tiiy+qf//+Ki8vV1VVlSTpO9/5ji677LIO2w8dOlS//vWv9eMf/1gvv/yy3n77bQ0ZMkR1dXXav3+/JOm8887Tvffe2+n9f//73+v222/Xhg0bNHv2bGVkZCg7O1sHDx5UeXm5QqGQXnjhheit6AAAAAAAAADgVEB9FgAAAD2FoC8AAABwmjpw4IAOHDhwxG28Xm+ntlmzZiknJ0fz58/X1q1bFQwGddZZZ+m6667TVVdd1eVxLrvsMuXn5+uZZ57RqlWrVFxcLKfTqYkTJ+qqq67S1VdfLYvF0mm/1NRU/fWvf9Xrr7+ut956S8XFxdq6datSU1M1YcIETZ8+XYWFhd06fwAAAAAAAADoK9RnAQAA0FNMhmEYfd0JAAAAAH2rpKRE06dPlyQVFxf3cW8AAAAAAAAA4MxBfRYAAABHYu7rDgAAAAAAAAAAAAAAAAAAAADojKAvAAAAAAAAAAAAAAAAAAAAEIMI+gIAAAAAAAAAAAAAAAAAAAAxiKAvAAAAAAAAAAAAAAAAAAAAEINMhmEYfd0JAAAAAAAAAAAAAAAAAAAAAB0xoy8AAAAAAAAAAAAAAAAAAAAQgwj6AgAAAAAAAAAAAAAAAAAAADGIoC8AAAAAAAAAAAAAAAAAAAAQgwj6AgAAAAAAAAAAAAAAAAAAADGIoC8AAAAAAAAAAAAAAAAAAAAQgwj6AgAAAAAAAAAAAAAAAAAAADGIoC8AAAAAAAAAAAAAAAAAAAAQgwj6AgAAAAAAAAAAAAAAAAAAADGIoC8AAAAAAAAAAAAAAAAAAAAQg/4/579jNYhFb4AAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "accuracy = get_accuracy_score(model, test_loader)\n", + "print(f\"accuracy: {accuracy}\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "jEepZ624Ds_U", + "outputId": "91211d86-db9c-4bfa-a9c1-aab30d01ee02" + }, + "execution_count": 32, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + ":20: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.\n", + " return F.softmax(out)\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "accuracy: 0.8955000042915344\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "L7ISqkjmCPB1" + }, + "source": [ + "### Task 2: Overfit it.\n", + "Build a network that will overfit to this dataset. Demonstrate the overfitting in the appropriate way (e.g. plot loss and accurasy on train and test set w.r.t. network complexity).\n", + "\n", + "*Note:* you also might decrease the size of `train` dataset to enforce the overfitting and speed up the computations." + ] + }, + { + "cell_type": "markdown", + "source": [ + "Понятие переобучения относительно. Модель выше уже переобучается. В определённый момент accuracy на валидации вообще перестаёт расти в отличие от скора на трейне (см. красные линии). Поэтому логично предположить, что модель действительно переобучилась. Добавим в неё дропауты:" + ], + "metadata": { + "id": "8SRaNIx46M_Z" + } }, - "92685fe1840a4555a6962c006ea90c23": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } + { + "cell_type": "code", + "source": [ + "class FixedNeuralNetwork(nn.Module):\n", + " def __init__(self, input_shape=28*28, num_classes=10, input_channels=1):\n", + " super(self.__class__, self).__init__()\n", + " self.model = nn.Sequential(\n", + " nn.Flatten(), # This layer converts image into a vector to use Linear layers afterwards\n", + " nn.Linear(input_shape, 4096),\n", + " nn.ReLU(),\n", + " nn.Dropout(),\n", + " nn.Linear(4096, 4096),\n", + " nn.ReLU(),\n", + " nn.Dropout(),\n", + " nn.Linear(4096, 4096),\n", + " nn.ReLU(),\n", + " nn.Dropout(),\n", + " nn.Linear(4096, num_classes)\n", + " )\n", + "\n", + " def forward(self, inp):\n", + " out = self.model(inp)\n", + "\n", + " return F.softmax(out)" + ], + "metadata": { + "id": "cGZH0rsClfCg" + }, + "execution_count": 33, + "outputs": [] }, - "9761d073bcef4c15ad64b01d7bef3561": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JgXAKCpvCwqH", + "outputId": "ca1b8d4d-5eda-435d-e372-58ca7e7b1977" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "----------------------------------------------------------------\n", + " Layer (type) Output Shape Param #\n", + "================================================================\n", + " Flatten-1 [-1, 784] 0\n", + " Linear-2 [-1, 4096] 3,215,360\n", + " ReLU-3 [-1, 4096] 0\n", + " Dropout-4 [-1, 4096] 0\n", + " Linear-5 [-1, 4096] 16,781,312\n", + " ReLU-6 [-1, 4096] 0\n", + " Dropout-7 [-1, 4096] 0\n", + " Linear-8 [-1, 4096] 16,781,312\n", + " ReLU-9 [-1, 4096] 0\n", + " Dropout-10 [-1, 4096] 0\n", + " Linear-11 [-1, 10] 40,970\n", + "================================================================\n", + "Total params: 36,818,954\n", + "Trainable params: 36,818,954\n", + "Non-trainable params: 0\n", + "----------------------------------------------------------------\n", + "Input size (MB): 0.00\n", + "Forward/backward pass size (MB): 0.29\n", + "Params size (MB): 140.45\n", + "Estimated Total Size (MB): 140.74\n", + "----------------------------------------------------------------\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + ":21: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.\n", + " return F.softmax(out)\n" + ] + } + ], + "source": [ + "torchsummary.summary(FixedNeuralNetwork().to(device), (28*28,))" + ] }, - "9faad8d0c45746ab8e06e120bb3ec0b6": { - "model_module": "@jupyter-widgets/controls", - "model_name": "IntProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "IntProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_aa0dc032d1644bad8e741cf1696d9a70", - "max": 1, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_92685fe1840a4555a6962c006ea90c23", - "value": 1 - } + { + "cell_type": "code", + "source": [ + "fmnist_dataset_train = torchvision.datasets.FashionMNIST(root_path,\n", + " train=True,\n", + " transform=train_transform,\n", + " target_transform=None,\n", + " download=download)\n", + "fmnist_dataset_test = torchvision.datasets.FashionMNIST(root_path,\n", + " train=False,\n", + " transform=test_transform,\n", + " target_transform=None,\n", + " download=download)" + ], + "metadata": { + "id": "ng99EpQjqJzE" + }, + "execution_count": 35, + "outputs": [] }, - "a00cbbf2385c426bb848399f3c13b70f": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9faad8d0c45746ab8e06e120bb3ec0b6", - "IPY_MODEL_590134f878a74adb98fd129816fde03c" + { + "cell_type": "code", + "source": [ + "fmnist_dataset_train, fmnist_dataset_val = train_test_split(fmnist_dataset_train, test_size=0.5)" ], - "layout": "IPY_MODEL_4c7a7ac1286649c4804fefd359a1be74" - } + "metadata": { + "id": "0Bu2NdXEpeeO" + }, + "execution_count": 36, + "outputs": [] }, - "aa0dc032d1644bad8e741cf1696d9a70": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } + { + "cell_type": "code", + "source": [ + "fmnist_dataset_train = fmnist_dataset_train[:10000]" + ], + "metadata": { + "id": "-0n1aYQQvL96" + }, + "execution_count": 37, + "outputs": [] }, - "b2f66cc8930240a5b74d5480377496ed": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_56418812bda04e7293dd8839018ae839", - "placeholder": "​", - "style": "IPY_MODEL_9761d073bcef4c15ad64b01d7bef3561", - "value": "32768it [00:00, 71991.19it/s]" - } + { + "cell_type": "code", + "source": [ + "for img, label in train_loader:\n", + " print(img.shape)\n", + " show_images(img)\n", + " break" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 671 + }, + "id": "iZpui1GIvjTV", + "outputId": "da352d6b-d4dd-4983-ec5c-58e15e811e84" + }, + "execution_count": 38, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "torch.Size([128, 1, 28, 28])\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnwAAAJ8CAYAAABk7XxWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9V28kWXrliUjvHT2LXcUyXe2np8dpjBbSaoWVBCwk6HEf92V/12KfFxCkNVgII8xoNNBIM5qWunvaVXUZFqto03u/D9xzeeIyMsmqIpNZ3fwAgmRmZGTEjXu/73znM9cZj8djXMmVXMmVXMmVXMmVXMnXVtzLvoAruZIruZIruZIruZIruVi5AnxXciVXciVXciVXciVfc7kCfFdyJVdyJVdyJVdyJV9zuQJ8V3IlV3IlV3IlV3IlX3O5AnxXciVXciVXciVXciVfc7kCfFdyJVdyJVdyJVdyJV9zuQJ8V3IlV3IlV3IlV3IlX3O5AnxXciVXciVXciVXciVfcwme5aAPP/wQ4/EYoVDooq/nSq7kSq7kSq7kSq7kSs4g/X4fjuPg29/+9qnHngnwjcdj9Pt9PHny5KUv7kqu5Equ5Equ5Equ5EpeXlZWVs5Mxp0J8IVCITx58gR/8Rd/8TLXdSVXciVXciVXciVXciXnJH/1V3+FmzdvnunYqxy+K7mSK7mSK7mSK7mSr7lcAb4ruZIruZIruZIruZKvuZwppHuZEg6HEQ6HAQCO4wA4SlLs9/sYj8cYjUZnOk8oFEIoFILruggGg3AcB91uF71eD+PxGMPh8MLuYRYSDAYRCAQQCoWQSCQQCATgOA4cxzH3Nx6PzWsAMBqNzGuu68JxHASDQbiua8ZpPB6j3W6j3++j1+uh2WxiOByaz75qwvsMBAIIBo+mP+9jOByaefUywucAwMzP4XD4ys+xK3kx4bpyHAfRaBTRaBSj0QjdbheDwcDoMZ13nKP8TCgUQq/XQ6vVwmg0Mmvw6y7UQ67rmrEDjtYsf0ajkUeH9Xo9dLtdjEYj9Hq9b8Q4hcNhxGIxBAIBRCIRhEIhM084rzhW1HGhUMjoQOomnYMct06ng3a7/Urqe1to/3R9xWIxxONxOI5jxmswGKDb7XrWZjAYRDgchuu6CAQCCAQC6Pf7aDQaRr/Pu46fW8DHBby4uIi1tTWzmB3HweHhIXZ3dzEYDNDr9U4dZNd1sbCwgHw+j1gshkKhgEAggCdPnuDp06fo9/totVpz/7Amieu6SKfTSKVSWFpawvvvv490Om0m5WAwQLPZxGAwQDAYNMqg3W5jOBwiHA4jEokgGAwik8mYBZDJZDAcDnH//n3s7e3h2bNn+Ld/+zc0Gg202210u93LvvXnEtd1EYvFDCjO5XJwXReDwQDD4RCNRgMHBwcvDfqSySQWFhYAHDkng8EA7XYb1Wr1G2F8rsQrwWAQ2WwW0WgUm5ubuHXrFrrdLh4+fIhqtYput4t2u20My3g8RiQSQTweRyQSwebmJhYXF7G7u4tPP/0UzWYT9XodrVbrsm/t3IROqL3uIpEIFhYWEIvFcOvWLVy/fh3A0boioOt2u3BdF8lkEsFgEM+ePcOjR4/Qbrext7eHRqMx8/uZtSwuLuLNN99EMpnE9evXsbCwgE6ng1qthsFgYOZWq9XC3t4eBoMBlpaWsLCwgOFwaOyfApxer4fBYIBHjx7hs88+w2AwuOzbfGmhMx4MBpFKpRAOh3Hnzh289957CAQCaDab6PV6KBaL2N7eNvNrMBggm83i2rVriEajSKVSSCQS2N/fx4cffohqtYparYZ6vX7ZtzhV5hLwEey5rot4PI58Po9AIODx4IrFIgCYyTxNAoEA4vE4stkskskkVldXEQwGUa/XcXh4COAIDPgBPjJk8yRUjhR6v8lkEoVCAbdu3UI+nzcTu9/vo1qtot/vIxQKIRKJYDAYoNFooN/vIxqNIpFIIBwOY2FhAYlEAul0GgsLC+j3+4hEIkgmkwCA+/fvYzAYeFhWyryNky1kWsLhsJkPgUDAKLbRaGQAMnDyfuxxn3RMOBxGMpmE4zjodDoGUPp9/kq+3kImIRaLIRaLYXFxETdv3kSr1UK9XofjOGi1WnBd18PIxGIxpNNpxONxXLt2DdeuXUMgEMDW1haGwyHa7fZc6qYXEV0X9j0Fg0Ekk0mjt2/fvg0A6Ha7GA6H6HQ6aLVaxlkNh8NwHAeVSgXBYNDYia+7xONxrKysIJvN4u7du1hbW0Oz2USxWDT6Zzweo1arwXVd9Ho9bGxsYH19HYPBAPV63ehzRoSouyqVClz31c/+0sgObUA0GsXKygru3r2LYDCIWq2GTqeDeDyOdruNTqeDTqeDXq+HQqGAjY0Ng0lSqRRisRgePnyIwWCATqcz0XGZF5krwMewazKZxObmJpLJJFKpFDKZjKFRHcdBKpXC6uqqmZT09mzgx3BAIBBAJpNBMplEKBRCKpWC4zi4du0aIpEIms0mnjx5gmazaehr4FgRzYNijUajSKfTCIfDWF5eRiaT8bxWKBSQyWSQSqWwvr6OaDSKYDBoKPv19XUAx+HwSqWCL7/8Evv7+3j33XfxwQcfmFAAvSCCoEKhANd1kcvlsLq6ik6n42H5yFJsb2/j2bNnZvJfNpvFUFAymUQ2m0UwGEQ8HjegN5FIwHVdRCIRjEYjhMNhc98M9wcCAYTDYQQCAeTzeeRyOY+CrFarKJfLHhYnn89jeXkZ4/EY5XIZ7XYbmUwG6XQag8EArVYLvV7PMMuXPU5X8vLCuROJRJDJZBAKhQxzHgqFkMlkEIlEcPPmTVy7dg2j0Qi5XM4Yk16vB+A45YAGKRgMIp1OIxaLAQCKxSLq9TqazSba7bZZa2SoW63W3Ky/swrTSvx0bDabxXe+8x0sLCxgY2MDa2tr6Ha7ODw8RKfTMQY8Go1icXERyWQS4XAYqVQKpVIJtVoNlUpl9jc1Y8lkMrhz5w4KhQKuX7+OxcVFdDodE6Wh899oNLC6uoper4fFxUUsLCwY538wGBiyhezpYDBAtVrFb37zm8u+xeeWSCRiUsLoDBBTMPQdDAZRKBQMfmD6RCwWM+uUIJi2gGPE6NjGxoZh/7gWuTbb7bZJiarX62adX5bMFeCjEV5bW8Mf/uEfYnV1Fa1WC81mE47jmBy8aDSKeDzuyS8j66R5asFgELFYDI7joN/vm7wX5s2kUilsbm6iXC4DAEqlEkqlEjqdjjkPMB9oPZlMYn19Hel0Gt/97nexubmJfD6PGzduIBaLGfay0+mgWCyi3+8bsEtlGIlEUCwWcXh4iMePH+Phw4f43e9+h9u3b+P9999HPB43Hk6/3zd5MCsrK1hZWTHf47quMTiVSgUPHjxAtVrFz3/+czPBGW6/LHFd1yi5lZUV3Lp1yyz+QCDgmQc0suPxGGtraxiNRqhWq2g2m8Z4RCIRvPnmm3j99dfRbrfx5MkTNBoNPHjwAPfv30c0GsXt27eRzWaRzWZRKBQwGAywvb2NarVqxqPf72N/fx+1Wg2NRuOVMsxX4i/Ms0skEshms9jc3EQikTAgn4YiGAxic3MTt2/fNvOKuZ7UWXTU6HQNh0Ps7u6iWq0imUxiOByaPFo6vMViEZ1OBzs7O9jd3TUhqMs2Ls8jk3TswsIC/vAP/xDXr18367dWq6HZbKLf75txisfjWFtbMyzMu+++i52dHXz66ad48ODBjO9m9lIoFPCtb30LS0tLhhDo9/sm9y6TySCRSKDdbpu0lUQigXg87plTdFSYxzYcDrG9vW2Ig1dFuJaY6nTr1i2kUikUCgUsLi4aTDAajZBIJAy7TkJgcXERm5ubiEQiBgQWi0V89dVXaLVaKBaLqFariMViuH37thm7UCjkcUgODw9xeHhoQsWXvSbn6ilq/gA9Nw3l8ofMHQBPGC4QCHiAGqlbGnMqFb7P72Bxgh9LeJniui4SiQRCoRAWFhawsrKCdDqNQqGAbDaLdDqNRCKBaDRqmITBYGDC4TpmFB0/GqVYLGYoezsZWgERlWsgEDAhysFgYBhY5lvSWyTw6/f7Mx87LvhwOGx+k/GbBuR1vDiXqASTySRyuRwikQhKpZLx8OyxHg6HJuSkCeWcs3RWqCT8kvavZH5FC5wI0FKpFOLxuDEwDOFyfnB9McmbAJF5tlqYEAgEzHeNx2N0u10TfbDX43g8RjweRyAQQDqdRrfbNcnmNDD8f15zlNVBj0ajnsjMwsKCCb3pOqOuVn3Fc9FmxONxo5Ooh7g2NXz5dRBNG2CBEPUOcDxnXdc1NlEL+/gZjrut/18V0YhMOp02kb14PI5YLGbspBZ8co1x3ZHs6Pf7niLPXq9nIoCMABF3qJ0Yj8emuCiRSJhzp1Ips4nFZeW/zxXgo2eaTCZxcHCAYDBokDcAQzkz5KZhXjuXjANLFofsCnAM+DQnsFQqYX9/3yjHeZBEIoEf/vCHuH79OlZXV3Hnzh2T20NDwxBhp9MxNDOZORoaVtgyX63X6yGZTOLf//t/jw8++AC3b99GsVhEIBAw4UZVhhw3VglS4dKIMJz8H/7Df8AHH3yA3d1d/P3f/z12d3dNscesxzQSieC1115DNps1BpFJy34VacBRpRq92kqlgnq9jlQqhVwuh1AohEKhgBs3bqBaraJYLGI4HJpnAMAwLfa5qTQ5Xzc2NhAKhbCzs3MiPH4l8y2O4yAejyMcDmNlZQVvv/22x5jQoGpOHosyhsMhisUiPv/8c6RSKbz11lvI5/PIZDImT5kOW71eR7FYRKvVwqeffopnz56Z9ceiDn5PoVAAcNRxn8wM83PJQPd6PfPaPIk6ZktLS7h79y6SySSWlpaQy+WQy+WQSqXQ6/WM3m61WiaSQH0WDAY90SA+pz//8z/HH/zBH+Dw8BBPnjxBvV7HZ599hqdPnxoWdF70/ctIJBJBNptFJpPBeDw2RXoK/jkn+Rp1FQAD6uhUMKQ7HA5Rr9fnigiZJmTzWDi3sLDgAYGu66JWqxnbNRqN0Gw2AcDDahYKBTx9+tQQHK7rolqtYnt724wf9XooFDIYhPOJBAMjlp1OB4VCAY1GA9vb23jw4MGlOGBzBfgGg4FhhprNplm8todBw8yqS5tuVoaKyapE4+oBajuOdruNRqMxV4s/FArh+vXrePfdd7G2toY33ngD4XDYE57m35yowLHHzEnNha9MXzgcxu3btzEYDBCPx03FH3MQdNzVG2J+o7IcbAeQy+XgOA62trbw8OFDjEYjNBqNS8mBZE7d0tKShxVgDiNwsjKQLABBdKvVMi2BWPiTy+UAwND8VKL8DBUqE3iTySQikYgn/4Ohvl6vh3g8/sqF377JQk+e1f537twxebQMwZLdJTBhlTx1UL/fNyAPOFpL9P659mq1GnZ3d1Gv1/Hw4UNsbW15mC9l3Ln+CDw1t7nT6eDZs2dwXXcuq3o5ngQsN2/eRDabxY0bN7CysmKcJG0vwjXMtcofgj9+JhwO46233kIwGMT29jYSiQRKpRJ2dnawv79vzjVPOv9Fhak7kUjEsLrU/QryAK++ox2ls2J/5lXTTZFIBEtLS8hms1heXsbS0pIHvNrtVqi7aUeZKkDiQ7csazQa2NvbM4WOZPTI1DOaA8CwgpFIBJFIxDjzxDWTikQvWuYK8KnYYTIFHQCMAuCknETx272ter2e8VjS6TTS6fSJz1I0PDxLYY7iwsIClpeXsby8jEQi4SlQ0WqqSaEJvzHQcSW9TZZKafxJY0jh5Ob1aGW167p47bXXEIvF0Gw28fjxYw8gvUhhiIxtLeLxuDF82ncQ8IZvtY8XE+VDoRCi0agBcv/6r/+KWq2GdruNra0tNBoN1Ot1pNNpk2jP7+a5CAqBY+PS6XTM64uLi8ZIz6NBvhKvBINBXLt2Daurq8jn8+Z5UqFrjzw77EMmADjSX0+fPjWswYMHDzypGM1mE5VKBd1u1zhN6qBww3Syy2Tyla0YjUbIZrN48803UavVTLj3soRrhM7YysqKSZWgoV5bWzMMKh10gmDNSV5aWkIqlTJGnK0y+Dk6XMPh0BjjTCaDYDCId955B4VCweiFfr+PnZ0dHBwcGHDwKoBAe0zIlBK8cGw0wqA2Q0O59usEgVr4N8+iYfylpSXTgs2vzyX1MZ0mrs3RaGRsYSQSMeNIGY/HSCaTGI1Ghvmj86XH6DodDodmPrH4am9vD/F43GPPZyVz+SQ1/8AeTBuYUfHpAuXEVQUKHE2KTqeDR48eodPpmErgSfl70wDPRQpbECwvL5u+Xcz90RwewL9VCIAToE1FW95oiNwGefyxgRFw3JRTc4M0bPnee++h0+mgUqngo48+8oQKLlKYB8T8xFwuh3K5jEqlYoCp/aOMLz26WCxmGEGGcL/66isTOidgS6VSJgmYY0evT1/Tog32BXNdF9evXzc5WgcHBxc6Nlfy8kLW6P333zchVhbfMOyoa4Rrg4aTeUHD4dD0NtM8VxoQdZ5oeNWQEGTqOelUkXVnwdLNmzdNakWpVLqcgQNMxXw0GsUbb7yBn/zkJ0gmk0gkEiZEzcp5Ai/VO8zl4xpXXcJQeiAQMEUdzO+mgWflPFuRUO+1Wi387Gc/w29/+1tDIMxrvqMKw+EsdiTDSzaZ+gs4rljlfWvKj4I9tZkEetFo9FKIj+cR9pclO7y0tGSq2RU36H1RaLOA480ImIah9jMcDiOfz3sijpNyY/ldZKGDwSAWFxcRCoVweHiIdDptWsORQZ2WW35eMpeAD5je80yBiB8rpyFdHmMXL8yzsIw8nU4bZW/vbuFXjKFig2C/Y21QbZ9jEtizj7F/AJjkcyohADPZHYCLlwaWnpiK331oXud4PDbem84hsi28LyoOGmlNctYO9n6Og36HnxL6OojOL4Y8+TrgnQ86rynKXvu1XOIPWQ7ulMIwjSril00r4Lxi1R7ntHbZ17YWvCe/NcS/NQzJfCo1tpy7Nsui80nTVrTTv6Zl8Hpp9Ge9IwDHLhQKIZ1Om+IndhZgcYu9Q43qE1vXK5BTgoCic4vAT9crAMMMhsNhky/YarUMMztvRXy26DyhA2pHxnivHC8tIFLAx/u0nWG+Nm+i61nTLLSAkXnb9jyi2LZUo4m6hvVznMt8Xe3DJOH3aw/Ay4rqzK2V8RtABW+TRN9TD1u95Rs3bhiKXyuVpp1rlnLt2jX85Cc/QS6XQyaTMQ0w/cQPAHKyUsFx4dsTkwud3jGP5Xs2na2/7fAoz2VXNq2treFb3/oWqtUqvvjiC9MC56KE3n8sFjMMX7fbNd6tgma7GbI956hIGPZnHz0N1bK60v4clQI9PADGqPH6aOB6vZ6p6nqVxfZQmZcVi8Xwxhtv4MaNGx4jxO70CtRovNjwlVVxZLc5z9lbkbtXLCws4PDwEPfv30ej0cDW1hb29vbMdb2s95xOp7GysmKqcVlpx753AAxYUaDnB/64Fjmv/JqYa0EaGS+dqzTsaqwV1HDeRSIRAybX19dNM+Ld3d2ZgZl0Oo3FxUWk02l873vfw7Vr15BKpUxCvToANIB21brjOKbwxXbqaUzZUkOL9TjefiBXQ8zf//73cfv2bTx79gy/+tWvTA+/ed45gf1lmZqk7Xy02lnBslaSKqhm5aqCIwLeeWM7FYjy2a+trWF9fR2rq6seRtI+VkHdJGeSx3NMuAap0+00Kj+cYLOAwPH2mplMBq+//jpqtRo+++wzkxc/i0ji3AI+ig3wngeEjcdjo4z5sNjixFao0+Rl2YHnEcdxkMvlcPfuXRPz107pZ/m8/aMLX/MVgePx1VJ+vk7vz1YC9nsUTmjdviaXy+H69eum999FC8OtzOFj2xrb29OFrkyBjiNwHIpTtkrHifesSoNGhmNFUE2DTKVLr7Tb7XqSg78uQrCcSqXw5ptv4tvf/raZi+PxGHt7ezg4OPA0D2YuUrfbxc7ODhqNBqrVqsmxIVPBJuCpVAoffPABbty4YeZXqVRCuVz2AL6XlVgsZvLGuFMNq9/7/b4BDjQItnNq5xBxngLHRWicKxpuA3DCUVF9pPOZjDEdDf5mWI/hqMFggP39/ZkBvlgsZiom33vvPbz++uueClmCfY6DnziO49lGU9cWw9jMkVRwp+NjF7VpO5ybN2/izp07uH//Ph48eGBCyvMM+BzHMV0b6EByfdFxYsst3bcZOLaNfE11ov0zK9v3okJ9sLGxYToq+JE4tu6m2OQFj6VjqnrfL5qlzhc/q78pHF/uisJdOmYpcw/4bJnE8KkHTQOdSCSMkqPHpsKHehrgm7UwB4fJ/9MWnA1WJjFzFA1T2JNYz6fit0hsD3sSIxuNRpHL5UzrhIsWBfIaZovFYiZJWwH0NDBvG1g7Z4jHEAzqONBI0/jY4Ntu3THvSvVFhEaTVcvtdtsAceZzKdAbjUZmGy3mbzUaDdPIWsefTY6ZuxSJROA4jsmpO+/2I+Fw2IQg2T6FAJQOkB8Q49/AybCk7URR7HASRde4zl07LA4chy15fuBozMbjMQ4ODmYavSgUCnj77bdN2JTVzH4FX3ZPVHu8FLwp4FOgx+cB+DtxmsaiYXj2U3zzzTexvLyMjz76CIeHh3O7NslQsmKU80FzsgloGcVRfWNHN+xx53fMm9h6m3aG/S91ftj3qLbMdspOY/14DH/TMfM7n+oDvV46ZtpWaZYyt4DPZpvshe8HQLjwGcff3NzEj3/8Y4TDYfzqV7/CJ5984vEstbnzPE1s5vAlEgkAXgXP/wEvuNGJSq+NHhzbNKiSJDCmx29v7aThSu1FRENiPxu9LpVMJoPXXnvNhFovWqjYWG3F7Zey2Sz6/T7K5bIH9Ppds96TMsDK5CmAs+fPaDQyRSoML2mDXYZ0NZw3b2GT8xC2IwFgtqBjdWY0GjUGSRVsPp/HwsKC2fqJSdf8UZZnPD7qR5fL5cxaKZVKODw8NGESHveyLH0ikcD6+jqSySSCwaBZT5xr/B7+VuNpRxH8nCXb4bKdqEkOl46dMhWaL8nCNvb8Ozw8nJm+cxwHt27dwn/6T/8JqVTKFF0wHE7Gg+kOHEvNo/NjodSh4n1Th7HaUnWmsjtci2yhAxynv6ysrODP/uzPTAXlZ599Nrdr03Vdj+PDudPpdFCv140TxC0lo9Goh01XsKLhW5sJnSfbSLHXBlMuGIbl3KFTrXaPn7HXJfWx6vhJ36s2RAuq+Dk7r5ufpc5LpVIYDAYzj+zMPeCzFeI0UQRPpceSf22VwWMBb/L3yxqF8xKCLRZrnMZAAd7Qov4my0VDqSEjgl7NIeL42LuW8G+7l6HftQDwPAPtlH/Rot6Vhoi4sLQYwxa9B/tvm52Z9N3KQNjeMr9bQ2+2gp2H+XdeQqeDWzw1Gg3TIHc0Om5bog4NHRSd93yeyqhpCNCv8tAPIL2MqFeuIIvzjcbkvI3jNKZFdaMeZxtqvqdFILM04txfOJlMmtemhcf4209f2MZT//Zjp9SO+IXabOCgDtm859XyerX1kw2MFZiorVMm6qLm7qyE40CnAfDa97NgCD99b3+Hvj/pXH7jaK9Fte+zHvO5BHxkaaLRqAEq9gDbilANPfMVyuUynj59ikgkgmq1aoANjUwsFjP5VFzkmvNyWUKlw1wmDQmqjMdHewmPRiOUy2VPuw+CLRYraONJ3WeXv5mX1Gg00Ov1TCWR67qmEIOeI3DU4oAd/icZG8dxTFNKbWJ8UaIL33WPdivgXOKekQwfEnT45fro/7YXqGM/idm0iwyAo1Y7+XwekUjEtMzg7ge8lmg0akJdryLws6+Zzah7vR4++ugjbG9vG+NPlse+V2U/WRChRlvz2ThmH3zwAa5fv45ms4l33nnHzGHm8J3XWPI61JBqmFDnyzSgNunc53F9fikeyugD3nDvLITN9JlbS/1GloNsn26txsbJ6shqLlUkEjEOk25v5ceM6vzRMQFgdIXmOLfbbdNmZ56F40CGlHNSm3H7AT+N1kQiEZN6ofZBndF5BoK8D84nAIYR1t6X3H1KnUYV2+HQtTSN2OA4KQmitlpxCZ8FC4yYu+2XD39RMreAT6v17IR4wN/z5cARtDUaDRweHiIcDputZnRCA8dJ+WQB+fnLFGUTNIxoAw8qy36/j1KphIODAzPJA4GAyYdSJoRtIEKhkAmDKVvX6/XMWClb4jhH3f93dnYwHo+RSCQM4AMmgz4C13K5PLMcPi4iVvxxyyHgiAkl7c9wI6+fC9JefOoB28DbL+GXQG48HhuvMxAImJAWi0hoXLhdFpumanL1qyxk8brdLu7fv29efx4DYo+5Gi4AxqFot9tmpwaG4s6TMaXidl13IutuX6sCP7+8KJt5et5rtRky+/t1zDT1YNaAj81ne72eZ9eZeDxu1kqj0fAU5hDEACfzlBW8qkPAe/UDfPxbx0vTVjQER0Z6UgHJvIjjOMYx5zakHD+GcwGvbgO8gJ/3zHnN8L86VfMqfLau6xrgazsIWn08Kd9cHQFd59MYZhXah0n1AOoo8vzhcNi3v+ZFy1wCPg3ZnDYIquj0tfH4KI7PCj/mVFFUOWr15GWCPV6LnS+n1wucDENwYpORoxLjZFIASRBpU/s8TzKZPBH6IQs4GAyQTqcxHo+NctZr0/PYf9u5khc1uTXnkICYlcOO4xhWl5WVuon6i16TGly9Dh1bsheRSAQAPKFLZWCUNfo6ib0+zyr2+rYNkOMcbVW3urqKdDpt8v8SiYQpDniZHCydx34pIfZ9TWLi/f6edMyLXKN9vTbos9+njrlIg049xAgKQQjnONNsuB2Y3aKFeVg2oAWO54GmqOj92Uacf6vhV11pXxcAY5B5PfMmk/QuWSfgWA8pI61hTwV26rzOEoS8qDA3kWlbdnjaXrf8Xxk+HQOdO35joGveZvT1O/Wctj3Xa9JNAlhQeNHjPZeA70WT2TWPYTQ62sf18ePHCAQCqFarHuPK4wn0YrGYGfjzZAbOKo7jGKCibTu0iEIbhmpjVbJHVE4cB4IsAjltvjkcDk01o4ZQVldXTVI6E+bpbScSCVPpx15kNsC0W5hwfHUbNw2lnrdoOIO7EWQyGcMYcweMQCCAZrPp2f4KgAfE2iDOfl40EhpyVwAOHLOnrFYOh8NoNBombKRFHcwZ0oKDV110rdnG6KwyDYyHQiHcunUL3//+9xGPx5HP59Fut7GysmKqfRkyfxHRwiXdLcMOAdkhM97nWfSI3t9pwHjafFRmYho7wbXOUN5FgD7XdU1DZe4bzDBWt9uF67pIp9MG2Cn7BsCzH7UNaBna5xjrmmVOshZl2T+MGjGywwIO9i3MZDIYDoem3QkbY88j26U2gD9kKPm667omqqM5f9R7ZPZ0mz4FOfMK+uLxONbX100fQhvcaQ9CPmPaVwC+25r5OUp22y3A26qFfyuQpo5gxw09H8kUNvxeWVlBrVbzFKRdlMwl4AO8yNtPbMXol6jNRp7MQ5tG9dux98sQgia76tMvv8D+4QSi+AEQrRQlWFOhd8vQNreW4WfG47Epe2dI0v4ereL187T4/kVNbGUvtCqZ363NSdX7spkRBXu2wdH7myRUmurNkWHl/dvsxSRD/aqLPbbnIQQtiUQC6XQamUzGOG2O45gdFKaB9rNctxpNv3uYdm77+LMazrM6nNMAoc102e/pPV2EqLPHH+ZtMuyozcs130yBHK9Vr92PmfJ7NtOYewW/BAM06up4M5JxmXZhmkxi+Ozoix+TRfF77zJIj+eVQCCAWCxmdj2y5/4khs+OvthY4DTxs79+c8+ev+rU8VrIfrfb7ZnMsbkGfLbXa09AHUSl9dXr5kDaeXuO45h2Jc1mE7VaDdVq1ZdWnUlsPRg0uxJEIhHDStAL0UlL5an95liMomOjSl0rcXVcWaxBr5sMnFb1VqtVTwiE5+PWRAyT6nipQmb+TjqdNnscViqVCxlXAoHxeOzZF1M9YA3h0Pjwf9vw8H6A0706BW/MgWS1H7eUCgaDKJVK5tp4DgWj82pcXkR0fZ5F1NhMmx/f+ta38Gd/9mcoFAq4ffs2xuMxWq0Wms0m2u024vE47t69i1KphK+++uqFtjAiMx6LxZBMJj0OlzLvwHHzZPteNGyq9zWJ1bOd0GkhYM5TOjbM0yUTye/W6mWyzWS9K5XKhThfbLqeSqXMhvOaxsAoBtlxrj3uksCG1va64viQneJ7dhsWv3FW/U8HjGtO9R2PSyQSpjXQLNiX5xV19DU/Whk/7ffJ9BYew3C667qGwVTdSLsyr31CQ6EQUqkUUqmUAeY6T/icObfUwdE1DPhXf9sOkg2M7fP46W3aTMB/q8hEImH61F4BPjG09oOYhqj1AWl4jJ9Rqpehg3q9brZ50nPOyvgGAgFDTYfDYcOuEfApC0SQoYDP9hD0WKWYCQyZGM08J044u4/RcDg0oU8CF55zPB4bDyUajRrlQOWu19/v95FMJlEoFDAejw2IPG9R0Grn8NmLXnN57DCcevy2wVGvTb1qLTDiXIzFYkYpKWigwdLnNCnp91WX5w0LcYynGdg333wT//W//lfk83k8ffoU5XIZ7XYbtVoNnU4H8Xgct27dQjQaxZMnT14Y8JFBjMfjJxgEgnQApqG3OgE8XufItHv2GwPbQFBswMffzM/ltWnzcc61SCSCVCoF13VNZf95Cx3YfD6PRCLhuT5l0tQ51zxkXaNaxOS6x31D1cHVNcr//X7z2siu8G+ueQU38XgchUIBweDRdnTzJsqiqqNoRxU4j7TjBdkxLYxRJ0aJhHkDupRgMIhkMnkC8AHedC3qf5vRVlzBH7thszp1NgngxyhSdD5SH2hEh2Maj8eRyWRQq9VmovvnFvCd5uGe9RyqOJi3wSpJO3nVj4WYlWdDz1ur0/TaFNBqEYWGQNhElKI5c7oZOH/IMpEZ4fcpCNR8OzKiGu7QPEEqY1vJctInEglkMhk0Go1zB9K8Bnp1HBvd+5Yl+hQqeHUAKDr//Oj/SeEAnW8axiajoSEF/T4ecxm9meZR/NZdKBQyxRlra2sYj8fodDrY29vD9va2yV1i4VUmk0G1Wj0RUjmrKEvg53RqribzL+ncqCNhpz7o+U+7f163bUx0zvFYAibONc355ed4LVwPF2Vk+B1a+KDXwGPs3F8Fp9RDqps1T1LPaze/1vGh6HPwM/62U6js2byuSdvpBLwOFq+dbWbomDqOg+XlZcRiMXMunbOa2zevgM9en35iP2c/xlff0986pvZ689P9+luvcdrc0cjOLGQuAR8BgrIuLyo8B8Md0WgUy8vLiEQiaDabaLVahsKeljN40RIMBlEoFLC8vIxMJuPxCgi6qLi5gbsCvE6ng3K57JnQ2tqm0WhgMBgYRg6AAXm1Wg2lUgnj8diU+KvHR8PQ7XbRbDbhuq65TnqJVM6At8qaCikWi2FjY8NUxj5+/PjcFAlDQdrkmQwaE7+5B6om6rJgg0pukvfnl9hrs32aUgDAMC1MDI/H48jlcuZZK5PgOMdbA9nn+abJtPWeyWTwl3/5l/j2t7+NxcVF1Ot1HBwc4Kc//Sk+/PBDE8IKhULY3NzE66+/buY0w1rPyzRGIhFPxS8dGq4LFkOx/VGz2cTOzg56vZ7Z8k3XsA3WeM96/zbAs5kINfK6zhKJBFZXV43udBzH9CQEjvNGXddFPB43oa6LEI4J01SUBdeEdj6fZDJpdmYZj4+KwuLx+IkdNfgMY7GYyScmUFFWWHsO0hFVoElWjELgzpQa/p1IJNDpdOZ2TdqAgWPMXqrcxrBareLw8BC1Wg3b29sYDAb4wQ9+YFprcYwJctk7cVKa0zwIq3SZw0fROaGAkHPQ7r1qM3f8m/NFn70fq2ezgTYg1FQzG1TyGZGJvWi5VMA3zes+DRk/z3co60IlTlBgo//LkkkMH3AyH4XMgrZXUWZBJxVfZxNb0vk0FuPxUdib4I+LXqu5NDykFXW6mPw8KcAb/mJ4TL3K8xA7tEElr8aQBRO6uP2MMM/H35wztqen92b/rc9MWQy7r5g+qyuGb7pw3V6/fh3vvPMOgCPAXqvVsLu7i8ePH5sijlgshhs3bpi8SY4rWYvn+U7OfT+2l+uQwGU8Pu7hye+xw7uTmABguv6xwaEaFHXwaOD5urKb+tnTmJGXFZsh47WrgeX1c+2qDgNgxlXBOo2wsvK6fhXU6W++ZzN8fJ/EgKZVcIzmeU36sZU6JnzGjORwvfT7fdNE3/4Mz0dwPq/9CHXu2PN4UlQG8OYTT1pzfiyfnw3Q46cBw0nyjWP4/EAfJx2pZTv8BZzMr/MbWPt91z2q3GSej+5xetlChm9tbQ2ZTMYsOm1nwgTbdrttqt1oWFKpFJaXl40RonffarU81arMawO8TYPZpVxDo2RLlpaWkE6n0e12TUPhZDJpxtQGU2QRNFHbcRzDgthl6i8rBMuszAS8IDkSiSCbzZr+exw7W+w5xL/9vDZ+h56HC1fZQt0JIJVKGfCp749GI4TDYaRSKcM4fpPFBjfpdBr5fB7r6+tYXV3F4uIidnZ2cO/ePcNAsLG25nw5joNsNotvf/vbeO211/Do0SNsbW2d2bFzXdfskJLL5TxziPOYhTi8bm3vozk7XCs6X17E2ZxkbKgr0um0BwjRaAMweqHZbCKXy3laVJy3kEXTPDnHccwuNIlEwqyXZDKJ8fgor1eb45OVsyv7JxlyrhtlWgjy/Nhdtsxg0QJFW9VQp8zjmpwGXrUQbDQaYW9vD5999hn29/fx8ccfo9/v46233vLMTXXuXdc1LY3mdecfMuyaw2c/ZwV5fruGTCKd/DCHn9hOoDp4OqaKV3Re0kHj74uWSwN8forLpkY1WdJP/MIjk4QDPxwOTV4PmxHPQ2VkKBTCwsIC1tfXkc1mPYm3CsDG4zHq9To6nY7JRwRgij24CBzHwfb2tglpKtsHeHMDCUb4Oq+HLVrW1tawvLxsKH7mgADHjY4JtKhcOdbsNUdQycl93oCP5fk0YAr42O8oEAiYqkRVDH7GwzYk9lxTZaB5UXxWvAYaL9d1jTHWLvjMI+SWa+12ey4ckMsSG1ADR6HcmzdvYn19Hevr61hZWcGTJ0/w8ccfo1KpGMCnu8TQ487n8/je976HZrOJ4XCIJ0+enNl4sZCqUCgY0McelYPBwAP46ChxvdnGZ9Ico9gsgv26jo/+th0b3VGG4Jfrj7nLLFLTHMTzFjo2BExaRFer1cxYhsNhU8zEylymWmgIetK4qZ3Q71ZDrz8KChkS1PQZxznKdyO4ZIh3HgEf4A9+NZTJFly7u7v45JNP8OzZM/z6179Gv9/HH/3RH5n5pWDPBnzzusVcKBQyLZl0Rw0/sKZz4Kz61Q79Av7Eks0c63F2Hi/Pp1W6jOzNAoNcOsNni+2x+DEuL3Ne4HivPU4S4GyVdBcpg8EApVIJOzs7Zrs0eqAM1XCXi8PDQ1SrVcPqcYHa/cIICF3XRSqVQr/fN4taF4YmQPM1KmMqOxskAcfAhwwWiz8YLuD2dswj0krK8xxngi2GdP28Lt2zkB4r79t2NGxwN82p8DPoGuLW4hc+H2UBqYT4vL7JYG+SxONxLC0tYWFhwfSIZH6mGmfXdY0TF4/HzdaB4XDYtB16HmFz8kqlYioC1bBwTrmua1g/sufqrJ6WO3hWNmGS/uM1sFpfHUU6XQRbAFAqlVAul1Gr1S4sXKfGTkOOXCPj8XFVLIGnOt4Eq3o+XZ/6w/XDz9tA2k9v8fko66NMoqa/zPOa9EunsW3neHxU3FSr1TwtZk7LTZ53oc6kDteIFd9Xh8CO0viFaCfpe/s1ez7rd9kA0S/czPftbg8XLZcG+Dj4uhDVGKrXrGJ/xo++tb+H5+b73W7XAwQU4Dxvns95SbVaxd/93d8hHo8b5iASieDatWvIZDLY2NjAO++8g+FwiF/+8pf48ssv8cYbb+BP//RPTZEHFRPDE9FoFCsrKxiPx1hfX/dMeODkpFXlSKPB9yqViqmCpLFjXhRDx9vb23j27Bmq1Sru3buHWq2Gw8NDHBwceCq+eK7zEi3P5zOkN0/QSwaTYHQwGJikcAV5ZDy0RYMfUNBFy89y3pLxHI/HBuy2220T3mL4WXf50JD0vLIJsxAb/DiOg42NDfzBH/wBFhYWkMlk0Ol0TD5SvV43BiwcDiObzSIej5uijf39fezv77+Qg9HtdvH555/j4cOHyGQyWFpaQiQSMQVLq6urWF9fRzgcNt/D9cHnz7Woc8Vm884K+AB4gIrmJAcCAdRqNTx8+BDxeByrq6uIRCJoNBp48uQJ2u02Dg4O0G63USqVsLe3h36/j2q1+tzjchYhw8eUFDpifA0AGo2GiUqk02nU63UPu9RoNDypLDwvQSzXKPOOuf41pUQLPtQW0OllY346C/1+34Ci8XhstoSbxzWpNkxDiXxdnY6DgwPcv3/f7OigIJbH22yqAvZ5FC3aAHBCX5NhZkSKetomNwD/Ag2dcxQbT6ijQfDJ4ziekUjEFHRxvmr3CKZFzULmiuHTieaHehWgTAp9TGJjeD4OOHA8QYBjT4nH6Odmwfr1ej1sb28DgAEMsVgMrVbL9IK6fv06BoMBnjx5gi+++ALpdNrTy43AhfeloNkOW0/y4jSMQiXNPnzMq+G56VWR1ahUKtjf30exWMS9e/eMYdnZ2bnQMeTCoWJWho8gjIZAGTc/z1DDO3p+9RwBr8Nie3NK4xPkEljaieCcj/zueWYTLktSqRQ2NjbM1nSa56W9H5kukEwmkU6nkc1mjUF/HlBFGQ6HKJVKAIB6vY5Wq2W27XOco/xASrvdRrlcNqyUtkQ5jTGZFM61j7H1oRqwQOCoeTBTFpaWlgAcF7Y0Gg08e/YMtVoNlUoFxWJxYqrMeYkfw6fRBKY6kJXVrSQ1/YQpELYO5zzQVlB+DJ/97JX10WtgzrjmPXJs55XxslksvmaPQavVQqVSMQ39bT1jEwGvAtPHuc9OFFqww3GxC5OUcbOP1/f9mEJb1wP+/QuVWdXP8jU9j98auUi5dMCngMp+QNNCIX6DMwns2e9xcBUMaQ4VF/s0gHmRQjYMAHZ3d83eq9VqFaPRCF9++SVKpRIajYYnz4DCiewX9pgkfgyfDXqoiAGY3JtqtYrPPvsMzWYTjx8/xvb2NprNpvnN6t+LFHpIZA7a7TZGo5HJu8rn8wgGj7Z1qlQq2N3dxWg0QjQaxWg0MonJGuLVsfAzJvytuSEU7tmrfeFarZYJrTHPkq1yyCbMu3G5SFGgzfnHdIZsNotCoYBUKoXBYIBqtYpgMIibN2+aXXLa7bZpoRKNRtHpdHBwcICDgwMUi0WUSiVPYv7zCplh9qEslUo4ODjA4eEhQqEQSqUSarUaYrEYFhYWDLOg+YS2qNGw16fOOb9CDzp2bEnkui7K5TKePn2KYDCIBw8eIBgMYmdnB8+ePUO32zVjQBbyIsV1j7sO2E1xlT3SvDE6ugTJdNAYjlfDqCBH15+9dpSloVNA51BTPTS0RnaWIHSeq3Spp9SpBLxAZDw+2mBA2XDN3VSANB6PTVPri3YIXlboFDDHUAEW79ved16P8wO4em6/im/V+37RQx1Lv88rmOS8s1sEXaTMVdEG+2iRbp9WdeOnHCedV19TBUCFEwqFjHLSnBdVrrOU0WhkEpifPHkCx3Hw5Zdf4le/+pVnElcqlRPerQ3y/NgDv9fsiWyDHw0lAUfh4mw2i52dHfzd3/0dnj59it3dXezt7XlA0IswK88rNC6xWAydTseEilZWVsz2SKFQCJ1OB4eHh3j8+DHS6TQWFxcBwDQlndbwmt+jCpVChcL7DIfDSKfT6HQ6qFarJvRI8MvQY7VaRb/fN0BkXgqIZi3qfBEksWAiHo9jcXERKysriEQiKJVKaLVaiEQieOedd9DpdPDs2TOUy2VjzEOhEJrNJp4+fYqdnR3s7u6iWCyaHm8vIgy/O46DUqnkUdgECaFQCOvr61hcXEQikTChQdthVKAHnN4awjYuFIJEso6PHj3CF198YcKh7DlJxt/+uUghYNcwqxpA6l39YVSDhpxMG++T4VUb8BH48twcO+oxGl/OKzr3dpUyj2cVPZnHeQd8BP/aZkxDscrwTSJRNLpFfXha7ullC6NL3W7XEx3RaBcjAH5MKHAS7JJ91uifHqtOhu5aYpMC9vfp/7Sn1FeznGNz14dvGo1sh9X0My8rfpTqpO+blXAhU+xqKbsLvX5uUpjIppYBr5L0uwYeo8+Gxg44MobtdhvtdvulWJSXEb0eKioN89ITJFhWEDvJENqvKVOqxtj+UWeCnyOTx9YYdoEJMH3uf9MkGDzaizWTySCTyXiKEMhAaOsOwFsxzh/Xdc1+2S+bN6qOlIrOB4Z0z/os+dlJutBvver7+j0cm263a1jryxK/a7MZEY0aaAsW9vzk+zo+NkuooNtvHdvhM7/z2GNvf2ZW4bbnFZ2PfsSITYqcFjGzjydr6Ad+5kn0WU+6ZwVr086honPPT6atcT8GcdJxs5xflx7SVbGTRM86yU4DZjb4UaNtI3J7wsxyok+bFH7XQm+M1Xd+uQKTvkNDRbbytZW1gjx6Itpzzi8Hwa5CvUjRkG6z2TRht3g8jmw2i9FohGfPnqHRaJiu+QpyaXAc53hrJ3vXEDX0OlcIJFkhSeXIvkoEfe12G3t7e6YXH3cpAY5Z03k2Lhct9hhnMhn80R/9Ee7cuYO7d+8alqjZbKJarWJ3dxf37983uaXD4dDk7SUSCWxubuLGjRvodDrY39/Hw4cPzU40Lyt+DhLBJnM37Ybek0Adz3eW69LxsaMh82iUqUNYCEEhG8pwKlMbms2mCU8rG6I6jWuF6Rt2ziy3i+R8olOs46XfRaaPwGY0GqHT6ZhenfOcZjEej0+AewXCZ71m1fdqB2q12ksz4xcpNmvGtcFnzxC37nrk5xxoJMqOBk4iTGynxRYex3mn4Xa9fjqomr96kWN96YBPb3DaAJ52jtPkrJ7yPC3s066FoQ/mn9kerN99Uk5jS/U9fU1zXVSx+Hk0+nORk5gAlGCUCp97i47HY9OSwC+JXtk5KodpTJ+KtnBgvzOGinguAKZFDb+X1YtXDJ//+EajUdy6dQvvv/8+CoWC6evIvMhqtYq9vT10u10PW8rtsHK5HJaWlpBIJNBoNF46h49irws/JkgZF3vNvcz36Tk4520nb96E48FwI9eHtiZihICtqAB4inE0yqHV9zrWfBbKSCn7pZ0fCAw1f0+fmZ17OY0ZumxRFk7lZe3oeDw21fDz2ocP8N6nPm+G8bWa3c6142dsp8I+v8ppbKGtxzi//Owtz/ONKtqwjd0kxuhlZRLo8EP6lyXPayCU4WN+i/1ZHV8VP6A97bM6yekFs/pPG6X6neOiwZ56+bw+AKa9zWg0QqlUQrvdRjAYNE2qNTFZDZANXm0AqGOhC5ZMoV6PJqIXi0XTEoGep53v6DjH7Swuq0XQZQjHl8A9HA6bvXIDgQAymYxJNk8mk2bPZzo8ZHbIHJVKJXz11VfY3t42RR3nEeKc5CjRuCjYOO0c05whfU/no7LBthGbN+E6IMAi28F1weKRg4MDVKtVszUeAE9uK+BlNwH/UBjthz4HBQBM72Dj7PF4bHIMAXgcRoKceS7aGI+PCiyYc6fOh0ZYJrG/qq8Ar40YjUZot9uo1+vodrtz5UxoxMmPCQb8gZvNCOrrkxwrWyZFH3luOiyc99PWqJ6DxVexWMykHl2EXGofPv0NHJfsT9qf9WXFZqBsL/CyAR/wfF76YDBAvV5HIpEwEwaYXt2s4mds/IAfwZCGOdlfrlQqmTAqJ+k0j+k8RYGV9kDidaRSKeTzeVM13O/3EQ6Hsbi4aAyKNuFWR+M0xpcLn1sXKbNIJoE997iIt7e3zVZd3GZOQR/zlshSMS/ymyA05pFIBKlUCtFoFMViEY8ePQIA5HI5uO5RcU4wGMTh4aEB7a1WC+12G4VCwfQzfPbsGR49eoTf/e53ODw8RL1ev9C5aOc7+YE++7Vpc0wdDTVonNvaqNiPWb9sUeedPci4xSG3UmPV6KNHj7C3t4fV1VVTnMPiK9sRtws/dL1q3qxuyTkeHyXjJxIJjMdjlMtllMtl9Pt9s7c3K8Jd10W32zWFe/PcG5OON1NVtIiA96KFLyqcS9qTT+fNcHi0BSn1+2XbRRVlxqhntXhRf9s5fAr4/BwqFXvMlO21q84BGEfVth82S+wXPWIvyvH4eIvBi5BLZfgmebaTXjtNkZ1V0dnn0wczD8ryrDIejz3erP0eZdo9TRtvm4nQ19XAXRZY1sVkXx9wvABbrZYJ0zDfT5u2Tlv0/J5Jr/uNi4aClHnUdgeT5rQarldpLr6s2M1LNRdOe2dS6E0TcGtfPja6brVa5tnPssXEtLU4TSatRdtBtd877fsvQziPCTzsgibqDrKzure5X+80W+xCKWU8/Zg/Da2xuEXDxsBxZSuBgp+xnifhvfA+XkQ4doB/l4d5zA31C4Oetg781orNok/6rH3+SX9POv60KCK/fxZ6/9JDuio6MPyhYteH4mfc+fok0fwaPZ4DzYatl1Vl+iLC3Jhut+sbTn1RUQ9Jx8j2Umyl60eTTwpZnYfofr/KglBZJxIJZDIZs7OK6x61imCPNA3zTcp/VEfAfp2fY1Uhw9ra8kH7A7KYxHEcU0WqW8JRkUUiEbMTxzdBQqEQMpmMGSu2zWAXfe3j1mq1TEJ9NptFMBg0LMTh4SHu3buHWCxmjGCxWDx3b1nZAYqfEdIw5PMqcb85aOezqU5T528eIhXBYBD5fB4rKytGR+l1DQYDw8w2m00TMeCaJuhTplN/WARCFpzh4EgkYhwAMnuu6yKZTJqddZhPG4/HzXeSAWQBBNfevDN8jUYD5XIZzWbTzDWdd+xv6Hf92u/V7/15YYtVHOe4PQ/TOgjk1ZEGjkPWClpt0GXfo/7P4zR9R/+2z6EOKl9n2hUjStxr274nRoOY+nBRMleAD/BvkeGXQzWNmfITKg7gZIdtsj5UNK+KKLNxltwhldOOO41N0IXj972zCC8xJ4itTvS6Heeoj1Y8Hjc5OgRafOb08tW4+IWitb2KfZ+ap0QWkV6z9hpzHMfT60+ZLAUKZDgmKemvowQCAZOXp6BXW6twzTLBH4AJ0QFH7Gm9Xsfu7q4B2I7joF6vzyQP8qzz/XnWhZ9RsoGg/fo8gD0ABmRlMhnTsFrXFhsqk91jDqYWV9ghbQW2dHK1kTQNJ9ccAM92hlx7/JxWeHPO0Xnr9/sGCM5zDh9bDmlhhc6RaawRAYqdGqAyb6CPOlyBuNpxFc4VXRN+Tpjeo53PaB+jx9n2QL+Pn7GjD5rjrUIMctF6f67QTTweR6FQMJ474I+4dQLbA87P6Gs6IdQ7HwwGhv1ZWloyCHt3d3culOZp4ufVT6Oin/ee/Khum0mzQ7t+57gI0TCNHf7h82VCs1bmqmIgQNPWCzbo0wU/CVArC8jP8YegT42G3bbDb4xnmV5wWjjjooS5U/F4HMvLy4jH40gkEqbK9rXXXsPy8jK63S4++eQT9Ho9HBwcoNFooNlsmq3MQqEQrl+/jkKhgM3NTYRCIRwcHJg8rYu4H791ZocE/ZymF/kOe54om6CvKds8D0bazyDyf+2nCByHU/0iBrq+NSysAE/3MAVOGmyuQw1harWuAkB9lvMGeFSGw6HZb5i7LnGunFV/+EUtgOPIxbw5nnw2drNidfTtSJSuHz927TQCaZoNtZl+vqZMIP9Xve6nI57nub2ozA3gc10XhUIBt27dMknbFDW2XLBaLaNUNo/3A3024GM1jOu6uHv3rvGYvvzyy5nm/LyoaFsWv1DOyyorP/pb6XPNmdIq3edhGl9G7IXPZ0tGrtVqoVqtmjC9Xb1GViEajZ5okeInk97XTus8jso3HA4blpHXSAbBBqK2Vz4LRTvJM77o+e+6LvL5PJaXl5FKpbC5uYlkMom1tTWsr68jlUrh9u3bSKfT+MUvfoG//uu/RqVSwePHj82OAcPhEIlEAn/8x3+Md955B0tLS7hz5w4cx8EvfvELbG9vo9PpzGQta+4Zx28S22Y/b74G+Bc82aBOWS59nSkE8wb4/MAvw6r2LjMahiP7ZDv4XPd6PrLouoaAY+eJLB//dhzHFL0Nh0Mkk0mzJZ/mHs4z4BsMBtjf30elUsHBwYEnP/gs/QP9ojO852AwaFJLNIJy2UKGLxaLmV1XKGrnXdf12EQ/Pafn9AOCdmRR9aIWf/g5drQn2puTzLPmJauO+Ebl8DnOUQiOoR0/5DzJW5507GmonYqT1X+u6xpanwp73kUnnN/ke57z2GNjv8/3VPlOq3C+aNCni9t+3XEcz6Iie6DG1Pb+7GueNJZ+89BvXMbjsS8L6Zfz6Hf986Jkz1s4JrFYDNlsFqlUyvzOZDJIpVKmfyL3sCVjRwNH4fpNJpNIJpNIp9MAjpQnGZuLmIe6RpQ5nsYE+71+1mvzY5r9HLx5KzLwu1/+2EVT+j7gH07jaxruPWuzfvs84/HYhNs0HWMWTMt5CEkL/rZtls6VSTpOj7VtqrJS8yT6zO3ICuAfsTjtWdo2z4+1O01sps4ed743iRWchd6/dMCnnuni4iJu3LhhjLN65xxELkhldCjPqzx5PNkqxzlqibG2toZ2u41SqfSNSZz3ExscAceLjeyesnyz7hmn4VJeJ+cTvSo2fGWhBvNder3eiV1DbAOqhomsoD0m9MqUZe71emg2m2aeaQsNno/sss5Bjt8sQymzYPNUwuGwYfDfe+89fPDBB0in07h+/Tri8TgODg6wtbWFVquF//W//hfq9Tq2trZw7949T/6eio4dPetyuYxHjx6hWq2ee+NYP8fILto4jVnRc53mpCmg1DZAPJcyGPO2M4Reu7KTbAmi2+TxR7cftMEX75UOOtclGT118gAYEEdApxXbg8HA7DncarVMcr02Tp9nx58OEXMSGZa2+4IybSWRSJg0JuB4zmo6i36GunHeAJ+yjyzs0p6lGrannBa5ofBZ63P3c+pV9DWt+OZ7nJN0LngPmjs+K2ft0gEfFzZ7NK2urqLf76NYLJr8Oh1QXfyT0PJZvtN+yJzgkUgEhUIBzWbTNJ18FWQaq/Ciyt8OLQHeHD5OYluRzkrUwPE6HcfxKDyCNYZUqdyp2PV44GTvJT9AZL9mpxiwAljDSVp55dcdXxkbv9YUFykXzcSqBINBpFIpJJNJ3Lx5E9/5zneQTqexsbGBaDSKf/7nf8bHH3+M3d1d/PSnP8WTJ09OvUYbLA+HQ9Trdezs7KDdbl9YTysVVdh+681eS5yrz8PI2zlAfizBPLb0UaaI81wNIPWHgjWCDTsUR6cuEomY9i7dbvdEKF3XJ9ekXwVlq9UygIlOK4HQtKK0eRHObQXONnhjaDwWi5km+YD/fOGz0cKzeZpLvGY6xdqlgbr+eZ7ZJAZ6UgTmNEdOnS99Dgqk7UI9nncWKQSXDvi0w7TjOKb6SkNidu4dcPZ2LCp2CIYPVj/P8n71GuddJlHZ53FO/q0d/u3wL3/bbOuLgPHnEb9wjs4PLY5Q40CWb1Khha0wJikFin3vZBZ1ZwECv2le3YvM6fMQXkc+n0cul0O328Xh4aFppXEeQJ73yXy9XC6H9fV1ZLNZAMCjR48wGAzwxRdf4NGjR2ZnlLPMH84DFnX0+33UajXD2MzKWJ9VWevaeN7nbOcNqR6bJ9H153dtdIra7bZhuxWU+a0/npPOHNeNbVjtcZmUcsLWMGQW7TVps/qviviFpBOJBAqFAhqNhmfvdTtfWO99FiHGFxG/QjgVvW6/sCpw0gHT4zXqYp9Xf9uv6/n0PTqhk5zBWY71pQO+cDiMQqFgdouo1WrGIwNOFgrYxlgXuy2qUBXYcUEoA0SAF4/HsbS0hHA4jK2trRmNwouLKn57or+scLzUc1JWbJZUtN+1absF9WbVo2LblVAoZPLB9vf3MR6PPaFghlftBHM1prajQLErsMhaBINB01+OxRvcQ1eVrYajZm24OY7hcBjvv/8+vve97+Hg4AA/+9nPsLu7a3qovaxwDF577TX8x//4H7G+vo7bt2/jxo0b2N7ext/8zd9ga2sLDx48wL1790xYXK/TFj4jGoB6vY6PP/4YrVbrRHHHRYufw8PXbeeJv1/EUeWcVTZ4HlkohhtZGGWPT6fTMaCeoE9Du9o7zQ6zcZ3Y+X+MMug4kLWjE6/vsaVJMBg0qURkj5jmM6v587Kiut8uTnNdF6urq3jrrbewt7eHSqWC4XBoQqNalMHf2hpnngAfo3DsuTgJQNk5dPqaziuSShqCpX6nTZjG8NlrnraS9oCEFgDf9l/2NV/0eF864HPd4x54juN4tsSh+ClSP5bJFj9UPw3tAzAggjTxqyCnTRA/Q3DWSWUDHBtY6njOWjEQeGo41jau/F/BGENAdijjeQ2m7XSo8+HnQdretB9IuAi2dpqw/1gkEkEul8Pa2hocxzGVxbaxexFnwnGO0jai0ShSqRRWVlawtraGdDpttkXa29vD48ePsbOzg2Kx+ELAl81Nm82mYW7mSV4GkNm6y2baX/b8FyHTKpVZJU9AaDNxfmtBXyeQmcTK6/dM6mAwHA7N/toKSv1Y93kbW1smESEUFkg1m00EAgFPaNsPxEwDOZcpCmgn5empPToLEWLbMD3urKyezlH7dT/W1D5W597XGvBxM/t0Om26pANehea3oP3A2LQH6veaPfgsnU6lUiapf55Fw+G6hdF5iB0mpeei1VEEMAxVKit7WsXieQiZHebbKCugzBXHhV4bGyDbrVL4ORV7EfL8flvK8ft0ZwGCy0Qi4Xsue4s3jr2dr3VWmaTY7GdBz35xcRHvvPMOcrkc3nrrLaytrSEQCODOnTtIJpPY3t7GkydPPMVSOg5+32FLMBjE3bt3cfv2bdy8eRO3b99GoVDA7u4uPvnkE2xtbeHzzz/H1tbWxD1vJ43BeHy0r3OpVDL76nIHh4uS09g5vzC47QT4GRK/ZzZJJn1+XooMlOGzC+9c96jpeblcNrtkUNdqyyKNLPCc/M33m80mqtUqAoEAstmsZ1cW+4fzl2092KjbcRx0Oh1EIhFPS5t5ZE4niRZuRKNRjzMbCoWwtraGt99+G6FQCB9++KEB2ppCBZycT3Y047JFGT5GdjhfbH2srB5/A8cRq2n6jPbDz4HQeUwdTgdE7Yl+t63T9doYXWRRzUXijktHNNw0mKEvDb3aoGNSIuU0ts9+sHqMzcrwerhx/bzn8LmuazaLZz6D3/2+iOiE1EnJcyvQ49/2GJ/HdUwTLYiwjR0XrPbXozFhwQYXIEM3vC/7PjQ8QrEr+FRB8Ds0l48KYBLgU2X1MsnSp4071wpDzGtra/jxj3+MlZUVLCwsIJ/PIxAIYHNzE/F4HO12G9vb2+bc+tuPhfcDfcFgEDdv3sSPf/xjrK2t4caNG4jH4/jd736HX/7yl9jZ2cH9+/exv79/4rynyWg0QqvVQqVSQbfbNTlKs9gi0b7OSSBjEnCYBNomAXZb7OesOvKyQQpBmc2y6pqrVCpot9vI5XLG+bJz+SbpeTqXrVYLtVoN4XAY6XT6RPGVPRaOc1wkOBwOzZxjA2bt6fkqie4eMh6PPbYrGAxieXnZ5CzqjiMEfIyssWMG4J1P8yIK2FlJbfdt1GP5LDX1ga/ZpJLONZuwsH+0s4NGJfV8fo6On37m9cXjcZOCdFFy6YCPC5DJ7X5gDPD3qi9iYSqIuEiwch6ihQAvOxY2yFFg7WdE7El8GeLH0Op1c14pALPDHpRpBtb2xmzGQY/RRa1Gzy+3QxXDebMJpwEGzVGy28AEAkdbnbXbbU8DdBvAnCbBYBCxWAzJZBILCwtYWlpCMplEs9lEp9PB/v4+dnZ2cHh4aPqJPa+oAed9MCXjIsUP7NnX5ff6pHOd9vnTWEX9zLwI78svIjAejw0jRQM6SZ/o2ChTB5xszWQznH7nVAeQAEmNOEXZo3kCPX6iO5fQeVWdQiKD7WwottOhY6tAcJ7ET9fydWXPKJOKL+y/J32Xrj2/MPIkm+KHVyZ9nuf+RoR0ueeiTkabBdFB8aNiz2tSMixnL4x5FJbax+NxwyK9SILxJPYTOBnS5eLx295G5SwG6mWFC8hxHDNHlCVLJBLIZDKo1WqmMtcO+3JB0zv0M7za5oX35hc+oNFRAM6E9FwuZwC67tvMULTd2uZF2dGzhF94Xexr57quSdweDocmBJRMJvHw4UO4rnuictLvnLakUincuHED+XzeFIQ0m008ePAAtVoNv/rVr/CLX/wC3W4X9Xr9ue8VgKn8XVxcNJ5/p9PBZ599NlOmRufei7DbLwoM1bgDLz5vzls4HiwOYHEVt9MbDoc4ODhAu93G4uKiAenKvNtsnc5tHsdUCY4Bd8qgQ6WtXfSayIiVy2XzOvu58Vgyxq1Wa67Cmn7S6/VQrVYRjUaxuLho1izZr2QyCcdxkMvlPNuW2qkj2g6KW1POstL9LEKnQUkZO71IC/L8HHP+zWNUt08S2gL+bafj+LVaUcJE+ztqVIc22y9Sdt5y6YCPxoa5WMBJ5obiFwKZJGcdND8UPo+9rPyECk1Dji/CXvn97fe/UtYKhCY9l1kqCdvwAd4GxprjN4md0fujqPH2Ywn0XH4Mny7sSQyf/XMecpa1otdlM+mxWAyj0cjT4NYer9MkHA4jm80in88jn8+jUChgOByiWq3i8PAQ+/v72N/ff2ljSoaPienMx5q1THp+drjHbx7xb2D6M5s09vYcnQfdpfemFelk+Fihq+yavd4mOfR8nw4Uj9HUDD1uEsNHZtmP4WMKiDqJ8ypaBKNpUbQJZNsZOlfxY8j4Wbtf6DyIOvr8n7/91oGt2/Q8+rdGMPxe85tH9t+Tvlev2y/HFDhJZl2EXDrg46Ilw8DJSqQ7qWrLzu97mUHiIKsx9su3mkexq9v8xG/CP8942UpAxyoajZotrZgjoor3Ij1je+HbzoEuMDYc1W7sdvKuArBpi5JzhKLFKprXCMCETfv9/onQln3tL5sv4ziOYUlSqRQKhYInt9NPrl+/bpLoWahEj95xHOTzedy+fduwgXaDXI6psstkCVZXV/GjH/0IS0tLKBQKqFar2Nrawt///d/j6dOnePDgwbmsK9UB2k5ilqLP1Qb8fiyDLc87DgqEJhnsy5TxeOwpkNJmuWQ56vU62u02RqMRwuGwZ/9aW2wdbf+vxzjOMeOv+4xrEr0NiMi+q3N4Ft06L9JqtbC7u4vxeIzNzc0T46QMq44Xj1OGi8xgp9NBu92eu2p3G0xplEQbZvP+FStMOpeeT22AYhA9ViMxzBPnOKqeH42OdgxjaFxZaxtc6rVelMwF4KMS4OKyF7Cf56wDN4nBeh7F5wf2tBLnshb8NGaFk/KsOWAvYgzsBUGQREY2Go0inU6j0Wh4+qb5MW7nLbbCB/xBnwI+jpUCPsCbpMvz6Pja36kMHcGchpEYHua2c2z7oEyHssh+3/W8okU8a2treP31103Fnj2POTaZTAbBYNBUFgcCAQP4XNdFoVDA66+/bvqmcUcCJnvX63XTP43XTsO+vr6Of/fv/h1WVlbgOA6q1SoePnyIn/70p3jw4MG5MidUyAybzBrw8bvtEJlf3ujLgrJJANIOhV6mcO53u12TcmIDvmq1anL4tD+lDfpshsVOfqdzpYada8mu+PVz5DnX+f0EPX7tXOZVms0mnj59akLVBBu8Z+rreDzuC5B538Axs6eAb17GwJ4DGqJnhaviCKY6+a0ZW/cDJyuTbaCnY8f3lKyy2eLRaIR2u+3ZuEB1g8rXmuHTxarAaloOkwK555mAZznWZnFUQV3GtmEq9v36jd1ZPuP396Tvo9gTXl8Hjox7PB5HMpn0tDnRYy5K9Jr8mDr2ZGMeCpk4G9zZ98xrP+36bUrfVgy2EuHfGiryuw+/6znreESjUSQSCWSzWSwvLyMWi3lyEBnC4nfG43EAxxV7aiwd5yi0WygUzF6jwFEINRaLmXynTqdjFK7rushms0gkElhbWzPtEw4ODlCpVLCzs3PuPfI0F4ZFMrNer/Yzp/g5o8/zbO01Z8+5eTHEtpDhs0OiNoMyGo087ZV4jC22DtJ1TmdK2Sq/dagOlR8L7Pds5nmMVbi2NU/ZBi9++e/2MfY5L6MZ/Gli63p7bqgdp3PB1+31w9/23NOx0dfsXD8/u6g/1EkaudRdXex7msRwn5dcGuCjp0fPjnkdthFUwzypYIOiD8F+n0bOFn0w4/HYFCKEw2FTTNJqtdBoNC5l4dv36ziOuUYmQJOm571MA8TTxo/v+702abeTaDSK69evI5FIoFarmRYeFy0Keu0kbXp5Ozs7GI1GqNfrhk1wXdeAILu3IDCZMbaNhjKFHHM6CtraQM/J4xuNhgGjvGZd6C/q6bH9Anvr/cEf/AGSyaTxNpvNJkqlkqfJLMPw7XYb1WrVbF6fTqcNS7e0tIRarYZgMIhisYhYLIZUKoXhcGh6qfEZxGIxvPfee9jY2MDS0hKWl5cxHo/xj//4j/j5z3+Og4MDlMtl33F9EaHBZw++SqVi2lPMSjiH7O2eFGBMM0xn0Su2IzXJ2ZgFS3AWYY+8Wq1mijR07WhOLXMv4/G4RxcDk3Oh+NPv900zYYaFyVApawfAhI+pQ8nMkOGbxrrPO+jjOFC3sDMBHTwWiWkqitpbLSwgM6U7pcyb6HxXgob3NxqNEIlEkE6nEQgEcHh46CmO03PQ3qsz4VehzHkFwJdo0QIMzjPmVHIuRiIRjMdHBUH2vJ5Fd5BLA3zMmfArx1cFpqIKbdoC5AI+6yK1kTwnPZvzcrPpyxL7ftW46CQ/7X6fh9mzX3eckztIkLpOpVIYDAaIRqOnPpvzlEleHsFpo9FAJBIxFan0rEKhEIDjRanhWVv8PEL+bRtsm+Hzyy8cj8cmxKubmOs92a+dVVzXRTweRzqdRqFQwPr6OlKplGFParUaXNf1eJhsVNzv983fzMt0XdcwdJFIBMlkEq1WC5lMBoVCAaPRUUsX7lbAY958803cuXPHNAVvtVp49uwZPvroI0+PvPMCJsru6e4Ns5RJ4VTbWbXlND1mz22/eacyD2AP8IZ0ddtCv7w4VvFyXdqA1mb19G8CEx1n/iZ7SNFIjVaj2ufm/3rN8y4cB81ZVFDtZ1N5f6rbdUyU4ZsnwGvPAdvZUTuuLXt4vzbg4/3bzoWdymMTUn7ix/DxWkhuaZ4vP/O1Zvgc5zj0FI/HTzAcgLdxpn6OcprSmyZ2DgPPo0pDK8ouMyfGD/Qy+Va9NjtsMu18kxg+PxbUb2LaVDgbRiqrNQvRBaJMCgFfsVhEp9Mxx6knr0ZHlaK2d6GowlNQqUyOGmO+z2fD72s2mxgOh2g0Guh2uyiXy4aptdsIvIiSHQwG2N3dNXk3zWbTAED20+P5CYK5if1oNDJbn+nuJLxWtqZgPy8WhKyvrxsvmZ5yJpPBYDDA9vY2tra2UK1W8fnnn6PRaHjCrc/DcJ0mBBgMPc+6f5itrFXp+xklHuN3HhVdk7aB4vv23J+HDgOj0VFD7Hq9jk6nY+azzRo5zlGhEfeZ1nxTNivncQrmFADrrgZ+Y67rVEPImk/Y6/XMtfL7yH7z+udZmJJBRi8QCPhuU6rCMbXD21qENY8hXd4P71lZ2/F4bFo8tdtts01jKBRCJpPx9H7kj1Z0095zHfF127ngnCJzpzqfOt11XTSbTVQqFXNMJBIxERbguOBPCwgvUi4N8JHGTyaTJ6qzVIlpyIyf5TFn+R77OD9GSL9TF4ECvlkyV36i908GhkBBK5OeBwD73dMkA8P39DgulmQyacIGsxQFXto6gFVTu7u7cN2jPm35fB7A8QLVcAdfV49Y79Ou5iU7zTmqND5ZHqYocB4R6LVaLTx58gTFYtFD8+uOIC8aRur1etja2oLjOPjiiy/w93//96anXjabRTabxbVr1xAMBrG/v+8BnOFwGNevX8fS0pKn6KRSqeDg4MDkQBLQra6uIpFIYH19HZlMxowLgW2n08H9+/fxP/7H/8DBwQGePXuGarVqxpS/zwvsEUz0ej3T+3CWYhtOP/BhAxU/JstvrenrBDbKQOn8tMPKlyUs6CmXy1hcXDRzWp8P74OOBgEf4A03ai89/lZ7QcDn55jpeNO4stiMe0gThFYqFVN4FggEDAhstVpz15rEFhZrEMyozZpmF7T3m+M4Zg2RLbzs/PVJwuepBRHRaBTtdhvlctnDdCYSCWxubiKRSKDRaKDRaBimz0650PQyzX10XddEEJT51IIYjjPz2gOBACqVCvb29sx5k8mkibAAMAVF6gBdpFwa4PPzLPjetImqYORFjYUNHlVspm+eqt4oBBS2J3/W8dCxe55xnMSI0lOeh3GiaD7FpMo0HTs/cDvJKOvx9nH23FGFSiVCxozbm50njc97JmsRDAZRqVTMd5NRL5fLxvNk3l65XEYikTDpDI7jmNYZVExUlDx3p9MxnjUZgXK5jGazib29PfM9LAg5bxmPj/Jhms2meeasJJ61+K0Nv/enfXba+9PGzwY6ly2cD9rHzc+ZsQGczfrqcSq6DumUq5H2G6tJAJsOI9M+eAzn+qvQh49sZKvVMgyqH0jV8Qa8rKffHDovp+y8xb4+W5cDQKfTQavVMsfZmMMPe9j/246ajpufLbGxzXA4NLpeC5j81qifXTpvubQcPq3MUnZNPbxJLIefJzxpECeJfayyNTRsDJ1qu5FZiw0kHMcb0rUZBR5jiw1y7WMmGQz7nJobycTodDpt8nBmaWw4R/zSAWj4h8Mh0uk0YrEYHMcx+XP0zHhP9jiy4o3n08VOcZzjtgDKIIzHY0Phs2iCQIth0oODA6RSKU9frIsYm36/j8PDQ1SrVYTDYWxtbcF1XRP+UYP5xRdfGLaPuX8sCqIBJ3NKwPfll18iFAqh0WigWCyi1+thb28PtVoN1WoVT58+NW1czksUGAwGA2xtbQE4Slwn2Nvb2zu37zvrNfnNo/MwmJOcFPsY1amXDfoIxO2KbDoLGq6lUwTAMH9qGGlA9TVlBzOZjOc7tVpXW3bwOjRMydBns9nEwcGBSeqnDmg2myblYZ6lUqngiy++QKlUwtOnT1EqlQCcnJeu65rc2vF4jGaziUgkYtI4GJVQAD1vgI/dM+wCKYI6smhPnjzBl19+idXVVdy6dcvsduTHtFPHA/DMO+Ckk+8XwdHxUp1ar9fx+PFjxGIx5HI5sz41hQc4jjxddArZpbZl4eDbzIh6WKedA3jxHCD7ofM7dauUy1agfgwnJ7yd/Gkfd9prqjj1NT82QUNTgDfUHolETJ7ErIXPTg0tnyHB3Xg8NvmFGhbS/l26yMbjsTEOCipt50KVBXCchwHAnJvfqzt+KMMH+M/D8xwberlnlXA4jFwuh0gkYiptdY7UajVPHgoAY2ja7TZ2dnZM+Pa8xWb4h8OhYSppoPv9PhqNxoV8/7Tr8nNCTxM/9njad5z2/jxFJLQtC0VDaepE8m8tOKCogbbHgOFZXfc6/rpGlWmk8Jy9Xs90YqBuIzi9jDY/zysazq1Wq2i1WianVseXwIIpJAwvanGL31yeF7EZND+mj0RIu93G7u6uiWLYc0jJpknfZQt1uAJoZacVFDItoFKpGGeUelMLB2m/+JmvHcPHh5JMJk0yud07yDamFBsM6oScRONPeo8PRkEPF/p4PEYymUQ+n0ej0bh0j1nFL29AJ7y9YG3K+XkXs44PP28XPUxL7r1I5cFro2IjyNNcFObxATCJ2QTOttiems3sKTDTkL/tEXN86A2y4ttxHMMosAeehn7tgpLLkNHouDt8sVj05JwAMG1n9LVGo4FyuWzG/KJEwTavtVarmXlIVnfWIV3OE16bzgNetzoOfsy9rcv8gIu+75e3O4uw0FlEAZ/mKTF/r9/vG6OtrZQU7KlzCRxHX6j//ELB/G4b3NnVmbrnqjovZMXJSrO4ad4BH4WsXalUQjweRzabNcADgLkf3lu9XkcsFjuRksNQJIu25gX4MUJSKpUMUA2Hw76NsjkPAoGA6SwAwGznR1HbaTOA/E4SQDrX1D6ojbNzTIHj8azVashkMkin03Cc4x1hqtUqSqUSarWaKRy6CLk0wJdIJJDP503Cv1bV2f/zMzaw4bH87cdK6d/2Mcry6HlYlZXP5xGNRlGtVi9dgVLoHbAXH3AyQdxWgmcFfPZxfmDaZrq0t9GslaICLyqtZrNpcnEYTnJd1yz2Uqlk+nZx/KgoqEC4uNkzyY8l0PAHRQ0wx4Igjnu9MpxarVaRSCTMuQgKuRsIx/MyFO1gMDCVbtVqdWKerYqC1IueBzomw+EQBwcHKBaLnvU9y7loK34NJWrxGd/jPfjl8yig1c/yPQq/QxmHeWP4WAyhjhfBQ6fTMSEsMk7aVoTrmkaRQGw4HJpQnrIhNtNjzwMWjHCM6ICxSlcZY7JljUYDtVrNJPm/CjIcDg3bns/nkU6nAcCAPBaOse9msVhEKpVCIpEwrB9wFFqv1WooFosnANJlCnOEnz17ZuZOLBYzjoXmLnKNBAIBLC0t4dq1ayYioCydOvW2biMWsdN67LQBXcd2qzmeo1qtYjw+6l3Log5eb6/Xw/b2NqrV6oWmkF16SFd/60Dr1jD28XocB1RZFj8v12Zj+DnG4gF4lAw/41dYctlCgDCN/vV73QZzNguox01jTu1j9W/7e/naRSgMNbT2HqoEIHbej96PspX2/JqUS2ozL/b12K9rnpIfA6RGWj3Iy86dscHGPAvB1WWK6hxbz9h/q35RJlnPZZ/TXld+554HZu808QuFqT4imJuk3+y1a685W9eofbAZfVt/sPjIBo96/ldBhsOhCUPz/mxW2U+/KOjlOeyQ/GXLeHxcpMW8YD+7rg4XUzyq1Srq9boB8JoSZa8hHStllu3j7Grf8Xjs2Vu31WoZBpmglO/Z3TWYN36ROvfSAB9j2rFYzCBeFZuStxe40q3AcTKwfSwfqiZXMqFez68Drw963jqNu+5Rc91MJmO8MoYl7EmpMs14qJJUT8dWEPpZzX+jMPnXcRwPQzuJUXxZIXNG9oxMAb+r2+0aT71SqQCAScJmCJgLT8PjAMyG71zQHANlsZT103vTBHGdczreHDteM/fAZciLlbFX8moIG09Tl2mLItd1TcsRNSh+aRB+a8V2OmkcOHfIHHPOzkPRhuM4npZDDL3l83nEYjF88cUXJveOod54PI7FxUU4joP9/f0TOog/2u+MRpev62c4VgCQSqVQKBTgOI5h+bn2Q6EQlpeXcfv2bbMjT6/XM+2vBoOBh8mfZ1Gd5Lqu6XXLcUgkEsY+xONxFAoFc0wkEkGj0UC9XketVkOz2TQtaeYF8A6HQ1MURmYPOO4UMRqNDKgjO/vw4UP89//+35HP581uJACMDdCdNpRV1p6sdlGp9ikkSNN8PJ5ve3sbT58+RSKRwPLyMpLJpMeW6trWrfEuSi4F8FHZ0QuhwbOPmTTJVJnpIPNzOpjqMWqulF+MXUOUvLZ560PkOMdVutFo9AR9PA3U+QFmv/Pbos9CP283Hyb49ANBF8H0aQNVhme0BQqdABZJOI5jwr3q9So9T5BFJUBPUBf0NMDH+ccwEY2dbYTtOcp7IM0/b571lUwXGg6CHPZ3Y0U4n62ug7PoFj/2Qb9T8yn99Nplic5t3ncwGEQ6nTY5TNynnEYzmUwim80iGAyaFiOqg9WhtRlxwFv8YeusaDSKbDYL4Njp43mCwSAymQyWl5c9+YF8lna+6ryLOujcJYei9xKJRDxgj4CJu+HMeovCs8hoNEK1WkWtVsPGxoYHiLmua66dYetut4v9/X388pe/9DjddMK4ZtlhgnOCOlgdDb4PwOSKDwYDkzesrCmBYbvdNg33dZ9jZRb5/yxSoy4N8NXrdezt7aHdbgOA8VKVYqfB1E7WtgdHsZN9/RTktBAcH1in0zETZW9vD61WC+Vy+dJAnx2O5HVzotjJquqN2OM0CQzqhPa7T/2M9nnjd/V6PeMVT8o9mwbgX3Rcms0mDg8PjXENhUIolUom0ZgG9+DgAJ999hkA4ODgAM1m0yxyNSCao8ccSY7xpNCuzju+pwwfjTD70bFqSxlkzcnUJPd58aqv5HRhftR4PEa5XEY4HDbGx3WPion8wk5ncWxtIAPA5MVpBSJZmXnYGWIwGJh9mwkqYrEYtra2EI/H8bvf/Q61Wg3D4RCffvopRqMRlpaWUCwWDdPUbrdPsC72utM1SUDI93kdXNfM6X3w4AEODg7w+PFjsxY//fRT/PznP0e1WsW9e/dQr9fx6NEj7O3todFovDJs+3A4xP7+Ph4+fIjBYIB8Po9EImH2133w4IHJoyyVSnj48CGSySQ6nQ4ikQgODg6wt7eHvb29uQN7FD7vbrfrKd5wXRfVahXlchn1et3cJxlxdaBd1zXzhf1EJzF8foCPOppATu0DwRt/8/hKpWIwjebgA8DTp09RrVYvfK5dCuAbDofY3d3FwcEBAoEAPvroIzPwRNzJZBLhcNh4hAzfKQMCHIc7+DkFJ1zoBHLdbtdTyQd4+5WNRiOUy2WUy2XD9NHDvEy2xQ+oqqeh+1WSOZj0Wfsck8Ktmvyti8AeEzb8bLfbRqHaBTfnDfZ4zsPDQwwGAzNfgsEgarWaKYNni4579+7hyZMnALwFGn5sp51C4Dc2+hn73uxQEo8lIzEej42Tw+IITSCms3HR1P6VnJ8wjLS3t2fCTFqEoAyfrjnbgVCx2WAew88Q8DGU7DiOcSpYYX2Z0ul08PDhQ7iui2fPnuGLL77wRCMODg6wu7uL4XCI//k//yf+9m//FteuXcO3v/1tsxd0Nps1PSFpHNUYazhXWS11fqmTarUaDg8P0Wg08OGHH+Lx48cmdcJ1Xfzv//2/8dFHH6HX66FaraLX66FYLBpbcJGV5+cpvV4PX3zxBWq1Gl577TX0ej3EYjEcHh6iXC7j4cOHqNVqGI1GePjwIf7hH/4B2WwWt27dQjKZxLNnz7C9vY3d3d2ZtzZ6HqHDv7W1ZYCU4xw1it/e3kaz2TStoQj2VVT3T4p6TbNZtuN/2nHdbhePHz/G3t4ednd38fjxY0+08dmzZ3j69KnBKBcll5rDx0XUbDYN5U9Gj9s4MeTG0nICPlZcaY4U6WpVqAQo2oGc27EoemcIrVwuo1QqzS27oqFKltXboedJrKYNQjTMOAnwKVOo+QoK+MgqsH3BpO8873FgJa4ywMyBU6aRFWrnJc+jGKYJx5MeZjAYNAt+WpubK5k/4bZLjuMYBpkhGmUTtLjML9dMxTZEymhxjlMfOo5j5v5FJ36fRbjugKO+jfa2c41Gw1wn82uDwSB2d3c9VYqslFdnnuAvEAig0Wig2Wye0Dkcq1arZVj1g4MD1Ot1HBwc4ODgwBzvuq5hiujA0hmjc/aqCIFQpVJBMpnE/v4+YrGY2UqxWCwah7zVauHw8BD9ft/sM1ssFlEqlVCtVuce5Pb7fdNNgGuk2Wya3EO9/steD6PRyNhHpvgo4ON6uGhH7dIAny0a4iCYCAQCZoFqzoaG0fyq1fScPE731vNjoHjOeeo55Cf9fh8PHz5EsVjE559/jo8++sjkXig7RZl2L5oIPu19NUp+YRUatsePH/surIsaTy4g13WN00BHQsOz5y3ndT+NRgOPHj0yLE0oFEKn00GpVLrwfnZXcn4yGo0MmxwIBEwrGzvZ2wZwzzOP1PGyUzeYL6RJ35fN8KlwTqte0i3MKJVKBb/73e/MloOxWMwUe9jVzcyz4zqZlEJCW8LKzl6vZ3ah0GOr1arR/TzfvIY0p8lwOESxWDS9+HZ2dhAMBk16AUPlw+EQjx49QrPZRDgcxr/8y7+YtlY8hkB8XqVUKuHDDz/0FGFqZIcpFvMg4/HYpD3xGjU3V/cEvkhxxmcYkY8//hgPHjzAX/zFX1z4BV3J88k8JBPPy6K6kiu5kq+fvIyOu9JNZ5MXcUKuZD7kr/7qr3Dz5k28++67px47NwzflbyYXC3QK7mSK/k6y5WOu3i5GuNvhsxXR+EruZIruZIruZIruZIrOXeZe4ZPq0n9igwmVUvyPft9zaOxW5lceTnfHNFKZ+2N5jeP/PIS/fIftcgFOLlLx5VcieozuyjKTzRv9psu0yoq/Y79Jqw/zWvUNh+897Pmcuqc1ObCah9fZfGbO7xnvb/nvU/7vLYdmbe5N/eAL5/PY3FxEel0Gm+//TYKhYLZ3Bo4fmjaB4uvsdmm4zhmWxW28HAcB4eHhygWi6hWq/jiiy9Mxc+VfP0ll8thfX0dkUgE8Xjc9E0rl8snKnzZ5oWLNxwOm5YRVIiRSARLS0uIx+NmfrbbbTx8+BDlcvmS73Y+xO4n+U0Tx3GwtLSElZUVxGIxXLt2DYlEwjQG1yIzVmp3u118+eWX2N3dveSrv1xxHAf5fB65XM5TyKHb6lHvs9NDr9fDo0eP5r744HlE1xB30giHw7h+/TreffddhMNh04N0e3sbv/3tb0/dmzUWi2F1dRWJRAKbm5u4desWer0enjx5gnq9jqdPn+Krr756ZdtEUV+ziXY4HEY0GsXq6iri8Tj29/fx5MkTdLtdlMvlM1Vms0g0Foshn8+bQqNoNIput4tisWjW9Ty1t5lrwOc4DnK5HDY3N7G2toa/+Iu/wM2bN9Fut80gspN7rVbDwcGBqe51XRfZbBbXrl1DIBDAkydPTIn64uIiAoEA7t27hwcPHpjtT64A3zdHMpkMXn/9dSSTSeTzeSSTSZTLZWxtbZn2PcPhEPV63YA3emzxeBwrKyuIx+PGO0wmk3jzzTeRz+fN/KxWqyiVSt8YwHeWvoXf9OTwQqGAu3fvIpfL4YMPPsDS0hJqtRpKpZKngTpbL9XrdZRKpSvA9/9twfXr1xEKhRCPxxEMBj3V7Gxxwe3tWKn6dQF8uoZIbCQSCSQSCbz55pv48z//cySTSdRqNbTbbfzLv/wLPvvss1MBXyQSwcbGBgqFAn7/938ff/iHf4hms4lf//rX2NnZwW9/+1s8fvz4lQV8oVAICwsLZqwSiQQymQzeffddLCws4NNPP8V4fLQZBHvKniZsq5JIJLC+vo5EIoFsNotsNotGo4GvvvrK4Am7bdBlylwDPuBoEXMbMW6dRYQ+Hh/vn8htYkajkQGByWTS7OARjUbNnquJRMKc91XcOudKXl6i0SgWFhaQTqeRy+WQTCZNzy9th1Iul01vK4K7VCqF1157DalUyjAMsVjMnC8ejyORSCASiSCbzSKZTBrWb14W/mnC8EQymUQqlQJwHOKh1/o896LpFJNSL5i2oVuQsdXOq9gig2xCIBAw2yAuLCwgmUwaHQR4d84h4NN9vBcWFrC5uYlOp4NqtWrarryqBvhFhP33COZWVlYQjUbNNloAzLyhjq9Wqye27HyVheuBLHAwGMTS0hIWFxexurpq9lcPBAKIx+O4du0a3nvvPRweHuLZs2c4PDz0nCudTps9hm/duoXFxUUsLS0hEolgOBwinU6j2+0ikUi8UvZRdVc8Hkc8HkculzP7rXPd0ZEPh8NYXl5GOp2G67qo1+ueRt7EE3ZbJDr/PC+PCQQCSKVSZj4GAgHT/JuRycuSuQZ8XLz5fB7ZbNbshRcMBs2G0PSK2bOJ4I+bitNYEdmn02ksLi4iFAphb2/PgMJXZXPsKzkfWVhYwPvvv498Po9MJoNYLGb2RQRg6Pnd3V385je/MWHdfr+PXC6Hb33rW8hms57murp5fTAYRLFYxPb2ttlWZ3d3d676o00ShsUCgQBef/11vPfee3AcxzSkvX//Pj755JMTfQJPA4CT3nccx4wdASZ7rTmOYxiuVymPyHEcFAoFLC4uIpFImPAtWQDu3cneXBrCJbNMA/3+++/jxz/+Mba2tvDP//zPqNVqZhu1b5IkEgkUCgUsLy/jxz/+MRYWFlCpVFAqlTx7WsfjcaRSKezv7+M3v/mNMcSv0vyxRXM+gSPnK5FI4Ec/+hHeffddbGxs4MaNGwiHw8Ymrq+v47333kO5XMZ/+2//Df/n//wfswYDgQDefPNNvP/++1hZWcHv//7vY3l52ey967oubty4gUKhgAcPHpzas3VehAAtGAzi9ddfx927d02fU9d1PXs07+/vo1arIZlM4oc//KFxLjmXuB1iJpMx0RzuJMXm1N1uF7VazTQ/73a7cF0X169fh+M4hoGuVqv4l3/5F+zv71/q+Mw14ANgHhZzNoDjBFW7+SiVKBE3N0cej8eebdvoeYfDYYP4XyUP5kqeX+yQIh2JQqGAdDptGGMyUalUymwq/vTpU0SjUdPYtlAoYH19Hfl83rPJNg1OJBIx211ls1njKdtFHfMmyrIxDyqXy+HatWsAYBrXHh4eIhQKndgp4iy7Rvh9H8FdIBBALBZDMpn05GlxFxJ7g/J5Er0/3lM0GkUqlUI6ncbS0hJSqRSi0ajRT2pACPg4n7rdLtrtNgKBALLZLNbW1tDr9QxbzC3BAP/t/L4OomPKYgJGZpaWlrC6uuoZS+bekuHr9Xqe6M1ZG9LPqygTDByBtkKhgGvXrhnHgusSOALIBMVLS0sem8mUp9deew2rq6vY3NzE0tKSmXfBYBCJRAIAjF19FUT1VzqdxvLyskfvcptV4Ggby8FggFQqhXw+b3QQd1wh4CsUCkgmk+Y13R+a+7ZTGGGMx+MeHamg8zKLOeYe8DFUlsvlPFVIwDEzoDkvTLSnEtXFHo/H4TiO2Xuv3++bcPGr4sFcyfOJ4ziG2Q2HwygUCojH43jjjTeQSqV8w7gAUK1WUavVsL+/j0qlYvafHI+P9sLlxvD27i4AjMIJBoO4ffs2IpEItra2TDi0Uqmc2NvxssV1XWxubmJjY8OEopnbc+3aNY/3yzw0blnVbrdRrVaxv79vPN5Wq2VAG4FcJBIBcAz0yNyPx2OzdsmKUWkGg0GUSiXs7++j1Wrh0aNHKJVKZueEyzTcCkoTiQSi0SjC4TCSySRCoRAymQzS6bTZMYjPnPdPBpOMwnA4NKCawC8UCmF3d9d0519ZWUE2m8XKyorZM5e/y+UyqtXqXFYHThPtwsAdNBiloTiOg1qtho8//hiVSgW3bt1Cp9NBMpnE9evXMRqNjAHf2dnB7373OxwcHKBSqRjwnUwmze4cBNf2VpHzLFoRChxt57e7u4uvvvoK4/EY165dg+u6xv4xypXJZPDBBx+YfcaZj/fGG2/gO9/5DpLJpNlthDIcDlGtVlGpVDzpG3Yl6rxJIpHAxsYGEokE8vm8WVudTgej0chszwrAbLn55MkTHB4emigNSSIApjAjHA4bB43rlOw8ozY6NnwGdFQikQhu3LiBTCZzqRGLuQZ8NNaLi4umKhLwtmRhoq7u5UqmhcwLFUo8HsdwODQJ0v1+34TurgDf1080l2NtbQ3JZBJvvPEGFhcXce3aNQMCqQh0wXLv5f39fZRKJdTrdZPL0Wq1cHBwgHa7bfJCabD4m+zx66+/jvX1deRyOVPI0ev15g7wBQIB3L59Gz/5yU+QTCYNe8J75n3RGMdiMXS7XVOF/PjxY3z88ceo1+vY2trCYDBAJBIx4CefzyOdTntYxNu3b2Nzc9Owhr1eDysrK1hdXUU4HDbPh+NWqVTwd3/3d/jqq69QrVZnth3RtDEjw7S4uGhyQVdXVz25Y91uF4eHh+h2u+h0Omi322bOjUYjE0YbDoeo1WrodrsmHYUAqFqtIhgMYm1tzcPydDodlMtldDodPHjwAI1G40K3FbwIYcVjOBw2uY1k2AlwRqMRdnd3cf/+fZRKJdy9exfdbhfvvfcebty4AQBm7O7fv49//Md/NAVTrusilUphfX3dbMNIY1+v181Wm/M+ZprXChxtI/bs2TNTIUoww23UkskkcrkcIpEIvv/976NQKGBraws/+9nP0Gw28dZbb+H3fu/3zHZslUoFkUgE0WgUw+HQ7D/MOQUc50nO6xxLJpO4c+eOcVhp52u1Gvr9vonyqYOwu7uLarXqiQ6yVkABtra5oS60t/6j/eh0Oia9jDqT1c/37t3DwcHBFeDzE4Z7dL88ACaUq+BPk72B48lpeyeaD+G3B+83QcgwcM9PLt7zCJmRedVFoJtHz0IIMqLRKBYXF00lVaFQQDabRSwWM/fNe+Yc4j1wjNLptAE+NPJkrDiGtjLmOUOhEKLRKDKZDFZXV5FMJk3+jbaBuSxvmeuL4UeODe/NDoPp/CBzkkgkkMvlsLq6ilQqZSqa9TOsmAdgQkocVwLgdruNRCKBZDJpzstnkEgkMBgMsLi4iFarBcc5aqs0a6PjOI4pICObx/AXGT7qHM4tsgL80XmnoVxbT3FeMbdPN16nsSF7AADZbNYYMYJh5p3Om+je6FxDNLS8P8C7zznvlQzMYDBArVbD3t6eqbIk88uUHk3Z0XnL8DD1FNc/zzuPDJZfbzeODfWqvV77/b4nF77b7eLGjRtot9uGXeea1vnHc3OevipC2xOJRDx5+bZ+1jFUvc/3eO825tC0H7/0nEk4gtdFwHlZMveAj0qV4R1dlDaAY64BB1YbKlOBcKGTdu10Ot/Igg2WqsdiMXQ6HTSbTQyHQ2MwXkYikQiWl5dNZWIoFEKn08H29vbMehJls1n8yZ/8CW7cuIFsNotCoWDyKJjPSVaYwmtV4xMOh001LhdzMBg0hp5FG4BXiZBdJgh4/fXXsba2ZhJ+m80mPv/8c/zf//t/Dei7DI85Go1iZWUFyWQSN2/exJ07d8z1K1BQg9But03LgXA4bApf7ty5g3a7jX/7t3/D48ePsb+/j88++wyDwQDvv/8+/uRP/sSEQzQEWS6X8cknn6BYLGJxcdGELd9//32Te8TE6Z/85Cd4//338etf/xrb29szBzOhUAjXr1/H8vKyJy+HecYATGJ4t9s1LB7DiKqL+LdGFxhxIIvKECTzier1OlzXNTqRDHYymUShUMA777yDVquFJ0+eoNls4uDgwACieZJIJIJMJuNJfwC8bXs4ZgS7dCwY8u/3+/jd736Hjz76yDOvAOD69evI5/PY399Hs9k0zBfBHYGlpgQxxEs2aJ7CvGrz/ACYkhfUb2TpmK+XyWRw8+ZNvPPOOxgOh0ilUqhWqx5wo44Gc0lfhUIzCp2vVCplniHzqmn31cF3XdfkagPwvMe56LfxA4XOif74fYaV00z/uKyI4twDPg2P2V6f5hIwvEsaNRQKeZQF4PWcee5vKsPHic68FrIBmpNAOW1sbK+Sza3ZFDQUCqHZbJ7IwbxIiUajuHHjBt5++22kUilkMhmTjEtqnnljmudJpaBNXJPJpLk3vqcFBZ1Ox1O0AcAoUGUFFxcXTYsXhpRisRjq9fqlGRaC10wmg0wmg2w2i+FwiHK57GHz9P6Ym6K5VmTkut0uSqWSpw3NcDjE4uIi3njjDRNe4bpkOPLw8NBUMXPdtlotE4ZhkRVB8+PHjy/FUWPV3tLSkqeSWJO9O52OcZ663e4JZsaOLFCPqQ6j00rDq3lCnH8Em5pHmEgkTA5lKBRCvV73ZSIuW9hihc+WlbT2GhoMBmYMOU9VZxWLRRwcHGAwGJgq8uXlZZN3SjbWdV1PThXHkWwLmVambJAsmBfAB5xtFwi1cSQ1GNKmg7CxsYHxeIxarYZ6ve5Z5zYLNq9FUpOE60Fz7oDjaJ8fY8k5SEbUfuaKGRSDKDDUcVPQrKCRrOMVwzdBlIomeKBioKjSJwikJ0TlQUXCh6+TmOj+m5bDF4/H8fbbb2N9fd0ou0ajgX/913/Fs2fPjAFnPg0VZzQaNd4KFTZzIMkKxWIxw/AR2BwcHGB3d/dCm6A6zvFOBisrKyakS5Clhs8vBEKgoflqPFaNNlkXvWdbKdpeorKABMX5fB5vvvkmFhcXsbW1dSnNdROJBG7evImFhQXk83mPM6U/NmjhcTQoaiBzuRxu3bplqm05Fp988on5Xn6WDgHP2Wq1UCwWTe8qHsu/CcKZt0QW7aINczweN+17lN2t1WoYj8cGoLGdg/ZK8zOcZJnU4VAhk2MzOjy21+uZtix8Rs1m0+QtpVIpxGIx9Ho9k1xer9cvNbzLZ0cnnveia8gOWaqBVgbu3r17iEajqNfrpjehAm3ec7fbNfPLb21TVC9Q1zWbzbkMh1N0LWj6hY4hgQ4Le1QnMW+Z65fCOamdLih2KtW8iTrZpxEVig20/yVTTmwgB+BE6pPqeaae8dw2EUK2UfXrrMdxrgEfcGSQCB6UdWHJs4Ztyaqo8lBDRPRORoZJ5aRav47il7MAHCW3/uAHP8C7775rwkdMnO90Osjn8yZxf2Njw4DufD5vQrZsZpnP5xEMBtFsNk3+DPOz9vf3sbu7iwcPHuDXv/41tra2LvReNzY28P3vfx+5XA7Ly8smmblWqwGAYU2oFHRsaFAAmDCTJtdreoCmF9ieHucdcOwR8twMwUWjUSwvL+O73/0uyuUyer3epQA+blm4vr6O5eVlT6sjNY68d/s3f9jOwXVdLC0t4dq1a9jc3MSdO3fM+P/qV79CNBo1Ffcs7KDxH41GqNfrJlzM8SIQp/fOFkxsUTILhjSVSmFzc9NcfzgcRq/XM+F4VvsrK2SHDDWEqyyAjqPOMc4hnWOcT1qkxnPzWbHpbiwWA3BknFj9e9mAjykOmuuogN3WUzofGWLsdDo4ODjAeDw+MQ6j0QgHBwc4ODgAcJR+QMeTuaUcJwVG+kwSiYR5ZvNWXKVCJpiFBvZcUp3EVB0dXwUoNqsHwGxwoGBy3vP5yJJrRNDvGAAena6sMsdOmWAeb+8vbANErm87+kD2kBEMHjdrBnWuAR8HnR6M7YXY3qCKHUKxkfq0974u4ndP2ssqmUyaHnSxWAzD4RBra2soFovIZrNYXl5GLBbDysoKcrmc6VgeDoeRy+VMA1ktamD+CPMUmE/BHlEX7dVEIhGkUikPu6RzgYuTvwHvXOIco/OgifZ+ytRPbBZMv0P/JlPa6/UujeZnqIFsrYre36T7VS8ZOGbcqXiZe9toNIyysws/mIxPNpYJ+urE2euZ+XORSGQmDYj5fay+JbjQEKFen+3h2+Ee3rvtIPh9Rv+3nQqdl5yrLILhOVmgZBcvXIbY4zVJj/tdI5le/a1AXx37drvtifLY5/bTCzarraHReWS0CKC5q88k4bjQmVXnQVuQUPi/H8M37+IXYp0mNuuu69QO0047n+ozO5zrd43qSM9S5v5JElAwH0Ur3gBvTN32QlS5akWWeo2qNL8uMo0uZtLz9evXce3aNaytrRmglkgk8J//839Go9Ew3h3zz8is0HNiCIu5NOoVOo7jYcoWFhZQLpeNYtLw+nnfdyaTwY0bN0zCO/svUXHzefN/wB+gaR6jn0Lk/WkRkN9xanA0j4ThpWw2awqOLkMIOu2mrX5iA1b7fwVnOu6a4xeNRg1rwER59lJjDmC32zU9tJrNpofBIGBIJBJYWVlBOBz2bK913kIFrpukN5tN1Go1BINB5HI5j2PAMQW8II+v2flSfM0WW3fpWAIwgIcsDwDD4LXbbTx9+hSj0QgrKyvY2NhAvV7H/v6+Ce3p/J4VCOQ4EEBQB9jON+BNnuc4tNtts88pP8PG1tzNhmwhU0dUF/J7J30f16om2kciEcPyz5uNCIfDuHHjBr71rW9hYWEBwHGxGO+Z/zebTc9+4Iw02ABJ0ycYzclkMr5s2aTo0WWIXbBCO2Vfm0366Pu6Tv0KMGwWVJ0EfjcxBgGdfh/PyXQU13VNnvKsZK4BHx8AgYcqViosgg4eD5wMgXAR6153OsHnYcKep9iehSo43WGCjWH5XiKRwOrq6ol2HPa5bHZBx5DGSZUn9zPUUPxFSTQaNT2YAHgW07Tn7QdeNCxre2w07qcZSwWYOueYTxOLxUxhwmWwL45znCJhhyEmMXp+/yvLBxyNO5UggQqZeobLOdaRSAS5XA7AkVFvtVqmGazNfnIMWT3N5sQXJVTSoVDIsJXVahWtVsvk9QUCAU/Ft58h5LPVHGQb+Kko0BmPj0PBnEcMz2noiWCHgK/b7SKdThuDzaRxv5zAWYI+6mRdQ3od+luvTSvHFfzr7iPKcgI40UcSOGno+Zrmp6kRV0dmniQYDHpSbwAv2aF6muFwtY1a+MMffS7xeNyzg9U8iwIvG2xNA322KNCzz2sTBfb59Lsn5RA6jmOAIUO7s5S5BHysHGTY0X4ICtgU8AEnF7Mdo+cEHo/HJrmXbMTXUWyjs76+jh/84AemqIEGQHMRVBH7nWtSGEbf43jSo0+lUnj99dfRbrexs7ODR48enVveFXMGmV/FhsHKgvhdn5+nP2kxq6LU33zP/rwdNqLRVkXMa1e2dNYOiIZT9fv91pQfE6pij5Xml9HAaBEDjXAikcDm5iZWVlZMdW8sFsP6+rph9+3ebGzMzB0FLkLI7DHnTItzVLlr3o7ONRpbjo39fG3ddBaxk+bVQGs/P7Kiruui3W6j3++bHNxGo+HJc74MMKPVisqOTroOBWAKcgeDgWktQjCox/k5a35jTlZIgbYyX/Mk3Ct4aWkJ6XTaONOTxtBxHM/mAnzm3P6RonqRjlgwGMRrr72G7373u6hUKnj06NGFFt69qPD52dukKggEjouAAoGAqdq2j7Wft4ZfuZ6V4eP615QPnoNrUjsNsI8rmddZylwCvnA4jOXlZWQyGeRyObMQFW1zstJQ6sJk2FcTeTnJmVdEwMdNyOep/P5lRQGIiuu6eOONN/CXf/mXZn/PcDiMbrdrDIAugkkMjx0GsBeJAgSGhguFAn7v934Pq6ur+Kd/+idsb2+f25hzCzA2N06lUnAcx5PMr6Ebm+FQ9te+R/6vvzmWk0Ci5hYpgOJn9P1IJILBYOCp8vTLO7ooIQNLRo3frc1t7TE7DfAB3tAlmS0aHX4P12M2m8Xq6qonV0gZKYJA/f5IJGJ69JHdOG8JBAJIp9PG+dSWRQpCCTBUdOwUoOj48FnbBkp/2+fUnFD9HrKhHCcy94FAALVaDcPh0OTc7u3tmdf0XLMU3au12Wya+WKvVx0HbcpMMNvv982G9Mq0aLXkJH2ojgeBvbJiBAqTPn9ZwrSV1dVVLC8vI5vNevb0Brzj5zgnw7eAF2gDXsBHvRAIBEzfvr29Pfz1X//13AE+RinYMF7xAO2TpnOpY8TG1Lb90t9qH+xcbnX82BZJ1z7TJ5gaxZx2Pg/dzm4WMpeAjzlNugExcDwh7QcKeEMFfl6ZzVLQ8DKRfN7o+pcVvVcaTxY0pNNpU1RhM0qqBPU1+9w2FW2fwx5rNs8tFArn3nhSFxMXNr930jXar/mxWJPuzc8YTbv/Sd/JeUq2gyzSLJ0PPptQKHSivYzN2J12X5OMKt+zQY9toJVh0eOZQ8VjyRozH/Ci+vGRlVTGmAy4ri1lbvW+pz1/vzUyTSYxx7Ye1Lw+XheZbgLTs7SsuCjR6+Zzo0HVNlp+TIvtaE66B9tZmzQvdfxZHDgajTzN2OdRmFeXyWQ8z1l1t+2M+jnm00AOx422mLt0XGYPuWkybW4rC6eiBSu2rgPgYfBUV9k6kqQT57HfM9C1qs3Gr0K6OJrQq6urWFpaMnk6o9HIdLCn5+84jmndoCECfUA0nv1+H51Ox+OJs8Rf+2Z9HcQ2NJlMxiT23r1717CjbH9BsKGfn6RQ/TzIaQwX25EEAgFsbm6iUCjg/v375zrRw+Gw6b2XyWTMguOz1iR19dptFk7v0fbkeK+8Xz8DTFZZ6X6/rZ3UYNHQFQoFbGxsoNFoYHd318NoXaQwfSKVSqHRaHh6c/H+tCJSgY5tHOx54Ge0VZRNoadtAz8AKBaL2N3dRSgUwo0bN8yetevr6wboX4QEg0Gz80en00GxWPQ4Q2w6zZ1ktNG0srrAcRGQzg+yABwrjgng7cOnc4zHc66R2dDQbSQSweLiIqLRqGlhoky2Fk7M2tllwRbb2PC+g8Ggyd8cDoee/oy26FrjTkx0Cng/fs1z/dYp86ji8TiWlpbQarWwt7dnzjVvOd6O42BtbQ0//OEPPb0zVWcpC6whSIrf/fg5sWS0o9Eo1tfXDRM67TyXIY7jmK0h2Vya967FndqKyy7Os+cG/+a6se2Vze4TGDOHnd+hhUka3s1mswgEAtjb25vJGFHmEvApGxSNRg0Lx5CFomiddJqsqQYDOFY0jN8Dxw0/L3Mv01lILBbDrVu3sLGx4SnKYG8m3abJrj6y5TTWin/rAmKBwuLiIrLZLHK53LkCvlAoZLZPY7geOF7kGjrT/YPtsKPf9avS9GMO9Thli8moKOPI4/l5Gt5QKIRUKoVCoQDXdU0/xFmI5p7oHrgK1rRhqIq9/vz+98uhssE01/Z4PDbXop8pl8vY2dkxjqDjHOUf0dips3LeY5NOp1EoFDw7gWj4nVWBHCfNW9ReYHrPCvrUOE9iXPycC01T0cR7Gmiy+Ht7e57t2HhN1KGzBjR6zwyLq1NO5+y0ViBczwT8yg7auZOAP0Nqp1ak02lznBZtzZttyGazuHPnDnK5nAkhTmKAJzmzgLcYzY6WcV0Oh0PTJL7dbl/YWnsZoV7XvayBkxFBrZ7n+GhOMe2e7QQpi6/fRwDJNaXpZcqQUjjfGC5nqHeWMpeAjwPKycXGmurB0DPjYLdaLezu7sJxHBQKBaRSKYxGI+N5Hx4eolgsIhKJGHRdr9dNufqrzvBNC8HGYjFsbm7i1q1bKBQKniRvZSMI+HgOP6bvtPCInR8H+Cev8+c8xp0eOndAoDGwvTM/MGIrS/s4+z5VGQIwbCGvIRAImA7/FDtEzu/XMY7FYshkMmYHj4sUfh9D/KqwIpGI5z75+iSj4Td+qhinhd/0PfbZZBPwfr+Pw8NDU3G6tbWFRCKB27dvGweC4PAiQ7o0JARTg8EAiUTCMFSaU6YJ247jeBwAvqbsEsfRj/3Va9B1wnNp5akyEjwPnQllCpk4rlXSs0gf0DWvkZdOp4NQKIREIoFsNotgMIhSqXQCaE1jiXUsJs0xioI5gkoWBbECm8+Z6Q2a2zsvYocobaDrtyb1s/b61HPYzqn9OY1yzJOQ6SZm0NxZv0iD5tAq8LeBHsUeH9tpsMO/7BJBZ5aODRm/i9Zdk2QuAZ/mZAFHSb1kUOhBM5+AyndnZwf//M//DAD4wQ9+YPYEZVHGvXv38OjRI6RSKVy7dg2RSASHh4colUqoVquv1AbRfqIAxlbimUwGP/zhD/Htb38bzWYTjUbDTERN0leGT4260td2WFO9SHro6u3wdV6jslrcbeFlQR890KWlJcRiMXS7XeN5Mel/2nipF3wWr16NK++XhSmJRAL1eh2VSsUolH6/b7zBSUYpm81ifX3dPIuLFNd1kc/nsbCwgJWVFdMXjw16GYoYjUYGJADHLZB0n1yOB3+fxUGwC2Q4R8bj4/1SWRH47NkzbG9v4969e8hms3jjjTdMgQfbcVwkwxeLxQwo7na7GA6HiMViWFhYML0LWWnMOUe2vFgsolQqmXMBxyygDfx0bOxcZHXGOD91r13Vi3yf4J3v0whRX/K9WeSMqj7gOPT7fVSrVcRiMdMP9PHjx9jZ2fE4pGQj/Qw2x4tRoGlOhc43tihhsVAsFkMulzMGmPs4M++Z4fJ5KezTfDUFHdNC0DbQ09dUB6rzr8fy2Wme2ryQJHRgs9msifBo2zYFfQqMGbK2Q7+2nePY6rho2FYdesc5bhmlnRcAGAfQcRzDJs+6qfVcAj56o1RoGiazDQUfUK/XQ7FYBHC8ZyJw/ECYS0ZDxoc8aS/Ur4NwstNoZTIZDAYDNBoNj0GZxMJomMlPSdjAj5+xDb966lRW3O7oPBQHmRgqZwWr9n3ZXit/n/b8/e5XQSLZAE3GpeLRYyed164yu2jhtoKRSASdTsfk7016fnx29FSVHdX5AJwccz/RzzDswjHUNgh07hhOajQaqNfrnmbMFykKODhXCabIjCqbzPc0V1TvGTgZ0gYmFxfwPXsO8fvU4PsBR143daXm8Z2WY3leYgNXXhMNIJlmsmwcb97bpAIOyvOGpXleAnUyQ7bNAE7PQ70MUdBivz5J/NbktHVqn2ve7SPXnvZatJllP/1tp1Zo2s605+7HoipGoS3gj71GFd/MUuYS8LGZJquQND9DQxbq+e3u7uKXv/wlAOCdd97BO++8g1AoZMJ87OSfSCSwtraGYDCIVquFra2tr2UfPtd1cePGDVy/fh13795FOBw2oWtONnb75u4XgBec2b2s1EP3A0nKBHJnDoZH+D2BQAA3btzAj3/8YxweHuKTTz556cRV9vnLZDKeMLUCElZ7KytnKwe9Lxsk+oU3+B4dB+4lq0CWC30SuOa5U6kUlpeXUa/XL9zrCwaD2NjYwDvvvAPXdfHXf/3Xpt/W+vq6Z7/YWq2GUqmEQCBg9kzmM7bHeJr4OQD8W9lWPp9QKIRbt25hcXERrutiZ2cH4/EYv/zlL/HJJ5/gzp07+P73v2/W7kWFKP2AL9v/aLibDY/t5O16vW7YNQ0Lq3EgeOP3ATAMBAAPc0M2gbmh/X4frVbLrDOuW3Y5oDPM+2Abm3Q6bZpFX3S+KL+XRplj02w24bouCoWCCdUXCgU4joNWq4V2u+3JkdTzUSexKGU0OqquJdNnj6fNZjE0f+fOHaRSKdOTleOtKRuXWdXsJ+12G4eHhxiNRma89P4UMFP8HF+/sbGPd5wjhpgFNSRM5gkAcn5pGyfOEbY/sZ02m1239bKubWXxdC7YzB7ZcrWBZBx7vR4qlQo6nY7J4WPD/VnKXAI+Kk16fDYK58CrwS4Wi/joo4/gOA7K5TKA49BwMBjEysqK8SKXlpbgOA7u379vFN7XEfCtrq7ivffew7Vr1xAKhcx9EphxfAGcMN5+4MT+2+87+Wy07xEXFcNQq6urePfdd7G3t4etra2XBnwMvSWTSbRaLcNU2Qm7yrhRIfDzfkwMx0X/tu9fGWSGkpUps8MsfoAPOGqmms/nkU6nLzyvw3VdLC4u4s6dO9je3sbPfvYz1Go1/OhHPzJ5Tdls1mx/VqvVEA6Hkc1mPcDfBi0qtkGYxrTq+zxnMBjEtWvX0O/3cXBwgGQyiUajgY8//hidTgfNZhN37twBAHO83VfsvIX3mUwmzdZvutVjt9s1iePs6dZqtTysmub12cy3is4ZNbLKinK8Op2OJ52C648gkykFujbZGmkWOUTKLBL4sWsCiyXW19dRLpeRTqfR6/XMPXHcbdEuDXbzWr+qSgrHbjgcIhqNYmNjA9ls1uxMAngZvlkyoWeVbreLarVqUmJUFAxPk2mMqa2rmG/Jbfnm0VYy9YRrjE4R0z1sRs7OdbRtm64N7dVns+Y8H3Bc8cvroOPlOEcFkqVSyTSV13SBWcpcAj4i9kn74elA1ut1VKtV00iUHi1bFKhnTMXM4zTMO08ey4uKPYFzuRxu3LiBhYUF41HbyaV+ikHPwf+VDre/i6LntcGAelfxeByrq6sAcC5Nc9UBsGl7fZ/3riFJP2ZvEjizPUB7HGgwyOLYuZB+4QUNE9qhpYsSApFyuYx2u21yztjbi2BgPB57WHJb0U0Te75Mel+vib8J1DOZDAAYL911XbMfbygUQqvVMqDrPNevhmZtVoBOZCaTQbfbPdE0WHPzmCtG4xEMBk1Bj64PO7yjawbwNpK3q80Z7tbKYD2XPi+GmZgwznGehWh0gPdoNxmn3qcTausPPzZZGUNNnrfZF/7WMSYLQ1Bg5zPymmdtlKcJAX6xWDTP39bXXCunrT+/c+v7qqsm2Yp5EOp3nft8jSyd7ixjO+D2b/0858mk+9fjbT1hR5VIDJCFvQzmeC4BH8N/ZOfUaALwNIL89NNPsbe3h8ePH5vKq3q9jsPDQ3M8wyOkU1kJ2W630Wg05ioh93lFFZiOUSAQwJ07d/DHf/zHAIBOp4Pd3V0T1rYXM8/BiWkrOS4QTVa1FbB6wzRMumA4xouLi/je976HJ0+e4G//9m/PZQx0ayTN+eS9MGxthyTUoPg5F1z4/FtD2vzNv2u1GoCTvf4msQXa8Z0M5SwYvuFwiP39fdy7dw/j8RjLy8sIBAK4efMmNjc3jTIaDocmBYKiu0cAJws2Jonf+wr6lBEdDAaIx+O4fv06UqkUPv/8c6NAuaF7KpXC/v6+YXimGbfnFeY3plIpADA70bCNQqFQwPXr11GtVvH06VMPw6fgrN1uo1qtGpYtGAya3p96rWTjbBDM8WJxFVkxAIbl7PV6qNfrGI1GZm3TGdbw5Xg8RjQaNS1MeD2zaKTL9aA6RdtsacI8m2nTIeda0GiB6h1uUzUajcyWcQR/gHcbTtvJY+FPMpkEALRaLZMiwOO5Zdk8gZ1SqYTPP/8c5XIZb731lidHk79tBn5SBGOSKOCzi/bmUbhmWURFm8CCHhZokGHXZ6yiTDixh+ptG1Rrji+/ZzQ66jZg7x/PtI94PG4cjSuG7/+LXRGjE5YLkQUIxWIRjUbDGFb1rPnQFACocbnoMNCsxGazWClUKBRMDkav1/P0OPNj8Kade9rrtqcEeDfy5vGj0VGz1Fwuh1qtdi4GRxcfv8c2DArm7PdOO/c0pkDZBxpWm62xr1OF18FnNotCBOAIMNRqNcMskvWJxWIe0BwIBEyrFhrTSXKW8QS8QM9mZPW5EKCQ0WOPOQICAh713s9DyPxwbtr5PgyJUsfos7aZSrvtA4vE7O/T5tz2nNXohG4JxXvX52IXPeiPMo00RLMyOAogdHx0PmnodxKjZwvXDfubaSNdis2Y6jX59VHU9+eR2SLITyQSJ3rIvsz1+tmAeR0DFc4tnfu0g34dAXRencbaTdL/fscqwFann4yf/f5lsMdzCfjoHTebTY/36ziOUcQsn//444/xm9/8BltbW+j1eggGg2g0Gjg8PDQNSDkZaCx4PnqRdoXbqyT2dedyObz55pvI5/O4ceOGmWg0kvF43ITwSEPboNcPECqrM+1aeB4/I6gtYNLptGl38aLCBa3VksDJknm71YV9XfZvvZ9J96ILVc9NkKTMtCoA/ZwaNc7PWRjh4XCI3d1ddDodhMNhpNNpxGIx3LlzB81m0/TAZHqEva0ZGaJJxsEet0nv+TkMBM4sRmAT9vfffx/1eh37+/uo1+uo1Wp49OiR2Uv1PNcwt65KJBJwHMewAzx/PB43IV2GkdgihmPJllHpdBqO43jydeycZL6mwnnNv8nU8bVEIoF4PI5Wq4VarWby91g9rM2s7SIbOsyzAnzUv3ZKA4W6mLtmcFx1rvix7zx3OBw29z8JoHC8lXEPBoOGFQXgKWCZZzar0+mgVCohEomYkK7qMGUknxfA+elCrvd5zd8DjteL5vLF43FTnFStVg37puNlO+587grYgOPx8CuIUULJztmmw0xHXiNO/IlGo54efRcpcwv4Op0O2u22p0EhFSkNZ7/fx2effYZf/vKXnpy9RqOBcrmMVCpllDYnAgEkAMNkzFvV0ctINpvFt7/9baytreHatWtm4rKCiaAXgFkApKIBnGg1AeCEcQL8lbBf3ozNeIzHYxOuZ27Yi4pf3gavQ69bAZ+Kenv2a/a96j3Yr9vgWHtkcX75eXSqOJgzNoscvtFohIODA+MU5fN5JJNJlEoltFotM0dodFnlGYvFTrQa0XvR8fBTqPp7GljUqudAIIBUKoV33nkHpVIJlUoFe3t75vd5s3sAPCDYcRyPsSPzmE6n0Wg0zLOOx+MYjUZIJpNGX8XjcRMWJuAhELPBh18lN+e1Og/MN2M7EWUQbcCn6Rk67o7j3cLuooVsiw2ibEBHkMwtMPV9+zpt8MrjJh2vjq2uOTrAwHHoftI55kW63S4qlQri8binQMxmsih+zOak/wlKVOiEzfOOVLQFWgnOdmS8p0ktstTeUT+rk0Th+3YkyU4h0sgW574WR3LOUt9zD/VZjO9cAj4KB7PX63n211RAyNYCyjjoQ1AFagOZV2Ein1UIfFKpFJaWlrC8vGyMEEGIjp96JYDXw7EV8/N4g36sGP+3FRJBBCvzNAH5LGKHgOxrsj25SfS9n8dn35f9mUn3Ouk77P8nsRzKBJ43kLGF64TVxc+ePcNnn31mmpiS5ZvEzEwCfjaT6id+AERf1+OYg8sChWazaVpwXATjwDChJnyrUmcuHQFYNBo1vS0HgwFarZYBdzyHGhKdrzYYmzZWOm9oMDTsTEOi4WE9h1bJKqjUPmEXIbYOtu9bwdhpDrit01lBqrlZk9ah37lsEGhf97SE/csSghctDDtN7PlwVuHn7LSGeRSNvpBVZkRwUn62fo5/a+6iRm78Pj/JBtLhomPl13NvPD6OBs0qrWyuAZ/jOKYEnZVxkUgEvV4P+/v7xtNn0jIfChkrer1UcqrwAJiw0Tz24TvNCKi47lFFYzqdxs2bN/Hd734Xr732mun1AxxXwzqO42lbwvMTUCs7pd/vN1ltRs/OkeSE1vY5qjwCgQBWV1dx584dFItFbG9vP9eOJ5p/psyZ35jZIV0bdE0ChvY4aUGFn6fI3wTWeqytkKhYOE5UDmS1/fK9zlsGgwGq1Srq9Tp++tOf4je/+Q2i0SgWFxcRj8fxwQcf4Pvf//6JnRLsCkrAP8flLELmme06CPwJjrrdLg4PD3FwcICdnR08e/bMw46dt7AymXmDzWYTnU7HKPFqtWoKRrLZLGKxmAkZ0UEFYBK0aaBHo+OmzeqU8rwq9rqz5xZbw/C8LMJIpVKeBuQ8B0Esk9g5tgw7s+L4Igw6v1+T/zX/kXqYuphjrWvTj7VyHMd8Zjwem51QFKgpsLR7jfLZhkIhD7NH4ZhN2sXjsoROBauz/SIwfjLJUZ10rLLu806MKIlAO8/UC+pXiq2nuAZVl2nusp/zreewCYPxeGwIKWWtaRPo4IzHY9OrD4BnL/OLkrkFfOr9cbLxYTLHj4UItrJUalUnrnqZfEizolIvUhznOMyUzWaxsLBgWrFoI0hOOCo+22jbCnJSWMD2ZnTSK6hTb0k/p8wiGb5Wq/VcSpXXaid56zXpsS8KRvS6T1OQ9jGTQPskhk8No1+PrYsQNRZ7e3vY29tDNBpFpVJBIpHA9evXT1zzaSzmWZ0V/YydZ6bzUhu/ct1fpChTZocCqTMIMpgPTL2koSMyfJojq8wBcDJNwE/8xp3shR0qsl/Tz3NeKWvF81C/XhTgU/1is2aaI3bWnGpl+Bjd0ZYX0+YqhUDZrw+rfb3zJDonJ7Fu0+77NAbUDxBddLThPIXPTdeIn36i+N2b5vBNYvImjaHtxDHErA6+Ov98bxYyl4CP+XrJZNLk3DHe7bqu2QqqVqudYEDG47GnDx9wjLrtBULF/ao0XlZ2RSUcDuP73/8+fvjDH2J1dRWpVMoTgrIBiz151biyyaS+b8skg6/gS40MDTnHmUwIPZoXDZvohtnKHOo12eFpO3nb9tQofmPkN4b28fzbTg4+q5B1SSaTZsxmLWy2TNaHxVBkIckQKVjxMyKTAISyymTHPv74Y9RqNSQSCaRSKeTzedy8edO8/9FHH5l9ry9aqISDwaBvcQrvm947d5JhH0auU8c5KtbQ8JvtcHL+63frvHUcx+QmMX0FgAFoZDIAIJ1OmyIRghk6fGQsotGoYRsUfF20wbG/T5Prq9Uqnj17ht3dXRwcHKBarZo9khmynmSQtT+k7rSh7BTnJced19BsNvHgwQOkUimUy2XPvGQEwgZ+8wB8+GwJku1w4Gl69Cx6VoEJ585lNAqeJrQvBHV2UZwWTNAx8Is4+THHjB5xHvB4/la7YadrjMfHDdcZAWA+bzqdNjn0vEZtJXPRMpeAz3WPqkmTyaQZLCoI13XNNiXTAF+r1TKhIQV8SusPBgOjRC97EZ8mOrHsSRoOh/GjH/0I/+W//Bej+OwEUjsp3BYqM79cAlV8ej1+x3HR8VkpS0OgR0+cTWvthXpWUcDHe1Rg5pePqKwn8570fmym8jQF7/eegiC/c0w7Hys+GWa7DGHYkj0ttQcdE4yV0ZoW6vATvs5wxsHBAf7hH/4Bjx8/xvXr13Hz5k2sr69jNBohFouhXC7jww8/RLVa9S2aOe+1q8VAdpsPBfOsIObYKODjvGdonuHGSUwm78cPiDHUz16iXKc0TIlEAoFAwDD8g8EAlUrF852sAo/FYqYYZlb91fyYPTXUlUoF29vbePr0Kfb3900/PWVndA3xvjVBX5lB+344xtrTz3VdNBoN3L9/38wxAnIyu36Abx7y2BTw6Q4rZ32O05gp+30CPna3mCfARzvDtaosGnBkH7jzDceMzxfwL8LjONK20EZMAoc67gommR4xHA4Ri8VM6gQBIL+fObQacr5ImUvAR1GQoX/3+300Gg00Gg3fsJcqZfX0+Bp/s/3DZYd0zxpKsY+JxWLI5XLI5/MmyZ7Ayg7n6N9+TIy9yPnb9pL9Pq/XxbG1wQqLA2gc/Tyy5xE1hnbfOzWkfiGkSfdtiz3eevxZwyiTrsX+Dn1eNPCzUgJ+wnVih7X0ev3mx1lE16RWMQcCR03Rq9UqUqmUZ22fBXy/rPjlfWm+Dd9TJptOJA2JXp/OOxuw8H0CFD5re47xGWiVK3UX1znDytrIlaFKO5Rst2Ih8Op2uxcK+vzWgZ3Dp3v7EmhoLqKK5vhx7OiE8PsmCcd7NBp5dmvR93Wsgfmq2n3Rdafi9znbDun3zAOzaYvferRZ2GmOvG0bdb3SSbJJAT8HQJ8Fz0diQ/tl2nPJby1ctMw14KPCs0udq9Uq7t27Z7xBWzjQ9NKoEEjrktFrtVqo1+vGE56VKFtnK3cbAFDUG+F7N27cwJ/+6Z9ieXkZd+/e9Xi5aiT0M36gRa9HQbGCZo4lwZWtjAnyCOqazaYB02zrwUmdy+WQzWZN+4UXFe64wE3ieR2auM3nT6rdpt/V+Ok8s3NA7XHyAzx6nB7D8xCcqtLxK3JhWLNcLp/ZGbgIIYiJxWKmYbeGw23mxG/O+oFmPnNVhktLSxiPx6jX6/j444/RbDZNMRZTPDi/7ATr8xgfzX9TUMT0kOFwaPoT0mMfj8doNBro9XoIBAKG7Wu326ZAg0aDuX0APAyDGm3bcWIonc+A3Qr4HcViEaPRCAsLC3Cco63xuJtHrVZDo9Ew4VuGfpPJpGdHGO4yMR6PzR7k5y2c5zRsHGOGdGu1mgnncoN5Fi/xOSh7zyhGv99HJBIxu4cwnEv9r2yfzQ7SOd7d3TXXodenek9tzzyAPtv5fl6wMAnsKVgBjp+b5ljOE+gj88goD1ta+RE+wLFtINNnkwGcG67rmp07uO4VBGourBaPqWNMjFGtVnFwcIBGo+GJJGraCOffLGSuAR/FRuzsQ8RcD79jba9cQQzf80PfsxIbHJxFbDo5k8ng7t27WFtbQy6XOxFiswHKpO/W43isn6enxyorocezSpGGkGEo13VNJeZoNDqXrWW0snVSuNtPKSrDouPvx8ao0tD3bSNiix9wp1Gxgb1+H1nLWSqBacLrIWBWsKcG1c4r9VtP9lhqfzvmuFSrVRSLReRyOZO/SFA5Kc/lvEAxFbB+j1bYat4Yw4hkpBzHMUybppJoCFdBD8eDIJ/jq06dOi7af9R1XQP6CIZpODgWXHcEQQq01FFj5e5F9uSzDbDqD8dxzPZ4TMPRnFF9tvqbYUzguMMAx1GNsB8LpuwNc1Tj8bjpz2ozfPMEclR0LVFOY/0mvWfrQZ6Lv+eR5dNnbjvvfgwff+s6nMTeaW6dsu/6Oa4jPzvKdcdWUqw8t4kXXdOzkLkEfArGtD+XDiyV7iRja3vPVNRk9liwcVk7bajXqNd8mkQiEbz55ptYX1/HG2+8gc3NTeTzecRiMeOB2RNRv8fvfz/QQyMDwGOgdGsn3RCaYRHtDRUIBAyrQIaLr9HA1Wo1HB4eerbGO6uox8XrI6AnoPALC01iUXn/aoxs8VN804CfrZSVJVPwpI1y1YO8bOE2Yv1+H7/97W9RLBaRyWRQKBRM0QJZJ3W+TgMPvGfmm0ajUVOkpWuCc2Ia4DsPofLVfCDOcwVOZJCowMk0hUIhZDIZ0/Sd+3UTBHJ8NEFb1xUBiIIjzR/i+uE6Hw6HaDQapvVEJBLBaDRCrVbzsOv8Xm49xvHl+/yf13kRos42x1oZdh1HfR6TGFwFwIPBAOVyGcPh0Oh1LcZSw2w7HGQKh8OhhyHS/GMbqM5DcR/nqRYrvIj98mMs+axsW8uijXlwQlV0LvHaeP1qkzT1QlMpbB3L+yYjrvneWqnPY3Wc9H/NU69Wq6YNEYtI1C7NEkjPJeBjOKPb7Xr2fgWOFfM0wOcXBuYiAWAqEMlCzaL9hcrLPOBoNIqf/OQn+MlPfoLFxUW8/vrrnq1ZbDYKOJtXR+ECIBugx5C5Y1I/k6sZwlLPnYU2rDhVlk0BX6VSwc7OjjnHWcU20IAX8AEweUlkQVTUoOprOm5+C3Las1Pmz1YEqlw0REIlomkIs6b5p0kkEkE6ncb+/j5+/vOf4+OPP8a3vvUt/OhHPzLbUrFoRnOvgNNDYFrMwO2tuLsFAM+zvOg8Fxo2GlLdnowsEJ8jw7xk+IbDIaLRKAqFgmHXuC2kevys5tUt0zhfVGepE6Bzkf0B+/0+ms0mGo2GWWvxeNyAn3a7bVIr6DgPBgNjuMk8MCTKooVZAz7qb93r2wZltoHluJHVpB5Xg6wOm82wqh4ajY4a+PN8fF9b22g1/6zyrE4ThjJZkKDtg4DTWT4FsMrcc6w1bxQ4YlDj8bjZaWdexGaL+czonGlxCwGfOv96/zbI5V70/AybKPvl9PkBSH5vo9FAqVQy52H4WQHfLAuB5hLwAd4NyzXODhyHDSe1U7EHUUGisimXRVEzX4i/GUrQ61dRcJPNZrG8vIx8Po9UKuXJJbAV42kG14+ZUkWrCoSGzAYqvDYdY5sp0YRz+/xaafa8z2KaElbw96Ler56L13zWz571Geh3qSK6bOPCZ0nmhACj0WiYlkfPO7Z+92lXiwLetU+ZxZjY36FzSFk3Zf0I+Oy8Qj+xIw9cM6d9VplOO79Mn4GyoAsLCwb0lUolA8S1jQmdi4sG0nrv+rqdW23PJ11D01h0P1B4luvSiIV+t988tJ3oyxTN/7JtIzDdwafOpPAe6Wzac5nslh+RcNnhXQV8Cuwn6RI/u6pzS3/TAdTxsp1/exzUTti6S6/LXm/feIaPoRTmwmhOk+seldM/efIExWLxRBNWLl6tUCOydl3X7Nyh789a4vE4Njc3kUqlsLm5iVu3bnlAm3rDnCD5fB7r6+uIxWJYXV1FLpcznofeh3ornGS2KOCi0rdbNHQ6HVQqFU91rSpG13WRSCQM88DfmuDqxzSqZ93pdNBsNlGr1V7Iy5mk+Ph9usuIhpAUaNgLzw/EnAb2JrF5NCjTjrHDMY7jmH5pL1PQ8jxiK65gMIh0Oo1IJIJqtYrf/va3KJVKODg4MDsisIu8neCtDtok4ffEYjGzP/b+/j4AeFol8VkEAgFPH85J1/2yY6B5cAyH8oc5cYFAAIeHh3j69Klh8sbjMeLxOKLRKMZjb6sFZVIIcMi2aRhRnVBNiXBd11SxOo6DVCqF0WhkwpdsQeW6LpaXl7GwsIBEIoG1tTWEQiH8zd/8Dba2tkzYnE4iASvXj47neYmuNxvE85nSkWRjbTtcxrVnr1N1EMmYUrTpLeDtW0qgyXNwXLk3MdkdAMax0ab/s44G+QnZJ+4GY6esTAOm1NOO4xjShJXxui+16x7nXOszZNES18RlCplZso/RaNSAVyWH7PQZXZN0ajlHtGsAi4E4XjrvuG7VlvrpIXbSoHNIPHPRKSqTZG4Bn/bMsxOpOUH9+vABx6EgDSFwYWi45LLyMUKhEBYWFlAoFPDGG2/ggw8+MODN795d18Xa2hru3r1r+nFREbEvlwKe08AJx9GPRdVwB40Kwy0KVhhOYI6XGjCemwtElaQuHBqsF1UcNrDkaxR6quqhKqjl/+qh+TEM9nhOYhPUSGnulX1tk45TxvQyc/i0+q3T6eDp06eoVComBWISKzvNU7UNNtckt7VSj9zOBeWYXHQOn4YC7TxL/s1waq1WMw3guX4499W58HvWzKcjMNQ+ahwD/RwdWBpbGiStoGR4tlAooFAo4Fvf+haSySQ+/PBD81wY0qVzqc/vvMdV1xpwcm4oiLDbsfDzuiZs0KchONsx0u+yx5LnJnijXtM8R00VmteQrubUcRynCa9b5ybD+gyLaystFtdpmgM/HwqFnjvqcRFCh1+jSbRpSi74MXM6P3Xs9JhwOGzmhM4Hez766T1lCbnFqV+0S79zFjKXgI/JtNzjVlkc1z1KfGQLBNu7o/CBcpDVeLxMqO9lhPeRy+Xw+uuvY21tDdeuXTNMmd+i5X1Ho1HPVnL2xLaNi62g/FgrLmIA5pya+8PJHY/HkUgkjKJUA6yJsn7er220qVzJjryMx6wMn/36JC/XHiOOjYba/L6Hx1Hsv/VzHHs+T1vZcMw0H0aZWYb5Z5Uv4wfGmNu1uLiImzdvolwuY21tDf1+HwsLC8hms2bfVlaskjmZZBTtsVfwUygUEIlEcP/+fTN27XYb9Xodw+EQ8XjcVOdflKgzoOxROBz2rLt0Oo2VlRUDmobDIer1Ovb399Fut02TYwIrFuLQUOpYcA1NYtk4Riyw0P09lYEkEK1UKhgMBvj8888RjUZRLpeRTCaRTCbNs+I9cc6RESHDdV7Rj0nOJceaBpqgVh10XZM6Zsqek3FiSoxfeNZPx/sZ20nPws49nAfAx3W5sLBg8qFV1/iJgm+SBPV63ehgMsqANxKjRQsATJFQs9mciw0L1Enjj+Z0K+Fg630K55Ieo+2V/AgDzpNJ4W6ely2V6GyxEJV5wrN2IuYS8DFviMqeg8MHm0gksLy8bMCfLfpwVLlRUWpF5CwlGo0iHo9jdXUVP/zhD3H79m1PWIf3pwCXSojbXalBpRGxAZ8fE6JGzKbsO50OWq0Wer0e9vf3TcI5Cy/YHZxKGoAxdDYTYvfc4/fxvlzXRavVQrlcNtWMLypcREq583uUXfMDwjYjqhVcFD/wYnu1fgzXpBYBFN3FQY0KjSznySRn5jxFx0VDifF4HOl0GtevX8cHH3yAUqmEBw8eIBgM4rXXXsPq6qrpR8fQLpOa7fPrb8CbI0WluLGxgX6/j88++8wAgFqthmKxiMFggEwmg9FohIODA3Oe8zQ2fPbK8DF0w83P6QQtLS3hzp07HiX+i1/8Ao8ePTLriuFdgieOjeZIcW1rzzkFO2p82DqExS2u6xp2vNvtIhg82rGCc/vJkycAgKdPn5rm7PF43LRhIbijkwcAqVQK4XAYtVrtXPYrVgNoJ8zTEI5GIwNS1egCJ3OmtPCO4xgOh5HNZo2DoD34bBbGnoM61koO0BHm2KtumAfAx3W5vLxsnpkf4NMxoB0km9fv91GtVlGtVj3pOMDx+CvYIeuZyWSwtLSEYrF4YuebWYuuIT4b/Xs8Hnuqv/3SfoBjp0qPYYEiiQyuKwV8WsSh51bnJRwOI5PJoNfrmV6a1A/dbnfmRTBzCfhssR8SB9vuGq/H2kaXYlfuzMpDocKgh83cg2mgxJ7AdgKx3u8k78W+BhV6NhoWshk5u9GkMnoaVuH5/ACR7aFrGOdlmAT7nu1wrB9YexkvXcf8ReeN/dwo6mXqeL/Md72oUMHrbh+O4xggynA+FR6NNZ/vJHbFnrc8hgZJc3K4hRu97Enr/TxFAZ/fmGgYlo5aMpk0gKnZbJr2MqFQyMxvGgWNNNjnnsRKc15o6gU/w/f5o7lrupaZnwbA86zU4SF45Ticl0y6HwAmf0qBl32s3/l0fvF8fmzgWa+Jr6nh1vNfNos1TfT+Af+CMb0f2j9lrCln0W+RSATxeBz1ev3Swa9t96hL9Bk+D0OrAPm0Zz/N5k76Dg2nK+M6S5lLwEeGgX25gJONSCeVidMwJZNJs0mxKsNWq4Xd3V2USiXU6/WZ3hdDPWQclSGzwR4ND8Mwen82++dnRPnbDqdywg2HQ1O80mq10Gg04DiO2bie+UK8JnpJfqEWTlwNt1D0WF5zo9HA48eP8ezZM7RarRcaSwXQ/M5JISANPetY+YVWec2qRG0gOY3h4zhMAvJ+SoqgiaEVMjCzYPj8xi0YPNojNpfLoVwu49e//jX6/T6i0Sg2NjawtLSEVCoF13VNjykaAnq4mj/JcZtkgLguHMfBa6+9hu985ztIJBKo1+v46quv0Gg0UCgUEAgE8OjRowsZB9d1zX6XZLYZEmKxxsLCAtLptGG7Y7GYqYbtdDp48uQJlpaWcPv2baRSKTx9+hTFYtEwhcFgEM1mE+1227NOOBcngU0yVrp7BJko7TzAOUujPhqNkM1mkcvlzN7MOzs7qFarZq5pHpjruuh0Omi322g2m+c6vpzr7E9I54FgeFpOtY6JzWRxNxF7DKYVPPkBbjrhnJ8ECtqUf14Yvnq9jsePH6Pb7eLw8BDVatXYBcBLemgBCptbl0olky/J6IgfaLF1QygUwurqqnHSt7a2fHPoZyV8bhp1ouPCtcScY3UK9POTCBOynlrMQYeNKRrM8aOoA8LzdDod0yeS9pwFaKpjZsWUziXg44NUsKMDyQTpSTs18LM0mKoIWaVbLpfR6XRmel9+StqvqIG/yYaR/dDwrU0j22IzCQp+tAE1lUCj0UAoFEKhUEAmk/Ek6mobDrvqlKBLwSQAX/aU39/tdlEsFlEsFl8qpKtjAfi3veAY0cBOAl38vJ3A68c6TGKw9Bj7Ov28blWqBH00VrPsw2ffjzJtzWYTDx48MPOvUCggnU6bijgWMGQyGaRSKZPHp8+B9+33vfxOzvGFhQVsbm4iEAig3W5jb28P3W4XyWTSKPSLEOoU9snivCH77bpH25Cl02lPg950Om3CvcViEalUCqlUCrlcDru7u+h0OkbRh0IhT14QxZ7H9hjRqGiRhbLvOpacSwwl5/N5kx/Z7/dRqVTM/rEcd9Ur7XbbN03mvITjCcCEIgmwTmPS7PU4Hh+F7GxwShZ20mf8hGtOdYCOve0wXqZwW71gMIh6vW4q5pk3ymvkfAZgIirsjMAioEmAz09c10Uul0O/38f+/v6lMFQq6ijZzLGdeuQH9uxz+Z3bdk7tCBiPmcQIMreW5yRAVRJCHZWLlrkFfHZsXh8IvRm/SkZ63jRK9sMYDofGi521d6L3QPBEw8HJoK0clMGiElP2zw/s8Hvs0A9wBAJbrZYHaDrOUbI2vSImovq1NeB324DKZrRsQ28/v3a7jYODAxSLRU9l2IuMp4Y9p7FJGsrivFIDaXuAOpZ+AG7Se/brNqNFhkZzQWzWYlpT8VkJr7vRaKDZbCISiWBlZQWRSATFYhH1eh2DwcDsZ726uurpyM+8PjtR3/aiKcr8rKysmM9pGxgWcQHenKzzUJR0BlutlinSILvDOaNAnGwYm4YPBoMT+zrzvATLapz85of+z+/k/dHh4jHc65MtVobDIbLZrCfHTXed0HnPRrpsh8Lq61arZYDBeYmfw0S2g4DvNOBg6zDV5+rAKiBWlkXnidoD+zv4bHisXutlpVf4CZ9hIBAwjB3nneM4poKcLUFc1zW7r9jRpElgz3Yg+LlkMonRaIRUKnXp4FftInM4+ayUVJnU31FDrHQ6AG+khr9tB53kjW52wLGijgeObR11I/WHfZ5Z6fu5BXxUrlrKDMAMUjQa9WyuTXFdF9lsFisrK8hmswC8CLrf76NWqxmGb9YLmBODydZkUkKhkEnA1Uox7ZVnb3+kE4yejAJCrVBmPlGlUkGxWDQKNxAIIJvNIpPJwHEck9vBvkHA8Y4Ak5gye7LahpgLgK9XKhXcu3fPbCr9oqKKj4ub16ahXN4/5w7HkQtcGZdJAO55XrMNjA1KOZ81CZ1sEoAT7PZFi5/xIyDd29vDzs4OMpmMYYu++OILfPjhh6YtSa/Xw9tvv23m0sbGBtLptCecYlcAcoz47OgFp1IpvP3222g2m/jqq69QqVRQqVRQLpdNsvmk634ZYaUtgQJ3ryEgYRETq10Zzt7a2kKz2USn08HS0hJyuZx5bhr+IXPIwit7btjjrjqADKIC0FQqhaWlJROxAIClpSVPpS177en5uB1eLpdDs9nEw4cPUSqVDFPG3QHOQyaBPd4rQ7r2PLd1iep+u2E+UwnozGqlrt/4+gnBnrYbAY53fLrMnCs/IWAPhUIoFot49OiR2epwNBrhyy+/xLNnz5DL5bCxsWHmq+u6EwsY/MaGtkUjO+z1+Pjx45npp0nCdRWNRk2rNl5jJBIxzouuG7VjdKxtnaIsuq4d2gxG3XTrNX5WC7Icx0G1WkW73UYikcCtW7eQSCQ8BAP1SrPZ/OYCvkmi7NGkiUoAMmlDcII+GqJZinoUvBZesyp7VS52grUN+PzE9mTpobGCjSEqZfUYvtUQs55Hv9sP3J1VCHYZSj7Poo1J16RgEDjZZsX+7XeOSd8/6ZpsFkeZRL42KSRvJ49fhmhfK7IFnAfdbhelUsk0y+33+6jX60bBElhPY0AnOS4E5JwXykZfZK4L9UK32zU/Ws1vAzSmW7TbbVPRSpCu98P71Wd6GlCdtNZtYxSJRDzjorqCn1Fmj6+pPmC0g5u8243cz1sU7KojqWM1aUz8HDPNtdIcKz8Wb5rYOk3HcNZ24jRRVoiFTfyh48Lq20wmY3KC2dLHBsK2+EU6+DmG++2q8ssQziE6k1wHtv30e35qc/1sqs4Bm+Hj+9N6pfJ4XhPBMbsz0DE57Vmct8wl4KORoTGxH8K0waH3WygUTE4DB5bKWMMYsxLHOaLDtRs+FTbbKbRarRP9uDgZ2E5BDYeyecr02Z7ZYDAw3nsgEDDd9skoMncHON6H8CxKAThmIPVa9X0NjTCkUKvVsLe3Z5iFFxV65Wpk9Tr4GlvOkKmJRqO+AMJW9HqvZ1FqygzYgG84HKLZbHrySwmqNARgP9fLkEgkgtXVVZOg3Ww2TTsQjmM6nTYGh42SW62Wye2blFs5ybDzWXGslKFRJ+2ijAvnJfNaDw8Pja7o9/tIpVJmbFhUNhwOTWuRdDqNXC6HaDRqwO9gMDA9uADvHt+TgIk9BxXYjMdjs15CoRDS6bRJUSFg4xqjA5dOp1EoFOC6rsnhevjwIf7pn/4JrVYLlUrFAAWO73ntJmGDXP1xHMcANTLwtkNpO/c2c8cUgHQ6beYOt71jMZjt/PI1Cl9n6xtNoyGoV317mU4Yvz+dTmNjY8M0Rt/Z2UGpVMLTp08xGo3w7NkzlMtllEollMtlRKNR3L59G9euXfMUG/jNM/2fTrKGKbkDTy6XM+2KLmM/euAIPLHHJCu+gePemdwGkk6ojR1UR/mFfVU32wCS7Zo4b9Up1LnCwh+uSbJ5JF9m7UzMLeDTkITKaaBPc/g01EiFCcB4tbOcpI7jmJwKel3hcNgYGMdxTPWeeuv05DhZ7Lw+gkAKu/KTfWA4qFarYTAYIJfLoVAomO152JuJ4W0dXy2Y8TO0thH3Y6aUZSSYZN5JpVJ5KdDNMdBcJ1sx83ubzSaCwaAJfQDH1Y9+zJ7eg70oJ7FW+r7N8NAwU7EQ7JFF0/NMYv5mJSzOWFlZQbVaxd7enql4Jzscj8cBwFQIDodDw4ypkTwL2PMba32WAHwB+nmCPxag8J783o/FYuh2u4Yd7/V6xmmLx+PGkeK6o5K3Wxnp/JiWrG3npJId59pMJBJmh4RWq+XZApG6L5FImB6GpVIJnU4Hz549w6effnouvfYmiRo+FZuZ43pg6Fl1th/bYufh0vDSSWCxCuebn9NhX4s6pOpA0mCrTrhMwMfxTCQSWFpaQigUQrPZRLPZNPdPx6XT6SAYDKJYLJpGzRsbG2bcaWcmsXl+P/zuZDKJVCplWEMN+c5S2MvRbj6teZ12SFfFBma2/WO6iV/ON7+bjKc9V3lejRLQ2adusNMTZjJmM/um5xAONhf/WQyFvkZwpIqSfxNMUjnOUrgnpr1HI3PKNB+Nikb74PF+yaqpQdDJqKwbz8kFzoWqY8vxVlHGSX9T/BSon4LXcBIXFcE8J/6LiDJhXIy6aPl99PoJgqm4bMfBTyH4AUFlDOxjJykUjpPmiihQnTSPL0uYG5NMJpHJZEyVZyqVMsaGz5C5YBsbGygUCqZSd1KCOO9N//YzOIFAwLR/GQwG2N3dPcF6+rGxFyV0GkKhkNnFQkOj4//H3n89R5Zl1+HwSu+9hS1f1dWmelo9fvRrDs2IZhgkpZCCoRDfpX9JT3yUqFAwGCLF4ZAShxwOx4g13T1tq6rLwQOJRHpvvwd8a2Pnwc0Eqgomgc4dgQCQefPmveeec/baa7vhcIQF5TPXzxk4COvQ7kxzPEzAr+cRWSiyxNw7+B6NRwL0UqmETz75RFx9LK5+mm5bipXhR6OQ60EXbdeK1orpNFkanoNZx5pt0ga+FbNngjcds2wq7/NcixStH7SBq39znuj9ndfOGE0dk6bDe8xnBRwwito4BSDjGwgEpPvTSSb6HFf0vGCIgw7jIojX7lMNyPRc1PG2k5671iF6XBwOh8xlrQOJN3gdZiLbWYI9YEoBHzc0NpA3WaRJD4S0czKZlM1AuwG48ZVKpTNN2hgO91vZ7OzswOPxoFqtIhqNSmkHHVMHjAcBeqMEIL08tRtMW4IsAst+t3qS6wmqaxbqazYZM/OeJt0vcFAiga5BVjAvFouoVCqvpHh09iOpcyoO3h8AceF7PB6k0+mRgq+TAK0G1PxtpYQmjQfHjrE2zMg2N6dpEjJ8mUxmpITG3NwcAoEA5ubmcO/ePfT7fdnwWfuSbDQD6IFRV7+56ZqAj+Pu9Xrx9ttvixX9/PlztFqtkc30LAEfjbRCoYD/8T/+B374wx8inU7j7t27Uox6bm4O9Xodm5ubwgSSCeV9asVkViHQYJDjRuXC+Vyr1dDr9RAMBpFIJFCv18VIrNVq2N7eRjAYFJffr371K/zyl78cKTTPUJnTFm0AamaODDu9LDS+NWOvwb3eI8ywkXq9Lsqaz0h/rzYEtQ4x3c3NZhPlcln2TB2wf96uXF4z1wKzmzVjTGBms9nk+tvtthRI1nMjm83KGuX+r/ciPifWo9RrlmPldDqRyWSkfNJJ1208rvD+vV4vIpGIeMEYJsC6l1qXcX5pEEsjzQyt0QSBHnMmbTAZS2f2021ut9tF37lcrkNJJFbs6mnLVAI+/WCsLPpJi4+TVbeb0e8RMJ21/5xuC7q92BZJAzwzPo+f0+fQohe8bgGkz8l4BmZ1mUygaTWb32XFXFHGvW5lSXPB6N6fr8qwmqDBCoBRUeper+YGrkGHPtdx7tWK7dPH641SlwiwinecFqHyYAYkwyM0q8TWYUxu0OvVZjsIVrZav5P+1kqZNe0CgcAhxTvu+Z2WaEt9a2sL+Xwe3W4X8/PzGA6H4lqiS7Hb7YoBZzJU5t5mBYatXuM6J6hhuAfHhUkY+jk1Gg1sbGyca4FcAIfun/eiY46Bw2EhR61DHcLCsSdw1N876Rw8j2aDeNw0MXwEKpPmDsGbTmQBcMjgtGKY9Ws03HTjA+DAu6RJGdM7dFaimTles74W7rlmaITVOjM9RJPWII+xMgo4NqYRa/VjnvssZGoBHyeTLs1iKk+9OLWCGg6HErtmWne9Xg+1Wg2VSuXMaeh2u41KpTISYKstDrJxXq9XlJzZ8JyK0KznZWbpEezRctObGY/VMZKcxDq+Q8fCmAtBLy4zzoqbuf6MZoMajcaJKGi96EwL3io4nu9ZKRQNbHnecddogkPzmszNQl8T5y1dT+bnTTB+HkK2tN1uC3PFor25XE5KtGhgpxuBW42pZlW0aEWlsyw5P+12u8QFjrOIz3KcOLdNRjkajWJhYQEulwvr6+vSnYOKV5fDYJwYx0LHrrGLh+4Jq40/Fm622Q5a3YVCIQlbyOVyMh6TinefBUjWolkoZosyrphxvOMMfX7e3Ie0e5JAj2ygjgXVv/W18FmQDdLxqLqYPMdqUrzlaYu+X93nnHu2LmjN/YOs4HA4FHd+PB5HOByW8iC68DINl0AgcIgB5ZgRMNLA0YmGZy2dTgelUkmSpmhQ07in50pn/Ov5Q72q14jet7nuqJ/1HOSapY7VSXjaTcw2kdFoVOp00kgeDoeIRCLIZDLiEThtmUrAx2BcWqpWFLyuoA3sAz5SrADETaBj3QCIa9Gs6XXaQjakVquhVCpha2tL7oEdBCKRiEwOJlawgLSeYKSu9bmtRMfHUGly0yIA4xhxgyATqK1vXeOPP3QtcFMEILEctLZ5Xl4DLfCTcqVrhg8YDXLnuOiYCb3RWzF5VtYdXzeP5eetLDMdt2gez/E02QQtJkg9axkOh8JA01Vbq9WwsbEhbZkIJvSYkw3gOfg6x9wE23rsrKxidsLRMXHmdZ6HmP1qbbb9zMm5uTn0ej1RohqM6MBxbcACB4wqFSndcZy7GnTojEOW22C2YK/Xw97engSSm8rMlLMGfcBBBuVwOJQ9mPuwNuAo5pygcC5pF7jJ1hzFmnDcuTfx2Zn1PPW1nCcbz/tlGziGOzmdzhEDUhv/ZOJrtZqw0nNzcxgOhyMMHsXr9Ur9Wu7XWn8S2Ph8PqmBd14MH8tBAZCi7FrnEEdw/9AMnjYWJhmhwAHgM0MLCPA04DMNBK/XK+7mYDAIn88n9T4BCFAtFotfXsA3HB64Xc0YL4I9+sN1Ic9xdLf+7HkyKFT2nU4HlUplpMgy44NsNpukkjMDMBgMSuaf3W5HqVQ6susGcEC/65IoegyoJPQ4FYvFkTECrGOwOMHNsSStra0Y3jtZ12q1eqKAz4zr4usaqJksn5UyMIGeqRA1yDN/HyXmNUyi8c+S4p8kpoIl88w+v5pJBQ5b0Fo0kNbPzHSVcIw0MCboOarA91kL45yYIGZV5FXPQ46TlcHB/YtgkWuPbII5n3VmpMfjgc/nEwNOh0pwjzAV93kK72VSaI3VMzXZY44N5yINUDN0wvys/jxFM8vTKvr6OLfIrumyRVbeCQ0EqYO029tkwSh6jY1b0+clvG5z39GuVivjytyLrIx/4GCe6uPNNWsSBFrH6NAFxlO6XC602+2Ros/0fJ3FPjaVgK/X60liRSKROMSwNBoN7O7uIp/Pj3SDoBtYB/JT9KZ72jW9xglBV6lUkgr3qVRKKN1nz56hUqmImyYQCOD27dtIpVKywTNwu91uC7VPxUNXiQZ2vHdzw9fKlbXput0uNjY2UKlURhZPIpGQljo6lXw4HMqz6PV6SKfTSCaT6Pf7EhBMprbX66FSqaDT6eD58+cnkiWo6/BRaLXrivt67PQi1xlXWjEAo0rZ6lqtjAo9Lubc4thpd4KVC5Qb9qSinmchGqj3+/uNw7PZrNTfikQiADAC7OmaG+dK5HwiY603axolGhQzCJ+uEW6U+nz6Wk9D9DMywYDf78f8/DySySSGwyF2d3dRLpdHYmkZN8tNfzAYyLNl/BlZL5MlpbuKng4auiyBw9CIeDwOl8sl9dhYVw84KF1B1/hZZOeaYsXMcY/QNdzMPUsrVopWvHRJhkIhDIdDuFwu6V1Ko1KHCvC8+m+ej4w7PRP6+yat67MSziEzTjEQCGA4PPAeMUyI884qpImZ3NSZ9Lr0+31ZZxrs8PtNUGwSLGctZGYJlrhvUueQAWdmOzDqGqfuoJFgkgI6ZImf536oCSYT3OnsXYYwtdttPH78GIFAAIFAAOFwGMPhvqt9a2tL1vppy1QCPj25tbXKCciNT/fW1PT+OIaP5zivhcvFwsUJQIBUp9NBsViUukm1Wg2BQADJZFJ69pEhy+fzknWqiygzftGsO2SyS3osAIhbqNVqYWNjA3t7ezKJdQwSFRSfD+MhGRRO1ww3816vJ4uOBabZjuskJrcGb6YFZ+WKsVIg45SK1XeNY/O0UjBBiP5fKxvTOjat6vO2ns1ro3uIMaa6Zyt/6/gpXTrCyqomO6gVuP4+AmSK3pzN6zM/f1aiGT4AUhbE6p6tmAH9muny1tUJxoEWGjU0qEwQzfPSADqP+WQ+Fz5/Hc86bl8yP2ceo1kuAj6bzSYhI+aamjRHtDvQ6prPWzTgAg70nTZQ9bM3wTNwcB9WISM69MYMjbG6Fr5/nvsUDUUz8UfvxaaO0PuP1hNWuMDUKfo4wLpiiAkYtT4ulUpSqFm3MmX1ii8twweMTkpTGdAlquPwSOlTEek4qePEc5ylELRVq1XU63Xkcjl0Oh3s7Oyg0WhIUgkzJJkGz3iE9fV1bG9vw+PxSOXz69evSwFSAmEdbKotGB3HxwnJEjarq6vY3NyUCcsYBNYd090y6vU6KpUKVldX0e12EYlEMD8/P7KwCHDb7Tb29vZGrO9XFX0vpnKlBTaOKdMbqMlGmfON5zTPY24OZhya3my0+5NlYqiYTOuTAfjnwcYA+0AmFAohGo3KtZB9oiWtWRngoBWb3lD12uX8JcNNoEK2jywZ42v1BspYVhbG1d9r/n3SYipNLTSIyL6ZtT3JmpB14f3rem+cfywnwblAQ0snNehSQlQU3W5XSirR1Q7sF4/mfsH3zzpJjfcNHI7ltGKfrMRc13yNc02HiNClrRkd4DBAGfedVkDGDBc5L+E9u1wuBINBpFIpBAIBibn2eDySiEhXIXCwDyWTSfj9fsRiMdy6dWskMYO6kky+CeK4l/J81Kc6kfA8pN1uSz92xrxvbm7i8ePHAoB1fHooFBrpVmXmBQAHfcy1l0ITSSZY1nOaP2TV3W63lKzpdruiJ6nX2+02Hj16JATOWez3Uwn4tDK2Qt4EfNVqdaTWFzdfzUDRJXTeLjItnU4Hu7u7AEaBgrZM7Ha7BMVWq1WEw2GkUim0222srKzg8ePHAvjYDH1hYUFi5Xq9ngTlUnHoBAyCN7oDGGPw/PlzPH36VCa53+9HOp1GPB6XzzA4fG9vD6VSCc+fP0ev18Py8vKIhaMtsEajgXw+j3K5LA3kX1W4mLkBacClLf9JgG/cdZivmy5ffYwVQ2Faeno8ms2mbM76eXPzOYvC4OPYRWAfnIXDYcTjcVQqlZFafNz0zOxuKiOtUPUaZleYer2OYrGIbrcrLQbZIsnhcGB3d1eSNXh+JjIxqH7cdZ+GTAIkBHEEVozhAyBME+vkMdue4FkrTiacaWWrMy/1vOa56SUYDocC9Mi8kk0A9pWiz+eDzWYTr8JZiJ4D49hdqzVoxbKY4E2vKYaK0JDSccf6M/o8psI2RV/rpGz9sxS9xkKhENLptOgEzp1cLicGkwb3TqcT6XQaCwsLiMfjuH37tiQPVKvVkfaIVtn22nAFDp4B5/55JW0w1p1jwtfy+Tx6vR7C4bDox8XFRYRCoZG5YwI5jrGukwkcAD7NTJtjo127XM9er1dIjnK5jE8//RR7e3sjgNqKkT1NmUrAxw3PqjgprQ3TxcPP6d/6dZPVOm/RYMHKvUmlyur+tJYZ5MnUc8ZbFItFbG9vCxgm4CPoMWPaNFiiVcPegxpod7tdlMtl5PP5EcBYLpfleL5WrVaxu7srLKw+T7PZRLValbidk3gGjNfhRq5T53XQv86GtqrLxL/1c7H6exxI0qyi3jw0y0ggTkCnmWdtHTJGs1wunzojY7q5uM5MVpjjxes1DTEN7jg2+hloy1g/FxbedjgcqFarsNvtEgqgr0Oz91aMy3mt53GGqX6eXLcsIq9bGOqgcnOP07F32ljl+Wl8abaLzIHf7x+JVdblks5beD/jQjpMNs9cZ+ZxPMY8/ihXox5r87xagU+LkGFn8WXqRrK/nAuml4PCkKB6vS6uRRqVOibQ3L+06HlOvXHexeOpxxqNBsrlMlqtFqrVKvr9vsQn6n1WgzfT4OD/WkdqnalLJbEdqa4goD9rZcSYCVXnIVMJ+Fh6JJlMSvV+jcYDgYAkc1iVgtDsDjPUGNxJQDPNwgnSbrexsbGBnZ0dcYkNBgPp9Ul3RqPRwP379/H555+PxPaY7KE+NzBaxoRgg8yAZqM+/fRTPH369NC1UZlwETx8+BDb29tybnMhERyeRNHrwWCAfD6PJ0+eIJ1OY3l5WRrZc9HVajUZH6bCs+g1WV/OEdMde5zno0VbwbwGh8Mh1H6/38fGxgaGw6G0IAMgSQj8bKPRwIMHD5DL5bCzs3PqSlorVybvsN8jAb1Vz2EKnyOfK18zAR8VFBvbN5tNSVzSzPb8/LzUsyOYIcPHBIdpEYJ4nVwCYMRAs9vtktzBmmC7u7twOByS8UxgpxV2KBTClStXpIUd5yzHkzXIvF4v4vE4nE4nlpaWJDYIAKrVKsrlsvSs1mWozmJe6f2Hc4JlfhqNxgiTy88QBE8CqPrcVsY9heCYr5l7jo6D00Yj445Nxvo8xeVyIZVKIR6Pj+jFjY0NNBoNFIvFQ2EWwAHTubu7i0qlAq/Xi/X1dXg8HkSjUUQiETEuqGd1v2gaFwSG9B71ej2EQiEp0XSe0u/3sbm5iUKhIKw4sB/iEI/HxftHAoRkEe9H72/EB7VaTbqHNBoNCbUql8twOBzI5/PY3t5GrVYbKfzdaDQA7OtmGjZWhsV5yVQCPpvNJqUG6EbS8S10D+lWZObn9aZABTyp9tk0CifepPdpyZub50kIrZK9vb1jHV8qlQQwnoW0Wi2USiUJmuciBiBKkbS/LvPDjZ+B8Ka7wmS+jhLTXcXz0PAgUKcLjpsMNyI9X3u9HorFIvL5/IkVqD6ukDmnkaTHSyttvXnp10ymSwMUzSrTWi4UClhZWRGDDNhXUKlUauR82n00TawL70/XBCVo0UWk2dqQRViBAy8GlRCF46rjFrX7R383ATCfG+N56RmgkUslfdb7nmab+N1cDwxetzreSjmarNW4Y467dvlZAlJ9Xl1AV8t5Aj+G+LCWG9k4tqlkizlTeF/NZlNiwRuNhhglzGhl0X8A4j3S46J1DQEOP3teLl3KcLgf+6vbu9Hdr/+nMUFgq71cPI/GCbqJgGb4SITQaDENXL1nThvWmErAx0HWKeh8XSueSYNJ5atTq2dyuYSKTv9osMKFTSXj9XoRi8WQyWSE8dOB8Nzsx8k4ly5FA8l+vw+Xy4VoNCpp+HQx6GQFbtxaIWo331kKNyy73Y5EIoFsNjvCHJAN0dmV3Nw4xtptol2cVFSMS+10OgiHw8hms2g2m9ja2kK73Ybf70ev14PH4xEm9PHjx1hZWcHu7q5Y0MD5u3TZtqzRaCCRSCAcDsPhcEjSCQ2O4XA40kObYLZarUp5JSpOBuE7nU6Jmw0Gg7IXMu6TY8wEGrJnkUhEEjk6nY509DnrUBYNfDlnyHiHQiGZZ2ZYhblv8zwaOGoDTQM3M9bR6pr031bri9dI9tXr9YouOk/lzbVGMJ/P5zEcDrG9vY1CoTASV0vgNs7tzZCSnZ0d1Ot1ia31er3SzpAGhQ49cTqdSCQSMm6FQuFQqaTzFBPs61JILCWl5wCNT6/Xi/n5edjtdkSjUfh8PszPzwvZdOPGDbjdblQqFWxtbQEAlpeXpf5mOBwWLw6731y5cgVerxe7u7soFAojsdC8VuDs967peFKGDIdDCYIm4CNTp1H5uKB7TnQCAh0QPw206kxORhgMz6wqj8czEiemi0Nz0WcyGSwuLmJvb+9QI2tWsJ9ksY6LL6Iy1tYdQUssFsPKygp8Pp9kaTFLjt+l4ynpdjCDp09byLTZ7XZks1lcvXoVdrtdAAyZBcYCEURwrPl+IBCAx+MZUda6a87y8jIASAJPoVDAr371K5RKJQQCAXQ6HQSDQczNzSGTyeDp06d48OAB8vk8KpWKPAerZ3KWUqvV8OTJE2mbxHp4BHXlchn1el0YXYfDgUajIddbLpcxHA5HqvUz+5KJWDrbUNfh45xlc/Zut4t4PI5sNjtSAomZ++eR8c39V9cEDIVCiMVi0kfc3I9NsGcF+Kzi7vh9plGmmVeTPRwH+AKBgNRBZR03Ap/zFDJM5XIZm5ub6Pf7WF1dxd7enoA1zYabbDt/6LYslUpSe69SqSAYDGJhYUHKe+kEGM7RTCaDYDAIANjZ2ZGkifMW/Wx1mAnXSzgcRjKZHMEVuvYgu1xls1mEQiEkEgnRBW+++SZu3ryJWq2G3d1d+QyTpLhvkpH3+/1YXFyE2+3GZ599hlwuJ8advlZgBvgAHGby+AA10NNuFC1WLoFpo1VncjLCUjJsV6cBH18rlUrihrDb7SiXywI06vX6CO3PDU4rnKNEx0PqIsScu7VaTZISmBGXz+elH7LuDsD4TLqhz5qV4XUzoaJQKKBUKo3EjDLTlK4M0+2rlQvPyU2Ybjwq2lqtJm4RvbbJ0LKkAcsU1Wq1Q9nB+hmctXS7XXm+ZBJ47VQs7Kmr2TgKr1vfe71el3HU/ap5nOkab7fb4s4jsCSzeJYV/K3ENM7JGjEm0QyxofHAv/V5TMBHIsB0G5v3ql83GUAr4oDjyOQy8/rPcyxZbLtSqWBvb0/mC2PurEC0lS7la3quNptN2Gw2mUN6T+I4MwSh0+mgUCigUCigWCyeebmfSaLnEkOdWBWBMbTaUB0MBiPrk2PXbrel3RlDIvhbg0Umv3AfJPirVCpwOp1Sfus8Gj1YyVQCPuBgs+Bk1JYuFQAVKHC4CC83AV2LbyaXRwaDATY2NlCtVhGLxdBsNhGNRmVTazQaePz4sVixrBMIAA8ePBjpVMA4Kr3odTyeFfAzY4m0YcK/bTYbnj17BpvNhg8//BD//M//jFarhQcPHiAcDks9Ld2/c2dnB59//rkAv9MSq82H62Rrawt/+Zd/iffffx/FYhGFQkFiiFi2gFmngUBALHy61KmACAjpvmw0GgKSCOi4iZJ1oJLtdDq4f/8+fD4ffvGLX+DTTz+VGo6U817TtVoNjx8/RjAYxOLiIubm5lAsFrG2toZqtYrNzU1sb2/D5XJJAXWKDoqn0TIYDLC9vS1ML/uUBgIBGW+v1wubzSbMYaPRQC6Xkyx5xhY9f/5ciqKfxziRSdJFkIfDIZ4/f45KpYJKpYLd3V0BgMC+kuVc0zVVKRrw6XWqwwc4r3Xco36dQIfuUd3zGwAqlQo+++wz+Hw+bG5uSkiDZu/PQ9rtNlZXV7G1tYVcLoeVlZWRWEMmQpGNM5NRrJhU/tC9y8+x/y47I9FwIWgGgOfPn+ODDz5ArVbD+vr6mY+HKSbYHw6HwnKz/zdri8ZiMWGb6XUgACwWi5Kwwa452qClmKW2tKFLFrbdbuOzzz6THsa6NuJ5yVQCPm2JUFlrwMdNglY1xWT39OKeBnQ9k5MTbkhkzujS4MJvNBp4+vQpyuWyMMLhcBiLi4sSB0VQxmB6PX90GIApplvIat5x8dO6Yxxao9HA5uYmnE4nYrEYlpaWJKmDbpZcLjcSq3aaY2j+3+/vF9X+/PPPJcanVquNAD665TweDwBI3JnuxgIcxND0ej3s7u6iVCqh0Whgb29vhOlh3BTdRkw8INOwtrYm7qNpEhYTb7VaKJfLaDQaoijK5TKKxSKKxaJkfZJNYMwTFexwOJSxoOtHx0KynZ3P50MkEoHdbheGularYWtrS7Imw+GwKGGuj/PY+2hsm+PFGowsPq5LVbC8humit2LvCGg4RvpYvRZNtlnHplG36PO2223s7OzA7XajWCyi0WjIZ85Th+gKCmT53G63hADQWCNYJiBhjLDe13S9R10KCoAw6f1+H/l8Xlh21rzlfraysoIPP/xQgOA0CrtxMY7W5/Nhbm4OvV5vJAtbs5+cf7lcDs+ePRspu0IjTJMBejx5jlqthufPn0vbNCbraTmvMZtKwFer1fDxxx9jZ2cHDx8+RDKZHHkwjx49wtramli5wIF12Ov18A//8A/I5XIjPnwi7KdPn55pAdKZnK4wjimfz4+4w2iV6g2/2+1ibW3tEOBjUVzgcC9d/ZoWk+HTr2kFRRC0trY2kugAAPV6Hbu7uxJnSKB63rWa2u02tra2pDg0XbFk8LxerxRMDoVCEkPJbhEUsihkn+gmo/LgD7OVmbTA81BZra2tnTubZyWcQ+yDTRcOEzlY72wwGGBvb0+SWvjD/1k2SJeJ4PzjeDYaDbjdbpTLZdhsNnH7c56z3AtdUKVS6dxduqbQBanLZFmxZtq1y//13zabTbK/zcx44HB2sGb3tCvPykXb6+33cXc4HFLIedrmHgvZM0yFYQU0WnWfbtMg1XNKkyHcC2u1GnZ2dgS4mOXM+MxY3NjKjT5tQkOCcbTs2JPL5STekTHH/CEDrUMMdE4AcLg8EMei1Wohn88LAz9NYhse42l9/PHHePr0Kf7oj/7oDC5pX9nSnaEtOF5qt9sVpa1rztGqYTkXq8XOuK9pW8QzeXnRLh6Kptr1cbqCun79RZN5jnu8VjJkvvR3mtei3UvnJRwnvYnxdeAwq2kqEi06NkrHD+l1Oe7cFMYZTavYbDZxQeo9iWBBKwX9Gf42x4X7GUV/1qxYoA0Isof6GqZNIZvKERjPdhx3jb1IrO24//W59BhPo54Y52Hge/q4cZ8HrMfAzLAfB5rpurwoogHwODCsxdyHTeZ4kli5eU9T/uIv/gLXr1/HW2+9deSxU8nwkVp9EdFW4TQrh5mcvJiMwKTjpmVu6I1z2mSaxukiCBnlcS7nl3nOWhkf97PTUMn/KHmRcTguUD1JQKsB9LSKBmDTuH9Mo+jEzy+zzIrTzWQmM5nJTGYyk5lccpkBvpnMZCYzmclMZjKTSy5T6dKdyctLKBTC0tKSZDoylsek/sclIjDgl0HzvV4Pq6urKBQKZ3UL5yY+nw/RaBQulwuhUAh+v19qKpkxUfxfx03pxIvzyo48L2GxUh1LqV1Puk8nq84z0/7LJLFYDLFYDC6XC36/X9aYLtmg5xVw0L6OBXfN2KlJMVkzmclMZkKZAb5LJtlsFt///veRTqelnpCuh2Zml2plwSxJZi35/X7UajX8+Z//+ZcC8EWjUdy7dw+RSAQ3b97E4uIiisUiHjx4INmFzDxtNBro9/vw+XxSmZ4ZbOvr63j8+PHYeCpz3C+Dos5kMvjGN74Bn883UhKD2ZSsTF8oFPDw4UNUq1Xs7Oxgd3f3nK/85GUcALPb7bhy5Qreeecdqd0XDAal7IUuVMwWTcxI7ff7+Pzzz/GDH/zgUL9qzqfzLAw8k5MVMzlnJjM5CZkBvkskNpsNXq8X6XQa8/PzqFarUlNJAz4zw4sbit1ul0K6LL3Blju6RdlFlEklVvg6S4sEAgFpU+VyuaR1EcEee72yxU4gEJDyHL1eD3t7ey+c9XtRhZnxwWAQiUQCgUAAwP54crxsNpvUkXM4HFKKhiVGvkwKjf2cQ6EQUqkUQqGQ9DHVRV65/mw2mxgS4XB4pFCsmeE8ky+H6ExTcz7Q+2AWnKaYc8WKAGAGK709NET0uYEZo3wRZQb4LomwFE0mk8Gbb76Jq1evWrrMjkrbN11K5XIZN27ckAKSOzs7U58JaIrb7RbmiRukTrtnp41IJCIghb1cY7EY4vG41KNiXTNugGw3xPpdLBf09OlTNJtNyy4vR5WjuCjidruxtLSEaDSKt99+G9/5znfg9/ul9qC+P/adbDabuH37Nmq1Gn7wgx9gY2PjSKUETO9YWbF5VtfKEjzRaBTLy8vSK9fr9cLj8UjDej1u/M0SU9FoVGqSsi0dMJqpaVW+5aIaaV9mmbRHRKNRZDIZBAIBvPbaa0in09Jir9Vq4fPPP8fGxobUodWGvi5Hwr7dTqdTiqf7/X4Eg0EEg0HcuXMH0WgUhUIBuVwOtVoNDx48QC6Xk8Lp07ouZ2ItM8B3CUSzU/F4HNeuXcPt27fFGtOxeZOE5XBYfX44HEpD7YWFBezu7mJvb+/CAT5uZA6HQ4oss/gr3Y1ut1uYOrpq4/E4bDYbFhcXMRwOpVWUrvnIDbTb7aJQKKDZbGJ9fV1iKMexopdho3S5XJibm8P8/Dzu3LmDN998E4FAQIrCauWiu0r0+300m018+umnR9YKAy7GWB3FVJKVCQaDyGQy8Pl8wqb7/X45joBPF7vlWASDQUSjUZm7BHwm06dryek+tDO5ODLpeTEcIJFI4Nd+7ddw8+ZN1Ot1FAoFVCoVNJtNMT7Nfri6M4TX6xWDg51z4vE4EokEUqkUfv3Xfx2Li4tYXV3Fo0ePkM/nUS6XUavVYLPZxLidycWRGeC7BGK32xEOh5FKpRCPx6UHJWP3uOGP2/h1DBA7kuiiroFAAMlkUlo+TZOYDAstVpfLJZsYrVbddkjXLCP7RGm1WtjY2MBnn32GYDCIbDYr3STMlkXValU6KrAVWb/fx8LCgnRZ4DgSAOoWZIwFvEjxV5wvLpcL0WgU6XQaPp9PehPrNk9mfJm+b6/Xi0wmg1arJYkxFLP48EURXdzV7/cL8x4Oh+HxeJBMJkc6aZBJ5/zj2LXbbQF8PNbtdmN+fh7BYBBerxfBYHCkc4k2LjTQuyjzaiaHDYdAIIBAIAC3241oNAqv14u5uTlcvXoV4XAY8Xhc+isDgMfjwZ07d+B2u2WtcT7pZB+73Y5QKCT7IudtOp1GJpNBJBIRr4jP50MikYDT6cTrr7+OcDiMZrMpnXg2NjYkxns216ZbZoDvEojD4cDVq1fx+uuv47XXXoPP5wMAofk102LFOFHpmAwfN4p0Oo3XX38dNpsNn3766dS0i6Fi1RmyPp8P4XAY0WgUX/3qV5FOp+HxeGRT5A/jpQAI+5nL5fDw4UOUy2X89Kc/xS9/+UvcuHEDv//7vy8uFHaAYSueTz75BI8ePUKlUsGzZ89QLpfhdrvxrW99S3rEulwutFotVKtVdLtd6dFZKBTw7Nkz6aN6USrXE/D6/X6p8O73+6UBu9/vFyaVHTsIctvttrT9CofDeOedd1AoFPDZZ5+hXC4DuFgub6vEDBoQV69exZUrVxCJRHD79m2Ew2HY7XbU63XU63VZk4FAAOFwWOL1mBRUKpUwGAzE0PD7/fjWt76FbreLzc1NYdwfPHiAarUqvUMvwrjNZLxoAz2TyeDmzZtIJBL42te+hkwmg1AohGg0CqfTKSyxzWZDNpvFYDDAtWvX0Gq14PF4EAgEMBwOsbGxgXw+PxJXm81mkU6n0Wg08Pz5c9TrdSwvL+PKlSti2DKUIBAIoN/v486dO8I+V6tVFItF/Nmf/Rl+/vOfH7sA/kzOT2aA7xII3ZLxeByhUGikNQ5BzSTAp6u2m/0VB4OBNG1nEPm0iFWrG7rIQqEQkskkstksnE4nPB7PyHE6ho+bG8Fxr9dDsViUQHn2JPV6vQIO2RKNZVvK5TKKxSLK5TKSySQikQjcbrf0mm00GvB4PMK4ulwudLtdAefMaJ1GZc0xpiuIQI6ZpCwvQheSOdbAQSwZ44parRZcLhcikQh6vR68Xq8whFYtnaZdaHy4XC5hg8PhsMSAzs3NIRKJoFarjZTsIXPHNckwDLaTM5nrSCQinT04poFAYKSdmzaALsr4zeRwAgWT6JLJJFKpFJaWlrCwsCCVAXSyBo126gJg33MRjUYBQOalDmVZWFjA3NwcyuUySqUSHA4HIpEI4vG4hLD0ej04nU643W4A++WXgH0vSK1WQzgclmQtJgbOYkanV2aA7xKI3W5HJBLB/Py8UO/6PQCyGWgloDcLHWsFHAAit9uNhYUFRKNRFItFWfjTINoNOhwOYbfbsby8jHfffVdAKht+m8kWGvCRkaHytNlsKJVKaLVa2N7exs9//nMkEgksLy9jaWlJEjQ6nQ4ePnyIL774Aq1WS9y57XYb1WpVkkH4vUwYiUaj8Pv9iMVimJubQ6vVwsOHD7G6uoperyeu4GkQj8cjbvErV64gFArB5/MhGAxKssqjR4+QTCaxuLgosZDBYFBclpxjHHMmHNhsNkSjUWFlO50OisUiisUiWq0WdnZ2pO/1eY6HaVRoEMU1c+XKFczNzQnId7vdSCaT4nLrdruoVCriYtPnJWMK4FA2vTbc9O9AICAAMB6Py5xjKab19XXU63U0Gg3UarUzGqmZvIpwXrHSQiAQwLvvvovvfOc7AvwcDofEwAIYAfacV/zf7XajWCxiOBxic3NTGD62TaThUCqV8OjRI5RKJTQaDTSbTdEJvB6WCNLrMBAIwOFw4A/+4A/wzjvv4MGDB5Zlg2YyPTIDfJdAGMOXyWQQi8WEfdIuTF0Ql8LNQpdnoeKhYnG73chms7DZbHj27NkImDxvMRkMWq1f//rX4XA4UKvVxFVKRUvXIkEE3bu0fhm3Ui6X0Wq1sLu7i/fff1/qpdlsNjSbTayurqJWq2F9fR2rq6sjSprKl65kWuJkaZh16XK5EAgEJONtb28P7XZ7qvrYut1uBINBxONxvPXWW5ibmxPmqt1u4/Hjx3j69CkAYHl5WZKHgsGgABTGoTE7miCEcUSJRAJ3796F0+nE2toanj17hkqlgnq9Llnm0wKATSFbe+XKFbz11lvCqhDscy1qxs4qyYLHUcnqtav7gNLVR4PG4XDgzp07AIBSqYRKpYJ8Po/hcIi9vT0AQL1enzF9F0gYqxmPx3Hv3j185zvfgcPhGMn6p+ue66vb7Qrra7J+g8EA+XwepVIJvV5P9heep1Ao4MmTJygWi7Jfcm+iAaN1xHA4FHdxKBTCv/k3/wYOhwM/+MEP8JOf/GQG+KZYpkd7z+SVhECCC9yqHIiWcTW89OsEKtPkxrUSp9OJUCgkgez6egk0CHgZv6J/gAOGkExfOBwGsJ8Rl0wmxU1SKpUk1o6bYjweF1clXSAej2ckeUYrXG2Vc3xZx47s13k2+Xa5XAiHwxIoHo1GEQ6HEQ6HJSYRgJQZcTgcCAaDonQYIK4LCZNt6na7EhBOtxGAEUUSi8Xgdrtx5coVxGIx1Ot1SepoNptTE+vo9/uRSCTkN+OpCN4062K6WLXbbjgcjtwTFTUD7zXDyc8zFss8n8vlkgxzu90uhsRFSgr6sovb7R5JnphUhFnHZ2tXPgBJwOP84R6oDQ3uh4whZXUBnZzGz9Fg43Vw/jGGkPthMBg8lCQyk+mQGeC7BMKFykzAbrcr1qApWgnxszqGT79PxTXtWaShUAhvv/02EokEFhcXJU6OmxSD3rXi5OalN0Cn04lgMAifzyfuk1AoJK7KfD6Phw8fwuVyIR6PS72qhYUF1Ot1SdoIBoPCtNrtdomZ4VgTjNMKHw6HmJ+fh9frxebmpmT9nraYGc6UcDiMr33ta0ilUkilUshms3A4HDKOdAUxa8/v90sQd6PRELc/GYh+vy8upXg8jtdffx1erxcffPABSqUShsOhuHhDoRDi8TgA4N133wUAPH/+XBITHj9+fOZdX8bN+7m5OXz3u99FNBpFLBZDOBwWY0snBWkDxHTjskRQuVyWhA8dA9nr9cQVrOcQ4yB1CRaHwwGv1ytsLN/f2toSxW8aetO6pr/MEg6H8Y1vfAM3b95EKpUayXDXhqCuFqCNKz7TdruNWq2GwWAAl8s1EmZBz0ar1YLT6cSdO3dkXrXbbUk4437INc0yXwzNoMHCuNWlpSU4nU5sbW0JwzyT6ZEZ4Lsk4nA4hF3Qi/+4YpUZycXM16dROTDoPZFIIJ1OS5szXqtmKfv9vsTAWDGctFKZ/eb1esXlyI4blUpFyhS43W5JEmFQNBMaPB4P7Hb7SMV7fheBJzdwHWhdq9XOxG1uxdoSULB8SDabRSaTwdzcHABIUgZ7vzKGLBaLYW9vD6VSSWKEdFJBt9tFrVYTMBwKhSQWkMqKTAPj+Zjt63Q60e12sbu7O5IdfZZzcdz3+Xw+zM3NjcwFlvux6l2tsy/1a4wz5f2RkeY80K40XV/PDGfg/HO73YjFYuh2uwgGgzLnp9UtPpNR4X6WzWYlqctMYtKGAxk+HsffjCfu9/tiXFBPAPuJF91uFw6HA4FAAHa7XWKXgVGdoucscBDjbbfbxavBOpOhUGgG9qZUZoDvEojOnOQC1YyWVljmpqGVBhUKf/McTHqYpixSm82GSCSCcDiMdDqNxcVFpNNpUbpauNFR4fEYgpJms4l6vQ63241IJDJi/eoyBoVCQQANA5y54XY6HcnM1f1k9Uas2UU+M26mBDLBYBDhcFhcxKfF9BF4aGA8Pz8vcaDxeBw+nw+dTgc7OzsADmLItJJhBX6n04mlpSUAEIBGF2+v10OpVJJxe/jwIbxeL4rForiQGGPJxBeHw4FqtSrzkR09SqUSnE4n6vW6lC05TdHPkWPF9UWQd1RRc9ONxmMZT0oh60yQy5ZqnM/6PGRatRBc89nqzh6NRgO5XA7NZvNQKMNMpkt0EsY4N65+hsD+Hufz+WR/4p6lOwuxjio9ILp2o94zWb80FApJsgbds1p3mC5iGor9fl/2jJlMl8wA3yURrYBMwAccXdtMs1D8vO6fO42ALxaLYWlpCel0GlevXkUymUS9XpesRB2H4vF4BKyYYK7ZbKLZbCIWiyEajcLlciGfz0tD+52dnZHNt9PpoFAoiLuYMSxkuzhmms2hxc3r0j+6dlsoFJIWb3SdnpaYbO7i4iLeeecd6ffKVmh0oepr9fv9MjY2mw3Ly8u4ffs2bDYbHj58iO3tbUle0T1iWXOPrBMZLcbmsQYdr8lm269Td/XqValN53K5kMvl5PmcppjASLPAbrd75Pmbx5nnMBW1VqKcK61WS+aoLoBu9Xn9nQQIZIx5jbFYDFevXkW5XJYuDDOZftF7CHBgoJlAT8dusjwP5w5jkqkL2u225ee5Hw4GAwlPoHfD7/dLEXBglFHU8YPAfjZvKpUCAEnkmsl0yQzwXRIhI6cXoClWYM1k+ayUExf5pHOfhzBWsV6vY29vb8QqnuSyBEZLYRB4ARCmiUHO5uf4We2iOwoEm9diBkPrcfZ4PEgkEnA4HFLK4zSF38tg/2AwKC4f7QbU10kmiX8DEJctQQtdm7qROwABzNrNqOPL9Hjq7FQaG8wYJrt6FmKCObq6dE1GPTZmKMSk804ywPRx+l5puOi5TIOCjD6Pd7vd8Hq9Epc1k+kXAjidAETR88AEbpyL/CH41/uUGVLAecbyUewNPi7hTIu59zGG1OfzTVU1h5kcyOypXALhBuH1euF2u48NynQxZiuQxMXMMiIvcu7TFpYaqNVq2NzcRKFQQCAQwPXr13Hz5k0JZtbXS0BItxkb1g+HB+Votre3YbPZpJ4c41/IUtHd6PF4Rjbj4fAg01IDQi0cY935Qwfc22w2pFIpfPvb30ar1cJPfvITYRdPSxi/w9pfi4uL6Pf7UqKBY0Hml+wT2TXNyhUKhREgx1g+gmfNNAAYcVmbTLT+u9FoCPO1vLyMq1evwuVy4dGjR2eS3KKFLdPoemeSBQE8mXAzls+Ms9IgXytO3eFAJ09xnWr3Lo+lctaJWgQLDHnQsVszmW5xOp3SNg0YNTSswnA4T2iAMPa12WyOlGqxSiLS38eY3Gg0Km7gZrM5YmBow0bXNAX2XbqZTEZioGcyfTIDfJdETNboRURbgfx/3LmnSZipyDImrE12/fp1S9ZSi45R1H0n6/U6AEjrIro8tMKmu1sraytrl99tgmlT+WoA4PV6JYaPpWFOU+iWZnHlUCgk7u5OpyOZuTpmh0kbdAWRxSOLxPpdfJ2sF8eCioL1BzV4MYVAmpmGzI5mDbqzEFPJauOK64IxtAS3ZNrM8+j70rUJKVZsOv/Xn+X5NFOtE5R4TR6PBz6fT1oCzmT6hUy/1+uVtQaMsuxWe445H3TPZmAy28zwBBow3Pc0S2hlQGsmm4lW7KLzZZJJbP00yQzwXRIx0/LHbQhmPJCZSarlOO7KaRAW8+12u3j27BmGwyH8fr80mk+n00gmkwAgfVzb7TbK5bIoXoIUKlYqSQbPA6M1rzQ7A4zGSOpNURe3ZmV69qbsdrtoNBrSuaNer6PVakmnidXV1VMff1rjLL/AbD7OFR0XBhwARK/Xi8FgIMWtCYKsEhK0AjPd6hQNpjmuzDDkPOTxZLW8Xq8Uij2tuoVWxk8gEEAsFkMoFBLXLstSMGuRmcmdTmcExGm3Gn843vr7aJCY80krbwJFxmYBkPqPBKOMt9TP5jTnFIvxUvm7XC6USiUJuWASgb6Oo9bQpGt+kfCVlxW97mnEkBVjbDANE+4vL/s92jXLGGoTTJjlpcz9nnPK5/MhFotJghrZcM0Y0vjks9Jt/jTrzvNqAGkV6sBC8oxrvQj6Y5yMA8o2m028IqzY4HA4sLm5ia2trfO41GPLDPBdEtFlPnQc0aSNUi9eszYfgEMbybQuXroYbTYbarUanjx5gmg0iq997WvIZrNIpVJSWgTY3yQJrAaDARKJBEKhELrdrrivtZJkpwIzTmZcDJmOJeTmzCBol8uFRCKBcDiMWq0mwdLFYhG5XA65XA4fffSRFBo+7TFnP9twODzCzOl5wf8Juti8nawba3nRqteFlzVzyYr9mpHidxDYcWzpEtVgRru/6XLv9XqS2Xuaoq+BbtJoNCoAi5s/3d80FDgvNaOs4+yonHVLQ7NGo1awem1yvetC4CyMTfBO93OtVjsUgnAaYxSJRLC4uAifz4dMJgO/34+nT5/KPCewsNpbNIg1maxJ32kFDk0QaX7mRYRz1mbb76LTarXg8/lw7do1qb3IdmePHj16JcDHeaLBF+Nl9f2ZBeS1u5+sM9fIcLhf55LuXa4Vtk3k95FtNteSlZHC69XzkQXbB4OBZT/tiyRWbCbFbt9vZZpIJJBMJnH37l14PB789Kc/tQzBOQ7DelZyqQEfJz0AUSDAdAz8SYqO0ZgU76UXLWCd3n8RRW/uBBqNRgOVSkXKfxSLxZGSBNwkNYul2U+tUPVr5nfyPfM1fRwBOOvzMSh6ODwoCVOtVlGpVKR4MWthnbbYbDZRLprBoPKhu1e7dHVHF90mzuv1joBc/q1dTVQuBIE6q5AA0uVySUIO57Q5tzVQOsv5y+81M+I1+6iTgYDxGZYmmONv7Zq1+n7z86br12RhTjvhSjNTDKsgo8txYtgEXYfaKNLrV8cTTwJ8pqdCX8txDNTjjIUeVz3PhsOhAH3OZf68ittcJwNx/zGfMa/LiiW1+luzyKYhoROPdMjFOJA87offSSbfjG++iKLXnx5L7jksrs9ORNwnX0S49+p9Ahj1jpw0WLzUgC8cDuPKlStwOp3Y3t5GPp8fqVV1lBy16Vht4OcFJrvdrjAtAA5tCBSdzauD8HnsuI1wmoGhVm60fqvVKj7++GN4vV6sra3hyZMnCIVCuHnzJhKJhCzefr+PRqMhCQocN/Y9peiC1twsrVhS7VLR5WycTicSiQQ8Ho+0FtvY2MDHH3+Mvb09rK+vI5fLCYNwVuJyuWTTGg6HKBaL0lrJ7/djbm4OCwsLAgY5vkxISCQSGAwGsgH2+32sra1hb29PGrFTEdLV5/P5xEom2CuXy+j1egiFQgiHw+LSrlarqFarAtgJ/OiKJrNyWmNmMkU2236R7EgkImUrdMyTzWaTZCA2rtdKW4M5DXB4bgJvqzJIHEcNqpkZqZW2jgukEtbhCictTBRwu924evUq3nnnHQAQl7bH45H5FQwGhbnSLn+9dq2egWlsmePK8TGPnwQMrUQDGTMDm89FhzAwMSYej6NWq710ORLOG5Z2InPN9/Sz0/24yabr8eH61HOC4NTqe2ko63mlRRuEOu5UH0cwn06n4fV6L0TSxlH63RwHtiz0+/14++23cfv2bQSDQczPzwPYj/t+ER3pcrmwtLSESCQi19DtdrG5uYlisTiiXzQh8SpyqQEfMw9dLhdqtZo0jz6uWG0k+j0rEHRegI+UvrYMxrEBJhMwbiM0LcVpFvO6dcFgsmjxeBypVEqy37hx0f3GjVQrXCpM7X4kO8jXTPZPzw1uomxV5PP5RAH3ej1sb29jZ2cHGxsb2N3dPavhEtGlFMg4akYyEonIhsaYOva21cxHJBJBKpVCv99HoVCQVmEELTabTVgRuhs5RnQ1dTodxGIxJBIJNJtNKazMJBIdo3oWQIZirgMqe83yAJDnTGVsFkfWjNE4NsY0wsx1Z/W/dglzbDQgIgt5WmtYx3VGo1HMz89LMW224GMHHAJDKxekLjJNsWLruKbMMTEV+HH2a/15fT8cV3Pc2LpSM9UEAtw/XlZY7JjxsSxfZLr2Od7MeNdjoe+dhpF5L9pA5Y9u92g1bpyXVjqD52LReTL10ywvQ2CwskMoFMLc3ByuXr0qcZKDwUC6ohxXGM+dTqflObTb7ZEuJeN0zMvKpQF82uLiokmn01haWpKFGQ6HUS6XsbKycixGYNIAm++dJyAi/U8qWFuEZrwQrWj+rcGLualqoDupHtN5i9Wz0K+1Wi0UCgUMBvuFf6PRqGSSEZSYJQa4SepNjoHU2o2nN0Ad5Mzx0t+Ry+UAAOVyGc1mEysrK9jc3ES5XD5TVk+L3W4fqZ1F0BIKhUSpMf6qUqmg3W6j0WigVqthOBzKGDUaDZTLZamyX61WpbI/QV2pVBrZaDmGvV4PtVptJCaNCiQSiaDdbsPr9Y4kk2h382m6j6zmPBW7rjWmjSgCU71myBZZGWQapJgGmene1EksHAfdk1fHCHLOatfdSSkOLToph0ZNs9lEpVJBPp9Ho9EQAGAm3mhAyvVljrvV31YMn5Xb+kXduhoY6vqcPI+udco1XygUUKvVJDTjZcThcGBhYQFvvfUW5ufnZf3p56UThLxer2TG6zAVc2ys9n1zfDiPTB1A0cwxSxDpTkXc77QLmoZiq9US9n7aZJJHy0pYI5XFqRmT3Gw2xbh5EfF6vbh79y7u3r0r66VarWJ7exvb29svejvHkksD+LxeL5LJJLxeL65cuSJMDmt2zc/Po1qtYmVlBfl8/pUBH9+38vWfh7CNFVPxuVERzJnKCMBI4K+OG7GyGKcZ8AGHXTcagDEurlqtYmNjQwLbGXPBoH+doKBBnd54tYtEb4R8j+NE4M3M1E6ng6dPn6Jer+PnP/85Hj9+LM/MKlD6rISuUSaUMOA6lUpJ9w+65ra2tiSTmO4mAmB9LzoOkECjXq9jZ2dHEhlYz9BU8MzoZJumaDSKXq834uIgKNV1Ek9LrIwJMhm6LiVBl3Z5a5cs55HJ6Gkwx9f0vCNTyDnGc2rmmOCTTKi+Vp1BbFXj7ySEsXvsoxoOh9Hv95HP57GysiKlYbQhqksb8YfXbDXu4/YeE6BN8ryYa+wolkdfF9e1LpPCcVxfX8fW1hY6nQ6KxeJxh21EHA4H7t69i9///d9HMBhEKpWCy+USI4hgi6EWwWAQ3W4X9XpdDCszDk+PJc+jx1F/RjPumgHktXE+MpufiSlkcql3aGxkMhncuXMHhUJhpD7ktMk4d66VBAIBLC8vI5FIYH5+HslkEs1mU+rBsmbhuO+xOt+v/dqv4Td/8zdlrezu7uLRo0d49OjRK93XOLmQgI+TkpOQmz8LoYbDYYmvYdAwm4jv7e0dqqH2MsKNFBgNsjwvUGSCMivXj7b0AFgudivg8SrjNA2ilbAGtGatPB7L10zXNwGzHltTaZgMCuco5wgBD9uVnbdol6AZ7M/5QFcDN3YWW+Zxw+FwBPBxvmgWlEqHCoJxjWadL7rWAYywWfraNNsyKVv6tMZLgyxejwajVqBOzyUdX8dj9H3pz/Fvfs5k/fg5K2BqfjfH66SNC83wafCtr8EEE5p9MuedlUx6Xd+n/luLZt/Nz046rx5v3qs2jgFI4XHO65MQc5/S+xC/j9/PMR83hschJKyekTZk9X7AeD+Ohc4i1tc9zv173vIi12O1dnWLTOoEXWTdFHPcWSopkUhILHCtVrN8Ti/KQh4lUwf4jjM5PR4PgsEgPB4PFhYWEA6HEY1Gkc1mJRWd2WB8OPF4XOqqRaNRSVNnjbUXuT6bzSb0OwA8ePAAW1tboszOGhwR7OkYPn2tmjVg9qq+xkgkIkG2esFq19FFAX0mcNNit9uluDBDAAaDAarVqsTlEPgwUJmbGmA9Npod1e404CDei+4sKolpajvE2MJAICBs3XA4FIuV9bvMIHtmGZuMpzY8CDJ4PMeSbiHNRFMYI0i2igwjv5djSKbjrMfTbrfLXsN4pW63KxmpNCy45jiPyAiazB8wOld1PJVeuyZ41qEHzWZzBEjyM5yXw+FQ9kUW1m40Gie2nr1eL5aXl5FMJhEKhVCtVtHpdJDJZOByuYRd57E6LEIz8bx2c0z0e5rBMt/TQNgEl1aspgmcra5BM3vD4VBqG/K581lbPdcXkX6/jy+++AJ/+7d/i1Qqha997WtIJBJS+mM4HEqR87W1NTx79gxOpxM3btxAIpFAu90eKR9lGrFco3psNSCzGgNNCFCXbmxsoNlsSuwZ52Sr1ZJ9o16vY3d3F9vb26hWq1PL7k0SbSTFYjEpJ/TZZ58hEAhgcXERd+/eBQBhfY/Lmn/lK1/B9773PSSTSSwtLaHVamFzcxP379/H7u4u8vk8gFFW+qTW6vRoHhwfebNRdCAQwNLSEtLpNOLxOObm5kZiWbhgbTYbgsEgEokEdnd3pcYaGZcXvUabzYZ4PI7XX38dNpsN+Xwe+XxeFtZ5AKNJblfNhjKrUR/LVjw2m+1QHILeXC8C4AMmu38I9AjEyCLRbQKMLnYqbb6u3WlaIZN9MRe9Vrz9fn8kAWQaRMfCaUXBDhi1Wk1qyelkCz1WwGg/Yo6PZiWo3An69HsUfo6MgdmvVytum20/CYTurLMcL2bp6sxt3qMVu8sahTQgNGjRhgIwykRppkUrZrKn/LxVSz9+N89txn6dpLC2ZCaTgdfrFbAejUbhcrmwu7srRc4JILS7VN/3JNHAxDye7JNmTc0xO+7+ZTUndUkTj8dzyJti5TJ9ERkMBtja2oLdbsfCwgKuXr0Kt9stnWW4LrrdLnK5HD788EP4/X4sLi5Krb16vT6STMbrB3BojUwCuhQ+I91FplAooFAowGazYXFxUUoo0QvAcI9KpSJFqM8rXOW4YupsvYaYqBGNRlGr1bCxsQGPxyOMHPeno0qi6XNfuXIF3/ve9xAOh+H3+6Vg99OnT5HP50fiQE9a504V4LOiL7lxuVwuxGIxcdkmEgn4fD5ks1lB4PrBmfQ2gyJtNhtu3bqFWCwmGZKMhThqYrrdbszPz0safj6flxIgdNmdt0tXK0e+DhwoZF2olseGw+GRDcDKeta/L4qYGzdBV7fbleryw+EQkUhEFBEBGQOkNbihC19bv7oWG//XLs1QKASPxyN19sysuvMWAj5m/ekYROAgxg842Bh1sV+ruCmTFdHrUrtpqZw49lppc6N1u92iRPgcyKqcd80vbQjxp9FoYHNzU0rFmPFz+nM6pIC/9Tjq903womO7zILK5vEEo4yz00lbryKBQAA+nw+pVArJZBLJZBLBYBDBYBCtVuvQc9HrBhjvZjXvRb+nQbB+X5/b1nRoVAABAABJREFUZPfGyTjQo9l7/mi3qclg65+X3SM5dxjq8cEHH2B1dVXKJDEZqtFo4IsvvsD29jbC4fCIgc71q40Kq3ue9L++HjPxbDDY71++vr4ue6jT6ZQktEqlIglbKysrkswwTUTBUfNB70e8P7rQ3W43bt68Kdm46+vrkp3rcDjw5ptvwuHY76fNwvk09Bj/6Ha78cYbbwj50mg0BFhns1k4nU6srKyc2v1PFeADDoMNMjLhcBhvv/02UqkUYrGYBLUGAgGxPkw/ulbWzIBxOBz4jd/4DfR6PXzwwQf46KOPUK1Wsbq6ikajMfHa/H4/vv71r+PWrVvY2trC48ePUa/Xkcvl5LPnNbl1li4wyobQFeF0OtHpdASoUiGzZ+u4xWC1MV4EMeMuhsP90h/NZhPBYBDxeFzAXSwWE8UIjG54/GGdLA1mNFOlA9MJWhhXOhgMsLq6ilqtJmBpGkQHgROk6JIZPp8P0WgU/X4flUpF4vgYtE3Aq4EHx5qZfMD+2uF72vXNEg509XFe+nw+XLlyBeFwGIVCATs7O7K+ec5gMCgK6azEDHHgfRCAFYtFfPjhhyiXy5ifn8fc3JywyTr5h0pFu32Bg3hgzSZr0KZLwNC1zcQglhfSMUf8cbvdiMViYuzRbfSyYrfbkUwmsbCwgLm5Ody6dUtcuG63G7Va7VCmoWZNrEqwmKyflfFutQ9pgGwCvnHuX/1bn1uve55Pu9Q5r/X1kiHn/vIyMhwOUSgUUKlUsLq6iocPH8LlcuFb3/qWkBJPnz5FuVxGoVDA9vY20um0sEGcD5wTLyJWjCbPyTHhM3v8+DE++ugjJJNJrK6uwm63o1gsol6vY2trCx999JG4denmPWkD12oOTPLq6N/jmF7OTa5ThmHYbDa0Wi00m01cv34d7733HkKhEBqNBu7fv49EIoG7d+8iGAzixo0b+MM//ENUq1V88cUXqNVqEm7m9/ulMwszevmb8cyvv/46CoXCqSVsAFMI+IADVs9m2y9yyoSMeDwubamYEq3jehhMqmORONmohNxuN0KhEID9Qolkd/x+/8iiAUbrZjEwmT/AfnYnFfhJWMyvIloJma8DBxO63z9oeK8L6ZqfsbIELxroM6+X90oXBN1tjE/R96hjJ7TLTrvtzJI3GvhodzBZP24c0+Ti0Pdl5friJqhZGc0km8BHi15/JlDia/o3x5LjRiDaaDQss8h1zOVZiAkmrIRWO4GVHlvzs/yf90wDQoM8Hsff2pVuxWpZMVz8YWb6qzBR+tq9Xi8ikQiCweBITCb3X8AatFH0e+a4mOyd1XHm9Rx1veOYRJM9tRLTFc/Xxt3by4jWPWR+crmcAL5cLodyuYxqtSrGmfYqWQHbo4DQJNHrlediWaZyuSyGRrFYRKPRwM7ODra3t48kTk5CjgP6jnouJpunjXUd5sI9x+/3Ix6PSxtOlpIiQPT7/RIPXalU4Pf7pah9IBDA3NwcwuEwisUidnd3xehhvVf2Vw+FQsLEs/TNScmJAb5JlpdeJPq1Qxfz/2ehdGzC0tISrly5Ap/Ph3Q6Db/fj2aziWq1KtX4S6USvF4vgsEgvF4vbt++jXQ6jXa7LSUg9HU0Gg3YbPsxCPTNX716FdVqFVtbW9jc3AQA2RzD4bAwQE+fPsXjx49RqVTkobGLQqfTkUlwlqLZFF11XVur/J+lSbS7bWlpaSQD8LiW9bSLuRH2ej3s7OyIcrpy5YoscO2K5WfM/7W73EwU0ICPGwjHs9vtYnt7G//yL/8ii11/Tl/jeQjHgKENbB2k4x3J+tEiNRU3wRhwwLSwq4bNZpP4Nc45Glc6yYHHBwIBRCIRLCwsIJVKYTgcIpfLyWfI8LE121m4dLXVzwxdE9zz2VNZ0FVOMGdmVZprk3OI4JZsq3aDanewx+ORJBcyUmbNPc1+0XB+0QKxVsL1861vfQs2m01qh6XTaWSzWUn44X6kWVjtErVyy/JvitU+ZGU0WK0h/dpx5okmG/RndWycJgJ4HOPrTpLNGg6HePbsmYSBlMtlyWIflySlr888F8UE1FbgWp9XM/IejweBQAClUglPnjwZ0Tv1el3Ay1mFrejrNu9Dh6joMdFeHY/Hg6WlJdy4cQODwQBra2sol8sjaz2dTiMSiSCTyeDatWvwer2IxWJSy7Xf7wvOoF69cuUKBoPBCHAsFosS18g1CxyEzdCT+du//dt466238OTJE/z4xz9+6dqOVvLKgM9qYZp/A8dLL+amGgqFcOXKFSQSCbzxxhu4d+/eSC9DdiUoFov47LPPsLq6ilgshvn5eUQiEdy+fRvRaBT1en2kNg4nABuyp9Np3Lx5E/V6HbFYDNVqFZ9//rlYKMz2ZQHner2OH//4x3j27NnINTM7rV6vj6TLn6VwspkWn7kRNhoN5PN5qZtkt9snZuxNeqbTLuY99fv7XSDsdjsSiYTEWGiGZdL4cfOjYjeVgk72oMVIMF4oFPDgwQMUi0XLrESr6z0L0VYtE3oI8livkGBGs6PmXCAgpFLWAIhgjgqKYoYhMAOSsWapVArZbBaFQkGCwznPdezhWTB83JsI9jSba7pPyepq8GUCYj23qCRMwGauXc22cGwHg4NOJGzzphlF4OAZs+WVrh/4smK325HJZPDGG2+gXC7jgw8+QKlUAgApbE4QRK8L72Hc/J/0v5XRqZkn/q9fN/cuK3exueY04LPKyjfPp9f4q2TpWslwOMTm5qYQEBSGNPF+zDI/R52T18//x425yeYDkI4qW1tb+PTTTyW0g5/ThsZp72dWz9jKKNB/a7Y7Go0iFArhtddew3e+8x10u13cv38f6+vrAvi8Xi9ef/11LC4uSikVEjxkPEul0khIl9frRSaTETf/cDiUUCp6eOg14noliAcgbt+f/vSnuH///nQBPi16UK0G22pyacVCFyvjq9iTkl0SWACWMT21Wk3831SqLNLK6t7coHVShQaA3JBo9c7NzQkg5HWR4XO73chkMtJLka2V5ufnEY1Gkc/n8fjxYzSbTSlrcZZiZeWar5lMoM02mpk76RznyUKdhFA5VqtViTFhIou2ZvVvE/CNYxj4NzdIXa4B2O/Nqy3OaRQd68haUeYGSiVoKmKtKHVco8lOacCiz63Zu3q9LiWUOGbcJAn4uK4J2E9bGCtntoXT9w1AQiaazaassUlKlaLnjqmczOP5HHRPYz2uZnIIcMBqkHE8CdHPrFAoYG9vD9euXZM2Y6w5ybg2/az19ZlzbBJDZTVu5no6LmuuP2t1XvNvq31Rf+dpGcRH3Y8GOuMAz7jrHPe31b4GHBg+Zka61edOSsaBx3HfZT4XJiyRSaMnMJPJIBAISI9zh8OBVCo1Mo4MWwiHw4eMS7KqjNGmka+NML1OtbFMo04bjxTtOeD7J6U3XhnwvehDNxdYIBDAlStXEAgEcPPmTVy9elVulGDks88+Q61Ww6effoq9vT15n2yd3++XoFG/34+lpSWhR5n5otk+HVTOkhPxeBw2mw3ZbBbvvPMObDabTGw+MFYMX15eForX7/fj5s2byGazePDgAf7u7/4O+XweX3zxBdbX1191eI8tGqTo18wNkRlEDBodDvfdvCYFrzc5Ttxpyi59EeG99Pt97O3toV6vI5vNSm9lgg8NeMYBPuBA0QGjDIQuyszPdzod9Pt9MU7GKY3zZvd0fCf7Q8ZisRH3g5kUYII7rlnNMGnwwbHV8XgExFxjbDM3GAykmC0L2rLOJQ0u1sE7izp8Ho9HxoQuGq38OH/YbaFQKGB+fl7u2Qq8aQWrY415Lj2G5rxiCQyz0K2Vq08rPSq7VwUn3D9brRZKpZJkjr777ru4c+cOdnZ2UK/Xsbq6KkCZittkjnTMn9X3TAKA4wxU8zOmoh5nwGpwYwX6rK6B43sSsZGm6Dh1c0/S80qvOyuZBEitXjfBH8eELDHXgJbTIAWsYieP+h69vpiUtrS0hGAwiCtXruD69etwu90SthKNRhEMBmGz2XDv3j10u12pV+tyuXDlyhXMzc2JcaPnsNPplHAvethIOg2H+2EZ7OrFtclQGQI+zeYTRDI0hGuHJM2ryqnulOPoeL2RsWF0KBSS5vaaTi+Xy6jVaiiVStja2kIul5MCotpqpVU9GOz3/CyXy+KOoptEI2X+MCOOfXgDgcCIO8put0ugqt1ul0bJrPvHIowEEJFIBK1W65WaaL+sHGexcULqzgjmROJGYgV2LpqYmzbvlSBCAzfNsEyyHo9yV+jsNrq1dGzluOs7S7FiBDTgJYOtsw650Y1THOMSCHhuK1eenmcEEQQ0OkSBPxpsm+zaaYp2IetyKRowcw4RjGmLXivn4xjEFBMc6n2L7J6OLdUKUp+DgPwkGFEdAkEjgH1kGdzO+Eqy6AR8WsbNJfPajwJ9VvIq62pa9rxx7JvVceZ6e5lzTpqjJhg5q3VnXusklpO/NQDm3AuHwwiHw0gmk5JNznIqfr9f7ocJnSxTxbhin88nFQp0yJbNZhtZU9yjuDa5PqwMYR0SYrWOzb3lJOTEAR8vzuPxSEFfHVtCWpRBioFAANlsFl6vF6FQCO12WwbZbreL+61Wq8lPOp3Ga6+9hlAohGvXriEWi+H+/fv4y7/8S7RaLTx8+BD5fB63b99GKpWSUhpkBYHDVh4fEBkfYDTNn+7bmzdvYnl5eaRODzc6upTPQ8z74QQzFyc3YWYS8v+jNs9JVvFFEQ0Y7Pb9ArosfKmV5zhgNg4Aa+aC84zGRaPRkIy6aRo7JhVwnQEHrI3OPgYO4vPa7TaazaYEIpvB2aa7wgRqVvFQPAeBHl3fPp9Pssm5X/C4Wq0mDMNJboZHjVcsFpNiwlSO3ANYTcDpdCKfz2NzcxOLi4uSUMZCzTpGVCsnrQD0a8PhcEQpaEVCZcJOJKFQCF6vV56j/i67fb/fLYt/v+yY+Xw+JJNJcfdvbW0Jm8f5wbIcei6ZMZw01oHDRbs5NictGjia53+R7zPZ6+MArZcRk9E6itUywdpxAaO5l+nz8X0SMNThZ9Xdxrxv8xnyOfh8PikszvArhoj5fD5kMhn4fD6pi6r3LoY0kYDiPUYiEVnbNPS4rxP88TqGw+GIQUico0NRdHgDDSF+Rj9j3aKv0+kc6pH9KnIqgI8PIB6Pw+12I5FISNFBtiiJx+OIRCJCrTocDlGMACRw3Gbbbx3UaDTkh27UdDqN9957D9euXYPH48GPf/xjtNttPH36FA8fPkSv18PXv/51ic/TgM90K0wqRsp2XEzQcDr3G5XXajUMBgOxbkul0qE4wbMSKyBCa0wvTrrteP0m4NO/TVZhmgDLywqfuQZ8lUplxJWrxQR52tVmzhddm4/fxXGeJsBns9mk1RZdC2SndEAxlTBfZ90oAh2ey+r8emw0GDbnki6fRJdJu91GIBAQN4bNth9PS2DeaDQQDodH4tVOW9xut7AEGvDR8NN7BOuk7e3tiTGoO3OYCpngx2QB9Ps68UOz9K1WC5VKBYPBAPPz89JJw8wY5Z48HA5fCfB5vV7Mzc2JC2xnZwf5fF7c7wR8jUZjJIRBg1ZTaesYptNaI1bnHQf+JokVg32aBofVnmRej/n3ONB3XLFipK0A31kYWpMYPc2QBYNBhEIhhMNhCRFbXFzE3NycrF2n0ynsu7nnsLwKjXW32y2JV4zlp9djONyv9MHQE13yjT/RaHSkNWez2cTKyoqEU5HYoueA92rujwxhOSk5EcBHNo8uUQI7bo5E2czCM/tpmjETdOn0+/u9NJPJJGy2/fZoRMnsXVsoFJBIJOB2u3Hjxg2Ew2GsrKxgb28PlUoFz549Q7VaRSaTQTweHynOrCc1MOpeovA9ImxupKY7RVvoZhDmWYhWqpOO0S4hMgTj6vBpwDfNyQaTxARl5nMiqNGle/i5SWIep5mscUzgNInpKjBZJ77G4ua0Zrm5mZmgPN7K9WjOJ9O1azKk5hzVrKk+91nOSZ19axVgTcOKVj0ZNjOhwmpejXPbWLEb+jWCdNb8YwIb3zM/q8NUXlZoLLAWqY4FBiCGgU4KM0GJniMvA5j0PDOv7TifPep4k1nTekGPnXbXn9Y8tDIs9f41bh1YkRdW8+tFr8Xj8QgAOi3Ax3umu1WHZmkDQY8D+8EHAgFEo1F4vd6RjHUCs3EGPZ8lPQr6PnU3H44rjSYdYkK2XxdHBw72TF1gnuVc1tfXxYjmHkGWsF6vy/1OTdIGAKRSKVy/fl3q5kWjUXkYACw3M97UYDAQlwRvuNfrYW9vD8B+iv/Vq1eRy+WwtbUFACgWi/jbv/1bKcLcaDTg8/nwn/7Tf0KxWMR//+//HT/72c+wsrKCP/uzP0M0GsV/+A//Abdu3ZKMMrNYsmZlTJcWAEHZTL/Wx9HiIaXMeMCzEk7Y47R3I1hlBl2z2ZRkFj35zdgCHe920URbrFzAfE6k0xlnoefquA1Sj6+u2cUx4rzW8+gsrOHjCq+JG6lmETTbNxgMpI8kmUAmddB61SBNK0AAkug0HA7lM3rj1cwV5ySND7rDWdfS6/Wi0+mMsI4v2rT8VYQZfoFAQEAdAIkhZniKy+USN4xej7rAtwaA3Ce1ktBMK8G1DtznODscDjF+2+027t69K0xorVY7xBiwHMurlGVxuVzCpAwGA5RKJVSrVXlu7XYblUpFvl+vD/P/F31uGliNM1bM461+H+XeNPdCvYY1w8/nyPl8mvNQrytmjHM+ca5N2veP+7xNg0Izr3a7XbruRCKRUyM1uB58Ph9u3bolHkJmf+t2lvybRY+pBwnKAIhRZGWg6rg5ADKWoVBIkjt0XUvuP/wu/VnT0OfexO8JBoMSN+h0OrG9vY3/9t/+G37+85+LXvL5fHjjjTewuLiI9fV12Gz7mcKMaX5VeSXAxwH0er1SRmV+fl5q1Gh3KW/cZAi42WsrngqYqDgej6Pf7yMcDiMYDCKfz2NrawutVgu5XA75fB6RSERKAkSjUTgcDinMXCwWUa1WpT0MY2n4YADrGkZ6U+Hx2k2hKX2dRn2W1f8peoM66jhuTprhM61aYNQaPyqZYRrFtI75nDjPtJXMuL5xz01b+uZvfYzJwkyraFbJ6pnzNcbTaotWf37Sver1ToUxbn6ZTIUGgTRAdCzqeTB8XNumoWgy+1ZsgmlAarFiucbNIxP06DhRMnw6GcI8/lWD7Wk0EdhqNg84KHVlxezqcRiXsDFOrMDaOMPM/JwJ0KzuSX+H3kutjDzzmsw94LRFJ07o/fw4Yt6rKea8M8dOFyQ+TYaPBlI0GkU6nUY4HEY6nR5pU8hjdAwfmy3omqDch4DReFE9Hrx3jU+YjazDgPhZzfhpHcl1r0tK8dnouH/ew/r6Oj7++GMBe2QofT4farXaCKN5EvLSgI816fx+P5aXlyV+xGazjRTy1RNLl2HgAGqLU09GWrytVgu7u7toNpt47bXXMDc3h48//lheu3//Pra2tnDv3j381m/9FhKJBL761a8Kgv7000/R7Xbx5MkT/OQnP0EkEsHS0hLi8bi0qdEbhx5YczIAOPS+fiA6CPMsGT5e33EsPG4QDMJnYLzV+cxzTzuIOUrsdrtkhAcCAQCHe7tyDpjgTW+A5ljoJB8AYrCMU3rTINo65kZFVwbXXr+/3z+3VCphb29vpFg3f7ThZM4PduwAIIwEWVA97sPhUFwdjC9lkDPLG9AC5o/JoppM5WmMF79bA19u3rTodQcbFmpl7Byz4rURacaEHgfEEHQRvNVqNVSrVSkZoQ0bvecCrw5I6HLyeDwjhjyFQfP9fn8EFGiFSVDKsRq3zkyQpn9PWlNHgbPjsPiazdF6QbN9dDHSwD8NJt/qXlwuF4LBoJQVGXfsy16LaaDpseK+yaSd0xCWhYpGo7h16xauXbsm8wY4IB8Yf0eWlesLOOjaRQONz0YbPQSLTDay2WwSasa9iOWgtOHKZ27lUtf7vWmc8Hu3trawsrIiDST0vO92u3j27BnK5TKKxaLsuSc11i8N+DweD5aXl5FMJjE3N4elpSVx+RCZ8ka1ctDMHR8iN3BtFXOxtVotbG9vw+1244033hAU/y//8i+o1+v4xS9+IYvxd3/3dxEKhfDNb34TV69exfvvv4+nT5+iUqng4cOH6HQ6uH37Nl577TWkUilRKqZSNh+YViRmsKpWfrwX7fM/T7HaFKncNeA7yh1wEQGflRJ1OBwIhUJIJpMIBoPyXAlATCCj6Xiek6JfM92hVO7TXLuQxgmBE1uUMVmKDFu1WpUyR91ud8S4MVkkPT+oEFmOg5atzm4jQAL2gQJwkOjCmnw+n0966mrAR9CgE0xO063GsWGGH4EulQNBvgZ87BZCxcA5oRMwNJuk43esjE2OqwYXdrtdng/d51RIOoZo3HN6UeE1er1e6RqgFR4BX7fbPVSugowxgb/p9THXmv7suP15HGCbBPq0TGK8zHHma/yfgJZz22w5eJKir49JCOxhPO6ejitWOoKvm8CbMfoMbTgN8fl8SKVSSCaTuHv3Lu7evSv9e3u9Hur1uhjUnEN6X6L+5V6hY1f57Fh/z+12S7tLfX9Op1NKsekSXgzt0iEqZPM028+wLhMf2Gw2bGxs4O///u+Ry+WQy+UOAb4nT57giy++GDEmzh3wkQ2g75yWLwcfGM1CMxewHgxzczOZNtMlEQwGkc1mUavVUKlU0Gq1UC6Xsba2hmg0Cpttv5ByLBZDKBSSWJ9CoYBCoYBisQiXy4V2u33oe8bR/uNEgwZ+j04MOSs57jVrF8BFA3EvIuM2d51gxMVrWv1WlvJRgFjPWVMJTmsMn+kq0GCC0u120Ww2peAyN0OTiRn3w2O06HVmrj/9DJj1SQAKQIxEjqm+F37XacxpgkodigKM9iEmqNPHE/SY5Vj0tepxH8cUmZ/VSkSXXuK845hoFo2ff5W5SEDOLkJkbnWMk25BZ96XCTrHATPei2lkme5gc87w96TzjvuMKeb8PGquv+rYjhMr5twqVvxF9Ndxr5PjxWvQrRJPSwisGAvLrjW8Ht220jQQ+AwGg4EYqSbDR3aPbSRZqshut8t85h6n143eZ6jn9R6kGUVeX6PREOaRwPHZs2fY3t4W7wWNbK0/yOxRuPcSa7zsHvfST83pdCIejyObzSKZTEqihtXGppmScZ0MaOkxS0a7m3QGTafTwdWrV/FHf/RHKBQK+Md//Ec8e/YMDx8+xJ/+6Z8imUzid37nd3Dv3j00Gg3cvXsXOzs70ne30WgglUohlUpJvN9weBBgaVo1wGH3prkIuPlVq1WUy2WUy+WRdmVnIaZCGidmFt2k8/G3FTi4CGI+P4fDgXg8LuEHe3t74vZi6R5uICaroucyX+NxZG3IzrRaLVnkei5PE+hjxpguCcB70C2C6vU6crkcOp2OZMzpulHcQLmeTcWnDQwCYbPEAxlGHas3GBzUtRwOhwiHwyOAnRu0ZpzMeNSTFMYy0lgAMPJsq9UqGo0G9vb2hMnitQKQTFoqBr1H6lgkziGrUgxc48PhUFzvwWBwpM4ok4/4vm6/xmt+lXnYbDaxvr6OcrmMVCqFubm5kaQTj8cjxedJBrAnKcEa14Z2NfM9rQv0fZu/dZa4laFmsoF6Lxg3V/XxwIFxoT/L56XBg44HPos1HgwGMT8/j2QyKcy41X0dRzRAnGSgkUn3+/0SM2elD8YZzS8i9Xod29vbaLVa+OKLLzAYDKR4ssPhQCwWGwGc+n47nY506/nlL3+Jjz76aCQBisf5/X5cu3YNkUgEr7/+Or72ta/JXKWByb2K65PS7/eRy+VQKBTg9/uRzWbh8XgQDAbh9/vR7/fRaDTQ7XaxsrKChw8folwu45NPPkE+n8fe3h62t7cxHO57OhcWFkbq9dHAttlsYmgz4YO9e182geOlAZ/efLWVZx7DATIBn47jMbNZNDWqz8XPRyIR3Lx5E/l8Hu+//z5sNhuKxSI+/fRTpNNp/MZv/Abi8TgSiQQSiYQ0Li4UCggEAtjY2ECn04HH40EymRzJ7HlRK027JFinjK6bsxS9AU0SXu9xAt61NTxNYOW4Yt4fNyq6QprNprAjdIHpcTHve5KbSLMqnKs6w2/awDKBh447tAL2bDPEEknaujaNIyumw2Rd9I85Xibrx+KkjE0DDmIPTRcNgftpjhe/14rhY7A4jT9ek8vlOmREmMaUHneT5bMyPAgyeH4dW8jEDZ1EcpJMPgtfD4dDpFIpKZXFeUTlSMNBX4tmZY5iwCetNXOemfeo59+4uWiK+RleF89tkgGaTTru3ntSQqDPQt9Wa+tFGLxxr5kgWSclnibDR7et0+lEsVjE3t4eotGodMGisar3CvPZdbtd7Ozs4PPPP7fM5medT3bMYu9wGrVkF819iqx5t9tFpVKR7+O8Z5Y890x6Hnd3d/HLX/4SGxsbUj/T7XZjfn5eyl7pWq2aWKAxR1LiVXTJSz81om/WwZubmxspUujxeOQB6UKNvFhdgoE3ST+5tnQp2prWfvq3334bkUgE1WoV+XwepVIJm5ubePr0KQDgvffeQ7Vaxf379/HgwQNh9RgXFA6HhVZlBu+47CcygTomhsCXmwNZvpMslniUHMXCWS3q4yoAfe5pY6mOEnOD10YKWarBYDDSBcAqXm8c02sex3lhlQAyTaIBg3a7aTBFBkZvlhq4WoVCkAWwUsx6PfE1bQByLWmXLTdBZupqQKhjdghE+f2nOWZ6jWkXd7lcxsrKCorFosTu0bAg62iGeYwDYlbARStzvkdQSfceqxb4/X6k02l4PB60Wi0ZG810vKx0Oh0UCgW0Wi3cuHED8Xgc3W4XmUwGdrsdzWYTn332mRSh17GX5r5uZRzo+WA1VpOu3QQ7Rxmq4wCDZvh0Fr9ONARG66wd14h+VbHZ9ouQJxIJ6ShhdczLyDigaAJerjl26zmNECYaL9vb27JH0+1J9lrvFTrubmdnB41GAysrK+LS1eWUqOcLhQIajQbef/99AEAsFsNXvvIVzM3NodPpSPKpDpmw2/fLxm1tbWF9fR27u7viKdJZ66wXvLa2htXVVUlA03HLTIojpqDbmq1jo9EolpaW4HK5pMWsGebwovLSgK9er+PDDz+Ew+FAKpXCwsICvF6vbHTRaFSoTrYj0sicbi9OHioF06LVtLou3+J0OhGJRPCv//W/xptvvokPP/wQP/zhD6XTRjKZxMLCAv7gD/4AdrsdmUwGyWQSLpcL4XBYXA8sIUOlwnPT564BABE7K2xzATCG0eFwoFwuo1AoiKV/VqIZGz0hXhTsWSkWnUZ+0QCfvle73S4FwelCAkZdZdqa1UBlkvA4M+PX/I5pEg3uCGK4iXP+s2wPE62oXKxYEwJEE/BRoXJcTMtV93Hmc6C3gIHZuq+unudcq3Tpnibg4/jogrNUPna7Hfl8Hg8fPhQ2gvNMMzDjwIweU80GmqDaBBS8pkAgIApqbW0NiUQCi4uLiEQiaDab0hNZJ1m8rLTbbeRyOalxRqC3uLgIj8eDer2Of/mXfxG3LdtTca5FIhGJPTNLe+ixMZlh4IAQMMeS9zMJcFmBPyvAx3HVYFTrAv0cqKhPCkwfV/x+PzKZDKLRqDyHo8DtJBk3H/X75l5Jcsfn84kL8qSE99Lr9bC6uiqt+4rFoqxx6iXWtQuFQvD5fGg0Gtje3pY9o9frSWtDrgO+t7OzI78//PBDZLNZCcVot9toNBqiC7Q3odPpYHV1VdzNDEV7/vw51tbWRhg+bQyYa6/f76NYLKJUKsk4u1wuLC8vI5FI4ObNm/jud78Lr9eLn/3sZ/j4449lD3xZeWnAxwnPVkdEtET8vHi3241ut4t6vT4C+IiEydZZLTxgNI6CTAM3esb0DYdDyYwhmCwWi/D7/SiVSiMxMQw67vf7KJVKkiXDc2urzgrw6fIH3JR535VKRVqunLVLd1yw90mIdj1dBDHBCF/TTNY49mnchm1av1YMn/nZca6lo671LMR0Q5muKb1BTXJz69fM+x0Hls24P4pm8Lje9Drj2tSMLL/rtGNM9fwx3UfAQXJLr9cTtkHHIJsxy1bn4BhYxTdbJVnxPNxnAci+yjEZN+d0rOSLzj2C+3q9jr29PdTrdfj9fmGc6L3Rnhju2WYdNdPQn8TsWY2HlViBanO+m2NoGiLme1YMoz6nOf9PU8yM8aOYz5eRSWNLppPM8kl7s7SBxHOzzSL1v2l0MrOfVSd4HEMLtEeAn6dxS8xQq9WQy+Uk5IttXvUzBvbXerFYFAOKhqnW/Rw/Hf9nzhO9b/GenU4nYrGYGEY8P0PFjoq9P0peyRHPi6xWqwLetre3xZqjpW5WxiY65/+MRdBB5BQdR6GtLHODaDQauHXrFgCgUCjg/v37+Oijj/BP//RPsNlsKJfLEjjNQfvoo48ETFopH6uN13yQtPKdTie2trbw/PlzaSR+lkKL2Wx5M2kDtRIrxU0q/TTb6ZyUaBBHMV0QvB8ey0b048ZFg5ZxCoobFI83XZ865sxUGvo8ZyGaSWMsDo0mKmhawc1mU2pdMb7FPBdwsB400NBrTcfdMdBcs4d6/ZFhZEzLcDhEKBTCYDBANBodsarZfYOK57TmJ79Dl1sAIO6ZarWKQqGA4XCIdDotY8l+1VYF27WbCBgtbq4Lt+o5phPYmMkXj8dlTpfLZQms5/6ku+RQ0ZF9rNfrIyzrcaXf7+OXv/wl1tfXkUgk8Pbbb8t18HtisZj03OX96rZcXAu8PlMZmmEWOt5bl+XgGOlYcXPv1oqe16d/U6xYP14jz8PnRoKBJTpOk2HW4vf7kUqlEAqFJPTBLJ7/ItdxnGM5rlyvLMvm8/nw7Nkz8WidxD6me5Lz/jifnE6nFGLmnBoMBlLTzuFwIJFIwOHYL5zMJIp6vY5eryd6QJdl4drtdDr4q7/6K/yf//N/xDjRulDvZxqocd653W4sLi7C6XRKOAf3DB3OQI+E0+mUIsvdbldYcTLHrVYLv/jFL9BsNvHw4UOsrq6OlLV6GTmRyEuiTwAjVptJcRPocdNnbAc3Hz4gCh86z8dFrrN52c6IPXeHwyFqtZpk+PG6mFzCtkO0UOmnHwfstEWpwQ9jFAmE7HY7SqUSisXiuWTo6rgmKyvW/P84oI/Cc+qYymkXDazoBtQ/psVGhTiOJZ20kXGD1WNqKhTTSrRiIM4S9Jkxn1xrXJ9UwlQmGpxY3admTvWa1RukPg7AiAtYrzEy7Boo0RD0er2Srcb9QBuVp6VweV3m3OEeRxeQ2+1GKBQSMM1N3DRUNWOomUkNYqyMW/5N0EvAwbFjzKNer6YrnWCUgP5lZDAYYHNzE5ubm7hx4wZ+7dd+DVevXkW9Xpc2VszO1WNI49hk6nQYBI/lb71meN9cs3qcdH9zDf6AA6PvKCZOX4MWM26bc0H/PquQFyZt+P1+Mcys4kPHgdoXEXP+0cChe77b7Ypb+aSE30PvGQEmQ6dYo0/v34zb01nh0WhUwho4TgRcPp8PmUwGwWBQXMatVguff/456vU6vF6vAGreP2OK7XY7stksEokEgANCQCexMoM6EAggGAyKsUMQyC4evAbuH91uF7u7u6hUKlhfX8fq6irK5TI2Nzel3eyryImn2nDhjlMKwOjE0SUauGHqz/BvvaAJJu12O2q12ghbCGCE1iUaZkYmaV+tzMyN1Iy70hsSFaOulcOFTr/9eci4pA1zczNjqUwxx93q97SLCZ64+GOxmDA0pMpNg8TKPaN/6w3AnN/8W7My2pXAn7OK9TlKNMtistscG53IpNeDZox4z5rJIUtH8MZNVjMwmskBIBlwJiMzGOy3D+PxOmyEim2SEj+JMWJsD5kcDSwYi7O1tYVwOIx4PC5eC3M/McGiaWho5k/PY/M5acCnS7+Uy2XJ+uNY65I3NFpPEqBUq1V8+OGH2NraQiKRQCqVEobEZDVpUACjYMI0JrVnh/euA/e5/2vAp4kG8zu0O95qjxsn2mjk/2RXWei6VCqh2WxKbPdJiLk2CZbpvrcKQTmt+W/uD5xzTNR89uzZiX8vMMqs8n5brRY2NzelVarP5xM2jGuHnWBYRgnAiPHT7XbFICNxE4vF0Gg0UCwW0Wg0EAqFsLy8PBJnWq/Xkc/nMRgMJPve4XAIo67P32g0RgwQTVjRaHW5XFhdXYXX65W1y4SPZrOJQqGAra0tmVsnQQqcCuAzxbSaaBHTR25lzWmWwIqNsmJOrKh4Uzlr60+nl/N9bsJ64zU/b1qnVorwrEUHs2sxNzguIivQYfUceG6tWC+C6OsMBoNYWFiQ1H6XyyWLcjAYiBtTs1PmXDSBhWkUmKLZKh27pMt0nKeYzIlWzNplpst8mPNcz31+lvOQhhsNLmbFM+bXBEFch3pT04qtUqkIeKYLxGQFTyOGj+clYGWHCbKPdLFsbW3h4cOHWFpawhtvvCHuIt15Q7N6mv3k+5qpNJNZTADAPcput0tAeqFQwNraGtxut8QZa8OGysuMa3pV2dvbw9/8zd/A7Xbj13/91/G9731vRFFqVtc0LLgPm4kPmmnX+y1wwKqaDJ8G2OY+bKVDtFgZP+azsdkOXOndblcS+La3t6ULxEk0uDevBzjoEsQ5yLVpxtfq3y/yXVrMdQ2MtkK12WzS9iwajeLTTz992ducKARJvEZ28Nrb24Pdvp+Al0wmYbfbUa/XZe8h0GOmK+ef9hpwDdDly/Pv7OygXC4jmUzi7bfflrqbdrsdu7u7ePTokbB8/X5fup64XC7U63UxArhfsXB0u93G2toaarWaAFK9B5fLZezs7BwqUWfuEVr3vIycXjGdMWICJ/2alkmAz2RfrBS0Xiz6HCY7YVqCJvtggiX9MM4L3FmJeb3jNjdzPM2FPW6zuEhgzxS6sMxSP1bWsdWcMeVFrCyt6Me53KdJNPukwYp+b9JnNagx1yTjbazmqRV4pGiAMw6Un4bo79DuV6vxYPgIGVFdvHqSWBldViyU1frmZ7XhOs4dzPPo+zgpgMwYqVarhUqlgkqlMhIQr70g5v1qA1Qb4xrw8F40i8ax1u+b7nDzeyY9C/P79BjToOC9EvTVajUhLk46S9ec1zQ69LjqezM/M2kff5HvHnc8XZS6EPlpiBVG0Kw4wZcu8cbnw2QH3RqNz5TuWe3uNeMgNQOvjVx+B8eBxhm/j8wzf7PSAHtek6XV+Ia9c8dhCtMAeFk5E8A3jvmadPHHVbjHneymIgdwKPZBf+e4zXoSSD1P0QyfqSD0eOigUM2MWClgwFrZXATRz8fr9SIej0ulds5Fupw4btqiHOf+4f/jFKpWGlR03Kj9fr9sProtj3m9ZyFWyp+v0YVKZWY1Jzh2VmOg3U4cVw34CIa42WoFDxx0XdBsCoXnMQvAvmq5kXFixdCSkdJMpp47ZBb0XNOgxOo5aJc/16T2WOjnxe8z5zG7bgQCAbkeAmx9HsYRMdHupGQwGOCzzz5DpVKB2+1GLBYbydIlu2hlDPC+tGuM98DEEpaw4NzQ89Gci1bA8jgsnz52nGFCQEnQyQxR08X6KmKex+l0Su09Ji9Y7VHj7uk4Ms74t4r3ZZwa/z4P6XQ62Nvbg81mG+kow1i99fV1eDweYWO5jwyHQ3GbMpaV4V3lchnD4RBbW1v46U9/OhKzyxaueg0zUVVfgyaSqFtoFDEMzPR4moWhTTkp3HFmgO+kP2O1oF9UJsWyTRugmyQm8zFJTBbTCuxNOv9FEPM+dJCzVsIajJCiNxmGcYySZgE0a2UqFm6WBEGsVXbeYmUUaPDPum1mjKv+LHB4DXG8dHKM/gwBjba0tWhwwDhZ7f6lO1QDo+Mo85cVreysgBnBH3DAPDBGRzNtVvNFj4sV8LYytnQMKc+ts9DZdo7XY/VdOqP/JNf0cDiURA6Px4NsNjvSHYGZzjp5gswVAQzjsKm8W62WZFDu7OxIGa1xcZGTru04gM+KETWf31mI+T0Oh0Pq2zJm7KhnNw7AHSVWnzP1BDNR2ev6PMTKhf4iiUisf2clbJE6TXISc+/MXbozOR05rstQb3o6c9IUE/Acx5qcBrFaFIzrMPs/Wt2PjtfjMfq8plIYp0T02JnMzTSM4TggS2a71Wqh0WiMFDel0uZxZJlM0MjWWsPhEIFAQJQlXV9kRvRnCT44Tiy3ooOtNTgngNbZuSc9rmTDCFA048kM3I2NDXE1svIAmUCd/a3XmrnerJhk/brVe5ph5jnJODocDjSbTdTrdYlR5Zw+K8DCumQ66YfgzvRCmN1eCPbpjajVaiNJElZsx3HuaxJLosdGv296gM5atOHItpCsv2fODTM8CXhxkGe1jvT/PDfBO5PgZnIxZAb4LoloZTlJaK1SaWm3mNU5TcByEcTcmJmlqzMngVGga/Wa1XmPcvObQFl3GeDPNDClGoyayoOuDQYvRyKRQyVJqCAZG6PnCHtSejweCTCv1WriDiEQovvD5XIhFAoJsLLb7RLzwoxLAgCyQb1eTwKudV3Fkx4jZvvZbDZUq1XYbAflRmq1GlZXV1Gr1VAqlRAOh0cC68lg8h7HgVITAOnnY85lbYBo95Eu9+B0OlGpVGScwuHwiOvxtNhQLb1eD4VCYcQtzd/jAIX5Oq9zUtz0Sd2L1TnOYpzGiTY6gf05Eo1GpQaduY9oD4xZQobvjxtfc96Zos/N5+B0OhEKhdBut8+N4ZvJi8sM8F0SMRmb436GvydZddPASL2KkBHSNSIBa6ve6l5fZdOfVobUijnSQI4ByCaY0wpcK2MNIE3GTx9vfkbXMtNFe00FY7rxrJjTkwZ9GkwBoxn8DBSvVCqoVquSzaxb1fH6rRg7c96ZoRbjxMo1aYIqMrTNZlPG2GQGz2Ie6qD3mby4mM+YrLZpoI97npOYYqvPWO3544CwjqUdZ8CeJaM8k+PJDPBdEtHA4rjHA+NjW47jtrwIQoXn9/ul8CVlnGvH6rf+zHFcHlbW8zSNowm8gIP4OQCoVCrI5/Pw+/1IJBJSIJ0B2vx8vV6XQr+ce1YlQVwuF+Lx+EifSX4vlZkZL8XaVLVaTdx5TOiw2WzSxSESiSASiUhHkJMSm80mVfE1i8Gs716vh83NTZTLZXQ6HQQCAamvRaDLArI69lAzMQTXDObWha9NN6zOYuV7dKHzPMViEZ1OB0+fPkUoFEI2m8X8/Ly8pwPHT6oO30xOX+x2u5QaYUkPACNGgt6ztAFrZWhQjvv8zblot9ulccIkz88M9E2XzADfJRHN8B113HEBiAkGL+rCpbuLsUxWIHecNXwcwGe+Pw5E8/1pEKv712wWXbCNRgOdTkf6YAeDQfksAR1BDcdF1/AjCItEIggGgyMFncm66uvh5wBIf0s2ZydI4fX6fD4AQCAQQCAQkBZGJyV0xZrdIRjP2Ov1kM/nUSqV0O12pTWkTkzRNeOA0U4umtXTjCdBrdUzM0t/ECwzO5E9zTc3NxEIBAQgAJCi8xqEzuRiCMML/H7/SI1DziEzo1v/PQ4MHlf0/q/Z/EmJPzNDYjplBvguiZgLe9Ki1tbeJHbPyhVwEYWKlDFNx9nwjgLCx3X9sh4UQcy0jaUGHbr4LaVcLmNlZQVerxfVahV+v182fJZvYZyaLq3B+cU4s0qlIgWT2dOaAE6X2WBMYKPRwM7ODqrV6kj7Qx7La242m1L+5TQAjJWBZJapACCAmCVSzBqG5jjrdWcybTzOqoivVrr6vLwulj1h71COjz7OvL+ZTL/Q+DBriVqBOr5OsQpXOeq5jzOGKUyosZrn+nPTYuDOZF9mgO8SiI6XMoGcubC128iKMTAX7LgN5SKJbmLNzMVJTN04l+wkV675Op8DARFLBUzLOOprZMcIggLdcu758+f4+OOPxb1JFyIbx5u1H4FRYKQTMeiqZGygBjZsRaRf53Hz8/PCeOnG4rVaTdooWhWkPYkx0skqvD66s/T3sYcm25oxI5njorNqtTtbs4jD4VDuR/cBPy7r53a7xbW9u7uLfr+PpaUluW7+6FjImVwMYZYue7DqNWZ2wqFYsfgvC8DMfYvrkPspGXDTSJmBvumSGeC7JGKCknGWvBUTOI7h0/9f5EWr3d1mfMtRoo99kc/pGBuzltw0iAa1ZhakduE0Gg3s7e2JcqFriSVuvF7vSEcF4CA2jeBQZ5vSDawZRV16Q8fwAfvj1W63BQQS+BAQ8b3TAtJ67lgZAboWHl1cekyt1ppW1sCBEWbF3PE7jsrY1ddAAM/YQKvOG9MyD2dyPKHxoV2ox/FCWO1fx93Lj2IMtTdA1zedyfTKDPBdIiGTwKB53ZdPx17o6t+Mt6JohcQFTYagVqudSjeD0xKySnQ9jnOTmTKO0TzuRmllWU8bS8p4rna7LYySmVBgxf4Oh0NhAAnGzCxR0/WpRTNSuvuEnqvm8bVaDRsbGwiHw5ifn0cwGJQOHCwQzc4gp22Y6PXRarWwt7eHUqmEpaUlpNNp6YIwHA6FWQZGM2nNOeByuaRQM8Gw7lJiZv1qYKh/R6NRAPsFZXd3d2WMNLOnx3ha5uJMjhaHw4FAIIBwOAy32y1hFHot6QLg5j593Ax2q33LNHT0D40+dhE6rY43MzkZmQG+SybaJTeuSwIViAZzpqLUyqFer6Pdbo80vZ920ffJMhX6vaOAgQ5q12N41Oc0INDfZ7KM5nnPUmgM6D6TbCiumStz8+a1nmST+ONIvV7H9vY22u025ubm4Pf7UavVhMlqt9uS2HEa4znOVdZut1EsFlEul3Hjxo2RzhIaqGn2U59Lt0bzeDwYDAaSDKLb/elzmEyfnk/hcFjq8NF9brpyT7L910zOTujSZb1Krj+r+EwzRpTHHSfGVX/OBImaleb7DG9gbO9xu1zM5HxkBvguiXg8npGyELr8iI7v0J0QdM0wDUrMmmus7E733DTKJFc2q8Kzr6LZHcLqXFZZjHpTtVLgFDJW+jy61pxVMdqzVsKawSUY0MwRjYFpAPiM2WN8mwlEGTN30oCPcYucO2aslO5IUiwWkcvlEAqF5DO6NqD5m+fX10/Fbc5NMxSBY8IxYA9fdvwoFAqo1WqSYW3WL2RHjpNurTaT0xPNpHEeAgftIfV80a0LKcf1LlixeXyd5+F36JZ+Pp9vJDaVx86Mi+mSGeC7BGK32xGLxbC8vDyilOjS0UyXz+dDLBaD3W5HpVLBcDgcKXjLGk86WJ29G+Px+KHixdMiVjEmlEAggEwmA5fLhb29PTQaDVF8vFdzMzSVNc9rbq76N48nCAAg2cEejwehUEgCnK2u+yxFs2PtdnskEYPuStbY05u9dvGMe81KjlI45tjq8zWbTeTzefT7fVQqFUSjUQE5g8EA1WoV+Xwe1Wr1ROOIdHeDeDw+YlDZ7XZ0u10UCgXkcjkAwObmJhKJBO7cuYNgMCiJQrrOoO62QkOq2+2iWq2OhFtod7jZM5jZyUxqabfb6PV62N3dlTIxz549Q71eR6lUEsaH89Dv9yMcDgPA2C47MzkfGWe4Op1OJBIJzM3NjZQusip8fNTebLUOtQfDNGq118KMWe31ekgkEshkMnA6nSgUCpKZP5Ppk9lqvwRis9nEajcZBDO43GazCQNIK21cQLpV3N9FXMhUuMwYNd0bvEfTIubvcbEs5nEcH6sNmO9PwxjqmB+6+cykErptzQQK/dvqNStlc1x2YRw7wHhDncF6VgwfQRIBm1aCjIFtNpsolUpyXel0Wlq/0eBiMWbOQ4I5tvpj9i/rrGnWVX8ffzqdjowHfxeLRezu7qJSqUj9QjNhiPOTe8CM4ZsembRGuG97PJ6RuOtxcbIv+j0m4LMKPdE/XAucS1wj5723zWSyzADfJZB2u42f/OQnAPb7xsbj8ZHm8i6XS7oSPHr0SKx/FmktlUrY2NiAx+NBLpeTches5cWA+I8++khYwWkT7Y6kkNl4+vQp/uZv/kYySk33mpV1q89pxrKMAzw8juwZcOBOX1lZwcrKCur1urB/5ynMcmW8mNvtltcJJggYKByPcWzeuHlxnPkyKZGA9eSY2MDjaIS0Wi1UKhW0Wq0TdUGTNSNADgaDCAQC4mImyBsOh1LvjswLFSCVoG7/xr91eSRtjDGhivOX80rXK2Syjc4CZ5u3drstY0FAOhwOUa1WUa1WUS6XUSqVJDN6JtMvrVYLT58+RTgclvWp19VRhbSPuwb1XmdluNI4JMirVqtYWVnB1tbWCMNutR/P5PxlBvgugbTbbfzoRz/CL3/5S8RiMVy/fh3BYBCxWAzRaBQejweJRAIOhwMPHjzA06dPR9iQYrGI1dVVOJ1OPH78GHt7eygUCtjY2ECz2cT6+jqKxSIajQbK5fI53621mBuadkE8fvwYuVwOPp8P169fRzweH3FP6MQVHQRtlvuYlOmmmUDN8vF8GxsbePbs2UhM1XknbbDrAgEfwSrrBh4HmB73+l/lOBodPp9PAJVmnVutFsrlsmXy0atIr9eT4s+9Xg+BQADBYFBcqsViUb6T8XPlchk7OzsArMHrUUrQKjRhHHs6bs7zx+FwoNPpSCu7crmMSqWCUqmEUqkkbdZmMv3SarXw+PFjAfsE9IxpJXt8VLiNVWyf/l+H8pjGLHCwn7HQeKPRwNOnT7GxsSHs+7jvmsn5ywzwXQJhzBUXaT6fF1au0WjA7XajXq/D4XBIjIVmShjzY7fbsba2hlKphHK5jHw+L+wJ2cBpCOIfJ+M2FzJEw+EQ5XJ5hKUyAZ8GilY9Kie5JycBPnaXmJZaVQR11WoVuVwOrVZL3Hy5XE4YSlPOYxPn86vVatjZ2YHH40Gz2US5XJZOHKYL9CSEwLjdbkucIOM/6/U68vn8IQUHYGqeMbDfE3ltbQ2DwQDb29uo1+vSU7fZbE7VtX7ZZRIr1u12sbu7C6/XK7G3nJ8EfJMKj5uei3HfxbATwLqcFPd/hjpwXfI6rL5vJtMjM8B3CYQMQ6fTkUBtWnx0GzExo1AoHFqYH330EXZ3d2Gz2cSNR0XHTETdzuqiCV1eZGE4FlauXPO3lhdhZ0xWhi44U85jPAeDgfTJLRQK2NzcHHF1M9PTlLPaxM3vqdVq6HQ6yOVyyOfzkhHIOMO9vb1TKRPDTgJkO3O5HBwOh7hrq9Uq6vX6iX/vSUm/38dHH32Era0tMQqZ5EEXtC5XNJPzl3FrrFqt4qc//amENeii3Drm7qjEqKPE6hzm/zqGr9/vo1AoCAA1geVMpktmgO+SCJVfu91+YSWUz+eRz+dP6crOX/QGyXZVX3ZhJ4Z6vW4J7qZJaIAA+0WFz/q7gf15U6lUzvS7T0Iu+9r+ski328XW1tZ5X8ZMLrjMUrRmMpOZzGQmM5nJTC65zADfTGYyk5nMZCYzmckll6l06Zo1zcx6QDyGr00SXUSSwfpmJuaXQTheLPyqS0Xobgu6btdMZvIqwtIpZg1Cs64hy41wPX4ZEgnYOcHMiGTyEMdMl2DhWM1kJhTG0rFvs5l1e1TGrpWYVQmYFTybfxdfphLwuVwuxGIxuN1u+Hw+CVRlZXkNAgne9I9WKJygHo9HKoM3Gg30ej2pS3XZxWbbbxHlcDiQSCSQTqfhdrsRi8Xg9XpRqVRQKBTQarWwvr5+IWOVZjJ94vP5EI/HZa6Fw2G4XC7p3NLtdqWm2M7OjmTelsvlQ8rouAbeRZFAIIC33noLyWRSWh2yk0ir1YLP50M4HEav18PDhw+xtbUl8bkzpTsTYB+QsZXfwsIC7ty5I/NIG1LjyvlYZbYz29fhcMDn88HpdOLJkyf45JNPBPidZR/tmZysTCXgY8V5NotmSyoWAtZFJvXkNivKky2w2Wxyvna7DafTKYrmsshRnQ64kMPhMNLpNPx+P7LZLPx+P/b29uByuVCr1bC7u3vWlz6TSypOpxOhUAg+nw+ZTAaJRAIejwfhcBhOpxOtVgvtdluycF0uF9rt9tTWejxJcbvdmJ+fx9LSkrQ7Y6Hner2OUCiEZDKJTqeDvb09SVaZhqLdM5kOYX9zv9+PVCqF27dvS61Kgj0ywxRdhUCXo6KwWDh1BdfkkydPMBwOx5ZrmsnFkKkEfLFYDO+99x7m5uakHyVdG0cxfMAo+GEtNXad6PV6qNfraLVa+PnPf4779+9fKotZU/rBYBB+vx+xWAz37t1DLBZDJBJBNBqF2+1GPB6H1+tFrVZDqVRCq9XCW2+9hWq1ilarJb/JMEz6rpl8ucXj8SAQCMDtdiOZTArQY9cXzkWn0wmfzye9ZIfDIWKxGOLxODqdDra3t7GxsYFGo4HV1VXUarXzvrVTEa/Xi9u3b+Pu3btioPZ6PaRSKbRaLSmczk4ZkUgEm5ub+OSTT2agbyYA9sHZ4uIiUqkUXnvtNbz55pvweDzSKcksLk8QqMvzdDod0QVut1uOd7vdSKVSoh82NjZQLpfx/PnzLz3os9lsCIfDCAQC0s2G3XesqkCYZW28Xi/8fr+UCjvLcI2pBHxzc3P4kz/5E7zzzjuHevqNk6OAB8/DiU628P33379UgI9it9sRj8cxNzeHO3fu4D//5/+MmzdvSjkOsqi6l6eW3d1drK6uIpfL4U//9E8PAT4di3UZx28mLybBYBCLi4sIhUL4V//qX+Hq1asSWwQc1CHURax9Pp8YdAwzWF1dxbNnz7C9vY0f/OAHAvguqmExbu8KhUL41re+hX/9r/81Go0GarWa1BYcDAbwer0IBoPodrtIJpPY2NjABx98gCdPnswA30wA7BtZd+/exZ07d/D666/jvffeg8fjwebmJkql0kifXYKRZrOJfD6PTqeDWq2GRqOBaDSKe/fuIRKJSMtNn8+Ha9euicu4Xq8jl8uhVCqhWCye852frzgcDmSzWSwuLopHotPpIJ/PHwJ8ZuF+AAiHw8hms+j3+9je3pa1/6UDfEzScLvdiEQiIy2wTkpo7RBlm/1UL4vYbDYEg0FkMhmk02kkEgnE43HpkUqGxel0jsQ+6obqtBITicQI2zADeDOhcL74/X5Eo1Fh9lwu1wiz0G63ZTPkXNNhGLrFWzQaRavVQigUQiAQkFg/ykVer7rhPPcgdkzgeAwGA3g8Hni9XjgcDoTDYTSbTQSDwYn9Umfy5RJ6rnw+n8Soa5csi+8DB3Vaqe/MrkBcewyt4Dn4OkOiCCAvq5g9r83EUerIWCyGRCKBTqcDj8eDTqcjx+q9yfwsACQSCSSTSXS7Xel6c1Z9h6cG8BGgBAIBxGIxmaiscn9URhFg3VvSjOtzuVwIBALS/JnupWlvGzZOqADMKudOpxNf//rX8e/+3b9DJBKBz+dDuVyWfodkOzlB6frWG8Lc3BzC4TB+7/d+D9evX8fjx4/xox/9CJVK5VA/Rl7DTC6nWGV1u1wuzM/PIxwO4/r163j33Xfhcrmwu7uLjz76CJVKBVtbW+h0OgL8zDnK4PBMJgO/34+rV6/ixo0b8Hq9+MY3voErV65gZWUFDx48GFFY05gxaAVEzf8DgQDC4TDi8Ti63S4qlcpIFi6P73a7qNVqGAwGCIfDcLvdePLkiTCmR8m4fWEml0vYEalcLmN1dRUul0u66LhcLvh8PgBAuVyWsJ1CoSCenm63i0ajIawfi5z3+31sbGzA4/GgVCrB5XLB7XZfaoPD6XQikUggEAggGo0ik8nA7XYjFApJBjQB3/LyMjKZDBwOB9xuNwBIr2oAY8fJZrOJMVcoFPDnf/7nkqR2Fobs1AA+ABLQHQgExJLodrtjM9M0crYaKO2qJJjx+XwIBoNwOp0yiVmO5KLJJHe3w+HAjRs38Ou//usAIG2gtAIgyLMCxh6PB7FYDMFgEF/5yleQyWTg8Xjws5/9TCa1GTM5k8stBHzD4RD9fl8s3XQ6jWvXruHNN98EAGxvb2N1dRU7Ozt48ODBkclRHo8HqVQKgUAAXq8X77zzDrxeL27cuIF4PI52u41Hjx4BsG79NA1y1F5E8Xq9iEajCAaDGAwGUjFAZz4yno+Gmc/ng9/vRygUOrbCnWQIz+RyCPftfr+PRqMhyXeMCxsMBsK01+t1yQBn71uyyewVrefJYDBAsViEw+FAo9GQpL/LDPiY9RyLxZDNZnHz5k34/X4kk0kEg8ERNnRubg6JRELilJ1OJ+r1uoRbEL+MM7iGwyE2NjbwD//wDyMs4GnL1AA+ZtLG43FEIpFDlqyVL1z/bVXGwarel+49GAqFkM1mUa1WDzV/vqji9XqlBEYkEjmkgPS4kLJmJrN+Xzfm9vl8iMVimJubw+3btxGNRrG7u3soluMiu9pmcrTotUM3z9zcHJaWluB0OvHo0SN0u12srKxgZ2cH5XL5kCFhCtcmQwWeP3+O//f//p8YY6lUSn7I9pMNI/ichjln1YyeANnj8YhyuHLlCq5fv45MJoNIJDJSJ9Q8n/5Nxv23fuu3sLu7i729PVQqFTSbTezt7Y0wM1afn8nlEwIQ1rjU1StMNp2gjnoPgHh73G43Wq0WBoOBGBf6XGZS5GUREzvY7XYEg0FEo1EhnjwejyR6MulFhzy5XC7kcjnY7Xa0Wi20Wi3pt63rjuoEGrfbDY/HI3ueCfhO01ibKsAXj8dx7do1zM/Pw+PxHHrfLFKqxQrUAAcTn24TKiC73Y5sNos333wTu7u7KJfLl6JMSzgcxr1795BMJjE/Pw+73T7Cjo6LTaDoCcqYK8ZmdbtdUTg/+clPBPBppaQ3nJlcHqEBQPaXxtlbb72FN954A48ePcLf/d3foVKpYGNjA4VCQZIQgAPwY25mNMJYiuWf//mf8eGHH2J+fh5//Md/jJs3b6JWq2Fra0uyBFutlmVppvMW8xoYNpJMJvG1r30N6XQaX/3qV/HNb35TDFqy7GRiTOMUOFiTb775Jl577TW0Wi3cv38fn332Gba3t3H//n2USiXU63Xpo20FtKdhjGZyssIYO8bcmYCPc6larSKXyyEcDuPatWvw+XxoNpuiF8vlMnq9Hubn55FIJA4ZU/p8l0XMvcjpdCKZTGJxcRGJRELGoVariXFF9+vOzg7C4bBk55JpHQwGI1nPDFuhPh0MBojH48hkMigWi+j1erI36uvSRNVJylQBPsYceDyesRSnFeDT/m/NYAE4BHi0eDwehEIh1Ov1SxOMyvpJLKpM0aDMVAKmdaHBMplAh8OBYDCIdDotlhAn8gzcHS0m0NaxkgBGAvbN2lnTJMPhEA6HA16vV4qi+3w+DIdDFItFlEol1Go1tNttS9Zd/9YsFBUKMwe9Xi+63a4wZKFQSNzIVueblvFiTI+uJRqLxZBKpZBOp+UH2A+zYDLKJJcO742Zu71eD+vr69jb20Ov10MsFgNwECDe7/cvbEzyTI4v5l7C10xGjslT3FfIMOmOU71eT8qLmImMl5XhsxLeY7/fFwO30Wig0Wig2WxK/LrNZhOGtNFojBSx5tgyKZKVMFhWjmEaxB2BQAAAJuYqnJRMDeAD9je0SCSCUCg0NjjZjBuzmpQmKBy3MCKRCJaWlmQRXDTRYIvjEAgEcOPGDSwsLCAajcrGryl+zeANBoORtldkUa02jWQyiW9961sSIEy2hdbhzI00XmKxGBYXF+Hz+ZBOpxEOh+Hz+cTtvr29jUKhgHw+j08//RS1Wk3mLGPmzkNM1nY4HCKTyeD1119HKBTCcDjE1tYWtre3kcvlJNHA6/XKpsnrH5fQQGPPZjsoll6v1/Ho0SNJ+Lh79y5KpRI2Nzexu7trOffPckys7oFu129+85uSxReLxRAIBLC4uIhAIIBEIiHxUlQAPI/em/R6ZYFcvY7n5ubg8/nw2muv4e7duxLDVSwWsbu7i1/84hfI5/MSCzhbk5dTGFNGoA8crFMN/JloRYPN5XLJ+tG1+ggMNejjeS6bEaFj2AFIrPDW1pbUFeXrHBsash6PR8ZQG+jaIDa9GlzD0WgUiUQCbrcbN2/exJtvvolPP/0U//iP/yigbxzOeVWZGsDHuKBgMCiZs6ZYxclYienepZguJTJWtVpNsoIvmpgTwefzYX5+HsvLy1LHSzMowIFCoTKlJaJjQXTCCz8bDoextLSEer2Of/qnf0IikUClUkGtVhPX3UyxWEsoFMK1a9cQDodx69YtieGan5+HzWbDw4cPsbKygqdPn+LJkycC+DSLeh5ja14DsA9eb9++Da/Xi8FggL29PRQKBRSLRTQaDfh8PrjdbokrAzARtFJp6Wz5VquF1dVVdDodzM/P4/r16yiVSrIJ85znJeZGTGBMo2hpaQlzc3PIZrMjrB9rgOpnqu9Dg3zzPbrI7XY7EokE5ubmMBgMcO/ePfT7fezs7GB3dxdPnjzBkydPhI24iAlpMzme6Fp75n5N5k73SicgIesE4BAopJuR5yWouYx91vX66na7WFtbO9Xvs9lsCAQCiEQiSKVS+OM//mPcu3cPw+EQP/vZzw6xfBoHncR+NzWAD9h3sWrAd1wa2eoYDQ5NoKgDJTW7ddGEgJVA2e/348aNG5ibmxOXLi0YM4CUrIpWtmbcgJVbnJvD4uIi3n33XVSrVWxubqLZbArTc9HFZjuopM6SB+P6RzLImW3EGIsFHAQBu91uZDIZXL9+XTqfsHtMuVxGv99HLpfD9va2xHUAB6z1eW6yVsBDlzZiWRGCGGDUPX1cMdk6gr56vY5+vy/9ZnX2m8ninzUA5Pc5HA7Mzc0hmUzi1q1bSKfTiMViUhKD7IkZXjIuOHuSC43zQbOnVOTMACYDGw6Hsba2hufPn186RT2T0ZaZuryWnj9chyboo1A3sMAyu9/ws2Yy35dJjsoVeBnhXsB6uNVqFZVKBU6nE9euXUO5XMbu7i6q1aocf5J729QAPp01m0wmxQIZt+kdR0wXI0ENz8siz3QnXTRZWFjA9773PemjuLy8PNLOim5xq6BwYB+sWMX0sRwErQv+3e/3Ua1WMRgM8O1vfxtf+cpXJKC+UqngL/7iL/DXf/3XF165OJ1OXL9+HTdu3EAul8OHH34opWi02Gw2pFIpXL16FaFQCHfu3EEsFpNN1uv14tatW0gmkyNMGVsf1Wo1fPHFF6jX6/jVr36Fx48fS3AwYB0obcb9nbZoZo6bj9/vRyaTwXA4xOrqKjY3N5HL5cR1yJp7x2Ul+R1mIeZSqYThcCgdPMwYvvOaZ+Yzcbvd+MY3voFvf/vbyGQyuHfvHkKhkLjHgMPKwyp+c9z5rZ45Y4K0sKREMplEPB5HuVzG//pf/wvr6+tf+nZYl1GYQMVC5+YaIsNHV2Sr1UKn0xkxqmhMLS0tATgw7ofD4UgSyEUmRl5E9Fozwa72er2K0EVst9uxtrYmsb6/8zu/g2q1ir//+7/HZ599BuDk62hODeAD9hWt1+uF2+0+cmKZMS8mo6ePo1i5YcwMmYsgnICBQADz8/PIZrO4ceMGrl+/PgLUTLZOg13eu8ky8Mec+Hyd7BMD0ev1uhR1ZlyCVVPuiyIcl3A4jHQ6jX6/D7/fbxlcb7fbpYhuNBrFwsICEomEbAxsT5ROp9HtdqU+FmuvtVotSXIoFosoFosjnUzMeXyem62+FpYdYGxPo9EYSdKYxFAd5/z8v9PpSJwbg58nJXOd13yz2+2IxWJYWlpCPB5HKBSC3+9Ho9GQeWOuQy3ma0fdhzm+/Cz3T4fDITG88Xh8JExjJpdL9D4+Tu/xOLPUCoXEh91uH6n/aKU/vgyAz/x90vdMPdrpdKQ+ot/vRyqVgt/vlzrBL+olOY5MDeDjxCUzRatfU5pWA2+yU8BoDSLtljQVktPphN/vl01yGkW7YUm/p1IpYZRYFDkSiUhWkWbm9P3r38BorIcuV6OtPODw5sAJy40hlUohHA7j7bffxs7ODgqFAh48eGDJik2LmPNmOBxK4W8Wm/7//r//D5VKBW+++SaazeZIEC5/x+NxxONx+Hw+ZLNZcQOTpWs2m1hfX8fq6io++eQT1Ot17O3tCctXqVTQ6XSQy+XEnauLhZvXeFL3bsUgWa0lPf/0dTkcDmGZJmXlcr6Y7ld9T1bKRG+KXKvjCr/qgtB6nKzm70kK78/lciESiSCdTsPn842A+nHG5FHKedz/kxRQr9dDs9nEcDiE3++Hy+XC3Nwcrl+/jmq1it3dXZmXM7m8otcA183y8rK0PbTZbJKwZyYzMl5PA0kaeB6P58KRIy8qZiIHcHqdpNrtNh4/foxSqYRr167hnXfegdPpxK1bt2Cz2VAsFrGysnKIyX8VmRrAB0AAn1W5j3GbnFVtLyvlqJUKH6rT6ZQyMNM6kc1sKYfDgWQyKZXA33jjDaRSKTQaDakjyPs0aXi+TkBHcKHBG0viWFl3WnHzs+zIAQBvvPEGqtUq1tbWsL6+PvWATwc7D4f7mdqxWAzxeBxvvPEGvvOd70jRTc0y6cw4gg0G5jscjpGq9nR3/+pXv8Jf/dVfSfNxMzh30pw15VU2HiswYYJYfT362etQCIfDMZbhM6/fyk3C79DxtCbgpEuUmeSTAB/3DD7LSYDqpITPn/GbdN3r9WQFZF8EvB9l5GohQHY6nRILnU6nsby8jGKxiGq1OgN8XwLRa5fJeAsLC5ibm0O/30e73Uan0xGwp9cU1zQNOr7PGNpp1ZMnKVbehtOQTqeDZ8+eSQu7r3/96/B4PLh27RoCgQCeP3+Ozc3Nywv4gMMb3CR2YNJrk85tKrHzyoA8jmiGE9gHgIFAAPF4XGrhWQE0/q8Db/l54HB8mJUSMRlTkz3h8WR+AoEA5ubm0Gw2L2TWMwFfNBpFu93G5uYmWq0Wcrkcut2usH+aRaX71uv1SumNWq2G3d1d1Ot1PH36FIVCAevr66Jwj9vVxXz2wMkX5dTn4QZvxYzp45i0oV2FVpvkUddoMu5W33kcl4YGo+NYvtMQsnu6wCoNSspR7qAXvT6rvXDcMTTgIpEIer3esfvwXnShQeJ0OhGNRuH1elGr1aQY+GUSPfetDAzu/2ZcrTa2eIzea8y1e9lduechNFC1V4f6PRqNShHoarWKcrmMWq32yt85VTuAjjOw2uyPa+1asQlWn2GV7GmuL6RdacA+Rb+4uIg33ngDi4uLwigwC0sver6mxaztxo1CZz+ayrPVao1sGACEGR0O99ti2Ww2LCwsIB6PIxwO46/+6q/ObpBeUsz5EY1G8frrryMSiWB7ext//dd/jZ2dHXzwwQeo1Wq4desWrl+/juFwKMwTs6yy2Sz+/b//97h16xaePn2KDz74AHt7e/jFL36B1dVV1Ot1lEqlQ89kEoNnPnvgoIQJGbAXnbdWAIPn4JyZ9FmbzYZgMIjFxUU0Gg0pv6I/p1v1TVIa+j0zbpH3zkD0SdevY44mHXfSQmaPNRXNxCgrZu+kxGrfM0M5WL7l1q1bCAaDePjw4Yl9/zQLa6hFIhF885vfxPLyMj755BP8/d//vXQiOY5YhThomQaSgKyu1+s9VNCd7lnGC3c6nRFXLdeY9npxT9GECPDlzNI9C+G+SV3sdDoxPz+PdDqNTCaDdDqNarWKX/ziF/jkk09e+fumCvC9rJjuRr427li9iK1A0TSJlZuMFgBrko1jWMb9bbVRmcpJ/033r85SYskX4EDBs8E7m0lfNHG5XNJHsVKpYHd3FxsbG/j0008lTZ5gq9Vqod/vo1QqoVAoSPsdBuLm83ns7u5Kbb2XFa28tYvmpDLGJsk4hcZQCDIEx/3sUfNu3OtWDOe4c4/73GmIdnXpskfjrs/qGl9GJn3evAbGpdZqtQu5Jl9GGJsdCoWwsLCAGzduYHd3Fx6PR5KAXoZZnQaAp0UzdZMYPgAjBZWtaruZsWtWbDkwY/pOWqzGl2XpGKZSqVQQDAZfqFTdOJmqHUBbIsBo/No4a1lPcj3pTbECTiabdRGEtd0SiQRCodAhq/6oBTnu/XH3b7Md1Osj8ANgGU9F99Y0x0RSNHvGe3c6nQgEAvD7/Xj8+DEeP36McrksAc65XE6OZwmSZrOJRqOBQCCAUqmESqWCQCCAN954Azs7O3j//fePvI5xICUYDCIQCCCVSuFb3/oWEokEdnd3sbOzg0qlgk8++QSFQuGF7tvM4CZoYS0ulj8x2wWx+0W/30etVpNSH263G6lUCgBQLBYxGAzg9/ulF/akOald4zyObDXP6/f7JUt6MBggmUzi6tWrMhfptiQQJuucz+dRqVRkTzkNBp/zJRgMwuv1SmbdcdjGlwUQViypVW01ziufz4dkMnlhwyzGiXafmy7027dv47333kMsFsPbb7+NbDaLYDCIeDyOvb09/OQnPzkW23mccITzFBqerJSgmT0a4WZJJfOHopkmHbtHzw+Zwmn1hF1U4Ri7XC54vV4pZj8c7ideLSwsIBaL4cqVK9je3kaz2UShUHjpYupTA/ioRK2oZ75vJXrijttErcAeXz+N1OfTFLvdjlAoJJmxLwL4xrm+j2L92HaO8QbAKODj+F2EJBiKlbvU5XJJSY3t7W388pe/HJkfbB/Gz+tzBYNBAXzBYBBvv/02Njc3EYlEjnUtpthsNikN8/rrr+O//Jf/gtu3b+NXv/oV7t+/j42NDWxsbLwQ4NOue91miZ0x5ufnMTc3h06ng729PWFD6DZir81KpYKVlRUMh/uZzdlsdiQInMDRBHSm6KQiHsdSLG63G+l0WgA4vzuVSuH69evodruyT9ClysLtg8EADx8+xOrq6qmGbLhcLgSDQYRCIXg8noks32kABM2+E7yb644GQ71ev5DtI62E85jhLNrtaLfb8dprr+E//sf/KKWjAoEAXnvtNXz729/G9vY28vn8sd3b0wDsxgmLk9dqNYRCIQAHOlDHhGn9aCZo0ZDX3Ta0wUBW6bJ22jhP4Tx2Op1wu93w+Xzwer3SAYthCZ1OB1evXpUKGNVq9eIDPmB8falxoiey+boV+NN0tXaVTTs40WKz2WRysF6h1XiNe918j6KZJg0E9Wf1WFkB8XHW47QLGS6n0ynAhYsOGL1XM/6O999ut5HL5bC2toZMJiOdFo5b7ocFwD0eD6LRqHTnSCaTWF5eFlBDl/LLKiLzczqjM5VKYWFhQWKCyGyyq0MoFEK73UY2m5UuEolEQoAHWcF4PC7hBlZMF8dTl7nR/UC73S5cLhfi8Ti8Xi/C4bCAlXQ6LQCUsaOBQABer1cAX7/fRzQaRbFYhN1uP7VscfbMZPyeOee1+50K9UUYdnOdjvNycI6N288u2h5HmcSCmrrC5XIJI5zNZsVwY8F4u90On8+HUCiEubk5XLt2bcRjoc9L0MNsa8bCcS1ME+gxY0atDA3Tk2WGifC4SclXMzkdIcOnM6b1eiXh4PF4EAqF0Gq1XmktTx3gM0s/mPEGGlCYg8MNgsrDKs5JT2Bm2U0q6DptYrfbEYlEkM1mhUkbF+NkBfr0b6vsW23VmZ/leFEmJR9YnWcaxHRpssxNJBJBMBjEzs4O7Ha7ZERppllviOaCLJfL+Nu//Vu8//77+O3f/m3cu3cP3W4XXq/3yGtyOBzIZDJIpVK4cuUKfvM3f1NqLZJBymQyAIBGo4F8Po9isfjCVp6VGzsYDOLWrVuIxWL46le/irfffhu9Xg/FYvFQdwZ+JpFIIJvNYjgcIpvNot1uo9FooFQqYTAYCIDW7lS6ajXLSGHBYFq6dMtS2UYiEcTjcQBAPB5Ht9uVJJjBYCBss8vlgt/vl4xUj8cj9Q1Po9OE1+tFNptFKpUayd7mvhUMBhEMBtFut1EoFEa6HOjxHOf+NcNW+Jp2ZTJeTWdLmyzPRTTCJnltODf0e4lEAv/23/5b3Lp1C3fv3kUqlYLT6USj0UClUhGXWTwex+/+7u/i1q1bUgeTgNBms6HT6aBaraLT6Qhj32g0xJ3WaDReKPHjtEWzcqZOHA6HMu8JXj0ej+g8nbVrpSunvYLFRReGo5DZc7lccLlcI2E0bOsZDodx48YNuFwuPHr06KW/c2oBn8kWmeyczkYCRjfF4wIN7Rq4KJshJwnLYoxj4/TxVn9TJo3TOObU/Ny4751koZ+n6Huw2+3w+/2IRCJwu91SH08DBCuFaQLodruNlZUV7O7u4qtf/So8Ho/02J00DpyDjMtcWlrCu+++i/n5+ZGi4G63W1wrrVZLkkZeVMzrcLlc4vpaXFzEjRs3JBmFBVi53ui2ZKYwAITDYVHAJqBhj12ydlTS/CyPZSycjonr9XqSBENG2263S9vFarWKvb29EQDrcrmk8HEymZRCw6dVVF1fr8nw2Ww2ARnA8ZqgH7VWNJjTbA3rQ46LsbqoYG+SmPuWz+fDzZs38ZWvfEUYaM5LMsFkZK9du4ZQKCRF0Hu9nuylrVYLxWJRGPu9vT1Uq1XU63XYbLaR4ta8jvMUcy4Ao+OnwYMmU6gjTYbPikU+73u8TGKSMPQs0RtgZlkzlMXtdiMajaJQKLzSfjZVgE/H8FltXJyQZAEGgwHq9Tq63a4oF7vdjnQ6LZ0nrBpG6+9rNpviuroIol26AA4tXB6jFcPLiskcjmMixrF7Ol5sWsTcqB0OB9LpNK5du4ZmsymVzYvFonzGLFPAxcj3+LvZbEqpn+FwCJ/Ph3fffRe9Xg8bGxv4/PPP0e12xcrOZrO4e/cuQqEQlpaWkE6nkc1mEYvFpDdmq9UaWeCc691u91gGjb5Xv9+PRCIBh8Mh6ywajUpyiNPpHMla189R3z+Ls9L4INgxFQQVrskEmy4Jbng8D4ELgSUZPJ04pGsG6mfA2L5Go4FarTbSqu6kxe12IxKJIBqNCivJ+x4MBlhfX8cXX3whsaE+n+9Q20FTUY9z7ZrPkgXqu90udnZ2MBgMJN5RGyhkPVm24yKIVohHzfFEIiFhDwylcLlcaDQaAA5qS3J9ApDWVe12G9FodKScVa/Xky4ptVoN9XodzWZTjAcyfI1GAysrKyiXyyiXy8jn82euQ7S7lqI9W3qt6XnD9qW6ALO5dnVfXv0zk5cXc53TWGPS2ThCBXixtrOTZGoAH1kVdowwJ7Ge2GRlOp0Otre3pXvB1tYW3G43vvnNb2Jubg6tVmvEGuO5+NPpdE5dKZy02Gw2eL1eBAIBCag3x+o4bMJRMi6Ww3xdWyR6QlNRa9fSNIgJ+JxOJ5aWlvDGG2/giy++wL/8y7+gVCpJdXM97yZZ9cxetdvtwhIGAgF897vfxa1bt/BP//RPeP78OXq9ngCse/fu4U/+5E+QzWaRTCYRjUYBHGwMnU4HrVZrZDNot9vyM2nO6nlAgycUCuHmzZvweDwoFAqoVCpIpVKIxWIIh8NwuVwjdbi0BUqh1dlut4Ux0a0J9RzR9R6thHOH2d0MFyCYpcVLcGOz2UbmvFk7kkwiS+OUSiVhGE9D3G63AA4aYLz/breLx48f49GjR0gmk/j2t7+NaDSKZrM5sduFVgb6NX2f2ugrFApYW1tDs9nE4uKiADs+P7fbLUBwWttHjpPjGDTZbBZvvfUWFhYWsLy8LDGetVpN2Cx2hWk0GrDb7QLQaSCM847wWfb7fTSbzZHkpd3dXfzwhz/E8+fP8eTJE8lQP2uxYvhoFDH702TpA4HAoUQ8fR4N+giWJxEnMzlarIw27dJlFxPTcOaxbrf7RAy3qQF8wMFE5QSkmH/rwWs2m6hUKigWi9jZ2YHH40Gr1TrkEqZcNPeGlejYCqsFOI41GLexTZKjzj9uA2AG5jSBPQrBBMt46I4ROhtVH3/c85J13t7elnOTBYrH45LVGolEMDc3J4WqA4GAsER6c9WbA5+lyRKNE/NZezwe6fvL8zOxxLTyrQA/v5OgQ8cLWW1UVLjD4VBihszrswqrMGPPdE0qsvaavZ9Uh+w0FZRmIK0AWrValZhQAlQdhmElVq45q/2LQLzf72N3dxfValUMQbfbLQDefEaXQWgkOJ1OxGIxKVTLtpBW4zdublvFQJsKlfOWrSQ5/6LRKKLRqID98xC9RkydR7ZPGxHcP2g8jdvfgdGEgosW+nQRhMQIjV39DM19HzgZF/tUAb52u41qtSrZfsDhLCO+Zrfb0e128ezZMzx+/BjPnj3D+++/j2AwiLt37+Ktt96SjVGfRzMW2nd+UWQ43K/9Vi6XD7Ev5nGvMjG02/Koc5rMl8PhQCAQQDgclgDo87YMrdybLNkAQHqNdjodSYYwy86Y57Nymw+HQ3z00Uf4r//1vyIej+MrX/kK5ufn8eabb+L3fu/3MBwO8c477+Dq1asIBoNIJpPivq1Wq4cUDkECqXwCSr1Gxt2vyfBlMhl897vfRSwWw6NHj7C2tiYMHQDps6k/Q+uerEm320UgEEAoFJKYOZfLJWUbNANHoMFgZD1uery4Tsm6kz3kuen26Ha7Am60i4kbpW7wroPTT0tJEXhoBlK7wB8/fowf/vCHuHv3Ln7zN38Tfr9fjAor5ph/T2L4eL9kakqlEv73//7fWFtbw1tvvYW7d+8ik8ng29/+NkKhEDqdzsj1XQbxer2Yn59HKBTCe++9hz/8wz+Ez+dDMBiUuFPWgdR15Xj/jUZDPD/aWAAw8vz4vmYCmTU+HA6lg0mpVBL3+lkK5x9dfdRnDHkiMzkcDgVUMARAg0RdjUDPMZ/PB5/Ph0ajgWAweKrxsJddrHSnw+FANBpFOp2WFoA6jpzPl3sqvZ+XAvDR8rCKTxqHbAeDAQqFAjY3N/Hs2TN89tlnCIfDKJVKcoxp8emsXm35XpTNkCxHq9U6tJEfxbqd5jXp8bPb94v5er3eqWjWbkWnM/7K7/cD2FcC7XZ7BKzoDdDqnONka2sLv/jFL5DNZnHnzh0EAgFkMhm89tprcDqd+M53voPXXnsN7XZbsgQJmAiQtALSFjYBw3FqYpnXGAwGcf36daRSKYnh0wkY2v2qQTxBX6vVQrvdlhIoBFQ6VpMV/cloEYDpuWo+C614tXLltfF7eA3sesJz8X3goBMKr+s0FZQGeHof4f6yt7eHL774QpJQ9HhpsGfl6tHfYX6nZgaazSYePHiAL774Qlx4TJCxCga/DOJ0OiVz++rVq3j77bdhs9lQKBTQbrdHwkl0eALvnwy+qVP47HSVB/7Q68R6j4yHHQwGUnPyrEUzvZzrnI9cL1xL3FM0COQ6HmfQskwUASTdjjM5GbHZ9sOzGN/LWGVTl3Iec9+/FIAPgCjAWq12KNDbahMkK8LWVuNcRtpa04NFRuMiFJTUrhwuaO2O0Jsbj3+R85oyblKZVLPVZzXgm4bq/lb3wn6wHo8H5XIZu7u7yOVyYqUftagmvc8gb8bEsabcnTt30Ov18OzZs5F2a06nEwsLC0ilUiOsgmnovMjCJ3iz2+1Sxy4UCqHX66Fer2NtbQ2ffPIJIpEIrl+/LrEkoVAIg8FA4mjJYDHUgps/cJAkwb91rKFm+MzAcYqeO3TZmq5dzT4MBgPZIHWSB89Ll2a325VyNrVa7dRAn45h1CCBWdTjntEk1/nLynA4HIlJNkt1kCVl4shZs1HHlXFGq81mk9JFiUQC7777LlKpFK5duyastE4QMg0mnlOHGVh9h5Wu0Uw+jW2WXAqFQiNtJs9a9PXpeEQCPtO4IAgcDAYScgIcjBPnsd2+X7+SsbAXLbnxIghzEcLhsHTY0AWz6dnRpadeFXBPDeAbDoeo1WrY3d1FLBYb2eg5AbW7g9bK3t4e1tfXUSwWLV1cOnDcLJo5LklkGoWLmIpOs0BHKY9JjMGrXpOVcCIHAgFUKpWJTNlZifn9sVgMb7zxBgDg//7f/4tPPvlENkN9/FHA10q4URKcud1uLCws4NatWyiXy/jTP/1T/PjHPxaXbjgcxu/93u/h1q1b6Ha7wvrxO7TbiZnsR22+ZMxdLheSySSSySQSiQTa7TZKpRI++eQT/OhHP8L169dx5coV2Xji8bgYUt1uFz6fT2rbORwOcbcSfGqDiaVj9Doz3bd6/eq1zeN0CAb3AK2wqGAJ7gCIAmbf2G63i3g8jkQigXq9fuplWUKhkLjc2YKO4QFWz4W/CexfxMMwaZ03m02USiV5djw3k2IIgpmAcB5rctJ96nEwjXOHw4GbN2/iq1/9KpaWlvDbv/3bmJ+fF8aKmeO65zfdkowf5XyyUprjQg34np7vwL4xoksJnRfg0/Gt3BPo8ifTreP4yJIzq5t6hGCCa6vT6SCfz0uSEbOTzULVM3l5cTgcCIfDSCaTI0mYmsFnGAg9JZcG8AEHZVKssnSBw65DTmCz9IMWq4Vsfn4aEwtM0ezeJHbN6nNWf1v9D7x47J/VObSrYdpcAAyOZXFgWsZWrueXVYjMjCQTReDHQpp7e3vI5XJot9tiZdMaP2ouajfTca6PbgPWiiNAazQa4sbWLJBp8Vv9mPFN5lhpt6Z+jb/NMAv9W/+ty0toxkqz3ABkjLVLS7u6Tkv0mGkWiaVzzMQf85lZuRRNMfe8caJDYsyyVvr5ut3uVy5CPY6FO0nhd+iyMixblEqlEI1GpZYe15YOC6BYje9RXo1Jv6kz6CblNZ4X4DMrNVjNKZMY0O+ZYU36h+tP69jzNtwvg+jYZsYdm9nU3L9YiFmzzK8iUwP4GI9nt9ulhRNwYMFYAUAiYR3Do0VT1FYtdDTDN+2gz+zbafr6qQj594vISTOAtDAZdH9eYrpj3G43FhcXEYlEEIvFkM/nBfzweI6rBjMvouBsNhu++tWv4vvf/z5isRiy2SwKhQI+++wz/OM//iMKhQIePnyIzc1N9Ho9zM3NCWg4Dhgik3HcMAR28bh16xa8Xi+ePn2KbreLQqEg7i26aXkdfJ3sON257XZbWvtwrOi25zHAwZrVYsa46ediNb50jQKQuDTNFJON5TkZI0iFT3fIaSpjunRZYBvYD0vZ3d2VMBPeC8fObNd3HLFim63c/bVaDblcTphc7mkci2g0Kq3wKpXKSykPk5E1Wejj3su498znee3aNXzve99DJpPB7du3JfwAgHQvMTO3ddyrdnNyPuu5x+u2yvrWcbN8jwyMw+FAPB6XkInzAHz9fl9i2Mlkut1u1Ot18TDo+E2ua44fkzJYxgg4qJQxHB5k8L9qsfeZjEowGEQsFkM8Hkc2m5X6kdxH6MZlq0jOuZPwRk4N4BsOh6jX6xgOh1LlHxh16fI4vbgmpYybi9wUbRFPu+XCwos6XkiLvteXESurVyvYF3HLajfSeWZ1mdatw+FAIpFAJpOB2+1GtVqV58/jeb2vsqiuX7+O73//+/D7/SgWi6jVavj888/xP//n/xwp6MyG5xpAjWNMKQRgx7W2mQmWyWSkewCLEvO7Gexvgk6TadOgjmPFzUnHn2jGi2KyhDzvOKuV92m6Pk0lbCZg6e+zCoI+SSFY1vOcHUJKpZJk1BFQmOV+XlXMcWu1WiiXy6jVaiOsD8fC7/dLXOOrjIkeZ+4LL7I/TBKeg2ObyWTw3nvv4dq1a6Ic2+029vb2JG5bzz9z3eoCxGZnIj33GI+qXb9m8gd/9/t9ceUS8J8X4NMxdjpZg3uaGT/Lvdlms8ncJRDUbl8ymFxXTCqbdj15EcTj8Qjgi0aj0taTmdbA/vOiZ4aG7XEL7k+SqQF8wCgA04tXZ6qYN6tp53GKQ4temEd19pgmYZkKAj4zYcOMN9HW8ovKOBf6cYV09XkCPpOB4EaXTCaxuLiIcrk80h+Tx1q5KI8jfr8ft2/fRjwex40bNzAYDFCpVPDJJ59gc3MTDx8+PHag/Djw/TJCly5jtzY2NlCpVFCpVACMZuGa68tkflmsVQM3zQzqOUmr1GRZTXebCfgIIvk+v08Hk5PZN8+nlT+f92mUZdEMklUNQc4pHQ96lEv3Ra7RNAD4m2w1YxpNNzjByatW69fJYeZ9vIjweVLR+Xw+xGIxuN1uzM/PI5lM4tq1a0gkEvB4PGg2m9je3pY4NDOxz+Vyjex72mAha2/eN1lhjokJeHhOExhZZZ2fp/C6NcDla8BoRQq9r2tjjsCCa4ZMIFn8i9RzfprEZrPB5/Ph6tWrCIfDyGazUpZreXlZqkVwPtFYY7w0PZFMnLk0gI9gj+3SOFnNoFtzk2M5DVNMhWIyPswKPs1q/CclLCMSiUTEpWsqPC5mKpYXYTfMTXKcWE0287MMlg4Gg1IM9azEfMbaneP1enHjxg289dZbuH//Pn70ox+hUqmMdNUYN494bvM1SjKZxB//8R/j7bffliSHXC6Hv/iLv8DPf/7zEWBpXq95bqvxfFmhyymTyWBrawsffPAB8vm8MABcV2YbQlNB2O12BAIBcfNw87dqu1atVqUlnJlcZDJB5ji6XC4JgtcxoHosqLxNkMrNkvGQLCVxkvNPA0meX4OFTqeDUqmEQqEgLmkAI0ljel96UaPKnN9aCPbK5bKAPs59l8slSTl7e3svPSYaRLyKcO6weHIwGMT8/DzeeustxGIxfOMb38Cbb745YjDQVe5wOKQ9GkN6dBF1c14Q6BEM6R/OYzLV+v74bLXoun66O8J5AyGuYxogujYm2SIaSVoI9ti9xwTg7FvNGnHTFpM97ULDMJlM4vvf/z7u3LmD5eVl3LlzB3a7XQxDDdLpDWBNUrb6pLfoVdbfVAE+boDafaSz2KwW1Th2wkrMz7NVzkWgqsly6IrcJhujmRQrsVIur7JRjfssN/PzLvbKcSBrRIXAzZ+JCy9yPvN+GHMRCoWQyWQwPz8vBcRLpRJyuRx2dnaOde4XmYPHmesakNFlxfgeq++exIZrd6pOmNAAzAQjek2OA3nmmOprNplsfh/FdAnr/00X3kmKmayh1x7daVZG6MvuMSaDP+k409uh907tuj8JMZPIzOszwZV+jWPodDoRj8cRDAYl3CIej2N+fh4LCwvodDqS8cwyWrrkiPk92hAex4SOuz6GCvBZjqvjqA2XSWEJpy3mmOrXrWK87Xb7oTqbFPNeeP+6xt957+cXSfhMPB4PvF4vIpEI0uk05ubmpDIDMFqBwAxP0N4S/rxq4sxUAT4KU8K3t7elLITV5jEYDNBoNIRRmAR0rF4rl8tYW1tDsVh85cy10xY2YNclIEyAN8n6H8fM6d9Hick66fgQ8zro0h3XCeS0xOo+5+bmcOvWLbhcLjx9+hQrKytYW1sTZs9KtItSK24TfNy9exf37t1DNpvF8vIyAoEAPv74Y/zN3/wNCoUCnj9/LsfqAsWaTXiRTDgr16CV+Hw+RKNRBAIBbG1t4f79+3jy5InlPWtAQGU6SVlqtp2iWULtyuRxGhwdpxQJLV19ffre+X0cw8FgIEVxeR/MfjtJVsJutyMYDCIYDEr7MroF6c7d2dnB5uYmqtXqIYChx9Hc00wjzvycOT7jgAbZbJ/PJ2NGsHdSgM9ut+P/x95/dkd6XVfi+K6cc0AhdaPRQd3NIJKiLEqySI1mLC97kmfe+JPNJ5g1a17N2GvkZc/Y62cFK1kUg8hmk+yAbuRQqJzz/wX+++DUxVMFdDdCAaqzFhaACk+4z73n7rNPWlxcxMLCgmSlm+BAJxKQGWYpENbp1LGWdHd5vV5Eo1GUSiUxUlhIOhaLweFwiAtMs3B0g+kyRvp+9fwFMARWzSx0fp7hPrrcC+cvGVzGnl+E6ExP/ugakF6vF4PBQJjMwWAgvePZFo4GEnCYFAYcGlCMH9d1+6YyWhjf6Xa7cf/+fbz55ptIJpP45je/iUwmg83NTfz2t7+F0+nEnTt3kEqlpG86dQjLTIVCoSH3/Kuy6xMJ+LrdrpSvSCQSCAaDQxYYhW5ZlpcYBeysZDA4zGpj3apJFgZd+/1+yxp8VmL1nskW8P8XdUuMs6bJzpz2ZntSMe85kUjg/v376HQ6+P3vf4+NjQ1RilaiGUrT2jI/d+3aNbz//vuIxWKYmZmBz+fD+vo6/u7v/m4oE5IbGzCcEKItunGxqPreTsIoeL1eJBIJuN1u5PN51Gq1ocLS+h70pkfwMm5+abcX32u327KRaIDIWD4tZhkI89jmOTQY0oH13NR0dqYe61HZ+68iNptNClRzLWog32q1kM/npYbZKLECfS8qo+YBXZQej0eYAT0mp8HU2O12zMzM4P79+/D5fNInmmCOLmS2gItEIlKAnLHIwWAQACSOmtcHQJhoxiX2+wfFZ7kB0r1IwNfv94cKTvMaed86+9Q02jj3+T9Fr0luxjq2nGvlVdtdvaxQz3IMOO40rujCJaCjsaUzuNmyUJMonC96HHn8qUv3eGH4i9/vx/379/HjH/8Y4XAYi4uLCAQCePDgAf7pn/4JPp9PwiwYyqa7jWlyBYDM7SvH8DHTLZ/PH5sB9aLWr/6Mrkw/6UkbJ1l0L7txUEYBZqtjmozEOFfJeQup9Lm5OQSDQdy/f1+KGlerVYTDYRQKBWxvb8tCMxleHehtisvlQiwWg8/nw9zcHDKZDNxuN9bW1oQ9NAvbnmQ+6rHUgOBlhC5cANKf2qobDc+nxcotZz5nXiMBKxkQvfbGufTGAb5R61e7PKzOo924VgkVpyHcZDV7aDJCxWIRhUJBWlhpxtuMOXzVaxnFDpplhTSL9Srn9Xg8wgzdvHkTd+/eHWLwtBuQtR/NZDNeX7vdhs12GHepRWdlsxaZOdZmwp5m8ng8bZhYjYc5B/UY0jWvmUOKBogXpedY13N3dxeZTOaIgWSuO+Bw3MnEU09xfur7IQDvdDrI5XJSBucqyijP2IsI5304HMaNGzekOoLH40G73cbnn3+OTqeDBw8eYG9vT3oyE3RbXQ+vibkKVypLl9JsNrG6ugq7/aBjw40bNwBYK0hzYnNh67IEVgtgMBigUqlgd3dXKrRPstClSyVqilb6o1xD48T83kksiXGgT2++56kMuaklk0n85V/+JW7duiWJGt1uF3fu3MHe3h6ePn2Kjz76CKVSCSsrK8hms3IMkz43xyEUCuGtt95CKpXCe++9h3fffRd7e3v4H//jf+DLL7/E6uqquE71fNNlRvjauB9+3wSOJ4kbYrNtm+0wnd9qnpvn1FalCRB4LZrpILumx0uvNc4BfSwr0KHnkAnoKFauNV4zNyeGO2jG47QBn9/vRyQSETemZrorlQqePXuGp0+fihJnElMgEBAmahSzPm7t6vWtnw9/9LhZ1UXUvXVfVqLRqLQ1+7M/+zN88MEHGAwGkvimXZ4ExDp5h6w5g9EBDH1HgzEz+5v/sz2g6fLn8+emOBgMhkIYOO8YaqJZd2CYeef+UCqVhkIYdPUBujgvys3ZbrexsrKC3d1dRKNRKeQOYAhY6/nEsaOhy9qQPp9PYvxYdobhVCwrVSgUJLv/Ksk40P8ix+AaX1xcxF/8xV9gYWEB8Xhcwmr++3//7/jyyy9Rq9VQLpcxPz+Pfr+PSCSCfr+PUqk0ZLhqvdJoNIY6OL2sTCTgY0C9bk90EpZPWzGma8wKeJA+nXSwBxxN2hgl5liMYujGyWm4J86T4dPAgnFK4XAYs7OzuHbtGubm5pBKpdDtdjE3Nwe32416vY5kMgmn04lsNotqtToENsaBKrqmdMFMh8OBvb09PH/+HPl83nJRjmLXTEBnvn/cd6yEwMxms0nR1HGxf+Zasfpt3osu6TCKlbRi9EbNiVH3bhoho9hkDSqpME/bBaVZJ13nj9eky7Lw8xpwmUzCKCPWSqzWMjMyzeLXnMM6y/k0GD6n04lwOCxFnFOplLhbNfgHMAT2TVBkxdTq+yc45XHI4OlMU80y6+dO974+h54HpjHD52fFKNPA4HF4LXpML4Ld4/XV63XZL8eVVtJjZiYBcPx0yIl+bmz3WKlULsVeeVHCCgPhcFgSNBgTXavVsLa2hkePHgE4eC4M+TCNMCsdaTKyLysTCfg6nQ729/fhcrkkDmrUojI3kX6/j2KxiJ2dHalUfRWyi3QM37i4JD1Wp3XPmv0bt/lStLI4rWsw2Vn9OxwO47XXXkM0GsW1a9dw48YNBINBqXvkdDpRKBQwGBwEMSeTSXi9XiwsLKDZbGJrawvFYhGlUgnb29toNBrY2trC/v4+ms0mCoWCxLXY7XYkEgl897vfxe3bt+FwOPDRRx9hY2MDq6ur2NvbEwZHXyNwtAgq3Ss6poZjN2pRM6aJ8UrjxmtcoVktVq9rNk5vnppdM92TVFrHublGrWe+puMI9aauN1hdr49xS8FgED6fD8BhSY3Trh1msx22qtMlavgTCATkObMlGOPXKJqZfJHzmuwwcMi4xeNxPH36FKurq0cYagJTul5fhfXsdrsoFotwOp1YXV3Fl19+OfScmDjA8+lMWl63njP6u/pHxysRZLDsCAEK70OXI2FCB/ssa+aa12C2fOT59HGBg1JLwWDwCPAjwKW3xev1Xsj+Qgaz2+2iWq2iUqnAbrdLTLsmPjg/9XhbJYppZhWAsNabm5solUpj41InWY57Plb6+kXE4XDgzp07+OY3v4lUKoVUKgWPx4Mvv/wSX3zxBbLZrFRr4DoMhUIyn8cRDHxW9NBcScCXy+Vgt9ulI8Bxwgeq4xrodrlIK+y0hBS71+sdsjKBo5P5rO7V3HD0JLViHk5r3E1QrxmVwWAgLtbr16/j3XffxXe/+130+31ks1kBX8ViETbbQWyf3+/H4uIiotEoAKBcLgvI++yzz1AsFvHpp5/i8ePHQ5YtlWEsFsO3vvUtfPOb38Qnn3yCDz/8EJubm9jY2BhyDR8nXMS6A4MGfFaMlwZ846h9DcD43VHKxARv+jr02OvPWsWijWLzTsr0Wn1OzzngsAi7ZsxYGNbv90vTeB3AftqAj4kIjEvTRdF1AVVmm2qjU4Oak46J/tt8jpFIBG+88QYSiQQajQbW1tZkzMh0cS6wRMSrtDvsdDoCLDY2NqRQMhNYIpGI6CgCbn3POrbQyrDhe9qo4CZnAn6yebrIN897EhBm5QniONENz+tmti7ZW4J7ungvQgj4AEiMrtPplIQ03h+AIwDXKvYWOGRXNeCrVqvY3t5GpVI55zs8HTlO/5zEY3Kc2O123LhxA++//z78fj8SiQQcDgdWVlbwk5/8BPV6HaVSCQCkjFcwGBwypvX1mNfGJLUrCfj0DVrFd+iHZxXI3Ww2Ua1WJZ7BZIYuo9DyNJM2uAmYrJ5p1erPm58xRQMqyqj/xzF8p+VS09dpdT632410Oo35+XmEw+EjC8gEilSEuhcrFfjMzAwCgQBqtRq8Xi8qlYr0JuVnl5eX4XK5JCNzbW0Nu7u7L2X9voyyOYk1ynsChstPWH3OdE1ZgS69YZvA0AqQW63VcUrX/KzV3OSGrhkLHe9izpGzcOnyuLr/MXC0HqjNZhPGmUk95vPSQNp8fZTwOzQWHA4HMpkM7Ha71PaiYcBCuvq7r2qEMaFuMBggn88jl8vB7Xaj0WjA6XSiXq+jXC5LzDFBn47n065eXi/H0DRi+Ky1PtPfZbwZ5wAAMaII1HTZI+4tPJcu7cNjmeVi9LUwFpauThYmvui9hfpM9w7mNVP0mHEs9LPQa1x/9zQA0VUVj8cjcXpkhAFgZ2cH7XZbSAcz6Ydi6jyrvRw4DC+4kmVZaEkxqFRXSDcVO4snk/bv9XrI5XLi2lhaWroSDJ/L5ZL6X9qly/vSsUQnZRDGbTYnsYpGTT6CjdNsrTaOzQqHw/iTP/kTvPXWW8Lm0V3KcdClM3TrGg1MGZM0GAzw3nvvodlsotVqSW9ndoIhk7S7u4tPPvkEP/nJT6Sn5YuIBp/jlKuVUjhOAZMRttlsqFarQ641E7CZGa1W57Ny/1ixgHx9nKFhJTrD0py7+vi6kwC7uOg4NdM1dxYuXbpkyATZbDbZQFkeyuFw4P79+/jRj36E2dlZCczmMcxjnvTcHKdGo4FutwuPx4P33nsP9XodDx8+hN1uH+rnCxy4ls0Y4Jcdk1qthmfPngmQ6/V6kolLEMQaYplMBoFAQJrEezweJJNJqVFmVmAYxUDzt5XxoNcD13WhUEA2m5Xe0dVqVYAoM/WZrMCSKjyeTsYIBAKSmEP3rcno9ft9PH78+MJj2+jWpd41Ww/qGD16CAaDgxAXHYtrZtvr75ONmmQxCY1x+lLPJ218vAi4TafT+OCDD5BKpaQe6/b2Nv6//+//w8bGBp49e4ZSqTSURDrqmk1wru+l0+mMBY4nlYkEfCbDpx+C1YakWQcyfASLJ3WdTLro4GzTFXIcSHvR+9es4ajJP25haIbvtMbeXMhauJHMzMzIRqfrZenvmq4MxhrZbAeuukgkMgRSdeFXtq4iM1Cv15HP57G5uTm2iPM4GaWUjpu3xyklKnj9LEYpCjOA3TyHyfABw3PEav4dB2pGzd9R96YNPl3+w/yOBozHxRK+rPDcen6byT52ux3RaBSLi4tIJBLSk/VF2DxT9JygXuTcb7fbwi6Q2TJjQ0+D4ev1emJAFAoF5HI5cac7HA5xedK1HgwGMRgM4Pf7JW6JhqDV/DHlpNeqg9objQaKxaIUwS6VSqhWq8jn8+h0OiiVSqjX6/JZPi/+EMiHw2G53mg0KkDf7/cL29fr9SRzdZy+PGuhTut2u5blgvT1aYaPQOc4fX0V9lBT9LhoOclz5Hd8Ph9mZ2cxNzcntSj7/T62t7fx/Plz5HI5IR5Oci2j9L72ILyKTCTgY6ab2+2WwbJyKXFRplIpFAoFaRllsn6jhJuHlSth0oRJG7SkTTFZFv261eeAo5PL3IStQJ/JIpoghZ/R5QteVjRLk8lkEI/HpbitdvNfv34dDodDyo+MikejaDeGVoLsrayBAjeSfr8v3QsqlYp0aMnlci+t5Dmfx2Us8vr1d05ihWqgp1kJU/kQ8Ho8niMASv+MKz6t/36ZTZvHt9lsR4w3XiOPrbs5mCBex31xDp5F4WWdpastcM4hrhsCvkAgIEBJVx14WUMMOJpooMej2+2iUqmgUChI8sJpA2DGyAIHDOLc3Bz8fj+CwSAymYxcI2tArq2tydhplpSMGgExhSwVmWoz61rfK8kBVnVg2QtdgoR7Qr/fFwav3+8jFAodGR+ei4Zgr9eTGGAdG8lYxV6vh3Q6jUajgVKp9NLG36uIng+8Bz0n9HPneLVaraF+zybLxbhlq+zfSRWr/YgFuxlyYNVactz/ptjtdqRSKcRiMdy6dQu3bt1CKpVCrVbDxx9/jPX1dWxubmJ/f//IuYDhOO1arSaF8ccVVjZDRl5WJhLw0aXLTdy0nnnDDocD0WgU6XQavV4Pe3t7MlGZvTSOKeHCOI0K1mctui6SLk1gLuhxynycJaOtbX3MUUyMZnuszqMB38tuMA6HA16vF16vF7du3cKdO3fQbreFIufCWVpaGgJ8pttR/2jXpgY3jOHhhmxuLjabDcFgEIFAAO12W5I09vf3X9pY0Oc1AZb5PDTQHpfRRdEbly76az4LK8BnnssqUYPnsPrbfM3qPSvFDAzXDdMARYNXM2aPY8i1zO+acXanJVZlWTqdjoQAcJxjsZiElLDunNUzeBHRa4+/TeaOnYry+TwSiYR87yQ64qQyGAywu7uLbDaLaDQqzEYmk8Ht27fRarXw/PlzuY6dnR00m00pgaS7fkQiEWHNOO8DgQB8Pp908eB4a9YaOKjZ2mg00G63kcvl0Gw2h9gqDRzJ3Hk8Hqk7p+f8qJhCushZnqRYLMLlciGVSsHn86Hb7SKTych1XBTgIyjQa9/cH7g/EvDV6/UjMb48Fuscmokdky7mdeoOL9lsFvV6/YVBnhbGzS4vL+PmzZu4ffs2YrEYPvzwQ3zyySfY2dnB+vq6GERWBjzHulKpSEHrUUa1NrqvJMNntfmNeiCm65ff16ydyRiY57oMYi5iE6zx97j7GQd+T/tadTD9ywoDYoPBIGZnZ7GwsIB2u41wODyUmZdOp4c2e7ZSAo4mfBzHQmlW00op0JVTKpVQKBSk3trLynHz+2WfF9kmGgoulwuVSkUsSX18kyHS59Ub4Ti2dhy4oxy3/saBSb2Jm64n85nyGZ5V0oZ5PcBhxrWuhE9gqK/ruOc87v3jAD572nq9Xrkmk8191TWphZsQOxY5HA7kcjlsb29LO7J+vy91MRlTGg6Hh0CW1+uVpBY+OwIxxuISgGjDzWazCZA2i0zrMi2me5PjYmVcaEPWaqOlp8XtdgtQbbfbFx4nflJD0PyONhr0a3oPvSx7JHBowPI3n1c6nYbP55MYTuKGUYkUx621UCiEZDKJUCgkHslSqYRsNotCoTDWjWvu1+M8jFaG95Vj+IBhi4UL3bxRlmDZ29tDuVyWwSB9r917VqCPxx+FrCdJOIFNN6lWSgCGNvPj5Lh7NjdRvnYccOTmQ9boZSWVSuEHP/gBkskkvve97+GNN96Q2Dmdns56i1S8fr9fNgqzu4XVZmeWzOA9mJswWZxisYiHDx/i0aNH2NzcPBKM/yIK13RFnkRpn0SpNxoN7O3twe/34+7du5idncXz589RKBSG2vjwWem4Ko6T2YWAG7DpftYAy+parX6bf+vr4ThqFxvZNKukAz4/Xv9gMBCwdRZlWXg92m1Wq9Wwv7+PcrksLAuTGfr9vvSD5X2Zx7T62+rc2iDR42Wz2ZBMJnH79m2JGTS7DTHR5bTd3I1GA0+fPoXT6cSTJ0+kXuiNGzcQDocxNzeHt956SzZfZrjX63UxnnSGO40qvXbNHqO6liCfSTKZHEpO4V5guvyZsKFBEsdQJ3uRVWSpF5fLhUwmI56W5eVlhEIh/OEPf8D29vaF7iEcI1382iqG2fQY6L65etwBiPFy0QkpppheCC1+vx+zs7Pw+XxIp9NIpVLw+/2Yn5+Hx+PBF198AafTKb3FTYPdSu+b4nK5sLy8jO9973twOBzSo/zTTz/Fb37zG8khGCUcU134mufW1wEcElrMPL+SZVmA4Q1iFLJlpmW9Xh9C1Ka/+1U3z0kQKjVzA9P3rP83GatRctJ7N5WGft3qNSvW6EWFsUGZTAY3btzAzZs3JdDaLP5LJcfEFipAJisQsAwGA8sNVys9K9HAutlsIpfLYXd3Vzp0mMc76biOi917FeE4ORwOhEIhzM3NSbkMEzBYBWxbubRNgKqBtJW70Arkme9Z/W9uTnoumcCS89uKoTTZndMSfR3823TpAoegmUaYlTFhHnecaLBnftZmO2jtFI1GEQqFZN7rc5rZ2KcldCEDQC6XA3BQHzCVSkkYxNzcHHw+n2Tpsi5Zq9XC9va2ZBTz/ph0x+xEMnyNRkPiyjgvaAwQTGrAR3Cn2RyCR+oIDfi4vgeDwyLSOjzF7/eL12FmZgaRSATPnj2T53PRoM80HMfpIismT7OfVnG1kyTmvZEZDofDEks6Pz8v88/j8SCbzQrDzLlqHvO4czIMYXZ2VsIUKpUK9vb2sL29fazb1TSWtdFsXocVIfAqMpGAT084ImGrDZkWCRUDxSrAUW/YphvgMgitzFF1+LToTeEsNjt9bBPwUWFoRfyy0mw2sbe3B5vNJsWP+bx1Cyn9W7f50mDAdAea4MbKquP3ddwQNwUGxeuuGicZOy3mdTqdziHmgWPHmFa6z07yXGkMORwOiaPy+/34/ve/j3q9jsePH2N9fV3cEWRbTOtZj5sGgBrwEUxbAT4rpTaK5dNKT4MqE/CNE33duj3XaQqPrecNs7mZtDHquqzu4aRr1Irh47GBg0SHYDAIr9c7FMc8ylg7TTHXT7vdxvr6unhg1tbWpLQUy+kwcYLgTpeN4TM0C2wTtLJWnp4ffB84NIDJ8pKp6/f7UopEX69p1Jhznzqk1+shn8+jWCxib28Pdrsdjx8/xs7OjhAPFyEEr5oB0s/c3Af5edYU1C50XbB7UsVcY3w+kUgEd+7cQSwWk1AWbUAwAdDr9WJnZ+dIMelxujwWi+HatWuIRqPIZDJwOp2oVqt48OABcrkcdnZ2TrQXaIbPCkzrtaTb4J1GLOVEAj4AQ4BPx0iYk7fVaqHRaAw1zNY1w7TwvUajgWazeaJ06UkRncAwKpZKA+IXXazm2JrvWW3G5g/Ht9/vDwVlv6zU63VsbGyg1WpJoka73T4CTjTDo4ONKaNqzI1iWTRA0W5EnqPb7UqtrxcBexrAmQqYIMJMUAIOQDSzDRkQfhz40TXz8vk8QqEQZmZm8O1vfxuDwQD/63/9L2xsbEj2aKVSGRpTfd3aVaqVkWYERgk3Vn0/5marX9P3pjfzcWyx1YZGA+ks6vBxg9Sgr9VqSb03KyvcHL+XYfj0sayEbdzcbreEPnAtnIXxp4XH53NuNBp4/Pjx0HPU6zUWiyGTyQyxZx6PB6FQSICh3+8HgCF3Pv/XLSZNHUAXGHAI+Mj+c5x00W5tzOlEDoYFkfVj9nMul0O9XsezZ89QLpdRrVZRKpVOhYF5WaHe4/WO+owOY6I+5TOg/iHgAyYzxt3qmrgmE4kE3nrrLWQyGRQKBWGe+dvlcuH69esIBAJ4/PjxiY5NSaVS+P73v49kMolr167B6XSiVCrhd7/7HTY2NlAqlU40Xhqcm15IvU4J+Ohmf1V3LjChgE8zB3pA9ECMy1jRG6ZJ+QLDjbsvi5iK00rMez0Jm2B1rHGgb5yYE/dVrUTWviPY0YydyTKOAgT6/VGi55WeIwQOPDY39P39/VcugMnz6ZpYoxhIXqPJRJ7keZAdLJfL0omB2e1zc3OSaWj22Rx1DSYYtLoO/b9ma6xiVfh5bVSMMiysvmsaI+a5zwLoWF0XlbhV3JS+z3Gi7+MkYoJuPX769ReZM6cp4zwoOp6PcYU02hmSQTesmd1MN7nJ3loBPnpEdNIHQY7WGy8C+Jj8xL/ZHOCi9xMr0KDFykA/bk5MMsunxQo0meAJODQAWPaNe8k4XU7CgCETkUgEAFCtVlGr1VCr1YaMq5Ne63Hjbxqx+rWXlYkEfFzkXLzmwOh+onwQXKCDwbCbl9+hBcDjnwZaPk/RSRuj3NvjZBybNWpxWH2e57YSDbSt3F4vKrVaDaurq6hUKtLOyeVyIZFIWLIl44CwZpr422RDtWtDv8cOAr/73e/ws5/9DFtbW9II2zzPODEXLcs8MMCe5XZ0QDpfDwQCGAwOKuO/yMbd7XaxurqKvb095PN5eL1ehMNhfPvb38YHH3yAQCAggehsFE+ga46tZin13LG6FlNZmc/AVHi61ZNVNu5xm5l5Pl2W5bTF6trIPLfbbSkBYnVufZ0nNbZGfR84NIo0s83rITDSc+k0Ar+tRMfInkRqtRq2traG3LJaZ/DZaZ2i56JVzKZp0ANHOxDxNTM+Vf9tRQzwb8241Gq1IxUiLkrMeWXOT00YaCN2lEvRJBgmHfjR2KrVashmswLymf1N1jMWiyESiSAcDuPTTz9FqVRCs9m0LNUCHMyVWCyGQCCApaUl3L9/H5FIBBsbG1hZWZHiypVK5YUTJq2ILavPnSQX4aQykYCPG8AoepqxTLqhvVauXJhm+QnGcOggyMsieqECozeGUezcODEX9EnBowmY9GvHsZEnkXa7LcHczOKjq+5FYgN1JjafO+NxeP02m002aisF1+v1sL6+jl//+tfixnkRsVqwOp6U16R/9BxlEVjtXj3pvReLRRSLRbjdbmSzWfT7fdy7dw+vv/66rAeeQwMm06CwYvis7tO8Z80+jQKCPJ9pnVuxr1bzzWpOnnXShj4udZJOJhjFrOmxeFFGT/8GDl15nON8n8yx1nF81mcFTl7kuHQ/TuX0RI+/yeLxNa1fTJZvFPCbdLAHHM55Ft6uVquSwKfvze/3I5lMotPpSLzrOKBGQikcDiMWiyGdTiMcDmNlZQWbm5vY3d0VD9SLXq/Wf+PIm9MCe8CEAz7TDaTLNPBvM3tlMDgI0CyVSkM1xwgM2+229OnVDOCki81mkwlsZUlzwmsmRcdhjGLv+D3NvowqGzFKKVjJaSRtcDOr1Wr43e9+Jxl4BHzMonM4HFKNn+UT+Devw3Th6LGgUtMbIq34arWKra0tVCoVfPrpp8jlctLH9EXFHDuyBHa7Hf/6r/8qxZF1BiFdV8FgEDabDZ9//vlQUfEXEfZB3d/fR6/Xw7NnzxCNRrG0tIRAICAZiVqsKvZri9MKGI76bW4sWtmZgfL6fGb8lxareW0Cx9MWqw2SSRKDwUDi0FiMmMwl9ZZml/QxjxOTfRoMBkOxhMFgEPF4HACOZOleFj03lZcTKyPJfJ1ilQR1mqDiVSUQCCASiYjeY8ctZmvTsNL6mrrS4XCgXq+jUqkgFApJiz/eG2P4u92u1NKz2+2o1WqWBJDX68WNGzdw48YNLC4uCgmxsbGBx48fS9HkcWLqqHFGsfn50zbSJhbw0T2rWRhTaRL46Ixc1ubb2dlBoVA44ipqt9tSLV3Xfpp0MbN0rdgighANfs2sNb6uf/O7pitAf960Fs1jmUzMabRWI/hpt9v4m7/5G/zDP/yDuLYdDgdisZhkYzEWLRQKIRwOS/9LujBjsZjURWMShnmv9XodxWIR7XZbWkKtrq7ipz/9Kfb397G3t4dcLjfEip1UNBDnmFF5VCoV/M3f/A1+9rOfiWECHLIgHE+bzSadCl6Gnc7n86hUKrDb7fjd734Hp9OJu3fv4q//+q8xNzcnY84AegJpdijguNE1qO/FBHJW9z/OcrX6jlUih5VocKgZ5rNi+EwXDPUV3ULJZBLdbhd+v38oa50s7XEu6XH3p40TAMJK9/t9xGIxzM/PSwLJZeuQMJVXE21MAMOJYsChbjbL82jdPgnzJR6P4/bt2/D7/VhcXEQ0GpVs71arhUqlIqCN/aIZ4uVyuSR5giVaKDTk2YKPrTptNptgBVMCgQDeeecdfPe734XNZpMae19++SV++9vfSp3gUWKCan0tVqEt+nsEsiZT/yoykYCPYg6KlUUySvk2Gg1hQjRLeBaDeB5ixlSMot81m2flftPvm98dtRmZxxlFP1tN2lfdbHlMBkhrFz6Ds1nc1ufzycJ3u91otVrweDwSW0XAp92jWur1uhQmZmD27u4udnd3JU7jVdxQo0DNYDCQ1k0EVjabbQjw6cSRl523BNAAJPNdu8r5bHUCAjcH3aHBao6Z4O00No2Tzh193lEM4GmKldtZ6yq90erMSG1Ujbq2UWBZn5fHNQ2x49aeCQCmcjXFZMjNvdOUSWSBec30zng8nqG2oixh5Xa7xQvidrvh9/uHwkO0ztL6ga5aejYoHCeXywWv14toNIpwOIxQKIRms4lSqSQhPWdNGI0Cg68iEw34gMMCstwI+cC52dM9S0u61+thf38flUoFN2/elOxEtu8BIEGal60OH8uyWIFVq24RVu4jKzcSN3h9HP0+j6nBpgmydSKMBimnvcFoVydbmzkcDuzs7IhyMF26VBhmIompAHVBVu3S3d7ePlLr8TRlMBjI8a3AggYWL3MN5nOz2+1IJBKIRCLSD3JxcVHGrt1uI5/PCwDlGMZiMXg8HrjdbqmDZsbP8vnreDKuS1N5Wbkx9HGsxsnqPRPocOzOgrGw2WzweDyyUZjuFx3MTyOl2+1ib29P6oAxMUjXd9RMpGlU6XALvcZ6vR58Ph8SiQRsNhv29/exsbEBu92OQCAgLcCAw6Qvr9c7lBQ0lash48IdgOHakZoo0cko2guhj3nec6VQKODRo0fw+/3odDpIJBLSNpDlpXQ8vgZyeq/S8596gCDP6XTi+vXrSCQSqFQqMgYs2XP79m185zvfQTQaxc2bN6Wjxq9+9Svkcjmsrq4Oja0+94uK1d7M4+kqDqchEw/4GIjJgHJgeCBYm0y/R0XLwritVktYHQ0WX9Qtd5GiAa9Vwgk3DXMT5Y+5oVA0CLB6b9QPcJiZR9Gb7FkqC957vV5/5V62kyJnGcTO56+fTTAYRCqVQiqVwszMDNLp9JDyZ7kB4GAecP34/X4JdqYlPCpBQc8XDfisQJgVO2cl48Ce/v80rWJTyCbQxa3PzUScdruNZrMp9T7ZPoygWocm6FIgmjHkMTle1HdkaqnHyGqwETvr2bHcCcf1NGpjTmWyZRyzq/cIM/tYh5sc5/E5a2GZE1YO6PV6kl3r8XgQiUTg8/nkegGIIVOv16XVmW4jqJPfGK6STCYRDAYRCoWGjGsWZ/7Od74jdS3tdjvK5TK++OIL6ZcLjHbZnkTM8bXynpkNJF5VJh7w6axaTlwqPoK2UYPBAE9+jgxJoVCQ4pmTRGOPE27CLM+hF+ZgMJCaUboKvbnR6996Q2QcAmluBu6PYlkGg4G4y0cxeLpq/lQuTkzWl2zn0tISXnvtNSwtLUlgM8XtdiORSCAUCsn6sdlsUous1WpJsomuY8Y5p5N1rNhmZhofJ+NYPt6bea98TRcAP81Ny8qNS2GiBDuXfPHFF/jHf/xHdLtd5HI5KZVigjyOo9U9AcOGFBPNyPB5vV7EYjHYbDY8ePAAa2trUmORG54G3ZctlGUqJxMaarqFnBYrz8G4NdjvH/QcBnDuDQp4rm63i2KxiH6/L6E6LFFFg4s1REOhEAKBgIT2MJ47FAoBOOwAxZhkZu8yKeO9996TuFuXy4WlpSX0+31Uq1UUi0XUajU8efIE5XJ5yDt4nGFp9Z72IAGHtUp1CSV97D86wMfB4WZSr9el6OE4tyxBUrVaRSAQAHBQ3mNtbQ1bW1uC0i+DsH8rAR2tDk6WarWKcrk85MrhxkRAZzKi/CFTQMuGFe6B4WQZCkE4Yxj0pkpg7vF40O12p+6jCxQNuvgsWGLge9/7Hv7Df/gP8Hq9CIVComzoDozFYrDb7SiVSigWi2i1Wtjf35dMOQIqAg/tTp+ZmZFgac7BcDiMQCAwBBKPA3SadbBy51ox2LxnXh9d+Wcl3W5X1gY7OhSLReTzefzkJz/BP//zPw9Z6mZ8lb6XcWLev3Zd8fzs5Xv9+nW8+eabCIVCQ3XIuPYvWw3SqRwvLA7NJAaKnmu6soUJ/M111e/3pbuRVb/wsxaSGBsbG2IgmUWyI5EI5ufn4fP5MDs7i0QiIT10fT6fJPVxj6M+8Hq9AIBwOIzBYIBoNIrXX38dg8FA2D8atcViEb/97W/x+PFjlEolbG5uCstOOc6AMseOIUmMp2a9TBPYcd1e+SxdLVpZAsMxOidBvtoKJ/ghYLwsrdU0m2C6ofleo9GQBer1eofii3QqeqvVkubgvPdOp4NWqyWBqmYch1Wdw1qtdsRFpV3JOktyKucvVgCCz9LtdiMcDiOZTMozMsMAdByky+WSecfNgkqPrJ92c9LdqMEY2QcaEFZuEBPUmIBP/5hgT5dsAg5rL55F6aXjQBvPy/qH5y3NZnMoq5py2mzBVCZL9Jw056hZf89q7ZjHAC42kYNAbVSoy2AwQDAYRKfTEdbPZrNJf2CGVdDgNfUGRWfz6moetVoN5XIZuVwO2WxWkv9OIxSMuIb5BCawI+Als3laRtrEA75ut4tmswm/3y/lIkaV1TCFcTJ0bfBBbm9vY319HeVy+Rzv5MVFgy2/3y8UNe+HNeaazSY+++wz/PrXvz4ChLVFp906wPDGyoKxXDj6GsxxZtB/OBzG/Pw83nvvPUSj0SFw7ff7BThM5WJEs10ApFRNLBaTJvZWypCKEoAoW5fLhVQqhXg8jlarJd0dyCgQiOmONgSM/X4f6+vrAn600TYuxk9bvfo1MlumC5klSgBIs/Qvv/zySIP0VxWehz8EV5Ni4DidTkSjUXHLM/YXmKx6a1M5PfF4PMJoBQIB6blO5j4UCiEWi6FarSIajQKAdJww91Kur2g0CpvNhng8fmHzWodPmPO20Whge3sbTqcT+/v7UoEhFAoNrVG73T5UZoqeBp3EQj3IuH8SKK1WC5ubm1K25TTDIWq1Gn75y19idXXVEs+QZWy1WkNJIq8iEw34tCuC8WlUXiepr8XNQCvjTqeDXC6Hvb091Gq1iVd+vH6v1wu/3y+p6ZywzKp8+vQpfvrTn6JWq2Fvb++FK3+/iLjdbrz22mtYXl7G/fv38a1vfUv6X3JBEEyY/S6ncj5iWvh8FgxSZpAz15fJgtMForN0fT6flHKpVqtDHW/IHmsXI4FQr9fD3t4enjx5MqS4dZYdzzfqNZ24oMvFmGwkg7mLxaIUzT7NxB6yiKwzydAKrsmzqPv3osLnzOB2s6TOVK6euFwuqUGqs1PJejGmLRgMIhgMotvtIhgMIhAIDAEqzg+n04l4PC7egIuY0zpEAzg6d9mlaNR3KS6XS2qzUv/pWqPMnG+1Wnj+/DkKhYIYvWcZ79poNPD555/jyZMnll2eyPCxh/NpyMTvxoVCASsrKyiXy9JDdWdnR+LwxtXCYWFbxu8R7BWLRZTL5ZGTZZKE7FypVMLq6iqq1apYMowDqFQq2N7eFjfrWfd27PV6KJfL2N3dhd/vx+9//3ukUinZhNvttlhKa2tr0yDxCxCruDfG4zidTuTzeezt7R2pWcX/NXumy4gwMYE/ZPDo5mX8JrPJ6/U6Wq0Wtra2BPDp69NATv+v4wTN1wlEj2P46vU6crncqZZfYoze9vY2AAj7sbOzg2w2i2KxeOHlntrtNrLZLLa2tmR8isUidnZ2sLu7K32pp3J1pF6vY3t7W/ZDxmUz0x4AqtUqNjY2sLm5iVKpJMl9uisSAQfj2BwOB4rF4oXNF6vY3Rf5HoAho5bg1mTlWde1Xq9LvPtZ3zPdtgCkrqAGqvRu6pC2V5WJBnz9fh+PHz9Gt9tFJpOB3W7H9evX8eTJEzx48ECYulFSrVbx9OlTlMtlcWM9fPgQz549w9ra2oUr5uOEE8Jms+HZs2f4p3/6J0SjUaRSKYTDYeRyOTx79gzlchkffvghdnd3LeP8Tlu63S42Njawu7uLp0+f4ssvv4TP50MkEkEoFEKtVsPz588lw2nSx/kqCtlx/g0cbAqbm5soFov46quvMDMzI70lyVYxXEKXDqFbhBuCx+NBMBg8olTNGnH1eh35fB7lchm//e1vJYHBvE79+0VeM2OWgGE3NoHoaRZI7XQ6ePr0KXq9HmZmZlAqlWC32/H73/8eX3zxBQqFgrjDTyonYU9eZPOpVqv47LPPsL+/j2vXrmFvbw/FYhEfffQR1tfXsb6+fqlKUk3leNnb28O//uu/IhQK4Rvf+AZmZ2fRbDalxhyN8Z2dHXz88ceoVqvY3NyUbO5oNCrrn2E4TC548uTJhejw0wo/6PV6qNVqsNkOCtdTR5ilyLTuOo/QB8bC1+v1I3GFvB5tGJ+GTDTgGwwOsk93d3dhsx20lQoEAshms9jZ2ZHswVFCho9ZMM1mE4VCQeJ7LoPwgbPrA2Onms0mstks1tbWUC6XhYY+L2GNMdYcc7vdUiupWq1iZWUF1Wr13K5nKkfFVFiMubPb7SgWi9jf35eYUP7oPsW6VIiO5dTKUMfY8JxM0Gg0GtLGkIHPl51ZYqkGZszv7u7CbreL52BUT87zFCaM0A0fCAQkc5jM+2V/DlMZllarhXw+j1arhVQqBa/XK94f3WM9m80in8+jVqtJSRMm6tG40z29O53OhWTpnrZMqoFz3tc10YAPgBRSrNVq+Id/+AdEIhFxR9GCGSV7e3v4+c9/Dr/fL8ke2Wx24pM1rCSXy+GTTz6ROAS2DGN9r4sqMUMmRxeYZfmHqUymdDodPHjwAKVSSSrYMwmIcXF049LdY8YDamFikA5+phuFQcfanXuZpdfrYXt7WxiStbU12Gw2bG9vy1p8UTbktMelXq/j66+/xsbGBp4+fYpoNIpmsynGIY3GqVwdqdfr2NnZgdvtRqPRwKNHj4ZcmZrlZ7/wnZ0dVKtVSWbQOkDHy2az2amX5oqIbXACbfP5559jZWUFf/VXf3UOl2QtOp3aKj5plOigT13e5DLKKNpX/75oGVVfbSqTJaNKi5ifeVkx3bFXLTvUqnzFJN2f1bOdtGucyunLScqqWIVFjPp/0vaXqRyVv/3bv8Xy8jLeeOONYz878Qwf5WWV1WUFd1ZyGRT2pF/fVA7kMsylSZZJ3wgn/fqmcjbyos99VEztVK6mXHzRqKlMZSpTmcpUpjKVqZypXBqG7yRiui/+2MUqi9Esi2F+3spt/MdanX+cu8MsHvzHIGblfi1WGbXmd8z3r6KrdypTmRTR63Scvr/MYU6nLS9aYPqy6a9LAfhO0ubF7/cjEonAZrMdCRr/Y5rMLKXhcDgQDocRCoXg8/mQyWTg9XpRKpVQKBTQarWwt7eHer0+VNx5eXkZ8Xhcynq02208f/4c+/v7Q0HAusjyVRPdSQQ4nHcsVMp+xjabDc+fP8fTp0+v7FhQPB4PMpkMAoEA0uk05ufn4XQ6h4LBS6XSUDFm1sVzOp1IJpOIRCJot9uoVCpot9tYW1uT3pTlcnkaGD6VqZyizMzM4PXXX4fH48He3h7y+bwUVQeAdDqNZDKJcrmML7/88lImM56GuN1uaUc6NzeHUCgkdUUBSDILi8uzjp/dbke9Xkc2m5VqFaPawE2KTDzg01bKODbF7/djdnYWTqcTjUYDnU4HlUrlzKtlT5ow48rtdmNubg5zc3OIx+N4++23EY1Gsbq6imfPnknf3cFgIF08YrEY3n//fdy+fVsmfLVaxc9+9rOhQp4su3FVx9VutyOVSuHatWsAIO2JMpkMUqmU1K1yOBz453/+Zzx//vzKjgXF4/FgaWkJ6XQab7zxBt577z2p5j8YDLC/v4+1tTW0Wi1Uq1U0m014vV5EIhF4vV7cvXsX169fl+4XlUoFv/zlL/Hb3/4W1WpV+kVOZSpTOR2Zm5vDn//5nyMcDuOzzz7DkydPpLgwALz++uu4e/cu1tfXsbW19UcL+Dwej7SZe+utt7CwsIBmsynlaNiVqNlsolwuo9/vS73C/f19PHjwAJVKBZVKZQr4zlLIYnFjYcsUr9eLbrcr3SjYouSy1N47TnR1cJfLJeUzWDDX7/cP/WbLKb/fj0QigW63i2g0KnUKaeGEQiEp6sxG0QDg9XoRDofR7Xbh9XqHWJx+vy/gb1yj60kWujZYk8rj8SAcDiMYDAI4TPxxuVxi3QUCAbhcLgQCAWmJ0+l0LhW9fxJhK6JIJIK5uTmk02nE43FRgmTfw+Ewkskk2u02fD4fWq2WrEsWauY8YzunmZkZ3LhxQ+pp0kA7zULJU5nKVRW2TDO7ZLCDxMzMDOLxOMLhMNLpNGq1mhRIt9lsmJ2dRTweR6PRwOzs7FDBYXp4WPP1KtZu5J4ZDAaRTqcRDoeRSCQQi8WkGPJgMIDb7RaWjyWovF6vGLzpdFpqGdbr9Ykep0sB+EYNYCAQwPe//33cuHFDQIjNZpOHwTp1jUYDX3zxBVZWVgCczEU8qWK328VNGwgEpEtCMBiE3+8fKpDLH4K9YDCI2dlZhEIhWcgmq8IOC+vr63j+/Dnq9ToSiYS4iVmFvd1uo91uo9FoYH9/H81mE7u7u2M7n0yqUEEmk0ncvHkTgUBAlCVlMBhI5wgAUmR6dnYWmUxG5tpVqj9ot9tx//59vPfee4jFYrh37x4SiYT0syZI5uYyOzuLfr+PRqMxBPgcDocUcgUOxi4cDuPf/Jt/g+985zvY3d3FL37xC+nc8ujRoyvPmE5lKq8qHo8Hy8vLSCaTcLlcEj6RSCQQDAaxtLSE1157DX6/H9FoFHfv3hU2i+vW6XRidnZWiocTEHY6HZRKJbRaLaysrODhw4dXioF3OBxSdP7u3bv49re/jVAohKWlJcRiMVQqFQljomdRt5+MRCIIBoMol8uYn59HpVLBr3/9a3GbTyq2mHjAN27gXC4X5ubmcPv2bVSrVeTzeQwGA4TDYfh8PjSbTfh8PtTrdayurp7jVZ+d2Gw2YexCoRCSySS8Xi+i0agwUrTQuPGymKbL5UIikcDi4qL8b7fbJa6j2+0il8tJXB+7aZDNYZFem80mgK9arYplwzZTl2mzJjtKtm5mZgbBYFBACQC5p1arJSDZ6/VKI3KOOxXkVRGbzYZEIoE7d+4gFovh5s2biMViaDQa0qOTCpDz0WazodFooN1uCzNss9lQLBal8woZ0Xg8Do/Hg0QigdXVVTgcDmSz2Us3h6YylfMWGlvRaBTpdBoej0dCeWZnZxGLxTA7O4tEIiE9c8PhsOg4t9stbb2cTqcAR3pp2u029vf3Ua/XUSgU4HA4JhrIvIhQ53PM4vE4FhcXxcNFTyG9WGy3pmOSyZxS95fLZTx8+FB6kVN/Tdp4TTzgI6rW2TCJRAKZTEY2mHw+j93dXaysrMhmzFZf165dQygUEkDE2DQidsqkPRhTAoEA4vE43G43IpEI/H4/fD6fUPqMWeRkYx9eult///vfw+fzIZFIIJlMiuub3+Vni8WitKDb3t5Gt9sVxrDVaqHVag0Vv+73+9L5w263I5lMolarYX19XWJFJkFGsbperxfvvvsulpeXEQ6HkclkBAhrxUCgHQ6HJS7N4XBgeXkZP/rRj7C3t4ef/exnQ83K9bknfX5pcblciMVi8Pl8mJ+fx+zsLAKBgLCcusk3N4FGoyFKTlvFXGcEwvo1usCdTifu3LmDVColTHGj0ZCOAFOZylQOZXFxEbdv30YgEMDCwgIikQiAg9ATp9OJUCiEQCCATqeDlZUVOBwOMf7dbre0BazX66jX6+h0OpLcSCOt1+shGAyi3W7DbrfD6XSiUqngyZMn4uW4LMIxcbvdSCaTSKVSso96PB4kk0nZqxKJhOikYDAoreV6vZ7Ex5P8oOeiWq2iVqthYWEBP/zhD4VA6fV62N3dlX10EuLeLwXg4w/7zmUyGXz729+G2+2GzWbD7u4unjx5gt/97ndoNBry+XfeeQdvvfUWAoGAxKaRodFA5jKkVkciEdy6dQs+nw/BYFCyRLnxMlhex170ej30ej3kcjl88cUX6HQ6YtU4nU6JQ9PMVbVaFXccM1LZmk5v1my0TXrbbrdjfn4eLpcLu7u7KBQKEwP4rMrSUHw+H370ox/hz//8z8Wd0e12USgUUC6XBeQ5HA4kEgm0Wi14PB5pR3b//n3cu3dP3B4bGxsnPvekitfrxfz8PGKxGG7cuIGlpSU4HA5pZcj4UQAyZozBI/Ngt9vRarUEAPM1AEPAsN1uw+Vy4c033xR38MbGhrClU8A3lakcis1mw+3bt/Ff/+t/hd/vl3VFD4vNZpMEhGq1iocPHwrQoO7m2m00Gmg0GkPgh3HeZO4BYHZ2Fjdu3EA2mxVP2mUSt9uNdDqNYDCIN954A2+//baEQTmdTuRyOWxvb6PVamF2dlYAXzgcFjKk1WrB5XIhGAxKRQun04l+v49yuYxqtYqbN2/i7bffRq/Xk8TRDz/8UPZUesMuUiYe8FF0s3a9CZdKJTQaDVQqlSMbRL1eFzeS0+mUeCK+xuNNsvD6mFDAiWa2dGKZFM3w6XpnBIBMqtAxWJzQOhnDpO91MK8+nn6PliDjSZg0M6mNq6n8AoEAIpEIut2uAN9ms4lOpzNkzfHzbrdbjAUCXyqPqyA0GpiUY1Wb0eo7VlX+9Wua6dT/M9Ccc+gyGGBTmcp5C0EYQ3p8Pt+Q7tVJBQy5abVaovN13T3gkIk32XgmM1AYylOv1yWB4TKV5XI4HAgGg4hGowgEAnC73aLTCX65n+k+8OwprGPiGffY6/XQbDZlfBnfyNjIwWAgZAnDoCaBAJn4HYqbD8Vms0k8UavVwueff47Hjx+jWq0eYQN2d3fxs5/9TBIavv/972Nzc1PqgE266IyrQCCAaDQKt9stsXX8DIAhgGYWUHY6nXC73UNgkJ+jG4Bghe4BnQGsJzyFWbmkqln/kICRySTFYlFiK89bzOvVQnBKZRYOh0VR9no9eL1exGIxWeQcK1MpMnmGAcCmMryM4KXZbGJ9fR37+/t44403UKvVhE3nPNHjydc53hwbPQ/HAcbBYCAsBIOlL8sancpUzkO4B9CYpv7V1RJoNOVyOezt7Q2FL+lMU4aoeL1edDodAZIa+Gnjt9vtinuXIUEkWS4D6AsGg3jttdcwOzsLn8+Hcrk8BJBZagwA9vb20Gg0EI1GkclkRKcDEK+Y0+nE7u4u8vk8yuWyeCNYl5TVMnQMdKlUEoB4kXIpAB+FG4fX60UikUC1WkWxWByZkFGtVrGysoJAIIBvfvObuH79Onq9nmSaapnUOCtaFCxp4Xa7JSieYnaAMDdYxusBGIolYB0+gh9dtJliAhbdYcLc9DmGvV5PrJpJLYWjrTWObb/fH7LO+BrvU7OqBNgm86otxpNcA483SdLtdlEqlVCv14U55xwxg7f1fKMC1WDPqnL9qPlE13CtVkOj0ZhYZngqUzlvoTeBekYXxmdMLWPKmFRlrkHtgdEGr9ZnmoEne2W32+HxeOD1esXAZezaZRC3242ZmRmpr6dLzGhjs9frCfjTnjTTu8OYyFwuh1qtJt6gRqMhRAmNXr/fLzHzLONykTKxgE8DiMFgAJfLhXg8LplIu7u7UuB1lDCRgW6pYDAIn893pN3MpG24FL3QmBShU8P19Z/E5aaPq8dXH1N/9iTjojd4/tZBsowrucgx5rldLhcymQyCwaDUjYvH45iZmRHXs45/JONXqVQkiJnJC/rYDIb+1re+hWAwiHq9jnK5jGazibW1NZRKpYu69ZcWssG7u7v47LPPEIvFcOfOHYRCoSG3Bz/H+cjXjmP0AAhbwSSfcrmMra0tUaKXgT2YyuUT07UJnNzocrvd8Hg8ACAGM1mwsxS3242FhQXEYjGkUikAB/dBw1ozf36/X2LZqZNZSsnlcskeqJOruEeGw2FJ2mBlAl27b2FhAQCwsbGBYrE40UYZ9zQCNzMMis9vMBjIM63VaqjVavD5fKhWq5LoEY/HxdhtNpvI5XLY2toSkoAAj4loOgxI798XLRML+DhROSF1zSG/34+nT5+iWq2OtTJarRb29/dl8icSCezs7AgLo93FVkrgooVFIXVLL1LRtOasFpzVZqs3T83gmaJTyq2Oa7Izmh3kBHe73UgkEpIwct5xkqOYM6/Xi9deew1LS0tYWFjAvXv3EAwGMTc3J1lV2tpj9inbfy0sLCAYDB5JWqjX6/B6vfj3//7fS8bu5uYm9vf38fd///eXFvB1u108ffoU//RP/4TFxUUsLS0hGo1KRh8Bsmk4jTOi9PxigetqtYrPPvsMGxsb+Prrr1EsFq9kEeupTIaYBjNw8p7Yfr9fWk+yO0yz2UStVjvT+er3+3H//n1cv35dykUBkGx6lkUCDmLXycpTT+nwnkAgIIDP3D88Hg88Ho8we+w4Qfbq3r17uHHjBj7++GM8efJkosMuyLaRcdP7gg7fYSJjt9tFNptFrVaDw+GQRM/bt28jk8kgl8thZWUF5XIZ6+vr+PrrryVT2uPxiIeCXkTu08FgEM1mc+y+e14ykYDPCiAwJToYDErG4HEsgBl8zs8yZs3KLcnvTYpoihg4ZE804OBro2KlRt2P/uyL3LMV6DNjtvR7Fy1c0JFIRNLyk8kkEomEdCPR8St6PHX9PQ1C9H2S4QqHw/D7/aJMbDYbUqkUcrmcFKnWQdKUSTM0tDQaDRQKBQSDQRSLRbHqtQvJ6rlrsTIUgMP1yY4vdJFclXpfU7k8YqU3dYFxAoZEIoFUKoVeryfhDoPB4Fw6LHCN0cjsdDpwu93CMhHgsWSUZvgorCVHwEfmTgNCrleGdFQqFVn3BDSXgX3XYShaTOBnMr2Mj6zX6xKLx7jHRqMhWbckCcxjmvsI8cZ5Ex9WMpGAz0pcLhdmZmZw7do1lMtl5HK5I73rRgG2fr+PQqEgbiN2UCgWi9I/UAOTSdlsyPBFo1F4PB60221Z0F6vF41GQ3r7cbGPYuis7snMnHyZCckJzfO/iGvvrMS819deew3vv/8+YrEY7t+/j5mZGSmtQoWoLVXNWpZKJUkiiEajSKVS4hrRioRKgT2Mk8kkms2mWIYPHz7Ez3/+c1GgZtKN1XVftAwGAxQKBXQ6HeRyOdjtdqTTabz55pv43ve+B5fLJTFE/LwGf9oQoAJkQPNgMECpVEI2m8XTp0/x8ccf4+nTpygWi5diM5nK5RNtoJkstGlU2+123LhxA9evX5fuFB6PB4uLi7h+/ToajQa+/vpr5PN5fPXVV/j9739/pvO21Wrh2bNnqFarQx2PaEC+8cYb+NGPfiQlu4LB4JBxSd3M9We32wXsabcn25Du7u7i7/7u77CysiIJGhogsbvSpApdqaFQSDpQcZ90u93CzDKGjwwtY/fa7Ta+/vprBINBpFIpRCIRbGxs4Pe//z3y+Tzy+by01WTSog6P4m8my5A1vGi5NIDP4XAIQ0PGpdlsniiGYDAYoFarIZ/Po9FoSNApmyFrZmKSNl3G8DE7ixsrO1/oTFBOML0oTwK2TOvmZQAaqWu92evN/yKFcSfvv/8+4vE4rl27hkgkgk6ng1arJdYc55EZ82Kz2SQ5qFarDZW1Mc9Da5CFqAeDARYXF9HpdBAIBPDgwQMMBgPLLOtJmndaWJyV/W4ZXvD+++/D5/MBOFw3ZnKLFcOr75et6ra3t/Hs2TNpfTiVqZylWIUcEAgBhwWMM5kM7t27B7/fj9nZWfj9fty8eRO3b99GuVyG3+/H1tYWisUiHA7HmfYR73Q62N/fH8ryZHJVs9mEy+XCd77zHelb7ff7JUSFyWUa9HEceO8sNcVyLsViEZ988gk+/fRTtFotSXQwQ60mWRivSHaO3ggmvVBYhow6nImR+Xwefr8fxWJRdNXKygry+bwkvNBTqOv6Whm80xi+MWLGAwGHk9Lr9WIwGAhT8iLBspywOttJb06TAFC06GBc3ahes2lk9Sga8Jl0vpVbzRSrRaw3ae1W4AIiWNI1iPjeRYnH45G+wdevX5caTAT6dGdYscF6nLkRsHYTgaBmMs3v6jlJ6zoajeLWrVuIRCJSpHhcrNukiW4MzqQKjgGDmYFho0GDQI4lLet2u42nT5/i8ePH2NzcvDQZfxctZ2Ug+P1+iQ1jbdNJF6vQAeD4UkhkuPx+P2KxGLxeLzKZjMQdc27fu3cPd+7ckcLEbrdbgBQD8xkSctbS6/VQrVaHdAvXJMNF6vU6/H6/rEkAQy5bKz1OYML9hPqRa5TGsLkfXwYhc6nBLkXreXO/4jgAB+O3sbEBp9OJzc1NacGpWWLqPp2da5am0uCP57wImUjAB1jXTWO9tF6vh+3tbQkmPYnwofI4BH76+JPI8GlFDByCVgajaiBICl8zfOMmmGbjxt233sT5eW096gwwMo+jEkrOS0KhEL7//e9jaWkJ9+/fx8LCgrggmURhAjteM++R4+zz+dDpdOD3+8U9QNFjx9cZ66Ip/cXFRfzwhz9ENptFoVDA1tYWgJOVb5kE0d1H9vf3xfXKVkP8jI5dGQwGQ6y02+1Gp9NBPp9HpVLBz3/+c/zf//t/JTB8KtZiGqXAUVDzqnorHo/j3r17AICHDx9ic3PzlY531jIqZhjAkA40x8hut0vW5MLCAt5++23E43H8yZ/8CV577TU0m03k83n0ej3MzMwgmUwCOJzbNptNQBBbdTJT9iyl2+1ib2/vSOgR9Ue5XEaxWITL5UIqlZJ9gYa5lfHP2ERdTL7b7aJcLqNcLkuvXXMMJ2mPHCVk8visddw+DVWOJb08OjyJe1er1cJHH32EP/zhDzJ3vF4vqtWqjA0T/TiWLPfFZ6A9RryGi9obJxbwmcLJSTqWfV31hjkO5OiJSveoWW9u0gAfcFiHz6wHR5BiZTXohW11T+YG8jL3rGMVzNcngTVlY3FmWtH6Ili1cjdSTCZUL2QzJm3U97W7HTgoqxCNRtHpdKQt3qTNteNEl6qh9c9yBqZYjRHnAd3pjOGb5NIOfwzCDSkYDApzZWaxXgYxgd+oz7BQejweRyqVQiKRwMzMDDKZDJrNpsR4xeNxKcjOvYaeAeAwAeI8AvK18WQlLLJMI1zr5uPGRetprm+C2stikFqJyayZbBt/dKUBU28z9KTfP+gzHI1GZU/Q7m0rJs/80dnhFyUTD/h0LR0ySN1uF5VKZahCtpXoTYeFEQEgGo0iGAyKFcsHPWlxCVTEXq8X7XZb4r7IOrEjhMPhGCrASeZS34tVLJWVIrACaBoY8hzhcFiKOevYCJ5Hu0PJkLXb7XNTIDrJJxwOSxNwXqe+byuAynslg6nrKmmwphc+Rc8l3jdjglwuF6LRqLiGmOV3maTRaCCbzUoSEV26Zsa7dpXwHrvdrrQ8nJZeOZmMYvLGhWiYxp9pCPO5MLQlHA7LZhaLxVAul9Fut6UEz6SJZpIperM2r5kbbiQSwX/+z/9Z4t1CoZDEY21vbw+VZGKMN4+tQYHdbkcsFhMPzHl5iKzYTABSG457gRmrZ+p4vq5fs9lssrbz+bxlcf/LtF75XHVZFq372TWjVquJHtbzhkQLRRv+upYhO5LEYjHE4/GRIJOhZDrR7bxl4gGfZvZ0/bl6vf5CcSa0gNxuN0KhEAaDwRDTol15kyKcoC6Xa8gK4UTmD3DYxJ7f0XQ+jzVqgxj1N//XIIcbBetRcQMnpW1aMwRLNptNyuOchzidTsRiMcnI1ZT9qGwpzfpxTjAexqzlRNHB3hRduJllDBwOBxKJBGw2G0KhkCx8tj66TNJsNlEoFABANj1tLI0CH5w/rHZ/lkHuV1FeZJ5YGXHahcXXqUP8fj9CoZDMz1AoJDp2UgGf/n2c8P4DgQB+8IMf4K//+q8lEL/dbkvlB7YeI3AiWDKNOrvdjlAohEAgAL/ffy4B+VZGOvUy74Ht0kZ5VsxjmOPXbDZRKpVQLpcFlJjHuiz6Ssfw6WfI3z6fb+g5m2XadNUJ7gP84RxhZ6B+/6C1XTgcHnLz6mth0W7TCD5PmTjAZ1oSLCgZiUSG4tVGifbNa6XQ6XSk+CEXqFWrk0mzZDhBeQ8EHWQ7eQ+mNaa/x8llNXaj3L36fzJ3mpFhfASVgg7aNxcPGaCzdnsAkHHx+/1DFc65yDT9ru9Rs8EUU0FYKVzdS5jjZMYQ6YBgZptnMhnpxjGJG+o4YcHkUCg01G9ZF3k1QQZwmMDCfs0+n+9c5sRlFxpPHHebzYZSqYRarSafMde3Cb6t2FbgMKhfr0/qyoswRkz9yyB5spAsLkyDql6vS+1GJmPppDx6IriPsBcsi+5q49T84XXoz+iuGqO8T2e5nkfp8U6ng2q1Cr/fL4YU9c8o17zVe+wsxDGlTNq+eBIxdbd2dXP/Z01fAjHtdtVriEBPx3KyBqL+7fF4pLaoPh71o8vlutB+uhMF+DRI4aDG43EsLS0hlUoN1U07TngcsjS05txuN9LpNLxe71AyhL4GzWZdpGh2k/ege/QNBgfV3jmJyHjqzdak/jUItgJ7VmCI9eVYooOuoGg0KjEf7ENIRUHQw4U1SlGdtgQCAcRiMaTTaUSjUYRCIXGrWi16rcxNRlTH7ZklDXgsZovT4ifbx/e5QfBcbrcby8vLaDQaWFtbQz6fv3RMVygUEle5zna3Yj81m9rtduHxeHDjxg3U63Wph2nKZdxcTktM0Mb1xxCF+/fvw+Fw4LPPPsOTJ0+GvjtuU7eSfv+g7yqzMvm5arWKXC537sHlnC/aGxAIBLC8vIxwOIw33ngD9+7dE5a40+ng2bNnePr0Ker1OnZ2dlCr1ZBMJiVD//XXX0cmk0Emk8GtW7ekCHupVBoySHXYhiYWut2uADrWZ6vVasIWMo7P7/cPeTvOQsa58Ov1Ora2tqQo8ziwZxUWwONVKhVsbGxgb29vqHTURceevYwQjFsVXqYxQD1t5gNoHaRbbhKssfSN0+kUjMG2dGT9WBib10HDQ+9F5y0TB/j0bwASZ8HWYlaDNM5dSdFtT7joxwXbTgrzoBebZoo0q2LlauRnNLs3igXgZ0f9bVq9wKGS1MwZNw1T0ZjJJWcpjBlk9igXJHDYEUNnah0nGgRbzU9meNH6531alcvhdwlK8/n8RBTjfFFxOp3w+XwC9gAMjadVbBBwOP5k9ugWmbTY2UkSsvkspptMJqU91rhC6y96Dr2+mYF/EWKuNfbljkajyGQyuH79OgaDgWyodEHWajVp/xWNRpFMJhGJRLC4uIj5+XnMz8/jG9/4BpxOp9RV01UNAAzpOc34m0ZhvV4X3et0OmXdn5eOsxIynGz3Ng7oU6zWK2PdrTwPk7InnlT0c7O6dh3Xx3g9U3fp56/dtJoQICHD43D8zWoZ/Ox5uP9HyUQBPmAYvNlsNul1SqaGi1V/RgMbK+n3+1JGgkVxw+HwkQzDF40LOS/hpKS1wMrgDBalNcxF3uv1hpTXy24IGmzSitHKsNfryeYDwLKQtWbHzlpsNhsikQiuX7+O+fl5BINBiX/k5qjdzSaY1S5IfZ86kNvckGjdA4cFPMmIanBJ1mIwGCCZTKLf76NWqx0p4HxZhGvENEL0e/o1zk8qSZfLJa7tRqMh/XP12E7aOjwPMe/Z7Xbj7t27uHbtGubn5/HWW2/Bbrej0Wig3W6jWq1ib29PEmjM9TpuDD0eD5aWlhCLxbC0tIRMJiNZ5BclpiciEAjg9u3bmJmZwdLSEmZmZsS47PV6CIVCWF5eFnat0+kgGAxKZ4xMJoNQKCQlVLrdLhqNBmq1GiqVCnZ3d9Hr9QQgaj2r5yzX6Zdffomf//znEt4yGAyk/3Or1bqwYHyWm/J4PEOJYFZhFVbCdcyCw6VS6Qjov0zrkXsmdbEuGUY9XSqVJHFOM7q6XZree8n0Ahhi9rSOozeJrLmOH9Qs8kXJxO42HMRgMDgUeM/K4ibgsxK9KZXLZdTrdczOzko1cqsYvkmb1Lw3ukZtNpsAPmb7kG42Y+c0iDmJa8ZksUzQQ8CnmQAmwdjtdhQKhSOb/3Es5GmKzXYQcL6wsCCV8XXhTZ1Mwc/3+/0h0KVdthQzg1uPky7Gyk1IuxE4ZlQ0g8EAiUQCPp8P29vblxbwAUfdhfrZa3DMz2pDhMxNOp2Wml+XzbV9HuJyuXDr1i288847mJubwze/+U3YbDZsbW1hf39faiIyvlf3hT4uEc3tdmNpaQlLS0tIp9NIp9Oo1+sjS+2ctWi2ktfs9/uxtLSExcVFLCwsIJFIAIDESF27dk3idM3Ct/q4HA8Cvkajgf39fTx69EhCDWZmZiQgX3tVeLx+v48nT57g7/7u7wQwkvU57/Afk5xg7B1dhppd0t8xjSn9P138pVLpSFODSdsXTyKsL6gL5nc6HQFl+Xxe4voJzBiTDWAIqJn5A5od1oQTv8+ycUwM1bGeF9lX90x2G6ubsYrhGjeJuFESUDB+YlQpi+OsWc3ScODp2uUEOOmkPk8GQhdx5KQze9cSpDBTdhSNPcodboqVotDsmP6MVrSmG9PKBXrW4na7EQgEJG2e10nAaVaN52tkSank+HnWo+Jn6L7leOgm2roqPZWA/ix/RsWWTJposMCkAcaiWLG248CF+Tm6tuPxOGw2G7a3t8/kHi6rcGzC4bD08vT5fLLJcE46nU4kk0kxujifqSuBo+uP+oEuz+vXr8PtdqNWq6FarQ4lgJ2HWOkH3gsZdCbaUU/renM6e3KUztPrj8CYvVZ7vZ6EgNAI1Pqt3W5je3sbtVoNOzs74vLsdDoXxuhZySij1EpMT5o+BplQE1ReRtBnFZIDHNwLmTiygPy8/gzHQ+tz/Rnux8ABO1itViV0zNwHLtrtD5wB4NNZMRQrEGC1EK3iUaLRKJaWltBut/Hw4UPkcjnk83nLyWgFAik6kYDxMIlEAplMBvV6Hfv7+xJMaWbpmPdnnuMk8RIvIwS8VPS8PmagEpDoe7QCE8ddn5Vy0J/Xbk3WeDIBOelqnaxB5XpeE91mO6gPuLCwgHg8LhYdAMme0qBMzx0qbwYqt1oteDweVCoVUfCsH8fPa+XIgN5+vy/tljTLqTdpguSLtPSOE/O6XC6XuMeY9MQCtdpAMFli82/+OBwOzM7O4s0338TW1hbW1tak3dxUgKWlJXzwwQeIx+O4e/cuZmdnpWYYQydqtRp8Ph++/e1vw+l0yjzVbLNmL/hDYzcej+Mv/uIvcPfuXXz99df49a9/jf39fak9d16iGRIyJsywj0ajmJmZwczMDGw2G/b39wEcun7J4DgcDjFE9MZsehoAiOGii9rrsCEmnjFOdWdnB//7f/9vrK6u4quvvkKhUDjXElMnETP05CRiZdQzhs9MYjCZ18sgJkjTHqtut4tisYhSqYREIoFIJILBYCA9gymDwUD0El3EWn/zB4AYTJo4oK6jkUFy5KLk1AGfFZoGjnbB0K9ZUc08ltvtRjAYRL1elx6kJsNnNQnHMYBc6ART3ITN+7C6nuPcx6ctBHC6VYtWVrqPqXa70gVxWkrJdBdr65Bgz0yEGGVdnaWwjAMTA3Ssnmkc8F6oJDXTO47hI7NHI4K/dSyltup0OQzNOOpNaVIVKa/NbrdLrTYmPGkFan5n1LE0AGQtx2q1OuTantSxOA/hGIVCISwuLiKRSCCRSAgTRVaCBgqZQJ/Ph0qlgmq1KqEWvV5PNhng0BhntmAikcD8/DwWFhakn3GpVDp3hs9KuLnSC+Pz+cRNZuUt4noywa1OouJ3dD1X1k3zer0S78uxpXu8Xq9jdXUVjx49wu7u7kTXzhyna61et9qTzX1jUu/1OBm3/5BAYRz8qHEjONQt6nRMJ+cWAAkV0LrfnItXjuEbF8RtBexM9sncQHRcyvr6Oh49eoT9/f0jzdpNADhqE+12u0PxF6YlOI6xs2Igz2oxmBOE42C3H5QDiEQiEsvIycf+rfys6WI0r1W7PK2eiwZLJu1fLBaxubmJXq+HGzduyLXpY58n0KN4vV5EIhEprt1qtQTcj5sTAIYAH+M+uAHoVkMMzjWtaZ2tZbqX+B0qDSa7pFIp9Pt9YRInTXh/brcb8/PzmJ2dRSqVGgJ8FB3baYoG3ATFsVgMy8vL6Pf7FxY3dtZiZTiOEo/Hg5s3bwqrR0aVbH6pVMLKyor0EGfPVG0Mk4HmGLM6Aa/FZjsoOJtKpaSsEsuwrK6uIpvNXnhfY6fTKbGFN27cgM/nw2Bw2L+bRibXEY1Nsi68VwBHjCrNuBAQk50n47OysiIlqBqNBra3t/Ho0SNsb2+jUqnIderjnicosjpXOBzG8vIyZmZmhjp/6GvVv81j8V64JnO5nMS9X1ZhDB+LK1O/MgGDr3FOAcMdXKjPdOIFdT7Zc847ALL+7Hb7UI9xDRKvHMP3qpPfCpTQWn3+/DkePHhwJH36JAwfpdfroVqtDgE+k90bx4qdx8K2sgp0twdmodGFygnUbDZF6ekioFaxGvpco0SXXNFj1O/3USgUBEwBOAL4GM93nsCP7AW7PwwGB+2R6H60WtTagmOwLYChmD4CQb6mXbmmm5IMrHnfZGcGgwF8Pp+4wtPptLw/SYDPZFHYbJ6bign4TPbOivUzASGZKQY3XzWxMqTGidfrxeuvv47bt29jdnYWc3Nz8Hg8AviKxSI+/fRTlMtlSTKgC5LtJqvV6tAcNNkam82GTCYjPaYHgwGq1Sqy2SyeP3+O/f39cwd85lxzOBxYXl7Ge++9J3MEOFxDeiPXbjKdAak3bfMZ6O5FDEtgHdOdnR08fPgQ+Xweq6urWF9fR7VaxerqqowLj2OV1Haeos8XDodx69YtzMzMIBKJDOklK++aKXw/Ho/j1q1bCAaDePbsGfL5/JFzXQbhGtBdUxqNhqwnvsZkMT1HdCy8Hj8CPdN1Ts8b16AJ7HT5Ft2i8yLkVAGfVjQ6iNYqY8j8HnA06JSuQg0iX9UFphk8uv9o6bVaraHYKqvNjPfEH5YIYGbUaRQq1UBPgxOTOaJ10e12h6wGK8aSr1uNpTk+48aNz4jB+1xQ3FwImC6K4dOp+HqeWNH7upTNqBAAfc+a/TSPafU9/Vkt/A7nXyAQsMwYv2jR106rVWe3j5tHfN3qf/09Kzb0Kso44Of1ehEIBBCNRhGPxxGLxaSkEPWp3X5QjqlcLqNcLksh+mazKa2dTCPYNEy42TCUxev1DpUfuUjRc4JGLV3ZNptN9KoOfjd/tFjpNb1x659er4e9vT0UCgVks1lsbW2hVCohl8uhVCpJuZdxuvG8xTyn1+sV97/H43lh4oWfDQaDyGQyAoYvs2jAr4sn871RestcRybrp3/r7+v2plbjf1F7opZTBXwOhwPxeBx+v18UmM1mk/pEXMwUMkCaoaJbki61RCIhzIrf70c0GkWj0RiqxWeKRuajNnObzYZEIoGbN29KIki/30c8HkcikRiKkdMANhAISOAmaeFHjx5hZ2cHzWYTlUrllePmeP8MKGayBoutckxtNpvUE2RfQJ0kQfZKs08Epab1SzEtQm3Bsh8xcJBMc/36dWQyGQEszWYT+/v7cDqdSKVS4moZt7hOW3w+H5LJJFwulwSu68WqazGZQA7A0Pw0Y/e0wuB4amCnYwE57lYMK68lGAzi+vXrCAQCKBQKE52p6nK5kEqlsLCwgGg0KnNCizZEKHpstZHE/09aOPyiAcmLiH7O/K2zxE2jcGFhAW+++SZisRjefvttLCwsCLjW67nRaODZs2colUrIZDK4ceMGCoUCyuWy6APOX8476krGQvv9fiQSCczNzYnbifqAsX3n5cbjPOFcop71eDy4du0a3n77bTGoaUjSwGTRb+pJDahNA0yLXvsMsWg0GvjHf/xH/PM//7O4xlnUmTrEKq5xkvqvp9NpfOc730EqlZIe53qdjRPuE3a7XeoyPnnyBL/85S+xsrJyHpd/JqLDoBj7yfWhCSVdo1Xrc/7NPZNF/Wk0Mbae85cJL5xjLpfriCFzpQovU2kEg0EpJ0BFxexOk2IncAIgMRN2u13ccMxQHQwG0quOm+moa9CAx9zUNfjw+XyIxWLodrtyPgZB63pMOhsnEomIsiGooHWo4xdfdRx1mRNONu2yYEkGWmEm86hZLDIpx1H649gwjiWVHItXk4lgfAPreI1jdM9SuCgJxnW2FDDMEJjCucO/RzF8+nNWTCDHaVS2N6+FzbY7nc7Ex7DppA3zWq0AvdVGaMVyjQtivsysnzkWvE8TJNvt9qHM8nQ6LQanWfur3W4Lw8fv0UDW59HzkO5K6hS6tAKBgLi2qCM0o3ie42OOB9tepdNpyRil3uGmyR+rGGwe33yNOonPQMc5Pn/+HL///e9fGLxNAtgDDuoV0lXPZ2oamqanx3xvMDhoD0ZS5bKHWZiGltkpgwaG1XzXc0Z7KHVdV1N3kRywKk/GnyuVtEEqPhaLIZFIYGFhAXa7HbVabUjpEBgSGHBAmYXldDrFdZTJZMT1defOHfh8PqmUzuPwIRCgAZCFzbIRrJd28+ZNiV+5du0agsEgCoUCnE4nSqUSUqkUMpkMAAiro0ECz2daBO12+9QKx+qJSKuB7CKDjXn//Ey32xVAaJYL0WMyjmnTjIp5PfyObiNEBo/WL0E5AaCZQHKWE10D8xeJk+CcNI0RHsvr9SIej0vvZa/XK+Ojy7vozcSMbeOx9bwhiGc/2UlXrjpZiNc6yhU4CuyZr9MI8fl84tpmvCRgXbvzsohmyYFDNogbjt/vx61btxCNRnH37l289tprCAQCEnBPYMNyVJubm9je3sb8/DxSqRQAYGNjQwrkaiZe/2bsksPhEA8Juw1x/QIHdf8YM1iv14eSE85KTCASiURw7do1cWmzphn1GHWL9r7oOUXgavXDzZgsPwv563Zkl1F0CBVw6GnQa1PrJ4q5rvgdrTfdbje8Xq/sJZdVuB7IwjEEiwaQFUC2Ms4YstTpdIbmodb1OqZUexqBw1i+K8Pw2e0HxTzT6TQymQxu3rwJp9OJcrl8JF05kUggHA5LsLoGKW63G7FYTDpikAl5++23cfPmTbTbbbRaLTgcDgnQpzLTFq6uu1apVFCr1RCLxTA/P49AIIBEIgGbzYZqtYrFxUXUajUkEgmkUil0Oh3kcrmhujx6c2+320P9GFkq4TQsPiolUtHVanVoM8jlclIbiPfYbrcF6HBxmu4jbWXwfvj6cdfDycvNxW63y2KhUibg43UQ5Jx1zTlt+ZMFphIcB3I1uAMwRPlzc/H7/Uin02i1WojFYggEArKxaMCnX9NuA/7obHOyCi6XS7rIBAKBiXEPWYnD4UA4HEY8Hhfm8jgxNxjNOgMQ1trv9yMcDiMSiVxI4d+zEg1yTXAcCoXw3e9+F7du3cK1a9dw+/btoXZNXDf1eh2/+c1v8C//8i9IJpO4desWPB4Pms0mVlZWJIOcotlohoNUq1W4XC4Eg0HJzqU7VzM7y8vLCIfD2NnZwc7OzrmPVzwex7e+9S1pc1YqlYaKADudTinAbCYN6TWo55pmeMiGMvOZHqVqtXopurzo9UQAR4DBjFAdWqKBiOmhMI+nkxA4rix6bYbG6Gu4LML50Wq1pJal0+kUb5Bm8UzWE4DMITPTl/s0v6e7epgGCeftlUnaAA793cAhSwIcuiC5UNnihpkyevPkRPb5fGKJciPVxTL5P3CUNuVrdBszG4tuEr7OY5guU0356geva95R2erszdNaBNoyJRVtxjuxwCrf59habTAvew3m9ehNm1azrspuTnQN8s8S8GmgqcWKadILVIN4q7gN3hPvRWdpmQyflZVo9cPr4rwkazzJchw7bPV5K7eG+RkqQboam83mRANfU6w2QM4VvUHyvWAwKO0iU6mUJCboeFcdf1er1aSgK/vDsjsQmSkaXAxhMOcjDQ5m97NGJa+LYCoUCkni2kWI2+1GJBJBNBqV2EKuE2A46N0K/Iz6Hxiev3oDpoE4rlSGNm41q6MZHOoEtrw8K9HXz31Se1XM+XZSNslcq1o3TVoFgZcRfX/aPUs2zgoQU0y9zd/mnqGJB41NiA30nLkoOdVdptfroVAoADhQbMDBwBQKBezu7iIcDmNubg52ux2PHz/G7u4u6vW6NP8OBoPiWmAyQDQaRTQaRalUQqPRQDabHVJmPB+tEZ2eb7oiCTqZ1cb3qVCJ/NnJg0DKyhIqFArY2dlBpVJBoVCQJJLTYvi4UOv1uriaCQwIghk/SIVPlkjXjeM46DE7KbOnATTBL2MGW60W8vm8nJeAhYk6HHMAZ87wud1upFIp2UzJQmqrlYuarAZZJrK1GrQDh251NpN3u93odDoy/3Q8CI+jlYEG3zweGRyei0lJjFWdZCEryZ6telMdpcRMg4HsO4Vj4vP5kMlkxI1YLBYvhTuXCh446t42NwPg4H7fffdd/Nt/+2/FlRuLxST+lQy5w+GQMin5fB7ZbFZioKPRKAKBgHSFqVarWF9fH9I/5nURSL322mt444034PF4hP3j9YVCIXzjG99AMpnExx9/fKZjZjK9fJ3XmE6n4Xa7h8J79AZKFkvrJqtz6PepNwmom82m9BLmHjPqeoPBIG7fvi0MN5PCwuEw3G63dOAplUr45S9/idXV1TMbOy30cIXDYcRisaFEP81WmQBZ72kaQOq54/V6kU6nMT8/j729PSnofZnECpQDh8kcLG3GMJ1xBjt1l94fqOM5Li6XS2KcGf7DkDZ6OK1IifOUUwV8/f5BVXKn0yktqoBD0KKDkLPZLJ48eYJKpYKNjQ20Wi0kEgnEYjFZlHwYwWBQfOe1Wk2OSyuYzB2tMNY501k6wMFDbLfb4r/ntTALTFdyBw6rt/O7wGGsA++J7urTjnHgeVkbrtvtDrlHCR6q1epQP0CdhWaC1ZcFpHpjJ9tFhtbpdEoWIIChGDe9OM7SsmF8IxWwjpcyF7BV0oaukaf7j1JRaJa6VqvJ50zFqb+jz6ONC+1OZyIE2dlJFipEM/PPDJrX75luJfN4HA8qymg0imw2ex63cyqin+eozHwT8C0sLOC73/0ugsEgkskkvF6vMHlk8d1uN9rtNvb29pDL5cQDYrMdxDuydR89JWx2r7MAdV9Y6sRMJoPFxUWJ69MbvcfjkSS7szQ+TGZdv+bz+SQciMkaOiPSBNTm+I46H3Cou/gdJkoxLtoqhpbXxZqHyWQSc3NzWFhYkPHyer0ol8vI5/PY29vDZ599dirjdBLhs2L3G6v4sFGsvDlu+llwrBizW6lUJt74Oolo45vPnDraaj5a6TQdNqAZeR6X3WH4A0AIBYLpKxPDBwwvaLr79vf3sb6+jsFggIWFBVnADAhlEHE6ncbs7CzS6bSAKpvNJsfY3t7Gzs6OlCygktDntYrr4KZNZM1CpXzAjH+jWLlENFvDc+kN8CzGkOOo3Yi0VAOBAIrFohQMJbjluHNimnEEppyESdHMAS3IZrMp7CpBEuOxtJtpMBgMWednIdzQWB7GSsmZCk276xmPyYBeDdBMkKytRT1PXC4XotGo9OzlM+Fz4bNjEhDZ11Gu6EkRuoyY1akLWJuK0XR7aGVozjO9Xsni0CqetM1l1FzSTJO5vmy2gyK2ZOTm5+cRDAbx2muvCfvMUiM0bgeDw8Q1ds/odrtSTcDlcknrs06nI9msS0tLaLVaEgJTr9exvr6ORqOBdDqNmZkZLC4uIplMSkFyAj5t3DJeizHR2hA6rTE0x9LpdGJ2dlZ6pnMNa8NbrzOt16yOrde3/h8YLgNDA5r6KZPJ4N69e1KWpd/vY3Z2FjMzM4hGo7h37564m/kswuEwXC4XKpWK/JxncgMNxkgkIt6tk7Dt+jVz7vI1hgBEo1Hkcrkja/c05sRZizkftLdLvz/OGOX/2ojn+OiuLsQYZgy73id0XPlFyZkCPiLbtbU1fPHFF+h2u/jGN74Bm80mVj0TE9ii6/bt29I3slgsolwuY2dnB/v7+3j8+DHW1taE8ne73bJJsC+eVhK6jAg/PxgMUCwWhyhaDRj4cFhiRGelmvd42nF7+viaHSJwppIng7m/vy/uaF3Chu5cNgkHhuMIRk1wU0yFy+fW7/elVhXPx0Kuuk4iG3CbsYenLUwoiMViQ/FJJvCncOERIDcaDRQKBTQaDQkUtwI1pkscgDwbZpkGg0H0ej2Uy+UhtwFBoc1mk4xlPku+N4nCVnUELgQCutzNOIaPMsrFSas4Ho+jVqtJWMIkiAlm+beO3Rzl5iKbd+/ePczPz+Pf/bt/h0wmI7XdyJAzSY2xUpyHxWJRjJBwOIzZ2Vn4fD7s7e0Jy8+4x3Q6Dbv9IGEuHA5jY2MDm5ubKJfL+Na3voU/+7M/QyqVwvXr1xGJRGR+asNFu7ai0ai0bmQozGmNoylutxv379/H3bt3sby8jGg0KgkVAIZ0OONmTbac56CO0Ruz3qAJEjmu/N/pdOLWrVv4wQ9+gGKxiOfPn6Pb7eJP//RP8Z3vfAeBQACZTEaMEQ2KbDab7E+5XE5A/HmIw+FANBpFOp1GJBIZKtKtr3PU+I8Ccdwv4/E4ZmZmsLe3NxKwT7pwDjBWT+txkyACrOuGao+V7ixlhgfpRA4dG6irZVzZpA1u9Hqw9Hvc7AAIMGBhUNLr3FgGg4GkUjM+TS9Yc5ID1gHUpPKZkcWHRUtPuw3MOAhtGZgW51lYO6OYSloKwGHmkNlCTW+u+t71gn4R0d/lOOiEER5TB6zqhTBO6ZyG6HOPo8utGCY+W24IVsyBZgg0Y8Xf2nrj+HBcdByhVjDmeTXAnyTrWSc06XZdWkZtJuPuw3wWZtLUZRP9HKnwQ6GQgGSWodKxn1bF6IGjteTInNNg1aWiyMzRRcVz06XEjhXRaHRIv1mtR20IMcntrITn8ng8iEQiSCQSCAaDcn9a5xynZ821PE7PaKBO3dnr9RAIBJBOp+HxeASIp1IpJJNJ8SjpMmI8L4/JveksPD7jxCxRQxk1BsfpYD2WuubcZRcN3sz9ku+bv008YQV69Wv6eLoO61nufS8qp560Qcv0xo0bUsJhYWEB2WwW8XhcmLhEIoFkMjm0sKkcmbHGwGKmUgMH1lir1cLu7q4oUSoy3VKGiBqAuEoYA7izsyMp+jpDhxu3zWaD3+/HjRs3pBQKr4duDl4XW6qdptDVR9aH52VMC60I4MBardVqCIVCQ90grJTjKCZvnHLQk5Wbmd1+WEyb/Ti54QSDwaHrpbvKLCJ7mmK3D2e7anCqgRznBceJ151KpRCJRMQVbQaT61gNPb+oPBhDynp97XYbuVxOElUI/mj16axqFhJnBqUu93PRYrMd9iZm/T1atRroW31PKzr9t36NP9p9pGOpNKg+j3vV+kI/a1OZm9djt9ulw0E0GsXNmzclNozxzL/97W/h8XikRqk2Mslg2Wy2IbcskxUGgwEikYhcJ1npWq0mpVY8Hg/y+TyeP3+OZrOJ5eVlXLt2DW+99Rbu3r0Lr9eLTqeD/f39oRhmDWB4XzxmsVhEqVR6IYbPHEfzGfJ3KBRCMplELBbD66+/jm9961twOBwolUpyTq6vZrMpQFTXnSNY5v/cN0xGHziMhe73+6K7dOeg5eVlpNNpdDodVKtV9Pt9hMNhhEIhOYc23vRvegbK5fK5lnchKNPslclKv+xxT2pET7qYxjbZc83Q6rg6HXutwZ7WCRSTEGB5NM41u90uoSrcP3So00XIqSdtMCOl2+0iFArB6XQiHo9L70e6JlmHj+VX7Hb7kYQKbiwM4AUOwFC73ZZYlmaziWAwOBSUyw1VKxzWyCsWi1hdXUWtVhMFQrZKW86xWEziNzQro0uR6OLGpym8FwIGWqS0Rgm6aFkSzOpSIaaYjCflRZQCFQyfS7ValXR9KmSW1iCw4ntnSWOTIdLjwtf1Auai1S3S7Ha79OsEjmZbane+XvgcZz4Xjg1DFNhEW2/83JB0eQcqbJbbsNlsMn6TIKxFyLptWjkex+BZsUlWc8But0tbLx0jeN5Kkddpjv1x12G3H3S9mJmZwdzcHN59912Ew2Fks1kBWE+ePEG328Xt27fFKKI+0S4nJp6RFeR6pe7khlGtVlGv1+H1euWnXq9jc3MTTqcTMzMz8Hq9uH79Oubm5mCz2VAulyWZjjpN6wvet8/nO9LF40XGkN/RQNIcQ7rxk8kkFhYWsLS0hGq1ir29PQldoc6gbjM7HOjfel3p9c3z65qs3JQJ+Gj03bx5c8ibw64m2pujj8kfGmmNRuPcM1m5V5jP6VV0remBmCSG6kXEJHKIMSqVisQ/kjjRXjPTW2geyxS9txDMcX3TSCZOOI0QiVeRU3fp6g2R3TUSiQSWlpaEkeOi1C1z7Ha7uFv5ELj55fN5lEolUXJ8r9VqoVAowG4/6ALADF8CEq18NC1dq9VQLpfh8/ng8/mG3KLmRqyLk1oxPGe1KVlNOI6rvh9aFTq7VFPJmqXg+/ocpujPm9dAUMPPUYHyPQI+jplmG89y89YMn8Nx2CrKdPHoRatBm753ihnnwXskINCJNIzz1GPFzYkGC2MceRyej+chsBrFwl6UeDwecU2apXVGgTgT6On/rUAglS/7Ql+UWDGKBBgE7ATxuhWj2+3G/Pw80uk0fD6f6KV8Po9CoSC9YTk/NzY2xMikYcz6eIuLi2JksgC8rvXJeVcul1Gr1ST2mCU65ufn4fV6paxVLBaTkhBm/2jNhGu271XWqhVjSKHx7/f7MTc3hzt37kgR6Hq9Lj3DtQ7WXgVtBJsgj/dHo5d6iWtc604aVxoEZrNZZLNZ6azjdDqHiANgeP5qgkGTFedpqJlr8VX0hvmsToMpvGjRQJ0/ZIy1MW7Ggurv6x8TDJrjwjnJecU9kEKD7coBPlo9tVoNdvtBQ2YGLJdKJWF/yIKwxpR+MHSllkolPHv2DOVyGdlsFsViUSwzunPL5TIWFhYwOzs7FEipH47OmmGAbSwWkwVNxcDYFzIOdIXwQfFHX+tpgxmrCUX3Nlki06Wru3xocKsVuzlBR23Uo65BMxDaNcLxpTuKDBXdJWetMHRZFlpTfPam9WsmwWiri/cBQDZZ4HBDJCOs3cLcSDSrQcsOgLCvNptNqH0NDjmffD6f9FAtFAoTUfmfzBL7u+oMaG5+Vs/WBHbmb/08CHaTyaRk617EBmMqZ+CQeeR1MSnoxo0bSKfTiEajuHbtGnw+HyKRCILBIPb39/HgwQOUSiXs7e1hf38f169fx3vvvYeFhQX8+te/xi9+8QsUi0U8evQIxWIR8XgcmUwGiUQCP/7xj3Hnzh14PB5JcOM80+ue4SSNRgP5fB7tdlvYvHA4jDt37kgh5VKpNHRfnPNcHzqY/aT6zHyuGuSN2tA8Hg/u3buHhYUF3LhxA++8846w2qx9yk1TFxPmb+pmPQdplFMfcc1yD2g0GkPGP9nPSCSCWq2GXC6HdruNlZUVbG1tIZVK4Zvf/KaMne4spO+XgIHjx+S5i2hBNs6IH2XUj3rd/O5lBXvA4TzXYRONRgPlclkYZs4nAEd0G+exNv51CIE57vRy9ft9MeaIbej6Z7vAK+HS1cLBZgwXN9JqtXqEZdFWmMkG6Q1Zg7NOp3MkrkI/MCvrR9PUmsXjeQAI2COwsWKHzpqx4jXr39pa0QvWiqk6KZs37nW+p88PDLs4TdBLBcxnTfCjv38Wwo2LG4NVUoHVveh5qFlBYLgtnbbuTMPEZEz0OOnjaCbb6lp0jNIkCcsnkZ2yEtMq1q+Z7LLVPOC80Vnl5y36GnUgPN0+OvmC7J7X6xV3N0uZsK2fyVTxp91uo1gsSkHlfD4/FKbB7HadxMJ5xTlis9kk9pOF5AeDgRgjoVBIipDrxDftxuV8N1lNzulxscDjRMc/mXFRjFONxWKSCex2u4cMR62j9eaqj2ul4039CAyvPf19fpZt52q1mtTRo8Go17LpJaFYsYsXsZFbATWr/0ftC6O+f1Gg5LTE3PfNfUvPUav902pcrGIlrfAHcQq/Q915HthhnJyZdmUtMpfLJUyKrumkH4L+AQ5bWZHpu379OiqVChqNBrxeL6rVKorFIgKBAK5fv47FxUXpcappdavNPJFI4P3330e73UYgEJD4Qa1UtDWpm3ef54Pi+bTrgJXndbye/jytUSul+DLXbsXSEPAMBgOhqMvlshTppLuL71PJnuX4OZ1ORCIRsdhoVZH1tNls4sLRoEVvSNxQ+b4uO6I3GpPi125OLnJuzCx/0Wq1pAeoGc/IYzGjstlsvnDc1FlKKBTCwsKClELSchLr32qTMcGFw+GQEk26rM55io7pYW9bnR3LrhadTgfPnz/HgwcP4PV6xQ29vLyMubk5eL1e6YtLd2yj0cAvfvEL1Go1fP311/jiiy/QbDaHEtEIdiuVCrLZrMTPaSBM/cb1ZLMdMMmpVOpI6SaGwfAaTCOajCH/B4bDZHZ3d6UenZWMCoVgvLbuhx4KhaQTRDqdRjAYRCgUkvJYDEmhi5zeAq4ZzdZzfXKOsHYmcFgPVINcMoCMS+z3+1hbW0M+n8fa2ho+/PBDlMtlCRd666238P7770svX6tWfyZgYnjSebvrtMFqBUiPW0cms8W/eVyrChCXSdjxwu/3I5FIwOVyoVarYXd3d8gY0+5+M25xMDgMXWI/ap3MQm8P1xNLcFHPs40iQy8u0qgFzhjwtVotoTY5MCYa1rEYnHTcgAeDAfx+vwyYrsLPuKhMJoOlpaUhRlErKf7NBxKJRJDJZGRTJiPFqtva1adblJ0nMjfdsLTy2+32UACo/px2Lep6TDzGcVag1TXov/Wz0Qxep9MRtzJrIhIYaEV0lkqDC0u7dGl185zswGHG43GcCK7NDYV/W1mCHA/diYOLnSU4OD5kpAkQTQDJMkVkiCZBbLaDbHVmoLIsCN97GdcfYB0bQ8PLBJXnJQSbPp8PS0tL+N73vjfU1WJvbw/Pnz9HsVjEgwcP8OjRI7kvt9uNt956C3fu3MHS0hLefPNNJJNJeDweuFwufP311/h//+//4euvv0Yul8P+/v7Q2PG+7fbDLMLBYDDUMYgbk6k/WfAbwFDpqnK5jG63OxSjZOoMPa8pTMYqFAqSyDZOTCAUDocxPz+PQCCAhYUFhEIhadHlcDiGdDS9PZpNJOBjcXlzHZrMHmOyNPuigTFd8qFQCKlUCs1mEx999BG++OILPHz4EH//93+PYrEonYoYPxkIBI60qxslOhHkvIGR6VmwGiO+/iL/WzGml0m4LlkflWwyO5JoJhnAEODTP3p+Op1O+P3+oTh2zQZrVp/H9vv90j5Rr+eLMGqBcwB8VHrcLKwmlv7NjUQzLLS0WX6A7goqaO0atnJ7mm4ak3YlmNLJDlqB8PpMF8hZLQhzEfMeTCZJK3ANXqwmE6/9RSaa+Uw0QNGbBbt9aNeJ6doZdV2nKVYUO8V8VhpIm1l9wCHLbFq/+rv62MBhrJ9mi7VrjvNUf4bHp0vaTIy4aCH7xFiXUUyHfu249WAF/qxCE85LCAyuXbuGeDwuiRMEAXa7XcqIeL1e3L17V2rGcSNYXl7G7OwsYrEYBoOBlI4qlUpYXV2VIulut1sMzmAwCJfLhdnZWVy7dg2BQEAqA5DdIoNkuhnNTZ2vc7Ph90wmWesvbkJ6zrH003HjRWDF/5nQkkwmsby8LAW7yWgQgJEA0MBEZ6pzzLVhZJ5X3y+AIUCrr4e/XS4XCoWCVGd48OABnj59iu3tbfE6MXSBz9vKUNH/63mr44JHMaJnJQxvOsl5R61XK+EezPI1l00GgwFqtRqy2azEVrpcLmSzWZTLZVlf9AiNA+uaPOFYW60BsnqMm2UJOBZB52un1b3mZeTMAB9LpwDA7OwsIpEIyuUyKpXKEGNmBW4IFpmxyyzBcDgsbkRm67Iun86MMZWBdo3oOA6yeQDELeB2u+Vz+iFbsWkM7D8LwGe6bAmcyFxxfHhu3qOVdcfvj1Ji5mf0psCNwVS0PF+/30exWJRgaF0nkHFJ+trOSvT1mQk7fNY6XpSsilbaenyYtGOGIvB9AiBdSohsAsfAZrMJY8FCtgSRunYWFQ/d4ZPC8AGQtl7hcFhA63GGg2kgmO9pBp9gRrPp5ymcn9FoFB988AHu3LkjHQZstsOSID6fD/F4HP1+H6+99pq4Iak/GM5AJi6Xy+FnP/sZfvWrX6FcLuP58+dSn5TdhG7duoVYLIZkMonZ2dkjpZi4mehN10rX8DXGEWommVn8/Jw2Ygj4uE4Jvsb10uVnCCjp6mKW8RtvvIEf//jHsNvtqFarMk7sYEM3qcfjEfaUnSJ8Pp8UiGYMtRUjaRpp2t1t5Rp2Op34wx/+gP/5P/8n9vf3sbW1hUKhIPsI12k8Hpd5rs/HeWLqRgJqlgcza3ietfT7fTG2dYKc1mNWxuooMQ0Ihh1cJEB5Wen3+9je3sbnn38uFRAcDocw7EwSY69g7v/m3gccZuoTRHINmDVfGd9bqVTw7Nkz7OzsSMmeZrOJlZUV6R525QAfF6BZdBY4qrRMkKaVHQeXxwAOFCCbzjMzy3QR8bvj2CV9Hm74esFqxWge46wp73FMyiiG77jFflIxWU3zGPp8g8FgqKipvo5xQdbnJbxGDfb0IrUaO77H8kGM1dD3bhXXZ84VWn0EgSaoNM83aVXteT+6cLYV8zzqu+OAoRXzZLJX56EUNeBOJpOYm5uTBA2+z+QIloyJxWIADl15g8FAmCmtFyqVCnZ3d4X9ZqwiAc7i4iISiQTi8bi0R6NhQqNOj6HJ0PG3nldkGTRTpeeuHl8aYgR8/B6ZZivXk9VaoQFD70s8HpfxASCsHvUEXbDMZGfJG/PcPPYokGs1X/Ta5rMbDAYoFAp4+vSpJMowfpJjphl2PVb6Hkddw6skubyq6HPr6zSfz3FijrM2xs6btTwtaTabQkY0Gg3Y7XaUy2UBYNrwHid6fukyZOYeq5Oq6vU6KpUKCoUCstmsJAgxa/zKAT7Wz+v1eojFYggEAkMxJhygfr8/NPimS4sLioOtFZxmjqg0gEO3BnA4kavVKvL5PNxuN4LBoFD4jBPRD86c4KT8gUO0z+s+i2KbVsCBCtlut4sCrdVqwvTxvvV48Vgvew2jACOvh5Z1qVSCzWYTK+lVwObLis6a1fEYwMFc3N/fR6/Xk7R4bjB6rHkcfd362etMPCuXEpkYssQA5BwcK55Dz2MChnA4jHw+P1EMn67DR4AMnCy77ziGDzg0tBhbw5p0LGR71u4kMk2xWAxzc3O4du3a0LXyOZoWv9UmoUF+v9/Hj3/8Y9y6dUsSN/r9PjKZDGZnZ+H1epFIJITR5dqmbtJuXApdh9rg08BQgzQCUQIsYLhdI6+XtVKZgOJ0OnH79m1873vfw+bmJj799FPxpvAadLkKHtfv9yMQCKBWq2FlZQV2+2GPdJ2lrr01DNFhWzVdhF/HzOq5YhoIdKXyHqgf6cr7+OOPsbm5iadPn2Jrawv1eh29Xk/WowmGWdS6UqkMlc+w2hN0KBGv4yw3ctOAGgwGwi5a1Qw8qe61IhRI2Oj9xeoaJlX6/YNalTqunfO91WrB5/NhMBgMsXfa+AfGZ+7q8BweWydf9XoHdTa3trZkHZTLZSmldOUAH8sP9PsH3TdIeXNTNAv4asvMBGs6K1RvyFSuJqPEGBCtFPb395HNZkWhUNHzfx6DLhDN/tEC5N8EhbynswJ8JjvGc1OJs1gpFQ03mpO43V7kWka9zvNVKhUAh27x47572qItbe2e1YCP7cr4vEy3jXYVARiy5Mgs6/etmELtVtGGCDd0kxXWgI+GCOfjpAiviy4RUwmOYhTGKTT9PbrfWbCbGZwELWcN+Nxut4BMdspgvSwCUYYu8HlRv2iLnuEdml2bnZ3Fn/7pnw7pMJZ8Ag7nULVaRblcht1ul6xC/R0NRliFQHeKsNlsAmK4JunepMuP61XPLereXq835JK+ceMGer0evF4vvvzyyyHAB+CIvmM4g9/vR6PRwOrq6lDhZP1DQJtIJLCwsCDzy+v1ynrhOUzm12Q1uR5ZvYBZkKxNuL29jb/927/Fhx9+OPT8zNqDejy63S7q9bq4o03DRH9Wg76LiOHj8yORYsW+vwzw432Rkb3IVmCvItVqFdVqFcBRwMaMbZNgsgJ8WseZBoCOUyfp5HQ6ZW3u7Oxgd3dXjn/R43imSRu6ofRgcBgk3Ov1pKZVt9sVxKvrVek2TqablaIRugZIPL9elBpEUcgQcqHTIqZlx2Mwpo8gSmf2nNci18CEysWM8eNvK3p+3HFP8po+FseBz4Z0OTejUS6YsxQrkKzHS1vz5hzSr+mUeatrNpUowZwGcicB23rzMq3ySbKguUbM8jNaRs0hq8+NmgdcX3QL0kI/ayFgKJfL+PrrrwVosixKKBQSq51AjuBUxwXz2ZtJYaZ3Qm/OBFvValXinUulkmSa83M6/pShE9r1y2xS1rYjcNZGNeekqRf0cRiP2mg0JC7MfF6M8SOwZbxcJpORfsg0DjTg498cO5a7MfvAmtenDTcrho8AfDAYoFQqYTAYYGNjA0+fPsXe3p7EDupjnlRGfVavA5PpO2s9Z44P40jNc7+IDhmlr0eB2IsGLS8j43S5iR/Meai9Elrva2benKPHnfui5MwAHztpEAgABwHg6XQaNptNWIN6vY79/X10Oh3pbKEVVrPZHHJJAMOB+TpWhQ+FzJf+LK11un0Hg8N2VuyvxyBeskFkHsPhMBKJxMGA/f9pW5vNdmYuXSvRsVS1Wk3iEKzAsA4wNgEN7918bZxoa4ZjTHaj2+1ie3sbHo8HhUJBWBnNAJpMxWkLnz1dbbTgdeFaHWNoxjbxGLwnAGKsaLaZ59Cgn5sZN00qXtNaNjddzl/Nxk4a2ONmGgqFpLbiyz5DKytZ3zefWTwex/Xr15HP51EsFo+wS6ctLHRcrVbx3/7bf0MgEBAgp+vGxeNxzM/PD42HdoPy85rho1CX0Diq1+viOqSe5NopFotoNBpSDJifI9NCY1T/0G21vLwsXY0++OADpNNpiRkCMJQdy/HncTn3m80mtre3sba2hv39/SMMayAQwM2bNxEMBpFKpSRzme5pMrSa1eOx6bJnyAPDBPieuVa4RsiiagKBBjozeyuVCj777DNks1l8/vnn+M1vfiNZmlrM+WeKyViP05XUH2TZzjtpYzA47N7QbDZfWceac4q1Jy+yM8SryigjFTj03OkEDNaO1WNJna+PQX3Fuc31fh6u/VeRM03a0O5RbpKMs2BGGZm9fr9/5AHQKtSDx01Suzl1tqN2/+qHzdpOZr0/InRaSjoBgYBPp73rzV53ADlr0ZaItvD1+y8DFqzYKBOw6NdNho8MLTcjKwBzHpNfn0+PlQZ3vA5tOGgFz/nA/63OMcoSNH9bjSl/j/vOJAE+YFgpvgybfVKmk/fOmMGTlAc5DSEz0263hVH0+XwIBoPweDwol8sIhUKoVquiv5rN5lAfbhqO7EZiGgraxUr3LWvl0dhk3bvt7W1UKhVpJcnromE5avOlccUx5eeZLGHOdc5dHeLAuEm6whh3qMXlciEcDosLfHZ2Fh6PB9FoVIAcDWLqWu2xYSY6X9MMHq/dBC7aM2O+pw1LunHX1tbw5MkTtFqtkc99nE4aNWdNXXkRDJ+pc0YxfKO+O0qsvsu5YxIa56XTX1VOqkv1nmGlg/VrVtjBiuGb1PE5U4aPcSmM3WCmiraMdCYaQVan05EsKp/Ph1AoBOCo2xIY3jAI3Aj4IpGIxIlwQVar1aH6S/w8XTaDwWE/R8a0ENTwPHSV0PVzVoBPT0KXyzW0oTCVXANR7f62opVN1o/fGwX69N/m/wBkvKvVKux2uzCrZBzYbYL/nyWYMZlE/cOgeQDigjPjMvUc5L2ZvWP1Jm4yVjQoaPnpOpLaKDGfEy1CFumcpMLLwGFrNa4hDfhfVkzlqV+PxWJYXl6Gz+fDw4cPX+naX1boJqWXIJ/PI5fLYWdnR9g/unS5Jun21iyw1lE0DHVHBv2bTBw9DSyJoUtUjQqXAA7mPws67+/vo9FoIBKJiBeCYs5bgnjeS6fTEXcogakWt9uNZDKJRCKBubk5zM3NwePxSCcNtpzjNWl9SsbYSteMM5QI3HQMJUHl+vo6nj9/jv39ffz617/G1tYWNjc3Xyj209QXVglgmmQgCcFzmK0/z0v6/b6UlSHDZwVYjluvpscCODCEarWalNGZVAAzTsbdN3MLSqWSxLiOAn0mKQAMF2jWBtR5EUAvK2eatFEul2WzC4VCqFQqQsuzQjoHyGazDcX9MfZicXERMzMzQ2COm7V2SeiHQeAYDAZx7949hMNhcYeur6+jUqlINXuen5s/NziPxyMV45nlNRgMxOVjsx0mT5ylS5f3xeuia6NSqYjrWX/OykIeZR1bLWIrBsq0WjQoYvYRAKnZpF1Emok9K8CnrWwT9JFdoWLU3VV04Dbvjc9SzzH+mEHveozI/vB/bgZWMabaOKGBwyrufMaTIrwvuvtOg40cZVzYbDbE43Hcvn1bkqouQvhMbDYbyuXy0HPjdVJGgddRMmr9nYQBPu64e3t7yGazsNvt+PDDDy1Z+nHCTct0q2rxeDxIp9OYmZnB/Pw8FhYWBPDRre3xeDAYDIZienkcre9HjYveQLl+6d6lIRmPx+F0OvHxxx/jpz/9KbLZLH73u99hZ2dnbLzuuLEw750Mqb4mq/V/Xu3HzDEj4Ov1ekOZn6YHwpy/o46tAU+/35cWpowRtbqGyyBWz6XX6wkOYLatFYgDhjO09X5mFs/X+9CkAuQzd+ma7gRgeJFwE6Ybgu5BghmCOb7f6XSGyl6QUdIPQLM3zWZTWDEWaSaA0tQ0/9fWnVk7ajAYDPW11KzSaYoGGXoi6mQRHStn/nDi6f/N4x+3cI9TlHpxmK4NM1buPCa/FUugx4DPV5fU0BvqcddpMqHmuUYdQ4+Dfk0/G/2cXwVInYVwHfNvE6Qct4mMEiuWeTAYSBIAA/8vUl4EcE2CjAJppymdTgeFQmGIAWdNVLq5zX7IBGnAIZtuhuLoOaDH28pV1mw2sb6+jm63i/X1dezt7SGfz790GR9zEzfBj74O03C76PWqs4TpTTHDj0Zdn5VxwRg2nRio59OrsvvnLccBfHO8TKOcnzup0fVHy/DRBeF2uwWUaWuDLpNgMChV5j/++GN8/vnnsNlswiqkUimhrFdWVlAoFBCJRBCPx4dYP92YOBgMyqT9+uuvh5C4zr6jy9FmO6i0TiDKa2MA9tbWFra2tobQP90sZ9VpgwpOt7ai5dxsNlEoFCQ7lq4Ut9stbiIu3FFKadTCtbJgCWx1PCWz9ZrNpjwHXVWcykZnyJ7Hxklwx2tiuYpoNAqbzTYUx0mXHe/btPCtjq3H5STXwk3E3EiA4U2Mm6LOEr5ooZGVz+fh9XpHWq6jGC8rEM7jmswYPxsKhbC4uIh2uy2uwalMjuzv7+MXv/iFxO2Fw2FEo1Hcu3cP0WgU8Xhc+gjH43FpGh8KhYYyd60YU52UohPxCPzZqWlzcxP/8A//gI2NDaytreHZs2dDMZhaTqpz6NKmu15XiwBw5Hq4toFDsuC8hfsVAEmw4JqhHmRiDPcqvjcYDIZi7HVoU7vdHiqlNslJCC8rvGerOHidAEg5zpDQz+Kkre4uQs5sd+EA6IBSPWno0tWLrNFoYHt7Gw6HA9FoFF6vVzblXq+HYrGIbDYrQJLWIpkBPiwu3sHgoMK6ySboDBsqF927kSidwI9BzA6HQ5i1s47Z4HH15GNwMjOodHC4ybhxwunaaaOUkgkIR7GCWnQ2rGbU+LytLPfzENMtwefLmB9dq8y07PQxrO7ZFHNemX+PYgEuC8PHtcDivFab9KjvHfcZ83N6HbM470UzfFM5Ks1mE5ubmwAglRYI7BKJhMQ0MzzBbrdLGRddmNZKbDabGIjaq0FvDmMay+UyPvvsMzx69AilUknCc15FtD7T69Bk9rTRr2N6L0p0rCE9avoaeU9WJby0R8YMh+E+d1XKsliJ1b6k9bCO7bZ6xub3tddvUuXM6YTB4KCwaC6XE9aJgIyDWiwWARwERxcKBQQCAczPz0vzbdaGyufz2Nvbk2BLl8slwJCVs4HDxUuXnmYUeH4NjghQbLaD0i0zMzNoNBrY2NgQP3+xWITL5UK9Xpfg5rOa+FRyBLF6YjHYlFl9ZKxoaes2Rnqimsyd1QQ2WRj+cCz1c6PybrfbQ0HMOobP4/EcuY6zFl6HmWDBOcD4PTOrToNiK9eSOS4a7JsAURscDNJnCRud3aWPrwP/LxrwOZ1OhMNh6aPLUho6DINynCIcxfDxNb358L1JA75TsRYmQxUKBTx+/BhbW1sIhUIyX6LRqJRfYfmaQCAwlNyhk5W0ocr1xQS+TqeDnZ0d7O3tYXd3V2KxT6tkCPcYtsQql8ti6Gt9QEDAa+v1etjd3T2X0lxWXhmCNbJyHo9nSK9pNo8ND1jcnSXPqM/52+l0WibsXGUxSQ7Ttavdu1bv0zj+oy3LQun1Dhpn7+7uDmW1AQcZX/3+QaPxVquFnZ0dqZvEtH+WQahWq9jZ2cH6+roAOp/Ph1u3biGZTCIYDAIYrqemAyj5cAhEzI2dFesDgQASiQT29vbwi1/8AisrK/IZNkb2er1nWpuI90YLWW+etHA5TlSWbMLOUgoEpJoppJgAxQQ3elz0Z1gyw24/KKDaaFfo8fgAAQAASURBVDQkRhI4ZG07nY48a7rQz3rz1sCOgNMsFkywbxa2tSpaqjP0NCjhRqTnlQkuvV4vYrEYer0etra2UK1WJQvc4Tho6M4Njt8jgGaiy0UK689xDbKhfa1WG3ILadFzxSqIfRSAsxrbKdi7HMLOSawZOIoV0x0IYrGYVF6Ix+PweDyYmZmRgtE0KKlHisUinj17hlqthvX1dWxubgrAeRmQZWXQUf/XajUpkeP1elEqlVCpVOR8mrnpdrsol8totVrY2Ni4EFZHA+RmsylVMer1ugBl1nLk2iITS49ao9GAy+WSECe6sQuFgiXg4/qcVEDzImJ6Ikydo8kS7U3keybjywSji+yVe5ycS8AQC1MCEBBj0uYEYoFAQAokmwVMtXVFt6pm7MYxC3oT0ZPWCujwelwul2zS2i1oVZvoNMWcSPraaK0RoDJWjQCG12aCmFFuXSvQZwI+vs7z0PVixkBo5kvfg3kvZyGj6HRuHsxiM60xziXze/reNCjheIwDfJVKRdxPOzs7qFQqMpfcbjdmZmbETaWv+TyA8YtKp9NBvV6XIuhkKUfFYQFH2WSKueasgB2NMmal+3w+YaynMnmiGe9Roms5ApAuHgzN4RrVlQgYI10qlZDL5VCr1VAsFqWN42ldN4X6k8RCv98Xlk9nCuvPs+pEpVI5N8A3zuvA50BjVSf3aWOMa4mdVajPdMiQNsDMc04qmHkZMcNKrPSRxh2jwoD02J93eZ4XkXNl+BjkS7Tc7XalkOdgMMD9+/fhcrkQCAQwMzMjPRYJvuLxuLQmYgPkVCqFubk52Rh0IUpNu2rgNG7zIJCy2Wy4e/cuMpmM9InsdruSEVar1c5skWuwpINHmTGsWzEBBy7EjY0N+Hw+sez0/fOY+reWUWBPl1Rg6RptgbdaLbEgAcjY9/v9oU2byvSsYrJYlqBWq0mPRD12Gxsb+Oijj1CtVrG+vo5SqTQUDK4Dmkexnnqs9G+KHleyiIPBQJgKlhmJRqP4L//lv+Ddd9+VmBtdwuUsy9ecVBi/arPZsLq6ik8++UQSnMh0M8aOLnLtotMsPnB0Tlll7nMtERjH43HcuHED5XIZ+/v72NzcnOjYmKmMFj5zGlYOhwP5fB47OztiSOswGxpk/B47k+h6gi8rVuC03+9LXVOGDnk8niH3nFWGOnVdoVB4qezgl7l2k13ToRCmka33PjKsuqME6z9aMeu8v8tag+8kol21wOhYTF2eiySA/h6fgU52mVRddS4xfM1mU1yhwHCnAx3Um06nxR3ISvd0cdEVFgqFpPYQwWEkEoHdfljMVpcGMWOi9EPTbkCKzm5NpVIIh8MSg1Kv1yU79qxpWzNGAICUimm320OtdFwuF0qlEvL5vATZE/SYlsioSW3F6mn3JS1AxnzQAuez4DEIDnnddBGcZWwaFZjOBtdjWCwW8fjxY+RyOXz++efY3d0VFyqAoe+d1TMlSEqn0/jggw+GWENd+28UO3aeQkaD8bVbW1tDSU3sdUtAz/c4njq7UR9TMw+jxlmHa8TjcaTTackEn1QlOpXxotfVaYC2VxWruUe2q1arYWdn5wKu6mQyim3TgM30qOgwJ5ItXIcsV8bP6eOaHpyrJCYRxNesxEwCtPos96CzqtxxWnLmgI/U+N7ensSbBQKBoZgCdrSYm5sT5sDv90uQbzAYhMvlwmuvvYbr168L4PF4PLh27ZoAPm6W2t1GxsSKwbJ64NxwaN2RceACYBJHrVY7s4eqG6IDkOvJ5/NDPXS1qzWfzwslrxmUkyRrmKzVKOCnWTGyqWQTOT6sik93PGNiyuXymVvBOhaO5R/4ui6nwHvk9YwrxXJaQveKjj0iu0Fmr9vtWnYiOG/p9/vSmuvp06cS1sDrIuPNcApuJj6fDy6XC5lMRlptBYPBoeLTbrdbAvitanzxubD00N7e3lB3nqlMZSrjhYaVw+FAMBgcqlNL4AIMJ4EQ3LEfMnvZX1Xh3lWpVMT7QiN2MBgMldGy8hTqTF5+h3rzj5rh6/V6yGazaDabCIfD4tbSrB03h3Q6PVRcGDhkPRwOB27evCmDCxwyEVaMgfmQNJjRFLb5Wf7PwH8en+63fD6Pra0tqdB9FtJqtVAsFgWQsL7e1tYW6vU6qtXq0Ln7/T42Njawvb0t93iaoo+nARPPTbaVmW7sGgEAm5ub0h90XG/LVxFt1RJ4EPzyOZslZDTYOA9rjKV0WByWSoWKhmEIvPaLFMYnAcBHH32Ezz777IhhZK4XPgOfz4c333wT165dQzQaxbVr1+DxeCRRJZVKIR6PIxgMStC/Fsan1mo1bG1tYXV19Uq7laYyldMQMzyC+1c0GgVwaKBrV7QJ+LrdLrxeL5LJpFTBuKrCULNsNotEIiHjpL1/OvmIr3G8dKk0JuAxoZIkCMXcMy9SzsWlSyDANHDG4dFtxBgNtj/TQfHAIXNjul97vd5Qz0uTbtUPzSruwQw01//z2NyIGUPC6z/LIHLt+uK19fvDfThNISN5kWKCaVqTTCY5K6uHllWtVpNnZLfbh1hIxhyajNJ5CceGTB9b8vEaG42GxNRMghtFZ/8x4eo4sdkOMpT39vakhiYLhhPw2WwH7coY6sFsd/NZUD9c1cKvU5nKaQq9K9xbzXajVq5f7cGhLqIOmmSW6jSE+3u5XIbX65WYZe5VmgnVY2hWKaDni3uQ9sBNopwL4KvVami1WlhdXcVvf/tbhEKhExfo1TFhZGh0HJDpFgLG1/wiC2TFWOj/tSXk8/ng9/tRqVTw/PlzbG1tjQRepyFcvNwgGTBP68FkRS5KTACulQcBcaPRkL6/ZzVe5XIZH3/8MVZWVrCzs4N8Pi+hBK1WC19++SU++eQTWeD6+s9aTGa53W5jfX0dDx48kGvodrt4+vQptra2pL7YJMlJLVQad8+ePcPe3p6Eb+gOC3Nzc3jy5AkikchQFiTny40bN3Dz5k1sbW0JKzypynMqU5kUyeVy+Oyzz4bKqwBHy4cwqQqA7MsEhw6HA1tbW1LzcH9//yJv6UylXq/js88+w5MnT5BOpzE/Pw+XyyUhNjoESIeLmUkwugnCl19+iSdPnqDZbKJer8u5JslYPRfAR2Yqm83iyZMn8Pv9MpBkzrTbFMCQa9fMlKLbB8CRh0EhQtdsHpMI6DYb5wbWEolEkEgk0Gg0kM1mpbL7WT1IUvLaSuM4vWy/yNMWzaJaucsJ7shmneXG3Wg08OzZM1FkBMjZbBb1eh3Pnj3D8+fPh8bNfM7avWElxz3rcbGR+v9ut4tcLjdUT7LdbuOrr77CV199hXK5PBGB7S8rHHfWiTRlfn4ewMGaYkFzHftZr9cRDoelsPgkzPWpTGXSpVqtYm1tDcFgENFoFIFAYOh9xjV7PJ4jFQpIntjtdilsXSwWUa1WL+JWzkVoeANAoVBAtVqVeraMT9Yt9IgzdIKa0+mU8Cv2d15dXZ0ogGfKuUZlEvSRuSJbxxpHdG8Bw02z+ZoGE9wIrGqXaUbCTNBgpum4WmHm8YjY6Zo+6wB/XY5gY2NDNj6Cp1qtdmbnPqmYAKnf7yObzeKrr74SIAMcxPCRlTwrho/u7n6/j729PTx58gT9fh+lUgntdhulUmlkdpvVa1YM8XGivzvuO2z4zuQMJmusr6+jWCyeKRM6CdJoNLC5uYlCoYBarSb3y/X85MkTOJ1OSfSZylSmcrwQ8LEaADPmgcOQKP6QcCmVSiiXy0MhU6VSCaVSCdVq9cxiridNWq2WxCy2221JONQt9DR+oNfN4XBIGTTWcJx0sQ1OsKN9/vnnWFlZwV/91V+90smYpWeV0mxmiprvj/v/RcQK0B0nRPs6SeSshZOMloQGr6ThJ03YF1mPL+OwyP6dlXC8WAMPOMzWnqTCvTabDX6/H263e+h1Hec4rmzJZRcGOTPuxaxv5na7pT1UtVqdmOc2lalMsmj2bhwJouP6dDiUmcxm1V3kqgqZO/49rrKFHkdg2Kula6qep/zt3/4tlpeX8cYbbxz72XNl+Pr9/okDwP/YhQtNxwJMurxIgP9pi67BOMlzjDGtk8DSXoQwWHqUtFqtiYthnMpUJl0mIWnvsgqJnD8Gufgqr1OZylSmMpWpTGUqUzlTmQK+qUxlKlOZylSmMpUrLhNfSjsejyOZTA5lyOiYP93vlWVevF4vXC6XJILQv67bybB/4h+ra20qU5nKVKZy9cVmsyESiSAYDA7V4GO9Pd2OcypXWyYa8Nntdty/fx8/+MEPpJ0TS24wuJSZve12G/V6HQ6HA7Ozs4hGo2i326hUKuh2u0OZR0yj/vrrr/HkyZMrGyB/1jJJFcSnMpWpTOWPWXRlCy1OpxO3bt3C7du3pTvEYDDAxsaGdG/a29ub6NjnqZyOTDTgs9kOGrXPzs7C5/NJUUldm49Zs61WC7VaDU6nE4uLi0gkEmg2myiVSuh0OvD7/VLjzGazoV6vD6WuTwVHUtB15pbOEuZnpzKVqUxlKhcvVo0D6BXzer0Ih8OIx+NSWoSF6SuVylBZFmBqwF9lmWjABxyUcWCpBr/fPwTSWHKDbl32J43H4wgEAmi1WnC73ZKBo0GMWQ7ij1lYYdzr9UoPVK/Xi1AohF6vh+fPn0sR43w+f6XLhkxlKlOZymUTs+MRACwuLuK73/0uQqGQsHqVSgWbm5vodDpYWFjABx98gP39fQwGA2SzWSnur+usTnX91ZGJB3xshUbA5/V6hyqFE7jxM3a7XWL4Wq0WXC6X1MchM8guHNOJfCAulwuBQADhcBj37t3D4uIiotEoMpkM2u02fvWrX+HRo0fI5/Mol8tXujDwVKYylalcRjH3s/n5efzlX/4l4vE4Hj58iGfPnqFcLuPrr79Gs9nE7du38d5772Frawurq6tS1oWdfl6mAP1UJlsmEvCRdmZPQF0ostvtwm63iwWiewSyBQo7VbAFG5M0dGu1brcrffN0C7bLKDabDdFoFMFgUO7PbrdLJwOdvKLHKxAIwOVyIRQKIRaLCcvHBc/x7nQ68Hq9iEQimJ+fR7vdHtl656pahTabDeFwGOFwWOYncFiok2yznpfm9yna2CAzzTpa+jicw1e9GPNUpjKVlxfd3Ud7uGKxGOr1Oux2O/b397G7u4t8Po9Wq4V2u418Po+1tTWUy2XEYjEAB/qoUChMdc0VlYkEfA6HA8FgEF6vV8ALcGB5tNvtIYAXDofh9XrhdDqlewGbGTcaDRSLRQEtLpcLwWAQc3NzqNVqWF1dhdfrlbZllxX0ud1uvPnmm3j99dcRjUaxtLQEl8uFr7/+Go8fP0a73Ua5XEan04HH44HH40EwGMQ3vvENxONxpFIpzM/Po1qt4he/+AVWVlZQrVZRKBQAAIlEAolEAvPz83j33XfR7Xbxm9/8Bp9//vnIazquxdhlE4fDgddeew1vv/02XC7X0JzzeDzodruoVCpot9vCNusxIEhk3ClDEZh8VCwW5fvsMJHL5ZDP59HpdFAul8UCv6qgeipTmcqLCVt9seWo1+vFd77zHdy/fx82mw3Pnj1Du93GRx99hK+++grtdhu1Wg2DwQAfffQRNjc3kUwm8a1vfQuRSAQ//elPsba2JkbpNFb7aslEAj6bzQa32w232z1UioWbJFk8k+Uj08LSK2zrxe9x0/X5fBgMBtK27LICPd67y+VCIpHAtWvXkEgkcPfuXXg8HgEPzWZTYhm9Xq+wdTdu3EAqlUI6ncbCwgLy+Tx+9atfoVqtIpfLYXNzE3a7HaFQCB6PB+FwGPPz8+j1egiFQjLefwyJHGRRr127BrfbDb/fL3OJRkOhUECr1RKmVAM+HYZAg4QMaq/Xg9/vR6lUQqvVgtfrFSu8Xq9bMoZTmcpUpqLLrAAHADCZTOL69esolUrY2NhApVJBNpvF3t7e0HfJ9gFAOBzG3NyceDAoU6PyaslEAj6n04lQKIRgMCixeNqlxRItNpsNrVbrSCIGN1MGoJLhI5vCnqs+nw/hcFg24MsG/Obm5vDWW28hFovhzTffxK1btxAIBBAIBOB0OrG0tASv1ysNnjVDxEbatVoNH330Ef7+7/8elUoFH3/8saTqV6tVAS/xeByxWAyzs7MYDAZYWlqSRI5sNot2u31lA30Jqufm5vDmm29iMBgI4+b3+xEIBMSA6Ha7cDgcYqgw65m9LtlajXWvaIxEIhGpicUwhKdPn+L58+coFovSoFsnHl2lMZ7KVKbyYsJYdAI+XVWBHoKHDx+iXC4jl8sd+T6TGWu1GqrVKqrVKgaDgewfujbfVOdcDZlYwBeJRBCJROB2u9FsNmG328XtGg6HxX3LSdtut9FsNoUBtNlsAvg6nY4wJmze7nK54Pf7EYlE4HQ6UalUJrJR+zhra2FhAf/pP/0nzM7OIplMIhqNCpNks9mwvLyM5eVl6RXY7/fRarXkZ3d3F9VqFf/6r/+Kn/zkJ6jX6wKKNXNHwJdKpbCwsCDHLpVK2N/fR6lUGupFeJWUgmZRFxYW8M4776Ber+PRo0eoVCrw+/1iFUejUQCHDbXJVHPO+f1+AECxWESj0RDAx/MAh0xgr9dDJBKBx+PBzs4OVldXpcfsVWZSpzKVqRwvmuQwX2OIUi6Xw4MHD1AoFCzJjHa7LV6gcrmMUCiEfr+PYDAIh8Mh3oepkXl1ZCIBHzdZnYkL4Ij70Oy6Ybp3GefHzZfHYOwUcBh0f1nEbrcjFovB7/djZmZGYh3tdrtkIHOREviSNaLbMZ/Po9lsIpvNolarYX9/H/V6Xeh9nsftdkscJUvicKyDwSDS6bQwWpTLrhBMxabZUHOeWNUmNOek7ghDlloXDie4ZsIRn5v+3ijm+arFSU5lKlM5XqwAGMuXMZSESWAEbeOEhme324Xb7UY0GoXb7Ua9Xh8qacbfU51zeWViAR83WQDodDrCWnFj1BXD+/0+HA6HMCj6s3Tn8nP9fl/cvL1eb2ijnUQxF5ff78cPf/hDvPnmm0gmk0gkEnC73ULLa6BHobXXaDTwySef4MMPPxRGtNfroVAoHGE3/X4/4vE4otEoFhcXce3aNTgcDtTrdQDAtWvXkE6n8fDhQ3z++ecolUpnPxgXIE6nE4FAQNoS1et1NJtNccV2Oh3JhONc0tnkAARwk9VjXKU2PMgEMpO81+uhUqlIMse0FM5UpjIVignAAoEAUqkUgsEg7HY7qtWq1NMzv6c7ctAAbTQaqNVqSCaTePfdd1EoFKTKg04408bsVC6fTCTgA4aZNzJ0mgExrRztytQbL12/ZGi4yTJmTx/nMgg7ibz++usSX2e329FqtdBsNuX+9dg0Gg3k83lUq1WsrKzgk08+OTZmUQOdUCgkRZhp8YVCISQSCezt7Qkwv4rCeE+XywUAYkBoZanBncngMZZP93xmeIEGfLo6PnAIEpvN5qXOIJ/KVKZyumK1Z7ECRSAQkPAns5ST2UFJeyNYAsrn88Hn8wljOOp8U7mcMpE7tXYn0lWp3V5k6sx6Zozf83q94n4sFApHXGj6u5dtMjscDsnIbTabEntYqVTQaDTgdDrh9/tht9tRr9fRaDRQKpXw1VdfoVAoYHV1VRQBwYUuacOxTiaT+MY3voFYLIZIJCLjxO/wf5fLhXA4jGg0ikajIW7hqxjzUa1Wsbu7K6weC3tTqDw16NYMMt9jZjjnLABxi2sQ2Wq1ZExNwDe1tKcylT9esQJ84XBYEi5M/WDlBuZvhvq4XC4kk0mk02kMBgPZE6iT9HemcjllYgEfM3EdDscRNooATscTcFLabDZJxiDI0xm6uvYZcPkC4B0OBzKZDG7fvo2trS1sbm5KzbxKpQKfz4dEIgGHw4G9vT0puPkv//Iv2Nvbk64jAASIsI0aAHHzzs3N4Z133kEkEkEikQBwWEuO3wUOXJHxeBzNZhO5XG4oDpDfuexKgvfAMgfMtGXdK4pO1iCjzIxdbZC43e4jylcbIbS2m80marWauIL1eaYylan8cYqO86VuYmJdIBCA2+0+Evurv6Nj4oGDkJ9sNoter4dkMomFhQXZg4FpG9KrJBMJ+ICjFgkBHX9r8MaspGazCZfLhVgsNlSMkvF6VsHyPNekySigZNLydE83m02Jr2u1WlJypVgsolwuC1NEBlC7xtmSDjiwFO12Ozwej9D7dEuabCiBTSAQQCgUsuy8cZUUBWtBAofg14oh1mNljpc5HjpBg5/RNSXNuTqVqUxlKsDwvkVDkvrbKnZv1D7HGL5qtYp+vy/F+XWSmlVi2lQun0ws4KNwA+z3+xLozrZgZP8cDgfW1tbw4MEDuN1u/Mf/+B+RSCTQarVQKpVQrVYl2J4AiUH3k5y0oReWTlShm5Zu3EajgWw2i+3tbYTDYSkj8uTJE3z55ZdSmsbn8yGdTiOTyQwdu1qtolgswmazIRQKweVyIR6PIxwOSy1EXo8uH2K32xGJRPD6669Lfb7d3d1L7W40y+Bo4EYA5nQ6JYmDnWA0AOTYaKPjuHNSufLZMfuZ7PRlHc+pTGUqpy8m6HK73YhEIggEAmO/Y/XdZrOJ58+fw+fz4Y033kAymZQC8lbF9XVM8lQul0w84KMMBoctqfhb09PZbBZfffUVPB4PfvCDH0iqebPZFHaLwe+6b+mkgj0r4bV2u125J94L2bzBYIBEIgGXy4VcLoeNjQ0BDC6XC5FIBLOzs5LUwvFjli07cbCDBPsNUzTgozt4ZmYGHo8Hjx8/vrLWn+mCZVatyX7qskA6KPq4WFF+lz2ktaEzTdiYylSmMk7YQ52F9q0SNkZJt9uV3ujtdhuBQAB+v38o0dEqHvAi9PxV3V/OSyYS8GlXLAAJctfZuboMBn90ZqTP55PWacwiNd24BIyXYQKxHVosFpMgW8bn1Wo1eDweLCwsSI9Xm82GeDyO5eVlAAdj6HA4pJUagYXdbsfMzAwWFxcxGAxkkc/Ozsq4WaXjE4i4XC6k02n4/X4Eg8ELGZvTEisLmIwb2/zxh2yrTmLR/wMYml9WblqrOnxapi7dqUxlKicRhtb4/X5J5DN1NsHbOOn1ehKHPTMzg6WlJZRKJeRyuaGqFhdBkow7J3Wy0+mE1+sdCrdh6BHJEpYg032IzS5dPBZwECLV6XSkZJa+DpIvVvGSDJdiAqnORdBkAPHOeTR+mFjAx8B14CCujO5X/TB0QVxd/8zj8UiKusfjkXIl5sap4wEncUPV1xQIBLCwsIBoNIp2u42trS1sbGxgZWUFrVYLCwsLWFpakrIfvV4P8/PziMVi4oJkeRH2KY7FYkLbc/wqlQparZYUWtblRrQCoQXp9Xpx48YNtNtt/PrXv740bClgnUlsXj/jGcl8Mk6GCkbHy3BeapCm6z2ylhVjSRl7CUAMFC1mghGvdWrlTmUqf9xirn+Px4NYLAafzyfJXlpvaINTex3M47ECwWAwwPLysoQGFYvFCwF8JzmPzWaTqh5+vx+pVEo8MPxh5YparYZKpTIUu06vn97/eKzBYIB8Po9arSbdubSRX6vV0Ol0hgpUExja7XZEo1EkEgn0+31UKhVpj8lnwfPSW3fWen0iAR9wlB3RE9QqKJ4Pjahcs39WFPSkA5NRCzoajcJmsw2V66C71u/3D00+9gsm42kCProAdEcSAPK+Zp1MoKzd6W63W4CRx+ORGMmrAErI3FnFenIcrDq1mOyxVrQaOGslbJVZN4r5m8rVFh3XqefL9NkPi9vthsfjGdoLWOT8j0nIYmlv1suEgrD+JysQsJOTPs+k7J2azfP7/QLS2JKVwhqFLD/GKgn0cLGGrW7wABzeK++fBr3Wxx6PB+FwWLyRZtw3PV/0UOpQNJIzfM3j8Qz1Vz+TMTuTo76isJRKu90WdxdwaKWYXQ0GgwHq9Try+Ty8Xi9arZYoTIIcAr5RwfWTMolHybVr1/CXf/mXkg27ubmJer2OeDwOAEilUojH46jX66jX6xL0z8ndbDbRarUwMzODTCYji4VdHZhYwL6wHGMAYoVo5kq7Isl4sVxMtVrF1tbWpVS6VgwfW8uxvEqv1xNmTrvQtaXIRWzOM+CQuXO73QiHwwCASqWCUqkkYQiDwQB+vx/JZBIOhwO7u7syntNN/+oLQzho3NGIok6cysHavHv3Lr75zW8K8LPb7fj888/xm9/8Zqi/94vIqKx7AEOG7kWKSWCwX7fb7Rb9RLcuYB2WY8XyVatV7OzsYDAYIBQKwW63Y3t7e0h/XdR+ac77ubk5/Mmf/AlCoRA8Ho/s9T6fDzabDaVSCaVSSeLMSXD4fL4hT9j6+jqePn0qJbCKxSKcTifK5TLcbjeuX7+OZDKJSqWCnZ2dIdfr7OwsPvjgAwQCAXH9skRZu91GNBpFPB6XlnUej0fCsZrNJnZ3d6VHOhm/7e1tFIvFMxnDiQR8AIY2Tc3wmRsowUqr1UK1Wh2K/dN10PQCuWxgDwASiQTeeustBAIBfPzxx9jZ2QEAKbQZCoXEkuC9alctF7/T6UQ0Gj3CHDFGgUwghQpOF94049B4rEgkgkwmg0KhgGw2O/GAb9zGqcfQ5XINJa9o4EsrUYcMmPGno5hBh8Mh9Q/ZCgmA1JN0u90IhUJotVqWLOJUrq7w2VM/MSxFb+J/7GKz2TA7O4t3330XPp9PKjfU63VpH/kyx7QCfFx/Wr9OktCNSGPR9LKMilc3/2dlC+0VYhkvYLI8Y9FoFG+++aYkKXKfp5t2a2sLwEGb0NnZWQQCASSTSaRSKfR6PZTLZWHYNjY2pKsR28nZ7XYEAgFEo1HcuHEDu7u7yOVyQ4AvEongnXfeQSqVEsBYrVbx7Nkz1Go1RCIRyZ6+ceMGwuEwtra28Pz5c3EHcx9xu93odDooFot/XIBPWyMaWHAj1ZQngyw5uU0LxvyujmXQNfombQGbUqvVsLm5CZ/PJxPP5XLB6/Wi1+thd3dXQIM5KYFDa46dIgaDgZSp4Y/L5cLs7KyAR9YzbLfb6HQ6Q4tdxyGQUQ0EApifn4fL5cLKysp5D9GpiKnQGf8YCoWEDaVC1TS8DogeFcBLUKjBNt3y+/v7WF9fRzQaRTgcljqIsVgM7Xb7QtvXWcU6TuX0hXFFNOAikYgYHM1mU0AfA89pVFx1Meef0+lEOBwW5mZmZkbivAeDAVKpFN58801UKhVsbGwM9fk2AYvVnLZivrReuOh1wL2LfwPDoLTRaKBcLqNer49lI62M0FarhXK5LHHLjFnmZ6x03FmJVRIdcFghgXHPZDWZPMFqHOyEpBMtdMvKzc1NlMtlrK+vY3t7G+12G8lkEvF4HB6PR4pYx2Kxoe5UdBH7/X6k02kBxtwLBoMB0um0rFcSUvl8Ho1GA4VCAfV6HbVaDaVSCfl8HqFQSLxFdE3zWk9zvk0k4AMwBER0YCPLqxCAkLomPWu6HQn2+BmdmcPXLoPVvL+/j08++QRutxvPnj3D/v4+gsGgZNyur6+jVqsBwBGXNel+h8OBnZ0dlEolNBoNbG9vo1ariWUYDAbxzjvvYH5+HktLS0in03C73cIw6QwjHRfJINhEIoF33nkHz549w2effXaRw/VSYqXM3W43kskkkskkfD6fGBhULnqRm99n+ADBms4Y43dqtRparRaePHmCBw8eYHFxEXNzc+ICuH79uhRVvQgxs4snfZ1cZnE4HIjFYggEAojFYpibm5O6m2yfuLu7K5vyHwPg0wYT9bnP58PS0hJisRju37+P+/fvo9/viz77xje+gVQqhf39ffyf//N/hgAfjwmMBnuj3psU0fqGosepVCphe3tb2ooCozP+zTp7lUoFm5ubCIfDWF5eRjgcHmL4ut3umTOc47xuZN38fj+i0ShCoRACgQByuRxKpRKazSby+Ty63S78fr8kH/Ka2+221J399NNPsbW1hdXVVXz11Vfw+/340z/9U9y4cUPW32AwwNraGnK5nCTfeTweXL9+HQsLC4jH44jFYtIVjGAwGo2i3+9jd3cXOzs7aLfbsj+TBaxWq9jY2MDW1hbm5uaQTCbFmGH2r36GpyETCfg0uzeKsePrunuGyQxaBcofd7xJlU6ng2q1CpfLJQkbpID7/T4ajQYqlYqAA12oeTA4yKYlW0frL5fLoVqtykTlYvH5fEilUgCGg4HN2DRguKUd3VDBYHCodt9lFi5wAmZtRJiB0ZxHVplsVglH/I6uDanZZlp7fJ4nFQJNxm+a6wLAUPbvpM/940Qn1Ji/tS7gGE+qcK0xsJxMBnAQeN7r9WRjYVedVz2fVWmKSZ8PLLwfCoXg8/mE4WHmPDMp+/3+WEPpOOCiWTNzvQKHtUgp5xnfZ143mSdWshgVwwcc3rcVsOp0Omg0GkNsE2PgR537vEXH8PN6SOrwh+ucDB9F61sCL7pinU6nJGFEIhFEo1HxfJHhdbvdGAwGCAQCQ2CY+oUlbXh9en3pxA7uzfqaCOwYh8h99TRlIgEf6Vi6HAlaTNaOdCk3SgoDJ5ltpAGdXsRkDS9DIHS320W1WhXlxti8arU6pNz0xGIgq8fjQTKZhNfrFdre7XYLgKSLqNls4uHDh3j+/DkGgwHeeOMNRKNRRKNRpFIpVKtV6cfL50AXk81mQzAYRCQSQa1Wk+zgl80WO28xlT83D8Z9pNNpyUDmnOM85FzUiSzmQmeMjSlU1EtLS5KJzQ3L7XZL9tlJAB9dgg6HA8vLy3j77bfh8XiEIaLF2G63sbe3J5awriNljoOZaTwpopOyZmZmEI1GEQgEkEql4PF4xPqnEdNoNPDll1/i0aNHF3of41yKjKGle4evJZNJeDwetNttLCwsoNFo4A9/+APK5fJL3Qs3erfbLSEc9XodpVJJiri/bMLDaYsGUbxXj8eD2dlZqRW6vb09ZJjVajXYbDbLdWOCnlFis9mk0xCBj91uRy6XQzabhdPpRDweF53KdV4oFCSh62XkpBu8ee1k5Lgn0kVpxl4DGAKxptuULs7BYICZmRncvHkTn3zyyZHvmOc/CWt6UjnuGAR3tVoNe3t74sLmc08kEhJTrpMQdVw1QRVLt1FfExPs7++jXC6j3+8LQ8y90Ol0YnFxETMzMwAO4q9LpRK++uorPHr0CF6vF5lMRowR9rbXpWKcTqeUaWHi3t7eHhwOB6LRKGZnZ7Gzs4NCoXCqRupEAj66W+mL1yVDdEyfBnzaOmU2mwYmVoCP/v7L4NLlxkwAy3uv1+tyP2QBGBem08+5IdbrdZTLZdjtdgkKr9fr4t5+/vw5ut0u5ubmUK/XEQwGkUwmEYlE4HK5pB6TTlAgUxAKhRAOh7G3tzfUlmfSxSpWhKwnsyWj0SgADBkYmumzAnzAoaK1UuQatGQyGYndowuCFudJGT4+a4/Hg2vXruGHP/whgsGg9FIuFovY2NgQ1wJDJDhfRsXMTOIz5Jxj4e+5uTkkEgncvHlTYknT6TTK5TLW1tZQLpdRLpfx+PHjC7sfM/DdatNk7CaZKW5c0WhU5lKj0cD6+vr/j73/6o0sy7LD8XXDe8uIoEmSSWZWZlaWt93T5tet0cw0hIEAQZAECHqS+yb6FgPoTQ+CoAeNJGimZzSup3vUtlyWS0/PYHjvI/4P/K/NfQ9vMB2TGVkVGwgEGebGveees8/aa7tnOg8aFNlsFtlsVoLEaQDPCuADTo+T1+vFwsKCVBsoFosIBAISdgFAjNpHrZuzgF8oFEI6nZZseo/Hg+FwiGKxCI/Hg2QyiWg0KvqQAf9PA/geBfQexbCFQiGsrKwIQC6VSqc+owHfNLcpQVQsFkMymcT6+jqSyeQpwKfHzfRkPC/QR6He7Xa7qFQqYsz2+33R12w1F41GZZ8k+KXxrdeaJoFo9HQ6HdHnLpdLQqgCgQAymQySySTa7bY0P/jyyy/xi1/8ApFIBK+++iri8TjW1takLiBr4YZCIUSjUTQaDRwcHAAASqUSdnZ24HK5cOnSJVy6dMlWZu68ZGYBH1knbkROlhoBh1mc1tyITepdH2OWCy9r8Xq9iEajwvABJ+5GvYFMJhMp4MvrpuXJIFECPE4+LpLhcChxEG63G/V6HR6PB4PBAMVi0Vbfj4CTv0uanJ+JRqNIp9NoNpuSdv6yCBd3NBpFIpGQTFw9r8z4Gf2YNt9M0a5WgnOzHmIsFkMsFpO4FV2QfNoxx+OxVN7nnBkMBhLv0u12EYlEsLS0JFl5ZGn5oMXL39NlDHTWt1mex+lcnK6Zf3P8OGa61hUVsVM4Bi1mv9+Pa9euCVNFhZxIJBAIBCRwehZclWYohCnj8VgYe2bNE0wwlpLMczabxfr6Onq9nnRWMD0dpvAYwWAQkUhEnum2M8sHzYpwfuRyOWSzWSwtLWFjYwOLi4uSVECPB8Eq5+2jwMe0OeFyuZBKpXDlyhUEAgGkUinxWLDvOIEEa7+xzMbTyDSj8FHv89rNtef0fcDe4cEEbpPJSYwbEwCZxep0rMdZT+e97mgUhcNhRCIRxGIxKcsyGAyk6YJONqEhrDtn0J3baDTgdruRy+Xg8/nkHvZ6PQmboKeMGIRsIUEmdR+ZOXraqFuPjo6EIWYyBrEH92QaKHTLnxXH+Cwyk4BvPB6j2+3KwJolVDhYAISZ0lm69KWTfXJSYvpzZBJnWchasOMDWTpdYxCwg8B6vY5Go4F2u43bt29jPB5LdpBlHWfV0gpKJpMYDAbY3t5GpVJBIBDAzs6OlFfp9/vIZDK4fv06IpGIAB9S61wAwPH9W1tbg8vlwvb29qmq77MgZy0ml+u4tdzly5eRyWQQDAZlLnKuaGuZC5ShB3rBmtdtWuqco8wIY6X7wWAg7Gq/38fi4qIoB/ZMNkXHsni9XmQyGaTTaVFYXAt03TBhpFqt2gAfE3g8Ho/8Ht0cOruMbDJjy5hVSuH6MoGOLj7K8aK7g4rc5/OJy0y3Q9IAmb2eNzc3kc1mTzHPZF34m7MwB8/aAAeDAfb395HP5yVoPBKJYGVlBW63G4FAANFoFJPJBG+99ZYkJnz55ZdoNBqyUTuJy+US1xXntt/vRzweF2BM426WAB/Xld/vx/e//33843/8j5FKpXDjxg1Eo1FUKhWUSiVhPhnL3Gg0RC85yaNAiNvtxo0bN/CTn/wE0WgUKysr8Pl8+Ku/+isBRcViEbVaDZubm7hy5Qo6nQ729/dRLBaf6lofdU7m+1wvZKqAs7Nnneaeycg1Gg10Oh1JhGBGKT/jdPyLNKRcLpeEGLG7VDQaFYOH5WSorxkSFg6HBaQzM3Z/fx87OzuIx+N47733MBqNcHR0hJ2dHQF8lmUhkUggFAphOBzi8uXLcLlcaLfb6HQ6sgd7PB5cvXoVgUAAnU4HhUIB1WoV7XYb+/v7iMVieOONNyQxg4b3wcEB7t+/j2AwKHX6GG//rQF83AyIhDXz4PQ5p+B57fadRoc7fXdWhVYEXXxkP8x+t/yMBiC0JAiOe72eLAw+x2IxDAYDBINBmeh09ZVKJUkIGQwGtqQQHV9Dlk+DSV2lfdZkGttCFoTMmnbP6tAB7aIza0U6zbmz3EcM1tdzn5s8mZhIJPLI2obmOfLYBH0MMo7FYuj3+6cYPuCYNYjFYvB6vahUKiiXy+h2uzI36vU6gsEghsMhut0uhsMhwuEwUqnUKcDH+EANgLVxRsDHivm02hl3ysxoAjcN+JiBt7KygnQ6jX6/j0ajYTsvflfHM71I0UarORfICgAQEOb1eiVudDKZSIkJ3r/xeCwGmDlOWgiqvV6vrE0CBbNV4CwAPm188DwzmQzW19cRi8WQSqUQCoXEG6GTqMzEJ72unFhn83c5VvF4HLlcDtFoFEtLSzIn4/E4JpMJjo6OxKBhLPST1svk71H0HHdi9bQOIdigPuY8eZL9zJwnZPBZqJ8G3YsW6lg9H2jA0MDmHNaeAR2bTG8XSxzxwVJYZIbr9bp0a+EY06DQ9Q21oQ8ckzLpdBqNRgOVSsUWMmNZluQV0PikLiQzqVvF6us9z1j4mQV8nHiTycSWlq8zQjWjp4EHExDICjht7PweN4ZZBX1kN7vdLg4PD2UDpAuj2+2eCmqmUuCE1uNBOpsT0O12o9VqodlsYjAYYGdnB9VqFZlMRhibTz75BLdv38bW1haKxaJYRDdu3ECr1RJLWruU19fXEY/HUa1WhV2cNTFd4QSxrL20vLws2VKdTscWK0oxM7H42rQQAidXMHCSQNTtdqVTCl2WwWAQ7733HtbW1vDb3/4WpVLJkbng3B+NRvj666/xX//rf7X1lE6n09jc3JR2P6FQSMAY45O45lqtligyZl4zjqzZbEpZELKRPE+94bEUgcmIErToTDYdOM3X2N2ElrmOn6ShMxwO8fDhQ2xvb+Po6Ahff/21MJDMwGNg99bW1nNjI8ysYPM9Mphk6IfDoTCnTtJut3F4eIhqtQqfz4dSqYRMJoNr165JM3bGEr377rtSW4zrnG5eDea4qcTjcengQhdSr9fDwsKC3NvzFG0QPY6Lz+VyIZPJIJFIIJfL4e2330YymZT4TADY39+HZZ10IdGAjkZDMpnEH/7hH+LGjRsoFArY3t6WOqXTmNB0Oo033ngDqVQKN2/elH7jZIv5+tHREfb29tDtdrGzsyMZ4OVy+YnGJpFI4JVXXkEoFBLWiGw6y2HxQaOI68DtdotR3Ww28ctf/hKDweCJ3MpOcaXcG8vlsnT4YV9Zp0xuzf6dFW7yLBKPx7G0tIRgMIhcLod4PI5Go4E/+7M/E9Y6nU6L+53EBxm3ra0ttNttMXIZ08u4y0qlIqETTOZYWFiQfbRer+PBgwdot9uIRqP4//6//w/vvPMO+v0+qtUqBoMBUqkUotEoOp0OEomEMH28H9RDwHFnrEAggCtXrgiYbDQaMsYulwvpdBrvv/8+2u02tra2pAPKswDwmQR8gL3Thp6MHAyfz2crt6CtOrreuCmak1l/TvejnTXRm2K/30ehUJD2MEzQaLVatmvXSRvmdRL4ESRyY2o0GqjX6+JSajQauHbtmnSBODg4wCeffIJ4PI79/X2kUimpVeRkofr9fly6dAnpdBp3796dCcbASZzOS8djLC4uAoDN+DABm1bIHPNpbPS0cyCgIcPDTSwUCqHf7yMYDOLNN99Ep9NBsVjEb37zm6nXxHO9f/8+isWisHp+vx+XL1/Gd7/7Xanvt7i4KABMu0D0dTBehqyf3+8Xt67O6DTnAQBb9xvONwYvE1hrMELDxmQxGT9Ig0/Hqg2HQxwdHaFer+PevXv4m7/5G+n0Qtc3x/5xwMbTiI7dnAb4yLCy8j5dRtMAH9cprft8Pi+1MSORCADIvVlZWREDcDw+LtF0eHiIbrcrAJPnoFkDzUZ3u10kk0lhxM57fHRQ/OMAvnQ6jbW1Ndy4cQP/8l/+SywuLqLT6QjzxNpmun8sjxuJRJBKpTAcDuH3+1Gv13H79m243W5Uq1WJ33KSZDKJDz/8UGqR0ujl/I3H47h27RpCoRB+8YtfoNfr4eDgQDbjJ51fsVgMb775JlKpFEqlEqrVqhhTjC/jNcZiMfh8PgEtLpdLClC322189NFH6Pf7j+1SNmOPgZOsfLo+C4UCer0egsGgjVxxAn0Evc9jjcViMVy5ckUSHgKBALa3t6Wjyttvv23bs2gsxmIxtFot7OzsSEMCJnk0m03xQtDIsSxLvCpM+Nje3kaz2USlUsHt27cRjUbx4YcfYnNzU2Lih8Mh4vG4eD4ymQz6/T6++uorVCoVTCYTqRVIhpjESCAQwO7uLqrVqi33IJVKIZ1OC0tYLBafOedgJgHfNFetCdg4Mc30cw349Gd1jI+etLMI9ihc8JpFIvWsM2T1eHFRavbJpJD1Nevv0FXG7CVu/LTeWMqFcTKMtWSMGCcrF5xOKpkl0UqO48okCSZIsP6STh7S33Vy35quXB1aYLprgJM2alp43wjeeW5URqyJeNbCJ8jnGuBGsLW1JWVKCoUCYrEY1tbWhJ0zs4tpsbMeFc9Jgy6T0eTfnBecn3R9ObkPdUwof5Mggewr55PH45FyK7yuRqOBnZ0d1Go1iU286Jp7Z+kSup5YDoLsjMfjEZDv9F2CXYLsdrttYwppbACwAROCdO3yI+DT4+5kxDzPcTlL17J3dDAYxCuvvILLly9jaWlJyk8R7FG3szwVz1vHeRNYsq+q7vMdDAZRLBZt4Jz3Z21tTYrgkk3U65yxVmw/5jSGTyI0pNjdIZFISOJOu90W5lwz3jqLmsx4PB6XOOxXXnlF9K4eE3ON6vAC0yWezWaRTCYRCASQzWZx48YNMew0k00jlWCP+oprnEYqQeqTZn/TGCUI8/v9YhQOh0Ok02mMx2PphDQYDKT3LztY1Ot1KbPCa9dzgzFz2ljX7Hc4HBaQSJ3CigccE64tM1lUJ7NxLQYCAem9S7ax3+/LOg0Gg3LPvV4v+v0+kskkUqmUsI1Pq9tmFvBxYmj60ozrm0wmaLfbEmjKhdftduU1bbFwI9FB47MsvPmc7LTKK5UKOp0OgsGgWKC6nqAOpKf7h8C42+1K0gbdTHzPsk5qGJE2Hw6HMmHZnYO9Au/cuSObsN/vlwnMMiOWdRzwOouADzi9ucViMVy/fl3cB1yUZLM0M8INQm84FA30dMwHNwgNznWxTcaK8L6wryK7brhcxyU6yJBpBWQK3XqWZclzuVzG1taWMGperxdvvvkm/t2/+3dYXV21gTPOIdbCdLlcqNVqEhdK0eDBidmiK4ifoRLTWc90DdO10Wq1bEkGGvCyoftvfvMb/M//+T+lQTrLYTCG7yLBHtfXtBhNeiRY1DWdTgM4ducNh0Ps7+/jwYMHjqEl4/FY3NN+vx97e3tIJpO4du0a1tbWpJC6TrZgnTGtO831TqOPxrLe8J/FADbXgR4f/ZqTrK6u4o/+6I+QyWTwxhtv4MqVK+LaPjg4sBlLGqhxc9X9rsmOJZNJ+Hw+XLp0CR988AGGw6G4dBnSAxzHX3GjzWQyYuzpighut1tczZzbzyrhcBhXrlwRoysYDAqbw1ZfmUxG4s94Tlw37AdLZtayLHzwwQcYj8eimzWbbt4ry7JEz1BXMU47nU4jGAzi+9//Pt58801JmGDtQc4jMux6j2XIyMOHD/HTn/4UR0dHwoQ+rjCm1+/3I5VKYWFhAS6XC19//TUODg6QyWTw/e9/H6FQSOJT8/k8PvroI6kwYbK/LB3mdruxvLwssY9cBxqksR4qs+Kr1Sq2t7cBAF9++SUAYGFhATdu3JASLRpzaA8Jdbff70cul8OlS5dQrVZRKBTwxRdf2Oo6Li4uYnFxUTKOR6ORzGcmaX3jAB8n9lkMH3BShFG73DhpTbCoFdoss3oUy7LEKtDVzmltaGWnN13NKhGU6DE1Nye+RyBAK4SNuDULw2SCer2OarUq/V5pefJ+0UJ5US3BHkdMwEdXbiKREIBNdo/KgGNmZo7zeCaTYc47vqc3LoJBjp12f+mizboLg96snITrQEu32z3VZioWi0l9Rx3Lx3MjW84Nh9fNuUeQqDdhPR4aEGurV7POmkUle61j/TiPNWjpdDp4+PChJBQ9S7Hb8xC9Bk3Qw3tHIMaNWZf5IBBzAo3aDdVqtYS9IUNhzkX+bzLMBNp6bnKO6UDy5yHmNZnrBjjejNfW1rC0tITNzU1sbm4in89LHcVp18hjEJRx3gIQjwWfJ5PjPqe6GDl/mxszQQLjk/X5knFjFvuzCpm7SCSCdDotvbPj8TgGgwEWFxexvLwMALY4Yt63YrFoO0eXyyUdSFhHlIywLt2ix1/HDDqVfQqHw1haWpL6h+FwWM6h3+9jb28P5XJZxt2yLDFMvV4vfvOb36Ddbp+qKPEo4Xonm03yggXkU6kUMpmMuF6JF46OjlAsFuUamajEtce9jl4skkXaW6YNehIn/X4ffr9f3N3b29uYTCa4fv26LdZY7xE6iYQxhSRx2La0VqsJECXoN93KrMXJuPunlZkFfFR++kbqDYSgrtVqSWFZbqIMxNSxRXRPcaPh78yyeDweLC4u2rpk8BpowVcqFViWJaVTdGILwRiDvhkTxAmo3ZZmqQzGAWmlSBkMBvj8888xHA6xurqKH/zgB0gkErJIdFkSuqQfVSPsRYgJiEKhEJaWlpBMJuH1etFsNm0uJB2vx81bM15Oz+aGbIretPh5KiXeT8Zlud1uYSFrtRru3LlzCsA9qeTzefz5n/85lpaW8Pbbb+ONN944VQZFP+uQCK4lHZDPazKBmpORpY0v/q1dj+YmNR6PJRmhUqmg2WxK/AxgB5gXweDreXDlyhXpgRyNRoWh1b2XWbft3r17cr7A8Xq6dOmSxOlOa5vGWDSCE7rNuKad2DnOPeqKfr+PSqWCfD4vJYCYXMMkkmepm6m9L6ZoAyEWi0mvbvYP3tjYwNraGmKxGOr1uiTgTCYTYaQ5HzjH+BrnoBnPTFcw1zPnLM9Tzy/qVu0J4ubK+8jz18lJzyL1eh2fffYZSqUSXnvtNdng6bYtl8uy/+k6mHpuk8UjADUzTDVocbon7XYbe3t7aLfbtljbxcVFKUdC/Z3P523s/Hh8XDuSjCJb/5Ew6Pf7ODw8xM7OjiQlPEp0Fu7y8rJ0zGA8sMt1XCeVXovhcCiF1kOhEIrFIiqVioSPaE8Fqx1wvgwGA+RyOSwuLmI8Pq5IQa9hsViU6yKgW1hYkHq1tVoNjUZDYu0ymQxWVlZknQ+HQywuLsoc0h4Lhp9MJsdJRslkEouLiwJugRODzGTgn0VmFvBRievJBsC2sKmoTMBHN5wGidxA+Td/Z5ZBn9frlZpZjOPhhCfLQ4VAYKLddUwT56bEDYosCS1fZobpCdVqtaQ9j7kBDQYDfPrpp/j666/x7rvv4t1335X2MVSGVMj8TR3H9SJFxy5pRsqyjkvJXLp0SaxsZi6T7ue1cTy1C8kUzi3OVyfApwGKfo2uXR1bSQUej8dx8+ZNFAoFHBwcTG0MP03M8T88PMT/+l//SwqYfve737WVU+ExqRzNe6iZAhPg6mtzijE1x4HPZCXIUmhDjtl1ZPbIbvA4BJh6439ec47gNBwO46233sKHH34oBa3Z4osB4QTnn332Ge7cuYPxeCxrMpvNinu23W6fCfi+/PJLqcfH+K/V1VX4/f5TSTeTyUnXF7oy6/U6tra2cPv2bYkH6na7Nl34rJvKtPGmMcOWbq+99pq0BMtmsxJK4Xa7kc/n8fDhQ1lvZD10TLCea07nPZlMpP2cjskimOD5UMxsX80i8j3Oz2kG3JNKrVbDJ598IvXgrl69Kqw6y3gwg1S3CiX4zGQyUreSFQXy+bxNL1iWJYW2ne5Vs9nEvXv3BBADx8z/4uKidGdiNYtCoXCKWKC7mBngurQIEwHJhj2OMJYxHA5jbW0NCwsLtsxzspiM0xsMBrh58yZeffVVJJNJ8WRwzrRaLcnS5fyjPiGL+sMf/hAABIh9+eWX+Oqrr9DtdiUZw+12Y2FhAaPRCHfu3MH29jbK5bIYL9/73vdw6dIlDAYDlEolKaacSqUE03B+bW9vCwBmDCf1BhNkqCs16HtWzDKTgE+LplmdXJdm4WW+p9kbp41WP140CDlLeC06WFMHuNPq42Zsuhn1xGGMhg7k1xNfuw0tyxIQaTJzWgFy7LU7UjM+tPb0Zj9LYlmWMEl049IKc8o60y5N7S4H7G3UzE3JyYVlihm+YIYfULlGIhFb2ZRnEVqjLpcLhUIBe3t7st7ocnC6Ln1Oeiz1+WsmULuxH7Xe+D6BNXtV9vt9iWcbDocIBAK2NaC/+7zWtAYZoVAIyWRSSt+QLWL8sI4lpDsxnU5jcXFRDDfLsqRF12AwQCKRsLlw9Xjxb8Y81ut1cQU7MaWmYVypVFCpVFCr1cTI09UMznN86P4ky8RkG3ZFWFpaEvcgu30whETHaXOtmSw5QZ4GfJxn5vrSBhfHiWBFM8L6PYrJXlPXOlWAeBrh+gsEAhiNRjIGuv6aBnmmwcXz1clV1Nn6Xjido3aPU0dzDtHQMhkmp/usM4n50HGG5ncfJdwn6FWhK9g06Lin0SW9tbUl8e2apaXhRaOZY83faDQaODo6gmVZ4tXhvaBRRmaY+x3HuNvtShs7DWzJ6PPa+Tv8Hs+L8aThcFhIKh17z/hc3fnkGwv4GOeiKWtuchx0Vs0mrUwQ0m63be5LPbl5E89jw3weohVRrVZDPp9HsVjE9vY2hsOhMHOcOABsSpFjRVcSWVC2cGG7KRZT5sQMhUIIh8PI5XLSzYOZcaYQ5PF4jKGiYqeyiEQiWF5elr6Bswb4PB4PVlZWkMlksLa2JtY7wwW0ZUVmVceVcMMFTlyUHH+9OVERauZAAzoNWPg6Nxb9/UQigZWVFdlQTTnLpeYkDPzudrv4h3/4B/R6PSwtLeFHP/oRstmstOQDThIu9LxzYjr0dTltwHoT1Rs7lSrdKOFwGOFwGA8ePMDPfvYzG/hst9tYW1sTdxR7PJub4XkLmeBAIIDl5WW8+eabiEajAuLy+Tx+/etfo9vtIp1OI5FISM9aj8eDTCaD1157TdYmk6LYGoq9jw8ODnD37l3ZfPSGORqNcHh4CMuypO8mGT56MchgsQ5YpVLBb37zG+Tzean1+DwMMMZJBYNB6RSSzWZx6dIl6XfLrjI6zpfuSCYYuVzHJUd0LCcAm9eG+4OO9TTvFR86jpYgxOPxSIamjmHUOpV7BMdfd/MAIOP+tOPY7/dRKpVEz8RiMbmP9L7wXmnQQz2v3fLaJUuDjUBatwaj6LhSFo5mNi3XOfcM3VeWsaMcY/5GMBiUwu7ValW6vzxpKA/XBRM3Ge8WCATQ6/WQz+eFuWXx7Z/+9Kf4P//n/8h5WJYl+5KulXfp0iXEYjFx97Oczd27d8Ug8fl84qqlZ4f7JduuMeO3Wq3io48+gs/nw/b2Nn75y1+Kp4jVLoLBIFqtFr744guUy2VUKhUcHR2Jx4KAlWziwsICcrkcDg4OcOvWLdTrdTx8+BCHh4fidXpamVnAZ26WpltMB41qRA+cWGF6Uuq/dYzZLIoGfLw+xhTw2lg0l4pI9w7ULBuVEWNCyOaZbjngePNncLPb7RYw57RgtfXH39AxfPyM1+uVTKNZBNh0D6TTacneogVJ1lRvMhpQc6MxGRiTETTnrhPTZzIMJsPHeev3+xGNRuUeOcmTAB3tKtrf3xel+oMf/EAMLfP6NYibto5MZnIaE6hfM5kIgod2u43t7W30ej0xKAaDgXQDKRQKT3XtTyNkWdl/emVlReoTjsdjtFotaSdIHRSNRpHL5QTAZjIZW0V/jhUBPtsucRN2clW2221xJ2lXEe8VQQF/p1qtIp/PS7P28xwPLQRwgUAAyWQSiUQCly5dkuLCi4uLiEQitrhhAjB6GzgXCFoJBnXCGWBn27XO1OdmrmeOExlWfQ3mujPnrdZ5Oj78WVzgBP50M+qsWq5N85q4J9JoJBvMmDC6roETUOdkmGlPBfdYGgMEyWaXGn0sngv3HsbMcbx15YgnHZPRaCRjQr0Xi8UkaYEsOGMr9/f3pcwUjQvG2NF4H4/HyGQy8jtkBxm+5PV6ZT2z65QG0KPRSBLESIL0+31hBxlbzCzuRCKBeDwOy7KkAPzh4SEODw+xvb1tm8terxfJZBIABMhOJhMUCgXpdkTD/Fli4WcW8JkbHRUZcEL5spAwExa04mRxYdLipHJZ94qKZhYlHA4jmUwiFApJ2ygGwA6HQ4nR63a7UqyRC5ZsQjgclris8XiMRCKB8XgsmULA6czJUCiEN954A4uLiyiVShJoq5M2zE250+lgb28PlmVJ71ZOfo5/PB6Xv1+0aLBCxioejyOTyUi1e5aXIVCjdcwxpYvBjCvVLky+p8dLbzYaiNOFQ7aQi5oKjfOd7xMEnCe4GY/HqFQq2Nragsfjwfb2tri2Y7GYsLlmjTx9bVo0u+IkJlDmccm6cH6Px8dZd/fv38dgMJCYJTJjpiHxrC62acJewX6/XzIDU6mUxBYdHBwIG0MwQFDW7/cRiURsnRN6vZ4UW2XcjmVZkil+6dIlcfcdHBzIOmebJs36ajcawQINgkajga+//hr1en1qbOCTCBkUlpFIJpO2+DiWaGL9tlAohFQqJS5vbr6mQcO1RqBK1k97YrQrVTN2pvFqGlzalcvvUv/rDHS9pvgdve/wdYIkltrh/H2aOcd7TBCjYxa1XuG9J1DVoIvzJhKJ2AAfvRHaO+Y0NgBkjOm1cHIHO7H1/C4BH4+jPU5PK+z81O/3sbq6Kn1oV1ZWJKSDgMrtPinhwqQplmjSYV/FYtFWiFy3/uQxtAuZ94ddaxYXF6X2Jwu7E7gx9KpareKrr75CIBDA1atXJWzhBz/4AYbDIT7++GOZL0tLS0I00CNZr9exu7uLnZ0dbG9vo1qtSpIa94OnlRe/A08Rba0ynsAEfGS/aE1zUuoEB7JezCACIAGoT2N9XITEYjFcvnwZkUgEV65cQTqdliBtfZ2lUgmlUgn9fl8WXCAQwOrqqjRiZhwNaxgtLS1heXlZFiQtaG4S169fx8LCAn73u9/h17/+Ncrl8qm0f+BEabbbbWk5wwVBS5Fxgaw7pjPiXqTozYX1plZWViRmQrtYtaHA4FoeQ7t6NXgxY4C0S4kWOS1nbn50E3JD1DGX/A6D751iC89jTAqFgrRtu337NkajkcyX4XAobZboggROWBFujsCJsn9c0WwPYyldLpe0/NvZ2cEXX3xh+y2CAjIAwPPN0o1Go9jY2EAoFMLy8rJY43Sl3b17F3t7e5Kl6/V6pQtJq9WS4PFwOIxoNGr7DpvBBwIBLC0tSYmG5eVltNtt/Pa3v7WtKY4xGRUd70VXHgvR0uWkv/ssQiYiFArhxo0beOWVVySulIwsdQ7Bhmb96TUA7Ew39bxmsgmCCUB0TDGNIh2/ZjLt+jd09QANMrmvmASD3muAk3XM+UVdSxboUT2upwkZWF4HjWKG7eikG274+tp0vCQTUMzsbQ2k9dhohpPXbPahdSJaNDCmscrfJ/GgY5yf1pPW6/Vw9+5d7OzswLIsvPPOOwgEAtjc3EQ8Hpc1ABzXtNSGxGg0koQO4gRmDLdaLUSjUdy4cQOpVErc2sBJjV6+xli7brcLn8+H1dVVGRfG6XFMmezWaDTw8OFDIZo2NjaQyWTw3e9+F7lcDv/jf/wPbG9vw+Vy4fd+7/ewtraGfD6PBw8eYDweiw6+e/cu7ty5g2q1agsbeBa9P7OAz0k0I6XdS2Ywq1b2esHr2LLzZkjOU/RC1q5F8zM6wYLWFV8j2PP7/QiFQkIzZ7NZLC0t2UCKWQGcFtDjNM+m8tW13CjcmKmAZsmFrmPEqKjInmmFqt23Wmk+CkzojYT/m+4BM6OSv2luhOa4Pa95qxVZoVAQcEJmwAyp4LPePHl+5jlOO2enjZnxqYwfoutTx6RyXk1LOnjcMdKlPvgdXZaGwuKvLKEQj8dlI+EGRxBAFpii6yey5hozY+mNYELWeDyWMeC9TyQSSKVSAiAnk4mtNpkOUdGMljaYeVyTwTLHSzNvOmREX4vurcwSRuwCwfGkftJz2JwnFCcWXJ+//j5Fh0qYiRf6s/yu1pXaaDBrw5m6V8fW6ocGPs+6HjVbqa9PP7Qe0Pdbl6TRgFUzwOZ+qQGfCWTN0BO6jZ32WPMe6nOclmTyJKKZU8biEVzqWEcCK9bI025wnhP1OD0VXq9XGHkN+Hi+3HcJ6Kj/ObZk/HWogPZg8TeZZ+D3+yXpgp+3LEtq7bXbbYTDYZlvOvxKhzw8q8w04NNoXVsSLHxJpawBkWmZ0NqkO44ZL7MK9oCTfriWZUlRS5aiGI/HYtn7fD6sr6/b2KZYLCZZg1TMbMsyGo2wtraGjY0NTCYTyRrihNdKejw+rvBfrVYdFxAVx2AwkDZDvV7PVn6FGyHT45+F3n+UmG4XLU5KOZVK4cqVKzI++nN6gVO5EBRzfumNV/+u3nz0uVARjcdjW2sgji3Hii5Nj8cjVp0eO5NNex5SLBbxZ3/2Z4jH4/jn//yf44033hA302QykZI1vD5zvHUGo948KE4bNJmFeDyObDaLYrGIX/7yl3jw4AFu3bolim9nZwdHR0dyHMbV8HhaDzxKLMuShALt1isUCtjf37cZOsvLy/jxj3+MeDwuBgJd4JPJBBsbG1hdXZWyLKx9yTi7V155Ra4tl8thd3cXv/rVr7C3t4dSqYStrS3EYjHkcjlks1kBj+FwGO+//z5ee+015PN5fPnll+j3+5LlmslkZOy4dl0ul+i4eDyOt99+W8ApjTKCP70pE+CwNR07l+i5lkgk8O677yKTyeDy5ctYW1uTe26CSZMh0uLk7qM+4bhrF7i5vrnuzmKQqM9cLpetK5GO0dMslwae1H/1et0GXpjUUKlUpCzQs3iKzD1OnzfFLLdDw8Hj8UhJFhopvC5e27SEFv6Ok042gSPjSjk3aGRRd5mgdDI5KY5szp8nHRsCpHK5jO3tbelUk8vlsLe3J+w1O6Bw3up6tRyH8Xgs2e0M3dEt6Nzu4zZqbN/GSghLS0tIpVLiaQGAzc1NXL9+Xa55PB5ja2sLu7u7UsPQ6/Wi3W7j7/7u7xCLxVAsFpHJZPDJJ5+gUqlIdrruYU2AyFI4501OzTTgA+wWJzdE3X2C1pbTdwDYNm69OZ+HZfa8hMqXWTyszUXKmq5pxm0AEAuI1Dqz4Figki3TNjY2cOXKFYxGI8kM0tYP09K5aM32XabiICPEz5kKRFuaz4vhcwIVj2LFgsEgcrncqfpU2vrnXGPMJDdJvVGacT8mW6EZBzPJhZubPn+d4TtNaU9jSs5L2u02bt++DZ/Ph+9///ui0Mne0E1CYGwGv+vrdgJ9TiyMBrvhcBjlchk7Ozv4/PPPcXBwIOP9qELTTzom4XBY2gDyfjCLXQvrxSWTSdu9JzBnQ3cGjVM/jUYjybxLJpNYWlqS4qx0WbJ9GBkAHUxvWSft5NgDttvtSvwcXbfaLceNcjweSzYxXcuME9NxcTqulDFinOsMdqcEg0GsrKxgeXlZit0SCJjJI9qY0eK0Xvk5nZFMfUIwod3DptdgmmHBDT8ajUpxeCcgqseO65RuWs3oMVyIgOE8ytqY61kDEA2e+T6NaK/XK/NOx63r69fAUd8HJ++BNia1Eca9QYeSmAat+TcTSTgPn1b0vahWqwCApaUlpNNpFAoFVKtVNJtNMcR04g3HQANoJlzQ6NbnzPAj1h6s1Wrwer0Si0qwb1mWtHrTFTGazaaEdSSTSQSDQRQKBezu7gqQTKfT2NnZkZqAOqvYsiwBmjqc51sF+HRAMF2VBDQ61dxpQHijtVuOYHFWs0YBSMPpUCiEzc1NpNNp6aVpxkzRvUXln0gkxPqjpdPr9SSegVaLzi7TsRmmNWkKN2sKGT7Lsmx1w0wq/TxcutNAnAkgnM4ZOJ5L8XgcgUAAmUxGWtlolyWNAoK8QCAgHUmcWDYnV7tpqZuuFL7HsdHXZlroery5GZ0nxT9N+Fv37t3DT3/6U8RiMaysrMgGEw6HHznewOnkDr3R6Ovk/CgUCtja2sL+/j4ePnxoK8HwPITAhIXKORd8Pp+t6HY8HrcV8bUsC/V6XcqcsP8qAAmloH4ZDoeSQcnvlstlhEIhyd5lt4lwOGxja4CTmMjJ5Lgt2GAwkPIR4/EYxWLRVkBYzxfgpGcvWRrt3uO6p2tqODzuGU09wU2WUq/XcevWLezv7yOfz+PSpUtieDJkhmuJa8sJ9PO+m4BDZ4Pyu3xmmQv9mg6T0H2Bdeyrec26bquTy5bHK5fLkiyjE6nYAYPlVM6Lbaf+NV3vPHe+TzBFFkvreY69Xld6fPUcMY1IPtNFqhsVcI6QWNDst3l/aSiw0PezZJVSCG6Z4c19b2lpSZJeWJqJLdP4v75/ABCPxxEOh6VQcz6fx+7urhAjoVAI5XJZYk3ZNi6RSGBjY0NiK6mHuVbT6TRee+01ACd6j0kk0WgUmUwGmUxGilezy0qz2RRPE3UP2b/zJkleCsDHopDs4cfChDomQ4tWOkTRVMIAJLNqFrJGnYSuglQqhQ8++AA3btxArVZDoVAQdwLdLo1GAx6PB6+++ipu3rwpIMWyjmsh1et1lMtlfPzxx6jX6ygUChiPx4hGo1heXrb1RdSZoRpYmqJfY10kUuWmu0RncD2NS3caG2Cei9McMIVp92yDk06nxYplprPO4GICQTweh9frtVnz2vLSQEYDNM1uasVgWu8a3PFazYBq/uZwOHzqcgdPIgQDv/nNb3B4eIj19XX8h//wH7C+vm6Lh6XynzZXTDeZvp8cG82afvXVV/jrv/5rFItFfPTRRzg8PHQE1uclzKxzu90CupaWlnDz5k0Mh0NUq1V0Oh1R1PV6Xaz1QqEgCUuMbQMgtbcIwtgyjXXJyEokEglcuXLFxmBFIhGJ32Gcn47BWl9fh2VZAjTo5qY+I9unWb9sNntqQ6bw3ulMxng8jlarBa/Xi/39fVtIR6FQwF//9V/D6/ViY2MD6+vrSCaTePPNN5FIJGQd+P1+qblnuvxMsMH3WFOOzKl2Ubvdbuk1q89bl5tirTWWFuG4t1ot1Go1qX2mC2OTgSLY1cCPvXSHw6GthR/nKpP/zkN4TJ2Ux7Gh/uB5knl0uVwCzHXcKQkSrUe0nqI4udT5rI1VrevMeHKn+zkeH2f87+7uolgsnkuyEGs4RqNRDIfHHaZcLhdeeeUV9Pt97O/v4+DgQEr/eDwe2eu63a5kyycSCels82//7b/Fq6++in/4h3/An//5n2M4HArgY8eNTqeD3d1dbG1t4d1338Xbb7+NeDyOhw8fYn9/X9YgAKysrODmzZtotVq4f/8+Go2GtHFLJBJYX1/H0tISdnZ2pAPPX/3VXyEUCuHmzZv44Q9/KLUMaUSdRWQ8jcwm4vn/i2n9k53TQfROQMDJRcYHLSgz5mCWRLvPyDAx0HQyOXbp8vy1BWW6AJ0SDTjRJpOJxA7we1QoT+Km0HEtTjXDeP+eZ/yeFqeNhM8MmNfMnlOQsuk2MufKWfNFzycN4PSxdfwSjQ6toDUropU2ZRrIPW+ZTI6zsAuFgvSoLJVKkuCjAZ/T+Ti5i/Tr3Jg47waDAQqFAo6OjlAul6UcwvMUbvput1vWmC4xwfImdGXzvAm6zPvDa3G7Tzpg0BVIUOZyucRtTH1Gg0jHmJlB8lzb+vd08g/H1pxvZyVP6PlKQG7Oey1037rdbil6DxyzINrwYVIJx8Jk6/Q65W8xzpCAT+t3fe0aeND4YQ00uusI+IrFovQJflLAp0NVdPyjaZyd1zokeDAZM/O+mTF/BIvaY6OPwc/oZ7Kjpuh5oeeh+eA9mSbapXse40OAzfVCI5jgiO3ydEF8GvKWZYkBFovFkEgkJOGIfXDT6TSGw6G4YlutFrLZLNrtthAsdL+Gw2GJS+/1etL0gd41Hdqkw8lYnoXnrNefNoDJRj4P/T7TgA+A0JvAsf89FApJ4VneWFOoHHw+n2RhUpG02+2p8WazIrlcTuKF1tbWkEqlJFvW7XbjrbfewsLCAu7evYu//du/Rbvdxv7+PizruBbe66+/jkgkIj382FewVqvB5/Phzp07UnMuGo0imUxKU2j2YaxUKsKMminhWsmxrACtYMYIUbnzHhBgPa08immk0O1PFwADnKPRKILBIC5fvizjQkXPYr40KLhIeRwqVO3q5vWZzAWPy/mlQQLZVLOkCsEomWzNuvA4BBkmW/K8hQxHp9PBn/zJn0gxXZb54flPe1CcAu95LSys3Gw2cXBwgP39fVGkjyPmODyuopxMJqhUKtLVYH9/X7JxGXRNd4zb7ba1IyNQv3r1KkajkcSHtdttfP3113C5XJLwRDDrch23r9PGFcEkg8c5vxheYF6LmUClszT13NDPGmzruWy+pmuW0U04bSyZ3NJut+H3+7G1tSUeFwAClnXVALp5Caa5fnT9NlMIyiaTiXyetQ/piSAIoY7ULl1eh05aMb+nQY2eP2boBL1NTF7icXj8ZxXdA5bhBdRLNKq0e5X3HDhpQ6jvvRYnneGkP8xYQdNA4JiY7CGFc4kMX6FQOBej7eDgAH/3d3+HSCSCzc1NZDIZhMNhiaNbWFiQ+DqyxSyNlEgk8IMf/ACpVEruXyKRkNqYKysr+KM/+iOMx2MJxdAs789+9jN8/fXX2NjYEGC5sbGB5eVl3L9/H59++ikqlQosy5LanFz3jOvNZrN45ZVXsL6+joODA9y8eROTyUTKri0tLUkyJeP+CoXCudcKnnnAx82XgbcsAUCXrgna9EailU0wGBSrkFmuswr44vE4Njc3kUgkJIhU1xxbW1vDtWvXMB6P8Q//8A/iJuL7zN4iiKByrNVqODw8lI3N7XYjFosBgPTwpOtYl744a0OlUgVwqoQLrZZp9+px5EmsHP4eF2UqlZL0+XQ6jWAwiEuXLiEej6PZbKJSqcj5msyeZnk028IHN20n4KUtbs4zlseZTI6zo3UBXW7uDDngb1Fp8Pz4uxcF9oCT8gAsLgwA2WwWKysrpzZuzVLqe01wbG7q/GylUsFnn30mc/hJ7/mzCN12lmWhWCzC7XZjZWVFDAX2ytXlHgjeAEjCBx/9fh8HBwe2MInJZGIrw9Lv92Xt6cK4gN31bb5GkAjAxsyboSkm6NYMHjdtcxPWBo2uATntXnAeM0N6a2tr6hhz7tPtrbtJMOxGx2mTPaX3gL2TCbbZiuo8QNbjiJ7Tfr9f4ldJHPC+Pgsjw2MwkYBeHK2XNMNnulW1UWgeFzhhUR+1XqjX+DePz9/mPOFxnGK9GWNXLpfRaDTOJYaPxYwjkYhUoaAhz0LtbrfblujodruFFXzjjTewvr5u07eBQEBYvUQiYfu9RCKBXC6HZrMpjDAz4jWZUKlUJKt/bW1NyBGOE+c8j8dkp5WVFbhcLrz++utYXl6Wbk+MkTzP+EctMw/4tAI0EwCmTV69QLlYdOsXnaQwi8KyLK1WC3t7e5L9w8b2+/v7iEQiaLfbSKfTtslerVbx9ddfY39/XwBft9uV4HIqlPF4LPXN2MppMplIkClZOSZ6aJk27mTzLOskgUO71J9lc6ayIqDT95QbBVkFUubcUGkxM6bKrJukk4DImGi2jpujGUzvpEDppmMcJc9vOBzi4OBAFGc4HD51jSzbojcRhiCQzdYA66JAnym9Xg+1Ws3mojZZJcA+T5zCL7iGdWmLJ900ybbq/59WCM6azSby+Tz8fr+sD62HyAhzbusYO26KenPmeWmwRVCj3a5833SdaUPDdN06hQBwnZiuR46TBqImCBwOhxJvyISFR4m+5/oe6HOm65+uW21Mco3o13j9jLE0s9u1+9iJVTZdolpMV7m+Dv1sXp/Jaun7dF5uS7LN+pj8XR3K87ghSU4AcNreqX/P6XXgpLWaNo6dxoQFyc/TpcvQi0ajgVqtJpnnJIHIiLNkjGUdJ2GkUinEYjHpzUzDs1KpoFKp2K6DJbGYpdvr9ZBMJrG5uSmlzVgyhaEZzNxPJBIIBoNiiOiYy3K5jE8++QQHBwfI5/NYXFyE2+2WChG6wPO08KjzkJcC8DGugZsxLcNpE1crQrI1RPOk9c1Mo1kS1grsdrvSJ/To6AgPHz4U64KWwObmpgStFgoFbG9vY3d3V9wnTELQdfYYBLy3tyeM58rKijCDgUAAh4eHEiDNJBLArhRNZUmKXWeSMr5imvv9cUUzl4uLiwgEAkgkEsIYJJNJAXfM5OMc4QYHnFifk8lEQBmr2tO1pjdvvcFww+HGpF0eWsLhsBS65nu7u7v44osvAADXr1/H0tKSzb3EUg96g6PyJKtAYMpzfVGAT7fbc9ocneSsc6VifNqN4Tw2FAJsy7IkhlADWhoYbvdxpreOHTKBuAkC9TnyvvKeE2Tp8igcD71ZapetPo72gGgjl+elGRl+jscji8x5yCQEdtfh648S07XMjV8zhlx/bO82DZw53RfTJU3R467PQYM/bWhwrWpXrWb4p4FHLQTmmgk9r42Z4ICkhAZgXq9XAIc5N6aJExB3Gnen9wDYrot/U2dyPXBv4TF4fvSgnBfDx9Chfr+PfD4voKxUKmEymWBhYUG6S+me6Jubm7h06RKWl5cFZHk8HjSbTdy6dQulUkliu30+n7iKuR4mkwnW19eRy+UkzIQFm3u9HqrVqrzPDle8Xh3mVK1W8eDBAwDAK6+8grfeesvm9WK8aLfbRbPZlDj689BtWl4KwMeHadk8jpiWMClr7aKbNaE1o2NRdL/gVquFer0O4KRsDa1inenV6XSEjaBLhe4UbioEv7peEo9JcOHkinUaN22h68ezslFUeIy/YO08JmD4/X7pc8oAWf6edqNpC5RKi+esWQZerw6CNq/ZCegQ0OokFVprzJa2LEtKX/Ce6Q2EG7QZY8TfeNSGdBFCC/6bKBrYa9EsssvlEmOGcbX6oRMwOCec3Kqst0W3uQn4uOFQTMBHl5E+L85nMsPUIWTWtNHF+6hj97hJPUmrMD0fp7FE5lp6FnHSKdN0jgl6HsUEmgw1r0kDTs2QnuceYoYBmNdMDxVwUuh62u8/Sj9MA9fmfdR7LwCbYaPZfX0uGvidF2gxXcrct3QL1clkIn2eaXRxr9AhMXyPx3Bi2DVLyH2l2WxKXUpen2VZkgTIftFmUinPm4D10qVLkkRCg0EzozpW/Lxl5gEfB19neT0K9PFmjMfjU/SzZVm2+lqzKPV6Hdvb2/D7/chms1J4lcCu1+the3vbtkEwU0gDQFpadPeSDeh0OnC73TJBu90u7t69C5/PJ8DJ7XYjl8tJ+YlSqQTgJAPMSUxFqif702Yd8bqvXr2KtbU1W+sq0wVLoExG2CmomAufbB5jLNgT00yYoDvVtGR1nAvHNZVKwe/3SweGWq2GX/3qV9jZ2UGj0UChUEAkEsHy8jLW19dtTCgLunKO65gdMrK6BIp5XXN5vkIQxlItXFc6ls4JbDi5xzS7Zgbha4bMKWCbxzSTh0zAwvPSrmgnt7o2LHTc3JOODTdHXiNffx5zVF8T9Qv1nZMOoujxMMHSNObLvCaOrw4LOg8QS51DI533Vl8rXboEIKPRyFaPj+foxCxPux79+ybg09dGPUcD22R/+Xnure12G41G41Qx6KcR05BgQmI6ncaVK1cwHo8lyYGeECZmrK6uIhgMYnd3F6VSCQsLC8jlchgMBshmsxIaRSaSmIHrk650JlVRB0SjUdnXrly5gslkYrsvS0tLQjzQ9cukLx0PzHVPgMn7+Sx75lky84DPZGUexfJpZcnvmNb2eVPx5y3tdhv5fB6hUAiZTEYy20KhkLB9+XxeJg4tF14rXZpUIC6XSwLNySbQJRoOh9Hv96VCOABpQZRMJkXBAKdjc6aJvjdUyE8z1rweupzfeOMNW7C3dhXpTYvfdYov43t0x3k8HgkAZh0wzXgweN8sm0FFxt9h3bFoNIpGo4F8Po+9vT389Kc/xccffyxjsbCwgD/8wz+0WXXaTaNrAZqAj9ep78VcLkaolAE891IxL5to1+hF/uY3bQ3Q8KNOp77Srnsdi64TBJxYTBPQThOnsaRRoQEfPUWM+TYBiRl3ydI4z7LPap3NfS4QCEj2fC6Xk6zgO3fuSCwd2b21tTUp98SxYgZ0MplEMpnEwcEBisWiDWdwTtOoY0F+Aj6ely7YztCnwWCAdDpt83axAoHGJ9xLgJNsdB2/961k+DRg0BbqWQueaJkK2gQg3NBnleFjnCIZJS4snQVpMgja4tcKIh6PyzFJTwcCAXEDAXaQzFg9dh94kuxaLnStKDS1/6QLX5dBMGPzgJNq/JpxM7+vRc8XzaQQbOnzJLDU7jLgBHAx2JZBvr1eD59//jlGoxEePnyIL7/8EsVi8VSXCP6mpu2pyMxuHtrS433QQHEuc5nLN0e46eukFMDOCmt3qdYhJiFiumIpGpxPY0JNY1TvOVpv6n1J62HqUbOszXnIaDRCrVZDPp8X9+pkMhHj3LIsKd5drValkDmzunVbVup2thMdDAY4ODgQb9l4PJa6eIlEApVKBTs7OxL+NB6PpbYfP9fr9STGj9fPMAmOZbValdaVJB3Yt5oJlqVS6Zn6EE+TmQZ8enJrv7xpvWghA8bBA+zWDYOlicRnUXw+n6SbczLTVUsgwAXORU/LcDweC0PErCG6XBjjoLNcATs7dnR0JEwWy4jwc8B0ZmkyOS7Sy1ZMPEfS+6yD+KTjwLIYzLYajUYCKnWnBg14TbcFlY+pNKn4ms0m2u22bU6xUKZmFGlE+Hw+cd9ScRweHuK///f/jjt37kiqPhthm0KAqZUmM5x1HA8TOQjSGXfytAB6LnOZy2zKZDKROnx+v/8U08Rn6iECCKc2ZwRh1OPaJapDBcykJO4nOo6UcaI0nnV8G2NMGVfI86H7kgmS5wn4hsMhHj58KO7bdDoNt/u4RmYsFpM9DICUaOl0Otjb20O328X+/j729vakvWYgEECz2UStVsNwOMT29rYAbgK6a9euYXFxEQ8fPsTPf/5zOWa320UwGMTCwoKEQXG/YG/fRqOBer0urm6Xy4W7d+/i1q1b8Pl8WF9fRyKRkC5Y7FzF2rbnjVFmGvABsG3mwOkYhGmgT7v7pjF8s7phEozpOBzg5Np1FqmZhaVBC5M0NNtGgGLS/gRLjC3QhYcfxfDpY9F1bMYiPQ1A0QkVfOhYJL5nWq06BgWwB4qb1rIGivp3eXytNPWzBpusFba9vY3bt2+LAnGam6Z1rOc2x43vc5461eCa1bk7l7nM5emEQOpRDJ9TcofW4aZOd9ozzb2Des2MJTWJFa2DqHOd3Lpax52njMdjW9gNw3N0bCsJgUajAb/fL0QEARofdFETvLFHMsmJyWQisdk+nw9HR0fY29tDtVpFq9VCp9ORBga6goLupNHpdKR4PffAVquFQqEgRv5kctwcoVQqodfroV6vnyqFdl4y84BPtz7S3RqcAmwpTi4zfTxuyGQAZ01oIdB6iEQikq7NjZ7xdqz6HgqFJDGDjBQnsikMTNX9Ngls2LqGDd1ZuHqa8LOMg9P19mi1VqtVNBqNJ64azqQTspxcgIwx1MkaupSJBpq0lCmcD6wvqIEcMx4J4sgi8r1MJoNEIoFer4ejoyN0Oh3cv39fWL3bt2+jVqs90iqjYtcWOmsw6fM2g9CBkzifWTZY5jKXuTyZTCYTGxCgrtTACjhh5aiXtOHIz+nQH9Mjpg1is18xj0fRLmJ9LH3Oen/l/kG267zGxfyfOpN6VIc46bh2ArjhcCj7z3h8XH/W6/Xi3r178Hq9chx6B6m/yZSWSiVEIhHx3LB7C8FluVy2ZS97vV4Ui0UJ9TH1uq61x2QS1t3VCR3PQ2Ye8HGDo1vRtEqcRFsZesJwQrB69vNuQP+0wrgAVvqPxWIolUooFosYDoeS0k1wB8BmGfLBApGWZQkI1K4BvqZZP7Jm7FChXb9Owtp4zHQl6wVAgBqbxj9pzCRjCrl46fpkxXPeXwJDtrAiu+vE3mnAx4XNhUqwq7OxdHFnZoUVCgXcv38fBwcH+PnPf46f/vSnojAeNZ90mAKTaqiQeK08jlNyEhXCrM7ducxlLk8u1NcEFwR81Bea4NDGulOhbhr0WoeYwIy6nu5Y7T3S8eE64VEDPif2jzpUx4c/D6HuZNzbNKnVaqfYzUajgcPDQwCn6xBOE9bPM68XOOlERDkrOcbpdzQhcxH6fOYBn6aQgRPQNs0ta9LWFDPw9HllwZyHMCuIzBonOC0bull1HJqZCcvrJ7hjVhDHQDOBZgKInrQm4DAXkF7kVDL695nI8TTZWhocFYtFPHjwANFoFIPBQNqncYzoAmdaPH+bcYRmnTMntygpdu1SZ/KL2+2WYNtisYh79+7h6OgIpVJJYl3MgGkn0Qqb18hz0S5dzgMmruiuIefRuWQuc5nLbAk7R5wV+2a+Rn1ChgmAzWPDzzjpCv0+j62T4sz3nZI8zOPOWsjJWWP4uPv/k+CEJ8UUF41BZh7w6eBRDg4XBnssmuIUg6ALp+qNfxaFrlzSzfV6HfV6XWoFjUajU7WQdE06XX7GLCXBxu+6e4NZsZ7iZMWZwjp2DFLVLlW6KsvlMqrV6hMHoBKsjUYj/PrXv8ZXX32FRCKBjY0NRKNRbGxsYH19HcFgELlcTjJmdV0yjoPuZECGjyCQHQZ8Ph8ikQi8Xq8019alEn7729/i008/Rblcxueff45qtSr9DhlLohMrnMSyLAQCAVuvTADyG/wMP8c+kZFIROo5FQoFaW02l7nM5eWX8XiMWq2G3d1dhMNhWyF8HZ9G/aUrFdCA17HNpg4069fyeMDp5gbU4yRXTFcuz8kEhPQ+mD3V5zI7MvOAz2T4gBMQOC2OSYMUPuuJ/igQ86KFrJLH4xGXn2amNKDSNZsI9HRpDyemE4AwTJr1cxqjR4FiuoTNuA3NMD4tw8fjDIdDlEollMtlib9gb8SFhYVTMXga+JLdZJauBnyM+2Pmm9/vl5qH4XAYsVhMxnc0GqFUKuHrr79GpVLBw4cPbe4E7f541HVqq5wBx9pNw0coFJK4VZak0QHKc4ZvLnP55oiuaKATIkw3qhbtudLgznSpmklnFP07OsYPOM3wmWJ6fvS+NMv767dZZh7wMWmD7IfZFNxJCIR0KY5utyusoA6anEVhz1/dVSKdTmNtbU2AgN/vF9DCzCVeV6VSkfd6vZ4tMSMYDCIajYrLcjweSxCwBn+sB8TegRSTAfR6vUgmk0in09LbVlcsH4/H0pLmWa2+yeQ46+ng4ADlchntdls6kjDBhNdC5lEXTNbWr3arElATaGvAy4KZrVYLX3/9Nba2tqTNndN905bztHu7vb2Nzz77TIo/W5YlrpxpIJ2Zunfv3sXXX3+NarWKSqXyTOM5l7nMZTaEexQT3PT+RZ1rZr9qpg+AzeA3wZr29piEgP6cFpME4HH4bO7Bo9HIVoNuLrMnLwXgI/gBYHM7TvPP012ns2263S7q9boN8M0q7cxrZiubRCKBUCiERCIhqeQa8A0GA+zs7EjT90KhIJZit9sVIEPAR1ZMM3jarUvXYblclhp1wOnyNgCkJl0mk0EymXQEfHRHP4sS4O/xuizLwsOHD09Zo7rAdC6Xk7HSXTUYq5dIJByDkcfjMfL5PCqVirB6TDpxyvzm9x7n+gaDAba2tiRGMxaLAYA0GtfZXK1WS4qIEpTu7e1hZ2fHFr85l7nM5eWXTqcjYSK6jaL2umhPD3BiDJ4VVwecdIjQ72swp/dVM0GEwr2VISsmI6hrh85qjdtvu8w84NNipodPo5q1FeREeTtl8M6SsMWXy+WSEhxk2dxuN1qtlrBzulAm4/IWFhYQCoXQbDbRbDZtGVe6obMu4Ez3YjgcthVr1rEkTqI/12w2hV0sFototVqoVCrP5NJ1krPczTo+hSDT5/NJaR9mfLOv4TTAVywWUa1WUavV0G630ev1zuXcCYCPjo7g8/nk/tRqNVtjbrK2ZP0I+Fqt1jxDdy5z+QbKtHJiuu6qBnrms1NyHTA9SUEDPq0DtYdDM4wm46f3VQLDp625OpeLkZkHfDo2iq46PpyagRPIMPbNLNzrcrmk08GsMiT1eh0PHz5EOBwWJq/ZbEpNIVprfr8f0WgUPp8PS0tLWFhYQDKZlGbO+/v7ODw8RK/XQ7lcxmAwkIDc4XCIWq0mLWkCgQAikQg2NjawsrKCBw8e4MGDB6hWqzawoxUAAKkM3u128emnn0pCzd27d1Gv1/HVV18hn8/byqA8T6GS6vf7KJVKpyrO6/9ZbsZpDtGlwrlyXtLv9/HVV19he3t7aoKNjn80Y2xYj3Auc5nLN0e43llRQPfIZektHYOsy6k4JVRQ6GXhMU2gxlAepwL7OhbPBHv6wXJWDLlhoeG5zJ7MPOCjaEvC7HxgCsu2aPZKZzFpVmwWhS25RqMRGo0GQqEQyuUytre3pUBjr9cTNi8YDCKRSEjZjnQ6LYuXNDvb3eiehywKybHwer0IBAKIx+Pw+/2294ETsKcBB2vlWZaFo6MjRCIR1Ot13LlzB9VqFQcHB+KWvEhh9u2syXg8RqVSmcffzWUuc7GJ6bHR4TbUudzTnJg5JzG9F/rZ9Pw4Zf2bv6ePxf1Uf5eG/aySKd92mWnAN5kcVx8/OjqSKtiMb2s0Go5xYWRn2C+32WzC5/NJPBRj3maZdmarrsFggPv376NQKIi7VLffoTXo8/kkvks3c6YCGQwGkt3JEioAkM1mZeGyVIvb7Ua9XkexWMTu7q60kaGYSoNMGmPcSqUSOp0ODg8P0W630Wg05ozUXOYyl7k8QlizlEmKeo8iUcFEjcctyUTdyxhuHguwV2gw3cgkBcw4PR0Wxc/Tc9NsNnF0dCQx5HO9P3sy84CvXq9jd3dXmCTGt1UqFdRqtVPZkkzQYDeNer0Ot9st3R4YjzXLcVA8P8uyUCwWbfEbekFqq+vevXvi9mYP3CtXrmB9fR0ul0sSF1KpFNLptCQ1BINBOR7jxkqlEvb398Utq0G1OWbdbhcHBwewLAs7OzunznWWYyXnMpe5zGVWhEQEqwDotmFmeTKncKazJBgMSt9W6mOzFaX5G06lWjTDp43+4XCIarWKnZ0dFAqFMztgzOXFyUwDPgDSTNjv9+Pw8BAulwtHR0fS5cAJ8LGUS6PREJci093Jks06CHmcOnhO18C6c16vV1hQAkEyeezeQLetjhlrNpvo9XoCph+HCeX7cxp/LnOZy1yeXhine3h4iGQyKS5XnWSn211OS140X6Pb9VGAT+85ToCPx9bHIfjc399HsViURL25zJ7MNOCbTCY4PDxEq9VCIBDAl19+iWAwKPFovV4P+/v7tu+wYjmb0R8cHMDr9Qp4aTQaqNVqL+iKnr+wKDXrvRWLRVsWle516FQsmUqlUqmg0+nMrNt7LnOZy1y+ibK3t4c/+ZM/QSwWs5VkMQHY4zJ80z5runCdnp2Opb+vj8+uSkwSnMvsyUwDPgBSWgQ4aWJ8ltCly+/u7e091/ObRSHTVq1WUa1WX+zJzGUuc5nLXB5b6vU6fv3rX7/o05jLN1DmzTjnMpe5zGUuc5nLXL7hMgd8c5nLXOYyl7nMZS7fcJl5ly7FsiwpDqk7aTilp5up5d8mYUKG7krCmntmfScdg2EWJmbBagBSV4mFQWc94eVphdf9qBgZ832WNeAYf1PHZy5zmQVxu90IhUISfzytxaa5Jr/J61K3R6MO120aH+f6WYjZ6/VK8qOZuTuXl1tmHvARjASDQWxsbCAWi6FSqaBQKGAymdgSDzipWaW83+9Lf9JviywsLOC9995DIpFAIpGQ8fr000+llA2LOjNBg102/H4/FhcXEY1GkcvlcOXKFQDA1tYWisUi8vk8vvrqK2nz9k2TWCyGtbU1+P1+qR5PBUphlftwOCxV6ln259NPP0WhUJBaiXOZy1yeTnR2qqm/M5kMfv/3fx+5XM6xpzR1W6vVwkcffYSDgwNp/2h2CvqmgMBwOIxkMgm/34+FhQVEo1HUajXs7e2h2+1KEqOT6OYEq6uruHz5MobDoa2WarVa/caM1bdZXgrAZ1mWgJFsNgufzyeFHcPhsDBRVA4sTMziy98mwBeNRnHz5k0sLi7KeO3v76Ner8s4tdttWJYl9fXYQzccDuPSpUvIZDK4evUqPvjgA1iWhY8//hhbW1vwer24d+/eNxbwBYNBLC0tIRKJSNkas/8wjYxEIgG/3y9t/orFInZ2dlCr1Rw7ksxlLnN5fDmLYY9Go3jnnXdw9epVaUmo1xrbIZbLZezt7aFcLktBfu3VAL45gM/n8yGZTCIUCmF9fR0LCwvI5/NoNptwu93o9/tnlkphya6FhQVcu3ZNeqhXq1WMRiPRa3N5ueWlAHxutxvhcBjXr1/HxsYGEokEgGNLjoCPnSdIP3Oy0rJjWZZvorhcLiwuLiKVSmFzcxObm5vIZDKIx+OIRqPIZrN48803sbq6KmVpBoMBKpUKer0eUqkUstksAoEAcrkcIpEIcrkcwuEwLMvC6uoqQqEQvF4v8vm8MKwvcwYwgZzf78eVK1eQzWaRSCSwuroqYM/n89ncvJxXmuGj+yQQCOC9997D6uoqqtUqCoUCer0ejo6ObJ1K5jKXuTyeaDeky+XCysoKlpaWcPnyZayvr2NpackR8DHkJ51O47vf/S6Wl5fx8OFDfPzxx6f6gr+MwiLKbrdbSmxFo1EpqO/z+TCZTBAIBLC4uIher4eFhQXHnuBmy7Z4PC56jj3WY7GYjGmv15Mx/yaH93xTZeYBH4tMptNp/MEf/AG+853v4OOPP0YikcBgMBAg0mw2Ua1WZUN2u904ODjAcDiU976p1b99Ph/eeustvPfee7h06RK+973vIZlMSsxeNpvF1atXxR3p8XjQ6XSwtbWFRqOBXC6H1dVVifvQNZ+A4xZsLpcLd+/eRSAQQKFQwC9+8YuXGvB5PB7pO/wv/sW/wI9+9CPbNXu9XplHbEtHRQecrjg/Ho/x2muvYTgc4sGDB/j8889RLpfxs5/9bA745jKXJxTTK+PxePDBBx/gJz/5CbLZLN577z2k02kMh0Np7UWhe3IwGOC1115Ds9nE//7f/xt37tyxFZp/WSWRSODy5csIBAJIJBIIBoPweDzw+XzCjI5GI0SjUbz++uuwLAs+n088PBTq+sFgIB2VWLh/PB4jGAzCsizEYjEsLS1hMBigVCqh3W6j2WwKczqXl0dmGvBpSt/lcsHr9cLn84mFw0kdCATg8XiExWMCAj87Go3QarWkCfU3zcXLHrnZbBbpdBqxWAzhcNjWnofuSb/fj0AgIH2J6/U6stksFhcX4XK50O12RYnSBRAMBsVlkMlkMJlMpCXbyyqMEfJ4PEin01hZWZG2RhoYOwE+vWHQ8uU9AIBGo4F4PI5+vw+PZ6aX2FzmMpOi2XOPx4NAIIBMJoPl5WWkUikJuxgMBhLrR+E+QT0fi8WQzWZlTTLGm2v3ZREd3sTr5zM9FgCEoaO+152VAHtSI13djHmnjuO4cC/lfQgGg/Id/XtzeTlkpnYjTmgzbqrX6+Hg4AD/7b/9N/zqV7+S7CO6eUnZd7tdNBoNPHjwAMViEV6vFysrK5hMJohEIiiVSuh2u6hUKjar8GW3UtxuN3K5HK5du4ZYLAbguCUdO27Q4rMsC71eD+12G6PRSICyx+MR9pPW3Wg0ku/SVR4MBiU+8KOPPnqp49Q0i+n1ehEMBtHpdByDwAn4nB5Ullq5WpaFbreLbrf7Um0oc5nLLIjH48HGxgZWVlaQSqVEr928eRNXrlyB3+/HZDJBq9VCs9lEvV63JWNEo1Ekk0kAJ5mnr732Gv7jf/yPqFQq+Oqrr3BwcIBKpYKdnZ0zE6xmRce53W5EIhH4fD7xyHg8HvR6PXQ6HYnBA06IEnakAk4ANFto6s+NRiPRVXwMBgPUajX0ej34/X4hDLLZLCzLQqlUAnC8z7Ad51xmX2YO8BHssQQLgUupVMLf/M3fIBwOY21tDdeuXUMkEsHq6ipu3ryJyWSCu3fvot1u4+joCLdv38bKygreeustURAulwv1eh2NRuNUPN8sLOqnFcuykEwmsba2JvFmBHtmSQKWaqGlGAwGMR6Pxe2omStabjqbd2NjA6lUSuIoX1bRTK/H44Hf75fr1CyxWfZHGyVUmLSmWdKAQJBAeS5zmcvji9vtxvLyMl577TWsra3hH/2jf4R0Oo1QKIRQKCSVGLrdLur1OorF4qns20gkYis1Rb1Vr9fxl3/5l/j888+xu7srGbxOossuvej9weVyyfWnUinkcjkAkExat9stcXhkRvv9/qn2mNRvk8nE1l+X+wSZz8FggGazKXF6BIxMDGFlgk6nI3Hyc5l9eWGAj5NN1w/SmymBC3BipTH+olKpIJ/PYzweY39/H/F4HEdHR6hWq2g2m/D5fEin0wiHwzJ5OZEZYK83bOAE6DD5Q7/2MggXMpWT2exaiwZ1ZsPsaZlxuuQNWcCXTVwul5SfoZtnYWFBgpKpVHX9KRoKnK/AsUVMNhA4dnnTSPF4PIhGo1haWoLP58P6+josy5KYl5dx3OYyl+clbrcbmUwG0WgUXq9X2KTr169jfX0dmUxGDFg+KHqv0DqPHg0zVo9rOZvNotPpIB6PIxAIoN1uo1KpoNFooNvtolariQ543H61z1tYezASicDr9QphofdKM9RE993VHg2t853ALL9L1lDrPob6kADguc3l5ZAXAvjILrGsRTAYFEvDafIRzDCwtN1uo1wuI51OI5PJoFKp4OHDh7h79y663S4SiQSSySRcLpek6He7XYn3SCaTsvhN4FetVmVj5sR/GYQLkWVDTEVlMlUM1tXXZ4JvU0j9v6yuSp/Ph8uXL2NhYQGbm5t47733EI/Hpe6U1+tFNpvFZDJBqVRCvV4Xhefz+SQDrtlsIp/Po9VqYWFhQZJaqPguXboEt9uNer2OcDiMvb093LlzB//v//2/b2xJm7nM5WkkEAjggw8+wM2bNxGNRrG4uIhAIIBsNitu2clkIvVUmZQXCARkXZL1o5Dd0vqdYSoejwdvvvkmbt68KftKr9fDr371K3zxxRfI5/P4+OOPUa/X5bdnQVgyhURGp9MRIiQcDtuyZnXxd46BWYDZNPSBkwLyBLtM9NA1SdnbfjweI5lMotfriXt3LrMvLwzw0Xrwer3wer1CSZtdIHTmKANL2+22bLDlchmlUgnVahXtdhv9fh/RaBR+v1/YPc1KkZ4GTrK5eE4A5FxMi2nWRTNSwOluEE6fN8HeWdeqx+NlAsJa3G43YrEYFhYWsLi4iNXVVUSjUYRCIdlIWNLAZJhNVy5jHAFIAWYAtjp9Ho8HuVwOk8kExWIRPp9P3Lwv4/jN5fzFXKem/vumCpPwQqEQFhYWsLKygng8jpWVFQQCAUSjUYTDYQwGAwnB0VnyOg7NTNoAIGEZXJsa3EQiEdv+0+/3sb+/j2KxiMFggGAwaItpmwVxuVyShOjxeISd417K83TS65TH0e/6GNRpmuFjmBDBNpnAubwccqGAj3XPWFcvEAjYAkd1dhBwAmLojmXNIRaS7HQ6KJVKODw8RLVaFYXAdHEWX2aWLhkwPpiwAJwsjGAwiNXVVfT7fRSLRcnanHUFzMQDWmVmdwjz/J0Ann5Ns31mwC+t65dFqNyTySS+973v4e2335bMXFqv3EgGg4Fk3NK9q7u1cHzYycSyLIkh0ooyFArB7/fjnXfeQbfbRTQaRblcRrlcxu7uLsrlspzfLMQIzeX5ilnol92DPB4PIpEIEokExuMxKpWKhAuQaWFs6dP+rjm/GH6gY7YuunrB1atX8b3vfQ+pVApvvvkm1tbWZJ3ShdtsNoWBY8gF11ipVBKwYWaL1ut1lMtluN1uJBIJBAIBSWBgYX6CGI7D+vo6YrEYisUilpaWUK1W8emnn+KLL76YibVJnUIyw+fzAThxXxOQ6bjjaW5cHaqijVrghATR10xXu2YP6WLWe+hcZl8u9E7RfcvnQCAgLBypZDOZgq9ZliX0MunrTqeDSqWCcDhsswIZTNrr9VCv10+BSE5msosUJj+kUil0Oh20Wi1RNrOw6KcJxyYQCMg1aReu6Z42F/m0Y1IhaAZrPB7b2tm9DEJrNB6P4/3338cf/MEf2JgBZpkx5oUZccFgELVaTWpPdbtd9Ho9RCIRXLlyBeFwGMViEYVCwbZxxuNxpNNpeL1eadVmWRbu37+PfD6PRqMhgG9WYoTm8vzEZNq52QaDQekgtLq6iuFwiIcPH0oVAeqeZ+1laoI+JikBkEK6Fx1burGxgX/2z/4ZMpmMtALrdDpiuOvrp6uSLkfWjRsMBhK+w/fG47HUXdXeGq5dVivg+udnVlZWcO3aNdTrdaytraFaraLT6eCrr76aCZaP84UF3wlUdaye/qzpnnV6AKcZZrqA+R5gL3PDUl1ut1til1+mveDbLhcG+HSALYNsCfR0zIEZYArANgG1pTwajdBsNlGpVCRFn9lbzO41QY4ppqLTm77f70coFHpkW5oXKXRta+uYGVNmXIv5GkW/xmMwNR+AAG6Oiw6u1kzErEowGEQqlUI6nRaDQ/cSpnsEOGGVdS3CWq2GZrOJVquFVquFZDKJlZUV+P1++RytXh6HY0cg6Pf7kclkhCGdy7dLuH50QHw4HEYkEkEmk8Ha2prowVgsJutpNBqhXq9P9TSYGeNOWeTAib5keSWGMZBR7HQ6Epv1vMTtdiMejyMYDCKXyyGZTCIWi0k1BrbE1OE3ZpgPH3S3atejGW6iPUQkCRjH53a7hSDQwG8ymSCRSMDr9SKTySCTyaDX6zlWdrhooY7Xbmpe51li7qfAaaBHUKvHj3PICUyar02LwZ/LbMmFAD7NFNEd2O120Ww2bRQ0wYtm/bgYtULje+wWUSqVpB6RriXEY2vlZ05+053Bie/xeJBKpRAOh6VF26xlWJK5CgQCCIVCCIfD6PV6EosSCoXECuOzzkI2NyFmMPt8PtTrdUmSoQKOxWJYXFwUpZhKpaQ0wotWhmdJLpfDW2+9heXlZSwsLEjGd6VSwXg8trnA6dLl/Mrn87hz5w4qlQqKxSJKpRKWlpakHhXL/LCAM1nrer0ubqPhcIhIJIJ33nkH+Xwet27dknObK8hvh2hjgOEpq6uryGQyePPNN/G9730PALC1tYVqtYpwOCzdcra3t1EsFm3GsTbAWCONDxbadblctlCZdruN4XAodeq63S5u3bqFfD6P/f193LlzB/1+/1Rm53lJMBjEu+++i7W1NXzwwQe4evUqgsEgjo6OUKlUJD57mkeFrkOyfmT+vF6vsE+syEAhU9hut1Gr1TAajaRYMXUXWf5wOIxoNIrNzU24XC7ZW4rFIj799NMX2lmIdT5DoZDcYybRncUAO7F61HU6HplsKo0Ceo106RZ+l6FV3De5R+u45rnMplwI4NPAi2wUQR2VlgZmprJxqoXGydZqtQSU0C3Hya+Pq7+rGR3AXpONv2tZlrSqMVvSzIoQROtHt9tFu91Gr9eTxckxILOlv89n7e7RteSoMIfDoWwspPgJbmbdLRkMBpHJZKTXJOcAQbwZ2D2ZTGTj63Q6qNfrqNVqKJfLKBQK8Pv9MsbcYDi+Pp9PXuccHwwG8Hq9SKVSGA6Hc4bvWyhOrEgoFJIkopWVFQAQQBKPx5HL5SRAnvUyTcCnjWj90AYeWbNms4nBYIB4PI5UKiU1S3u9Hmq12ql1fN6xpbqrDUuxMBZNF4o3M0edks+c3JJOLk7N8GlGnywh3bwMgyHr6vP5JAOfRuGLFO6T9MBQX5n36HHDdcy/TffvNKZYv6bHf9r5zOXJxenendeYXijg02BLL1hN3fM9J7pZL36CEi5aDcx4LBPsObl3tauZQvftrIMZn88nTBtbzO3v7+Nv//ZvUS6XcfPmTVy/fh2RSASxWExckHrceU/0GNPd0Wg00Gw2hWG4fv061tbW4PP5EIvFkE6n4fF4UK1WT/WznBWxrOOG4BsbG8hkMggEAmKFMg6GcY86XqpcLqNWq6FYLEpMqGVZCIVCAIAHDx6gVqvJpu33+yXRgyELVIKDwUACyAeDgWzQFx0oP5cXI9M2TwIRnaxGBp6lp8hccT6Zx6CBxixO6kB6ORqNhsS7sZAuWaFer3ehvWU9Hg+y2SzW19eRSqUEZGhGkoCPNS1NY5wALRKJiH5mD3W2hQQg67TdbkviXiqVsq1LtosEIEmEbB02Ho+RyWTw2muvIRwO43e/+91zH59pwrlDMK/nEmONdZFlAlsdZqITOyjUe5ZlyRiZIE4zfHrs+B7jQXkOsx7eM+vCyg7xeBzACTYiC/7Mx3/mIzyGaEWlM32AkwsymTdtNXDB8xhUbsCJ0iTjxNd02jpgj03QwNEs/gxgZuP1TPH7/UilUhL0HAwGUa1W8X//7//F1tYWut2uuIWYPKAzlc14SA1+R6ORsFqffPIJ7t69i9FohN///d9HMBhELBaToqj7+/sveCTOlkQigVdeeQXJZBLBYNBWZ4rPOmux3++jVCphe3tb2D0Cvkgkgslkgnv37mF3d1da+wWDQSnkSlcax3kwGEiIwGg0ElD4rMH4c3k5ZFpoiXa3moBPx9xpwEevg3axMSaN/VK1+7ZWqyGfz6Pf7wvwI+BjvPNFAr5cLofNzU0sLCzINTKJj16F8XiMUCgkHgS+xnqqbrcb0WgUbrdbQjMmk4mARXakoOHWbrfFQHW5XJKk5fV6pUQLdYBmUhkKwvIxL0KcvGOmO9+yjuO2mdDIZEPAHpNuMqc6+1Yb/QBsgM7pfPge45PZW31eZ/TZxOPx4NKlS1hbWwNwUi93OBy+PIBPg7tpgaOmi5XvO4E0/g/ARiXrmDT9G+ax+BsaQNKtx7p/GgSaVvWsCF03TEQATiYI4/RoKZtj7HQ906h7xrowcJzubpYemcWx0UKFzfgXzg9z/mmGj65sHXag3Sn8jMnQOM1lss1MeAkGg4hEIhJEPgd931x5nLXB+QXA5pblXKIRwjVuFhRmkWHAnnSk5xYBEWPfGIrA3zbDXp6Ha86yTto5kol00t16ffIzZKu0vqGepuHGvYDghuy9TtTSup2f5+v8jmazCKZflJieLrr4zb3JTGw0axOaLnDzNZ1tq8fS9Lbp72v3uelN+7aIvgd6DmtS60mOpR8c/2kxrU8jFwb4dDIFJwcXvZ5M5sVpQEdQpuNYdHwaWRpaek7ZazwfvsbziEQiUo+NLjh2AmHs2nkO/HlIIBBALpdDNptFJBKxvedyHbcRy2aziEajtvZDTsrc3Jg8Hg9CoZC0BLt//z5u3rxp61ayuroqSnWWJRwOY3l5GbFYTNoSaQaYc4hxoEwoqtVq4oJl0dNAIGBrLN5qtaSURDKZRCAQsBk4ujiz3+9HOBzGysoKXnnlFZTLZWxtbc37UH5LxDR2aQT4fD6Ew2EAQDQatRUNJiNXqVTEYGCJDoZoMOCecbw6kYMMNtsBNptNeL1e+T3WAdQ1UXl+5y3M0s1ms1IYX7/H2FlmsnPjJMMXDocRDofR7/cljCQSiSCVStnAIktquVzHbdQCgQAajYbU7otEImJwtVotWacsN/U4MYQXJdoY6Ha7aDQaiEQiCIVCp86JjDH3Ss3c6fd0sgb1E0E4P6+NCbp+9fG0wUu2kHHP3yZhpxOuO9YI5t7xuML7zHCqTqcja/s8q4RcGOAzH3oim58xxdyYNXChpWbGGpgWzVlAh6CPE15blLqW0/Owep9FONnYX9FcbLRu6WakTGNTNSDmIqbbpF6vo91uy3uBQACxWExYs1kWn8+HSCQiLYi0ZWqOBRk7MiHcSAFIHSwqXgbE050yrX+ntqJpXCSTSRszM5dvnpjeBXN9alcd2WMmRGk3HBU/jV2CQRqojL/S5Zl0XLI2lDmvuTnTTWx2lnkeYmaaAqfjqglOdPUE/q9dvwQcTH7ha9oFxs/HYjGJVxyPx7Z+tIx344b9NMzM8xS9d+nz1Xshz9dk3KaxRGY4lRnrp/cBHU5l6jUdd2+yxN8WcblcUv9Wh1ewRJyTmIYfYA/N0Cw9Ad951YJ87oCPNL7uAKHdEcDJAJiuMVPMz5t0vK4lRNET3nSdmVa21+tFp9NBu90WJRgIBGa2krjX60UsFkM8HpeYRsa60EJwElOxm4CYCjAWi6Hdbp9i8FwuF2KxGLLZLMrl8syOD0W7Zuim1RsiWT0GPg+HQywtLSESiaDT6aBcLotrdzKZIBwO47XXXhNXMVm9fD6Pcrlsi2nh/NQB6blcDtevX4fb7cbdu3fncS9PIU5Gy6wJN1/tLtTuSnolODfNjVqXHiFYoidCd1vgJsHjAUCz2QRwwuCxF6vP54PP50O324XH45HODQcHB7Jh6+S585BAIIBwOCxlrhg3xgfLfIzHYxvDSeDG8WLsHdeU2+2W0knarckkPga7l0olYepp1HFDJkgOhUKSAMHv6kSYF8VckY1lMglrfmoQz72P7eDMPVZ/hq+ZbkMNdDmfnEKwSNLoDhuaWf6mMnzT1sPS0hL+6I/+CAsLC0IWtFotbG9vC3sMwDbG7Pri9Xpx6dIl2b/JsqZSKUQiEezt7eGjjz4615JwFwL4WCNOL0oz5gTAqWQOc/Lwc1ohmZlFWvi+tv70eXECawVaqVTQbDYl7iMUColinbWNxefz2QoKAxCLnxl5pji5KJxofq/XKywUq/LrzycSCayurqJUKs28S1crbipGFo6eTI5rcJElIfOxtraGRCKBSqWCO3fuoNlsStZyNBrFBx98gFQqJb2c+/0+dnZ20Ov1sLq6iqtXr0pZDM5XLtzV1VXZ4P7f//t/L3p4XirRRgp1yKyxMlq0MauNXLJ51Dsm4GP1AQI+JmWkUilbJx0ds8bjDQYDcXlmMhkkEgkBj9FoFO12G41GA36/H5cuXUIqlcLOzo7tmOc5nuFwGIuLi1hcXEQsFpPEKYYy0APhcrlspaDoxqKuZ/IU9bLH40Gj0cDR0REsy5JxJPAdDofY3d1Fu90WV7LL5UK73Uar1bKxKtFoVAou8/c0EfCigIzf70csFhMXvGYkNcNHlz2TwjgPNNlhggaypHo/0MyhU5kWzR5zXOgde5Gxjs9TnMLBKOvr6/j3//7f4/r166jVamg0GqhWq/jyyy9Rq9VsY0+mrlqtolAoIBKJ4Ec/+hE2NjYQCoUQj8fF0BmNRvjVr36Fzz77TIyc85ALdekCp61H85kybYFNU0RnLUinY2t2z8kVfJaLeVaEsTpmqzOCW+360a+bLiZzQutgaNbx02KyE7Nq1ekwAH2N+v47GRZUYoFAQDIfB4OBZOpy3Nm7WLMyVKq63iRgZ6PJDNJ1920Qze5zPuouJU8L2hheoF0h2jU/C+Kk47iGNNjj6wSGvAanceH6djLgtO7SGz3nNEGkdv/Rm0HAdZ6JRGSpQqGQgFUng5P6mG5rvU9o41yPF8+d7/M9fo8gWLNWprFAMbOotavyRa1TXjNj8khg6J7DGlQ4ebemESLm58zPTAtFmBaaMKvJjectlmVJHCUrZIRCIQFqjOfWni+Ca8anck2k02kkEgkEg0FEo1EhBlh5xHTHP6s8d8A3mUzEkuOC1spNTzazqKiJqglEKHrh6s/rWCptUeuMJm4U4XBYAi3pQuD7uuiwpsBnRZi0sbS0JBYghZMym81KwK3uJcnPmH9zg2HduF6v58jwMdDcDPaeFaFSJDDV8U18jQwfg9957bw+xhslk0n4fD4MBgO0Wi3ZqPkgwxmJRGz1+PQGxoLYdC2xduLLGPdizhvAztSb4nK5pPB1KBRCJpOBx+PBwcEB8vk8ut0uyuWyIyNtigZPdAdubm4il8thMBjIGB8cHEiQ/iysWW1oAcdusGQyKUlVenOlq44uTDLD/X4fzWZTPBKMOdZghpsKXyPbZ1mWxPuOx2MpZcKM/lAohI2NDTQaDRwcHJxrV4l4PI7NzU0sLy9LORUNZE0DXNex5NoBjssrsY4mW53F43GJ4ePxGJbj8XiwsbEBv9+PVquFcrmMyWQi7lvWOuQ5atDEcyED+yJ0nGUdh0Ox3BPd/Ex+mUwm0u5Ru7rNjGMANkZQEwIcN53IpmPWTRCnPXQ8PmPgv6kMn6lD/H4/fvjDH+L999/H2toavF6v1GodDAbw+Xy4cuUKxmN7yRqOO9l2l8slIRVk9YETF7lOIn2pGL7RaCRxUxrQaXGKF3BaZE6fMRkcM0B1mjXJjZvnSAtKxz/ouMJZEyYA6Ir1FA3K6CrRZRpMGt8E3bT4Q6GQ40KeBXfHo4QgT1uguuyFLoWhNxn9ObIiZOamHYeLW48LM7spOpj8ZWf4pq1PJ2HG+MLCAmKxmBTvnkwm6HQ6cLvdqNVqT3wOvF/pdBqrq6uSXMT+x9zMZwHwAad7W7M8Dw0q/b526RIc6YxVM4HNdG9z46arjwlcNFL4e4ztYuyQx+ORcTsvCQQCSKfTSKVSsrk5uchM4GfOr2AwiEQiYTOe/H6/FE/WgKfVasGyLCSTSSQSCRweHiKfz2M0GkmRep3Iod2XGsi86Ng0DToJzEhWaADhdP4mc0cjgGIaayZDaBIvTkwycELkfFsYPrfbjcuXL+PDDz9EPB63xYbT2OJa4v7sJOPxGO12W9Y0s3r1vsX1+dIwfMAJ7U5LwGT2tLLSBYAJuiiPYtmmUdDammHwM2NiWB6AVdrpzmP8FeMiuFjM1j8vUhibpi0Ep8QUAKIUTMrfFB1c7rTQ9T2a5UXudrsl2FmXeNBKjfOFmydw0ktXt6QyXSZ6DHVLP7J6dAHznmily6xCAALGZ1XOWmvmZqL/pqs/mUxibW0N4XAYGxsbUqA6nU6LUlxbW0O9Xsfdu3dRr9dRKBSQz+cfqeCYNES3SigUkkLC7DjAwrCzwPKZbl0Cvmg0KvFmuvMGvQtkPXU9OOohXpcO4DczXPX8ZcFlsv8EjGTxV1dX0Wg0cHh4eK7XHggEkEgkEIvFxLDS94R/c80SpJpgt9FoCJNFw7zT6UgMHwBxiXFMKpUKWq0W2u22JD4wgcrtdts6bZhxcYxNYzy3mRV7EcJr1/siKyRwv9LtHTWhwb+nxfDxcyQ0TLeuSdDoY5tA5EkMwJdFTKMkHA5LTOz6+jpWVlbEaNdhEEycJIDTXjV9bI0nNG7Ra5ds4EvD8NG1xlgVAj4qOG3N0Z1qfp/Cz2kGz2TvHudcGEvCuBK6SswgYjbjZi9UTbvOgjC7LBgMihLTi9B0KbK/LjcOPdH0ZNOAT7NjAGRD0hv7LC50Ag4GPOuuBk6Wr8fjsbWa4nhx09GbsR5j7ebN5XKycXS73VPWMH+LrA6tw1mTaZa8/v8so4tA+9VXX8Uf//EfI5PJ4PLly1hcXLQxU2x7VSqV8Nvf/haFQgG/+c1vUCwWHxl/l8vl8J3vfEcKavt8Pqm/1mq1hHE179eLEvP33W43YrEYUqmUxM6Zdbd0aQdWDQAg4I1gj5mlBEka+OmSJmT6LctCKpWSY7VaLYTDYWSzWTSbTdy5c+fcrtuyjpP2FhcXkclkpHyRBuLUNR6PB4lEApPJRNqlEcz0+300Gg10u12pTuDxeFCv14XN4x4TDAYRCoUwGo2wv7+PTqcj9fqoD/v9Pnw+H5aWluDxeGyVDnhO1K2xWEyOfdFziWPAvY86f2FhQe4lQTB1iQZ79D7Qda/ZOF0OiNfMe6af9fE4DtoY1sb/N1lSqRTeeecdZLNZvPXWW7hx44Z0etGJFWTn6cHQSY2akddz1vRQMoSDOvK84pEvrJfuo9436WNzUZ0F7DQ6nvZbegGYbj7zNzWTaIKiWQI3GpDREqRlyolE4bU8alE6udZ1yrj+nVkbDy2WZa/qb7KVvA4Ap67FySVCMf/npsq5xTEiM2My1dPcIy+b8Px11h7nXCKRkFi9hYUFpNNpW6ahHlfGqaTTaUwmE6TTaSSTSfR6PUdFR+XITi9shdXpdATwcINkf0+dpDArwmugt8GJnePDKeHlURUN9P9mcoeepwAkDjAQCGA0GknBeb1GnkUYc6iLQTvdC81Iad1rsqNO33Nau06fc/qMNsZM/abBkU4Muihx0sccT76na/PpsZi2Z+n3nfYD05NmziV2LTE//zLrs2miwRl1GhsdUHcB041i7g/mMfWz+Z5+nDWfn0YuNEtXL6RpFLOmM013G4/DSaePabI2+jvc/JkdQ2vZZFdMS8dkysykkRctGvCRpbQsC5cuXZLG4NpqMBewEwgyg349Hg8uX76Md999F+vr67ZCr7PqzgWO4xsXFhaQzWaRTCaFjdTdWEqlEoCTgsicE2bMH5WrU30qXcqFx6lUKigUCgBgy0wkWKHbsdVqAcCZm+CLEJ6LVvpauIZ8Ph8WFxcRjUZx6dIl3LhxQ9yUgUBAXLpk2g4ODgCcZEZyzP1+v1jL2WwWN2/exNHREf7iL/4C29vb8rt0A9MtTGbryy+/xO7uLnq9HhqNBizLwurqKrLZLCqVCr7++mu0Wq2Zisf1er1Ip9NYWlqCy+USZo+MFsGfZVmIx+O2OCAaFASyuveujkslC08AR/cx63TS9cTvMbh8YWEBKysrktTwrGMWDAYlaYfrzwT9LJlEprPVaknvX/4+e2HrmnOJRALLy8sC+rlvdDoduFzHnTY8Ho+tq4Zeh+12W1izXC4nv631JccukUig2WxKjcOLED1WHKdQKIREIoFWq4VOp4NisYhQKIRYLHbK00OdpTOYNYgxdT9DUujNMvUAW3mSUQbsIVuzuh88jRBrsH7km2++iX/6T/8pFhcXkU6nZX5qhhqwl4/T467Hnw8ac1rnsrMT4+fPE0xfeFkWkxI3NxQN+jiQGrQA9gBUDU4onNAa4GjFZwbi6sGcZsFNs4ZetPDcGb8EAOl0GgBOMSpOgM+JLdWfdbvdyGQy2NjYwMLCglDN2qKcRXG7j2trcbHyntM6pSsWgFTe12wpr43fMWufUegu0UxXr9cTwBePxyWOkLUomc3FEIJpwOpFy7RzomuHm2Qmk8HNmzfxox/9SDqaMLaFjE21WkWj0bBZvCxt4PV6sby8LMr18uXLePDgAX7961+fAnzhcFgAEGPf9vf38cUXX8j4s3bZxsYGAoEAtre3JTh/VgAfE1mYCW+6Y/UaZI0ure84PzmPzGoEnKts58euPDqZSGcAMr56PD4ufkxjsVarPfOY+Xw+RKNROQ9TX2uDmqETHBMdl8wyFt1uF0dHRxgOh+IuHg6HKJfL6HQ6EprB4vHRaBTlchnVatXGYDI7nCBJVyPQ48+4OYb/XPR61edBJp0xqzT06YVxu91otVoyh7Thql2zpu7XgM/JBcl7oEv78Pv6+N80sazjEBW2En333XexuLgooQRcG3pMub7M10xQrF/j3CfzT9DndK+eRS7MpWtSzcBJ0VDW0ep0OhJYzMlj0sn8nu5TZ7pm+RmNmjXC5vs6C5fsjFa2Zo2mWQM4egPQ9ZhYE4gxKeb4P4my4gRk4LLeYGZxTChkdQkoNGMJAK1WC8ViUeYglb3OZHNKgnEyUMhU6ZqHmploNptSWoFzUCtvlnyZlbpxwMmciUajwthls1nJ9GTCEyvFr6ys2NyTNAo4hmRkeGwAkhTFzZ7WcDQaRS6Xw4cffoiFhQVx7/p8PmxsbEjcWzgcRq/XQyaTkeSQhYUFBINB3Lx5E5cvX4bH48GtW7eE4XsR4wiczBuO5+LionSd0O3OtGva9FRoEEIvBYuk0xCjHuBn6dkg80dASb2n3afUfcyoHo/H55LAQR3PEk6m4akzHHWmI5Ot9LmzHAuPq0u0tNttW19hl8slBehZbJ0ucm20aMCp9wvq1cnkOCErGo1eeFccVktgXCLnDMeOYzaZnHQs4TVPq+GoPVXam8G5puO3Afs+o3Wj1ln6+98E4dwIh8N4++23sbm5iZs3bwozPG18OVZ8Nhm6aeSS9niazHIsFpO4wGeVC+uJZVLJWiElEglRXizP4JQOz/+ZSEEwogtvcrD04NHS0anOOvZBKwFdnVxnuNGFPEvghqCUAbn8n+6uSCTiyOY9yXW4XC6Ew2EkEgn4/X60220b7TyLSQfASVB8MplEKBSSe85NZ39/H3fv3sV4PEYgEBCXmXY56ebgmmXWIJCMEgEQQTaZhkKhgOFwiJWVFRlDDfbYEP5FARIn4Vpyu91YWVnBtWvXkMlk8MMf/hArKyu2mKZIJAKfz2cDDIPBQJJeaAVrdoF/d7td6XhAdiISiSCXyyGVSmFhYQHtdhuFQgF7e3vw+/14/fXXkcvlsLe3h6+++grNZhPXr19HJpPB8vIy3nrrLcRiMWQyGSSTSXz00Uf45S9/KaDgPJTmk4yjueZyuRxeeeUVrK+vI5PJyL1n7bharYZarSb11sg4c25wM9YtygjcKpUKarWabP4AZMOg65e6wim5gyA9k8nIHHjw4MEzN26njmeiBdcijQMCFD1eXq9XauMRBHJ8aGSxFSaNCa4hsnGTyQRHR0fo9Xqiw7T7zExG0KwYx5UERDKZRC6XE/13UQwfM5wjkQjS6TTi8bh4CnhPCUKZeV0sFsV7AZw2+LXnjOuYngwAEgNL/a5r1FL/DYdD8VTQkH4Rxv/TkBiPI5FIBJcuXUImk8G/+lf/Cj/+8Y9lrjB5iC38nEqo6Lmk92DTu8n9RQNFfoZGNsM9ziOU4IUwfPp1vXnwwp3QsClmPJ2Ta/JRYro5NRg1j6HfnyXRbKRmsUww5kThP64QoFiWZdsk9LFnTSzrJDtcx8jxPnKj4YbC75x1/8/6Lf3Q94SKgVlb+jscV+0uvmjRCktn7TG2hMArk8lgaWkJKysrp+JNGCPFjVe7CwksdKwKRbPoOviZv59KpSQuiTXXMpkMMpkMWq2WxHMlEgmJ12JMYSKRsLkRZ2GOcryYPa5LVHFd6bXlFL9sziHNRpFpNt2RekPRv6E3GO3u1jX7zmPcOM91Rqi+BjK9pseA4Rc6DEgnpnFcnNzgHBPNZjoxLRwDPSb6fc5H6hLdPeEihOuTekLrdc28AbC5VU2WjscydZsTEWO6I02dpvca81xfZtF6LxqNIp1OS5IGgVej0bBdvzlGgPPeOg30UfT61gwf6/idV/vSC6vDR8qc2YusFK8VFC19XQJDu8m0gnICX07/88EYN7oKNNg00bW2gLQVNIsMn3bpcsyoIPRiNzeLaeJ0fVpxcCPXtcMuytp9EmEgNhcLSxLwUavVcOfOHUwmE7z22msIBAI2dzUtLx3T4hRAq8ENkzF08Dxjh8gu6PI+ZD40G3bREolExB26ubmJ9fV1cSN5PB5br+ZMJgO3241isYjDw0Nh7lwuFxKJBJaWlqTqfKPRkDHR80MrSq55rs/xeIxSqYRKpSKbLMHC4uKihBSUSiW43W5cvXpVWLvBYIBQKCQFTy3LEibrRc1Tp811eXkZ77//viQwsI8z3UQc+9FoJNfB8dFSrVZFD9Jg8Pv9WFlZEfaF8/Lo6EjYhMlkYkvaoJej0+lI0pdlWecK+Hw+n8R2EjDw/vb7fRSLRTlHgo3FxUWkUilbIgd7h9OQYtgKk02YsT0YDIQNIfgfDocyr1gWqVqt4tatWxiPx7YCzsAJ2OaaZXeOiy6Wrt1+9NroElJmXLuO1aP3ATjR2wTCBDfcCzXA1UyVfm0wGKBWq4m+Yk9kFsGe5kJ+3uPD63d6nWICVycJhUJ4++23sby8jMuXL+Odd95BLBbD0tISyuWyYAiOOdenBsfa0OKzSQjo8dZAW3tI+v0+EokEvvOd7+Dy5ctot9vY3d195vG6MIaPrAonBQNnuTHS3+3z+SQYVbuCTFD2OICPr3GD7ff74rLTgM8pOUQjcv25WRMCPm3JnhVEq9mZaaIXP//nsTQToYtGzppY1kkMH2N9dFxjq9XC7u4uJpOJ1PYik6RZFipODU60aKtXM1pkFVlMmJsp59F4PJZgdgZdvwgJhUJYW1tDOp3Gd7/7Xbz//vviaub65Brl/W42m9je3hYX4GQywebmJi5dugS32y0JMRxzwB4rBDi7mbiR0zDjBuv3+5FOpwX41Ot1ATc0bniP9SbI9TCNkbgIMdmsdDqN69evIxqNwuPxiOufoIY6UMeuUX/x78lkgmazKTW+QqEQPB4PFhYWkEwmZWPu9/sol8vSRo3j3e/3hXHmPWWcJPXqeXbRoZHt9/vFINJeg1qthoODA1lDZDYWFhYAQEJ4WDdVJ7noci8812q1ilqtBrf7uERQOBxGtVqV1moMwWg2m7h79y4GgwGuXr2KbrdrC6TXrDdjEC+a4dOAT+sz6hoT8Ol1xrkE2FurcR4QEOqYeQ26zXPg2icbS8bTTK6ZRTGvx0lYLeD111/HjRs38IMf/AB+vx/lchn1el2Me8DeG/ysfIOzAJ/eVwnEuZ8Mh0NEIhHcvHkTuVwOv/vd76ayg08iF1J4WV8cL1CzUJwoJmgB4AhaNBgzgZlJs2pFoN1FmmkxqVSN1nkTZjFBQbNLGsROO9ennSz6XunFr5XRrIm+/zx/zXr2+32JFyWbMu3+OtHtFG4GOqNKhylwUwVOyplo99Lzcumm02lcunTJVm+NbJBeF4lEApubm5LRrNkxzivNfJMN4twrFAqSUHHp0iXZFJl9Sre5uaGYotcxARzXqWb5AdgAnVaS2rWnFakOGXkRQraZLBJ7wo5GIwF82pjVFj9wkgBkuni5SRAgNxoNm0FhCo+vgbG+vzpmEHDWvU8jNLZ1e0e91jQTTKDLdTWZTCTuj8BUA2Mdb6dZKRajn0xOamKyoH44HJYepmSuCCIJYvT5EdywrNdFio5hJECzLEtYbQ289Hf4eW00cGx4n7VBZ4ZVaR2vjV49J3QIET12z3ONPQ5JATjvcybb7nK5RFel02nkcjkkk0lcv34da2trSCQSov90Ap4Ziwzg1F7oBMxM76E+Z73meDx6NxOJhMSZn4dcKMOnsyG1ZcYNkS4xgjInpskEb+bGDkCCgfmaZhFcLpcwBwz41cBOT25dh0gzgbMi3DCY6chJSAWpKWyTaXhc0dS/Lrzs1HVi1oRKjG4fbhDAcebszs4OgOMsQTIapmjlpx+8ZsZkEbhpy5ngjhsOEzQI0j0ej2SCnfdG8uqrr+Jf/+t/LeU8JpOJJKcwHom/qRkEuuorlYrNTa0VJsurtNttfPzxx3j48CHy+TyCwSCSyaSwfbVaDfv7+3L9/D7nDMdSA1CGdbATDs+T56oDx9vtttxnvcb1tVDnkF26CDHj7gKBAFZXVxGPx7G5uYmNjQ1MJhPs7++LS9esEcjwFw3ceN+4rslqNptNTCbHnUsqlYqtE4XpqptMjmvUkfXjGOkYQHpjzgsk07jSQE8DKp4375XH45G5RLc3cAwMmTRBAMZzNZM2FhYWxH1NIEw3+vLyMhKJBPb29oRVbjQaqFQq0iVGX7tOAGMNuosSXnMkEpGWai6XC/V6Hc1mU+41z4vri51EdLkpgmlm03Nd0NtAQ5TPBI4ER8DpEmvASW2+ZrP53GKRTWOHYgK9aS5b0wDyer0S7/u9730P/+Sf/BPE43GpOjAYDITVM9l3jSuc1ql5Xjw3jqsGfjrjms/EQ36/H+vr60gkEojH4087dDa5UH56Gtun0a924+r4On5/mm/eZPucXtfgTd+waYBFW5yzyPBp8MXrcmI2H3WMR31OX7veOGbVnQvg1Dwz7x/ZAl6TyQTzGBQ9R/U1E2DrgHTNUnGOAbDNOx7/vNknHisej+Py5ctIJpNyzsFgEPF43AZIGe9klumgy4gFovU8oZuW4KHZbKJer6NSqcjGwuOzZIjJJpmAj+Ohy9toVtZk73kPeSyT+eLxNNv6vDajRwmDwJlIwtgnvZmYa8qMKdbsjNaDZOx0GIHf75cMfSc967Qx6nls3pdnFTIWZC1MPa3DbQjs9fmYcU7aZUnRuhCAGO1MJOLxdNFwAl2dYERCQnt5aPS+iKoEOp5OxwDrShWayeN39LrQ816viWm60Zx31FP62E5z8nmPjamPzb39LDH3RurCeDyOpaUlXL16VepPBgIBNBoNW7F2zQxqNy1/2+n3TdzBz+j1pb+r9dp4PBZCgPGrTvjnSeXCCy+bi9xpMmml7aScNELWCsEcEM0UMi5QNzkGTuhUxhbq0g08NhkuHc80C8KAWVqAZEyBx0vS0JvGWcrdjBN0uVyibF5EoO7jiGUdB56TPeP58zpDoRCWl5dhWcctcwCItc8SN3STkKHi3KA7RReI5XF9Ph8mkwkymYwsWDOJgPOPxXDPi+Hz+/3Y3NxEOp3G66+/jqWlJUSjUbTbbSnzocsGMLCfMTjclDVA5UbH89WgLBAI4Mc//jHeeecd9Pt93Lp1S1yVlUoFgUAAqVQKlnUcp8U4Rs3Wma2JqIh1LJU2zMzaX9Qfeh1TqRPYRqNRxONxYQSft+h1BRwX3/7www+xvr6O9fV12/zhOTMJoVarodPp2MAO68u5XC6bB4TgTK95ltTgeNGbocufhMNh5HI52xgy6QYA8vm8hDuch2iQofW5CeR09ilZt2aziVarJW5rJmiYbku3+7goN6+b50+gRKaMa87jOe7DWy6XUavVpNSGBnx6nwmHw4jFYpLkcFGi1yBr8VnWSS04MuEsa6b3T82m8hjaDak/Y4J8rfO194KfZ59Xvc88z32Ac0T/78SiOUk4HMb6+jqi0SgymQxyuRwikQiuXLmCRCKBlZUVCR8ol8sCqM1uX6bxaRqbGgQ/innk+fM3NCYxwx4YEpJIJGTcnzaU6rkDPj0Z9E1igK6TZUHRk0+LHhB+zonR4k3Sm60uTMrvaauFwJBCy4Bg6kWxBE5CgNLpdITSN60GyqOsobMWK8eGoIAKlO74WQR8dENowMcH31tcXBRgCJyMJ2M3dPwbN2Y9jzQLBpwkHrH1Fy1JAkcyCRrwUYmfF+C7cuUKNjc3cf36dSwuLiIYDKJcLou7hWOgExp00VsCeR37SGVPhkPHwK6ursLj8eA3v/kN/vRP/1Ss0Xa7jbW1Nayvr9vi1bQRprsWEIgGAgHE43FRhhwrfobnqGMfuenrwHHtzmdpg1KpdC5W8qPEPH40GsU777yD1157TYpF63g2zqteryfAOBKJSNao7qJDvRUOh6UwsQZ8JiMRDoeRSqVkvXY6HcleB042qXg8jmw2i9FohHq9LvX8zkM0KNcx05xnmu3ldbDuWKvVEoOF7tbRaCTtHbXRT13faDRQr9cBnLQ27HQ6qFarcLvdwuKQlWbXBAJxnjPPxeVySesy3Y3jIkQzk0w2Ycwhu4lQx2immPqeD64FE5xN23u53ji+dP3zmffF3NeflzjtaY87P0OhEK5evYpcLodr167h5s2biMViuH79OpLJJNrtNprNJgaDgQB/HT7BuaszoDWIM+cx4FwfUK9LTXyZ18HXCNB5j1n4W2cKP6m8EIaPzyZ1bIK9aQBFv8f3zdgqc8I7TUgOJhcKwQstTSe6e5aE589MRsY+AXZr40nEvFd6oyUIIrtw1ti+aJnmztMJLixUyjHThoO5eeqF7cSi8vN0Zzq5JbVFaJbNOQ9xuVzSeowgS18vz9NpnPT/+jUqPAI1srvaEGKG6CuvvCLlb4rFIoLBIAqFgmPnFy06NmZa2QsqOB0/w+vhfSLjStaW6+JFZFiSNUskElhdXUUikTiVYUkWQbvSNXDRgeLmetPzxzT0dLYrP0dDhM80EDlnyQqORiPJ2HWKTXrSMZjmAuP7gD1IXV8vKzYwVo/v8xppfBKY6LWrx4XjxevX4CUYDEo5HCfhsV7UPqDHkLqM84fXz7mt3b9OY8DXNJNnAhktek81XZAcUw3Sn6chxftFfW2WRNGJKJwvjONNJpO4ceMGkskklpaWEIvFpDC3LttE40ln4Jpz2On+aExj4hL9PfNz5vFMdlWPJ6+LHranlQuP4TMXP2OpqLj15xiUrFGznqikok2UbG72fM0Uxhh1u11Uq1VJ4GAgpUb2swhsvF6vuKvS6TRSqZS4o/W4aTnrGkw2ln93Oh3U63VhSrhYuFHMopCRYmAywUalUpEkhLW1NYmvAk6y8YCThBiycnQ5mckrHGMmEZCl0kCDFjgXMkEz2YLzUpYej0fiUZLJJFqtlgALDVI5PlpJOhlb+jN6/nPD4WcB4P3338drr72GRqOBv/qrv8LHH38s/U5jsRiWl5eRyWQkDEG7Z3w+H7LZrKw7rmtT8WmDQ49/t9sVlqzVasHlOu7JG4/HkUgkkE6n0W63sb+//8xjDOCU8ndy2bjdbrz99tv4zne+g+XlZVy9ehWZTEbYJ9ZdZA0+Mr86LIPMsdvtlvprBMbaBcex5HgwLpPAnK3x6A7k3OPaJnDo9XrodrvS2aRUKtnu05MIAYEZh8fx4mcAiJtKAxv2LyWLaW7MdGnqvUHvCXrOkhFl/CoNolgshlwuJ4lT04gE4CRh5qL1nWbaqVPYcYS18BYWFgS8kwHX3gy99nVoC3WkrneryRed8c73uBeS9WRoFg3L5yWhUAjpdBo+nw8LCwvS/5yhVqFQSFiwS5cu2fp8k+U3vSjNZhONRsMGaDnGgD2LVv/v9LcG1JrE0uPPz5ggUR9Hk2DayCVT73K5UC6Xn3ocX1jSBsWJndOf5Wf4mhOtq60P/X2nv/XxeDO4QLTP/lHIfhZEK1UGImsreNp4niVOi1bX3CO9P6uuXC3aeuUmycxTALKJautex2ho5oULVceLmRuXydRQUdPlaM47E4Sdx/VqNzYNKA38zd8yWSLzfx3Dx++aBdMnk4kkI9RqNfz93/89Go0GqtUqCoUC+v0+MpmMLSCfa5ZjSte2rt2nxRw7XYZDx1YyY50AXbugn1c4hql7yBKk02lsbm5iYWFByoC0Wi1Hho/jSEBBlo7jrTd96iyuQVNXagZMb9i69qmOa6VQB7Llndkd5knF9JA4MRoErNpA5dphb3NtGOm4RxaA19mPBHx6r6GeJBOmQwHoIjUZPqd7Ou06nreYDB+ZKZ432XxzLvE6pu1/+tj62jToAOxJBvpvM2nmeewH2pPATGUac+x36/F4hIhglQACP8ZpUxjzzux2hrBQ95kJMBQTs+jXOWbULybR4oRFps0jHsv0ep5X6ZsLc+k6bZzACZPCiaqzkHRQt9Mx9bPerHTZB033c+NqNBro9/vSyJwWrsvlsrmFdJ2nWQR/7NXqcrnQ6/VQKpVQKBRsQfiMFdJuvWnCceJ9orUIQBiAg4MDSet3uVxSZ23WxLSgTCXIDhN0J7K2HOul8ZlzULsROZf4uUgkguFwKFldtLYBIJlMYnl5WdLqNftw3iEDw+EQxWIRu7u7GA6HSCaTtkQU7RrU7DfXDTdDjhfPV8ePAbCBLQrnVygUwve//32sra1J3BRZrXq9Dp/Ph1wuJ+w9Y/4SiQR8Pp+sPQCy0WsW32T8tVCXjMdjfPHFF9jZ2cH9+/fx0Ucf4fDwULo5PEq4uWqWQ4vT/3wtmUzilVdeQSKRwHvvvYdXX31VNuRGoyGMGpNldK9hADbDQINcbVTQC8F4QL2+6crKZDIS6M0kGPM4uj6eDuo/ODjAF198IcWbn0YIsnSpFyf3FpnxSqVic9P1ej0pPbK7uytxVW63W+KW+/2+uKfJVhJMM8mDXpxOpyPFmCmsgcgHdSXP20zwexFixswCsJET7GDSbDZRKpUEpHN9m49HyTSAqFlk6jfOPd1n9zxBXyQSwXe/+12sra0hEokglUrB6/UiEomccs+zFioBIYuXVyoVOW9tKGggZRoH5ng4iQma9esaKE8De+Z3THJr2m8+6/heCODTVoFWTABO1U+iq4GZkk5iuhz5Nyc0bygXBpUNg1ZrtZrEdNAvrutPcdOh0ppVwNftdsVtVi6XhUHQbZO00noc61SDPifAt7e3J9mnTF9/WrfP8xZ9vZoiB44D6dfX12VeMPMpHA5jMpnI9TGYXlvAJuCLxWKyWXDucEwYMJ9MJm3sg2m1nxfgOzo6wtbWFtxuN1ZXV+H1elGv1yXzU8e36Hg5gkCuPypIswAz4Jx1zzUSDofx4x//GB6PB7du3cKf/umfShJAtVpFOp3G4uKitNnSbIGeewBsxdE5j9nGyWm8CKJ6vR52d3fRarWwvb2NX//61yiXy4+1efNcCHy5qWk5S/Emk0lx43744Yd4/fXXpa4hM3AJShgsrsv6EPA5MQfASe0zMrlkLHRZlkAggFwuh3g8Lu5KADZPhk7UYQwbAd/+/j5u3bpl27yeVKg76QY9K06s2WyiUqmIy5mAr1aroVKpYGdnB+12G/F4HLFYTABfr9dDMpkUZrher0vsIed7NBqFZVnodDo4OjqSue/xeMSdTrDHe03AZ7o/XwS7p0GrE+BjIgl1D8NVyAhrLwNZzMfZA/SzE+DjGGt29rz3gWg0ip/85CfS8SIcDp9iWbVO1h4TgrtKpSJhY6axzbmp7+1Ze7wTENZYht/VoT5OjJ5TSIiTmAb1SwP4nBYKlSoZET3g/A5w4k7Ug6XduE6L0fxfK1BNmfJ4JtrWN1LHhZy3BfOsQsDX6/WE7qUS1yUOnITj4PS/k1ImMGeMFMH50dGRowtuFkQzy4B9MzfZX/6vSxvwO07zSz/rzFC61TXbwgQCfV7PQ0ajEWq1Go6OjhAOh3F4eAi/329zHQIna4gggS4usgN63MhGmQyxeQ0u13H5EAb/c4z5+/1+H9VqFQCwt7cniRwmg9/pdKR8ilagBCuM19MbDTf5VquFYrEof9M1qdkwxrhOE61YH3WfCJAZY8fyD8vLyxIbpj0NZNSYaWeyIubmpXURx0PrK25gnF/8HN3rfI2AnRvRtCQRfZ7nsXmb50sx9QvDLBhrqmv1cWMejUa2uo5keHQ9PYrHc9yajWCH657GDlkhtjYEju8754zJzOh78yJl2n4HwHZ/AXvxbyeDX+9x5t6oj2keg+tVM99PsmYeRwi4WbKKxeI16D2LidPnYhr65jg4gTj9+uPecyfsoY36affOyVtAo28aEfAsY3whrdW48PTECQQCsigbjQYACGtCRWpZxyn2LBHAhaonllmaAYDNktHULQNPqWgt66SeFWCvPcT3WHeJVuCLpvi1HBwc4C//8i9t1dTT6TRu3rwp9c90vBRwerLrDUUvej0hGWCez+fx9ddf2zp7tFot2chnSagAzdgglmkYjUaIRqNyrdyI6/U6JpOJrbI5F63evDg+dG2QFeRvMNaKQcOskG8CqvOUbreLW7du4d69e7h37x729vYQiUSwsrKCZDJpUz50E3HTY/afaYDpTcGMgzM3GVMajQay2Szi8TjK5TK2t7fhcrnw85//HMBxPA1dnCyQq3uEkoXSLmQzrhKADcgQ0OkOHVevXgUAPHjwANvb248cdzMZx0ksy0I0GsXKygqi0Si+853v4PXXX0cymcSVK1ckI7darUqiymAwQLlcxuHhoa3fsA430XXltHvdZBPG4zFarRYCgQA2Nzel/zFZEG6OjUYDpVIJAE5tPAAkdpJgmvfjWYXnwCQnE1hog75WqyGfzyOdTkvgvQ7GX15exmAwECOTa1eHYPA3Leu4X3EmkwEAKbXCBB63+7gsSyQSwdLSEl5//XVZ8/fu3QMAmwGrvUfPI7P+UaJ1Bc+BSTcahJGh5PznmOtYazMpw7JOYsDNGD7+No0+AGIUaD3Gx1l64EklFothcXERy8vLyGaz0uaMetYETOZr5tjx2oETXc6/zc+bgHianEVSce4z5t0sG+TEnOuxZ7iL7sJxbmD6mY/wGKKBBweSFhYLwmr3Fl1PbrdbKGpTWZzFwOgYHOAkPVpPVIoTvcqHthCd4pZetNCdo2V1dVU2OFOcJvCjXuOCZ3ukBw8eSKujWRZt3WkLl4pQs1A6gJ6hBGQ4zmL4+BsESTRWtGHCumF68fK757WIKaPRSDZ3/ibbLtFw4YOGDjdkj8cjzBMAGzDUZWXMQG0yb5qFI8gmE+PxeHBwcCDhB2S3ms2mdPngs64PyODqx2HXqRO41qPRKMLhsBQUJhv9OGIyvKZQwfv9fiQSCenB+cEHHyAUCmFhYQFer1cK+vK66HKu1+tT2WTOGwZpA/aQGP42s1ZZqFrH6xH4agYUOAEB2sVKgMm4t/PMttS/w+tzYqbIyNK1zPVDQMKCytrVqp9NdzHbHQJAuVyWOFFdlsbr9Urmp9frRaFQQLValZhKU7Thc5Fizg8zDETrOc3im+8DJ3udaUBMuya9f5IE4XGczvG85g31Fsun6Ixy7ZY1gZMTcUHRrlynWNInEafvOmEQTXZxrXHvMfUZz01f0/PICL9Ql64eIM2aaCtBB72bTMg0S9cpa4g3XC9eM4aBfRaZOUcXF91y2iJ+WYQA7TwCjjne3W4XzWZTyta8LGIyfFr0AiNw5obDxUnR89QsbMuUf26yBJDa0k4kEqfq8WkX8rRzfBZhGZJyuYxut4v79+9LppsOfPb7/ajX6zbmnGuJa4Gxr5xTuiwLFah2BzLDEzgBxdx4dakHbryTyQSJROKUK4ZMH0urcJM2yyvwO+12W37HdH0yUetxJJVKIZfLwe/3Ix6Py3mStaVuiEaj4rq9fPmygOpWqwXLsqRDRr/fl1Is1WoVlUoFlnVSK1AHjvNvApTJZCL6SQOoeDwudeRoTNy/fx/lchnBYBBLS0u2+GTqQrqVtcvI7/ejUqlga2sLpVLpXLpscO7o+ofTgAHZdd2BhHOFY6evXwtf4z0PBALodrvY2dmRfYTsJQsvp1IphMNhKbLb7XZRq9VQKBSwuLho2zO4HsiGX2QtRwAyBozPIwHCkijaqGXMNUGG7jfs1GVG78FaNCjUZIkGTPo9zqPzikUmQ+bxeMQYIODnb+pzNMUJ8Onz1fNRP+vvaoyh3zNf0yExeuyoz8lM6mNrEsJkKPUew5AYXW9Rd0t5GrlwwKcRsN4A9eYHQACf3lyJ7vldWoc6S820WrSLStO6BDLValU2ewI+WoIvA+DTbBMA28I3U/Qf93j682QIaP3Okkv7LNFzSs8hcx4SoJTLZVsMHjcWbVVzMWqARndtt9uViv0Ed16vF9lsFpFIxGbVaYvcTKw5L2GGo2VZuH37NizruL/u8vIygsEgMpmMNKdnaQPWDdQbAbMgB4MBisWixMXV63VYliWtuzi+o9EIhUIBjUbDkUHQ94HgkyEcZswXP3vt2jW8/fbbCIfDyGazEnel7/N4PMbR0RG++uortFotNJtNdDodFAoF3Lp1C7VaTdjLR0kul8P777+PWCyGq1evCkAgcKfi1YkOnDPD4RC1Ws2WvdjpdFAul9Fut1EoFFAoFMQFywLIHBMel3Xz6Lrt9XoS8uLxeJBOp5FIJGTDGY1G+Pzzz/GLX/wC2WwWv//7v4/FxUUMh0N5n8yqmajh8XhQKBTw8ccfo1wuC0v8LEIgyVjCaUIw1mw2RQ9zTXDsKpUKut3uKZeZ6SZm3Fej0cDe3p7MeSazVatVuFwuSfaoVqsCokqlEvb398V9rIXglWN/kUJGnBndrIpAI1PvXTQuwuGwgD2GmbDziHldWteZrDbXlQ5n0cwhHzTazqNbEHASG+vxeESvaoPLaU82QZsWHbdqhpcRN5j7g3b96vEyr59GlxMbN5lMhOXnOWiDlufmBEz5GcY6k+lmDP3TyoXN3rNoY32BOo6O75ubtL5ZTrSoRtJOm40eMNNK0uejz8vJHTyLooHO04IIc8y4SZi190xwOEtiAj59DylngXnNWJnzwum39PzVLLQTgOHfGvSdN+DT7DaNKK/XK3FjZIWoVBkvRQBCY4wMyHA4RKPREKaBG7DL5bJtkHrjmcYMmONmjqlpeTNO0uU6jhk1v8t7ROXK7FdukjpWcNp8JWPn8/kkfigajWJhYQHJZFJcp7S0deywyTaYugOw6yZz0zLniglkaDzoWpva2GXsVj6fR7FYlDg3J0PbHHv+Nt3qjUbjXJOwHsdY1ueigZV5/tp1q8dOAxJej06c4md0P1gynMFgUFhQpwB/fR0vwvDXeoJud+CknAgA2/5l7mXmvslr0cd2WoemTqNo45ffNUMTnlVonLRaLRQKBezv70tspzbKNQAzySRzD+MapTGuz1+Pja4W4MTw6THXSXAul702KH+PIWsm86eP7aT/NJPJ+TutRuCTyIUAvmnKXrsYdCkUblBu93EBVS5ULmyyWMDJTdAlJ/Tk08CRfzP9n4vcDBYfjUYywGT9GOcyawyXObFHo+Mm6YFAwFY49XEWo/kZKppmsyn9WJ2CTWcR9I3Hx+UeqtWqBP1qxcb5NJlMpMSFngus/M9jafZZH4cWuI6ZYl05uiXMmAwClH6/L4wKuyqcp5iKvtPp4ODgAC6XC/l8/lSvSDJ8mnGjkiHLYSpBJlwBJ8y50wZgxlICEKBClxONNDNBo1gs4quvvrIpQA2U+blms4lisWhzCzL2dDAYnDnGiUQCf/AHf4C1tTVcv34db7/9tiR+mEBNu66cDFWOEcfB5XIhEokI08S+xgRa7MZiej2o42KxmIDRSCQCAFJv8eDgAL/61a9QqVRQKBRQKpVknrJsC8vY6Gxc/hbnfr/fF5fuecbomrrBifWlRCIRXL58GSsrKwiHw+LOIosci8UQiUQwGAxQqVQwGAwQjUYRi8XEbT8YDJBIJJDNZmUujkYjYYfJBLrdbiwsLAhrUiwWsbOzYwNSPN+zgPPzFgL6druNo6Mj+Hw+pFIp6XusWUpdb5PuQO55ep3wGrgmaAxpV7aOA+V8tKyTHs7amOa4n0eyD3Acd9nv9xEIBFAsFpFIJJDL5XD58mWEw2Gsrq4ilUohEAhIBi/LaGndNQ3saiziND/5bN5r6hPqGpby4jiUy2VUKhWbIbW5uSkx9UxM07+p14IGk5PJRFhayzru986xfykZPm1B6KBmbsLaJalRNwEGJ5cu6qmDIk1mDoAAOZ3VqhW1mRGoJzs3oFkEN1p0DNnjuHSd3tOLhFYKC52aVuKsCseBSlAzHhTOKbInuu4gv2u6N0wx4/A0c6A3b/4Wz82yjhOBWIbkvJSlvjYnplYDNFMYD8bz18qIGw1jshhIrTcFk4kxlSrHQY+dtpIB2IAcnyuVCra3tzEej6WOHUt56LXLzNenMcqCwSCuXbuG1157DVevXsUbb7wBt9ttc5mZDKHWCfpa9L3m/xxXgju+zjHROkmPD4E45yjDA/b391EoFPDgwQP84he/sCWk5HI5Ycu0Ic17oplEsocED5VK5ZGla55FzgJNPp8PyWQS6XTadn7cwKPRKFKplK1gNVukEbwMBgMEg0Ekk0mMx2OJnWT8qmWdFPVnu7V2uy19tc379qKYPYo2QpvNJur1umQxU1dxPWhXOMMLqGtMjxhfm1Y0We/Lmi1kbCnBjy7TYh7jaYUg1OVyoVKpwOfzYXV1Fd1uF7FYTEA5OwrxnDhfWKrHCUw9i1iWJYCPlStIDgwGA+zv7+Pg4EA+63a7JfNcg2x9PCfWmpiEhAHDMnQP4aeVC+u0oQGepl71wwRj5oLjd6m0zN/gRNeUrP5dDdzM8zIXAyePLl7pRPPOmnARa5ADOE/4RwFBjpsGTtM271kTgoNmsynJFFo4X7RCMy0v7QKi28fcADhnJ5OJKB3NBk+LBeWi1vGW5ykmMHkcYbwrDSHOdcuyxDql0qFbhNatXqt67Wqla84ZjoEeG21wmQaLdmMSGDq5lp5EwuGwlOhYXl7GysoKfD4fSqUSJpOJZI/q8+JGp1lLs3gyAFuQvbbamUFK3UIwqNlyMnKaZa3Varh79y7a7Tbu3buH3d1d5PP5U7GJptGnx9d0D+kYMbJE5z0XtfBcaNTrcAbtuuTa1ICE4E1n0zPGj6BoMpmIOx+wlxbRrwEna5wxypVKRRJEnFyi+rsXJQT5BHicj1qfWZYlHSbIGLPPOuPLdNwp4xCZuMWMfu014/rne7qChlPSw/MKS+E9LZfLePDgAYLBIJrNJhKJhIB4j+ekiYKOSdYtFXWMsI7Pniba8OR8ZJIn7wMLT/P9arVqK1Gm476pQ3UVAn0OWpeYc6/f7+PXv/417ty5g0ql8tTdb4ALbq3GC+VF6tgLzbRoC9kEfJxkpi+bC55UNq1W0+UCnLietC/fdDnRhcVjeb1eCXSeZdGs0bRYnLOUlt50eM8YVD0NOM2i0NVQLpeF9dGLiPNFMzfaINEhAlR8pjECwFZCiMoRgFT6p1sQOB23QSXi1M3hPORJ7412y5jK0LIslEqlUwbEWQzx08pZYNXpvacBt8DxeaZSKayuruLy5cu4ceMGbty4gWq1iu3tbQwGA8nkBE7WAztmUGe4XC4kk0lEo1GpPcd4w06nYwNv3Jh4PMAeF6VZGbrQCbLz+Tx++tOfolgsYmtrCwcHBzKHtNDYIQtmAm/t9mLYB9vfsZn88xKuv/F4LPGh2u3IGNFarSbZzlw37KTBeFOPxyPnzTG2LAu1Wg3lclnuSygUEuNvMpnIeDIerNPpIJ/PY29vDxsbG7b1aBosFy3BYBCpVAqhUEiyvOlK1MYB622Ox2O5tnA4jFgsBsuybPG51GHJZFLeZ0iLJjUikYhtjelYUjOsQXfkOS/hcWm8sFOKaUTrBwEykxyYCR+LxSQGljr6LD3V6XQE3HG96yoA3Ct4nsBpL5DL5cLdu3dx69YtYZYJELV3goa/LnxPXcD1wWoiOpztaeTC0IuenKbFqcWJhjUtX6fvmb/zOO9NO4YTu8jvzyrAoWgA+zjX68TU6YXMSfk8Soc8b9HKbdr9NIOWnQCGyf5q0YvWyYXpdEx9XrMmTiDqmyzcDKLRqK05OVlyWu/aO6Ctf4IzfpYbI40E7e6mZ8IsUwLY9Ro3NQIYMgOVSgWlUklKp0yLtdMu5mlrlr9H9pKs0Xnfdyedw7EwM97N9eq0nvQx9LGd9hUTqDntK7rUi17LOvie8iLWhAY41FeaBW02m6jVahJ6oI1aUyc9am/U90HrLk2mmMzi8/by8Jx1DPVZQsZWAz6v14tutytg9UkBHw0NzSY/jliWhUqlgqOjI9EpNGpY4ozzn4abvmc6bIXM9rPKhbp0NbWqF5m2lJ2qywOwKQIuSC16YQAnyRqmO82yToJ2TYaRx9BKmZSudpPOsugJpV1cTorQ3AymgRleu5PLTCvmWRKv14t0Oo2lpSWxkBkPoQGxCWrJlvCe6/c0lc7vNRoNHB4e2hhDdi/Qc5zzlu4XWtUEGc+jyOZczhbLspDL5fDmm28il8tJ72Tdik4z+polDofDMl+ouKvVqrQBo1ufwIvKmmVKyC65XK5TdRt5/GQyiU6ng7//+7/HZ599hmKxiDt37qDdbku2spOQPWPiEdeodkvTXXZ0dIROp4P9/f1zjSPVrmNt2PBvbma1Wk3Wld/vx8LCAnK5nGzOw+FQGK1UKnWq1zpjIsfjscTCZrNZLC0tYTI5iTFNJpNYXl4GcNJ9IxwOI5VKodvtIpfLSXIIM0R1NuiLFjKYXq8XjUYD9+/fR7PZxF/+5V/i3r17otdZsicSiSCZTMo+V6vVpL4igTXds6xBWKvVbGwz50qtVkOpVBK2jGWYtMFzHhmk5yGj0UjmPeeXy3WcpMa9/XHOk0aQDuE4y4BykslkgmKxKHG01B/apWuGmum9VBse54U7LhTw6Ymhg7r1xDEBm7bcNI1sUtp8X8ft8Tc1a6itZ9NtrAOFnQDp84hTOG9xspwpZ7GiTswpr1tnZE1jumZN3O7j/qaJRELqUtHtajJ6piULwLbp64KwnCtUeJ1OB9Vq1aYM+NtOMaQ0OBiMfh6BuHN5OrGs4zpta2trSKVS0ttbAyMnRs7tdos+0HFwBHgE8Jr55dzQ2c9MgKH1D0DmQygUklpr9+7dw89+9jOpSfYo5a/jeM26Y1onDIdDlEolVCoVmcPnKdqo1mJZJwlLjIPitUejUcTjcVvvZMbeRSIRpFIpDAYDVKtVDAYDRCIRxONxm35icsdwOMTR0RFarRbC4TAymQwsyxLGJh6PI5fLSTIA7wfda7qUyywI9y66N8vlMj799FN89tln0qrU7/ej1+shlUoBgMxrsysTjQpmKdM1rj0PnL9HR0fY3d1FJBLBtWvXbIYBdZqZJPGihATNrEij0TgzUe6i5UJj+PSE0DF9+nNODJLeZPXr5vecKGmnY/C3Naijmwawt6DR/xOUzrJo4DItq5jXpp+dAJ/JgL0s7B5wnAL/4MEDAEA+n8fW1paALI/HI6n+ek54PB6JadElfrjBO7kwdKcNxrDoDZZg+ejoCA8fPsRwOBRL+ZNPPkE+n7exHHO5OJlMJigUCvj888+RTqcRCAQEUE1LttHAifUMtReAriQm+uhSPgAklkqDIYJAvZby+Tw+//xziSdk2zPg0euOhjXnuy7PwRItBF0MRGdyiT7Gs6xtbUSb7mrgGGzW63XU63Xb3Ofv8rx0jCs3TgLB0WgkcU28B3yNa5EusW63i3K5LC5yxmNXq1VbOROOC8GOuWdctMGvf5tAlJ4wnXDGezkej6WsCd28brf7VAcVy7KkHA1LvuiYSW2kttvtUyENPMasEyBzsctzB3x6kuhMNLpDTNZsWrwT39PMnZ5weoLqY01TNuPxSQYllYVuHaYBIy1yfYxZFbp0ObYM2nYaVz6bf3Nc9cY2zd0zq6Cv0Wjg5z//OT755BNRln6/HxsbG0ilUnj33Xfxx3/8x1IiYzweSw9HnY2mqXgdAkAJhULIZDKSBchSGpyXnN+//e1v8Z//83+2lVVgOysWKp7Lxcp4PMbt27eRz+eRTqdRq9WwsrKClZUVbGxsSB0ss2AvN34NAvi31hW6zI92uZmMIefDeHxc36vf7+Orr77Cf/kv/0Vqe2l2hvNr2rojIGAWYzQalbIrZK54DgxJqNVqtiQSDXSeRrQLUgNnGtm9Xk/6K5ttvyaTCer1uoRKEMgQtOnQG7q2ec0ulwu1Wk3YKrJedFsCJ8mCZA9Z507ft16vd6qcxvPIpn+UaDJCJ2uQ6dOZ4wTzbJWo56JJruhx4Pc1YQKcTkZgGABdlIxTNUmDucyuXGjShgZgGrxpMSfbWa9pcMZnp9edrHT92/p/M75Lf/9lmNCmC/Escboep7F6GWU0GkkZB8bk6HZVzNgD7HNTu/t1SICTawqwZ1hyI9YMM/9vtVrY399HtVqVMgu6A8Ssx4Z+U0W7FNnyjCCe8WIEcgQupmuUAInP+nPaaAROYoqBk7AU/czYu0qlgoODA5TLZRvb9DgGJw1YtmPTRah1pQHG0bF123mv9Wl6k2Oji92bYnpteF06CUZ/TjPrNPDMsCEzBlkDdVMXOOnPF6kL9d6kGUgnguJF6JKXYW+cywUBPlooVFi0chkrx8lCZcvAS3Nxm8BPW9vccKlMTGvbLIlhAjq9cWu3By1SKs1ZAkBamZrM5tOep7bcHpXpN8tCFxABFd1tAE7dU+3Op/XMulX8m4ywHg+yAWxXxjlLZkjfAzLaPB/GfumaX3O5eGFwdqVSwe9+9zvcvn0b0WhU+gyTIQoGg7aaXyy3w+Qc/s/5ouM3WeJJAxB6OTTIazab+Pjjj7G/v4+dnR00Go1ToRSmMesk1WoVP/vZz/D1118jmUwilUphPB7LPGW5oEajgU8//RRbW1toNpun3M/nMSenGcrac+Bk9LNwMtcX9Tn1ONcMez0znnY4HEpHDg04eS/1XhIOh5FOp9HtdhEOh0XfmWye3h8uGtjo39ZJiboO5UUJww9CoZC8xqLAs5K0MZez5UJcutr1MW0C0wXAApCaHXEK+gXsGS58XVvg2tp2Oi8tZrCqrl+lraqXbWN2UriaaZ32eScm42USbgBauKGZ91lnYNHI4Lzy+/3S/J3ufzPwnRnR3HAsy5LUf80Y0B3yPDsZzOXJRCdk3b59W16n7mAwfzQaRTqdht/vRzKZlID3VCoFn89nKwFBEKj1HGOYNaNEsF8qlXBwcIBSqYS/+Iu/wO3bt6fqmccx5hqNBj755BOEQiGk02lkMhlx2zGphG3e7t27h729vVO/oZ+fVs7yitBYdzIoXS6X9E3t9/vCUlJHj0Yjic0jOB8MBigUCrYsecafDQYDW5sq3vN4PI5sNotutytGHfWBmfSmKzlcpHAP0g8aCxe9H1nWSa9j7RXRTQnmTN9sy3MHfDqWQ08MsnlModZUvAZbwPQCq04uVycWUMs0V662xs3OGhoAzXoMn6lIp53zWaCP7z+ua3hWxZwLVFi66ryOK3Vy+5tZX2T92G5Ob0RkEM3xnha+MJfZFfPeUy94vV4MBgPpO1yr1YT1Y0KQ7pzBucHEDB0ywjVar9dRKpVQr9fRarXOBHuPI+PxcYkS6lGdsMHkJNYmM7t0POlvPeo8NKDTx2RsnnbpFgoF/OIXv8CDBw8QCoVsCTHUzZolZWIMr5VGvv4O1zU/x9/mGDGGcHd3F+12W4wxzSTy/xfB8FG0DtEs5EUb5LqsiXlOLyMh8m2TCwF8fr8f4XDY5saNRqNYWFiQ0gYAJDOL1jXdXrrwKXAa7E2Lr6LCcYpJo6Wo3Xqsu0VAoEtmUNnMGm2tXRR6k2JW31mLUI+hfs1kZc9axLO8wLWLn8CX9alisZhs0prRI7inEmPAOBUrm9jX63UAkPmrx59zRscgTRsnJ5f8XGZDCArYaYadRnQJCg3ytXFohqGYISX6WbPM04opP4n0+30UCgW4XMf1xxjb5uQJmQb4nlXIYOo2dHqN9fv9U1m6t27dwn/6T/8J0WgUv/d7v4c33nhDEqm4b/BBtzk7ivC63G639NWlK5efazabtrHe39/Hp59+imq1ii+//FIy5gGcSthy6jBxEaJBlU6iYxjAedZOfJRoLxxwPKd1Qs1Fu5jn8uRyITF8OqCZQkZEv87FyIl1VnyaZmRMhs9Utk7iBGp4TK24zd95GURn2Go56/zPcr1Mk1lf3I+aD6YRob+jP6PdO4zTohuQrIIZesDXOb/mSRkvp7yMYQ0EWy/6HPjspCe4rjRIaDQauHv3LkKhEFZXV7G0tCRZ9JqR1z2LdXw4X2eCCskGj8cjnRO0cV8oFPDgwQNUq1UpZaLDPqj/gbOJhYsWvXddtA7WOlUTIC/jOvk2yoXE8LHGE4Ob2Rey1+uhVCrZaiZNJhMpPMoFrItf6kXI4/M7tL5oiTE4md8xGZxWq4VyuSyuDd1pgcyN1+s9FYM1S8JrMscEOKHfzUBnk9nTC5hjN5kc18J6mYsCaxcPcMwg37t3T+pxra2tSeFR3m9uEKFQCIFAQOKFRqORsA3hcBiRSASRSERi8hgjRVaDMUYc73w+7wj6Zh00z2UuTyMul0uKAesODTqjWbu3gZNwlG63i88//xzlchler1fqFrIPsQ650bpJAw6+Tv3XaDRQKpVsbGO1WsXu7q5kKgPHzB5L2QSDQal3ZyYYXpSY3iVdH/Kie7tzj242mxIaY57jXGZbnvts0XSvjm+ZTCZoNpuSOQZAgBfdqbSqdB0sM06PC1jXTaMyYXCyVi78HoP6i8WiAD2zeC6tRlqRzOibNXECewBOWWE6aJz/83P8rNfrhdfrFff2yxyIq0ukAMeurocPH2J3dxehUAjXr19HPB6XjheTyUQ2plAoJA3LO52OzKdoNCqALxwOA4CtOwe7IVQqFdu8KRQKF+p+mctcXqQQ8NFwol7RDJEZI0zjqNfr4euvv5YkGn6ePY+10NXKUBbqLdPQbzQaktThRBhQ3G43QqGQhG4wZlN3iLpIMdk0PjweD7rd7oWez3g8lpqFk8nE5to19+a5zKZciHmg3Vu6ZQ4nkEkF66Bb0vamm9dUGLogpI514He1NckHWT2zDhNBkdlLdRYTGLTLmcJzr1ar2Nvbg9/vF8vYid3TZUZ4r6rVqhRGderb6fS7syjm/eK9rlarePDggfTPJIOQSCQk09Lv96Pf74sriPPA7/ejUqnA7/dLeyg22e73+2i1WqjX6za3b6FQmLs85vKtEa2TWXJGhz+0Wi20Wi1bHUTz++baZaKUFjLq/D0CPrp5eRwmWD1qDQ4GA1QqFRQKBSn50m63Ua1WUavVbMX5L0L0PqaT8ei2vmidYoY+6aLaL8N+8G2XCwF8uswJGbJmsymMk8l8sGiuthp0LSvA3sOP71MZmEHCdBWYr+mEEC4cvaBMpaE/NwviFCfDRIPJZIJbt27hz/7sz5BIJHDt2jXEYjGxiPV46uzoRqOBfr+P+/fv43e/+x3K5TK2trbO/P2XRXjPLcvC7du3USgUbAH4Oq7ULIEAAOFw2FbzS8fn8XOca/wO50ur1XpuAfJzmcusyWg0kgSI/f193L9/H8FgUNbaw4cPsb+/j1KpdKqLCABHPcuuGFq4bs3YbrPCw+PWE61Wq/j4449RLBaRSqWQSCTQbrexvb2Ner2OfD5/oXqPHTYIWgEI2DPb0l2EcA9kfKTuoDUHfLMvF9ZLl8+Ps+j0JkvhoiZLxYXNLCwyiNxwnTZjM4btrN+fNXA3TZyuhYC1Wq1iZ2cHnU4H2WxWykOMRiMZR2a18VGr1dDpdHB4eIitrS1UKhVHhu9lFe3ieZKm1pZlIR6PIxaLod/vS5D3XOYyl9NCLw2zYyuVirggLeu4/Vez2ZSSKqaYccnACXHwPKXf76NUKklYCzO1S6WSY8/h5y00xqmnPR6PjCtjiy9KtPfLJE8eZ1+dy4uXi4v4fEYhaOMEJ+Ajc6gtDCf37eOCvW+KjMdj7O3tYTKZIBwOi4XNWEed0MFFPBqN0Ol0pKzD1taWBOl+24UhAMDFbDxzmcvLLKPRce/eTqeDjz/+GO122xbDl8/n8eDBA8mepWhy4EVIpVLBr371K4nVDYVC6Pf70od4a2vrwoiAyWSCWq2Gra0teL1e5PN5AaJ0ZT+J0fqs0u/3JemNCTnj8RhHR0eo1+toNBovPDt8LmfLSwX45pPp8WU8HmNnZwe7u7uOZXEo0zJ8yZTyWHM5Tip6Hj1H5zKXb5oMh0NUKhUAwNHRET766CPb+9oI1/rlRa+tcrmMX/ziF6dKOWni4CL1IWMH9blQLtoL1ev1cPv2bUeCZc7yvRzy0gC+uTy5zIHa+ctcoc1lLo8nOn7uZWHEncKJXqTMGoia7ykvt8wL58xlLnOZy1zmMpe5fMNlzvB9w8XJjetUUsUs16Jfm8tcTHlURt7jzh3tMpvLXADnhI25vFj5Jq3T551NPMtjNAd83zBhvUK3242lpSXkcjmpr6ezrHTpAmb1stes3+9Hu92WtP98Pi+9Y+cyl6WlJVy+fFmq/HN+MSOeBXC1O0oX22UsbiAQkNIOLMBeLpdRLpdnWmnO5XyFG3AikcDq6qoUO2YJJbPNmZ5XZhtMvm/2sNb6js+1Wg37+/svRba9x+NBNBqF3++H3+9HKBTCeDxGvV6Xjkg+nw8AbBUq2EhAjxfrjrKwNDOqdQMD9nUeDodIJpPIZrOwLEvqGdZqtandg2ZVLMvCtWvX8Oqrr8Ln80kSY7/fl9hscw6ZcZucq5xD7ATjcrlQLBZRLpfRaDTw4MGDmaxuMQd83zBh6RW/34+bN2/ivffes5Ws6ff70meS2bpsBeb1erGysoJYLIZCoYCHDx+iXq/jt7/97RzwzQXAscK7fPkyfvKTn0gDe92/dDgcotlsSmF1Kkp2CBgOh1JXjHXOut0uDg4O0Gq1cPv2bVSr1ZdqI5nLswkBWzabxe/93u8hGo1KCRR2/2FZLjPRg52YAHvMIGtiaqCje/C6XC7cv38fpVLppQB8Xq8XuVwO0WgUqVQKmUwGg8EAW1tbqFarCAaDiMVisCwLvV5PsnibzabN+PL5fIhGo/B6vdK5hEXjB4MBgsGgdBja399Hq9XC9evX8c4778DlcqFUKqHT6eD+/fsol8sv1Tp1u91499138W/+zb9BNBrFwsICAoEAms0mqtWqTV/pxgusUauTVVinNRQKScmzW7du4csvv8Tu7i7K5fIc8M3lfIXKjkrR4/HYukSkUinE43Eb4GNBaeDEWuFE93q9SCaTiEQiGAwGSKVS8Hq9WFxcFAuQ9QzZN5avzRmZb75Q0QWDQaRSKQSDQVthcypGr9cr9cqoQMk6DwYD+P1+jMdjqWvo9XpRq9VkDs7l2yWcG6FQCOl0GrFYDH6/H61WS5golo8yy2yRpSJzrEtMTQN8NHQjkYi0nZx1Yc3ZQCCAYDCIcDiM4XCIcDiMfr+PUCiESCRyKoOWa43/s20k245yTFhihXvIeDxGIBDAZDJBJBJBLBYDANTr9VPdTl4moe6KRqOIx+PSgQrAKcDHfY16DcAp0BcKhRCPx+F2u5FMJpFOp9FoNC60x/GTyGye1VweS6LRKNbW1hAKhbC8vCwWSzKZhM/nQyqVQjKZtNXc44Ot13q9HtLpNHK5nLB94/EYsVgM2WwWw+EQb7/9tjQYLxaL6HQ6uHv3LnZ3d9FqtVAoFF4KK3kuTy9kjr1eL5aXl/HGG28gEAig0WhIS0O32y2FaskikwHkps4OAaPRSJhoMoJ0s8zl2yNutxvxeByRSARXrlzBhx9+iFQqhXq9LoCPLjOzvioAATq9Xg+Hh4fCHpsGqNaBZJt7vR6CwaC0fZvlDFS3241YLIZ0Oo1MJoPFxUUBJdFoFJFIBKlUCpPJBIeHh8L6hUIhWJYlXYIIfAGItycYDGJ1dRWBQADlclkKTy8uLmIymWB9fR2rq6vo9Xq4f/8+Dg4OhBF7mYT9mNfW1mx6xu/3Ix6PO4agALCxyrpU2WRy3E+Y47q6uopgMCigehbl/9fedTTHkSbXV+29b6ABEKAfksPlrNaENrR7WR20ETooQidd9BcVij3oJoW0MiFpjWbHLTnD4dCBcN1oW+1d6YB4ieyPBdACrMbUi0AQBLobXV9/lV+aly99h2+JEYvFUC6XkclkcOPGDWxubiKRSKBUKi1kShglMyMYiUSEs9Dr9bCysoIbN24AAA4PD9Hr9ZBIJJDL5QBAnsvJHTzku90uLMtCo9H4EJfv4xzBDEMkEkEmk0GlUkEsFkMoFEKv11vgEA2HQ4zHYxnyrh2+0Wgk2QkdgCQSCUwmExHn9fH9gGVZIuJbLBaxubmJcrmMVqsl+yqRSJzo8KXTaWQyGQwGA1iWJZp1fG3NueIIMGb48vm8VEi87rwEAgHEYjEkEgkkk0mk02nMZjPkcjkEAgGk02kUi0XM5/OFiSDRaFSuNZ1OAzjmp3U6HZl+UiqVpLxbr9flNYPBIHK5HHK5HHq9HiaTCWzbPveZwu8LsVgMuVxO5qBzeonZKETbRXDNyIkkT5IZ0UAggGw2i3A4jGq16tlKhe/wLRlCoRDW1taQy+WwurqKjz/+GKlUCisrK8hkMohEIi8dmLoUqwdvk3PF4eDA0YxjGk/dmUWSajqdRiQSwa1bt5DNZnF4eIhoNArbttFsNuV1LlJXl4/jDEMymZTSETmhw+EQlmXJJBI2bTDAYFMH9x75fcwAjsdjhEIhKTH5+H6B+4QBaCwWk6CB885JS9GTlgDI74fDIWzblhnt5ixdXdplY1o4HEa5XIbjOGi1Wuc6teJtQb6sdujoaDDjxyYE0+HVZ8N8PpcxmpZlYW9vD+12Gzs7O9jZ2RFHPBQKIZ/Po1arySzjZRNZ5rXHYjFZA9ous1nDFNrW32v6kg48+v2+rHUqlUIikXB1Ir0A37ouGSKRCO7evYvbt29jZWUFd+7cWeBSAS+LdXJza0wmE7mBO50O9vf3AQC9Xk8OYN4cumRXKpUkfQ0A29vbSKfTqNVquH//Ptrttsi+6O5gH8uNcDiMlZUVabTgAczRWG7jDEOhEGKxGCzLgm3b6Pf7C5kWgrw+AK4Bi4+LC2bcIpEI5vM5Wq0WLMt6iSOsuXnAsQOXTCZFTaBWq0lWkBkW/VzOpCV9JR6P4/Lly0ilUvjuu+887/DRpnLmeSgUQjKZRC6Xw2QykUlAg8EA/X5/oaElFAohHo/Les9mM+zt7aHT6aDf72M0GiEYDGJnZwfPnz+XMnAkEhF60GQyQa/XWzqbHgwGZVQe12A+n8s66U5v88t07sz95ziOOM35fB65XE4ccM079Qp8h2/JwPIXO6zi8ThisZjIGLhtLk2eNyUM+HtzI+vf8YsZGRoSSgVkMhnhYPm4mLAsS/gqLPFrg+jm8OkvZh/InyKYPWbpiZkXPsdLxtLH+4cu6UajUXHMODfdzeHTAe14PEY4HBbu8Un7T/Ov+DqWZSGRSGA4HHo+s0xHjZkjfS10Alm1YZMBHRmd7dQj4/T34XBYmkISiYSsGV+Pn4HOxC9LYMYMn/m+NTePa2RWpsx9pH/H7/kZAMdqBPx7k8nEUyNhvb3LfQhYpohEIlLOZfs8Sxqj0QjhcBjJZHLhUJ1OpxiNRpjNZkLkJRmam5M3AqMS/T0jQB7E5DfQSG5sbCCZTOLJkyfiBCxb2t/H6QiHwygWi1hfXxfeKLN4AIQXBUAOa5LkASzsGe47OomRSATZbBaBQADb29t48OABut0u6vW6lIl9XExEIhHcvn0bn3zyCXK5nJTI6GQAWAgs6PDxsGb1gR3e5PuZge10OhUbRxkS4EhTMplMYnt7+4OtwesgFAqhVCphY2NDsniz2Qy1Wk3Wio5eu92WKg07cqfTKVqtlqyR7rgvlUr4i7/4C5RKJWnaaDQa+N///V/s7+/L44LBIK5du4ZKpYKHDx/ixYsXnnJmTgJL9/l8XqRrNMzOZvNnlATSQahOggCLTmAsFsPW1hZs20a1WsX+/r5nzkHf4Vsi8NBkhi8UCkkE0e/3MRwOEYvFkEwm5aAlaBTIy7AsSzJyTD/rDi7gOHqZzWYYj8fi7PGwJreG5OdkMrnwXB8XB8FgEKlUCrlcTjLLdOpoFCORyEtSGDqLwP0VjUYRDAYlg5NIJLC6uopoNIpKpYJisYhQKCSkch8XF+Qk37p1S2yWzioxs3VSNnkymciBbFIFdHZL20Nmq7Tt8np3OMuS+Xxe+Iaj0Uia7PS6DIdDqfawJDubzdDv9xGNRoU2oRMIH3/8MTY3N2HbNjqdDl68eIH79+9jZ2dHHheJRES54fDwcGkkbViJyuVyJ37OpsPHn+nvT8oem5m/SCSCUqmESqWCwWCAg4MDz5yHvsO3JGB3ZC6XQzKZFG4UjR15MHTeNFFelzp0lxqjv2AwKMR7/k5HLkz1M2OjD3FmCh3HQSKRkG5L8m98XAxoKkE4HJaMsc7EuH3e3HP6kOFjWebV5TsGNOzy9XGxEQgEkMlkUC6XF8Ru9UQgfajSBvH/2hk0BXKB40Nb649qoWadNfQ6uC6hUEg0BOnIJZNJlEolAJAu3VAoBNu2JTufy+Ukww5AJmb0ej0p6+rSJmWSSOEglcfsYPU6GKxms1nhCpuft7lf3BxAAC8JgOtMsi4PZzIZFAoF7O/ve6r0vTyf2vccyWQS6+vrKBQKKJVKyGQyCwaS3CfekIFAQIyc5sSQJ0VOluM40mELQJxATa5PJBKIx+MLPBhu4kgkgnw+j2QyiWKxiGKxiMFggGaz6Tt8FwihUAjFYlHkWDh2SXfumZ1p+qAmjWA2m4mzSM4RM9XM/pVKJTmAfFxsBINBVCoV3Lx5E/1+H4eHh1JNMMu32ibpcWt0hLgXddevDnopBaSbGTQ/zcvQPFiKL9u2jYcPH6LZbCKfz+PWrVsIh8Oik2fbNg4ODmBZFiqVijTasdN3OBxid3dXypxak5Adp7TtlGRi4MaEwzKAmUlOkSJM584MFE7L+BG6u5d7jGNNZ7OZ7/D5eDswMovH4+LUAZCyh96gWlld/1y3lusShykoqZ9PuHEV9N+l00nitVlS9rHcoAPG5goePiZRnjAjXp2N1r83D2UGJJyu4OPighUCZpJms5l0kJJioknx2tHTVQzTvmnOlSbmm81rwLHt87rDByzeM2YVh1ksPUEDwALH0byfeBYwMUA5JYJZPTrZbuu/DNCyLFwX7ai9Cnp/McgwnUO+HvcjG9y8lgn11rvxcSKSySQ2NjZQKBRExZtinJQzsG0bwWBQOFKZTAb5fF6kMyaTCfb29l4i4mojQnBcm+M4aDab0r5OAV0aFj6XAp2XLl1Cq9VCu93GaDT6UMvl4z1Dc4ii0ajM6+RBycMDOD6YeJCwq5DSG1qqgMaSkzmi0ShWV1cBwO/6vsCgk0dtx1gstmAvNK/OdMbMkhoPVe4XnQnUTRsMjvm76XSKXq+Hbrfr2eYDOles2LBhg2XbyWSCWCyGbDaLtbU1BINB7O7uYjAYoNfrodPpYD6fY3d3V7jdoVBI7tFSqYRgMIgvvvgCtVpNmvq45nSe2fTCStIyySdRS7BUKiGZTJ76vs2g1Sz1upWC+TtW3ADIzGM2yHgFvsO3JOBUjXw+LzMOadi40Sg6Sv4GpVs0j6XT6aDVaslII0YiFNMlaEiptdZsNqXDi+UQOoTMGFIA2mz+8LH8IIePg9eZEWBEy32g9xCzgBo6E6g5fdSJ5Dzn0Wjk76ELDGrI0dnTSgH8vd5LZibYLPMCx/aIDpI+jM0sFQCxbf1+/6V96hXokXC08+12GwcHB6LQEI1GZbQar300Gsk4zNlshnq9LqXZWCwmr8/u+MePH6NarWJrawtXrlx5KSAjJWgZBdJfp2nDDa/KApplX64TcJSgGY1Gwhn0CpbnU/ueIxwOI51OiwNHUrs2kOTmaa0z3qjA0QYdjUZot9sihaG1lzQhmir3PNDp6DFNTQOtXzuRSKBQKAgvy8fFAQMALShqaju6keUJ6jYSurSr+S8ki2uZFx8XD1oBgNk32ir9cw1dltUUAEKP8tM/d6MccM+NRiNxnLwI2nPad2bzAEhGlB27z549g2VZMoNYcxw5EWc0Gsm84U6nI8kBAOJU8nHkUDKzyO85ZnMZyuDAou3SDRamQ2f+n0ED11LbPPP1+XzdHHlS48eHhH8qLwlSqRQuXbqEbDYLy7LQ6XSkdEsSLQ0BcCxDQCIzcLQx2+02nj59inQ6jUuXLonUBkcMcdJGr9eTuZSFQgGrq6tidJjt0cKSlmWhVCrho48+QjQaxe9///vzXyQfZwZy61ju0YGEnonrxu/h/mRAAiwq1HO8Gssh7Pb2u3QvLjiXdDweS/mRtorNPCzzux2omnPMQFVnnvTjNJ+PYIm03W6j1Wp5ln6iHT1mqYrFIsLhMAaDAe7fv49qtYp2u41/+Zd/AQCh9YRCIblXe70eWq0WxuMxbNtecLCB467cyWSCZrMplBw2ZnFkZrPZxGAwwNOnTz1bBjeh5xCzQczkcprOnnb0yJnnep3U0W1SDUxVCy/Ad/iWBJQ/icViEv2ytMrNpeUGAMic3NFoJBuc3ZF00hj5sBzCCIjdlDS4zLpw87tt5kgkIiWai35Ya9L0Mkg6vA+wvGQeoGaGT2dY+H8t1A0cT9jQTT/83ouG0sfZQU/R0JIspsSKW8OPhtkYZEJzsvh/8ky9mq3SHD5+MfCiIxMOh9Hr9URpIZfLCXfMtNWO4wj/FsBLjrAW8ec9Sud8Pp+j0+nIzGKvrpkbdOnfbe+Ye0M7fm5fJ0E7jl60X77DtyRg1MZuNi3FwgwKU/Isx3711Vd49uwZ4vE4Njc3EY/HkcvlcPXqVSSTSWSzWZFbabVaUsolwZ66TuQFxmIx+Tu6/KJLLfr/y46TiLqxWAxra2uIRqOo1+s4PDy8ENf7KuhSmhtMbp42kDx4tCwLDxZ9KJm6kT4uJuLxOMrlMsrlMuLx+IJDosu2bt3f+l+WdXXH6UklXHOs1nQ6lUyi7k71EngvTadT7OzsYDKZCJd2PB6jXq/Dtm2RsgEgk0qCwSBu3LiBYDCIH/zgB7h27RparRYePnyIXq8nDmQ4HMZwOES1WpW/O5/Pkc1mkU6nEYlEpLGFzYH9fn+pHD7t2JpUEV2G1Q09zDCTY+o4jjS8sBHNrbFDv6bX4Dt8SwI9n4+GkLwoPb6K4qPj8Rhff/01/vVf/xWVSgV//dd/LV1xjAwzmQyi0ag0c2juQSQSQTqdlohwOBzKoaz/jjbMF8nhc8ssELFYbEHTqV6vL/31vg50ycLtd9w/Jmle/4yGdDKZCH9KUwXcym8+Lh6ot1gqlWSgvZvD96oAgPI92oHTj6XNMhvJaKvo8Hl1v9EJmU6n2N/fR6/XExHh6XSKZrMp2TZe92AwwGAwQDKZxJUrV5BKpfCzn/0Mn3zyCfb29hAKhWTMWigUkmkQ7XZbmlji8TiuX7+ObDaLbreLVquF4XCITqcj3L9lsnk6UDWzwG7XwYBUB6/cQybFgPtPv95JWegPDd/hWxJo42ROwuCmI2eDBjMcDiOVSklnEvWtmKnTIqYs1emMDP+GFnhmWVfr9enn6GkfywrLspDL5ZBKpTAcDtFsNkXwNBqNolgsYmNjQyRvyAHysrzD+4RZZiLo7NOgms4eOXzkS5FWYJY+zCyOj4sHvS+A0w9JHUzw/5qbBxw5dolEApFIRBw/8/l6Ty4LWE4NhUJi//v9vvzOcRxEo9GFJjteaywWw6VLl5DJZBCPx4Ufyft0OBzKWnKiBrlu8XgchUJBEgRsxCuVSlIuPjw89GxmVOMke6KDDP5f70lNg9JnnRvcSr5etF++w7ckGI/HaLVasKwjBXRq4NHwMUvCn83ncxSLRdy6dUv0l9gmTmkNPTKH0OlplohHoxFs20YikUAqlUIsFoNt2wtdcpZlCaGfY3+WFeFwGHfu3MGdO3ewu7uL//mf/0Gn08Hq6io2NjawsbGBX/3qV1hdXZVGmmazia+++gr1ev1Dv/0zhw4QuH/IhXIcR8pJBA+KQqGA0WgkBwi7JM1D38fFhw4OASzQQ04ixuvyJmkBLAdzfBhnMDcaDdmT5sB7YHHOs5fBxgldhWk2myKRUi6XUSwWZUQanb75fI5SqYS/+qu/QqFQQKPRwM7ODur1OrrdLvr9PlqtFlqtFjKZDG7duiXOnWUd6WGura0hkUiIPt98Psf169dhWRY+//xzbG9vL02Aa2aLAbwUsDJpoZ1rx3HknNSPA7DwOky6mILYXqt2fS8cvpMyCMsERnrMtLll+LSsynw+RywWQy6XkzE4epIByxta1R44NoR6zdgkQsdSj2/TkY+Wa1kGY3oSAoEAcrkcNjY2MB6PhSeZSCSQz+dlxNja2hr29/dFe/BdhYLNKFEbCy/tWZ2503tFc1rMjA1pAqQi0Fk8KcPnpev1Ck7KHizjWunKgrlfALh+r5uBdJcpf86mNmbE+DjC5FstQ7aPNoAj4LT4cjQaxcrKCmKxmEit6HWLx+NYW1tDsVhEp9MRR4+v1e/30el0EIlEkEgkZNYunfFMJiOvnUgk4DiOaPk9e/ZsqYJ6N5ti3k9mho/2zKQpmXvGbU95lZZyIR0+GhFu5GAwKMTLwWCwMK9xWYylFiplVMzrovMFHJXJSKrN5/MirMkohVm6fr+PL774Ap1ORxy1WCyGy5cvI5/Py8anQ8fIh/MUaRgc51iUk0aXfCyv46TUezAYxNbWFn784x8jkUjgs88+QyAQwMbGBq5du4ZcLidlXsuycO3aNXnc276PdDot84jv3r2LeDyOp0+fYnt7G4PBAPV6/YNKR5jcOh5CdPQ1oZn7o9fr4fDwEJZlYWVlBSsrKwvcT+6r1ynrfZ/B9aSweSgUwnA4FEmTw8PDN860fOiyE20RM3QmF5gcTx64AKQqQVkQ27Zx8+ZN5PN5CURJV4nH45Jx1rI/+npNp9OL4PvjZCOOrgSOzoT19XVsbm7ixYsXMlVjbW0NuVwO169fl8aOzz//HL/73e9kz1B0muoP6+vrWFtbw3A4RL/fx3g8xhdffIHhcCiUnmg0KmdKJpNBIpFwHcnmNfCMYrLkpKYN4HiPtdtttNvtBacvmUwik8kgGAwuUAYIOsoA0O12RcLGS/Csw+d2A76ucWKZKZFIoFQqIRqNCier0WjI4HevpVtPgym8zIOW49G0WGm73Ua/38fly5exubkpP5tOpzI6p9fr4Y9//CMePXokvA1mA/UIHn0wa6PDLB+NAWVi6Dh63eHT2QJzH4RCIVy+fBl//ud/jnA4jPX1dTiOg83NTdy4cQOBQACNRgONRgPpdBo3b96UNXwbBAIBZLNZlMtl3L59G3/3d3+HUqmEf/u3f8N//dd/CTH7Q2uF6TIF9xvLaXT4AMj+aLfb2N/fh+M4uHLlipSnNP9TH7YmWX9Z7s2zBDPysVgMlUoF9+7dQywWQ7PZhG3baDQa6HQ6b+TweYFnFAqFRG9RO3z8mkwmwjHT4u9sMnvy5An29/eRSqVw7do12XOcN06BeD7XLUujqyJedvjozFKlgc5GKBTCxsYGbt++jUAggJ2dHQDAvXv3cP36dSSTSYzHY3Q6HfzhD3/AP/3TPyEWi6FYLErgzulJGxsbuHLlCqrVKg4ODmDbNv74xz9id3cX+Xwe5XJZmvwKhQKy2SxSqZQ4Ucvg8LFK9SqHT48r1aMhKS3FrmYNzWG3LEtoBcy8egWedfjeFHRIGLEwu5fNZqXjNJVKSVTzPm7w8+Qe8WDVjRmaN6BvODchXJYlmYbn98zSMbJrNBpIpVJIJBLShaozMeYX8HIHlNedPQ39uSWTSZTLZSErz2YzBINBmR4Si8VkjBz3EDmO79rpx/3KAd9srkmn0ws8tw8JHr5mOdEsddChYKDBNdLSG3zuSX/HS0byvEDuFA8OOi3kzeZyOdl3/BkAZDIZWJYlvKO3/dsmTeQswXvILOnq96O7tnWXJHAkKH9SEER7pakv5u/NLnKvOnwcm5ZKpVAqlZDP5wEcZZColjAYDGTWLQC53yi4zLWiTWHjRTQaRSQSQaFQwHw+l8e1Wi10Oh30+30MBgNp+BgOh+h2u7Bt+6UOVi+DGTo3vUU3CgHpNNQrpEB8MplcoAWY1Qi9jzR/1EvwrMP3pgaH5Q4OX89kMiIEzGwfuwRpVN+lzs7yJnA8vuws6/Z0WtPptAzO5nVwxBmjEHZRWZaF4XCIQCAgP2M0FggEUC6XMRqN0Ol00Gw2MR6P8fvf/x4PHjzA1atX8aMf/Uj+BvkxdDpZ0uXBziHejLS94KCcBl0qIm7duoW///u/x+rqKlZWVnBwcAAA+OlPfyrq9LVaDbFYTPZar9eTqPht0/eBQAD5fB6XLl1CLpcTjax4PI4rV64gEongwYMH73zN7wIdJQPHzh3lMHTkzL3XarXw5ZdfYjwe4yc/+ckCx9EUbdZ/56JI+wBvVjplNjmXy2F9fR23bt2SOdexWAyNRgNPnz7FYDDA1atXhUNqWRaazSZevHghGdXT4ObQsekLwIIw71mBuqK0L/q9AVho5qATywyXZVmoVqvY3t6WaUB0GmnbuNe0HdIke9owLweolmVhdXUVN27cQKFQwE9+8hOUy2V8+eWXMj6tWq3Cso4mKHHGer1el1Lu48ePMRgMYNs21tbWsLW1hb/8y79EsVgUew0cjWdrt9t49uwZnjx5gm63K5k+njH9fh/ffPMN9vf38eLFC6FNeXX9iNlshn6/vxAguPGMgeOEBTUH+Tzyj5lN1nZPO3z0K7jmpCV4BZ51+N4ULHkmEgnJ0tCIMWKmA/g+5nSypGpunLNw+BhJmV1tOvLVkSrTzgBk9iG5fuRbsESSyWSk4206naJarUqpUjcsaHFcnTkEjjM/+nHLiEKhgB/96EdYW1sTgjMArK6uIpfLYX9/Xwws13k6nYry/NtGcyzbpdNpGVdHfbpMJoNOp+OJNdWfs1mG5V7UvxuNRqjVai/pOL7qb1yUDN/rZj74OA55z+fzWF9fx+3btxc6458+fYqnT59iOp0inU5jY2MDAFAul2FZFhqNxlu/R80/Oo/OS20r3DJ8OpunuyBpc/v9/ksHqnlwn9QU5PY7L2apaKPZiXvp0iVUKhXs7e2Jc0dZKN5fACTjt7u7iz/96U8YDAbI5/PIZDIoFAq4cuUKKpWK8B273S4eP34M27ZxeHiIg4MD9Pt9afDg/Tufz9FoNES1YZkyfJpraFYZzIoDKzfD4XAhe6rLs6azaO4jr3Ibl8rh4w1KUi4/GMdxUCqVsLa2hmQyifX1deTz+YUPg85gv9/H+vo6wuEwGo2GjKN5U6yuruLOnTsIh8NoNpvo9/tot9uihv6+QOdUZyTpnJkdtkxb93o99Ho9kSaIRqMol8vSuEIn+Nq1a6hUKsI3cBxHsnNra2vIZrMIh8MS8fPmtyxLeHsApOuXkgmMfJYBwWAQpVIJ6XQaW1tbwk8ZDAaibUXDlkwmUSqVEAgEpFTCKDwQCGBlZUVET3u93ivXgOLXFEi9fv267FNmIHQm9UOD9xMjfv7spGwco2Aa2Ugkgvl8LtGybgp6VZl3GUHb43ZN0WgUlUpFpiaQesJyWz6fFw4b14n35XQ6RSqVAnA0d3hrawvZbBb1ev3Ev6ehncj19XUh4GezWYzHY/z2t7/F48ePz2RNCJNSYgYNwKI4suMcC8DrqRLMSvX7fVQqFXlNUl8YZOgg+KTA1WtwHAe2bWNnZwf9fh/lchntdhu2bcsUJDbx0d7PZjOhNjWbzYXMO8uUzWZzgUPJJg7+Tdp1yn+Rk81qDukrXGevrh/BoJyOsVmCdSvNTiYTtNttdDodKY8nk0nXs90MdEllIYfPS/CEw/e6DRq8SVm+JW9lNpthbW1NRoZRFJdiuABQKpWQzWYxm81w5coVJJNJzGYzGSn2Ju/Vsixsbm7iV7/6FeLxOJ4/fy7llrfpmDvtb+lDXxOaedNpZ5At+0zPP3/+HC9evJDGgkwmg3K5jNXVVUQiEdy9e1dkDGhE+VnwdfXsXXZ40fiy1JJMJsVgu3XDeRmhUAhbW1vY3NzERx99hNXVVeTzeRweHsqNDhwdEhw1RGX68XiM9fV1XLp0CfF4HJcuXcJkMsHh4eFrkXUTiQQ2NzeRzWZx+/ZtfPLJJ7LHHcfxlMNnZl/03GbtFPNnmjczmUwkQ+04jpSRtCOzLPvlTXHSdcViMXz00UeoVCq4dOkSrl+/LnqG8/lc7jUeUNQ2vHz5MgAgm80CODqUb926hX6/jydPnrzWe0qlUtjc3EQul8MvfvELXLlyRWxDu93G4eHhuTt8buK2/DlngTPjwmwTy5fffPMNbNvG3bt3xbHTneO66QHAQinXTYbKK3CcI829+XyOTCaDUCiEQqGAYDCItbU1uadCoRAmkwmq1aqMAwMge4fBGdewVqtJljiZTC5QNZhMAI5m8tIhYuWKTQysHC2DBNd0OkWr1UI8Hkev1wPwspNmBq3D4RCNRgP1eh3VahWdTge5XM6VI2tW2abTKRqNBg4ODtDtdj1l2zzh8J0GfWNSWiSVSiGdTku7/Ww2QzabRS6XQzKZFFkQnYngTU9ifjAYlNZrdoTpKMcEP1QSqXmzxONxpNNpTCYTkRh439dvllPdShK8BqafuVZ6Q+tmDzpnvF6+lk7Rm4Rp4JiM6kaI5mN055uXNrsGu7FYMmFGk4ctjSAjWbOET2cFgGSv8vk8+v2+HDZaQFan/PlVKBRQqVQky8fH6MOPnc/sPOT6fwhoUdxXcZ/Mvab3n14Drx8WGm/CxwOONS3pIGvuWDabFYkLZnUDgaOZ1fx8uQd0VzM1NbkX3bo4NaeYj9H2s1AooFAoIJfLSbclbRmpBGcNcvjY1airAtrJ0GutM8b8+Xg8lmy7zmbp55vlYvOg9zJflHaEwfxwOJRgS9tk8rc5YUmvr3m/DgYDcRTD4bDwv03BazPrritMem29Djq6LFFrnGR0bw6QAAA590lEQVR/mA3lmg8GA1c+ntvz+Vyex15ao3N3+F43m8fHsfzA2YuJREIOSpYQHedI9uFHP/qRlFiZ2aNsCQ3a1tYWKpUKxuMxPvvsM3z55ZcyJYHOn7kp2AGcSCRw584drKysiB5bOBwWZ8G27fdqLGmkybXgF8s5emRarVYTIm2lUsHq6uoCdzGbzUpJNxgMYjgc4unTpyKqmU6nEQqFFhoztGHhgdTr9SS7GIlEMB6PJeJmiYCCndqYnAXcHIbXNUKrq6v4+OOPUSwW8ctf/lLK84eHh6jVaqhWq+h2uyJ9wxJIPB5Hq9UStXvHOepwjkaj+OUvf4nZbAbbtiUy5/7U5Q8tIUENMcdxREmfz6FTOB6PcfPmTaTTaRwcHGB3d/fcjQi7+LjHeVC7cQuZ8dMBFOdw8qAweafEaSXis4YZ7Oh/3fbZq0AJpEQiIXSTcrksYrkrKyuyp3ivkI5hcoOAozIw70O+V71WxWIRN27ckHGA4/EYiUQCyWQSiUQCV65cEUdzZWUF8XgcGxsbMnlHc5bOGswyFotFBINB2LaN8Xgs98l0OpVSI6+XEiO9Xk/uPVYyeA+RtsMDmhlBBm/cb8ws9vt99Ho9z06M0M49s76UFdPOLMv9oVAIq6urQhHghIxvv/0W29vbCIfDeP78uTQIVSoVCf7pWDJjyPXXZ8FwOMRkMhGOn66CeBWj0UjK4qQumUGneX8zw3d4eIh6vS7C1a/D0Z9MJqjX69jf34dt22d1WW8FT2f4mDmhwSqXy0in0ygWi8Kb4gewubmJra0tiZLb7bY4atywPGQLhYLcQKPRCHt7e3j69Cl6vZ6UTDUYRcdiMaytreHKlStYXV0VCY10Oi2O2PvO8On3zu/pBLKhYj6fo9froV6vC4cxHA6LcWS0x/IgHeX9/X3U63XkcjmUy2VpfKFDQu6GJldr/oYuP87nc3GOuC66XPO+cRrh+nUO43Q6jcuXL4vjd+/ePeFg0qiyPEKnOZVKIZPJiLNLZ4fZ3c3NTTlw2MTBg4ZOErmAfM14PA7HcfDs2TPs7+9LGdRxHMnqpdNplEolzOdzdLvdD5I5ZVmRnz8PWDeDyXtSZwGYgeZrvSq79yGyB+aeOsnpe533xewsPz8GhVtbW7hy5Yo0lJmlIDopummBYNChS796DROJBIrFIvr9vshmpFIp5HI5ZDIZXL9+XfTUCoWCVDxY6tTZ+7MGg1AtKaOpAdwzOmtHIj33IAOJVqsF27bhOI44Jgzc9UQOc7+ae9qL0O+X/DnuEQaHLPnSib906RLK5bJwjimyTLH4VqsFACIkDCyOtuOe5BqyLKwzrHp9vZTBcgM5dY7jyLrp+8btHOEkkl6vJwHE6+4TdgX7Xbou0IuhZT0YdeZyOeRyOYlGU6nUwqQHDsyOx+MLhyFb/lOplDhrdI5oDGkE8/k8ZrOZKGP3+31x/Gaz2UKH7+XLl1Eul5HNZuU9kOtGA09e3Ls6OjR+fH1qKemISg/CppwHteKYfWO2heUkZuY4LieTySysE0sC/HxoBCaTiWS9mC3k39fNJDQK/N1Z4KSbSB/OzKglk0nJYNLZ2tjYQLFYFG3GarUq2RVyPzl2CIBkQGzbFh4Ir58RdyqVknXQZGY6iNyD+pDhPtHiucyeMaNLUWw66R+iDMrr5OxNBhs8nHW2j8aRxpXZS3YXko4BYOG5fK0PxQM1HbxX/YwIBAIi7K6VAHSplHNJE4mE3BekVOjAwHEcsYPM5vGwZzd4IBCQMjCpBLPZDHfv3kWxWMRoNJJuSh1YbG5uSrWEjVsMJBm88b4Oh8NnKqirHXraJF2+1A4a99V4PJb7ku+LWb+TuuT139Edwbw2Oi1e66Yk+F61s8dMrKZYbG1t4Sc/+YnsL21fxuMxXrx4ge3tbbnmYDCIq1evolKpiP2hVqYuIXOP8v5kkMF79LwChHfBdDqV7Jx2+HTCwhTgpsNHX0Bn1YGXq0v6/zqQ8Nq+eieHzyzFvA5Oehyj0Xw+j1QqhcuXL0tGhQ7f+vo6ksmkdJWynJrL5aRlnDc4xSo5iogblAeXZR2Ne6pUKhiNRrh7964IS/Lw7XQ6GI/H0tlK0izHh2kSMJ1MCuVSK+9dQWNIIijJstyovDk5ygWAdNLSCdRcMz17MpfLIZ/PIx6Py3QNZq5M7gyjaRLwSRrXo7JolLjWZx39uR3GhGVZEjysr6/j+vXrSCQS0pXIiSLMhD558kSclMlkIpM0OMpJd0tzPROJBMbjMZrNpvBlhsPhwtQNGlBmgB3HkWkvnU4Hu7u70gFGwXA6DNxn0+kUlUoF0WhUyvbnDe6//f19lEqlBRFqZmHoJPR6PXQ6Hdi2LY5/tVrFt99+i0KhgJs3b4pTywNEZ4SHw6EQ9c8Tr/p7J+3lYDAokwrS6bQ08dDZYoadTi7vGXKKyC9ixzg5yuzEbDQa4uzVajUAwM2bN0Wom930t27dktIwS7N0DrRTzcOIDp6uHjAQ5L47y/I6X5uBsrYhtCla77TVaqFarS40xnENObbPhC6Na04zHR/ytLx2MBNcE5ZRmaViMwA/m7W1NfzN3/wN4vE4fvvb3+K7777DeDwWp+VPf/oTvvrqK3lONBrFz3/+c1y/fh2j0QjPnz8XzT3doEe6jk4+BAIB2VdeFBc2wRIr7yGC1wNAnD7uj/F4LF26mhdJmNUAkxdKx9xL2T3gnDN83DTAMV9Ge9rMxNDg0Wlj2UFHouR68HDl5tZlJN7kWphYl2ro4DDbRy5NOBzGZDKRf7WeHzNEeqPwOiiOTKfnXR2+V5HbGf3pDJvmqbAEAmCh25PrRyK5FkvWGUveyDq6o5BzMpmU93ja+z7LDc9r0f/ye53Ny2QykhHJZDIyD5HXxYjYzEy6rS3XhHuL5TWWV8bjsQQA+n3q8gsjdf03uc5uXzwQmbH5EDDLX+aa62yfzlwSvD+pVq9hRtsmMf88oB0Cszx9UmmXz9HlftotnSnTPCy9x/TBypnWDEY0z1G/F5aING2AEzfoYPLw0geV5kbqTITZtMD3yn2mJVDeJ3gvcY+Y12ry04BjEWadVaJDdJJzqvcVr0+/9oegDrwtdEmV16/tNn9Pri2dREpF6fKiDrb0/ac/A56dtJPUcw2FQhiNRkL58TqHD3g5i06YZ6y+N7ivTgqw3bJ9Xt9X7+TwvekFkbehsxfRaFQiVHaO8XHMrNEAkuPEUm0ikcDq6irK5bKQI8fjsShkBwIBUdYOBoPS5MD3TpI0b55gMCjlzfl8jtXVVUnn0sHjB0tSK42mZR01S/zyl79Eu93Gf//3fwtX4l1A5yUajcqBQqKsHqtD5wHAgqDms2fPkEgkcPXqVaTTaVQqFVy+fFmMIPkZPJh4jTxQLMtCsVhEOp1Go9HA9vY25vM54vE4VlZWFjI7/Lz4mWnJl7MAS2QsazE7xswdZz+mUinZY+RbaqfEdPSYdUgkEsJlpEHlAcSMjT5IddRrOrzdblfI471eD8PhUAjWwWAQ6XRatCVpePVc4itXrmAwGODhw4fvnSf6OtCdbswOAcfDxvkvjaQ+YObzo7mUOzs74vTowIP7j84zs4PneZCEw2HRxdNBItX5dXe0ppOUSiXE43Hcvn1bJFMASPaT+4A2hpE/bc9kMsHu7i4eP36MUCiE4XCIUqmE4XAozULcjwx4x+Mxvv76azx48ACJREKmvuTzeWkko5YjobN+/EwACE+VwdBsNkMmk8Ha2pqU+c4i08oMSjgcxsrKigTatCVcQy39QdvOzDFw7JDr6gI5xjxnuK/ovPK5TACcFFB7AbSvrNjoADEWi+HGjRsoFotwHAf/8A//gOl0iq+++govXryQ7C+z7iYtodls4tmzZwCwoN9H+7a+vr6wNvF4HDdu3ECpVMLBwQGePn0K27bx9ddfY29v7/wX5y1wmrOnQRs2GAwWgiYT+vluXeRew7lm+MLhsPBcKEWRTCalASKbzSKbzS7IGPDGHY1G4siVy2Xk83kRC+V8QRoCfliUKNDaTMCxF87SEaEPH52NJMgvYqTASJOZgWw2izt37qDb7eKbb755LxkuRl6aH8jDxyTP6qiP5cVarYZ8Pi9rn8vlUCqVhEum+QnAokwBs3kki1OXiPyOcDi8kArn+ulGk7Ps0NWOPw9rlqnpBDIzq9eRZS0eymZWj04dHRne8HycboLhzc4yMBXv6ahxXXu9npSiuIdItCZfSzui+pAPBoMol8sYj8dIp9Nnsp6vAjN8LH/pTKr+4oHKa+S9RmFYamGamQWdWdalpPNCKBQSh0nTKA4PD8Uxo61ghj+fz2NzcxPJZBKbm5vY2NgQ/hwNP+8N7WCx+5GC5o1GQzonc7mcHLiUzzA5RrPZDHt7e9KkVa/XEYvFZCID56Uyy8hrIbfSLD8RLKuye5y24SxgcqR0RlvbIt6LzCSxIYXvm/uL96ZuZmH2lU4yHXY+XlNdvAqdedNZc8uyhNK0ubmJarWK3/72t+j1enj69KnYfTYymkE3s8T1en0h4OLfCofDknShs5xKpXD16lVsbm4in88jGAzKSL9lgs5ymqVZgpUYBrduZ7mZ4dP76kI6fDRm1H8CsHAj0VAxq5JMJlEsFiUTw+iLZVU2BXCT0/Bxdh0V4aPRqPAZ9vb2xADwcJ9OpzLFgFmak8o1BH9uOj9uPDEedJwcYJYX6Ei9jw9dE4x5iHJdAMim1IcwM0Nra2v4+OOPkU6nsb6+jmw2u0AapxQCOXz68+Pnys+HTjCdTGZ7GM3oUp52Pt8FdHJZuuc1A8fzZyk3w4OOUhh0xvTnwM9NOyvaaSHniU0XqVRqIXrT5TAaXxoDZji5f1jO16VgriObZbj/aSz03zD3qeY2fWjwMOU+4c80zGyCzkaThsGOSvN5HyJKJj+XnY4UEy+Xy5K5JZ+Hnw8rD1Tlp53i/c8AwCxP6swwAGQyGVy+fFle17ZtZLNZIdczw8w1J02DVYtsNrugucYs8mg0WshWcv0ZxJiHGA9+zu9lE9hZwXTWTJvBe4FrZnbpamiqBLl/ABZsOfeUbvrTP/ciaG91xYLUJ35OZmmeASn5eLTbJobDoWRZuR+4RyiDlslkpPkvGo1K8MYvngHLApa5+ZlrTrZps/SZxvtK2+eTHD4vr8dbO3yMAph9WFtbk1IgF4g3182bN2V2H7slmSEZDAYy7JmtzMDxzZ5Op2WjMxPYarVweHgoxpHODcnghUJBUtTsjKRBYTaB759lIx3x8kPjAevGCSRvh04CnbHhcLgg4vyu4I3MjaoFg3kI6TIiuWvZbBY//OEPUSqVEIlEUCwWF+QXhsMh9vb20O12US6XpUSpnUdy3ehk04CwKaXRaCxwn5g94PW/q9PLzux4PI5KpSJyOsCRIScFgA4heYa63EPnk5leHozM9NF5ZnMGS4nFYlFGTbELVx/WPMj1gcRyIA0pm2nG47FMMmDHJA9nHSzwM9S8RP6O5YWzKo+/DvTa66yp5v64cViYTWg2mxgOh0in0ygUCtKAoPcIHdvz7v6LxWK4cuUKrl69ikKhIPNpmdFsNpvY29tbEDhn1/ZgMMDu7i5arZZULyzLwpMnT/DkyRM5tB3HwcrKClZXV8WxYlPRpUuXMB6Psb29jYODAySTSSn7F4tFKbdubGxgMpkgl8thZ2dHpFU0p5hlYwCu9yEdBr3XAIh9oE4fM/xnAe2kMEjWTV56/zAwYyOdW0cu7xFy1xh8cR14fwEQ7UM6wl5uPJhMjkZlplIpEcze2trCrVu35Pyjk8vPmucsx2JyjTUcx5GmMYp2W5YlDYupVAo3btzA5uamnMv8vGq1Gmq1Gg4PD+XvLwNohw4PDyXhxD3gZrM03Yfnmlt28DSOqdfwTg4fMyMsSdFw8FBi1o1NGJFIZIEjQ4FHblbyf/Tf4M9YpqSjw5o6oz2mXhkJA8eCyXwtZmSY5Tnputy+J8wSlPk4kwT9rjDLL9xIuuNP61Xpphgt7MuMis5Amrw1vj43uObPEDrjSI6NzlLpDKFJAn5T0Hll6b5QKCysiaYA6ENBBxynkWjNsr1eA64hf+92c+vH8D5gGdvM0jFTQ4ePXZCaFK8zhlxPHWm6ZUHOE3pvm9EtvyfM9SYNgGVOLVujcRKn5ixhcnm0E8+sHTPHbOJiAKCDO94P3P/MjNCGMRvIz1BzXtmU02g0FnhDDC6ZTeThncvlpLNXdzxrThu/19l/t2vkva4pNLrJ6yygsyFumRX9uehA66RAkmvL+0nfu+brAli4j72c4eNnw7OMZ2Amk4HjOFKlMWkWzGKedo8Bx58Dg3WzKU2fd/y9tkleLl+6QVehXvd9n3Z+6O9NqoAX8dYOXzgcFnHHQqGAfD4Py7JkRq2+WVnesCwL1WoVwHFUzwwKM3L84uxAbmrHcaRxgfNySfAeDoeIRCLo9/siccEMoibX64wM/zYdRm4AZl+YEdLOA53cYDAoOkh0oGhwTD2fdwGzRplMRt6TPjCGwyGq1ao0j7C0w9ZzRrraIeONzKzoZDKRQ41RMsu81OZjpsqMcGgIzHIvI8R8Po92u/3W4pOZTAYfffQRcrkcKpWKkJN1Op5ONx1QnXKns8+9xUORsjXA0T7kZzkejyXzx8MXOOZ28nBm2ZyHLbOf7GBjw4vOMCaTSeTz+YW9yAwR143BjuZq6YPsQ0aO0+mRYKveX26OEoM0NjrwYLBtG9VqVSaUmM/hmsTjcZRKJTiO41ryfd9ggxEA/PGPf8S3334rDha7Zvn5suTJUtdoNJKmL/Itac/G4zFyuRxu3ry5cM+k02kZp3b79m3hmUajUcxmM9y7dw+9Xg/ZbFYywizf6QOWz+dUDS3XBCyWpLTtMrOyfA4zHsBxN/BZaiEOBoOFDG8ymRT9S96PWpdV2143+6plg1iSN4NWM5nAxplut+vJSRuWddQwt7m5KXuElR5Ohfruu+9Qq9UQCASkQzyZTIqcWCKRwHQ6lfuPPGaWbC9fvozxeIxarSaarblcDsFgEF999RUePXoktjUej+POnTsol8twnKM5xrSFywKd6Hgfe1s7z1qFwatO31s7fKFQSESRacDIs9ClUx5YLJUxytft5YwquGF1g0K324Vt2+II0jClUilMJhM8f/4crVZLhHF5uPLx5L+4ZQ1oODRniAaW743pakbtdAiYXeTPyPt6n9kJy7Ike8q/oYnwuiOZznY4HBZ+Iz8nXe7hdbPMa1mWlGn5+WjBVqa8Te6MjrxphHU5mxMGWFJ5GySTSWxtbaFUKmFlZUUEZun4aGkTLRdiZol0hxWzH6bjT+dMl6c5t5KOL7M8WhicncKaIE5+I/8215tTNTiSKBgMysGqRU4Jrq2eGPChImp2rLKZADg5u6fvb+5Vrgcd4ZMyeezaZznzrMHPcD4/Gj/FvTWdTkWgm5Mp1tbWRCqKgrVmRqndbktZkVItdFYs63hqSz6fx507d2QqDvlR1LrU60NHTWfraAdbrRYeP36MwWAg1ATz8wCOuz25n7jX+Np8D7x+ljnPaq9Rv5KNX6RkDAYD6SjVNgg4li1yc/hmsyPx4Hq9Lg19ZhaT54zOqJMq4VVwOgvtNG00A/Dd3V28ePFCHMNgMChJF+rCTiYTPHr0CMAxFSsSiUggbds29vf3Ra+RZ+uTJ0+krM8mpXv37mFlZQX9fl9e+zzu0/cFs4qj8bbntq7AfSjR+NfFO39SZkRpRpb8nX68zvxpHpPu8qPzRkcKAA4PD6WcoaNdZqE4To0aQczKuJXH6DAxHU6ug1bDZ7qc16CNL286Gg1yECmqywPuXaGNlv6ZTrEzg6UjYD6O106jpiN83W7OjBk5j8FgUBwhRtn8G3S6er3eggC1zvqxTMWD7m1ugF6vh+3tbdi2jXa7/VL5ltfLTIy5VmbpQq+b/tKSINx3em/xMNKZglartXC9/Ht83+S8aMebhzGdPGb4NA9UgxkOkvAZiev75LwMC++HQCCwoD6v15l7T3eg8v3xoNKiuvq5hJvDfpbg50cpKNolOqW8HwaDAQ4ODtBqtRAMBlGv1xcqA7RrvV4PBwcHGI1GC6VRc7LFbDaTcY4M6gBIQKztognLsqQS0el08OzZMxEH594wv7TtYnMDr18Hlv1+H0+ePJFrPStum6aFcD9oKohJM6GznE6npZyuoTPhZiaP967WN1wG0DaxoY4TRngNtNdUu+Bklna7vcC/NIMyrrvmgANHe0ErQHDPcJ59MplEs9nE48ePUa1WJTjxajbLDdwLmqp0UuB6GtweR3vgZYrAOzl8NBbaiTI5YXwcgAVnRH9P6GaJZrMpJU2KtX711VeYz+fY3NzEzZs3xYCxzLSzs7PQzchDCDg+ZLVzp7+0xEooFBJvXUeF5qHGD1ZnAxl5HR4evsvSAjh27Hid+mDlhmUJldknOif6vY7HY2mM0V2sjJ6ZvaJzzUiSc3gTiYQIF7P82+12sbe3JyV2HmzMqmazWfR6vXfSIqxWq/j3f//3ha7uVCqF9fV1JBIJbGxsYG1tDfF4fGG2MQME7ThwTUzRbODYCaZTojNQfJzjOOLIDwYDiYg7nc5Cg8ZkMkGz2UStVhMZCZ2xAfDSYeYWder3bQYpuuHpvLTqOJ6pWq3i4OBAOge5hnRqeH+12+0FIXRKILF7lM6g5oDyus0A5yyhnb179+5J1hs4okx89913qNfraDQaePjwIWazGf7whz/ItWvDrm0hcOywM5vCvUebtb+/L4dpLpeTAE5TRUizIF1Ey1UFAgG5D02bpon8ZmMamzr4e8dxhCc7m82wvb2NRqNxphqafI8MAhhc8tp4cPIrEAggk8lgc3MTkUhEMlb69dhcwM5VbStpk0gVWBbuGbPJrJLxc+X9VigU4DiOzJefz+eo1+uo1+uYzWYyEUnbHgYVtVoNz58/lz3DxjUGswzyNzY2cPXqVcxmMzx8+BC/+93vxD6Ro7osYEaf5yTxpjZHnymEDmq9urfeyeHTBoZlMjOyJHhw6TKbWWrVXbE8JLWat23b0uXX6XQku2RyZygOqzNczKDo7KHO+LFcpp1YU15EZ4i0Ydd8RGZi3peh1MbdLSJx4xeaGRNeCw9pfe18DDc7eVM6e8Hr1p8Z15HaceYa6XF0bwvy6ILBIHq9HmKxmOgrkiNF3h3XSpdweE16DZlp4TWa66mbTrh2+hAejUbCoel2u6JNSGmO8XiMRqOBarUqMkPvay/wfmBp+Dwxn88loqdBMzP4XDOTk8jnA1jI6Gi+pcZ5ZPbMv8dSGB0vZjK5X7TjxVnKwMvi82agpXlok8lE9iZ5t8xasZymmy54MJMCoDnJXKN+v49qtSqP5RepFWbGgUEDbSDvcWpYAkeVFD2C6iyguVRu+8HtHGFgqsfU6c/B7LjVQROdZZ3h8+qhrMH3rm2sDgAZYGv6jS4tmrZen3k8KwEsZJV18xhtOTmWvV4PtVpNMovmOe91uFUQ3rWUS+jPxatr8tan8Xg8xu7uLprNpnBV6D2T9JxKpRYOYJauaNB4Y+qSmEkApeAyDd9kMsGLFy/Q6XQkpc32816vt2BAdAZF/z1+GKbTR9BIuGlVEaYhooFnSfl9EFmDwaPJH6VSSfTmyPXR18N10524/DmJ5tlsVvSVSFJn6VF3YZkHMP8WD3lmccgfZOlXdwBbliUNFvv7+299QzH9ziaebDaLYDAoPKl6vY4vvvhigVNnlqzJnyOXU+u/mU7eYDCQbJ3mlnKf6IwE5QvIAWJmiyV+aj3pkpjpsGunVDvubuvFn39IvgwdYX0/6HsMOJYFYSbPLPcww0BiPu8dHdScxLE5C1AWirxX8mBJU5jP5yLmffPmTXke7RmvUetPMnupP39qlpGLyQwKgxDek9o2cV9qzUczG0oH1Kys6IYZvbf032AFxbIskSph9uiswUkbkUhkYQKGzvZpZ43O7kkOH+/fXq8nqg6k3gBYcPiI8w4s3hSO46BWq+H+/ftSuSgWixiPx3j48KG8fzpepDyx0jAYDGS+vMmldpwjWZa9vT04znHjGrOGeo91u1189913UgZmcLSysiJBzbKAklm8nzQd6STb+yroBJDuyPci3vr0mEwmODg4gGUddZ7lcjlEo1GsrKwglUqJQKRuZNB6dZqbwX+ZQtb8JH04MGrtdDp4/PgxLMsSLStgkUvETIPZMeMmY6CfqzNajO61c6cNKB/LCJ7SMLyOd0UgEJBuV87Y5OvqyJ0OH0dz0fjTOSDHzXGOx6jRadHcHx4Aulyls4N0+OgAkn/EMiMPPcuypCOV3XJvA+2wUruNAcB4PMbh4aF00prQXbMsm1FMmQcGP1s2rLCTjYeOVuY3oX9m/t7t8W7lZTq0ABbuB/MwM7OVHyqC1PelmWHW9wWzoG7d2XT4mGHSmWNe43lGyWw0arVaODg4AAChPSQSCRldVSgUsLGxIUEgAKFwsHTPUjV/Rs04HSBQxFk7dIC78/E213/ac7j/SNrXATNHIc5ms3Nx+FiijMVi4vDRudW8MF1dYOB2ksPHZikqLOg9RbusM/bLgHq9jocPHyKVSuH69evIZrNotVrY3d1FKBSSpiJWQ5i1o3PWbrdlbUyb1ev1UK1WpSFrNpthc3MTa2trACDnbbfbRbPZlLMgGAxKNz358suC8XgM27ZhWZaU/oGXucSvC/08XSn0Kt45XcBNQANOEjqzTDpy52Y0ZRm0hpruyAJe1knSB6XppLmlad0OY+1o8nu3x+iMxklZQTpYjLaZBTorsrO+Lq6FWcrk42gs6fjOZjNxgoDjqJcRtNbgYiMIX4+fJ+VhyMnS3CJzTd6V0Mu9ZVlHZHj+be4HdqHxEONnqgnHXAe+F8o+cL0cx5EMCg9tXXY0SwCnGQazbKJ/flJ2jz/XB5Pma/Jz0vJCAMR5+BCgNAQnzWgaBPcaG5lOuv90Ce+k3583+DdZtiYBXt/jOsNmZvh0Rk8HYdybDJwYPOnMqNs6aOjfmxl4t+9PO7w0L5j2QHfpnkcWmU6yPg/olOm15P2gz4OT+Heak2gGJLqTX9OQvJqJIbQSALOw7XZbAnVeA/cig1TaPs3lNKFtJM8Bjnt0nGONPz3BhFQEUld43i0LaJ94Hph2XSc63hQ6q+/VffVe7mwSNy3LQqvVWuBM6G5K4Pjw09MbzIiNJGqzTMjXZOeS/nBMhwfAS1EgcNw6rUtTfG3+nu+TjyNMx483EaNiziZkFP8+oDMBphHnjTqfzyVq53N0JD8YDGTKATWWAEh5RB8AmliuIxc6F5yvSO5aOp2WbC4PQ/KfqJH4tpufjSOBwJFcw97enpCvw+EwVldXcfnyZSHFh8NhKbHqhglG/oyCtbaiXks6qdxPerSc2d2l9xZfx+TB6EPdzYlxy+ZpKoHmHXIaCo3vh5y80e12sbu7K3OdeZ/rUj87Vc2DxjSK5n3rluU5b+hmCU630ZUBgmVGUgV0RjkYDC7IsvAa9Rgr7fibvDLuGQALAYBp47QN1EGqW5bOraFOrzvpCPv7+2ezsAr9fh97e3vCN+Q5wEw8Z+by52ykO2nOsnbqTO6oznbpNaBEkJeRzWZx+fJlmTmfSqVQrVZRrVYRCoVEC5c2nk4yJVOo1+cWHNJuO44jZ8dHH32EX/ziF5hOp3j+/Lnw5mlrqtWqzMXe3t7GaDR6Lw2K5wFWH0gH08GqGbSeFFSY0IG5ToR4dV+9F4ePThQAV29fOxFml6teeBoijg7TUbE2ivr70zRvtCE8DW6ZG+1Imj/jNdPJ5f9Zqnqfo9XcIn0zi+l2aOgDAsCC1h5/TwkHXVLjv4z6tTMDYGF+MB19Oila/FV3S7/LtXOfMHKdTqei1cgMH2fpRqPRl4RUdSMQDxeWGs0DVYNrwm5mOsM8rLWB0O+Va2N2cOuf6c/IdPgY1OhSFvmw8Xh8gdz/NiWI9wE60wBeyvDRFrDB46RMjMmZ1RH26xrbswKdBwCnOtQks5scWUpB6dKpLqGyEU0HSGbnuF4j7RSbTVluQcVJj9PcVE1XYJZbd4CeNXhfk//KdYhEInIumE4x1+UkioV5j/Hx/LmWBOJ6eDUTAxwH9KQYUJuW1TCdWWZWejabSQMHz063wIt7RHPNLcsS6gzVBnh/A8ecavLVlz3D55ZdPy3DZ/5On7/cfx9SK/V1cC4McJ1m19281AoytdpCoRBardZC1xF/rg2AeTiYhye71F5n8XUUfVr5zi0Cp3Eir00fiO8LzBwwkxCJRGSWYb/fR6VSWZiYwY1JY0opFi3bwmsjwZclHlO2QGcn2CFKjhJJvHQEuR6UZHnfZcfJZCJ7o9froV6vIxQKYWdnRyRldEaYziinN1Al3u3zA7CwB/lz7jvdpezmJLqV19wyfNpg6IBBO+Imzy+dTiMYDMK2bTSbzXOVZDkNpuOsM+UnGU39r75+rodbt7kXwQCChy5ljCgp5baHGEiZNsYtw2fuk9MCU/N7t+qGbkLSn48+rCiJdZ7QwXU8HkcgEFjYU2wsi0aj2NzcxHw+d22K0/e1bsRiAEgbxUPZ63vMcRy0Wi08e/YMuVwOpVIJ6XQa5XIZd+/elYYdCoZzghDtB4AFwXaNQCCAjY0N/PjHP8ZkMhHZrmazid/85jcSVJKmpSfkpFIpmcqxzHC7/9iU58Y/ZkOMnq1uBqtmo57XcG4On7kIp0UFpufs9jsNN09d//xtcdqGNsuB/Jl5oL0vmAKY1PeiPAizC1o4k8YNONJzms1mC7IO/KIAsI5U9LXprlfKsLBcQEeRBphZMRJ99dSP9wFGnnxv+n3q98oGIjrJ6XRaZB3IUeL7cnP43MpsbgZC71WdlXAr+bqVdLXTrTMdbnuZBxmN84ceB2VmVegQAyc7fHyeznBy32mHVwujehXMUAEQqRZzT7rBi9dlZsXO+2/TAWPTGN/DfD5Hp9OB4xxN49ja2jpRBUFnYHjekFrC8jsAqXScRybzXUCH78mTJyiXy7h9+zYCgQBWVlYQi8Vg2zZ+97vfYXt7e0HongLMABb0HDUCgQAuXbqEn/70pxgOh3j69Cls28bz58/xf//3f4hGo7hy5QoymYyMrLOso2a8dDqNbrf7UuJgWWCe3fxi1YqKCyc5fJz8ZXJded5eeA7f2+C0BfHqYp035vMjMdFWq4Vms4nDw0P0+33JwtVqNdEGA44nlZxWFmNKm06RdmzcnBW+D74uOUjMYnY6HdRqtYWGimazCdu2RZPwfeM0p1o3sIxGo4VMGQVdTdHc0xw+t0wLf8+f8V+TD2K+Z7f3y8dx7dzWn8+fz+fo9XoLEiAfGvqQPeka3Z5DmFkrHSUvkx04q0DvooPlZD1pxm1PMKBgoGveIzr4cJPgAhYbo5bFUSFfPRKJoNvtSrDHBo1EIoFCoSD2jRQUUghedU8yUE0kEnAcR6oktImmDBAnspD/Tc7gsoB7xM2+6MDzpOoEn+sWkJ722l7B8gzB+x5iNBrh0aNHODg4QK1WE7FpZoPa7Tb29/dl86VSKSkpUx9Jl8wYuUynR3NCV1ZWEI1GZW4pnUBq/dGI0riQVB0IBGTsmWVZ+Od//mcUi0UxOPv7+/j666+xv78vw+XPC3ROR6ORDBXn+9IZQLcMrcarDoPTnvM2B4kbN8T8PQDpbDQzsR8KmiOlo1tdltMws4L6MwGOo2hqy/m42GDGent7e2EUppl5AY6aDHK5nNAbNEgRot5hv9+XPag5ycBicOVlp8+yLKysrODu3bsAgEePHuHBgwfCDQ2Hw7h+/To++eQTCbwdx0Eul0MikRCemluGjz8nDYGzoWu1mvztRCKBTCaDfr8vjuTq6irK5TIs66hBk2MvlwVUGOD8bGBRku1VyRJyFrXDx8eyaePCTtrwcbaYzWZotVpyw1Hcmh2nzNZRB0nPxjU3LX/GaFpnt8h145f5GiQF6+wedbTq9TqePn2KVqsleoTUx6OI8XmD79nLQ9EvErShNI2oG/Te1BlTfm7stPSq0fTx/kBHjZp8zN65cRXpELIr3HwdLXtDjhWDCmarAG+W1N1gWUc6s8ViEaPRCC9evECj0RBqD0fyVSoVqfbMZjNp7tBSWSc5MMzmUS+VSQLLOm46IheVmcB0Oi1NZHz+soBn4EkVktfJ8Jm2aZmqE77D52Ho6Kxer+PRo0cy2YKlST05gpFsJBKRLFe9Xl8QLeUNTGNAMjObGVhGJh+BBlMLnmqD2ev18OTJE+GPhEIh2LYteoxeyEL5eL/Qhg+AdN33+33JzJ3k8OnmAN3hq3+vdbJ8XGzMZjNUq1U8fvwYKysr0m1PyRRmi4FjqazTggE6dnQcybViaZL2jZQTr+8xBkCWZeHSpUtYXV0VOx2LxcRhZjOkdpZp3/W4OY3hcIhOpwMAKJVKonawurq6MKotFouhVCohEDiS29rf30e9Xkev1xMnc1nADB+lfcyqDLud3fYY95Oex05YliWvfeFlWXycDXgzW9bR7M1qtSo/B4BcLofNzU2ZsEFJD2b8bNtGt9tFIpHA5uYmEokEhsPhwqSR0WgkY3Km0yl2d3elCYQcOJYIGFnrw9y2bdy/f/8lzo2fobm4YGZAd56yPERH343HCBw7dCRFmwcU952XjaaP9weOygyHw7h9+zZ+8IMfIJlMSlcouXu0V6cFA9xvWtuVo9u0EoRt2zg8PESn0/G8s0INQU59icfj6HQ6aDQasibkcWsOMbB4r7npYVK7LxQKIZlMIpvNYnV1FVtbWwCOKkbMGK6vr8s0onq9LutHrdNlAAOGbrcrTYzAy81zJ4nGcz9pEXz9XKp0UEzci/AdviWALplpaCmLk0pqulSrD2FmafivlgXRpV2zCcFNT84L8iA+zhduZVm3BhfuTQ2WPUxyvtvr+LjYcBxHJJx6vd5C0xQ1Wk2bxuBWN1XprLN+vNYWNe2Y1/eYviZqE9LhYJBvWZY8RtthndU8Kfhi4KaDc/04ra6htUH1unpd2saEbqwA3DX4TsNJ10rnWzcMeRG+w+dxuB2INFZayHU2m8ncTjpuyWRyoYzLCIcSEszYkdfAbE02m10o2Wmysx7ObZJWzehS/87HxQHLTKQFuAUXHOnn9lwq97ObkPtOl+98fD8wmUzw5MkTHBwcIBaLod/vi5h1KpWSzDFlW2KxGOLxOJLJJFKp1MIoy06ng0gkIk1N7CrlvuLeMicJeRmcHU57bFkWstkscrmcXPNgMJCsZSAQQLFYRDabRSaTkUwWdfoIngW2bSORSGAwGCAWi6Hb7YoMjuMcTeBIJBIykSMQOJrvblkW+v0+otGoNHosA5gxZQXBDErNwOB1oDN8HN3pVafPd/g8Du3smZuQByXHDpF7wI3Mw1STnHlYAxCnkd9TeJncDTOTxwhG3ywmeVW/Xxpd3+m7WNCdtoTOvpxmNDW5njpWfA73i4/vD+bzOZrNJprNpkiO0C7RWQOO7RMbxxgssHOS9BRdjqN9pGafzlB5vUOXYIlRC9tzJNpkMpHgezQaod/vy/WRc32SjA0A4dJShYH/Z1MfueA8E7hedJqSySTm8/m5zF5+X9BNGyfhtP1hZgH149ymeHgNy/NJfU9xmlSHLm3Q8OmyBm923XVLYq7ZwavHojGjR66M3uR6moJbClwbaP2vj4uP1zlANfVATyFhEwfLS/6++f6h3+9jZ2dHGtIYzNLZYCkzmUwik8kgm83CcRzhTDEzdVJpmOU2TgwyZyN7EdpBob2PxWLIZDIiQj8ej5FOp1EsFkVai8/VGdCTMJ1O0Ww2MZ1OUa/X0Wg0Fs6Bdrst0l3ZbBaxWEwy+MvWmKedMt208TrQjqCbQ2hmD70I3+HzOGi4WNLQ0F1oFELWGbx4PI54PC6vM5vNkEqlUC6XRVWcz7NtW4wrp2kwy6fJ03Qg3TJ32snzD+zvB8zP+TSDyMdzT2l+FueA0vHz99D3D+12G/fv30etVsPVq1exvr4Ox3FEbiqRSCCbzSKfz6NcLovsE50VNhK0Wi3ZV7SZHJlFDdJMJrMwkcKr0NpurNbQhnPMpJ5nTioPn2vOFnfDaDTC3t4e6vU6nj9/jt3dXZlVDkAmJsXjcdy7dw/FYhHhcFg6gL3q3LiBsmTs0nXDadIsbtULfj8ajdDtdv2mDR9nA62xpJs6zCkQABbKs2ZZQx/OOvOiN73J0zuJkO/j+4c33QN6j/H5OvOnm4h8fH+g+Z2c4GDaGi3VYk7IcWts07/jF+WrloHHp8vQdFboZGnBc32vsMRLB/ckXTg6k8FgUJyU+XwuZXMths7Z8Mw26q9lcvjMJkW337/ra3vV2QN8h2+pYG5GNlAEg0ERwGQkrEeJsZ1ed3s5jiPcDcuykE6nARzp6um5oDqryIkVjP5isZjwsdw6Nn1cTOggwcwCm18mtFQERV61szccDtFut2W/+ri4MG0FtRwHg4Fk9uj4zedz2LaNnZ0dVKtVqU7oIJZzs6kJGggExKnRXZl8XZYsvQxKZoVCIXz33Xd4+vQprl69Kvfc9vY2Dg8PMR6PpVllf38fwWBQJLaYPdeYz+eoVqt48OAB0uk0xuMxUqkUstksfv7zny/ck8ya9vt97O7uYjabYWdnBwcHB+j1ehgOhx9odd4MjuMIJ5J7wkxusMHlVU4b14Z2kHaN2VivOsG+w7fEYEQcjUYXRgjF43ExdtzATOtHo1Gk02nZ/NPpVBTsZ7MZbNvGaDQSnoseQ6Zb8c1RRZpw7/Wo2ce7Qxu6N8nIkUt10rgnHlynlVx8LD/Mkj8PW63RqKVFAIjeXKfTWchy8fXI8dO0EzepFuqVLoOkSDQaRSaTwXQ6xf7+Pvr9PsLhMMrlsoylazQa4mzo+7HRaEhQb8JxHBFdZkfvdDpFuVxGpVLBZDKR2e3kRbJjOBQKodlsot1uL8xyXwZoLUcdpAKLzWivY3t45mpn0etTgnyHb4kxHo/RarXEeaMTxq4sZviCwSBWVlYwn8+RSqWEm8HImWVaqqozCiYnREfCulygbxoAflfu9xDMpFBXT+9B/kyD3Zc8mMPh8EITxzJJZvh4/+A+IJeYXaJaT0/vIW2btJSUuQ8ZaDAIZmnUy7aKlZeNjQ1xIiikryfWDIdDJBIJrKysIBAISPYTALa3t11fWwdXmUwGlUoFq6urCw5zOp1GJBJBPp9HPp9HOBxGoVBAqVTCYDBANptFKBSSrOwygEkRJi0oB8XKF4cWcKazBvcd96MWumYpnBJoXrVfvsO3JHDj0w0GA+zs7MC2bQyHQ9HcSyaT4uzNZjOEQiGkUqkFuRUACxwNpv1ZHtaaajQAvV4P9XpdFNbZvu9lo+nj/UNzpag6z6zdeDxGMpkU3S5mEYhQKIR0Oo1sNot0Oo14PL4QNNAIL0P2xcf7he6kjUajyGazCIfDC5NXqD6QyWTQ6/XkgGY3K7ODdAjH47HYQu5P6s8NBgNPZ5Ety0KlUsGf/dmfYTqdIp1Oo91uI5lMijwWp9tUKhX87Gc/QzQalcxbJBLB/fv3T3x9ljZXVlbw8ccf46OPPoJt29LtTMeSndCRSARXr17F6uoqAoEA2u022u02Op0O2u32Oa7M24NOGxUsGDAwW5fJZETj0bQ/4XB4oTtc05gohcM5xl5tBvIdviWC6VjRAOqMm862aHK8qVxv6uSZRHotnMzHzWYzDAYDGadzmiyLj4sLli7YOci9dtpQckKXTTTp2+3Lx/cD2uboWaZatkcT4nXAajamcU9NJpOXssf8+WAwEO6Z1+0VS9DkNFJKRjuv5GFTaJ+2mRWak8B7jDxJng8UaOb60kmiIsRJ00uWAab6hNmkyD3ixh+m9BnHnWoKk9nM4tV95Tt8FwCz2QzPnz/HH/7wByH5RiIR2Xy8YXXWRP/LDB83vDaSNCRUVH/48CFarRYODg5OlWXxcTHhOA5qtRo+//xzJJNJFAoFxONxUfq3bRtPnjxBrVZzJS93Oh18+eWXqFaryOVyyGazC8Klu7u7qNVq6PV6S8UN8vFmcLMRtm3j0aNHqNVq2NraQjabxWg0Eo4aD9VWq4VmsykNCcDR3iHPbHt7G1988QXi8bjQTgaDAdrtNvr9Pr788ku8ePEC1WrV06VIx3Hw/Plz/Md//IdkKbVTPBwO8eLFCzSbTayvr0vzRLPZRKvVQrvdfq2O0Wazid/85jd48OCBrG04HJYSb7/fl4B/e3sb1WoVu7u7eP78ucyOXRY0Gg08fPgQo9EIT548QTKZFAe21+vh008/xc7ODj799NOXmlG2t7fxj//4j1hdXcXGxgbK5bIEIqPRCJ9++ik+/fRTkWbxInyHb4lwkiM1m82wv7+Pr7/+GplMRsq7WrCTX4wS9etp7osZ6ViWhUwmg3g8jp2dHXz99ddotVpoNBpv9B59XBy0Wi08evQIyWQSa2tryGQyODw8xPb2NrrdLvb29oRbaqLX6+Hx48doNpsoFovI5/MLUxUODw/RarUWeEg+LibM/TEYDPDixQu0Wi08e/YMa2trwlOm5ttkMoFt21KSZVDgOI5kXqrVKh49erQwb7bT6eDw8BDdbhefffYZHj16JAe1V+E4Dg4ODvD5558jFouhUCggGo3Ctm25R6rVqqzHeDxGIBBAt9tFs9mUkXSvgm3b+Oyzz5BIJKRMG4/H8dFHHyGfzy9Mczo4OMBsNkO1WsX+/r5kvJYBpJhwnfb391EulxGNRpFIJNBoNPDpp5/iq6++wt7engQTRLVaxX/+538im83ihz/8IW7cuCH8+dFohG+//RbffPONL8vi42wxn8/Rbrexu7uLVqsl/A3yYbTDR7Kq+Xyz+YJOYCAQQCKRQCQSweHhIQ4ODtDtdpfmJvfx/tHv92X26Wg0QiKRQKfTkYzJaaWy8XiMw8NDDIdD9Ho9NJvNBVX/arWK0Wi0dPpePt4dzF6Rm3z//n2ZpasbLvr9vnSQUsKFcBxHAhI9SaPf7wv32LZtz+ulAcdOLDOTFI3u9/uS3eS90mw28c033yASiWB/fx/tdhv1ev21rpHZUertkarBzCrPDDo3s9kMrVZLOoCX6T7luWbbNh48eCCKFHSknz9/jnq9jm63+9J1jUYjsV2PHj2SvUeKS61W83zCw3Je4x1++eWXePz4Mf72b//2HN6SjzeFnp2oFdfdPlq3CQimwTS/J1eDwp+6td3H9w+RSET2GhsstNQKDyE3BINBkfvR4rdaeoNSEMt0kPh4d7DjMRAIIJlMIh6PL3D4tLgyHQ/uO41EIoFUKrVAnCeHbz6fy7xdwPsVCXYbawFmHaDTCY7H48hkMgt8MjrPr7qPWPkh/5tUHt7jpjA/gIX7fZka93SlK5/PiyoF17XT6Yj9Is2JoHwZZ87rSpnjOLBtG91u99yv6de//jWuXbuGe/fuvfKxfobvAsBxHAwGA0/zUXxcHJAs/jaYzWYfxCj68D50Y0ar1UKr1Xqr1+n3+57lUL0pmNl8Fd7lminR4va3LxronI1GI+zv77/Rc/VnYdv2Wby9M4c3e4d9+PDhw4cPHz58vDf4Dp8PHz58+PDhw8cFx2uVdCeTCSqVCn7961+f8dvx4cOHDx8+fPjw8TrgKLzXwWs5fCQ5Xrt27Z3emA8fPnz48OHDh4/3A8qnvQ5eq0vXhw8fPnz48OHDx/LC5/D58OHDhw8fPnxccPgOnw8fPnz48OHDxwWH7/D58OHDhw8fPnxccPgOnw8fPnz48OHDxwWH7/D58OHDhw8fPnxccPgOnw8fPnz48OHDxwWH7/D58OHDhw8fPnxccPgOnw8fPnz48OHDxwXH/wMsPoT58VZmbQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] }, - "b9d32ac7b88c4f4e900b160f05c016a3": { - "model_module": "@jupyter-widgets/controls", - "model_name": "IntProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "IntProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f280e146d6c54fb59f8ce36f2d1cc6a3", - "max": 1, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_c1d770aa9eb34e4d942967c507f94009", - "value": 1 - } + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "id": "wOEos1MmpeeP" + }, + "outputs": [], + "source": [ + "train_loader = torch.utils.data.DataLoader(fmnist_dataset_train,\n", + " batch_size=128,\n", + " shuffle=True,\n", + " num_workers=2)\n", + "\n", + "val_loader = torch.utils.data.DataLoader(fmnist_dataset_val,\n", + " batch_size=128,\n", + " shuffle=False,\n", + " num_workers=2)\n", + "\n", + "test_loader = torch.utils.data.DataLoader(fmnist_dataset_test,\n", + " batch_size=256,\n", + " shuffle=False,\n", + " num_workers=2)" + ] }, - "bebcff464bfc44ffa82e311a39cae7d7": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } + { + "cell_type": "code", + "source": [ + "train_loader = DeviceDataLoader(train_loader, device)\n", + "val_loader = DeviceDataLoader(val_loader, device)\n", + "test_loader = DeviceDataLoader(test_loader, device)" + ], + "metadata": { + "id": "85mTvhKspeeP" + }, + "execution_count": 40, + "outputs": [] }, - "bf33fa62bd4546bdbe142239f472fbb3": { - "model_module": "@jupyter-widgets/controls", - "model_name": "IntProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "IntProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_545f1e0393b64b1b94710674213f4af8", - "max": 1, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_26a1b39d42ee490b8732f0e3856c9114", - "value": 1 - } + { + "cell_type": "code", + "source": [ + "import gc\n", + "gc.collect()\n", + "torch.cuda.empty_cache()" + ], + "metadata": { + "id": "bmSu9-lFuGhW" + }, + "execution_count": 41, + "outputs": [] }, - "c1d770aa9eb34e4d942967c507f94009": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "MXyih5K28T1x", + "outputId": "6a0f6686-c5bb-467e-f16f-3f323448caf8" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 0%| | 0/100 [00:00:21: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.\n", + " return F.softmax(out)\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.01520823254585266, val loss: 1.7333219248453775\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 1%| | 1/100 [00:04<07:05, 4.30s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.7453999519348145, val score: 0.7434999942779541\n", + "Train loss: 0.013558461034297944, val loss: 1.702457985941569\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 2%|▏ | 2/100 [00:08<06:37, 4.05s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.7691999673843384, val score: 0.7647333145141602\n", + "Train loss: 0.013337010455131531, val loss: 1.6785035217285156\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 3%|▎ | 3/100 [00:12<06:26, 3.99s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.7924999594688416, val score: 0.7857999801635742\n", + "Train loss: 0.01325548688173294, val loss: 1.6729320579528808\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 4%|▍ | 4/100 [00:16<06:47, 4.24s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.7980999946594238, val score: 0.79093337059021\n", + "Train loss: 0.01316234210729599, val loss: 1.6621434796651204\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 5%|▌ | 5/100 [00:20<06:32, 4.13s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8090999722480774, val score: 0.8005333542823792\n", + "Train loss: 0.013111012542247773, val loss: 1.6483837768554688\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 6%|▌ | 6/100 [00:24<06:20, 4.05s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8301999568939209, val score: 0.8164333701133728\n", + "Train loss: 0.01300824853181839, val loss: 1.6410737665812174\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 7%|▋ | 7/100 [00:29<06:37, 4.27s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8392999768257141, val score: 0.8228999972343445\n", + "Train loss: 0.012929561126232147, val loss: 1.6287124053955078\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 8%|▊ | 8/100 [00:33<06:45, 4.41s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8497999906539917, val score: 0.8342999815940857\n", + "Train loss: 0.012860281145572663, val loss: 1.6328089101155598\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 9%|▉ | 9/100 [00:38<06:32, 4.31s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8504999876022339, val score: 0.8292333483695984\n", + "Train loss: 0.012800611805915832, val loss: 1.6300666267395019\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 10%|█ | 10/100 [00:42<06:38, 4.43s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8501999974250793, val score: 0.8315666913986206\n", + "Train loss: 0.01279163019657135, val loss: 1.6289208353678386\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 11%|█ | 11/100 [00:46<06:23, 4.31s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8600999712944031, val score: 0.8321666717529297\n", + "Train loss: 0.012783603847026825, val loss: 1.638148579152425\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 12%|█▏ | 12/100 [00:50<06:10, 4.21s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8483999967575073, val score: 0.8220999836921692\n", + "Train loss: 0.012762122070789337, val loss: 1.6310696703592935\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 13%|█▎ | 13/100 [00:55<06:09, 4.25s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8561999797821045, val score: 0.8301666975021362\n", + "Train loss: 0.012698540794849396, val loss: 1.624972934214274\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 14%|█▍ | 14/100 [00:59<06:02, 4.22s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8643999695777893, val score: 0.8364999890327454\n", + "Train loss: 0.012702400290966033, val loss: 1.6181998565673827\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 15%|█▌ | 15/100 [01:03<05:51, 4.14s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8661999702453613, val score: 0.8427333235740662\n", + "Train loss: 0.012721588039398194, val loss: 1.6145352063496907\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 16%|█▌ | 16/100 [01:07<05:45, 4.11s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.871999979019165, val score: 0.8469333648681641\n", + "Train loss: 0.012659252488613128, val loss: 1.6252163447062173\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 17%|█▋ | 17/100 [01:11<05:52, 4.25s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8597999811172485, val score: 0.8352000117301941\n", + "Train loss: 0.012695748662948609, val loss: 1.6211096356709798\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 18%|█▊ | 18/100 [01:15<05:41, 4.17s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8695999979972839, val score: 0.8396000266075134\n", + "Train loss: 0.012647639238834382, val loss: 1.616026412709554\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 19%|█▉ | 19/100 [01:19<05:32, 4.11s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8782999515533447, val score: 0.845633327960968\n", + "Train loss: 0.012611295127868653, val loss: 1.6123348940531412\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 20%|██ | 20/100 [01:24<05:43, 4.29s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8805999755859375, val score: 0.848633348941803\n", + "Train loss: 0.012591868889331817, val loss: 1.626542621612549\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 21%|██ | 21/100 [01:28<05:31, 4.20s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8623999953269958, val score: 0.8342000246047974\n", + "Train loss: 0.012656182193756103, val loss: 1.6076774200439452\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 22%|██▏ | 22/100 [01:32<05:22, 4.13s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8833999633789062, val score: 0.8533999919891357\n", + "Train loss: 0.012587492299079895, val loss: 1.6186869898478191\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 23%|██▎ | 23/100 [01:37<05:30, 4.29s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8737999796867371, val score: 0.84170001745224\n", + "Train loss: 0.012568051552772522, val loss: 1.608006851196289\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 24%|██▍ | 24/100 [01:41<05:21, 4.23s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8860999941825867, val score: 0.8532000184059143\n", + "Train loss: 0.012607045042514801, val loss: 1.6279399676005046\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 25%|██▌ | 25/100 [01:45<05:11, 4.15s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8659999966621399, val score: 0.8328666687011719\n", + "Train loss: 0.01259720677137375, val loss: 1.606757209777832\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 26%|██▌ | 26/100 [01:49<05:15, 4.26s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.889799952507019, val score: 0.8533999919891357\n", + "Train loss: 0.012551523649692536, val loss: 1.6111696131388347\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 27%|██▋ | 27/100 [01:53<05:06, 4.20s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.882099986076355, val score: 0.8497000336647034\n", + "Train loss: 0.012520147490501404, val loss: 1.6111488471984863\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 28%|██▊ | 28/100 [01:57<04:57, 4.13s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8831999897956848, val score: 0.8497999906539917\n", + "Train loss: 0.012513597524166108, val loss: 1.6235136479695638\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 29%|██▉ | 29/100 [02:01<04:51, 4.11s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8744999766349792, val score: 0.8369666934013367\n", + "Train loss: 0.012542359590530395, val loss: 1.6189518610636393\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 30%|███ | 30/100 [02:06<04:55, 4.22s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8748999834060669, val score: 0.84170001745224\n", + "Train loss: 0.012523973619937897, val loss: 1.6099501055399577\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 31%|███ | 31/100 [02:10<04:46, 4.16s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.88919997215271, val score: 0.8508000373840332\n", + "Train loss: 0.012508467066287995, val loss: 1.614284910329183\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 32%|███▏ | 32/100 [02:14<04:38, 4.09s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8791999816894531, val score: 0.847000002861023\n", + "Train loss: 0.012514243531227112, val loss: 1.6071547437032063\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 33%|███▎ | 33/100 [02:18<04:47, 4.29s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8901000022888184, val score: 0.8540000319480896\n", + "Train loss: 0.012530075061321259, val loss: 1.6141063087463379\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 34%|███▍ | 34/100 [02:22<04:36, 4.20s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8827999830245972, val score: 0.846833348274231\n", + "Train loss: 0.012519515764713288, val loss: 1.6084747922261555\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 35%|███▌ | 35/100 [02:26<04:29, 4.14s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8867999911308289, val score: 0.8525333404541016\n", + "Train loss: 0.012500142955780029, val loss: 1.6050712280273438\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 36%|███▌ | 36/100 [02:31<04:40, 4.38s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8952999711036682, val score: 0.8549667000770569\n", + "Train loss: 0.012495537459850312, val loss: 1.6105192776997883\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 37%|███▋ | 37/100 [02:36<04:44, 4.52s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8863999843597412, val score: 0.8498666882514954\n", + "Train loss: 0.012497906470298767, val loss: 1.6100799748738608\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 38%|███▊ | 38/100 [02:40<04:31, 4.37s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8888999819755554, val score: 0.8513000011444092\n", + "Train loss: 0.012560009622573852, val loss: 1.617728938293457\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 39%|███▉ | 39/100 [02:44<04:22, 4.30s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8754000067710876, val score: 0.8430333137512207\n", + "Train loss: 0.012520254695415498, val loss: 1.6131342590332032\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 40%|████ | 40/100 [02:49<04:20, 4.34s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.8860999941825867, val score: 0.8479999899864197\n", + "Train loss: 0.012437608730793, val loss: 1.6008597958882649\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 41%|████ | 41/100 [02:53<04:09, 4.22s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9001999497413635, val score: 0.8597000241279602\n", + "Train loss: 0.012407768571376801, val loss: 1.5994833541870117\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 42%|████▏ | 42/100 [02:57<04:00, 4.14s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9021999835968018, val score: 0.861133337020874\n", + "Train loss: 0.01237087287902832, val loss: 1.5995016980489094\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 43%|████▎ | 43/100 [03:01<04:05, 4.31s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9025999903678894, val score: 0.860966682434082\n", + "Train loss: 0.01236770601272583, val loss: 1.5985804135640462\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 44%|████▍ | 44/100 [03:05<03:55, 4.21s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9023999571800232, val score: 0.8619666695594788\n", + "Train loss: 0.012371844255924224, val loss: 1.59880636622111\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 45%|████▌ | 45/100 [03:09<03:47, 4.14s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9045999646186829, val score: 0.8619333505630493\n", + "Train loss: 0.012346452105045319, val loss: 1.598206024424235\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 46%|████▌ | 46/100 [03:14<03:54, 4.35s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9050999879837036, val score: 0.8620666861534119\n", + "Train loss: 0.012373390257358551, val loss: 1.5979679285685222\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 47%|████▋ | 47/100 [03:18<03:45, 4.25s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9052000045776367, val score: 0.8625666499137878\n", + "Train loss: 0.012369682276248932, val loss: 1.59835238571167\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 48%|████▊ | 48/100 [03:22<03:39, 4.22s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9047999978065491, val score: 0.8620333671569824\n", + "Train loss: 0.012328098237514495, val loss: 1.5982482755025227\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 49%|████▉ | 49/100 [03:27<03:43, 4.38s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9045999646186829, val score: 0.8619000315666199\n", + "Train loss: 0.01234631130695343, val loss: 1.5978840980529785\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 50%|█████ | 50/100 [03:31<03:34, 4.29s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9062999486923218, val score: 0.8632333278656006\n", + "Train loss: 0.012315875053405761, val loss: 1.59799218266805\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 51%|█████ | 51/100 [03:35<03:26, 4.21s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9067999720573425, val score: 0.862166702747345\n", + "Train loss: 0.012348711597919464, val loss: 1.5974453252156575\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 52%|█████▏ | 52/100 [03:40<03:24, 4.26s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9060999751091003, val score: 0.8633000254631042\n", + "Train loss: 0.01233775464296341, val loss: 1.5967813372294108\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 53%|█████▎ | 53/100 [03:44<03:19, 4.24s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9077000021934509, val score: 0.8637999892234802\n", + "Train loss: 0.012330089581012726, val loss: 1.5966185396830241\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 54%|█████▍ | 54/100 [03:48<03:10, 4.15s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9074999690055847, val score: 0.8637999892234802\n", + "Train loss: 0.012328511226177216, val loss: 1.5968188545227051\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 55%|█████▌ | 55/100 [03:52<03:04, 4.10s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.906499981880188, val score: 0.8636000156402588\n", + "Train loss: 0.01235736004114151, val loss: 1.5971223559061687\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 56%|█████▌ | 56/100 [03:56<03:07, 4.26s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9075999855995178, val score: 0.8635333180427551\n", + "Train loss: 0.012305399942398071, val loss: 1.596410893758138\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 57%|█████▋ | 57/100 [04:00<02:59, 4.17s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9067999720573425, val score: 0.8644333481788635\n", + "Train loss: 0.012302767717838288, val loss: 1.596994125620524\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 58%|█████▊ | 58/100 [04:04<02:53, 4.14s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9086999893188477, val score: 0.8638666868209839\n", + "Train loss: 0.012319714999198914, val loss: 1.5955979598999024\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 59%|█████▉ | 59/100 [04:10<03:09, 4.61s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9088999629020691, val score: 0.8652999997138977\n", + "Train loss: 0.012304554104804993, val loss: 1.5958630104064941\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 60%|██████ | 60/100 [04:14<03:00, 4.52s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9086999893188477, val score: 0.8648666739463806\n", + "Train loss: 0.012295004475116729, val loss: 1.5960732398986817\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 61%|██████ | 61/100 [04:18<02:50, 4.36s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9091999530792236, val score: 0.8648666739463806\n", + "Train loss: 0.012287355268001557, val loss: 1.5958442794799805\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 62%|██████▏ | 62/100 [04:23<02:50, 4.49s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.910099983215332, val score: 0.8651666641235352\n", + "Train loss: 0.012303576624393462, val loss: 1.5964705843607585\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 63%|██████▎ | 63/100 [04:27<02:40, 4.34s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9098999500274658, val score: 0.8636666536331177\n", + "Train loss: 0.012312369585037232, val loss: 1.595538602956136\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 64%|██████▍ | 64/100 [04:31<02:32, 4.24s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9113999605178833, val score: 0.8648666739463806\n", + "Train loss: 0.012287221038341522, val loss: 1.5949749735514323\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 65%|██████▌ | 65/100 [04:36<02:35, 4.43s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.911799967288971, val score: 0.8656666874885559\n", + "Train loss: 0.012309593045711517, val loss: 1.5955769200642904\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 66%|██████▌ | 66/100 [04:40<02:26, 4.31s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9121999740600586, val score: 0.865066647529602\n", + "Train loss: 0.012308647310733795, val loss: 1.5952335538228353\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 67%|██████▋ | 67/100 [04:44<02:18, 4.21s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9121999740600586, val score: 0.8665000200271606\n", + "Train loss: 0.012282453894615174, val loss: 1.5955568186442057\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 68%|██████▊ | 68/100 [04:49<02:18, 4.33s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9089999794960022, val score: 0.8653333187103271\n", + "Train loss: 0.012295108246803283, val loss: 1.5956489456176757\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 69%|██████▉ | 69/100 [04:53<02:12, 4.26s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.913100004196167, val score: 0.8647333383560181\n", + "Train loss: 0.012300214385986328, val loss: 1.5949818031311036\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 70%|███████ | 70/100 [04:57<02:05, 4.18s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9134999513626099, val score: 0.8654333353042603\n", + "Train loss: 0.012271296751499176, val loss: 1.5945852966308594\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 71%|███████ | 71/100 [05:01<02:01, 4.18s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.913599967956543, val score: 0.8659999966621399\n", + "Train loss: 0.01228633680343628, val loss: 1.5943964093526204\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 72%|███████▏ | 72/100 [05:05<01:58, 4.24s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9120000004768372, val score: 0.866433322429657\n", + "Train loss: 0.012268919110298157, val loss: 1.5939728747049968\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 73%|███████▎ | 73/100 [05:10<01:57, 4.34s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9136999845504761, val score: 0.8669999837875366\n", + "Train loss: 0.012275659716129303, val loss: 1.5948227587381998\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 74%|███████▍ | 74/100 [05:18<02:20, 5.40s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.913599967956543, val score: 0.8665333390235901\n", + "Train loss: 0.012275802671909333, val loss: 1.5943154006958007\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 75%|███████▌ | 75/100 [05:22<02:07, 5.11s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9152999520301819, val score: 0.8663333654403687\n", + "Train loss: 0.012255969774723053, val loss: 1.5942034983317057\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 76%|███████▌ | 76/100 [05:26<01:54, 4.77s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9129999876022339, val score: 0.8665666580200195\n", + "Train loss: 0.012253327250480651, val loss: 1.5948361317952473\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 77%|███████▋ | 77/100 [05:32<01:58, 5.14s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9133999943733215, val score: 0.8657000064849854\n", + "Train loss: 0.012277990055084228, val loss: 1.594291853841146\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 78%|███████▊ | 78/100 [05:37<01:48, 4.95s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9144999980926514, val score: 0.866433322429657\n", + "Train loss: 0.012256025588512421, val loss: 1.5935967656453451\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 79%|███████▉ | 79/100 [05:42<01:46, 5.07s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9165999889373779, val score: 0.8672666549682617\n", + "Train loss: 0.01227674947977066, val loss: 1.5938873672485352\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 80%|████████ | 80/100 [05:47<01:42, 5.11s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9161999821662903, val score: 0.8671666979789734\n", + "Train loss: 0.012245820116996766, val loss: 1.593950851949056\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 81%|████████ | 81/100 [05:51<01:31, 4.82s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.917199969291687, val score: 0.8671000003814697\n", + "Train loss: 0.012264317655563354, val loss: 1.593977805074056\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 82%|████████▏ | 82/100 [05:56<01:25, 4.73s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9169999957084656, val score: 0.8673666715621948\n", + "Train loss: 0.012249344480037689, val loss: 1.5941183316548666\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 83%|████████▎ | 83/100 [06:01<01:22, 4.87s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9174000024795532, val score: 0.8670666813850403\n", + "Train loss: 0.012247667968273163, val loss: 1.5941327743530274\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 84%|████████▍ | 84/100 [06:05<01:14, 4.65s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9178999662399292, val score: 0.8665000200271606\n", + "Train loss: 0.012255001902580262, val loss: 1.5939105461120606\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 85%|████████▌ | 85/100 [06:11<01:13, 4.89s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9177999496459961, val score: 0.8669999837875366\n", + "Train loss: 0.012247743558883667, val loss: 1.593886710357666\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 86%|████████▌ | 86/100 [06:16<01:08, 4.88s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9180999994277954, val score: 0.8672000169754028\n", + "Train loss: 0.012244824981689453, val loss: 1.5938672465006511\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 87%|████████▋ | 87/100 [06:20<01:00, 4.68s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9185999631881714, val score: 0.8669999837875366\n", + "Train loss: 0.012247224605083465, val loss: 1.593693623606364\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 88%|████████▊ | 88/100 [06:24<00:54, 4.52s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9182999730110168, val score: 0.8668333292007446\n", + "Train loss: 0.012240429973602295, val loss: 1.5936164558410644\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 89%|████████▉ | 89/100 [06:29<00:50, 4.63s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9178999662399292, val score: 0.8672000169754028\n", + "Train loss: 0.012242659533023835, val loss: 1.5937940010070801\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 90%|█████████ | 90/100 [06:33<00:46, 4.61s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9180999994277954, val score: 0.8668000102043152\n", + "Train loss: 0.012246608066558837, val loss: 1.5936681368509928\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 91%|█████████ | 91/100 [06:38<00:40, 4.47s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.91839998960495, val score: 0.8673999905586243\n", + "Train loss: 0.012240277433395386, val loss: 1.5937138313293457\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 92%|█████████▏| 92/100 [06:42<00:36, 4.60s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9182999730110168, val score: 0.8666333556175232\n", + "Train loss: 0.012234739756584168, val loss: 1.5935675821940105\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 93%|█████████▎| 93/100 [06:46<00:31, 4.43s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9181999564170837, val score: 0.8672000169754028\n", + "Train loss: 0.012239833116531372, val loss: 1.5934390907287597\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 94%|█████████▍| 94/100 [06:50<00:25, 4.29s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9176999926567078, val score: 0.8675000071525574\n", + "Train loss: 0.012239316427707671, val loss: 1.5934881553649902\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 95%|█████████▌| 95/100 [06:56<00:24, 4.83s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9172999858856201, val score: 0.8673999905586243\n", + "Train loss: 0.012246371138095855, val loss: 1.5935345809936523\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 96%|█████████▌| 96/100 [07:00<00:18, 4.58s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9179999828338623, val score: 0.8673666715621948\n", + "Train loss: 0.012256561315059662, val loss: 1.5934584569295247\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 97%|█████████▋| 97/100 [07:04<00:13, 4.41s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9179999828338623, val score: 0.8674666881561279\n", + "Train loss: 0.012247602868080139, val loss: 1.5934024358113608\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 98%|█████████▊| 98/100 [07:09<00:09, 4.52s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9178999662399292, val score: 0.8675333261489868\n", + "Train loss: 0.012239899849891663, val loss: 1.593370420074463\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 99%|█████████▉| 99/100 [07:14<00:04, 4.47s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9178999662399292, val score: 0.8673999905586243\n", + "Train loss: 0.01222942988872528, val loss: 1.59348554204305\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 100/100 [07:18<00:00, 4.38s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9185999631881714, val score: 0.8673000335693359\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + } + ], + "source": [ + "model = FixedNeuralNetwork().to(device)\n", + "opt = torch.optim.AdamW(model.parameters(), lr=1e-4)\n", + "loss_func = F.cross_entropy\n", + "scheduler = torch.optim.lr_scheduler.StepLR(opt, step_size=40, gamma=0.1)\n", + "\n", + "loss_history, score_history = train(model, opt, train_loader, val_loader, loss_func, 100, scheduler)" + ] }, - "ca04c2ebb96f48109ef440c260aa125a": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_748c2a2536394a50aab12eef92442fcb", - "placeholder": "​", - "style": "IPY_MODEL_181b94c37c72459ca284267bc7675469", - "value": "8192it [00:00, 25429.90it/s]" - } + { + "cell_type": "code", + "source": [ + "handle_history(loss_history, score_history)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 529 + }, + "id": "yBKx37P_sTZo", + "outputId": "7fed7b3b-a634-4a82-e84d-0251601a249d" + }, + "execution_count": 43, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", + "WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAACvoAAATJCAYAAAAc4lOpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xV933/8ffd92pvCSEJiS3ENmDAYGzjbSd2muVmOGlcu0mz2iZp0tYZTpwm9a9p2qStEzvDTdwmdoYdhzjBAxuMMctmS4gloYG2dDXvvuf3x5UuyEhowr2C1/PxuI9z7hnf7+cc6SABb31kMgzDEAAAAAAAAAAAAAAAAAAAAIC4Yo51AQAAAAAAAAAAAAAAAAAAAADOR9AXAAAAAAAAAAAAAAAAAAAAiEMEfQEAAAAAAAAAAAAAAAAAAIA4RNAXAAAAAAAAAAAAAAAAAAAAiEMEfQEAAAAAAAAAAAAAAAAAAIA4RNAXAAAAAAAAAAAAAAAAAAAAiEMEfQEAAAAAAAAAAAAAAAAAAIA4RNAXAAAAAAAAAAAAAAAAAAAAiEMEfQEAAAAAAAAAAAAAAAAAAIA4ZI11ARia3+/XT3/6Uz333HOqra1VQkKCVqxYoU984hMqKysb01g9PT360Y9+pM2bN6uurk4ul0tlZWX66Ec/qg0bNpx3vMfj0euvv65XXnlFb775ps6cOSOTyaSCggJdf/31+tjHPqaMjIzzzqurq9PGjRsvWMv27duVnZ09pvoBAAAAAAAAAAAAAAAAAACuRCbDMIxYF4HB/H6/7rvvPu3evVuZmZlauXKlWlpa9Oabb8pms+nRRx/V+vXrRzVWW1ubPvjBD6qqqkrp6elaunSpenp6dODAAfn9fn3+85/X/fffP+icX/3qV3rwwQclScXFxZo3b558Pp/2798vt9utnJwc/fznP1dxcfGg8waCvllZWcPW90//9E9KTk4e+03pt2/fPhmGIZvNNu4xAAAAAAAAAEQEAgGZTCYtW7Ys1qUAAAAAAAAAAIZAR9849Pjjj2v37t1atGiRnnjiCSUlJUmSNm3apM997nP6whe+oJdeeim6/UK+8pWvqKqqSmvWrNH3v//9aMi2vLxc9913n77zne9ozZo1WrhwYfQcq9Wq9773vbr33ns1d+7c6Pbu7m79zd/8jbZv364vfelL+uUvfznknDNnztS3v/3tidyCYRmGocs5m24YhgKBgGw2m0wmU6zLAa54PJNA/OB5BOILzyQQP3gegfgyFZ/Jy/nf2gAAAAAAAADgckBH3zgTDAZ1zTXXyO1269e//rUWLVo0aP8DDzygrVu36h//8R/1kY985IJjNTY2asOGDbJYLNq8ebMKCwsH7X/yySf1jW98Q7fccou+973vjaq+pqYmXXvttZKkLVu2aPr06dF9Ax19V61apZ///OejGm+sDh06JEnn3ZfLRV9fnyoqKlRaWqqEhIRYlwNc8XgmgfjB8wjEF55JIH7wPALxZSo+k5f7v7cBAAAAAAAAwFRnjnUBGOytt96S2+1WQUHBkP+4fvvtt0uSXn755RHHOnz4sCSpoKDgvJCvJK1Zs0aStG3bNvn9/lHVl5ubq4yMDElSc3PzqM4BAAAAAAAAAAAAAAAAAADA2FljXQAGq6iokCSVlZUNuX/BggWSpMrKyhHH8ng8kqTU1NQh96elpUWPq66u1ty5c0ccs7OzU52dnZKkrKysIY9pbW3V97//fTU3NyshIUGlpaW68cYblZSUNOL4AAAAAAAAAAAAAAAAAAAAiCDoG2fOnDkjScrLyxty/8B2t9ut3t5eJSYmDjvWQOfd+vr6IffX1dVF1+vr60cV9P3Zz36mUCikuXPnDtklWJJOnTql//zP/xy0LTk5WQ899JDuuOOOEecAAAAAAAAAAAAAAAAAAAAAQd+409fXJ0lyuVxD7k9ISIiujxT0XbJkiZxOp9ra2rRlyxbdcMMNg/Y/9dRTg8YaycGDB/XYY49Jkr74xS+et99ut+uee+7R7bffrlmzZsnlcqmqqko//elPtWnTJn3+859XUlKSNmzYMOJcF2IYRvQ+XW4GujAPLAHEFs8kED94HoH4wjMJxA+eRyC+TMVn0jAMmUymWJcBAAAAAAAAABgGQd/LWFJSkj784Q/r8ccf1z/8wz/oy1/+statW6fe3l499dRT+u1vfyubzaZAICCz2XzBsRobG/WpT31Kfr9f9913n9atW3feMTk5OXrooYcGbVu4cKG+853vaNq0aXr88cf1yCOPTDjoGwgEVFFRMaEx4l11dXWsSwBwDp5JIH7wPALxhWcSiB88j0B8mWrPpN1uj3UJAAAAAAAAAIBhEPSNMwMde4fr+nFuJ9sLdfMd8NnPflatra165pln9LnPfW7Qvg996EM6cOCADh06pJSUlGHH6Ojo0Mc+9jE1NTXp7rvv1he+8IXRXMogDzzwgH7yk5/oxIkTqq+v1/Tp08c8xgCbzabZs2eP+/x45vF4VF1dreLi4mG7OgO4dHgmgfjB8wjEF55JIH7wPALxZSo+kydOnIh1CQAAAAAAAACACyDoG2fy8/MlRTroDmVge1pa2qiCvjabTd/+9rf1wQ9+UK+++qqam5uVnp6u66+/XsuWLdP69eslSXPmzBny/J6eHt133306efKkbrzxRv3zP//zuH6VX0pKijIyMtTS0qLm5uYJBX1NJlM0EH25crlcl/01AlMJzyQQP3gegfjCMwnED55HIL5MpWdyPP/WBwAAAAAAAAC4dAj6xpnS0lJJ0pEjR4bcX15eLkmaN2/emMZdtGiRFi1aNGhbXV2dmpubNXPmTOXm5p53jsfj0V/91V/pyJEjuuaaa/Td735XFotlTPMOCIVC6u3tlaQp080EAAAAAAAAAAAAAAAAAAAglsyxLgCDLV++XGlpaaqrq9OhQ4fO2//8889LkjZu3DjhuZ544glJ0j333HPePr/fr0996lPau3evrrrqKv3Xf/2X7Hb7uOd67bXX1NfXp4SEBM2cOXPc4wAAAAAAAAAAAAAAAAAAAFwpCPrGGavVqnvvvVeS9NBDD6mnpye6b9OmTdq6davS09P17ne/O7r94MGDuvXWW3XrrbeeN159fb1aWloGbQuHw3riiSf05JNPav78+frABz4waH8oFNLnP/95bd++XQsXLtRjjz02qi68Tz75pKqqqs7b/sYbb+jBBx+UFAkVTyQwDAAAAAAAAAAAAAAAAAAAcKWwxroAnO/+++/Xzp07tXv3bt18881auXKlWltbtXfvXtlsNj3yyCNKSkqKHu/xeIYM2ErSrl279OCDD2rBggXKz8+XYRg6ePCgGhsbNXv2bD322GOy2WyDznnyySe1efNmSVJ2drYefvjhIcd+z3veoxUrVkTf/+pXv9LDDz+suXPnqri4WJJUVVWlY8eOSZLWr1+vv/3bvx33fQEAAAAAAAAAAAAAAAAAALiSEPSNQ3a7XT/+8Y/1k5/8RM8995y2bNmihIQEbdy4UZ/85CdVVlY26rHKysp02223af/+/Tp+/LgsFouKi4t177336sMf/vCQ3XW7urqi66+88sqwY69atWpQ0PdDH/qQtm3bpsrKSr3++uvyer1KTU3V+vXrddddd+nOO++UyWQade0AAAAAAAAAAAAAAAAAAABXMpNhGEasiwBG69ChQ5KkRYsWxbiSi6Ovr08VFRUqLS1VQkJCrMsBrng8k0D84HkE4gvPJBA/eB6B+DIVn8nL/d/bAAAAAAAAAGCqM8e6AAAAAAAAAAAAAAAAAAAAAADnI+gLAAAAAAAAAAAAAAAAAAAAxCGCvgAAAAAAAAAAAAAAAAAAAEAcIugLAAAAAAAAAAAAAAAAAAAAxCGCvgAAAAAAAAAAAAAAAAAAAEAcIugLAAAAAAAAAAAAAAAAAAAAxCGCvgAAAAAAAAAAAAAAAAAAAEAcssa6AAAAAAAAAGAsfIGQWt0etXT0qaXDoxa3p3/Zp1a3RyaTSckJdiUl2AYtk102JSXYB29LtCvRaZXJZLpk9YfDhvq8AXX3BdTd51dPX0C9noDMZpOsFpOsVrOslsjLFl03yWa1RNatJtn691utZlnMpkta/+XKMAy1d3lV29StmsZu1TR1q7apW4FgWF+6d6VyMhJiXSIAAAAAAAAA4ApE0BdTj2Eo5PXGuoqLIuT1yvD7FfJ6FTLTcBuINZ5JIH7wPALxhWcSiB/x9DwahjHusKlhGOrzBdXTF1C3J6AeT+Dsel9AnX1+tbq9anF71drpVWevf1Jrt1vNSkt2KD3JrrQkh9KTHUpLsvcvHUpPjmxPS7IrbBjy+kPy+ELy+oP96/1Lf0je/nWvP6Reb3DwtfSv93gDMoxJvYRIQNhi7g8AnxsWNslhsygzxansNKey0lzKTu1fT3UpLckus/nihoQNw1BHt19n2noVCIZHfZ7ZZIpe10DAORqAPne7xSSLxazRXoZhSG1dXtW19KqmqUe1zT2qbelVbXOP+rzB8443maSm5k5lJoz8jMXTMzlqhhG5SAAAAAAAAABAXDIZxmT/twJw8Rw6dEjepib5v/9orEsBAAAAAOCKYUjyme3qtCaqy5qoLlv/8pxXj9UlSbIY4f5XSBaFZT73fXQ9rJDJLI/FIY/FIa/ZLsM0tlCkLRxQaqBXKcGBV49SAr1KCfZJkjwWu7wWhzxmR//SPmjpNTvksdgVMNsm+3aN6RpcIb+cYZ8cYb8MmRQ2mRWSWSGTWSGTRSGTObJt4CWLQmbLpNVgNkJKCfb137vIKznYp8SQR4lBT2QZ8spmhEYcy5DUbUlQmz1VLfY0tdnT1GpPVas9VT6LY9JqvphMRljpgW5l+juV5Xcry9+pab5WZQS6Y13aRWP/9CfkzM3VokWLYl0KAAAAAAAAAGAIdPQFAAAAAACYosIyqdfilM0IyRYOyqLRd0sd4DdZ1Wt1qcfiUq/FqV6rS72WyPsea0I02OsfZSA2aDLr/J6oo2MNB+UK++TsD7+6QpF1V9gXCaH2h1FTg71yhP2ajB6kAZMlct0Wl3r6r/3ce9BrdUa3hUz9AVvDkN0IyB4OyhYOyh4OyGZElvZw8Jz1QPR6XCGfnOGBZWSbdRwfLykSqDVkOhv+NVkU0tsCwf0h4ZDJLL/Jpu4hAtrdVpfCJovctmS5bckXnNMR8veHfj1KCp5dmiS12lPV1h/o9ZvtQ55vMsJKDfTIboz+s+PcazwbgD57XWMNh5/LbISV4e9SZiAS5s3ydyrT71aGv2vcHxcAAAAAAAAAAC4Ggr6Ycpw5OVr+1P/GuoyLoq+vT5WVlZo3b54SEhJiXQ5wxeOZBOIHzyMQX3gmgdjx+II6Vtup8tMdqjjdocoat3yBs6FEq8Ukp90ip90qp90il90ip8Pav80ih82iPl9QHd0+uXv86uj2yesfuVPrgNREu7JSncpOcyorzansVFdkPdWpzBSnTCYpEDIUDIUjr+A56yFDgej2sKwWs5ITbEpKsCnZZVOiyyaHbfI61U42wzDU5wvKajbLbjPLZJqMmHFshUJhtXf71OL2qsXtUUunV61ur9q7fXL3+KKfJ4FgWD6LXT6LXe1KveCYFrNJ0zITVJiTpMKcxP5lkvIzE2Sf5I9vKGwo1P+5FQyNLZzrclhls44/KDycqfg1svzYsViXAAAAAAAAAAC4AIK+mHpMJlmczlhXcVFYwmGZ7HZZnM7L9hqBqYRnEogfPI9AfOGZBMam6kyn9lY0KcFhVVqKU+nJDqUnR5ZOx4X/aaajy6vy6naVV7WpvKpdp+o7FQ4bg44xmSSjf1MwZKjHE1SPZ2w9dR12izKSnUpLdig95Wx96SlOZae5lJORoMxUp5z2K/ufklJcsa5gclkk5SUmKC9v+GMMw1CvN6iOLq/c3T51dHvV0e1TR1dkGQyFVZCTrKLcZBXmJmlaVtJFCdAOV3+8mZJfIy+D0DoAAAAAAAAAXM6u7P+dAQAAAAAAuEhO1rn11EvH9MahhmGPcTksSjsnVJue7FBakkMNbb0qr2pXQ2vveefkpLu0YGamFpRkamZegrraajRv3nyZrQ55fUF5fEF5/UF5fSF5/MHoNo8vJJ8/qASn7bwwr2uEwDGuXCaTSUkum5JcNhXmJse6HAAAAAAAAAAArjj8Lw4AAAAAAMAkOl7boV++cEy7yxslRZplrijNldVijnZEbe/yyR8IyeMLyePrHTLQO3DujLwUlc3M1IKSDJUWZyo7/Wxb2b6+PlW0m2S1mJXQH8YEAAAAAAAAAADA5YOgLwAAAAAAwCSoPN2uX754THsrmiRJZpN07bICve/Gued1QjUMQx5fsD/4Gwn/dnRFlu5un9KSHVpQkqn5xRmEdwEAAAAAAAAAAK5gBH0BAAAAAEBcMwxDx2vd+tMb1dpd3qgZeSn6yB0LNLcoPdalSZIqqtr1ixeOat+xFkmS2WzSdcsL9N6Nc1SQkzzkOSaTSQlOmxKcNuVnJ13KcgEAAAAAAAAAADCFEPQFAAAAAABxqdcT0Ktv1WnzzmpVnemKbj94olWf+49tumZxvu69vTRmQdkjp9r0ixeO6sDxVkmRgO8NVxXqvTfOUX4W4V0AAAAAAAAAAABMHEFfAAAAAAAQNwzD0LGaDm3eeVrb9tfL5w9JkmxWs9Ytyde1ywq0/UC9tuyt1esHz2jn4QbdvHqG/vymeUpPcV7U2nyBkI5WtevAiRbtO9aiE7VuSZLFbNLGlUV678Y5ystMvKg1AAAAAAAAAAAA4MpC0BcAAAAAAMTcQPfeP71RreqGs917C3OTdeuaGbr+qkIlJ9glSStKc3X3htn62fPl2lPepD/uqNYre2t194bZetd1s5TgtE1KTcFQWMdr3Dp4okUHjreqorpdwVA4ut9qMenGVTP03hvmKCcjYVLmBAAAAAAAAAAAAM5F0BcAAAAAgCkuFDbU3euXu8cnfyCkYCgceQUNBUNhBUJhBYPhc7aHFQgZykx1alVZnhw2y6TUYRiGDp1s1ct7atXZ45PVYpbVapbNYo6uWy0mWS1m2az92yxmnWnt0Wv7z8gfiHTvtVvNWrd0um5ZPUOlxRkymUznzVU8LUVfuW+1Dp1s1f9sKldlTYd++WKl/vhGle65aZ5uWV0sm9U85vtYdaZTB4+36uCJFh051SZvf0fhARkpTi2Zk6XFs7O1fH6OMi5yF2EAAAAAAAAAAABc2Qj6AgAAAAAQp8JhQw1tvero8qqj26eObq/c3T51dEXWO7p9cnd75e7xKxw2xjVHgtOq9Uun68aVRZo3I33IUO1I3N0+bdlbo807T+tMa++46pCG7t47kkWzsvT/PrNeOw416OfPl6u+pVc/fOaQntt2Sh++rVTXLMmXyST1eALn3MfIfWvvv4/u/mWL26M+b3DQ+MkJdi2enaXFc7K0eHaWpmcnjeseAQAAAAAAAAAAAONB0BcAAAAAgDjU2ePT13+8U8dq3KM63mSKhFKddss53XP7u+me00l3YJ/FbNLR6nY1d3i0eedpbd55WtOzE7VxZZFuWFGozFTXBeczDEMHT7Rq887TeuPQGQVDkaCxy2HVdcsLNLcoXaHw2e7BA92EA8Gz3YUHOg07bBatXzZ92O69I1+7SdcsztfVZXl6cddp/d8LlWpo69UjT+5V8m/t8vgC0fpG4nJYVDYzS0vmZGvJnCzNyEuR2UywFwAAAAAAAAAAALFB0BcAAAAAgDjT0eXVl3+4Q6cbu2WzmpWd5lJ6ilNpyQ5lpDiVnuxQerJDacn96ylOpSbaZbGYxzRPOGzo8KlWvbynVq8fPKP6ll797PkKPfnHCi2dm6ONKwt19cJpctgs0XMGuvf+aedpNZzTvXdOYZpuXVOs9Uuny+WIzT83WC1m3ba2RNddVajntp3Ub145oe4+f3R/coLt7D1Ldio9ZfB9zEhxanpOkqxjvI8AAAAAAAAAAADAxULQFwAAAABwRQqFwnL3+NTR7ZO726eOLq86un3q6I4sA4HwqMdKTrTp/TfO07SsxAnX1er26MEfvK76ll5lpDj18MfXqjA3ecLjDsVsNmnx7Gwtnp2tv3rXIu04eEYv7anVkVNtequyWW9VNivRadW1ywq0aHaWdhw8o52HG87r3nvL6hmaVZB2UWocD5fDqvffNE93rJuphtYepSZFAr02q2XkkwEAAAAAAAAAAIA4QtAXAAAAAHDZMAxDvZ7A2cBu10CQtz/E2x/mdXf71Nnrk2FM3txvHGrQZ963TNcsyR/3GE3tffqnR19XU3ufstNd+ubHr5mU8PBoJDhtunHVDN24aobOtPZoy95abdlbq5YOj/74RrX++EZ19Nh46N47Gkkum+YUpse6DAAAAAAAAAAAAGDc4vd/4wAAAAAAGEZnj0+vHzyjU/WdkW680SCvT8HQ6Dvxmk3q7/bqVFpKpOtrRopTaUkOOeyj/SuzoZf31Kqiul3f/tke3XlNiT72zrIxd48909Kjf3r0dbV2ejUtM1EPf3ytcjISxjTGZMnPStKHbi3VB26er0MnWvXS3hodO92hJXOy4657LwAAAAAAAAAAAHA5I+gLAAAAAJgS+rwB7TrSqK1v1WnfsRaFw8O340102ZSeHAnwpic7lJbiUFpSJMSbnuxUeopDackOpSQ6ZDGbJlzbxpVFevKPFfrNKye06fUqHT3dri/eu1J5maPrxlvT2KUHf7BDHd0+FeQk6eGPr1VmqmvCdU2U2WzSkrnZWjI3O9alAAAAAAAAAAAAAFckgr4AAAAAgLgVCIa1r7JZW9+q084jjfIHQtF9swvTdNW8HGWmufpDvf2deZMdstvG1k13oqwWsz56Z5kWzsrSv/3fmzpR16m/+bdX9Zn3L9PaxfkXPPdUfae+/MMd6ur1q3hair7xV2uVluy4RJUDAAAAAAAAAAAAiGcEfQEAAAAAF41hGPL5Q7LbLDKPsnNuOGyovKpNr75Vp9cPnFGPJxDdl5+VqA3LC7RheYGmZyddrLLHbUVprv7j767XIz/fo6OnO/St/9mjd6yfqb+4s0w2q/m844/VdOgrj72hXk9AswvT9PUH1ig5wR6DygEAAAAAAAAAAADEI4K+AAAAAIBJ4+726Vhth47VdOh4jVvHajrU4wnIZJKcdoucdqucDqtcdqucDsugdZfdqrBhaPeRRrV2eqNjpic7tH7ZdF23vECzC9JkMo0uMBwr2ekufeuT6/Tz5yv021dP6PevndLR6nb9/YdXKC8zMXrckVNteuhHO+XxBVVanKGv/uVqJbpsMawcAAAAAAAAAAAAQLwh6AsAAAAAGBevP6SqxjYdq4kEe4/VutXc3jfksYYheXwheXwhqds34tgJTqvWLsrXdcsLtHB2liyj7AYcL6wWs/7iHWUqm5mp7/7iLR2vdetvvrtVn33/Mq1ZNE0HjrXoGz/dJZ8/pEWzsvTl+66Wy8Ff0QEAAAAAAAAAAAAMxv8iAgAAAACG5Q+E1Or2qKXDoxZ3n1o6PKpv6dbRqhY1d9bJMAYfbzJJBTlJmluUHnkVpmtaVqL8wZC8vpC8/qA8vqC8vpA8/qC8vsjL4w/J6wvKFwiptDhDK0pzZbdZYnPRk2hVWZ7+43PX6ZGf71Xl6Q798xO7de2y6XrjUIMCwbCWz8vRP/7FKjkug2sFAAAAAAAAAAAAMPkI+gIAAADAFOALhHTkZJt6PH55+gOzXl8kNOvxBeX1h/oDtGfXzSaTnA6LnA6rXHarnA5L/3LwusthldlkUmvn4EBvS4dH7p4Ld9/NTHVqblG65hSmaW5RumYXpCnRZTvvuETZpOSLdXfiW056gr711+v0s+fL9ezWk9q2r16SdHVZnr547wrZrIR8AQAAAAAAAAAAAAyNoC8AAAAAxDF3t0/P76jS8zuq1Nnjj0kNDrtFOekuZaclKDvdpdREq0x+t65bvUAFeRkxqWmqsVnNuu+dC1U2M1OP/+6wlszO0l+/Z4msFnOsSwMAAAAAAAAAAAAQxwj6AgAAAEAcqmns0u+2ndIrb9YqEAxLinTPnZ6dJOdAd16H9ex6tDuvJbLNHvnrnqe/86/XF1Rff7df79u7APuDCoUMZaY6lZ2eoOw0VyTYmx4J9ia5bDKZTNHa+vr6VFFRoYwUZ0zuzVS2euE0rV44LdZlAAAAAAAAAAAAAJgiCPoCAAAAmNK8/qB2Hm5U+ak22azm/rCrVS67RU5Hf/h1iGBsaqJDZrNp5AnGwN3t0/HaDqUnO1WUlyy7zTKm8w3D0P5jLXp220m9dbQ5un1uUZru3jBbaxdNk4UOsAAAAAAAAAAAAABwxSDoCwAAAGDKMQxDlac79NKeGr22v1593uCYx0h02VRanKEFJRlaUJKpOYVpYw7m9ngCOnKyVQdPRF7VDV3RfWazSYU5SSqZnqqZ+ZFXyfRUpSTazxsnEAxp61v1+t22k9ExTKZI99e7N8xSaXHGoI66AAAAAAAAAAAAAIArA0FfAAAAABedYRjq6vWrs8enrDSXEpy2cY3T1unRlr21enlPjepbeqPbc9JdWrs4X1aLWV5fUB5/UF5fqH85eN3jC8rrD6nXE9DeiibtrWiSJFktZs0tStOCkkwtKMlQaXGGkhIGh3K9/qAqqtr7g70tOlHrVtgYXGNBTpI6e/zq7vPrdGO3Tjd269U366L7s9Jc/aHfFJXkp6quuVt/2F6ljm6fJMlpt+jGVUV65/pZmpaVOK77BAAAAAAAAAAAAAC4PBD0BQAAADBhgWBIrW6vWtx9am73qMXtUUtHX/8y8t4fCEWPz0pzqSg3WYX9r6LcZBXmJSvJdX4A2BcIadfhBr28p1b7jzVHg7UOu0XXLM7XxpWFWjgzS2bz6DveBkNhVZ3pVHlVu8qr2lR+ql3uHl//+/bocTPykrWgJFOpSQ4dPtWqo9UdCobCg8bKz0rU4jnZWjInS4tmZSk1ySHDMNTW6dWpM52qqu/sX3apoa1XrW6PWt0e7S5vHDROZqpT71g3U7esnnFewBgAAAAAAAAAAAAAcGUi6AsAAABgzEJhQ/sqm7V5Z7UqT3dEu9GOJNFpVa83GA27vlXZPGh/RoozGvotyElS9ZkubdtXp15vMHpM2cxMbVxRqGuW5I+7M7DVYtacwnTNKUzXXdfOkmEYamjtjYR+q9p15FSbzrT2Rjvynisr1XlOsDdb2emu88Y3mUzKSnMpK82lVQvyotv7vAFVnenSqfpOVZ2JBIAdNotuW1Osa5ZMl81qHtf1AAAAAAAAAAAAAAAuTwR9AQAAAIxaW6dHL+6u0Qu7TqulwzNon91mUU66S9lpLmWnJyg7uu5SdlqCstKcslkt6unzq7apRzVNXapp6lZtY7dqm7rV2ulVe1fktf94y6Cxs9Jc2riiUDesLFR+VtKkX5fJZFJ+dpLys5N046oZkqSObq8qqtp1pKpN3b1+lZZkasnsLE3LSpTJNPruwedKcNpUNjNTZTMzJ7N8AAAAAAAAAAAAAMBliqAvAAAAgAsKhQ29dbRJm3ee1p7yRoWNyPbkBJtuWFGk9UvzNS0rSckJtlEFYJMS7CotyVBpScag7X3egGqbIqHfmqYe1TZ1KyXRrhuuKtSi2Vkym8cXrh2v9GSn1i7O19rF+Zd0XgAAAAAAAAAAAAAABhD0BQAAAGKg1xNQi9ujlo6+/qVH7V1eBYNhBUJhBUNhBYNhBUOGgqH+bcGwAsH+faGwXA6r0pOdSk92KD1lYOlQ2sC2ZKdSEu3jDsi2dXr0wq5I995W99nuvWUzM3Xr6hlauzhfdptlsm6JEpw2zZuRoXkzMkY+GAAAAAAAAAAAAACAKwBBXwAAAOAiqW/p0fGajmiQ99xgb583OClz1DX3XHC/2WxSWpJdqUkOOe1WuRxWOR2Ws+t2S/82a/82i8KGtH1//ZDde29ZPUOFucmTUjsAAAAAAAAAAAAAALgwgr4AAADAJKtr7tYvNlfqtQP1Mozhj0tOsCs73aXsNJey013KSHHKYbfIZjHLajHLau1fWsyyWc2yWkxnt5vN6vMF1N7lk7vbq44unzq6vero9sndHVnv7PErHDbU3uVTe5dvXNdysbr3AgAAAAAAAAAAAACAkRH0BQAAACZJU3uffvlCpbbsrYl2wl1QkqG8zMT+QG/C2WBvmktOx8X9djwYCquzx6eObp+6evzy+oPy+oPyeIPy+EPy+oLy+IPy+gav+wMhzS/OoHsvAAAAAAAAAAAAAAAxRtAXAAAAmKC2To+efumYXth1WsFQJOG7akGePnTbfJXkp8asLqvFrMxUlzJTXTGrAQAAAAAAAAAAAAAAjB9BXwAAAGCcOnt8+vWW43r+9Sr5g2FJ0tI52frgbfM1f0ZGjKsDAAAAAAAAAAAAAABTHUFfAAAAYIx6PAE98+oJPbftpLz+kCSptDhDH76tVItmZ8W4OgAAAAAAAAAAAAAAcLkg6Bun/H6/fvrTn+q5555TbW2tEhIStGLFCn3iE59QWVnZmMbq6enRj370I23evFl1dXVyuVwqKyvTRz/6UW3YsOGC5/3gBz/Q5s2b1djYqNTUVK1Zs0af+cxnVFhYOOx5O3bs0I9+9CMdPnxYfr9fM2fO1Pve9z69//3vl8lkGlPtAAAAExEMhdXZ41NHl08d3V51dEeW7i6f2ru96ujyyd3tky8QlNNuldNhlcthldNuiazbrXI6LHJFt1vV2evTpu1V6vUEJEmzClL1oVtLddX8HL7XAQAAAAAAAAAAAAAAk4qgbxzy+/267777tHv3bmVmZur6669XS0uLXnzxRb366qt69NFHtX79+lGN1dbWpg9+8IOqqqpSenq6rrnmGvX09Gjv3r3asWOHPv/5z+v+++8/77yuri79+Z//uU6cOKHp06dr48aNqqmp0XPPPactW7boySefVGlp6Xnn/fKXv9TXvvY1mc1mrV69WomJiXr99df11a9+Vfv27dO//Mu/TPj+AAAADCcQDOvVN2v1p53VamzrU1evfwxn+8Y0V1Fesj5063ytXjiNgC8AAAAAAAAAAAAAALgoCPrGoccff1y7d+/WokWL9MQTTygpKUmStGnTJn3uc5/TF77wBb300kvR7Rfyla98RVVVVVqzZo2+//3vKzk5WZJUXl6u++67T9/5zne0Zs0aLVy4cNB53/72t3XixAldf/31+t73vie73S5J+uEPf6h/+7d/0+c//3k999xzslgs0XNqa2v18MMPy2q16qc//alWrlwpSWpqatIHPvABPfvss1q/fr3uvPPOSblPAAAAAzy+oDbvPK1nt55QW6d30D6z2aS0JIfSUxxKT3YqPdmhtOTIekaKU2nJDjnsFvn8IXl8QXn9QXl9QXl8oci6P9T/PrIeDIW1dtE0rV9WIIuZgC8AAAAAAAAAAAAAALh4CPrGmWAwqJ/97GeSpK9+9auDwrx33nmnnnvuOW3dulW/+c1v9JGPfOSCYzU2Nuqll16SxWLRN77xjWjIV5IWLFigT37yk/rGN76hxx57TN/73vei+9ra2vTss8/KarXq61//ejTkK0kPPPCANm3apGPHjumVV17RjTfeGN33P//zPwoEAvrgBz8YDflKUm5urj7/+c/rb/7mb/SjH/2IoC8AAJg0nT0+/eH1Km3afkrdfQFJUkaKQ3ddO0vL5+cqPdmh5AS7zARyAQAAAAAAAAAAAADAFGSOdQEY7K233pLb7VZBQYEWLVp03v7bb79dkvTyyy+PONbhw4clSQUFBSosLDxv/5o1ayRJ27Ztk99/9tdab9u2TaFQSFdddZVycnIGnWMymXTLLbcMWcOWLVskSbfddtt5c23cuFEOh0MVFRU6c+bMiLUDAABcSEuHR48/e0j3ffNF/eKFSnX3BTQtK1Gfeu8S/eifbtKfXT9HxdNSlJrkIOQLAAAAAAAAAAAAAACmLDr6xpmKigpJUllZ2ZD7FyxYIEmqrKwccSyPxyNJSk1NHXJ/Wlpa9Ljq6mrNnTt3VDUMbD+3hu7ubtXX1w+q8Vx2u12zZ8/WkSNHdPToUeXn549YPwAAwNvVNffo+Z1H9eqbdQqFDUnSzOmpeu/GOVqzKF8WQr0AAAAAAAAAAAAAAOAyQtA3zgx0u83Lyxty/8B2t9ut3t5eJSYmDjtWRkaGJEUDuG9XV1cXXa+vr48GfUdbw7njDqynpKQMW1NeXp6OHDlCR18AADBmzR0e/XJbqyrr62RE8r1aPDtL775hjpbNzZbJRMAXAAAAAAAAAAAAAABcfgj6xpm+vj5JksvlGnJ/QkJCdH2koO+SJUvkdDrV1tamLVu26IYbbhi0/6mnnho01ttrOHeuoWoY6pzh6h7uvPEwDCM63+VmoAvzwBJAbPFMAvHj+08f1LE6ryRpZWm23rm+WHML0yTxjAKxwNdIIH7wPALxZSo+k4Zh8INzAAAAAAAAABDHCPpexpKSkvThD39Yjz/+uP7hH/5BX/7yl7Vu3Tr19vbqqaee0m9/+1vZbDYFAgGZzeZYlztqgUBAFRUVsS7joqquro51CQDOwTMJxFa3J6RjdV2SpAduzVF+hl2hngZVVDTEuDIAfI0E4gfPIxBfptozabfbY10CAAAAAAAAAGAYBH3jzEDX2+G6fpzbyfZC3XwHfPazn1Vra6ueeeYZfe5znxu070Mf+pAOHDigQ4cOKSUl5bwahuuaO7D93PlHqnu488bDZrNp9uzZExojXnk8HlVXV6u4uPiC3ZEBXBo8k0B8eHlvnaQG5WfYtHb5XJ5HIA7wNRKIHzyPQHyZis/kiRMnYl0CAAAAAAAAAOACCPrGmfz8fElSY2PjkPsHtqelpY0qMGuz2fTtb39bH/zgB/Xqq6+qublZ6enpuv7667Vs2TKtX79ekjRnzpwx1zB9+vTotoH1rq4u9fb2DlnbwHkD44+XyWSKBosvVy6X67K/RmAq4ZkEYuvAiQ5J0tzpLp5HIM7wTALxg+cRiC9T6Zk0mUyxLgEAAAAAAAAAcAEEfeNMaWmpJOnIkSND7i8vL5ckzZs3b0zjLlq0SIsWLRq0ra6uTs3NzZo5c6Zyc3NHXcPA9nNrSE5O1vTp01VfX6/y8nKtXLly0Dl+vz/aHWT+/Pljqh0AAFy5fIGQ9h1rkSTNK3DGuBoAAAAAAAAAAAAAAIBLyxzrAjDY8uXLlZaWprq6Oh06dOi8/c8//7wkaePGjROe64knnpAk3XPPPYO2X3vttbJYLHrzzTfV3Nw8aJ9hGNq8efOQNdxwww2SpD/+8Y/nzfXyyy/L5/OptLR0wh19AQDAlePg8Rb5AyFlpjqVl2aLdTkAAAAAAAAAAAAAAACXFEHfOGO1WnXvvfdKkh566CH19PRE923atElbt25Venq63v3ud0e3Hzx4ULfeeqtuvfXW88arr69XS0vLoG3hcFhPPPGEnnzySc2fP18f+MAHBu3PzMzU3XffrWAwqK985Svy+/3RfY8//riOHTumWbNm6frrrx903r333iubzaann35ae/bsiW5vamrSv/7rv0qS/vIv/3KstwQAAFzBdpc3SZKWz8viVwoDAAAAAAAAAAAAAIArjjXWBeB8999/v3bu3Kndu3fr5ptv1sqVK9Xa2qq9e/fKZrPpkUceUVJSUvR4j8ejqqqqIcfatWuXHnzwQS1YsED5+fkyDEMHDx5UY2OjZs+erccee0w22/nd8b70pS/pwIEDeuWVV3TrrbdqyZIlOn36tI4cOaLExER95zvfkcViGXROUVGRHnzwQX3ta1/TRz7yEa1Zs0YJCQnasWOHenp6dNddd+nOO++c3JsFAAAuW4ZhaPeRRknSVfOypVDLCGcAAAAAAAAAAAAAAABcXgj6xiG73a4f//jH+slPfqLnnntOW7ZsUUJCgjZu3KhPfvKTKisrG/VYZWVluu2227R//34dP35cFotFxcXFuvfee/XhD39Ydrt9yPNSUlL01FNP6dFHH9XmzZv14osvKjU1Ve94xzv0mc98RkVFRUOed88996ioqEiPP/64Dhw4oEAgoJkzZ+p973uf7rnnnnHdDwAAcGU6Wdep9i6vnHaLykrSdfIEQV8AAAAAAAAAAAAAAHBlIegbp+x2uz7+8Y/r4x//+IjHXn311aqsrBxy37x58/Sd73xnXDUkJSXpC1/4gr7whS+M6by1a9dq7dq145oTAABgwO7ySDffZfNyZLdZRjgaAAAAAAAAAAAAAADg8mOOdQEAAADAUAaCvqsW5Ma4EgAAAAAAAAAAAAAAgNgg6AsAAIC40+r26GRdp0wmaUVpXqzLAQAAAAAAAAAAAAAAiAmCvgAAAFNcZ49PtU3dsS5jUu3p7+Y7ryhdacmOGFcDAAAAAAAAAAAAAAAQGwR9AQAAprBAMKy///5r+vS/vqITde5YlzNpdpc3SZJWldHNFwAAAAAAAAAAAAAAXLkI+gIAAExhW/bW6kxrr0JhQ0+/dCzW5UwKry+oA8dbJEmrFhD0BQAAAAAAAAAAAAAAVy6CvgAAAFNUIBjW0y+fDfe+cahBNY1dMaxocuw/3qJAMKycjAQV5SXHuhwAAAAAAAAAAAAAAICYIegLAAAwRW3ZW6vm9j6lJzu0ojRXkvTrLcdjXNXE7T7SKEm6uixPJpMpxtUAAAAAAAAAAAAAAADEDkFfAACAKejcbr7vvmGOPnDLPEnS1n31amzrjWVpExIOG9pT0SRJWrUgN8bVAAAAAAAAAAAAAAAAxBZBXwAAgCloy96aaDffW9cUa05hupbNzVY4bOi3r56IdXnjdry2Q+5unxKcVpXNzIp1OQAAAAAAAAAAAAAAADFF0BcAAGCKCQTDevqls918HTaLJOl9N86VJL20u0btXd6Y1TcRu8sj3XyXzcuRzcq3qgAAAAAAAAAAAAAA4MpGegIAAGCK2bK3Rs0dnmg33wFlMzNVWpyhQDCsZ7eejF2BE7D7SKMk6eqyvBhXAgAAAAAAAAAAAAAAEHsEfQEAAKaQ4br5SpLJZIp29f3jjip19fpjUuN4Nbf3qbqhS2aTdNX83FiXAwAAAAAAAAAAAAAAEHMEfQEAAKaQ4br5Drhqfo5m5qfK6w9p0/ZTl77ACdhdHunmW1qSqZREe4yrAQAAAAAAAAAAAAAAiD2CvgAAAFPEhbr5DjCZTHrvjXMkSb9/7ZT6vIFLWuNE7D4SCfquWkA3XwAAAAAAAAAAAAAAAImgLwAAwJQxUjffAWsW5Wt6dpJ6PAH96Y3qS1bfRPR5Azp0slWStHJBXoyrAQAAAAAAAAAAAAAAiA8EfQEAAKaAc7v5vmeYbr4DLGaT3nNDpKvvM1tPyh8IXZIaJ2JfZYuCIUP5WYkqyEmKdTkAAAAAAAAAAAAAAABxgaAvAADAOFU3dKnV7bkkc53bzfeWC3TzHXDdVQXKTnfJ3e3TS3tqLn6BE7S7vFGStKosTyaTKcbVAAAAAAAAAAAAAAAAxAeCvgAAXMFeP3hGh062xrqMKamuuVt/+91X9Xf/vlU9nsBFnWss3XwHWC1mvfu62ZKk32w5rmAofFFrnIhQ2NDeiiZJ0qoFeTGuBgAAAAAAAAAAAAAAIH4Q9AUA4ArV2Narb//PHn3lh2+osa031uVMOZt3nlYwZKij26dfvlB5UecaazffATdePUNpSQ41d3i0bV/dxStwgipPt6ur169El02lJRmxLgcAAAAAAAAAAAAAACBuEPQFAOAKdbK+U5IUDIX18z9WxLiai8MwDH33F2/pmz/dpdAkdrQNBMPasrc2+n7T9lOqbeqetPHfPtdYu/kOcNgsumvDLEnSr14+rnDYGPP8hmFM6r0byu4jjZKkFfNzZbXw7SkAAAAAAAAAAAAAAMAAkhQAAFyhqs90Rde37avXsZqOGFZzcdQ0dWvL3lrtPNyonYcbJ23c3Uca1dXrV0aKQytKcxUKG/rR7w7LMMYepB3Jy3vG1813wO1ri5XosqmuuUdvHG4Y9XmhsKE/vVGtD331T/rMv72qQDA05rlHa3d55GOzqiz3os0BAAAAAAAAAAAAAAAwFRH0BQDgClXdEOnom+i0SpJ+8vsjFyWoGkt7ypui67/ffmrSxn1h12lJ0saVRbr/7oWyWsx6q7J50HyTIRAM6+mXx9fNd0CC06Y715VIkn718rFRfYzLq9r0d/++Vf/16wPq6vWrprFbB0+0jnnu0Who7VVtU48sZpOWzyfoCwAAAAAAAAAAAAAAcC6CvgAAXKGqGyIdfR941yLZrWYdOdWmXUcmr+ttPNhTfvZ6jpxqU9WZzgmP2dzep33HmiVJN62aofysJN29YZYk6Ue/OzypnW9f3lOjlgl08x3wjnUz5bBbdLKuU29VNg97XFunR9/5vzf1xf/crlP1nUp0WjWrIFWS9Mah0XcDHouBbr5lMzOV5LJdlDkAAAAAAAAAAAAAAACmKoK+AABcgTy+oBrb+iRJV83P1V39QdUnNpUrGArHsrRJ09Xr19HqdklSaXGGJGnT9qoJj/vSnhoZhrR4dpamZSVKkt67cY4yUhxqaOvVs1tPTngOaXK6+Q5ITXLotv6g8K9ePj7kXL/Zclyf+JeX9eqbdTKZpJtWFekHX7pR996+QJK060ijQuHJ7/i8uz9cvqosb9LHBgAAAAAAAAAAAAAAmOoI+gIAcAU63Rjp5puR4lRqkkPvvn6OUhLtqm/p0Qu7Tse4usnx5tEmhQ2peFqKPnJHJKz66lt16u7zj3vMUNjQS3tqJEk3Xz0juj3BadNH7iiTJD390jG1dXomUHnEZHXzHXD3hlmyWiKdm4+caotu31vRpE//6xY98YdyeXwhzStK179+5lp95v3LlJbs0KJZWUp0WuXu9unY6Y4J13GuHk8gWsuqBQR9AQAAAAAAAAAAAAAA3o6gLwAAV6DqM5Ggb3F+iiQp0WXTB26eJ0n6v81H1ecNxKy2ybKnvEmStHJBrhaUZKgkP0X+QEgv7qoZ95gHjrWopcOjJJdNaxZNG7TvuuUFmjcjXV5/SP/zh/IJ1T6Z3XwHZKa6tHFloSTp6ZeP6Uxrj77+45166Ec7Vd/Sq7Rkh/7mnmV65NPrNbcoPXqezWrWitJICPeNww0TruNcbx1tUihsqDA3KdodGQAAAAAAAAAAAAAAAGcR9AUA4ApU3dAf9M1LiW67ZU2xpmcnqrPHr9+8ciJWpU2KYCist45Ggr6ryvJkMpl057qZkqQ/7KhSKGyMa9yBbsfXryiU/W3hW7PZpAfuXiRJeuXNOh2tbh/XHP5ASP/ysz2T2s13wHtumCOzSXrraLM++cgr2lPeJIvZpLs3zNIPvrhRG1cWyWw2nXfeQKh556EGGcb47t1Qdh/p/xjRzRcAAAAAAAAAAAAAAGBIBH0BAIhzu8sb9eqbtZM6ZjTom3826Gu1mPWROxZIkp7delKtbs+kznkpVVS1q9cbVGqSXXMKI91pNywvUHKCTc3tfdpb3jjmMd3dPu06Euloe9OqoiGPmVuUHt33w2cPKTzGQLHHF9RDP9qpXUcaZbea9dl7lk1KN98BeZmJunZZgaRIGHrZ3Gx9//PX6753LlSiyzbsecvn58hmNauhrVc1jd2TUkswFNbec8LYAAAAAAAAAAAAAAAAOB9BXwAA4lhnj0///NPd+s7/vaXGtt5JGdMwjLNB32kpg/atXjhNC0oy5A+E9OSfKiZlvljY3R/kvWp+riz9HWodNotuvnqGJGnT9qoxj/nKm7UKhgzNLUpTSX7qsMd9+PZSJTitOlHr1st7akY9fnefX1/+wQ4dPNEql8Oir92/RlfNzx1znSP52DvLdOc1Jfqnv1ilhx5Yo8Lc5BHPcTmsWjo3W5L0xuGGSalj/7EW9XoCSkm0a96MjEkZEwAAAAAAAAAAAAAA4HJD0BcAgDi24+AZhfq7wh6r6ZiUMVvdXvV6ArKYTSrIGRzyNJlM+tg7yiRJW/bWqupM56TMeantKe/vFLtgcKfY29aWyGyS9h9vUW3T6DvTGoahF3adlqRoWHg46clO3XPTPEnSz56vUK8nMOL4HV1e/eN/v67Kmg4lJ9j08Mev0aLZWaOubyzSk536qz9brNULp8lkMo36vDULp0mS3jg0OUHfzTurJUnXXVUQDWMDAAAAAAAAAAAAAABgMIK+AADEsa376qPrlZMU9K1uiIR3C3KSZLOe/63AvBkZWr90ugxD+snvj0zKnJfSmZYe1bf0yGI2adm87EH7cjMStLI//Ltp+6lRj1lR3a665h457BatXzp9xOPvXDdT07OT5O7x6ZcvVl7w2Ob2Pn3xv7aruqFL6ckOfeuv12luUfqoa7tUVpXlyWySTtV3qrm9b0JjtXV6tLs/jH3LCMFpAAAAAAAAAAAAAACAKxlBXwAA4lSr26Pyqrbo++M17kkZt7qhS5JUPC112GPuvb1UVotJ+4+16K2jzZMy76UyECBdOCtTCU7befvfsW6mpEjH4tF025UU7ea7fsn0Icd8O5vVrL+8a6Ek6fevnRq2e3Bdc7e++J+vqaG1VzkZCfqXT63XjGkpo6rpUktNcqi0JFOStPPwxLr6vrSnRuGwodLiDBXlxef1AgAAAAAAAAAAAAAAxAOCvgAAxKntB+plGFJOukuSdLLOrWAoPOFxo0Hf/OEDlnmZibqzPxD7001HFAobE573UtlT3ihJ0c69b7d4TpYKc5Pl9Yf08p6aEcfr9QS0/cAZSdLNY+g+u6I0VysX5CoUNvSj5w7LMAbfw1P1nfrSf21Xa6dXhblJeuRT6zQtK3HU48fCmkXTJElvTCDoGw4bemFX5L7fuoZuvgAAAAAAAAAAAAAAABdC0BcAgDi1bV+9JOnPrputRJdN/mBYp/tDuhNxtqPvhTupvu/GuUp02VTd0KUtowjExoNeT0BHTkW6IK8aJuhrMpl057oSSdKm16sUHiHEvG1/vXz+kApzkzS/OH1M9fzlOxfKajHpraPN2lPRFN1eXtWmf/zv7ers8WtWQaq+9dfrlJnqGtPYsbB6YSToW36qTZ09vnGNsf94i5rb+5TosumaJdMnszwAAAAAAAAAAAAAAIDLDkFfAAAmgbvbp5N17kkb70xrj47XumU2m3TNkumaW5gmSTpWO7E5AsGQ6pp7JI0c9E1OsOuem+ZKkp7801F5fcEJzX0p7DvWrFDYUEFO0gW7415/VaESnVY1tPbqrcrmC475wq7TkiLdfE0m05jqyc9O0l3XzpIk/eh3hxUIhvRWZbO+8tgb6vUGVTYzU9/8+DVKTXKMadxYyc1I0Mz8VIWNs52Tx2rzzmpJ0vVXFchhs0xidQAAAAAAAAAAAAAAAJcfgr4AAEyCf/n5Hv3tv2/VoROtkzLea/3dfJfMzlJaskNziyKdZI/XdExo3NqmHoXDhpJcNmWmOkc8/o5rSpSbkaD2Lq+e3XZyxON9gZAOHG/Rz/9YoS//YEc0JHup7CmPdM1dOUw33wEuh1UbVxVJkv7wetWwx1Wd6dSJWresFpOuv6pwXDW978a5Sk92qKG1V//vyTf1jR/vks8f0vL5Ofra/auV6LKNa9xYWb0o0tV35+GxB307ur3a1X/eLauLJ7MsAAAAAAAAAAAAAACAyxJBXwAAJsgXCKm8ql2GIf321ROTMua2/ZGg77XLpktSNOhbOcGgb3VDlySpOD9lVN1pbVaLPnL7AknSb185ro5u76D9wVBYFVXteurFSv3To6/rzx98Xg/+YIeefumY9h9v0Q+fOXTeORdLKGxob8VA0Dd3xOPvuKZEJpP05tEmnWntGfKYgaDy1QunjbvrboLTpo/cEbmHbxxqUDAU1jVL8vXgX1wtp906rjFjafXCSIh6X2XzmLs8v7ynVqGwoXkz0kfsKA0AAAAAAAAAAAAAAACCvgAATFjVmU6Fw4YkaW9Fk2qbuic0XnVDl2oau2W1mLV6Ub4kaU5hmiSptqlbfd7AhMaWNKaQ5bql+ZpblCaPL6T//dNRnaxz65lXT+hrj7+hP3/wef39f76mJ/90VAdPtCoQDCsjxanrripQUV6y/IGQnn115E7Ak+HY6Q519fqV6LKptDhjxOPzs5J01fxcGcbQXX19gZBeebNOknTz1TMmVNv1VxVGa7ppVZG+8KEVslmn5rdhxdNSlJeZIH8wrDcrm0d9Xjhs6IWdkeD0rasndj8BAAAAAAAAAAAAAACuFFOvjRwAAHHmRK170PvnXjulT75nybjH27YvEi69an6Oklw2SVJ6ilPZ6S61dHh0sq5Ti2ZnjWvs6jOdksYW9DWZTPrYOxbqS/+1XZt3ntbm/rDmgOQEuxbPztLiOVlaPDtL07OTZDKZtKe8UV//8S49v6NKf3b97HF3xB2tPRWNkqSr5uXIahldiPaOa0q0t6JJL+2u0YduLZXLcfZbozcONajXE1BOuktL52RPqDaz2aSvP7BG1Y1dmluYLrN55G7K8cpkMmn1wml6dutJ7TzcoGsW54/qvEMnWtXQ1qsEp1Xrlky/yFUCAAAAAAAAAAAAAABcHqZmKzkAAOLIiTq3JGnRrEj4dsveWnX2+MY1lmEYem1/vSRpw7KCQfvmFqVLko7VdIyz0vF19JWkspmZWr80Es50OSxaUZqr+965UN/73HV68qFb9aWPrNTta0tUkJMskykSYl1RmqtZBany+kN67rVT4655tPaUN0mSVi7IHfU5y+flKD8rUX3eoF55s3bQvhd3RQLNN66aMSnBXKfDqvkzMqZ0yHfA6oXTJEXueTAUHtU5f9pZLUm6bnmBnA5+1gwAAAAAAAAAAAAAAGA0CPoCADBBAx19794wSzOnp8ofCEVDjWN1vNatxrY+OeyW8wKrcwv7g7614wv6dvb41NHtk8kkFeWNLegrSX/758v1339/g/7vG7frq3+5WndvmKWS/NRhg6smk0nvv3GuJGnT9lPq8QTGVfdoNLf3qbqhS2aTtHz+6IO+ZrNJd1xTIknatL1KhmFIks609ujgiVaZTNKNK4suSs1T2fziDKUlOdTrCejQidYRj+/s8Wnn4QZJ0i2riy9ydQAAAAAAAAAAAAAAAJcPgr4AAEyA1xdUbVO3JGl2YZruunaWJOn516sUCI6u0+m5tu6rkyRdXZZ3XtfTuUVpkqRjp8cX9B3o5puXmSjXODqq2qxmFeYmy2oZ/bcPV5dN04y8ZPV5g/r9Rezqu6ci0s23tCRTKYn2MZ27cWWRnHaLapu6dfB4JLT60u4aSdKyeTnKTndNbrGXAYvZpKsX5klSNMB7IS/vqVUwZGhOYZpmTk+92OUBAAAAAAAAAAAAAABcNgj6AgCuCH3egP5v81F9/cc71d7lnbRxT53pVNiQMlKcykhxav3S6cpIcai9y6fX9tePaaxQ2ND2/nM2LCs4b/+sgjSZTVJrp1dtnZ4x1zoQ9C2eNvZuvuNlNpv0/hvnSZKe23ZSfd6L09V3T3mjJGll6ei7+Q5IdNl0w4pCSdLvt59SKBSOBn1vvnrG5BV5mVm9cJokaefhRoXDxrDHGYahzf0drunmCwAAAAAAAAAAAAAAMDYEfQEAl7VAMKxN20/pgW+9pF+8UKk95U3a/Eb1pI1/otYtSZpTmCYp0vX2jmtmSpJ+t/WkDGP4AOTblZ9qU3uXT4kum5bNyz5vv8thVVFeJKR7vH/esag+c+mDvpK0dkm+pmcnqccT0B9er5r08b2+oA6eiHTiXblg7EFfSbpzXeRjtqe8UX/YUaWObp9Sk+xatSBv0uq83CyZkyWXw6r2Lq+O1w7fZfrwyTadae2Vy2HRtcumX8IKAQAAAAAAAAAAAAAApj6CvgCAy1I4bGjbvjr99SMv64fPHFJnj19Ou0WSVF7VPmnzHK9zS5Jm9wd9JenWNcWy2yw6daZTh0+2jXqsrfvqJElrF02TzWoZ8piBQPGxmuGDlcOpbuiUdOmDvhazSe+/aa4k6dmtJ+X1BSd1/P3HWxQIhpWbkaDC3ORxjVGYm6ylc7IVNqQfP3dEknTDiiLZrHyrNByb1aIV/R2Udx5uHPa4P/V38712WYFcDuulKA0AAAAAAAAAAAAAAOCyQXoFAHDZOXCsRZ/7j636f0++qca2PqUlO/TX716sb31ynSSpsqZdoVB4UuYa6Og7uyAtui0l0a6NKwolRYKtoxEMhbXj4BlJumDX03kz0iVJx2vcY6ozFDZU09gtSSrOv7RBX0m6dul0TctMVFevX3+cxI7KkrSnvElSpJuvyWQa9zh3riuRFAmJS9JNq4omXtxlbvXCSMfjNw41DLm/q9evHQcj+25dXXypygIAAAAAAAAAAAAAALhsEPQFAFw2TtV36is/3KEHf7hDJ+o65XJY9aFb5+uxf7hRt60tUUl+qhKdVnl8IVU1dE14vj5vQPUtPZIGB30l6Z3XzpQk7alo1Jn+Yy5k/7EWdfcFlJbs0KLZ2cMeN7eoP+hb2xENpI5GQ2uP/MGwHHaL8jISR33eZLFYzHrvxjmSpN++ekK+QGhSxg2HDe2tiHSTXbkgb0JjrViQp5yMBEnSgpKMcXcHvpKsKM2V1WJWfUuPapu6z9u/ZW+tgqGwZhWkDup6DQAAAAAAAAAAAAAAgNEh6AsAmPKa2vv0nf99U5/9t1e171iLrBaT3rF+ph7/xxv1/pvmyeWwSpIsZpPmF2dIksqr2iY876n6ThmGlJXmUlqyY9C+gpxkrSjNlWFIz712asSxtu2rkyStW5wvi3n4rrRFucmy2yzq9QajIePRqO4PNs/IS5b5AuNfTNevKFROukvubp9e2Hl6UsY8Vd+p9i6fnHaLFs3KnNBYFrNJ995WqiSXTe+/ad6k1He5S3DatGROliRp5+HBXX0Nw9DmndWSpFvo5gsAAAAAAAAAAAAAADAuBH0BAFOWYRh68k8V+vi3X9arb0WCstcum67//vuNeuDuRUpNcpx3zoKSSBi0vKp9wvOfqHNLkuYM06n07g2zJEkv7alRd59/2HF8gVA0JHntsoILzmmxmDW7IFVSpKvvaFWfiQR9i6eljvqcyWa1mPWeGyJdfX/zynEFghPv6runPNLNd9m8HNmslgmPt2F5gX7x8O1aPi9nwmNdKVYvnCZJeuPQ4KBveVW76pp75LRbtGHZ9FiUBgAAAAAAAAAAAAAAMOUR9AUATFn7Klv01IvHFAyFtWROlr77Nxv0hQ+t0LSsxGHPWVAS6ehbUdUmwzAmNP/xWrckaXZB2pD7F8/OUvG0FPn8IW2+QAfbvRVN8vhCyk53ad6M9BHnnVsUOeZYjXvUtQ509C2eljLqcy6GG1cVKTPVqbZOr17aXTPh8XZXNEmSVi3InfBYGJ+rF+bJZIo8D61uT3T7n/q7+a5fOl0JTluMqgMAAAAAAAAAAAAAAJjarLEuAEPz+/366U9/queee061tbVKSEjQihUr9IlPfEJlZWVjGqurq0s//vGP9fLLL6u2tlahUEh5eXlas2aNHnjgARUWFg46fteuXbr33ntHHPfqq6/Wz372s0Hb5s278K86f+qpp7R06dIx1Q8AQzEMQ798sVKSdOc1JXrgXYtkMplGPG9OUbqsFpPau3xqau9TXubwoeCRnBgI+g7T0ddkMunuDbP077/cp03bT+nuDbNktZz/Mzbb9vV3I146XWbzyNcwt3Ag6DuGjr5xEvS1WS169/Vz9Nizh/TrLcd109Uzhrwno9He5Y1+DK4qJegbK+nJTs2fkaGK6nbtOtygO9bNVHefX68fOCNJunVNcWwLBAAAAAAAAAAAAAAAmMII+sYhv9+v++67T7t371ZmZqauv/56tbS06MUXX9Srr76qRx99VOvXrx/VWK2trbrnnntUW1urjIwMrVmzRlarVYcPH9bTTz+tP/zhD3riiSe0ePHi6DlZWVl617veNeyYL774onp6erRq1aoh9yckJOiWW24Zcl9GRsao6gaAkRw80aqK6nbZrGa998a5owr5SpLDZtHsgjQdPd2h8qr2cQd9ezwBnWntlTR8R19JunbZdD3xh3K1dXq1/cAZXbe8YND+Pm9Ae8sjXWnXL50+qrnn9nf9rTrTqUAwJJvVcsHj+7wBNbX3SZJmxDjoK0k3r56hp18+puYOj17ZW6ubrp4xrnH29N+3uUVpSk92TmaJGKPVC6eporpdb/QHfV95s1aBYFgl+SmaM0wQHgAAAAAAAAAAAAAAACMj6BuHHn/8ce3evVuLFi3SE088oaSkJEnSpk2b9LnPfU5f+MIX9NJLL0W3X8h///d/q7a2VuvWrdP3v/99JSQkSJKCwaAeeughPf300/rmN7+pp556KnrOrFmz9O1vf3vI8RoaGvS73/1OJpNJd91115DHpKenD3s+AEyWp148Jkm6+eoZykgZW8iztCSzP+jbphtWFI58whBO1rklSbkZCUpJtA97nM1q0R3XlOh//3RUv9t2UhuWTR8USt55uFH+YFjTs5M0c3rqqObOSXcpNcmuzh6/TtV3at6MC/8QxemGbklSZqrzgrVeKg6bRX923Wz95PdH9KuXj+uGFYWyjKOr757yRknSygV5k10ixmjNomn66aYjOnSyTd19fm3eeVqSdMvq4lGH8AEAAAAAAAAAAAAAAHC+8f2ubFw0wWBQP/vZzyRJX/3qVweFee+8805t2LBBHR0d+s1vfjOq8fbs2SNJeuCBB6IhX0myWq369Kc/LUk6dOiQDMMY1Xi/+93vFA6HtWLFChUWji8cBwATdeRUmw6dbJXVYtK7r58z5vMXlESCseVV7eOuYSDoO3sU3UpvW1Msu9WsE7Xu8+bctq9Oks4LAF+IyWTSnMJIV99jNe4Rj69u7JIkFcdBN98Bt60pVkqiXQ1tvdq2v37M5/sDIe0/3iJJWlmaO9nlYYymZSWqeFqKwmFDP3++QjWN3bLbLOd1sAYAAAAAAAAAAAAAAMDYEPSNM2+99ZbcbrcKCgq0aNGi8/bffvvtkqSXX355VOPZbLYRj0lNTR11uOzZZ5+VJN19992jOh4ALoanXqyUJG1cWaTsdNeYzy8tjgR9a5u61dXrH1cNx2vdkqTZBWkjHpua5ND1/Z2Df7ftZHR7Z49P+49Fwqrrl00f0/xzi/qDvrUdIx5bfaZTUnwFfZ0Oq+7eMEtSpDtzKDy6HzgZcOhkq3z+kDJSnKPuhIyL6+qFkc7Kf3yjWpK0fmm+El0jfx8CAAAAAAAAAAAAAACA4RH0jTMVFRWSpLKysiH3L1iwQJJUWVk5qvHWr18vSXrsscfk8Xii24PBoL7//e9Lkt773veOaqwDBw6oqqpKLpdLt95667DH9fX16Qc/+IG+8pWv6OGHH9ZTTz2l1tbWUc0BACM5VtOhfcdaZDab9J4bxt7NV4oEbwtyIh3Tj1aPr6vvif6OvnNGEfSVpHeunylJ2nm4QQ2tvZKkHYcaFAobmjk9VQU5yWOaf25RZN7jNaMI+jbEX0dfSbrjmhIluWyqb+nRjgNnxnTunvImSdLKBbmj/mEVXFxrFk4b9P7W1cWxKQQAAAAAAAAAAAAAAOAyYo11ARjszJlI0CkvL2/I/QPb3W63ent7lZiYeMHx7r//fu3bt0/bt2/XDTfcoCVLlshms+nQoUNyu92677779NnPfnZUtQ10873pppuUlJQ07HEdHR367ne/O2jbN7/5Tf3d3/2dPvrRj45qLgAYzi/7u/lef1WB8jIv/GfghSwoyVRdc4/Kq9q0qmzoP3OH093nV2NbnyRpVsHouskW5aVo+fwcvXW0Wb/ffkoP3L1Ir+2rlyRdu3Rs3XwlaU5hpKNvfUuvevr8SkqwD3mcYRhng7758dX5NsFp0zuvnaX/23xUT71UqWuW5MtsHjm0axiG9pQ3SpJWLRjbxw4Xz8zpqcpJd6m5w6MZecmaNyM91iUBAAAAAAAAAAAAAABMeQR940xfXyQ45nIN/avoExISouujCfomJSXp8ccf19e//nX9+te/1iuvvBLdV1ZWpiVLlshisYxYl9/v1/PPPy9Jete73jXscXfddZfuuOMOzZ8/XykpKaqpqdHTTz+tX/ziF/rWt74lp9Ope+65Z8T5LsQwjOh9utwMdF0+t/sygLNOnenSnvImmUzSO64pnNCfBbOnJ+kFSYdOtgw7znDP5JETbZKkvAyXzAqqry84qjlvu7pAbx1t1ou7Tuu6pbk6fCrS7XzF/IwxX4vVFJm/sd2jwyeatHh25pDHtbg96vMGZbGYlJFojrs/P2+8Kk/PvHpCpxu7te2t01q1IOe8Y7z+kNw9Prm7/ers8elMa5+aOzyyWc2aMz0x7q7pSnbdsnw9veWkbl9TNOlfy/gaCcQXnkkgfvA8AvFlKj6ThmHwm1IAAAAAAAAAII4R9L3MnTlzRn/1V3+lxsZGfeMb39CGDRvkcrm0f/9+/fM//7M+85nP6NOf/rQ+9alPXXCcV155RW63W3l5eVq9evWwxz3yyCOD3s+bN09f/vKXNXv2bH3ta1/Td7/7Xf3Zn/2Z7PahO0+ORiAQUEVFxbjPnwqqq6tjXQIQl365LRKMXVjkkru5Ru7m8Y9lCUTCuSfrOnXwcLlsluH/U/Ptz+TOI5EOuVnJGtOfR1bDUE6qVc2dQX3rf/bIMKTCLLtaG6rV2jD2a8hOlhrbpR37TsgWGPpmVNZH/nM5M9mq48crxz7JJbBitkuvHenWE5uO6LU3T6rHG1KPJ6QeT1g93pD8QWPI80py7Dp18tglrhYXMj/H0Gffmad0V6cqKjovyhx8jQTiC88kED94HoH4MtWeyYn8Wx0AAAAAAAAA4OIi6BtnBjr2Dtf149yuhSN185WkL37xizp27Jj+4z/+Q7feemt0+7XXXquSkhK94x3v0KOPPqo777xTxcXFw47z7LPPSop07DWbzaO4ksHe//7363vf+57a29u1f/9+rVq1asxjDLDZbJo9e/a4z49nHo9H1dXVKi4uHrarM3Clqmns1tG6OplM0kffuVQFOUkTGs8wDP3slXZ19vhlT56m+TPSzztmuGfy+f0HJHVpaWmBSkuLxzTvn3lS9YNny9XaFQka33h1iUpLi8Z1DcvdNTp0ulJdPrtKS0uHPOZoc5WkNs0tyhz2mFibXuTX7uPb1dYdVFt3z5DH2G1mpSc5lJpsV1qSQxkpDt22ukh5mQlDHo/LD18jgfjCMwnED55HIL5MxWfyxIkTsS4BAAAAAAAAAHABBH3jTH5+viSpsbFxyP0D29PS0kYM+jY0NGj37t2y2Wy66aabzttfWFioxYsXa9euXdq9e/ewQd/29na99tprkqS77757lFcymNls1owZM9Te3q7m5gm04JRkMpmigejLlcvluuyvERir514vlyStXZyvucU5kzJm2cxM7TjYoJNnerW8dPqwx739maxu6JYkLSjJGfOzetPqmfrlSyfl7vHJbJKuX1mshATnuOpfOCtHUqVOnumWy+Ua8let1rdGfnBkdmFG3P65kpCQoL//0ArtOtKo1CS70pOdSk9xRJbJDqUlO+RyWPlVspDE10gg3vBMAvGD5xGIL1PpmeTvWgAAAAAAAAAQ3wj6xpmBbotHjhwZcn95eSToNm/evBHHGggFJyYmymKxDHlMSkqKJMntdg87zqZNmxQIBLR06VLNnDlzxHmH09kZ+RXeU6WbCYD4UdvUre0H6iVJ779x7qSNu6AkEvQtr2of9TmdPT41d0TCs7MKUsc8p91m0e1ri/V/L1RqyZxspSePL+QrSSXTU2Uxm+Tu9qnF7VFO+vn/iVzdEPmztzg/ZdzzXAqryvK0qiwv1mUAAAAAAAAAAAAAAAAAccUc6wIw2PLly5WWlqa6ujodOnTovP3PP/+8JGnjxo0jjpWdnS0pEuI9ffr0efuDwWA0OFxQUDDsOM8++6yk8XfzlaRjx47p1KlTkqSFCxeOexwAV6ZfvXxMhiFdXZankvyxh2uHs6AkQ5JUUd2ucNgY1Tkn6tySpOnZSUpw2sY173s2ztUn3r1Yn3rf0nGdP8Bhs0QDvMdr3Oft9wdCqm/plSQVT4vvoC8AAAAAAAAAAAAAAACA8xH0jTNWq1X33nuvJOmhhx5ST09PdN+mTZu0detWpaen693vfnd0+8GDB3Xrrbfq1ltvHTRWQUGBFixYIEl68MEH1dHREd0XCAT0L//yL6qvr1dycrLWrVs3ZD3Hjx/XkSNHZLfbdfvtt1+w9meeeWbITsRHjhzRZz7zGUnSLbfcotzc3AuOAwDnOtPao61v1UmS7rlp5G7mYzEzP1VOu0W9noBqm7pHdc6JWrckaU5h2rjntVnNun1tyZAdeMdqblG6JKmypuO8fbVN3QqHDSUn2JSRMv7OwQAAAAAAAAAAAAAAAABiwxrrAnC++++/Xzt37tTu3bt18803a+XKlWptbdXevXtls9n0yCOPKCkpKXq8x+NRVVXVkGM9/PDD+uhHPxoda/HixXI6nTpy5IgaGhpks9n08MMPKyVl6E6PzzzzjCTphhtuUGrqhbtovvjii/rSl76kkpISzZ49WzabTadPn1ZFRYXC4bDKysr09a9/fZx3BcCV6tcvH1fYkK6an6PZEwjXDsViMWvejHQdON6q8up2zRhF19vj/UHfya5lvOYWpuuPqtaxIYK+1Q1dkqTiaakymUyXujQAAAAAAAAAAAAAAAAAE0TQNw7Z7Xb9+Mc/1k9+8hM999xz2rJlixISErRx40Z98pOfVFlZ2ajHKisr03PPPacf//jHev3117Vnzx6Fw2FlZ2frrrvu0sc+9jHNnz9/yHNDoZB+//vfS5Le9a53jTjX3XffLZfLpfLycu3evVu9vb1KSkrSihUrdNttt+k973mP7Hb7qGsHEL/aOj36+R8rdMOKQi2enX3R5mlq79OWvbWSJr+b74DS4sxI0LeqTbetKR7x+BN1bknS7IK0i1LPWM0tSpMUqSsUCstiOdusfyDoO2NacixKAwAAAAAAAAAAAAAAADBBBH3jlN1u18c//nF9/OMfH/HYq6++WpWVlcPunzZtmh588MEx12CxWPTaa6+N+vibb75ZN99885jnATC1hEJh/b8n39SRU206XuvWf33hhos212+2HFcobGjpnGzNL864KHMsKImMW17VPuKxHV1etXV6ZTZJM6dfuMv5pTI9J1kuh1UeX1C1zT0qPqcr8bkdfQEAAAAAAAAAAAAAAABMPeaRDwEA4KxfvnhMR061SZJqGrujYdLJ1tbp0Yu7ayRJ779p7kWZQ5LmzUiX2SQ1t/ep1e254LED3XwHwrXxwGI2aU5hmiTpWE3HoH0DH5uS/JS3nwYAAAAAAAAAAAAAAABgCiDoCwAYtUMnWvXUS5EO4tnpLknStn11F2Wu37xyQsFQWGUzM7VwVtZFmUOSEpw2lfR3560YoavviVq3JEWDtfFiqKBvR7dX7m6fTCapKDc5RpUBAAAAAAAAAAAAAAAAmAiCvgCAUens8elf//dNGYZ048oifewdZZKkrfvqZRjGpM7V0eXV5jeqJUn3XMRuvgMWlGRKksqr2i543PH+jr6zC9IuckVjM7coXdLgoO/p/m6+eZmJcsZJ92EAAAAAAAAAAAAAAAAAY0PQFwAwIsMw9O+/3Kf2Lq+mZyfpr961SCsX5MnlsKi5vU+VpztGHmQMfvvqCfmDYc2fka4lc7IndeyhLCjJkCSVX6Cjr2EYcdvRd96MSND3dGO3vL6gJKm6oVuSVDwtJWZ1AQAAAAAAAAAAAAAAAJgYgr4AgBE999op7a1oks1q1hfvXSGnwyqHzaKrF06TJG3dVzdpc3X2+PTH/m6+779pnkwm06SNPZzS4kjQt7qhU33ewJDHtHd51dHtk9lsUnF+fIVnM1NdykhxKhw2dLK+U1LkWiSphKAvAAAAAAAAAAAAAAAAMGUR9AUAXNCJWree2HREknTfO8pUkp8a3bdhWYEkafuBMwqFwpMy3+9fOyWfP6TZhWm6an7OpIw5ksxUl3IzEhQ2pKPDdCc+3t/Ntyg3WU679ZLUNRZzi9IkScdrI/VXN3RJUtyFkgEAAAAAAAAAAAAAAACMHkFfAMCw+rwBPfLkXgVDhlYvzNPt15QM2r90braSE+xyd/t08ETrhOfzB0LRbr7vuX7OJenmO2BBSaSrb3lV25D7T/QHfWcXpF2iisZmblG6JOlYjVuhUFg1jd2SpBl09AUAAAAAAAAAAAAAAACmLIK+AIAhGYahR39zUA2tvcpKc+kz7192XvDWajFr3ZJ8SdK2ffUTnnPrW3Xq6vUrO92l1QvzJjzeWCwoyZQkVVS1D7n/RJ1bkjS7MO0SVTQ2cwsjQd/Kmg6dae1VIBiWw25RXkZijCsDAAAAAAAAAAAAAAAAMF4EfQEAQ9qyt1avvlUns9mkL3zoKiUn2Ic87tpl0yVJbxw6I38gNO75DMPQc6+dkiTdeU2JLJZL+yVqoKPv0dMdCobC59U2EPSdE6dB39mFaTKZpOb2Ph043iJJKs5Lkdl86boiAwAAAAAAAAAAAAAAAJhc1lgXAIyZYSjk9ca6iosi5PXK8PsV8noVMpPDR+zUt/Tq0d8clCTdc8MszZuWOOxzN29aojJTnWrr9GrPwTqtLssd15yHTrWruqFLDptFG5fmXfLnfFqKTckum7o9AR0/1ay5hWnRZ7K5uVOdPX5ZzCYVptvj8s8gp0manpWoupZevbCzWpJUlDP8xw2YavgaCcQXnkkgfvA8AvFlSj6ThiGZ+CFRAAAAAAAAAIhXJsMwjFgXAYzWoUOH5G1qkv/7j8a6FOCyFTSZ9bOC29XsyFBRX4PuOfOSzLrwl4otmVdpd3qZ5ndX6+6mbeOa9zd51+l4UpGWdVbqlpZd4xpjon497XqdSCzUDS17tKqzIrq9MrFIz0y7TrneNv1F3R9iUttobMpZq8Mps6Pvb2zZrRWdR2NYEQAAAGLOJJktksnav7RIRlgyglI4KIVD0gjf7uMiM9skqzOyDPmkoCfyMbpYTBbJbD27jL4GPk8G2gIYkfynYUgK9y+N/s8f4+x+Daz3n6NzlkNtk6k/U2ruX/a/N5nP2ff29zq7fdAxGrzNGKgvfLbmYd8bZ9+fey3nbQtHnpWL+TGJNfunPyFnbq4WLVoU61IAAAAAAAAAAEOgoy8AYJBXMq9SsyNDrpBX72jaPmLIV5IW9FRpd3qZTiQWyGeyymEExzSn25qk44mFkqSr3LELphZ4mnUisVB1rpxBQd9GR6YkKc/XFqvSRiXf2zYo6Jvj64hhNQAA4EplsUsWRyQgF/ZLoYCuuCCpySrZEiRb4tml1fm2cORA6PCc8OTbQ4bShQOV0W06J7h5Tqh3INg7knCoP8h4Tvh34H0oEAmfDrwmHHY09X+O2M/WbDKfXZrPfX/uuulsQNMInV2GQ0NsO/f9EC8Ncw0mcyRsa7b1B19tksV6/jYjFLkv4f7XoHV/5N69/XPebJesDsniPGfpjDwr5rd9jAwjcq8DfVKwr3/piWwb8fZaImMOzBFdH7jfVhq3jocRltoqpEBvrCsBAAAAAAAAAFyJCPpiynHm5Gj5U/8b6zIuir6+PlVWVmrevHlKSEiIdTm4Au0qb9ab/7tPkvS5v1irFfPuGtV5hmHohX/frjOtfTK+9C2tXpo/pnl/8vxR6fXTWjo7U3d+87/HXPdkST3doVcf262m3Dm6+t/vl8fjUWVlpXre9EtVbq29926tXvXpmNU3kqy6Tr3w6M7o+9se/baSE+wxrAiYPHyNBOILz+SVLezrU8DdpGBns4Lu5siys1nBzhYFu1r7W8QOZk5IkTUpQ5bkDFmSMmRNjqxHtmXKkpQmk9Uh0yQlEA3DkBHwKez3yGS2ypKQPCnjDiXU2yl/c5V8TVXyN1XL31ytUFfrkMcO6kI6igDuZDLZXTI7EmR2uGQEAwp7exT29kkyoqFgOUYex5yQKltqjqxpObKm5siamh1dtySlK+zpVbC7VaGutnOWZ9dDvZ2Kh+S3yWqPvGyRiw57umQEA5M2vtmVLEtiqmQYCrib+xPvwxVjkjUlW5akdAXdTQr1umXtDwIr45zDbE7Zswplyy6UPbtIMlve9gw2K+wdXRLVZHXI7EyU2ZUkszNRFmdkaXYmyexMinyyhoIyQkEZ4chSoVB03QhFUuHRdSna6tcwzkms968b5ybbzRaZLFaZzFaZLFbJYpWpf5ss1sH7zGaZzAPLSPLbZLacfW+2yBRNiA/UHJARDJxdBv3DbItcW+Sc0DnXGXzbvqAszkQt/n//KFvmyH/XnYpfI8uPHYt1CQAAAAAAAACACyDoi6nHZJLF6Yx1FReFJRyWyW6Xxem8bK8R8aulw6Pv//awJOnuDbN09ZLCMZ2/YXmhfvFCpV471KSNq2eO+rw+b0AvvVkvSbrrujkx/dyfNytHNqtZnb1+NfeElJbolGw2nWpslyTNLcmO62dzZrFdVotZwVBYWalOpWWkxLokYNLwNRKILzyTEaHeTvVW7lJvxQ75W+vlmD5HCTOXyjVzqWxpObEub8wMw1DY06NQT7uC3ZFXqKdDoe52BXvaFexqV7CzSWFPz4UHslhlS82RYYQV6mqTEQoo3Nclf1+X1Fx9gRNNMtmdMve/TLb+ZXSbK7Juc0bG9HkU9vX2Lz0K+/sU9nlk+PoU9nsHtZ61pGTJMW3W2VferDGHf8NBvwKt9fK31ERezTXyN1Ur1NM+5PHW9Dw58mbKkTdT9ryZsmcXRlrGnhOOjIYkB8KJ524Lh2SEQ/3L8Nn3RnjQdr/Pq9aWFuUUzJAzOa0/rJkYCfU6E2V2JMrscEVCkW9jhEMK+/oiH3dPTyT86+lRyNOtsDeyLdTdroC7WUF3U2R/X6d8fZ3yNRwf8mM4mhCvyWqXNSVLlsTU6MfXZHOd/di/7XPAbHfKZLEpHPDJCHgV9kdeht+rcKB/6fcq7PdE9vu8MgI+GUFf/zn+yPtzwrZG0C8j6Je8PefVZklMkyUxVZaElMgyMVXmhFRZE9NkdiUp7PdGno1et0I9boV63Qr2uBXq7YgEmcMhhT3dCnu6zw5stsiWliNrep5s6dNkyzi7tKZmy2SxRQ+NhMdPy9d8Wv7+V6ClVkbAK1/D8WHu/VmWxDRZ03JlS889u0zNliUhRWZnssyuRJmt/EDgxTIlv0bS5hkAAAAAAAAA4hpBXwC4wrV1evTHN6q1+Y3T6vEENLsgVffevmDM41y7bLp+8UKl9h9rUWePT6lJo2gHJmnL3lr1eYOanp2o5fNiG4ixWS2aU5im8qp2lVe1ae3CbLl7Q+r1BGW1mDVj2sXrBDcZbFazZk1PVWVNh2ZMI+QLAMDFEOrrVu+xXeot3yFP9aFBYdK+yl3qq9wlSbJlTJOrZIlcM5fKNWOhzA5XrEqOMoIBBTqbFexoinTk7WhUsKtNwZ52hbo7FOxplwY6c47AkpgaCRCm5cqafu4yT5bk9EiHTQ2Eh7sj83S3ndPd9Zz1rjYZAZ8kQ4bfo5Dfo/N7Ao+TySwZhkJdrerrao1+fCTJmpb7tvDvTJmdiTLCIQXaG+RvqZW/pUaB/mBvoL1x0Mf7nElky5oeDfQ68mbKkVssszNxsq7igvr6+lRXUaHE0tIxdw81mS2yuJJlcSXLNvLhCnl6FHQ3Rz5/3E0KdPQv3U0KdrZEuzlbEtMinX5TsmRNzYosU7Kj6+aElEnr3jwWRjgUCfgG/AoHzwkAh8OyJKbIkpAqs31iwUzDCPcH5t0K9nZIhiFben+Yd4iw9VAsialylSyWq2TxoNoDbWeiwV9/82kZ/WNHA71pubKm5Uz4GgAAAAAAAAAAQHwh6AsAVyDDMFRe1a5N20/pjUMNCoUjXbdyMhL09x9eKZvVPOYxC3KSNasgVSfrOrXj4BndtrZkxHPCYUO/f+2UJOkd62bKbI59F6EFJZn9Qd92rV2YrTPtfklScX6KbNZL/PuVx2HhrExV1nRo3oyMkQ8GAOAyZ4SCCrTVy9dUJX9jlQLuJlmTMmQd6KSZnidreu6InS1Dnh71HdutnvId8lQfjIYZJcmeN1NJpWvlyJ8tb12lPKf2y1tXqUB7gwLtDep680+S2SJnwbxo8NeRVzLqwN+YrtcwFO7r6g/xNinQ0TgokBnqbtdouq2aE1JkTUqXJSlD1uTBy0igMEdm++iCyyaTKdIVNSFFjryhvz80DCPapXWgM+vgrq2e87aZrLZIx1q7K7J0uKLvTee8N1ntMvxe+ZpOyddwUr6Gk/I3nFSgvUHB/nvTW7EjWos1JUuh3s5BnV8H3RtXkuzZM2TPLpQ9u0j2nBmy5xZfMcFKiytJFleSHNPO/w0eRjikUG+nzK6kuO0WazJbZLK7JLtLF+s7e5PJHP2ct6to8sY1W/o/7wqlsnWTNi4AAAAAAAAAAIh/BH0B4Ari9Qe19a06bdpepeqGruj2spmZunNdiVYvnCarZewh3wHXLi3QybpObd1XP6qg71uVzTrT2qtEp1U3rJy8/wSfiAUlkYBseVXkVzCfaYsEfecUpMWqpDG556Z5KspL0TVL8mNdCgAgRsJBvzwn96u3cpfCfk8ksJmccc4yQ5bkdJmdSZPeUTMa2PT0KOTpUdgbWZosVrlKFstsG13H//EI+/rka6qWv6la/qaqyHpLzSg61JpkTcmUNWNaf2fMSAjYmp4rf3O1est3qO/UASl8dhx7TrESF6xVUula2TKmRbe7ihcpfd17FPb1yVN9WJ6qA+o7tV/BjkZ5a8rlrSlXx9ZfyOxKliNvZiRoPMbQsRS5z6GeDvlbaxVorZO/pU6B1lr5W+sU9nRf+Grtzv6un7mR0G5q9qDPC2tiukzW0fR2nTwmk0kmu2vU4eExj+9wyVVUJldRWXRbyNsrf3/wd+AV7GxWsKs1co7NEQnyZhfKll3Uv14kS1JaTDrRTgUms0XWZH7YDAAAAAAAAAAAYLIR9AWAK0BjW6/+8HqVXtxdo15PpDuZ3WbR9VcV6I5rSlSSnzop86xfOl0/3XRER061qaXDo+z0C4c1ntt2UpJ009Uz5HLEx5ek+cWRcEJ9S4+6ev060x65X7ML02JY1eg5HVbdsKIw1mUAAC4xIxhQ36n96q3Yod5je2T4PSOeY7LYZDm3W2tCqmQa3Q/8BIMBJTQ3quPYH9Xh9yjs7YmGe88NxA6az+5U4ryrlVS2Xq6SxRPqaGsYhgItteo7tU+++mPyNVUr2NE49LyOBDlyi2XPLZYtfZpCPR2RTrcdjQq0N8jwexTsalWwq1Xe6kPDzmnPKVJi6TVKLF0je+b0C9ZndiQocd4qJc5bJUkKdDTKc+qA+qoOyFN9SGFPtzxVB+SpOvD2amVJyTwbOO4PH5usdvnb6hRoqZO/NRLqDfv6hpm9P7icnjs40JsWeW9OSCGoKsniTJSrZLFcJYuj20J9XfK31smanCFrWo5Mo3weAAAAAAAAAAAAgIspPlJVAICL4tDJVj3z6gntrWiS0f9bmnMzEnTHNSW6aVWRkhIm91fqZqe7VDYzU0dOtem1/fX6s+tnD3tsbVO39h1rkdkk3XHNyN1/L5XkBLuK8pJV09itiuoOnWnv7+g7RYK+AICpI9jdId+Z4woHvLKl5cialitL4ui7hRqhgDxVB9VTsUN9lbsHBT8tyZlKWrBW1rQ8hXo6FOppV7C7vX/ZobCnW0YooKC7WUF3s3zjqN8hDX+e2SqLK0lmV5IsruRIkLazRT2Htqrn0FZZElOVWLpWSQuvlSN/zqiuOeTtlaf6oDwn96vv5D6FutvOO8aSkhUN9TpyZ8qeVyxras6w4xuGoXBfVzT0G+hoUKCjUcH2RgXcjbIkpStp/lolLlgre1bB6G/O29jS82S7Kk8pV90iIxySr+GkAq115wSOGxXoaJDh61Ooq1WhrlZ5Tx++8KAms2wZebJlFcqeVSB7VqFsWQWyZeZf1M7JlzNLQopcRQtiXQYAAAAAAAAAAAAwCEFfALhMHT7Zqn969PVowHf5vBzdua5Ey+fnymK+eF3cNiybriOn2rRtf90Fg76/f+2UJGlVWZ7yMhMvWj3jsaAkUzWN3dq2v0G+gCGb1azC3ORYlwUAmMLCPo98jSflO3NCvjPH5T1zQqGu1vOOM9kcsqblyJaWF+3IakvLlTU9V9bUbJnMFnmqD6mnfIf6ju1S2NsbPdeSlKHE0jVKWrBWjulzL9iNNBz0K9TjjgZ/Qz3tCvV2STJGdT2BQEAt7m7lFZXImZohizNJZldyJNzrTJLJ5hgUrjUMQ766SvUceU09FTsU6u1U194/qmvvH2VNy1FS2XolLbx2UJjWMMLyN1ar7+Rb8pzaL29dpWSEz94rq13OGWVyFS+SI2+m7DnFsiSM7eu1yWSSJTFVlsRUOQvmjenc8TKZLXJOnyvn9LmDtg8KHXc0KNDeqGB/EDgc8MqeWSBbVoHs2ZFgry0jXyar7ZLUDAAAAAAAAAAAACB2CPoCwGXIMAz97PkKGYa0ojRXf3nXQk3PTrokc69dnK8fPnNIJ+s6VdfcrYKc8wM33X1+vby3VpL0zvWzLkldY7GgJEN/eqNab1a2SJJm5CXLauFXNwNAvAgH/Qp1tUW7xEaWrQr1usc2kMUqs90ls90pk90ps61/2f8y2fqXdpfMNrtktsjU/1J0aT7nvVkyW6RwWP6WmnNCvccVaKnTeSFak1n27AKZXcmRzrpdbTICPgVaahVoqR2yZJPVLiPoP3sJiWmRzrgL1spRMO+C4d5zma12mdNyZEvLGds969fX16e6igollJYqISFhxONNJpOchfPlLJyvzJv+ItKJ+Mhr6q3craC7We7XfyP367+RPbdEifNWKdDRKM+p/Qr1dg4ax5Y5XQmzlsk1a5mchaWXVefaWISOAQAAAAAAAAAAAMQ/gr4AcBl682izKqrbZbea9an3LlFmquuSzZ2a5NDSudl682iztu2r1wdumX/eMS/sPC1/IKTiaSlaOCvzktU2WgtKIjUNdEOeNT0lhtUAQHwLe3sVDvhlTU6f3HEDPnlrKxRorYsGeQdCvWMO9MYJa0qWHPlz5MifHVlOmymz/ezXaCMUULCzVQF3k4IdTQq4mxToaFTQ3axAR6MMv0dG0C9LYqoS569RYulaOQvnR4LGU4jJYlXC7OVKmL1cYb9Xfcf3qufIa+o7uU/+pir5m6rOHmt3ylW8OBLunbl03MFkAAAAAAAAAAAAAJiqCPoCwGXGMAw9+acKSdLt15Rc0pDvgGuXFfQHfev05zfPG/Sru0OhsDa9HgnwvHP9zEH74kVOukuZqU61dXolSTPzCfoCwLmCXW3qPbZbfcd2y3P6iBQOyZqWK9eMMjlnlMk1Y6GsKVljGtMIh+RrOCVP9UF5qg7KW3dUCgWHPd5ktcuami1rapasKdmypmTJkpQe6ao7mvkMQwoFFPZ7FfZ7ZQS8Cvs8Cge8Mga2+b0KBwb2+6RwSEY43L8MSUZ42PHNjoS3hXpnjxiGNllssmVMky1j2pD1hj09CvV1ypYxbcqFe4djtjuVVLZOSWXrFOrrVu/RN+SpOiBrep4SZi2Ts2CeTBZbrMsEAAAAAAAAAAAAgJgh6AsAl5kdhxp0sq5TLodF77lhTkxqWL0wT3arWfUtvTpZ36nZBWnRfTsPN6rV7VFKol0blhfEpL6RmEwmLSjJ1Gv76yVJM+noCyBOGKGggt3tCna1KNjVJrPVIWtatqypOTI7Ey/aD08YhqFAa10k3Fu5W76GE4MPMJkVdDep292k7gNbJOmc4O9CuWaUnRf8NQxDgfYGeaoOylN9UN7ThxX29g46xpKSJWf+nHMCvf2h3tQsmV3JMf9hEcMwJCMcCf0OCgGHZUlMkck0utDxaJhMJlkSkmVJSJ60MeONJSFZKctvVsrym2NdCgAAAAAAAAAAAADEDYK+AHAZCYUN/e+fjkr6/+zdeXiU9b3+8fuZNZlM9j0krGHfRBAEWUQUUUGt1q2t1qVW26o9rfVnPccuWrXV1m6eo63WajdbrFqruKICKlIWWYWwhDV7yJ5JJpNZnt8fIak0AbLPJL5f18WVyfPd7pnMM/GcfvggXTx/lOLdzrDkcEXZdcbEDK3dVqz3txQdV+j7ygf7JUkXzB4uhz1yuxGOH56kD7YWyW41NCTFFe44AAY50zSlUEAhX5MCdRUtf2qPfupxhQJ1RxWsr5ZkdriH4XTJHt9S9Nta/GtvfZyQLmtUTBczheQr2tdW3OuvKv70aXJmj1XM2JmKGXOGrDGJaircLe/hT9R0eKd8JfvbF/4mZih66EQ5MkaoufSAvAe3K1BXcdyZFqdLUcMnyzViiqJHTJEtMTPsxbwnYxiGZFgHTXddAAAAAAAAAAAAAEDkodAXAAaR97cUqqCsXu5ouz63IDesWRZMG6K124r1wZZCXX/RBFkshvILa7TrYJWsFkMXzBke1nynMnNihv70Rp5GZzpktfZeR0YAA1PAU62mgt1qKshTc+mBlg6uhtHSsdUwjv2xHCv8bH3cMmaGgjID/mN/mmUGj3399LWAXycq4P1PhtUuW3yKrLHJMv0+BWqPKthQI9PXqObyw2ouP9zxOptDht0pw2ZveWyzy7C2fLV8+prNIdMMqenQJwo21Px7A6tN0cOnKGbsTLlGz5DNnXjc/q5R0+QaNU2SFPI1qqlgt7xHdv678Le6VPXVpdI2HbdnVPY4RY+YoujhU+TMHEnRLAAAAAAAAAAAAAAAn0KhLwAMEoFgSM+91dLN97KFuYqJtoc1z/Rx6XJF2VRR26RdBys1aVSKXv3ggCRp7tQhSo6PDmu+U0lPcump7y7Q3r27wx0FQD8zTVP+qmI1FeS1FfcGqkv77XxrTLxscSmyxqXIFp8qW1yKbPEpssW1PLbGxLfrchs6VvAbqClXoLZc/rbHRxWoLVewofZYQXFzl7IYTpdcuacrZuwsuUZOk8XZuc9uy7F1rtzTW/J9qvC3ueyQHGlDFT18iqJyxsviiOpSJgAAAAAAAAAAAAAAPkso9AWAQeKdDUdUWtmoBLdTy+aODHccOexWzZmcpXc2HtH7W4o0JNWt97cUSZIunh/+fJ1ht1lkieB/Mh5Ae6Zpqrn0oBrzP5YZDMiwO2WxH+tka3fKYnPKOPa95dg1w+5Q0FOrpsJ/F/aGGuv+Y2dDjrRhisoZJ+eQMbI4oiXTlKmQZJrH/oRkHvvaes0MhWRYLMd1y237arW3u2axt1zvKovdKUdKthwp2R2Oh5qbWrr+tnYRDjZ/qptw4LjvQwG/FAzIkTFC0cMmditPu3z/UfgLAAAAAAAAAAAAAAA6h0JfABgEmv1BLV+5R5J0xaLRinJGxsf7/GlD9M7GI/pwW7HcLrsCwZDGDkvUmKGJp14MAJ1kmqaayw+rYddaefI+6pXuu4bVLueQ0YrKHqeonPFyZo+VNSqmF9KGh8URJYsjI9wxAAAAAAAAAAAAAABAF0VGJRgAoEfeXHdIFbVNSomP0pLZw8Mdp82U3BQluJ2q8fj04qp8SdLF8wZGN18Akc00TfmPFsiza60a8j6Sv6q4bcywOeTKPV1Wd5JMv0+hgE+m3yfT36yQ/9jjgE8hf/Ox6z4ZdqeisscqKmd8S2FvxkgZtp53sgUAAAAAAAAAAAAAAOgJCn0BoJcVHfXoD6/t0tXnjdXIIfF9fl6TL6C/v7tPknT14rFy2K19fmZnWa0WzZ2apRVrDyoUMpUcH6U5U7LCHQvAABaoLFLVps0txb0VhW3XDZtD0aOmyT3hLLlyT5fFER3GlAAAAAAAAAAAAAAAAL2DQl8A6GW/f2WnNuwqldcX0I9umdPn57364QHVeHzKTI7RojOG9vl5XbXg9GytWHtQknThnBGyWS1hTgRgIGou3K24D59Shefovy9abXKNmib3+LPkGj1DFifFvQAAAAAAAAAAAAAAYHCh0BcAelFJRYM25pVKkrbvO6rKWq+S4/uu8Mzj9evFVfmSpGvOHxuRRbRjhyVq7NBEVdZ6df6Zw8IdB8AAZJoh1bz5G1k9lZLFKtfI0xQzYY5iRp8hS1RMuOMBAAAAAAAAAAAAAAD0GQp9AaAXvbb2oEyz5XHIlNZsLtJlC3P77LyX1+SrwetXTnqs5k/L7rNzesIwDD18+zyFQqbstsgrRAYQ+ZqO5ClUXynT5lT6V34hd3J6uCMBAAAAAAAAAAAAAAD0CyquAKCXeH0BrdxwWJJ05qQMSdKqjwv67Lxaj0+vvL9fkvSlJeNktRh9dlZPWS0GRb4Aus2zY40kqTljnCzRsWFOAwAAAAAAAAAAAAAA0H+ougKAXvLepgI1NgWUlRKj26+cJpvVokMldTpYXNsn573w3j55fUGNyo7X7MmZfXIGAIRbyO+TZ/c6SVJz1qQwpwEAAAAAAAAAAAAAAOhfFPoCQC8IhUyt+PCAJGnp3JGKi3HojAkt/7T8qo8Le/28ylqvXl97UJL0pSXjZRiR280XAHqicd8mmb5GWWKTFUgcGu44AAAAAAAAAAAAAAAA/YpCXwDoBVv3HVVhuUfRTpsWnZEjSVo4veXrms0FCobMXj3v+Xf2qjkQ0vjhSZo+Lq1X9waASOLZsUaSFD3+LIm/1AAAAAAAAAAAAAAAAD5jKPQFgF7w6gct3XzPnTlUrii7JGnG+HTFuuyqqvNp276jvXZWWVWj3l5/WJJ07YV08wUweAUbatW4f4ukY4W+AAAAAAAAAAAAAAAAnzEU+gJADxVXePTx7jJJ0tKzRrRdt9ssmnfaEEnSqo8Leu28v769W4GgqdPGpGryqJRe2xcAIo1n14eSGZIzc5RsSVnhjgMAAAAAAAAAAAAAANDvKPQFgB56be1BmWZLB9+sVPdxYwtn5EiS1u0okdcX6PFZBWX1WrWppWj42gvG93g/AIhknh1rJEnuyQvCnAQAAAAAAAAAAAAAACA8KPQFgB5obPLrnQ1HJEnL5o5sNz52aKKyUmLkaw5q3Y6SHp/3l7d2K2RKsyZmaMzQxB7vBwCRqrmiUL6S/ZLFKveEueGOAwAAAAAAAAAAAAAAEBYU+gJAD6zaVKDGpoCGpLp12pjUduOGYejs6S1dfVd9XNCjs/YcrtLabcUyDOlLdPMFMMi1dvN1jTxN1pj4MKcBAAAAAAAAAAAAAAAIDwp9AaCbQiFTr354UJK0bO4IWSxGh/MWTs+WJG3fd1SVtd5unWWapp5ZsUuStGjGUA3PjOvWPgAwEJhmSJ5P3pckuScvCHMaAAAAAAAAAAAAAACA8KHQFwC6aeveoyo66pEryqaFM3JOOC8jOUbjhycpZEprNhd166yNu8q080ClHDaLvrhkXHcjAxiEfMX5Kv7zD1Tw22/KX10a7ji9oulIngJ1FTKcLrlGzwh3HAAAAAAAAAAAAAAAgLCh0BcAuunVDw9Iks6dOVSuKPtJ57YWAq/6uKDL5wSDIT37Wks334vnj1JKQnSX9wAw+ATqq1T+6v+q6Jm71XT4E/krClX6/I8V8jWGO1qPeXaskSS5x82Wxe4McxoAAAAAAAAAAAAAAIDwodAXALqh+KhHm/LKZBjSRWeNOOX8eVOzZLNadKikTgeLa7t01jsbC1RQVq9Yl12XnzO6u5EB9IGmor3yV5X065khv0/Va19UwRO3y7N9lSTJPXGerO5E+SsKVfaPX8gMBfs1U28K+X3y7F4nSXJPXhDmNAAAAAAAAAAAAAAAAOFFoS8AdMOKtQclSTPGpysrxX3K+W6XQ2dMSJckrfq4sNPnNPkCeu6tPEnSVeeNlTv65J2DAfQf75GdKn72HhU9+10FG+v6/DzTNOXJ+0iFv/2mqlc/J9PfJOeQMcq6/sdKu/S/lHHFd2XYHPLu36yq9/7U53n6SuO+TTJ9jbLFpShq6PhwxwEAAAAAAAAAAAAAAAgrCn0BoIsam/x6Z8MRSdKyuSM7vW7h9BxJ0prNhQqGzE6t+ecH+1VV51N6kksXzhne5azoP56dH+joa08o5Pf1+t7BpoY+KSQ1zZAq3nxKVaufG9AdYMPBDAZU8eZTkqSQ16Oq1X/t0/N8JQdU8qfvqfylRxWoPSprbLLSLvkvZX35IUUNGSNJcmblKnXZbZKk2vWvqm7rO32aqa94dqyRJLknzZdh8J+qAAAAAAAAAAAAAADgs80W7gAAMNC8u7FAXl9AOelunTYmtdPrZoxPV6zLrqq6Jm3fd1TTxqaddH5NvU8vvpcvSbr2gvGy26w9yo2+Y5qmKlc+q2BDjZyZoxR3+uLe2zvoV9Hv/59CvkYN/fr/yeJ09drezSUHVPfxm5JaCknTL7tTFmd0r+0/mNVufE3+owUyHNEym72q37JScdPOlTNzVK+eE/BUq3r1c6rftkqSKcPmUPzsS5Vw5iWyOKLazXdPOEv+iiJVf7BcFW88JXtSpqKHTuzVTH0p2FCrxgNbJUnuyQvCGwYAAAAAAAAAAAAAACAC0CYtQjU3N+u3v/2tLrroIk2ZMkVnnnmmbrvtNu3cubPLe9XV1ekXv/iFli5dqqlTp2rSpEk699xz9b3vfU8FBQUdrvnud7+rsWPHnvDP97///ROed+TIEd11112aO3euJk+erPPOO08/+9nP1NDQ0OXsQKQJhUyt+PCAJGnp3JEyDKPTa+02i+aeNkSStOrjju+9T1u+co+8voBys+M179g6RKZAbbmCDTWSpPodq3t178b8LQpUlyrUWKemon29urevJL/tsffAFhX/6XsK1FX26hmDUaCuQtXvPy9JSll8o9yT5ksyVfHW72SaoV45wzRDqln3sgqeuE31296TZMo9ab5yvvaYkuZf1WGRb6uEeVcoZvwcKRRQ2Qs/lb+6tFcy9QfPrrVSKChn5ig5UrLDHQcAAAAAAAAAAAAAACDs6OgbgZqbm3XTTTdpw4YNSk5O1sKFC3X06FGtXLlSq1ev1hNPPKF58+Z1aq+KigpdffXVKigoUFJSkmbPni2bzaZPPvlEzz//vF577TU9++yzmjJlSofr586dq9TU9h1Lp02b1uH8nTt36tprr1VDQ4MmTpyoGTNmaPv27Xrqqae0Zs0aPffcc4qNje38iwFEmM17ylVc0aCYKJsWTs/p8vpzZuTojY8O6aMdJfqaL6BoZ8cfw8UVHr2x7pAk6YZlE2WxdL6gGP3PV7j3U4/3yF9dKntiRq/s/enCYV/xPrlGTu2VfSWpqXi/JMk1ZqZ8RXvUXHZQRc/eo8yr/0eOtGG9ds5gU7nyGZn+Jjmzx8k95WxFjzxNDXs3yFe0V57tqxU79Zwen1HzwQuq/mC5JMmZNVrJi29U1JAxnVprGIZSl92mQE2ZfCX7Vfr8jzXk+h/3ajfovuLZsVoS3XwBAAAAAAAAAAAAAABaUegbgZ566ilt2LBBkydP1rPPPiu32y1JWrFihe68807dddddeuedd9qun8zjjz+ugoICzZ07V4899phcrpYin0AgoPvuu0/PP/+8HnzwQS1fvrzD9V/96lc1a9asTuUOBoP69re/rYaGBt1555366le/KqmlcPmOO+7QqlWr9NOf/lT3339/p/YDItGrx7r5njdr2AmLdE9m7NBEZaXEqLiiQet2lOicGR0XC//x9TwFQ6amj0vTlNz2xfaILE1Fe4773rPjfSXOv7LH+wYb69W47+O27z/dgbc3tO4XO/UcJZ93vUqXPyR/RaGK/vA/Sr/8rl4tKh4sGvdvUcPuf0mGRSlLbpZhWGSLTVLivCtV9e4fVbXqz3KNnSVrVEy3z/Ae2qHqD1o6Biefd4PizrhQhtG1f4TBYncq/Yrvquj3d8tfUaiyf/xcGVfeI8Ni7XauvtZcUShfyX7JsMg9YW644wAAAAAAAAAAAAAAAESErlWNoM8FAgH98Y9/lCT94Ac/OK6Yd+nSpVqwYIGqq6v14osvdmq/jRs3Smop2G0t8pUkm82m22+/XZK0Y8cOmabZ4+zvvvuuDh06pDFjxujmm29uu+5wOHT//ffLZrPpxRdfVHV1dY/PAsKhsLxem3eXyzCki84a0a09DMPQ2cc6Aa/6uKDDOXsOV2nttmIZhnT90ondzov+03Sso68rd7okqf6TNb3yuerZ9aEUCshwREuSfMW9V+gbavbKX1EoSXJm5sqekK6s6x5U1NCJMpu9Kl3+oOq2vttr5w0GoUCzKt76nSQp/owL5Uwf3jYWf8aFsicPUbChVtXvd/yXZzoj4KlR+cu/lGTKPeUcxc9c2uUi31a22CRlXHG3DJtD3v1bVPXuH7u1T8jvkxnwd2ttV3h2rJEkuUZNkzUmvs/PAwAAAAAAAAAAAAAAGAgo9I0wmzdvVk1NjbKzszV58uR24xdeeKGklqLazrDb7aecEx8fL8Mwuha0A6tWrZIknX/++e32S0tL0/Tp0xUIBLRmzZoenwWEw2sfHpQkzZyQoYzk7nfrXDg9W5K0fd9RVdZ6jxszTVPPrNglSVo0Y6iGZ8Z1+xz0j5Dfp+byQ5KkpEXXybA7Fagula9ob4/39mxfLUlKmHOZZFgU9FQrUFfZ430lyVd6QDJDssYmyRabKEmyRruVec335J40XwoFVfHa46pa/ddeKVoeDGo/elmB6lJZ3UlKnH/VcWOG1a7kxTdJkuo2vaHm8sNd3t80Qzr6yq8VbKiRPSVbKeff1OPMzqxcpV7c8hd7ajesUN2Wdzq1LuTzyrPzA5X+/WEdfvTLKvjtHQr5vKde2E2mGZLnk/clSe7JC/rsHAAAAAAAAAAAAAAAgIGGQt8Ik5eXJ0maOLHjLp4TJkyQJO3Zs6fD8f80b948SdKTTz4pr/ffBTqBQECPPfaYJOmKK6444fqVK1fqgQce0Pe//3098cQT2r59+ymzT5o0qcPx1ue0e/fuTmUHIkmD1693Nx2RJC2bO7JHe2Ukx2j88CSFTGnN5qLjxjbuKtPOA5Vy2Cz64pJxPToH/cNXsl8KBWV1J8mePEQxY2dJ+nd30u5qriiUryRfslgVd9oiOVJbOkH3VldfX/F+SS3dfD/NsNmVevEdSjjr85KkmrUv6Ogrv+6Xjq59pfqD51Xx9u8Vau5+oaq/ulQ1H70kSUo+73pZnK52c1wjpypm3JmSGVLFW093uUC6Zu1L8h7cJsPmUPpld8riiOp23k9zj5/TVphc8eaT8h7e2eG8UHOTPLvWqvSFR3T4lzeq/OVfqnHvBplBvwI15ard+Fqv5OlI05E8BeoqZDhdco2e0WfnAAAAAAAAAAAAAAAADDS2cAfA8YqLiyVJGRkZHY63Xq+pqVFDQ4NiYk7eVfTmm2/Wli1b9OGHH+qcc87R1KlTZbfbtWPHDtXU1Oimm27SN7/5zROu/9Of/nTc97/85S+1YMECPfLII0pISOhS9vT09OPmAf0lGDJVVtmgI2X1Kiir15HSeh0pq1fxUY9sVotiXQ65XfYOv8a67HK7HNp1oFJeX1A56bGaMjqlx5kWzshR3qEqrfq4QJctbCm0DAZDeva1lm6+F88fpZSE6B6fg77X2rnXOWS0DMOQe/ICeT55X568tUpefIMM66k7q3fEs2O1JMk1apqsMfFyZo1Wc/lh+Ur2KWbcrJ7nLmkpGHZm5bYbMwxDSWdfI1tCmire+K08n7yvQH2l0i//f7JGu3t8dn9qKshT9fvLJUm+wt3KuOp/ZI2J79Iepmmq4q3fyQz6FT1iimLGzznh3KRzv6zG/M1qOrJTDbvWyj1xbqfO8B7Z2ZYzZcnNcqQO7VLGU0mYe4WaKwrVsGutyl78qYbc8BPZEzMU8vvUmL9ZDXlr1bjvY5mB5rY1tsQMuSecJYsjSlWr/qLaf/1TcdOX9Ml7oLUw3j3uTFnszl7fHwAAAAAAAAAAAAAAYKCi0DfCNDY2SpKiozsu8HO5/t1BsDOFvm63W0899ZTuv/9+vfDCC1q1alXb2MSJEzV16lRZrdZ268aNG6cf/OAHOvPMM5WZmamqqipt2LBBP//5z7VmzRrdeuuteu6552Sx/Lsp9Kmyt2ZtaGg4aeZTMU2z7azBprXr8qe7L6PzTNNU0dEGFR1tUGF5gwqPelRY3qCSykb5A6ETrArK4/VLlZ074/xZ2b3y85k+JlE2q6FDJXXKO1CmYRmxendToQrK6uWOtuvCM4cM2vf5QNKZe7LhSEs3c2vaCDU2NspMy5UlJkGhhhpV71ynqNyudyc1QyHVbV8tSXKMnaPGxkYZyS0dfRsL9iqqF94bTUX7Wh4kZZ/wvWYbM1uJTrdqVvxaTYd3qvDZe5R46Xdki0/tOLcZkoJBmaGAFAzINEOyRMfJMIwe5+2u6g9eaHvsK9mvwme+q8TL/p9sCemd3qMpf5O8+7dIVptiFnzp5J8BdrdiZi6T56MXVbHyWWnIhFN25g011qnipV9IZkhR48+SJXdWn9z/7kU3qrmyRP6yAyr+24Oypw6V78AWmX5f2xxrfJqixsxU1JgzZUsdKsMwZJoh2bavUaCyUBVrX1LsnM/3ai4z0CxP3keSJNvoM0/43PkdCUQW7kkgcnA/ApFlIN6TpmmG9f9uAwAAAAAAAACcHIW+g1xxcbFuueUWlZaW6kc/+pEWLFig6Ohobd26VQ899JDuuOMO3X777brtttuOW3f99dcf9/2QIUP0uc99TnPmzNHFF1+sLVu26K233tIFF1zQj8+mhd/vV15eXr+f258OHToU7ggD0sv/qtLWAycoWLQaSo2zKTXertT4lq8pcTaZpuRtDrX88f3H1/94nBBjU1pUrfLy6nsl7+isKOUVePXye5/o7Mlxeu7tUknSWeNdOnIov1fOQO844T1pmoovyJNFUlGzXcFjn03RqWMV1bBe5RveVIP/5H8hoyO2ioOK9VQrZI/SweYoKS9PVq9FcWrpxJu3a5fUg/8R1mhuVEJtuSTpYK1f5kk/U22ynvEluTctl6qKdfQP31XI4ZJhBqVQUAqF2h4bZvuCel/WZDVOWdbtrD1hqS9X/MGtMiV5pl8p1663pdpylf/l+/JMv0rB+MxTbxJoVvyHz8giyTtspvaV1kilNSdfEzNKcdEJUkO1jrz+e3nHLjzxXNOU++PlsjdUKxiTrJIhs1Wye3enn2NXGeMvUlzNs1JVsYJVLR32g9Hx8meMV3PGeAXjMlreW5WNUuW/c9iHzpK7slCeTW+oKGaETIfrBCd0nb1kl9zNXgWj4nSg3pRO8Tue35FAZOGeBCIH9yMQWQbaPelwOMIdAQAAAAAAAABwAhT6RpjWjr0n6vrx6S53p+rmK0l333239u7dq1/96ldasmRJ2/X58+drxIgRWrZsmZ544gktXbpUw4cPP+V+6enpuuyyy/T73/9e77///nGFvi6XS7W1tSfM3trJtzO5T8Zutys3t/0/NT8YeL1eHTp0SMOHDz9hZ2R0rLK2SdsPFUmSRg6JU05ajIakupWTFqPsNLdS4qNksURWd5qLzHLl/XWb8gr9GpIZJY83pLTEaF27bIbsNsupN0CfO9U9Gag9qgpfg2SxavTMs2XYWv6HUX+KS5WH1stRsV/ZI4bKEtW1z72aN9aoSVLM+LOUNXGyJMkMjlbZ+j/KCPg0OiNRtqROFKmegO/QdlVLsiaka9yU0zuxYryCEyar+uVHFTh6RFZvc6fPcpbuUs4l3+jya9AbWl/H6NEzlTl/mYLT57U8h/JDit/0nBIuul3OEVNPukf9B39TQ1OdrHEpGn7hjTLszk6d3RR9g2pe+YWiDm9Q9vzPnfDn5dm4Qp6KA5LVrrTL7tSQlJyuPs0u82enq/79v8mWmqOoMbNkTx95yu5d5rhxqiz6WIHyQxpSu1ex86/ptTzVe16XT1Lc5AUaMmHCCefxOxKILNyTQOTgfgQiy0C8J/Pz+cvGAAAAAAAAABDJKPSNMFlZWZKk0tLSDsdbryckJJyyYLakpEQbNmyQ3W7Xeeed1248JydHU6ZM0fr167Vhw4ZOFfpKaptXXl7eLnttba1KS0s1bty4duvKysra5vWEYRhtBdGDVXR09KB/jr3tnx8cUShkatKoZP3463PDHadT5pw2VLH/3KXqep9eXHVAknTdhRMUH+cOczL8pxPdk56DRyRJzvQRiolL+PfAsPGqTxuq5vIjCh3aIvfpizt9VsjnlW//JklS4unnKupT5zozR8pXuEdGdYFc2aO692Qk+aoKJUlRQ0Z3/rPG5ZL7pp/KV7JfkmRYbTKsNunYV8Nia3et6OnvqLn8iMyCHXJNPafbebvDX1Oupj3rJEnJ8z4vp8sluVyKue4Blb34U3kPblP1P3+u1Iu+ptgTZGs+WqCGzW9KklLO/4pi4hM7fX70pLPk27lG3v2b1fDBX5Rx9ffaFdM2FeyWZ+3f2/aPGzq2O0+164aNV/y193V5mbHwCypd/pAat72j5LMuky2286/HiQQbauU7vENSy/vd0Yn3I78jgcjCPQlEDu5HILIMpHvyVH/xDwAAAAAAAAAQXrSMjDDjx4+XJO3cubPD8V27dkmSxo49dTFQa1FwTEyMrFZrh3Pi4uIkSTU1NZ3OWFtbK0ntupK0Zv/kk086XNf6nDoqAgZ6IhgM6a31hyVJS84cHt4wXWC3WTT3tCGSpJAp5WbHa96x79H7Qs1NqnjjSR1+7Bb5yg71yp5NRXslSc7sMe3G3JMWSJLqd6zp0p4Nu9fJ9PtkT86SM2v0cWPOzJZu5r7i/d2J28ZXnH/cfp1lWG2Kyh6rqOyxcmaOkiNtmBzJQ2RPSJctLlnWmHhZomJksTtlWKyKGTdbkuTJW9ejvN1Ru/5VyQwpesQUOTP/XRRtcUYr46p75J40XzJDOrri/1S99kWZpnncetM0VfHmU1IoKNfoMxQz5owunW8YhlIW3yBZbfIe2KbGvRuOGw821qvsHz+XzJDcE+cp9rRF3X+y/SR61OlyDhkrM9Csmo9e6pU9PbvWSqGgHBmj5EjJ7pU9AQAAAAAAAAAAAAAABhMKfSPM6aefroSEBBUWFmrHjh3txl9//XVJ0qJFpy4ISk1NldRSxHv48OF244FAoK1wODu7c8U1pmnq7bffliRNmjTpuLGFCxdKkt566612BVPl5eX6+OOPZbPZNH/+/E6dBXTWxrwyVdY2KS7GoTlTMsMdp0vOmZ7T9viGZRNlsdBFpy80Feer6OnvqG7zWwrWVah+67u9sq+vsKXQN2pI+7984Z44T5IhX+Fu+as77tLekfodq1vWTz67XVelqGOFv77ifd3K28pXkn9sv64V+nZVzPg5kiTvwe0KNjX06VmfFmyoVf3WdyRJCbM/127csNqVevEdip99qSSpevVzqnzrdzJDwbY5np0fqOnIThk2h5IX39itHPakLCXMuliSVLnyGYX8Pkktv0uPvvqYgvWVsidlKeWCWwZEBy3DMJS04GpJUt2WtxWoPdrjPT3HCuFjJ/PfBgAAAAAAAAAAAAAAAB2h0DfC2Gw2XXfddZKk++67Tx6Pp21sxYoVWrNmjRITE3X55Ze3Xd++fbuWLFmiJUuWHLdXdna2JkyYIEm69957VV1d3Tbm9/v18MMPq6ioSLGxsZo7d27b2K5du/Tqq6+qubn5uP08Ho/uvfde7dixQy6X67gMknTOOedo+PDh2rt3r5566qm2683Nzfr+97+vQCCgyy+/XElJSd19eYAOvbnukCTpvJlDZbd13L06Uo0dlqhrFo/VdReO15Tc1HDHGXTMUFDVH76g4j/8t/xVJTLsUZKkxvxN7f5CQleF/D75yg5KkpxD2nf0tcUlK3rEZEmS55P3O7Wnv6ZcTYd3SjIUO3lBu3FnVktn2uayQzKD/m7lDtRVKuiplgyLHOkjurVHZzlSsmVPzZFCgXYdbftS7abXZQaa5cgYpajhkzucYxiGks+5VsmLb5JkqO7jN1X20qMK+X0KNjWo6p0/SJIS5n5e9oS0bmdJOOtyWWOTFag9qpp1L7fkW/+qGvM/lmG1K+2yO2VxRp98kwgSNXyyooZNlIIBVa99sUd7Nezb1FJ0bliOFcYDAAAAAAAAAAAAAADgP9nCHQDt3XzzzfrXv/6lDRs2aPHixTrjjDNUUVGhTZs2yW6365FHHpHb7W6b7/V6dfDgwQ73euCBB3T99de37TVlyhRFRUVp586dKikpkd1u1wMPPKC4uLi2NcXFxfrOd76jH/3oR5o0aZISExNVUVGhvLw81dbWyuVy6Ze//GVbx+BWNptNjz76qK699lo9+uijevPNNzVs2DBt27ZNRUVFGjNmjO66666+edHwmVVa2aDNe8olSYvPHBbmNF1nGIa+cP64cMcYlPw1ZSr/56/lK9wtqaW7bPK516vg8W8oUFMuf2WRHCmd62bekebSg1IoKGtMgmzxHRdpuycvkPfgdtXvWKOEuVecsmtra3fT6OGTZItLaTduS8yUJSpGoaYGNZcfkTNzVJdzt3bzdaRmy+KI6vL6rnKPm6Pqo8vVkLdOsVMW9vl5oWav6ja9KUlKmPO5U77m8WdcKKs7UeX//KUa96xXyXP3y56UqWBDzXEdebvL4ohS8nnXq/ylR1X70T/kSM5S1ao/S5KSz7tBzvThPdq/v7V09b1GxX+8V/Xb3lPC7EtlT8zo8j6+0oMq/8cvJElxpy+WNSa+t6MCAAAAAAAAAAAAAAAMCnT0jUAOh0NPP/20vvWtbykhIUHvvfee8vPztWjRIi1fvlzz53f+n7eeOHGiXnnlFV177bVKSUnRxo0btWbNGhmGoUsuuUQvvPBCu07AY8eO1bXXXqsRI0Zo7969euutt7R9+3alpaXpy1/+sl599VUtWNC+06QkTZo0SS+//LKWLVumsrIyrVy5UhaLRV/5ylf0t7/9TbGxsT16bYD/9Pb6wzJN6bQxqcpKcZ96AXqFGQqqYe9GBRtqwx2lHdM0Vb99tQqfulO+wt0yHNFKvfh2pX3u27LFJbd0I5XUuG9Tj85pKtojSXJmjz1hMWnM2Fky7E4FqkvlK9p76tw7VkuS3JPP7nCOYRhyZuVKknzF+d3K3brOmZnbrfVdFTN+tiSp8cA2BZsa+vy8ui3vKNTkkT0pUzFjZ3ZqjXv8bGVe831ZnC75CnfLs32VJCl5yVdk2Ow9zhQzbraihk+WGfSr/OVfSqGgYsbPUezpi3u8dzhE5YxX9MhpUiio6g/+3uX1gbpKlS5/SKa/SdEjpij5vBv6ICUAAAAAAAAAAAAAAMDgQEffCOVwOHTrrbfq1ltvPeXcWbNmac+ePSccz8zM1L333tvps3Nycro0/z8NGzZMP/vZz7q9HugsfyCklRuOSJIumD08vGE+Q8xgQOUv/1INu9fJlTtdGVf9d7gjtQl661XxxpNqyPtIUktBYurFd8iekNY2x5U7Xd4DW9WYv1kJsy/t9llNhS2fu1FDxpxwjsURrZixs+T55H15dqxRVPbYE871Fe1RoLpUhj1KMeNmnXCeMzNX3gPb1FScr7jp53c5t69kf9s+/cGRmiN7Srb8FYVq3LdRsScoYu4NZtCv2vWvSJLiz7xEhsXa6bXRwyYq67oHVfK3HylYX6WYCWfJNWJqr+QyDEMpi29S4e/ulEJB2RIzlHrR107ZbTiSJS64Wt4DW+T55H0lzPlcp7tjh5q9Kn3+xwp6qmRPyVbaZd+RYeU/RwEAAAAAAAAAAAAAAE6Ejr4ABqz1O0tUU+9TUpxTMyd2/Z+OR9eZQb/K/vFzNexeJ0lq3L9FgfrqMKdq4T24XYVPfbulyNdiVeLZX1Dml+47rshXklyjp0uSmgryFPR6unWWaZptHXqdJyn0lST35JYO6J68tTKD/hPOq9++WpIUM/5MWRzRJ5znzBotSfKV7OtKZEnHcrcW+mb1T6Gv1NLRVpIa8tb16TmeTz5QsL5KVnditwqKHWlDNeSGR5Ry0deVetHXezWbIzVHSWd/QfbkLKVfdqcsTlev7t/forJy5RpzhmSGVP3B851aY4aCKn/5l2ouOyhrTLwyrvofWaNi+jgpAAAAAAAAAAAAAADAwEahL4AB642PDkmSzps5TDYrH2d9zQz6VfbSo2rcs16y2mSLT5XMkDy7PghvroBfle/8QSXP3adgfZXsSVka8uWHlHjW5R12dLUnpMueki2ZIXkPbuvWmcG6CgU91ZLFKmfmqJPOjR4+WVZ3okJejxrzN3c4J+T3qWHXWkk6ZYFqayde/9FChXzeLuUOVJcq1OSRrDY50oZ2aW1PuMfPkSQ1HtiqUFNDn5xhmiHVrHtZkhQ/c6kMm71b+9hiExV32iJZHFG9mK5FwuxLlXPrY3JmjOz1vcMhcf7VkqSGXWvlKzt0yvmV7/xBjfs2ybA5lH7Fd9sV4QMAAAAAAAAAAAAAAKA9KuMADEhFRz3anl8hiyEtPnNYuOMMembAr7IXfqrGvRtlWO3KuOK7Sph9qSTJs+P9sOUKNXtV9If/Ue36VyRJsacv1pCbfnrKbrWu3Jauvo37NnXr3KZj3XwdacNlsTtPOtewWOWeOE+SVL9jTYdzGvdtUsjXKFtciqKGTTzpfrbYRFljkyWZ8pUe6FJuX0m+JMmZPkKGtXuFsN1hT82RPXmIFAyooZuv+ak07t0of2WRLE6X4k5f3Cdn4HjO9OGKmXCWJKn6/b+ddG7txtdVt/E1SVLqxXco6hSdsAEAAAAAAAAAAAAAANCCQl8AA9Kb6w5JkqaPT1daoiu8YQa5UKBZpS88osb8j1s6cV75XblGTVPM+LMki03NZQfVXH4kLNkqVz6r5tL9skTHKv2K7yr1gls61YnVNfpYoe/+LTJDwS6f21S4R5IUld25YkX35AUt5+V/rKDX0268fvvqtnmGcepfza2FzK2Fu53lKz5W6HuKLsS9zTAMxYyfLUlqyFvX6/ubpqmaj/4hSYqbvkQWJ58J/SVx3pWSYVHj3o1qKu74/di472NVrnxGkpS08ItyH3svAAAAAAAAAAAAAAAA4NQo9AUw4DT7g3p3Y0th6ZLZw8MbZpAL+X0q+/vD8u7fLMPmUMaV98g18jRJktUVK1fuNElS/Scdd6rtSw171qt+6zuSDKVf/h3FjDmj02ujssfJEhWjkLe+rfi1K3zHOvpGDRnbqfnO9OFypA1t6Wib99FxYwFPtbwHtkqS3JPP7tR+Ua2FvsX7Ohf4GF/J/pY8p+h43Bfc4+dIkrwHtirka+zVvZuO7JKveJ8Mq11xZ1zUq3vj5Bwp2XJPmi9Jql7Tvquvr+yQyl7+uWSGFDt1keJnf66/IwIAAAAAAAAAAAAAAAxoFPoCGHDWbi9WfaNfKQnRmj4uPdxxBq22It8DW2XYncq46r8VPWLKcXNaO9V6PvlAphnqt2yB+modfe0JSVL87EsUPWxSl9YbFquijxUsN+7b1KW1oUCzfKUHJUnOTnb0lST3pJbXqn7H8UXRnp0fSGZIziFj5EjO6tRezszWQt/9nT7fDAXlKz1w3Pr+ZE8dKntylsygX437Pu7VvVu7+bqnLpTNndCre+PUEuddIVms8h7YoqaCvLbrgbpKlS5/UGZzk6KHT1bKBV+VYRhhTAoAAAAAAAAAAAAAADDwUOgLYMB5c90hSdKSM4fJaqForC+E/D6VPv9jeQ9uk2GPUsbV/6Po4ZPbzYvJnSFLVIyC9ZVqOryzX7KZpqmjK/5PIW+9HOkjlDT/6m7t48qdLklqzN/cpXXNpQekUEDWmHjZ4tM6vc49cZ4kQ77C3fJXl7Zd92xfLUmK7WQ3X0lyZo6SJAVqyxVsqO3UGn9FoUy/T4YjSvZOFhT3JsMwFDNutiTJ8x9djXvCV3ZI3gNbJMOihDMv6bV90Xn2xAzFTj1HklS1+q8yTVOhZq9Kn/+xgvVVsqdkK+3yu2RYbWFOCgAAAAAAAAAAAAAAMPBQ6AtgQDlcUqddB6tksRg6d+bQcMcZlELNTSpd/qCaDu2Q4YhS5jX3KnroxA7nGja7YsbPkdS+U21fqdv0hrwHtsiwOZR2yTdl2Ozd2sc1appkWNRcfkiBuopOr2sq3CtJcg4Z06XupLa4ZEWPaCmW9nzyviTJV3pQzeWHJatNMRPO6vRelqgY2ZOHtOxRkt+53MUt85wZo2RYrJ0+qze1vle8+7co5PP2yp416/5xbO/Zsidm9Mqe6LrEuZ+XrDY1Hdkp78FtKn/5l2ouOyiLK04ZV/23rFEx4Y4IAAAAAAAAAAAAAAAwIFHoC2BAae3mO2tihpLjo8MbZhAK+bwq/dsDajq8U4YjWpnXfE9ROeNPuiZ28gJJUsPufynk9/VpvuajBap670+SpKRzrpUjNafbe1ldcXIOGS2pa119fUUthb5RQ8Z2+Uz3pJbXqn7HGpmmqfodqyVJMaPPkDXa3aW9nFm5kv5dwHsqrQXBzqxRXTqnNznShsmelCkz6Fdj/qYe7+evLlXDrpbuwAmzL+3xfug+W1yK4qYtliSVvfCIGvdtkmG1K+OK78qekB7mdAAAAAAAAAAAAAAAAAMXhb4ABowmX0CrPi6QJF0we3h4wwxCIV+jSv72gJoK8mQ4Xcr8wvcVlT3ulOuc2WNli0+T2exV496NfZbPDPhV/s9fyQw0K3rkNMXNuKDHe7pyp0uSGvd1vui0qWiPpJaOvl0VM26WDLtTgepS+Qp3q2HnB5Ik95Szu7yXM7Ol0NfX2ULf4v3HrQsHwzAUM262JMmTt67H+9Wuf1UyQ4oeeZqcGSN7vB96JmHOZTJsDpnHCv5TL75dUdldL4gHAAAAAAAAAAAAAADAv1HoC2DA+GBrkRqaAspMjtHU0anhjjOomGZIZS/+TL7C3bJExSjzCz9QVCcLWQ3DIvek+ZJaOtX2lao1f1Vz2UFZXHFKXfYNGYbR4z1bC329h3Z0qhtxoK5CwfoqybDImdn1zrgWR7Rixs6SJB19/TcKNtTKGhMv18jTurxXa0dfX0m+TNM86Vwz4Fdz+eHj1oVLzPg5kiTv/i0KNXu7vU/AU6P6be9JkhLmfK5XsqFnbLGJSpjd8rNIOudauSecFeZEAAAAAAAAAAAAAAAAAx+FvgAGjDfWHZIknX/mMFksPS/yxL/VbXpT3oPbZNidLUW+XSwGdU9eIEnyHtiqgKem1/N5D+1Q7b9ekSSlXvg12dyJvbKvI22YrLHJMgPNajr8ySnnNxXtbVmXPlwWR1S3zmx9rfwVhZKkmInzZFhtXd7HkT5cstgUaqxToLb8pHN9ZYekUECW6FjZ4tO6fFZvcqQPly0xQ2agWY37Pu72PnUbX5MZaJYza7Sihk7sxYToiYR5V2jYt55RwuxLwx0FAAAAAAAAAAAAAABgUKDQF8CAkF9Yo30FNbJZDZ07c2i44wwqzZXFqnrvT5JaunB2p1OtIzlLzqzRkhlSw64PezVf0OtR+SuPSTIVe9q5ihk7s9f2NgxDrtEtXX0b8zefcr6vcI8kdbrbcUeih0+W9VOFyrGTz+7WPhabQ460YS25ivNPOtdX0jLuzMztlU7IPWEYhtzjZ0uSGnav69YeIV+j6ja/JUlKmP25sD8n/JthGLK64sIdAwAAAAAAAAAAAAAAYNCg0LcHKioqtGPHDm3cuDHcUYBB781j3XznTMlSvNsZ3jCDiBkK6uirj8kMNCt6xBTFTT+/23u5J82XJHk+eb+34sk0TVW8+aSC9ZWyJWYo+bzre23vVq7cY4W++zbJNM2Tzm3t6OvsQaGvYbHKPXGepJaOws6MEd3eq7XzcqcLfbvYqbmvxIybI6mluDrU3NSltaZpquLt3yvU1CB7cpZcY8/oi4gAAAAAAAAAAAAAAABARKDQtxteeeUVLV26VPPmzdOVV16pL3/5y8eNP/LII7ruuutUVlYWpoTA4NLY5NeazYWSpCWzh4c3zCBTs+6f8hXtleF0KXXpN2QY3f+14J5wlmSxyleyX80Vhb2Sz/PJ+2rYtVYyLEq75L9kcUT3yr6fFj18sgybQ4G6CvmPFpxwnhnwy1d6QJIUlT22R2cmzL5U7ilnK2XJzT3ap7Vwt7WQ90RaC4EjpdDXkTFCtoR0mYFmNeZ/3KW11aufk2f7KsmwKPm8G3v0ngUAAAAAAAAAAAAAAAAiHdUxXfTAAw/o7rvvVn5+vqxWq2w2W7sOkGPGjNGGDRv07rvvhiklMLis3lyopuagstPcmjQyOdxxBg1f2SFVv79ckpSy+EbZ4lJ6tJ81Jl6ukadJkjw71vQ0nvw15ap463eSpMR5VypqyOge79kRi92pqGGTJEmN+ZtOOM9XdlAKBmRxxcmWkN6jM60x8Upbdruicsb3aJ9/F/oekBkKdjgn5PPKX1HUMj8zMgp9DcNQzPjZkqSGvHWdXle78XXVfPSSJCnlglvkGjWtT/IBAAAAAAAAAAAAAAAAkYJC3y5499139ec//1lJSUn63//9X23dulWTJ09uN2/hwoUyDEOrV6/u/5DAIGOapt5cd0iSdMHs4TIMI7yBBgkz6NfRV34thQJyjTlD7sln98q+7skLJLV04jXNUPfzhYI6+sqvZfoa5cweq4SzLuuVfCcSM3q6JKkxf/MJ5zQV7pEkRQ0ZEzHvQ3vyEBmOKJn+prZi3v/kK90vyZQ1LkU2d0K/5jsZ9/g5kqTG/I8Vam465XxP3jpVvv17SVLi/KsVN+3cPs0HAAAAAAAAAAAAAAAARAIKfbvgueeek2EYeuSRR3TuuefKZrN1OC8+Pl6ZmZnas2dPPycEBp89R6p1sLhODptF58zICXecQaP6/efVXH5YFlecUi64tdcKV12jZ8hwuhSoq1DTkbxu71Oz7p9qKsiT4YhW2sV3yLBYeyXfibhyWwp9mwr3KNhY3+EcX1HLZ7pzyNg+zdIVhsUqZ8YoSVJT8b4O5/iK8yVJzsxR/ZarMxwZI2VLSJMZaFbj/hMXWEuS9/AnKv/nLyWZij19sRLmfr5fMgIAAAAAAAAAAAAAAADhRqFvF3zyySdKTk7WWWeddcq5KSkpqqqq6odUwOD2xkeHJElzTxsit8sR3jCDRFPRXtWse1mSlHLBV3u1y6vF7pR73GxJLV19u6OpaK+q3/+bJCnl/JtkT8zotXwnYotPlSNtqGSG5D2w9QS5Wgppo7LH9HmernBm5UqSfCX5HY63Xo86Ni9SGIahmGPvlYa8dSec5ys7pNK/PywFA3KNmamU878SMR2VAQAAAAAAAAAAAAAAgL5GoW8XNDQ0KC0trVNzA4GArNa+7UAJDHb1jc36cGuRJOmCOcPDG2aQCPl9OvrKY5IZknvS/Lai3N7knrxAktSQ95FCgeYurfWVHVLp8gelUFAx42bLPfnsXs93Iq1dfRvzP243FvRUKVhXIRmWiOuM21boW3yCQt/i/S3zMiOr0FeSYsbPkdTymof8vnbj/tpylf7tQZm+RkXljFfapf/V592dAQAAAAAAAAAAAAAAgEhCoW8XJCUlqaio6JTzgsGgDh06pPT09H5IBQxer689qOZASCOz4jV2aGK44wwKVav+LH9VsazuJCUvvqlPzogaOl62uBSFfI1q3Lep0+uaKwpV8tx9Cnk9cmaNVurSr/dr51ZX7gxJUuP+LTJDwePG/MeKaB1pw2RxRPdbps5oLfRtLj/crrA62FCrQG25JMkRYQXKkuTMHCVbfJpMv0+N+zcfNxZsrFfpXx9Q0FMle2qO0q/4rix2Z5iSAgAAAAAAAAAAAAAAAOFBoW8XnHbaaaqrq9OaNWtOOu/VV19VY2OjZsyY0U/JgMGnqTmgVz88IEn63MLcfi34HKy8h3aobuPrkqTUpV+XNdrdJ+cYhkXuSfMlSZ4dJ/+8bOWvKlHJX36oUGOdHOkjlHHN92Rxuvok34k4h4yWJdqtUJNHvqK9x401l7QU+kYNGdOvmTrDFpcqiytOCgXVXHbouDFfSUs3X3tSlqxRMWFId3KGYShm/JmSpIa8dW3XQ36fSp//sfyVRbLGJivz6nv77P0KAAAAAAAAAAAAAAAARDIKfbvgC1/4gkzT1A9/+EPt2rWrwznr1q3Tgw8+KMMwdM011/RzQmDweHfDEdV6mpWW5NK8qVnhjjPghZoadPTV/5UkxU5bLNeoaX16nnvyAkkt3XGDDbUnneuvLVfJX36ooKda9tShyvzC98NSlGpYrHKNbHldGv6jE7H/WKGvMzvyCn0Nw1BU1mhJkq9433Fjvtbcx7r+RqKYcXMkSY37PlbI75MZCqr8Hz+Xr2iPLFFuZV7zPdniUsKcEgAAAAAAAAAAAAAAAAgPCn274Mwzz9SXvvQllZSU6Morr9TVV1+tw4cPS5LuueceXXbZZbrxxhtVX1+vm266SZMmTQpzYmBgCgZDemlNSyfSy87OldXKR1VPVb7zrAJ1FbIlpCn53Ov6/DxHSrYcGaOkUFCevI9OOC9QV6mSP/9QgboK2ZOzlPmFH8jqiuvzfCfiGj1dktSYv/nfF0NB+csPSYrMjr6S5MxsKeT1Fecfd731e2fmqH7P1FnOrFzZ4lNl+pvk3b9FFW88qcZ9m2TYHMq48h45UnPCHREAAAAAAAAAAAAAAAAIG6rnuujee+/VnXfeKYfDoa1bt6qyslKmaeof//iHdu3aJafTqW9961v6zne+E+6owID1wbZilVc1Kt7t0Lkzh4Y7zoDXsHej6re9J8lQ6rLbZXFE98u5sZPnS5I8O9Z0OB7wVKvkLz9UoKZMtoR0ZX7hh7K5E/ol24lEjzxNMizyHz0if225JMlaVyoF/bK44mRLzAxrvhNp7dj76UJf0zTlK9l/3HgkMgxDMeNmS5KOvvFb1W99RzIsSrv0vxSVMy7M6QAAAAAAAAAAAAAAAIDwsoU7wEB0880366qrrtKaNWu0e/du1dXVyeVyacyYMVq4cKGSkpLCHREYsEzT1Ivv7ZMkLZs3Uk67NcyJBrZgY50qXv+NJCl+1jJFD53Qb2fHTJirynf+IF/xPjVXFsuRnHVcrpLn7pO/qli2uBRlfumHssUl91u2E7FGxyoqe6yaCvLUuG+z7BPmy1ZTJEmKyhotwzDCnLBjrYW8/qpiBZsaZI2KUbC+UsGGGsmwyJE+IrwBTyFm/GzVrn9FocY6SVLKkpsVM3ZWmFMBAAAAAAAAAAAAAAAA4Uehbxf87//+rwzD0M0336y4uDgtW7ZMy5YtC3csYFD5eHe5DpXUKdpp1UVzIrs4MdKZpqmKN59UsKFG9pRsJZ59Tb+eb3MnKHrkVHn3b5HnkzVKWtByftDrUclz98t/tEBWd5Iyv/hD2ePT+jXbybhyp7cU+uZvUvynCn2dQ8aEOdmJWV1xsiWkKVBTLl9JvlwjprZ193WkDpXF7gxzwpNzZo1uy58w70rFnb443JEAAAAAAAAAAAAAAACAiGAJd4CB5PHHH9eKFSvkcDjCHQUYtF441s33/DOHy+3iXuuJhryP1JC3TjIsSrv4Dlls/f96xk5eIEnyfPK+TNNUyNeo0r89oOayg7LGxCvziz+QPSmz33OdjGv0dElS06FPFPI3ydra0Td7bDhjnZIza7QkyVe8v+VrSf6x67lhy9RZhmEo46r/Ufrn71bivCvDHQcAAAAAAAAAAAAAAACIGBT6dkFSUpJiYmLCHQMYtPIOVmnngUrZrIYuXTAq3HEGtICnWhVvPilJSjjrcjkzw/N6usbMlOGIVqCmXN6D21S6/CH5ivfJEu1W5hd+IEdKdlhynYw9JUe2+FSZQb+a8j6StalOMgw5MyO7YLY1n69437Gvxwp9w/Sz7ypHSrZixs6UYRjhjgIAAAAAAAAAAAAAAABEDAp9u+D000/XwYMH1dzcHO4owKD04qqWAsWF03OUHB8d5jQDl2maqnjjSYW8HjnSRyhx7uVhy2KxOxUz7kxJUtnzP1FTQZ4sTpcyr/mBHGnDwpbrZAzDkCu3pauvZ/0/JUm25GxZnJH9nmzt3OsryZdphuQr2X/cdQAAAAAAAAAAAAAAAAADD4W+XfCVr3xFPp9Pv/rVr8IdBRh0jpTWaf3OUhmGdNlCChN7omHnh2rcu0Gy2JS67DYZVntY88ROXiBJMoN+GY4oZVzzPTkzR4Y106m0FvqGPFWSJHvm6HDG6RRnxkjJsChYX6WmI7sU8jXKsDnkSB0a7mgAAAAAAAAAAAAAAAAAuskW7gADSUpKiu688049+uij2rt3ry6//HKNHj1a0dEn7vKYlZXVjwmBgevFVfmSpDMnZSo7LTbMaQauQH21Kt76nSQpcd4VcqYPD28gSVFDJ8iekq1AbYUyrvpvRQ0ZE+5IpxQ1fJIMu1Om3ydJcmRGfvG5xRElR2q2msuPqO7jNyVJjvThMqz8qgcAAAAAAAAAAAAAAAAGKqp/umDRokVtjz/88EN9+OGHJ51vGIZ27drV17GAAa+8ulFrNhdKkj5/Tvc7p/qrStRUvE/uCWfJsFh7K96AYZqmKt74jUJNHjkyRilh9qXhjiRJMixWDbnhYZlBv6zRA6OI22JzKHr4ZDXu2yRJsmdFfqGvJDkzc9VcfkQNeza0fQ8AAAAAAAAAAAAAAABg4LKEO8BAYppml/6EQqFwRwYGhH++v1/BkKkpuSkaMzSxW3uYpqmyFx/R0X/+SpXvPNu7AQcIz441LYWpVpvSlt0WUZ1cLY6oAVPk28qVO12SFLJHy5qQEeY0nePMOlYoHwoe+35UGNMAAAAAAAAAAAAAAAAA6KnIqQIbAHbv3h3uCMCgU9fQrLf+dViSdHkPuvk2l+xXc/mRlj03vi5Hcrbipp/fKxkHgkBdpSrfflqSlDT/KjnShoY50cDnnnCW6nf/S9VRaTIMI9xxOsX5H52H6egLAAAAAAAAAAAAAAAADGx09AUQVq99eEC+5qBGDonXtDGp3d6nfsdqSZI1JkGSVPHW79R4cFvPAw4Apmnq6OtPKORrlDNrtOLPvCTckQYFS1SMEi/9jnzDzgh3lE5zpA6VYXNIkgynS/bkrDAnAgAAAAAAAAAAAAAAANATFPoCCJsmX0CvfnhQkvT5haO73TXVDPjl2fmBJCl12W1yT5ovmSGVv/SomiuLei1vpKrf9p68+7fIsNqVuuw2GRZruCMhTAyrTY70EZIkZ8ZIGQa/5gEAAAAAAAAAAAAAAICBzBbuAANVRUWF1q5dqwMHDqihoUExMTEaNWqUzjrrLCUnJ4c7HjAgvL3hsOobm5WZHKM5UzK7vU9j/scKeT2yupMUPWKKooZNlL+mTL7CPSpd/pCGXP8TWV2xvZg8cgRqj6rynWclSYlnXyNHSnZ4AyHsoodNkK9oj6KHTgx3FAAAAAAAAAAAAAAAAAA9RKFvFzU3N+uRRx7R8uXLFQgE2o3bbDZdffXVuuuuu+RwOMKQEBgYAsGQXl6zX5L0uYW5slq733m0fvsqSZJ78nwZFqsMi1UZn79bRc/crUB1qcpe+qkyr/meDKu9V7L/p5DPK391qfzVpQpUl8hfVapgY50S510pZ+bIPjlTkkzT1NHXnpDpa5RzyFjFz1zaZ2dh4Eg46/NypA6Ta9yscEcBAAAAAAAAAAAAAAAA0EMU+nZBKBTS1772NX300UcyTVPJyckaOXKkUlNTdfToUR04cECVlZX685//rIMHD+qpp56SYRjhjg1EpPe3FOlotVcJsU4tmpHT7X0Cnho15m+WJMVOWdh23RoTr4wr71HRH/5bTYd3quLN3ynlwlu7fU+aAb+ajx5pKeitKmn7GqguVbChpsM1IV+Dsq79UbfO64z6LSvlPbhNhs2h1GW3ybBY++wsDBwWR5Tck+aFOwYAAAAAAAAAAAAAAACAXkChbxe8+OKLWrt2rWJjY3X33Xfr0ksvlc3275cwGAzq5Zdf1iOPPKK1a9fqpZde0uWXXx7GxEBkCoVMvbhqnyTp4nkj5bB3v0DVs/MDyQzJmTVajpTs48YcacOUfum3Vfr3n6h+6zuypwxRwqyLu7S/GQqqfuu7qn5/+QkLeiXJ4oqTPTFD9sQM2eLTVPPRS2o6sku+skNypg/vxjM7OX9tuSrf/YMkKWnhF+VIzur1MwAAAAAAAAAAAAAAAAAA4UWhbxe88sorMgxDv/71rzV79ux241arVZdffrmysrJ0ww036OWXX6bQF+jAprwyHSmtlyvKpgvnjOjRXp7tqyVJ7slndzjuGj1dSYuuU9U7z6rqnT/KnpSlmNEzTrmvaZpq3LdJVav+LH9FoSTJEu2WIyVHtmMFvfakzJbC3sQMWaNijlvvrypSQ9461X38plIvvLVHz7F9tpCOrnhcZnOTonLGK+6MC3t1fwAAAAAAAAAAAAAAAABAZKDQtwv27Nmj7OzsDot8P2327NnKycnRnj17+ikZMLC88F5LN98LZg9XTLS92/v4Sg+qufyQZLXJPfGsE86Ln7lU/opC1W99R+Uv/0JZ1z140i67TcX5qnr3j2o6slOSZImOVeK8KxR3+mIZ1s7ljZtxgRry1snzyftKWvglWaPdXXlqJ1W/+W01Hdohw+5U6tJvyDAsvbY3AAAAAAAAAAAAAAAAACByUB3WBV6vV/Hx8Z2aGx8fr6ampj5OBAw8Ow9UKu9QlWxWiy6eP6pHe9XvWC1Jihl9hqzRsSecZxiGUpbcrKhhk2Q2N6ns+R8r4KlpN89fXaqyf/xcxc/craYjO2XYHEqY8znlfP3/FH/GRZ0u8pWkqJwJcqQNlen3qX77qi4+sxPzV5eq8t0/SZKSFn5J9qTMXtsbAAAAAAAAAAAAAAAAABBZKPTtgtTUVB04cOCUBbxer1cHDhxQSkpKPyUDBo631x+WJC06I0dJcVHd3scMBuT55H1JUuyUhaecb1htSr/8O7InZSpQV6GyFx5RKNAsSQo21qti5TMq+M031bBrrSRD7ilnK+drj7V0442K6XI+wzAUN/0CSVLdx2/KNENd3qMjlW//Xqa/SVHDJipuxpJe2RMAAAAAAAAAAAAAAAAAEJko9O2CWbNmyev16qGHHjrpvB//+Mfyer0688wz+ykZMHDsPVItSTpzUs860Tbu36JQY52sMQmKHnVap9ZYo2OVfuU9skTFyFe0RxUrHlfNupdV8PjXVbdhhRQKKHrkVA35ys+Utux22eJ6VqzvnjRflqgYBapL5d2/pUd7SVJTQZ4a8z+WDItSLrhVhsFHOAAAAAAAAAAAAAAAAAAMZrZwBxhIvvKVr2jFihX6+9//rm3btum6667T6NGjlZqaqqNHj2rfvn36wx/+oH379slut+umm24Kd2QgojQ2+VV01CNJGpUd36O96revktRSTGtYrJ1e50georTL7lTpXx+QZ+cH0s4PWq6nDVfSomvlGnlaj3J9msURpdip56h2/auq3fSGXLnTu72XaZqqWvUXSVLsaYvkSM7qrZgAAAAAAAAAAAAAAAAAgAhFoW8XjBo1Sg8//LDuuece7dmzR/fee2+7OaZpyul06ic/+YlGjRoVhpRA5DpQVCvTlFLio5QYG9XtfYKNdWrc97EkKXbK2V1e7xoxVSlLblbFG7+VNS5FSQuukXvSvC4VDHdW3Onnq3b9Cnn3b5G/qkT2pO51Mvbu36ymgjwZNocS517RyykBAAAAAAAAAAAAAAAAAJGIQt8uuvDCCzVu3Dj97ne/0/vvv6+Kioq2sZSUFJ199tm68cYbNXLkyDCmBCJTfmGNJCk3J6FH+3h2fiiFAnJkjJQjbVi39og7fbFco6bJGpMgw2bvUZ6TsSdlKnrUNHn3b1bdx28q+bwburyHaYZUteo5SVLcjCWyxSX3dkwAAAAAAAAAAAAAAAAAQASi0LcbRo4cqYceekiS5PF41NDQoJiYGLnd7jAnAyJbfkGtJCk3O6FH+9RvXy1Jip2ysEf72OJTe7S+s+JnXCDv/s2q3/aeEhdcI4uja92MG3Z9pObyQzKcLiXMvqyPUgIAAAAAAAAAAAAAAAAAIo0l3AEGOrfbrfT0dIp8gU7IL6yW1LOOvs3lR9Rcul+y2OSeOLeXkvWt6FGnyZaYoZCvUZ5P3u/SWjMYUNWav0qSEmZdLKsrti8iAgAAAAAAAAAAAAAAAAAiEB19u8Dv9+vo0aOKjo5WYmLiCedVV1fL6/UqLS1NNlv3XuLm5mY988wzeuWVV1RQUCCXy6UZM2boa1/7miZOnNilverq6vT000/r3XffVUFBgYLBoDIyMjR79mx99atfVU5OTrvnuX79eq1evVrr168/bs3cuXP1la98RUOGDOnwrLFjx540y/Lly3Xaaad1KT8Gh8Ymv4qONkjqWUff+h2rJEmu0dNldcX1RrQ+ZxgWxc+4QJUrn1HtpjcUO+08GYbRqbX1295ToLpUFlec4mcu7eOkAAAAAAAAAAAAAAAAAIBIQkffLnjxxRe1aNEivfTSSyed99JLL2nRokV6+eWXu3VOc3OzbrrpJv385z9XdXW1Fi5cqJEjR2rlypW66qqr9MEHH3R6r4qKCl122WX6zW9+o8rKSs2ePVtnn322AoGAnn/+eV1yySXavn37cWs2btyom266SX/6059UX1+vs846S/Pnz1dTU5Oee+45XXzxxdqyZcsJz3S5XPrc5z7X4Z+kpKRuvSYY+PYX1kqSUhOjFe92dmsPMxSUZ0dLR9zYyWf3VrR+4Z6yUIbdKf/RI2o6sqtTa0J+n6o/+LskKfGsy2VxRvdlRAAAAAAAAAAAAAAAAABAhKGjbxesXLlShmHoc5/73EnnXXrppfrZz36mt956S5///Oe7fM5TTz2lDRs2aPLkyXr22WfldrslSStWrNCdd96pu+66S++8807b9ZN5/PHHVVBQoLlz5+qxxx6Ty+WSJAUCAd133316/vnn9eCDD2r58uVtawzD0Pnnn68bbrhB06ZNa7vu8/n0wx/+UC+99JLuvPNOvfXWW7Lb7e3OTExM1E9+8pMuP28MbvsKaiT1rJuv98BWBRtqZHHFyZV7eu8E6yfWqBi5Jy1Q/Za3VbfpDUUPO3Vn7rqP31TQUyVbXIriTj+/H1ICAAAAAAAAAAAAAAAAACIJHX274MCBA0pNTT1lV9rk5GSlpaVp//79XT4jEAjoj3/8oyTpBz/4wXHFvEuXLtWCBQtUXV2tF198sVP7bdy4UZL01a9+ta3IV5JsNptuv/12SdKOHTtkmmbb2OzZs/XrX//6uCJfSXI6nfrBD36g2NhYFRUVnbSrL/Cf9hfWSJJG5yR0e4/67askSe6J82RYB97fU4ifsUSS1LBnvQJ1lSedG2pqUM1HLd3DE+dfJcPWvqgeAAAAAAAAAAAAAAAAADC4UejbBRUVFUpPT+/U3LS0NFVWnryQryObN29WTU2NsrOzNXny5HbjF154oSTp3Xff7dR+HXXc/U/x8fEyDKNT+0VFRWn48OGSpPLy8k6tASRp37FC31Hd7Ogb9HrUsLelcD12ysJeStW/HGnDFDVsomSGVLf5rZPOrVn/ikJej+zJQ+SevKCfEgIAAAAAAAAAAAAAAAAAIsnAa4kZRi6XSxUVFZ2aW1lZKafT2eUz8vLyJEkTJ07scHzChAmSpD179nRqv3nz5mnnzp168sknNWXKFEVHR0tq6Rz82GOPSZKuuOKKTucLBoMqKiqSJKWkpHQ4p7GxUb/5zW9UXFwsh8Oh0aNHa9GiRSecj8HP4/WrpKJBkpTbzULfhl0fSsGAHGnD5MwY0Yvp+lfcjAvUdHin6rasVOLcKzrs1BtsqFXt+hWSpMSzr5FhsfZ3TAAAAAAAAAAAAAAAAABABKDQtwvGjBmjTZs2KS8vT+PHjz/hvLy8PBUXF2vatGldPqO4uFiSlJGR0eF46/Wamho1NDQoJibmpPvdfPPN2rJliz788EOdc845mjp1qux2u3bs2KGamhrddNNN+uY3v9npfP/85z9VVVWlpKQknX766R3Oqa6u1i9+8Yvjrj344IP69re/reuvv77TZ2Hw2H+sm29akktxMY5u7VG/fbUkyT1Au/m2ihkzU9bYZAXrK+XJ+0ixHXTrrV77okx/k5yZoxQz9swwpAQAAAAAAAAAAAAAAAAARAIKfbvgvPPO08aNG3XPPffomWeeUWJiYrs5NTU1uueee2QYhs4///wun9HY2ChJbZ13/5PL5Wp73JlCX7fbraeeekr333+/XnjhBa1ataptbOLEiZo6daqs1s51Cy0sLNTDDz8sSfrWt74lh6N9weYll1yiiy66SOPGjVNcXJyOHDmi559/Xn/961/14x//WFFRUbr66qs7dd6JmKbZ9joNNl6v97ivg8WuA0clSSMy3d362QUqi+Qr3icZFllHzhjwP//oyQvl+egF1Wx4TdZRZxw3FqyrUN3mtyRJrtmXD7r3wkAzWO9JYCDifgQiC/ckEDm4H4HIMhDvSdM0ZRhGuGMAAAAAAAAAAE6AQt8uuOqqq/TXv/5Ve/bs0UUXXaQrr7xS06ZNU2xsrOrr67V582a98MILqqys1MiRI3XNNdeEO7KKi4t1yy23qLS0VD/60Y+0YMECRUdHa+vWrXrooYd0xx136Pbbb9dtt9120n08Ho++/vWvq6amRkuWLNGVV17Z4bxHHnnkuO/Hjh2r733ve8rNzdUPf/hD/eIXv9Bll13WYZFwZ/n9fuXl5XV7/UBw6NChcEfoVdt2V0qSYu1N3frZRe9ZpShJzSmjtPdIsaTi3g3YzwznEMUbVvlL92vvv95VMD6rbcy1Y4WcwYD8ScN0oMEqDfL3+kAx2O5JYCDjfgQiC/ckEDm4H4HIMtDuyZ78/+oAAAAAAAAAAH2LQt8ucDqdevLJJ3XLLbfowIED+u1vf9tujmmays3N1RNPPCGn09nlM1o79p6o68enO5meqpuvJN19993au3evfvWrX2nJkiVt1+fPn68RI0Zo2bJleuKJJ7R06VINHz68wz18Pp++9rWvac+ePZo9e7Z++tOfduEZtbjqqqv061//WlVVVdq6datmzpzZ5T1a2e125ebmdnt9JPN6vTp06JCGDx9+wq7OA1HFGx9Kkmadlqvxo5K7tNYMhXT0gycUkpQ26wJFjR7fBwn7X03pmWrKW6u02nwlnLlIUkvn4oriHZKk9MXXKydzcL7PB5LBek8CAxH3IxBZuCeByMH9CESWgXhP5ufnhzsCAAAAAAAAAOAkKPTtopycHP3jH//Q888/r7ffflt79+5VQ0ODYmJiNHbsWJ1//vm64oorut0FIyurpbNnaWlph+Ot1xMSEk5Z6FtSUqINGzbIbrfrvPPO6/C5TJkyRevXr9eGDRs6LPT1+/26/fbbtWHDBp122ml6/PHHu/XcLBaLhg0bpqqqKpWXl3d5/acZhtFWED1YRUdHD5rn6GlsVll1S+H6pFHpcrm69v5p3L9FoYZqWaLdSpw4R4bN3hcx+51l1jIV562Vb896ORffKGtMvMreeFkyTbnGnKGEUVPCHRGfMpjuSWCg434EIgv3JBA5uB+ByDKQ7knDMMIdAQAAAAAAAABwEhT6doPT6dS1116ra6+9ttf3Hj++pVvpzp07OxzftWuXJGns2LGn3Ku1KDgmJkZWq7XDOXFxcZKkmpqadmOhUEh33XWX1qxZo3HjxunJJ5/s0f9AUVtbK0kDppsJekd+YY0kKSPZJXcXi3wlqX7HakmSe8LcQVPkK0lRQ0bLmZkrX0m+6ra+K9eIKWrY/S9JhpIWfCHc8QAAAAAAAAAAAAAAAAAAEcAS7gCDwfbt2/XHP/5RTz/9tN599101Nzd3e6/TTz9dCQkJKiws1I4dO9qNv/7665KkRYsWnXKv1NRUSS1FvIcPH243HggE2gqHs7OzjxszTVP33nuv3njjDY0YMUK///3vFR8f3+Xn02rv3r06cOCAJGnSpEnd3gcDz76CGklSbnZCl9cGvfVq3LNBkhQ7ZWEvpooMcTMukCTVbX5LVav+LElyT54vR9rQcMYCAAAAAAAAAAAAAAAAAEQICn1PoqSkRL/5zW/03HPPdTju9Xp166236qqrrtKPf/xj/exnP9Ntt92mCy+8ULt37+7WmTabTdddd50k6b777pPH42kbW7FihdasWaPExERdfvnlbde3b9+uJUuWaMmSJcftlZ2drQkTJkiS7r33XlVXV7eN+f1+PfzwwyoqKlJsbKzmzp173Nqf/OQnevHFF5Wdna0//OEPSk5OPmX2f/zjHx12It65c6fuuOMOSdL555+v9PT0U+6FwWN/YUsn59E5CV1eW/nOH2QGmuVIGy5H5qheThZ+MRPmyOKKU7CuQt5DOySLTYnzrwp3LAAAAAAAAAAAAAAAAABAhLCFO0Ake++99/SrX/1K119/fYfj999/v1avXi1JslgsSkpKUmVlpQoLC3XLLbfojTfekMvl6vK5N998s/71r39pw4YNWrx4sc444wxVVFRo06ZNstvteuSRR+R2u9vme71eHTx4sMO9HnjgAV1//fVte02ZMkVRUVHauXOnSkpKZLfb9cADDyguLq5tzTvvvKNnn31WkjRkyBD94he/6HDvc889V+eee27b9ytXrtR3v/tdjRgxQrm5ubLb7Tp8+LDy8vIUCoU0ceJE3X///V1+PTCw7SuskSSN6mJH38b9W+TZvkqSoZQLbpZhGL2eLdwsNofiTjtXNR+9JEmKm3au7AkUwgMAAAAAAAAAAAAAAAAAWlDoexKbNm2SJF144YXtxg4fPqyXX35ZhmHovPPO00MPPSS3260DBw7oG9/4hg4dOqS///3v+vKXv9zlcx0Oh55++mn9/ve/1yuvvKL33ntPLpdLixYt0je+8Q1NnDix03tNnDhRr7zyip5++mmtXbtWGzduVCgUUmpqqi655BLdeOONGjdu3HFr6urq2h6vX7/+hHsPGTLkuELfSy+9VNHR0dq1a5c2bNighoYGud1uzZgxQxdccIE+//nPy+FwdOGVwEBX19Cs8qpGSV0r9A35GnX09d9IkuJmXqSo7HGnWDFwxU0/X7XrX5WsViXM/Xy44wAAAAAAAAAAAAAAAAAAIgiFvieRn5+v6OhoTZ48ud3YW2+9JdM0lZCQ0FbkK0kjR47Uf//3f+vmm2/W6tWru1XoK7UU+95666269dZbTzl31qxZ2rNnzwnHMzMzde+993b67Msuu0yXXXZZp+e3Wrx4sRYvXtzldRi88o91881KiZE72t7pdZXv/knBugrZEtKVtOCaPkoXGWxxKcq64ScyrDbZ3InhjgMAAAAAAAAAAAAAAAAAiCAU+p5EZWWlhg0b1uHYpk2bZBiGzj777LYi31bz5s1TfHy89u3b1x8xgYiVX1AjScrtQjdf76Edqt/ytiQpdenXZXFE9UGyyOJMHx7uCAAAAAAAAAAAAAAAAACACGQJd4BIVldXJ4ul45do165dklq66XYkIyNDdXV1fZYNGAhaO/rm5iR0an6o2aujrz0uSYo7/XxFD5vUR8kAAAAAAAAAAAAAAAAAAIh8FPqeRHR0tMrLy9tdLy0tVUVFhSRpwoQJHa612WwyTbNP8wGRrq3Qt5MdfatWP6dATblscSlKOufavgsGAAAAAAAAAAAAAAAAAMAAQKHvSYwYMUIVFRXauXPncdfXrFkjSYqJidGYMWM6XFtWVqaEhIS+jghErFqPT0ervZKkUdnxp5zfVJCnuo1vSJJSLvqaLM7oPs0HAAAAAAAAAAAAAAAAAECko9D3JObNmyfTNPWjH/1IlZWVkqQjR47oySeflGEYWrhwoQzDaLeurKxMFRUVGj58eD8nBiJHazffIaluuaLsJ50b8vt0dMXjkkzFTj1HrpGn9Xk+AAAAAAAAAAAAAAAAAAAinS3cASLZl770Jf3lL3/Rtm3btGDBAiUkJKiyslKmacpqteqGG27ocN1bb70lSZo5c2Z/xgUiSn5BjSQpNzvhlHOr318uf1WxrO4kJZ17fZ/mAgAAAAAAAAAAAAAAAABgoKCj70kkJibqN7/5jZKTkxUIBFRRUdFW5HvPPfdowoQJ7daYpqm//e1vMgxDc+bMCUNqIDK0dvTNzUk46bymon2qXf+qJCnlwltkjYrp42QAAAAAAAAAAAAAAAAAAAwMdPQ9hdNOO01vv/221qxZo4KCAsXExGj+/PnKycnpcH5NTY2++MUvSpKmTZvWn1GBiPLvjr7xJ5xjBvw6uuJ/JTMk96T5ihk9o5/SAQAAAAAAAAAAAAAAAAAQ+Sj07QSXy6ULLrigU3MTExPbCn2Bz6rq+iZV1DbJMKSRQ05c6Fv94QvyVxTKGhOv5PNu7MeEAAAAAAAAAAAAAAAAAABEPku4AwAYfPYX1kqSstPcckXZO5zjKz2gmo9ekiQlL7lZVldsv+UDAAAAAAAAAAAAAAAAAGAgoNAXQK/bV1AjSRqVndDhuBkM6Oir/yeZIcWMny33uNn9Fw4AAAAAAAAAAAAAAAAAgAGCQl8AvW5/YY0kafQJCn1r1r2s5vJDskTHKnnxV/ovGAAAAAAAAAAAAAAAAAAAAwiFvgB6XWtH39ychHZjzUePqPqDv0uSUhbfJJu7/RwAAAAAAAAAAAAAAAAAAEChL4BeVlXXpKq6JlkMaWRWfLvxmrUvSaGAXKPPUMzEuWFICAAAAAAAAAAAAAAAAADAwEChL4BelV9YI0nKTo9VlNN23JhphtR4cJskKWH2JTIMo7/jAQAAAAAAAAAAAAAAAAAwYFDoC6BX5RfUSJJysxPajTWXHVaosU6GI0rOrNH9GwwAAAAAAAAAAAAAAAAAgAGGQl8Avaq1o29Hhb7eY918o4dOlGG1tRsHAAAAAAAAAAAAAAAAAAD/RqEvgF5jmmZbR9/ROQntxr2HtkuSokdM6cdUAAAAAAAAAAAAAAAAAAAMTBT6Aug1VXVNqq73yWJIw7PijhsLBZrVdCRPEoW+AAAAAAAAAAAAAAAAAAB0BoW+AHpNazffoRlxinLYjhvzFe6RGWiW1Z0oe0pOGNIBAAAAAAAAAAAAAAAAADCwUOgLoNfsK6yRJOVmJ7Qb8x7cJqmlm69hGP2YCgAAAAAAAAAAAAAAAACAgYlCXwC9Zn9hrSQpNzu+3Zj34HZJLYW+AAAAAAAAAAAAAAAAAADg1Cj0BdArTNNUfkGNJCk3J+G4sWBjvXwlByRJ0cMp9AUAAAAAAAAAAAAAAAAAoDMo9AXQKypqmlTj8cliMTQ86/iOvt7Dn0gyZU/NkS02KTwBAQAAAAAAAAAAAAAAAAAYYCj0BdAr8gtrJEnDMmLltFuPG/Me3CaJbr4AAAAAAAAAAAAAAAAAAHQFhb4AekVroW9udkK7Me/B7ZIk14ip/ZgIAAAAAAAAAAAAAAAAAICBjUJfAL2irdA3J+G46/7qUgVqyiSLVVFDJ/R/MAAAAAAAAAAAAAAAAAAABigKfQH0mGmayi+okdS+o29rN9+oIWNkcUb3czIAAAAAAAAAAAAAAAAAAAYuCn0B9NjRaq/qGppltRganhl33FhroW/0iCnhiAYAAAAAAAAAAAAAAAAAwIBFoS+AHssvrJEkDcuMk8NubbtuhoLyHt4hSYoeMTUc0QAAAAAAAAAAAAAAAAAAGLAo9AXQY62FvqNzEo673lx6UCGvR4bTJWdWbv8HAwAAAAAAAAAAAAAAAABgAKPQF0CP7SuokSSNyk447rr30HZJUvSwiTIsVgEAAAAAAAAAAAAAAAAAgM6j0BdAj5imqf2tHX3/o9C38eCxQt/hU/o5FQAAAAAAAAAAAAAAAAAAAx+FvgB6JO9Qleob/XI6rBqWGdt2PeT3qakgT5IUPXJquOIBAAAAAAAAAAAAAAAAADBgUegLoEdWrj8iSZo7NUt2m7XtelNBnhQMyBqbLHtSVrjiAQAAAAAAAAAAAAAAAAAwYFHoC6DbGpv8+nBbkSTpvJnDjhvzHtwuSYoeMUWGYfR7NgAAAAAAAAAAAAAAAAAABjoKfQF02wdbi9XUHNSQVLcmjEg6bqy10Nc1Ymo4ogEAAAAAAAAAAAAAAAAAMOBR6Aug21ZuOCxJOm/m0OO69gYbatVcdlCSFDV8cliyAQAAAAAAAAAAAAAAAAAw0FHoC6BbjpTWac/halkshs6ZkXPcmPfwJ5IkR9ow2dwJYUgHAAAAAAAAAAAAAAAAAMDAR6EvgG5ZueGIJOmM8elKjIs6bsx7YJskKXrElH7PBQAAAAAAAAAAAAAAAADAYEGhL4Au8wdCem9TgSRp8axhx42ZpinvwdZC36n9ng0AAAAAAAAAAAAAAAAAgMGCQl8AXbZhV6nqGpqVFOfU9HFpx40FqksUqKuQrDZF5YwPU0IAAAAAAAAAAAAAAAAAAAY+Cn0BdNnK9YclSefMGCqr9fiPEe/B7ZKkqOyxsjii+j0bAAAAAAAAAAAAAAAAAACDBYW+ALqkosarLXvKJUnnzRzabrzxWKFv9PAp/ZoLAAAAAAAAAAAAAAAAAIDBhkJfAF3y7sYjCpnSxJHJykp1HzdmhoJqOrRDkhQ9Ymo44gEAAAAAAAAAAAAAAAAAMGhQ6Aug00IhUys3HJEkLZ7Vvpuvr2S/Qr5GWaJi5Mwc2d/xAAAAAAAAAAAAAAAAAAAYVCj0BdBpO/ZXqKyqUa4om+ZMyWo37j24XZIUNWySDIu1v+MBAAAAAAAAAAAAAAAAADCoUOgLoNNWrm/p5jt/WraiHLZ2462Fvq4RU/o1FwAAAAAAAAAAAAAAAAAAgxGFvgA6xdPYrI92FEuSzps5tN14qLlJTYV7JEnRI6b2azYAAAAAAAAAAAAAAAAAAAYjCn0BdMqazYXyB0Ianhmn0TkJ7cabjuySQgHZ4lNlS8zo/4AAAAAAAAAAAAAAAAAAAAwytnAHQMeam5v1zDPP6JVXXlFBQYFcLpdmzJihr33ta5o4cWKX9qqrq9PTTz+td999VwUFBQoGg8rIyNDs2bP11a9+VTk5Ob2a4ZNPPtETTzyhjz/+WI2NjcrJydEll1yiG264QXa7vUvZETne3nBEUks3X8Mw2o17D22X1NLNt6NxAAAAAAAAAAAAAAAAAADQNXT0jUDNzc266aab9POf/1zV1dVauHChRo4cqZUrV+qqq67SBx980Om9KioqdNlll+k3v/mNKisrNXv2bJ199tkKBAJ6/vnndckll2j79u29lmH16tW6+uqr9c4772jkyJFauHChqqur9eijj+rmm2+W3+/v9uuC8NlfWKMDRbWyWS06e3rHheHeg9skSdEjpvRnNAAAAAAAAAAAAAAAAAAABi06+kagp556Shs2bNDkyZP17LPPyu12S5JWrFihO++8U3fddZfeeeedtusn8/jjj6ugoEBz587VY489JpfLJUkKBAK677779Pzzz+vBBx/U8uXLe5yhvr5ed999t/x+vx599FEtXbpUkuTxeHT99ddr3bp1+v3vf69bbrmlV14n9J+Vx7r5njkpQ3ExjnbjAU+1mstb5kQPn9yv2QAAAAAAAAAAAAAAAAAAGKzo6BthAoGA/vjHP0qSfvCDHxxXSLt06VItWLBA1dXVevHFFzu138aNGyVJX/3qV9uKfCXJZrPp9ttvlyTt2LFDpmn2OMMLL7ygmpoanX322W1FvpLkdrv1/e9/X5L0zDPPKBgMdio7IoPPH9TqzYWSpPNmDetwjvfQDkmSI32ErK64fssGAAAAAAAAAAAAAAAAAMBgRqFvhNm8ebNqamqUnZ2tyZPbd0a98MILJUnvvvtup/az2+2nnBMfHy/DMHqc4b333pMkXXDBBe3WTJkyRdnZ2aqurtbmzZs7lR2RYd2OEjV4/UpNjNZpo1M7nOM9uF2SFD1iSn9GAwAAAAAAAAAAAAAAAABgUKPQN8Lk5eVJkiZOnNjh+IQJEyRJe/bs6dR+8+bNkyQ9+eST8nq9bdcDgYAee+wxSdIVV1zRKxl279590nWt11vnYWBYuf6wJOncM4bKYjHajZum+alC36n9mg0AAAAAAAAAAAAAAAAAgMHMFu4AOF5xcbEkKSMjo8Px1us1NTVqaGhQTEzMSfe7+eabtWXLFn344Yc655xzNHXqVNntdu3YsUM1NTW66aab9M1vfrPHGTwej+rq6k66Lj09/bj9EflKKxu0Pb9ChtFS6NuRpkM7FKyvlGF3KipnXD8nBAAAAAAAAAAAAAAAAABg8KLQN8I0NjZKkqKjozscd7lcbY87U+jrdrv11FNP6f7779cLL7ygVatWtY1NnDhRU6dOldVq7XGGhoaGtmunWvfpud1hmmZbxsGmtevyp7svh9Mba/dLkiaPTJI7Sh2+7tXr/ilJip4wT03+oOQfnD8bfDZF2j0JfJZxPwKRhXsSiBzcj0BkGYj3pGmaMoz2/4oTAAAAAAAAACAyUOg7yBUXF+uWW25RaWmpfvSjH2nBggWKjo7W1q1b9dBDD+mOO+7Q7bffrttuuy3cUTvN7/crLy8v3DH61KFDh8IdQaGQqXc2lkqSxmSow9fc4qlQ/MGtMiWVxOWqaJD/XPDZFQn3JIAW3I9AZOGeBCIH9yMQWQbaPelwOMIdAQAAAAAAAABwAhT6RpjWrrcn6vrx6Y6qp+rmK0l333239u7dq1/96ldasmRJ2/X58+drxIgRWrZsmZ544gktXbpUw4cP73aGT2fxer2KjY094brO5D4Zu92u3NzcHu0Rqbxerw4dOqThw4efsDNyf9myt0J1jUVyR9t16bnTZLdZ2s2pffcZeSVFjTxdmTPO6v+QQB+LpHsS+KzjfgQiC/ckEDm4H4HIMhDvyfz8/HBHAAAAAAAAAACcBIW+ESYrK0uSVFpa2uF46/WEhIRTFsyWlJRow4YNstvtOu+889qN5+TkaMqUKVq/fr02bNjQVujbnQxut1txcXGqq6tTaWlph4W+ZWVlx+3fXYZhtBUjD1bR0dFhf47vb2v5OS+ckaP4OHe78WBjvZp2fShJSppzqaIH+c8En22RcE8CaMH9CEQW7kkgcnA/ApFlIN2ThmGEOwIAAAAAAAAA4CTat+hEWI0fP16StHPnzg7Hd+3aJUkaO3bsKfdqLciNiYmR1WrtcE5cXJwkqaampscZxo0bd9J1rddb5yFy1Xp82rCz5f1z3syhHc6p2/K2zECzHOkjFDV0Qn/GAwAAAAAAAAAAAAAAAADgM4FC3whz+umnKyEhQYWFhdqxY0e78ddff12StGjRolPulZqaKqmliPfw4cPtxgOBQFvRbnZ2do8znHPOOZKkN954o92a7du3q7CwUImJiTr99NNPmR3h9dKqfAWCpnJzEjQiK77duBn0q25Ty885ftYyOr8AAAAAAAAAAAAAAAAAANAHKPSNMDabTdddd50k6b777pPH42kbW7FihdasWaPExERdfvnlbde3b9+uJUuWaMmSJcftlZ2drQkTWjqt3nvvvaqurm4b8/v9evjhh1VUVKTY2FjNnTu3Rxkk6fOf/7wSEhK0evVqvfbaa23XPR6P7r//fknSDTfccMLuwogMG3eV6qXV+ZKkKxeN7nCOZ9daBT3VsroT5Z4wpz/jAQAAAAAAAAAAAAAAAADwmWELdwC0d/PNN+tf//qXNmzYoMWLF+uMM85QRUWFNm3aJLvdrkceeURut7ttvtfr1cGDBzvc64EHHtD111/ftteUKVMUFRWlnTt3qqSkRHa7XQ888IDi4uJ6lEGSYmNj9fDDD+sb3/iGvv3tb+u5555TSkqKNm7cqMrKSp155pm68cYbe/8FQ68pr2rUz5/bLElaetYIzZ6c1W6OaZqqXb9CkhQ34wIZVnu/ZgQAAAAAAAAAAAAAAAAA4LOCjr4RyOFw6Omnn9a3vvUtJSQk6L333lN+fr4WLVqk5cuXa/78+Z3ea+LEiXrllVd07bXXthXdrlmzRoZh6JJLLtELL7zQrhNwTzKcffbZWr58uc455xzl5+frvffeU0JCgr797W/rd7/7nex2ikIjlT8Q0iN/2iSP16/ROQm68eKJHc5rOrJTzWUHZdgcipu2uJ9TAgAAAAAAAAAAAAAAAADw2UFH3wjlcDh066236tZbbz3l3FmzZmnPnj0nHM/MzNS9997bpxk+bdKkSXriiSe6fB7C69kVO7XnSLViou26+7ozZLdZO5zX2s3XPeVsWV2x/RkRAAAAAAAAAAAAAAAAAIDPFDr6AtDabcV65YMDkqRvX3O60pNcHc7zVxWrcd8mSVL8zKX9lg8AAAAAAAAAAAAAAAAAgM8iCn2Bz7jiCo9+tXyLJOnyhbmaOTHjhHNrN7wmyZQrd7ocyUP6KSEAAAAAAAAAAAAAAAAAAJ9NFPoCn2E+f1A/+cNGeX0BTRiRpC9dMP6Ec4PeetVvXyVJip+1rL8iAgAAAAAAAAAAAAAAAADwmUWhL/AZ9tTLO3SwuE7xbof+37UzZLOe+COhfss7Mv0+OdKGKWrYpH5MCQAAAAAAAAAAAAAAAADAZxOFvsBn1HubCvTWvw7LMKTvfHG6kuOjTzjXDAZUu+l1SS3dfA3D6K+YAAAAAAAAAAAAAAAAAAB8ZlHoC3wGHS6t0+MvbpMkXXPeWJ02Ju2k8xvy1ilYXyVrTILcE+b2R0QAAAAAAAAAAAAAAAAAAD7zKPQFPmO8voAe/uNG+ZqDOm10qq48b+xJ55umqdoNr0qS4mZcIMNm74+YAAAAAAAAAAAAAAAAAAB85lHoC3yGmKap//v7NhWUeZQUF6U7vzhdVotx0jVNBXnyleyXYXMo7vTF/ZQUAAAAAAAAAAAAAAAAAABQ6At8hrz5r8Nas6VQFouh/3ftDCXEOk+5pnbDCkmSe9J8WV1xfR0RAAAAAAAAAAAAAAAAAAAcQ6Ev8BmRX1ijJ/+xQ5L05QvHa+LI5FOu8VeXqnHPBklS/MylfZoPAAAAAAAAAAAAAAAAAAAcj0Jf4DPif/++VYFgSDMnZOjSBbmdWlO78TVJpqJHTpMjNadvAwIAAAAAAAAAAAAAAADA/2fvvsPsLAv0AT9najLpDZIQQgokQAgCAoqCCCiwSEd+2AgIgiAquwK2daWIIqzuuoqwKwIhumCjB5SVLgsmICydUJIAaSRDept6fn/EGYmZhPQzmdz3deXKzPe+3/c95+B7jfny5D3AShR9YSuwdHlDXpu2IElyzonvSVlZ4V3PaVq+JIv+7/4kSY/3HbVJ8wEAAAAAAAAAAACrUvSFrcDUmQuTJH16dErv7p3W6pxF/3dvig3LU9lvcDoP3X1TxgMAAAAAAAAAAADaoOgLW4GWou/QgT3Wan6xuSkLHr87SdJj3yNTKLz7DsAAAAAAAAAAAADAxqXoC1uBKTNWFH2HDOi+VvMXPf1AmhbWprxLj3Td7YBNGQ0AAAAAAAAAAABYDUVf2ApMmbEgSTJ04LsXfZdPfyVv3/PzJEmPfY9KWUXVJs0GAAAAAAAAAAAAtE3RFzq45uZiXp+5YkffoQN7rHFu48K389bvLk+xqSE1O743Pd5/9OaICAAAAAAAAAAAALRB0Rc6uFlzl2R5fVMqK8oysG+X1c5rbqjLW7+7PE2L56Wy3/bZ5th/TKGsfDMmBQAAAAAAAAAAAN5J0Rc6uCkzVuzmu0P/bikvb3vJF4vFzBn/09TNfC1lnbul/4lfT1l1zeaMCQAAAAAAAAAAAPwdRV/o4KbMWJAkGTqwx2rnzH/kd1nywv8mZeXZ9oQLUtmr/+aKBwAAAAAAAAAAAKyGoi90cFP/uqPvkIHd2xxf/NJjmffwr5IkfQ8/I513GLXZsgEAAAAAAAAAAACrp+gLHdyUmSuKvkMHrLqjb92syZlzx0+SJN33+Vi67/nRzZoNAAAAAAAAAAAAWD1FX+jAlixryOy5S5MkQ/9uR9/GxfMy67eXp9hQl87D3pM+HzmlFBEBAAAAAAAAAACA1VD0hQ5s6l938+3bs3O61lS1Hm9urM9bv7siTQtrU9l7YLY57rwUyspLFRMAAAAAAAAAAABog6IvdGBTZyxIsvJuvsViMbV3/1fqpr+csk5dsu3/+0bKO3UpVUQAAAAAAAAAAABgNRR9oQOb8tcdfYcM+FvRd8Gfb8/iZx9MCmXZ5vjzUtVnYGnCAQAAAAAAAAAAAGuk6Asd2JTWHX17JEmWvPx45t7/yyRJn0NPS83Q95QsGwAAAAAAAAAAALBmir7QQTU1FzN15qIkydCB3VM/+43Mvv1HSYrptteh6f7ew0uaDwAAAAAAAAAAAFgzRV/ooGa9vST1DU2pqizPgL5dM/uOH6dYvzyddhiVvoeenkKhUOqIAAAAAAAAAAAAwBoo+kIHNWXGgiTJDv27JXVLUv/WlCTJNsf8UwrlFaWMBgAAAAAAAAAAAKwFRV/ooKbMWJgkGTqwR+pmvZYkqei5bSq69SplLAAAAAAAAAAAAGAtKfpCB9Wyo+/Qgd1TP3NykqR6wPBSRgIAAAAAAAAAAADWgaIvdFBTZ67Y0XfIgO6pm7liR19FXwAAAAAAAAAAANhyKPpCB7R4aX3mzFuWJBkysIeiLwAAAAAAAAAAAGyBFH2hA5ry1918t+nVOZ2Ly9O4YHaSpKr/sFLGAgAAAAAAAAAAANaBoi90QFNmLEiSDB3YI3WzVuzmW9Grf8o7dSllLAAAAAAAAAAAAGAdKPpCBzR1xoodfYcM6J66mSuKvtUDhpcyEgAAAAAAAAAAALCOFH2hA5oyc0XRd+jAHu8o+u5YykgAAAAAAAAAAADAOlL0hQ6mqak5b7QWfbun3o6+AAAAAAAAAAAAsEVS9IUOZkbtktQ3Nqe6qjz9OjWmcWFtkqS6/9ASJwMAAAAAAAAAAADWhaIvdDBTZ6zYzXdI/+5peGtykqSyz8CUVdeUMhYAAAAAAAAAAACwjhR9oYOZMnNBkmTIwO6pm7Wi6Fs9YMdSRgIAAAAAAAAAAADWg6IvdDBT/rqj79CBPVI389UkSVX/YaWMBAAAAAAAAAAAAKwHRV/oYKbOWLGj79CB3VM387UkSfWA4aWMBAAAAAAAAAAAAKwHRV/oQBYtrU/tguVJku27N6dp0dwkhVT3H1raYAAAAAAAAAAAAMA6U/SFDmTKX3fz3bZ3TcrnvpEkqey7XcqqOpcyFgAAAAAAAAAAALAeFH2hA5kyY2GSZOjA7qmb+VqSpHrA8FJGAgAAAAAAAAAAANaToi90IFP/WvQdMqBH6ma+mkTRFwAAAAAAAAAAALZUir7QgUyZuSDJX3f0nTU5iaIvAAAAAAAAAAAAbKkUfaGDaGpqzhuzFiVJhvRoTtPieUmhLFXbDi1xMgAAAAAAAAAAAGB9VJQ6AG2rr6/P9ddfnzvuuCNvvvlmampqsvfee+fss8/OqFGj1vo6I0eOfNc5hUIhL730Uuv3t9xyS77xjW+863nHH398Lrvsstbvp02blkMOOWSN5zzyyCPp16/fu16bdTdtzuI0NDanc3V5ui+fkeVJKvsOSllldamjAQAAAAAAAAAAAOtB0bcdqq+vz+mnn56JEyemT58+OeiggzJnzpz88Y9/zIMPPpirr746BxxwwFpd67jjjlvt2FNPPZWpU6dmn332Wen44MGD13je7bffnubm5uy7775tjvft23e1+Tp16rQWqVkfU2csTJLs0L976mdNTpJUDxheykgAAAAAAAAAAADABlD0bYeuueaaTJw4MaNHj87YsWPTtWvXJMn48eNz3nnn5YILLsi9997benxNvv/976927LDDDkuyahl47733zt57793mOX/5y19y6623pqamJoceemibc4YNG7bG+7JpTJmxIEkydGCP1M38U5Kkuv+wUkYCAAAAAAAAAAAANkBZqQOwssbGxowbNy5JcuGFF65U5j3yyCNz4IEHZt68ebn55ps36D5PPvlkpk6dmpqamtbC79q47bbbkiSHHnpounTpskEZ2LimzFyxo+/QAd1SP+u1JEn1wB1LGQkAAAAAAAAAAADYAIq+7cyTTz6Z+fPnZ9CgQRk9evQq40cccUSS5L777tug+7QUdj/60Y+udWG3rq4uf/jDH5Ikxx577Abdn41vasuOvr2a07RkQVIoS9U2O5Q4FQAAAAAAAAAAALC+KkodgJW9+OKLSZJRo0a1Ob7rrrsmSSZNmrTe96ivr8/vf//7JMlxxx231ufdd999WbhwYbbbbru8//3vX+282tra/OQnP8ns2bNTU1OTXXbZJR/5yEdW2p2YjWvB4rrMXViXJNmmaXbmJ6nqt33KKqtLmgsAAAAAAAAAAABYf4q+7cyMGTOSJP37929zvOX4/Pnzs2TJkrXejfedWgq7AwcOXGNh9++17AJ89NFHp1AorHbe5MmTc+WVV650rFu3brn44ovzsY99bJ3z8u6mzliYJBnQp0vy9tQkSfWA4SVMBAAAAAAAAAAAAGwoRd92ZunSpUmSzp07tzleU1PT+vX6Fn3XtrD7TnPmzMkjjzySJDn22GPbnFNVVZVPfOITOeKIIzJ8+PB07tw5U6ZMyfXXX5/x48fn/PPPT9euXXPggQeuc+Z3KhaLre9TR7Ns2bKVfl9bk16vTZJsv22XLJ32cpKk0Gf7Dvs+weayvmsS2PisR2hfrEloP6xHaF+2xDVZLBbX+hkhAAAAAACbn6LvVqa2tvZdC7ttufPOO9PU1JQ999wzQ4YMaXPONttsk4svvnilY7vttlt++MMfZsCAAbnmmmtyxRVXbHDRt6GhIS+++OIGXaO9mzp16jrNf2bS3CRJTdmyLJ/xasqSTFtWSFMHf59gc1nXNQlsOtYjtC/WJLQf1iO0L1vamqyqqip1BAAAAAAAVkPRt51p2bF3dbt+vHOH1vXZzXf8+PFpbGzMnnvumaFDh671eS27AB933HHrfM8kOfPMM3Pdddfl1VdfzfTp07Pddtut13WSpLKyMjvuuON6n9+eLVu2LFOnTs2QIUNWu6tzW8be/+ckyft27JmyGcuSsvLstPcBKVT4SxrYEOu7JoGNz3qE9sWahPbDeoT2ZUtck6+++mqpIwAAAAAAsAaKvu3MwIEDkySzZs1qc7zleM+ePder6HvrrbcmWbfdfF988cVMmjQp1dXVOeKII9b5nknSvXv39O7dO3PmzMns2bM3qOhbKBRaC9EdVefOndf6NTY2NWfanCVJkiGdFqY+SVW/wenSveemCwhbmXVZk8CmZT1C+2JNQvthPUL7siWtyUKhUOoIAAAAAACsQVmpA7CyXXbZJUny/PPPtzn+wgsvJElGjhy5ztd+6aWX8tJLL61zYbdlN9+PfOQj6dat2zrfN0mampqyZMmKMuqWspvJlmLa7MVpbGpO5+qKdF48LUlSPWB4iVMBAAAAAAAAAAAAG0rRt53Za6+90rNnz0ybNi3PPvvsKuN33313kuSQQw5Z52u3FHYPOeSQdO/efa3OaWxszJ133plk3XYB/nt/+tOfsnTp0tTU1GTYsGHrfR1WNWXGgiTJkAHdUz9zchJFXwAAAAAAAAAAAOgIFH3bmYqKiowZMyZJcvHFF2fx4sWtY+PHj89DDz2UXr165YQTTmg9/swzz+Twww/P4YcfvtrrNjU1rVdh909/+lPefvvt9OvXLx/84AfXOPeXv/xlpkyZssrxxx57LN/61reSJJ/4xCdSVVW11vfn3U2dsTBJMnRAt9TNfC2Joi8AAAAAAAAAAAB0BBWlDsCqzjjjjPz5z3/OxIkTc+ihh2afffZJbW1tnnjiiVRWVuaKK65I165dW+cvW7aszYLtOz3yyCOpra1Nv379sv/++691lpZdgI8++uiUl5evce5vf/vbXHrppRkxYkSGDBmSJJkyZUpefvnlJMkBBxyQf/qnf1rre7N2Wnb03al3U5onLU7KK1LVb3CJUwEAAAAAAAAAAAAbStG3Haqqqsq1116b6667LnfccUfuv//+1NTU5JBDDsk555yTUaNGrfM1b7311iTJUUcd9a6F3RYLFy7M/fffnyQ57rjj3nX+Zz7zmTz88MOZNGlS/vd//zfLly9Pjx49csABB+SYY47JkUcemUKhsM7ZWbMpM1fs6Du44u0kSVW/HVKoqCxlJAAAAAAAAAAAAGAjUPRtp6qqqnLWWWflrLPOete573vf+zJp0qQ1zvnRj36UH/3oR+uUoXv37nn22WfXev6JJ56YE088cZ3uwYaZt2h55i+qS6GQ9Fw+M4uTVA8YXupYAAAAAAAAAAAAwEZQVuoAwPqbOmPFbr4D+nRJ05wpSRR9AQAAAAAAAAAAoKNQ9IUt2JS/Fn2HDuieupmvJVH0BQAAAAAAAAAAgI5C0Re2YFNmLkiS7NynMc11S1Mor0xVv+1LnAoAAAAAAAAAAADYGBR9YQs29a87+g6pfDtJUrXtkBTKK0oZCQAAAAAAAAAAANhIFH1hC9XQ2JxpsxclSfo0zk6SVA8YXspIAAAAAAAAAAAAwEak6AtbqGmzF6WxqZgunStTPu/1JElV/2ElTgUAAAAAAAAAAABsLIq+sIWaMmNhkmRI/26pmzU5iR19AQAAAAAAAAAAoCNR9IUt1NSZK4q+o/o0pli/LIWKqlT1277EqQAAAAAAAAAAAICNRdEXtlBTZyxIkgzrNC9JUrXtkBTKyksZCQAAAAAAAAAAANiIFH1hC/X6rBU7+m7T/FaSpHrA8FLGAQAAAAAAAAAAADYyRV/YAi1YXJe5C+uSJJ0XT0+i6AsAAAAAAAAAAAAdjaIvbIGmzlyxm+/A3p3TMHtKEkVfAAAAAAAAAAAA6GgUfWEL1FL03a1fY4r1y1OorE5ln+1KnAoAAAAAAAAAAADYmBR9YQv0+l+LviO6LEiSVG07NIWy8lJGAgAAAAAAAAAAADYyRV/YAk35a9F3YKE2SVI9YHgp4wAAAAAAAAAAAACbgKIvbGGamot5469F365LpydJqgcMK2UkAAAAAAAAAAAAYBNQ9IUtzMzaxalvbE6nqkIy940kSfWAHUucCgAAAAAAAAAAANjYFH1hC/P6zEVJkvf0a0yxoS6Fqk6p7D2gxKkAAAAAAAAAAACAjU3RF7YwU2YuSJLs2m1hkqR626EplJWXMhIAAAAAAAAAAACwCVSUOgCwbqbOWFHw3b5ibpKkesDwUsYBAAAAthDFYjENDQ1pbm4udZQOq66urvX3srLNv8dCRUVFKio88gUAAAAA6Eg89YUtzNSZK4q+PetmJkmqFH0BAACANWhqakptbW0WLVqUhoaGUsfp0Jqbm1NRUZEZM2aUpOibJF26dEnfvn1TU1NTkvsDAAAAALBxKfrCFmTp8oa8NXdpytKc8gXTkiTV/YeVOBUAAADQXjU1NeXNN99MXV1devToka5du6a8vDyFQqHU0Tqkpqam1NXVpbq6OuXl5Zv13sViMXV1dZk7d27efPPNDB06NFVVVZs1AwAAAAAAG5+iL2xB3pi1KEmyU/flSWN9ClWdUtlnYIlTAQAAAO1VbW1t6urqMnjw4HTu3LnUcTq8pqamJEmnTp02e9E3STp37pxu3bplypQpmT17dgYNGrTZMwAAAAAAsHGV5vPjgPUyZebCJMnuvRYnWbGbb6FgGQMAAACrKhaLWbRoUXr06KHkuxUpLy9Pjx49snTp0hSLxVLHAQAAAABgA2kIwhZk6owFSZKhVfOSrCj6AgAAALSloaEhDQ0N6dq1a6mjsJl17tw5TU1NaWhoKHUUAAAAAAA2kKIvbEGm/nVH3z5NbyVJqgYML2UcAAAAoB1rbm5OsmKHV7YuLf/NW/43AAAAAADAlkvRF7YQxWIxr89cmLI0p9OiGUmSakVfAAAA4F0UCoVSR2Az898cAAAAAKDjUPSFLcSc+cuyZHljBlYsTJrqU6jqnMreA0odCwAAAAAAAAAAANhEFH1hCzF15sIkye69lyRJqvsPTaFgCQMAAAAAAAAAAEBHpSUIW4ipM1YUfXfsPD9JUj1geAnTAAAAALCuvv71r2fkyJGZMGFCqaMAAAAAALCFUPSFLcTrf93Rd9vinCRJdX9FXwAAAID1NXLkyBx88MGljgEAAAAAAGuk6AtbiCkzF6YszemybGaSpGrAsBInAgAAAGBdfOUrX8ndd9+d3XffvdRRAAAAAADYQlSUOgDw7uobmjJ9zuJsW74ghaaGFKo6p7L3gFLHAgAAAGAdbLPNNtlmm21KHQMAAAAAgC2IHX1hC/DmW4vS3FzMjp3nJ0mq+w9LoWD5AgAAAKyrW265JSNHjkySTJ8+PSNHjmz9dfDBBydJvv71r2fkyJGZMGFCHn300Zx22mnZd999M3LkyLz44otJkhdeeCH/+q//mhNOOCEf+MAHsttuu+Wggw7KN7/5zbz88stt3vud132nk08+OSNHjsy0adPy0EMP5VOf+lT23HPP7LXXXjn99NPz7LPPbsJ3BAAAAACA9syOvrAFeH3WwiTJLt0WJnVJ9YBhJU4EAAAAsGUaPHhwjjvuuNx6662pqanJYYcd1jrWq1evlebedddd+c1vfpOdd945BxxwQGbOnJlCoZAk+c///M/ce++9GTFiRHbfffdUVVVlypQp+cMf/pAHH3wwP//5z7PPPvusU7Zf//rXueaaa7LHHnvkwx/+cF5++eU88sgj+ctf/pKbb745w4cP3/A3AAAAAACALYqiL2wBpsxYUfTdruztJEl1f3+pAwAAALA+9t577+y999659dZb06tXr3z/+99f7dxf//rXueyyy3L88cevMvbJT34y3/rWt7LNNtu0Hmtqaso999yTCy64IN/+9rdz9913txaD18bYsWNz/fXXZ7/99kuSFIvFXHTRRfnVr36Vn//857nsssvW4ZUCAAAAANARKPrCFmDqzIUpS3O6181KklQNUPQFAAAANlyxWExdfVOpY6y16qrydSrObqj999+/zZJvktYy7t878MADc9hhh+Wuu+7Kq6++mp122mmt73fyySevdN1CoZBzzz03v/rVrzJhwoR1Cw8AAAAAQIeg6AtbgKkzF6Z/+YKUNTemUNU5lb37lzoSAAAAsIUrFov52pWP5MWpc0sdZa3tMqR3Lv/i/put7PuRj3xkjeOLFi3KAw88kJdeeikLFy5MQ0NDmpqa8uqrryZJpk6duk5F3wMPPHCVY717907Pnj0ze/bsdQsPAAAAAECHoOgL7dz8RXWZv6guI6vfTpJU9x+WQqGsxKkAAAAAOr6BAweuduyPf/xjvvnNb2bhwoWrnbN48eKNcr8uXbpk/vz563QtAAAAAAA6BkVfaOden7niL4tGdlnxe/WAYaWMAwAAAHQQhUIhl39x/9TVN5U6ylqrrirfbLv5JkmnTp3aPD5z5sycd955aW5uzle/+tUcdNBB6d+/f6qqqlJXV5err74611xzTYrF4jrdb3O+NgAAAAAAtgyKvtDOTflr0XeHyrlJQ1I9YHiJEwEAAAAdRaFQSKdqjwjX1YMPPpi6urqcdtppOf3001uPNzWtKE2/8cYbpYoGAAAAAEAHU1bqAMCaTZ25IGVpTu/G2UmSqv6KvgAAAAAbqrKyMo2Njet17oIFC5Ik/fv3X2Vs3rx5eeyxxzYoGwAAAAAAtFD0hXbu9ZkL0798QcqKjSlUdU5l71X/AgkAAACAdbPNNtvk7bffbi3trothw4YlSW677bYsXry49fiSJUty0UUXZeHChRstJwAAAAAAWzefywftWFNTc96YtSh7lr+dJKkeMCyFgn4+AAAAwIY65JBDMm7cuBx33HHZc88906lT94FYpAABAABJREFUp/Tq1Svnn3/+u5570EEHZeedd84LL7yQj3zkI9l7771TLBbz+OOPp7y8PMcdd1xuvfXWzfAqAAAAAADo6DQGoR2bUbsk9Y3NGVI1N0lS3X94iRMBAAAAdAxf+cpXMmbMmCTJH/7wh/zud7/L3XffvVbnVlZW5r//+79z6qmnpnv37nnooYfy7LPP5pBDDsmNN96YAQMGbMroAAAAAABsRQrFYrFY6hCwtp599tkkyejRo0ucZNNYunRpXnzxxeyyyy6pqanJn/5veq74xRP5Rt//Sf/mWdnm2H9M11EHlDombDX+fk0CpWM9QvtiTUL7YT2yJsuXL8+UKVMydOjQdOrUqdRxtgpNTU1Zvnx5OnXqlPLy8pLlWJf/9h39eRsAAAAAwJbOjr7Qjr0+c2HK0px+xdokSZUdfQEAAAAAAAAAAGCroegL7djUmQvTv3x+youNKVTXpLJ3/1JHAgAAAAAAAAAAADYTRV9ox6bMXJjty99OklT3H5pCwZIFAAAAAAAAAACArYXWILRTS5Y1ZPbcpdm+Ym6SpLr/8BInAgAAAAAAAAAAADanilIHoG319fW5/vrrc8cdd+TNN99MTU1N9t5775x99tkZNWrUWl9n5MiR7zqnUCjkpZdeWunYySefnIkTJ672nPPOOy9nnnlmm2PPPfdcrr766vzlL3/J0qVLs/322+eYY47JZz/72VRWVq519q3d67MWJkmGVs9LklQPUPQFAAAAAAAAAACArYmibztUX1+f008/PRMnTkyfPn1y0EEHZc6cOfnjH/+YBx98MFdffXUOOOCAtbrWcccdt9qxp556KlOnTs0+++yz2jmHHXZYampqVjk+YsSINuc/+OCD+eIXv5iGhoa8973vTb9+/fL444/nhz/8YR599NFcc801yr5r6fWZC1OW5gwovJ0kqR4wrMSJAAAAAAAAAAAAgM1J0bcduuaaazJx4sSMHj06Y8eOTdeuXZMk48ePz3nnnZcLLrgg9957b+vxNfn+97+/2rHDDjssyZrLwF/96lczaNCgtcq9aNGifO1rX0tDQ0N++MMf5sgjj0ySLF68OKeeemoee+yxXHfddfn85z+/Vtfb2k2ZuTD9y+enPE0pVNekolf/UkcCAAAAAAAAAAAANqOyUgdgZY2NjRk3blyS5MILL1ypzHvkkUfmwAMPzLx583LzzTdv0H2efPLJTJ06NTU1Na2F3w31u9/9LvPnz8+HP/zh1pJvknTt2jXf/va3kyTXX399mpqaNsr9OrqpMxZm+/K/7ubbf1gKBcsVAAAAAAAAAAAAtiaag+3Mk08+mfnz52fQoEEZPXr0KuNHHHFEkuS+++7boPvcdtttSZKPfvSj6dKlywZdq8X999+fJPmHf/iHVcZ23333DBo0KPPmzcuTTz65Ue7XkRWLxbw+a2EGV/y16DtgWIkTAQAAAAAAAAAAAJtbRakDsLIXX3wxSTJq1Kg2x3fdddckyaRJk9b7HvX19fn973+fJDnuuOPWOPfmm2/O/PnzkyTbbbddPvzhD2fHHXdsc+5LL72UZPXZR40alWnTpuWll17KPvvss57ptw61C5Zn6fLGbN99bpKkuv/wEicCAAAAAAAAAAAANjdF33ZmxowZSZL+/fu3Od5yfP78+VmyZMl67cZ73333ZeHChRk4cGDe//73r3HuVVddtdL3P/jBD3LsscfmoosuSqdOnVqPL168OAsXLlxj9m233TbJ314jq/fGrMUpS3O2q5iXxI6+AAAAAAAAAAAAsDVS9G1nli5dmiTp3Llzm+M1NTWtX69v0fe2225Lkhx99NEpFAptztl7771zwgknZK+99so222yTt956Kw899FB+/OMf59Zbb019fX3+7d/+baUsLd4t+zvnro9isdj6PnU0y5YtS5K8Om1e+pfPT0WaUqiuSX119zR00NcM7VnLmmz5HSgd6xHaF2sS2g/rkTWpq6tLc3Nzmpqa0tTUVOo4W4Visdj6eynf86ampjQ3N2fZsmVpbm5e49xisbjaZ4QAAAAAAJSeou9Wpra2No888kiS5Nhjj13tvHPPPXel73fYYYeMGTMm73vf+3LCCSfkrrvuyqmnnprdd999U8ZtU0NDQ1588cXNft/NadKU2Rlc/naSpL5Lv7z00qQSJ4Kt29SpU0sdAfgr6xHaF2sS2g/rkdWpqKhIXV1dqWNsdUr9ntfV1aWxsTGTJ09eq/lVVVWbOBEAAAAAAOtL0bedadn1dnU78bxzJ9v12c13/PjxaWxszJ577pmhQ4eu8/kjR47MwQcfnHvuuScPP/xwa9H3nVmWLVuWbt26rTb7+uR+p8rKyuy4444bdI32atmyZZk6dWrmLUl2rVhR9O0xdFS232WXEieDrVPLmhwyZMhqdysHNg/rEdoXaxLaD+uRNamrq8uMGTNSXV2dTp06lTrOVqFYLKauri7V1dUl3yW3oqIigwcPTnV19Rrnvfrqq5spEQAAAAAA60PRt50ZOHBgkmTWrFltjrcc79mz53oVZm+99dYka97N990MGTIkSTJ79uzWY127dk337t2zcOHCzJo1q82i71tvvZXkb69xfRUKhdZCdEfU0FTMzLnLMqjb3CRJ18E7d+jXC1uCzp07W4fQTliP0L5Yk9B+WI+0paysLGVlZSkvL095eXmp42wVmpqakqx4fvXEE09kzJgxOe644/L9739/s+YoLy9PWVlZOnfu/K4l71IXkgEAAAAAWLOyUgdgZbv8defW559/vs3xF154IcmKnXXX1UsvvZSXXnop1dXVOeKII9Y744IFC5JklZ2Cdt555ySrz95yvGUebZuzoCGFYnO2K5+XJKnuP6zEiQAAAAAAAAAAAIBSUPRtZ/baa6/07Nkz06ZNy7PPPrvK+N13350kOeSQQ9b52rfddlvrud27d1+vfPX19XnwwQeTJLvttttKYwcffHCS5Pe///0q5z3zzDOZNm1aevXqlb322mu97r21eGt+QwaUz09loSll1TWp6NW/1JEAAAAAAAAAAACAElD0bWcqKioyZsyYJMnFF1+cxYsXt46NHz8+Dz30UHr16pUTTjih9fgzzzyTww8/PIcffvhqr9vU1JQ777wzSXLssceuMcNjjz2WBx54IM3NzSsdnzNnTr785S9n1qxZ6d+/fz760Y+uNP7xj388PXv2zIMPPpi77rqr9fjixYtzySWXJEk++9nP+qjIdzF7fkO2L387SVLVf5iPTwQAAAAAAAAAAICtVEWpA7CqM844I3/+858zceLEHHroodlnn31SW1ubJ554IpWVlbniiivStWvX1vnLli3LlClT1njNRx55JLW1tenXr1/233//Nc6dNGlSLrvssvTr1y+77rprunXrllmzZuWFF17I0qVL07t371x55ZXp1KnTSud169Ytl19+ec4555x85StfyY033pi+ffvm8ccfz9tvv533v//9Oe2009b/jdlKvDW/Ie+tWFH0rR4wvMRpAAAAADqWSZMm5eijj86QIUNyzz33tDnn+eefz/HHH5+ddtop48ePz4IFC3LnnXfmwQcfzOTJkzNnzpxUV1dnp512yoknnpjjjz9+M78KAAAAAAC2Foq+7VBVVVWuvfbaXHfddbnjjjty//33p6amJoccckjOOeecjBo1ap2veeuttyZJjjrqqHfdUXfffffNSSedlOeeey7PPfdcFi5cmKqqqgwZMiQHHnhgxowZk969e7d57oc//OH8+te/zk9/+tM8+eSTeeaZZ7L99tvnlFNOyWmnnZbKysp1zr61eWt+Q7avUvQFAAAA2BRGjhyZnXfeOS+99FKeeeaZ7L777qvMuf3225MkRx99dJLkySefzHe+850MGDAgO+ywQ/bYY4/U1tbmqaeeypNPPplnn302F1544WZ9HQAAAAAAbB0UfdupqqqqnHXWWTnrrLPede773ve+TJo0aY1zfvSjH+VHP/rRWt171113zSWXXLJWc9uy22675eqrr17v87dm8xfXZdnyxgzsPC9JUt1/WIkTAQAAAB1ZsVhMsaGu1DHWWqGyOoVCYYOvc8wxx+Sll17K7bffvkrRt6mpKXfddVfKyspyzDHHJEmGDx+em266KXvttddKc+fMmZMzzjgjN954Y4455piMHj16g7MBAAAAAMA7KfpCO/LGW4szoHx+KgvNKauuSUWv/qWOBAAAAHRQxWIxM8b9c+qmrfkfkLcn1YN2zsAxl25w2feoo47KD37wg9x11135+te/vtKnUD3yyCOpra3Nfvvtl2233TZJMnjw4AwePHiV6/Tr1y8XXHBBTjvttNxzzz2KvgAAAAAAbHSKvtCOvDFrcbaveDtJUjVg+EbZoQYAAABg9bbOZw/9+vXLfvvtl0ceeSR/+tOfcvDBB7eO3XHHHUmSY489dqVzisViHn/88TzxxBOZPXt26urqUiwWs2TJkiTJ1KlTN1d8AAAAAAC2Ioq+0I688daibF++ouhb3X9YidMAAAAAHVmhUMjAMZem2FBX6ihrrVBZvdH+YfQxxxyTRx55JLfffntr0Xfx4sW59957U1NTk0MPPbR17pw5c3LOOefk6aefXu31Fi9evFFyAQAAAADAOyn6QjtS39DcuqNv9YDhJU4DAAAAdHSFQiGFqk6ljlESH/3oR1NTU5MHHnggixYtSrdu3fI///M/Wb58eY4++ujU1NS0zv3Wt76Vp59+OgcffHA+97nPZfjw4enWrVvKy8szZcqUHH744SV8JQAAAAAAdGRlpQ4A/M3pH9sp21fOT6LoCwAAALApde7cOYcddljq6uryhz/8IUly++23J0mOPfbY1nlLly7Nww8/nD59+uTKK6/Me9/73vTs2TPl5eVJkjfeeGOzZwcAAAAAYOuh6AvtSKelb6Ws2JRCdU0qem5b6jgAAAAAHdoxxxyTJLnjjjvy1ltvZeLEidl2222z3377tc5ZtGhRmpubs80227SWe9/pjjvu2Gx5AQAAAADY+ij6QjvS8NbUJEnlNkNSKBRKGwYAAACgg3vf+96X/v375/HHH89//ud/prm5OUceeWTKyv722LRv377p3r17Xn755UyYMGGl82+++ebcddddmzs2AAAAAABbEUVfaEcaZk9JklRuO7TESQAAAAA6vrKyshx11FEpFou58cYbkyTHHnvsSnPKy8vz+c9/Pk1NTTn11FMzZsyYnHfeeTnqqKPyzW9+M2eccUYJkgMAAAAAsLVQ9IV2pHnpoiRJ5cCdSpwEAAAAYOtwzDHHtH696667ZsSIEavM+dznPpd///d/z6hRo/Lcc8/loYceSs+ePfOzn/0sJ5100uaMCwAAAADAVqai1AGAv+l+4KcytWZAth22V6mjAAAAAGwVdtppp0yaNOld5x1xxBE54ogj2hxrOb+pqan12Pve9761ui4AAAAAAKyJHX2hHSnv3jf1A3dLoVAodRQAAAAAAAAAAACgxBR9AQAAAAAAAAAAAKAdUvQFAAAAAAAAAAAAgHZI0RcAAAAAAAAAAAAA2iFFXwAAAAAAAAAAAABohxR9AQAAAAAAAAAAAKAdUvQFAAAAAAAAAAAAgHZI0RcAAAAAOrBisVjqCGxm/psDAAAAAHQcir4AAAAA0AFVVFQkSerq6kqchM2toaEhSVJeXl7iJAAAAAAAbChFXwAAAADogCoqKtKlS5fMnTs3TU1NpY7DZlIsFrNgwYJUV1ensrKy1HEAAAAAANhAFaUOAAAAAABsGn379s2bb76ZKVOmpEePHuncuXPKy8tTKBRKHa1Dampqat1BeXPvplssFtPQ0JAFCxZk8eLF2W677Tbr/QEAAAAA2DQUfQEAAACgg6qpqcnQoUMze/bszJs3L7W1taWO1KE1NzensbExFRUVKSsrzYepVVdXZ7vttkv37t1Lcn8AAAAAADYuRV8AAAAA6MCqqqoyaNCg1h1fm5ubSx2pw1q2bFkmT56cwYMHp3Pnzpv9/uXl5amsrNzs9wUAAAAAYNNR9AUAAACArUChUEhVVVWpY3RoLSXq6urqdOrUqcRpAAAAAADoCErz+XEAAAAAAAAAAAAAwBop+gIAAAAAAAAAAABAO6ToCwAAAAAAAAAAAADtkKIvAAAAAAAAAAAAALRDir4AAAAAAAAAAAAA0A4p+gIAAAAAAAAAAABAO6ToCwAAAAAAAAAAAADtUKFYLBZLHQLW1pNPPplisZiqqqpSR9kkisViGhoaUllZmUKhUOo4sNWzJqH9sB6hfbEmof2wHqF92RLXZH19fQqFQvbaa69SRwEAAAAAoA0VpQ4A62JL+QuS9VUoFDpsiRm2RNYktB/WI7Qv1iS0H9YjtC9b4posFAod/pkbAAAAAMCWzI6+AAAAAAAAAAAAANAOlZU6AAAAAAAAAAAAAACwKkVfAAAAAAAAAAAAAGiHFH0BAAAAAAAAAAAAoB1S9AUAAAAAAAAAAACAdkjRFwAAAAAAAAAAAADaIUVfAAAAAAAAAAAAAGiHFH0BAAAAAAAAAAAAoB1S9AUAAAAAAAAAAACAdkjRFwAAAAAAAAAAAADaIUVfAAAAAAAAAAAAAGiHFH0BAAAAAAAAAAAAoB2qKHUAIKmvr8/111+fO+64I2+++WZqamqy99575+yzz86oUaNKHQ86lIaGhkyYMCEPPvhgJkyYkDfffDNNTU3p379/9t9//3zuc5/Ldttt1+a5b7zxRn7yk5/ksccey4IFC9K/f/8cdthhOfvss9OlS5fN/EqgYyoWiznllFMyYcKEJMndd9+d4cOHrzLPeoRNa9GiRbnuuuty7733Ztq0aUmSbbfdNu9973vz5S9/Odtuu+1K861J2DQmT56ca665JhMmTMjs2bNTUVGRwYMH59BDD81nP/vZNtdXbW1trrzyyjz44IOpra1N37598+EPfzhf+tKX0qdPnxK8CthyPP/883n00Ufz7LPP5rnnnsv06dOTJPfdd18GDRq02vPW5+dgsVjMr371q/z2t7/N5MmTU1VVld122y1nnHFG9ttvv03y+gAAAAAA2DIVisVisdQhYGtWX1+f008/PRMnTkyfPn2yzz77ZM6cOfnLX/6SysrKXH311TnggANKHRM6jEcffTSf/exnkyQDBgxoLdM/88wzmT17drp27Zqf//zn2XPPPVc67/nnn8/JJ5+cJUuWZNSoURk8eHCeeeaZTJ8+PSNGjMiNN96Ybt26bfbXAx3Nr371q1x44YUpFAopFottFn2tR9i0Xn311Xz2s5/N7Nmzs8MOO2TnnXdOQ0ND3njjjbz66qv57//+7+y9996t861J2DSeeOKJnH766Vm+fHmGDBmSkSNHZtmyZXnyySezePHiDB8+PDfddFN69OjRes706dNz0kknZc6cORk2bFhGjhyZSZMmZfLkydl2223z61//OgMGDCjhq4L27Qtf+ELuu+++VY6vqei7Pj8Hi8ViLrjggtx5553p0qVLPvjBD2bJkiX585//nObm5nznO9/JiSeeuEleIwAAAAAAWx5FXyixn/70p/nxj3+c0aNHZ+zYsenatWuSZPz48TnvvPPSq1ev3Hvvva3HgQ3z2GOP5aabbspnP/vZlcq8dXV1ueiii3LLLbdku+22yz333JPKysokSVNTU4444ohMnTo15513Xs4888wkK4r6X/7yl/PAAw/kpJNOyiWXXFKS1wQdxaxZs/Kxj30se+65ZyZPnpzp06evUvS1HmHTWrhwYY488sjMmzcv3/ve93LUUUetNP7GG2+ka9eu6d27dxJrEjalI488Mq+88kq+8IUv5Mtf/nIKhUKSZP78+TnttNPy/PPP58wzz8x5553Xes4pp5ySP//5z/nEJz6Riy66qPUfzlx00UX51a9+lf333z/XXnttqV4StHs/+9nPsnTp0uy2224ZPXp0jj/++NTW1q626Lu+Pwdvu+22fO1rX8ugQYNy4403tu6U//jjj7f+w9R77rlntZ82AwAAAADA1qWs1AFga9bY2Jhx48YlSS688MKVyrxHHnlkDjzwwMybNy8333xzqSJCh7Pffvvlxz/+8So79lZXV+fCCy9Mt27dMn369Dz11FOtY/fdd1+mTp2aESNG5Iwzzmg9XlVVlUsuuSQVFRW5+eabM2/evM32OqAj+va3v53m5uZcfPHFq51jPcKmdeWVV+att97Keeedt0rJN0kGDx7cWvJNrEnYVObNm5dXXnkllZWVOfvss1tLvknSs2fPnHbaaUmSp59+uvX4888/nz//+c/p2bNnvvnNb7aeUygU8s1vfjM9e/bMI488kpdeemnzvhjYgpx55pn5x3/8x3zkIx9pLd+uyfr+HGwp3F9wwQUr3WefffbJiSeemIaGhtxwww0b6VUBAAAAALClU/SFEnryySczf/78DBo0KKNHj15l/IgjjkiSNj82Etj4OnXqlCFDhiRJZs+e3Xr8gQceSJIcdthhK5UskmSbbbbJe9/73jQ2Nuahhx7abFmho7ntttvy0EMP5dxzz13jzmXWI2w6dXV1ueWWW9K5c+ecdNJJa3WONQmbRssnS7ybXr16tX7dsh4PPvjgVFdXrzSvuro6Bx98cJLk3nvv3UgpgfX5OTht2rS8/PLLK63Ld/IsCAAAAACAv6foCyX04osvJklGjRrV5viuu+6aJJk0adJmywRbs6ampkyfPj1J0rdv39bjLWt1t912a/O8ljVsdzRYP7W1tbnssssyevTojBkzZo1zrUfYdJ577rksWrQou+66azp37pzHHnssV1xxRb797W/nZz/7WSZPnrzKOdYkbBpdu3bNnnvumYaGhlx99dUpFoutY/Pnz891112XJDnxxBNbj6/tevTnS9h41ufnYMvXO+20U6qqqlY5p+VZ0LRp07J48eKNmhcAAAAAgC1TRakDwNZsxowZSZL+/fu3Od5yfP78+VmyZEm6dOmy2bLB1uj222/P3Llz07t37+y1116tx99trbZ81GrLPGDdXHLJJVm8eHEuvfTSlJWt+d+hWY+w6bz66qtJkj59+uTLX/5y7rnnnpXG//3f/z1nnXVWzj333NZj1iRsOt/97nfzuc99LldddVXuvvvujBw5MsuXL89f/vKXdO7cOVdccUX233//1vkt66xl3f29lnXa8g/bgA23Pj8H3+2cLl26pFu3blm0aFFmzJiRESNGbMzIAAAAAABsgRR9oYSWLl2aJOncuXOb4zU1Na1fK/rCpjVt2rRcfvnlSZJ/+qd/WmlnpXdbqy1rc8mSJZs4JXQ899xzT+65556ceeaZ2Xnnnd91vvUIm86CBQuS/O1jyC+44IIcddRRKS8vz+9///tcccUVueqqqzJw4MDWXUStSdh0hg8fnptuuinnnntu/u///i9Tp05tHfvABz6QHXfccaX5LevxnX+OfKeW49YjbDzr83Pw3c5JVqzXRYsWWa8AAAAAACRJ1rxlGgBsBRYvXpwvfOELmT9/fg4//PD8v//3/0odCbYK8+fPzyWXXJIddtghX/ziF0sdB7Z6zc3NSZKGhoacddZZ+dznPpdtt902ffv2zcknn5yvfOUrSZKrrrqqlDFhq/HnP/85Rx99dBYtWpSf//znefzxx/Pwww/nkksuyWOPPZZPfvKTeeSRR0odEwAAAAAAgE1M0RdKqGVHpWXLlrU53rLLSxK7+cImUldXl7PPPjuTJk3Kfvvtl3/9139dZc67rdWWXZasU1g3l112WWpra3PxxRenurp6rc6xHmHTeecuoC079r5Tyz+EmTFjRt58882VzrEmYeOaP39+zj333NTX1+eaa67JAQcckO7du2fbbbfNSSedlEsuuSR1dXW58MIL09TUlORv6/Gdf458p5bj1iNsPOvzc/DdzkmsVwAAAAAAVqboCyU0cODAJMmsWbPaHG853rNnT3+5A5tAQ0NDvvSlL2XixInZY489ctVVV6WqqmqVee+2Vt96662V5gFr57777kt1dXWuuuqqnHzyySv9mjNnTpLka1/7Wk4++eT84Q9/SGI9wqa03XbbJUmqqqqy7bbbrjLepUuX9O7dO0la16g1CZvGgw8+mPnz52ePPfZoXZvvdOihh6aysjLTpk1rLd63rLOWdff3WtZpW9cD1s/6/Bx8t3OWLFmSRYsWrXIeAAAAAABbL0VfKKFddtklSfL888+3Of7CCy8kSUaOHLnZMsHWorm5ORdccEEeeuih7LzzzvnZz3620k6G79SyVp977rk2x1vW8M4777xpwkIHVldXl4kTJ67yq76+Pkny7LPPZuLEia1FCOsRNp1dd901SVJfX9+6A+E7NTU1tRaPWn5mWpOwabSUA7t169bmeEVFRes6XLBgQZK1X4/+fAkbz/r8HGz5+pVXXmn9/7zv1PIsaNCgQenatetGzQsAAAAAwJZJ0RdKaK+99krPnj0zbdq0PPvss6uM33333UmSQw45ZHNHgw6tWCzmW9/6Vn7/+99n6NChue6669KjR4/Vzj/ooIOSJPfcc0+KxeJKY7Nnz85f/vKXVFRU5EMf+tAmzQ0dzRNPPJFJkya1+atlt8G77747kyZNyqmnnprEeoRNacCAARk1alSSZMKECauMP/HEE2loaEjnzp0zbNiwJNYkbCr9+vVLsqIk2NjYuMr41KlTWwu+LT8zW9bj/fffn7q6upXm19XV5f7770+SfOQjH9lkuWFrsz4/BwcNGpQRI0astC7fybMgAAAAAAD+nqIvlFBFRUXGjBmTJLn44ouzePHi1rHx48fnoYceSq9evXLCCSeUKiJ0SN///vdz8803Z9CgQbnhhhvSp0+fNc4/+OCDM2TIkLz88su55pprWo/X19fn29/+dhobG3PCCSe0fpw5sOlYj7BpnXnmmUmSK664ItOmTWs9/tZbb+W73/1ukuTjH/94qqqqkliTsKl86EMfSqdOnTJ9+vT84Ac/WKnsO3fu3HzrW99Kkuy7777p27dvkmTUqFF5//vfn/nz5+d73/tea+mwWCzme9/7XubPn5/999/fDtuwEa3vz8HTTz89SfKv//qvrTt4J8njjz+e3/72t6msrMwpp5yyeV4EAAAAAADtXqH499tNAJtVfX19Tj/99EycODF9+vTJPvvsk9ra2jzxxBOprKzMVVddZQc02IjuvffenHPOOUmS973vfRk4cGCb8z7ykY+stNvZc889l5NPPjlLly7NqFGjssMOO+Tpp5/O9OnTM2LEiNx4442r/WhlYN0dfPDBmT59eu6+++4MHz58pTHrETatiy66KDfddFNqamqy1157paysLE899VQWLVqUPfbYI2PHjk3nzp1b51uTsGn89re/zbe//e00Nzdn4MCB2XXXXbN8+fI8/fTTWbRoUfr27Ztf/vKXGTp0aOs506dPz0knnZQ5c+Zk+PDhGTlyZCZNmpTXXnst22yzTX7zm99kwIABJXxV0L49+OCDueqqq1q/f+GFF9LQ0JBddtml9R+5HHjgga1/pkzW7+dgsVjM+eefn/Hjx6dr1675wAc+kKVLl+axxx5Lc3NzvvOd7+TEE0/cPC8aAAAAAIB2T9EX2oH6+vpcd911ueOOO/Lmm2+mpqYm733ve3POOee0fnwysHHccsst+cY3vvGu8774xS/mS1/60krHXn/99fzkJz/JY489lgULFqR///457LDD8oUvfCFdunTZVJFhq7Smom9iPcKmduedd+a///u/8/LLL6exsTFDhgzJkUcemVNOOSXV1dWrzLcmYdN4+umnc8MNN+TJJ59MbW1tysvLM2jQoHzoQx/K5z73uTY/maK2tjY/+clP8uCDD+btt99Onz598uEPfzhf/vKX3/WTLGBrtzZ/XjzuuOPy/e9/f6Vj6/NzsFgs5qabbspvf/vbTJ48OZWVlRk9enTOPPPM7LfffhvtNQEAAAAAsOVT9AUAAAAAAAAAAACAdqis1AEAAAAAAAAAAAAAgFUp+gIAAAAAAAAAAABAO6ToCwAAAAAAAAAAAADtkKIvAAAAAAAAAAAAALRDir4AAAAAAAAAAAAA0A4p+gIAAAAAAAAAAABAO6ToCwAAAAAAAAAAAADtkKIvAAAAAAAAAAAAALRDir4AAAAAAAAAAAAA0A4p+gIAAFuMadOmZeTIkRk5cmSpowAAAAAAAADAJldR6gAAAMDGdfLJJ2fixIlrNXfSpEmbOA0AAAAAAAAAsL4UfQEAoIMaMGBABgwYUOoYAAAAAAAAAMB6UvQFAIAO6oQTTsiXvvSlUscAAAAAAAAAANZTWakDAAAAAAAAAAAAAACrsqMvAACQadOm5ZBDDkmSTJo0Kffff3+uv/76vPTSS2lsbMxOO+2Uz3zmMzn66KNXe43XXnstP//5zzNhwoTMnj07nTt3zsiRI3PMMcfk+OOPT3l5eZvnNTY25s4778z48ePzwgsvZNGiRenVq1d22GGHHHzwwTnxxBPTrVu3Ns994okn8rOf/SxPP/10li1blh122CEnnXRSPv3pT6dQKGz4GwMAAAAAAAAAJaToCwAArOQXv/hFLr300vTs2TODBw/OrFmz8vTTT+fpp5/OM888k29961urnHP33Xfnq1/9ahoaGlJTU5MRI0ZkwYIFefzxx/P444/n97//fa666qp06tRppfPmzp2bL3zhC3nqqaeSJP369cvOO++cuXPn5sknn8zjjz+eUaNG5X3ve98q97zlllvyz//8z+nevXsGDRqUGTNm5OWXX853vvOdTJ8+PV/72tc2zRsEAAAAAAAAAJtJWakDAAAA7cvll1+eL3zhC/nf//3f3HzzzXnkkUdy0UUXpaysLL/4xS/y+9//fqX5r732Wr7+9a+noaEhJ554Yv73f/83t9xyS+67775cf/316datW/73f/83V1xxxUrnFYvFnHvuuXnqqacyYMCAjB07No888kh+97vf5f7778+ECRNy4YUXpm/fvm3mvPDCC/O1r30tjz76aG6++eY89thj+cpXvpIkuf766/PGG29smjcIAAAAAAAAADYTRV8AAOigrrzyyowcOXK1v77whS+0ed6+++6bc889NxUVKz4ApFAo5JOf/GQ+/vGPJ0muuuqqleZfe+21qaury4gRI/Kd73wnNTU1rWMf+MAHWnfW/c1vfpPZs2e3jj3wwAOZOHFiqqqqcu2112a//fZb6brdunXLpz71qQwfPrzNnEcffXROPfXUlJeXtx77/Oc/nxEjRqRYLObBBx9cy3cKAAAAAAAAANonRV8AAOigBgwYkL322mu1v3bcccc2zzvllFPWePzll1/OzJkzW48//PDDSZIxY8akUCisct6xxx6bPn36pKGhIY8++mjr8f/5n/9Jkhx66KGrLfOuyac//ek2j++5555JYkdfAAAAAAAAALZ4FaUOAAAAbBonnHBCvvSlL63zeTvttFObx4cOHZqKioo0Njbmtddey4ABA7Jo0aLMmTMnSTJixIg2z6usrMywYcPy9ttvZ/Lkya3HX3755SR/K+auqyFDhrR5vE+fPkmSJUuWrNd1AQAAAAAAAKC9sKMvAACwkr59+7Z5vLy8PD179kzytxLtO8u0qzsvSfr167fK/MWLFydJunXrtl45a2pq2jxeVrbijznFYnG9rgsAAAAAAAAA7YWiLwAAsJLa2to2jzc1NWX+/PlJki5duqz0+5rOS9K66+8753ft2jVJsmjRog3KCwAAAAAAAAAdlaIvAACwkldeeaXN41OmTEljY2OSZPjw4UlW7Mbbslvvyy+/3OZ5jY2NmTx5cpJk2LBhrcdHjhyZJHnqqac2TnAAAAAAAAAA6GAUfQEAgJWMGzdujcdHjBiRAQMGtB4/8MADW8eLxeIq591+++15++23U1lZmQ9+8IOtxw877LAkyf/8z/+0FoEBAAAAAAAAgL9R9AUAAFYyYcKEXHnlla279xaLxfzmN7/J7373uyTJ2WefvdL80047LdXV1Xn55Zfz7W9/O0uXLm0de+yxx3L55ZcnSU466aTW3X+T5MMf/nDe//73p76+Pp/73OcyYcKEla67ePHi3HTTTXnttdc2yesEAAAAAAAAgPauotQBAACATePmm2/Oo48+usY5//Iv/5Jdd911pWNf+9rXcumll+YXv/hFtt9++8yaNStz5sxJknzqU5/KEUccsdL84cOH5/vf/36++tWv5je/+U3Gjx+fYcOGZcGCBXnzzTeTJB/84AdzwQUXrHL/f//3f8/ZZ5+d//u//8uYMWPSr1+/DBgwIG+//XZmzZqVpqamjBs3LsOHD9+QtwIAAAAAAAAAtkiKvgAA0EHNnDkzM2fOXOOcRYsWrXLs5JNPzsCBAzN27Ni8+OKLaWxszO67755Pf/rTOfbYY9u8zhFHHJERI0bk2muvzZ///OdMmjQpnTp1yt57751jjz02xx9/fMrLy1c5r3fv3vnlL3+Z2267LXfeeWcmTZqUF198Mb1798573/veHHLIIRk1atR6vX4AAAAAAAAA2NIVisVisdQhAACA0po2bVoOOeSQJMmkSZNKnAYAAAAAAAAASJKyUgcAAAAAAAAAAAAAAFal6AsAAAAAAAAAAAAA7ZCiLwAAAAAAAAAAAAC0Q4q+AAAAAAAAAAAAANAOFYrFYrHUIQAAAAAAAAAAAACAldnRFwAAAAAAAAAAAADaIUVfAAAAAAAAAAAAAGiHFH0BAAAAAAAAAAAAoB1S9AUAAAAAAAAAAACAdkjRFwAAAAAAAAAAAADaIUVfAAAAAAAAAAAAAGiHFH0BAAAAAAAAAAAAoB1S9AUAAAAAAAAAAACAdkjRFwAAAAAAAAAAAADaIUVfAAAAAAAAAAAAAGiHFH0BAAAAAAAAAAAAoB1S9AUAAAAAAAAAAACAdkjRFwAAAAAAAAAAAADaIUVfAAAAAAAAAAAAAGiHFH0BAAAAAAAAAAAAoB1S9AUAAAAAAAAAAACAdkjRFwAAAAAAAAAAAADaIUVfAAAAAAAAAAAAAGiHFH0BAICSOfnkkzNy5MjccsstpY4CAAAAALBJ3HLLLRk5cmROPvnkVcY25BnpwQcfnJEjR2bChAkbI+ZaGzlyZEaOHJlp06Zt1vsCAGytKkodAAAA2DxGjhy5XudddtllOf744zdyGgAAAACAze8b3/hGbrnllrznPe/Jb37zm7U65//9v/+Xp59+OieeeGIuvfTSTZywdKZNm5Zbb7013bp1y6mnnlrqOAAA/JWiLwAAbCX22muvNo8/+eSTSZIhQ4akd+/eq4z36dNnk2UaMGBAhg4dmm7dum2yewAAAAAAtDj++ONzyy235Omnn85rr72W4cOHr3H+a6+9lqeffjpJcsIJJ2z0PO3pGen06dNz5ZVXZrvttltj0Xfo0KFJksrKys2UDABg66boCwAAW4mbbrqpzeMtO/1+/vOf3+w7915xxRWb9X4AAAAAwNZtn332yQ477JDXX389t956a84///w1zr/55puTJMOHD8+ee+650fNsic9I//CHP5Q6AgDAVqWs1AEAAAAAAAAAADaXlg0Pbr/99jQ1Na12XlNTU+64446VzgEAgM1N0RcAAFitgw8+OCNHjsyECRMyefLkfO1rX8uHPvShjBo1Kl//+tdb5z3xxBO5/PLL8/GPfzz7779/dtttt3zgAx/ImWeemfvvv3+11z/55JMzcuTI3HLLLSsdnzBhQkaOHJmDDz44SXLffffl5JNPzt5775099tgjJ554Yu66665N86IBAAAAgA7tuOOOS3l5eWbPnp1HHnlktfMefvjhzJkzJxUVFTn22GMza9as3HDDDTn99NPzkY98JLvvvnv22muvHH/88bnqqquyePHidc6yumekLSZMmJDTTjste++9d/bcc8+ccMIJ+d3vfrfGay5ZsiS33357vvKVr+Qf/uEf8t73vje77757Dj300Fx00UV5880328wxZsyYJMn06dMzcuTIlX5NmDChdW7LsWnTprV5/4cffjhnnXVWPvCBD2S33XbLBz/4wXzhC1/IY489ttrX6HkwAMDqVZQ6AAAA0P793//9X66++uo0NTVlxx13TI8ePVIoFFrHzznnnMyfPz89e/ZMv379ss0222TmzJl56KGH8tBDD+XMM8/Meeedt173vvLKK/OTn/wkffv2zeDBg/Pmm2/mmWeeyVe+8pXMmzcvn/nMZzbWywQAAAAAtgLbbrttPvjBD+bhhx/OLbfckgMPPLDNeS3l2w996EPp27dvLr/88lx33XXp1KlT+vbtmxEjRmT+/Pl56aWX8vzzz+euu+7KjTfemB49emyUnL/97W/zL//yLykWi+nWrVuGDRuWt956K//8z/+cl19+ebXnTZw4MV/96ldTUVGRPn36ZIcddsiyZcsyY8aM3HTTTRk/fnyuu+667L777q3ntLyWl19+OVVVVdltt91Wuma3bt3WKvN3v/vdjBs3LknSp0+f7Lzzzpk2bVruu+++3HfffTn77LPzj//4j6s93/NgAIBVKfoCAADv6j/+4z/yD//wD7nwwgvTvXv3JMny5ctbx88///y8//3vz/bbb7/SeY8++mjOP//8/OxnP8shhxySPfbYY53uO3v27FxzzTX5wQ9+kKOOOipJ0tjYmO9+97u58cYb88Mf/jDHHntsunbtumEvEAAAAADYqpxwwgl5+OGHc//992fBggWrlHPnzp2bBx54oHVusqLwe9BBB+W9731vysvLW+fOnDkzl1xySe6///788Ic/zCWXXLLB+V577bVcfPHFKRaLOfnkk/PVr341VVVVKRaL+c1vfpOLL754pc0Y3mmHHXbIj3/84+y///7p0qVL6/HFixfn2muvzVVXXZWvf/3rueuuu1qv8S//8i+ZMGFCxowZk379+uWmm25a58y33nprxo0bl/Ly8vzLv/xLTjrppJSVlaWpqSnjxo3L5Zdfnquvvjo777xzDj/88FXO9zwYAKBtZaUOAAAAtH9Dhw7N5Zdf3lryTZJOnTq1fn3iiSeuUvJNkg984AP5p3/6pyQrHvKuq4aGhnz+859vfaibJBUVFfn617+e3r17Z+nSpSt9ZBwAAAAAwNo4+OCD06tXr9TX12f8+PGrjN95551paGhI37598+EPfzhJst9++2XfffddqeSbJAMGDMi//du/pbKyMnfeeWeampo2ON+1116bhoaG7LrrrvnWt76VqqqqJEmhUMhJJ52UE044IY2NjW2eO2zYsBx22GErlXyTpGvXrjn33HOz11575bXXXsszzzyzwTnf6aqrrkqSnHTSSfnkJz+ZsrIVlZTy8vJ89rOfbX3O+9Of/rTN8z0PBgBomx19AQCAd3XsscemomLNf3x49dVX84c//CGTJk3K/PnzWx8yL168OEny4osvrte9P/WpT61yrLq6OrvuumseeeSRvPHGG+t1XQAAAABg61VVVZWjjjoq48aNyy233JJPf/rTK43fcsstSZKjjz56pWejixcvzt13352nnnoqs2fPzrJly1IsFpOsKOEuXbo0U6dOzfDhwzco38MPP5wk+cxnPtPm+CmnnJLf/OY3qz2/qakpDzzwQB577LG8+eabWbJkSZqbm5Mkr7/+epLkhRdeyHve854Nytnitddea31W+9nPfrbNOaeffnruuOOOvPzyy5kxY0YGDhy4yhzPgwEAVqXoCwAAvKuddtppjeM/+MEP8vOf/7z1gXZb5s+fv8737dWrV3r27NnmWJ8+fZIkS5YsWefrAgAAAACccMIJGTduXJ577rm88sorrc9BX3jhhbz00kutc1o8/vjjOffcc/P222+v8brr8yz0nRYtWpQ5c+YkWf2z2aFDh6aioqLNXX1nz56dz3/+83nhhRc2ac53mjJlSpIVnwQ3ePDgNufsuOOOKS8vT1NTUyZPnrxK0dfzYACAtpWVOgAAAND+de7cebVjd911V6655poUCoV88YtfzO23356//OUvefHFFzNp0qSMHTs2SVb7MXJrUlNTs9qxlo99W1O5GAAAAABgdXbeeeeMGjUqyd928H3n1+95z3uy4447Jlmxk++Xv/zlvP3229lvv/1y/fXX59FHH81zzz2XSZMmZdKkSRkwYECS9XsW+k7vLLO2FFz/Xnl5+WpLsd/4xjfywgsvZPvtt8+//du/5YEHHsizzz7bmvOYY47ZKDnbyry6vElSUVGRXr16rTT/nTwPBgBomx19AQCADdLy0PvUU0/Nl770pVXGN+auEAAAAAAAG9MJJ5yQ559/PnfccUfOO++8NDc3584772wda/HQQw9l7ty5GTBgQP7zP/8znTp1Wuk6xWIxCxYs2CiZunTp0vr122+/ne22226VOU1NTW0+e50zZ04eeeSRJMnVV1/d5o7Am+KZbUvmNe123NjYmHnz5q00HwCAd2dHXwAAYINMmzYtSbLPPvu0Of70009vzjgAAAAAAGvtyCOPTHV1dWpra/Pwww/n/vvvz/z589O5c+d87GMfa53X8hx09OjRq5R8k+Tll1/O0qVLN0qmbt26pV+/fkmSV199tc05U6ZMaXNH3pacPXv2bLPk29jYmOeee67NaxYKhfWNnGHDhiVJli9fnjfeeKPNOa+++mqampqSJMOHD1/vewEAbG0UfQEAgA3SuXPnJCt2ivh7c+fOza233rq5IwEAAAAArJUePXrkIx/5SJLk1ltvbf0Es0MPPTRdu3ZtnddS7m3rOWiSXHvttRs11wEHHJAk+eUvf9nm+Lhx49o83vK8dvHixVm2bNkq47fddttqd91teY1tnfduhg0blh122CFJcv3117c5p+X4iBEjMmDAgHW+BwDA1krRFwAA2CAtO/n+13/9V6ZMmdJ6/M0338znP//59XooDAAAAACwuZxwwglJkgceeCCPPPLISsdatDwHfeqpp/LrX/+69Xh9fX1+9KMf5c4770xlZeVGy3TaaaelsrIyzz//fC677LLU19cnSYrFYn7729/md7/7XSoqKlY5b8cdd0yvXr3S2NiYSy65JHV1da1jf/jDH3LppZemurq6zXsOHjw4hUIhc+fOzUsvvbTOmc8+++wkya9//ev86le/SrFYTJI0NzfnhhtuyO23354kOeecc9b52gAAW7NV/18fAADAOvjc5z6X3//+95k+fXqOPPLIDBkyJGVlZXn11VfTtWvXfO1rX8sll1xS6pgAAAAAAG3ab7/9MnDgwMyYMSPJisLrvvvuu9KcXXfdNcccc0xuv/32fPvb386VV16ZbbbZJq+//noWLVqUf/zHf8xvf/vbTJ8+faNk2mmnnfKtb30rF110UcaOHZtbbrklO+ywQ956663Mnj07p5xySu69995V7ldRUZHzzz8///zP/5xbbrklf/zjHzN48ODU1tbmrbfeyv7775/evXvnjjvuWOWePXv2zIc//OE88MAD+fjHP56ddtqpdVfjb37zm9lll13WmPm4447LCy+8kHHjxuXCCy/MT37ykwwYMCDTp0/P3LlzkyRnnXVWDj/88I3yHgEAbC3s6AsAAGyQbbfdNr/+9a9z1FFHpXv37q0Pto899tjceuut2XHHHUsdEQAAtmqvvvpqTjnllLznPe/J/vvvn//4j/9IU1NTqWMBALQbZWVlOe6441q/P+6441IoFFaZd9lll+X888/P0KFDM2/evLz55pvZdddd89Of/rR1N9uN6ROf+ESuv/76fOADH0hTU1Nee+21bLPNNrn00kvzzW9+c7XnffzjH89Pf/rT7LnnnmloaMiUKVPSq1evfPWrX81//dd/pby8fLXnXn755fnMZz6T/v3755VXXsnEiRMzceLELFy4cK0y//M//3N+9rOf5aCDDkpzc3NefPHFFAqFHHLIIRk7dmz+6Z/+aZ3fBwCArV2h2PJZCQAAAAAAQIeyYMGCfOxjH8uOO+6YM844I2+88UYuv/zynHLKKUoWAAAAALAFqCh1AAAAAAAAYNP41a9+lbq6ulx55ZXp2rVrPvjBD2bx4sW58sorc8YZZ7R+FDMAAAAA0D6VlToAAAAAAACwaTz88MPZf//9Vyr0fuxjH8vy5cszceLEEiYDAAAAANaGHX0BAAAAANjonn/++Tz66KN59tln89xzz2X69OlJkvvuuy+DBg1aq2tMmDAhY8aMedd573vf+zJu3Lg1zikWiznllFMyYcKEJMndd9+d4cOHr1WOTWF935/6+vpcf/31ueOOO/Lmm2+mpqYme++9d84+++yMGjVqlfmTJ0/O+9///pWODRw4MJ07d87kyZNz8MEHb9wXBgAAAABsVIq+AAAAAABsdD/96U9z3333bdA1+vbtm+OOO26143/84x+zePHi7Lvvvu96rV//+teZMGFCCoVCisXiBuXaGNbn/amvr8/pp5+eiRMnpk+fPjnooIMyZ86c/PGPf8yDDz6Yq6++OgcccMBK5yxcuDDdunVb5Vrdu3fPwoULN+g1AAAAAACbnqIvAAAAAAAb3R577JERI0Zkt912y+jRo3P88centrZ2na4xfPjwfP/7329zbObMmbn99ttTKBRyzDHHrPE6s2bNyr/+67/mgAMOyOTJk1t3zy2l9Xl/rrnmmkycODGjR4/O2LFj07Vr1yTJ+PHjc9555+WCCy7Ivffe23ocAAAAANjyKfoCAAAAALDRnXnmmZv0+rfffnuam5uzzz77ZPvtt1/j3G9/+9tpbm7OxRdfnJNPPnmd7/XKK6/kiSeeyCc/+ck1zrvuuuty6KGHZtCgQe96zXV9fxobGzNu3LgkyYUXXrhSmffII4/MHXfckYceeig333xzTjnllNax7t27Z/Hixatcb+HChenevfs6ZQAAAAAANj9FX7YoTz31VIrFYiorK0sdBQAAAAC2eA0NDSkUCtlzzz1LHWWd3XbbbUmSY4899l3nPfTQQ/nGN76R7bbbbp3vUywWc/755+ell15KQ0NDxowZ0+a8H/3oR7n66qvz8MMPZ+zYset8n3fz5JNPZv78+Rk0aFBGjx69yvgRRxyRhx56KPfdd99KRd9hw4Zl8uTJK82dOXNmli1blmHDhq31/T2bBQAAAICNZ12ezZZthjyw0RSLxRSLxVLH2GSKxWLq6+s79GuELYk1Ce2H9QjtizUJ7Yf1CO3Llrgmt9TnbU8//XSmTJmSzp075/DDD1/tvNra2lx22WUZPXr0agu676ZQKOSHP/xh+vTpk+9+97v5xS9+scqclpLvoEGD8r3vfW+97vNuXnzxxSTJqFGj2hzfddddkySTJk1a6fiHPvShPPLIIyvt6nv33XenU6dO2Xfffdf6/lvq/1bWxZa4hqGjsh6hfbEmof2wHqF9sSah/dgS1+O6PG+zoy9blJbdItrasaIjWLp0aV588cXsuOOOqampKXUc2OpZk9B+WI/QvliT0H5Yj9C+bIlr8tlnny11hPXSspvvRz/60XTt2nW18y655JIsXrw4l156acrK1n/fix133DE33HBDxowZk0svvTSFQiGf+cxnkvyt5Lvddttl3LhxGThw4HrfZ01mzJiRJOnfv3+b4y3H58+fnyVLlqRLly5Jkk984hP5xS9+kS996Us544wz8uabb+bKK6/Mqaeeusb37u919GezyZa5hqGjsh6hfbEmof2wHqF9sSah/dgS1+O6PJtV9AUAAAAAYItRX1+fu+++O0ly3HHHrXbePffck3vuuSdnnnlmdt555w2+70477ZSxY8fmlFNOyXe+850kK3YMfmfJd7vtttvg+6zO0qVLkySdO3duc/ydf4HxzqJvjx49Mnbs2FxyySU566yz0r1795xyyin50pe+tMmyAgAAAAAbj6IvAAAAAABbjAceeCDz589P//798/73v7/NOfPnz88ll1ySHXbYIV/84hc32r1Hjhy5Stl34MCBueGGGzJo0KCNdp+Nbccdd8y4ceNKHQMAAAAAWA/r/1llAAAAAACwmd12221JkmOOOSZlZW0/4r7ssstSW1ubiy++ONXV1Rv1/jvvvHMOPfTQ1u+PPfbYbL/99hv1Hm1p2bF32bJlbY637PibpHU3XwAAAABgy2dHXwAAAAAAtghz587Nn/70pyQrCrarc99996W6ujpXXXVVrrrqqpXG5syZkyT52te+ls6dO+fTn/50Dj/88LXO8B//8R/5zW9+k+222y7Lli3LVVddlb59++bTn/70ur+gdTBw4MAkyaxZs9ocbznes2dPRV8AAAAA6EAUfQEAAAAA2CKMHz8+DQ0N2WOPPTJs2LA1zq2rq8vEiRNXO/7ss88mSQ455JC1vv+Pf/zjXHXVVdluu+0ybty4LFmyJKeeemouueSSJNmkZd9ddtklSfL888+3Of7CCy8kSUaOHLnJMgAAAAAAm5+iLwAAAAAAW4TbbrstyZp3802SJ554YrVjBx98cKZPn5677747w4cPX+t7X3nllfnpT3/aWvIdNGhQkmTs2LE59dRT853vfCeFQiGf+tSn1vqa62KvvfZKz549M23atDz77LMZPXr0SuN33313knUrLgMAAAAA7V9ZqQMAAAAAAECSfPWrX83hhx+eX/7yl6uMvfLKK3n++edTVVWVI444YrPm+ulPf5qf/OQn2W677XLDDTe0lnyTFTvojh07Nr169coll1ySG2+8cZNkqKioyJgxY5IkF198cRYvXtw6Nn78+Dz00EPp1atXTjjhhE1yfwAAAACgNOzoCwAAAADARvfggw/mqquuav1+wYIFSZIvfvGLqaqqSpIceOCBOeecc1rnzJw5M1OmTMm8efNWud6tt96aZMWOvD169NiU0VdSLBYzZcqUDBw4MDfccEO23377Vea0lH1PPfXUTJkyZa2uuz7vzxlnnJE///nPmThxYg499NDss88+qa2tzRNPPJHKyspcccUV6dq164a8XAAAAACgnVH0BQAAAABopxoaGtLU1LRWc8vLy1NZWbmJE629uXPn5umnn17l+Isvvtj69bBhw9bqWk1NTbnzzjuTJMcdd9zGCbiWCoVCLr/88tTW1mbbbbdd7byRI0fm1ltvTf/+/dfquuvz/lRVVeXaa6/NddddlzvuuCP3339/ampqcsghh+Scc87JqFGj1vJVAQAAAADvZm2fz5aVlaWysjKFQmGT5FD0BQAAAABoZxYuXJja2trU1dWt03nV1dXp27dvunfvvomSrb3jjz8+xx9//Dqd84tf/KLN4+Xl5fnTn/60MWLl/vvvX+dzysvL11jybbG2Jd9k/d6fZEXZ96yzzspZZ521zucCAAAAAO9ufZ7PlpeXp6amJttss03rJ3ZtLIq+AAAAAADtyMKFCzN9+vR07do1ffv2XaudIIrFYhoaGrJgwYJMnz49SdpF2RcAAAAAYEuyrs9ni8VimpqasmzZsixYsCBTp07NoEGDUlNTs9EyKfoCAAAAALQjtbW16dq1awYNGrROH/XWuXPndOvWLdOmTUttba2iLwAAAADAOlrf57Ndu3ZN79698/rrr6e2tjaDBw/eaJnKNtqVAAAAAADYIA0NDamrq0uPHj3W6SFyi0KhkB49eqSuri4NDQ2bICEAAAAAQMe0oc9ny8vL07t37yxZsiSNjY0bLZeiLwAAAABAO9HU1JQkqaysXO9rtJzbci0AAAAAAN7dxng+W11dnSSKvgAAAAAAHdn67BaxMc4FAAAAANjatbfns4q+AAAAAAAAAAAAANAOKfoCAAAAAAAAAAAAQDuk6AsAAAAAAAAAAAAA7ZCiLwAAAAAAAAAAAAC0Q4q+AAAAAAAAAAAAANAOKfpCOzJ15qL86fmFaWxsLnUUAAAAAICtRkNjU+58ZGpmzq0vdRQAAAAAWImiL7Qjv7731dz39MI8/drbpY4CAAAAQAkVi8WSnAtbqxenzs0v73klf3hyfqmjAAAAAFBi7e35rKIvtCMtS3zRkoaS5gAAAACgNMrKVjyybWpqWu9rtJzbci3g3XWqqkiSzF20/msPAAAAgC1be30+60kvtCOdqsqTJMvrG0ucBAAAAIBSqKysTHl5eZYtW7be11i2bFnKy8tTWVm5EZNBx9avZ+ckyeLlTWlqai5xGgAAAABKYWM8n120aFEqKys36vNZRV9oR/5W9LVrBAAAAMDWqFAopKamJgsWLFivXSOampqyYMGC1NTUpFAobIKE0DH16Fqd8vJCisVk3qK6UscBAAAAoAQ29PnssmXLsnDhwnTr1m2jPp+t2GhXAjaYoi8AAAAA22yzTaZOnZrXX389vXv3TnV19bs+FC4Wi6mrq8vcuXPT3NycbbbZZjOlhY6hrKyQPt07Zfa8ZaldUJfBA0udCAAAAIBSWNfns8ViMU1NTVm0aFEWLlyY6urq9O3bd6NmUvSFdqRa0RcAAABgq1dVVZVBgwaltrY2M2fOXKdzu3Tpkv79+6eqqmoTpYOOq0+P6syetyxvL1he6igAAAAAlMj6Pp+trKxMz54907dv35SXl2/UTIq+0I50qlqxJOsUfQEAAAC2ajU1NRk8eHAaGxvT2Ni4VudUVFSkosIjX1hffXt0TjI/by9U9AUAAADYmq3r89mysrJUVla+6yezrS9PfaEd6dS6o+/a/eUNAAAAAB2b8i5sPn16VCdJaucr+gIAAADQfp7PlpU6APA3fyv62tEXAAAAAGBz6tOjU5Lk7QWKvgAAAAC0H4q+0I4o+gIAAAAAlEZr0Xehoi8AAAAA7YeiL7Qj1Yq+AAAAAAAl0ae7HX0BAAAAaH8UfaEdad3Rt07RFwAAAABgc+r71x19Fy5pSH2DZ7QAAAAAtA+KvtCOdKqqSJLUeYgMAAAAALBZdelckcryQpKkdsGyEqcBAAAAgBUUfaEdad3Rt76xxEkAAAAAALYuhUIhPbqseEY7Z56iLwAAAADtg6IvtCOdqluKvnb0BQAAAADY3LrXrHhGWztf0RcAAACA9kHRF9qR6soVD5GbmoppaGwucRoAAAAAgK1LD0VfAAAAANoZRV9oR6qrylu/Xl7fWMIkAAAAAABbn5Ydfeco+gIAAADQTij6QjtSUV6W8r+uyuV1TaUNAwAAAACwlenRpSKJHX0BAAAAaD8UfaGdqapcsSzt6AsAAAAAsHm17Oir6AsAAABAe6HoC+1MVUUhSbKsTtEXAAAAAGBz6qHoCwAAAEA7U1HqAGwdfv/73+f222/P888/n8WLF2fo0KE57bTTcuSRR5Y6WrvTUvS1oy8AAAAAwObVsqPvkuWNWbq8ITWdKkucCAAAAICtnaIvm8XYsWMzaNCgfOMb30ivXr3y8MMP57zzzsu8efNy8sknlzpeu9Ja9K1rKnESAAAAAICtS3VlWbp0rsiSZY2ZM39Zduiv6AsAAABAaSn6sllcffXV6d27d+v3++23X2bPnp3rr79e0ffvVFWUJbGjLwAAAABAKfTp3ilLli1O7fxl2aF/91LHAQAAAGArV1bqAGwd3lnybbHLLrtk9uzZJUjTvrXs6LvMjr4AAAAAAJtd3x6dkiS185eVOAkAAAAAdPAdfZ9//vk8+uijefbZZ/Pcc89l+vTpSZL77rsvgwYNWufrff3rX8+tt9662vGTTjopl1xyyXrn3VDr+3rr6+tz/fXX54477sibb76Zmpqa7L333jn77LMzatSoTZb3//7v/zJ06NBNdv0tVUvR146+AAAAAACbX5+/Fn3nKPoCAAAA0A506KLvT3/609x3330b/br7779/+vXrt8rxPffcc6Pfa12sz+utr6/P6aefnokTJ6ZPnz456KCDMmfOnPzxj3/Mgw8+mKuvvjoHHHDARs/62GOP5d577833vve9jX7tLV1lxYqNtpfXKfoCAAAAAGxufezoCwAAAEA70qGLvnvssUdGjBiR3XbbLaNHj87xxx+f2traDb7umWeemfe9730bIeHGtT6v95prrsnEiRMzevTojB07Nl27dk2SjB8/Puedd14uuOCC3Hvvva3Hk2TRokWZPXv2u+YZPnx4m8enTZuW8847L4ccckiOP/74dXiFW4eWHX2XKfoCAAAAAGx2fXpUJ1H0BQAAAKB96NBF3zPPPLPUEVbrlVdeyRNPPJFPfvKTa5x33XXX5dBDD82gQYPe9Zrr+nobGxszbty4JMmFF164Upn3yCOPzB133JGHHnooN998c0455ZTWsT/84Q/51re+9a7XnzRp0irH5s+fnzPOOCMDBw7MD37wg3XKu7WoqlxR9K2rbypxEgAAAACArU/fv+7oO2eeoi8AAAAApdehi77tVbFYzPnnn5+XXnopDQ0NGTNmTJvzfvSjH+Xqq6/Oww8/nLFjx270HE8++WTmz5+fQYMGZfTo0auMH3HEEXnooYdy3333rVT0PfHEE3PiiSeu8/2WLVuWs846Kw0NDfmv//qvdO7ceYPyd1RVFWVJkmX1dvQFAAAAANjc+vy16Fs7f1mKxWIKhUKJEwEAAACwNVP0XQ9//OMf88c//jH19fUZMGBAPvjBD2b33Xdf6/MLhUJ++MMfZsyYMfnud7+bQqGQk08+eaU5LSXfQYMG5Xvf+97GfglJkhdffDFJMmrUqDbHd9111yRt78y7rhobG3Puuedm6tSp+dWvfpU+ffps8DU7qqqKFQ+Nl9fZ0RcAAAAAYHPr3X1F0be+sTkLl9SnR9fqEicCAAAAYGum6LsefvGLX6z0/Y9+9KMceOCBueKKK9KzZ8+1usaOO+6YG264IWPGjMmll16aQqGQz3zmM63Xu/rqq7Pddttl3Lhx/5+9+4+rur7//38/HDicg6j8HHrAfqCJv1hmWVo6lzbn+qm0trUSWKVfmlbb22rvfeZnJWalq00N4b1PpaCtVctZzrfN+WNiyx/MUkMk06ClgslRAcEDhx/n+wdyikDlp69z4Ha9XLpc4PXj+bq/TvHPc/c9jux2e2e/giSpqKhIktSvX78WzzceLy0tVWVlpXr16tXuZ82bN0/Z2dn6zW9+o9LSUu3du9dzbtiwYbJYLO1eu7tpLPoy0RcAAAAAAAAALr0Afz+F9A5U6ZlqOUqdFH0BAAAAAABgKIq+bTBkyBA99dRTGjNmjPr3769Tp04pJydHv//975Wdna2UlBS9/vrr8vPza9V6V111lTIzM5WUlKT58+dLkhwOR5OSb3R0dJe9z9mzZyVJNputxfNBQUGenzta9P3ggw8kSQsWLGh2bvPmzYqJiWn32t3NVxN9KfoCAAAAAAAAgBEiQmyeou/AmBCj4wAAAAAAAKAHo+jbBsnJyU1+j46O1rRp03TjjTfqzjvv1J49e7Rhwwb94Ac/aPWacXFxzcq+drtdWVlZ3ar8umXLFqMj+AyLf0NRvMpVZ3ASAAAAAAAAAOiZIkNsOnykVI5Sp9FRAAAAAAAA0MO1bvQsLigqKkoJCQmSpG3btrX5/iFDhmjy5Mme36dOnaoBAwZ0Wr7zaZzY63S2vFHZOPFXUoem+aJtLAFM9AUAAAAAAADQeQ4fPqykpCRdffXVGjdunJYsWaK6OgYNXEhESMM34ZVQ9AUAAAAAAIDBmOjbSa644gpJ0okTJ9p875IlS/TWW28pOjpaTqdT6enpioiI0H333dfJKZuy2+2SpOPHj7d4vvF4SEgIRd9LyOJ/rujrougLAAAAAAAAoGPKysqUnJysQYMGKT09XV988YUWLlyo+vp6/fKXvzQ6nteKpOgLAAAAAAAAL0HRt5OUlZVJkmw2W5vuW7p0qdLT0xUdHa2VK1eqsrJSycnJSk1NlaQuLfsOHTpUkpSXl9fi+QMHDkiS4uLiuiwDmgvwbxi07axmogYAAAAAAACAjnnjjTdUXV2ttLQ0BQcH66abblJFRYXS0tI0Y8YMBQcHGx3RKzVO9HVQ9AUAAAAAAIDB/IwO0B243W794x//kCSNGDGi1felpaVp2bJlnpJvTEyM4uLilJmZqbCwMM2fP1+vv/56V8XWqFGjFBISoqNHjyo3N7fZ+fXr10uSJk2a1GUZ0NzXJ/q63W6D0wAAAAAAAADwZdu2bdO4ceOaFHpvu+02VVVVKScnx8Bk3i2Soi8AAAAAAAC8BBN9v+HJJ5/Uxx9/rPvvv1/333+/5/iBAwf02Wef6fvf/74sFovneEVFhZ577jnl5uYqKChId999d6ues2zZMr300kuKjo5WVlaWYmJiPOcay75fn+z705/+tJPe8Cv+/v5KTEzU0qVLNW/ePGVmZno2e9etW6fs7GyFhoa2+p3QORqLvm635KqtV2CA2eBEAAAAAAAAQNvl5eVp+/btys3N1f79+3Xs2DFJ0ubNm5vsh17Irl27lJiYeNHrbrjhBq1cudLze01NjXbt2qWtW7dq165dOnLkiOrq6tSvXz+NGzdODz30kKKjo9v3Yp2kvZ+Py+XSihUrtHbtWh05ckRBQUG67rrr9PDDD2v48OHNri8oKNCYMWOaHLPb7bLZbCooKNDEiRM798W6icaJvifLqlRX75bZz2RwIgAAAAAAAPRU3brou3XrVqWnp3t+LysrkyTNnj3bU9adMGGCZs2a5bmmuLhYhYWFOn36dJO1ioqK9Pjjj2v+/PkaMWKEQkND5XA4lJ+fr7KyMgUFBWnx4sWKjIy8aC63263CwkLZ7XZlZWVpwIABza75etm3sLCwy953xowZ2rlzp3JycjR58mSNHj1aDodDu3fvVkBAgBYtWsRXt11iAf5fbRhXVddS9AUAAAAAAIBPWrZsmTZv3tyhNSIiIjRt2rTznt+4caMqKip0/fXXNzn+73//Ww8++KAkqX///rrpppskSR9//LFef/11rV27Vq+88oquueaaDuXriPZ8Pi6XSw8++KBycnIUHh6um2++WSUlJdq4caO2bt2qjIwMjR8/vsk95eXl6t27d7O1+vTpo/Ly8g69Q3cW2scqPz+T6urdKj1TpfC+NqMjAQAAAAAAoIfq1kXfU6dOad++fc2O5+fne36OjY1t1VpxcXGaPn26cnNz9emnn6q0tFQBAQGKjo7W1KlTlZiY2OopFCaTSQsXLpTD4VBUVNQFn7lmzRr169evVeu2530tFoteffVVLV++XGvXrtWWLVsUFBSkSZMmadasWS1OgEDX8jOZFGgxq9pVJ2d1rfoGBxodCQAAAAAAAGizkSNHavDgwRoxYoTi4+OVkJAgh8PRpjUGDhyo559/vsVzxcXFevfdd2UymXTXXXc1OWcymfT9739fP/vZz5qUeaurq/X000/rr3/9q+bMmaMNGzYoICCg7S/XCdrz+bz88svKyclRfHx8s29omzNnjp544glt2rSJ4Q2dwOxnUlgfqxylTjlKnRR9AQAAAAAAYJhuXfRNSEhQQkJCm+5ZtWpVi8cHDBiguXPndkYsSZLZbL5gybdRa0u+UvveV2oo+6akpCglJaXN96JrWAMair5VrjqjowAAAAAAAADtMnPmzC5d/91331V9fb1Gjx7d7FvTxo4dq7Fjxza7JzAwUE899ZQ2btyoY8eOac+ePc2mAbfk0KFD2r17t+69994LXrd8+XJNnjy5VUMh2vr51NbWauXKlZKkp556qkmZ9/bbb9fatWuVnZ2t1atXKykpyXOuT58+qqioaLZeeXm5+vTp06YMPU1kiE2OUqdKSp2Ku9zoNAAAAAAAAOip/IwOAKA5q8UsSaqqrjU4CQAAAAAAAOCd3nnnHUnS1KlT23Sf1WrVFVdcIUk6ceLERa93u916/PHH9fTTT3uKti1ZvHixFi5c2KkDI77uo48+UmlpqWJiYhQfH9/s/K233ipJ2rx5c5PjsbGxKigoaHKsuLhYTqez1d9411NFhjRM8XWUOg1OAgAAAAAAgJ6Moi/ghQLPFX2dFH0BAAAAAACAZvbt26fCwkLZbDZNmTKlTffW1dXp2LFjkqSIiIiLXm8ymfTiiy8qPDxcCxYsaPFb4RYvXqyMjAzFxMTo2WefbVOe1srPz5ckDR8+vMXzw4YNkyQdPHiwyfHvfOc7+te//tVkqu/69etltVpbNc24J4s4V/QtoegLAAAAAAAAA1H0BbyQNfDcRF9XncFJAAAAAAAAAO/TOM33e9/7noKDg9t077vvvqtTp04pLCxMo0aNatU9gwYNUlZWlsLCwvTMM8/otdde85xrLPlGR0dr5cqVstvtbcrTWkVFRZKkfv36tXi+8XhpaakqKys9x3/yk5/IYrHokUce0fbt2/Xmm28qLS1NycnJbf7sepoIJvoCAAAAAADAC/gbHQBAc1ZLw59mlYuJvgAAAAAAAMDXuVwurV+/XpI0bdq0Nt179OhRLVy4UJL0y1/+UhaLpdX3XnXVVcrMzFRSUpLmz58vSXI4HE1KvtHR0W3K0xZnz56VJNlsthbPBwUFeX6urKxUr169JEl9+/ZVZmamUlNTlZKSoj59+igpKUmPPPJIl2XtLij6AgAAAAAAwBtQ9AW8UGDAuYm+1RR9AQAAAAAAgK/75z//qdLSUvXr109jxoxp9X0VFRX6+c9/rtLSUk2ZMkU/+tGP2vzsuLi4ZmVfu92urKwsxcTEtHm9S2XQoEFauXKl0TF8TiRFXwAAAAAAAHgBP6MDAGjOamko+jqr6wxOAgAAAAAAAHiXd955R5J01113yc+vdVvc1dXVevjhh3Xw4EGNHTtWv/vd79r9/CFDhmjy5Mme36dOnaoBAwa0e73WapzY63S2XDptnPgryTPNFx3TONH39Jlq1dTWG5wGAAAAAAAAPRVFX8ALWQPPTfR1MdEXAAAAAAAAaHTq1Cm9//77khoKtq1RU1OjRx55RDk5ORo5cqTS09NlsVjanWHJkiV66623FB0drbCwMKWnp+tPf/pTu9drLbvdLkk6fvx4i+cbj4eEhFD07SR9gy0K8PeT2y2dLGOqLwAAAAAAAIxB0RfwQo0TfatcTPQFAAAAAAAAGq1bt041NTUaOXKkYmNjL3p9fX29nnjiCWVnZ2vIkCH6f//v/3km47bH0qVLlZ6erujoaK1cuVKZmZkKCwtTampql5d9hw4dKknKy8tr8fyBAwckSXFxcV2aoycxmUyeqb6OUoq+AAAAAAAAMAZFX8ALeYq+1Uz0BQAAAAAAABq98847klo3zdftdmvu3Ll67733dOWVV2r58uXq27dvu5+dlpamZcuWeUq+MTExiouL85R958+fr9dff73d61/MqFGjFBISoqNHjyo3N7fZ+fXr10uSJk2a1GUZeqJIir4AAAAAAAAwGEVfwAtZLf6SJKeLoi8AAAAAAAB6jieffFJTpkzRa6+91uzcoUOHlJeXJ4vFoltvvfWiaz3//PNavXq1YmJilJWVpfDw8HbnWrZsmV566SVFR0crKytLMTExnnONZd/Q0FClpqZ2WdnX399fiYmJkqR58+apoqLCc27dunXKzs5WaGio7r777i55fk/VONG3hKIvAAAAAAAADOJvdAAAzQUy0RcAAAAAAAA+buvWrUpPT/f8XlZWJkmaPXu2LBaLJGnChAmaNWuW55ri4mIVFhbq9OnTzdZbs2aNJGnixIkXncy7adMmZWZmSpKio6P1hz/8ocXrbrnlFt1yyy0XXMvtdquwsFB2u11ZWVkaMGBAs2say77JyckqLCy84HqN2vP5zJgxQzt37lROTo4mT56s0aNHy+FwaPfu3QoICNCiRYsUHBzcquejdSKY6AsAAAAAAACDUfQFvJDVU/StMzgJAAAAAAAA0D6nTp3Svn37mh3Pz8/3/BwbG9uqterq6vS3v/1NkjRt2rSLXl9eXu75edeuXee9Ljo6+qJFX5PJpIULF8rhcCgqKuq818XFxWnNmjXq16/fRfNJ7ft8LBaLXn31VS1fvlxr167Vli1bFBQUpEmTJmnWrFkaPnx4q56N1vuq6FtlcBIAAAAAAAD0VBR9AS/kKfq6mOgLAAAAAAAA35SQkKCEhIQ23bNq1aoWj5vNZr3//vtd+uwLMZvNFyz5NmptyVdqf0aLxaKUlBSlpKS0+V60XSQTfQEAAAAAAGAwP6MDAGjuq6IvE30BAAAAAAAAwCiNE31LSs8anAQAAAAAAAA9FUVfwAtZLQ3Dtp3VTPQFAAAAAAAAAKM0TvQ9c7aGb2ADAAAAAACAISj6Al4o0DPRl41jAAAAAAAAADBKL1uAbIENgxkcpU6D0wAAAAAAAKAnougLeCHruaKvs7rO4CQAAAAAAAAA0LNFnJvqS9EXAAAAAAAARqDoC3ihxqKvq6ZOdfVug9MAAAAAAAAAQM8VSdEXAAAAAAAABqLoC3ihxqKvJFW7ag1MAgAAAAAAAAA9W+NE35LSKoOTAAAAAAAAoCei6At4oQB/P/n5mSRJVa46g9MAAAAAAAAAQM/lKfqePmtwEgAAAAAAAPREFH0BL2QymTxTfauqmegLAAAAAAAAAEaJDLFKkhylToOTAAAAAAAAoCei6At4KavFX5LkpOgLAAAAAAAAAIaJDAmSJDnKKPoCAAAAAADg0qPoC3gpW+C5ib6uOoOTAAAAAAAAAEDPFRFqk9Qw0dftdhucBgAAAAAAAD0NRV/AS1kDGyb6VrmY6AsAAAAAAAAARgnva5UkOavrVFnFfi0AAAAAAAAuLYq+gJeyWs4VfauZ6AsAAAAAAAAARrFa/NU7yCKpYaovAAAAAAAAcClR9AW8lNViliQ5q5kQAQAAAAAAAABGigyxSaLoCwAAAAAAgEuPoi/gpayB5yb6uij6AgAAAAAAAICRIs4VfUtOnzU4CQAAAAAAAHoair6Al7JZGou+dQYnAQAAAAAAAICeLSLEKkkqYaIvAAAAAAAALjGKvoCXsgaaJUlV1Uz0BQAAAAAAAAAjRYYGSZIcFH0BAAAAAABwiVH0BbyULbBhoq/TRdEXAAAAAAAAAIwUEWKTJDlKqwxOAgAAAAAAgJ6Goi/gpQItjRN96wxOAgAAAAAAAAA9W6Sn6MtEXwAAAAAAAFxaFH0BL2WzNEz0rapmoi8AAAAAAAAAGMkz0bfMKbfbbXAaAAAAAAAA9CQUfQEvZQ1sKPo6XRR9AQAAAAAAAMBI4X2tMpmkmtp6lVW4jI4DAAAAAACAHoSiL+ClGif6VrvqDE4CAAAAAAAAAD2bv9lPob0DJUklpWcNTgMAAAAAAICehKIv4KWsgWZJkrOaib4AAAAAAAAAYLSIEJskyVHqNDgJAAAAAAAAehKKvoCXsp6b6FvlougLAAAAAAAAAEZrLPqWUPQFAAAAAADAJUTRF/BSX030rTM4CQAAAAAAAAAgMiRIkuQorTI4CQAAAAAAAHoSir6Al/JM9K1moi8AAAAAAAAAGK1xoq+Dib4AAAAAAAC4hCj6Al7KFniu6Otioi8AAAAAAAAAGC2Soi8AAAAAAAAMQNEX8FLWc0Xf2rp61dTWG5wGAAAAAAAAAHq2iBCrJKmEoi8AAAAAAAAuIYq+gJeyWsyen6tdtQYmAQAAAAAAAABEnJvoe6rMqbo6hjMAAAAAAADg0qDoC3gpf7Of/M0Nf6LO6jqD0wAAAAAAAABAzxbS2yqzn0n1bulUebXRcQAAAAAAANBDUPQFvJgtsGGqbxUTfQEAAAAAAADAUGY/k8L7WiVJjlKnwWkAAAAAAADQU1D0BbyYNdBfEkVfAAAAAAAAAPAGkaFBkij6AgAAAAAA4NKh6At4MavlXNG3us7gJAAAAAAAAACAiL42SVIJRV8AAAAAAABcIhR9AS9mtZglSU4m+gIAAAAAAACA4SJCrJIkRxlFXwAAAAAAAFwaFH0BL2YLbJzoS9EXAAAAAAAAAIwWGXJuou/pswYnAQAAAAAAQE9B0RfwYlZLQ9HXWV1ncBIAAAAAAAAAQMS5oq+jlIm+AAAAAAAAuDQo+gJezBpoliRVu5joCwAAAAAAAABG+6roW2VwEgAAAAAAAPQUFH0BL2YLPDfRl6IvAAAAAAAAABiusehbWlGtmlq+iQ0AAAAAAABdj6Iv4MUCLQ0Tfauq2TAGAAAAAAAAAKP16WWRJaBh35apvgAAAAAAALgUKPoCXsxmaZjoW1XNRF8AAAAAAAAAMJrJZFJkiFWS5Ch1GpwGAAAAAAAAPYG/0QHQM7z33nt69913lZeXp4qKCl155ZV64IEHdPvttxsdzatZAxv+RJ0uir4AAAAAAAAA4A0iQmw6VlKpEoq+AAAAAAAAuAQo+uKSyMzMVExMjH79618rNDRU27Zt05w5c3T69GlNnz7d6Hhey2Zp+Aq4KledwUkAAAAAAAAAAFJD0VeSSkrPGpwEAAAAAAAAPQFFX1wSGRkZCgsL8/w+duxYnThxQitWrKDoewGNE32rqpnoCwAAAAAAAADeoLHo6yitMjgJAAAAAAAAegI/owOgZ/h6ybfR0KFDdeLECQPS+A6r5VzRl4m+AAAAAAAAAOAVIj1FX6fBSQAAAAAAANAT+MxE37y8PG3fvl25ubnav3+/jh07JknavHmzYmJiOry+2+1WUlKSdu3aJUlav369Bg4c2OSa//7v/9aaNWvOu8aPf/xjpaamdjhLe3XkM3K5XFqxYoXWrl2rI0eOKCgoSNddd50efvhhDR8+vEvy7t27V1deeWWXrN1dWAPNkiQnE30BAAAAAAAAwCtEUPQFAAAAAADAJeQzRd9ly5Zp8+bNXbb+m2++qV27dslkMsntdl/w2nHjxikyMrLZ8Wuuuaar4rVKez8jl8ulBx98UDk5OQoPD9fNN9+skpISbdy4UVu3blVGRobGjx/fqVl37NihTZs26dlnn+3Udbsbz0Rfir4AAAAAAAAA2unw4cOaP3++9u7dq969e+uee+7R7NmzZTabjY7mkxon+pZQ9AUAAAAAAMAl4DNF35EjR2rw4MEaMWKE4uPjlZCQIIfD0SlrHz9+XL/73e80fvx4FRQUeCbhns/MmTN1ww03dMqzO1N7P6OXX35ZOTk5io+PV2ZmpoKDgyVJ69at05w5c/TEE09o06ZNnuOSdObMGZ04ceKia39zKrIkHT16VHPmzNGkSZOUkJDQhjfseWyB54q+rjqDkwAAAAAAAADwRWVlZUpOTtagQYOUnp6uL774QgsXLlR9fb1++ctfGh3PJzVO9K101shZXevZxwUAAAAAAAC6gs/sPs2cObPL1v7tb3+r+vp6zZs3T9OnT++y53zdoUOHtHv3bt17770XvG758uWaPHmyYmJiLrpmez6j2tparVy5UpL01FNPNSnz3n777Vq7dq2ys7O1evVqJSUlec79/e9/19y5cy+6/sGDB5v8XlpaqhkzZshut+uFF15oc96exhrYMFGjysVEXwAAAAAAAABt98Ybb6i6ulppaWkKDg7WTTfdpIqKCqWlpWnGjBlN9oTROkHWAPWy+quyqlYlp8/qsn59jI4EAAAAAACAbszP6ABGe+edd5Sdna3HHntM0dHRl+SZbrdbjz/+uJ5++mlPybYlixcv1sKFC1tVqG2vjz76SKWlpYqJiVF8fHyz87feeqskafPmzU2O33PPPTp48OBF//k6p9OplJQU1dTU6I9//KNsNluXvVd3YbOcm+hbXSu3221wGgAAAAAAAAC+Ztu2bRo3blyTQu9tt92mqqoq5eTkGJjMt0WF9ZIkHT951uAkAAAAAAAA6O58ZqJvV3A4HHruuecUHx+vxMTEVt+3ceNGbdy4US6XS/3799dNN92kb3/7262+32Qy6cUXX1RiYqIWLFggk8nUbJLw4sWLlZGRoZiYGD377LOtXrut8vPzJUnDhw9v8fywYcMkNZ/M21a1tbV67LHH9Pnnn+uNN95QeHh4h9brKQItDRN9692Sq7ZegQFmgxMBAAAAAAAAXScvL0/bt29Xbm6u9u/fr2PHjklqGETQmm89k6Rdu3a1ar/3hhtuuOAghq7Ukfd0uVxasWKF1q5dqyNHjigoKEjXXXedHn744Rb3eQsKCjRmzJgmx+x2u2w2mwoKCjRx4sTOe7EepH9kLxUUlanIUWF0FAAAAAAAAHRzPbrom5qaqoqKCj3zzDPy82v9cONVq1Y1+X3x4sWaMGGCFi1apJCQkFatMWjQIGVlZSkxMVHPPPOMTCaT7r//fs96GRkZio6O1sqVK2W321udra2KiookSf369WvxfOPx0tJSVVZWqlevXu16zrx585Sdna3f/OY3Ki0t1d69ez3nhg0bJovF0q51u7tAy1d/olXVtRR9AQAAAAAA0K0tW7as2beLtVVERISmTZt23vMbN25URUWFrr/++g49pyPa+54ul0sPPvigcnJyFB4erptvvlklJSXauHGjtm7dqoyMDI0fP77JPeXl5erdu3eztfr06aPy8vJ2v0NPZ49o2CsvKqk0OAkAAAAAAAC6ux5b9N2wYYM2bNigmTNnasiQIa26Z8iQIXrqqac0ZswY9e/fX6dOnVJOTo5+//vfKzs7WykpKXr99ddbXRq+6qqrlJmZqaSkJM2fP19Sw5Thr5d8o6Oj2/2OrXH2bMPXitlsthbPBwUFeX7uSNH3gw8+kCQtWLCg2bm2TOPoacx+JgVazKp21clZXau+wYFGRwIAAAAAAAC6zMiRIzV48GCNGDFC8fHxSkhIkMPhaNMaAwcO1PPPP9/iueLiYr377rsymUy66667OiNyu7T3PV9++WXl5OQoPj5emZmZCg4OliStW7dOc+bM0RNPPKFNmzZ5jqPr2CMaPmMm+gIAAAAAAKCr9ciib2lpqVJTU3X55Zdr9uzZrb4vOTm5ye/R0dGaNm2abrzxRt15553as2ePNmzYoB/84AetXjMuLq5Z2ddutysrK6tblV+3bNlidASfZbP4q9pVp2pXndFRAAAAAAAAgC41c+bMLl3/3XffVX19vUaPHq0BAwa06p5Dhw5p9+7duvfeey943fLlyzV58uRW7eu25z1ra2u1cuVKSdJTTz3VpMx7++23a+3atcrOztbq1auVlJTkOdenTx9VVDQvo5aXl6tPnz5tzoEG9shzE30dTPQFAAAAAABA12rd6Nlu5rnnnpPD4dC8efMUGNjxCalRUVFKSEiQJG3btq3N9w8ZMkSTJ0/2/D516tRWbzJ3VOPEXqfT2eL5xom/kto9zRcdYw00S5KcrlqDkwAAAAAAAAC+7Z133pHUsAfbGm63W48//riefvppT8m2JYsXL9bChQs1d+7cTkjZso8++kilpaWKiYlRfHx8s/O33nqrpIZvUPu62NhYFRQUNDlWXFwsp9Op2NjYLsvb3TVO9HWUOuWqYUgDAAAAAAAAuk6PnOi7efNmBQYGKj09Xenp6U3OlZSUSJJ+9atfyWaz6b777tOUKVMuuuYVV1whSTpx4kSb8yxZskRvvfWWoqOj5XQ6lZ6eroiICN13331tXqut7Ha7JOn48eMtnm88HhISQtHXIFZLw59pVTVFXwAAAAAAAKC99u3bp8LCQtlstlbt+UqSyWTSiy++qMTERC1YsEAmk0nTp09vcs3ixYuVkZGhmJgYPfvss10RXZKUn58vSRo+fHiL54cNGyZJOnjwYJPj3/nOd/Tqq6+qoqLCMwV4/fr1slqtuv7667ssb3fXN9iiIKu/zlbVqvhkpS7vx3RkAAAAAAAAdI0eWfSVpOrqauXk5Jz3fG5uriRp0qRJrVqvrKxMkmSz2dqUY+nSpUpPT1d0dLRWrlypyspKJScnKzU1VZK6vOw7dOhQSVJeXl6L5w8cOCBJiouL69IcOD+r5dxE32qmQgAAAAAAAADt1TjN93vf+56n8NoagwYNUlZWlhITE/XMM8/IZDLp/vvvl/RVybdxf7dxsEJXKCoqkiT169evxfONx0tLS1VZWekZ3PCTn/xEq1at0iOPPKIZM2boyJEjSktLU3Jycps+BzRlMplkj+ilw0fLVFRC0RcAAAAAAABdp0cWfXfv3n3ecxMnTtSxY8e0fv16DRw4sFXrud1u/eMf/5AkjRgxotU50tLStGzZMs8mcExMjCQpMzNTycnJmj9/vkwmk37605+2es22GjVqlEJCQnT06FHl5uY2+8q39evXS2p94Rmdzxp4bqKvi4m+AAAAAAAAQHu4XC7PXue0adPafP9VV12lzMxMJSUlaf78+ZIkh8PRpOQbHR3dqZm/6ezZs5LOP2wiKCjI8/PXi759+/ZVZmamUlNTlZKSoj59+igpKUmPPPJIl+btCewRwTp8tEzFjgqjowAAAAAAAKAb8zM6QFd68sknNWXKFL322msdXuvAgQP629/+JpfL1eR4RUWF5s6dq9zcXAUFBenuu+9u1XrLli3TSy+9pOjoaGVlZXlKvlLD9NzMzEyFhoYqNTVVr7/+eofzn4+/v78SExMlSfPmzVNFxVcbkuvWrVN2drZCQ0Nb/V7ofDZP0ZeJvgAAAAAAAEB7/POf/1Rpaan69eunMWPGtGuNxn3bkJAQzZ8/XxkZGbLb7c32d73RoEGDtHLlSn388cf617/+pV/84hcym81Gx/J5/SMbytRFjkqDkwAAAAAAAKA785mJvlu3blV6errn97KyMknS7NmzZbFYJEkTJkzQrFmzPNcUFxersLBQp0+f7vDzi4qK9Pjjj2v+/PkaMWKEQkND5XA4lJ+fr7KyMgUFBWnx4sWKjIy86Fput1uFhYWeTeABAwY0u6Zx0zg5OVmFhYWtytiez0iSZsyYoZ07dyonJ0eTJ0/W6NGj5XA4tHv3bgUEBGjRokV8hZuBrJaGDfeqaib6AgAAAAAAAO3xzjvvSJLuuusu+fm1f/7FkCFDNHnyZL311luSpKlTp7a4v9sVGif2Op3OFs83TvyV5Jnmi65lj2jYNy+m6AsAAAAAAIAu5DNF31OnTmnfvn3Njufn53t+jo2N7bLnx8XFafr06crNzdWnn36q0tJSBQQEKDo6WlOnTlViYmKrpzaYTCYtXLhQDodDUVFRF3zmmjVr1K9fv1at297PyGKx6NVXX9Xy5cu1du1abdmyRUFBQZo0aZJmzZql4cOHt+r56BpWy7mJvhR9AQAAAAAAgDY7deqU3n//fUkNxdyOWLJkid566y1FR0fL6XQqPT1dERERuu+++zoh6YXZ7XZJ0vHjx1s833g8JCSEou8lYm+c6FtScZErAQAAAAAAgPbzmaJvQkKCEhIS2nTPqlWr2vycLVu2tHh8wIABmjt3bpvXOx+z2XzBkm+j1pZ8pfZ9Ro0sFotSUlKUkpLSrvvRdayBDX+mTledwUkAAAAAAAAA37Nu3TrV1NRo5MiRHRoWsXTpUqWnpys6OlorV65UZWWlkpOTlZqaKkldXvYdOnSoJCkvL6/F8wcOHJDUMEACl0bjRF9HWZWqXLWeoQ0AAAAAAABAZ2r/d5QBuCRsFrMkJvoCAAAAAAAA7fHOO+9I6tg037S0NC1btsxT8o2JiVFcXJwyMzMVFham+fPn6/XXX++cwOcxatQohYSE6OjRo8rNzW12fv369ZKkSZMmdWkOfKVPL4uCbQGSpOMnzxqcBgAAAAAAAN0VRV/AyzVO9K1yUfQFAAAAAAAAvunJJ5/UlClT9NprrzU7d+jQIeXl5clisejWW29t1/rLli3TSy+9pOjoaGVlZSkmJsZzrrHsGxoaqtTU1C4t+/r7+ysxMVGSNG/ePFVUVHjOrVu3TtnZ2QoNDdXdd9/dZRnQXP+IXpKkopKKi1wJAAAAAAAAtA/fIwV4ua+KvnUGJwEAAAAAAAC61tatW5Wenu75vaysTJI0e/ZsWSwWSdKECRM0a9YszzXFxcUqLCzU6dOnm623Zs0aSdLEiRPVt2/fNudxu90qLCyU3W5XVlaWBgwY0OyaxrJvcnKyCgsLW7Vue95TkmbMmKGdO3cqJydHkydP1ujRo+VwOLR7924FBARo0aJFCg4ObvN7ov3sEcE6dKRURY5Ko6MAAAAAAACgm6LoC3g5q8UsSXJWM9EXAAAAAAAA3dupU6e0b9++Zsfz8/M9P8fGxrZqrbq6Ov3tb3+TJE2bNq1deUwmkxYuXCiHw6GoqKjzXhcXF6c1a9aoX79+rVq3ve9psVj06quvavny5Vq7dq22bNmioKAgTZo0SbNmzdLw4cNb9Xx0HnskE30BAAAAAADQtSj6Al7Oajk30ZeiLwAAAAAAALq5hIQEJSQktOmeVatWtXjcbDbr/fff73Ams9l8wZJvo9aWfKX2vWcji8WilJQUpaSktOt+dC57xLmiLxN9AQAAAAAA0EX8jA4A4MJsgQ0TfatcdQYnAQAAAAAAAAB8nT0yWJJU7GCiLwAAAAAAALoGRV/Ay1kDz030dTHRFwAAAAAAAAC8SeNE31Pl1XLyrWwAAAAAAADoAhR9AS9ns5wr+lYz0RcAAAAAAAAAvElwkEW9gyySpGJHpcFpAAAAAAAA0B1R9AW8XKDFLElyMtEXAAAAAAAAALyOPbJhqm+Ro8LgJAAAAAAAAOiOKPoCXs4W2DDRt9pVp7p6t8FpAAAAAAAAAABfZ484V/QtYaIvAAAAAAAAOh9FX8DLWc8VfSWpmqm+AAAAAAAAAOBV7JHBkpjoCwAAAAAAgK5B0RfwchZ/P/mZGn6udtUZGwYAAAAAAAAA0AQTfQEAAAAAANCVKPoCXs5kMnmm+jqZ6AsAAAAAAAAAXsUe0TDRt9hB0RcAAAAAAACdj6Iv4AOsFrMkqaqaib4AAAAAAAAA4E3skQ0TfUsrqnW2qsbgNAAAAAAAAOhuKPoCPsBqOTfRt5qJvgAAAAAAAADgTYKsAQoJDpQkFTHVFwAAAAAAAJ2Moi/gA6yBDUXfKhdFXwAAAAAAAADwNv0jGqb6FpdQ9AUAAAAAAEDnougL+ACbp+hbZ3ASAAAAAAAAAMA32SMbir5FjgqDkwAAAAAAAKC7oegL+ACrxSxJqqpmoi8AAAAAAAAAeBt7RLAkqcjBRF8AAAAAAAB0Loq+gA+wWs5N9KXoCwAAAAAAAABexzPRt4SJvgAAAAAAAOhcFH0BH2ANbJjo63TVGZwEAAAAAAAAAPBN/cPPFX2Z6AsAAAAAAIBORtEX8AE2JvoCAAAAAAAAgNfqH9FQ9C2vdKnCWWNwGgAAAAAAAHQnFH0BH2ANbCj6Ol0UfQEAAAAAAADA2wRZAxTaO1CSVFRSYXAaAAAAAAAAdCcUfQEfYA00S5KqXXUGJwEAAAAAAAAAtMQeGSxJKnJUGpwEAAAAAAAA3QlFX8AHWC3nJvpWM9EXAAAAAAAAALyRPaKXJKmYib4AAAAAAADoRBR9AR/QWPStqmaiLwAAAAAAAAB4o/7nir5M9AUAAAAAAEBnougL+ABboFmSVOVioi8AAAAAAAAAeCN7ZLAkqcjBRF8AAAAAAAB0Hoq+gA+wBjZM9HVWU/QFAAAAAAAAAG9kb5zoW8JEXwAAAAAAAHQeir6AD7BZGoq+Va46g5MAAAAAAAAAAFrS/1zRt8JZo/JKl8FpAAAAAAAA0F1Q9AV8QKDFLEmqcjHRFwAAAAAAAAC8kdXir/C+VklSkaPC4DQAAAAAAADoLij6Aj7AFnhuom81RV8AAAAAAAAA8Fb2iGBJUlFJpcFJAAAAAAAA0F1Q9AV8gNXSUPR1VtcZnAQAAAAAAAAAcD72yF6SmOgLAAAAAACAzkPRF/ABtkCzJKm2rl61dfUGpwEAAAAAAAAAtMQe0VD0LWaiLwAAAAAAADoJRV/ABwSem+grSVUupvoCAAAAAAAAgDfqHxEsSSo6SdEXAAAAAAAAnYOiL+ADAvz95G82SZKqqmsNTgMAAAAAAAAAaIk9snGib4XcbrfBaQAAAAAAANAdUPQFfIT13FRfJ0VfAAAAAAAAAPBK/cN7yWSSKqtqVV7pMjoOAAAAAAAAugGKvoCPsAY2FH2rXBR9AQAAAAAAAMAbWQLMigixSZKKSioNTgMAAAAAAIDugKIv4CNsgWZJUlV1ncFJAAAAAAAAAADnY4/oJUkqclQYnAQAAAAAAADdAUVfwEdYLUz0BQAAAAAAAABv1z8iWJJU5GCiLwAAAAAAADqOoi/gI2yB54q+TPQFAAAAAAAAAK/lmehbwkRfAAAAAAAAdBxFX8BHBFrMkiQnE30BAAAAAAAAwGt5ir5M9AUAAAAAAEAnoOgL+AibpXGiL0VfAAAAAAAAAPBW9shgSVKxo0Jut9vgNAAAAAAAAPB1FH0BH2ENbCj6MtEXAAAAAAAAALxXv/Ag+ZkkZ3WdSs9UGx0HAAAAAAAAPo6iL+AjrIFmSVK1q87gJAAAAAAAAACA8wnwNysiNEiSVOSoNDgNAAAAAAAAfB1FX8BH2CznJvpWM9EXAAAAAAAAALyZPaKXJKmopMLgJAAAAAAAAPB1FH0BHxFoaZjoW1XNRF8AAAAAAAAA8Gaeoi8TfQEAAAAAANBBFH0BH2ELPDfR18VEXwAAAAAAAADwZvbIYElSkYOJvgAAAAAAAOgYir6Aj7BaGoq+VdUUfQEAAAAAAADAm3km+pYw0RcAAAAAAAAdQ9EX8BGNE32rXHUGJwEAAAAAAAAAXEjjRN/ik5Vyu90GpwEAAAAAAIAvo+gL+AhroFmSVOVioi8AAAAAAAAAeLOosCD5+ZlU7arTqfIqo+MAAAAAAADAh1H0BXyE1XJuom81RV8AAAAAAAAA8Gb+Zj9FhQZJkopKKg1OAwAAAAAAAF9G0RfwEVZLw0RfZ3WdwUkAAAAAAAAA+JLDhw8rKSlJV199tcaNG6clS5aoro59xq7WP7KXJKnIQdEXAAAAAAAA7UfRF/ARtsBzE31dTPQFAAAAAAAA0DplZWVKTk6WyWRSenq6Zs2apRUrVmjp0qVGR+v27BENRd9iR4XBSQAAAAAAAODL/I0OAKB1rI1F3+paud1umUwmgxMBAAAAAAAA8HZvvPGGqqurlZaWpuDgYN10002qqKhQWlqaZsyYoeDgYKMjdlv2iIbPlom+AAAAAAAA6Agm+gI+wmoxS5Lq3VJNbb3BaQAAAAAAAAD4gm3btmncuHFNCr233XabqqqqlJOTY2Cy7s8e2TDRt6iEib4AAAAAAABoPyb64pJ477339O677yovL08VFRW68sor9cADD+j22283OprPCLR89efqrK6VJcBsYBoAAAAAAACgZXl5edq+fbtyc3O1f/9+HTt2TJK0efNmxcTEtHvdM2fOaPny5dq0aZOOHj0qSYqKitK1116rRx99VFFRUU2uLygo0Msvv6xdu3bpxIkT8vf312WXXabJkyfrZz/7mXr16tX+l+ygjnxGLpdLK1as0Nq1a3XkyBEFBQXpuuuu08MPP6zhw4c3u76goEBjxoxpcsxut8tms6mgoEATJ07svBdDE40TfYsdlaqvd8vPj29pAwAAAAAAQNtR9MUlkZmZqZiYGP36179WaGiotm3bpjlz5uj06dOaPn260fF8gtnPJEuAWa6aOlW56tTX6EAAAAAAAABAC5YtW6bNmzd36pqHDx/Wz372M504cUKXX365xo8fr5qaGn3xxRd6++23NW3atCZF3927d+vBBx9UVVWVrrjiCk2cOFFOp1MfffSRXnrpJa1fv15//vOf1bevMbts7f2MXC6XHnzwQeXk5Cg8PFw333yzSkpKtHHjRm3dulUZGRkaP358k3vKy8vVu3fvZmv16dNH5eXl7X4HXNy3Qm0y+5nkqq3XybIqRYbajI4EAAAAAAAAH0TRF5dERkaGwsLCPL+PHTtWJ06c0IoVKyj6toEt8FzRt7rW6CgAAAAAAABAi0aOHKnBgwdrxIgRio+PV0JCghwOR7vXKy8v1wMPPKDS0lK98MILuuOOO5qc/+KLLxQcHNzk2NNPP62qqir9/Oc/16OPPiqTqWGSamlpqR544AHl5eXplVde0Zw5c9qdqyPa+xm9/PLLysnJUXx8vDIzMz3vvW7dOs2ZM0dPPPGENm3a1OzzgDHMZj9FhQWpyFGpIkcFRV8AAAAAAAC0i5/RAdAzfL3k22jo0KE6ceKEAWl8l9XS0M13uij6AgAAAAAAwDvNnDlTv/jFL3TLLbc0mbLbXmlpafryyy81Z86cZiVfSbrsssua7D+ePn1ahw4dUkBAgB5++GFPyVeSQkJC9MADD0iS9u3b16rnHzp0SH/+858vet3y5ct19OjRVq3Zns+otrZWK1eulCQ99dRTTcq8t99+uyZMmKDTp09r9erVTe7r06ePKioqmq1XXl6uPn36tOrZaD97ZMO/pyJHpcFJAAAAAAAA4Ku69UTfvLw8bd++Xbm5udq/f7+OHTsmSdq8ebNiYmI6vL7b7VZSUpJ27dolSVq/fr0GDhzY4XXbq73v63K5tGLFCq1du1ZHjhxRUFCQrrvuOj388MMaPnx4l+Xdu3evrrzyyi5bvzuyBTb8yVZX1xmcBAAAAAAAAOh61dXV+utf/yqbzaYf//jHrbonICCgVdeFhoZe9Bq3263HH39cn3zyiWpqapSYmNjidYsXL1ZGRoa2bdumzMzMVj2/rT766COVlpYqJiZG8fHxzc7feuutys7O1ubNm5WUlOQ5Hhsbq4KCgibXFhcXy+l0KjY2tkuy4iv2iF6SpKKS5mVrAAAAAAAAoDW6ddF32bJl2rx5c5et/+abb2rXrl0ymUxyu91d9pzWas/7ulwuPfjgg8rJyVF4eLhuvvlmlZSUaOPGjdq6dasyMjI0fvz4Ts+6Y8cObdq0Sc8++2ynr92dBVrMkpjoCwAAAAAAgJ5h//79OnPmjK699lrZbDbt2LFD77//vioqKhQTE6NbbrmlWVk1ODhY11xzjfbs2aOMjAw9+uijnqm+paWlWr58uSTpnnvuuejzTSaTXnzxRSUmJmrBggUymUyaPn16k2saS74xMTFdut+Zn58vSecdzjBs2DBJ0sGDB5sc/853vqNXX31VFRUVninA69evl9Vq1fXXX99ledGgsehbzERfAAAAAAAAtFO3LvqOHDlSgwcP1ogRIxQfH6+EhAQ5HI5OWfv48eP63e9+p/Hjx6ugoMAzPddI7Xnfl19+WTk5OYqPj1dmZqZno3fdunWaM2eOnnjiCW3atKnJ18CdOXNGJ06cuGie8003Pnr0qObMmaNJkyYpISGhDW8Im6XhT7aqmqIvAAAAAAAAur/Dhw9LksLDw/Xoo49qw4YNTc7/4Q9/UEpKih577LEmxxcsWKCHHnpI6enpWr9+veLi4lRVVaUPP/xQNptNixYt0rhx41qVYdCgQcrKylJiYqKeeeYZmUwm3X///ZK+KvlGR0dr5cqVstvtnfDWLSsqKpIk9evXr8XzjcdLS0tVWVmpXr0aCqY/+clPtGrVKj3yyCOaMWOGjhw5orS0NCUnJzfZ90XX6B/Z8BkXOZjoCwAAAAAAgPbp1kXfmTNndtnav/3tb1VfX6958+Y1m+DQGocOHdLu3bt17733XvC65cuXa/LkyYqJibnomm1939raWq1cuVKS9NRTTzXZ1L399tu1du1aZWdna/Xq1U2+6u3vf/+75s6de9H1vzk5QmrYZJ4xY4bsdrteeOGFNuWFZA1snOhbZ3ASAAAAAAAAoOuVlZVJkv75z39Kkp544gndcccdMpvNeu+997Ro0SKlp6fLbrc3mdA7cOBA/fnPf9Zjjz2mvXv36vPPP/ecu/HGGzVo0KA25bjqqquUmZmppKQkzZ8/X5LkcDialHyjo6M7+LYXdvbsWUmSzWZr8XxQUJDn568Xffv27avMzEylpqYqJSVFffr0UVJSkh555JEuzYsGX030Pau6erfMfiaDEwEAAAAAAMDXdOuib1d55513lJ2drV//+tft2rx1u916/PHH9cknn6impkaJiYktXtc4DWLbtm3KzMzsYOrmPvroI5WWliomJkbx8fHNzt96663Kzs7W5s2bmxR977nnnlZ9rd03OZ1OpaSkqKamRn/84x/PuyGN87MGMtEXAAAAAAAAPUd9fb0kqaamRo888ogeeughz7np06ertrZWzz//vNLT05vsWe7cuVOPPvqoIiIi9Morr+jqq6+W0+nU1q1b9bvf/U7Z2dlKT09v9VRfSYqLi2tW9rXb7crKymrVoAYjDRo0yDP0AZdWZGiQ/M1+qq2rl6PUqaiwoIvfBAAAAAAAAHyNn9EBfI3D4dBzzz2n+Pj48xZ0L8ZkMunFF19UeHi4FixYoFWrVjW7prHkGxMTo2effbajsVuUn58vSRo+fHiL54cNGyap5cm8bVVbW6vHHntMn3/+uV555RWFh4d3eM2eyGY5V/Rloi8AAAAAAAB6gK9PqW1p+MCPfvQjSVJRUZGOHDkiqeFbxR577DG5XC69/PLLGj9+vPr06aOoqCj9+Mc/Vmpqqqqrq/XUU0+prq5t+2xDhgzR5MmTPb9PnTpVAwYMaM+rtVnjZ+F0Ols83zjxV5Jnmi+MZ/YzqV94w7+7opIKg9MAAAAAAADAF1H0baPU1FRVVFTomWeekZ9f+z++QYMGKSsrS2FhYXrmmWf02muvec41lnwbv/LNbrd3RvRmioqKJEn9+vVr8Xzj8dLSUlVWVnboWfPmzVN2drZ+/vOfq7S0VHv37vX843K5OrR2TxJoMUtioi8AAAAAAAB6hsZvVLNYLIqKimp2vlevXgoLC5MklZSUSJK2bt2q0tJSjRw5ssVvZJs8ebICAgJ09OhRTzm4tZYsWaK33npL0dHRCgsLU3p6uv70pz+19bXapXGf+Pjx4y2ebzweEhJC0dfL2COCJUlFjo7tswMAAAAAAKBn8jc6gC/ZsGGDNmzYoJkzZ2rIkCEdXu+qq65q9lVvDoejScm3pY3oztI44cFms7V4/uvTMiorKzu0OfzBBx9IkhYsWNDs3ObNm73+q+28hS2w4U/W6aLoCwAAAAAAgO6v8VvHXC5Xi3uUdXV1OnPmjKSv9jO//PJLSVLv3r1bXNPf319BQUEqKytTWVlZq7MsXbpU6enpnr3byspKJScnKzU1VZJ03333te3l2mjo0KGSpLy8vBbPHzhwQJIUFxfXpTnQdvbIhv9uPy8uNzgJAAAAAAAAfBETfVuptLRUqampuvzyyzV79uxOWzcuLk6ZmZkKCQnR/PnzlZGRIbvdrqysrG5Vft2yZYsOHjzY4j/d6T27mtXSUPRloi8AAAAAAAB6gv79+2v48OGSpF27djU7v3v3btXU1Mhmsyk2NlaSFBkZKamhEFtb23wf7fPPP/cUfFs7aCEtLU3Lli3zlHxjYmI8e7thYWGaP3++Xn/99Xa9Y2uNGjVKISEhOnr0qHJzc5udX79+vSRp0qRJXZoDbfftQRGSpE05X+hYSYXBaQAAAAAAAOBrKPq20nPPPSeHw6F58+YpMDCwU9ceMmSIJk+e7Pl96tSpGjBgQKc+oyWNEy6cTmeL5xsn/kriq968hC3QLEmqctUZnAQAAAAAAADoPE8++aSmTJmi1157rdm5mTNnSpIWLVqko0ePeo5/+eWXnm8Q++EPfyiLxSJJ+s53viOr1apjx47phRdeaFL2PXXqlObOnStJuv766xUREXHRbMuWLdNLL72k6OjoZgMaGsu+oaGhSk1N7dKyr7+/vxITEyVJ8+bNU0XFV4XRdevWKTs7W6Ghobr77ru7LAPa57qhURo15FuqravX/6z+WG632+hIAAAAAAAA8CH+RgfwFZs3b1ZgYKDS09OVnp7e5FxJSYkk6Ve/+pVsNpvuu+8+TZkypdVrL1myRG+99Zaio6PldDqVnp6uiIiILv+qN7vdLkk6fvx4i+cbj4eEhFD09RLWQCb6AgAAAAAAwLtt3bq1yR5q4/Tc2bNne8q4EyZM0KxZszzXFBcXq7CwUKdPn2623pQpU3Tvvffqz3/+s+644w6NGjVKfn5+2rNnj86cOaORI0dqzpw5nusjIiI0d+5c/fa3v9WKFSu0YcMGDRs2TFVVVdq3b5/OnDmjiIgIpaamXvRd3G63CgsLPd/C1tKAhsayb3JysgoLC7vsM5KkGTNmaOfOncrJydHkyZM1evRoORwO7d69WwEBAVq0aJGCg4NblQGXjslkUsq0b2v277Zo76ESbdtzTBNG8U13AAAAAAAAaB2Kvm1QXV2tnJyc855v/Lq0tnw12tKlS5Wenu75yrfKykolJyd7Npm7suw7dOhQSQ1fYdeSAwcOSGrYqIZ3sFqY6AsAAAAAAADvdurUKe3bt6/Z8fz8fM/PsbGxbVrz6aef1rXXXqs//elP2rNnj2pra3XFFVfo9ttvV1JSUrNvYbvnnns0ePBgZWVl6aOPPlJ2drbMZrNiYmJ0zz336KGHHlJ4ePhFn2symbRw4UI5HA5FRUWd97q4uDitWbNG/fr1a9X7tPczslgsevXVV7V8+XKtXbtWW7ZsUVBQkCZNmqRZs2Zp+PDhrXo+Lr3+Eb30o1sG67W/f6JX1+7XtUOjFGwLMDoWAAAAAAAAfABF31bavXv3ec9NnDhRx44d0/r16zVw4MBWr5mWlqZly5Z5Sr6NX/nWOP1h/vz5MplM+ulPf9rh/C0ZNWqUQkJCdPToUeXm5io+Pr7J+fXr10tqW3EZXctqafiTdTLRFwAAAAAAAF4qISFBCQkJbbpn1apVF73mjjvu0B133NHqNa+++mr9/ve/b1OOlpjN5guWfBu1tuQrte8zamSxWJSSkqKUlJR23Q/jJNw8SP/88KiOlVTotffylZLwbaMjAQAAAAAAwAf4GR3A2zz55JOaMmWKXnvttS59zrJly/TSSy8pOjpaWVlZnpKv9NVXvYWGhio1NVWvv/56l2Tw9/dXYmKiJGnevHmqqKjwnFu3bp2ys7MVGhqqu+++u0uej7azBTYUfatcFH0BAAAAAAAAwJcE+Jv18N0N5d712wt16MhpgxMBAAAAAADAF3Trib5bt25Venq65/eysjJJ0uzZs2WxWCRJEyZM0KxZszzXFBcXq7CwUKdPd90Gm9vtVmFhoex2u7KysjRgwIBm1zSWfZOTk1VYWNiqddvzvjNmzNDOnTuVk5OjyZMna/To0XI4HNq9e7cCAgK0aNEiBQcHd+R10YmsjUXf6jqDkwAAAAAAAAAA2urqqyL13VEx2vrRUaW/vU8vPDZBZj+T0bEAAAAAAADgxbp10ffUqVPat29fs+P5+fmen2NjYy9lJEmSyWTSwoUL5XA4LviVb3FxcVqzZk2rv/KtPe9rsVj06quvavny5Vq7dq22bNmioKAgTZo0SbNmzdLw4cNb+Va4FKwWsyQm+gIAAAAAAACAr3rgzuH694HjOny0TO9tL9Tt4y79/04BAAAAAAAA39Gti74JCQlKSEho0z2rVq1q83O2bNnS5nvMZvMFS76NWlvyldr3vlJD2TclJUUpKSltvheXltVybqKvq0719W75MekBAAAAAAAAAHxKaG+rEm8bpozVH2vVe/m68dt2hfWxGh0LAAAAAAAAXsrP6AAAWs8aaPb8XF1TZ2ASAAAAAAAAAEB7fX/MFbpqQIjOVtXq1Xf3Gx0HAAAAAAAAXoyiL+BDAgPMMp0b4ltVXWtsGAAAAAAAAABAu5j9TPr5D6+Wn0natveY9hw8YXQkAAAAAAAAeCmKvoAPMZlMslr8JUlOF0VfAAAAAAAAAPBVg2JCdNu4WElSxl8/lotvcQMAAAAAAEALKPoCPsYWaJYkVbvY9AUAAAAAAAAAX3b/lCEK6xOoYkel3t5yyOg4AAAAAAAA8EIUfQEfE9g40beaib4AAAAAAAAA4MuCrAF66K54SdJfNh9SUUmFwYkAAAAAAADgbSj6Aj7Gdq7oW1XNRF8AAAAAAAAA8HXjrrZrVNy3VFtXr4zVH8vtdhsdCQAAAAAAAF6Eoi/gY6yBZkmS08VEXwAAAAAAAADwdSaTSf9fQrwC/P2091CJ3t97zOhIAAAAAAAA8CIUfQEfYw1snOhL0RcAAAAAAAAAugN7RLDumTRYkvTKu/tV6awxOBEAAAAAAAC8BUVfwMfYLBR9AQAAAAAAAKC7+eHEQYqO7KXTZ6r12nv5RscBAAAAAACAl6DoC/iYQItZklTlqjM4CQAAAAAAAACgswT4m/VwwtWSpPXbC1V6ptrgRAAAAAAAAPAGFH0BH2MLbJjo63Qx0RcAAAAAAAAAupOrB0dqYExf1bulXXnHjY4DAAAAAAAAL0DRF/Ax1saJvtVM9AUAAAAAAACA7mbsiP6SpJ37iw1OAgAAAAAAAG9A0RfwMY0TfauY6AsAAAAAAAAA3c6Y+Iai795PS3S2qsbgNAAAAAAAADAaRV/Ax1jPFX2d1RR9AQAAAAAAAKC7uSyqt+wRvVRbV68P808YHQcAAAAAAAAGo+gL+BirpaHoW+2qMzgJAAAAAAAAAKCzmUwmjT031XfH/mKD0wAAAAAAAMBoFH0BH2O1mCUx0RcAAAAAAAAAuqsx54q+u/O/VE0tQx8AAAAAAAB6Moq+gI+xBTZM9K1yUfQFAAAAAAAAgO5o8IBQhfUJlLO6VvsOOYyOAwAAAAAAAANR9AV8jDWwcaIvUxwAAAAAAAAAoDvy8zPphhENU3135BYbnAYAAAAAAABGougL+BirhYm+AAAAAAAAANDdjT1X9N2VV6y6erfBaQAAAAAAAGAUir6Aj7EFniv6MtEXAAAAAAAAALqt+EER6mULUFmFS598fsroOAAAAAAAADAIRV/AxwRazJKY6AsAAAAAAAAA3Zm/2U+jh0VJknbuLzY4DQAAAAAAAIxC0RfwMY0TfWtq61VbV29wGgAAAAAAAABAVxk7or8kaUdusdxut8FpAAAAAAAAYASKvoCPsVr8PT9XueoMTAIAAAAAAAAA6Eqj4r4li7+fvjx1Vp8XlxsdBwAAAAAAAAag6Av4mAB/P/mbTZKkqupag9MAAAAAAAAAALqKNdBf18R9S1LDVF8AAAAAAAD0PBR9AR/UONW3ykXRFwAAAAAAAAC6s7Hx/SVR9AUAAAAAAOipurzoW1ZWpk8//VQul6urHwX0GFaLWZJUVV1ncBIAAAAAAAB0J+znAt7n+uH95Odn0ufF5Tp+stLoOAAAAAAAALjEOlz0PXDggJYsWaJ//etfTY5XVVXpv/7rvzRmzBjdddddGj9+vP7+97939HEA1PB1bZLkZKIvAAAAAAAA2oD9XMD39A6yaERsuCSm+gIAAAAAAPREHS76vv322/qf//kfud3uJseXLFmi9evXy+12y+12q6ysTI8//rg+/fTTjj4S6PEai75V1RR9AQAAAAAA0Hrs5wK+aWx8f0kUfQEAAAAAAHqiDhd9d+/ercDAQN10002eYy6XS3/5y1/k7++vP/7xj/r3v/+t6dOnq7a2VitXruzoI4Eez2ZpLPrWGZwEAAAAAAAAvqSl/dyamhr2cwEvN2ZEQ9H3k/+c0ukzVQanAQAAAAAAwKXU4aKvw+FQVFSU/Py+Wmrv3r2qqKjQxIkTNWHCBPXu3Vtz5syRzWbTv//9744+EujxrIFmSVKVi4m+AAAAAAAAaL2W9nM//fRT9nMBLxcRYtNVA0Lkdku79h83Og4AAAAAAAAuoQ4XfcvLy9W3b98mx/bs2SOTyaTx48d7jlmtVl122WU6fpwNKKCjrOcm+jop+gIAAAAAAKANWtrPPXjwIPu5gA9onOq7Y3+xwUkAAAAAAABwKXW46Gu1WnXq1Kkmx3bv3i1JGjVqVJPjAQEBTSZFAGgfq+XcRN/qOoOTAAAAAAAAwJe0tJ+bn58vif1cwNuNjW8o+n58qERnq2oMTgMAAAAAAIBLpcO7tLGxsTp27JgOHTokSTp16pR27dql0NBQDRw4sMm1X375pcLCwjr6SKDHswU2TPStYqIvAAAAAAAA2uCb+7nl5eXKy8tjPxfwAQOieis6Mli1dW7tzv/S6DgAAAAAAAC4RDpc9P3BD34gt9utGTNm6Pnnn1dSUpJqamp06623NrmuqKhIJSUluvzyyzv6SKDHs54r+jqrKfoCAAAAAACg9b65n/v000+rtraW/VzARzRO9d2RW2xwEgAAAAAAAFwqHS763nfffRo9erSOHz+uzMxMHTp0SFdccYVmzZrV5Lr169dLkm644YaOPhLo8awWsySp2lVncBIAAAAAAAD4km/u5x45ckT9+/dnPxfwEY1F3w8/+VKuGvaHAQAAAAAAegL/ji5gsViUlZWlLVu2qKCgQNHR0brlllsUGBjY9EH+/kpMTNT3v//9jj4S6PGsFib6AgAAAAAAoO2+uZ9bV1en66+/XqGhoU2uYz8X8E6DYkIU3teqk2VV2neoRKOH9TM6EgAAAAAAALpYh4u+kuTn56dbbrnlgtckJyd3xqMASLIFNkz0rWKiLwAAAAAAANro6/u5ubm5LV7Dfi7gnfz8TBozor/+94NC7cgtpugLAAAAAADQA/gZHQBA21kDmegLAAAAAAAAAD3R2BH9JUk5B46rrt5tcBoAAAAAAAB0tQ4XfU+dOqUdO3aosLCw2bk33nhDd955p2644QbNmDFDBQUFHX0cAElWS0PRt8pF0RcAAAAAAACtx34u4PuGDwxXsC1AZRUu5ReeNDoOAAAAAAAAuliHi74rV67UAw88oH379jU5/uabb2revHn69NNPVVZWpvfff1+JiYk6ffp0Rx8J9Hi2cxN9q5joCwAAAAAAgDZgPxfwff5mP10/vJ8kacf+YoPTAAAAAAAAoKt1uOi7c+dOmc1mfe9732ty/I9//KMk6YEHHlBaWpquu+46nTx5UpmZmR19JNDjBVrMkqQqV53BSQAAAAAAAOBL2M8FuocxI/pLknbmFsvtdhucBgAAAAAAAF2pw0XfoqIiRUZGqlevXp5jn3zyiYqKijRq1Cg9+eSTuuWWW/SHP/xBZrNZ2dnZHX0k0OMx0RcAAAAAAADt0dJ+7ueff85+LuBjromLlCXArBOnnSo4VmZ0HAAAAAAAAHShDhd9S0tLFRkZ2eTYhx9+KEmaOHGi51hkZKQuu+wyffHFFx19JNDjWc9N9HW66pjWAAAAAAAAgFZraT83Pz9fEvu53dnhw4eVlJSkq6++WuPGjdOSJUtUV8e3hfkyq8Vf1w75liRp5/7jBqcBAAAAAABAV+pw0dfPz0+VlZVNjn300UcymUy69tprmxzv3bu3ampqOvpIoMdrnOhbX+9WTW29wWkAAAAAAADgK1razz148CD7ud1YWVmZkpOTZTKZlJ6erlmzZmnFihVaunSp0dHQQWNG9Jck7dxfbHASAAAAAAAAdCX/ji4QHR2t//znPyotLVVISIhqamr0wQcfyGq1asSIEU2uPX36tEJDQzv6SKDHC7R89afrrK6VJcBsYBoAAAAAAAD4im/u59bW1urjjz9mP7cbe+ONN1RdXa20tDQFBwfrpptuUkVFhdLS0jRjxgwFBwcbHRHtdP2wKJn9TPq8uFzFjkr1j+hldCQAAAAAAAB0gQ5P9B03bpxqa2s1Z84cbdmyRXPnzlVpaanGjx8vf/+vyohnzpzRkSNH1L9//44+EujxzH4mWfwb/nyrXXzFHgAAAAAAAFrnm/u5GRkZOnPmDPu53di2bds0bty4JoXe2267TVVVVcrJyTEwGToqOMii+IERkqRdeccNTgMAAAAAAICu0uGJvjNmzND//u//6oMPPtD27dvldrsVGBioWbNmNbluy5Ytcrvdzb7+DUD7WAP95ap1yemqNToKAAAAAAAAfERL+7kBAQGdup+bl5en7du3Kzc3V/v379exY8ckSZs3b1ZMTEy7s585c0bLly/Xpk2bdPToUUlSVFSUrr32Wj366KOKiorqlHsuhY58Ri6XSytWrNDatWt15MgRBQUF6brrrtPDDz+s4cOHN7u+oKBAY8aMaXLMbrfLZrOpoKBAEydO7LwXwyV3Tdy3tPdQiXIPOzR1wkCj4wAAAAAAAKALdLjoGxERodWrV+uVV15RYWGh7Ha7kpKSNHBg0w2lDz/8UEOGDNHNN9/c0UcCUEPRt7zSpapqir4AAAAAAABonW/u51qtVt12222Ki4trcl1H9nOXLVumzZs3d1ZkSdLhw4f1s5/9TCdOnNDll1+u8ePHq6amRl988YXefvttTZs2rVlptz33XCrt/YxcLpcefPBB5eTkKDw8XDfffLNKSkq0ceNGbd26VRkZGRo/fnyTe8rLy9W7d+9ma/Xp00fl5eXtfgd4hxEDwyVJeYUnVVfvltnPZHAiAAAAAAAAdLYOF32lhgkIv/nNby54TWpqamc8CsA5NotZklRVXWdwEgAAAAAAAPiSr+/n5ubmtnhNR/ZzR44cqcGDB2vEiBGKj49XQkKCHA5Hu9crLy/XAw88oNLSUr3wwgu64447mpz/4osvFBwc3OF7LqX2fkYvv/yycnJyFB8fr8zMTM87rFu3TnPmzNETTzyhTZs2GfpuuLQGRveVLdBflc4a/ae4XLHRfY2OBAAAAAAAgE7WKUVfAJeeNbDhz9fpYqIvAAAAAAAAvMfMmTM7db20tDR9+eWX+vWvf92ssCtJl112Wafccz6HDh3S7t27de+9917wuuXLl2vy5MmKiYm56Jrt+Yxqa2u1cuVKSdJTTz3VpMx7++23a+3atcrOztbq1auVlJTkOdenTx9VVFQ0W6+8vFx9+vRpcw54F7PZT0OvDNNHn5zQ/s8cFH0BAAAAAAC6oU4t+jocDn3wwQcqKChQZWWlevXqpYEDB+qmm25SeHh4Zz4K6PGsjRN9XUz0BQAAAAAAQNs5HA5t27ZNx44d07vvvuuV+7nV1dX661//KpvNph//+Mddds/5uN1uPf744/rkk09UU1OjxMTEFq9bvHixMjIytG3bNmVmZnbomefz0UcfqbS0VDExMYqPj292/tZbb1V2drY2b97cpOgbGxurgoKCJtcWFxfL6XQqNja2S7Li0hoRG95Q9C04qTu/M9DoOAAAAAAAAOhknVL0dblcWrRokd58803V1jafLurv76+f/OQneuKJJ2SxWDrjkUCPZ7U0/PlWVTPRFwAAAAAAAK3nS/u5+/fv15kzZ3TttdfKZrNpx44dev/991VRUaGYmBjdcsstzcqq7bnnfEwmk1588UUlJiZqwYIFMplMmj59epNrGku+MTExevbZZzvt3b8pPz9fkjR8+PAWzw8bNkySdPDgwSbHv/Od7+jVV19VRUWFZwrw+vXrZbVadf3113dZXlw68QMjJEn7Pzup+nq3/PxMBicCAAAAAABAZ+pw0be+vl4PP/ywtm/fLrfbrfDwcMXGxioyMlIlJSUqKCjQyZMn9dprr6mwsFAvv/yyTCY2mYCOsgWeK/q6KPoCAAAAAACgdb65n9u3b1/Z7XZdeeWVXrmfe/jwYUlSeHi4Hn30UW3YsKHJ+T/84Q9KSUnRY4891qF7LmTQoEHKyspSYmKinnnmGZlMJt1///2Svir5RkdHa+XKlbLb7e1+14spKiqSJPXr16/F843HS0tLPd+4J0k/+clPtGrVKj3yyCOaMWOGjhw5orS0NCUnJ3uKv/BtgwaEKNBi1pmzLh358owu79/H6EgAAAAAAADoRB0u+q5evVoffPCBevfurV/96leaOnWq/P2/Wraurk7vvPOOFi1apA8++EB//etfdffdd3f0sUCPZz1X9HVW1xmcBAAAAAAAAL7im/u5gwYNktlsVnx8vCTv288tKyuTJP3zn/+UJD3xxBO64447ZDab9d5772nRokVKT0+X3W7XPffc0+57Luaqq65SZmamkpKSNH/+fEmSw+FoUvKNjo7u1Hf/prNnz0qSbDZbi+eDgoI8P3+96Nu3b19lZmYqNTVVKSkp6tOnj5KSkvTII490aV5cOv5mPw29PEx7D5Vo/2cOir4AAAAAAADdjF9HF1i7dq1MJpOWLl2qH/7wh01KvpJkNpt19913a/HixXK73XrnnXc6+kgAkqwWsySpqpqJvgAAAAAAAGidb+7nms3mJue9bT+3vr5eklRTU6OUlBQ99NBDioqKUkREhKZPn67/+q//kiSlp6d36J7WiIuLU2ZmpkJCQjR//nxlZGTIbrcrKytLMTExnfG6XWbQoEFauXKlPv74Y/3rX//SL37xi2b/7uHbRgwMlyTlFpw0OAkAAAAAAAA6W4eLvgcPHlRMTIzGjh17wevGjh2rAQMG6ODBgx19JABJVktDqb7KRdEXAAAAAAAAreNr+7lfn1Lb0vTdH/3oR5KkoqIiHTlypN33tNaQIUM0efJkz+9Tp07VgAED2rRGezW+l9PpbPF848RfSZ5pvug5RgyMkCTlfXZSbrfb4DQAAAAAAADoTB0u+jqdTvXt27dV1/bt21dVVVUdfSQASbbAcxN9XXUGJwEAAAAAAICv8LX93OjoaEmSxWJRVFRUs/O9evVSWFiYJKmkpKTd97TWkiVL9NZbbyk6OlphYWFKT0/Xn/70pzat0V52u12SdPz48RbPNx4PCQmh6NsDDb4sRBZ/P5VWVOvoiQqj4wAAAAAAAKATdbjoGxkZqYKCgotu+DqdThUUFCgiIqKjjwQgyRrYMNHXWc1EXwAAAAAAALSOr+3nDhs2TJLkcrlUWVnZ7HxdXZ3OnDkj6auJt+25pzWWLl2q9PR0RUdHa+XKlcrMzFRYWJhSU1MvSdl36NChkqS8vLwWzx84cECSFBcX1+VZ4H0C/M2Ku7yhwL6/4KTBaQAAAAAAANCZOlz0veGGG+R0OvXss89e8LrnnntOTqdTY8aM6egj4YPee+89paSkaPz48brmmmuUkJCgdevWGR3Lp1ktFH0BAAAAAADQNr62n9u/f38NHz5ckrRr165m53fv3q2amhrZbDbFxsa2+56LSUtL07Jlyzwl35iYGMXFxXnKvvPnz9frr7/e3tdslVGjRikkJERHjx5Vbm5us/Pr16+XJE2aNKlLc8B7jRgYLkna/5nD4CQAAAAAAADoTB0u+j700EPy9/fXX/7yF911111avXq1Pv74YxUXF+vjjz/W6tWrdeedd+ovf/mLAgIC9OCDD3ZGbviYzMxM9erVS7/+9a+Vnp6uG264QXPmzNGqVauMjuazwvtaJUn/KS5Xfb3b4DQAAAAAAADwBd/cz92yZYsOHz5s+H7uk08+qSlTpui1115rdm7mzJmSpEWLFuno0aOe419++aUWLFggSfrhD38oi8XSoXvOZ9myZXrppZcUHR2trKwsxcTEeM41ln1DQ0OVmprapWVff39/JSYmSpLmzZuniooKz7l169YpOztboaGhuvvuu7ssA7zbV0Xfk3K72TMGAAAAAADoLvw7usDAgQO1cOFC/frXv9bBgwc1d+7cZte43W4FBgbq+eef18CBAzv6SPigjIwMhYWFeX4fO3asTpw4oRUrVmj69OkGJvNdw64MVy+rv06fqdYn/zmlYVeGGx0JAAAAAAAAXu6b+7mffvpps2s6up+7detWpaene34vKyuTJM2ePdtTrJ0wYYJmzZrluaa4uFiFhYU6ffp0s/WmTJmie++9V3/+8591xx13aNSoUfLz89OePXt05swZjRw5UnPmzOnwPS1xu90qLCyU3W5XVlaWBgwY0OyaxrJvcnKyCgsLu+wzkqQZM2Zo586dysnJ0eTJkzV69Gg5HA7t3r1bAQEBWrRokYKDg1uVAd1P3OVh8jf76VR5lYpPVsoewX8LAAAAAAAA3UGHi76SdOutt2rIkCF65ZVXtG3bNjkcX30tVEREhL773e/qgQceaPXXoKH7+XrJt9HQoUO1YcMGA9J0DwH+fho9vJ+2fnhU2z8upugLAAAAAACAVvn6fu6WLVtUWlrqOdcZ+7mnTp3Svn37mh3Pz8/3/NzWtZ9++mlde+21+tOf/qQ9e/aotrZWV1xxhW6//XYlJSUpMDCwU+75JpPJpIULF8rhcCgqKuq818XFxWnNmjXq169fq96nvZ+RxWLRq6++quXLl2vt2rXasmWLgoKCNGnSJM2aNUvDhw9v1fPRPQUGmDX4shAdKDyl/Z+dpOgLAAAAAADQTXRK0Vdq2HR89tlnJUkVFRWqrKxUr169mkwPSEhIUHl5uTZt2tTm9fPy8rR9+3bl5uZq//79OnbsmCRp8+bNTb4qrbXefPNN7dixQwcPHtTJkydVWVmpvn37Kj4+Xj/5yU908803N7vnv//7v7VmzZrzrvnjH/9Yqampbc7SWTryGblcLq1YsUJr167VkSNHFBQUpOuuu04PP/xwl20O7927V1deeWWXrN1T3Bhv19YPj2pHbpEevHO4TCaT0ZEAAAAAAADgAxr3c3Nzc3X27FldccUVnbafm5CQoISEhDbds2rVqotec8cdd+iOO+5o07rtueebzGbzBUu+jVpb8pXa9xk1slgsSklJUUpKSrvuR/c2YmDEuaKvQ5NvuNzoOAAAAAAAAOgEnVb0/brg4OAWvx6sqKjI8xVkbbVs2TJt3ry5o9E8VqxYoSNHjmjw4MEaNWqUrFarjhw5oq1bt2rr1q164IEH9Ktf/arFe8eNG6fIyMhmx6+55ppOy9ce7f2MXC6XHnzwQeXk5Cg8PFw333yzSkpKtHHjRm3dulUZGRkaP358p2bdsWOHNm3a5CmHo32uiYtUoMWsE6ed+uxYmQbFhBgdCQAAAAAAAD4mKCioxSJrR/ZzARhjRGy43pK0v+Ck0VEAAAAAAADQSbqk6NsVRo4cqcGDB2vEiBGKj49XQkKCHA5Hu9d77rnnNHjwYPXq1avJ8d27d2vGjBlavny5pkyZoquvvrrZvTNnztQNN9zQ7md3lfZ+Ri+//LJycnIUHx+vzMxMT0l73bp1mjNnjp544glt2rSpSXn7zJkzOnHixEXXHjhwYLNjR48e1Zw5czRp0qR2T61AA6vFX9cO+Za2f1ys7R8XUfQFAAAAAAAAgB5s6BVhMvuZVHLaqS9PnVVUWJDRkQAAAAAAANBBPlP0nTlzZqeud77pu9ddd51+8IMfaPXq1dqxY0eLRd/OcOjQIe3evVv33nvvBa9bvny5Jk+erJiYmIuu2Z7PqLa2VitXrpQkPfXUU03KvLfffrvWrl2r7OxsrV69WklJSZ5zf//73zV37tyLrn/w4MEmv5eWlmrGjBmy2+164YUX2pwXzd0Yb9f2j4u1I7dYibcOMzoOAAAAAAAAAMAg1kB/DRoQooP/Oa28Aoeiwi4zOhIAAAAAAAA6yGeKvpeSv3/Dx2KxWLpkfbfbrccff1yffPKJampqlJiY2OJ1ixcvVkZGhrZt26bMzMwuyfLRRx+ptLRUMTExio+Pb3b+1ltvVXZ2tjZv3tyk6HvPPffonnvuadOznE6nUlJSVFNToz/+8Y+y2Wwdzg9p9LAo+Zv9dPREhY58eUYDonobHQkAAAAAAAAAYJARseE6+J/T2v/ZSU28jqIvAAAAAACAr/MzOoC3yc/P13vvvSez2azx48e3eM3GjRv1zDPP6Le//a0yMjL08ccft+kZJpNJL774osLDw7VgwQKtWrWq2TWNJd+YmBg9++yz7XqX1sjPz5ckDR8+vMXzw4Y1TIj95mTetqqtrdVjjz2mzz//XK+88orCw8M7tB6+EmQN0MjBkZKk7R8XGZwGAAAAAAAAAGCkEQMjJEn7PztpcBIAAAAAAAB0hh4/0Xf16tX697//rZqaGh07dkx79+6Vv7+/nn76aV111VUt3vPNYu7ixYs1YcIELVq0SCEhIa167qBBg5SVlaXExEQ988wzMplMuv/++z3rZWRkKDo6WitXrpTdbu/QO15IUVFDMbRfv34tnm88XlpaqsrKSvXq1atdz5k3b56ys7P1m9/8RqWlpdq7d6/n3LBhw7psenJPcWN8f+3O/1Lbc4v14+/FGR0HAAAAAAAAAGCQYVeGyc8kFZ+s1Mkyp8L78u16AAAAAAAAvqzHF30/+ugjrVmzxvO7zWbT//k//0d33313s2uHDBmip556SmPGjFH//v116tQp5eTk6Pe//72ys7OVkpKi119/XX5+rRuUfNVVVykzM1NJSUmaP3++JMnhcDQp+UZHR3fOi57H2bNnJTW8d0uCgoI8P3ek6PvBBx9IkhYsWNDs3ObNmxUTE9OuddHg+uH95GeSCo6V6fjJSvULb9+/JwAAAAAAAACAbwuyBig2JkSHj5Qq97OT+u4o9t8BAAAAAAB8WZuLvmlpae1+WFVVVbvv7SoLFizQggULdPbsWf3nP//RqlWr9H//7//VP/7xD6WlpclqtXquTU5ObnJvdHS0pk2bphtvvFF33nmn9uzZow0bNugHP/hBq58fFxfXrOxrt9uVlZXVrcqvW7ZsMTpCt9Y3OFAjBkbo48MO7cgt1rTvDjI6EgAAAAAAALzAxfZzT5w4IUnKzs5uds4b93MBtM6I2HAdPlKq/Z85KPoCAAAAAAD4uHYVfU0mU7se5na7231vVwsKCtLQoUP17LPPymQy6e2339aKFSv08MMPX/TeqKgoJSQkaPny5dq2bVubir5Sw6TgyZMn66233pIkTZ06VQMGDGjXe7RV48Rep9PZ4vnGib+S2j3NF5fGjfH9KfoCAAAAAACgie66nwvgwkbEhuud7M+0/7OTRkcBAAAAAABAB7W56Dt69OiuyOFVpk6dqrffflubN29uVdFXkq644gpJX03AaIslS5borbfeUnR0tJxOp9LT0xUREaH77ruvzWu1ld1ulyQdP368xfONx0NCQij6erkx8f31P2tylf/5KZ0qr1JYH+vFbwIAAAAAAEC3drH93MrKSkn8n/yB7mZ4bLhMJulYSYVOl1cplP1iAAAAAAAAn9Xmou+qVau6IodXCQsLkySdOnWq1feUlZVJkmw2W5uetXTpUqWnpys6OlorV65UZWWlkpOTlZqaKkldXvYdOnSoJCkvL6/F8wcOHJAkxcXFdWkOdFx4X5viLg/Vwf+c1o7cYt1205VGRwIAAAAAAIDBLrafm5ubK0mKj4+/FHEAXCLBQRZd0b+PCovKtb/gpMaPjDY6EgAAAAAAANrJz+gA3mjXrl2SpMsvv7xV17vdbv3jH/+QJI0YMaLVz0lLS9OyZcs8Jd+YmBjFxcUpMzNTYWFhmj9/vl5//fW2v0AbjBo1SiEhITp69KhnU//r1q9fL0maNGlSl+ZA57gxvmFC847cIoOTAAAAAAAAAACMNGJghCRp/2cOg5MAAAAAAACgI7p10ffJJ5/UlClT9NprrzU5vn//fm3cuFG1tbXN7vnnP/+pxYsXS5Luuecez/EDBw7ob3/7m1wuV5PrKyoqNHfuXOXm5iooKEh33313q7ItW7ZML730kqKjo5WVlaWYmBjPucayb2hoqFJTU7u07Ovv76/ExERJ0rx581RRUeE5t27dOmVnZys0NLTV7wVjjY3vL0nK/eykyitdF7kaAAAAAAAAANBdjYgNlyTtLzhpcBIAAAAAAAB0hL/RAVpr69atSk9P9/xeVlYmSZo9e7YsFoskacKECZo1a5bnmuLiYhUWFur06dNN1jp+/Lhmz56tPn36aPjw4QoPD9eZM2dUWFioL774QpL0wAMP6NZbb/XcU1RUpMcff1zz58/XiBEjFBoaKofDofz8fJWVlSkoKEiLFy9WZGTkRd/F7XarsLBQdrtdWVlZGjBgQLNrGsu+ycnJKiws7LLPSJJmzJihnTt3KicnR5MnT9bo0aPlcDi0e/duBQQEaNGiRQoODm5VBhirf0QvXWlv+Dq2nLxi3XJ966ZSAwAAAAAAAAC6l+Hnir5fHD+jsopq9Q0ONDgRAAAAAAAA2sNnir6nTp3Svn37mh3Pz8/3/BwbG9uqteLj4zV79mzl5OSosLBQH374ofz8/PStb31Ld911l370ox/puuuua3JPXFycpk+frtzcXH366acqLS1VQECAoqOjNXXqVCUmJjaZynshJpNJCxculMPhUFRU1Hmvi4uL05o1a9SvX79Wrdvez8hisejVV1/V8uXLtXbtWm3ZskVBQUGaNGmSZs2apeHDh7fq+fAON37brsKicm3PpegLAAAAAAAAAD1V3+BAXdavt744fkZ5BSd147ftRkcCAAAAAABAO/hM0TchIUEJCQltumfVqlUtHo+KitIjjzzSprUGDBiguXPntumeCzGbzRcs+TZqbclXat9n1MhisSglJUUpKSntuh/eY2x8f/3p759oz8ESna2qUZA1wOhIAAAAAAAAAAADjIgN1xfHz2g/RV8AAAAAAACf5Wd0AACd67Ko3oqO7KXaunrtzv/S6DgAAAAAAAAAAIOMGBghSdr/mcPgJAAAAAAAAGgvir5AN2MymTyTGbbnFhucBgAAAAAAAABglBGx4ZKkz4vLVXHWZXAaAAAAAAAAtAdFX6AbGhvfX5L0Yf6Xqq6pMzgNAAAAAAAAAMAIoX2sio4Mltst5RWcNDoOAAAAAAAA2oGiL9ANDYoJUWSoTVWuOu05eMLoOAAAAAAAAAAAg4wY2DDVdz9FXwAAAAAAAJ9E0Rfohkwmk2eq747cYoPTAAAAAAAAAACMMmJghCRp/2cOg5MAAAAAAACgPSj6At3UjfF2SdKuvOOqqa03OA0AAAAAAAAAwAjx5yb6FhwrU6WzxuA0AAAAAAAAaCuKvkA3NeSKMIUEB6rSWaNcJjUAAAAAAAAAQI8U3tem/uG9VO+W8j8/ZXQcAAAAAAAAtBFFX6CbMvuZNCa+vyRpR26xwWkAAAAAAAAAAEYZcW6q736GQgAAAAAAAPgcir5ANzb2XNF3Z26x6urdBqcBAAAAAAAAABjhq6LvSYOTAAAAAAAAoK0o+gLd2LcHRaiXLUClFdX6hK9kAwAAAAAAAIAeaURshCTp0NFSOatrDU4DAAAAAACAtqDoC3Rj/mY/3TC8nyRpe26RwWkAAAAAAAAAAEb4VliQvhVqU329W/kMhQAAAAAAAPApFH2Bbm5sfH9J0o7cYrndboPTAAAAAAAAAACMMGJgw1Tf/Z85DE4CAAAAAACAtqDoC3Rz18R9S1aLWSWnnTp8tNToOAAAAAAAAAAAA4yIDZck5R6m6AsAAAAAAOBLKPoC3VxggFnXDo2S1DDVFwAAAAAAAADQ81w9OFImk/TJf07rP8XlRscBAAAAAABAK1H0BXqAG+P7S5K2f1wkt9ttcBoAAAAAAAAAwKX2rdAg3RhvlyT9dethg9MAAAAAAACgtSj6Aj3AdUOj5G/207GSSmXvOWZ0HAAAAAAAAACAARJuHiRJyv7oqBylToPTAAAAAAAAoDUo+gI9QJA1QFMnDJQkLXljj/IKThqcCAAAAAAAAABwqQ2+LFTxAyNUV+/Wu9s+MzoOAAAAAAAAWoGiL9BDTP/BUI2N76/aunotWLFLx0oqjI4EAAAAAAAAALjEGqf6btj5uSqcNQanAQAAAAAAwMVQ9AV6CD8/k/7rp6M0+LIQnTlbo3mv7FRZRbXRsQAAAAAAAAAAl9C1Q76ly/v1lrO6Tn/f8bnRcQAAAAAAAHARFH2BHsRq8dfcB27Qt8KCVOyo1IIVOXLV1BkdCwAAAAAAAABwiZhMJs9U37XbPlNNLXvEAAAAAAAA3oyiL9DDhPa26qkHb1Avq7/yPz+lxW/sUX292+hYAAAAAAAAAIBLZPzIGEX0ter0mWr988OjRscBAAAAAADABVD0BXqgy/r10a+Tr5fZz6T39x7Ta3/PNzoSAAAAAAAAAOASCfD3010TBkqS/vrPwwyDAAAAAAAA8GIUfYEe6uqrIvXIj0ZKkv6y+ZA27PyPsYEAAAAAAAAAAJfM5BsuVy+rv46VVCjnwHGj4wAAAAAAAOA8KPoCPdik0Zfpx98bLElKX71PHx08YXAiAAAAAAAAAMClEGQN0A9uvFJSw1RfAAAAAAAAeCeKvkAPd9/3h+i718aovt6t57P+rc+Ly42OBAAAAAAAAAC4BO4YHyt/s5/yPz+lA4UnjY4DAAAAAACAFlD0BXo4k8mkR380UsNjw+WsrtW8V3bqZJnT6FgAAAAAAAAAgC4W1seqidcNkMRUXwAAAAAAAG9F0ReAAvzN+s3Prld0ZLAcpU7NX75Lzupao2MBAAAAAAAAALrYtO8OlMkk7co7riNfnjE6DgAAAAAAAL6Boi8ASVLvIIueemiM+vSy6LOjZXrhtQ9VV+82OhYAAAAAAAAAoAvFfKu3bhjeT5K0ZitTfQEAAAAAALwNRV8AHv0jeun/PnCDAvz9lHPguLL+94DRkQAAAAAAAAAAXezum6+SJP3zw6M6VV5lcBoAAAAAAAB8HUVfAE0MuSJMv7x3lKSG6Q05eccNTgQAAAAAAAAA6EpDrgjT0CvCVFtXr7+9X2B0HAAAAAAAAHwNRV8AzYwfGa07x8dKkv7w54904tRZgxMBAAAAAAAAALrS3TcPkiS9t71QZ6tqDE4DAAAAAACARhR9AbQo+fbhumpAiCqcNVq0ardqauuNjgQAAAAAAACgHQ4fPqykpCRdffXVGjdunJYsWaK6ujqjY8HLjB7WTzHfClZlVa027PyP0XEAAAAAAABwDkVfAC0K8PfTk9OvUy9bgA5+cVor1x8wOhIAAAAAAACANiorK1NycrJMJpPS09M1a9YsrVixQkuXLjU6GryMn59JCd9tmOr77rbPGP4AAAAAAADgJSj6AjivfuG99NiPr5EkvZP9mXbtLzY4EQAAAAAAAIC2eOONN1RdXa20tDTddNNNuvfeezVr1ixlZmaqoqLC6HjwMt+9NkZhfQJ1sqxK2/YcNToOAAAAAAAARNEXwEWMje+vO78TK0la/MYenTh11uBEAAAAAAAAAFpr27ZtGjdunIKDgz3HbrvtNlVVVSknJ8fAZPBGAf5m3Tl+oCTpr1sPy+12G5wIAAAAAAAAFH0BXFTybcM1+LIQVThrtGjVbr6yDQAAAAAAAOeVl5enl19+WY8++qgmTpyouLg4xcXF6ejRjk0HPXPmjJYsWaI77rhD11xzja655hpNmTJFv/nNb/Tll19e8F63263ExERPls8++6xDWTqqI5+Ry+XSH//4R91222369re/rTFjxmj27NnKy8tr8fqCggLFxsY2OWa322Wz2VRQUNAp74PuZcrYK2QL9NcXx8/ow09OGB0HAAAAAACgx/M3OgAA7xfg76cnp4/WY7/fqoNfnNbK9Qf04J0jjI4FAAAAAAAAL7Rs2TJt3ry5U9c8fPiwfvazn+nEiRO6/PLLNX78eNXU1OiLL77Q22+/rWnTpikqKuq897/55pvatWuXTCaTV0wobe9n5HK59OCDDyonJ0fh4eG6+eabVVJSoo0bN2rr1q3KyMjQ+PHjm9xTXl6u3r17N1urT58+Ki8vb/c7oPvqZQv4/9m77/Aqy/uP4+9zTvYig+yEQAgJSRhhg4CKIO6F2yrgLNbRgdr2V+sAsdVqiwNotSLLLQ5ELbJBRsJeCWGFkL33Huf3xyFRTIDsw/i8risXyfPcz31/n5OIF3c+5/tw9aiefLnuCEvXHmZo5On/2xIRERERERERkc6noK+ItIivpxO/u2sQs96P46v1R4kO9WJkP39rlyUiIiIiIiIiIueYmJgYwsPD6devH/3792fSpEnk5ua2eb7i4mIeeOABCgsLee2117jhhhtOOX/ixAlcXFxOe31mZib/+Mc/GDt2LMeOHSMtLa3NtXSUtr5G7777LnFxcfTv358FCxY03vfy5cuZPn06Tz/9NKtWrTrj6yHSEjeODeWbjUfZfzSPIymFhAW7W7skEREREREREZGLltHaBYjI+WNkP39uurQ3ALM/3kVWfrmVKxIRERERERERkXPNI488wu9+9zsmTJhwxi67LfX222+TlZXF9OnTm4R8AXr06IGnp+dpr3/uueeor6/nxRdfbNP6hw8f5qOPPjrruPnz55OamtqiOdvyGtXW1rJo0SIAnn/++VPCvNdffz2XXXYZBQUFLF269JTr3NzcKC0tbTJfcXExbm5uLVpbLj7d3R0ZEW1p9BB7INPK1YiIiIiIiIiIXNwU9BWRVplyXRQRPTwoq6jh1cXbqKmtt3ZJIiIiIiIiIiJygaqqquKLL77A0dGRO++8s9XXf/XVV6xfv57f/va3BAYGtvp6s9nMU089xQsvvNAYsm3O7NmzeeWVV3j22WdbvUZL7dy5k8LCQoKCgujfv3+T89deey0Aq1evPuV4aGgox44dO+VYRkYGFRUVhIaGdlq9cv4b3NcHgN2Hsq1ciYiIiIiIiIjIxU1BXxFpFVsbI8/cNxRnR1sOnShk4bfx1i5JREREREREREQuUPv376ekpISoqCgcHR3ZsmULr776Ks899xzvvPNOkwDrz+Xm5vK3v/2N/v37M3ny5DatbzAYeP311/Hy8mLWrFksXry4yZjZs2czb948goKCePnll9u0TkskJCQAEB0d3ez5qKgoABITE085fumll/Ljjz+e0tX3u+++w8HBgeHDh3dStXIhiAn3BuBQSiFlFTVWrkZERERERERE5OKloK+ItJqPpxO/v2sQAF9vOMrW/RlWrkhERERERERERC5ER44cAcDLy4snn3ySqVOn8t577/HJJ5/w+uuvc9111/HGG280e+2MGTMoLS3lpZdewmhs+1Z4WFgYCxcuxNPTk5deeoklS5Y0nmsI+QYGBrJo0SICAgLavM7ZpKenA+Dn59fs+YbjhYWFlJWVNR6/6667sLOz44knnmDz5s188sknvP3220ydOhUXF5dOq1fOfz4eTgR6O1Nfb2bvkVxrlyMiIiIiIiIictFS0FdE2mREP39uvqw3ALM/3kVmXtlZrhAREREREREREWmdoqIiANauXcuaNWt4+umn2bBhA5s2beLZZ5/FxsaGuXPn8tlnn51y3YoVK1ixYgUPPPAAffv2bXcdffr0YcGCBXh4eDBz5kyWLFnSJOQbGBjY7nXOpLy8HABHR8dmzzs5OTV+/vOgb7du3ViwYAF1dXVMmzaNt956iylTpvDkk092ar1yYYgJ9wFg16FsK1ciIiIiIiIiInLxsrF2ASJy/ppyXRQJx/NJTC7g5QVx/PWBkXh7NP+LBhERERERERERkdaqr68HoKamhieeeIKHHnqo8dx9991HbW0tf//735k7dy633347YOloO2PGDEJCQnj88cc7rJaIiAgWLFjAlClTmDlzJgABAQEsXLiQoKCgDlunM4SFhbFo0SJrlyHnoZhwb77dlMTuQznWLkVERERERERE5KKljr4i0mY2JiPP3DsUVyc7ktKL+e0/1xK7P8PaZYmIiIiIiIiIyAXi511qG4K8P3fHHXcAkJ6eTkpKCgB/+9vfyM3N5cUXX8Te3r5D6+nbty8TJ05s/Prmm28mODi4Q9c4nYbXoqKiotnzDR1/AZydnbukJrnwDQjrjtFoICO3jKz88rNfICIiIiIiIiIiHU5BXxFpFx9PJ17/7aWEBbtTUl7DS+/H8e5X+6iprbN2aSIiIiIiIiIicp4LDAwEwM7ODl9f3ybnnZ2d8fT0BCAnx9JxdPXq1djb2zN37lzuu+++Uz4axvzxj3/kvvvu43//+1+r6nnjjTf49NNPCQwMxNPTk7lz5/LBBx+05xZbLCAgAIDMzMxmzzccd3d3V9BXOoyTgy0RPTwA2H0o28rViIiIiIiIiIhcnGysXYCInP/8uzvz6uNjWfhtPF9vOMqyjcc4kJTHM/cNJaC7i7XLExERERERERGR81RUVBQA1dXVlJWVNQmw1tXVUVJSApza/beqqoq4uLjTzrtv3z4Axo8f3+Ja3nzzTebOnUtgYCCLFi2irKyMqVOnMmPGDAB+9atftXiutoiMjATgwIEDzZ6Pj48HICIiolPrkIvPoHBvEo7nsysxh6tG9rR2OR3KbDZTVVOHg51+XSYiIiIiIiIi5y519BWRDmFrY+Shm/rx1wdH4Opkx9HUIn73z/Ws35lq7dJEREREREREROQ85e/vT3R0NACxsbFNzm/fvp2amhocHR0JDQ1tPJaYmNjsR0OH4O+++47ExESmTp3aojrefvtt5syZ0xjyDQoKIiIiggULFuDp6cnMmTP58MMPO+amT2Pw4MG4u7uTmpraGFT+ue+++w5oXXhZpCViwn0A2HM4h7p6s5Wr6VifrznMnf/3LXHxzXfKFhERERERERE5FyjoKyIdaniUH29Ov5zoUC8qqmp57YMdvPnJLiqraq1dmoiIiIiIiIiInKOeeeYZrr76apYsWdLk3COPPALAq6++SmrqT28qz8rKYtasWQDcdttt2NnZdUptc+bM4a233iIwMJCFCxcSFBTUeK4h7Ovh4cGMGTM6NexrY2PD5MmTAXjxxRcpLS1tPLd8+XLWr1+Ph4cHt956a6fVIBen8B7uODnYUFpRw9HUQmuX02Hq6upZtuEY9WZY/F0CZvOFFWIWERERERERkQuHnkUkIh2uu7sjs6ZdwscrD/HJqkRWxp3gYHI+f7xvGCH+btYuT0REREREREREOtG6deuYO3du49dFRUUAPP74441h3Msuu4zHHnuscUxGRgZJSUkUFBQ0me/qq6/m7rvv5qOPPuKGG25g8ODBGI1Gdu3aRUlJCTExMUyfPr1T7sVsNpOUlERAQAALFy4kODi4yZiGsO/UqVNJSkpq0bxteY0AHn74YbZu3UpcXBwTJ05k2LBh5Obmsn37dmxtbXn11VdxcXFp6+2KNMtkMjIgrDtb92ey+1AO4T08rF1Sh9h1KIfC0ioAjmcUsy0hi+FRflauSkRERERERESkKQV9RaRTmExGfnV1X/qHefH6BztIySrlD7PX8/DN/blqZAgGg8HaJYqIiIiIiIiISCfIz89nz549TY4nJCQ0fh4aGtqqOV944QWGDBnCBx98wK5du6itraVnz55cf/31TJkyBXt7+3bX3RyDwcArr7xCbm4uvr6+px0XERHBl19+iZ9fy0KCbX2N7OzseO+995g/fz7Lli1jzZo1ODk5MX78eB577DGio6NbtL5Ia8WE+7B1fya7DmVzx4Rwa5fTIdbuSAHA0d6GiqpaPl99mGGRvtq7FhEREREREZFzjoK+ItKpBoR588YfxvGvj3ey82A2cz7fw57DOfz2zkE42OuvIBERERERERGRC82kSZOYNGlSq65ZvHjxWcfccMMN3HDDDW0tC4A1a9a0+hqTyXTGkG+DloZ8oW2vUQM7OzumTZvGtGnT2nS9SFsMCvcG4ODxfCqqanE8z/d2yytr2Lo/E4Dp9wzmlcXbSTiez4FjefTr3d3K1YmIiIiIiIiInMpo7QJE5MLn7mrP8w+O5P7rozEZDfy4J51/f7nX2mWJiIiIiIiIiIiISAv4d3fGx9OJ2jozB47lWbucdtuyL4PqmjoCvZ0ZHu3H+GE9APhszWErVyYiIiIiIiIi0pSCviLSJYxGA5PGhfHiw6MwGGD1thTi4jOtXZaIiIiIiIiIiIiInIXBYGjs6rvrULaVq2m/tTtSALh8SDAGg4FJl4dhNMDOg9kcTS20bnEiIiIiIiIiIr+goK+IdKmB4d7cdGlvAOZ8tpuS8morVyQiIiIiIiIiIiIiZxPTEPRNzLFyJe2TW1jB3iO5AFw+OAiwdCweExMIwOfq6isiIiIiIiIi5xgFfUWky917TSSB3i7kF1fxzpf7rF2OiIiIiIiIiIiIiJzFgDBvDAZIySohr6jC2uW02YZdqZjNENXLEz8v58bjt13RB4DNe9NJzym1VnkiIiIiIiIiIk0o6CsiXc7e1sTv7x6E0QDrdqayZV+6tUsSERERERERERERkTNwc7ajd5A7ALsPnb9dfdfuSAXg8iHBpxzvFdCNoZG+1Jth6doj1ihNRERERERERKRZCvqKiFVEhHgyaZylQ8Lcz/dSVFpl5YpERERERERERERE5EwGhXsD52/QNym9iOMZxdiYjIwdGNDk/O3jLXvWa7afOK+7FouIiIiIiIjIhUVBXxGxmnuuiqCHnyuFpVX858t91i5HRERERERERERERM5gULgPYAn61tebrVxN6zV08x0W5YuLk12T81G9vIgO9aK2zsxX6492dXkiIiIiIiIiIs1S0FdErMbWxsTv7xqM0Whg4+40ftyTZu2SREREREREREREROQ0+vb0wN7ORGFpFcmZxdYup1Xq6s2s32kJ+o4bEnzacbddYenq+78txykpr+6S2kREREREREREzkRBX+kS33//PdOmTWPs2LEMGjSISZMmsXz5cmuXJeeAsGD3xsehzf18LwUllVauSERERERERERERESaY2tjol+oFwC7EnOsXE3r7D2cQ35xJS6OtgyN9DntuCF9fegV4EZldR3Lf0zqwgpFRERERERERJqnoK90iQULFuDs7Myf//xn5s6dy4gRI5g+fTqLFy+2dmlyDrhzQgQ9/d0oKa9m3tK9mM3n3yPfRERERERERERERC4GgyIsIdndh7KtXEnrrDvZzXdsTCC2NqbTjjMYDI1dfb/ZeIzKqtouqU9ERERERERE5HRsrF2AXBzmzZuHp6dn49ejRo0iOzub999/n/vuu8+Klcm5wNbGyO/vHswfZq9ny74MNuxK47LBQdYuS0RERERERERERER+ISbcG4ADx/KorqnDzvb0odlzRWVVLZv3pgMwbkjwWcePHhDAEq+DZOSVsSI2mZsu7d3ZJYqIiIiIiIiInJY6+kqX+HnIt0FkZCTZ2efXO/6l84QGduPOKyMA+PcXe8kvrrRyRSIiIiIiIiIiIiLySz18XfF0c6C6tp74pDxrl9MiW/dnUFldh5+XE317epx1vMlkZNK4MAC+WneEmtr6zi5RREREREREROS0LuiOvgcOHGDz5s3s27eP/fv3k5aWBsDq1asJCmp9t9BPPvmELVu2kJiYSF5eHmVlZXTr1o3+/ftz1113MW7cuI6+hVZp6/1WV1fz/vvvs2zZMlJSUnBycmLo0KE8+uijREdHd1q9u3fvplevXp02v5x/bh/fh9gDGRxNLWLOZ3t49oHhGAwGa5clIiIiIiIiIiIiIicZDAZiwr1Zsz2F3YdyiAn3sXZJZ7V2ZyoAlw8ObvGe8/hhwXz0w0FyiypZtyOFK0eEdGaJIiIiIiIiIiKndUF39J0zZw6vvfYaK1asaAy9tsf777/PypUrcXBwYPDgwVx55ZX4+/uzbt06pk2bxiuvvNIBVbddW+63urqaBx98kH/+858UFBQwbtw4QkNDWblyJXfeeScbN27slFq3bNnCqlWruP/++ztlfjk/2ZiM/P6uwdiYDMTFZ7J2R4q1SxIRERERERERERGRX4gJ9wZg16GcVl9bX2/mna/28dx/NpORW9bRpTVRUFzJ7kTL0wXHDWl5ExhbGxM3XWrp6rt07WHq6s2dUp+IiIiIiIiIyNlc0B19Y2JiCA8Pp1+/fvTv359JkyaRm5vb5vn+9re/ER4ejrOz8ynHt2/fzsMPP8z8+fO5+uqrGThwYHtLb5O23O+7775LXFwc/fv3Z8GCBbi4uACwfPlypk+fztNPP82qVasajwOUlJSQnZ191np69+7d7PHU1FSmT5/O+PHjmTRpUivuUC4GIf5u3HNVXxZ9l8A7X+5jYB9vvLo5WrssERERERERERERETkppo8l6HssrYjCkircXe1bfO3HKxP5ZuMxAP4wez1/mjKMgSfn6wzrd6VRb4aIEA8CvF3OfsHPXD0qhM9WHyItp4yt+zIYPTCgk6oUERERERERETm9Czro+8gjj3TofIMGDWr2+NChQ7nmmmtYunQpW7ZsaVHQ9/Dhw2zfvp277777jOPmz5/PxIkTCQo6+7vMW3u/tbW1LFq0CIDnn3/+lDDv9ddfz7Jly1i/fj1Lly5lypQpjef+97//8eyzz551/sTExCbHCgsLefjhhwkICOC1115rVb1y8Zh0eRhb92dw6EQhb366mxceGtnix6mJiIiIiIiIiIiISOfycHOgp78bxzOK2XM4h8sGt6xT7ua96Xz0g+V3B/5ezmTklfHcO1t45KZ+XDu6V6fsA6/baXly3LgW1vhzTg62XDemF5+sPMRnaw5xyQB/7VWLiIiIiIiISJczWruAC4WNjSUzbWdnd9axZrOZp556ihdeeKExaNuc2bNn88orr7QoVNsWO3fupLCwkKCgIPr379/k/LXXXgvA6tWrTzl+++23k5iYeNaPX6qoqGDatGnU1NTwn//8B0dHdWmV5plMRn5312BsbYzsPJjND7EnrF2SiIiIiIiIiIiIiPxMTLilC+/uQzktGn88o5h/fbQTgJsu7c1bT4/j8iFB1Neb+feX+5jz+R5qaus7tMYTmcUcTS3CZDQwJiawTXPcMCYUO1sTR1OL2NXCexURERERERER6UgK+naAhIQEvv/+e0wmE2PHjj3reIPBwOuvv46XlxezZs1i8eLFTcbMnj2befPmERQUxMsvv9wZZZOQkABAdHR0s+ejoqKA5jvztlZtbS2//e1vOX78OP/973/x8vJq95xyYQv2deXeqyMBeOfLvRxMzrdyRSIiIiIiIiIiIiLSYFC4DwC7D2VjNpvPOLaotIqZ82OprK4jpo83918fhb2tiT/cPZip10VhMMCKrcn89T+bKSqt6rAa1+5IBWBopC/dXOzbNEc3F3uuGhkCwOerD3dYbSIiIiIiIiIiLaWgbxssXbqUP/3pT0yfPp277rqLW265hYqKCl544QX69OnTojnCwsJYuHAhnp6evPTSSyxZsqTxXEPINzAwkEWLFhEQENAp95Geng6An59fs+cbjhcWFlJWVtautV588UXWr1/Pb37zGwoLC9m9e3fjR3V1dbvmlgvXTZf1ZliUL9W19cx8L5aM3Pb9HIqIiIiIiIiIiIhIx4gK9cTWxkhuUSWp2aWnHVdbV8+ri7eTnV+Ov5czz0weislk+fWUwWDg1iv68NcHRuBob8OBY3n8YfZ6ktKL2l1ffb2ZdTstQd/LhwS1a66bL+uNyWhg39FcNaUQERERERERkS6noG8b7Ny5ky+//JLly5eza9cuHBwceO6557j11ltbNU+fPn1YsGABHh4ezJw5kyVLljQJ+QYGtu1RUi1RXl4OgKOjY7PnnZycGj9vb9B306ZNAMyaNYs777zzlI/s7Ox2zS0XLpPRwNP3DiUsqBvFZdW88O6WDu3mICIiIiIiIiIiIiJt42BnQ1QvTwB2HTr9Pv97y/az90gujvYm/vLAcFyd7JqMGRblx+u/vRR/L2eyCyp45q2NbNmX3q76DhzLI7ewAmcHG4ZHNd/wpKV8PJwaw8KfrVJXXxERERERERHpWgr6tsGsWbNITExk165dfPXVV1x77bX89a9/5de//jWVlZWtmisiIoIFCxbg7u7OzJkzmTdvHgEBASxcuJCgoPa9w/xcsmbNGhITE5v9uJDuUzqeo70Nzz04Eh8PR9Jzy5j1fhxVNXXWLktERERERERERETkohcT7gPA7kM5zZ7/ITaZ5T8mAfCHe4YQ4ud22rmCfV15/XeXMrBPdyqr63h5wTY+XpmI2WxuU21rd6QAMHpgIHa2pjbN8XO3XdEHowHi4jNJSFJXXxERERERERHpOgr6toOTkxORkZG8/PLL3HbbbWzcuJH333+/1fP07duXiRMnNn598803Exwc3JGlNquhY29FRUWz5xs6/gI4Ozt3ej0ip+Ph5sDzD43E2dGWhOP5/OujndTXt21zV0REREREREREREQ6Rky4NwD7j+ZSW1d/yrmEpHzmLd0DwK+u7svIfv5nnc/VyY4XHx7F9WN6AfDB/w7yyuLtVFbVtqquqpo6Nu21dARu6MTbXkE+rkwYHgLA+8sPtDmALCIiIiIiIiLSWgr6dpCbb74ZgNWrV7f62jfeeINPP/2UwMBAPD09mTt3Lh988EEHV9hUQEAAAJmZmc2ebzju7u6uoK9YXQ8/N/5y/3BsTAY27Ulnwbfx1i5JRERERERERERE5KIWGtANN2c7KqrqSEwuaDyeW1jBywvjqK0zM3pAAHdOCG/xnCaTkV/fMoDHbx/YuB/8xzk/cuBYXosbQMQdyKS8shZvD0eie3m1+r5O556rIrCzNZFwPJ+t+zM6bF4RERERERERkTNR0LeDeHp6ApCf37rHNb355pvMnTuXwMBAFi1axIIFC/D09GTGjBmdHvaNjIwE4MCBA82ej4+3BCkjIiI6tQ6Rlurfuzu/vWswAF+uO8K3Px6zckUiIiIiIiIiIiIiFy+j0UBMH0tX312J2YClm+6s92MpLKmip78bv71rEAaDodVzXzWyJy9NG003FzuOpRXxpzk/8uCslcz/5gBHUgrP2FF37Y4UAC4fHITR2Pq1T8ermyM3X9YbgIXfxjfpYiwiIiIiIiIi0hkU9O0gsbGxAISEhLT4mrfffps5c+Y0hnyDgoKIiIhoDPvOnDmTDz/8sLNKZvDgwbi7u5Oamsq+ffuanP/uu+8AGD9+fKfVINJalw8O4r5rLCH1d77aR6y6JoiIiIiIiIiIiIhYTUy4Jei7+1AOZrOZtz/dzZHUIlyd7PjL/cNxtLdp89zRoV7887eXccXQYBztbcgtrODLdUf4/ez1/Prvq1nyfQLJmcWnXFNUWsXOg5bQ8bghwW2/sdO4dVwYbs52pOWUsTI2ucPnFxERERERERH5JQV9f+GZZ57h6quvZsmSJacc379/PytXrqS2trbJNWvXrmX27NkA3H777S1aZ86cObz11lsEBgaycOFCgoKCGs81hH09PDyYMWNGp4V9bWxsmDx5MgAvvvgipaWljeeWL1/O+vXr8fDw4NZbb+2U9UXa6vbxfbhqZAj1Znh1yQ4OnSg4+0UiIiIiIiIiIiIi0uFiwn0AOJxSwOLvE1i3MxWj0cCfpwzDz8u53fP7eDrx+7sHs+TFq/m/qcMYMzAAO1sTGbllfLLqEI//Yy2P/2MNn6xKJD23lI2706irNxMW1I1gX9d2r/9LTg623D3R8iTED1ckUl5Z0+FriIiIiIiIiIj8XNvfRn0eWLduHXPnzm38uqioCIDHH38cOzs7AC677DIee+yxxjEZGRkkJSVRUHBqcDAzM5PHH38cNzc3oqOj8fLyoqSkhKSkJE6cOAHAAw88wLXXXnvWusxmM0lJSQQEBLBw4UKCg5u+o7wh7Dt16lSSkpI67X4ffvhhtm7dSlxcHBMnTmTYsGHk5uayfft2bG1tefXVV3FxcWnR+iJdxWAw8OikAeQUVrDzYDYz34vlH0+O7ZBNYxERERERERERERFpOW8PRwK9XUjLKeWz1YcBeOSmfvQP696h69jZmhjVP4BR/QOoqKol7kAmG3enseNgFsmZJSR/f5Al3x/EzsbS46Yzuvk2uGpkT5ZtPEZGbhlfrT/KPVf17bS1REREREREREQu6KBvfn4+e/bsaXI8ISGh8fPQ0NAWzdW/f38ef/xx4uLiSEpKYseOHRiNRnx8fLjpppu44447GDp0aIvmMhgMvPLKK+Tm5uLr63vacREREXz55Zf4+fm1aN623K+dnR3vvfce8+fPZ9myZaxZswYnJyfGjx/PY489RnR0dIvWFulqJpORP943lD/P2cSx9CJeeHcr/3hyLK5OdtYuTUREREREREREROSiMijCm7Qcy1MDrxoZwrWje3Xqeo72Nlw2OIjLBgdRWl7N1v0ZbNiVxp4juVTX1mNjMjB2UGCnrW9rY2TKtVH8fdE2vlx3hGtG9cTDzaHT1hMRERERERGRi9sFHfSdNGkSkyZNatU1ixcvbva4r68vTzzxREeUBYDJZDpjyLdBS0O+0Lb7BUvYd9q0aUybNq3V14pYk5ODLc89NIKn3txIWk4ps96PY+avR2FrY7J2aSIiIiIiIiIiIiIXjTEDA1n+YxLRoV78+pYBGAyGLlvbxcmOCcNDmDA8hMKSKuLiM/H1dMLDtXODt5cM8CeihweJJwr46IdEfnPbwE5dT0REREREREQuXkZrFyAi0h5e3Rx54aGRODnYcOBYHrM/2kV9vdnaZYmIiIiIiIiIiIhcNKJDvXj3/ybw0rRLsLWx3q+e3F3tmTgihIF9vDt9LYPBwP03WJ6KuCI2mZSskk5fU859xWXVVFbVWrsMERERERERucAo6Csi570Qfzf+b8pwTEYDG3an8e8v9mI2K+wrIiIiIiIiIiIi0lX8vJyxMV1cv3aKDvViRLQf9fVmFn0Xb+1yxMrKK2t45G+rmP7mBmuXIiIiIiIiIheYi2vHRUQuWAPDvfnd3YMxGOD7Lcf5z5f7FPYVERERERERERERkU415boojAbYuj+T+KQ8a5cjVnQ0rYiyihpOZJZQVFpl7XJERERERETkAqKgr4hcMC4fHMRv7xyEwQDfbkriv1/vV9hXRERERERERERERDpNsK8rV44IAeD9bw5oT/oidiKzpPHztJxSK1YiIiIiIiIiFxoFfUXkgjJ+WA+euD0GgGUbjzFfG6siIiIiIiIiIiIi0onuuaov9nYmDiYXsGVfhrXLEStJyfop6JuaraCviIiIiIiIdBwFfUXkgnPliBAeu20gAF+tP8rCb+MV9hURERERERERERGRTuHp5sAtl4UBsPDbeGrr6q1c0fkvr6iS49lV1i6jVX7e0VdBXxEREREREelICvqKyAXp6lE9efTWAQAsXXuExd8nKOwrIiIiIiIiIiIiIp3ilst74+5iT3puGSu2Jlu7nPPe7E/2smBVDkdSi6xdSoud2tG35AwjRURERERERFpHQV8RuWBde0kvfn1LfwA+W32YD1ckWrkiEREREREREREREbkQOTnYctfECAA+/iGR8soaK1d0/iqtqOHwyYDvoZTzI+hbVFpFYelPHYjV0VdEREREREQ6koK+InJBu35MKA/d1A+Aj1cm8tEPCvuKiIiIiIiIiIiISMe7amQIAd2dKSyt4st1R61dznnr4PF8Gh7QdyLr/OiM29DN18nBBoCsvDJqauusWZKIiIiIiIhcQBT0FZEL3k2X9uaBG6IB+HDFQT5ddcjKFYmIiIiIiIiIiIjIhcbGZGTKdVEAfLn+CPnFlVau6PwUn5TX+HlK1vnRGbchkBzVywtnBxvqzZCeW2blqkRERERERORCoaCviFwUbrk8rHGDdfH3CXy+5rCVKxIRERERERERERGRC82o/v70DfGgqrqOD1cctHY5HE4p4I9vb2RnYra1S2mxhOP5jZ+nZJdRX2+2YjUtk5JpCfr28HUlyMcVgNTs8yOkLCIiIiIiIuc+BX1F5KJx2xV9uO+aSAAWfhvPl+uOWLkiEREREREREREREbmQGAwG7j/5hLmVscmknOz0ai1L1xwhPimfvy+M40RmsVVraYma2noOJRc0fl1VXUd2QbkVK2qZho6+PfxcCfRxASA127rfexEREREREblwKOgrIheVOyaEc89VfQGY/80Bvlh7GLP53O8GICIiIiIiIiIiIiLnh6heXoyI9qPeDJ+uPmS1Oqpr6tiZmAVARVUdL70fR2l5tdXqaYmjaYVU19bj6mSLr7stAMczzv2AckPQN9jXlaDGoK86+oqIiIiIiEjHUNBXRC46d0+M4M4rwwF4f3k87369n7rz4NFfIiIiIiIiIiIiInJ+uGtiBAAbdqaSnmudwOfeI7lUVNXh4WqPj4cjGbll/OODHef0fnhCUj4AET3cG4O+yed40Le4rJrCkiqgIejrCijoKyIiIiIiIh1HQV8RuSj96qq+PHDy8WnfbDzGK4u2UVVTZ+WqRERERERERERERORCEBbkztBIX+rN8Nmqw1apYev+DABG9vPnL/ePwM7WxM6D2Sz+Lt4q9bREfFIeABEh7vicJx19U0528/XxcMTR3qaxo29adomeKCgiIiIiIiIdQkFfEbkoGQwGbrk8jGfuG4qNyciWfRn8Zd4mikqrrF2aiIiIiIiIiIiIiFwA7jr5ZLm1O1LIyi/v0rXr683EHcgELEHf0MBu/O7OQQAsXXuE9TtTu7SeljCbzSQct3T07dvDHV93GwCSM8/toO+Jk/X18HMDwL+7MyajgYqqOvKLK61ZmoiIiIiIiFwgFPQVkYva2JhAXpp2CS6OtiQmF/D0Wxut9hg1EREREREREREREblwRIR4Mijcm7p6M5+v6dquvodSCigoqcLR3ob+YV4AjB0UyG1X9AHgzU93czS1sEtrOpv03DKKSquxtTHSK8CtsaNvWk4ZNbXn7hP5Tpzs6Bvs6wqAjcmIn5czAKlZ5/7vG46kFjL5hf/x5boj1i5FRERERERETkNBXxG56EWHevHqE2Px8XQiI7eMp9/cSGJyvrXLEhEREREREREREZHz3J1XRgCwKi6ZnIKKLls3dr+lm+/QSF9sbUyNx++9JpIhfX2orqlj1oI4CkvOnafcxR/LAyC8hwe2NkbcHE04O9hQX28m5RwOzJ7ItAR9e5wM+gIE+bgAkJpdYpWaWmNlbDIFJVW8v/wA+47kWrscERERERERaYaCviIiWN5p/9oTYwkL6kZxWTX/N28zW/dnWLssERERERERERERETmPRYd60b93d2rrzHyxtuu6+jbsb4+I9jvluMlo4Kl7hxLo7UxOQQV/X7SN2rr6LqvrTOKTLA04onp5AmAwGAj2tQRmkzOLrVbX2aSc7Ojbw6+5oO+5G1BusPtQDgBmM7z2wQ6KSs+d8LeIiIiIiIhYKOgrInKSh5sDL/9mDEMjfamuqePlBXEs//GYtcsSERERERERERFplyNHjjBlyhQGDhzImDFjeOONN6irq7N2WSIXjbsmhgOwIjaZ/OLKTl8vLaeU1OxSbEwGhkb6Njnv4mjLX+4fgaO9DQeO5fHfr/d3ek0tEZ9k6egb2dOz8ViPhqBvxrkZ9C0pr6bgZFfkhnCv5XNL6PdcD/pm55eTnluG0WjAv7sz+cWVvPXpbsxms7VLExERERERkZ9R0FdE5Gcc7W149v7hXDUyBLMZ/vPlPuZ/c4D6em1qiYiIiIiIiIjI+aeoqIipU6diMBiYO3cujz32GO+//z5vvvmmtUsTuWj0792dyJ6e1NTW88XaI52+XuzJbr79enfH2dG22THBvq489ashGAzw7aYkfohN7vS6zqSwpIr03DKg+aDv8XM06Hsi09LN19vDESeHn17rIN+Gjr4lVqmrpXYftnTzDQ9254/3DcXGZCT2QCbfbUqycmUiIiIiIiLycwr6ioj8gslk5LHbBnLfNZEAfLnuCK99sIPqGnU5ERERERERERGR88vHH39MVVUVb7/9NqNHj+buu+/mscceY8GCBZSWntudJkUuFAaDgbuujADg+y3HKTzZAbazbN2fCcDIaL8zjhse7cevruoLwLylezh4PL9T6zqThOOWbr4hfq64ONk1Hg8+xzv6nsiyBHl7+LqecjzI21J3blEl5ZU1XV5XS+05ZAn6Dgz3pneQO/dfHwXAe98cICm9yJqliYiIiIiIyM8o6Csi0gyDwcAdE8L5wz2DsTEZ2Lg7jd/9az1vfrKLT1cdYsOuVA6dKKCotEqPsBIRERERERERkXPWhg0bGDNmDC4uPz1S/rrrrqOyspK4uDgrViZycRkU4U14D3eqa+r4an3ndfUtKKnkYLIlsDs82v+s4++YEM4lA/yprTPz8oI48ooqOq22M4lPstQc2cvrlOPBPj8FZkvLq7u8rrNJORn0Df5F0NfFyQ53V3sA0nPKuryulqivNzd29B0U7gPADWNDGRrpS01tPf9Ysp3K6lprligiIiIiIiIn2Vi7ABGRc9m4IcF4ujnw8oI4UrJKGjftfs7R3gY/Lyf8vJzx9fzpT19PJ7zdHXGw11+1IiIiIiIiInLxOHDgAJs3b2bfvn3s37+ftLQ0AFavXk1QUFCb5y0pKWH+/PmsWrWK1NRUAHx9fRkyZAhPPvkkvr6+ANTU1BAbG8u6deuIjY0lJSWFuro6/Pz8GDNmDA899BCBgYHtv9F2aM9rVF1dzfvvv8+yZctISUnBycmJoUOH8uijjxIdHd1k/LFjxxg5cuQpxwICAnB0dOTYsWNcccUVHXdjInJaBoOBO6+MYOZ7sXy7KYlJ4/rg5mx39gtbKe5AFmYzhAV1w9vDsUV1/e6uwaTnbOR4RjF/W7CNl38zGjtbU4fXdiYJJ4O+Ub08Tznu7GhLd3dHcgsrSM4sITrUq7nLreZEpqXTcIifa5NzQT4uFJZUkZpdQliwexdXdnbHM4opLqvGwc5EeA8PoOHnYRBPvLaWlKxS/vv1fh6/Pca6hYqIiIiIiIiCviIiZzOwjzdzn7mCvUdyycwrJzOvjKx8y595RZVUVNWSlF5MUnrzjw5zdbLF28MS+vX2cMTb3QkfT8eTXzvh7mKP0Wjo4rsSEREREREREekcc+bMYfXq1R0655EjR7j//vvJzs4mJCSEsWPHUlNTw4kTJ/j888+55ZZbGoO+27Zt48EHHwTA39+f0aNHA7B3714+/PBDli1bxn//+18GDRrUoTW2Rltfo+rqah588EHi4uLw8vJi3Lhx5OTksHLlStatW8e8efMYO3bsKdcUFxfj6to0gObm5kZxcfP7WSLSOYZF+hIa2I1jaUUs23CUe6+J7PA1Yg9kADCy39m7+TZwtLfhL/cP5w+z15N4ooB/f7GXJ+/sur8jK6trOZJaCEBUr6ZB3p7+buQWVnA8o/icC/qerqMvQJCPK/uP5pGaXdrVZbXI7kPZAPTr3R1bm58eAtvNxZ7p9wzhr+9sZsXWZGLCvRkz0LpvkBEREREREbnYKegrItICXt0cGTckuMnx6po6svLLG4O/Pw8C5xSUU1ZZS0l5DSXlRRxLK2p2bhuTkZ4Bbozq58+o/v7NbgiKiIiIiIiIiJwvYmJiCA8Pp1+/fvTv359JkyaRm5vb5vmKi4t54IEHKCws5LXXXuOGG2445fyJEydwcXFp/NpgMHDVVVdx//33nxLmraqq4oUXXuCLL75g+vTprFixAltb2zbX1R5tfY3effdd4uLi6N+/PwsWLGi87+XLlzN9+nSefvppVq1adcrrISLnDoPBwF1XhvPygm188+Mxbr48DBfHjvt7qKKqlt2HcgAY0YqgL4CflzPP3DeU59/Zwsq4E4yI9mv1HG11+EQhdfVmPN0c8GmmC3GInyvbE7JIzji33pxQWl5NfnEVcLqgr+Xv4nM36Gv5WYkJ925ybmC4N7dd0YfPVh/m7U93Ex7sgY+nU1eXKCIiIiIiIicp6Csi0g52tiaCfV1PG84tq6ghp7CCnIJycgoryM4vP/m15Vh+cSW1dfUcSSnkSEohi79PINDbhVH9LaHfPsHuGAzq9isiIiIiIiIi549HHnmkQ+d7++23ycrK4s9//nOTkC9Ajx49Tvl61KhRjBo1qsk4e3t7nn/+eVauXElaWhq7du1i+PDhZ13/8OHDbN++nbvvvvuM4+bPn8/EiRMJCgo665xteY1qa2tZtGgRAM8///wpYd7rr7+eZcuWsX79epYuXcqUKVMaz7m5uVFa2jRkVlxcjJubW6vrEJH2GRHtT4ifK8mZJXyz8Rh3T4zosLl3JWZTU1uPr6cTIX6tbygRE+7DLZeHsXTtEeYu3Ut07+4dGkQ+nfjjeQBE9fJsdj+8p7/l76rkzHMr6HviZDff7u6OODk0fZ0CvRuCviVdWldLVNfUcSApH2g+6Atwz1V92Xs4l8QTBbz2wQ7+9pvRmEzGZseKiIiIiIhI51LQV0SkEzk72uLsaNu4EflLtXX15BZWsOdwLlv2pbPncA5pOaV8vuYwn685TPduDozs58/I/v70C/XSJpqIiIiIiIiIXFSqqqr44osvcHR05M4772z3fA4ODvTs2ZN9+/aRnZ191vFms5mnnnqKgwcPUlNTw+TJk5sdN3v2bObNm8eGDRtYsGBBu+tszs6dOyksLCQoKIj+/fs3OX/ttdeyfv16Vq9efUrQNzQ0lGPHjp0yNiMjg4qKCkJDQzulVhE5PaPRwJ0TInh1yXaWbTjKTZeGNhsSbYvYA5kAjOzn3+YGEndf1Zet+zNIyynj/W8O8MQdMR1S25nEnwycRvXyavZ8SEPQN6MYs9l8zjTHOJFpCfD2OE2ouqGjb1pOGXX1ZkzGc6NugITj+VTX1OHpZk+P0zQysTEZeereIfz2n+tIOJ7PRysTuffqyC6uVERERERERACUGBMRsSIbkxE/L2euGhnCCw+P4oMZ1/D0vUMYPTAABzsTuUWVLN+UxLP/3sx9L/yPf320k23xmZjNZmuXLiIiIiIiIiLS6fbv309JSQlRUVE4OjqyZcsWXn31VZ577jneeeedJgHWs6mrqyMtLQ2A7t27n3W8wWDg9ddfx8vLi1mzZrF48eImYxpCvkFBQbz88sutqqc1EhISAIiOjm72fFRUFACJiYmnHL/00kv58ccfT+nq+9133+Hg4NCijsYi0vEuGRhAkI8LpRU1fLspqUPmrKurZ1u8Jeg7op9fm+extzXxxB2DAPghNpk9h3I6pL7Tqas3c/C4Jegb2cuz2TFBPq6YjAbKKmvJLazs1HpaI+VkR9/TBWW9PZywszFSW1dPdn55V5Z2VnsOW76vA/t4nzE47eflzG9uHQjAp6sOse9IbpfUJyIiIiIiIqdS0FdE5Bzi5GDLpYOC+NPkYXww4xr++uAIrhzeA1cnO0rKa1izPYUZ78Xyxie7qKurt3a5IiIiIiIiIiKd6siRIwB4eXnx5JNPMnXqVN577z0++eQTXn/9da677jreeOONFs/39ddfk5+fj6enJ4MHD27RNWFhYSxcuBBPT09eeukllixZ0niuIeQbGBjIokWLCAgIaN0NtkJ6ejoAfn7NB/gajhcWFlJWVtZ4/K677sLOzo4nnniCzZs388knn/D2228zdepUXFxcOq1eETk9k9HAHRPCAfhq/VEqqmrbPWd8Uj4l5TW4OtkR1bP5wGxLRYd6cd3oXgC89dluKjugvtM5kVlMeWUtjvYmep3myXi2NkYCvC1/XyVnFndaLa3V2NH3NEFfk9HQWHdqdkmX1dUSu04GuGPCvc869rLBQUwY1gOzGV7/cAfFZdWdXZ6IiIiIiIj8goK+IiLnKDtbE8Oj/HjyzkEsfuEqXn50NNeP7oXRaGD1thT+sWQHNbUK+4qIiIiIiIjIhauoqAiAtWvXsmbNGp5++mk2bNjApk2bePbZZ7GxsWHu3Ll89tlnZ50rNTWVV155BYDf//732NnZtbiOPn36sGDBAjw8PJg5cyZLlixpEvINDAxs2022UHm5pRuko6Njs+ednJwaP/950Ldbt24sWLCAuro6pk2bxltvvcWUKVN48sknO7VeETmzS2MC8fdyprismu83H2/3fFv3ZwAwLMoXk6n9v/6bfG0k3h6OZOWXs/h/Ce2e73TikyzdfCNCPM9Yd8+TIeDjGedQ0PdkR99gv+aDvgBBPg1B39LTjulqJeXVHE0tBCwdfVvikVv6E+jtTF5RJW9+sktPHRQREREREeliCvqKiJwHTCYj/cO68+tJA/jT5GHYmIxs2pvOS+/HUlnded0URERERERERESsqb7e8ibnmpoapk2bxkMPPYSvry/du3fnvvvu4w9/+AMAc+fOPeM8paWl/OY3v6GwsJCrr76aO+64o9W1REREsGDBAtzd3Zk5cybz5s0jICCAhQsXEhQU1Pqb60JhYWEsWrSIvXv38uOPP/K73/0Ok8lk7bJELmomk5E7JvQB4Mv1R6iqqWvzXGazma0HMgEY2c+/Q+pzcrDl8dtiAPhm4zEOHs/vkHl/KT4pD+CsXYhD/C1h2uRzJOhbWlFDfnElcPqOvgBBPpZz51LQd+/hXMxmCPZ1xatb828e+SVHexuevncoNiYjsQcy+a4DwukiIiIiIiLScgr6ioicZ0b19+e5B0dgb2di58FsXnh3K2UVNdYuS0RERERERESkw/28S+3tt9/e5HxDYDc9PZ2UlJRm56iqquLRRx8lMTGRUaNG8Y9//KPN9fTt25eJEyc2fn3zzTcTHBzc5vlao+G1qKioaPZ8Q8dfAGdn5y6pSUTa5/Ihwfh4OlFYUsWKrcfbPM/xjGKy88uxszEyKLxlHVpbYnBfH64YGozZDG9+uoua2raHkU8n4WSAOKqX1xnH9fTruI6+mXllJGe2b56UTEs33+7dHHBysD3tuJ86+pa0a72OtPtwDkCrf1Z6B7kz9fooAOYv209RaVWH1yYiIiIiIiLNU9BXROQ8NCjChxmPjMLZwYYDx/J49t+btKkmIiIiIiIiIhecwMBAAOzs7PD19W1y3tnZGU9PSxfInJycJudramp44okniIuLIyYmhrlz52JnZ9fmet544w0+/fRTAgMD8fT0ZO7cuXzwwQdtnq81AgICAMjMzGz2fMNxd3d3BX1FzhM2JiO3XWHp6rt0zRGq29jVd+t+y3//MeE+ONjbdFh9AA/d1A93V3tSskr5eOWhDp07u6CcnIIKjEYD4SEeZxwb4m8J+qZml1BbV9/mNWtq63nmrY38YfYG8oqaf+NES5zIsgSFe5wMIJ/OT0Hfc6ej7+5D2QAMbEMo/MaxoYQGdqO6tp6Nu9M6ujQRERERERE5DQV9RUTOU1G9vJj16GjcnO04klrEn+duatfGpIiIiIiIiIjIuSYqytI5sLq6mrKysibn6+rqKCmxdEn8efdfgPr6ep5++mnWr19P3759eeedd5qMaY0333yTuXPnEhgYyKJFi1iwYAGenp7MmDGjS8K+kZGRABw4cKDZ8/Hx8QBERER0ei0i0nEmDAumezcH8osr+SE2uU1zxB7IAGBkP7+OLA0AVyc7pk0aAMDSNYc5llbUYXMnJFm6+YYGuOF4loCyj4cTjvYmauvMpOW0PTR74FguBSVVVNfUNQak2+JEluX/PcG+rmccF+htCfoWl1WfE806MvPKyMwrx2Q00C/0zF2Um2MwGBg/zNLJfs325jvpi4iIiIiISMdT0FdE5DzWO8idvz82Bq9uDqRklfDHt38kM6/pL706WkZuGWu2n1CwWEREREREREQ6lb+/P9HR0QDExsY2Ob99+3ZqampwdHQkNDS08bjZbObZZ5/l+++/p1evXsyfP59u3bq1uY63336bOXPmNIZ8g4KCiIiIaAz7zpw5kw8//LDN87fE4MGDcXd3JzU1lX379jU5/9133wEwfvz4Tq1DRDqWrY2psavv/G8OcOBYXquuzy4o52hqEQYDDIvq+KAvwOgBAVwywJ+6ejNvfrqLunZ01P25hOOWoG9Ur7MHTo1GQ2P33BMZJW1eMy4+q/Hz2P0ZbZ7nRKalhh5+Zw76Otjb4O3hCNCugHJH2X3I0v0+IsQDJwfbNs1xaUwQJqOBwymFpGS1/XshHc9sNmM2m61dhoiIiIiIdAIFfUVEznPBvq688vhY/L2cycov549v/8iJzOIOXaOqpo4dB7N456t9/Ppvq3jkb6v410e7+MPs9SRndOxaIiIiIiIiInLxeeaZZ7j66qtZsmRJk3OPPPIIAK+++iqpqamNx7Oyspg1axYAt912G3Z2do3n/v73v7N06VKCgoJYuHAhXl6t71rYYM6cObz11lsEBgaycOFCgoKCGs81hH09PDyYMWNGp4Z9bWxsmDx5MgAvvvgipaU/BcaWL1/O+vXr8fDw4NZbb+20GkSkc1w9qicjov2oqa1n5vzYVu25xh2wdKWN7OmJu6t9Z5XItFsG4OJoy9HUIr5Yd6RD5oxPsoSaWxL0Bejpbwn6Hm/j/rfZbG58vQD2Hc2lrKKmTXM1BFx7nKWjL0DQya6+qdnnQND3sCXoG9PHu81zuLvaM6SvLwBrd6ir77miqLSKB2et5Ln/bKG2g8L4IiIiIiJy7jjzc3BEROS84OvpxN8fH8Nf/7OZE5kl/GnOJmY8MoqwYPc2z5meW8qOhGx2HMxi35Fcqmt/2hgyGQ24ONmSX1zFn+b8yPMPj6RviGcH3ImIiIiIiIiInO/WrVvH3LlzG78uKrI85v3xxx9vDONedtllPPbYY41jMjIySEpKoqCgoMl8V199NXfffTcfffQRN9xwA4MHD8ZoNLJr1y5KSkqIiYlh+vTpjeNXrVrFggULAAgMDORf//pXs3VOmDCBCRMmnPFezGYzSUlJBAQEsHDhQoKDg5uMaQj7Tp06laSkpDPO16AtrxHAww8/zNatW4mLi2PixIkMGzaM3Nxctm/fjq2tLa+++iouLi4tqkFEzh0mk5Gn7h3Cc//ZQsLxfJ5/dwuvPjEWHw+ns14bu98SXB0R7d+pNXq4OfDQTf2Y/fEuPvohkVH9/QnyOXvI9XTKKmo4fjLQHNmrZXvLDd1z29p8IiWrhKz8cmxMRry6OZCVX86Og1lcOijo7Bf/TGlFDXlFlYClEcfZBPm6sutQjtWDvnX1ZvY2BH3Dfdo117ihQcTFZ7J2ewr3Xh2J0WjoiBKlHb7fcpycggpyCir4cMVBJl8bZe2SRERERESkAynoKyJygfB0c+BvvxnDC+9u4XBKIX/59yaee3Ak0aFn7oZQV1dPeVUtZRU1pGaXsuNgFjsOZpORW3bKuO7dHBgS6cuQvj4M7ONNXb2ZF/+7lcTkAv76783839ThDIpo3+agiIiIiIiIiJz/8vPz2bNnT5PjCQkJjZ+Hhoa2as4XXniBIUOG8MEHH7Br1y5qa2vp2bMn119/PVOmTMHe/qculsXFPwXAYmNjTztnYGDgWYO+BoOBV155hdzcXHx9fU87LiIigi+//BI/P78W3U9bXyM7Ozvee+895s+fz7Jly1izZg1OTk6MHz+exx57jOjo6BatLyLnHgc7G/764Aj++PaPpGSV8MK7W3jl8bG4Otmd9prSihr2Hc0FYGS/lv390x5XDA1mw+40dh7M5q1Pd/O334xpc8AzMbkAsxn8vJzwdHNo0TWNHX3bGPSNi88CYECf7vTyd2Pp2iPE7s9sddA39WQ3X69uDjg72p51fJBPQ0ffklZW3LGS0oooKa/B0d6GPj3c2zXX8Cg/nB1syC2qZN/RXAa2o0OwtF9NbT3fbfrpzUafrznMoHAf+od1t2JVIiIiIiLSkRT0FRG5gLg52/HStEuYOT+W/UfzeO6dLUwc3oOqmjrKKmsor6yl/Gd/llXWUlVd1+xcJqOB6FAvhvT1YUhfX3r4uWIwnLpp+9KvL+HlBXHsOpTDjPe28tSvhjJ6YEC776O+3qwOACIiIiIiIiLnqUmTJjFp0qRWXbN48eKzjrnhhhu44YYbOmX9MzGZTGcM+TZoacgX2lejnZ0d06ZNY9q0aW26XkTOXa5Odrz48CieeWsDKVmlzPjvVmZOuwQHu+Z/nbc9IYu6ejPBvq4EeHd+N2+DwcBjtw3k8X+sIT4pn+82J3H9mNa9caNBfFIeAFG9ztyo4udC/CxB36z8csora3ByOHvI9ue2xVu6Hw+P8iM0oBtL1x5h+8EsamrrsbUxtnie5ExLYLdHC7r5ws+Dvtbt6LvrUDYAA8K6Y2Nq+f02x87WxJiYQFZsTWbN9hQFfa1s0950Ckqq8HSzJybchzXbU3j9wx289dS4M75ZQEREREREzh/t+1eciIicc5wcbHnh4VEMjb/fmzkAAJBASURBVPSluqaO5ZuSWBl3gs17M9h9KIdDJwpJzS4lv7jqlJCvna0JPy8nrhoZwv9NHc6HM69h1qOjmTSuDyH+bk1CvgAO9pYuE6MHBlBbZ+bVxdtYsfV4m2vPzi/nnx/u4PY/L+edr/ZRXdN8CFlERERERERERETkQuTt4cgLj4zC2dGWg8kFvLp4O3V19c2O3bo/A+iabr4NfDycmHKdpXv4wm/jycovb9M88Un5AET18mzxNd1c7PFwtXRwP5HVuu64xWXVHDxuWXNYlC/hIR64u9hTXlnL/pNdkVsq5eTawX4tDfpaxmXllVFTa7097z2HcwA6LJR7xdBgADbvTaeyqrZD5pS2Wb7xGADXXNKLRycNINDbmbyiSt76dDdms9nK1YmIiIiISEdQR18RkQuQva2J/5s6nO+3JJFfVImTgy3ODjY4OdriZG/509nBFicHG5xO/tnWd/Db2ph4+t6huDjuYcXWZN7+bA8l5TXcdkWfFs9RUl7Np6sOsfzHJGpPblp/s/EY+47k8tSvhhBy8pFsIiIiIiIiIiIiIhe6ED83nntwBH/992a2xWcx5/M9PHFHzCnNGGpq69h5MAuAkf38u7S+a0b1ZOPuNA4cy2POZ7t58ZFRzTaKOJ3aunoSTxQAENmz5UFfgBB/NwpKckjOKKZvSMuv3Z6QRb0ZegW44ePhBMDwaD9+iE0m9kAmgyJ8WjzXicxiAHr4tmzf2sPVHicHG8ora0nPLWvsTNyVqmrqGsPVMeEdE/SN7OmJn5cTmXnlbN2fweVDgjtkXmmdxOR8Ek8UYGMycvXInjjY2/DUvUN5+s0NbNmXwQ+xyVw1sqe1yxQRERERkXZSR18RkQuUrY2RG8f2Zur10dwxIZzrxoQybkgwI/r50793d0IDu+Hn5Yybs127H9NlMloe2dYQ7l34bTwLlh846zvFq2rqWLrmMA+/vIqv1h+ltq6eAWHdeey2gbi72HM8o5g/zF7Ptz8e07vORURERERERERE5KIR1cuLZ+4bitEAK+NOsOR/B085v/dILhVVdXi62RMW5N6ltRmNBp64IwY7GyO7DuXw1fqjrbr+WFoR1TV1uDrZNna7bameJ5tCHM8obtV1cfGZAAyL+qn78YiTnZBjD2S2av+5oaNvD9+W1W4wGAjycQEgLbu0xet0pPhjedTU1uPVzaGxlvYyGAxccTLcu2Z7SofMKa33zcYkAC4dFIj7yY7XYUHuTL42CoB3vtrf+DMrIiIiIiLnLwV9RUSkQxgMBqZcF8X911s2j5auPcLbn+2hrr7pBmldvZlVcSeY9rdVLPg2nrKKGnr6u/HCwyN5adolXD2qJ28+dTlD+vpQXVvPv7/cx8z5sRSVVnX1bYmIiIiIiIiIiIhYxYh+/vzmthiAk09EO9Z4but+S3B1eLQ/RmPLu+l2lEBvF6ac3Aue/80BNuxKbfG18Ul5AET29Gp17Q3dcE9ktjy4WFNbz67EbACGR/k2Hh/Yxxt7OxO5hRUcTStq0VxlFTXkFlUCEOzX8pByQ6A51UpB3z2HcwBLN9/WdF8+m3FDgxvnzyuq6LB5pWXyiir4cU8aADeMDT3l3E2X9iYm3Jvqmjr+sWQ7NbV11ihRREREREQ6iIK+IiLSoSaN68Pjt8dgNMAPscn8Y/FPG0hms5ntCVn87p/reOOTXeQWVdLd3ZHf3TWI2X+4nCF9fRs3GT1cHXj+oZE8fHM/bExGtsVn8cRra9l5ckNWRERERERERERE5EJ31cgQfnV1XwDe+WofP+5Jo77eTNyBDABG9vM70+Wd6oYxoY3hwn99tLMxTHo28Un5AET28mz1mj/v6NvSLrzxx/Ior6zF3cWePsEejcftbU0MjvABIPZkcPpsUrItAWNPNwdcHG1bXHdDF93UbOt0Vt116GTQt493h87r5+VMVC9P6s2wfmfLw97SMb7fcpy6ejNRvTybdPY2Gg38/u7BuDnbkZRezMJvE6xTpIiIiIiIdAgFfUVEpMNdNTKEZyYPw8ZkZNPedGa8F8v+o7k8++/NvPjfrRzPKMbZ0Zb7r4/iP38az/hhPTA107nBYDBw49je/PN3lxLs60pBSRXPv7OF95bt17vPRURERERERERE5KJw54Rwrr2kJ2YzvP7BTr5Yd4T84ioc7W0YENbdanUZDAYeurEfowcGUFtnZtb7cSSln7kzrtlsJuFk0DeqDUHfIF8XDAYoLqumsKRlT4CLi7eEeIdG+jbpIDwi2hKUjj0ZnD6bhk7CPVrRzRd+HvTt+o6+RaVVHDvZsXhgeMcGfQGuONnVd/X2lBaHr6X9qmvq+N+W4wDcOLZ3s2M83Rz47V2DAPh6w1F2HMzqqvJERERERKSDKegrIiKdYvSAAJ5/aAQOdiZ2H8rhz3M3sfdILjYmIzdf1pt3/28Ck8b1wc7WdNa5egV041+/v4xrL+kJwFfrj/LUGxtJybJO94PmlFXUcCKz2NpliIiIiIiIiIiIyAXGYDDwyC0DuGSAP7V19Sz8Nh6AIX19sLU5+/5qZzIaDfzh7sH06+1FRVUtL7y7haz88tOOz8gto7C0ClsbI32C3Vu9noOdDf5ezoClq+/ZmM3mxqDv8GjfJueHRvpiNEBSevEZ627QsCfdw7e1QV/L+NTs0i4Pw+49nAtYuiF7uDp0+PyjBwZia2PkRGZJY6BYOt/G3WkUlVbT3d3xjJ29h0f5cf3oXgDM/mgXBSWVXVWiiIiIiIh0IAV9RUSk08SE+/DStEtwdbLFYIBxQ4L4z5/G8+CN/XB1smvVXPa2Jh69dSDP3j8cVyc7jqUX8bt/ref7Lcet3iUgJauE37y6hsf+sZavNxy1ai0iIiIiIiIiIiJy4TEZDUy/Zwj9ens1HhvRz9+KFf3EztbEX+4fQYifK/nFlqeyFZdVNzs2/mQ337Ag9zaHlEP83QBIbkHjhdTsUjLzyrExGYkJ92lyvpuLPZG9LK9p7P6zd/Vta0dfPy9njEYDFVW15Bd3bdBy9+EcAGI6oZsvgIujbWNn5DU7Uto1V3lljZ7m1wJms5llG48BcN3oXphMZ/6V/9Qbognxc6WwtIo3Pt5l9d+piIiIiIhI6ynoKyIinSoixJN5fxzPu/93JX+4Zwg+nk7tmm9EP3/eeupyYvp4U11Tx9zP9zDjvVirdfdNSi/iz3N/bNyc/e/X+/luc5JVahEREREREREREZELV0OgNqKHBz6eTgyPatqh1lpcHG154eFRdO/mQFpOKTPf20pldW2TcfFJeQBE9fJs81o9TwZ9W9LRN+6ApZvvgD7dcbS3aXZMQzfU2JNjz+TEyX3o4FZ29LW1MeLvZdkbT80ubdW17WE2m9l9KBuAgX06J+gLcMXQYAA27Eyjtq6+TXOcyCzmwZdW8vRbG6mr79ggal29me83J5GUfmF0HI5PyudYWhF2tiYmjgg563h7WxNP3zsUOxsjOw5m882Px7qgShERERER6UgK+oqISKfr5mKPbzsDvj/n1c2RFx8ZxQM3RGNjMrA9IYvH/7GGtz/bTV5RRYetczaHUwr4y7xNFJVWExrYjRvGhgIwb+lefohN7rI6RERERERERERE5OLg4mjLq0+M5d0/T8DJwdba5Zyiu7sjLzwyCmdHWw4mF/Dakh3U/SL02dDRNyrUq7kpWqSxo29Lgr7xlvDu8MjTh6JHRFs6I+8/lkdJefOdiMHSbTa30LL/3KOVQV+AIB/LNV0Z9M3IKyO7oAIbk4F+7XjNz2ZQhA/dXOwoLK1iV2J2q6+vqKrl74u2UVpRw9HUohZ1V26NH2KTmbt0Ly+8u4XyypoOndsavjnZzXfckCDcnFv29MQQfzceuLEfAO9/E3/BhJ5FRERERC4WCvqKiMh5yWg0cMvlYbw5fRwjov2oN8OKrcn8+u+rWfJ9Qqdv1iUk5fPsvzdTUl5DRIgHsx4dzcM39ePGSy1h37c/282a7e17TJmIiIiIiIiIiIjILxmNBoxGg7XLaFaInxt/fWAEtjZGYg9kMu+LvZjNlu6sRaVVpOVYQq6RPdvf0fdEZskZO78Wl1Vz8LglWDwsyu+04/y7O9PDz5X6ejPbE7JOO67hqXKebva4OLUsXPlzQT4uAKRmd93T6XYfygGgb09PHE7T0bgj2JiMXDYoCKDV++Jms5m5n+8hJeunAPTStYcbf27aq66unqVrDgOQX1zFp6sOdci81pJdUM6Wk0Ho68eEturaay/pyfAoP2rr6vnHkh3Ndt0WEREREZFzk4K+IiJyXgv2deXZB0bw98fG0DfEg6rqOj5ZdYiHX17FNxuPUVPbtseEncneIzk8985myitriQ71YsYjo3BxtMVgMPDQjf249pKemM3wxsc72bgrrcPXFxERERERERERETlXRYd68dSvhmAwWJozfLzSEqxMOBm6DfZ1xbUNQdkGfl7O2NmaqK6tJyuv7LTjdhzMot5sCQb7nOWJcyP7Wbr6xu7PPO2YE5mWgG4PX7c2VP3zoG/XdfRtCPrGhHt3+lrjhgYDEHsgk9KKljfi+N/WZNbtTMVoNPDnKcOwszFy6EQh+4/ldUhdG3enkZVfjp2N5dfiX284SnpO130POtp3m5KorzczIKx7Y+i9pQwGA0/eGYOnmz0pWSXMX3agk6oUEREREZGOpqCviIhcEKJDvXj1ibH839RhBHo7U1xWzTtf7eOxV9ewcVca9Wfo7NAaOw5m8eK7W6msriMm3JsXHh55yiPyDAYDv75lABNHhFBvhtc+3MGWfekdsraIiIiIiIiIiIjI+eCSAQH8+pYBAHy44iArtiYTn2QJ+kb1ans3XwCT0UAPX0to9nhG8WnHxR2whHaHRfmedc4R0ZaOvzsTs6iprWt2zImTHX2D/VxbVW+DIB/LdV0V9K2rN7P3SC4AMX06P+jbO7AbPfxcqamtZ9Oelu2JH0kt5J0v9wEw5dpILhkQwPjhPQD4Yu2RdtdUX2/m85PdfO+YEM6Qvj7U1pn577L97Z7bGiqra/khNhmAG8a2rptvg24u9vz+7sEAfL/lOPFJHROoFhERERGRzqWgr4iIXDAMBgOj+gfw9tNX8JtbB+Duak9GXhmvLtnO9Dc3sPdITrvm37Ivg5fmx1JdW8/wKD/++sAIHOyaPu7MaDTw2G0DGTckiPp6M68u3k5c/Ok7QYiIiIiIiIiIiIhcaK4b3Yvbx/cBYO7nu1m3IwVof9AXIORkJ9Pk0wR9a+vq2ZmYDcDwkyHeMwkLcsfTzYGKqjr2HM5tdkxD0LeHb9uCvoEnO/rmFlZQUVXbpjla42hqIWUVNTg72BAW7NHp6xkMBq4YYunqu/bk9/pMSitqeGXRNmrrLPvtt1weBsDNl/XGaIDtCVlnDHK3xPaELJIzS3C0t+G6MaE8dFM/TEYD2+Kz2J6Q1a65rWH9zlRKymvw9XRiWNTZf65PJybch8sHBwFn7mItIiIiIiLnDgV9RUTkgmNjMnLNJb14588TuOeqvjjamziSUshf5m3m+Xe2sG5HCsVl1a2ac+OuNP6+aBu1dWZGDwzgT1OGYWdrOu14o9HAb+8cxNiYQGrrzPxtwTZ2Hsxu762JiIiIiIiIiIiInDfuuyaS8cOCqTdDQUkVAFG9vNo9b4ifJeh7PLP5IOiBY3mUV9bi7mJPeAtCrkajobGrb+yB5oOPKQ0dfdsY9HV1ssPdxR6AtJzO7+q765BlP3pAH29MRkOnrwdw+ZAgDAbL65+ZV3bacWazmTc+3klmXjk+nk78/u5BGAyWGgO6uzBqQAAAX6w93OZazGYzn64+BMC1l/TExdGWIB9Xbry0NwDvfrWPmtr6Ns/f1cxmM99sPAbA9WN6tft7OjTS0ul696H2NUgREREREZGuoaCviIhcsBztbbh7YgT/+fMErhtt2fjamZjN6x/u5L7nv+eZtzbyyapEjqUVYTabTzvPup3pvPbBdurrzYwbEsTTvxqCrc3Z/xdqMhn5wz2DGdXfn9q6ema9H8uew523aVZZXcsH/zvIr/+2iqff3MC/PtrJJ6sS+XFPGknpRVR2QZcIERERERERERERkQYGg4HHb49hSF8fADzd7PH1dGr3vGfr6NvwhLWhkb4YWxiIHNHPEvSNO5BBff2p+8XllTXkFFQA0MOvbUFf+Kmrb2p25wd99xyydCaOCffu9LUaeHVzZGAfy3prd6SedtzXG46ydX8mNiYjf5o8FBcnu1PO3zrO0t13w640sgvK21TL/qN5JCYXYGtj5KaT4V6Au64Mx93VnvTcMr7ZeLRNc1vD3iO5JGeW4GBnYsLwkHbP1/B9OpZeRFFpVbvnExERERGRztX0eeMiIiIXGA9XB6ZNGsCNY0NZGXei8ZFfCcfzSTiez5LvD+Lp5sDQSF+GRvoysE93nBxsAdh2uJRvt1k2JK8aGcJvbh3Y4o1hsHQXfvreofx94Tbi4jOZOT+WFx8eRXRo+7tWNDCbzWzam857yw6QW2jZbE7PLeNgckGTsV7dHAj0diHA24WA7s4EervQt6cnbs52TcaKiIiIiIiIiIiItJeNycgfJw/jwxUH6d+7e2Pn1vboeTLom5FbRlVNHfY/e/qa2Wxm24EsAIZF+bZ4zgFh3XG0tyG/uIojqYWE9/ipE3BDMNfD1R5Xp7bvpQb5uHDgWB6p2SVtnqMlKqtqSTieB0BMn64L+gJcMTSY3YdyWLs9hbuuDG/y/U5IymfB8ngAHrqpH32a6bjcJ9iDAWHd2Xskl683HOXhm/q3uo7PTnbznTC8Bx5uDo3HnRxsmXpdFLM/3sXHKxO5fEgwnj87f65q6OZ7xdBgXBxt2z2fu6s9vQLcSEovZs/hHC4dFNTuOUVEREREpPMo6CsiIheNAG8XplwXxZTrosgpqGD7wSx2JGSx+3AO+cWV/BCbzA+xydiYDPQL7Y5XNztWby8E4MaxoTx0U782bULb2hj505ShvDQ/jp2J2bz43y3M+PUl9A3xbPc9JaUX8c5X+9h/1LJp6+3hyL1XR2JnayQtp5T0nDLSc0pJyymjpLyavKJK8ooq2Xskt3EOZwcbfj1pAJcPDuqQTXYRERERERERERGRn3O0t+HBG/t12HwNgduS8mpSMksIC3ZvPJeaXUpGXhk2JiODInxaPKetjYnBfX3YtCedrfszTgn6nsi0dA5uTzdfgCAf18YaO9OBpDxq68x4ezji3925U9f6pVH9/HGwM5GRV8bB4wVE9vppH7yotIpXF2+jrt7MpTGBXHtJz9POc+u4Puw9kssPW5O568qIVgWsj6QUsutQDkajgUmXhzU5P25IMN9vPk7iiQIWfhvP7+8e3Kp77GqZeWWNXaqvHxPaYfMO7ONNUnoxuw8p6CsiIiIicq5T0FdERC5K3h6OXDOqJ9eM6kl1TR37j+WxPSGL7fFZZOSVsftwTuPYmy/tyQM3ti3k28DWxsT/3T+cGf/dyt4juTz/zhYeubk/QyN96eZi3+r5Ssqr+eB/B/l+cxL1ZrCzMXLbFX24ZVwYDnbN/++9uKya9NxS0k8GgNNySjmaWkRGXhn//HAnW/dn8JtbB7apHhEREREREREREZGuYjAY6Onvxr6juRzPKD4l6LvtZCCyoUNva4yM9jsZ9M1k8rVRjcdPZFmCucG+7Q36ugCQ1oag755DOeSXVGIwGDAawIABg/HknwbLa2IwgNFgYN1Oy1PqYvp4d3lzBwd7Gy4ZEMCa7Sms2ZHSGPStrzfzzw93kltUSaC3C4/dPvCMtQ2K8G7sOPvd5iTunBDR4ho+W2Pp5nvpoED8vJoGnY1GA4/c0p/pb2xgzfYUrrmkZ4c05ugs325KwmyGwRE+7f4Z/LlB4T58tf4ouw/nYDab1QhEREREROQcpqCviIhc9OxsTQyO8GFwhA+P3NyftJxStsVnsSsxEx/nGu6+sk+HbHDZ25r46wMjeOG/WzlwLI/ZH+/CYICIHh4MjfJlaF9fQgO7nXGtunozK7YeZ8n3CZSU1wAwekAAD9wQjY+n0xnXd3O2w83Z85QNy7q6ej5fc5iPfkhk894M4o/l8/jtAxnRz7/d9ysiIiIiIiIiIiLSWUL8Xdl3NJfkk912G8TFZwEwLMq31XMOjfTFaDSQklVCem4pAd0twdyfOvq6tavmxqBvTil19WZMxpbtO6/Yepy3P9vT6vViwr1bfU1HuGJoMGu2p7BxdxoP39QPO1sTn64+xM7EbOxsTfxpyjCcHGzPOIfBYGDSuD68/sEOlm9M4ubLwrC3NZ117ZSsErbsywDgtiv6nHZceA8PJgzrwaptJ/jPl/t4/clLMbbw+9GVKqpqWRmbDMANYzuumy9AVKgnNiYjOQUVZOSWEeDt0qHzi4iIiIhIx1HQV0RE5BcCvV0IvMyFicP8SUhI6NC5HexteO7BEXyx7gix+zM5nlHMweQCDiYXsOT7g3i6OTA00pehkT4M7ON9ymbn/qO5vPPVPpLSLZvKIX6uPHJLfwaEtX2z1mQycueVEQyJ9OVfH+3kRGYJL70fx5XDe/DQTf3OutkqIiIiIiIiIiIiYg09/S2h2+SMn4K+JeXVJCTlATA8yq/Vc7o42dEv1Iu9R3KJ3Z/JLZeHAZbwKECPdnZT9fZwws7GSHVtPTkF5c12m/2lpPQi3vlyH2BpGuFgb8JsBrMZ6s1mwNIt12w2YwbMZjP1ZvDxcGR4dOtfg47Qv3d3undzILeokm3xWbg42vLhioMAPDppQOP37mzGDAxg8XfxZBdUsGbbCa65pNdZr/li7RHMZhgR7UfIWYLZk6+LZPO+dI6kFLJ62wmuHBHSorrao7aunpra+hZ3m16zPYWyyloCujszOMKnQ2txsLMhqpcne4/ksutQjoK+IiIiIiLnMAV9RUREupiTgy33Xh3JvVdHklNQwfaDWexIyGL34Rzyiyv5ITaZH2KTsTEZ6BfanSGRvhw+UcCG3WkAODvacu/VfblmVE9MJmOH1BQW5M6/fncZS/53kK/WH2Fl3An2HM7hd3cNpn9Y9w5ZQ0RERERERERERKSjhDQEfX/W0XdHQhb1ZksI+GxPQDudEf38LEHfA5agb0VVLdkFFQAEtzPoazIaCPB24XhGManZpWcN+lZU1fLKou1U19YzpK8Pzz048pzsOvtLRqOBy4cE8/maw3y94SgZuWWYzXDl8B5MGN6jxfPYmIzcdFlv3v1qP1+uO8rEkT3P2AU5u6CctTtSALht/Om7+TbwcHXg7okRvLfsAAu/i2fUgABcHDuv+UVFVS2/++c60nPLcHO2w8/LCT8vZ8uHp+VzXy8nvLo5YjIaqK83883GYwBcPya0U773A/t4s/dILrsPZXPd6LMHqUVERERExDoU9BUREbEibw9HrhnVk2tG9aS6po79R/PYfjCL7fFZZOSVsftwDrsP5wBgMMBVI3ty79V96eZi3+G12NmaeOCGaIZH+TL7411k5Zfzf/M2ceOloUy+NqpFj0UTERERERERERER6QoN3XXzi6soLqvGzdmOuPgsAIZF+bZ53pHR/rz71X4SkvIoKq0iK78cAHdXe9yc7dpdd6BPQ9C3hKGRp6/TbDYzb+ke0nJK8XRz4Pd3Dz4vQr4Nxg0J4vM1h0k4ng9YwteP3NK/1fNMHB7Cxz8kkpFXxtZ9GYweGHDasV+tP0pdvZkBYd3pG+LZovmvGx3Kiq3JpGaX8vEPiTx0U79W19hSH/+QSHpuGQDFZdUUl1Vz6ERhk3E2JgM+Hk50c7EnLacUR3sbxg8L7pSaYsK9Wfx9AvuO5FJXV99hzUVERERERKRjKegrIiJyjrCzNTG4rw+D+/rw8E39SMspZXtCNjsPZmFvZ+KuKyPoHeTe6XX0692dN6dfzvxvDrBiazLLNhxj58Fs/nDPYPoEe3T6+nL+Wr8zlW83JXHl8B6MH9bjvPrFg4iIiIiIiIiInF+cHGzx8XQiO7+c5IxiInt5svOgJeg7PMqvzfP6eDoRGtCNY+lFbDsZHIafgsXtFeTjAkBqdukZx63edoK1O1IxGuDpe4d0SvOHztTDz42wYHeOpBTiaG/Dn6YMw8Gu9b+adrC34brRoXy8MpHP1x7mkgH+GAxN9x2LSqtYsTUZgNuuOHs33wa2NkYevrk/z7+zheU/HuOqkSHt7tzcnOTMYr7ecBSAP04eSqC3C5l5ZWTmlVv+zC8nK6+MrPxyauvMpOeWNYaCrxzeAyeHzuk03DvIHRdHW0orajicWtjigLSIiIiIiHQtBX2lS3z//fd8/fXXHDhwgNLSUnr16sUDDzzA9ddfb+3SRETOSQaDgSAfV4J8XLn5st5dvr6Tgy2P3x7DyH7+vPnJLlKzS3nqzY3cOSGcSePC2rQhKxe2bzYe452v9gGQcDyfFVuTmXbrAMK6IJwuIiIiIiIiIiIXp55+bmTnl3M8oxgzZsoqa+nmYkefHu1rWDCinx/H0ouIPZBBQHdLMLfjgr6Wec4U9E3OLGbeF5a9tnuu7ku/3t07ZO2udteEcN79ej8P39SPQG+XNs9z/ZhefLH2MEdSCtl3NJcBYd5NxizbeIzqmjrCgt2JCW96/kwGR/gwItqP2AOZvPvVPl58ZFSzYeK2MpvN/OeLfdTVmxkR7ceYgYEA9Aro1mRsXb2ZvKIKsk4GgMsqa7lqZEiH1fJLJqOBAX26s3lvBnsO5SjoKyIiIiJyjtKzN6RLLFiwAGdnZ/785z8zd+5cRowYwfTp01m8eLG1SxMRkTMYGunL209fwZiBAdTXm/noh0QemrWST1YlUlpRY+3y5BxgNlt+LhpCvkMjfXG0N5F4ooA/zF7P3KV7KCmvtnKVIiIiIiIiIiJyIQrxt4RmkzOLiTtg6b47NNIXUzufNDUi2tIReNehHI6kFgLQw6+jO/qWNHu+sqqWVxZtp7qmjphwb26/IrxD1rWGEf38+e9frmREP/92zdPNxZ4Jw3sAsHTtkSbnyytr+PbHYwDcfkWfNoV0H7yxHzYmI7sO5RB7ILNd9f7S+l1p7Duai52tiYdv7n/GsSajAR8PJ/qHdefKESHcfFlvHO07t/FGTLgPYPl5FxERERGRc5Pa8UmXmDdvHp6eP70DdNSoUWRnZ/P+++9z3333WbEyERE5GzdnO/44eRiX7EpjwXfxZOeXs+T7gyxdc4RrL+nJTZf2xsPNoUtqKa+sYdW2E8Tuz8TPy5lBEd7E9PHGxcmuS9aXU5nNZt5bdqDxkXP3TIzgrokR5BdX8v438azflcr3m4/z4+50plwXxZXDe2Bs5y9ZREREREREREREGvT0dwPgeEYxxWWWN5sPi/Jr97yhgd3w9nAkp6CCvUdyAQjuoI6+DZ1ti0qrKS6rxs351L3N/3y5j5SsEjxc7fnDPYO1n3bSLZeH8b8tx9l5MJuk9KJTuuF+v/k4ZZW1BPm4MLKNoWL/7s7ccnlvPlt9mP9+vZ/BET7Y2ZraXXd5ZQ3zl+0H4I4JffD1dGr3nB0tpo+lA3Jicj4VVbWdHiwWEREREZHWU0df6RI/D/k2iIyMJDs72wrViIhIW4wdFMg7fxrP9HsGE+LnSkVVLUvXHuHBWSuZu3QPmXllnbZ2Rm4Z7361j6kzfuDdr/az90guP8Qm88qi7fzque956s0NfLjiIAeP51NXV99pdchP6urqefOT3Y0h34dv6sfdV/XFYDDg1c2Rp+4dwsuPjqaHnysl5dW8/dlunn5rA4dTCqxcuYiIiIiIiIiIXChCTgZ9D6cUkpFbho3JyKBw73bPazAYGPGLwHAPP7d2zwvgaG9Dd3dHANKyS085t2Z7Cqu2ncBogKfuHYKHa9c0WDgf+Hk5M3pgIABf/Kyrb1VNHV+d3KO8dVyfdgWjbx8fjlc3B7Lyy/lyfdPOwW3xwYqDFJRUEdDdmUmXh3XInB3Nv7szvp5O1NaZOXAsz9rliIiIiIhIM86rt+MdOHCAzZs3s2/fPvbv309aWhoAq1evJigoqMXz1NTUEBsby7p164iNjSUlJYW6ujr8/PwYM2YMDz30EIGBgU2u+9Of/sSXX3552nnvvPNOZsyY0fob6yDteX2qq6t5//33WbZsGSkpKTg5OTF06FAeffRRoqOjO6Xe3bt306tXr06ZW0REOofJZOTyIcFcOiiI7QlZfLb6EAeTC/h+83FWbE3m0phAbruiT+MGe3uYzWb2Hs5l2cZjbEvIxGy2HA/0duGqkSHkFlWwKzGblKxSEpMLSEwu4KMfEnF2tCWmjzeDIrwZFOGDj4d1OySUlFeTkJTPgWN5ZBWU4+/lTLCvC0E+rgT5uODkYGvV+tqipraO1z7Ywea9GRgN8MQdgxofnfdz/cO688YfLmf5j0l8uOIgh04UMv2NDVw1sif3XRPZpFuJiIiIiIiIiIhIawR6u2BjMlBbZ9k87N/bq8P220b082P5piQA3F3sO3QvK8jHhdzCClKzS4jsZWmWk5JVwrylewC468oIBoS1P7B8oZk0LoyNu9PYsDuN+66JxMfTidXbTlBYUoW3hyOXD2n574ub42hvw/3XR/PaBzv4bPVhhkf5ndI5uLWS0otY/qPlZ+jXtwzA1qb9HYI7S0y4Nyu2JrP7UA5DI32tXY6IiIiIiPzCeRX0nTNnDqtXr273PNu2bePBBx8EwN/fn9GjRwOwd+9ePvzwQ5YtW8Z///tfBg0a1Oz1Y8aMwdu76T+uTze+q7T19amurubBBx8kLi4OLy8vxo0bR05ODitXrmTdunXMmzePsWPHdmitW7ZsYdWqVbz88ssdOq+IiHQNo9HA8Gg/hkX5sv9YHp+vPszOxGzW7Uxl3c5Uhkf5cfv4PvTt2bSj+9lUVteyfmcq32w8RnJmSePxIX19uHFsb2LCvU/pypBTUMGuQ9nsTMxmz6EcSitq2LQ3nU170wHLpnlMH2+iQr2I6uWJVzfH9r8AZ5BbWMGBY3kcSMoj/ljeKffQHK9uDgT7uBLk60KwryX8G+zjirurPQbDufdYvsqqWl5eEMeuQznYmIw8fe8QLhkQcNrxNiYjN1/Wm0sHBfL+NwdYtzOV/205zqY9aUy5Loorh4fo8YMiIiIiIiIiItImNiYjQT6uHM8oBmB4tN9Zrmi5fr274+xgQ1llLT38XDtsXrDsWe4+lEPqyY6+VTV1vLp4O5XVdQwI684dV0Z06HoXirAgd2L6eLP7cA5fbzjKAzdEs/Rkd99bLgvDxtT+h9leOiiQH2KT2Xskl7/+ZzN/+80Ygn1b//03m838+4u91NebuWSAP4P7+rS7ts70U9BXT2MVERERETkXnVdB35iYGMLDw+nXrx/9+/dn0qRJ5Obmtnoeg8HAVVddxf33339KOLeqqooXXniBL774gunTp7NixQpsbZu+6/eRRx5hxIgR7bqXztDW1+fdd98lLi6O/v37s2DBAlxcXABYvnw506dP5+mnn2bVqlWNxwFKSkrIzj77P/R69+7d5FhqairTp09n/PjxTJo0qRV3KCIi5xqDwUD/3t3p37s7R1IL+XzNYTbvTScuPpO4+ExcnezwdLPHw80Bz5MfHm72lj9dHfDq5oCHmwP2tiZyCir4bnMSK7Yep6S8BgAHOxPjh/Xg+jG9CPJpfjPV28ORiSNCmDgihLp6M4dTCth10BL8PXSigNTsUlKzSxu7b/h6OhHVy5OoXpbgb5CPa5uDpmazmbScUg4cyyc+Kc/StTe/vMm4QG8XokO9CPR2ITO/jNSsUlKzSygoqSKvqJK8okp2H8455RpnR1sie3oyNNKXYZG++HhatzMxQGlFDTP+u5WE4/nY25l49v7hxIS3bIPa082B6b8awlUjQ/jPl/s4nlHM25/tYfPeDP764IgO2YQXEREREREREZGLT4ifW2PQd1hUxwV9bUxGhkT6smFXWicEfS3zNQR93/3Ksl/m7mLPU78agklvjD+tSePC2H04hxWxyfh6OZGdX043FzuuHNH0iWNtYTAY+PPU4Tz7700cTS3i2X9v4m+PjSGgu8vZL/6ZtTtSiE+y7KM+dGP/DqmtMw0I88ZggOTMEgqKK/Fwc7B2SSIiIiIi8jPnVdD3kUce6ZB5Ro0axahRo5oct7e35/nnn2flypWkpaWxa9cuhg8f3iFr/tLhw4fZvn07d9999xnHzZ8/n4kTJxIUdPZHzbTl9amtrWXRokUAPP/886eEea+//nqWLVvG+vXrWbp0KVOmTGk897///Y9nn332rPMnJiae8nVhYSEPP/wwAQEBvPbaa62uV0REzl1hQe78afIw0nJKWbrmMGt3pFBSXk1JefVZu9o6O9hQUV1Hfb3lEXs+nk7cMKYXE4aH4OLY8kftmYwG+oZ40jfEk7uv6ktpeTV7Duey/1gu8Un5HE8vIiu/nKz8ctbuSAXA1cmWyJ5ejeHf3kHdqKqpo7CkisLSKopKq372eTWFJZWWP0urKCyppKKq7pQajAYIDexGVKgX0b28iOrlhburfbP1lpZXk5pdSkpWCSnZlvBvalYpWflllFXUsD0hi+0JWfwb6OHnyrBIX4ZG+hLZ0xNTFwdjC0oqef6dLSSlF+PsaMsLD41sU8fmfr27M/v3l/HtpiQWf5/AzsRs5n9zgEduPvc3u0VERERERERE5NwT4u8KuyDEzxXfDn6z/JTronBysOWWy8M6dN4gH8vv41KzS1i/M5UVW5MxGGD6rwYrYHkWMeHehAZ041h6Ee99vR+AG8f2xsGu437t7eJoy4xHLuH/5v5IcmYJz/57M3//zZgWN2Morajh/W/iAbjrygi8PTr3KXMdwc3Zjt6B3TiSWsTuwzmMGxJs7ZJERERERORnzqugb1dwcHCgZ8+e7Nu3r0Uda9vCbDbz1FNPcfDgQWpqapg8eXKz42bPns28efPYsGEDCxYs6JRadu7cSWFhIUFBQfTv3zRgc+2117J+/XpWr159StD39ttv5/bbb2/VWhUVFUybNo2amhr+85//4Oh47v+jVkREWi/Q24Un7xzEQzf1I6eggvziysaPgpIq8osaPq8kv6iS6tp6yiprAejfuzs3jA1leLRfh3StcHGyY/TAAEYPDACgvLKGg8kFxCflkZCUz8HkAkrKaxo7ELeFrY2R8B4eRJ8M9vbt6YGTQ8vCyS5OdvTt6dkkMFtdU8eJrBJ2JWazLT6LxOR8TmSWcCKzhKVrj+DsaMvgCB+GRvoypK8P3VyaDxJ3lOz8cv76n82k55bh7mrPjEdG0SugW5vnM5mM3Hhpb3w8nZj1fhzfbDxGWFA3rhjaMV03RERERERERETk4jF+WA/2Hcnl+rGhHT63j4cTj902sMPnbQj6ZuaVMefz3QDcMT68xU/PupgZDAYmjQvjtQ92UG8GR3sbrh3dq8PXcXO2Y+a0S/jznE2k5ZTyl39v4u+PjcGr29l/v/nB9wkUllYR5OPCTZc2ffrpuWpgH29L0PeQgr4iIiIiIucaBX1/oa6ujrS0NAC6d+/e7JiVK1eycuVKqqur8ff3Z/To0QwYMKDFaxgMBl5//XUmT57MrFmzMBgM3HfffaeMaQj5BgUF8fLLL7f9hs4iISEBgOjo6GbPR0VFAU0787ZWbW0tv/3tbzl+/Dgff/wxXl5e7ZpPRETOfU4OtoT42xLi73baMWazmbLKWgqKK7G1MeLn5dzpNQ2O8GFwhGXDvLaunmNpRcQn5RGflE9CUj6FpVUAODva4u5ih7urA91c7OjmYo+7iz3urvaNn3dzscPX0wlbG1OH1mlnayIsyJ2wIHduHx9OcVk1uxKz2Z6QxY6DWZSU17Bxdxobd6dhMEB4Dw/6hXrRzcUeVydbnB3tcHWyxdXJDhcnW1yc7LC3bVmNZrOZ6tp6qmvqqK6pI6ewglcWbiO3qBIfD0dm/voSArxb95i60xnZz5+7rozg45WJzPlsDz183QgLdu+QuUVERERERERE5OLg6ebAjF9fYu0yWsXTzQFHexsqqmqpqKojOtSLuydGWLus88aYgQEs+j6B7Pxyrr2kZ6ueCtcaHq4OzHr0Ev4050cy88r5y7zN/O2x0Xi4nr7r8pHUQr7bnATAtEkDsLXp2ieztcegcB+Wrj3C7kM5mM1mDIb2N+MQEREREZGOoaDvL3z99dfk5+fj6enJ4MGDmx2zePHiU76ePXs2l112Ga+++iru7u4tWicsLIyFCxcyefJkXnrpJQwGA/fee2/jfPPmzSMwMJBFixYREBDQrns6k/T0dAD8/PyaPd9wvLCwkLKyMpyd2xbAevHFF1m/fj1/+ctfKCwsZPfu3Y3noqKisLOza9O8IiJyfjMYDLg42nbaRuzZ2Jgs3XjDe3hw82WWkGtxWTVODjYdHt5tDzdnOy4bHMRlg4OoqzdzKLmAbQmZbE/IIim9mMTkAhKTC844h52NERcnSwDYycGW+nozVTV1VJ0M9FbX1FFVU09NbR1mc9Prg3xcmPnrS+ju3rEd+e+eGMHRtEK2xWcxa0Ec//rdZbi7dm6HYhEREREREREREWsyGAwE+bhwOKUQN2c7nr53CCbT+RMItTaTycjT9w5h05507pgQ3qlreXVzZNa00fxxzo+k5ZTy139vZtajo5t9ylp9vZl/f7GXejNcGhPIwD7enVpbR4vs5YmdjZH84kpSskro4Xf6Jh4iIiIiItK1FPT9mdTUVF555RUAfv/73zcJn/bt25fnn3+ekSNH4u/vT35+PnFxcfzzn/9k/fr1TJs2jQ8//BCjsWX/EO/Tpw8LFixgypQpzJw5E4Dc3NxTQr6BgYEde5O/UF5eDoCjY/OhHScnp8bP2xP03bRpEwCzZs1qcm716tUEBQW1aV4REZGOZDAYmt2gPZeYjAYie3kS2cuTyddGkVtYwfaELJIziimtqKGkvJrSihpKy6spKa+htKKG+npLl9784kryiytbvJbRaMDe1kjfEE+m/2pIp7w2RqOB6fcMYfob60nLKeOVxduY+etLsNEvNkRERERERERE5AJ26aBAMvPKmP6rIXh169g3118M+oZ40jfEs0vW8vF0Ytajl/DnOT+SnFnCc+9sYdajo5s0sFi17QSJyQU42pt44Mbmn6Z6LrOzNREV6sXuQznsPpyjoK+IiIiIyDlEQd+TSktL+c1vfkNhYSFXX301d9xxR5MxU6dOPeXrwMBAbrnlFi655BJuvPFGdu3axYoVK7jmmmtavG5ERESTsG9AQAALFy68oMKva9assXYJIiIiF6Tu7o5cParnac+bzWYqqmopKT8ZAi6vpqyiFpPJgJ2tCfuTH3a2xp++tjNhZ2vqsrCts6Mtf7l/BNPfWM/+o3m8/80BHr65f5esLSIiIiIiIiIiYg03XxbGTZf2xmAwWLsUaYGA7i68NG00f577I8fSinjh3S3MeGQUTg6WsG9JeTULlscDcM9Vfc/b8HZMH29L0PdQDjeO7W3tckRERERE5CS1SgOqqqp49NFHSUxMZNSoUfzjH/9o1fW+vr5MmjQJgA0bNrR6/b59+zJx4sTGr2+++WaCg4NbPU9bNHTsraioaPZ8Q8dfoM3dfEVERMR6DAYDTg62+Ho6ERbkTky4D6MHBjCynz+DI3yIDvUiLNidHn5u+Hk54+HmgJODbZd31A32deX3dw8BYNnGY6zZntKl64uIiIiIiIiIiHQ1hXzPL8G+rsz89SW4OtmSmFzAjPdiqayuBWDRdwmUlFfTw8+V68eEWrnStosJ9wZg/9FcauvqrVyNiIiIiIg0uOiDvjU1NTzxxBPExcURExPD3LlzsbOza/U8PXv2BCA7O7vV177xxht8+umnBAYG4unpydy5c/nggw9aPU9bBAQEAJCZmdns+Ybj7u7uCvqKiIhIpxrV3587rwwHYM5nuzmSUmjdgkRERERERERERER+pldAN2Y8cglODjYcOJbHrPlxHDiWx4qtxwF4dNKALm+i0JF6BXTDzdmOiqo6EpMLrF2OiIiIiIicdP7+K6MD1NfX8/TTT7N+/Xr69u3LO++809jhtrWKiooAcHRs3WNY3nzzTebOnUtgYCCLFi1iwYIFeHp6MmPGjC4J+0ZGRgJw4MCBZs/Hx1seMRMREdHptYiIiIjcM7EvQyN9qa6t5+WFcRSVVlm7JBEREREREREREZFGYcHuvPDQKBzsTOw+nMNf5m3CbIbLhwTRr3d3a5fXLkajgYF9LF199xzOsXI1IiIiIiLS4KIN+prNZp599lm+//57evXqxfz58+nWrVub5/rhhx8A6NevX4uve/vtt5kzZ05jyDcoKIiIiIjGsO/MmTP58MMP21RTSw0ePBh3d3dSU1PZt29fk/PfffcdAOPHj+/UOkRERETAspE8/VdDCOjuTE5BBa8s2q5HxImIiIiIiIiIiMg5JbKXJ889NBI7WxN19WacHGx44Ppoa5fVIWLCLUHf3YcU9BUREREROVdc8EHfZ555hquvvpolS5accvzvf/87S5cuJSgoiIULF+Ll5XXGeeLj4/nmm2+orq4+5XhpaSnPPvss+/btw8nJiVtvvbVFdc2ZM4e33nqLwMBAFi5cSFBQUOO5hrCvh4cHM2bM6NSwr42NDZMnTwbgxRdfpLS0tPHc8uXLWb9+PR4eHi2+LxEREZH2cnG05S/3D8fR3sS+o7m8/03zTx4QERERERERERERsZb+vbvz1weGE97DnSfvHISHm4O1S+oQMSc7+iaeKKCsosbK1YiIiIiICICNtQtojXXr1jF37tzGr4uKigB4/PHHsbOzA+Cyyy7jscceaxyTkZFBUlISBQUFjcdWrVrFggULAAgMDORf//pXs+tNmDCBCRMmAJCens5TTz3FzJkz6devHx4eHuTm5pKQkEBRURFOTk7Mnj0bb2/vs96H2WwmKSmJgIAAFi5cSHBwcJMxDWHfqVOnkpSUdNY5oW2vD8DDDz/M1q1biYuLY+LEiQwbNozc3Fy2b9+Ora0tr776Ki4uLi2qQURERKQj9PBz4/d3D+blBdtYtvEYwT6OeNtbuyoRERERERERERGRn8SE+xAT7mPtMjqUj6cTAd2dSc8tY//RXEb087d2SSIiIiIiF73zKuibn5/Pnj17mhxPSEho/Dw0NPSs8xQXFzd+Hhsbe9pxgYGBjUHfiIgI7rvvPvbt28ehQ4coLCzE1taWwMBAbr75ZiZPnnxKV94zMRgMvPLKK+Tm5uLr63vacREREXz55Zf4+fm1aN62vj52dna89957zJ8/n2XLlrFmzRqcnJwYP348jz32GNHRF8ZjZkREROT8Mqp/AHdOCOeTVYd45+sE7p/QnUhrFyUiIiIiIiIiIiJygRsY7k16bhm7D+Uo6CsiIiIicg44r4K+kyZNYtKkSa26ZvHixR0yT3BwMM8++2yrrjkTk8l0xpBvg5aGfKFt99XAzs6OadOmMW3atDZdLyIiItIZ7rmqL0fTitiekMXHG/Lo7pvHyP6OGAwGa5cmIiIiIiIiIiIickEaFO7N95uPs/twjrVLERERERERwGjtAkRERERETsdoNDD9V0Pw93KiuLyOlxfu5MnX17Fmewo1tfXWLk9ERERERERERETkgtM/zBujAVKzS8ktrLB2OSIiIiIiFz0FfUVERETknObiaMsLDw5lZIQL9nYmjmcU86+PdvLwyyv5Yu1hyipqrF2iiIiIiIiIiIiIyAXDxdGWPsEeAOw+pK6+IiIiIiLWpqCviIiIiJzz3F3tuXqIO3OfGsvkayPxdLMnr6iS95fHc//MH3hv2X6yC8qtXaaIiIiIiIiIiIjIBeH/27vv6LjqO///r+lFvXfZlmxJbmBcAAOGYBNTAoRAWJaElkAIkAC7m5Bs9puFBJJswmZ/ySbEOSn0zZKFQBIgELoBg7Fx77Llpt410ow0mnp/f4w0liwZFyRrsJ+Pc+bcO/feufO5whfZ73nN+3NqRY4kgr4AAABAIiDoCwAAgE+MZJdNVy+p0O//36d19zWnqTQ/Rf5AWH95e7e+8qPX9V9/WKvd9Z6JHiYAAAAAJJSamhrdeOONOvXUU3XOOefov//7vxWJRCZ6WAAAIIHNGQj6btzVJsMwJng0AAAAwMnNOtEDAAAAAI6WzWrRBaeXasmCEq2rbtWfl9do4652LV9Xr+Xr6nXqtGxd8+lKzS7PnuihAgAAAMCE6u7u1k033aSpU6dq2bJlqq2t1U9+8hNFo1H98z//80QPDwAAJKiqSZly2C3y+AKqbfFN9HAAAACAkxpBXwAAAHximUwmzavK07yqPNXUe/SX5bv17sYGbdzVro272nXmrHx96dKZKsxJnuihAgAAAMCE+OMf/6hAIKCHHnpIycnJOvvss+Xz+fTQQw/pK1/5ipKT+fcSAAAYyWY1a1ZZltbuaNWm3R2amjnRIwIAAABOXuaJHgAAAAAwFqYWp+ub183T7/7tAl181mSZzSZ9sKVZdzz4pn73183y9gUneogAAAAAcNy98847Ouecc4YFej/zmc+ov79fq1evnsCRAQCARDenIleStGV35wSPBAAAADi50dEXAAAAJ5TcDLfuuOpUXXZOmR55YavWbG/R8+/s0Zsf1ukfl1bqkrOmyGbl+24AAABAotm6davef/99bd68WVu2bFFDQ4Mk6Y033lBxcfExn9fr9eqRRx7R66+/rvr6eklSXl6e5s2bp7vuukt5eXljMv6jdazXGwwG9eijj+r5559XXV2d3G635s+fr9tvv10zZ84ccfyePXt05plnDttWWFgol8ulPXv2aPHixWN7YQAA4IQxpyJHkrRtX5cuneuc4NEAAAAAJy+CvgAAADghleSl6L5bztT66lY98sJW7Wvq0e//ukV/e2+vvnTpTJ05K18mk2mihwkAAABgwK9+9Su98cYbY3rOmpoafelLX1Jra6smTZqkRYsWKRQKqba2Vn/605/0uc99bsKCvsdyvcFgUDfffLNWr16trKwsnX/++Wpra9Nrr72m5cuX69e//rUWLVo07DU9PT1KSUkZca7U1FT19PR8rGsAAAAntkn5KUpPccjjDaiuPaDZEz0gAAAA4CRF0BcAAAAntNMqc/XzaTl6fXWt/ufv29XU3qsfPbZas8qzdPPlszS1OH2ihwgAAABA0pw5c1RRUaFZs2Zp9uzZuvLKK9Xe3n7M5+vp6dGXv/xleTwe/fSnP9Vll102bH9tba2Sk5M/7rCP2bFc7+9+9zutXr1as2fP1mOPPRYf/4svvqhvfOMbuueee/T6669P6HUBAIATh8lk0pxpOVq+rl7b6/p1sWFM9JAAAACAkxJBXwAAAJzwLGaTLjxzkhbNKdSzb9XoL8trtGV3h/7l52/r/Hkl+ocLKpSR4pDTbpXZfOxdfiNRQ/7+kHz+2KPXH1JOukuFOWP7IXu7x6+319Wrtz+kJKdNbqdV7oOWg9tdTpssH+OaAAAAgOPl1ltvHdPzPfTQQ2ppadF3vvOdESFfSSotLT3ic+3atUtr1qzRtdde+5HHPfLII1q6dKmKi4sPe86jvd5wOKwnnnhCknTfffcNC/Neeumlev755/X222/r2Wef1Y033hjfl5qaKp/PN+J8PT09Sk1NPaoxAACAk8/cqlwtX1ev1Tt9+pdfrNRli8q0eH6J3E7bRA8NAAAAOGkQ9AUAAMBJw+206fqLp+vCMyfpyZe2a/m6er25pk5vrqmLH+OwW+RyWOWyW+VyWOV0WOR0WOPbHHaL/IGwev0h9faH5OuLLXv9IfX1h0d936pJGVp6xiSdM6dILsex/RU8GjW0cVebXl65T6u2NisaPfLuGU67RbmZbl1/8XSdOavgmN4fAAAA+CQJBAJ67rnn5HK5dM0113yscxmGoW9+85vasWOHQqGQbrjhhlGP+/nPf65f//rXeuedd/TYY499rPcczbp16+TxeFRcXKzZs0dOnH3JJZfo7bff1htvvDEs6FtWVqY9e/YMO7apqUl+v19lZWVjPk4AAHBiOfe0Yu3a36FXVtWqsb1Xv/nzZj3x0jadP69Enzl7ikrz+eIQAAAAMN4I+gIAAOCkk5vh1je+OE+XLSrTYy9u09Y97RrMzQaCEQWCEXkUOObzO+yWeEfdxvZe7djfpR37u/S7v27WOacWaemZk1RZmiGT6fCddr19Qb3xYa1efn+fGtt749tnlmVpSmGq+vrD6usPHbSMrQfDUUlSfzCi2mavfvjoap11SoFuvWK2stJcx3x9AAAAQKLbsmWLvF6v5s2bJ5fLpZUrV+rdd9+Vz+dTcXGxLrjggiMOuZpMJv3Xf/2XbrjhBv3whz+UyWTS9ddfP+yYwZBvcXGxfvSjH43HJWn79u2SpJkzZ466f8aMGZKk6urqYdvPPfdcPfzww/L5fPEuwC+99JKcTqdOP/30cRkrAAA4cVjMJl13UYVmFobU6k/Vq6vrVd/q00vv79NL7+/TKVOzdek5U3T6jHxZLOaJHi4AAABwQiLoCwAAgJNWRWmGfnTH2TIMQ8FwVP7+sPqDYfkDsUd/ICJ/MDxseyAUkctuVZLLFn8kD1m6nTbZrAcK2p09/XpzTZ1eW7Vfje29em11rV5bXauSvBQtPaNU588rUVqyY9i4DMPQrjqPXnp/r95d3xAP7LocVi2ZX6KLzpqsSUfQKSMUjsbDv6+t3q/n3qrR+5uatHFnm268dKYuPGOSzObDh41xZMKRqN7b2Kh3NzTonFML9al5JRM9JAAAgJNWTU2NJCkrK0t33XWXXnnllWH7f/azn+m2227T3XfffUTnmzp1qh5//HHdcMMN+sEPfiCTyaTrrrtO0oGQb1FRkZ544gkVFhaO7cUMaGxslCTl5+ePun9wu8fjUW9vr5KSkiRJ//iP/6gnn3xSd955p77yla+orq5ODz30kG666aZ48BcAAOBwnDazLjylRFd8qkKbdrXrb+/v1aotTdpU065NNe3KTnfp4oWTtfSMSUpPcRz+hAAAAACOGEFfAAAAnPRMJpMcNoscNouksS1CZ6Y69fnF03TV+VO1dU+HXltdqxUbG1XX4tXDz2/V43/bpjNmFujTZ5Rq+uRMrdjYqJfe36vd9d3xc5QVpunisybrvLnFcjmO/K/wNqtZackOpSU7dMMlM7RoTpF++fQG7arzaNmfNmr52jp9/eo5KslLGdNrHivtHr96+0MqzE4eFp5ONL6+oP7+wX79bcUetXf3S5JWbW3Wjv1duvnyWQk9dgAAgBNVd3fs79NvvfWWJOmee+7RZZddJovFopdfflkPPvigli1bpsLCQl199dVHdM5p06bpscce04033qgHHnhAktTe3j4s5FtUVDQ+FySpr69PkuRyjT47h9vtjq8PDfqmpaXpscce0/3336/bbrtNqampuvHGG3XnnXeO21gBAMCJy2Qy6dSKHJ1akaPWrj79feU+vfLBfrV7/Hry5e166tVqzSrPktVilmEYMiQZ0YGlYcgYmFktOrBuNpk0rSRdc6tyNWNKpmxWy0ReHgAAAJCQCPoCAAAAx4HJZNKs8mzNKs/WrVfM1jvr6/Xq6lrV1Hn03qZGvbepUWaTFB0odFstZi2aU6hLzpqiykkZMpk+fufdKYVp+s+7ztXfVuzRky9v17a9nbrrv5brH5ZM0+eXTDviIrphGGpq79W66latr26TJF181mTNq8odk3E2tPn0x1er9c76ekWN2PSAhTlJKs1LVWl+ikryUlSan6KinGRZJ3A6wIY2n55/Z7feWFOnQDAiSUpPceiUqdl6Z32D/vbeXu1t7Na/3rBAGanOCRsnAADAySgajc2KEQqFdOedd+qWW26J77v++usVDof14x//WMuWLTvioK8kVVZWjgj7FhYW6vHHH1dxcfHYXsQYmjp1qp544omJHgYAADjB5Ga4dcMlM/SPn67Uio2N+tt7e7Sz1qMNO9uO6jybd7frueU1ctotOnVajuZW5WpuZa7ys5LGaeQAAADAJwtBXwAAAOA4S3LZdPFZU3TxWVO0t7Fbr67ar+Vr6+Xzh5Sf5dbFCydryYJSpSWP/RR3FrNJl59brjNnFejXz23Smu0t+t9Xq/XuxgZ9/eo5mjEla9TX9fWHtLmmXWurW7W+ulXNHX3D9q/e1qzJBam6avE0LTq1UJZjCOA2tPn0f69V6+119fHAs8thkT8QUV2LT3UtPr23afi1FOYkqzQ/RZPyUlSSn6LcDLdyMlxKS3LIbP74oeODGYahTTXt+us7u7Vme0u8A8nkglR99txynTe3SDarRefNLdZ//WGttu3t1D/97G1956YFqpqUOebjAQAAwOiGdrcdLcj7D//wD/rxj3+sxsZG1dXVqaSk5IjPXVVVpaVLl+rpp5+WJF1xxRVH9fpjNXhNfr9/1P2DHX8lxbv5AgAAHA92m0WL55do8fwS1dR5tLexWyZTrPlBrC+ASWaTJFNsaZJJMsW6+fYHw9pU06511a3yeANatbVZq7Y2S5KKcpI0typPcytzNas8S077oeMN0aihvv6QfP6QvH1BeftCCoUiKspNVkF2sizjUCsEAAAAjheCvgAAAMAEmlKYpq9+7hR96dKZau3qU2F28rgEVA+Wm+nWvTefoRUbGvXbv2xWXYtP335ohS5eOFk3fmaGXA6r9jZ2a111q9ZVt2rHvk6FI0b89VaLSdMnZ+m0yhz19Ab1ygf7tK+pR//1h7V68uXt+tx55brg9NKPLL4Pamzz6f9e36nla+viAd8zZubrH5dWqrwoTR3d/apt9qq2pSe2bPaqtsUrfyCsuhav6lq8eu+gc9qsZmWnu5ST7lJOhks56e6BZex5drrriMY2KBSO6O11DXr+3d3a29gT375gRp4+e265TpmaPayb8ekz8vX//dN5+uGjq1XX4tV3frVCX/3cKbpo4eQjfk8AAAAcu6KiIkmS3W5XXl7eiP1JSUnKzMxUZ2en2trajiqo+9///d96+umnVVRUJL/fr2XLlik7O1tf/OIXx2z8oyksLJQkNTc3j7p/cHt6ejpBXwAAMGGmlqRrakn6Ub1myYJSRaOG9jX1aO2OFq2rbtX2vZ1qaOtVQ9sevfDuHtmsZs0qy1JBdpJ8/pB8fbFAr68vJJ8/KJ8/FP9S/sEcdosm5adoSmGaphSkanJhmqYUpsrttH38CwYAAACOA4K+AAAAQAKw2ywqzk05ru9pMpm06LQizanM0aMvbNVrq2v18sp9WrmlSZLk8QaGHV+QlaTTKnM0rypPs8qzhhXCr7mgQn97f69eeHePWjv79Js/b9ZTr1br0nPK9Jmzpyg1yT7i/Zvae/XH16q1fF29ogMJ3wUz8vSFpVXDPgzITo8Fc+dW5ca3GYahNo8/Hvyta/GqvtWrNo9fnT39CoWjamrvVVN77yGv32oxyWoxy2Y1y2oxyzq4HNhmi28zaX+zN/7zcNgtWjK/RJefW66inORDnr8oJ1k/vWuRfv7H9Vq5uUm/+tNG1dR79NXPzZbNavmI/zIAAAD4uGbMmCFJCgaD6u3tHRF8jUQi8nq9koZ3/z2cX/ziF1q2bJmKior0xBNPqLe3VzfddJPuv/9+SRrXsO/06dMlSVu3bh11/7Zt2yRJlZWV4zYGAACA8WI2m1RWlKayojRdvaRCvf6QNtW0ae2OVq3d0ap2j1/rd7Zp/c62jzyP025RssumZLddFotJdS0+BYIR7az1aGetZ9ixeZluTSlMjQWAC1OVm+FWSpJdKW67nHbLsC/2H4lgKKJ2j19tXX61efoGln61e/wymUyyWc2y2yzxpd1qPrA++NxmkdthjddEM1OdslmPfvY0AAAAnFgI+gIAAAAnuRS3XXddc5o+Na9YDz2zMR6OddotOmVqjuZW5WpuZa4Ksg/dFSzZbdc1F1TqivOm6vXVtfrz8hq1dPbpf1/Zoefe2qWlZ07SFedOVU6GS03tvXr69Z16c21dPOA7f3qerl1aqYrSjCMas8lkUm6GW7kZbs2fPrxDWzgSVUd3v9q6+tQWL6z7hzzvkz8QUThiKByJqD8YOaL3zEpz6tJzynThmZOU4h4ZXB6N22nTd25coD+9uUtPvrxdr3ywX/sae/SdmxYoK811ROc4Vl3eflnM5lFD1gAAACe6goICzZw5U1u3btWqVau0ePHiYfvXrFmjUCgkl8ulsrKyIzrnQw89pF/96lfxkG9xcbEk6bHHHtNNN92kBx54QCaTSV/4whfG/Hokae7cuUpPT1d9fb02b96s2bNnD9v/0ksvSZKWLFkyLu8PAABwPCW5bFo4u1ALZxfKMAzVt/q0rrpV3r6gUtx2JbtssaXbFn+e7LaN+IJ9JGqoqd2nvY092tvYrb2NPdrX2K327n61dPappbNPH2wZOWOC1WJWalIsMJzititl4H1Sk+xKdttltZjU7ulXm6dPrV1+tXf55fEFRpzn4zKZpPRkRzz4m53uUnaaU9npLmWluZSV5lTUMBQMRRUMRWKPcGw9FIoqEIooFI4oEIoqFI7I7bSpNC9FpfkpSkt2jPl4AQAAMD4I+gIAAACQJJ0yNUe//Ob5+nBbs9KSHKqanHnU3SIcNos+c/YUXXTmJL23qVF/enOX9jb26Pl39uhvK/ZqZlmWtuzpiAd851Xl6gsXVh1xwPdIWC1m5WW6lZc5emc2wzDU2x9WfyCscCSqUDg6bBlfD0cVjhgKRaJKclp1WmWurJaj755hMpl09ZIKlRWl6af/s1bVtV36p5+9rX+9YYFmlmV93MuN8/YFtbmmXRt3tWlTTbvqW32SpOLcZE2fnKkZU7I0Y0qmCrKTjrobCQAAQKL61re+pU2bNum6667TddddN2zfrbfeqrvvvlsPPvigKioq4sHclpYW/fCHP5Qkff7zn5fdfvgvRv3qV7/SL3/5SxUVFenxxx+Pn0uKddAdDPsOdvYdj7Cv1WrVDTfcoF/84hf6/ve/r8cee0zJybEZJl588UW9/fbbysjI0FVXXTXm7w0AADCRTCaTSvJSVJJ39DOiWcwmFeemqDg3RYvmFMW39/QGta+pOx4A3tfUo66efvX0huI1ws6egDp7ji6867BblJvhUk66WzkZLuUMBHLNZpNC4ciBQG44euB5OBIP5gbDEXn7Quro9qvd069wJKoub0Bd3oB21XmO+vo/SlqyXaV5qSrNjwV/YwHgVBoHAAAAJCCCvgAAAADiHDaLzjm16PAHHobFYta5pxVr0Zwira9u07Nv7dKmmnZtqmmXJM2tytW1SytVNSnzY7/X0TKZTLEOHy7bcX3feVV5+v/+6Tz96LHV2tfUo//36/d0y2dn6TNnTzmm4G1/IKytezu0cVe7NtW0aU9DtwzjwH6TSTIMqb7Vp/pWn15bXSsp1gFk+pRMzZgSC/+WFaUdU4D5eAqFI2rp7FNzR5+aO3qHLHvldtp0/rxinXtasZLG6L9pIBTRhupWeXwBWcwmmc1mmc0mWYY8Ys/N8fUkl01TClMJUQMA8DEsX75cy5Ytiz/v7u6WJH3961+Ph3HPO+88fe1rX4sf09TUpL1796qrq2vE+S666CJde+21euqpp3TZZZdp7ty5MpvNWr9+vbxer+bMmaNvfOMbhx2XYRjau3evCgsL9fjjj6ukpGTEMUPDvnv37h236/3KV76iDz74QKtXr9bSpUu1YMECtbe3a82aNbLZbHrwwQfj4V8AAAAcWmqSXadMzdEpU3OGbTcMQ/3BiLx9QXl7g7FlX2jI89h6KBxVdnosyDsY6M3JcCvFbRuz+lA0aqinN6h2j1/t3f7Y0uOPzWbm8auj26/Onlj9ymGzyGYzy261yB5fxrY5bBbZrLFtHl9AtS1etXb2qdsX1GZfuzbvbh/2vukpDpXmpWhSQarKi9I0tSRdxbkpspipewEAAEwUgr4AAAAAxo3JZNLcqlzNrcrVztourd/ZqlOn5qhq8vEP+CaCguwk/eedi/TLpzfonQ0N+s2fN+uDLU3KzXDLYbPIYbfIYbfKYbPI6bDEtzkHtkWiUW3b26mNu9q0s7ZL4Ygx7Pwleck6dWqOTpmWrdnl2Yoa0o59ndq2t0Pb9nZqV51HHl9AKzc3aeXmJkmS3WZRZWmGqiZnqDg3RUU5SSrMSVaK+/h37ujo9mvHvi41tPkOBHo7e9Xu8Q8LMR9s+75O/f75rTr7lAJ9+oxJmlWWddQfqITCUW3Y2ap3NjRo1ZYm+QORox5/UU6yLlo4SYvnl9L5BACAY9DZ2amNGzeO2L59+/b4ellZ2VGd83vf+57mzZunP/zhD1q/fr3C4bAmT56sSy+9VDfeeKMcjsNPV2wymfSTn/xE7e3tysvLO+RxlZWV+vOf/6z8/PwjGtuxXK/dbtfDDz+sRx55RM8//7zefPNNud1uLVmyRF/72tc0c+bMI3pvAAAAjM5kMsnlsMrlsCo3Y/QZw44Xs9mk9BSH0lMcmlqSPqbn7g+EVdfqVW3zwKPFGw8Ae7wBebyBeNMGSXLaLSobCP1OK07X1JJ0FWYnyzzB4d9QOKKugfF6vAF1eftltZg1bSCcPNHjAwAAGCsEfQEAAAAcFxWlGaoozZjoYUw4p8Oqb143T1NL0vXYi1u1cVf74V90CDkZLp06NUenTsvW7KnZykpzjTjm9Jn5On1mLGwSDEW0q86j7QPh3x37OuXtC2nz7pGdO1LcdhXmJKkoJ1mF2bHwb1FOsgqyk455vAfr6PZr8+4Obdndrs017Wps7z3ksU67RflZScrPcg8sk5SX6R7oVrxftc1evbW2Xm+trVdBVpIuOL1USxaUjPozGRSJGtpS0653NjTo/U2N8vlD8X05GS6VFaYpEjUUHXhEooYi0eiQ9QPb27r61NDm08PPb9Xjf9uus08p1EULJ2nmMYSORzPYTaanN6ie3sDAMqhu3/Dn/kBYc6bl6MIzJyl5AsLaAAB8HFdeeaWuvPLKo3rNk08+edhjLrvsMl122WXHOixJksVi+ciQ76AjDflKx3a9Uizse9ttt+m222476tcCAAAAUqxGOa0kQ9NKhtdr/YGw6lpi4d99TT2qqfdod71H/cGItu3t1La9nfFjXQ6rpg6EfqcVpysnwxUPSTsHljbrkc8kFoka6usPqdc/8Biy7vEF1eXtl6cnEAv2+vrV1RMYVs87WJLTqmmlGaoszVDlpFhtOi358F/0k6S+/pBqm73a29Sj/U092jewzExz6uKFk7V4fonczuM7YxwAADi5EfQFAAAAgOPMZDLpc5+aqlOmZmvLng4FghEFQhEFghH1B8Px9QPbw+oPRhSJGppanK5Tpmbr1Gk5ys9yH1WI1G6zaGZZlmaWZUmapmjUUH2rV9v3xbr9Nrb1qrHdp47ufnn7gqreH1T1/pHTYGekOJTsNFS6Oaz87GTlZLiHTVGY5LSOOq52jz8W6t3doc2729V0ULDXbJImF6ZpckFqPNRbkJWkvCy30pMdo55z/vQ8ffbcMu2s7dJrq2v1zvoGNXX06smXt+sPf9+uuVV5WnpGqRbMyJfVYlY0amj7vk6t2NCgFZsa5fEGhl3XOXOKdO6cIlVOyjiqn21ff0jvrG/Q3z/Yp9313Xp7fb3eXl+vkrxkXXhmrPh/JF2SI5Go6tt82tPQrd313drd4FFTe696emNTQh6JDTvb9MfXqnXB6aW6fFH5mIazAQAAAAAAcOJyOawjGjZEooYa23zaVedRTb1Hu2q7tKehW/5AeNQGAkNZLeaB8K8lHgJ2OayyWMwjQr3HMsNW7D1MSk9xKiPFoYwUp3r7Q6qp96i3P6wNO9u0YWdb/NiC7KR48LdyUoYm5aeqtatP+5u82tvUrX2NPdrf3KPmjr5R38vnD+k3f96sJ17argtOL9WlZ09RYU7yMY07EfX0BiWJ2coAAEhABH0BAAAAYIKUF6ervDh9wt7fbDapND9VpfmpuvDMA9v7A2E1dfSqoc2nxrbYsqk9tuzpDarLG1CXV6prax71vC6HdVjwNxKJasuejlGDvWVFaZpVHutIPGNKlpJdR98Jw2QyqXJSpionZeqWy2dpxcZGvbZ6v7bt7dSa7S1as71F6ckOzanM0ZaadrV398dfm+K26axTCnXuaUWaWZYtyzFO5+d22nTRwsm6aOFk7arr0t9X7tc76+tV1+LT7/+6RU/8bZvOPrVQFy2crOmTM2UymRQKR7S/2avd9d3a0+DR7oZu7W3sUTB06A81bFaz0pLsSk12KDXJPuQRex6NGnp11X7ta+rRiyv26m/v7dWZswr02XPLNWNK5jF1FzYMQy2dfWps61VZUZrSU46s8wkAAAAAAAA++Sxmk0ryUlSSl6LF80skxb6sXtviVU2dR7sGuv52+2KzTfkD4fgX1sORqLx9QXlHz82OymG3KMlpVZLLpiSnTW6XTenJDmWkOA4EelNjod70FIeSXbYRNa9IJKr9zV5V7+9UdW2Xqvd3qb41VuNsau/V8nX1hx1HZqpTkwtSY4/CVJXmpWjH/i69uGKP6lt9euHdPXrh3T2aV5WryxaV6bSKXJmPsbZ4vBmGoTaPf6AuOfjwxOum5cVpml+Vp3lVeaqYlHHMNVMAADB2CPoCAAAAAIZxOqyaUpimKYVpI/b5/CHtqWvXhq01ciRnqbs3orauPrV5/Grr8qunN1bQr22OTfE3lNkklRWna3Z5tmaXZ2nGlCwlHUOw93Bjv+D0Ul1weqnqW716fXWt3lhTJ483oOVrYwV8l8OqhbMLtGhOkeZU5MhqOfIpBI/E4LSHN18+U8vX1evvK/dpb2OP3lpbr7fW1qskL0U2q1m1zT0KR4yR12C3qKwoLRYEL0pTSV6K0geCvQ675bBh3UvPmaINO9v013d2a+2OVq3c3KSVm5s0tSRdV5xbrrNPLfzIaw5HotrT0K3t+zq1fW+ntu/rUGfPgc7HUwpTNaciV3Om5WhGWaacdkoLAAAAAAAAJxOLxRyvH376jEkj9ocjUfUHwuobCP76A2H5+8PqD8bWwxFDSS6bkp02uV0HQr1JLtuY1OosFrPKitJUVpSmi8+aIkny9QW1s9YzLPzr84dkt1k0KT9lWKh3Un6q0pJHftm9vDhdl5w1WRt2tumFFXu0ZnuL1u5o1dodrSrMTtKl55RpyYISuZ1HV/MMhaPy+YPxDse+g5d9sa7Hvr6Qenr71eP1KWddQOkpLiW7bUpx25XitinZbVeyK/Z8cLvTblFje692Dwn07mnolrcvdMjx7K6PzTb2f6/vVLLLptMqczWvKldzq3KVkeI8uv8YAABgTPBpHAAAAADgiCW7bJpanKaQ163p0yfL7XYP298fDKvd41drVyz42+bpUzRqaPrkzHEJ9n6U4twU3XTpTF138XSt3d6ibXs7VTU5Q/Oq8mS3Wcb9/d1Omy45a4ouXjhZO2sHuvxuaFBdy4EAdLLLpvLiNJUXpau8OPbhQ2F28sfq/mEymXRaZa5Oq8xVbXOPnn93j95cU6eaOo9++oe1euzFrbpsUZmWnjlZyS6bev0h7dg/GOqNfdARCA7vKmy1mJST7lZTR6/2NvZob2OP/ry8RlaLWTOmZGpORY7mVOSorCj9sB0+DMNQX39YHd1+dXT3q7OnX96+oAxDMuK5Z2Pg2MG12OsGr29yQapOmZp9XP47Hqw/GNbKzU1avq5e0YihhacU6KzZhWPS6Xiw+/X66lZlpbn06dNL5XRQugEAAAAAAJ8sVos5Fjp12yd6KHHJbrvmDoRVpVityeMNKDXZcVQda4fW3prae/W39/bqtdX71djeq9/+ZbOefHmbliwo1ZL5pYoahnp6g+r2BQ5aBtXdG1DPwLKvP3zU17O/te2oXzPUYKfmsqI0lQ+EosuK0hQIRrSuOhZeXl/dKp8/pHc3NOjdDQ2Sjl+330gkKssYN2gYKho1FIpEFQpHFQpFYsuB58GB5+FwVJGoocKcJOVluo9ptjQAAMYKnxYBAAAAAMaM025VcW6KinNTJnoocVaLWWfMKtAZswom5P1NJpMqJ2WqclKmbv7sLK3e2iyXw6KyonTlZrjGtUBcmp+qr189R9dfPF0vr9ynv63Yq/bufj364jY99Wq18jLdqm3xDgnYxiS7bKqanKkZUzI1fXKmppVmyGGzyOMNaOOuNm3c1ab1O9vU7vFrU027NtW064mXtivFbdMpU3N0akWOUty2WJC3u18d3f3q6PHH1nv6RwSJj4XTbtFplbk6Y2a+5k/PG7XLylgxDEPVtV16fXWt3t3QMOzDlw272vSb5zZp9tRsLZpTpDNnFRzVWIKhiDbsbNP7mxu1emvzsG4qT71arcvPLdOlZ09JqA/GAAAAAAAAPulMJpMyUj9ed9qC7CTd8tlZ+uJFVXprbZ1eXLFHdS0+vbhir15csfeoz5fktCrJbVey06Zkd6zDcbJr+NJmNtTc3Kj0rDwFw5K3LyRfX1A+f0jevqB8fbGlty+kYChWg3PYLZpSkDoQ5o3NIlaanzLql+jdTlssqLygVJFIVDtrPVq7o0Vrd7SoZqDT72C33ySXLX6uSfmxTsil+SlH1ewhEomqoc030FygO77s8gaU4rYpK82lzDSnslKdykpzKSvNOfCIracm2eP11XAkqq6egDp7/OrsCajLG6tNdvb0q8sbiK17++XrC44609pHSXHbNa0kXVNL0jW1OF0VpenKTHUS/gUAHDcEfQEAAAAAOE6SXTYtnl9y3N83Ldmhf/x0pa781FS9s75ef3l7t/Y3e7W/OdZduCArSdMHQr3Tp2SqJDdl1K7C6SkOnTe3WOfNLZZhGGps79WG6lat39mmzbvb5e0L6b1NjXpvU+Nhx5TksikrzanMVKfSkhwyDzToGFocH1w1yRR/HgxFtXl3uzp7+rVyc5NWbm6S2SRNn5Kl02fk64xZ+SrKSf6YP7GYzp5+vbWmTm+sqVVdiy++PS/TrSULSuWwmfXuxkbV1Hm0cVe7Nu5q17JnN2nOtBydc2qhFs4uGDWg29cf0prtLXp/c5PWbm9R/5Dgc2qSXfOqcrVjX5eaOnr1h7/v0HNv7dIlZ03RZ88tP+YPoAzDUEObT1v3dCojxaGqyZlKTSI8DAAAAAAA8HG5HNb4zF4bd7XphXf3asuedrmdNqUl25Xqtist2aHUZLvSkhxKTbLHtic54sskl+2IuuP29fVp+3aPpk8vHjHb2sECoYj6/KGj7lo8yGIxx2qGUzJ13cXT1eXt1/rqVq3d3qp1A91+B5sADJWT4RoI/qaodGBZkpeiYDiqfUPCvHsbu1Xb7FUwHB31/b19IXn7QtrX1HPIMVotZmWmOhQIRdTtCx71NQ6yWc2yW82yWS2yWs3x55LU0NYrb19Q66pj1z0oI8WhqSXpmlaSEQsBF6ePyaxfAACMhqAvAAAAAAAnCbvNogtOn6QlC0q1dU+HvH0hVU3KOKbwqMlkUlFOsopykvWZc8oUiUS1q84TC/3WtCsSjSpzSKeN2LpTmQPrTvuxlyQMw9Du+m6t2tqs1VubtaexW1v3dGjrng49+uJWFeUk64yZsdBv5aTMo/ogIxSO6sNtzXr9w1qt3dGqaDTW3cNus+icUwt1wYJSzSzLigehrzx/mpo7evXuhgat2NioPQ3d8aL/smc3ak5FrhbNKdSMKVnaVNOulZubtGFnm8KRAx9gZKc5tfCUWDB4xuRMWSxmRSJRvbepUc+8sUv7mnr07Fs1ev7dPfr06aW68vxpysv86A9yJKk/ENam3e1au71Fa3e0qqWzb9j+krxkTZ+cpekD3ZsLspPoQoKEEQpHFIkaH+v/FQAAAAAAHE8mk0lzKnI1pyJ3oociSXLYLHKM0rX3WGWkOLV4fqkWzy9VJGpob2O39jf1DDQU6NH+ph51dPerrcuvti6/1mxvib/WbJKih2ii67RbNLkgVVMK0zSlMLbMy3Sruzeojm5/bLaw7v74eufA7GHdvqDCkahau/zxc1nMJmWkOJSZ5lRGSqwOObieleZURopDqUkO2W2xMK/NapHVYvrImlgoHNH+Jq921Xu0q7ZLNfUe7W/2qssb0IfbWvThtgPXmZ7iUG6GSzkZbuVmuJWX4VJOZmw9N8Mlt/PIux0fD+0ev7bv7ZTTYVFxbopyM93HFAr/OCKRqOrbfNrT0K1IxFDpQDDc5aAmBABD8X9FAAAAAABOMiaTSbPKs8f0nBaLWVWTM1U1OVPXLq0c03MfzGQyxabJK0nXFy+qUmtnn1Zva9aqrc3asrtdDW0+Pbe8Rs8tr5HVYpLDbpXTHvtgw2m3ymG3xB5DnjvtFgVCEa3c3KSe3gPdP6ZPztSSBaVaNKfwkIX4/KwkXb2kQlcvqVBDm08rNjZoxYZG7Wvq0ZrtLcM+1BhUlJOss04p0JmzCjStJH3EhwkWi1nnnlasRXOK9OH2Fj3z+k7t2N+ll97fp79/sF+fmlusq86fquzUA6UdwzBU3+rT2h2tWrujRVt2dwwLFFstZlVNzpDHG1B9q091LbHHq6v2S5LSkx2qmpyh6ZOzNGNKpsqL02SzHvuHQdGooe7egNo9frV7/Grz+NXu6Y8/N5mk7DSXstMHH874eqzLM6Hjk4GvL6i6Fp/qW72qb/XF/my2etXS0auoEeuOk5+VpILs2CM/K0mFA8sUt41wOgAAAAAAE8BiNmlqcayL7VC+vqD2N3tV29yjfYMh4KYe+fwhSbFuv1MKDgR6pxSlKj8zadQ6UEaqU5MLUg85hlA4os6egLp6+uWwW5SZ6lSK2z7mNSWb1RKvRV68cLKkWLfkvQ3d2lXnUU29R7vqulTf6pPHG5DHG9DOWs+o50py2ZSb4VJuhls56S4luW1Kctrkdtrkdlpj666BpdMqt9Mmp90yZvWPnt6gNte0a+OuNm2qaVNDW+9B12pWYXaSinNTVJybrKLc5NgyJ3lMQsqDoendDR7tru/WnoZYZ+fRujrnZrhUkhfrCl2al0IAGMBJj//7AQAAAACAT7TcTLcuPadMl55Tpl5/SOuqW7V6a7M+3N6iXn9IYX9IvQMfJhyJzFSHFs8v1ZIFJSrOTTmqsRTlJOuaCyp1zQWVqmvxasWGBr27sUF1LT6VF6dp4ewCnTW7UCV5R3Zek8mk02fka8H0PG3Z06FnXt+p9Tvb9OaaOr25pk4LpueqJCOs92q2a2NNp1oP6tqbm+nWvKpcza/K0+yp2fFCeLcvoB37OrV9X6e27e3UrjqPPL6APtjSrA+2NEuKFfaLcpIHOpxYZLOY41MXWi3DlzarWSaTSV09/Wrz+NXRHQv1Dg0aHw2rxaystIHgb5pLmWlOuZ1WOQdC205HbOmyW+VwDCztFrkcsaVhSIFgRMFQRIHBx5DnwYFHIBiRFPvgKDPNqaxUlzJTHbJYzMc07iMVDEXU6w+ptz/2Z7PXH1Z/MKyUJLsyU2PdZRKtw8uxMgxDvf5QrKOPx6+GNp/qWmKh3oZWnzy+wEe+vssbUJc3oO37OkfsS3Ja4+Hfguyk2IdkGS7lpMc+MHPywQ8AAAAAAMdVstuumWVZmlmWFd9mGIY83oBsVrOS3fYxey+b1aK8TPcRzXw11hw2S7zpwaC+/pCa2nvV2tWn1i6/Wrv61DawbO30y9sXVK8/pL3+kPY29hzxe5nNJrkdVmWkOpSXmaT8TLfysmLXnZ+VpLxM9yHrSP5AWFv3dAwEe9u1t7FbxpDOymaTVFaUpnDEUEObT6FwdKBDs3fEubLSnCrOTVZuhlsOm0V2m0U2mzm+breaY8uBTtI2q1lmk0m1LbFg756GbtU2exUZpbWzy2HRlMI0WS1m1bZ45fEGBn6Gfq3d0Trs2NwMVzz8O7UkXZWlGcrJcPFlcAAnPKrdAAAAAADghJHksmnRnCItmlOkSCSqjp5+BYKxQOdg2LM/GFYgFFF/fHtYgWBE4YihU6Zm67SKnDEJepbkpejaC6t07YVVCoYisn+MqRJNJpNml2drdnm2dtV16Zk3dmnl5iZ9uL1VH0qSYiFIq8WsWeVZmleVp3lVuSrOTR61yJ2W7NAZswp0xqwCSbFuGjV13dq+r0Pb9sYCwD29Qe1rOvIPHUYfd2xax6HdenMGloYhdXQPdvr1q8MTC4J2eWMB4ZbOPrUcFFw+HkymWHfjrDSnsgZCxllpTmWlOpWZ6pIU69oSCg8Gh6MHgsOhiELhaDxM3B+IxMO8ff2xQK/PHzqiALTTbokFkAeCv5mpTqUPLDMGtqUnO5SaZB+TP6+GYSgQjKinN6hI1JDJJJlNsakrzebYn8Fh20yxbcFwJDZ9psev9oFpNNs9/viUmu3d/fFA9aFkp7tUPNAhpjg3RSV5saXdalZTR6+a2/vU2OFTc3ufmjp61dTeq86efvX2h1VT362a+u5Rz5vitilnoENObqY7HgDOyXApPytJqUlj9+EiAAAAAAAYnclkUkaqc6KHMe7cTpvKi9NVflCX40H+QFhtQ0LA7R7/QM0orL7+sHr7B+pH/WH1DdSSokZs1iyfPySfP6S6Ft+o505x25Q3EPrNz3TLYjFry+52Ve/vGhGsLc1P0anTcnTK1GzNKs9WsisWEo5EDbV19cVnXKpv9aqhzRfvVByr9fR/7J9Titum8qJ0lRenqawoTeXF6SrIGt7Vuac3qLqWWGfo2mavalu8IwLAQ2dRS09xqKIkQxWT0lVRkqFppRnx6zoahmHIHwjL1xer34UjUUWiRmwZGbKMHnje5+9XfX2f2oNNstnsikYNGYahqBE739D1qGEoHDYUCIbVP1CnHqxRH1gf2BcIKxCKKmoYkmHIkGQMnnNgfeh2yZDNalGy26Zkl00pbruSBpbJLlts+8B6ijvWRdpsNg3U+hRfxmqBw+uAJpNkUqxGKMW2a2C/FAujm3SgfmixmGUfaAwBYOwQ9AUAAAAAACcki8Ws3Izj39FjNB8n5HuwaSUZ+rebTldtc4+efn2Hqve165RpeTpjdpFOKc8+pi6mNqtF06dkavqUTF15fqxg3NDmU2unX+FIVKFwVKFIVOFwZMh6dNh6JGooPdkxLNCbmeaU9ShDqOFIVJ09/WofCAC3e/rV5e2XPxBWf2Cw6H1g3T9QAPcHYuHaoQY7iTjsB7qJDHYZiW0zyzCkzp7YBxVdPf2KRI14F9lDBUjHgskkuR1WJblsSnLZ5LBZ1NMbHLjWWBC9qT0Waj2cFLdd6Sl2pSU7lJYcCwCnJdmVlhJ77nZY5fOH1NMbHHgE1OMLDn/eGxx1msSxkppkV1aaU4XZyQdCvXkpKspJ/sgpF6e57ZpWkjFie38wrJbOPjW196p5IPzb5vGrrcuvtq4+9faH5e0LydsXmwZyNGnJdpXkpagkN0XFeckqzYtNAZmZ6uSDCAAAAAAAMKZcDmusE21+6hEdbxiG+oORgS+Px2ZLau7sU0tHb/wL8i2dferpDQ7UQDyqqfOMOE9uplunTs2Oh3sPFbq2mE3Kz4rNnDR/et6wfb6+oOrbfKpv8amzp3/YF96HzaAVPvCF+GAoVjsszEmKBXoHwr056YfvvpuaNLIztDQ8ALy3sUe76rq0t7FHHm9Aq7c1a/W25vixRTnJqpyUoYqSdFVMypDDZpHHF5DHGziwHLruC6jbG/gY9bGRs1Edb+FIeCBQ7p/oochsNsnlsMrttMrtsA6s2+QafO60yu2wyeWwym6LzRxnHZxRzmKW1WKSzWqR1WqK77NZzYpGDfUFwvL3h9XXH1JfIDwQlg/FtgUGtvfHmntYrWY57AfqwvH1UZYmk0nRqKFI1IgvI9GoolEpGo3Gt0ejsfC2024ZMvvc8BnnXAMz0g3OUDfeM8jh5EDQFwAAAAAA4BOoND9Vd1w5S9u3b9f06dPldo9dqNlkMqk4N0XFuSljds4jZR0IaB9LSDsSjXXEMJtNslstwzqBHIlo1FC3L6COnn51DnSk7ejujweBO3v6ZTaZZLcdmIowvm6NrcenLrSa5bTHgrzJLpvczgOh3iRnrIh9qPH5A2F19fSryxtQZ08sgNx50HOPLyBvb1BRQ/L2BeXtCx6yq8vRiBXNTbFOI9GR3UcOFuva7FBWWizgnZXqVFa6S9lpg8tY4NsxhmF3SXLarZqUn6pJh/hwrNcfGgj+xjrltHX1xYPArV196ujuV7cvqG5fh7bs7hj2WrfTquLc5HgIuGJShmaXZ4/p+AEAAAAAAD6KyRQLSrocVmWluQ4ZEO7rDw0L/rZ09snfH1bV5EydOi1b+VlJH3ssyW67qiZlqmpS5sc+18cxWgA4EIpob0O3qmu7tHPg0dzRp4Y2nxrafHpzTd1Rv4/dGgucWsyxwKllIHg62nOTyZC/r08pyUmyWq3xrrgW85AOuUO65lospngodDAE6rRb5LBb5XRYhuyLBVBj3XWHd8zV4LokDXTbNZmkYDgiX19Ivr6QvH3BgU7QwZHb+oLqC4SHdR+WIUWN0bsRx46TpMFjR68TDhWNGur1x0LqiNVcDxUyHvxvPrjNajErahiKRKLDQ8eRgeCxMbg+uC8WRo5Ehx9/YHlg++BYrNaB8HR83TRK2NosiyX2Z9liMceWA+tWs0lmi0lWc+wYszl2P5hNiv+ZNQ/MFHdg1riBx8Cf4eCwmfIOzJI37MsDoVhn7U+fXhqfnfBkRtAXAAAAAAAAJwSL2SS38+in5RtkNsemksxIdUrFYziwo+RyWOXKSVZhTvJHHheJGvL1BWMdR3wBdXsPrHt8sS69Hm9Aff0hJbvtSk0a+nAc9DzWEdg50L3iUA4u9sc+oEi8jhSDoerJBaN/COYPhNXQ6lNdq1d1LQceTR196usPa2etRztrPfHj7791oU6rzD1OowcAAAAAADgybqdNUwrTNKUwbaKHMiEcNouqJmeqavKBEHK3L6BddR5V7+/Szrou7ar1KGrEZiNLT4k9MgbW04ZsSx+YKetoZkzr6+sbl0YMnwSx+qBkDF03DIUjUfkHOu36B7vvBkLxbYPbBzvyhsKxGePCkcGHEZtNbvD5kH2SSUmugQ7BjoEOwc5Yt2D3QAdh18C6025ROGIoEIp19w2EIgeWQ9eDsUfUMGQxD4ZWB4KrA+tDl4PNGwZf5w/Gzu8PhOMzzwUGZqIbDNeGI1GF/VGCz8coFI4S9BVBXwAAAAAAAOATyWI2KS059oHE8WIymWQZbBfyCeZyWDW1JF1TS9KHbQ+FI2ps7x0I/vpU3+JVMBxRWdHJ+WEZAAAAAADAJ01askPzp+dp/vS8iR7KCW1oh+GhtUK7zSK306ask7ycdiD0PBgqHh447h8WPj6wLxyOxjvkxjvqmk0ymwe66g7bdmD7gYCy6aCA8oH9sTEZB0LV4ViwOhQ5OGwdVSgcjXcFDkdi6+GBrsJDOwwPrkejhqLGgaUx0A16cJsx0DV6MPxss8ZmynMMmTXPEZ9FzyLHkG3cyzEEfQEAAAAAAABAks1q0aT8VE06xHSYAAAAAAAAAHA4JpNJNqtFNqtFSpro0eBEkHjz6gEAAAAAAAAAAAAAAAAAAAAg6AsAAAAAAAAAAAAAAAAAAAAkIoK+AAAAAAAAAAAAAAAAAAAAQAIi6AsAAAAAAAAAAAAAAAAAAAAkIIK+AAAAAAAAAAAAAAAAAAAAQAIi6AsAAAAAAAAAAAAAAAAAAAAkIIK+AAAAAAAAAAAAAAAAAAAAQAIi6AsAAAAAAAAAAAAAAAAAAAAkIIK+AAAAAAAAAAAAAAAAAAAAQAIi6AsAAAAAAAAAAAAAAAAAAAAkIIK+AAAAAAAAAAAAAAAAAAAAQAIi6AsAAAAAAAAAAAAAAAAAAAAkIIK+AAAAAAAAAAAAAAAAAAAAQAIi6AsAAAAAAAAAAAAAAAAAAAAkIIK+AAAAAAAAAAAAAAAAAAAAQAIi6AsAAAAAAAAAAAAAAAAAAAAkIIK+AAAAAAAAAAAAAAAAAAAAQAIi6AsAAAAAAAAAAAAAAAAAAAAkIIK+AAAAAAAAAAAAAAAAAAAAQAIi6AsAAAAAAAAAAAAAAAAAAAAkIJNhGMZEDwI4UuvWrZNhGLLb7RM9lHFhGIZCoZBsNptMJtNEDwc46XFPAomD+xFILNyTQOLgfgQSyyfxngwGgzKZTJo7d+5EDwUJ7kSvzUqfzHsYOFFxPwKJhXsSSBzcj0Bi4Z4EEscn8X48mtqs9TiMBxgzn5Sb8FiZTKYTulAOfNJwTwKJg/sRSCzck0Di4H4EEssn8Z40mUwnfM0NY+Nk+HPySbyHgRMV9yOQWLgngcTB/QgkFu5JIHF8Eu/Ho6nN0tEXAAAAAAAAAAAAAAAAAAAASEDmiR4AAAAAAAAAAAAAAAAAAAAAgJEI+gIAAAAAAAAAAAAAAAAAAAAJiKAvAAAAAAAAAAAAAAAAAAAAkIAI+gIAAAAAAAAAAAAAAAAAAAAJiKAvAAAAAAAAAAAAAAAAAAAAkIAI+gIAAAAAAAAAAAAAAAAAAAAJiKAvAAAAAAAAAAAAAAAAAAAAkIAI+gIAAAAAAAAAAAAAAAAAAAAJiKAvAAAAAAAAAAAAAAAAAAAAkIAI+gIAAAAAAAAAAAAAAAAAAAAJiKAvAAAAAAAAAAAAAAAAAAAAkICsEz0AAFIwGNSjjz6q559/XnV1dXK73Zo/f75uv/12zZw5c6KHB5xQQqGQVq1apeXLl2vVqlWqq6tTJBJRfn6+zjnnHN1yyy0qKioa9bW1tbX65S9/qZUrV6q7u1v5+fm68MILdfvttyspKek4XwlwYjIMQzfeeKNWrVolSXrppZdUXl4+4jjuR2B8eb1ePfLII3r99ddVX18vScrLy9O8efN01113KS8vb9jx3JPA+NizZ49+97vfadWqVWptbZXValVpaamWLl2qL33pS6PeX+3t7XrooYe0fPlytbe3Kzs7W5/61Kd05513KisrawKuAvjk2Lp1q95//31t3rxZW7ZsUUNDgyTpjTfeUHFx8SFfdyy/Bw3D0B//+Ec988wz2rNnj+x2u2bNmqWvfOUrWrhw4bhcH4DRUZsFjh9qs0BiozYLJAZqs0DioD4LHD/UZg/PZBiGMdGDAE5mwWBQN998s1avXq2srCwtWLBAbW1tWrt2rWw2m379619r0aJFEz1M4ITx/vvv60tf+pIkqaCgIP6BzaZNm9Ta2qrk5GT9/ve/12mnnTbsdVu3btX111+v3t5ezZw5U6Wlpdq0aZMaGhpUUVGh//3f/1VKSspxvx7gRPPHP/5R9913n0wmkwzDGLWYzP0IjK+amhp96UtfUmtrqyZNmqSqqiqFQiHV1taqpqZGf/jDHzR//vz48dyTwPhYs2aNbr75ZvX392vy5MmqrKyU3+/XunXr5PP5VF5erqeeekppaWnx1zQ0NOiaa65RW1ubysrKVFlZqerqau3Zs0d5eXn6v//7PxUUFEzgVQGJ7Y477tAbb7wxYvtHFZOP5fegYRi655579MILLygpKUlnn322ent79cEHHygajeqBBx7Q1VdfPS7XCGA4arPA8UVtFkhs1GaBiUdtFkgc1GeB44va7BEwAEyohx56yKioqDCuuuoqw+v1xre/8MILRkVFhXHGGWcM2w7g43n//feNO++801i3bt2w7f39/ca//uu/GhUVFcb5559vBIPB+L5wOGwsXbrUqKioMH7zm9/EtwcCAeOrX/2qUVFRYfz7v//7cbsG4ETV1NRkzJ0717j55puN888/36ioqDBqamqGHcP9CIyv7u5uY9GiRcasWbOM559/fsT+/fv3Gx0dHfHn3JPA+PnMZz5jVFRUGD//+c+NaDQa397V1WV87nOfMyoqKoyf/vSnw15zww03GBUVFca9994bf000GjXuvfdeo6Kiwvjyl798XK8B+KT5zW9+Y/zsZz8zXnvtNaO5udk466yzjIqKCqOurm7U44/19+Cf//xno6Kiwli8eLHR3Nwc37569Wpj5syZxsyZM436+vqxv0AAI1CbBY4varNA4qI2C0w8arNAYqE+Cxxf1GYPzzzRQWPgZBYOh/XEE09Iku677z4lJyfH91166aU677zz1NXVpWeffXaihgiccBYuXKhf/OIXI7pCOBwO3XfffUpJSVFDQ4PWr18f3/fGG29o3759qqio0Fe+8pX4drvdrvvvv19Wq1XPPvusurq6jtt1ACeie++9V9FoVN///vcPeQz3IzC+HnroIbW0tOgb3/iGLrvsshH7S0tLlZmZGX/OPQmMj66uLu3atUs2m0233367TCZTfF96erq+/OUvS5I2btwY375161Z98MEHSk9P17/927/FX2MymfRv//ZvSk9P14oVK7Rjx47jezHAJ8itt96qf/qnf9IFF1wwYirU0Rzr78GHH35YknTPPfcMe58FCxbo6quvVigU0uOPPz5GVwXgUKjNAscftVkgcVGbBSYetVkgcVCfBY4/arOHR9AXmEDr1q2Tx+NRcXGxZs+ePWL/JZdcIkmjtiYHMPacTqcmT54sSWptbY1vf+uttyRJF1544bC/xEtSbm6u5s2bp3A4rLfffvu4jRU40fzlL3/R22+/rbvvvltFRUWHPI77ERg/gUBAzz33nFwul6655pojeg33JDA+bDbbER2XkZERXx+8HxcvXiyHwzHsOIfDocWLF0uSXn/99TEaJYBj+T1YX1+vnTt3Drsvh6IWBBw/1GaBxEJtFpg41GaBiUdtFkgs1GeBxHcy1mYJ+gITaPv27ZKkmTNnjrp/xowZkqTq6urjNibgZBaJRNTQ0CBJys7Ojm8fvFdnzZo16usG72G+fQccm/b2dv3Hf/yHZs+erRtuuOEjj+V+BMbPli1b5PV6NWPGDLlcLq1cuVIPPvig7r33Xv32t7/Vnj17RryGexIYH8nJyTrttNMUCoX061//WoZhxPd5PB498sgjkqSrr746vv1I70f+fQmMnWP5PTi4Pm3aNNnt9hGvGawF1dfXy+fzjel4AQxHbRZILNRmgYlBbRZIDNRmgcRCfRZIfCdjbdY60QMATmaNjY2SpPz8/FH3D273eDzq7e1VUlLScRsbcDL661//qs7OTmVmZmru3Lnx7Ye7Vwfb+Q8eB+Do3H///fL5fPrBD34gs/mjv4fG/QiMn5qaGklSVlaW7rrrLr3yyivD9v/sZz/Tbbfdprvvvju+jXsSGD8//OEPdcstt2jZsmV66aWXVFlZqf7+fq1du1Yul0sPPvigzjnnnPjxg/fZoaa0GrxPB8MTAD6+Y/k9eLjXJCUlKSUlRV6vV42NjaqoqBjLIQMYgtoskFiozQITg9oskBiozQKJh/oskNhOxtosQV9gAvX19UmSXC7XqPvdbnd8nWIyML7q6+v1k5/8RJL0z//8z8O+vXO4e3Xw3uzt7R3nUQInnldeeUWvvPKKbr31VlVVVR32eO5HYPx0d3dLOjDVzT333KPLLrtMFotFL7/8sh588EEtW7ZMhYWF8W+pc08C46e8vFxPPfWU7r77bm3YsEH79u2L7zvrrLM0derUYccP3o9D/x051OB27kdg7BzL78HDvUaK3a9er5f7FRhn1GaBxEFtFpgY1GaBxEFtFkg81GeBxHYy1mY/+mt5AACcBHw+n+644w55PB5ddNFF+od/+IeJHhJwUvB4PLr//vs1adIkff3rX5/o4QAnvWg0KkkKhUK67bbbdMsttygvL0/Z2dm6/vrr9S//8i+SpGXLlk3kMIGTxgcffKDLL79cXq9Xv//97/Xhhx/qnXfe0f3336+VK1fq2muv1YoVKyZ6mAAAAMDHQm0WmBjUZoHEQm0WSDzUZwEkGoK+wAQa/MaO3+8fdf/gNwkk0TECGCeBQEC33367qqurtXDhQv3nf/7niGMOd68OfpOH+xQ4Ov/xH/+h9vZ2ff/735fD4Tii13A/AuNn6LfMB7tCDDX4YWtjY6Pq6uqGvYZ7EhhbHo9Hd999t4LBoH73u99p0aJFSk1NVV5enq655hrdf//9CgQCuu+++xSJRCQduB+H/jtyqMHt3I/A2DmW34OHe43E/QocL9RmgYlHbRaYONRmgcRCbRZILNRngcR3MtZmCfoCE6iwsFCS1NzcPOr+we3p6ekJ+T8Q4JMuFArpzjvv1OrVqzVnzhwtW7Zs2LRwgw53r7a0tAw7DsCReeONN+RwOLRs2TJdf/31wx5tbW2SpG9/+9u6/vrr9fe//10S9yMwnoqKiiRJdrtdeXl5I/YnJSUpMzNTkuL3KPckMD6WL18uj8ejOXPmxO/NoZYuXSqbzab6+vr4hzuD99ngfXewwft0tPMBODbH8nvwcK/p7e2V1+sd8ToAY4/aLDCxqM0CE4vaLJBYqM0CiYX6LJD4TsbaLEFfYAJNnz5dkrR169ZR92/btk2SVFlZedzGBJwsotGo7rnnHr399tuqqqrSb3/722Hflh1q8F7dsmXLqPsH7+GqqqrxGSxwAgsEAlq9evWIRzAYlCRt3rxZq1evjv9lm/sRGD8zZsyQJAWDwfi3XIeKRCLxf9wO/s7kngTGx2ABKiUlZdT9Vqs1fh92d3dLOvL7kX9fAmPnWH4PDq7v2rUr/nfeoQZrQcXFxUpOTh7T8QIYjtosMHGozQKJgdoskDiozQKJhfoskPhOxtosQV9gAs2dO1fp6emqr6/X5s2bR+x/6aWXJElLliw53kMDTmiGYei73/2uXn75ZU2ZMkWPPPKI0tLSDnn8+eefL0l65ZVXZBjGsH2tra1au3atrFarzj333HEdN3CiWbNmjaqrq0d9DH6b9aWXXlJ1dbVuuukmSdyPwHgqKCjQzJkzJUmrVq0asX/NmjUKhUJyuVwqKyuTxD0JjJecnBxJsUJUOBwesX/fvn3xAvLg78zB+/HNN99UIBAYdnwgENCbb74pSbrgggvGbdzAyeZYfg8WFxeroqJi2H05FLUg4PihNgtMDGqzQGKgNgskFmqzQGKhPgskvpOxNkvQF5hAVqtVN9xwgyTp+9//vnw+X3zfiy++qLffflsZGRm66qqrJmqIwAnpxz/+sZ599lkVFxfr8ccfV1ZW1kcev3jxYk2ePFk7d+7U7373u/j2YDCoe++9V+FwWFdddVV8yhwA44f7ERhft956qyTpwQcfVH19fXx7S0uLfvjDH0qSPv/5z8enU+WeBMbHueeeK6fTqYaGBv30pz8dVkzu7OzUd7/7XUnS6aefruzsbEnSzJkzdeaZZ8rj8ehHP/pRvLBlGIZ+9KMfyePx6JxzzqGLCzCGjvX34M033yxJ+s///M9h0zl++OGHeuaZZ2Sz2XTjjTcen4sATmLUZoGJQW0W+OTifgTGF7VZIHFQnwUS38lYmzUZB0eaARxXwWBQN998s1avXq2srCwtWLBA7e3tWrNmjWw2m5YtW8a37IAx9Prrr+trX/uaJOmMM85QYWHhqMddcMEFw75Nt2XLFl1//fXq6+vTzJkzNWnSJG3cuFENDQ2qqKjQ//7v/x5y6g4AR2/x4sVqaGjQSy+9pPLy8mH7uB+B8fW9731PTz31lNxut+bOnSuz2az169fL6/Vqzpw5euyxx+RyueLHc08C4+OZZ57Rvffeq2g0qsLCQs2YMUP9/f3auHGjvF6vsrOz9T//8z+aMmVK/DUNDQ265ppr1NbWpvLyclVWVqq6ulq7d+9Wbm6unn76aRUUFEzgVQGJbfny5Vq2bFn8+bZt2xQKhTR9+vT4B6nnnXde/N+U0rH9HjQMQ9/85jf14osvKjk5WWeddZb6+vq0cuVKRaNRPfDAA7r66quPz0UDJzlqs8DxRW0W+GSgNgtMHGqzQOKgPgscX9RmD4+gL5AAgsGgHnnkET3//POqq6uT2+3WvHnz9LWvfS0+RQeAsfHcc8/pO9/5zmGP+/rXv64777xz2Lb9+/frl7/8pVauXKnu7m7l5+frwgsv1B133KGkpKTxGjJwUvqoYrLE/QiMtxdeeEF/+MMftHPnToXDYU2ePFmXXnqpbrzxRjkcjhHHc08C42Pjxo16/PHHtW7dOrW3t8tisai4uFjnnnuubrnlllG7n7W3t+uXv/ylli9fro6ODmVlZelTn/qU7rrrrsN2SwNOdkfy78XPfe5z+vGPfzxs27H8HjQMQ0899ZSeeeYZ7dmzRzabTbNnz9att96qhQsXjtk1ATg8arPA8UNtFvhkoDYLTCxqs0DioD4LHD/UZg+PoC8AAAAAAAAAAAAAAAAAAACQgMwTPQAAAAAAAAAAAAAAAAAAAAAAIxH0BQAAAAAAAAAAAAAAAAAAABIQQV8AAAAAAAAAAAAAAAAAAAAgARH0BQAAAAAAAAAAAAAAAAAAABIQQV8AAAAAAAAAAAAAAAAAAAAgARH0BQAAAAAAAAAAAAAAAAAAABIQQV8AAAAAAAAAAAAAAAAAAAAgARH0BQAAAAAAAAAAAAAAAAAAABIQQV8AAAAAAAAAAAAAAAAAAAAgARH0BQAAAPCJUV9fr8rKSlVWVk70UAAAAAAAAADgpEJ9FgAAYGJYJ3oAAAAAAMbW9ddfr9WrVx/RsdXV1eM8GgAAAAAAAAA4eVCfBQAAwFgj6AsAAACcoAoKClRQUDDRwwAAAAAAAACAkw71WQAAAIwVgr4AAADACeqqq67SnXfeOdHDAAAAAAAAAICTDvVZAAAAjBXzRA8AAAAAAAAAAAAAAAAAAAAAwEh09AUAAACg+vp6LVmyRJJUXV2tN998U48++qh27NihcDisadOm6brrrtPll19+yHPs3r1bv//977Vq1Sq1trbK5XKpsrJSn/3sZ3XllVfKYrGM+rpwOKwXXnhBL774orZt2yav16uMjAxNmjRJixcv1tVXX62UlJRRX7tmzRr99re/1caNG+X3+zVp0iRdc801+uIXvyiTyfTxfzAAAAAAAAAAMM6ozwIAAOCjEPQFAAAAMMyTTz6pH/zgB0pPT1dpaamam5u1ceNGbdy4UZs2bdJ3v/vdEa956aWX9K1vfUuhUEhut1sVFRXq7u7Whx9+qA8//FAvv/yyli1bJqfTOex1nZ2duuOOO7R+/XpJUk5OjqqqqtTZ2al169bpww8/1MyZM3XGGWeMeM/nnntO/+///T+lpqaquLhYjY2N2rlzpx544AE1NDTo29/+9vj8gAAAAAAAAABgnFCfBQAAwMHMEz0AAAAAAInlJz/5ie644w699957evbZZ7VixQp973vfk9ls1pNPPqmXX3552PG7d+/Wv/7rvyoUCunqq6/We++9p+eee05vvPGGHn30UaWkpOi9997Tgw8+OOx1hmHo7rvv1vr161VQUKDHHntMK1as0J/+9Ce9+eabWrVqle677z5lZ2ePOs777rtP3/72t/X+++/r2Wef1cqVK/Uv//IvkqRHH31UtbW14/MDAgAAAAAAAIBxQn0WAAAAByPoCwAAAJygHnroIVVWVh7ycccdd4z6utNPP1133323rNbYBCAmk0nXXnutPv/5z0uSli1bNuz4hx9+WIFAQBUVFXrggQfkdrvj+84666x454ann35ara2t8X1vvfWWVq9eLbvdrocfflgLFy4cdt6UlBR94QtfUHl5+ajjvPzyy3XTTTcNm3Luq1/9qioqKmQYhpYvX36EPykAAAAAAAAAGFvUZ5cf4U8KAAAAh0PQFwAAADhBFRQUaO7cuYd8TJ06ddTX3XjjjR+5fefOnWpqaopvf+eddyRJN9xwg0wm04jXXXHFFcrKylIoFNL7778f3/7qq69KkpYuXXrIYvFH+eIXvzjq9tNOO02S6BgBAAAAAAAAYMJQn6U+CwAAMFasEz0AAAAAAOPjqquu0p133nnUr5s2bdqo26dMmSKr1apwOKzdu3eroKBAXq9XbW1tkqSKiopRX2ez2VRWVqaOjg7t2bMnvn3nzp2SDhR+j9bkyZNH3Z6VlSVJ6u3tPabzAgAAAAAAAMDHRX2W+iwAAMBYoaMvAAAAgGGys7NH3W6xWJSeni7pQJF2aLH2UK+TpJycnBHH+3w+SbEp4I7F0CnohjKbY//MMQzjmM4LAAAAAAAAABOF+iwAAAAORtAXAAAAwDDt7e2jbo9EIvJ4PJKkpKSkYcuPep2keFeJoccnJydLkrxe78caLwAAAAAAAACcKKjPAgAA4GAEfQEAAAAMs2vXrlG37927V+FwWJJUXl4uKdbtYbAbxOBUbwcLh8PxKeHKysri2ysrKyVJ69evH5uBAwAAAAAAAMAnHPVZAAAAHIygLwAAAIBhnnjiiY/cXlFRoYKCgvj28847L75/tOnY/vrXv6qjo0M2m01nn312fPuFF14oSXr11VfjhWYAAAAAAAAAOJlRnwUAAMDBCPoCAAAAGGbVqlV66KGH4t0hDMPQ008/rT/96U+SpNtvv33Y8V/+8pflcDi0c+dO3Xvvverr64vvW7lypX7yk59Ikq655pp4dwlJ+tSnPqUzzzxTwWBQt9xyi1atWjXsvD6fT0899ZR27949LtcJAAAAAAAAAImG+iwAAAAOZp3oAQAAAAAYH88++6zef//9jzzm3//93zVjxoxh27797W/rBz/4gZ588kmVlJSoublZbW1tkqQvfOELuuSSS4YdX15erh//+Mf61re+paefflovvviiysrK1N3drbq6OknS2WefrXvuuWfE+//sZz/T7bffrg0bNuiGG25QTk6OCgoK1NHRoebmZkUiET3xxBPxqegAAAAAAAAA4JOA+iwAAADGCkFfAAAA4ATV1NSkpqamjzzG6/WO2Hb99dersLBQjz32mLZv365wOKxTTjlFX/ziF3XFFVeMep5LLrlEFRUVevjhh/XBBx+ourpaTqdT8+fP1xVXXKErr7xSFotlxOsyMzP1P//zP/rLX/6iF154QdXV1dq+fbsyMzM1b948LVmyRDNnzjym6wcAAAAAAACAiUJ9FgAAAGPFZBiGMdGDAAAAADCx6uvrtWTJEklSdXX1BI8GAAAAAAAAAE4e1GcBAADwUcwTPQAAAAAAAAAAAAAAAAAAAAAAIxH0BQAAAAAAAAAAAAAAAAAAABIQQV8AAAAAAAAAAAAAAAAAAAAgARH0BQAAAAAAAAAAAAAAAAAAABKQyTAMY6IHAQAAAAAAAAAAAAAAAAAAAGA4OvoCAAAAAAAAAAAAAAAAAAAACYigLwAAAAAAAAAAAAAAAAAAAJCACPoCAAAAAAAAAAAAAAAAAAAACYigLwAAAAAAAAAAAAAAAAAAAJCACPoCAAAAAAAAAAAAAAAAAAAACYigLwAAAAAAAAAAAAAAAAAAAJCACPoCAAAAAAAAAAAAAAAAAAAACYigLwAAAAAAAAAAAAAAAAAAAJCACPoCAAAAAAAAAAAAAAAAAAAACej/BzMLZXDvrIT9AAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] }, - "df2e6c22b8af4a2e95bdd85fb48290a6": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } + { + "cell_type": "markdown", + "source": [ + "Действительно, с использованием дропаута рост скора не трейне и валидации прекращается примерно в один момент." + ], + "metadata": { + "id": "zk2m1RhT-anE" + } }, - "e6efdf93b1444984810dd32d506227d5": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0078023356f142bdbe4e13a42df460fb", - "IPY_MODEL_01658e0aebd84db9912ea456bd1ad030" + { + "cell_type": "code", + "source": [ + "accuracy = get_accuracy_score(model, test_loader)\n", + "print(f\"accuracy: {accuracy}\")" ], - "layout": "IPY_MODEL_583e6f0878e04a0bbebf5d80d9d712dc" - } + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "q9kjhTPx-o5U", + "outputId": "67046e77-3135-44f2-bfc0-5aa4202dd877" + }, + "execution_count": 44, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + ":21: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.\n", + " return F.softmax(out)\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "accuracy: 0.8600999712944031\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "JgEQTeKk8T1x" + }, + "source": [ + "### Task 3: Fix it.\n", + "Fix the overfitted network from the previous step (at least partially) by using regularization techniques (Dropout/Batchnorm/...) and demonstrate the results." + ] }, - "e734818e32a54c71b6397ef84b35bf07": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bf33fa62bd4546bdbe142239f472fbb3", - "IPY_MODEL_ca04c2ebb96f48109ef440c260aa125a" + { + "cell_type": "markdown", + "source": [ + "См. решения предыдущих пунктов." ], - "layout": "IPY_MODEL_029f1768c5734beab39a592b44f75a9d" - } + "metadata": { + "id": "doAKYjcHjj0y" + } }, - "f280e146d6c54fb59f8ce36f2d1cc6a3": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } + { + "cell_type": "markdown", + "metadata": { + "id": "dMui_uLJ7G0d" + }, + "source": [ + "### Conclusions:\n", + "\n" + ] }, - "fb66cde27d0849bba4947c024e198f7f": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b9d32ac7b88c4f4e900b160f05c016a3", - "IPY_MODEL_b2f66cc8930240a5b74d5480377496ed" + { + "cell_type": "markdown", + "source": [ + "### Общие слова\n", + "Рассмотрены архитектуры, которые подвержены риску переобучения. В ходе работы изучены различные техники регуляризации, такие как дропаут, батчнорм. На практике доказана их эффективность. Для получения скора выше порога 0.885 я использовал технику lr-decay с применением степ-шедулера. Стоит отметить, что также можно было и аугментировать изображения.\n", + "\n", + "### Сравнение графиков\n", + "С использованием техники lr-decay график скора получается более \"гладким\" и, как следствие, делать выводы о переобучении модели становится проще.\n", + "\n", + "P.S. С добавлением регуляризации модель действительно склонна терять своё качество, поскольку есть некоторый trade-off между стабильностью и качеством модели." ], - "layout": "IPY_MODEL_bebcff464bfc44ffa82e311a39cae7d7" - } + "metadata": { + "id": "TEfwmnYUSL_p" + } + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "27qfdDQvha5_" + }, + "execution_count": null, + "outputs": [] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.7" } - } - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/homeworks/lab02_deep_learning/main_notebook.ipynb b/homeworks/lab02_deep_learning/main_notebook.ipynb new file mode 100644 index 000000000..4683a0565 --- /dev/null +++ b/homeworks/lab02_deep_learning/main_notebook.ipynb @@ -0,0 +1,5145 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "QsLKZggyEogA" + }, + "source": [ + "## Practice: Basic Artificial Neural Networks\n", + "Credits: this notebook belongs to [Practical DL](https://docs.google.com/forms/d/e/1FAIpQLScvrVtuwrHSlxWqHnLt1V-_7h2eON_mlRR6MUb3xEe5x9LuoA/viewform?usp=sf_link) course by Yandex School of Data Analysis.\n", + "\n", + "We will start working with neural networks on the practice session. Your homework will be to finish the implementation of the layers." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "NnyEbzC_EogC" + }, + "source": [ + "Our goal is simple, yet an actual implementation may take some time :). We are going to write an Artificial Neural Network (almost) from scratch. The software design was heavily inspired by [PyTorch](http://pytorch.org) which is the main framework of our course" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fA4ggArJEogC" + }, + "source": [ + "Speaking about the homework (once again, it will be really similar to this seminar), it requires sending **multiple** files, please do not forget to include all the files when sending to TA. The list of files:\n", + "- This notebook\n", + "- modules.ipynb with all blocks implemented (except maybe `Conv2d` and `MaxPool2d` layers implementation which are part of 'advanced' version of this homework)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "C1B7nnLbEogC" + }, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "from time import time, sleep\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from IPython import display" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "oQvQ1bP7EogD" + }, + "source": [ + "# Framework" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LPYARQSqEogD" + }, + "source": [ + "Implement everything in `modules.ipynb`. Read all the comments thoughtfully to ease the pain. Please try not to change the prototypes.\n", + "\n", + "Do not forget, that each module should return **AND** store `output` and `gradInput`.\n", + "\n", + "The typical assumption is that `module.backward` is always executed after `module.forward`,\n", + "so `output` is stored, this would be useful for `SoftMax`." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YojXisdIEogD" + }, + "source": [ + "### Tech note\n", + "Prefer using `np.multiply`, `np.add`, `np.divide`, `np.subtract` instead of `*`,`+`,`/`,`-` for better memory handling.\n", + "\n", + "Example: suppose you allocated a variable\n", + "\n", + "```\n", + "a = np.zeros(...)\n", + "```\n", + "So, instead of\n", + "```\n", + "a = b + c # will be reallocated, GC needed to free\n", + "```\n", + "You can use:\n", + "```\n", + "np.add(b,c,out = a) # puts result in `a`\n", + "```" + ] + }, + { + "cell_type": "code", + "source": [ + "%run modules.py" + ], + "metadata": { + "id": "h3ws06i-Lusm" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "OGW9QdwLEogE" + }, + "source": [ + "# Toy example" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "bvwuI1YNEogE" + }, + "source": [ + "Use this example to debug your code, start with logistic regression and then test other layers. You do not need to change anything here. This code is provided for you to test the layers. Also it is easy to use this code in MNIST task." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": false, + "colab": { + "base_uri": "https://localhost:8080/", + "height": 447 + }, + "id": "YK4gVFJtEogE", + "outputId": "8b3463b5-532d-4970-a18b-e818c5c2ce78" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 15 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGdCAYAAAAvwBgXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADTq0lEQVR4nOydd3hURReH37nbd9MJHQQEQREVpQgWRFHEAmLHDnbF3iti74oVGyqKyKcgoogoIk0sIIiCFLEgKFLTk822O98fNyRZdu+2VGDe5+GR3Jk7czbB3HPPnPM7QkopUSgUCoVCoWgAtIY2QKFQKBQKxZ6LckQUCoVCoVA0GMoRUSgUCoVC0WAoR0ShUCgUCkWDoRwRhUKhUCgUDYZyRBQKhUKhUDQYyhFRKBQKhULRYChHRKFQKBQKRYNhbWgDYqHrOhs3biQ9PR0hREObo1AoFAqFIgGklBQXF9OqVSs0LXbMo1E7Ihs3bqRt27YNbYZCoVAoFIoU2LBhA23atIk5p1E7Iunp6YDxQTIyMhrYGoVCoVAoFIlQVFRE27ZtK5/jsWjUjsiO45iMjAzliCgUCoVCsYuRSFqFSlZVKBQKhULRYChHRKFQKBQKRYOhHBGFQqFQKBQNhnJEFAqFQqFQNBjKEVEoFAqFQtFgKEdEoVAoFApFg6EcEYVCoVAoFA2GckQUCoVCoVA0GMoRUSgUCoVC0WA0amVVhUKhiIYMbQfvZGTgV9AyEa5TEPaeDW2WQqFIAeWIKBSKXQrpX4LMvxxkcdU17/+QrnPRMkc3nGEKhSIl1NGMQqHYZZAygCy4PswJqcQ7EemdUf9GKRSKGqEcEYVCsevgmwP6FtNh6f2gHo1RKBS1gXJEFArFrkPo35qNKxSKRofKEVEoFLsOlr1qNp4CUi8G71Rk4CcQHoTzJISjb63vo1DsqShHRKFQ7Do4jgKtJej/RR0W7mG1up0M/IbMHwH61qpr3g+QzsGIzCcRQgWVFYqaov4vUigUuwxCWBHZL4LIihx0X4JwHler+8nCG8OckErKPwXvpFrda1dDynKk9yP04meQZe8h9aKGNkmxi6IiIgqFYpdC2A6AprON45LgShAVOiK2rrW6j/QvgeBa8/GySQj3ubW6566C9C9FFlwNep7xNUDxE5D5BMJ5fP3aIiXomwAbwpJbr3sragfliCgUil0OoaWD50JEXW4S+ifO+J6ZGCv1EmT+lSALdhrwIgtugtwZCGu7+rHFOw1Z8jKE/jK+th2CSL8ZYe9VL/sragd1NKNQKBTRsLSt2fjuSvmnkU5IJQFk2ftxl5B6PjK0yYhmpIgs+wBZeGulE2JsvxSZNwLp/8mYI0NIPQ8p/Snvo6h7VEREoVAooiDshyCtXSC4Jvp4LSfG7irI4G+xJ8Q6zgqsQBY/Cf7vAQmWduC5DOE+KzkbZABZ8rzJqB9Z8gLYDzacIn0bCBfSebIRLdFyktpLUfeoiIhCoVCYILKeBa1Z5IBzKLjOrnd7GgNCaxp7ghY9T0MG1iDzLgD/d1RklUDob2TRPcjScckZEVgRU9gO/zeGM6Jvq9jcC94PkXkXIPWy5PZS1DnKEVEoFAoThLUTIvcLRMb94DwF3OciciaiZT2BEHWaodJ4cQ0FLKbDwn1G1OuydCzI0uhjJWOR0puEESke6QTXQvnU1O5V1BnKEVEoFIoYCM2DcJ+DlvUkWsboXbbLr5R6rawjLK0Q6XdDtFRh9wjzRNHyr2MYVwT+xYkbYesGKR6xyPKvUrpPUXeoHBGFQqHYjZFlk5Bl70Dwd6SWA67TEZ6rEFpa/HtDm6D8C5DlYO+FsB8CgPCcD7YDkN73IfgXWFogXGciHEfEWC2OIyRDCX8mIezguRpZ/FCUUS3OXonvo6gflCOiUCgUuyl60cNQNr7ahTwofR3p/x5y3kMIp/m9xWOg9FWqP7ilrTci+yWElomwH4SwH5S4MY5+4DOJRggPJFlyKzwXgrAjS54DfbtxUWsJrmFQ+qz5ffbDk9pHUfeooxmFQqHYDZHBdVD2TvTBwHLwfhw+X/qR3mnoRY+i518HpS8TET0ILEIW3pmSPSLtKsAefcxzcUIRmnB7JTLwc5UTAob0f/mHYDNxkLTmkGSFjqLuUY6IQqFQ7I6UzyRWUqcsn1H198Ba5NZjDV2OsrfAN9N8Xd/XyOCGpM0RtgMQOW+CtVvVRS0XkX4bIu3apNfDOwm8UyKvh/4BGQTXaVQ5PgLshyFyJiC07OT3UtQp9eaIPPbYYwghuOGGG+prS4VCoYiK9C1EL7gRfft56IX3IgMrG9qkWkdKX5wJvop5IWTBlRUy6Ymgx9QKiYWw90bL/QiR+xWiyXRE03kIz6UprSXLJpoPBn9FuM9HNFuAyPkQ0XQOWs7b9ab4qkiOeskRWbx4Ma+++ioHHnhgfWynUCgUpuhFj0DZ21UXAouR3g8h40GE+8w63VvKgJEnEfzLOCZwDkJonjrZS9h7I0tfMp9g72381zcfQklGOGoYVRDWvWp0PxDf5uDfCFs3sKsISGOnziMiJSUlnHfeebz++utkZ6t/EArFrob0/4z0zUWG/mtoU2qM9H0X7oRUoiOLRiNDMUSyarp3YCVy6wBkwfXIkjHIojuRW49Els+uk/2Eoy/YDjYZzES4zzP+HvojuYUtHcDWvUa21Qpay9jjllb1Y4eixtS5IzJy5EhOOukkjj322LhzfT4fRUVFYX8UCkXDIP1L0LcOQuadicy/HLn1GPSC65F6SUObljIyWk5BJQHwTqubfaUXmX9p5PGHLEEWjETPOx9Z+k6tf29F9qvgGECY5oe1CyLnLYSlhfF1NOVY0wU9iMyHG4WYW0xZeGtnhN3ECVM0Our0aGbSpEksXbqUxYsTE6p59NFHuf/+++vSJIVCkQAy+Lfx4AxTwgxB+edIvQiR81aD2VYjYsmCA1LfWjcdfb0zquTGI9DBvwjpX2REa3LeRVha18q2QstCZI81kkuDv4OlqXFcUR3nQCjKBFkYZzW7IWtv61ErttUY9wXg/xF8s8Kva7mIzKcbxiZFStRZRGTDhg1cf/31vPfeezid5rXq1bnzzjspLCys/LNhQ/KZ2QqFoubIsvGmctz4FyIDv9SvQbWFtVPMYWHtWCfbyuDqxCaG/kEWjkp+fb0IWTreSMAtvBfp+yFsXFjbIpxHRzohgBBORNaTgCPOLn4oexNKX0zavrpACCsi60VE9utG7x/HQET6HYjczxG2Lg1tniIJhKxJH+YYfPzxx5x66qlYLFU9CUKhEEIINE3D5/OFjUWjqKiIzMxMCgsLycjIqAszFQpFFPRtg027zgLgHoGWkZqeREMig78jtw0BgpGDIgvRdC5Cc9f+viVjkSXmIlsRpjSdh7DEyYHYsXZgNTJ/RLieBoBzCCLzCYRI7H1TBtcblSjBlUZVzM7rVRrnQTT9ps6SbBW7B8k8v+ssIjJgwACWL1/OsmXLKv/07NmT8847j2XLlsV1QhQKRQMi4rwdl72FnncJUo8Xzm9cCGsnRObjRAhriWxE9qt14oQA4DqFWI3idkb6f01snpTIguujOw3lnyBLX054T2HdCy3jDkT226Dnx9i0FALLEl5XoYhHneWIpKen061beBjQ4/HQpEmTiOsKhaJxIZyD4h+/+BcgC25C5CTZwr2BEa7B4DgcvJ8i9c0IS0dwnYgQrrrb09IK0m9DFj+a2A3ln4ErfoI/gcUQ+st8vGQs0nMVQiTz4icwnKZY/VpUd5CdkdIP5V8gfXMAEI6jwXm80RdHERP1r0mhUETiGmZIgAd/iz3PvwAZWI2w7VsvZtUWQssBz0V1k5hqtqdnBNi6IcveA9/C2Mmhvq+QUo9/rBL8J86uAfDNAWcCTs0OO4VAOgaYq6uKdKSWUa/fu1jI4J8gS8DSscGOi6ReiMwbDsGqSJYsnw6l4yDnbYSW1SB27SrUq8T73LlzGTNmTH1uqVAoUkBoaYicCeAeTtR279VpZImr0v8zev7V6JsPQd/SB73wPmRoY0ObBYCw90LLGgOZT8WZ6SNqHsvOWNvGnxPPmYyCSBtpNKKLhiyG7aeg512M1POSXru2kP6l6NtOQ24bhNx+BnLrkejFTyJlAt+32ral+NEwJ6SS4Epk0SP1bs+uhuo1o1AooiK0LLSMu8Cyd+yJWnr9GJQA0jcPmXeuoV4qS4xus973kdvPTKk/Sl1hdK2NkYdj7ZZQSF/Ye4GIk9ei5SZlm9SLQZZD5tPg6I/pY8L/DTL/qqTWri1kYC0y/2IIrqh2scToLFz0YP3aopeA9zPzCeUzjO+pwhTliCgUipgI1+AYgxkVD6uGR0qJLHoICEQO6luRJc/Xu01mCC0rZhdYkXZF4ot5rokx6ALnCQktI6UPveh+5NYjkHlnQsGVoBeBrbf5TYGfDP2TekaWvgGyLPqg90NkKNG+ObWAvhUjgmWGv2KOwgzliCgUiti4LwRr1ygDGiLj7jpN8kyK4HII/W0+Xv45UobMx+sZkX6HkYtTPVVPpEP6KBAe9IJb0fMvRy9+PuaDVXguBsegKCNWQwU1wYiVLLwNyt4D6a26GFgKge9j3+hfmtD6tYp/YYzBIPi/Q8pyZPkXyLLJyEBqTfoSQmsKxNLKcianXrsHopJVFQpFTISWBjkToOwdpPcTI0fAdiDCc7FxNNBY0E0E2CrxAyGSKaOtS4SwITIfQKaNBP9iEA6k/TAouh9Z/EDVRN9cZNlbkP0qwh4ZnRBCg6znwPcl0vuRUcpr3dfoPptgErEM/Abln6f4Qeqo5DkmsX+G0v8LFD0KsqDqmv1IRNYzCC2zVi0RWhrSNQS8H0Sf4Bps/D+kMKXOBM1qAyVoplAoEkXqRcitR4a/0VfH2g0t96P6NSpJpPdjIzIRDa2pIbgmbDXbI7TZOCqwtEZUdNGVpW8iix9LYTWBaLoAYanfN3696EEoe9dk1I7hcEaJftmPRKuDcnOplyDzL4HAT+EDtu6I7HEJR6V2J5J5fquIiEKh2C0QWgbSdbZJd10QaZfXr0EpIEsnmQ/qW8E3F5zHpbZ26D9k0X3gm4+hEWJDOk9EZNxLyo8C2yH17oQACM8lyPIZ0YXcLG3NOwrXUbm5ETWcCL45FToiEuE4BhxHJ6nhsmeickQUCsVug0i/DVznArbqFxHpoxDOaHkUjQMpJbJkLASXxZ4Y+i+19fUSZN75hiNTKVQWgPJpyPzLkPajSeVxIDLuScmemiIsrRA5kypyYyqcKEs7RMYDRvVMLAI/141NwoJwHouW+TBa5iMI57HKCUkQFRFRKBS7DUJYEZmjw/IucByWckKtUZr5EdK/ELAinMeC86RaV8uUJU9B6evxJ1o7pLaB9yMImZQvB35C6H8i3edD2TtRJjiB8sjLrrMRtv1TsycFpJQg80G4EMKFsLZDZD+PlF7jOE5kG2JspeOBzeYLiT3vmKSxoxwRhUKx2yEsTcF1Yo3WkKF/kXkXQKhKvVT6ZkHZBMh+u9bO/aWeB6Xj40+0tAP74antEbPKBKTvG0T63WBphSx9B/SNgN0o/U27AUrHVmhleA2hM+epiIy7U7IlFWTZ+8jScRBaD1iRjmMR6TcbzohwQTVHU7gGI0vGRF9IeJCOwxqNKqzCQDkiCoVCEQVZOCrMCakksNzopOvobzy0g7+B1gThOhXcw5KOlsjy2RgVPTHQmhkt7xPspBtlgbjjQgjwXGyo6coCo8uucKAXPx1eESKLwfsOUnMh0m9O0Z7E0Yufh9IXq10Jgm8mMvAjNJkS2aXYfSGUfwHBVZGLyVLYOhDdfQ4i7VqEUI/AxoCqmlEoFIqdkKGNyK1HA2a/Hh1EFbGyH2F08U2wskUGNyC3n2EcOZghPIhm3yKEyzie8M9H+hcjhBOcJyCsHePvUzYFWXSn+RY570UtxZaBlcjtQ83vazK1To9npJ6P3NIPU8Ew90VoUSIzUi+BsvFI79SKI6koP0fnULSsJ2rVXkUVyTy/VbKqQqFQ7ExoC+ZOCJg+GP3fQPmnCW8ji+6P7YSAoVyrFyFD25HbT0PmXwalryFLnkduO8FQQ433Puk62USUDqOyw0QPRnqnxrY/zniN8S0gpmpp+ayol4WWZvTLcQ7G9OdYPs1omLeHImUQWT4LWfoG0jsdKWOpw9YtKi6lUCgUO2Npg/HrMfkGatL7CcJ1Wvx5oc3gXxBnlgblnyHLPzNyM2QU0bay98DaBdzDTFcRwgE545HFT0P5J4Y8usgC91mItOvMtw9ti21ecH0c+2tKvO9/nHHfnBiD0qgissbppbQbIgMrkPkjQa9WhVWUDVnPIByp5SHVBOWIKBQKxU4ISy7SORDKZyR/s16U4LztxI66QFWpLdGdkB1DZe8iYjgiAELLNJRcM+42bNSyEjhCipPWqceJ5mC8eeNfZNhvOxBhaV51e2Ct4RjphQhbN0OFtHqFk/0wDBVVE2l+x5Fx949jXQ3v3/WQeiky/1KjIWTYQD6yYCTkzkRYWtSrTcoRUSgUiiiIjNHI0D8Q+CV8wHZQbC0KPQ8pvfFLhi1tMM01SZagiYBXFIRwgKVpYpMtOXEmhIyKlkpp+S4I90UIRx8AZPlMoxGhvqVivhXpOgVsh0DJM2GCZNILlDwH2eMqBceEpQXSdSZ4owi9CQ/Cc0ls8xz9IbgyxvjRcT7fbkj5p5FOyA5kGbLsf4j06+vVJOWIKBSKPQ6p5yFL3zT6q8hysPVAeC5B2A+qGC+CwApIu9UQyPJ/i6EjchzYDkFuH2JUy0RD34gsegSRGbsdvaEEe4p5j5Jk0HJrvkYUhKVV7JjBDrXWyq//Qfq+hvR7wdYFWXAj4dGMIHinGH+ioW9FFlwDuV8ihIaUAbD1NCpgAquorC6ydkNk3Iuwdoptv/t8pHdyNUeoGs5TEHvksUwMxwyiVxvVMcoRUSgUexQytB2Zd3aFJkUFvplI32xk5hgI/hTehVZrjki/A+E6qWqNrLGw7VhMQ/veyejOgWhxjg5E+l1G1MX/bc0+lOsMZPB3ZMnLsKMcWLgBAdaOCPe5CNcpprfLwFpk2buG86VlIVxDwHkyOIdA8dNAwOTGKBLrSKNvjb0npkcqsQitN6TYLW2NI4SdS6itXcBxGGjxKymFJRdy3kMWPwK+eYAOItMos06r37f+RkNFfyHz8ax6MaM6qnxXoVDsUehFD5koiAJ4gGi5GBoi+w2E4whjjdKJUDw6/mb2fojsFyqPaWT5HGTZBOMoxdIU4ToDaT0ISh4D/4+ABFsvCP0N+r+JfSDbIZB+J+RfbGh8mOE+Dy3jvrBLUgaQJc9B6TginAZHf0TWy+CdXBH12OlRoTU1+t+Yf3ji6qOYkX4XlL0Pob9iThNpNyDSrk5oSanngV4IllbG8dQeigz+idxm3u5AZL9TebRWE1TTO4VCoTDDG6u81iwhVEeWvlrpiFCeYNmqfz6y6DFE5v3IkpeMh37lkhuRgZ+JSMYMfEvMJFHHIOOMXzgRzhPBdTKy4NrYTghA2XtI1+lGUiggfd8h828ETPIFfHPBO9lIgrXuW+FA/Q5aLsJ9BrJ4LBDLEUnRCQHDYYjjhACGgqrtYISjb9y5QssBLV7Oy+6PsO4NadciS16IHHQNqxUnJFmUI6JQKPYs4jVFM8O/CCl1Q900Gf0J74fozpMh2i9+IPrxRZRAtaUDIv3GiOZ9Ui+tOHaIj/R+irB1MwTb8q8gag+Z6vNLXkS4hyHs3RH27uFjvm/AWwf5BFpTo1Q5QWTZ+wk5IooqRNq1YOuOLJsIwXVgaYlwn9VgjSGVI6JQKHY7pJSGZHk0bAdB4McUVrVXSaxruRCKE4GoJAj5FxFWips0GiJnvElZpT/xtSuiJrJ0IvGcEAD0LciyKeAabORuCDfC0goA4b7ASASt0efaGRci61kIbUm8sDb0dy3uv+cgHEcialz+XDsoR0ShUNQIKWVFGF2CZW9zByDavaHN4J2KDG1CWPcC16mIeMl0sdbzLzYSNv3fIbGA81ijp0hFdYWUAXCfC4VmjkiMclrn8ZV/Fa4zkCVPJmFZ8sJo4ejgnQZpV0QOlc/BOMpJ4NFtaY8M/g5xmuBVR5Y8CyVPg26Im0nbIYj0OyuSfRN1QlwYCa8WTL+/tp6IrGcRluZIWQ5FWUbPm7gGhh8BSRkE77SqkmJbF4T7QoS9R4K2KuoblayqUChSRpbPRBY/W3Web2mLSLsuZoVG5b3eacjCuwiryBAuRNZzCEf/FGyZYwgy7fzQF2mQ+RyUT4PymYDfiGjoRVTlMQhwDgJ7Pyi6i4iHushCNPkAYW1v7CX9yPzLa17tkgzu4WgZd4Vdkv6fjQqgpKMSMUTCEkG4wbI3BFckNj3jUYT7dGRgOTLvkkgHw3U22k7lzsbP81oSyTURmU8bXXdlyCj/9c3eeQYi4/64om+K2iOZ57dyRBQKRUrI8lnGL/0ob+Ii88nY5aLBdchtJxI1UiBciKZzjOTCRG2R0qgEME1wNIl0OI5HOI4Gew+EtR0AevkXUPw8hNYCNqOxXNo1lU5I1Z4BKP8cWT4dQgXG3rIwYZuTRWQ8hnCHS8frBbcYyqQNQqJVMTZE03mGWq2UIIvA+xEy8AuITIRrCMJ+SNQ7ZfAvI4+hfD7oMZJXrfuj5U6tcG5vNbVXNFtQo4ibInFU0zuFQlHnyJLnMTsOkCUvxGzEJsv+h+lxhfSC96PE7QiuRxY9HKfKwuQ4wDcHnP2rnJDi56Hw9gonBBAOhLUL6NvQC+9DL7gRWfq2IXiGBIRxHOUcADnvG/knyaDlgvO0Cs2POPNcJ0ZeD65Obr9aJcGqGEsbpHcy+rbByM37Ircdj9S3IjIeRMscbeqEAAhrB7SMuxGZ5p2DAQiuNJxR78ex7U1Fsj9JpF6KLP8S6Z2BjNOrR0oTfZY9DJUjolAokkaGNkFwjfmE0HrDMTBTrgyti71+8K94XU4A0IufhNI3SL1niN8oU3WdhiwdB6Uv7mRISUQuiCz/DIpfBM1elTcBhmS51ibxrdNuQHguQwgbekkXKHmCqMclIhuR/TpCOCPHdoVy1NBfxvdmB3oelL6B9H0HTSZWaawEfgPfF0gZQNj7IByHVd0jsmLvIdIRQiDj9b7RC1L6CIkiS98yHPTKvkA2pPtsRPrdCGEx5ki/0T257H+gb0ZqLRDuc8BzaQK9f3ZPlCOiUChSIJFgaow51RqfRUNYWsZdXXo/htLXE7Aj3kIBQ9irdFwSNxVFScuQoG9IeAVhO9hwQooeg7I3zSdamiFs+0dfwzUU6f8+4T0bFcFfoWwK0n0usuge8E6uHJKlryCtByFyxiG0DCPSZGlv7sDuOAa0dY3dW8batdbM3xnpnYYsfnSnqwEom4AULkT6rUipI/OvBv/8qin6JiMhOPALIntsndnXmFFHMwqFImmEpRlYu5lPsOwdkVMRdr/rrBirW8B1WoxxA1n8XNw58RFg71uhZBqn5X1tIjxg747u/yW2EwIQXGNUukTDOQQcA2rfvnpCls+AsrfCnJBKgj8jtw02KqqEkWwKUaJClg6ItJGAUVJs+n5t6QCOo8L314uRtRQlkbGc4rKJSL3EcECqOyHV8c1G+uox+bkRoRwRhUKREiL9Rozqi4iRirEY99q6ItJuiTJiQWQ8WKlVYYYMbU9MAl1rAp7rzHMwnIONsuFoD7i6RGSDdzoUP5bYfD264qsQVkTWi4jMxw2HSosdaUqdaD/nWkDPR5a9F2P8P+T2s5F6AcLRF9FkCrjOAMteYO1sVGg1+V9lYrOw7YfIfCpSEM3aqeJ4y3jkSf+P6HkXILf0QG7pjb79dGT5nJQ/htRLzJsggnFUE1yDLJ8Ze50447sr6mhGoVCkhHAcCdmvGTLbgeXGRet+xsPBGf8tXaRdDo7DkGUfgr4RLO0R7rPjdlQFoHx6/DnpdxnN3oQd6eiLLLq/WnKnE9xnINLvMGyxtkFqufUXFdH/QRbdndhckQbWfSIuy/I5FVoZ28DaBZF+N7JoFOiba9lYwH4UBH4CGScHI2lEZFO7ndH/g7L/QdoVCNs+iMxHYq/oOtGIfPi+NPJRrF3Afnilvo30L0bmDSesbDywHFlwFWQ9h6imF5P4x7ADNkybA4LhDEuTpOkdyARE5nZDlCOiUChSZoc6owxtBaRxZJPM/bZuiMwYRzwmSD1a19fqOBDuiyofPsLeA5H7iZEQKYvAug9Cy9zJGFfSdtQL7vMQWnhERy+8K/w4I7AE6f3AiLTUBc7jEK6TkYW3ULtKqhJEhvEziTXLNxsRTczNBKF5wHVq9LWKxxDdYdCRxc+AY2BSonyA4ew6j4Xyz6NPsHZC2PYD+6FGsrPZOg3Q56UxoI5mFApFjRGWpkk7ITXaz9ol9gT7EVEfJsLWGWHvGemEQPwS2obAfgQi7YawS7J8VvScCoIgYzWhqwElz4GjHyL7LbAmUqKc6FFOyNRhiJhXC+jBjRBYHGObv4zGfikg0m4yqWKyI9Irol/OIWAxqayytAPnSSntvaujHBGFQrHr4TwONLPKGgsi/frk13QcHWdCWhKLWcF9OYboV4qIpojsNyrLPndgaLCkgHV/448pMUpH9U3g/Qjh6IuW+yFYIo+Kwsh6EdFkKuRMwRCTMyG0DmTASCSNhb1f7PEEkL5vYPvJCcxMTY5fWNshciaD6xwjN0lkGGJ4TSYhHIcbczQ3Ins82HqH32zvY/QSEjG+V7sx6mhGoVDscghhh+zXDZl1fWO1ARci42GEbd+k1pOhTUYCZEzp8zLMe7rsfF8QAosg82HwLYTgRgguStwgrT0i57WqJntUyMoXPwX+bxJfpzrWTgj32cj8SwzRuAjcgLkyrCz/CqkXGomX7rMN9VmiHKm4zkOryBESgMy4C1l0n7ld3knQ5FMovAWCUbr5ak0R7nNjfbK4yNBWQ/4/6ueuvldzsHZOeR9hbYPIvB+4P8actogmE5DBPyH0L1jaIKxxHLHdHOWIKBSKXRJh6wxNvzL6igR/M9rHO080dCcSRMpyZOEoKP+U+OF/HeNXZohwZ8QkSTGwDAqX7bA2ztpWKt/ELe0hY3SkpHzhnRV2pkj5NEPwK+MRKJsAgSU7TYgjTx9YZPzZgaU92IeAf4HhnFj2RnguQTjDI0vCfQ6y9H0ImanA6gjfXGjyAbL4CfBOAVnh9NkPQ2SMQliaGg0SAz8BDnAcllz0wDs5vhMCiLSrIyJQdYWw7m0u+LeHoRwRhUKxyyKEtaIrbgqVDoAsvDvJh3sQ49hlhNG4zdIBSl4hZrWEsVMC61YQWgf5lyFz3qnsGCuDf9bMCdlBpY5FLSh4htZBMBut6ayIIVnREVeIiqMpzR7HzytHCAci415k2o2GMq+Wg7C0QEo/euE9FbL/Fd8nkQXptyLcZyZkqoxVWguAA5Fxp6Fwqqh3VI6IQqEwRXo/Rd8+DH3L4ejbz0CWfYiUtVk10XDI4D+JlQFHEASZj5b5cEVjv9gVH6kRQJZUk5v3pXgcE2P92lnmJ2TgV8DoBKwXPoy+7STk5gOQmw9AzxuB9C8B+6Gx17FXVYsILc3QmbG0MNYtehi8HxDmrMkCZNE9iWt/aE1jj7uH1fj4R5E6KiKiUCiiohc9YITwKy9sNTqm+n9AZD3VcIbVEtL/DSn3qNnhGGgZhB2r1Cb+b5HSB8HfkYEVtb9+LSEDPyOLHolejeJfiMxbBJlPmJfp2nqClmP0DdK3I6z7gOs0hJaN1PNMKoQAJLL09YijoGgI12nIsrdjjCcWWVHUDcoRUSgUEcjAinAnpDrlnyB9p4U3JdsVCURJjEwUPQ9ZNgVcJ2Mcc9SBIwLI7RdAcFmdrF1rlLwM+pYYEwJQ9jYi5y1k4V3VmiVq4OgHug+57YTK2UYDwRch65WKXJEY0ZvAUqSUcXU/hG1fSLuuomP0TmNpNxj5RooGQzkiCoUiAumNnY8gyz+tM0dEynLwTjX6kMgysPVEuM9HWNvWbF09D0LbwNISoaWDVhPdEz+y6E4ofora0riIQLgavxMCcZyQCgI/g9YULfdT4yhH32aI4BWNBvyR82UpsuBayHo69rrClbD4mEi7Buy9kWWTDDVXS1uEexjC3iuh+xV1h3JEFApFJLI49rgeZzzVbfVSZP5w48G1g8ByZNn7SOcJhvy760SEpXXia4a2IIseNKprCAIOpGtw7TSLk/EUXlPFUhENSIG0W0EvrGimVzeRmpSQRmRD2PY3nML8/kR1QirnF0BwM2gtDB2TaCQpACbsvRH23vEnKuoVlayqUCgiELYDazSeKrL09XAnpJJyKJ+KLHkSuXUAeoKdd6Vehsy7AHxfUPVQ9hl5B6XjwLJfjLt39A+pZ0QuOJKoAtKaGU6V+3xEk2loaZehZdwCOZPqzsZksewVrijq/QhIoK9KYCmk3UB0pVYLCGetdc9VNBzKEVEoFJE4h5gfXYgscJ9RN/t6P0pgkg6lLyXWqbR8miHbHY3Aj5B2CWhdTW72U2vVJclgPwxEEg6QvgXhuRgtY5TRz6QCzX4gIu3WOjAweYTnqrAjFBlcl9iN5ZOh6F7je2LdWaQuBGXvILcPM/RR6gGplyC9nyG9HxlVV4paQTkiCoUiAkOK+i2w7CS4ZGmDyHmjsu16rRO3mV0VsvSd+HN882NPCCyH9MsS3rNe8M1MPn/FXyVOJmU50v8j0v8zeC5GNJlmdPBtCLQmiIzRCPfpYZeFxUyePxoBQzQt+Ef04dCfyNI3UrcxQWTpW8itRyALb0QW3oHcdix6wS2VmimK1FE5IgqFIirCtg/kfg7+HyD0N1haG0qXog7fX6xdIJhgqWpwbS1sKKAeHmLJ4YfgL8ndUtGwT5a8ZjyUZYFxXWuFSL8F4bk4asVIraPlgmgK9kOMjr32Xoho0R3XaVDyEsnlsMSITnk/gXQj+iOD/4B/nnHdfhTCatJkLgmk9zNk8aM7XdWNCjLhQmQ+WOM99mSUI6JQKEwRQoCjD1A/7cmF50Jk4W2JTdZy46/nGID0zTafIP0QXJmgdTXEdQ74l0JoTfy5/h+MKIYsSWBhKzgHIkteR5bspO+ib0QW3gyZY8DSCUKpdZZNCOuBaLlmmh/hCEtLyHgIWXQ3tVJ1pG9G39QdQ4Y/PPdEOo5BZL1UI+l2WTrOfND7ETL9xrqLEu4BqKMZhULRaBCuoeC5gkR+NQnXafEXdJ1sRFmiobUE70RSFjVLFv9iI7KUKNaOic3zXAFatpHoGxUJZW8gcqeafy9qAeEaktx892mI3OngHm50PnafC7ZDamBBGVETYH1fI/OvSHlVKYNxonQBCNSTM7uboiIiCoWi0SClRNh7I4N/QPBPEHbjvzuXedr7gOeiuOsJ4YScd5DFj4P3M8AHIh0cA6F8ap18BlOSjUYE18eZ4ALHkQjPBYY4247jmGgElhs5I8EkHKGksIJzUNJ3CWtHRMZdlV/LsknIwNLaNMzAPx89+C+aNfGy7x0IYUUKd+xyapFeA+MUyhFRKBSNAil141im/JOdRtzgPBaCG4Fy0DLB2sko840iRiVDGwEQllbGhcAvENpkVKKIbHANqcipaOQ9c2S8ShAv+L5EbvvJ+Fwx0aDkGRIqmU0BkXYNwlITgbgKXKdA2XvV1FerYT8GhKjQg0kB7yRIvzm1e50ngffD6GOWdlBH5ex7CsoRUSgUjQPvx1GcEIAy8C0CSw7s6KLq/wFZNsF4U7X1RLjPA3RkyZjKh5i0dgHbwcYDaAeyBEpfi98ErcFxYxw1JIC+Fdgae47W2tDkqA3sh0NwnRGBsXZBeC5COKtJtOslxjEUEuy9DBXbBBHCBTnvIoufMhoSyjLQcsA1DJE2EiFs6P6fIO8SIJH8mWrI1J0wkXYt0rcQ9I07jdgQGaMSVndVREdIKevpgDR5ioqKyMzMpLCwkIyMjIY2R6FQ1CH69mG197CsFyzUiby7yAbXGVBmlvORLHZiKpgmjA2RfivCM9x0hlG1MxZkqXFBuBGeS8B9MbLsfSj/3JBXF05w9Af3hQhrO4SIfCfWdS9CloKWVTkufT8gC65KMIk3HJH1XJjDlCwytBVZ+qYhjifLwX4ownOpERGRZaDl1m1F2S5GMs9v5YgoFIpGgb6lf5Q3zjpEeKoemI0B64GgZYPW3BDyqo2jI5EDlhY1qAyyg/tihCUXnCca/wWkDED5F0j/jyAcxgM+uApZdJ/JOjbMy281cAxApF0LllbIkpcNYTtZYOjYWNpCaINR4aRvISWnSmuOaPp19FLiFJHBv5DFT4BvLhACrTXCMwLhubDW9tiVSeb5rY5mFApF48DaDvz16YhkVpz9T6XOFFTdVxqJpIF58ecmqx2SCPZDwP9jDRbwQ/A3RMZNlVdkaBMybziE/qy6VvYWsR8nsb6/OvhmIX3zwNIyvLIo9GfYPimhtUHkvI4QNqOhItI4AqoBMrQRmXcO6HlVF/V/kcUPIfVtaOk3md+siEA5IgqFolEg3Och/d/V34b2HmiZDyHTb4bgX0gEFN5hLgmfCmXjjEhHAyGcJyJD6yBYkPoi/nnope+D7xvQN0Bos0kibU0b7PmTK2+OQANbb3CeCMKC0AuMpGbHURBYgp53P/i/B0Da+yDSrk25864sHRfuhFSn9E2kZ7jSFUkC5YgoFIpGgXAORHqugNJXwwe05obkeXB5Le5mQ3hGGPtq2WDPRgB6DUSvohOA4JL40+oC64HgHITQNxvlyykTgmKzI5dGhPN4tKzIZoh62QdQNIqwoy7/98i8JZD9GsJxePJ7lX8dY9APvvngGpr8unsoKrNGoVA0GrT0mxG5M8BzFbjPRWQ8img6C5H1LGitUly0JVCtqkFraiQu2rpFzrX1THLxRlotITIg510jydN9Adj7RpmksTu9iwrXWRHXZOmbUHQP0fNtAsjip1PcLU6SsmzkpeGNjDp1RB599FF69epFeno6zZo1Y+jQoaxZk4C8sUKh2GMR1k5o6TeiVTRLE8KJsO6FyJ2OSL+3Qn0ziaRDLROR+zki82lE9uuIpnMRzmOj7+25CHAmvralI9iPMvqrNCbS70DTjDwIIeyI7DcQmY+D/UijpNk9ApH7JaLZd4j0exquKV5t4bkyIrIhAyuRxY/Fvi+4Ahn6L/n9HEfGGLSC47Dk19yDqVN3eN68eYwcOZJevXoRDAa56667GDhwICtXrsTj8dTl1gqFYjdDaGnguQCEA6lvMcpAwdAE0WPoaOh5COveYN3bdIqUPiifgQysMhJY/d+CnsADKvR7hWKqFURWbHXT+mSnFvVC2MB1KsJ1KgBSz4eyyUj/94Z6recKKHkR8DWAsSkiMsF1EsJ1GiKKoJgs+yCxdWTyicrCcwmyfEb0qivXWQhLi6TX3JOpU0dk5syZYV+//fbbNGvWjCVLltCvX7+63FqhUOyGyNJ3kMUPhV+M5YRA3P4qMrAGmX8p6JtrYFkwdSfEdTaUzwRZWIP9d6LsZXR9AyLzEYRwhA3J4B/IvIsqSmEr8M02vk+iCQS+rT07UkHLBX1b/Hm2XmgZo83HQ/+Yj+3AspdRHpwkwro35IxHFj0MgZ8qLmYYx4lp1ye93p5OvR4QFhYa/6Pl5ETPJvb5fPh8VR55UVFRvdilUCgaP1L6kCUvJn2fiNGTRsqQIZBVIyckbDeSaqJn3R8t80Fk2rXIoofANzP+PYlS/imyfBbS0R8yH0PT3ADIwrvCnZAdBNcYicEJYzcevjIBpyEZLPuCJQCBRcT8Xvq/Qt92MiLtJoTzmMhx615xJUeE56qUVVGF7UBEk/8hgxtAFoO1Q0RZsAxtA+9kZHANaE0QrlMRtv1T2m93pt6SVXVd54YbbuDwww+nW7coSWIYOSWZmZmVf9q2Td5TVSgUuyn+ZUlGHWyI9DsQjhjRV9+8xN6cE0aC/WgS/tVacaQgLM2MstNap9xwbrb0RpZ/gQz+XvUGH42EHTKnkW+Tfl0StjjiTwEIfAOBH0jIoQv+hiy4Glk+J2JIuM4m5s8h/TaE+/TEbIqBsLZF2LpGOiG+75DbjkOWPAPln0HZO8jtp6KnnCC7+1JvjsjIkSNZsWIFkyZNMp1z5513UlhYWPlnw4YN9WWeQqFoxEgZQnonx5mlQdYbiLTrEen3IJrOQ3gujn1LTcWyouE+k4QTXq17I0P/If3LoLAuRbD8yIIbkb6aiJvtQEDuJwhHX6StOwlXDlk6pF75FBMdWfJ8xFVh64LIuI/Ix5wNMl9A81xaB7YYSFmOLLg+eg5J6atI34I623tXpF6OZq655hqmT5/O/PnzadOmjek8h8OBw5Gg16xQKPYYZNF9UD4t9iTHkWjOfkBkBETqJVD2LrL8U9BLwHaQoSOi1ULH2OpYOkLRQyTcsK74YaOyQ2tCzQXB4hGEsgk1XkVk3I+wtje+KH6EhI+iQqtrvLcpwV+RoS0RHYCF+xywH470fgSh/wy7XWcgLHVc5VQ+M2b0Tpb9DxGz8mbPok4dESkl1157LVOnTmXu3Ll06NChLrdTKBS7ITK4AeJGQ+wIz8jo9+slyLzzILiq6qJvE9L3pZGPgAvw1oKlNnAOhtIxSd4Xip6zEZUkc1Aitvot9XtFOmQ+C5Qjyz5EioxKpdLGQfTIjLDuhUi/oX5NiXfcV6vHgbs+deqIjBw5kokTJzJt2jTS09PZtGkTAJmZmbhcNdP6VygUjRMpQ0YprHcayCKwdUO4zwOtBYT+AJGOsCbxUuKfT+wGcA5DJ8PePfpw2VvhTkiVpRCKdj1FPJchhKiJmxAbWw9E+k3I0rcg8DNgTazEuDbQWkL6jVB4CzLV6iCRWbuVQdWxdqv7KEcyxKvESaFSZ3emTh2RsWPHAtC/f/+w62+99RbDhw+vy60VCkUtIkPbAT9oLWJWGUgZRBZcA75qEtiBZUYLeKzs0KmQ1m6IjHsR9oMT2D1ODoKlDcJxqLlN3k8T2KM2CCFFZt0sLdIRmU8YiZEV/VGk9CM396ButT8E2I8A17lQeC01Oz6yErsLbzzM7tUQ6amVzErpA6yI2pb2dx4PRY+Y9OQB4R5Wu/vt4tT50YxCodh1kf4lyOKnIFDRL8XSAdKuQpj10fBODndCKgkRJosdXIHMHwFNJiOsnWIbYe+HkXBoEhVxHh37fllPMgClrxq6FDiodecg8xGENfwt2kjerUMnxHogImsMwtoGveAmapzDIrfX0KCAIcGvF1SIyAHW/RBpNyAcRyVnincGsvR1CP4K2JHOQYi06xDWvWpoo4EQTsh+AZl/RWTCqmdkav1tdmN2n0YDCoWiVpH+n41279UfdqG/kIW3gSyP+lYnvVOS2KAMWToOkflozGnC2gbpOgu8USrutCbgOhfp/bRK6dLWA+EehrBUaGLYDgTf3MTtqgmh9RVKr9uoUS5HdaydEY7jIq8XRzZ4qzUse0H2SwhLc6T0J//9s/UGz3AouIWEE3fDMHE8Az8iMh4wojTCgrC0THplWfousvjBalf8UP4J0v8tNPkQYWmdgr2RCHtvaDobvB8hA6tBy6nQEdmvVtbfnVCOiEKhiIoseQGzN25Z8jy4Tjekw6ujJ/nW6/smoWki4z6wNEOWTahov66Box+k3QRFdyP931VN9n+PLHsXct40RKfcI5C+edSOY2AlbmRA3wruK4xuwYF/QK5PfTvbAYisFxEivATVENGKHvavFULroWAkesajUHAVyJLE7rMehPBcCM5BUP4FMiUnBGLlBMmySWgpHm1IvQxZMsZky23IktcRmaOr5oe2IMvehvLZQAgcRyDcFyccORFaDngubaytERsNyhFRKBQRSBkAfwwnQd8GgV/A3iP8urVTkhUBif0KEsICadeA53IIbQItDaHlIEteCXdCKj9AEbLgVkTTLxCOvpDxMLL4kcQfqKYkeDxR9moN98EQRrN1NRyvnd/8o+lT1DaBX2D7qcSVJ62OvtVIUvb/CKKO+okFzR076f/Z+Ldp7YSwtouc4P/WUEE1w/cFMNpYK7gBmXdOeEVT2UQj5yjnHaWQWovUm6CZQqHYlZDEjyBEvrUK94XJbWPSBdcMIexGOaZmtImQ3g/NJ4f+QvqXVNh1BqLpAnCdmZx9DYl/DpS+ZKhxFtyAlNWcIGsHo5y27o1Ibrq+0ahy8r4PZW/EmZzie7CIFIuTgRXo205G5p2JLLgKuW0gev5lSD1vp4lxPk+1cVn8ZPSyalmMLHow8roiZZQjolAoIhDCDva+MSZkg+2gyMuOIxDpt5PQQ0bLja98Go9QnIZ3FQ8SGdqGzB8OsRyXhsIxAFxngL0PWKK8xYNRDl3ycuWXQjhq/r1raFzDAHsKN5aHfSVDm5B5IyBYXSNFgm8eMv+y8KIJey+M6hsTKv7NS70UfF+ZzwssNY7HFLWCckQUCkVURNpIzH5pi7QrDWcl2pjnEkTTOYj0O8BzNSLrZUi/r6KiBGNN5wmInPdTSjYMw9ox9rjFGJcF11dobyRC/Z7oi7Sr0TIfQWQ9B6EYuiBl7xsaLTvwXA227nVuX80xKY31fgjOoST9GJIlYdEhWTbRXJ8ksBz8Cyu/FJamMaJiNoTnsh2LEvcYrr6qsfYAVI6IQqGIirD3guzXkMVPVAmCaS0QaVcYAmWx7rU0B8/FlY90AUj3uUaCpXBFNAhL2Ub3+ciiO6MP2nojbJ2RgRUQWJzYgpa9IP0OKH0NAstqxcaYuM5H2A4w/h7aQMyjELnd6OYaWIQsGw+BNaBlkVACbUrEKJlOipDJdR+Uf5D8ciLNyEPaITPvj/2zlf5FCMcRVbdn3IMUdvD+D2SFoq6lPSLjboS9IsqnNTH64ugbTWzwgKV98rYDUi8y8n60ZoiKjsh7OsoRUSgUpgjH4QjHNGRwPeAHS4eUxZ+EECByatc+9+nI4GooGx8+YN0HkfWU8fdAAuqpIhfSrkDzXASAdPQH3yxk+VcQ/N1EmbUWENV+BWtNiSvhXngLMvBD1deV3XLrwhmpDSekDpAlyG0nQdbTCOegqDkj1dnZ6RXCisi4C5l2jfFvQ3MbyqzVhPqE0MBzEbLYpLTcNQyhJZeMK0PbjYTp8plAAIQH6ToFkXbbHu+QKEdEoVDEpbaEnuoCLeNupPtspHcGSC/C3gMcR1c5TFp2/EVkCQR+QQb/QFg7IoTVOD5ynoD0LTTE1+qCasdFwtISaT0IgstizP/BZKAuG+bVVmSkNgkgC26DZn0QzhOR1Y5fwhHgPCH6iJYBMRR5cQ+H0JYKJ3fH91cD11BEenKdkqX0IvPON1ocVF4sNapwgn8ict5Jar3dDeWIKBSKXR5h7YRIvy76oKMfaDkV+iNmlEP5p0jfXMh5H2HrXDVkPwys+0BwbW2abCDSwr92nQrFy2p/n5pg791Aze1sRn8i3SwptBy8n4L7bEPRN/BT5BT3hVWdgpNECIHIuB3pGV4h6KaD/fDUnHLvtHAnpDr+75G+bxGOw1Kyc3dAJasqFIrdGiHsiIyHiFktsQNZjCy4BlnyIrLiSEcIgcgaa8jbhxHr12di1SDCNTj86511WRoDgTX1vKHTEMvL/QIszWLOlPom4+eb/ZaRvKs1AzSwdkFkPIiWcXeNrRGW5gj32Qj3OSlHBmUcZdp447s7KiKiUCh2e4TzWGgyGVn2DvgXVSSGmhBaZyjHljyPdA5BZD5mPIByPwffPKM/icgE10kQWIksmwShf40ERmtHhL070j4ASh4B70fm+9iPAOdJ4XbaOiOtBxiqrElTR0codangGgWR+2mlGJm0dqjqcxRtbkXCqNDciPQbIP2GujewTtiz+7IpR0ShUOwRCNt+iMxHK3roJChsVv6JUZ2Rdo2RwOg8GqjWZM9xRFhFhgz9hyx6DIoeB6GBY1DFsdAmw1kJbQNLU4TrNHCfGyGRL0ObootoJYROVGfE3hes3cE/D4Irk1wzTvJsHSC9nyDSrzV2d59T0b8oig0iK8KRi1hL+qF8OtL7mVGSaz8E4T4PYWlV+4bHQDj6I6M2g9wxHqdx426OckQUCsWeha0ziIyEdSBk2fvguSqsWkhKHfw/GL11rJ0Rts7ovh8gfziV5aoS8M0E4UbkfBCed2K2V/Gz1SphUqG6EyLAfjhkvYxAR5YUQ/BPKgXBRFqFXsaOe7Twv1vaGD1n6pvy6bDDEbEdABmjkEUPEVYGLDIQ2S/FrDaR0ofMv9T4Oe0gsMT4eWa/gbAfUkcfIAquU6B0fPQ8EXufPTo/BEDIMNm5xkVRURGZmZkUFhaSkZHR0OYoFIrdBFnyQkVTv8QQTb9DWJoY9/oXIQvvCO+pY+8D/p8Bb/QFbAehNYmt6iqlH7m5B2aNBlPGMRjk1ugJp5b24Lm8ooLkSCMhN7QdrPsgi0bF7jdUh4jcL8OSTGVoI3g/RupbEJZO4BpaEWHaAJa2CFuXiDVkyVhkybMmG7gh7VaEa2jSZbipIkPbKsp3v8Ao33UbFTi7afluMs9vFRFRKBS7JFL6QIZS+yXuucboK1I6np0lwyNxgmZUt+iB3yHvYiKEx+JVlQR+Roa2GsqeFcjA2gphsp+M/BLHAGrdCQHwTcf0eCW0DoFEOAcaX9sOrMzplVqT2OvaekNgUa2ZGUZwVZVgGRhHKWlXGwdFwfVGpCOwtHJc2g5GZD4ZlkxqHOmYIMug+H5k6VjIeRth7VQHHyIcYclFZD1TIWi2HbTmu6UDkgrKEVEoFLsUMvArsuQ58M0HdOMhlHY1wnFUwmsIIRDpN6Nb94HCW2JPtuQa+/oWQP7VJN0IbofdeoGR6Br8y2jGVvomEKiaEFiGUW2T2voxdo496puDcEfJmXGeAuXTTO6yILKeBP8SZOmrFaXNiTRKTBCRGd1W6TV6Bu3c4TnwEzLvIsj9rOrhrm+Lv4++BVlwIyL305rZmwRCywBNRfiroxwRhUKxyyADvyLzzqvIbagg8BMy/wrIehZhIl5lSiKqq6F/jKOY8tmkHrEQkHcWUpbGmVfbTkgiRDoP0vcDFN1ufov9MKNPkOtko4Ny+Sxk8E8jpyS0GWQ56P+BbtKU0LIPhEx0WbRWYDcRGvN+EumE7ED/10gudg8zGt1pzSH0l/ln2EFwDdL/E8J+cPy5ijpBOSKKPZaAP8Dc/33Lginf4y8P0L3//pxw6QAyc9XbSmNFlowJd0Iq0Y227Y7jjeqWRKkW3o9J+efUrDRWGkqaCZEGVE8irSk2wiIvOxNYjV5wM8Le13As9AJkwZWx7fUvQJaOB2snZMGNIAuqxrTmiOyXEbYD0EsnQOnYag5JRRVOaC3RK3Is4BxoNLGL0g5Axu0rsxhcpyELRibmhOwgtAFQjkhDoZJVFXsk3tJy7jj+IVZ+Gy7WlN08kydn30e7rm0byDKFGVKWIzd3J9YDWjT5CGHrlth6/sVGdKXRUcsls7beIEMQNNfjqMTSDuxHgTcByXGtGejFRE3QFdnQ5BNEaA1SAoFfoXQM0ctwcwDfTo6PDTxXoO2klqsX3gPeGI3yXGcaUvklz8e3P8yE9xunmNwujEpWVSji8N6DkyOcEID8zYU8dclYXvjukQawquGR0g9oRq+VRoQMbkCGNhA3SiBjvPkDMvALsuwj4w09uK7W7KtdavndMLAIrIk5Z4T+Bu+ExObG0juR+bBtALLyqMmC6eeShUR26A1A6YtISyuE+4zKq8J5IjKGIyKcJyILYxwpRcPaWTkhDUzj+m2jUNQTX7w1x3Rs9Q9rWffrBtrvv+dERaRvHrJkbMVRhRXpOAaRdl1C2hd1Yo9/saH3EFwLoa0gd/SJiREtEFlg62q6pl48BkpfTs0graWR82CG4wTwfZ7a2vVBcEUSk2vrSKh6vsvOjgYJjcmyN8MdEcdhSMdA8H0ZOdlxLNLWMzlBOK0pItOkxFdRbyhHRLHHEQwEKdgaW8xq2795e4wjIr2fIQtvouoBHwTfl0j/t5Azqd6dEVnyKrLkabNR0/uE51KEcES/y/dd6k6IcEPmk1D2Nvi+ij5H3wK4MNURqTWcxC83rieSEIVLmeDvSOlFCFfVtlljoGx8hbT+BrC0QbiHgXs4QljRtWaxnRHniYBA2A4B16kILc18rqJeUI6IYo/DarPSokMzNv0V/ZeVEII2nVvWs1UNg5QhI8kz2gNeliBLXkBkJy78VWN7gn8iS55J7iaRZTghaZebr+v9X5KWCKN6w3EYwjMCYe2EtB8C3inI0jeMI4zqBJZg/DqtS0fBAem3QfEDKd4fJ2k1GUQ6iTb2qxnOiH2EsILnEoTnkqh3CPc5Rnl3NOx90LLG1K6Jihqjuu8q9khOGTnIdOzQkw6hRfvYXT93GwLLQd9oPu6bjZTBejNHej8m4RwJ51AjybDZgphOCAChGMcqETgQ2a+jNZuDlvlwpdiVEFZwnYn5UUIQLC0qhMnqAEtbKHkq9ftdZ5NQB+Ko2AxJeC0HXGeA+0qQCeh0xMViOHxmuE4Ok9ZPCM9l4OgfZau9EJmPJbeWol5Qjohij+S0G07iuAsjBbA6HdyBm964qgEsaiji6VYEiX2+X8skIkK1A0trhL2H6XFM+NwkjtmsHRCOftHHgqvNdSwAQuvA92PieyVD6HeT0uVEsCEybkXkTgP3uRi5NskQAPc5iKYLARuUPpmaGVoL40gHO9iPROSMR2Q9bRx/RcxtjUi7LvJ6HISwI7JeRWSPMxxH5xBExqOI3Ol11uxO+uah51+Nvm0oesH1xlGgImFU+a5ij+b3n/5i/uTv8Hv9dD/mAHqfeDCatuf451IvQ249AmRJ9Am2Q9CaTKo/e0rfNvpxJIBo8jEiRnJq2Lr+pci8YQnbYba2DCxHbj894XUaDVo7tGazKr/Utw1NoRMv4DwdymNIp8dCeBA570X/vgb/QJa+Bf5vARs4ByHcF1b292nM6MVPQOkbEddF2g2ItKsbwKLGQTLPb+WIKBR7OHrx81D6YpQRgch+LaZ0ugxtA++HyMBS40HjPAkcA5ITFau+nl6I3HoMyOLYE52D0bLMElpN1i4dhyx+goSOfhzHIbJeiPgcUgaQW44wylN3KRyI5j9Xfh69cDR4J6awjhUjShYHrQVIX0UyqxWcAxCeqyMSn6UMgPSCSEeIyChNlYPyHWA3HBTPBQgtUuysIZD+n5F5UeTxKxC5M+qlj01jJJnn957z6qdQKKIi0q41msCJatUDWktE5tOxnZDAcuS2E4wOp755UD4DWTDS+JNiXonQMhHZrxiCWNHQmhlvmpmPJ7+25xJE7kzwXAHEaTbmmxU14VEIW8XRxq6GD5l/KXrRg8jAbwhH3xTXSfDnqm+qcNZC4DjK+LdUzQmRoW3ohXcjt/Q0/mwbYETDqr0XS/8SI/rk/cCojgn9AaUvIbefiQwlUaJbh0jvR3HGp9aTJbs2KiKiUCgA45jG0Juwg+2AmEmCUkrktuONnIgoiPS7EZ6LUrdFlkP5TGTwb4SlFdJxHEIAIiPlaEt19O3nVFS6xECkIZouiNomXt9yhHmJqKUbUBA7l6RWSVaJVUD6PVDyBshkknhTR2Q+gXANBUDqRcjtZ0aXYHefj5YxCgB928kQ/C36gq4z0TIfriNrE0fPvya6pskOXKejZT5afwY1IlRERKFQJI3Q3Ah7b4S9e/xKBf8iUycEQHo/rJktwolwDUVLvx7hPhPNkoXQsmrFCQEg+Gf8ObLEPI/CeZL5fZYcRJMpiLTrwbo/WLuA+xKwpxqFiIXNWD8pJBQ/BJn3kdwjQIBIrZosLHJQNsm8D0zZRGRwPTKw0twJASifjpT1mERtgrDF/t6LpH82eybKEVEoFMmjb4o9nlS5bANglpy7M9WEtMLwLzS/x/8dyCAibSRa7lS03E/RMm5HZL0A9iN3Wt8N1u4kJ+lkAa0pOE+GnPcrGrYli4SSZ8E9PPFbRC4i406Sr7gB9LzKv8pYEQR0QzROL4y9nvRSa5ooNcF1lvm/EZEOrlPr155dFCVoplAoksfSPva4Nc54DKQsN5qpadl11/PG3gP838eeY2lnRDQi7PPHflsnYIxbmoZdFVoGImccMrAKAj8ZOTmOY0Dfhiz/yihd1vOhPF5eQQiRMwFh7WBI4Sfc1XcngmsMWXz7YRXVKnFwn4pwnYQsnwm+L5LbS2tT9fd4+UMyALYuxBRgs3ZCCGfkrb4fkP75AAjH0Qh7z+TsTBJhaQ5ZLyMLbqjomVOBloPIehGhZdbp/rsLyhFRKBRJI+wHIa3dTHuYCHfyXW2lnocsfgq804Fy0HKQrmGItJFGkmgtIjyXIGM6IhZE+h1RKzkMcS/PTt1iw5GyHILrEda9Ive27Qe2/YxuwoV3QPnnVOV4JBik3vEWnqoTsoPAD5D9LsJ9AbL0HQiY6F+ILETaNcbfk+nlUokPAKnng5Yec6bUmiH8P4NjIPg+i26O++Lwe6QXmX91WKRKlr6OdBxlOASJaM2kiHAcDs3mGz/H0Eaw7IW0dgH/D8jgGnAcXWf6JbsL6mhGoVCkhMgaE10ozH0+wnVaUmtJvQyZdwF4J1Mpka7nQenLyIKba2xr5H5xQv/OExHO6AqpQghwnhLjZjsUXIXcdiz61uOR3hnRbSh6AMpnEJ5omkDDOdvBCEsL4+/WA0hdLbUC/wKEcwBak/GIjAcijxos+0Du51URiOrVVQnvsQi9fIFRmu3/IcZENxTdjiy4wmgiqDXfaVyApQsQNJKrK5DFj0c/LvPNQxYnV+adCkK4jH/znsuRvvmwfQiy+CFk0f3IrQPQix6gEdeFNDgqIqJQKFJCWPeC3M+h/IsKHZE0hPPkuAl8USn/2Oi0Gw3fTGTgF4TtwBrZuwO9+BkofSX2pND6mMMi7VqjKWDUhN1qarWhv5CFNwA6wnVy5WVDf2VaoiZXw4ZIv63KDksTpOt08NZEdK4qMVm4h4FzMPjmGCqu9kMidDCEazDSvyDJPQJQcD1gFsHZ8Siqrhyrg74ZLPuD0CG4CpAQWoMsGgUlr0LOeNCagPdj8629U5DpN0U9yqltZPHTUP7JTldDUDbB6OCcdlmd27AroiIiCoUiZYSwI1yD0TLuQ0u/OTUnBIwciRqMJ77PF/GdEABih/KFpQmiyQcVlTFdwNLBXPsEkCXPh78RB1eRUrKl63SEvUe4LRn3RCbBJkH1yI8MroeyiYaDZe0QXYzLeRLYD09uE605ECNBWGuLqUZJ6NeK79dO6P8iC28F/b/Y0veyGGLojki9EFn6liHRXnATsnxWShU5Ui81NE/MxsveaRSVPo0RFRFRKFLkn982Mn/y9/jL/Rx8zAEc1D8ysVGRKHF+QcsAsvwrpP9HEG6E68SUFCtl2XsJzRPO4+PP0bIgbSQibSQytMWQyjcjtA5Cf4K1Y8XNKeoiycgjJSHsyDh5F6aJn47jKyNNetHDUPYO1Y+KpK0XpN+KEK6KBFGLka+T/SqUvYf0ToHQVrB1NvJmfF9H315rbkQ3TD9XjLFYBH5C6nnEVny1Gc36om0b/B2ZNzws70WWTzccu+yxCJFEh+HQ37FzdvTNoG8Hyx7SUDMJlCOiUCSJlJIXrx3Hp2O/rHzLfe+hKXQ7Yl8emHY76dkpnKHv4QhHP6Q/RqOw8pnIsnGVX8rSF5HuC9Ay7k1uo0T0Q6z7gasu+slUS3y1HWhUHsXQYomKVlWJI6Vecb8VQvEe5NGiL1qFyizIsvehbHyU2xZD3lmGa6K1gLSrEe5hxgPaMwLhGVHNniCy+CEo+7BqP+EBez8j3yMW0kH4sUziCL0I6TjGXFjMOQihRf9/UhbcFj351r8ASsdBWhINMONWyFQkOSsiUEczigZB13W+HD+Xm/qPYniX67jv1CdYOnt5Q5uVEJ+8/AWfvPxFRPLZim9W8+zliYT9FRG4zojRDt4O+r+Rl8veRZZNTm4fLc7bqGMAIuddhBZHAn4nhKUZWLuZT7B0MP7smC8EIuM+qudnJLRPRRKwLJuC3HYsctsg5LZjzfNrYqJXREBAlkZxQiKmb0IWjUKWTUL6f0YvvAs97yL0wnuRgV8RwoqWMRrRdC4i81lE1ovQ5AuoKKeNiWaixZEIljbG8ZQlskIJy96I9Duj3maIpkWv+oLkRfmEpTXYYpQLO4+NqtKrUBLvigZA13UeOXcM8z6IfAO+/MkLOfPmwQ1gVeIM73Id/66NLtilaYJ3/3qZZm1z69mqXR8Z3GCUswYWJ36TtSta7seJ71H2PrLovuiDWnNE0zkpa5dI31xk/pVEq3wRmc8iXJFqrHr5V1AwkoQk2l1nIiztDB0Sk7LWpNFaIprORm5OrIsxYFTNRAjCiQpZ/wvDrkrvdGThTYmta+kQXXHV1hsCi8zNybgf4T4HqZeA9yOkb55x3XkMOIeaPvxl+WxkQayIh4bWYnVitu9YM7AamXchyIKdlmqOyHkfYW0T9b7dESXxrmjUfDttcVQnBOCNOyaw7d/t9WxR4gQDQVMnBEDXJetXRXl7V8RFWNuanuWbEvwjufmus8ARJf9DeBBZz9RIQE04+oNjUJQRDbPEVM15LCLzKSJLcF2GJLztEGNN6/5Gl+OSp5J0QuJEdoTT+MwiK/Elo6rSSmTxw8jg3wnMNcF5PHgurfg3IMDaBZHxCCLnbbDuY25O8eNIvRihpSE8F6LljEPLGYdwnxc7AmFtF9seS5zxKAjbvojcqeAeAZaOYO0MnqsQTabuUU5IsqgcEUW989W780zH9JDO7Pe+4ezbYuk0NBxWm5X0nDSK88x/wea0yKo/g3YjpF4IvtnJ3ZRk4p8QFsh6DnxzkOWfgF4EtgMR7nOqtDlSRPoXgy+aZoiOLLwb7EcgLJGRMuEabDgd5dOQof8QlvbgOgVRkYCq518HwV8TN8QzEmQxwtoJaT8Kth1PpTbLzjhPMP7rGgplbye+R1Qk0jsFkX4T0r8M9Dyk6XFbJEJ4EGlXQPptSCnDxOSkjHGEJcvANwuS1K4R1k5GMq5JBE6k2GVZWFpXSOFHPxJSRKIcEUW9U7Q99ltS0fbierIkNQZe1J8pz06POtbp4A7sfWDyb1IKKvqLJNhmvgLhOiPpbYTQwDnAVLAsVWLnqwSgfBp4LolukyUXPJdEdHGRof9id3eNtpbn4konRgAy/XpD8GtnLHtVHqWItGuQ/h+il8kmQ2Al+tZBRoXQDgu0Jka1SDycx1V9hghF2zgKsnoSkZdqiKwnkXkjIo+EnEPAfUFKayqSRzkiinqn08EdWL7A/Bde5x5716M1yXPBqDP4Zd6vrF0a/ssrPSeNm8clkWUfBV038gs0bQ88NbU0B5EZtUQ1KloTpAxCaFvUSEO9E6s8FZChTYZj4F9akccgKvqhHGR+U3ANCamt7kBkVjohlZc8l4DWAlk6zoisiDRwDUZ4rkFUHIUJLcNooOedYmit6NsrHs5J7A0V/XuqCbohjbVEVmTeRHVcZyCsMf6/t3WP3dzP3j0ZKysRllaQ+ymUf4n0LzKOqpwnIlJcT5EaKllVUe/8s/Y/Lj/wZgK+yHPzFu2b8taa57HaGrePXF7mY9b4ucyf8j1+r5/uR3dj8FUDyW3dJKX1li9YxYSHJrNs9nKEptFncA8uGHUmHQ9qX7uGN3L04ieh9PXog9buRqmlvjH8uvAgssYiHH3qzC4Z2mq0ntfzENZ9wTkwov+NXjTaEAMzI/1uQ4bcNzf8umMAIuu5qJoVMvALcnsSUR9LW7Sm5sdbOx95xEL6FyOLn4XAjxVrd64oF/bHus2czKeMZoa+r8C/BKOfUHOE+wLwXGpEqsxsCSxHbj+bqBEzex+0nHdSs0lRZyTz/FaOiKJB+OGzJTx+0YthuRZtOrfkgWm307ZL6wa0rP5ZPPMn7h3yOKFguKiX0+Pg6bn307lHxwayrP6R0m+oZZbvpDvhGGjkMRRcHf1GkYVoNr9OZLxl2URk0cOEJZxqrRA5b4SJqsnAGuT2U4gaRRDp4DwRvP+Lvon7ErSM26MO6VtPgFCCSbmOY9GyX05sboJIvQBkCIKrkfkj4s43Q6TdiKjQ5ZDSbySyiqyYDkiYHeVfGBVPel7VRfsRiKynEZq5qq2iYVCOiGKXwOf1sfDjxeT9l0+7rm3oMfCgPfJI4tJuN/L3yn+ijvU8/iAe/fyeerao4TFKVOcCEhz9Ebau6PlXG2/TJojMJxGu2k1ylv6lyLxziFpea2mLyP3SSIDdMb9sitEHpbrTItIh8xkovMFceVNkIJotjNolVvqXIvMvSajTrsh+E+GIofBaA3TfD5AfK29CEKsMWaTfGSaAlgpS+sG3wDi+s3ZD2DrXaD1F3ZHM87txx78VuzUOl4NjzqmbX5q7Cn+v3GDqhAAs+fIXSovK8GQkJ7C1qyNs+4Ftv/CLIfPvkzFe+2XTsmwCpg/X0AajOZzz2MpLwn06OI4A78dIfTPCsrcRydE3IWM5ErLIUEe1RopyCfsh0GQasuxdo3OtDFXkS+xUCeMZWWdOCACBX2KPW7vGqO6xGOW5NUQIO9RykrGi4VGOiKJGlJf50CwadkcNW5HvofjLYzc+k1JGzaXZI7G0hWAMgSlL29rfM55iaXAtcGzYJWFpDmlXVFbASD3PiPCgYZ78aYMYxwvCuhci4+7Kr6VeZDg7wdWgZSNcp6bUeycp4imNei4xZNGjOSOeS4zEUIUiCsoRUaTE4pk/MeGhKaz8dg2aJuh94iFcdP/ZdDq4Q/ybG4iSglJmvvk1iz7/CSGgz8k9OX7E0bjTayAvXUPa7d+WrKYZFGwtijrevltbsprG62GxZyDc5yB9s6IPajngHFj7m2pNgTVxxqMjpR9Z9EjFAzyOM+kcGFHtEguhZYDnwohy3zolXkSKECLnXWTpWPBONXI5rF0Q7osQ7uQ0PhR7FsoRUSTNginf89DZz6DrRsha1yXfT1/CsjkreGbeA+xzSOMrv92yYRs397+PTX9VNbha+tVyPnl5Jk/PvZ+cFg2T7GZ32DjzliG8fvuEqOPn3Kl+gVcS2kz0PAQLZD4TNb+ipgjXaUj/NyaDHnBGU1I1kEUPmienVsfSzrQfSqNCawX6evPxwC8I1ymI9Fsh/db6s0uxy7PnZQYqaoSu67x++4RKJ6Q65aU+3h41qQGsis9L170Z5oTs4J/f/uO1W99tAIuqOOvWUxj+4DA8mVV5IFnNMrnhlcv3+ByaHUi9BFn8INHzNUKIRLrqpoLzJHBG631kQ2Q+Yt7VNbQFvB+ZryuywN4HkX6XIf+9K7SGt8XpR+NfUj92KHY7VEREkRR//vw3//1pLtz048xllJf5cLpr/+00VQq2FvL9dPNfkvM//I7rXr6sQY9ozrv7dE674SRWfb8Wi0Wj62GdsdlV3k0lvi8NKW8TZPk0hOf8Wt9WCGHoXziPR3qngp4P1n2NPiY28/4nBH4i9nGMb9fTvrAfDL6Z5uPSW3+27NhSLzO6MJd/Yijz2g5AeEYg7L3r3RZF6ihHRJEUAX9sCW5dlxF6GA1NwZYi9JC5QmTAH6Roe3GDOiIALo+TQwYc0KA2NFr0OGqrevQcm9rZezPoxQjncWDvl5iKa1w9k9rVO5FSB988Q6ZdOBDOQUblUS0i7IfG7hFsP7RW94uH1MuQ+ReGV/P4ZiN9X0PGwwh38vL/ioZBOSKKpOjYvT0ZTdJN+8F06dWx0ZWaNtsrF6fHQXmpL+p4WpaHnJZKEKlRY+sWZ3z/Wt9SSh1Z/BCUTaJK0dOG9AxHpN0SW6HU3je2rPmOZnO1YWdou6EzElxZda10LNJ1BiLjoYQFw+IhbF2R9n7gnx9l0IXwXBRpm5QVwmWuGnU2jor3fZOSYqMTMM5BpkdnisZFneeIvPTSS7Rv3x6n08mhhx7KokWL6npLRR1id9g469boolFCCM67p+otpCivmAVTvmfBRz9QWhhfjKmucKe7OO7C/qbjJ146QJUfN3KEvRdYzZwRC8Id+RCsKbLkRSibQLiseMCQoC97K+a9QtgR6bdDtLoWrZnRZba27Cy6M8wJqcQ7GcpqN/9JZI0xFGKp1g3X0h6R9RrCWqUALGUIWTIWubUfcksP5Jbe6EUPGGXHtYT0TosxWAq+r2ttL0XdUqcRkf/973/cdNNNvPLKKxx66KGMGTOG448/njVr1tCs2S6QnKWIytm3nYKUkg+enFYp0d5sr1wuefQ8+g7uiZSSN+9+n4/GTK/UyXB6HAy7/VTOu+f0WrWlKK8Yh8uOwxU7J+XyJy/gvz838eMXP4ddP+yUXlz04LBatUlRN4jssciCqyGwvNrFNETG6NiN41JASl+FE2IyXvo2uC8KU1XdGeE+HSxNkCWvQ2AJCBc4T0SkjURYWtaOncEN4JtnPl72XtRIRaoILQ2RNcboChxYDVoW2LpHRIdk4W1Q/mm1CyVQNgHpXwpNJtWOFL8ep0t3XR7XKWqVOpV4P/TQQ+nVqxcvvvgiYFRctG3blmuvvZY77rgj7v1K4r1x4/P6WLvkT6x2K/v02BuLxfilPOmxqYy7K3rzr2teuIRTRg4if0shdocVT6Ynpb1nvDGbD5+axj+//YfFauGwob04985Tabtv65hOyYpvVvHDDENHpO+QXux3aIyEQ0WjRPqXQOBX4yHoGIDQUvs3FHOPwG/I7SfHnCOazm1wkS7pm4/MvzTmHNF8VUyHqbaRgV+R2081tyfjIYT7rBrvoxdcH9mTqPo+TSYjbAfWeB9FajSKXjN+vx+3283kyZMZOnRo5fWLLrqIgoICpk2LEVarQDkiux4Bf4Bz215pKtCV0SSdrGYZrF/1L0IIeh5/EBc/ci6dukcKoX322iw+fvFz1q/8h5yW2Rw/4miG3XEqH435jLfueT/q+kJAn8E9GfHgMDoc0K5WP5tiz0GG/kNuPSr2pNyv0axt6scgE2RgNXL7EPMJWhO0Zt8lt6aeB+UzK6pQDgT7YQl37AXQi5+F0rHmE+z90HLeSMqmqHb6l1X0AYqSHG/rjdbEPKKlqHsaRa+Zbdu2EQqFaN68edj15s2bs3p1dJlmn8+Hz1eVUFhUpEJruxr/rt1k6oQAFG0vrkx0lVKyeOYyfl24hjELH6JDt6o+Gy9d9yYfv1j1trPt3zzee2gKS7/6hT9//tt0fSnhu09+5Oe5v/L8tw/TrmsdyH5HYcU3q5gy5jN++/EP0rI9HHtePwZffXyjKmNWJI6wtETaekLgR/NJpS9D5iP1Z1QUhG1fpLUbBFdEn+BKrnJElr6LLH4c8FddtO4L2a8mcZwUu7Iurspsggh7d8h8Ell0v9EEbwf2PkYui2KXoVEJmj366KNkZmZW/mnbtn4eIoraw5WW/NlvWbGXiQ9Pqfz671X/hDkh1Vn1/Vp8Xn/UsbA1i7xMeHBy0rZEw1viZelXv7Bszgr8Ufq+fDl+Ljf3v49vPvqBLeu38efPf/Pabe9y27H3U14WvVJHsQuQfnPsce90pF5SP7bEQGQ+BlqTyAHbIQjPVQmvI33fVojG7fT/V3A1Mn9k4vbYD4szfnjCa8Xdy3UyotkCRNbziIwHEU0+Rst5B6Hl1NoeirqnzhyR3NxcLBYLmzeHi19t3ryZFi1aRL3nzjvvpLCwsPLPhg0b6so8RR3RvF1T9uuTfN7Fwo8XV/59/gfJhZJN15y6iOonj1v/2c6W9VuTWmPCg5MZ1uYKbh/4ILcOuJ/z9rqS6a9W9Tvxlnh56bo3oyrNrvp+LdNf+TL1D6BoUES0h3sY5aBHqvXWN8LWGZH7GSLtRrAfBo5jEJmPI3LeQWiJl9LLshgCa8EVRm5OItgPA9sh0ce0ZuA+M2GbEkEIp6Gb4j4bEU/9VdEoqTNHxG6306NHD2bPnl15Tdd1Zs+eTd++faPe43A4yMjICPuj2PW48pnhSR9JVBcc83lrJ4oQCoYqjn9+4uqet3HuXldyXvurubTbjcz7ML6z878npjH+vv9RVlSlGFmwtYjnrnqNr983+o9898mPlBWbK0rOfm9BzT+IomHQcoFY/47tMZve1SdCy0GkXYWW8zZa9itGN15hT26RQIzOxgDBGM3/qtsiBCL7NUMev/rpv603IuddRIwuw4o9kzo9mrnpppt4/fXXGT9+PKtWreKqq66itLSUESNG1OW2igama5/OPP/dwxxz7hGkZXlIz0nj6HMOxxHDOel5fFX55QH9auetpvuAA1j61XLuGfwYa5f+VXn975X/8NDZz1Q6E9Hw+wJMfvoT0/H3HzX6iBTnx9ZHKclv+NC9IjWElgauGJUzzhOT6pjb6Il3nJGEAyG0DLSsZxFN5yFyJiJyv0JrMgFhbbzduRUNR53qiJx99tls3bqVUaNGsWnTJrp3787MmTMjElgVux8dDmjHnROuD7v27v0f8s79H0TMtdmtnHtXVZfZXoO6s88hHcKch2SxWC2ce9dpvHH7BFN59/H3/Y+jhx0etSLg7183xEy6XbdiAwVbC+nSq6PpHIBm7Zqy9Ktf2K/PPrjSGlZCXpE8Iv0OZGA1BH8NH7B2RWTc1TBG1RHCNRRZbJL0KrLAcUzya1qagqVxRI0UjZc61RGpKap8d/dj0uMf8+FT0yjabkQKWu/TkmtfvIQex4ULUuVvKeSJi14IEyATQpDIP9fW+7TkyqcvYt9DO3Fm89gaC2+seCZqZc3fq/7h0v1vNL1PCMHU/LfxZLi5sd+9rPgmdljbneHijJsGc/69ZyRVCqloeKQMQPmXSN8cAISjPzgHJn/00ciR0o/Mvwz8Ox9b2hBZzyKcAxvELsWuSaMo31Xs+pQVeynOK8Gd4aK0sIysZpk1LkdtvU9LhFZ1Ivjv2v+Y8ux0OvfsSHp2VV+I7GaZPPr5Pfzz20bWr/qXnJZZ3Dv4sZhRiiufGc5B/bvS8aD2CCHI3xKnURpGuW802u3Xhvb7t2Xdr9ETpjObZbBl/TY6dNuLUZNv4cEzn2b5glWm+5QVeXln9AdYbVbOudNc7EnR+BDCBq6TEK6TGtqUOkUIO2S/Dt5p4d1s3RcgbPs2tHmK3RgVEVEQCoWY8/5CZr07j+LtxbTdtzUlBWUs/eoXgtW67To9Do674Cguffz8lDrVrln8O9cffk/U7ryHHHsAj385Kub9L13/Jh+/EL2sN6dFFu/9PRarLdy3Htn7Dn778Y+o97Tcuzlv//Y8mhY9VWrxzJ8YdcrjBAPRuwm7M1w8t/Bh2u9vRFTWLP6d3378g0mPf8yW9dui3pPRJJ33N7yC3bl7vU0rFApFdZJ5fjcqHRFF/RMKhhh92pM8fuELLJ31C2uX/sXXE79h0YylYU4IQHmpj09f+ZI7T3iYUCj6wzkWU8ZMj+qEACz9ajm//xQ7J+ScO0+lRYfIHkWaRePqMSMinBCAC0efhaZFPwq54L4zTZ0QgF6DDuaxL+/FZtIQr6zIG5bz0qVXJ/oPO9zUCQFD0O3PX8wF2RQKhWJPQzkiezhfjp/L958mqA9Qwcpv1/DD9KVJ77Xqu99irxtnPKdFNs9/+zCn33gyua1zSMvy0OfkHjz19WiOOiu6iNKhJx7CfR/dSvtuVXkgrfdpyR3vXsdxF8SR8MZIeg1EETHbwbcfLw5zyqx2q6njswOHS0VDFAqFYgcqR2QP58vxc1O677tPf+SwU3oldY87I7a4kjsj/nFPdvMsrnz6Iq58OvGOoocN6cVhQ3rx35+bCYV0WndqkXDC6M5RoZ0JBUNIXVZ2RXd5nPQc1J1FM36KOr/tvq1VDxyFQqGohoqI7OEUJJDQGQ0ZRUk0HkcPM5d2dqU56TukZ0q2JErLvZvTZp+WSVWtxJNoP6DffhFHQiMeOidqDo3FauHyJy5IeO+6ZPmCVUx5djpfjp9LaVFZwvfpuo63tDyh6iXFrokMbUb6FiIDKxvaFMUegnJE9nA6HLBX/ElR6H3iwUnfM2TkIPY5JFLQSAjB5U9eyLZ/tvPIeWMYnHY+J7rO5d5THmPVD2tTsq82KMor5tFznzMdF5rg3LtOj7jeqXsHxnzzIEeefigWqwUhhJGMO+te+pzcoy5Njsv2//K5ts+d3HTUKF65eTxPjniJYa0vZ+Zbc2Le5y0t5/XbJ3Bm80sZkn4B57S9ggkPTiYYiNfgTLGrIPUS9IKbkFv7I/NHILcPRd92CjKwvKFNU+zmqKqZPZxf5q/klqNHJ/WGu88hHXjh+0exWC1J71daVMZHYz7jqwnzKckvpXPPvTnjpsFkNcvkpqNGhcmpgyF29tD0Oznk2AOT3qumTHl2Oq/cPN50vO+Qnjzw8e0R15cvWMWUMdP5bfEfeLLcHHPukQy99gRcnuQbAtY21/a9i9VRnDtNEzw99366HbFfxFgoGOLWAfdHLU8+/NTejJ5ya53Yqqhf9LyLomiIACIDkTsNYWld/0YpdllU1YwiYQ7s15VrX7wkojLEleZE7JR0abVZGHD+kTw+a1RKTgiAJ8PNBaPOZPxvLzBl65s8+vk99DjuIMbdNTHCCQEI+IO8ekuMZlx1yPpV/8Qcj+a8zXpnHrccfR8Lpy5i6z/bWbdiA2/eNZHbjn0Ab2l5XZmaEL9+uyaqEwKg65KPnvss6tg3H/1gqpGycOqimPopil0D6f8puhMCIIuQpRPq1yDFHoVKVlUw+KrjOfKMPsz74DuKthezzyF70/vEgyncVkzBlkLc6U7KisvJbZ0TJjpWW5QWlbHki2Wm43/+8jfrV//LXvvW7xtZTsvYvTWatAzvzeEt8fLideOiduJd/cNapo/9kjNvGVKrNibD2qV/xhmPXj694KPvY943f/J3HHBkZCRFsQvhj/0zjjuuUNQA5YgoAMhqmskpIweFXctulkl2s8w63zvgC0R9eFfHFydptC44fsTRTHx4iqltJ1wS3nvju0+XRI3q7OCr9+an5IiEQiE+f+NrPh83m23/5tGmc0uGXD2Io86M3sXajIyc2E5kusl4vMqheOOKXQARRzE53rhCUQOUI6JocLKaZtJ239ZsWP1v1PGMJum02z+8H8xfy//m83Ffs+3f7bTepxUnXjqAlnvXbjPFFu2bcfVzF/PSdW9GHMOcf+8ZdOnVKexaSZxOvKUFiVen7EDXdR4e9iwLpvxQeS3vv3x+mbeStUtO4dLHzg+bX7C1kO8/XYLP6+fAo7rSoVtVMnLfU3rhznCZOkvHnt8v6vXuxxzAwo8Xm9rYEPk7ilrGcRwUPwFEbxApnMfXrz2KPQqVrKpoFMx6Zx5PDH8x6lifwT3RNIHFZuHwU3qz7d/tvHHHe2FzrDYLt42/NmaJcKqsXfonn479kn9//49me+Vy4qXHRj2KWLP4d6459E7TdY48ow+jPrg5qb2/+/RHRp3yuOn4uJVjKo+s3nt4Cu89NCVMgK3vkJ7c+d71lYmyX09cwOMXvRjRkfiAfvvx2Mx7okrPlxV7ufzAm9n899aIsb0PbMfLPz6ecs6QovGgFz0CZW9HDlg7I3ImIbTaP5ZV7L4k8/xWjogiZQL+AAsmf8/yBatwepz0P/uwiCgBGG/133z0A7PfW0BxXgmde+zN4KuPp3WnlmHzpj4/g3fv/4DiisiCw+3AZrdSUhA70rADm93KhHUvk9Midm5HXXJT/1Esnx+ZvCkEXP7URRRsLsDutHPkGX3CohVmPHzOs8z937em4+fdczrDHxjG7PcW8NgFz0edM+D8I7njnesqv169aC1Tn5/Bbz/+QVp2GgPOO5ITLx0Qs//Nf39t5plLx7Jszq+AUWXT+6RDuOm1K8lunhX3cyh2DWTZ+8jStyH0F4h0cJ2KSLsGoWU1tGmKXQzliCjqnM1/b+W24x5g4++bwq4PHN6fm9+4qrKHSygU4sGznmHh1EVh8+xOG/dNuZXeJ4Trkfi8PqY+P4MNqzey6oe1psc1Zlzy6HkMu31oQnP/+2szi2b8hJSSXoO6RzhGqVCwtZAHz3qGX+ZViUG5011kNs3gvz83h8094ZIB3PDq5TH73dx14sMsnrnMdHzoNScw8vmLubrnbabJpharhQnrXia3VU7U8WTY+Mcmtm7YTsuOzWnWNrfG6ykaJ1L6AVtS4n8KRXWSeX6rHBFFSjx6/nMRTgjAl2/PpeOB7TntBqNl+hdvzY1wQgD85QGeuOgFJm54FXtF6fC2jXmMOuVx1i6JXd0Riy1Rjg92JhQK8cLIcXz+xleViahCCI676Chueu3KGh0zZDXN5Ok59/Pbkj9Ys/gP0rM9zH5vAd9Pj+zn8/m42bTv1pbTrjdvL9+lV6eYjkiX3p3QdZ3ff1pnOicUDPHnz38n5Ih4S7zGz+zjHwgGQhxy7IGcfOXAyqTlVh1b0Kpji7jrKHZthFD9kBT1h9IRUSTNX8v/5teFa0zHX731Hb6ZaiRXfvHW16bzCrcV8/2nP1Z+/cAZT9XICQFomcBD8v1HpvLZa7PCqmGklHz59lzeHvW/Gu2/g849OjL4yoHsfVA7fvjMvKngtBc/j7nOSZcfa9qDp3m7pvQ7sy+apuH0xK5qSMv2xLW5cFsR1/W9m5euf5Nlc35lxTereWf0B1xx0M2sTzIypVAoFImiHBFF0vyzNjISUh09ZFR6rPt1A3mbCmLOzfvPGF/5/W+s+r7mcu6HxpGeDwaCTHtppun4Z69+ic9b81LhOZMWcuUht3JJ1xuJdfi58Y/NBPzm3X1zWzfh4el30rRtk7Dr7bu15bEv7sHusPHHz+vwl5uv0aZzS/Y7dB9+mLGUu058mPPaX8W1fe5k+quzCAWrOge/dff7rPt1Q8T9+ZsLGXPlqzE+rUKhUKSOOppRJE2znR6K0QgGQkx78XPadW3Dpr+2mM7bq2sbAP5Ytq5WbPNkefCX+ykpKCWjSXpEQ7qt/2yP2eivOL+UTeu20m6/Ninb8PELn/PS9W8mNDejSTo2uy3mnG5H7Me7f77Eki9/Yds/22nTpRUH9utaOf7eQ5PDHIqdSc9J44rut/DX8vWV17as38bqRb+zeOZPjJp8M1KXzJ64wHSN5fNXsfGPTepYRqFQ1DrKEVEkTZdendj7oHb8+fPfMeetXfonF91/Nj98tjTqeLuubTj4mG4AZOam14ptD539DGuX/InP68eT6WbgRf258P6zSMv08M/a/9j273aEJky7BwshSE/gGMMMb2k5b4+alPD8QSOOTmiexWKJSOzdwffTo39/dxAr0vTttMV889EiDjn2AMpLY0eC8jcXKkdEoVDUOupoRpESd7xzLa602E3c0nPS6DXoYC559Dw0S/g/tZZ7N2f01Nsqs/L7nNyDjCbxdQri7bnim9X4vH4ASgvLmPr8DE7NHs6pOcMZ0eU6bj3m/ghbqnPwsQfUqPz3p9nLKS1MTLhs396dOO/eM5LeQ9d1QqGqCIjUo4tQJcrs9+bjyXTTtI15pMtmt9J6H+WEKBSK2kdFRBRhFG0vZuabX7P8m1W4010cddZh9Dm5R0SJaYcD2vHioke57ICbI8SxdrCjL82w24dyzLlH8PXEbyjJL6Fzz44cPrR3WHWK3Wnn8KG9+XyceXIrgLcktcZx1bVIQoHoxxhZTTO4eswI1vz4B5+8PJO/f91AdossBo04hsNO6ZVQKWMicudCE3TusTfXvXwZ7vToiajR+HvlBt594EMWTl1EMBDiwKO6cu5dp9FzUHe+/9Q8ITYe2zfmo2kaQ64+nnF3TYw6p/85h5PVNDm5fymlKv9UKBRxUToiikr+/OVvbj/uAQq2FoVd73NyD+6bcktEvgXEz4e4fuzlnHzFcVHHAv4A2/7NIz07jbQsDxfvdz0b1mys2YdIBQHuNBfdBxxAm84tmfzUJxH9ZY4ffjQ3j7sq7oM1f3MB57W7ikACDok73cXTc++n08Ed4s5d9+sGbjjinohoi6YJhj80jHfvnxymqJoslz1+PqffdDLPXvYqX7w9J2ys+zHduH/qbQk5TVv/2c6EBz5k7v++xVtSzn59O3P2radw2Cm9UrZNoVDseihBM0VKXHbgTaxbEVk1AXD5ExdEbdgWCoY4q9VlFG0rjnpfk1bZTFz/SlhEJRQM8c7oD5j+6iyKthdjsVo47JSe/DDjJ/wVxyqNkfs/vo3DhsR/oL547biYlTnV6X5MN5786r648x4486mwfjPVad6uKTePu4rXb59Qo/Lnp+fez4H9urLu1w0snLqIgD9Az4EH0e2IxDrrbtuYx3V972Lrhu0RY9e9fBmDrxyYsm0KhWLXIpnnt8oRUQBG+ayZEwIw442vol7f+McmUycEjLD/2JvGh1178uKXmPjIRxRtN+4LBUMsmPID/vLG64QAfDl+bkLzrhoznLNuGRI3nwVg2dcreOTcMZQWRc8rCfgD/LV8fcymc5v/3orT46Tjge0Sss+MT8d+AUD7/dtWSsd3O2I/pJR88fYcrj/8bs5pewU39R/FnEkLI+7/4IlpUZ0QgDfvmkh5A3RQVigUjR/liCgATB8g8cYdrvgKjB8/P4Of564AjDyH2RNMykQbbWzOIH+zedlvdSwWC5c9cQHv//MqN71xVdz5cyYtjGhsJ6XkvYencG7bK7n8IPM8nB18/f4CZr41J+acePy79r+o158c8RJPXfwyK7/7jW3/5rF8/ioeOXdMxJHc/Mnfma5dUlDKki9/rpF9CoVi90Q5IgqAuBURWc0ywyo1dpCRm0GrBKopXr31XQCmvfRFagY2AhJpUreDUChEeamPw4f2Sqg0+Zd5K/l57q+VX796yzu8fe+kiHydaAgh+Pj52AqtnXt2pG2XVjHnNI3SO2bp7OXMemde1Pkfv/A5v/9U1d8m3rGarxEfuykUioZDOSIKADp178B+ffYxHd/891Yu3u8G/qn21jzzrTmc0+YKNsZRWgVYu+RP3n3gQxZ9HlvzIjdGCWmNqWEBx4Dzjow7R9d1/vfENM5vfzXDWl/O2S0vI6dlYuXAX1cIiuVvLuCTBHNMwIiexKPPST14afFjeDLdpnNOuGRApE3vmYucAcyuNn7gUV1N52kWjQOOTCzXRKFQ7FkoR0RRyV0Tb6BVx+am4xt/38SoIY+h6zpLZy/nmUvHhpXFxuOd0R+weV3spnRHDO3N9WMvQ2jhXkOsahW7y44rPXY+Rv9hh/PR9re48pnhCdu7M++M/iCqBDrA6kVrmfjIR9x45L28cccEtv2bBxgKs38tX487w4WmxfaEZrwxm5G97+Cz12YlVHWTDHt1bYMrzcWdE67D7oxUcj31uhPpc3KPiOslhbF/vtV//mfdeoppw8BjL+gXVaektLCU1YvWRnQmVigUew6qakYRRsAf4KZ+o1i96HfTOY/MuIupz8+I2RU2VZ6Z9wAHHLkfG//YxIzXv2LTui20aN+MYy/ox3NXvc6Kb1aHzbc5bIx8fgRjrngt5rrv/P4iLfc2nKxvpy3mmcvGUhgjydYMT6ab5xY+RLuubQGjW+09gx/jl3kr4967136tWb8qfvM4u9Neq4m7mbnpTPr3tcry681/b2X6q7P4a/nfZDXN5PgRR5tGKyY9NtVUWwTghlcu56TLq8qzv/1kMS9d9yZb1m8DDCG0gRf15+rnLw7rsjz1uc/4cvxcCrcVV6rc7n94F6576TL2rmHSrUKhaHhU+a6iRlyy/w0xH5j79u7EHz//XSPdimhkNctg0r+vYbFEf6v2l/v54u25fD1xAaWFZex36D70GnQwvyxYydTnZsRce9K/r9Gk2hHJklk/c8fxD6Vk51Fn9eWeSTcBcPlBN4f1cGmMWG0WxnzzEF16dYoYWzp7OYs+WwJCcOhJh3DwMQeEjRdsLeTifa+nOD8yMpLTIou3176AyxMejdJ1nV8XrqGs2Evnnh3JblYlhPbXivXcesxoUycwPSeNV5Y+QbO9mqbwSRUKRWNBOSKKGnHLMaPDEifri/5nH8bd79+Y0Fxd13n2slcSqhTZ//AujFkQ7nRIKTm33ZVs+ycvaTstFo3z7zuT35f+xcKPFyV9f0NwxGmHct/kWyq/9paWM+qUx1n29YqweYccdyD3T70Np9tReW3VD2t5eNizbP676litTeeWjPrwZjockFz04oYj7+HXhWtizjnz5sFc/uSFSa2rUCgaF8k8v5XEuyKCgRf1bxBHxOmJr7uxg4/GfJaQE2KxWjjnjtMirn898ZuUnBCAUEhn/Kj/pXRvsmgWDT2kI4TgwP5dCflDrFi4Ov6NO7Fz6ezrt74b4YQALJ31C+PueI+Rz19ceW2/Q/dh/O8vsHTWL2z+exutOrXg4GO6JS3f/u/v/8V1QgCWzPolqXUVCsWujUpWVUQw4PwjOeK0Q+t935lvfs31h99NUV783I1ElUtDwRAPDXuGH6s9iHVdT6pDbkOih3TGfPMQH25+g6dmj6bvkJ4prWO1V71zeEu8zHo3ekkuGMJtO4uPWSwWeg06mJMuP5atG7ZxwxH3cO5eV3LLMaOZ96G5fggY3+95H37HkyNeTshWi1X9WlIo9iRUREQRhrfEi91p557/3cj8D79n1rvz+HnOCvzltZsPYsbK737jmUvHMvqj20zn+H0BNv21JeE1y0t9PHjm00xcPxZPpoe/f92Q1P01xWLVCAVT75AbDATJzDVCm+2T0DKpzuFDe1f+fdu/eZSXmquclhV72b4xj9adWkaMPTH8Rb56d37l11v/2c7Pc39l9Q+DueKpquOUn+f9yqIZPyGl5LfFf/DzvMQjbIed0jv+JIVCsdugHBEFADNe/4rJz3zKhjUbcbjsHD3scC56cBgHHLkv5+51Zb3a8t0nP7L57600bxc9YdHusJGek0ZxXknCa5YVe5n93jcMufp4tqZ4JJMsex/UngHnHsHrt0+o0Tp77de68u89jz+Itl1aJdUcMKNJOufceWrl199Mjd6zZgc2u5WsppFnuktm/RzmhFRn8jOfMvCio2jZsQX3nfoES1M8XmnRvilDrj4+pXsVCsWuiYqBNmJKCkqZ+7+FzHp3Hls2bKuzfd4eNYlnr3i18uHm8/qZ+dYcbjziHtav/pf6TmfWdcn6Vf/EnHP88KOTXvfftf+xeOZPPHDGU6malhR//rwurhOiWTRy25qLuLXp3JLsZllV8zWNBz65g1ad4qvZAqRle3h67v206mjMn/7qLN686/2Y9xx5Rh88mZ6I67MnxhY3+2rCAl6/7d2UnBDNojHg/CN5dsGDZDSJr0SrUCh2H1REpJEy6fGPee/ByZVn9ZpFY+BF/bl+7GWVehCpEPAHKNxWTHq2B4fLQf7mAj54YlrUuZvWbeX76UuwO20pHc1kt8iiYHNBVEdGaKJSP8Ls3lhccN+ZrPhmVUy9k51p0jqbR897LmGp8VadWtC1b2eklPQ5qQcTH/mo1kt1ew3qzrl3n85N/UYRCoZL6NscNu794KaIe9rs05I3V41h+itf8uK1b0aMV6ckv5T1q/6h/f5tCYVCvP/oRzHnt923lanoW0mUEt7qFG4tjJsvsjO9TzyY8+89k44HtcPujN+3SKFQ7H4oR6QR8uX4uYy7872wa3pIZ+abX+NOd3HVs8OTXtNf7mf8qP/x+bjZFOeX4vQ4GHDukey1f5uYKp4fP/85TVpnx6wwadq2CQ9Mu538zYXM/+Bbyr1+DjpqfwacfyTzPviO569+PUxzpGmbJhw84ADTbradDu5Ap+4dYn4ed7qLp+fez4w3ZjP9lS8pK/KS2yaHVd+vjTrf4bLjTnNF1cMw46L7z+aYc46o/Lrl3s25feCDlBZG75SbLDa7lXPvPp2ufTozdsnjTHhwMotm/ITQBH1O7smFo8+kTefo/WEsFgunjDyBFd+sZu7/vo25z/efLaHfGX3Z+PumSqExM0ZNviVM96M6XXp24rtPfjS9t0WH5jFzT6Ix9JoT2O9Q89YCCoVi90c5Io2QD5/6xHRsxutfceHoM6OGzmMx+vSnWPz5T5Vfl5f6+Oz1r6LKbldHShm3zLW81FfpOPQ6vjt/Lf+borwSAr4Ag0YcTd/BPZjz/kLyNxfQdt/WpGWnUVZcxp+//B3WNA0M8a3Tbjgpoc/0y/xVvHX3+5QVewEjcRJBRBdfm93K7e9cy7+/x++JA0a05ty7TgtzQgC69OrEXe9dz8y35vDPbxtJy/KwV9c2zP/wW4rzEndwwHC2Ln/yArr26QxAhwPace8HN8e975+1/1FWVMZe+7XB6XZw61sj+f2nv/jnt+idc4HK74fNESntvjMZOWmmYydeNoAPn/4kqiOW0zKbgcP7M+HByRGRHTPadmlFj4EHJTRXoVDsvihHpJHhLfGa9jMBKC/z8ecv65NqILZszoowJ6Q6W//ZnrSNO5OWZThFKxau4onhL/HfH0bfELvTxsCL+nPVs8MZeu0JzHzza169eXxlR1mLTUNYBDJU5TkEAyGeuXQsi2cuo23nVhxx+qFRu94Wbivi/tOfjHwDj3Lac9mTF3Dk6X3iJmnanTb6nXkYIx4aRrOdOtH+/tNfPHnxS/z589+V17r07oTUdYL+xB68AM40J89/+xBtOrfiz1/W88fP69j7wHZxNTlWfreGl65/i99+/AMwpOZPvvI4ehx3EH2H9IrpvB564iEAtGjfjPbd2rJuRfR/X/sf3oWcFuYN+rKbZ/HwZ3fx8DnPsnVD1b+bNp1bMmryLTRrm8thp/RkwZTY32cwoksPTLsdTVNpagrFno5SVm1kBANBhmRcGFM+/ZWfnqTjQe0TXnPsjW/z0XOfmY43aZ3D9n9TryQRmmDodScYMutR/jX1H3Y4R57ehwfPfDql9QddfAw3vnZF2EPrw6c+4bXb3k3o/mZ75fLuny8hdckFHUeGPUSr8/isURwy4ICI69v+3c7lB92SVJVOLM67+3Q+e/0rCrYUAkYuymWPn88Rp0bXbln36wau7XNn0sceAPsc0oHnv3sEq83Kv7//x9U9b6esyBsxz2K18NTX99HtiOgObmlRGbPemcfqRWvxpLtp2bE5Dped1vu05OABB1Q6Uts25nFz//vYuFP0qVXH5gw4vx9Bf5BOB3fg8KG9TRvkKRSKXR+lrLoLUrC1kP/+3EKTVtkcefqhfD3xm6jz2u/fNiknBIz8klh06t6ePif14PNxs+POjYbUJVPHmPd6mTtpIQumfJ/0ujuY+ebXtOvahjNuGlx5bf3q+M3jdrBl/TbWLvmTLr068cDHt3PXiQ+Tv7mwclwIwYiHzglzQtYs/p38zYW0278NM8d9XWtOiMVq4b2Hp4Rd2/j7Jh4882ke+uwueh3fPeKeCQ9OTtgJ2ZEEbHPY6D/sMK56ZnhlcvP7j0yN6oQAOFw29umxN//9uZkJD01m/off4S8PcGC//eh31mG8c98HlY7TDk6+4jgGXxVeapvbKoexS57gy7fn8sOMJQghOPSkHgy86Chcaa6EPoNCodizUI5IA1NSUMqL145j3gffEgyEEEKw/xFdyGyaQWHFEcYO7E5bmPR2ovQ8/iA+fvFz0/FDTzyEI07vQ/tubXnputhVGKkSCiR+fBGNaS/NrHREpJRs/Te5I6UdCbmdDu7AO3+8xNcTv+HPn9eRmZvBgPOPrCxvXb1oLU9fMrbyeEwIQVp2cvk4sdD16I6erksmPDg5whEp2l6clBMndckjn99N1z77hOUR/TJ/ZUw11bLicua8v5Bxd00McziWzfmVZXOii5FNf3UW+x++L8ee3y/sujvdxdBrT2DotSckbLdCodhzUY5IAyKl5O6TH2Xlt2vCrq1YsJrcNjmcdPmxLPx4MUF/kO4DunH+PWckHQ0B6HXCwXTt25mV3/0WMda0bRPmT/6eF64Zh5QSq91KMEoVjSvNibekPOm9a4tNf23B5/XhcDl49vJXWfLFz/FvqiA9J43OPfYG4Kevl7Nw6iKCgRCHHHtA2BHBlvVbueP4h8KSMaWUtRYNAWKWLK/8dg3eEm9Y5ODDpz5JOkq1fWN+mBOybM4K7hz0UNx1Zr07NyLqEY/PXpsV4YgoFApFMihHpAHI25TP1OdmMHviN2w1ESrb9k8ecz/4ltIC46H4w6dLyMxJ5+rnL8aeQPVDdTRN45EZd/HS9W8x93/fEvAF0CwaB/Xfn99+/INlc6qan+1wQnY0W9M0waEn9+Cky45j1CmPocd4kNYlaVke7E47vy35g8/HzU7q3rNuPQWE4J7Bj/LDZ0srr3/22iz2Pqgdw+4YytcTv+HXhWtqrTQ3Vf74eR3dDq/K05gzaWHSazjd4Xoc4+6aSDCBiNQv81clvdd/f25O+h6FQqGojkpWrWc2rdvCjUfey7YUk0MHjTiam8ddnfL+RXnFbF63lSatsnn73v+ZPtRtDiuPzLibdl3bkN08C4BZ78xjzJWv1lvfmeqcdv1JXPXscF6/fQIfPBldgG1nMpqkc9atp3D2bafw9r2TInIzGiu9TzyYgRcdTd8hPRnW+vKkIjKaRcPmsOJwOTjqzL4MumQAI3vdXme27ttnHy577HyEEOx7aCds9uScZIVCsXuSzPNbOSL1zINnP8P8JNUnq6NZNN5b9zK5rWPrfyTC2a0vJ++/fNPxC0adwYWjzw67VpxfwiX730j+poIa758o+/TYmye/GoUn08PzI9/g07FfxL3nupcv4/jh/bE77fz7+39c0f1WfGXJV51Up93+bfj719jS8zanjUAtOWpp2R6QkpKC1KM02c0zwxJza5vqR3ZZzTK5cPRZDL5yYJ3tp1Aodg2SeX6rIv56xFtazrcfL6rRGnpIZ8U3q6u+1nW+n76El657k1duHs/yBUmE1+P4oO8+MJlbB4ymtKjqQZiencYjn92FO6N+KiDSs9O45NFzK3Me4umnWG0WbnztSgZfORC7087n42Zz8X431NgJAXB6nDFb1F9w35k89fVorLbaKUstyS+N6YS06tiC9Jw0hCZM98zfXIgn011jW6z26Ke41fOGCrYU8vzVrzPrHfOk2Lokf0shW9ZvpRG/WykUiigoR6Qe8RZ7Ezqrj4fdZeQAFOUVc/1hd3PvkMf4+MXPmfLsdG46ahT3nvIYAX/8t/LeJxwcd86yOb/y3FWvhV3rdHAH3ljxLA533fcGKc4vYfSpT1aW6x5xWm9a7xPZnh7A6XEwcMTRrFi4ig+enMbK739jzBWvplSSHI01i34nFIy+1pGn9+H8e8+ga5/OjJ56G01amQuD1Qb9zuzLKz89wUfb3uLxL++N+e8qmX9zTds0Iadlle1Wm4W0LE9l7pDVbqVzz45Ru/PuYOIjU+rVGVj53RpuOmoUZ7W4lPPaX83wLtcx882v621/hUJRM5QjUo9kNcukaYxOq2A8TNvt18Z0PD3bQ4/jDgTghWvGRW369v2nS5jwwOS49px12ykJRTbmf/g923c6wmnapgmXP3Fh1Pm1HS0pL/Xx0RhDkM1mt/H4l/ey/+FdwuZkN8+kvNTHjNe+Ytb4ebx++wRuPuq+ekuu7di9PZqm8deK9bx1z/ts32h+5FUbXPrYeZXVNfGqmUKBIH2H9Exo3fPuOZ331r3Mk7Pv4+JHzkXXJSUFVfL1QX+Q3378o1IdNxr//PZfrSj2JsKaH//gtmMfCIsEbvx9E09fOpaPXzAvWVcoFI0H5YjUI5qmcdr15n1UTr7yON77eyyazfzHculj5xtdc7cUsmCyub7EjNe/IhSK/Sbctktrnvp6dNzjjlAwxIZqAmLBQJBPx37BrHfnkdUso9Lx0Cwahw/txTPzHsCV7oy5ZrL8PLeqsqd5u6aMWfAQry57ins/uIkbXrksah5EMGDezG8HQostrZ4o3326mEmPf8zInrfzx7J1tbJmLPzVOgjvd+g+MY+DMptmxGxWt4Oh15zASZcfh9VmpfvR3Vj61S8pR5MS6WtTG7z30GTTbsoTHvwQfwyFYoVC0ThQjkg9c/qNJ3P6DSehWaq+9UII+g7pyZCrBzHj9a/465forebtTjv9hx0OGLoasZqLFWwtitu2HWCfQ/bmqTmjcabFdhyymxsdWYOBIPcOeYznR77B6h/WUrClqFKt88qnL2L0R7fRdt/WtXYcsoMdx1HV2fvAdvQ7o29KZac7EJrA6XHUxDQA1i75i3F3vhezk3Ftkds6J6wrb3bzLI4ffrTp/ESiM7e+dXWYWF4oFOJnEyGzeBxw5H6mHXxrE13Xw8qxd6ZwW3GYRo9CoWicKB2RekYIwZXPDOeMmwfz/fSlrPr+N5bNWc53n/zId5/8iM0kKRDAX+7nu09+ZMB5R9KkVTZCCNOzeHe6K2qSore0nCnPTGfWO3Mp2FpEx4Pac+r1J3H8Rf2Z9tLMqGt16dWRdl3bAvDVu/P50URM7JWbxjPgvCNZ+d1v+Mqiv6WmSr/T+5qObfwjdS0LPahTHqx5ImttO16x6DO4Jx+N+YysZpkccVpvXGkuRr5wMboumfXO3MqckKymGXiyPPy7NkZn3goyc8NzPoQQaBYtprNrsVoixu1OGxc/cm4KnypF4uSiqMRVhaLxoxyRBiK3dRPcGS6+HD837Hq8N+odglvN2ubS8/iDWDxzWdR5x17QD6vNipSS+R9+x8y3vmb7xny2/5dP0bbiynnLF6xi+YJVnHv3aXQ4YC/+Wh4ejXF6HBx7wVGEgiEsVgtfTZhvapuu69x/xlP8vTJ2iWuytOnckiEjw3uafDttceVn2lkKf3fFneHC7rQz/ZUvK689d7Wd296+hn5n9OWm16/kogfOZuV3v+F02+l+TDfO7zAyobVD1Ryp//7azPRXZpGW7TH93ua0yOLOidcz6bGPWTrrF4QwFHwvGHUmXXp1qtkHTRBN0+hxfHfTztLp2R669u1cL7YoFIrUUToiDYSUkhH7Xp/Q22p1Xv7xcfY5xJAr3/z3Vm45+j42rdsaNqdzz448Mete3BluHr/oBWZPWBB3XavNwriVz7JoxjK+em8+61asD4tqNGmVzR3vXsfTl45l019bTNeJFaVJFmeak4EXHsX5o84MC/WPufI1PnttVq3sUROEAHemu1L9tq5Jz/FQnBf9uG3g8KNo1bElR53ZN+zY5voj7ol7POH0OJj0z6t4Mj38+OXPjD71CdO8ix3c/MZVDLr4GMA4rhNCNEg33ZXfreGWo0dHdeAve/x8Q1VXoVDUO0rQbBfgn7X/MaLLdUnd0/2Ybjz51X1h13a0Z18y62csVguHD+3NUWcdht1hY+HHixh92pMJrz/yuYs5+crjuKTrDVGPO5weBzkts9j4e93KegsB90+7nb4nR1Z6LP5iGXed8HCd7p8ofYf0xF8eYMmX8fveaBaNFh2asfH3TXVqkxCCU0YO4urnRiCEYNY783hi+Isx7znvntMZ/sAw/L4A57a9gsJqEbOd6di9PefdfTpHnt6ntk1PmWVzVvDabe+ydsmfgJFDc/btQxl6jWq6p1A0FMk8v+vkaGbdunU8+OCDfP3112zatIlWrVpx/vnnc/fdd2O31732xK6AlmS1Ro+BB3HXxOsjrnsy3Ay95oSov3R3PvaJR1mxl4UfLzbNuSgv9dVLK3cpYdY7c3G4HGTkpNHp4A6VY/E+03599mH1D7/XS27AL/NW0qpj85hzhBAceUYfbht/Da/f+i7Tfo+eh1NbSCn5+MXP2atrGwZfOZBjL+jH8gWrokr5p2WncdYtQzj2gn6UFXtZPHNZTCeka9/OPLewcTiB1el+dDdeXvw4m9Ztwef106ZzSyyW+o/OKBSK1KgTR2T16tXous6rr75Kp06dWLFiBZdddhmlpaU89dRTdbHlLkerji1o17WNaT5Fx+7tuGDUWRTnl9Kl597ktmnCzDfn8M3UH9i+MY+0LA8H9d+fIVcfT+tO0QW+Ymk9RGP/w7vw/adLYs5xemq3LNeMBVN+YMHkHwCjQ/Dt71zLQUftH7c7bNc+ndmwemOY9kVdUVpYxtqlf8WcI6WkS6+OOJx2ep1wsGlCMFQ1GqwNPn5hBoOvHIgQgptev5LjRxzN7PcWUFJQQquOLegx8CB+mbeSj1/8nDfvnojVZqlMSDYj2c689U2L9s0a2gSFQpECdeKIDBo0iEGDBlV+vffee7NmzRrGjh27SzgioVCI5fNXUVbkpXPPvWulr0s0Rjx0Dg+c8VSE6JZm0bj44fMqlU///f0/Lj/w5rBGeZvZyh/L1jHtxZncNv4ajjnniIj1Ox7YLuHyxf367MNBR+3PigWrY87LapbBKdecwLQX61gsqtq3ZOuG7dx6zGgemHY77fdvy7KvV5je1v6Adticjavx2uu3T6DfGX3pNag7+x/ehV8XRv+Z1GblzfpV/yKlRAgj8rb/YV3Y/7AqEbide/YEAyH++HldzDXb7tu61uxTKBSKHdSbjkhhYSE5OTkx5/h8PoqKisL+1DbrV//LS9e/ya3H3s8j543hx2rn+7quM+nxqf9v766joky/OIB/Z4bublDKDpRSMMDCxlh77Ra7G3Xtjp+B3eLai2IHdit2oIIIEtIdM/P7g2WWceadQGAA7+ccz9l5nzcext19L0/ci17mwzGt5UL4d12JP239sHLQ/5CT9etbPH/m2cUNC05NF5p6qOZij8VBM4XSr68dvo2xWi83n4vVgzcjKTZZpK2zX1uZ6p7UaVoDC08XVGj17uMJSJg1atm3KcZuHIKxm4ZC30xPsM2zMM9IaeHzgaX9NqDD8FaMP5O+qS4adXIu04J8MuEDWybsAZvNxpJzs9F2sDdUSjlYYrFYGN94Ni7uvS4yTRUTHodzAZcYrmTWeUxbie3ZJVDPhxDy+ymTxaphYWFwdnbG6tWrMXz4cMbzFixYgIULF4ocL6nFqiHH7mH5nxtEam90HNkaru0aYMOo7UhkeIl59fbEnMMTf7kPTH5EJ4LNZsHATLhGSfSnGAx0HCf1eqYdAiHH7mHN0C1CacCVVZWRVyTjJEeJgz6zumLgwl74EZ2IvjajwGdIjb7x7hLUbCS6JfLtg48Y33i21H7+qsadXeDcqh52zDwotKtHQ0cddvWqQE1TlTHPiSJpG2jh5I89gs/fPkRjaO2J4HFLfy1Lh+GtMDFgpOCztF1HHGUOuEX+G2GzWRiwsBf6zekucm5uTh4OLzmB4B1XkBSbAgNzfXQc0Rq9Z3WBsop8wVZiTBIyUjJhZmsi97WEkPKl1HbNzJw5EytWrJB4ztu3b1GjRg3B56ioKDRv3hxeXl7YuXOnxGtzcnKQk/Pfb1WpqamwtrYukUAkPTkDfaxHIjtD/G9tbDYbPB7z0DibzcLeD5tgbid5cWJJe3HzDaZ4+Us9r8vYdkKZMYvKSM3EzWP3kPg9GfeCHuP9I9H6NAAw88B4xH39gd1zDjM+5+eXWlGrhmzGpb03pPb1Z+paajCzNUF+bj4i30dLPb8k11KUFV1jHRyP3SX4/OzaS0xvtajMnr/p/lLUcHPE06svMdPnL8ZAEwCq1LJCn1nd8Oj8U3x9Hw0elwdja0P4DPKGZxc3wXQPj8fD7PZLxe4acmvfAIuDZgnOleTLq6/YOmkvnl97BT6fDz3jgum/vnO6gc2m5M+EVESltmtmypQpGDRokMRz7OzsBP8cHR0Nb29veHh4YPv27RKuKqCqqgpV1V9Pty3OjaN3GYMQABKDkIJ2Pl7dflfmgYiFvalML16mirRAwc6adkNb4vuXWOzzP8p43on1Z1HDzVHic+IkFDObsnM0arg64J+tF/H1bZTMwUJWejY2P1qO9KQM9DRnHjErVNGCEABwbesk9PnnTKalbc2wrXBr2wBPr76UGIQABVWZ+Xw+rh+9K/iuPz0Px/2gJ2g9sDmm7fYDi8XCw+BnjFuXHwY/w5PLL+DSpr7EZ33/EospXv5IS0wXHEuOT8U+/6NIiU9lDK4JIZWHXIGIsbExjI2NZTo3KioK3t7ecHZ2xp49exT+m01CtPg1FvIoi7L3PzOyNISHrytun3zAeI66lhpa9W8m9V6fQyMkbmv99DwcrfpJvo+VhICHzWaj02gfdBrtg4zUTExvtQgfHn+S2i8dQ23k53GxazbzSEx5oaSihHw568moqKtg5Or/KhVnpmXhyaXQMh3ZCX8VifBXkVLP09TVQKsBzTG+0Wyxfbu8LwSNO7miaTd33DrJXHQRAG6fuC81EDm+JkgoCCkqaNsl9JrZBUYWkteWEUIqtlKJDqKiouDl5QUbGxusXr0a8fHxiImJQUxM6SZzkuRXV/xr6KjDtcgC0rI0KWAkqrnYi21T01TF/ONToaWnKfU+usaSfwvn8/mo36I2YxE4NoeNDiNaSe8wCkZh5v89SaZsmxo66pjlsxgX91yX6d6KoKqugqFL+8LXT/KCzZ+pa6th/OZh0DMuWMybnpyBSc3mYfv0A+VyZGfC1uF4deudxMyql/YW/D3lSalsK0vl24fBzEXruPlcPGYoYUAIqTxKZfvu5cuXERYWhrCwMFhZWQm1KSqRa5Nu7jAw10fid+mVSMUZtqwf1Msoh8bPdAy1sen+Ujw6/wy3Tz5E5Ido6Bppo27Tmmgz0As6htoy3ae2R3VYOJgxZvfk8/gI2nwR849PxaI/VgtNZXGUOJgYMFJqrolCsRHx8HOfLbFoWqGYL3ES08YrWoOWdTBtz1gYWxkiPy8faUnpuLI/RLDtmsVirr2WlZaN1UO2IC7iB/r798CRZafwOTSiDHsvOyNLAzTr0RgHFx2XeF7hgm4n77q4fuQO43kNWtSV/lBpa0hkWGNCCKnYfqsU7x+efMKcDsuEEjNxlDgYsLAn/tl8QWy5dAt7U4xaOwiNO4mmG6+Ijq8NQsDU/YztWnqaOJW4Fwnfk7B7zmHEfIlDlVrW6Du7q1z5VKZ4++NFyJuS6HK5UMujGtbeWCQY4fn+ORZPr7wAR4kD9w4N8fVtFC7tuyEx82vnMW1xftcV5OXIN7VTVqbuHgOfQd4IOXYPi3utZTyvzSAvTNvth+zMHIysP0VsJl6rauYICF0DFVXJu1/+N24XY5I3jhIHhyK2wtBcX2w7IaT8UniK9/KqmrM9DnzejBtH7yL8ZQT0TPXQ6s+mMLI0RMu+TXFw0bGCRa2ZOajZyBG9pneBZxc3RXdbRGpiGk6uO4eQY3eRlZ6Nuk1r4o/JnWSqemphbyaxPSM1E8E7r2LXrINITSiYu38R8gbhr79i3tHJ0DfVk/qMiLffSjUIUVZVKvOX+Zu7H3D3zCNBjRVzO1N0GNFa0K5vqiexMjEA/LOlZNK7s9gsqQtOpVHVUEXOv3k/qtaxxp9z/0Dznh4AAM8urjCxMULc1x8i17HZLMH0lJqGKlZd9cfqoVvx7OrLgr6xWGjYuh6m7BwtNQgBgD+mdML1wDtITRBNLd95jA8FIYT8Bn6rERFZcbncclurIuVHKiY1nSeyzVVJmYN5f0+Bh6+rxOuT4lLQz2aU2Gql0tRs5IiNd5dKPe/BuSeY22m53PeXRENHHa36N4N9varw6u2J13fe4crBm0hLyoBjA1vom+niyLJTSPyeXKLPLaplv6boOr49jq87i9d33kFdSw1evTzRdXx7aOlpwr/rStw986hEn6lvqou0pAzk5+aD9W99ol8NQgBg9LpBaPVnM+Tl5ot92X95GYE5HZchPvK/XVIsFgsmNoZo3sMDvuPawcTaSNAW/SkGMeHxMLc1kXtnWcSbSGybsg9PLr0An8+Hvqkuuo7vgN4zu8i0/ZcQUv5Q9d1KLGDqfhxfGyS2zcjSAAe/bJG6QHTjmB0I2iZ/Zk0AGLS4DzqNbC1xXUrEm0gMqzO5WPcXR1VdBYvPzoKTdx2p53bS6Y/sIsnbSlJtz+p4/zBMJCFe1drWWHtzEU5tCMaBRcdK5dlKKkqwrGaOCBl2vkjj4euK+cemSP33JD8vHxf33sDu2YcEo2OFtA20sPLKfDg42TJcLb/k+BRkpmbBxMYISsq/1WAtIZWOPO9vyhZUwVw7fIux7UdUIkJlmBIZs2Ew6jatWazn7517BH2sR2L7tP2MuVeq1LJGnSY1xLYxUVZRgn2DqlBSKXg5slgsaBtoof2wlggIXS1TEAIA1tUs5HquPN7c+yAShABA+OtI/L3qH7Qf0Ypxx9Gvys/NL3YQ0rR7IzTq5IwWfZvgr39mwv/EVJl2MykpK+Hj408iQQgApCWmY8Mo6bmB5KFnrAsLezMKQgj5zdB/8RWMtKqyGRLaE2OSkJmWDbOqxvDs4oaXt94Wqw+52Xk4tiYIappqGLCgp+D49y+xOLUhGM+vF2TI1NLTlLkKbl5uPj49Cxd8tq1rjTHrh6C+V225+uY7ri1WD94i1zXG1oZoM8ALlw+EiF0XUUjSlMjVQzcxdGlfLDw9A0v7rEPKD9E1D4pQy6M6Zh4cL9N6jZ9x87m4KiHwffcwDF/fRcG0ihGuB97Fm7vvoaGtBu++TVGdYbs5IYT8jEZEKpga7syZT9lslth8I2HPv2BaywXoZTECg6uPR1+bUYj9Gv/LfTm9KVhQDPD9ozCMbjgdpzYG48vLrwh/FYn05AzBugZ5fX7xFbPaLcGb+++RHJ8ic9HB1v2bo0otK+knFpEQnYR7Zx+jy9h2qFJbtu3JP0tPKgi4Grasi2Y9GhfrHiXJ0EIffWd3w/KLc4sVhAAFRewkZSMGgI9PPmFIzYlYM3QLzu+6ihPrz2Gs20ysHxmgsK36hJCKhQKRCqbHlM6Mbc16NIZpFeHMt98+fsdU7wV4fv214FhSbApObQiGpaPkHTTSpCVlIOLNNwAFhdQyUjJFzvmVhZV5OXmY3moRepgOQ1f9QVjabz3ipARQbDYbq676w7Wtk8wLHXlcHj6HRmD79ANwaVMfyy7MhZ6JfGuSqrsV7Fi6cfQOgrYWb/1NSdHS10T/+T0weHGfYuW++fDkE+6cfoj4yASpC083+u0UO4p0bscVmRPU5eXmIXjnVUxtsQCjGk7D+pEB+PLqq9z9JoRUTBSIVDCNOjpj3P+GQV1L+AXj2cUVk3eMEjn/75VnxAYIABAbHo/WA5oLlaTX0NGQqz9qmmr48uorwp59kes6WRVW2M3Lzcf1I3cwssE0xHwRzVtRlL6pHpYGz8Ge9xvg1ctDruedXH8Olg5m0NBWl+s617YFWXfPBjBXtS0r6UkZWD9qO46tEb+omUn460iMdp4OP9eZWNBtFYbXlb7gODM1i7FNlgXRuTl5mN1+KdaN2IbQG6/x6Xk4zu24Aj+XGbgX9Fiu/hNCKibaNVNBZaZl4cG5p8jOyEZtzxqwYUhh38tyhMRssjMPjIdrOydEvouGjqEWjKwMsW3SXlw9dEtimm8AsHeqim1PVyH0xmtMbbHgF34a+WjpaSLg+SqY2Eiue5SakIbeViOlpiL/2dClfRHx9huuHJCcF+RnVetYIyU+FUmxKdJPLgPa+po48i0AqurSF9CmJqZhWO1JYvuuqaeBjGTxwawkhcnxJDm54Ry2ThJ/jq6RNg5HBhR7aokQoji0a6YC+fYhGifWncXxtUH4+i5K5us0tNXh3dsT7Ya2ZAxCZMFiAToG2qjtUR3W1S2hrqmGSdtHITBqO7Y8XoFpe8cADDMchcnebGpZQVml7NY9pydnYM2wrVLPu3XivtxBCFCwNqL7xI5y/0zhryLF7jApCaZVjYVGrmSRlpSBV7ffyXTuxd3XGQOo4gQhAGBiYyT1HEmZaFN+pEmsRUMIqRwoEFEQbj4Xq4dswZCaE7Ftyj4ETN2PobUmYsXATcjPK7msoe7tGzK2Kasqo2HremLbtPQ04djQDg+DnwEMY2YX91wHj8eDvokuvPs2KVb/iruY9dnVV/j+WfIUTXJcarHuXa9ZLTg0sMW8Y1NgIGdmT1lq6xSHbV0b7Hy1Dj2mdEJ1NweZvzdZxztf3i7eDipJ2g1rKfWclHjJf0fF/TskhFQcFIgoyIFFx3Bx73WRnQVXDtzEPv+/S+w5Paf7Mlbm7TahvaAqrDiX9t9AyLF7jO2xEfF49zAMADB201A06ugsd/8atqxbrLpmfD4fsRHMC1cPLTmBI8tOyn1fNoeNBi0LirU17uSC/WGb4OhiJ38HS5inrxvM7Uzh1KIukmJTZFoErKmrIXM+F1WN4uc/EZeTpOkfjdBpdBup19rWqyKx3a6+5HZCSMVHeUQUIDcnT+LOinMBl/DnvO4yze1LY+VojtXXFyBg6n48v1aQ38PAXB/dJnRAz2nMO3D2zgvEoSUnpN4/9991JOqaavjrn5kIe/4Fz66+Ajefi12zDkm9/snlF7L/MEWwWCyY2ZqIbTv9v/PYOy+wWPflcXk4ueEcHBrY4tTGYDy5/KLYmVpNq5qAm8/Fj28J0k+WwK5+FXj38cT7R2GY77sc3HzxieR+1ntGF6jJGGA079EYNwKZK+ky0TXSxoJT0/Hm7nu8ufceGjoa8O7tCRcf2XYtdR3fHo/OPxPbVsPNAbUaVZO7T4SQioUCEQX48S1BbJGvQmlJGYj7+gPW1Yu/9qMo+/pVsfLyfCTFJiMzLQumVYwlZq+Mi/yBI8tPSb2vupaaSN4SBydbODjZIjTkNcNVJcPFpz7MqooGIjweD8dW//NL9942ed8vXV8oNjzu12/CKqiKq6quiqOrzsgUhBhbGaLnNF90GddO5sc07uwC17ZOeHThuczXOHnXxoz942BkaYg6nvJl0i3k6uOE0WsHYefMg0L1j+zqV8H841OLdU9CSMVCgYgCaOlrgs1hg8cV/1Jhs1nQ0tcq8efqm+rJVD339okHjH0rytevLeM21y8vSy8PhKWjOeo2rYklfdZBRV0Fzf5oDNe2TmCz2fgcGiExO2qFwwde33kPxwZ2eH71leRzWcC6kEWo2bia3EUbORwOFp6ejuNrziJ45xXERyaAo8RGbjbzYt96zWvDyNJQrueI021iB3j3bYKbx+4hPTkDNdwc0LBVPSp4R8hvggIRBdAx0IZ7h4a494/4PAkubZ2gb8K8duNXvbj5BoErTuPFjdcFL/LujdBndjdBMrTsTMnZNFlsFnpM6YzBS/ownlPS/XdpUx8GFvqoWtsaJzecw+45RwRtl/beQM1GjtAz0cX9s09K9LnlweOLoTCragKOspQlXfyCYnRMQci3D9E4vPQk7px+CF4+D85t6qHPrG6o7lqQjE1ZRRl9ZnVFn1ldAQDbpuzDiXVnGR9X3bXk0rjrm+jC169tid2PEFJxUB4RBfn+ORaTms1DQrRwjg8DMz2sCVkEK0fzUnnu7VMP8FfPtSIjHvqmuthwdwnMbU3x4uYbTPHyZ7xHh5GtMXHrCInPycnKQR/rUUhLlLydtW7Tmgh/9RVpSeJr0mjpaWLosn7oOLI1AGCC5xy8ufdB4j0rK01dDcbkdIXtgVHbxa4LCX8diUlN54nU/lFWVcaSc7PQoEVdkWu+f4nF8LpTkMMQmHr38cTsQxPl+yEIIb8Fed7fNCLyi5JikwFApimPosztTLH1yUqc2XwBD849BZ/Ph3v7hvAd2xYGZvJtGZUVl8vF1kl7xU67JMWm4OBfxzFttx/qNauFOk1qiM9BwQJSf6Th67soxvwlfD4foTfeoJqLPZ5cDhW7/ZfFYqHVn00xbstwxEcm4MDCv3H75APk53Hh6GwHJ+86qO1RHc5t6gterF9efS03QYhjQ1v0mOaLrNQsfH75FY8vPkPUx5hSfWZGSiZYLOYtue2HtWRcnLpr9iGxBQjzcvKwbfI+BDxfDQCIeBOJC7uvI+F7IqyrW8Kung3e3v8o9p4hR+9i8F99pKaBJ4QQSSgQKaaH559hn/9RfHj8CQBQzcUeAxf2glu7BjLfQ99UD4MW9cagRb1Lq5tC3t7/KHH9xM2/72Habj8AwMLT07Fq8GbcD/ppqoNfkCjs8cXnWHllPmq4CRfhy8nKwbzOK/Ds6kuJfeHz+VDVUIW6phpsalhizpFJ4HK54HF5UFYRn7grNvzXC/WVBOsalhi/ZTj0TfUQ9SkGKQlpsK5uCUMLA7y4+YYx70pJ4PMBQ3N9JPyULdfR2Q79i1RCBgoSv8VGxENdWx0PzzEnBvv8IgIRb7/h4bmn2DHjoMzF6ng8Pl7dfgdzO1PweDyw2ZQNgBAiP5qaKYYH555gvu8K8H7K5cBms7Dw9Ixi5dMoLVkZ2Xh29SXyc/PB4/KwpM96xnNZLBYu5AUKvVCmt16IZwyLJGs2csTGu0uFjm2ftl/mGidqGqoIjN4OTRnr20S8/YZhtSfJdG5pk7TYuLS5tW8oNuNow9b1sOTsLORk5WLbpL24duQ2crPzZOrrsBX9sHOG9O3WP6vtWR0fHn8GNy8f9b3roO/sbnDyriP3fQghlQtNzZSy3XOPiAQhQMFviHvmHSk3gcjpTeexd36gYF0BR4kt8aVUs3E1oSAkIzUToTfeMN7/7f2P+P45FuZ2pkhLSkdyXArO77oqc/+yM3MQGx4POylJrQpVqWkFy2rmiPrwXeZnAICquorUujnykvZiV9VQKSjYx0KJj5A8uRQq9vjTyy9weX8ILu8Pwctb/2VKlSVgCt4h+99bUa/vvBf887OrLxF64zXmH5siSP9PCCHSUCAip9iIeHwOjWBs/xwagdiIeMEOFEW5HngHmyfsFjomLQeFpYMZFnRfBQ0ddbTo0xRV61hLfYmFv47E1sl78eDcU7lHCNhsFvRMpI905ecVVN69duSW3PVWvHp5wLmNE9YM3SLXdb+qsGpwSQchHCW2xDTyx1b/g8j30XLfN6Ykcp6gIOgJmLofjTu7/BZTNVFh3/HownOw2Ww06thQaiFGQogoCkTkxONJf9kqasi+qKMrTzO2cZTYYLHZyP83gZSmrgby87m4vD9EcM7lfSHw7uMJ06rGjGszNHU1sH5UABK/Jxerj67tGkhdmJubk4d5nZfjaTEysHYY0Qp+G4cgvZhF28obNpuFRp1ccOfUQ8ZzosKKt2CWJ2O2Vll8/xyLj08+C7YFV0b5eflYO2Ibruy/KVhTs3k8Cx1HtYHfxiG/RRBGSEmhQERO5ramsK5hiUiGSrnWNSzl3kUQEx6H1IQ0WFWzYEwQJo+sjGx8eh7O2M7N52HBqSng8/hQVlXG/8btQswX0d+Irx+5A69enoyBSNXa1nh9973YNmlMbIwwdtNQqecFbblYrCCk2R+NMHHbSAAFgZc8lNWUUadJDeib6uLG0bsl+pKWRx3PGlBWU0ZKfCps69mgy9h2uHn8vsRrykMQDKDEp8LKmz1zA3F5X4jQMR6Pj3+2XISxlSF6z+yqoJ4RUvFQIFIMAxf0xOLe68S2DfDvIfN9Pr+IwKaxOwXbZNW11NB2SAsMW/EnVFTlm4IoSllFCcoqSkIps39mYm0Ex4Z2eHrlhdggpFD0pxj0m9sdx1b/I8iyyVHioOPI1gU7RGSkZ6ILq2rm4Chx4NauAdoNawltGbLHXtx7XeZnFNI11sGcwP8WteoYaKNus5p4eVN6hdkOI1vj65tIPLsieddPWfAZ7I22Q1oIPvP5fKwYsEmBPZKNho46HBvaKrobpSY7MwdnA5hrRZ3adB49pnYWWwyQECKKApFiaN7TA1wuD/v8jyL636FwCwczDFzYC169PGW6R2xEPKa2WCCU8CsrPRunNgYjKS4Fcw5PLHb/lJSV4NnNnbGImXV1Czg0sBX0Q5K4rz8waFFvdJvQAY8vPgeXy0PDVvVgaK6PEfWnSLzW0cUOlg7mcGlTH969PaGipiL3z5IUmyLX+cqqypixf5zI0PiQJX0xvdUi5OUwpyzvPaMLbp96gG9SFsMWrNMo/ZGHff5HUbORI6rUsgYAJMYkS+0bANRwd8S7B6K5P2zr2cDVpwHOBlxCZmpWife3UNfx7aGuJXlkLysjG6rqKhVyCiM6LEbi95f4PQmJMckwtvr19PeE/A4oECmmFn2awLu3J76+/QYAsKlpJVdtjFMbgxmzjt4IvIP+83swJgyTxeC/euP5tVdIjhN+kSurKGH0+sGCvlo4mEm8T2G7jqE2WvRtKtTm2rYBY00ZFouF2QcnwKqaRXF/BABA1dpWeB4nWzDCYrGwNHg2VDVUsazfBnx59RW6RjroNrE9Gndyxaqr/tg7PxDPr70SnF84v+/Q0BaqGqoyvejLIggBgB9RiRjXaDZWXVuA6i72UFFTFuqzOHomOlhzfQH2zgvE+V3XkJ6cAVV1FXj39sTwlf2hY6iNP+d1x6MLz/FXz7XF7lujTs5o0tUdu2cfRmJMMgBATVMVXce3x4Cf8pkU4nK5OLY6CP9suYD4yARo62uizSBvDFjQs0SmJMuKtoHkkTyOEgcaOhXn5yFE0SiPiIIMrzsZ4a8jGdtHrxuEbhM6/NIzYsLjELj8NG6fvI+83Hw0aFkXvWd0EUlCJqkvMw+MR8t+TcW2/YhKwGjnGSLBDgC0HtAc0/eO/aX+A8DdM4/g33WlzOe3HtBcaNFtIevqFlh9YyEMTPVw98xDLOqxRiSg4HDY4JbAGgslFSXBQuCSULdZTay9sQjcfC4GOIyVmJTOoaEttj4u+L5yc/KQHJcCHUNtkYyrfD4fg6qPF4zoyUNDWx3r7yyGbR0b5Ofl4/Wd98jNyUOtxtUk5oRZ3n8jrh66JXK8hpsD1oQs+qXpyLI2tcUChN4QX2G6STd3+FPlYPKbk+f9XfHGRSsJNkfyVy+tXRZmVU0wcdsIHI/bjTPJ+7HgxDSRIAQA5v49GUaWBiLHu4xtxxiEAICRpSHWhiyEi099wQiLlp4mes/siik7R/9y/wHAw9cVTbrKlpOCzWaLDUIAIPJ9NPrZjMKu2Yexd/5RsaMa8gYhapri06mXZBACAC9vvsW7R2EYXney1MrCmUVq0aioKsPE2khs2ncWi4U/5/4h0/NV/72ezWbBvUNDrL25CLZ1bAAUTAPW96oNVx8niUHI+8efxAYhAPDuYRiuH7ktU1/KC7+NQ6BjqC1y3NBCHyNW9ldAjwipuGhqRkEad3bB5xfi85Gw2Sx4dHYps75UqWmFbc9X4cDC4wi98QpsNhs1G1dDt0nSR2Ssq1ti2fm5SIxJQlpSBsyqGkNVXfwLurjaDmmB2xK2rBbSN9MVKSJYVH4eF4HLT5VYv5y866C+V23smHGw1HerrB8ZIFN+EJuaVjLfs0l3d2RlZOPgomMS1+IMXdoXLf9sCmVVZahrqsl8/6Jun3wgtd1nkHex7q0ItnVssPXJCpzcEIyH55+Bw2GjUScXdBnXDobmpVMripDKigIRBfEd2w6X9t1AfGSCSFun0T5lmhgpcMVpHF5yAlnp2YJjn19E4PyOKxi+sj/+mNxJ6j0MzPRLrVifc5v6MDDXR+J35iBDVUMFSipl+69z5PtoqGmqlkgQoqWvhfQk8WuGdAy1JG7HLqrzGB+J7fl5+Ti/+xqCt19B2LMvYLNZcG3bAMpqSrh9UjTYq+Zij7ZDWxQ7ABE8V8ookaQdXuWViY0xRq0ZiFFrBiq6K4RUaDQ1oyD6JrpYf+svePX2hPK/L1BjK0MMX/En/DYOKbN+nFx/DrtmHRIKQgrxeHwETN2PV7elb3stTUrKSpi6e4zErKo5mbmIi5A8bSELq+oW+HPeH9A1LpjTlDRFFvXxO24cvfvLz2SxJZTURUEgJgubmpa4f/YJwp5/EWnj8/k4uvIM/jAZgo2jdyDsWcE5PB4fD4Kf4smlFxi6rC9quDtCVV0FxtaG6DenO1Zd9f/lIAQAnFpIrj/ToEXdX34GIaRiosWq5UB2Zg6y0rKgY6QNDqfscg/k5+WjX5XRgl0PTMrL4ruv76JwemMwLu2/8V8K9RLm2cUNz669FGzPNDDXg46hNsJfMS8sLi2q6iroNrEDnFvXx9QWC+S6dtjyP9Fruq/g8+45h3FkmeRpqcadXbDo9Ixi9FQ6Ho+H8Y1n4/2jTyJthhb62B66RuyaC0JIxUSLVSsYNQ1V6JvqlWkQAgBf30ZJDUIA4M6ph7h5/F7pd0gKmxqW6DunW4kEIT9vF9XS04B7h4a4c/qhUI6IxO/JiHj9DSbWZZcTgqPMweSdo3A4chuGLOmLes1rwdLRXK577Jx5EB+ffgYApCam4eT6c1KveXDuKfJymfOs/Ao2m42lwXPQpJu70ChTnSY1sPraAgpCCPmNUSDyG5O1gByfz8eyfhvw7aN8VW9LQ34ec8G3QvOPS060BgCZaVk/fc7Gg+CnYs/l8/lIjk+VrYNFePX2RMeRrdFtYgdo6WvKfB03j4vcrDzoGBS8nFksFmYeGActPdnvAQDBO64AAEKvv5Yp5TqPyyvVRbc6htrwPz4VS8/PQc9pnTHuf0Ox4vL8X841Qwip2Gix6m/MqpoFbOvaMCYlKyo/j4tzAZcxcvWAMugZM9MqxrCqZs6YeMzczrSgBD0LclW+lfYCLkxvz2TithF4decdYsPjYWFvho6jWgu2Sl89dEumEYmi0pMyhD7XcHPEztfrELz9Cl7dfQcNbXVkpWXhiYQ6PHGR/66ZkTHRXi2P6lJ3PEW8/Ya8nDxUrW0NJWX5/veRmpCGJX3XC9UO2r/gb4zfMhzN/mgs170IIZUHBSK/ueEr+2N+5+UyjTREvCm7dRJ3/3mES3uvIzEmGVVqWaPzGB84NrQryH8xrweW998o9rp+c7uDzWajtkd1vL5TvIJ84rCV2GCzWGK/p/petdFhRGt0GNFa7LVPLofK/bxqLnYixwzN9dG/SC2j42uDJAYilg4F0zkNWtSBmoYqsjNzGM9ls1noN6c7Y/vD88+wY/oBQeI7AzM99JreBd0myp50b1GPNSJJwFJ+pGFp3w0wrWJcqav1EkKY0dTMb87Vxwkrr/jLtDND3u250Z9i8L9xuzCk1kSMqD8F+xf8jZQf0qc41gzbCv8uK3Hn9CO8vf8RF3Zfw1i3mbiwp6AAXst+TTFl1xihWh5GlgaYFDBSkItCt4TXHDTu5IL5x6fCwExP6LhrWyepU0HyFj+zrWsDFx8nqedVc7FnbGOxWOgwohWAgiRzPaZ2ZjzXyMoAs49Mglu7BmLbQ0NeY77vCqHsu4kxydg6eS/+XnVGaj+BgoRmTJlIuflcnFh/Vqb7EEIqHxoRIajbtCaWX5iLmC+xGOA4Dnye+DkNn8GyJ5x6/ygM01svElr4+eXlV1w+EIJ1NxfByFL84s97QY9xYfc1keM8Hh8bx+xAo44NoWesi1Z/NoVtHWtEhcXA0sEMDg1sBS/8pLgUPLzwXOa+SqOho46BC3vBto4NXNs64cnlF0hLTIdjQ1tBQTpJPLu4if2ZxHFsaIsFJ6cJ1S2Ki/yBUxuC8fD8U7DZBYmzuo5vh3PbLzPeh81hC7YgA8CABT2hbaCFY2v+EeSucXS2Q/eJHeDdp4nE4nMH/zoObr74EbPAFafhO7at1CkdcUX4inp7X3I7IaTyokCECJjZmmLcpqHYNHaXSGG1nlM7o27TmjLfa8Po7WIrlMZ8icOeeYGYtttP7HUX915nvGdeTh6uH7kDNoeNw0tPChKcmduZYsiSPoLKxy9uvC6xNOtNurlhwIJeQinN3ds3lOsebu0bwMm7Np5fFx0RqNOkBjqP8UHKjzTY168q8h2Hv47EVG9/pPxIEzp2ef8NZGcwT7Vw87l4fu2VUDXoruPbo7OfD+IjE6CmqQo9Y12pfc/PyxcUCRQnLTEd7x6GoX7z2hLvI60InKYuc3p4QkjlRoEIEdJptA+quTrg7NaLiPwQDWMrQ7Qb2hINW9WT+R4Rb7/h41PRpFqFQo7exaSAkWIXO0pKNQ7g3+Rbwmsuvn+OxdK+G6CirgKPzq7gKEufCmGxWYwjP4WGLO2DPjO7Sb2XNGw2G4vPzsJ+/79xfvc1pCWmQ1tfEz6DW2Dgol5ia8EU2jxht1AQUighOkmQCI/xuWKSsXE4HJhVNZG57ywWC2w2CzwJ3xVHhrpIHr6uUNNUZQyeWvRpInOfCCGVCwUiRER1F3tU3zWGsf3ziwg8vfICSipK8PB1hYm1kVB7WoLoi7OonKxc5GTlig1Eqtaywpu7zItM3z0ME3ucz+fj4KJj8Ojsioat6kl86QFAi75N0HVceyR8T8JfPdeKHUH5eedKUVnpWUiOS4W+mZ7EQKKQqroqhq/sjyFL+yI9OQNaeppS1478iEqQOBohaYGxmqYqnFvLHjwy4Shx4Na+Ie6ffSK23cBMDzXcRQsp/kxTRwOj1gzEhtE7REbbqrnYo9PoNr/cV0JIxUSLVYnMcrJysKDbSox0moqAqfuxefxu9Lfzw/Zp+4XOs6llJTFHiYWDGWOl1nbDWjJep6alhoxk5uDg49MvSE1Ig4a2OvrP78F4noqqMnpN80V1Vwc8vvCccRrn1IZgJMUJj9CkJaVjzdAt6GE6DAMcxqKn2TBsHLMDWemi01DicJQ40DXSkWkBa1qi+Nozhfh8PjR1xU959J7ZFZq68uUdYdLfvwdjsDVwUW+Zt/F2GNEayy/Ng1v7BtAz0YV1dQsM+qs3Vl/zh7qW5KkbQkjlRSMiv4GcrByE/H0Pke+iYGCuj5b9mhYrk+Xm8Xtw5/QjoWM8Lg/H1gTBzNYUncf4gJvPReCyU8jPY16j0W0C85bPD48/M7bl50jP+lk4HdFzmi809TWxc/pBpBcJXizsTTFp+yjY1q0CALh/Tvxv+kBBIbbHF5+jdf/m/37Ow4zWi4SmnbLSsxG07RLCX0di9fUFEhd9ysvc3gyauhrISMkU225gpoel5+dg77xAPAx+Ch6PD3M7U/SY2hmdRpXcCEM1Z3usuuaP3XOO4NnVlwCAqrWt0XdOd3j3LliDkpWehSsHb+HD40/QMdBCq/7NBN9xUQ1b1kXDllRXhhDyH6o1U8m9e/gR8zqvQHKR3+xV1JQxZedotOjbVOb7pPxIRR/rUchjCAYsHMyw78MmbBq7E/9suSj2HBabhR6TO2H4yv6Mz5nQZK7EqRldYx2kMGQ5re9VG6uvLRA5HvXpO6I/xkDfVA8ODWyF2vrajEL8N9EKyIWm7x2Lln82BZvNxrXDt7DsT/H5SwBgcdBMuHdwZmwvjh0zDjJukR2ypC/6zOoKAMhIzURsRDweX3yO+K8JsHAwQ6v+zaCtr1Wi/UlLSkdeTp7QVu5PoeGY1XaxyPqenlM7S/y7JoRUXvK8v2lEpBLLzszBvE7LRdKT52bnYeWgzbB3qirT9lMAiHjzjTEIAYDosBhEhX3H2YBLjOeoaahKfTFlMvz2X8ilTX1cO3xbZJ2BsqoyBv3VW+w1lvbmsLT/r1YLn8/H0ysvcO3IbYnVdTlKbARtu4hVgzdDWVUJ+j/lEPnZvX8el3ggMnhxbyTFJuPKgZuCn5nNZqHDyDboNeO/onYPg59h1eDNQn9Hu+ccxry/pzDmB/lZVnoWrgfeRdSHaBhaGqDVn81ERs5+Dmx4PB4Wdl8tdpHx36v/QY1G1dC0m7vUZyfFJuPG0btITUhDNRd7uLVvUOa1lwghikGBSCV2I/AOY40Ubj4XQVsvYeymoTLdS9dI8lSOmoYqPjz+DB6XeYAtKz0boSGvJW71rOHmIJQ462fthrWEd29PHFh0TFDJ1cm7NgYu6o06njWk/BQFL87l/Tfi+pE7Us/l5vME+S1ys/MQGx4v8fzSGFxUUlbC9L1j0XdOdzw6/wxsDhuNOjrDtIqx4JzoTzFYOXCTyOLV7Iwc/NVjDQ582Sx1q+7LW2/h33Wl0LqUXbMOYdoeP6EtwD97cikU3z/HMraf3XZRaiBy+n/nsX3qfuQVWatjXd0CS87NhrmdqcRrCSEVHwUilZikFzogX8r2KrWs4ehsh49PxK/hqFrHGjlZzLtUCkV9+C4xEOk6oQOuHrol9FIqVMPNQXCtewdnpCWlg81hMy58Fef42rNSgxAtfU1kpWeDK0Pa+6JKejSkKCtHc1j9VIE3My0L5wIu4/jaIMYdNNmZObi09wZ6TvMV2w4UTOvM910htJYGKAi+VgzYBIcGtoyF6aLCYiT2O1pK+/Prr7B5/G6R45HvozG/ywpsD10jlNyNEFL50K6ZSuzndOQi7ebypWyfuG0EY2Kqdw/DsG5EgNSXhpGV+IyqhezqVcHco5OhZyw8p1i3aU0sPD1d6Ji2vpZcQUhSXAr2zj0i8Zye0zsjNytX7iCkhrsj3DvKl+hMFklxKYiNiAePJ1yULyMlA5OazcP26QeQGJMs8R6R76Mltl87dEskCCmUn8fF2W3M020mNkaMbQBgLKX99KZgxrbwV5F4JmH7MiGkcqARkUqsVf9m2DP3CONvy4V1WWRVzdkeTt51cPfMI7Ht0irYGloYwLmN9NwWHr6ucG3nhEfnnyPlRyrsnaqimjNzXRVZHV8TJHakpajL+29KrbQLAMoqSsjLzYeSihIs7M2gpaeBrRP3ov3wVrCrJ7pbRF7vH3/CzhkHBNlYzaoao+f0LoLdMIHLT+NzaIRM9zKWEvxJHTl7+42xzb19QxhZGuBHVKLY9vbDWkm895dXkp8d/vIr7bIhpJKjEZFKzMBMH+O3DAebLTpK0WVsO5mypSbHp+DkhnPYPecwzgZcYkxsVZS2gehODXUtNcz7e7LMCxCVVZTh4euKdkNblkgQAgA3j92Vek6SlNEFAKjXvBaOft+B/vP/AC+fi69vv+HxxVCc2XwBoxpMw6mNzL/ly+LLywhMa7FAKCV8THg8No7ZgcAVpwEAVw7elOlebDYLbQZ5STzH0MJAYrukkTOOEgdzAieJHSlrO9gbLftJ3pmlZyJ57YqeqfQ09ISQio1GRCq5dkNbwqGBLYK2XsLXd99gaGGAtoO94dpW+k6K87uuYpPfTqmjCD/TNdbBjP3jcHl/CDJTM1HTvRraj2gFQzmngsTJzc7F9cA7eHwpFErKHHj4usHD10WmACcnK1diu7aBltQkYixWQbKw9KQMHFp8QiT1OZ/Px9ZJe9GwVV2ZdyT97PDSk8hKzxbbdmTZSfj6+YhN+/4zNpuFsf8bJjWle+sBzbHP/yjjiFa7IS0kXl/Hswb2vt+I4J1X8fHJJ2jpFeQRcfKuI7WPPoO8Gbdra+lpwrOLq9R7EEIqNgpEfgOODe0weccoua55/ygM60cGSKwxwsTQXB/u7RvKXRxOmoTvSZjWciEi30UJjl05cBN1m9bEkuDZUNdUk3h93Wa1cPPYPcZ2vw2DsWrwFsZKsxwlDqbvGwtXHyfsmXuE8bvh8/k4v+saRq0ZKMNPBYQ9+4KwZ1+gY6QN17ZOEkedMlOz8CLkDRwaVJVYsbZF36boNd1XpmkiYytDjPtfQYZYkWKH03xRp4n0Yof6pnroN6e71PN+5jPIC/eCHuF+kPDPrKyihCm7Rkut6ksIqfgoECFindlyoVhBCAD4DJZv7YmsNo7ZIRSEFHp56y32zQvEqLWDJF7fc2pn3D39UOyamWY9GqFlv2Z4eP4Zrh2+Lfb6SQEjBcXZJCVBk6UdKMidsbj3OrwIeSM4pmeiC26+5LU2fD7QfWJHLO69Tmy7h68rZh0cL/X5RXUc2RrVXe1xdtsloWKHsoxq/AqOEgcLTk5DyNG7uHwgBGmJ6XBsaAffse1QtXbxRpQIIRULBSJErIjXzAsUJWnes7HUdQHF8SM6EfeDHjO2X9x7A8NW/Cmx7kl1Vwf4n5iG/43bhdiIgpwgSsoctOjXFOM3DwNQsDMoIyUTD849FVynpMxBn1ndBAFWcnwKQm+8Fn1AEZYOZlJ/pvldVuLdA+FRjeS4FEjaeKSupYa6zWpCU0cDUWExOLjomNDUmVOLOpi2x0/qs8VxbGiHSdvlGzkrCRwOBy36NpUr0y8hpPKgQISIJW3rr2tbJyREJyHlRyqUVZVRpZYVfAa3gGcX1xKtt1Io7usPiSM06ckZSE/OkJq4q1FHZ7i1b4DXd94jIyUTjs52QmtX1LXUsThoFj6FhiP0+muoqKvAs4sr9E31BOcs6b0OcV9/SHyOkaXoTpWcrBx8Co2AipoyMlOzRIKQQnx+Qc0ccWs2ekztLNiy3Hd2N7Qb1hJ3Tj1EdkY26jSpgRpu0ivhEkJIeVLqgUhOTg7c3d0RGhqKZ8+ewcnJqbQfSUpAm0HejGsVVNVVMOvQhBKvYyKJaRVjxpczULDQVEtPtmqzbDYbdZtKXvdgX78q7OtXFTke9vyL0G4WJlcP3UTnMT4ACtaMHF56EifWBiEtqSBfB1M+lkLG1oYwMNMTrAMxMNdHjymd8MfkTkLn6ZvoouPI1lL7Qwgh5VWpByLTp0+HhYUFQkNDS/tRpAQ17uwMq2rm+Pbhu9BxFouFiQEjyzQIAQoWwHr4uuL2yQdi2716euDgouN4fOk52Bw2PDq7osPI1iXez7AilXclKUw/DwAHFx3H/oV/C7VnpmZJvN7QXB8b7ixBbEQ8sjNzYOlgJnHaiRBCKqpS/T/b+fPncenSJZw4cQLnz58vzUdVCp9CwwWjEI06Oov9jbysHFhwTCQIAQp+uy9aybcsjd8yHNFhMfj8QjiRV81Gjrh14r5QXZ239z/i/K6rWBOyCEZS8mTIQ1yOFHFY7IKpGB6Xh+PrguR+jve/i2KL1pQhhJDKqNQCkdjYWAwfPhynT5+GhoZsabhzcnKQk/NfvZLUVPEF2yqbvNw8LO+/SWhr6d55gWj6RyPMOjgeyirKZdqfnKwcBG29yNh+cv05dJ3Qvsyro+qb6GLzo+W4ffIBHl8MBUeJDc+u7vh79Rmxxf2iP8Vi58yDmLlfvh0kkri2awBlVSXk5UjOrZKfy8WO6Qfh0cVN6ujHz2p5VEe7oZJzdxBCSGVRKplV+Xw+Bg0ahFGjRsHFxUXm65YtWwZdXV3BH2vr32P73t65gWLzW9w6fh975waWeX+iPsYI1jKIE/8tAYnfk8uuQ0UoKSvBq5cnpu4eg0nbR6FqbSuESlizcfPYfWRnSi/GJysVVWX4+rWV6dyLe6+DmydfMjgAWBo8W5A/Iy83r1Sq+hJCSHkhVyAyc+ZMsFgsiX/evXuHTZs2IS0tDbNmzZKrM7NmzUJKSorgT2Sk7NVhK6rc7FwE77zK2B6886pMVW1Lkpae5BEsNocNDW3JycPKiriRkKLycvKQmZpZos8cuqwfbOvaSD0vOyMHesa60DXSlvnedvWqQFNHA5cPhGCk01S0V+uLzjr9sW7ENiR8T/qVbhNCSLkkVyAyZcoUvH37VuIfOzs7XLt2Dffu3YOqqiqUlJTg4OAAAHBxccHAgczZJlVVVaGjoyP0p7KLi0xgrHwKFGxLjY+UnhyrJJnYGKNOkxqM7e4dGkJTV7YdKqXN0sEMahrM2TcNzPWha1yy/x4pKSth3a2/0H645IJuLBYLBhb6GLr8T5nv3W1iBxxacgIrB/5PsBYmOyMHwTuvYmKTuUiOV8z6HEIIKS1yrRExNjaGsbH0xXMbN27E4sWLBZ+jo6Ph4+ODo0ePwt3dXf5eVmI6hloSt6WyOWzoGMr+G3VJGbN+MKa1XIiMFOHRBD1jHQxfIfuLtbRp6mqi9YDmCGIoVe/r17ZU1rJo6mhgUsBIZKRkIORv8WnjXXzqw9BcH+2GtEDEq684sf4c4/2UlDnoPbMrGndyQW+rkWLPifkSh1MbgjF4cZ8S+RkIIaQ8KJXFqjY2wsPWWloFOw3s7e1hZWVVGo+ssHQMtNG4kzPunH4ktr1xJ2eFBCKODe2w+dFyHF8ThIfnn4HNYaNxJxf8MbkjTGzK106OkWsG4Ed0Iu7981/mVRaLBZ9BXug1w7dUnz1q7SB8fPIZ0Z9ihY4bWRpg7KahQufVbFQNe+cHCnYjWVUzR92mtVDd1R4evgVJ0y7tu4G8nDzG5906cZ8CEUJIpUKJCcqB0esG4+PTLyLZOo2tDTF63WAF9QqwdDDHhK0jFPZ8Wamqq2LR6RkIe/YFjy78m0fE1wXW1S0F56QmpuHCrmt4decdVDVU0bxHYzTuLFvVXkmMLAyw+dEKnN95FfeCHoPL5cGtXQN0HNkaukbCU0LNe3qgeU8PfP8SCzabLXZrbm42cxAiSzshhFQ0LH45XpKfmpoKXV1dpKSkVPr1IqkJaTgbcBkPgp8CfD7cOzij48jWChkNqWy+vPqK6a0WieQ/cW3rhIWnp5f59mhJvn2IxpCaExl3yvgM8sbU3WPKuFeEECIfed7fFIiQSm9kg6n4HBohtm3o0r7oPbNrGfdIssW914pdd6KmoYpND5ZRVVpCSLknz/u7VPKIEFJevH/8iTEIASCydfpHVAK+vPpa5lumi5q2xw/thraEssp/M6c2NS2x+OwsCkIIIZUOrREhlVp8pOQquYXtX159xZYJuwUF7bT0NNFxVBsMWtQLHKWyzSCrqq6KyTtGYfCSPvjyIgJa+pqo5mxfpn0ghJCyQoEIqdQsHc2ltsdGxGOKlz/SEtMFx9OTMxC4/BSSY5MxZZdi1mTom+hCv1U9oWMfn35G4IrTeHIpFBwlDjw6u6D3rK6wdJD8cxJCSHlFUzOVBJfLVXQXyiXbOjYSk7N1Gu2Dk+vPCQUhRV3adwPfv8SKbStroTdeY2KTubh57B4yUjKRmpCGC3uuY5z7LES8qfxZiAkhlRMFIhUYn8/HP1suYkjNCWir3BvdjYdg+7T9yCjhlOYV3ayD48WOjLQZ5IVOo9vg0YVnjNfyeHw8vvC8FHsnuy2T9ojdvpuWlIHdc44ooEeEEPLraGqmAts8fjfObL4g+JyakIZja4Lw/MZrrLu5SFA47XdnYmOMHS/X4NaJB3h16y1UNVTh1csD1V0LSg+AxZJ4PYut+Hj967soiYtu7599gqz0LKhrqZdhrwgh5NdRIFJBffsQjX+2XBTb9vHJZ1zefxMdR7Yu416VX8oqymjRpwla9Gki0ta4ozMi30WJvY7NYcOtfYPS7p5UWenZEtt5XB5ys/MoECGEVDiK/1WPFMutEw8kloe/eVx8/RMiquvEDjAw0xPb1mlUG5hYG5Vth8SoWtsK2vrMhQatq1uIZHIlhJCKgAKRCkpanoucrNwy6knFZ2RhgDUhi+Dh6wo2p+A/CQNzfQxZ0hdjNiguxX5Rquqq8B3bjrG95/QuZdcZQggpQTQ1U0HV96qNQ4tPMLY7edUuw95UfFaO5lh4ajrSkzOQmZoJQwuDMs8fIk1//x7IzsjBmc0XBIXxNLTV0W9ud7Qd7K3g3hFCSPFQivcKbILnHLy590HkuLaBFraHroaRpaECekVKW8qPVLwIeQOOEgcNWtahdSGEkHKHUrz/Jv4KmgnPrm5gs//b9WHvVBUrL88v90FIVnoWYsLjFJpKvaLSNdJB0+6N4OHrSkEIIaTCoxGRSiA2Ih5f336DvpkeHJxsFd0diVIT07Bj2gFcD7yDnKxcaGiro/WA5hi6vB/UNdUU3T1CCCElgKrvknIpNycP4xvPxqfn4SJt9b1qY9VVf7Ck5PQghBBS/tHUDCmXQv6+KzYIAQrSlz++FFq2HSKEEKJwFIiQMnP/7BOJ7ff+eVxGPSGEEFJeUCBCyozUWcDyO0tICCGklFAgQsqMW1vJqdLd2jcso54QQggpLygQIWXGu48nqtSyEttWs5FjuajpQgghpGxRIELKjKq6KlZdWwCvXh5QUi7IWqqipoy2g72x7PwcsMtBlVtCCCFli7bvEoVITUxD4vdkGFsZQFOXuZgbIYSQikee9zfVmiEKoWOgDR0DbUV3gxBCiILRWDghhBBCFIYCEUIIIYQoDAUihBBCCFEYCkQIIYQQojAUiBBCCCFEYSgQIYQQQojCUCBCCCGEEIWhQIQQQgghCkOBCCGEEEIUhgIRQgghhCgMBSKEEEIIURiqNUMqrR9RCbi8/yYSohNhVd0Crfs3owJ7hBBSzlAgQiqlC3uuY/3IAHDzuYJje+YewcJT0+HkXUeBPSOEEFIUTc2QSufLywisG75VKAgBgMzULCzotgoZqZkK6hkhhJCf0YgIqXSCtl0Gj8cX25aRkolrh26h02ifUnl2fl4+7px6iHtBj8Hl8uDSpj68e3tCRU2lVJ5HCCEVHQUipNKJ+hgtsT3yveT24spIzcSstovx9v5HwbEbgXfw96ozWH1tAfRN9UrluYQQUpHR1AypdAwtDSS2G1sZlspzd88+LBSEFPr6Ngob/XaWyjMJIaSio0CEVDrth7ZkbFNWUUKr/s1K/Jm5OXm4cuAmY/vdM4+QFJdS4s8lhJCKjgIRUunUaVIT/eZ0FznOUeJg8s7RpTJFkpqQhsy0LMZ2HpeHH98SSvy5hBBS0dEaEVIpDfqrN1zbNcCFXVfxIzoR1tUt0WFka1SpaVUqz9M10oamrgYyUsTvyFFS5sDYunSmhAghpCKjQIRUWrU9qqO2R/UyeZayijJ8Bnnj5IZzYtubdG8EPWPdMukLIYRUJDQ1Q0gJGbykD+p71RY57tDAFuM2DVVAjwghpPyjERFCSoiahipWXpmPRxee496ZR+ByeXBt6wTPLm7gKHEU3T1CCCmXWHw+X3zmp3IgNTUVurq6SElJgY6OjqK7QwghhBAZyPP+pqkZQgghhCgMBSKEEEIIURgKRAghhBCiMBSIEEIIIURhKBAhhBBCiMJQIEIIIYQQhaFAhBBCCCEKQ4EIIYQQQhSGAhFCCCGEKAwFIoQQQghRmHJda6Yw+3xqaqqCe0IIIYQQWRW+t2WpIlOuA5G0tDQAgLW1tYJ7QgghhBB5paWlQVdXV+I55broHY/HQ3R0NLS1tcFisRTdnXIhNTUV1tbWiIyMpEKAJYy+29JD323poe+29NB3W3x8Ph9paWmwsLAAmy15FUi5HhFhs9mwsrJSdDfKJR0dHfoPo5TQd1t66LstPfTdlh76botH2khIIVqsSgghhBCFoUCEEEIIIQpDgUgFo6qqCn9/f6iqqiq6K5UOfbelh77b0kPfbemh77ZslOvFqoQQQgip3GhEhBBCCCEKQ4EIIYQQQhSGAhFCCCGEKAwFIoQQQghRGApEKoGcnBw4OTmBxWLh+fPniu5OhRceHo6hQ4fC1tYW6urqsLe3h7+/P3JzcxXdtQpp8+bNqFq1KtTU1ODu7o6HDx8quksV3rJly+Dq6gptbW2YmJigS5cueP/+vaK7VSktX74cLBYLEydOVHRXKi0KRCqB6dOnw8LCQtHdqDTevXsHHo+HgIAAvH79GuvWrcO2bdswe/ZsRXetwjl69CgmT54Mf39/PH36FPXr14ePjw/i4uIU3bUKLSQkBH5+frh//z4uX76MvLw8tGnTBhkZGYruWqXy6NEjBAQEoF69eoruSuXGJxVacHAwv0aNGvzXr1/zAfCfPXum6C5VSitXruTb2toquhsVjpubG9/Pz0/wmcvl8i0sLPjLli1TYK8qn7i4OD4AfkhIiKK7UmmkpaXxHR0d+ZcvX+Y3b96cP2HCBEV3qdKiEZEKLDY2FsOHD8eBAwegoaGh6O5UaikpKTAwMFB0NyqU3NxcPHnyBK1atRIcY7PZaNWqFe7du6fAnlU+KSkpAED/jpYgPz8/dOjQQejfX1I6ynXRO8KMz+dj0KBBGDVqFFxcXBAeHq7oLlVaYWFh2LRpE1avXq3orlQoP378AJfLhampqdBxU1NTvHv3TkG9qnx4PB4mTpwIT09P1KlTR9HdqRQCAwPx9OlTPHr0SNFd+S3QiEg5M3PmTLBYLIl/3r17h02bNiEtLQ2zZs1SdJcrDFm/26KioqLQtm1b9OjRA8OHD1dQzwlh5ufnh1evXiEwMFDRXakUIiMjMWHCBBw6dAhqamqK7s5vgVK8lzPx8fFISEiQeI6dnR169uyJoKAgsFgswXEulwsOh4N+/fph3759pd3VCkfW71ZFRQUAEB0dDS8vLzRq1Ah79+4Fm01xuzxyc3OhoaGB48ePo0uXLoLjAwcORHJyMs6cOaO4zlUSY8eOxZkzZ3Dz5k3Y2toqujuVwunTp9G1a1dwOBzBMS6XCxaLBTabjZycHKE28usoEKmgvn79itTUVMHn6Oho+Pj44Pjx43B3d4eVlZUCe1fxRUVFwdvbG87Ozjh48CD9j6eY3N3d4ebmhk2bNgEomEawsbHB2LFjMXPmTAX3ruLi8/kYN24cTp06hRs3bsDR0VHRXao00tLSEBERIXRs8ODBqFGjBmbMmEHTX6WA1ohUUDY2NkKftbS0AAD29vYUhPyiqKgoeHl5oUqVKli9ejXi4+MFbWZmZgrsWcUzefJkDBw4EC4uLnBzc8P69euRkZGBwYMHK7prFZqfnx8OHz6MM2fOQFtbGzExMQAAXV1dqKurK7h3FZu2trZIsKGpqQlDQ0MKQkoJBSKE/OTy5csICwtDWFiYSFBHA4jy6dWrF+Lj4zF//nzExMTAyckJFy5cEFnASuSzdetWAICXl5fQ8T179mDQoEFl3yFCfgFNzRBCCCFEYWj1HSGEEEIUhgIRQgghhCgMBSKEEEIIURgKRAghhBCiMBSIEEIIIURhKBAhhBBCiMJQIEIIIYQQhaFAhBBCCCEKQ4EIIYQQQhSGAhFCCCGEKAwFIoQQQghRGApECCGEEKIw/wfokM4uMbq6bwAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "# Generate some data\n", + "N = 500\n", + "\n", + "X1 = np.random.randn(N,2) + np.array([2,2])\n", + "X2 = np.random.randn(N,2) + np.array([-2,-2])\n", + "\n", + "Y = np.concatenate([np.ones(N),np.zeros(N)])[:,None]\n", + "Y = np.hstack([Y, 1-Y])\n", + "\n", + "X = np.vstack([X1,X2])\n", + "plt.scatter(X[:,0],X[:,1], c = Y[:,0], edgecolors= 'none')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Yb35NLNLEogE" + }, + "source": [ + "Define a **logistic regression** for debugging." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "gmCNBApYEogE", + "outputId": "79b0de38-bbc6-4d11-fce1-6c6339a1f330" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Linear 2 -> 2\n", + "LogSoftMax\n", + "\n" + ] + } + ], + "source": [ + "net = Sequential()\n", + "net.add(Linear(2, 2))\n", + "net.add(LogSoftMax())\n", + "\n", + "criterion = ClassNLLCriterion()\n", + "\n", + "print(net)\n", + "\n", + "# Test something like that then\n", + "\n", + "# net = Sequential()\n", + "# net.add(Linear(2, 4))\n", + "# net.add(ReLU())\n", + "# net.add(Linear(4, 2))\n", + "# net.add(LogSoftMax())" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hqtZRHghEogE" + }, + "source": [ + "Start with batch_size = 1000 to make sure every step lowers the loss, then try stochastic version." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Zk2CO0_hEogE" + }, + "outputs": [], + "source": [ + "# Iptimizer params\n", + "optimizer_config = {'learning_rate' : 1e-1, 'momentum': 0.9}\n", + "optimizer_state = {}\n", + "\n", + "# Looping params\n", + "n_epoch = 20\n", + "batch_size = 128" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "qMfkANtcEogF" + }, + "outputs": [], + "source": [ + "# batch generator\n", + "def get_batches(dataset, batch_size):\n", + " X, Y = dataset\n", + " n_samples = X.shape[0]\n", + "\n", + " # Shuffle at the start of epoch\n", + " indices = np.arange(n_samples)\n", + " np.random.shuffle(indices)\n", + "\n", + " for start in range(0, n_samples, batch_size):\n", + " end = min(start + batch_size, n_samples)\n", + "\n", + " batch_idx = indices[start:end]\n", + "\n", + " yield X[batch_idx], Y[batch_idx]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qLoEL1jsEogF" + }, + "source": [ + "### Train" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZIC43mMFEogF" + }, + "source": [ + "Basic training loop. Examine it." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": false, + "colab": { + "base_uri": "https://localhost:8080/", + "height": 581 + }, + "id": "EtX8Yb2mEogF", + "outputId": "c633fc13-cbe7-4846-e094-f07b41be9779" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAIjCAYAAAAQgZNYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABCV0lEQVR4nO3deXxTZaL/8W+6pUBp2aSlUCiDKKuAgNwKXvBaRETQceaKuICMy+jgBSzjKKPAgCN1RVwQBhy3UQRXHBVRRJZBEYbNBVllHaBlEVoo0pbk+f2RX0IDLZTm5Jym/bxfr/NKc3KSPDlC+/HhSeoyxhgBAAAAESjK6QEAAAAAFUXMAgAAIGIRswAAAIhYxCwAAAAiFjELAACAiEXMAgAAIGIRswAAAIhYxCwAAAAiFjELAACAiEXMAkCY3XbbbUpPT6/Qff/yl7/I5XJZO6ByCmXcAGAXYhZAteVyucq1LVq0yOmhAgDK4DLGGKcHAQBOeOONN4Kuv/7665o/f77+8Y9/BO3v3bu3kpOTK/w8xcXF8nq9crvd53zfEydO6MSJE4qPj6/w81fUbbfdpkWLFmn79u22PzcAlFeM0wMAAKfccsstQde/+eYbzZ8//7T9pzp27Jhq1qxZ7ueJjY2t0PgkKSYmRjExfKsGgLKwzAAAzqBXr15q166dVq1apf/+7/9WzZo19ec//1mS9OGHH6pfv35KTU2V2+1WixYt9Mgjj8jj8QQ9xqlrT7dv3y6Xy6WnnnpK06dPV4sWLeR2u9W1a1f9+9//DrpvaWtmXS6X7r33Xs2ZM0ft2rWT2+1W27ZtNW/evNPGv2jRInXp0kXx8fFq0aKF/va3v4W0DregoECjRo1SWlqa3G63LrzwQj311FM69R/55s+frx49eqhOnTpKSEjQhRdeGDhvfs8//7zatm2rmjVrqm7duurSpYtmzpxZoXEBqL74330AOIuDBw+qb9++uvHGG3XLLbcElhy8+uqrSkhIUFZWlhISEvTll19q7Nixys/P15NPPnnWx505c6aOHDmi3//+93K5XHriiSd0/fXXa+vWrWedzV26dKnef/99/eEPf1Dt2rX13HPP6Te/+Y127typ+vXrS5LWrFmjq666So0aNdL48ePl8Xg0YcIEnXfeeRU6D8YYDRgwQAsXLtTtt9+ujh076rPPPtP999+v3bt365lnnpEkrVu3Ttdcc40uuugiTZgwQW63W1u2bNFXX30VeKwZM2Zo+PDh+u1vf6sRI0bo+PHj+u6777R8+XLddNNNFRofgGrKAACMMcYMGzbMnPptsWfPnkaSmTZt2mnHHzt27LR9v//9703NmjXN8ePHA/uGDBlimjVrFri+bds2I8nUr1/f/Pzzz4H9H374oZFkPvroo8C+cePGnTYmSSYuLs5s2bIlsO/bb781kszzzz8f2Ne/f39Ts2ZNs3v37sC+zZs3m5iYmNMeszSnjnvOnDlGkvnrX/8adNxvf/tb43K5AuN55plnjCSzf//+Mh/72muvNW3btj3rGADgbFhmAABn4Xa7NXTo0NP216hRI/D1kSNHdODAAV122WU6duyYNmzYcNbHHThwoOrWrRu4ftlll0mStm7detb7ZmZmqkWLFoHrF110kRITEwP39Xg8+uKLL3TdddcpNTU1cNz555+vvn37nvXxSzN37lxFR0dr+PDhQftHjRolY4w+/fRTSVKdOnUk+ZZheL3eUh+rTp06+s9//nPasgoAOFfELACcRePGjRUXF3fa/nXr1unXv/61kpKSlJiYqPPOOy/w5rG8vLyzPm7Tpk2DrvvD9tChQ+d8X//9/ffdt2+ffvnlF51//vmnHVfavvLYsWOHUlNTVbt27aD9rVu3Dtwu+SK9e/fuuuOOO5ScnKwbb7xRb7/9dlDYPvDAA0pISNAll1yili1batiwYUHLEACgvIhZADiLkjOwfocPH1bPnj317bffasKECfroo480f/58Pf7445JU5oxkSdHR0aXuN+X4xMRQ7htuNWrU0JIlS/TFF1/o1ltv1XfffaeBAweqd+/egTfHtW7dWhs3btSsWbPUo0cPvffee+rRo4fGjRvn8OgBRBpiFgAqYNGiRTp48KBeffVVjRgxQtdcc40yMzODlg04qWHDhoqPj9eWLVtOu620feXRrFkz7dmzR0eOHAna719S0axZs8C+qKgoXXHFFZo0aZJ+/PFHPfroo/ryyy+1cOHCwDG1atXSwIED9corr2jnzp3q16+fHn30UR0/frxC4wNQPRGzAFAB/pnRkjOhRUVFevHFF50aUpDo6GhlZmZqzpw52rNnT2D/li1bAmtbz9XVV18tj8ejF154IWj/M888I5fLFViL+/PPP592344dO0qSCgsLJfk+IaKkuLg4tWnTRsYYFRcXV2h8AKonPpoLACrg0ksvVd26dTVkyBANHz5cLpdL//jHPyrFP/P7/eUvf9Hnn3+u7t2765577gmEaLt27bR27dpzfrz+/fvr8ssv10MPPaTt27erQ4cO+vzzz/Xhhx9q5MiRgTekTZgwQUuWLFG/fv3UrFkz7du3Ty+++KKaNGmiHj16SJKuvPJKpaSkqHv37kpOTtb69ev1wgsvqF+/fqetyQWAMyFmAaAC6tevr48//lijRo3Sww8/rLp16+qWW27RFVdcoT59+jg9PElS586d9emnn+qPf/yjxowZo7S0NE2YMEHr168v16ctnCoqKkr//Oc/NXbsWM2ePVuvvPKK0tPT9eSTT2rUqFGB4wYMGKDt27fr5Zdf1oEDB9SgQQP17NlT48ePV1JSkiTp97//vd58801NmjRJR48eVZMmTTR8+HA9/PDDlr1+ANWDy1SmaQQAQNhdd911WrdunTZv3uz0UAAgZKyZBYAq7Jdffgm6vnnzZs2dO1e9evVyZkAAYDFmZgGgCmvUqJFuu+02/epXv9KOHTs0depUFRYWas2aNWrZsqXTwwOAkLFmFgCqsKuuukpvvfWWcnJy5Ha7lZGRoYkTJxKyAKoMZmYBAAAQsVgzCwAAgIhFzAIAACBiVbs1s16vV3v27FHt2rXlcrmcHg4AAABOYYzRkSNHlJqaqqioM8+9VruY3bNnj9LS0pweBgAAAM5i165datKkyRmPqXYx6/81ibt27VJiYqLDowEAAMCp8vPzlZaWVq5fb13tYta/tCAxMZGYBQAAqMTKsySUN4ABAAAgYhGzAAAAiFjELAAAACIWMQsAAICIRcwCAAAgYhGzAAAAiFjELAAAACIWMQsAAICIRcwCAAAgYhGzAAAAiFjELAAAACIWMQsAAICIRcwCAAAgYhGzAAAAiFjELAAAACIWMQsAAICIFeP0AKq6tWuln36SWreW2rRxejQAAABVCzOzYTZ9uvTb30rvvOP0SAAAAKoeYjbMYv7/3PeJE86OAwAAoCoiZsOMmAUAAAgfYjbMiFkAAIDwIWbDLDrad0nMAgAAWI+YDTNmZgEAAMKHmA0zYhYAACB8iNkwI2YBAADCh5gNM3/MejzOjgMAAKAqImbDjJlZAACA8CFmw4yYBQAACB9iNsyIWQAAgPAhZsOMmAUAAAgfYjbMiFkAAIDwIWbDjJgFAAAIH2I2zIhZAACA8CFmw4yYBQAACB9iNsyIWQAAgPAhZsOMmAUAAAgfYjbMiFkAAIDwIWbDjJgFAAAIH2I2zIhZAACA8CFmw4yYBQAACB9iNsyIWQAAgPAhZsOMmAUAAAgfYjbMiFkAAIDwIWbDjJgFAAAIH2I2zKKjfZfELAAAgPUcjdklS5aof//+Sk1Nlcvl0pw5c8p936+++koxMTHq2LFj2MZnBWZmAQAAwsfRmC0oKFCHDh00ZcqUc7rf4cOHNXjwYF1xxRVhGpl1iFkAAIDwiXHyyfv27au+ffue8/3uvvtu3XTTTYqOjj7rbG5hYaEKCwsD1/Pz88/5+UJBzAIAAIRPxK2ZfeWVV7R161aNGzeuXMdnZ2crKSkpsKWlpYV5hMH8Mevx2Pq0AAAA1UJExezmzZv14IMP6o033lBMTPkmlUePHq28vLzAtmvXrjCPMhgzswAAAOHj6DKDc+HxeHTTTTdp/PjxuuCCC8p9P7fbLbfbHcaRnZk/Zr1e3xYVUf/7AAAAULlFTMweOXJEK1eu1Jo1a3TvvfdKkrxer4wxiomJ0eeff67/+Z//cXiUpys5gezxELMAAABWipiYTUxM1Pfffx+078UXX9SXX36pd999V82bN3doZGdWMmZPnJBiY50bCwAAQFXjaMwePXpUW7ZsCVzftm2b1q5dq3r16qlp06YaPXq0du/erddff11RUVFq165d0P0bNmyo+Pj40/ZXJqfGLAAAAKzjaMyuXLlSl19+eeB6VlaWJGnIkCF69dVXtXfvXu3cudOp4VmCmAUAAAgflzHGOD0IO+Xn5yspKUl5eXlKTEwM+/MZc3Kd7L590nnnhf0pAQAAItq59BpvRwozl0uKjvZ9zcwsAACAtYhZG/BZswAAAOFBzNqAmAUAAAgPYtYGxCwAAEB4ELM2IGYBAADCg5i1ATELAAAQHsSsDYhZAACA8CBmbUDMAgAAhAcxawNiFgAAIDyIWRsQswAAAOFBzNqAmAUAAAgPYtYG/DpbAACA8CBmbcDMLAAAQHgQszYgZgEAAMKDmLUBMQsAABAexKwN/DHr8Tg7DgAAgKqGmLUBM7MAAADhQczagJgFAAAID2LWBsQsAABAeBCzNiBmAQAAwoOYtQExCwAAEB7ErA2IWQAAgPAgZm1AzAIAAIQHMWsDYhYAACA8iFkbELMAAADhQczagJgFAAAID2LWBsQsAABAeBCzNiBmAQAAwoOYtQExCwAAEB7ErA2IWQAAgPAgZm1AzAIAAIQHMWsDYhYAACA8iFkbELMAAADhQczagJgFAAAID2LWBtHRvktiFgAAwFrErA2YmQUAAAgPYtYGxCwAAEB4ELM2IGYBAADCg5i1gT9mPR5nxwEAAFDVELM2YGYWAAAgPIhZGxCzAAAA4UHM2oCYBQAACA9i1gbELAAAQHgQszYgZgEAAMLD0ZhdsmSJ+vfvr9TUVLlcLs2ZM+eMx7///vvq3bu3zjvvPCUmJiojI0OfffaZPYMNATELAAAQHo7GbEFBgTp06KApU6aU6/glS5aod+/emjt3rlatWqXLL79c/fv315o1a8I80tAQswAAAOER4+ST9+3bV3379i338ZMnTw66PnHiRH344Yf66KOP1KlTJ4tHZx1iFgAAIDwcjdlQeb1eHTlyRPXq1SvzmMLCQhUWFgau5+fn2zG0IMQsAABAeET0G8CeeuopHT16VDfccEOZx2RnZyspKSmwpaWl2ThCH2IWAAAgPCI2ZmfOnKnx48fr7bffVsOGDcs8bvTo0crLywtsu3btsnGUPsQsAABAeETkMoNZs2bpjjvu0DvvvKPMzMwzHut2u+V2u20aWemIWQAAgPCIuJnZt956S0OHDtVbb72lfv36OT2cciFmAQAAwsPRmdmjR49qy5Ytgevbtm3T2rVrVa9ePTVt2lSjR4/W7t279frrr0vyLS0YMmSInn32WXXr1k05OTmSpBo1aigpKcmR11AexCwAAEB4ODozu3LlSnXq1CnwsVpZWVnq1KmTxo4dK0nau3evdu7cGTh++vTpOnHihIYNG6ZGjRoFthEjRjgy/vIiZgEAAMLDZYwxTg/CTvn5+UpKSlJeXp4SExNtec5Nm6QLL5Tq1JEOHbLlKQEAACLWufRaxK2ZjUTMzAIAAIQHMWsDYhYAACA8iFkbREf7LolZAAAAaxGzNig5M1u9VigDAACEFzFrg5gSH4Dm9To3DgAAgKqGmLVByZhlqQEAAIB1iFkblIxZj8e5cQAAAFQ1xKwNmJkFAAAID2LWBsQsAABAeBCzNogqcZaJWQAAAOsQszZwufjFCQAAAOFAzNqEmAUAALAeMWsTYhYAAMB6xKxNiFkAAADrEbM2IWYBAACsR8zahJgFAACwHjFrE2IWAADAesSsTYhZAAAA6xGzNiFmAQAArEfM2oSYBQAAsB4xaxNiFgAAwHrErE2IWQAAAOsRszYhZgEAAKxHzNqEmAUAALAeMWsTYhYAAMB6xKxNoqN9l8QsAACAdYhZmzAzCwAAYD1i1ibELAAAgPWIWZsQswAAANYjZm3ij1mPx9lxAAAAVCXErE2YmQUAALAeMWsTYhYAAMB6xKxNiFkAAADrEbM2IWYBAACsR8zahJgFAACwHjFrE2IWAADAesSsTYhZAAAA6xGzNiFmAQAArEfM2oSYBQAAsB4xaxNiFgAAwHrErE2IWQAAAOsRszYhZgEAAKxHzNqEmAUAALAeMWsTYhYAAMB6xKxNiFkAAADrORqzS5YsUf/+/ZWamiqXy6U5c+ac9T6LFi3SxRdfLLfbrfPPP1+vvvpq2MdpBWIWAADAeo7GbEFBgTp06KApU6aU6/ht27apX79+uvzyy7V27VqNHDlSd9xxhz777LMwjzR0xCwAAID1Ypx88r59+6pv377lPn7atGlq3ry5nn76aUlS69attXTpUj3zzDPq06dPuIZpCWIWAADAehG1ZnbZsmXKzMwM2tenTx8tW7aszPsUFhYqPz8/aHNCdLTvkpgFAACwTkTFbE5OjpKTk4P2JScnKz8/X7/88kup98nOzlZSUlJgS0tLs2Oop2FmFgAAwHoRFbMVMXr0aOXl5QW2Xbt2OTIOYhYAAMB6jq6ZPVcpKSnKzc0N2pebm6vExETVqFGj1Pu43W653W47hndGxCwAAID1ImpmNiMjQwsWLAjaN3/+fGVkZDg0ovLzx6zH4+w4AAAAqhJHY/bo0aNau3at1q5dK8n30Vtr167Vzp07JfmWCAwePDhw/N13362tW7fqT3/6kzZs2KAXX3xRb7/9tu677z4nhn9OmJkFAACwnqMxu3LlSnXq1EmdOnWSJGVlZalTp04aO3asJGnv3r2BsJWk5s2b65NPPtH8+fPVoUMHPf3003rppZcq/cdyScQsAABAODi6ZrZXr14yxpR5e2m/3atXr15as2ZNGEcVHsQsAACA9SJqzWwkI2YBAACsR8zahJgFAACwHjFrE2IWAADAesSsTYhZAAAA6xGzNiFmAQAArEfM2oSYBQAAsB4xaxNiFgAAwHrErE2IWQAAAOsRszYhZgEAAKxHzNqEmAUAALAeMWsTYhYAAMB6xKxNiFkAAADrEbM28cesxyMZ4+xYAAAAqgpi1ib+mJV8QQsAAIDQEbM2KRmzLDUAAACwBjFrk+jok18TswAAANYgZm3CzCwAAID1iFmbELMAAADWI2ZtEhUluVy+r4lZAAAAaxCzNir58VwAAAAIHTFrI35xAgAAgLWIWRsRswAAANYiZm1EzAIAAFiLmLURMQsAAGAtYtZGxCwAAIC1iFkbEbMAAADWImZtRMwCAABYi5i1ETELAABgLWLWRsQsAACAtYhZGxGzAAAA1iJmbUTMAgAAWIuYtRExCwAAYC1i1kbELAAAgLWIWRsRswAAANYiZm1EzAIAAFiLmLURMQsAAGAtYtZGxCwAAIC1iFkbEbMAAADWImZtFB3tuyRmAQAArEHM2oiZWQAAAGsRszYiZgEAAKxFzNqImAUAALAWMWsjf8x6PM6OAwAAoKogZm3EzCwAAIC1HI/ZKVOmKD09XfHx8erWrZtWrFhxxuMnT56sCy+8UDVq1FBaWpruu+8+HT9+3KbRhoaYBQAAsJajMTt79mxlZWVp3LhxWr16tTp06KA+ffpo3759pR4/c+ZMPfjggxo3bpzWr1+vv//975o9e7b+/Oc/2zzyiiFmAQAArOVozE6aNEl33nmnhg4dqjZt2mjatGmqWbOmXn755VKP//rrr9W9e3fddNNNSk9P15VXXqlBgwaddTa3siBmAQAArOVYzBYVFWnVqlXKzMw8OZioKGVmZmrZsmWl3ufSSy/VqlWrAvG6detWzZ07V1dffXWZz1NYWKj8/PygzSnELAAAgLVinHriAwcOyOPxKDk5OWh/cnKyNmzYUOp9brrpJh04cEA9evSQMUYnTpzQ3XfffcZlBtnZ2Ro/frylY68oYhYAAMBajr8B7FwsWrRIEydO1IsvvqjVq1fr/fff1yeffKJHHnmkzPuMHj1aeXl5gW3Xrl02jjgYMQsAAGAtx2ZmGzRooOjoaOXm5gbtz83NVUpKSqn3GTNmjG699VbdcccdkqT27duroKBAd911lx566CFFRZ3e5m63W2632/oXUAHELAAAgLUcm5mNi4tT586dtWDBgsA+r9erBQsWKCMjo9T7HDt27LRgjY6OliQZY8I3WIsQswAAANaqUMy+9tpr+uSTTwLX//SnP6lOnTq69NJLtWPHjnI/TlZWlmbMmKHXXntN69ev1z333KOCggINHTpUkjR48GCNHj06cHz//v01depUzZo1S9u2bdP8+fM1ZswY9e/fPxC1lRkxCwAAYK0KLTOYOHGipk6dKklatmyZpkyZomeeeUYff/yx7rvvPr3//vvlepyBAwdq//79Gjt2rHJyctSxY0fNmzcv8KawnTt3Bs3EPvzww3K5XHr44Ye1e/dunXfeeerfv78effTRirwM2xGzAAAA1nKZCvz7fM2aNbVhwwY1bdpUDzzwgPbu3avXX39d69atU69evbR///5wjNUS+fn5SkpKUl5enhITE2197meflUaOlAYNkmbOtPWpAQAAIsa59FqFlhkkJCTo4MGDkqTPP/9cvXv3liTFx8frl19+qchDVgvMzAIAAFirQssMevfurTvuuEOdOnXSpk2bAr+0YN26dUpPT7dyfFUKMQsAAGCtCs3MTpkyRRkZGdq/f7/ee+891a9fX5K0atUqDRo0yNIBViXELAAAgLUqNDNbp04dvfDCC6ftryy/aauyImYBAACsVaGZ2Xnz5mnp0qWB61OmTFHHjh1100036dChQ5YNrqohZgEAAKxVoZi9//77lZ+fL0n6/vvvNWrUKF199dXatm2bsrKyLB1gVULMAgAAWKtCywy2bdumNm3aSJLee+89XXPNNZo4caJWr14deDMYTuf/vQ7ELAAAgDUqNDMbFxenY8eOSZK++OILXXnllZKkevXqBWZscTpmZgEAAKxVoZnZHj16KCsrS927d9eKFSs0e/ZsSdKmTZvUpEkTSwdYlRCzAAAA1qrQzOwLL7ygmJgYvfvuu5o6daoaN24sSfr000911VVXWTrAqoSYBQAAsFaFZmabNm2qjz/++LT9zzzzTMgDqsqIWQAAAGtVKGYlyePxaM6cOVq/fr0kqW3bthowYICi/e9ywmn8MevxODsOAACAqqJCMbtlyxZdffXV2r17ty688EJJUnZ2ttLS0vTJJ5+oRYsWlg6yqmBmFgAAwFoVWjM7fPhwtWjRQrt27dLq1au1evVq7dy5U82bN9fw4cOtHmOVQcwCAABYq0Izs4sXL9Y333yjevXqBfbVr19fjz32mLp3727Z4KoaYhYAAMBaFZqZdbvdOnLkyGn7jx49qri4uJAHVVURswAAANaqUMxec801uuuuu7R8+XIZY2SM0TfffKO7775bAwYMsHqMVQYxCwAAYK0Kxexzzz2nFi1aKCMjQ/Hx8YqPj9ell16q888/X5MnT7Z4iFUHMQsAAGCtCq2ZrVOnjj788ENt2bIl8NFcrVu31vnnn2/p4KoaYhYAAMBa5Y7ZrKysM96+cOHCwNeTJk2q+IiqMGIWAADAWuWO2TVr1pTrOJfLVeHBVHXELAAAgLXKHbMlZ15RMcQsAACAtSr0BjBUjD9mvV7fBgAAgNAQszaKKTEP7vE4Nw4AAICqgpi1UcmYZakBAABA6IhZG5WM2aIi58YBAABQVRCzNir5m36JWQAAgNARszaKipJiY31fFxY6OxYAAICqgJi1mX92lplZAACA0BGzNnO7fZfMzAIAAISOmLUZMQsAAGAdYtZmxCwAAIB1iFmbsWYWAADAOsSszZiZBQAAsA4xazNiFgAAwDrErM38ywyIWQAAgNARszbzz8yyZhYAACB0xKzNWGYAAABgHWLWZsQsAACAdYhZm/HRXAAAANYhZm3GzCwAAIB1iFmbEbMAAADWIWZtRswCAABYh5i1GWtmAQAArEPM2oyZWQAAAOs4HrNTpkxRenq64uPj1a1bN61YseKMxx8+fFjDhg1To0aN5Ha7dcEFF2ju3Lk2jTZ0xCwAAIB1Ypx88tmzZysrK0vTpk1Tt27dNHnyZPXp00cbN25Uw4YNTzu+qKhIvXv3VsOGDfXuu++qcePG2rFjh+rUqWP/4CuImAUAALCOozE7adIk3XnnnRo6dKgkadq0afrkk0/08ssv68EHHzzt+Jdfflk///yzvv76a8XGxkqS0tPT7RxyyFgzCwAAYB3HlhkUFRVp1apVyszMPDmYqChlZmZq2bJlpd7nn//8pzIyMjRs2DAlJyerXbt2mjhxojweT5nPU1hYqPz8/KDNSczMAgAAWMexmD1w4IA8Ho+Sk5OD9icnJysnJ6fU+2zdulXvvvuuPB6P5s6dqzFjxujpp5/WX//61zKfJzs7W0lJSYEtLS3N0tdxrohZAAAA6zj+BrBz4fV61bBhQ02fPl2dO3fWwIED9dBDD2natGll3mf06NHKy8sLbLt27bJxxKcjZgEAAKzj2JrZBg0aKDo6Wrm5uUH7c3NzlZKSUup9GjVqpNjYWEVHRwf2tW7dWjk5OSoqKlKcf0FqCW63W25/QVYCrJkFAACwjmMzs3FxcercubMWLFgQ2Of1erVgwQJlZGSUep/u3btry5Yt8nq9gX2bNm1So0aNSg3ZyoiZWQAAAOs4uswgKytLM2bM0Guvvab169frnnvuUUFBQeDTDQYPHqzRo0cHjr/nnnv0888/a8SIEdq0aZM++eQTTZw4UcOGDXPqJZwzYhYAAMA6jn4018CBA7V//36NHTtWOTk56tixo+bNmxd4U9jOnTsVFXWyt9PS0vTZZ5/pvvvu00UXXaTGjRtrxIgReuCBB5x6CefMP4FMzAIAAITOZYwxTg/CTvn5+UpKSlJeXp4SExNtf/4lS6SePaULL5Q2bLD96QEAACq9c+m1iPo0g6qAZQYAAADWIWZtRswCAABYh5i1GWtmAQAArEPM2sw/M8vnzAIAAISOmLUZywwAAACsQ8zazB+zxcVSid/9AAAAgAogZm1W8heVsdQAAAAgNMSszfwzsxIxCwAAECpi1mYlZ2ZZNwsAABAaYtZmUVFSbKzva2IWAAAgNMSsA/yzsywzAAAACA0x6wA+ngsAAMAaxKwDiFkAAABrELMOIGYBAACsQcw6gDWzAAAA1iBmHcDMLAAAgDWIWQcQswAAANYgZh3gX2ZAzAIAAISGmHWAf2aWNbMAAAChIWYdwDIDAAAAaxCzDiBmAQAArEHMOoA1swAAANYgZh3AmlkAAABrELMOYJkBAACANYhZBxCzAAAA1iBmHcCaWQAAAGsQsw5gzSwAAIA1iFkHsMwAAADAGsSsA4hZAAAAaxCzDmDNLAAAgDWIWQewZhYAAMAaxKwDWGYAAABgDWLWASwzAAAAsAYx6wCWGQAAAFiDmHUAywwAAACsQcw6gJgFAACwBjHrANbMAgAAWIOYdQBrZgEAAKxBzDqAZQYAAADWIGYdQMwCAABYg5h1AGtmAQAArEHMOoA1swAAANYgZh3AMgMAAABrELMO8MdscbHk9To7FgAAgEhGzDrAv2ZWYqkBAABAKCpFzE6ZMkXp6emKj49Xt27dtGLFinLdb9asWXK5XLruuuvCO0CL+WdmJWIWAAAgFI7H7OzZs5WVlaVx48Zp9erV6tChg/r06aN9+/ad8X7bt2/XH//4R1122WU2jdQ6JWdmWTcLAABQcY7H7KRJk3TnnXdq6NChatOmjaZNm6aaNWvq5ZdfLvM+Ho9HN998s8aPH69f/epXZ3z8wsJC5efnB21Oi4qSYmN9XxOzAAAAFedozBYVFWnVqlXKzMwM7IuKilJmZqaWLVtW5v0mTJighg0b6vbbbz/rc2RnZyspKSmwpaWlWTL2UPFZswAAAKFzNGYPHDggj8ej5OTkoP3JycnKyckp9T5Lly7V3//+d82YMaNczzF69Gjl5eUFtl27doU8bivwWbMAAAChi3F6AOfiyJEjuvXWWzVjxgw1aNCgXPdxu91yl3zHVSXBZ80CAACEztGYbdCggaKjo5Wbmxu0Pzc3VykpKacd/9NPP2n79u3q379/YJ/3/39Qa0xMjDZu3KgWLVqEd9AWYZkBAABA6BxdZhAXF6fOnTtrwYIFgX1er1cLFixQRkbGace3atVK33//vdauXRvYBgwYoMsvv1xr166tNOthy4OZWQAAgNA5vswgKytLQ4YMUZcuXXTJJZdo8uTJKigo0NChQyVJgwcPVuPGjZWdna34+Hi1a9cu6P516tSRpNP2V3asmQUAAAid4zE7cOBA7d+/X2PHjlVOTo46duyoefPmBd4UtnPnTkVFOf4JYpZjZhYAACB0LmOMcXoQdsrPz1dSUpLy8vKUmJjo2Di6d5e+/lp67z3p+usdGwYAAEClcy69VvWmPCMEywwAAABCR8w6hGUGAAAAoSNmHULMAgAAhI6YdQifMwsAABA6YtYhrJkFAAAIHTHrEJYZAAAAhI6YdQgxCwAAEDpi1iGsmQUAAAgdMesQ1swCAACEjph1CMsMAAAAQkfMOoSYBQAACB0x6xDWzAIAAISOmHUIa2YBAABCR8w6hGUGAAAAoSNmHcIyAwAAgNARsw5hZhYAACB0xKxDWDMLAAAQOmLWIczMAgAAhI6YdQhrZgEAAEJHzDqEmVkAAIDQEbMOYc0sAABA6IhZhzAzCwAAEDpi1iGsmQUAAAgdMesQZmYBAABCR8w6hDWzAAAAoSNmHeKP2eJiyet1diwAAACRiph1iH/NrMTsLAAAQEURsw7xz8xKxCwAAEBFEbMOKTkzy5vAAAAAKoaYdUhUlBQb6/uamAUAAKgYYtZBfNYsAABAaIhZB/HxXAAAAKEhZh3EL04AAAAIDTHrIJYZAAAAhIaYdRAzswAAAKEhZh3EmlkAAIDQELMOYmYWAAAgNMSsg1gzCwAAEBpi1kHMzAIAAISGmHUQa2YBAABCQ8w6iJlZAACA0BCzDmLNLAAAQGiIWQcxMwsAABAaYtZBrJkFAAAITaWI2SlTpig9PV3x8fHq1q2bVqxYUeaxM2bM0GWXXaa6deuqbt26yszMPOPxlRkzswAAAKFxPGZnz56trKwsjRs3TqtXr1aHDh3Up08f7du3r9TjFy1apEGDBmnhwoVatmyZ0tLSdOWVV2r37t02jzx0rJkFAAAIjeMxO2nSJN15550aOnSo2rRpo2nTpqlmzZp6+eWXSz3+zTff1B/+8Ad17NhRrVq10ksvvSSv16sFCxbYPPLQMTMLAAAQGkdjtqioSKtWrVJmZmZgX1RUlDIzM7Vs2bJyPcaxY8dUXFysevXqlXp7YWGh8vPzg7bKgpgFAAAIjaMxe+DAAXk8HiUnJwftT05OVk5OTrke44EHHlBqampQEJeUnZ2tpKSkwJaWlhbyuK1Sp47v8tAhR4cBAAAQsRxfZhCKxx57TLNmzdIHH3yg+Pj4Uo8ZPXq08vLyAtuuXbtsHmXZGjb0XZaxPBgAAABnEePkkzdo0EDR0dHKzc0N2p+bm6uUlJQz3vepp57SY489pi+++EIXXXRRmce53W65/f+eX8mcd57vcv9+Z8cBAAAQqRydmY2Li1Pnzp2D3rzlfzNXRkZGmfd74okn9Mgjj2jevHnq0qWLHUMNC2ZmAQAAQuPozKwkZWVlaciQIerSpYsuueQSTZ48WQUFBRo6dKgkafDgwWrcuLGys7MlSY8//rjGjh2rmTNnKj09PbC2NiEhQQkJCY69jorwz8weOCB5vVJURC/6AAAAsJ/jMTtw4EDt379fY8eOVU5Ojjp27Kh58+YF3hS2c+dORZWovKlTp6qoqEi//e1vgx5n3Lhx+stf/mLn0EPmj1mPx/cmsPr1nR0PAABApHEZY4zTg7BTfn6+kpKSlJeXp8TERKeHozp1pLw8af16qVUrp0cDAADgvHPpNf5h22GsmwUAAKg4YtZhfKIBAABAxRGzDmNmFgAAoOKIWYcxMwsAAFBxxKzDmJkFAACoOGLWYczMAgAAVBwx6zBmZgEAACqOmHUYM7MAAAAVR8w6jJlZAACAiiNmHeafmT140PdrbQEAAFB+xKzDGjTwXXq90s8/OzsWAACASEPMOiw2Vqpb1/c162YBAADODTFbCbBuFgAAoGKI2UqATzQAAACoGGK2EmBmFgAAoGKI2UqAmVkAAICKIWYrAWZmAQAAKoaYrQSYmQUAAKgYYrYSYGYWAACgYojZSoCZWQAAgIohZisBZmYBAAAqhpitBPwzsz//LJ044exYAAAAIgkxWwnUry+5XJIx0sGDTo8GAAAgchCzlUBMjFSvnu9r1s0CAACUHzFbSbBuFgAA4NwRs5UEn2gAAABw7ojZSoKZWQAAgHNHzFYSzMwCAACcO2K2kmBmFgAA4NwRs5UEM7MAAADnjpitJJiZBQAAOHfEbCXBzCwAAMC5I2YrCX/MMjMLAABQfsRsJeFfZnDokFRc7OxYAAAAIgUxW0nUqye5XL6vmZ0FAAAoH2K2koiOllq39n395ZfOjgUAACBSELOVyA03+C5nzXJ2HAAAAJGCmK1EBg70XX7+uXTwoLNjAQAAiATEbCXSqpXUoYN04oT0wQdOjwYAAKDyI2YrmRtv9F2y1AAAAODsiNlKxr/UYOFCKSfH2bEAAABUdsRsJdO8udStm+T1Su++6/RoAAAAKjdithLyz86y1AAAAODMiNlK6IYbfL9A4auvpF27nB4NAABA5UXMVkKNG0uXXeb7OjtbOnrU2fEAAABUVpUiZqdMmaL09HTFx8erW7duWrFixRmPf+edd9SqVSvFx8erffv2mjt3rk0jtc+QIb7LqVOlJk2k+++Xvv1W+uknads2aedOyeNxdowAAABOczxmZ8+eraysLI0bN06rV69Whw4d1KdPH+3bt6/U47/++msNGjRIt99+u9asWaPrrrtO1113nX744QebRx5eQ4dK06ZJLVtKeXnSU09JHTtK558v/epXUrNmUqNG0u23S//8p/TLL06PGAAAwH4uY4xxcgDdunVT165d9cILL0iSvF6v0tLS9H//93968MEHTzt+4MCBKigo0McffxzY91//9V/q2LGjpk2bdtbny8/PV1JSkvLy8pSYmGjdCwkTr1eaO1d69lnp3//2Xfd6paIiqbg4+Nj4eKlmTalGDd/lqZt/f3S0b1bX65WM8e2vVUtKSPBd+rf4eOnQIWn/ft92/LhvX2lbVJRUWHhyi409+Xyxsb7YPnbMdxkT43v8mjV993W5fOPw83/t8fiWWOTnS0eO+PYlJkq1a/vGGh3t2+dy+Y49fty3FRZKcXG+569Rw3fcL7+cvN0Y376SW1RU6fsqG2f/tp6dy+XbSn5dVOT7b3/smO/8+891TMzJc+3/uuS+qKiTj+V/PL/iYt+fC/+fjbi4k39+4+N9fx5OnPBtku+xzrb5H99/jku7PNNt5bn0vw7/853p8lzH4FdUJBUU+Db/39natX1bXJzv70dRkW+Ljvbti431nftTn6es54A9OO/OKC72/f05etR3GRd38u9QrVrB34uk06+Xtu/U68XFvu+JBQW+n0+nfl+MiTn9+2JMjO84Y07+/C65lbbvXI4t7/3vvluqW9fac16ac+m1mPAPp2xFRUVatWqVRo8eHdgXFRWlzMxMLVu2rNT7LFu2TFlZWUH7+vTpozlz5pR6fGFhoQoLCwPX8/PzQx+4jaKipGuu8W0lFRdLS5dKc+b4tp07T8YaAABAONxwgz0xey4cjdkDBw7I4/EoOTk5aH9ycrI2bNhQ6n1ycnJKPT6njN8wkJ2drfHjx1sz4EokNla6/HLfNnmydPDgydkv/+afDT1183pPzkZJJ//v8NTt+HHfH9jzzvNtNWr4ZnX80VxyttPjkdxu3yxQXJxvRsw/hqKikzPD/lkz/3OWjO/SZvX8/zdcu7Zv/5EjJ7eSM0dRUScfPy7O95z+1+/xnJyl9c8Eezxn3rxe32Vp/8dttXA/hx2vobQZPf8WF3dyJt7t9u07ceLk7Kn/nJ+6z+s9/fH9YmJ8s/T+mfriYt8sytGjvj9TJWc1XK6T/6Jxtq3kn7+yLstzTFmXZc14lJz5KM9YyrpN8n1v8J/vGjV858P/d6aoyPffwD8b6/9XnqIi33n3P3bJ7dTnBKq66OiT/wJYs6bv74f/79CxY8HHljZ7fuq+0o4p+S+UNWqU/n3R/69Lp36v9P8LTsmttH1l7Q/1WP/P48rE0Zi1w+jRo4NmcvPz85WWlubgiKznckkNGjg9CgAAAPs5GrMNGjRQdHS0cnNzg/bn5uYqJSWl1PukpKSc0/Fut1tut9uaAQMAAKBScfQtLnFxcercubMWLFgQ2Of1erVgwQJlZGSUep+MjIyg4yVp/vz5ZR4PAACAqsvxZQZZWVkaMmSIunTpoksuuUSTJ09WQUGBhg4dKkkaPHiwGjdurOzsbEnSiBEj1LNnTz399NPq16+fZs2apZUrV2r69OlOvgwAAAA4wPGYHThwoPbv36+xY8cqJydHHTt21Lx58wJv8tq5c6eiSnxG0qWXXqqZM2fq4Ycf1p///Ge1bNlSc+bMUbt27Zx6CQAAAHCI458za7dI+5xZAACA6uZceq0Sfiw8AAAAUD7ELAAAACIWMQsAAICIRcwCAAAgYhGzAAAAiFjELAAAACIWMQsAAICIRcwCAAAgYhGzAAAAiFjELAAAACIWMQsAAICIRcwCAAAgYhGzAAAAiFgxTg/AbsYYSVJ+fr7DIwEAAEBp/J3m77YzqXYxe+TIEUlSWlqawyMBAADAmRw5ckRJSUlnPMZlypO8VYjX69WePXtUu3ZtuVyusD9ffn6+0tLStGvXLiUmJob9+SIJ56ZsnJuycW7KxrkpG+embJybsnFuyhbuc2OM0ZEjR5SamqqoqDOviq12M7NRUVFq0qSJ7c+bmJjIX4QycG7KxrkpG+embJybsnFuysa5KRvnpmzhPDdnm5H14w1gAAAAiFjELAAAACIWMRtmbrdb48aNk9vtdnoolQ7npmycm7JxbsrGuSkb56ZsnJuycW7KVpnOTbV7AxgAAACqDmZmAQAAELGIWQAAAEQsYhYAAAARi5gFAABAxCJmw2zKlClKT09XfHy8unXrphUrVjg9JNtlZ2era9euql27tho2bKjrrrtOGzduDDrm+PHjGjZsmOrXr6+EhAT95je/UW5urkMjdsZjjz0ml8ulkSNHBvZV5/Oye/du3XLLLapfv75q1Kih9u3ba+XKlYHbjTEaO3asGjVqpBo1aigzM1ObN292cMT28Hg8GjNmjJo3b64aNWqoRYsWeuSRR4J+f3l1OTdLlixR//79lZqaKpfLpTlz5gTdXp7z8PPPP+vmm29WYmKi6tSpo9tvv11Hjx618VWEx5nOTXFxsR544AG1b99etWrVUmpqqgYPHqw9e/YEPUZ1PDenuvvuu+VyuTR58uSg/dX53Kxfv14DBgxQUlKSatWqpa5du2rnzp2B2534uUXMhtHs2bOVlZWlcePGafXq1erQoYP69Omjffv2OT00Wy1evFjDhg3TN998o/nz56u4uFhXXnmlCgoKAsfcd999+uijj/TOO+9o8eLF2rNnj66//noHR22vf//73/rb3/6miy66KGh/dT0vhw4dUvfu3RUbG6tPP/1UP/74o55++mnVrVs3cMwTTzyh5557TtOmTdPy5ctVq1Yt9enTR8ePH3dw5OH3+OOPa+rUqXrhhRe0fv16Pf7443riiSf0/PPPB46pLuemoKBAHTp00JQpU0q9vTzn4eabb9a6des0f/58ffzxx1qyZInuuusuu15C2Jzp3Bw7dkyrV6/WmDFjtHr1ar3//vvauHGjBgwYEHRcdTw3JX3wwQf65ptvlJqaetpt1fXc/PTTT+rRo4datWqlRYsW6bvvvtOYMWMUHx8fOMaRn1sGYXPJJZeYYcOGBa57PB6TmppqsrOzHRyV8/bt22ckmcWLFxtjjDl8+LCJjY0177zzTuCY9evXG0lm2bJlTg3TNkeOHDEtW7Y08+fPNz179jQjRowwxlTv8/LAAw+YHj16lHm71+s1KSkp5sknnwzsO3z4sHG73eatt96yY4iO6devn/nd734XtO/66683N998szGm+p4bSeaDDz4IXC/Pefjxxx+NJPPvf/87cMynn35qXC6X2b17t21jD7dTz01pVqxYYSSZHTt2GGM4N//5z39M48aNzQ8//GCaNWtmnnnmmcBt1fncDBw40Nxyyy1l3sepn1vMzIZJUVGRVq1apczMzMC+qKgoZWZmatmyZQ6OzHl5eXmSpHr16kmSVq1apeLi4qBz1apVKzVt2rRanKthw4apX79+Qa9fqt7n5Z///Ke6dOmi//3f/1XDhg3VqVMnzZgxI3D7tm3blJOTE3RukpKS1K1btyp/bi699FItWLBAmzZtkiR9++23Wrp0qfr27Supep+bkspzHpYtW6Y6deqoS5cugWMyMzMVFRWl5cuX2z5mJ+Xl5cnlcqlOnTqSqve58Xq9uvXWW3X//ferbdu2p91eXc+N1+vVJ598ogsuuEB9+vRRw4YN1a1bt6ClCE793CJmw+TAgQPyeDxKTk4O2p+cnKycnByHRuU8r9erkSNHqnv37mrXrp0kKScnR3FxcYFvon7V4VzNmjVLq1evVnZ29mm3VefzsnXrVk2dOlUtW7bUZ599pnvuuUfDhw/Xa6+9JkmB118d/349+OCDuvHGG9WqVSvFxsaqU6dOGjlypG6++WZJ1fvclFSe85CTk6OGDRsG3R4TE6N69epVq3N1/PhxPfDAAxo0aJASExMlVe9z8/jjjysmJkbDhw8v9fbqem727duno0eP6rHHHtNVV12lzz//XL/+9a91/fXXa/HixZKc+7kVE7ZHBkoxbNgw/fDDD1q6dKnTQ3Hcrl27NGLECM2fPz9ovRF8/9PTpUsXTZw4UZLUqVMn/fDDD5o2bZqGDBni8Oic9fbbb+vNN9/UzJkz1bZtW61du1YjR45UampqtT83OHfFxcW64YYbZIzR1KlTnR6O41atWqVnn31Wq1evlsvlcno4lYrX65UkXXvttbrvvvskSR07dtTXX3+tadOmqWfPno6NjZnZMGnQoIGio6NPewdfbm6uUlJSHBqVs+699159/PHHWrhwoZo0aRLYn5KSoqKiIh0+fDjo+Kp+rlatWqV9+/bp4osvVkxMjGJiYrR48WI999xziomJUXJycrU8L5LUqFEjtWnTJmhf69atA++Y9b/+6vj36/777w/MzrZv31633nqr7rvvvsDsfnU+NyWV5zykpKSc9obcEydO6Oeff64W58ofsjt27ND8+fMDs7JS9T03//rXv7Rv3z41bdo08H15x44dGjVqlNLT0yVV33PToEEDxcTEnPV7sxM/t4jZMImLi1Pnzp21YMGCwD6v16sFCxYoIyPDwZHZzxije++9Vx988IG+/PJLNW/ePOj2zp07KzY2Nuhcbdy4UTt37qzS5+qKK67Q999/r7Vr1wa2Ll266Oabbw58XR3PiyR17979tI9v27Rpk5o1ayZJat68uVJSUoLOTX5+vpYvX17lz82xY8cUFRX8rTs6Ojowa1Kdz01J5TkPGRkZOnz4sFatWhU45ssvv5TX61W3bt1sH7Od/CG7efNmffHFF6pfv37Q7dX13Nx666367rvvgr4vp6am6v7779dnn30mqfqem7i4OHXt2vWM35sd+3ketreWwcyaNcu43W7z6quvmh9//NHcddddpk6dOiYnJ8fpodnqnnvuMUlJSWbRokVm7969ge3YsWOBY+6++27TtGlT8+WXX5qVK1eajIwMk5GR4eConVHy0wyMqb7nZcWKFSYmJsY8+uijZvPmzebNN980NWvWNG+88UbgmMcee8zUqVPHfPjhh+a7774z1157rWnevLn55ZdfHBx5+A0ZMsQ0btzYfPzxx2bbtm3m/fffNw0aNDB/+tOfAsdUl3Nz5MgRs2bNGrNmzRojyUyaNMmsWbMm8I788pyHq666ynTq1MksX77cLF261LRs2dIMGjTIqZdkmTOdm6KiIjNgwADTpEkTs3bt2qDvy4WFhYHHqI7npjSnfpqBMdX33Lz//vsmNjbWTJ8+3WzevNk8//zzJjo62vzrX/8KPIYTP7eI2TB7/vnnTdOmTU1cXJy55JJLzDfffOP0kGwnqdTtlVdeCRzzyy+/mD/84Q+mbt26pmbNmubXv/612bt3r3ODdsipMVudz8tHH31k2rVrZ9xut2nVqpWZPn160O1er9eMGTPGJCcnG7fbba644gqzceNGh0Zrn/z8fDNixAjTtGlTEx8fb371q1+Zhx56KChCqsu5WbhwYanfW4YMGWKMKd95OHjwoBk0aJBJSEgwiYmJZujQoebIkSMOvBprnencbNu2rczvywsXLgw8RnU8N6UpLWar87n5+9//bs4//3wTHx9vOnToYObMmRP0GE783HIZU+LXxgAAAAARhDWzAAAAiFjELAAAACIWMQsAAICIRcwCAAAgYhGzAAAAiFjELAAAACIWMQsAAICIRcwCAAAgYhGzAGATl8ulOXPmOD2MIIsWLZLL5dLhw4edHgoAVAgxCwAW2b9/v+Li4lRQUKDi4mLVqlVLO3fuDNy+d+9e9e3bV5K0fft2uVwurV271rbx9erVSyNHjgzad+mll2rv3r1KSkqybRwAYCViFgAssmzZMnXo0EG1atXS6tWrVa9ePTVt2jRwe0pKitxut+XPW1xcXOH7xsXFKSUlRS6Xy8IRAYB9iFkAsMjXX3+t7t27S5KWLl0a+Nqv5DKD5s2bS5I6deokl8ulXr16BY576aWX1Lp1a8XHx6tVq1Z68cUXA7f5Z3Rnz56tnj17Kj4+Xm+++aYOHjyoQYMGqXHjxqpZs6bat2+vt956K3C/2267TYsXL9azzz4rl8sll8ul7du3l7rM4L333lPbtm3ldruVnp6up59+Ouh1pKena+LEifrd736n2rVrq2nTppo+fboVpxAAzp0BAFTYjh07TFJSkklKSjKxsbEmPj7eJCUlmbi4OON2u01SUpK55557jDHGSDIffPCBMcaYFStWGEnmiy++MHv37jUHDx40xhjzxhtvmEaNGpn33nvPbN261bz33numXr165tVXXzXGGLNt2zYjyaSnpweO2bNnj/nPf/5jnnzySbNmzRrz008/meeee85ER0eb5cuXG2OMOXz4sMnIyDB33nmn2bt3r9m7d685ceKEWbhwoZFkDh06ZIwxZuXKlSYqKspMmDDBbNy40bzyyiumRo0a5pVXXgm85mbNmpl69eqZKVOmmM2bN5vs7GwTFRVlNmzYYM9JB4ASiFkACEFxcbHZtm2b+fbbb01sbKz59ttvzZYtW0xCQoJZvHix2bZtm9m/f78xJjhm/VG6Zs2aoMdr0aKFmTlzZtC+Rx55xGRkZATdb/LkyWcdW79+/cyoUaMC13v27GlGjBgRdMypMXvTTTeZ3r17Bx1z//33mzZt2gSuN2vWzNxyyy2B616v1zRs2NBMnTr1rGMCAKuxzAAAQhATE6P09HRt2LBBXbt21UUXXaScnBwlJyfrv//7v5Wenq4GDRqU67EKCgr0008/6fbbb1dCQkJg++tf/6qffvop6NguXboEXfd4PHrkkUfUvn171atXTwkJCfrss8+C3oBWHuvXrz9teUT37t21efNmeTyewL6LLroo8LXL5VJKSor27dt3Ts8FAFaIcXoAABDJ2rZtqx07dqi4uFher1cJCQk6ceKETpw4oYSEBDVr1kzr1q0r12MdPXpUkjRjxgx169Yt6Lbo6Oig67Vq1Qq6/uSTT+rZZ5/V5MmT1b59e9WqVUsjR45UUVFRCK+ubLGxsUHXXS6XvF5vWJ4LAM6EmAWAEMydO1fFxcW64oor9MQTT6hz58668cYbddttt+mqq646Lfr84uLiJClotjM5OVmpqanaunWrbr755nMax1dffaVrr71Wt9xyiyTJ6/Vq06ZNatOmTdBzlny+0rRu3VpfffXVaY99wQUXnBbUAFAZELMAEIJmzZopJydHubm5uvbaa+VyubRu3Tr95je/UaNGjcq8X8OGDVWjRg3NmzdPTZo0UXx8vJKSkjR+/HgNHz5cSUlJuuqqq1RYWKiVK1fq0KFDysrKKvPxWrZsqXfffVdff/216tatq0mTJik3NzcoZtPT07V8+XJt375dCQkJqlev3mmPM2rUKHXt2lWPPPKIBg4cqGXLlumFF14I+kQFAKhMWDMLACFatGiRunbtqvj4eK1YsUJNmjQ5Y8hKvrW2zz33nP72t78pNTVV1157rSTpjjvu0EsvvaRXXnlF7du3V8+ePfXqq68GPsqrLA8//LAuvvhi9enTR7169VJKSoquu+66oGP++Mc/Kjo6Wm3atNF5551X6nraiy++WG+//bZmzZqldu3aaezYsZowYYJuu+22czonAGAXlzHGOD0IAAAAoCKYmQUAAEDEImYBAAAQsYhZAAAARCxiFgAAABGLmAUAAEDEImYBAAAQsYhZAAAARCxiFgAAABGLmAUAAEDEImYBAAAQsYhZAAAARKz/B5VvY3kmR/FYAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Current loss: 0.000539\n" + ] + } + ], + "source": [ + "loss_history = []\n", + "\n", + "for i in range(n_epoch):\n", + " for x_batch, y_batch in get_batches((X, Y), batch_size):\n", + "\n", + " net.zeroGradParameters()\n", + "\n", + " # Forward\n", + " predictions = net.forward(x_batch)\n", + " loss = criterion.forward(predictions, y_batch)\n", + "\n", + " # Backward\n", + " dp = criterion.backward(predictions, y_batch)\n", + " net.backward(x_batch, dp)\n", + "\n", + " # Update weights\n", + " sgd_momentum(net.getParameters(),\n", + " net.getGradParameters(),\n", + " optimizer_config,\n", + " optimizer_state)\n", + "\n", + " loss_history.append(loss)\n", + "\n", + " # Visualize\n", + " display.clear_output(wait=True)\n", + " plt.figure(figsize=(8, 6))\n", + "\n", + " plt.title(\"Training loss\")\n", + " plt.xlabel(\"#iteration\")\n", + " plt.ylabel(\"loss\")\n", + " plt.plot(loss_history, 'b')\n", + " plt.show()\n", + "\n", + " print('Current loss: %f' % loss)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HXWJqxC-EogF" + }, + "source": [ + "# Digit classification" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yNAQMRO5EogF" + }, + "source": [ + "We are using old good [MNIST](http://yann.lecun.com/exdb/mnist/) as our dataset. It can be downloaded with the following file." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "SJYIUZxZEogF", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "9bf18fad-0076-4179-a0a2-f63447c1cf8c" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "File ‘mnist.py’ already there; not retrieving.\n", + "\n" + ] + } + ], + "source": [ + "!wget https://raw.githubusercontent.com/girafe-ai/ml-course/23f_basic/homeworks/hw08_nn_from_scratch/mnist.py -nc" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "l02MNV2lEogF" + }, + "outputs": [], + "source": [ + "import mnist\n", + "X_train, y_train, X_val, y_val, X_test, y_test = mnist.load_dataset()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "MLNn2XMwEogF" + }, + "source": [ + "One-hot encode the labels first." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "bBA5gn1XEogG" + }, + "outputs": [], + "source": [ + "from sklearn.preprocessing import OneHotEncoder\n", + "\n", + "encoder = OneHotEncoder()\n", + "y_train = encoder.fit_transform(y_train.reshape(-1, 1)).toarray()\n", + "y_val = encoder.transform(y_val.reshape(-1, 1)).toarray()\n", + "y_test = encoder.transform(y_test.reshape(-1, 1)).toarray()" + ] + }, + { + "cell_type": "code", + "source": [ + "X_train = X_train.reshape(X_train.shape[0], -1)\n", + "X_val = X_val.reshape(X_val.shape[0], -1)\n", + "X_test = X_test.reshape(X_test.shape[0], -1)" + ], + "metadata": { + "id": "e0UM5nnvXeiy" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nUp4Ae9VEogG" + }, + "source": [ + "- **Compare** `ReLU`, `ELU`, `LeakyReLU`, `SoftPlus` activation functions.\n", + "You would better pick the best optimizer params for each of them, but it is overkill for now. Use an architecture of your choice for the comparison.\n", + "- **Try** inserting `BatchNormalization` (folowed by `ChannelwiseScaling`) between `Linear` module and activation functions.\n", + "- Plot the losses both from activation functions comparison and `BatchNormalization` comparison on one plot. Please find a scale (log?) when the lines are distinguishable, do not forget about naming the axes, the plot should be goodlooking.\n", + "- Plot the losses for two networks: one trained by momentum_sgd, another one trained by Adam. Which one performs better?\n", + "- Hint: good logloss for MNIST should be around 0.5." + ] + }, + { + "cell_type": "code", + "source": [ + "def fit_epoch(model, optimizer, criterion):\n", + " model.train()\n", + "\n", + " running_loss = 0.0\n", + " processed_size = 0\n", + "\n", + " for x_batch, y_batch in get_batches((X_train, y_train), batch_size):\n", + " model.zeroGradParameters()\n", + "\n", + " y_pred = model.forward(x_batch)\n", + " loss = criterion.forward(y_pred, y_batch)\n", + " dp = criterion.backward(y_pred, y_batch)\n", + " model.backward(x_batch, dp)\n", + "\n", + " optimizer.step()\n", + " running_loss += loss\n", + " processed_size += len(x_batch)\n", + "\n", + " return running_loss / processed_size" + ], + "metadata": { + "id": "FUMWmVXuTkyy" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "def eval_epoch(model, criterion):\n", + " model.evaluate()\n", + "\n", + " running_loss = 0.0\n", + " processed_size = 0\n", + "\n", + " for x_batch, y_batch in get_batches((X_val, y_val), batch_size):\n", + " model.zeroGradParameters()\n", + "\n", + " y_pred = model.forward(x_batch)\n", + " loss = criterion.forward(y_pred, y_batch)\n", + "\n", + " running_loss += loss\n", + " processed_size += len(x_batch)\n", + "\n", + " return running_loss / processed_size" + ], + "metadata": { + "id": "_vpwHZhPTxgA" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "twlYl2tbEogG" + }, + "outputs": [], + "source": [ + "from tqdm import tqdm\n", + "\n", + "def train(model, optimizer, criterion, epochs):\n", + " loss_history = []\n", + " with tqdm(total = epochs) as pbar:\n", + " for epoch in range(epochs):\n", + " tr_loss = fit_epoch(model, optimizer, criterion)\n", + " val_loss = eval_epoch(model, criterion)\n", + " loss_history.append((tr_loss, val_loss))\n", + " print(f\"Train loss: {tr_loss}, val loss: {val_loss}\")\n", + "\n", + " pbar.update(1)\n", + "\n", + " return loss_history" + ] + }, + { + "cell_type": "code", + "source": [ + "activation = [ReLU, ELU, LeakyReLU, SoftPlus]" + ], + "metadata": { + "id": "59QRFZCZgEnu" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "optimizer_func = [sgd_momentum, adam_optimizer]" + ], + "metadata": { + "id": "Vov32lxoe0u2" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "optimizer_config = {\n", + " sgd_momentum: {\n", + " 'learning_rate' : 1e-2, 'momentum': 0.9\n", + " },\n", + " adam_optimizer: {\n", + " 'learning_rate' : 1e-3, 'beta1': 0.9, 'beta2':0.999, 'epsilon':1e-8\n", + " }\n", + "}" + ], + "metadata": { + "id": "nyvbNFUVe_pW" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "models = {}\n", + "history = {}" + ], + "metadata": { + "id": "nHgEvWajgRzl" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "class Optimizer:\n", + " def __init__(self, model, func, config, state):\n", + " self.model = model\n", + " self.func = func\n", + " self.config = config\n", + " self.state = state\n", + "\n", + " def step(self):\n", + " self.func(self.model.getParameters(),\n", + " self.model.getGradParameters(),\n", + " self.config,\n", + " self.state)" + ], + "metadata": { + "id": "e1nP7lyQkVWv" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "class SimpleNN(Sequential):\n", + " def __init__(self, activation, batchnorm=False):\n", + " super().__init__()\n", + "\n", + " self.add(Linear(784, 1024))\n", + "\n", + " if batchnorm:\n", + " self.add(BatchNormalization())\n", + " self.add(ChannelwiseScaling(1024))\n", + " else:\n", + " self.add(activation())\n", + " self.add(Linear(1024, 10))\n", + "\n", + " self.add(LogSoftMax())" + ], + "metadata": { + "id": "Nt2SSqDliJI1" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "for func in activation:\n", + " models[func.__name__] = {}\n", + " history[func.__name__] = {}\n", + " for opt in optimizer_func:\n", + " model = SimpleNN(func)\n", + " model_bn = SimpleNN(func, batchnorm=True)\n", + " models[func.__name__][opt.__name__] = {\n", + " 'Batchnorm': {\n", + " 'model': model_bn,\n", + " 'optimizer': Optimizer(model_bn, opt, optimizer_config[opt], {})\n", + " },\n", + " 'No batchnorm': {\n", + " 'model': model,\n", + " 'optimizer': Optimizer(model, opt, optimizer_config[opt], {})\n", + " }\n", + " }\n", + " history[func.__name__][opt.__name__] = {\n", + " 'Batchnorm': [],\n", + " 'No batchnorm': []\n", + " }" + ], + "metadata": { + "id": "LWjG_5B4foCl" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "for func in activation:\n", + " for opt in optimizer_func:\n", + " print(f\"Activation: {func.__name__}, optimizer: {opt.__name__}\")\n", + " model = models[func.__name__][opt.__name__]['No batchnorm']['model']\n", + " optimizer = models[func.__name__][opt.__name__]['No batchnorm']['optimizer']\n", + "\n", + " model_bn = models[func.__name__][opt.__name__]['Batchnorm']['model']\n", + " optimizer_bn = models[func.__name__][opt.__name__]['Batchnorm']['optimizer']\n", + "\n", + " criterion = ClassNLLCriterion()\n", + "\n", + " print(f\"Batchnorm: true\")\n", + " history[func.__name__][opt.__name__]['Batchnorm'] = train(model_bn, optimizer_bn, criterion, 15)\n", + "\n", + " print(f\"Batchnorm: false\")\n", + " history[func.__name__][opt.__name__]['No batchnorm'] = train(model, optimizer, criterion, 15)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "y89bYtBVlTa7", + "outputId": "2bd66a26-797c-4f27-a6cf-d3451d323476" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Activation: ReLU, optimizer: sgd_momentum\n", + "Batchnorm: true\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 7%|▋ | 1/15 [00:22<05:12, 22.36s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.010923364282273314, val loss: 0.003067978475351457\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 13%|█▎ | 2/15 [00:44<04:51, 22.41s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.002521716683617457, val loss: 0.001961817449734304\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 20%|██ | 3/15 [01:10<04:49, 24.09s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0018846908587454383, val loss: 0.0015690678105632402\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 27%|██▋ | 4/15 [01:32<04:12, 22.92s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0015291946980177358, val loss: 0.0014738119559894057\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 33%|███▎ | 5/15 [01:55<03:51, 23.16s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.001283225553434823, val loss: 0.0012826263536430133\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 40%|████ | 6/15 [02:18<03:28, 23.20s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0010891677755377114, val loss: 0.0010315446251509637\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 47%|████▋ | 7/15 [02:39<02:59, 22.49s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0009398719630888847, val loss: 0.0009246972287686347\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 53%|█████▎ | 8/15 [03:02<02:38, 22.58s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0008181572630582656, val loss: 0.0009720925249776881\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 60%|██████ | 9/15 [03:22<02:10, 21.76s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0007215128026031765, val loss: 0.0009636894504345146\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 67%|██████▋ | 10/15 [03:43<01:46, 21.35s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0006341543748879547, val loss: 0.0007785726490033805\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 73%|███████▎ | 11/15 [04:05<01:26, 21.73s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0005755141314847599, val loss: 0.0007295509863026158\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 80%|████████ | 12/15 [04:24<01:02, 20.98s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0005106418935309437, val loss: 0.0007952932760765742\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 87%|████████▋ | 13/15 [04:44<00:41, 20.56s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0004588089925148894, val loss: 0.0007316825399153917\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 93%|█████████▎| 14/15 [05:07<00:21, 21.20s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.00041605423996469206, val loss: 0.0007447876320939915\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 15/15 [05:26<00:00, 21.79s/it]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.00036982570124445763, val loss: 0.0007145704551573537\n", + "Batchnorm: false\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 7%|▋ | 1/15 [00:17<04:02, 17.35s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.004855265788994545, val loss: 0.002381727034283727\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 13%|█▎ | 2/15 [00:35<03:53, 17.97s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0023251087108063563, val loss: 0.0019456620768663435\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 20%|██ | 3/15 [00:55<03:44, 18.73s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0019093605695236055, val loss: 0.0016448414372390804\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 27%|██▋ | 4/15 [01:14<03:28, 18.92s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.00161926104471316, val loss: 0.001415394650953021\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 33%|███▎ | 5/15 [01:32<03:07, 18.71s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0013972489036441083, val loss: 0.0012739148743427006\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 40%|████ | 6/15 [01:51<02:46, 18.51s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0012240398412861546, val loss: 0.0011390491113222427\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 47%|████▋ | 7/15 [02:09<02:27, 18.43s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.001090190597414053, val loss: 0.0010526559582610634\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 53%|█████▎ | 8/15 [02:30<02:15, 19.36s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.000978958318773201, val loss: 0.0009680959952367788\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 60%|██████ | 9/15 [02:48<01:54, 19.01s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0008824200983827092, val loss: 0.0009319632307580355\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 67%|██████▋ | 10/15 [03:07<01:34, 18.83s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0008077239334299378, val loss: 0.0008667279685764767\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 73%|███████▎ | 11/15 [03:25<01:13, 18.49s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0007374564267216933, val loss: 0.0008230390149976383\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 80%|████████ | 12/15 [03:42<00:54, 18.23s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0006819884339789887, val loss: 0.0007781915484051703\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 87%|████████▋ | 13/15 [04:02<00:37, 18.84s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0006312508409778366, val loss: 0.0007319183548047965\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 93%|█████████▎| 14/15 [04:22<00:18, 18.94s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0005858401930662311, val loss: 0.0007138410048351484\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 15/15 [04:39<00:00, 18.66s/it]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0005461568114927593, val loss: 0.0007184320151880474\n", + "Activation: ReLU, optimizer: adam_optimizer\n", + "Batchnorm: true\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 7%|▋ | 1/15 [00:25<06:00, 25.77s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.00386483765239736, val loss: 0.001553840720807878\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 13%|█▎ | 2/15 [00:49<05:18, 24.52s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0012538848936928112, val loss: 0.0011576966499333508\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 20%|██ | 3/15 [01:16<05:07, 25.64s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0008005968429116782, val loss: 0.0007889440465046926\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 27%|██▋ | 4/15 [01:41<04:41, 25.57s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0005508776258512857, val loss: 0.0007139905849017091\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 33%|███▎ | 5/15 [02:07<04:14, 25.48s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0003913294557916468, val loss: 0.0006044442131435821\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 40%|████ | 6/15 [02:33<03:50, 25.66s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.00028147182372036686, val loss: 0.0007665873351583098\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 47%|████▋ | 7/15 [02:57<03:23, 25.38s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0002208270934681554, val loss: 0.0006322351417506928\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 53%|█████▎ | 8/15 [03:22<02:56, 25.15s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.00016068225876542087, val loss: 0.0006390005844652588\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 60%|██████ | 9/15 [03:49<02:34, 25.70s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.00011596266713613386, val loss: 0.0005905670757796691\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 67%|██████▋ | 10/15 [04:13<02:05, 25.16s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 9.751358701468189e-05, val loss: 0.000580029365171221\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 73%|███████▎ | 11/15 [04:39<01:41, 25.37s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 8.016727278178294e-05, val loss: 0.0007116150220266121\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 80%|████████ | 12/15 [05:06<01:17, 25.87s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 7.415802115133461e-05, val loss: 0.0007643213920527246\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 87%|████████▋ | 13/15 [05:30<00:50, 25.34s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 8.266480234392668e-05, val loss: 0.0006921537360221478\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 93%|█████████▎| 14/15 [05:56<00:25, 25.47s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 5.6034709887036245e-05, val loss: 0.000732142364655182\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 15/15 [06:22<00:00, 25.48s/it]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 4.215295914842124e-05, val loss: 0.0007743814225789757\n", + "Batchnorm: false\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 7%|▋ | 1/15 [00:22<05:11, 22.28s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0023376843112055427, val loss: 0.0011011517780802663\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 13%|█▎ | 2/15 [00:45<04:59, 23.01s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.000891449426488992, val loss: 0.0008068639133147668\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 20%|██ | 3/15 [01:06<04:23, 21.99s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0005622005572797014, val loss: 0.0006088755298267329\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 27%|██▋ | 4/15 [01:30<04:10, 22.73s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.00038828748996971114, val loss: 0.0005498419561261856\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 33%|███▎ | 5/15 [01:53<03:48, 22.86s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.000269287906943042, val loss: 0.0005570900361921076\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 40%|████ | 6/15 [02:17<03:30, 23.39s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.00019566499771490634, val loss: 0.0005697589930652953\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 47%|████▋ | 7/15 [02:40<03:03, 23.00s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.00014673830262979844, val loss: 0.0005933677125466936\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 53%|█████▎ | 8/15 [03:04<02:44, 23.43s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0001101299544670776, val loss: 0.0005435329864808407\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 60%|██████ | 9/15 [03:26<02:17, 22.97s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 7.854690532472066e-05, val loss: 0.0006311543898622658\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 67%|██████▋ | 10/15 [03:50<01:57, 23.42s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 7.486080353742322e-05, val loss: 0.0005432135394514974\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 73%|███████▎ | 11/15 [04:12<01:31, 22.90s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 5.730961309699459e-05, val loss: 0.0005883737742307691\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 80%|████████ | 12/15 [04:36<01:09, 23.22s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 5.309240403886009e-05, val loss: 0.000634408435922202\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 87%|████████▋ | 13/15 [04:58<00:45, 22.87s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 4.2339568286702705e-05, val loss: 0.0006088404771497063\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 93%|█████████▎| 14/15 [05:23<00:23, 23.39s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 2.483064130295783e-05, val loss: 0.0006759367393162114\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 15/15 [05:45<00:00, 23.04s/it]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 3.534182720727449e-05, val loss: 0.0007244226151639339\n", + "Activation: ELU, optimizer: sgd_momentum\n", + "Batchnorm: true\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 7%|▋ | 1/15 [00:24<05:47, 24.83s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.008645928891863374, val loss: 0.0029787052750053942\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 13%|█▎ | 2/15 [00:47<05:05, 23.46s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0026425316352937144, val loss: 0.0022706875321708317\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 20%|██ | 3/15 [01:12<04:50, 24.24s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0023319707570986633, val loss: 0.0021124385413860674\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 27%|██▋ | 4/15 [01:35<04:19, 23.57s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0021435096652058987, val loss: 0.0020020884864877216\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 33%|███▎ | 5/15 [01:59<04:00, 24.06s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0019893815921028504, val loss: 0.0018676137283581713\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 40%|████ | 6/15 [02:23<03:35, 23.96s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0018308276075536148, val loss: 0.0017194936765085086\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 47%|████▋ | 7/15 [02:48<03:12, 24.08s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0016742357036248867, val loss: 0.0016747531117899425\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 53%|█████▎ | 8/15 [03:13<02:50, 24.37s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0015301713539492435, val loss: 0.0015793632443123812\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 60%|██████ | 9/15 [03:35<02:23, 23.84s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0014052828288402181, val loss: 0.0013945741294772984\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 67%|██████▋ | 10/15 [04:01<02:01, 24.28s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.001287272770139713, val loss: 0.0014903761072032266\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 73%|███████▎ | 11/15 [04:23<01:34, 23.70s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0011864662649893605, val loss: 0.0012827822157409567\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 80%|████████ | 12/15 [04:48<01:12, 24.16s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0010934759794986415, val loss: 0.00117736036039026\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 87%|████████▋ | 13/15 [05:11<00:47, 23.64s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0009965223805625844, val loss: 0.0011887302966652898\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 93%|█████████▎| 14/15 [05:36<00:24, 24.04s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0009317546768216281, val loss: 0.001107632980933018\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 15/15 [05:58<00:00, 23.93s/it]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0008622713648293925, val loss: 0.0011360140889689174\n", + "Batchnorm: false\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 7%|▋ | 1/15 [00:23<05:23, 23.13s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.004482430089738751, val loss: 0.002507849276931065\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 13%|█▎ | 2/15 [00:43<04:39, 21.48s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0025771968786851367, val loss: 0.002395216725496207\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 20%|██ | 3/15 [01:06<04:28, 22.34s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0023797150395083334, val loss: 0.0022668354363557615\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 27%|██▋ | 4/15 [01:27<04:00, 21.86s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.002262960452450547, val loss: 0.00209004713048117\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 33%|███▎ | 5/15 [01:49<03:38, 21.85s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0021691198744036443, val loss: 0.002074569974237029\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 40%|████ | 6/15 [02:12<03:18, 22.03s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.002082820629076822, val loss: 0.0019349496140982\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 47%|████▋ | 7/15 [02:33<02:54, 21.76s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0019884079683357486, val loss: 0.0018910836316860017\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 53%|█████▎ | 8/15 [02:56<02:35, 22.18s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0018859794146157231, val loss: 0.0018235747289751167\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 60%|██████ | 9/15 [03:17<02:11, 21.85s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0017827183331544068, val loss: 0.0016764105993854503\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 67%|██████▋ | 10/15 [03:39<01:49, 21.91s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.001666264346140345, val loss: 0.0016328157801328797\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 73%|███████▎ | 11/15 [04:01<01:27, 21.88s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0015613728797262746, val loss: 0.00152410739821678\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 80%|████████ | 12/15 [04:22<01:04, 21.53s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.001456995006264349, val loss: 0.0014228545338900516\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 87%|████████▋ | 13/15 [04:45<00:44, 22.18s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0013627648128571243, val loss: 0.0013560508328555193\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 93%|█████████▎| 14/15 [05:06<00:21, 21.64s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0012862239381719429, val loss: 0.0012817256961788759\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 15/15 [05:29<00:00, 21.94s/it]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0012021009097719438, val loss: 0.0012137444585514682\n", + "Activation: ELU, optimizer: adam_optimizer\n", + "Batchnorm: true\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 7%|▋ | 1/15 [00:27<06:29, 27.81s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.004004133660991696, val loss: 0.002413273227404781\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 13%|█▎ | 2/15 [00:55<06:03, 27.98s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0022994753955946435, val loss: 0.0022544053526131515\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 20%|██ | 3/15 [01:41<07:09, 35.83s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0021939024461107353, val loss: 0.00203835898871722\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 27%|██▋ | 4/15 [02:24<07:07, 38.90s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0020948538883479428, val loss: 0.0020313856215317555\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 33%|███▎ | 5/15 [03:01<06:22, 38.24s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.001997717210854909, val loss: 0.0019981281545339486\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 40%|████ | 6/15 [03:35<05:29, 36.61s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0018474394757105634, val loss: 0.001885967335605036\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 47%|████▋ | 7/15 [04:08<04:44, 35.50s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0016750988493382962, val loss: 0.0017178563625807708\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 53%|█████▎ | 8/15 [04:56<04:35, 39.38s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0014693670501296657, val loss: 0.0014515654187317935\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 60%|██████ | 9/15 [05:34<03:54, 39.13s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0012592983259919924, val loss: 0.001479245260347377\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 67%|██████▋ | 10/15 [06:25<03:33, 42.71s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.001092502943079267, val loss: 0.0011515858859483146\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 73%|███████▎ | 11/15 [07:13<02:56, 44.22s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0009335550626001663, val loss: 0.0011547495723166425\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 80%|████████ | 12/15 [07:48<02:04, 41.62s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.000823205198750154, val loss: 0.0009861712646857701\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 87%|████████▋ | 13/15 [08:28<01:22, 41.07s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.000724928804795678, val loss: 0.0009910804638998715\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 93%|█████████▎| 14/15 [09:06<00:40, 40.06s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0006329183390121733, val loss: 0.0010624959547163202\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 15/15 [09:50<00:00, 39.39s/it]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.000549374227655738, val loss: 0.0009343195985126494\n", + "Batchnorm: false\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 7%|▋ | 1/15 [00:31<07:20, 31.44s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.002810124805653969, val loss: 0.0019625595466477657\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 13%|█▎ | 2/15 [01:06<07:17, 33.63s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.001558472592379544, val loss: 0.001200541767523081\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 20%|██ | 3/15 [01:43<07:02, 35.22s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0010801364405741754, val loss: 0.0010333461951385617\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 27%|██▋ | 4/15 [02:25<06:57, 37.94s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0007830935729943155, val loss: 0.0008026014761089552\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 33%|███▎ | 5/15 [02:59<06:02, 36.25s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0005938379884047099, val loss: 0.0007171024411318672\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 40%|████ | 6/15 [03:33<05:22, 35.79s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0004838209367359143, val loss: 0.000629999246058862\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 47%|████▋ | 7/15 [04:15<05:00, 37.54s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0004015092354471826, val loss: 0.0007004107805682124\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 53%|█████▎ | 8/15 [04:57<04:32, 38.99s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0003189323025948281, val loss: 0.0006140250372079756\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 60%|██████ | 9/15 [05:30<03:43, 37.19s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0002579501272450335, val loss: 0.0006676691357245637\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 67%|██████▋ | 10/15 [05:56<02:48, 33.75s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.00020612082718292826, val loss: 0.0007184558300525158\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 73%|███████▎ | 11/15 [06:25<02:09, 32.34s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.00019095090298092658, val loss: 0.0006733164556944096\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 80%|████████ | 12/15 [06:52<01:31, 30.58s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.00014616309496407777, val loss: 0.0006648655837502616\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 87%|████████▋ | 13/15 [07:19<00:59, 29.71s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.00012587343138909787, val loss: 0.0007450696686518261\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 93%|█████████▎| 14/15 [07:44<00:28, 28.30s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.00011328751512681203, val loss: 0.0006849077329951207\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 15/15 [08:10<00:00, 32.73s/it]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 9.367575108248714e-05, val loss: 0.0007284934098603968\n", + "Activation: LeakyReLU, optimizer: sgd_momentum\n", + "Batchnorm: true\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 7%|▋ | 1/15 [00:21<05:03, 21.66s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.010915320333356704, val loss: 0.0029972517775851168\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 13%|█▎ | 2/15 [00:43<04:39, 21.52s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.002550475763324925, val loss: 0.0021290148141970533\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 20%|██ | 3/15 [01:02<04:08, 20.74s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0019149611287121138, val loss: 0.0015681011286322324\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 27%|██▋ | 4/15 [01:25<03:54, 21.30s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0015657945892747337, val loss: 0.0014841221384038672\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 33%|███▎ | 5/15 [01:45<03:29, 20.96s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0013002687555252162, val loss: 0.0013594068375915882\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 40%|████ | 6/15 [02:05<03:06, 20.69s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0011166025229023143, val loss: 0.001061551073422186\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 47%|████▋ | 7/15 [02:28<02:51, 21.46s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0009603607680543592, val loss: 0.001026101871241708\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 53%|█████▎ | 8/15 [02:56<02:43, 23.42s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0008487824911088419, val loss: 0.0009761758452686158\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 60%|██████ | 9/15 [03:23<02:27, 24.52s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.000743578033221769, val loss: 0.0008995099489499436\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 67%|██████▋ | 10/15 [03:46<02:00, 24.05s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0006594435308156343, val loss: 0.0009020177840633065\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 73%|███████▎ | 11/15 [04:06<01:31, 22.95s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0005872042216964354, val loss: 0.0007644562095933132\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 80%|████████ | 12/15 [04:28<01:07, 22.62s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0005352249364783477, val loss: 0.0008810301646980386\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 87%|████████▋ | 13/15 [04:52<00:46, 23.14s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.00047603448130217695, val loss: 0.0007301221834394037\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 93%|█████████▎| 14/15 [05:30<00:27, 27.63s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.00042883913992091825, val loss: 0.0008292225515418529\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 15/15 [05:51<00:00, 23.43s/it]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0003877075080301775, val loss: 0.0007372061699454241\n", + "Batchnorm: false\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 7%|▋ | 1/15 [00:18<04:19, 18.52s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.004856198102671233, val loss: 0.0024862914492741277\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 13%|█▎ | 2/15 [00:36<03:59, 18.40s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0023480407017961768, val loss: 0.0019642864747703324\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 20%|██ | 3/15 [00:56<03:45, 18.80s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.001945722095365897, val loss: 0.0016560465378276721\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 27%|██▋ | 4/15 [01:15<03:28, 18.98s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0016616370500522084, val loss: 0.001469635274969524\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 33%|███▎ | 5/15 [01:33<03:06, 18.61s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0014404423270874696, val loss: 0.0013065932728181554\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 40%|████ | 6/15 [01:51<02:46, 18.46s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0012705143202401772, val loss: 0.0011891634570171431\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 47%|████▋ | 7/15 [02:09<02:26, 18.36s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0011321086867612086, val loss: 0.0011043946457723055\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 53%|█████▎ | 8/15 [02:30<02:13, 19.02s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0010090152038351524, val loss: 0.0010214533327552993\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 60%|██████ | 9/15 [02:49<01:54, 19.07s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0009138236322428833, val loss: 0.000935733614913255\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 67%|██████▋ | 10/15 [03:07<01:33, 18.77s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0008348630567181324, val loss: 0.0009063281441010829\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 73%|███████▎ | 11/15 [03:25<01:14, 18.53s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0007652247482628623, val loss: 0.0008373350421045185\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 80%|████████ | 12/15 [03:44<00:55, 18.59s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0007048902661210794, val loss: 0.000804310412395854\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 87%|████████▋ | 13/15 [04:04<00:38, 19.08s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0006523339468260983, val loss: 0.0008232622507807088\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 93%|█████████▎| 14/15 [04:22<00:18, 18.79s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0006078229109929359, val loss: 0.0007482985421814875\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 15/15 [04:40<00:00, 18.71s/it]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.00056287575476656, val loss: 0.0007372696246822787\n", + "Activation: LeakyReLU, optimizer: adam_optimizer\n", + "Batchnorm: true\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 7%|▋ | 1/15 [00:26<06:12, 26.60s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.003757802203278928, val loss: 0.0014703291257461514\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 13%|█▎ | 2/15 [00:51<05:29, 25.32s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.001255276139759565, val loss: 0.0010812290312081647\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 20%|██ | 3/15 [01:18<05:14, 26.22s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0007979129649532918, val loss: 0.000857595652475273\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 27%|██▋ | 4/15 [01:44<04:49, 26.33s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0005516121097955171, val loss: 0.0007665633097693673\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 33%|███▎ | 5/15 [02:08<04:15, 25.50s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.00039905682056894315, val loss: 0.0006780162536635216\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 40%|████ | 6/15 [02:36<03:55, 26.15s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0002904246733214907, val loss: 0.0006535854587960899\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 47%|████▋ | 7/15 [03:02<03:28, 26.03s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0002139818761724871, val loss: 0.0006901600024445055\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 53%|█████▎ | 8/15 [03:26<02:58, 25.46s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.00015127560473473427, val loss: 0.0006318836051185669\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 60%|██████ | 9/15 [03:53<02:36, 26.08s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.00012876880432390937, val loss: 0.0006467551581425072\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 67%|██████▋ | 10/15 [04:21<02:12, 26.53s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.00010059713471691221, val loss: 0.0006473556409382366\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 73%|███████▎ | 11/15 [04:46<01:45, 26.29s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 8.70782385692609e-05, val loss: 0.0007999607658683271\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 80%|████████ | 12/15 [05:11<01:17, 25.80s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 8.036843686814016e-05, val loss: 0.0008170115797632514\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 87%|████████▋ | 13/15 [05:38<00:51, 25.99s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 6.663856820860438e-05, val loss: 0.0007735856375127026\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 93%|█████████▎| 14/15 [06:03<00:25, 25.87s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 6.24680452130211e-05, val loss: 0.0006918661504228332\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 15/15 [06:28<00:00, 25.93s/it]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 4.9953280157216945e-05, val loss: 0.0008338516798063507\n", + "Batchnorm: false\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 7%|▋ | 1/15 [00:24<05:37, 24.11s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0023718616696470182, val loss: 0.001103937311610507\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 13%|█▎ | 2/15 [00:46<05:01, 23.16s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0009234608877591841, val loss: 0.000779659757347572\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 20%|██ | 3/15 [01:12<04:51, 24.33s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0005997765441483295, val loss: 0.0006644369764489464\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 27%|██▋ | 4/15 [01:35<04:24, 24.05s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.00041456791852506164, val loss: 0.0006295155540506577\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 33%|███▎ | 5/15 [02:04<04:15, 25.51s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.00029322357957522923, val loss: 0.0005628804529543524\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 40%|████ | 6/15 [02:29<03:49, 25.55s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.000218726747535587, val loss: 0.000538471883326156\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 47%|████▋ | 7/15 [02:53<03:19, 24.94s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.000157391273186855, val loss: 0.000606808336227828\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 53%|█████▎ | 8/15 [03:17<02:52, 24.68s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0001147026442182641, val loss: 0.0005437789524932518\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 60%|██████ | 9/15 [03:41<02:27, 24.55s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 9.12529271141299e-05, val loss: 0.0005794542025597839\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 67%|██████▋ | 10/15 [04:07<02:04, 24.80s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 6.435778269664355e-05, val loss: 0.0005763981948912442\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 73%|███████▎ | 11/15 [04:31<01:38, 24.74s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 4.769317199749785e-05, val loss: 0.0006473686668351021\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 80%|████████ | 12/15 [04:54<01:12, 24.11s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 6.66799155184228e-05, val loss: 0.0006316386047888167\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 87%|████████▋ | 13/15 [05:19<00:48, 24.49s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 3.397728871440429e-05, val loss: 0.0005973964660679761\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 93%|█████████▎| 14/15 [05:42<00:24, 24.00s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 2.9265768106478333e-05, val loss: 0.0006957772877904224\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 15/15 [06:07<00:00, 24.50s/it]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.00010487726084082614, val loss: 0.000710578940872054\n", + "Activation: SoftPlus, optimizer: sgd_momentum\n", + "Batchnorm: true\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 7%|▋ | 1/15 [00:26<06:16, 26.92s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.014278739656932212, val loss: 0.005120168387143241\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 13%|█▎ | 2/15 [00:51<05:30, 25.41s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0035614655480828714, val loss: 0.0026618970684699705\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 20%|██ | 3/15 [01:17<05:08, 25.69s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.002603555280547338, val loss: 0.0022937460426038178\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 27%|██▋ | 4/15 [01:44<04:47, 26.15s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0023161147465469035, val loss: 0.0020567506443123318\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 33%|███▎ | 5/15 [02:08<04:14, 25.47s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.002110935022255269, val loss: 0.001963130322720724\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 40%|████ | 6/15 [02:34<03:51, 25.75s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0019011889600973732, val loss: 0.0016506140472822678\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 47%|████▋ | 7/15 [03:00<03:27, 25.93s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0017037313002534848, val loss: 0.0016696457766584576\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 53%|█████▎ | 8/15 [03:25<02:57, 25.39s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0015475577320117992, val loss: 0.001559643882884502\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 60%|██████ | 9/15 [03:51<02:33, 25.60s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0014227718988184344, val loss: 0.0013310466959727673\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 67%|██████▋ | 10/15 [04:17<02:09, 25.87s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0012898328995391473, val loss: 0.0015152765969842475\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 73%|███████▎ | 11/15 [04:42<01:41, 25.48s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0011907535131975054, val loss: 0.0013584369913384891\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 80%|████████ | 12/15 [05:08<01:17, 25.73s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0010846000418138501, val loss: 0.0011772193114630808\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 87%|████████▋ | 13/15 [05:34<00:51, 25.90s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.001031671303279579, val loss: 0.001191549203154221\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 93%|█████████▎| 14/15 [05:57<00:24, 24.94s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0009469759724454708, val loss: 0.0011262846176597731\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 15/15 [06:23<00:00, 25.57s/it]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0008811875174638743, val loss: 0.0011714913713906005\n", + "Batchnorm: false\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 7%|▋ | 1/15 [00:22<05:14, 22.49s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.006355613402784146, val loss: 0.00300841246059117\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 13%|█▎ | 2/15 [00:47<05:11, 23.93s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0029261030723894293, val loss: 0.0024746064018278924\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 20%|██ | 3/15 [01:09<04:39, 23.29s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0026411153402946487, val loss: 0.002426429406669069\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 27%|██▋ | 4/15 [01:34<04:22, 23.87s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0025208894434462534, val loss: 0.002198859671701039\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 33%|███▎ | 5/15 [01:57<03:56, 23.62s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0024429555032765777, val loss: 0.002209804104358209\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 40%|████ | 6/15 [02:22<03:34, 23.83s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0023295809956135954, val loss: 0.002151003581961885\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 47%|████▋ | 7/15 [02:44<03:06, 23.26s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.002268857490209496, val loss: 0.002020857342744184\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 53%|█████▎ | 8/15 [03:08<02:45, 23.65s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0021642044388380977, val loss: 0.002131337192969982\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 60%|██████ | 9/15 [03:31<02:19, 23.24s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.002099848569139684, val loss: 0.0019149861806729135\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 67%|██████▋ | 10/15 [03:55<01:58, 23.63s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0020141958195122197, val loss: 0.0018868866861482452\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 73%|███████▎ | 11/15 [04:19<01:34, 23.69s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.00192690717302901, val loss: 0.0017669049981963191\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 80%|████████ | 12/15 [04:42<01:10, 23.57s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0018434254284930992, val loss: 0.0017350748828396157\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 87%|████████▋ | 13/15 [05:06<00:47, 23.73s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0017576214827652538, val loss: 0.0016941625140140541\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 93%|█████████▎| 14/15 [05:29<00:23, 23.38s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0016787676691413609, val loss: 0.001660648766122634\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 15/15 [05:53<00:00, 23.56s/it]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.001602988715964064, val loss: 0.0015177566884329525\n", + "Activation: SoftPlus, optimizer: adam_optimizer\n", + "Batchnorm: true\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 7%|▋ | 1/15 [00:30<07:03, 30.26s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.007541625830761736, val loss: 0.0028503176457537745\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 13%|█▎ | 2/15 [01:01<06:37, 30.57s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0026252989259944104, val loss: 0.002219765613091876\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 20%|██ | 3/15 [01:31<06:06, 30.53s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0022893613478940783, val loss: 0.0021722135068874063\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 27%|██▋ | 4/15 [02:01<05:33, 30.32s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.002104389638102079, val loss: 0.0019867729801943375\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 33%|███▎ | 5/15 [02:30<04:59, 29.97s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0019137838702451065, val loss: 0.0018297644703527596\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 40%|████ | 6/15 [03:01<04:30, 30.10s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0017220954356192632, val loss: 0.001803958650425838\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 47%|████▋ | 7/15 [03:31<04:02, 30.28s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0015504967386034125, val loss: 0.0015130266297083495\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 53%|█████▎ | 8/15 [04:02<03:32, 30.34s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.001316332166479801, val loss: 0.0013758409916067938\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 60%|██████ | 9/15 [04:32<03:02, 30.43s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0011474179254844189, val loss: 0.001235745832184905\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 67%|██████▋ | 10/15 [05:03<02:31, 30.36s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0009914370704985802, val loss: 0.0011506763371382418\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 73%|███████▎ | 11/15 [05:34<02:02, 30.52s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0008617670570325445, val loss: 0.0010231803418681916\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 80%|████████ | 12/15 [06:03<01:30, 30.20s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0007596916618661431, val loss: 0.0011116539127979316\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 87%|████████▋ | 13/15 [06:33<01:00, 30.26s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0006417251837883735, val loss: 0.0009541538485314851\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 93%|█████████▎| 14/15 [07:04<00:30, 30.25s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0005774387865084751, val loss: 0.0009970330754472173\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 15/15 [07:33<00:00, 30.25s/it]\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0005033276280033904, val loss: 0.0009430921075075057\n", + "Batchnorm: false\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + " 7%|▋ | 1/15 [00:30<07:05, 30.38s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0033642885337893413, val loss: 0.0021474492176740247\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 13%|█▎ | 2/15 [00:59<06:26, 29.76s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0018382135290395008, val loss: 0.0013741485407051284\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 20%|██ | 3/15 [01:27<05:46, 28.91s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0012840225066563192, val loss: 0.0011385244106253162\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 27%|██▋ | 4/15 [01:53<05:06, 27.83s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.000972789180133023, val loss: 0.0009325799762127609\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 33%|███▎ | 5/15 [02:21<04:37, 27.74s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0007544891695777815, val loss: 0.0007586458440099348\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 40%|████ | 6/15 [02:50<04:14, 28.31s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0005987933112944103, val loss: 0.0007104243437232265\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 47%|████▋ | 7/15 [03:20<03:49, 28.63s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0004743725318504714, val loss: 0.0006790991446424748\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 53%|█████▎ | 8/15 [03:48<03:20, 28.66s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0003973930919323688, val loss: 0.0006458094784816647\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 60%|██████ | 9/15 [04:17<02:52, 28.74s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0003350466339510979, val loss: 0.0006039325273242069\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 67%|██████▋ | 10/15 [04:45<02:22, 28.41s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0002673605016597299, val loss: 0.0005868333208735232\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 73%|███████▎ | 11/15 [05:12<01:52, 28.13s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.00021228374570748663, val loss: 0.0006038710725013471\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 80%|████████ | 12/15 [05:41<01:24, 28.20s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.00017542625224856214, val loss: 0.0006479176752056049\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 87%|████████▋ | 13/15 [06:10<00:57, 28.56s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.00014976607065546996, val loss: 0.0006220612308536079\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 93%|█████████▎| 14/15 [06:39<00:28, 28.64s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.00012315790553135757, val loss: 0.0006234466618205867\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 15/15 [07:08<00:00, 28.57s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 9.252696618359746e-05, val loss: 0.0006135714810455353\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Сначала сравним скор обученных моделей на валидационной выборке. Считать итоговое значение метрики на тестовой выборке мы будем скорее всего на той модели, где скор наибольший. Но перед этим мы сначала сравним графики обучения моделей, и возможно, в качестве итоговой модели выберем другую, у которой скор на валидации будет чуть меньше." + ], + "metadata": { + "id": "lkTxzwqzKMvh" + } + }, + { + "cell_type": "code", + "source": [ + "def get_accuracy_score(model):\n", + " model.evaluate()\n", + "\n", + " correct = 0\n", + " processed_size = 0\n", + "\n", + " for x_batch, y_batch in get_batches((X_val, y_val), batch_size):\n", + " y_pred = model.forward(x_batch)\n", + " preds = np.argmax(y_pred, axis=1)\n", + "\n", + " correct += np.sum(preds == np.argmax(y_batch, axis=1))\n", + " processed_size += len(x_batch)\n", + "\n", + " return correct / processed_size" + ], + "metadata": { + "id": "wJE-gqE4H52p" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "for func in activation:\n", + " for opt in optimizer_func:\n", + " model = models[func.__name__][opt.__name__]['No batchnorm']['model']\n", + " model_bn = models[func.__name__][opt.__name__]['Batchnorm']['model']\n", + "\n", + " print(f\"Activation: {func.__name__}, optimizer: {opt.__name__}, batchnorm: true. Accuracy score: {get_accuracy_score(model_bn)}\")\n", + " print(f\"Activation: {func.__name__}, optimizer: {opt.__name__}, batchnorm: false. Accuracy score: {get_accuracy_score(model)}\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "WHAf4XTGhwsc", + "outputId": "60ce824b-5301-4399-cc2b-1731573b5bb4" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Activation: ReLU, optimizer: sgd_momentum, batchnorm: true. Accuracy score: 0.9737\n", + "Activation: ReLU, optimizer: sgd_momentum, batchnorm: false. Accuracy score: 0.9745\n", + "Activation: ReLU, optimizer: adam_optimizer, batchnorm: true. Accuracy score: 0.9783\n", + "Activation: ReLU, optimizer: adam_optimizer, batchnorm: false. Accuracy score: 0.9789\n", + "Activation: ELU, optimizer: sgd_momentum, batchnorm: true. Accuracy score: 0.9624\n", + "Activation: ELU, optimizer: sgd_momentum, batchnorm: false. Accuracy score: 0.9586\n", + "Activation: ELU, optimizer: adam_optimizer, batchnorm: true. Accuracy score: 0.9671\n", + "Activation: ELU, optimizer: adam_optimizer, batchnorm: false. Accuracy score: 0.9797\n", + "Activation: LeakyReLU, optimizer: sgd_momentum, batchnorm: true. Accuracy score: 0.9712\n", + "Activation: LeakyReLU, optimizer: sgd_momentum, batchnorm: false. Accuracy score: 0.9746\n", + "Activation: LeakyReLU, optimizer: adam_optimizer, batchnorm: true. Accuracy score: 0.9757\n", + "Activation: LeakyReLU, optimizer: adam_optimizer, batchnorm: false. Accuracy score: 0.9794\n", + "Activation: SoftPlus, optimizer: sgd_momentum, batchnorm: true. Accuracy score: 0.957\n", + "Activation: SoftPlus, optimizer: sgd_momentum, batchnorm: false. Accuracy score: 0.9482\n", + "Activation: SoftPlus, optimizer: adam_optimizer, batchnorm: true. Accuracy score: 0.9678\n", + "Activation: SoftPlus, optimizer: adam_optimizer, batchnorm: false. Accuracy score: 0.9807\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Таким образом, наибольшее значение accuracy на валидации достигается на сетке с функцией активации SoftPlus без батчнорма и оптимизатором Adam." + ], + "metadata": { + "id": "ULDlWr3tK2U1" + } + }, + { + "cell_type": "code", + "source": [ + "import seaborn as sns\n", + "\n", + "def handle_history(history):\n", + " sns.set(style=\"whitegrid\", font_scale=1.4)\n", + "\n", + " fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(18, 4))\n", + "\n", + " hist = history['No batchnorm']\n", + " tr_loss = np.array(hist)[:, 0]\n", + " val_loss = np.array(hist)[:, 1]\n", + "\n", + " hist_bn = history['Batchnorm']\n", + " tr_loss_bn = np.array(hist_bn)[:, 0]\n", + " val_loss_bn = np.array(hist_bn)[:, 1]\n", + "\n", + " ax[0].plot(tr_loss, label='No batchnorm')\n", + " ax[0].plot(tr_loss_bn, label='With batchnorm')\n", + " ax[0].set_title('Train')\n", + " ax[0].set_ylabel('Loss')\n", + " ax[0].set_xlabel('Epoch')\n", + " ax[0].legend()\n", + "\n", + "\n", + " ax[1].plot(val_loss, label='No batchnorm')\n", + " ax[1].plot(val_loss_bn, label='With batchnorm')\n", + " ax[1].set_title('Validation')\n", + " ax[1].set_ylabel('Loss')\n", + " ax[1].set_xlabel('Epoch')\n", + " ax[1].legend()\n", + "\n", + " plt.show()" + ], + "metadata": { + "id": "dJEJ7d32ZHMY" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "for func in activation:\n", + " for opt in optimizer_func:\n", + " model = models[func.__name__][opt.__name__]['No batchnorm']['model']\n", + " model_bn = models[func.__name__][opt.__name__]['Batchnorm']['model']\n", + "\n", + " print(f\"Activation: {func.__name__}, optimizer: {opt.__name__}, batchnorm: true\")\n", + " print(f\"Activation: {func.__name__}, optimizer: {opt.__name__}, batchnorm: false\")\n", + "\n", + " hist = history[func.__name__][opt.__name__]\n", + " handle_history(hist)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "96k9bAk2LNMw", + "outputId": "402548d9-9cf3-4648-edc4-6bfc09b3bd84" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Activation: ReLU, optimizer: sgd_momentum, batchnorm: true\n", + "Activation: ReLU, optimizer: sgd_momentum, batchnorm: false\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABe0AAAGgCAYAAAA3q0zLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVzU1f7H8dewDLuCIriLS+C+oGKpuadmdnOptLqardq+b9YvtVu2p6mZlpbpvaWVS17TzL3UFFFzDxXBUBRERWWbYZnfH9yZIBZBBobl/Xw8elTf7/ec85lj2pkP5/s5BovFYkFERERERERERERERBzOydEBiIiIiIiIiIiIiIhIDiXtRUREREREREREREQqCCXtRUREREREREREREQqCCXtRUREREREREREREQqCCXtRUREREREREREREQqCCXtRUREREREREREREQqCCXtRUREREREREREREQqCCXtRUREREREREREREQqCCXtRUREREREREREREQqCCXtRUSkyhkzZgwhISEsW7bM0aGIiIiIiFQqy5YtIyQkhDFjxuS7V5p1dr9+/QgJCWHnzp32CLPYQkJCCAkJ4dSpU+U6rohIabg4OgAREancQkJCrqnd22+/zYgRI+wcjYiIiIhI1fHKK6+wbNkyOnTowLffflusNnfeeSf79u3jjjvu4M033yzjCB3n1KlTLF++HB8fH8aNG+focERE7EpJexERKZXQ0NACr+/ZsweAoKAgatWqle9+7dq1yyymevXq0bRpU3x8fMpsDBERERGRsjZixAiWLVvGvn37iIqKonnz5kU+HxUVxb59+wAYOXKk3eOpSOvs06dPM2vWLBo0aFBk0r5p06YAuLq6llNkIiKlp6S9iIiUyjfffFPgdesO/PHjx5f7jvr33nuvXMcTERERESkLXbt2pUmTJpw8eZLly5fz/PPPF/n80qVLAWjevDmdOnWyezyVcZ39008/OToEEZESU017EREREREREZEKyroB5ocffiArK6vQ57Kysli5cmWeNiIiUjkpaS8iIuUu9yFUJ06c4KWXXqJXr160adOGl19+2fZcREQE7777Lrfffjs9e/akbdu2dO/enYcffpiNGzcW2n9hB2Tt3LmTkJAQ+vXrB8CGDRsYM2YMXbp0oWPHjtxxxx38+OOPZfOhRURERESuwfDhw3F2diYhIYGtW7cW+twvv/zCuXPncHFxYdiwYZw9e5avvvqKBx54gAEDBtC+fXtCQ0MZMWIEs2fPJjk5ucSxXO0g2p07d3L//ffTpUsXOnXqxMiRI/n++++L7DMlJYUffviBZ599lptvvpnOnTvTvn17Bg4cyOTJk4mNjS0wjrFjxwI5ZXKsh81a/8p92O3VDqL95ZdfmDBhAt27d6dt27b06NGDRx99lN9++63Qz6jvFCJS1lQeR0REHOb333/n008/JSsrixYtWlCzZk0MBoPt/mOPPUZSUhK+vr7UqVOHgIAAzpw5w5YtW9iyZQsPP/wwzz333DWNPWvWLGbOnIm/vz+NGzcmNjaW/fv38+yzz3Lx4kX++c9/2utjioiIiIhcs8DAQHr06MEvv/zCsmXL6N27d4HPWRPpvXr1wt/fn3fffZcvvvgCd3d3/P39CQ4OJikpiT/++INDhw7x448/8vXXX1OzZk27xPndd9/xf//3f1gsFnx8fGjWrBnx8fG8+uqrHD16tNB24eHhvPjii7i4uFC7dm2aNGlCWloacXFxfPPNN6xatYovvviC9u3b29pYP8vRo0cxGo20bds2T5/Frbn/1ltvsXDhQiDnzK2WLVty6tQpNmzYwIYNG3jkkUd4+umnC22v7xQiUlaUtBcREYf5+OOPufnmm5k0aRI1atQAID093Xb/+eef5/rrr6dRo0Z52m3fvp3nn3+ezz77jP79+9OxY8cSjZuQkMDnn3/OBx98wK233gpAZmYmb731Fl9//TUffvghw4YNw9vbu3QfUERERETEDkaOHMkvv/zCxo0buXTpUr5E+4ULF9i0aZPtWchJ3vft25fOnTvj7Oxse/bMmTO88cYbbNy4kQ8//JA33nij1PFFRUUxZcoULBYLY8aM4cUXX8RoNGKxWPj222+ZMmVKns05uTVp0oQZM2bQs2dPvLy8bNeTk5OZP38+s2fP5uWXX+bHH3+09fF///d/7Ny5k7Fjx1KnTp1Cz9kqyvLly1m4cCHOzs783//9H6NGjcLJyYmsrCwWLlzIu+++y6effkrLli0ZPHhwvvb6TiEiZUnlcURExGGaNm3Ku+++a0vYA7i7u9v++Y477siXsAfo3r07zzzzDJCz2C6pjIwMxo8fb1tcA7i4uPDyyy9Tq1YtUlNT87xSKyIiIiLiSP369cPPzw+z2cyqVavy3f/vf/9LRkYG/v7+9OnTB4AbbriBsLCwPAl7gHr16vHRRx/h6urKf//73yLr5BfX/PnzycjIoHXr1rz22msYjUYADAYDo0aNYuTIkWRmZhbYtlmzZgwaNChPwh7A29ubp556itDQUKKioti/f3+p48xt9uzZAIwaNYq77roLJ6ecFJmzszP33Xef7bvCJ598UmB7facQkbKknfYiIuIww4YNw8Wl6P8VHT9+nJ9++onIyEiSkpJsi31rDc4jR45c09h33313vmtubm60bt2arVu38ueff15TvyIiIiIi9mY0Grn11ltZuHAhy5Yt45577slz31oa5x//+Eee9XVycjKrV69m7969JCQkkJaWhsViAXIS6qmpqcTExNC8efNSxffLL78AFFoO5t577+Xbb78ttH1WVhabNm3it99+IzY2lpSUFLKzswE4efIkAIcPH6ZDhw6litMqKirKtt6/7777CnzmgQceYOXKlRw9epS4uDjq16+f7xl9pxCRsqKkvYiIOMx1111X5P0PPviAefPm2b5YFCQpKanE4/r5+eHr61vgvdq1awM5B2KJiIiIiFQUI0eOZOHChRw8eJBjx47Z1tKHDx/mjz/+sD1jtWvXLp566inOnz9fZL/Xsp7O7cqVK5w7dw4ofH3ftGlTXFxcCtxtn5CQwPjx4zl8+HCZxplbdHQ0kPOWb+PGjQt8pkWLFjg7O5OVlcWJEyfyJe31nUJEypLK44iIiMN4eHgUeu/HH3/k888/x2Aw8Pjjj/PDDz+we/dujhw5QmRkJAsWLAAo9DXbonh6ehZ6z/pabFE/KBARERERKW8tW7akTZs2wF8763P/c4cOHWjRogWQs8P+ySef5Pz589xwww18+eWXbN++nYMHDxIZGUlkZCT16tUDrm09nVvuxLQ1Wf13zs7OhSa4X3nlFQ4fPkyjRo346KOP2LRpEwcOHLDFedttt9klzoJiLixeyCl14+fnl+f53PSdQkTKknbai4hIhWT98jFu3DieeOKJfPftudNGRERERKQyGDlyJIcOHWLlypU899xzZGdn89///td2z2rLli1cuHCBevXqMWfOnDznRkFOMvnSpUt2iSl3Lfrz58/ToEGDfM9kZWUVuH4/d+4cW7duBeDTTz8tcKd+Waz7rTEX9RZCZmYmFy9ezPO8iEh50U57ERGpkE6dOgVA165dC7y/b9++8gxHRERERMThhg4dipubG4mJifzyyy9s3LiRpKQkPDw8uOWWW2zPWdfS7dq1y5ewBzh69Cipqal2icnHx4c6deoAOedRFSQ6OrrAnfLWOH19fQtM2GdmZnLw4MEC+zQYDNcaMs2aNQMgPT290Lrzx48ftx3SW9qa/yIiJaWkvYiIVEjW0jnW+pi5XbhwgeXLl5d3SCIiIiIiDlWzZk0GDBgAwPLly21vpw4cOBBvb2/bc9ZEfUFraYD58+fbNa4bb7wRgH//+98F3l+4cGGB161r/uTkZNLS0vLdX7FiRaG74a2fsaB2V9OsWTOaNGkCwJdfflngM9brwcHBtlJCIiLlRUl7ERGpkKw77OfOnWs7KAogNjaW8ePHX9PiXERERESksrOWwdm0aZOttEzu0jjw11p67969LFmyxHbdbDYzffp0/vvf/+Lq6mq3mO6//35cXV05dOgQb7/9NmazGcgpw/Pdd9/x/fff4+KSv0JzixYt8PPzIzMzkzfeeAOTyWS799NPP/Hmm2/i5uZW4JiNGzfGYDBw4cIF20G8JfHII48AsGTJEhYvXmyrP5+dnc1XX33FDz/8AMBjjz1W4r5FREpLNe1FRKRCevDBB1mzZg2nT59m6NChBAUF4eTkxPHjx/H29uall17ijTfecHSYIiIiIiLl6oYbbqB+/frExcUBOcnrsLCwPM+0bt2a2267jR9++IHXX3+dWbNmERAQwMmTJ7ly5QpPP/003333HadPn7ZLTNdddx2vvfYakydPZsGCBSxbtowmTZoQHx9PQkIC9957L+vXr883nouLC88//zyvvvoqy5YtY926dTRu3JjExETi4+Pp2bMntWrVYuXKlfnG9PX1pU+fPmzatInbb7+d6667zva2wcSJE2nVqlWRMQ8fPpzDhw+zcOFCJk2axMyZM6lXrx6nT5/mwoULAEyYMIHBgwfbZY5EREpCO+1FRKRCCgwMZMmSJdx6663UqFHD9gVj2LBhLF++nBYtWjg6RBERERGRcufk5MTw4cNt/z58+PAC67u//fbbPP/88zRt2pSLFy8SGxtL69at+eSTT2y7zO1p9OjRfPnll3Tv3p2srCyioqIICAjgzTffZOLEiYW2u/322/nkk0/o1KkTGRkZREdH4+fnx4svvsjcuXNxdnYutO27777LP//5T+rWrcuxY8cIDw8nPDycy5cvFyvmV199lc8++4y+ffuSnZ3NkSNHMBgM9O/fnwULFvDMM8+UeB5EROzBYLG+/yMiIiIiIiIiIiIiIg6lnfYiIiIiIiIiIiIiIhWEkvYiIiIiIiIiIiIiIhWEkvYiIiIiIiIiIiIiIhWEkvYiIiIiIiIiIiIiIhWEkvYiIiIiIiIiIiIiIhWEkvYiIiIiIiIiIiIiIhWEi6MDkNLZu3cvFosFV1dXR4ciIiIiInaUkZGBwWCgU6dOjg5FypnW+CIiIiJVU3HX+NppX8lZLBYsFku5j2k2m8t93KpG82gfmkf70Vzah+bRPjSP9qO5tA9HzKMj1nlSMZT3r73+nLAfzaV9aB7tR3NpH5pH+9A82o/m0j4q8hpfO+0rOevum3bt2pXbmKmpqRw5coQWLVrg6elZbuNWNZpH+9A82o/m0j40j/ahebQfzaV9OGIeDxw4UC7jSMVT3mt8/TlhP5pL+9A82o/m0j40j/ahebQfzaV9VOQ1vnbai4iIiIiIiIiIiIhUEErai4iIiIiIiIiIiIhUEErai4iIiIiIiIiIiIhUEErai4iIiIiIiIiIiIhUEErai4iIiIiIiIiIiIhUEErai4iIiIiIiIiIiIhUEErai4iIiIiIiIiIiIhUEErai4iIiIiIiIiIiIhUEC6ODkBEREQKZ7FYyMjIIDs729GhlCuTyWT7u5OT9hiUhubSPko7j87Ozri6uto7LBEREamEMjIyyMrKcnQY5U7rUvvRXNpHRV7jK2kvIiJSAZnNZhISEkhNTa2WC/rs7GxcXFyIi4vTIrSUNJf2YY95dHNzw9/fnxo1atg5OhEREakMLl++TGJioi1RWN1oXWo/mkv7qMhrfCXtRUREKpjU1FRiY2NxdnbGz88PDw8PnJ2dMRgMjg6t3GRlZWEymXBzc8PZ2dnR4VRqmkv7KM08Wt+YuXTpEqdPnwZQ4l5ERKSauXz5MqdPn8bb2xt/f39cXV2r1foetC61J82lfVTkNb6S9lIiGRfPcnHtfJz92wKtHB2OiEiVlJiYiKurK02aNKm2CzDr2wXu7u7Vdg7sRXNpH6WdRw8PD3x8fDh16hSJiYlK2kuFkpFwEq/d35JR5wFoHOzocEREqqTExES8vb1p2LBhtUvWW2ldaj+aS/uoyGt8Je2lRNJO7MMUtQf35GTofpOjwxERqXIyMzNJSUmhXr16WnyJVDEGg4GaNWty+vRpMjIyqlSNe7PZzJdffsnKlSuJjY3F09OTLl268Mgjj9CmTZsS97d69WoWLVpEZGQkACEhIYwdO5abb7650DaJiYnMmjWLzZs3k5iYiL+/P3369OGJJ56gdu3a+Z7fvn07P/74I4cPHyY+Pp7Lly/j7u5OixYtGDp0KKNGjSr01yg5OZk5c+awdu1azp49S82aNbnhhht48sknadSoUYk/r6OZYvZjPHeclPAfqNn4BUeHIyJS5WRkZGAymfD396+2CXuRqqqs1vgqeiQl4lqrHgDOlxMcHImISNWUmZkJ5NTFE5Gqx7qIr0pnVZjNZh544AE++ugjLl68SN++fWnWrBnr1q1j1KhR/PrrryXqb9q0aTzzzDMcPHiQsLAwwsLCOHjwIE8//TQff/xxgW1Onz7NsGHD+Oabb/Dw8GDAgAF4eHjwzTffMHz4cM6cOZOvzU8//cT3339PamoqrVq1YuDAgbRu3ZqDBw/yr3/9i7FjxxZYc/jy5cuMGjWKzz//nKysLPr3709AQAArV65k2LBhHDlypESftyIwNsp5g9YU/TuWzAwHRyMiUvVY/79flX5gLyJ/KYs1vnbaS4kYA4MAcE5LItuUBp6ejg1IRKSK0g4ckaqpKv7e/vzzzwkPD6ddu3YsWLAAb29vAFatWsVzzz3HCy+8wPr1623XixIREcGcOXOoUaMGixcvpnnz5gBERUUxevRoZs+eTa9evejUqVOedhMnTuTcuXOMHj2ayZMnYzAYsFgsTJ48mcWLF/Paa68xf/78PG3uuecennjiCerUqZPnenx8PPfddx979uxh4cKFPPTQQ3nuv/POOxw/fpy+ffsyY8YMjEYjAHPnzuWjjz7i+eefZ+XKlZXqbSnXus3IdvPCyZRC2smDeDbvdPVGIiJSYlVxHSAiZfN7WzvtpUScPWvg5O0HQGZirIOjERERERFHyszMZOHChQBMmjQpT2J+6NCh9O7dm4sXL7J06dJi9Tdv3jwAJkyYYEvYAzRv3pzx48fnecbq0KFD7NixA19fXyZOnGj70mQwGJg4cSK+vr5s3bqVP/74I0+7kJCQfAl7gMDAQB5++GEAfvvttzz3zp8/z4oVK3BxceGNN96wJewBHn74YYKDgzl+/DibNm0q1uetKAwGJzICcmrZpxwNd3A0IiIiIqKkvZSYa53GAGScO+ngSERERETEkfbs2UNSUhINGzakXbt2+e4PGTIEgA0bNly1L5PJxPbt2wEKrF1v7Wvr1q2YzWbbdWuCvF+/fvlKi7m5udGvXz8A1q9fX5yPBPz1inPupDzAL7/8QlZWFp07dyYgICDPPYPBwKBBg4Difd6Kxvy/pH3q0V1YLNkOjkZERESkelPSXkrMpU4TADLP/engSERERETEkaz12ws7bLZ169YAtgNlixIdHY3JZMLPz4/69evnu1+/fn18fX1JT08nOjo6Xwxt27YtsF9rbMWJAeDixYu2Ujq9e/fOc+9qn7ekY1UkmbWbYDC6k5V8EVPccUeHIyIiIlKtKWkvJebin7PTPjNRSXsRESlf/fr1IyQkhJCQEPbv31/gM6dOnSIkJIQePXqUaSw7d+4kJCSEl19+uUzHKQvLli0jJCSEmTNnOjoUqeTi4uIAqFu3boH3rdeTkpJISUkpsq/Tp08X2Vfue9Zxc/9zYGBgkW2s/f/d3r17efnll3nxxRe5//776du3L4cOHeKOO+7gzjvvzPNscT9vYWNVaE4uuAV1ACBVJXJERKQcaY1vH1rjVy06iFZKzFYeJ/EUluwsDE6V55AtERGpOqZPn84XX3zh6DDKxcyZM5k1axZvv/02I0aMcHQ4IjapqakAeHh4FHjf09PT9s8pKSl4eXldc1+5+8v9AwBru9xjXa1Nbn/++SfLly/Pc23s2LE89dRT+Q6TLe1YJWGxWGzjlbW0tDQADI3bwdGdXPljJ+7d9GfNtbDOpfXvcm00j/ajubSP0s6jyWQiOzubrKwssrKy7BlapWKxWGx/zz0P1usA06ZNy3d+DUB2dnaBbe2tvMYBmDVrFrNnz+att95i+PDhJWpb0FxaY7f+tyZXV9h/kyWVlZVFdnY2aWlptl+HosYszsG1StpLiTn7BmJxcsGQaSbjwhmM/g0dHZKIiFQz7u7ubNu2jV27dtG1a1dHhyMildhtt93GbbfdRkZGBnFxcaxZs4a5c+eyefNm5s2bR5MmTRwSV0ZGhq0cT3mJs9TA1+BE1oU4Inf9Sra3f7mOX5XExMQ4OoQqQfNoP5pL+yjNPLq4uGAymewXTCX293mwJk7d3d3Zvn0727Zto3PnzoW2SU9PL7PYrOfmZGVllek4AJmZmUDO//Ovdazc85KRkWHrt6xjr2pK+3vTZDKRmZnJiRMnivX8389NKoiS9lJiBicnsnwCcLkUhznhpJL2IiJS7u655x7mz5/P9OnT+c9//uPocESqLevO8sJ2HubeKV7ULvvi9JW7v9x9WdsVtiu9oDYFcXV1pUmTJkyYMIF69erx4osvMnnyZL788ku7j1Ucrq6utGjRotT9FEdaWhoxMTEEXdeStONtMJ88QANLEt6tbiyX8asS21wGBRX51ogUTfNoP5pL+yjtPJpMJuLi4nBzc8Pd3b0MIqwcLBYLJpMJNze3PDuNrf98991388UXXzBnzhwWLVqUp23uw+bLcg6tyVRnZ+cy/7VycclJy7q6upZ4rILm0tXV1dZvdf7vrCQK+2/yWri4uNC4ceM8/60W5Pjx4p0dpKS9XBNb0j4+BlqXbT0xERGRvxs+fDgbNmwgIiKCX3/9lRtvLH5i6fDhw3z22WdERESQlJSEr68vXbt25eGHH6ZVq1bXFM+FCxeYPn06mzZtIikpifr16zN8+HDuv//+fLsoYmJiWLVqFVu3buXUqVMkJSVRo0YNOnTowAMPPECXLl3yPN+vXz9bfexXXnmFV155xXbv7+VyTp48yfz58/ntt9+Ij4/H3d2d+vXr06NHD+6//35q166dL/b4+HimT5/OL7/8wuXLl2nYsCF33XUXY8eOzffsmDFjCA8PZ8OGDURFRTF37lyOHDmCwWCgU6dOPP3007Rr167AOdqxYwcLFizg999/Jzk5GX9/f7p3784jjzxCo0aN8jx76tQp+vfvT1hYGHPmzGH27Nn8/PPPnDlzhl69ejF79mxefvllli9fzsKFCzEYDMyePZsDBw7g5ORE165defHFFwkKCiI7O5sFCxawdOlSYmNjqVmzJv/4xz946qmnirXDRYpmPTD27NmzBd63Xvf19b1qIrtBgwZF9pX7Xu6DauvXr8/hw4eJj48vso21/+IYMmQIr732Gr/99hupqam2ZH1xP29JxiqMwWAotAxPWfHw8MC1dXcSTx4gI3ovnn1Glev4VYmHh0e5//pVRZpH+9Fc2se1zqOTkxNOTk44OzvnK71WnVjLjxgMhjzzYE2Wjhgxgo0bN7J79262b9+eZ43v5ORUYFsre63xc49z6dKlclnjv/rqq7z66qu2e9e6xrfG7uTkRGJiotb4xVDYf5Ml5ezsjJOTEx4eHlf9gUlxfzigg2jlmmTVyDnoyxQf7eBIRESkOnJycuLxxx8H4OOPPy52uzVr1nDnnXeyZs0aAgMDGTRoEAEBAaxevZo77riDn3/+ucSxJCUlcccdd7B27Vo6depEjx49SEhIYNq0aTz66KP5aiMuWbKEmTNncuXKFVq1asWAAQOoX78+GzduZOzYsfz44495nh80aBAtW7YEIDQ0lOHDh9v+aty4se259evX849//IMlS5ZgsVjo27cvoaGhpKWlMW/ePI4ePZov9ri4OEaOHMlvv/1G165dCQ0NJTY2lrfeeotPPvmk0M+8ZMkSxo8fT3Z2Nn369KFevXps3bqVMWPGEBUVle/5BQsWcO+997J582aaNWvGwIED8fT0ZOnSpQwbNow9e/YUOE56ejpjxoxh8eLFNG/enH79+uHvn7dcx4YNGxg3bhwpKSn06tULf39/NmzYwD//+U8uXLjA008/zYwZM2jQoAE9evQgPT2defPmMWnSpEI/nxSf9UvwoUOHCrx/+PBhAEJCQq7aV9OmTXFzc+PixYt5Dpq1iouLIykpCXd3d5o2bZovhoMHDxbYrzW24sRg5erqio+PDxaLhYsXL+Ybq7DPey1jVTSe1+WUHDPFHSPzygUHRyMiItWJ1vha41tpjQ9YpFLbv3+/Zf/+/eU6ZkpKimXvuhWWqDdHWGKmP1iuY1clKSkploiICEtKSoqjQ6nUNI/2o7m0j9LOY1pamuXw4cOWtLS0Qp/Jzs62pKVnVJq/srOzSzwPmZmZluTkZEtmZmae63379rUEBwdbjh8/bsnKyrIMHTrUEhwcbFm3bp3tmdjYWEtwcLCle/fuedqePXvW0rFjR0twcLBl+fLlee59++23luDgYEunTp0s8fHxxYpxx44dluDgYEtwcLDlnnvusVy5csV278yZM5abbrrJEhwcbPnqq6/ytNu9e7fl5MmT+frbt2+fJTQ01NK1a1dLampqnnszZsywBAcHW5YuXVpgLH/++aelQ4cOlpCQEMu///3vPHOemZlpCQ8Pt5w6dcp2benSpbbYX3/9dUtGRobtXkREhKVly5aWjh075vvv+J///KclODjY0rZtW8v27dtt17Ozsy2vv/66JTg42PLyyy/naXPw4EFLq1atLG3btrVs3bo1T5vp06dbgoODLb169bKkp6fb7ll/DYODgy3Dhw+3nD9/Pt9nfumllyzBwcGWkJAQy5o1a2zXs7KyLM8++6wlODjYcsstt1gGDRpkOXv2rO3+6dOnLWFhYZaQkBBLbGxsgfNZkML+myyp4vwet3LEOq+kMjIyLGFhYZbg4OACY33ooYcswcHBlgULFhSrv/Hjx1uCg4Mt8+bNy3fv888/twQHB1seffTRPNcPHjxoCQ4OtoSFheX578hisVjS09Nt8R05cqTYn+vYsWOW4OBgS8eOHS0mk8l2PTEx0dKqVStL69at8/1ZkZ2dXeCfSdeivH/t//7/rlNfvmyJenOE5VLET+UWQ1Wh9ZR9aB7tR3NpH1rja41vsWiNn5vW+HmVxRpf5XHkmmT51Mn5e/IFslIu4exV08ERiYhUDxaLhZdmbeVITOXZ/dgqqBbvPt6z1DUC/87JyYknn3ySxx9/nI8//pj+/fsXOcZ3331Hamoqffr0YdiwYXnu3XHHHaxZs4Zt27bx3Xff8dhjjxU7DoPBwKRJk/D29rZdq1u3Ls899xxPPvkkCxcuzPMaamhoaIH9tG/fnn/+85/MmTOHnTt30qdPn2LH8OWXX5KWlsaoUaO455578t1v3bp1ga9p1q9fn4kTJ9rqaQJ07tyZG2+8kS1btnDw4EHCwsLytRszZgw33HCD7d8NBgNPPfUUixcvZufOnXme/fe//01WVhajR4+mR48eedo88cQT/PTTT5w4cYI1a9bk+3UBeP3116lVq1ahn/2WW25h8ODBtn93cnLiwQcfZNWqVRw7doz58+cTGBiY5zPfeuutLFq0iF27dtGwoc7mKQ0XFxfGjh3LjBkzmDJlCgsWLLD9Xli1ahVbtmzBz8+PkSNH2trs37+fF198EYCffvopT38PPvggmzZtYu7cufTp04fmzZsD2F7Vtj6TW5s2bbj++uvZsWMHU6dOZfLkyRgMBiwWC1OnTiUpKYmePXvadrNBTu3577//nhEjRuT5vQsQGRnJSy+9BMA//vGPPK9Y165dm2HDhrF06VJef/11ZsyYYbv/+eefc/ToUZo3b07fvn2vfVIrAK/gMEynj5JyNJwanQc5OhwRkSpPa/y/aI3/F63xq/caX0l7uTYubjjXDCDrUgKmhBg8m3ZwdEQiIlIN3XTTTbRp04ZDhw6xevVqbrnllkKf3bVrF5CThCvI8OHD2bZtm+254mrZsiXXXXddvusDBw7Ew8OD2NhY4uPj8ywq09PT+eWXXzh48CAXL14kIyMDyKmFmfvvxbVt2zYAbr/99hK169atW4EHJTVr1owtW7aQkJBQYLvevXvnu1arVi18fX3ztSlq3p2cnLjtttuYNm0au3btyreg9/f3p2PHjkV+hoLOM7C+Uuzq6prni4dVUFAQQKGfT0rmoYceYseOHYSHhzNw4EC6du1KYmIiERERuLq68t577+X5wpuWlkZ0dMElFrt06cL48eOZO3cuw4cPp3v37gBs374dk8nEo48+SqdOnfK1mzp1KqNGjWLx4sXs2rWLkJAQIiMjiYqKIiAggDfffDPP85mZmbz11lu8//77tG7dmvr165OZmcnp06c5fPgwFouFsLAw2w8Xcnv55ZfZt28fmzZtYvDgwXTo0IGTJ09y6NAhvLy8+PDDDyt9vWLPkDAubPo3aTEHyU5Pwcm99AfrioiIFJfW+Dm0xs+ruq3xlbSXa+ZSpzFZlxIwx59U0l5EpJwYDAbefbwnJnPW1R+uINyMznbfgZPb008/zUMPPcTMmTPz7Mb4O+shlYXturAelFTYYZaFKezASYPBQL169Thx4gRnz561Leh3797N008/XeRiMjk5uUQxnDlzBvhroVpc9erVK/C69cBQs9lc4P3ch4D+vV1SUlKea6WZ98LGyS33F6XccUDOF4KCkqfWA+QK+3xSMkajkfnz5/PFF1+wcuVKNm7ciKenJ/379+exxx6jTZs2Jerv2WefpWXLlixcuNC2q6t169bce++93HzzzQW2adCgAStWrGDmzJls3ryZdevWUbt2bUaPHs2TTz6Z7xBmT09PXnnlFcLDwzl69ChHjx4lIyMDX19fevXqxdChQxk6dKjtQLfcatSowZIlS/j0009Zu3Yt69ato2bNmtx66608+eSTeerQVlbG2g1wrd2AjPOnSY3ai3ebno4OSUSkStMaPz+t8bXGLygOqD5rfCXt5Zq51mmC6XgE5oQYR4ciIlKtGAwG3N30v3CrXr160blzZ3bv3s2KFSvo1q2bo0MqVGpqKk888QTnz59n/Pjx3HLLLTRo0ABPT0+cnJxYsmQJr7/+OhaLpVziKSghWRxl+QUtt4Je9/27oj7DtX4+KTmj0ciECROYMGHCVZ/t1q0bkZGRRT4zZMgQhgwZUqIY/P39mTJlSrGedXFxYdy4cYwbN65EY1h5e3vzwgsv8MILL1xT+8rAKySMpO3LSYncqaS9iEg50Bo/L63xr53W+FVDpfmUZrOZuXPncsstt9C+fXuuv/56Hn/8cQ4dOnRN/a1evZq77rqL0NBQQkNDueuuu1izZk2hz2/evJnp06fzwAMP0K1bN0JCQujXr1+xxtq+fTv3338/YWFhdOzYkREjRrB48eJy+81aVlzq5OwiMsfHODYQERGp9p566ikAPvnkEzIzMwt8xrpb49SpUwXet14vaFdHUeLi4gq8brFYbLtjrH1GRERw/vx5Bg0axLPPPktISAje3t62hefJkydLNLaVdTdNSV+5LQ9lNe8iUrY8g3Nq3aZG7cGSmeHgaEREpDrSGl9r/OqsUiTtzWYzDzzwAB999BEXL16kb9++NGvWjHXr1jFq1Ch+/fXXEvU3bdo0nnnmGdvBC2FhYRw8eJCnn36ajz/+uMA2zz//PJ9++ilbt27N90pIURYvXsz999/Pjh07aNu2LTfeeCMxMTFMmjSJl19+uURxVzSu1qR94ikt5EVExKG6detG9+7dOX36NN99912Bz3Tt2hWAlStXFnh/+fLleZ4rriNHjhAVFZXv+vr160lLS6Nhw4bUrVsXgEuXLgHY/j03s9nMzz//XOAYrq6uAGRlFfzKtPXwp2XLlpUo9vJQ1LxnZ2fzww8/5HlORCoGt/otcPb2w2JOJy3mgKPDERGRakhrfK3xq7NKkbT//PPPCQ8Pp127dvz88898/PHHfP3113z44YdkZGTwwgsvFLsuVEREBHPmzKFGjRqsWLGCOXPmMGfOHFasWEGNGjWYPXs2e/fuzddu4MCBPP/88yxYsIBvv/22WGPFxsby5ptv4uLiwldffcUXX3zBzJkzWbNmDQ0bNmTFihWsWrWqRHNRkTj51M45lCo7C3NiwT9ZExERKS9PP/00AP/5z38KvH/HHXfg6enJ5s2bbYtIq6VLl7J161Y8PT254447SjSuxWJh8uTJedYi8fHxfPDBBwCMGTPGdr1Zs2YArF27Nk+9S7PZzL/+9S9iY2MLHCMgIACgwC8OAOPGjcPd3Z0lS5YU+Dbf4cOHOXv2bIk+l73cc889ODk58d133/Hbb7/ZrlssFmbPnk1UVBSBgYGF1ioXEccwGJzw+t9u+5Sj4Q6ORkREqiut8bXGr64qfLGszMxMFi5cCMCkSZPw9va23Rs6dCgrV65ky5YtLF26lHvvvfeq/c2bNw+ACRMm0Lx5c9v15s2bM378eN5//33mzZvHJ598kqfd1KlTbf9c2G+mv/vqq6/IyMjgnnvuyfOTpcDAQJ5//nmefvpp5s2bx9ChQ4vVX0VjMBgwBgSR/uchzAkxuNVt6uiQRESkGuvQoQN9+/Zl06ZNBd4PDAxk6tSpvPDCC7z44ossWrSIJk2aEBMTw8GDB3F1deXdd9+1LZ6Lq2/fvhw9epQBAwYQFhZGRkYGO3bsIDU1lR49euRZ0Ldp04bevXuzZcsWBg8eTFhYGG5ubuzZs4crV64wZswYFi1alG+Mnj174u7uzldffcWxY8cIDAzEYDAwcuRIQkNDady4Me+//z7PP/88kyZNYv78+bRp04b09HSio6OJiYlhwYIFhR6oVZbatm3LSy+9xNtvv819991Hly5dCAwMtO1e8vb2Zvr06bi5uZV7bCJSNM+QMC7vWUvq0V1Ybn4Yg6FS7PkSEZEqRGt8rfGrqwq/6tqzZw9JSUk0bNiQdu3a5btvPaBqw4YNV+3LZDKxfft2gAJ/0mPta+vWrXY5aXjjxo2FjtW/f3/c3Nw4cuRIoXWyKgNjYBMATKprLyIiFcBTTz1V5AFKN998M0uWLGHw4MGcOXOGn376ibNnz3LzzTfz7bffMnDgwBKP6evry7fffku/fv3Ys2cPv/76KwEBATz11FPMmTMHZ2fnPM/PmjWLp556irp167J9+3Z27dpF586dWbp0Ka1bty5wjICAAObMmUPnzp3Zu3cvy5Yt4/vvv89T33LgwIEsX76ckSNHkpmZyfr169m7dy+enp489NBDBAcHl/iz2cu4ceNYsGABvXv35tixY6xdu5aUlBRGjBjB8uXLCQ0NdVhsIlI4jyZtMLh5kpWShOn0MUeHIyIi1ZTW+FrjV0cGSwU/DfWrr75i6tSpDBo0iBkzZuS7f/ToUW699VZ8fX3ZuXNnkX398ccf3Hbbbfj5+bFjx44Cn+nWrRtJSUmsXLmSkJCQAp+JiopiyJAhNGjQwJaY/7srV67QpUsXIOcHD15eXvmeGTFiBIcOHeLTTz8t9qG2f3fgQE59yYJ+oFFWUlNTOXLkCK1atSLz6G8k/jgb9yZtqf/PKeUWQ1WQex49PT0dHU6lpXm0H82lfZR2Hq27Jpo2bYq7u3sZRFg5ZGVlkZ6ejru7e74FsZSM5tI+7DWPJfk97oh1nlQM5f1rX9T/u+JXTCPl0FZq3jCM2v3GFNKDWGk9ZR+aR/vRXNqH1vj2oXWp/Wgu7aMir/Er/E576y70gg5zyH09KSmJlJSUIvs6ffp0kX3lvlfa3e/WsWrUqFFgwt6eYzmSW2BOSRxzQky+2loiIiIiIlK5Wevap0bu1HpfREREpJxU+Jr2qampAHh4eBR4P/dPOFNSUgpNkBenr9z9Xe0HAFdTnmNZLBbbeOUhLS3N9nd3r1pgcCI7LZnkhNM4+9Qqtzgqu9zzKNdO82g/mkv7KO08mkwmsrOzycrKIisry56hVSrWxJDFYqnW82APmkv7sNc8ZmVlkZ2dTVpaGtnZ2Vcds6hXwUXKg2fzTuDsQsaFM2ScP43Rv6GjQxIRERGp8ip80l6uLiMjgyNHjpT7uNYaWzW8auGcnEj0nq1kBFxX7nFUdrlrlcm10zzaj+bSPkozjy4uLphMJvsFU4lpHuxHc2kfpZ1Hk8lEZmYmJ06cKNbzRqOxVOOJlJaTmyceQe1Ii9pLSuROJe1FREREykGFT9pbd6MXtmMx9w7zonbZF6ev3P1dra+rKc+xXF1dadGiRan6KIm0tDRiYmIICgrCw8ODpJhg0v9IpK67Be9Wrcotjsru7/Mo10bzaD+aS/so7TyaTCbi4uJwc3Or1vUuLRYLJpMJNzc37TQuJc2lfdhzHl1cXGjcuDFubm5FPnf8+PFSjSNiL17BYaRF7SU1Mhy/HiMdHY6IiIhIlVfhk/b169cH4OzZswXet1739fW9avK7QYMGRfaV+5513GtlHevy5cuFlu2x11gGg8EhB8p4eHjg6emJuX5z0v/YjuXiaR1scw2s8yilo3m0H82lfVzrPDo5OeHk5ISzs3O1PlDIWn7EYDBU63mwB82lfdhrHp2dnXFycsLDw+OqP5jTD1mkovAM7gprPsN05jiZl8/jUqO2o0MSERERqdIq/EG0rf63c/vQoUMF3j98+DAAISEhV+2radOmuLm5cfHixQIPf42LiyMpKQl3d3eaNm1aiqjBx8fHlri3xpib2Wy27Z5q2bJlqcZyNGNgEADm+BiHxiEiIiIiIvbn4u2HW8NgAFKO7nJwNCIiIiJVX4VP2oeGhuLr68upU6c4cOBAvvurV68GoH///lfty83Nje7duwOwZs2aQvvq2bOnXeqH9uvXr9CxNmzYgMlkolWrVqXeae9oxoAgADIunCXbnO7YYERERERExO68gsMASD0a7uBIRERERKq+Cp+0d3FxYezYsQBMmTKF5ORk271Vq1axZcsW/Pz8GDnyr9qK+/fvZ/DgwQwePDhffw8++CAAc+fOJSoqynY9KiqKuXPn5nmmtMaOHYurqyvffvstu3b9tSMlPj6eDz74wK5jOZKLty/OXr6ABfO5Px0djoiIiIiI2JlXSE7SPu3kQbLSUxwcjYiIiEjVVuFr2gM89NBD7Nixg/DwcAYOHEjXrl1JTEwkIiICV1dX3nvvPby9vW3Pp6WlER0dXWBfXbp0Yfz48cydO5fhw4fbdt5v374dk8nEo48+SqdOnfK1++STT9iyZQuQc0ggQEJCAnfeeaftmUcffZQ+ffrY/r1x48a89tprTJ48mXvvvZcbbrgBT09Ptm/fTnJyMrfddhtDhw4t9fxUBMbAINJO/I45Pgb3BsGODkdEREREROzItVZ9XP0bkpF4irTje/Bue6OjQxIRERGpsipF0t5oNDJ//ny++OILVq5cycaNG/H09KR///489thjtGnTpkT9Pfvss7Rs2ZKFCxeyc+dOAFq3bs29997LzTffXGCb2NhY9u3bl+daRkZGnmsXLlzI12706NE0btyYzz//nH379pGRkUGzZs248847GT16dInirsisSXtTfME/LBERERERkcrNKziMpMRTpBzdqaS9iIiISBmqFEl7yEncT5gwgQkTJlz12W7duhEZGVnkM0OGDGHIkCHFHv+dd97hnXfeKfbzuXXv3t22o7+qcrMdRnvSsYGIiIiIiEiZ8AzpRtL2ZaRG7SU704yTS+nPARMRERGR/Cp8TXupHKyH0ZoTTmKxZDs2GBERERERsTu3es1w9qmFxZxOevQBR4cjIiIiUmUpaS924Vq7PgZnVywZ6WRePOvocERERERExM4MBie8gnMOpE05Gu7gaERERESqLiXtxS4MTs641mkMgEklckRExM4iIyMJCQkhNDSUrKysAp+57777CAkJoV+/foX2c+uttxISEsL69esBWLZsGSEhIcycObNE8Zw6dYqQkBDGjBlTonZFGTNmDCEhIZw6dcpufZaXfv36ERIS4ugwRKQceP4vaZ96bBeW7IL/PBYRESkOrfErNq3xHUtJe7Gbv+raxzg0DhERqXqCg4Px9fUlJSWFw4cP57ufkZHB77//DsDp06c5ezb/W19JSUkcO3YMg8FA586dixxv5syZhISEsGzZMrvEX9Fc7YuPiEhhPJq0wcnNk6yUS5hOH3N0OCIiUolpjW9fWuNXLUrai90YrUn7hBiHxiEiIlVP7kV4REREvvuHDh0iNTWVVq1aARAenr9sQ0REBBaLheuuuw4/Pz8AbrrpJlavXs0999xThtGLiFQdBmcXPK/rAkDK0Z0OjkZERCozrfFFCqekvdiNMbAJACbttBcRkTIQFpZTkmHXrl357lmvPfzww0DBi37rta5du9qu+fj40Lx5c2rVqmX3eEVEqipriZyUyHAsFouDoxERkcpMa3yRgilpL3bjFhAEQNblRLLSrjg2GBERqXK6dMnZ2bl79+58SaKIiAhcXV3p378/TZo0KXDRX9CCvqB6l/369WPWrFkAvPLKK4SEhNj+KuhVWrPZzIwZM7jpppto27YtvXr14s033yQ5OfmaP+vq1au588476dSpE126dGHChAkFvjKcnZ3NqlWreO655xg0aBCdOnWiY8eO3HrrrcycOZPU1NQ8z1s/L+S8Ypz7s/39VdqsrCyWLl3K2LFjCQsLo127dvTr14/HH3+czZs3Fxr7ihUrGDFiBB06dCAsLIwnnniCkyfzn3ezc+dOQkJCePnll7ly5QpvvvkmvXv3pm3btvTv358ZM2aQmZlZ4BhXrlxh+vTp3HLLLbRv357Q0FBGjx7Nd999R3Z2dr7nX375ZUJCQti5cyfbt2/n/vvvJywsjJCQEI4cOZKnfml6ejoffvgh/fv3p127dgwaNIiFCxfa+jp69ChPPPEE119/PR06dODuu++2vbYtUl14NuuIwdmVzItnyUiMdXQ4IiJSiWmNrzW+ldb4ebk4dHSpUpzcvXCpGUDmpQTMCSfxaNLW0SGJiEgV0qpVK7y9vUlKSuL48eNcd911QM6ids+ePbRr1w43Nzc6d+7MsmXLuHDhgm13TUpKCkeOHAHyLugLMmjQILZv384ff/xBaGgoTZo0sd1r3LhxnmczMjJ44IEHOHz4MF27dqVFixbs2bOHRYsWcfz4cb788ksMBkOJPudXX33FwoUL6dixI3379uXYsWNs2rSJbdu28dlnn3HDDTfYnk1LS+O5556jZs2aNGvWjFatWpGSksLBgweZNWsWmzZtYtGiRXniHz58OMuXL8fT05NBgwbZ7llfJwZIT0/nkUceYfv27RiNRkJDQ6lduzZnzpxh27ZtXLp0iT59+uSL/aOPPmL+/Pl07tyZPn36cPDgQX7++Wf27NnDf//73wJ3O12+fJlRo0Zx8eJFunTpQnp6OhEREXzyySecPXuWqVOn5nn+3LlzjBkzhujoaPz9/enbty9paWns3LmT1157ja1btzJ9+vQC5/3HH3/k22+/pWXLltx4442cOXMmz3MZGRmMGzeOEydOEBYWRtOmTYmIiOCtt97iypUrdOrUiUcffZSGDRtyww03cPLkSXbv3s24ceNYunQpzZs3L94vskgl5+TmgUfT9qQe301KZDjGOo2v3khERKQAWuNrjQ9a4xdESXuxK2Ngk5ykfXyMkvYiImJXzs7OhIaG8ssvv7Br1y7bgj4yMpLLly/bdul06dKFZcuWsWvXLtuCde/evWRmZtKsWTP8/f2LHOell15i5syZ/PHHH9xxxx2MGDGi0Gf37t1L+/btWb9+vW1BfO7cOUaNGsVvv/3Grl27bK/8Fte///1vZsyYkWex/dlnn/Hhhx/y4osvsm7dOtzd3QFwdXVl1qxZ9O7dG6PRaHs+PT2dKVOmsGzZMhYtWsSYMWNsc9OlSxeWL1+On58f77zzToExTJ06le3bt9OmTRs++eQT6tWrZ7uXnJzMgQMHCmy3ZMkSli5dSsuWLYGcHUpPPvkkmzZt4uuvv+bxxx/P12bDhg307duXpUuX4uHhAUB0dDQjR45k2bJltgW01eTJk4mOjqZv375MmzbN1iY2NpaxY8fy008/8Z///Id//vOfBcb39ttv5/s1PXXqFJDz69m5c2c2bNiAj48PAH/88Qe333478+bNo2bNmjz++OM8+OCDtrbvvvsuX3zxBfPmzePtt98ucF5EqiLP4DBb0t6v5+2ODkdERCoprfG1xget8Qui8jhiV8b/lchRXXsRkbJjsVjINqdXmr/sWe/YuoMmdz1L62uy1gW99TCr3K/PWv/5ajtwSspgMPDWW2/l2cFSp04d7r77bqDgw7KuZuDAgXkW8wAPPfQQwcHBJCQk8NNPP9muG41GbrrppjyLeQB3d3def/11XFxcWLduXYnGT0hIYOnSpbYvC7kX8wDe3t55dgLl9uSTT9oW89b4Hn30USDnVdmCeHp68tZbb9kW5gBNmzbltttuw2Kx5Pl1PHXqFBs2bMBoNDJlypQ8bRo1asSzzz4LwIIFCwocq2fPnkV+QXNycuJf//qXbTEP0LJlS3r16kVqaip16tThvvvuy9Nm/PjxRX4+kaoq5zBaA+azUWReTnR0OCIilZ7W+FrjW2mNrzU+aKe92JlbYFMAzErai4iUCYvFQtzCVzGdinR0KMXm1rAl9ce+WeJXSAtS0II+IiICJycnQkNDAQgKCsLf3z/fM7nb20v9+vUJDg7Od71Zs2ZAzuK4pG699dZ81wwGA7feeisffvghERERDBs2LM/9qKgofv31V2JjY0lNTbV9iXJ1dSUmJqZE44eHh5OZmUmvXr2oX79+idr27t0737WrzUXbtm2pXbt2sdpFRERgsVgICwsjMDAwX5tbbrmFV199ldjYWM6ePUvdunXz3B8wYECR8devX7/A11+tr09379493z1fX198fX2v6ddapDJz8fbFrWEIplN/kBIZTs2uQxwdkohIpaU1vtb4WuNrjf93StqLXRkDc/6DNyfGYsnKxOCs/8REROyv9Avjyqpt27Z4eHgQHx9PbGwsjRo1IiIiguDg4Dw7Jzp37sy6deu4cuUKbm5u7N+/H6DEr7Fezd93qFh5eXkBOa+OllTu10QLun727FnbtczMTF5//XWWLl1a4nEKExcXB+R8MSqpgr4AeHt7Azm1JAtSkjm0LpoLmyMnJyfq169PdHQ08fHx+Rb0V/uC8vfnrTw9PQEICAgoNNakpKQi+xapirxCwjCd+oPUo0rai4iUntb4WuPn0Bo/r+q6xldGVezKxTcAg9EDizmNjPOnMQY0uXojEREpNoPBQP2xb2LJMDk6lGIzuLrZZQcO5Owq6dixo62WpNls5vz589x88815nuvSpQtr165l9+7deHt7Yzabady4cYE7N0rDycmxlQa/+uorli5dSosWLXjuuedo27Ytfn5+uLq6Ajmvip47d67c4rmW+SjPObTWCS3M1WJx9K+3SEXjFRzGhQ0LSTt5iKy0ZJw9vB0dkohIpaQ1vtb4uWmNXzJVdY2vpL3YlcHghFtgEOmxRzDFxyhpLyJSBgwGAwZj0QuTqqxr1662Bb11Z4e1xqVV7pqX1l0g1nqYFd3p06fz1Iy0sh6klPtLydq1awGYNm1avld4U1NTSUwseZ1p606Vkr5yWx6su2Csc/F32dnZnDlzBsDuX95EJD/XWvVwrdOYjHN/knp8Nz7t8r8+LyIixaM1vtb4Vlrj51Vd1/gV80cJUqlZE/XmhBjHBiIiIlVS7pqXfz+gyqply5Z4eXkRERFhq3VZktdmrbtYsrKy7BFyiaxatarA6z/++COQt2bnpUuXgIJfP121alWhB4S5urqSmZlZ4L1u3brh4uLCb7/9ZlscVxRdunTBYDCwc+dO4uPj891fs2YN6enpNGrUqNDXYEXEvryCc/5sTT1a8kP5RERErLTG1xpfa/y8lLQXuzMGBgE6jFZERMpGhw4dMBqN/Pnnn/zyyy80btw4Xx1CZ2dnOnXqxKFDh9izZw9QsgOqrP1FRUXZL/BiWrt2LevXr89zbf78+fzxxx/UqVOHQYMG2a43bZpzAPyiRYvyPH/gwAE+/PDDQscICAjg/Pnzti8EudWpU4eRI0eSkZHB448/nm/hnJKSwm+//Vbiz2UPDRs2pF+/fmRkZDBp0iTS09Nt906dOmX7zOPGjXNIfCLVkVfI/5L2Ub+TXYnKOoiISMWiNb7W+Frj56XyOGJ3xsCcP1xM8TFYLBa71TgTEREBcHNzo3379kRERHDp0iX69+9f4HNdunRh69atZGRkUL9+/UIPNipIz549cXd356uvvuLYsWMEBgZiMBgYOXIkoaGh9vooBbr77rt57LHH6NSpEw0aNODYsWNERkZiNBp599138fDwsD378MMPs3XrVj7++GPWrl1L8+bNSUhIYPfu3QwZMoS9e/dy+vTpfGP079+fhQsXMnz4cDp16oS7uzt+fn48//zzALzyyitER0cTHh7OgAED6Ny5M7Vr1+bMmTMcOXKEtm3bcsMNN5TpPBRmypQpnDhxgk2bNjFgwAC6dOlCWloaO3bsID09ncGDB3P33Xc7JDaR6shYtxnOPrXJunKetOj9eAUXP3kiIiJipTW+1vha4+elpL3YnbFOIzA4kZ16mazkJFx8/BwdkoiIVDFdu3a1vRL791qXVrlfpy1prcuAgADmzJnDJ598wt69e0lNTcVisdC5c+cyX9CPGzeOjh07smDBAjZs2ICzszO9e/fmySefpG3btnmeDQ0NZcmSJUybNo1Dhw5x8uRJGjduzEsvvcTYsWMZMGBAgWM8++yzAGzYsIGffvqJzMxMGjRoYFvQe3h48OWXX/L999/zww8/sH//fjIyMqhTpw433ngjt99+e5nOQVHq1KnDd999x7x58/j555/ZsGEDLi4utGzZkttvv52RI0dW2MOkRKoig8GAV0gYlyPWkHo0XEl7ERG5Zlrj59AaX2t8AIOlsEJIUikcOHAAgHbt2pXbmKmpqRw5coRWrVrh6elZ4DOxc54k4/xp6o5+Dc/mncottsqkOPMoV6d5tB/NpX2Udh7T09OJjo6madOmuLtX34OosrKySE9Px93dHWdnZ0eHU6lpLu3DXvNYkt/jjljnScVQ3r/2pf1/V1r0fs58PQUnzxo0eWoeBqfq+2eN1lP2oXm0H82lfWiNbx9al9qP5tI+KvIav3r9iELKzV917aMdG4iIiIiIiJQp98atcXL3Ijv1MumnIh0djoiIiEilp6S9lAm3/yXtTTqMVkRERESkSjM4u+DZIqeMQerRcAdHIyIiIlL5KWkvZcIYEASAOeGkYwMREREREZEy5xXSDYCUyHBUgVVERESkdJS0lzJhLY+TcT6O7AyTY4MREREREZEy5dGsIwYXI5lJ8WSc+9PR4YiIiIhUakraS5lw9vbDybMGWLIxn4t1dDgiIiIiIlKGnIzueDRtD+TsthcRERGRa6ekvZQJg8Fgq2tvVl17EREREZEqzzM4DIAU1bUXERERKRUl7aXM/FXXPsahcYiIiIiISNnzuq4LGJwwnz1BxqUER4cjIiIiUmm5ODoAqbqMgU0A7bQXEbkWOsRPpGqqqr+3zWYzX375JStXriQ2NhZPT0+6dOnCI488Qps2bUrc3+rVq1m0aBGRkZEAhISEMHbsWG6++eZC2yQmJjJr1iw2b95MYmIi/v7+9OnThyeeeILatWvne/7gwYNs3ryZbdu2cfz4cVJTU/Hz8yM0NJRx48YRGhpa4DhjxowhPLzwneTPPfccDz/8cAk/cdXg7FUT94YhpMceIfXoLmp2vcXRIYmIVChVdR0gUt2Vxe9tJe2lzLgFNgXAlHASi8WCwWBwcEQiIhWfk1POS3BZWVkOjkREyoL197b193pVYDabeeCBBwgPD6d27dr07duXc+fOsW7dOjZv3synn37KjTfeWOz+pk2bxpw5czAajfTo0QOAbdu28fTTT3P06FGeeuqpfG1Onz7NqFGjOHfuHM2aNWPAgAFERkbyzTffsHHjRpYsWUK9evVsz2dmZjJy5EgAfHx86NChAz4+Phw/fpy1a9eybt06Jk6cyJgxYwqNc9CgQXh6eua7HhwcXOzPWhV5hoSRHnuElMhwJe1FRP5Ha3yRqq0s1vhK2kuZca3dAJxdsJhSybyUgKtvoKNDEhGp8FxdXXF1dSU5ORlvb29HhyMidpaWloazszOurq6ODsVuPv/8c8LDw2nXrh0LFiyw/dm1atUqnnvuOV544QXWr19frD/TIiIimDNnDjVq1GDx4sU0b94cgKioKEaPHs3s2bPp1asXnTp1ytNu4sSJnDt3jtGjRzN58mQMBgMWi4XJkyezePFiXnvtNebPn5+nTdu2bRk/fjx9+/bN8+vxzTffMHnyZN5++226d+9ui+HvXnzxRRo2bFiiuaoOvILDuLD+K9L/PExW6hWcPX0cHZKIiMO5urri7OxMWlqa1vgiVVBZrPGrzhYfqXAMzi4Y/RsBYD4b49hgREQqCYPBgI+PD5cuXSItLc3R4YiIHWVlZXHp0iU8PT2rzBuImZmZLFy4EIBJkyblSUQMHTqU3r17c/HiRZYuXVqs/ubNmwfAhAkT8iTLmzdvzvjx4/M8Y3Xo0CF27NiBr68vEydOtM2twWBg4sSJ+Pr6snXrVv744w9bGxcXF5YuXcrAgQPzfbm666676NmzJ1lZWaxZs6a4UyH/4+pXF2NAY7Bkk3p8t6PDERGpEAwGA56enly6dEm77UWqmLJa42unvZQpY2AQ5vhoTAkxeLXs5uhwREQqBX9/f9LS0vjzzz+pUaMGPj4+ODs7V5kkX3FkZWVhMpkAcHZ2dnA0lZvm0j5KM48WiwWTycSFCxfIzs4mICCgLEJ0iD179pCUlETDhg1p165dvvtDhgxhy5YtbNiwgXvvvbfIvkwmE9u3bwcosHb9kCFDeP/999m6dStmsxmj0QjApk2bAOjXrx9ubm552ri5udGvXz+WLVvG+vXradmyZbE+V0hICFu3biUhQYepXgvP4G6YE/4k5Wg4Pu37ODocEZEKISAggJiYGE6ePEmtWrVwc3OrVut70LrUnjSX9lGR1/hK2kuZcgsMIhkdRisiUhLOzs40atSIxMRErly5QlJSkqNDKnfZ2dlkZmbi4uJSpWp/O4Lm0j7sMY9eXl7UrVvXlmyuCo4cOQJQ6GGzrVu3BrAdKFuU6OhoTCYTfn5+1K9fP9/9+vXr4+vrS1JSEtHR0YSEhOSJoW3btgX226ZNG5YtW1asGKz+/PNPIOeHqIVZunSp7c/nBg0a0KdPH1q0aFHsMaoyr5AwkrZ+R1rUXrIzTDi5ul29kYhIFWc0GmnYsCGJiYmcOXPG0eE4hNal9qO5tI+KvMZX0l7KlDGgCQDmhBjHBiIiUsk4OzsTGBhIQEAAGRkZZGdnOzqkcpWWlsaJEydo3LgxHh4ejg6nUtNc2kdp59HFxQUXl6q39I6LiwOgbt26Bd63Xk9KSiIlJQUvL69C+zp9+nSRfVnvJSUlERcXZ0vaW2MIDCz4/CRrf9b+ryY6OprNmzcD0L9//0Kfmz17dp5//+CDDxg2bBiTJ0/G3d29WGNVVcbAprjU8CfzciJp0fvxCu7q6JBERCoET09PGjduTGZmJpmZmY4Op9xpXWo/mkv7qMhr/Kr3zUEqFGNgEACZSQlkp6fg5F74FzUREcnPYDBUqV25xWX9IYWbm1u1T36VlubSPjSPBUtNTQUo9EuOp6en7Z+vlrS/Wl+5+0tJScnXLvdYV2tTGLPZzEsvvURGRgZDhw4t8A2CLl26MHLkSEJDQwkICCA+Pp4tW7YwY8YMli9fjtls5qOPPrrqWFdjsVhsn62sWc9QsedZKsZmoWT+/jOXD23D0LDgNzGqorKYy+pI82g/mkv70Dzah3U9lZ2dXe02Jdmb5tI+SjuPZrMZs9lcojYWi6VYpbGUtJcy5ezhg3MNf7IuJ2JKOIlH49aODklEREREpECTJk1i3759BAUFMWnSpAKfeeqpp/L8e5MmTRg7dizdunVj5MiR/Pjjj4wbN4727duXKpaMjAxb6Z/yEhMTY7e+XFz98QFSjkUQ17AHVLNX9+05l9WZ5tF+NJf2oXm0D82j/Wgu7aO857E4G/OUtJcy5xbQhNTLiZjjY5S0FxEREalCrLvYC9t5mHuneFG77IvTV+7+cvdlbVfYrvSC2hTk/fffZ9myZdStW5cvvviCGjVqFPn834WEhNCvXz/Wrl3LL7/8Uuqkvaura7nVyE9LSyMmJoagoCC7vWJvyQ4mYf8POJlSaF7TCWPDVnbpt6Iri7msjjSP9qO5tA/No31oHu1Hc2kfjpjH48ePF+u5SpO0N5vNfPnll6xcuZLY2Fg8PT3p0qULjzzySKEHXxVl9erVLFq0yHYgVUhICGPHjuXmm28utE1iYiKzZs1i8+bNJCYm4u/vT58+fXjiiSeoXbt2gW0uX77M/Pnz2bBhA7GxsWRlZVG3bl1uuOEGHn74YRo1alTi2CsbY2AQqcd36zBaERERkSrGemDs2bNnC7xvve7r63vVpHmDBg2K7Cv3vdwH1davX5/Dhw8THx9fZBtr/wWZM2cO8+bNo1atWnzxxRdFPluUoKAgABISEq6pfW4Gg6HQkj9lxcPDw65jegV3JfnAZjJP7sc3uLPd+q0M7D2X1ZXm0X40l/ahebQPzaP9aC7tozznsTilcQAqxTuKZrOZBx54gI8++oiLFy/St29fmjVrxrp16xg1ahS//vprifqbNm0azzzzDAcPHiQsLIywsDAOHjzI008/zccff1xgm9OnTzNs2DC++eYbPDw8GDBgAB4eHnzzzTcMHz68wJO/ExMTGTFiBHPmzOH8+fPccMMN9OnTh8zMTL799ltuu+029u/ff01zUpkYA5sCOoxWREREpKpp1Spn9/ShQ4cKvH/48GEA26GxRWnatClubm5cvHjRdrhsbnFxcSQlJeHu7k7Tpk3zxXDw4MEC+7XGVlgMixYtYtq0afj4+DB//nyaN29+1VgLc+nSJaDouvzViVdwGACpkeFYLBYHRyMiIiJSeVSKpP3nn39OeHg47dq14+eff+bjjz/m66+/5sMPPyQjI4MXXniB5OTkYvUVERHBnDlzqFGjBitWrGDOnDnMmTOHFStWUKNGDWbPns3evXvztZs4cSLnzp1j9OjRrF69munTp7N69WpGjx5NfHw8r732Wr42s2fPJjY2lp49e7JhwwbmzJnDrFmzWL9+PXfeeScpKSm89dZbpZ6fis4tsAkA5nOxWLKzHByNiIiIiNhLaGgovr6+nDp1igMHDuS7v3r1agD69+9/1b7c3Nzo3r07AGvWrCm0r549e+apA9q3b18ANm7ciMlkytPGZDKxceNGAAYMGJCvz+XLl/PWW2/h6enJZ599RuvW117K0Ww2s3nzZgDatm17zf1UJR7NOmBwMZJ5KQFzwklHhyMiIiJSaVT4pH1mZiYLFy4Ecg6G8vb2tt0bOnQovXv35uLFiyxdurRY/c2bNw+ACRMm5NlF07x5c8aPH5/nGatDhw6xY8cOfH19mThxou01BoPBwMSJE/H19WXr1q388ccfedrt2rULgIcffjjPKxYuLi488cQTABw4cKDK7zpx8auLwdUdS6aZjAv530gQERERkcrJxcWFsWPHAjBlypQ8G2lWrVrFli1b8PPzY+TIkbbr+/fvZ/DgwQwePDhffw8++CAAc+fOJSoqynY9KiqKuXPn5nnGqk2bNlx//fUkJSUxdepU29raYrEwdepUkpKS6NmzJy1btszT7ueff+bVV1/FaDQye/ZsQkNDr/p5f/vtNzZt2kR2dnae6+fOnePJJ5/k7Nmz1K1bl5tuuumqfVUHTkZ3PJp1AHJ224uIiIhI8VT4mvZ79uwhKSmJhg0b0q5du3z3hwwZwpYtW9iwYQP33ntvkX2ZTCa2b98OUGDt+iFDhvD++++zdetWzGazbQfPpk2bAOjXrx9ubm552ri5udGvXz+WLVvG+vXr83wZcHV1vernq1mzZrFrGVVWBoMTxoDGmE4fxRwfjdG/oaNDEhERERE7eeihh9ixYwfh4eEMHDiQrl27kpiYSEREBK6urrz33nt5Nt6kpaURHR1dYF9dunRh/PjxzJ07l+HDh9t23m/fvh2TycSjjz5Kp06d8rWbOnUqo0aNYvHixezatYuQkBAiIyOJiooiICCAN998M8/z58+f59lnnyUrK4ugoCB++OEHfvjhh3z9NmvWjIcfftj275GRkbz99tvUqVOH1q1b4+Pjw9mzZzl8+DCpqanUqlWLWbNm4e7ufk1zWRV5BYeRenQXKUfD8et1p6PDEREREakUKnzS/siRIwCFHjZrfYXVeqBsUaKjozGZTPj5+eU5vMqqfv36+Pr6kpSURHR0tK3upTWGwl5zbdOmDcuWLcsXw4033sihQ4f47LPPaN++va22ZWZmJjNnzgTgjjvuuGrcVYExMAjT6aOY4mPwbnOjo8MRERERETsxGo3Mnz+fL774gpUrV7Jx40Y8PT3p378/jz32WKHr+MI8++yztGzZkoULF7Jz504gZ81/7733FrjxBnIOmV2xYgUzZ85k8+bNrFu3jtq1azN69GiefPJJateunef5tLQ0MjIygJxd/Ll39ecWFhaWJ2kfFhbGqFGjOHjwIAcPHuTy5csYjUaCgoLo3bs3Y8eOpVatWiX6vFWd53VdwOCEOT6ajKR4XH0DHR2SiIiISIVX4ZP21kOo6tatW+B96/WkpCRSUlLw8vIqtK/Tp08X2Zf1XlJSEnFxcbakvTWGwMCCF5jW/qz9Wz300EPs3buXrVu30q9fPzp06ICrqysHDhwgKSmJBx54gKeeeqrQWKoSt4AgrgDmeNWyFBEREalqjEYjEyZMYMKECVd9tlu3blfdcDNkyBCGDBlSohj8/f2ZMmVKsZ5t2LBhsTb9/F3r1q154403StyuOnP2rIF7o1ak/3mI1KO7qBk21NEhiYiIiFR4FT5pn5qaCmDbpf53uWvFXy1pf7W+cveXkpKSr13usa7WBsDb25vPP/+cN954g++//95WZgdydud36NABZ2fnQmMpLovFYouxPKSlpeX5e3Fk18z5wYbp7IlyjbUiu5Z5lPw0j/ajubQPzaN9aB7tR3NpH46YR4vFUuXLKEr14BUSRvqfh0iJDFfSXkRERKQYKnzSvjKLi4tj/PjxnD17ln/961/07t0bDw8Pfv/9d6ZOncqTTz7JE088weOPP16qcTIyMmwlfMpTTExM8R/ONOMLZKde4o/fI7C4Ff7DleqmRPMohdI82o/m0j40j/ahebQfzaV9lPc8Ws9YEqnMPIO7cn7dl6THHiEr9TLOnjUcHZKIiIhIhVbhk/bWXeyF7WrKvWu7qF32xekrd3+5+7K2K2yHeEFtAF566SWOHj3Kxx9/zODBg23Xe/XqRdOmTbn11lv59NNPGTp0KEFBQUXGXhRXV1datGhxze1LKi0tjZiYGIKCgop8a+HvzkXUJSvpLE393HBr0qoMI6wcrnUeJS/No/1oLu1D82gfmkf70VzahyPm8fjx4+UyjkhZc/UNxBgQhDkhhtRjEfh06OfokEREREQqtAqftLceGHv27NkC71uv+/r6XjVp36BBgyL7yn0v90G19evX5/Dhw8THxxfZxto/wJkzZwgPD8fV1ZWbbropX5tGjRrRvn17du7cSXh4eKmS9gaDodDSPWXJw8OjROO6121KStJZDJfO4unZrQwjq1xKOo9SMM2j/Wgu7UPzaB+aR/vRXNpHec6jSuNIeUo1ZZVp/54hYZgTYkg5Gq6kvYiIiMhVODk6gKtp1SpnR/ahQ4cKvH/48GEA26GxRWnatClubm5cvHjRdrhsbnFxcSQlJeHu7k7Tpk3zxXDw4MEC+7XGljsGayLfy8ur0Lr1NWrkvBaalJR01dirAmNgEADm+BiHxiEiIiIiIn/ZuPs07y09w/ebospsDK/gMADSTuwjO8NUZuOIiIiIVAUVPmkfGhqKr68vp06d4sCBA/nur169GoD+/ftftS83Nze6d+8OwJo1awrtq2fPnnnqh/bt2xeAjRs3YjLlXWCaTCY2btwIwIABA2zX69SpA+Qk5E+ePJlvrMzMTNsPHBo2bHjV2KsCa9LepKS9iIiIiEiF4efjBsB3G0/w24EzZTKGMTAIl5oBWDLNpJ34vUzGEBEREakqKnzS3sXFhbFjxwIwZcoUkpOTbfdWrVrFli1b8PPzY+TIkbbr+/fvZ/DgwXnqyFs9+OCDAMydO5eoqL92kkRFRTF37tw8z1i1adOG66+/nqSkJKZOnYrFYgHAYrEwdepUkpKS6NmzJy1btrS1adiwIa1btwbgtdde4+LFi7Z7GRkZvPvuu5w+fRofHx969ux5bZNTybj9L2mfcf402ZlmxwYjIiIiIiIAdAr2p1uINwDTvtlDbPwVu49hMBjwDMnZbZ9yNNzu/YuIiIhUJRW+pj3AQw89xI4dOwgPD2fgwIF07dqVxMREIiIicHV15b333sPb29v2fFpaGtHR0QX21aVLF8aPH8/cuXMZPny4bef99u3bMZlMPProo3Tq1Clfu6lTpzJq1CgWL17Mrl27CAkJITIykqioKAICAnjzzTfztXnzzTcZN26cLe727dvj7u7OoUOHOHPmDK6urrz55pu2MjlVnbNPbZzcvclOTybj3Cnc6jVzdEgiIiIiIgIM7FSTKyZXDsdc5K0vw/no6V54urvadQyv4DAuh68i9VgEluwsDE4FlxEVERERqe4q/E57AKPRyPz583nmmWfw9fVl48aNHD9+nP79+7NkyRJ69epVov6effZZpk2bRuvWrdm5cyc7d+6kdevWTJ8+naeeeqrANg0aNGDFihWMHj2alJQU1q1bR0pKCqNHj2bFihXUq1cvX5s2bdqwcuVKxowZg7+/P7t27WLLli0YDAZuu+02vv/++wLfBqiqDAbDX3XtE2IcGouIiIiIiPzF2cnA06Pa41/TndPnkpn2zR6ysy12HcO9UUucPHzITksm/c/Ddu1bREREpCqpFDvtISdxP2HCBCZMmHDVZ7t160ZkZGSRzwwZMoQhQ4aUKAZ/f3+mTJlSojb16tXjtddeK1GbqswYGET6yYOY4mPwcXQwIiIiIiJiU9PbyCvjwnhp1lZ2HDzLdxuOMuqmELv1b3ByxvO6LiTv30TK0XA8gtrZrW8RERGRqqRS7LSXqsMtoAmgnfYiIiIiIhVRcGM/HhnZHoD/rP2DiCPxdu3fKzinrn1qZLjtrDARERERyUtJeylXtvI48TFapIuIiIiIVEADuzXh5huCsFjgg//sJi4x2W59ezTrgMHFSOblRMzxBZ9DJiIiIlLdKWkv5cro3wicnMlOTyHrcqKjwxERERERkQI8NKwdLZv4kZKWwdQvw0kzZdqlXydXNzyadQQgJTLcLn2KiIiIVDVK2ku5Mri4YvRvAIApPsaxwYiIiIiISIFcXZx4+d6u+Pm4cfLsFWYs2Wu3N2W9Qv5XIueokvYiIiIiBVHSXsqdMSAIyCmRIyIiIiIiFVPtmh68NLYrzk4Gtu6LY/nmKLv069miCxicMCecJOPiWbv0KSIiIlKVKGkv5c4Y2BTQYbQiIiIiIhVdm2a1eei2tgB89eMh9h09V+o+nT19cG/cGoAU7bYXERERyUdJeyl3xsAmgMrjiIiIiIhUBkN6NKV/10ZkW+DdRREkXEgtdZ+2Ejmqay8iIiKSj5L2Uu7c/lceJ/NiPNmmNMcGIyIiIiIiRTIYDDw6sgMtGtbkSqqZqV+FY8rIKlWfnsFdAUg/FUlWyiV7hCkiIiJSZShpL+XO2asmzt5+gAXzuZOODkdERERERK7C6OrMK+PCqOFlJOrUJWZ/v69UB9O61gzIKZtpySblWIQdIxURERGp/JS0F4cwBgYBOoxWRERERKSyCPDz5MUxXXAywMaIWH7cFl2q/mwlclTXXkRERCQPJe3FIdz+l7Q3xWunvYiIiIhIZdHhujrcd2sbAOb9cJBDJ85fc1+ewTlJ+7QT+8g2q2ymiIiIiJWS9uIQxv/VtTfHl253joiIiIiIlK/bejWnV8cGZGVbeGfhLs5furaEuzGgCS6+AViyMkg7sc/OUYqIiIhUXkrai0PYyuOc+xNLdukOsRIRERERkfJjMBh44s6OBNWrQdIVE28v2EVGZsnX9AaDAa//7bZPUYkcERERERsl7cUhXGvVw+BixJJhIuNivKPDERERERGREnB3c2HiuDC8PFyJ/PMic5cfuKZ+PEO6AZB6bDeWrEx7higiIiJSaSlpLw5hcHLGWKcxAOaEGMcGIyIiIiIiJVbP34sX/tkZgwHW7jjJ2h0lP6/KvWEITp41yE5PJv3Pw2UQpYiIiEjlo6S9OIytRM5Z1bUXEREREamMOrcM5J+DWwEwZ9l+Ik9eKFF7g5MzXtd1AVQiR0RERMRKSXtxGFvSPqHkO3JERERERKRiuKP/ddzQrh6ZWdm8/dUuLl5JL1F7T2td+8hwLBZLWYQoIiIiUqkoaS8O4/a/pL0pPsahcYiIiIiIyLUzGAw8PboTDQO8OX8pnXcXRpCZlV3s9h5N22NwdSPrynnMZ0+UYaQiIiIilYOS9uIwxoAmAGRdOU9W6hUHRyMiIiIiItfK092VV+8Lw8PNhUMnzvPFfw8Vu62TqxsezToCObvtRURERKo7Je3FYZzcPHHxDQR0GK2IiIiISGXXMMCHZ+8OBeC/v55g0+7YYrf1CvlfiRzVtRcRERFR0l4cy6gSOSIiIiIiVcb1besx6qZgAGZ9+ztRp5KK1c6zRWcwOJFx7k8yLpwpwwhFREREKj4l7cWh3AKCAO20FxERERGpKu4e2JIurQIxZ2YzdUE4l5JNV23j7OGDe5M2AKQc3VXWIYqIiIhUaErai0NZd9qbz8Y4NA4REREREbEPJycDz90dSr3aXiRcTOODf+8mqxgH03oF/69ETuTOsg5RREREpEJT0l4cypa0TzyFJSvDscGIiIiIiIhdeHsaefW+MNyNzvx+7ByL1hy5ahtrXXvTqUgyk5PKOEIRERGRiktJe3Eol5p1cHLzhOxMzImnHR2OiIiIiIjYSZN6NXhyVCcAlm46zq+/F73ed6nhj7Fuc8BC6rGIcohQREREpGJS0l4cymAwYAxoAoBZh9GKiIiIiFQpN3ZswIg+LQCYsWQvJ89cLvJ562771KPhZR6biIiISEWlpL04nDGwKaDDaEVEREREqqKxQ1rR4Tp/0s1ZvLUgnOS0wstiWuvap0XvJ9uUVl4hioiIiFQoStqLwxkDtdNeRERERKSqcnZ24oV/diHAz4MziSl8+J/dZGdbCnzWtU4jXPzqYsnKIPXE7+UbqIiIiEgFoaS9OJxbQBAApoSTWCwFL95FRERERKTyquntxsRxYRhdnIg4Es83P0cW+JzBYLDttleJHBEREamulLQXh3Ot0wgMTmSnXibrygVHhyMiIiIiImWgeUNfHrujIwCL10Wy8+CZAp+z1bU/FoElK7O8whMRERGpMJS0F4dzcnXDtXZ9QHXtRURERESqsn5dGjG0Z86ZVh9+vYdTCVfyPePWIBgnzxpkm1JJ+/NQeYcoIiIi4nBK2kuFYAwMAsAUf9KxgYiIiIiISJl64B9tadOsNmmmTKYuCCc1Pe/BtAYn579K5ESqRI6IiIhUP2WetL906RJHjx7FbDaX9VBSiVnr2pvjox0biIiIiEg1Y4/1utlsZu7cudxyyy20b9+e66+/nscff5xDh65tl/Tq1au56667CA0NJTQ0lLvuuos1a9YU2SYxMZHJkyfTp08f2rZtS58+fZg8eTLnz58v8PmDBw8ya9Ys7rrrLrp27UqbNm3o2bMnTz75JHv27ClyrOTkZD744ANuuukm2rVrR8+ePXnhhReIjY29ps9b3bg4O/HS2C7UrulObHwy0xfvzXe2lTVpn3I0HIsl2xFhioiIiDhMqZP2hw8f5uOPP2br1q15rqenp/Pss89y/fXXc9ttt3HjjTfy008/lXY4qaKsO+1VHkdERETEvsp6vW42m3nggQf46KOPuHjxIn379qVZs2asW7eOUaNG8euvv5aov2nTpvHMM89w8OBBwsLCCAsL4+DBgzz99NN8/PHHBbY5ffo0w4YN45tvvsHDw4MBAwbg4eHBN998w/DhwzlzJm/t9MzMTEaOHMnMmTM5duwY7du356abbsLX15e1a9dyzz33sGjRogLHunz5MqNGjeLzzz8nKyuL/v37ExAQwMqVKxk2bBhHjhwp0eetrvx83Hnl3q64ODvx24EzfL/xWJ777k3bYXB1J+vKBUxnTjgoShERERHHKHXS/vvvv2fOnDn5dkZ8/PHHrF69GovFgsVi4dKlSzz//PMcPXq0tENKFWRN2mdcOEt2hsmxwYiIiIhUIWW9Xv/8888JDw+nXbt2/Pzzz3z88cd8/fXXfPjhh2RkZPDCCy+QnJxcrL4iIiKYM2cONWrUYMWKFcyZM4c5c+awYsUKatSowezZs9m7d2++dhMnTuTcuXOMHj2a1atXM336dFavXs3o0aOJj4/ntddey9embdu2zJw5k99++4358+czffp0Vq1axeTJk8nOzubtt98mKioqX7t33nmH48eP07dvX3766SemT5/OsmXLePbZZ0lOTub5558nKyurRHNYXYU0qcWEEe0AWLTmCLv/iLfdc3Ix4tm8EwCpkTsdEp+IiIiIo5Q6aR8REYGbmxs9evSwXTObzXz33Xe4uLgwd+5cdu3axZgxY8jMzGThwoWlHVKqIBdvP5y9aoIlG3PCn44OR0RERKTKKMv1eu7nJ02ahLe3t+3e0KFD6d27NxcvXmTp0qXF6m/evHkATJgwgebNm9uuN2/enPHjx+d5xurQoUPs2LEDX19fJk6ciMFgAMBgMDBx4kR8fX3ZunUrf/zxh62Ni4sLS5cuZeDAgbi6uubp76677qJnz55kZWXlK8lz/vx5VqxYgYuLC2+88QZGo9F27+GHHyY4OJjjx4+zadOmYn1egUHXBzHo+iZYLPDBv3dz9nyK7Z5nyF8lckRERESqk1In7RMTEwkMDMTJ6a+ufv/9d5KTk+nXrx+9e/fGx8eH5557Dg8PD3bt2nVN41TGOplW2dnZfPvtt9xzzz1069aNdu3a0bdvX5544gkiIiKuKf6qyFYiR3XtRUREROymLNfre/bsISkpiYYNG9KuXbt894cMGQLAhg0brtqXyWRi+/btANx8882F9rV169Y89fetCfJ+/frh5uaWp42bmxv9+vUDYP369cX5SACEhIQAkJCQkOf6L7/8QlZWFp07dyYgICDPPYPBwKBBg4DifV75y/jh7Qhp7EdyWgZvfRlOuikTAM/moeDkTEbiKczn4xwcpYiIiEj5KXXS/vLly9SsWTPPtb1792IwGLjxxhtt19zd3WncuDFnz54t8RiVsU6mVXJyMmPGjOH//u//iIqKolOnTvTr1w9/f382bdpEeLh2jVgZrYfRJpx0bCAiIiIiVUhZrtet9dvbtGlT4P3WrVsDEBkZedW+oqOjMZlM+Pn5Ub9+/Xz369evj6+vL+np6URH/7XJwxpD27ZtC+zXGltxYrD688+cNz/9/f3zXL/a572WsQRcXZx5ZVxXfH3ciDlzmZnf/Y7FYsHZwxuPJjlzmqrd9iIiIlKNuJS2A3d3dy5cuJDnmnX3eGhoaJ7rrq6ueXb4FFfuOpkLFiywvXa7atUqnnvuOV544QXWr1+f53XcwuSuk7l48WLba7dRUVGMHj2a2bNn06tXLzp16pSnXe46mZMnT8ZgMGCxWJg8eTKLFy/mtddeY/78+fnGe+6554iIiOD+++/nmWeeyfMKbVJSEhcvXizxfFRV1p32pvgYh8YhIiIiUpWU5Xo9Li5n93PdunULvG+9npSUREpKCl5eXoX2dfr06SL7st5LSkoiLi7OthveGkNgYGCRMVj7v5ro6Gg2b94MQP/+/fPcK+7nLe5Y8pfaNT14eWxXXv10G7/sPc11jfwY1rs5nsFhpEXvJ+VoOL43DHN0mCIiIiLlotRJ+2bNmnHgwAGOHTvGddddx4ULF9i5cyd+fn556lACxMfHU6tWrRL1f7U6mStXrmTLli0sXbqUe++996r9Xa1O5vvvv8+8efP45JNPbPeuVifzp59+stXJbNmypa3d+vXr2bx5M/379+ell17KF4uvry++vr4lmo+qzM220z4GiyUbg6HUL4KIiIiIVHtluV5PTU0FwMPDo8D7np6etn++WtL+an3l7i8l5a+659Z2uce6WpvCmM1mXnrpJTIyMhg6dGi+HfX2HOtqLBaLbbyylpaWlufvjtK0rgdjbg5mwY+RfLnqEPVru9GqUU7ZJdOpo1w5F4ezl69DY7yaijKXlZ3m0X40l/ahebQPzaP9aC7twxHzaLFYbLnlopQ6aX/zzTezf/9+HnroIQYPHsy2bdvIyMiw1Zy0iouL49y5c3Tv3r1E/RenTuaWLVvYsGHDVZP2xamT+f7779vqZFp3xRenTuayZctYv359nqT9N998A8C4ceOK/4GrMdfa9TE4u2Ixp5OZlICrX+G7rERERESkeMp6vV6VTJo0iX379hEUFMSkSZMcGktGRoatHE95iYmJKdfxCtKkhoUOTT3ZF53Kh1/v5eHBATSqWQ+XS2eI2bYac6NOV++kAqgIc1kVaB7tR3NpH5pH+9A82o/m0j7Kex5zV2IpTKmT9vfccw8bN25k165dLFiwAICmTZvy2GOP5Xlu9erVAHTr1q1E/TuiTmZSUhLR0dG2V26LUydz2bJleWLIzMwkIiICZ2dnOnbsSFRUFGvWrCEhIQE/Pz969OhBWFjYVWOuTgzOLrjWaYT57AnM8TFK2ouIiIjYQVmu1607ywvbnZR7p3hRu+yL01fu/nL3ZW1X2K70gtoU5P3332fZsmXUrVuXL774gho1ahQaY2nHKg5XV1datGhR6n6KIy0tjZiYGIKCgop806G8tLgui9fn7SI67gorI1J5uUN30nYsxS/lNLVa3e3o8IpU0eaystI82o/m0j40j/ahebQfzaV9OGIejx8/XqznSp20NxqNfPXVV2zcuJETJ07QoEEDBgwYkG9HuouLC2PHjmXQoEEl6r+y1smMjY0lPT0df39/Fi1axIcffkhWVpbt/pw5c+jTpw8fffSRXRb1VYUxIAjz2ROY4mPwanm9o8MRERERqfTKcr1u3QhT2OG11uu+vr5XXfM2aNCgyL5y38u9Aad+/focPnyY+Pj4IttY+y/InDlzmDdvHrVq1eKLL74o9Nnift6ixioug8FQaBmesuLh4VHuYxbEE3jtvut5etoWTpy+zI/+tekHmGMP4+4MTm6Oj/FqKspcVnaaR/vRXNqH5tE+NI/2o7m0j/Kcx+KUxgE7JO0BnJycGDBgQJHPXGuJmMpaJ/PSpUtAzg8T3nvvPYYNG8b48eOpU6cOERERTJo0ic2bNzN58mTef//9QuMpjvKsdwllW+/JUCvni1BaXFS5fiZHUP0x+9A82o/m0j40j/ahebQfzaV9VOR6l8VRVuv1Vq1aATlnQBXk8OHDALbNMEVp2rQpbm5uXLx4kbi4uHxvxsbFxZGUlIS7uztNmzbNE8P69es5ePBggf1aYysshkWLFjFt2jR8fHyYP39+vjr/uV3t815tLCm+gFqevDimM5M++40f9qXRo4E/bmmJpEbtxbt1D0eHJyIiIlKm7JK0l/yys7OBnDI5YWFhvPvuu7Z7ffv2xd/fnzvuuIP//ve/PPHEEzRu3Piax3JEvUsom3pPLqkWfIDUuCjOOuAzOYLqj9mH5tF+NJf2oXm0D82j/Wgu7aMi1rt0pNDQUHx9fTl16hQHDhzIdwaVteRO//79r9qXm5sb3bt3Z9OmTaxZs4YHHnigwL569uyZZ1769u3LzJkz2bhxIyaTKc8bBCaTiY0bNwIU+EOL5cuX89Zbb+Hp6clnn31mK71ZmF69euHs7Mzu3btJSEggICDAds9isbB27dpif165uo7BAdx7S2u+XHWYbRcD6eeeyKVdP+IVHIbBxdXR4YmIiIiUmVIn7S9cuEBkZCR169bNs+MFYPHixXz99dfEx8fTvn17XnnlFZo1a1ai/itrnczcu/LvvPPOfG3atWtHmzZtOHjwIOHh4aVK2pdnvUso23pP2emNSQj/D87plwhp2hgn96pbOkj1x+xD82g/mkv70Dzah+bRfjSX9lGR611eTVmu160ldWbMmMGUKVNYsGAB3t7eAKxatYotW7bg5+fHyJEjbW3279/Piy++CMBPP/2Up78HH3yQTZs2MXfuXPr06WPb9R4VFcXcuXNtz+TWpk0brr/+enbs2MHUqVOZPHkyBoMBi8XC1KlTSUpKomfPnrRs2TJPu59//plXX30Vo9HI7NmzCQ0NvernrV27NsOGDWPp0qW8/vrrzJgxw/YDhM8//5yjR4/SvHlz+vbtW+w5lKIN79OCY7FJbD9wmR5uR+FUJAmrZhFw21MYDE6ODk9ERESkTJQ6ab9w4ULmzp3L22+/nedLwJIlS5gyZQoWiwWAX3/9lSNHjvDf//4XPz+/YvdfWetk5v7nhg0bFtiuYcOGHDx4kMTExCLjvhpH1LuEMqr35OnJhRr+ZF5OxPlKAh61Cj6AuCpR/TH70Dzaj+bSPjSP9qF5tB/NpX1UxHqXV1PW6/WHHnqIHTt2EB4ezsCBA+natSuJiYlERETg6urKe++9Z0vkQ84PQKKjowvsq0uXLowfP565c+cyfPhwunfvDsD27dsxmUw8+uijdOrUKV+7qVOnMmrUKBYvXsyuXbsICQkhMjKSqKgoAgICePPNN/M8f/78eZ599lmysrIICgrihx9+4IcffsjXb7NmzXj44YfzXHv55ZfZt28fmzZtYvDgwXTo0IGTJ09y6NAhvLy8+PDDD3F2di72/EnRDAYDT43qxPPxV5if2JvxNTaScmgrF2r4U7vfGEeHJyIiIlImSr01YceOHTg7O3PTTTfluW7dCXP//fcza9YsunTpwvnz51mwYEGJ+i/LOpl/V1SdTKBEdTJ9fHxsu+et9e3/LikpCSi8Vn51ZQzMmXtzQoxjAxERERGpAsp6vW40Gpk/fz7PPPMMvr6+bNy4kePHj9O/f3+WLFlCr169StTfs88+y7Rp02jdujU7d+5k586dtG7dmunTp/PUU08V2KZBgwasWLGC0aNHk5KSwrp160hJSWH06NGsWLGCevXq5Xk+LS2NjIwMIGcX//Llywv869dff803Vo0aNViyZAkPPvggTk5OrFu3jvj4eG699VZWrFhh++4g9uPu5sKr93XjvHdzvkm+AYBLv63gUsRPV2kpIiIiUjmVeqd9XFwcderUybPL/Y8//iAuLo7OnTvbXn3t0KEDffv2ZcuWLTzzzDPF7r8y18ns378/X375JTt27KBPnz557l2+fNn2A4c2bar+bvKSMAY2IfXYLszxMY4ORURERKTSK+v1OuQk7idMmMCECROu+my3bt2IjIws8pkhQ4YwZMiQEsXg7+/PlClTivVsw4YNrxpDUby9vXnhhRd44YUXrrkPKZl6/l588OSNvDHPyI8XUrjF83cS187DxacWXiFhjg5PRERExK5KvdM+KSmJOnXq5Lm2e/duAPr162e7VqdOHRo3bsyff/5Zov6tdTIBpkyZQnJysu1eUXUyBw8ezODBg/P1Z62BOXfuXKKiomzXi1MnMykpialTp9peIb5ancx7770Xd3d3vv76a3bs2GG7bjabmTJlCpcvX6Zly5bFqp9ZnRgDgwAwxZ90bCAiIiIiVUBZr9dFykvtmh68/VgPLgQNYHt6CwxYOLPsI9JPH3V0aCIiIiJ2Veqd9k5OTqSkpOS5tmfPHgwGA507d85z3cfHh9jY2BKPURnrZALUq1ePt956ixdffJH77ruPDh064O/vz4EDBzh79iz+/v589NFHdqtXWlW4/a88Tsa5P7FkZ2FwUk1QERERkWtVHut1kfLi6e7Ka/d347Nl7hw6+CVtjKeJWfQvgh58F3f/+lfvQERERKQSKPVO+wYNGnDy5ElbffaMjAy2bduGu7s7bdu2zfPsxYsXS3SolVVlrJNpNXToUL755hv69u1LTEwMmzdvxtnZmXvuuYdly5bRvHnzEs9HVefiG4DB6I4lK4OM86cdHY6IiIhIpVYe63WR8uTs7MSE2zuS2fNh/sysjTErlch5/0dK0gVHhyYiIiJiF6Xead+zZ0+ioqJ47rnnuOeee1i7di1JSUkMHDgQF5e/ur9y5QqxsbG0b9/+msapbHUyc+vQoQOzZ88ucbvqymBwwhjQBNOpSMzxJzHWaezokEREREQqrfJar4uUJ4PBwPCb2rLN5xkurHuHWiSx79PXaDn+bWrVquno8ERERERKpdQ77R966CH8/f3Ztm0bjz32GD/88ANubm489thjeZ7buHEjFosl3yu4IgVxCwgCwBRfcJkjERERESkerdelKutxfSu8/vEiqRY36mbHE/7pG/x55pKjwxIREREplVLvtPf392fp0qXMmzeP6Oho6tevz7333puv7Mvu3btp2bIlffv2Le2QUg1YD6M1J8Q4NA4RERGRyk7rdanqWnVowymn50ld+Q7BxLD1s/dpd89TtGtR5+qNRURERCqgUiftAQIDA3n11VeLfOaNN96wx1BSTdiS9vEnHRuIiIiISBWg9bpUdQ3bhZKQ+QRXVk/nepcjrFrwOeeHj6FP50aODk1ERESkxEpdHkekLOTUsTeQlZJEZvJFR4cjIiIiIiIVXECnG/HtNw6AoR672fz99yxZH4nFYnFsYCIiIiIlZJed9laJiYls27aNEydOkJKSgpeXF82bN6dHjx7Url3bnkNJFedkdMe1dj0yzsdhjo/BxdvP0SGJiIiIVHpar0tVV/uGW7FcSeTyrlXc7bWdT9d5En8+lUdv74CLs/asiYiISOVgl6S92WzmvffeY8mSJWRmZuYfxMWF0aNH88ILL2A0Gu0xpFQDxoCgnKR9wkk8m3dydDgiIiIilZbW61Kd1L7pXrKSz5Ny5Dce9N7Ex7vdmJKUxiv3dsXT3dXR4YmIiIhcVamT9tnZ2TzyyCNs374di8VC7dq1adasGXXq1OHcuXOcOHGC8+fP8+9//5vo6Gg+//xzDAaDPWKXKs4YGETKke2Y42McHYqIiIhIpaX1ulQ3BoMTdf7xJFnJSRB7hAk+G/jomBsvzTLx+gPXU8fPw9EhioiIiBSp1En7pUuXsm3bNnx8fHjppZcYNmwYLi5/dZuVlcWKFSt477332LZtG8uWLWPkyJGlHVaqAbeAIABM8dGODURERESkEtN6XaojJxcjgXe8RNxXr+J7/jSP+m7kozMDeX7GL0x68HqaNajp6BBFREREClXqon4rV67EYDAwY8YMbr/99jxfAACcnZ0ZOXIk06dPx2KxsGLFitIOKdWEMTAIgIzzcWRnmh0bjIiIiEglpfW6VFfOHj7UHf0azl6+1DVc4LHaW7l0OYWXP/mViCPxjg5PREREpFClTtpHRkbSsGFDbrjhhiKfu+GGG2jUqBGRkZGlHVKqCWefWjh5+IAlm4xzsY4OR0RERKRS0npdqjNX3wDqjnoVg6s7TSyneKTuXtJMmfzri5389FuMo8MTERERKVCpk/ZpaWnUrFm8Vwtr1qxJenp6aYeUasJgMNh225tU115ERETkmmi9LtWdW71mBI54DgxOXGc+zKPNTpCdbeGT7/exYNUhsrMtjg5RREREJI9SJ+3r1KnDiRMnrrq4T0tL48SJE/j7+5d2SKlG3P6XtNdhtCIiIiLXRut1EfBsEYr/kPEAhCRt46lOlwFYuuk4H/xnN+aMLEeGJyIiIpJHqZP23bp1Iy0tjalTpxb53Ntvv01aWhrXX399aYeUasT4v8NozQkxDo1DREREpLLSel0kR42OA/DteQcAzf5cycQBRlycDfz6+2n+b+52LqfoHC0RERGpGEqdtH/wwQdxcXHhu+++47bbbmPp0qXs37+fM2fOsH//fpYuXco//vEPvvvuO1xdXXnggQfsEbdUE8ZcO+0tFr22KiIiIlJSWq+L/MWv1yi82/cFSzZ1DyzijZH18XJ34XD0BV6Y8QtnElMcHaKIiIgILqXtoHnz5rz77ru88sorREZG8tprr+V7xmKx4ObmxjvvvEPz5s1LO6RUI0b/BuDkQrYplcxL53D1DXB0SCIiIiKVitbrIn8xGAzUGTKBrOQLpJ3YR43fZvPOvRN549sTxCWm8PyMX/i/+7vRMqiWo0MVERGRaqzUO+0BhgwZwvLlyxkxYgS1a9fGYrHY/qpduza33347y5cv5+abb7bHcFKNGJxdMfo3BFTXXkRERORaab0u8heDswuBI17AGNiUrJRLOG/4mPcf6kSLhjW5nGLm1U+3sW1/nKPDFBERkWqs1DvtrZo1a2ark5mcnExKSgpeXl54e3vbnhkxYgSXL19m/fr19hpWqgFjYBDmhBjMCTF4hYQ5OhwRERGRSknrdZG/OLl5UHfUROIWvELGhTjSf5rGWw+9xgdL9rPrcDzvLtzF/be24bZezTEYDI4OV0RERKoZu+y0/ztvb28CAwPzfAEAiIuL4/Tp02UxpFRhxsAmAJi0015ERETELrReFwEXn1rUHf0aTu5emE5FcvmnWUy8twu39GiKxQLzVx5i7vIDZGVlOzpUERERqWbKJGkvYk9ugU0BlccRERERERH7MtZpROAdL4GzC6mRO0na+BUPD2vLA/9og8EAP26L5q0F4aSbMh0dqoiIiFQjStpLhWcMCAIgMymebFOqY4MREREREZEqxaNxGwL+8SQAl3et5vKuVQzr3YKXxnbF6OLErsPxvDJ7Kxcupzs4UhEREakulLSXEjmTmMI7i/YSE28qtzGdPX1w9qkFgDnhz3IbV0REREREqgfv1j2o1f9eAC6s/4rkw9vo0b4+bz3SgxpeRo6fusTzM37h5NnLDo5UREREqgMl7aVEIk9eYO/RRL7ffp7U9PJ7RdS6294UH11uY4qIiIiISPVRs9ut1OgyBICElTNI+/MQLYNq8cGTvajv78W5i2m8NPNX9h075+BIRUREpKpT0l5KpHv7+tSt5UFyWjbfbjhebuO6BQYBqmsvIiIiIiJlw2AwUPumcXiGdIOsTOK/exdz4inq+Xvx/pO9aN20FinpmUz+/Dc2RugNYBERESk7StpLiRhdnXng1lYA/LQzluOnkspnXGvSPuFkuYwnIiIiIiLVj8HJmYDbnsKtQQjZ6SmcXfwmmVcuUsPLyL/Gd+fGjg3IzLIw7Zu9fLP2DywWi6NDFhERkSrIpaQNZs2adc2Dpafr4J6qoH2L2rRp7MGhP9P4dOk+3nuiF85OhjIdM3fS3pKdhcHJuUzHExEREamstF4XKR0nVzfq3vkycV9NJOPCGc4ueYv6Y/6F0c2D5+/pTGAtT77feIyvf47k7IVUHr+jI64u2g8nIiIi9nNNSXuD4doStBaL5ZrbSsUyKNSXE/Fmjv6ZxM87Yri5e9MyHc/Vry4GVzcsGSYyLpzB6N+wTMcTERERqay0XhcpPWfPGtQd/RpxX03EHB9N/LIPqHvnKzg5u3DvLa0JrOXJp8v2szEilsSkNF4ZF4a3h6ujwxYREZEqosRJ+65du5ZFHFLJ1PB0ZlT/FixYHclXq49wfbt6+Pm4l9l4BidnjHUaY4o7hjnhpJL2IiIiIoXQel3EPlz96hJ450TO/Pt10k78TuKaufjf8igGg4HBNwTh7+vBe4t2sf94Ii/N+pVJD1yPd9l9JRIREZFqpMRJ+0WLFpVFHFIJDQxryC/7znLi9CW+/O8hnr27c5mOZwwMyknax8dA6x5lOpaIiIhIZaX1uoj9uNdvQcDwZ4n/7l2u7NuIS406+PW6E4AurQJ557EbmTJvB3+evcLzM37hxXs6OjZgERERqRJUeE+umbOzE4/d3gGDATbtPsWB44llOp7b/+ram+Kjy3QcERERERERK6/ruuA/+CEALv66hCv7NtruNWtQkw+e7EVQvRpcvGJi8vxdHIlNc1SoIiIiUkUoaS+lEtzYj8HXBwHw6bJ9ZGRml9lYtsNo40+W2RgiIiIiIiJ/VyN0IL7dRwBw7sdPSY3aa7tXx8+Ddx/vScfgOpgyslny63lmLztIcqrZUeGKiIhIJaekvZTa2CGt8PV2IzY+mRVbjpfZOMY6TQDISr5AVsqlMhtHRERERETk7/z63I13u95gySZ+2QeYzp6w3fN0d2XSg9cztEfOd5Yte8/w2Psb2XnwjKPCFRERkUpMSXspNW9PI/fd2gaAxeuOcvZ8SpmM4+TmgYtfXQBMCTFlMoaIiIiIiEhBDAYDdW55BI+gdljM6Zxd/BYZlxJs912cnRgzOJj7b6pDfX9PLlw28eaX4Xz4n91cTtGuexERESk+Je3FLvp2bki75v6YM7L4bMUBLBZLmYzjphI5IiIiIiLiIAZnVwJHvoAxoDFZKUmcXfwWWWlX8jzTuI4b7z56PSP6tMDJAJv3nOKx9zfy2wHtuhcREZHiUdJe7MJgMPDIyPa4OBvYdTieHQfPlsk4xoAgAMzaaS8iIiIiIg7g5O5F3VGv4exTm4zEU8R/9y7ZmXl30htdnbnv1ja898SNNAr0JumKiakLwnn/3xFcSjY5KHIRERGpLJS0F7tpFOjD8D4tAPhsxQHSTJl2H+Ovw2hj7N63iIiIiIhIcbjUqE290a/h5OZJeuwRzq2cicWSne+5kCa1mP5MH27vdx1OBvhl72kef38T2/bFlX/QIiIiUmkoaS92deeAYAJqeZKYlMbinyPt3r+tPE7iKSyZGXbvX0REREREpDiMAY0JvP1FcHIh5ch2LmxYVPBzrs7ce0tr3n+yF43r+pCUbOKdhbt4Z+Eukq5o172IiIjkV2mS9mazmblz53LLLbfQvn17rr/+eh5//HEOHTp0Tf2tXr2au+66i9DQUEJDQ7nrrrtYs2ZNkW0SExOZPHkyffr0oW3btvTp04fJkydz/vz5Yo87c+ZMQkJCCAkJ4Ztvvrmm2Csyd6ML44e3A+CHX6I4eeayXft3ruGPk7sXZGdhTjxl175FRERERERKwiOoHQG3Pg7ApZ0rSdm7ttBngxv7Mf2Z3tw5IBgnJwPb9sXx2Psb+fX302V2JpiIiIhUTpUiaW82m/+/vTsPj6o6/D/+vrNmJvtCdnYMuwjijspWrVRbrbVg/Ymt+26r1bbWVrRWW21rv2pR60a1rWiLtdaiKLJYRDYX9kVC2BJC1smeWe/vj0mGhIQQYCAJfF7PM89M7nLuucdIznzuuedy3XXX8Yc//IHKykomTJjAgAED+PDDD5k6dSr/+9//Dqm8J598kh/96EesW7eO008/ndNPP51169bxwx/+kP/7v/9rd5/CwkIuvfRSXn/9dVwuF5MnT8blcvH6669z2WWXsWfPwR8qtHnzZp5//nkMwzik+vY0pw/L5MwRmQRDJjPnrCYUil4H1DAMzWsvIiIiIiLdRtyIc0mZcBUANYv+hnP7CoK1nna3tdusXH3RUH5/53n0y0qgus7H46+t4jevrqSypvEY1lpERES6sx4R2r/wwgusWLGCkSNH8sEHH/B///d//P3vf+f3v/89fr+fe++9l9ra2k6VtWrVKp577jkSEhJ4++23ee6553juued4++23SUhIYObMmXzxxRdt9rv//vspLS1l2rRpzJ07lz/+8Y/MnTuXadOmsXfvXh544IEOjxsMBrn//vtJSkpi4sSJh9UOPckNl47E6bCyoaCCBat2RrVsR0ZfALya115ERERERLqBxLMuI2HMhYCJe9N8Sl+4g90v3E35R3+hvmB1mwfVDuqdxB9+eD7TvjYYq8Vg6Zo93Pb4QhZ/vluj7kVERKT7h/aBQIBXX30VgAcffJC4uLjIuosvvpjzzz+fyspK5syZ06nyXnzxRQBuvvlmBg4cGFk+cOBAbrrpplbbNFu/fj3Lli0jKSmJ+++/PzJS3jCMSBC/ZMkSNm3adMDjvvzyy6xbt44HHniAhISETtW1J0tPdvO9CwYD8PJ/NlBd5zvIHp3nzOgP6GG0IiIiIt1FT5zKcs+ePfz973/nZz/7GZdccglDhw5l8ODBvPXWWx0e5+qrr45Md9ne689//vNhnbP0bIZhkHrhdcSNm0ogIQsw8JXsoGrZOxT//WF2/P4a9rz+CJ7l/8FXugvTNLHbLFz19SH84Yfn0z87gZp6H7/722f8+pUVVFRr1L2IiMiJzNbVFTiYzz//HI/HQ25uLiNHjmyzfsqUKSxevJiPPvqIa665psOyvF4vS5cuBeCiiy5qt6wnnniCJUuW4PP5cDgcACxcuBCAiRMn4nQ6W+3jdDqZOHEib731FvPnz2fIkCFtyi0oKODpp59m0qRJfP3rX2fRokWdOvee7pvnDWTBql3sKK7hL//dwB3fPSUq5bacHsc0zeN+uiERERGR7qx5KssVK1aQmprKhAkTKC0t5cMPP2TRokU8++yznHvuuZ0u78knn+S5557D4XBwzjnnAPDJJ5/wwx/+kC1btnDXXXe12aewsJCpU6dSWlrKgAEDmDx5Mps3b+b1119nwYIFvPHGG2RlZbXaZ968eTz22GOHfd4XXnghbre7zfK8vLzDLlN6NsNiJe60i9kVN5DBfXNg71bqt31Jw7bVBGsraNj2BQ3bvqACsMan4Op/Cu6Bp9C338n84Yfn84+PvuLN+ZtZvr6Y9dvKufGykYwfk6vvOyIiIiegbh/ab9y4EYDhw4e3u37YsGFAeL74gykoKMDr9ZKcnEx2dnab9dnZ2SQlJeHxeCgoKGDw4MGt6jBixIh2yx0+fDhvvfVWu3UwTZMHHngAu93Ogw8+eNA6Hk9sVgu3XD6Kn/5pCR8s38Hk0/owtH/KEZdr75ULhoVQQy3BmgpsCalRqK2IiIiIHI6WU1nOmjUrcmfsu+++yz333MO9997L/PnzW90xeyAtp7KcPXt25M7Y/Px8pk2bxsyZMznvvPMYPXp0q/1aTmU5Y8YMDMPANE1mzJjB7NmzeeCBB3jppZda7ZObm8v06dMZMWIEI0aM4Omnnz7oaP6W7rvvPnJzczu9vZxYLO4E3MPHETd8HKZp4i/dRX1BOMBv3LmBYE0FtWsWULtmAWDgzBrIhQNGcca0k3hmUTVfFdbyh79/zpIvi7j1OyeTmujq6lMSERGRY6jbT49TVFQEQGZmZrvrm5d7PB7q6uo6LKuwsLDDslquaz5uy88ZGRkd7tNcfkt/+9vfWLVqFXffffcB9z+eDR+QyuTT+gAwc85qgsHQEZdpsTmwp4W/IHn3FhxxeSIiIiJyeHryVJaTJ0/m5z//Od/61rcYOHCgRjPLUWMYBo70PiSd8U2yrvwFfe+eReaVvyTxjG/iSO8DmHj3bMXzyRx47zfcEXyFGQNWcp5rM9s2beG2Jxby0cqdmuteRETkBNLtR9rX19cD4HK1P7Kg5S2pdXV1xMbGHnZZLctreQGgeb/2bn890D4QDvF///vfM3r0aL73ve8d8JhHyjTNSB2PhYaGhlbvBzN1Un+WrdvD9j3VzFmwmYvP6XvEdbCm5uIv3Und7q8wcoYdcXld4VDbUdqndowetWV0qB2jQ+0YPWrL6OiKduwJ0wAeD1NZihxrFrsT94BRuAeMAq4hUFNBQ8Hq8FQ6BWsI1VeT7NvI5S643AVlwTg2vfM/Xl4+lG9e8Q16ZehOYxERkeNdtw/te7Jf/vKX+P1+HnnkkaP6hcvv90em8DmWtm/f3ultJ4yM4z8rKnlj/lekxVST6D6yXz2nGYMbqNi2jl0JPXve0ENpRzkwtWP0qC2jQ+0YHWrH6FFbRsexbsfmYLq76ulTWR6JOXPm4PF4AMjJyWH8+PEMGjQoqseQE4MtPoX4kycQf/IETDOEr7iA+m2raSj4ksZdm0ijlnHWLVC1Bc8L71CS1I+sUafjHnAKzqyBGBZrV5+CiIiIRFm3D+2bR7EfaFRTyxHmHY2y70xZLctrWVbzfgcazd7ePnPmzGHJkiXcdtttR73zbrfbj+kXhIaGBrZv306/fv06vGuhpcGDTTbvWcmWXVUs3RLi7iuHHlEdvO4AlZsX4Gr00GfokZXVVQ6nHaUttWP0qC2jQ+0YHWrH6FFbRkdXtOPWrVuPyXGOxKFOZdlRf72zU1l6PB6Kiooiof2RTGV5JGbOnNnq59/97ndceumlzJgxg5iYmKgeS04chmHBmTUQZ9ZAks/5NiFvAw0711OybgUVGz8jGQ+uqgI8Hxfg+fgNLDFxuPqPxDXgFNwDTsGWkNbVpyAiIiJR0O1D++ZRNsXFxe2ub16elJR00NA+Jyenw7Jarms5uic7O5sNGzawd+/eDvdpLh/go48+AuCTTz5h5cqVrbbftm0bALNmzWLu3LmMGTOGH/3oRx3WvSOGYRxw6p6jyeVyHdJxb//uaH745GKWbyhhw44axg49/Dn+Hb0HUwkEPXuJsVmwOHruF6NDbUdpn9oxetSW0aF2jA61Y/SoLaPjWLZjd58aB3r2VJaHa+zYsVx++eWMGTOG9PR09u7dy+LFi3nqqaf417/+hc/n4w9/+MMRH+dYToGpabSi52i0pZEzjIycYaRNns6Hi1bz1fJPybMWkmcvxtVYS93GT6nb+CkA1pRsnH1H4uw7AnvuECz2nvk9Sb+T0aO2jA61Y3SoHaNHbRkd3XkKzG4f2g9tGkW9fv36dtdv2LABIDLSpiP9+/fH6XRSWVlJUVFRm9tui4qK8Hg8xMTE0L9//1Z1mD9/PuvWrWu33Oa6tVeHL7/88oD12b59O9u3byc+Pv6gdT8e9M9O5JvnDuDtxfk8/681jBw0Eaf98G7ltMUlYY1NIljnwVe6k5icnj1FjoiIiIj0DHfddVern/v27cv06dM544wzuPzyy/nvf//L97//fU4++eQjOk5XTIGpabSi52i1Zd/sGNwTx/Hv5ZXMKmukj62cs5L2ckpsMc6aPQQriqivKKL+i3mYhpVAci7+tAEE0gYQjE+HHnAxsCX9TkaP2jI61I7RoXaMHrVldHTHKTC7fWg/ZswYkpKS2L17N2vXrm3zgKu5c+cCMGnSpIOW5XQ6Ofvss1m4cCHvvfce1113XbtljRs3rlXjTZgwgaeffpoFCxbg9XpbPeDK6/WyYMECACZPnhxZvv/tsi399Kc/5V//+hczZszgyiuvPGi9jydXXjCY/31ZSHF5Pf+Yv4X/d9HhT23jyOhHw7Yv8e3drtBeREREpAv01Kksj4bBgwczceJE5s2bx8cff3zEof2xnAJT02hFz7Foy6HAuNNN5n66k9nzt/J6WS/+VT2K6ZNyOSvVg3/nWrw71hKqKcdesQN7xQ7YshCLOxFHnxE4+47A2X8UFlf3HTym38noUVtGh9oxOtSO0aO2jI7uPAVmtw/tbTYb06dP56mnnuKhhx5i1qxZxMXFAfDuu++yePFikpOTufzyyyP7rFmzhvvuuw+A999/v1V5119/PQsXLuT5559n/PjxDBw4EID8/Hyef/75yDYtDR8+nDPPPJNly5bx6KOPMmPGDAzDwDRNHn30UTweD+PGjWPIkCFHrR2OF+4YOzdcOpLf/GUlcxZ+xfhTc8lNP7zOYnNo791bEOVaioiIiEhn9NSpLI+Wfv36AVBSUnLEZXXFFJiaRit6jkVbfvdrQznnlN489cYXbCio4M/v7WDZoDTu+O619P2mG39FEQ3bVtOw7UsadqwnVF9F46ZPaNz0CYbdSeIZ3yTprG9hcXTfsEe/k9GjtowOtWN0qB2jR20ZHd1xCsxuH9oD3HDDDSxbtowVK1ZwwQUXcNppp1FWVsaqVauw2+08/vjjkSAfwldJCgraD3LHjh3LTTfdxPPPP89ll13G2WefDcDSpUvxer3ceuutjB49us1+jz76KFOnTmX27NmsXLmSwYMHs3nzZvLz80lPT+eRRx45Oid/HDp7ZBanDknns00lPDtnDY/cfPZhzdnqzOgHgG/vjijXUEREREQ6o6dPZRltVVVVQMfz8otEU06vOB67dRzvfrKNv/x3I2u2lnHH7xby/W8M46Kz+5N4Wg6Jp03BDPhpLNxMw7YvqfvqM/ylO/Es+Qc1X3xI8nlTiT9lEobl8KYuFRERkeizdHUFOsPhcPDSSy/xox/9iKSkJBYsWMDWrVuZNGkSb7zxBuedd94hlXf33Xfz5JNPMmzYMJYvX87y5csZNmwYf/zjH9vMUdksJyeHt99+m2nTplFXV8eHH35IXV0d06ZN4+233yYrKysap3pCMAyDm799Mg6bhTVby1j8ReFhleNI7weAr2QHphmKYg1FREREpDP2n8pyf4czlSXAe++9d8Cy2pvKEohMZdnSgaayPBp8Ph+LFi0CYMSIEUf1WCItWSwG3zx3IE//eDzDB6TS6Avy3L/W8vPnPmFPWfgBzIbNjqvvCFIm/D9yb/gD6Zf/GFtyJsE6D2XvPc/uF+6m7qtVmKbZxWcjIiIi0ENG2kM4uL/55pu5+eabD7rtGWecwebNmzvcZsqUKUyZMuWQ6pCWlsZDDz10SPu05ze/+Q2/+c1vjricniwzNZbvTs7jr+9v4qV31jF2aAZxLvshlWFPzcaw2jH9jQQqi7GnZB98JxERERGJmhNtKstPP/2UxsZGzj//fCyWfeOfSktL+cUvfkFxcTGZmZl87WtfO+JjiRyq7LQ4Hr3lHOYuLWDWfzewLr+cO36/kOlThnLxOQOwWMJ3NxuGQdyQs4g9aSzVn39A5f/+gb9sN3vffIyYviNInXQNzqwBXXw2IiIiJ7YeE9rL8efbEwax8LPdFJbW8tf3NnLztw/tYV2GxYojvQ/ePfl49+5QaC8iIiLSBXrqVJYlJSXcfvvtkZ937AhPuThz5kxmz54NQK9evfjTn/4U2Wbz5s089thj9OrVi2HDhhEfH09xcTEbNmygvr6elJQUnnnmGWJiYg6jJUWOnMVicPG4AYwdmsHTb37Jmq1lvPD2Opau2cOd3z2F7F77/l80rHYST/sGcSPH41n6FtUr/kvjjnUUvnwvcSPOI3n8ldgT07vwbERERE5cPWJ6HDk+2W1Wbrk8HNTPXVrAV7sqD7mMyBQ5e7dHsWYiIiIi0lk9dSpLn8/H6tWrIy+PxwPArl27Iss2btzYap/TTz+dqVOnkp6ezrp165g3bx4bN26kX79+3HLLLfz3v/9l5MiRh3S+IkdDZmosv7rpbG69/GRcTivrt5Vzx+8X8fbifIKh1lPgWGNiSZ14Nbm3PEXciPD/r7XrPmb3s3dSvuA1go11XXEKIiIiJzSNtJcuNeqkXowfk8uiz3cz85+r+d1d52O1dP6htI7mh9GWbD86FRQRERGRg+qJU1nm5uYetB77GzZsGA8//PAh7SPSVSwWg4vO7s+YIRk8/eYXrP6qjJfeWccnqwu5c+poemfEt9renphO+rfuIvH0iyn/6FUad6yj6tO3qfnyI5LPvYKEMRdgWA9tSlMRERE5PBppL13u2m8OJzbGxtbdVby/tP1bpQ+kObT3aqS9iIiIiIhIGxkpbn5109nc9p1RuJw2Nu2o5LYnFjDjhU9Zsb64zch7Z9ZAsq6aQeZ378eelkuooYbyD15m1/M/pHbjp3pYrYiIyDGg0F66XHJ8DFdPGQbAq+9tpLK6sdP7OtP7AhCsLiPYUHNU6iciIiIiItKTGYbB18/qxzP3TuD0YZmYJny2qYRfvbyc63/9IW98uLnV9zDDMHCfdCq5N/yBtItuwhqbRKCymJK3fkfRX35O4+5Du0tFREREDo1Ce+kWvn5WPwb1TqK+McBL76zv9H6WmFhsTQ9H8pXsOFrVExERERER6fHSk9384rozeP6nk7hs/CDi3XbKPA389f1N/OBXH/Cbv6xk9VelkdH0hsVKwpgL6H3LMySNuwLD7sRbuJmiv9zP3jm/w1+xp4vPSERE5Pik0F66BavF4LbLR2ExYPEXu1m9pbTT+zoywqPt9TBaERERERGRg8vuFce1lwxn1i8v5EdXjmFovxSCIZNP1hTxwHNLueW3C/j3x/nU1vsAsDhdpJw/jd63PEP8qElgWKjb9Cm7nv8hZR+8TLBedz2LiIhEk0J76TYG9U5iytn9AXj2rdX4A8FO7efICO+jee1FREREREQ6z2G3MnFsbx6/41yeumc8F53dD5fTSmFpLS/+ex3XPDSPP87+nM07KjBNE1t8Cr0uvpXc63+Ha8BoCAWoXvlfds28Fc+nbxMK+Lr6lERERI4LCu2lW/l/Fw0lOd5JYWkdby3c2ql9nOn9AI20FxEREREROVz9sxO59fJRzPrlhdx6+cn0y0rAFwjx0cpd/Pip//HDJxczb9l2GrwBHOl9ybryATK/90scGf0JeeupWPAau5+9g5p1H2Oaoa4+HRERkR5Nob10K7EuO9d9cwQAb87fQnF53UH3iUyPU7YLMxg4qvUTERERERE5nrlj7Fx0dn+eumc8T9xxLhPH9sZus7CtsIpn/rGa7z88j+feWsOOPdW4+48i57rH6XXJHVjjUwlUl1H67/+j8OWf0LB9bVefioiISI+l0F66nfNG5zDqpDR8gRDPvbUm8hCkA7ElpWM43RAM4C8vPEa1FBEREREROX4ZhsGQfin86MoxzPrlhVx7yXCy0mKpbwzw308KuP13C/nJM/9j8RdFxAw7l963PE3y+KswHC58xdvY87cZFL/xKL7SXV19KiIiIj2OQnvpdgzD4JbLR2GzWvhsUwlL1+45yPYWnOnh0faa115ERERERCS6EmIdXDZ+EM/9ZBK/uukszj45C4vFYENBBb//22d8/+EPeHXeVrxDLqTPrX8i4dSvg2Ghfutn7H7hbkrnPk+gtrKrT0NERKTHUGgv3VJOrzgunzgIgBfeXkt9o7/D7R1Nob2vZPvRrpqIiIiIiMgJyWIxOCUvnZ9dczovP/A1vnfhEFITY6iu8zFn4VZueHQ+D/9tA1tzLyb7+j/gzjsdzBA1X3zArpm3U/m/Nwn5Grv6NERERLo9hfbSbV0xKY/MVDflVY28/sHmDrd1ZPQD9DBaERERERGRYyE10cWVFwzmpZ9/jZ//4HTGDE4H4PPNJfz6lRXc8twGFiZeSuy3H8CZfRKmv5HKj99g17O3U/3lfMxQsIvPQEREpPtSaC/dltNu5eZvnwzAO//bRkFR1QG3dWT0B8LT4xxsDnwRERERERGJDqvVwpkjsnjoxrP4888mc/mEQSTEOiirauTv8zZx48u7+AuXUX/mddiS0gnWVlL232cpfOnH1Od/oe9vIiIi7VBoL93aqUMyOOfkbEIhk5n/XE0o1H6HztGrNxgWQvXVBGs9x7aSIiIiIiIiQlZaLN+/eDizfnkB91x1KsP6pxAKmXy6rpifzfXzm6pLKez3DQxnLL6SnRTPfoTi1x/GW1zQ1VUXERHpVhTaS7d3w6UjcDmtbNpRyYcrdra7jcXuxJ6SBWheexERERERka5kt1kZPyaX395+Ls/8eALfOKc/LqeNXeWNPP55Kg+UfpOvEs7AtNhoKFhD4Uv3UvKfpwlUl3d11UVERLoFhfbS7aUmuvjehUMB+Mt/11NV6213u33z2muUhoiIiIiISHfQNyuBm799Mn958EJuv2IUA3ISqQ7YeWb7YB6uuITNlpMAk9o1i9j17O1ULPwbIW9DV1dbRESkSym0lx7hknH96Z+dQE29n1nvbmh3G2dTaO/Vw2hFRERERES6FZfTxoVn9uOPPzqf3991HpNO602tJZGZZWfx+6opFAQzMAM+PEvfouyVe3Ds/AzTDHV1tUVERLqEQnvpEaxWC7dePgqA+St3sn5b29smHen9APCV7DiWVRMREREREZFOMgyDvD7J/HDaGGY9eCHXf2sEwZR+/LHqAl6oGc/eYAKhhhpiN8yjfM7jBGoqu7rKIiIix5xCe+kxhvRL4cIz+wLw7JzVBIKtR100T4/jLy8i5G9/Ch0RERERERHpHuLdDr513kCe/clEfn3LOSQOO5Mnar7FP+tOw2daCexaz1d/upP8ZR93dVVFRESOKYX20qNc841hJMQ62FFcwzsf57daZ41LxuJOADOEr3RXF9VQREREREREDoVhGJw8qBc/nX4aL/7i62SNu5jn/d+kMJCMM1iP8dH/Mee3v+K9JV9R2+Dv6uqKiIgcdQrtpUeJdzv4wcXDAfj7B5spqaiPrDMMIzKvvU/z2ouIiIiIiPQ4KQkxXD5+AN+7ZAj2b93PV3FjARgd+JLYj37Ljx9+gz/8/TPW5ZdhmmYX11ZEROToUGgvPc6k03ozfEAqXl+QP7+9ttW6ffPabz/2FRMREREREZGosBgGJ+dlcuFdPyP+mz8mYHOTa6vkrtj/UL92IT+buYSbf/MR/1zwFZXVjV1dXRERkahSaC89jmEY3HL5yVgtBsvXF7NifXFknUMj7UVERERERI4rvUaexYBb/4+YviNwGgG+F/cp1yYsobK8kr/8dwPf/9UHPPLyclZsKCa437PPREREeiKF9tIj9c1M4NLzBwLw/L/W0OgNAESmx/GW7NCtkiIiIiIiIscJW3wKWd/7JSkTrgLDwihbAb/Kmsf5uQ2EQibL1xfzq5eWc+0jH/LaexspLq/r6iqLiIgcNoX20mNN+9pgeiW7KKls4I35WwCwp+aA1YbprSdQVdLFNRQREREREZFoMSxWks7+NtnX/BpbUjr2xkq+3TCHp79Wy6Xn9Sfe7aCiupE352/hhkfn8/NnP2Hx57vx+YNdXXUREZFDotBeeqwYp40bLx0JwL8WbWVncTWG1YYjrTcAvuLtXVg7ERERERERORpicvLIve53xA4fB2aI0GdvcVHNP3npR6fyk+ljGZ3XC8OANVvL+N3fPuOah+bx/L/WUFBU1dVVFxER6RSF9tKjnTkii9OHZRIMmTz71hpM04zMa+/Vw2hFRERERESOS5aYWNK/9UN6XXI7hj2Gxh3r2TvrXkbHFPLwTWfz4v1f48oLBpOW5KK2wc+7Swq48/eLuPuPi3nv0+3UN/q7+hREREQOSKG99Hg3XjYSh93KuvxyFn62KzKvfd2mT2nYsU5z24uIiIiIiByHDMMg/uQJ5Fz3BI7MAYQaatn7z99S9v4LpMVb+d6FQ3jx519jxg1ncs7J2disBl/t8jDzn6uZ/tA8/jj7czYUlOs7o4iIdDu2rq6AyJHKSHEz7Wt5vDp3Iy//Zz2n/OAkMCz4S3ex568PYk/LJWHMBcSNHI81JrarqysiIiIiIiJR5EjNJuf7j1Kx8O9ULX+H6s/ep2HnBjIu+xGOXn04dUgGpw7JwFPjZeFnu/hg+Q52l9Ty0cpdfLRyFzm94rjgjL5MHNubpHhnV5+OiIiIRtrL8eHS8wfROyOeqlofr69qJPf63xE/+gIMewz+st2Uf/AyO5+6gdJ3Z+Ldk9/V1RUREREREZEoMqx2UidfQ+a0B7DGJuIv3Unhyz+h+vMPIiPpk+KdXDZ+EDPvm8jjt5/L5NP64HRYKSyt5ZV31/P9h+fx2F9WsGrjXoIhjb4XEZGuo9Bejgt2m4VbLj8ZgHnLtlPQEE+vKTfR964XSL3wBuy9+mD6vdSs/ojCl++j8OWfULN6ASG/t4trLiIiIiIiItHiHjianOv/gGvAKZgBH2XvPc/eOU8QbKiJbGMYBkP7p3DXtNG8+uCF3PadUeT1SSIYMlm6Zg8PvbiM6x/5gL+9v4m9FfVdeDYiInKiUmgvx42RA9OYOLY3pgkz/7mGYDCExekmcezXyb3hD2RPf4S44eeC1YZ3z1ZK3/0TO5+6gbIPX8FXXtjV1RcREREREZEosMUlkTnt56RMugYsNuo3L2f3C/fQsHN9m23dMXa+flY/fn/X+Tx1z3guOXcAcS47ZVWNzP5wMzc8+iG/eH4p//uyEH8g2AVnIyIiJyLNaS/HlR9cPJwV64vZVlTFn/65mkmn9WFw32RsVgsxvYcS03soqXU/oGb1Aqq/+ICAp4TqFe9SveJdXP1GEn/qhcSedBqGVf9riIiIiIiI9FSGYSHpzG/i6jucvf/6A4HKYvb8dQZJ475D8rjvYFisbfbpn53IjZeO5PvfGMaydXv4YPkOVn9VxpdbSvlySynxbgcTxuZywel96ZuV0AVnJSIiJwolk3JcSYp3cs03hvGnf67mwxU7+XDFTlxOKyMGpnHKSb04Ja8XvTMSSDr7MhLP+hYN+V9S/dn71G/9nIbta2nYvhZrXDLxp0wmYfTXsCWkdvUpiYiIiIiIyGFyZg0k97rfUfbBi9SuWYTnf2/SULCG9Evvwp6Y3u4+DruV80bnct7oXIrL6/hwxU7mr9hJRXUj73y8jXc+3sbgvslMPq0PY4akk57sPsZnJSIix7seE9r7fD5eeeUV3nnnHXbt2oXb7Wbs2LHccsstDB8+/JDLmzt3Lq+99hqbN28GYPDgwUyfPp2LLrrogPuUlZXxzDPPsGjRIsrKykhLS2P8+PHccccdpKa2DXfXrVvHokWL+OSTT9i6dSv19fUkJyczZswYvv/97zNmzJhDrrcc3IVn9iXObefTNXv48qtSqut8rNywl5Ub9gKQkhDDKXnhAH/UScPInDoGf1UJNZ9/SM3qjwjWVuJZ8g88n8zBfdJYEk69EFf/kzEMzSYlIiIiIiLS01icLtIvuQN3/1Mofe95vLs3Ufjij0mbcgtxQ8/qcN/M1Fiuvmgo37tgMJ9vLuGD5TtYsWEvm3dUsnlHJQAZKW5GDkxj5KBURgxMU4gvIiJHrEeE9j6fj+uuu44VK1aQmprKhAkTKC0t5cMPP2TRokU8++yznHvuuZ0u78knn+S5557D4XBwzjnnAPDJJ5/wwx/+kC1btnDXXXe12aewsJCpU6dSWlrKgAEDmDx5Mps3b+b1119nwYIFvPHGG2RlZUW2DwQCXH755QDEx8czatQo4uPj2bp1K/PmzePDDz/k/vvv5+qrrz7C1pH9GYbBuFE5jBuVQyhksn1PNV9uKeGLLaVs2FZORXUjC1btYsGqXQD0zYxnVF4vRudNZtgZlxPa/hnVn82jced66resoH7LCmzJmSSMuYD4kydidcd38RmKiIiIiIjIoYobcS7OnJMoefuPeIu+ouSt39FwymRSL7gWi93Z4b5Wq4XThmVy2rBMKqsb+WjVLpauKSK/sIq9FfXsrdjJ/JU7AYX4IiJy5HpEaP/CCy+wYsUKRo4cyaxZs4iLiwPg3Xff5Z577uHee+9l/vz5keUdWbVqFc899xwJCQnMnj2bgQMHApCfn8+0adOYOXMm5513HqNHj2613/33309paSnTpk1jxowZGIaBaZrMmDGD2bNn88ADD/DSSy+12mfEiBHcdNNNTJgwAbvdHln++uuvM2PGDB577DHOPvvsSB0k+iwWgwE5iQzISeTbE07C5w+ysaCCL78q5cstJeQXVrGjuIYdxTW88/E2bFaDwX1TGJ13FaNO9pO6Zxm16xYTqCym4qNXqVz0OrHDziZhzIU4c/IwDKOrT1FEREREREQ6yZ6cSfb0R6j8eDaepW9T8+V8GndvIv3SH+HM6NepMpITYvjOxJP4zsSTqG/0s6GggnX5ZazNL2Pr7vZD/BEDU8NB/sA00lMU4ouISMe6fWgfCAR49dVXAXjwwQdbBfMXX3wx77zzDosXL2bOnDlcc801By3vxRdfBODmm29uFZYPHDiQm266iSeeeIIXX3yRP/3pT5F169evZ9myZSQlJXH//fdHglrDMLj//vt5//33WbJkCZs2bWLIkCEA2Gw25syZ024drrzySubPn8+SJUt47733uP322w+xVeRwOexWRuX1YlReL675xjCq63ys2Rp+qNAXW0opqahn/bZy1m8r569AbEwWpwy4kXMTdpNdvhKzfAe1axdTu3YxjvR+JJx6IXEjzsXicHX1qYmIiIiIiEgnGFYbKRP+H65+J1PyzlP4y3ZT9MpPSZk0nYSxFx3S4Cx3jJ2xQzMYOzQDgPpGPxu3V7B2axnr8sv5arenKcSv56OV4bu901PcjFSILyIiHej2of3nn3+Ox+MhNzeXkSNHtlk/ZcoUFi9ezEcffXTQ0N7r9bJ06VKAdueunzJlCk888QRLlizB5/PhcDgAWLhwIQATJ07E6Wx9y5zT6WTixIm89dZbzJ8/PxLaH8zgwYNZsmQJJSUlndpejo6EWEdkKh2APWV1kVH4a74qo7bBzycbKvgEN3Aeo5Jr+FrCNnLrNuIr2U7Ze89T/tGrxI88n4RTL8TRq0/XnpCIiIiIiIh0iqv/yeRe/3tK3/0T9Vs/o/yDl2goWE2vi2/D6k44rDLdMXZOHZLBqUMOHOKXVNTz0QFC/BED08hQiC8icsLr9qH9xo0bAQ74sNlhw4YBRB4o25GCggK8Xi/JyclkZ2e3WZ+dnU1SUhIej4eCggIGDx7cqg4jRoxot9zhw4fz1ltvdaoOzXbuDN8ml5aW1ul95OjLSoslKy2Wi87qRzBkkr/bw5dbSln9VSkbCipYXZnA6spTcBtDOd2Zz/jYrST7PFR/9j7Vn71PTO+hJJx6IbGDz8Sw2Q9+QBEREREREeky1thEMr77M6pXvUf5R3+h/qtV7H7hbtK/dReufm0HDh6q9kL8TdsrWds0nc5Xu9oJ8ZNdjGgahT9ykEJ8EZETUbcP7YuKigDIzMxsd33zco/HQ11dHbGxsQcsq7CwsMOymtd5PB6KiooioX1zHTIyMjqsQ3P5B1NQUMCiRYsAmDRpUqf2kWPPajHI65NMXp9kvjs5j0ZvgPUF5Xy5JTydzqI9ThY3DuUk2x7GxWxhhH0Xjbs20rhrI2ZMPImjJ5M45gLsSeldfSoiIiIiIiJyAIZhkHjaFGL6DKPkX3/AX17Inr89RNLZl5F83lQMa/SiE3eMnTFD0hkzJPw9scEbYGNBBWvzy1jXHOJXNrBg1S4WrFKILyJyour2oX19fT0ALlf7c4a73fv+WB0stD9YWS3Lq6ura7Nfy2MdbJ8D8fl8/OQnP8Hv93PxxRcf8A6CQ2GaZqSOx0JDQ0Or9xPJ0D7xDO0Tz5WTB+Cp9bIuv4I1+Tm8nd+fOZ5KznJ+xVkxW0hqrKH6039R9em/qE0eTMKYr5E+4jQMiyVS1oncjtGkdowetWV0qB2jQ+0YPWrL6OiKdjRNUw+9FxE5hpwZ/ci59nHKP3yFmi/n41n6Fg3b15J+2Y+wJ7U/iO9IuZy2tiH+9qYH225ViC8icqLq9qH98ebBBx9k9erV9OvXjwcffDAqZfr9/sgUPsfS9u3bj/kxu5tUB0wYamH8kDTKqpPYVpzN7D2n4arYypn2zQy27yG+cjPmR5vZPD+Obe5h+HuPIjcnFbczHOCrHaND7Rg9asvoUDtGh9oxetSW0XGs27H5GUsiInJsWBwx9PrGLbgGnELZ3GfxFn3F7hd/TK+LbiRu+LlH/fgup40xg9MZM7htiL8uv5wtOyvbhPi9kl1ND7VNjcyJr4u+IiI9W7cP7ZtHsR9oVFPLEeYdjbLvTFkty2tZVvN+BxrN3t4+7XniiSd46623yMzM5OWXXyYh4fAebLM/u93OoEGDolJWZzQ0NLB9+3b69evX4V0LJ6Lzmt6DwXPZWljNyvVbsOcvIc+7niRLLWMaVhDYvIo16/qQHzuKYFI2I/JyyOuTQnavWGxWS4flS1v6fYwetWV0qB2jQ+0YPWrL6OiKdty6desxOU40+Hw+XnnlFd555x127dqF2+1m7Nix3HLLLYd1Z+ncuXN57bXXIs+MGjx4MNOnT+eiiy464D5lZWU888wzLFq0iLKyMtLS0hg/fjx33HEHqampbbbfs2cPCxcuZO3ataxbt46tW7cSCoV47LHH+Pa3v91h/Wpra3nuueeYN28excXFJCYmctZZZ3HnnXfSu3fvQz5fEel+4oaehTN7ICVv/x/e3ZsoefuP1G9bTdqF12FxHLu/p/uH+I1NIf7aFiF+aQch/sDsWEzTPGb1FRGR6Oj2oX3zA2OLi4vbXd+8PCkp6aCheU5OTodltVzX8kG12dnZbNiwgb1793a4T3P57Xnuued48cUXSUlJ4eWXX+5w20NlGMYBp+45mlwuV5cct6cYPSSO0UOygfHU1dSxdcmHhDYuILGhkDGO7Yzxb6ey2M223em8E0hnZygDe3of+uck0y87gQHZifTPTiTWpQfadoZ+H6NHbRkdasfoUDtGj9oyOo5lO/aUUZI+n4/rrruOFStWkJqayoQJEygtLeXDDz9k0aJFPPvss5x7budHpz755JM899xzOBwOzjnnHAA++eQTfvjDH7JlyxbuuuuuNvsUFhYydepUSktLGTBgAJMnT2bz5s28/vrrLFiwgDfeeIOsrKxW+8ybN4/HHnvskM+3urqaK6+8kq1bt5KTk8OkSZPYuXMn77zzDgsWLOCvf/0rQ4cOPeRyRaT7sSemk331w1T+7x94PplD7ZqFeHdvIv3Su3FmDeiSOsU4bYwenM7oQwjxE9xWTl4fZFReBiMGppLTK67H/I0RETlRdfvQvrnDu379+nbXb9iwASDy0NiO9O/fH6fTSWVlJUVFRa2CeQg/cNbj8RATE0P//v1b1WH+/PmsW7eu3XKb63agOrz22ms8+eSTxMfH89JLLzFw4MCD1lWOL7HxsYy66FK46FK8xdso+XQu3k1LSKaeU63bOdW5HYDGehs7NqZRsDad/wV6sT3Qi8TkJAbkhAP8AdkJ9M9JpFeSS50sERER6RZeeOEFVqxYwciRI5k1axZxcXEAvPvuu9xzzz3ce++9zJ8/P7K8I6tWreK5554jISGB2bNnR/rN+fn5TJs2jZkzZ3LeeecxevToVvvdf//9lJaWMm3aNGbMmIFhGJimyYwZM5g9ezYPPPAAL730Uqt9cnNzmT59OiNGjGDEiBE8/fTTvPfeewet429+8xu2bt3KhAkTeOqppyJTGD3//PP84Q9/4Mc//jHvvPMOVqu1U+0nIt2bYbGScv40XP1HUvL2/+Gv2EPhrJ+RMvEqEk+/GMPo2rul2wvxN+2oYG1+OWu3lrFlVyXV9UGWrClmyZqmQY/xToYPSGXEgPB0On0y4rFY9P1SRKQ76fah/ZgxY0hKSmL37t2sXbuWkSNHtlo/d+5cACZNmnTQspxOJ2effTYLFy7kvffe47rrrmu3rHHjxrWaP3TChAk8/fTTLFiwAK/Xi9PpjKzzer0sWLAAgMmTJ7c55r/+9S9+/etf43a7+fOf/8ywYcM6eeZyvHJmDqD3ZbdTW/U98pcvIMvmI1CcT2PhZmJ8DQy2FzPYHu5MhUzYE0imIL8XWzanMy/Qi/JQHLEuR3gkfk54RP6AnERy0+Ox2zS9joiIiBw7gUCAV199FQg/u6llMH/xxRfzzjvvsHjxYubMmcM111xz0PJefPFFAG6++eZWA10GDhzITTfdxBNPPMGLL77In/70p8i69evXs2zZMpKSkrj//vsjAxsMw+D+++/n/fffZ8mSJWzatIkhQ4ZE9ps8eXKr/ntnBkSUl5fz9ttvY7PZePjhh1t9Z7jxxht599132bJlCwsXLmz3u4GI9FyuPsPJveH3lP73Weo3L6di/l9o2PYliadfgqvfCAxr97hDOsZp45S8dE7JC4f4lZ4a5n+yhrpQAlt2VbN5RwWeGi+frC7ik9VFAMS77QzrHw7wRwxIpX9OIlaF+CIiXarbh/Y2m43p06fz1FNP8dBDD7UZvbN48WKSk5O5/PLLI/usWbOG++67D4D333+/VXnXX389Cxcu5Pnnn2f8+PGtRu88//zzkW1aGj58OGeeeSbLli3j0UcfbTV659FHH8Xj8TBu3LhWXwIAPvjgA37+85/jcDiYOXMmY8aMiW7jSI9msccQSO1P3NChuN1uzFAQf9luGndtorFwM427NhHw7CXHVkmOrZJxbAGgOuRiW6AXBYXprN7ei/8GUwhixWY16JOREJ5aJyexaXqdBOLceoCdiIiIHB2ff/45Ho+H3NzcNoNrAKZMmcLixYv56KOPDhrae71eli5dCtDu3PVTpkzhiSeeYMmSJfh8vkhgvnDhQgAmTpzYanANhAftTJw4kbfeeov58+e36a8fqo8//phgMMgZZ5xBenp6q3WGYXDhhReyZcsWPvroI4X2IschqyuejMvvpeaLDyn/8BUatq2mYdtqDIcL98DRxOadjmvQGKwxHU/deyw5HVYGZMYwdOhA3G43/kCQLTs9rNtWxvr8cjZur6Cm3s/y9cUsXx8ePOaOsTG0X0okxB/UO0nPXxMROca6fWgPcMMNN7Bs2TJWrFjBBRdcwGmnnUZZWRmrVq3Cbrfz+OOPtxrV09DQQEFBQbtljR07lptuuonnn3+eyy67jLPPPhuApUuX4vV6ufXWW9vcbgvw6KOPMnXqVGbPns3KlSsZPHgwmzdvJj8/n/T0dB555JFW25eXl3P33XcTDAbp168f//73v/n3v//dptwBAwZw4403HknzyHHCsFhxpPfFkd6XhFMvBCBQU4m3cDONuzfRuHsz3j3bSKCBUxw7OcWxM7wNVnYF09jq60VBaTrL9qSxYFVMpNz0ZFd4ap2ccIjfPzuRjBS3ptcRERGRI7Zx40aAAz5stvku0+YHynakoKAAr9dLcnJym2ksIfycqaSkJDweDwUFBZGpKZvrMGLEiHbLHT58OG+99Van6nAwBzvf5uXROJaIdE+GYZAw5gJi+gyjasW71G9ZSbDOQ93GpdRtXAoWK64+w3DnnU5s3mnYEnt1dZVbsdusDB+QyvABqTAZAsEQ2wqrWJdfxtr8cjYWlFPXGOCzTSV8tqkECAf/Q/omM2JgGsMHpDK4TzIOu6YAExE5mnpEaO9wOHjppZd4+eWXIw94crvdTJo0idtuu+2AneYDufvuuxkyZAivvvoqy5cvB8JfKK655pp2R/VA+CGzb7/9Nk8//TSLFi3iww8/JDU1lWnTpnHnnXeSmpraavuGhgb8fj8QHsWfn5/fbrmnn366Qns5IFt8MrYhZxI75EwAQn4v3j35eHfvC/JtDTX0t+6lv2vfg5KrbCkUBNLZUJtMQVU6yyvrI6MmAGJjbPRrCvIHNAX5fTLjsdvU8RIREZHOKyoKT62QmZnZ7vrm5R6Ph7q6OmJjDzz6tLCwsMOymtd5PB6KiooioX1zHTIyMjqsQ3P5R6Kz5xuNY4lI9+ZIy6XXlJsxL7oRb9FW6respG7LCvxlu2nYvpaG7Wsp/+AlHBn9ceedRmzeaTgy+ne7wVM2q4W8Psnk9Unm2xNOIhgy2V5Uxfpt5azbVs66/HJq6n2s/qqM1V+VRfYZ3DeZEU3h/9B+KcQ4e0S8JCLSY/SYf1UdDgc333wzN99880G3PeOMMw46umXKlClMmTLlkOqQlpbGQw891Kltc3NzNcJGos5id+LqMwxXn/CoNdM08VcU0bhrUyTI95cXkhio4BQqOKXpBpSAzU2ZI4etvl586UmgoDGV9dvKWb+tPFK21WLQOyOe/k3T6/TPDr8SYjW9joiIiLSvvr4eAJfL1e56t9sd+Xyw0P5gZbUsr66urs1+LY91sH0O17E8lmmakeMdbQ0NDa3e5fCpLaOjx7Vjci4xZ+QSc8ZlBDx78eZ/RmP+5/iLtuDbW4BvbwGe/72JJT6VmIFjcA4YgyN3CIb16Ecyh9OWWSkOslKymDw2i1DIpLC0jo07KtlQUMnG7ZV4an2tvk9aLQb9sxMY1i+Zof2SGNI3CXdM95jjP1p63O9kN6V2jB61ZXR0RTuaptmpC7g9JrQXkbYMw8CRmoMjNQdOCT+MOVhfQ2PhZry7N4XD/D352AL1ZAa+IpOvGBcHWKw0xudSYs9hS2MqK0rj2dtgY/uearbvqWbhZ7sjx0hJcJKVFkd2WizZveLISoslOy2WrNRYjaYQEREROUr8fn9kOp5jZfv27cf0eMcztWV09Nh2dPeHkf0xBtdhL8nHXrIFe9k2QjXl1H/5IfVffkjI5iTQayC+9Dz8vQaCzXnwco/AkbZl73jofbKdC0b2oqImwI5SH9v3etlR4qWqPsjW3VVs3V3FO0vAMCAzyU7fdGfTy4HbeXzc1d1jfye7GbVj9Kgto+NYt2Pzs5k6osRN5DhjdccTe9JYYk8aC4AZ9OMtLgjPid8U5AfrPMRU7aAPO+gDTHaBkZFOQ2I/9liz2FSfyuoSB3sq6qmo9lJR7W01Kr9ZSkIM2b3CAX52r3Cwn9X0inHonxcREZHjXfPI8gONTmo5UryjUfadKatleS3Lat7vQKPS29vncB3LY9ntdgYNGnTE5XRGQ0MD27dvp1+/fh3e6SAHp7aMjuOrHZu+lwV8eHesw7vtc7zbvoD6ahx7NuDYswEsVhy9h4VH4Q8cgzUuJWpHP1ptOa7F51JPQ3gU/o5KNhZUUlzRwJ5KP3sq/SzbXAtA7/Q4hvZLahqNn0xS/NG9SBFtx9fvZNdRO0aP2jI6uqIdt27d2qntlKqJHOcMq52YnDxicvLgjEswTZNAVUmrKXV8JTsxq0uIqS6hP9Af+IbTjW3MSTQm9KHCSGGPP55ttS4KK3wUldVSU++norqRiupG1uUfONDPTmsxOl+BvoiIyHGl+YGxxcXF7a5vXp6UlHTQIDsnJ6fDslqua/mg2uzsbDZs2MDevXs73Ke5/CPR2fONxrEMwzjgNDxHi8vlOubHPF6pLaPj+GpHN7Ejx8HIcZihIN6ir6jbspL6LSvwlxfh27EW3461sOAvOLMGRh5ka+/VJyrz4B/NtuzrdtM3O5WLzgn/XF7V0GpO/F17a9hVUsuuklo+WLEbMDkpzcLobAuDU/xkxzTgdtqw2GxgtWNYbfu97LDfz82f6WiZYYn6uR5fv5NdR+0YPWrL6DiW7djZf9OVnImcYAzDwJ6UgT0pg/iR5wMQaqyjseirpiB/E42FXxHy1uPbvhoLq0kD0oCRGNiSemEfngOJWdQ60igzk9jtjWenx6SorJY9ZXUHDfRTE2Oagvx9gX52rzgyU90K9EVERHqQoUOHArB+/fp212/YsAEg8tDYjvTv3x+n00llZSVFRUWtgnkIPwTW4/EQExND//79W9Vh/vz5rFu3rt1ym+vWmToczMHON5rHEpHjl2GxEpM7hJjcIaROvBpf2e6mB9muxFu4Be+efLx78qlc/Dq2pPRIgB/TeyiGpftPM5Oa6OLcUVmc1d9BYIxBdXEje3fsoL60EGpKSQhVERPyw25gN/gIv6LOYm0V/re6IGBperc1XRCI/Nx0kcDS4iKBzUYgBPaAE3PIkKNRUxGRNpSOiQiWmFjcA07BPeAUAMxQEF/JDhp3bcJXsgNf2W785bsJNdQS8JQQ8JQAX2AFMppep7kTcKTmYB+UQygxi2prCsWBBHbVOdhT3kBRWS1FpXXUNvgpr2qkvOrAgf7+o/MV6IuIiHRPY8aMISkpid27d7N27VpGjhzZav3cuXMBmDRp0kHLcjqdnH322SxcuJD33nuP6667rt2yxo0b12oe0AkTJvD000+zYMECvF4vTue+KRe8Xi8LFiwAYPLkyYd3ki2cd955WK1WPvvsM0pKSkhPT4+sM02TefPmAZ07XxGRZo60XBxpuSSdfRmBWg/1X62ifssKGravJeApoXrFu1SveBeLKw73oFNx552Ge8ApWBxdOyVGyO8l4NmLv3Iv/spiApXF+Cv3EvAU4/eUQigQ2Tau6QVA0yDTRnsC5cF4djfEEDCtWI0gNkJYjRA2glgJYWv+bISwEsJhNXFYQtgNE5sRwkoQixnEMIMYZmi/CgYxQ0FMvzcq5xsHVBR9jmXydFx9R0SlTBGRA1ECJiJtGBYrzswBODMHtFoerKvCV74bf1khvvJC/GWF+Mt3E6gqJVRfTWN9NY27wg9MswI5QK7NgT01B3vfHBxjcgjGZ1JOEnv88RRVeCkqrWNPedtAf21+WZt67R/oZ/eKJTnWii8QarOtiIiIHH02m43p06fz1FNP8dBDDzFr1izi4sKxzLvvvsvixYtJTk7m8ssvj+yzZs0a7rvvPgDef//9VuVdf/31LFy4kOeff57x48czcOBAAPLz83n++ecj27Q0fPhwzjzzTJYtW8ajjz7KjBkzMAwD0zR59NFH8Xg8jBs3jiFRGB2ZmprKpZdeypw5c/jlL3/JU089FbmA8MILL7BlyxYGDhzIhAkTjvhYInJissUlkTB6MgmjJxPyNdKwbTV1X62g/qvPCDXUULt2MbVrF4enQe03kti803CfdBq2+OSjUp9gQ004iK8sxt8ylK8sJlhT0fHOFhv2pHRsyRnYk7OwJ2dgS87EnpyJLSkdiy3876fXH6S8qoHyqkYqmr4PllS3+Lk6/B4Idvy9zyCEFROn1aRXop20ODsp8TZS4mwku20kxVpJdFtJcFmId1qwGyHMUACCAczmV8DfelnTz77aKuo3LsVfnM+evz6Ia8BoUiZchTOzf4d1EhE5XArtRaTTrLGJuGITcfUZ3mp5yNeIv6KoKcxvEepXFGEGfPj2FuDbW0Bd0/Z2oI9hYUBSenh0/ohc7Kk5BOL6UBpKpKgG9pTVHVKgH/9uKWlJrvAr0bXvc1IMaUkuUhNdOO3d/1ZSERGRnuaGG25g2bJlrFixggsuuIDTTjuNsrIyVq1ahd1u5/HHH48E+RB+4FdBQUG7ZY0dO5abbrqJ559/nssuu4yzzz4bgKVLl+L1ern11lsZPXp0m/0effRRpk6dyuzZs1m5ciWDBw9m8+bN5Ofnk56eziOPPNJmn5KSEm6//fbIzzt27ABg5syZzJ49G4BevXrxpz/9qdV+P/3pT1m9ejULFy7k61//OqNGjWLHjh2sX7+e2NhYfv/732O1qs8hIkfO4oghdsgZxA45AzMUpHH3psg0OoHKYhryP6ch/3N473mc2Sftmwc/LbfTcyabZohgTUVTIF9MoGnUfHM4H2qs63B/w+kOT7+anNkUzmdGPtviUzs1nY/TbiU7LY7stLgDbmOaJtV1PiqqG5u+FzZEAv3Iz9WNVNX6CAShrsJke0XHE+/EuuykJsaQmhBDSmIsqYkuUhNjSEmICS9PdJEY58RqMaivr2dP2iiyKtbTsG4RDdu+oHDbF8QOH0fK+VdiT8486HmKiBwKhfYicsQsjph2R+aboSABz158ZYX4ywub3nfjL9tNyFtPoOkWSrZ+FtnHDgyITWJwag72tBwcg8OBvtedQUmjg6Ly+nCYX1bXNOVOLXWNAWrq/dTU+ykoqj5gPRNiHS0C/Zh2Qv4Y7DZ9yRYRETkUDoeDl156iZdffpl33nmHBQsW4Ha7mTRpErfddhvDhw8/eCEt3H333QwZMoRXX32V5cuXAzBs2DCuueYaLrroonb3ycnJ4e233+bpp59m0aJFfPjhh6SmpjJt2jTuvPNOUlNT2+zj8/lYvXp1m+W7du1i165dkXL3l5CQwBtvvMGzzz7LvHnz+PDDD0lMTOSSSy7hzjvvpE+fPod0viIinWFYrLj6DMfVZzgpk67BX7ar6UG2K/EWfRV5VS76G7bkTGLzTseddxpmSh8IBQhU7KG+yNN6KhvPXgKVezGD/g6PbY1L3hfKJ2W2CugtrvioPCj3oOdvGCTGOUmMc9I/O/GA2/kDQSqqvU2BfkNk4Nf+P/v8Qeoa/NQ1+NlZXHPA8iwWg+R4J8nxDly2AKMGj2foheeTkv8evi2fUrd+CXUbPyVh9NdIGncFtriko3D2InIiUmgvIkeNYbFiT8nGnpINnBZZbpomwToP/rLdLcL8QnxluwnWlBOs8xCs89C4s/VD3hz2GE5KzWF4Wg72fjnYx+YQis1jzc5y0rL6U+uFMk8DZVUN4XdPA2WeRsqqGvD6glTX+aiu87GtqOqAdU6Mc7QK8lMTY+iVtG/kfmqign0REZH9ORwObr75Zm6++eaDbnvGGWewefPmDreZMmUKU6ZMOaQ6pKWl8dBDD3V6+9zc3IPW40Di4uK49957uffeew9rfxGRI2EYBo5efXD06kPyOZcTqKmg/qtV1DXPg19ZTNXyd6ha/g6GPYYkfyNt71VuwWLFltir1Sj5luG8xe7saO9uxW6zkpHiJiPFfcBtTNOkrjHQekqeNtPxNOCp8RIKmZGgH2Dt9q+aSjmJEYlZfMP1Odm+7VR/9j7VqxeSdMYlJJ31LSzOAx9fRKQzFNqLyDFnGAa2uGRsccm4+rV+YF3I2xAO8FtOs1NeiL9iD6a/EV9xPr7i/Fb7ZGFgjU8hISmdPknp2BJ7YctMD8+fmDgQa3wq9T6T0uYgv6qxRai/b5nPH6Sq1kdVrY/83QcO9pPinKQlhW+XbA70U5PCn5tvo7TbLEel7URERERERFqyxaeQMOYCEsZcQMjbQP22L6nfsoL6rZ8TaqzFAAy7symEz8TeFMo3f7Yl9urUNDbHC8MwiHPZiXPZ6ZuZcMDtgsEQnlov5VWNFO718MWG7dQHYti5t4495XWsq4pjXdV5nGQ7iUvcn9OXcjyf/JM9S//LzozzsA+fRP/cVPpkJuj7oYgcMoX2ItKtWJwunNmDcGYParXcDAbCcyu2GJnvL9uNr3w3+BoJ1ZTTWFMOTQ/CbcWwYI1PwZnYi75J6QxM7IUtKx370HRsidnYEtLAYqWm3k95VcO+cL/pVV7VSKmngXJPA75AuOPmqfWy9QDBvmGEg/2WQX5aoovkBGfkls6kOCeJcQ6N2hcRERERkaixOF3EDT2LuKFnYQYDVBfmk7+7mMGjxhIbG9vV1etRrFZL0zz3LnLTnCRYKhg6dChut5u6Bj/b91SzrbCKgqI+vL17MEnl6/h6zOdkWKsZXDyP8sIl/K3hFL4MDiA3I5H+2YkMyAm/+mcnEueyd/Upikg3ptBeRHoEw2rDkZaLIy2X2MH7ltfV1bF59SoGZCRja6wmUFWC31NKoKok/PKUYgb9BKvLCFaXdRjq2xN7EZuUTmJiL4YkpmPPTseWmIMtIQ3Daos8/KhVkN8i5C9vmorHHwhRWeOlssbL1l2eDs8rNsa2L8iPbw71HU2h/r5wPyk+hjiXHYvl6M8XKSIiIiIiPZ9htWFP641ZWntM5p0/kcS67AwfkMrwAfuemeIPnM+uYg9lKz8kfst7pFLD/4v7hImB9bxbOoYFRTksWLXvv0N6ipsB2QkMyEliQHYC/XMS6ZXk0n8rEQEU2otID2cYBqYzDkfWINzutvMGmmaIYF0VgapSAp6Sww71bfEp2JLSsSWmk5zYi/SkdEbm9MI2PB1bfCqG1dZ0vHCwvy/ID4f65dWNVNV4qar14an1UlXrJRgKz6VY1xigqKzuoOdqsRgkxjpahPlOEuPbBvzNn2Oc+ideRERERETkWLDbLAzITWFA7lRC/kupXjkXz6f/IrvRw43xC6iO68sy5zmsLIunpLKBkop6SirqWbauOFJGnMveajT+gJxEctPjsFk1vY7IiUaJjogc1wzDEpk/n5y8Nus7G+oHqssIVJcBG9o5SOtQ35bYi4ykdHISe2HLTccW3ycS6u87rkldgz881c5+YX7ze1Wtr2mdl9oGP6GQGRnB3xlOh7UpwN8X5O8bzd96eUKs43CaV0RERERERPZjsTtJOvsy4kd/Dc+n/6J65VwSandwQe0OLs0bS8yZ32WXL5H8wioKiqrYVljFrr011Db4WbO1jDVb9z062G6z0DczvtX0Ov2yEnDHaHodkeOZQnsROaEdq1DfGp+CLS4Za1wS1rhkbLHhz8lxyaTFJWPrlYw1Nr1NuN/MHwhRXdc63K9qCvw9tfuF/jVe/IEQXl8wMnqjM+LddhxWk5T/1ZAYF0O8206820F8rIN4l534WAdxbse+5W4H7hibbt8UERERERFph9UVR+rEq0kcO4XK/71JzeoF1H+1ivqvPiPj5PMZct5U7OcPBMAfCLKjuIaCwiq2FVVRUBSeM7/BG2Dr7qo2z1TLSotlQKt58hNISYjR9zOR44RCexGRDkQr1I9Mv3MQFncCtrgkrLHJWJtC/nDYn4w7Lon42GT6pSVjcaYfsAzTNGnwBqiq9bUaud8c7lfVtF5WXefDNKGm3g9AeU0V0P5DdtvU12IQ77YT53KQEOsgrkWgH++2E+d2kOBusTw2vNzlVNgvIiIiIiInBltCKr2+cQuJZ1xCxaK/U795ObVrFlG7fgmJp36dpHMux+5OYFBuEoNykyL7hUImeyvqwyF+U5i/rbCK8qpG9pTVsaesjk/WFEW2j3XZyUhxR17pyS0+p7hxaQpVkR5D/7eKiByBQwn1g7WVBGs9BGorw5/rPARrKwnUegjWeSAUJFRfja++GtjZ8XHtMS0C/X0hv61pJL81LplesUlkpiZhGB3PfxgMmdTU+Sguq2L9pq2k9srGFzSorfdRXeejtsFPTb2Pmrqm93ofNfV+fP4goZDZdHHAR2Fp59vNajGId7cO+ePc9naD/5brFfaLiIiIiEhP5UjLJfM799FY+BUVC/9K4451VK14l+rVC0g681sknn4xFkdMZHuLxSArLZastFjOOTk7sryq1ts0rU41BUVV5BdWUVhSQ12Dn22F4WC/PfFuBxmpbjKSwyF+RrKLjNRY0pNdpCe79Vw0kW5E/zeKiBxFrUL9DphmiFB9DcG6FqH+AQJ+09eA6W8kUFlMoLK4w3IxLFhjk1qN2A//3DrgT4hLwpERR12Fk6FD09t9qO/+vP4gtU0BfjjUD3+ubRHsN4f8tfV+quvCn/2BEMGQGZ7Pv7Zz8/M3s1kN4lwOYl023DF2Yl3hV5zLTmyLn1svs4WXxdhxOqwK/UVEREREpEvF5JxE1lUzaNj2JRUL/4ZvbwGVi1+netV7JI27goTRkw84dSpAYpyTU/LSOSVv3x3YXn+Q4vI69jZNkbq36VVSGf655fezrbs87ZabFOckPcXVZoR+86h9h90a7aYQkQNQaC8i0g0YhgVrbCLW2EQc6X073DbkayDYNDq/3YC/1kOwrpJgXTWYIYK1FQRrK/AdrA5ONwnWGMpXp1Adl4TVnYDFnYDVFR/+3PRudcdjcSXgiHGTmugiNdF1SOfq9QebAv6mML/ety/8b17eEA75my8AVNf5CQRDBIKHF/Y3s1qM1sH+fkF/rMvWOvyPaQr/m14xCv1FRERERCQKDMPAPXA0rgGjqNvwCRWLXifg2Uv5vBeoWvEfUs6fRuywcw5653Qzp91K38wE+mYmtLu+rsEfCfD3VtSzt7J1uF/fGIh819qy09NuGcnxzlZBfsspeHolu7DbFOqLRItCexGRHsbicGFJcWFPyepwOzMUJFhX1e6o/VYBf20lZtCP6a3HSj3++gr8namIYWkK8PcP9RNa/+yKD4f/7ngMewxOuxVnkou0pM6H/aZpNoX9fuoa/dQ1hF+1Te/1jfs+t1xf1xAIL2/0EwqZBEMm1XXhaX8Oh8VitAjywyP43fsF+3ariae8jurQXhITYnE5bMQ4rbicNlxOGzFOGw6bReG/iIiIiIhgGBbihp9L7JAzqf5iPp4l/yBQWUzJ23/E8em/SZlwFa4Bpxzx94dYl53+rkT6Zye2u762wc/e8jpKKuvZW9HA3oo6Sioamn6uo8EbpLLGS2WNl007Kts5D0hJiAmH+C2n4Gl6Hcr3PxFRaC8ictwyLFZs8SnY4lM63M40TULeeupKiyjYtI7eGanYgl6C9TWEGqoJ1tcQrK8mVF9NsOln09cQHsVfV0WwrqpzIT9gWO1Y3PFYXU0j9luF+gmtQ35XPBZ3PBabA8MwiHHYiHHY6MWhd/ZM06TRF2wd9jf6qW/+uTEc8O8L+5uX7XsFQyahkBm5pfSglrXtyDazWAxcDisxLYJ8l6P5c4uA32HD5WyxXdPPrfaJCS+32zo3AkdERERERLofw2oncexFxJ88nqoV/8Xz6dv49hZQPPsRYvqOIGXC/yMm56Sjdvw4l5243CQGtngQbjPTNKmp97eZdqflZ68vSHlVI+VVjWzcXtGmDEtTqB/rDNFvY5CcXgnhcD8llsxUN8nxMVgsGtgk0kyhvYjICc4wDKwxsdhScwikVBMzaOhB57Q3A36CDU1hftN7q5C/oSnkbxH4m0E/ZtBPsKaCYE3bTtwB6+eI2RfyuxKwuuKwON1YYmLDr1afw+/WmFgsMW4Mqz1yjs1B+OGM8DBNE68vSF3TiP76hkDkc8tgv67Rj6emgbKKKmx2F15/iEZfgEZvkAZfAK8vCEAoZFLXGKCuMXDIdTkQm9WIhPkxDhvupgsAMU3BfnjEvw2XwxoJ+mOaLxw4bDid1sg2zct1R4CIiIiIyLFlcbhIHvcdEsZcgOeTOVR99j6NO9ZRNOunxA45k+Tx38ORmnNM62QYBgmxDhJiHQzqndRmvWmG72iOhPj7TcFTUlGPLxCirKqRMmBHyR5gT6sy7DYL6ckuMlJiI6PzM1LdZKbEkpHqJs5l13cTOaEotBcRkUNm2OydGsXfzDRNTL+3KcxvCvkbavYF+83LG6qbQv7wNpghTF8jAV8jgaqSw6inY79A3x0J+q0tQv72wn9rTCyGbV/oH9MUiB9sDv/6+no2btzI0KFtL34EQyZeX4AGb/jVHOaHPwdo8AbDn33NPzet8wVb7BOgwRekoTG8nT8QAiAQNJseLtXZ+x4OzmKAs2l0v9PRFO47rJE7AiLBf/MFgch21lbhf/N2Lmd4f6ddzwYQEREREemI1Z1A6td+QMLp36Dy4zeoXbOYuk3LqNu8gvhRE0k+97vYElK7uppA+PtSYpyTxDgneX2S26wPhUyqar3s2FPBl+vysbtTKK/eF/KXehrwB0IUltZRWFrX7jHcMbZ9YX5TsJ+Zuu9huTEORZxyfNFvtIiIHHWGYWA4YrA4YiAxvVP7NE/bE2oK+CNT9DTWEWqsI+StI9RY3+Jz+BX01mN668NlBHwEa30Eaw88VU2H9bY52hnJ7468twn+Y2IJmBaMxlpC/kZM09UqnLZaDNwx4XnwoyUQDEUC/8ZWFwSawv2mz43eAPVNFwAaIxcDwhcOGn3hbcMXFIL4/E13BJhEyoPDe/hvewyDVmF/5HOLKYOsFpO6Gg9ri7YS6w4/C8HR9Ap/toQ/O6z71tnCy5t/1u21IiIiItLT2RPTSb/kDpLO+BYVi/5O/VcrqflyPrXrPibhtCkknXUZVldcV1ezQxaLQXJCDE5bEsFaN0OH9m81wCkYDI/C31tRR3F50yj98vBc+nsr6qms8VLfGKCgqJqCoup2j5HU9JDccJjfYrR+ipteSS6s1o6nEzXNEIHKvXj3bidQXYo9JRtnRj+s8akacCRdQqG9iIh0S83T9lhjYrHT8UN392eGgoR8jZEgv2WoH/LW7xf8txP+twz9Az6CdZ5DOn4SULIIMCzh0N/pxuJ0RT4bLT5bnO7ww4VbbRfbenvbgUN+m9VCnNtBXMczGh2S5jsCGn3BVsH+vml+wuF+83ujb9/FgFbbN1008PpaTw9kmjTdVRCEmoNcDNhYe9jnYbNamkJ9SyTwj4T+tvC6fRcBml/7Qn9nexcJmpc59l0kaN7XqosEIiIiInKUONL7kPndn9K4axMVC/9K466NVH36NjVffEjS2d8mYexFWOzOrq7mYbFaLZGA/eRBbdc3+gKt5tOPvMrrKa6oo74xgKfGi6fGy+Z2HpJrsRikJbnIbA71kx3k2GvoFSoltr4IKnbiK9kRfnbb/vvGxOHI6IsjvR/OjH440vth75WLxeY4Gk0hEqHQXkREjjuGxRoJ/A9H+6F/fauQP9jqQsC+4D/YWEvIW48RLohQYy2hxsMPngGw2loH/DFuLA5303vbwD98UaCd8N9i7dzhjsIdARC+Ldbr7/hCQPOymroGiopLiE9IJmQaeP1BvL7wXQC+QAivv+lzi+Vef4hAMBQ5XiAYItAQoq5t3/uosFqMSPBvt4UvFthbBvvNn21W7Psva7qQ4LBb99tn33b2pgsKdluLixA2C3Y9e0BERETkhBHTewhZV/+K+q2fUbHwb/hLd1Kx4DWqVvyXxNMuwt6rD/bkTOxJGR0O/ulJYhw2+mQm0Cczoc060zSpbfA3jcwPj84vjoT6dXgqqsg0ysmpqyDXW0FOSQWZ1ipsRvh7Q8shREGs1MZkYMamEusrx167l1BjLY071tO4Y/2+DQ0L9rQcnOn9cGT0w5HeF0dGP2xxbacGEjlcCu1FRET2cyShf319PRs3bGDwoP7EWCDkawhP89PqFV5mtvzZVx8O/n0NTe/1mL7GcKHBAKGm6YGO6Lyap/txujEcLix2B4bdGV5ud0Y+G/bWP7e7zhbet+Vnw2bHMA5826nFsu+BwMR3oh03+hg6dMhBH4zcUjBk4vcHm0L9EF5/AJ8/1BTqNwf94eXepuW+Ftu3vgjQ+iJB5KKBv/2LBMGQ2TSdUKerGzUOmwW7vf0LBVYLeBvrSf5yNTFOe/gCgM2C3W7Bbm2+UBDez26zRC4E2JsuFLTextK0TXMZTe9Wi6YjEhERETlGDMMg9qSxuAeOpnbd/6j8eDaBqlIqFv6txUYWbAlp2FMysSVnYk/Owp6ShT05E1tyxnEzUtwwDOLdDuJcdvolhfC59+C1F+CjAK+vgEBwb7v7eQ0nRaFUtnuT2B1IpjCYwt5gIiH2fZ+xEiTT6uGk2FoGuKrIslSSHCjBHmzAX7oLf+kuWP+/fdvHJuJI79dqZL49NQfDqvhVDp1+a0RERKLNMLA4XNgOIWxuT/OIf3O/sL/NBQBfexcD9m1rBnzh8g5zup9D0RzsGzbnfuG+Y1+4b3diiXxufRGgeZ0vBLaKPfiLnfgSkvZdOGje9gAjy60WA2vTQ4OPhWDIxB8IB/7+QDjo9/tD+AL7LgL4m0L/8PoQ/qYLAc3h/771of3237dde8tMc189fIEQvsBB7iooajyqbWGzGvsF/02hf8uQv0Xob7O1uBhg3bfO1s5nW9M2tjbbWCPHbe9ddyCIiIjI8cywWIk/eTxxw86h+sv5NO5cj7+iGH/lHkxfI4GqEgJVJVCwZv89sSakhkfkNwX54VA/HPB392l2zFAQf2UxvuICvHsL8O0twLd3O8G6qna3tyak4czojyOzf3iKm8z+2BJ6MdQw8AdClHrqIyP1i8vD8+gXN43UL6xPpbA6lUWR8VMmiUY9ObZKcqyV5Nor6W33kIKHYF0VDQWraShY3eLgNhxpvVtPsZPRD6vrIKOY5ISn0F5ERKSbah7xz2FO89PMDPoJeRtbjOavx/Q2Egr4MP1eTL+31Wcz4CPk92EGvJh+HyG/N/LZDHjD6yKfvRAM7DtWwNd0kaCW4BGefzxQvqK9NUY43Hc0B/kxkVB/X7gfE1lviWzjwLDHYDicWGzO8Ls9ptU2hsOJYbV3Ouy1WgysDhsxx3igkmmaBIJm+xcKAuGfmy8U1NQ2sHNXIWnpGRgWGz5/kEBTyO8PhLcPBELhCw/B8MUDvz+EP7jvooM/EGzaNtS0Pog/GGp14SAQNAkEu+ZOgwOJhP77hf8H+txq2X4XD0wziItGhg7t6rMSERERac2w2UkcexGJYy8Cwn3FYF0Vgcpi/BVF+CuLw6/mQN9bT7C6jGB1GY071rUpzxqfEg7xm0J9W0pTqJ+cgcXhOqbnFgr48JfsbArnt+MtLgjPP+9vZ0CKYcGemo0zcwCOjH7hoD6jP1b3gQNyu81Cdloc2WntP8y3tsEfDvLLw4F+cVOwX1zei02VDYQawx1iOwGyrB5ybBVkW8OBfra1Ehf+posKBa2rGpdCTMa+EN+R0Q97cmanpzSV459CexERkeOcYbVjdds77KweCTMUDIf1fh+h5nA/Ev579/vsa7O89UWD8PqAtwFvXTV2iwGBfcubjojpbyTYXkc9GgxL0x0AMeG7Bva/KOCICd9J4GgxhVDzHQZWe9OdBs0ve/gCgc2+7y4Ea/PdCPZDukDQqoqGgd1mYLdZDvrsgfr6ejY6PAwd2vuQpho6mJYXDvwtLgBEQv+WPzeH/k0XA/xNFxZaXhgIBJrXtf+51bL2tguGCIXMVnUMBFtPYXSkHDaDr59nHnxDERERkS5kGAa2uCRscUnE9B7Sap1pmoTqq5uC/D34K/bgrywm0BTohxrrCNZUEKypoHHn+jZlW+OSm6bYCY/Mbzla3+I8sr5msKEW396CVgG9v2w3mG37c4bNEZ5LPrN/JJx3pPeJ+l0CcS47g3KTGJSb1La+wRClnobIA3H3lIVD/dXldcwrr6e2xkeKpZac5hDfVkmOtYI0ay1mbQUNtRU05H8eKS9ksRNMzMaR3o+E3IHE5gzAkd73iNs1WsxQsMWgrvYGgLX4rtf0Hc5wuLDGJu57uROxxMTqjthOUGgvIiIiR8SwWDEcLnC4iNa4kPCc9hsZOnRoJGje10ls3NdBbH73Nbb62fQ3EvKFO4shX9PPkXVN20fWNb2CfpoOhOlrJOg7utPJNGsZ8LcM9i32FstsdoyW4X/zxYADbGOx7btwEAgEsdRXEqytIEggfKHAZgOL7Yg6yy0vHHQXwZDZOtAPhO8eaP4c2D/0b3pvd91+Fw4avD7ibfWau19ERER6NMMwIgFqTO7gNuuD9TXhML9FkN8c7IcaagjWVhKsrYRdG9vsa41NDM+fn5K1b6R+cia2lKxWzwszTZNAdVl41HyLKW4CVaXt1tniiseZGQ7mm6e5sadkdfmodKvVQmZqLJmpsYyiV5v1tfU+ipsC/eLyegrL6/isvI6Kcg+OmiKyLBWRMD/bWokj5MdSuQOzcgdVmxfTPNlPnS0Jb1wWltQ+uLMHkNo/D1dy+KG3pmliBvxtB0u1CNLDA6taft5v4FTzQKrI53aCeb8PQoE253hYLDassQlY3YlYY5Oafh8Twp/drQN+a2wChvX4eKDyoVJoLyIiIj2CYbFiOF1YnEfnltzwRQFvi7B//4sDjS0uEoR/jnR2A/7I1EBm889+X9O6FsuaOsGwb7T2vimFjp5EoPTjtssNqx1sdgyrrSnM3/9zOOA3rPbW622Opnc7WNvbrr197G3Ws//6Dh5k3BlWi4HVYsVpj/4XuOYLSSIiIiLHM6s7Hqs7npicvDbrgg214TC/ck/TVDvFTYH+HkL11QTrqgjWVeHdvbnNvhZ3AtbEdOK8fkoWlWM21rZ7fFti+r655zP648wcgDU+pUeOzI5zOxjkdjCod1KbdYFgiDJPA8Xldewpr2dZWQ11ewuhchcxdUWkm+VkWytJttYTG/AQ6/GAZyPkQ83/oNy04QaK3w/QFS0TeSaZzbFvilJb08Cj5ueQ2RyEfA1NvxcegvXVmN56CAUid3N0hiUmroNQvzn4D18EMJzuHvm70h6F9iIiIiI0XxRwH/XbT03ThFCgaUSMDzPY/IyA1uF/qEX4v3/w3+ZiQKty/K3Wh5pGyhhmCEKtnzRgBv0Q9NNtJnxpecEgcmHAEVlmse0L+i02B1ibljWtM6yO8AWBFvvsu/hgP8ByR6ttsFiPm46+iIiISDRZXXFYXYMge1CbdaHGOvyVe1uNzPdX7CFQWUywzkOovppQfTV2moavGBYcvXJxZDTNP5/ZH0d6P6yu9ueWP97YWozSPyWydGTkU029Lxzo7ymlenc+wbKd2KoKSfDtJc2swGG0HfUeNA382PCZVnymDb9pbfo5/NlH0/t+y0NWO9j2he4WuxOrIwabIwZbTAyO5pfLRYzLRYzbhSvGjttpxxVjw+G04Y6x4XLasFk7HoQTCvgINV3cCdZXRS70tPrcIuTHDBFqrCXUWIu/vOjgDWu1QUwCZkw8pjP8HnLEEYpJIGiPI+iMI+iIJ2CPI2CLpcEXgMYo3UEQZQrtRURERI4hwzAio9OPxfyULacacsU4MYOB8CsQDuxDTe9mwN+0rvmzP7KdeaD1kfdAuIx2tztAmQF/21tsm+vmazjq7XJgRtuLBjYbpsWGKy4bPYlWREREpC1LTCzOrAE4swa0WRfyNuCvLKaueDuFO7bT5+TTie99UngQhrQr3u0g3u3gpN7JcHrrux78Ph+787eyJX8Hadn9MK0x1PktNPhNGrwB6hsDTe9+GryBVsv2ffYTCHZm6E5j06tzws/cCgf4Lmd4Os5QyCQYMgk1vYKmSSgYImSahEIQDDkJhXoRMtMIBk1CZnh7TBOX4SXeaCTe0kicpZF4oyH8uWlZvNG03NJAjBGAYADqKjDqKiJ3IHR0D25tyMla8yQYO7KDrbqGQnsRERGRE4RhsYbn/ozyA7oOl2mGMIMBaA73A759AX9TyB8K+CAQIBT07Vve8qJBO/uElwX23YnQattAm/Wt70AwDzhlkcNTihmK3oNtRURERE4EFqcLZ2Z/ggkZ+IIJ2DP6K7A/AnaHg4y+/aiob2DokL6RZ4AdKn8g2E6YH6ChMUC9Nxzs7/scaOezP/LZFwg1lRmiqtZHVW00pv80qDdjqDdj2LtfF9xigMViYDEMrNbwu9MSCgf5lgbiLV7iLI3EGQ3E0YCbfe8uGnCZDVgwibN4Ge4ojkJdo0+hvYiIiIh0CcOwYNgc0MVf2sxQsEWIHwhPNbTfxYHGuhoKKhvItnSfB++KiIiIiBwuu81KYpyVxLgjH9ATCIbaCf79AK2CdYvFwGppfrc0Be/hh/pajH3rWm/Xdt8jnc7SDAUJNdRSV1FC5Z7yIz7/o6HHhPY+n49XXnmFd955h127duF2uxk7diy33HILw4cPP+Ty5s6dy2uvvcbmzeGHYwwePJjp06dz0UUXHXCfsrIynnnmGRYtWkRZWRlpaWmMHz+eO+64g9TU1KgeS0RERESOjc7cgWDW12M26EG0IiIiIiL7s1ktkSl9egLDYsUam4jNsENJdVdXp109IrT3+Xxcd911rFixgtTUVCZMmEBpaSkffvghixYt4tlnn+Xcc8/tdHlPPvkkzz33HA6Hg3POOQeATz75hB/+8Ids2bKFu+66q80+hYWFTJ06ldLSUgYMGMDkyZPZvHkzr7/+OgsWLOCNN94gKysrKscSERERERERERERkRNTjwjtX3jhBVasWMHIkSOZNWsWcXHhJ0m/++673HPPPdx7773Mnz8/srwjq1at4rnnniMhIYHZs2czcOBAAPLz85k2bRozZ87kvPPOY/To0a32u//++yktLWXatGnMmDEDwzAwTZMZM2Ywe/ZsHnjgAV566aWoHEtERERERERERERETkzdflLOQCDAq6++CsCDDz7YKpi/+OKLOf/886msrGTOnDmdKu/FF18E4Oabb46E6AADBw7kpptuarVNs/Xr17Ns2TKSkpK4//77I/MmGYbB/fffT1JSEkuWLGHTpk1HfCwREREREREREREROXF1+9D+888/x+PxkJuby8iRI9usnzJlCgAfffTRQcvyer0sXboUoN355JvLWrJkCT7fvqccL1y4EICJEyfidLae69TpdDJx4kQA5s+ff8THEhEREREREREREZETV7cP7TduDD/w60APmx02bBhA5CGvHSkoKMDr9ZKcnEx2dnab9dnZ2SQlJdHY2EhBQUGbOowYMaLdcpvr1rIOh3ssERERERERERERETlxdfvQvqioCIDMzMx21zcv93g81NXVdVhWYWFhh2W1XNd83JafMzIyOtynufwjOZaIiIiIiIiIiIiInLi6/YNo6+vrAXC5XO2ud7vdkc91dXXExsYedlkty2t5AaB5v5bH6uw+h3qsw2GaZuR4x0JDQ0Ordzk8asfoUDtGj9oyOtSO0aF2jB61ZXR0RTuaphl5lpKIiIiIiJw4un1oLwfn9/sjU/gcS9u3bz/mxzweqR2jQ+0YPWrL6FA7RofaMXrUltFxrNvR4XAc0+OJiIiIiEjX6/ahffNo9AONamo5wryjUfadKatleS3Lat7vQKPZO9rnUI91OOx2O4MGDTqiMg5FQ0MD27dvp1+/fh3eSSAdUztGh9oxetSW0aF2jA61Y/SoLaOjK9px69atx+Q4IiIiIiLSvXT70L75Ia7FxcXtrm9enpSUdNDwOycnp8OyWq5r+fDY7OxsNmzYwN69ezvcp7n8IznW4TAM44BT9xxNLperS457vFE7RofaMXrUltGhdowOtWP0qC2j41i2o6bGERERERE5MXX70H7o0KEArF+/vt31GzZsAGDw4MEHLat///44nU4qKyspKipqE5YXFRXh8XiIiYmhf//+reowf/581q1b1265zXVrWYfDPdah8vv9mKbJ2rVrD7uMQ2WaJhAe/aUvk4dP7RgdasfoUVtGh9oxOtSO0aO2jI6uaEefz6f/ZieoY93H178T0aO2jA61Y/SoLaND7RgdasfoUVtGR3fu41uOQV2OyJgxY0hKSmL37t3tdlrnzp0LwKRJkw5altPp5OyzzwbgvffeO2BZ48aNazV/6IQJEwBYsGABXq+31T5er5cFCxYAMHny5CM+1qEyDOOY/89pGAYOh0P/KBwhtWN0qB2jR20ZHWrH6FA7Ro/aMjq6oh27op8n3cOx/m+vfyeiR20ZHWrH6FFbRofaMTrUjtGjtoyO7tzHN8zmSwrd2J/+9CeeeuopRo4cyaxZs4iLiwPg3Xff5Z577iE5OZn58+dHlq9Zs4b77rsPgPfff79VWatWreKqq64iMTGR119/nYEDBwKQn5/PtGnTqK6uZvbs2YwePbrVftdccw3Lli1j2rRpzJgxA8MwME2TGTNmMHv2bMaNG8dLL70UlWOJiIiIiIiIiIiIyImpR4T2Pp+P6667jhUrVpCamsppp51GWVkZq1atwm63M3PmTM4777zI9suXL2f69OkAbN68uU15f/jDH3j++edbjYZfunQpXq+XW2+9lbvuuqvNPoWFhUydOpXS0lIGDhzI4MGD2bx5M/n5+aSnp/Pmm2+SlZUVlWOJiIiIiIiIiIiIyImpR4T2EA7uX375Zd555x127dqF2+3m1FNP5bbbbmP48OGttj1YaA/h6WleffXVyPrBgwdzzTXXcNFFFx2wDmVlZTz99NMsWrSI8vJyUlNTGT9+PHfeeSepqakH3O9wjiUiIiIiIiIiIiIiJ54eE9qLiIiIiIiIiIiIiBzvuv2DaEVEREREREREREREThQK7UVEREREREREREREugmF9iIiIiIiIiIiIiIi3YRCexERERERERERERGRbkKhvYiIiIiIiIiIiIhIN6HQXkRERERERERERESkm1BoLyIiIiIiIiIiIiLSTSi0FxERERERERERERHpJhTai4iIiIiIiIiIiIh0E7auroD0DD6fj1deeYV33nmHXbt24Xa7GTt2LLfccgvDhw/v6ur1CH6/n+XLl7No0SKWL1/Orl27CAaDZGZmMm7cOK6//npycnK6upo9kmmaXHPNNSxfvhyAuXPnMnDgwC6uVc9RU1PDyy+/zPz589m9ezcAGRkZnHrqqdx5551kZGR0cQ17hm3btvHCCy+wfPlySkpKsNls9OnThwsuuIAf/OAHxMbGdnUVu4X169ezdOlS1q5dy7p16ygsLATgo48+Ijc394D77dy5k6effppPP/2UqqoqMjMzufDCC7nllltOyLY91HYsKytj0aJFLF68mLVr11JWVobD4eCkk07ikksuYdq0adhsJ2a38HB/J1vatm0bl156KV6vl1GjRvHmm28ezSqLRI36+EdOffyjQ/37I6c+fnSoj9856uNHh/r40XM89PEN0zTNY3pE6XF8Ph/XXXcdK1asIDU1ldNOO43S0lI+++wz7HY7zz77LOeee25XV7PbW7p0KT/4wQ8AyMrKinwRWrNmDSUlJcTFxfHiiy8yevTorqxmjzR79mwefPBBDMPANE116g/B1q1b+cEPfkBJSQl9+/ZlyJAh+P1+du7cydatW/nb3/7G2LFju7qa3d6qVau47rrraGxspF+/fgwePJiGhgY+//xzamtrGThwIK+//jqJiYldXdUud+utt/LRRx+1Wd5R52n9+vVcffXV1NXVMXz4cPr06cOaNWsoLCwkLy+Pv//978THxx/tqncrh9qOP/7xj/nPf/6D1Wpl2LBh9O7dm7KyMr788kt8Ph+nnXYaL7zwAi6X61hUv1s5nN/JlkKhEN/73vf48ssvMU1Tob30GOrjR4f6+EeH+vdHRn386FAfv/PUx48O9fGj53jo45+Yl1vkkLzwwgusWLGCkSNHMmvWLOLi4gB49913ueeee7j33nuZP39+ZLm0zzAMLrzwQn7wgx+06rR7vV5mzJjBW2+9xT333MO8efOw2+1dWNOepbi4mCeeeIJzzz2Xbdu2Ra6eysFVV1dz7bXX4vF4+N3vfscll1zSav3OnTv1/3UnzZgxg8bGRm699VbuvPNODMMAwOPxcO2117J+/XpefPFF7rnnni6uadc75ZRTyMvLY8SIEYwcOZJvf/vblJWVHXD7YDDI3XffTV1dHffccw833ngjEA6b7rzzThYuXMgTTzzBww8/fKxOoVs41HZMSkrirrvu4oorrqBXr16R5QUFBVx77bWsXLmS5557jh/96EfHovrdyqG25f7++te/8sUXXzBt2jRmz559FGsqEl3q40eH+vjRp/79kVEfP3rUx+889fGjQ3386Dku+vimSAf8fr95+umnm3l5eeaaNWvarL/hhhvMvLw8c9asWV1Qu+NHQ0ODeeqpp5p5eXnm8uXLu7o6PcoNN9xgnnLKKebu3bvNCRMmmHl5eebWrVu7ulo9wq9//WszLy/PfOWVV7q6Kj1aRUWFmZeXZw4fPtz0er1t1v/nP/8x8/LyzKuvvroLatf9nX322WZeXp65a9eudtfPmzfPzMvLMy+++GIzFAq1Wrd3715z2LBh5rBhw8yKiopjUd1u62Dt2JHm39EJEyYchZr1PIfSljt37jRPOeUU88YbbzSXLVtm5uXlmVdcccUxqKXIkVEf/9hQH//wqH9/ZNTHjw718Y+M+vjRoT5+9PTEPr4eRCsd+vzzz/F4POTm5jJy5Mg266dMmQLQ7i0n0nkxMTH069cPgJKSkq6tTA/y9ttvs3jxYu666y7NFXqIvF4vb731Fi6Xi6lTp3Z1dXq0zo6aS05OPso1OT4tXLgQgAsvvDAyuqlZeno6p556KoFAgMWLF3dF9Y4LQ4YMAfT353D84he/AMIj8UR6EvXxjw318Q+d+vdHRn386FEf/+hSH//oUx//8HWXPr5Ce+nQxo0bAQ74IKphw4YBsHnz5mNWp+NRMBiM3PaZlpbWxbXpGcrKynjssccYOXIk06dP7+rq9Djr1q2jpqaGYcOG4XK5+PTTT3n88cf55S9/yZ///Ge2bdvW1VXsMeLi4hg9ejR+v59nn30Ws8WjYjweDy+//DIAV1xxRVdVsUdr/js0YsSIdtc3/33atGnTMavT8WbHjh0ArW6plYP7xz/+waeffsrdd99NVlZWV1dH5JCoj39sqI9/aNS/P3Lq40eP+vhHl/r4R5/6+IenO/XxNae9dKioqAiAzMzMdtc3L/d4PNTV1Z2QT/eOhn//+99UVFSQkpLCmDFjuro6PcLDDz9MbW0tjzzyCBaLrj8eqq1btwKQmprKnXfeybx581qtf/LJJ7n55pu56667uqJ6Pc6vf/1rrr/+embOnMncuXMZPHgwjY2NfPbZZ7hcLh5//HHGjRvX1dXskQ72dygjI6PVdnLoZs2aBcCkSZO6tiI9yN69e/ntb3/LqFGjuOqqq7q6OiKHTH38Y0N9/EOj/v2RUx8/utTHP3rUxz/61Mc/dN2tj6/QXjpUX18PcMAnTbvd7shndegPz+7du/ntb38LwI9+9CMcDkcX16j7mzdvHvPmzePGG2+M3PIlh6aqqgrYd1vivffeyyWXXILVauW9997j8ccfZ+bMmWRnZ2v0SCcMHDiQ119/nbvuuosvv/yS7du3R9adffbZDBo0qOsq18Md7O9Q89+durq6Y1an48mrr77KihUrSEpK4qabburq6vQYDz74II2NjfzqV79SsCQ9kvr4R5/6+IdG/fvoUB8/utTHP3rUxz+61Mc/PN2tj9/1NRA5gdXW1nLrrbfi8Xj4+te/zne/+92urlK35/F4ePjhh+nbty+33357V1enxwqFQgD4/X5uvvlmrr/+ejIyMkhLS+Pqq6/m7rvvBmDmzJldWc0eY9myZXzzm9+kpqaGF198kZUrV/Lxxx/z8MMP8+mnn3LllVeyZMmSrq6mSCuffPIJv/3tb7FYLDz22GO6dbaT/vOf/7Bw4UKuu+46Bg8e3NXVEZFuSH38Q6P+ffSojx9d6uNLT6Q+/uHpjn18hfbSoeZRNg0NDe2ub746CmgEziHyer3ccsstbN68mbPOOosnnniiq6vUIzz22GOUlZXx0EMP4XQ6u7o6PVbLEXTtjbJp/nJZVFTErl27jlm9eiKPx8Ndd92Fz+fjhRde4NxzzyUhIYGMjAymTp3Kww8/jNfr5cEHHyQYDHZ1dXucg/0dah59o79Bh2bNmjXcfvvtBAIBHn74YSZOnNjVVeoRKioq+PWvf02/fv249dZbu7o6IodNffyjR338Q6f+ffSojx896uMfXerjHx3q4x+e7trH1/Q40qHs7GwAiouL213fvDwpKUn/mB4Cv9/PHXfcwYoVKzjllFOYOXOmbpntpI8++gin08nMmTPbjBApLS0F4Cc/+Qkul4urrrqKr3/9611RzW4vJycHAIfDEZkvsKXY2FhSUlKoqKigtLSU3r17H+sq9hiLFi3C4/Fw1llnRdq1pQsuuAC73c7u3bvZtWsX/fr1O/aV7MGys7OpqqqiuLi43dvl9+7dG9lOOmfLli3ccMMN1NfX85Of/ES3xx+Czz//nMrKStxuN9dff32rddXV1UB4PuGrr74agOeee079I+mW1Mc/OtTHPzzq30eP+vjRoz7+0aU+fvSpj3/4umsfX6G9dGjo0KEArF+/vt31GzZsAOg2t470BKFQiHvvvZfFixczZMgQ/vznP7caESEH5/V6WbFixQHXr127FtADVzoybNgwAHw+X7tz1QaDQWpqagD0+3kQzR3K+Pj4dtfbbDbcbjdVVVWReUal84YOHcrGjRtZt24d48ePb7O++e+T5r/tnB07dnDttdfi8Xi47bbbuPbaa7u6Sj1SYWEhhYWF7a6rq6uL/I3SyDvprtTHjz718Y+M+vfRoT5+9KiPf3Spjx9d6uNHR3fr4yu0lw6NGTOGpKQkdu/ezdq1axk5cmSr9XPnzgXUeeos0zR54IEHeO+99+jfvz8vv/wyiYmJXV2tHmXVqlUHXDdx4kQKCwuZO3cuAwcOPIa16nmysrIYPnw469evZ/ny5W1um1u1ahV+vx+Xy8WAAQO6qJY9Q/McgevXrycQCGCztf7Tun379khHvr1ROtKxCRMm8NZbbzFv3jxuu+02DMOIrCspKeGzzz7DZrNx3nnndWEte4Y9e/bw/e9/n9LSUr7//e9z5513dnWVepzJkyezefPmdtctX76c6dOnM2rUKN58881jXDORQ6M+fnSpj39k1L+PHvXxo0d9/KNLffzoUR//yHXXPr7mtJcO2Ww2pk+fDsBDDz1EbW1tZN27777L4sWLSU5O5vLLL++qKvYov/nNb5gzZw65ubn85S9/ITU1taurJCewG2+8EYDHH3+c3bt3R5bv3buXX//61wB85zvf0W3dB3HeeecRExNDYWEhv/vd7wgEApF1FRUVPPDAAwCcfvrppKWldVU1e6yJEyfSr18/tmzZwgsvvBBZ7vP5+OUvf0kgEODyyy8nJSWlC2vZ/VVUVPCDH/yAoqIipk6dys9+9rOurpKIdCH18aNLfXzpTtTHjw718Y8u9fGjQ33845thmqbZ1ZWQ7s3n83HdddexYsUKUlNTOe200ygrK2PVqlXY7XZmzpypq5+dMH/+fG677TYAzjjjjAPOzTZ58mQmT558LKt23NBInEM3Y8YMXn/9ddxuN2PGjMFisfDFF19QU1PDKaecwqxZs3C5XF1dzW7vH//4B7/85S8JhUJkZ2czbNgwGhsbWb16NTU1NaSlpfHXv/6V/v37d3VVu9yiRYtazVe7YcMG/H4/Q4cOjXx5PP/88yP/XgKsW7eOq6++mvr6eoYPH07fvn1ZvXo1hYWF5OXl8fe///2Aty4frw61HW+77Tbmz5+Pw+FgypQprUYztXTfffedcF+ODud3sj0aaS89jfr40aE+/tGl/v3hUR8/OtTH7zz18aNDffzoOR76+JoeRw7K4XDw0ksv8fLLL/POO++wYMEC3G43kyZN4rbbbmP48OFdXcUeofnhFRD+n/5AcnJy1KGXY2bGjBmceuqp/O1vf+OLL74gEAjQr18/Lr74Yq655hqcTmdXV7FHuOKKK8jLy+Mvf/kLn3/+OYsXL8ZqtZKbm8sVV1zB9ddfr1F3TSoqKli9enWb5Rs3box83v927REjRvD222/z9NNP8+mnn7JlyxYyMzO5/vrrufXWW0/IhyQeajs2/w3y+Xy8/fbbByz39ttvP+E69IfzOylyPFAfPzrUx5fuSH386FAfv/PUx48O9fGj53jo42ukvYiIiIiIiIiIiIhIN6E57UVEREREREREREREugmF9iIiIiIiIiIiIiIi3YRCexERERERERERERGRbkKhvYiIiIiIiIiIiIhIN6HQXkRERERERERERESkm1BoLyIiIiIiIiIiIiLSTSi0FxERERERERERERHpJhTai4iIiIiIiIiIiIh0EwrtRUTkhLd7924GDx7M4MGDu7oqIiIiIiISBerji0hPZuvqCoiISM9w9dVXs2LFik5tu3nz5qNcGxEREREROVLq44uIdE8K7UVE5JBkZWWRlZXV1dUQEREREZEoUR9fRKR7UWgvIiKH5PLLL+eOO+7o6mqIiIiIiEiUqI8vItK9aE57EREREREREREREZFuQiPtRUTkqNm9ezeTJk0CwnNgLliwgFdeeYVNmzYRCAQ46aST+H//7//xzW9+84Bl5Ofn8+KLL7J8+XJKSkpwuVwMHjyYb33rW3z729/GarW2u18gEOA///kP7777Lhs2bKCmpobk5GT69u3LxIkTueKKK4iPj29331WrVvHnP/+Z1atX09DQQN++fZk6dSpXXXUVhmEcecOIiIiIiPRQ6uOLiBx9Cu1FROSYeO2113jkkUdISkqiT58+FBcXs3r1alavXs2aNWt44IEH2uwzd+5c7rvvPvx+P263m7y8PKqqqli5ciUrV67kvffeY+bMmcTExLTar6KigltvvZUvvvgCgF69ejFkyBAqKir4/PPPWblyJcOHD+eMM85oc8y33nqLn//85yQkJJCbm0tRURFbtmzhV7/6FYWFhfzkJz85Og0kIiIiItLDqI8vInJ0aHocERE5Jn77299y66238sknnzBnzhyWLFnCjBkzsFgsvPbaYrWrAAAABaZJREFUa7z33nutts/Pz+enP/0pfr+fK664gk8++YS33nqLjz76iFdeeYX4+Hg++eQTHn/88Vb7mabJXXfdxRdffEFWVhazZs1iyZIl/POf/2TBggUsX76cBx98kLS0tHbr+eCDD/KTn/yEpUuXMmfOHD799FPuvvtuAF555RV27tx5dBpIRERERKSHUR9fROToUGgvIiKH5JlnnmHw4MEHfN16663t7nf66adz1113YbOFb/IyDIMrr7yS73znOwDMnDmz1fYvvfQSXq+XvLw8fvWrX+F2uyPrzj777MhomDfffJOSkpLIuoULF7JixQocDgcvvfQSZ511Vqty4+Pj+d73vsfAgQPbrec3v/lNvv/977e6Jfemm24iLy8P0zRZtGhRJ1tKRERERKRnUB9/USdbSkTk2FBoLyIihyQrK4sxY8Yc8DVo0KB297vmmms6XL5lyxb27NkTWf7xxx8DMH369HbnmLz00ktJTU3F7/ezdOnSyPIPPvgAgAsuuOCAnfaOXHXVVe0uHz16NIBG4YiIiIjIcUd9fPXxRaR70Zz2IiJySC6//HLuuOOOQ97vpJNOand5//79sdlsBAIB8vPzycrKoqamhtLSUgDy8vLa3c9utzNgwADKy8vZtm1bZPmWLVuAfR3wQ9WvX792l6empgJQV1d3WOWKiIiIiHRX6uOrjy8i3YtG2ouIyDFxoPklrVYrSUlJwL7OcstO84H2g/DDp/bfvra2FgjfIns4Wt6i25LFEv6TaZrmYZUrIiIiInK8UR9fROToUGgvIiLHRFlZWbvLg8EgHo8HgNjY2FbvHe0HREbqtNw+Li4OgJqamiOqr4iIiIiIdEx9fBGRo0OhvYiIHBNfffVVu8sLCgoIBAIAkfkp4+PjIyNsmm+F3V8gEIjcMjtgwIDI8sGDBwPwxRdfRKfiIiIiIiLSLvXxRUSODoX2IiJyTLz66qsdLs/LyyMrKyuy/Pzzz4+sb+921X//+9+Ul5djt9s555xzIssvvPBCIPywqpbzYIqIiIiISHSpjy8icnQotBcRkWNi+fLlPPPMM5ERN6Zp8uabb/LPf/4TgFtuuaXV9tdeey1Op5MtW7bwy1/+kvr6+si6Tz/9lN/+9rcATJ06NTJiB2D8+PGceeaZ+Hw+rr/+epYvX96q3NraWl5//XXy8/OPynmKiIiIiJwo1McXETk6bF1dARER6VnmzJnD0qVLO9zmF7/4BcOGDWu17Cc/+QmPPPIIr732Gr1796a4uDgyX+X3vvc9pkyZ0mr7gQMH8pvf/Ib77ruPN998k3fffZcBAwZQVVXFrl27ADjnnHO499572xz/ySef5JZbbuHLL79k+vTp9OrVi6ysLMrLyykuLiYYDPLqq69GbtUVERERETmRqY8vItK9KLQXEZFDsmfPHvbs2dPhNu09IOrqq68mOzubWbNmsXHjRgKBACeffDJXXXUVl156abvlTJkyhby8PF566SWWLVvG5s2biYmJYezYsVx66aV8+9vfxmq1ttkvJSWFv/71r7z99tv85z//YfPmzWzcuJGUlBROPfVUJk2axPDhww/r/EVEREREjjfq44uIdC+G2d4kYiIiIlGwe/duJk2aBMDmzZu7uDYiIiIiInKk1McXETn6NKe9iIiIiIiIiIiIiEg3odBeRERERERERERERKSbUGgvIiIiIiIiIiIiItJNKLQXEREREREREREREekm9CBaEREREREREREREZFuQiPtRURERERERERERES6CYX2IiIiIiIiIiIiIiLdhEJ7EREREREREREREZFuQqG9iIiIiIiIiIiIiEg3odBeRERERERERERERKSbUGgvIiIiIiIiIiIiItJNKLQXEREREREREREREekmFNqLiIiIiIiIiIiIiHQTCu1FRERERERERERERLqJ/w+xt8VNUxWWywAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Activation: ReLU, optimizer: adam_optimizer, batchnorm: true\n", + "Activation: ReLU, optimizer: adam_optimizer, batchnorm: false\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABe0AAAGgCAYAAAA3q0zLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxV1f7/8ddhOoCgqDgBOaHgXOCYmnNOTZp1tUHrZl1tnodr3dR7y271bTDNtLRB+920cshMywG01ARRU3EGUREURUFlOkzn9wf3nMuJWQ4cwPfz8fCR7b3X2p/9Qetz1ll7LYPZbDYjIiIiIiIiIiIiIiIO5+ToAEREREREREREREREpIAG7UVEREREREREREREaggN2ouIiIiIiIiIiIiI1BAatBcRERERERERERERqSE0aC8iIiIiIiIiIiIiUkNo0F5EREREREREREREpIbQoL2IiIiIiIiIiIiISA2hQXsRERERERERERERkRpCg/YiIiIiIiIiIiIiIjWEBu1FRKROmThxIsHBwaxYscLRoYiIiIiI1DorVqwgODiYiRMnFjlXmVp7yJAhBAcHExERYY8wyy04OJjg4GBOnz5drfcVEakMF0cHICIitVdwcPBVtXvrrbe488477RyNiIiIiEjd8ve//50VK1Zw/fXX8+2335arzV/+8hf27t3L3XffzRtvvFHFETrO6dOnWblyJd7e3jz44IOODkdExK40aC8iIlctNDS02OO7d+8GoHXr1jRq1KjI+caNG1dZTC1atKBNmzZ4e3tX2T1ERERERKrDnXfeyYoVK9i7dy+xsbEEBgaWen1sbCx79+4FYNy4cXaPpybV2gkJCcydOxd/f/9SB+3btGkDgKurazVFJiJSeRq0FxGRq/bNN98Ue9wyA3/KlCnVPqP+nXfeqdb7iYiIiIhUlZ49e9KqVStOnjzJypUreeGFF0q9fvny5QAEBgYSEhJi93hqY639888/OzoEEZEK05r2IiIiIiIiIiI1lGUSzA8//EBeXl6J1+Xl5bF69WqbNiIiUjtp0F5ERKpV4Q2ojh8/zssvv8yAAQPo3Lkzr7zyivW6qKgo3n77be666y769+9Ply5d6Nu3L3/7298ICwsrsf+SNseKiIggODiYIUOGALBp0yYmTpxIjx49uOGGG7j77rv56aefquahRURERESu0tixY3F2dubcuXNs3bq1xOt+/fVXzp8/j4uLC2PGjOHs2bN89dVXTJ48mWHDhtGtWzdCQ0O58847mTdvHmlpaRWOpayNaCMiInjooYfo0aMHISEhjBs3ju+//77UPtPT0/nhhx947rnnGDVqFN27d6dbt24MHz6cGTNmEB8fX2wckyZNAgqWybFsNmv5VXiz27I2ov3111+ZOnUqffv2pUuXLvTr14/HHnuM33//vcRn1OcKEalqWh5HREQc4o8//uCTTz4hLy+Pdu3a0aBBAwwGg/X8448/TmpqKj4+PjRp0oSmTZty5swZtmzZwpYtW/jb3/7G888/f1X3njt3LnPmzMHX15eWLVsSHx/Pvn37eO6550hJSeH++++312OKiIiIiFRKs2bN6NevH7/++isrVqxg4MCBxV5nGUgfMGAAvr6+vP3223z++ee4u7vj6+tLUFAQqampHD58mAMHDvDTTz/xn//8hwYNGtglzu+++45//OMfmM1mvL29adu2LUlJSbz66qscPXq0xHaRkZG89NJLuLi40LhxY1q1akVmZiaJiYl88803rFmzhs8//5xu3bpZ21ie5ejRo7i5udGlSxebPsu75v6bb77J4sWLgYJ9tzp06MDp06fZtGkTmzZt4tFHH+WZZ54psb0+V4hIVdGgvYiIOMTs2bMZNWoU06dPp379+gBkZWVZz7/wwgv06dOH6667zqbd9u3beeGFF/j0008ZOnQoN9xwQ4Xue+7cOT777DP+7//+j9tuuw2A3Nxc3nzzTf7zn//w3nvvMWbMGLy8vCr3gCIiIiIidjJu3Dh+/fVXwsLCuHTpUpGB9osXLxIeHm69FgoG7wcPHkz37t1xdna2XnvmzBn++c9/EhYWxnvvvcc///nPSscXGxvLzJkzMZvNTJw4kZdeegk3NzfMZjPffvstM2fOtJmgU1irVq346KOP6N+/P/Xq1bMeT0tLY9GiRcybN49XXnmFn376ydrHP/7xDyIiIpg0aRJNmjQpca+t0qxcuZLFixfj7OzMP/7xD8aPH4+TkxN5eXksXryYt99+m08++YQOHTowcuTIIu31uUJEqpKWxxEREYdo06YNb7/9tnXAHsDd3d36+7vvvrvIgD1A3759efbZZ4GCQruicnJymDJlirWwBnBxceGVV16hUaNGZGRk2LxOKyIiIiLiaEOGDKFhw4ZkZ2ezZs2aIud//PFHcnJy8PX1ZdCgQQDceOON9OrVy2bAHqBFixa8//77uLq68uOPP5a6Tn55LVq0iJycHDp16sRrr72Gm5sbAAaDgfHjxzNu3Dhyc3OLbdu2bVtGjBhhM2AP4OXlxdNPP01oaCixsbHs27ev0nEWNm/ePADGjx/PPffcg5NTwRCZs7Mzf/3rX62fFz7++ONi2+tzhYhUJc20FxERhxgzZgwuLqX/bygmJoaff/6ZI0eOkJqaai30LetvHjp06Krufe+99xY5ZjQa6dSpE1u3buXUqVNX1a+IiIiISFVwc3PjtttuY/HixaxYsYL77rvP5rxlaZzbb7/dpsZOS0tj7dq17Nmzh3PnzpGZmYnZbAYKBtQzMjI4ceIEgYGBlYrv119/BShxOZgHHniAb7/9tsT2eXl5hIeH8/vvvxMfH096ejr5+fkAnDx5EoCDBw9y/fXXVypOi9jYWGvN/9e//rXYayZPnszq1as5evQoiYmJ+Pn5FblGnytEpKpo0F5ERByiffv2pZ7/v//7PxYuXGj9UFGc1NTUCt+3YcOG+Pj4FHuucePGQMFmWCIiIiIiNcm4ceNYvHgx0dHRHDt2zFpPHzx4kMOHD1uvsdi5cydPP/00Fy5cKLXfq6mpC7ty5Qrnz58HSq7x27Rpg4uLS7Gz7c+dO8eUKVM4ePBglcZZWFxcHFDwpm/Lli2LvaZdu3Y4OzuTl5fH8ePHiwza63OFiFQlLY8jIiIO4eHhUeK5n376ic8++wyDwcATTzzBDz/8wK5duzh06BBHjhzhyy+/BCjxFdvSeHp6lnjO8kpsaV8UiIiIiIg4QocOHejcuTPwv5n1hX9//fXX065dO6Bghv1TTz3FhQsXuPHGG/niiy/Yvn070dHRHDlyhCNHjtCiRQvg6mrqwgoPTFsGq//M2dm5xAHuv//97xw8eJDrrruO999/n/DwcPbv32+N84477rBLnMXFXFK8ULDUTcOGDW2uL0yfK0SkKmmmvYiI1DiWDx4PPvggTz75ZJHz9pxlIyIiIiJSW4wbN44DBw6wevVqnn/+efLz8/nxxx+t5yy2bNnCxYsXadGiBfPnz7fZOwoKBpMvXbpkl5gKr0V/4cIF/P39i1yTl5dXbA1//vx5tm7dCsAnn3xS7Ez9qqj9LTGX9hZCbm4uKSkpNteLiFQXzbQXEZEa5/Tp0wD07Nmz2PN79+6tznBERERERGqEW2+9FaPRSHJyMr/++ithYWGkpqbi4eHBLbfcYr3OUk937dq1yIA9wNGjR8nIyLBLTN7e3jRp0gQo2JOqOHFxccXOlLfE6ePjU+yAfW5uLtHR0cX2aTAYrjZk2rZtC0BWVlaJ687HxMRYN+mt7Jr/IiIVpUF7ERGpcSxL51jWxizs4sWLrFy5srpDEhERERFxuAYNGjBs2DAAVq5caX1Ddfjw4Xh5eVmvswzUF1dPAyxatMiucd10000AfP3118WeX7x4cbHHLXV/WloamZmZRc6vWrWqxNnwlmcsrl1Z2rZtS6tWrQD44osvir3GcjwoKMi6lJCISHXRoL2IiNQ4lhn2CxYssG4SBRAfH8+UKVOuqjAXEREREakLLMvghIeHW5eWKbw0Dvyvnt6zZw/Lli2zHs/OzubDDz/kxx9/xNXV1W4xPfTQQ7i6unLgwAHeeustsrOzgYJleL777ju+//57XFyKrtDcrl07GjZsSG5uLv/85z8xmUzWcz///DNvvPEGRqOx2Hu2bNkSg8HAxYsXrRvxVsSjjz4KwLJly1i6dKl1/fn8/Hy++uorfvjhBwAef/zxCvctIlJZWtNeRERqnIcffph169aRkJDArbfeSuvWrXFyciImJgYvLy9efvll/vnPfzo6TBERERGRanfjjTfi5+dHYmIiUDB43atXL5trOnXqxB133MEPP/zA66+/zty5c2natCknT57kypUrPPPMM3z33XckJCTYJab27dvz2muvMWPGDL788ktWrFhBq1atSEpK4ty5czzwwANs3LixyP1cXFx44YUXePXVV1mxYgUbNmygZcuWJCcnk5SURP/+/WnUqBGrV68uck8fHx8GDRpEeHg4d911F+3bt7e+bTBt2jQ6duxYasxjx47l4MGDLF68mOnTpzNnzhxatGhBQkICFy9eBGDq1KmMHDnSLjkSEakIzbQXEZEap1mzZixbtozbbruN+vXrWz9cjBkzhpUrV9KuXTtHhygiIiIi4hBOTk6MHTvW+u9jx44tdn33t956ixdeeIE2bdqQkpJCfHw8nTp14uOPP7bOMrenCRMm8MUXX9C3b1/y8vKIjY2ladOmvPHGG0ybNq3EdnfddRcff/wxISEh5OTkEBcXR8OGDXnppZdYsGABzs7OJbZ9++23uf/++2nevDnHjh0jMjKSyMhILl++XK6YX331VT799FMGDx5Mfn4+hw4dwmAwMHToUL788kueffbZCudBRMQeDGbL+z8iIiIiIiIiIiIiIuJQmmkvIiIiIiIiIiIiIlJDaE17ERERERGplOzsbL744gtWr15NfHw8np6e9OjRg0cffZTOnTtXuL+1a9eyZMkSjhw5AkBwcDCTJk1i1KhRJbZJTk5m7ty5bN68meTkZHx9fRk0aBBPPvkkjRs3LnL9mTNnCA8PZ//+/URHRxMTE0N+fj5vvfUWd955Z5kxnjt3jkWLFrF582bOnj2Lq6srLVq0oGfPnjz//PPUq1evws8tIiIiIgJaHkdERERERCohOzubyZMnExkZSePGjenZsyfnz59n165duLq68sknn3DTTTeVu78PPviA+fPn4+bmRr9+/QDYtm0b2dnZPPbYYzz99NNF2iQkJDB+/HjOnz9P27ZtCQ4O5siRIxw/fty6T0qLFi1s2nz55Ze89dZbRfoqz6B9ZGQkjz32GFeuXCEoKIh27dqRnp5OXFwcp06dYsuWLTRv3rzczywiIiIiUlitmWlfG2fvFGfOnDnMnTsXgBkzZnDPPfdUOHYRERERkZris88+IzIykq5du/Lll1/i5eUFwJo1a3j++ed58cUX2bhxo/V4aaKiopg/fz7169dn6dKlBAYGAhAbG8uECROYN28eAwYMICQkxKbdtGnTOH/+PBMmTGDGjBkYDAbMZjMzZsxg6dKlvPbaayxatMimTUBAAJMmTaJLly506dKFOXPmsG7dujJjjI+PZ8qUKbi6ulo3XCzs8OHDNGjQoMx+RERERERKUivWtLfM3nn//fdJSUlh8ODBtG3blg0bNjB+/Hh+++23CvX3wQcf8OyzzxIdHU2vXr3o1asX0dHRPPPMM8yePbvYNgkJCYwZM4ZvvvkGDw8Phg0bhoeHB9988w1jx47lzJkzZd73yJEjLFiwoNhd3UVEREREapvc3FwWL14MwPTp020G5m+99VYGDhxISkoKy5cvL1d/CxcuBGDq1KnWAXuAwMBApkyZYnONxYEDB9ixYwc+Pj5MmzbNWmsbDAamTZuGj48PW7du5fDhwzbthg0bxquvvsodd9xBYGBguWv0f//732RkZDBr1qwiA/YAHTp0wMPDo1x9iYiIiIgUp1YM2heevbN+/Xpmz57Nf/7zH9577z1ycnJ48cUXSUtLK1dfhWfvrFq1ivnz5zN//nxWrVpF/fr1mTdvHnv27CnSrvDsnbVr1/Lhhx+ydu1aJkyYQFJSEq+99lqp983Ly7N+aBgyZMhV5UFEREREpCbZvXs3qampBAQE0LVr1yLnR48eDcCmTZvK7MtkMrF9+3aAYt9+tfS1detWsrOzrcfDw8MBGDJkCEaj0aaN0Wi01t4bN24szyOVKikpifDwcPz9/Rk2bFil+xMRERERKU6NXx6nrNk7q1evZsuWLSxfvpwHHnigzP7Kmr3z7rvvsnDhQj7++GPrubJm7/z888/W2TsdOnQo9r6ff/450dHRzJ49m82bN1c4DyXZs2cPZrMZV1dXu/UpIiIiIo6Xk5ODwWAoshRMTXLo0CGAEper7NSpE4B1ScrSxMXFYTKZaNiwIX5+fkXO+/n54ePjQ2pqKnFxcQQHB9vE0KVLl2L77dy5MytWrChXDGWJiIggLy+P7t27k5+fT1hYGDt37sRkMtG6dWtGjBhRZO38q6EaX0RERKRuKm+NX+MH7csze2fLli1s2rSpzEH78szeeffdd62zd9zc3IDyzd5ZsWIFGzduLHbQPi4ujjlz5jB06FBGjhxp10F7s9lMde4lbDabycnJwdXVVcv8VJJyaR/Ko30oj/ajXNqH8mg/yqV9OCKP1VnjXa3ExESAEjddtRxPTU0lPT2devXqldhXQkJCqX1ZzqWmppKYmGgdtLfE0KxZs1JjsPRfGTExMQDUq1ePiRMnEhUVZXP+vffe49VXX2XChAmVuo+lxq+uPwNms5nc3FxcXFz034lKUi7tQ3m0D+XRfpRL+1Ae7UN5tB9H5LK89V2NH7Sv7bN3zGYzr732Gq6urkyfPr3MGCvKMvumuC80qkJGRgaHDh2iXbt2eHp6Vss96yrl0j6UR/tQHu1HubQP5dF+lEv7cEQe9+/fXy33qYyMjAyAEtdwL5yrsgbty+qrcH/p6elF2pX0cymuzdVKTU0F4Pvvv8fV1ZU33niDoUOHkpWVxffff88nn3zCjBkzuO666+jXr99V38fV1ZXs7GxycnIqHXNF5ObmVuv96jLl0j6UR/tQHu1HubQP5dE+lEf7qe5cludtyho/aF/bZ+/8v//3/4iKiuL1118vsb2IiIiIiNR8lplROTk5/Otf/2Ls2LHWc0899RSXL19myZIlzJs3r1KD9lDwYa5du3aV6qO8MjMzOXHiBK1bt9YmupWkXNqH8mgfyqP9KJf2oTzah/JoP47IpeXNzbLU+EH72jx7JyEhgffee4+QkBDuvffeEu9ZWWaz2RpjVcvMzLT5p1w95dI+lEf7UB7tR7m0D+XRfpRL+3BEHs1mc41/5dlSB5eUl8I1aml1enn6Ktxf4b4s7Uqqh4trc7Us9zIajdxxxx1Fzo8fP54lS5bwxx9/2Cy3eTUMBkO1vx3j4eGhN3LsRLm0D+XRPpRH+1Eu7UN5tA/l0X6qM5flre9r/KB9bfb666+Tk5PDG2+8UaUfuHJycqxL+FSXEydOVOv96jLl0j6UR/tQHu1HubQP5dF+lEv7qO48VmbQtzpYlpw8e/Zssectx318fMocNPf39y+1r8LnCi916efnx8GDB0lKSiq1jaX/yrD00aJFC5ycnIqcDwgIAApesU5JSdGbtiIiIiJyVWr8oH1tnb2zfPlytm7dyuOPP17lr7Xq1dnaSbm0D+XRPpRH+1Eu7UN5tB/l0j5q8quzjtSxY0cADhw4UOz5gwcPAliXnSxNmzZtMBqNpKSkkJiYWGQPqsTERFJTU3F3d6dNmzY2MWzcuJHo6Ohi+7XEVp4YymLZT+vSpUvFnreseQ/2mdkvIiIiItemGj9oX1tn72zatAmAbdu2sXPnTpvrjx8/DsCXX37J2rVrCQ0N5dlnny019tLo1dnaTbm0D+XRPpRH+1Eu7UN5tB/l0j5q4quzjhQaGoqPjw+nT59m//79dO3a1eb82rVrARg6dGiZfRmNRvr27Ut4eDjr1q1j8uTJxfbVv39/mzcQBg8ezJw5cwgLC8NkMmE0Gq3nTCYTYWFhAAwbNuzqHrKQkJAQGjVqxMWLFzly5EiRLwJ+//13AFq1aoWXl1el7yciIiIi16ai73TWMFU5e+fPSpu9A1zV7J0//viDyMhIm1/JyclAwevVkZGRHDt2rMzYRURERERqGhcXFyZNmgTAzJkzSUtLs55bs2YNW7ZsoWHDhowbN856fN++fYwcOZKRI0cW6e/hhx8GYMGCBcTGxlqPx8bGsmDBAptrLDp37kyfPn1ITU1l1qxZ1s1izWYzs2bNIjU1lf79+9OhQ4dKP6+zs7P1/tOnTyclJcUmxtmzZwNU6X5WIiIiIlL31fiZ9rV19s68efNKjOOVV15h5cqVzJgxg3vuuafMuEVEREREaqpHHnmEHTt2EBkZyfDhw+nZsyfJyclERUXh6urKO++8YzPrPDMzk7i4uGL76tGjB1OmTGHBggWMHTuWvn37ArB9+3ZMJhOPPfYYISEhRdrNmjWL8ePHs3TpUnbu3ElwcDBHjhwhNjaWpk2b8sYbbxRpc+7cOZ544gnrv588eRIoqOOXLl0KQJMmTfj4449t2j344IPs3LmT8PBwRo4cyQ033EBWVhZ//PEHWVlZDBs2zPpFhoiIiIjI1ajxM+2vtdk7IiIiIiK1iZubG4sWLeLZZ5/Fx8eHsLAwYmJiGDp0KMuWLWPAgAEV6u+5557jgw8+oFOnTkRERBAREUGnTp348MMPefrpp4tt4+/vz6pVq5gwYQLp6els2LCB9PR0JkyYwKpVq2jRokWRNtnZ2ezdu9f6y7IefXx8vPXYoUOHirRzdnZm3rx5/OMf/8Df35+IiAj27t1L+/btmTFjBnPmzCl2k1oRERERkfKq8TPtofbO3hEREamsnJwc8vLyHB1GtTOZTNZ/avCrcpRL+6hsHp2dnXF1dbV3WDWGm5sbU6dOZerUqWVe27t3b44cOVLqNaNHj2b06NEVisHX15eZM2eW+/qAgIAy4yiJk5MT999/P/fff/9VtRcRkWubanzVpZWhPNpPTa7xa8WgvWX2zueff87q1asJCwvD09OToUOH8vjjj9O5c+cK9ffcc8/RoUMHFi9eTEREBACdOnXigQceYNSoUcW2sczemTNnDps3b2bDhg00btyYCRMm8NRTT9G4ceNKP6eIiIjF5cuXSU5OthYR15r8/HxcXFxITExUIVpJyqV92COPRqMRX19f6tevb+foREREpDZQja+61B6UR/upyTV+rRi0h9o5e6ck//73v/n3v/9d6X5ERKRuunz5MgkJCXh5eeHr64urqysGg8HRYVWrvLw86z4yzs7Ojg6nVlMu7aMyeTSbzeTk5HDp0iUSEhIANHAvIiJyjVGNr7rUXpRH+6nJNX6tGbSXmiH7bCz1dn1LbvMp4NnW0eGIiNRJycnJeHl5ERAQcM0V8haW14Xd3d1ViFaScmkflc2jh4cH3t7enD59muTkZA3aS41iOrmfertXkXfdE+Dp6ehwRETqJNX4qkvtRXm0n5pc4+sdCqkQU8wu3M7HkPHHBkeHIiJSJ+Xk5GAymWjQoME1W8yL1FUGg4EGDRpgMpnIyclxdDgiVlkxu3A7d5T0qJ8cHYqISJ2kGl+k7qqqGl+D9lIhLr4BAOScjXVwJCIidZPlm/66vGGlyLXM8nf7Wtx8Tmou97Y3AJB5eDvmPH2hJCJib6rxReq2qqjxNWgvFeLavB0AOedPYs5VQS8iUlU0A0ekbtLfbamJ3Fp1Jd9YD3PmFTJidjs6HBGROkt1gEjdVBV/tzVoLxXi3KAJ+a4ekJeLKSnO0eGIiIiIiEglGZycyfbrCsCVfeEOjkZERERENGgvFWIwGMj18QfAlHjMwdGIiIiIiIg9mP47aJ8Rs5u89EsOjkZERETk2qZBe6mwPB8/ALISjjo4EhERERERsYd87ya4NmsL+XmkHfjN0eGIiIiIXNM0aC8VltvgvzPtEzTTXkREqteQIUMIDg4mODiYffv2FXvN6dOnCQ4Opl+/flUaS0REBMHBwbzyyitVep+qsGLFCoKDg5kzZ46jQxGRGsSj800AXNmrJXJERKR6qL63D9X3dY8G7aXC8hq0ACA3NUmvzoqIiMN8+OGHjg6h2syZM4fg4GBWrFjh6FBEpA5zD+4Dzi5knzuB6az2rxIRkeql+l7kfzRoLxVmdnXHudF/l8jRuvYiIuIA7u7ubNu2jZ07dzo6FBGROsPJ3Yt6QT0BbUgrIiLVS/W9iC0N2stVcWseCGiJHBERcYz77rsPuLZm44iIVAfvbkMASDvwG+a8HAdHIyIi1wrV9yK2NGgvV8W1RTsATJppLyIiDjB27Fhat25NVFQUv/1WsQ0TDx48yDPPPEP//v3p0qUL/fv359lnn+XQoUNXHc/Fixd5/fXXuemmm+jatSsjRoxg/vz5ZGdnF7n2xIkTzJ07lwkTJlhj6Nu3L48++ihRUVFFrh8yZAhz584F4O9//7t1zc/iXqc9efIkr7/+OjfffDPdunWjV69ejBs3jnnz5pGamlps7ElJSfz973+nX79+dO3alVGjRrF48eJir504cSLBwcGcPn2aLVu2cO+99xISEkJoaCiTJ09m//79JeZox44dTJ06lT59+tClSxcGDRrEtGnTiI+PL3KtZd3SiRMnkp6ezrvvvsvNN99Mly5deOyxxwB45ZVXCA4OJiIigsjISB588EG6d+9Oz549eeyxxzhx4gQA+fn5fP7559xyyy1069aNm266iXfffbfYn42IgEfb63H2akh+xmUyYnY7OhwREblGqL5Xfa/63pYG7eWquP53pn1W4jHM5nwHRyMiItcaJycnnnjiCQBmz55d7nbr1q3jL3/5C+vWraNZs2aMGDGCpk2bsnbtWu6++27Wr19f4VhSU1O5++67+eWXXwgJCaFfv36cO3eODz74gMcee4y8vDyb65ctW8acOXO4cuUKHTt2ZNiwYfj5+REWFsakSZP46aefbK4fMWIEHTp0ACA0NJSxY8daf7Vs2dJ63caNG7n99ttZtmwZZrOZwYMHExoaSmZmJgsXLuTo0aNFYk9MTGTcuHH8/vvv9OzZk9DQUOLj43nzzTf5+OOPS3zmZcuWMWXKFPLz8xk0aBAtWrRg69atTJw4kdjY2CLXf/nllzzwwANs3ryZtm3bMnz4cDw9PVm+fDljxoxh9+7iBwazsrKYOHEiS5cuJTAwkCFDhuDr62tzzaZNm3jwwQdJT09nwIAB+Pr6smnTJu6//34uXrzIM888w0cffYS/vz/9+vUjKyuLhQsXMn369BKfT+RaZnByxqvrQEBL5IiISPVRfa/63kL1/X+ZpVbbt2+fed++fdV2v/T0dHNUVJQ57cpl8/G37zHHvnGn2XQ+vtruX5dYcpmenu7oUGo15dE+lEf7qWwuMzMzzQcPHjRnZmaWeE1+fr45MyunVvzKz8+/qjzk5uaa09LSzLm5uTbHBw8ebA4KCjLHxMSY8/LyzLfeeqs5KCjIvGHDBus18fHx5qCgIHPfvn1t2p49e9Z8ww03mIOCgswrV660Offtt9+ag4KCzCEhIeakpKRyxbhjxw5zUFCQOSgoyHzfffeZr1y5Yj135swZ880332wOCgoyf/XVVzbtdu3aZT558mSR/vbu3WsODQ019+zZ05yRkWFz7qOPPjIHBQWZly9fXmwsp06dMl9//fXm4OBg89dff22T99zcXHNkZKT59OnT1mPLly+3xv7666+bc3JyrOeioqLMHTp0MN9www1F/hzff//95qCgIHOXLl3M27dvtx7Pz883v/766+agoCDzK6+8YtMmOjra3LFjR3OXLl3MW7dutWnz4YcfmoOCgswDBgwwZ2VlWc9ZfoZBQUHmsWPHmi9cuFDkmV9++WVzUFCQOTg42Lxu3Trr8by8PPNzzz1nDgoKMt9yyy3mESNGmM+ePWs9n5CQYO7Vq5c5ODjYHB9f/hqmpD+TFVWev+MW1V3nSc3hqBrf8nfedO6UOfaNO82xs+4256alVlscdYFqKvtQHu1DebQf1fhVV+Orvld9b1Hd9b3ZXLNrfBdHf2kgtZPByRlji0CyTh3ElHAUN98AR4ckInJNMJvNvDx3K4dOXHR0KOXSsXUj3n6iPwaDwe59Ozk58dRTT/HEE08we/Zshg4dWup9vvvuOzIyMhg0aBBjxoyxOXf33Xezbt06tm3bxnfffcfjjz9e7jgMBgPTp0/Hy8vLeqx58+Y8//zzPPXUUyxevJhJkyZZz4WGhhbbT7du3bj//vuZP38+ERERDBo0qNwxfPHFF2RmZjJ+/HjreqCFderUCXd39yLH/fz8mDZtGi4u/ysJu3fvzk033cSWLVuIjo6mV69eRdpNnDiRG2+80frvBoOBp59+mqVLlxIREWFz7ddff01eXh4TJkygX79+Nm2efPJJfv75Z44fP866deuK/FwAXn/9dRo1alTis99yyy2MHDnS+u9OTk48/PDDrFmzhmPHjrFo0SKaNWtm88y33XYbS5YsYefOnQQEqIYR+TO3Jtdh9GuPKfEYaQd+o0GvWx0dkohInaYav4Dq+/9Rfa/6XsvjyFUz+rUHIEub0YqIiIPcfPPNdO7cmaNHj7J27dpSr925cycAt99+e7Hnx44da3NdeXXo0IH27dsXOT58+HA8PDyIj48nKSnJ5lxWVhbr16/n/fff5x//+AevvPIKr7zyirUgtqzXWF7btm0D4K677qpQu969e2M0Goscb9u2LQDnzp0rtt3AgQOLHGvUqBE+Pj5F2pSWdycnJ+644w6b6wrz9fXlhhtuKPUZbrrppiLHLK8Vu7q62nz4sGjdujVQ8vOJCHh3GwTAlb1aIkdERKqP6vsCqu9tXYv1vWbay1Uz+hf8B0yb0YqIVB+DwcDbT/THlJ1X9sU1gNHNuUpm2Rf2zDPP8MgjjzBnzhybGRl/ZimsS5p5cd1119lcV17+/v7FHjcYDLRo0YLjx49z9uxZ62yQXbt28cwzz5RaUKalpVUohjNnzgD/K1bLq0WLFsUer1evHkCJmzn5+fmV2O7PG2JVJu8l3aewwrNsCscBBR8KnJ2di5z39PQESn4+EYF6nfqTvOELss+dwHQ2DmPzNo4OSUSkzlKNb0v1ver74uKAa6u+16C9XDV3vyAAss+dJD87Cye3oq/liIiI/RkMBtyN+l+4xYABA+jevTu7du1i1apV9O7d29EhlSgjI4Mnn3ySCxcuMGXKFG655Rb8/f3x9PTEycmJZcuW8frrr2M2m6slHienq3vpsqq/iLEo7pXfPyvtGa72+UQEnD28qBfUi/RD27myL1yD9iIiVUw1/v+ovr96qu/rjmvnScXuXOo3xtm7EZjzMZ0tupO0iIhIdXn66acB+Pjjj8nNzS32GsuMjdOnTxd73nK8uJkdpUlMTCz2uNlsts6QsfQZFRXFhQsXGDFiBM899xzBwcF4eXlZi8+TJ09W6N4Wlhk1FX3ttjpUVd5FpOp5dxsMQNqB3zDn5Tg4GhERuZaovld9f63ToL1Uirt/wWx7k9a1FxERB+rduzd9+/YlISGB7777rthrevbsCcDq1auLPb9y5Uqb68rr0KFDxMYW/fJ648aNZGZmEhAQQPPmzQG4dOkSgPXfC8vOzmb9+vXF3sPV1RWAvLziX5m2bAC1YsWKCsVeHUrLe35+Pj/88IPNdSJSc3i0vR5nr4bkZ1wm49huR4cjIiLXENX3qu+vdRq0l0r532a0Rx0ciYiIXOueeeYZAP7f//t/xZ6/++678fT0ZPPmzdZC0mL58uVs3boVT09P7r777grd12w2M2PGDJt1KpOSkvi///s/ACZOnGg9btkA6pdffrFZ8zI7O5t//etfxMfHF3uPpk2bAhT74QHgwQcfxN3dnWXLlrF06dIir98ePHiQs2fPVui57OW+++7DycmJ7777jt9//9163Gw2M2/ePGJjY2nWrBmjRo1ySHwiUjKDkzNeXQs2pruyTxvSiohI9VJ9r/r+WqbFsqRStBmtiIjUFNdffz2DBw8mPLz4gaVmzZoxa9YsXnzxRV566SWWLFlCq1atOHHiBNHR0bi6uvL2229bC+jyGjx4MEePHmXYsGH06tWLnJwcduzYQUZGBv369bMp6jt37szAgQPZsmULI0eOpFevXhiNRnbv3s2VK1eYOHEiS5YsKXKP/v374+7uzldffcWxY8do1qwZBoOBcePGERoaSsuWLXn33Xd54YUXmD59OosWLaJz585kZWURFxfHiRMn+PLLL0vcVKsqdenShZdffpm33nqLv/71r/To0YNmzZpZZzB5eXnx4YcfYjQaqz02ESmbd9dBXPp9FRkxu8hNS8XFy8fRIYmIyDVC9b3q+2uZZtpLpRibB4LBibwrF8m9fMHR4YiIyDXu6aefLnUTpVGjRrFs2TJGjhzJmTNn+Pnnnzl79iyjRo3i22+/Zfjw4RW+p4+PD99++y1Dhgxh9+7d/PbbbzRt2pSnn36a+fPn4+zsbHP93Llzefrpp2nevDnbt29n586ddO/eneXLl9OpU6di79G0aVPmz59P9+7d2bNnDytWrOD777+3WeNy+PDhrFy5knHjxpGbm8vGjRvZs2cPnp6ePPLIIwQFBVX42ezlwQcf5Msvv2TgwIEcO3aMX375hfT0dO68805WrlxJaGiow2ITkdK5Nbmu4O1acz5pB35zdDgiInKNUX2v+v5aZTBX1/bFUiX2798PQNeuXavlfhkZGRw6dIiOHTvi6ekJwOmFL5CdFEfTcS/g1eHGaomjLigul1JxyqN9KI/2U9lcWmZOtGnTBnd39yqIsHbIy8sjKysLd3f3IkWxVIxyaR/2ymNF/o5Xd50nNUdNqPELu7zrZ5J//gy3pi3xf/j9UgdPrnWqqexDebQP5dF+VOPbh+pS+1Ae7acm1/iaaS+VZlnXXpvRioiIiIjUPfU69QdnF7LPnSI7Kc7R4YiIiIjUeRq0l0pzt6xrr81oRURERETqHGcPL+oF9QK0Ia2IiIhIddCgvVSa0b9gDS3T2eOY8/McHI2IiIiIiNibd7fBAKRF/4Y5L8fB0YiIiIjUbRq0l0pzbeyHk9ETc46J7HOnHB2OiIiIiIjYmUfb63H2akh+5hUyju12dDgiIiIidZoG7aXSDAanQuvaa4kcEREREZG6xuDkjFfXgYCWyBERERGpahq0F7uwDNpnJWozWhERERGRusi76yAAMmJ2kZuW6tBYREREROoyDdqLXbhb1rXXoL2IiIiISJ3k1uS6gsk65nzSDvzm6HBERERE6iwN2otdGP3aAZCTfJq8rHQHRyMiIiIiIlXBu9sgANL2hWE2mx0bjIiIiEgdpUF7sQvneg1w8WkGgCkxxsHRiIiIiIhIVajXqT84u5B97hTZSXGODkdERESkTtKgvdiNdYkcbUYrIiIiIlInOXt4US+oF6ANaUVERESqigbtxW6M/gWb0WpdexERERGRusu722AA0qJ/w5yX4+BoREREROoeDdqL3Rj9CgbtsxKPaX1LEREREZE6yqPt9Th7NSQ/8woZx3Y7OhwRERGROsfF0QFI3WFs1gacXcjPuExuahKuDZs7OiQRERERqQbZ2dl88cUXrF69mvj4eDw9PenRowePPvoonTt3rnB/a9euZcmSJRw5cgSA4OBgJk2axKhRo0psk5yczNy5c9m8eTPJycn4+voyaNAgnnzySRo3blzk+jNnzhAeHs7+/fuJjo4mJiaG/Px83nrrLe68885yx2oymRgzZgzHjx8HYN++fRiNxgo+ce1icHLGq+tALv2+iiv7wqnXobejQxIRERGpUzTTXuzG4OJaMHAPmBK0RI6IiNjPkSNHCA4OJjQ0lLy8vGKv+etf/0pwcDBDhgwpsZ/bbruN4OBgNm7cCMCKFSsIDg5mzpw5FYrn9OnTBAcHM3HixAq1K83EiRMJDg7m9OnTduuzugwZMoTg4GBHhyEOkp2dzeTJk3n//fdJSUlh8ODBtG3blg0bNjB+/Hh+++23CvX3wQcf8OyzzxIdHU2vXr3o1asX0dHRPPPMM8yePbvYNgkJCYwZM4ZvvvkGDw8Phg0bhoeHB9988w1jx47lzJkzRdr88ssvzJw5kxUrVnD06FHy8/Ov6vnnzp1LXNy1tyGrd9dBAGTE7CI3LdWhsYiISO2j+r5mU33veBq0F7sy/ncz2qxEbUYrIiL2ExQUhI+PD+np6Rw8eLDI+ZycHP744w+gYPDu7NmzRa5JTU3l2LFjGAwGunfvXur95syZQ3BwMCtWrLBL/DVNWR9+RCris88+IzIykq5du7J+/Xpmz57Nf/7zH9577z1ycnJ48cUXSUtLK1dfUVFRzJ8/n/r167Nq1Srmz5/P/PnzWbVqFfXr12fevHns2bOnSLtp06Zx/vx5JkyYwNq1a/nwww9Zu3YtEyZMICkpiddee61Im4CAACZNmsQ777zD2rVrS53FX5IDBw7w+eefM378+Aq3re3cmlxXsDymOZ+0AxX7YkZERET1vX2pvq97NGgvduVu2YxWM+1FRMSOChfiUVFRRc4fOHCAjIwMOnbsCEBkZGSRa6KiojCbzbRv356GDRsCcPPNN7N27Vruu+++KoxepO7Kzc1l8eLFAEyfPh0vLy/ruVtvvZWBAweSkpLC8uXLy9XfwoULAZg6dSqBgYHW44GBgUyZMsXmGosDBw6wY8cOfHx8mDZtGgaDASj478a0adPw8fFh69atHD582KbdsGHDePXVV7njjjsIDAy0tiuvnJwcpk2bRqNGjXjhhRcq1Lau8O42CIC0fWHa00pERCpE9b1I6TRoL3Zl2YzWlBSHOTfHwdGIiEhd0qtXLwB27txZ5Jzl2N/+9jeg+MLfcqxnz57WY97e3gQGBtKoUSO7xytyLdi9ezepqakEBATQtWvXIudHjx4NwKZNm8rsy2QysX37doBiZ71b+tq6dSvZ2dnW4+Hh4UDBa9x/XkveaDRaZ51ZXpu3l08//ZTDhw8zffp0vL297dp3bVGvU38Mzq5knztFdtK1t0SQiIhUjup7kZJp0F7sysWnGU6e9SEvF5MKdxERsaMePXoAsGvXriIzOqOionB1dWXo0KG0atWq2MK/uKK+uDUvhwwZwty5cwH4+9//TnBwsPVXca/TZmdn89FHH3HzzTfTpUsXBgwYwBtvvFHu5UCKs3btWv7yl78QEhJCjx49mDp1arGvDefn57NmzRqef/55RowYQUhICDfccAO33XYbc+bMISMjw+Z6y/NCwWvGhZ/tz6/T5uXlsXz5ciZNmkSvXr3o2rUrQ4YM4YknnmDz5s0lxr5q1SruvPNOrr/+enr16sWTTz7JyZMni1wXERFBcHAwr7zyCleuXOGNN95g4MCBdOnShaFDh/LRRx+Rm5tb7D2uXLnChx9+yC233EK3bt0IDQ1lwoQJfPfdd8WuS/7KK68QHBxMREQE27dv56GHHqJXr14EBwdz6NAhmzVMs7KyeO+99xg6dChdu3ZlxIgR1pnkAEePHuXJJ5+kT58+XH/99dx7773WV7evRYcOHQIocbPZTp06AVg3lC1NXFwcJpOJhg0b4ufnV+S8n58fPj4+ZGVl2awhb4mhS5cuxfZria08MZRXTEwMn3zyCcOHD2fYsGF267e2cfbwwjO4YMDlyt5wB0cjIiK1jep71fcWjqzvjx07xtNPP13j6nsXRwcgdYvBYMDdrz0ZMbswJRzF/b9r3IuIiFRWx44d8fLyIjU1lZiYGNq3L3i7Kz8/n927d9O1a1eMRiPdu3dnxYoVXLx40TrDJj093TqwV7ioL86IESPYvn07hw8fJjQ0lFatWlnPtWzZ0ubanJwcJk+ezMGDB+nZsyft2rVj9+7dLFmyhJiYGL744osKL7nx1VdfsXjxYm644QYGDx7MsWPHCA8PZ9u2bXz66afceOON1mszMzN5/vnnadCgAW3btqVjx46kp6cTHR3N3LlzCQ8PZ8mSJTbxjx07lpUrV+Lp6cmIESOs5yyvFANkZWXx6KOPsn37dtzc3AgNDaVx48acOXOGbdu2cenSJQYNGlQk9vfff59FixbRvXt3Bg0aRHR0NOvXr2f37t38+OOPxc54unz5MuPHjyclJYUePXqQlZVFVFQUH3/8MWfPnmXWrFk2158/f56JEycSFxeHr68vgwcPJjMzk4iICF577TW2bt3Khx9+WGzef/rpJ7799ls6dOjATTfdxJkzZ2yuy8nJ4cEHH+T48eP06tWLNm3aEBUVxZtvvsmVK1cICQnhscceIyAggBtvvJGTJ0+ya9cuHnzwQZYvX26znMu1IjExEYDmzZsXe95yPDU1lfT0dOrVq1diXwkJCaX2ZTmXmppKYmKi9QOqJYZmzZqVGoOl/8rKy8tj2rRpuLu7F7tW/rXGu9tg0g9uI+3ArzQeOgmDi6ujQxIRkVpC9b3qe3BcfZ+enk6vXr2YPHky/v7+Na6+16C92J3RP4iMmF1kJR6jgaODERGROsPZ2ZnQ0FB+/fVXdu7caS3qjxw5wuXLl60zdXr06MGKFSvYuXOntWjds2cPubm5tG3bFl9f31Lv8/LLLzNnzhwOHz7M3XffzZ133lnitXv27KFbt25s3LjRWhSfP3+e8ePH8/vvv7Nz507ra7/l9fXXX/PRRx/ZFNyffvop7733Hi+99BIbNmzA3d0dAFdXV+bOncvAgQNxc3OzXp+VlcXMmTNZsWIFS5YsYeLEidbc9OjRg5UrV9KwYUP+/e9/FxvDrFmz2L59O507d+bjjz+mRYsW1nNpaWns37+/2HbLli1j+fLldOjQASiYpfTUU08RHh7Of/7zH5544okibTZt2sTgwYNZvnw5Hh4eQMGM63HjxrFixQrrILnFjBkziIuLY/DgwXzwwQfWNvHx8UyaNImff/6Z//f//h/3339/sfG99dZbRX6mp0+fBgp+nt27d2fTpk3W5U4OHz7MXXfdxcKFC2nQoAFPPPEEDz/8sLXt22+/zeeff87ChQt56623is1LXWaZ7WX5OfyZp6en9fdlDdqX1Vfh/tLT04u0K3yvstpUxldffcXevXuZOXNmiV8U2IPZbC4ym66qZGZm2vyzIszN2uNUryH56SmkHNiOe/vSB07qusrkUv5HebQP5dF+KptLk8lEfn4+eXl55OXl2TO0WsUym95sNlvzEBISwm+//UZkZCRt27YFCt6iu3z5MqGhoeTl5REaGsqKFSuIiIhg+PDhQMHsfEt937BhQ2t/llnZlnwDvPDCC8ydO5fDhw8zbtw4xo4daxNXXl6etd2ePXvo2rUr69evx8fHByio7++9915+//13IiIiyvyS4M/P+/XXX/Phhx9aY4eCPXref/99XnrpJX7++Wdrfe/k5MRHH33EgAEDitT3//rXv1i5ciWLFy9m0qRJmM1mQkJCCAkJYeXKlfj4+PDmm28WeTaAN998k+3bt9OpUyfmzJljU9+np6ezb98+mz+bltiXLVtmHRSHgvr+2WefJTw8nK+//prHH3/c2saSQ0t9/+2331rruhMnTnD33XezYsUKpk6dir+/v7Xd9OnTiYuLY9CgQbz33ns29f2DDz7Izz//zJIlS2z2KSgc35tvvlnkZ2qZrLFnzx5CQ0NZv369TX3/l7/8hU8//ZRvv/2WqVOn8vDDD1sH+999912++OILPv300yJfMJTE8mcoMzOz2DcDCjObzeX64keD9mJ3RutmtEcdHImISN1kNpsx55gcHUa5GFyNFZ6JUpqePXvy66+/EhUVxb333gv8b71Ly6C9ZUOrwoP2lmvKW2CXl8Fg4M0337SZxdKkSRPuvfde3n33XSIjIys8aD98+HCbAXuARx55hB9//JGjR4/y888/M2bMGADc3Ny4+eabi/Th7u7O66+/zurVq9mwYYN10L48zp07x/Lly61fCBQu6AG8vLxsZgMV9tRTT1kLekt8jz32GOHh4URERBQ7aO/p6cmbb75pM1Dbpk0b7rjjDv7zn/+wc+dO66D96dOn2bRpE25ubsycOdOmzXXXXcdzzz3HCy+8wJdfflnsoH3//v1L/RLGycmJf/3rXzbrk3fo0IEBAwawadMm2rVrx1//+lebNlOmTOHzzz8nIiKixH6l7jh58iSzZ8+me/fujB8/vkrvlZOTY51BWF1OnDhxVe08mnbAPe53zkWsIz3Xq+wG14CrzaXYUh7tQ3m0n8rk0sXFBZOp5BrebDZDbnaJ52sUF7dK1fiF82AZtI+IiLDWuDt27ACgW7duZGVlWZfAi4iIYMCAATbX3HDDDWRlZVn7y8kp2F8xNzfX5rhlWZacnByb43+OyWAw8I9//AN3d3frdd7e3tx1113Mnj2b7du3F7uPT3Esg7dDhw5lwIABNve97777WL16NTExMaxZs4Zbb73Veq5///7k5+cXifOFF17gxx9/ZP369UyaNKnInyez2Vzss50/f54VK1bg6urKu+++S8OGDW2uc3Z2JiQkxOaYZVB86tSptG7d2ubcQw89ZK3vJ0+ebD1u2XPI09OTV199FYPBYG3XvHlzRo8ezXfffcf27du57bbbgII3JsPCwnBzc+OVV16xadOkSROeeOIJXn31Vb766ivGjRtnvZflC4Ybb7yRUaNGFXluS26cnJyYNm0arq6u1mtat25N//792bx5M+3atWPixIk2uZw0aRJffPEFkZGRxeazOCaTidzcXI4fP16u6wt/IVMSDdqL3bm3aAcYyE09R176JZzrab69iIi9mM1mEhe/ium0/dZmrkrGgA74TXrDbgP3lkH3whtRRUVF4eTkRGhoKFBQhPn6+ha5pnB7e/Hz8yMoqOhScJZZQufOnatwn5YCtjCDwcBtt93Ge++9R1RUlPUDjUVsbCy//fYb8fHxZGRkWItsV1fXCn+4jIyMJDc3lwEDBhS7rnhpBg4cWORYWbno0qULjRs3Lle7qKgozGYzvXr1KnaG8y233MKrr75KfHw8Z8+eLbLMSllrj/v5+RX7CqzlFeq+ffsWOefj44OPj89V/azrAsss9pJmHhaeKV7aLPvy9FW4v8J9WdqVNCu9uDZXw2w289prr5Gfn8+//vUvu34hWRxXV1fatWtXpfewyMzM5MSJE7Ru3brUNx1Kktu0Pslxv+OWHIt/S79ruv6vbC6lgPJoH8qj/VQ2lyaTicTERIxGo3VGdWFms5mkr1/HlFBbavxgmt33zwr/v9BsNmMymTAa/zexp0+fPnz00Uf88ccf1tzs3bsXJycnevfujbu7O0FBQTRu3Jg9e/ZYr7GsOd6nTx+bnLq6FizT5uLiYnPcxcXFer64n4FlM/sWLVoUu0+Opea/ePFise2L4+RUsJXo7bffXmyb22+/nffff599+/Zx11132ZyLjY1l27ZtnDp1iszMTJv6/tSpU9aYC/8MDAZDsffZt28fubm53HTTTbRp06ZcsVv6HTp0aJE+LZN0kpOTbc5ZBqI7d+5c7OcIy5vSKSkp1nbR0dHW+v7PSxUB3HHHHfzzn//k9OnTpKamWut7Z2dnAG6++eZSf55+fn7WPZYKa926NQA33XST9XrLM7u7u+Pj48P58+fL/bOGgj9jLVu2tN67JDExMeXrr9x3FiknJ/d6uPr6k5N8mqzEY9Rr38PRIYmI1DFVO1BUk3Xp0gUPDw+SkpKIj4/nuuuuIyoqiqCgIJvZ0d27d2fDhg1cuXIFo9HIvn37ACo8670sf56FbmEZHLTMNqmIwkvBFHf87Nmz1mO5ubm8/vrrLF++vML3KYllfXBLIVsRxRXnXl4Fs24ts57+rCI5tAyMl5QjJycn/Pz8iIuLIykpqcigfVlfQpS0lrplULhp06Ylxpqamlpq33WVJaeF/1wWZjnu4+NT5qC55TXpkvoqfK7wz9LPz4+DBw+SlJRUapvCr2FfjStXrhAZGUn9+vWZMWNGidc99NBDODk58fTTT1vfALoaBoOhxCV/qoqHh8fV3dOzPVf82mNKPEbe8Z14977d/sHVMledS7GhPNqH8mg/V5tLJycnnJyccHZ2tg42FmY2m6GKvwy2LwPOzs4VHrS3zI42GAzWPHTr1s1a3ycmJnLdddexa9cugoKCrMvTQMFbtRs2bCAjIwOj0WhdrrFPnz42ObUMlFvyXdbxP5/38/Mr9rzls0Zubm6x54tjyU/Lli2LbXPdddcBkJSUZD1fkfq+cB6L+3cLSy3Upk2bCsceEBBgzY1F/fr1gYL6vrgcVySH58+ft96nuDbOzs7W+j45OdlazxWOr7SfZ/PmzYs9b/mMYqn//5w7S31f3nw5Ozvj5OSEh4dHmQP95f17o0F7qRJGvyBykk9jSjiqQXsRETsyGAz4TXrjml0ex9XVlRtuuMG6Xnx2djYXLlxg1KhRNtf16NGDX375hV27duHl5UV2djYtW7a0+/rTfy5gq9tXX33F8uXLadeuHc8//zxdunShYcOG1hlG/fv3txbC1eFq8lGdOSyrgC4rFkf/vGuijh07AnDgwIFizx88eBDAumlsadq0aYPRaCQlJYXExMQiX7IkJiaSmpqKu7u7zSyxjh07snHjRqKjo4vt1xJbeWIoj8uXLxMZGVniecubPdfaFzne3QZjSjzGlb3hNOh1W5W/iSAiUpdcyzW+6ntbqu8rpi7X9xq0lyrh7t+etH1hmBKPOToUEZE6x2AwYHAr/2t6dU3Pnj2tRb1l9rZlHXuLwuvaW2ZRVGbGa3VKSEiwWRfewrJZauEPJr/88gsAH3zwQZFlejIyMkhOTq7w/S0DpTVx/VvLTHdLLv4sPz+fM2fOAFTpBqHyP6Ghofj4+HD69Gn2799fZI3XtWvXAgWvVpfFaDTSt29fwsPDWbdunc0aqYX76t+/v806oIMHD2bOnDmEhYVZX7m3MJlMhIWFAWUvj1SW+vXrc+RIycsWWL4U2LdvX5mvRddF9Tr148KGL8g5f4rss3EYW7R1dEgiIrXKtVzjq75Xfa/6vqia+3WC1GpG/4L/sGQlxmA2l75rsoiISEUUXtf+z5vQWnTo0IF69eoRFRVlnfVakaVxLDNZLK/wVqc1a9YUe/ynn34CbNflv3TpElD8EjNr1qyxrn35Z66urtbNuP6sd+/euLi48Pvvv1sL5JqiR48eGAwGIiIiil0KZd26dWRlZXHdddeVuNSN2JeLiwuTJk0CYObMmaSlpVnPrVmzhi1bttCwYUObjcP27dvHyJEjGTlyZJH+Hn74YQAWLFhAbGys9XhsbCwLFiywucaic+fO9OnTh9TUVGbNmmX9c282m5k1axapqan079+/2A/LYj/OHl54Bhf8d/bKvnAHRyMiIrWJ6nvV96rvi9KgvVQJtybXYXA1YjZlkJOc4OhwRESkDrn++utxc3Pj1KlT/Prrr7Rs2bLIWuPOzs6EhIRw4MABdu/eDVRsE1pLf4UHDavLL7/8wsaNG22OLVq0iMOHD9OkSRNGjBhhPW5ZImTJkiU21+/fv5/33nuvxHs0bdqUCxcuWD8UFNakSRPGjRtHTk4OTzzxRJHiOT09nd9//73Cz2UPAQEBDBkyhJycHKZPn05WVpb13OnTp63P/OCDDzokvmvVI488Qq9evdi/fz/Dhw/n6aef5r777uP555/H1dWVd955xzojDgo284uLiyMuLq5IXz169GDKlClcunSJsWPHMnXqVKZOncrYsWO5fPkyjz32GCEhIUXazZo1iyZNmrB06VJuueUWnn32WW655RaWLl1K06ZNeeONN4q0OXfuHH/5y1+sv7Zv3w7AvHnzrMcef/xxO2aq7vPuNhiAtAO/Ys4tfh8LERGRP1N9r/pe9X1RWh5HqoTByRlji0CyTh3ElHgMtybXOTokERGpI4xGI926dSMqKopLly6VuOxGjx492Lp1Kzk5Ofj5+ZW4eWlx+vfvj7u7O1999RXHjh2jWbNmGAwGxo0bR2hoqL0epVj33nsvjz/+OCEhIfj7+3Ps2DGOHDmCm5sbb7/9Nh4eHtZr//a3v7F161Zmz57NL7/8QmBgIOfOnWPXrl2MHj2aPXv2kJBQ9MvzoUOHsnjxYsaOHUtISAju7u40bNiQF154AYC///3vxMXFERkZybBhw+jevTuNGzfmzJkzHDp0iC5dunDjjTdWaR5KMnPmTI4fP054eDjDhg2jR48eZGZmsmPHDrKyshg5ciT33nuvQ2K7Vrm5ubFo0SI+//xzVq9eTVhYGJ6engwdOpTHH3+czp07V6i/5557jg4dOrB48WIiIiIA6NSpEw888ECR9W0t/P39WbVqFXPmzGHz5s1s2LCBxo0bM2HCBJ566ikaN25cpE12djZ79+4tcjw+Pp74+Hhrv1J+Hm264ezViLy0i2TE7KJehz6ODklERGoB1feq71XfF6VBe6kyRv8gsk4dJCvhKN7XD3F0OCIiUof07NnT+lrsn9e7tCj8Sm1F17ts2rQp8+fP5+OPP2bPnj1kZGRgNpvp3r17lRf1Dz74IDfccANffvklmzZtwtnZmYEDB/LUU0/RpUsXm2tDQ0NZtmwZH3zwAQcOHODkyZO0bNmSl19+mUmTJpW4hvdzzz0HwKZNm/j555/Jzc3F39/fWtR7eHjwxRdf8P333/PDDz+wb98+cnJyaNKkCTfddBN33XVXleagNE2aNOG7775j4cKFrF+/nk2bNuHi4kKHDh246667GDduXI3eUKqucnNzs86KL0vv3r1LXRseYPTo0YwePbpCMfj6+jJz5sxyXx8QEFBmHBVhz75qK4OTM15dB3Dp91Vc2ReuQXsRESk31fcFVN+rvrcwmEtaDElqhf379wMU2fSrqmRkZHDo0CE6duyIp6dnqdemH95B0vJ3cWvamoBHSn6F51pVkVxKyZRH+1Ae7aeyuczKyiIuLo42bdrg7n5tbkQFBWtNZmVl4e7ujrOzs6PDqdWUS/uwVx4r8ne8uus8qTlqco1fluzk05xe8DQYnGj51Ge4ePnYJ8haQjWVfSiP9qE82o9qfPtQXWofyqP91OQa/9r7mkKqjdGvPQDZ50+Rn51VxtUiIiIiIlLbufkGFHwOMOeTduBXR4cjIiIiUitp0F6qjEv9xjh7NwZzPqYz1b/Rh4iIiIiIVD/LhrRX9oajF7tFREREKq7WrGmfnZ3NF198werVq4mPj8fT05MePXrw6KOPVnhzK4C1a9eyZMkS69qTwcHBTJo0qcTNrQCSk5OZO3cumzdvJjk5GV9fXwYNGsSTTz5Z7OZW27dv56effuLgwYMkJSVx+fJl3N3dadeuHbfeeivjx4/H1dW1wrHXJu7+7Uk/fAFT4jE8WlX85yQiIiIiIrVLvU79uLDhC3LOnyL7bBzGFm0dHZKIiIhIrVIrZtpnZ2czefJk3n//fVJSUhg8eDBt27Zlw4YNjB8/nt9++61C/X3wwQc8++yzREdH06tXL3r16kV0dDTPPPMMs2fPLrZNQkICY8aM4ZtvvsHDw4Nhw4bh4eHBN998w9ixYzlz5kyRNj///DPff/89GRkZdOzYkeHDh9OpUyeio6P517/+xaRJkzCZTFeVk9rCskROVsJRB0ciIiIiIiLVwdnDC8/gXgBc2Rfu4GhEREREap9aMdP+s88+IzIykq5du/Lll1/i5eUFwJo1a3j++ed58cUX2bhxo/V4aaKiopg/fz7169dn6dKlBAYGAhAbG8uECROYN28eAwYMICQkxKbdtGnTOH/+PBMmTGDGjBkYDAbMZjMzZsxg6dKlvPbaayxatMimzX333ceTTz5JkyZNbI4nJSXx17/+ld27d7N48WIeeeSRyqSnRjP6BwFgSjjm4EhERERERKS6eHcbTPrBbaQd+JXGQydhcKnbbxiLiIiI2FONn2mfm5vL4sWLAZg+fbrNwPytt97KwIEDSUlJYfny5eXqb+HChQBMnTrVOmAPEBgYyJQpU2yusThw4AA7duzAx8eHadOmYTAYADAYDEybNg0fHx+2bt3K4cOHbdoFBwcXGbAHaNasGX/7298A+P3338sVd21lbBEIBify0i6Se/mCo8MREREREZFq4NGmG85ejcjPTCMjZpejwxERERGpVWr8oP3u3btJTU0lICCArl27Fjk/evRoADZt2lRmXyaTie3btwMUu3a9pa+tW7eSnZ1tPR4eXvBK55AhQzAajTZtjEYjQ4YMAWDjxo3leSQA61r2bm5u5W5TGzm5GnFr2gqArEQtkSMiIiIici0wODnj1XUAoCVyRERERCqqxg/aHzp0CKDEzWY7deoEYN1QtjRxcXGYTCYaNmyIn59fkfN+fn74+PiQlZVFXFxckRi6dOlSbL+W2MoTA0BKSop1KZ2BAweWq01tZvQvWNfepHXtRUTKzWw2OzoEEakC+rst1xLvboMByIjZTW5aqmODERGpAVQHiNRNVfF3u8avaZ+YmAhA8+bNiz1vOZ6amkp6ejr16tUrsa+EhIRS+7KcS01NJTExkeDgYJsYmjVrVmoMlv7/bM+ePSxbtoz8/HySk5PZvXs3mZmZ3H333fzlL38pMZa6wt2vPVd2r9e69iIi5eDkVPB9el5enoMjEZGqYPm7bfm7LlKXufkGYPRrjynxGGkHfsWn9+2ODklExCFU44vUbVVR49f4QfuMjAwAPDw8ij3v6elp/X1Zg/Zl9VW4v/T09CLtCt+rrDaFnTp1ipUrV9ocmzRpEk8//TTOzs4lxlJeZrPZGmNVy8zMtPlneZgbtwQg60ws6VcuY3Cu8X/sqsXV5FKKUh7tQ3m0n8rm0vINfXp6eqn/v6rrLHkwm836cFNJyqV92CuPlnoxJyeH3NzcMu9p2UtJpLby7jYYU+IxruwNp0Gv2/RnWkSuSa6urjg7O5OZmWmzV6OI1A2ZmZk4Oztbl0O3B42eVoM77riDO+64g5ycHBITE1m3bh0LFixg8+bNLFy4kFatWlWq/5ycHOsSPtXlxIkT5b/YbKaBixGnXBPHon4jr37JbzpciyqUSymR8mgfyqP92COXHh4edvlytzYzmUyODqHOUC7tozJ5zMvL4+LFi2RkZHD48OFytanr+x9J3VevUz8ubPiCnPOnyD57HGOLQEeHJCJS7QwGA56enly6dIlGjRpd8zW+SF2Sl5fHpUuX8PT0tOvkhBo/aG+ZxV7SjMXCM8xLm2Vfnr4K91e4L0u7kmazF9emOK6urrRq1YqpU6fSokULXnrpJWbMmMEXX3xRaruyuLq60q5du0r1UV6ZmZmcOHGC1q1bV2gG6MVD7ck+FU2Aez6eHTtWYYS1x9XmUmwpj/ahPNqPPXJp+ZL3/PnzNGzYEDc3t2tuZqLZbCY7O/uafHZ7Uy7tozJ5tLRNSUkBoF27duWahRMTE3NVsYrUJM4eXngG9yL94Dau7AvXoL2IXLOaNm3KiRMnOHnyJI0aNcJoNF5ztVleXp51AoS+uLh6yqP9VCaXZrMZk8nExYsXyc/Pp2nTpnaNrcYP2ls2jD179myx5y3HfXx8yhw09/f3L7WvwucKb1Tr5+fHwYMHSUpKKrWNpf/yGD16NK+99hq///47GRkZJS69Ux6Wb2yrk4eHR4XumdWyA9mnoslPPlHtsdZ0Fc2lFE95tA/l0X4qm0tXV1eSk5NL/H9PXZefn09ubi4uLi5a+7uSlEv7sEce69WrR4sWLcr934Zr7YO81F3e3QaTfnAbaQd+o/HQBzC42O/VcRGR2sLNzY2AgACSk5M5c+aMo8NxCNWl9qE82o+9avzmzZvb/Q3ZGj9o3/G/s7IPHDhQ7PmDBw8CWDeNLU2bNm0wGo2kpKSQmJhoMzAPBRvOpqam4u7uTps2bWxi2LhxI9HR0cX2a4mtPDFYuLq64u3tzYULF0hJSanzg2TufkEA2oxWRKScPD09admyJbm5uWWue10XZWZmcvz4cVq2bKm3PypJubSPyubRxcUFF5caX3qLVAmPNt1w9mpEXtpF0mOi8Opwo6NDEhFxCNX4qkvtQXm0n5pc49f4Tw6hoaH4+Phw+vRp9u/fT9euXW3Or127FoChQ4eW2ZfRaKRv376Eh4ezbt06Jk+eXGxf/fv3t/l2ZPDgwcyZM4ewsDBMJhNGo9F6zmQyERYWBsCwYcPK/VwxMTFcuHABT09PmjRpUu52tZXRvz0AORcSyMtKx9m99LciRESkwLU60Jefnw8U/L/b3d3dwdHUbsqlfSiPIlfP4OSMV9cBXPp9FWl7wzVoLyLXPNX4qqcqQ3m0n5qcyxr/DoWLiwuTJk0CYObMmaSlpVnPrVmzhi1bttCwYUPGjRtnPb5v3z5GjhzJyJEji/T38MMPA7BgwQJiY2Otx2NjY1mwYIHNNRadO3emT58+pKamMmvWLMxmM1CwdtGsWbNITU2lf//+dOjQwdomIyODxYsX28RrceTIEV544QUAbr/99mtigzFnz/q4NCzYgNaUqNn2IiIiIiLXEu9ugwHIiN1DblqKg6MRERERqdlqxdd6jzzyCDt27CAyMpLhw4fTs2dPkpOTiYqKwtXVlXfeeQcvLy/r9ZmZmcTFxRXbV48ePZgyZQoLFixg7Nix9O3bF4Dt27djMpl47LHHCAkJKdJu1qxZjB8/nqVLl7Jz506Cg4M5cuQIsbGxNG3alDfeeMPm+tzcXN58803effddOnXqhJ+fH7m5uSQkJHDw4EHMZjO9evXipZdesmOmajZ3v/akpZzFlHAMz7Y3ODocERERERGpJm6+ARj92mNKPEZa9G/49Lnd0SGJiIiI1Fi1YtDezc2NRYsW8fnnn7N69WrCwsLw9PRk6NChPP7443Tu3LlC/T333HN06NCBxYsXExERAUCnTp144IEHGDVqVLFt/P39WbVqFXPmzGHz5s1s2LCBxo0bM2HCBJ566ikaN25sc72npyd///vfiYyM5OjRoxw9epScnBx8fHwYMGAAt956K7feeus1tWGE0T+ItAO/kZVw1NGhiIiIiIhINfPuNhhT4jGu7AunQe/btNmyiIiISAlqxaA9FAzcT506lalTp5Z5be/evTly5Eip14wePZrRo0dXKAZfX19mzpxZrmtdXFx48MEHefDBByt0j7rM6Fewrr0p8Rhms1lFuoiIiIjINaRep35c2PAFOedPkX32OMYWgY4OSURERKRGunameYvDGZu1BmcX8jOvkJua5OhwRERERESkGjl7eOEZ3AuAK/vCHRyNiIiISM2lQXupNgYXV4zN2wJoiRwRERERkWuQZUPatAO/Yc7NcXA0IiIiIjWTBu2lWlmXyEk45uBIRERERESkunm06YazVyPyM9NIj4lydDgiIiIiNZIG7aVaufv/b117ERERERG5thicnPHuNhCAtL1aIkdERESkOBq0l2pl9A8CwHQ2jvzcbAdHIyIiIiIi1c2r6yAAMmL3kJuW4thgRERERGogDdpLtXJp0BQnz/qQn0t20glHhyMiIiIiItXMzTegYDKPOZ+06N8cHY6IiIhIjaNBe6lWBoMBd8tse21GKyIiIiJyTbJsSHtlXzhms9nB0YiIiIjULBq0l2pn2Yw2S4P2IiIiIiLXpHqd+mFwdiXn/Cmyzx53dDgiIiIiNYoG7aXaGbUZrYiIiIjINc3ZvR6ewb2Agtn2IiIiIvI/GrSXaufeoh1gIDf1HHnplxwdjoiIiIiIOIBliZy0A79hzs1xcDQiIiIiNYcG7aXaObnXw9XXH9ASOSIiIiIi1yqPNt1w9mpEfmYa6TFRjg5HREREpMbQoL04hNHvv5vRaokcEREREZFrksHJGe9uAwFI26slckREREQsNGgvDuFuWddeM+1FRERERK5ZXl0HAZARu4fctBTHBiMiIiJSQ2jQXhzC6F8w0z7rTCxmc76DoxEREREREUdw8w0o+Gxgzict+jdHhyMiIiJSI2jQXhzCrcl1GFzdMZsyyElOcHQ4IiIiIiLiIJYNaa/sC8NsNjs4GhERERHH06C9OITByRlji0BAm9GKiIiIiFzL6nXqh8HZlZzz8WSfiXV0OCIiIiIOp0F7cRijZV17bUYrIiIiInLNcnavh2dwLwCu7NOGtCIiIiIatBeHcfcrWNdem9GKiIiIiFzbLEvkpB3Yijk3x8HRiIiIiDiWi6MDkGuXZaZ99vl48rMzcXLzcHBEIiIiInI1srOz+eKLL1i9ejXx8fF4enrSo0cPHn30UTp37lzh/tauXcuSJUs4cuQIAMHBwUyaNIlRo0aV2CY5OZm5c+eyefNmkpOT8fX1ZdCgQTz55JM0bty4yPVnzpwhPDyc/fv3Ex0dTUxMDPn5+bz11lvceeedxd4jMzOTbdu2ER4ezq5du0hMTMRgMBAQEMDgwYN56KGHaNSoUYWfV8CjTTecvRqRl3aR9GNReHW80dEhiYiIiDiMZtqLw7h4N8LZuzGY8zGdOe7ocERERETkKmRnZzN58mTef/99UlJSGDx4MG3btmXDhg2MHz+e3377rUL9ffDBBzz77LNER0fTq1cvevXqRXR0NM888wyzZ88utk1CQgJjxozhm2++wcPDg2HDhuHh4cE333zD2LFjOXPmTJE2v/zyCzNnzmTFihUcPXqU/Pz8MmNbs2YNjz/+ON9//z1ms5lBgwbRp08fkpOT+eyzz7jjjjs4ceJEhZ5XChicnPHuNhCANC2RIyIiItc4DdqLQ7n7a4kcERERkdrss88+IzIykq5du7J+/Xpmz57Nf/7zH9577z1ycnJ48cUXSUtLK1dfUVFRzJ8/n/r167Nq1Srmz5/P/PnzWbVqFfXr12fevHns2bOnSLtp06Zx/vx5JkyYwNq1a/nwww9Zu3YtEyZMICkpiddee61Im4CAACZNmsQ777zD2rVrS53Fb+Hi4sLdd9/Njz/+yC+//MJHH33EggUL2LhxI/379+fcuXO88sor5XpWKcqr6yAAMmL3kHslxbHBiIiIiDiQBu3FoSxL5GRpM1oRERGRWic3N5fFixcDMH36dLy8vKznbr31VgYOHEhKSgrLly8vV38LFy4EYOrUqQQGBlqPBwYGMmXKFJtrLA4cOMCOHTvw8fFh2rRpGAwGAAwGA9OmTcPHx4etW7dy+PBhm3bDhg3j1Vdf5Y477iAwMNDarjRjx47ljTfeICgoyOa4t7c3s2bNAmDPnj0kJCSU63nFlptvAEb/IDDnk3bgV0eHIyIiIuIwGrQXhzL6FQzamxKOYjabHRyNiIiIiFTE7t27SU1NJSAggK5duxY5P3r0aAA2bdpUZl8mk4nt27cDFDvr3dLX1q1byc7Oth4PDy9YSmXIkCEYjUabNkajkSFDhgCwcePG8jzSVWvWrJl1Pftz585V6b3qMsuGtFf2hevzgYiIiFyzNGgvDmVsEQgGJ/LSUsi7csHR4YiIiIhIBRw6dAigxM1mO3XqBGDdULY0cXFxmEwmGjZsiJ+fX5Hzfn5++Pj4kJWVRVxcXJEYunTpUmy/ltjKE0NlXLp0iUuXLgHg6+tbpfeqy+p16ofB2ZWc8/Fkn4l1dDgiIiIiDqFBe3EoJ1cjbk1bAZCVoCVyRERERGqTxMREAJo3b17secvx1NRU0tPTS+3LsqRMSX0VPme5b+HfN2vWrNQ2Vb1kzeLFi8nLyyMoKIjrrruuSu9Vlzm718MzuBdQMNteRERE5Frk4ugARNz9g8hOisOUeBSvjjc6OhwRERERKaeMjAwAPDw8ij3v6elp/X16ejr16tW76r4K91f4CwBLu8L3KquNve3bt49PP/0UgJdfftkufZrNZuuzVbXMzEybfzqaW3Bf0g9u40r0b3j0/QsGF1dHh1RuNS2XtZXyaB/Ko/0ol/ahPNqH8mg/jsil2Wwu115KGrQXhzP6t4fdv2DSTHsRERERqWXOnj3LE088QXZ2NpMnT6Z///526TcnJ8e69E91OXHiRLXer0RmZxoYvXAypRH724/kNO/o6IgqrMbkspZTHu1DebQf5dI+lEf7UB7tp7pz6ebmVuY1GrQXh7NuRnsmFnNeLgZn/bEUERERqQ0ss9hLmp1UeKZ4abPsy9NX4f4K92VpV9Ks9OLa2EtKSgoPPfQQSUlJjBkzhhdffNFufbu6utKuXTu79VeazMxMTpw4QevWrUt906E6Xbk4iPSda2h8KY6Gg+90dDjlVhNzWRspj/ahPNqPcmkfyqN9KI/244hcxsTElOs6jY6Kw7k29sPJvR75WelknzuFsUVbR4ckIiIiIuVg2TD27NmzxZ63HPfx8Slz0Nzf37/UvgqfK7xRrZ+fHwcPHiQpKanUNpb+7SUtLY3JkycTGxvLsGHDmDVrVrledS4vg8FQ4pI/VcXDw6Pa71kSl9CbSd+5BtOJfbjlmXDxbujokCqkJuWyNlMe7UN5tB/l0j6UR/tQHu2nOnNZ3npRG9GKwxkMThj9CmYRmRKPOjgaERERESmvjh0Lli05cOBAsecPHjwIQHBwcJl9tWnTBqPRSEpKis1GsxaJiYmkpqbi7u5OmzZtisQQHR1dbL+W2MoTQ3llZmYyZcoUDhw4QL9+/fjggw9wdna2W/8Cbr4BGP2DwJxP2oFfHR2OiIiISLXSoL3UCJYlcrISta69iIiISG0RGhqKj48Pp0+fZv/+/UXOr127FoChQ4eW2ZfRaKRv374ArFu3rsS++vfvb7MO6ODBgwEICwvDZDLZtDGZTISFhQEwbNiw8jxSmbKzs3niiSeIioqie/fufPzxx+Val1Qqzrtbwc/2yr5wzGazg6MRERERqT4atJcawd0/CABTgmbai4iIiNQWLi4uTJo0CYCZM2eSlpZmPbdmzRq2bNlCw4YNGTdunPX4vn37GDlyJCNHjizS38MPPwzAggULiI2NtR6PjY1lwYIFNtdYdO7cmT59+pCamsqsWbOsg7tms5lZs2aRmppK//796dChQ6WfNy8vjxdeeIGtW7fSpUsXPv30U60lW4XqdeqHwcWNnPPxZJ+JLbuBiIiISB2hNe2lRrDMtM+5kEheZhrOHl4OjkhEREREyuORRx5hx44dREZGMnz4cHr27ElycjJRUVG4urryzjvv4OX1v9ouMzOTuLi4Yvvq0aMHU6ZMYcGCBYwdO9Y683779u2YTCYee+wxQkJCirSbNWsW48ePZ+nSpezcuZPg4GCOHDlCbGwsTZs25Y033ijS5ty5czzxxBPWfz958iQA8+bNY+nSpQA0adKEjz/+2HrN119/zS+//GI9V1y/AHfddRc9evQoNW9SNmf3engG9yL9wFau7Au3LqkpIiIiUtdp0F5qBGfP+rg0bE5uyllMZ2LwbHuDo0MSERERkXJwc3Nj0aJFfP7556xevZqwsDA8PT0ZOnQojz/+OJ07d65Qf8899xwdOnRg8eLFREREANCpUyceeOABRo0aVWwbf39/Vq1axZw5c9i8eTMbNmygcePGTJgwgaeeeorGjRsXaZOdnc3evXuLHI+Pjyc+Pt7ab2GXL1+2/j48PLzEZ+jVq5cG7e3Eu9tg0g9sJe3AVhoPexCDi6ujQxIRERGpchq0lxrD3T+ItJSzmBKOatBeREREpBZxc3Nj6tSpTJ06tcxre/fuzZEjR0q9ZvTo0YwePbpCMfj6+jJz5sxyXx8QEFBmHH/25JNP8uSTT1aojVSOR+uuOHs3Iu/KRdKPReHV8UZHhyQiIiJS5bSmvdQY1s1oE7QZrYiIiIiIgMHJGe+ugwBI21fy2w0iIiIidYkG7aXGMFo2o008Zt1ATERERERErm1e3QYBkBG7h9wrKY4NRkRERKQaaNBeagxjs1YYnF3Jz7xCbspZR4cjIiIiIiI1gFtjf4z+wWDOJy16i6PDEREREalyGrSXCsk05bL/RAa5ufl279vg7Ipb8zYAZCVqiRwRERERESngff1gAK78sVFv5YqIiEidp0F7qZA1206yfPtFlm8+XiX9W5fISThaJf2LiIiIiEjt49WpPwY3d3IuniHrZLSjwxERERGpUhq0lwpp2cwLgLBdCeTl2X+2vft/N6M1aTNaERERERH5LyejB15dBgBwefcvDo5GREREpGpp0F4qpHtwEzyNTqSmZRN1KMnu/Rv9/zton3SC/Nxsu/cvIiIiIiK1U/2Q4QCkH4kkNy3VscGIiIiIVCEN2kuFuLg4cUNbTwDWR5yyf/8NmuJcrwHk55J9Ns7u/YuIiIiISO1kbN4Go197yM8jbV+Yo8MRERERqTIatJcKC2lbD4CoQ2e5cCnTrn0bDIaCQhwwaTNaEREREREpxDvkZgAu79mI2Wz/5TpFREREagIN2kuFNWngSodWPuSbYdPOeLv3b9mMNkub0YqIiIiISCFenfphMHqSm5pEZtw+R4cjIiIiUiU0aC9XZUh3fwA2RJ4kP99s1761Ga2IiIiIiBTHyc0db+uGtOsdHI2IiIhI1dCgvVyV3p2b4enuwtkLGeyPTbZr30a/doCB3EvntMGUiIiIiIjYqB9asCFtxtGd5F656OBoREREROyvygftL126xNGjR8nOzq7qW0k1cndzZmBIAAAb7LwhrZPRE9cmBX1rXXsRERGRqqV6XWobt6atMAYEgzmfK3u1Ia2IiIjUPZUetD948CCzZ89m69atNsezsrJ47rnn6NOnD3fccQc33XQTP//8c2VvJzXI8N6tANi+P5ErGfb9kPe/JXK0rr2IiIhIZahel7qofkjBbPsrezZgzs9zcDQiIiIi9lXpQfvvv/+e+fPnYzbbrms+e/Zs1q5di9lsxmw2c+nSJV544QWOHtUgbF0RGNCAtn4NyMnNZ/Ou03bt22gZtNdMexEREZFKUb0udVG9jjfi5O5F7uVkMo//4ehwREREROyq0oP2UVFRGI1G+vXrZz2WnZ3Nd999h4uLCwsWLGDnzp1MnDiR3NxcFi9eXNlbSg1hMBgY3rslAOsjThb5IFgZRv8gALISYzRzRkRERKQSVK9LXeTkasSr60AALu/e4OBoREREROyr0oP2ycnJNGvWDCen/3X1xx9/kJaWxpAhQxg4cCDe3t48//zzeHh4sHPnzsreUmqQgaEBuLk4ceLMZY7Fp9qtX7cm12FwdcecnUnOhQS79SsiIiJyrVG9LnWVdUPamF3kXr7g4GhERERE7KfSg/aXL1+mQYMGNsf27NmDwWDgpptush5zd3enZcuWnD17trK3lBrEy9ONvtf7AQWz7e3F4OSMsUUgAFkJWiJHRERE5GqpXpeypGfmcPxsll3fnK0Obr4BuLfsVLAh7R+bHB2OiIiIiN1UetDe3d2dixcv2hyLiooCIDQ01Oa4q6urzQwfqRuG9yrYkPbXPafJNOXarV+jvzajFREREaks1etSlm/DYlkclszPEfGODqXCLBvSXv5DG9KKiIhI3VHpirxt27YkJCRw7FjBbOiLFy8SERFBw4YNCQwMtLk2KSmJRo0aVfaWUsN0CWxMC996ZJry2LbXfkvZuPsVrGuvzWhFRERErp7qdSlLy2ZeAKzcEkdWtv0m4VSHeh364OThTd6Vi2TE7HZ0OCIiIiJ2UelB+1GjRmE2m3nkkUf497//zQMPPEBOTg6jR4+2uS4xMZHz58/TqlWryt5SahiDwcDNvSwb0p6yW7+WmfbZ5+PJz860W78iIiIi1xLV61KWgSF++NRz5lJaNj//fsLR4VSIwcUV726DAbi8e72DoxERERGxj0oP2t9333307NmTs2fP8uWXX3Ls2DFat27N448/bnPd2rVrAejdu/dV3Sc7O5sFCxZwyy230K1bN/r06cMTTzzBgQMHrqq/tWvXcs899xAaGkpoaCj33HMP69atK7VNcnIyM2bMYNCgQXTp0oVBgwYxY8YMLlwoftOj6Oho5s6dyz333EPPnj3p3Lkz/fv356mnnmL37ro1C2Roz5Y4ORk4dOIip85etkufLt6NcK7vC+Z8TGdi7dKniIiIyLWmuup1qb1cnJ0Y0KU+AN+HHSPLjkteVgfvkJsByIzdQ86lcw6ORkRERKTyXCrbgZubG1999RVhYWEcP34cf39/hg0bhtFotL2RiwuTJk1ixIgRFb5HdnY2kydPJjIyksaNGzN48GDOnz/Phg0b2Lx5M5988onNJlpl+eCDD5g/fz5ubm7069cPgG3btvHMM89w9OhRnn766SJtEhISGD9+POfPn6dt27YMGzaMI0eO8M033xAWFsayZcto0aKF9frc3FzGjRsHgLe3N9dffz3e3t7ExMTwyy+/sGHDBqZNm8bEiRMrnI+aqFF9d3p2bEbEgbNsiDzF5Nu72KVfd7/2pF9OxpRwDI9W9ulTRERE5FpSHfW61H7Xt/Ek4mgWSSmZrN0ex52D2zs6pHJza+yHe+uuZJ3Yz5U9m2g06B5HhyQiIiJSKZUetAdwcnJi2LBhpV7z4IMPXnX/n332GZGRkXTt2pUvv/wSL6+CNRfXrFnD888/z4svvsjGjRutx0sTFRXF/PnzqV+/PkuXLrWu4xkbG8uECROYN28eAwYMICQkxKbdtGnTOH/+PBMmTGDGjBkYDAbMZjMzZsxg6dKlvPbaayxatMimTZcuXZgyZQqDBw/G1dXVevybb75hxowZvPXWW/Tt27fIWqK11fA+rYg4cJawqHgmje6Iq4tzpfs0+geRfvh3srQZrYiIiMhVq+p6XWo/ZycDdw5qyycrD7A8PIZRfdvgYbTLx8VqUT/k5oJB+72baHjT3Rica0/sIiIiIn9W6eVxqlpubi6LFy8GYPr06TYD87feeisDBw4kJSWF5cuXl6u/hQsXAjB16lSbwfLAwECmTJlic43FgQMH2LFjBz4+PkybNg2DwQAUrOU+bdo0fHx82Lp1K4cPH7a2cXFxYfny5QwfPtxmwB7gnnvuoX///uTl5ZW5JE9t0j24KY3qu3M5PZuIA2ft0qf7f9e1NyUew2w226VPEREREREp6qbrm9PCtx6X07P5aVuco8OpkHrBvXCu14C8tBQyjkU5OhwRERGRSqn0oP3Fixf5/fffiYsrWtQtXbqU22+/nd69e/PII49w/PjxCve/e/duUlNTCQgIoGvXrkXOWzbQ2rRpU5l9mUwmtm/fDhRsyFVSX1u3biU7O9t6PDw8HIAhQ4YUeY3YaDQyZMgQADZu3FieRwIgODgYgHPn6s6ai87OTgyzbEi746Rd+nRr3hYMTuSlpZB3pfi9A0RERESkZFVdr0vd4ezsxISbgwBYEX6MjKwcB0dUfgZnV7wsG9Lu0Ya0IiIiUrtVetB+8eLFPPTQQ+zdu9fm+LJly5g5cyZHjx7l0qVL/Pbbb0yaNImUlJQK9X/o0CEAOnfuXOz5Tp06AXDkyJEy+4qLi8NkMtGwYUP8/PyKnPfz88PHx4esrCybDzWWGLp0KX5NdUts5YnB4tSpUwD4+vqWu01tcPN/B+3/OHaepIsZle7PydWIW7PWAFoiR0REROQqVHW9LnXLwJAA/JvU40pGDmu21q7Z9vUtG9Ie30tOin3e/BURERFxhEoP2u/YsQNnZ2duvvlmm+MLFiwA4KGHHmLu3Ln06NGDCxcu8OWXX1ao/8TERACaN29e7HnL8dTUVNLT00vtKyEhodS+Cp+z3Lfw75s1a1ZqG0v/ZYmLi2Pz5s0ADB06tFxtaovmjetxfXtfzGbYGHnKLn26+/13iZyEY3bpT0RERORaUtX1utQtBbPtC94KXrk5plbNtndt2ByPNtcDcOWP8r8FLSIiIlLTVHp3nsTERJo0aUK9evWsxw4fPkxiYiLdu3fnpZdeAuD6669n8ODBbNmyhWeffbbc/WdkFMzW9vDwKPa8p6en9ffp6ek2cVS0r8L9Ff4CwNKu8L3KalOS7OxsXn75ZXJycrj11ltLfIOgIsxmszXGqpaZmWnzz+IMvKEFe48lsyHiBHf0vw4nJ0Ol7mlo0hqAjPjDeFTTc1aH8uRSyqY82ofyaD/KpX0oj/ajXNqHI/JoNputeylVRlXX61L33BQSwLKNRzl9Lo3Vvx23DuLXBvVDh5MZt5cre8NoOGA8BmfXshuJiIiI1DCVHrRPTU2lQ4cONsd27doFYF3rHaBJkya0bNnSuizMtWr69Ons3buX1q1bM336dLv0mZOTY13Cp7qcOHGixHPeTmY83Jy4cNnEmvA9tPcr+UuS8nBKhwZA9tnjHDoQDU7Oleqvpiktl1J+yqN9KI/2o1zah/JoP8qlfVR3Ht3c3Crdh+p1qShnJwMTbg7m//7fLlZtieXW/m3x8qgdg9+e7XvgXM+HvPRU0o/uxKtjX0eHJCIiIlJhlR60d3JyKjLDfPfu3RgMBrp3725z3Nvbm/j4+Ar1b5nFXtKspsIzzEubZV+evgr3V7gvS7uSZrMX16Y47777LitWrKB58+Z8/vnn1K9fv9Try8vV1ZV27drZpa+yZGZmcuLECVq3bl3qGwuDTjmz7vdTHDvnzO1DO1bqnmZzPud2LgFTBu18vXD97xr3tV15cymlUx7tQ3m0H+XSPpRH+1Eu7cMReYyJibFLP1Vdr0vd1P8Gf5ZtPEp80hV+/DWWe0Z0KLtRDWBwdsH7hqGkblvO5d3rNWgvIiIitVKlB+39/f05efIkqamp+Pj4kJOTw7Zt23B3dy+ycWtKSgoNGzasUP+WDWPPni1+IyHLcR8fnzIHzf39/Uvtq/C5whvV+vn5cfDgQZKSkkptY+m/OPPnz2fhwoU0atSIzz//vNRrK8pgMJS4dE9V8fDwKPWeo/sFsu73U+w6fB5TnhMNvd0rdT93/yAyj/8BF07h2aZTpfqqacrKpZSP8mgfyqP9KJf2oTzaj3JpH9WZR3ssjQNVX69L3eTsZOCe4cG8sySKH36N5bab2uLlWfk3P6qDd8gwUretIOvEfnIuJuLayK/sRiIiIiI1SKU3ou3fvz+5ubk8//zzhIWF8dprr5GamspNN92Ei8v/vhO4cuUK8fHxtGjRokL9d+xYMEv7wIEDxZ4/ePAgAMHBZa+z2KZNG4xGIykpKTYbzVokJiaSmpqKu7s7bdq0KRJDdHR0sf1aYisphiVLlvDBBx/g7e3NokWLCAwMLDPW2q51i/oEt2xIXr6Z8KjKz9YyWjajTdRmtCIiIiIVUdX1utRd/br50aq5N+lZuaz6NdbR4ZSba4OmeATeAMDlPRscG4yIiIjIVaj0oP0jjzyCr68v27Zt4/HHH+eHH37AaDTy+OOP21wXFhaG2Wwu8gpuWUJDQ/Hx8eH06dPs37+/yPm1a9cCMHTo0DL7MhqN9O1b8HrkunXrSuyrf//+NuuHDh482PoMJpPJpo3JZCIsLAyAYcOGFelz5cqVvPnmm3h6evLpp5/SqVPdmiVempt7twJgfcRJzGZzpfpy97cM2h+tdFwiIiIi15Kqrtel7nJyMliXxVn963GuZGQ7OKLyqx8yHIAr+zZjzs1xcDQiIiIiFVPpQXtfX1+WL1/OxIkT6devH3/5y19YsWJFkVnnu3btokOHDtYB8PJycXFh0qRJAMycOZO0tDTruTVr1rBlyxYaNmzIuHHjrMf37dvHyJEjGTlyZJH+Hn74YQAWLFhAbOz/ZovExsayYMECm2ssOnfuTJ8+fUhNTWXWrFnWAWiz2cysWbNITU2lf//+RTb4Wr9+Pa+++ipubm7MmzeP0NDQCj17bXfTDX64uzmTcD6dg3EXK9WX0S8IgJwLieRlppVxtYiIiIhYVHW9LnXbjV1a0LpFfTJNuazaUntm23u2746zdyPyMy6TfmSHo8MRERERqZBKr2kP0KxZM1599dVSr/nnP/951f0/8sgj7Nixg8jISIYPH07Pnj1JTk4mKioKV1dX3nnnHby8vKzXZ2ZmEhcXV2xfPXr0YMqUKSxYsICxY8daZ95v374dk8nEY489RkhISJF2s2bNYvz48SxdupSdO3cSHBzMkSNHiI2NpWnTprzxxhs211+4cIHnnnuOvLw8WrduzQ8//MAPP/xQpN+2bdvyt7/97apzU5N5urty0w3+bIg8xfqIk3Ru2/iq+3L29MalYXNyU85iSjyGZ2DRn5GIiIiIFK+q63Wpu5ycDNw7IphZX+7kx99iuWNAIPXr1fy17Q1OznjfMIzU377l8u4NeHW+ydEhiYiIiJSbXQbtq5qbmxuLFi3i888/Z/Xq1YSFheHp6cnQoUN5/PHH6dy5c4X6e+655+jQoQOLFy8mIiICgE6dOvHAAw8watSoYtv4+/uzatUq5syZw+bNm9mwYQONGzdmwoQJPPXUUzRubDsgnZmZSU5OwWuYsbGxNrP6C+vVq1edHbQHGN6nFRsiT7F1byJ/G9OVeh6uV92Xu38QaRq0FxERERGpVn26tKCtfwOOJ1xi5eYYHrildiz5Wf+GYaRu/Z6sUwfITj6Nm2+Ao0MSERERKRe7DtonJyezbds2jh8/Tnp6OvXq1SMwMJB+/foVGdSuKDc3N6ZOncrUqVPLvLZ3794cOXKk1GtGjx7N6NGjKxSDr68vM2fOLNe1AQEBZcZwLQhu2ZCWzb05dfYKv+45zai+bcpuVAKjX3vSon8lK0Hr2ouIiIhcjaqs16XuMhgM3Ds8mDe+iGTN1uOMGRhIAy+jo8Mqk0v9xni2CyXjWBSX92zA9+a/OjokERERkXKxy6B9dnY277zzDsuWLSM3N7foTVxcmDBhAi+++KLNBq9S9xkMBob3bsXCH6JZH3GycoP2/gXr2psSYzCbzRgMBnuFKSIiIlKnqV6XyurVuTntAhoQc7pgtv2Dt1bsbWdHqR8ynIxjUaTt20yjQffi5Frzv2wQERERqfSgfX5+Po8++ijbt2/HbDbTuHFj2rZtS5MmTTh//jzHjx/nwoULfP3118TFxfHZZ59psPUaMyg0gC/XHCTm9CViT6cSGOBzVf0Ym7XC4OxKfuYVclPO4tqohX0DFREREamDqqNez87O5osvvmD16tXEx8fj6elJjx49ePTRRyu8lCXA2rVrWbJkifXN1eDgYCZNmlTiUpZQ8BbB3Llz2bx5M8nJyfj6+jJo0CCefPLJYt8iOHPmDOHh4ezfv5/o6GhiYmLIz8/nrbfe4s477yw1vrS0NObPn88vv/zC2bNnadCgATfeeCNPPfUU1113XYWftzYwGAzcM6ID/1oUwZptcYwZ2A4f75o/AO4ReAMu9X3JvZxM+uHf8e46yNEhiYiIiJSp0oP2y5cvZ9u2bXh7e/Pyyy8zZswYXFz+121eXh6rVq3inXfeYdu2baxYsYJx48ZV9rZSizTwMnJj1xb89kcCGyJPXfWgvcHZFbfmbTElHCEr4agG7UVERETKoarr9ezsbCZPnkxkZCSNGzdm8ODBnD9/ng0bNrB582Y++eQTbrqp/JuAfvDBB8yfPx83Nzf69esHwLZt23jmmWc4evQoTz/9dJE2CQkJjB8/nvPnz9O2bVuGDRvGkSNH+OabbwgLC2PZsmW0aGFbO/7yyy+89dZb5Y7L4vLly9xzzz3ExMTg7+/P0KFDOXXqlHXvra+//pqOHTtWuN/aoGfHZrS/zodj8aksDz/G5Nu7ODqkMhmcnPEOuZmULd9wefcGDdqLiIhIreBU2Q5Wr16NwWDgo48+4q677rL5AADg7OzMuHHj+PDDDzGbzaxataqyt5RaaHjvlgBs3hWPKSfvqvsx+rcHwJR4zC5xiYiIiNR1VV2vf/bZZ0RGRtK1a1fWr1/P7Nmz+c9//sN7771HTk4OL774ImlpaeXqKyoqivnz51O/fn1WrVrF/PnzmT9/PqtWraJ+/frMmzePPXv2FGk3bdo0zp8/z4QJE1i7di0ffvgha9euZcKECSQlJfHaa68VaRMQEMCkSZN45513WLt2bamz+Av797//TUxMDIMHD+bnn3/mww8/ZMWKFTz33HOkpaXxwgsvkJd39fVuTWYwGLh3RAcA1m4/QcrlLAdHVD7e1w8BgxOm04fJPnfK0eGIiIiIlKnSg/ZHjhwhICCAG2+8sdTrbrzxRq677jptznqN6tauCU0beZKelcv2fYlX3Y+7ZV17bUYrIiIiUi5VWa/n5uayePFiAKZPn46Xl5f13K233srAgQNJSUlh+fLl5epv4cKFAEydOpXAwEDr8cDAQKZMmWJzjcWBAwfYsWMHPj4+TJs2zbq0j8FgYNq0afj4+LB161YOHz5s027YsGG8+uqr3HHHHQQGBpZrSaALFy6watUqXFxc+Oc//2mz/v/f/vY3goKCiImJITw8vFzPWxt179CU4JYNyc7JY3l4jKPDKRcX70Z4BvUE4PKe9Q6ORkRERKRslR60z8zMpEGDBuW6tkGDBmRl1Y7ZGGJfTk4Gbu5VMNt+fcTJq+7H6PffmfZJJ8nPzbZLbCIiIiJ1WVXW67t37yY1NZWAgAC6du1a5Pzo0aMB2LRpU5l9mUwmtm/fDlDsrHdLX1u3biU7+391oGWAfMiQIRiNtmusG41GhgwZAsDGjRvL80il+vXXX8nLy6N79+40bdrU5pzBYGDEiBFA+Z63tjIYDNw7smC2/brtcVysJbPt64fcDEDa/i3k55gcHI2IiIhI6So9aN+kSROOHz9eZnGfmZnJ8ePH8fX1rewtpZYa2qMlTgaIjr1AwvnyvSL9Zy4NmuBcrwHk55J9Ns7OEYqIiIjUPVVZrx86dAigxM1mO3XqBFCu2ftxcXGYTCYaNmyIn59fkfN+fn74+PiQlZVFXNz/6kBLDF26FL++uiU2e7zxW9bz2vNeNVlIUBM6tm5Edm4+34fVjmUrPdpej4tPU/JNGaQf3ObocERERERKVelB+969e5OZmcmsWbNKve6tt94iMzOTPn36VPaWUks1aehBaIdmAGy4ytn2BoMBo1/BEjlZWiJHREREpExVWa8nJhYse9i8efNiz1uOp6amkp6eXmpfCQkJpfZV+JzlvoV/36xZs1LbWPqvjPI+rz3uVZMVrG0fDMDPv5/gwqVMB0dUNoPByTrb/vJuLZEjIiIiNZtL2ZeU7uGHH2bNmjV899137N27l0mTJtG+fXuaNGnC+fPnOXbsGF999RXHjh3D1dWVyZMn2yNuqaWG925J1KEkNkXFc/+ojrg4V/x7I6N/ezKO7dRmtCIiIiLlUJX1ekZGBgAeHh7Fnvf09LT+Pj09nXr16l11X4X7K/wFgKVd4XuV1eZqVee9zGaz9X5VLTMz0+af5dHevx4dWvlw+GQq3/xyiIdu7VBV4dmNc/sbYctSTInHuHTyEK5NWtn9HleTSylKebQP5dF+lEv7UB7tQ3m0H0fk0mw2l2svpUoP2gcGBvL222/z97//nSNHjvDaa68VG4zRaOTf//63zYZScu3p2ak5Pl5GUq+Y2HkwiRu7tqhwH+6Wde0TNGgvIiIiUhbV67VTTk6OdTme6nLixIkKXd+7nQuHT8LGnfF0ap5Dg3qV/nhZ5eo1bY/b2cMkbFlBZueRVXafiuZSiqc82ofyaD/KpX0oj/ahPNpPdefSzc2tzGvsUlWNHj2aDh06sHDhQn799VeSk5Ot53x9fRk0aBAPPfQQbdu2tcftpBZzcXZiaM/rWB4ew/qIk1c1aG/0awcYyL10jty0VFy8fOwep4iIiEhdUlX1umVmeUmzkwrPFC9tln15+ircX+G+LO1KmpVeXJurVZ33cnV1pV27dpXupzwyMzM5ceIErVu3LvVNhz/r2BF2xkZx8EQK0WdcePi2jlUYpX2Y6o0hZfm/8Ug6SMvbH8XJzd2u/V9tLsWW8mgfyqP9KJf2oTzah/JoP47IZUxMTLmus9tUiLZt21rXyUxLS7O+/url5WW95s477+Ty5cts3LjRXreVWujm3q1YHh7D7sNJJKdm4utTsb8UTkZPXJsEkHM+HlPiMVyCelZRpCIiIiJ1R1XU65YNY8+ePVvsectxHx+fMgey/f39S+2r8LnCG9X6+flx8OBBkpKSSm1j6b8yyvu89riXwWAocRmequLh4VHhe94/uhPT5m0jfFcCE4Z3pGnD6o25ojyCu3OlYXNyU86SH7cLr/+uc2/3+1xFLqUo5dE+lEf7US7tQ3m0D+XRfqozl+VZGgfssBFtcby8vGjWrJnNBwAo2Liprm/KJGXzb+JF57aNyTfDpp2nrqoP9/9uRmvSZrQiIiIiFWaver1jx4KZ1QcOHCj2/MGDBwEIDg4us682bdpgNBpJSUmx2Wi2cGypqam4u7vTpk2bIjFER0cX268ltvLEUJayntee96otugb60q2dL7l5Zr7dWPNrc9sNaTc4OBoRERGR4lXJoL1IWYb3Ltj0aX3kKfLzzRVub/QvWNc+S5vRioiIiDhMaGgoPj4+nD59mv379xc5v3btWgCGDh1aZl9Go5G+ffsCsG7duhL76t+/v806oIMHDwYgLCwMk8lk08ZkMhEWFgbAsGHDyvNIpRowYADOzs7s2rWLc+fO2Zwzm8388ssvQPmety65d0TBJrQbI0+RdLF6Ns+tDO9ug8HZheyzsZjOxDo6HBEREZEiNGgvDtG3Wwvqubtw7mIG+2LOV7i90bIZbWIM5vw8e4cnIiIiIuXg4uLCpEmTAJg5cyZpaWnWc2vWrGHLli00bNiQcePGWY/v27ePkSNHMnJk0U1AH374YQAWLFhAbOz/BlNjY2NZsGCBzTUWnTt3pk+fPqSmpjJr1izM5oIJIWazmVmzZpGamkr//v3p0KFDpZ+3cePGjBkzhtzcXF5//XWys7Ot5z777DOOHj1KYGCg9YuEa0Xnto25oX0T8vJrx2x753oNqNehDwCXd693cDQiIiIiRdltTXuRinB3c2FgaABrt59gfcQpbghqWqH2bk2uw+Dqjjk7k5zkBNyatqyiSEVERESkNI888gg7duwgMjKS4cOH07NnT5KTk4mKisLV1ZV33nnHZhmezMxM4uLiiu2rR48eTJkyhQULFjB27FjrzPvt27djMpl47LHHCAkJKdJu1qxZjB8/nqVLl7Jz506Cg4M5cuQIsbGxNG3alDfeeKNIm3PnzvHEE09Y//3kyZMAzJs3j6VLlwLQpEkTPv74Y5t2r7zyCnv37iU8PJyRI0dy/fXXc/LkSQ4cOEC9evV47733cHZ2rmAWa797R3Tgj2Pn2bTzFHcPbU/zxpXfjLcq1Q8ZTvqBraQd2ErjYQ/gZNSawCIiIlJzaKa9OIxliZzf95/hUpqpjKttGZycMfoFApCVWPNn84iIiIjUVW5ubixatIhnn30WHx8fwsLCiImJYejQoSxbtowBAwZUqL/nnnuODz74gE6dOhEREUFERASdOnXiww8/5Omnny62jb+/P6tWrWLChAmkp6ezYcMG0tPTmTBhAqtWraJFixZF2mRnZ7N3717rr9TUVADi4+Otxw4dOlSkXf369Vm2bBkPP/wwTk5ObNiwgaSkJG677TZWrVplXff+WtOxTSNCg5uSl29m2YaaX5+7t+yEa2N/zDlZpEX/6uhwRERERGxopr04TGCAD4EBDYg9fYnNu09zx4DACrU3+rUn6+QBTAnH4IbKr1EqIiIiIlfHzc2NqVOnMnXq1DKv7d27N0eOHCn1mtGjRzN69OgKxeDr68vMmTPLfX1AQECZcZTEy8uLF198kRdffPGq2tdV944IZveRc4TtiufuYe3x8/Uqu5GDGAwGvENu5uLGL7m8ewPeoSMwGAyODktEREQE0Ex7cTDrhrQRJ63rj5aXu38QACbNtBcRERERcbjgVo3o3qEp+bVktr13t0EYnF3JPncCU+IxR4cjIiIiYlXhmfZz58696ptlZWVddVupmwaEBLBo9QFOnb3C0VMpBLdqVO62Rr+CQfvs86fJz87Eyc2jqsIUERERqTVUr4sj3TuiA/+fvTsPj6o8Gz/+PbPPZLKH7GELS0LCviMgCqggLriirVprrda3tb61tb/a9q2+bW2r3W2t1rX6VrGtiIiogOw7yJoAAUJC9j2TbSaznt8fkwwJ+5JkJuT+XFeumTnLc555CJMz97nP/Xx5uIp1XxZz15xhpPQL3Wx7rTmcsBHTaD6wnsbdqwJJQUIIIYQQwXZJQftLvW1QVVW55VB0YjXrmT46mTW7ilm5veiigva68Gh0EXF4GmtwludjHpDdjT0VQgghhOgd5HxdBNOw/tFMHJHAzoOVLF6Vx5P3jg92l84pYux1NB9YT8vBTXjnfg2tKbQn0BVCCCFE33DRQfuJEyd2Rz9EH3bd5AGs2VXMhj0lPHRzFhaT/oL3NaYM9QftS49I0F4IIYQQAjlfF8F373UZ7DxYyYbdJdw9Zxip8eHB7tJZGVOHo++Xhru6mOYD64mceHFzKQghhBBCdIeLDtq/88473dEP0YeNGBRDSr8wSqtb2LSvLFDn/kIYk4fRcmgrraVSg1IIIYQQAuR8XQTfkLQoJmclsj23gsUrj/D9r4Zutr2iKESMvY7ala/TuGclERPmyd0mQgghhAg6mYhWBJ2iKJ0mpL0YgcloS49c9ES2QgghhBBCiO5xz3XDAdiwt4SiisYg9+bcrCOvRtEZcFcX4yzJC3Z3hBBCCCEkaC9CwzUT0tBqFPJO1HOi/MJP6g2Jg0Cjxdtiw9tY0409FEIIIYQQQlyo9NQopo5MQlVh8aojwe7OOWlNYYSNmA5A456VQe6NEEIIIYQE7UWIiA43MSkrEYCVOy48216jN2KI92fpt5ZJiRwhhBBCCCFCRXu2/aZ9pZwI8Wz7iHFzAWg5uAWvoynIvRFCCCFEXydBexEy2kvkrN1VjNvjveD9OpbIEUIIIYQQQoSGQcmRXDUqGVWF91aGdtkZY/JQDPEDUb1umg+sD3Z3hBBCCNHHSdBehIyxw+OJizTRZHez7UDFBe9nTB4KIJPRCiGEEEIIEWLuuW44igKb95VRUNYQ7O6claIogWz7xt0rZb4sIYQQQgSVBO1FyNBqFOZMuvgJaY0p/qC9q+I4qtfTLX0TQgghhBBCXLwBSRFcNSoZCP1se2v2TBS9CXdtKa1FB4PdHSGEEEL0YRK0FyFlzqT+KArsPVpNRW3LBe2jj0lCY7Kiely4qi482C+EEEIIIYTofu3Z9lsPlHO8NHSz7TVGC9YsmZBWCCGEEMEnQXsRUhJiLIwe2g+A1TuKLmgfRdFgTB4CSIkcIYQQQgghQk3/xAhmjEkB4N3PDwe5N+cWMe46AFoOb8NrD+3Jc4UQQghx5ZKgvQg57RPSrt5ZhNfru6B9jO2T0ZbJZLRCCCGEEEKEmkVzh6NRYHtuBcdKbMHuzlkZk9IxJKaD10PT/rXB7o4QQggh+igJ2ouQMyU7kXCLgdqGVnbnVV3QPqa2yWidkmkvhBBCCCFEyElLCGfm2FQA3vs8tGvbt09I27RnlUxIK4QQQoigkKC9CDl6nZZrJ6QBFz4hrbEtaO+uK8PraOq2vgkhhBBCCCEuzaLr/Nn2Ow5WcLS4PtjdOStr1nQUgxl3XTmtJ3KC3R0hhBBC9EEStBchae7k/gDsOFhJfWPrebfXWsLRxyQB4Cw71q19E0IIIYQQQly8lH5WZo33J+e8G8LZ9hqDGWv2DAAad38e5N4IIYQQoi+SoL0ISQMSI8gYEI3Pp/LFruIL2scoJXKEEEIIIYQIaXfPHYZGo7DrUCV5J+qC3Z2zihjbNiFt3g48zbbgdkYIIYQQfY4E7UXIap+QduX2ExdUS7I9aN8qk9EKIYQQQggRkpLjrFwz3l/b/t2VoZttb0wc5P9+4fPSvH9NsLsjhBBCiD5GgvYiZE0fk4LZqKW8poWc47Xn3d6UMgwAZ9lRmTBKCCGEEEKIELVo7nA0GoXdh6s4XBjC2fbj/Nn2jXtWo6q+IPdGCCGEEH2JBO1FyDIbdcwc68/CuZAJaQ0JA1C0enyOZjz15d3dPSGEEEIIIcQlSIwNY/YEf237f35+OMi9ObuwEVehMVrw2CpxFOwPdneEEEII0YdI0F6EtPYSOVv2ldFsd51zW0Wrx5A0GIBWqWsvhBBCCCFEyLp77nC0GoW9R6o5WHD+u2qDQaM3Yh15NQCNu1cGuTdCCCGE6EskaC9C2tC0KAYmReDy+Fi/u+S825sCk9FKXXshhBBCCCFCVUKMhTmT+gPwbghn27dPSGs/shNPU+iW8hFCCCHElUWC9iKkKYrC3Mn+k/mVO4rOu72xQ117IYQQQgghROi6a84wdFqFfUdryMmvCXZ3zsgQ3x9j6nBQfTTtkwlphRBCCNEzJGgvQt4149PQ6zQcL23gWIntnNsaU9oy7SsL8bmdPdA7IYQQQgghxKWIj7Ywd5K/HOa7n+cFuTdn1z4hbdOeVag+b5B7I4QQQoi+QIL2IuSFWwxMHZkEnH9CWl1EP7RhUeDz4qos6IHeCSGEEEIIIS7VnbOHodNqOJBfw4FjoZltH5YxFY3JiqexBsfxvcHujhBCCCH6AAnai16hfULa9btLaHV5zrqdoigY2+ray2S0QgghhBBChLZ+0Waun+I/1//n54dRVTXIPTqdRm/EOmoWAI27VwW3M0IIIYToEyRoL3qFkelxJMZasLd62LK/7JzbmlL9de0bti6ltSR0b7MVQgghhBBCwJ2zh6LXacg9Xsv+o6GZbR8xdi4A9mNf4mmsDXJvhBBCCHGlk6C96BU0GiVQ73Ll9nNPSBs+Zg76fml4W2yUvfM/NO6RbBghhBBCCCFCVWxk6GfbG+JSMfUf4Z+Qdu8Xwe6OEEIIIa5wErQXvcbsiWloFMg9XktJVdNZt9NaIkh54FdYhk8Gn4eaFS9TveIVVK+7B3srhBBCCCGEuFB3XDsUg07DocI69h6pDnZ3zqh9QtrGvTIhrRBCCCG6lwTtRa8RG2lmQmYiAKvOk22vMZpJuP0HRF99D6DQtGclZf/3DJ7m+h7oqRBCCCGEEOJixEaauWHaQCB0s+3Dhk9BY4nA21SH/djuYHdHCCGEEFcwCdqLXuW6yf0BWLOrGLfHd85tFUUhevodJN71IzRGC86Sw5S+/hStpUd6oqtCCCGEEEKIi3DHNUMx6LXknahnd15VsLtzGkWnJzwwIe3K4HZGCCGEEFc0CdqLXmVCZgIxEUZszU52Hqy4oH0sQ8eT/OBv0Mel4m2uo+ydn9IodSiFEEIIIYQIKdERJua3Zdu/G6LZ9u0T0jry9+BuCL0LC0IIIYS4MkjQXvQqWq2G2RP92fYrt5+44P0MscmkfO1XWIZNAq+Hmk9eouazV1G9nu7qqhBCCCGEEOIi3XbNEIwGLUeKbHx5OPSC4vqYZEwDRwIqTXskEUgIIYQQ3UOC9qLXmTPJH7TfnVdFdb3jgvfTGC0k3PEDomfeDUDjl59R/s9n8DTbuqObQgghhBBCiIsUHW7ixmmDgNCtbd+ebd+07wtJAhJCCCFEt5Cgveh1kuOsjBoSh6rC6p3nnpD2VIqiIXrGXSTc+f9QDGZaiw9R+sZTtJYd66beCiGEEEIIIS7GbdcMwWTQcqzYxs6DlcHuzmnChk9CGxaJt7ke+9Fdwe6OEEIIIa5AErQXvdLctmz7VTtO4PVdfPZN2LCJpDz4a/SxyXibail/+yc07V/b1d0UQgghhBBCXKRIq5EF0wcDoZltr2j1hI++FoDGPTIhrRBCCCG6ngTtRa80dVQyYWY91fUO9h2tvqQ2DHGppHzt11iGjEf1uqn++C/UrHxdbnEVQgghhBAiyBbOGoLZqOV4aQPbciqC3Z3ThI+ZA4Dj+D7c9aHXPyGEEEL0br0maO9yuXjllVe48cYbGTVqFFOmTOHb3/42ubm5l9TeihUruOeeexg3bhzjxo3jnnvu4dNPPz3nPjU1NTzzzDPMmjWL7OxsZs2axTPPPENtbe0Zty8vL+fdd9/lRz/6ETfddBOZmZkMHz6cJUuWXFKfxUlGvZZrxqUCFzch7ak0pjAS7vp/RE2/E4DGnSsof+9/8bY0dEk/hRBCCCH6gt54rn45x9q0aROPPvoo06ZNIysri4kTJ/LVr36VJUuWhFxWeG8VEWYIZNu/t/Iwvku4u7Y76aMTMQ8eDUDT3tVB7o0QQgghrjS9Imjvcrl46KGH+P3vf099fT3XXHMNgwcPZtWqVdx9991s3Ljxotr7wx/+wH//93+Tk5PDpEmTmDRpEjk5OTzxxBP86U9/OuM+paWl3Hrrrbz33nuYzWbmzJmD2WzmvffeY+HChZSXl5+2z+eff86zzz7LkiVLOHLkCD6f75Levziz66YMAGB7TjkNzc5LbkdRNMRcvYiEO55CMZhoPZFL6RtP4Sw/3lVdFUIIIYS4YvXWc/VLPdbrr7/OQw89xNq1a0lNTeW6664jIyOD3bt386Mf/Ygnn3zyot6vODt/tr2OgrJGtuWc+d8wmCLGXgdA0741qF53kHsjhBBCiCtJrwjav/rqq+zYsYORI0eycuVK/vSnP/Huu+/yu9/9DrfbzQ9+8AOam5svqK1du3bx8ssvExERwdKlS3n55Zd5+eWXWbp0KREREbz00kvs2bPntP2efvppqqurWbRoEStWrOCPf/wjK1asYNGiRVRWVvKTn/zktH1SU1O5//77ef7551mxYgXz5s277LEQJw1KjmRIWhQer8raL4svu72w4ZNJ+dqv0cck4WmsoeztH9OUs6ELeiqEEEIIceXqrefql3KsyspK/vCHP6DVann11Vf517/+xR/+8AfeeecdlixZQnh4OJ988slFX6gQZxZuMXDzzPZs+7yQy7a3DJ2ANiwKb0sDLUd2Brs7QgghhLiChHzQ3uPx8PbbbwPws5/9DKvVGli3YMECrr76aurr6/nggw8uqL3XXnsNgEcffZT09PTA8vT0dB555JFO27TLzc1l27ZtREVF8fTTT6MoCgCKovD0008TFRXFpk2bOHz4cKf95syZw49//GNuueUW0tPTA/uJrnPdZH+2/crtJ7rkVmRDvzSSH/wN5vRxqB4X1R/9idrVb6H6vJfdthBCCCHElaY3n6tfyrH27t2L2+1m/PjxzJw5s9O6jIwM5s+fD8C+ffsu6P2K87t1ZjphJh2F5Y1sOVAW7O50omh1gdr2jbtlQlohhBBCdJ2QD9rv3r0bm81GamoqI0eOPG19+4nxF198cd62nE4nW7ZsAThj1nt7W5s2bcLlcgWWr127FoBrr70Wo9HYaR+j0ci1114LwOrVUsuwp109NgWjQUtxZTOHC+u7pE2tKYzEu/4fUVfdDkDD9o+peO/neO2NXdK+EEIIIcSVoreeq1/qsQwGw3nfB0B0dPQFbSfOz2oxcPNM/0WVUMy2Dx87G1BoLTyAuy60LioIIYQQovcK+aD9oUOHAMjKyjrj+hEjRgCQl5d33rYKCgpwOp1ER0eTnJx82vrk5GSioqJobW2loKDgtD5kZ2efsd32vl1IH0TXspj0TB/t/7e8nAlpT6VotMTMupf4276PojfhKDxA6Rs/xFlZ2GXHEEIIIYTo7XrrufqlHmvMmDGEhYXx5ZdfsmFD5zKKhw8fZsWKFYSHh3PDDTec9/2KC3fzzHTCzHqKKprYsKck2N3pRB8Zjzl9LACNe1YFuTdCCCGEuFKEfNC+rMyfrZCYmHjG9e3LbTYbLS0t52yrtLT0nG11XNd+3I7PExISzrlPe/uiZ7WXyNm4rxR7a9dOAGXNnErK136FLioBT0MVZW/9iObcTV16DCGEEEKI3qq3nqtf6rGio6P51a9+hU6n4+GHH+auu+7ie9/7Hvfddx+33XYbKSkp/OMf/yA2Nvbsb1RcNKtZz8JZ/mz7lz88QGWdPcg96ixiXNuEtPvXoXpkQlohhBBCXD5dsDtwPna7/4TMbDafcb3FYgk8b2lpISws7JLb6thexy8V7ft1PNb59ulJqqoG+tjdHA5Hp8dQMCDeRHJcGGU1LXyxo4DZE1K79gDWOGLueQbbipdwnThA1dI/0FKch3X63SiaS7/uFYpj2RvJOHYNGceuI2PZNWQcu46MZdcIxjiqqhrycyL11nP1Sz0WwPXXX09sbCxPPPEE+/btC9SvNxqNTJo0ifj4+LO2eTH6+jn+qeZNTmF7TjlHixv49T+28+xDE9HpQiQHLTkDjTUaX3M9jQe3gD4+pMeyN+gNv5O9gYxj15Gx7Boyjl1DxrHrhPI5fsgH7cX5ud3uwG3BPaWwsLBHj3c+2Wk6ymrgk03HSA5r6p6DZNyIWWPFVLCVli9XYCs8RMvoW1ENZ/+ydyFCbSx7KxnHriHj2HVkLLuGjGPXkbHsGj09jhdaQ130nDfffJPnn3+emTNn8vjjjzNo0CCqq6tZvHgxb775JqtXr+bdd98lKSnpso4j5/inu3GcmZcrGzlW0siLi7dzw/ioYHcpwJSYjfnYRv+EtJO/GvJj2VvIOHYNGceuI2PZNWQcu4aMY9cJxXP8kA/at2e4nO2KR8fsk3Nl7lxIWx3b69hW+35ny3Q50z49Sa/XM2TIkB45lsPhoLCwkIEDB54zM6mnJae5+GL/Bkpr3ViiUxmQGN49BxqRhSNvHI0rX0VfW0Dsl/8k6uYn0MelXXRToTqWvY2MY9eQcew6MpZdQ8ax68hYdo1gjOOxY8d65DiXo7eeq1/qsbZv386vf/1rMjIy+Otf/4pO5/86NWDAAH74wx9it9tZvHgxf/zjH/nNb35z1rYvhJzjn5nBmsjz/9zLtrxmpo9PZ2Jm19zZcLm8qQlU529CX1+EprmG/tkTQn4sQ1lv+p0MZTKOXUfGsmvIOHYNGceuE8rn+CEftG+fGKqiouKM69uXR0VFnfeLQEpKyjnb6riu44RUycnJHDx4kMrKynPu095+T1MU5ay3A3cXs9nc48c8F4vFwpSsJDbvL2Pj/ioyB5+5pmmXHGvstViTB1P579/gaaiibvGz9Lvp21gzp11Se6E2lr2VjGPXkHHsOjKWXUPGsevIWHaNnhzHUC+NA733XP1Sj/XRRx8B/hI57QH7jhYsWMDixYvZsmXLWdu9UHKOf2Yzxg3gSEkTS9fn87cPD5IxKJ6EmBDos8VCy5AJ2I/uxHJ4NYbhmVhkboPL1ht+J3sDGceuI2PZNWQcu4aMY9cJxXP8ECkCeHaZmZkA5ObmnnH9wYMHARg+fPh52xo0aBBGo5H6+vpOE0q1Kysrw2azYTKZGDRo0Gl9yMnJOWO77X27kD6I7tM+Ie3aXcW43N5uPZYxYSApX38e86BRqG4nVUt+R93a/0P1de9xhRBCCCFCSW89V7/UY7VfGAgPP/Ndne3LGxoazvlexeV54MYRDB8QTYvDzfPv7MTt8QW7SwBETl4AKOhrjlP95vepXvEKnobqYHdLCCGEEL1QyAftx40bR1RUFCUlJRw4cOC09StWrABg9uzZ523LaDQybZo/G/rTTz89a1vTp0/vVFvommuuAWDNmjU4nc5O+zidTtasWQPAnDlzLuQtiW4yelg/+kWbaXa42XqgvNuPp7WEk7joJ0ROuRkA25YPqXj/V3gdzd1+bCGEEEKIUNBbz9Uv9Vj9+vUDCEw+e6r9+/cDwbsDt6/QaTU89dUJWM16jhTZ+McnB4PdJQDMA7KJufsnuGMHgs9L056VFL30bWo+exVPY22wuyeEEEKIXiTkg/Y6nY77778fgGeffZbm5pMB0eXLl7N+/Xqio6O5/fbbA8v379/PDTfcwA033HBae9/4xjcAeOWVV8jPzw8sz8/P55VXXum0TbusrCymTJmCzWbjueeeQ1VVwD/b73PPPYfNZmP69OlkZGR00bsWl0KrUZg7sT8AK7ef6JFjKhotsbMfIP6WJ1B0BhzH91D65g9xVRf1yPGFEEIIIYKpN5+rX8qx5s6dC8Ann3zCZ5991mldXl4ef/rTnwCYP3/+GUZLdKX4GAv/fc84AD7akN8jSTsXwpA8jOaJ9xJz548xDcgGn4fGLz+j6KXHqPn8NTxNdcHuohBCCCF6gZCvaQ/w8MMPs23bNnbs2MF1113HxIkTqampYdeuXej1ep5//nmsVmtge4fDQUFBwRnbmjBhAo888givvPIKCxcuDGTYbNmyBafTyWOPPcbYsWNP2++5557j7rvvZvHixezcuZPhw4eTl5dHfn4+8fHx/OIXvzhtn6qqKr797W8HXp844Q8kv/TSSyxevBjwZ+v89a9/vfTBEZ3MntSf91blsf9YDeU1LSTF9czkwNbsGejjUqj8z/N46isoffNHxN/8HcIypvTI8YUQQgghgqW3nqtfyrFmz57NrbfeytKlS/nud79LRkYGAwcOpLq6mn379uHxeBg7duxpwX7RPSZlJbJw1hA+XHeMP72/h0HJESTG9sz5//kYUjOIGjYOx4kc6je8T2vRQRp3fUrTntWEj5tL1NTb0IVHB7ubQgghRJ+j+rw4y45iP7aHlhM5GMP7Q1u5xVDSK4L2BoOB119/nTfeeINly5axZs0aLBYLs2fP5r/+67/Iysq6qPa+973vkZGRwdtvv8327dsBGDFiBA888ADz5s074z4pKSksXbqUF198kXXr1rFq1SpiY2NZtGgRjz/+OLFnmGTI5XKd8dbZ4uJiiouLA+2KrhMfbWHs8Hh2H67i70sP8O07RxMb2TOzPxsTB5Py9eepXPI7Wk/kUPnBC0RddQfRV9+NooT8TS1CCCGEEJekt56rX+qxfvOb3zBz5kw++OADDh48yNGjRzGbzWRnZzNv3jy+8pWvoNfrL+o9i0t3//xMDhbUkneinuff2cVvvj0DvS50zr3NA7IxfTWL1vbgffEhGneuaAveX0fU1FvRWSV4L4QQQnQnT3M9jvw92PP34CjYj6/15N2huvjQmBvnVIrafv+o6JXaa4eOHDmyR45nt9s5dOgQmZmZITtD9b4j1fz071tQVTAZtNw1Zxi3Xp2OXqftkeOrPi+1X7xN447lAFiGjCf+lu+iMXXO+ukNY9kbyDh2DRnHriNj2TVkHLuOjGXXCMY49vR5nggdco5/carq7Xz3d+todri5eeZgHr4leP9nzjWWqqriKNxP/Yb3cZbkAaDoDESMv57IKbeis0YFocehqTf8Trbk7aC1+CBRV92O1nzmyamDrTeMY28hY9k1ZBy7hozj+ak+L60leYFAvauy812eGpMV8+DR6FKzKPRFkDlydMid4/eKTHshLsboYf343Xdn8vcPD3D4RD1vrzjEqu1FPHRzFpOyElEUpVuPr2i0xM19EGPiIGpWvIL92JeUvvn/SLjzhxjiUrv12EIIIYQQQvQ18dH++vY/f2M7yzYcJ3twHFNHJgW7W6dRFAXLoNGYB47CUbDPH7wvPULD9o9p3L2SiPE3EDXlFrRhkcHuqjiP5sNbqVrye1B92PP3kHTP/6CLOPMdPUKI3sFdX0FzzkaaczfiaaojfNQs/91QEXHB7pq4QJ7GWuzH9+DI34ujYB8+p73TemNSOub0sVjSx2JMHoqi0WK32+HQoSD1+NwkaC+uSEPTovnNt2ewbncJ//gkl/LaFn7x5g7GDuvHw7eOJC2h+zMhwkfOwhCXRsV/nsddV0bpm/+P+Fu+S9iwid1+bCGEEEIIIfqSUK5vfypFUbAMHoN50Ggc+Xv8wfvyYzRs+4jGLz8nYkJb8N4SEeyuijNwFB6gaukfQfWBVoe7poTSfzxN0j0/lSQtIXoZb0sDzQc305yzAWfZ0U7rGnd9SuPuVf7g/bSF6KMTg9RLcTaq10NryWF/yZv8PbiqTnRarzGH+//epo/BMnhsr7soLkF7ccXSaBSunZDGlOxE/v3FUZauz2fPkWq+89u1LJg+mHuuG06YuXvrjRqT0kn9+vNULvktrUUHqfz3r4macRfRM+7s1uMKIYQQQgjR14R6fftTKYqCZcg4zOljcRzbTd2G93FV5NOwdSmNX35G5IT5RE6+Ga0lNEuv9EXO8nwq/v1r8HqwDJ9M7JwHqFj8C9y1ZZS9/WMS73oaU+rwYHdTCHEOPpeDlrwdNOdsxFGwz38BDkDRYB40EmvWDLRhUdi2LqX1RA5Ne1fTtG8N1uwZRE27TS7OBZmnsQZ7h9r0qsvRYa2CMXnIyWz6pHQUTc+Uyu4OErQXVzyLSc8DN45g7uT+vP5RLjsOVvDRhnzW7S7m/vkjmDOxPxpN95XM0YZFknTvz6hd/RaNuz7FtvFfuCoKsM59uNuOKYQQQgghRF+j02p46r4JPPH7dRwttvHW8lwevjX054RQFAXL0PGYh4zDfnQX9Rvex1VZgG3LEhp2fUrkxPlETr4pZOum9xWu2jLKF/8C1dWKaUA28bc+gUZnIPn+X1Lx/nM4y45S/s9niL/tScKGTgh2d4UQHaheD/bje2nO2YD9yE5Ujyuwzpg0BGv2DMJGXNVpYnBL+lhaiw9Tv/k/OPL30HxgPc0HNhCWOZWoq27HmDAwCO+k71G9blqLD2PP3409fw/u6uJO6zWWCCyDx2BJH4d58Ogr6i41CdqLPiM5zspPH5rM7sNV/H3pAUqrm3nxX3v5dEsB37x1FJmDYrrt2IpWR9z138CYOJjqT1/BfnQnztpSNJnzgcxuO64QQgghhBB9SXy0hSfuGcfPX9/Oso3HyU6PZerI5GB364IoikLYsIlYhk7AfmQn9Rv/5Q/eb/6gLXh/oz94bwrNsj9XMk9jLRXvPovP3oghcTCJd/4Qjc4AgNYSQdJXnqFyye9w5O+m8t+/od+N3yJ89LVB7rUQfZuq+nCW5Pnr1B/ags/RFFini07Emj0Ta9YMDLFn/xthSssgadFPcJYdo37zB9iP7KDl0BZaDm3BMnQiUdPvwJQ8pCfeTp/ibqjCcawtm77wAKq79eRKRYMxeSiWtmx6Q9JgFCV076q7HBK0F33OuIx4Xvz+NXyy+TjvrczjWEkDT/1lI7PGpfK1BSOIjTR327HDR1+LPi6Nyg+ex1tXRuTm16gv2wlTb8E8cFS3T5IrhBBCCCHElW7SiERumzWEJeuO8afFexiUHBmy9e3PRFEUwoZPwjJsAva8ndRvfB9X1Qlsm/5N485PiJx0E5GTbkQjwfse4XU0Ub7453gaa9DHJJG06CdojJZO22gMJhLv/CHVK/5G8/51VC//K55mG1HTFsp3PCF6mKu66OSEsg3VgeXasCjCRlyFNXumv2zKRfzfNCYPIfHOH+KqOkH95g9oObgF+9Gd2I/uxDx4DNHT78CUJgmZl0r1uHEUHcTRnk1fW9ppvTYsyl+XPn0c5kGj+sydZxK0F32SXqfh1quHcPW4VN5ZcYjVO4tYt7uEbTnl3DVnGLfMTMeg7566V6aUoaR8/XkqP3mZ1mO7cBbso6JgH4b4/kROuglr1gwUXffW2hdCCCGEEOJKdl9bffvDvaS+/ZkoioawjMlYhk+k5fB26jf+C3d1EfUb36dh5/KTwftTAsii6/hcrVS8/yvc1cVorTEk3vM/Z53IUNHq6Lfg2+is0di2fEj9un/ibakndu6DV2wWqBChwtNYQ3PuJppzNuKqKgwsVwxmwjImY82aiXlg9mXXNzfEDyBh4fdwzbwb25YlNB/YgOP4XhzH92Lqn+UP3g8cKRfrLoC7viIwgazjRA6q23lypaLBlDo8UJvekDCwT36OStBe9GnR4SYev3ss86cN4pUP93P4RD1vrzjEyu0neOjmbCZnJXbLh63OGk30Td8lb9dmkhqP4Ti4EVdVEdXL/0rd2v8jYvwNRIy7vtfNbC2EEEIIIUQo0Gk1/KAX1rc/E0XRYM2cSljGZFoObfUH72tKqN+wmIYdy4mcfBORE29EY+y+O4b7ItXroXLJb3GW5qExWUm656foo+LPuY+iKMRc81W0YVHUrnqTxp0r8LY0EH/TdyQxS4gu5nU003J4K805G2ktOgio/hUaHZb0sVizZ2AZOgGN3tjlxzbEphB/03eInnEXti0f0rRvLa1FuZS/m4sxZRjRV92Becg4Cd534HM7aS06iD1/N478vbjryjqt11qjsaSPxZw+FvOg0VIKDgnaCwHAkLQonv/ODNbvLuHN5QepqLXzyzd3MGZYP75560jSErrn1htfWAwREx6g3+z7aNq7moadK/A21VK/4X1sm5dgzZ5J5KQFGOL7d8vxhRBCCCGEuFKdWt8+a3As00b1jvr2Z6IoGqwjriIsY8rJ4H1tKfXr36Nhx8dETr6FyInz0BgkeH+5VNVH9fK/4sjfg6IzkHj3jy7qO1nkpAVowyKpWvYXWg5upsLeSMIdT8ldEUJcJp/bif3Yl/4JZY/tAZ8nsM7UfwTWrBmEZU7tsfIp+qgE+s1/lOjpd2LbtpSmPatxlh6h4l/PYUgYRPT0O7AMn9Qns8RVVcVTX44931+bvvVEbqcJgNFoMaVmBAL1hvgBcpHjFBK0F6KNoijMGp/G5Owk/v3FET5cl8/eI9V857druXH6IO65LgOruXuyI7RmK1FTbyVy0gJaDm+jYfvHOMuP0bTvC5r2fYF50GgiJy3AnD6mT37YCyGEEEIIcSk61rf/8/t7GJzSu+rbn4mi0WLNmk5Y5lRaDm7xB+/ryqhf908adnxM1JRbiBh/AxqDKdhd7ZVUVaV21Vs052wAjZaE27+PKTXjotuxZs1AY46g8oPncRQeoOyd/yFx0U/QWaO6vtNCXMFUnxfHiRyaczbSkrcd1WkPrDPED8CaNQNr1nR0kf2C1kddRCxx1z1E1LTbaNj+MY1ffo6rsoDKD15A3y+N6KtuJyxz2mWX5wl1XnsTjsL9OAr8P56Gqk7rteGxgQlkzQNHytws5yFBeyFOYTbquH/+COZOGsDry3LYnlvBsg3HWb+7hPvmZTJn0gC0mu65+qdodf4T8BFX4SzJo2HHx7Tk7cBRsA9HwT70calETrwR68iru+UWLyGEEEIIIa40Hevb/+adXTz/7enodb0/cKJotFizZxA2YhrNuRup3/hvPPUV1K15B9u2j4iaeisR466X4P1Fsm1ZQuPOTwDod9O3sQwZf8ltWQaPJvmr/0v54l/gqiyg7O0f+8vsRCd2VXeFuCKpqoqrPJ+m3I205G7C22ILrNNFxGHNnoE1a2bIVSXQWaOJnX0/UVMX0rBzOY07V+CuLqZq6R/Rb3ifqGm3Yc2eiaK9MsKxqsdNa8lhHAX7sB/fj6viOIEyRQAaHaa0jLZA/Tj0/dIkm/4iXBm/JUJ0g6S4MH7y9cnszqvi1aUHKKlq5i//3senWwv55q0jGTEottuOrSgKprQMTGkZuG2VNO5cQePeL3DXlFDz6SvUrXuXiHHXETF+Hrrw6G7rhxBCCCGEEL2dTqvhqfsm8t3fr+VYsY03lx/km720vv2ZKBot4SNnYc2aQXPOBuo3/ccfvP/ibRq2fURke/Bekn7Oq3H3SurXvQtA7NwHCc+eedltGpPSSXngOcrf+zme+grK/vE0iXf/BGPS4MtuW4grjbuunObcjTTnbOxU81xjthKWMQ1r9gxMaRkhX4FAawkn5up7iJx8M427PqVhx3LcdeVUL/8r9Rv/RdTUhYSPvrbXzXWhqiquqhNtmfT7aC062LnkDaDvl4Z50Ggsg0Zh6j8iJEu2udxe9h6pZvP+MvbkVZKZaiAzM9i9Op0E7YU4j3HD43nx+9fwyeYC3v38MPklDfzwL5u4emwqD940gtjI7v0A0kclEDv3QaJn3k3j3i9o3LkCT0MVts0fYNv6Edas6UROWoAxcVC39kMIIYQQQojeql+0mf++Zxz/+/p2Pt54nOxeXt/+TBSNlvBR13QI3v8bj62KutX/oGHrR0RNW0j42LkSvD+L5sNbqfnsVQCipt1G5KQFXda2PiaJ5Ad+ScXiX/oz7v/vpyTc8RSWQaO77BhC9FaeZhsthzbTnLMRZ9nRwHJFZ8AybCLWrBlY0segaHtXgBtAawojevodRE66kcbdK2nYtgxPQzU1n/2d+k3/IWrqLSH/uexprG2r/rAfR+F+vC0NndZrw6IwDx6NedAozANHh2xiaavLw5eHq9iyv4ydBytwOL0d1oXm75YE7YW4ADqthltmpnP12FTe+fQQq3acYP2eErbnlnPn7GHcenU6Bn333mKrMVqImnwTkRPn03JkBw3bl+MsOUzzgXU0H1iHaUAWkZNuwjJ0fMhfdRZCCCGEEKKnTRyRyO3XDOGDtVdOffszUbQ6wkdfizV7Jk0H1mHb9AGehipqV72JbevSk8F7nSHYXQ0ZjsIDVC39I6g+wsfOJXrWvV1+DJ01muT7/peK/zxPa+EBKhY/R/zN38GaNb3LjyVEqPO5HDTl76A5ZyOOgv2g+vwrFA3mQaP8pb+GTUZjDL0s7UuhMZgD84007f0C29aleJtqqV31JvWbPyBq8s3+uUhC4P36nA4cRbmBQL27pqTTekVvxNR/RFs2/eiQLnljb3Wz61Alm/eX8eXhKpyuk4H6uEgT00YlM25YDD57eRB7eXYStBfiIkSFG/nOXWOYN3Ugf196gEOFdYEg/tdvymZKdmK3f1gpGi3WjKlYM6bSWnrUX/f+0FZaT+TSeiIXfUwSERNvJHzUNVK/UgghhBBCiA6+Oi+TgwV1HCqs4zdv7+T578y4Iurbn4mi1RExZg7hI6+maf86bJv+g6exhtqVb9CwcwUJC5+UEi2Aszyfin//GrweLMMnE3fDw932nU5jtJB094+pWvZnWg5toWrpH/DaG4iceGO3HE+IUOMqO0LY3g+pWp0PHcqqGJOH+gP1mVdd0ZM1a/RGIifOJ2LsXP9F1S1L/HdErf0/bFuXEjnpRiImzEdrtvZYn1SfF2fZsUCQvrX0CPhOBrdRNBiT0v2Z9INGY0oZFtJlfZodbnbklrNlfzm786pwe3yBdQkxFqaNSuaqUUkMTYtGo1Gw2+0cOlQRxB6fnQTthbgEQ9Ki+M23p7N+TylvfpxLRa2d597awZhh/Xj4lmz6J0b0SD9MKUMxLfwentk1NOz6lKbdK3HXlVP7+WvUr3+P8LFziZwwH11E99XfF0IIIYQQorfQaTX84KsT/PXtSxp44+NcHlk4Ktjd6laKVk/E2LmEj5pF0941gZr3pf/4EbGz7ydiwvyQzZLsbq7aMsoX/wLV1YppQDbxtz6BouneiziKTk/8wv+mNiySxl2fUrvyDbzN9UTP+kqf/XcQfUPj3tXUrXgFQ1tWvT4muW1C2enoY66scmXno+jaP5evoTl3E7YtH+CuLaN+w/vYtn9M5PgbiJy0AG1YZJcfW1VVPPXl2I+31aU/kYPPae+0jS4qAfOg0ZgHj8I8YGSPXkS4FA3NTrbnVrB5fxn7j1bj8Z6cDDelXxjTRiUzbVQy6SmRvepzVoL2QlwiRVGYNS6VyVmJ/PuLI3y4Lp+9R6r5zu/WseCqQdxzfQZWc89cfdRFxBF77X1ET7+Dpn1radj5CZ76Chq2LqVh+8eEZU4lctJNmJKH9Eh/hBBCCCGECFUd69sv31RAdnocV11h9e3PRNHqiRh/PWEjplG9/CXsR3ZQu/INHIUH6Lfgv9Caw4PdxR7laayl4r3/xWdvxJA4mMQ7f9hjJYMURUPsdQ+htUZTv+5dbFs+xNPcQL8bH+32iwZC9DRVVanf+C9sG/8FgCshg6Rr7yFiUFavCqB2B0WrI3zULKzZM2g5vA3b5v/gqirCtmUJDTs/IWLcdUROvuWy68R77Y04Cg/gOL4PR+F+PA3VndZrTFbMA0e2ZdOPQh+deFnH6wn1ja1szSlny/4yDuTX4vOdDNQPSAxvy6hPpn9ieK/9PZOgvRCXyWzUcf/8EVw3eQCvL8thW04FyzYeZ93uEu6bl8ncyQPQanrmA0JjMPtvtRp/PfZju2nY8TGtJ3Jpyd1ES+4mjKkZRE2+CcuwiXIyKIQQQggh+qxT69unX6H17c9Eaw4n4Y6n/FneX/wD+5GdlLz2fRJufQJTWmawu9cjvI4myhf/HE9DNfqYJJIW/QSN0dKjfVAUheirbkcbFkXNipdp3r8Gn72B+NueDOlJKYW4GKrXQ82nf6dp3xcAhE26mfroLPSJg3ttILU7KBot1hFXEZY5FfuRXdg2/wdneT4N2z+mcddnhI+ZTdTUW9FF9rug9nweF87iw9jbSt64KgqAk0FtNDpMacP92fSDRmNMHNQrYkQ1NgdbDpSxZX85BwtqUTu8pcEpkVw1Kplpo5JIjb8yLkJL0F6ILpIYG8aPH5zMnrwqXv3oAMWVzfz1P/v4dGsh37x1JFmDe65EjaLREjZsImHDJuKsOE7DjuU0527GWXKYypLD6KLiiZx4I+Gjr+3xk1MhhBBCCCFCQV+qb38qRVGInDgfU1oGVR/+HnddOWXv/A/RM+8matrCXhG8uVQ+VysV7/8Kd3UxWmsMiff8T7eUoLhQEWNmo7VEUPXh77Ef+5Lyfz5L4l0/Qmu5MoJOou/yuRxULvkdjvw9oGiIu/4b6DJnwKFDwe5ayFIUDWHDJ2EZNhHH8b3Ub/o3zpI8Gr/8jMY9qwgfOYuoq24DY+eSzKrqw1V5AkdhW8mbokOoHeYMADDE98c8sK0uff8RvWYOxIraFrbsL2fLgTLyTtR3Wje8fzTTRiUxbVTyFXnhXYL2QnSxscPj+fOT17BicwHvfn6Y46UN/L+/bmLm2BQeXJBFXFTPzgZuTBxM/M2PE3PNV/0f9LtX4rFVUbvqTeo2vE/E6GuJmHgj+qj4Hu2XEEIIIYQQwXSyvv26PlPf/lTGxMGkfP0Faj77O805G6hf/x6tJ3Lod/N3L7scQyhSvR4ql/wWZ2keGlMYSff8NCS+B4UNm0jSV35Gxfu/wlmaR9nbPybpnp9ecFatEKHG02yj4v3ncFXko+gMxC/8HmHDJmK328+/s0BRFCzpYzEPHkNrUS71m/5Da+EBmvZ9QdP+tZiGT0UbmY49t5qm0kO0Fh7A29LQqQ2tNbotk95f8kZn7T2f6aXVzWzZX8bm/WXkl5x8X4oCmQNjuGpUMlNHJtMvumfjaz1NgvZCdAOdVsPNM9O5elwq73x6iJXbT7BhTynbcyu4c/ZQFl7d87XldeExxMy6l6irbqf5wHoadizHXVtKw47lNOxcQdjwyUROXoAxZbjcpiaEEEIIIfqEftFmvnfvOJ59bZu/vv3gOK4afeXXt+9IYzQTf8t3MQ8aRc1nr+IoPEDp60/S76bvYEkfG+zudRlV9VG9/K848veg6Awk3v00hvj+we5WgCk1g+T7f0H5ez/HXVtK6T+eJmnRT0Oqj0JcCFdtGRWLf47HVoXGEkHiXT/ClDIs2N3qlRRFwTwgG/OAbFpLDlO/6QMc+btpPbyZCDbT2HFbvQlT/xFYBvsD9fq4tF4T21FVlaLKJn9G/f4yCstPvjONAtnpcUwblczUkUnERPSOOwS6ggTthehGkVYj375zDDdMHcjfPzzAocI6/u/Tw6zaXsRXrx+KtWNNsR6i0RuJGHcd4WPn4MjfS8OO5TgK9tFyeCsth7diTB5K5KQFhGVMQdHKR4QQQgghhLiyTchMOFnf/l97GJwSSVLclXeb/fmEj7oGY/JQqj78Pa6qE1Qs/gWRU28l5up7ev33AlVVqV31Fs05G0CjJeH272NKzQh2t05j6JdGytee8wfua0ooe+cn/oBnH5lrQPR+rSV5VPzrV/gcTeiiE0la9GP0MX3rQmh3MaVmkLToxzjL86nZ8C9aC/Zh6NefsPSxmAePwpQyDEWrD3Y3L5iqqhSUNbJ5fxlb9pdRUtUcWKfVKIwe2o9po5KYkp1EpLVvzvPRu//yCtFLDEmN4jffns6GPaW8uTyXyjo7v3tvHwlReqaXG5k+No30lMgevQqqKBosQ8ZhGTIOV1WRv+59zgacZUepWvoHtBFxRE6YR/iY2WjNUk9RCCGEEEJcuTrVt39nJy/0ofr2HRniUkn+2q+o++JtGr/8jIatS2ktOkj8rf8dEmVkLpVtyxIad34CQL8F/4VlyPgg9+jsdBFxJN//Cyr+9SucJXmUv/u/gdIiQoSylrztVC39I6rHhTFpCIl3Px3U+SKuVMakdKJv+i6HDh0iMzMTi6X3zFOoqipHi22B0jcVtSfLJem0GsYNj2faqCQmZyVitRiC2NPQIEF7IXqIoihcPS6VyVmJ/HvNUT5cd4xKm5sP1h3ng3XHiYsyMzkrkclZiWSnx6HXaXqsb4b4/vRb8Bgx13yFxi8/p3H3Z3gba6hb8w51a/+JKXU45vSxWAaPxZA4EEXpub4JIYQQQgjR3TrWt88vaeCNZbk8clvfqm/fTqM3EnfDw5gGZlOz/CWcpUcoff37xN34LawZU4PdvYvWuHsl9eveBSB27oOEj7w6yD06P605nKR7f+afnPboLir/8zxx8x4hYuycYHdNiDNq2PUZtStfB9WHZch44hd+r9dMdCq6l8+ncvhEHZv3l7H1QDnV9Y7AOoNey/iMeKaNSmbSiAQspt5zp0BPkKC9ED3MZNRx37xM5k5IYvm6/ZQ16NifX0eNzcEnmwv4ZHMBFpOO8RkJTM5KZHxmAlZzz3xwacMiiZ55F5HTbqUldxMNOz7BVVVIa/EhWosPUb/uXbRhUZgHj8GSPgbzoDFoLZKFL4QQQggher9O9e03F5Cd3vfq23dkzZiKMTGdqqV/wFl6hKoPfkvruOuJmfs1NLrekQHZfHgrNZ+9CkDUtNuInLQgyD26cBq9kYQ7nqJmxSs07fuCmhV/w9tiI+qq23tNnWpx5VNVH3Vr/0nD1qUAhI+ZQ9y8b6Jo+t6dSqKzoopGPt1SyJYDZdQ1OgPLzUYtEzITuWpUMuMz4jEZJTR9NjIyQgRJRJiBsYPDuDczE63eyL6j1WzPqWDHwQpsTU427i1l495StBqFkelxTM5OZFJWIvHR3X/rk0ZnIHz0tYSPvha3rRJH/l7sx/fgKDyAt8VG84F1NB9YBygYk4f4s/DTx2JMSpc/zkIIIYQQoteS+vad6aPiSb7v59Stf4+GrUtp3P05rSWHiV/4PQxxqcHu3jk5Cg9QtfSPoPoIHzOH6Fn3BrtLF03RaIm78VtorVHYNn9A/fr38DbXE3vd1+V7lwg61eumevlL/rkigOiZi4iafodcVOrDVFVl/7Ealq7PZ9ehysDyMJOOSVmJTBuVzNjh8Rj18vl1ISRoL0QIMOq1TBqRyKQRifh8KkeK6tmWU86OgxUUVzaz92g1e49W88qHBxicHMnkbH8ZncE9UAdfH5WAfvz1RIy/HtXrprX4MPbje3Hk78ZVVYSz7CjOsqPYNv4LjdmKedBoLOnjMA8ejc4a3a19E0IIIYQQoqvdd0p9++e/PQNDHw4wKFodsdfeh3lANlXL/oyr6gSlbzxF3A0PEz7qmmB374yc5flU/PvX4PVgGT7Zn/nbSwOJiqIQM+tetGFR1K58g8YvP8Pb0kC/Wx7vNXc8iCuPr7WFyg9ewFF4ABQN/W78FuGjrw12t0SQeLw+Nu0t5cP1+RwvbQBAUWBKdhLXTR7A6KH9erQE9JVCgvZChBiNRiFjYAwZA2P42oIsyqqb2ZZTwfbccg4X1nG8rIHjZQ28tzKPftFmJo9IZHJ2IlmDu78OvqLVYx44EvPAkXDtfXgaa/0B/ON7cBzfh8/RTMvBzbQc3AyAIWEQlvSxmNPHts1kLh85QgghhBAitGm1Gp66bwKP/66tvv3HuTzaR+vbd2RJH0vqN35P9bI/4Sg8QPXHf8FReIC46x9GYzQHu3sBrtoyyhf/AtXVimlANvG3PnFFZKVHTpyPNiySqmV/puXwVryORhLv+CEaU9+9E0QEh6exlor3f4mr6gSK3kTC7d/Hkj422N0SQdDicLNy+wmWbcinpqEVAKNBy5yJ/bl55mCS46xB7mHvJhE0IUJccj8rt10zhNuuGUJDs5OdByvYllPBniPVVNc7WL65gOWbCwhrr4Ofncj4jATCeqAOvi4ilogxs4kYMxvV58VZehR7/h7s+XtwVeTjqizAVVmAbcsSFKMFy6BRmAf7S+noImK7vX9CCCGEEEJciriok/XtP9lcQHZ6LNNHpwS7W0GnC48m8Z6fYtvyIfUb3qf5wHqcpUeIX/g9jImDg909fzDxvf/FZ2/EkDiYxDt/eEVlo1tHXIXWEkHFv39D64lcyt75HxIX/QRduNzhLHqGq7qI8sW/xNtYgzYsisS7f4wxKfj/90XPqq53sGxjPp9vO4HD6QEgKtzIgumDmDd1EBFhV87nbjBJ0F6IXiTSamTOpAHMmTQAp9vLviPVbMspZ+fBSmzNTjbsLWXD3lJ0WoXs9DimZCUyKSuJftHdn/miaLSY0jIwpWUQM+sevC0NbWV09mA/vhefo4mWw9toObwNAH2//ljSx2AZPBZTWiaKTmYJF0IIIYQQoWNCZgJ3XDuU/6w5yp/f38vglEjJGsR/3h89/Q7MA7Ko/PAPuOvKKX3rR8TOfoCICfOCVobG62iifPHP8TRUo49JImnRT9AYu38+sJ5mHjiS5Pv+l4rFv8RVVUjZP54m6d6foo/pu5Mmi57hOJFL5X9+g6+1BX1sMomLfoo+Kj7Y3RI96FiJjaXr8tm4rxSfTwUgLSGchVenc/W41D5dSq47SNBeiF7KqNcyKcs/Oa3Xp3LkRD3bc8vZnltBSVUze49Us/dINS9/eID01Mi2MjpJDEqO6JETaW1YJOEjryZ85NX+LPyKAhz5u7Hn78VZdhR3dREN1UU0bFuGojdhHpjdloU/Bn10Yrf3TwghhBBCiPP56g0Z5B6v9de3f3sXL3ynb9e378iUlknqw7+j+uO/Yj+6k9qVr+MoPEC/BY+hNYf3aF98rlYq3v8V7upitNYYEu/5H7RhkT3ah55kTBxM8gO/pPy9n+Opr6D0Hz8m6e4fY0weEuyuiStU88HNVC37M3g9GFOHk3jnj9Baevb/uQgOn09ld14VH647xv5jNYHlo4bEsXDWEMYNj0ej6Z1zhoQ6CdoLcQXQahQyB8WQOchfB7+0upntOeVsy6ng8Ik68ksayC9p4N2VecRHm5mUlciUrCSy0mPRabt/MhBFo8WUPART8hCiZ9yF19GEo2A/9vw9OPL34G2xYT+6C/vRXdQC+phkzO1Z+AOy0OiN3d5HIYQQQgghTtWxvv3xUqlvfyqtOZyEO39I464V1H7xNvYjOyh57TgJt/43prSMHumD6vVQueS3OEvz0JjCSLqnb2T/6qMTSXngOcoX/xJXRT5l//czEu74AZbBY4LdNXGFsW1fRt3qfwBgGT6Z+Fu+K9/R+wCX28u63SUsXX+M4spmwD8H48wxKdx6dTrpqVHB7WAfIEF7Ia5AKf2s3HbNUG67Zii2Jie7Dp2sg19V72D5pgKWb2qrg5+ZwJSsJMZnxmMx9UyJGq05HOuIq7COuApVVXFVFuI4vgd7/l5aSw7jrivDXVdG484VKDoDpv4jAhPa6mOSg3bLrRBCCCGE6HtOrW+fNTiWGWOkvn07RVGInHgjptRMKj/8HZ76Csre+SnRVy8iatpCFKX7koRU1Uf18r/iyN+DojOQePfTGOL7d9vxQo02LJLkrz5L5Qcv4CjYR8X7z9Hvpm8Tnj0z2F0TVwBV9VG7+h807lgOQMSE+cTO/doVMbGzOLvGFhefbvHHjGzNTgDMRh03TB3ITdMH90j5ZeEnQXshrnBR4Sfr4Le6POw7Us323Ap2HKygodnFhj2lbNjjr4M/Mj2OydlJTM5KJC6qZz6IFUXBmDgIY+Igoqbdhq+1BUdhDvbj/gltvY01OI7vxXF8L6x6E11kvD8LP30c5gHZPdJHIYQQQgjRt03ITODO2UP59xdHefFfe0lPlfr2pzImDSb1od9S89nfac7ZQP26d2k9kUO/mx9HZ+36iVJVVaV21Vs052wARUPC7d/HlNoz2f2hRGM0k3j3j6j6+C+05G6i+qM/4W2xETX55mB3TfRiPo+L6o/+TMvhrQDEXHsfkVNukQS6K1hZTTMfrc9n9c5iXG4v4L9ofcvMwVw3eUCPJXmKkyRoL0QfYjLo/EH57KROdfC35VRQWt3MniPV7DlSzctL9vvr4GclMT4jnkHJEeh1PXM1XWMKIyxjMmEZk1FVFXdNCfbje3Dk78VRlIunoYqm3Stp2r0SNDoMKUMxmeJxWjwY+2dc0bUrhRBCCCFE8Hzlen99+4MFUt/+bDRGM/1ufhzzwJHUfP4ajoL9lL72JP1ufrzLy7bYtiyhcecnAPS76dtYhozv0vZ7E0WrJ/6W71IbFkXjjuXUrf4H3mYbpim3BbtrAarPi+p24nO14nO1orrbHl2tqF4PxpSh3XJxR1w8r6OJyn//htbiQ6DREX/zt7FmzQh2t0Q3OVRQx4frj7EtpxzVP7cs6amR3Hr1EKaPTu6RksrizCRoL0QfdWod/JKqJrbnVLA995Q6+J8fRqfVMDglgmFp0QztH82w/lEkx1m7fbIRRVEw9EvD0C+NqMk343O10noiN5CF76mvwFV8CDOHqD+6nnpAGxGHMWEQxsTBGBL9j9rwGMkIEEIIIYQQl0Wr1fCDr07gu7/317d/fVkO37p9dLC7FXIURSF89LUYU4ZR9eHvcFUVUfHez4matpDomYtQtJcfhmjcvZL6de8CEDv3QcJHXn3ZbfZ2iqIhds7X0FmjqVvzDg3bPsLZUANp0y+qnY7B9fbAuv952zKXA5/biepqxef2B907rg8sCzz6t1U9rvO9A0xpGYRlTCEsYwq6iLhLHwxxydwNVVQs/iXumhI0RgsJdzyFeeDIYHerR6mqitenXtHBaq9PZVtOOUvXHePwifrA8gmZCSyclc7I9DiJoYQACdoLIQBIjQ8n9dpwbr92KPVNrew6WMn23AoOFtTRZHdxpMjGkSIbbC4AIMykY2haNEP7RzGsfzTD+kcTE2Hq1j5qDCYsQ8djGerPonHXlWM7tJ3aw19idtbhra/A21iDvbEG+9Gdgf20YZEYAoH8wRgTB6GLSpA/QkIIIYQQ4qK017d/5tVtrNhSSHZ6nNS3PwtDXCrJX/s1dav/QePuz7Ft+RDHiYPEL3wCfeSlTxTbfHgrNZ+9CkDUtNuInLSgq7rc6ymKQtTUW9GGRVK9/CVaD23GWlVKU0MeDtVzMtjeMSDvbkV1OQNB9vMH1y+3kxoUgwmN3oTGYELRG0H14qoqorX4EK3Fh6hd9SbG5KGBAL4+OrF7+3QBGltceH1qsLvRrZwVBVS8/0u8zfVow2NIWvQTDPEDgt2tHuH1+jhYUMe2nHK25VZQVWcnMdbCgMQI+ieGMyAxggFJEaT0s6LX9d5gfqvTw+qdRXy0IZ+KWjsAOq2GayekccvMwfRPjAhyD0VHErQXQpwmOtzE3MkDmDt5AKqqUlln50hRPUeKbBwtrudYSQMtrR72Hq1m79HqwH5xkSaG9o9maJo/kD80Lapb657pY5IIG3sdRaY0+mdmYtKCs7IQV2UBzorjuCqO46ouwdvScLIufhuN0RLIxPcH8gejj0mSSXWEEEIIIcQ5jc+Q+vYXSqM3Ejfvm5gGjqTmk5dwluZR+tr36XfjY4RlTLno9hyFB6ha+kdQfYSPmUP0rHu7vtNXgPBR16C1RFD5wW/R1xbSUlt48Y2cIbiuMZgCyxRDx+XmwHr/so6PxrZ9zCgGI4pWf8bkKU9jDS2Ht9FyeButxYdxlh3FWXaUujXvYEgYRFjmVMIypmCI7dmLZI0tLv7v00N8tq2QqDAt39T1Y/rYKy+QbT++j8oPXkB1OdD360/Sop+gi4gNdre6lcPpYU9eFdtyytl1qJImu7vT+opaOxW1drbnVgSWaTUKyf2sDEgMZ0BShP8xMYKE2DC03VyJ4HLUNbayfNNxPt1SSLPD/z7DLXrmTxvEjVcNIrqbEzDFpZGgvRDinBRFITE2jMTYMGaOTQX8V6GLKpsCgfwjRfUUVTRS09BKzYFyth4ob9sXUuOtDE2LbsvGj2JgUmS3XZnWGC2Y+4/A3H9EYJnP7cRVVYSr4jjOygL/Y9UJfE47rSdyaT2Re/K96o0Y4gdiTBwUCOQb+qWiaGXCFSGEEEIIcVKn+vb/2MULj0t9+3OxZk7FmDSYqg//gLPsKJUfvEDE+BuImfMAGp3hgtpwludT8e9fg9eDZfhk4uZ9U+6cPQfLkPHE3PVTSjd9SExMLHpzWJcE17uLLiKOyEkLiJy0AE9TPfYj22k+vI3WE7m4KgtwVRZQv+5d9P3SCMuYijVjCvp+/butj16fyufbCvm/Tw8Fgrn1zV5+8397+eLLch6+NfuKuVjXtH8d1Z+8BD4vpgFZJNzxQ7SmsGB3q1vUN7WyI7eSbTnl7DtajdvjC6wLtxiYOCKBKdmJDE2LprymhRMVjZyoaOJEeSNFFY20tHoormyiuLKJTfvKAvsadBrS2jPyE8PpnxjBgMQI4qJMQf2cOlHRyEfr81n7ZQker/+9JsWFccvMdGZPSMNklLBwKJN/HSHERdNqNQxKjmRQciTXtyXItDo95Jc2tAXy6zlSbKOqzk5xZTPFlc2s2VUM+G+9Sk+J7FRWJyk2rNvq42v0RkwpQzGlDA0sU70eXDUl/gB+RVtWfmUhqrsVZ2keztK8Dm9Wh6Fff4xtZXUMiYMxxA9Aozd2S3+FEEKI3sjlcvHmm2+ybNkyiouLsVgsTJgwgW9961tkZWVddHsrVqzgnXfeIS/P/zd5+PDh3H///cybN++s+9TU1PCXv/yFdevWUVNTQ1xcHLNmzeI73/kOsbFnzxa8lGMBFBYW8sYbb7Bp0yaqq6uxWCykpKQwZcoUnnrqqYt+z6J30Wo1PHXfBB7/3TqOlzXw2rIcHpP69uekj0og+f5fULfuXRq2fUTjl5/RWnyY+Nu+d97saVdtGeWLf4HqasU0IJv4W5+QO2QvgD5hII4RNxCRmYnFYgl2dy6YLjyaiPE3EDH+BrwtDbQc2UnL4W04Cvfjri7GVl2MbeO/0Mckt5XQmYohcVCXBUdzj9fy9w8PcLysAYCBSRHcMzedDTuPsu1IC7sOVbL3SDULZ6Vz1+xhvTbwqaoqti1LAvNDhI24ivibvoOiu7KS1kqqmtiWU8H2nHLyiuoDk60CJMZamJyVxOTsREYMjEHboY59XJSZkUNOzq2gqiq1Da3+QH55WzC/opHiiiZcHl9gXsCOwkw6fwC/Q1Z+/8RwIq3dF09QVZX9x2r4cN0xvjxcFVieOTCGhbPSmZSVFNJ3BYiTeucnixAi5JiMOrIGx5I1+OSXYluTk6PFbdn4xfUcLaqnye4mr6ievKJ6oK0+vlkfKKkzLC2Kod1cH1/R6jAmDMSYMJDwtu9Wqs+Lu64cV0UBzkp/MN9VcRxfa4u/zE7FcZoCDWjQx6W0BfLbJrxNGITG2HtOhIUQQoiu4nK5eOihh9ixYwexsbFcc801VFdXs2rVKtatW8ff/vY3ZsyYccHt/eEPf+Dll1/GYDBw1VVXAbB582aeeOIJjhw5wne/+93T9iktLeXuu++murqawYMHM2fOHPLy8njvvfdYs2YN77//PklJSV1yLPAH+n/4wx/idrvJzs5mzJgxNDQ0cOzYMd566y0J2vcRsZFmnrx3PD97dSufbilk5OA4xg+PDna3Qpqi1RE7+37MA0dStezPuKoKKX39KeJueJjwUbPOuI+nsZaK9/4Xn70RQ+JgEu/84QVn54veTxsWScTYOUSMnYPX0Yz96C5/AP/4Xtx1Zdi2LMG2ZQm6yHh/AD9zKsbkISjKxd/dXdvg4K3lB1m3uwTwf0/96g0ZzJs6EKezFaOnmjvmjuLtz46y50g1//7iKGt3FfP1m7OZPjq5V935ofq81Hz+Gk27VwIQOeUWYq796iWNW6jx+VSOFNX769PnVFBa3dxp/ZC0KKZkJTI5O4kBieEX/O+mKApxUWbiosyMz0gILPf6VCprO2fln6hoorS6mZZWD4cK6zhUWNeprahwY4cgfgQDksLpnxB+WeWFPV4fm/aW8uG6/MAFJ40CU0YmsfDqIWQMjLnktkVwSNBeCNFtosKNTByRyMQR/omDVFWloratPn5xPUeLbOSX2GhxuNl7pJq9RzrUx48yM6x/FMPaSuukp0Z2a318RaPFEJeKIS4Va/aMQH89DVVt9fFP1sn3tjTgri7GXV1M84H1gTZ00YkdAvn+zHytRSZyEUIIcWV79dVX2bFjByNHjuStt97CavWXC1i+fDlPPvkkP/jBD1i9enVg+bns2rWLl19+mYiICBYvXkx6ejoA+fn5LFq0iJdeeomZM2cyduzYTvs9/fTTVFdXs2jRIp555hkURUFVVZ555hkWL17MT37yE15//fUuOdaePXv4/ve/T0JCAn/9618ZMWJEp/X79u27uAEUvdq4jPiT9e3/vZdffWtSsLvUK1jSx5L6jd9R9dGfaD2RQ/XHL+Io3E/cDQ+jMZgD2/lamyn/z3N4GqrRxySRtOgnkijTh2nNVsJHzSJ81Cx8Tgf2Y1/Scngr9mO78TRU0bB9GQ3bl6ENjwlMYmtKzTjvXRluj49lG/J5f3UeDqcXRYHrJg/gvnmZp2VEJ/cL49lvTmVbTgWvLcuhqs7O8+/s4rOtcXzz1pEMSAr9738+t5OqD3+P/eguQCH2uq8TOXF+sLt1WVxuL/uOVrMtp4IdByuwNTkD63RahZHpcUzOTmJyViJxUeZztHTx2uvcJ/ezMnXkyeVuj5fS6pa2IH4jRW2Z+RW1dmxNTmxNTvYdrenUVny0ua20TnvN/AhS463nLL/W4nDz+bYTfLwxn5qGVgCMBi1zJ/bn5pnpJMVdmaWO+gIJ2gsheoyiKCTFhZEUF8bV4/z18T1eHyfKGzlSbONoW2mdosomamwOamwOtuw/WR8/LSG8Q0Z+dLefECmKgj4qAX1UAmRMBfyBfG9zfSCA356R72mswVNfgae+gpZDWwJtaCPi/GV14gegi+iHLiIWXXgM2vBYNKawXpWNIYQQQpzK4/Hw9ttvA/Czn/2sU2B+wYIFLFu2jPXr1/PBBx/wwAMPnLe91157DYBHH300EEQHSE9P55FHHuGFF17gtdde469//WtgXW5uLtu2bSMqKoqnn3468LdVURSefvppPvvsMzZt2sThw4fJyMi4rGMBPPvss6iqyl/+8pfTAvYAo0dLiZS+5ivXZ3CwoI7c47X8cfEBvnJ16AftQoEuPIake/8H2+Yl1G/8F80H1uMsPUr8wu9BRAJ4XNQv/R3u6mK01mgS7/kftGGRwe62CBEaoxlr1nSsWdPxuVqxH99Dy+Ft2I9+ibepjsadK2jcuQJtWBSW4ZMIy5iCeUD2aQH8Lw9X8urSA5RWtwAwfEA0jywcydC0s981oygKU0cmMS4jniVrj/GfL46w/1gNj/9+HQumD+Le6zIIM4dmiRlvSwMV//oVzrKjKDoD8bd895ImhQ4FTXYXOw/669Pvyaui1eUNrLOYdEzISGBydiLjMxKC8u+h12kZmBTBwFPiFg6nvy5+0SmZ+XWNrVTVO6iqd7DrUGVge40CSXFWBiS11cxPiiAhUk99s4e3P81jzZdlOJwewJ84edP0wcybNpBwi9yR1NtJ0F4IEVQ6rYb01CjSU6OYN3UgAPZWN/mlDRztUFanqt5BUUUTRRVNfLHTXx9fr9MwMCmcSJOHY3WFpCVEkRBjITE2rNv+KCuKgi48Bl14DGFDJwSWe+2NgQB++4S37rpyvI012BtrsB/ZeXpbOgO6iFi04THowk8+6sJj0bYH98MipV6nEEKIkLV7925sNhupqamMHDnytPXz589n/fr1fPHFF+cN2judTrZs8V/4PlM9+fnz5/PCCy+wadMmXC4XBoP/y+jatWsBuPbaazEaO2dEGo1Grr32WpYsWcLq1asDQftLPdbevXs5dOgQkyZNuqRa/eLKpNVq+MFXx/P479ZRWNHEW6ud3OYtZ9aEgTI57XkoGi3RM+7ENCCLqqV/xF1XRtlbP8I6YxHWnC24a/LRmMJIuud/0EfFB7u7IkRpDCasGVOxZkzF53HhOL6Plrxt2I/sxNtio2n3Spp2r0RjDids2ETCMqbSEJHO68sPsz23AvAHOx9cMIJZ49IueL41o17LPdcN59oJaby+LIetB8pZtuE4G3aX8sCNmVw7oX+3zd12Kdz1FZS/93M89RVozFYS7/wRprSM8+8YQirr7GxvK3uTW1CLz3eyQH1spInJbWVvRqbHodeFZqkfs1EXmN+voya7K5CNH6iZX95Is8NNaXUzpdXNgaTGU6UlhHPbrHSuHpeKXid/d64UErQXQoQci0nPyPQ4RqafnPSlvqmVo8U2jhT5y+ocKaqn2eHmaLG/Vtuuo0c7tWE160mItZAYE9YWyLeQEBNGQqyF+Ghzl/8h01oisAwejWXwyew6n9PeFsAvwFVdjKepFm9THZ6mWnyOZlSPC3ddOe66M//hBUDRoLVGd8rQ14XHnBbsl7qeQgghguHQoUMAZw1gt2eit0/yei4FBQU4nU6io6NJTk4+bX1ycjJRUVHYbDYKCgoYPnx4pz5kZ2efsd2srCyWLFnSqQ+XeqytW7cCMH78eFwuF5999hn79+/H5/MxZMgQ5s2bR3S01DTvi2IjzTz5lfH8/PVtlNa6ePE/Oby1Io9rJqRx/eQB9E+U7PtzMfcfQeo3fkf18r9gP7qLpnXvoAfQGUi8+2kM8f2D3UXRS2h0Bn9gfthEVK8bR2EOLYe30XJkBz57I0371tC0bw0OVc8QVxoOwwCGTL6Ku2/IvuRyrAkxFp7+2iT25FXx96UHKKlq5k/v7+WzrSd45LZzZ+33lNayY1S8/0t89kZ0kfEkLvoxhrjUYHfrvFRVJb+0gW055WzPqaCwvLHT+oFJEW2B+kSGpEb16jvZwy2G0+YJVFWV+iZnIIjvz873P3e6vGQPjuGO2cMYNzy+V793cWYStBdC9ArR4SYmjUhkUof6+OW1LRw4Wsm+QyfwaizUNrioqGuhodlFs8NN8xlmbwd/qZ3YCBMJsW0B/RjLyeexFqLDTV2SEaExWjD3z8Lc//RAhs/tbAvg150M5jfWdgrse5ttoPrwNtXibarFefohTh7LEoHOenowvz3YrwuPRTFa5A+5EEKILlVWVgZAYmLiGde3L7fZbLS0tBAWdva6qqWlpedsq32dzWajrKwsEEhv70NCQsJZ9+nY/uUc69ixY4H1Cxcu7PQa4He/+x3PP/88s2fPPmu74so1bng8f/rv6fz7830cOOGkttHJsg3HWbbhOCMGxXD9lIFcNToZo2Tfn5HWEk7Cnf+Pxp2fUPvF26iqj5gF38GU2rsygUXoULR6LOljsaSPJfaGh9m1biMFW9cwTC0gUuNgkvE4k4zHUY5spUkdjy9jCpb0cWgMpks63tjh8fz5yWv4eONxFq86TF5RPU/+acNZ6+P3FPvRL6n88HeobieGhEEkLvoxOmvwLyScjcfrIye/hm05FWzPraDG5gis0ygwYnAsk7OSmJKdSGLslV2vXVEUYiJMxESYGDv85N1Gzc0t7Ms5yNhRWVgsMs/HlUqC9kKIXklRFJLjrERZNMQZbGRmZgb+WDmcHqrq7FTUtlBZZ6eyzk5FrZ3KuhYq6uw4XV5qGlqpaWgl93jtaW3rdRrioy1tmfr+DH1/pr4/uG/tgtI7Gr0RTUwS+piks26j+rx4m22dAvmepjq8jbWdgv2qx4XP3ojL3oirqvDsY6Y3oYtoz9bvnLnvMYShOJtRVd9lvzchhBB9h91uB8BsPvOkbh2/SJ4vaH++tjq219LSctp+Z/vSeq59LvZYNpsN8NfDj4iI4MUXX2TKlCnU19fzxhtvsHjxYp544gmWLFnC0KFDz9r2hVBVNdDP7uZwODo9iksXZlCZNTKC+28cwJHSFlbvLGX3kRoOFtRxsKCOv3+4nxljkpg9PoX+ieHB7m5I0mdfS3i/oZQUnSAqcXiP/T+4Esn/bb+iymbe+uQwuQWNwAT6RV3Fw5MMDHIfo/XYLnxNtbQc3EzLwc2gM2AcOArT0IkYB41FY/T/nbiYsbxhcjKTMmN4d+UxNu4r5/NtJ9i0t5S75wxhzoQUtNqeK9tiP7CWxi/eBFXFMGAkUQu+g0tjxBWk/1dnG0d7q4e9R2vYdaiaPUdrsLd6AuuMeg2jhsQxMbMfY4fFERF28i7zvvr54HS2YtJr+vz/7a4QjM9JVVUvKKFSgvZCiCuO2ajzz7R+holqVVWlodnlD+DX2jsE9f0B/mqbA7fHF6gZdybtpXf8WfphJ8vwdHHpHUWj9WfKR8SedRtVVfE5mtsC+G3B/MZTgvxNtfhaW1Ddrbhry3DXlp2xrSigcr0WnTU6EMzXBjL1Twb4pRyPEEKIvkpV/bVz3W43f/zjH5k0aRIAERERPPvss1RWVrJ27VpeffVVnn/++cs6ltvtDpT+6SmFhYU9erwrWVHRCUzAgnFGZmYksvd4C1/mt9DQ4uGzbcV8tq2Y1FgD44eEkTXAjCFEay8HlTVWficvkqqqtDh91DR6qGlwU93owe70MTi/hYw0M2ZD3/o9c7h8rNvfyI6jzagq6LQwfUQEV2WGo9cplDIe4sehbSjHUHkYfcVhtA4bzmO7cB7bhapocccNwp2QgTt+KBjMF/U7OTtLy5B+/fj0SxsV9W7eWH6YTzblM39CFAPiuznrXlUxHduAOX8zAM6UUdQPn0dlfmH3HvcCFRYW0mj3klfq4HCJg4JKJ74O+WNhJg3DUkxkpJoZnGBCr1OABkqLGig9a6t9j3xGdp2eHsv2+ZLORYL2Qog+RVEUosKNRIUbGT4g5rT1Xq+PapujU3Z+ZZ2dyrYAv63ZeQmldyzER1v8x7UaCTPru6xMjaIoaC3haC3hkDDwrNv5XK2BAH7ncjz+Ze7GWrwtNhSfF09jDZ7GmnOX4zGHd5g8t3NZnvYAv8YUJuV4hBDiChe4y+0s2UkdM+DOlWV/IW11bK9jW+37nS3b7lz7XOqxBg4cGAjYd7Ro0SLWrl3Ljh07ztruhdLr9QwZMuSy27kQDoeDwsJCBg4ceM67D8T5nW0sJ48Hn09lf34ta3aVsutwNSW1LkpqXazc28T00YnMmZDKwCTJvgf5nTwfn0+l2uagrKaFkuoWSqtbKKu2U1rdQrPDfdr2BwrtLN9lY1R6LFOzE5iQ0Y+wLrh7OFT5fCrr9pTx3qqjNLb4x2PSiHjuu2EY8dFn+n0aAcxGVVU81UW0Ht1B67FdeOvKMFQfw1B9DDQavMYIDNZItJYINCar//tO26PGZEVpezy5LozMTC3XzVBZvauExauPUWlz8+bqaq4alchXrx9KTMSlleI5F9XroXH1GzjaAvZhk28lYeptQf9upqoqx4pqWbMjn4JqHwXlnZPkkmItTMjsx8TMeIamRobUJL6hRj4ju04wxvLU8opnI0F7IYToQKvVkBgbRmJsGKPPcFd7e+mdytPK7/ift56n9A6ATqsQaTUSafUH8SOthsDzqPCOy41EhRu6JHNfYzBhiE2G2NMn2wN/YOJQbg7D+iehd9s7BPg71NxvqjtZjsfRhMvRBOcqx6MzdKir3yHAH96h7r41CkUjdV2FEKK3ap/EtaKi4ozr25dHRUWdN2ifkpJyzrY6rus4eWxycjIHDx6ksrLynPu0t385x2rfLzX1zJP3tS+vqak5a7sXSlGUHq9TazabpTZuFznbWE4bHca00f2pb2xl9c4iVm4/QUWtnVU7Sli1o4ShaVFcP2UgM8emYDbK1/W+/jvpcnsprW6mpKqZksomiquaKalqorSqGZfnzGUtFQXioy2kxltJjDHR1FhPYbVKUWUze47UsOdIDTqtwphh8cwYk8zkrKQrKoB/pKiel5fs52ixDYC0BCvfvHUkY4bFn3vHdmGZRA7MhLkP4KoupuXwVloOb8NVdQKtw4bXYcN7Ef1RjBa0JisTzOGMH27hRL2P49VuWo4aWZK/llFZAxg3Oh1DWAQasz/grzWHoWgv7d/E53RQ+dGfcBzfC4qGuHnfJGLs3Etqqyt4vD5yj9eyI9dfn76y7uQFdkWBYf2jmZKdxOSsRNIS5KLlxerrn5FdqSfH8kIvoMlZgBBCXITzld5pbHEFAvgny++0UFXvoLHZSUurB49XpbahldqG1gs6psWk6xDEN7YF/A1nDPJbzfpLz0jQaNGGx2KypJ11k87leE6ZSLdDiR6foxnV48JTX4Gn/uwBERQN2rCoQNmd9olzT06m6399qZNBCSGE6F6ZmZkA5ObmnnH9wYMHAQITuZ7LoEGDMBqN1NfXU1ZW1ilYDv4JZ202GyaTiUGDBnXqw+rVq8nJyTlju+1969iHSz3WiBEjgJO17U/Vvly+QIvziY4wcefsYdx+zVAOHKvhs22FbMsp52ixjaPFe3l92QFmjk3lhikDGZIWFezuim7WbHdRXOkPyBdXNVNc6Q/MV9a14FPPvI9epyGln5WUeCtp8eGkJVhJjQ8nuV8YJoM/1GO32zl06BCZmZnUNnnZvL+MTXtLOVHRxK5Dlew6VIlOu49xw+OZPiaZyVmJWEy9M4Bf39TK258cYvXOIsD/ve3e64ezYPpgdJdYQ97QLw1DvzSiZ9xFU0UR+Tl76J8Yh97nxtfajNfRhM/R9tja3Pa82f+81T8fiuq043HaoaEKgGQgueNXm2M7qTlD0q1iMKE1WdGYw9GarW0B/Y7PrWjN4WjMVv8yUzj4PFT853lcFcdR9EYSFj6JZej4S3rvl6PZ4ebLQ5XsyK3gy8OVtHSoT6/XaRgYb+CaiYOYPqY/0d1wp4EQVwoJ2gshRBdRlJMZ9GcqvQP+bJmGZhcNzU5szU4a2n7qm9qfuzot93hV7K0e7K0eympazthmRxqNQmSY4bRg/hmD/OFGjPqLy3K/4HI8bife5voz1tf3tGftN9eDz4u3uQ5vcx2Un+N9GS2B+vpaS9stqZYItObwk8/bXmvMVsneF0KIHjJu3DiioqIoKSnhwIEDjBw5stP6FStWADB79uzztmU0Gpk2bRpr167l008/5aGHHjpjW9OnT+9UB/Saa67hxRdfZM2aNTidTozGk3WCnU4na9asAWDOnDmXfayrr74avV7PsWPHqK2tJTa287wzW7duBSArK+u871cI8J+7jR7Wj9HD+tHQ7OSLncV8vq2QspoWPt92gs+3nWBwSiQ3TBnA1eNSe21AVfiTX2psrRRXNVFS1URJZXPb82ZsTWcvTBlm1pMW7w/IpyVYSU0IJzXeSkJMGNqLSNZJSwhn0dzhLJo7nKKKRjbvK2PT/jKKKprYcbCCHQcr0Os0bQH8FCaNSOgVv28er49PNhfw7ueHA5OXXjshja/dOKJLA8LaiDi80amYBmde0IVZ1efF19pyMojvaAo899r9z8tLKykvq0LvayVMcRKhc2NUnYCK6mrF42qFxou/c0tjiSDx7h9jSu6ZEmsAFbUtgWz63OO1eDtcbYq0GpiYmcikrESGp1kpyD9CZmYqFosE7IU4FwnaCyFEDzLotfSLNtPvjLUUO1NVlRaHuy2IfzKYb2vqGPB3YWsL+Dc73Ph8KvVN/osAF8Js1BJpNRJh0aP4nCQeyiUy3ITVbCDMrMNqNmC16Akz6bFa9FjNesLMeox67Tlv6dLojWiiE9FHJ579/fm8eFsaz1KGpzYQ6FddrficdnzVdtzVxRfwrhR/xoklHI25LZhviTjlddvzsAi05ggUgynoNR6FEKI30ul03H///fz5z3/m2Wef5a233sJqtQKwfPly1q9fT3R0NLfffntgn/379/PUU08B8Nlnn3Vq7xvf+AZr167llVdeYdasWaSnpwOQn5/PK6+8Etimo6ysLKZMmcK2bdt47rnneOaZZ1AUBVVVee6557DZbEyfPp2MjIzLPlZUVBR33XUX//znP/nZz37GCy+8EKh/umfPHt58800A7r333kscUdGXRVqN3HbNEBbOSicnv5bPt51g8/4yjpc28NIH+3n941xmjknh+ikDGNY/Ws5dQpTH66O8poXiSn9AvriqiZK2562usxdWiYs0BQLyaQnhpMX7n0eFG7v837p/YgT9EyO45/oMTrQF8DfuLaWkqpntbYFXvU7D+Ix4po9OYWKIBvD3Ha3mlQ8PUFzZBMCQ1EgeWTiKjIFnTqDqSYpGG/gecjb9gHSHm/dW5vHxpuP4fCpGHdw5M40FExPQuu2dMvp9jma8rU0nM/rbMvz9FwNaQPWh75dG4p3/75zfw7qCz6dypLg+EKgvqmjqtD4tIZzJWYlMzkpkaP/owAWms80/I4Q4nQTthRAiRCmKgtViwGoxkHoBJRjdHh+NLc62IL4/yN8e0O+YvW9rC/R7vD4cTi8Op52KtvL7eaVlF9Q3nVYTCOBbLW2P5pOP/qB/50C/te3HYvKX8FE0WnTh0ejCozGe41g+p7/Gvj9rvxavowmvvRGfvbEtS+Xkc19rM6D6T2AdTcCFvR+0OrQdA/qBLP5INJbwk1n8HS4AXGqdSSGEuNI8/PDDbNu2jR07dnDdddcxceJEampq2LVrF3q9nueffz4QyAf/hF8FBQVnbGvChAk88sgjvPLKKyxcuJBp06YBsGXLFpxOJ4899hhjx449bb/nnnuOu+++m8WLF7Nz506GDx9OXl4e+fn5xMfH84tf/KLLjvXkk0+yf/9+Vq1axdy5cxk9ejT19fXs27cPj8fDfffdx9y5wasfLHo/RVEYOSSOkUPi+GbLSNbsKmbl9kKKK5tZtaOIVTuKGJgUwfVTBjBrfBrWK6geeW/h9fpotLuornf4s+bbStoUVzZTUdvSKcu4I61GISkujLS24Hx79nxKP2vQguIDEiMYkBjBPdcNp6iiiY37Stm0t4zS6ma25VSwLacCg07D+MwEZoxOYcKIhKDPt1BVb+eNZbls3u8/148IM3D//EzmTBpwUXcfhIIws55v3JLN3Mn9+fuHB9h/rIb/W1PMyj01fOOWbKZkD7mgizaq6sPndKAxWrrtgl6r08Peo9XsyK1g58FKbM0nE8U0GoXswbFMHJHIpKwEkuOs52hJCHEhJGgvhBBXCL1OQ2ykmdjIC8vit7d6AgH9qtom8o6dIDwqDpfHX4ew2eGmpeOj3U1Lqz+b3+P1+S8KNF9YRn9HigIWU+dAfqegv6VD0D+wPBJrvzis/fXnnJhX9Xn9wXtHh4B+S+PJQL+jCa+9wb+N3b9cdTvB6zlZpudC34fRcrI8jzk8kLXv1Zkw1tmwe6vwWawoOj2KztDhse253oCiNaBpe45GJxlzQoheyWAw8Prrr/PGG2+wbNky1qxZg8ViYfbs2fzXf/3XRZeK+d73vkdGRgZvv/0227dvB/y15B944AHmzZt3xn1SUlJYunQpL774IuvWrWPVqlXExsayaNEiHn/88dPK2FzOscLCwvjnP//J66+/zvLly9m4cSM6nY6xY8dy7733Mn/+/It6v0KcS0SYgVuvTueWmYM5WFDH59sK2byvjMLyRl758ABvLj/I9NHJXD9lAJkDY+Rc4hKd7Q7XhiYnDS2dy1famlw0O1yoZ6k1D/67WVPaMuU71ptPigu75Prq3U1RlMDcXV+5PoPC8pMZ+GU1LWw9UM7WA+UY9FomZLZl4GcmYOrBAL7L7WXJumP8+4ujuNxeNArMv2oQX7k+A6vFcP4GQtiAxAh+8eg0tuwv57VlOVTVO3jurZ2MGdaPb9468ryTtCqKBq3p3BO+X4q6xlZ2HvRn0+87Ut1pAmSLScf4jAQmZSUyISO+1/8bCBFqJGgvhBB9kKIohLUFyZP7WRmYYCZcqSUzc9A5azSqqorD6ekU0G+2nxLcd7g6Bfo7butye1FVaGlbVnUJfdfrNISZ9JhNOiwmnf+5scNzkw6LSY/FZMFiisRi1mGJ0hFm9m8XZtJjMekCX5h8bmenrP2zZfF3fI7qC0wq5bFVntZHC9B4CBov6p0pnYL5nQL7+rbX2rZlOsNpzzVnWh64WKBH0Rn9Fwjanp9cbpA5AIQQl81gMPDoo4/y6KOPnnfbyZMnk5eXd85t5s+ff9HB77i4OJ599tmL2udSj2U0Gnnsscd47LHHLvp4QlwKRVHIGhxL1uBYvnnrSNZ+WcLn2wo5UdHEml3FrNlVTFpCODdMGcA1E9IIl+AZrU5P55KSHZ6feidqQ7PrrNnxZ6MoEGU1ktoWnE9NsLaVtAknLqp3l15UFIVByZEMSo7kKzf4A/gb95ayaV8Z5TUtbNlfzpb9/gD+xBH+DPzxmfGBCXC7mqqqbM+t4LWPcqis85dXyU6P5ZGFoxiYdPbyM72NoihcNTqZ8Rnx/GfNUZasO8beI9V857druXlmOovmDuv2OzJUVaWwvDFQ9uZosa3T+vgYi7/szYhERgyORa8LzYtQQlwJek3Q3uVy8eabb7Js2TKKi4uxWCxMmDCBb33rW5c00dOKFSt45513Al8Yhg8fzv3333/WjBqAmpoa/vKXv7Bu3TpqamqIi4tj1qxZfOc73zlr9s6lHksIIUKRoihtAXE9RF/8/m6P92Sgv7VzwL/Z4aLF4aHZ7gqs6xjwt7e6UVV/GaBLzfLvyKDXtgX6dZhNeizG9sC+FYspKhDcN0d1XKfDbNQQpvFg9NnRe+zgbO6Uxe9qrKehtppwiwkNPnxuF6rHjepxtj26UT2uwM9J6hmW9RBFczKIrzV0Duhr9Z1fB7bRoeja7hQ4bR/dKXcXnKGtTvvoURQ54e8u6rlSAYUQQvQ6VouBm2YMZsH0QeQV1fP51hNs2FtKcWUTr36Uw1ufHOSqUf7s+6zBsb06eNzRmUpBnvo6EIRvceE8R/34swkz6Yi0Gtt+DERajUSd5XV4mKHXlWK5FB0D+PfNy+R4aQOb95exaW8Z5bUtbN5XxuZ9ZRgNWiZmJjB9TArjM7ougF9c2cRrH+WwO8+f7hMXaeLrN2UzfUzyFfO7fSqTUcdX52Uye2J/Xvsohx0HK/hw3THW7y7mawuymDUutUvfu9vjIye/hh25/gmJq+odndYP7x/NpCz/RLIDEsOv2HEXItT0iqC9y+XioYceYseOHcTGxnLNNddQXV3NqlWrWLduHX/729+YMWPGBbf3hz/8gZdffhmDwcBVV10FwObNm3niiSc4cuQI3/3ud0/bp7S0lLvvvpvq6moGDx7MnDlzyMvL47333mPNmjW8//77JCUldcmxhBDiSqXXaYkO1xIdbrrofX0+FbvTg73Vjb31TI9tz8+1jdMT+ALncntxub3YLnDS3rMxGfzBf7MxnDBzNEb9YFoddsJ9VvQ6/59ZjVZB0YGCgqKARlFAAQ2gVbxo8aJTPWhVL1o86PGgUb3o8KANLHf7H1VP4EfT4VHj67DM5w4sa39UAsvcKD5/+wGqD9Xt9JcKChaNrlPgH42OCI+Hml1mNFqd/8KCRgOKBhQl8Nz/qPifKxpoX972XGnb/uRzTee2NBr/F49T21e0HdpSTj7XaACl07b4fKg+r38cfd6TrwPLvag+L6rPBz4f+Dq8bltHh/Un9zm5rX9522u14/YdHtVTt/c/gkqURkflejNagxnFYELT9qPo2x7bl+nNKEYTGr0JTYdt27fruK3M6yCEEMGlKAoZA2LIGBDDN27JZv2eEj7bWkhBWSPrdpewbncJKf2sXD9lANdOSCPSeq5ZhLqX2+Ntm0vJQ6vTg6PDT6vLg6PVg8N1cn1TSyvlVXWom3bSZHfT0OKixeG+6OMadBqiwo1EBILthg5B+FMD8YZzlmEU/t+59NQo0lOjuG9eJvmlDWxqy8CvrLOzaV8Zm/aVYTJomTQikeljkhmXkYBRf/Hjam91s3jVEZZtyMfrU9FpNSyclc5ds4f1aEmeYEqKC+OnD01m16FK/r70AOU1Lfz+3d18trWQRxaOYnBK5CW33WR38eWhSrbnVrA7rwp7qyewzqDXMnZYP399+hEJREdc/Hc3IcTl6xWfdK+++io7duxg5MiRvPXWW4GJrJYvX86TTz7JD37wA1avXt1pgquz2bVrFy+//DIREREsXryY9PR0APLz81m0aBEvvfQSM2fOPG3Sqaeffprq6moWLVrEM888g6IoqKrKM888w+LFi/nJT37C66+/3iXHEkIIcTqNRgnUuL8c/gl4PWcJ/J8M7tsdZ7sA4H/eXs+x1eWl1eUFTg14t15WP/0UQN/207UnywoqOrzoFC/6Ux8V3xnX6RX/j1GrYtT4MGp9GDRtP4ovsN6/vb8NLR7/o+q/UKBVPSjtFxLokAHu86C6PKiuk5k9WsDT3KVvu89SfB5URxMeR1PXNarRnRLwb39u7hzcPzXgrz/lwkH7vm13aaCV+R2EEOJihZn1zJ82iHlTB3K02MbK7SdYv7uE0upm3vg4l7dXHGLayCSunzqAkelx5/yc9flUfyDd6aHV5W0LqHtOCbifEoBvC7y3ujy0Or3YOwTjW10ePN5Lveur8/mURqMQZTUQEdYhAz68QyA+zEBk+Ml1JoNW/qZ0E0VRGJIaxZDUKB64cQTHSmz+Gvj7yqiqs7Nhbykb9pZiNmqZOCKR6aP9GfiG8wTwVVVl7ZclvLU8l/q25JqJIxL4xi3ZfXZy0wmZCYweGsfS9fm8v/oIBwvq+O8/rOOGqQP56rzMCy6HVVbTHCh7c7CgDl+HklBR4UYmjUhkclYio4bGdVupIyHEhQv5/4Uej4e3334bgJ/97GedAvMLFixg2bJlrF+/ng8++IAHHnjgvO299tprADz66KOBIDpAeno6jzzyCC+88AKvvfYaf/3rXwPrcnNz2bZtG1FRUTz99NOBP/qKovD000/z2WefsWnTJg4fPkxGRsZlHUsIIUT30mk1hFsMl13r1e3xYW91By4AtLS6cbR6qG9oobiklKSkJHR6A6qq+n8A1afiU0FFRVVpW+d/9J3y+tK3b3t+2vad2/B4fbg9/h+Xx4vb7X90uX3YPV5cHh9ud/uj79yDcUlUNKgdLhScvECga7tAoMOHgoqi+LfVoKK0Pyonn3dcd6HbapS2Hwg817a97tiGfx1o8HVe174tKqqiQe2QxY9Ge/K1Rht4DGT/a7T+1xotikbjLyekaFC0WhStFo3m5KNGq0XR6tBqNSgaHRqdFq3W/6jR6tBqtWh12g7Ldeh0OjRaLTq9Hq1Oi8flovB4HsMH9sekU1BdDnyuVnzuVlRXKz5X26PbcfK5qxXV7X/0Lzu5TvW2ZTr6PPham6G1mYsvQHAeGl1bmSUdSttztG13YwTW6f3LT3mttN21gVbX6bXS/rq9La3OX7Kp07KO23Ve53N5OOesg0IIEQIURWFY/2iG9Y/m6zdlsWFPKZ9vK+RYSUMgiJoUF0Z6SuRZg/Ktl1BW5kIZ9FrMRi1mow6TQddWetD/Y2pbbjbq0CoqjbYahqf3Jz423J8NH24kzKRH0wdK0vQ2iqIwNC2aoWnRPHDjCI4W29qy7kuprnewYU8pG/aUYjbqmJyVyPTRyYwdfnoA/1iJjb9/eIBDhXWAP9P8m7eOZEJmQjDeVkjR67TcOXsYs8al8ebyXDbuLWXFlkI27i3jvvmZXDd5wGnlmrw+lbwTdYGyN8WVnbNhBiZFMCnLH6gfkhol/7eECDEhH7TfvXs3NpuN1NRURo4cedr6+fPns379er744ovzBu2dTidbtmwBOGM9+fnz5/PCCy+wadMmXC4XBoM/oLN27VoArr32WozGzrcUGo1Grr32WpYsWcLq1asDQftLPZYQQojeQa/TBG6t7shut3PIaCMzM+Wck/r2Jj6fisfr6xTId7m9bUH/k4H9TsH/TkH/tn06rO+4naetPVd7e24fzW5/4ECj1YBK4CJF4GJF2wUN2pZd2dpvV77c+Q4OodMq6HVaDHoNeq0GvV6LQWdFr4/EoNNg0GnR6zs8WrQYIvzb6XUaDDoNeg2YtB6MeDAobox40ONCr7rRqS50qgutz43W60TjdaF4nSge/w/uUy4WuNsfT7lTxedB9XlQL74SQveKHAoj/ifYvRBCiAtiMem5YepAbpg6kGMlNlZuO8G63SWU17RQXtNy3v01Ch0C6qcE2A2dg+ydtjFoMZvOEJQ3aNFqL2wOG7vdzqFDrWRmJlwx51N9RccLRw8uGMGRovpA2ZwamyNQusls1DE5O5EZo1NIT41k8aojfL6tEFX1l5+8a84wbr06XUoWnaJftJmn7pvAvKkDeeXD/ZyoaOKl/+zj822FPLpwFAOSIth7pIrtuRXsPFhJY8vJ80etRmFkehwTsxKYNCKRxNiwIL4TIcT5hHzQ/tChQwBnnWx2xIgRAIFJXs+loKAAp9NJdHQ0ycnJp61PTk4mKioKm81GQUEBw4cP79SH7OzsM7ablZXFkiVLOvXhUo8lhBBChBqNRsGg0fqzoS6zPNGF8n9ZP0RmZuYFfVnvfPdB23Nf5zsMTr07oX2d70zLfB3ukGhf5+u4vf+516fi9fnwelW8bRc3vN62R58Pj1fF6/W1rfM/9/g6bONVA6+9vrb1pyxvfx1ov0O7Hq962nH8xzi5viOPV8Xj9eDo9ukL2ss6daZRaLtQoDl58UCnxWACRfWCzwNeT+BR8fmXKaoHfF4UnwdF9d+FocXXdmeGD63i888NofjaXvuXtz/3b9tWsumUbc6/zl8yCqC03ktmdw+dEEJ0gyGpUQy5I4oHb8pie045TXb3WbPc2wPwBp1GSsuIy6IoCsMHxDB8QAwPLsjiSHE9m/aWsXlfKTUNraz7soR1X5Z02mfm2BS+flMWsZHmIPW6dxg5JI4/fW8Wn2wp4N3PDpNf0sAPXtyITqvB4z15l2yYWc+EjAQmZyUyLiOesB46lxdCXL6QD9qXlZUBkJiYeMb17cttNhstLS2EhZ39SmFpaek522pfZ7PZKCsrCwTS2/uQkHDmW7La22tv/3KOJYQQQoiLpygKWgX88wCIdqqq0tzcQs7BQwxOH4pOb8TlPvtdD6feHXFq+SR3x7siTlnmPsMdE26Pr9MXR58KTpe3bULoc6XRa4CLuwtRq1HQajXotApape2x4zKt5uTrjss1GrRaBV37+o6v2x8VwOch2uQ4bz+EECKUmY06Zo1PC3Y3RB+k0ZycOPnrN2WRd6KeTftL2byvjNqGVgYmRfDIwpFkp8cFu6u9hlar4eYZ6cwck8rbKw6yakcRHq+PpNiwQNmbzEEx6C7wDhchRGgJ+aC93W4HwGw+81XWjtl35wvan6+tju21tJy8XbB9v7Nl+p1rn4s91qVQVTVwvO7mcDg6PYpLJ2PZNWQcu4aMY9eRsewaMo5dx+VyYtBp0ClezHoVs16hJ08BO5VXar8QECivdHK5ovjnnNBolLaguj+ArtMq/mWBoLsSCK63B+Y1GqXbs0EdDgeFhYU9+jupqqpkuQohhLjiaDQKmYNiyBwUw0M3ZVPX2Ep0hOm0muziwkSFG3n87rHcNWcYHq+PlH5WOX8Q4goQ8kF7cX5utztQwqenFBYW9ujxrmQyll1DxrFryDh2HRnLriHj2HVCdSy1bT9AoHy/t+0nFPX0OMq8R0IIIa5kGo1CXJSUwukKUqNeiCtLyAft27PRz5bV1DHD/FxZ9hfSVsf2OrbVvt/ZstnP615BdgAAHAJJREFUtc/FHutS6PV6hgwZclltXKj2LLOBAwee8y4CcX4yll1DxrFryDh2HRnLriHj2HVkLLtGMMbx2LFjPXIcIYQQQgghRGgJ+aB9+ySuFRUVZ1zfvjwqKuq8we+UlJRzttVxXcfJY5OTkzl48CCVlZXn3Ke9/cs51qVQFOWCJunrSmazucePeaWSsewaMo5dQ8ax68hYdg0Zx64jY9k1enIc5dZ2IYQQQggh+qaQn40iMzMTgNzc3DOuP3jwIMAFTeQ6aNAgjEYj9fX1gcllOyorK8Nms2EymRg0aNBpfcjJyTlju+1969iHSz2WEEIIIYQQQgghhBBCiL4r5IP248aNIyoqipKSEg4cOHDa+hUrVgAwe/bs87ZlNBqZNm0aAJ9++ulZ25o+fXqn+qHXXHMNAGvWrMHpdHbax+l0smbNGgDmzJlz2ccSQgghhBBCCCGEEEII0XeFfNBep9Nx//33A/Dss8/S3NwcWLd8+XLWr19PdHQ0t99+e2D5/v37ueGGG7jhhhtOa+8b3/gGAK+88gr5+fmB5fn5+bzyyiudtmmXlZXFlClTsNlsPPfcc6iqCoCqqjz33HPYbDamT59ORkbGZR9LCCGEEEIIIYQQQgghRN8V8jXtAR5++GG2bdvGjh07uO6665g4cSI1NTXs2rULvV7P888/j9VqDWzvcDgoKCg4Y1sTJkzgkUce4ZVXXmHhwoWBbPgtW7bgdDp57LHHGDt27Gn7Pffcc9x9990sXryYnTt3Mnz4cPLy8sjPzyc+Pp5f/OIXXXYsIYQQQgghhBBCCCGEEH1TrwjaGwwGXn/9dd544w2WLVvGmjVrsFgszJ49m//6r/8iKyvrotr73ve+R0ZGBm+//Tbbt28HYMSIETzwwAPMmzfvjPukpKSwdOlSXnzxRdatW8eqVauIjY1l0aJFPP7448TGxnbZsYQQQgghhBBCCCGEEEL0Tb0iaA/+wP2jjz7Ko48+et5tJ0+eTF5e3jm3mT9/PvPnz7+oPsTFxfHss89e1D6XeiwhhBBCCCGEEEIIIYQQfU/I17QXQgghhBBCCCGEEEIIIfoKCdoLIYQQQgghhBBCCCGEECFCUVVVDXYnxKXbvXs3qqpiMBh65HiqquJ2u9Hr9SiK0iPHvFLJWHYNGceuIePYdWQsu4aMY9eRsewawRhHl8uFoiiMGzeuR44nQoec4/deMpZdQ8axa8g4dh0Zy64h49g1ZBy7Tiif4/eamvbizHr6P6eiKD325eFKJ2PZNWQcu4aMY9eRsewaMo5dR8ayawRjHBVFkS9ifZSc4/deMpZdQ8axa8g4dh0Zy64h49g1ZBy7Tiif40umvRBCCCGEEEIIIYQQQggRIqSmvRBCCCGEEEIIIYQQQggRIiRoL4QQQgghhBBCCCGEEEKECAnaCyGEEEIIIYQQQgghhBAhQoL2QgghhBBCCCGEEEIIIUSIkKC9EEIIIYQQQgghhBBCCBEiJGgvhBBCCCGEEEIIIYQQQoQICdoLIYQQQgghhBBCCCGEECFCgvZCCCGEEEIIIYQQQgghRIiQoL0QQgghhBBCCCGEEEIIESIkaC+EEEIIIYQQQgghhBBChAgJ2gshhBBCCCGEEEIIIYQQIUKC9kIIIYQQQgghhBBCCCFEiNAFuwOid3C5XLz55pssW7aM4uJiLBYLEyZM4Fvf+hZZWVnB7l6v4Ha72b59O+vWrWP79u0UFxfj9XpJTExk+vTpfOMb3yAlJSXY3ex1VFXlgQceYPv27QCsWLGC9PT0IPeqd2lqauKNN95g9erVlJSUAJCQkMD48eN5/PHHSUhICHIPQ9/x48d59dVX2b59O1VVVeh0Ovr37891113Hgw8+SFhYWLC7GDJyc3PZsmULBw4cICcnh9LSUgC++OILUlNTz7pfUVERL774Ilu3bqWhoYHExESuv/56vvWtb/XJ8b3YcaypqWHdunWsX7+eAwcOUFNTg8FgYOjQodx0000sWrQIna5vnhZe6u9kR8ePH+fWW2/F6XQyevRo/vWvf3Vnl4XoMnKOf/nkHL97yDn+5ZNz/Msn5/gXTs7xu4ac43eNK+X8XlFVVe3xo4pexeVy8dBDD7Fjxw5iY2OZOHEi1dXVfPnll+j1ev72t78xY8aMYHcz5G3ZsoUHH3wQgKSkpMAXof3791NVVYXVauW1115j7Nixwexmr7N48WJ+9rOfoSgKqqrKCf1FOnbsGA8++CBVVVUMGDCAjIwM3G43RUVFHDt2jH/+859MmDAh2N0Mabt27eKhhx6itbWVgQMHMnz4cBwOB7t376a5uZn09HTee+89IiMjg93VkPDYY4/xxRdfnLb8XCdQubm53HfffbS0tJCVlUX//v3Zv38/paWlDBs2jHfffZfw8PDu7npIudhx/P73v8/HH3+MVqtlxIgRpKWlUVNTw969e3G5XEycOJFXX30Vs9ncE90PKZfyO9mRz+fj3nvvZe/evaiqKkF70WvIOX7XkHP87iHn+JdHzvEvn5zjXxw5x+8aco7fNa6U8/u+d7lFXLRXX32VHTt2MHLkSN566y2sVisAy5cv58knn+QHP/gBq1evDiwXZ6YoCtdffz0PPvhgp5N2p9PJM888w5IlS3jyySf5/PPP0ev1Qexp71FRUcELL7zAjBkzOH78eODqqbgwjY2NfP3rX8dms/Hb3/6Wm266qdP6oqIi+X99AZ555hlaW1t57LHHePzxx1EUBQCbzcbXv/51cnNzee2113jyySeD3NPQMGbMGIYNG0Z29v9v7/5jqjrvOI5/FEShpUPAWaidqO1FQVerm512a6uYtjGdM1rGWgZ1Fm0FldRF2TKrFjUWuqR/rGGNrUrVzcVWY6fRsLQqjYqAlWJVCqv9JSgq3sEAFbh49ofhTuoFvXAv51x8vxIieZ5zLl9OrpwPD8/znNEaM2aMZs6cqZqamg6Pb21t1eLFi9XY2Kjf//73mjdvnqTrg02LFi3S/v379cYbbygzM7OnvgVLcPc6hoSEKD09XfHx8Ro0aJCz/euvv9acOXNUXFyst99+W6+88kpPlG8p7l7L79uyZYtKSkr0m9/8Rv/4xz+8WCngWWR8zyDjex4Zv3vI+J5BxncPGd8zyPie0WvyvQF0oqWlxZgwYYJhs9mM48eP39Q/d+5cw2azGbm5uSZU13tcuXLFGD9+vGGz2YzCwkKzy/EZc+fONcaOHWtUVlYakydPNmw2m/Hll1+aXZbPWLNmjWGz2YyNGzeaXYrPstvths1mM2JjY42mpqab+nft2mXYbDYjKSnJhOp8w6RJkwybzWacOXPGZX9eXp5hs9mMZ555xrh27Vq7vvPnzxsxMTFGTEyMYbfbe6Jcy7rVdexM2/t08uTJXqjM97hzLb/77jtj7Nixxrx584wjR44YNpvNiI+P74Eqge4h4/cMMn7XkPG7h4zffWT87iPjewYZ3zN8Nd/zIFp06tixY6qtrdWQIUM0ZsyYm/qnTZsmSS6XneD2DRgwQFFRUZKkCxcumFuMj9i5c6fy8/OVnp7OPqFd0NTUpB07digwMFAJCQlml+OzbnfG3MCBA71cSe+1f/9+SdJTTz3lnOHU5oc//KHGjx8vh8Oh/Px8M8rrFUaOHCmJ+09XvPrqq5Kuz8YDfAkZv2eQ8d1Hxu8eMr5nkPG9j4zvfWT8rrFSvmfQHp0qKyuTpA4fRBUTEyNJKi8v77GaeqPW1lbnss/w8HCTq7G+mpoarV27VmPGjFFycrLZ5fikEydOqL6+XjExMQoMDFRBQYGys7O1fPlyrVu3Tl999ZXZJfqEu+++Ww8//LBaWlr017/+VcYNj4mpra3Vhg0bJEnx8fFmlejz2u5Do0ePdtnfdn/64osveqym3ubbb7+VpHZLanFr77//vgoKCrR48WJFRESYXQ7gFjJ+zyDju4eM331kfM8g43sfGd/7yPjus1q+Z097dOrs2bOSpHvvvddlf1t7bW2tGhsb78ine3vChx9+KLvdrtDQUI0bN87sciwvMzNTDQ0NWr16tfr25W+PXfHll19KksLCwrRo0SLl5eW163/zzTf18ssvKz093YzyfMqaNWuUkpKinJwc7dmzR9HR0bp69ao+/fRTBQYGKjs7Wz//+c/NLtNn3eo+NHjw4HbHwX25ubmSpLi4OHML8SHnz59XVlaWHnroISUmJppdDuA2Mn7PIOO7h4zffWR8zyHjexcZ3/vI+O6xYr5n0B6dunz5siR1+KTpoKAg5+cE+q6prKxUVlaWJOmVV15RQECAyRVZW15envLy8jRv3jznci+4r66uTtL/lyUuWbJEv/zlL+Xn56e9e/cqOztbOTk5ioyMZAbJLYwYMUJbt25Venq6PvvsM33zzTfOvkmTJumBBx4wr7he4Fb3obb7TmNjY4/V1Jts2rRJRUVFCgkJ0UsvvWR2OT5jxYoVunr1qlatWsXAEnwSGd/7yPjuIeN7Bhnfc8j43kXG9y4yvvusmO+tUQVwh2poaFBqaqpqa2v19NNP69e//rXZJVlabW2tMjMzNXToUC1YsMDscnzatWvXJEktLS16+eWXlZKSosGDBys8PFxJSUlavHixJCknJ8fMMn3CkSNHNH36dNXX1+vdd99VcXGxPvnkE2VmZqqgoEDPPfecDh48aHaZwE0OHTqkrKws9e3bV2vXrmXp7G3atWuX9u/frxdffFHR0dFmlwPAgsj47iHjew4Z33PI+PBVZHz3WTXfM2iPTrXNsrly5YrL/ra/jkpiBo6bmpqaNH/+fJWXl2vixIl64403zC7J8tauXauamhq99tpr6t+/v9nl+LQbZ9C5mmXT9svl2bNndebMmR6ry9fU1tYqPT1dzc3Neuedd/SLX/xC99xzjwYPHqyEhARlZmaqqalJK1asUGtrq9nl+qRb3YfaZt9wD3LP8ePHtWDBAjkcDmVmZmrKlClml+QT7Ha71qxZo6ioKKWmpppdDtBlZHzvIeO7j4zvOWR8zyDjex8Z3zvI+O6zcr5nexx0KjIyUpJUXV3tsr+tPSQkhB+mbmhpadHChQtVVFSksWPHKicnhyWzt+Hjjz9W//79lZOTc9PskIsXL0qSMjIyFBgYqMTERD399NNmlOkT7rvvPklSQECAc7/AG911110KDQ2V3W7XxYsXdf/99/d0iT7hwIEDqq2t1cSJE53X9EZPPvmk+vXrp8rKSp05c0ZRUVE9X6SPi4yMVF1dnaqrq10ulz9//rzzONyeiooKzZ07V5cvX1ZGRgbL491w7Ngx/ec//1FQUJBSUlLa9f33v/+VdH0/4aSkJEnS22+/TT6CJZHxvYOM3zVkfM8h43sGGd/7yPieR8bvGivnewbt0alRo0ZJkk6ePOmy/9SpU5JkqeUjVnft2jUtWbJE+fn5GjlypNatW9duRgQ619TUpKKiog77P//8c0k8bOVWYmJiJEnNzc0u96ptbW1VfX29JPH+7ERbmAwODnbZ7+/vr6CgINXV1Tn3GIV7Ro0apbKyMp04cUJPPPHETf1t9yf2v7093377rebMmaPa2lqlpaVpzpw5Zpfkk6qqqlRVVeWyr7Gx0XmfYvYdrIqM73lk/O4h43sGGd8zyPjeR8b3LDJ+91kx3zNoj06NGzdOISEhqqys1Oeff64xY8a069+zZ48kwtPtMgxDy5Yt0969ezVs2DBt2LBBP/jBD8wuy2ccPXq0w74pU6aoqqpKe/bs0YgRI3qwKt8UERGh2NhYnTx5UoWFhTctmzt69KhaWloUGBio4cOHm1Sl9bXtD3jy5Ek5HA75+7e/rX7zzTfOIO9qlg5ubfLkydqxY4fy8vKUlpamPn36OPsuXLigTz/9VP7+/nrsscdMrNI3nDt3TrNnz9bFixc1e/ZsLVq0yOySfM7UqVNVXl7usq+wsFDJycl66KGHtG3bth6uDHAPGd+zyPjdQ8b3HDK+Z5DxvY+M7zlk/O6xcr5nT3t0yt/fX8nJyZKk1157TQ0NDc6+3bt3Kz8/XwMHDtSsWbPMKtGnvP7669q+fbuGDBmi9957T2FhYWaXhDvYvHnzJEnZ2dmqrKx0tp8/f15r1qyRJD377LMs6+7EY489pgEDBqiqqkp//vOf5XA4nH12u13Lli2TJE2YMEHh4eFmlenTpkyZoqioKFVUVOidd95xtjc3N2v58uVyOByaNWuWQkNDTazS+ux2u373u9/p7NmzSkhI0B//+EezSwJgIjK+Z5HxYSVk/O4j43sfGd8zyPi9Wx/DMAyzi4C1NTc368UXX1RRUZHCwsL005/+VDU1NTp69Kj69eunnJwc/vp5Gz766COlpaVJkh555JEO92abOnWqpk6d2pOl9QrMwumalStXauvWrQoKCtK4cePUt29flZSUqL6+XmPHjlVubq4CAwPNLtPS3n//fS1fvlzXrl1TZGSkYmJidPXqVZWWlqq+vl7h4eHasmWLhg0bZnaplnDgwIF2+9WeOnVKLS0tGjVqlPOXx8cff9z581KSTpw4oaSkJF2+fFmxsbEaOnSoSktLVVVVJZvNpr///e8dLl/urdy9jmlpafroo48UEBCgadOmtZvNdKOlS5fecb8cdeU96YrZM3EAd5HxPYOM711k/K4h43cfGd89ZHzPION7Rm/J92yPg1sKCAjQ+vXrtWHDBv3zn//Uvn37FBQUpLi4OKWlpSk2NtbsEn1C2wMspOv/8Tty3333EejRY1auXKnx48frb3/7m0pKSuRwOBQVFaVnnnlGL7zwgvr37292iZYXHx8vm82m9957T8eOHVN+fr78/Pw0ZMgQxcfHKyUlhRl3N7Db7SotLb2pvayszPn595drjx49Wjt37tRf/vIXFRQUqKKiQvfee69SUlKUmpp6Rz4k0d3r2HYPam5u1s6dOzt83QULFtxRgV7q2nsS6A3I+J5BxocVkfG7j4zvHjK+Z5DxPaO35Htm2gMAAAAAAAAAYBHsaQ8AAAAAAAAAgEUwaA8AAAAAAAAAgEUwaA8AAAAAAAAAgEUwaA8AAAAAAAAAgEUwaA8AAAAAAAAAgEUwaA8AAAAAAAAAgEUwaA8AAAAAAAAAgEUwaA8AAAAAAAAAgEUwaA8AuONVVlYqOjpa0dHRZpcCAAAAwAPI+AB8mb/ZBQAAfENSUpKKiopu69jy8nIvVwMAAACgu8j4AGBNDNoDANwSERGhiIgIs8sAAAAA4CFkfACwFgbtAQBumTVrlhYuXGh2GQAAAAA8hIwPANbCnvYAAAAAAAAAAFgEM+0BAF5TWVmpuLg4Sdf3wNy3b582btyoL774Qg6HQw8++KB++9vfavr06R2+xunTp/Xuu++qsLBQFy5cUGBgoKKjo/WrX/1KM2fOlJ+fn8vzHA6Hdu3apd27d+vUqVOqr6/XwIEDNXToUE2ZMkXx8fEKDg52ee7Ro0e1bt06lZaW6sqVKxo6dKgSEhKUmJioPn36dP/CAAAAAD6KjA8A3segPQCgR2zevFmrV69WSEiIfvSjH6m6ulqlpaUqLS3V8ePHtWzZspvO2bNnj5YuXaqWlhYFBQXJZrOprq5OxcXFKi4u1t69e5WTk6MBAwa0O89utys1NVUlJSWSpEGDBmnkyJGy2+06duyYiouLFRsbq0ceeeSmr7ljxw796U9/0j333KMhQ4bo7Nmzqqio0KpVq1RVVaWMjAzvXCAAAADAx5DxAcA72B4HANAjsrKylJqaqkOHDmn79u06ePCgVq5cqb59+2rz5s3au3dvu+NPnz6tP/zhD2ppaVF8fLwOHTqkHTt26OOPP9bGjRsVHBysQ4cOKTs7u915hmEoPT1dJSUlioiIUG5urg4ePKgPPvhA+/btU2FhoVasWKHw8HCXda5YsUIZGRk6fPiwtm/froKCAi1evFiStHHjRn333XfeuUAAAACAjyHjA4B3MGgPAHDLW2+9pejo6A4/UlNTXZ43YcIEpaeny9//+iKvPn366LnnntOzzz4rScrJyWl3/Pr169XU1CSbzaZVq1YpKCjI2Tdp0iTnbJht27bpwoULzr79+/erqKhIAQEBWr9+vSZOnNjudYODg/X8889rxIgRLuucPn26Zs+e3W5J7ksvvSSbzSbDMHTgwIHbvFIAAACAbyDjH7jNKwUAPYNBewCAWyIiIjRu3LgOPx544AGX573wwgudtldUVOjcuXPO9k8++USSlJyc7HKPyRkzZigsLEwtLS06fPiws/1f//qXJOnJJ5/sMLR3JjEx0WX7ww8/LEnMwgEAAECvQ8Yn4wOwFva0BwC4ZdasWVq4cKHb5z344IMu24cNGyZ/f385HA6dPn1aERERqq+v18WLFyVJNpvN5Xn9+vXT8OHDdenSJX311VfO9oqKCkn/D+DuioqKctkeFhYmSWpsbOzS6wIAAABWRcYn4wOwFmbaAwB6REf7S/r5+SkkJETS/8PyjaG5o/Ok6w+f+v7xDQ0Nkq4vke2KG5fo3qhv3+u3TMMwuvS6AAAAQG9DxgcA72DQHgDQI2pqaly2t7a2qra2VpJ01113tfu3s/MkOWfq3Hj83XffLUmqr6/vVr0AAAAAOkfGBwDvYNAeANAj/v3vf7ts//rrr+VwOCTJuT9lcHCwc4ZN21LY73M4HM4ls8OHD3e2R0dHS5JKSko8UzgAAAAAl8j4AOAdDNoDAHrEpk2bOm232WyKiIhwtj/++OPOflfLVT/88ENdunRJ/fr106OPPupsf+qppyRdf1jVjftgAgAAAPAsMj4AeAeD9gCAHlFYWKi33nrLOePGMAxt27ZNH3zwgSRp/vz57Y6fM2eO+vfvr4qKCi1fvlyXL1929hUUFCgrK0uSlJCQ4JyxI0lPPPGEfvazn6m5uVkpKSkqLCxs97oNDQ3aunWrTp8+7ZXvEwAAALhTkPEBwDv8zS4AAOBbtm/frsOHD3d6zKuvvqqYmJh2bRkZGVq9erU2b96s+++/X9XV1c79Kp9//nlNmzat3fEjRozQ66+/rqVLl2rbtm3avXu3hg8frrq6Op05c0aS9Oijj2rJkiU3ff0333xT8+fP12effabk5GQNGjRIERERunTpkqqrq9Xa2qpNmzY5l+oCAAAAdzIyPgBYC4P2AAC3nDt3TufOnev0GFcPiEpKSlJkZKRyc3NVVlYmh8OhH//4x0pMTNSMGTNcvs60adNks9m0fv16HTlyROXl5RowYIB+8pOfaMaMGZo5c6b8/PxuOi80NFRbtmzRzp07tWvXLpWXl6usrEyhoaEaP3684uLiFBsb26XvHwAAAOhtyPgAYC19DFebiAEA4AGVlZWKi4uTJJWXl5tcDQAAAIDuIuMDgPexpz0AAAAAAAAAABbBoD0AAAAAAAAAABbBoD0AAAAAAAAAABbBoD0AAAAAAAAAABbBg2gBAAAAAAAAALAIZtoDAAAAAAAAAGARDNoDAAAAAAAAAGARDNoDAAAAAAAAAGARDNoDAAAAAAAAAGARDNoDAAAAAAAAAGARDNoDAAAAAAAAAGARDNoDAAAAAAAAAGARDNoDAAAAAAAAAGARDNoDAAAAAAAAAGAR/wNwKSMu+OXuXQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Activation: ELU, optimizer: sgd_momentum, batchnorm: true\n", + "Activation: ELU, optimizer: sgd_momentum, batchnorm: false\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABe0AAAGgCAYAAAA3q0zLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxV1f7/8dcBDodRQVEUJ1ADB5xwKGdBc6pumpXeSrPboA022Wjd0m7Zrb5lg5WWlun93bRyyEwzFYccEedZQVAUQVBR5vH8/iDOlRgEOXAA38/Ho4e6915rf/ZC8nM+rL2WwWw2mxEREREREREREREREZuzs3UAIiIiIiIiIiIiIiKST0V7EREREREREREREZFqQkV7EREREREREREREZFqQkV7EREREREREREREZFqQkV7EREREREREREREZFqQkV7EREREREREREREZFqQkV7EREREREREREREZFqQkV7EREREREREREREZFqQkV7EREREREREREREZFqQkV7ERGpdcaOHUtAQABLliyxdSgiIiIiIjXKkiVLCAgIYOzYsUXOVSTPDgkJISAggB07dlgjzDILCAggICCAM2fOVOl9RUQqwsHWAYiISM0WEBBwXe3effdd7rrrLitHIyIiIiJSe7z66qssWbKETp068cMPP5Spzb333su+ffu45557ePvttys5Qts5c+YMS5cuxd3dnfHjx9s6HBERq1LRXkREKiQoKKjY47t37wbA19eXevXqFTlfv379SoupcePG+Pn54e7uXmn3EBERERGpbHfddRdLlixh3759REZG0qpVq1Kvj4yMZN++fQCMGjXK6vFUpzz77NmzzJw5kyZNmpRatPfz8wPAaDRWUWQiIhWnor2IiFTI999/X+zxghn4EyZMqPIZ9e+//36V3k9EREREpDJ0796dFi1acOrUKZYuXcoLL7xQ6vWLFy8GoFWrVnTp0sXq8dTEPPu3336zdQgiIuWmNe1FRERERERERKqpggkwP//8M7m5uSVel5uby/Llywu1ERGRmklFexERqXJXb0J18uRJXn75Zfr160f79u155ZVXLNeFh4fz3nvvcffdd9OnTx8CAwPp1asXjz32GKGhoSX2X9IGWTt27CAgIICQkBAA1q1bx9ixY+nWrRudO3fmnnvu4ddff62chxYRERERuQ4jR47E3t6e8+fPs3nz5hKv27RpEwkJCTg4ODBixAji4uL47rvvePjhhxk0aBAdO3YkKCiIu+66iy+++IKUlJRyx3KtjWh37NjBP/7xD7p160aXLl0YNWoUP/30U6l9pqam8vPPP/P8888zbNgwunbtSseOHRk8eDBTp04lJiam2DjGjRsH5C+TU7DZbMF/V292e62NaDdt2sTEiRPp1asXgYGB9O7dmyeeeIJt27aV+Iz6TCEilU3L44iIiM3s3buXL7/8ktzcXFq3bk3dunUxGAyW808++SRJSUl4eHjQoEEDGjZsyLlz59i4cSMbN27kscceY/Lkydd175kzZ/LZZ5/h5eVF8+bNiYmJYf/+/Tz//PNcunSJBx54wFqPKSIiIiJy3by9venduzebNm1iyZIl9O/fv9jrCgrp/fr1w8vLi/fee49vvvkGJycnvLy88Pf3JykpiaNHj3Lo0CF+/fVX/vvf/1K3bl2rxPnjjz/yz3/+E7PZjLu7Oy1btiQ+Pp7XXnuN48ePl9guLCyMl156CQcHB+rXr0+LFi1IT08nNjaW77//nhUrVvDNN9/QsWNHS5uCZzl+/DiOjo4EBgYW6rOsa+6/8847zJ8/H8jfc6tNmzacOXOGdevWsW7dOh5//HGeffbZEtvrM4WIVBYV7UVExGY++eQThg0bxptvvkmdOnUAyMjIsJx/4YUXuOWWW2jWrFmhdlu3buWFF17gq6++YuDAgXTu3Llc9z1//jxff/01//d//8cdd9wBQE5ODu+88w7//e9/+fDDDxkxYgRubm4Ve0ARERERESsYNWoUmzZtIjQ0lMuXLxcptF+8eJH169dbroX84n1wcDBdu3bF3t7ecu25c+d46623CA0N5cMPP+Stt96qcHyRkZFMmzYNs9nM2LFjeemll3B0dMRsNvPDDz8wbdq0QpNzrtaiRQs+/fRT+vTpg6urq+V4SkoKc+fO5YsvvuCVV17h119/tfTxz3/+kx07djBu3DgaNGhQ4j5bpVm6dCnz58/H3t6ef/7zn4wePRo7Oztyc3OZP38+7733Hl9++SVt2rRh6NChRdrrM4WIVCYtjyMiIjbj5+fHe++9ZynYAzg5OVl+f8899xQp2AP06tWL5557DshPtssrOzubCRMmWJJrAAcHB1555RXq1atHWlpaoVdqRURERERsKSQkBE9PT7KyslixYkWR87/88gvZ2dl4eXkxYMAAAHr27EmPHj0KFewBGjduzEcffYTRaOSXX34pdZ38spo7dy7Z2dm0a9eO119/HUdHRwAMBgOjR49m1KhR5OTkFNu2ZcuWDBkypFDBHsDNzY1nnnmGoKAgIiMj2b9/f4XjvNoXX3wBwOjRo/n73/+OnV1+icze3p6HHnrI8lnh888/L7a9PlOISGXSTHsREbGZESNG4OBQ+j9FERER/Pbbbxw7doykpCRLsl+wBueRI0eu69733XdfkWMmk4l27dqxefNmTp8+fV39ioiIiIhYm6OjI3fccQfz589nyZIl3H///YXOFyyN87e//a1Qfp2SksLKlSvZs2cP58+fJz09HbPZDOQX1NPS0oiOjqZVq1YVim/Tpk0AJS4H8+CDD/LDDz+U2D43N5f169ezbds2YmJiSE1NJS8vD4BTp04BcPjwYTp16lShOAtERkZa8v2HHnqo2Gsefvhhli9fzvHjx4mNjcXHx6fINfpMISKVRUV7ERGxmZtuuqnU8//3f//HnDlzLB8sipOUlFTu+3p6euLh4VHsufr16wP5G2KJiIiIiFQXo0aNYv78+Rw8eJATJ05YcunDhw9z9OhRyzUFdu7cyTPPPMOFCxdK7fd68umrJScnk5CQAJSc3/v5+eHg4FDsbPvz588zYcIEDh8+XKlxXi0qKgrIf8u3efPmxV7TunVr7O3tyc3N5eTJk0WK9vpMISKVScvjiIiIzTg7O5d47tdff+Xrr7/GYDDw1FNP8fPPP7Nr1y6OHDnCsWPHmDdvHkCJr9mWxsXFpcRzBa/FlvaDAhERERGRqtamTRvat28P/G9m/dW/79SpE61btwbyZ9g//fTTXLhwgZ49e/Ltt9+ydetWDh48yLFjxzh27BiNGzcGri+fvtrVhemCYvVf2dvbl1jgfvXVVzl8+DDNmjXjo48+Yv369Rw4cMAS55133mmVOIuLuaR4IX+pG09Pz0LXX02fKUSkMmmmvYiIVEsFHz7Gjx/PpEmTipy35kwbEREREZGaYNSoURw6dIjly5czefJk8vLy+OWXXyznCmzcuJGLFy/SuHFjZs2aVWjfKMgvJl++fNkqMV29Fv2FCxdo0qRJkWtyc3OLzd8TEhLYvHkzAF9++WWxM/UrI+8viLm0txBycnK4dOlSoetFRKqKZtqLiEi1dObMGQC6d+9e7Pl9+/ZVZTgiIiIiIjZ3++23YzKZSExMZNOmTYSGhpKUlISzszO33Xab5bqCXLpDhw5FCvYAx48fJy0tzSoxubu706BBAyB/P6riREVFFTtTviBODw+PYgv2OTk5HDx4sNg+DQbD9YZMy5YtAcjIyChx3fmIiAjLJr0VXfNfRKS8VLQXEZFqqWDpnIL1Ma928eJFli5dWtUhiYiIiIjYVN26dRk0aBAAS5cutbydOnjwYNzc3CzXFRTqi8ulAebOnWvVuPr27QvAf/7zn2LPz58/v9jjBTl/SkoK6enpRc4vW7asxNnwBc9YXLtradmyJS1atADg22+/LfaaguP+/v6WpYRERKqKivYiIlItFcywnz17tmWjKICYmBgmTJhwXcm5iIiIiEhNV7AMzvr16y1Ly1y9NA78L5fes2cPixYtshzPysri448/5pdffsFoNFotpn/84x8YjUYOHTrEu+++S1ZWFpC/DM+PP/7ITz/9hIND0RWaW7dujaenJzk5Obz11ltkZmZazv3222+8/fbbmEymYu/ZvHlzDAYDFy9etGzEWx6PP/44AIsWLWLhwoWW9efz8vL47rvv+PnnnwF48skny923iEhFaU17ERGplh555BFWrVrF2bNnuf322/H19cXOzo6IiAjc3Nx4+eWXeeutt2wdpoiIiIhIlerZsyc+Pj7ExsYC+cXrHj16FLqmXbt23Hnnnfz888+88cYbzJw5k4YNG3Lq1CmSk5N59tln+fHHHzl79qxVYrrpppt4/fXXmTp1KvPmzWPJkiW0aNGC+Ph4zp8/z4MPPsjatWuL3M/BwYEXXniB1157jSVLlrBmzRqaN29OYmIi8fHx9OnTh3r16rF8+fIi9/Tw8GDAgAGsX7+eu+++m5tuusnytsGUKVNo27ZtqTGPHDmSw4cPM3/+fN58800+++wzGjduzNmzZ7l48SIAEydOZOjQoVYZIxGR8tBMexERqZa8vb1ZtGgRd9xxB3Xq1LF8wBgxYgRLly6ldevWtg5RRERERKTK2dnZMXLkSMufR44cWez67u+++y4vvPACfn5+XLp0iZiYGNq1a8fnn39umWVuTWPGjOHbb7+lV69e5ObmEhkZScOGDXn77beZMmVKie3uvvtuPv/8c7p06UJ2djZRUVF4enry0ksvMXv2bOzt7Uts+9577/HAAw/QqFEjTpw4QVhYGGFhYVy5cqVMMb/22mt89dVXBAcHk5eXx5EjRzAYDAwcOJB58+bx3HPPlXscRESswWAueP9HRERERERERERERERsSjPtRURERERERERERESqCRXtRURERERERERERESqCRXtRURERERERERERESqCRXtRURERERERERERESqCRXtRURERERERERERESqCRXtRURERERERERERESqCQdbByAVs2fPHsxmM0aj0dahiIiIiIgVZWdnYzAY6NKli61DkSqmHF9ERESkdiprjq+Z9jWc2WzGbDZX+T2zsrKq/L61jcbROjSO1qOxtA6No3VoHK1HY2kdthhHW+R5Uj1U9dde/5+wHo2ldWgcrUdjaR0aR+vQOFqPxtI6qnOOr5n2NVzB7JsOHTpU2T3T0tI4cuQIrVu3xsXFpcruW9toHK1D42g9Gkvr0Dhah8bRejSW1mGLcTxw4ECV3Eeqn6rO8fX/CevRWFqHxtF6NJbWoXG0Do2j9WgsraM65/iaaS8iIiIiIiIiIiIiUk1opr2IiIiIiFRIVlYW3377LcuXLycmJgYXFxe6devG448/Tvv27cvd38qVK1mwYAHHjh0DICAggHHjxjFs2LAS2yQmJjJz5kw2bNhAYmIiXl5eDBgwgEmTJlG/fv0i12/dupVff/2Vw4cPEx8fz5UrV3BycqJ169bcfvvtjB49usQ15VNSUpg1axarV68mLi6OunXr0rNnT55++mmaNWtW7ucVEREREbmaZtqLiIiIiMh1y8rK4uGHH+ajjz7i0qVLBAcH07JlS9asWcPo0aP5448/ytXfjBkzeO655zh48CA9evSgR48eHDx4kGeffZZPPvmk2DZnz55lxIgRfP/99zg7OzNo0CCcnZ35/vvvGTlyJOfOnSvS5rfffuOnn34iLS2Ntm3bMnjwYNq1a8fBgwf517/+xbhx48jMzCzS7sqVK4wePZqvv/6a3NxcBg4cSMOGDVm+fDkjRozgyJEj5XpeEREREZG/0kx7ERERERG5bl9//TVhYWF06NCBefPm4ebmBsCKFSuYPHkyL774ImvXrrUcL014eDizZs2iTp06LFy4kFatWgEQGRnJmDFj+OKLL+jXrx9dunQp1G7KlCkkJCQwZswYpk6disFgwGw2M3XqVBYuXMjrr7/O3LlzC7W5//77mTRpEg0aNCh0PD4+noceeojdu3czf/58Hn300ULn//3vfxMREUFwcDCffvopjo6OAMyePZuPPvqIF154geXLl2Nvb1++gRQRERER+ZNm2ouIiIiIyHXJyclh/vz5ALz55puFCvO33347/fv359KlSyxevLhM/c2ZMweAiRMnWgr2AK1atWLChAmFrilw6NAhtm/fjoeHB1OmTMFgMABgMBiYMmUKHh4ebN68maNHjxZqFxAQUKRgD+Dt7c1jjz0GwLZt2wqdu3DhAsuWLcPBwYG33nrLUrAHeOyxx/D39yciIoL169eX6XlFRERERIqjor2IiIiIiFyX3bt3k5SURNOmTenQoUOR88OHDwdg3bp11+wrMzOTrVu3AhS7dn1BX5s3byYrK8tyvKBAHhISgslkKtTGZDIREhICwNq1a8vySACWteyvLsoDbNq0idzcXLp27UrDhg0LnTMYDAwZMgQo2/OKiIiIiJRERXsREREREbkuBeu3l7TZbLt27QAsG8qWJioqiszMTDw9PfHx8Sly3sfHBw8PDzIyMoiKiioSQ2BgYLH9FsRWlhgALl26ZFlKp3///oXOXet5y3svEREREZHiaE17ERERERG5LrGxsQA0atSo2PMFx5OSkkhNTcXV1bXEvs6ePVtqXwXnkpKSiI2NJSAgoFAM3t7epcZQ0P9f7dmzh0WLFpGXl0diYiK7d+8mPT2de+65h3vvvbfQtWV93pLuJSIiIiJSFirai4iIVGNms5ns7Gzy8vJsHUqVyszMtPxqZ6cXAytCY2kdFR1He3t7y5IrtUlaWhoAzs7OxZ53cXGx/P5aRftr9XV1f6mpqUXaXX2va7W52unTp1m6dGmhY+PGjeOZZ54psplsRe9VHmaz2XK/ypaenl7oV7l+Gkvr0Dhaj8bSOqw9jjk5OeTm5lqlr5okIyMDgMuXL1tyK7k+GkvrqOg42tvb4+BQvvK62Wy27MFUGhXtRUREqqGsrCzOnz9PWlraDZnQ5+Xl4eDgQGxsrArNFaSxtA5rjKPJZMLLy4s6depYOTqpiDvvvJM777yT7OxsYmNjWbVqFbNnz2bDhg3MmTOHFi1a2CSu7Oxsy3I8VSU6OrpK71ebaSytQ+NoPRpL67DGOBoMBuzs7MpUtKuNHBwcOH/+vK3DqBU0ltZRkXE0m83k5eVhNpvL1e6v+yYVG9d1RSQiIiKVJi0tjZiYGOzt7fH09MTZ2Rl7e/sbKrHPzc0lMzMTk8lUZKarlI/G0joqMo4Fb8xcvnzZsmxKbSncF8wsL2nm4dUzxUubZV+Wvq7u7+q+CtqVNCu9uDbFMRqNtGjRgokTJ9K4cWNeeuklpk6dyrfffmv1e5WF0WikdevWFe6nLNLT04mOjsbX17fUNx3k2jSW1qFxtB6NpXVYYxxTUlJITEzE1dWVunXr1so38K7FbDaTlZWFo6PjDfXZpjJoLK2jouNYkOOnpqbi5eWFm5vbNdtERESUqW8V7aVcsi/Fcem3udg3CATa2jocEZFaKTEx0VI8ulGLrAVvFzg5Od2wY2AtGkvrqOg4Ojs74+7uzpkzZ0hMTKw1RfuCDWPj4uKKPV9w3MPD45qF7CZNmpTa19Xnrt6o1sfHh8OHDxMfH19qm4L+y2L48OG8/vrrbNu2jbS0NEuxvqzPW557lcRgMJS4DI+1ZZ+PxnXXDzg0+Acu9QOq5J61nbOzc5V9/WozjaP1aCytoyLjGBcXh7u7O02bNr1hi6y5ubkYDAblpVagsbQOa4xj3bp1OXPmDCkpKTRs2PCa15f1+1/vSEu5pEftJ/Pkbpyit9s6FBGRWiknJ4fU1FTq1aun5EukljEYDNStW5fMzEyys7NtHY5VtG2bP4nj0KFDxZ4/fPgwgGXT2NL4+flhMpm4dOmSZcPXq8XGxpKUlISTkxN+fn5FYjh48GCx/RbEVpYYChiNRtzd3TGbzVy6dKnIvUp63uu5V3WQeeogjgkRpGz50dahiIjUStnZ2WRmZlK3bt0btmAvUltVVo6vor2Ui7F+/uwi+ytaM0tEpDLk5OQA+Wtfi0jtU/AqfG3ZqyIoKAgPDw/OnDnDgQMHipxfuXIlAAMHDrxmXyaTiV69egGwatWqEvvq06dPoXVAg4ODAQgNDS2ygVhmZiahoaEADBo0qCyPBOS/tnzhwgVcXFxo0KCB5Xi/fv2wt7dn165dRdY+NZvNrF69Gijb81YnTq2CAMiM2ktO8kUbRyMiUvsU/Lt/Iy6JI3IjqIwcX0V7KRfHhr4A2KcnkZeRattgRERqMc3AEamdatv3toODA+PGjQNg2rRppKSkWM6tWLGCjRs34unpyahRoyzH9+/fz9ChQxk6dGiR/h555BEAZs+eTWRkpOV4ZGQks2fPLnRNgfbt23PLLbeQlJTE9OnTLRuBmc1mpk+fTlJSEn369KFNmzaWNmlpacyfP79QvAWOHTvGCy+8AMDf/va3Qj8gqF+/PiNGjCAnJ4c33niDrKwsy7mvv/6a48eP06pVK8sPEmoKh3o+5Hg0BbOZ5P0bbB2OiEitVdvyABHJVxnf21rTXsrF3tkN+zpe5F5JJDvhNNRrcO1GIiIiIlJrPfroo2zfvp2wsDAGDx5M9+7dSUxMJDw8HKPRyPvvv19oU6709HSioqKK7atbt25MmDCB2bNnM3LkSMvM+61bt5KZmckTTzxBly5dirSbPn06o0ePZuHChezcuZOAgACOHTtGZGQkDRs25O233y50fU5ODu+88w4ffPAB7dq1w8fHh5ycHM6ePcvhw4cxm8306NGDl156qci9XnnlFfbt28f69esZOnQonTp14tSpUxw6dAhXV1c+/PDDGrm8WWbTzjgknSF53zo8eo3AYND8LhERERFbUSYm5ebw52z7nIRom8YhIiIiIrbn6OjI3Llzee655/Dw8CA0NJSIiAgGDhzIokWL6NevX7n6e/7555kxYwbt2rVjx44d7Nixg3bt2vHxxx/zzDPPFNumSZMmLFu2jDFjxpCamsqaNWtITU1lzJgxLFu2jMaNGxe63sXFhVdffZW+ffty4cIFNmzYwPr16zl//jz9+vXjgw8+4Lvvvit289w6deqwaNEiHnnkEezs7FizZg3x8fHccccdLFu2zLLufU2T1agNBkcnci7FkXH6sK3DEREREbmhaaa9lJuxQQsyI8LJPn/K1qGIiIiISDXg6OjIxIkTmThx4jWvvfnmmzl27Fip1wwfPpzhw4eXKwYvLy+mTZtWpmsdHBwYP34848ePL9c9Cri5ufHiiy/y4osvXlf7asnBEaeAnqQfWE/y3nU4twi0dUQiIiIiNyzNtJdyc2jYAoAcFe1FRKSKhYSEEBAQQEBAAPv37y/2mjNnzhAQEEDv3r0rNZYdO3YQEBDAK6+8Uqn3qQxLliwhICCAzz77zNahiEg14hzYH4DUo9vJTS+63r+IiEhlUI5vHcrxaxcV7aXcjA3+LNpfjCUvJ+saV4uIiFSOjz/+2NYhVJnPPvuMgIAAlixZYutQRKQWM3q3xLFhc8w5WaQc+sPW4YiIyA1IOb5IPhXtpdzs3DzJMzqDOY/s86dtHY6IiNyAnJyc2LJlCzt37rR1KCIitYbBYMC900AAkveus3E0IiJyo1GOL/I/KtpLuRkMBnLrNAIgMz7KxtGIiMiN6P777wdurJk4IiJVwS2wP9g7kBUfRea5k7YOR0REbiDK8UX+R0V7uS65dbwByIpT0V5ERKreyJEj8fX1JTw8nD/+KN8SDocPH+bZZ5+lT58+BAYG0qdPH5577jmOHDly3fFcvHiRN954g759+9KhQweGDBnCrFmzyMoquoxcdHQ0M2fOZMyYMZYYevXqxeOPP054eHiR60NCQpg5cyYAr776qmW9z+JepT116hRvvPEGt956Kx07dqRHjx6MGjWKL774gqSkpGJjj4+P59VXX6V379506NCBYcOGMX/+/GKvHTt2LAEBAZw5c4aNGzdy33330aVLF4KCgnj44Yc5cOBAiWO0fft2Jk6cyC233EJgYCADBgxgypQpxMTEFLm2YM3SsWPHkpqaygcffMCtt95KYGAgTzzxBACvvPIKAQEB7Nixg7CwMMaPH0/Xrl3p3r07TzzxBNHR0QDk5eXxzTffcNttt9GxY0f69u3LBx98UOzXRkTA3sUd14CbAUjep9n2IiJSdZTjK8dXjv8/KtrLdcn5s2ivmfYiImILdnZ2PPXUUwB88sknZW63atUq7r33XlatWoW3tzdDhgyhYcOGrFy5knvuuYfff/+93LEkJSVxzz33sHr1arp06ULv3r05f/48M2bM4IknniA3N7fQ9YsWLeKzzz4jOTmZtm3bMmjQIHx8fAgNDWXcuHH8+uuvha4fMmQIbdq0ASAoKIiRI0da/mvevLnlurVr1/K3v/2NRYsWYTabCQ4OJigoiPT0dObMmcPx48eLxB4bG8uoUaPYtm0b3bt3JygoiJiYGN555x0+//zzEp950aJFTJgwgby8PAYMGEDjxo3ZvHkzY8eOJTIyssj18+bN48EHH2TDhg20bNmSwYMH4+LiwuLFixkxYgS7d+8u9j4ZGRmMHTuWhQsX0qpVK0JCQvDy8ip0zbp16xg/fjypqan069cPLy8v1q1bxwMPPMDFixd59tln+fTTT2nSpAm9e/cmIyODOXPm8Oabb5b4fCI3OvfO+UvkpBzcRF52po2jERGRG4VyfOX4BZTjA2ap0fbv32/ev39/ld4zNTXVvHvDb+bIt+8yn3zv7+a83JwqvX9tkZqaag4PDzenpqbaOpQaTeNoPRpL66joOKanp5sPHz5sTk9PL/GavLw8c3pGdo35Ly8vr9zjkJOTY05JSTHn5BT+NyY4ONjs7+9vjoiIMOfm5ppvv/12s7+/v3nNmjWWa2JiYsz+/v7mXr16FWobFxdn7ty5s9nf39+8dOnSQud++OEHs7+/v7lLly7m+Pj4MsW4fft2s7+/v9nf3998//33m5OTky3nzp07Z7711lvN/v7+5u+++65Qu127dplPnTpVpL99+/aZg4KCzN27dzenpaUVOvfpp5+a/f39zYsXLy42ltOnT5s7depkDggIMP/nP/8pNOY5OTnmsLAw85kzZyzHFi9ebIn9jTfeMGdnZ1vOhYeHm9u0aWPu3Llzkb/HDzzwgNnf398cGBho3rp1q+V4Xl6e+Y033jD7+/ubX3nllUJtDh48aG7btq05MDDQvHnz5kJtPv74Y7O/v7+5X79+5oyMDMu5gq+hv7+/eeTIkeYLFy4UeeaXX37Z7O/vbw4ICDCvWrXKcjw3N9f8/PPPm/39/c233XabeciQIea4uDjL+bNnz5p79OhhDggIMMfExBQ7nsUp6e9keZXle7yALfI8qR6q+mv/13+78vJyzac+m2iOfPsu85X9G6osjtpA+ZR1aBytR2NpHcrxleObzcrxr6Ycv7DKyPEdbP1DA6mZ8lzrYXBwxJydSfbFczh6NbV1SCIiNwSz2czLMzdzJPqirUMps7a+9XjvqT4YDAar9mtnZ8fTTz/NU089xSeffMLAgQNLvcePP/5IWloaAwYMYMSIEYXO3XPPPaxatYotW7bw448/8uSTT5Y5DoPBwJtvvombm5vlWKNGjZg8eTJPP/008+fPZ9y4cZZzQUFBxfbTsWNHHnjgAWbNmsWOHTsYMGBAmWP49ttvSU9PZ/To0Za1QK/Wrl07nJycihz38fFhypQpODj8LyXs2rUrffv2ZePGjRw8eJAePXoUaTd27Fh69uxp+bPBYOCZZ55h4cKF7Nixo9C1//nPf8jNzWXMmDH07t27UJtJkybx22+/cfLkSVatWlXk6wLwxhtvUK9evRKf/bbbbmPo0KGWP9vZ2fHII4+wYsUKTpw4wdy5c/H29i70zHfccQcLFixg586dNG2qHEbkrwwGO9w7hXBp00KS967DvUN/W4ckIlKrKcf/H+X4/6Mc/8bO8bU8jlwfgx0ODfJf18nSEjkiImIjt956K+3bt+f48eOsXLmy1Gt37twJwN/+9rdiz48cObLQdWXVpk0bbrrppiLHBw8ejLOzMzExMcTHxxc6l5GRwe+//85HH33EP//5T1555RVeeeUVSzJcsFZjWW3ZsgWAu+++u1ztbr75ZkwmU5HjLVu2BOD8+fPFtuvfv2gBr169enh4eBRpU9q429nZceeddxa67mpeXl507ty51Gfo27dvkWMFrxQbjcZCHzwK+Pr6AiU/n4iAe6dgwEDG6UNkXzxn63BEROQGohw/n3L8wm60HF8z7eW6GRu2IPtcBJlxUbi1L/rNJCIi1mcwGHjvqT5kZuVe++JqwuRob/UZOFd79tlnefTRR/nss88Kzcb4q4KkuqRZF82aNSt0XVk1adKk2OMGg4HGjRtz8uRJ4uLiLDNBdu3axbPPPltqMpmSklKuGM6dyy+oFSSqZdW4ceNij7u6ugKUuJGTj49Pie3+uhlWRca9pPtc7eoZNlfHAfkfCOzt7Yucd3FxAUp+PhEBhzpeOLfqTHrkHpL3hVIvuOgMPxERsQ7l+EUpx1eOX1wccOPk+DWmaJ+VlcW3337L8uXLiYmJwcXFhW7duvH444/Tvn37cve3cuVKFixYwLFjxwAICAhg3LhxDBs2rMQ2iYmJzJw5kw0bNpCYmIiXlxcDBgxg0qRJ1K9fv9g2V65cYe7cuaxbt46YmBhyc3Np1KgRPXv25LHHHrP8Ja6JHBr4ApppLyJS1QwGA06mGvNPeKXr168fXbt2ZdeuXSxbtoybb77Z1iGVKC0tjUmTJnHhwgUmTJjAbbfdRpMmTXBxccHOzo5FixbxxhtvYDabqyQeO7vre+myMj+gXa24133/qrRnuN7nE5F87p0H5hft96/Hs/8YDHZFPyCLiIh1KMcvTDn+9VOOXzvUiKfMysri4Ycf5qOPPuLSpUsEBwfTsmVL1qxZw+jRo/njjz/K1d+MGTN47rnnLGs49ejRg4MHD/Lss8+WuDv12bNnGTFiBN9//z3Ozs4MGjQIZ2dnvv/+e0aOHGn56dfVEhMTueuuu5g1axYXLlygZ8+eDBgwgJycHH744QfuvPNO9u/ff11jUh0Y/1weJzM+usr+xyMiIlKcZ555BoDPP/+cnJycYq8pmK1x5syZYs8XHC9uVkdpYmNjiz1uNpst+UFBn+Hh4Vy4cIEhQ4bw/PPPExAQgJubmyXxPHXqVLnuXaBgNk15X7mtCpU17iJS+Vxv6oadSx1yUy6RFrHb1uGIiMgNRjm+cvwbWY0o2n/99deEhYXRoUMHfv/9dz755BP++9//8uGHH5Kdnc2LL75Y5ldMwsPDmTVrFnXq1GHZsmXMmjWLWbNmsWzZMurUqcMXX3zBnj17irSbMmUKCQkJjBkzhpUrV/Lxxx+zcuVKxowZQ3x8PK+//nqRNl988QUxMTH06dOHdevWMWvWLGbOnMnatWu59957SU1N5Z133qnw+NiKg1dTMNiRl3aF3OSas1mKiIjUPjfffDO9evXi7Nmz/Pjjj8Ve0717dwCWL19e7PmlS5cWuq6sjhw5QmRkZJHja9euJT09naZNm9KoUSMALl++DGD589WysrL4/fffi72H0WgEIDe3+FemCzZ/WrJkSblirwqljXteXh4///xzoetEpPow2Btx7zAAgOS962wbjIiI3HCU4yvHv5FV+6J9Tk4O8+fPByiya/Ptt99O//79uXTpEosXLy5Tf3PmzAFg4sSJtGrVynK8VatWTJgwodA1BQ4dOsT27dvx8PBgypQpltdFDAYDU6ZMwcPDg82bN3P06NFC7Qo2W3jssccs6yoBODg4MGnSJAAOHDhQY2epGxwccWyQv3ZVZtxJG0cjIiI3umeffRaA//f//l+x5++55x5cXFzYsGGDJYkssHjxYjZv3oyLiwv33HNPue5rNpuZOnVqoQkE8fHx/N///R8AY8eOtRwv2Pxp9erVhda7zMrK4l//+hcxMTHF3qNhw4YAxX5wABg/fjxOTk4sWrSIhQsXFsktDh8+TFxcXLmey1ruv/9+7Ozs+PHHH9m2bZvluNls5osvviAyMhJvb+9SlygUEdtx7zwQgLSIXeQkX7JxNCIicqNRjq8c/0ZV7RfL2r17N0lJSTRt2pQOHToUOT98+HA2btzIunXrePDBB0vtKzMzk61btwIU+5dm+PDhfPDBB2zevJmsrCwcHR0BWL9+PQAhISFFdl82mUyEhISwZMkS1q5dS5s2bSznCn5iVpq6detW2ZpRlcHRuyVZ50+TFR+Fq79+eiYiIrbTqVMngoODLf9u/5W3tzfTp0/nxRdf5KWXXmLBggW0aNGC6OhoDh48iNFo5L333rMkz2UVHBzM8ePHGTRoED169CA7O5vt27eTlpZG7969CyX07du3p3///mzcuJGhQ4fSo0cPTCYTu3fvJjk5mbFjx7JgwYIi9+jTpw9OTk589913nDhxAm9vbwwGA6NGjSIoKIjmzZvzwQcf8MILL/Dmm28yd+5c2rdvT0ZGBlFRUURHRzNv3rwSN9SqTIGBgbz88su8++67PPTQQ3Tr1g1vb2/L7CU3Nzc+/vjjIjmWiFQPjl5NMTUNIPPMMVIOrMej1122DklERG4gyvGV49+oqv1M+yNHjgCUuNlsu3btACwbypYmKiqKzMxMPD09i92p2MfHBw8PD8tf/r/GEBgYWGy/BbH9NYa+ffsC8NVXX5Genm45npOTw2effQZQ7p/0VTemRn4AZMZpM1oREbG9Z555ptQfhg8bNoxFixYxdOhQzp07x2+//UZcXBzDhg3jhx9+YPDgweW+p4eHBz/88AMhISHs3r2bP/74g4YNG/LMM88wa9Ys7O0Lb9w4c+ZMnnnmGRo1asTWrVvZuXMnXbt2ZfHixZa85q8aNmzIrFmz6Nq1K3v27GHJkiX89NNPhda3HDx4MEuXLmXUqFHk5OSwdu1a9uzZg4uLC48++ij+/v7lfjZrGT9+PPPmzaN///6cOHGC1atXk5qayl133cXSpUsJCgqyWWwicm11Og8C4MredTX2LWEREam5lOMrx78RGczVPOt69913mTdvHg8++CBTpkwpcv7KlSuW9ZF2796Nq6triX2tW7eOJ554grZt27Js2bJir7nzzjs5evQos2bNIjg4GICRI0dy+PBhPv/8cwYNGlSkzdq1a3nyySdp3759oXWmUlJSeOKJJ9ixYwf16tWjU6dOGI1GDhw4QFJSEvfddx+TJ08u8o1eHgXL67Ru3fq6+yiv9PR0oqOj8fX1xS4xmks/Tce+jhcNHp5RZTHUBlePo7Ozs63DqbE0jtajsbSOio5jZmYmsbGx+Pr64uTkVAkR1gxms5nMzExMJlONfiOtOtBYWoe1xjEjI4Po6Gh8fHyuOfMoIiICg8FQ7NumUrsdOHAAoMq+9mlpaRw5coS2bdsWWtazQF5WOqc+eQRzVgaNH3gL5xbFT6iSa4+llI3G0Xo0ltZR0XEsmBzq5+d3Q+f4ubm5ZGRk4OTkVKFamGgsrcVa41ie7/Gy5nnVfnmctLQ0gBILH1f/zzI1NbXUov21+rq6v9TU1CLtSvofc3FtANzc3Pj666956623+Omnnwq9ytO+fXs6depklW+s7Oxsy9sAVSk6OhpDdgYeQO6VRI7u343ZqEJfeVXHXcBrIo2j9WgsraMi4+jg4EBmZqb1gqnBNA7Wo7G0joqOY2ZmJjk5OZw8Wbb9gAqWaxSxJTtHZ9za9SF571qS961T0V5ERESkklX7on1NFhsby4QJE4iLi+Nf//oX/fv3x9nZmb179zJ9+nSefvppJk2axFNPPVWh+xiNRpvNtHd2diZhZwNyryTg5+mEqVnbKoujptOsZuvQOFqPxtI6rDXT3mQy3dCzcDQ73Ho0ltZhzXF0cHCgefPmZZppL1JduHceSPLetaQe2Ubu4Iexdyp5spSIiIiIVEy1L9oXzGK/ek34qxXMggdKnWVflr6u7u/qvgraXX2va7UBePnllzl+/DiffPIJQ4cOtRzv168ffn5+3HHHHXz55Zfcfvvt+Pr6lhp7aQwGg01ec3N2dsbFxQVT45akXUnAkBSLS0C3Ko+jpisYR6kYjaP1aCyt43rH0c7ODjs7O+zt7W/o1xxzc3OB/H/jbuRxsAaNpXVYaxzt7e2xs7PD2dn5mj+Y0w9ZpDox+dyEsUEzshNiSD30B3W6Dr12IxERERG5LtV+I9qCDWPj4uKKPV9w3MPD45pF+4LdlEvq6+pzV29UW/D7+Pj4UttcvVvzuXPnCAsLw2g0cuuttxZp06xZMzp27EhOTg5hYWGlxl3dmRq1BCBLm9GKiIiIiNRKBoOh0Ia0IiIiIlJ5qn3Rvm3b/OVWDh06VOz5w4cPAxAQEHDNvvz8/DCZTFy6dInY2Ngi52NjY0lKSsLJyQk/P78iMRw8eLDYfgtiuzqGgkK+q6tribOx6tSpA0BSUtI1Y6/OTN75Y5UZr6K9iIiIiEht5RbYD+wcyIo7SWZc2fZlEBEREZHyq/ZF+6CgIDw8PDhz5oxld92rrVy5EoCBAwdesy+TyUSvXr0AWLVqVYl99enTp9CmX8HBwQCEhoYW2XwsMzOT0NBQAAYNGmQ53qBBAyC/IH/q1Kki98rJybH8wKFp06bXjL06c/T2BSA78Sx52drkTkRERESkNrJ3qYNrQA8AkjXbXkRERKTSVPuivYODA+PGjQNg2rRppKSkWM6tWLGCjRs34unpyahRoyzH9+/fz9ChQwutI1/gkUceAWD27NlERkZajkdGRjJ79uxC1xRo3749t9xyC0lJSUyfPh2z2Qzkb0g2ffp0kpKS6NOnD23atLG0adq0Ke3atQPg9ddf59KlS5Zz2dnZvPfee5w9exZ3d3f69OlzfYNTTdi718POpQ6Y88hKiLF1OCIiIiIiUkncO+dPlko59Icm7IiIiIhUkmq/ES3Ao48+yvbt2wkLC2Pw4MF0796dxMREwsPDMRqNvP/++7i5uVmuT09PJyqq+KVaunXrxoQJE5g9ezYjR460zLzfunUrmZmZPPHEE3Tp0qVIu+nTpzN69GgWLlzIzp07CQgI4NixY0RGRtKwYUPefvvtIm3efvttxo8fb4m7Y8eOODk5cejQIc6dO4fRaOTtt9+2LJNTUxkMBkyN/Eg/uY+suJM4+bS2dUgiIiIiIlIJnP064lC3ATmXE0g9tgP3wH62DklERESk1qn2M+0BHB0dmTt3Ls899xweHh6EhoYSERHBwIEDWbRoEf36lS9RfP7555kxYwbt2rVjx44d7Nixg3bt2vHxxx/zzDPPFNumSZMmLFu2jDFjxpCamsqaNWtITU1lzJgxLFu2jMaNGxdp0759e5YvX87YsWPx8vJi586dbNy4EYPBwJ133slPP/1U7NsANZGj1rUXEREREan1DAY73DuGAFoiR0RERKSy1IiZ9pBfuJ84cSITJ0685rU333wzx44dK/Wa4cOHM3z48HLF4OXlxbRp08rVpnHjxrz++uvlalMTmRq1BCArTkV7EREREZHazL1TMJf++IGMUwfJvhSH0bORrUMSERERqVVqxEx7qf4KNqPNOn8Kc16ubYMREREREZFK41C3Ac4tOwGabS8iIiJSGVS0F6sw1muMweiEOSeL7IvnbB2OiIiIiIhUIvfOgwBI3r9ek3ZERERErExFe7EKg8EOR+8WgJbIERERERGp7Vz9u2HnUofclEukRe6xdTgiIiIitYqK9mI1JstmtCdtHImIiNQ2x44dIyAggKCgIHJzi5/R+dBDDxEQEEBISEiJ/dxxxx0EBASwdu1aAJYsWUJAQACfffZZueI5c+YMAQEBjB07tlztSjN27FgCAgI4c+aM1fqsKiEhIQQEBNg6DBGpQgZ7I+4d+gNaIkdERK6PcvzqTTm+baloL1bj2Ci/aK+Z9iIiYm3+/v54eHiQmprK4cOHi5zPzs5m7969AJw9e5a4uLgi1yQlJXHixAkMBgNdu3Yt9X6fffYZAQEBLFmyxCrxVzfX+uAjIlIW7p0GApB2IpyclEs2jkZERGoa5fjWpRy/dlHRXqzmfzPtozGbzTaORkREapOrk/Dw8PAi5w8dOkRaWhpt27YFICwsrMg14eHhmM1mbrrpJjw9PQG49dZbWblyJffff38lRi8iUjs5NmiGqUkAmPNIObDR1uGIiEgNoxxfpGQq2ovVODZoDnb25KUnk5t8wdbhiIhILdOjRw8Adu7cWeRcwbHHHnsMKD7pLzjWvXt3yzF3d3datWpFvXr1rB6viMiNwL1z/oy+5L3rNHFHRETKTTm+SPFUtBerMTgYcfRqCkCmlsgREREr69atGwC7du0qUhgKDw/HaDQycOBAWrRoUWzSX1xCX9x6lyEhIcycOROAV199lYCAAMt/xb1Km5WVxaeffsqtt95KYGAg/fr14+233yYlJeW6n3XlypXce++9dOnShW7dujFx4sRiXxnOy8tjxYoVTJ48mSFDhtClSxc6d+7MHXfcwWeffUZaWlqh6wueF/JfMb762f76Km1ubi6LFy9m3Lhx9OjRgw4dOhASEsJTTz3Fhg0bSox92bJl3HXXXXTq1IkePXowadIkTp06VeS6HTt2EBAQwCuvvEJycjJvv/02/fv3JzAwkIEDB/Lpp5+Sk5NT7D2Sk5P5+OOPue222+jYsSNBQUGMGTOGH3/8kby8vCLXv/LKKwQEBLBjxw62bt3KP/7xD3r06EFAQABHjhwptH5pRkYGH374IQMHDqRDhw4MGTKE+fPnW/o6fvw4kyZN4pZbbqFTp07cd999lte2RW5Ebu16Y3B0IvtiLBkxR2wdjoiI1DDK8ZXjF1COX5iDTe8utY5jIz+yzp8iKy4KV//u124gIiJSRm3btsXNzY2kpCQiIiK46aabgPykdvfu3XTo0AGTyUTXrl1ZsmQJFy9etMyuSU1N5ciR/GLS1Ql9cYYMGcLWrVs5evQoQUFBtGjRwnKuefPmha7Nzs7m4Ycf5vDhw3Tv3p3WrVuze/duFixYQEREBN9++y0Gg6Fcz/ndd98xf/58OnfuTHBwMCdOnGD9+vVs2bKFr776ip49e1quTU9PZ/LkydStW5eWLVvStm1bUlNTOXjwIDNnzmT9+vUsWLCgUPwjR45k6dKluLi4MGTIEMu5gteJATIyMnj88cfZunUrjo6OBAUFUb9+fc6dO8eWLVu4fPkyAwYMKBL7Rx99xNy5c+natSsDBgzg4MGD/P777+zevZtffvml2NlOV65cYfTo0Vy6dIlu3bqRkZFBeHg4n3/+OXFxcUyfPr3Q9QkJCYwdO5aoqCi8vLwIDg4mPT2dHTt28Prrr7N582Y+/vjjYsf9119/5YcffqBNmzb07duXc+fOFbouOzub8ePHc/LkSXr06IGfnx/h4eG88847JCcn06VLF5544gmaNm1Kz549OXXqFLt27WL8+PEsXryYVq1ale2LLFKL2Dk649a2N8n71pG8dx3OzdvZOiQREalBlOMrxwfl+MVR0V6syuTtRwobyIw/aetQRESklrG3tycoKIhNmzaxc+dOS0J/7Ngxrly5Ypml061bN5YsWcLOnTstCeuePXvIycmhZcuWeHl5lXqfl19+mc8++4yjR49yzz33cNddd5V47Z49e+jYsSNr1661JMQJCQmMHj2abdu2sXPnTssrv2X1n//8h08//bRQsv3VV1/x4Ycf8tJLL7FmzRqcnJwAMBqNzJw5k/79++Po6Gi5PiMjg2nTprFkyRIWLFjA2LFjLWPTrVs3li5diqenJ//+97+LjWH69Ols3bqV9u3b8/nnn9O4cWPLuZSUFA4cOFBsu0WLFrF48WLatGkD5M9Qevrpp1m/fj3//e9/eeqpp4q0WbduHcHBwSxevBhnZ2cAoqKiGDVqFEuWLLEk0AWmTp1KVFQUwcHBzJgxw9ImJiaGcePG8dtvv/H//t//44EHHig2vnfffbfI1/TMmTNA/teza9eurFu3Dnd3dwCOHj3K3XffzZw5c6hbty5PPfUUjzzyiKXte++9xzfffMOcOXN49913ix0XkdrOvcsgkvetI/XIVvIG/wM7J1dbhyQiIjWEcnzl+KAcvzhaHkesyvHPzWiztDyOiEilMZvN5GVl1Jj/rLnGccEMmqvXsyx4TbYgoS/YzOrq12cLfn+tGTjlZTAYeOeddwrNYGnQoAH33XcfUPxmWdcyePDgQsk8wKOPPoq/vz/nz5/nt99+sxx3dHTk1ltvLZTMAzg5OfHGG2/g4ODAmjVrynX/8+fPs3jxYsuHhauTeQA3N7dCM4Gu9vTTT1uS+YL4nnjiCSD/VdniuLi48M4771gScwA/Pz/uvPNOzGZzoa/jmTNnWLduHY6OjkybNq1Qm2bNmvH8888DMG/evGLv1adPn1I/oNnZ2fGvf/3LkswDtGnThn79+pGWlkaDBg146KGHCrWZMGFCqc8nciMw+dyE0asp5pwsUg5ttnU4IiI1knJ85fgFlOMrxwfNtBcrM3n7ApBzJZHc9GTsnd1LbyAiIuViNpuJnf8amWeO2TqUMjM1bYPPuLfL/QppcYpL6MPDw7GzsyMoKAgAX19fvLy8ilxzdXtr8fHxwd/fv8jxli1bAvnJcXndcccdRY4ZDAbuuOMOPvzwQ8LDwxkxYkSh85GRkfzxxx/ExMSQlpZm+RBlNBqJjo4u1/3DwsLIycmhX79++Pj4lKtt//79ixy71lgEBgZSv379MrULDw/HbDbTo0cPvL29i7S57bbbeO2114iJiSEuLo5GjRoVOj9o0KBS4/fx8Sn29deC16d79epV5JyHhwceHh7X9bUWqS0MBgPunQdxce08kveto07XIdduJCIiFsrxleMrx1eO/1cq2otV2Tm54uDhTU5SPFnx0Tj7drB1SCIitVDFE+OaKjAwEGdnZ+Lj44mJiaFZs2aEh4fj7+9faOZE165dWbNmDcnJyZhMJvbv3w9Q7tdYr+WvM1QKuLrmLw2RlZVV7j6vfk20uONxcXGWYzk5ObzxxhssXry43PcpSWxsLJD/wai8ivsA4ObmBuSvJVmc8oxhQdJc0hjZ2dnh4+NDVFQU8fHxRRL6a31A+ev1BVxcXABo2LBhibEmJSWV2rdIbefeoT8XQ/9D5rlIMuOjLZN5RESkrJTjK8fPpxy/sBs1x1fRXqzO1MiPnKR4MuOiVLQXEbEyg8GAz7i3MWdn2jqUMjMYTVaZgQP5s0o6d+5sWUsyKyuLCxcuMGzYsELXdevWjdWrV7Nr1y7c3NzIysqiefPmxc7cqAg7O9uuNPjdd9+xePFiWrduzeTJkwkMDMTT0xOj0QjkvyqakJBQZfFcz3hU5RgWrBNakmvFYuuvt0h1Zu9SB9eA7qQe2Uby3nWYhjxs65BERGoM5fjK8a+mHL98amuOr6K9WJ2jtx+pR7eTFa917UVEKoPBYMDgWHpiUpt1797dktAXzOwoWOOywNVrXhbMAilYD7O6O3v2bKE1IwsUbKR09YeS1atXAzBjxowir/CmpaWRmJhY7vsXzFQp7yu3VaFgFkzBWPxVXl4e586dA7D6hzcRuTb3TgNJPbKNlIObqDdwLHYOjtduJCIigHJ85fjK8ZXjF1Y9f5QgNZrpz81oM+NO2jgSERGpja5e8/KvG1QVaNOmDa6uroSHh1vWuizPa7MFs1hyc3OtEXK5rFixotjjv/76K1B4zc7Lly8Dxb9+umLFihI3CDMajeTk5BR77uabb8bBwYFt27ZZkuPqolu3bhgMBnbs2EF8fHyR86tWrSIjI4NmzZqV+BqsiFQeZ7+OONTxIi8jhbRj2pxZRETKTjm+cnzl+IWpaC9W59gov2iffSGWvBr0apeIiNQMnTp1wtHRkdOnT7Np0yaaN29eZB1Ce3t7unTpwqFDh9i9ezdQvg2qCvqLjIy0XuBltHr1atauXVvo2Ny5czl69CgNGjRgyJD/bfDo55f/b+6CBQsKXX/gwAE+/PDDEu/RsGFDLly4YPlAcLUGDRowatQosrOzeeqpp4okzqmpqWzbtq3cz2UNTZs2JSQkhOzsbN58800yMjIs586cOWN55vHjx9skPpEbncHOHrdOIQBc2bvOxtGIiEhNohxfOb5y/MK0PI5Ynb2bJ/audclNvUzW+dM4NbnJ1iGJiEgtYjKZ6NixI+Hh4Vy+fJmBAwcWe123bt3YvHkz2dnZ+Pj4lLixUXH69OmDk5MT3333HSdOnMDb2xuDwcCoUaMICgqy1qMU67777uPJJ5+kS5cuNGnShBMnTnDs2DEcHR157733cHZ2tlz72GOPsXnzZj755BNWr15Nq1atOH/+PLt27WL48OHs2bOHs2fPFrnHwIEDmT9/PiNHjqRLly44OTnh6enJCy+8AMCrr75KVFQUYWFhDBo0iK5du1K/fn3OnTvHkSNHCAwMpGfPnpU6DiWZNm0aJ0+eZP369QwaNIhu3bqRnp7O9u3bycjIYOjQodx33302iU1EwL1TMEl//EhG9AGyL8Vh9LxxZsSJiMj1U46vHF85fmGaaS9WZzAYcPxziRytay8iIpXh6hk1f13rssDVr9OWd63Lhg0bMmvWLLp27cqePXtYsmQJP/30U5WsATl+/Hg+/PBDcnJyWLduHWfPnqV///58//339O7du9C1QUFBLFq0iL59+3L+/HlCQ0O5cuUKL7/8Mh988EGJ93j++ecZN24cAL/99hs//fQTK1eutJx3dnbm22+/Zdq0aQQGBrJ//35+//134uLi6Nu3L48++mjlPHwZNGjQgB9//JGJEyfi7u7OunXrCAsLo02bNrz99tvMmDGj2m4mJXIjMNZtiHPLjgAk7wu1cTQiIlKTKMfPpxxfOT6AwVzSQkhSIxw4cACADh06VNk909LSOHLkCG3btsXFxaXYay6u/w9JW5fi3mUwDYZPqLLYapKyjKNcm8bRejSW1lHRcczIyCAqKgo/Pz+cnG7cjahyc3PJyMjAyckJe3t7W4dTo2ksrcNa41ie73Fb5HlSPVT1197aOUDK4S2cX/oR9u71aP7ULAx2N87/e5RPWYfG0Xo0ltahHN86lJdaj8bSOqpzjn9j/YhCqoxm2ouIiIiI3Jhc/Xtg5+xObvJF0iP32jocERERkRpHRXupFJai/flTmPOqflduERERERGxDYODEbcO/QG4sk8b0oqIiIiUl4r2UimM9RphcHTCnJNF9oVYW4cjIiIiIiJVqE6n/A0E006Ek5OSZNtgRERERGoYFe2lUhgMdjg29AUgU0vkiIiIiIjcUBwbNsfkcxPk5ZJyYIOtwxERERGpUVS0l0pjavTnEjlxKtqLiIiIiNxo3DsPAiB53zrMZrONoxERERGpOVS0l0pTsK69ZtqLiIiIiNx43Nr1xmB0IvtCLJlnjto6HBEREZEaQ0V7qTSmgs1o46M0s0ZERERE5AZjZ3LGrV0vAK7s1Ya0IiIiImWlor1UGscGzcDOnrz0FHKvJNo6HBGRGkU/7BSpnfS9LTca9875G9KmHtlKXmaajaMREbEt5QEitVNlfG+raC+VxuBgxNGrGQCZWtdeRKRM7Ozy/2nOzc21cSQiUhkKvrcLvtdFajtTkwCMXk0xZ2eScmizrcMREbEJ5fgitVtl5Pj6tCCVyrGR1rUXESkPo9GI0WgkJSXF1qGISCVIT0/H3t4eo9Fo61BEqoTBYMC9U/5s+2QtkSMiNyij0Yi9vT3p6em2DkVEKkFl5Pgq2kulMv1ZtM/STHsRkTIxGAy4u7tz+fJlJfUitUxubi6XL1/GxcUFg8Fg63BEqox7h/5g50DmuQgy46NtHY6ISJUzGAy4uLhw+fJlzbYXqWUqK8d3sFpPIsVw9PYFNNNeRKQ8vLy8SE9P5/Tp09SpUwd3d3fs7e1vqCJfbm4umZmZANjb29s4mppNY2kdFRlHs9lMZmYmFy9eJC8vj4YNG1ZGiDaVlZXFt99+y/Lly4mJicHFxYVu3brx+OOP0759+3L3t3LlShYsWMCxY8cACAgIYNy4cQwbNqzENomJicycOZMNGzaQmJiIl5cXAwYMYNKkSdSvX7/I9QcPHmTDhg1s2bKFiIgI0tLS8PT0JCgoiPHjxxMUFFTsfcaOHUtYWFiJcUyePJnHHnusnE9cu9m71sXVvxupR7eTvG8dpsEP2zokEZEq17BhQ6Kjozl16hT16tXDZDLdUPk9KC+1Jo2ldVTnHF9Fe6lUJu/8mfa5VxLJTUvG3sXdxhGJiFR/9vb2NGvWjMTERJKTk0lKSrJ1SFUuLy+PnJwcHBwctPZ3BWksrcMa4+jq6kqjRo1wdHS0cnS2lZWVxcMPP0xYWBj169cnODiYhIQE1qxZw4YNG/jyyy/p27dvmfubMWMGs2bNwtHRkd69ewOwZcsWnn32WY4fP84zzzxTpM3Zs2cZPXo0CQkJtGzZkkGDBnHs2DG+//57QkNDWbRoEY0bN7Zcn5OTw6hRowBwd3enU6dOuLu7ExERwerVq1mzZg1Tpkxh7NixJcY5ZMgQXFxcihz39/cv87PeSNw7DyL16HZSDm6iXshY7Bxq1/eBiMi1ODo60rRpUxITEzl37pytw7EJ5aXWo7G0juqc46toL5XKzuSCg2cjci7FkRUfhbNfR1uHJCJSI9jb2+Pt7U3Dhg3Jzs4mLy/P1iFVqfT0dE6ePEnz5s1xdna2dTg1msbSOio6jg4ODjg41M7U++uvvyYsLIwOHTowb9483NzcAFixYgWTJ0/mxRdfZO3atZbjpQkPD2fWrFnUqVOHhQsX0qpVKwAiIyMZM2YMX3zxBf369aNLly6F2k2ZMoWEhATGjBnD1KlTMRgMmM1mpk6dysKFC3n99deZO3duoTaBgYFMmDCB4ODgQuuPfv/990ydOpV3332XXr16WWL4q5deeommTZuWa6xuZM5+HbGv40XulUTSjoXh1r6PrUMSEalyLi4uNG/enJycHHJycmwdTpVTXmo9GkvrqM45fu385CDVisnbj5xLcWSqaC8iUm4Gg6HWzcoti4IfUphMJpycnGwcTc2msbQOjWPxcnJymD9/PgBvvvlmocL87bffzvLly9m4cSOLFy/mwQcfvGZ/c+bMAWDixImFiuWtWrViwoQJfPDBB8yZM4fPP//ccu7QoUNs374dDw8PpkyZYllqwGAwMGXKFH777Tc2b97M0aNHadOmDZD/AWvx4sXFxvD3v/+dtWvXsnnzZlatWsVTTz1VzlGR4hjs7HHvGEzS5h9J3rdORXsRuaHV5h/ml0b5lPVoLK2jOo+j3p+QSueozWhFREREaqXdu3eTlJRE06ZN6dChQ5Hzw4cPB2DdunXX7CszM5OtW7cCFLt2fUFfmzdvJisry3J8/fr1AISEhGAymQq1MZlMhISEALB27dqyPBKQv4Y+wPnz58vcRq7NvVMIYCA9aj/ZSfG2DkdERESk2rrxfqwnVc6kzWhFREREaqUjR44AlLjZbLt27QAsG8qWJioqiszMTDw9PfHx8Sly3sfHBw8PD5KSkoiKirIU1gtiCAwMLLbf9u3bs2TJkjLFUOD06dNA/sbgJVm8eLFlz5EmTZowYMAAWrduXeZ7VCe5uXlEx2fi2zKHYpbptxqjR0Oc/TqSHrWP5H2h1Ov/98q7mYiIiEgNpqK9VDpH75YAZF+IJS87Ezuj6RotRERERKQmiI2NBaBRo0bFni84npSURGpqKq6uriX2dfbs2VL7KjiXlJREbGyspWhfEIO3t3epMRT0fy1RUVFs2LABgIEDB5Z43RdffFHoz//3f//HiBEjmDp1arV7vfpaftsRw/x1CSz8YxPB3ZoxrKcvfj51K+Ve7p0H/lm0X49n33sx2NlXyn1EREREajIV7aXSObh7Yu/qQW5qElnnT+HUxN/WIYmIiIiIFaSlpQGUuHGXy1XTtq9VtL9WX1f3l5qaWqSdSwlTxItrU5KsrCxefvllsrOzuf3224t9g6Bbt26MGjWKoKAgGjZsSHx8PBs3buTTTz9l6dKlZGVl8dFHH13zXtdiNpstz1bZ/Ju4Ur+OAxeu5LBqazSrtkbj37wug7s34+b2DXE0Wq+wbmgaiMHJjdzkCyQdCcPk18lqfVcH6enphX6V66NxtB6NpXVoHK1D42g9GkvrsMU4ms1myx5MpVHRXqqEo7cf6Sf3kBUXpaK9iIiIiFRLb775Jvv27cPX15c333yz2GueeeaZQn9u0aIF48aN4+abb2bUqFH8+uuvjB8/no4dO1YoluzsbMvSP1Xhqdu8iT6fyc4TqRyNSef46cscP32ZuSvs6NLShW6t3ajnbp2Pj87ebXE6tZP4bb+QmlE7N1uPjo62dQi1gsbRejSW1qFxtA6No/VoLK2jqsfR0fHa+Y+K9lIlTI3yi/Za115ERESk9iiYxV7S7KSrZ4qXNsu+LH1d3d/VfRW0K2lWenFtivPBBx+wZMkSGjVqxDfffEOdOnVKvf6vAgICCAkJYfXq1WzatKnCRXuj0Vhla+Snp6cTHR1N8M1tGD7AmUvJmYTuOsu68LNcuJzB1iMpbD2SQsfW9RncvSlBAV7Y29td9/2yG7hxYcFOHBMiaNLCB3uXylmKxxYKxtLX17fUt0akdBpH69FYWofG0To0jtajsbQOW4xjREREma5T0V6qhOOfm9FmxaloLyIiIlJbFGwYGxcXV+z5guMeHh7XLJo3adKk1L6uPnf1RrU+Pj4cPnyY+Pj4UtsU9F+cWbNmMWfOHOrVq8c333xT6rWl8fX1BeD8+fPX1f5qBoOhxCV/KouzszMuLi64uLgwdrgn9w1tz64j8azcGsXuY+fZH3GB/REXqF/XiSE3t2DwLS2oX/c6PuA2DyDF5yYyY0+QGxGG+y13Wv9hbKxgLKViNI7Wo7G0Do2jdWgcrUdjaR1VOY5lWRoH4PqnR4iUg6mRHwBZCacx5+XaOBoRERERsYa2bdsCcOjQoWLPHz58GMCyaWxp/Pz8MJlMXLp0ybK57NViY2NJSkrCyckJPz+/IjEcPHiw2H4LYisphgULFjBjxgzc3d2ZO3curVq1umasJbl8+TJQ+rr8NYm9nYEe7Rsx9dGefPXqIEYFt6aOqyMXLmfw39+P8Y+31zB9Xhh7j58nL89crr7dO+dv8pu8dx1mc/naioiIiNR2KtpLlXDwbITB0RlzThbZF87aOhwRERERsYKgoCA8PDw4c+YMBw4cKHJ+5cqVAAwcOPCafZlMJnr16gXAqlWrSuyrT58+hdYBDQ4OBiA0NJTMzMxCbTIzMwkNDQVg0KBBRfpcunQp77zzDi4uLnz11Ve0a9fumnGWJCsriw0bNgAQGBh43f1UV43quzL+9vbMe2MwL9zflfYt65OXZ2bbgXP8c/Y2Hn9vHUs3RHAlNatM/bm1643BaCL7wlkyzxyr5OhFREREahYV7aVKGAx2mP5cIidTS+SIiIiI1AoODg6MGzcOgGnTppGSkmI5t2LFCjZu3IinpyejRo2yHN+/fz9Dhw5l6NChRfp75JFHAJg9ezaRkZGW45GRkcyePbvQNQXat2/PLbfcQlJSEtOnT7fM2jabzUyfPp2kpCT69OlDmzZtCrX7/fffee2113B0dOSLL74gKCjoms+7bds21q9fT15eXqHjCQkJPP3008TFxdGoUSNuvfXWa/ZVUxkd7Okf1JR/P9mHmS8Ec1tvP5xNDsQmpvLNL4cY/9ZqZny/m6OnLpY6g97O5IJr294AXNm7rqrCFxEREakRtKa9VBlHbz8yYo6QFR8FHfrbOhwRERERsYJHH32U7du3ExYWxuDBg+nevTuJiYmEh4djNBp5//33cXNzs1yfnp5OVFTxkzi6devGhAkTmD17NiNHjrTMvN+6dSuZmZk88cQTdOnSpUi76dOnM3r0aBYuXMjOnTsJCAjg2LFjREZG0rBhQ95+++1C11+4cIHnn3+e3NxcfH19+fnnn/n555+L9NuyZUsee+wxy5+PHTvGu+++S4MGDWjXrh3u7u7ExcVx+PBh0tLSqFevHjNnzsTJyem6xrKmadG4DhPv6siDt7Vj4+4zrNoazcnYy4SGxxAaHkNLn7oM7eXLgKCmOJuKfvSs03kgKftDST2yhbzBD2Fn0pq8IiIiIqCivVQhR820FxEREal1HB0dmTt3Lt988w3Lly8nNDQUFxcXBg4cyJNPPkn79u3L1d/zzz9PmzZtmD9/Pjt27ACgXbt2PPjggwwbNqzYNk2aNGHZsmV89tlnbNiwgTVr1lC/fn3GjBnD008/Tf369Qtdn56eTnZ2NpA/i//qWf1X69GjR6GifY8ePRg9ejQHDx7k4MGDXLlyBUdHR3x9fenfvz/jxo2jXr165Xre2sDZ5MDQnr4MuaUFx09fYuXWaDbvPcvJ2Mt88dM+vv3lEMFdmzK8lx8tGtextDM1DcBY34fsC7GkHN5CnS619w0FERERkfJQ0V6qjGUz2vgozGZzmXdLFhEREZHqzdHRkYkTJzJx4sRrXnvzzTdz7Fjpa5gPHz6c4cOHlysGLy8vpk2bVqZrmzZtes0YitOuXTveeuutcre7URgMBgJa1COgRT0euTOQdTtj+G1bFGcTUlm5NZqVW6Np61uP4b186d3JB6ODPe6dB3Fx3XyS965T0V5ERETkTyraS5VxbNAM7BzIy0gl50oCxroNbR2SiIiIiIhUAncXR0b0b8Wd/Vqy/0QiK7dFsf1gHEeiL3Ik+iJf/3yQW3s0Z0jnHmD3/8iMPUHW+dM4Nmxu69BFREREbE4b0UqVMdgb8wv3QJaWyBERERERqfUMBgOd/Bvw6oM9+Ob1W7l/aBu86jpxJTWLxesjeGxGGKccWgJwec9aG0crIiIiUj2oaC9VytE7f4kcrWsvIiIiInJjqV/XmTG3BjDntVt57aEeBAXkv3n724X8iT3xO9eyaPUhLlxOt2WYIiIiIjan5XGkSpka+ZKyP39dexERERERufHY29txS2BjbglszLnEVH7bepLL+7dT15DGwQ1r+X6tHzcHNmJ4Tz863uSlvbBERETkhqOivVQpzbQXEREREZECjb1ceehvHUhwG0rytiUMqhvN3gRftu4/x9b952jSwJWhPf0Y2L0Z7i6Otg5XREREpEpoeRypUiZvXwByky+Qm3bFtsGIiIiIiEi14BE0CIBmuTF8OqEDw3v54mxy4GxCKnOXH2T8tNXM+H43kWeSbBuoiIiISBVQ0V6qlJ3JBQfPRgBkaokcEREREREBjB7eOPt2AMzUPRfG46M6Me+NwTxxdyf8fOqQlZNHaHgMz87YyBuzt7LvRAJms9nWYYuIiIhUihqzPE5WVhbffvsty5cvJyYmBhcXF7p168bjjz9O+/bty93fypUrWbBgAceOHQMgICCAcePGMWzYsBLbJCYmMnPmTDZs2EBiYiJeXl4MGDCASZMmUb9+/RLb5eXl8dNPP/Hzzz8TERFBWloaXl5eBAYG8uCDD9KtW7dyx1+TmRr5kXMpjqy4KFz8Otk6HBERERERqQbcOw8iPfoAyfvX49n3HlycjAzr6cvQW1pw7NQlftl8ks17z7LneAJ7jidwUzMPRoXcxC2BjbG307r3IiIiUnvUiKJ9VlYWDz/8MGFhYdSvX5/g4GASEhJYs2YNGzZs4Msvv6Rv375l7m/GjBnMmjULR0dHevfuDcCWLVt49tlnOX78OM8880yRNmfPnmX06NEkJCTQsmVLBg0axLFjx/j+++8JDQ1l0aJFNG7cuEi7lJQUJkyYQHh4OJ6ennTp0gWTyURsbCzr16+nbdu2N1zR3tG7JalHtmmmvYiIiIiIWLgE9MDOyY3cK4mkR+3HpVUXAAwGA21869HGtx5jh7Vl2cZI1uw4xYmYJP793U6aNHBl5ICbCOnWFKODvY2fQkRERKTiakTR/uuvvyYsLIwOHTowb9483NzcAFixYgWTJ0/mxRdfZO3atZbjpQkPD2fWrFnUqVOHhQsX0qpVKwAiIyMZM2YMX3zxBf369aNLly6F2k2ZMoWEhATGjBnD1KlTMRgMmM1mpk6dysKFC3n99deZO3dukftNnjyZ8PBw/vGPf/Dcc8/h6Pi/zZOSkpK4dOlSRYamRipY1z5Lm9GKiIiIiMif7BwccevQjys7V5K8d52laH+1RvVdmXhXR8bcGsCKzSf5dUsUZxNSmfnjXv67+gh39mvF0J6+uDgZbfAEIiIiItZR7de0z8nJYf78+QC8+eabhQrzt99+O/379+fSpUssXry4TP3NmTMHgIkTJ1oK9gCtWrViwoQJha4pcOjQIbZv346HhwdTpkzBYMh/9dJgMDBlyhQ8PDzYvHkzR48eLdRu7dq1bNiwgYEDB/Lyyy8XKtgDeHh44OfnV6a4axPHRvnPnH0hlrysDBtHIyIiIiIi1YV7p4EApB7fSW7q5RKv83A38cCwtsx9/VYe/lt76td14uKVTL5dcZh//Ot35q88zKVkfdYQERGRmqnaF+13795NUlISTZs2pUOHDkXODx8+HIB169Zds6/MzEy2bt0KUOza9QV9bd68maysLMvx9evXAxASEoLJZCrUxmQyERISAuQX6a/2/fffAzB+/PhrxnYjcXDzxN7VAzCTlXDa1uGIiIiIiEg1YfL2xdS4NeTlkHxw4zWvd3EyMqJ/a76ecivPjO5M04ZupGbk8OO6Ezz89hq++Gkf5xJTqyByEREREeup9kX7I0eOAJS42Wy7du0ALBvKliYqKorMzEw8PT3x8fEpct7HxwcPDw8yMjKIivrf0i0FMQQGBhbbb0FsV8eQk5NDeHg49vb2dO7cmcjISGbOnMkbb7zBjBkzCAsLu2a8tVnBbPusuJM2jkRERERERKoT9875s+2T967DbDaXqY3RwY5BPVrw+YshTBnfg4AWnmTn5LFqWzQT/72W9xeEE3kmqRKjFhEREbGear+mfWxsLACNGjUq9nzB8aSkJFJTU3F1dS2xr7Nnz5baV8G5pKQkYmNjCQgIKBSDt7d3qTEU9A8QExNDRkYGXl5eLFiwgA8//JDc3FzL+VmzZjFgwAA++uijUmMuC7PZTFpaWoX6KI/09PRCv14Pu/rNIHIPqWdO4NC2n7VCq1GsMY6icbQmjaV1aBytQ+NoPRpL67DFOJrNZsuyjCI3Erf2fbiwdh7ZiWfIPHscp6YBZW5rZ2egZ4fG3BLYiEMnL/BT6Al2HT3PH3vP8sfes3Txb8CokJvo2NpL318iIiJSbVX7on1BMdrZ2bnY8y4uLpbfX6tof62+ru4vNfV/r1AWtLv6Xtdqc/ly/vqLSUlJvP/++4wYMYIJEybQoEEDwsPDefPNN9mwYQNTp07lgw8+KDGessjOzra8DVCVoqOjr7utMcseNyD59DFibRB7dVKRcZT/0Thaj8bSOjSO1qFxtB6NpXVU9Tj+dU8kkRuBnckF17Y9Sdm/geS9a8tVtC9gMBgIbOVFYCsvomIvszg0gj/2nWXP8QT2HE+gdTMP7g65iVsCG2Nvp+K9iIiIVC/VvmhfU+Xl5QH5y+T06NGD9957z3IuODgYLy8v7rnnHn755RcmTZpE8+bNr/teRqOR1q1bVzjmskpPTyc6OhpfX99SfwBSmpzG9UjcuxSH1ETaBPhjsLO3cpTVnzXGUTSO1qSxtA6No3VoHK1HY2kdthjHiIiIKrmPSHVUp/MgUvZvIOXwVurf+g/sTNf/fefnU5cXHujKA8PasGxjJGt2nCIiJol/f7eTJg1cGTngJkK6NcXocON9JhEREZHqqdoX7QtmsZf0KvLVy8Jca5mZa/V1dX9X91XQrqQlaEprA3DvvfcWadOhQwfat2/PwYMHCQsLq1DR3mAwlPgWQGVydna+7vuanVtwwdEZc1Y6xrRLODa8/uev6SoyjvI/Gkfr0Vhah8bROjSO1qOxtI6qHEct3SE3MlPTNhjr+5B9IZaUw1uo02VQhftsVN+ViXd15O+DA/hl80l+3RzF2YRUZv64l/+uPsKd/VoxtKcvLk5GKzyBiIiIyPWr9hvRFmwYGxcXV+z5guMeHh7XLNo3adKk1L6uPnf1RrUFv4+Pjy+1TUH/f/1906ZNi21XcDwxMbHUuGsjg8EOk7cvAJnx2oxWRERERET+x2Aw4N7pzw1p962zat913Uw8MLQt3/xzMA//LRCvuk5cvJLJtysO849//c78lYe5lJxh1XuKiIiIlEe1L9q3bdsWgEOHDhV7/vDhwwCWTWNL4+fnh8lk4tKlS5bNZa8WGxtLUlISTk5O+Pn5FYnh4MGDxfZbENvVMbi7u1tmzxesb/9XSUlJQMlr5dd2jo3yxzgrLsrGkYiIiIiISHXj1mEA2NmTefY4WQmnrd6/s8mBEf1b8dWUW3lmdBeaebuRmpHDj+tO8PDba/jip32cS0y9dkciIiIiVlbti/ZBQUF4eHhw5swZDhw4UOT8ypUrARg4cOA1+zKZTPTq1QuAVatWldhXnz59Cm36FRwcDEBoaCiZmZmF2mRmZhIaGgrAoEGFX9ksiGn79u1F7nXlyhXLDxzat29/zdhrI5N3ftE+M15FexERERERKczBzQOXm7oBkLzXurPtr2Z0sGNQj+bMfCGE1x7qQUALT7Jz8li1LZqJ/17L+wvCiTyTVGn3FxEREfmral+0d3BwYNy4cQBMmzaNlJQUy7kVK1awceNGPD09GTVqlOX4/v37GTp0KEOHDi3S3yOPPALA7NmziYyMtByPjIxk9uzZha4p0L59e2655RaSkpKYPn06ZrMZALPZzPTp00lKSqJPnz60adOmULsHH3wQJycn/vvf/xYq3GdlZTFt2jSuXLlCmzZtCAoKuq6xqekc/yzaZ8VHW8ZURERERESkQJ2CJXIObsKck12p97KzM3BLYGM+mNSXd5/oTbe23uSZ4Y+9Z3l2xkbemL2VfScS9NlFREREKl2134gW4NFHH2X79u2EhYUxePBgunfvTmJiIuHh4RiNRt5//33c3Nws16enpxMVVfzs7W7dujFhwgRmz57NyJEjLTPvt27dSmZmJk888QRdunQp0m769OmMHj2ahQsXsnPnTgICAjh27BiRkZE0bNiQt99+u0ibxo0b88477/DSSy/x0EMP0alTJ7y8vDhw4ABxcXF4eXnx0Ucf3bCbjDk2aAp2DuRlpJJzOQGjR0NbhyQiIiIiItWIc6vO2LvXIzf5IqknduLWtlel39NgMBDYyovAVl5ExV5myfoINu09y57jCew5nkDrZh7cHXITtwQ2xt7uxvwsJyIiIpWr2s+0B3B0dGTu3Lk899xzeHh4EBoaSkREBAMHDmTRokX069evXP09//zzzJgxg3bt2rFjxw527NhBu3bt+Pjjj3nmmWeKbdOkSROWLVvGmDFjSE1NZc2aNaSmpjJmzBiWLVtG48aNi213++238/333xMcHEx0dDQbNmzA3t6e+++/nyVLltCqVatyj0dtYbA34tigGaB17UVEREREpCiDnT3uHfOXK63MJXJK4udTl8n3d+WrVwdxe28/HI32RMQk8e/vdvLEe+tYvf0U2Tm5VR6XiIiI1G41YqY95BfuJ06cyMSJE6957c0338yxY8dKvWb48OEMHz68XDF4eXkxbdq0crUB6NSpE1988UW5290ITI38yIqPIjP+JK5tbrZ1OCIiIiIiUs24dwohacti0k/uI/vyeYx1q/4NXe96Lky4qyNjBgewYnMUKzafJDYxlZk/7uW/q49wZ79WDO3pW+VxiYiISO1UI2baS+1lWddeM+1FRERERKQYRs9GOPl2AMxc2vA9eVnpNoulrpuJ+4e24Zt/DuaROwPxquvExSuZfLviMP/41+/89/cTpGRo5r2IiIhUTI2ZaS+1k6lRftE+M15FexERERERKV7dbsPJiD5AysFNpEcfpF7I/bgF9sNgsM08NGeTA3f2a8XwXn5s2nOGxetPEBOfws9/RONkNPBgnie39Wl9w+5fJiIiIhWjmfZiU44NfQEDuckXyU29bOtwRERERESkGnIN6IH33S/h4OFNbspFEpZ/Ruy8KWScPW7TuIwOdgzs3pyZL4Tw+kM98PNxJyPbzOxlh3l91lZiE1NsGp+IiIjUTCrai03ZmZwx1msEQGZ8tG2DERERERGRass14GaaTfiEesEPYHB0IjP2BLHzXuX8z5+Qc+WCTWOzszNwc2Bj3nmsB4O71MXRaMf+iEQmfbCexaEnyM3Ns2l8IiIiUrOoaC82Z1nXXkvkiIiIiIhIKQwORjx6jaTZ4zNx7xQCGEg5uImYWZO49MeP5GVn2jQ+e3s7erV15/+e6knnmxqQlZPHvF8P8/wnm4g8k2TT2ERERKTmUNFebK6gaJ8Zd9LGkYiIiIiISE3g4OZJg9ufpMk/3sPUtA3m7EwubVrImVlPk3J4C2az2abxeddz4a0JPXl2TBfcnI2cPHuZ5z/ZxLwVh8jM1ka1IiIiUjoV7cXmCjaj1Ux7EREREREpD1PjVviMe5uGI5/Hvo4XOVcSOb/0I84t+CeZ52w7KchgMDCwe3O+eDmEvp2bkJdnZvH6CCZ9sJ79EQk2jU1ERESqNxXtxeYKZtpnXzhHXlaGjaMREREREZGaxGAw4NauN80mfopnv9EYHBzJiDnC2W9eImHF5+SkXLJpfJ7uTrw0thuvP9SD+nWdOHchlde+3MpnP+wlJT3bprGJiIhI9aSivdicg5sH9m6egJms86dsHY6IiIiIiNRAdkYTnn3vpdnjM3EL7AeYSd4XSsyXk0jatgxzjm0L5DcHNubzF0MY1ssXgN93nOKJ99axdX+sTeMSERGR6kdFe6kW/reuvZbIERERERGR6+dQpz4N73wGn/HvYvK5CXNWOhdDFxDz1bOkHtth0/XuXZ2NPDGqE/9+sg9NGrhxKTmTd7/byfR5YVy4nG6zuERERKR6UdFeqgWTty+gde1FRERERMQ6nJr44zN+Og3umIS9myc5l+KI/+l94v47zeZv+LZvWZ9PJw9g9CB/7O0MbDtwjiffD2X19mibb6IrIiIitqeivVQLjo1aApppLyIiIiIi1mMw2OHecQDNHv8Mj96jMNgbSY8+wJk5L5C46ity067YLDZHoz0PDGvLjOf6c1MzD1Izcpj54z5e+3IrsQkpNotLREREbE9Fe6kWTI3yl8fJSjiFOTfHxtGIiIiIiEhtYufoTL0B99F04ie4tukJ5jyu7F5NzJdPcTlshU0/g/j51OWDp/vx8N8CMTnacyAykUn/t56fQk+Qk5tns7hERETEdlS0l2rBwaMhBpML5OaQfeGsrcMREREREZFayOjhjfeoF2j8wFs4evuRl5HKhTXfcubr50mL2G2zuOztDIzo34qZLwTT2b8BWTl5fPfrYSZ/vImIM0k2i0tERERso9KL9pcvX+b48eNkZWVV9q2kBjMY7Czr2muJHBEREZGqo3xdbkTOLdrT5B/v4TV8InYudci+cJa4Re9wbuHbZCWesVlcjeq78tZjPXnu711wdzFyMvYykz/ZxLe/HCIjS28ki4iI3CgqXLQ/fPgwn3zyCZs3by50PCMjg+eff55bbrmFO++8k759+/Lbb79V9HZSizkWFO21Ga2IiIiI1ShfFymewc6eOl1upfnjM6l7y9/AzoH0yD2c+fp5En//htx026wrbzAYCOnWnM9fCqFf5ybk5ZlZsiGCp/9vA/tOJNgkJhEREalaFS7a//TTT8yaNavIDveffPIJK1euxGw2YzabuXz5Mi+88ALHjx+v6C2lljJ5/7muvWbai4iIiFiN8nWR0tk5uVJ/4IM0mzADl5u6Q14uV3b+SsyXT3Fl12+Y83JtEpenuxMvju3GPx++Ga+6Tpy7kMrrs7by6aI9pKTpzRgREZHarMJF+/DwcEwmE71797Ycy8rK4scff8TBwYHZs2ezc+dOxo4dS05ODvPnz6/oLaWWcmzUEoCs+KgiHypFRERE5PooXxcpG2M9Hxrd+wqN/v4GxgbNyEtPJvG3rzkz5wXSo/bbLK4e7Rrx+UshDO/lC8CasNM88X4oW/bH6nOTiIhILVXhon1iYiLe3t7Y2f2vq71795KSkkJISAj9+/fH3d2dyZMn4+zszM6dOyt6S6mlHL2agr0DeZlp5Fw+b+twRERERGoF5esi5ePSshNNH/mQ+kMewc7ZjeyE05z77zTifnyP7EtxtonJycjjozrx7yf70LShG5eSM/n3dzuZPi+MC5fTbRKTiIiIVJ4KF+2vXLlC3bp1Cx3bs2cPBoOBvn37Wo45OTnRvHlz4uJsk+RI9Wewd8CxQXNAS+SIiIiIWIvydZHyM9jZU7fbMJo9PpM63YeDwY6042HEzH6GC6ELyMtMs0lc7VvW55PnBzD6Vn/s7QxsPxjHE++H8tu2aPLyNOteRESktqhw0d7JyYmLFy8WOhYeHg5AUFBQoeNGo7HQDB+RvypY1z5TRXsRERERq1C+LnL97J3d8Rr8ME0f/Qjnlp0hN4fL25YR8+Ukruxdh9mcV+UxORrteWBoWz5+fgD+zT1Iy8jh85/28dqsLZxNsM3muSIiImJdFc7IW7ZsydmzZzlx4gQAFy9eZMeOHXh6etKqVatC18bHx1OvXr2K3lJqMUdvXyB/XXsRERERqTjl6yIV59igGY3GvE6je6dgrOdDbmoSib9+wdlvXib99GGbxOTbuA7vT+rHI3cGYnK052DkBSb933p+XHecnNyq/2GCiIiIWE+Fi/bDhg3DbDbz6KOP8u9//5sHH3yQ7Oxshg8fXui62NhYEhISaNGiRUVvKbWY6c/NaDXTXkRERMQ6lK+LWIfBYMDlpq40fewj6g0aj53Jhay4k5xb8E/il3xItg325bK3M3Bnv1Z8/mIIXfwbkJ2Tx/yVR5j88SYiYpKqPB4RERGxjgoX7e+//366d+9OXFwc8+bN48SJE/j6+vLkk08Wum7lypUA3HzzzRW9pdRijt4tAAO5KRfJTb1s63BEREREajzl6yLWZbA34nHzHTR7fCbuXQaDwY7UI1s5M+sZkrcuhpysKo/Ju54L0x7ryXN/D8LdxcjJ2MtM/mQj3/xyiIysnCqPR0RERCrGoaIdODo68t133xEaGsrJkydp0qQJgwYNwmQyFb6RgwPjxo1jyJAhFb2l1GJ2js4Y6zUm+2IsmfFRuLTsbOuQRERERGo05esilcPetS4Nhk+gTtchXFjzLRmnDpK6Yxl1HZy4ktgXhx7DcWzQvMriMRgMhHRrRlBAQ77++QCb9pxl6YYIth2I5am7O9PJv0GVxSIiIiIVU+GiPYCdnR2DBg0q9Zrx48db41ZyA3Bs5Ef2xViy4lS0FxEREbEG5esilcfk7Uvj+6eSdmwHievmQ1I8aXvXkLZ3DaamAdTpMhjXtj2xM5qu3ZkVeLibePGBbvQPasqXP+0j7kIar8/eyqDuzXn4b+1xc3GskjhERETk+lV4eRwRazP9uRltpjajFRERERGRGsBgMODa5ha8xr9PctcxmFp3A4MdmWeOkfDLZ5z+9FESf59LVkJMlcXUo10jPn8phNt6+2EwwNqdp3n8/VC27IvFbDZXWRwiIiJSfhWeaX/x4kWOHTtGo0aN8PPzK3Ru4cKF/Pe//yU+Pp6OHTvy6quv0rJly4reUmo5R+/8v0dZ2oxWREREpMKUr4tUHYPBjpwGLfHsdxuOuZkk71tH8t615FxO4MrOlVzZuRKnZm1x7zII1zaVP/vexcnIxLs60q9LE2b+uJeY+BT+PX8nvo3r4OFuwsXJAVcnI85//uri5ICzyYirswMuJiMuzg64mBxw+fOck6MDdnaGSo1ZRERErFC0nz9/PrNnz+bdd98t9CFg0aJFTJs2zfIT/D/++IMjR47wyy+/4OnpWdHbSi1mapT/QTH74jnystKxc3S2cUQiIiIiNZfydRHbcHD3xLPP3Xj0Gkl61H6u7P6dtBPhZMQcISPmCBd+/xa3jgOo0+VWHL2aVmos7fzq88nzA/hh7Ql+Cj1O9LkrcK78/RgM4GJywPnPIn7Rgr8Drs7GQoX+/P8KX28y2mMwqPgvIiJSkgoX7bdv3469vT233nproeOzZ88G4B//+AdBQUHMmzePXbt2MW/ePJ577rmK3lZqMXvXuti71SM35SJZ50/h1LSNrUMSERERqbGUr4vYlsHOHpdWXXBp1YWc5Isk7wslec8acq4kciVsBVfCVuTPvg8ajGubW7BzqJw1540O9tw/tA239mhOVOxl0jJzSEvPzv81I4fUjGzS//w1LSOn0O/TMrLJzTNjNkNqRg6pGTkVisXezpBf5Hcy4vpnUd/Z9L/iv6MD5Gak4NcqFxcXKw2AiIhIDVLhon1sbCwNGjTA1dXVcuzo0aPExsbStWtXXnrpJQA6depEcHAwGzdu1IcAuSZTIz/SIi6SGRelor2IiIhIBShfF6k+HNzr/W/2/cl9XNnzO2kndl01+34u7h0G4F6Js+8b1nOhYb3yVcLNZjNZOXmkXVXET0vPIS0z+y8F//xzfy34F/xgID0jmzwz5OaZSU7LJjktu9T7/nF4M3cP9GdYL19MRvuKPLaIiEiNUuGifVJSEm3aFC6q7tq1C4CQkBDLsQYNGtC8eXNOnz5d0VvKDcDR25e0iF1a115ERESkgpSvi1Q/Bjt7XFoH4dI6iJwrF0jeF8qVvWvJvZLI5bAVXA5bgVPzdtTpkj/73uBgtG28BgMmoz0moz2e7tffj9lsJiMr11L8L2lW/+XkdLYdOMullCzmLj/IkvUnuHvgTQy9xRdHFe9FROQGUOGivZ2dHampqYWO7d69G4PBQNeuXQsdd3d3JyYmpqK3lBuAY6P89VYz41W0FxEREakI5esi1ZtDnfp49r0Hj953kR65N3/2fcRuMk4fJuP0Yex+d8e945+z7+s3sXW4FWIwGHA25a99X79uydelpaXRtUUu5zPqsnRjFOcvpfP1soMsWR/BPQP9GXxzc4wOKt6LiEjtVeGifZMmTTh16hRJSUl4eHiQnZ3Nli1bcHJyIjAwsNC1ly5d0qZWUiYm7/yifVbCacy5ORjsK/xXVUREROSGpHxdpGYw2NnjclNXXG7qmj/7fu+6/Nn3yRe4vOMXLu/4BacW7anT5VZcA2w/+76y2dsZCOnahCE9W7F252l+WHOMxMsZzFqyn59CTzB6kD8DuzfH6GBn61BFRESsrsKV0D59+hAZGcnkyZO5//77Wb16NUlJSQwePBgHh/91n5ycTExMDB07dqzoLeUG4ODhjZ3JhbzMNLISz2Dy9rV1SCIiIiI1UlXk61lZWXz77bcsX76cmJgYXFxc6NatG48//jjt27cvd38rV65kwYIFHDt2DICAgADGjRvHsGHDSmyTmJjIzJkz2bBhA4mJiXh5eTFgwAAmTZpE/fr1i1x/8OBBNmzYwJYtW4iIiCAtLQ1PT0+CgoIYP348QUFBJd4rJSWFWbNmsXr1auLi4qhbty49e/bk6aefplmzZuV+XpG/cqhTH89+9+LRZxRpkXtI3v07aZF7yDh1iIxTh7BzqZM/+77zrTjW97F1uJXK6GDHsJ6+DOrejN+3n+KHdSdITErn85/28WPoCcYM8ie4WzMc7FW8FxGR2qPCRftHH32UX3/9lS1btrB161bMZjMmk4knn3yy0HWhoaGYzeYir+CKFMdgMODo7UfG6UNkxUepaC8iIiJynSo7X8/KyuLhhx8mLCyM+vXrExwcTEJCAmvWrGHDhg18+eWX9O3bt8z9zZgxg1mzZuHo6Ejv3r0B2LJlC88++yzHjx/nmWeeKdLm7NmzjB49moSEBFq2bMmgQYM4duwY33//PaGhoSxatIjGjRtbrs/JyWHUqFFA/pJAnTp1wt3dnYiICFavXs2aNWuYMmUKY8eOLXKvK1eu8Pe//52IiAiaNGnCwIEDOX36NMuXLyc0NJT//Oc/tG3btlxjKFISg509rjd1w/WmbuRcSeTK3nUk711LbvJFLm9fzuXty3FqEUidoMG4+veo1bPvjQ723NanJYNubsHqbdH8GHqC8xfT+PSHvfy47gRjBvvTv0tT7FW8FxGRWqDCRXsvLy8WL17MnDlziIqKwsfHhwcffJBWrVoVum7Xrl20adOG4ODgit5SbhCO3r5knD5EZlwU7h3190ZERETkelR2vv71118TFhZGhw4dmDdvHm5ubgCsWLGCyZMn8+KLL7J27VrL8dKEh4cza9Ys6tSpw8KFCy0xRkZGMmbMGL744gv69etHly5dCrWbMmUKCQkJjBkzhqlTp2IwGDCbzUydOpWFCxfy+uuvM3fu3EJtAgMDmTBhAsHBwRiN/yt0fv/990ydOpV3332XXr16FRmnf//730RERBAcHMynn36Ko6MjALNnz+ajjz7ihRdeYPny5djba71tsS6HOl7U6zcazz53kxaxm+Q9a/LXvj91kIxTB/+cfR9MnS63YqzX+Nod1lAmoz1/69eKwbe0YNXWaBavP8G5C6nM+H4PP6w9zpjBbejbuQn2dgZbhyoiInLdrLJQuLe3N6+99lqp17z11lvWuJXcQEx/bkabpc1oRURERCqksvL1nJwc5s+fD8Cbb75ZqDB/++23s3z5cjZu3MjixYt58MEHr9nfnDlzAJg4cWKhYnmrVq2YMGECH3zwAXPmzOHzzz+3nDt06BDbt2/Hw8ODKVOmYDDkF+oMBgNTpkzht99+Y/PmzRw9epQ2bdoA4ODgwOLFi4uN4e9//ztr165l8+bNrFq1iqeeespy7sKFCyxbtgwHBwfeeustS8Ee4LHHHmPFihUcP36c9evXM2jQoGs+r8j1MNjZ4+rfHVf/7uRcTvhz9v06clMucnn7z1ze/jNOvh3+XPu+Bwb72jn73snRgZEDWjOspy+/boli8foIziak8uH/28UPa4/x98Ft6N3RBzsV70VEpAbSe2NSbTn+uRltZnw0ZnOejaMRERERkb/avXs3SUlJNG3alA4dOhQ5P3z4cADWrVt3zb4yMzPZunUrQLFr1xf0tXnzZrKysizH169fD0BISAgmk6lQG5PJREhICABr164tyyMB+WvoA5w/f77Q8U2bNpGbm0vXrl1p2LBhoXMGg4EhQ4YAZXteEWtwqNuAev3H0HzSLLzvfhnnVl0AAxnRBzi/9CNOffoYF0IXkH3xnK1DrTROJgdGhdzEnNcGMXZYW9ycjcTEp/D+gnCe/nA9W/bHkpdntnWYIiIi5WKVmfYFEhMT2bJlCydPniQ1NRVXV1datWpF7969i938SaQ0jl5NMdgbMWemkZN0HqNnI1uHJCIiIlKjWTtfP3LkCECJm822a9cOwLKhbGmioqLIzMzE09MTH5+iG2v6+Pjg4eFBUlISUVFRlsJ6QQyBgYHF9tu+fXuWLFlSphgKnD59GshfWuhq13reguPluZeINRjs7HEN6IFrQA+yL58nec86kvetIzflEpe3LePytmU4+3XEvcutuPp3r5Wz712cjNw7yJ/bevux/I+T/LwxglNxyfz7u534+dThviFtuLl9I8vbOCIiItWZVYr2WVlZvP/++yxatIicnJyiN3FwYMyYMbz44ouFXiEVKY3B3gFjg+ZkxUWSGR+lor2IiIjIdaqsfD02NhaARo2Kz9MKjiclJVl+SFCSs2fPltpXwbmkpCRiY2MtRfuCGLy9vUuNoaD/a4mKimLDhg0ADBw4sNC5sj5vWe8lUhmMdRtSb8Df8ex7D2kRu7iyew3pJ/eSHrWf9Kj92LvWxb3zIOr2uB17lzq2DtfqXJ2N/H1wAHf08WPZpkiWbzpJVOwV3vk2jNZN63LfkDZ0a+ut4r2IiFRrFS7a5+Xl8fjjj7N161bMZjP169enZcuWNGjQgISEBE6ePMmFCxf4z3/+Q1RUFF9//bX+cZQyM3n7khUXSVZcFLTpaetwRERERGqcyszX09LSAHB2di72vIuLi+X31yraX6uvq/tLTU0t0u7qe12rTUmysrJ4+eWXyc7O5vbbby8yo96a97oWs9lsuV9lS09PL/SrXL/qNpaGZh2o26wDrpcTSD+4gfSDG8lNvUzSlsVc3vELzp0G4tp1OPauHrYOtRBrjKMdcFe/FtzarTErtpxi1fYYIs5c5q25O2jdtA73hLSiU+v6tb4+Ud3+TtZUGkfr0Dhaj8bSOmwxjmazuUz/9lS4aL948WK2bNmCu7s7L7/8MiNGjMDB4X/d5ubmsmzZMt5//322bNnCkiVLGDVqVEVvKzcIx0Z+sA8y47QZrYiIiMj1UL5edm+++Sb79u3D19eXN99806axZGdnW5bjqSrR0dFVer/arFqOZb1A6NMW4/njOJ3chsOVONJ2rSJ1zxoym3Ymo+UtmJ2q18x7a41j56Zw0+0N2XIkmbDjqUScucK78/fQzMuRAR3r0NLbVOuL99Xy72QNpHG0Do2j9WgsraOqx7Esb7ZWuGi/fPlyDAYDn376KT17Fp0JbW9vz6hRo/Dx8eGhhx5i2bJlN+yHACk/U6P8zWiz4lW0FxEREbkelZmvF8wsL2l20tUzxUubZV+Wvq7u7+q+CtqVNCu9uDbF+eCDD1iyZAmNGjXim2++oU6dosVLa92rLIxGI61bt65wP2WRnp5OdHQ0vr6+pb7pINdWI8ayfSDmASPJit5Hyo6fyT4XgdPpcJzO7sW5fT/cut+BfR2va/dTiSprHLt1gaSUTJb/Ec3vYWeIScxiQWgibX09uDekFe386lntXtVFjfg7WQNoHK1D42g9GkvrsMU4RkRElOm6Chftjx07RtOmTYv9AHC1nj170qxZM23KVMMdjrrAv+buYECgK23bVv79HBu2AAzkplwiJyUJBzePyr+piIiISC1Smfl6wYaxcXFxxZ4vOO7h4XHNQnaTJk1K7evqc1dvVOvj48Phw4eJj48vtU1B/8WZNWsWc+bMoV69enzzzTclXlvW5y3tXmVlMBhKXIansjg7O1f5PWurmjCWru174dGuJ+nR+0na/BMZpw+Tvj+U9IMbce/QH49ed2Gs19imMVbGOLq4uDBxlCf33tqWn0JPsGprNEeik5j2zS46tvbiviFtaN+y/BtzV3c14e9kTaBxtA6No/VoLK2jKsexrG922VX0Runp6dStW7dM19atW5eMjIyK3lJsKC0jh5T0bH7bfZnEpMpf78nO0Rlj/fxEUbPtRURERMqvMvP1tn/O4jh06FCx5w8fPgxg2TS2NH5+fphMJi5dumTZ8PVqsbGxJCUl4eTkhJ+fX5EYDh48WGy/BbGVFMOCBQuYMWMG7u7uzJ07l1atWpUY47We91r3EqluDAYDLn6d8Bn7Lxo/8BbOvh0gL5fkfaHEzHqa8z9/QlbiGVuHWSnq1XHisREd+HrKIIb38sXB3sD+iERe+Xwz/5y9laPRF20dooiI3MAqXLRv0KABJ0+evGZyn56ezsmTJ/Hysu1rdlIxXds0pE0LD3JyzXy36niV3NPRW0vkiIiIiFyvyszXg4KC8PDw4MyZMxw4cKDI+ZUrVwIwcODAa/ZlMpno1asXAKtWrSqxrz59+hRaBzQ4OBiA0NBQMjMzC7XJzMwkNDQUgEGDBhXpc+nSpbzzzju4uLjw1Vdf0a5du1Jj7NevH/b29uzatYvz588XOmc2m1m9ejVQtucVqW6cW7Sn8f1T8XlwOs6tuoA5j5SDmzgz+1nil3xI1vlTtg6xUnh5OPP4qE7MfnUQQ25pgb2dgb3HE3jxsz+Y+vU2jp++ZOsQRUTkBlThov3NN99Meno606dPL/W6d999l/T0dG655ZaK3lJsyGAw8PDtbTAYIOzweXYfPX/tRhVk+rNor81oRURERMqvMvN1BwcHxo0bB8C0adNISUmxnFuxYgUbN27E09Oz0Br5+/fvZ+jQoQwdOrRIf4888ggAs2fPJjIy0nI8MjKS2bNnF7qmQPv27bnllltISkpi+vTpmM1mIL+IPn36dJKSkujTpw9t2rQp1O7333/ntddew9HRkS+++IKgoKBrPm/9+vUZMWIEOTk5vPHGG2RlZVnOff311xw/fpxWrVpZfpAgUhM5NQ2g8ZjXafLQe7j4dwfMpB7Zypmvnyfup/fJPHfS1iFWioaeLjx1T2dmvTKQW3s0x87OwK6j55n8ySb+NXcHkWeSbB2iiIjcQCq8pv0jjzzCihUr+PHHH9m3bx/jxo3jpptuokGDBiQkJHDixAm+++47Tpw4gdFo5OGHH7ZG3GJDzRu5c7O/G9uPpTB76X5mvhiM0cG+0u7nqM1oRURERK5bZefrjz76KNu3bycsLIzBgwfTvXt3EhMTCQ8Px2g08v777+Pm5ma5Pj09naio4vO6bt26MWHCBGbPns3IkSMtM++3bt1KZmYmTzzxBF26dCnSbvr06YwePZqFCxeyc+dOAgICOHbsGJGRkTRs2JC333670PUXLlzg+eefJzc3F19fX37++Wd+/vnnIv22bNmSxx57rNCxV155hX379rF+/XqGDh1Kp06dOHXqFIcOHcLV1ZUPP/wQe/vKy41FqorJpzWN7nmFzPhokrb8ROqR7aQd20HasR24tO6KR5+7cWrib+swra5RfVeeHt2FuwfexKI1x9mwK4aww3GE/X/27jw+6ure//jrO/uefSELSwIJSdhBcAFlc6PaurRV26qtaEVttdXa3uv11uW22mpbf7da616rbdX2ikstStmVfZMtQIAQIAnZk0kyS2b9/v6YZEggQIDAJOHzfDzymJnvNmcOS86858zn7KzmotGDuOWKfIZl9KzkmBBCCHG6zji0z83N5de//jX/+Z//SUlJCY8++ugxx6iqitFo5Fe/+tUJa0SK/mP6GAe7K/0crnfzwfJSvjn77A3WOmbaBxqrCPu8aIyyKrYQQgghRE+d7fG6wWDg9ddf54033uDjjz9m6dKlWCwWZs2axX333UdRUdEpXe/BBx9k5MiRvPXWW6xbtw6AwsJCbr/9dq6++upuz8nMzOTDDz/k+eefZ/ny5SxatIikpCRuvvlm7r//fpKSui4q6fV6CQQCQGQWf+dZ/Z1Nnjz5mNDe4XDw3nvv8cc//pGFCxeyaNEi4uLiuPbaa7n//vsZPHjwKb1eIfo6Y9pQ0m74Cf66cpyr3se1cxWefZvw7NuEedhY4qd+HfPgE5eW6o8ykm38+JYJfGPWCN799x4+31LBmu1VrNlexSVjM7jlinyGpDti3UwhhBAD1BmH9gBz5sxh5MiRvPbaa3z++efU19dH9yUnJzN9+nTuuOMOcnJyeuPpRB9g0mv4zlV5vPB/O3hv8R6mT8giNfHsrLKstcahtScSam3EX3sQU/bIk58khBBCCCGizvZ43WAwMG/ePObNm3fSY6dMmUJJSclJ2ztnzpxTakNycjJPPPFEj47Nyso6aRtOxGaz8fDDD/Pwww+f9jWE6G8MKdmkXvcjEi79Jk2r5uPavgJv2Va8ZVsxDSkiYeo3MA0ZhaIosW5qr8pKtfOT70zkm7NH8O6iPXyxpZJVWw+zetthLho9iKKcJLJS7WSn2kmONw241y+EECI2eiW0h8hXRzvqZLpcLtxuN1artctXYW+44QZaWlpYvHhxbz2tiKGpY9JZtrmK4v0NvPbxDh757uSz9lzGtGF4WhvxVe+X0F4IIYQQ4jTIeF0I0Rv0iRmkXvsDEqZ9A+fqD2jduoy2g8VUHSzGmJVPwtRvYM4ZN+DC68HpDn566yS+OTuPd/69m9XbqqI/HcxGLZmpdrJTbWSn2clKtZGVamdQshWd9oyXFBRCCHEe6bXQvjObzdZl8N/h8OHDNDc3n42nFDGgKAr33DCG+3+3nDXbq9i0u4aJI9POynMZ0obh2bdJ6toLIYQQQvQCGa8LIc6UPj6NlDnzSJj69Uh4v2UJvooSqt/9BcZBucRP/QaWEZMGXHg/dJCD/7x9Mvsrm1m5tZKKWhflNa1U1bvx+kLsK3eyr9zZ5RydVmFQspWs1EiQn50WmZmflWrDZDwrsYwQQoh+Tn47iDMyZJCDr07L4cMVpbz8wXb+8HDyWVmU1ti+GK2vWkJ7IYQQQgghhOgrdI5kkq+6i/hLvk7z2g9p2fxvfFWl1PzjVxhShxI/9etYR05BUQbWTPOczDhyMo8sSBsIhqlucFNe0xoJ8mtbqWi/3+YPUV7jorzGdcx1UhLM0QA/K+3ILP04m/FcvhwhhBB9TL8J7f1+P3/605/4+OOPKS8vx2KxMGnSJO65555TXtwKYMGCBbz99tvRWpb5+fncdtttx13cCqC+vp4XXniB5cuXU19fH63/+cMf/vCYxa2O5/nnn+eFF14A4PHHH+eWW2455bb3Nbdckc/nX1ZQVe9m/vJ93DQ7v9efw9Ae2vvrylFDARStvtefQwghhBBCCCHE6dHZE0i6/HvEX3wDznUf07LpM/y1B6id/xv0yVkkTP061oKLUTS9P8mrL9DrNJEZ9Gn2LtvDYZX6Zi8VNS4qalspb5+ZX1HbSrPLT12Tl7omL5tLarucZ7cYyE6LlNc5cmsnJd6MRjOwvr0ghBDiWP0itPf7/cydO5f169eTlJTEjBkzqKurY9GiRSxfvpw//vGPTJs2rcfXe+6553jppZcwGAxccsklAKxatYof/ehH7NmzhwceeOCYcyorK7npppuoq6sjJyeH2bNnU1JSwjvvvMPSpUt57733GDRo0Amft6SkhJdffhlFUVBV9dQ6oQ+zmPR879pR/Pavm/j74r1Mn5BNWi8vSquLS0VjshJuc+Ovr8SYNrRXry+EEEIIIYQQ4sxprXEkzbyV+Auvo3nDJ7RsWECgvoLaD/8f+s//TvwlN2Armoai7RdxxBnTaBRSEyykJliYMDK1y74Wtz86M7+itpXymkioX9fkodXjZ2dZIzvLGrucY9BryUqxkZXWqcxOmo2MZBt63cD6NoMQQpzP+sVvyVdffZX169czevRo3nzzzWj9zU8++YSHHnqIhx9+mMWLF3dbl/NoGzdu5KWXXsLhcPDuu++Sm5sLQGlpKTfffDMvvvgil156KePHj+9y3iOPPEJdXR0333wzjz/+eDR4f/zxx3n33Xd59NFHef3114/7vKFQiEceeYT4+HjGjBnDkiVLzqBH+p7LxmeycO0BdpQ28NpH2/mv703p1esrioIhbShtB4vxV++X0F4IIYQQQggh+jCtxU7iZbcQN+WrtGxYQPOGTwg0Hqbuny/Q9MXfib/4Buxjpp/X36J2WA0U5SRRlNP1m/tt/iCH69ztIX4rFTWRcjuH61z4AyH2H25m/+Gu649oNArpiZboArgds/4TbQPzmw1CCDHQ9fnQPhgM8tZbbwHw2GOPdQnmr7nmGj7++GNWrFjB+++/z+23337S67322msAzJs3LxrYA+Tm5nL33Xfz7LPP8tprr/GHP/whuq+4uJi1a9cSHx/PI488El1IR1EUHnnkET777DNWrlzJ7t27GTlyZLfP+8Ybb7Bjxw7+93//l+XLl59yP/R1iqIw74Yx3P/b5azdUc3GXTVMKujdRWkNacNoO1iMr6YM+8kPF0IIIYQQQggRY1qTlYRp3yBu8jW0bPoM57qPCTprqV/wEk0r/4/4i67DPm4WGp0h1k3tM0wG3TE18wFCoTA1jZ7ojPyOMjvlNS68viCH690crnezrrjr9VLidIzfB+Py0xmVk0SCw3QOX40QQojT0edD+82bN+N0OsnKymL06NHH7J8zZw4rVqxgyZIlJw3tfT4fq1evBui2dv2cOXN49tlnWblyJX6/H4MhMmhYtmwZADNnzsRo7LoYjNFoZObMmcyfP5/Fixd3G9qXlZXx/PPPM2vWLK666qoBGdoDDEk/sijtKx9sZ8zwZAz63vtU35jWXtdeFqMVQgghhBBCiH5FYzQTf/H1OCZdTcuXi2he+xGhlnoaFr6Gc9X7xF34NRwTrkCjlwVYj0er1ZCRYiMjxUbn77arqkpjS1t0Rn7nkjuNLT7qmoP8e30F/15fAUBmio1RuUmMykliVG4yyfHm2LwgIYQQx3XKoX3HIqqno62t7ZTP2bVrF8BxF5stLCwEiC4oeyJlZWX4fD4SEhLIyMg4Zn9GRgbx8fE4nU7KysrIz8/v0oZRo0Z1e92ioiLmz5/fbRtUVeXRRx9Fr9fz2GOPnbSN/V1kUdpKqhrcfLB8Hzdd3nuL0hrbF6P11RxAVcMoitTrE0IIIYQ42rkerwshxKnQGEzET7kWx8Qrad2yBOeaDwm11NO4+E2cq+cTf+HX0BX0fM06Efnme1KcmaQ4M2PzUrrsq65zsmjVDloDFnYfauZAVQuVdS4q61wsXHsQgPQkC6NykinKSWJUbhJpiZZohQEhhBCxcVqh/en+562q6imfe/jwYQDS09O73d+x3el04na7sVqtx71WZWXlCa/Vsc/pdHL48OFoaN/RhrS07su9dFyv4/qd/fWvf2Xjxo38/Oc/P+75A4nFpOeOa4v4zV838ffFe5g+sfcWpdUnZaJo9ah+L0FnLfqE4/85CiGEEEKcr871eF0IIU6HRmcgbtLVOMbPpnXbcpyr5xN01tK49G2U1R9gyp5IOHcYWHrn/eT5ymE1UJhtpqBgJBaLBVf7ArfbS+vZsb+B/RVOqhs8VDccYvGGQwAkx5vbZ+InMzo3iUHJVvndIIQQ59gph/YXXHDB2WjHcXk8HgDM5u6/rmXp9Av8ZKH9ya7V+Xput/uY8yzHGSx0dw5EQvzf/va3jB8/nm9961vHfc4zpapqtI3ngtfr7XJ7tEn5CRQOS2BnWRMvvb+Fh789rteeW5ucRbCmjNaDuzEZHb123Vg4WT+KnpF+7D3Sl71D+rF3SD/2HunL3hGLfjzdAP1cj9eFEOJMKFo9jvGXYx8zA9eOz3Gunk+gsQrz3hXUV35JaNpNOMbPRtH2+eq+/YLNYmByUTqTiyKT4DxtAXaWNVK8v4EdpfXsLXdS7/SyfFMFyzdFyukkOowU5SRHS+pkp9klxBdCiLPslH/rvf3222ejHQPSz3/+cwKBAL/4xS/O6i+0QCAQLeFzLh04cOC4+6YXGNh9ADburuOjxZvJy+ydGnkWfRxGoGrXJtpCA2M52hP1o+g56cfeI33ZO6Qfe4f0Y++Rvuwd57ofO9ZYOhUyXhdC9EeKVod97Exsoy+j8culNH7+HniaaFj4Ks3r/0ni9G9hLbhIyqT2MotJz6SCNCYVRCoDtPmC7D7YyI7SBnbsb6DkYBONLT6+2FLJF1si1QUcVkO0lM7o3GSGpDvQaCTEF0KI3tTnP6rumMV+vFlNnWeYn2iWfU+u1fl6na/Vcd7xZrN3d87777/PypUrue+++xg+fPgJ23Wm9Hr9WX+OzrxeLwcOHGDo0KHH/dZCAVDevId/rjrIku0err5sbK8sSuvxV9JSsYW4sIthBQVnfL1Y6kk/ipOTfuw90pe9Q/qxd0g/9h7py94Ri37ct2/fOXkeIYToSxSNFnPBJbSE4xgcqMKz/iOCTdXUfvA7DGtySZr5HczDxsS6mQOWyahjXF4q4/JSAfAHQpQcaoqE+KX17D7YRIvbz5rtVazZXgWAzaynKCcpGuTnZMSh1cqHK0IIcSb6fGjfsWBsdXV1t/s7tsfHx580tM/MzDzhtTrv67xQbUZGBjt37qSmpuaE53RcH2DJkiUArFq1ig0bNnQ5fv/+/QC8+eabLFiwgAkTJvDjH//4hG0/EUVRjlu652wym80nfN7vzCli1fYaahq9fLb+MDf3wqK0mux8WoBQ3aGYvOaz4WT9KHpG+rH3SF/2DunH3iH92HukL3vHuexHKT0ghDivabRYx11O0qQraF73T5xrP8JfXUrV357AnDOWxBnfwZieE+tWDngGvZbRucmMzk0G8gkEw+wrd7Jjfz07ShvYdaABlzfAuuJq1hVHshGzUUfhsERG5SYzKieJ4dnx6CTEF0KIU9LnQ/uC9tnUxcXF3e7fuXMnQHTR2BMZNmwYRqORpqYmDh8+3CWYh8iCs06nE5PJxLBhw7q0YfHixezYsaPb63a0rbs2bNmy5bjtOXDgAAcOHMBuHxhlXo5mMemZ+9Uinv3LJv6xeA/TJ2SRnnTiD1ZOxpA6BFAIuZ0EXU3obAm901ghhBBCCCGEEH2OxmAmYdo3cUy4kqaV/0fL5n/j3b+Vyv1bsRVNI+Gym9EnpMe6mecNvU5DwbBECoYl8o1ZEAqFKa1sZkf7wrY79zfgbguyaXctm3bXAmA0aCkYkhipiZ+bTN7gePS6M/8mvhBCDGR9PrSfMGEC8fHxVFRUsH37dkaPHt1l/4IFCwCYNWvWSa9lNBq5+OKLWbZsGZ9++ilz587t9lpTp07tUj90xowZPP/88yxduhSfz4fRaIzu8/l8LF26FIDZs2dHt7/44ovHbcd//Md/8MEHH/D4449zyy23nLTd/dm0cZksXHuQbfvqee2jHTx6x5Qzup7GYEKflEGgoRJ/zQEJ7YUQQgghhBDiPKC1xpF85VziJn+FphXv4ir+IvKzaw2OCVeQMPXraK1xsW7meUer1ZA3OIG8wQncMGMEobDKgcPN7Ghf2LZ4fwOtngBb9taxZW8dEAn+84ckMKp9cdv8IQmYDH0+nhJCiHOqz38/SafTcdtttwHwxBNP4HK5ovs++eQTVqxYQUJCAjfeeGN0+7Zt27jqqqu46qqrjrnenXfeCcDLL79MaWlpdHtpaSkvv/xyl2M6FBUVceGFF+J0OnnqqadQVRUAVVV56qmncDqdTJ06lZEjR/bSqx44FEXh7utHo9UorCuuZsPO45cm6ilD2lAAfNVlZ3wtIYQQQgghhBD9hz4hndTrfkTm3Gcx54yFcJCWjQs49OK9NH3xd8L+469hJ84+rUYhNyuer12ay399bwp/eeJqXvjJDOZdP5pLxmYQbzMSCIbZUdrAu4tKePSl1dzy6AJ+85dNVNW7Y918IYToM/rFR5l33XUXa9euZf369VxxxRVccMEF1NfXs3HjRvR6Pc888ww2my16vNfrpays+0B30qRJ3H333bz88stcf/31XHzxxQCsXr0an8/Hvffey/jx448576mnnuKmm27i3XffZcOGDeTn51NSUkJpaSmpqan84he/ODsvfgAYnO7ga5fmMn/5Pl75cDtjR6Sc0aK0xvQc3DtX4a/Z34utFEIIIYQQQgjRXxjTcxh0y8/xlG2lcelf8VeX0vT5e7Rs+oz4qd/AMX42ilYf62ae9zQahSGDHAwZ5OArU3NQVZXKOlf7wrYN7NhfT0NzGyu+rGDl1kquumgoN12eR4LdFOumCyFETPWL0N5gMPD666/zxhtv8PHHH7N06VIsFguzZs3ivvvuo6io6JSu9+CDDzJy5Ejeeust1q1bB0BhYSG33347V199dbfnZGZm8uGHH/L888+zfPlyFi1aRFJSEjfffDP3338/SUlJZ/w6B7KbLs9j+eYKqhs8vL9sH7dccfqL0hrSIusNyEx7IYQQQgghhDi/WYaNxXzHaNy71tC4/G8Em6ppWPgazes/IXH6t7AWXISi9PkiA+cNRVHISrWTlWrnqouGoqoq+yqcvL1gF1/uqeNfq8pYsuEQX7sslxumD8dikg9ehBDnp34R2kMkuJ83bx7z5s076bFTpkyhpKTkhMfMmTOHOXPmnFIbkpOTeeKJJ07pnO786le/4le/+tUZX6c/sZj03PnVUTzzl43835I9zJh4+ovSGtMjoX2wqZqwz4PGaOnNpgohhBBCCCGE6EcURYOt8BKs+ZNp+XIJzpV/J9hUTe0Hv8OwJpekmd/BPGxMrJspuqEoCiOyE3jy7ovZureOP/9rJ3vLnby3aA+frj7AN2fnMefiobJwrRDivCMfN4tzZuq4DMYMT8YfDPPqhztO+zpaiwOtPfLNBn/twd5qnhBCCCGEEEKIfkzR6ombdBXZ9/6BhEtvQjGY8FeXUvW3J6h650l81VJitS8bOyKF3z5wKf9x+wVkplhpcft57aMdzPvVEpZuPEQorMa6iUIIcc5IaC/OGUVRmHfDGLQahfU7q1l/BovSGmUxWiGEEEIIIYQQ3dAYzCRM+yaD730RxwVzQKPDu38rla8/TM2HzxFoOv33ouLsUhSFS8Zk8IeHZ/KDb4wl0WGitsnLc+98yQO/Xcb6ndWoqoT3QoiBT0J7cU5lp9m57rJcAF75YDu+QOi0rmNIl7r2QgghhBBCCCGOT2uNI/mKuWTP+19sRdMAcBevpPylB6hf+Dohd3OMWyiOR6vVcOWFQ3n5P2dx+1cKsZr1HKxu5X9eX8d//GElO8saYt1EIYQ4qyS0F+fcTZfnkxRnoqbRw/yle0/rGsa0HAD8NRLaCyGEEEIIIYQ4Pn1COqnX/YjMuc9izhkL4SAtGxdw6MV7afr874R93lg3URyHyaDj6zNH8Nojs7lxxnAMOg07yxr52Qsr+Z/X13GwqiXWTRRCiLNCQntxzpmNOuZ+dRQA/1i6l+oG9ylfo2Omvb+uHDUU6NX2CSGEEEIIIYQYeIzpOQy65ecM+tZjGNJzUf1tNH3xHuV/vI/mjZ/Ke8s+zGYx8N1rinj5P2dzxZQhaBRYv7OaH/52Gc+9s5naRk+smyiEEL1KQnsRE1PHZjB2RDKB01yUVheXgsZkhXAQf13FWWihEEIIIYQQQoiByDxsDJl3/IrU6x9El5BOyN1Mw8LXKH/5R7h2rkJVw7FuojiO5HgzP/zmOF54eCYXjR6EqsLSjeXc/aslvPbRDppdvlg3UQgheoWE9iImFEXh7uvHoNO2L0pbfGoLASmKgqF9MVopkSOEEEIIIYQQ4lQoigZb4SVk3/2/JF15F1prHMGmamo/+B2Vb/wMT9nWWDdRnEB2mp1HvjuZ39w/jdG5yQRDYT76vJTvP72Y9xaV0OYLxrqJQghxRiS0FzGTnWbna5e2L0r74akvSmtMk8VohRBCCCGEEEKcPkWrI27SVWTf+wcSLr0JxWDCX72f6r89SdXfnsRXtT/WTRQnkD8kkV/eczGP33UhORlxeNqC/OWz3dz19GL+taqMYEi+NSGE6J8ktBcxddPl+SS3L0r7/ikuShutay8z7YUQQgghhBBCnAGNwUzCtG8y+N4XcVwwBzQ6vGVbqXzjYWo+fI5A06l9O1ycO4qiMHFkGs/9+DJ+8u2JpCdZcLb6eGn+Nu799VJWbK4gHFZj3UwhhDglEtqLmDIbdcz9WmRR2v9bupeq+p4vSmtMywHAV1MmNQeFEEIIIYQQQpwxrTWO5Cvmkj3vf7EVTQPAXbyS8pfup37ha4TczTFuoTgejUbhsglZvPjTWcy7fjTxNiNVDW5+89dN/Pj/rWDz7lpUVcJ7IUT/IKG9iLlLxmQwbkRKZFHaj7b3+Dx9ciaKVo/qbyPYVHMWWyiEEEIIIYQQ4nyiT0gn9bofkTn3Wcw54yAcomXjpxx68V6aPv87YZ831k0Ux6HXafjK1BxeeWQ2375qJGajjv2VzTz26hoefWk1ew41xbqJQghxUhLai5hTFIXvXz8anVZhw86aHi9Kq2i0GFIHA5HZ9kIIIYQQQgghRG8ypucw6Jb/ZtC3HsOQnovqb6Ppi/co/+N9NK//BF/NAcJBf6ybKbphNuq4+fJ8Xn1kNl+9NAedVsO2ffU89L+f8/Sf11NR2xrrJgohxHHpYt0AISCyKO11lw3n/5bu5eUPtzM2LwWjXnvS8wxpw/BVleKvLoOCi89BS4UQQgghhBBCnG/Mw8aQecevcO9aQ+PyvxFsqqZh0Z8iOxUNuvhUDMlZ6JOz2m+zMSRlojGaY9twQZzNyF1fG81Xp+Xyt4W7WbapnNXbqli7o5rLJw/mlivySYqTPychRN8iob3oM26ancfyTeXUNnr4vyV7+fZVI096jjF9GK2Ar1pm2gshhBBCCCGEOHsURYOt8BKs+VNo3bIYV/FK/HXlhNtcBJuqCTZVw96NXc7ROpK7hPkd97Vme4xexfkrLdHCj2+ZwPXTh/P2gl2s31nNwrUHWbaxnGun5fD1mSOwWQyxbqYQQgAS2os+xGTUcefXRvOrtzbw/rK9zJyUzaBk6wnPMaRHFqP1S3kcIYQQQgghhBDngKLV4Zh4FY6JV6GqKiF3M4H6cvz1lZHbhkoCdeWE3E5CLfV4W+rx7t/S5Rpaazz65EwMydmdZudnobXGoyhKbF7YeWLoIAf/PXcKxfsb+PO/drLrQCPvL9vHZ2sP8o2ZI7hmWk6PvvkvhBBnk4T2ok+5eMwgxuWlsGVPHa98uJ2fz51ywgGLIXUIKBpCbifB1iZ09oRz2FohhBBCCCGEEOczRVHQ2eLR2eIxDx3dZV/I6yLQUIG/rqJLqB9sqY8E+m4nbQeLu5yjMdk6hfmRW0NyFlpHsoT5vawoJ4lf/2AqG3bW8OcFOzlU3cqb/9rJP1fu55YrRjL7gmy0WlkKUggRGxLaiz5FURTuvn40P/zNMjbuiixKO2XUoOMer9Eb0SdlEKivwF9TJqG9EEIIIYQQQog+QWu2oc0aiSmra+nXsN9LoL4Sf31FNNT315cTdNYSbnPhqyjBV1HS5RxFb8KQnBmplR+9zUIXn4qikVnhp0tRFCYXpTOxII3lm8r568Ld1DV5eeEfW/hg+T5um1PARaOPn0kIIcTZIqG96HOyUu1cP304/1iyl1faF6U1GY7/V9WQNpRAfQW+mjIswyecw5YKIYQQQgghhBCnRmMwY8wYjjFjeJft4aCfQMNhAg2V+OvKI5PTGioINFShBtrwVZXiqyrtco6i1aNPyui6AG5yJvrEQSha/bl8Wf2aVqMw64LBTBuXyYLVB/j74j1U1rl4+s8byBscz02zcpGPRoQQ55KE9qJP+uasPJZtqqC2ycv/Ld3Ld64qOO6xxrRhuItX4pfFaIUQQgghhBBC9FManQFj2lCMaUO7bFdDQQJN1e2z88uPhPoNlahBP/7ag/hrD+LufJKiQZ84CE1CBgZTCuFhg8FiOZcvp18y6LVcd1kul08ezAfL9/Hh56XsOeTkf/60iWSHjtytfoZmxJOVaic71UZmqu2EkwyFEOJ0yf8sok+KLEo7il/9eQPvL93HzEnZZCTbuj3WkD4MAJ8sRiuEEEIIIYQQYoBRtDoM7TPprUyJblfVMMHmOgJ1kRn50dr5DZWoPg+BhkpoqMQK1O5ciCt3AraiS7CMuACNwRS7F9QPWM16vnN1AV+5ZBjvLiph4dqD1LcEqS+uZV1xbZdjUxPMZKXZyUq1kZ3afptmJ85mjFHrhRADgYT2os+6ePQgxuel8OWeOl75YDuP3XlhtwvvGNNyAAg2VRNuc6MxWc91U4UQQgghhBBCiHNKUTTo49PQx6dhGTExul1VVUKtjfjrK3Ad3Ilz2wp0rjo8ezfg2bsBRW/EMmIStqJpWHLGoeikjM7xJDhM3HPjWL42dTAr1hWjNSdR0+SjoraV8hoXrR4/tU1eapu8bN7dNcy3WwzRAL/zbUqCBa1GFhUWQpyYhPaiz1IUhbtvGMMPnl3Kpt21rCuu5sJuFqXVWuxoHcmEWurx1R7EPLgwBq0VQgghhBBCCCFiT1EUdI4kdI4kSB9BuSOP4Sl2Qvs34dq5kmBTNe6dq3DvXIXGZMWaPwVr0VTMQ0bJorbHEW83kpdppqBgCJZOZYaaXT4qal3REL+8tpWKWhe1jR5aPX52HWhk14HGLtcy6DRkpERC/OxUG1mpdrLSbGSk2DDqpf+FEBES2os+LTPFFl2U9tUPtzPuOIvSGtOG4mmpx19TJqG9EEIIIYQQQgjRiT45i7jBeSRcdjO+qlLcxV/g2rmakKuR1q1Lad26FK01HmvBRdiKpmLMzO/2m+6iqzibkTibkaKcpC7b2/xBDte5Ka+JhPjlta1U1rqorHPhD4Y5UNXCgaqWLucoCqQlWiIh/lEz9O0Ww7l8WUKIPkBCe9HndVmUdslevnP1sYvSGtKG4dm7EZ8sRiuEEEIIIYQQQnRLURRMGcMxZQwncdZttJXvxlW8EvfuNYTcTlo2fkrLxk/RxaVgLbwEW+FUDGlDJcA/RSaDjpzMOHIy47psD4VVahrdkdn5HYF+TSvltS7c3gDVDR6qGzxs3FXT5bw4m+HYMD/VTnK8GY2U2hFiQJLQXvR5JqOOu742iqf/vIH3l7UvSpvSdVFaY/titH4J7YUQQgghhBBCiJNSNFrMQ4owDyki+cq5eMu24tq5CnfJOoLNdTSv+ZDmNR+iT8rEVjQVa+FUDEkZsW52v6bVKGQk28hItjG5MD26XVVVnB2ldo4K8+udXppdfppdDRTvb+hyPaNBS2ZK+wK4aTbyBicwdkSK1MwXYgCQ0F70CxeNHsSE/FQ2l9TyyofHLkpr6Ajt68tRgwFZSEcIIYQQQgghhOghRavDMnwiluETCQd8ePZtxlX8Bd59mwk0VNL0+Xs0ff4ehvQcbEVTsRVegs6RHOtmDxiKopBgN5FgNzE6t2u/en1BKjvq5neqn19V78LnD7G/spn9lc3R45PjzVw+eTCzJw8mNcFy9FMJIfoJCe1Fv6AoCndfP5r7nl3Gpt21rN1RzUWjjyxKq3OkoDHZCLe58NeXY0zPiWFrhRBCCCGEEEKI/kmjN2IruAhbwUWEfR7cJetxFa/EW7YVf/V+Gqv307jkLUzZBVgLp2IruAitNe7kFxanxWzUMTw7nuHZ8V22h0Jhqhs9VLTPyD9U3cLGXTXUO7288+8S3l1UwoT8VK68cAgXFKaj02pi8wKEEKdFQnvRb2Sk2LhhxnD+vngPr360nfH5RxalVRQFQ9pQ2g7uwFddJqG9EEIIIYQQQghxhjRGC/Yx07GPmU7I3Yx791pcO1fSdmgnbeW7aCvfRcO/X8c8bAy2wkuw5k9BY7LGutnnBa1WQ2aKjcwUG1Pat/kDIdZsr+Lf6w6ybV89m3bXsml3LQl2I7MnD+byyUMYlCx/PkL0BxLai37lG7NGsGxTOXVNXv6xZC+3dlqU1pg+jLaDO/DXSF17IYQQQgghhBCiN2mtcTgmXolj4pUEWxpw7VyFq3gl/upSvPu34N2/hfpPX8E8fAK2oqlYhk9EozfGutnnFYNey2UTsrhsQhaH61z8e91Blmwop6nVxz+W7OUfS/YydkQyV04ZyoWj09HrtLFushDiOCS0F/2KyRBZlPapNzcwf9k+ZnValNaQFqlr75PFaIUQQgghhBBCiLNG50gi/sKvEn/hVwk0HsZVvArXzpUE6ivwlKzDU7IOxWDCmjcZW+FUzDljULSy9ty5lJFi47vXFPHtqwpYv7Oaf689yJd7atm6t56te+txWA3MnJTNFVOGkJ1mj3VzhRBHkdBe9DsXjhrEhJGpbN5dy8sfbOfxuyKL0ho7FqOtPYCqhlEUqdcmhBBCCCGEEEKcTfrEDBKmfYP4qV/HX3sQV/EXuHeuIthch2vH57h2fI7GbMOafyG2oqmYBheiaGSG97mi12m4ZEwGl4zJoKbRw6L1B1m8/hANzW18uKKUD1eUUpSTxBVThnDJ2AyMevmzEaIvkNBe9DuKonD3dZFFaTeX1LJ2RxUXjc5An5SJojOg+tsINFZjSMqIdVOFEEIIIYQQQojzgqIoGNOGYkwbSuKM7+Cr3IOreCXuXasJuZ20bllM65bFaG0JWAsvwVZ4CcaMESiKEuumnzfSEi1856oCbrk8n027a1m49iAbd1VTvL+B4v0NvPLhdmZMyOKKC4cwLEMWFxYiliS0F/1SRoqNG2cM573Fe3j1ox2Mz0vFZNRhSBmMr2of/poyCe2FEEIIIYQQQogYUBQFU1Y+pqx8ki7/Lm0HiyMBfslaQq4mWtZ/Qsv6T9DFp2ErvATHxCvROZJj3ezzhlarYXJROpOL0mlo9rJ4/SH+ve4gtU1ePllVxierysgfnMAVFw5h2rhMzEaJD4U416R+iOi3vj5rBKkJZuqavPx9yR4ADB0lcmQxWiGEEEIIIYQQIuYUjRbzsDGkXHMvQx54nbRv/AfWoqkoeiNBZw3O1fMpf/lHtHy5CFVVY93c805SnJmbLs/n1Ucu54nvX8QlYzLQahRKDjXx/N+3cPsTn/HCP7awt7xJ/nyEOIfkozLRb5kMOu782mieenM9Hyzfx6wLBmNPG0YrshitEEIIIYQQQgjR1yg6Pda8C7DmXUDY34Zn70aaN/wLX+Ue6he8hHv3WlK+co/Muo8BjUZhQn4qE/JTaWptY+mGchauO0hVvZuFaw+ycO1BcjLiuOLCIUyfkIXVLAsLC3E2yUx70a9dOCqdiSNTCYZUXp6/DX3aUCAy014+ARZCCCGEEEIIIfomjcGErWgqGbf9gsTZt6No9Xj3b6H8lR/TunWpvKePoQS7iRtnjuDl/5jFU/dcwmXjs9BpNew/3MxL87dx2xML+X/vbmZXWaP8OQlxlkhoL/o1RVH4/vWj0Wk1fLmnji9rjaBoCLmbCbmaYt08IYQQQgghhBBCnICi0RI/5atk3vkbjBkjUH0e6j75A9XvPUWwtTHWzTuvKYrC6OHJ/OQ7E/nzY1dy59dGkZ1mxx8IsWRDOT994Qvue3YZH31eSovbH+vmCjGgSGgv+r2MZBs3zhwOwKv/2oMuYRAgde2FEEIIIYQQQoj+wpCcRcbtvyRx5q2g1eEt3UzFKz+idftymc3dBzisBr52aS5/eHgGz/xgGrMuyMag11Je08prH+3gu08u5Dd/2cT2ffXy5yVEL5Ca9mJA+PrMESzbWE5tk5fDSUmkUomvugzL8ImxbpoQQgghxIDn9/v505/+xMcff0x5eTkWi4VJkyZxzz33UFRUdMrXW7BgAW+//TYlJSUA5Ofnc9ttt3H11Vcf95z6+npeeOEFli9fTn19PcnJyUyfPp0f/vCHJCUlHXN8VVUVy5YtY/v27ezYsYN9+/YRDod5+umnueGGG477PLfeeivr168/7v6HHnqI73//+6fwaoUQQnRQNFriL7oOy/AJ1P3zBXxVpdR9/DzuXWtJnnM3OltCrJt43lMUhYJhiRQMS+Sur41mxZcVLFxzkP2Hm1nxZQUrvqwgI9nKFVOGMOuCwcTbjbFushD9koT2YkAwGXTcdd1ofvmn9aw7rOdaM7h2fI7W4sCcMw59fGqsmyiEEEIIMSD5/X7mzp3L+vXrSUpKYsaMGdTV1bFo0SKWL1/OH//4R6ZNm9bj6z333HO89NJLGAwGLrnkEgBWrVrFj370I/bs2cMDDzxwzDmVlZXcdNNN1NXVkZOTw+zZsykpKeGdd95h6dKlvPfeewwaNKjLOQsXLuTpp58+7dd95ZVXYrFYjtmel5d32tcUQggRYUgZTMZ3n8a55kOaPv87nr0bqHhlF8lX3om1cCqKosS6iQKwmvXMuXgYV180lH0VThauPcjnX1ZwuN7Nm//ayduf7mLKqHSuvHAo40akxLq5QvQrEtqLAWNKUTqTCtIo2VPPtWYINFRS/+nLAOgS0rHkjMM8bAzmIaPQmKwxbq0QQgghxMDw6quvsn79ekaPHs2bb76JzWYD4JNPPuGhhx7i4YcfZvHixdHtJ7Jx40ZeeuklHA4H7777Lrm5uQCUlpZy88038+KLL3LppZcyfvz4Luc98sgj1NXVcfPNN/P444+jKAqqqvL444/z7rvv8uijj/L66693OScrK4vbbruNUaNGMWrUKJ5//nk+/fTTHr/un/70p2RlZfX4eCGEEKdG0WhJuORGrCMmUfvx8/hryqj98P9h2bWGlKvvRmuNi3UTRTtFURiRncCI7ATmfnUUX2yp5N9rD1JyqInV26pYva2K1EQL08cPIsseinVzhegXpKa9GDAUReH7142mWknlmeavUJk5CzVlOCgagk3VtGz6jJr/e4YDv/sulX9+hKbP/05bxW7UsPzCEEIIIYQ4HcFgkLfeeguAxx57rEswf80113DZZZfR1NTE+++/36PrvfbaawDMmzcvGtgD5Obmcvfdd3c5pkNxcTFr164lPj6eRx55JDr7UlEUHnnkEeLj41m5ciW7d+/uct7s2bP5r//6L772ta+Rm5srszaFEKKPMqQOIfN7vyLh0ptAo8VTso7yV36Ea9fqWDdNdMNs1HHFlCH85oFL+f1D07nmkmFYzXpqGz38fUkpz31UxVN/3szyzRW0+YOxbq4QfZaE9mJAGZRs5YYZw6kMJfHM9kx+VHIx/9H4Td5XrmKPdQJeYxKoYXwVJTR98R6H//xfHPjdd6n+x69p2fQZgcYqWTBFCCGEEKKHNm/ejNPpJCsri9GjRx+zf86cOQAsWbLkpNfy+XysXh0JYLqrXd9xrZUrV+L3+6Pbly1bBsDMmTMxGrvWzTUajcycOROAxYsX9+QlCSGE6IMUrY6Ead8k83u/xpA6hLCnhdr5v6Vm/m8JeVpi3TxxHMMy4rj7hjH8+bEr+fEtExg5JB5Vha37GvjtXzdx2+ML+f17X7K9tJ5wWLIYITqT8jhiwLlpdh5ajYbt++o5UNVCqwc+b0jl84ZUYBQJGhf5+ioK9FXkG6ow+zx49qzHsyeyoJguLhVzzljMw8ZiHjoarfnkX+UWQgghhDgf7dq1C+C4i80WFhYCRBeUPZGysjJ8Ph8JCQlkZGQcsz8jI4P4+HicTidlZWXk5+d3acOoUaO6vW5RURHz58/vURtOxfvvv4/T6QQgMzOT6dOnM3z48F59DiGEEF0Z04eRecevaVr5fzhXzce9azVth4pJvupurCOnxLp54jiMei0zJ2VzYWESK9dvp8pl4Yut1dQ0eli0/hCL1h8iNcHMjInZzJyUTUaK5DBCSGgvBhy9TsstV+RzyxX5qKqK0+XjUFUrB6tbOFDVwqHqVrbWxLHWNQKFMNnaRvL1VeTrDzNMVwfNtbR+uYjWLxehohBOHII1dxzx+RMwZ+WhaPWxfolCCCGEEH3C4cOHAUhPT+92f8d2p9OJ2+3Gaj3+ukKVlZUnvFbHPqfTyeHDh6OhfUcb0tLSTtiGjuv3lhdffLHL49/85jdcd911PP7445hMpl59LiGEEEcoWj2Jl92CNW8ytf98nkBdOTXvP4OtaBpJV8xFa7HHuoniBJLsOqZOzuW2r4xiZ1kjSzeWs3JrJbVNXt5bvIf3Fu9h5JAEZk7KZuq4TOwWQ6ybLERMSGgvBjRFUUiwm0iwmxibd2Sl8nBYpc7p5WB1Cwfbg/xPqlqorW1iqKaKfH0VI/WHSdc2o208QFvjAao3fIgfPc22YYQHFRKfN56svDz5BSKEEEKI85bH4wHAbDZ3u99isUTvnyy0P9m1Ol/P7XYfc17n5zrZOWdi0qRJ3HjjjUyYMIHU1FRqampYsWIFv//97/nggw/w+/387ne/O+PnUVU1+trONq/X2+VWnD7py94h/dh7BnRfxg0i8eYncK37EPeGf+Iq/gJP2TYcs+/AlDuhV5+qP/SjqoZBVVE02lg35biO7sdh6WbmXpPHrVfmsnF3HSu+PMzWfQ3sPtjE7oNNvPLhdibmp3DZ+AzGjkhCp5Uq3x36w9/J/iAW/aiqao/WUpLQXpyXNBqFtEQLaYkWJhcemc0VDIWpqndzsLqFsqpW1lVWoK/ZTZqvjDxdNXZNGymuPbB3D+z9kD0fWzigZNMaPwJtVhGZ2ekMTneQnWbHqO+7vyiFEEIIIcTpeeCBB7o8HjJkCLfddhtTpkzhxhtv5F//+hff/e53GTNmzBk9TyAQiJb+OVcOHDhwTp9vIJO+7B3Sj71nQPdl4ii0UxKxbv8nuBtwfvwcvoxReAsuR9Uf/4Pg09Hn+lFV0TUdwlC1E331btBocY/5KsGkobFu2Ql1148JOrjuAjOzRg1i+wEPW8s81DgDrNtZy7qdtViMGkYPsTA2x8KgBL0sIN+uz/2d7KfOdT8aDCefACyhvRCd6LQastPsZKfZmToWYCQwG18gRHl1M4f37qatbBvmhhJS/JUkaD0kUAItJYSLP6FiWxJLAoPYExyE1zGMrIwEhqQ7GDLIzpB0BxnJVrTyybAQQgghBoiOWezHm53Ueab4iWbZ9+Rana/X+Vod5x1vVnp355wN+fn5zJw5k4ULF/L555+fcWiv1+vPWY18r9fLgQMHGDp06Am/6SBOTvqyd0g/9p7zpy8LUC+YhmvNfNybFmA8vANzc2Vk1n3OuDO+el/qR1VVCdYewLt7DW171hJ2NXXZb9/4DrYLb8A65asoSt/KH3raj5PbvyhxoKqVz7ccZuW2appdftbtcbFuj4usFCuXjhvEtHGDSHScnyXp+tLfyf4sFv24b9++Hh0nob0QPWDUaxmencjw7IuBiwEIB3w07dtOw86NhMp3YHRXMVjXwGBdA5ezA19YR2lZKiV7MlgRHERVKB6dVktWqq09wDcR9HrQWJ1kpEKiw4heJ7PzhRBCCNF/dCwYW11d3e3+ju3x8fEnDc0zMzNPeK3O+zovVJuRkcHOnTupqak54Tkd1z+bhg4dCkBtbe0ZX0tRlOOW/DlbzGbzOX/OgUr6sndIP/ae86MvLVivvIO2okuo++cLBBoP4/zot9jGzCT58u+iMZ35h7ex7Ed/fQWu4pW4d64k0FgV3a4xWrDkX4it8GLcu1bTunUprjXvE6reR+rXHkBrjYtJe0+kp/1YmGuhMDeNu64L8+WeOpZtLGftjioq6tz8bdE+3lm8j7EjUpg5KZuLRg3CZDz/Ys7z49/22Xcu+7Gn3xI5//42C9FLNHojSQWTSCqYBECwtQnvga1492/FvX8bRo+TQsNhCg2RxdFawmZ2BwaxuyGDzdWDWKFGPsH7x8rG6DXtFgNJcSYS40wkOUwkOiL3E9vvJ8WZiLcZZba+EEIIIfqEgoICAIqLi7vdv3PnToDoorEnMmzYMIxGI01NTRw+fLhLMA+RBWedTicmk4lhw4Z1acPixYvZsWNHt9ftaFtP2nCmmpubgRPX5RdCCHF2mbLyybzzNzSteIfmdZ/g2rYUb9lWUr5yD5bc8bFu3ikJNtfh2rkKV/FK/DVl0e2KzoBlxCRsRVMx545Ho4uU2rDkjsc0uJD6T1/BW7aVitd+Qur1P8I8uChWL6FXaLUaJhWkMakgDbc3wMqth1m2qZzi/Q1s2VPHlj11mI1aLh6TwcxJ2YzKSUajkfI5on+T0F6IXqKzJ2AfPR376Omoqkqg7hCeskiI33ZoJ46gl8nG/Uw27gfAqU+hLJhMTTiJMo+VCr+DVo9Kq8fPgaqW4z6PokC8zRgJ9x3mY0L9jvsOq0F+SQkhhBDirJowYQLx8fFUVFSwfft2Ro8e3WX/ggULAJg1a9ZJr2U0Grn44otZtmwZn376KXPnzu32WlOnTu1SB3TGjBk8//zzLF26FJ/Ph9FojO7z+XwsXboUgNmzZ5/ei+whv9/P8uXLARg1atRZfS4hhBAnptEbSZr9Xaz5U6j95wsEm6qpfvcX2MfNJmn27WiMfXdmcsjdjGvXGlzFX+Cr2H1kh0aLedhYbEVTseZNRmPs/gNi+5gZGAflUjP/twTqK6j6y+MkTr+FuIuu63Plck6H1aznyguHcOWFQ6hucLNsUwXLNpZT1eBmyYZylmwoJznezIyJWcyclE1Wqj3WTRbitEhoL8RZoCgKhtQhGFKHED/lq4SDfnzlu6Mhvr+mjPhAHeOpAwWwtv8YbQTt6XiMKTTpkqgNx1Puc3DYpaWx1UdTq49wWKWp/T40H7cNOq1CgqNToH/UrP3EOBNJcWasJp0s4CKEEEKI06LT6bjtttv4/e9/zxNPPMGbb76JzWYD4JNPPmHFihUkJCRw4403Rs/Ztm0bP/3pTwH47LPPulzvzjvvZNmyZbz88stMnz6d3NxcAEpLS3n55Zejx3RWVFTEhRdeyNq1a3nqqad4/PHHURQFVVV56qmncDqdTJ06lZEjR57x612zZg1tbW1cdtllaDRHgo+6ujr++7//m+rqatLT07n88svP+LmEEEKcOVN2AVl3/pbG5X+lZcMCWrcsxrt/C8nX3Itl2NhYNy8q7PPgLlmHq3gl3rJtoIbb9yiYBhdGgvqRF6K1OHp0PUPKYDK/9yvqP3sV1/YVNC77K95Du0j96v1oLQMnxE5PsnLLFfncfHkeuw40snRjOSu3VFLv9PKPJXv5x5K95A9OYMakbKaNy8RhPfnin0L0FRLaC3EOaHQGzMPGYB42BmbeSsjdjHPPRmp2fUmc0kaoqYpgUw34XOh8+3CwDwcwBLgA0Jis6IdkoU/KImQfhNuUglObRL3fREOLj8aWtshPc+TW6fIRDKnUNXmpazr+Ym4ABr322EDfcaRET7zdSLzdiNWkl5n7QgghhDjGXXfdxdq1a1m/fj1XXHEFF1xwAfX19WzcuBG9Xs8zzzwTDfIhsuBXWVlZt9eaNGkSd999Ny+//DLXX389F18cWUto9erV+Hw+7r33XsaPP7a0wVNPPcVNN93Eu+++y4YNG8jPz6ekpITS0lJSU1P5xS9+ccw5tbW1/OAHP4g+PnjwIAAvvvgi7777LgApKSn84Q9/iB5TUlLC008/TUpKCoWFhdjtdqqrq9m5cycej4fExEReeOEFTKbzc1E8IYToizQGE8lXzMWafyF1n7xA0FlL9d+exDHhShJn3YrGEJuSZuGAD0/pZlw7vsC7bzNqKBDdZxyUi7VoKraCS9A5kk7r+hqDmZRrf4gpu5CGf7+Ot3QzFa89RNoND2LKOvMPsvsSRVEoHJZE4bAkvn/daNbvrGbJhnI2l9RScqiJkkNNvPbRdi4oTGfGxGwmFaSh1/X/bx2IgU1CeyFiQGuNw5x/Ed5wPEMLCrBYLIQDPgINlfjrKwjUlUdu6ysINFUTbnPjqyjBV1ECgAZIBJIMZgzJWeiTszEMzmq/X4hqTaTZFaChxRsN8htb2mjodL+xuQ2XN4A/EKKqwU1Vg/uEbdZoFBxWA3FWA3E2I/ZO9+OsBhw2I3E2A3FWIw6bAYfFILX3hRBCiPOAwWDg9ddf54033uDjjz9m6dKlWCwWZs2axX333UdR0anV0X3wwQcZOXIkb731FuvWrQOgsLCQ22+/nauvvrrbczIzM/nwww95/vnnWb58OYsWLSIpKYmbb76Z+++/n6SkYwMPv9/P1q1bj9leXl5OeXl59LqdTZ48mZtuuokdO3awY8cOWlpaMBgMDB06lMsuu4zbbruNxMTEU3q9Qgghzg3zkCKy7vodjUv/Qsumz2jZvBBP6ZekXHsf5iHnpqyZGgriPbA9sqBsyTpU/5FJdvqkTGxFU7EVTUWfmHGCq/Scoig4xs/GmDGc2vm/JdB4mMNv/5zEGd8mbspXB+S37g16LVPHZjJ1bCZNrW18/mUlSzeWs7+ymTXbq1izvQq7xcBl4zOZMSmbEdnxA7IfRP8nob0QfYRGb8SYnoMxPafL9nDQT6DhMIH6Cvz15e23FQQaq1D9XnyH9+I7vLfLOYrehCE5k8TkbNKTs9CnZmEoykYXl4Ki0UaPa/MHaeqYqd/cRsNRM/Ybmr04XT48bUHCYRVnqw9nqw9oPenrURSwmfU4rO1hvs0YCf07h/wdj20GHFajfNIthBBC9FMGg4F58+Yxb968kx47ZcoUSkpKTnjMnDlzmDNnzim1ITk5mSeeeKLHx2dlZZ20HUcrLCzkySefPKVzhBBC9B0ag5nkq+7Cmj+Fuk/+QLC5lqq/PIZj0hwSZ3wbjaH3vymlqmF8FSW4dnyBa/cawp4ja9jpHMmRGfWFUzGkDT1r4bExbSiZdzxD3YI/4t65isYlb9F2aBcp1/4Ardl28gv0Uwl2E1+7NJevXZrLgaoWlm4sZ/mmcppafXyyqoxPVpWRlWpj5qRspk/IJiVBFpIXfUe/Ce39fj9/+tOf+PjjjykvL8disTBp0iTuueeeU569A5GFrN5+++3oQD0/P5/bbrvtuLN3AOrr63nhhRdYvnw59fX1JCcnM336dH74wx92O3tnx44dLF++nFWrVrFv3z48Hg8JCQlMmDCB7373u0yYMOGU2y3OPxqdAWPaUIxpQ7tsV0MBAo1V7TPzI4G+v76CQMNh1EAbvqpSfFWlXc5RdAb0SZkYUrLRJ0dm5iclZ5M+NK1LmH+0QDBEi9tPs8tPs8tHs9tPS/tts8vXvs9Hs8tPi9tHqyeAqkKrJ0CrJ0BlXc9eq8Wki87Uj7N2hPldg/3Os/lNhn7zX5gQQgghhBBCiD7CPGwMWd9/joYlb9H65SJaNi7AU7qZlGvuwzy48Iyvr6oq/poyXMUrce1cRailPrpPY3FgK7gYW9E0jFl552xxWI3RTOp1P6Z1cBH1i97As3cDla//hNTrH8KUOeKctCGWhg5ycMe1Rdw+p4Cte+tZurGcNTuqqKh18daCXbz96S7GDE9m5qRsLhqdgdkoeYOIrX7xN9Dv9zN37lzWr19PUlISM2bMoK6ujkWLFrF8+XL++Mc/Mm3atB5f77nnnuOll17CYDBwySWXALBq1Sp+9KMfsWfPHh544IFjzqmsrOSmm26irq6OnJwcZs+eTUlJCe+88w5Lly7lvffeY9CgQdHjg8FgdMEtu93O2LFjsdvt7Nu3j4ULF7Jo0SIeeeQRbr311jPsHXG+UrR6DCmDMaQMhoIj29VQkICzJlpix19fTqCugkBDJWrQj7+mDH/NUXVktToMSRmRMjvJWehTsjEkZ6NPSEfR6tDrtCTFmUmK69mnzqFQmBaPnxaXn2Z3e5jfKeSPhP6RfS3tQX9YBU9bEE9b8KSlejoYDVocFj16TYiU9V4SHGbsVgN2SyTsd1gM2K369sdG7Fa9BP1CCCGEEEIIIdAYLaTMmYd15IXU/euPBJuqqXr758RN/goJ07+FRm885Wv6Gw7jLl6Ja+cXBBoOR7crRgvW/MnYCqdiHjbmhJPmziZFUXBMvBJj5ghq5v+WYFM1h996lKRZt+K44CvnRZkYrVbDhJGpTBiZiqctwKqth1m6qZwdpQ1s3VvP1r31/OH/tlE4NJGi3CSKcpLIH5yAQR+bPzNx/uoX6dWrr77K+vXrGT16NG+++WZ0IatPPvmEhx56iIcffpjFixd3WeDqeDZu3MhLL72Ew+Hg3XffJTc3F4DS0lJuvvlmXnzxRS699NJjFrh65JFHqKur4+abb+bxxx9HURRUVeXxxx/n3Xff5dFHH+X111/vcs6oUaO4++67mTFjBnq9Prr9nXfe4fHHH+fpp5/m4osvjrZBiN6gaHUYkjIxJGVi7bRdDYcIOmsjQX5dOYH6I3Xz1aAff+0h/LWH6BKXa7ToE9LRxaehT0hHn5DWfj9ye7xBjFarIcFuIsHes68WhsMqLm+g66z9o2fzd/4AwB1ZaNfnD1HnDwFwuLGhR89l0GlwWA1dwn17e8B/9HZH+32LSXdeDF6EEEIIIYQQ4nxjyRlH9l2/o2Hxn2nduoTm9Z/g2beJlGt/0KMFW4MtDbh2rsJVvBJ/9ZFvuys6A5bhE7EVTcU8fAIaneFsvoxTYkzPIeuOZ6j71x9x715Dw6I/4T20k5Rr7kNrsp78AgOExaTn8ilDuHzKEGoaPSzbVM7SjeVU1bvZsreOLXsjZQN0Wg35QxIoyomE+COHJGAx6U9ydSHOTJ8P7YPBIG+99RYAjz32WJdg/pprruHjjz9mxYoVvP/++9x+++0nvd5rr70GwLx587qE5bm5udx99908++yzvPbaa/zhD3+I7isuLmbt2rXEx8fzyCOPRMM7RVF45JFH+Oyzz1i5ciW7d+9m5MjIf+g6nY7333+/2zbccsstLF68mJUrV/Lpp5/ygx/84BR7RYhTp2i06BMHoU8chDXvguh2VQ0TbK7rVGKnvP1+BWqgjUBDJYGGSrzdXFNrS+gU6qdFw31dfBpaa1yPg+6ORW4d1p4NYlRVxdMWpNnto7ahhZ279xOflI4vCC1uP60ePy1uf/R+a/v9UFjFHwxT39xGfXNbj54LQKtRug3z7ZZIzX7HUbP57RYDNosBrUaCfiGEEEIIIYTo6zQmKynX3BuddR9orOLwnx8l7sJrSbj05mOOD3lacO9ag2vnStoO7QLUyA5Fg3nYWGxFU7HmT0ZjtJzbF3IKNCYrqTc8RMvGT2lY/Gc8JeuorDlA2g0/wTgo5+QXGGDSEi3cfHk+N83O41B1Kzv2N1C8v4EdpfU0tfoobn8MkQwjNzOOopwkRucmUzgsEZul73woIwaGPh/ab968GafTSVZWFqNHjz5m/5w5c1ixYgVLliw5aWjv8/lYvXo1QLe16+fMmcOzzz7LypUr8fv9GAyRf3DLli0DYObMmRiNXWcWG41GZs6cyfz581m8eHE0tD+Z/Px8Vq5cSW1tbY+OF+JsURQN+vg09PFpWEZMjG5X1TDBlnoCjVUEm2oIOGsit03VBJw1qD4PIVcTIVcTlO869rp6E/qE1C5BfvQ2PgVFe/qfSiuKgtWsx2rWE2/REHKZKSjIwGI5/oBIVVW8vuCxYX57wN/q9tPqCURq8rsD0e3+QIhQl0V4e9rGyEK8dkv7TH5r5zr93S/Oa5KaeUIIIYQQQggRM5bhEyK17hf/Cde25TSv/RjP3k3YL78Tgj68O1fSvG893rJtEA5FzzNlF0SC+pEXobXGxfAVnBpFUYi7YA7GzDxq5/+WoLOGyj//J0mzv4dj4pXn5TfOFUVhyCAHQwY5+Molw1BVlap695EQf38DtY0e9pY72Vvu5MMVpSgKDEl3MConKVJSZ1gSCY7eX9RYnF/6fEK0a1ckDDzeYrOFhZEFQjoWlD2RsrIyfD4fCQkJZGRkHLM/IyOD+Ph4nE4nZWVl5Ofnd2nDqFGjur1uUVER8+fP71EbOhw6dAiA5OTkHp8jxLmkKBr0cano41JhWNd9qqoS9rrag/zqLreBphpCLQ2ogbZoyZ1jL65BZ09El5COPj4tcpuQ1n4/Da3ZfhZej4LFpMdi0pOe1POv+/kCoehM/S4hf7ehf+S+py3YZSFe6nteoz/OasDRHuJ3DvXjbcduNxulbI8QQgghhBBC9Cat2UbqtT/Emn8h9QteItBQSeN7TxKvaGkOB6PHGdJzsBVNxVZ4CTpH/852TBnDyZz7LHWfvIBnzwYaFr5K26FiUr5yT5/+tsC5oCgKGSk2MlJsXDFlCAC1TZ7ozPsdpQ1U1rk4UNXCgaoWPlkVWUMwM8XKqNzkaEmd1ITzux/Fqevzof3hw5GFO9LT07vd37Hd6XTidruxWo8fxlVWVp7wWh37nE4nhw8fjob2HW1IS0s7YRs6rn8yZWVlLF++HIBZs2b16Bwh+hJFUdBa7GgtdsgYfsx+NRgg0FwbnZkfbA/zA84ags4a1ICPYEs9wZZ62g7uOOZ8jcl6TMmdjkBf50g+p4v2GPVajPFmkuN7tggvQDAUjgb4ncP85k6L73au2+90+QmGwvj8IWr9XmqbuitGdCy9ThMN+eNtRhy2bmbzd5rVL7X5hRBCCCGEEKJnrHkXYMoeScO/38C143MUNYg2IR37qEuxFU3FkJQZ6yb2Kq3ZRtrXf0bz+k9oXPo27l2r8deUkXrDTzCmDY118/qU1AQLqRMtzJiYDUBTaxs79zeyY389xfsbOFDVQmWdm8o6NwvXHmw/x0xRThKjcpMZlZPEoGSrvD8XJ9TnQ3uPxwOA2dx9YNa5HMbJQvuTXavz9dzuIzNjO847XumN7s45Hr/fz89+9jMCgQDXXHPNcb9BcCpUVY228Vzwer1dbsXpGfD9aE4AcwL6jJHogY5/daqqEvY0E3LWEmquJdgcuQ011xFy1hD2NBNuc+Ov3o+/ev+x19Vo0dqT0ManoY1LQbUkom8L47LrCKdlo9H3ja+gGbWQ4tCR4tABJ/5EPVK6J9Rp1n4gWsanxROg2dW5Tn+kdI8/ECZwivX5tVqlfcFdfaQ2f/v9jvI9Zr2Ku8WH2dFIWnIQk0Erg4jTMOD/bZ8j0o+9R/qyd8SiH1VVlf+HhRBCiBjSmu2kfu0BjOOupGz/fkZMvuyEuVN/pygK8VOuxZSVT83830Zq+//pP0i64g7s4y+XcclxJNhNXDI2g0vGRqp6tHr87CprbC+pU8++imZqm7zUbqpg2aaK9nOMkRA/J4mi3GQGp9nRyLp4opM+H9oPNI899hhbt25l6NChPPbYY71yzUAgEC3hcy4dOHDgnD/nQHRe96OSBPFJEF9wZFvQj8brROt1ovE40Xia0HqcaLxNaDzNKOFQe8h/ZD0IG+DaMh8XEDZaCZsTCFkSCFuO3IYtCaiGns+WjyULYLFAejTr1xL52ONI+/3BMO62MB5fGHdbCLcvjKctjNsXat8WxuMLRY/xB1VCIZWmVh9NJ6vNv6gOAJ1WwWbSYDVpo7dWkwbb0bdmLSa9IgO4o5zX/7Z7kfRj75G+7B3nuh871lgSQgghROzoUwYTqnefN+95TJl5ZM39DXX/fB7Pvk3Uf/oybYd2kjznbjT95H11LNktBiYXpTO5KFKZw+sLsutAY7SkTsnBJppafazcepiVWw+3n6OncFgSo3Ij5XRyMuLQajWxfBkixvp8aN8xi/14s5o6zzA/2aedJ7tW5+t1vlbHecebzd7dOd159tlnmT9/Punp6bzxxhs4HI4THt9Ter2e4cOPLVFytni9Xg4cOMDQoUNP+K0FcWLSj6dODYcJu5sIOmujwb2/sQpvXQX6thZUnxtN+4/OWXHM+YrRgjYuDV18amSmfnwaurjIfY01fkAPwPyBEC2eAC2uI3X4Wzpm9Hsis/ubWttobPbg8an4AmGCIRWnO4TTHTrp9XVapb3evqFLHf5IiR5DtERPvM2Azawf0DMI5N9275B+7D3Sl70jFv24b9++c/I8QgghhBBH01rspH3zP2he+zGNy/6Kq/gLfNX7SbvhJxhSB8e6ef2K2ahjQn4qE/JTgcj78z2HmqI18XcdbKTVE2BdcTXriquj5xQMS4zMxM9JYkR2PHrduSsVLGKvz4f2HQvGVldXd7u/Y3t8fPxJQ/PMzMwTXqvzvs4L1WZkZLBz505qampOeE7H9bvz0ksv8dprr5GYmMgbb7xxwmNPlaIoxy3dczaZzeaYPO9AI/14imw2SMuOPvR4POzatYuCggKMSjiyIG6nn47HIVcTqs9DsLaMYG3ZMZdVdIYjC+ImpKNPSG9/nI4uLuWc1tE/GyxAfNyJj+nclxqtAafLh7N9Zr7T5aO5/bGz/bGztQ1nqw93W5BgSKWhxUdDy0lm8QMajRJdUDfe3v5jM5IQvW+Kbo+zGvrt7AL5t907pB97j/Rl7ziX/TiQP0wWQgghRN+nKBriL7ouUi7ng98RaKik8k8/I/mqu7CPnRnr5vVbBr02Uts+N5mbLo+si1da4YyE+Psb2Lm/AXdbkM27a9m8O1JlwKDTkD8ksb0ufhKDU/pGaWBx9vT50L6gIFI2o7i4uNv9O3fuBIguGnsiw4YNw2g00tTUxOHDh7sE8xBZcNbpdGIymRg2bFiXNixevJgdO45dMLNz247XhrfffpvnnnsOu93O66+/Tm5u7knbKoQ4dVqzDa15OMZuFscN+9vaF8StjiyK21TVvlBuFcHmetSgn0DdIQJ1h469sEaLLi7lmDA/cj8NjW7glS4wGXWkG3WkJ528XqM/EIoG/B23Rwf8Te33Wz1+wuFOZXqqTt4Wu8VAvL091D8q6I9sj4T8cTYjel3/DPiFEEIIIYQQoq8yZReQNfc31H78e7z7t1D3yR/wHiom+cq70BgkPD5TOm0kkM8fksgNM0YQCqscrGqJLmxbvL+BZpef7aX1bC+th0WRNesyE/VcWG3kglEZjMiK77cT3kT3+nxoP2HCBOLj46moqGD79u2MHj26y/4FCxYAMGvWrJNey2g0cvHFF7Ns2TI+/fRT5s6d2+21pk6d2qV+6IwZM3j++edZunQpPp8Po9EY3efz+Vi6dCkAs2fPPuY5P/jgA375y19isVh45ZVXKCws7OErF0L0Jo3BhCF1CIbUIcfsU0MBgs11kTC/sYqAs4Zgx21TTWR/+6z9Y4trKWjtiV0D/cR09PGRWfsa08BdpKiDQa8lNcFCasLJZ54GQ+EjgX6n2ftNnQL/jn0tLh9hNbKIT6vHT3lN60mvbzPrjwn1O2bvR2fyt38AIF8tFEIIIYQQQoie0VrjSL/5v3Cu/oCmFe/i2rYc3+F9pN34MIbkrFg3b0DRahRyMuPIyYzjq9NyUVWVilpXtJzOjv31NDS3cajOz6Glpfx9aSlWs54xw5MZn5fCuLxUBiUP/CxioOvzob1Op+O2227j97//PU888QRvvvkmNpsNgE8++YQVK1aQkJDAjTfeGD1n27Zt/PSnPwXgs88+63K9O++8k2XLlvHyyy8zffr06Kz30tJSXn755egxnRUVFXHhhReydu1annrqKR5//HEURUFVVZ566imcTidTp05l5MiRXc7797//zX/9139hMBh48cUXmTBhQu92jhCiVyhaPfrEDPSJGZA7vss+VQ0Tam2MzNBvrCbojNx2lN9R/V5CrQ2EWhtoO3TsN4I0FseRQD8+rcsMfe0Ar6PfHZ1WQ1KcmaS4k9eDDoVVWt3+SLjf6qMpGuq3dZm93zGzPxRWcXkDuLwBKmpdJ72+1aRrD/FNx8zgPxLwR2bxG/US8AshhBBCCCHOb4qiIeGSGzFl5VP7wXME6iuofOOnJF99N/bRl8W6eQOWoihkp9nJTrNz1UVDUVWVssoG/r2ymDq3geKyJtzeAGu2V7Fme+Tr7GmJFsblpTA+L5UxI5KxWwZehYCBrs+H9gB33XUXa9euZf369VxxxRVccMEF1NfXs3HjRvR6Pc8880w0yIfIQmFlZcfWrAaYNGkSd999Ny+//DLXX389F198MQCrV6/G5/Nx7733Mn78+GPOe+qpp7jpppt499132bBhA/n5+ZSUlFBaWkpqaiq/+MUvuhzf0NDAgw8+SCgUYujQoXz00Ud89NFHx1w3JyeH73//+2fSPUKIs0hRNOgcyegcyZiHjOqyT1VVwp6WbmroR8ruhD0thD0t+Dwt+Cr3HHttvQl9Qiq6+I5yO2kDqo7+mdJqlGiQzqATHxtuD+w7Av0upXlautbgd7p8BEMq7rYg7rYglXXuk7bFbNQdM3s/wXYk2E/oFPgLIYQQQgghxEBmHjKKzDt/S91H/w/vge3Uffx72g7tJOmKO9Do5T3R2aYoCumJFi4YYYus72cys6+8iS176vhyTx27DzRS0+hh4dqDLFx7EI0Cw7PjGZeXyri8FEYOSZTSsv1AvwjtDQYDr7/+Om+88QYff/wxS5cuxWKxMGvWLO677z6KiopO6XoPPvggI0eO5K233mLdunUAFBYWcvvtt3P11Vd3e05mZiYffvghzz//PMuXL2fRokUkJSVx8803c//995OUlNTleK/XSyAQACKz+EtLS7u97uTJkyW0F6KfUhQFrTUOrTUOU9axa1qEfZ5oDf1gU1V7mB8J9oMtDaiBNvy1h/DXdlNHX9FE6+jrOhbHjT9yX+oGdqXRKDisBhxWA4NPcqyqqri9gWNK8jR1CvU73waCYby+IF5fkKr6kwf8RoMWq0EhbbWLlHgriXEmEh3tP3Emktrvm4z94lewEEIIIYQQQhxDZ4sn/Zb/xrnyfZq++DutWxbjO7yX1Bt+giEp4+QXEL1Gq1GiNfFvujwfT1uAHfsb2LKnji17aimvcbHnkJM9h5z8ffEeTIbIQrjj8lIYl5fC4DT7eVcFoD/oN4mBwWBg3rx5zJs376THTpkyhZKSkhMeM2fOHObMmXNKbUhOTuaJJ57o0bFZWVknbYMQYmDTGC0Y03Mwpuccs08NBgg013aamd8+S79zHX1nDUFnDXTzxSGtNb49wB/UZYa+Pj4NjcUhv3BPQFEUbBYDNouB7DT7CY9VVRVPWzAa4EeD/aMD//b7/kAInz+Ezw+NLie7cB732haT7tgwP85EksMc3ZbokNr7QgghhBBCiL5J0WhJuPSbmLJHUvvR/8Nfe5DKNx4mZc492Iqmxrp55y2LSc/kwnQmF6YDUO/0tgf4dWzZW0uzy8/GXTVs3FUDQKLD1F5KJ4WxeSkk2GWSYF/Qb0J7IYQYSBSdHkNSJoakzGP2ReroN3UtueOsiQb84TYXIbeTkNuJr+LYDwcVg7lruZ32Wvq6hHR0jqTzvuzOqVAUBatZj9WsJzPFdsJjVVWNzMavc7J1x14ciem42lQaW9pobG6L3LZ4aWhuo80fwtMWxNPmOmn9fbvFQNJRs/U77ndsj7cb0Wnl641CCCGEEEKIc888bAyZc39L7YfP0XaouP12J4mXfxeNTmqpx1pyvJnZkwcze/JgwmGVA1UtbNlTy5d76ti5v4HGljaWbixn6cZyAIYOckTr4RfmJGIySHwcC9LrQgjRx0Tq6CehcyRhHnJs+a+Q1xUN8rvW0a8m1NqA6vfirynDX9PNFH2NDn18Snsd/U4z9BPSUI2Oc/DqBi5FUbCY9AxKsuJMNVJQkI7FYun2WE9boD3EPxLoN7Tfb4gG/G0EgmFaPX5aPX4OVLWc4LkhzmbsEuQnHRXwJ8aZiLMa0WjkWxhCCCGEEEKI3qWzJzDo24/R9Pl7OFfNp2XzQtoq95B240/QJ6THunminUajkJMZR05mHDfMGIEvEGJXWaSUzpcldew/3MyBqhYOVLXw4YpS9DoNhcMSo/XwczLi5D3lOSKhvRBC9DNasw2teTjGjOHH7AsH/QSdtceE+UFnNQFnLYSCBBqrCDRW4e3m2nFGKw1bB9GamI4+LhVdXAq6+FT08anoHCkoOv3Zf4HnAYtJj8WkJyv1+OV5VDWyuG5j85FAPxr0dwT8LW00tbQRCqvRUj37K5uPe02tRiHBbiQxzkSC3USCw0S8zUiC48giuwn2yMx9s9TcF0IIIYQQQpwCRaMlcfq3MGUXUPvx7/HXlFHx+sOkXHMvtpEXxbp5ohtGvbY9kE/lu9eAs9XH1r110Xr49c1tbN1bz9a99fz5X+CwGhg7IiVaDz81ofuJauLMyTtyIYQYQDQ6A4bkLAzJWcfsU8MhQq2N0bI7kWA/EuoHnDWoPg8an5tA1T4CVfu6vb7WloguPgV9fFok0I9LjTyOS0UXl4yilVC/tyiKgt1iwG4xMGTQ8b8FEQ6rtLj90TC/80z9SNDvpbElUos/FFapb26jvrntpM9vMmi7hPjxdiMJ7cF+vN1Egt0Y3S5flxRCCCGEEEJ0sOSOJ2vubyJlcsp3Ufv+b2ibNAfzRV+PddPEScTbjVw2IYvLJmShqioVtS6+3FPLlj117Citp8Xt54stlXyxpRKAzBQb49sD/NHDk7GYJBPoLfIuWwghzhOKRtsetKdgHjq6yz5VVXE31rJv6wYGJ9rQtDUTdNYSbK6LLJjrrEUN+Ai5Ggm5GrutpQ8KWntiZFZ++wx9XVzqkceOZBSt/NrpbRqNEg3PczLjjntcKBTG6fJ1KcnTeRHdjoV2m1p9+Pwh2vwhqhs8VDd4TtoGs1EXaUOnWfvRWfz2rjP4DXpZU0EIIYQQQoiBTudIYtC3H6dxxTs0r/mQlo0L8JbvRpN/VaybJnpIURSy0+xkp9n56rRcgqEwJQeboiH+3kNNVNa5qKxz8cmqMjQahfzBCe0hfip5g+PRytprp03SEyGEECiKgsZsJxQ3CFNewTG12FVVJexpIdBcR7A9xA86ayOBfnNdJNQP+gm1NhBqbYDyXd08iQadPTEa5uviUiKBfsdjWST3rNJqNSTFmUmKM0P2iY/1+oLRED9y6+vyOBr2t7ThD4bx+oKRRXjr3Sdth8Wkaw/yTUdm7zuMxNtMXcr0GLXhXnrlQgghhBBCiFhQtDqSZt6KObuQ2n/+nkDNfhz1r9Hs3I1m4pUYB+WiKFIfvb/QaTUU5SRRlJPEd64qwOUNsH1fpBb+lj11VDW42XWgkV0HGvnbv0uwmHSMyklmVG4So3KTyMmIkxD/FEhoL4QQ4qQURUFrjUNrjYNuaumrqkrI3RwJ9NtD/ICztv1xLUFnHWooQLClnmBLPbCzmydpX4A3LhLk69tL73TM1tfaEyXUP0fMRh1mo45BydYTHqeqKl5f8JhQ/5iQ3+WjqcVHMBTG0xbE0xaksu7kAb9Jr5AY10RinKnL7P3IzP328jy2SPiv18ngTwghhBBCiL7IMmIiWXN/Q9X7vyFQtQ/vtqV4ty3FkDoY+9hZ2IqmRd5rin7FZtZz0egMLhqdAUB1g7u9Fn4dW/fW4fIGWL+zmvU7q4HIBK7CYUmMykli9PBkcjMlxD8RCe2FEEKcMUVR0Nni0dniITPvmP2qGo6E+u1BfsBZ1ynQryXQXAehYCTwb66DQ8XHPolGGwn1HSnoHElo7Yno7Eno7EloHe23tjgURX7pnyuKokQX1c1MsZ3wWFVVcbcFaWppw+ny4Wzx0eTqNHO/1YezvTxPR/39toDK4Xo3h3swg99m1h9bg99+7AK7cTYJ+IUQQgghhDjXdHEpJN703+xbtZCU1gP49m3EX3uIhkV/omHJ21jzJmEfOxNzzjiZrNVPpSdZueoiK1ddNJRQWKW0wsmO0nq2lzaws6wBT1uQjbtq2LirBgCzUUvB0Mgs/NG5yQzPjkcnIX6UhPZCCCHOOkXRoLMloLMlQFb+MftVNUzI5YzOyg84a9oD/I4Z+/UQDkbL8hyXRovOlhAN8SPhfuQ2+tiWIIPAGFAUBZtZj82sJzvNfsJjw2GVusZmNm/dTVJaFl4/7bP12wP/TrP5m12RgN/lDeDyBqiodZ20LXaLPjpLv/OCutGyPe21+eNsRhk0CiGEEEII0UsURUMwaSjxU6/GqFFxF6+kdetSfFX7cO9ei3v3WrS2ROxjpmMfOwN9YkasmyxOk1ajkDc4gbzBCdwwYwShsEpZZTM79tezo7SBHfsbcHsDbC6pZXNJ5D2+0aClYEhiezmdZPIGx6PXnb/v3SW0F0IIEXNKR717eyJkjTxmvxoOEXI5CThrCLU2EGxpINja2Ol+AyGXE8KhaAke33GfTIPWGn9ktn5HoG9PQus4Mntf0cmq97Gi0SjYLQZS4/UU5CQes8ZCZ+GwSqvHf0yYH5217zry2Onytx8foNUToLympwG/6cis/Y6FdjvV5Y+zGomzGWSRXSGEEEIIIXpIa7LimHgljolX4q89SMvWpbi2ryDkasS5ej7O1fMxZRdgHzsTa8FFaAzmWDdZnAGtRmF4djzDs+O57rLhhMIqB6ta2FFaz479DewobaDV42fL3jq27K0DwKDTMHJoIqNykhg1PJn8wQnn1XsuCe2FEEL0eUq0NE7ScY/pCPaD7UF+50A/+ri1EcIhQq5GQq7GEz6nxuKIzs7vXIInOnvfnojGYOrtlypOkUajEGeLzIofkn7iY6MBf+fFdI+qwx+pwd9dwN960raYjTribAbirEYc7bdxNgOO9ts4mxGHNXIbZzVgMsowTAghhBBCCEPqEJIv/x5JM7+De+9GWrcsxbt/C23lu2gr30X9v1/HVnAJ9nEzMWbmy+K1A4BWo5CTGUdOZhxfvTSXcFilvKaV7aUdM/HraXb52bavnm376uHfJeh1GvIGJ0TL6eQPScBkGLjvqQbuKxNCCHFe6RLsZ3Z/TEdt/VCnMD/Y2kCotbFTuN+IGvQT9rTg97Tgryk77nNqTDZ0jkS0tiPhfshkQ9foIpBiI5ScgcZsk0FlH9El4B904mM7B/xHL6h7ZFZ/ZHuL208oHFmU1+sLUt3g6VF7jAYtcVYDjvYQ/+hQP84WCf/j27ebjTr5uySEEEIIIQYsRavHNvIibCMvItjSQOv2FbRuXUKwqZrWrUto3boEfVIm9rEzsY2+LFJ+VQwIGo3CkEEOhgxycM3UHFRVpaLWdSTEL62nqdVH8f4Givc38N6iPei0CiOyj4T4BUMTB9TEqIHzSoQQQoiT6Fxb38jwbo9RVZWw1xUJ848J99vvtzSgBtoIt7nwt7mg9lCXa9iBhk3v0UBk4Km1J6C1Rcr/aNvLAOlsiWjtCZFtNpm139d0DfgdJzxWVVXc3gDNbj/NLh/NLj8t7ki43+Ly0+zy0+xuv++O7A+Gwvj8IWr9XmqbvD1qk16nOTbk72ZGf7zNiMNmxGqSkF8IIYQQQvRPOkcSCZfcQPzF19NWvovWrUtx71pNoKGSxqVv07jsr1iGT8Q+diaW4RNQtBJxDiSKopCdZic7zc6ci4ehqiqH691s33dkJn5Dcxu7DjSy60Aj/1iyN1qCZ3RuMqNykygYmojF1H/L3srfaCGEEKITRVHQWuxoLXZIG9rtMaqqovo8XQP9lshsfZ+zFk99FfqgF7XNhRoKRBfQPW6dfUBjtEQD/UjAf2zQr7XGy2C0D1IUBZvFgM1iIDPFdtLjVTUyK79LmO/ydQr9I/dbotv8+AMhAsEw9c1t1De39ahdOq2Cw2rAZtajUQOkfOkn3m7CatZjs+ixWwztiwMbsFkiiwRb2xcL1soCvEIIIYQQog9QFAXz4ELMgwsJXzEX185VkcVrK0vw7N2AZ+8GtNY4bKMvwz5mJoaU7Fg3WZwFiqKQmWIjM8XGVRcNRVVVqhs87TPxI3Xx65q8lBxsouRgE/+3dC8ajUJuZlw0xC8cloTV3H9CfHnnL4QQQpwiRVFQTFYMJiuGlMFd9nk8Hmp27aKgoACTQUfI1USotal9sdym9gV0Gwm62m9bG1EDPsI+D2Gfh0B9xYmeGa01Dq0t4UiYb+sI9RMitfZtCWgsdhRFQte+SlEULCY9FpOeQcnWHp3T5gtGQ/2Wbmb0d9zvuPX6QgRDKo0tPhpbIh8XHait7XEbLSZdl0C/I8y3dQT9Fj12swGrRR99bDMbsJr1aDUyu18IIYQQQvQ+jdGMY/xsHONn46+voLVj8Vq3k+a1H9O89mOMmXmR8jmFl6AxWmLdZHGWKIrCoGQrg5KtXDFlCAA1jZ7ITPz9kdn4NY0e9pY72VvuZP7yfWgUyMmMY1RuMqNykijKSaIvv2uW0F4IIYQ4SzQ6A5r4NPTxacc9RlVVVL/3SJjfGlkkN9gp6I+E/E2RRXTdTkJu5wlr7aPRHTVTP6FTuN8R9iegGMxSPqWfMBl1mIw60hJ79sbDHwhFZ/LXNrSwZ99B4hJT8YfA5Qng9gZweQO4PAFcXj+tngBurx+vLwSApy2Ipy3Y49I9nUUD/04Bv83c+X6n2f2WI/ctJgn8hRBCCCFEzxiSs0iadRuJ07+Fp/RLWrcuwbN3E77KPfgq99Dw7zewFlyMfexMTIML5X3PeSAt0ULa5MHMnhyZWFfb5InWw9+xv4Gqejf7KprZV9HMhytKURQYnGZj7BA9BQUxbnw3JLQXQgghYkhRFBSjBYPRAslZxz1OVcOEPa3ttfWbCLoajwr6mwi5Ggm5myEcJNhcR7C57oQleRSdAa3FgdYaH5nBH/2JR2vpdN8aF1lQV6Pt/Q4QZ4VBryUlwUxKgpmMRAPGYB0FBdlYLCcO/YOhcKdA398p2D/6cdd9vRH4KwrYzJGyPXarIXJr0WO3GnB0bDMbsFuPHOOwGDAatPImTAghhBDiPKVodVjzLsCadwFBVxOuHZ/TumUJgYZKXNuX49q+HF1COvaxM7GPno7OkRTrJotzJDXBwsxJFmZOipRMamj2sr0jxC9toLLOxcFqF60uHd++JsaN7YaE9kIIIUQ/oCiaaKhO+vGPU0MBQi4nwWgJnqNm7LfP2ld9HtSgn2BLPcGW+h40QBOp9W+Naw/049FY49BZ49BY4tB1Cv411jg0OkPvvXhxzui0mugCvKcqEOwI/I8K9NvD/taOsD8a9B/5IKDNH0JVodUTOY56d4+fV6/TRML9TmG/o3Pof9T2jnr+OqnbL4QQQggxoOhsCcRf+DXipnwV3+G9tG5ZgmvnKoJN1TQt/xtNK97FnDMW+9hZWEdMQtH1n/rm4swlxZmZPiGL6RMik+WaWtrYUlJFW2tNjFvWPQnthRBCiAFE0erRxaWgi0s54XFhfxshTzMhd+cf51HbnIQ8LYQ9raCGo9t71A6jJRroHzOD3xYJ+SNhfxyK0SIzpQcAvU5DvN1IvP30An+Xx0+rJ1Kqp8Xdft99ZFurxx/d7vL4aXEHCIbCBILhLrX7e8pi0nWZsW+z6I/M6I/e6qNhv04JoqrqKb82IYQQQghxbimKgikzD1NmHkmXfw/37jW0bl1K26GdeEu/xFv6JRqzHduoS7GPnYkxbWismyxiIMFhYkpRGrt2Nca6Kd2S0F4IIYQ4D2kMJjQG0wnr7XdQwyFCnpauYb67uT3gdx4V/EfK86g+DwGfBxqrTnp9RatHE53BH/lRDVaMrV68agMkpKA129FYHWgtcWj0px4Ki75Nr9OQ4DCR4DD1+BxVVWnzh2h1+2lpD/Jb3QFaPN0E/u3HtLr9uNsCqOqRMj41jZ4eP+fgFAPPFEhwL4QQQgjRX2gMJuxjZmAfM4NA42Faty6jddtyQq5GWjb8i5YN/8KQnhtZvLZoKlqzrVefXw0FUQM+wgEfaqCNcMDffutD9ftQgz7C/q77jhx/5Dw14CfsbztyfCiA1ZqKx38JhsKLTjppS/Q/EtoLIYQQ4oQUjRadLQGdLeGkx6qqStjn6SbM7zyL/8g+1e+NlPRpqSd0VJkeC9BcsoSj5/YreiNaiwON2dFek7/9tpttGkscGpnJPyApioLZqMNs1JHawwV6AUJhFbc3EA32WzrN3D96W+cPAXz+EIGgiky2F0IIIYTon/SJGSTO+DYJl92Md/9WWrcuxb1nA/7qUhqqS2lc/CaWkVOwFU5F0eoiQflRIXrkfluXfdH9/iP7OkJ4wsGz9noMnhZalu6jZemfMaQOxjJ8EpbhEzFmjpD1yAYACe2FEEII0WsURUFrsqI1WSEp86THhwO+9jC/pUuY72uux1ldjk2vAZ87coynBdpnqgSb66C5rmeN0mjRmu1orZEQX2u2t4f8cWg6An6z/chji10GuQOYVqPgsEZK3nAKE5Kcza3s21uCRiMfAAkhhBBC9GeKRotl+AQswycQ8rREFq/dugR/7SHcxStxF688G0+KYjCh0Rkit3oDit6ERm9Eaf+J3DehMRhRdEYUgxFN+21kvyl6nNfroWLTcuJchwlU7cNfewh/7SGcq+ejMdux5I7HMnwC5pzxvf7tAXFuSGgvhBBCiJjR6I1o4lLRx6V22e7xeKjctYvBBQVYLJFZ1Kqqovq9kVI97T/h6P1mQp7Wox63oPrbIBxq/0DA2fN2mW1ozY72EL/TTP4uj+PaPwhwyMK75wGDXivf2BBCCCGEGGC0Fgdxk6/BccFX8FeV0rp1Kd5DxSgaXSQ015tQ9IZoYH4kXDeiMZhQOkL4jpC9/fjOgbzGYASNrlfHkiGPB1+On6SCAoyE8Oz/Es++TXhLvyTsbcW143NcOz4HRYMpKx/LiElYhk9An5wtY9p+QkJ7IYQQQvQLiqKgGC1ojBb0Cek9Oicc9BP2tEZD/K5B/7GPw14XoBL2uiL3Gw/3rG0Gc6QefzTMb7/fXqu/ox5/5MeOopUhmBBCCCGEEH2FoigYM4ZjzBge66acMq3Fjn3UpdhHXYoaDtFWUYJn3yY8+zYRqCunrXwXbeW7aFz6Nrq41Mi3DEZMwjSkSCYf9WHyjlEIIYQQA5ZGZ0DjSELnSOrR8Wo4RNjris7cj4T6zccN+UOeFgiHUP1egn4vwabqnrXLZGuvu99Roieu27A/UqffJuV6hBBCCCGEECelaLSYBxdiHlxI0sxbCThrowF+24EdBJtradn0GS2bPkPRGzEPHY1l+EQswyf2+D2TODcktBdCCCGEaKdotJHA3BrXo+OPLLzbHAn33S1HFtz1dL0fbv8gADVMuM1FuM1FoKEHM/kVDVqLvb00T1yXQP9I2N9er98qC+8KIYQQQgghIvTxqcRNupq4SVcT9rfhPbA9GuKHWhvx7N2IZ+9GAAxpw6Kz8I2DcmXiUIxJaC+EEEIIcZq6LrybcdLj1XCIcJu7PcjvFO63Pw53uh8t16OGowv0Big/eaM0uk6BvgPVaMXs8dHauAO/1YGmvcSQxmhBMZq7PNYYzTI4F0IIIYQQYgDSGExY8y7AmncBqqrirzkQDfB9lXvx15ThrynDuep9NBYHltwJ7YvZjou83xmA1HA41k04LgnthRBCCCHOEUWjjS5kC9knPV4NBdvL9LSH+t3O5D+yTfV7IRwk5Gok5GqMXscEuA9twt2TNupNaIzm9h9r+60FxWBBY7KgMZjbbzs/tkZuOz4MMJhktr8QQgghhBB9lKIoGNOHYUwfRsLUrxNyN+MpjSxm69m/hbCnBdf25bi2LweNFlP2SCzD2xezTcrs82N9VVUJe1sJtjYScjURbG0g1NrU/riRYGsTodYGQp5mrMnDoeDnsW7yMSS0F0IIIYTooxStDp09AZ09oUfHRxbebekyg7/NWUft4XKS7FY0YT9hn5ewz4Pq8xD2eY48DvoBUANthAJthFxNZ9LyI2F/p1n8mi73j3wgEP0AwGjtciuz/oUQQgghhDj7tNY47GOmYx8zHTUUpK1iN5697YvZNlTSdrCYtoPFNC75M7r4NCwjInXwzYOLUHT6c9rWsN8bCd1djZEQvrXxqDC+kaCrEULBc9qu3iahvRBCCCHEABFZeDcZnSM5uk3r8dC2axeOggIsFstxz1VDgWiAf+T2qGDf7yHc5iHs9xJuc7ffegj7249r84AaBtTouWdC0ZvaQ3xLZDZ/+622c7h/1L7Ot4re2OdnAQkhhBBCCNGXKFod5iGjMA8ZRdLs2wk0VUdm4O/dhPdQMUFnDS0bFtCyYQGK3oR52JhIiJ87sceTjbqjhoKRWfGdZsYfHcwHXU2op/AeQ2NxoLMloLUnorMlRm7tiWhtCejsSfh1JvYc7ME6YzEgob0QQgghhEDR6tFa9O2le06PqqqoQX+XsF/tEv4f/wOBsM8dDf7VQFvkeh2z/lsbT/LMx6HRdgrxrUc+ADBa0XaZ2X9U4N9x3yiz/YUQQgghxPlNn5BO3AVfIe6CrxD2efGWbTuymK3biWfPejx71gNgSM/BMjwyC9+YkYuiaFDVMGFP65Hw3dXYXqqmob10TWSWfMjd3OM2KXpTJHzvCOHtiUfCeXsiWlvk8cm+BRDyeECpOqP+OVsktBdCCCGEEL1CURQUvRGN3gi2M5tlEwnz3ZGZ/J1vfR5CbR0Bvzvy03Hfd+RY1DCEQ4S9rYS9raf/mgwmNEYrisGE2ZENBQWnfS0hhBBCCCH6M43RjHXkFKwjp6CqYfzVZdFZ+L6qffir9+Ov3o9z5T/QWBxodAaCLieEe1iqRqNDZ4tHa09CZ+88Qz4yM75jhrzGaD6rr7MvkNBeCCGEEEL0KYpWh9ZiR2uxn9b5qqqiBtq6BP2RgD/yOHT0BwFtni6Bf9jnRg34ItfytxHyR2b+G1oaUcPhXnudQgghhBBC9FeKosE4KBfjoFwSpn2ToKsJ71GL2R4ZOStorXHtoXviUWF8+8x4eyIaix1F0cTwVfUdEtoLIYQQQogBRVEUFIMZjcEMJJ3WNSKz/Y/M4Pc0N1LW4CJDI28ihBBCCCGEOJrOloB97EzsY2eihgL4DpeCRhMJ5a3xKFqJoU+F9JYQQgghhBBHicz2d0Rr/IfiBqG6d8W4VUIIIYQQQvR9ilaPKXtkrJvRr8lUISGEEEIIIYQQQgghhBCij5DQXgghhBBCCCGEEEIIIYToIyS0F0IIIYQQQgghhBBCCCH6CAnthRBCCCGEEEIIIYQQQog+QkJ7IYQQQgghhBBCCCGEEKKPkNBeCCGEEEIIIYQQQgghhOgjJLQXQgghhBBCCCGEEEIIIfoICe2FEEIIIYQQQgghhBBCiD5CQnshhBBCCCGEEEIIIYQQoo+Q0F4IIYQQQgghhBBCCCGE6CMUVVXVWDdCnL7NmzejqioGg+GcPaeqqgQCAfR6PYqinLPnHWikH3uH9GPvkb7sHdKPvUP6sfdIX/aOWPSj3+9HURQmTJhwTp5P9B3neowv/0/0HunL3iH92HukL3uH9GPvkH7sPdKXvaMvj/F156Q14qyJxT9MRVHO6YcEA5X0Y++Qfuw90pe9Q/qxd0g/9h7py94Ri35UFEXehJ2nzvWfu/w/0XukL3uH9GPvkb7sHdKPvUP6sfdIX/aOvjzGl5n2QgghhBBCCCGEEEIIIUQfITXthRBCCCGEEEIIIYQQQog+QkJ7IYQQQgghhBBCCCGEEKKPkNBeCCGEEEIIIYQQQgghhOgjJLQXQgghhBBCCCGEEEIIIfoICe2FEEIIIYQQQgghhBBCiD5CQnshhBBCCCGEEEIIIYQQoo+Q0F4IIYQQQgghhBBCCCGE6CMktBdCCCGEEEIIIYQQQggh+ggJ7YUQQgghhBBCCCGEEEKIPkJCeyGEEEIIIYQQQgghhBCij5DQXgghhBBCCCGEEEIIIYToIyS0F0IIIYQQQgghhBBCCCH6CF2sGyD6B7/fz5/+9Cc+/vhjysvLsVgsTJo0iXvuuYeioqJYN69fCAQCrFu3juXLl7Nu3TrKy8sJhUKkp6czdepU7rzzTjIzM2PdzH5JVVVuv/121q1bB8CCBQvIzc2Ncav6j9bWVt544w0WL15MRUUFAGlpaUycOJH777+ftLS0GLewf9i/fz+vvvoq69ato7a2Fp1Ox+DBg7niiiv43ve+h9VqjXUT+4Ti4mJWr17N9u3b2bFjB5WVlQAsWbKErKys45536NAhnn/+edasWUNzczPp6elceeWV3HPPPedl355qP9bX17N8+XJWrFjB9u3bqa+vx2AwMGLECK699lpuvvlmdLrzc1h4un8nO9u/fz/XXXcdPp+PsWPH8ve///1sNlmIXiNj/DMnY/yzQ8b3Z07G+L1Dxvg9I2P83iFj/N4zEMb4iqqq6jl9RtHv+P1+5s6dy/r160lKSuKCCy6grq6OTZs2odfr+eMf/8i0adNi3cw+b/Xq1Xzve98DYNCgQdE3Qtu2baO2thabzcZrr73G+PHjY9nMfundd9/lscceQ1EUVFWVQf0p2LdvH9/73veora1lyJAhjBw5kkAgwKFDh9i3bx9//etfmTRpUqyb2edt3LiRuXPn0tbWxtChQ8nPz8fr9bJ582ZcLhe5ubm88847xMXFxbqpMXfvvfeyZMmSY7afaPBUXFzMrbfeitvtpqioiMGDB7Nt2zYqKyvJy8vjb3/7G3a7/Ww3vU851X78yU9+wj//+U+0Wi2FhYVkZ2dTX1/Pli1b8Pv9XHDBBbz66quYzeZz0fw+5XT+TnYWDof51re+xZYtW1BVVUJ70W/IGL93yBj/7JDx/ZmRMX7vkDF+z8kYv3fIGL/3DIQx/vn5cYs4Ja+++irr169n9OjRvPnmm9hsNgA++eQTHnroIR5++GEWL14c3S66pygKV155Jd/73ve6DNp9Ph+PP/448+fP56GHHmLhwoXo9foYtrR/qa6u5tlnn2XatGns378/+umpOLmWlhbuuOMOnE4nv/nNb7j22mu77D906JD8u+6hxx9/nLa2Nu69917uv/9+FEUBwOl0cscdd1BcXMxrr73GQw89FOOWxt64cePIy8tj1KhRjB49mhtuuIH6+vrjHh8KhXjwwQdxu9089NBDfP/73wciYdP999/PsmXLePbZZ3nyySfP1UvoE061H+Pj43nggQf4xje+QUpKSnR7WVkZd9xxBxs2bOCll17ixz/+8blofp9yqn15tL/85S98+eWX3Hzzzbz77rtnsaVC9C4Z4/cOGeP3PhnfnxkZ4/ceGeP3nIzxe4eM8XvPgBjjq0KcQCAQUCdPnqzm5eWp27ZtO2b/XXfdpebl5alvvvlmDFo3cHi9XnXixIlqXl6eum7dulg3p1+566671HHjxqkVFRXqjBkz1Ly8PHXfvn2xbla/8Mtf/lLNy8tT//SnP8W6Kf1aY2OjmpeXpxYVFak+n++Y/f/85z/VvLw89dZbb41B6/q+iy++WM3Ly1PLy8u73b9w4UI1Ly9Pveaaa9RwONxlX01NjVpYWKgWFhaqjY2N56K5fdbJ+vFEOv6Ozpgx4yy0rP85lb48dOiQOm7cOPX73/++unbtWjUvL0/9xje+cQ5aKcSZkTH+uSFj/NMj4/szI2P83iFj/DMjY/zeIWP83tMfx/iyEK04oc2bN+N0OsnKymL06NHH7J8zZw5At185ET1nMpkYOnQoALW1tbFtTD/y4YcfsmLFCh544AGpFXqKfD4f8+fPx2w2c9NNN8W6Of1aT2fNJSQknOWWDEzLli0D4Morr4zObuqQmprKxIkTCQaDrFixIhbNGxBGjhwJyO+f0/Hf//3fQGQmnhD9iYzxzw0Z4586Gd+fGRnj9x4Z459dMsY/+2SMf/r6yhhfQntxQrt27QI47kJUhYWFAJSUlJyzNg1EoVAo+rXP5OTkGLemf6ivr+fpp59m9OjR3HbbbbFuTr+zY8cOWltbKSwsxGw2s2bNGp555hl+/vOf88orr7B///5YN7HfsNlsjB8/nkAgwB//+EfUTkvFOJ1O3njjDQC+8Y1vxKqJ/VrH76FRo0Z1u7/j99Pu3bvPWZsGmoMHDwJ0+UqtOLl//OMfrFmzhgcffJBBgwbFujlCnBIZ458bMsY/NTK+P3Myxu89MsY/u2SMf/bJGP/09KUxvtS0Fyd0+PBhANLT07vd37Hd6XTidrvPy9W9e8NHH31EY2MjiYmJTJgwIdbN6ReefPJJXC4Xv/jFL9Bo5PPHU7Vv3z4AkpKSuP/++1m4cGGX/c899xzz5s3jgQceiEXz+p1f/vKX3Hnnnbz44ossWLCA/Px82tra2LRpE2azmWeeeYapU6fGupn90sl+D6WlpXU5Tpy6N998E4BZs2bFtiH9SE1NDb/+9a8ZO3Ys3/72t2PdHCFOmYzxzw0Z458aGd+fORnj9y4Z4589MsY/+2SMf+r62hhfQntxQh6PB+C4K01bLJbofRnQn56Kigp+/etfA/DjH/8Yg8EQ4xb1fQsXLmThwoV8//vfj37lS5ya5uZm4MjXEh9++GGuvfZatFotn376Kc888wwvvvgiGRkZMnukB3Jzc3nnnXd44IEH2LJlCwcOHIjuu/jiixk+fHjsGtfPnez3UMfvHbfbfc7aNJC89dZbrF+/nvj4eO6+++5YN6ffeOyxx2hra+N//ud/JFgS/ZKM8c8+GeOfGhnf9w4Z4/cuGeOfPTLGP7tkjH96+toYP/YtEOI85nK5uPfee3E6nVx11VV885vfjHWT+jyn08mTTz7JkCFD+MEPfhDr5vRb4XAYgEAgwLx587jzzjtJS0sjOTmZW2+9lQcffBCAF198MZbN7DfWrl3LV7/6VVpbW3nttdfYsGEDn3/+OU8++SRr1qzhlltuYeXKlbFuphBdrFq1il//+tdoNBqefvpp+epsD/3zn/9k2bJlzJ07l/z8/Fg3RwjRB8kY/9TI+L73yBi/d8kYX/RHMsY/PX1xjC+hvTihjlk2Xq+32/0dn44CMgPnMPNJHQAADmJJREFUFPl8Pu655x5KSkq46KKLePbZZ2PdpH7h6aefpr6+nieeeAKj0Rjr5vRbnWfQdTfLpuPN5eHDhykvLz9n7eqPnE4nDzzwAH6/n1dffZVp06bhcDhIS0vjpptu4sknn8Tn8/HYY48RCoVi3dx+52S/hzpm38jvoFOzbds2fvCDHxAMBnnyySeZOXNmrJvULzQ2NvLLX/6SoUOHcu+998a6OUKcNhnjnz0yxj91Mr7vPTLG7z0yxj+7ZIx/dsgY//T01TG+lMcRJ5SRkQFAdXV1t/s7tsfHx8t/pqcgEAjwwx/+kPXr1zNu3DhefPFF+cpsDy1ZsgSj0ciLL754zAyRuro6AH72s59hNpv59re/zVVXXRWLZvZ5mZmZABgMhmi9wM6sViuJiYk0NjZSV1dHdnb2uW5iv7F8+XKcTicXXXRRtF87u+KKK9Dr9VRUVFBeXs7QoUPPfSP7sYyMDJqbm6muru726/I1NTXR40TP7Nmzh7vuuguPx8PPfvYz+Xr8Kdi8eTNNTU1YLBbuvPPOLvtaWlqASD3hW2+9FYCXXnpJxkeiT5Ix/tkhY/zTI+P73iNj/N4jY/yzS8b4vU/G+Kevr47xJbQXJ1RQUABAcXFxt/t37twJ0Ge+OtIfhMNhHn74YVasWMHIkSN55ZVXusyIECfn8/lYv379cfdv374dkAVXTqSwsBAAv9/fba3aUChEa2srgPz9PImOAaXdbu92v06nw2Kx0NzcHK0zKnquoKCAXbt2sWPHDqZPn37M/o7fT1L/tmcOHjzIHXfcgdPp5L777uOOO+6IdZP6pcrKSiorK7vd53a7o7+jZOad6KtkjN/7ZIx/ZmR83ztkjN97ZIx/dskYv3fJGL939LUxvoT24oQmTJhAfHw8FRUVbN++ndGjR3fZv2DBAkAGTz2lqiqPPvoon376KcOGDeONN94gLi4u1s3qVzZu3HjcfTNnzqSyspIFCxaQm5t7DlvV/wwaNIiioiKKi4tZt27dMV+b27hxI/+/vfuPqar+4zj+Ai4IFE0Bt65RIOa9Ja0fWlq5aQmzjTVjImNJIBWrCZlbW1DLkKZt6tr6I8cfFYFiuZEwSparGWkTCDBvt5V0b6NagRAKy12y4l673z/8epO8kOi93AM+HxvTfc75HN6cIffF28/5XLfbrZiYGKWmpoaoyqnh/B6B3377rTwej0ym0S+tP/30ky/I+1ulg/E9+OCDamho0Mcff6ySkhKFhYX5jg0MDOjLL7+UyWTSsmXLQljl1NDX16fCwkKdPHlShYWFevbZZ0Nd0pSTkZEhh8Ph91h7e7sKCgp0xx13qK6ubpIrAyaGjB9YZPwrQ74PHDJ+4JDxg4uMHzhk/Ctn1IzPnvYYl8lkUkFBgSTplVde0fDwsO9YU1OTDh8+rFmzZik7OztUJU4p27ZtU319vZKSkrRr1y4lJCSEuiRcxZ566ilJ0o4dO9TT0+Mb//XXX/Xqq69KktasWcNj3f9h2bJlio6OVm9vr1577TV5PB7fsaGhIW3atEmStHjxYiUmJoaqzClrxYoVSklJkdPp1FtvveUbHxkZUXl5uTwej7KzsxUfHx/CKo1vaGhIjz/+uE6cOKHc3Fy9+OKLoS4JQAiR8QOLjA8jIeMHBhk/uMj4gUHGn97CvF6vN9RFwNhGRkb05JNPqqOjQwkJCbrnnnt06tQpHT16VJGRkaqsrOR/Py/BwYMHVVJSIklasmTJmHuzZWRkKCMjYzJLmzZYiTNxFRUV2rt3r2JjY7Vw4UKFh4fLZrPJ5XLpzjvvVE1NjWJiYkJdpuG9//77Ki8v199//605c+ZowYIF+vPPP2W32+VyuZSYmKg9e/Zo7ty5oS415A4dOjRqv9rjx4/L7Xbr1ltv9f3yuHz5ct/PS0n65ptvlJ+frzNnzigtLU3Jycmy2+3q7e2VxWLRe++9N+ajy9PVRO9jSUmJDh48qKioKGVmZo5azXSh0tLSq+6Xo8v5nvSHlfaYasj4gUHGDy7y/eUh4wcGGf/SkfEDg4wfONMh47M9Dv5TVFSUqqqq9M477+jDDz9Uc3OzYmNjlZ6erpKSEqWlpYW6xCnh/JtXSOf+0Y/lhhtuINBj0lRUVGjRokV69913ZbPZ5PF4lJKSoocffljr1q3TjBkzQl3ilJCTkyOLxaJdu3bp2LFjOnz4sCIiIpSUlKScnBwVFRWx6u7/hoaGZLfbLxrv6ury/f3fj2vfdtttamxs1BtvvKG2tjY5nU5df/31KioqUnFx8VX5JokTvY/nX4NGRkbU2Ng45nWfeeaZqy7QX873JDAdkPEDg4wPIyLjBwYZ/9KR8QODjB840yHjs9IeAAAAAAAAAACDYE97AAAAAAAAAAAMgqY9AAAAAAAAAAAGQdMeAAAAAAAAAACDoGkPAAAAAAAAAIBB0LQHAAAAAAAAAMAgaNoDAAAAAAAAAGAQNO0BAAAAAAAAADAImvYAAAAAAAAAABgETXsAwFWvp6dHVqtVVqs11KUAAAAACAAyPoCpzBTqAgAAU0N+fr46Ojou6VyHwxHkagAAAABcKTI+ABgTTXsAwISYzWaZzeZQlwEAAAAgQMj4AGAsNO0BABOSnZ2tDRs2hLoMAAAAAAFCxgcAY2FPewAAAAAAAAAADIKV9gCAoOnp6VF6erqkc3tgNjc3q7q6Wt999508Ho/mz5+vxx57TKtWrRrzGt3d3Xr77bfV3t6ugYEBxcTEyGq16pFHHtHq1asVERHhd57H49H+/fvV1NSk48ePy+VyadasWUpOTtaKFSuUk5OjuLg4v3OPHj2qN998U3a7XX/88YeSk5OVm5urvLw8hYWFXfmNAQAAAKYoMj4ABB9NewDApKitrdXWrVs1c+ZM3XTTTerv75fdbpfdbtfXX3+tTZs2XTTno48+Umlpqdxut2JjY2WxWHT69Gl1dnaqs7NTBw4cUGVlpaKjo0fNGxoaUnFxsWw2myRp9uzZuuWWWzQ0NKRjx46ps7NTaWlpWrJkyUWfs6GhQS+99JKuu+46JSUl6cSJE3I6ndqyZYt6e3tVVlYWnBsEAAAATDFkfAAIDrbHAQBMiu3bt6u4uFgtLS2qr6/XkSNHVFFRofDwcNXW1urAgQOjzu/u7tYLL7wgt9utnJwctbS0qKGhQZ9++qmqq6sVFxenlpYW7dixY9Q8r9erjRs3ymazyWw2q6amRkeOHNG+ffvU3Nys9vZ2bd68WYmJiX7r3Lx5s8rKytTa2qr6+nq1tbXpueeekyRVV1fr559/Ds4NAgAAAKYYMj4ABAdNewDAhOzcuVNWq3XMj+LiYr/zFi9erI0bN8pkOveQV1hYmB599FGtWbNGklRZWTnq/KqqKv3111+yWCzasmWLYmNjfcfuv/9+32qYuro6DQwM+I599tln6ujoUFRUlKqqqnTfffeNum5cXJzWrl2refPm+a1z1apVKiwsHPVI7tNPPy2LxSKv16tDhw5d4p0CAAAApgYy/qFLvFMAMDlo2gMAJsRsNmvhwoVjftx8881+561bt27ccafTqb6+Pt/4559/LkkqKCjwu8dkVlaWEhIS5Ha71dra6hv/5JNPJEkrV64cM7SPJy8vz+/4XXfdJUmswgEAAMC0Q8Yn4wMwFva0BwBMSHZ2tjZs2DDhefPnz/c7PnfuXJlMJnk8HnV3d8tsNsvlcunkyZOSJIvF4ndeZGSkUlNTNTg4qB9++ME37nQ6Jf0TwCcqJSXF73hCQoIk6ffff7+s6wIAAABGRcYn4wMwFlbaAwAmxVj7S0ZERGjmzJmS/gnLF4bmseZJ59586t/nDw8PSzr3iOzluPAR3QuFh597yfR6vZd1XQAAAGC6IeMDQHDQtAcATIpTp075HT979qx+++03SdI111wz6s/x5knyrdS58Pxrr71WkuRyua6oXgAAAADjI+MDQHDQtAcATIrvv//e7/iPP/4oj8cjSb79KePi4nwrbM4/CvtvHo/H98hsamqqb9xqtUqSbDZbYAoHAAAA4BcZHwCCg6Y9AGBS7N69e9xxi8Uis9nsG1++fLnvuL/HVT/44AMNDg4qMjJSS5cu9Y0/9NBDks69WdWF+2ACAAAACCwyPgAEB017AMCkaG9v186dO30rbrxer+rq6rRv3z5J0vr160ed/8QTT2jGjBlyOp0qLy/XmTNnfMfa2tq0fft2SVJubq5vxY4kPfDAA7r33ns1MjKioqIitbe3j7ru8PCw9u7dq+7u7qB8nQAAAMDVgowPAMFhCnUBAICppb6+Xq2treOe8/LLL2vBggWjxsrKyrR161bV1tbqxhtvVH9/v2+/yrVr1yozM3PU+fPmzdO2bdtUWlqquro6NTU1KTU1VadPn9Yvv/wiSVq6dKmef/75iz7/66+/rvXr1+urr75SQUGBZs+eLbPZrMHBQfX39+vs2bPavXu371FdAAAA4GpGxgcAY6FpDwCYkL6+PvX19Y17jr83iMrPz9ecOXNUU1Ojrq4ueTwe3X777crLy1NWVpbf62RmZspisaiqqkpffPGFHA6HoqOjdffddysrK0urV69WRETERfPi4+O1Z88eNTY2av/+/XI4HOrq6lJ8fLwWLVqk9PR0paWlXdbXDwAAAEw3ZHwAMJYwr79NxAAACICenh6lp6dLkhwOR4irAQAAAHClyPgAEHzsaQ8AAAAAAAAAgEHQtAcAAAAAAAAAwCBo2gMAAAAAAAAAYBA07QEAAAAAAAAAMAjeiBYAAAAAAAAAAINgpT0AAAAAAAAAAAZB0x4AAAAAAAAAAIOgaQ8AAAAAAAAAgEHQtAcAAAAAAAAAwCBo2gMAAAAAAAAAYBA07QEAAAAAAAAAMAia9gAAAAAAAAAAGARNewAAAAAAAAAADIKmPQAAAAAAAAAABvE/B4lDjUohdv4AAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Activation: ELU, optimizer: adam_optimizer, batchnorm: true\n", + "Activation: ELU, optimizer: adam_optimizer, batchnorm: false\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABe0AAAGgCAYAAAA3q0zLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVzVVf7H8dcFLjsKssnibuJu4lbuW2lmU+Y02qLZtGirTXvWpPYrm3KaFq100jKbmbQSy8wld1NzQS0XFBVRWWRTUdm5cH9/4L1BgIJcuIDv5+PBQ/ku53zuEfXczz3fzzGYzWYzIiIiIiIiIiIiIiJidw72DkBERERERERERERERIooaS8iIiIiIiIiIiIiUksoaS8iIiIiIiIiIiIiUksoaS8iIiIiIiIiIiIiUksoaS8iIiIiIiIiIiIiUksoaS8iIiIiIiIiIiIiUksoaS8iIiIiIiIiIiIiUksoaS8iIiIiIiIiIiIiUksoaS8iIiIiIiIiIiIiUksoaS8iIvXKuHHjCAsLIyIiwt6hiIiIiIjUOREREYSFhTFu3LhS56oy1x48eDBhYWHs2LHDFmFWWFhYGGFhYcTHx9dovyIiVeFk7wBERKTuCgsLu6r73nrrLe68804bRyMiIiIiUr+8/PLLRERE0KVLF77++usK3fOXv/yF3377jbvuuos33nijmiO0n/j4eJYuXYqXlxcTJkywdzgiIjalpL2IiFy18PDwMo/v2bMHgObNm9OoUaNS5319fastpqCgIFq0aIGXl1e19SEiIiIiUhPuvPNOIiIi+O2334iJiaFVq1aXvT4mJobffvsNgNGjR9s8nto0105ISGD27NmEhIRcNmnfokULAIxGYw1FJiJSdUrai4jIVfvqq6/KPG5ZgT9x4sQaX1H/zjvv1Gh/IiIiIiLVpUePHjRr1oyTJ0+ydOlSnnvuuctev2TJEgBatWpF165dbR5PXZxrr1q1yt4hiIhUmmrai4iIiIiIiIjUUpZFMN9//z0FBQXlXldQUMCyZctK3CMiInWTkvYiIlKjim9Adfz4cV588UX69+9Phw4deOmll6zXRUZG8vbbb/PnP/+Zvn370rFjR3r37s0jjzzC+vXry22/vM2xduzYQVhYGIMHDwZg3bp1jBs3ju7du3P99ddz11138eOPP1bPixYRERERuUqjRo3C0dGRlJQUtmzZUu51mzdvJjU1FScnJ+644w6SkpL44osvePDBBxk6dCidO3cmPDycO++8k48//piMjIxKx3KljWh37NjBX//6V7p3707Xrl0ZPXo033777WXbzMzM5Pvvv+eZZ57hlltuoVu3bnTu3Jmbb76ZadOmERcXV2Yc48ePB4rK5Fg2m7V8Fd/s9kob0W7evJlJkybRu3dvOnbsSJ8+fXjsscf45Zdfyn2Nel8hItVN5XFERMQufv31Vz755BMKCgpo3bo1DRs2xGAwWM8//vjjpKen4+3tjb+/PwEBAZw+fZpNmzaxadMmHnnkEZ599tmr6nv27NnMmjULPz8/mjZtSlxcHPv27eOZZ57h3Llz3HfffbZ6mSIiIiIiVRIYGEifPn3YvHkzERERDBgwoMzrLIn0/v374+fnx9tvv81nn32Gq6srfn5+tGnThvT0dA4fPszBgwf58ccf+d///kfDhg1tEuc333zD3//+d8xmM15eXrRs2ZLk5GReeeUVjhw5Uu59O3fu5IUXXsDJyQlfX1+aNWtGdnY2iYmJfPXVVyxfvpzPPvuMzp07W++xvJYjR47g7OxMx44dS7RZ0Zr7b775JgsXLgSK9t1q27Yt8fHxrFu3jnXr1vHoo4/y9NNPl3u/3leISHVR0l5EROzigw8+4JZbbmHq1Kk0aNAAgJycHOv55557jhtuuIEmTZqUuG/btm0899xz/Pvf/2bIkCFcf/31leo3JSWFTz/9lH/+85/cdtttAJhMJt58803+97//8e6773LHHXfg6elZtRcoIiIiImIjo0ePZvPmzaxfv57z58+XSrSfPXuWDRs2WK+FouT9oEGD6NatG46OjtZrT58+zeuvv8769et59913ef3116scX0xMDNOnT8dsNjNu3DheeOEFnJ2dMZvNfP3110yfPr3EAp3imjVrxocffkjfvn3x8PCwHs/IyGD+/Pl8/PHHvPTSS/z444/WNv7+97+zY8cOxo8fj7+/f7l7bV3O0qVLWbhwIY6Ojvz9739nzJgxODg4UFBQwMKFC3n77bf55JNPaNu2LcOHDy91v95XiEh1UnkcERGxixYtWvD2229bE/YArq6u1t/fddddpRL2AL179+Zvf/sbUDTRrqz8/HwmTpxonVgDODk58dJLL9GoUSOysrJKPE4rIiIiImJvgwcPxsfHh7y8PJYvX17q/A8//EB+fj5+fn4MHDgQgBtvvJGePXuWSNgDBAUF8a9//Quj0cgPP/xw2Tr5FTV//nzy8/Np3749r776Ks7OzgAYDAbGjBnD6NGjMZlMZd7bsmVLhg0bViJhD+Dp6cnkyZMJDw8nJiaGffv2VTnO4j7++GMAxowZw913342DQ1GKzNHRkQceeMD6fuGjjz4q8369rxCR6qSV9iIiYhd33HEHTk6X/2/o2LFjrFq1iujoaNLT060TfUv9zUOHDl1V3/fcc0+pYy4uLrRv354tW7Zw6tSpq2pXRERERKQ6ODs7c9ttt7Fw4UIiIiK49957S5y3lMb505/+VGKOnZGRwYoVK9i7dy8pKSlkZ2djNpuBooR6VlYWJ06coFWrVlWKb/PmzQDlloO5//77+frrr8u9v6CggA0bNvDLL78QFxdHZmYmhYWFAJw8eRKAqKgounTpUqU4LWJiYqxz/gceeKDMax588EGWLVvGkSNHSExMJDg4uNQ1el8hItVFSXsREbGL66677rLn//nPfzJv3jzrm4qypKenV7pfHx8fvL29yzzn6+sLFG2GJSIiIiJSm4wePZqFCxdy4MABjh49ap1PR0VFcfjwYes1Frt27WLy5MmcOXPmsu1ezZy6uIsXL5KamgqUP8dv0aIFTk5OZa62T0lJYeLEiURFRVVrnMXFxsYCRU/6Nm3atMxrWrdujaOjIwUFBRw/frxU0l7vK0SkOqk8joiI2IWbm1u553788Uc+/fRTDAYDTzzxBN9//z27d+/m0KFDREdHs2DBAoByH7G9HHd393LPWR6JvdwHBSIiIiIi9tC2bVs6dOgA/L6yvvjvu3TpQuvWrYGiFfZPPfUUZ86c4cYbb+Tzzz9n27ZtHDhwgOjoaKKjowkKCgKubk5dXPHEtCVZ/UeOjo7lJrhffvlloqKiaNKkCf/617/YsGED+/fvt8Z5++232yTOsmIuL14oKnXj4+NT4vri9L5CRKqTVtqLiEitY3njMWHCBJ588slS5225ykZEREREpK4YPXo0Bw8eZNmyZTz77LMUFhbyww8/WM9ZbNq0ibNnzxIUFMScOXNK7B0FRcnk8+fP2ySm4rXoz5w5Q0hISKlrCgoKypzDp6amsmXLFgA++eSTMlfqV8fc3xLz5Z5CMJlMnDt3rsT1IiI1RSvtRUSk1omPjwegR48eZZ7/7bffajIcEREREZFaYeTIkbi4uJCWlsbmzZtZv3496enpuLm5ceutt1qvs8ynO3XqVCphD3DkyBGysrJsEpOXlxf+/v5A0Z5UZYmNjS1zpbwlTm9v7zIT9iaTiQMHDpTZpsFguNqQadmyJQA5OTnl1p0/duyYdZPeqtb8FxGpLCXtRUSk1rGUzrHUxizu7NmzLF26tKZDEhERERGxu4YNGzJ06FAAli5dan1C9eabb8bT09N6nSVRX9Z8GmD+/Pk2jatfv34A/Oc//ynz/MKFC8s8bpn3Z2RkkJ2dXer8d999V+5qeMtrLOu+K2nZsiXNmjUD4PPPPy/zGsvxNm3aWEsJiYjUFCXtRUSk1rGssJ87d651kyiAuLg4Jk6ceFUTcxERERGR+sBSBmfDhg3W0jLFS+PA7/PpvXv3snjxYuvxvLw83n//fX744QeMRqPNYvrrX/+K0Wjk4MGDvPXWW+Tl5QFFZXi++eYbvv32W5ycSldobt26NT4+PphMJl5//XVyc3Ot51atWsUbb7yBi4tLmX02bdoUg8HA2bNnrRvxVsajjz4KwOLFi1m0aJG1/nxhYSFffPEF33//PQCPP/54pdsWEakq1bQXEZFa56GHHmLlypUkJCQwcuRImjdvjoODA8eOHcPT05MXX3yR119/3d5hioiIiIjUuBtvvJHg4GASExOBouR1z549S1zTvn17br/9dr7//ntee+01Zs+eTUBAACdPnuTixYs8/fTTfPPNNyQkJNgkpuuuu45XX32VadOmsWDBAiIiImjWrBnJycmkpKRw//33s3bt2lL9OTk58dxzz/HKK68QERHBmjVraNq0KWlpaSQnJ9O3b18aNWrEsmXLSvXp7e3NwIED2bBhA3/+85+57rrrrE8bTJkyhXbt2l025lGjRhEVFcXChQuZOnUqs2bNIigoiISEBM6ePQvApEmTGD58uE3GSESkMrTSXkREap3AwEAWL17MbbfdRoMGDaxvLu644w6WLl1K69at7R2iiIiIiIhdODg4MGrUKOv3o0aNKrO++1tvvcVzzz1HixYtOHfuHHFxcbRv356PPvrIusrclsaOHcvnn39O7969KSgoICYmhoCAAN544w2mTJlS7n1//vOf+eijj+jatSv5+fnExsbi4+PDCy+8wNy5c3F0dCz33rfffpv77ruPxo0bc/ToUXbu3MnOnTu5cOFChWJ+5ZVX+Pe//82gQYMoLCzk0KFDGAwGhgwZwoIFC/jb3/5W6XEQEbEFg9ny/I+IiIiIiIiIiIiIiNiVyuOIiIiIiEiV5OXl8fnnn7Ns2TLi4uJwd3ene/fuPProo3To0KHS7a1YsYIvv/yS6OhoAMLCwhg/fjy33HJLufekpaUxe/ZsNm7cSFpaGn5+fgwcOJAnn3wSX1/fUtcfOHCAjRs3snXrVo4dO0ZWVhY+Pj6Eh4czYcIEwsPDy+xn3Lhx7Ny5s9w4nn32WR555JFKvmIRERERkd9ppb2IiIiIiFy1vLw8HnzwQXbu3Imvry89evQgNTWV3bt3YzQa+eSTT+jXr1+F23vvvfeYM2cOzs7O9OnTB4CtW7eSl5fHY489xuTJk0vdk5CQwJgxY0hNTaVly5aEhYURHR3N8ePHrSXXgoKCrNebTCbrhwleXl506dIFLy8vjh07xtGjR3FwcGDKlCmMGzeuVF+WpP2wYcNwd3cvdX748OEMHDiwwq9XREREROSPlLQXEREREZGr9tFHH/Hhhx/SqVMnFixYYN0EcPny5Tz77LP4+Piwdu1a6/HLiYyM5N5776VBgwYsWrSIVq1aARATE8PYsWO5cOECixYtomvXriXuu//++9m+fTtjx45l2rRpGAwGzGYz06ZNY9GiRfTt25f58+dbrzeZTIwZM4aJEycyaNAgjEaj9dxXX33FtGnTcHR05IcffrDGYGFJ2q9bt47Q0NCrHjcRERERkfJoI1oREREREbkqJpOJhQsXAjB16tQSifmRI0cyYMAAzp07x5IlSyrU3rx58wCYNGlSiWR5q1atmDhxYolrLA4ePMj27dvx9vZmypQp1s0YDQYDU6ZMwdvbmy1btnD48GHrPU5OTixZsoSbb765RMIe4O6776Zv374UFBSwcuXKig6FiIiIiIjNKGkvIiIiIiJXZc+ePaSnpxMaGkqnTp1KnR8xYgQA69atu2Jbubm5bNu2DaDM2vWWtrZs2UJeXp71+IYNGwAYPHgwLi4uJe5xcXFh8ODBAKxdu7YiLwkoqqEPkJKSUuF7RERERERsRRvRioiIiIjIVTl06BBAuZvNtm/fHsC6oezlxMbGkpubi4+PD8HBwaXOBwcH4+3tTXp6OrGxsdbEuiWGjh07ltluhw4diIiIqFAMFqdOnQLAz8+v3GuWLFlCeno6ACEhIQwcOJDWrVtXuA8RERERkfIoaV/H7d27F7PZXOqxXhERERGp2/Lz8zEYDKXqt9cmiYmJADRu3LjM85bj6enpZGZm4uHhUW5bCQkJl23Lci49PZ3ExERr0t4SQ2Bg4GVjsLR/JbGxsWzcuBGAIUOGlHvdxx9/XOL7f/7zn9xxxx1MmzYNV1fXCvVVHs3xRUREROqnis7xlbSv48xmMzW5l7DZbCY/Px+j0WitFypXR2NpGxpH29A42o7G0jY0jrajsbQNe4xjTc7xrlZWVhYAbm5uZZ53d3e3/v5KSfsrtVW8vczMzFL3Fe/rSveUJy8vjxdffJH8/HxGjhxZ5hME3bt3Z/To0YSHhxMQEEBycjKbNm3iww8/ZOnSpeTl5fGvf/3rin1djmWOX1M/A2azGZPJhJOTk/6dqCKNpW1oHG1D42g7Gkvb0DjahsbRduwxlhWd3ylpX8dZVt+UVUO0OmRlZXHo0CFat25d7hsjqRiNpW1oHG1D42g7Gkvb0DjajsbSNuwxjvv376+RfuR3U6dO5bfffqN58+ZMnTq1zGsmT55c4vtmzZoxfvx4evXqxejRo/nxxx+ZMGECnTt3vuo4jEYjeXl55OfnX3UbV8NkMtVof/WZxtI2NI62oXG0HY2lbWgcbUPjaDs1PZYVeZpSSXsREREREbkqlg8wsrOzyzxvWQUPXHaVfUXaKt5e8bYs9xXv60r3lGXmzJlERETQuHFjPvvsMxo0aHDZ6/8oLCyMwYMHs3r1ajZv3lylpD0UvZmrqRr52dnZnDhxgubNm1/2SQe5Mo2lbWgcbUPjaDsaS9vQONqGxtF27DGWx44dq9B1StqLiIiIiMhVsWwYm5SUVOZ5y3Fvb+8rJs1DQkIu21bxc8U3qg0ODiYqKork5OTL3mNpvyxz5sxh3rx5NGrUiM8+++yy115O8+bNAUhJSbmq+4szGAw1/nSMm5ubnsixEY2lbWgcbUPjaDsaS9vQONqGxtF2anIsK1qGx6Ga4xARERERkXqqXbt2ABw8eLDM81FRUQDWTWMvp0WLFri4uHDu3Dnr5rLFJSYmkp6ejqurKy1atCgVw4EDB8ps1xJbeTF8+eWXvPfee3h5eTF//nxatWp1xVjLc/78eeDydflFRERERK5ESXsREREREbkq4eHheHt7Ex8fX2YN/hUrVgAwZMiQK7bl4uJC7969AVi5cmW5bfXt2xdnZ2fr8UGDBgGwfv16cnNzS9yTm5vL+vXrARg6dGipNpcuXcqbb76Ju7s7//73v2nfvv0V4yxPXl4eGzduBKBjx45X3Y6IiIiIiJL2IiIiIiJyVZycnBg/fjwA06dPJyMjw3pu+fLlbNq0CR8fH0aPHm09vm/fPoYPH87w4cNLtffQQw8BMHfuXGJiYqzHY2JimDt3bolrLDp06MANN9xAeno6M2bMwGw2A2A2m5kxYwbp6en07duXtm3blrjvp59+4pVXXsHZ2ZmPP/6Y8PDwK77eX375hQ0bNlBYWFjieGpqKk899RRJSUk0btyYm2666YptiYiIiIiUp87UtM/Ly+Pzzz9n2bJlxMXF4e7uTvfu3Xn00Ufp0KFDpdtbsWIFX375JdHR0UDR47Ljx4/nlltuKfeetLQ0Zs+ezcaNG0lLS8PPz4+BAwfy5JNP4uvrW6F+Z82axezZswGYNm0ad999d6VjFxERERGpLR5++GG2b9/Ozp07ufnmm+nRowdpaWlERkZiNBp555138PT0tF6fnZ1NbGxsmW11796diRMnMnfuXEaNGmVdeb9t2zZyc3N57LHH6Nq1a6n7ZsyYwZgxY1i0aBG7du0iLCyM6OhoYmJiCAgI4I033ihx/ZkzZ3jmmWcoKCigefPmfP/993z//fel2m3ZsiWPPPKI9fvo6Gjeeust/P39ad++PV5eXiQlJREVFUVWVhaNGjVi9uzZuLq6XtVYioiIiIhAHUna5+Xl8eCDD7Jz5058fX0ZNGgQqamprFmzho0bN/LJJ5/Qr1+/Crf33nvvMWfOHJydnenTpw8AW7du5emnn+bIkSNMnjy51D0JCQmMGTOG1NRUWrZsydChQ4mOjuarr75i/fr1LF68mKCgoMv2Gx0dzdy5czEYDNYVQCIiIiIidZmzszPz58/ns88+Y9myZaxfvx53d3eGDBnC448/XukFNs888wxt27Zl4cKF7NixA4D27dtz//33l7vAJiQkhO+++45Zs2axceNG1qxZg6+vL2PHjuWpp54qtcAmOzub/Px8oGgVf/FV/cX17NmzRNK+Z8+ejBkzhgMHDnDgwAEuXLiAs7MzzZs3Z8CAAYwfP55GjRpV6vWKiIiIiPxRnUjaf/rpp+zcuZNOnTqxYMEC60qd5cuX8+yzz/L888+zdu3aEit4yhMZGcmcOXNo0KABixYtsm40FRMTw9ixY/n444/p379/qRU8U6ZMITU1lbFjxzJt2jRr4n3atGksWrSIV199lfnz55fbb0FBAVOmTMHb25vOnTuzbt26KoyIiIiIiEjt4ezszKRJk5g0adIVr+3Vq5f1adfyjBgxghEjRlQqBj8/P6ZPn16ha0NDQ68YQ1nat2/P66+/Xun7REREREQqo9Yn7U0mEwsXLgRg6tSpJRLzI0eOZNmyZWzatIklS5Zw//33X7G9efPmATBp0iRrwh6gVatWTJw4kZkzZzJv3jw++ugj67mDBw+yfft2vL29mTJlCgaDAQCDwcCUKVNYtWoVW7Zs4fDhw6VqZVp89tlnHDhwgA8++MC6QZWIiMiV5OfnU1BQYO8wapxlM8nc3FwcHLQFT1VoLG2jquPo6OiI0Wi0dVgiIiJSB2mOr3lpVWgcbac2z/FrfdJ+z549pKenExoaSqdOnUqdHzFiBJs2bWLdunVXTNrn5uaybds2gDIfrR0xYgQzZ85ky5Yt5OXl4ezsDMCGDRsAGDx4MC4uLiXucXFxYfDgwURERLB27doyk/axsbHMmjWLIUOGMHz4cCXtRUTkii5cuEBaWpp1EnGtKSwsxMnJicTERE1Eq0hjaRu2GEcXFxf8/Pxo0KCBjaMTERGRukBzfM1LbUHjaDu1eY5f65P2hw4dAii3Fmb79u0BKvR4a2xsLLm5ufj4+BAcHFzqfHBwMN7e3qSnpxMbG0tYWFiJGDp27Fhmux06dCAiIqLMGMxmM6+++ipGo5GpU6deMUYREZELFy6QkJCAp6cnfn5+GI1G61Ne14qCggJyc3NxcXHB0dHR3uHUaRpL26jKOJrNZvLz8zl//jwJCQkAStyLiIhcYzTH17zUVjSOtlOb5/i1PmmfmJgIQOPGjcs8bzmenp5OZmYmHh4e5bZlGcDy2rKcS09PJzEx0Zq0t8QQGBh42Rgs7Rf33//+l8jISF577bVy769L8pJi8Nj9NabGj4B7qyvfICIilZaWloanpyehoaHX3ETewvK4sKurqyaiVaSxtI2qjqObmxteXl7Ex8eTlpampL3UKrknD+Cxewm5bqNwb3+DvcMREamXNMfXvNRWNI62U5vn+LU+aZ+VlQUUDUJZ3N3drb+/UtL+Sm0Vby8zM7PUfcX7utI9UJTEf/fdd+natSv33HNPuX1WldlstsZY3TKPROKceozz25bidOtjNdJnfZWdnV3iV7k6Gkfb0DjaTlXH0mQykZ2dTaNGjSgsLLRlaHWK2Wy2/not1vu0JY2lbdhqHL28vEhISODChQs4OV1+Km42m6/ZN/VSs3JP7sM59Rjnls4k92BPfG96AKN3gL3DEhGpN/Lz88nNzcXPz0//t4vUMwaDgYYNG5KQkEB+fr7NatzX+qR9Xfbaa6+Rn5/PG2+8Ua3/KOfn51tL+FQ3RycfGgB5x/dw6OB+cNCPUFWdOHHC3iHUCxpH29A42k5VxtLJyYnCwkJycnJsF1Adda3W+6wOGkvbqOo4FhYWkp+fz9GjRyt0vWWPJZHq5HnDnZw9cwbXk5FkHdlJ9vFf8e4zGu8bbsfgpA2URUSqyvKBvzalF6mfLH+3CwoKrp2kvWUVe3krFouvML/cKvuKtFW8veJtWe4rbzV7WfcsWbKELVu28Pjjj9O6devLxlVVRqOx2vuwyMpqSvqv3+GQe5EWrvm4tiq9ObBUTHZ2NidOnKB58+aXffpDLk/jaBsaR9up6ljm5uaSmJiIi4sLrq6u1RBh3WA2m621BbUaqWo0lrZhy3E0Go00a9YMFxeXy1537NixKvUjUlEOzq5ktx1KSL87yNz0H3JORXFu01dc3LcBv2EP4d6qq71DFBGpFzQXE6mfquPvdq1P2ls2jE1KSirzvOW4t7f3FZP2ISEhl22r+LniG9UGBwcTFRVFcnLyZe+xtA+wbt06ALZu3cquXbtKXH/8+HEAFixYwIoVKwgPD+dvf/vbZWO/HIPBUG7pnuqQ0rgtrid3YTq+G/dOfWus3/rKzc2tRv/86iuNo21oHG3nasfSwcEBBwcHHB0dr+n6hJbVSAaD4ZoeB1vQWNqGrcbR0dERBwcH3NzcrvjBnN7YS00z+jUh6L7XyTy4hTNrF2A6l0TSojdwD+uF700TMDZUyRwRERGRmlDrk/bt2rUD4ODBg2Wej4qKArBuGns5LVq0wMXFhXPnzpGYmFgiMQ9FG86mp6fj6upKixYtSsSwdu1aDhw4UGa7ltjKiuHXX38tN54TJ05w4sQJvLy8rhh7bZIX1B7Xk7vIPLKTwvxcHIyXXyUmIiIiIiJ1g8FgwLNjP9yv68a5zYs5v2sFWdE7yI7Zq5I5IiIiIjXEwd4BXEl4eDje3t7Ex8ezf//+UudXrFgBwJAhQ67YlouLC7179wZg5cqV5bbVt2/fEvVDBw0aBMD69etL1THNzc1l/fr1AAwdOtR6/OOPPyY6OrrMr1GjRgEwbdo0oqOj+fjjj68Ye21S0DAYBy9fzHk5ZMf8au9wRERERETExhxc3PG96QFCH/onrk3bYzblcW7TV8R/+jeyYvbaOzwRERGReq3WJ+2dnJwYP348ANOnTycjI8N6bvny5WzatAkfHx9Gjx5tPb5v3z6GDx/O8OHDS7X30EMPATB37lxiYmKsx2NiYpg7d26Jayw6dOjADTfcQHp6OjNmzMBsNgNFtU1nzJhBeno6ffv2pW3btjZ61bWcwYBrm54AZBzaaudgRETkWjJ48GDCwsIICwtj3759ZV4THx9PWFgYffr0qdZYduzYQVhYGC+99FK19lMdIiIiCAsLY9asWfYORURqOeeAZgTd9zr+t0/G0cOb/LOnSVr0BknfvoPpfKq9wxMRkTpO83vb0Py+/qn1SXuAhx9+mJ49e7J//35uvvlmJk+ezL333suzzz6L0WjknXfewdPT03p9dnY2sbGxxMbGlmqre/fuTJw4kfPnzzNq1CgmTZrEpEmTGDVqFBcuXOCxxx6ja9fSGy3NmDEDf39/Fi1axK233srf/vY3br31VhYtWkRAQABvvPFGtY5BbePW5gYAso7upjA/9wpXi4iI2N77779v7xBqzKxZswgLCyMiIsLeoYjINchgMODVsT9NJn1Ig54jweBAVvQO4uY8xbmtSzCb8u0dooiI1AOa34v8rk4k7Z2dnZk/fz5/+9vf8Pb2Zv369Rw7dowhQ4awePFi+vfvX6n2nnnmGd577z3at2/Pjh072LFjB+3bt+f9999n8uTJZd4TEhLCd999x9ixY8nMzGTNmjVkZmYyduxYvvvuO4KCgmzxUusMp8AWODUMwJyfQ9axPfYOR0RErjGurq5lbvYuIiLVx8HVAz9LyZwm7YpK5mz8n0rmiIhIlWl+L1JSrd+I1sLZ2dm6Kv5KevXqRXR09GWvGTFiBCNGjKhUDH5+fkyfPr1S95TlH//4B//4xz+q3I49GQwGPNr35vwv35F5aCue7W60d0giInINuffee5k/fz7vv/8+//3vf+0djojINcU5oBlB4/6PjAObObtuobVkjntYL/xuegCnhv72DlFEROoYze9FSqoTK+2ldvJsV1RLLOvobgrzsu0cjYiIXEtGjRpF8+bNiYyM5Oeff67UvVFRUTz99NP07duXjh070rdvX/72t79x6NChq47n7NmzvPbaa/Tr149OnToxbNgw5syZQ15eXqlrT5w4wezZsxk7dqw1ht69e/Poo48SGRlZ6vrBgwcze/ZsAF5++WVrzc+yHqc9efIkr732GjfddBOdO3emZ8+ejB49mo8//pj09PQyY09OTubll1+mT58+dOrUiVtuuYWFCxeWee24ceMICwsjPj6eTZs2cc8999C1a1fCw8N58MEH2b9/f7ljtH37diZNmsQNN9xAx44dGThwIFOmTCEuLq7UtZa6pePGjSMzM5OZM2dy00030bFjRx577DEAXnrpJcLCwtixYwc7d+5kwoQJdOvWjR49evDYY49x4sQJAAoLC/nss8+49dZb6dy5M/369WPmzJll/tmISMUZDAa8Og0op2ROhErmiIhIpWh+r/m95vclKWkvV825cQucfBpjNuWpRI6IiNQoBwcHnnjiCQA++OCDCt+3cuVK/vKXv7By5UoCAwMZNmwYAQEBrFixgrvuuouffvqp0rGkp6dz1113sXr1arp27UqfPn1ISUnhvffe47HHHqOgoKDE9YsXL2bWrFlcvHiRdu3aMXToUIKDg1m/fj3jx4/nxx9/LHH9sGHDrJvdh4eHM2rUKOtX06ZNrdetXbuWP/3pTyxevBiz2cygQYMIDw8nOzubefPmceTIkVKxJyYmMnr0aH755Rd69OhBeHg4cXFxvPnmm3z00UflvubFixczceJECgsLGThwIEFBQWzZsoVx48YRExNT6voFCxZw//33s3HjRlq2bMnNN9+Mu7s7S5Ys4Y477mDPnrLnETk5OYwbN45FixbRqlUrBg8ejJ+fX4lr1q1bx4QJE8jMzKR///74+fmxbt067rvvPs6ePcvTTz/Nhx9+SEhICH369CEnJ4d58+YxderUcl+fiFScpWROyIMzi5XM+W9RyZzjv9o7PBERqSM0v9f83kLz+0vMUqft27fPvG/fvhrrLzMz0xwZGWnOzMw0m81m85n1/zHHvHGn+fQ3b9dYDPXFH8dSro7G0TY0jrZT1bHMzs42R0VFmbOzs8u9prCw0Jydk18nvgoLC69qHEwmkzkjI8NsMplKHB80aJC5TZs25mPHjpkLCgrMI0eONLdp08a8Zs0a6zVxcXHmNm3amHv37l3i3qSkJPP1119vbtOmjXnp0qUlzn399dfmNm3amLt27WpOTk6uUIzbt283t2nTxtymTRvzvffea7548aL13OnTp8033XSTuU2bNuYvvviixH27d+82nzx5slR7v/32mzk8PNzco0cPc1ZWVolzH374oblNmzbmJUuWlBnLqVOnzF26dDGHhYWZ//Of/5QYd5PJZN65c6c5Pj7eemzJkiXW2F977TVzfn6+9VxkZKS5bdu25uuvv77Uz/F9991nbtOmjbljx47mbdu2WY8XFhaaX3vtNXObNm3ML730Uol7Dhw4YG7Xrp25Y8eO5i1btpS45/333ze3adPG3L9/f3NOTo71nOXPsE2bNuZRo0aZz5w5U+o1v/jii+Y2bdqYw8LCzCtXrrQeLygoMD/zzDPmNm3amG+99VbzsGHDzElJSdbzCQkJ5p49e5rDwsLMcXFxZY5nWcr7maysivwdt6jpeZ7UHvae41+twsJC84V9G80n3vurOeaNO80xb9xpTvr2HXN+eoqNIq39NKeyDY2jbWgcbUdz/Oqb42t+r/m9RU3P783m2j3HrzM17aV28mjfh/RtEWTH7KUwNxsHFzd7hyQiUq+ZzWZenL2FQyfO2juUCmnXvBFvP9EXg8Fg87YdHBx46qmneOKJJ/jggw8YMmTIZfv55ptvyMrKYuDAgdxxxx0lzt11112sXLmSrVu38s033/D4449XOA6DwcDUqVPx9PS0HmvcuDHPPvssTz31FAsXLmT8+PHWc+Hh4WW207lzZ+677z7mzJnDjh07GDhwYIVj+Pzzz8nOzmbMmDHce++9pc63b98eV1fXUseDg4OZMmUKTk6/Twm7detGv3792LRpEwcOHKBnz56l7hs3bhw33vj7fjYGg4HJkyezaNEiduzYUeLa//znPxQUFDB27Fj69OlT4p4nn3ySVatWcfz4cVauXFnqzwXgtddeo1GjRuW+9ltvvZXhw4dbv3dwcOChhx5i+fLlHD16lPnz5xMYGFjiNd922218+eWX7Nq1i9DQ0HLbFpHKsZTM8biuO2c3L+ZC5EoyD28nK2Yv3n3+jHev2zA4Ge0dpohIraM5fhHN73+n+b3m9yqPI1XiHNAMY6PgohI5R0vX6RIREalON910Ex06dODIkSOsWLHistfu2rULgD/96U9lnh81alSJ6yqqbdu2XHfddaWO33zzzbi5uREXF0dycnKJczk5Ofz000/861//4u9//zsvvfQSL730knVCbKnXWFFbt24F4M9//nOl7uvVqxcuLi6ljrds2RKAlJSUMu8bMGBAqWONGjXC29u71D2XG3cHBwduv/32EtcV5+fnx/XXX3/Z19CvX79SxyyPFRuNxhJvPiyaN28OlP/6RKRqHFw98Lv5r7+XzMnPvVQy5xmVzBERkcvS/L6I5vclXYvze620lyoxGAx4tO9N+pZvyTi0Fc+Opf9iiYiI7RgMBt5+oi+5eQVXvrgWcHF2rJZV9sU9/fTTPPzww8yaNavEiow/skysy1t50aRJkxLXVVRISEiZxw0GA0FBQRw/fpykpCTrapDdu3fz9NNPX3ZCmZGRUakYTp8+Dfw+Wa2ooKCgMo97eHgAlLuZU3BwcLn3/XFDrKqMe3n9FFd8lU3xOKDoTYGjo2Op8+7u7kD5r09EbMMlsDlB4/6PjAObOLvuS/LPJpL01f/h0fYGfIdOwKmhv71DFBGpFTTHL0nze83vy4oDrq35vZL2UmWe7fqQvuVbsmL2UpiTiYOrh71DEhGp1wwGA64u+i/con///nTr1o3du3fz3Xff0atXL3uHVK6srCyefPJJzpw5w8SJE7n11lsJCQnB3d0dBwcHFi9ezGuvvYbZbK6ReBwcru6hy+r+IMairEd+/+hyr+FqX5+I2E5RyZyBeFzXo1TJHJ++f6Zhr9swOKpkjoiI5vi/0/z+6ml+X39cO69Uqo3RvwlGv1AoMJF5tHKPHImIiNjC5MmTAfjoo48wmUxlXmNZsREfH1/mecvxslZ2XE5iYmKZx81ms3WFjKXNyMhIzpw5w7Bhw3jmmWcICwvD09PTOvk8efJkpfq2sKyoqexjtzWhusZdROqWskrmnN1gKZnzm73DExGRWkbze83vr3VK2kuVGQwGPNsVbTyRGbXNztGIiMi1qFevXvTu3ZuEhAS++eabMq/p0aMHAMuWLSvz/NKlS0tcV1GHDh0iJiam1PG1a9eSnZ1NaGgojRs3BuD8+fMA1u+Ly8vL46effiqzD6OxaBVqQUHZj0xbNoCKiIioVOw14XLjXlhYyPfff1/iOhGp3ywlc/z/9CSOHg3JP5NI0levk7zkn5gupNk7PBERqSU0v9f8/lqnpL3YhEe7ok0gso7/RkF25ep0iYiI2MLTTz8NwH//+98yz9911124u7uzceNG60TSYsmSJWzZsgV3d3fuuuuuSvVrNpuZNm1aiTqVycnJ/POf/wRg3Lhx1uOWDaBWr15douZlXl4e//d//0dcXFyZfQQEBACU+eYBYMKECbi6urJ48WIWLVpU6vHbqKgokpKSKvW6bOXee+/FwcGBb775hl9++cV63Gw28/HHHxMTE0NgYCC33HKLXeITkZpnKZkTOmkWDXqMAIMDmYd/IW7OU6Rvi8BckG/vEEVEpBbQ/F7z+2uZimWJTTj7N8Ho35T81FNkHdmJV5fB9g5JRESuMV26dGHQoEFs2LChzPOBgYHMmDGD559/nhdeeIEvv/ySZs2aceLECQ4cOIDRaOTtt9+2TqAratCgQRw5coShQ4fSs2dP8vPz2b59O1lZWfTp06fEpL5Dhw4MGDCATZs2MXz4cHr27ImLiwt79uzh4sWLjBs3ji+//LJUH3379sXV1ZUvvviCo0ePEhgYiMFgYPTo0YSHh9O0aVNmzpzJc889x9SpU5k/fz4dOnQgJyeH2NhYTpw4wYIFC8rdVKs6dezYkRdffJG33nqLBx54gO7duxMYGGhdweTp6cn777+Pi4tLjccmIvbl6OqB380P4tVlCGmrPiU3/jBnN/yXi/s24DvsIdxbdLF3iCIiYkea32t+fy3TSnuxGc/2RY/uZKhEjoiI2MnkyZMvu4nSLbfcwuLFixk+fDinT59m1apVJCUlccstt/D1119z8803V7pPb29vvv76awYPHsyePXv4+eefCQgIYPLkycyZMwdHR8cS18+ePZvJkyfTuHFjtm3bxq5du+jWrRtLliyhffv2ZfYREBDAnDlz6NatG3v37iUiIoJvv/22RI3Lm2++maVLlzJ69GhMJhNr165l7969uLu78/DDD9OmTZtKvzZbmTBhAgsWLGDAgAEcPXqU1atXk5mZyZ133snSpUsJDw+3W2wiYn8ugc0JHv8G/rcVK5nzv9dJjlDJHBGRa53m95rfX6sM5pravliqxf79+wHo1KlTjfSXlZXFoUOHaNeuHe7u7iXO5Z1JJH7Ok+DgSLPJ83F096qRmOqqy42lVJzG0TY0jrZT1bG0rJxo0aIFrq6u1RBh3VBQUEBOTg6urq6lJsVSORpL27DVOFbm73hNz/Ok9qhNc/yaVpCTybnNi7gQuQrMhRiMLvj0vYuGvUZicDTaNbaKqE1jWZdpHG1D42g7muPbhualtqFxtJ3aPMfXSnuxGWffYJwDW0BhAZlHdtg7HBERERERqWMsJXNCHpyJS2hbzPm5nN3wH+I/fYas2N/sHZ6IiIhIjVDSXmzKo11vADJVIkdERERERK5SUcmc/8P/tidKlMxJW/Up5gKTvcMTERERqVZK2otNebYvStpnn9hPQeZ5O0cjIiIiIiJ1lcHggFfnQYROmkWD7rcABi7sXsXpr16nIOuCvcMTERERqTZK2otNGX0a49y4FZgLyYxWiRwREREREakaR1cP/IY9ROBdL2JwdiXn5EESPnuR3OQT9g5NREREpFooaS82Z1ltn3FIJXJERERERMQ2PNr0IGTCWzj5NMZ0PoXEL14h8/B2e4clIiIiYnNK2ovNebS7EYCckwcxZaTbNxgREREREak3nP2bEvLAP3Br0Rlzfg7JS2ZydvNizOZCe4cmIiIiYjNK2ovNGb0DcQm+DsyFZEVr5YuIiIiIiNiOo5sXjce+SoMetwKQ/vPXJC/5J4V52XaOTERERMQ2lLSXauHR7lKJnCiVyBEREREREdsyODjid/Nf8R/5ODg6kRW9g8QvppCfnmzv0ERERESqTEl7qRaelhI5p6IwXTxn52hERERERKQ+8uoymOD7XsfRw5u8lFMkfPYi2Sf22zssERERkSpR0l6qhVNDf1xCwgAzmYd/sXc4IiIiIiJST7mGhhHy13dwbtyKwuyLnP7f65yPXInZbLZ3aCIiIiJXRUl7qTae7YtK5GQeUokcERERERGpPk4NfAke/394dugH5kLOrJ5H2oo5mAvy7R2aiIiISKUpaS/VxqPtpRI5cYcwXThj52hERERERKQ+czC64H/7ZBoNHgcYuPjrWk7/dzoFmeftHZqIiIhIpShpL9XGqYEvrk3aAahEjoiIiIiIVDuDwYD3jXfQeMzLGFzcyYk7RPxnL5CbdNzeoYmIiIhUmJL2Uq082hWVyMmIUokcERG5etHR0YSFhREeHk5BQUGZ1zzwwAOEhYUxePDgctu57bbbCAsLY+3atQBEREQQFhbGrFmzKhVPfHw8YWFhjBs3rlL3Xc64ceMICwsjPj7eZm3WlMGDBxMWFmbvMERErNxbdyNkwlsYGwVTcCGNxC9eISNqq73DEhGRSzS/r900v7c/Je2lWhWVyDGQmxCN6XyqvcMREZE6qk2bNnh7e5OZmUlUVFSp8/n5+fz6668AJCQkkJSUVOqa9PR0jh49isFgoFu3bpftb9asWYSFhREREWGT+GubK735ERGpD5z9Qgl+4B+4teyK2ZRHytJ/cXbj/zCbC+0dmojINU/ze9vS/L7+UdJeqpWTlw+uTdsDkHFIJXJEROTqFJ+IR0ZGljp/8OBBsrKyaNeuqCzbzp07S10TGRmJ2Wzmuuuuw8fHB4CbbrqJFStWcO+991Zj9CIiYi+Orh40HvMyDW/4EwDpW5eQ/M3bFOZm2TkyEZFrm+b3IpenpL1UO0uJnMxDKpEjIiJXr2fPngDs2rWr1DnLsUceeQQoe+JvOdajRw/rMS8vL1q1akWjRo1sHq+IiNQOBgdHfIfcj/+fnsTgaCTraCQJC14m/+xpe4cmInJN0/xepHxK2ku182h7AxgcyE08Sn56ir3DERGROqp79+4A7N69G7PZXOJcZGQkRqORIUOG0KxZszIn/mVN6suqeTl48GBmz54NwMsvv0xYWJj1q6zHafPy8vjwww+56aab6NixI/379+eNN94gIyPjql/rihUr+Mtf/kLXrl3p3r07kyZNKvOx4cLCQpYvX86zzz7LsGHD6Nq1K9dffz233XYbs2bNIiur5EpSy+uFoseMi7+2Pz5OW1BQwJIlSxg/fjw9e/akU6dODB48mCeeeIKNGzeWG/t3333HnXfeSZcuXejZsydPPvkkJ0+eLHXdjh07CAsL46WXXuLixYu88cYbDBgwgI4dOzJkyBA+/PBDTCZTmX1cvHiR999/n1tvvZXOnTsTHh7O2LFj+eabbygsLF324qWXXiIsLIwdO3awbds2/vrXv9KzZ0/CwsI4dOhQiRqmOTk5vPvuuwwZMoROnToxbNgwFi5caG3ryJEjPPnkk9xwww106dKFe+65x/rotojUbl6dBhI07v9w9GxEflo8CZ+/RFbsb/YOS0TkmqX5veb3Fvac3x89epTJkyfXuvm9k70DkPrPydMb12YdyDmxn8xD2/C+8Q57hyQiInVQu3bt8PT0JD09nWPHjnHdddcBRRPbPXv20KlTJ1xcXOjWrRsRERGcPXvWusImMzOTQ4cOASUn9WUZNmwY27Zt4/Dhw4SHh9OsWTPruaZNm5a4Nj8/nwcffJCoqCh69OhB69at2bNnD19++SXHjh3j888/x2AwVOp1fvHFFyxcuJDrr7+eQYMGcfToUTZs2MDWrVv597//zY033mi9Njs7m2effZaGDRvSsmVL2rVrR2ZmJgcOHGD27Nls2LCBL7/8skT8o0aNYunSpbi7uzNs2DDrOcsjxQA5OTk8+uijbNu2DWdnZ8LDw/H19eX06dNs3bqV8+fPM3DgwFKx/+tf/2L+/Pl069aNgQMHcuDAAX766Sf27NnDDz/8UOaKpwsXLjBmzBjOnTtH9+7dycnJITIyko8++oikpCRmzJhR4vrU1FTGjRtHbGwsfn5+DBo0iOzsbHbs2MGrr77Kli1beP/998sc9x9//JGvv/6atm3b0q9fP06fPl3iuvz8fCZMmMDx48fp2bMnLVq0IDIykjfffJOLFy/StWtXHnvsMUJDQ7nxxhs5efIku3fvZsKECSxZsoRWrVpV7A9ZROzGNeQ6Qv76NsnfvkNu4lGSvnoD36H306DHrZX+91pERKpG83vN78F+8/vMzEx69uzJgw8+SEhISK2b3ytpLzXCs11vck7sJyNKSXsREbk6jo6OhIeHs3nzZnbt2mWd1EdHR3PhwgXrSp3u3bsTERHBrl27rJPWvXv3YjKZaNmyJX5+fpft58UXX2TWrFkcPnyYu+66izvvvLPca/fu3Uvnzp1Zu3atdVKcmprKmDFj+OWXX9i1a5f1sd+K+s9//sOHH35YYsL973//m3fffZcXXniBNWvW4OrqCoDRaGT27NkMGDAAZ2dn6/U5OTlMnz6diIgIvvzyS8aNG2cdm+7du7N06VJ8fHz4xz/+UWYMM2bMYNu2bXTo0IGPPvqIoKAg67mMjAz2799f5n2LFy9myZIltG3bFihapfTUU0+xYcMG/ve///HEE0+UumfdunUMGjSIJUuW4ObmBkBsbCyjR48mIiLCmiS3mDZtGrGxsQwaNIj33nvPek9cXBzjx49n1apV/Pe//+W+++4rM7633nqr1J9pfHw8UPTn2a1bN9atW4eXlxcAhw8f5s9//jPz5s2jYcOGPPHEEzz00EPWe99++20+++wz5s2bx1tvvVXmuIhI7eLk1Yigca+TtnIuGfs2cmbN5+Qmn8T/lkcwOBntHZ6IyDVD83vN78F+8/t///vffP3110yaNImHH34YR0dHoPbM71UeR2qER1gvMDiQlxSj2pEiIlVkNpspzMupE19/fMy1qiyraIrXtLQ8KmuZ1Fs2tCr+CK3l91dahVNZBoOBN998s8QqFn9/f+655x6g7A2zruTmm28uMaEHePjhh2nTpg0pKSmsWrXKetzZ2ZmbbrqpxIQewNXVlddeew0nJyfWrFlTqf5TUlJYsmSJ9Q1D8Qk9gKenZ4nVQMU99dRT1gm9Jb7HHnsMKHpctizu7u68+eab1sk5QIsWLbj99tsxm80l/hzj4+NZt24dzs7OTJ8+vcQ9TZo04ZlnngFgwYIFZfbVt2/fy75Jc3Bw4P/+7/+sE3qAtm3b0r9/f7KysvD39+eBBx4occ/EiRMv+/pEpHZycHLGf+QTNBo6AQwOZOxbT+J/pmLKOGfv0ETkGnWtzvE1v9f83p7z+4CAAOsHIBa1ZX6vlfZSIxw9GuLWvBPZsb+RcegXfPqU/xdKRETKZzabSVz4Crnx0fYOpUJcQtsSPP4Nm5UcKGtSHxkZiYODA+Hh4QA0b94cPz+/UtcUv99WgoODadOmTanjLVu2BIomyJV12223lTpmMBi47bbbePfdd4mMjOSOO+4ocT4mJoaff/6ZuLg4srKyrG+kjEYjJ06cqFT/O3fuxGQy0b9/f4KDgyt174ABA0odu9JYdOzYEV9f3wrdFxkZidlspmfPngQGBpa659Zbb+WVV14hLi6OpKQkGjduXOL80KFDLxt/cHBwmY/AWh6h7t27d6lz3t7eeHt7X9WftYjYl8FgwLvXbTj7NyFl6b/ITYgm4bMXaPznF3EJbm3v8ETkGnItz/E1v9f83p7z+759+5Y6V1vm90raS43xaNeb7NjfyDy0TUl7EZEquXZr7nbs2BE3NzeSk5OJi4ujSZMmREZG0qZNmxKrJ7p168aaNWu4ePEiLi4u7Nu3D6DSj7JeyR9XqVh4eHgARY+PVlbxR0XLOp6UlGQ9ZjKZeO2111iyZEml+ylPYmIiUPTmqLLKehPg6ekJFNWTLEtlxtAycS5vjBwcHAgODiY2Npbk5ORSk/orvUn54/UW7u7uAAQEBJQba3p6+mXbFpHay73l9YQ88A+Svnmb/LR4Er/8O/63PoZnx372Dk1ErinX5hxf83vN78F+8/uyPiiwxGrv+b2S9lJjPMJ6kbbq3+Qlx5J3JhFn38p9uiciIkUrMoLHv4E5P9feoVSIwehi0439jEYj119/vbWeZF5eHmfOnOGWW24pcV337t1ZvXo1u3fvxtPTk7y8PJo2bVrupOxqOTjYt9LgF198wZIlS2jdujXPPvssHTt2xMfHB6OxqCZz3759SU1NrbF4rmY8anIMLbVCy3OlWOz95y0i1cfYKJiQCW+R8t37ZB3bTcr375ObcoJGA+/B4OBo7/BEpJ67luf4mt+XpPl95dTn+b2S9lJjHN29cGvemezje8k8tA3nvn+2d0giInWSwWDA4Hz5yUl91qNHD+uk3rK6w1Ln0qJ43UvLShBLTczaLiEhoUTdSAvLZkrF35isXr0agPfee6/UY7xZWVmkpaVVun/LapXKPnZbEywr3S1j8UeFhYWcPl20d46t38CJSP3n4OJO4F0vcm7TItK3RXD+l+/ISzlF4B1P4+DqYe/wRKSeu5bn+Jrfa36v+X1ptffjBKmXPNsX1YLNPLTVzpGIiEhdVbzu5R83qbJo27YtHh4eREZGWutdVubRWctKloKCAluEXCnLly8v8/iPP/4IlKzbef78eaDsR1CXL19e7iZhRqMRk8lU5rlevXrh5OTEL7/8Yp0g1xbdu3fHYDCwY8cOkpOTS51fuXIlOTk5NGnSpNxHYUVELsfg4EijQfcScMfTGJycyY7ZQ8KCl8g7k2jv0ERE6i3N7zW/1/y+NCXtpUa5t+kJDk7kpZwiL63sT9FEREQup0uXLjg7O3Pq1Ck2b95M06ZNS9Uad3R0pGvXrhw8eJA9e/YAldukytJeTEyM7QKvoNWrV7N27doSx+bPn8/hw4fx9/dn2LBh1uMtWrQA4Msvvyxx/f79+3n33XfL7SMgIIAzZ85Y3xQU5+/vz+jRo8nPz+eJJ54oNXnOzMzkl19+qfTrsoXQ0FAGDx5Mfn4+U6dOJScnx3ouPj7e+ponTJhgl/hEpP7w7NCP4PFv4OjlS/6ZRBI/f5GsmL32DktEpF7S/F7ze83vS1N5HKlRjm6euLfsQtax3WRGbcO5/1/sHZKIiNQxLi4udO7cmcjISM6fP8+QIUPKvK579+5s2bKF/Px8goODy93cqCx9+/bF1dWVL774gqNHjxIYGIjBYGD06NGEh4fb6qWU6Z577uHxxx+na9euhISEcPToUaKjo3F2dubtt9/Gzc3Neu0jjzzCli1b+OCDD1i9ejWtWrUiJSWF3bt3M2LECPbu3UtCQkKpPoYMGcLChQsZNWoUXbt2xdXVFR8fH5577jkAXn75ZWJjY9m5cydDhw6lW7du+Pr6cvr0aQ4dOkTHjh258cYbq3UcyjN9+nSOHz/Ohg0bGDp0KN27dyc7O5vt27eTk5PD8OHDueeee+wSm4jULy5BrQj56zskL3mH3PhokhbPoNHg+2jY60823a9FRORap/m95vea35emlfZS4zwulcjJUIkcERG5SsVX1fyx3qVF8UdqK1vvMiAggDlz5tCtWzf27t1LREQE3377bY3UgZwwYQLvvvsuJpOJdevWkZCQwIABA/jqq6/o06dPiWvDw8NZvHgx/fr1IyUlhfXr13PhwgVefPFFZs6cWW4fzzzzDOPHjwdg1apVfPvtt6xYscJ63s3Njc8//5zp06fTsWNH9u3bx08//URSUhL9+vXj4Ycfrp4XXwH+/v588803TJo0CS8vL9atW8fOnTtp27Ytb7zxBu+9916t3lBKROoWJ09vgu+djleXIWAu5Oy6haQu+5DCOrJZpIhIXaH5fRHN7zW/tzCYyyuGJHXC/v37AejUqVON9JeVlcWhQ4do164d7u7uV9VGYU4mJ97/KxSYCH34PZwDmto4yrrBFmMpGkdb0TjaTlXHMicnh9jYWFq0aIGr67W5ERUU1ZrMycnB1dUVR0dHe4dTp2ksbcNW41iZv+M1Pc+T2qMuzvHrO7PZzIXIlZxZ8zmYC3EJak3gn1/AqYFvies0lrahcbQNjaPtaI5vG5qX2obG0XZq8xz/2vuYQuzOwdUD95ZdAa22FxERERGR2s9gMNCwxwiC7v47Dm6e5J4+RsLnL5KTcMTeoYmIiEg9pKS92IVn+6LHfzKjtpW787WIiIiIiEht4taiMyEPvI3RvwkFGedI/PLvXNy3wd5hiYiISD2jpL3Yhft13TE4Gsk/m0heykl7hyMiIiIiIlIhRp/GhNz/Fu5tekCBidQfZnNmzeeYCwvsHZqIiIjUE0rai104uLjh1rpod+7MKJXIERERERGRusPBxY3AP7+Ad98/A3B+53KSFr1JYU6mnSMTERGR+sDJ3gHItcuzfR+yoneQcWgbPgPvwWAw2DskEREREbkKeXl5fP755yxbtoy4uDjc3d3p3r07jz76KB06dKh0eytWrODLL78kOjoagLCwMMaPH88tt9xS7j1paWnMnj2bjRs3kpaWhp+fHwMHDuTJJ5/E19e31PUHDhxg48aNbN26lWPHjpGVlYWPjw/h4eFMmDCB8PDwcvvKyMhgzpw5rF69mqSkJBo2bMiNN97IU089RZMmTSr9eqVuMhgcaDTgbpwDmpH6w2yyY38j76upuDTuRFb+aQrc3DE4GsHJCYOjEYPjpV+dLL///XscnH4/7mTEYND6OhERkWuZkvZiN+6twzE4OWM6l0ReUiwuQS3tHZKIiIiIVFJeXh4PPvggO3fuxNfXl0GDBpGamsqaNWvYuHEjn3zyCf369atwe++99x5z5szB2dmZPn2K9kHaunUrTz/9NEeOHGHy5Mml7klISGDMmDGkpqbSsmVLhg4dSnR0NF999RXr169n8eLFBAUFWa83mUyMHj0aAC8vL7p06YKXlxfHjh1j9erVrFmzhilTpjBu3LhSfV24cIG7776bY8eOERISwpAhQzh16hTLli1j/fr1/Oc//6Fdu3aVHUapwzzb9cboE0TyN//AlJ6Me3oyFw5XsVGDw6UkfrEEv5MRHIsds34YUCzZf+mDAP7w/e/ni37v4N4AY8MAnLz9cXB2s8k4iIiIiO0oaS924+DshnvrbmQe/oWMQ1uVtBcRERGpgz799FN27txJp06dWLBgAZ6engAsX76cZ599lueff561a9daj19OZGQkc+bMoUGDBixatIhWrVoBEBMTw9ixY/n444/p378/Xbt2LXHflClTSE1NZezYsUybNg2DwYDZbGbatGksWrSIV199lfnz55e4p2PHjkycOJFBgwZhNBqtx7/66iumTZvGW2+9Re/eva0xWPzjH//g2LFjDBo0iA8//BBnZ2cA5s6dy7/+9S+ee+45li1bhqOjY+UHU+osl8YtCPnrO6Ru/pr0xJN4ebjjQCHmAhMUmDCb8jEXWL5MmE2mEt9TYCrZoLkQc34u5vzcao+9KIHvj9OlJL5TwwCM3gFF3zf0x8HZtdpjEBERkZKUtBe78mjfh8zDv5AZtY1Gg+5TiRwRkUvMZrO9QxCRalDf/m6bTCYWLlwIwNSpU0sk5keOHMmyZcvYtGkTS5Ys4f77779ie/PmzQNg0qRJJZLlrVq1YuLEicycOZN58+bx0UcfWc8dPHiQ7du34+3tzZQpU6zzSYPBwJQpU1i1ahVbtmzh8OHDtG3bFgAnJyeWLFlSZgx33303a9euZcuWLaxcuZInnnjCeu7MmTN89913ODk58frrr1sT9gCPPPIIy5cv58iRI2zYsIGhQ4de8fVK/eLo0ZAGA+4l4dAhmrZrh7u7e4XvNZvNRcn9gkvJfFOxBH+xpD/W86Zi5y9dX/j7hwFYPxwodo3le1M+BZnpmM6nUpiTQWHWBXKzLpB7OqbM2H5flV/09XuC/1JS3+hiqyEUqffq2zxARIpUx99tJe3Frtxbh2MwumI6n0Lu6Rhcg1vbOyQREbtycCiqYVtQUGDnSESkOlj+blv+rtd1e/bsIT09ndDQUDp16lTq/IgRI9i0aRPr1q27YtI+NzeXbdu2AZRZu37EiBHMnDmTLVu2kJeXZ02Yb9iwAYDBgwfj4lIyeeji4sLgwYOJiIhg7dq11qT9lYSFhbFlyxZSUlJKHN+8eTMFBQX06tWLgICAEucMBgPDhg3jyJEjrFu3Tkl7qRSDwQBOl+rbU3PlagpzMsk/n4opPQXT+ZRLv0/GlJ5K/vkUzLlZxZL6x8psw9HDG6eG/tYkfvEEv1MDPyX1RdAcX6S+q445vpL2YlcORhfcr+tGZtRWMg9tVdJeRK55RqMRR0dHsrOzK1RKQkTqluzsbBwdHUuUY6nLDh06BFDuZrPt27cHsG4oezmxsbHk5ubi4+NDcHBwqfPBwcF4e3uTnp5ObGwsYWFhJWLo2LFjme126NCBiIiICsVgcerUKQD8/PxKHL/S67Ucr0xfIvbk4OqBi6sHLoHNyzxfkJP5e0L/0q+m9FTr9+a8bAoy0ynITCc38WiZbTh6eP+e0PcOLJbgD8CpoR8OTs5l3idSn2iOL1K/VcccX0l7sTvPdn2KkvZR22g0eLxK5IjINc1gMODu7s758+dp1KiRaiKL1CMFBQWcP38ed3f3ejPfSUxMBKBx48ZlnrccT09PJzMzEw8Pj3LbSkhIuGxblnPp6ekkJiZak/aWGAIDAy8bg6X9K4mNjWXjxo0ADBkypMS5ir7eivYlUts5unrg2LgFLo1blDpnNpspzMn4PYn/h4S+6XwK5ryc35P6CUfK7sOzEU7el1boX0roF7g2wJCbU90vT6TGaI4vUn9V1xy/ziTt8/Ly+Pzzz1m2bBlxcXG4u7vTvXt3Hn300XJXulzOihUr+PLLL62rYMLCwhg/fnyZj+JapKWlMXv2bDZu3EhaWhp+fn4MHDiQJ598El9f31LXb9u2jR9//JGoqCiSk5O5cOECrq6utG7dmpEjRzJmzJh6s8qqKtxaXY/B2RXThTRyE4/iGtLG3iGJiNhVQEAAJ06c4OTJkzRq1AgXF5d6k+CrqIKCAnJzizbf05uaqtFY2kZVxtFsNpObm8vZs2cpLCwsVValLsvKygLAza3sch7Fa3pfKWl/pbaKt5eZmVnqvvLqh5d1T3ny8vJ48cUXyc/PZ+TIkaXeZ9iyrysxm83W/qpbdnZ2iV/l6l17Y+kIDRtjaNgYZ6D4mnmz2Yw5J4OCC2lFX+dTfv/9hVQKzqdiNuVRkHGWgoyz5MaXfEKlocFA2smuNOh2C8aQsGtuLmQL197PY/WxxVh6eXlx8eJFTpw4gY+PD87Oztfcz7XZbCYvLw+z2XzNvXZb0jjaTlXG0nLvuXPnyM/Px9/fv0Jzt4r2VSeS9nl5eTz44IPs3LkTX19fBg0aRGpqKmvWrGHjxo188skn9OvXr8Ltvffee8yZMwdnZ2f69OkDwNatW3n66ac5cuQIkydPLnVPQkICY8aMITU1lZYtWzJ06FCio6P56quvWL9+PYsXLyYoKKjEPatWreLbb7+lefPmtGvXjoYNG5KWlsaePXvYu3cvP/74IwsWLChVe/Na42B0waNNTzIObCYzaquS9iJyzXN2diY0NJS0tDROnz5t73DsorCwEJPJhJOTU72p/W0vGkvbsMU4enh40Lhx4xKbl0rtMnXqVH777TeaN2/O1KlT7RpLfn6+tRxPTTlx4kSN9lefaSz/yBM8PMGjJVjeNpvNGPKzcchOxyH7/KWvdByzz+OQdQ7HzLOYju/h7PE9mLwCyG3ajbygDqByOpWmn0fbscVYZmVlceHCBQwGgxKuInWY2WwueuqssBCAY8fK3vulLBV5P1AnkvaffvopO3fupFOnTixYsMBa/2v58uU8++yzPP/886xdu7ZCdcEiIyOZM2cODRo0YNGiRbRq1QqAmJgYxo4dy8cff0z//v3p2rVrifumTJlCamoqY8eOZdq0aRgMBsxmM9OmTWPRokW8+uqrzJ8/v8Q99957L08++ST+/v4ljicnJ/PAAw+wZ88eFi5cyMMPP1yV4akXPNr1JuPAZjIObaPR0PsxGJRUEJFrm7u7O02bNsVkMmEymewdTo3Lzs7m+PHjNG3a9LKrbuXKNJa2UdVxdHJywsmpTky9K8Wysry8lYfFVxtdbpV9Rdoq3l7xtiz3lbeyqax7yjJz5kwiIiJo3Lgxn332GQ0aNCg3xqr2VRFGo5HWrWtmv6fs7GxOnDhB8+bN9e9EFWksbSM7O5u4/TvxPRtN/tEdOF1MwengSjyPbcKt4wDcOw/Fybv+PLVUXfTzaDu2HkuTyXRNbkqbk5NDYmIiwcHBuLq62jucOkvjaDtVHUtHR8dKz/Ermtyv9e8cTCYTCxcuBIpWvhRPzI8cOZJly5axadMmlixZwv3333/F9ubNmwfApEmTrAl7gFatWjFx4kRmzpzJvHnz+Oijj6znDh48yPbt2/H29mbKlCnWT0INBgNTpkxh1apVbNmyhcOHD9O2bVvrfZY6m38UGBjII488wosvvsgvv/yipD3g3vJ6DC7uFFw8S278EVybtL3yTSIi14D6mui7EstqBRcXF01Eq0hjaRsax7JZNoxNSkoq87zluLe39xUT2SEhIZdtq/i54hvVBgcHW8tRXu4eS/tlmTNnDvPmzaNRo0Z89tln5V5b0dd7ub4qylL/uCa5ubnVeJ/1lcay6gq8AvDtOQCXWx7i4m/rubB7Jab0FLJ2ryRr9yrcW4fToMcI3Fp01qKvK9DPo+1oLKsmKyuLxMREGjZsqHGsAo2j7dhjLCv6hE2t/59tz549pKenExoaSqdOnUqdHzFiBADr1q27Ylu5ubls27YNoMza9Za2tmzZQl5envX4hg0bABg8eHCpUjYuLi4MHjwYgLVr11bkJQFYa9nr8egiBicjHm16ApARtdXO0YiIiIhIRbRr1w4oWuRSlqioKKD8xSzFtWjRAhcXF86dO2fd8LW4xMRE0tPTcXV1pUWL3zfFtMRw4MCBMtu1xFZeDF9++SXvvfceXl5ezJ8/v8TCnj+60uu9Ul8iUnmObp543/Anmjw6m8C/vIxby+sBM1nHdpP01f8RP2cy53etoDC3ZvaAEBERqQm1PmlvqeNY3maz7du3B7BuKHs5sbGx5Obm4uPjU2J1jkVwcDDe3t7k5OQQGxtbKoaOHTuW2a4ltorEAHDu3DlrKZ0BAwZU6J5rgWe73gBkHv4Fc+G195iYiIiISF0THh6Ot7c38fHx7N+/v9T5FStWADBkyJArtuXi4kLv3kXzwZUrV5bbVt++fUssfBk0aBAA69evt24WbJGbm8v69esBGDp0aKk2ly5dyptvvom7uzv//ve/re8tytO/f38cHR3ZvXs3KSkpJc6ZzWZWr14NVOz11iaxiRdYvSed7Nxrrxyb1B0GB0c8rutO0N1/J3TShzToMQKDsxv5ZxM589N8Tn74MGmrPiUvLd7eoYqIiFRZrU/aW1bZNG7cuMzzluPp6elkZmZetq2EhITLtlX8XPHVPZbfBwYGXvYeS/t/tHfvXl566SVeeOEF/vrXvzJo0CAOHjzIXXfdxV/+8pfLxnwtcWvZGQdXDwoyzpETf9je4YiIiIjIFTg5OTF+/HgApk+fTkZGhvXc8uXL2bRpEz4+PowePdp6fN++fQwfPpzhw4eXau+hhx4CYO7cucTExFiPx8TEMHfu3BLXWHTo0IEbbriB9PR0ZsyYgdlsBoqS6DNmzCA9PZ2+ffuWKGMJ8NNPP/HKK6/g7OzMxx9/THh4+BVfr6+vL3fccQcmk4nXXnutxNO5n376KUeOHKFVq1bWDxLqijW74vnlcAbLt560dygiFeLsG4LfzQ/S7KlP8R32MEa/UMx5OVzYvYr4uZM5/b/pZEbv1GIwERGps2p9kVzLZk7lbfRRvN5QZmbmZWtlXqmt4u0V/wDAcl95tY3Kuqe4U6dOsXTp0hLHxo8fz+TJk3F0dCw3looym83lboZla5aNwS63QVhVuLTqRvbBzZzftwmzX4sr31CHVfdYXis0jrahcbQdjaVtaBxtR2NpG/YYR7PZXOGal/b08MMPs337dnbu3MnNN99Mjx49SEtLIzIyEqPRyDvvvFNiX6rs7OwST7UW1717dyZOnMjcuXMZNWqUdeX9tm3byM3N5bHHHqNr166l7psxYwZjxoxh0aJF7Nq1i7CwMKKjo4mJiSEgIIA33nijxPVnzpzhmWeeoaCggObNm/P999/z/fffl2q3ZcuWPPLIIyWOvfTSS/z2229s2LCB4cOH06VLF06ePMnBgwfx8PDg3XfftckcvyaFNfVmXWQC2/YnMf7WjnXi504EwMHFjYbdh9Og2zByTuznfOQKso7uJjt2H9mx+3Bq6E+DbsPx6jIER3cve4crIiJSYbU+aV8f3H777dx+++3k5+eTmJjIypUrmTt3Lhs3bmTevHk0a9asSu3n5+dbS/jUlBMnTlRLu06uQXgBGYd+IaFxD7gGNhSqrrG81mgcbUPjaDsaS9vQONqOxtI2anoc68L+R87OzsyfP5/PPvuMZcuWsX79etzd3RkyZAiPP/54uWUuy/PMM8/Qtm1bFi5cyI4dO4Cikpj3339/mftSQdHGr9999x2zZs1i48aNrFmzBl9fX8aOHctTTz2Fr69vieuzs7PJz88HilbxF1/VX1zPnj1LJe0bNGjA4sWL+eSTT1i9ejVr1qyhYcOG3HbbbTz11FM0bdq0Uq+3NujRLgAnx4MkpmVxPOE8rUK97R2SSKUYDAbcWnTGrUVn8tNTuLBnNRd/XYvpfCpn13/Juc2L8ezQlwbdR+DSuH4vDhMRkfqh1iftLavYy1vVVHyF+eVW2VekreLtFW/Lcl95q9nLuqcsRqORZs2aMWnSJIKCgnjhhReYNm0an3/++WXvuxKj0Ujr1q2r1EZFZWdnc+LECZo3b37ZJxaulrnNdaQc/BGHnAxaehlwadLO5n3UFtU9ltcKjaNtaBxtR2NpGxpH29FY2oY9xvHYsWM10o8tODs7M2nSJCZNmnTFa3v16nXFvaBGjBjBiBEjKhWDn58f06dPr9C1oaGhFd6Pqiyenp48//zzPP/881fdRm3i7urEdcFuHIrLZvPeBCXtpU4zegfgO3gcPv3+QsbBLVyIXEleciwXf1vPxd/W4xLaloY9RuAR1guDY61PiYiIyDWq1v8PZdkwNikpqczzluPe3t5XTJqHhIRctq3i54pvVBscHExUVBTJycmXvcfSfkWMGDGCV199lV9++YWsrKxyS+9UhMFgqNL9V8PNza3a+vRse0PRqoiY3fiEda+WPmqT6hzLa4nG0TY0jrajsbQNjaPtaCxtoybHUSVKpCZ1anYpaf9rAvff2h4HB/38Sd3mYHShwfVD8OoymNz4aM5HriDz8HZy4w+TEn8YR08fGoTfjFfXm3Dy9LF3uCIiIiXU+toj7doVrbQ+ePBgmeejoqIACAsLu2JbLVq0wMXFhXPnzpXYaNYiMTGR9PR0XF1dadHi90fmLDEcOHCgzHYtsVUkBguj0YiXlxdms5lz585V+L5rgUe7otqlmdHbtXGQiIiIiEgNuC7YDTcXR9LSszl04qy9wxGxGYPBgGuTtgSOeoamT8zBu99fcPTwpiDjHOc2L+bUrEmkfPc+OQlHrBtZi4iI2FutT9qHh4fj7e1NfHw8+/fvL3V+xYoVAAwZMuSKbbm4uFg3s1q5cmW5bfXt27dE/dBBgwYBsH79enJzc0vck5uby/r16wEYOnRoRV4SUPS485kzZ3B3d8ff37/C910L3Jp3xMG9AYVZF8g+WfYHJSIiIiIiYjtGJwM92gUAsHlvvJ2jEakeTl6NaNR/DE2fnEPAHU/jEhIGhSYyDv5M4oKXSfjsRS7u20ChKc/eoYqIyDWu1iftnZycGD9+PADTp08nIyPDem758uVs2rQJHx8fRo8ebT2+b98+hg8fzvDhw0u199BDDwEwd+7cEhtOxcTEMHfu3BLXWHTo0IEbbriB9PR0ZsyYYf303Ww2M2PGDNLT0+nbty9t27a13pOVlcXChQtLxGsRHR3Nc889B8Cf/vSnOrHBWE0yODjiEXYDAJlR2+wcjYiIiIjItaFP58YAbN2XSEFBoZ2jEak+Bkcjnh36ETJhBiF/fQfPzoMwOBrJS4oh9YfZnJo1kbMb/ovpfKq9QxURkWtUra9pD/Dwww+zfft2du7cyc0330yPHj1IS0sjMjISo9HIO++8g6enp/X67OxsYmNjy2yre/fuTJw4kblz5zJq1Cjryvtt27aRm5vLY489RteuXUvdN2PGDMaMGcOiRYvYtWsXYWFhREdHExMTQ0BAAG+88UaJ600mE2+++SYzZ86kffv2BAcHYzKZSEhIICoqCrPZTM+ePXnhhRdsOFL1h2f73lzc+xOZ0dvxG/6wNggSEREREalmHVs2ooGHM+cz8vjtWBrhYQH2Dkmk2rkEtSLgticoGDKei7+u5fzu1RRcSCN9WwTpv3yHe5seNOx+C67NOmqvERERqTF1IhPq7OzM/Pnz+eyzz1i2bBnr16/H3d2dIUOG8Pjjj9OhQ4dKtffMM8/Qtm1bFi5cyI4dOwBo3749999/P7fcckuZ94SEhPDdd98xa9YsNm7cyJo1a/D19WXs2LE89dRT+Pr6lrje3d2dl19+mZ07d3LkyBGOHDlCfn4+3t7e9O/fn5EjRzJy5EgcHGr9ww524dq0PY4eDSnIPE/2if24tyr9QYqIiIiIiNiOk6MDfboEs3LbCTbvjVfSXq4pju4N8O59Jw1vuJ2sI5Gc372SnBP7yYreQVb0Doz+TWjY7RY8Ow3AwdnV3uGKiEg9VyeS9lCUuJ80aRKTJk264rW9evUiOjr6steMGDGCESNGVCoGPz8/pk+fXqFrnZycmDBhAhMmTKhUH1LE4OCIR9sbubB7FRlR25S0FxERERGpAf2vD2HlthP8sv80j40uwNnoaO+QRGpU0XvRXni07UVe6ikuRK7i4v5N5KfGkbbq35zd8B+8ugymQbfhGBsF2TtcERGpp7TMW2otj3ZFpYuyjuzAXJBv52hEREREROq/9i188WvoSlaOid2Hk+0djohdOfs3xe+WR2j61L/xvekBnHwaU5ibxfmdy4n75EmSFs8g70yCvcMUEZF6SEl7qbVcm7TF0dOHwpxMso/vs3c4IiIiIiL1noODgb7XhwCwaa+SkSIAjq4eNOw5kiaPzqLx2FdxaxUOQNax3SR8+izntnyrhWYiImJTStpLrWUpkQOQcWibnaMREREREbk2DOgaCsCug0lk5SgRKWJhMDjg3qorQWNfIXTSh7i17Iq5IJ9zm74ifv7z5MRfvkyviIhIRSlpL5ViKigk4UweZrO5RvrzbF9UIifzyE7MJr1hEBERERGpbq1CGxLs50GeqZAdB5PsHY5IreTsG0zjsa8QcMfTOLg3ID81jsQvXiFt1acU5mbZOzwREanjlLSXSlnxyyk+XZ3C8q0na6Q/l9AwHL0aYc7NIuv4rzXSp4iIiIjItcxgMND/0mr7zSqRI1Iug8GAZ4d+NJn4IZ6dBwFmLuxeRdzcyWRG77R3eCIiUocpaS+V4tvABYAftpwkL7+g2vszGBysG9JmqkSOiIiIiEiN6N+1qK793ugULmTm2TkakdrN0d2LgNueIOieqTj5NKbg4lmSv32b5CUzMV08a+/wRESkDlLSXiqlV4dAGro7cj4zj/WRcTXSp2f7PkBRiZzC/Nwa6VNERERE5FrWJNCLlsENKSg0s21for3DEakT3Fp0JvThf+HdexQYHMg8vJ34uZO5sOcnzOZCe4cnIiJ1iJL2UilOjg7c0NYTgKUbj1FQWP217V2Cr8OpgR/mvByyY36t9v5EREREROT31fYqkSNScQ5GFxoNuo+QB2fiEtSawtws0lbO5fSXr5GXFm/v8EREpI5Q0l4qLbyVBx5uTiSmZbLjwOlq789gMFhL5GQc2lrt/YmIiIiICPS7vihpf+B4GmfOZ9s5GpG6xSWwOcETZuB70wMYjK7kxB0ift6znNv8NWZTvr3DExGRWk5Je6k0F6MDN/doAkDEhmOYzdW/2t7jUomcrKO7VSJHRERERKQGBDRyp13zRpjN8POvKpEjUlkGB0ca9hxJ6MT3cGsVDgUmzv28mPj5z5ETd9je4YmISC2mpL1cleE3NMHo5ED0qXNExVb/xjouQa1wahiAOT+HrGN7qr0/EREREREpXiJHZT1ErpaxYQCNx0whYNQzOHo0JD8tnsSFr5C6ci6FOZn2Dk9ERGohJe3lqnh7uTC4+++r7aubwWDAo31RiZxMlcgREREREakRfboE42CAo3HpJKZl2DsckTrLYDDg2b4PoRM/wKvLEAAu7vmJuLlPk3l4h52jExGR2kZJe7lqowa2xmCAnVFJnEq6UO39ebYrViInTzU1RURERESqm4+XK52v8wfgZ21IK1Jljm5e+I98jKD7pmNsFERBxlmSl7xD0jdvY7pwxt7hiYhILaGkvVy1EH9PbugYBMDSjTHV3p9z4xY4+TTGbMpTiRwRERERkRoywFIi51cl7UVsxa1ZR0Ieehfv3neCgyNZR3YSN3cy5yNXYTYX2js8ERGxMyXtpUruHNQagI174jhzvnpXvxsMBjzbFZXIyYhSiRwRERERkZpwQ6dgnBwdOJV0kROnq/8JW5FrhYPRhUaD7iX0wZm4BF+HOS+bM6s/JXHhq+SlnrJ3eCIiYkdK2kuVtG3WiPYtGmEqMPPDz8ervT+P9kUlcrJj9lKYqxI5IiIiIiLVzdPNSPd2AYA2pBWpDs4BzQi+/018b34Qg7MrufHRxM97nrObvsJsyrd3eCIiYgdK2kuVjR50HQArfzlBVk71TiicA5phbBRcVCLnaGS19iUiIiIiIkX6dw0FYPPeBMxms52jEal/DA6ONOwxgiYTP8D9uu5QaCJ9y7fEz3uG7FNR9g5PRERqmJL2UmXd2wUSGuBJVo6JVb+crNa+DAYDHu0vlcg5pBI5IiIiIiI1oUf7QFydHUk+m0X0qXP2Dkek3nJq4EfgXS8RcOdzOHp4k38mkdNf/p3UFXMoyMm0d3giIlJDlLSXKnNwMHDnwKLa9st+jiHfVL2b5ni2KyqRkxWzl0JNWkREREREqp2rsxO9OgQBRavtRaT6FO3ndiOhEz/A6/qhAFzcu4b4OU+RcegXPe0iInINUNJebGJgt1AaNXDhzPmcaq9zafRvgtEvFApMZB7dVa19iYiIiIhIkf7hIQBs+TWBgkIlDUWqm6ObJ/63PkrQfa9jbBRMQWY6KRH/JPmbtzFdSLN3eCIiUo2UtBebMDo5clu/VgBEbDxGYTVO4otWHRStts+M2lZt/YiIiIiIyO+6tgnA083IuYu5HDimhKFITXFr1oGQh9/Fu++fwcGJrKO7iJs7mfO7VmAuLLB3eCIiUg2UtBebGX5jc9xcnDiVdJHdh5OrtS+PdjcCkHX8NwqyM6q1LxERERERAaOTA326BAOwqZqfrhWRkhycnGk04G5CH5qJS0gY5rwczvw0n8SFr5KXUr17y4mISM1T0l5sxtPNyLAbmgFFq+2rk7N/E4z+TaHQRNaRndXal4iIiIiIFOnftahEzrb9p6t9LysRKc3ZvynB97+B77CHMTi7kZtwhPj5z3N24/8oNOXZOzwREbERJe3Fpm7v3wpHBwMHYs5w5NS5au3Ls31RiZwMlcgREREREakRHVr60aiBC5nZ+eyNTrF3OCLXJIPBgYbdh9Nk4ge4t+kBhQWkb11CwqfPkH3ygL3DExERG1DSXmzKz9uNAeGhAERsqN7V9pYSOdkn9lGQdbFa+xIREREREXB0MND3+qLV9iqRI2JfTg18aXzXSwSOfh5HTx/yz57m9H+mkrr8Y5WRFRGp45S0F5u7c2BrALbtTyQxrfomCs6+ITgHNIfCAjKP7Ki2fkRERERE5HcDuhYt0tlxMImcXJOdoxERj7Y3EDrxA7y63gzAxd/WET93MtnR28FstnN0IiJyNZS0F5trFtSA7u0CMZvhu40x1dqXx6USOZkqkSMiIiIiUiOua+JNY193cvMK2BmVZO9wRARwdPXAf8REgse/gdE3hILMdM6v+AiPPd9QmHXB3uGJiEglKWkv1eLOQUWr7dftOkX6xdxq68fTWiJnPwWZ56utHxERERERKWIwGOh3qUTO5r0Jdo5GRIpzbdKO0IfexaffGHBwxDn1GGeX/EPvl0VE6hgl7aVadGzpy3VNvMkzFbJ86/Fq68fYKAjnxi3BXEhmtErkiIiIiIjUBEuJnN2Hk8nIyrNzNCJSnMHJiE//v+B77/9R6OKJKS2O0/+bRoFW3IuI1BlK2ku1MBgMjB50HQArtsZWa61Lz0slcjIOqUSOiIiIiEhNaBbUgGaNvTAVmNm2/7S9wxGRMhj9mnCxx704uDckL+UUp/87jYKsi/YOS0REKkBJe6k2N3QKIsjXg4tZ+azZeara+vG4VCIn5+RBTBnp1daPiIiIiIj8rv+l1fab98bbORIRKU+hpy+N7pqCo4c3eSknlbgXEakjlLSXauPoYOCOga0A+G5zDAUFhdXSj9E7EJfg64pK5BzeXi19iIiIiIhISf27FtW1338sjXMXcuwcjYiUx6lRMEH3TcfRoyF5KSc4/b/pFGQrcS8iUpspaS/VakiPpjT0dCblbBZb9yVWWz8e7XoDkKkSOSIiIiIiNaKxrwdhTX0oNMOW36pvri8iVefsF0rQvZcS98mxnP6vEvciIrWZkvZSrVyMjtzapyUASzYcw2w2V0s/npYSOaeiMF08Vy19iIiIiIhISZbV9iqRI1L7Ofs3IejeaTi4NyhK3P/vdQqyM+wdloiIlEFJe6l2t/ZpgYuzI8cTzrPvaFq19OHU0B+XkDDATObhX6qlDxERERERKanv9SEYDHD45DmSz2bZOxwRuQJn/6YE3zu9KHGfdLwocZ+Tae+wRETkD5S0l2rXwMOZm3o2BWDJhqPV1o9ne5XIERERERGpSY0auNKplR+g1fYidYVzQFOCLSvuk2JIUuJeRKTWUdJeasTt/VvhYIC9R1I5nnC+WvrwaHupRE7cIUwXzlRLHyIiIiIiUtLvJXIS7ByJiFSUc0Azgu6ZioObF7mnj5H01f9RqMS9iEitoaS91IjGvh707VI0mV+68Vi19OHUwBfXJu0AVCJHRERERKSG9O4cjJOjgROnL3Aq6YK9wxGRCnIJbF5U497Ni9zEo5xW4l5EpNao9qT9+fPnOXLkCHl5edXdldRyowa1BmDzrwmkVFO9S492RSVyMqJUIkdERESkIjRfl6rycnema1gAoNX2InWNS2DzSyvuPYsS94veoDBX+1OIiNhblZP2UVFRfPDBB2zZsqXE8ZycHJ555hluuOEGbr/9dvr168eqVauq2p3UYa1DvelynR+FhWa+3xxTLX14tL0BMJCbEI3pfGq19CEiIiJSl2i+LjWhf9dQoGiBjtlstnM0IlIZLo1bFCXuXT3JTTjC6a+UuBcRsbcqJ+2//fZb5syZU2pi9sEHH7BixQrMZjNms5nz58/z3HPPceTIkap2KXXYnYOuA+CnHSe5mGX71VxOXo1wbdoegNQVc7mwexU58YcpzM22eV8iIiIidYHm61ITenVojLPRkdNpmRyLT7d3OCJSSS6NWxZL3EdfWnGv99EiIvZS5aR9ZGQkLi4u9OnTx3osLy+Pb775BicnJ+bOncuuXbsYN24cJpOJhQsXVrVLqcO6tvGnRXADcvIKWLEttlr68OzYH4Ds43tJW/UpiV+8wol/3sepjx8n6dt3OPfz12RG7yQ/PUWrgERERKTe03xdaoKbixO9OjQGVCJHpK5yCWpJ0D2v4eDqQW68EvciIvZU5aR9WloagYGBODj83tSvv/5KRkYGgwcPZsCAAXh5efHss8/i5ubGrl27qtql1GEGg4E7BxbVtl/+cyx5+QU278OryyACR7+Ad+9RuLXqiqNnIwBM55LIit7Buc2LSf72beI+epST744nceGrpK2ex4W9a8lJPEZhfq7NYxIRERGxF83Xpab07xoCwM+/JlBYqMUxInWRS1Argu62JO4Pk7T4TQrzlLgXEalpTlVt4MKFC4SGhpY4tnfvXgwGA/369bMec3V1pWnTppw4caKqXUod1/f6EL5YcYi09GzWR8Yx/MbmNm3f4OCIR9teeLTtZT1WkHWBvOQT5KacIC/5JHnJJ8hLi6cwN4ucuEPkxB0q3gDGRkE4BzbHOaA5LoHNcA5ojqNXIwwGg01jFREREalumq9LTenWNgAPVyfOnM/hYOwZOrXys3dIInIVXIJb0/ju10j633Ry4g6RtOhNGo99BQdnN3uHJiJyzahy0t7V1ZWzZ8+WOBYZGQlAeHh4ieNGo7HECh+5Njk5OnDHgFbM+/4ASzce46ZezXB0qN5kuKN7A9xadMatRWfrMXNBPnlpCeRZEvkpJ8hNPkFh1gXyzySQfyaBzKit1usd3LxwDmyOS0Aza0Lf2T8Ug6OxWmMXERERqQrN16WmGJ0cubFTMGt3nWLz3gQl7UXqMNdLifvTX71elLhfPIPGY17BwdnV3qGJiFwTqpy0b9myJfv37+fo0aNcd911nD17lh07duDj40OrVq1KXJucnEyjRo2q2qXUAzf3asain6JJTMtk58HT3NgpuMZjMDgacQlsjktgc+hUdMxsNlOQkX4pkW9ZmX+C/DOJFGZfJOfEfnJO7P+9EQdHnP1CihL41pX5zXH0aFjjr0dERESkLJqvS03q3zWEtbtOsfW3RCaO6oSToz4EEqmrXEOuI+juv3P6q/8j51QUSV/PoPFfpihxLyJSA6qctL/lllvYt28fDz/8MMOHD2fr1q3k5+czYsSIEtclJiaSmppK7969q9ql1ANuLk7c0rs536w7ypINx7ihY1CtKD1jMBhw8vLBycsH91ZdrccL83PJT4snN/lEiZX5hTmZ5KWcIi/lFBzYbL3e0cO7KIkf2ByXSwl9o28wBgdHe7wsERERuYZpvi41qXNrP7w9XUjPyOXXI6l0bxdo75BEpApcQ9oUJe7/9zo5Jw+S9PVbNB4zBQeji71DExGp16qctL/33ntZv349u3btYsGCBQC0aNGCxx9/vMR1K1asAKBXr15/bEKuUbf1bcl3m2KIPnmOqNizdGjpa++QyuVgdMElqBUuQb+vRjObzRRcSCtK5F9K5ucmn8B0LpmCzHSyj/9K9vFfrdcbHI0Y/ZtY6+QXNgzCoA19REREpJppvi41ydHRgb5dglm+NZZNe+OVtBepB6yJ+6/+j5yTB4oS9395WYl7EZFqVOWkvbOzM1988QXr16/n+PHjhISEMHToUFxcSv7j7eTkxPjx4xk2bFhVu5R6wqeBK4O7N2H19pNEbDhWq5P2ZTEYDDg19MepoT8ebXpYjxfmZRetvi++8W3KScz5OeQlHScv6TgZl671BlJ2eBdtduvfFGf/phj9m+LsF6pHDkVERMQmNF+Xmta/ayjLt8ay48BpcvMLcDHqaVORus41NIygu18tStyf2E/y128RqMS9iEi1qXLSHsDBwYGhQ4de9poJEybYoiupZ0YNbM1PO06yMyqJU0kXaNq4gb1DqjIHZzdcQ8NwDQ2zHjObCzGdS7bWyM9LPklOciyFF9IozEwn+3g62cd/K9aKASfvgEuJ/CY4B1xK6PsGa+NbERERqTTN16UmtW3uQ4CPGynnsomMSqZPl5rfv0pEbM81tC1BY4tW3Gef2E/yN/8g8K6XlLgXEakGNknai1ytEH9PbugYxC/7T/PdphieGtP1yjfVQQaDA8ZGQRgbBUHbGwHIysri0P5faeXnicOFFPJST5Gfeoq81DgKMtMxpSdjSk8m6+iu3xtycMToG2xdle/s3wRn/6Y4eQeoXr6IiIiI1AoGg4F+14ewZMMxNu2NV9JepB5xbdL20or7N8iO3UfyN28TeNeLStyLiNhYlZP2Z8+eJTo6msaNG9OiRYsS5xYtWsT//vc/kpOT6dy5My+//DItW7asapdSz9w5sDW/7D/Nht1x3Du8Lb4N3ewdUs1xcsE5qDXurTqXOFyQeZ68tLiiMjuplq84zLlZ5KfGkZ8aRyZbrdcbnJwx+jXBOaBJsYR+Uxy9GtWKDX5FRETEfjRfF3sYEB7Kkg3HiDyUTGZ2Ph5uelpUpL5wbdKOxmNfIWnRm2TH/kbyt+8UJe6dnO0dmohIvVHlpP3ChQuZO3cub731Vok3AYsXL2b69OmYzWYAfv75Zw4dOsQPP/yAj49PVbuVeqRt80a0b9GIqNiz/PDzcSaM7GDvkOzO0aMhbh4NcWvW0XrMbDZTcPFMsUR+XNHq/LR4zKY88pJiyEuKKdGOg6vHpTr5f0jmu3vV9EsSERERO9F8XeyheVADmgR6EpecwfYDpxnSo6m9QxIRG3Jr2p7GY6aQtPhNso//SvI37xB41wtK3IuI2EiVk/bbt2/H0dGRm266qcTxuXPnAvDXv/6V8PBwFixYwO7du1mwYAF/+9vfqtqt1DOjB11HVOwOVv5ygr8MbYO7q1bi/JHBYMCpgR9ODfxwbx1uPW4uLMCUnlxqVX7+mUQKczLJiTtETtyhEm05enjjHHBp01trQr8JDs7X0FMOIiIi14iamK/n5eXx+eefs2zZMuLi4nB3d6d79+48+uijdOhQ+QUZK1as4MsvvyQ6OhqAsLAwxo8fzy233FLuPWlpacyePZuNGzeSlpaGn58fAwcO5Mknn8TX17fU9adPn2bDhg3s37+fAwcOcOzYMQoLC3nrrbe48847y+1n3Lhx7Ny5s9zzzz77LI888kglXm39VFQiJ5T/rT7M5r0JStqL1ENuzTpcStzPIPv4XpK/fYfGf34Rg5Pez4uIVFWVk/aJiYn4+/vj4eFhPXb48GESExPp1q0bL7zwAgBdunRh0KBBbNq0SUl7KaV7u0BCAzyJT8lg1S8nuXNQa3uHVGcYHBwxNgrG2CgYj7Y3WI+bTfnknUkg/9KKfMuXKT2Fgsx0smPTyY7dV6Kt3ze/bfr7Cn3fEE26RERE6rDqnq/n5eXx4IMPsnPnTnx9fRk0aBCpqamsWbOGjRs38sknn9CvX78Kt/fee+8xZ84cnJ2d6dOnDwBbt27l6aef5siRI0yePLnUPQkJCYwZM4bU1FRatmzJ0KFDiY6O5quvvmL9+vUsXryYoKCgEvesXr2at956q8Jx/dGwYcNwd3cvdbxNmzZX3WZ9M6BrCP9bfZhfj6ZyPiOXhp6qeS1S37g160jjv7xclLiP2UvykpkEjn5e7yFFRKqoykn79PR02rZtW+LY7t27ARg8eLD1mL+/P02bNuXUqVNX1U9dXL1z4MABNm7cyNatWzl27BhZWVn4+PgQHh7OhAkTCA8PL6OXa5ODg4E7B7bmw69/ZdnPMdzWryVGJwd7h1WnGZyMuAQ2xyWweYnjhbnZRfXyLSvyU0+Rl3Lq0ua3KZjSU8g6GlmsoaJNdJ39mxTVzb+0Mt/YKAiDo/ayFhERqe2qe77+6aefsnPnTjp16sSCBQvw9PQEYPny5Tz77LM8//zzrF271nr8ciIjI5kzZw4NGjRg0aJFtGrVCoCYmBjGjh3Lxx9/TP/+/enatWuJ+6ZMmUJqaipjx45l2rRpGAwGzGYz06ZNY9GiRbz66qvMnz+/xD2hoaGMHz+ejh070rFjR2bNmsXKlSsr/LpfeOEFQkNDK3z9tSjY35PWoQ05Fn+eLb8lcmufFle+SUTqHLfmnawr7rOO7VbiXkTEBqqccXNwcCAzM7PEsT179mAwGOjWrVuJ415eXsTFxVW6j7q4esdkMjF69Gjr6+7SpQteXl4cO3aM1atXs2bNGqZMmcK4ceMqPR711cBuofxn1SHOnM9h8954PUJbTRxc3HANaYNrSMlVYAVZF6x18vNSTxWt0E85SWFuFvlnEsg/kwBsL9aQE0bfIJyLJ/L9m2D0aYzBwbFmX5SIiIiUqzrn6yaTiYULFwIwderUEon5kSNHsmzZMjZt2sSSJUu4//77r9jevHnzAJg0aZI1YQ/QqlUrJk6cyMyZM5k3bx4fffSR9dzBgwfZvn073t7eTJkyBYPBABSVZ5kyZQqrVq1iy5YtHD58uMSHF0OHDmXo0KHW7y33iW317xrKsfjzbN4br6S9SD3m1rxT0Yr7r98qStxH/JPA0c9hcFTiXkTkalQ5aR8SEsLJkydJT0/H29ub/Px8tm7diqurKx07dixx7blz565qU6u6unqnY8eOTJw4kUGDBmE0/v4f1VdffcW0adN466236N27d4k3JNcyo5Mjt/VrxRc/RhGx8RiDuzfRm6ca5OjeALdmHXBr9vuTK0Wb354tSuSnxV0qtRNHXloc5rwc8lOLjmUWK5lvcDRi9A3+vbzOpaS+k3eAkvkiIiJ2UJ3z9T179pCenk5oaCidOnUqdX7EiBFs2rSJdevWXTFpn5uby7Zt2wDKfPp1xIgRzJw5ky1btpCXl4ezc9Fmhxs2bACKnhpwcSlZfsXFxYXBgwcTERHB2rVrSz1xINWv3/UhfL78IFGxZ0k9l42/j/ZQEqmv3Fp0JvAvL5H89T/IOhpJ8pJ3CRz9rBL3IiJXocpJ+759+xITE8Ozzz7Lvffey+rVq0lPT+fmm2/Gyen35i9evEhcXBydO3euVPt1dfWOk5MTS5YsKTOGu+++m7Vr17JlyxZWrlzJE088Uakxqc+G39icr9ce4VTSRXYfTqF7u0B7h3RNK9r81henBr64t/r9gyyz2YzpQmqJJH5eShz5aXGYTXnkpZwkL+VkybacnDH6hRatyvf7fWW+U0M/DAaVQhIREaku1TlfP3So6JP78spVtm/fHsBakvJyYmNjyc3NxcfHh+Dg4FLng4OD8fb2Jj09ndjYWMLCwkrE8McPICw6dOhAREREhWKojCVLlpCeng4UfTAycOBAWrfWvkx/5OftRvsWvhw8foaff03Q3lUi9Zx7iy4E3vXipcT9LpIj3iXwTiXuRUQqq8pJ+4cffpgff/yRrVu3sm3bNsxmMy4uLjz++OMlrlu/fj1ms7nUI7hXUl9X74SFhbFlyxZSUlIqdP21wtPNyLAbmvHdphiWbDiqpH0tZTAYMDYMwNgwAPfWv/+dNpsLMaWnXCqzU5TEL/o1viiZn3ScvKTjJdsyuuLsF4rRv+mlMjtFX45evnrSQkRExAaqc76emJgIQOPGjcs8bzmenp5OZmZmic1w/yghIeGybVnOpaenk5iYaE3aW2IIDCx73mhpz9K+rXz88cclvv/nP//JHXfcwbRp03B1dbVpX3XdgK4hHDx+hs2/xitpL3INcG95fVHi/pu3yTqyi+Sl7xE46hntiSYiUglV/hfTz8+PJUuWMG/ePGJjYwkODub+++8vVfJl9+7dtG3blkGDBlWq/fq6eseywZefn1+F77lW3N6/FT/8fJwDMWc4cuocbZpWvqSS2IfB4IDRpzFGn8Z4tOlhPW4uLCD/XHLRyvxLm+Dmp8WRl5aIOT+H3NPHyD19rGRbLu7F6uVbNsFtiqOnt5L5IiIilVCd8/WsrCwA3NzKLnni7u5u/f2VkvZXaqt4e8Vr9FvuK97Xle6piu7duzN69GjCw8MJCAggOTmZTZs28eGHH7J06VLy8vL417/+VeV+zGaz9bVVt+zs7BK/2lrX63xwdDAQE3+eY6dSCfYr/+egrqvusbxWaBxtw67jGBSG95+e5tyy98mK3kHitzPxHvF4nU3c62fSNjSOtqFxtB17jKXZbK5QXssm/1oGBgbyyiuvXPaa119//araro+rd2JjY9m4cSMAQ4YMqdA91xI/bzcGhIeyPjKOiA3HeOn+Hle+SWo1g4Mjzr7BOPsG40Ev63FzgYn8c0lFq/Etm+CmxZF/JhFzbha5CdHkJpT8MMzB1bNYEr8JhQ0CMOTpPyoREZHLqc75+rVm8uTJJb5v1qwZ48ePp1evXowePZoff/yRCRMmVLos6B/l5+dbFw/VlBMnTlRb2y0CXTh2Oofv1x9gYKcG1dZPbVGdY3kt0Tjahv3G0YjT9Xfiuedbco9FErf4H2R2uQPq8F5n+pm0DY2jbWgcbaemx9JS3eVyav1HnPVt9U5eXh4vvvgi+fn5jBw5stwnCCqjPq3CsbjlhqKk/bb9iRyPS6Oxb9ljX5fpk9FL3Bvh0KwRLs26YCk+ZS4wYTp3GtOZeExnEi59xVOQnkxhTgY5cYfIifv9Taw3kPJbKK7NOuHStD3GkLY4OOux9MrQz6PtaCxtQ+NoOxpL26jNq3DsyTIPLm9cis9RLzdPr0hbxdsr3pblvvLmw2XdUx3CwsIYPHgwq1evZvPmzVVO2huNxhqrkZ+dnc2JEydo3rz5Zd8rVcXNOYkcizjIkdMmJt3Vttb/bF+tmhjLa4HG0TZqxTi2a0duk1DO/fABzsnRNIjdQMMRj2GoY4n7WjGW9YDG0TY0jrZjj7E8duzYlS/Cxkn7tLQ0tm7dyvHjx60J9FatWtGnTx98fX1t2VWdNXXqVH777TeaN2/O1KlTbdJmfVuFY3FdsCtHE3P48sdfGdmj/pbI0Sejl+MNPt7g0wFaAwUmHDPP4JiRikNGGo4ZqTheTMUxO53CM/FknYkna89KzAYHChoGk+/bHJNvc0zeIXV6NUdN0s+j7WgsbUPjaDsaS9uojatwKsPW83VLycmkpKQyz1uOe3t7XzFpHhISctm2ip8rXuoyODiYqKgokpOTL3uPpf3q1Lx5cwCb7FtlMBjKXTRUXdzc3KqtzwHdmjFv2SES07JIOpdPq1DvaumntqjOsbyWaBxtw97j6N6hN87OziR/O5Ocoztx/MmJgDuertWJe3NhAQUZ6ZgunqXg4lnM51JwyHfFza2dfiZtwN4/k/WFxtF2anIsK7pwwSZJ+7y8PN555x0WL16MyWQq3YmTE2PHjuX555+v9BuP+rR6Z+bMmURERNC4cWM+++wzGjSwzWOh9W0VjsXdrmd5/bPd/BabzSN3dqehp23ftNqbPhm1jezsbE5GHyDIMQuSjpF36iAFF1JxSo/HKT0eYrZgcHLGGBKGc5P2uDTtgJN/MwwODvYOvVbRz6PtaCxtQ+NoOxpL26jNq3Aqorrm6+3atQPg4MGDZZ6PiooCsJadvJwWLVrg4uLCuXPnSExMLLUHVWJiIunp6bi6utKiRYsSMaxdu5YDBw6U2a4ltorEUFXnz58HLv9k77XK3dVI9/aBbNt3ms17E+p90l5ESvK4rjuBo58jeck/yTy0jRSDgYDbJ9d44t5sNlOYm0XBxTOYLp679GtRYt508SwFGZd+zTwP5sIS93o5e1AQ1g6UJBWRGlDlpH1hYSGPPvoo27Ztw2w24+vrS8uWLfH39yc1NZXjx49z5swZ/vOf/xAbG8unn35aqUch68vqnTlz5jBv3jwaNWrEZ599ZtOVPvVtFY5F9/ZuXNckhqNx6azfk8S9w9tWa3/2ok9Gq87s4knDdj1w73ULAPnpyWTH7if7xD5yTh6gIPM8eSf3k3dyPxkU1cV3bdYBt+adcWvRCWOj4Hr7iHZl6efRdjSWtqFxtB2NpW3UxlU4V1Kd8/Xw8HC8vb2Jj49n//79dOrUqcT5FStWABXbx8nFxYXevXuzYcMGVq5cyYMPPlhmW3379i3xwcKgQYOYNWsW69evJzc3FxcXF+u53Nxc1q9fD8DQoUMr9JquVl5ennXfqo4dO1ZrX3VV/66hRUn7XxO4/9b2ODho/iVyLfFo0+P3xH3U1qLE/Z+eslni3lyQjynjHAUXz11KxBdLyGf8npg35+dWrEGDA46ePjh5NSL/4lm4eIb0Hz7AY8KbODjVr0WFIlL7VDlpv2TJErZu3YqXlxcvvvgid9xxB05OvzdbUFDAd999xzvvvMPWrVuJiIhg9P+zd9/hbZXn/8ffR9OS957xTOwkjrPIXiQkhZACZTbh2zb8IFA2aaG0/VJaxrcNq5MRSJmFtoQyCoEGUkIWZG9nOt57ybY8Ze3fH7IVm+zEsTzu13XlkqKjc3TrYOJHHz3nfm644ayPPxBm77zzzjv86U9/IjAwkNdff520tLQz1io8H1RvmDOMp9/eyX82F3DDnKH46fv8MgyiD9CGRKMdF03QuHm43W7stSVYig5gKczGUnIYV3sLbTnbacvZDoA6MMwT4CdnYUjOQhMk7byEEEIMHBdzvK7RaFi8eDHPP/88TzzxBG+99RYBAQEAfPbZZ2zcuJHQ0NBux8vOzubnP/85AF988UW3491+++2sX7+eFStWMHv2bO+4OT8/nxUrVnif01VmZiZTpkxh27ZtLFu2jMcffxxFUXC73Sxbtgyz2cyMGTMYPvzCJ4Bs3bqV9vZ2Lr30UlRdrtqrra3l17/+NVVVVcTExPCd73zngl9rIJowIhqDXoPJbOFocT0jU2TMJcRg458+kejrH6L6o9/TeugbalGIvOb+0wb3brcbl6XFOwve0Vx3fGZ8lxnyztbGs65D5eePOjAMTWAY6gDPrSYwDHVguPcxtX+Qt66miiJq/v4o9uoCTJ+vIPKq+2TilxDiorrgBHTVqlUoisLzzz/P1KlTT9iuVqu54YYbiIuL49Zbb+Xjjz8+p9C+v8/e+fe//83vfvc7jEYjf/3rXxk5cuRZvnMBMCUrlthwfyrrWvlyRwlXz0z1dUmin1EUBV1UErqoJIInXYXb5cRame8J8IsO0F52FGdzPS0HNtByYAMA2rA4DMlZ+KVkYUgahdoQ6Mu3IIQQQlyQiz1ev+OOO9i2bRs7duzg8ssvZ+LEiZhMJnbt2oVWq+XZZ5/1BvngaTVUWFh40mNNmDCBO++8kxUrVnDdddcxbdo0ALZs2YLVauWee+5h3LhxJ+y3bNkyFi5cyMqVK9m5cycZGRnk5OSQn59PVFQUv/3tb0/Yp6amhvvuu8/79+LiYgCWL1/OypUrAYiMjOSll17yPicnJ4ennnqKyMhIRo4cSWBgIFVVVRw+fJi2tjbCwsJ48cUX8fPzO+vzN5jotWqmZsWyblcpm/aWS2gvxCDlnzGJ6Oseovrff6Dl0NegKASNv/w0gXwDboft7A6u0qAJDD1JIB/e8Vgo6sBwVFr9mY/VhSYkitYx1xK4eyUt2RvQR6cQPOmq83j3Qghxdi44tM/JySEhIeGkHwC6mjp1KkOGDCEnJ+ecjt+fZ+/897//5Ve/+hU6nY7ly5czfvz4c3rvAtQqhWtnp/Hyh9l8vCmfBdOSUaulF7k4f4pKjV98On7x6YTOuBGX3Up72VHaiw5gKTyAtaoAe30F9voKmvasARR0MSneWfh+Q0ag0skHcSGEEP3HxR6v63Q6Xn/9dd544w1WrVrFunXrMBqNzJ07l3vvvZfMzMxzOt6DDz7I8OHDefvtt9m+3XNV3MiRI7nlllu48sorT7pPfHw8H3/8MS+88AIbNmzgyy+/JDw8nEWLFvHAAw+cdJFdm83G/v37T3i8tLSU0tJS73G7mjRpEgsXLuTgwYMcPHiQpqYmdDodycnJXHrppSxevJiwsLBzer+Dzaxx8azbVcrm/RXc8b1RMrYXYpDyHz6Z6OsepPrff6Tl4CZaDm464z4qQ2DHbPgwNAFh3mD+eCAfhsoYiKJcnH9XHBEpBM66meaN/6Ru7d/QRSZiSBl9UV5LCCEuOLS3WCwkJiae1XODg4NP2Rf+dPrj7J26ujoefPBBnE4nycnJfPLJJ3zyyScnHDc1NZUf//jH53xOBpO5ExP5xxdHqalvY3N2BbPGJfi6JDGAqLR6jCljMKaMgTngbG+lvfigp51O0QHspjJsVQXYqgpo3PYJqDT4JaR7Q3x93DAUtbRtEkII0Xf1xnhdp9Nx1113cdddd53xuZMnTz7jFwMLFixgwYIF51RDREQETzzxxFk/PyEh4Zy/oBg5ciRPPvnkOe0juhszLJIgfx3mFiv780yMz4jydUlCCB/xHz6F6Oseom7d2+B2Hw/kvbedrWo8M+f7Qh9547j5uOvLaTmwkep//5H4255BGxLt67KEEAPQBSdNkZGRFBQU0N7eftrLQC0WCwUFBURERJzza/TH2TsWiwW73Q54ZvHn5+ef9LiTJk2S0P4M9Fo1V81I5Z9rjvLRhjxmjo2X3nHiolH7+eOfMRn/jMkAOJobsBR7ZuG3F2XjaDLRXnKY9pLDNGx6D0Xrh1/iCG9PfF100kWb2SGEEEKcj94YrwtxtjRqFdPHxPH5liI27S2T0F6IQc5/+GT8h0/2dRlnTVEUIq68E7upDGtlPtXvP0PcLcvkamwhRI+74NB+8uTJfPzxxyxbtuy0s06eeuopLBYL8+fPP6/X6W+zd85n5o44te9OT+HD9bnklzWSnWtiTHqkr0sSg4QmMJTAUbMIHDULt9uNo6GqYxZ+Npaig7gszVjy92LJ3wuAyhiEISnTG+JrQmPkSyYhhBA+1VvjdSHO1qyx8Xy+pYitByq55wYnOu2pF6AUQoi+RqXVE33jzyl/4+fYaoqp/exFoq57SD73CSF61AWH9rfffjufffYZ77//Pvv372fx4sUMGzaMyMhIamtryc3N5W9/+xu5ublotdoTFn8V4mwE+ev4zsREPttcyIfrcyW0Fz6hKArasFi0YbEEjb8ct9uFrbrYG+K3lxzB1dZE65GttB7ZCoAmKAK/5CwMKaMxpo5DbZRFbYUQQvQuGa+LvmZkSjgRwX6YGtvZfbSaqVlxvi5JCCHOiSYogugbHqbi74/TemQrjTH/JmTa9b4uSwgxgFxwaJ+WlsYzzzzD//7v/5KTk8Ojjz56wnPcbjd6vZ6nn37au/CrEOfqe5emsXpLIXuP1VJY0UhKXLCvSxKDnKKo0MekoI9JIWTKNbiddqwV+R2z8A/QXnYMR5OJluz1tGSvB0WFX0IGxmETMA69BG1EgszGEEIIcdHJeF30NSqVwoyx8Xy8MZ+Ne8sltBdC9Et+Q0YQccUSTJ+voH79P9FFJWEceomvyxJCDBA9snriggULGD58OK+99hqbNm3CZDJ5t0VERDB79mxuu+02UlNTe+LlxCAVE+7PjDHxbNpXzkfr83joB/LLUPQtilqL35Dh+A0ZTujM7+OytdNeesQzE79gL7aaEtpLj9BeeoT6de+gCYnGOGwC/sMm4Jc4AkWt9fVbEEIIMUDJeF30NZeOS+DjjfnsPFxNW7sdo5+Mg4QQ/U/Q+MuxVhXQvPdLaj7+M3G3PoMuXL6IFEJcuB4J7QFSU1NZtmwZAC0tLbS2tuLv709AQID3Oddffz1NTU2sXbu2p15WDDLXzRnKpn3lbNpXzo+uHEFUmNHXJQlxSiqdH8a0cRjTxsHcxdgba2jL3U1b7m4sxQdwmKtp2vkfmnb+B0VvxJg6xjMLP+0SaaMjhBCix8l4XfQlaQnBxEX4U2FqZcehKmZfMsTXJQkhxHmJuGIJttpSrGVHqX7/aeJvfRqVXrIKIcSFUV2MgwYEBBAdHd3tAwBARUUF5eXlF+MlxSAxNCGEMcMicLncfPJ1vq/LEeKcaIOjCJ5wJbE3P0ryg28RfcPPCRh9GWr/YNzWNlqPbKV21QsU//k2yv/2K8xb/o2tthS32+3r0oUQQgwwMl4XvqYoCrPGJQCwca/8zAkh+i9FrSX6hp+hDgzDXldOzSd/we12+bosIUQ/d1FCeyEuputnDwPgv9uKaWmz+bgaIc6PSmfAf/hkoq6+l8SlrxH3/54iZPoN6KKSwO3CWnaU+vV/p+yvP6F0+b2Y/vs6bYX7cTvtvi5dCCGEEKJHzBoXD8DenBqaWmVcL4TovzQBoUTf+AsUtZa23F00bHrP1yUJIfq5HmuPI0RvGZcRSXJsEEWVTazeUsT356X7uiQhLoiiqPCLT8cvPp2w2f+Do7GW1tzdtOXtor3oYEcbndU07VyNojNgTB3bsZjteNTGIF+XL4QQQghxXoZEB5IaF0xBRSNbsiuYPzXZ1yUJIcR584sbSsSCu6j99AXM33yAPjoF/+FTfF2WEKKfktBe9DuKonDDnKH84Z97+PTrAq69NA2dVu3rsoToMZrgSIInzCd4wnxcNguWwmzacnfRlrcHZ6uZ1qNbaT26FRQV+vh0/IddgnHYBLQRQ1AUxdflCyGEEEKctVnj4imoaGTT3nIJ7YUQ/V7g6NlYqwtp2vEZNateID4sDl1Uoq/LEkL0Q9IeR/RLM8bGExFiwNxiZd2uUl+XI8RFo9IZ8M+YTORV95K49FXi/t/ThEy/EV10Spc2Ov+g7K8/pXT5PZ42OgXSRkcIIYQQ/cPMsZ4WOQcLTNQ1WnxcjRBCXLjwuYvxS87CbW+n6v2ncVqafV2SEKIfktBe9EsatYprL00D4OONeThdslCnGPg8bXSGETb7ZhJu/z2J968gYv4dGNLGoai1OMw1NO1cTdW7T1L0x1up/vD3NGdvwNna6OvShRBCCCFOKirMyIjkMNxu+Hpfha/LEUKIC6ao1ERf9yCa4Cgc5mpq/v0n3C6nr8sSQvQzEtqLfuvyyUkEGLSU17ay41Clr8sRotdpgiIIumQ+sYseJenBt4i+8RcEjpmL2j8Et81C69Gt1H76AsV/XkL53x7BvOUjbLUluN3yJZcQQggh+o7OBWk37S3zcSVCCNEz1MYgom/6BYpWj6VwP/Xr/+7rkoQQ/cw597R/8cUXz/vF2tvbz3tfIb7NoNdw5bRk3v8qlw/X5zFlVKz08xaDlkrnh3/GJPwzJuF2u7BWFtCWu5O23N3YqguxluVgLcuhfv0/0IREYRw6AeOwCRiSRqKotb4uXwghRA+S8brob6aPiePVjw+QW2qm0tRKbIS/r0sSQogLpo9OJvLq+6j56A80bluFLjqFwFGzfF2WEKKfOK/Q/nyDUbfbLaGq6FFXz0jl44355BQ3cLiwnszUcF+XJITPKYoKv7ih+MUNJezSm3E01dGWu4vW3F20Fx3wtNHZtZqmXatRdAaMqWPQJI5GcRh8XboQQogeION10d+EBvoxelgk+47VsmlfGQvnZfi6JCGE6BEBI6Zhm1aIectHmP7zMrrwePSxab4uSwjRD5xzaD9x4sSLUYcQ5yU0yI/LJgxhzbZiPlqfJ6G9ECehCQon6JIrCLrkCly2dixFB2jL3UVb7i6crWZaj26Do9sIRqE+byTO0bPxHz4Fld7o69KFEEKcBxmvi/7o0nHxntB+b7mE9kKIASX00kVYq4uw5O+h6oNnSbjtWdT+wb4uSwjRx51zaP/OO+9cjDqEOG/XXprGf7cXs+NwFaXVzQyJDvR1SUL0WSqdH/7pE/FPn4jb7cJWWUBr7i5aju3AUVOMreQQtSWHMH3xKsZhEwgYNQtj2lhpoSOEEP2IjNdFfzQlK46XPsimpKqZosomkmODfF2SEEL0CEWlJuran1Dx5i+x11dQ/eFzxP7gcRT1OUdyQohBRBaiFf1eQlQgU0bFAvDvDXk+rkaI/kNRVOjjhhJ26SIifvBbGmfdQ8D0m9CGx+N22Gg9soXq95+m+C93YPr8r7SXHZVFbIUQQghxUQQYtEwYEQXIgrRCiIFH7efvWZhWZ6C99Ah1X77p65KEEH2chPZiQLh+9lAA1u8uo67R4uNqhOifXMYQAiZdQ8KdfyH+tucInnw1av8QXJZmmvasoeJvv6J0+T3Ub3gXm0k+TAshhBCiZ80alwDApr3lMlFACDHg6CISiPreUkChafcXNO1d6+uShBB9mIT2YkAYnhzGyJQwHE4Xn35d4OtyhOjXFEVBH5tK+Lz/R+IDfyXmf35DwOjZKDo/HOYazJs/oGzFUspe/zmNOz7D0dLg65KFEEIIMQBMHBmNn05NdX0bOSUyvhBCDDz+6RMJvXQRAKYvXqW97KiPKxJC9FUS2osBo3O2/edbi2hrt/u4GiEGBkWlxpgyhqir7yfpJ28Qdd2DGIdeAio1tqp86r58k5Lnf0zlu0/SnL0Bl1WudBFCCCHE+fHTaZic6Wl7uWlvuY+rEUKIiyNk+g34D58CLgfVHzyHo6nO1yUJIfogCe3FgDFxZAwJUQG0tTtYs63Y1+UIMeCotHoCRk4nZuEjJC19jfAr7kAfnwFuF5aC/dR++gLFf76N6n//kbbc3bidDl+XLIQQQoh+Ztb4eAC+2VeO0yUtcoQQA4+iKERefR/ayEScrWaqP3wOl8Pm67KEEH2MhPZiwFCpFO9s+0825WN3uHxckRADl9oYRPCE+cT/v2UMueclQmctQhsW51nA9vBmqv61jOLn7/Bc8ll+TPrSCiGEEOKsjEuPIsCgpaHZysF8k6/LEUKIi0KlMxBz0y9Q+QVgrcjF9Plf5TOTEKIbCe3FgDL7kgTCgvTUNbazdmeJr8sRYlDQhsYQOvMmEu56nvhbnyFo4nc9C9i2NdG0+wsq3vpfSl++j/qNK7HVVfi6XCGEEEL0YVqNiulj4gBpkSOEGNi0oTFEXfcgKCpastfTtOtzX5ckhOhDJLQXA4pWo+aamWkAvPLhflZ9nS/fVgvRSxRFQR83lIjLb/MsYLvoUQJGzULR+uFoqML8zfuUvXI/5W/8gsad/8HRYvZ1yUIIIYTog2aN87TI2ZJdIVfPCiEGNGPqGMIu+xEAdV++iaXogI8rEkL0FRpfFyBET/vepWmU1jTz1c5SXv34ICVVzdx1/Wg0avmOSojeoqjUGNPGYUwbh8vWTtuxnTQf3ISlYB/WyjyslXnUffkWhpQxBIyaiX/GJFQ6g6/LFkIIIUQfkJkaQViQnvomK3tzapiUGePrkoQQ4qIJnnw1tupCWg5uovqjPxB/27NoQ6J8XZYQwsckxRQDjkatYunCcdx6VSaKAmu2FfObFVtpapWFXYTwBZXOj4BRM4ld9CvPAraXL0EfN6xjAdu91K56nuI/L6Hmk7/QlrcHt8vp65KFEEII4UNqlcKMsZ7Z9hv3lvm4GiGEuLgURSFiwV3oYlJxWZqpfv8ZXHarr8sSQviYhPZiQFIUhevnDOXR2yZj0Ks5kG/iZ3/ZRGl1s69LE2JQU/sHEzxxAfG3Ps2Qu18gdOZCNKExuO1WWg5uouq931Hy/B2Y1rxOe3mutLcSQgghBqlLxyUAsP1QFe1Wh4+rEUKIi0ul1RNz489RGYOw1RRR+9lL8llIiEFOQnsxoE0aGcNz988iKsxIZV0rP3t+E7uPVvu6LCEEoA2LI3TW9xly94vE/b+nCJqwAJUxCGdrI027VlPx1i8pffk+Gjb9C3t9pa/LFUIIIUQvGjYkhJhwI1abkx2Hq3xdjhBCXHSa4Eiib3gYVGpaD2+mcevHvi5JCOFDEtqLAS8pNog/Lp1FZmo4be0OnnxtG59skgVqhegrFEXBLz6diCuWkPTAq8Qs/BUBmTNRNDocDVU0fP0epS/fR/mbv6Rx52qcrY2+LlkIIYQQF5miKMzsaJGzaW+5j6sRQojeYUgcScTltwFQv/4ftOXt8XFFQghfkdBeDArBAXr+785pfGdSIi43vPbJQV58fz92h8vXpQkhulDUGoxDxxN17U9I+ukbRF7zAIbUsaCosFbkUvff1yl+/g6q/vUULUe24HLIWhVCCCHEQNXZImf30Wpa2uR3vhBicAgcfwWBY+cBbmo+/hP2+gpflySE8AEJ7cWgodWouP/7Y1lyTSYqBf67vZhfr9hCY4ss8CJEX6TSGQjMupTYm39N4gN/Jfw7t6KLSQOXk7bcXdR89AdK/ryE2v+8THvpEbl6RgghhBhgkmKDSIoJxOF0s/WAtMoTQgwOiqIQccXt6OMzcFnbqHr/GVzWNl+XJYToZRLai0FFURSuvXQov14yBYNew6GCOn72/CaKq5p8XZoQ4jQ0AaEET7qKhCXPknDnXwiZdj3qoAhc1jaa962l4u1HKV1+D/UbV0r/eyGEEGIAmdUx215a5AghBhNFoyX6hodRB4RhN5VR88nzuN3SKUCIwURCezEoTRgRzXMPzCQ6zEhVXRsPP/81O2WBKyH6BV1EAmFzfkDifS8T+4PHCRg9B0Xnh8Ncg/mb9z397996hKbdX+C0NPu6XCGEEEJcgFnjPH3ts/NqaWhq93E1QgjRezSBoUTf+HNQa2jL3UnD1+/7uiQhRC+S0F4MWkkxQfyhY4Fai9XB/72xnX9vyJMWG0L0E4qiwpCcRdTV95H0kzeI+t5PMKSO8/S/L8/B9MWrFP/5dqo+eJbWnO24nXZflyyEEEKIcxQT7k9GYiguN3yzX/o6CyEGF7/4YUReeScA5q//RevR7T6uSAjRWyS0F4Na5wK1l09Owu2GNz49xPPv7ZMFaoXoZ1RaPQGjZhJ786Mk3v9Xwubdgi4qGVwO2nK2U/3BsxT/5XZMX7xKe/kx+XJOCCGE6Ec6Z9tv2lvm40qEEKL3BY65jKCJCwCo+fR5bLUlPq5ICNEbJLQXg55Wo+K+m8Zwx/dGoVJg7c4SWaBWiH5MExhKyORrSLjjD8Tf/geCp1yDOiAUl6WFpt1fUPHW/1L2yv00fP0+dnO1r8sVQgghxBnMGBuPosDR4gaq62UxRiHE4BM+9xb8kkbhtrVT9f4zOC0tvi5JCHGRSWgvBJ4Faq+ZlcZvbp+C0c+zQO2Df9lEcaUsUCtEf6aPTiZ87i0k3r+CmJt/TcCoWShaPfb6Sho2raT0pXuoePtRmvauxdXe6utyhRBCCHESYUF+ZKVFALDi39k0NEtveyHE4KKoNURf/xCa4EgcDVXUfPxH3C6nr8sSQlxEEtoL0cUlw6P5/QOziA33p6a+jYdf2MQOWaBWiH5PUakxpo4l6ntLSVr6OpFX348hOQtQaC89gmn1yxT/eQnVH/2BttzduJ0OX5cshBBCiC6uvTQNlQI7D1dzzzPr+HJ7sbS7E0IMKmpjENE3/gJFo8NSsJ/69f/wdUlCiItIQnshvmVIdCC/XzqLrLQILFYnv31jOx+tz5UPBUIMECq9gcDRs4n9weMk3r+CsDk/RBuRgNtpp/XIFqr+tYzi5+/A9N83sFbmy//7QgghRB8wcWQMf1h6KanxwbRY7Dz/r3386uUtlNdKiwghxOChj0kh8ur7AGjc9gktB7/2cUVCiItFQnshTiLIX8eTd05l/tRk3G5487PD/OW9vdgdcvmZEAOJJiickGnXkfDjPxN/23METboKtX8wrrYmmnb+h/I3fk7ZX3+CectHOJpMvi5XCCGEGNSGDgnhj0tncdvVmeh1ag7km7j/9+t578sc7A6Xr8sTQoheETByOiHTrgOg9j/LsVYW+LgiIcTFIKG9EKegUau454bR/PjaLFQKfLWzlF+9vAVzsyxQK8RAoygK+thUIr5zK4n3/5WYhY/gP3I6ilqL3VRG/fp/UPLCXVT843Gas9fjslp8XbIQQggxKKnVKq6bPZQXfzaH8cOjsDtc/P2Loyz94wYOF9b5ujwhhOgVoZfejCFtHG6HjeoPnsHZ2ujrkoQQPUxCeyFOQ1EUrp6ZymN3TMXfT8ORonoe+stGCivkF6IQA5Wi1mAcegnR1z1I0k9eJ+K7d+OXOBJw0150gNpPX6T4z7dR88lfaMvfKwtACSGEED4QE+7P47dP4Wc/uITgAB2l1c384sVvWP7Bflosdl+XJ4QQF5WiUhN17U/RhsXiaDJR/dHvZV0uIQYYCe2FOAvjM6J47oFZxEb4U9Ng4ecvfM32g5W+LksIcZGp/PwJGjuPuB/9H0PufZnQS29GGxaH22Gj5eAmqlb+lpIX7qRu7d+wVhf5ulwhhBBiUFEUhUvHJ/DyL+bynUmJAHy+tYh7n/2KzdkVsi6NEGJAU/v5E33TL1F0BtpLDlO39i1flySE6EEaXxcgRH8xJDqQPyydxdN/20l2nonfvbWDxQtGcsOcoSiK4uvyhBAXmTYkitAZNxIy/QasFbm0HNhIy+FvcLY00Lh9FY3bV6GLSkI/fBqKEu7rcoUQQohBI9Co44GF45gzYQgvvb+P8tpWnv7bTiaNjOGu60cTGWrwdYlCCHFR6CISiLrmAao/eIamXZ+DoqAJCMXtcoHb1eXWCW4XuFy4v3WL+xSPfev2hMc6jun+1jFOt6/b5SRQH4g14DaMGRN8ffqE6NMktBfiHAQadTzx46n89eMDfL6liL/95zCl1c3ce+MYdFq1r8sTQvQCRVHwi0/HLz6d8O/8P9ry9tJycCOtubuw1RRjqykmBDAd+oSA9AkY0sbjl5CBopJ/I4QQQoiLKSstgucfmsP7X+Xywbpj7DhcxYH8Wn44fwTfnZGKWiUTbYQQA49/xiRCZy2kYdN7NO1c7etyzkhjbaPhg6dwjJlL2NzFqA0Bvi5JiD5JQnshzpFngdoxJEUH8tdPDrJuVykVtS08cuskQgP9fF2eEKIXKWot/hmT8M+YhNPSTOuRrTTuX4+tIheHqRSzqRTzln+j8vPHkDoWY9p4jGnjUPsH+7p0IYQQYkDSadX8YP5wZo6N48X393OkqJ5XPznIhj1l3HfTWFLj5XewEGLgCZlxIyq/AKyV+aCoUFSqbreoVChdb7s9pj7x+RfpGO3t7ZSvfw996V6a939FW95uwi+/Df8R06SDgRDfIqG9EOfpuzNSiYsM4Jl3dnG0uIEH/7yJ3yyZTEqcfBAQYjBSGwIJGn85muEzOLp/N0l6K87SQ7Tl78Vlaab18GZaD28GFPSxaRiHXoJh6Hj0samega4QQgghekxiTBBP3zuDNduL+dtnh8gtNfPTP2/kukvTWHR5Bn46+SgshBg4FEVF8MQFvi7jjBxtbbRlXknslO/SvO5N7HXl1Pz7jxgPbCTiyh+jCYrwdYlC9BmSEghxAcZlRPGHpbOIj/THZPYsULv1gCxQK8Rg59YZMQyfRtT3lpL0k9eJu2UZIdNvRBeTCrixVubR8PV7VLz5C4r/vISaVS/QcngzTkuLr0sXQgghBgyVSuHKqcks/8Vcpo+Jw+Vy8+H6PO57bj17cmp8XZ4QQgxauoQMEm7/AyEzbgKVhra83ZSuWErjztWe/vtCCJlpL8SFio8M4PcPzOKZt3exL7eWZW/tYPGCEdx42TC5vEsIgaJS45eQgV9CBmGzb8bR3EBb/h4s+XtoK9iPq62JlgMbaDmwARQVfgkZGIeOxzj0ErSRifLviBBCCHGBwoL8+OXiiew4VMXLH2VTXd/GY3/dyuzxCSy5ZhQhgXpflyiEEIOOotESdukiAkZOo/Y/r2Atz6Huv6/TcuhrIhfcjS4q0dclCuFTEtoL0QMCjDoeu2MKr31ykP9sLuTt1UcoqWrm/u+PlQVqhRDdaAJDCRo7l6Cxc3E77bSXHqUtfw9teXuwm8poLz1Ce+kR6tf/A3VguCfATxuPISULlc7g6/KFEEKIfmtSZgyj0sL5xxdH+fSbAjbsKWP30Wpuu3oUcycOkS/KhRDCB3SRicTd8luadv+X+vV/x1p+jLLXf0bI1Gs9vfo1Ol+XKIRPSGgvRA/RqFXcdf1oEmMCWfHvA2zYU0alqZVf3TqJ0CBZoFYIcSJFrcWQnIUhOYvwubdgN9fQlueZhW8pOoCzuY7mvV/SvPdLUGswJGZiHDoeQ9p4dOFxvi5fCCGE6HeMflruuDaLS8cn8OL7+yisaOIv7+1l/e5S7r1xDHGRAb4uUQghBh1FURE8YT7+6RMxrXmVtmM7MW/+kNYjW4n47l0YEjN9XaIQvU5CeyF62IJpKcRHBPD02zvJKWngwb9s4tFbJ5GWEOLr0oQQfZw2JIrgCfMJnjAfl91Ke/Ghjln4u3GYa7AU7sdSuB++fBNNaIx3Fr5fUqbMQBFCCCHOQXpiKH/8yaWs2pTPP9bkkJ1n4r7fr2fhd9K5fvYwtBpZ/k0IIXqbJiic6Bt/QWvONuq+eA17fQWV7/yGwLHzCJu7GLWfv69LFKLXSGgvxEUwJj2SPyydxZOvb6e8toVfvPQND948nmmjZWasEOLsqLT6jt7243FfvgR7fQVtebux5O3BUnIER0MVTTtX07RzNYpWjyE5C2Oa5/ma4Ehfly+EEEL0eRq1iuvnDGPa6DiWf7Cfvcdq+fvnR9m0t5z7bxrL8OQwX5cohBCDjqIoBAyfiiF5NPVfvU3zvrU071tLW+4uwq+4Hf/hU6SdmRgUJLQX4iKJiwzg90tn8ezbO9l7rJan/raTH84fzvfnpcsvGCHEOVEUBV14PLrweEImX4PLasFSlE1bnqcXvrOlnrbcXbTl7gJAG5l4fBZ+QgaKWn7dCyGEEKcSE+7PEz+eysY9Zby26iAlVc38/MWvmT81mVsWjMTfoPV1iUIIMeio/fyJ/O7dBIyahWn1K9jrK6j56PcYh00kYv4daILCfV2iEBeVfIoX4iIKMGh57PYpvP7pIT79uoC/f3GUkupmHlg4ztelCSH6MZXegH/GZPwzJuN2u7HVFHcE+Luxlh/DXltCY20JjVs/RqU3Ykgd41nMNm0cmoBQX5cvhBBC9DmKojD7kiGMHx7Nm58eYu3OEj7fUsT2g5Xced1opmbFysQbIYTwAUNSJvF3/AHzNx9i3vpv2nJ3Ulp8kLA5PyTokstRFGlnJgamfhPa22w23nzzTVatWkVpaSlGo5EJEyZw9913k5l57gtSrF69mnfeeYecnBwAMjIyWLx4MVdeeeUp9zGZTLz44ots2LABk8lEREQEs2fP5v777yc8/MRv+CorK1m/fj0HDhzg4MGD5OXl4XK5eOqpp7j++uvPuWbRP6nVKn58bRZDogNZ8VE2m/aWU1XXyoOLRvu6NCHEAKAoCvroZPTRyYROvx6npRlLwX5PL/z8vbjammg9spXWI1sB0MWkedvu6GPTUFRqH78DIYQQou8I8texdNE45kxI4KX391NhauWpv+1kcmYMd10/mogQg69LFEKIQUel0RE2+2YCRk6ndvXLWMuPUbfmVVoObSJywd3oIof4ukQhely/CO1tNhtLlixhx44dhIeHM2fOHGpra/nyyy/ZsGEDL7/8MjNnzjzr4/3pT3/ilVdeQafTMX36dAA2b97MT37yE44dO8bSpUtP2Ke8vJyFCxdSW1tLamoq8+bNIycnh3fffZd169bx3nvvERsb222fNWvW8NRTT13YmxcDxpVTk4mP9Oept3ZyrMTMI69s57rJQYwY4evKhBADidoQSEDmDAIyZ+B2ObFW5nvb6Niq8r1/zN+8j8ovAENKFoaUsRjTxqIJivB1+UIIIUSfMHpoJC/8bA7/WnuMD9blsv1QFdl5tfzoypEsmJ6CWiWz7oUQorfpohKJW/xbmnavoX7DP7CW5VD22s8ImXYdodNvQNFIOzMxcPSL0P7VV19lx44dZGVl8dZbbxEQEADAZ599xkMPPcTDDz/M2rVrvY+fzq5du3jllVcICgpi5cqVpKWlAZCfn8+iRYtYvnw5s2bNYty47u1LHnnkEWpra1m0aBGPP/44iqLgdrt5/PHHWblyJY8++iivv/56t30SEhJYvHgxo0aNYtSoUbzwwgt8/vnnPXRWRH80emgkf/jJLP7v9e2U1bTw+pe1HCjfz+IFmSTFBvm6PCHEAKOo1PjFp+MXn07YpYtwtDRgyd9LW94eLEXZuNpbus3C10YkYEgdizFlDH5Jmai0eh+/AyGEEMJ3dFo1P7xyBDPHxvPi+/s4WtzAXz8+wIY9pdx301hS4oJ9XaIQQgw6ikpN8MQF+GdMwvTFq7Tl7sL8zfu0HtlC5Hfvxm+IzIz0NWd7K+1FB7BWFeI3ZDiG1LHSYu489PnQ3uFw8PbbbwPw2GOPdQvmr7rqKlatWsXGjRv58MMPueWWW854vNdeew2Au+66yxvYA6SlpXHnnXfy3HPP8dprr/HSSy95tx06dIht27YREhLCI4884v1BUxSFRx55hC+++IJvvvmGo0ePMnz4cO9+8+bNY968ed6/yw+oAIiLCOD3D8xi+Qd72bSvkh2Ha9h5pIZZYxP4nysyiIs885dPQghxPjQBoQSOuYzAMZd5ZuFX5NFWsA9LwX6sFbnYTWXYTWU07fgMRa3FL3EEhtSxGFLGoItKkt9jQgghBqWk2CCeuW8mX2wr4m//OcyxEjM//dNGrps9lEWXZ6DXSqs5IYTobZqgCKJv+iWtR7dSt+Z17HXlVLz9KIHjLif8sh+i8vP3dYmDhtvpoL38GJaC/VgK92OtzAe3y7tdH5tGyPQbMaZPkDUIzkGfD+337NmD2WwmISGBrKysE7YvWLCAjRs38tVXX50xtLdarWzZsgXgpL3rFyxYwHPPPcc333yDzWZDp9MBsH79egAuu+wy9Prusw71ej2XXXYZH330EWvXru0W2gtxKv4GLffeMIpR8S52F7nZfqiGjXvL+Hp/OXMnDGHRdzKICjP6ukwhxACmqNT4JWTgl5ABsxbitLRgKTqApWAfbQX7cDaZsBRmYynMBkAdEOpZ0DZ1LIbk0aj9ZXahEEKIwUOlUlgwLYXJmTH89eMDbMmu5IN1uWzeX8E9N45mbHqUr0sUQohBR1EUAkZMw5A8mvqv3qZ5/1c07/0vbbk7ibjiDvyHT/Z1iQOS2+3GXleOpXC/J6gvOYTb1t7tOdrwOHRRybTl7sJamU/1B8+gi0okZPqN+A+fImurnYU+H9ofOXIE4JSLzY4cORLAu6Ds6RQWFmK1WgkNDSUuLu6E7XFxcYSEhGA2myksLCQjI6NbDaNGjTrpcTMzM/noo4/OqgYhuooK1vLgohFU1tv4+xdH2XWkmi93lLB+dylXTEnmprnDCA+Wxa6EEBef2hBAwIipBIyYenwQ1hHgtxcfwtnSQEv2BlqyNwAKuphUjKljMKSNxS8+A0Xd54cUQoiLyGaz8eabb7Jq1SpKS0sxGo1MmDCBu++++5Tj+NNZvXo177zzjnd8nZGRweLFi0868aaTyWTixRdfZMOGDZhMJiIiIpg9ezb3338/4eHhJzy/srKS9evXc+DAAQ4ePEheXh4ul4unnnqK66+//rT1tbS08Morr7BmzRqqqqoIDg5m6tSpPPDAAwwZIovhDWThwQb+95ZJbDtYySsfZVNZ18qvV2xlziUJLLlmFFqZQCiEEL1ObQgg8qp7CMiahWn1K9jrK6n+8FmMGZOJuOJ2NIFhvi6x33O2NmIpzKat0DOb3tlc3227yhiEITkLQ8oYjKljvOulOVsbadzxGY27PsdWU0LNv/+INiyOkOnXE5A5Uz5HnkafPzMVFRUAxMTEnHR75+Nms5nW1lb8/U99+Ut5eflpj9W5zWw2U1FR4Q3tO2uIjo4+bQ2dxxfiXKUlhPDY7VM4WlTP3784wv5cE//ZXMiX24tZMD2FGy8bRnCA9JYWQvQORVHQRSSgi0ggeNJVuBw2rKVHO1rp7MNWU3x8QdstH6Ho/DAkZXn64aeNRRt66t+zQoiBx2azsWTJEnbs2EF4eDhz5syhtraWL7/8kg0bNvDyyy8zc+bMsz7en/70J1555RV0Oh3Tp08HYPPmzfzkJz/h2LFjLF269IR9ysvLWbhwIbW1taSmpjJv3jxycnJ49913WbduHe+99x6xsbHd9lmzZg1PPfXUOb/fpqYmbr75ZvLy8oiPj2fu3LmUlJSwatUq1q1bx9///ndGjJB+ugPdlFGxjB4awTufH+E/mwtZv7uMXUdq+NH8YUTq3b4uTwghBiVD0ijib/8D5m8+wLztE9pytlNadIDwOT8kcPx3pDXLOXDZrbSXHvXOprfVFHXb7m2nmjIGQ8podNHJJz2/av9gwub8gOAp36Np12oad/wHe30FtZ++SMOmfxEy7ToCR8+RRYRPos+H9m1tbQAYDCefbWw0Hm8hcqbQ/kzH6nq81tbWE/br+lpn2qc3ud1ub40Xm8Vi6XYrzt/JzmVilB+PLB7HwYJ63vsqj2MljXy8MZ8vthaxYGoiV01Pwt8g/5B1JT+TPUPOY88ZsOcyeiiG6KEYpt6Is8WMreQg1uJsrMUHcVuaacvdSVvuTuoAdXAUuqQs9MlZ6BJGotKf+xVDA/Y8+oCcy57hi/Podrv7xVoSr776Kjt27CArK4u33nrLuwbVZ599xkMPPcTDDz/M2rVru61NdSq7du3ilVdeISgoiJUrV3rXoMrPz2fRokUsX76cWbNmMW7cuG77PfLII9TW1rJo0SIef/xxFEXB7Xbz+OOPs3LlSh599FFef/31bvskJCSwePFiRo0axahRo3jhhRf4/PPPz1jj008/TV5eHnPmzOH555/3ttRcsWIFf/zjH/nZz37GqlWrUKvlsu+Bzuin5c7rRjN7fAIvvr+fosomln90iOEJfjwy1MkpPj4KIYS4iFRaPWFzfoD/yOmYVr+CtSIX0xd/peXQ10QsuAtdRIKvS+yT3G4Xtuqijhap+2kvOYLbae/2HF1UMobUMRhSxuA3ZDgq7dlPLlUbAgid+X2CJ11N0541NG5fhaOxBtPnK2j4+n1Cpn6PwHHfOadjDnR9PrQXZ2a3270tfHpLUVFRr77eQHayc6kGbp4eQF6qhnX7m6hssPPRxkJWbyli2ohAJmcEoJdrb7uRn8meIeex5wz4c6mEQ/IcSJqNuqkKrakAjakQjbkMZ2MNluyvsGR/hVtR4QiJxxGRij0iFWdQDJxDCDngz2MvknPZM3r7PHYGwn2Vw+Hg7bffBuCxxx7rFsxfddVVrFq1io0bN/Lhhx+ecf0pgNdeew2Au+66yxvYA6SlpXHnnXfy3HPP8dprr/HSSy95tx06dIht27YREhLCI4884v2iQ1EUHnnkEb744gu++eYbjh492m39qXnz5jFv3jzv38/mC5K6ujo+/vhjNBoNTz75ZLf/Pj/+8Y/57LPPOHbsGOvXr+92bDGwZSSF8aefXsrHG/P555qjHC1r58k3d/HY7dMICZTwQQghfEEfnUzcLb+jafcX1K//J+2lRyh77SFCp91AyLTrZGY34Ggy0daxeKyl6ACutqZu29WBYZ52Nylj8EvOQhMQcsGvqdIbCJl6LUETrqR531rMWz/G2VxP3Zdv0rD5Q0ImX0PQJVeg0ss3330+tO+cxX6qWU1dZ5ifbpb92Ryr6/G6Hqtzv1PNZj/ZPr1Jq9UydOjQXnkti8VCUVERycnJp71iQZzZ2ZzLkSPh6svc7DxSy3tf5VFW08q67CZ25lm4dlYKl09KQKcd3LO45GeyZ8h57DmD81yOBC4DwGWzYCs9gq34ANbiAzjN1WgbStE2lGLI3YjiF4A+aZRnJn5SFuqA0JMecXCex4tDzmXP8MV5zMvL65XXuRB79uzBbDaTkJBAVlbWCdsXLFjAxo0b+eqrr84Y2lutVrZs2QJw0t71CxYs4LnnnuObb77BZrN5A/P169cDcNlll6HXdw9I9Xo9l112GR999BFr167tFtqfj02bNuF0Opk8eTJRUd0XHlUUhSuuuIJjx47x1VdfSWg/yGjUKm68bBipsf48/fZu8sqa+Nnzm3j8jikkRAX6ujwhhBiUFJWa4InfxZg+EdPnr2LJ30PD1+/RcmQzkd+9G7+ECxsX9DcuqwVL8UHvbHp7Xfc234rOD0Nipnc2vTY8/qJd9anS6gme+F2Cxl1Oc/Z6zFv+jaOxhvr1f8e89WPPtokLUBvOfKXmQNXnQ/vOBWOrqqpOur3z8ZCQkDOG5vHx8ac9VtdtXReqjYuL4/Dhw1RXV592n87j9zZFUU7ZuudiMRgMvf6aA9XZnMvZE/yZOT6Jr/eV8881R6k0tfLOF8f4z5Zivj8vg8snJ6HVDO6Z9/Iz2TPkPPacQXsujUYImQFZMwCwN1R1LGjrmb3hbm+hPWcb7TnbANBFJWJIGYshdSx+iSNQabrPKh605/EikHPZM3rzPPaH1jidV3uearHZkSNHAngXlD2dwsJCrFYroaGh3cbineLi4ggJCcFsNlNYWOhdf6qzhlGjRp30uJmZmXz00UdnVcOZnOn9dj7eE68l+qfhSSEsuTyS9zc3UV3fxs9f+Jpf3TqZzNQTF0MWQgjRO7TBUcQsfITWw5up+/IN7KYyKv72KEGXXEHYnB8M2FndbpcTa0WeZyZ9YTbt5cfA5Tz+BEWFPjbN05c+dTR+8eko6t69AkHRaAkafzmBYy6j5dA3mLd8iL2ugoav38O8fRXBE+YTPOlq1P7BvVpXX9DnQ/vORZwOHTp00u2HDx8G8A7aTyclJQW9Xk9DQwMVFRUnfBioqKjAbDbj5+dHSkpKtxrWrl3LwYMHT3rcztrOpgYhzpdapTB7fAIzx8Sxblcp736ZQ22DhVc+yuaj9bncfHkGcy4Zglo9uMN7IUTfog2NQXvJfIIumY/b6aC9/BiWjgVtrZUF2GpKsNWU0Lh9FYpGh1/HzA5V3HBwy0J+QvR1FRUVAMTEnHwB6s7HzWbzGdefKi8vP+2xOreZzWYqKiq8Y+/OGqKjo09bQ+fxL8TZvt+eeC3Rf0UEafntnZP4/T+zySlp4NFXtvDgzeOZOc43k7yEEEJ4JkMEZM7AkDqGurVv05K9jqbdX9B6bAcRV9yBf8YkX5d4wdxuN46GKiyF+2krzKa96AAua/euIZrQGAwpoz0tb5JG9ZmZ7IpaQ+Do2QSMmknr0W2YN3+AraYE85Z/07jjPwSOv5yQydegCRo8X4L3+dB+/PjxhISEUFZWxoEDB0647Hb16tUAzJ0794zH0uv1TJs2jfXr1/P555+zZMmSkx5rxowZ3fpTzpkzhxdeeIF169ZhtVq7XXZrtVpZt24dgFwCK3qFWq3iO5OTmH1JAv/dVsx7a49R02DhL+/t4/2vcvmfK4Yzc2w8KlXfn50nhBhcFLUGQ+JIDIkjYfb/4GxrwlKYTVvBPiwF+3G21GMp2IulYC8AwfoAGo4NpT1+KProVHQxKWiCI/vF7GMhBovONpGnahnU9aqEM4X2ZzpW1+O1traesN+proA42T7nqzdfy+12n7I9Z0+TBat7Tuc51Kqc/OqWcbzwwUF2Hqnh2b/voqzazDUzk+X32FmQn8meIeex58i57Bl94zyqCZh7K9phk2ha+wbOxhqqP3gG/dCJBM1ZjLoH+rZfbF3Po6u9BVvJIazFB7GVHMTZZOr2XEXvjy5xJPrEUeiSRqEJPt7ez+oGemmscS5UyeMITRqDtWAfLds/xlFdSNOOz2ja/QWGzFn4T7gKTXBkj7yWL34m3W73WY0F+nxor9FoWLx4Mc8//zxPPPEEb731lneBq88++4yNGzcSGhrKDTfc4N0nOzubn//85wB88cUX3Y53++23s379elasWMHs2bO9C1zl5+ezYsUK73O6yszMZMqUKWzbto1ly5bx+OOPoygKbrebZcuWYTabmTFjxgX3yBTiXGg1ar47I5W5kxJZvbmID9blUmFq5ff/2M37Xx3jB/NHMGVUjHwoEEL0WWpjEAGZMwjInIHb7cZeW9oR4O/DUnIYlbUFa+E+rIX7vPuo/ALQRSejj0lBF52CPiYVbXgcimpwr+8hhBh47Ha7tx1Pb5EFq3tO57m8cowWtSuAbTkt/PPLPI4VVnLlhBDUMsHmrMjPZM+Q89hz5Fz2jL5xHlUw6Rb88r7Br2gb1rydVBdlY8m4DFvCWLiQLMXtBrcTXC4UtxPcro77Lk97GrcL3C4Ul6vjvrPL/Y59XB2Pu93efZQu+xpsFuq2FKFuqqRrpW5FhSMkAUdECvbwFJzBMaB0dGSoqPP86TcMMHYRmrpC/PK/QdtQhiV7HW0HNmCLG0V76lRc/j0z8763fya7ThY/lT4f2gPccccdbNu2jR07dnD55ZczceJETCYTu3btQqvV8uyzz3qDfPB8O1JYWHjSY02YMIE777yTFStWcN111zFt2jQAtmzZgtVq5Z577mHcuHEn7Lds2TIWLlzIypUr2blzJxkZGeTk5JCfn09UVBS//e1vT9inpqaG++67z/v34uJiAJYvX87KlSsBiIyM5KWXXjr/kyMGPT+dhuvnDGX+1CQ+/bqAf2/Io7iqmWVv7WDokBB+OH844zOiJLwXQvRpiqKgi0pEF5VIyJRraG1sIHfnRuIN4K4vx1ZdiK22FFd7C+3FB2kvPt6yTtHo0EUloYtJQR+dgi4mFV1U4gn98YUQPa9zZvmpZid1nSl+pvWnznSsrsfreqzO/U41K/1k+5yv3nwtrVbL0KFDL/g4Z0MWrO45JzuXmZnw+dYS/vZ5DrvyWnGpDCz9fhZ++n7xcdwn5GeyZ8h57DlyLntGnzyPo0Zjr/0ujV++jqO6EP9DnxNcfRCVMQi3ywlOJ7id3vtulxNcJ9567zudQO+2+dSEx6NLHIU+aRTa+OGodH69+voX30iY+V1sZUdp2f4JtpKD6Muz0VccwC99Mv6TrkEbMeS8juyLn8m8vLyzel6/GCXodDpef/113njjDVatWsW6deswGo3MnTuXe++995QLQZ3Kgw8+yPDhw3n77bfZvn074Fkk65ZbbuHKK6886T7x8fF8/PHHvPDCC2zYsIEvv/yS8PBwFi1axAMPPEB4+Inf7NhsNvbv33/C46WlpZSWlnqPK0RPMPppWfidDL47PYV/b8xn1aZ88krNPP7qNkamhPHDK0eQlRbh6zKFEOKsKFo9ztAh+I8Y4Q3J3A47NlMp1qpCbFUFWKsLsVUX47a3Y63IxVqRS7P3ACq0EQnoYzyz8XXRKeijk1H5XXiQJoQ4rnONqKqqqpNu73w8JCTkjEF257j4VMfquq3r2lRxcXEcPnyY6urq0+7TE+Pus32/PfFaiqL0+uLRsmB1z/n2ubxh7nDiooL5/T92s+eYiSff2sNvlkwhLGigBSs9S34me4acx54j57Jn9LnzmDSCoNueoXHnaho2vovDVNrzr6GoUNQaUKlRVGoUtbrjvgZUnm2KSg0qDYqqy3PValA8t4pKA2o1TpebxpY2okZOIjhjAprAsJ6vtw8ypo8nJH087eXHMG/+kLbcXbTnbKM9ZxvG9EmEzrgRfWzaeR27N38mz3ZSbb8I7cET3N91113cddddZ3zu5MmTycnJOe1zFixYwIIFC86phoiICJ544omzfn5CQsIZ6xCipwUYdfzoyhFcMzOVD9bl8p/NhRwurOeR5ZsZOyySH1w5nOFJg+MfdCHEwKJotOhjUtHHpAKetWzcLif2hipsVYWeEL/j1tXWhL22BHttCS0HNnqPoQmJ7tJaJwVddCqawFAfvSMh+r8RI0YAcOjQoZNuP3z4MIB30djTSUlJQa/X09DQQEVFRbdgHjyLwJrNZvz8/EhJSelWw9q1azl48OC3D9mttrOp4UzO9H578rXEwDM1K5Zld0/j/97YTn5ZIz97fhOP3T6FpJggX5cmhBCDnqJSEzL5agJGTMNSfMATsncE7J7wXNPlfme43rFd3RnEa7oE7Grw7qNC6WxR0wPa2tqoPHIEw4gRaPrSlx+9xC8+nZjv/y/WqkLMWz6k9cg22o7toO3YDgyp4widcSN+Q/p/C/N+E9oLIc5NcICeJdeM4tpL0/jX2mP8d3sx+3Jr2Zdby8SR0fxw/ghS44N9XaYQQlwQRaVGFx6PLjyegMwZgGdhH2dzXceM/EKs1QXYqgpxNJlwmKtxmKtpPbrNewy1f0i31jr6mBQ0IdHSVkyIszB+/HhCQkIoKyvjwIEDZGVlddu+evVqAObOnXvGY+n1eqZNm8b69ev5/PPPWbJkyUmPNWPGjG59QOfMmcMLL7zAunXrsFqt6PV67zar1cq6desAmDdv3vm9yS5mzZqFWq1m9+7d1NTUEBV1fDE3t9vNmjVrgLN7v2JwykgK47n7Z/HEa1spr23lFy98zSO3TmL00J5ZUE8IIcSF0QSFE5g129dliLOgj0kh+vqfYTOVYd7yES0Hv8ZSsBdLwV78kjIJnXETfkmj+u3nup77mkcI0SeFBxu4+4YxvPLLecybmIhKgZ2Hq1n6xw08/fZOSqubz3wQIYToRxRFQRMUgX/6REJnfZ+Ym35J4v0rSPrpW8T+z2OEzV1MQOZMtOHxgIKz1Ywlfy/mLR9R89HvKV1+L0V/WEzFO7/G9N83aM7egK2mGLfT4eu3JkSfo9FoWLx4MQBPPPEELS0t3m2fffYZGzduJDQ0lBtuuMH7eHZ2NvPnz2f+/PknHO/2228HYMWKFeTn53sfz8/PZ8WKFd2e0ykzM5MpU6ZgNptZtmwZbrenj6zb7WbZsmWYzWZmzJjB8OEXPuMqPDyca6+9FofDwW9+8xtsNpt326uvvsqxY8dIS0tjzpw5F/xaYuCKjfDn2ftnMTIljNZ2B4/9dSvrd1+EVgxCCCHEIKCLSCDqmgcYcvcLBI6dByoN7cWHqPzH41T87Ve05e72jg/7E5lpL8QgER1mZOmicdxw2VDe/W8OX+8rZ/P+CrZmV3Dp+ARuvnw4sRHS61kIMXCpjYEYUkZjSBntfcxla8dWU+yZlV9d6LmtLcZtbaO95DDtJYe9z1XUWs9iuZ2tdWJS0UUlodLqT/ZyQgwad9xxB9u2bWPHjh1cfvnlTJw4EZPJxK5du9BqtTz77LMEBAR4n2+xWCgsLDzpsSZMmMCdd97JihUruO6665g2bRoAW7ZswWq1cs899zBu3LgT9lu2bBkLFy5k5cqV7Ny5k4yMDHJycsjPzycqKorf/va3J+xTU1PDfffd5/17cXExAMuXL2flypUAREZG8tJLL3Xb75e//CX79+9n/fr1zJ8/nzFjxlBcXMyhQ4fw9/fnD3/4A2q1+hzPohhsgvx1/N+d0/jTu3v4Zn8Ff/znHqrr21g4L73fzggUQgghfEkbGkPkd+8mdOZNmLd+QvO+tVjLc6j61zJ00SmEzrgRY8akHm1VdDFJaC/EIJMQFcjDP5zATXPT+ccXR9h2sIr1u8vYtLeceZMSWTgvg8jQPrKKuxBCXGQqnR9+CRn4JRzvP+12OrCZyo4vdltViLW6CLfNgrUyH2tlfvcFb0Oj0UYmoosY4gn1I4egDYvz9LQUYhDQ6XS8/vrrvPHGG6xatYp169ZhNBqZO3cu9957L5mZmed0vAcffJDhw4fz9ttvs337dgBGjhzJLbfcwpVXXnnSfeLj4/n444954YUX2LBhA19++SXh4eEsWrSIBx54gPDw8BP2sdls7N+//4THS0tLKS0t9R7324KCgnjvvfd4+eWXWbNmDV9++SXBwcFcffXVPPDAAyQmJp7T+xWDl06r5uEfTiA67DAfrs/jH18cpaa+jXtuHING3T8CBSGEEKKv0QRFEHHFEkKmX0/j9k9p2r0GW3Uh1R8+hzYigdDpN+I/cppnvYE+TD5NCjFIJccG8atbJ3OspIF/rDnKnqM1rNlWzFc7S7lyWjI3XTaM0CA/X5cphBC9TlFr0Ecno49OJrDjMbfbhaOh+niIX1WIrboAZ2sj9vpK7PWVtOVsP34QlQZteCy6yMSOP0PQRQ7x9Mrv44NDIc6HTqfjrrvu4q677jrjcydPnkxOTs5pn7NgwQIWLFhwTjVERETwxBNPnPXzExISzljHqQQEBPDwww/z8MMPn9f+QnRSqRT+31WZRIUZWfFRNl/uKMFktvDLWyZi9NP6ujwhhBCi39IEhBI+dzEhU6+jcednNO1cjd1URs0nf0azaSUh065HnTbR12WekoT2Qgxy6YmhPHHHVA4V1PHO50c4VFDHp18X8N/txVw1PYXrZg8lOEBaPwghBjdFUaENi0UbFgsjPO063G43zlYz9tpSbLUl2Lrcum0W7LWl2GtLaWXz8eNodGgjEroF+brIRNRBEdIOQQghBrEF01KICDHw7Du72Husll+8+A2P3T6FiBC5AlYIIYS4EGpjIGGX3kzw5Gto2vU5jTs+w9FQhek/y1EFhqNJnwcjRvi6zBNIaC+EACAzNZyn7pnO/txa3vn8CMdKzHy4Po9PNuUzZlgkM8bEMXlULIFGna9LFUKIPkFRFDQBoWgCQrv1yXe73TibTF2CfE+YbzeV4XbYsFUVYKsq6H4sncEb4HfeaiOHoPYPkTBfCCEGiUkjY3j6nhk8+fo2iiqb+Nnzm3js9imkxAX7ujQhhBCi31P7+RM640aCJ32Xpj1f0rjtE5zNdfgVbIVZV/m6vBNIaC+E8FIUhbHpUYwZFsnOI9W8u+YoeWWN7D5aw+6jNajf38/ooRFMHxPHlFGxMgNfCCFOQlEUNMGRaIIjMQ69xPu42+XEYa7uFuTbakuw11V4+uWXH8NafqzbsVSGwG6z8rUd99WGwG+/rBBCiAFg6JAQfv/ALB5/bSul1S384sVv+OUtExmfEeXr0oQQQogBQaUzEDLlGoImzMd8cAvFTXZfl3RSEtoLIU6gKAqTRsYwaWQMpdXNbMmuYHN2BYUVTew9VsveY7Us/zCbrLRwpo+OY0pWLKGB0v9eCCFOR1Gp0YbFoQ2Lwz9jsvdxt9OOvb7SE+TXlGAzlWKvLcFeX4XL0kx7ySHaSw51O5Y6IOxbQX4iusgEVDppoyCEEP1dVJiRZ++bybK3dnIg38STr23j3hvH8J3JSb4uTQghhBgwVBodfumTcB054utSTkpCeyHEaQ2JDmThdzJY+J0MKmpb2NwR4OeXNbI/18T+XBOvfJRNZmoE00fHMnV0HGGygK0QQpw1Ra31LljLyOnex112K3ZTOTZTiTfQt9eW4Ggy4Wypx9JSj6Vwf7djaYKjPGF+VKInzI8YgtsY2ttvSQghxAUKMOp44sdTeP5f+9iwu4zn/7WP6vo2fjB/uLRNE0IIIQYBCe2FEGctLjKAm+amc9PcdKrqWtm83xPg55aaOZBv4kC+iRUfH2BEchjTR8cxbXScLJ4lhBDnSaXVo49NRR+b2u1xl7UNm6nMMyu/tgS7yRPoO1vNOBprcDTW0Ja3+/gOikKQIYSGY8lYopPQhcd7FsONSEClN/byuxJCCHG2tBo1D948nuhQI++tPcZ7a49R09DG/d8fh1aj8nV5QgghhLiIJLQXQpyXmHB/brhsGDdcNozq+ja2Hqjgm/0V5BQ3cLiwnsOF9bz6yUGGJ4UyfYwnwI8KlXBICCEulEpvxC8+Hb/49G6PO9uavP3y7R398m21pbjaW1C3NWAtaMBasLfbPuqAMHQRnhBfG57gvS8L4AohRN+gKAo/vHIEUWFGXvpgP+t3l1HX2M7//r9JBBi0vi5PCCGEEBeJhPZCiAsWHWbk2kuHcu2lQ6ltsLD1gGcG/pGieo4WN3C0uIHXVx0iPTHEOwM/Jtzf12ULIcSAojYGYUjKxJCU6X3M7XbTUltJwb6txAVoUJpqsNWVYzeV4WxpON5mp+hAt2Op/Py7hfi68AS0EfFogiNRVOrefmtCCDHoXT45iYhgA0+/vYPsPBM/f+FrHr99ClFhMilGCCGEGIgktBdC9KjIUAPXzErjmllp1DVa2Hqgks3ZFRwqqONYiZljJWbe/OwwQxOCmTY6julj4oiLCPB12UIIMSApioI6IARHeDL+I0ZgNB4Pd5ztrdg7AnybqcxzW1eOw1yDq70Va3kO1vKc7sfT6DyL6UbEe4N8XUQC2rA4FI3M+BRCiItp/PAonrlvJk+8to3S6mZ+9vwmfnP7FIYmhPi6NCGEEEL0MAnthRAXTXiwgatmpHLVjFQamtrZerCSzfsrOJhvIq+skbyyRt5efYSUuCCmj4lj+ug4EqICfV22EEIMCmo/f9QnabPjctiw11Vgryv3hPkdwb69rgK3w4atpghbTRGtXXdSVGhCojwBfkSC9M0XQoiLJCUumN8/MIsnXttGUWUT//vSN/xi8UQmjIj2dWlCCCGE6EES2gshekVokB8LpqWwYFoKjS1Wth2s5Jv9FWTnmSisaKKwoom/f36UpJhApnfMwE+MCfJ12UIIMeioNDr00cnoo5O7Pe52OXE01h6flW8qx17nue+ytuFoqMLRUAW5u7rtJ33zhRCiZ0WEGHj63hk8/fZO9h2r5f9e38Zd14/mymkpvi5NCCGEED1EQnshRK8LDtBzxZRkrpiSTFOrje0HPS109h2rpbiqmeKqHP753xyGRAd4WuiMjiM5NkjCHSGE8CFFpUYbGoM2NAaGTfA+7na7cbaYsdd1b7Nzrn3ztWFxaMNi0YZGo6il1Y4QQpyOv0HLY7dP4aX397N2ZwnLP8ymur6NxQtGolLJmFkIIYTo7yS0F0L4VJC/ju9MTuI7k5NoabOx/VAVm7Mr2JtTS2l1C+99eYz3vjxGfKS/N8BPjQ+WAF8IIfoIRVHQBIaiCQzFkJzVbdv59M1HUaEJjugI8GPRhsd5bsNi0YREyUK4QgjRQaNW8cDCsUSHG/nHF0f5cH0etQ0Wli4ah04r/1YKIYQQ/ZmE9kKIPiPAqGPuxETmTkyk1WJn5+EqvtlfwZ6cGsprW3n/q1ze/yqX2HB/po2O9SxiG6bzddlCCCFO4Wz65ttN5djqPD3z7Q2VuG3tOMw1OMw1WNjf/YAqNdqQKLRhcWg6Q/2wjkA/KFwCfSHEoKMoCou+k0FUqIHn39vHpn3lmBot/OrWyQT5yzhZCCGE6K8ktBdC9En+Bi2zLxnC7EuG0NZuZ9eRar7ZX8HuI9VU1rXy4fo8PlyfR2SIHylRGmraKxiRGkVCVAAatcrX5QshhDiNU/bNd7txtpqx11dgr6/0/nE0VGKvr8LtsHkf+zZFrUUTGu0N8Y8H+nGoA8PkCi0hxIB22YREwoMNPPXWDg4X1vPzFzbx+B1TiQn393VpQgghhDgPEtoLIfo8o5+WWeMSmDUuAYvVwe6j1WzeX8HOI9XUmtupNcOOY4eAQ2g1KpJig0iLDya1409ybBB+OvnnTggh+jpFUdAEhKIJCMWQmNltm9vtwtlc3y3M9/ypwG6uxu20Y+9owXPCcbV6Tz/+zln5obHowuPQhMai9peWa0KIgWHMsEieuX8mj7+6jfLaVn72/CZ+s2QK6Ymhvi5NCCGEEOdIUiwhRL9i0GuYMSaeGWPiabc52Lq/lM17Cmi0aiiuasFidZBXaiav1OzdR6VAXGQAqfHBXcL8ELlkWAgh+hFFUaEJikATFHFC73y3y4mjydQ9yO+cpW+uwW23YqspxlZTfOJxdYbjs/PDjs/O14bGojYG9tbbE0KIHpEUE8TvH5jJk69vp6C8kf9dvpmHf3gJU0bF+ro0IYQQQpwDCe2FEP2Wn07D5MxoglT1jBgxAj8/A1X1rRSUN1JQ3kh+x6252UpZTQtlNS1s2lvu3T8ixNBtRn5qfDCRIQaZcSmEEP2MolKjDYlGGxINqWO7bXM7HdjNNTjqK7E3dJ+h72g04bZZsFUVYKsqOOG4Kr8Ab5BPYAQqdUQvvSMhhDh/4cEGnr53Bs++s4tdR6pZ9tYObv/eKK6Zmebr0oQQQghxliS0F0IMGCqVQlxEAHERAcwYE+99vL6pvSPEN3sD/aq6NkxmCyazhe2HqrzPDTTqSI0PIjU+xDszPy4yALVKgnwhhOiPFLUGXXgcuvC4E7a5HDYcDdWeEL+h0rsYrr2+EmdzPa72FqwVuVgrcgEI8A+HiTN7+y0IIcQ5M+g1PHrrJF759wG+2FrEqx8fpKbewm1XZ6KSca0QQgjR50loL4QY8MKC/AgL8mPCiGjvY60WOwUVjd4Qv6C8kZLqZprbbOzPNbE/1+R9rl6nJjk2qFt7naSYIHRatS/ejhBCiB6i0ujQRQ5BFznkhG0uWzv2hirvzPx2Uzm1GukLLYToP9RqFffcMJroMCN/+89hPtmUT01DGw/94BL0Mo4VQggh+jQJ7YUQg5K/QUtWWgRZacdbHdjsToqrmrq11imqbMJqc5JT3EBOcYP3uWqVwpDowG6tdVLjgvE3aH3xdoQQQvQwlc4PfXQy+uhkANra2qg4csS3RQkhxDlSFIUbLxtGVKiBP727l60HKvnVy5v59W2TCQ7Q+7o8IYQQQpyChPZCCNFBp1UzbEgow4Ycn0npdLmpqG3xhviFHYF+c5uNosomiiqbWLer1Pv8mHCjN8RP62ixExbk54u3I4QQQgghBACzxiUQFuTH797cQU5xA0t+9yWXDI9iWlYcE0dGY/STiSdCCCFEXyKhvRBCnEbnjPoh0YHMHp8AgNvtxmRup6CjR35+eSMFFY3UNlioqmujqq6NLdmV3mOEBOpJiQ0iPjKA2Ej/jr77/kSFGdGoVb56a0IIIYQQYhAZlRbBs/fP5Km/7aS0upkt2ZVsya5Eo1YxNj2S6aNjmZQZS5C/ztelCiGEEIOehPZCCHGOFEUhMtRAZKiByaNivY83tdq8M/ELyhspqDBTXtOCudnK3uZa9h6r7XYclUohOtTYEeT7ExvREehH+hMVKoG+EEIIIYToWUOiA3np4TnklzWy5UAFW7IrKK9tZdeRanYdqUal2s/otAimjo5l6qhYQuWKUSGEEMInJLQXQogeEuSvY0x6JGPSI72PtVsdFFU1UVzZRKWplQpTKxW1LVSaWrE5XFTWtVJZ18qebx1LrVKICjN2C/NjI/yJi/QnOtSIWgJ9IYQQQghxHhRFYeiQEIYOCeFHV46gxDvrvoKiyib25dayL7eWVz7KZkRyGFOz4piWFUtUmNHXpQshhBCDhoT2QghxEfnpNQxPCmN4Uli3x10uN/VN7R1BfgsVtZ7wvlugb2ql0tR6wjG7BvpxkQHEhnvC/LiIAKJCDRLoCyGEEEKIs6IoCkkxQSTFBHHz5RlUmFrYml3JlgMVHCsxc7iwnsOF9by+6iBDh4QwLSuWaaPjiI8M8HXpQgghxIAmob0QQviASqUQEWIgIsRA1tCIbts6A31vmN8R7HeG+F0D/d1Ha7rtq1YpRIcZPWF+RPe2OxLoCyGEEEKI04mLCOCGy4Zxw2XDqG2wsPVgBVuyKzlcWEdeqZm8UjNvrz5CUkwg00bHMW10HEkxgSiK4uvShRBCiAFFQnshhOhjugb6o4dGdtvmcrmpa2ynss4T6FeYWqk0tVBhaqWqI9Cv6GjD821dA/1v99D317l76+0JIYQQQoh+IDLUwDUz07hmZhoNze1sP1jFluwKsvNMFFc1U1yVw7v/zSE2wt87A3/YkBAJ8IUQQogeIKG9EEL0IyrV8UVwTxXod87K9/bPr/PMyrefLtBXK4QY1STtaichOsgT6neE+5GhRtQq+fAlhBBCCDFYhQb6MX9qMvOnJtPcZmPHoSq2HqhkT04NlaZWPlyfx4fr84gIMXgD/OHJYTKGFEIIIc6ThPZCCDFAdA30xww7daBf0dFap6K2Y4Z+nSfQr2t2UNdsYs8xU7d9NWqF6LDjffM72+7ERQYQEWKQD2NCCCGEEINIoFHH3ImJzJ2YSFu7nd1Hath8oILdR6oxmS2s+rqAVV8XEBKoZ8qoWKZlxZI1NAKNtGkUQoge4XR6Pr87nC5flyIuIgnthRBiEDhToF9WVc/2vUfRBURiarR16aPfhsPpory2hfLaFqC6274atYqYcKO3zU5cxPFgPyLEgEoCfSGEEEKIAcvop2XmuHhmjovHaneyN6eGLdkV7DhUhbnZyhdbi/hiaxEBBi2TMmOYPjqOsemR6LRqX5cuhBD9SqvFzp6jNWw/VMWuo1W0Whys+KKG9MRQRiSHMSI5jOHJYQQadb4uVfQQCe2FEGKQ6+yhnxrjx4gRCRiNRu82p8tNndninaHfdWHcqjpPoF9W00JZTcsJx9VqVMSEd1kMt6PdTlxEAOHBfhLoCyGEEEIMIHqtmimjYpkyKha7w8WBPBNbDlSw7WAljS021u0qZd2uUgx6NRNHxDB1dCyXDI/GoJdYQgghTqaqrpUdh6vYcaiKg/l1OF3H16JTFLDZXRzMr+Ngfp338YSogG4hfkJUgKw10k/Jb0chhBCnpFYpRIUZiQozMja9+zany01tQ9vx/vmmlo5Q3xPo2x0uSqubKa1uPuG4Oo2KmIjuM/M72++EBUmgL4QQQgjRn2k1KsYPj2L88CjuvmEMhwvr2JJdwdYDldQ1trNpXzmb9pWj63jetNFxTBwZQ4BB6+vShRDCZ1wuN8dKG9hxyBPUF1d1/yydEBXA5MwYRqeF4mipICQykcIqC0eL6jlSVE95bYt3Ut2XO0oACDRqyUgKY2SKJ8QfNiQEP93gjoMbW6zerKK0qpFwg5URI3xd1YkG938lIYQQ502tUogJ9ycm3J9xGd23OZ0uas0WKmpbT1gYt7q+DZvDRUlVMyVVJwn0terjs/Mj/Int0nonLMhPZgkIIYQQQvQjapVCVloEWWkR3PG9LHJLG9iSXcmWAxVU1bWx7WAV2w5WoVErjB4WybSsOMakBfu6bCH6HafLjQIyAaqfabc62Jdby45DVew8Uo252erdplIpjEwJY3JmDJNGxhAXGQBAW1sbR45UkhAVQHpyFFdMSQI8YXROSQNHCj0hfm5JA81tdnYdqWbXEU+rW7VKISU+2Dsbf0RyGBEhht5/4xeZ2+2mscVGSXUTpVXNlFQ3U1rdQml1M+YWa7fnJkfpufJSHxV6GhLaCyGE6HFqtcob6I8nqts2p9NFdecM/Y5Qv3Nx3Or6Nmx2J0WVTRRVNp1wXL1OTUSwgfBgP8KD/YgIMRAe5EdYl8dCAv1kcVwhhBBCiD5IpVLISAojIymM/3fVSAormthyoIIt2ZWUVjez52gNe47WoCiQFKXnsqYAZl+SRGiQn69LF6JPabc5KK5soqC8kfzyRgrKGymqbEKlUhgSHUhSTCBJMUEkdtyGB8vkp76krtHCzsPVbD9URXZuLTbH8QVljX4aLhkezaSR0VwyIvqcetQHB+iZNNIT8APYHS4KKxo5WlTP4aJ6jhTWU9/UTl6pmbxSM59+XQBARIihW4ifHBfUbxYPd7vdNDRbKalq6hbMl1Q109xmO+V+UWFGEqMDiQ3zIzGkvRcrPnsS2gshhOhVarXKs3BtRACXDO++zeF0UVPf5p2V37X1Tk19G1abs8uiuCenUimEBuqJCDYQ1hHkh3cJ9cODPUG/n/RPFUIIIYTwGUVRSI0PJjU+mB/OH0FpdTNbD3hm4OeXNVJUbeWNz47y5n+OMjIlnOmj45g2Opbw4IE3I1SI02lps1FQ0Uh+WaM3pC+vaaZLe/NuOgPZrvz9NCR2CfE7b0MC9Rf/DQjcbjeFFU3sOFzF9kNVJ/z3iQozdsymjyYzNQKtpmcCc61GRXpiKOmJoVwzKw23202t+Xg7nSNF9RRWNGEyW/h6Xzlf7ysHPJPl0oeEMiLFE+JnJIX6fIFbt9tNXWO754r9ztY21Z77rRb7SfdRFIgJ82dIdCCJMYGe2+hAEqICvHmA56qFI735Vs6aJBZCCCH6DI1a5VmwNjIARkR322Z3uKhpaMNktlDX2E5do4X6xnbqmtq9j5mb23G53B3bT/9tub9B6wnxg7qE+iGGbo8F+evk8lIhhBBCiF4wJNoTqHx/XjpF5XWsWn+AwlrIK2vkUEEdhwrq+OvHBxiRHMb0MXFMy4ojMlQC/NOxWB1Um+2kO11nfrLwObfbTX1Tu3fmfGdAX1PfdtLnhwTovV98pcYHkxYfjMvtprijDWlxVRMlVU2U17bS2u7whrRdBQfoSIwOIikmkMTYIBI7ZukH+DigHQjsDicH8uq8Qb3JbPFuUxRIHxLKpMwYJmXGkBQT2CtXQiiKQlSokahQI7PGJQCefydySxs4UlTP0SLPbavFzoF8EwfyTd59h0QHMLxLb/z4yIuzwK3L5cZktlDSMVu+azhvsTpOuo9KgdiIznA+yBvOx0cFoNeqe7zG3iKhvRBCiH5Bq1ERHxlAfEcfv5NxOl2YW6zeUL+usSPQb2r3BPwdj7XbnLRa7LRa7Cftq99Jo1YI6xrqf3vGfrAfYUF+6PrxQEAIIYQQoq+JCjUwfUQgt18/ghYrbD1Qyeb9Fd7Q8UhRPa99cpCMxFBPgD86jugwo6/L9jmH00VOcQP7c2vZd6yWYyUNOF1u/r6hnqlZnisVRg+N7LFZvOL8uVxuqupavxXQm2lsOXk7j6gwI2kdwXxnSH+q9b4SogKZPvr43+0OJ+W1rRRXNnUE+Z4wtKq+lcYWGwdauoezAOHBfp4AP7Yj0O8IQg1ytfJpNbZY2X20mh2HqtmTU43F6vRu02nVjEuPZFJmDBNHRPeZtl8GvYbRQyMZPTQS8PxsltU0c6SoodsCt562M10XuNUxPDnU21Jn6DkucOtyualpaOs2c76kupmy6mbabc6T7qNWKcRF+pMYfTyYHxITSHykP1rNwPtMLv+3CSGEGDDUalVHmG4AQk/6HLfbTVu7g7pGC6bGduobLd6Z+XWN7dQ1dc7at+JwuqlpsFDTYDnpsToF+eu8QX6wvwZHexMlTaVEhQcSEqAnNFBPSKAeg14jvSSFEEIIIc5BVKiR781K43uz0qhrtLAlu5LN2RUcLqwjp6SBnJIG3vj0EEOHhDBjtCfAj43w93XZvcLtdlNS3cy+Y56Q/lCBqVtICJ5JKM1tdv67vZj/bi/G36BlcmYM00fHMTY9Uiaf9AK7w0VpdTMF5WZvSF9Y0XTSWcMqBeKjAklL6BLQxwVf0Mx3rUZNcmwQybFB3R5vtzkoq27xBvnFVU0UVzV3ubK5nb3HarvtEx1m9LbW6QzzE6ICBvXPUVlNMzsOeWbTHy2q79a2KCxIz8SRntn0Y4ZF9otZ3yqV0tFKKaj7ArfFDd4vTT0L3NrYebianYePL3Cb2rnAbUdbnfBgA06Xm+q61m4z50uqmymracFmP3k4r1ErxEcGdJs1PyQ6gNiIgEH1paOE9kIIIQYVRVHwN2jxN2hJjAk65fPsDhcNTd2D/K4z+Dtv7Q4XTa02mlptFFYcXzx348GjJxxTp1ER0hHghwb6ee4H6L2PHb/vh7+fBPxCCCGEEF2FBxu4emYqV89Mpb6p3dMDP7uCg/kmbx/vt/5zmNT4YKaPjmPGmDhP28UBxGS2eGbS59ay/1gtDc3WbtuD/HWMHRbJmPRI0hMCqKkoBEMMu3Lq2HagkoZmK+t2lbJuVykGvYaJI6OZPjqO8cOjzmmWrDi5dquDwoqm4wF9RSPFlc04TtKiSKtRkRwb5G1tkxofTFJsUK/9d/DTaRg6JIShQ0K6Pd5qsVNafTzEL+m4NTdbqa5vo7q+zRvUQmdrkoDjYX6s5zY2wr/fLGZ6LpxOF4eL6tlxqIodh6qoMLV2254SF8SkzBgmZ8aQFh8yINqtBgfova184PgCt96rnzoWuM0tNZNbamZVxwK3oYF6Wix27I6Tt+jSalQkRAV4Zs7HBHSE84HEhvujHoA/O+dK/kUWQgghTkKrUREVZiTqNJdau91umtvsXYL8dqpMTRSVVqNojTS3OTC3WDE3W2m3ObE5XGc1c7/z9YMDjof5oYFd7/sdD/oD9QQYtBLwCyGEEGJQCQvy47vTU/ju9BQamtvZdrCKLfsryM43eduNvPP5EZJjg5g+Jo7po+MYEh3o67LPWWdv6f3HPEF9WU1Lt+06rZpRqeGMGRbJuIxIkmKCvCFhW1sbdVUKI1LDmDQqgTuvG83Ronq2ZFewJbsCU2M7m/aWs2lvOXqdmgnDo5k2OpYJI6Ix+ml98Xb7laZWGwXlZk9rmzJP//kKUwvukywQ6++nIaVL7/m0+BASogL6ZDDpb9AyPNnTt7yrxharZ7Z0ZUeYX91McWUTLRY75bUtlNe2sPVApff5GrVCQpRnAdDOQD8qWIvrVCvo9mGtFjt7cmrYcbiKXYeraemy8KlGrZCVFsHkzBgmjow57efHgaLrArff61zgtsHS0Re/niPFngVuO79U1GnVDIk+Hsp3trWJDvNHPQC+1LhYJLQXQgghzpOiKAT56wjy15ESFwx0rj5vY8SIERiNxwds7dbjAX5Ds9V739zc3uW+Z5vF6sDucGEyW7otWHQqGrXSLeA/fusJ90O7zOYPNMriukIIIYQYWEID/bhyajJXTk2mscXqCfCzK9ifW0tRZRNFlU3844ujJMYEMn20J8BP7KWFH8+V3eEip7jeO5P+WKm5W8ipUmDYkFDGpEcydlgkw5NDz7qXs1qlkJkaTmZqOEuuGcWx0ga2ZHuuVqiub2NzdgWbsyvQalSMz4hi2ug4JmXGEGAY3AG+2+3G1NjO0TILByvzKa1pI7+88ZTj9NBAzwKxaQkh3pA+OszYJ3/ezkVwgJ6sAD1ZaRHexzoXz/W01/HMyvf0KG/CYnV6///7NrW6Ap1GjU6rQqdVo9Oo0Hb8Xavx/F2nVaPTqtFqjj/H+9wut/ou+2i13fftflwVeq36rL8oqa5v886mP1hgwuE8/v9hoFHHxJHRTBoZw7iMyEH/JZeiKN4Jb5eOP77AbXFVEyEBeqJCjfIZ9DxIaC+EEEL0Aj+9hhi9hpjwM/dYtdqdxwP9bgG/lYYu980tVlotdhxOt3em/5moVAohATr8DVq0ajUajYJWo0arVqHReAaz3e5rVGjUnffVJ3nsJH9Xe57X9Xjev3fc74uzioQQQgjR/wUH6LliShJXTEmiuc3G9oOVbM6uZN+xmo4FOHN49785JEQFeAL8MXEkxwb5LFB1u90UV3X2pa/hUEHdCYswxkf6M2ZYJGPTo8gaGtEjIbpKpTA8KYzhSWHcetVI8ssb2ZJdweb9FVSYWtne0aNbo1YYMyyS6aPjmDwqliD/8++t3l/UNVrIL2skt9RMXpmn7ZK5pbMNUV2358aG+3sXhu0M6PvKAqO9QVEU75pi4zKivI+7XG5qzRZva53Ovvml1c3YHS6cTjcWpwOL9TQHv0hUKqVbmN/55YE38NeoMbdYT/iyIT4ygMkdLWKGJ4XK55kzMOg1DE8KO/MTxSlJaC+EEEL0MXqtmugwI9FncWmlze48Hup/K9A/ft8T/je32XG53NQ3Walv8sEIuQuVAhqNGq3a86WB5lvhv1oFDls7Mdl2QoMMBPnrvVc1HP+jJyhA1y8WdBJCCCFE7ws06pg3KYl5k5JosdjZcaiKzfsr2JNTQ1lNC++tPcZ7a48RF+HP9DGeRWzT4oMveoBf22Bhf24N+46Z2J9Xi/lbfelDAvQdIX0Eo4dFEhV6cdttKIrC0IQQhiaE8KMrR1Bc1ewJ8LMrKKlqZvfRGnYfrUH1wX5Gp0UwbUwcU0bFEBrY/8Npc7OVvDJPH+68UjN5ZQ0nHSerVAoRQRqGJ0eQnhTuXSDWf5BfhXAqKpXi/TwzcWSM9/GWllb27D9EatpQ1Bo9NrsTm8OJze7C7vC0E7XZu/y949ba5e82hxN7x61nf5f373a7C6vd6T2WvXN7l57qLpebdpvzhC/HTngPCoxICfcG9fEDbH0M0fdJaC+EEEL0YzqtmqhQ41l9mPMsmutpwdPWbsfhcGN3OLE7PQNZh8PlvW93uHB0uW93OHE4O55/ku1d93Wc7PlOV7f+ni43HQNyAMcpay6srj7ltk56nfp4kG88HuYHGr8d8h//c7aXkQshhBBiYAgwaLlswhAumzCEtnY7Ow5XsyW7gt1HqqkwtfL+V7m8/1UuMeFGpo/2BPjDhoT0SIDfYrFzIM/EvmM17M+tpby2+8KVep2nL/3Y9EjGDIv06cx/RVFIjg0iOTaI/7liOKXVzWw5UMGW/ZUUVDSyr2MR3Fc+3M/I1HCmj45jalYs4cEGn9R7Lppabd6Z851B/cla3KgUSIgOZGhCCMM6FmqNCdGSn3fshBaY4tyoVAr+fmrCgvx69Ty6XG7PZxX78S8G7I6OgL8z8O/8wsDhQqtWkTU0YlBcWSL6LgnthRBCiEFCq1F5L1/tbW632zNY/na47+zypYDDjd3pGTC3tFooKCwlKDQSi91NU6uN5lYbTd3+WHE43VhtTmptFmrPYoHfTga95uQz97v8PbDrNqNOLoEVQgghBgijn5bZ4xOYPT6BtnY7u4/UsDm7gp1Hqqmqa+PD9Xl8uD6PqFAD0zpa6KQPCT3rnsx2h5OjRQ3evvS5pQ10XXtTpVJIHxLi7UufkRSGVtM3xxlDogNZGJ3BwnkZVJpavTPwc0vNHMyv42B+HSv+fYARyWFMGx3LtKy4PrEQZ4vFTn5HQJ/bcVtd33bC8xTF0/Zk6JAQhiWEePvQG/Td47K2thP3Ff2HSqWgV6nlCl3Rr0hoL4QQQoiLTlEU1GoFtVrF2VxI3dbWRgB1jBiReMpZOG63G4vV8a0g/3ig/+3HmlttNLXZcLk8+1msjpN+eDsVf4P2hKA/0Ohpz9O52JVeq+pyv8viWt6/ex7rvK+RLwKEEEIInzL6aZk5Lp6Z4+JptzrYfbQjwD9cRU2DhY835vPxxnwigv28Af7wpLBuAb7L5aa4qom9ObXsz63lYEEdNnv31hsJUQGMHRbJmPRIstIi+mVbldgIf264bBg3XDaMmvo2thzwLGJ7pKje++f1VYcYNiSEaaPjmDY6lriIi99SpK3dTn55o2cGfUdIX2lqPelz4yL8Pa2AOmbQp8UHD/pFRIUQfZOE9kIIIYTolxRFweinxeinPasFfsHzobrN6uge6recOuhvarXRYrHhdkOrxU6rxX7KD4HnQ6VSugX9Os2pwn7Vt4L/7l8QnPwLA89+LoeN1nYnbe121FonGpWCSqX47LJ7IYQQoq/y02uYPsYTzFvtTvYcrWbz/kp2HK7C1NjOqq8LWPV1AWFBeqZlxZEYE8jB/Dr259XS2GLrdqzQQL13Jv2YYZFEhPT99jHnIirMyLWXpnHtpWnUNVrYdsCz4O+hAhO5pZ7WM3/7z2FS4oK87YaGRAde8Ou2Wx0UVDR2m0FfXtvSrQ1jp+gwo3cG/dAhnln0PbGIrxBC9AYJ7YUQQggxaKhUCgEGLQEGLXERZ7eP0+Wmpa3LjP0u91vabFhtTqz24wtjee47vYtodf271e7qNvPOM+vficV6+oWwekal956igEatQqNW0KhVqNUdiwCrVag7HuvcptGo0Kg8t2qV4lk0uMvztN79uzz/W8fWfut1Tjy2gk6jRtvlKgSdVo1WrTrrVgRCCCFET9Jr1UzNimNqVhw2u5N9x2r5Zn852w9VUd9k5bPNhd2e76dTMyotgrHpkYxNjyQxOnDQfEEeHmzguzNS+e6MVMzNVrYdrGRzdgXZeSYKK5oorGji718cZUh0YEeAH3tWffutdieFnQF9Rx/6surmbq2GOkWGGryL6Q4d4rmVfuRCiP5MQnshhBBCiNNQqxSCA/QEB+h75Hhut9u70JU37Ld3Dftd3wr+O8J+R8d92+me2/F3R/d9Xd/6dOt207GWAEBvfGFw/rSajisINKpuVxVoNcevKOge9qvQabpffeB5btcrE45fudB5/M77eq1a1i8QQgjRjU6rZlJmDJMyY7A7nOzPNfHN/nJMZgsjU8IZMyyS9MTQPtuXvjeFBOqZPzWZ+VOTaWq1seOQZwb+vmM1lFY3s/LLHFZ+mUNchL+n3dDoONISgnE4XRRVNnUL6Iurmk8YwwCEBfl5F4jtDOpDAntmnCaEEH1FvwntbTYbb775JqtWraK0tBSj0ciECRO4++67yczMPOfjrV69mnfeeYecnBwAMjIyWLx4MVdeeeUp9zGZTLz44ots2LABk8lEREQEs2fP5v777yc8PLxHX0sIIYQQA5OiKN7w+OJ3efWsD3Do8GHS04ej0/vhcHoWAXY43Z77Xf44nW7sHdudHQsHO12dz++6z7f27Xh+5+LCzo7tnvvfer7DhaPjuZ5juzsWJD7+xYOzywd0z5cLLnquKdGZqVVKt3Bfp1GjVStkxKkYMaIXCxFCCNHnaDVqJoyIZsKIaF+X0ucF+euYNymJeZOSaLHY2Xm4ii3ZFew5WkOFqZUP1uXywbpcQgL1tLTZcDhPDOhDAvSeFjddQvqwoLNZIUkIIfq3fhHa22w2lixZwo4dOwgPD2fOnDnU1tby5ZdfsmHDBl5++WVmzpx51sf705/+xCuvvIJOp2P69OkAbN68mZ/85CccO3aMpUuXnrBPeXk5CxcupLa2ltTUVObNm0dOTg7vvvsu69at47333iM2NrZHXksIIYQQoiepFAWtRoVB3y+Gfjidrm4th2xdrkjw/N3V7WqDrlcl2BzfunLB4ep2JYL3ioWO/ewd9x1O1/HX9y5W3L2udqv0wRVCCCHOR4BBy5xLhjDnkiFYrA52Halmc3YFu45UY272/MINNOq6hfPDhoQQHuw3aNoMCSFEV/3ik9urr77Kjh07yMrK4q233iIgwDMv7bPPPuOhhx7i4YcfZu3atd7HT2fXrl288sorBAUFsXLlStLS0gDIz89n0aJFLF++nFmzZjFu3Lhu+z3yyCPU1tayaNEiHn/8cRRFwe128/jjj7Ny5UoeffRRXn/99R55LSGEEEKIwUytVmFUqzD24kQ6p8uN/Vshv9XuxO7wfEHQ3NKGo6Wq9woSQgghBiiDXsPMsfHMHBtPu81BflkjkSEGIkMNEtALIUSHPt9wzeFw8PbbbwPw2GOPdQvmr7rqKi699FIaGhr48MMPz+p4r732GgB33XWXN0QHSEtL48477+z2nE6HDh1i27ZthISE8Mgjj3h/iSiKwiOPPEJISAjffPMNR48eveDXEkIIIYQQvU+tUvDTawjy1xERYiAuMoCUuGDSE0PJSotg7LAI/P3Uvi5TCCGEGFD8dBoyU8OJCjNKYC+EEF30+dB+z549mM1mEhISyMrKOmH7ggULAPjqq6/OeCyr1cqWLVsATtpPvvNY33zzDTabzfv4+vXrAbjsssvQ67svbqLX67nssssAWLt27QW/lhBCCCGEEEIIIYQQQojBq8+H9keOHAE45WKzI0eOBPAu8no6hYWFWK1WQkNDiYuLO2F7XFwcISEhtLe3U1hYeEINo0aNOulxO2vrWsP5vpYQQgghhBBCCCGEEEKIwavPh/YVFRUAxMTEnHR75+Nms5nW1tbTHqu8vPy0x+q6rfN1u96Pjj756vCd+3Qe/0JeSwghhBBCCCGEEEIIIcTg1ecXom1rawPAYDCcdLvRaPTeb21txd/f/7yP1fV4Xb8A6Nyv62ud7T7n+lrnw+12e1/vYrNYLN1uxfmTc9kz5Dz2DDmPPUfOZc+Q89hz5Fz2DF+cR7fbLf19hRBCCCGEGIT6fGgvzsxut3tb+PSWoqKiXn29gUzOZc+Q89gz5Dz2HDmXPUPOY8+Rc9kzevs86nS6Xn09IYQQQgghhO/1+dC+czb6qWY1dZ1hfrpZ9mdzrK7H63qszv1ONZv9dPuc62udD61Wy9ChQy/oGGfLYrFQVFREcnLyaa8iEGcm57JnyHnsGXIee46cy54h57HnyLnsGb44j3l5eb3yOkIIIYQQQoi+pc+H9p2LuFZVVZ10e+fjISEhZwy/4+PjT3usrtu6Lh4bFxfH4cOHqa6uPu0+nce/kNc6H4qinLJ1z8ViMBh6/TUHKjmXPUPOY8+Q89hz5Fz2DDmPPUfOZc/ozfMorXGEEEIIIYQYnPr8QrQjRowA4NChQyfdfvjwYQAyMjLOeKyUlBT0ej0NDQ0nXfy1oqICs9mMn58fKSkpJ9Rw8ODBkx63s7auNZzvawkhhBBCCCGEEEIIIYQYvPp8aD9+/HhCQkIoKyvjwIEDJ2xfvXo1AHPnzj3jsfR6PdOmTQPg888/P+WxZsyY0a1/6Jw5cwBYt24dVqu12z5Wq5V169YBMG/evAt+LSGEEEIIIYQQQgghhBCDV58P7TUaDYsXLwbgiSeeoKWlxbvts88+Y+PGjYSGhnLDDTd4H8/Ozmb+/PnMnz//hOPdfvvtAKxYsYL8/Hzv4/n5+axYsaLbczplZmYyZcoUzGYzy5Ytw+12A+B2u1m2bBlms5kZM2YwfPjwC34tIYQQQgghhBBCCCGEEIOX4u5MoPswm83GkiVL2LFjB+Hh4UycOBGTycSuXbvQarUsX76cWbNmeZ+/fft2b9Cfk5NzwvH++Mc/smLFim6z4bds2YLVauWee+5h6dKlJ+xTXl7OwoULqa2tJS0tjYyMDHJycsjPzycqKop//etfxMbG9shrnYs9e/bgdrt7bba+2+3Gbrej1Wqlz+oFknPZM+Q89gw5jz1HzmXPkPPYc+Rc9gxfnEebzYaiKIwfP75XXk/0HTLG77/kXPYMOY89Q85jz5Fz2TPkPPYMOY89py+P8ftFaA+eN/TGG2+watUqSktLMRqNXHLJJdx7771kZmZ2e+6ZQnvwtKd5++23vdszMjK45ZZbuPLKK09Zg8lk4oUXXmDDhg3U1dURHh7O7NmzeeCBBwgPDz/lfufzWmdr7969uN1utFrtBR9LCCGEEEL0HXa7HUVRGDdunK9LEb1MxvhCCCGEEAPT2Y7x+01oL4QQQgghhBBCCCGEEEIMdH2+p70QQgghhBBCCCGEEEIIMVhIaC+EEEIIIYQQQgghhBBC9BES2gshhBBCCCGEEEIIIYQQfYSE9kIIIYQQQgghhBBCCCFEHyGhvRBCCCGEEEIIIYQQQgjRR0hoL4QQQgghhBBCCCGEEEL0ERLaCyGEEEIIIYQQQgghhBB9hIT2QgghhBBCCCGEEEIIIUQfIaG9EEIIIYQQQgghhBBCCNFHSGgvhBBCCCGEEEIIIYQQQvQREtoLIYQQQgghhBBCCCGEEH2EhPZCCCGEEEIIIYQQQgghRB+h8XUBon+w2Wy8+eabrFq1itLSUoxGIxMmTODuu+8mMzPT1+X1C3a7ne3bt7Nhwwa2b99OaWkpTqeTmJgYZsyYwe233058fLyvy+x33G43t9xyC9u3bwdg9erVpKWl+biq/qW5uZk33niDtWvXUlZWBkB0dDSXXHIJDzzwANHR0T6usO8rKCjg1VdfZfv27dTU1KDRaEhMTOTyyy/n1ltvxd/f39cl9hmHDh1iy5YtHDhwgIMHD1JeXg7AV199RUJCwin3Kykp4YUXXmDr1q00NjYSExPDFVdcwd133z0oz++5nkeTycSGDRvYuHEjBw4cwGQyodPpGDZsGFdffTWLFi1Coxmcw8Lz/ZnsqqCggGuvvRar1cqYMWP417/+dTFLFqLHyBj/wskY/+KQMf6FkzH+hZMx/tmTMX7PkDF+zxgo43vF7Xa7e/1VRb9is9lYsmQJO3bsIDw8nIkTJ1JbW8vu3bvRarW8/PLLzJw509dl9nlbtmzh1ltvBSA2Ntb7QSg7O5uamhoCAgJ47bXXGDdunC/L7HdWrlzJY489hqIouN1uGdCfo7y8PG699VZqampISkpi+PDh2O12SkpKyMvL4x//+AcTJkzwdZl92q5du1iyZAnt7e0kJyeTkZGBxWJhz549tLS0kJaWxrvvvktwcLCvS+0T7rnnHr766qsTHj/dAOrQoUP86Ec/orW1lczMTBITE8nOzqa8vJz09HT++c9/EhgYeLFL71PO9Tz+7Gc/49NPP0WtVjNy5EiGDBmCyWRi37592Gw2Jk6cyKuvvorBYOiN8vuU8/mZ7MrlcvE///M/7Nu3D7fbLaG96DdkjN8zZIx/ccgY/8LIGP/CyRj/3MgYv2fIGL9nDJTx/eD7ukWcs1dffZUdO3aQlZXFW2+9RUBAAACfffYZDz30EA8//DBr1671Pi5OTlEUrrjiCm699dZug3ar1crjjz/ORx99xEMPPcSaNWvQarU+rLT/qKqq4rnnnmPmzJkUFBR4vz0VZ6epqYnbbrsNs9nM73//e66++upu20tKSuT/67Pw+OOP097ezj333MMDDzyAoigAmM1mbrvtNg4dOsRrr73GQw895ONK+4axY8eSnp7OqFGjyMrK4vrrr8dkMp3y+U6nkwcffJDW1lYeeughfvzjHwOesOmBBx5g/fr1PPfcczz55JO99Rb6hHM9jyEhISxdupSbbrqJyMhI7+OFhYXcdttt7Ny5k1deeYWf/vSnvVF+n3Ku5/Lb/v73v7N3714WLVrEypUrL2KlQvQsGeP3DBnj9zwZ418YGeP3DBnjnxsZ4/cMGeP3jAEzvncLcRp2u909adIkd3p6ujs7O/uE7XfccYc7PT3d/dZbb/mguoHDYrG4L7nkEnd6erp7+/btvi6n37jjjjvcY8eOdZeVlbnnzJnjsX9kWwAAExNJREFUTk9Pd+fl5fm6rH7jd7/7nTs9Pd395ptv+rqUfqu+vt6dnp7uzszMdFut1hO2f/rpp+709HT3j370Ix9U1z9MmzbNnZ6e7i4tLT3p9jVr1rjT09PdV111ldvlcnXbVl1d7R45cqR75MiR7vr6+t4ot88603k8nc6f0zlz5lyEyvqfczmXJSUl7rFjx7p//OMfu7dt2+ZOT09333TTTb1QpRAXRsb4vUPG+OdHxvgXRsb4F07G+BdOxvg9Q8b4PaO/ju9lIVpxWnv27MFsNpOQkEBWVtYJ2xcsWABw0stOxNnz8/MjOTkZgJqaGt8W0098/PHHbNy4kaVLl0qf0PNgtVr56KOPMBgMLFy40Nfl9FtnO2MuNDT0IlcycK1fvx6AK664wjvDqVNUVBSXXHIJDoeDjRs3+qK8AWH48OGA/P45H7/+9a8Bz2w8IfoTGeP3DhnjnzsZ418YGeP3DBnjX3wyxr/4ZIx/fvrS+F5Ce3FaR44cATjlQlQjR44EICcnp9dqGoicTqf3ss+IiAgfV9P3mUwmnnrqKbKysli8eLGvy+mXDh48SHNzMyNHjsRgMLB161aeffZZfvOb3/DXv/6VgoICX5fYLwQEBDBu3Djsdjsvv/wy7i7LxJjNZt544w0AbrrpJl+V2O91/h4aNWrUSbd3/n46evRor9U00BQXFwN0u6RWnNn777/P1q1befDBB4mNjfV1OUKcExnj9w4Z458bGeNfOBnj9wwZ4198Msa/+GSMf+762vheetqL06qoqAAgJibmpNs7HzebzbS2tg7K1b17wieffEJ9fT1hYWGMHz/e1+X0eU8++SQtLS389re/RaWS7x7PR15eHgDh4eE88MADrFmzptv2P/3pT9x1110sXbrUF+X1K7/73e+4/fbbWb58OatXryYjI4P29nZ2796NwWDg2WefZcaMGb4us9860++h6Ojobs8T5+6tt94CYO7cub4tpB+prq7mmWeeYcyYMfzgBz/wdTlCnDMZ4/cOGeOfGxnjXzgZ4/ccGeNfXDLGv/hkjH9u+uL4XkJ7cVptbW0Ap1xp2mg0eu/LgP78lJWV8cwzzwDw05/+FJ1O5+OK+rY1a9awZs0afvzjH3sv9xLnrrGxETh+WeLDDz/M1VdfjVqt5vPPP+fZZ59l+fLlxMXFyQySM0hLS+Pdd99l6dKl7Nu3j6KiIu+2adOmMXToUN8VNwCc6fdQ5++d1tbWXqtpIHn77bfZsWMHISEh3Hnnnb4up9947LHHaG9v5//+7/8kWBL9kozxLz4Z458bGeP3DBnj9xwZ419cMsa/uGSMf+764vi+b1QhxCDV0tLCPffcg9lsZv78+Xz/+9/3dUl9mtls5sknnyQpKYn77rvP1+X0ay6XCwC73c5dd93F7bffTnR0NBEREfzoRz/iwQcfBGD58uW+LLNf2LZtG9dccw3Nzc289tpr7Ny5k02bNvHkk0+ydetWbr75Zr755htflynECTZv3swzzzyDSqXiqaeekktnz9Knn37K+vXrWbJkCRkZGb4uRwjRB8kY/9zIGL/nyBi/58gYX/RXMsY/d311fC+hvTitzlk2FovlpNs7vx0FZAbOObJardx9993k5OQwdepUnnvuOV+X1Oc99dRTmEwmnnjiCfR6va/L6de6zqA72Sybzg+XFRUVlJaW9lpd/Y3ZbGbp0qXYbDZeffVVZs6cSVBQENHR0SxcuJAnn3wSq9XKY489htPp9HW5/dKZfg91zr6R30HnJjs7m/vuuw+Hw8GTTz7JZZdd5uuS+oX6+np+97vfkZyczD333OPrcoQ4bzLGv3hkjH/uZIzfc2SM3zNkjH/xyRj/4pAx/rnry+N7aY8jTisuLg6Aqqqqk27vfDwkJET+MT0Hdrud+++/nx07djB27FiWL18ul8yeha+++gq9Xs/y5ctPmB1SW1sLwC9+8QsMBgM/+MEPmD9/vi/K7Bfi4+MB0Ol03n6BXfn7+xMWFkZ9fT21tbUMGTKkt0vsFzZs2IDZbGbq1Kn/v737j6m6+uM4/kLAHxSFgluXLPmRF4V+YmnlpibONtbMiYwlgWZUEzK3NqUWIU3b1LX1R841C0Gx3EgYpdPVjLSJdoEkUiBuo19eBFFIAi3h4v3+4bxfyQsJ3Mv9oM/H5nTnfD7Xt5+h98Xbc851PtNrLViwQP7+/rLZbDp16pTCwsKGv8gRLjQ0VO3t7Wpubna5Xf7MmTPO63BjrFarXnrpJV28eFGZmZlsjx+A48eP688//1RAQIDS0tJ6zf3111+SrpwnnJKSIkn68MMPyUcwJDK+Z5DxB4eM7z5kfPcg43seGd/9yPiDY+R8T9Me/Zo2bZokqaamxuV8bW2tJBlq+4jRXb58WWvWrNHhw4c1depUbdu2rdeKCPTv0qVLKi8v73P+xIkTkviwlf8SHR0tSerq6nJ5Vm1PT486Ojokia/PflwNk4GBgS7n/fz8FBAQoPb2ducZoxiYadOmqa6uTidPntTcuXOvm7/6/sT5tzfm999/14oVK3T+/HllZGRoxYoV3i5pRGpsbFRjY6PLuQsXLjjfp1h9B6Mi47sfGX9oyPjuQcZ3DzK+55Hx3YuMP3RGzPc07dGv2NhYBQUFyWaz6cSJE3rggQd6ze/fv18S4elGORwOZWVl6cCBAwoPD9f27dt15513erusEaOysrLPuXnz5qmxsVH79+9XZGTkMFY1MplMJsXExKimpkYWi+W6bXOVlZXq7u7WuHHjFBER4aUqje/q+YA1NTWy2+3y8+v9tvrbb785g7yrVTr4b0899ZSKi4v15ZdfKiMjQz4+Ps65lpYWff/99/Lz89Ps2bO9WOXI0NTUpOXLl+vs2bNavny5XnvtNW+XNOLMnz9f9fX1LucsFotSU1P10EMPqbCwcJgrAwaGjO9eZPyhIeO7DxnfPcj4nkfGdx8y/tAYOd9zpj365efnp9TUVEnSO++8o87OTufcvn37dPjwYY0fP14JCQneKnFE2bhxo4qKijRp0iTt2LFDwcHB3i4Jt7CXX35ZkrR582bZbDbn+JkzZ/Tuu+9KkpYsWcK27n7Mnj1bY8eOVWNjo9577z3Z7XbnXFtbm7KysiRJM2bMUEhIiLfKHNHmzZunsLAwWa1WffTRR87xrq4uZWdny263KyEhQRMmTPBilcbX1tamF154QadPn1ZSUpLefPNNb5cEwIvI+O5FxoeRkPGHjozveWR89yDj39x8HA6Hw9tFwNi6urr04osvqry8XMHBwXrsscd07tw5VVZWyt/fX1u3buV/P2/AwYMHlZGRIUmaOXNmn2ezzZ8/X/Pnzx/O0m4KrMIZnJycHO3evVsBAQGKjY3VqFGjVFVVpY6ODj388MPKz8/XuHHjvF2moX322WfKzs7W5cuXFRoaqujoaP3zzz+qrq5WR0eHQkJCtGvXLoWHh3u7VEM4dOhQr/Nqa2tr1d3drWnTpjm/eZwzZ47z30tJOnnypFJSUnTx4kXFxMRo8uTJqq6uVmNjo8xmsz799NM+ty/frAb6HDMyMnTw4EGNHj1a8fHxvVYzXWvt2rW33DdHg/madMXbK3GAgSLjuwcZ37PI+INDxh86Mv7AkPHdg4zvHjdLvud4HPyn0aNHKzc3V9u3b9cXX3yh0tJSBQQEKC4uThkZGYqJifF2iSPC1Q+wkK78xe/L3XffTaDHsMnJydH06dP1ySefqKqqSna7XWFhYXrmmWe0bNkyjRkzxtslGl5iYqLMZrN27Nih48eP6/Dhw/L19dWkSZOUmJiotLQ0Vtxdo62tTdXV1deN19XVOX/97+3a999/v0pKSvTBBx/o2LFjslqtuuuuu5SWlqb09PRb8kMSB/ocr74HdXV1qaSkpM/XffXVV2+pQC8N7msSuBmQ8d2DjA8jIuMPHRl/YMj47kHGd4+bJd+z0h4AAAAAAAAAAIPgTHsAAAAAAAAAAAyCpj0AAAAAAAAAAAZB0x4AAAAAAAAAAIOgaQ8AAAAAAAAAgEHQtAcAAAAAAAAAwCBo2gMAAAAAAAAAYBA07QEAAAAAAAAAMAia9gAAAAAAAAAAGARNewDALc9msykqKkpRUVHeLgUAAACAG5DxAYxkft4uAAAwMqSkpKi8vPyGrq2vr/dwNQAAAACGiowPAMZE0x4AMCAmk0kmk8nbZQAAAABwEzI+ABgLTXsAwIAkJCRo1apV3i4DAAAAgJuQ8QHAWDjTHgAAAAAAAAAAg2ClPQDAY2w2m+Li4iRdOQOztLRUeXl5+umnn2S32zVlyhQ9//zzWrhwYZ+v0dDQoI8//lgWi0UtLS0aN26coqKi9Oyzz2rx4sXy9fV1eZ/dbtfevXu1b98+1dbWqqOjQ+PHj9fkyZM1b948JSYmKjAw0OW9lZWV2rZtm6qrq/X3339r8uTJSkpKUnJysnx8fIb+YAAAAIARiowPAJ5H0x4AMCwKCgq0YcMGBQUF6d5771Vzc7Oqq6tVXV2tH3/8UVlZWdfds3//fq1du1bd3d0KCAiQ2WxWe3u7KioqVFFRoQMHDmjr1q0aO3Zsr/va2tqUnp6uqqoqSdLEiRM1depUtbW16fjx46qoqFBMTIxmzpx53e9ZXFyst956S3fccYcmTZqk06dPy2q1av369WpsbFRmZqZnHhAAAAAwwpDxAcAzOB4HADAsNm3apPT0dJWVlamoqEhHjhxRTk6ORo0apYKCAh04cKDX9Q0NDXrjjTfU3d2txMRElZWVqbi4WF9//bXy8vIUGBiosrIybd68udd9DodDq1evVlVVlUwmk/Lz83XkyBHt2bNHpaWlslgsWrdunUJCQlzWuW7dOmVmZuro0aMqKirSsWPH9Prrr0uS8vLy9Mcff3jmAQEAAAAjDBkfADyDpj0AYEC2bNmiqKioPn+kp6e7vG/GjBlavXq1/PyubPLy8fHRc889pyVLlkiStm7d2uv63NxcXbp0SWazWevXr1dAQIBz7sknn3SuhiksLFRLS4tz7ptvvlF5eblGjx6t3NxcPfHEE71eNzAwUEuXLlVkZKTLOhcuXKjly5f32pL7yiuvyGw2y+Fw6NChQzf4pAAAAICRgYx/6AafFAAMD5r2AIABMZlMio2N7fPHfffd5/K+ZcuW9TtutVrV1NTkHP/2228lSampqS7PmFy0aJGCg4PV3d2to0ePOse/+uorSdKCBQv6DO39SU5Odjn+yCOPSBKrcAAAAHDTIeOT8QEYC2faAwAGJCEhQatWrRrwfVOmTHE5Hh4eLj8/P9ntdjU0NMhkMqmjo0Nnz56VJJnNZpf3+fv7KyIiQq2trfrll1+c41arVdL/A/hAhYWFuRwPDg6WJF24cGFQrwsAAAAYFRmfjA/AWFhpDwAYFn2dL+nr66ugoCBJ/w/L14bmvu6Trnz41L+v7+zslHRli+xgXLtF91qjRl15y3Q4HIN6XQAAAOBmQ8YHAM+gaQ8AGBbnzp1zOd7T06Pz589Lkm677bZeP/d3nyTnSp1rr7/99tslSR0dHUOqFwAAAED/yPgA4Bk07QEAw+Lnn392Of7rr7/KbrdLkvN8ysDAQOcKm6tbYf/Nbrc7t8xGREQ4x6OioiRJVVVV7ikcAAAAgEtkfADwDJr2AIBhsXPnzn7HzWazTCaTc3zOnDnOeVfbVT///HO1trbK399fs2bNco4//fTTkq58WNW152ACAAAAcC8yPgB4Bk17AMCwsFgs2rJli3PFjcPhUGFhofbs2SNJWrlyZa/rV6xYoTFjxshqtSo7O1sXL150zh07dkybNm2SJCUlJTlX7EjS3Llz9fjjj6urq0tpaWmyWCy9Xrezs1O7d+9WQ0ODR/6cAAAAwK2CjA8AnuHn7QIAACNLUVGRjh492u81b7/9tqKjo3uNZWZmasOGDSooKNA999yj5uZm53mVS5cuVXx8fK/rIyMjtXHjRq1du1aFhYXat2+fIiIi1N7erlOnTkmSZs2apTVr1lz3+7///vtauXKlfvjhB6WmpmrixIkymUxqbW1Vc3Ozenp6tHPnTudWXQAAAOBWRsYHAGOhaQ8AGJCmpiY1NTX1e42rD4hKSUlRaGio8vPzVVdXJ7vdrgcffFDJyclatGiRy9eJj4+X2WxWbm6uvvvuO9XX12vs2LF69NFHtWjRIi1evFi+vr7X3TdhwgTt2rVLJSUl2rt3r+rr61VXV6cJEyZo+vTpiouLU0xMzKD+/AAAAMDNhowPAMbi43B1iBgAAG5gs9kUFxcnSaqvr/dyNQAAAACGiowPAJ7HmfYAAAAAAAAAABgETXsAAAAAAAAAAAyCpj0AAAAAAAAAAAZB0x4AAAAAAAAAAIPgg2gBAAAAAAAAADAIVtoDAAAAAAAAAGAQNO0BAAAAAAAAADAImvYAAAAAAAAAABgETXsAAAAAAAAAAAyCpj0AAAAAAAAAAAZB0x4AAAAAAAAAAIOgaQ8AAAAAAAAAgEHQtAcAAAAAAAAAwCBo2gMAAAAAAAAAYBD/A3vDKZs3mZ7cAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Activation: LeakyReLU, optimizer: sgd_momentum, batchnorm: true\n", + "Activation: LeakyReLU, optimizer: sgd_momentum, batchnorm: false\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABe0AAAGgCAYAAAA3q0zLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3iUVdrH8e+kzCQhgYSEBEILRUJHQgBBakCauIKooC6IawEL9oqugKvYVlFBBAFFeFdBpYgIIl3pRJBeQ4JASCCQAKmTMu8f2ZlNTCeTTMrvc11ei8/znHPuubPsnrlznnMMFovFgoiIiIiIiIiIiIiIOJyTowMQEREREREREREREZFsKtqLiIiIiIiIiIiIiFQQKtqLiIiIiIiIiIiIiFQQKtqLiIiIiIiIiIiIiFQQKtqLiIiIiIiIiIiIiFQQKtqLiIiIiIiIiIiIiFQQKtqLiIiIiIiIiIiIiFQQKtqLiIiIiIiIiIiIiFQQKtqLiIiIiIiIiIiIiFQQKtqLiEiVM3r0aIKDg1m6dKmjQxERERERqVSWLl1KcHAwo0ePznOvNPPssLAwgoOD2blzpz3CLLbg4GCCg4M5e/ZsuY4rIlIaLo4OQEREKrfg4ODravf2229zxx132DkaEREREZGq45VXXmHp0qV06NCBb7/9tlht7r77bvbt28ddd93Fm2++WcYROs7Zs2dZtmwZXl5ejB071tHhiIjYlYr2IiJSKiEhIfle37NnDwBBQUHUrl07z31fX98yi6levXo0adIELy+vMhtDRERERKSs3XHHHSxdupR9+/YRERFBs2bNCn0+IiKCffv2ATBixAi7x1OR5tnnzp1jxowZ1K9fv9CifZMmTQBwdXUtp8hEREpPRXsRESmVb775Jt/r1hX448aNK/cV9e+99165jiciIiIiUhY6d+5M48aNOX36NMuWLeP5558v9PklS5YA0KxZMzp27Gj3eCrjPPvnn392dAgiIiWmPe1FRERERERERCoo6wKYH374gczMzAKfy8zMZMWKFbnaiIhI5aSivYiIlLuch1CdOnWKl156iV69etGmTRtefvll23Ph4eG8++673HnnnfTo0YO2bdvSvXt3HnnkETZs2FBg/wUdkLVz506Cg4MJCwsDYP369YwePZrQ0FBuvPFG7rrrLn766aey+dAiIiIiItdh+PDhODs7c+HCBbZs2VLgc7/++isXL17ExcWFYcOGERMTw1dffcWDDz5I//79ad++PSEhIdxxxx3MnDmTxMTEEsdS1EG0O3fu5B//+AehoaF07NiRESNG8P333xfaZ1JSEj/88APPPvssgwcPplOnTrRv354BAwYwefJkzpw5k28cY8aMAbK3ybEeNmv9J+dht0UdRPvrr78yfvx4unfvTtu2bbn55pt57LHH2L59e4GfUd8pRKSsaXscERFxmD/++IPPPvuMzMxMmjdvTq1atTAYDLb7jz/+OAkJCXh7e1OnTh38/f05f/48mzdvZvPmzTzyyCM899xz1zX2jBkzmD59On5+fjRq1IgzZ86wf/9+nn32WeLj4/n73/9ur48pIiIiInLdAgICuPnmm/n1119ZunQpvXv3zvc5ayG9V69e+Pn58e677/LFF1/g5uaGn58fLVq0ICEhgaNHj3Lo0CF++uknvv76a2rVqmWXOL/77jv++c9/YrFY8PLyomnTpsTGxvLqq69y/PjxAtvt2rWLF198ERcXF3x9fWncuDEpKSlER0fzzTffsHLlSr744gvat29va2P9LMePH8doNNK2bdtcfRZ3z/233nqLBQsWANlnbrVs2ZKzZ8+yfv161q9fz6OPPsrTTz9dYHt9pxCRsqKivYiIOMzHH3/M4MGDmTRpEjVr1gQgNTXVdv/555/npptuomHDhrnabdu2jeeff57PP/+cfv36ceONN5Zo3AsXLjBnzhz+/e9/c9tttwGQkZHBW2+9xddff80HH3zAsGHD8PT0LN0HFBERERGxgxEjRvDrr7+yYcMGrly5kqfQfvnyZTZu3Gh7FrKL93379qVTp044Ozvbnj1//jxvvPEGGzZs4IMPPuCNN94odXwRERFMmTIFi8XC6NGjefHFFzEajVgsFr799lumTJmSa3FOTo0bN+aTTz6hR48e1KhRw3Y9MTGRefPmMXPmTF5++WV++uknWx///Oc/2blzJ2PGjKFOnToFnrNVmGXLlrFgwQKcnZ355z//yciRI3FyciIzM5MFCxbw7rvv8tlnn9GyZUsGDRqUp72+U4hIWdL2OCIi4jBNmjTh3XfftRXsAdzc3Gx/vuuuu/IU7AG6d+/OM888A2RPtksqPT2dcePG2SbXAC4uLrz88svUrl2b5OTkXK/UioiIiIg4UlhYGD4+PpjNZlauXJnn/o8//kh6ejp+fn706dMHgG7dutGlS5dcBXuAevXq8eGHH+Lq6sqPP/5Y6D75xTVv3jzS09Np3bo1r732GkajEQCDwcDIkSMZMWIEGRkZ+bZt2rQpAwcOzFWwB/D09OSpp54iJCSEiIgI9u/fX+o4c5o5cyYAI0eO5J577sHJKbtE5uzszAMPPGD7rvDpp5/m217fKUSkLGmlvYiIOMywYcNwcSn8/4pOnjzJzz//zLFjx0hISLBN9q17cB45cuS6xr733nvzXDOZTLRu3ZotW7bw559/Xle/IiIiIiL2ZjQaue2221iwYAFLly7lvvvuy3XfujXO3/72t1zz68TERFatWsXevXu5cOECKSkpWCwWILugnpycTFRUFM2aNStVfL/++itAgdvB3H///Xz77bcFts/MzGTjxo1s376dM2fOkJSURFZWFgCnT58G4PDhw3To0KFUcVpFRETY5vsPPPBAvs88+OCDrFixguPHjxMdHU1gYGCeZ/SdQkTKior2IiLiMDfccEOh9//9738zd+5c2xeL/CQkJJR4XB8fH7y9vfO95+vrC2QfiCUiIiIiUlGMGDGCBQsWcPDgQU6cOGGbSx8+fJijR4/anrHavXs3Tz31FJcuXSq03+uZT+d07do1Ll68CBQ8v2/SpAkuLi75rra/cOEC48aN4/Dhw2UaZ06RkZFA9lu+jRo1yveZ5s2b4+zsTGZmJqdOncpTtNd3ChEpS9oeR0REHMbd3b3Aez/99BNz5szBYDDwxBNP8MMPP/D7779z5MgRjh07xvz58wEKfM22MB4eHgXes74WW9gvCkREREREylvLli1p06YN8L+V9Tn/3KFDB5o3bw5kr7B/8sknuXTpEt26dePLL79k27ZtHDx4kGPHjnHs2DHq1asHXN98OqechWlrsfqvnJ2dCyxwv/LKKxw+fJiGDRvy4YcfsnHjRg4cOGCL8/bbb7dLnPnFXFC8kL3VjY+PT67nc9J3ChEpS1ppLyIiFZL1y8fYsWOZMGFCnvv2XGkjIiIiIlIZjBgxgkOHDrFixQqee+45srKy+PHHH233rDZv3szly5epV68es2bNynVuFGQXk69cuWKXmHLuRX/p0iXq16+f55nMzMx85+8XL15ky5YtAHz22Wf5rtQvi3m/NebC3kLIyMggPj4+1/MiIuVFK+1FRKRCOnv2LACdO3fO9/6+ffvKMxwREREREYcbOnQoJpOJuLg4fv31VzZs2EBCQgLu7u7ceuuttuesc+l27drlKdgDHD9+nOTkZLvE5OXlRZ06dYDs86jyExkZme9KeWuc3t7e+RbsMzIyOHjwYL59GgyG6w2Zpk2bApCamlrgvvMnT560HdJb2j3/RURKSkV7ERGpkKxb51j3x8zp8uXLLFu2rLxDEhERERFxqFq1atG/f38Ali1bZns7dcCAAXh6etqesxbq85tLA8ybN8+ucfXs2ROA//u//8v3/oIFC/K9bp3zJyYmkpKSkuf+8uXLC1wNb/2M+bUrStOmTWncuDEAX375Zb7PWK+3aNHCtpWQiEh5UdFeREQqJOsK+9mzZ9sOigI4c+YM48aNu67JuYiIiIhIZWfdBmfjxo22rWVybo0D/5tL7927l8WLF9uum81mPvroI3788UdcXV3tFtM//vEPXF1dOXToEG+//TZmsxnI3obnu+++4/vvv8fFJe8Ozc2bN8fHx4eMjAzeeOMN0tLSbPd+/vln3nzzTUwmU75jNmrUCIPBwOXLl20H8ZbEo48+CsDixYtZtGiRbf/5rKwsvvrqK3744QcAHn/88RL3LSJSWtrTXkREKqSHHnqI1atXc+7cOYYOHUpQUBBOTk6cPHkST09PXnrpJd544w1HhykiIiIiUq66detGYGAg0dHRQHbxukuXLrmead26Nbfffjs//PADr7/+OjNmzMDf35/Tp09z7do1nn76ab777jvOnTtnl5huuOEGXnvtNSZPnsz8+fNZunQpjRs3JjY2lgsXLnD//fezbt26POO5uLjw/PPP8+qrr7J06VLWrl1Lo0aNiIuLIzY2lh49elC7dm1WrFiRZ0xvb2/69OnDxo0bufPOO7nhhhtsbxtMnDiRVq1aFRrz8OHDOXz4MAsWLGDSpElMnz6devXqce7cOS5fvgzA+PHjGTRokF1yJCJSElppLyIiFVJAQACLFy/mtttuo2bNmrYvGMOGDWPZsmU0b97c0SGKiIiIiJQ7Jycnhg8fbvv34cOH57u/+9tvv83zzz9PkyZNiI+P58yZM7Ru3ZpPP/3UtsrcnkaNGsWXX35J9+7dyczMJCIiAn9/f958800mTpxYYLs777yTTz/9lI4dO5Kenk5kZCQ+Pj68+OKLzJ49G2dn5wLbvvvuu/z973+nbt26nDhxgl27drFr1y6uXr1arJhfffVVPv/8c/r27UtWVhZHjhzBYDDQr18/5s+fzzPPPFPiPIiI2IPBYn3/R0REREREREREREREHEor7UVEREREREREREREKggV7UVEREREREREREREKggV7UVEREREREREREREKggV7UVEREREREREREREKggV7UVEREREREREREREKggV7UVEREREREREREREKggXRwcgpbN3714sFguurq6ODkVERERE7Cg9PR2DwUDHjh0dHYqUM83xRURERKqm4s7xtdK+krNYLFgslnIf02w2l/u4VY3yaB/Ko/0ol/ahPNqH8mg/yqV9OCKPjpjnScVQ3j97/e+E/SiX9qE82o9yaR/Ko30oj/ajXNpHRZ7ja6V9JWddfdOuXbtyGzM5OZkjR47QvHlzPDw8ym3cqkZ5tA/l0X6US/tQHu1DebQf5dI+HJHHAwcOlMs4UvGU9xxf/zthP8qlfSiP9qNc2ofyaB/Ko/0ol/ZRkef4WmkvIiIiIiIiIiIiIlJBqGgvIiIiIiIiIiIiIlJBqGgvIiIiIiIiIiIiIlJBqGgvIiIiIiIiIiIiIlJB6CBaEREREREpFbPZzJdffsmKFSs4c+YMHh4ehIaG8uijj9KmTZsS97dq1SoWLlzIsWPHAAgODmbMmDEMHjy4wDZxcXHMmDGDTZs2ERcXh5+fH3369GHChAn4+vrmeX7btm389NNPHD58mNjYWK5evYqbmxvNmzdn6NChjBw50nYg7F8lJiYya9Ys1qxZQ0xMDLVq1aJbt248+eSTNGzYsMSfV0REREQkJ620FxERERGR62Y2m3nwwQf58MMPiY+Pp2/fvjRt2pS1a9cycuRIfvvttxL1N23aNJ555hkOHjxIly5d6NKlCwcPHuTpp5/m448/zrfNuXPnGDZsGN988w3u7u70798fd3d3vvnmG4YPH8758+fztPn555/5/vvvSU5OplWrVgwYMIDWrVtz8OBB/vWvfzFmzBjS0tLytLt69SojR45kzpw5ZGZm0q9fP/z9/VmxYgXDhg3jyJEjJfq8IiIiIiJ/pZX2IiIiIiJy3ebMmcOuXbto164d8+fPx9PTE4CVK1fy3HPP8cILL7Bu3Trb9cKEh4cza9YsatasyaJFi2jWrBkAERERjBo1ipkzZ9KrVy86duyYq93EiRO5ePEio0aNYvLkyRgMBiwWC5MnT2bRokW89tprzJs3L1eb++67jwkTJlCnTp1c12NjY3nggQfYs2cPCxYs4OGHH851/5133uHkyZP07duXTz75BKPRCMDs2bP58MMPef7551mxYgXOzs4lS6SIiIiIyH9ppb2IiIiIiFyXjIwMFixYAMCkSZNyFeaHDh1K7969iY+PZ8mSJcXqb+7cuQCMHz/eVrAHaNasGePGjcv1jNWhQ4fYsWMH3t7eTJw4EYPBAIDBYGDixIl4e3uzZcsWjh49mqtdcHBwnoI9QEBAAI888ggA27dvz3Xv0qVLLF++HBcXF9544w1bwR7gkUceoUWLFpw8eZKNGzcW6/OKiIiIiORHK+1FREQqMIvFQnp6OllZWY4OpVxZt6RIS0vDyUlrDEpDubSP0ubR2dm5wP3RK7M9e/aQkJBAgwYNaNeuXZ77Q4YMYfPmzaxfv57777+/0L7S0tLYtm0bQL571w8ZMoT333+fLVu2YDabbQVza4E8LCwMk8mUq43JZCIsLIylS5eybt06WrZsWazPZf1Z5SzKA/z6669kZmbStWtX/P39c90zGAwMHDiQ48ePs379evr371+ssUREpPpJT08nMzPT0WGUO81L7Ue5tI+KPMdX0V5ERKQCMpvNXLhwgeTk5Go5oc/KysLFxYXo6GhNQktJubQPe+TRZDLh5+dHzZo17Ryd41j3by/osNnWrVsD2A6ULUxkZCRpaWn4+PgQGBiY535gYCDe3t4kJCQQGRlJcHBwrhjatm2bb79t2rRh6dKlxYoBID4+3raVTu/evXPdK+rzWq8XdywREalerl69SlxcXL5nplQHmpfaj3JpHxV5jq+ivYiISAWTnJzMmTNncHZ2xsfHB3d3d5ydnW1bPlQHmZmZpKWlYTKZtC90KSmX9lGaPFrfmLly5Qrnzp0DqDKF++joaADq1q2b733r9YSEBJKSkqhRo0aBfVlzU1Bf1nsJCQlER0fbivbWGAICAgqNwdr/X+3du5fFixeTlZVFXFwce/bsISUlhbvuuou7774717PF/bwFjSUiItXX1atXOXfuHJ6envj5+eHq6lqt5vegeak9KZf2UZHn+CraS4mkx8cQv2Yezn5tgVaODkdEpEqKi4vD1dWVxo0bV9sJmPXtAjc3t2qbA3tRLu2jtHl0d3fHy8uLs2fPEhcXV2WK9snJyUD258uPh4eH7c9FFe2L6itnf0lJSXna5RyrqDY5/fnnnyxbtizXtTFjxvDUU0/l+VmXdqySsFgstvHKWuKZ49T4/VsSa94H9ZuXy5hVVUpKSq7/lOujPNqPcmkf9shjbGwsHh4e1KtXr9oV661cXLLLkCaTqdrmwF6US/sobR6NRiMeHh6cO3eO2NhYW3+FsVgsxRpLRXspkZRT+0iL2INbYiJ0v8XR4YiIVDkZGRkkJSVRr149FVhFqhiDwUCtWrU4d+4c6enpVXKP+8ro9ttv5/bbbyc9PZ3o6GhWr17N7Nmz2bRpE3PnzqVx48YOiSs9Pd22HU9ZM53ajsfFk1ze9DVnQu4qlzGruqioKEeHUCUoj/ajXNpHafLo7OxMrVq1qu3WODkpB/ajXNpHafPo7u5OfHx8sedufz03KT8q2kuJuNauB4Dz1QsOjkREpGrKyMgAyHOYoohUDdZCfWZmZpUo2ltXlhe08jDnSvHCVtkXp6+c/eXsy9quoFXp+bXJj/UNp/Hjx1OvXj1efPFFJk+ezJdffmn3sYrD1dWV5s3LZ9V7Yi0Ticc3YrwYQf1G9XCu4V0u41ZFKSkpREVFERQUVOhbI1I45dF+lEv7KG0e09LSiI6OpkaNGri5uZVBhJWDxWKxbUWi1eGlo1zahz3zaJ1LFvVd/uTJk8XqT0V7KRFjQBAAzikJZKWlQAGvBouISOlo4iVSNVW1v9vWA2NjYmLyvW+97u3tXWQhu379+oX2lfNezoNqAwMDOXz4MLGxsYW2sfZfHEOGDOG1115j+/btJCcn24r1xf28JRmrIAaDocBteOwusCkJ3vVxSThH5sldeHUbVj7jVmHu7u7l9/OrwpRH+1Eu7eN68+jk5ISTkxPOzs7V+m1a63aDBoOhWufBHpRL+7BXHp2dnXFycsLd3b3IX8wV9/uAjheWEnH2qImTpw8AGXF/OjgaEREREXGkVq2yzzg6dOhQvvcPHz4MYDs0tjBNmjTBZDIRHx9vO/A1p+joaBISEnBzc6NJkyZ5Yjh48GC+/VpjK04MVq6urnh5eWGxWIiPj88zVkGf93rGqijS6ncA4Nq+9VgsFgdHIyIiIlK9qWgvJeZapxEA6RdVtBcRERGpzkJCQvD29ubs2bMcOHAgz/1Vq1YB0K9fvyL7MplMdO/eHYDVq1cX2FePHj1y7QPat29fADZs2JBnP9K0tDQ2bNgAQP/+/YvzkYDs15YvXbqEh4cHderUsV3v1asXzs7O/P7771y4kHu7SIvFwpo1a4Difd6KxlyvFQYXI+mXokk7d8zR4YiIiIhUayraS4m51Mk+jCtDRXsRERGRas3FxYUxY8YAMGXKFBITE233Vq5cyebNm/Hx8WHEiBG26/v372fQoEEMGjQoT38PPfQQALNnzyYiIsJ2PSIigtmzZ+d6xqpNmzbcdNNNJCQkMHXqVNsqcYvFwtSpU0lISKBHjx60bNnS1iY5OZkFCxbkitfq2LFjPP/88wD87W9/y/ULAl9fX4YNG0ZGRgavv/46ZrPZdm/OnDkcP36cZs2a2X6RUKm4mHBr0RWAa3+sd3AwIiIiItWbivZSYi5+2SvtVbQXEZHyFhYWRnBwMMHBwezfvz/fZ86ePUtwcDA333xzmcayc+dOgoODefnll8t0nLKwdOlSgoODmT59uqNDkSrg4YcfpkuXLhw4cIABAwbw1FNPcd999/Hcc8/h6urKe++9h6enp+35lJQUIiMjiYyMzNNXaGgo48aN48qVKwwfPpzx48czfvx4hg8fztWrV3nsscfo2LFjnnZTp06lTp06LFq0iFtvvZVnnnmGW2+9lUWLFuHv78+bb76Z6/mMjAzeeustunXrxsiRI3nmmWeYMGECd9xxB7fffjtHjhyhS5cuvPjii3nGevnll2nevDkbN25k0KBBPPPMM9xxxx188MEH1KhRgw8++KDS7i3r3qY3AImHt5FlLvhAYBEREXvSHN8+NMevWlS0lxJz9f/v9jhxZ7BkZTo4GhERqa4++ugjR4dQbqZPn05wcDBLly51dCgieRiNRubNm8czzzyDt7c3GzZs4OTJk/Tr14/FixfTq1evEvX37LPPMm3aNFq3bs3OnTvZuXMnrVu35qOPPuKpp57Kt039+vVZvnw5o0aNIikpibVr15KUlMSoUaNYvnw59erVy/W8h4cHr7zyCj179uTSpUts2rSJjRs3cuHCBXr16sX777/PV199le/huTVr1mTx4sU89NBDODk5sXbtWmJjY7nttttYvny5bd/7ysi1fgtcfOpiSU8l6ch2R4cjIiLVkOb4ItlcHB2AVD7OtQKwOLtiyEwn/fJ5jH4NHB2SiIhUM25ubmzdupXdu3fTuXNnR4cjUu0ZjUbbqviidO3alWPHCt8zfciQIQwZMqREMfj5+TFlypRiPevi4sLYsWMZO3Zsicaw8vT05IUXXuCFF164rvYVlcFgwKtDP+I3/Yerf6zHq0OYo0MSEZFqRHN8kf/RSnspMYOTE5me2QdymWOjHBuMiIhUS/fddx9QvVbiiIiUB6/2fcDgRNrZo5gvnXN0OCIiUo1oji/yPyray3XJrBkAgPlClGMDERGRamn48OEEBQURHh7Ob7/9VqK2hw8f5umnn6ZHjx60bduWHj168Mwzz3DkyJHrjufy5cu8/vrr9OzZk3bt2jFw4EBmzZqV65BKq6ioKGbMmMGoUaNsMXTv3p1HH32U8PDwPM+HhYUxY8YMAF555RXbfp/5vUp7+vRpXn/9dW655Rbat29Ply5dGDFiBDNnziQhISHf2GNjY3nllVe4+eabadeuHYMHD2bBggX5Pjt69GiCg4M5e/Ysmzdv5t5776Vjx46EhITw4IMPcuDAgQJztGPHDsaPH89NN91E27Zt6dOnDxMnTuTMmTN5nrXuWTp69GiSkpJ4//33ueWWW2jbti2PPfYYkL2veHBwMDt37mTXrl2MHTuWTp060blzZx577DGioqIAyMrK4osvvuDWW2+lffv29OzZk/fffz/fn42IgItXbTyaZZ8bcG3fBgdHIyIi1Ynm+Jrja47/Pyray3XJ8PIHIC0myrGBiIhIteTk5MQTTzwBwMcff1zsdqtXr+buu+9m9erVBAQEMHDgQPz9/Vm1ahV33XUXv/zyS4ljSUhI4K677mLNmjV07NiRm2++mQsXLjBt2jQee+wxMjNzn/+yePFipk+fzrVr12jVqhX9+/cnMDCQDRs2MGbMGH766adczw8cOJCWLVsCEBISwvDhw23/NGrUyPbcunXr+Nvf/sbixYuxWCz07duXkJAQUlJSmDt3LsePH88Te3R0NCNGjGD79u107tyZkJAQzpw5w1tvvcWnn35a4GdevHgx48aNIysriz59+lCvXj22bNnC6NGjiYiIyPP8/Pnzuf/++9m0aRNNmzZlwIABeHh4sGTJEoYNG8aePXvyHSc1NZXRo0ezaNEimjVrRlhYGH5+frmeWb9+PWPHjiUpKYlevXrh5+fH+vXr+fvf/87ly5d5+umn+eSTT6hfvz4333wzqampzJ07l0mTJhX4+USqO+u2OIn7N+kMKxERKTea42uOb6U5vva0l+uU6aWV9iIijmKxWEgzV54iisnojMFgsHu/t956K59//jkHDhxg3bp19O/fv9DnY2NjmThxIunp6bz77rsMGzbMdu+7777jtdde4+WXX+bGG2/E39+/2HFs3LiRzp07M2vWLDw9PQGIiYlhzJgx/Pbbb/znP/9hzJgxtudvueUW7rnnnlyTcYD9+/fzwAMPMGXKFMLCwnB3dwfgpZdeYvr06Rw9epS77rqLO+64I08MZ86c4fnnnyctLY3XX3+de++915bzzMxM9uzZQ2BgYJ52S5cuZdSoUfzzn//ExSV7Wvj777/z97//nblz5/LAAw/g4eGRp938+fP58ssv6datG5D938nJkyezaNEi5s6dy9tvv2179tChQ7z33nsYjUZmzZrFzTffbGvzySefMHPmTJ555hl++eUXTCZTnpy0adOGtWvXUrt27Xzzv2DBAj766CMGDRoEZK+6eeGFF1i5ciVjxowhIyODNWvWEBCQPXeJjo5m+PDhLFu2jMcff5wGDXQ2j8hfedzQCSePmmQmJZB8cg81WmhfYRGRsqY5fjbN8f9Hc/zqPcdX0V6uS6aXP2AgMzGezKQrONeo5eiQRESqBYvFwksztnAk6rKjQym2VkG1efeJHnaf1Ds5OfHkk0/yxBNP8PHHH9OvX79Cx/juu+9ITk6mT58+uSbzAHfddRerV69m69atfPfddzz++OPFjsNgMDBp0iTbZB6gbt26PPfcczz55JMsWLAg14Q+JCQk337at2/P3//+d2bNmsXOnTvp06dPsWP48ssvSUlJYeTIkba9QHNq3bo1bm5uea4HBgYyceJE22QeoFOnTvTs2ZPNmzdz8OBBunTpkqfd6NGjbZN5yM7BU089xaJFi9i5c2euZ//v//6PzMxMRo0aZZvMW9tMmDCBn3/+mVOnTrF69eo8PxeA119/vcDJPGR/sbNO5iH7vxcPPfQQK1eu5MSJE8ybN882mbd+5ttuu42FCxeye/fuKjGhF7E3g7MrXu16c2Xnj1zbt0FFexGRMqY5/v9ojv8/muNX7zm+tseR6+NixNn7v1vk6DBaERFxkFtuuYU2bdpw/PhxVq1aVeizu3fvBuBvf/tbvveHDx+e67niatmyJTfccEOe6wMGDMDd3Z0zZ84QGxub615qaiq//PILH374If/85z95+eWXefnll22TYetejcW1detWAO68884StevatWuelS8ATZs2BeDChQv5tuvdu3eea7Vr18bb2ztPm8Ly7uTkxO23357ruZz8/Py48cYbC/0MPXv2zHPNusLJ1dU11xcPq6CgIKDgzyci/9siJ/nk72QkJjg2GBERqVY0x8+mOX5u1W2Or5X2ct1c6jQiMyEW84UoPJp2cHQ4IiLVgsFg4N0neujV2RyefvppHn74YaZPn55rNcZfWSfVBa26aNiwYa7niqt+/fr5XjcYDNSrV49Tp04RExNjWwny+++/8/TTTxc6mUxMTCxRDOfPnwf+N1Etrnr16uV7vUaNGgAFHuSU32u41nZ/PQyrNHkvaJyccq6wyRkHZH8hcHZ2znPf+jpwVTqoSsTejHUaYQq8gbToEyQe3Iz3Tbc7OiQRkSpLc/y8NMfXHD+/OKD6zPFVtJfr5lqnEWkndmPWSnsRkXJlMBhwM+n/wq169epFp06d+P3331m+fDldu3Z1dEgFSk5OZsKECVy6dIlx48Zx6623Ur9+fTw8PHBycmLx4sW8/vrrWCyWconHyen6Xrosyy9oOeX3uu9fFfYZrvfziUg2rw5hpEWf4Nq+DdTq+rdy+7svIlIdaY6fm+b4109z/Kqh0nxKs9nM7NmzufXWW2nfvj033XQTTzzxBIcOHbqu/latWsU999xDSEgIISEh3HPPPaxevbrA5zdt2sRHH33Egw8+SNeuXQkODiYsLKxYY23bto1//OMfdOnShRtvvJE77riDRYsWldtf1rLi4pf9Woq2xxEREUd76qmnAPj000/JyMjI9xnrao2zZ8/me996Pb9VHYWJjo7O97rFYrGtjrH2GR4ezqVLlxg4cCDPPvsswcHBeHp62iaep0+fLtHYVtbVNCV95bY8lFXeRaTseba+GYOLkfS4s6RFn3B0OCIiUs1ojq85fnVWKYr2ZrOZBx98kA8//JD4+Hj69u1L06ZNWbt2LSNHjuS3334rUX/Tpk3jmWeesR280KVLFw4ePMjTTz/Nxx9/nG+b559/ns8++4wtW7bkeSWkMIsWLeIf//gHO3bsoG3btvTs2ZOoqCgmTZrEyy+/XKK4KxpX/8YApMedJSujarx6IiIilVPXrl3p3r07586d47vvvsv3mc6dsw9SXLFiRb73ly1bluu54jpy5AgRERF5rq9bt46UlBQaNGhA3bp1Abhy5QqA7d9zMpvN/PLLL/mO4erqCkBmZv6vTFsPf1q6dGmJYi8PheU9KyuLH374IddzIlJxOLnVoEar7gBc+2O9g6MREZHqRnN8zfGrs0pRtJ8zZw67du2iXbt2/PLLL3z88cd8/fXXfPDBB6Snp/PCCy8Ue1+o8PBwZs2aRc2aNVm+fDmzZs1i1qxZLF++nJo1azJz5kz27t2bp92AAQN4/vnnmT9/Pt9++22xxjpz5gxvvvkmLi4ufPXVV3zxxRdMnz6d1atX06BBA5YvX87KlStLlIuKxMmzNk5unmDJIv1i/r9ZExERKS9PP/00AP/5z3/yvX/XXXfh4eHBpk2bbJNIqyVLlrBlyxY8PDy46667SjSuxWJh8uTJueYisbGx/Pvf/wZg9OjRtuvWw5/WrFmTa79Ls9nMv/71L86cOZPvGP7+2Ye/5/fFAWDs2LG4ubmxePHifN/mO3z4MDExMSX6XPZy33334eTkxHfffcf27dtt1y0WCzNnziQiIoKAgAAGDx7skPhEpHDWA2kTD28hy5zq4GhERKS60Rxfc/zqqsJvlpWRkcGCBQsAmDRpEp6enrZ7Q4cOZcWKFWzevJklS5Zw//33F9nf3LlzARg/fjzNmjWzXW/WrBnjxo3j/fffZ+7cuXz66ae52k2dOtX254L+Mv3VV199RXp6Ovfdd1+u3ywFBATw/PPP8/TTTzN37lyGDh1arP4qGoPBgDEgiNTTBzFfiMJUr6mjQxIRkWqsQ4cO9O3bl40bN+Z7PyAggKlTp/LCCy/w4osvsnDhQho3bkxUVBQHDx7E1dWVd9991zZ5Lq6+ffty/Phx+vfvT5cuXUhPT2fHjh0kJydz880355rQt2nTht69e7N582YGDRpEly5dMJlM7Nmzh2vXrjF69GgWLlyYZ4wePXrg5ubGV199xYkTJwgICMBgMDBixAhCQkJo1KgR77//Ps8//zyTJk1i3rx5tGnThtTUVCIjI4mKimL+/PkFHqhVltq2bctLL73E22+/zQMPPEBoaCgBAQG21Uuenp589NFHmEymco9NRIrm1qg1Lj51yYiPIenodrza93V0SCIiUo1ojq85fnVV4Vfa79mzh4SEBBo0aEC7du3y3B8yZAgA69cX/bpmWloa27ZtA8j3Nz3WvrZs2WKXk4Y3bNhQ4Fj9+vXDZDJx5MiRAvfJqgyMAUEApMVGOjYQERERsve9LOwApcGDB7N48WIGDRrE+fPn+fnnn4mJiWHw4MF8++23DBgwoMRjent78+233xIWFsaePXv47bff8Pf356mnnmLWrFk4Ozvnen7GjBk89dRT1K1bl23btrF79246derEkiVLaN26db5j+Pv7M2vWLDp16sTevXtZunQp33//fa79LQcMGMCyZcsYMWIEGRkZrFu3jr179+Lh4cHDDz9MixYtSvzZ7GXs2LHMnz+f3r17c+LECdasWUNSUhJ33HEHy5YtIyQkxGGxiUjhDAaDrVB/bd8GB0cjIiLVkeb4muNXRwZLBT8N9auvvmLq1KkMHDiQTz75JM/948ePc9ttt+Ht7c3OnTsL7evo0aPcfvvt+Pj4sGPHjnyf6dq1KwkJCaxYsYLg4OB8n4mIiGDIkCHUr1/fVpj/q2vXrhEaGgpk/+KhRo0aeZ654447OHToEJ999lmxD7X9qwMHDgDk+wuNspKcnMyRI0do1aoVmSd2cHHlp7g1akPg6DfKLYaqIGcePTw8HB1OpaU82o9yaR+lzaN11USTJk1wc3Mrgwgrh8zMTFJTU3Fzc8szIZaSUS7tw155LMnfcUfM86RiKO+ffVH/35Vx9RJ/zhgPliwaPjod19qB5RJXZaT5lH0oj/ajXNqH5vj2oXmp/SiX9lGR5/gVfqW9dRV6foc55LyekJBAUlJSoX2dO3eu0L5y3ivt6nfrWDVr1sy3YG/PsRzJGNAEAPOFqDx7a4mIiIiISOXnUtMX96YdALi2L//tCURERETEfir8nvbJyckAuLu753s/5284k5KSCiyQF6evnP0V9QuAopTnWBaLxTZeeUhJSbH9p5tHbXByJis1icTYMzjX9Cu3OCq7nHmU66c82o9yaR+lzWNaWhpZWVlkZmaSmZlpz9AqFesvgi0WS7XOgz0ol/ZhrzxmZmaSlZVFSkoKWVlZRY5Z2KvgIuXJq0M/UiL2cm3/Jnx6j8LgpFV9IiIiImWlwhftpWjp6ekcOXKk3Me17rHl5VEbl8SLRO7dSrq/4/bSqqxy7lUm1095tB/l0j5Kk0cXFxfS0tLsF0wlpjzYj3JpH6XNY1paGhkZGZw6dapYzxuNxlKNJ2IvNVqE4uRRk8zEy6RE/IHHDZ0cHZKIiIhIlVXhi/bW1egFrVjMucK8sFX2xekrZ39F9VWU8hzL1dWV5s2bl6qPkkhJSSEqKoqgoCDc3d1JON2C1CMXqWvKwrNVq3KLo7L7ax7l+iiP9qNc2kdp85iWlkZ0dDQmk6la73dpsVhIS0vDZDJppXEpKZf2Yc88uri40KhRI0wmU6HPnTx5slTjiNiTwdkVz7a9uLprJVf3rVfRXkRERKQMVfiifWBg9iFHMTEx+d63Xvf29i6y+F2/fv1C+8p5zzru9bKOdfXq1QK37bHXWAaDwSEHyri7u+Ph4YE5sDmpR7aSdfmcDra5DtY8Sukoj/ajXNrH9ebRyckJJycnnJ2dq/WBQtbtRwwGQ7XOgz0ol/Zhrzw6Ozvj5OSEu7t7kb+Y0y9ZpKKp2SGMq7tWknwinMykKzjXqOXokERERESqpAp/EG2r/67cPnToUL73Dx8+DEBwcHCRfTVp0gSTyUR8fHy+h79GR0eTkJCAm5sbTZo0KUXU4OXlZSvcW2PMyWw221ZPtWzZslRjOZopIAgA84XTjg1ERERERETKjNG/MaZ6zSErk2sHNzs6HBEREZEqq8IX7UNCQvD29ubs2bMcOHAgz/1Vq1YB0K9fvyL7MplMdO/eHYDVq1cX2FePHj3ssn9oWFhYgWOtX7+etLQ0WrVqVeqV9o5m/G/RPiM+hqy08jsQV0REREREypdXh+zvONf+WG87oFlERERE7KvCF+1dXFwYM2YMAFOmTCExMdF2b+XKlWzevBkfHx9GjBhhu75//34GDRrEoEGD8vT30EMPATB79mwiIiJs1yMiIpg9e3auZ0przJgxuLq68u2337J7927b9djYWP7973/bdSxHcvaoibNnbQDMF/50cDQiIiIiIlJWarTpgcHFSHrcWdKide6CiIiISFmo8HvaAzz88MPs2LGDXbt2MWDAADp37kxcXBzh4eG4urry3nvv4enpaXs+JSWFyMjIfPsKDQ1l3LhxzJ49m+HDh9tW3m/bto20tDQee+wxOnbsmKfdp59+yubN2a+ApqWlAXDhwgXuvvtu2zOPPfYYffr0sf17o0aNeO2115g8eTL3338/3bp1w8PDg23btpGYmMjtt9/O0KFDS52fisAYEERK4mXSYqNwa1i5t/sREREREZH8ObvVoEbLm0g8+CvX9m3Arf4Njg5JREREpMqpFEV7o9HIvHnz+OKLL1ixYgUbNmzAw8ODfv368fjjj9OmTZsS9ffss8/SsmVLFixYwM6dOwFo3bo1999/P4MHD863zZkzZ9i3b1+ua+np6bmuXb58OU+7UaNG0ahRI+bMmcO+fftIT0+nadOm3H333YwaNapEcVdkpoAgUiL2YI7N/5clIiIiIiJSNXh1CCPx4K8kHt6C7y1jcXI1OTokERERkSqlUhTtIbtwP378eMaPH1/ks127duXYsWOFPjNkyBCGDBlS7PHfeecd3nnnnWI/n1P37t1tK/qrKqMOoxURERERqRbcGrfBxdufjIQLJB3djle7Po4OSURERKRKqfB72kvlkLNob8nKdGwwIiIiIiJSZgwGJ7za//dA2n0bHByNiIiISNWjor3YhatPXQwuRiwZZtIvn3d0OCIiIiIiUoa8OvQFDKSePkR6fIyjwxERERGpUlS0F7swODlj9G8MaIscERGxv2PHjhEcHExISAiZmfm/0fXAAw8QHBxMWFhYgf3cdtttBAcHs27dOgCWLl1KcHAw06dPL1E8Z8+eJTg4mNGjR5eoXWFGjx5NcHAwZ8+etVuf5SUsLIzg4GBHhyEi5cilph/uTTsAWm0vIiLXR3P8ik1zfMdS0V7sxrZFjg6jFRERO2vRogXe3t4kJSVx+PDhPPfT09P5448/ADh37hwxMXlXfSYkJHDixAkMBgOdOnUqdLzp06cTHBzM0qVL7RJ/RVPUFx8RkeLw6vDfLXL2b9QWmSIiUmKa49uX5vhVi4r2YjdG/yAA0mKjHBqHiIhUPTkn4eHh4XnuHzp0iOTkZFq1agXArl278jwTHh6OxWLhhhtuwMfHB4BbbrmFVatWcd9995Vh9CIiVVONFl1wcvck89plUk7tc3Q4IiJSyWiOL1IwFe3Fbkx1gwAwx2p7HBERsb8uXboAsHv37jz3rNceeeQRIP9Jv/Va586dbde8vLxo1qwZtWvXtnu8IiJVncHFFc+2vQBtkSMiItdHc3yR/KloL3ZjrJO9p31m4mUyk644OBoREalqQkNDAfj999+xWCy57oWHh+Pq6kq/fv1o3LhxvpP+/Cb0+e13GRYWxowZMwB45ZVXCA4Otv2T36u0ZrOZTz75hFtuuYW2bdvSq1cv3nzzTRITE6/7s65atYq7776bjh07Ehoayvjx4/N9ZTgrK4uVK1fy3HPPMXDgQDp27MiNN97IbbfdxvTp00lOTs71vPXzQvYrxjk/219fpc3MzGTJkiWMGTOGLl260K5dO8LCwnjiiSfYtGlTgbEvX76cO+64gw4dOtClSxcmTJjA6dN5f6G/c+dOgoODefnll7l27RpvvvkmvXv3pm3btvTr149PPvmEjIyMfMe4du0aH330Ebfeeivt27cnJCSEUaNG8d1335GVlZXn+Zdffpng4GB27tzJtm3b+Mc//kGXLl0IDg7myJEjufYvTU1N5YMPPqBfv360a9eOgQMHsmDBAltfx48fZ8KECdx000106NCBe++91/batkh15NWhHwBJx3eTmXzVwdGIiEhlozm+5vhWmuPn5uLQ0aVKcTK54+JTl4z4GNIuROHRpIOjQxIRkSqkVatWeHp6kpCQwMmTJ7nhhhuA7Entnj17aNeuHSaTiU6dOrF06VIuX75sW12TlJTEkSNHgNwT+vwMHDiQbdu2cfToUUJCQmjcuLHtXqNGjXI9m56ezoMPPsjhw4fp3LkzzZs3Z8+ePSxcuJCTJ0/y5ZdfYjAYSvQ5v/rqKxYsWMCNN95I3759OXHiBBs3bmTr1q18/vnndOvWzfZsSkoKzz33HLVq1aJp06a0atWKpKQkDh48yIwZM9i4cSMLFy7MFf/w4cNZtmwZHh4eDBw40HbP+joxQGpqKo8++ijbtm3DaDQSEhKCr68v58+fZ+vWrVy5coU+ffrkif3DDz9k3rx5dOrUiT59+nDw4EF++eUX9uzZw48//pjvaqerV68ycuRI4uPjCQ0NJTU1lfDwcD799FNiYmKYOnVqrucvXrzI6NGjiYyMxM/Pj759+5KSksLOnTt57bXX2LJlCx999FG+ef/pp5/49ttvadmyJT179uT8+fO5nktPT2fs2LGcOnWKLl260KRJE8LDw3nrrbe4du0aHTt25LHHHqNBgwZ069aN06dP8/vvvzN27FiWLFlCs2bNivdDFqlCTAFBGOs2xRxzisSDv1Kry1BHhyQiIpWI5via44Pm+PlR0V7syhQQREZ8DOZYFe1FRMS+nJ2dCQkJ4ddff2X37t22Cf2xY8e4evWqbZVOaGgoS5cuZffu3bYJ6969e8nIyKBp06b4+fkVOs5LL73E9OnTOXr0KHfddRd33HFHgc/u3buX9u3bs27dOtuE+OLFi4wcOZLt27eze/du2yu/xfV///d/fPLJJ7km259//jkffPABL774ImvXrsXNzQ0AV1dXZsyYQe/evTEajbbnU1NTmTJlCkuXLmXhwoWMHj3alpvQ0FCWLVuGj48P77zzTr4xTJ06lW3bttGmTRs+/fRT6tWrZ7uXmJjIgQMH8m23ePFilixZQsuWLYHsFUpPPvkkGzdu5Ouvv+aJJ57I02b9+vX07duXJUuW4O7uDkBkZCQjRoxg6dKltgm01eTJk4mMjKRv375MmzbN1ubMmTOMGTOGn3/+mf/85z/8/e9/zze+t99+O8/P9OzZs0D2z7NTp06sX78eLy8vAI4ePcqdd97J3LlzqVWrFk888QQPPfSQre27777LF198wdy5c3n77bfzzYtIVefVoR+XYk5xbd96ana+tcSFDBERqb40x9ccHzTHz4+2xxG7sh5Ga9ZhtCIiZcZisZBlTq00//z1NdfSsK6gybmfpfU1WeuE3nqYVc7XZ61/LmoFTkkZDAbeeuutXCtY6tSpw7333gvkf1hWUQYMGJBrMg/w8MMP06JFCy5cuMDPP/9su240GrnllltyTeYB3NzceP3113FxcWHt2rUlGv/ChQssWbLE9mUh52QewNPTM9dKoJyefPJJ22TeGt9jjz0GZL8qmx8PDw/eeust28QcoEmTJtx+++1YLJZcP8ezZ8+yfv16jEYjU6ZMydWmYcOGPPvsswDMnz8/37F69OhR6Bc0Jycn/vWvf9km8wAtW7akV69eJCcnU6dOHR544IFcbcaNG1fo5xOpDjzb9MDg7Ir5wp+Yz0c4OhwRkUpJc3zN8a00x9ccH7TSXuzMGBAEgPlClEPjEBGpqiwWC9ELXiXt7DFHh1JspgYtCRzzpl1WXuY3oQ8PD8fJyYmQkBAAgoKC8PPzy/NMzvb2EhgYSIsWLfJcb9q0KZA9OS6p2267Lc81g8HAbbfdxgcffEB4eDjDhg3LdT8iIoLffvuNM2fOkJycbPsS5erqSlRUVInG37VrFxkZGfTq1YvAwMASte3du3eea0Xlom3btvj6+harXXh4OBaLhS5duhAQEJCnza233sqrr77KmTNniImJoW7durnu9+/fv9D4AwMD83391fr6dPfu3fPc8/b2xtvb+7p+1iJVhbO7Jx4tu5J0aAvX9m3AFNjc0SGJiFQqmuNrjq85vub4f6WivdiVyVq0jzuHJSMdg4urYwMSEamSqu+2A23btsXd3Z3Y2FjOnDlDw4YNCQ8Pp0WLFrlWTnTq1Im1a9dy7do1TCYT+/fvByjxa6xF+esKFasaNWoA2a+OllTO10Tzux4TE2O7lpGRweuvv86SJUtKPE5BoqOjgewvRiWV3xcAT09PIHsvyfyUJIfWSXNBOXJyciIwMJDIyEhiY2PzTOiL+oLy1+etPDw8APD39y8w1oSEhEL7FqnqanboR9KhLSQe+o3a/e/HydXk6JBERCoZzfE1x8+mOX5u1XWOr6K92JVzTT+c3GqQlZqEOe4MprpNHR2SiEiVYjAYCBzzJpb0NEeHUmwGV5Pd9jd2dXXlxhtvtO0laTabuXTpEoMHD871XGhoKGvWrOH333/H09MTs9lMo0aN8l25URpOTo7dafCrr75iyZIlNG/enOeee462bdvi4+ODq2v2L8179OjBxYsXyy2e68lHeebQuk9oQYqKxdE/b5GKzC2oLS616pBx5SJJx3bi1baXo0MSEak0NMfXHD8nzfFLpqrO8VW0F7syGAwYA4JIPX0Ic2yUivYiImXAYDBgMBY+ManKOnfubJvQW1d2WPe4tMq556V1FYh1P8yK7ty5c7n2jLSyHqSU80vJmjVrAJg2bVqeV3iTk5OJi4sr8fjWlSolfeW2PFhXwVhz8VdZWVmcP38ewO5f3kSkcAaDE17tw4j/bTHX9m1Q0V5EpIQ0x9cc30pz/Nyq6xy/Yv4qQSo162G0aTqMVkREykDOPS//ekCVVcuWLalRowbh4eG2vS5L8tqsdRVLZmamPUIukZUrV+Z7/aeffgJy79l55coVIP/XT1euXFngAWGurq5kZGTke69r1664uLiwfft22+S4oggNDcVgMLBz505iY2Pz3F+9ejWpqak0bNiwwNdgRaTseHboAxhIjTpAenxMUY+LiIjYaI6vOb7m+LmpaC92Z9JhtCIiUoY6dOiA0Wjkzz//5Ndff6VRo0Z59iF0dnamY8eOHDp0iD179gAlO6DK2l9ERIT9Ai+mNWvWsG7dulzX5s2bx9GjR6lTpw4DBw60XW/SpAkACxcuzPX8gQMH+OCDDwocw9/fn0uXLtm+EORUp04dRowYQXp6Ok888USeiXNSUhLbt28v8eeyhwYNGhAWFkZ6ejqTJk0iNTXVdu/s2bO2zzx27FiHxCdS3bnW8se9SXsAru3f6OBoRESkMtEcX3N8zfFz0/Y4YndGa9E+NgqLxWK3Pc5EREQATCYT7du3Jzw8nCtXrtCvX798nwsNDWXLli2kp6cTGBhY4MFG+enRowdubm589dVXnDhxgoCAAAwGAyNGjCAkJMReHyVf9957L48//jgdO3akfv36nDhxgmPHjmE0Gnn33Xdxd3e3PfvII4+wZcsWPv74Y9asWUOzZs24cOECv//+O0OGDGHv3r2cO3cuzxj9+vVjwYIFDB8+nI4dO+Lm5oaPjw/PP/88AK+88gqRkZHs2rWL/v3706lTJ3x9fTl//jxHjhyhbdu2dOvWrUzzUJApU6Zw6tQpNm7cSP/+/QkNDSUlJYUdO3aQmprKoEGDuPfeex0Sm4iAV4cwUiL3cW3/Jnx63o3BydnRIYmISCWgOb7m+Jrj56aivdid0a8hODmTlZpE5tU4XGrVcXRIIiJSxXTu3Nn2Suxf97q0yvk6bUn3uvT392fWrFl8+umn7N27l+TkZCwWC506dSrzCf3YsWO58cYbmT9/PuvXr8fZ2ZnevXvz5JNP0rZt21zPhoSEsHjxYqZNm8ahQ4c4ffo0jRo14qWXXmLMmDH0798/3zGeffZZANavX8/PP/9MRkYG9evXt03o3d3d+fLLL/n+++/54Ycf2L9/P+np6dSpU4eePXty5513lmkOClOnTh2+++475s6dyy+//ML69etxcXGhZcuW3HnnnYwYMaLCHiYlUh14BHfByc2TzKtxpETux6NZR0eHJCIilYTm+Nk0x9ccH8BgKWgjJKkUDhw4AEC7du3Kbczk5GSOHDlCq1at8PDwyPeZs3OewXzhTwLuepkaLYr/qlJ1Upw8StGUR/tRLu2jtHlMTU0lMjKSJk2a4OZWfQ+iyszMJDU1FTc3N5ydtUqzNJRL+7BXHkvyd9wR8zypGMr7Z2/vOUDcmrlcDV9NjVbdCbjjOTtEWHloPmUfyqP9KJf2oTm+fWheaj/KpX1U5Dl+9foVhZQb62G0Zh1GKyIiIiJSrXh1CAMg6fguMpOvOTgaERERkcpH2+NImTAGNIGDv+owWhEREZFqwGw28+WXX7JixQrOnDmDh4cHoaGhPProo7Rp06bE/a1atYqFCxdy7NgxAIKDgxkzZgyDBw8usE1cXBwzZsxg06ZNxMXF4efnR58+fZgwYQK+vr55nj948CCbNm1i69atnDx5kuTkZHx8fAgJCWHs2LEFviY/evRodu3aVWAczz33HI888kgJP3HVYqrbFGNAE8yxkSQe+o1anYc4OiQRERGRSkVFeykTxoDGAKRppb2IiIhIlWY2m3nwwQfZtWsXvr6+9O3bl4sXL7J27Vo2bdrEZ599Rs+ePYvd37Rp05g1axZGo5Gbb74ZgK1bt/L0009z/PhxnnrqqTxtzp07x8iRI7l48SJNmzalf//+HDt2jG+++YYNGzawePFi6tWrZ3s+IyODESNGAODl5UWHDh3w8vLi5MmTrFmzhrVr1zJx4kRGjx5dYJwDBw7Md4uEFi1aFPuzVmVeHcK49Ms8rv2xnpqhgzEYDI4OSURERKTSUNFeyoTpv9vjZMTHkJWWgpPJvfAGIiIiIlIpzZkzh127dtGuXTvmz5+Pp6cnACtXruS5557jhRdeYN26dbbrhQkPD2fWrFnUrFmTRYsW0axZMwAiIiIYNWoUM2fOpFevXnTsmPtw04kTJ3Lx4kVGjRrF5MmTMRgMWCwWJk+ezKJFi3jttdeYN29erjZt27Zl3Lhx9O3bF1dXV9v1b775hsmTJ/P222/TvXt3Wwx/9eKLL9KgQYMS5ao68Wzbk0vrv8J8IQpzTCSmek0dHZKIiIhIpaE97aVMONeohbNnbQDMF087OBoRERERKQsZGRksWLAAgEmTJuUqzA8dOpTevXsTHx/PkiVLitXf3LlzARg/fnyuYnmzZs0YN25crmesDh06xI4dO/D29mbixIm2Fd0Gg4GJEyfi7e3Nli1bOHr0qK2Ni4sLS5YsYcCAAbkK9gD33HMPPXr0IDMzk9WrVxc3FfIXzu5e1AjuCsC1fesdHI2IiIhI5aKivZQZ2xY5MVGODUREREREysSePXtISEigQYMGtGvXLs/9IUOy9zJfv77oom1aWhrbtm0DyHfvemtfW7ZswWw2265v3LgRgLCwMEwmU642JpOJsLDsQ1HXrVtXnI8EZO+hD3DhwoVit5G8vDr0AyDx0G9kpac5OBoRERGRykPb40iZMQUEkRKxV4fRioiIiFRRR44cASjwsNnWrVsD2A6ULUxkZCRpaWn4+PgQGBiY535gYCDe3t4kJCQQGRlpK6xbY2jbtm2+/bZp04alS5cWKwarP//8EwA/P78Cn1myZAkJCQkA1K9fnz59+tC8efNij1EduAe1xaWmHxlX40g+vgvPNsU/20BERESkOlPRXsqMMaAJAGYdRisiUmIWi8XRIYhIGahqf7ejo6MBqFu3br73rdcTEhJISkqiRo0aBfZ17ty5Qvuy3ktISCA6OtpWtLfGEBAQUGgM1v6LEhkZyaZNmwDo169fgc/NnDkz17//+9//ZtiwYUyePBk3N7dijVXVGZyc8Wzfl4Qt33Ft3wYV7UWk2qtq8wARyVYWf7dVtJcyY/TP3h7HfOE0lqxMDE7ODo5IRKTic3LK3rkuMzPTwZGISFmw/t22/l2v7JKTkwFwd3fP976Hh4ftz0UV7YvqK2d/SUlJedrlHKuoNgUxm8289NJLpKenM3To0HzfIAgNDWXEiBGEhITg7+9PbGwsmzdv5pNPPmHZsmWYzWY+/PDDIscqisVisX22spaSkpLrP+3JpUU32PIdKZH7uXr+NC616th9jIqkLHNZnSiP9qNc2kdp85ienk5WVhbp6ekYjUZ7hlapWAubFotF33dKSbm0D3vl0fp3PC0tjaysrCLHtJ7BVBgV7aXMuNauh8HFiCXDTHp8DEbf+o4OSUSkwnN1dcXV1ZXExMRcBzqKSNWQkpKCs7NznsNPpWKYNGkS+/btIygoiEmTJuX7zFNPPZXr3xs3bsyYMWPo2rUrI0aM4KeffmLs2LG0b9++VLGkp6fbtv4pa5euZbD9yDW6J2ZQ29P+XxE9fYNwvRTFmc1LSb2hl937r4iioqIcHUKVoDzaj3JpH6XJo5OTE9euXcPZWQsa09J0zom9KJf2Udo8Xr16FbPZzMmTJ4v1fHF+eaeivZQZg5MzRv/GpEWfwBwbpaK9iEgxGAwGvLy8SEhIoFatWoWuOBWRyiUzM5MrV67g4eFRrNU1lYF1FXtBKw9zrhQvbJV9cfrK2V/OvqztClqVnl+b/Lz//vssXbqUunXr8sUXX1CzZs1Cn/+r4OBgwsLCWLNmDb/++mupi/aurq7ltkf+9xtOEH4yhrhEA1PHd8XZ2b5vgqQYBnNl9WfUuHCEoNsexmCoGm+a5CclJYWoqCiCgoL0/+GloDzaj3JpH/bI44ULF0hOTqZOnTrVtnBvsVhIS0vDZDJVmbmQoyiX9mGPPGZmZpKSkoKPjw/+/v5FPl/cwr6K9lKmchbtaX2zo8MREakU/Pz8SElJ4c8//6RmzZp4eXnh7OxcrSZjmZmZttUO1fVLjb0ol/ZRmjxavwxcvnyZrKysYk3mKwvrgbExMTH53rde9/b2LrJoXr9+/UL7ynkv50G1gYGBHD58mNjY2ELbWPvPz6xZs5g7dy61a9fmiy++KPTZwgQFBQHZhZnSMhgMBW75Y2/9OjdixZbTRMUksn5PDMN62/eXBW7tenJtw1dkXbuE4UIEHk062LX/isjd3b3cfn5VmfJoP8qlfZQmj4GBgURFRXH27Flq165dLYutmpfaj3JpH/aa41ssFgIDA4u1gr64f+9VtJcyZT2MNk2H0YqIFJuzszMNGzYkLi6Oa9eukZCQ4OiQyl1WVhYZGRm4uLhUmb2/HUW5tA975LFGjRrUrVu3Su1l26pVKwAOHTqU7/3Dhw8D2A6NLUyTJk0wmUzEx8cTHR2dqzAP2QfOJiQk4ObmRpMmTXLFsG7dOg4ePJhvv9bYCoph4cKFTJs2DS8vL+bNm0ezZs2KjLUgV65cAQrfl78i8vEyMaCjNz/uiuf/fj7KTW3rUde38F+ylISTqwnPtr24+vvPXPtjfbUo2ouI/JXRaKRBgwbExcVx/vx5R4fjEJqX2o9yaR8VeY6vor2UKVNAEED2SnsRESk2Z2dnAgIC8Pf3tx1qU52kpKRw6tQpGjVqVOmKXxWNcmkfpc2ji4sLLi5Vb+odEhKCt7c3Z8+e5cCBA7Rr1y7X/VWrVgHQr1+/IvsymUx0796djRs3snr1ah588MF8++rRo0euL0V9+/Zl+vTpbNiwwfZ6s1VaWhobNmwAoH///nnGXLZsGW+99RYeHh58/vnntG7dupifPC+z2cymTZsAaNu27XX34yghzTyIuACHo+KZ+f0+pjzSza4rQL06hHH1959JPraLzJRrOLt72a1vEZHKwsPDg0aNGpGRkUFGRoajwyl3mpfaj3JpHxV5jl/1vjlIhWL0bwxAZuJlMpOv4uxRsr1BRUSqO4PBUKVW5RaX9ZcUJpMJNzc3B0dTuSmX9qE85s/FxYUxY8bwySefMGXKFObPn287RHvlypVs3rwZHx8fRowYYWuzf/9+XnzxRQB+/vnnXP099NBDbNy4kdmzZ9OnTx/bqveIiAhmz55teyanNm3acNNNN7Fjxw6mTp3K5MmTMRgMWCwWpk6dSkJCAj169KBly5a52v3yyy+8+uqrGI1GZs6cSUhISJGfd/v27aSmptK7d+9cq7EuXrzIP//5T2JiYqhbty633HJLcVNYYRgMBh6+vRUvfrqDvccvsvH3s4SFNrRb/8a6TTH6N8Z84TSJh7ZQK3Sw3foWEalsquov84ui+ZT9KJf2UZHzWP3+F0LKlZPJHRefumTEx2COjcK9SekO5BIRERGRiuXhhx9mx44d7Nq1iwEDBtC5c2fi4uIIDw/H1dWV9957z1bIh+wVTZGRkfn2FRoayrhx45g9ezbDhw+ne/fuAGzbto20tDQee+wxOnbsmKfd1KlTGTlyJIsWLWL37t0EBwdz7NgxIiIi8Pf3580338z1/KVLl3j22WfJzMwkKCiIH374gR9++CFPv02bNuWRRx6x/fuxY8d4++23qVOnDq1bt8bLy4uYmBgOHz5McnIytWvXZsaMGRXuS19xBfrVYNQtwSxcfYS5PxykU0t/anmaim5YDAaDAa8b+3Hply+49sd6Fe1FRERECqGivZQ5o39jMuJjSFPRXkRERKTKMRqNzJs3jy+++IIVK1awYcMGPDw86NevH48//jht2rQpUX/PPvssLVu2ZMGCBezcuROA1q1bc//99zN4cP6F3vr167N8+XKmT5/Opk2bWLt2Lb6+vowaNYonn3wSX1/fXM+npKSQnp4OZK/ij4iIyLffLl265Crad+nShZEjR3Lw4EEOHjzI1atXMRqNBAUF0bt3b8aMGUPt2rVL9Hkrmjv6Nue3P84Rdf4qc384yHP3dbJb355tenFp/QLMsZGkxZzCVLep3foWERERqUoqTdHebDbz5ZdfsmLFCs6cOYOHhwehoaE8+uijJf4iANl7Yi5cuJBjx44B2QdTjRkzpsAvAgBxcXHMmDGDTZs2ERcXh5+fH3369GHChAl5vghYXb16lXnz5rF+/XrOnDlDZmYmdevWpVu3bjzyyCM0bGi/V04rKlNAE5KP7cR8IcrRoYiIiIhIGTAajYwfP57x48cX+WzXrl1tc/CCDBkyhCFDhpQoBj8/P6ZMmVKsZxs0aFBkDPlp3bo1b7zxRonbVSYuzk5MuPtGnv/kVzbtOUufTg3o1DLALn07e3hRo0Vnko5s59q+jSrai4iIiBSgUhwvbDabefDBB/nwww+Jj4+nb9++NG3alLVr1zJy5Eh+++23EvU3bdo0nnnmGQ4ePEiXLl3o0qULBw8e5Omnn+bjjz/Ot825c+cYNmwY33zzDe7u7vTv3x93d3e++eYbhg8fnu/J33Fxcdxxxx3MmjWLS5cu0a1bN/r06UNGRgbffvstt99+O/v377+unFQmRh1GKyIiIiJSabRo5MNtPbML6jO/30dKmv0OS/TqkH0oceLBX8nKMNutXxEREZGqpFIU7efMmcOuXbto164dv/zyCx9//DFff/01H3zwAenp6bzwwgskJiYWq6/w8HBmzZpFzZo1Wb58ObNmzWLWrFksX76cmjVrMnPmTPbu3Zun3cSJE7l48SKjRo1i1apVfPTRR6xatYpRo0YRGxvLa6+9lqfNzJkzOXPmDD169GD9+vXMmjWLGTNmsG7dOu6++26SkpJ46623Sp2fis4YkH0YrTnuLJaMdAdHIyIiIiIiRfn7oFb4+7hzIT6F//x81G79ujdpj7OXL1mpiSQf3223fkVERESqkgpftM/IyGDBggUATJo0KdchVkOHDqV3797Ex8ezZMmSYvU3d+5cAMaPH0+zZs1s15s1a8a4ceNyPWN16NAhduzYgbe3NxMnTsRgMADZhylNnDgRb29vtmzZwtGjuSezu3dnT0IfeeQRPDw8bNddXFyYMGECAAcOHMBisRQr9srKpWYdnNxqQFYm5rizjg5HRERERESK4G5y4dERHQD48bcIjv8Zb5d+DU7OeLXvC8C1fevt0qeIiIhIVVPhi/Z79uwhISGBBg0a0K5duzz3rXtdrl9f9IQvLS2Nbdu2AeS7d721ry1btmA2/+9VzY0bNwIQFhaGyWTK1cZkMhEWFgbAunXrct1zdXUtMqZatWrZfglQVRkMBoz+QQCYYyMdG4yIiIiIiBRLaKsAendsQJYFpn/7BxmZWXbp16tDdtE+5dR+0q9csEufIiIiIlVJhS/aHzlyBKDAw2Zbt24NUKyDpCIjI0lLS8PHx4fAwMA89wMDA/H29iY1NZXIyP8Vl60xtG3bNt9+rbH9NYaePXsC8Pnnn5OSkmK7npGRwfTp0wG46667ioy7KrBukZN24bSDIxERERERkeJ6eFhbvDyMRJ2/yrJNJ+3Sp6tPXdwatwUsJO7fZJc+RURERKqSCl+0j46OBqBu3br53rdeT0hIICkpqdC+zp07V2hfOe9Zx83554CAgELbWPu3evjhh+natStbtmwhLCyM8ePHM2HCBPr378+PP/7Igw8+yFNPPVVozFWFKaAJoMNoRUREREQqk1qeJh66PXuR0je/HCP6YvHOEiuKV4fst5Wv7duIxWKfFfwiIiIiVYWLowMoSnJyMgDu7u753s+5V3xSUhI1atS47r5y9pfzFwDWdjnHKqoNgKenJ3PmzOGNN97g+++/t22zA9mr8zt06ICzs3OBsRSXxWKxxVgerG8N5Hx7oChZNbN/sZEWE0lSUlKV3xKoOK4nj5KX8mg/yqV9KI/2oTzaj3JpH47Io8Vi0ZxJKoS+nRqy8fez/HH8IjO+28dbj3Yv9X83a7S8ibg1c8m4coHU04dwD8q7FaqIiIhIdVXhi/aVWXR0NOPGjSMmJoZ//etf9O7dG3d3d/744w+mTp3Kk08+yYQJE3jiiSdKNU56erptC5/yFBUVVfyHMzPwNjhBWhLH9u7C4l6zzOKqbEqURymQ8mg/yqV9KI/2oTzaj3JpH+WdR6PRWK7jieTHYDDw+J0dePz9jRyIiGPtrj8Z0LVxqfp0cjXh2aYH1/b8wrU/1qtoLyIiIpJDhS/aW1exF7SqKecK88JW2Renr5z95ezL2q6g1ez5tQF46aWXOH78OB9//DGDBg2yXe/VqxdNmjThtttu47PPPmPo0KEEBQUVGnthXF1dad68+XW3L6mUlBSioqIICgoq9K2Fv4rbE0jGpbME1XLFrVmrMoywcrjePEpuyqP9KJf2oTzah/JoP8qlfTgijydP2mf/cBF7qOtbg78PaskXPx7iix8P0blVAD413UrVp1eHflzb8wtJR3eQmZKIs7unnaIVERERqdwqfNHeemBsTExMvvet1729vYss2tevX7/QvnLey3lQbWBgIIcPHyY2NrbQNtb+Ac6fP8+uXbtwdXXllltuydOmYcOGtG/fnp07d7Jr165SFe0NBkOBW/eUJXd39xKN61avKYmXzmK4EuOQeCuqkuZR8qc82o9yaR/Ko30oj/ajXNpHeeZRW+NIRfO3nk35de9ZTp69wuzlB3h5TOdS9Weq1wzXOo1Iv/gnSYe3ULPToKIbiYiIiFQDFf4g2latsldkHzp0KN/7hw8fBiA4OLjIvpo0aYLJZCI+Pj7XQbNW0dHRJCQk4ObmRpMmTfLEcPDgwXz7tcaWMwZrIb9GjRoF7ltfs2b2FjEJCQlFxl4VGAOCAB1GKyIiIiJSGTk7OzHh7o44ORnYui+anQfPl6o/g8FAzRv7AXD1jw32CFFERESkSqjwRfuQkBC8vb05e/YsBw4cyHN/1apVAPTr16/IvkwmE927dwdg9erVBfbVo0ePXPuH9u3bF4ANGzaQlpaWq01aWhobNmRPMPv372+7XqdOHSC7IH/69Ok8Y2VkZNh+4dCgQYMiY68KjP5BAKTFRjo2EBERERERuS5N69dieO9mAHy2dD/Jqeml6s+zTU9wcsEcE0GaFveIiIiIAJWgaO/i4sKYMWMAmDJlComJibZ7K1euZPPmzfj4+DBixAjb9f379zNo0KBc+8hbPfTQQwDMnj2biIgI2/WIiAhmz56d6xmrNm3acNNNN5GQkMDUqVOxWCwAWCwWpk6dSkJCAj169KBly5a2Ng0aNKB169YAvPbaa8THx9vupaen8+6773Lu3Dm8vLzo0aPH9SWnkjH9d6V9RnwsWeaCzxUQEREREZGK656BLannW4NLV1L56qfDperLuUYtarQIBeDaPq22FxEREYFKsKc9wMMPP8yOHTvYtWsXAwYMoHPnzsTFxREeHo6rqyvvvfcenp7/O7QoJSWFyMj8V3OHhoYybtw4Zs+ezfDhw20r77dt20ZaWhqPPfYYHTt2zNNu6tSpjBw5kkWLFrF7926Cg4M5duwYERER+Pv78+abb+Zp8+abbzJ27Fhb3O3bt8fNzY1Dhw5x/vx5XF1defPNN23b5FR1zjVq4ezpQ2ZiPOYLf+LWoOgtjUREREREpGIxuTrz+F0deG3WNlZvj6J3SANaN/G97v68OoSRdHQHiQc34xs2GoOLqx2jFREREal8KvxKewCj0ci8efN45pln8Pb2ZsOGDZw8eZJ+/fqxePFievXqVaL+nn32WaZNm0br1q3ZuXMnO3fupHXr1nz00Uc89dRT+bapX78+y5cvZ9SoUSQlJbF27VqSkpIYNWoUy5cvp169ennatGnThhUrVjB69Gj8/PzYvXs3mzdvxmAwcPvtt/P999/n+zZAVWbdIsesLXJERERERCqtDjfUoX/nRlgsMOO7P0jPyLzuvtyb3oizV22yUhJJOrHbjlGKiIiIVE6VYqU9ZBfux48fz/jx44t8tmvXrhw7dqzQZ4YMGcKQIUNKFIOfnx9TpkwpUZt69erx2muvlahNVWaqG0TKqb2kxebd519ERERERCqPf/ytDeFHYjkTm8j3609wz8CWRTfKh8HJGa92fUjYtpRrf2zAs1V3O0cqIiIiUrlUipX2UnVopb2IiIiISNXg5WHkkWHtAPh2/XH+jLl6/X11CAMg5dQfZFyNs0t8IiIiIpWVivZSroz/PYzWfPFPLFnX/wqtiIiIiIg4Xo8bA+ncOoCMTAszvttHVpbluvpxrV0Pt0ZtAAvX9m+ya4wiIiIilY2K9lKuXGvXw+BixJKeRnp8rKPDERERERGRUjAYDDx6RwfcTc4cibrM6u1R192XdbX9tX0bsFiy7BShiIiISOWjor2UK4OTM8Y6jQBtkSMiIiIiUhXU8XFnzJDWAHz102HiElKuq58aLW/CYHQnIyGW1D8P2zNEERERkUpFRXspd7YtcmKjHBqHiIiIiIjYx+DuTQhu7ENKWgazlu7HYin5NjlORjc82/QA4Nof6+0dooiIiEiloaK9lDtb0f7CaccGIiIiIiIiduHsZGDC3Tfi4mxg56EYtu0/f139WLfISTq6g6zUJHuGKCIiIlJpqGgv5c7036J9mrbHERERERGpMhrXrcmIsBsAmLVsP4nJ5hL3YQq8AVe/BlgyzCQe3mrvEEVEREQqBRXtpdwZ/RsDkHntMpnJVx0cjYiIiIiI2MvI/i1o4O9JwrU0vlxZ8n3pDQYDXh36AdoiR0RERKovFe2l3DmZPHDxDgC0r72IiIiISFXi6uLME3fdCMAvO09z4GRcifvwatcbnJxJO39SW2qKiIhItaSivTiEdV/7tAtRDo1DRERERETsq01TXwZ3CwJgxnd/kJaeWaL2zjVq4XFDKADX9m2wd3giIiIiFZ6K9uIQ1n3tzbFaOSMiIiIiUtXcf2tratd0IzouicVrj5W4vfVA2msHf8WSmW7v8EREREQqNBXtxSGM/kEAmHUYrYiIiIhIlVPD3ZXxd7QHYOnGk0RGXylRe49mHXH29CEr+SpJJ8LLIkQRERGRCktFe3EIY90gAMxx57RyRkRERESkCurWrh7d2tUjM8vC9G//IDPLUuy2BidnvNr3AeDaH9oiR0RERKoXFe3FIVxq1sHJrQZkZWCOO+focEREREREpAyMG96OGm4unDiTwMotp0rU1rN99hY5Kaf+IOPqpbIIT0RERKRCUtFeHMJgMGD0bwxoixwRERERkarKt5Y7Y4e2AWDh6iPEXk4udlujbyBuDVuBJYtrBzaVTYAiIiIiFZCK9uIwRtthtFEOjUNERERERMrOgK6NadPUlzRzJjO/34fFUvxtcmwH0u7bUKJ2IiIiIpWZivbiMNbDaNNUtBcRERERqbKcnAw8cVcHXF2c2HPsApv3nC122xqtumEwupERH0PqmcNlGKWIiIhIxaGivTiMKaAJAOYLUVo1IyIiIiJShTXw92LkLS0AmPPDQa4kphWrnZPRHc9WNwM6kFZERESqDxXtxWFc6zQAgxNZKYlkXrvs6HBERERERKQM3dHnBhrX9eJqkpl5Kw4Wu53Xjf0ASDqyjay04u+JLyIiIlJZqWgvDuPkYsTVrz4AaTqMVkRERESkSnN1cWLC3TdiMMDG38+y59iFYrUz1W+Bq299LBlmEg9vLeMoRURERBxPRXtxKNsWOdrXXkRERESkygtuXJuhPZoC8On3+0hNyyiyjcFgsB1Im7B9OZaM9DKNUURERMTRVLQXhzL6Nway97UXEREREZGq7++DWlLHx50Ll5P5z5qjxWpTM2Qgzp4+ZMTHkLDzxzKOUERERMSxVLQXhzIGBAFaaS8iIiIiUl14uLny2IgOAKz4NYITZ+KLbONkcqd2vzEAJGz9noyrcWUao4iIiIgjqWgvDmX0DwIg/XIMWeYUxwYjIiIiIiLlIrRVAL061ifLAjO+3UdGZlaRbTzb9MStYSss6WlcWje/7IMUERERcRAV7cWhXDy9ca7hDVgwX/jT0eGIiIiIiEg5efj2dnh5uHIq+grLN0cU+bzBYMB34ENgcCLpyHZSIveXQ5QiIiIi5U9Fe3E4ow6jFRERERGpdry9TDz4t7YAfLPmKNFxiUW2MQUEUbPTQADifpmHJbPog2xFREREKhsV7cXhjAHZh9Gm6TBaEREREZFqJSy0ITfeUAdzRhaffrcPi8VSZBufXqNw8qhJetxZroSvKocoRURERMqXivbicCYdRisiIiIiUi0ZDAYeu7MDRldn9p+MY/3uorfMdHb3pHbfvwMQ/+u3ZFwr+iBbERERkcrExdEBiNi2x7nwJxZLFgaDfpckIiIiUpmYzWa+/PJLVqxYwZkzZ/Dw8CA0NJRHH32UNm3alLi/VatWsXDhQo4dOwZAcHAwY8aMYfDgwQW2iYuLY8aMGWzatIm4uDj8/Pzo06cPEyZMwNfXN8/zBw8eZNOmTWzdupWTJ0+SnJyMj48PISEhjB07lpCQkALHSkxMZNasWaxZs4aYmBhq1apFt27dePLJJ2nYsGGJP291V8+vBvcNDObLlYeZt+IQnVoF4OPlVmgbrw59ubZ3LWnRJ7i8cSH+f3uynKIVERERKXuqjorDudauh8HFiCU9lYz4GEeHIyIiIiIlYDabefDBB/nwww+Jj4+nb9++NG3alLVr1zJy5Eh+++23EvU3bdo0nnnmGQ4ePEiXLl3o0qULBw8e5Omnn+bjjz/Ot825c+cYNmwY33zzDe7u7vTv3x93d3e++eYbhg8fzvnz53M9n5GRwYgRI5g+fTonTpygffv23HLLLXh7e7NmzRruu+8+Fi5cmO9YV69eZeTIkcyZM4fMzEz69euHv78/K1asYNiwYRw5cqREn1ey3d6rGU3r1yIxJZ05yw8W+bzB4JR9KC0GEg9sJvWM8i4iIiJVh4r24nAGJ2eMdbJXJKVpixwRERGRSmXOnDns2rWLdu3a8csvv/Dxxx/z9ddf88EHH5Cens4LL7xAYmLRB4wChIeHM2vWLGrWrMny5cuZNWsWs2bNYvny5dSsWZOZM2eyd+/ePO0mTpzIxYsXGTVqFKtWreKjjz5i1apVjBo1itjYWF577bU8bdq2bcv06dPZvn078+bN46OPPmLlypVMnjyZrKws3n77bSIiIvK0e+eddzh58iR9+/bl559/5qOPPmLp0qU8++yzJCYm8vzzz5OZmVnyRFZzzs5OTLj7RpycDPz2xzl2HS56MY9bYHO8buwHQNzPc7FkKe8iIiJSNahoLxWCbYscFe1FREREKo2MjAwWLFgAwKRJk/D09LTdGzp0KL179yY+Pp4lS5YUq7+5c+cCMH78eJo1a2a73qxZM8aNG5frGatDhw6xY8cOvL29mThxIgaDAcjeK33ixIl4e3uzZcsWjh49amvj4uLCkiVLGDBgAK6urrn6u+eee+jRoweZmZmsXr06171Lly6xfPlyXFxceOONNzAajbZ7jzzyCC1atODkyZNs3LixWJ9XcmvewJthvbJ/7p99v4/k1PQi29Tuex9Obp6YL0Rxdc8vZR2iiIiISLko86L9lStXOH78OGazuayHkkrM6N8YUNFeREREpLyVZr6+Z88eEhISaNCgAe3atctzf8iQIQCsX7++yL7S0tLYtm0bQL5711v72rJlS65YrQXysLAwTCZTrjYmk4mwsDAA1q1bV5yPBGTvoQ9w4cKFXNd//fVXMjMz6dSpE/7+/rnuGQwGBg4cCBTv80r+7hkYTF1fD+KupLJwVdFb3jh71MSn9z0AxG/+hsykK2UdooiIiEiZK3XR/vDhw3z88cds2bIl1/XU1FSeffZZbrrpJm6//XZ69uzJzz//XNrhpIoy1c1eaa/tcURERETsqyzn69b92ws6bLZ169YAtgNlCxMZGUlaWho+Pj4EBgbmuR8YGIi3tzepqalERkbmiaFt27b59muNrTgxWP35558A+Pn55bpe1Oe9nrEkNzejC4/f2QGAn7ZFcjTqcpFtaobcgjGgCVmpSVze9HVZhygiIiJS5kpdtP/++++ZNWsWFosl1/WPP/6YVatWYbFYsFgsXLlyheeff57jx4+Xdkipgqwr7TOvXSIz+ZqDoxERERGpOspyvh4dHQ1A3bp1871vvZ6QkEBSUlKhfZ07d67QvnLes46b888BAQGFtrH2X5TIyEg2bdoEQL9+/XLdK+7nLe5Ykr8bW/gTFtoQiwWmf/cH6RlZhT5vcHLGb+BDAFz7Yz2p506UR5giIiIiZcaltB2Eh4djMpm4+eabbdfMZjPfffcdLi4ufPrpp4SEhPDJJ5+wcOFCFixYwJtvvlnaYaWKcTJ54OLtT0bCBcwXonAPyvt6tYiIiIiUXFnO15OTkwFwd3fP976Hh4ftz0lJSdSoUeO6+8rZX85fAFjb5RyrqDYFMZvNvPTSS6SnpzN06NA8K+rtOVZRLBaLbbyylpKSkus/K4J7b2lK+JEY/oy5xqI1hxnRt2nhDXwb4daqB6lHtnBx9efUvmcSBkP5H+FWEXNZGSmP9qNc2ofyaB/Ko/0ol/bhiDxaLBbbGUyFKXXRPi4ujoCAAJyc/jch+uOPP0hMTGTAgAH07t0bgOeee47vv/+e3bt3X9c4ZrOZL7/8khUrVnDmzBk8PDwIDQ3l0UcfLfD11MKsWrWKhQsX2l5dDQ4OZsyYMfnun2kVFxfHjBkz2LRpE3Fxcfj5+dGnTx8mTJiAr69vge2ysrL4/vvv+eGHHzh58iTJycn4+fnRtm1b7r//fkJDQ0scf1VkDGhCRsIF0mJVtBcRERGxl/Kar1cFkyZNYt++fQQFBTFp0iSHxpKenm7bjqe8REVFlet4RbmlgxdLtl1myaYI6rgnUqeWa6HPG+qGUOv4LtJjT3Fq3WLMDW4sn0DzUdFyWVkpj/ajXNqH8mgfyqP9KJf2Ud55NBqNRT5T6qL91atXadCgQa5re/fuxWAw0LNnT9s1Nzc3GjVqdF1JMJvNPPjgg+zatQtfX1/69u3LxYsXWbt2LZs2beKzzz7LNVZRpk2bxqxZszAajbYVR1u3buXpp5/m+PHjPPXUU3nanDt3jpEjR3Lx4kWaNm1K//79OXbsGN988w0bNmxg8eLF1KtXL0+7xMRExo0bR3h4OD4+PnTs2BGTyUR0dDQbN26kVatWKtr/l8k/iORjOzFfiHJ0KCIiIiJVRlnO160rywtanZRzpXhhq+yL01fO/nL2ZW1X0Kr0/Nrk5/3332fp0qXUrVuXL774gpo1axYYY2nHKg5XV1eaN29e6n6KIyUlhaioKIKCggp906G8tWxp4VTcH+w9Hsf6g2lM+kc7nJwKX5mWlBXHtc1f4xnxG3V63oaTm2c5RZutouayslEe7Ue5tA/l0T6UR/tRLu3DEXk8efJksZ4rddHezc2Ny5dzHw4UHh4OQEhISK7rrq6uuVb4FNecOXPYtWsX7dq1Y/78+Xh6Zk+8Vq5cyXPPPccLL7zAunXrbNcLEx4ezqxZs6hZsyaLFi2iWbNmAERERDBq1ChmzpxJr1696NixY652EydO5OLFi4waNYrJkydjMBiwWCxMnjyZRYsW8dprrzFv3rw84z333HOEh4fzj3/8g2eeeSbXb1ISEhKIj48vcT6qKmNAEADmmCiHxiEiIiJSlZTlfN16YGxMTEy+963Xvb29iyxk169fv9C+ct7LeVBtYGAghw8fJjY2ttA21v7zM2vWLObOnUvt2rX54osvCny2uJ+3sLGKy2AwFLgNT1lxd3cv9zGL8sTdHXn8vQ0cPZ3Ab/svMLh7k0Kfd+92O6mHfiU97iypu37Ab9DD5RTpX+KogLmsjJRH+1Eu7UN5tA/l0X6US/sozzwWZ2scsMNBtE2bNuXcuXOcOJF92M/ly5fZuXMnPj4+toK4VWxsLLVr1y5R/xkZGSxYsADIfl01Z2F+6NCh9O7dm/j4eJYsWVKs/ubOnQvA+PHjc8XXrFkzxo0bl+sZq0OHDrFjxw68vb2ZOHGiLbkGg4GJEyfi7e3Nli1bOHr0aK5269atY9OmTfTr14+XXnopz6sP3t7eNGlS+KSzOrEV7ePOYslMd2wwIiIiIlVEWc7XW7VqBWTPl/Nz+PBhIHsryqI0adIEk8lEfHx8roNmraKjo0lISMDNzS3XHNoaw8GDB/Pt1xpbQTEsXLiQadOm4eXlxbx58/LkJKeiPm9RY0nJ+ft4MHpIdt7n/3SYS1cK33PW4OxiO5T26p5fSIuJLPMYRUREROyt1EX7wYMHY7FYePjhh3nnnXe4//77SU9PZ8iQIbmei46O5uLFizRu3LhE/e/Zs4eEhAQaNGhAu3Z59zm3jrN+/foi+0pLS2Pbtm22uAvqa8uWLZjNZtv1jRs3AhAWFobJZMrVxmQyERYWBmQX6XP65ptvABg7dmyRsQm41KqDk8kDsjIwx51zdDgiIiIiVUJZztdDQkLw9vbm7NmzHDhwIM/9VatWAdCvX78i+zKZTHTv3h2A1atXF9hXjx49ci2G6du3LwAbNmwgLS0tV5u0tDQ2bNgAQP/+/fP0uWzZMt566y08PDz4/PPPad26daEx9urVC2dnZ37//XcuXLiQ657FYmHNmjVA8T6vFN+tNzcluJEPyakZvP3VbhKTzYU+7x7UjhqtuoMli7g1c7FYLOUUqYiIiIh9lLpof99999G5c2diYmKYP38+J06cICgoiMcffzzXc9ZJdteuXUvUv/XwpYIOm7VOrK0HyhYmMjKStLQ0fHx8cr1SaxUYGIi3tzepqalERv5vRYY1hrZt2+bbrzW2nDFkZGQQHh6Os7MzN954IxEREcyYMYPXX3+dadOmsWvXriLjrW4MBsP/VtvHRjk0FhEREZGqoizn6y4uLowZMwaAKVOmkJiYaLu3cuVKNm/ejI+PDyNGjLBd379/P4MGDWLQoEF5+nvooewV0rNnzyYiIsJ2PSIigtmzZ+d6xqpNmzbcdNNNJCQkMHXqVFuB1mKxMHXqVBISEujRowctW7bM1e6XX37h1VdfxWg0MnPmzDxbBeXH19eXYcOGkZGRweuvv55roc+cOXM4fvw4zZo1s/0iQezD2cnAkyNvxNPdlWOn43n50y1cvppaaBvf/mMxuJpIO3uUxIO/llOkIiIiIvZR6j3tjUYjX331FRs2bODUqVPUr1+f/v3751mRbp3QDxw4sET9W1+NrVu3br73rdcTEhJISkoqdK/Mc+fOFdqX9V5CQgLR0dG211qtMQQEBBQag7V/gDNnzpCamoqfnx8LFy7kgw8+IDMz03Z/1qxZ9OnThw8//NAuB1VVFUb/IFL/PKzDaEVERETspKzn6w8//DA7duxg165dDBgwgM6dOxMXF0d4eDiurq689957uba4TElJybVAJqfQ0FDGjRvH7NmzGT58uG3l/bZt20hLS+Oxxx7Lc/YUwNSpUxk5ciSLFi1i9+7dBAcHc+zYMSIiIvD39+fNN9/M9fylS5d49tlnyczMJCgoiB9++IEffvghT79NmzblkUceyXXt5ZdfZt++fWzcuJFBgwbRoUMHTp8+zaFDh6hRowYffPABzs7OJcqhFK1R3Zq883gPXv98G6djrvHi9N/417ju1PPL/7uUS01ffHrcyeWN/+Hy+gXUaNE5+61eERERkUqg1EV7ACcnp3xfN83pereISU5OBijwBN+chwQUVbQvqq+c/SUlJeVpV9CBBPm1uXLlCpD9y4T33nuPYcOGMW7cOOrUqUN4eDiTJk1i06ZNTJ48mffff7/AeIrDYrHYYiwPKSkpuf7TrnzqZfcdHVGun8kRyjSP1YjyaD/KpX0oj/ahPNqPcmkfjsijxWIp9kFVRSnL+brRaGTevHl88cUXrFixgg0bNuDh4UG/fv14/PHHC3xjtiDPPvssLVu2ZMGCBezcuRPIfrv2/vvvz3eLS8g++HX58uVMnz6dTZs2sXbtWnx9fRk1ahRPPvkkvr6+uZ5PSUkhPT37DKWIiIhcq/pz6tKlS56ifc2aNVm8eDGfffYZa9asYe3atdSqVYvbbruNJ598kkaNGpXo80rxNa5Xk3ef6Mnrs7dz/lISL834jSmPdKNJYK18n6/V5Tau7dtA+uXzxP/2Hb797y/niEVERESuj12K9pJXVlYWkL1NTpcuXXj33Xdt9/r27Yufnx933XUXP/74IxMmTCjV5D49Pd22hU95ioqKsnufzolZ1ARSYyI5cvgw2OmLakVWFnmsjpRH+1Eu7UN5tA/l0X6US/so7zzm3Lu9IjMajYwfP57x48cX+WzXrl2L3NpyyJAhefbcL4qfnx9Tpkwp1rMNGjQo1vaaBfH09OSFF17ghRdeuO4+5PrU9a3Bu0/0YNKc7URGX+WVT7fw+kM30bqJb55nDS6u+A54kJhFb3Jl9094dQjDWKehA6IWERERKZlSF+0vX77MsWPHqFu3Lk2aNMl1b9GiRXz99dfExsbSvn17XnnlFZo2bVqi/q2r2Ata1ZRzNXZR28wU1VfO/nL2ZW1X0MrvwtoA3H333XnatGvXjjZt2nDw4EF27dpVqqK9q6srzZs3v+72JZWSkkJUVBRBQUGFvrVwPSwZzYjd8RVO6Sm0aFQXZ8/adu2/IinLPFYnyqP9KJf2oTzah/JoP8qlfTgijydPnrRLP2U9Xxcpbz413Zj6WA/+NW8HhyMv88/Z23nl/s6Etsq7nalHs454tOhM8vHdxP0yj3r3TrLbGywiIiIiZaXURfsFCxYwe/Zs3n777VxfAhYvXsyUKVNsB0H99ttvHDlyhB9//BEfH59i9289MDYmJibf+9br3t7eRRbt69evX2hfOe/lPKg2MDCQw4cPExsbW2gba/9//XODBg3ybdegQQMOHjxIXFxcoXEXxWAwFLh1T1lyd3cvg3E9cPWrT/rFMzhficXDP//cVSVlk8fqR3m0H+XSPpRH+1Ae7Ue5tI/yzKO9CotlPV8XcQRPd1emPNKNdxeEE34klje/2Mkz94TQOyTv9wffWx4gJeIPUqMOkHR0O56tujsgYhEREZHicyptBzt27MDZ2Zlbbrkl1/XZs2cD8I9//IMZM2YQGhrKpUuXmD9/fon6b9WqFQCHDh3K9/7hw4cBbIfGFqZJkyaYTCbi4+Nth8vmFB0dTUJCAm5ubrm+0FhjOHjwYL79WmPLGYOXl5dt9bx1f/u/SkhIAAreK7+6MvkHAZCmw2hFRERESq2s5+sijuJmdOHVB7rQu2MDMrMsfPD17/y0Ne8hx67eAdTqPhyAS2vnk2VOLe9QRUREREqk1EX76Oho6tSpk2uV+9GjR4mOjiYkJIQXX3yR/v37M23aNJydndm8eXOJ+g8JCcHb25uzZ89y4MCBPPdXrVoFQL9+/Yrsy2Qy0b179qqK1atXF9hXjx49cu0f2rdvXwA2bNhAWlparjZpaWls2LABIM/hXtaYduzYkWesq1ev2n7hUNLDuao6Y0AQAObYvBNuERERESmZsp6viziSi7MTz94bwtCbm2CxwKyl+/nml2O2N0isvLsNw6WWP5nXLpGwdYmDohUREREpnlIX7RMSEqhTp06ua7///jsAYWFhtmt16tShUaNG/PnnnyXq38XFhTFjxgAwZcoUEhMTbfdWrlzJ5s2b8fHxYcSIEbbr+/fvZ9CgQQwaNChPfw899BCQvbIoIiLCdj0iIsK22sj6jFWbNm246aabSEhIYOrUqbYJoMViYerUqSQkJNCjRw9atmyZq93999+Pm5sbX3/9da7CvdlsZsqUKVy9epWWLVsSEhJSopxUdf8r2p92bCAiIiIiVUBZz9dFHM3JycAjw9tx74DsN5+/XnOUOT8cJCvrf4V7J1cTvrc8AEDCzhWkX8775rWIiIhIRVHqPe2dnJxISkrKdW3Pnj0YDAY6deqU67qXlxdnzpwp8RgPP/wwO3bsYNeuXQwYMIDOnTsTFxdHeHg4rq6uvPfee3h6etqeT0lJITIy/1XaoaGhjBs3jtmzZzN8+HDbyvtt27aRlpbGY489RseOHfO0mzp1KiNHjmTRokXs3r2b4OBgjh07RkREBP7+/rz55pt52tSrV4+33nqLF198kQceeIAOHTrg5+fHgQMHiImJwc/Pjw8//FAHIf2F8b/b46RfPk+WORUno5tjAxIRERGpxMpjvi7iaAaDgXsGtsTTw8jnyw/w42+nuJZs5qmRHXFxzl6r5tGiM+5NO5Jyai9xv3xB3ZGv6ruYiIiIVEilXmlfv359Tp8+bdufPT09na1bt+Lm5kbbtm1zPRsfH39dh1oZjUbmzZvHM888g7e3Nxs2bODkyZP069ePxYsX06tXrxL19+yzzzJt2jRat27Nzp072blzJ61bt+ajjz7iqaeeKvBzLl++nFGjRpGUlMTatWtJSkpi1KhRLF++nHr16uXbbujQoXzzzTf07duXqKgoNm3ahLOzM/fddx9Lly6lWbNmJc5HVefi6Y1zDW/AgvmiVnqJiIiIlEZ5zNdFKorbejbluXtDcHYysOn3s0ydv4u09Ewgu7DvO+Af4ORCSsRekk+EOzhaERERkfyVeqV9jx49iIiI4LnnnuO+++5jzZo1JCQkMGDAAFxc/tf9tWvXOHPmDO3bt7+ucYxGI+PHj2f8+PFFPtu1a1eOHTtW6DNDhgxhyJAhJYrBz8+PKVOmlKgNQIcOHZg5c2aJ21VnxoAgUk79gTk2Crf6LRwdjoiIiEilVV7zdZGKok+nhtRwd+Wdr3az+3Askz7fzmv/6IqnuytG30C8b7qNhG3LuLT2C9ybtMfJ1eTokEVERERyKfVK+4cffhg/Pz+2bt3K448/zg8//IDJZOLxxx/P9dyGDRuwWCx5XsEVyY91X/s0HUYrIiIiUiqar0t11Ll1Xd4Y150abi4cOnWJiTO3EH8tFQDvm0fg7FWbjIQLXNnxg4MjFREREcmr1EV7Pz8/lixZwujRo7n55pu5++67Wbp0KcHBwbme+/3332nZsiV9+/Yt7ZBSDZh0GK2IiIiIXWi+LtVVm6a+vP14D7y9TERGX+WlGVuIvZyMk9Ed3/5jAUjYtoz0hAuODVRERETkL0q9PQ5AQEAAr776aqHPvPHGG/YYSqoJ62G05gunsViyMBhK/fslERERkWpL83WprpoE1uLdJ3rwz9nbOR+XxIvTf+ONcd1o1Ko7bnt+IfX0QS6tm0/dO190dKgiIiIiNqqESoXk6huIwdkVS3oqGfExjg5HREREREQqqUA/T957ogeN6npx+Woqr3y6heN/xuM38EEwOJF8bCfJEXsdHaaIiIiIjV1W2lvFxcWxdetWTp06RVJSEjVq1KBZs2bcfPPN+Pr62nMoqeIMTs4Y/RuRdj6CtNjTuNYOdHRIIiIiIpWe5utSXfnWcuedx3swZe4Ojp2O57VZ25g4tguNOg/hyq6VXPrlC9wf/hCDi6ujQxURERGxT9HebDbz3nvvsXjxYjIyMvIO4uLCqFGjeOGFFzAajfYYUqoBo38QaecjMMdGQatujg5HREREpNLSfF0EvDyMvDmuO1Pn72Lv8Yu8MW8Hz9/dkwY1tpB+OZoru1bi3X24o8MUERERKf32OFlZWTz66KP85z//IT09ndq1axMaGsrgwYMJDQ2ldu3apKen83//93889thjWCwWe8Qt1YDRdhhtpGMDEREREanENF8X+R83kwv/fPAmenQIJCPTwruLDnG20WAA4rd8T8bVSw6OUERERMQOK+2XLFnC1q1b8fLy4qWXXmLYsGG4uPyv28zMTJYvX857773H1q1bWbp0KSNGjCjtsFINWIv2aRdOOzYQERERkUpM83WR3FxdnHj+76F4euzn5+1RvLvVhTcbNcYz8TSX1n9FwPBnHR2iiIiIVHOlXmm/YsUKDAYDn3zyCXfeeWeuLwAAzs7OjBgxgo8++giLxcLy5ctLO6RUEyb/xgBkXo0jM+Wag6MRERERqZw0XxfJy9nJwGMj2nN3/xZYMDDzXFssGEg6vJWU0wcdHZ6IiIhUc6Uu2h87dowGDRrQrVvhe45369aNhg0bcuzYsdIOKdWEk1sNXLz9AbL3tRcRERGREtN8XSR/BoOB0YNb8eDf2nIu05ctqS0AiFszF0tm3rMfRERERMpLqYv2KSkp1KpVq1jP1qpVi9TU1NIOKdWI0T8IALO2yBERERG5LpqvixRuWO9mPD2qIz+ndSQxy0T6xTNc3rXa0WGJiIhINVbqon2dOnU4depUkZP7lJQUTp06hZ+fX2mHlGrEtq+9DqMVERERuS6ar4sUrV/nRjw1pger0zoBcHHj11y7dNHBUYmIiEh1VeqifdeuXUlJSWHq1KmFPvf222+TkpLCTTfdVNohpRox/bdob47VSnsRERGR66H5ukjx3NS2HkPGjOZMph9Gi5lf53zElcQ0R4clIiIi1VCpi/YPPfQQLi4ufPfdd9x+++0sWbKE/fv3c/78efbv38+SJUv429/+xnfffYerqysPPvigPeKWasK60t4cdwZLZrpjgxERERGphDRfFym+di38qT90HACtMo/y8fTvuBCf7OCoREREpLpxKW0HzZo149133+WVV17h2LFjvPbaa3mesVgsmEwm3nnnHZo1a1baIaUacanlj8HkgSUtGXPcOdvKexEREREpHs3XRUqmeUgIURE9yTr+G73Nm3l5ui9TxvWgYYCXo0MTERGRaqLUK+0BhgwZwrJly7jjjjvw9fXFYrHY/vH19eXOO+9k2bJlDB482B7DSTViMBgw+TcGwHwhyrHBiIiIiFRSmq+LlEzDIQ+AyYOGLpdpkXqAl2Zs4cSZeEeHJSIiItVEqVfaWzVt2tS2T2ZiYiJJSUnUqFEDT09P2zN33HEHV69eZd26dfYaVqoBY0AQqWeOYI6NgnaOjkZERESkctJ8XaT4nGvUwrf3PVz6ZR5/q7GPvfGNefWzrbz6QFc63FDH0eGJiIhIFWeXlfZ/5enpSUBAQK4vAADR0dGcO3euLIaUKsy2r31slEPjEBEREakqNF8XKVrNTgMx+jfGjVTur3uUlLRMJs/ZwfYD5x0dmoiIiFRxZVK0F7Enk38QAGkXTmOxWBwbjIiIiIiIVAsGJ2d8Bz4EQMu0AwwJhozMLN75ahfrdp12cHQiIiJSlaloLxWea52GYHAiK/kqmdcuOzocERERERGpJtwbtcazbS/Awm2u27mlc0OyLPDx4j9Ytumko8MTERGRKkpFeymRq0lmFv58nLir6eU2ppOrCVffQECH0YqIiIiISPmqHTYag9ENc/QJxraM544+zQH44sdDfPXTYb0NLCIiInanor2UyK5DMazceprFv10iIyOr3Ma17mufFqvXUEVEREREpPy4eNXGp+fdAFze+H+MuSWIsbe2BuD7DSf49Pt9ZGapcC8iIiL2o6K9lMhNbetSq4aRi1cyWLmt/AropoAmAJhjI8ttTBEREREREYBanYfg6lufrOSrxP+6iBFhN/DEXTfiZIA1O07z/sJw0jMyHR2miIiIVBEq2kuJeHoYGT24BQBLNp0i5lJSuYxr9G8MaHscEREREREpfwZnV3wHPgjA1fCfSYuNYuBNjXlxTGdcnJ3Yuj+aN+btJDUtw8GRioiISFXgUtIGM2bMuO7BUlNTr7utVBw92tflp99OEBmbxuxlB3j9wa4YDIYyHdO6PU76pfNkmVNxMrqV6XgiIiIilZXm6yJlw6NJB2q07EbS0e1c+mUe9f7+Bje3D6TGQy689eUu/jh+kX/N/507utZwdKgiIiJSyV1X0f56C7QWi6XMi7tS9gwGA7d29mbW6guEH4ll+4HzdG8fWKZjunj64FzDm8ykBMwX/8StfosyHU9ERESkstJ8XaTs+Pa/n+STv5P652GSDm3Bs21Pbmzhz1uP3szkOTs4efYqn11KYrQlmoHdmuHkpL9PIiIiUnIlLtp37ty5LOKQSsavpiu39wxiyaZIPl9+gBtb1MHDzbVMxzQGNCblVALm2CgV7UVEREQKoPm6SNlx+X/27jw+qvpe/P/rzD6TfV8JCQESEsIOCqKC4EatrXpbsb2idd+qrV57++V6K3qttnpv/d1aUepaba/YVmspRRFkUUB2WRIgkJCELGTPZJt95vz+mGRIICQEJiSB9/PxyGNmzjmfz/mcj5F85n0+5/2JiCPyslto2vgBDV/8AcuYaWiMZsamRfHrR2bzzBtfU9NkZ+nHBazeXsHd3x5P3ujYwW62EEIIIYaZfgft33///YFohxiGvntFBlv213K8oZ3/W13IPd8ZP6DnM8SnYz+6F1dN6YCeRwghhBBiOJPxuhADK+LSG2ndtx5PUzVNm/5CzLxFAIxICOO/fzyTP6zYxeaD7RRXNLP4tc1ckpvIj76dS0pc6CC3XAghhBDDhSxEK86aQa/lgZsnAPCPr4oprrAO6PmMCRkAOGUxWiGEEEIIIcQg0egMxF59FwDN21fiqq8I7DPotczOCeO3P72MBbPS0WgUthVU8/CL61j2t300tzkHq9lCCCGEGEYkaC/OyZTseC6flIJPhVf/uhevTx2wcxkSRgLgqi1DVX0Ddh4hhBBCCCGE6I1lzFQso6eCz0vD52+hqt2/B4WHGHjwlon87t/mMj0nAa9PZeWmEu5/YS0fry/C7fEOUsuFEEIIMRxI0F6cs7tvzMVi0nGk3MrqraUDdh59TAqKVo/qcuBpqhmw8wghhBBCCCFEX2KuuQtFq8desg9b4bYejxmREMYv7r6U5x6YxajkCNodHt5ZWcCDv17HV3sqTwn2CyGEEEKABO1FEMREmLn9+nEAvPfPAzS1OAbkPIpGiz4uDZAUOUIIIYQQQojBpY9KJGLmdwBoWPMOPvfpU99MHBPHb356JY/dOonocCM1jTZefH8nP3vlKw6VNZ6vJgshhBBimJCgvQiK62dlMDrVP3PkrRUFA3YeY2eKnOrSATuHEEIIIYQQQpyJyFk3owuPxdNSj3Xzx70eq9UozJ8xkmU/n88PrsnCaNByqKyJJ3/7FS++v5Pqhvbz1GohhBBCDHUStBdBodUoPPwvk9AosPGbCvYcrh2Q8xg6FqN1yUx7IYQQQgghxCDT6I3EXP0jAKxbP8Fj7TuNp8mo47Zrs1n283lcPSMNRYGv9lTy4K/X8c4/Cmizuwe62UIIIYQY4iRoL4Jm9IhIFlzmD6q/9tE+XO7gL64UWIy2pjTodQshhBBCCCFEf1myLsGcMRG8Hlo3/PGMy8VEmHn01sn87+NzmDQmDo/Xx8cbirjv+bWs3HQUj9c3gK0WQgghxFAmQXsRVP963Tiiw41U1bfz0bojQa/fGJ8OgKelHq+9Nej1CyGEEEIIIUR/KIpCzDV3gUaLs2QP+uqD/VpgNiM5gmfvn8nT91zKiIRQWm0ulv1tP4+8tJ5t+cdlsVohhBDiIjRsgvYul4tly5bxrW99iwkTJnDppZfyyCOPUFBwdvnTV61axW233caUKVOYMmUKt912G59++mmvZerr61myZAlz5sxh/PjxzJkzhyVLltDQ0HDG533llVfIysoiKyuLDz744KzaPpSFmPXc8508AP78xRGq6tqCWr/GFIIuIh4AV21ZUOsWQgghhBBCiLNhiE0lYsYNAITu+Rt1bzxKzScv0/LNGtyNVX0G3hVFYdq4BF55Yi4P3TKBiFADlXVtPPfOdp56fQvFFdbzcBVCCCGEGCp0g92AM+Fyubj77rvZvn07MTExzJ07l7q6OtasWcOGDRt47bXXuPzyy8+4vpdffpnXX38dg8HAZZddBsDmzZv5yU9+wuHDh3nsscdOKVNZWcmtt95KXV0do0aNYv78+RQWFvLBBx+wbt06PvzwQ5KSkno9b2FhIcuWLUNRlAt6tsTsicms3R7P7sJaXvtoH8/ePxNFUYJWvyFhJJ7mWlw1pZhHjg9avUIIIYQQ4uy4XC7eeecdVqxYQXl5ORaLhWnTpvHggw+Sm5vb7/pWrVrF+++/T2FhIQBZWVksWrSI66+//rRl6uvr+d3vfseGDRuor68nNjaWOXPm8OMf/5iYmJhTjj9+/Djr169n//795OfnU1RUhM/n44UXXuDmm28+7Xluv/12tm/fftr9TzzxBPfdd18/rlZcKKIu/x7OhuPYi3fha7fSXrCJ9oJNAGjDojGPHI8pLRdz+nh0kQk9fkfSajVcPyuDK6ek8pcvjvD3L4vZV1TPT/+/jcydOoJFC8YRE2E+35cmhBBCiPNsWATt33jjDbZv305eXh7vvvsuoaGhAKxcuZInnniCJ598krVr1wa292bnzp28/vrrhIeHs3z5cjIzMwEoLi5m4cKFLF26lCuuuILJkyd3K7d48WLq6upYuHAhS5YsCQTelyxZwvLly3nqqad46623Tnter9fL4sWLiYyMZMKECXzxxRfn0CNDm6IoPHDzBB5+aR17jtTx5TeVXDklNWj1GxIysB3egVPy2gshhBBCDLrhOsFm9erVvPDCC2d93ddeey0Wi+WU7WPHjj3rOsXwpjGYibzhxxzP38+oCB1qTRGOsnwclYfxtjbSlv8lbflfAqANj8U8MvdEED8ivlsQ32LSc8e3crh+ZjrvrTrIxm8qWLeznE17q7hpTia3zB2D2Tgsvs4LIYQQ4iwM+b/yHo+H9957D4Cnn366W2D+hhtuYMWKFWzcuJGPPvqIO+64o8/63nzzTQAeeOCBQMAeIDMzk/vvv5+XXnqJN998k1dffTWwr6CggK1btxIZGcnixYsDgylFUVi8eDGfffYZmzZt4tChQ2RnZ/d43rfffpv8/Hz+93//lw0bNvS7H4abpNgQbp0/lj9+dog3V+QzdVwCoWZ9UOruzGsvi9EKIYQQQgy+4TrBJjU1lUWLFjF+/HjGjx/PK6+80me6zK5+9rOfkZoavIkp4gKi1WEcMQ5L1lTgVnxuJ87Kw9jL8nGUFeCoPIK3pZ62/Rtp278RAF14LKb08ZjTcjGlj0ffkRI0PtrCv/3rVG68YhRv/j2fg6WNfLjmMJ9vLeOH141j/ow0tJrgPdUshBBCiKFhyOe03717N1arldTUVPLy8k7Zv2DBAoAzmrnudDrZsmULQI+P1nbWtWnTJlwuV2D7+vXrAbjqqqswGo3dyhiNRq666ioA1q5d2+N5S0pKeOWVV5g3bx7XXXddn+28UNw8dzQpcaFYW528v+pA0Oo1JIwEwFVfjur1BK1eIYQQQgjRP31NsLnyyitpamrio48+OqP6+ppg0/WYTn1NsImMjAxMsOlq/vz5/Md//Aff+c53yMzMDGo6RyG60uiNmNPziL7yNpIXPUf6v71H4g9+QeRlt2BMzQKNFk9LPW37NlC38lXKf/cgx373ILX/eJXWfRvwtNQzNi2KXz8ym5/fMZ2kmBCaWp387i97+MlvNrC7sHawL1EIIYQQQTbkg/YHDx4EOG0uzJycHIBAvsvelJSU4HQ6iYqKIjk5+ZT9ycnJREZG4nA4KCkpOaUN48f3nD+9s209tUFVVZ566in0ej1PP/10n228kOh1Wh76lwkAfPp1KYePNQWlXl1kPIrRAl4P7obKoNQphBBCCCH670KYYCPE+abRG7FkTCR6zg9IueN50p94j8Tb/pPIWTdjTBkLigZPcy1t+9ZR949XOPbK/Rx79SHq//kaE5Qj/O+DE7n7xvGEmvWUHm/h6d9/zdNvfE1ZdctgX5oQQgghgmTIp8epqqoCIDExscf9ndutVivt7e2EhISctq7Kyspe6+rcZ7VaqaqqIisrq1sbEhISem1DZ/1d/elPf2Lnzp384he/OG35C9mE0XHMnZrK+l0VvPrXvfzmsSvQas/tXpGiaDDGj8RRfhBnTSmG+JFBaq0QQgghhOiPwZhgY7VaKSkpCYzVz2SCzccff3xGbeiPjz76CKvVCkBKSgpz5sxh9OjRQT2HuDhoDCYsoyZhGTUJAJ/TjqPiUCCdjvN4MR5rDa3WGlr3+m+ATYlKZMb0HHZaI/nogJbdh2rZU1jLNZem84Nrs4gKMw3iFQkhhBDiXA35oL3NZgPAbDb3uL/r4k99Be37qqtrfe3t7aeU62mhqdOVAX8Q/3/+53+YPHkyP/jBD057znOlqmqgjeeD3W7v9tqX2+Znsr2gmqOVzfxtw2EWzEw75zZoYlKh/CDtlUfQZk4/5/oGQ3/7UfRM+jF4pC+DQ/oxOKQfg0f6MjgGox9VVR3yKVuG+wSbc7F06dJun//7v/+b7373uyxZsgSTSQKm4uxpjGYsmZOxZPrXbvA5bTjKD2IvK8BRlo+zugRPUzWepmrGA+PDoUUXzf62GI7sKuGJbwq5bu4kvnNlJka9dnAvRgghhBBnZcgH7YezX/ziF7jdbp577rkB/cLldrsDM4zOp9LS0jM+du6EUFZut/LB54eJMbQQbjm3waPBrScEaC49SGXc+b/2YOpPP4rTk34MHunL4JB+DA7px+CRvgyO892PBoPhvJ6vv4bzBJuzNW3aNG655RamTJlCfHw8NTU1bNy4kd/+9rf87W9/w+Vy8Zvf/Oacz3M+J+bIzb3gGbC+TB6HOXkc5pn/gs9pw1VZiKviIK7yg3hqywj3NHKZqZHLOAJA9ZbP+PvXyaTkTSFv5qXowiKD254BJr+TwSN9GRzSj8Eh/Rg80pfBMZQn5gz5oH3nIPt0ndd1INvbl4AzqatrfV3r6ix3ukFzT2U++ugjNm3axMMPPzzgj8nq9frz+iiu3W6ntLSU9PT0Xr9UdZWVpVJ4fAdHypvZfMTL4wt7fnz5TLmjjDQUrMJoayA1O3vIz0Lrydn0oziV9GPwSF8Gh/RjcEg/Bo/0ZXAMRj8WFRWdl/OI/nnssce6fR45ciSLFi3ikksu4ZZbbuGf//wnd955JxMmTDin8wzGxBy5uRc8A9+XJoibDHGTUdwOdE3H0DUcQ9dYhra1hkRtM4k0Q8FB6gv+hN0UgxI/Ek/0SDzRaaiG3r87DxXyOxk80pfBIf0YHNKPwSN9GRxDcWLOkA/ad+azrK6u7nF/5/bIyMg+g/YpKSm91tV1X9c8msnJyRw4cICamppey3TWDycW29q8eTM7duzodvzRo0cBePfdd1m1ahVTpkzhpz/9aa9t742iKKedWTSQzGZzv8774+9P5icvb2RbQS0HylqZNu7sc/z7RoyhQdHgs7di9DnRhUWfdV2Drb/9KHom/Rg80pfBIf0YHNKPwSN9GRznsx+Hw6SE4TrBZiBkZWVx1VVXsXr1ar788stzDtqfz4k5cnMveAavLycH3vkcbdjKDnBkxw6oLiRJ24TZ0QDHGuDYbgB08RmYc2Zjzp6Jxhx2Htt5ZuR3MnikL4ND+jE4pB+DR/oyOIbyxJwhH7QfN24cAAUFBT3uP3DgAEAgp2VvMjIyMBqNNDU1UVVVdcoCV1VVVVitVkwmExkZGd3asHbtWvLz83ust7NtPbVhz549p21PaWkppaWlhIUNvUHSQMhIjuDGy0fxycZiXv94H797ci4mw9n9Cmr0RvQxybjrK3DVlA7roL0QQgghxHA1XCfYDJT09HQAamtrz7muwZiYIzf3gmdQ+9JiITQ6nvjJc2hqdfDXVd9QtmcHmboaxuqrSdJa8dSW0FpbQuuXH2AZM5WwCXOxZE5G0Q6tEIH8TgaP9GVwSD8Gh/Rj8EhfBsdQnJijGeB2nLMpU6YQGRlJRUUF+/fvP2X/qlWrAJg3b16fdRmNRmbNmgXAp59+etq6Zs+e3e0xhblz5wKwbt06nE5ntzJOp5N169YBMH/+/MD2pUuXUlhY2OPPTTfdBMCSJUsoLCw8ZRGrC9kPrs0mNsJETaONP689fE51GeJHAuCsKQ1Cy4QQQgghRH8N5ASbk/U2wQY4qwk2wdbc3Az0npdfiPMpKszEvbfO5N7H7qQs7QZ+1XwjTzV9jxWuS2kzJ4PPg61wGzV/+RVlv72XhjXvyPcrIYQQYggY8kF7nU7HokWLAHjmmWdoa2sL7Fu5ciUbN24kKiqKW265JbB93759XHfddVx33XWn1HfPPfcAsGzZMoqLiwPbi4uLWbZsWbdjOuXm5nLppZditVp5/vnnUVUV8C8c8Pzzz2O1Wpk9ezbZ2dlBuuoLl9mo476b/I8K/21DEceqW866LmOC/8uaq7Y0GE0TQgghhBD9NFwn2AwEl8vFhg0bABg//tzWbxIi2EYmhrPk3pk8e99MYhIT+KJtLP9ROZ+Xbd+hPG4WiiUCn62F5u0rqXzzCSre/Deat6/E29482E0XQgghLkpDPmgPcO+99zJjxgz279/PNddcw2OPPcYPf/hDnnjiCfR6PS+++CKhoaGB4+12OyUlJZSUlJxS17Rp07j//vtpbm7mpptu4oEHHuCBBx7gpptuoqWlhYceeojJkyefUu75558nLi6O5cuX861vfYuf/vSnfOtb32L58uXEx8fz3HPPDWgfXEguHZ/IjJxEPF6VpR/tC9wE6S9DQjoALpkJIoQQQggxKC62CTZff/0169evx+fzddteV1fHo48+SnV1NYmJiVx99dXnfC4hBsLkrHj+9/E5/L87pjMqJYJSRwT/XTian9V8lz1pt6HLnAFaHa6aEhrWvEPZb++l+i+/or1wG6rXPdjNF0IIIS4aQyth3WkYDAbeeust3n77bVasWMG6deuwWCzMmzePhx9+mNzc3H7V9/jjj5Odnc17773Htm3bAMjJyeGOO+7g+uuv77FMSkoKn3zyCa+88gobNmxgzZo1xMTEsHDhQh599FFiYmLO+TovFoqicP9NeewtqqPgaAPrdpYzb3pav+vpDNq7G4/jczvR6I1BbqkQQgghhOjLvffey9atW9m+fTvXXHMN06dPp76+np07d/Y6waYnnRNsli1bxk033RSYeb9lyxacTmevE2xuvfVWli9fzo4dO8jKyqKwsJDi4uLTTrCpra3lkUceCXwuKysD/Gkuly9fDkBcXByvvvpq4JjCwkJeeOEF4uLiyMnJISwsjOrqag4cOIDNZiM6Oprf/e53mEyms+hJIc4PjUZh1oRkZuYlseNgDR+uKeTwMSvv7NHzR10OC6ZewXWJtShFm3EeL8Z2eAe2wzvQWMIJzb2csAlzMSZm9H0iIYQQQpy1YRG0B3/gvnNWfF8uueQSCgsLez1mwYIFLFiwoF9tiI2N5ZlnnulXmZ786le/4le/+tU51zOcxUdbuO3qLN795wHe/kcB03MSCQ8x9F2wC11oFNqQCLztzbhqj2FKGTNArRVCCCGEEKczXCfYuFwu9u7de8r28vJyysvLA/V2NWPGDG699Vby8/PJz8+npaUFg8FAeno6V155JYsWLSI6Orpf1yvEYFEUhRk5iUwfl8A3h+v4cE0hB0oa+fu2Wv6pVZg3/QfcfLkZ47FttO3fiLfdSsuOf9Ky458Y4kcSOmEuYeOvQBsSMdiXIoQQQlxwhk3QXlx4vnNlJut2lXOsupU//PMAP/7+pH7XYYhPx16yF1dtqQTthRBCCCEGyXCcYJOamtpnO06Wk5PDs88+268yQgx1iqIwJSueyWPjyC9uYPmaQvYV1bN6axlrtivMmTKe7932HeJai2jdt572wztw1ZbRuPZdGte9jyVzMmET5mIZMxVFqx/syxFCCCEuCBK0F4NGp9Xw0C0T+fmrm/h8Wxnzpo8gJ6N/aYYMCR1Be8lrL4QQQgghhBBnTVEU8kbHkjc6lgMlDXy45jC7C2tZt7OcDbvKmT0phe/Pv4+R199P+4HNtO7bgLPqCLYjO7Ed2YnGHNaRPmcOhsRRKIoy2JckhBBCDFsStBeDKndUDFfPSGPN9mMs/ete/r/H56DTnvn6yJ157Z0StBdCCCGEEEKIoMjJiOGZ+2Zy+FgTy9cUsuNADV9+U8lXeyqZlZfMrVfPJGPqdbjqK2jdt96fPqetiZadq2jZuQp9XBphE+YSOv5ydKFRg305QgghxLAjQXsx6O68IZet+dWUVbey4stibp575mlujPHpALhqS1FVH4py5gF/IYQQQgghhBCnNzYtil/cfSnFFVY+XHuYr/cfZ/O+Kjbvq+KS3ERuvXosY666neg5P8Beso/WfeuxFW7HXXeMxi/+EEifEzphLiFjpqHoJH2OEEIIcSYkaC8GXXiIgbu+ncv/fvgN//d5IbMnphAfbTmjsvqYZBStHtXlwGOtRR+VOMCtFUIIIYQQQoiLS2ZqJIvvnEHZ8Rb+vPYwX+2tZFtBNdsKqpmaHc/Cq7PIzpyMJXMyXkd7R/qc9TgrD2Mr2oWtaBcaUyihubMJnTAXY1KmpM8RQggheiFBezEkzJs+grU7jlFwtIHff7Kfp+665IzKKVod+rgRuKqP4qoplaC9EEIIIYQQQgyQkUnhPHn7NBZek8VfvjjMxm8q2XWoll2Hapk4JpZbr84iLzOW8CnXED7lGlwNlbTt20Dr/g14Wxtp2fUZLbs+Qx+b2pE+50p0YZI+RwghhDiZ5BIRQ4KiKDx0ywS0GoVtBdVszT9+xmWNgbz2JQPUOiGEEEIIIYQQnUYkhPH4D6by+r/P4+oZaWg1CnuP1LN46WZ+/uom9hyuRVVVDDEpRM/9IWmPvE7ibf9JSO5sFJ0Bd30Fjeve59gr93F8+XO0HdiMz+Ma7MsSQgghhgyZaS+GjLTEcG6eO5q/fHGEZX/bz8QxcZiNff+Kdi5G66opG+AWCiGEEEIIIYTolBQbwqO3Tmbh1Vn8dd0R1mz3Pz39n8u+JmtkFAuvzmJqdjyKRotl1CQsoybhc7TTdnCLP31ORSH24m+wF3+DxhRCaI4/fY4amTzYlyaEEEIMKgnaiyHl+/PHsvGbSmobbXzweSF3fTu3zzKGzsVoZaa9EEIIIYQQQpx38dEWHvqXiXx//lg+3lDE6q9LKSxr4pk3tzI6NYLvz8/iktxENBoFjSmE8MlXEz75alwNVbTt30Drvg14Wxto2b2alt2r0UYnY4zPQc3KGuxLE0IIIQaFpMcRQ4rJoOPBmycA8Pcviympau6zTOdMe09LPV5720A2TwghhBBCCCHEacRGmrnvu3m8+R9Xc9Oc0RgNWooqmnn+3e089psNbNpbic+nBo43xCQTPecHpD3yGok/+AWh469A0RnwNlZhObQW6z9fwed2DuIVCSGEEINDgvZiyJk2LoFZE5Lw+VSW/nVvt0FdT7SmEHQRcQC4aiVFjhBCCCGEEEIMpqhwE3d9O5e3/uNqvjdvDGajjtLjLfz6vZ088t/r2LCrHK/XFzhe0WixZEwk/juPMfInbxE253ZURYuzaCfH/+9ZvPbWQbwaIYQQ4vyToL0Yku79Th5mo5ZDZU2s2d53IP5EXntJkSOEEEIIIYQQQ0FEqJFFC3J466mrue2aLELMespr2vif/9vNgy+uY+32Y3i6BO8BNEYLIZOvoW36QhSjBWfFIareewpPc90gXYUQQghx/knQXgxJsZFmfnjdOADeXXkAa2vvj0R25rV3ymK0QgghhBBCCDGkhFkM/ODabN76j6v51+uzCbMYOF7fzv9++A33/+oLPvu6FLfH262MJ3ok0d9/Cm1YNO76CirfXSxPVgshhLhoSNBeDFk3XJbBqOQI2uxu3llZ0Ouxxs6Z9rWlA98wIYQQQgghhBD9FmLWc+v8LN566mp+dEMOkaFGahttvPrXvdz3/FpWbjqKy30ieK+PHUHKnS+gj03F29ZI5XtPYS/LH8QrEEIIIc4PCdqLIUur1fDQv0xAUWDdznL2FZ3+cchAepy6Y6hez3lqoRBCCCGEEEKI/jIbddw8dwxv/Md87v3OeKLDTdQ3O1j2t/3c+/wa/rmlDJfHnzZHFx5L8qJfYhoxDtVp4/gH/0Xbgc2DfAVCCCHEwJKgvRjSskZGc93MdACW/nXfKY9MdtJFxqMYzOD14G6oOo8tFEIIIYQQQghxNkwGHTdekckbi+fzwM0TiI0009ji5L1PD/PyJ9W8ueIgBUcbUIwhJP7gF4RkXwpeD7V/e5nm7SsHu/lCCCHEgJGgvRjyFi3wPzZZWdfGxxuKejxGUTQY4kcC4JTFaIUQQgghhBBi2DDotXzrsgx+///m88j3JpEQZcbu8rFmRwU/f3UT9zy/hvc+O0L7JfcQNvU6QKVhzTs0fPEHVNXXZ/1CCCHEcCNBezHkhZr13P2d8QD8ec1hjte393ic5LUXQgghhBBCiOFLr9Nw7aUjefmxWdw+N5YrJydjNuqoa7Lz0foiHnv5S5bsG0XFiGsBaN66groVr6B63YPcciGEECK4JGgvhoUrJ6cwcUwsLo+P1/+2D1VVTzkmkNe+puw8t04IIYQQQgghRLBotRoyk0w8dHMu7z9zHT+/Yzoz85LQaTUcq2njpb0J/LHtMrxoaMv/kvI//Rc+p22wmy2EEEIEjQTtxbCgKAoP3jIRnVbD7kO1bN53at56Q0IG4E+P01NQXwghhBBCCCHE8GLUa7lsQjKL75zB+89cx6Pfn8TEMbHsdGfy+9a5OFUdnvICdv1/T/Dl5nxsDpl1L4QQYvjTDXYDhDhTKXGhfG/eGD74vJA3PtnPlKx4LCZ9YL8hbgQoGny2FrxtVnRhUYPYWiGEEEIIIYQQwRRq1nP1JSO5+pKRNDTb2bS3ik92xLHA9gkxnloavniJx1dew6icLK6cnMKU7AT0OpmrKIQQYviRv15iWPmXq8aQFBtCY4uT9z892G2fRm9EH50ESF57IYQQQgghhLiQxUSY+c4Vmfy/J75HzA+exWGMIUbbxsOWlZTn7+G5d7azaMln/O4ve9hfXI/PJ09jCyGEGD4kaC+GFYNey4M3TwBg1eYSjpQ3dd8fyGtfcr6bJoQQQgghhBBiEKRmZpL14EsYkkYTonHxaMRaLo2ops3uZvXWMhYv3cxdz33O2/8ooLjCKulUhRBCDHkStBfDzuSseK6YnIJPhaV/3Yu3y4wJY0fQ3llTOjiNE0IIIYQQQghx3mlDIkj+12cwZ05Bq7q5TbeWX1/t5eoZaYSYdDQ0O/jbhiJ+8vJGHnpxHcvXFHK8vn2wmy2EEEL0SIL2Yli658bxhJh0FFU08+mWE7PqDfHpALgkaC+EEEIIIYQQFxWNwUTi939O2MSrQPVh2vUn/jXpMO8tuZbFd87gsonJGHQaKmrb+NNnh7jvhbX82/9+yYqvimlqcQx284UQQogAWYhWDEtR4SZuX5DD6x/v471VB5mZl0RMhBlDQgYA7sbj+NxONHrjILdUCCGEEEIIIcT5omi0xH7rIbRh0Vg3/RXrV3/G29rIpdffx8y8JGwON1/vP87G3RXsPVJH4bEmCo818dbf85kwJo45U1KZmZeExaQf7EsRQghxEZOgvRi2rpuZzhc7jnGk3MpbKwr42e3T0IZGorGE47O14Korx5Q8erCbKYQQQgghhBDiPFIUhegrb0MXFkP9Z2/Qumct3rYm4m96HIvJxLzpacybnkZTq4NNe6rYuLuCwmNN7Dlcx57Ddbz6173MyEnkyikpTM1OwKDXDvYlCSGEuMhIehwxbGk1Cg/9y0Q0Cny1p5Ldh2pRFAVjx2x7WYxWCCGEEEIIIS5e4VOuIeGWJ1F0BmxFuzj+pyV4bS2B/VFhJr59+Sj++7Er+P3/m8+/XpdNanwobo+PzfuqeP7dHSxa8hm//fAb9h6p67aemhBCCDGQJGgvhrXRqZHcMHsUAK9/vA+n24shYSQgee2FEEIIIYQQ4mIXkjWDpB8+jcYcirPqCFV/WIzbWnPKcUmxIdx6dRZLf3YV//v4HG6aM5qYCBPtDg9rth/jqde3cNd/rebNv+dzpLwJVZUAvhBCiIEj6XHEsPfD67LZtLeK4w3t/OWLw3wn1T/TvmX353jamgifci3mjDwURe5RCSGEEEIIIcTFxpSaTfKiX1L9wX/hbjxO1buLSbz1PzAmjTrlWEVRGJUSwaiUCO78Vg4FJQ1s3F3B5r1VNLY4+fuXxfz9y2KSY0O4YnIqk7PiGDMiCr1Ovm8KIYQIHgnai2HPYtJz33fz+NV7O/ho3RGueGQG5vQ87KX7sRVuw1a4DV1UIuFTriVswly0lrDBbrIQQgghhBBCiPPIEJtK8p0vUL38OVy1ZVT98T9JuOVnWEZNPG0ZjUYhLzOWvMxY7r9pAt8U1rJhdwXbCqqpqm9n+ZpClq8pxGjQkpMeTd7oWCaMjmV0aiRarQTxhRBCnD0J2osLwqwJSUzNjmfXoVqW/bOY5x54Gnd9OS27P6d1/0Y8TdU0fvEHmjb8HyE5lxE+9VqMyWNQFGWwmy6EEEIIIYQQ4jzQhUWTfPt/Uf3XF3GU5VP94S+Ju+FhwvKu7LOsXqdhRm4iM3ITsTncbCuoZlt+NfuL62lpd/HN4Tq+OVwHgNmoI3dUDBNGx5I3OpaM5Ai0GvnuKYQQ4sxJ0F5cEBRF4YGbJ/Dwi+vYV1TPht0VzJ2aRuy19xA994e0FWyiZddqXDUltO3fQNv+DRgSMgifcg2h4y9HYzAP9iUIIYQQQgghhBhgGlMISQufovYfr9B+YDN1K36Lt62JiEu/c8aTuiwmPXOnjmDu1BH4fCrHalrZd6SOfUX15B9toN3uZufBGnYe9OfODzHrGd8liD8yMRyNBPGFEEL0QoL24oKRGONfOOj9Tw/y1op8po9LINRiQGMwEz75asImzcdZdYSW3atpP7AFV00J9Z8uo2Hd+4TlXUn4lGswxKUN9mUIIYQQQgghhBhAik5P/Hd/QmNYNM3b/kHjuvfxtDYQM/9OFI22X3VpNArpSeGkJ4Vz4xWZeH0qJVXN7C+qZ19RPQUdQfxtBdVsK6gGIDzEwPjMGCZkxjJhTByp8aHyFLgQQohuJGgvLig3zRnNht3llNe08fNXN3HJ+CQmjokle2Q0Br0WU8pYTClj8c6/k9Z962nd/TnuxuO07PyUlp2fYkrLIXzKtYRkX4Ki1Q/25QghhBBCCCGEGACKoiFm/p1ow6JpXPsHWnaswtvaRNx3HkWjM5x1vVqNwujUSEanRnLTnNF4vT6KK5vZV1TP/qJ6DpQ00NLuYsu+42zZdxyAqDCjP3d+R078pNgQCeILIcRFToL24oKi12l4+F8m8YtlWyirbqWsupU/rz2MQadhXEY0E8fEBRYGirzkRiJm3IC9ZD8tu1djO7wDx7EDOI4dQBsSQdjEeYRNvhp9ZPxgX5YQQgghhBBCiAEQecmN6EKjqV3xCu2HvsZrayHhe/+O1hQSlPq1Wg1j06IYmxbFv1w1Bo/Xx5FjVvYV+dPpHCptpKnVyZd7KvlyTyUAMREmfwC/I5CfGBOctgghhBg+hk3Q3uVy8c4777BixQrKy8uxWCxMmzaNBx98kNzc3H7Xt2rVKt5//30KCwsByMrKYtGiRVx//fWnLVNfX8/vfvc7NmzYQH19PbGxscyZM4cf//jHxMTEnHJ8fn4+GzZsYPPmzRQVFWGz2YiKimLKlCnceeedTJkypd/tFn3LHRXDsv83n28Ka9l7pJ59RXU0tTrZe6SevUfqAbCYdIwfFcvEMbFMGJPByFuexNvaSMuetbR+sxZvWyPWLR9j3fI3LKOnED7lWsyZk/r9qKQQQgghhBBCiKEtNHc22pAIqv/yaxzHCqh67ymSFj6FLvzU7/nnSqf1TygblxHNrVdn4fZ4OVTWFEinU1jWREOzgw27KtiwqwKA+Chzxyx8/yS02EhZk00IIS50wyJo73K5uPvuu9m+fTsxMTHMnTuXuro61qxZw4YNG3jttde4/PLLz7i+l19+mddffx2DwcBll10GwObNm/nJT37C4cOHeeyxx04pU1lZya233kpdXR2jRo1i/vz5FBYW8sEHH7Bu3To+/PBDkpKSAsd7PB5uueUWAMLCwpg4cSJhYWEUFRWxevVq1qxZw+LFi7n99tvPsXdET2IjzVx9yUiuvmQkqqpSXtPKvqJ69h6pY3+xP6fg9gPVbD/gzykYGWokb3QsE8dcQt7C64hpPEDrN59jL9mHrWgXtqJd6CLiCZt8NeGT5qENiRjkKxRCCCGEEEIIESzm9DySFz1H9fLncNcdo/Ld/0fSbU8N+Lpnep3WnxonM5YfXAsOl4fC0ib2FfvT6Rw+1kRtk50vdpTzxY5yAJJiQ/yL2mb60+lEhZsGtI1CCCHOv2ERtH/jjTfYvn07eXl5vPvuu4SGhgKwcuVKnnjiCZ588knWrl0b2N6bnTt38vrrrxMeHs7y5cvJzMwEoLi4mIULF7J06VKuuOIKJk+e3K3c4sWLqaurY+HChSxZsgRFUVBVlSVLlrB8+XKeeuop3nrrrW5lxo8fz/3338/cuXPR60/kR//ggw9YsmQJL7zwArNmzQq0QQwMRVFISwwnLTGcG2aPwutTOVpp9c/CP1JHQUkj1jYnX+2p5KuOxxHjo8xMHHMjUy6/gYzWb3Af+gpPcy1NG/5E05cfEpJ9CeFTr8U0IkdyDQohhBBCCCHEBcCYkE7ync9T/cF/4W6oouq9p0j43s8xp+WctzaYDDomjo1j4tg4AOxODwdLGgPpdIorrByvb+d4fTurt5YBkBofGsiHn5cZS0So8by1VwghxMAY8kF7j8fDe++9B8DTTz/dLTB/ww03sGLFCjZu3MhHH33EHXfc0Wd9b775JgAPPPBAt2B5ZmYm999/Py+99BJvvvkmr776amBfQUEBW7duJTIyksWLFweCtIqisHjxYj777DM2bdrEoUOHyM7OBkCn0/HRRx/12IbbbruNtWvXsmnTJj799FMeeeSRfvaKOBdajcKYEVGMGeHPKej2eCksawqk0iks889kWLP9GGsAiCMj/gfMT6ohy74HvbWM9gObaT+wGX3cCMKnXEtY3pVojJZBvjIhhBBCCCGEEOdCHxFP8qLnqf7LCzgrCqn+v2eJ++5jhGbPHJT2mI06pmTHMyXbv9Zau91NQUlDIJ1OSVUzFbVtVNS28emWUgBGJoYFgviZSZIPXwghhqMhH7TfvXs3VquV1NRU8vLyTtm/YMECNm7cyBdffNFn0N7pdLJlyxaAHnPXL1iwgJdeeolNmzbhcrkwGPwrxq9fvx6Aq666CqOx+x1ro9HIVVddxccff8zatWsDQfu+ZGVlsWnTJmpra8/oeDFw9Dot4zNjGZ8Zyw/Jxu70cKCkIRDEP1rZTEmtgzdqI4ArGaFr4PqoErLVI1BXTsPqN2lc90dCx19O+JRrMSZmDPYlCSGEEEIIIYQ4S1pLGEk/eJraT17GdngHtR/9D95r7iJi+oLBbhohZj0zchKZkZMIQKvNRX5xA/s70umUHm+hrLqVsupWVm4qQVEgIVLPlBINk7ISGZ8ZQ5jFMMhXIYQQoi9DPmh/8OBBgNMuNpuT439MrXNB2d6UlJTgdDqJiooiOTn5lP3JyclERkZitVopKSkhKyurWxvGjx/fY725ubl8/PHHZ9SGTseOHQMgNjb2jMuI88Ns1DE1O4Gp2QkAtLS7yC/258PfV1RPeS38vi4GszKBaYZiZpsOk0gzrd+sofWbNRiSxxAx9TpCcmah0clgSAghhBBCCCGGG43eSMItT1L/2Zu0fvM5DZ+/hbetkag5PxxSKVLDLAZm5iUxM8+/xl5zm5P84oZAOp2K2jaqm9ys+voYq74+hqJAelI44zNjycuMIXdULOEh8r1VCCGGmiEftK+qqgIgMTGxx/2d261WK+3t7YSEnP7Rr8rKyl7r6txntVqpqqoKBO0725CQkNBrGzrr70tJSQkbNmwAYN68eWdURgye8BADsyYkM2uC/0ZPQ7M9sKjt3iMRfGXNJlNXw2zjYSYYjkHVEeqqjnD807fQjp1NyuXfxhR76k0iIYQQQgghhBBDl6LREnv9fejCY2ja+AHWLX/D09pE3LceRNEOzXBKRKiRyyYmc9lE/3fQqpom1mzOp9lt4VCZlfKaNkqqWiipauEfXx0FOoP4MeRlxpI7KkZy4gshxBAwNP/KdGGz2QAwm8097rdYTuQR7yto31ddXetrb28/pVzXc/VV5nRcLhf//u//jtvt5oYbbjjtEwT9oapqoI3ng91u7/Z6sTHr4ZJxMVwyLgZVValptJN/tJH8oxNZfbSSPN9BZhkPE007HPicqgOfc9wwEkfGbNKmziI5PgxFUS76fgwW6cfgkb4MDunH4JB+DB7py+AYjH5UVXVIzeYUQoiLkaIoRM3+F7ShUdSvep22/RvwtjeRcPOTaIynjy0MFZFhRsaPtDBu3DgsFgtNrQ4Kjvpz4u8vbqC8ppXS4y2UHm9h5aYSoCMnfkcK2fGZEsQXQojBMOSD9heap59+mr1795Kens7TTz8dlDrdbncghc/5VFpaet7POVSlhELKBD2+vJHUWpPZWj0LtaqIUbZ8snSVJLnKoLAM68G/8X/esdRG5ZGQFE1anAFfSQka+UJ+zuT3MXikL4ND+jE4pB+DR/oyOM53P3ausSSEEGJwhU+ahy40kpqP/wf70b1U/fFpEm9djC40crCb1i9RYSZmT0xh9sQUAKytTn8Qv7ie/OL6QD78supWVm72B/HTAkH8GMaPiiUyTIL4Qggx0IZ80L5zFvvpZjV1nWHe2yz7M6mra31d6+osd7rZ7D2V6clLL73Exx9/TGJiIm+//Tbh4eG9Hn+m9Ho9o0ePDkpdZ8Jut1NaWkp6enqvTy1crHKBuQBcitfr4+iRo7Ts/oLo2l1EamzM0+zB27qX/MYRbHSOokJJICYhnpGJoYxMDGNkYhhpCaGYjUP+f88hQX4fg0f6MjikH4ND+jF4pC+DYzD6saio6LycRwghxJmxjJ5K0g+fofrPz+OqLqbqnX/HnDEBbVg0urAYdGExHe+j0VjCh8XTUpFh3dPpNLc5yT/aQH5xPfnFDZQeb+FYdSvHqlv5Z0cQf0RCWCCdzvjMGKLCTIN5CUIIcUEa8lHBzgVjq6ure9zfuT0yMrLPoHlKSkqvdXXd13Wh2uTkZA4cOEBNTU2vZTrr78nrr7/Om2++SXR0NG+//Xavx/aXoiinTd0zkMxm86Ccd7iZOGUCTJmA6nHTXLCF2q2r0NUXMdFwjIkG/4LEdS1hlDTGcWhfHJ964jjujSQxJoz05HAyksJJT44gIzmchGjLsBj4DQb5fQwe6cvgkH4MDunH4JG+DI7z2Y/D6W++y+XinXfeYcWKFZSXl2OxWJg2bRoPPvjgWaWDXLVqFe+//z6FhYUAZGVlsWjRIq6//vrTlqmvr+d3v/sdGzZsoL6+ntjYWObMmcOPf/xjYmJiTjn++PHjrF+/nv3795Ofn09RURE+n48XXniBm2++udf2tbW18frrr7N69Wqqq6uJiIhg5syZPProo4wYMaLf1yuEGD5MKWNIueOXHP/gOTzWGlr3ruv5QK0OXUcwvzOQrw2LOWlbFIpWf34voA8RoUYum5DMZRNOBPELjjaQ35FSp/R4C+U1rZTXtPLpllIAUuNDycuMPRHED5cgvhBCnKshH7QfN24cAAUFBT3uP3DgAEBg0djeZGRkYDQaaWpqoqqqqltgHvwLzlqtVkwmExkZGd3asHbtWvLz83ust7Ntp2vD+++/z8svv0xYWBhvvfUWmZmZfbZVXHgUnZ7IiVcSOfFKXLVlNO74jJaib9C21ROnbSVO28oMo38hIIeqp8wVS0lRHLsPxfE3Txx21YDFpCM9KZyMjiB+RnIEaYlhmAxD/n9lIYQQQlygXC4Xd999N9u3bycmJoa5c+dSV1fHmjVr2LBhA6+99hqXX375Gdf38ssv8/rrr2MwGLjssssA2Lx5Mz/5yU84fPgwjz322CllKisrufXWW6mrq2PUqFHMnz+fwsJCPvjgA9atW8eHH35IUlJStzKrV6/mhRde6Pf1trS0cNttt1FUVERKSgrz5s3j2LFjrFixgnXr1vHHP/4x8B1GCHFh0kcnk3L3S9gOb8fT0oCntQFvSwOe1ka8bY1425vB68FjrcVjre21Lm1IBNrQk4L64d0D/Rrj4E3eigg1MmtCMrM6gvgt7S5/EL+4nv3F/iB+RW0bFbVtfPp1KQApcaHkjY5l/KgYxmfGEBMhT/oJIUR/DflI35QpU4iMjKSiooL9+/eTl5fXbf+qVasAmDdvXp91GY1GZs2axfr16/n000+5++67e6xr9uzZ3fKHzp07l1deeYV169bhdDoxGk/kb3M6naxb57+zPn/+/FPO+be//Y1f/vKXWCwWfv/735OTk3OGVy4uZIb4kYTPvZ3KxGlkZaShaarAUVGIs/IwjsrDmFx2svTHydIfB0AFqr2RlLjjKK2MY0dZHP/0hQMKGgWSYkMDQfzO15gI07CaoSeEEEKI4emNN95g+/bt5OXl8e677xIaGgrAypUreeKJJ3jyySdZu3ZtYHtvdu7cyeuvv054eDjLly8PTHYpLi5m4cKFLF26lCuuuILJkyd3K7d48WLq6upYuHAhS5YsQVEUVFVlyZIlLF++nKeeeoq33nqrW5nU1FQWLVrE+PHjGT9+PK+88gqffvppn2381a9+RVFREXPnzuW3v/1t4HvDsmXL+M1vfsO//du/sWLFCrRa7Rn1nxBieNKaQgibMLfHfarXjaetCW9LI57WjmB+q/9956untRG8HrztzXjbm3HVlJz2XIre1BHAj+7y2j0djzY0EkUz8P/uhIcYmJmXxMw8/43QVpurS078Bkqqmqmsa6Oyro3PAkH8kI5FbWPJkyC+EEKckSEftNfpdCxatIjf/va3PPPMM6d8Edi4cSNRUVHccsstgTL79u3jZz/7GQCfffZZt/ruuece1q9fz7Jly5gzZ063LwLLli0LHNNVbm4ul156KVu3buX555/v9kXg+eefx2q1Mnv2bLKzs7uV+/zzz/mP//gPDAYDS5cuZcqUKcHtHHFB0JhCsGROxpLp//Kp+ry46spxVhTiqDyMo+IQnqZqkrRWkrRWZnEEAIdioswbzxFHDCVNcWyvi2HT3hOPVoZZDGQkh3ek2PEH89MSw9Dr5AukEEIIIYLD4/Hw3nvvAfD00093C8zfcMMNrFixgo0bN/LRRx9xxx139Fnfm2++CcADDzzQ7enUzMxM7r//fl566SXefPNNXn311cC+goICtm7dSmRkJIsXLw5MWlAUhcWLF/PZZ5+xadMmDh061G28Pn/+/G6Tbs5kskNDQwOffPIJOp2OZ599tttEn/vuu4+VK1dy+PBh1q9f3+OEHiHExUHR6tFHxKOPiD/tMaqq4rO1dAvonwjqN3Zsb8DnaEd1O3A3VuFurOrlpBq0oZHdAvm6sBi8xlC0Vjs+RxoMQHq3MIuBS8cncel4fxC/rSOIn98RyD9a2UxlXTuVde2s3loGQFJsSEc6nRjGZ8YSGylBfCGEONmQD9oD3HvvvWzdupXt27dzzTXXMH36dOrr69m5cyd6vZ4XX3yx2xcEu91OSUnPd6mnTZvG/fffz7Jly7jpppuYNWsWAFu2bMHpdPLQQw+dMnMH4Pnnn+fWW29l+fLl7Nixg6ysLAoLCykuLiY+Pp7nnnuu2/ENDQ08/vjjeL1e0tPT+fvf/87f//73U+odNWoU991337l0j7jAKBotxoR0jAnphE+9FgBvezOOikIclYU4KwpxHi/G5HGQpTlGlsWfF19Fg9UQT6knjv2tkRx1xLGvyMm+ovpA3VqNQmp8aGBGfmeufFk4SAghhBBnY/fu3VitVlJTU095IhZgwYIFbNy4kS+++KLPoL3T6WTLli0APeauX7BgAS+99BKbNm3C5XIFAubr168H4Kqrrur2RCz4n7S96qqr+Pjjj1m7du0pk2z668svv8Tr9XLJJZcQH989GKcoCtdeey2HDx/miy++kKC9EKJXiqL4U+OEREBixmmP87mdeDtm5ntaugb1T8za97ZZQfXh7bgBcLJwoHbrH6i3hKOPTkYfnYwhJgl9dAr6mCR0UYlodIZTyp2NUIuBS8YncUlnEN/u5kBgJr4/iH+8vp3j9e18vq0jiB8TQt7oWCZ0/EhOfCGEGCZBe4PBwFtvvcXbb78dyBVpsViYN28eDz/8cL8Xt3r88cfJzs7mvffeY9u2bQDk5ORwxx13nHZxq5SUFD755BNeeeUVNmzYwJo1a4iJiWHhwoU8+uijpyxuZbfbcbvdgH8Wf3FxcY/1zpgxQ4L2ok/akAhCsmYQkjUD8D9u6awuxVlZ6A/mVxTibW0gylVNFNVM7liT2WMIp9GUwlF3PHuawjlsC6esupWy6lY27D5Rf2SYkYyTcuWnxIei02oG4WqFEEIIMVwcPHgQ4LTj8c7UkJ0LyvampKQEp9NJVFTUKWtPASQnJxMZGYnVaqWkpCSwnlRnG8aPH99jvbm5uXz88cdn1Ia+9HW9nduDcS4hhADQ6I1oOgLtp6P6vHjbm/2z8ztz7Lf5g/vOphqcdRVonG34bC04bS04Kw6dVIOCLjIuENDXx3S+JqELj0VRzv57YahZz4zcRGbkJgLQbndzoKSB/cUdM/ErrBxvaOd4w4kg/oiEsEAAP290LGGW4NxQEEKI4WRYBO3BH7h/4IEHeOCBB/o89pJLLulzoLxgwQIWLFjQrzbExsbyzDPPnNGxqampMlgXA0bR6jGljMGUMoaIGTcA4GmpDwTwnRWFOGtK0LlaiHe1EM9BLjUBIXrcESOoN6Zw1BXLnqZwjjSoWFudfNNaxzeH6wLn0Gk1pCWGMTIxjOS4UJJjQ0iODSUpNoQQs/40LRNCCCHExaSqyp+qITExscf9ndutVivt7e2EhISctq7Kyspe6+rcZ7VaqaqqCgTtO9uQkJDQaxs66z8XZ3q9wTiXEEKcKUWj7UiHEw3Jo7vts9lsHDx4kKzMdPT25kCaHXeD/9XVUIXqsgcWzbUf3dO9bp0BfXRiDwH9ZLTmsH63NcSsZ3pOItNzugfx9xXVs6+onpKqZsprWimvaeWfm0tQFMhIjggE8XNHxWAxyfdRIcSFb9gE7YUQvdOFxxKaE0tozmWA/zFK5/Fif278jtQ6PlsL+sajJHGUJOAyQJsejzsqgzpDCsWuGPY3mCmpbsPu9HC0spmjlc2nnCsi1EBSTEggmJ8kAX0hhBDiomSz2QAwm3vOR2zpkj+5r6B9X3V1ra+9vf2UcpbT5GruqczZOp/nUlU1cL6BZrfbu72Ksyd9GRzSj8HT2YdOL2giEtFEJGLMmEJnMjF/bv1mvE3VeJqq8TQd97+3VuO11qB6XLhqj+GqPXZK3YopFF1UIrqoJLRdXyMTUM4w3Y4C5KaHk5sezm3zR9Fmc3OgtIn8o40UHG2koq498L30k43FaDQKmSnhjM+IJndUFFlpkRj0A79um/xOBof0Y/BIXwbHYPSjqqpntJaSBO2FuEBp9EbMaTmY0/yPpauqiqep+sRs/MpCXLXH8DbXommuJQFIAC7TmzDmjMYTM4o6fTJl7ljKm6Gqvo3j9e00tTppbnPR3ObiUFnTKeeNCDUEAvgS0BdCCCGEODtutzuQjud8KS0tPa/nu5BJXwaH9GPwnFFf6hIgLgHiOj77fGjsVjS2RrTtjWjbG9C0+99rnK2ojjbcx4twHy/qVo0K+EwR+EKi8YZEd7zG4LNE4zOHQx/pdsIUmJkJMzOjaLWHU1rjpKTGSUmNg6Y2L0fKmzlS3szfvixBq4HUWAMZCSYyEoykxBjQafsOhp0t+Z0MDunH4JG+DI7z3Y+dazP1RoL2QlwkFEVBH52EPjqJsAlzAPA5bTgqj/hn41cW4qg8jOq04SjLh7J8ooAoYGpIJIb4NPRZaRCZTLMujmpfBJVNXo7Xt1NV30ZVfTvWQEC/kYOlpy6AJAF9IYQQ4sLSObP8dLOTus4U722W/ZnU1bW+rnV1ljvdrPSeypyt83kuvV7P6NGj+z4wCOx2O6WlpaSnp/f6pIPom/RlcEg/Bs9A9aXP5cBrrTkxM7+pGm/TcTxNx8FlR+toRutoRt9Q0r2gVo8uMqFjZn4i2ij/Qri6uDQ0+p4XoJ3R5X2d1U7B0Y6Z+CWNNLY4Kat1UVbrYsN+MOo1ZI+MIndUNLkZUYxKDkejOfcgvvxOBof0Y/BIXwbHYPRjUVFR3wchQXshLmoaowXLqIlYRk0EQFV9uOsqcFQcwlF5GGdFIe7GKrztVuwlVuwl+wD/I4xJwIiIeAxxIzDkpqGPS8MXnkm9Gslxq4uquvbA7PxzCegnx4VIzkIhhBBiiOpcMLa6urrH/Z3bIyMj+wxkp6Sk9FpX131dF6pNTk7mwIED1NTU9Fqms/5zcabXG4xzKYpy2jQ8A8VsNp/3c16opC+DQ/oxeILelxYLREZD+rhum/3pdlpwNVR25M8/jruh0v/aWA1eN56GCjwNFTi7FlQ0GBIyMKVmYRqRjSk1G114zCmnHWmxMDI5hgWz/ec6Xt/O3qJ69h2pY39xPc1tLvYWNbC3qAGAEJOO8Zn+fPgTxsSRlhB2TkF8+Z0MDunH4JG+DI7z2Y9nkhoHJGgvhOhCUTQY4tMwxKcRPuUaAHwuO666Clx1x3DXHcNVV46r7hjetiY8zbV4mmuxFe3qVsfI6ETGxKWhT07DMDENQ9x43JZYqhsdVNW3B2bnn21AP/A+7txnsQkhhBDi7I0b5w/WFBQU9Lj/wIEDAIFFY3uTkZGB0WikqamJqqqqboF58C8Ca7VaMZlMZGRkdGvD2rVryc/P77HezradSRv60tf1BvNcQggxHCmKgjYkAnNIRCBVayfV58XTXBdYBDewGG59Jd62RlzVxbiqi2nZuQrwr9tm7Ajgm1KzMcSnoWi03c6VHBdKclwo189Mx+dTOVbTyr6iOvYdqSe/uJ52h4dtBdVsK/DfVA0PMZA3OpaJHUH85NiQMw6gCSHE+SRBeyFErzQGM6aUMZhSxnTb7rW14qo/hqu23B/Mry/HVXsMn6PNP/hqqIJDW08U0OowxqSSFZ9GXtwI9FNGYIgfiy4iDrvTGwjg9zegHx6iJ9ykkLrXTUJMKLGRJmIjzcRGmImJMBMdbkSr7T1nohBCCCHOzpQpU4iMjKSiooL9+/eTl5fXbf+qVf7Ay7x58/qsy2g0MmvWLNavX8+nn37K3Xff3WNds2fP7pYHdO7cubzyyiusW7cOp9OJ0WgM7HM6naxbtw6A+fPnn91FdnHFFVeg1WrZtWsXtbW1xMfHB/apqsrq1auBM7teIYS42CgaLfqoRPRRicCUbvs8LfU4yg/5n/ouP4SrtgxPSz2egk20F2zylzeYMKWMxdgRxDeljEVjPJHOQqNRSE8KJz0pnBsvz8TrUzlaaWXfkXr2FdVTUNJAS7uLzXur2Ly3CoCYCJN/Fv7oWCaMjiM+WmYsCyGGBgnaCyHOitYShjktF3NabmCbqqp426y46o6dNDO/HNXtwFVbiqu2tFs9it6EIW4E4XEjiIlLY+qoNAyXZKANjURRFGwO9ykB/aq6do43+AP6Le1uWtqhoqEGOPWxeI0CkWEmYiNNxESYOwL6Xd5HmokON6HXSWBfCCGE6C+dTseiRYv47W9/yzPPPMO7775LaGgoACtXrmTjxo1ERUVxyy23BMrs27ePn/3sZwB89tln3eq75557WL9+PcuWLWPOnDlkZmYCUFxczLJlywLHdJWbm8ull17K1q1bef7551myZAmKoqCqKs8//zxWq5XZs2eTnZ19ztcbExPDd7/7XT766CN+8Ytf8Nvf/jZwA+GNN97g8OHDZGZmMnfu3HM+lxBCXEx04bGE5s4mNHc2AD6nHWfVEX8Qv+IQjorDqC479pJ9gbStKBoM8SO7p9SJiAvUqdUojBkRxZgRUdxy1RjcHh9HypvYV1TPviP1HCxtpKHZwfpdFazfVQFAYoyFCaPjAoH8qPCe8+wLIcRAk6C9ECJoFEVBFxaFLiwqkCcf/LnyPc11uGr9QXx3R1Df1VCJ6nbgrDqCs+pIt7o05lAMcWkY4tKIixtBclwahqwRaM1hgWNsDjclFQ3s3n8Ec3gcLTYvDVY79c126psdNDbb8XhVGlscNLY4AOtp2x4ZZuwWzI+J6DJjP9JEbIQZg1572vJCCCHExeree+9l69atbN++nWuuuYbp06dTX1/Pzp070ev1vPjii4FAPvgX/CopKemxrmnTpnH//fezbNkybrrpJmbNmgXAli1bcDqdPPTQQ0yePPmUcs8//zy33nory5cvZ8eOHWRlZVFYWEhxcTHx8fE899xzp5Spra3lkUceCXwuKysDYOnSpSxfvhyAuLg4Xn311W7lfv7zn7N3717Wr1/Pddddx8SJEykrK6OgoICQkBD+53/+B61WxgxCCHEuNEYz5owJmDMmAP7UOq66chzlh3B2BPI9zXW4akpw1ZTQsst/E1gbFtMtiG9ISA+k1NHrNORkxJCTEcPCq7Nwur0cKm3sCOLXcbjcSnWDjeqGMj7f5v+bMCIhlAmj48gaEYa73YPd6cFsViWljhBiwEnQXggx4BRFgz4yAX1kAiFjpwe2q14P7qbqQJ78zmC+u7Ean70Nx7EDOI4d6FaXNjSqI5g/An1cGinh8TiStYzLSztl0RCfT6W53Um91U691UFDs516q52GZgf1zXYarP5Xt8eHtdWJtdVJUUXzaa8jPMTQLYjf+dr1vcko/6wKIYS4uBgMBt566y3efvttVqxYwbp167BYLMybN4+HH36Y3Nzcvivp4vHHHyc7O5v33nuPbdu2AZCTk8Mdd9zB9ddf32OZlJQUPvnkE1555RU2bNjAmjVriImJYeHChTz66KPExJy6mKHL5WLv3r2nbC8vL6e8vDxQ78nCw8P58MMPee2111i9ejVr1qwhIiKCb3/72zz66KOkpaX163qFEEL0TdFoMSakY0xIh2nXAeBpacBRWRgI5DurS/C2NtB+cAvtB7f4y+lNGFPG+AP5nSl1TP610Yx6LRPHxDFxTBxcPw6bw82Bkkb2dixqe7SymfKaNspr2vhnZ0P+UY1BryUy1EBkmJGIUCORoUYiw068RnT5HGYxnNPCt0KIi5dEl4QQg0bR6jDEpmKITYVxMwPbfR4X7vrKLml2/EF9T3Md3rYm7G1N2EtOfMmOAmo2haKPiEMXEYsuPA5dx3tzeCwZUXGMTk1AUU5NgaOqKi3trm7B/MB7q52GZjt1Vgcut5eWdhct7S6OVp0+sB9q1nebqR8TcSIdT1S4f+AWHmKQPPtCCCEuKAaDgQceeIAHHnigz2MvueQSCgsLez1mwYIFLFiwoF9tiI2N5Zlnnjnj41NTU/tsx+mEhoby5JNP8uSTT55VeSGEEOdOFx5DaPgsQsf5n8ryuRwdKXUKcVQcwllRiM9pw1G6H0fp/o5SCob4NEyp2Rg7ZuTrIuJRFAWLSc+0cQlMG5cAQKvNRX6xP5XOniO11DTYcHtVXG4vtU12apvsfbZRo1GICDF0C+SfPthvQK+TJ7WEEH4StBdCDDkanQFjYgbGxIxu231OG676Cn+anXp/mh1nTRk+WzOqow2Xow1XTc+P26PVoQuP9Qfzw2NPvI+IxRIRR0ZiLJmpkT0WVVWVdrub+o5Afn1HCp7OmfqdM/jtTi9tdjdtdjelx1tOe32KAmEWQ7cBWuf7qDAjkWGmboM5ybcvhBBCCCGEEL3TGEyY0/Mwp/sXRVdVH+66ihN58csP4bHW4Kotw1VbBrv9i4drQ6P8s/BHZGNMzcaYkI6i1RFmMTAzL5mZecnYbDYOHjxIRuZYXF6N/0ntNv/T2s0dr9a27ttabW58PpWmVidNrU443vc1hJj13YL5EaGGju+Hnd8fTUSEGYgMNWI26iRNjxAXMAnaCyGGDY3RgillLKaUsYFtNpuNg/u+YXRyLHpnG56WOtzNdXha6vE01wdm5+P14GmqxtNUfdr6tSERHbP0uwT1Oz6bI+IYmRhGelL4acvbHO6OgH7HLP3O983+981tLprbnagqgVn7x2jt87q7DdzCjER1eX/yjA2TQf5ZF0IIIYQQQghF0WCIT8MQn0b4lGsA8LQ14eyYie8o70ip09ZE+6GvaT/0tb+c3ogxeTSmFP9MfGNKFuCfSGUyaIm2WEiMCenz/G6Pj5b2ziC+C2uboyO478La6vBv6wj2N7c58fr8k8Xa7W4q69r6rN+g03R8FzR0/BiJjw5hdJp/8d3wEMPZd54QYtBJdEcIMfzpTehjR5yS076T6vXgaWvE01wXCOQHgvotdXia61DdTrztzXjbm3EeL+qxHkVn8Af0A8H8jln7HdvMYdGkJYaTlnj6wL7XpwYGbl1nZ5w8M6NzdkZ/B25mo5bIUFO32fsRPc7ml5kZQgghhBBCiIuLLjQKXfalhGRfCoDP7cR5vAhHeWHHAreF+BxtOMoKcJQVnCgXk0KoYqTxYAjNGgVVVUH1gaqCqqJ2eY/q69jvf29EJU71/3SWCZQ3qqgGFaJ8qD4fPp8P1afiU/2vJ+rqqB8VRVVRUFEAjaJCO/6fGmg+Ymbrl6P5/5xjMUbGMWZEJGNGRDEmLZLRqZGYZQ02IYYN+b9VCHHBU7Q69BHx6CPie9yvqio+R9uJoH5LZ2D/RJDf225F9bhwN1Thbqg63ZnQhkYF0u50S8cTEYcuLBqNOYyoMBNRYaY+2+3zqbTZ3VhbHf7ZF60umjpnZ3QN+He8uj0+7E4vdmc7xxva+6w/MDOjY8Z+qFmL295KcWMZsVEhhIf48++Hd+RgNBm0EuQXQgghhBBCXDA0eiPmtFzMaf5F01XVh7uhCkf5oY68+IdwNx7H01CJHnDVD3ybFKDXzPa9fCWL0Ni51ryfq0355LtS2VSQxea9SagoKAqkxocxZkQkY0dEMiYtiozkcMmjL8QQJUF7IcRFT1EUtOYwtOYwjImjejxG9bjxtDZ0BPbrTszS7wzwN9ejet142xrxtjXirDzNwnZaHbqQSLRh0f4Af1g02tBodGFR/s+h0WjDotCYQtFolEDQPK2Pa1BVFbvTg7UjX+LJM/ibu312YHd6cXl8PS6gtOlAzyl79DqNP4DfJZgfHmogPMSfazEQ4O/YHxZiQCcL7gohhBBCCCGGCUXRYIhNxRCbSvjk+QB425tpPrqfypIiklNSMJpMgOJfrEzR+Cc2dbxHUTo+azq2KShd3sNJn08qf9q6oMv+09UN9tJ8WnZ9hqMsnwmGciYYymnVRrHVncW65jTKa6C8ppV1O8sB0GkV0pPC/bPxOwL5IxLC0Gouzslaqqriqi3DXV+OOWMiWsvpn6IXYqBJ0F4IIc6AotOjj0pEH5XY435VVfHZWjry6fechsdna/Hn1m/xz+bv9XxaPdqwKH9APzQKbdiJgL7/1R/01xgtKB2DOYtJj8WkJzkutM/rcbg8pyyeVNvYRllFDTpjKDaHl+aOvPstbU5cHh9uj4+GZgcNzY4z7rcQs/6UYL5/5n5n0N/Ybb/FJCl7hBBCCCGEEEOHNiQCU+YUXC4z5nHjTpuWdSgIHTeT0HEzcdVX0LJ7Na37NhDmbOJqzVaujt2FI3kKh0Mm801DCEfKm2m1uSiqaKaooplP/Sn9MRq0ZKZEdAnkR5IUE3JBf09zN1XTVrCJtgObcNf5b2goOgNhE68iYsYN6KOTBrmF4mIkQXshhAgCRVHQhkSgDYmA5NE9HuOfiW/F09aEt7UJT1sj3tZG/+e2RjytTXjbmvDZW1G9bjzWWjzWWpy9nVdnQBvWGdjveO36PiwaXWg0GqO5WzmTQUdijK7bAko2m42DB52M62Eg6nB6AovnNrc7T7xvO/He/+NfZKnV5kJVCeTjP17fd7oeAG3H0wURoSdm60eEdJ/NH2o2EGLWEWLW+39Megx6eaRTCCGEEEIIIQAMsanEXnM30XN+SFvBJlp2fYarpgRT+TYmsI1piZmE33wNtuRLKaq2ceSYlSPlVooqrNidHg6UNHKgpDFQX6hZz+gRkYEc+WPTIomJMPfSgqHP09ZE+8EttOV/hbPqyIkdWh36iDjcjcdp2fUZLbtWY8maQeSlN2JKzR68BouLjgTthRDiPFG0+o5893G9HufzuPC2WbsE8hvxtDZ22dboD+472lE9LjxN1Xiaqns/t8HUEdCPPmnWflQgPY9Pe/o8+yajDpNRR3z0mc0q6VxA90RQv2ug/8TnrrP5HS4vXp9KU0eKn/7Q6zSBAH6IWdfxqu+yretn3Sn7JF+/EEIIIYQQ4kKjMZgInzyfsEnzcFYdoWXXZ7Qf2IKrupj6Va+hMYWQPWEuM2ZdgyEmF59PpbKujSPlTYFA/tGqZtrsbvYcrmPP4bpA3dHhRkan+he57Qzmh4cYBvFq++Z1tNN+aCvtBzZhL833L/ALoGgwp48nJGc2IdmXojFacBwroHnrCmxFu7AVbsNWuA1jShaRl96IZex0FI1MHBMDS4L2QggxxGh0BjSR8egje144t5PP7cTb1hQI4nd9739txNNmRXXaUF0O3I3HcTce77XOSI2O2q/C0IWEoTGFoTGHojWf9GoKQ2PpeO3Yruj03erRdsnHf6acbi+tJ83e7zqrv6XN/7lz9n67w4PN4UZVwe3xBXL2nw2NRjkR8O8a6O8W8O9+MyDU7E9HFGLWYzHq0FykeR+FEEIIIYQQQ5uiKJhSxmJKGYt3/p207l1Hy+7P8VhraNm+kpbtKzGn5xE+9TpSx05nREIYV03zr6zm9vgoq27hSLmVI8eaOFJu5VhNK40tTrYfqGb7gRMTyBKiLYEA/pi0SEanRmI2Dm7o0ed2YivaRVv+V9iKd4PXE9hnTB5D6PjLCRk3C11oVLdy5pHjMY8cj6uunOZt/6A1fyPOykJqPnoJXVQiETO+TdjEuWj0xvN9SeIiIUF7IYQYpjR6I5pe8ux38rnsHYH8pu6z9zvS9HTO3lfdThSfB197E672pn61RdEb0ZjD0JpC0Vg6Xs1haM09v2pMoWjNoSjaE3+GjHotxkgzsZFn/pilz+dfgNcfxHd3C+ifuq2H/XY3Xp+Kz6fSavOn9TkbigIWow6LWY/ZoAWfi+gddkItRsxGHWaTDrNRh8Wow2zSn3jf+WM68V5m/QshhBBCCCEGitYSTuTM7xJx6Y3Yj+6lZddn2Ip2Yy/dj710P9rQaMInX03Y5PnowqLR6zSMTvUH4K+fmQ7410g7WtncEci3cqS8iar6dmoabdQ02ti0twrwf09KjQ9jzIhIxo6IZES8GbdXHfBrVL0e7CX7aDuwifbCbaiuE+uy6WNTCc29nNDc2X1+lwYwxI0g7oaHiJpzGy07P6Vl12o8TdU0rH6Dpi+XEz71WsKnXo8uNHIAr0hcjCRoL4QQFziNwYwm2ow+Ovm0x6iqSru1kSP5exiVmohedeOzt+G1t+Gzt+J1+F/927q8OtpB9aG6nXjdTrx9LLB7MsVgPjWw3xHw73mWfygac2jgUUSNRgnMfD8bqqridHm7BPQ9J96fJsjfbbvdjcvj8+fvd3hod5yYtXGsruGs2qQo/jUHugb0uwX4ewj0d/5YTKd+1uvksU0hhBBCCCFEd4qiwZI5GUvmZNzNtbTuXkPr3i/wtjXS9NWHNG36CyFZMwifeh2mkeO7TSwyGXTkZMSQkxET2NZmc1FU4U+p0zkrv77ZQXlNK+U1razbWR44NuwftcREmIkONxEdbiIq3Bh47/9sIjrc2K/vMqrqw1lRSFv+V7Qd+hqfrSWwTxcRR2jubEJyZmOIH3lWk6R0oVFEz/kBkbNupnXvOpq3r8RjrcG66a80f/13QvOuJOKSb2OITe133UL0RIL2QgghUBQFjdGMzxKJPiHjlIVoT0dVffgcNnyOEwH+UwP7bXhtHa8d232OdkBFddnxuOzQXNfnubq112hBawpB0xHEP/370I73IWhNoShGS7cBmqIogXz9Z7uQktvj7Rbsb7C2caS4lJi4RLyqBrvTg93h8b/29NNln08FVSXwORh0WuXUgH9H0N9k8M/sNxn8fWAyaE+8duwzG3UYu74a/K/yNIAQQgghhBAXBn1EPNFzf0jUFd+n/dA2WnZ9hqP8oD//+6Gt6GOSCZ9yLaET5qI1hfRYR6jFwKSx8UwaeyLNa1OLgyPlVg6XNwUC+a02d+Cn9HhLj3V1CrPoOwL4ph4D/FFhRkIdNbgOb6GtYFO3SWQaSzih42YROv5yjClZQfv+ojGYiJi+gPCp19J+eDvNX/8dZ9URWvespXXPWiyjpxJx6XcwpeUE7Zxer8//hHlHilibw0Nzazv2dg+qOvBPLvSHp7kOW9Eu2o/swlGWjzY0EvOoSVhGTcI8cjya0/z+iFNJ0F4IIcRZUxQNWrM/1Y0+qu/jO6k+b0ewv/XEbP6TA/49zO73OW3+8k4bHqet38F+FA0aUwgaU0hg1n739/5r0XQE/rXm0MANAEVn6HHQpddpiQzTEhnmz2VoizVicNcyblzKGd/8gBOz/jsD9rbTBPZPDvjbejjG5vTgcnsB8HjVwKA4WBTFn87o5AB/98D/iX1moxZj11fDiRsBXcsZDTq0sjaAEEIIIYQQg0LR6gnNnU1o7mxctcdo2b2a1v0bcDdU0bDmHRrX/4nQ3MsJn3odxqRRfdYXFW5iRm4iM3L9aWja29vZuaeAuMSR2N3+oH5Di4OmFieNLQ4aWxw0tThobHHi8foC32OOVbd2qzdW08IUQylTjSUkapsD212KgeMhWTTHTUJJySE6PIQop5Hohnaiw0yYgphfX9FoCc2eSUjWpTgrCrFu/Tu2wzv8C9cW7cKYlEn4JTeiGzUdm8uHrSPg3u7wf3dr7wi+20569W/vvs3h8p62HdHrmxiXHkN2ejTZ6VFkpkSc16etVZ8X5/HiwLW7asu67fdYa2nd/Tmtuz8HRYMpNQvzqEmYMyZiTBolC/r2QoL2QgghzjtFo0VrCUNrCaM/iW38wf52f6Df4Z+xfyLA79/m7djmf9+Gz96Oz9GG6nGB6uu4EdBKv+exa3WnCfSHdCzK6w/0uxU92qZa3PWhuCOi0BgsaIzmPgcjXWf99+P+x2l5vT7sLm9HMN/dY8Df4fJ2/HS8d3r8751e7C5P4CaC03XiM/ifBugsG2wGnQaTUYdRrwHVQ/jGFswmvX/NA4O241V30ue+Xk8cb9Br5caAEEIIIYQQfTDEpxF73b1Ez/1X2vK/pGX3Z7hqj9G69wta936BMXkM4VOvJWTcrDNejFVRFEJNWtKTwnqd4KSq/olHJ4L6DlrqazFV7ia2cR8x7uOBY92qhgPuVHY5MzjgTsHdoINjwK6Dp9RrNupOO2u/62eLSY/H66Pdfmpg3R90d3eb9e4Ptl+JPnQc42y7yPEehOPF1H3yMg3eEDY6ctjqHI2zX99+T2XQabCY9FhMOhQFqurbaWxxsnlfFZv3+dcR6FyDIDs9mnHpUWSPjCYq3HRO5z2Zz2nDdnQvtqKd2Ip2d0tFhKLBmDKWkDHTMI+ahKe1AfvRPdiP7sXdWIWj/CCO8oM0bfwAjTkUc8ZEzBkTsYyahC485vQnvQhJ0F4IIcSw4Q/2h6O1hPe7rM/j6gjgt54S+O/+3r8/kPLH0Q4+L3g9eNuteNutfZ4rHGjYBl2z2is6AxpjRwC/I5Dv/7H41x0wWlAM5hPbA8d0L3O6Gf8n02o1hJo1hJr1wNml/jmZz6fidHsDgf1ur90C/ydeTwn+d7sJ4MHu9OJ0+VMDAbg8PlyeEwsC1zX3/sjs2dDrNBj1/gB+fwL+p3s16LUYdBp/fXoter0Wo16DTquRNEJCCCGEEGJY0xjNhE+9lrAp1+CsOETLrtW0HfwaZ9UR6qqO0LD2XcImXEX4lGvQRycF5ZyKohAeYiBE4yKqeh9thzfhKM0HOr40KBrMGXmE5MyGkVMxOxRGtTgDAf7GVgeNzQ6aWk/M4O/8LlJZ10ZlXVuv59dpFTxnuWDu10whRMlhtrGQy02FxGjbuTlkB9db9vINOeQbJ6GaIwPB95COV8tJrz1t1+s0gfPYbDb27i9AH5pESbWNQ6VNHCxtpNXm4mBpIwdLG/lbx7EJ0RbGpUeTPTKK7PRo0pPC0Wo1PV/Aabgbj/ufIjiyE/uxg+A7MQ1OY7RgzpyMZfRULJmTu31fNyZmEDJmmr8Oaw32o3uxHd2Do3Q/Pnsb7Qc2035gMwD6uBFYMiZiHjUJU1rOGd8MulBJ0F4IIcRFQaMzoAkzQFj/5rGrqorqcnSZxd8R9A/M7u8e9He3t+Bss6LHi+py+Gf4A6rHhdfjOqOgf+8Xou0I8ptPugFwIvjv337qTYGunxWDqd+PImo0J/LjE3Zul9GVqqq4PL4TAX+XB2tzO4eLjpKYnAqKDqfLi9Pt7fLqOemz/9XlPvm4E6+d3B4fbo8P7MFLGdQTRfGnTzLq/QH9rsH9UwP9J96f7jj/T5cyXW4+dD1OI08SCCGEEEKIIFMUBdOIcZhGjCPm6h/RsucLWr/5HE9zHc3bVtC8bQXmURMJn3IdljFTzzrtic/txHZkJ235X2Er/qZbcNiYkuVfUHbcLHShkYHt4UBa4unrVFUVu9MTCOA3tjg70vA4TknLY3d6ugXsjQYtIacJqptPCq6f2KbDYlqAWedDKf4a265/QmMVs9jDLE8+oSNnE3nJjRjiR55VH3Uy6DSMy4hmWm5q4DqP17cHgvaFZU2UVbdQ02ijptHGht0VAJgMWsamRZE1Mopx6dFkjYwmPMTQvc+8HhwVhdiO7MRWtBN3Q1W3/fqYZCyjp2EZMxVTajaKtu8Qsz4yAf2Uawifco0/rU7lEWxH92A/ugfn8WLcdeU015XTvH0lilaPKS0nkA9fHzfiopsQJUF7IYQQoheKoqB0BMh1EXF9Hm+z2Th48CDjxo3DYrGgej34XHZ8Tjs+pw3V5X/t/Ozr9tmO6rJ1O97ntONz2VGddkAFn7fjBkHvs0PO6Np0BhSDCU3Hj6I3+187t+lPvFe6ftabuh3n3+Yvi1bX78GUoij+Wet6LREd2+LCdXjaTIzLiuvX2gCn03ljwOnqDOR7egzs9/za8w2CrjcKXG6v/ykBt5fOtaBUlcA+GNgbBF3ptJpAcN+g16LTKPi8LkK/bMVk1KHXatDr/DcK9DoNBp3/BsCJH23H9h626bXotRp0Ov859D2UNej8TxnIzQMhhBBCiAuTNiSCqMtuJnLmd7AVf0PLrs+wF/tToNiP7kUbHkv45KsJmzQPXWjfk6ZUrwf70b20HdhEe+F2VLcjsM8Qn0ZIzuWE5l6GPjLhrNqrKEpHsF1Panzvs4/sTg+tNhdmow6LUdfvGemniLmO6OnXYDuyi+atf8dRfpC2fRto27cB86hJRFx6I+b0CUEJSCuKQnJcKMlxocybngZAu93N4WNNHCpt5FBZE4fKGrE5POwrqmdf0YmFe1PiQpkwwsSkkGqS7MUoVfn+p847abSY0nKwjJ5KyJip6KOTz62tGi2mEdmYRmTDlQvx2luxl+7HXrwH29E9eFsbsJfsxV6yl8Yv/oA2NBrzqIlYRvnT6ZzN0/fDjQTthRBCiAGkaHVozWFozec2NV1Vfagu5ymB/sBNgFMC/TbUkz77XA58DltgtorqcaF6XN1zEJ4rjbbjBkCXmwHdbgCYuwT+jYHjFIO5y80DEx4fKB1PL6gG/VndDOiq640BQoJ3uSdTVRWP14fL7QvM+nd7fD0G9/0/3Y/rfO9y+3B5uh/j6ml7x/uus4E8Xh8er3+xq26amjmfdFrlpBsA2hPB/q43DrSaEzcETgr+n3rTQINee+KGQ+dNB12Xcxg6UhN11qfVKBfdrBwhhBBCiPNB0WgJGTONkDHTcDdV0/LNGlr3fIG3pZ6mjR/Q9NWfCcm+lPAp12JKy+lWVlV9/gB2/ibaD32Nz35isVldRHzHgriXY4hPO6/XFHiyOIgURUPI2OmEjJ2Oo/IwzdtW0H5oW0eu9z0Y4tOJuPRGQnMuO6MZ6/0RYtYzOSueyVnxgD/laXltqz+IX9JIbWkxcW2HyXVUkFFSh0ZRUfEnInIoZlqjs7GMmUrGtFmERkT0eq5zoTWHETpuFqHjZqGqKu6GSuxH92Ar3oPjWAHetkba9q2nbd96QMGYNMqfDz9zEqaUrKD321Bw4V2REEIIcQFSFE1gxv+5Uj1ufzDf7fSn/nE7/LP5XQ58LkeXbY4T2046xufuPM7ZLQ0QHYsF42jnXJepjQRqN3R+UlB0ev/TAToDit6AotOj6fwc+NH792n9x2g6t3U95gzKavT+bWi0/Qr4KkpnoFpLiPncFprqD69PPU1g30tLm42jR8tITE5Bo9V3pAfyBtIEuTreezw+XB3b3B4vbrcPt9d/w8DddXugnL+M2+MNlOvK41XxeD3YneetG3rUmaao+9MDJ24QdD49cPKTB7ou7w06DarqxaQ6GTducK9HCCGEEGIo0kclEnPV7URdcSvtB7+mZddqnJWFgZzl+thUTHlXobUrtHy5h7rD2/C2nlgFTBsSSci4WYSOvxxj8pgLdtKFKWUsppv/Dbe1hubtK2nd8wWu2lLqVvyWxvV/JGL6twiffDUa08DMNFJ8HuJsRwlp3sm4hl14fLXQ5cHmBm0se+zJ7HOkUOaJQW3QwBEXyqcbGJkYTnZHbvxx6dEkxYYMyH8nRVEwxKZiiE0lYsYN+DwuHOUHAwvaumrLcB4vxnm8GOuWj1EMZswjx/tT6WROQh/VS66kYUSC9kIIIcRFRtHp0eoiOLsskz1Tfd5TA/rdbgDYT7oB0NNNga777PhcDk4MAdXAkwHnlaI5EdDXdQbz9Sg644mbAXojGr0xcEPA/96I0rFNo/cf0/04Y0ddRv+NAr0RRas/60Gvtut6Ayex2UxoHDWMGxcflFRDp9P5lEEgqO/24fZ2BPndHdu9/psKJ24SeAM3Djxdbgb4y3hxe32BJxBO3Dg4Ua7bTQS3D09H/V6f2qVdJ9IUtffS/jNh0Clcc/nZLUomhBBCCHEx0OgMhOVdSVjelTirS2jZvZq2/C9x11fgXv8e4YCt41jFaCEk61JCc2djTh9/1nnwhyN9ZAKx19xN1OXfp2X3Glp2/BNvayON696nadNfCZ88n4jp3zqjFK198bQ1YSvaja1oF/aje7ulH1K0ekzp4zvy009hVEQ8U7w+So+3BFLqHCxtpKbRRunxFkqPt/DZ16UAhIcYyB4ZTXa6f4HbMSMiMRmCH2rW6AxYMiZiyZgI88DT2uRPnXN0D7aSvfhsLdiO7MB2ZAcNgC4yAcuoSZhHTcKcPh6NceC+Aw0kCdoLIYQQ4pwpGi2KKSRoM0JsNhsHDxwgO2ssZr0Wn8eF6nEHAvdq52e3q2Nfl20eF6rbhep14XN3Lefs8t7dsa/7tlNuDKg+VLcjMLA916cHeqd0BPc7nhDoGujXG04E+ztvCOgNHe9PvnFg7HbzwOPxodib8bY349Oo/icIzjHdUI+t7/KUwWDz+lTcp9wI6Brg73jv7byh4O3+lEHX4zqOsTlcRBjskqtfCCGEEOIMGRMziFvwADFX3U7r/o007/wMd3MtplGTiJwwF/PoyWh0hr4ruoBpzWH+9QEu+TZtBV9h3fp33PUVNG/7B83b/0lozmVEXHIjxqRRZ1ynqqq4qkuwFe3EdmQXzuNF3c8ZGoVl9FQsY6ZhTs/zr03Wdb9WQ2ZqJJmpkXxrtn9bU4uDQ2WNHCz158cvqrDS0u5i+4Fqth+o9pfTKGQkd87GjyY7PZrYCNO5rwtwEl1YFGET5hA2YQ6q6sNVXRpY0NZRcQiPtYaW3atp2b3an4s/Zaw/gD9qEsakUShKcNszUCRoL4QQQoihSVFQtDo0JguagUxEfxJVVVG9/hsC/kC+s1tQ39d5U6DzRoHbhc/j9G9zOzv2O/0/Hpc/hVAP+zrf4+u8FaAGbhD4em1h/0UCdRuhrss2RWdA0eq6PEmg96cV6nx/8met/qRjT/qsM3Rs059IP9Tl84n9BhSdDjTBv3HQSatR0Bp0EMTvgJ2LTAshhBBCiP7RmEKImL4Afe4cDh48yLhx4wb0CdDhSNHpCZt4FaET5mI/uofmrX/HXrqftoKvaCv4ClN6HpGX3Ig5c3KPY2if24m9ZB+2IzuxFe3G29bYbb8xKbNjNv00DInp/Q5cR4WbmJmXzMw8/wK0bo+Xo5XN/iB+WSOHShtpaHZQVNFMUUUzKzeVBMpqNQoGfeeaU1qMek3Hq3+tKoPev56VQaf1H6PX+PfpOl87ynQep9d2/HSWiUE/+mqM464jUnXC8UI85ftwlO7D03gcR/lBHOUHadr4ARpzGOaMCf6Z+BkTQXfu6WcHigTthRBCCCG6UBTFPxv9PM36Ub2eLsF954mnBwLB/RPbux138g2Bjm3+fU7/kwQd231uF4qv+8K0gacKnLbTtGygdVmnQKvrciNAh6LVg1bv395lm6LTo2g6j/W/djuuaz09lOWksicfN5A3EoQQQgghhOiLoihYMidjyZyMs/oozdv+QVvBJhyl+6ku3Y8+NpWIS25EO2oair0Z2961NJftx1GW3+2JYUVv8genx0zFkjkVXVhUUNup12nJGhlN1shoIBOAuiZ7R0qdRg6WNnK0shmvT8XrU7E7vdidA/vccncJaJSriTfYyDFUMVZXRYZShcneGlhnAaBJG0N17GTGDcGFqyRoL4QQQggxiPxBY92A5VrsnCGenZ2NxWjoeFrADV43vq6pgbydTxO4/U8aeE7+fHIaoZO29/Ded9KxeLveOBikdQr64L9h0CW43xHwVxUN5tBkZCVaIYQQQghxPhgTRxH/nceInvMDmnesouWbNbjrK6j/51IUvYlIt4OWLsfrIuKwjJmGZfRUTCNzz3vqobgoM3FRKVw+OQUAt8eHw+XpWF/Kn3rS5eny3u1PUdnt1d25BpYXZ0dKy0B5j/ek951pL7043f41sVyeE88s+1Sodlqodo5mHaPR4CNdV0eW/jjZ+irStPVEeRtQq7cBd5zXvjoTErQXQgghhLgI+J8g6EhdM0htUFXfiRsB3W4UuPxPHHjdqJ6OV68bAu89J24KeLtsC9w48ICvy+dAPZ4un/1lOKku1O7JiPw3F9yoLvsp7TdY61B9wU5eJIQQQgghxOnpIuKImX8HUbP/hZY9a2nevhJvayMqCobkMYRlTccyehr6uBFD6qlRvU6D/jzfOFBV9USg/6QbAS6PF7fbh7PjtaK9BaoP4jXoz2sbz5QE7YUQQgghxHmhKBoUvRH0xsFuSoDq83a/AdB5E+CkgL/D1k5Jk51kzfBYuEoIIYQQQlxYNKYQIi/9DhHTv0Vz6QGO1jaTPXGqrA/QhaIogZz3fUvGZksbsutWSdBeCCGEEEJctBSNFkWj7fNGgmqzodqH5oBeCCGEEEJcPBStDkPSaFSrjE0vZMMmaO9yuXjnnXdYsWIF5eXlWCwWpk2bxoMPPkhubm6/61u1ahXvv/8+hYWFAGRlZbFo0SKuv/7605apr6/nd7/7HRs2bKC+vp7Y2FjmzJnDj3/8Y2JiYoJ6LiGEEEIIIYQQQgghhBAXn2ERtHe5XNx9991s376dmJgY5s6dS11dHWvWrGHDhg289tprXH755Wdc38svv8zrr7+OwWDgsssuA2Dz5s385Cc/4fDhwzz22GOnlKmsrOTWW2+lrq6OUaNGMX/+fAoLC/nggw9Yt24dH374IUlJSUE5lxBCCCGEEEIIIYQQQoiL07AI2r/xxhts376dvLw83n33XUJDQwFYuXIlTzzxBE8++SRr164NbO/Nzp07ef311wkPD2f58uVkZmYCUFxczMKFC1m6dClXXHEFkydP7lZu8eLF1NXVsXDhQpYsWYKiKKiqypIlS1i+fDlPPfUUb731VlDOJYQQQgghhBBCCCGEEOLiNORX0vJ4PLz33nsAPP30090C8zfccANXXnklTU1NfPTRR2dU35tvvgnAAw88EAiiA2RmZnL//fd3O6ZTQUEBW7duJTIyksWLFwdWYlYUhcWLFxMZGcmmTZs4dOjQOZ9LCCGEEEIIIYQQQgghxMVryAftd+/ejdVqJTU1lby8vFP2L1iwAIAvvviiz7qcTidbtmwB6DGffGddmzZtwuVyBbavX78egKuuugqjsfsiZUajkauuugqAtWvXnvO5hBBCCCGEEEIIIYQQQly8hnzQ/uBB/0rIp1tsNicnByCwyGtvSkpKcDqdREVFkZycfMr+5ORkIiMjcTgclJSUnNKG8ePH91hvZ9u6tuFszyWEEEIIIYQQQgghhBDi4jXkg/ZVVVUAJCYm9ri/c7vVaqW9vb3XuiorK3utq+u+zvN2fZ+QkNBrmc76z+VcQgghhBBCCCGEEEIIIS5eQ34hWpvNBoDZbO5xv8ViCbxvb28nJCTkrOvqWl/XGwCd5bqe60zL9PdcZ0NV1cD5zge73d7tVZwd6cfgkH4MHunL4JB+DA7px+CRvgyOwehHVVUDaykJIYQQQgghLh5DPmgv+uZ2uwMpfM6n0tLS837OC5H0Y3BIPwaP9GVwSD8Gh/Rj8EhfBsf57keDwXBezyeEEEIIIYQYfEM+aN85G/10s5q6zjDvbZb9mdTVtb6udXWWO91s9t7K9PdcZ0Ov1zN69OhzqqM/7HY7paWlpKen9/okgeid9GNwSD8Gj/RlcEg/Bof0Y/BIXwbHYPRjUVHReTmPEEIIIYQQYmgZ8kH7zkVcq6ure9zfuT0yMrLP4HdKSkqvdXXd13Xx2OTkZA4cOEBNTU2vZTrrP5dz9Zfb7UZVVYqLi8+6jv5SVRXw5+2XR7bPnvRjcEg/Bo/0ZXBIPwaH9GPwSF8Gx2D0o9vtlv9mF6nOMf7+/fvPy/k6f7+Liorkd+4cSV8Gh/Rj8EhfBof0Y3BIPwaP9GVwDEY/ulyuMzrXkF+Idty4cQAUFBT0uP/AgQMAZGVl9VlXRkYGRqORpqamHhd/raqqwmq1YjKZyMjIOKUN+fn5Pdbb2baubTjbc/WXoijn/X9ORVEwGAzyj8I5kn4MDunH4JG+DA7px+CQfgwe6cvgGIx+HIxxnhgazvd/e/l3InikL4ND+jF4pC+DQ/oxOKQfg0f6MjiG8hh/yM+0nzJlCpGRkVRUVLB//37y8vK67V+1ahUA8+bN67Muo9HIrFmzWL9+PZ9++il33313j3XNnj27W/7QuXPn8sorr7Bu3TqcTidGozGwz+l0sm7dOgDmz59/zufqr8mTJ591WSGEEEIIIcTQI2N8IYQQQoiL25Cfaa/T6Vi0aBEAzzzzDG1tbYF9K1euZOPGjURFRXHLLbcEtu/bt4/rrruO66677pT67rnnHgCWLVvWLaVMcXExy5Yt63ZMp9zcXC699FKsVivPP/984NEJVVV5/vnnsVqtzJ49m+zs7HM+lxBCCCGEEEIIIYQQQoiLl6J2RqCHMJfLxd1338327duJiYlh+vTp1NfXs3PnTvR6PUuXLuWKK64IHL9t27ZAoL+wsPCU+n7zm9+wbNmywGx4gC1btuB0OnnooYd47LHHTilTWVnJrbfeSl1dHZmZmWRlZVFYWEhxcTHx8fH8+c9/JikpKSjnEkIIIYQQQgghhBBCCHFxGhZBe/AH7t9++21WrFhBeXk5FouFqVOn8vDDD5Obm9vt2L6C9uBPT/Pee+8F9mdlZXHHHXdw/fXXn7YN9fX1vPLKK2zYsIGGhgZiYmKYM2cOjz76KDExMactdzbnEkIIIYQQQgghhBBCCHHxGTZBeyGEEEIIIYQQQgghhBDiQjfkc9oLIYQQQgghhBBCCCGEEBcLCdoLIYQQQgghhBBCCCGEEEOEBO2FEEIIIYQQQgghhBBCiCFCgvZCCCGEEEIIIYQQQgghxBAhQXshhBBCCCGEEEIIIYQQYoiQoL0QQgghhBBCCCGEEEIIMURI0F4IIYQQQgghhBBCCCGEGCIkaC+EEEIIIYQQQgghhBBCDBG6wW6AGB5cLhfvvPMOK1asoLy8HIvFwrRp03jwwQfJzc0d7OYNC263m23btrFhwwa2bdtGeXk5Xq+XxMREZs+ezT333ENKSspgN3NYUlWVO+64g23btgGwatUqMjMzB7lVw0draytvv/02a9eupaKiAoCEhASmTp3Ko48+SkJCwiC3cHg4evQob7zxBtu2baO2thadTkdaWhrXXHMNP/rRjwgJCRnsJg4JBQUFbNmyhf3795Ofn09lZSUAX3zxBampqactd+zYMV555RW+/vprmpubSUxM5Nprr+XBBx+8KPu2v/1YX1/Phg0b2LhxI/v376e+vh6DwcCYMWP49re/zcKFC9HpLs5h4dn+TnZ19OhRvvvd7+J0Opk4cSJ//vOfB7LJQgSNjPHPnYzxB4aM78+djPGDQ8b4Z0bG+MEhY/zguRDG+Iqqqup5PaMYdlwuF3fffTfbt28nJiaG6dOnU1dXx65du9Dr9bz22mtcfvnlg93MIW/Lli386Ec/AiApKSnwRWjfvn3U1tYSGhrKm2++yeTJkwezmcPS8uXLefrpp1EUBVVVZVDfD0VFRfzoRz+itraWkSNHkp2djdvt5tixYxQVFfGnP/2JadOmDXYzh7ydO3dy991343A4SE9PJysrC7vdzu7du2lrayMzM5MPPviAiIiIwW7qoHvooYf44osvTtne2+CpoKCA22+/nfb2dnJzc0lLS2Pfvn1UVlYyduxY/u///o+wsLCBbvqQ0t9+/Ld/+zf+8Y9/oNVqycnJYcSIEdTX17Nnzx5cLhfTp0/njTfewGw2n4/mDyln8zvZlc/n4wc/+AF79uxBVVUJ2othQ8b4wSFj/IEh4/tzI2P84JAx/pmTMX5wyBg/eC6EMf7FebtF9Msbb7zB9u3bycvL49133yU0NBSAlStX8sQTT/Dkk0+ydu3awHbRM0VRuPbaa/nRj37UbdDudDpZsmQJH3/8MU888QSrV69Gr9cPYkuHl+rqal566SUuv/xyjh49Grh7KvrW0tLCXXfdhdVq5b//+7/59re/3W3/sWPH5P/rM7RkyRIcDgcPPfQQjz76KIqiAGC1WrnrrrsoKCjgzTff5Iknnhjklg6+SZMmMXbsWMaPH09eXh4333wz9fX1pz3e6/Xy+OOP097ezhNPPMF9990H+INNjz76KOvXr+ell17i2WefPV+XMCT0tx8jIyN57LHH+N73vkdcXFxge0lJCXfddRc7duzg9ddf56c//en5aP6Q0t++PNkf//hHvvnmGxYuXMjy5csHsKVCBJeM8YNDxvjBJ+P7cyNj/OCRMf6ZkzF+cMgYP3guiDG+KkQv3G63OmPGDHXs2LHqvn37Ttl/7733qmPHjlXffffdQWjdhcNut6tTp05Vx44dq27btm2wmzOs3HvvveqkSZPUiooKde7cuerYsWPVoqKiwW7WsPDLX/5SHTt2rPrOO+8MdlOGtcbGRnXs2LFqbm6u6nQ6T9n/j3/8Qx07dqx6++23D0Lrhr5Zs2apY8eOVcvLy3vcv3r1anXs2LHqDTfcoPp8vm77ampq1JycHDUnJ0dtbGw8H80dsvrqx950/o7OnTt3AFo2/PSnL48dO6ZOmjRJve+++9StW7eqY8eOVb/3ve+dh1YKcW5kjH9+yBj/7Mj4/tzIGD84ZIx/bmSMHxwyxg+e4TjGl4VoRa92796N1WolNTWVvLy8U/YvWLAAoMdHTsSZM5lMpKenA1BbWzu4jRlGPvnkEzZu3Mhjjz0muUL7yel08vHHH2M2m7n11lsHuznD2pnOmouKihrgllyY1q9fD8C1114bmN3UKT4+nqlTp+LxeNi4ceNgNO+CkJ2dDcjfn7Pxn//5n4B/Jp4Qw4mM8c8PGeP3n4zvz42M8YNHxvgDS8b4A0/G+GdvqIzxJWgvenXw4EGA0y5ElZOTA0BhYeF5a9OFyOv1Bh77jI2NHeTWDA/19fW88MIL5OXlsWjRosFuzrCTn59Pa2srOTk5mM1mvv76a1588UV+8Ytf8Pvf/56jR48OdhOHjdDQUCZPnozb7ea1115D7bJUjNVq5e233wbge9/73mA1cVjr/Ds0fvz4Hvd3/n06dOjQeWvThaasrAyg2yO1om9/+ctf+Prrr3n88cdJSkoa7OYI0S8yxj8/ZIzfPzK+P3cyxg8eGeMPLBnjDzwZ45+doTTGl5z2oldVVVUAJCYm9ri/c7vVaqW9vf2iXN07GP7+97/T2NhIdHQ0U6ZMGezmDAvPPvssbW1tPPfcc2g0cv+xv4qKigCIiYnh0UcfZfXq1d32v/zyyzzwwAM89thjg9G8YeeXv/wl99xzD0uXLmXVqlVkZWXhcDjYtWsXZrOZF198kdmzZw92M4elvv4OJSQkdDtO9N+7774LwLx58wa3IcNITU0Nv/71r5k4cSI//OEPB7s5QvSbjPHPDxnj94+M78+djPGDS8b4A0fG+ANPxvj9N9TG+BK0F72y2WwAp11p2mKxBN7LgP7sVFRU8Otf/xqAn/70pxgMhkFu0dC3evVqVq9ezX333Rd45Ev0T3NzM3DiscQnn3ySb3/722i1Wj799FNefPFFli5dSnJyWBY2ygAAD65JREFUssweOQOZmZl88MEHPPbYY+zZs4fS0tLAvlmzZjF69OjBa9ww19ffoc6/O+3t7eetTReS9957j+3btxMZGcn9998/2M0ZNp5++mkcDgf/9V//JYElMSzJGH/gyRi/f2R8Hxwyxg8uGeMPHBnjDywZ45+doTbGH/wWCHERa2tr46GHHsJqtXLdddfx/e9/f7CbNORZrVaeffZZRo4cySOPPDLYzRm2fD4fAG63mwceeIB77rmHhIQEYmNjuf3223n88ccBWLp06WA2c9jYunUrN954I62trbz55pvs2LGDL7/8kmeffZavv/6a2267jU2bNg12M4XoZvPmzfz6179Go9HwwgsvyKOzZ+gf//gH69ev5+677yYrK2uwmyOEGIJkjN8/Mr4PHhnjB5eM8cVwJGP8szMUx/gStBe96pxlY7fbe9zfeXcUkBk4/eR0OnnwwQcpLCxk5syZvPTSS4PdpGHhhRdeoL6+nmeeeQaj0TjYzRm2us6g62mWTeeXy6qqKsrLy89bu4Yjq9XKY489hsvl4o033uDyyy8nPDychIQEbr31Vp599lmcTidPP/00Xq93sJs77PT1d6hz9o38Deqfffv28cgjj+DxeHj22We56qqrBrtJw0JjYyO//OUvSU9P56GHHhrs5ghx1mSMP3BkjN9/Mr4PHhnjB4+M8QeWjPEHhozxz85QHeNLehzRq+TkZACqq6t73N+5PTIyUv4x7Qe3282Pf/xjtm/fzqRJk1i6dKk8MnuGvvjiC4xGI0uXLj1lhkhdXR0A//7v/47ZbOaHP/wh11133WA0c8hLSUkBwGAwBPIFdhUSEkJ0dDSNjY3U1dUxYsSI893EYWPDhg1YrVZmzpwZ6NeurrnmGvR6PRUVFZSXl5Oenn7+GzmMJScn09zcTHV1dY+Py9fU1ASOE2fm8OHD3HvvvdhsNv793/9dHo/vh927d9PU1ITFYuGee+7ptq+lpQXw5xO+/fbbAXj99ddlfCSGJBnjDwwZ458dGd8Hj4zxg0fG+ANLxvjBJ2P8szdUx/gStBe9GjduHAAFBQU97j9w4ADAkHl0ZDjw+Xw8+eSTbNy4kezsbH7/+993mxEh+uZ0Otm+fftp9+/fvx+QBVd6k5OTA4DL5eoxV63X66W1tRVAfj/70DmgDAsL63G/TqfDYrHQ3NwcyDMqzty4ceM4ePAg+fn5zJkz55T9nX+fJP/tmSkrK+Ouu+7CarXy8MMPc9dddw12k4alyspKKisre9zX3t4e+BslM+/EUCVj/OCTMf65kfF9cMgYP3hkjD+wZIwfXDLGD46hNsaXoL3o1ZQpU4iMjKSiooL9+/eTl5fXbf+qVasAGTydKVVVeeqpp/j000/JyMjg7bffJiIiYrCbNazs3LnztPuuuuoqKisrWbVqFZmZmeexVcNPUlISubm5FBQUsG3btlMem9u5cydutxuz2cyoUaMGqZXDQ2eOwIKCAjweDzpd9z+tpaWlgYF8T7N0RO/mzp3Lxx9/zOrVq3n44YdRFCWwr7a2ll27dqHT6bjiiisGsZXDw/Hjx7nzzjupq6vjzjvv5NFHHx3sJg078+fPp7CwsMd927ZtY9GiRUycOJE///nP57llQvSPjPGDS8b450bG98EjY/zgkTH+wJIxfvDIGP/cDdUxvuS0F73S6XQsWrQIgGeeeYa2trbAvpUrV7Jx40aioqK45ZZbBquJw8qvfvUrPvroI1JTU/nDH/7A/9/e/cdUVf9xHH/xU6RoBrh11QJR701pzbTUcssmrjbWjImMJaH9YDoh59YW1DJk07Z0bf2R44+KINHcSByl060ZkRMQcF5vaxK3kZuBoMld7poVHLvfP/h28uaFBO/lHuD52Bjuc8/n8OaMHy/efs7nJCUlhbskTGIbN26UJO3evVtdXV3m+KVLl/TOO+9IktauXctt3f/hySefVFxcnLq7u/Xee+/JMAzzNY/Ho23btkmSlixZouTk5HCVOW6tXLlSqampcrvd+uijj8zx/v5+lZaWyjAMZWdnKzExMYxVWp/H49FLL72kixcvKjc3V2+++Wa4SwIQRmT84CLjw0rI+MFBxg8tMn5wkPEntgifz+cLdxGwtv7+fr3yyitqbW1VUlKSHnvsMV25ckWnT59WTEyMysvL+d/P23D8+HEVFRVJkpYuXTrk3myrVq3SqlWrxrK0CYOVOCNXVlamAwcOKD4+XosWLVJkZKScTqe8Xq8WLlyoqqoqTZ06NdxlWt7nn3+u0tJS/fXXX5oxY4YWLFigP/74Qy6XS16vV8nJydq3b59mz54d7lLDrqGhwW+/2nPnzmlgYEDz5883/3hcsWKF+fNSkr7//nvl5+fr+vXrSk9PV0pKilwul7q7u2W32/XZZ58NeevyRDXS61hUVKTjx48rNjZWmZmZfquZblZcXDzp/jgazddkIKy0x3hDxg8OMn5oke9Hh4wfHGT820fGDw4yfvBMhIzP9jj4T7GxsaqoqNAnn3yiL7/8UvX19YqPj1dGRoaKioqUnp4e7hLHhb8fXiENftMPZebMmQR6jJmysjItXrxY+/fvl9PplGEYSk1N1bPPPqsNGzZoypQp4S5xXMjJyZHdbtenn36qM2fO6Ntvv1VUVJRmzZqlnJwcFRQUsOru/zwej1wu1y3j7e3t5r//fbv2Qw89pLq6On3wwQdqbm6W2+3Wfffdp4KCAhUWFk7KhySO9Dr+/Tuov79fdXV1Q5731VdfnXSBfjRfk8BEQMYPDjI+rIiMHxxk/NtHxg8OMn7wTISMz0p7AAAAAAAAAAAsgj3tAQAAAAAAAACwCJr2AAAAAAAAAABYBE17AAAAAAAAAAAsgqY9AAAAAAAAAAAWQdMeAAAAAAAAAACLoGkPAAAAAAAAAIBF0LQHAAAAAAAAAMAiaNoDAAAAAAAAAGARNO0BAJNeV1eXHA6HHA5HuEsBAAAAEARkfADjWXS4CwAAjA/5+flqbW29rWM7OjpCXA0AAACAO0XGBwBromkPABgRm80mm80W7jIAAAAABAkZHwCshaY9AGBEsrOztWXLlnCXAQAAACBIyPgAYC3saQ8AAAAAAAAAgEWw0h4AEDJdXV3KyMiQNLgHZn19vSorK/XDDz/IMAzNmzdPL7zwglavXj3kOTo7O/Xxxx+rpaVFly9f1tSpU+VwOPTcc89pzZo1ioqKCjjPMAwdPnxYR44c0blz5+T1enXvvfcqJSVFK1euVE5OjhISEgLOPX36tD788EO5XC79/vvvSklJUW5urvLy8hQREXHnFwYAAAAYp8j4ABB6NO0BAGOiurpaO3fu1LRp0/TAAw+ot7dXLpdLLpdL3333nbZt23bLnKNHj6q4uFgDAwOKj4+X3W7X1atX1dbWpra2Nh07dkzl5eWKi4vzm+fxeFRYWCin0ylJmj59uh588EF5PB6dOXNGbW1tSk9P19KlS2/5mIcOHdJbb72le+65R7NmzdLFixfldru1Y8cOdXd3q6SkJDQXCAAAABhnyPgAEBpsjwMAGBO7du1SYWGhGhsbVVtbq5MnT6qsrEyRkZGqrq7WsWPH/I7v7OzUG2+8oYGBAeXk5KixsVGHDh3S119/rcrKSiUkJKixsVG7d+/2m+fz+bR161Y5nU7ZbDZVVVXp5MmTOnjwoOrr69XS0qLt27crOTk5YJ3bt29XSUmJmpqaVFtbq+bmZr322muSpMrKSl24cCE0FwgAAAAYZ8j4ABAaNO0BACOyZ88eORyOId8KCwsDzluyZIm2bt2q6OjBm7wiIiL0/PPPa+3atZKk8vJyv+MrKir0559/ym63a8eOHYqPjzdfe+KJJ8zVMDU1Nbp8+bL52jfffKPW1lbFxsaqoqJCjz/+uN95ExIStG7dOs2ZMydgnatXr9aLL77od0vupk2bZLfb5fP51NDQcJtXCgAAABgfyPgNt3mlAGBs0LQHAIyIzWbTokWLhnybO3duwHkbNmwYdtztdqunp8ccP3HihCRp/fr1AfeYzMrKUlJSkgYGBtTU1GSOf/XVV5Kkp59+esjQPpy8vLyA44888ogksQoHAAAAEw4Zn4wPwFrY0x4AMCLZ2dnasmXLiOfNmzcv4Pjs2bMVHR0twzDU2dkpm80mr9erX375RZJkt9sDzouJiVFaWpr6+vr0008/meNut1vSPwF8pFJTUwOOJyUlSZJ+++23UZ0XAAAAsCoyPhkfgLWw0h4AMCaG2l8yKipK06ZNk/RPWL45NA81Txp8+NS/j7927ZqkwVtkR+PmW3RvFhk5+CvT5/ON6rwAAADAREPGB4DQoGkPABgTV65cCTh+48YN/frrr5Kku+66y+/9cPMkmSt1bj7+7rvvliR5vd47qhcAAADA8Mj4ABAaNO0BAGPixx9/DDh+/vx5GYYhSeb+lAkJCeYKm79vhf03wzDMW2bT0tLMcYfDIUlyOp3BKRwAAABAQGR8AAgNmvYAgDGxd+/eYcftdrtsNps5vmLFCvP1QLerfvHFF+rr61NMTIyWL19ujj/zzDOSBh9WdfM+mAAAAACCi4wPAKFB0x4AMCZaWlq0Z88ec8WNz+dTTU2NDh48KEnavHmz3/Evv/yypkyZIrfbrdLSUl2/ft18rbm5Wbt27ZIk5ebmmit2JOmpp57SsmXL1N/fr4KCArW0tPid99q1azpw4IA6OztD8nkCAAAAkwUZHwBCIzrcBQAAxpfa2lo1NTUNe8zbb7+tBQsW+I2VlJRo586dqq6u1v3336/e3l5zv8p169YpMzPT7/g5c+bo3XffVXFxsWpqanTkyBGlpaXp6tWr+vnnnyVJy5cv1+uvv37Lx3///fe1efNmnT17VuvXr9f06dNls9nU19en3t5e3bhxQ3v37jVv1QUAAAAmMzI+AFgLTXsAwIj09PSop6dn2GMCPSAqPz9fM2bMUFVVldrb22UYhh5++GHl5eUpKysr4HkyMzNlt9tVUVGhU6dOqaOjQ3FxcXr00UeVlZWlNWvWKCoq6pZ5iYmJ2rdvn+rq6nT48GF1dHSovb1diYmJWrx4sTIyMpSenj6qzx8AAACYaMj4AGAtEb5Am4gBABAEXV1dysjIkCR1dHSEuRoAAAAAd4qMDwChx572AAAAAAAAAABYBE17AAAAAAAAAAAsgqY9AAAAAAAAAAAWQdMeAAAAAAAAAACL4EG0AAAAAAAAAABYBCvtAQAAAAAAAACwCJr2AAAAAAAAAABYBE17AAAAAAAAAAAsgqY9AAAAAAAAAAAWQdMeAAAAAAAAAACLoGkPAAAAAAAAAIBF0LQHAAAAAAAAAMAiaNoDAAAAAAAAAGARNO0BAAAAAAAAALCI/wEsoaR4hdXz/gAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Activation: LeakyReLU, optimizer: adam_optimizer, batchnorm: true\n", + "Activation: LeakyReLU, optimizer: adam_optimizer, batchnorm: false\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABe0AAAGgCAYAAAA3q0zLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVyVZf7/8deBAwcQFQU3cNdABS1xydwXyqWaUmu0abTFStv3zfqW9iudmilrtEZLy7QprXGpTCt3wx01FVRURENQFBWV7bCc8/uDzglihwOH5f18PHxU931d1/05lzrzOR+u+7oMVqvVioiIiIiIiIiIiIiIOJ2LswMQEREREREREREREZFcKtqLiIiIiIiIiIiIiFQTKtqLiIiIiIiIiIiIiFQTKtqLiIiIiIiIiIiIiFQTKtqLiIiIiIiIiIiIiFQTKtqLiIiIiIiIiIiIiFQTKtqLiIiIiIiIiIiIiFQTKtqLiIiIiIiIiIiIiFQTKtqLiIiIiIiIiIiIiFQTKtqLiEitMmHCBIKCgli+fLmzQxERERERqXGWL19OUFAQEyZMKHCvIrn20KFDCQoKYufOnY4Is9SCgoIICgri9OnTVfpcEZGKMDo7ABERqbmCgoLK1W/mzJmMGTPGwdGIiIiIiNQuL7/8MsuXL+faa6/l66+/LlWfv/71r+zfv58777yTN998s5IjdJ7Tp0+zYsUK6tevz7333uvscEREHEpFexERKbfQ0NBCr+/duxeAtm3b0rhx4wL3fX19Ky2mFi1a0K5dO+rXr19pzxARERERqQpjxoxh+fLl7N+/n5iYGDp06FBs+5iYGPbv3w/A2LFjHR5Pdcq14+PjmTNnDgEBAcUW7du1aweAm5tbFUUmIlJxKtqLiEi5ffXVV4Vet63Anzx5cpWvqH/nnXeq9HkiIiIiIpWlV69etGnThlOnTrFixQqee+65YtsvW7YMgA4dOtC9e3eHx1MTc+0ff/zR2SGIiJSZ9rQXEREREREREammbItgvv32W3Jycopsl5OTw3fffZevj4iI1Ewq2ouISJXKewDViRMnePHFFxk4cCDBwcG89NJL9nYRERG8/fbb3HHHHfTv35+QkBD69u3LQw89xIYNG4ocv6jDsXbu3ElQUBBDhw4FYP369UyYMIGePXty3XXXceedd/LDDz9UzocWERERESmn0aNH4+rqyrlz5wgPDy+y3ZYtWzh//jxGo5Hbb7+ds2fP8vnnnzNp0iTCwsLo1q0boaGhjBkzho8++oiUlJQyx1LSQbQ7d+7k/vvvp2fPnnTv3p2xY8fyv//9r9gxU1NT+fbbb3nmmWcYOXIkPXr0oFu3btx0001MmzaNuLi4QuOYOHEikLtNju2wWduvvIfdlnQQ7ZYtW5gyZQp9+/YlJCSEfv368cgjj7B9+/YiP6O+V4hIZdP2OCIi4hS//vor//nPf8jJyaFjx440bNgQg8Fgv//oo4+SnJyMj48PTZo0oWnTppw5c4bNmzezefNmHnroIZ599tlyPXvOnDnMnj0bPz8/WrduTVxcHAcOHOCZZ57h0qVL/P3vf3fUxxQRERERqZBmzZrRr18/tmzZwvLlyxk0aFCh7WyF9IEDB+Ln58fbb7/Np59+ioeHB35+fgQGBpKcnMyRI0eIiorihx9+4Msvv6Rhw4YOifObb77h//7v/7BardSvX5/27duTmJjIK6+8wtGjR4vst2vXLl544QWMRiO+vr60adOG9PR0EhIS+Oqrr1i1ahWffvop3bp1s/exfZajR4/i7u5OSEhIvjFLu+f+W2+9xaJFi4Dcc7c6derE6dOnWb9+PevXr+fhhx/mqaeeKrK/vleISGVR0V5ERJzigw8+YOTIkbz++us0aNAAgIyMDPv95557jj59+tCqVat8/bZt28Zzzz3Hxx9/zLBhw7juuuvK9Nxz587xySef8K9//Ytbb70VgOzsbN566y2+/PJL3n33XW6//Xa8vb0r9gFFRERERBxk7NixbNmyhQ0bNnD58uUChfaLFy+yceNGe1vILd4PGTKEHj164Orqam975swZ3njjDTZs2MC7777LG2+8UeH4YmJimD59OlarlQkTJvDCCy/g7u6O1Wrl66+/Zvr06fkW6OTVpk0b/v3vf9O/f3/q1atnv56SksKCBQv46KOPeOmll/jhhx/sY/zf//0fO3fuZOLEiTRp0qTIs7aKs2LFChYtWoSrqyv/93//x7hx43BxcSEnJ4dFixbx9ttv85///IdOnToxYsSIAv31vUJEKpO2xxEREado164db7/9tr1gD+Dh4WH/9zvvvLNAwR6gb9++PP3000Buol1WWVlZTJ482Z5YAxiNRl566SUaN25MWlpavtdpRUREREScbejQoTRq1IjMzExWrVpV4P73339PVlYWfn5+DB48GIAbbriB3r175yvYA7Ro0YL33nsPNzc3vv/++2L3yS+tBQsWkJWVRZcuXXj11Vdxd3cHwGAwMG7cOMaOHUt2dnahfdu3b8/w4cPzFewBvL29efLJJwkNDSUmJoYDBw5UOM68PvroIwDGjRvHXXfdhYtLbonM1dWV++67z/594cMPPyy0v75XiEhl0kp7ERFxittvvx2jsfj/Gzp+/Dg//vgj0dHRJCcn2xN92/6bhw8fLtez//a3vxW4ZjKZ6NKlC+Hh4fz222/lGldEREREpDK4u7tz6623smjRIpYvX87dd9+d775ta5y//OUv+XLslJQUVq9ezb59+zh37hzp6elYrVYgt6CelpbGyZMn6dChQ4Xi27JlC0CR28Hcc889fP3110X2z8nJYePGjWzfvp24uDhSU1OxWCwAnDp1CoBDhw5x7bXXVihOm5iYGHvOf9999xXaZtKkSXz33XccPXqUhIQE/P39C7TR9woRqSwq2ouIiFNcc801xd7/17/+xfz58+1fKgqTnJxc5uc2atQIHx+fQu/5+voCuYdhiYiIiIhUJ2PHjmXRokVERkZy7Ngxez596NAhjhw5Ym9js3v3bp588kkuXLhQ7Ljlyanzunr1KufPnweKzvHbtWuH0WgsdLX9uXPnmDx5MocOHarUOPOKjY0Fct/0bd26daFtOnbsiKurKzk5OZw4caJA0V7fK0SkMml7HBERcQpPT88i7/3www988sknGAwGHnvsMb799lv27NnD4cOHiY6OZuHChQBFvmJbHC8vryLv2V6JLe4HBSIiIiIiztCpUyeCg4OBP1bW5/33a6+9lo4dOwK5K+yfeOIJLly4wA033MBnn33Gtm3biIyMJDo6mujoaFq0aAGUL6fOK29h2las/jNXV9ciC9wvv/wyhw4dolWrVrz33nts3LiRgwcP2uO87bbbHBJnYTEXFS/kbnXTqFGjfO3z0vcKEalMWmkvIiLVju2Lx7333svjjz9e4L4jV9mIiIiIiNQUY8eOJSoqiu+++45nn30Wi8XC999/b79ns3nzZi5evEiLFi2YO3duvrOjILeYfPnyZYfElHcv+gsXLhAQEFCgTU5OTqE5/Pnz5wkPDwfgP//5T6Er9Ssj97fFXNxbCNnZ2Vy6dClfexGRqqKV9iIiUu2cPn0agF69ehV6f//+/VUZjoiIiIhItXDLLbdgMplISkpiy5YtbNiwgeTkZDw9Pbn55pvt7Wz5dNeuXQsU7AGOHj1KWlqaQ2KqX78+TZo0AXLPpCpMbGxsoSvlbXH6+PgUWrDPzs4mMjKy0DENBkN5Q6Z9+/YAZGRkFLnv/PHjx+2H9FZ0z38RkbJS0V5ERKod29Y5tr0x87p48SIrVqyo6pBERERERJyuYcOGhIWFAbBixQr7G6o33XQT3t7e9na2Qn1h+TTAggULHBrXgAEDAPjiiy8Kvb9o0aJCr9vy/pSUFNLT0wvcX7lyZZGr4W2fsbB+JWnfvj1t2rQB4LPPPiu0je16YGCgfSshEZGqoqK9iIhUO7YV9vPmzbMfEgUQFxfH5MmTy5WYi4iIiIjUBrZtcDZu3GjfWibv1jjwRz69b98+li5dar+emZnJ+++/z/fff4+bm5vDYrr//vtxc3MjKiqKmTNnkpmZCeRuw/PNN9/wv//9D6Ox4A7NHTt2pFGjRmRnZ/PGG29gNpvt93788UfefPNNTCZToc9s3bo1BoOBixcv2g/iLYuHH34YgKVLl7JkyRL7/vMWi4XPP/+cb7/9FoBHH320zGOLiFSU9rQXEZFq54EHHmDNmjXEx8dzyy230LZtW1xcXDh+/Dje3t68+OKLvPHGG84OU0RERESkyt1www34+/uTkJAA5Bave/funa9Nly5duO222/j222957bXXmDNnDk2bNuXUqVNcvXqVp556im+++Yb4+HiHxHTNNdfw6quvMm3aNBYuXMjy5ctp06YNiYmJnDt3jnvuuYd169YVeJ7RaOS5557jlVdeYfny5axdu5bWrVuTlJREYmIi/fv3p3Hjxnz33XcFnunj48PgwYPZuHEjd9xxB9dcc439bYOpU6fSuXPnYmMePXo0hw4dYtGiRbz++uvMnj2bFi1aEB8fz8WLFwGYMmUKI0aMcMgciYiUhVbai4hItdOsWTOWLl3KrbfeSoMGDexfLm6//XZWrFhBx44dnR2iiIiIiIhTuLi4MHr0aPt/jx49utD93WfOnMlzzz1Hu3btuHTpEnFxcXTp0oUPP/zQvsrckcaPH89nn31G3759ycnJISYmhqZNm/Lmm28yderUIvvdcccdfPjhh3Tv3p2srCxiY2Np1KgRL7zwAvPmzcPV1bXIvm+//TZ///vfad68OceOHWPXrl3s2rWLK1eulCrmV155hY8//pghQ4ZgsVg4fPgwBoOBYcOGsXDhQp5++ukyz4OIiCMYrLb3f0RERERERERERERExKm00l5EREREREREREREpJpQ0V5EREREREREREREpJpQ0V5EREREREREREREpJpQ0V5EREREREREREREpJpQ0V5EREREREREREREpJpQ0V5EREREREREREREpJowOjsAqZh9+/ZhtVpxc3NzdigiIiIi4kBZWVkYDAa6d+/u7FCkiinHFxEREamdSpvja6V9DWe1WrFarVX6vMzMzCp9Zm2luXQMzaNjaB4dR3PpGJpHx9FcOoYz5rGq8zypPpTj11yaS8fQPDqG5tFxNJeOoXl0DM2j41TnHF8r7Ws42+qbrl27Vsnz0tLSOHz4MB07dsTLy6tKnllbaS4dQ/PoGJpHx9FcOobm0XE0l47hjHk8ePBglTxHqh/l+DWX5tIxNI+OoXl0HM2lY2geHUPz6DjVOcfXSnsRERERERERERERkWpCRXsRERERERERERERkWpCRXsRERERERERERERkWpCRXsRERERERERERERkWpCRXsRERERERERERERkWpCRXsRERERERERERERkWpCRXsRERERERERERERkWpCRXsRERERERERERERkWrC6OwAREREpGhZWVnk5OQ4O4wqZzab7f90cdEag4rQXDpGRefR1dUVNzc3R4clIiIiNZByfOWlFaF5dJzqnOOraC8iIlINXblyhaSkJHsSUddYLBaMRiMJCQlKRCtIc+kYjphHk8mEn58fDRo0cHB0IiIiUhMox1de6giaR8epzjm+ivYiIiLVzJUrV4iPj8fb2xs/Pz/c3NwwGAzODqtK5eTkYDabMZlMuLq6OjucGk1z6RgVmUer1UpWVhaXL18mPj4eQIV7ERGROkY5vvJSR9E8Ok51zvFVtJcyyTwbQ709X5PdfDJ4tXd2OCIitVJSUhLe3t60bNmyziXyNrbXhT08PJSIVpDm0jEqOo+enp7Ur1+f06dPk5SUpKK9VCvmUwept3clOa0eAy8vZ4cjIlIrKcdXXuoomkfHqc45vt6hkDIxH9+D+/njpP36s7NDERGplbKysjCbzTRs2LDOJvMitZXBYKBhw4aYzWaysrKcHY6IXcbxCNzPHSV17xpnhyIiUispxxepvSorx1fRXsrE6NcKgKyzMU6ORESkdrL9pF8HVorUTra/23Xx8DmpvkxtuwGQcWQHVov+bIqIOJpyfJHarTJyfBXtpUzcWnQAIOvcKSzZmU6ORkSk9tIKHJHaSX+3pToytemGxeiBJfUSGb8dcnY4IiK1lvIAkdqpMv5uq2gvZeLaoAkWdy+w5JB5NtbZ4YiIiIiISAUZjG5kNe8EQEpUuJOjEREREREV7aVMDAYD2T4BAGTEH3VyNCIiIiIi4giZLboAkHpkO9ZsnbkgIiIi4kwq2kuZ5TTMLdqbVbQXEREREakVshu3xqVeIywZqaTF7HN2OCIiIiJ1mor2UmZaaS8iIs4ydOhQgoKCCAoK4sCBA4W2OX36NEFBQfTr169SY9m5cydBQUG89NJLlfqcyrB8+XKCgoKYPXu2s0MRkerC4IJHpz4ApET94uRgRESkrlB+7xjK72sfFe2lzLIbtgCDgZwrSWRfueDscEREpI56//33nR1ClZk9ezZBQUEsX77c2aGISC3mGdQXgLRjEVjMaU6ORkRE6hrl9yJ/UNFeys7ojtGvFQDmhGNODkZEROoiDw8Ptm7dyu7du50diohIrWFs2gY3X3+s2ZmkRu9ydjgiIlKHKL8XyU9FeykXt+YdAW2RIyIiznH33XcDdWs1johIZTMYDHgHDwC0RY6IiFQt5fci+aloL+Xi1qIDoMNoRUTEOUaPHk3btm2JiIjgl1/KVlg6dOgQTz31FP379yckJIT+/fvz9NNPc/jw4XLHc/HiRV577TUGDBhA165dGT58OHPnziUzM7NA25MnTzJnzhzGjx9vj6Fv3748/PDDREREFGg/dOhQ5syZA8DLL79s3/OzsNdpT506xWuvvcaNN95It27d6N27N2PHjuWjjz4iOTm50NgTExN5+eWX6devH127dmXkyJEsWrSo0LYTJkwgKCiI06dPs3nzZv72t7/RvXt3QkNDmTRpEgcPHixyjnbs2MGUKVPo06cPISEhDB48mKlTpxIXF1egrW3f0gkTJpCamso///lPbrzxRkJCQnjkkUcAeOmllwgKCmLnzp3s2rWLe++9lx49etCrVy8eeeQRTp48CYDFYuHTTz/l5ptvplu3bgwYMIB//vOfhf7eiAh4B/cHID32ANkpyc4NRkRE6gzl98rvld/np6K9lIt7i9yV9uYzMVhzsp0cjYiI1DUuLi489thjAHzwwQel7rdmzRr++te/smbNGpo1a8bw4cNp2rQpq1ev5s477+Tnn38ucyzJycnceeed/PTTT3Tv3p1+/fpx7tw5Zs2axSOPPEJOTk6+9kuXLmX27NlcvXqVzp07ExYWhr+/Pxs2bGDixIn88MMP+doPHz6cTp06ARAaGsro0aPtv1q3bm1vt27dOv7yl7+wdOlSrFYrQ4YMITQ0lPT0dObPn8/RowV/0J6QkMDYsWPZvn07vXr1IjQ0lLi4ON566y0+/PDDIj/z0qVLmTx5MhaLhcGDB9OiRQvCw8OZMGECMTExBdovXLiQe+65h02bNtG+fXtuuukmvLy8WLZsGbfffjt79+4t9DkZGRlMmDCBJUuW0KFDB4YOHYqfn1++NuvXr+fee+8lNTWVgQMH4ufnx/r16/n73//OxYsXeeqpp/j3v/9NQEAA/fr1IyMjg/nz5/P6668X+flE6jK3xv6YWnQEq4XUw9ucHY6IiNQRyu+V39sov/+dVWq0AwcOWA8cOFBlz0tNTbVGRERYU1KuWmP/NcEa8+YYa0ZCTJU9vzaxzWVqaqqzQ6nRNI+OoXl0nIrOZXp6uvXQoUPW9PT0IttYLBZrekZWjfhlsVjKNQ/Z2dnWlJQUa3Z2dr7rQ4YMsQYGBlqPHz9uzcnJsd5yyy3WwMBA69q1a+1t4uLirIGBgda+ffvm63v27FnrddddZw0MDLSuWLEi372vv/7aGhgYaO3evbs1MTGxVDHu2LHDGhgYaA0MDLTefffd1qtXr9rvnTlzxnrjjTdaAwMDrZ9//nm+fnv27LGeOnWqwHj79++3hoaGWnv16mVNS0vLd+/f//63NTAw0Lps2bJCY/ntt9+s1157rTUoKMj6xRdf5Jv37Oxs665du6ynT5+2X1u2bJk99tdee82alZVlvxcREWHt1KmT9brrrivw5/jvf/+7NTAw0BoSEmLdtm2b/brFYrG+9tpr1sDAQOtLL72Ur09kZKS1c+fO1pCQEGt4eHi+Pu+//741MDDQOnDgQGtGRob9nu33MDAw0Dp69GjrhQsXCnzmF1980RoYGGgNCgqyrlmzxn49JyfH+swzz1gDAwOtN998s3X48OHWs2fP2u/Hx8dbe/fubQ0KCrLGxcUVOp+FKerPZFmV5u+4TVXneVJ9OCvHt/2dT975vTXmzTHW05+9XGUx1BbKqRxD8+gYmkfHUY5feTm+8nvl9zZVnd9brdU7xzc6+4cGUjMZDC6Y/K8h/cSvZMQfxdSivbNDEhGpE6xWKy/OCefwyYvODqVUOrdtzNuP9cdgMDh8bBcXF5544gkee+wxPvjgA4YNG1bsc7755hvS0tIYPHgwt99+e757d955J2vWrGHr1q188803PProo6WOw2Aw8Prrr+Pt7W2/1rx5c5599lmeeOIJFi1axMSJE+33QkNDCx2nW7du/P3vf2fu3Lns3LmTwYMHlzqGzz77jPT0dMaNG2ffDzSvLl264OHhUeC6v78/U6dOxWj8IyXs0aMHAwYMYPPmzURGRtK7d+8C/SZMmMANN9xg/2+DwcCTTz7JkiVL2LlzZ762X3zxBTk5OYwfP55+/frl6/P444/z448/cuLECdasWVPg9wXgtddeo3HjxkV+9ptvvpkRI0bY/9vFxYUHHniAVatWcezYMRYsWECzZs3yfeZbb72VxYsXs3v3blq2bFnk2FJ6mZmZfPbZZ3z33XfExcXh5eVFz549efjhhwkODi7zeKtXr2bx4sVER0cDEBQUxMSJExk5cmSRfZKSkpgzZw6bNm0iKSkJPz8/Bg8ezOOPP46vr2+B9mfOnGHjxo0cPHiQyMhIjh8/jsViYebMmYwZM6bUsZrNZm6//XZOnDgBwIEDBzCZTGX8xNVLvc79uLDuc8zx0WRdOotbo+bODklEpFZTjp9L+f0flN8rv1fRXsrNFBBI+olfMSccBUaU2F5ERMTRbrzxRoKDg4mKimL16tXcfPPNRbbdvXs3AH/5y18KvT969Gi2bt1qb1danTp14pprrilw/aabbsLT05O4uDgSExPzJZYZGRls2bKFyMhILl26RFZWFoB9n0bbP0tr69atANxxxx1l6nf99dcXWlxs3749mzdv5ty5c4X2GzRoUIFrjRs3xsfHp0Cf4ubdxcWF2267jVmzZrF79+4CSb2fnx/XXXddsZ9hwIABBa7ZXit2c3PL9+XDpm3btgBFfj4pm8zMTCZNmsSuXbvw9fVlyJAhnD9/nrVr17Jp0yb+85//FPr7VJRZs2Yxd+5c3N3d7V8Et27dylNPPcXRo0d58sknC/SJj49n3LhxnD9/nvbt2xMWFkZ0dDRfffUVGzZsYOnSpbRo0SJfn59++omZM2dW7MMDc+bMITY2tsLjVCfG+o3wbBtCeuwBUqLCadS/bP/bIiIiUl7K73Mpv8+vLub3KtpLuXkEBAI6jFZEpCoZDAbefqw/5syckhtXAyZ310pZZZ/XU089xYMPPsjs2bPzrcj4s8TERIAiV160atUqX7vSCggIKPS6wWCgRYsWnDhxgrNnz9qT+j179vDUU08Vm1CmpKSUKYYzZ84AfySrpfXnIqZNvXr1AIo8zMnf37/Ifn8+EKsi817Uc/LK+2UpbxyQ+6XA1dW1wH0vLy+g6M8nZfPJJ5+wa9cuunbtysKFC+2r0latWsWzzz7L888/z7p16/KtVitKREQEc+fOpUGDBva9TgFiYmIYP348H330EQMHDqR79+75+k2dOpXz588zfvx4pk2bhsFgwGq1Mm3aNJYsWcKrr77KggUL8vVp2bIlEydOJCQkhJCQEGbPns2aNWvK9NmjoqL49NNPGTduHEuWLClT3+rOO3jA70X7X/DpN7bS/7dcRKQuU46fn/J75feFxQF1K7/XQbRSbib/3J86Zl08Q07aVSdHIyJSdxgMBjxMxhrxqyqKPAMHDqRHjx7ExsaycuXKSn9eRaSlpfH4449z7tw5Jk+ezHfffceePXs4fPgw0dHRvPHGG0DuK9JVwcWlfKlgVRXvCnvl98+K+wzl/XxSetnZ2SxatAigwGvkt9xyC4MGDeLSpUssW7asVOPNnz8fgClTptgL9gAdOnRg8uTJ+drYREVFsWPHDnx8fJg6dar9z6fBYGDq1Kn4+PgQHh7OkSNH8vULCwvjlVde4bbbbqNDhw5l/nOdlZXF1KlTady4Mc8991yZ+tYE9YKux+DqRlbSaTLPnXJ2OCIitZ5y/D8ovy8/5fe1R935pOJwrp7euPnm/vRRq+1FRMSZbNtlfPjhh2RnZxfaxrZi4/Tp04Xet10vbGVHcRISEgq9brVa7StkbGNGRERw4cIFhg8fzjPPPENQUBDe3t725PPUqfIVxmwrasr62m1VqKx5l+ph7969JCcn07JlS7p27Vrg/qhRowBYv359iWOZzWa2bdsGUOje9baxwsPD862i2rhxIwBDhw4t8Dq4yWRi6NChAKxbt640H6nUPv74Y44cOcLrr79O/fr1HTp2deDiUQ/Pjrl79KZE/eLkaEREpK5Rfq/8vq5T0V4qxPT7FjkZKtqLiIgTXX/99fTt25f4+Hi++eabQtv06tULgO+++67Q+ytWrMjXrrQOHz5MTExMgevr1q0jPT2dli1b0rx57iGOly9fBrD/d16ZmZn8/PPPhT7Dzc0NgJycwl+Ztu37vXz58jLFXhWKm3eLxcK3336br53ULIcPHwYo8rDZLl26ANgPlC1ObGwsZrOZRo0aFfrqtL+/Pz4+PmRkZOTbQ94WQ0hISKHj2mIrTQyldfz4cf7zn/9w0003ERYW5rBxqxvvkNw9ZVOiwrFaLU6ORkRE6hLl98rv6zoV7aVC7PvaJ6hoLyIizvXUU08B8N///rfQ+3feeSdeXl5s2rTJnkjaLFu2jPDwcLy8vLjzzjvL9Fzbvtl596lMTEzkX//6FwATJkywX2/fvj2QewBm3j0vMzMz+X//7/8RFxdX6DOaNm0KUOiXB4B7770XDw8Pli5dypIlSwq8fnvo0CHOnj1bps/lKHfffTcuLi588803bN++3X7darXy0UcfERMTQ7NmzQpdWS3Vn20lWmFfVPNeT05OJjU1tdix4uPjix0r7728K+Bs/17Uai5bH9v4FZWTk8PUqVPx8PDg1VdfdciY1ZVXxx4YTF7kXEkiI+5IyR1EREQcSPm98vu6TAfRSoX8sdL+GFZLDgaXgodBiIiIVIVrr72WIUOG2LfK+LNmzZoxY8YMnn/+eV544QUWL15MmzZtOHnyJJGRkbi5ufH222/bE+jSGjJkCEePHiUsLIzevXuTlZXFjh07SEtLo1+/fvmS+uDgYAYNGsTmzZsZMWIEvXv3xmQysXfvXq5evcqECRNYvHhxgWf0798fDw8PPv/8c44dO0azZs0wGAyMHTuW0NBQWrduzT//+U+ee+45Xn/9dRYsWEBwcLB9RfLJkydZuHBhkYdqVaaQkBBefPFFZs6cyX333UfPnj1p1qyZfQWTt7c377//foFtTaRmSEtLA8DT07PQ+7ZDwQBSU1Pth4iVZ6y84+X9AYCtX95nldSnIj7//HP279/P9OnTK/W1b6vVav9slS09PT3fP/Py6NiT9KgtJP+6Eatf2yqJpyYrbi6l9DSPjqF5dJyKzqXZbMZisZCTk1Pkyuq6wFZ4tlqt9nmwXbPNT14hISEMHjyYTZs2FegHuYeSvvnmm7zwwgv2/L5169acOnWKyMhIjEYjM2fOxNfXt1TzbrHkvlWWN7/v1auXPb9PT0+nb9++/O1vf7OP16lTJwYOHMiWLVvs+b27uzv79u3j6tWr3H333fz3v/8t8Pn69u1rz++PHj1qz+/HjBlD9+7dCQgI4O233+aFF17g9ddfZ/78+QQHB2M2m+35/WeffWZfnGCLvbB5LO5+cfOf937ee507d+b555/n7bff5r777qNHjx72/P7EiRN4e3vz3nvvYTQa7f1sz//z72FhzyoqluL6l/T5i1LYn8nyyMnJwWKxkJ6ebo+luGeW5gwBFe2lQtybtMLg5oE1M52sC/G4N2nt7JBERKQOe/LJJ9m0aVORBz2NHDmS1q1b8/HHHxMREcHhw4fx8fFh5MiRPPTQQ/atPMrCx8eHr7/+mvfee48tW7aQnJxMQEAAt912Gw888ACurvl/oD1nzhzmz5/PqlWr2LZtG97e3vTu3ZvHH3+c/fv3F/qMpk2bMnfuXD788EP27dtHWloaVquVHj16EBqau+f0TTfdxIoVK1iwYAHbt29n3bp11KtXD39/fx588EECAwPL/Nkc5d577yUoKIiFCxfy66+/8uuvv+Lr68uYMWN4+OGHad1a+YPUDKdOneKDDz6gR48ejBs3rlKflZWVZd/6p6oUtm+u0TOA+kDqke0ktOgFWqRTKtVxD+KaSPPoGJpHx6nIXBqNRsxms+OCqcHyzoMtbzebzWRkZBRoO3nyZDZv3mxv9+c2gwcP5vPPP2fhwoXs3buXw4cP07BhQ2688Ubuu+8+OnXqVOi4hbGdmePt7c3ChQuZM2cOW7du5fLly7Ro0YJbbrmFiRMnkpWVRVZWlr3fO++8w6JFi1izZg3btm2jXr169OjRg8mTJxMZGQlAdnZ2vjjq16/PrFmz+OSTT/j111/t+X3Xrl3p3LkzAAMGDODLL79k0aJF7Ny5057ft2jRggcffJC2bdvax7TF8+fn2NjOBcjKysp331ZgLmr+i5r3cePG0a5dO7744gsOHjxoz+//8pe/MGnSJFq1apWvj+333GKxFPn7YSuaZ2ZmFtnGarUWeq+kz1+Siv7dNJvNZGdnc+LEiVK1d3d3L7GNwVpVxxdLpTh48CBAoQd/VYa0tDQOHz5M586d7auWEr54jYxTUfjd/DANrqu9e3o6WmFzKWWneXQMzaPjVHQubSuj27Vrh4eHRyVEWDPk5OSQkZGBh4dHgaK3lI3m0jEcNY9l+Tte1XleecycOZOFCxdyzz33MHXq1AL3r1y5Yt/PdO/evcWutF+/fj2PPPIInTt3ZuXKlYW2ue222zhy5Ahz585lyJAhAIwePZpDhw7x4YcfFrq//Lp163j00UcJDg4udl/Yp59+mtWrVzNz5kzGjBlT4L7VamXixIn8+uuvrFy5kg4dOuS7HxQUBMCBAwcq/ObIwYMHsVqtdOzYsULjlFZ6ejonT56kbdu2Bd50sFosnP/kCSxpl/G57Rk82nevkphqquLmUkpP8+gYmkfHqehcms1mEhISaNu2bZ3O8a1WK2azGZPJVKqVxlI4zaPjOGouMzIyOHnyJP7+/iXmgcePH8dgMJSY42ulvVSYR0AgGaeiMMcfAxXtRUREROoM24GxRe2parvu4+NTbMEesG/fVNz+rLZ7eQ+q9ff359ChQyQmJhbbp6LbQ129epVdu3bRoEEDpk2bVmS7+++/HxcXF5588kl69uxZ7ucZDIYq/0G6p6dnoc9MD+7Pld0/kHV8F41D+lVpTDVVUXMpZaN5dAzNo+OUdy5dXFxwcXHB1dW1Ti+isK2kNhgMdXoeKkrz6DiOmktXV1dcXFzw9PQs8Qdzpf3hgIr2UmEmf9u+9jqMVkRERKQusb2+HRUVVej9Q4cOAX+sQi9Ou3btMJlMXLp0iYSEhHyFecg9cDY5ORkPDw/atWuXL4Z169bZXz//M1tspYmhNK5cucKuXbuKvB8REQHkHr5bW3gHD+DK7h9IO7obS2Y6Lu5asSsiIiJSmVycHYDUfKaAawDIOh+HxVw1h2WJiIiIiPOFhobi4+PD6dOn7dv55LV69WoAhg0bVuJYJpOJvn37ArBmzZoix+rfv3++fUBt2+Rs2LChwH6kZrOZDRs2ABS6dU5ZNGjQgOjo6CJ/2Rw4cIDo6OgKP686Mfl3xNioOdYsM2lHI5wdjoiIiEitp6K9VJjRuxHGhk0BK+aE484OR0RERESqiNFoZOLEiQBMnz6dlJQU+71Vq1axefNmGjVqxNixY+3XDxw4wIgRIxgxYkSB8R544AEA5s2bR0xMjP16TEwM8+bNy9fGJjg4mD59+pCcnMyMGTPsB6ZZrVZmzJhBcnIy/fv3p1OnTg761HWPwWDAO3gAAClRvzg5GhEREZHaT9vjiEOYAq4h+/I5MuKP4tmum7PDEREREZEq8uCDD7Jjxw527drFTTfdRK9evUhKSiIiIgI3NzfeeecdvL297e3T09OJjY0tdKyePXsyefJk5s2bx+jRo+0r77dt24bZbOaRRx6he/eCB6HOmDGDcePGsWTJEnbv3k1QUBDR0dHExMTQtGlT3nzzzQJ9zp07x2OPPWb/71OnTgHw0UcfsWTJEgCaNGnChx9+WP7JqUW8g/uTHP4NaSd+JSftCq5eDZwdkoiIiEitpaK9OIRHyyBSD23FrH3tRUREROoUd3d3FixYwKeffsp3333Hhg0b8PLyYtiwYTz66KMEBweXabxnnnmGTp06sWjRInbu3AlAly5duOeeexg5cmShfQICAli5ciWzZ89m06ZNrF27Fl9fX8aPH88TTzyBr69vgT6ZmZns37+/wPW4uDji4uLs40oud7+WuDdvT+bZE6Qe3kaDHgXflBARERERx1DRXhwi72G0Vqu11Cchi4iIiEjN5+7uzpQpU5gyZUqJba+//vp8e8AXZtSoUYwaNapMMfj5+TF9+vRSt2/ZsmWJcZSFI8eqrryDB3Dx7AlSosJVtBcRERGpRNrTXhzC1LwtBlc3LOlXyb501tnhiIiIiIiIg3l36QcYyIg7TNblc84OR0RERKTWUtFeHMLg6oZ78/ZA7mp7ERERERGpXYwNfPFo0wWA1KitTo5GREREpPZS0V4cxiPgGgDtay8iIiIiUkt5Bw8AICXqFydHIiIiIlJ7qWgvDmMKsO1rf8zJkYiIiIiISGWo1+kGcDGSee4Umed+c3Y4IiIiIrWSivbiMB6/F+0zz53EkmV2cjQiIiIiIuJorp7eeHXsDmi1vYiIiEhlUdFeHMa1gR+u3o3AkkPm2RPODkdERERERCpB3i1yrFark6MRERERqX1UtBeHMRgMebbI0b72IiLiONHR0QQFBREaGkpOTk6hbe677z6CgoIYOnRokePceuutBAUFsW7dOgCWL19OUFAQs2fPLlM8p0+fJigoiAkTJpSpX3EmTJhAUFAQp0+fdtiYVWXo0KEEBQU5OwwRqSJe1/TE4O5B9uXzmOOjnR2OiIjUQMrvqzfl986nor04lG2LHB1GKyIijhQYGIiPjw+pqakcOnSowP2srCx+/fVXAOLj4zl79myBNsnJyRw7dgyDwUCPHj2Kfd7s2bMJCgpi+fLlDom/uinpy4+ISHFc3EzUC7oegJRIbZEjIiJlp/zesZTf1z4q2otDmQKuAbTSXkREHCtvIh4REVHgflRUFGlpaXTu3BmAXbt2FWgTERGB1WrlmmuuoVGjRgDceOONrF69mrvvvrsSoxcRqX3sW+Qc3oY1J9vJ0YiISE2j/F6keCrai0OZWnQEgws5Vy+SfeWCs8MREZFapHfv3gDs3r27wD3btYceeggoPPG3XevVq5f9Wv369enQoQONGzd2eLwiIrWZZ7tuuHg1wJJ2hfSTB50djoiI1EDK70WKpqK9OJSLmwn3Zm0ByND+liIi4kA9e/YEYM+ePQUOPoyIiMDNzY1hw4bRpk2bQhP/wpL6wva8HDp0KHPmzAHg5ZdfJigoyP6rsNdpMzMz+fe//82NN95ISEgIAwcO5M033yQlJaXcn3X16tX89a9/pXv37vTs2ZMpU6YU+tqwxWJh1apVPPvsswwfPpzu3btz3XXXceuttzJ79mzS0tLytbd9Xsh9zTjvZ/vz67Q5OTksW7aMiRMn0rt3b7p27crQoUN57LHH2LRpU5Gxr1y5kjFjxnDttdfSu3dvHn/8cU6dOlWg3c6dOwkKCuKll17i6tWrvPnmmwwaNIiQkBCGDRvGv//9b7KzC1+9e/XqVd5//31uvvlmunXrRmhoKOPHj+ebb77BYrEUaP/SSy8RFBTEzp072bZtG/fffz+9e/cmKCiIw4cP59vDNCMjg3fffZdhw4bRtWtXhg8fzqJFi+xjHT16lMcff5w+ffpw7bXX8re//c3+6rZIXWJwccW7Sz8AUiK3ODkaERGpiZTfK7+3cWZ+f+zYMZ588slql98bnR2A1D4eAYFknj2BOf4o3p37OjscERGpJTp37oy3tzfJyckcP36ca67J3ZLNYrGwd+9eunbtislkokePHixfvpyLFy/aV9ikpqZy+PBhIH9SX5jhw4ezbds2jhw5QmhoKG3atLHfa926db62WVlZTJo0iUOHDtGrVy86duzI3r17Wbx4McePH+ezzz7DYDCU6XN+/vnnLFq0iOuuu44hQ4Zw7NgxNm7cyNatW/n444+54YYb7G3T09N59tlnadiwIe3bt6dz586kpqYSGRnJnDlz2LhxI4sXL84X/+jRo1mxYgVeXl4MHz7cfs/2SjFARkYGDz/8MNu2bcPd3Z3Q0FB8fX05c+YMW7du5fLlywwePLhA7O+99x4LFiygR48eDB48mMjISH7++Wf27t3L999/X+iKpytXrjBu3DguXbpEz549ycjIICIigg8//JCzZ88yY8aMfO3Pnz/PhAkTiI2Nxc/PjyFDhpCens7OnTt59dVXCQ8P5/333y903n/44Qe+/vprOnXqxIABAzhz5ky+dllZWdx7772cOHGC3r17065dOyIiInjrrbe4evUq3bt355FHHqFly5bccMMNnDp1ij179nDvvfeybNkyOnToULrfZJFawjt4AFci1pAavQtLlhkXN5OzQxIRkRpE+b3ye3Befp+amkrv3r2ZNGkSAQEB1S6/V9FeHM4UcA3s+VH72ouIiEO5uroSGhrKli1b2L17tz2pj46O5sqVK/aVOj179mT58uXs3r3bnrTu27eP7Oxs2rdvj5+fX7HPefHFF5k9ezZHjhzhzjvvZMyYMUW23bdvH926dWPdunX2pPj8+fOMGzeO7du3s3v3bvtrv6X1xRdf8O9//ztfwv3xxx/z7rvv8sILL7B27Vo8PDwAcHNzY86cOQwaNAh3d3d7+4yMDKZPn87y5ctZvHgxEyZMsM9Nz549WbFiBY0aNeIf//hHoTHMmDGDbdu2ERwczIcffkiLFi3s91JSUjh4sPCtMJYuXcqyZcvo1KkTkLtK6YknnmDjxo18+eWXPPbYYwX6rF+/niFDhrBs2TI8PT0BiI2NZezYsSxfvtxeJLeZNm0asbGxDBkyhFmzZtn7xMXFMXHiRH788Uf++9//8ve//73Q+GbOnFng9/T06dNA7u9njx49WL9+PfXr1wfgyJEj3HHHHcyfP5+GDRvy2GOP8cADD9j7vv3223z66afMnz+fmTNnFjovIrWVKSAQY8OmZF8+R9qxCPvKexERkdJQfq/8HpyX33/88cd8/fXXTJkyhQcffBBXV1eg+uT32h5HHM4jIBCAzDMnsOZkOTkaEZHax2q1YsnMqBG//vyaa0XZVtHk3dPS9qqsLam3HWiV9xVa27+XtAqnrAwGA2+99Va+VSxNmjThb3/7G1D4gVkluemmm/Il9AAPPvgggYGBnDt3jh9//NF+3d3dnRtvvDFfQg/g4eHBa6+9htFoZO3atWV6/rlz51i2bJn9C0PehB7A29s732qgvJ544gl7Qm+L75FHHgFyX5ctjJeXF2+99ZY9OQdo164dt912G1arNd/v4+nTp1m/fj3u7u5Mnz49X59WrVrxzDPPALBw4cJCn9W/f/9iv6S5uLjw//7f/7Mn9ACdOnVi4MCBpKWl0aRJE+677758fSZPnlzs5xOpzQwGA97B/QFIifzFydGIiNRsdTXHV36v/N6Z+X3Tpk3tPwCxqS75vVbai8MZG7XAxdMbS3oK5sRTePh3dHZIIiK1htVqJWHRK5hP14xzQ0wtO+E/8c0yv0JalMKS+oiICFxcXAgNDQWgbdu2+Pn5FWiTt7+j+Pv7ExgYWOB6+/btgdwEuaxuvfXWAtcMBgO33nor7777LhEREdx+++357sfExPDLL78QFxdHWlqa/YuUm5sbJ0+eLNPzd+3aRXZ2NgMHDsTf379MfQcNGlTgWklzERISgq+vb6n6RUREYLVa6d27N82aNSvQ5+abb+aVV14hLi6Os2fP0rx583z3w8LCio3f39+/0Fdgba9Q9+1bcNs/Hx8ffHx8yvV7LVIbeIcMIHnbctJi9pGTfhVXz/oldxIRkXzqco6v/F75vTPz+/79+xe4V13yexXtxeEMBgMm/0DSY/Zijj+qor2IiMM5pgBeE4WEhODp6UliYiJxcXG0atWKiIgIAgMD862e6NGjB2vXruXq1auYTCYOHDgAUOZXWUvy51UqNvXq1QNyXx8tq7yvihZ2/ezZs/Zr2dnZvPbaayxbtqzMzylKQkICkPvlqKwK+xLg7e0N5O4nWZiyzKEtcS5qjlxcXPD39yc2NpbExMQCSX1JX1L+3N7Gy8sLgKZNmxYZa3JycrFji9RW7k1a4960DZnnTpF6ZAcNut/o7JBERGqoupnjK79Xfg/Oy+8L+0GBLVZn5/cq2kul8Aj4o2hPr1HODkdEpNYwGAz4T3wTa5bZ2aGUisHN5LBV9pC7suS6666z7yeZmZnJhQsXGDlyZL52PXv25KeffmLPnj14e3uTmZlJ69ati0zKysvFxbk7DX7++ecsW7aMjh078uyzzxISEkKjRo1wc3MDcleOnD9/vsriKc98VOUc2vYKLUpJsTj791ukuvIOGcjFDYtJifpFRXsRkXKoyzm+8vv8lN+XTW3O71W0l0ph+n1fex1GKyLieAaDAYN78clJbdarVy97Um9b3WHb59Im776XtpUgtj0xq7v4+Ph8+0ba2A5TyvvF5KeffgJg1qxZBV7jTUtLIykpqczPt61WKetrt1XBttLdNhd/ZrFYOHPmDFD0qhkRcTzvLv24uGExGacOkX3lAsYGBV+JFxGR4tXlHF/5vfJ75fcFVd8fJ0iNlrsljoHs5ERyUi87OxwREalF8u57+edDqmw6depEvXr1iIiIsO93WZZXZ20rWXJychwRcpmsWrWq0Os//PADkH/fzsuXc/8/trBXUFetWlXkIWFubm5kZ2cXeu/666/HaDSyfft2e4JcXfTs2RODwcDOnTtJTEwscH/NmjVkZGTQqlWrIl+FFRHHMzZsgkerzoCVlEPhzg5HRERqGOX3yu+V3xdUY4r2mZmZzJs3j5tvvplu3brRp08fHnvsMaKioso13urVq7nrrrsIDQ0lNDSUu+66izVr1hTbJykpiWnTpjF48GBCQkIYPHgw06ZN48KFC4W237ZtG6+88gqjR4+mb9++hISE0LNnT8aPH88XX3xR5N5PtYGLRz3c/AIArbYXERHHuvbaa3F3d+e3335jy5YttG7dusBe466urnTv3p2oqCj27t0LlO2QKtt4MTExjgu8lH766SfWrVuX79qCBQs4cuQITZo0Yfjw4fbr7dq1A2Dx4sX52h88eJB33323yGc0bdqUCxcu2L8U5NWkSRPGjh1LVlYWjz32WIHkOTU1le3bt5f5czlCy5YtGTp0KFlZWbz++utkZGTY750+fdr+me+9916nxCdSl3kHDwAgJfIXJ0ciIiI1jfJ75ffK7wuqEdvjZGZmMmnSJHbt2oWvry9Dhgzh/PnzrF27lk2bNvGf//yHAQMGlHq8WbNmMXfuXNzd3enXrx8AW7du5amnnuLo0aM8+eSTBfrEx8czbtw4zp8/T/v27QkLCyM6OpqvvvqKDRs2sHTp0gI/Bfvxxx/53//+R9u2bencuTMNGzYkKSmJvXv3sm/fPn744QcWLlyIyWSq2ARVUx4BgWQlncYcf5R6gY49zVtEROouk8lEt27diIiI4PLlywwbNqzQdj179iQ8PJysrCz8/f2LPNyoMP3798fDw4PPP/+cY8eO0axZMwwGA2PHjiU0NNRRH6VQf/vb33j00Ufp3r07AQEBHDt2jOjoaNzd3Xn77bfx9PS0t33ooYcIDw/ngw8+4KeffqJDhw6cO3eOPXv2MGrUKPbt20d8fHyBZwwbNoxFixYxevRounfvjoeHB40aNeK5554D4OWXXyY2NpZdu3YRFhZGjx498PX15cyZMxw+fJiQkBBuuOGGSp2HokyfPp0TJ06wceNGwsLC6NmzJ+np6ezYsYOMjAxGjBjB3/72N6fEJlKX1et8A0k/LyAzMZbMpNO4+5X+f3NFRKRuU36v/F75fUE1omj/ySefsGvXLrp27crChQvte1etWrWKZ599lueff55169bZrxcnIiKCuXPn0qBBA5YsWUKHDh2A3J+0jR8/no8++oiBAwfSvXv3fP2mTp3K+fPnGT9+PNOmTcNgMGC1Wpk2bRpLlizh1VdfZcGCBfn63H333Tz++OM0adIk3/XExETuu+8+9u7dy6JFi3jwwQcrMj3VlikgiKv7N2ilvYiIOFyvXr3sr8X+eb9Lm7yv1JZ1v8umTZsyd+5cPvzwQ/bt20daWhpWq5UePXpUelJ/7733ct1117Fw4ULWr1+Pq6srgwYN4oknniAkJCRf29DQUJYuXcqsWbOIiori1KlTtG7dmhdffJGJEycSFhZW6DOeeeYZANavX8+PP/5IdnY2AQEB9qTe09OTzz77jP/97398++23HDhwgKysLJo0acKAAQO44447KnUOitOkSRO++eYb5s+fz88//8z69esxGo106tSJO+64g7Fjx1brA6VEaitXrwZ4tb+OtON7SIn6hcaD7nJ2SCIiUoMov8+l/F75vY3BWtRmSNVEdnY2/fr1Izk5mf/973907do13/2HHnqIzZs3M3XqVO65554Sx5syZQobN27khRdeYNKkSfnuzZ8/n3/+85+EhYXx4Ycf2q9HRUUxZswYfHx82LJlS76V8WazmYEDB5KcnMy3335b6MEShVm5ciUvvvgi/fr149NPPy1Vn8IcPHgQoMC8VJa0tDQOHz5M586d8fLyKrZt5rnfOP3J0xjcPGj73CIMLq5VEmNNUZa5lKJpHh1D8+g4FZ3LjIwMYmNjadeuHR4edfMgKsjdazIjIwMPDw9cXfX/HxWhuXQMR81jWf6OV3WeJ9VHdc7xi5MS9QvnVr6PsVFzWj08B4PB4MAoawblVI6heXQMzaPjKMd3DOWljqF5dJzqnONX+x9T7N27l+TkZFq2bFnohxk1ahSQ+5OkkpjNZrZt2wbAyJEjixwrPDyczMxM+/WNGzcCMHTo0AJb2ZhMJoYOHQpQYH+q4tgOwHB3dy91n5rGzS8Ag7sn1qwMMs/HOTscERERERGpRF7X9MLgZiL70lnMCcecHY6IiIhIjVXti/aHDx8GIDg4uND7Xbp0ASA6OrrEsWJjYzGbzTRq1Ah/f/8C9/39/fHx8bH/dOTPMfz5lRUbW2yliQHg0qVL9q10Bg0aVKo+NZHBxRUP/44AmLVFjoiIiIhIrebi7kG9wN5A7qp7ERERESmfar+nfUJCAgDNmzcv9L7tenJyMqmpqdSrV6/IsWwHNRQ1lu1ecnIyCQkJBAUF5YuhWbNmxcZQ2EEQAPv27WPp0qVYLBb7QbTp6enceeed/PWvfy0yltrAFBBI+smDZMQfo0HoTc4OR0REREREKpF38ABSon4h9dA2fMPu1RaZIiIiIuVQ7Yv2aWlpAPlOUs4r715iJRXtSxor73ipqakF+hW1b1lhffL67bffWLFiRb5rEydO5Mknn3TI3lNWq9UeY2VLT0/P988S+bXJbX/6SJXFWFOUeS6lUJpHx9A8Ok5F59JsNmOxWMjJySEnJ8eRodUotiN3rFZrnZ4HR9BcOoaj5jEnJweLxUJ6ejoWi6XEZ9bFPcGlZvNsfy0unvXJSU0m/WQkXu2vdXZIIiIiIjVOtS/a1wa33XYbt912G1lZWSQkJLBmzRrmzZvHpk2bmD9/Pm3atKnQ+FlZWfYtfKrKyZMnS9XOkJmDD5BzMYEjB/Zhdau7B64UpbRzKcXTPDqG5tFxKjKXRqMRs9nsuGBqMM2D42guHaOi82g2m8nOzubEiROlal+bzz+S2sngaqRe5xu4uvdnUqJ+UdFeREREpByqfdHetoq9qBWLeVdvF7fKvjRj5R0v71i2fkWtFC+sT2Hc3Nxo06YNU6ZMoUWLFrzwwgtMmzaNzz77rNh+JXFzc6Njx44VGqO00tPTOXnyJG3bti32jYW8zu9pSs7lc7RraMTUpnMlR1hzlGcupSDNo2NoHh2nonNpNptJSEjAZDKVeOp8bWa1WjGbzZhMJq00riDNpWM4ch6NRiOtW7fGZDIV2+748eMVeo6Is3gHD+Dq3p9JPbIDy4gHcXEr/s+6iIiIiORX7Yv2tgNjz549W+h923UfH58Si+YBAQHFjpX3Xt6Dav39/Tl06BCJiYnF9rGNXxqjRo3i1VdfZfv27aSlpRW59U5pGAyGCvUvD09Pz1I/07NVJ1Iun4OkU3h1vr6SI6t5yjKXUjTNo2NoHh2nvHPp4uKCi4sLrq6uDtlCraaybT9iMBjq9Dw4gubSMRw1j66urri4uODp6VniD+b0QxapqTxadcLYwI/sK0mkxezFu9MNzg5JREREpEZxcXYAJencOXdldlRUVKH3Dx06BGA/NLY47dq1w2QycenSJfvhsnklJCSQnJyMh4cH7dq1KxBDZGRkoePaYitNDDZubm7Ur18fq9XKpUuXSt2vJjL5XwNARvxRJ0ciIlJz2PbPFpHaRX+3pS4wGFyoF9wfgJTIX5wcjYhI9aE8QKR2qoy/29W+aB8aGoqPjw+nT5/m4MGDBe6vXr0agGHDhpU4lslkom/fvgCsWbOmyLH69++fb//QIUOGALBhw4YC+5iazWY2bNgAQFhYWGk+EpD7uvOFCxfw8vKiSZMmpe5XE3kEBAJgjj+m/4MSESmBi0vu/zXrwFCR2sn2d9v2d12ktvIOHgBA2vE95GSkOjkaERHnUo4vUrtVRo5f7b8tGI1GJk6cCMD06dNJSUmx31u1ahWbN2+mUaNGjB071n79wIEDjBgxghEjRhQY74EHHgBg3rx5xMTE2K/HxMQwb968fG1sgoOD6dOnD8nJycyYMcNeeLZarcyYMYPk5GT69+9Pp06d7H3S0tJYtGhRvnhtoqOjee655wD4y1/+UusPGHNv1haD0R1LRgpZF884OxwRkWrNzc0NV1fXYs9fEZGaKz09HVdXV9zc3Jwdikilcm/aBrcmrSAnm9QjO5wdjoiIUynHF6ndKiPHr/Z72gM8+OCD7Nixg127dnHTTTfRq1cvkpKSiIiIwM3NjXfeeQdvb297+/T0dGJjYwsdq2fPnkyePJl58+YxevRo+8r7bdu2YTabeeSRR+jevXuBfjNmzGDcuHEsWbKE3bt3ExQURHR0NDExMTRt2pQ333wzX/vs7Gzeeust/vnPf9KlSxf8/f3Jzs4mPj6eQ4cOYbVa6d27Ny+88IIDZ6p6MrgaMbXoQEbcYczx0bj7+pfcSUSkjrKdU3L58mUaN26sPchFapGcnBwuX76Ml5eX9quXWs9gMOAdPIBLm74kNeoXGlxX8pvRIiK1lXJ8kdqrsnL8GlG0d3d3Z8GCBXz66ad89913bNiwAS8vL4YNG8ajjz5KcHBwmcZ75pln6NSpE4sWLWLnzp0AdOnShXvuuYeRI0cW2icgIICVK1cye/ZsNm3axNq1a/H19WX8+PE88cQT+Pr65mvv5eXFyy+/zK5duzh69ChHjx4lKysLHx8fBg4cyC233MItt9xSZ16NNgVcQ0bcYTLij1K/2xBnhyMiUq01bdqUkydPcurUKRo3bozJZKpzBb6cnBz7lnT6UlMxmkvHqMg8Wq1WzGYzFy9exGKx0LRp08oIUaTa8Q7uz6VNX5J+MpLsq5cw1m/k7JBERJxGOb7yUkfRPDpOdc7xa0TRHnIL91OmTGHKlCkltr3++uuJjo4uts2oUaMYNWpUmWLw8/Nj+vTppWprNBq59957uffee8v0jNrKlGdfexERKZ67uzstW7YkKSmJM2fq5rZiFouF7OxsjEZjnfkBd2XRXDqGI+axXr16NG/evNZvjShi4+bTDFNAEOb4aFIPb6Vh71ucHZKIiNMox1de6iiaR8epzjl+jSnaS83m4Z9btM88dwpLZgYu7h5OjkhEpHrz8vKidevWZGdnk52d7exwqlx6ejonTpygdevWeHp6OjucGk1z6RgVnUej0YjRqNRb6h7vkAGY46NJidyior2I1HnK8ZWXOoLm0XGqc46vbw5SJYwNfHGt70vO1QuYz8Tg2aZsWxqJiNRVdbXQZ7FYADCZTHh46Ae9FaG5dAzNo0j5eHfuy4WfP8V8JobMCwk630pEBOX4yqcqRvPoONV5LvUOhVQZD/sWOUedHImIiIiIiFQF13oN8Wx3LQCpUeFOjkZERESkZlDRXqqMbV/7DBXtRURERETqDO+Q/gCkRP2C1Wp1cjQiIiIi1Z+K9lJl8q60V7IuIiIiIlI31Au8HoPRnayLCWSePeHscERERESqPRXtpcq4N28HLq7kpCaTfeW8s8MREREREZEq4GLyxOuankDuansRERERKZ6K9lJlXNxMmJq1BcAcf8y5wYiIiIiISJXxDhkIQErUVqyWHCdHIyIiIlK9qWgvVcoUEARoX3sRERERkbrEq8N1uHh4k5NykYzfDjk7HBEREZFqzejsAKRu8QgI5ErEasyno50dioiIiIg4SGZmJp999hnfffcdcXFxeHl50bNnTx5++GGCg4PLPN7q1atZvHgx0dG5OWNQUBATJ05k5MiRRfZJSkpizpw5bNq0iaSkJPz8/Bg8eDCPP/44vr6+BdqfOXOGjRs3cvDgQSIjIzl+/DgWi4WZM2cyZsyYQp+Rnp7O1q1b2bhxI3v27CEhIQGDwUDLli0ZMmQI999/P40bNy7z560LDK5u1OvUh6u/riMl8hc823Z1dkgiIiIi1ZZW2kuVMgVcA4A5MRZrdpaToxERERGRisrMzGTSpEm89957XLp0iSFDhtC+fXvWrl3LuHHj+OWXsu1hPmvWLJ5++mkiIyPp3bs3vXv3JjIykqeeeooPPvig0D7x8fHcfvvtfPXVV3h6ehIWFoanpydfffUVo0eP5syZMwX6/PTTT0yfPp3ly5dz9OhRLBZLibGtWrWKRx99lP/9739YrVYGDx5Mnz59SEpK4pNPPuG2227j5MmTZfq8dYl3yAAAUo9s13cBERERkWJopb1UKaNPM1y8GmBJu4I5MRaPgEBnhyQiIiIiFfDJJ5+wa9cuunbtysKFC/H29gZyC9zPPvsszz//POvWrbNfL05ERARz586lQYMGLFmyhA4dOgAQExPD+PHj+eijjxg4cCDdu3fP12/q1KmcP3+e8ePHM23aNAwGA1arlWnTprFkyRJeffVVFixYkK9Py5YtmThxIiEhIYSEhDB79mzWrFlTbHxGo5E777yTiRMnEhj4Rx579epVnnrqKcLDw3nppZdYsmRJqeaurvFo1RnX+o3JuXqRtJi91Au63tkhiYiIiFRLWmkvVcpgMNgL9Wbtay8iIiJSo2VnZ7No0SIAXn/99XyF+VtuuYVBgwZx6dIlli1bVqrx5s+fD8CUKVPsBXuADh06MHny5HxtbKKiotixYwc+Pj5MnToVg8EA5OadU6dOxcfHh/DwcI4cOZKvX1hYGK+88gq33XYbHTp0sPcrzujRo3nzzTfzFewB6tevz4wZMwDYt28f8fHxpfq8dY3BxRXvLv0BSIkq2xsYIiIiInWJivZS5Uy/F+11GK2IiIhIzbZ3716Sk5Np2bIlXbsW3KN81KhRAKxfv77EscxmM9u2bQModO9621jh4eFkZmbar2/cuBGAoUOHYjKZ8vUxmUwMHToUgHXr1pXmI5Vbs2bN7PvZnzt3rlKfVZN5B+dukZN2bA8Wc5qToxERERGpnlS0lyqnlfYiIiIitcPhw4cBijxstkuXLgD2A2WLExsbi9lsplGjRvj7+xe47+/vj4+PDxkZGcTGxhaIISQkpNBxbbGVJoaKuHz5MpcvXwbAz8+vUp9Vk7k3b4ebbwDW7ExSo3c6OxwRERGRakl72kuVM7XoCBjIvnye7KuXMNZv5OyQRERERKQcEhISAGjevHmh923Xk5OTSU1NpV69ekWOZdtSpqixbPeSk5NJSEggKCgoXwzNmjUrNobK3rJm0aJF5OTkEBgYSKtWrSo8ntVqJS2talaip6en5/tnZTMF9iFr+zIuH9iMa8fata99Vc9lbaV5dAzNo+NoLh1D8+gYmkfHccZcWq3WUm3LqKK9VDkXkyfuTVuRee43zAlHMeoAKhEREZEayVZU9vT0LPS+l5eX/d9LKtqXNFbe8VJTUwv0y/uskvo42oEDB/j4448BePHFFx0yZlZWlv0tgqpy8uTJKnmOi7EJDQHzqUiO/Lobq6nkQ4prmqqay9pO8+gYmkfH0Vw6hubRMTSPjlPVc+nu7l5iGxXtxSlM/oFknvuNjPij1FPRXkRERERqqLNnz/LYY4+RmZnJpEmT6N+/v0PGdXNzo2PHjg4ZqyTp6emcPHmStm3bFvtDE0e6cOxnss6eoJX1EvU696qSZ1YFZ8xlbaR5dAzNo+NoLh1D8+gYmkfHccZcHj9+vFTtVLQXpzAFBHL113WY4485OxQRERERKSfbKvaiXinOu71LcavsSzNW3vHyjmXrV9RWMoX1cZRLly5x//33k5iYyO23387zzz/vsLENBkORbw9UFk9Pzyp7ZlbXQVw4e4LMYztp0u/2KnlmVarKuazNNI+OoXl0HM2lY2geHUPz6DhVOZel2RoHdBCtOIlHy9w9SM1njmO15Dg5GhEREREpD9uBsWfPni30vu26j49PiUXzgICAYsfKey/vQbW2f09MTCy2j218R0lJSWHSpEnExMQQFhbGjBkzSv0lTKBel35gcMEcf5SsS0X/nouIiIjURSrai1O4+frjYvLCmmUm89xvzg5HRERERMqhc+fOAERFRRV6/9ChQwD2Q2OL065dO0wmE5cuXbIfLptXQkICycnJeHh40K5duwIxREZGFjquLbbSxFBa6enpTJ48maioKPr168esWbNwdXV12Ph1gdG7EZ5tuwKQEhXu5GhEREREqhcV7cUpDAYXTAHXAGCOj3ZyNCIiIiJSHqGhofj4+HD69GkOHjxY4P7q1asBGDZsWIljmUwm+vbtC8CaNWuKHKt///75Du8aMmQIABs2bMBsNufrYzab2bBhAwBhYWGl+UglyszM5LHHHiMiIoIePXrw4YcfluowMSnIOzh3//+UqF+wWq1OjkZERESk+lDRXpzG5B8IQIb2tRcRERGpkYxGIxMnTgRg+vTppKSk2O+tWrWKzZs306hRI8aOHWu/fuDAAUaMGMGIESMKjPfAAw8AMG/ePGJiYuzXY2JimDdvXr42NsHBwfTp04fk5GRmzJhhL/5arVZmzJhBcnIy/fv3p1OnThX+vDk5OTz33HOEh4cTEhLCxx9/rAPgKqBe0PUYXN3ISjpNZuJJZ4cjIiIiUm3oIFpxGo+A3KK9Of6okyMRERERkfJ68MEH2bFjB7t27eKmm26iV69eJCUlERERgZubG++88w7e3t729unp6cTGxhY6Vs+ePZk8eTLz5s1j9OjR9pX327Ztw2w288gjj9C9e/cC/WbMmMG4ceNYsmQJu3fvJigoiOjoaGJiYmjatClvvvlmgT7nzp3jscces//3qVOnAPjoo49YsmQJAE2aNOHDDz+0t/niiy/46aef7PcKGxfgjjvuoGfPnsXOm4CLRz28rulB6pEdpET9gql5u5I7iYiIiNQBKtqL05j8c7fHybqYQE7aVVy96js5IhEREREpK3d3dxYsWMCnn37Kd999x4YNG/Dy8mLYsGE8+uijBAcHl2m8Z555hk6dOrFo0SJ27twJQJcuXbjnnnsYOXJkoX0CAgJYuXIls2fPZtOmTaxduxZfX1/Gjx/PE088ga+vb4E+mZmZ7N+/v8D1uLg44uLi7OPmdeXKFfu/b9y4scjP0Lt3bxXtS8k7eMDvRftwGg/9OwaDXgYXERERUdFenMbVqz5ujf3JupiAOeEYXh1DnR2SiIiIiJSDu7s7U6ZMYcqUKSW2vf7664mOLv5Mo1GjRjFq1KgyxeDn58f06dNL3b5ly5YlxvFnjz/+OI8//niZ+kjxPDuGYjB5kXP1Ahlxh/FsXbYf8oiIiIjURlrGIE5lCrDta68tckRERERE6hoXozv1gvoAkBIZ7uRoRERERKoHFe3FqTwCcrfIMSeoaC8iIiIiUhfVDxkAQOqRbVhzspwcjYiIiIjzqWgvTmWyH0Z7DKvV4uRoRERERESkqnm0Cca1ng+W9BTSYn51djgiIiIiTqeivTiVe9M2GNxMWMxpZF1IcHY4IiIiIiJSxQwurtQL7g9AStQvTo5GRERExPlUtBenMri4YmrREQCz9rUXEREREamTvINzt8hJO7obS2a6k6MRERERcS4V7cXpTL/va6/DaEVERERE6iZTiw4YGzXHmp1J6tHdzg5HRERExKlUtBen87Dvax/t5EhERERERMQZDAaDfbV9SqS2yBEREZG6TUV7cTqTf27RPvNcHBazXoUVEREREamLvENyi/bpJ34lJ/Wyk6MRERERcR4V7cXpjPUbYWzYBLBiPnPc2eGIiIiIiIgTuPsG4N68A1gtpBze7uxwRERERJxGRXupFky/b5Gjfe1FREREROou75D+AKREaYscERERqbtUtJdq4Y997VW0FxERERGpq7w79wMMmE8fISv5nLPDEREREXEKFe2lWsi70t5qtTo5GhERERERcQZjA1882gQDkHoo3MnRiIiIiDiHivZSJr8lprBi+0WSLmc4dFxTs3bgasSSdoXs5ESHji0iIiIiIjWHd3DugbTaIkdERETqKhXtpUx2RCayPzaNr9c79sBYg9Ett3APmOOPOXRsERERERGpOep16gOuRjLP/UbmuVPODkdERESkyqloL2Vy7TW+QG7xPi0jy6Fj6zBaERERERFx9fTGq0MooNX2IiIiUjepaC9lEtiqIb71jZizLGzdn+DQsT1aBgE6jFZEREREpK7zDrFtkROO1WpxcjQiIiIiVUtFeykTg8HAde29AFi3+zeHjm0KuAYAc2IsliyzQ8cWEREREZGaw6tjDwzuHmRfPo/5tBb1iIiISN2ior2U2bXt6mEwwKHYiyScT3HYuMYGTXCt5wOWHDITYx02roiIiIiI1CwubibqBfUBtEWOiIiI1D0q2kuZNfBy5dqOuXvbO3K1vcFg+GNfe62mERERERGpEkfjkvl+1yWupmU6O5R8vIP7A5ByeBvWnGwnRyMiIiJSdVS0l3IZ3N0fgA0RceRYrA4b1+P3or32tRcRERERqRqb9yWw53gqKzZXr7ddPdt1w8WrAZa0K6THHnB2OCIiIiJVRkV7KZcenZrg7enGhcsZ7D963mHj2lfaq2gvIiIiIlIlenZqCsCmvQlkmKvPinaDiyveXfoB2iJHRERE6hYV7aVc3N1cGRTaEoD1Dtwix9SiAxhcyLl6gewrFxw2roiIiIiIFO7ajr408nYlNSObTXtPOzucfLxDBgKQGr0LS2aGk6MRERERqRoq2ku5hfVqDcD2yDOkOGj/Sxd3D9ybtgEgI0Gr7UVEREREKpuLi4Hegd4A/LA1FqvVcdtfVpTJ/xqMPk2xZmWQdizC2eGIiIiIVAkV7aXcOrRsSNsWDcjKtrDl13iHjWsKuAbQvvYiIiIiIlXluvb1MLm5cPLMFaJOVJ83Xg0GA97BAwBtkSMiIiJ1h4r2Um4Gg4Fhv6+2X7fLcVvk/HEY7TGHjSkiIiIiIkXzdHdhwHUtAFi1tXodSGsr2qfF7CMn7aqToxERERGpfCraS4UM6dESVxcDx+KSOXX2ikPGtB1Gaz4TgzWn+hyEJSIiIiJSmw3v3QqA7QfPkJSc7uRo/uDepBXuTduCJYeUQ1udHY6IiIhIpVPRXiqkobeJXl2aAY5bbe/W2B8XD2+s2ZlknjvlkDFFRERERKR4rZvXJ6SDLxaLlR+3n3R2OPnUv3YIAMnh32DJSHVyNCIiIiKVS0V7qTDbFjmb9pwmO8dS4fEMBoN9X/sM7WsvIiIiIlJlbunXHoCfdpwiKzvHydH8oUHocNwa+5OTmszFzUucHY6IiIhIpar0ov3ly5c5evQomZmZlf0ocZKenZvh420iOcXMnsOJDhnzj33tVbQXERERqUzK1yWv60Oa49vQg+QUM1v3Jzg7HDuD0Q2/EQ8CcGXPj5jPnHByRCIiIiKVp8JF+0OHDvHBBx8QHh6e73pGRgbPPPMMffr04bbbbmPAgAH8+OOPFX2cVENGVxcG92gJwLrdjtkix7avvVbai4iIiFSM8nUpC6OrCyP7tgWq34G0nu26US+4P1gtJK2Zh9VSfd4EEBEREXGkChft//e//zF37lysVmu+6x988AGrV6/GarVitVq5fPkyzz33HEePqghbG4X9vkXO7kOJJF81V3g8k3/u9jjZl86Sk3q5wuOJiIiI1FXK16Wshl/fFqOrC9GnLnEs7pKzw8nHd9i9GExemM8c5+q+tc4OR0RERKRSVLhoHxERgclkol+/fvZrmZmZfPPNNxiNRubNm8fu3buZMGEC2dnZLFq0qKKPlGqoTYsGdGzlQ47FyuZ9pys8nqtHPdz8clfvZyQcq/B4IiIiInWV8nUpK5/6Jvpf5w/AqvDqtdreWL8RjQfdBcDFjf8lOyXZuQGJiIiIVIIKF+2TkpJo1qwZLi5/DPXrr7+SkpLC0KFDGTRoEPXr1+fZZ5/F09OT3bt3V/SRUk3ZVtuv2/VbgZVc5WHy1772IiIiIhWlfF3K45Z+7QD45dd4LqdU/E1aR2rQYzjuzdtjMadxcYN+yCQiIiK1T4WL9leuXKFhw4b5ru3btw+DwcCAAQPs1zw8PGjdujVnz54t13MyMzOZN28eN998M926daNPnz489thjREVFlWu81atXc9dddxEaGkpoaCh33XUXa9asKbZPUlIS06ZNY/DgwYSEhDB48GCmTZvGhQsXCm0fGRnJnDlzuOuuu+jVqxfBwcH079+fJ554gr1795Yr7upsUPcA3IwunDxzhZj4im9p4xGQu0WOivYiIiIi5VdV+brULoGtG9GxlQ9Z2RZ+3nnK2eHkY3BxxW/kZMBAysHNpJ+KdHZIIiIiIg5V4aK9h4cHFy9ezHctIiICgNDQ0HzX3dzc8q3wKa3MzEwmTZrEe++9x6VLlxgyZAjt27dn7dq1jBs3jl9++aVM482aNYunn36ayMhIevfuTe/evYmMjOSpp57igw8+KLRPfHw8t99+O1999RWenp6EhYXh6enJV199xejRozlz5ky+9tnZ2YwdO5bZs2dz7NgxunXrxo033oiPjw8//fQTd999N4sXLy7zXFRn3l7u9AlpAcD6XRU/kNZ+GG3CcR0yJSIiIlJOVZGvS+1jMBjsq+3XbD9JTo7FyRHl5+HfkQahNwGQ9OMnWHOynByRiIiIiONUOCNv37498fHxHDuWu+/4xYsX2blzJ40aNaJDhw752iYmJtK4ceMyP+OTTz5h165ddO3alZ9//pkPPviAL7/8knfffZesrCyef/55UlJSSjVWREQEc+fOpUGDBqxcuZK5c+cyd+5cVq5cSYMGDfjoo4/Yt29fgX5Tp07l/PnzjB8/ntWrV/P++++zevVqxo8fT2JiIq+++mqBPiEhIcyePZvt27ezYMEC3n//fVatWsW0adOwWCzMnDmTmJiYMs9HdWbbImfzvtNkZVes0O7epBUGNw+smelkJcU7IjwRERGROqcq8nWpnQZcF0CDeu6cv5TOrkOJzg6ngEZD7sa1XkOykk6TvON7Z4cjIiIi4jAVLtqPHDkSq9XKgw8+yD/+8Q/uuecesrKyGDVqVL52CQkJnD9/njZt2pRp/LyHYb3++ut4e3vb791yyy0MGjSIS5cusWzZslKNN3/+fACmTJmS70tKhw4dmDx5cr42NlFRUezYsQMfHx+mTp2KwWAAclefTJ06FR8fH8LDwzly5Ii9j9FoZNmyZdx00024ubnlG++uu+6if//+5OTklLglT01zbWAT/Bp6cDUti51RFXu12uDiism/IwAZ2iJHREREpFwqO1+X2svdzZXhfXL/PKwKP+HkaApy9ahH42H3AJAc/g1ZydXvBwsiIiIi5VHhov3dd99Nr169OHv2LAsXLuTYsWO0bduWRx99NF+71atXA3D99deXafy9e/eSnJxMy5Yt6dq1a4H7ti8b69evL3Ess9nMtm3bgNwvL0WNFR4eTmZmpv36xo0bARg6dCgmkylfH5PJxNChQwFYt25daT4SAEFBQQCcO3eu1H1qAlcXA0N6tgJyD6StKI8AHUYrIiIiUhGVna9L7Tbihra4GODA8SR+O3vF2eEU4B0yEI82wVizM7nw0wKsVquzQxIRERGpMGNFB3B3d+fzzz9nw4YNnDhxgoCAAMLCwgoUt41GIxMnTmT48OFlGv/w4cMABAcHF3q/S5cuAERHR5c4VmxsLGazmUaNGuHv71/gvr+/Pz4+PiQnJxMbG2svrNtiCAkJKXTc4OBgli9fXqoYbH77Lbeg7efnV+o+NUVYr9Z8s/4Y+6LPceFyOr4NPcs91h/72qtoLyIiIlIelZ2vS+3WtJEX14e0YPvBM/ywNZaHx17r7JDyMRgM+I14iNOfPEva8T2kHd1NvaDezg5LREREpEIqXLQHcHFxISwsrNg29957b7nGTkhIAKB58+aF3rddT05OJjU1lXr16hU5Vnx8fLFj2e4lJyeTkJBgL9rbYmjWrFmxMdjGL0lsbCybNm0CYNiwYaXqU5P4N/Gmc9vGHD55kQ0Rcdw5LLDcY9lW2medP40lIxUXj6J/f0VERESkcJWZr0vtd3O/dmw/eIYNEXFMHNWFep5uJXeqQu5+LfHp8xeSty3nws8L8GzXDRd3D2eHJSIiIlJuDinaV6a0tDQAPD0LX63t5eVl//eSivYljZV3vNTU1AL98j6rpD5FyczM5MUXXyQrK4tbbrmlyDcIysJqtdpjrGzp6en5/lmUgdc15/DJi6zdeYpRfQLs5wCUmcEN14ZNybl8jsuxkZjaFNwiqaYq7VxK8TSPjqF5dBzNpWNoHh1Hc+kYzphHq9Va/hxKxIG6dfSjVbP6xCVeZUNEHLcOaO/skArw6X8HKVHhZF8+x6Xwb/AdOsHZIYmIiIiUW4WL9hcvXiQ6OprmzZvTrl27fPeWLFnCl19+SWJiIt26dePll1+mffvql+BVpddff539+/fTtm1bXn/9dYeMmZWVZd/Cp6qcPHmy2PuN3Sy4uRo4cyGNn3/ZT+smpmLbF8fLqwmmy+dIOLCDjLRq/3OmMitpLqV0NI+OoXl0HM2lY2geHUdz6RhVPY/u7u4VHkP5ulSUwWDglv7t+M+yA/yw9QQ392uHi0v1+oGSi5sJ3+GTSPx6Jpd3fk/9kEG4N23t7LBEREREyqXCFdBFixYxb948Zs6cme9LwNKlS5k+fbr9IKBffvmFw4cP8/3339OoUaNSj29bxV7Uqqa8K8yLW2VfmrHyjpd3LFu/olazF9anMP/85z9Zvnw5zZs359NPP6VBgwbFti8tNzc3Onbs6JCxSpKens7Jkydp27ZtsW8sANxwzMqWX89w6pI7wwd2LvczUzPiuHomCp+cyzTqXP5xqpuyzKUUTfPoGJpHx9FcOobm0XE0l47hjHk8fvy4Q8ap7Hxd6oYhPVrx+Q+HiD+fyq/HzhMa1NTZIRVQ75qeeAX2Ju3oLpJ+/JgWE/6f3lYRERGRGqnCRfsdO3bg6urKjTfemO/6vHnzALj//vsJDQ1l4cKF7Nmzh4ULF/L000+XenzbgbFnz54t9L7tuo+PT4lF84CAgGLHynsv70G1/v7+HDp0iMTExGL72MYvzNy5c5k/fz6NGzfm008/LbZtWRkMhiK37qksnp6eJT5zxA3t2fLrGbYdTGTK2OvwcC/fHzeXdiFc3QRZZ2Pw9PSsdYl3aeZSSqZ5dAzNo+NoLh1D8+g4mkvHqMp5dFTOU9n5OuRuAfnZZ5/x3XffERcXh5eXFz179uThhx8u13aQq1evZvHixURHRwMQFBTExIkTGTlyZJF9kpKSmDNnDps2bSIpKQk/Pz8GDx7M448/jq+vb4H2Z86cYePGjRw8eJDIyEiOHz+OxWJh5syZjBkzptj4UlJSmDt3Lj/99BNnz56lYcOG3HDDDTzxxBO0atWqzJ+3JvA0GRnWqzXf/3KCH8Jjq2XRHsDvpvuJi91PRtxhUg5spP61Q50dkoiIiEiZuVR0gISEBJo0aZKvYH7kyBESEhIIDQ3lhRdeICwsjFmzZuHq6srmzZvLNH7n31dWR0VFFXr/0KFDAPZDY4vTrl07TCYTly5dsh8u++fPkpycjIeHR75VSLYYIiMjCx3XFltRMSxevJhZs2ZRv359FixYQIcOHUqMtTYIbu9Ls8ZepJuz2X7wTLnHMTVrg8HVDUt6CtmXyj+OiIiISF1U2fl6ZmYmkyZN4r333uPSpUsMGTKE9u3bs3btWsaNG8cvv/xSpvFmzZrF008/TWRkJL1796Z3795ERkby1FNP8cEHHxTaJz4+nttvv52vvvoKT09PwsLC8PT05KuvvmL06NGcOVMwh/zpp5+YPn06y5cv5+jRo1gsllLFd+XKFcaNG8cnn3xCTk4Ow4YNo2nTpnz33XfcfvvtVb5tZVUa1bctALsPn+XshZLP83IGY8MmNBrwVwAubFhMTtpVJ0ckIiIiUnYVLtonJyfTpEmTfNf27NkDwNChf6xqaNKkCa1bt+a3334r0/ihoaH4+Phw+vRpDh48WOD+6tWrARg2bFiJY5lMJvr27QvAmjVrihyrf//++fYPHTJkCAAbNmzAbDbn62M2m9mwYQMAYWFhBcZcsWIFb731Fl5eXnz88cd06dKlxDhrCxcXA8N65e4juW5X2X7f8zK4uuHeIndv1Yz4ow6JTURERKSuqOx8/ZNPPmHXrl107dqVn3/+mQ8++IAvv/ySd999l6ysLJ5//nlSUlJKNVZERARz586lQYMGrFy5krlz5zJ37lxWrlxJgwYN+Oijj9i3b1+BflOnTuX8+fOMHz+e1atX8/7777N69WrGjx9PYmIir776aoE+LVu2ZOLEibzzzjusXr262FX8ef3jH//g+PHjDBkyhB9//JH333+f5cuX88wzz5CSksJzzz1HTk5OqcaqaVo2rU/3wCZYrbBm20lnh1Okhr1vwa1JKyxpV7i46b/ODkdERESkzCpctHdxcSE1Nf8qi71792IwGOjRo0e+6/Xr1ycrK6tM4xuNRiZOnAjA9OnT8yX8q1atYvPmzTRq1IixY8farx84cIARI0YwYsSIAuM98MADQO7rwDExMfbrMTEx9leEbW1sgoOD6dOnD8nJycyYMcO+76fVamXGjBkkJyfTv39/OnXqlK/fzz//zCuvvIK7uzsfffQRoaGhZfrstcGwnq0wGODA8SQSLxZ+JkBpeAQEAmCOP+ao0ERERETqhMrM17Ozs1m0aBEAr7/+Ot7e3vZ7t9xyC4MGDeLSpUssW7asVOPNnz8fgClTpuR7O7VDhw5Mnjw5XxubqKgoduzYgY+PD1OnTrVvK2QwGJg6dSo+Pj6Eh4dz5MiRfP3CwsJ45ZVXuO222+jQoUOptiO6cOECK1euxGg08sYbb+Rb6PPQQw8RGBjI8ePH2bhxY6k+b010S//cxTQ/7zxFRma2k6MpnMHViN+IhwC4um+tFv6IiIhIjVPhPe0DAgI4deoUycnJ+Pj4kJWVxdatW/Hw8CAkJCRf20uXLpXrUKsHH3yQHTt2sGvXLm666SZ69epFUlISERERuLm58c477+T7gpCenk5sbGyhY/Xs2ZPJkyczb948Ro8ebV95v23bNsxmM4888gjdu3cv0G/GjBmMGzeOJUuWsHv3boKCgoiOjiYmJoamTZvy5ptv5mt/4cIFnnnmGXJycmjbti3ffvst3377bYFx27dvz0MPPVTmOakpmjb2oltHP/YfS2LD7t+4a3inkjsVwvR70V4Jt4iIiEjZVGa+vnfvXpKTk2nZsiVdu3YtcH/UqFFs3ryZ9evXc8899xQ7ltlsZtu2bQCFrnofNWoU//znPwkPDyczM9NeMLcVyIcOHYrJZMrXx2QyMXToUJYvX866desKLLIpqy1btpCTk8P1119P06b593Q3GAwMHz6co0ePsn79+kLfwq0NenRuRrPGXiReTGPLvnhuur6Ns0MqlGfrLnh3G0LKgY0krZ5HwKR3MLi4OjssERERkVKp8Er7/v37k52dzbPPPsuGDRt49dVXSU5OZsCAARiNf/xM4OrVq8TFxdGiRYsyP8Pd3Z0FCxbw9NNP4+Pjw4YNGzh+/DjDhg1j6dKlDBw4sEzjPfPMM8yaNYsuXbqwc+dOdu7cSZcuXXj//fd58sknC+0TEBDAypUrGT9+PKmpqaxdu5bU1FTGjx/PypUrC3yu9PR0+yqlmJgYVqxYUeivsu7xWROF2bbIiYjDYrGWawyPgNzzAjITT2LJMpfQWkRERERsKjNft+3fXtRhs7atIW0HyhYnNjYWs9lMo0aN8Pf3L3Df398fHx8fMjIy8i3QscXw5x9A2NhiK00MJSnp8zryWdWVq4uBUX1zz//6ITzW/hZydeQ7dAIuHt5knjvJlYiC26OKiIiIVFcVXmn/4IMP8sMPP7B161a2bduG1WrFZDLx6KOP5mu3YcMGrFZrgVdwS8vd3Z0pU6YwZcqUEttef/31JSbKo0aNYtSoUWWKwc/Pj+nTp5eqbcuWLWt1sl4Wfbq2wMvDyLmLaUSeSKJbxyYld/oTYwNfXOs3JufqRcxnYvBsXXfOBhARERGpiMrM1xMSEgBo3rx5ofdt15OTk0lNTc13GO6fxcfHFzuW7V5ycjIJCQkEBQXli6FZs2bFxmAbvyJK+3kd8azq7MbrW/PfHw9zIuEyh09epEs7X2eHVCjXeg1pPPTvJK2ey8XNX1Gv0w0YG1TPWEVERETyqnDR3s/Pj2XLljF//nxiY2Px9/fnnnvuybcHJeQedtWpUyf7oa5Sd3i4GxlwXQA/7TjFul2/latoD7n72qce2YE5/qiK9iIiIiKlVJn5elpa7plFnp6ehd738vKy/3tJRfuSxso7Xt49+m398j6rpD7lVZXPslqt9udVtvT09Hz/LIkr0O/a5mzck8C3m4/RtlnRv2fO5hp4A2771pF15jjnfpyPzy2PV+rzyjqXUjjNo2NoHh1Hc+kYmkfH0Dw6jjPm0mq1luospQoX7SF3Vcsrr7xSbJs33njDEY+SGiqsV2t+2nGKrQfOMGVMFl4ebmUew/R70V772ouIiIiUjfL1micrK8u+HU9VOXnyZKnbBjbJZiOwIzKRGzpGUt+z+u4X79puEPXPxJBxbBfHtvxAdpP2lf7MssylFE3z6BiaR8fRXDqG5tExNI+OU9VzaTubqTgOKdqLlCSoTSMCmngTfz6F8P0J5TqwyuP3w2jN8UdL/VMpEREREak8tpXlRa1OyrtSvLhV9qUZK+94ecey9StqVXphfcqrKp/l5uZGx44dKzxOaaSnp3Py5Enatm1b7JsOeXUGNh3aTfRvyZxK9uTO0A4l9nGezlxJP03avp/wOb4Bv743YjCW/GW5PMozl1KQ5tExNI+Oo7l0DM2jY2geHccZc3n8+PFStXNo0T4pKYmtW7dy4sQJ++uvHTp0oF+/fvj6au/AusxgMBDWuzWf/3CIdbt+K1fR3r15e3BxJSflEjlXkjA2LN82OyIiIiJ1laPzdduBsWfPni30vu26j49PiYXsgICAYsfKey/vQbX+/v4cOnSIxMTEYvvYxq+I0n5eRzzLYDAUuQ1PZfH09CzTM28b2JF3vohgfUQ8fxsRjJvRpRKjqxiPYROIO7abnMvnMP/6E40HjqvU55V1LqVwmkfH0Dw6jubSMTSPjqF5dJyqnMvSLkJ2SNE+MzOTd955h6VLl5KdnV3wIUYj48eP5/nnny/V8n+pnYb0aMni1Yc4fPIi8edTCGjiXab+Lm4m3Ju2JfNsDBnxR/FW0V5ERESkVCorX+/cuTMAUVFRhd4/dOgQgP3Q2OK0a9cOk8nEpUuXSEhIyFeYh9xDYJOTk/Hw8KBdu3b5Yli3bh2RkZGFjmuLrTQxlKSkz+vIZ9UEfbq2oHEDExevmNl+MIGB3Vs6O6QiuZg88b3pPs4tf5fkbcupHzIAt8b+JXcUERERcYIKL4WwWCw8/PDD/Pe//yUrK4vGjRvTs2dPRo4cSc+ePWncuDFZWVl88cUXPPLII1itVkfELTWQb0NPQjs1A2D97t/KNYZHwDVA7hY5IiIiIlKyyszXQ0ND8fHx4fTp0xw8eLDA/dWrVwMwbNiwEscymUz07dsXgDVr1hQ5Vv/+/fP9YMF2cO6GDRswm835+pjNZjZs2ABAWFhYaT5SsQYOHIirqyt79uzh3Llz+e5ZrVZ++uknoHSftzZwM7owok9bAFaFxzo3mFKo1+kGPNtfBznZJP04X99NRUREpNqqcNF+2bJlbN26FW9vb9588002b97M4sWLee+991i8eDFbtmzhrbfeokGDBmzdupXly5c7Im6pocJ6tQZgQ0QcOZayJ8mm3/e1z4g/5tC4RERERGqryszXjUYjEydOBGD69OmkpKTY761atYrNmzfTqFEjxo4da79+4MABRowYwYgRIwqM98ADDwAwb948YmJi7NdjYmKYN29evjY2wcHB9OnTh+TkZGbMmGEvxFqtVmbMmEFycjL9+/enU6dOpf5cRfH19eX2228nOzub1157jczMTPu9Tz75hKNHj9KhQwf7DxLqguE3tMXVxcDhkxeJOZ3s7HCKZTAY8Bv+AAZXN9Jj95N6eJuzQxIREREpVIW3x/nuu+8wGAz8+9//5oYbbihw39XVlbFjx+Lv7899993HypUr8yXtUrf0Dm5GfS83LlzO4Nej5+jx+8r70rIdRpt59gTW7CwMRrfKCFNERESk1qjsfP3BBx9kx44d7Nq1i5tuuolevXqRlJREREQEbm5uvPPOO3h7/7EtYnp6OrGxha/K7tmzJ5MnT2bevHmMHj3avvJ+27ZtmM1mHnnkEbp3716g34wZMxg3bhxLlixh9+7dBAUFER0dTUxMDE2bNuXNN98s0OfcuXM89thj9v8+deoUAB999BFLliwBoEmTJnz44Yf5+r300kvs37+fjRs3MmLECK699lpOnTpFVFQU9erV491338XV1bXU81fTNW7gQb9u/mz5NZ4ftsbyxLiCvz/ViVvjFvj0G8OlLUu5sPYzvDp0x8Wk/YBFRESkeqnwSvvo6GhatmxZ6BeAvG644QZatWpFdHR0RR8pNZib0ZVBobl7Xa7bVfYtcoyNmuPi1QBrThbmxJMOjk5ERESk9qnsfN3d3Z0FCxbw9NNP4+Pjw4YNGzh+/DjDhg1j6dKlDBw4sEzjPfPMM8yaNYsuXbqwc+dOdu7cSZcuXXj//fd58sknC+0TEBDAypUrGT9+PKmpqaxdu5bU1FTGjx/PypUradGiRYE+mZmZ7N+/3/4rOTkZgLi4OPu1w4cPF+jXoEEDli5dygMPPICLiwtr164lMTGRW2+9lZUrV9r3va9Lbu6fe8bA5r2nuZKaWUJr52t4w+0YGzUnJ+USFzd/5exwRERERAqo8Er79PR0WrduXaq2DRs2JDExsaKPlBourFdrVoXHsiPyLFfTMqnvVfrDzgwGAx7+15B2fA/mhKP2Pe5FREREpHBVka+7u7szZcoUpkyZUmLb66+/vsQfDIwaNYpRo0aVKQY/Pz+mT59e6vYtW7Ys94Iib29vnn/+eZ5//vly9a9tOrdtTPuAhpyIv8y6XacYM6R65+guRnf8RjzE2a/e4ErEj9TvOgRTi/bODktERETErsIr7Zs0acKJEyfIyMgotl16ejonTpzAz8+voo+UGq5DSx/a+TcgO8fClr2ny9z/j33tdRitiIiISEmUr0tlMxgM3NIvd7X9D9tOluvsqqrm1f5a6nXpB1YLST9+jNVqcXZIIiIiInYVLtpff/31pKenM2PGjGLbzZw5k/T0dPr06VPRR0otMOz3A2nX7S77Fjm2fe3NKtqLiIiIlEj5ulSFgaEtqe/lxrmLaew5XDPervYNuxeDuyfmhGNc3bfO2eGIiIiI2FW4aP/AAw9gNBr55ptvuO2221i2bBkHDhzgzJkzHDhwgGXLlvGXv/yFb775Bjc3NyZNmuSIuKWGGxzaElcXA8dPX+bkmStl6mvy7wgYyE4+R3ZKcqXEJyIiIlJbKF+XqmByc+XG3m0AWBV+wsnRlI6xfmMaD74LgIsbvyAn9bKTIxIRERHJVeE97Tt06MDbb7/Nyy+/THR0NK+++mqBNlarFZPJxD/+8Q86dOhQ0UdKLdDQ20Tv4OZsP3iG9bt/Y9JfQkrd18XkhVuTVmSd/w1z/FGMQb0rMVIRERGRmk35ulSVkX3bsmLzcfYdPc/pc1dp2bS+s0MqUYMeI7i6fyOZibFcWL+Ipn953NkhiYiIiFR8pT3kHhS1YsUKxowZg6+vL1ar1f7L19eXO+64gxUrVjBy5EhHPE5qibDft8jZtOc02Tll20PSvkVOgrbIERERESmJ8nWpCs1969G7S3MAftga6+RoSsfg4orfyIcAAykHN5F+KsrZIYmIiIhUfKW9Tfv27e37ZKakpJCamkq9evXw9va2txkzZgxXrlxh3TrtFyjQo1NTfOqbSL5qJuJwIn1CWpS6ryngGq7+uk6H0YqIiIiUkvJ1qQo392vHzqizrN8dx4SRnfHycHN2SCXyCAikfvcbubrvZ5J+/JiWD/wLg2v1j1tERERqL4estP8zb29vmjVrlu8LAEBCQgLx8fGV8UipgVxdXRjSoxUA63aV7UDaP1bax2C15Dg8NhEREZHaTPm6VJZrr2lCQBNv0s3ZbNxz2tnhlFrjIXfj4tWArKTTXN75vbPDERERkTquUor2IqUV1iu3aB9xOJHkq+ZS93Pza4nB5IU1K4PM83GVFZ6IiIiIiJSBi4uBm/u1A+CHrSewWq1Ojqh0XD298R12DwCXfvmGrMvnnByRiIiI1GUq2otTtW7egMDWPuRYrGzaW/riu8Hggod/RwDM2iJHRERERKTaGNarFZ4mV+ISUzhwPMnZ4ZSad9dBeLQOxpqdyYWfPnV2OCIiIlKHqWgvTmc7kHbdrt/KtBLH5J+7RY72tRcRERERqT68PNzs22CuCj/h5GhKz2Aw4DfiQXBxJe3YblKP7nZ2SCIiIlJHqWgvTjege0vcjS6cOnuV46eTS93Pvq+9ivYiIiIiItXKLf3bA7Ar6iznLqY5OZrSc2/SCp8+fwHgwk/zsWRmODkiERERqYtUtBen8/Z0o0/XFkDZDqQ1/V60z7oQT056SqXEJiIiIiIiZdeqWX2uvcYPixXWbD/p7HDKxKf/nRgbNiH7ShKXwr9xdjgiIiJSB6loL9WCbYuczfviyczKKVUfV6/6uDXOLfabE45VWmwiIiIiIlJ2N/fLXW3/045Tpc7xqwMXNxO+N00C4PLO78k8X/qFRSIiIiKOYCxrhzlz5pT7YRkZerVQCtftmib4NfQg6XIGO6POMuC6gFL1MwUEknXxDOb4Y3h16F7JUYqIiIhUf8rXpbro3aUZTRp5cv5SOr/8Gs+w3xfq1AT1AnvhdU0v0o7tJunHT2jx9zcwGAzODktERETqiHIV7cubrFitViU6UihXFwNDe7Xm63VHWbf7t9IX7f0DSTm4WYfRioiIiPxO+bpUF66uLoy8oS2LVh9mVfgJhvZsVaP+fPkOv5/0kwfI+O0QKQc3U7/bYGeHJCIiInVEmYv2vXr1qow4RBjWqxVfrzvKr9HnuHA5Hd+GniX2sR9Gm3AUq9WCwaAdn0RERKRuU74u1clN17fhq5+jOX76MtG/XaJTm8bODqnU3Bo2pVH/O7m48QsurP8cr2t64OpZ39lhiYiISB1Q5qL94sWLKyMOEfz9vAlu70vUiQtsiIjjzmGBJfZxb9oag9EdS0YqWRcScPdrWQWRioiIiFRfytelOmnobWJg9wDW747jh/DYGlW0B2h4/S1cPbiJrKTTXNz4JU1GTXZ2SCIiIlIHaFmyVCthvVoBsG7Xb1it1hLbG1yNmFp0AMCsLXJERERERKqdW34/kDZ8fzyXrtascxMMrm74jXwIgKv71mpbThEREakSKtpLtdLv2gA83F1JSErl8MmLpepj+n2LnIz4Y5UZmoiIiIiIlEPHVj4EtWlEdo6Vn3eccnY4ZebZOhjvboMBK0lrPsZqyXF2SCIiIlLLqWgv1YqnyUi/a/2B3NX2pWHf116rXkREREREqqVb+rUDYM32k2TnWJwcTdn5Dp2Ii4c3mYmxXIlY4+xwREREpJZT0V6qnbBerYHc12czzNkltrettM88/xuWzPRKjU1ERERERMqu37X++HibuHA5gx2RZ5wdTpm51mtI4yF3A3Bx8xKyr5burWARERGR8lDRXqqd4Pa+tPCtR7o5h20HE0psb6zfGNcGfmC1YD4TUwURioiIiIhIWbgZXRnepw0Aq8JjnRxN+dTvHobJ/xqsmelcWLfQ2eGIiIhILaaivVQ7BoOBYfYDaeNK1Udb5IiIiIiIVG8j+7bFxcVA1IkLxCZcdnY4ZWYwuOQeSmtwIfXQVtJO7Hd2SCIiIlJLqWgv1dKQnq0wGOBgTBJnL6SW2P6Pw2hVtBcRERERqY58G3pyQ9cWAPywtWautjc1b0+DniMBSPrxYyzZmU6OSERERGojFe2lWmrayItrOzYBYENEyavt/1hpfwyr1VqpsYmIiIiISPnYDqTdtPc0KWk1s+DdeNB4XL0bkX3pLJe3rXR2OCIiIlILqWgv1daw3rkH0q7f/RsWS/GFePfm7cDFSE5qMtmXz1dFeCIiIiIiUkbB7X1p26IB5swc1u0u3VaY1Y2LyQvfG+8DIHnbcrIu1ryDdUVERKR6U9Feqq0buragnoeRc5fSORiTVGxbF6M7pua5q3bM8dFVEZ6IiIiIiJSRwWDg5t9X26/eGlvi4pzqql7nvni2uxZrThZJP32it31FRETEoVS0l2rL5ObKgO4tAVi3+7eS2wdcA2hfexERERGR6mxwaEvqebpx5kIqe6PPOTuccjEYDPiNeACDqxvpJ/aTenibs0MSERGRWkRFe6nWwnq1AmDbgTOkpmcV2zbvvvYiIiIiIlI9eZiM3Pj7Vpirwk84OZryc2vsT8O+owG4sPYzLOY0J0ckIiIitYWK9lKtBbZuRKtm3mRm5RC+P77YtiZb0f5sLJbsmnmolYiIiIhIXTCyb1sMBthz5BwJSSnODqfcfPqOxtioOTkpl7i4ZamzwxEREZFaQkV7qdYMBgNhvXJX4azbVfwWOcaGTXGt1xAs2WSeja2K8EREREREpBz8/bzp0akZAKu3nnRuMBXgYnTHb8SDAFzZvZqsc6ecHJGIiIjUBiraS7U3pEcrXFwMHDl1ibjEq0W2MxgMmPxzV9trX3sRERERkerNdiDtul2nSDdnOzma8vNqfx31OvcFq4UrGxaCDqUVERGRClLRXqq9Rg086NGpKQDrSziQ1r5Fjor2IiIiIiLVWmhQU1r41SM1I5tNe087O5wK8Q27F4O7B1lnjmOK3YFVhXsRERGpABXtpUawbZGzcU8cOTmWItt5tFTRXkRERESkJnBxMdhX2/8QfqJGF7qNDXxpPOguALyObiT52/fIvnrRyVGJiIhITaWivdQIvbo0p76XOxevmNl39HyR7UwtOoDBhewrSUqSRURERESquWG9WmNyd+XU2atEnrjg7HAqpEGvUXj3uxOrwQVz7K+c/vgprh7YVKN/GCEiIiLOoaK91AhuRhcG92gJwLpitshxcffEvUnuqnxz/LEqiU1ERERERMrH29ONIT1aAfBDeKyTo6kYg8EF795/4Urf+zE2a4clI5Xz388m8euZZF+p2T+QEBERkaqlor3UGLYtcnZGnuVqWmaR7Wz72qcdj9CqFhERERGRas62Rc72yDMkJac7OZqKs9Rviu/412k85G5wNZJ2fE/uqvv9G/T9REREREpFRXupMdoHNKS9f0OycyxsLuagKq8O3QG4un8DST/8B2tOVlWFKCIiIiIiZdS2RQNCOvhisVhZs/2ks8NxCIOLKz59x9By0r8wteiIxZzG+VUfcnbpW1p1LyIiIiVS0V5qlGG9c1+dLW6LHK/AXvjeeB8YXLi6fz1nvnyDnLQrVRWiiIiIiIiU0S392gPw046TZGXnODkax3Fv0gr/e2fQeOgEDK5upMfsI+7jp7jy63qtuhcREZEiqWgvNcqg7i0xuhqIOX2Z2ITLhbYxGAw07H0Lzf/6MgZ3TzJ+O0T8Zy+ReT6uiqMVEREREZHS6BPSHL+GHlxOySR8f4Kzw3Eog4srPjfcTsAD/8Lkfw1WcxpJP3zE2SVvkn0lydnhiYiI1ElWSw5pBzbgerl65h0q2kuN0tDbRO/g5kDxq+0BvDqGEnDvDIw+TclOTiT+86mkHd9bFWGKiIiIiEgZuLq6MKJvW6DmH0hbFHe/lvjf89Yfq+5P/ErcvKe4sm+dVt2LiIhUIaslh/PfzebK+s/wjN7o7HAKpaK91Di2A2k37TlNVral2LbuTVoTcN/beLTugtWcxtmvZ5K883slxSIiIiIi1czw69tidHUh+rdLHP3tkrPDqRT5Vt0HBGLNTCdp9X84+9X/I/v/s3ff8VVX9+PHX587czNv9gQCgSTsPURAlgg46qiCu646ap21w1/7FW2rVdva1rrqrNaCbUVFBJS99wozkJAEsnOT3MybOz+/P25ySWTDTW4C7+fD+7g3n3HO+x6uybnvz/mcU1MR6PCEEEKIi56qerAsepv6fWtBo6Wp5+hAh3RSkrQXXc6wjDiiwo3UNjjYdqD0jMdrg8NJvO3/CBs8BVQPVcs+wrLobVmgVgghhBBCiE7EHGZk3JAkAL5Zf3GOtm9hiEkh6a7fETXlbhSdAVvebo7940lqd3wnA4yEEEKIdqKqKpXfvk/d7hWgaDDPeARXbO9Ah3VSkrQXXY5Wq2HS8OYFabec3Tz1ilZPzNUPEzX1R94Fancto+Tfv5UFaoUQQggh/MDhcPDOO+9w9dVXM2jQIMaMGcOjjz7Kvn37zqu8RYsWceuttzJs2DCGDRvGrbfeyuLFi097jsViYc6cOUycOJEBAwYwceJE5syZQ2Vlpd/rWrduHQ899BBjx46lf//+jBw5kjvuuIP58+dLwvUCXXN5TwDW7Cyipt4e4Gjal6LRYh5znXfUfUqGd9T94nconfsCzpryQIcnhBBCXFRUVaVq+cfUbl8CKMRe91OC0kcFOqxTkqS96JKmNE+Rs+1gGdW1TWd1jqIomEdfS8Itv2xeoHafLFArhBBCCHGBHA4H9913H3/+85+prq5m0qRJ9OrVi6VLlzJr1izWrl17TuW99tprPPnkk+zdu5dRo0YxatQo9u7dyxNPPMFf//rXk55TVFTE9ddfz9y5czGZTEydOhWTycTcuXO54YYbKCkp8Vtd77//Pvfddx8rV64kJSWFadOmkZmZyY4dO/jVr37F008/fU7vV7SV3j2S3t3MuNwevttcEOhwOoQhOpmkO39L1NQfNY+6z6LwH09Su/1buQgkhBAdwONy4KgspvHILmp3fEfN1kU4KosCHZbws+rV86jZvACAmKsfImzAhABHdHq6QAcgxPnoFh9GRo9IsguqWbWjkBsmnv2tLMG9h5P8oxcp/c9LvgVq4294iuC0oe0YsRBCCCHExendd99ly5YtDBw4kI8++ojQ0FAAFi5cyNNPP80zzzzDsmXLfNtPZ9u2bbz99tuEh4czb9480tLSAMjNzWX27Nm8+eabTJgwgaFD2/bbnn32WSoqKpg9ezZz5sxBURRUVWXOnDnMmzePX//617z//vsXXFdZWRmvvfYaWq2Wt99+mwkTjn/ZO3jwIHfccQfffPMNN9xwA+PHjz+/Br3EKYrCteN68trcnSzakM+NE3uj1V78Y80UjRbz6GsJ6TOc8q/fwF54EMuSf1B/cCOxVz+C3hwX6BCFEKLL8jjtuGoqWj3KcVrLva+t5bgbrCc9Tx+TQkj6KEIyRmNITENRlI4NXPhN9frPsa7/HwDRV91P+JCpAY7ozC7+3o+4aLWMtl+29eg5j0DxLVDbra93gdrPXqRmy0IZySKEEEIIcQ5cLhcff/wxAM8991ybxPw111zDFVdcQXV1NZ9//vlZlffee+8B8NBDD/mS6ABpaWk8+OCDbY5psW/fPjZt2oTZbObZZ5/1faFWFIVnn30Ws9nMunXrOHjw4AXXtWvXLpxOJ8OHD2+TsAfIzMxk5syZAOzevfus3q84uXGDkwkPMWCx2tiy/8xrWF1M9FFJJN35AtFX3oOiM9CUv6d51P0SVNUT6PCEEKJT8jjtOCyFNObsoHb7EipXfELZF3+m6MNfUvCX+8h/5TYK33mc0nm/w7L4HawbvqBh/3rsRYd8CXvFEIQ+tjvBvYdj6jkYNDqclkKsG+ZT9OEvOPr3h7B8+z62/D2oHndg37A4J9bNX1O96t8ARE25i4gRMwIc0dmRkfaiy5owJJn3vtzD0dI6Dh+zkt498pzO1waHk3j7c1Qs+gf1WSuoXPohDkshMVfdj6KV/zWEEEIIIc5kx44dWK1WUlJSGDhw4An7Z86cyerVq1m+fDl33333acuy2+1s2LABgBkzTvwyNXPmTF599VXWrVuHw+HAYDAAsHLlSgAmT56M0Whsc47RaGTy5MnMnz+fZcuWkZmZeUF1tTyfSWTkufVLRVsGvZarxvTgv8sPs3BdHpcNTAp0SB1K0WiJGHUNwb2HU7HwDZqOHcCy5F3qD2wk9ppH0JvjAx2iEEJ0KI+jqdUIee+z92HBVVOOu6HmjGUoBhN6cyy6iDjvwxyLPiIOXYR3m8YU2mYkvbupAVvODhqyN9GYuxN3rYXabYuo3bYIjSmM4D4jCckYhanXYDS6s+sfiI5Xu30JVcs+AiBywmzMY34Q2IDOQZfJTDocDj788EMWLFjAsWPHCA4OZsSIETz88MP079//nMtbtGgRn3zyCdnZ2QBkZGRw1113nbTT3sJisfD3v/+dVatWYbFYiImJYeLEifz0pz8lOjr6hONLSkpYuXIle/bsYe/eveTk5ODxeHjppZe48cYbzzlm0VaISc9lA5NYvbOQZVuPnnPSHrwL1MZe8wiG2G5ULf+Yup1LcVYVE3/jM2iDw9ohaiGEEEKIi8eBAwcATtkf79evH4Cvz306eXl52O12IiMjSUo6MUmblJSE2WzGarWSl5dHRkZGmxgGDBhw0nL79+/P/Pnz28RwvnUNGTKEkJAQtm/fzpo1a06YHmfRokWEhYUxffr0M75fcXrTL0vl8xWHycqxUFBaS4+E8ECH1OH0UYkk3vkCtduWULXyXzQV7KXwH08RNfkOwodfhaLIjfNCiIuDx2FrnqqmAmdLQr45Oe+sqcDTWHvGMhRjMPrmBLyuOTmvb/VaExRyTtPbaINCCB0wntAB4/E47djysmjI3kzj4a14bHXUZ62gPmsFij6I4LShhGSMJrj3MDRBIRfSFMKP6navwLLkXQDMY2/EPO6HAY7o3HSJpH3L4lZbtmwhOjqaSZMmUVFRwdKlS1m1ahVvvfXWOc0Z+dprr/H2229jMBi4/PLLAVi/fj1PPPEEhw4d4vHHHz/hnKKiImbNmkVFRQW9evVi6tSpZGdnM3fuXFasWMFnn31GYmJim3O+/fZbXnrppQt78+K0po7qxuqdhazZWcT91w3AoNeecxmKomAecx366CTKv3yNpoJ9FH30SxJu+RWGmJR2iFoIIYQQ4uJQXFwMQEJCwkn3t2y3Wq00NDQQEnLqL7JFRUWnLatln9Vqpbi42JdIb4khPv7ko49bymsp/0LqioyM5KWXXuKZZ57hgQceYPDgwaSkpFBRUcH27dvp06cPL7744kkH9IhzExcZzOgBiWzcU8I36/N45KbBgQ4pIBRFQ8TImQT3HkbFwjdpOrqPym/fo6Fl1H3kqT/DQgjR2bhqyjEWbKO2Yid1DdW+UfMeW90Zz9UEhTSPko/xJuTNx0fJ68xxaNsxWa7RGwlJH0lI+khUj5umo/tpyN5CQ/Zm3HWVNBzcSMPBjaDRYUod4E3gp49EFyp33gVK/b61VCx8E4DwUdcQOfG2LrcmQZdI2nfVxa1SUlK46667GDBgAAMGDOD1119n8eLFfmoVATCodyyxkSYqqm1s2lvChKHnn2QP6TOC5Ltf8i5QW11K0Ue/kgVqhRBCCCFOo7GxEQCTyXTS/cHBwb7XZ0ran6ms1uU1NDSccF7rus72nHOtC+Cqq64iOjqaJ554gt27d/vmrzcajYwaNYq4OP8sGKqqqi/O9maz2do8dxZTRySxcU8JK7Yd45ZJqQQH6QMd0hm1W1saw4m48efody+nfu08mo7uo/AfTxI6bhbBQ6ZedKPuO+tnsquRdvQfacsL5yzPp/I/vyPYaedkf90UYwjaiBi04bFow6K9zxExaMNj0IbFnHIEuxtwe4AO+psJQFwawXFpmMbNxlWWR1PONppyt+OuKsZ2ZBe2I7tg8T/QJ/UhqPdwjGkj0PlxQXH5PJ5e0+GtWL/5O6BiGjQZ09hbTtlWgWhLVVXP6gJCp0/an2lxqwULFrB69Wo+//zzM86TCWdecOrVV1/lvffe44033vDtO9PiVkuWLPEtbtUyTybA1KlTmTr1+GrEXe2KTleg0ShMHtGNz5YeYtmWoxeUtAcwxHUn+Z4/UPb5qzQdO0DpZy8SfeWPCB8xU/79hBBCCCEEH374Ia+88goTJkzgscceo2fPnlRUVDBv3jw+/PBDli1bxr///e8T7sI9V06n0zf1T0fJz8/v0PrORKOqxEboqKhx8dmSnYzJ6DrTV7ZbWxpT0Iy9j+C936CvOkrdqk+o2r2KxgFX4wmJap86A6izfSa7KmlH/5G2PD+axmrCNn2MxmnHFRaHKzoVT1AEnuAIPCYz7qBw0AedeKIDsDSC5WiHx3xOogdC9EA09RYMZYfQl2ejqynBWXwIZ/Eh6tbMxRUWhzMuHWd8Bu6wOPBDjkk+jyfSlecQuvN/KKoHe/IgqhNHU3zw4BnP6+i2PJt1kjp90r6rLm4lOs7Ukd35bOkhdh2uoKLaRmzkqUdMnQ1tSASJtz1HxeLmBWq/+wBHxTFZoFYIIYQQ4ntaRqOfanRS65HipxtlfzZltS6vdVkt551qVPrpzjnXujZv3swf/vAHMjMzeeONN9DpvH3DHj168Itf/ILGxkbmzZvHX/7yF15++eVTln029Ho9vXv3vqAyzpbNZiM/P5/U1NTT3n0QCNfVh/H+1wfZne/k7usy0Wg690CajmpLddgYbFkrqFs7D331MSI2fkDY5bcQPPTKi2LUfWf+THYl0o7+I215/tyNNVR99j5uRwOa6BTqhs4itXfGRdyO3um73XWVNOVsx567DUdhNrq6cnR15Zhy16GNiMPYezhBaSPQJ/U+59/b8nk8OXvBXqp3fwGqh6CMMcRPfxhFc/q2DURb5uTknNVxnT4D2VUXtxIdJyE6hAFp0ezNrWTF9qPMmppxwWUqupYFalOoWv5J8wK1JcTf+DNZoFYIIYQQollLn7q0tPSk+1u2m83mMybtk5OTT1tW632t+/JJSUns37+fsrKy057TUv6F1PXVV18B3ilyWhL2rV1zzTXMmzfPN1DoQiiKcsopf9qLyWTq8DrP5KrL0pi7NIeSykYOFTYwLNN/0wu0p45oy5DLriOi72jvXPcFe6lb/S+cR7Z757qPOvH7blfUGT+TXZG0o/9IW54bj8NGyYK/4LaWoYuII/LGX1B5rOTSaMfgYMLiu8Hl1+NurKPx8FYasrdgy9uNu6acxu2Lady+GG2ImeD0kYRkjMaUOgBFe/ZTwV0S7XiWbEf3YV3wGridBGeMJv6GJ89p4G1HtuXZzuTR6S/Bn+viVqdztgtOta639etzWdxKdKypI7sDsHzrMVRV9UuZ3gVqf0D8Lb9EMQTRVLCXoo9+icNS6JfyhRBCCCG6ur59+wLe6SRPZv/+/QC+wTCn07NnT4xGI9XV1W364i2Ki4uxWq0EBQXRs2fPE2LYu3fvScttia11DOdbV8uFgbCwkw/iaNleU1Nz2vcqzp7JqGNKc19/4fojAY6m89Gb40m8/Tlipv/Y+53l2AEK330a6+avUT3uQIcnhLiEqW4XZZ//CXtJDhpTGAm3/hptqDnQYQWENjiMsMGTSbjll/R48gPibvoZof3HoxiDcTdYqdu5lNJ5vyP/tXsp+/I16g9swOOQ+erPVlPRIUo/exHV5cCUNpT4688tYd9Zdfp30FUXt+pIskgVDO0TSZBBS4mlgR0Hiumb6r8VupXkfkTN+j+sX/3Zt0Ct+epHMfY4cbqmc9FZ27KrkXb0D2lH/5G29A9pR/+RtvSPzrxIVSANGzYMs9lMYWEhe/bsOWE6y0WLFgEwZcqUM5ZlNBoZO3YsK1euZPHixdx3330nLWvcuHFt5gGdNGkSr7/+OitWrMBut7eZztJut7NixQqANmtNnW9dsbGxAOzevZs777zzhPeQlZUFtB3VLy7czLGpfL32CNsOlFFa2UBC9Onv2rjUKIqG8OFXYUobiuWbN7Hl76Fq2Uc0HNxI7DWPYoi+OEbdCyG6DlVVqfjmLWxHdqLojSTMehZDdDKujlwstpPSGEyEZl5GaOZlqG4ntvy9NGRvofHQFtwNVhr2raNh3zoUrR5Tr8GEZIwmuM8ItMHhgQ69U7KXHKF07m9RHU0EpQ4k/qZnUHSdf+H6s9Hpk/bizGSRKq++KUZ2Hmnkq5X7YYz/F2FSht9O6M7P0VkLqfriVWyZV2LvPvyCFw/pjG3ZFUk7+oe0o/9IW/qHtKP/SFv6R2dcpCqQdDodd911F3/72994/vnn+eijjwgNDQVg4cKFrF69msjISG666SbfOVlZWfz85z8HYMmSJW3Ku//++1m5ciXvvPMOEydOJC0tDYDc3Fzeeecd3zGt9e/fnzFjxrBp0yZefPFF5syZg6IoqKrKiy++iNVqZdy4cSesPXU+dV155ZV88cUXfPPNN0ydOpXp06f79mVnZ/PXv/4V8K6VJfwnJS6Moemx7DxUwV/m7eTZH40iPKRz/78RCHpzHAm3PUfdzqVULv8n9sJsit57msgrbiVi1NUoGm2gQxRCXCKqV/2b+j2rQNEQf8PTBCWnBzqkTknR6glOG0pw2lDUGQ9gLzpEQ/ZmGrK34KoupfHwNhoPbwNFQ1D3voRkjCYkfRTo5eI1gKP8KCVzX8BjbySoW18Sbv4lGr3xzCd2EZ0+ad9VF7fqSLJIlZcSXM3OI9s4UGjnibR0ggz+75SqAwZTs/wDmvavI/jAd0TrXYRPvPO8brvpzG3ZlUg7+oe0o/9IW/qHtKP/SFv6R2depCrQHnjgATZt2sSWLVuYNm0aI0eOxGKxsG3bNvR6Pa+88oovkQ/etszLyztpWSNGjODBBx/knXfe4YYbbmDs2LEAbNiwAbvdziOPPMLQoUNPOO/FF19k1qxZzJs3j61bt5KRkUF2dja5ubnExcXxu9/9zi91TZkyheuvv54vv/ySxx9/nMzMTFJTU6moqGD37t24XC6GDh16QrJfXLg7ZvTlYEE1+45U8rO/reH/7htNSpysNfV9iqIQPmwaprQhWL55G1vebqqW/7N51P1PMMSkBDpEIcRFrmbrIqwb5gMQe/XDBPcZHuCIugZF0RCUkklQSiZRk+/CUV5AY/YWGrI34yjPp6lgH00F+6j87gN0cT0JiuiOp2c3uETntHdUFlHy7zl4bHUYk/qQMOtZNIagQIflV50+ad9VF7fqSLJIldfQTBOJMSGUWBrYebjaN/elvwVf/wQ1CT2pWvEvbFkrUGsriL/xabSm8/vS0BnbsiuSdvQPaUf/kbb0D2lH/5G29I/OuEhVoBkMBt5//30++OADFixYwIoVKwgODmbKlCn85Cc/oX///udU3lNPPUVmZiYff/wxmzdvBqBfv37cfffdzJgx46TnJCcn8+WXX/L666+zatUqli5dSnR0NLNnz+axxx4jOjrab3W9/PLLTJgwgc8//5z9+/dz+PBhTCYTAwYMYMaMGdx+++3o9RfHbdmdSXr3SF756Xh++/4mSiwN/Oxva/nlXSMYkt41FqbtaPqIOBJu/Q11u5ZTuewj7EWHKHrvZ0ROvJWIUdfIqHshRLuoP7CByu8+ACBy4m2EDZ4c4Ii6JkVRMManYoxPJXLCLTirS2k4tIXG7C00HTuIqzwPU3keFYU78Ey6g7Ahk1GUTr9sqd84q0sp+XQO7oYaDPE9SZj9azTGi+97TqdP2rfn4latE/Nw+sWtli1bdk6LW4mOpygKU0Z241+LD7Js69F2S9orioL5suvRRydT/tVfaMrfQ9GHv/TN0SaEEEIIcakxGAw89NBDPPTQQ2c8dvTo0WRnZ5/2mJkzZ57zFDMxMTE8//zz53TO+dZ19dVXc/XVV59zXeLCpCaG86fHr+D3H27mYEE1z727iYduGMiMsT3PfPIlSFEUwodOJbjXYCoWvY3tyC6qln9Mw8FNMupeCOF3toK9lH/1V0AlfPh0zGNvDHRIFw19ZALm0ddhHn0drnor1r3rqN78Ndp6C5ZFb1G3axkxV92PMaljZuEIJFdNhTdhX1eFPiaFxFt/g9YUeuYTu6BOfxnm+4tbfd/5LG4FsHjx4lOWdbLFrQDf4latnWpxKxEYk4d3R1Fgb24lpZXtuzBwSPpIku76PbrwGFzVpRR/+Esaj+xu1zqFEEIIIYS4lJnDjPz+4cuZOCwFj0flzc+zePfLPbjdnkCH1mnpImJJmP1rYq5+BMUYjL3oEIXvPU31uv+hul2BDk8IcRGwl+VT+t+Xwe0iJHMM0dPu7TJ3DHY1ulAzwYMmUzv2PsKuuA3FYMJefJiiD39JxTdv4W6sDXSI7cZVV0Xxp3Nw1VSgj0ok8fY5aEMiAh1Wu+n0SfuWxa0Ann/+eerr6337Tre41fTp09ssDNWiZX7Jd955h9zcXN/2s1ncymq18uKLL6KqKsAZF7cSHS820sSQPrEAfPD1PmobHO1anzE+leR7X8GYkoHH3kjpvN9Rs+3EC0JCCCGEEEII/zDotTx12zDumOH9/rVg7RF++8FmGpucAY6s81IUhfAhU+j2479gShsKbhfVq+dS9MHPsRd3jfUzhBCdk7OmnNJ5v0O1NxLUvR+xP3hcpuDqCBotIcNm0O2h1wkdMAFQqdu1jGNv/ZTa7UtQPe5AR+hX7oYaSv79PK7qUnQRcSTePgddaGSgw2pXnX56HOi6i1uVl5fz6KOP+n4uKCgA4M0332TevHkAxMbG8sYbb5x/44gT/OCKNHYeqmDjnhL25Fi4Y0Zfpl+WilbTPld5tSERJN3+PBWL3qZ+zyoqv30PZ8Ux75Xl81igVgghhBBCCHF6iqIwa2oGKbFh/HnuDrYfLOeZ19fym3tHkxB9+rXOLmW68GgSZv0/6vetpfK7D3CUF1D00a+IGH0NkRNmo9EbAx2iEKILcTfWUTr3t7jrq9HHdif+5l+i0RnOfKLwG11YJHE/eJywoVdS+e17OMoLsCx5l9pdy4m56n6CUrr+VN5uWx0l/34ep6UQbVg0iXfMQRceE+iw2l2nH2kPxxe3evLJJzGbzaxYsYKcnBymTJnCZ599xoQJE86pvKeeeorXXnuNfv36sXnzZjZv3ky/fv34y1/+wuOPP37Sc1oWt5o9ezYNDQ0sXbqUhoYGZs+ezZdffkliYuIJ5zgcDnbv3u17WK1WAI4dO+bbduDAgXNuD3F6wzPjeemRy0lNDKfe5uTt+Vk8+doq9h2pbLc6FZ2e2GsfJWrynYBC7Y5vKZ33O9y2unarUwghhBBCiEvd5YOT+MNPLicq3MjR0jqe/usa9ue1X7//YqAoCmEDJtDtwb8S0n8cqB5qNi2g8N2nsOWfOCWtEEKcjMdpp/Q/L+KsLEYbHkPi7F+jDZKLpoFi6t6P5PteJXrafWiMwThKj1D8z2cp//oN3A01gQ7vvHmaGiid+1sc5QVoQ8wk3j4HvTk+0GF1iC4zDLgrLm6VkpJyxjhE+xiQFsNfnryCJRvz+WTJQfKKa/nlG+u4YmgK91zbj+gIk9/rbLNA7Zd/wZa/h+KPfkX8Lb+SBWqFEEIIIYRoJ326RfKnx6/gtx9s5khRDf/vrQ389JYhTB7RLdChdWrakAjir3+Shv7jsSx+B1d1KSWfziFsyFSiptwlyTchxCmpHjfl8/+EvegQmqBQEmf/Gl14dKDDuuQpGi0RI2cS0ncsVSs/pT5rBfVZK2jM3kTkFbcSPvyqLjV1kcdho+Sz32MvyUUTHE7i7XMwRCcFOqwO0yVG2gtxPrRaDVeP68U7v5zCVWN6oCiwemchD7+8nM9XHMbpap/FqkLSR5J0t3eBWmdVCcUf/YrGPFmgVgghhBBCiPYSYzbx8k/GcdnARFxuD6/N3cHHi/bj8aiBDq3TC+kzgm4P/pXwYVcBULdrGYXvPE5D9uYARyaE6IxUVcWy6B0ac7aj6Awk3PIrDLFykbQz0YWaibv2JyTd/SKGhF547I1Ufvc+Re8/g+3o/kCHd1a8d3K8hL0wG01QCIm3/t8l9zmTpL246EWEGnn05iH8+fEryOwRic3u5qNv9vPTP65g+8GydqnTGJ9K0j0vY0zOaL6V53fUbFvSLnUJIYQQQgghIMio45d3jeTmKX0A+O/yw7z8yVaa7K4AR9b5aYzBxMz4MYl3voA+KhF3fTVl/3uFss//iKu+OtDhCSE6keo1n1G3ezkoGuKuf5KgbpmBDkmcQlBKBsn3/IGY6T9GExSKo7yAkk9+Q/lXf8VV13l/t6suJ2X/e5mmgn0oBhMJt/4fxoSegQ6rw0nSXlwyencz8/Kj43ny1qGYw4wUVTQw591N/O6DzZRWNvi9Pl2omcQ75hA68ApQPVR++y6WJe9edCt4CyGEEEII0VloNAp3zezHE7OHotMqbMgq4ZdvrqOyxhbo0LoEU/f+JN//J8xjbwBFQ8PBjRS+8wR1u1egqnLXghCXutrt32Jd918AYqY/QEjGqABHJM5E0WgJH34V3R5+nbChVwIK9XvXcOztn2LdvADV3bkubKtuF2Xz/4TtyG4UvZHE2f+PoKTegQ4rICRpLy4pGo3C5BHdefsXU7j+ijS0GoXN+0p55JUV/GvxAZoc/v1lpdEZiL32p0RNuh1QqN2+pHmB2nq/1iOEEEIIIYQ4bsrI7vzuocsJDzGQW1jDU39ZQ84xa6DD6hI0eiNRk+4g+d6XMcT3xNNUT8XCNyid+1uc1vJAhyeECJCGg5uxfPseAObxtxA+bFqAIxLnQhscTuzMh0i65w8Yk/qgOmxULfsnhe893WkWIVc9bsq/+guNh7f6pl4K6tY30GEFjCTtxSUpxKTnvusG8PrPJjGkTyxOl4fPlh3i4ZdXsG53kV9HkSiKgnnsjcT/8BkUfRC2vCyKP/oVruoSv9UhhBBCCCGEaKt/r2j+9PgEusWHUVXbxC/eWMeGrOJAh9VlGBN6kXzvy0RNugNFZ8CWt5vCfzxBzZaFcvewEJeYpmMHKP/yNVA9hA2ZSuT4WwIdkjhPQUm9SfrRi8TMfBiNKQynpZCST+dQ9sWfcdVWBiwuVfVQsfANGg5sBI2O+B/+HFPqwIDF0xlI0l5c0rrFh/HCg5fxy7tHEhtpwmK18fLH2/j12xsoKK31a10hGaNJuvv3aMNjcFYVUzl3DvrSg6hq+yyIK4QQQgghxKUuITqEV386nmEZcTicbl7651b+s+yQTPVylhSNFvPYG0i+/08Ede+H6rRTufRDiv/5/3BUHA10eEKIDuCoOErpf15CdTsJ7jOSmBk/RlGUQIclLoCiaAgfOpVuD79O+PDp3unQ9q/n2NuPYd3wBarb2aHxtCxuXL9nNSga4m98iuC0oR0aQ2ckSXtxyVMUhcsHJfHmzycz+8oM9DoNWTkWHvvTKt79ag8NNv/9sjLGp5J8zx8wJqej2hsJ3TUfyz9/Se2O7/A47X6rRwghhBBCCOEVYtLzf/eN5ppx3kXsPll8gNfm7sDpktHiZ8sQnUTiHc8TM+NBFIMJe/FhCt97huo1/+nw5I4QouO4ai2UzP0dnqYGjCkZxN3wJIpGG+iwhJ9oTWHETH+A5Htfxpicgepsomrlvyj8x1M0HtnVITGoqkrldx9Qt2tZ8+LGTxCSMbpD6u7sJGkvRLMgg47bp2fy5s8nM2ZAAh6PyoI1R3joD8tZtqUAj8c/o3F0oZEk3vE8ISOvxaMz4q4uwbL4HY7+/SGqVs/D3VDjl3qEEEIIIYQQXlqthgdvGMRDNw5Co1FYub2Q//fWBmrqZeDM2VIUDeHDptHtwb8S3Hs4eFxUr/2MwvefoanoUKDDE0L4mdtWT8nc3+Kuq0Qfk0LCLb9CozcGOizRDowJvUi6+3fEXvso2pAInFXFlM79LaX/ewVXTUW71auqKlUr/0XttkUAxF7zCKH9Lm+3+roaSdoL8T0J0SH8v3tG8/yPLyM5NhRrvZ2/fraLn7++lkNHq/1Sh0ZnIGzcLdRMfJSwK+5AFxGHp7EW67r/cvT1B6n45i0clkK/1CWEEEIIIYTwuvrynsy5fwwhQToO5Ffx1F/X+H1azIudLjya+Ft+Rdz1T6IJDsdZcYzij57FsvRDPI6mQIcnhPADj9NO2X//gNNSiDY0isTZv0ZrCgt0WKIdKYqGsEGTSHnodcJHXg2KhsbszRx7+zGq1/0Pj8vh9zqr1/6Hmo1fAhAz40HCBk3yex1dmSTthTiFYRlxvP6zSdxzTX9MRi3ZR6v52d/W8LfPdvpvRI7OSMiwq+j2yN+Ju/Fp7wrebid1u5ZR+M7jlMz7Pbb8PTLnphBCCCGEEH4yNCOOVx+bQGJ0COVVjTzzt7VsO1AW6LC6FEVRCO0/jm4P/o3QgVcAKrVbFlL4jydpzNsd6PCEEBdA9bgp//IvNB07gMYYTOKtv0YXERvosEQH0QaFEDPtXpLve9W7lonLQfXqud7f7znb/VaPdcMXWNf+B4DoK+8hfNg0v5V9sZCkvRCnoddpuHFSb976xRQmDk9BVWHplqM8+NIyFqzNxe32zyKyikZLaN+xJP3oJZLu+j3BGaMBBVvuDko+nUPR+89Qt2c1qtvll/qEEEIIIYS4lHWLD+OPj0+gf69obHYXv31/EwvW5spgmXOkDQ4j7rrHSJj9a3ThMbhqyin99wuUf/0Gblt9oMMTQpwjVVWxfPsejYe2gFZH/M2/xBDXI9BhiQAwxqeSeMcLxP3gCbShkbiqSyn97EVK//MSzurSCyq7ZstCqlb+C4CoSbcTMeoaf4R80ZGkvRBnITrCxNO3DeflR8fRKymChiYX7365l8f/vIo9ORa/1aMoCkHdMkn44c99q3greiOOsjwqFvyNo288jHXjl7ibGvxWpxBCCCGEEJei8BADv31wLFNHdsejwrtf7uWtz7Nw+WlgzqUkOG0oKT/+C+EjZgAK9VkrKHznceoPbgx0aEKIc2Bd/zl1O74DFOJ+8ASmHv0DHZIIIEVRCB0wnm4P/Y2I0deBRkvj4W0UvvMEVWs+w+M891koand8R+XSDwEwj7sZ89gb/R32aTU2OTlWVseuQ+Us23KUr9bmU1rt/6l//EEX6ACE6Er69Yzmz09ewXeb8vlk8QEKSut49q31jB+SzL3X9ifGbPJbXfqoRGKmP0DkFbOp3fEdtVsX4a6romrFJ1Sv+y9hg6cQMepq9OZ4v9UphBBCCCHEpUSv0/DYrCF0iw/lo2/2s3hjPsWWen5510hCgw2BDq9L0RhNxFx1P6H9x1Gx8E2clUWUf/5H6jNGE3PV/ejCogIdohDiNGp3LqN69VwAoqfdS2jfywIckegsNMZgoqfeTdjgyVi+e5+m/D1Y1/6H+qxVRF95D8HpI1EU5Yzl1GWtxLL4HQAixvyAyAmz/BajqqrUNjioqm3CYrVhqWmissZGpbUJS42NyuafG5tOnMEiNd7IpLF+C8VvJGkvxDnSahRmjO3J5YOT+deSA3y7MZ+1u4rYsr+UW6akc8PENPQ6rf/qM4UReflNmEdfR/2+tVg3f42z4ii1W7+hdttiQjJHEzH6OoKS0/1WpxBCCCGEEJcKRVG4cVIfkmJD+dOn29l92MLP/raW/7t/NEkxoYEOr8sJSskk+f4/Yl33OdaNX9CYvZnC/D1ETbmbsCFTziqxI4ToWA2HtvqSqeaxNxIxcmaAIxKdkSG2G4m3PUfDwY1ULv0IV005Zf97GVPaUGKm3Ys+KumU59bvX0/FwjcBCB8xk6jJd5713wO3R8Va10RlTUtC3kZVTROW5oR8VY332ek6uzvlQoJ0RJtNRIcHYQ7V0yvaeVbndTRJ2gtxnsJDDDxy02CuGt2Dd77Yw4H8Kj5ZfIBlW45y//UDGNUvwa/1KTo9YYMnEzpoEra83dRsXoDtyG4aDmyk4cBGjCmZmEdfR3D6CBSN/y4aCCGEEEIIcSkYMyCRlx8dz2/f30RRRT0/++safnX3KAb2jgl0aF2ORmcgauKthPS9DMs3b2IvycWy6C3q968jduZD6CP9+11JCHH+mgqzKf/iz6B6CB00iciJtwU6JNGJKYpCaN+xBKcNxbr+c6ybvsaWu5Nj/3gS8+jrMF9+ExpDUJtzGrI3U/7lX0D1EDZkKtHT7vEl7B1Ot290fMto+O+Pkq+us+PxnN2aM+ZQI9HmIKLDTUSbg4iJMBEd0fxsDiI6woTJeDwd3tjYyIEDB/zWPv4kSXshLlBaipmXHx3Hqh2FfLRwHyWVDfz2/c2M6BvPAz8YQFKsf0fnKIpCcK8hBPcagqO8AOvmr6nfuxZ74UHKCg+ii0wgYtQ1hA2adMIvSiGEEEIIIcSp9UqO4E9PXMHvP9zMoaNWfvPOBh754WCmjZaFGM+HMT6VpB+9RM2Wb6hePZem/D0U/uNJIq+4lYhRV8tgIyECzGEppPQ/L6K6HJjShhE78yG5G0acFY3BRNSkOwgdNInK797HdmQ31g3zqdu7huipPyIkcwx2h5uyPZtxffdXFNWDJXoIixvHUPnBFl9Cvrbh7OaT12gUosKDiIkI8o6Sb07Ex0SYiIoIIsZsIirc6NeZLwJNkvZC+IGiKEwa3o3R/RP4bOkhvlqTy7YDZew6VMENE9O4eUp6myt5/mKI60HctY8SNfF2arctonbHd7iqS6n89j2q18wjfOg0wkfMRBcW6fe6hRBCCCGEuBhFhQfx4iPj+MvcHazbXczr/9lFYXk9d1/dD61GklnnStFoMY+5jpCMUVR88xZNBXupWv5PGvavI+bqRzDGpwY6RCEuSa66Kkrn/haPrR5jUh/ib3waRStpQnFuDNHJJMz+DY3ZW6hc+gGuWgvl8/9ITXhvFpfGc6NpEwbFzU57Dz4+PADP4aMnlqHXth0NH+5Nwke3jJI3m4gINV5yf4Pl/0Yh/Cg4SM891/Zn6qjuvPvlHnYequC/yw+zYtsx7r22P+OHJLfLVWtdWCRRk27HfPlN1GWtpGbLQlzVpVg3zMe6eQGh/cdjHn0thjgZISSEEEIIIcSZGPVafn7nCLrFZzP3u2y+WJVDUXk9P7tjeLsMxrkU6CMTSLx9DnW7l1O17J/YS3Ip+uDnmC+7gchxP0TR6QMd4kVFVVWclkL05YfxpKVCcHCgQxKdiLupgdJ5v8VVa0EflUjCLb+SO/XFeVMUhZDM0ZjShlC0/D/Ytn9NRG0Os4NzAMhVUtmTfANTzCFER5iIaZ6mpiUhH2rSyx0eJyG9DSHaQbf4MJ7/8WVs2lvKewv2Ul7VyKv/2s7ijfn8+PqB9EyKaJd6NYYgIkbMIHzYNBoPbcO6eQH2woPUZ62kPmslpl6DiRh9Haaeg+UXohBCCCGEEKehKAq3XZVJcmwof/1sJ1v2l/Lz19fym/tGExcpCdDzoSgK4UOmEpw2DMuSd2k8tAXr+v/RkL2J2KsfJiglM9Ahdmmu2kps+Xuw5e3GlpeFu8FKKFCx92uaBk0mfMQMDNGnXihSXBo8Lgdl/30ZR/lRtCFmEm79DdqQ9slRiEvL+r0W3lgbRZDjOm4O3UZf3TFMvYYy5eafc6XOEOjwuhxJ2gvRThRF4bKBiQzLjGP+yhz+t/wQe3MreeLPq5g5tic3XNF+o94VjZaQzNGEZI6mqegQNZsX0HBwM7Yju7Ed2Y0hrjsRo64ltP94GdEihBBCCCHEaVwxLIX46GB+/+EW8ktqefqva/j1PaPI6BEV6NC6LF1YFPE//DkNBzdR+e17OC2FFP/z14SPmE7UxNsDHV6X4bE3YivYhy0/C1teFk5LYdsDtHrcehPaplrvdKrbFmHqNYSIETMx9R6KomgCE7gIGFX1ULHgbzQd3YdiMJEw+/+hN8cHOizRxTU2OfnHl3tYvvUYACk9ujP89huI0TWiDY+W3zXnSZL2QrQzo17LrdMymDKiG+9/vZcNWSUsXJ/H6p2FjE43EZ1gI7Udb1UMSk4n6Maf4bSWUbPlG+p2LcdRfpSKhW9QtfJTwkfOJHzYNLSmsHaLQQghhBBCiK4ss0cUf3p8Ar99fzP5JbX86s31PDF7KBOGpgQ6tC5LURRC+16GKXUAlcs+pj5rBbXbFtN4aCthU+4BZHDR96luF/biwzTmeZP09qJDoHpaHaFgTEzD1HMQpp6D8ER14+ChHHqFuLHvWUHj4e3YjuzCdmQXOnM84SOmEzZ4CtqgkIC9J9FxVFWl8rsPaTiwETQ6En74c4wJvQIdlujiDh2t5o+fbqfE0oBGgZunpnPrlRlotRpAfrdcCEnaC9FB4qKC+dXdo9h1qJx/fLmHY2X1LNvlZNmudaR3NzN+SDKXD0omNtLULvXrzfHETLuXyAmzqNu5lJqt3+Cuq6J61b+xrv+csEGTiBh9LfrIhHapXwghhBBCiK4sLjKYlx8dxx8/3c7W/WW8+q/tFJbXc+u0DJl68gJoTWHEXfsTQvuPw7LobVw15VR/8SqhsWnU1w5BTe6DIa4HuojYS66dW+alb5nuxnZ0H6qjqc0xusgEX5Le1GNAm8FYjY2NoCgYewwksu9onNWl1O74lrpdy3FZy6ha9k+qV88jdMAVRIyYgSGue0e/RdGBajZ+Se22RQDEXfdTTD0HBTgi0ZW5PSrzVx7m0yUHcXtUYswmfnb7cPr3ig50aBcNSdoL0cGGpMfxt6cnsXh9Dt9tPEJBhZ1DR60cOmrl/QX76JsaxbjBSVw+OInoCP8n8LVBIZgvu56IUVdTv38DNZu/xlGWR+32JdRu/5bgjFGYR1+HMUW+fAghhBBCCNFacJCe/3fPaD5auI8vV+cy97tsCsvreXz2UIx6baDD69KCew0m5cevUbV6LrVbvkFfkUt9RS71zfsVgwlDXHcMcT0wxPbAGN8DQ2x3NBfZKHFXXZU3Qd885Y27vrrNfo0pzJugT/Um6vXmuLMuWx+ZQPSUu4mcMJv6vWuo3bYIR/lR6nZ+R93O7wjqMYCIETMJTh+BopHP88WkLmslVSv/BUD0lfcQ2n9cgCMSXZnFauO1uTvIyrEAcPngJB794WBCg2Xeen+SpL0QAaDTapgyIoWkkDoSU3qx83A1a3cXsz+vkgP5VRzIr+K9BXvp1zOa8YOTGDsoichw/67krmj1hA28gtABE2gq2It10wJsuTtozN5MY/ZmjEl9iBhzHSEZo6XDJoQQQgghRDOtRuG+6waQEhfGW5/vZu2uIsqqGvj1PaMxyjfsC6IxBBFz5T3o08dwbOsKohQ7nqpCHJYiVIcNe2E29sLsNufowmO8ifxWD310Upf5DuOx27Ad3ecbTf/9eekVnYGgbn19o+kN8akXPD+0Rm8kfOiVhA2ZStPR/dRuW0RD9haaCvbSVLAXXXgM4cOvImzIVLTB4RdUlwi8xpwdVCx8E4CIMT8gYtQ1AY5IdGUb9xTz+n92UdfoJMig5cEbBjJlZHcZ9NkOpEshRICZw4xcPa4XV4/rRWWNjfW7i1m3u5gD+VXsO1LJviOV/OPLPQxIi2FccwI/ItTot/oVRcGUOhBT6kAcFceo2bKQ+j2rsRcfpnz+n9CGRGDqNQRTryEE9xwsq8oLIYQQQggBXDWmB4kxwbz00VYOHbXy1F/X8MxtgwMd1kVBH9sDe88xmPv2JTg4GNXtwllZjKO8AEdFAfayAhzlBbjrKnHVWnDVWmjM2X68AK0OQ0y35iR+d18yXxtiDnhiyTsvfQ62vCwa83ZjLz4MHnerIxSMib2ak/SDMaZkoNG1z+hVRVEw9eiPqUd/XLUWard/S+2uZbhqLVSt/JTqtf8lpN84IkbOkLnPu6imosOUzf8jqB5CB0wgavIdgQ5JdFFNdhfvLdjLt5sKAOidEsHP7hhBcmxogCO7eEnSXohOJDrCxHUT0rhuQhrl1Y1syCpm7a4iDh21kpVjISvHwttf7GFQWgzjhiRz2cBEwkP814EzxHYj9uqHibziVu90OTu+xd1QQ/2e1dTvWe09JqEXwb2GYEobQlByBopWfo0IIYQQQohL06Desfzp8Qm88P4miioa+L/3tjI2IwRtiJUBfYLQaS9sRLTwUrS65uR7d2C8b7vbVo+jogBH+VFvQr+8AEfFUVRHE46yPBxleW3K0QSHHx+RH9sdY1wP9LHd0Oj9Nyjq+3zz0jdPd2Mr2IfqsLU5RheZ4JvuxpTadl76jqILjyFq0u2Yx99Mw/711GxdjKM0l/qsFdRnrcCYkknEyJneO7HlO2CX4KwqpvQ/L6I67Zh6Dib2mkcu+C4NcWk6UlTDq//aRmF5PYoCN07sze3T+6LXyeepPclvWiE6qbjIYK6/ojfXX9GbsqpG1u0qYt3uInIKa9h1uIJdhyt46/PdDE6PZfzgJMYMSPTb/GG6UDNRV8wmctxNNBVm05i7E9uR3d6Ob+kRHKVHsG6Yj2IwYUod4E3i9xoii9gKIYQQQohLTlJsKH98bAJ/+Hgruw9bWLmnlpV7tmIyaunXM5pBvWMY2DuGXslmtBqZPsCftKZQTN37Y+re37dNVT24rOXNSfyjvtH5zqpSPI21NOXvoSl/T6tSFPRRiSeMyteZ4847wemqq8aWvxtb3p7meemr2uzXmMK8dzv3bJmXPv686mkPGp2BsEGTCB04EXvRIWq2LaLhwEbshQcpLzyINjSS8GHTCBt6JbrQyECHK07BVV9Nydzf4mmsxZDQi/ibnkHR6gMdluhiPB6VBWuP8M9v9uNye4gKD+KpW4cxOD020KFdEiRpL0QXEB8VzE2T+3DT5D4UW+q9U+jsKuZIcQ07Dpaz42A5b/xvN0PS4xg/JInR/RMJMV34H2RFq8fUYwCmHgNg8p246qu9cy3m7qIxbzeexloaD22l8dBWAPRRib6pdEw9+qMx+H8hXSGEEEIIITqb0GADcx64jEXrcli3M59jFhf1NifbD5az/WA5ACFBOgakeRP4g3rH0CMhHI0k8f1OUTToIxPQRyYQkjHat93jtOOsOIaj4ij2llH55QV4GmtxVhXjrCqm4eDG4+Xog7xJ/NjmRH68dwFcrenEqSA8dhtNR/fTmLcbW34WzopjbWPS6gnq3hdTz8GYUgdhSLjweenbm6IoBKVkEJSSgWvKj6jd+R11O77DXV9N9ZrPqF73OaH9xhI+YgZByemBDle04rE3Ujrv97is5ejM8STM+n9ojPLdXJyb6tom/jJvJzuyvX/DRvdP4Ke3DPHrdM3i9CRpL0QXkxQTys1T0rl5SjqF5XWs3+2dQqegtI5tB8rYdqAMnXY3wzPjGDckmVH94gkO8s8VdV1oJGEDJxI2cCKq6sFRmkfjkV3YcnfSVHQIZ1UJzqoSarctBq2OoG59faPwDXE9Aj5/pBBCCCGEEO1Fp9UwdWQKyaF1ZGRkUl7jIivHwp4cC3uPWGhocrF5Xymb95UCEBZsYGDvaAY1J/K7xYdJf7kdafRGjEm9MSb1pmXyGVVVcTdY247KLy/AYTmG6mzCXnQIe9GhNuVow6J9o/IVncE7cr/o0Anz0hsSemHqOZDglnnp23EKnvamC4skasIsIi+/kYaDm6jZuhh7UTb1e9dQv3cNxsTehI+YQWi/y1F0Mpo7kFS3k7L/vYKjLA9NcDiJt/4GXag50GGJLmbr/lL++tlOauodGPRa7r+uP9MvS5W/UR1MkvZCdGEpcWHMujKDWVdmcLS0lnXNCfzC8nrfFwKDTsPwvvGMH5zMyH7xBBn987+9omgwJqZhTEwj8vKb8NgbseXv8Sbxj+zCZS0/fuvpik/QhpgxpQ3xJvF7DkYbHO6XOIQQQgghhOhsNBqFXskR9EqO4Por0nC7PeQW1bAnx0JWroX9Ryqpa3SwIauEDVklAJjDjL4E/qDeMSTGhEiCpJ0pioIuNBJdaCTBvYb4tqtuF86qEhwVR3GU5fvmynfVVOCuq8RWV4ktd0ebsnTmOO9I+p6DMPUYiDa44+elb2+KVk9o//GE9h+PvTiHmu2Lqd+3DntJDhVfv07l8n8SPvRKwoddhS48OtDhXnJU1UPF129gy9+Dog8icdb/Qx+VGOiwRBficLr5cOE+Fq7zrgeSmhjOM3cMp3uC5G8CQZL2QlwkuieEc1tCOLdOy6CgtI51u4pYu6uIYksDG/eUsHFPCQa9lpH94hk/JJnhmXEEGfz3K0BjDCYkYzQhGaNRVRVXdQmNud4Evq1gL+4GK/VZq6jPWgUoGBN7Yeo1hOC0oRiT+shiRkIIIYQQ4qKl1WpI7x5JevdIbprcB5fbw+GjVrJyK9iTY+FAXhXWOjtrdhWxZlcRANERQQxqTuAP7B1LfFRwgN/FpUPR6jDEdsMQ2w36Xe7b7m5qwFnhHZFvLy9AdTQR1K2vd176S2x9L2NSb+KSfkr05Luo3bWM2u3f4q6rxLr+c6wbviAkczThI2YS1K1vl734pKoe3A21uOsqabKUoC/Jw6apwWMwAGrzfyqoHlBp3qY2n6v6jkH1tBQIqM2HqL6fT3pOy/aTntO6rOPHOC1F3imeNFrib/oZxqTeHdBKZ8/jUdl6oJyd+2qx2EtIio8g1mwiOsIkC5p2AgUltfzx0+3kl9QCcN2EXtw9sx8GvTbAkV26JEsmxEVGURRSE8NJTQzn9umZ5BXXsm63N4FfWtnI+t3FrN9dTJBBy6j+CYwb7E3g+/MXsaIo6KOSiIhKImLkTFSXk6bCg80L2u7ydnJLcrGX5GJd/zmKMRhT6sDjC9qa4/wWixBCCCGEEJ2NTquhb88o+vaMYtbUDJwuNwcLqr0j8XMsZBdUU1nTxMrthazcXghAXFQwg3sfH4kfHSFzVHc0bVAI2m59CerWN9ChdBrakAgiL78J82XX05C9hdpti2g6up+GAxtpOLARQ1yqd+qcAeM71RRBqseNu74aV20lrrpKXLWVuOuqWr2uxFVXDR6X75xQoGZ34GI+W7HXPEJw2tBAh+GjqipbD5Txr8UHyCv2JoSX797r268oYA41EhtpIsZsItYc3Pxs8m0zhxplDZB2oqoqizbk88GCvThcHsyhRh6fPZQRfTvPAtmXKknaC3ERU5Tjt+XeOaMvuYU1rN1VxLrdRZRX21izs4g1O4swGXWMHpDA+CHJDE2PRa/z75VURafHlDoQU+pAmHIXrrpqbHm7vEn8vCw8tjoaszfTmL0ZAH10kncUfq8hBPUY0Kk6d0IIIYQQQvibXqdlYFoMA9NiuO0qaHK4OJhf5ZsT//AxK+VVjSzdcpSlW44CkBQTwqA+sQxKi2FA72giw4IC/C7EpUzRaAntexmhfS/DXpZP7bbF1O9dg6M8H8uit6ha+Qlhg6cQPnx6uw/S8rgc3gR8c0LeXVuJqzkh727Z1lBzfAT86d8Z2tBINCFmGh0uQkJC0Gi1oCgo4M04KwrQ/PBuPH53Qcs+33E07zt+bMs+hePHoJysvJPvb32eKW0oIX1GXGgT+s3uQxV8suQA2QXVAJiMWtISDKA1UVVrp8Jqw+nyUF1np7rOzqGj1pOWo9MqREc0J/UjvQn9lsR+y3OISd9l7+oIlJp6O3/7bBdb9nvXWhmeGcfjs4fK35NOQpL2QlwiFEWhdzczvbuZ+dE1/Th0tJp1u4tZt6sIS00Tq7YXsmp7ISFBOsYMTGTc4GQG94ltl9vUdGGRhA2aRNigSageN/bSPO80Okd20VSYjbOyGGdlMbVbF4FWh6l7P18SXx/bXf4QCyGEEEKIi1qQQceQ9DiGpHuTm41NTvbnVfnmxD9SaKXY0kCxpYElG/MB6BYf5huJPyAthvAQQwDfgbiUGeNTib36YaIm30Hd7hXUbluCq6acmk1fUbP5a4L7DCdixEyCUgee83c7j73Rm4BvGQ3fnJA//roSj63u7ArT6NCFRaELj0YbFoUuLLr5tfdZFxaFNsSMotXR2NhI+YEDdOvbl+BgmarqTA7kVfGvJQfIyrEAYNBruXZcT2aMSaawIJe+ze2oqiq1DQ4qqm1UWG1YrMefLVYbFdWNVNU24XKrlFU1UlbVeMo6TUZtm5H6vtH6zYn+aLMJo0z14rMzu5zX5u6gus6OTqvhnmv7ce24XpJv6UQkaS/EJUhRFDJ6RJHRI4p7rulPdkE1a3cXsX53EVW1dpZvPcbyrccINekZ0TeezB6RZKRGkZoYjk7r3yS+otESlNSboKTeRI77IZ6mhrYL2tZUYMvLwpaXRdXyj9GGRmHqNZjgtKGYUgcB8kdXCCGEEEJc3IKDvP3ylukK6m1O9uV6E/h7cizkFddyrKyOY2V1LFyfh6J4FxAc2DuGwb1j6d8rmhCTPsDvQlxqtKYwzGN+QMSoa2jM2UHttkXY8rJoPLSVxkNb0cekED58BmGDrkDRB+Gx1XkT8K2mrPEl5Jt/Vh22s6pb0RnQhcd4k/Hh0ejCvpeMD4tGGxKOoshc6v6UU2jl0yUH2XagDPBOBTZjbCo3T+5DZHgQjY1tk+6KohARaiQi1EjvbuaTlul2e6isbWqVyD+e3G9J8Nc2OLDZ3Rwrq+dYWf0p4wsPMXin3In4/oh9b6I/KtyI1s85j87G6fLwyeIDfLEqB/Be8H3mjuH0TIoIcGTi+yRpL8QlTqNRfPNp3n/dAPbnVbJudzHrs4qx1tlZtaOQVTu882gaDVp6p5jJ7BFJZmoUGT0i/X7blCYohJDMMYRkjkFVVZxVxdhyd9J4ZBdNBftw11dRn7WS+qyVgII+oSdBwQk06RvQ98hEFx4rV4aFEEIIIcRFLdSkZ/SAREYPSASgtsHB3lzvfPhZORaOldWRV1xLXnEtC9YcQaNArxQzg9JiGNQnhv69ogkySDpAdAxFoyUkfSQh6SNxWAqp3baYuj2rcFoKqfz2XaqW/xNUFdXtPKvyNEEhx0fGh0WjbU7KHx81H40mKES+F3aggtJa/v3tQTZklQDePMOVo7pzy9R04iIv7M4ErVZDXGTwactpcriorGnCUm2jwtpIhbXJN1LfUuNN9Dc53NQ2OKhtcJBbWHPScjQahajwIBKig+nfM5qBaTFkpEZeNL8vC8vrePVf2zlS5H3/M8amcu+1/S+a93exkX8VIYSPRqMwIM17O+0D1w9k/5FK9uR6F8LKLqiiocnFviOV7DtS6TsnPiqYzB7eBH5maiQ9kyL8NhpfURQM0ckYopOJGHUNHpeDpmMHsB3ZRWPuLpwVR3GWHsHEEaxHNmAFNMHhGBN6YkxIw5DQC2NiL3QRcdJhE0IIIYQQF63wEANjByUxdlASANV1TezNqWR3TgV7ciwUWxrIOWYl55iV+atyCAs28IMrenHN5b1kBL7oUIaYFGKmP0DUxNuo27OK2m2LcVaV+PZrQyLQhrYaHd8qIa9tHiWvMcgizJ1FiaWBf393kNU7ClFV79T6VwxN4darMkiKCe2wOIIMOpJjQ0mOPXmdqqrSYHO2GZ3fMmq/5efKGhsut+rbtze3ks+WHUKnVUjvHulbd6QrJvFVVeW7zUd596s92B1uwoINPDZrCGOaL/yKzqlrfcqEEB1Gq1EY2DwnJoDHo1JYXkd2QTUHC6o5WFDFsbI637xyq3d6R+MbdBp6dzOT2SOKzNRIMnpEERXun9H4Gp2B4J6DCe45mOgpd+OqrcSavZWK/VsIsVtxVRbiaazFdmQ3tiO7j58XFIoxoSeGxDSMCb0wJqahM8dLIl8IIYQQQlyUIsOCGD80mfFDkwGwWG3saZ5KZ2d2OZaaJv61+CBfrMzhmvG9+MGENMKCZQ580XE0QSFEjLya8BEzcFYcQzEEoQuNQtHJRaSuoKLaxmfLslm65SgejwrAZQMTuX16Jj0SwgMc3YkURSE02EBosOGU08B4PCrWejsWq438klr25lrYk1uJxWpjf14V+/OqfEn8Pt0ivfmStGgyU6M6dRK/rtHB3/+7y3cXxOA+MTx56zCiI+TiV2fXeT9VQohORaNR6J4QTveEcK4c3QOABpuTQ0eryT5azcH8KrILqqm3OX1/0FrERZpajcaPomdShF8WuNWFRxPcfwKNmlh69O2LyaDHUV6AvfQI9pJc7KV5OMoL8DTVY8vfgy1/z/H3Ywz2jcRvGZWvj0qQOQ2FEEKI8+BwOPjwww9ZsGABx44dIzg4mBEjRvDwww/Tv3//cy5v0aJFfPLJJ2RnZwOQkZHBXXfdxYwZM055jsVi4e9//zurVq3CYrEQExPDxIkT+elPf0p0dLRf6wLIz8/ngw8+YN26dVRUVBAcHExycjJjxozh5z//+Tm/ZyHaU4zZxKTh3Zg0vBtut4e1u4v5z7JDHCur47Olh1iwJpeZY3ty/RW9MYcZAx2uuIQoigZDXI9AhyHOUnVdE/9bfphFG/JxuT0ADM+M447pfU85J31X0TI1TlR4EOndI5k2ugeq6l0Ad0+OxXvhszmJfyC/igP5VfxnGZ06ib8n18KfP92OpaYJrUbhrpl9uf6K3mg0MoCxK+gcnyIhRJcUYtIzNCOOoRlxgPfKdLGlnoP53pH42QXVHC2tpbzaRnl1EWt2FQGg12nonWL2JfEze0T65SqvotNjTOqNMam3b5vqduIoP4a9NBd76REcJUe8iXx7I00Fe2kq2Hv8fGMwxviebUbl66MSUTSy2K0QQghxKg6Hg/vuu48tW7YQHR3NpEmTqKioYOnSpaxatYq33nqL8ePHn3V5r732Gm+//TYGg4HLL78cgPXr1/PEE09w6NAhHn/88RPOKSoqYtasWVRUVNCrVy+mTp1KdnY2c+fOZcWKFXz22WckJp54C/j51AXeRP8vfvELnE4nAwYMYMiQIdTU1JCTk8NHH30kSXvRqWm1GiYOS2HCkGQ27i3hP0sPcaS4hs9X5vD1ujymj+nBjZN6yyhMIYRPXaODz1ccZuH6POwONwAD02K4Y0Ym/Xqe+sJ4V6coCgnRISREh3BlF0riu9we/v3tQf634jCqCkkxIfzsjuH06RbZoXGICyNJeyGE32g0CilxYaTEhTF1VHcAGpucHD5q5eDRKg7mV5NdUE1do8P3R43VuYB39E9mD+90OpmpkaQlR6DXXXiyXNHqvaPpE3v5tqluFw5LIfaSXBzNo/Id5QWo9kaaju6j6ei+4+cbgjDG92w1Kr8X+uhkSeQLIYQQzd599122bNnCwIED+eijjwgN9c4nu3DhQp5++mmeeeYZli1b5tt+Otu2bePtt98mPDycefPmkZaWBkBubi6zZ8/mzTffZMKECQwdOrTNec8++ywVFRXMnj2bOXPmoCgKqqoyZ84c5s2bx69//Wvef/99v9S1c+dOfvaznxEfH88bb7xBv3792uzfvXs3QnQFGo3C5YOSGDswka0HyvhsaTaHjlpZsPYIizbkc+Wo7tw0uQ/xURe2iKQQoutqbHLy1ZojfLk6h8YmFwAZ3SO5c0ZfBvWJueSmnD1VEr9lKp2sHEvAk/gllgb++Ok2Dh21AnDlqO48cP1ATEZJAXc18i8mhGhXwUF6BqfHMjg9FvAugFJiaeBgwfEkfn5JDRarjXVWG+t2FwOg02pIS4k4Pjd+9yhiI/0z2kfR6jDGp2KMTwWmeOPyuHE2J/LtpXnYS3NxlOWjOppoOnaApmMHjp+vN2KIT8WYkOZd9DYxDX1MiiTyhRBCXHJcLhcff/wxAM8991ybxPw111zDggULWL16NZ9//jl33333Gct77733AHjooYd8SXSAtLQ0HnzwQV599VXee+893njjDd++ffv2sWnTJsxmM88++6wvgaAoCs8++yxLlixh3bp1HDx4kMzMzAuqC+D5559HVVX+/ve/n5CwBxg8ePAZ36cQnYmiKIzql8DIvvHsOlTBZ8sOse9IJYs35vPd5gImDe/GzVP6kHSKBR6FEBefJoeLRevz+N+KHOoaHQD0TArnjul9GdlP1odr0TqJP3XUeSbxe0QR5IeEuqqqrNxeyNvzd2Ozuwkx6Xn05sGMG5zsh3cqAkGS9kKIDqUoCkmxoSTFhjJ5hHc0vs3uIueY1ZfIP1hQRW2Dg+wCb1L/qzXec6Mjgo7Pjd8jirSUky8gc15xabQY4npgiOtBWPN3bdXjxllZ1DxH/hHvqPzSPFRnE/bCbOyF2cfP1xkwxPXAmJjWPCo/DUNMCopWfs0KIYS4eO3YsQOr1UpKSgoDBw48Yf/MmTNZvXo1y5cvP2PS3m63s2HDBoCTzic/c+ZMXn31VdatW4fD4cBg8C6auXLlSgAmT56M0dh2Lm6j0cjkyZOZP38+y5Yt8yXtz7euXbt2ceDAAUaNGnVec/UL0ZkpiuKb+nJvroXPlh1i16EKlm09yoptRxk/JIVbpvaheydcZFKcXIPNybEKO737eAIdiuginC43324q4D/LDlFdZwcgOTaU26dncvmgJJkL/QwClcRvsDl56/MsVu8sBKB/r2ieum0YcZFyp1RXJtkkIUTAmYw67x+o3jGA9wpxaWWjb178gwVV5BXXUlnTxPqsYtZntYzGV0hNDCPS5OZIdQHdE8wkRIcQHx3sl9vNFI0WQ2x3DLHdCRs40Rubx42zqqR5fvyWUflHUB027MWHsRcfPn6+Vu+9EJDYC2N8T/RRieijEtGGRcmCt0IIIS4KBw5470Q7VQK7ZSR6yyKvp5OXl4fdbicyMpKkpKQT9iclJWE2m7FareTl5ZGRkdEmhgEDBpy03P79+zN//vw2MZxvXRs3bgRg+PDhOBwOlixZQlZWFh6Ph969ezNjxgwiI2W+WNH1DUiLYUBaDAcLqvjPskNs3V/G6p2FrNlVyGUDE5k1NYNeyf4bQCP8q97mZMGaXL5ak0tjk4vPN67luglpzBjbk1CTPtDhiU7I7fawfNsx5i3NpqLaBkBcVDC3Tctg4rAUtFr5/no+OiKJfyCvij/+ezvlVY1oNAq3Tcvgh1PS0coFli5PkvZCiE5HURQSY0JIjAlh0vBuADTZXeQUWjlYUM3BfG8y31pvJ6ewFoCthw+1KSMq3Oj745gQHUJidDAJMSEkRocQHmI479v5FI0WQ0wKhpgUGDABAFX14KwqxdG82G3LqHyPvRF7SQ72khzqWpeh1aOLjEcfmYA+MgFd87M+KhFdRKxMsyOEEKLLKC72XkhPSEg46f6W7VarlYaGBkJCQk5ZVlFR0WnLatlntVopLi72JdJbYoiPjz9tDC3lX0hdOTk5vv033HBDm58B/vSnP/HKK68wZcqUU5YrRFeS2SOK/7tvDLmFVv6z/BAbskp8j5H94pl9ZQbp3eVCVWdR3+jgqzVH+HptLg3N849rNWCtd/DxogP8d/khrhqTyg8mpBFjloWGBXg8Kmt3FfHvbw9SbGkAICo8iNlXpjN1VA/0OknW+5O/kvgAbo/K/1bm8vmqPDwelfioYH52x3DfftH1SdJeCNElBBl1vhE/gO+PW9ahUnbuL8CtCabC2kRJZSMNNidVtXaqau3sz6s6oSyTUUdCdHBzMj+EhJgQEqKCSYwJIdZsOudRBIqiwRCdhCE6idD+45vj8+CqLvMm8UuP4CgrwGUtxWktR3U7cVoKcVoKT1KYBp057uQJfXMcGp3h3BtPCCGEaCeNjY0AmEwnT/4EBx+/LftMSfszldW6vIaGhhPOa13X2Z5zrnVZrVbAOx9+eHg4r7/+OmPGjKG6upoPPviAefPm8cQTTzB//nz69OlzyrLPhqqqvjjbm81ma/Mszt/F2paJUQYev3kAN05I5Ys1eWzYU8rW/WVs3V/GoLQobpzYi76p/kveX6zt2F7qbU4WbTjKoo1Hsdm9yfpucaFcd3kKkYY6yhqDWbK5hGPl9Xy5Opev1x7h8kEJXDsule7xslbB2bjYPpOqqrLtQAWfLc/lWHk9AOEheq6f0JMrR6Zg0GtxOppwOvxb78XWjv4QblIYOyCWsQNiUVWVCmsT+/Kq2J9Xzb68aiprmtok8bUahZ5JoTQ2NlFc5QRg/OBE7r0mk+AgXYf1HS4WgfhMqqp6VgNJJWkvhOiSWq5Qhw9OJNpgpW/fvr4v13WNDkorGyi1NFJS2UBpZUPzcyOVNTZsdhd5xbXkFdeeUK5WoxAXGUx8dLA3oR8dQmJMsO9q+NmuuK4oGt90OKH9LvdtVz1uXLUWnFWluKpLcFaX4awuwVldiqu6DNXlwFVdiqu6lBP/ZChow6N9CX19ZAK6qAT0Zu9rjVFGywghhBDtSVVVAJxOJ3/5y18YNWoUAOHh4Tz//POUlZWxcuVK3n33XV555ZULqsvpdPqm/uko+fn5HVrfxexibssrB+gY2j2edfvryMprJCu3iqzcKnrEGZgwIJxe8Ua/LVJ5MbejP9gcHjYerGNzdj12p/f3U5xZz8QBYWR2M6FR6gGF5DAb906JIKfEyPr99eSX21mzq4Q1u0rokxTE2L6hpMb579/tYtbVP5OqqpJbYmdFVo0v4RukVxjbL4zR6aEY9Y3k5hw6QykXrqu3Y3tLMEFCPy2T+kZjbXCTX2Ynv9xOXpmd2kY3OYXee/kNOoWrR5oZ3FNLQd7hM5QqTqejP5Mt6yWdjiTthRAXnbBgA2HBBvp0O3G0j8Pppqyq0ZfIL6s8ntgvrWzE6fJQ0rxvFxUnnG8ONXpH6ceEkBB1PKGfGB2COezMHV1Fo0VvjkdvjgcGt9mnqh7cddU4q0txVpfgaknoV5XirC5Fddhw11pw11poKth7QtnaEPPxkfmRCeijEtCZvc9aU9i5NaIQQghxFloumJ9qdFLr0V6nG2V/NmW1Lq91WS3nnWpk2enOOd+6UlNTfQn71mbPns3KlSvZsmXLKcs9W3q9nt69e19wOWfDZrORn59Pamrqae8+EGd2KbXl+NFQXm1jwdp8Vu4ooqDcwScrLPROieCmiT0Zmh5z3kngS6kdz0d9o5NvNhSweNMx38j67vGh/HBSL0b2jfMtFvr9duzXD66bAjmFNSxYl8+W/eUcLm7icHETacnhXDculVH94mSx0ZO4GD6T+/Or+WxZDgcLrAAYDVquvqw711zeg5AOWuvgYmjHQBjb/NwyEn9Xdhm5R8uYOS6dHkkyRdmFCMRn8vvTK56KJO2FEJcUg15Lt/gwusWfmMT2eFSq65oosbSMzm+k1NJAaVUDJZZG6hodWOvtWOvtHCyoPuF8o0FLQlRzEj+mZT5974j92MjgM84HqCgadOHR6MKjMfVou6Cfqqp4GmubE/qlzSPzj7/2NNbibrDibrBiLzx4QtmaoFD0kfHNSf1E9FHHp9/RhpjPrRGFEEKIZi2LuJaWlp50f8t2s9l8xqR9cnLyactqva/14rFJSUns37+fsrKy057TUv6F1NVyXkpKyknPadlusVhOWe7ZUhTllFP+tBeTydThdV6sLpW2TA0O5rHZ0dw2vR9frMphycZ8cgprePlfu+iVFMEtV6Zz2YDE804CXyrteLbqGh18tTqXBWuP+JL1qYnh3DotgzGnaefvt+Og9GAGpSdSbPFOl7N8y1Fyi2p57bMsEqNDuH5iGlNGdseol7W2vq8rfiYPHa3mX4sPsPOQd1CaQadh5uU9+eHkPkSEGgMSU1dsx84iJCSEuEgTByJs9EiKlHb0k478TJ7tBW1J2gshRDONRiE6wkR0hMk3d35rDTZnm1H5pZUNvgS/xWrD7nBTUFpHQWndCecqCkSGGYkxm7yPCNMJr6PCjaecT19RFLQhEWhDIghKyThhv7upoU0S31lV6p1Dv6oUd30VnqZ67CX12EtyTyxbH4Q2IpYQrYnasp44ohPQhcf4HtpQM4oiCxAJIYQ4Ud++fQHYt2/fSffv378fwLeQ6+n07NkTo9FIdXU1xcXFbZLl4F1w1mq1EhQURM+ePdvEsGzZMvbuPfEutNaxtY7hfOvq168fcHxu++9r2S5foMWlJsZs4oHrB/LDKX34anUu36zP40hxDX/451a6xYdxy9R0xg9JRisjuM9LXaPDNxd962T9bVdlMLr/+V8USYoJ5ZGbBnPbtEy+WZ/HN+uPUFLZwFufZ/Hvbw9yzbhezBzbk/AQWVerK8orruHTJQfZvM97EVqnVbhydA9mTU0nOkJGuQvR2UnSXgghzlKISU/vFDO9U8wn7HO6PFRUN0+1Y2kepV95fMS+w+n2LY576Kj1pOVrFIgMDzoxqW8+vi0yPOikX3a0QSFoE9MwJqadsM/jtB+faqf1KP2qUly1FlRnEy7LMQxAY9khTphcQKNFFxZ1PIkfHo0uPLb5rgDvNo0pVObAFEKIS9CwYcMwm80UFhayZ88eBg4c2Gb/okWLAJgyZcoZyzIajYwdO5aVK1eyePFi7rvvvpOWNW7cuDbzgE6aNInXX3+dFStWYLfbMRqPjxq02+2sWLECgKlTp15wXVdccQV6vZ6cnBwqKyuJjo5uc97GjRsB6N+/7R1zQlwqIsOC+NE1/blxUh8WrM1l4dojHCur40+fbmfutwe5eUofJg7vhu4UA1VEW7UNDr5cncPCdXm+ZH3PJO/I+gtJ1n+fOczI7dMzuWlSb5ZuOcqXq3Mor7bx6ZKD/G/FYaaN7sEPJqQRH3XpXpBsbHJSZ3NT3+hE0brQaTXotEqn/A5UWF7H3G+zWbu7CFX1fs+cNKIbs6/MICH69He9CSE6D0naCyGEH+h1GpJiQ0mKDT1hn6qqWOvtVFqbqLDasFhtVNbYfK8tNU1U1dhwuVUqa5qorGkimxOn3wHv3QBR4UHERAS1Sup7H7FmE9ERQZjD2ib2NXojhrjuGOK6nxib24nTWkFDaT5F2VnEBuvBVoOr1oKrthJ3XRV43LhqKnDVnDjHfwtFb/Ql8bVhMegiYtok9XXhMWgMQefRskIIIToznU7HXXfdxd/+9jeef/55PvroI0JDvX8LFy5cyOrVq4mMjOSmm27ynZOVlcXPf/5zAJYsWdKmvPvvv5+VK1fyzjvvMHHiRNLSvBejc3Nzeeedd3zHtNa/f3/GjBnDpk2bePHFF5kzZw6KoqCqKi+++CJWq5Vx48aRmZl5wXWZzWZuueUWPv30U5577jleffVV3/ynO3fu5MMPPwTgtttuO88WFeLiEB5i4I7pfbn+it58s/4IX60+QrGlgb9+tou532Xzw8l9mDqqO3qdTL9yMseT9Uew2d0A9EqKYPa0DEb3T2i3OeeDjDquHd+LmWNTWZ9VzOcrczhSVMPXa4/wzfo8xg1O4saJvUk7ySCmi01jk5O9RyrJOmxh9+EK8ktqm/eUtDlOq1HQ6TS+JL73udVr377v729+6L6/7fvnnWT/ycrUaUCFbzcVsGLbUTzedYkZPySZ267KICVO1jgToquRpL0QQrQzRVGIDAsiMiyI3t3MJz3G41Gpqbe3SuTbsFibvK+bf66sacLjUX3bOMm8+uDtOEZFBBET0ZzIbx6t703qe7dFhBrRaBQUrR5DdBIukxl7k5Gwvn3b3NKvety466t9SXxXrQVXjaXVzxV4GmtRnXaclcU4K4tP2Q6aoNA2iXxt+PeS+2FRKNqOWQBJCCGE/zzwwANs2rSJLVu2MG3aNEaOHInFYmHbtm3o9XpeeeUVXyIfvAt+5eXlnbSsESNG8OCDD/LOO+9www03MHasd+m1DRs2YLfbeeSRRxg6dOgJ57344ovMmjWLefPmsXXrVjIyMsjOziY3N5e4uDh+97vf+a2up59+mqysLJYuXcqVV17J4MGDqa6uZvfu3bhcLu68806uvPLK82pLIS42oSY9s6ZmcN34NBZvyOeL5hHcb36exbylh7hpUm+mjelBkEFSEwA19Xa+WpN7QrL+1qu8yfqOGtWt1WqYMDSF8UOS2X24gs9X5rDrUAVrdhaxZmcRQ9JjuXFib4akx3bKkebnw+F0c7Cgit2HLWQdruDQMSuelsz3abg9Km6HGzvuDojy7I3un8Dt0zPpmRQR6FCEEOdJ/jIKIUQnoNEoRIYHERkeRHr3k6/+7vaoWOuafKPzfQn9Vo+q2ibcHpWKahsV1TYOnKI+nVYhKqLV6PwQPU5bPdWuUmIiQwkPMRIeYiA8xIChOcl+Kh6XA3dLQr91cr/Vz6q9EU9TPY6mehzlBacoSUEbam5O6kd7k/q+h3dKHm1ohMyvL4QQnYzBYOD999/ngw8+YMGCBaxYsYLg4GCmTJnCT37yk3OeKuapp54iMzOTjz/+mM2bNwPeueTvvvtuZsyYcdJzkpOT+fLLL3n99ddZtWoVS5cuJTo6mtmzZ/PYY4+dMI3NhdQVEhLCp59+yvvvv8/ChQtZu3YtOp2OoUOHcttttzFz5sxzer9CXApMRh03TurN1eN68t2mAj5feZjKmibe/Wov/11+mOuvSGPG2FSCgy7NARw19Xa+XO1N1jc5Apes/z5FURiSHseQ9DhyC618sSqXtbuL2HWogl2HKuiVFMGNk3ozbnDSKdfm6qzcbg+5RTXsPlzB7sMVHMirwuHytDkmMTqEQX1iGNwnlt5JIRQdzSEjIxO9MQi3W8Xl9jQ/ml+7PDjdHtwt21weXB7vdleb45u3eZqPcZ9kv7v1vpMcc9LzVFITw5l9ZToZPaIC1LJCCH+RpL0QQnQR2lYL5Z5qOT+320N1nb3VaP0TR+xX1zbhcquUVzVSXtV2BvvF260nlBlk0PoS+K2T+Sdu60FYah/Cgg3odW077Z6mhu8l89sm9t21lahuJ+76atz11diLD5/8DWq0aIwmFH0QGr2h+dmI0vzQfO/5pMcZWvYf3+c7Ryt/FoUQ4nwYDAYeeughHnrooTMeO3r0aLKzs097zMyZM885+R0TE8Pzzz9/Tuecb11Go5FHHnmERx555JzrE+JSZtRruXZ8L6Zf1oPlW4/x3xWHKa9q5KNv9vP5ysNcNyGNa8b1omulf8/fSZP1yRHcNi2DUQFM1p9MWoqZn90xnDtn9uWrNbl8t7mAI8U1/PHT7Xy8+AA/mNCLaaN6EGTsnP1pVVU5WlrH7pwKsg5b2JNrobHJ1eaYqHAjg3rHMrhPDIN6xxLXag7/xsZGihUFrVYjd4YIITqE/KYRQoiLiFar8c1xfyout4eq2iYqW5L5NTZKLHXkF1agaINoaHJR2+CgtsGB26PS5HDT5LBRXm076ziCg3SnSPSHEh4SRXi0gfDu3u0RIQZCgnQo9vrvjdBvOyWPu74aPG48tnqw1bfPDaga7UkuArRO7hvQtCT5DUYUXctFgOP7HB7QVpfirAjGGR6JxmBCYwxG0V2aI8eEEEIIIb5Pr9My/bJUpo7qzuodhfx3+SGKKhr4dMlBvliVw1Wju5EW1bmmG/Gnmno7X6zK4Zv1eb5kfVpKBLde2fmS9d8XHxXMj68fyOwrM1i8IY+v1x2hvKqRd7/cy7zvspl5eU+uubwX5jDjmQtrZ6WVDb7pbrJyLFjr7W32h5j0DOodw6De3tH0KXGhnbrthRCXFknaCyHEJUan1RAXGUxcZNuRIwcOeOjbak57VVVp9CXw7b5EfttH2+11jQ5UFRqbXDQ2uSitbDxVGG0oCoQE6Vsl92MID0nyvu5mIDzTQLhJS5i2iSDFiVFxoceFHic61Q0uO6rTjsfZ8tyE6nSgOpt829rub/XsaAK1+VZYjxuPvRHsZxf3qYQDlZuhsvVGjQ6NMQiNwYRiMDUn84PQGIK9Pzfv8+1v3qcxthzfvN9oQjEEyTRBQgghhOjydFoNU0Z2Z+LwbqzfXcRnyw5xtLSOL1Z7172IXl5FalIEqYnh3kdSBMmxoSfc1dlVnCpZf9u0TEb2i+9SCePwEAOzrszg+om9WbH1KF+szqXE0sBnSw/xxcocpozszvUT00iKCT1zYX5SXdtEVo534djdOZYT7io26LX07xnF4D6xDOoTQ69kM9p2WtRXCCEulCTthRBCnJSiKISY9ISY9CTGhJzVOW6PSoPN6Uvm15000d822V9vc6KqUG9zUm9zUmxpOOdYDToNRoOOIGMQQYYQ72uDliCDDqNB631t0hEUoW21r9VrHRg1LoyKG6PiwqC40eNEjwuNx4HqdDRfCDgx8X/8tfdCgcveiL2+Dj3u5m3NI3o8Ljy2eu+dAn6gGE6W5G/+2WjyvW5J8h//Odj7c8t0QFo9ilbnfej0oGi61BdGIdqT0+WmrKqREksDhWU16F0O+gY6KCGEuAhpNQoThqYwbnAym/eV8NnSbHKLaqmstVNZW872g+W+Y3VahZS4MFITw+nRnMzvmRROVHhQp+3DtCTrF67Pw96crO+dEsGtV2Uysm/XStZ/n1GvZcbYnkwbk8qmvSV8vuIwh49ZWbwxnyWb8hk7MIkbJ/U+5bpdF6Le5mRvrsWXqD9aWtdmv1ajkNEj0jflTUaPSPQ6rd/jEEKI9iBJeyGEEH6j1Si+0fJny+32UNfoPO1o/tb7bXYXTQ637wsPgMPlweFyUHdhA+RP+Z6OJ/iDCDKEHr8QYGy5KKAjKESL0aBFiwdrtYXU7slEhAVjMmgwaVwEaVwYFScGnBhUBxqXHY/DhsdhQ3XY8NhteBxNeByNeOw2VEfT8f1277PHbvPdFaA6mnA7mnBT7ed3rHiT+brmZL5Gh6LTHU/sa/XQ6nXLdr73c8vrE7e3KkfXXH7zBYPj9elxOVxoGqtx11pwuUK8FxM0GtBovHcZaDTHtykaudggzltjk5PSSm9ivqSygdLKBt9ri9WGqh4/NjZCx+TLAxerEEJc7DQahcsGJjE4zczO3fswmZMprbaTX1JLfnEtBaW1NDa5vD+X1LY5N9SkJzUpnNSEcO9zYjjdE8IxBXCOdWtd88j6Da2S9d3M3Doto8sn679Pq1G4fFASYwcmsvdIJfNX5rDtQBnrs4pZn1XMwLQYbpzUm+GZcef9vu1ONwfyKtl92Jukzy204mn1d1pRoGdShHckfe8Y+veKDui/vxBCXIgu89vL4XDw4YcfsmDBAo4dO0ZwcDAjRozg4Ycfpn///udc3qJFi/jkk098i2BlZGRw1113MWPGjFOeY7FY+Pvf/86qVauwWCzExMQwceJEfvrTnxIdHe3XuoQQ4lKh1WowhxnPed5Lj0fF4XR7E/hON00OF3aH97nJ4cZuP/76+L6THNfmdcvxbjzN3wDcHpWGJhcN31uo6oy2WU+7W6dVCDLoMAXpMBnNmAwxmIw6goza5mcdweHeZ1PLQ6/FZFAJUpyYlJaLAA70qhOdxzva35vkb0742xubLwo0+ZL+vosETge4Xahu5/ciU73b3E7Uk0becSKAijXncILSNqnfJrmvaECj9SX5fcl+Tat9J7kYcPxZe4rytW0vRuj08P0LEVr9SS54tDpG03xx44TjW51zEX2p72iqqlJT76C0soFiS3NSvrKB0ubEfE2947TnBxm0JESHEGsOIi324p1fWQghOpsgg4bMHmaG9T0+paOqqlRU23xJe++jhqKKhuZR15XszW0zQSGJ0SH0SAwjNTHCl8xPiA5p12lRrHV25q/KYdH3kvW3TctgxEWWrP8+RVEYmBbDwLQYCkpqmb8qh9U7CtmT6138tUdCGDdO6s34ISlnnObI5fZw+KiVrJwKdh+2cCC/Cpfb0+aY5NgQBvWJZXCfWAamxZzT4CEhhOjMukTS3uFwcN9997Flyxaio6OZNGkSFRUVLF26lFWrVvHWW28xfvz4sy7vtdde4+2338ZgMHD55d7hUuvXr+eJJ57g0KFDPP744yecU1RUxKxZs6ioqKBXr15MnTqV7Oxs5s6dy4oVK/jss89ITEz0S11CCCHOTKNRCGpObrcHp8vTKol/mgS/3d3muAabnXKLFYMxGIdLxWZ3Nd8d4MLW5MLh8n7RcLlV35RA/qAoeC8CGA2YjMG+ZH+QQUdwczuZwlsuAHjvHDDoNOi1CnqdgkHjwaBR0SkeDBoPeo2KTnGjV1S0igcdbnSKB8Xj9ib7Pd6Ev+pyobpd4PE+qy6n99njfe29MNB8bKvXx7efuB+3C4/LicflQAFQVe8dBqrn9I2gesDt8V1sCPRFB7/yXQhoe3fC6e9w8P7sViG4poaa4s006vXNdyYo3oRB82vvz8dfH79z4Xs/tzpHOcXrk5blK+c0ZWlaXczQaL93gaPV+2q+UOK90OJNerg9KpVW2wkj5UstjZRU1mOznz7ZHh5iIDE6hIToEBJjQkiMCfa+jg7BHGZEUZTmtT8OdMA/thBCiFNRFIW4qGDiooIZ1T/Bt93hdHOsrI6C0lryir3J/IKSWqrr7JQ0X6zdtLfUd7xBr6V7Qhg9m6fXaZlmJyL0whZPra5rYv7KHBZvzPcl6/t0M3PbVZkXNMK8q+qRGM6Ttw7jzhl9WbD2CEs25lNQWsdrc3fyyaIDXDchjavG9CA4SA94B+UUlNZ656Q/bGHfEcsJf8OjI4IY3Mc73c2g3rHEmE2BeGtCCNHuukTS/t1332XLli0MHDiQjz76iNBQ70ImCxcu5Omnn+aZZ55h2bJlvu2ns23bNt5++23Cw8OZN28eaWlpAOTm5jJ79mzefPNNJkyYwNChQ9uc9+yzz1JRUcHs2bOZM2cOiqKgqipz5sxh3rx5/PrXv+b999/3S11CCCECT6/ToNcZCA0+87GttST2Wi/q25rb7cHmcGNrak7k248/mnyv3Sck+22Okx/T5HB5c9oqvnPA7p9GOAmNAnq9Fr1Wg0GvQa/TYtDr0WuD0Os1GHTa5mfvPr1Og0Gv9f5saDm+1bNWg755v6G5XL1eg8flJD8/j+RuPdBo9TicbhwON3aHE6fThcPhxOF04XS4cLlcOJwuXM0PZ/PD5XLjdnn3ex/en93Nz6CiaXko3mcFj2+borTaj6fVMa3P86DFg675wob3AocHbfNFDh0e7zbFjUGjtrk4ole852lxo8WDRnWjUV0oqhvl+xcoPM0XQs7zGo8RsB0D24V+ADoZN1rcaHB6NLjQ4FEVzGgJQ0MvVYMbDW6DBpdBi1anQ28woDcYMAYZCDIFYTIZCQ4OQm8wtL0DwqGDch2KRUdd8zaHy43S1CW6zkIIcckx6LWkpZhJSzG32W6ts1NQUkt+qXd6nfzSWo6W1OJwusk5ZiXnmLXN8ZFhRt+Ct6nNo/O7xYeecR70lmT9og35OJySrP++GLOJe6/tzy1T01myMZ8Fa3Kx1DTxwdf7+GxpNpNHdqeqtok9ORZqG9reARcWrGdQb+/CsYP7xJIUE3LJt6cQ4tLQ6b95uFwuPv74YwCee+65Non5a665hgULFrB69Wo+//xz7r777jOW99577wHw0EMP+ZLoAGlpaTz44IO8+uqrvPfee7zxxhu+ffv27WPTpk2YzWaeffZZ3x8IRVF49tlnWbJkCevWrePgwYNkZmZeUF1CCCEublqthlCThlCT3i/ltUwTZLM3J/abvKP+W18MaJvs9z7sTjdOlwen04PD5cbh8uBs3uZweXC63Dic3meX+/iYdY8KdocbO+4OygCXn/mQ01IAffPj1FouGhj0Wox67wWFlp99FxRafm61T6tRsNldNNic1DQ5abS5aGhy0mBz0tjkfe10neEOgZNG7UGL924HLd7kv0HrIdSoeB8GDcFGCNErBBsUTHoVk04hSAdBOhWjTsWgUTFqVRS3g+rqKmKiItFptSjNFx5Abb6TwXP8Z/X4Plpeqy0/A3houUqkqp5Wd0GoqK1et93v3a6qx8v9/n7V4wGPG7fLidvpfXia777A40ajei+CfJ+2OW1vOP3d9cc5mx+t1ru2cfYf5dCwOBg6+iyPFkIIEWjeKRhjGZwe69vm9qiUWOopKKkjr6TGm9QvqaW0spHqOjvVdRXsPFThO16jUUiODaVny4j85il2Ys2mVtPgHE/Wp3c3c+s0SdafTKhJzw8n9+EHE3qxansh81flUFhez9drj/iOCTJo6d8r2jcvfc+kCDTtOJWREEJ0Vp0+ab9jxw6sVispKSkMHDjwhP0zZ85k9erVLF++/IxJe7vdzoYNGwBOOp/8zJkzefXVV1m3bh0OhwODwTsX2sqVKwGYPHkyRmPb2+WMRiOTJ09m/vz5LFu2zJe0P9+6hBBCiHPRepqgyHaqw+NRcbq9SX1vQt+Dw5fgd+N0etq89l0E8P3c9iKA9/zm47+3z1e+w4Xd6SQkyIjRqDtJUr1V8rx51P7x7VqMbZLux49tfa6xJRGva99FbB1ONw1NzUl8m5PGJicNzcn9xibvFEmn2tfy2uNRwQUVLtoknM9OMGC+4PfhndFGQdP8rCgKWs3x1y3bNZq2x2gU7+f0++e23g5QWWM7w/zyKsEGDcnRQSRGBZFoNpIQaSQuwkBshAFziBaNx908dZPbN9WS2no6J7cL3C3HuNpMyXT8ONdJpm9y4XY6aAjrdsHtKIQQIrC0GoWUuDBS4sK4fHCSb3tjk5OjZXXeBW9LaslrTuY32JwcK6vjWFkd7CryHR8SpPMNdgDI6B7JrVdlMCxDkvVnotdpuXJ0D6aM7M7W/aVs2FNCQnQIg/vE0Kdb5BnnuhdCiEtBp0/at8wdeqrFZvv16wfgW+T1dPLy8rDb7URGRpKUlHTC/qSkJMxmM1arlby8PDIyMtrEMGDAgJOW279/f+bPn98mhvOtSwghhOhsNBoFo8ab8O4oZ5pmqCtpuXgQGXZ+56uqit3RNvHf8L1R/b59rUf5+y4COHG63CgaTfPAdhWPxzsy3nMOE//7zvX+dH5v5iyEhxi888q3nmM+OoSEmGDMocaAJUIaGxspkznthRDiohUcpCezRxSZPaJ821RVpbKm6fiit8XehW8Ly+tpaHIBkqy/EBqNwugBiYwecOL6gEIIcanr9En74uJiABISEk66v2W71WqloaGBkJCQU5ZVVFR02rJa9lmtVoqLi32J9JYY4uPjTxtDS/kXUtf5UFWVxsbG8z7/XNhstjbP4vxJW/qHtKN/SDv6j7Slf0g7nsikB5NeS3SYFgg66/NsNhv5+fmkpqZiMp24WJuqqqiq944KT/Nrb0Lfm9T37fcl+/El/FuOUz1879yWn1uf21JW6/3Ht5lDjcRHBRMcdKruqSegn4dAfCZVVZUEkBBCBJCiKMSYTcSYTYzoezwf4HR5KCyvw+1RSUuOkN/VQggh/K7TJ+1bktEn+5IJtBl9d6ak/ZnKal1eQ8Pxe89bzjvVSL/TnXOudZ0Pp9Ppuxugo+Tn53dofRczaUv/kHb0D2lH/5G29A9pR//pLG2pANrmR2tNNVBQE4CAzlFHt6NMoSiEEJ2PXqehZ1JEoMMQQghxEev0SXtxZnq9nt69e3dIXWcarSfOnrSlf0g7+oe0o/9IW/qHtKP/SFv6RyDaMScnp0PqEUIIIYQQQnQunT5p3zIa/VS3IreeFuZ0o+zPpqzW5bUuq+W8U01Bc7pzzrWu86EoSofP92symbr8HMOdhbSlf0g7+oe0o/9IW/qHtKP/SFv6R0e2o0y3IIQQQgghxKWp0y/J3bKIa2lp6Un3t2w3m81nTH4nJyeftqzW+1ovHtvyuqys7LTntJR/IXUJIYQQQgghhBBCCCGEuHR1+qR93759Adi3b99J9+/fvx/grBZy7dmzJ0ajkerqat/isq0VFxdjtVoJCgqiZ8+eJ8Swd+/ek5bbElvrGM63LiGEEEIIIYQQQgghhBCXrk6ftB82bBhms5nCwkL27Nlzwv5FixYBMGXKlDOWZTQaGTt2LACLFy8+ZVnjxo1rs+jXpEmTAFixYgV2u73NOXa7nRUrVgAwderUC65LCCGEEEIIIYQQQgghxKWr0yftdTodd911FwDPP/889fX1vn0LFy5k9erVREZGctNNN/m2Z2VlMX36dKZPn35Ceffffz8A77zzDrm5ub7tubm5vPPOO22OadG/f3/GjBmD1WrlxRdfRFVVAFRV5cUXX8RqtTJu3DgyMzMvuC4hhBBCCCGEEEIIIYQQl65OvxAtwAMPPMCmTZvYsmUL06ZNY+TIkVgsFrZt24Zer+eVV14hNDTUd7zNZiMvL++kZY0YMYIHH3yQd955hxtuuME3Gn7Dhg3Y7XYeeeQRhg4desJ5L774IrNmzWLevHls3bqVjIwMsrOzyc3NJS4ujt/97nd+q0sIIYQQQgghhBBCCCHEpalLJO0NBgPvv/8+H3zwAQsWLGDFihUEBwczZcoUfvKTn9C/f/9zKu+pp54iMzOTjz/+mM2bNwPQr18/7r77bmbMmHHSc5KTk/nyyy95/fXXWbVqFUuXLiU6OprZs2fz2GOPER0d7be6hBBCCCGEEEIIIYQQQlyaukTSHryJ+4ceeoiHHnrojMeOHj2a7Ozs0x4zc+ZMZs6ceU4xxMTE8Pzzz5/TOedblxBCCCGEEEIIIYQQQohLT6ef014IIYQQQgghhBBCCCGEuFQoasuqqqJL2rFjB6qqYjAYOqQ+VVVxOp3o9XoURemQOi9W0pb+Ie3oH9KO/iNt6R/Sjv4jbekfgWhHh8OBoigMGzasQ+oTnYf08bsuaUv/kHb0D2lH/5G29A9pR/+QdvSfztzH7zLT44iT6+j/ORVF6bAvDxc7aUv/kHb0D2lH/5G29A9pR/+RtvSPQLSjoijyRewSJX38rkva0j+kHf1D2tF/pC39Q9rRP6Qd/acz9/FlpL0QQgghhBBCCCGEEEII0UnInPZCCCGEEEIIIYQQQgghRCchSXshhBBCCCGEEEIIIYQQopOQpL0QQgghhBBCCCGEEEII0UlI0l4IIYQQQgghhBBCCCGE6CQkaS+EEEIIIYQQQgghhBBCdBKStBdCCCGEEEIIIYQQQgghOglJ2gshhBBCCCGEEEIIIYQQnYQk7YUQQgghhBBCCCGEEEKITkKS9kIIIYQQQgghhBBCCCFEJyFJeyGEEEIIIYQQQgghhBCik5CkvRBCCCGEEEIIIYQQQgjRSUjSXgghhBBCCCGEEEIIIYToJHSBDkB0DQ6Hgw8//JAFCxZw7NgxgoODGTFiBA8//DD9+/cPdHhdgtPpZPPmzaxatYrNmzdz7Ngx3G43CQkJjBs3jvvvv5/k5ORAh9nlqKrK3XffzebNmwFYtGgRaWlpAY6qa6mrq+ODDz5g2bJlFBYWAhAfH8/w4cN57LHHiI+PD3CEnd+RI0d499132bx5M+Xl5eh0Orp37860adO45557CAkJCXSInca+ffvYsGEDe/bsYe/evRQVFQGwfPlyUlJSTnne0aNHef3119m4cSM1NTUkJCRw1VVX8fDDD1+S7Xuu7WixWFi1ahWrV69mz549WCwWDAYDffr04dprr2X27NnodJdmt/B8P5OtHTlyhOuvvx673c7gwYP5z3/+054hC+E30se/cNLHbx/Sx79w0se/cNLHP3vSx/cP6eP7x8XSv1dUVVU7vFbRpTgcDu677z62bNlCdHQ0I0eOpKKigu3bt6PX63nrrbcYP358oMPs9DZs2MA999wDQGJiou+LUFZWFuXl5YSGhvLee+8xdOjQQIbZ5cybN4/nnnsORVFQVVU69OcoJyeHe+65h/Lycnr06EFmZiZOp5OjR4+Sk5PDp59+yogRIwIdZqe2bds27rvvPpqamkhNTSUjIwObzcaOHTuor68nLS2NuXPnEhEREehQO4VHHnmE5cuXn7D9dB2offv2ceedd9LQ0ED//v3p3r07WVlZFBUVkZ6ezr///W/CwsLaO/RO5Vzb8Wc/+xlff/01Wq2Wfv360a1bNywWC7t27cLhcDBy5EjeffddTCZTR4TfqZzPZ7I1j8fDbbfdxq5du1BVVZL2osuQPr5/SB+/fUgf/8JIH//CSR//3Egf3z+kj+8fF0v//tK73CLO2bvvvsuWLVsYOHAgH330EaGhoQAsXLiQp59+mmeeeYZly5b5touTUxSFq666invuuadNp91utzNnzhzmz5/P008/zbfffoterw9gpF1HaWkpr776KuPHj+fIkSO+q6fi7NTW1nLvvfditVr54x//yLXXXttm/9GjR+X/67MwZ84cmpqaeOSRR3jsscdQFAUAq9XKvffey759+3jvvfd4+umnAxxp5zBkyBDS09MZMGAAAwcO5MYbb8RisZzyeLfbzVNPPUVDQwNPP/00P/7xjwFvsumxxx5j5cqVvPrqq7zwwgsd9RY6hXNtR7PZzOOPP87NN99MbGysb3teXh733nsvW7du5e233+bJJ5/siPA7lXNty+/717/+xc6dO5k9ezbz5s1rx0iF8C/p4/uH9PH9T/r4F0b6+P4hffxzI318/5A+vn9cNP17VYjTcDqd6qhRo9T09HQ1KyvrhP0PPPCAmp6ern700UcBiO7iYbPZ1OHDh6vp6enq5s2bAx1Ol/HAAw+oQ4YMUQsLC9VJkyap6enpak5OTqDD6jJ+//vfq+np6eqHH34Y6FC6rKqqKjU9PV3t37+/arfbT9j/9ddfq+np6eqdd94ZgOi6hrFjx6rp6enqsWPHTrr/22+/VdPT09VrrrlG9Xg8bfaVlZWp/fr1U/v166dWVVV1RLid1pna8XRaPqeTJk1qh8i6JSMXyAAAEpFJREFUnnNpy6NHj6pDhgxRf/zjH6ubNm1S09PT1ZtvvrkDohTiwkgfv2NIH//8SB//wkgf/8JJH//CSR/fP6SP7x9dtX8vC9GK09qxYwdWq5WUlBQGDhx4wv6ZM2cCnPS2E3H2goKCSE1NBaC8vDywwXQRX375JatXr+bxxx+XeULPg91uZ/78+ZhMJmbNmhXocLqssx0xFxkZ2c6RXLxWrlwJwFVXXeUb4dQiLi6O4cOH43K5WL16dSDCuyhkZmYC8vfnfPzmN78BvKPxhOhKpI/fMaSPf+6kj39hpI/vH9LHb3/Sx29/0sc/P52pfy9Je3FaBw4cADjlQlT9+vUDIDs7u8Niuhi53W7fbZ8xMTEBjqbzs1gsvPTSSwwcOJC77ror0OF0SXv37qWuro5+/fphMpnYuHEjr7zyCv/3f//HP/7xD44cORLoELuE0NBQhg4ditPp5K233kJttUyM1Wrlgw8+AODmm28OVIhdXsvfoQEDBpx0f8vfp4MHD3ZYTBebgoICgDa31Ioz++9//8vGjRt56qmnSExMDHQ4QpwT6eN3DOnjnxvp41846eP7h/Tx25/08duf9PHPXWfr38uc9uK0iouLAUhISDjp/pbtVquVhoaGS3J1b3/46quvqKqqIioqimHDhgU6nE7vhRdeoL6+nt/97ndoNHLt8Xzk5OQAEB0dzWOPPca3337bZv9rr73GQw89xOOPPx6I8LqU3//+99x///28+eabLFq0iIyMDJqamti+fTsmk4lXXnmFcePGBTrMLutMf4fi4+PbHCfO3UcffQTAlClTAhtIF1JWVsbLL7/M4MGDuf322wMdjhDnTPr4HUP6+OdG+vgXTvr4/iN9/PYlffz2J338c9MZ+/eStBen1djYCHDKlaaDg4N9r6VDf34KCwt5+eWXAXjyyScxGAwBjqhz+/bbb/n222/58Y9/7LvdS5y7mpoa4Phtic888wzXXnstWq2WxYsX88orr/Dmm2+SlJQkI0jOIC0tjblz5/L444+za9cu8vPzffvGjh1L7969AxfcReBMf4da/u40NDR0WEwXk48//pgtW7ZgNpt58MEHAx1Ol/Hcc8/R1NTEb3/7W0ksiS5J+vjtT/r450b6+P4hfXz/kT5++5I+fvuSPv6564z9+84RhRCXqPr6eh555BGsVivTp0/nlltuCXRInZrVauWFF16gR48ePProo4EOp0vzeDwAOJ1OHnroIe6//37i4+OJiYnhzjvv5KmnngLgzTffDGSYXcKmTZu47rrrqKur47333mPr1q2sWbOGF154gY0bN3Lrrbeybt26QIcpxAnWr1/Pyy+/jEaj4aWXXpJbZ8/S119/zcqVK7nvvvvIyMgIdDhCiE5I+vjnRvr4/iN9fP+RPr7oqqSPf+46a/9ekvbitFpG2dhstpPub7k6CsgInHNkt9t5+OGHyc7O5rLLLuPVV18NdEid3ksvvYTFYuH555/HaDQGOpwurfUIupONsmn5cllcXMyxY8c6LK6uxmq18vjjj+NwOHj33XcZP3484eHhxMfHM2vWLF544QXsdjvPPfccbrc70OF2SWf6O9Qy+kb+Bp2brKwsHn30UVwuFy+88AKTJ08OdEhdQlVVFb///e9JTU3lkUceCXQ4Qpw36eO3H+njnzvp4/uP9PH9Q/r47U/6+O1D+vjnrjP372V6HHFaSUlJAJSWlp50f8t2s9ksv0zPgdPp5Kc//SlbtmxhyJAhvPnmm3LL7FlYvnw5RqORN99884TRIRUVFQD84he/wGQycfvttzN9+vRAhNklJCcnA2AwGHzzBbYWEhJCVFQUVVVVVFRU0K1bt44OsUtYtWoVVquVyy67zNemrU2bNg29Xk9hYSHHjh3j/7d3/zFVV38cx18I/qIoBNy6ZPHDvAj0U0srNzVgtblmTmQsDSSimpC5tQm1SGnapq6tP3KuWQiK5UbCLJ2sZqRNtAsEkQJxG/0EQRSSQEq4er9/OO9X8kIC93I/6POxMd05n8/lzR1yX7w959zQ0NDRL3KMCw4OVmdnp1pbW51ulz99+rTjOlwfq9WqF198UT09PcrKymJ7/BBUVVXpzz//lK+vr9LS0vrN/fXXX5IunyeclJQkSfrggw/IRzAkMr57kPGHh4zvOmR81yDjux8Z3/XI+MNj5HxP0x6DioyMlCTV1tY6na+rq5MkQ20fMbpLly5p7dq1OnLkiGbOnKnt27f3WxGBwV24cEHl5eUDzp84cUISb7byX6KioiRJvb29Ts+qvXjxorq6uiSJ789BXAmTfn5+Tud9fHzk6+urzs5OxxmjGJrIyEjV19fr5MmTWrhw4TXzV16fOP/2+vz2229KTU3VuXPnlJGRodTUVE+XNCY1NzerubnZ6dz58+cdr1OsvoNRkfFdj4w/MmR81yDjuwYZ3/3I+K5Fxh85I+Z7mvYY1KxZs+Tv76+mpiadOHFC9913X7/5gwcPSiI8XS+73a7s7GyVlJQoLCxMO3bs0O233+7pssaMysrKAediYmLU3NysgwcPavr06aNY1dhkMpkUHR2t2tpaWSyWa7bNVVZWqq+vT5MnT1Z4eLiHqjS+K+cD1tbWymazycen/8vqr7/+6gjyzlbp4L898cQTKi4u1hdffKGMjAx5eXk55tra2vTdd9/Jx8dH8+fP92CVY0NLS4tSUlJ05swZpaSk6NVXX/V0SWNOXFycGhoanM5ZLBYlJyfrgQceUGFh4ShXBgwNGd+1yPgjQ8Z3HTK+a5Dx3Y+M7zpk/JExcr7nTHsMysfHR8nJyZKkt99+W93d3Y65AwcO6MiRI5oyZYri4+M9VeKYsmnTJhUVFWnatGnauXOnAgMDPV0SbmIvvfSSJGnLli1qampyjJ8+fVrvvPOOJGnZsmVs6x7E/PnzNWnSJDU3N+vdd9+VzWZzzHV0dCg7O1uSNGfOHAUFBXmqzDEtJiZGoaGhslqt+vDDDx3jvb29WrdunWw2m+Lj4xUQEODBKo2vo6NDzz//vE6dOqXExES98cYbni4JgAeR8V2LjA8jIeOPHBnf/cj4rkHGv7F52e12u6eLgLH19vbqhRdeUHl5uQIDA/XII4/o7Nmzqqys1Pjx47Vt2zb+9/M6HDp0SBkZGZKkuXPnDng2W1xcnOLi4kaztBsCq3CGJycnR3v27JGvr69mzZqlcePGqbq6Wl1dXXrwwQeVn5+vyZMne7pMQ/v000+1bt06Xbp0ScHBwYqKitI///yjmpoadXV1KSgoSLt371ZYWJinSzWEw4cP9zuvtq6uTn19fYqMjHT88rhgwQLHz0tJOnnypJKSktTT06Po6GiFhISopqZGzc3NMpvN+uSTTwbcvnyjGurzmJGRoUOHDmnChAlatGhRv9VMV8vMzLzpfjkazvekM55eiQMMFRnfNcj47kXGHx4y/siR8YeGjO8aZHzXuFHyPcfj4D9NmDBBubm52rFjhz7//HOVlpbK19dXsbGxysjIUHR0tKdLHBOuvIGFdPkf/kDuvPNOAj1GTU5OjmbPnq2PP/5Y1dXVstlsCg0N1dNPP62VK1dq4sSJni7R8BISEmQ2m7Vz505VVVXpyJEj8vb21rRp05SQkKC0tDRW3F2lo6NDNTU114zX19c7/v7v7dr33nuv9u3bp/fff1/Hjx+X1WrVHXfcobS0NKWnp9+Ub5I41OfxymtQb2+v9u3bN+DjvvLKKzdVoJeG9z0J3AjI+K5BxocRkfFHjow/NGR81yDju8aNku9ZaQ8AAAAAAAAAgEFwpj0AAAAAAAAAAAZB0x4AAAAAAAAAAIOgaQ8AAAAAAAAAgEHQtAcAAAAAAAAAwCBo2gMAAAAAAAAAYBA07QEAAAAAAAAAMAia9gAAAAAAAAAAGARNewAAAAAAAAAADIKmPQDgptfU1KSIiAhFRER4uhQAAAAALkDGBzCW+Xi6AADA2JCUlKTy8vLrurahocHN1QAAAAAYKTI+ABgTTXsAwJCYTCaZTCZPlwEAAADARcj4AGAsNO0BAEMSHx+v1atXe7oMAAAAAC5CxgcAY+FMewAAAAAAAAAADIKV9gAAt2lqalJsbKyky2dglpaWKi8vTz/++KNsNptmzJih5557TosXLx7wMRobG/XRRx/JYrGora1NkydPVkREhJ555hktXbpU3t7eTu+z2Wzav3+/Dhw4oLq6OnV1dWnKlCkKCQlRTEyMEhIS5Ofn5/TeyspKbd++XTU1Nfr7778VEhKixMRErVixQl5eXiN/YgAAAIAxiowPAO5H0x4AMCoKCgq0ceNG+fv76+6771Zra6tqampUU1OjH374QdnZ2dfcc/DgQWVmZqqvr0++vr4ym83q7OxURUWFKioqVFJSom3btmnSpEn97uvo6FB6erqqq6slSVOnTtXMmTPV0dGhqqoqVVRUKDo6WnPnzr3mcxYXF+vNN9/UbbfdpmnTpunUqVOyWq3asGGDmpublZWV5Z4nCAAAABhjyPgA4B4cjwMAGBWbN29Wenq6ysrKVFRUpKNHjyonJ0fjxo1TQUGBSkpK+l3f2Nio119/XX19fUpISFBZWZmKi4v11VdfKS8vT35+fiorK9OWLVv63We327VmzRpVV1fLZDIpPz9fR48e1d69e1VaWiqLxaL169crKCjIaZ3r169XVlaWjh07pqKiIh0/flyvvfaaJCkvL0+///67e54gAAAAYIwh4wOAe9C0BwAMydatWxURETHgR3p6utP75syZozVr1sjH5/ImLy8vLz377LNatmyZJGnbtm39rs/NzdWFCxdkNpu1YcMG+fr6OuYef/xxx2qYwsJCtbW1Oea+/vprlZeXa8KECcrNzdVjjz3W73H9/Py0fPlyTZ8+3WmdixcvVkpKSr8tuS+//LLMZrPsdrsOHz58nc8UAAAAMDaQ8Q9f5zMFAKODpj0AYEhMJpNmzZo14Mc999zj9L6VK1cOOm61WtXS0uIY/+abbyRJycnJTs+YXLJkiQIDA9XX16djx445xr/88ktJ0pNPPjlgaB/MihUrnI4/9NBDksQqHAAAANxwyPhkfADGwpn2AIAhiY+P1+rVq4d834wZM5yOh4WFycfHRzabTY2NjTKZTOrq6tKZM2ckSWaz2el948ePV3h4uNrb2/Xzzz87xq1Wq6T/B/ChCg0NdToeGBgoSTp//vywHhcAAAAwKjI+GR+AsbDSHgAwKgY6X9Lb21v+/v6S/h+Wrw7NA90nXX7zqX9f393dLenyFtnhuHqL7tXGjbv8kmm324f1uAAAAMCNhowPAO5B0x4AMCrOnj3rdPzixYs6d+6cJOmWW27p9+dg90lyrNS5+vpbb71VktTV1TWiegEAAAAMjowPAO5B0x4AMCp++uknp+O//PKLbDabJDnOp/Tz83OssLmyFfbfbDabY8tseHi4YzwiIkKSVF1d7ZrCAQAAADhFxgcA96BpDwAYFbt27Rp03Gw2y2QyOcYXLFjgmHe2XfWzzz5Te3u7xo8fr3nz5jnGn3rqKUmX36zq6nMwAQAAALgWGR8A3IOmPQBgVFgsFm3dutWx4sZut6uwsFB79+6VJK1atarf9ampqZo4caKsVqvWrVunnp4ex9zx48e1efNmSVJiYqJjxY4kLVy4UI8++qh6e3uVlpYmi8XS73G7u7u1Z88eNTY2uuXrBAAAAG4WZHwAcA8fTxcAABhbioqKdOzYsUGveeuttxQVFdVvLCsrSxs3blRBQYHuuusutba2Os6rXL58uRYtWtTv+unTp2vTpk3KzMxUYWGhDhw4oPDwcHV2duqPP/6QJM2bN09r16695vO/9957WrVqlb7//nslJydr6tSpMplMam9vV2trqy5evKhdu3Y5tuoCAAAANzMyPgAYC017AMCQtLS0qKWlZdBrnL1BVFJSkoKDg5Wfn6/6+nrZbDbdf//9WrFihZYsWeL0cRYtWiSz2azc3Fx9++23amho0KRJk/Twww9ryZIlWrp0qby9va+5LyAgQLt379a+ffu0f/9+NTQ0qL6+XgEBAZo9e7ZiY2MVHR09rK8fAAAAuNGQ8QHAWLzszg4RAwDABZqamhQbGytJamho8HA1AAAAAEaKjA8A7seZ9gAAAAAAAAAAGARNewAAAAAAAAAADIKmPQAAAAAAAAAABkHTHgAAAAAAAAAAg+CNaAEAAAAAAAAAMAhW2gMAAAAAAAAAYBA07QEAAAAAAAAAMAia9gAAAAAAAAAAGARNewAAAAAAAAAADIKmPQAAAAAAAAAABkHTHgAAAAAAAAAAg6BpDwAAAAAAAACAQdC0BwAAAAAAAADAIGjaAwAAAAAAAABgEP8DXmvhgxny9HsAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Activation: SoftPlus, optimizer: sgd_momentum, batchnorm: true\n", + "Activation: SoftPlus, optimizer: sgd_momentum, batchnorm: false\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABfsAAAGgCAYAAAAdG71kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3iUVdrH8e8kmZkkBEggJNRQNVSVrlQpImBFVmHXFQsiWLFgY1kBX8Wyq6IggoIi6goqRRZBBUKRTgClBEJLICGQEEmAtJmUef+IMyabSSOTTMrvc117AU85555DcM9zz3nuY7DZbDZERERERERERERERKTK8nB3ACIiIiIiIiIiIiIiUjZK9ouIiIiIiIiIiIiIVHFK9ouIiIiIiIiIiIiIVHFK9ouIiIiIiIiIiIiIVHFK9ouIiIiIiIiIiIiIVHFK9ouIiIiIiIiIiIiIVHFK9ouIiIiIiIiIiIiIVHFK9ouIiIiIiIiIiIiIVHFK9ouIiIiIiIiIiIiIVHFK9ouIiAD33XcfoaGhLFu2zN2hiIiIiIhUOcuWLSM0NJT77ruvwLmyzLUHDhxIaGgoO3fudEWYJRYaGkpoaCixsbEV2q+ISFl4uTsAERGpeUJDQ6/ovjfeeIO77rrLxdGIiIiIiFQvL7/8MsuWLePaa6/lm2++KdE999xzD7/99ht33303r732WjlH6D6xsbEsX76c2rVr88ADD7g7HBERl1KyX0REKlyXLl2cHt+7dy8ALVq0oF69egXO169fv9xiatSoES1btqR27drl1oeIiIiISEW46667WLZsGb/99hsnTpygdevWRV5/4sQJfvvtNwBGjhzp8ngq01z7zJkzzJ49myZNmhSZ7G/ZsiUARqOxgiITESk7JftFRKTCff31106P21f8jx8/vsJX8L/99tsV2p+IiIiISHnp3r07zZs359SpUyxfvpxJkyYVef3SpUsBaN26NZ07d3Z5PFVxrv3jjz+6OwQRkVJTzX4RERERERERkWrGvnjm+++/Jzs7u9DrsrOzWblyZb57RESkalKyX0REqoS8G3OdPHmSF198kX79+tGhQwdeeuklx3Xh4eG89dZb/OUvf6FPnz507NiRXr168cgjjxAWFlZo+4VtGrZz505CQ0MZOHAgAOvXr+e+++6jW7duXHfdddx999388MMP5fOhRURERESu0IgRI/D09CQhIYEtW7YUet3mzZs5f/48Xl5e3HnnnZw7d47PP/+csWPHMnjwYK655hq6dOnCXXfdxZw5c0hJSSl1LMVt0Ltz504eeughunXrRufOnRk5ciTfffddkW2mpqby/fff8+yzzzJs2DC6du3KNddcw5AhQ5g2bRoxMTFO4xgzZgyQW87Hvgmv/X95NwEuboPezZs3M2HCBHr16kXHjh3p3bs3jz32GNu3by/0M+q5QkTKm8r4iIhIlfLrr7/y0UcfkZ2dTZs2bahbty4Gg8Fx/vHHHyc5ORl/f38aNGhAUFAQZ8+eZdOmTWzatIlHHnmE55577or6nj17NrNmzSIwMJCQkBBiYmLYv38/zz77LElJSfz973931ccUERERESmT4OBgevfuzebNm1m2bBn9+/d3ep09Ad+vXz8CAwN56623+PTTT/H29iYwMJCrr76a5ORkjhw5wqFDh/jhhx/4z3/+Q926dV0S57fffss///lPbDYbtWvXplWrVsTHx/OPf/yDo0ePFnrfrl27eOGFF/Dy8qJ+/fo0b96c9PR04uLi+Prrr1m1ahWffvop11xzjeMe+2c5evQoJpOJjh075muzpHsKvP766yxatAjI3Vesbdu2xMbGsn79etavX8+jjz7K008/Xej9eq4QkfKiZL+IiFQp77//PsOGDWPq1KnUqVMHgIyMDMf5SZMmcf3119OsWbN8923bto1Jkybx8ccfM2jQIK677rpS9ZuQkMAnn3zCv//9b2677TYAsrKyeP311/nPf/7DO++8w5133omfn1/ZPqCIiIiIiIuMHDmSzZs3ExYWxsWLFwsk6C9cuMCGDRsc10Ju0n/AgAF07doVT09Px7Vnz57l1VdfJSwsjHfeeYdXX321zPGdOHGC6dOnY7PZuO+++3jhhRcwmUzYbDa++eYbpk+fnm9hT17Nmzfngw8+oE+fPtSqVctxPCUlhQULFjBnzhxeeuklfvjhB0cb//znP9m5cydjxoyhQYMGhe4lVpTly5ezaNEiPD09+ec//8moUaPw8PAgOzubRYsW8dZbb/HRRx/Rtm1bhg4dWuB+PVeISHlSGR8REalSWrZsyVtvveVI9AN4e3s7fn/33XcXSPQD9OrVi2eeeQbInaCXVmZmJuPHj3dMyAG8vLx46aWXqFevHmlpafle+xURERERcbeBAwcSEBCA1Wpl1apVBc7/97//JTMzk8DAQG688UYAbrjhBnr06JEv0Q/QqFEj3n33XYxGI//973+L3AegpBYsWEBmZibt27dnypQpmEwmAAwGA6NGjWLkyJFkZWU5vbdVq1bcfPPN+RL9AH5+fkycOJEuXbpw4sQJ9u/fX+Y485ozZw4Ao0aN4q9//SseHrmpNU9PTx588EHH88KHH37o9H49V4hIedLKfhERqVLuvPNOvLyK/r+v48eP8+OPPxIZGUlycrLjAcFeX/Tw4cNX1Pff/va3AsfMZjPt27dny5YtnD59+oraFREREREpDyaTidtuu41FixaxbNky7r333nzn7SV8br/99nxz7JSUFFavXs2+fftISEggPT0dm80G5Cbi09LSiI6OpnXr1mWKb/PmzQCFlq25//77+eabbwq9Pzs7mw0bNrB9+3ZiYmJITU0lJycHgFOnTgEQERHBtddeW6Y47U6cOOGY8z/44INOrxk7diwrV67k6NGjxMXF0bhx4wLX6LlCRMqLkv0iIlKlXHXVVUWe//e//838+fMdDyPOJCcnl7rfgIAA/P39nZ6rX78+kLtJmIiIiIhIZTJy5EgWLVrEwYMHOXbsmGM+HRERwZEjRxzX2O3evZuJEyfy+++/F9nulcyp87p8+TLnz58HCp/jt2zZEi8vL6er+xMSEhg/fjwRERHlGmdeUVFRQO6bxSEhIU6vadOmDZ6enmRnZ3Py5MkCyX49V4hIeVIZHxERqVJ8fHwKPffDDz/wySefYDAYeOKJJ/j+++/Zs2cPhw8fJjIykoULFwIU+ipwUXx9fQs9Z391t6gvGERERERE3KFt27Z06NAB+HMlf97fX3vttbRp0wbIXdH/1FNP8fvvv3PDDTfw2WefsW3bNg4ePEhkZCSRkZE0atQIuLI5dV55E9r2JPf/8vT0LDQx/vLLLxMREUGzZs1499132bBhAwcOHHDEeccdd7gkTmcxFxYv5JbkCQgIyHd9XnquEJHypJX9IiJSbdgfWB544AGefPLJAudduapHRERERKSqGDlyJIcOHWLlypU899xz5OTk8N///tdxzm7Tpk1cuHCBRo0aMXfu3Hx7Y0FuEvrixYsuiSlvrf3ff/+dJk2aFLgmOzvb6Rz+/PnzbNmyBYCPPvrI6ZsB5TH3t8dc1FsPWVlZJCUl5bteRKSiaGW/iIhUG7GxsQB0797d6fnffvutIsMREREREakUbr31VsxmM4mJiWzevJmwsDCSk5Px8fHhlltucVxnn0936tSpQKIf4OjRo6Slpbkkptq1a9OgQQMgd88tZ6KiopyuzLfH6e/v7zTRn5WVxcGDB522aTAYrjRkWrVqBUBGRkahdfWPHz/u2Ly4rHsaiIiUlpL9IiJSbdhL/Nhrf+Z14cIFli9fXtEhiYiIiIi4Xd26dRk8eDAAy5cvd7wRO2TIEPz8/BzX2RP8zubTAAsWLHBpXH379gXgyy+/dHp+0aJFTo/b5/0pKSmkp6cXOL9ixYpCV9/bP6Oz+4rTqlUrmjdvDsBnn33m9Br78auvvtpR8khEpKIo2S8iItWGfUX/vHnzHJtnAcTExDB+/PgrmtCLiIiIiFQH9nI9GzZscJTAyVvCB/6cT+/bt48lS5Y4jlutVmbOnMl///tfjEajy2J66KGHMBqNHDp0iDfeeAOr1Qrklgv69ttv+e677/DyKliBuk2bNgQEBJCVlcWrr76KxWJxnPvxxx957bXXMJvNTvsMCQnBYDBw4cIFxwbFpfHoo48CsGTJEhYvXuyor5+Tk8Pnn3/O999/D8Djjz9e6rZFRMpKNftFRKTaePjhh1mzZg1nzpzh1ltvpUWLFnh4eHD8+HH8/Px48cUXefXVV90dpoiIiIhIhbvhhhto3LgxcXFxQG7Su0ePHvmuad++PXfccQfff/89r7zyCrNnzyYoKIhTp05x+fJlnn76ab799lvOnDnjkpiuuuoqpkyZwrRp01i4cCHLli2jefPmxMfHk5CQwP3338+6desK9Ofl5cWkSZP4xz/+wbJly1i7di0hISEkJiYSHx9Pnz59qFevHitXrizQp7+/PzfeeCMbNmzgL3/5C1dddZXj7YbJkyfTrl27ImMeMWIEERERLFq0iKlTpzJr1iwaNWrEmTNnuHDhAgATJkxg6NChLhkjEZHS0Mp+ERGpNoKDg1myZAm33XYbderUcTyU3HnnnSxfvpw2bdq4O0QREREREbfw8PBgxIgRjj+PGDHCaf36N954g0mTJtGyZUuSkpKIiYmhffv2fPjhh45V7a40evRoPvvsM3r16kV2djYnTpwgKCiI1157jcmTJxd631/+8hc+/PBDOnfuTGZmJlFRUQQEBPDCCy8wb948PD09C733rbfe4u9//zsNGzbk2LFj7Nq1i127dnHp0qUSxfyPf/yDjz/+mAEDBpCTk8Phw4cxGAwMGjSIhQsX8swzz5R6HEREXMFgs79vJCIiIiIiIiIiIiIiVZJW9ouIiIiIiIiIiIiIVHFK9ouIiIiIiIiIiIiIVHFK9ouIiIiIiIiIiIiIVHFK9ouIiIiIiIiIiIiIVHFK9ouIiIiIiIiIiIiIVHFK9ouIiIiIiIiIiIiIVHFe7g5AKt6+ffuw2WwYjUZ3hyIiIiIiLpSZmYnBYKBz587uDkUqmOb4IiIiItVTaeb4WtlfA9lsNmw2W4X3abVaK7zf6khj6RoaR9fQOLqOxtI1NI6uoXF0nYoeS3fM86Ry0By/6tI4uo7G0jU0jq6jsXQNjaNraBxdpzLP8bWyvwayr/bp1KlThfWZlpbG4cOHadOmDb6+vhXWb3WksXQNjaNraBxdR2PpGhpH19A4uk5Fj+WBAwfKvQ+pnDTHr7o0jq6jsXQNjaPraCxdQ+PoGhpH16nMc3yt7BcRERERERERERERqeKU7BcRERERERERERERqeKU7BcRERERERERERERqeKU7BcRERERERERERERqeKU7BcRERERERERERERqeKU7BcRERERERERERERqeKU7BcRERERERERERERqeKU7BcRERERERERERERqeK83B2AiIiIuF5mZibZ2dnuDqPCWSwWx68eHlrTcKU0jq5TlrH08PDAaDRiMBjKIzQRERGpYjTH19y0LDSOrlOZ5/hK9ouIiFQjly5dIjEx0TH5qGlycnLw8vIiLi5OE9gy0Di6TlnH0tPTE19fX4KCgjCZTOUQoYiIiFR2muNrbuoKGkfXqcxzfCX7RUREqolLly5x5swZ/Pz8CAwMrJErgrOzs7FYLJjNZjw9Pd0dTpWlcXSdKx1Lm81GdnY26enpXLx4kejoaJo2bYqvr285RisiIiKVjeb4mpu6isbRdSrzHF/JfqkQaYc243tgG7ar2rg7FBGRaisxMRE/Pz+aNm1a4x4A7OyvNXt7e2sCWwYaR9cp61j6+flRr149Tp06RWJiIiEhIa4OUeSKpYb/gG90JLbQUHeHIiJSbWmOr7mpq2gcXacyz/H1zoZUiPT9YZjPHsJy6oC7QxERqZYyMzOxWCzUrVu3xj4EiFRXnp6e1KtXj9TUVLKystwdjohD2v4wzDH7yIw75u5QRESqJc3xRaqv8prja2W/VAhP/4ZknjtB1vnT7g5FRKRasq8sMBqNbo5ERMqD2WwGICsrCy8vTeGtViufffYZK1euJCYmBl9fX7p168ajjz5Khw4dSt3e6tWr+eKLL4iMjAQgNDSUMWPGMGzYsELvSUxMZPbs2WzcuJHExEQCAwO58cYbefLJJ6lfv36B65ctW8bLL79caHstW7bkxx9/LHXs7uQV1JzsiwlY4yLh6s7uDkdEpNrRHF+keiuPOb6eFKRCGBs0I+MIZCrZLyJSrrTiR6R60r/tP1mtVsaOHcuuXbuoX78+AwYM4Pz586xdu5aNGzfy0Ucf0bdv3xK399577zF37lxMJhO9e/cGYOvWrTz99NMcPXqUiRMnFrjnzJkzjBo1ivPnz9OqVSsGDx5MZGQkX3/9NWFhYSxZsoRGjRo57a9t27a0a9euwPEGDRqUOObKwtQkFMux3VjPRLo7FBGRak3zAJHqqTz+bSvZLxXCq0Fu7amsRCX7RUREROTKffLJJ+zatYtOnTqxcOFC/Pz8AFi1ahXPPfcczz//POvWrXMcL0p4eDhz586lTp06LF68mNatWwNw4sQJRo8ezZw5c+jXrx+dO+dftT558mTOnz/P6NGjmTZtGgaDAZvNxrRp01i8eDFTpkxhwYIFTvscPHgwTz75ZBlHoXIwNcmt1Z8ZdxRbTjYGD9X/FREREXEn1eyXCmFP9mcnJ5BjTXdzNCIiIiJSFWVlZbFo0SIApk6dmi+hf+utt9K/f3+SkpJYunRpidqbP38+ABMmTHAk+gFat27N+PHj811jd+jQIXbs2IG/vz+TJ092rMgyGAxMnjwZf39/tmzZwpEjR678g1YRXoEh2LzM2KwZWONPuTscERERkRpPyX6pEJ6+dckx1wJsWBO0ul9ERERESm/v3r0kJyfTtGlTOnXqVOD88OHDAVi/fn2xbVksFrZt2wbgtDa/va0tW7ZgtVodxzds2ADAwIEDHXVW7cxmMwMHDgRg3bp1JflIVZrBw4Ms/yYAZMREuDkaEREREVGyXypMdu1gAKzx0e4NREREapSBAwcSGhpKaGgo+/fvd3pNbGwsoaGhjnrd5WXnzp2Ehoby0ksvlWs/5WHZsmWEhoYya9Ysd4ciNdjhw4cBCt2Et3379gCOjXaLEhUVhcViISAggMaNGxc437hxY/z9/cnIyCAqKqpADB07dnTarj22wmI4dOgQb7/9Nv/85z9599132bBhg2MDxqooKyD3Dd6MmMNujkRERGoSzfFdQ3P86kfJfqkw2bWDALAkRLs3EBERqbFmzpzp7hAqzKxZswgNDWXZsmXuDkXEZeLi4gBo2LCh0/P248nJyaSmphbZ1pkzZ4psK+85e795fx8cHFzkPfb2/9eGDRtYsGAB33zzDfPmzWPChAkMHz68ypb9yazXDMhN9ttsNjdHIyIiNZHm+CJ/0ga9UmGyHCv7Vc9TREQqnre3N1u3bmX37t10797d3eGIyBVIS0sDwMfHx+l5X19fx+9TU1OpVavWFbeVt728XxzY78vbV3H3ADRo0IAnnniCgQMH0qxZM7Kysjh8+DDvvfceBw4c4IEHHmDFihVFfvlQHJvN5oivIqSnp5NdtxF4epGdepHLcSfxCmhUYf1XF+np6fl+lSunsXQNjaPrlHUsLRYLOTk5ZGdnV+m3wMrK/mWyzWZzjIP9mH2Ov3PnTrp165bvvpycnAL3lYeK6idvX/afi9JwNo5laa8mczaWVyI7O5ucnBzS09MdfxeF9WffJ6o4SvZLhcmuk7uy35pwCpstB4NBL5aIiEjFuffee1mwYAEzZ87kq6++cnc4IlLD9O3bl759++Y71rt3b3r27MmYMWPYs2cP8+bNY+rUqVfcR2ZmpqPMUIXx8CKzTiOMSTGcCt+Itel1Fdt/NRIdHe3uEKoNjaVraBxdpyxj6eXlhcVicV0wVVjecbAnW++55x4WLVrEe++9x4IFCwq9PiMjo9zisu/tk52dXa79AGRlZQG5/59/pX3lHZfMzExHu+Ude3VU1n+bFouFrKwsTp48Wey1JpOpRG0q2S8VJse3PngasWVmkJUUj7GeVv2IiEjFGTFiBOvXryc8PJxffvmlQNKtKBEREXz88ceEh4eTnJyMv78/3bt355FHHqFdu3ZXFM+FCxeYOXMmGzZsIDk5mcaNGzNixAgeeuihAhO56OhoVq1axZYtW4iNjSU5OZk6depw7bXXMnbs2AKrmAYOHOgoIfLyyy/z8ssvO8698cYb3HXXXY4/nzp1igULFrB9+3bi4+Px9vamcePG9O7dm4ceeoj69esXiD0+Pp6ZM2eyefNmLl26RNOmTfnrX//KmDFjClx73333sWvXLtavX8+JEyeYN28ehw8fxmAw0LlzZ55++mmnG60C7Nixg4ULF/Lrr7+SkpJCYGAgvXr14tFHH6VZs2b5ro2NjWXQoEH06NGDuXPnMmfOHH7++WfOnj1Lv379mDNnDi+99BLLly9n0aJFGAwG5syZw4EDB/Dw8KB79+688MILtGjRgpycHBYuXMjSpUuJiYmhbt263H777UycOLHEk2wpH/ZV84WtkMy7qr2oVf0laStve3nbst9X2Ap6Z/cUxcvLi3HjxrFnzx42bdpUonsKYzQaadOmTZnaKI309HSio6Pxa9ERS1IM9bMv4X+F/02syezj2KJFiyLfNJHiaSxdQ+PoOmUdS4vFQlxcHGazGW9v73KIsGqw2WxYLBbMZrNjdbP915EjR7Jp0yb27dtHeHg4ffr0cdxnNpsdv3c2fhEREcyfP7/AHP/hhx8u1RzfPj/09PQkLS2N999/n02bNjnm+HfccQcPPvig0zn+Dz/8wLZt24iNjSUpKYm6detyzTXX8NBDD9G1a9d81w8ePNhRTnDatGlMmzbNce71119nxIgRjj+fOnWKzz77jO3bt5OQkIDZbKZJkyb07t2bBx98kICAACB37gC585FLly4xc+ZMfvnlFy5fvkzTpk0ZNWoU9913X4HPfP/997N7927Wrl3L8ePH+eSTTzhy5AgGg4HrrruOiRMnFrq/0c6dO/n888/57bffSElJoX79+vTq1Yvx48cXmOOfOXOGm266ie7duzNnzhzmzp3Lzz//zLlz5+jbty+zZ89m8uTJrFixgoULF2IwGPjoo484ePAgHh4edOvWjUmTJjnm+J9//jnLli0jNjaWunXrctttt/Hkk0+Weo7v7GfySnl5eRESEpLv5/V/HT9+vOTtlSkakdLw8MCrflOyEqKwJEQr2S8iIhXKw8ODJ554gkmTJvH++++XONm/Zs0ann/+eTIzM+nYsSM9e/YkKiqK1atXs3btWt59912GDBlSqliSk5O5++67SUlJoWfPnlitVnbu3Ml7771HeHg48+bNw9PT03H9kiVL+PTTT2nTpg3t2rWjVq1axMbGEhYWxqZNm/jXv/7FLbfc4rj+5ptvZtu2bRw5coQuXbrQvHlzx7mQkBDH79etW8dzzz1HRkYGzZo1Y8CAAVgsFqKiopg/fz59+vThhhtuyBd7XFwcI0eOxMvLi+7du5OUlMSePXt4/fXXuXz5Mo8//rjTz7xkyRI++eQTrrvuOm688UaOHj3Kli1b2LNnD0uXLqV169b5rl+4cCFvvPEGBoOBLl260LBhQ44cOcLSpUv56aef+OSTT+jSpUuBfjIyMrjvvvs4deoU3bt3p127dvj7++e7Zv369Xz55Zd06NCBfv36ceTIEdavX8/+/ftZuXIl06ZNY/PmzfTo0YOQkBDCw8OZP38+Fy5c4I033ij+L1jKjX0j3XPnzjk9bz/u7+9fbLK9SZMmRbaV91zeDXwbN25MREQE8fHxRd5jb78kWrRoAUBCQkKJ73HGYDAUWl6oPPm26Ihl3xqyzh51S//VhY+Pj8bPRTSWrqFxdJ0rHUsPDw88PDzw9PTMNzesaexlUgwGg2Mc7AlWo9HIk08+yaRJk5g1axb9+/d33Ofh4VHgPrv/neNff/31REVFsWbNGtatW1eqOb69n4sXLzJ69OgCc/z333+fvXv3Fpjjf/fdd07n+Bs2bGDz5s0F5vhDhw4tdI7fokULR9ulmePbYz937hx33303Xl5e9OjRwzHHf+ONN0hNTS0wx7eP/7fffltgjr9161b27t1bqjn+smXL+PnnnwvM8e3xWSwWHnjgAcccv3379vj7++Pp6emIZcOGDQXm+GFhYRw4cKDAHL958+aEh4ezYMECkpKSSj3Hd/YzeSU8PT3x8PDAx8enyC/0SvOFgpL9UqGMDZqRlRCFNT4a2t5Q7PUiIuIaNpsNi7Xq1GA0mzzLvELCmVtuuYWPP/6YAwcOsG7dOgYPHlzk9fHx8UyePJnMzEzeeust7rzzTse5b7/9lilTpvDSSy9x3XXXERQUVOI4NmzYQPfu3Zk7dy5+fn5A7gR7zJgx/PLLL3z11Vf5VsnfdNNN/PWvf82XqAfYv38/Dz74INOnT2fgwIGOFWMvvvgis2bN4siRI9x99935VvLbxcTEMGnSJCwWC6+88gp/+9vfHGOenZ3N3r178yU47ZYtW8bo0aP55z//iZdX7lRyz549/P3vf2f+/Pk8+OCDTh9mFy5cyGeffeZ4sLDZbEybNo3Fixczf/78fBPsQ4cO8fbbb2MymZg7dy69e/d23PPBBx8wZ84cnnnmGX7++ecCK2D2799Phw4dWLt2LfXq1XM6/osWLWLmzJkMHToUyK1R+vzzz7Nq1SrGjBlDVlYWP/30k2MD1ri4OEaMGMHy5ct5/PHHadq0qdN2pfzZV9kdOnTI6fmIiAgAQkNDi22rZcuWmM1mkpKSiIuLK/DzHhcXR3JyMt7e3rRs2TJfDOvWrePgwYNO27XHVpIY7C5dugQUvg9AZWdsdBUYPMhKTiDr0u941Sn4RpCIiLie5vi5NMf/k+b4muMr2S8VyqtB7n/AtEmviEjFsdlsvDh7C4ejL7g7lBJr16Iebz3Rx+UPAx4eHjz11FM88cQTvP/++wwaNKjIPr799lvS0tK48cYb8z0EANx9992sWbOGrVu38u233xa6ot0Zg8HA1KlTHQ8BAA0bNuS5557jqaeeYtGiRfkeBJytYAe45ppr+Pvf/87cuXPZuXMnN954Y4lj+Oyzz0hPT2fUqFHce++9Bc63b9/e6eqSxo0bM3nyZMdDAEDXrl3p27cvmzZt4uDBg/To0aPAfffdd1++twQMBgMTJ05k8eLF7Ny5M9+1X375JdnZ2YwePdrxEGC/58knn+THH3/k5MmTrFmzpsDfC8Arr7xS6EMA5D4Q2h8CIPfn4uGHH2bVqlUcO3aMBQsWOB4C7J/5tttu44svvmD37t3V5kGgKurSpQv+/v7ExsZy4MCBAiWgVq9eDcCgQYOKbctsNtOrVy82bNjAmjVrGDt2rNO2+vTpk+/V7gEDBjBr1izCwsIcr2/bWSwWwsLCAIpNNOT1448/AhT6untl52H2wRTcAuu5k2TEHMavQ5/ibxIRkTLRHP9PmuP/SXN8zfG1Q6pUKKM92Z8Q7d5ARESkxrrpppvo0KEDR48edSTzCrN7924Abr/9dqfn7XUx7deVVNu2bbnqqqsKHB8yZAg+Pj7ExMQUKBGSkZHBzz//zLvvvss///lPXnrpJV566SXHJLq0G79t3boVgL/85S+luq9nz55O60m2atUKKLwMSd5Xqu3q1auHv79/gXuKGncPDw/uuOOOfNflFRgYyHXXXVfkZ3BWwsm+ospoNBYoXQSuK7MiZePl5eV4SJ4+fTopKSmOc6tWrWLTpk0EBAQwcuRIx/H9+/czdOjQfA9/dg8//DAA8+bN48SJE47j9v0l8l5j16FDB66//nqSk5OZMWOGY4NAm83GjBkzSE5Opk+fPrRt29ZxT3p6uuM18bxycnL46quv+PzzzwGc1sStKryb5b51kRFTwRsEi4iIoDm+neb4+dXEOb5W9kuF8grM/UeWdfE82RmpeHqXbOMyERG5cgaDgbee6KNXfPN4+umnGTduHLNmzXKaALSzT8YLW+Vh30CqsNrdhSmslrfBYKBRo0acPHmSc+fOOVae7Nmzh6effrrISWjepGdJnD17FvhzgltSjRo533PHXh/darU6Pe/sdWH7fcnJyfmOlWXcC+snr7wrevLGAbkPEs7qbtpfWy7s80nFGTduHDt27GDXrl0MGTKE7t27k5iYSHh4OEajkbfffjvfirr09HSioqKcttWtWzfGjx/PvHnzGDFiBL169QJg27ZtWCwWHnvsMTp37lzgvhkzZjBq1CgWL17M7t27CQ0NJTIykhMnThAUFMRrr72W7/rMzEzefvttZs6cSceOHWnUqBFpaWlERkYSFxfnWNE2YMAAF45UxfIOacel3T+QERPh7lBERGoEzfEL0hxfc3xncUDNmuMr2S8VysO7Fl51Asm6lIg1Phqf5h3cHZKISI1gMBjwNuv/9u369etH165d2bNnDytWrKBnz57uDqlQaWlpPPnkk/z++++MHz+eW265hSZNmuDr64uHhwdLlizhlVdecawuLm/2TbJKqzwf7PIqamMru6I+w5V+Pqk4JpOJBQsW8Omnn7Jy5UrCwsLw9fVl0KBBPP7443ToULr55bPPPkvbtm1ZtGiRYxVd+/btuf/++xk2bJjTe5o0acKKFSuYNWsWGzduZO3atdSvX5/Ro0fz1FNPUb9+/pr13t7ePProo/z2229ER0cTERFBTk4ODRo04NZbb+Xee+8t9FX+qsK7ae7KfmvCabLTL+PpU9vNEYmIVH+a4+enOf6V0xy/+tB/EaTCmYJb5Cb7E5TsFxER95k4cSJjxozhww8/pGvXrk6vCQ4OJioqitjYWK699toC52NjYx3XlUZcXJzT4zabzbEax95meHg4v//+OzfffDPPPvtsgXtOnbqyfXAaNWpEdHQ00dHRXHPNNVfURnkJDg4mJiaG2NhYAgMDC5y/0nGX6sNkMjFhwgQmTJhQ7LU9e/YkMjKyyGuGDx/O8OHDSxVDYGAg06dPL9G1JpOJp59+ulTtVzVefv4Y6zUm80IcGTFHqHV1d3eHJCIiNZDm+Jrj13Q152sNqTRMQS0AsMZHuzUOERGp2Xr27EmvXr04c+YM3377rdNrunfPTVatXLnS6fnly5fnu66kDh8+nK8+uN26detIT0+nadOmNGzYEICLFy8COP6cl9Vq5eeff3bah9FoBCA72/mr3fZNsZYtW1aq2CtCUeOek5PD999/n+86EakcVLdfRETcTXN8zfFrOiX7pcKZglsAYIm/sm8pRUREXMW+0varr75yev7uu+/G19eXjRs3OiafdkuXLmXLli34+vpy9913l6pfm83GtGnT8tXgjI+P59///jeQf5NO+6ZYP/30U756nlarlf/7v/8jJibGaR9BQUEATh84AB544AG8vb1ZsmQJixcvLvCKcEREBOfOnSvV53KVe++9Fw8PD7799lu2b9/uOG6z2ZgzZw4nTpwgODi40BIrIuIe3iHtASX7RUTEvTTH1xy/JlMZH6lw5uDmAGSeP40tJxuDR8ENMkRERCrCtddey4ABA9iwYYPT88HBwcyYMYPnn3+eF154gS+++ILmzZsTHR3NwYMHMRqNvPXWW45Jd0kNGDCAo0ePMnjwYHr06EFmZiY7duwgLS2N3r1753sQ6NChA/3792fTpk0MHTqUHj16YDab2bt3L5cvX+a+++7jiy++KNBHnz598Pb25vPPP+fYsWMEBwdjMBgYOXIkXbp0ISQkhH/9619MmjSJqVOnsmDBAjp06EBGRgZRUVFER0ezcOHCQjcaK08dO3bkxRdf5I033uDBBx+kW7duBAcHO1ZL+fn5MXPmTMxmc4XHJiKF8w7JXdlvOXuCnEwLHkb9GxURkYqnOb7m+DWZVvZLhfMKaIjB6I0tO5PM353XMxMREakoEydOLHJjqWHDhrFkyRKGDh3K2bNn+fHHHzl37hzDhg3jm2++YciQIaXu09/fn2+++YaBAweyd+9efvnlF4KCgpg4cSJz587F0zP/F+GzZ89m4sSJNGzYkG3btrF79266du3K0qVLad++vdM+goKCmDt3Ll27dmXfvn0sW7aM7777jujoaMc1Q4YMYfny5YwcOZKsrCzWrVvHvn378PX1Zdy4cVx99dWl/myu8sADD7Bw4UL69+/PsWPH+Omnn0hNTeWuu+5i+fLlVX4zU5HqyKtuEJ6160FONpYzR90djoiI1GCa42uOX1MZbBW1rbNUGgcOHACgU6dOFdZnWloahw8fpl27dvj6+nJm4ctYzhwl6M6n8evQt8LiqA7+dyzlymgcXUPj6DplHUv7So2WLVvi7e1dDhFWDdnZ2WRkZODt7V1gMi0lp3F0HVeNZUn/jbtjnieVQ2WY4wPEL3+X1IitBPQdRUC/eyoslqpM8ynX0Vi6hsbRdTTHdw3NTV1D4+g6lXmOr5X94hb2TXot2qRXRERERKTa8G5mr9sf4eZIRERERGoeJfvFLex1+63apFdEREREpNrw+aNuf8aZo9iys9wcjYiIiEjNomS/uIUpuCUA1oRo9wYiIiIiIiIuY2zQDA9vP2yZFiznotwdjoiIiEiNomS/uIUpKAQwkJ2SRHbqRXeHIyIiIiIiLmAweODdrC0AGTGH3RyNiIiISM2iZL+4hYfJB6+AYAAsWt0vIiIiIlJteDf7o5SP6vaLiIiIVCgl+8VtzMEtANXtFxERERGpTrxD7Jv0HsFmy3FzNCIiIiI1h5L94jamoBaA6vaLiIiIiFQn5oYtMXiZyEm/TGZirLvDEREREakxvNwdQElZrVY+++wzVq5cSUxMDL6+vnTr1o1HH32UDh06lLq91atX88UXXxAZGQlAaGgoY8aMYdiwYU6v37hxI7/++isHDhzg4MGDJCcn06RJE8LCwgrt48SJE2zYsIFffvmFyMhILl++TO3atbnmmmu499576d+/v9P7XnrpJZYvX15ou6NGjeLVV18txaetnEyOlf3Rbo1DRERERERcx+BpxNzkajJOHSTj9GFMDULcHZKIiIhIjVAlkv1Wq5WxY8eya9cu6tevz4ABAzh//jxr165l48aNfPTRR/Tt27fE7b333nvMnTsXk8lE7969Adi6dStPP/00R48eZeLEiQXumTRpEpcvXy5V3A8++CDx8fH4+PhwzTXXUL9+fU6dOsWmTZvYtGkTDz30EC+++GKh9/fp04cGDRoUON65c+dSxVFZmYKbA2BNPIMtOxODp9HNEYmIiIiIiCt4h7TPTfbHHKZO15vdHY6IiIhIjVAlkv2ffPIJu3btolOnTixcuBA/Pz8AVq1axXPPPcfzzz/PunXrHMeLEh4ezty5c6lTpw6LFy+mdevWQO4q/NGjRzNnzhz69etXIKE+ZMgQWrZsSceOHfH19eWee+4ptq+WLVvy9NNPM3z4cLy9vR3HN2zYwBNPPMGnn35Knz59HF84/K9HHnmEnj17FttPVeVVpwEe3rXIyUjFmnjGUcNfRERERESqNp9m7UgG0mMOuzsUERERkRqj0tfsz8rKYtGiRQBMnTo1X0L/1ltvpX///iQlJbF06dIStTd//nwAJkyY4Ej0A7Ru3Zrx48fnuyavGTNmMG7cOG644YYSfakA8Pnnn3PXXXflS/QDDBgwgJEjRwK5X1jUVAaDAVPQH6v746PcHI2IiIiIiLiKucnV4OFJ9qVEMi8muDscERERkRqh0if79+7dS3JyMk2bNqVTp04Fzg8fPhyA9evXF9uWxWJh27ZtAE5r89vb2rJlC1artSxhFys0NBSAhISaPfF1bNKruv0iIiIiItWGh8kbc8NWAGSc1up+ERERkYpQ6cv4HD6cOzEsbBPe9u3bAzg22i1KVFQUFouFgIAAGjduXOB848aN8ff3Jzk5maioKEdCvjycPn0agMDAwEKvWbt2LWvXrsVqtdKoUSN69+7NNddcU24xuYO9br8l4ZSbIxEREREREVfybtYOS9wxMk5HULtTf3eHIyIiIlLtVfpkf1xcHAANGzZ0et5+PDk5mdTUVGrVqlVoW2fOnCmyLfu55ORk4uLiyi3Zn5SUxIoVKwAYNGhQodd98cUX+f48c+ZM+vfvz9tvv42/v3+ZYrDZbKSlpZWpjdJIT0/P96sjjjq5fxeWc1GkpqZiMBgqLKaqqrCxlNLROLqGxtF1yjqWFouFnJwcsrOzyc7OdmVoVYrNZnP8evjwYe68805q1arFjh078PT0LHD92LFj2b59O02aNGHt2rVO27zjjjs4duwYH3zwAYMHD2b58uX84x//4LHHHuOJJ54ocWxnzpzhpptuonv37nz++edX9gH/x/3338/u3btZu3YtTZo0cUmbkH8cy+vnafDgwcTFxREREVEu7VcWrhrL7OxscnJySE9PJycnp8j+NJ+SysK7WTsu7lxJhur2i4iIi0RGRnL77bdTq1Ytdu/e7XSO/+CDD7Jt2zaaNGlCWFiY03Zuu+02jh49yocffsjgwYNZtmwZL7/8Mk888QRPPvlkieOJjY1l0KBB9OjRo0Ae70rdd9997Nq1i/Xr19O0aVOXtFlRBg4cyJkzZ0q0KFvKR6VP9tsT0j4+Pk7P+/r6On5fXLK/uLbytpeamlrqWEvqlVdeITk5mS5dunDTTTcVON+2bVumTp3K9ddfT6NGjbhw4QK7du3i3XffZdOmTUyYMIH//Oc/eHhceRWmzMxMx1sTFSk6Ojr/gexM/DFARgqRv+7G5l27wmOqqgqMpVwRjaNraBxdpyxj6eXlhcVicV0wVZjFYqFZs2aON/Z+++03x9uAdpmZmfz6669AbiL+1KlTBAcH57vm4sWLHD9+HIPBQMeOHcnIyCAzMxPI3VcoIyPDce3cuXP5+OOPmTZtGrfffrvTmABycnLy3VcW9qSvxWJxWZt55f156tKlC40aNeKHH35wSdv2JHh5xF0ZlfXfpsViISsri5MnTxZ7rclkKlNfIq7i3awdAJm/nyE79SKeteq6OSIREanqrr76asccPyIiokDJ7/+d4587d67Aot/k5GSOHTuGwWCga9euRfY3a9YsZs+ezRtvvMFdd93l0s9SGYSGhhb5pYhUPZU+2V/dzJo1i59//pl69erxr3/9y+nKqwceeCDfn5s0acKIESPo1asXt99+O/v27eOnn35yuu9ASRmNRtq0aXPF95dWeno60dHRtGjRosCXLef3NCL7Qhwt/U2YW7arsJiqqqLGUkpO4+gaGkfXKetYWiwW4uLiMJvNBTaGr0lsNhsWiwWz2YzBYKBLly6EhYWxf/9+unTpku/ayMhI0tPTadu2LUeOHGH//v3cdttt+a7ZunUrNpuNq6++2vGQMGzYMLp160ZAQEC+sfbyyp1WGY1Gp38HZrMZAA8PD5f9Hdm/+Hf13/v/jqOdwWBwWT/2dqv7z2thY3klvLy8CAkJcfwsOXP8+PEy9SHiSp6+tTE2aEbm+RgyYo5Qq21Pd4ckIiJVnD1Bv379esLDwwsk+w8dOkRaWhrt2rXj8OHD7Nq1q8BCnPDwcMccPyAgAICbbrqJa6+91vFnkaqq0if77SvtCytrkLcUTVGr+kvSVt72imvrSnz11VfMnj0bPz8/5s+fX+pXcYKDg7nrrrv49NNP2bx5c5mS/QaDId9bERXFx8enQL/eDVuSeiEOks+5JaaqytlYSulpHF1D4+g6VzqWHh4eeHh44Onp6fRV1prCXibFYDDg6elJz549CQsLY8+ePYwdOzbftXv27AFg/PjxPPPMM+zdu5c777wz3zV79+4FoHv37o5x9ff3d1pOz554t/89FHbeHpsr2JPHhfV5pf53HPP25+rYq/vPa2FjWVqenp54eHjg4+NT5BckKuEjlY13s3Z/JPsjlOwXERGX6NGjB+vXr2f37t08+OCD+c7t3r0bgEceeYRnnnmG8PBwp8l+yJ3j29WuXZvatVVtQqq+K68DU0HsG+meO3fO6Xn7cX9//2IT9PZatoW1lfecsw18y+L777/n//7v//D29mbevHmFbjhcnBYtWgCQkJDgwujcyxzcAgBrQrRb4xARkeqnW7duQG5i3142xi48PByj0cigQYNo3ry548Hgf6+B/A8Cy5YtIzQ0lFmzZjmODRw4kNmzZwPw8ssvExoa6vjfsmXLCrRrtVr54IMPuOmmm+jYsSP9+vXjtddeIyUl5Yo/6+rVq7nnnnvo3Lkz3bp1Y8KECU7r4efk5LBq1Sqee+45br75Zjp37sx1113HbbfdxqxZswrs6WP/vJD7KnTezzZw4MB812ZnZ7N06VLGjBlDjx496NSpEwMHDuSJJ55g48aNhca+YsUK7rrrLq699lp69OjBk08+yalTpwpct3PnTkJDQ3nppZe4fPkyr732Gv3796djx44MGjSIDz74gKysLKd9XL58mZkzZ3LLLbdwzTXX0KVLF0aPHs23337rtAb+Sy+9RGhoKDt37mTbtm089NBD9OjRg9DQUA4fPkxsbCyhoaHcd999ZGRk8M477zBo0CA6derEzTffzKJFixxtHTt2jIkTJ3L99ddz7bXX8re//c3xerlIdefTLLeEmur2i4iIq2iOrzm+neb4BVX6lf3t2uWWdTl06JDT8/Yf8JJsptuyZUvMZjNJSUnExcUVSOjHxcWRnJyMt7c3LVu2LGPkf1q3bh2TJ0/Gy8uLWbNmOf6jdCUuXrwIFL3vQFVjCmoBgDU+2q1xiIhI9dOuXTv8/PxITk7m+PHjXHXVVUDuZHjv3r106tQJs9lM165dWbZsGRcuXKBevXpA7v499v1t8j4IOHPzzTezbds2jhw5QpcuXWjevLnjXEhISL5rMzMzGTt2LBEREXTv3p02bdqwd+9evvjiC44fP85nn31W6tXZn3/+OYsWLeK6665jwIABHDt2jA0bNrB161Y+/vhjbrjhBse16enpPPfcc9StW5dWrVrRrl07UlNTOXjwILNnz2bDhg35NhcLCQlhxIgRLF++HF9fX26++WbHubyvOWdkZPDoo4+ybds2TCYTXbp0oX79+pw9e5atW7dy8eJFbrzxxgKxv/vuuyxYsICuXbty4403cvDgQX7++Wf27t3Lf//7X8ffR16XLl1i1KhRJCUl0a1bNzIyMggPD+fDDz/k3LlzzJgxI9/158+f57777iMqKorAwEAGDBhAeno6O3fuZMqUKWzZsoWZM2c6HfcffviBb775hrZt29K3b1/Onj2b77rMzEweeOABTp48SY8ePWjZsiXh4eG8/vrrpKam0qNHD8aOHUuTJk244YYbOHXqFHv27OGBBx5g6dKltG7dumR/ySJVlHdI7vOc5VwUOZZ0PMzV5zlGRETcQ3N8zfFBc/zCVPpkf5cuXfD39yc2NpYDBw4UqMW1evVqAAYNGlRsW2azmV69erFhwwbWrFlT4HV+e1t9+vRx2cZmW7du5ZlnnsFms/Hee+/Rr1+/K27LZrPx888/A9CxY0eXxFcZmIJzv1jJvHCWnEwLHsbC69CKiIiUhqenJ126dGHz5s3s3r3b8SAQGRnJpUuXHF/Ad+vWjWXLlrF7927HRHffvn1kZWXRqlUrAgMDi+znxRdfZNasWRw5coS77767yM279u3bxzXXXMO6descE+nz588zatQotm/fzu7du+nRo0epPueXX37JBx98kG+S/vHHH/POO+/wwgsvsHbtWkfpF6PRyOzZs+nfv3+++U5GRgbTp09n2bJlfPHFF9x3332OsenWrRvLly8nICCAN99802kMM2bMYNu2bXTo0IEPP/yQRo0aOc6lpKRw4MABp/ctWbKEpUuX0rZtWyB3RdRTTz3Fhg0b+M9//sMTTzxR4J7169czYMAAli5d6lgAERUVxciRI1m2bBmPPfZYvnKJ06ZNIyoqigEDBvDee+857omJiWHMmDH8+OOPfPXVV/z97393Gp+zDdliY2OB3L9Pe91Y+6vfR44c4S9/+Qsff/wx33zzDRMmTGDcuHGOMj5vvfUWn376KfPnz+eNN95wOi4i1YVXnUC86jYg6+J5Ms5E4tvqOneHJCIiVZzm+Jrjg+b4han0ZXy8vLwYM2YMANOnT8/36suqVavYtGkTAQEBjBw50nF8//79DB06lKFDhxZo7+GHHwZg3rx5nDhxwnH8xIkTzJs3L981ZbV3716eeOIJsrKyeOONNxgyZEix90RERPDf//4Xq9Wa73hKSgpTpkzhwIED+Pr65vu8VZ2nnz8evnXAloP1fIy7wxERqZZsNhs51owq87//fR23LOwrduyv68KftTztDwJdu3bNdzzv74tb8VNaBoOB119/Pd+KmQYNGvC3v/0NgF27dpW6zSFDhuR7CAAYN24cV199NQkJCfz444+O4yaTiZtuuqnAwgZvb29eeeUVvLy8WLt2ban6T0hIYOnSpY6HjLwPAQB+fn75Vh7l9dRTTzkeAuzxPfbYY0DuK73O+Pr68vrrr+d707Fly5bccccd2Gy2fH+PsbGxrF+/HpPJxPTp0/Pd06xZM5599lkAFi5c6LSvPn36FPlg5+Hhwf/93//lq/Hatm1b+vXrR1paGkFBQY6HKrvx48cX+flEqhvvkD9K+ZxWKR8REVfSHF9zfDvN8TXHt6v0K/sh9wd5x44d7Nq1iyFDhtC9e3cSExMddbjefvtt/Pz8HNenp6cTFRXltK1u3boxfvx45s2bx4gRI+jVqxcA27Ztw2Kx8Nhjj9G5c+cC93344Yds2rQJAIvFAuT+0N9zzz2Oax577LF8r66MHz+etLQ0GjVqxPbt29m+fXuBdgMCAnjxxRcdf46Li2PSpEn83//9Hx07diQgIIDExEQOHz7MxYsX8fX1ZebMmTRo0KAUI1i5GQwGzMEtSI/ajzU+Gu/GbdwdkohItWKz2Yhb9A8ssZHuDqXEzE3b0njMay7ZbNTZg0B4eDgeHh506dIFyN0TJzAwsMA1ee93lcaNG3P11VcXON6qVSvgyvblue222wocMxgM3HbbbbzzzjuEh4cX2Hz4xIkT/PLLL8TExJCWluZ4+DIajURHR5eq/127dpGVlUW/fv1Kve9R//79Cxwrbiw6duxI/fr1S3RfeHg4NpuNHj16EBwcXOCeW265hX/84x/ExMRw7tw5GjZsmO/84MGDi4y/cePGTl/Ttb/m3adPnwLn7Js8V6c9mESK4t2sHSkHNqluv4iIC2mOrzm+5via4ztTJZL9JpOJBQsW8Omnn7Jy5UrCwsLw9fVl0KBBPP7446Xe7PbZZ5+lbdu2LFq0yPFtS/v27bn//vsZNmyY03tiYmL47bff8h3LzMzMd+zChQv5zl+6dAmAs2fPsnz5cqftNmnSJF+y374JxIEDBzh69CjJyckYjUaaNGnCnXfeyZgxY/K9slJdmIL+SPZrk14RkXJS9gl1VdWxY0d8fHyIj48nJiaGZs2aER4eztVXX51vpUbXrl1Zu3Ytly9fxmw2s3//foBSv25bnP9dEWNXq1YtgAJv95VEYXMD+/Fz5845jmVlZfHKK6+wdOnSUvdTmLi4OCD3gaq0nD042BdxZGZmOr2nNGNon2wXNkYeHh40btyYqKgo4uPjCzwIFPdg87/X2/n6+gI4ffiwx5qcnFxk2yLVhXezP+r2xx3DlpWJwcvo5ohERKoLzfE1x8+lOX5+NXmOXyWS/ZCb8J8wYQITJkwo9tqePXsSGVn0N5vDhw9n+PDhJe7/zTffLLR+VWGKi8GZZs2aMWXKlFLfV9WZgnO/GdMmvSIirmcwGGg85jVsmRZ3h1JiBqPZJSt+IHcVy3XXXeeolWm1Wvn9998LfMHfrVs3fvrpJ/bs2YOfnx9Wq5WQkJBCJ3JXysPDvVUUP//8c5YuXUqbNm147rnnHG8SGo25ybc+ffpw/vz5CovnSsajIsfQXge1MMXF4u6/b5HKwFi/CR6+dchJu4Tl3Am8m7Yt/iYRESmS5via4+elOX7pVOc5fpVJ9kv1ZgpqAYA14RQ2m81l//EXEZFcBoMBg6noCU111r17d8eDgH0lib2Gp13emp72VSf2ep+V3ZkzZ/LVxLSzbzCV92Hmp59+AuC9994r8KpxWloaiYmJpe7fvjKmtK8GV4SgoCDgz7H4Xzk5OZw9exYofIWOiJSNwWDAu1k70iJ3knH6sJL9IiIuojm+5vh2muPnV5Pn+JX3awipUUyBTcDDixxLGlkXK+6bRhERqRny1vT834277Nq2bUutWrUIDw931PIszeu99lUz2dnZrgi5VFatWuX0+A8//ADkr0l68eJFwPlrsqtWrSp04zSj0UhWVpbTcz179sTLy4vt27c7JtWVRbdu3TAYDOzcuZP4+PgC59esWUNGRgbNmjUr9HVdESk7eymf9NMRbo5ERESqC83xNcfXHL8gJfulUjB4GjEF5tbZUikfERFxtWuvvRaTycTp06fZvHkzISEhjtUgdp6ennTu3JlDhw6xd+9eoHQbd9nbO3HihOsCL6GffvqJdevW5Tu2YMECjhw5QoMGDbj55psdx1u2bAnAF198ke/6AwcO8M477xTaR1BQEL///rvjQSKvBg0aMHLkSDIzM3niiScKTLhTU1PZvn17qT+XKzRt2pSBAweSmZnJ1KlTycjIcJyLjY11fOYHHnjALfGJ1BQ+Ie0BsMQewZZT8QkTERGpfjTH1xxfc/yCVMZHKg1TcAusCdFY46OpFerajVJERKRmM5vNXHPNNYSHh3Px4kUGDRrk9Lpu3bqxZcsWMjMzady4caEbPjnTp08fvL29+fzzzzl27BjBwcEYDAZGjhxJly5dXPVRnPrb3/7G448/TufOnWnSpAnHjh0jMjISk8nEW2+9hY+Pj+PaRx55hC1btvD+++/z008/0bp1axISEtizZw/Dhw9n3759nDlzpkAfgwYNYtGiRYwYMYLOnTvj7e1NQEAAkyZNAuDll18mKiqKXbt2MXjwYLp27Ur9+vU5e/Yshw8fpmPHjtxwww3lOg6FmT59OidPnmTDhg0MHjyYbt26kZ6ezo4dO8jIyGDo0KH87W9/c0tsIjWFKbgFBpM3OZY0rOdjMAe3cHdIIiJSxWmOrzm+5vgFKdkvlYYpuDkcAEtCtLtDERGRaqh79+6OV3f/t5anXd7XfktbyzMoKIi5c+fy4Ycfsm/fPtLS0rDZbHTt2rXcHwQeeOABrrvuOhYuXMj69evx9PSkf//+PPXUU3Ts2DHftV26dGHJkiW89957HDp0iFOnThESEsKLL77ImDFjGDx4sNM+nn32WQDWr1/Pjz/+SFZWFk2aNHE8CPj4+PDZZ5/x3Xff8f3337N//34yMzNp0KABffv25S9/+Uu5jkFRGjRowLfffsv8+fP5+eefWb9+PV5eXrRt25a//OUvjBw5slJvsiVSHRg8PPFuGkr6yd/IOB2hZL+IiLiE5vi5NMfXHN/OYCusaJNUWwcOHACgU6dOFdZnWloahw8fpl27dvj6+jq9Jj1qP2f/Mx0v/2BCHp9TYbFVNSUZSymextE1NI6uU9axzMjIICoqipYtW+LtXXM36crOziYjIwNvb288PT3dHU6VpXF0HVeNZUn/jbtjnieVQ2Wd4+eVtOU7kjZ9Ta12vQi+67kKiLBq0HzKdTSWrqFxdB3N8V1Dc1PX0Di6TmWe49e8rzek0jL9sbonKzmeHEuae4MRERERERGXsm/SmxFzuNCNAkVERETkyinZL5WGp28dPP3qAWBNOO3maERERERExJXMjduAhxfZKUlkJZ1zdzgiIiIi1Y6S/VKpmIKbA2CJj3ZvICIiIiIi4lIeRnNuwp/c1f0iIiIi4lpK9kulYt+oy6pNekVEREREqh2fkNxSPumnlewXERERcTUl+6VSMQW1AMCqlf0iIiIiItXOn3X7I9wciYiIiEj1o2S/VCr2TXqt509jy8l2bzAiIiIiIuJS5qZtAQNZSefISklydzgiIiIi1YqS/VKpGOs1wuBlwpZpITMp3t3hiIiIiIiIC3l618IUlLtPl+r2i4iIiLiWkv1SqRg8PDE1CAFUt19E5ErYbDZ3hyAi5UD/tqU68f6jbn/GaZXyEREpCc0DRKqn8vi3rWS/VDqOUj6q2y8iUmIeHrn/l56drRJoItWR/d+2/d+6SFXmqNuvTXpFRIqkOb5I9VYec3w9LUilY3+tV8l+EZGSMxqNeHp6kp6e7u5QRKQcXL58GaPRiNFodHcoImXm3aw9ANaEU2RnpLo5GhGRyktzfJHqrTzm+Er2S6VjX9lvSTjl3kBERKoQg8GAr68vFy9e1MofkWomPT2dS5cuUbt2bQwGg7vDESkzr9oBeAU0BGxYYo+4OxwRkUpLc3yR6qu85vheLmtJxEXMf6zsz76USHb6ZTx9ars5IhGRqiEoKIjo6GhOnTpFvXr1MJvNNS4xmJ2djcViAcDT09PN0VRdGkfXudKxtNlsZGdnc/nyZS5duoTZbCYwMLC8whSpcN7N2pOSdI6MmMP4tunq7nBERCotzfE1N3UVjaPrVOY5vpL9Uul4eNfCq24QWRcTsCacwqd5R3eHJCJSJZhMJpo2bUpiYiJnz551dzhukZOTQ1ZWFl5eXqptXgYaR9cp61gajUb8/f0JDAzUQ5lUKz4h7UjZH0a66vaLiBRJc3zNTV1F4+g6lXmOr2S/VEqm4Oa5yf74aCX7RURKwdfXl5CQELKyssjKynJ3OBUuPT2dkydPEhISgo+Pj7vDqbI0jq5TlrH08PDAaDTWuNV7UjPYN+m1nD1OTqYFD6PZzRGJiFRemuNrbuoKGkfXqcxzfCX7pVIyBbUg7ehuLNqkV0Tkinh5eeHlVfP+bz4nJwcAs9mMt7e3m6OpujSOrqOxFHHOK6AhnrX8yU5NxhJ3HJ/mHdwdkohIpac5vuZTZaFxdJ3KPJZ6Z0MqJfMfm/RalewXEREREal2DAYD3iHtAciIUSkfEREREVdQsl8qJZM92Z8Ygy275r2iJiIiIiJS3dlL+WTERLg5EhEREZHqQcl+qZS8/IMwmLwhO4vM3+PcHY6IiIiIiLiYY2V/bCS2nGw3RyMiIiJS9SnZL5WSweCBKag5AJaEaPcGIyIiIiKVitVqZd68edxyyy1cc801XH/99TzxxBMcOnToitpbvXo1f/3rX+nSpQtdunThr3/9K2vWrCnynsTERKZNm8aNN95Ix44dufHGG5k2bRq///57ifudNWsWoaGhhIaG8vXXX19R7FWZqUEzPMy+2KwZKt8pIiIi4gJK9kulZQ5qAahuv4iIiIj8yWq1MnbsWN59912SkpIYMGAArVq1Yu3atYwaNYpffvmlVO299957PPPMMxw8eJAePXrQo0cPDh48yNNPP83777/v9J4zZ85w55138vXXX+Pj48PgwYPx8fHh66+/ZsSIEZw9e7bYfiMjI5k3bx4Gg6FU8VYnBg9PzE3bAqrbLyIiIuIKSvZLpeWo26+V/SIiIiLyh08++YRdu3bRqVMnfv75Z95//33+85//8M4775CZmcnzzz9PSkpKidoKDw9n7ty51KlThxUrVjB37lzmzp3LihUrqFOnDnPmzGHfvn0F7ps8eTLnz59n9OjRrF69mpkzZ7J69WpGjx5NfHw8U6ZMKbLf7OxsJk+ejL+/PwMHDryicagufEJy6/ann1bdfhEREZGyUrJfKi1Hsj/+lHsDEREREZFKISsri0WLFgEwdepU/Pz8HOduvfVW+vfvT1JSEkuXLi1Re/PnzwdgwoQJtG7d2nG8devWjB8/Pt81docOHWLHjh34+/szefJkx8p8g8HgSOBv2bKFI0eOFNrvp59+ysGDB5kyZQp16tQpUazVlaNuf8xhbDabm6MRERERqdqU7JdKy9QgBDCQnZpMVkqyu8MRERERETfbu3cvycnJNG3alE6dOhU4P3z4cADWr19fbFsWi4Vt27YBMGzYsELb2rJlC1ar1XF8w4YNAAwcOBCz2ZzvHrPZ7Fipv27dOqf9RkVFMWvWLAYNGsTQoUOLjbO6MzdqjcHLRE7aJTJ/P+PucERERESqNCX7pdLyMHljrNcIUCkfEREREYHDh3Prunfo0MHp+fbtc1eJR0ZGFttWVFQUFouFgIAAGjduXOB848aN8ff3JyMjg6ioqAIxdOzY0Wm79ticxWCz2ZgyZQpGo5GpU6cWG2NNYPA0Ym58FaC6/SIiIiJlpWS/VGqm4OaANukVEREREYiLiwOgYcOGTs/bjycnJ5OamlpkW2fOnCmyrbzn7P3m/X1wcHCR99jbz+urr74iPDycZ599ttD7ayLvZrl1+5XsFxERESkbL3cHIFIUU1ALUg9vx5qguv0iIiIiNV1aWhoAPj4+Ts/7+vo6fp+amkqtWrWuuK287eX94sB+X96+irsHcpP/77zzDp07d+Zvf/tboX2Whc1mc8RXEdLT0/P9eqUMwa1y2zl1qELjryxcNY6isXQVjaPraCxdQ+PoGhpH16nosbTZbI59ooqjZL9UavZNei1a2S8iIiIiVdgrr7xCZmYmr732Wokf1korMzPTUWaoIkVHR5etgaxs/DGQfSmRI3t3YvOpmZsWl3kcxUFj6RoaR9fRWLqGxtE1NI6uU5FjaTKZSnSdkv1SqZn/SPZn/n4GW1YmBi+jewMSEREREbexr5ovbBVV3lXhRa3qL0lbedvL25b9vsJWoDu7Z+nSpWzZsoXHH3+cNm3aFBlXWRiNxnJt/3+lp6cTHR1NixYtinxDoiQSD7QgKz6K5r7Z+LRt56IIqwZXjmNNp7F0DY2j62gsXUPj6BoaR9ep6LE8fvx4ia9Vsl8qNc/a9fHw9iMnIwVrYgzmhq3cHZKIiIiIuIl9I91z5845PW8/7u/vX2yyv0mTJkW2lfdc3g18GzduTEREBPHx8UXeY28fYP369QBs3bqV3bt357v+5MmTACxcuJDVq1fTpUsXnnnmmSJjL4zBYCi0vFB58vHxKXO/tZp34GJ8FDnxJ/DtMthFkVUtrhhHyaWxdA2No+toLF1D4+gaGkfXqaixLM1boVUm2W+1Wvnss89YuXIlMTEx+Pr60q1bNx599FE6dOhQ6vZWr17NF198QWRkJAChoaGMGTOGYcOGOb1+48aN/Prrrxw4cICDBw+SnJxMkyZNCAsLK7avbdu2MX/+fA4ePIjVaqVVq1bcc889jBo1qtC/rJSUFObOnctPP/3EuXPnqFu3LjfccANPPfUUzZo1K/XnraoMBgOm4OZknDqENT5ayX4RERGRGqxdu9wV34cOHXJ6PiIiAsid2xenZcuWmM1mkpKSiIuLy5fQh9yNeJOTk/H29qZly5b5Yli3bh0HDx502q49Nmcx/Prrr4XGEx0dTXR0NLVr1y429urIu1l7Lu5apU16RURERMrAw90BlITVamXs2LG8++67JCUlMWDAAFq1asXatWsZNWoUv/zyS6nae++993jmmWc4ePAgPXr0oEePHhw8eJCnn36a999/3+k9kyZN4qOPPmLLli0kJyeXuK/Fixfz0EMPsWPHDjp27Ejfvn2Jjo5m6tSpvPTSS07vuXTpEqNGjeKTTz4hOzubQYMGERQUxMqVK7nzzjvdUofTnUxBLQCwaJNeERERkRqtS5cu+Pv7Exsby4EDBwqcX716NQCDBg0qti2z2UyvXr0AWLNmTaFt9enTJ1+N1AEDBgAQFhaGxWLJd4/FYnEsBho8+M/V6XPmzCEyMtLp/0aMGAHAtGnTiIyMZM6cOcXGXh15N2sLQOb5GLLTLrs5GhEREZGqqUok+z/55BN27dpFp06d+Pnnn3n//ff5z3/+wzvvvENmZibPP/88KSkpJWorPDycuXPnUqdOHVasWMHcuXOZO3cuK1asoE6dOsyZM4d9+/YVuG/IkCFMmjSJhQsX8s0335Sor5iYGF577TW8vLz4/PPP+fTTT5k1axZr1qyhadOmrFixglWrVhW478033+T48eMMGDCAH3/8kZkzZ7Js2TKeffZZUlJSmDRpEtnZ2SWKoTqw1+23xke5NxARERERcSsvLy/GjBkDwPTp0/M9A6xatYpNmzYREBDAyJEjHcf379/P0KFDGTp0aIH2Hn74YQDmzZvHiRMnHMdPnDjBvHnz8l1j16FDB66//nqSk5OZMWMGNpsNAJvNxowZM0hOTqZPnz60bdvWRZ+6ZvCsVRdj/dzSRxmxR9wcjYiIiEjVVOmT/VlZWSxatAiAqVOn4ufn5zh366230r9/f5KSkli6dGmJ2ps/fz4AEyZMoHXr1o7jrVu3Zvz48fmuyWvGjBmMGzeOG264IV8MRfn888/JzMzknnvuoXv37o7jwcHBTJo0yWlfv//+OytWrMDLy4tXX3013yqiRx55hKuvvprjx4+zYcOGEsVQHdhX9lvjTzkepkRERESkZho3bhw9evTgwIEDDBkyhIkTJ3Lvvffy3HPPYTQaefvtt/PN19PT04mKiiIqquDCkW7dujF+/HguXrzIiBEjmDBhAhMmTGDEiBFcunSJxx57jM6dOxe4b8aMGTRo0IDFixdzyy238Mwzz3DLLbewePFigoKCeO2118p1DKor72a5ZZoyTke4ORIRERGRqqnSJ/v37t1LcnIyTZs2pVOnTgXODx8+HPhz06uiWCwWtm3bBuC0Nr+9rS1btmC1WssSNoDjFV5nfQ0aNAiz2czhw4eJi4tzHN+8eTPZ2dl07dqVoKCgfPcYDAZuvvlmoGSft7owNmgKBg9yMlLIvvy7u8MRERERETcymUwsWLCAZ555Bn9/f8LCwjh+/DiDBg1iyZIl9OvXr1TtPfvss7z33nu0b9+enTt3snPnTtq3b8/MmTOZOHGi03uaNGnCihUrGD16NKmpqaxdu5bU1FRGjx7NihUraNSokSs+ao3jHdIeQHX7RURERK5Qpd+g116fvrBNeNu3z50Q2jfaLUpUVBQWi4WAgIACG3ABNG7cGH9/f5KTk4mKiirRxl6FuXz5MmfOnMkXY14mk4k2bdpw6NAhjhw54oinuM9rP16Sz1tdeHiZMAY2IfN8DJb4aLzqBLo7JBERERFxI5PJ5FiFX5yePXsWO3cePny4Y+FPSQUGBjJ9+vRS3ePMm2++yZtvvlnmdqoD75Dclf2WcyfJsWbgYfJ2c0QiIiIiVUulX9lvX/XesGFDp+ftx5OTk0lNTS2yLXvyvbC28p7Lu9r+Stj7qlOnDrVq1SpxXyX9vPb2awqzo5RPtFvjEBERERGR8mGsG4RnnUDIycZy5qi7wxERERGpcir9yv60tDQAfHx8nJ739fV1/D41NbXQxHpJ2srbXnFfHBTnSvuy35f3c5VHfDabzdFXRUhPT8/3a6kF5L75kB53AnMFxl0ZlXksBdA4uorG0XU0lq6hcXQNjaPrVPRY2mw2DAZDhfQlUh58mrUj5dAvpMccxqflNe4OR0RERKRKqfTJfikfmZmZjpJBFSk6OvqK7vNKN1AbSD1znLNuiLsyutKxlPw0jq6hcXQdjaVraBxdQ+PoOhU5liaTqcL6EnE17z+S/arbLyIiIlJ6lT7Zb1/JXthqqLyr04ta1V+StvK2V1xbxbnSvuz3Fbbq3lXxGY1G2rRpU6Y2SiM9PZ3o6GhatGhR5NsOhckOacz5PYvxTEsitE1LPIw1t35nWcdScmkcXUPj6DoaS9fQOLqGxtF1Knosjx8/Xu59iJQnR93+2Ehs2ZkYPI1ujkhERESk6qj0yX77xrXnzp1zet5+3N/fv9gEeJMmTYpsK+85Zxv4loa9r0uXLhVaXshZXyX9vPb2r5TBYCi0VFB58vHxubJ+fX25UMuf7NRkvFIS8W5yteuDq2KueCwlH42ja2gcXUdj6RoaR9fQOLpORY2lSvhIVWcMbIqHT21y0i9jOReleb+IiIhIKVT6DXrbtctd2XHo0CGn5yMiIgAIDQ0ttq2WLVtiNptJSkpyugFvXFwcycnJeHt707JlyzJEDbVr13Yk5O0x5mW1Wh0rr9q2bes4XtzntR8vyeetbkzBzQFt0isiIiIiUl0ZDB54N8t9Pso4XfA5SkREREQKV+mT/V26dMHf35/Y2FgOHDhQ4Pzq1asBGDRoULFtmc1mevXqBcCaNWsKbatPnz4uqXU6cODAQvtav349FouFdu3a5VvZ369fPzw9PdmzZw8JCQn57rHZbPz0009AyT5vdWMKagGANeGUewMREREREZFy492sPYDq9ouIiIiUUqVP9nt5eTFmzBgApk+fTkpKiuPcqlWr2LRpEwEBAYwcOdJxfP/+/QwdOpShQ4cWaO/hhx8GYN68eZw4ccJx/MSJE8ybNy/fNWU1ZswYjEYj33zzDbt373Ycj4+P59///rfTvurXr8+dd95JVlYWr7zyClar1XHuk08+4ejRo7Ru3ZoBAwa4JMaqxBTcAgCLVvaLiIiIiFRb3s1y33bOiDmCzZbj5mhEREREqo5KX7MfYNy4cezYsYNdu3YxZMgQunfvTmJiIuHh4RiNRt5++238/Pwc16enpxMVFeW0rW7dujF+/HjmzZvHiBEjHCv9t23bhsVi4bHHHqNz584F7vvwww/ZtGkTABaLBYCEhATuuecexzWPPfYYN954o+PPISEhTJkyhWnTpnH//fdzww034Ovry7Zt20hJSeGOO+7g1ltvLdDXSy+9xG+//caGDRsYOnQo1157LadOneLQoUPUqlWLd955B09Pz9IPZBVnzrOy32bLwWCo9N9ViYiIiIhIKZkbtsRgNJOTkULm+VhMQSHuDklERESkSqgSyX6TycSCBQv49NNPWblyJWFhYfj6+jJo0CAef/xxOnToUKr2nn32Wdq2bcuiRYvYuXMnAO3bt+f+++9n2LBhTu+JiYnht99+y3csMzMz37ELFy4UuG/06NGEhITwySef8Ntvv5GZmUmrVq245557GD16tNO+6tSpw5IlS/joo4/46aefWLt2LXXr1uW2227jqaeeIiSkZk52jfUbg6cXNms6WckJGAMaujskERERERFxMYOnF95NriY9+gAZMRFK9ouIiIiUUJVI9kNuwn/ChAlMmDCh2Gt79uxJZGRkkdcMHz6c4cOHl7j/N998kzfffLPE1+fVq1cvxxsEJeXn58fzzz/P888/f0V9VkcGTy9Mgc2wxkdhjT+lZL+IiIiISDXl3aw96dEHSD8dQZ2uBcuzioiIiEhBqoMiVYqjbn9CtFvjEBERERGR8uMdYq/bfxibzebmaERERESqBiX7pUox/5Hst2qTXhERERGRasvc5Grw8CL78gWyLia4OxwRERGRKkHJfqlSTEHNASX7RURERESqMw+jGXOjVgBknD7s5mhEREREqgYl+6VKsZfxybqYQE5GqnuDERERERGRcuPd7M9SPiIiIiJSPCX7pUrx9KmNZ+36AFgSTrk5GhERERERKS9/Jvsj3ByJiIiISNWgZL9UOarbLyIiIiJS/Xk3awtA5u9xZKUkuzcYERERkSpAyX6pchx1+7WyX0RERESk2vL0qY0pKASAjFiV8hEREREpjpL9UuWYtLJfRERERKRG8G7WHtAmvSIiIiIloWS/VDmm4JYAWM+fxpaT7eZoRERERESkvGiTXhEREZGSU7JfqhxjQDAGoxlblpXMC2fdHY6IiIiIiJQTe7LfGh9NjiXNzdGIiIiIVG5K9kuVY/DwxNQgt3an6vaLiIiIiFRfXnXq4+UfBLYcMmIj3R2OiIiISKWmZL9USarbLyIiIiJSMzjq9quUj4iIiEiRlOyXKskU1AIAi5L9IiIiIiLVmnfIH3X7T0e4ORIRERGRyk3JfqmSzPaV/QnRbo1DRERERETKl31lvyXuOLasTDdHIyIiIlJ5KdkvVZIpqDkA2ZcvkJ122c3RiIiIiIhIeTHWa4RnrbrYsjOxnD3u7nBEREREKi0l+6VK8jD74OUfDGh1v4iIiIhIdWYwGPBullvKJ/206vaLiIiIFEbJfqmy7Jv0qm6/iIiIiEj1Zk/2Z8Sobr+IiIhIYZTslyrL/McmvVrZLyIiIiJSvdnr9mfERmLLyXZzNCIiIiKVk5L9UmWZgnPr9lvjT7k5EhERERERKU+m4OYYTD7YLGlYEzT/FxEREXFGyX6psuxlfKznY7BlZ7o3GBERERERKTcGD0+8m7YFICNGdftFREREnCn3ZP/Fixc5evQoVqu1vLuSGsarbhAGsy/kZGFNPOPucERERESkGHo2kLLwDvmjbr826RURERFxqszJ/oiICN5//322bNmS73hGRgbPPvss119/PXfccQd9+/blxx9/LGt3Ig4GgwFz0B+lfFS3X0RERMTt9Gwg5enPTXoPY7PZ3ByNiIiISOVT5mT/d999x9y5cwtMtt5//31Wr16NzWbDZrNx8eJFJk2axNGjR8vapYiDKUh1+0VEREQqCz0bSHkyN24Dnl5kpyaTlXTW3eGIiIiIVDplTvaHh4djNpvp3bu345jVauXbb7/Fy8uLefPmsXv3bu677z6ysrJYtGhRWbsUcXDU7dfKfhERERG307OBlCcPLxPeja8CIF2lfEREREQKKHOyPzExkeDgYDw8/mzq119/JSUlhYEDB9K/f39q167Nc889h4+PD7t37y5rlyIOpuCWAFjio/Uqr4iIiIib6dlAytufpXwi3ByJiIiISOVT5mT/pUuXqFu3br5j+/btw2Aw0LdvX8cxb29vQkJCOHfuXFm7FHEwNWgGBg9y0i6RnZLs7nBEREREajQ9G0h58w5pD2iTXhERERFnypzs9/b25sKFC/mOhYeHA9ClS5d8x41GY75VPiJl5WE0Y6zXCFApHxERERF307OBlDfvpqFg8CArOZ6syxeKv0FERESkBinz7LpVq1acOXOGY8eOAXDhwgV27txJQEAArVu3zndtfHw89erVK2uXIvk46vbHR7s1DhEREZGaTs8GUt48zL6YgpoDkBGj1f0iIiIieZU52T9s2DBsNhvjxo3jzTff5P777yczM5Phw4fnuy4uLo7z58/TvHnzsnYpko8pqAUAFq3sFxEREXErPRtIRfAO+aNu/2nV7RcRERHJq8zJ/nvvvZfu3btz7tw5Fi5cyLFjx2jRogWPP/54vutWr14NQM+ePcvapUg+5uDch0St7BcRERFxLz0bSEXwbvZH3X6t7BcRERHJx6usDZhMJj7//HPCwsI4efIkTZo0YfDgwZjN5vwdeXkxZswYbr755rJ2KZKPfWV/5u9x5GRZ8fAyuTcgERERkRpKzwZSEbyb5a7styacJjs9BU8fPzdHJCIiIlI5lDnZD+Dh4cHgwYOLvOaBBx5wRVciBXjWroeHT21y0i+TeT4Gc6PWxd8kIiIiIuVCzwZS3rz8/DHWa0zmhTgyYo9Q66pu7g5JREREpFIocxkfEXczGAyOTXotKuUjIiIiIlLt2Vf3q5SPiIiIyJ/KnOy/cOEC27dvJyoqqsC5xYsXc/vtt9OzZ0/GjRvHyZMny9qdiFPmoD/q9muTXhERERG30bOBVJQ/N+lVsl9ERETErszJ/kWLFvHQQw/x22+/5Tu+ZMkSpk+fztGjR7l48SK//PILY8aMISkpqaxdihRgX9lvjT/l3kBEREREajA9G0hFsa/st5w9QU6mxc3RiIiIiFQOZa7Zv2PHDjw9PbnpppvyHZ83bx4ADz30EF26dGHhwoXs2bOHhQsX8swzz5S6H6vVymeffcbKlSuJiYnB19eXbt268eijj9KhQ4dSt7d69Wq++OILIiMjAQgNDWXMmDEMGzas0HsSExOZPXs2GzduJDExkcDAQG688UaefPJJ6tevX+D60NDQYuMwGAwcOXIk37H77ruPXbt2FXrPc889xyOPPFJs2zWJfZNea0I0NpsNg8Hg3oBEREREaqCKejYQ8fIPxtOvHtkpF7DEHcOneUd3hyQiIiLidmVO9sfFxdGgQQNq1arlOHbkyBHi4uLo2rUrL7zwAgDXXnstAwYMYNOmTaWe0FutVsaOHcuuXbuoX78+AwYM4Pz586xdu5aNGzfy0Ucf0bdv3xK399577zF37lxMJhO9e/cGYOvWrTz99NMcPXqUiRMnFrjnzJkzjBo1ivPnz9OqVSsGDx5MZGQkX3/9NWFhYSxZsoRGjRrlu2fEiBGFxrBv3z6io6Pp3r17odfcfPPN+Pr6Fjh+9dVXl/Sj1himwKbg4UlORipZl85jrBvk7pBEREREapyKeDYQgdxFU94h7UiN2ErG6cNK9ouIiIjggmR/cnIybdu2zXdsz549AAwcONBxrEGDBoSEhHD69OlS9/HJJ5+wa9cuOnXqxMKFC/Hz8wNg1apVPPfcczz//POsW7fOcbwo4eHhzJ07lzp16rB48WJat24NwIkTJxg9ejRz5syhX79+dO7cOd99kydP5vz584wePZpp06ZhMBiw2WxMmzaNxYsXM2XKFBYsWJDvnjfffLPQOG6++Wag6C8EXnjhBZo2bVrsZxIweBkxBTbBmnAaa/wpJftFRERE3KAing1E7Lybtc9N9sdEuDsUERERkUqhzDX7PTw8SE1NzXds7969GAwGunbtmu947dq1yczMLFX7WVlZLFq0CICpU6fmS+jfeuut9O/fn6SkJJYuXVqi9ubPnw/AhAkTHIl+gNatWzN+/Ph819gdOnSIHTt24O/vz+TJkx0lYgwGA5MnT8bf358tW7YUKMdTmL179xIdHY2vr68j6S9l5yjlEx/t1jhEREREaqryfjYQycvHvklv7FFsOdlujkZERETE/cqc7G/SpAmnTp0iOTkZgMzMTLZu3Yq3tzcdO+Z/lTIpKYmAgIBStb93716Sk5Np2rQpnTp1KnB++PDhAKxfv77YtiwWC9u2bQNwWpvf3taWLVuwWq2O4xs2bAByVyOZzeZ895jNZscqpXXr1pXkI7FixQoAbrrppnyvOEvZODbpTYh2axwiIiIiNVV5PxuI5GVs0AwPbz9smRlYzkW5OxwRERERtytzsr9Pnz5kZWXx3HPPERYWxpQpU0hOTqZv3754ef1ZJejy5cvExMQUqGtfnMOHDwMUuglv+/btARwb7RYlKioKi8VCQEAAjRs3LnC+cePG+Pv7k5GRQVTUn5NFewz/+4BiZ4+tJDFYrVbWrFkDFF3CB2Dp0qVMnz6d6dOnM3/+fI4fP15s+zWZfWW/RSv7RURERNyivJ8NRPIyGDzwbhoKoFI+IiIiIrigZv+4ceP44Ycf2Lp1K9u2bcNms2E2m3n88cfzXRcWFobNZivw+m5x4uLiAGjYsKHT8/bjycnJpKamFrlS/syZM0W2ZT+XnJxMXFwcoaGh+WIIDg4uMgZ7+0VZv349ly5donHjxlx//fVFXjtnzpx8f/73v//NnXfeybRp0/D29i62r5rG/MfK/qykeHKs6XiYfNwbkIiIiEgNU97PBiL/yzukPWnH95Bx+jD0vN3d4YiIiIi4VZmT/YGBgSxdupT58+cTFRVF48aNuf/++/PVw4fcjbnatm3LgAEDStV+WloaAD4+zhO3vr6+jt8Xl+wvrq287eWtNWq/L29fxd1TGHsJn9tvv91R+/9/devWjZEjR9KlSxeCgoKIj49n06ZNfPDBByxfvhyr1cq7775bbF9Fsdlsjs9VEdLT0/P9Wi4MRjxq+ZOTmsyl00cxNb6q/PpyowoZyxpA4+gaGkfX0Vi6hsbRNTSOrlPRY2mz2QqdY1aE8n42sLNarXz22WesXLmSmJgYfH196datG48++mihbwQXZfXq1XzxxReON3VDQ0MZM2aM09KfdomJicyePZuNGzeSmJhIYGAgN954I08++ST169cvcP22bdv44YcfiIiIID4+nkuXLuHt7U2bNm249dZbGTVqFEajsdSx13Tezf6o2x9z2O0//yIiIiLuVuZkP+SueP/HP/5R5DWvvvqqK7qq0hITE9myZQsAd955Z6HXTZw4Md+fmzdvzpgxY+jZsycjR47khx9+4IEHHuCaa6654lgyMzMd5YkqUnR0dLm27+dTD2NqMjEHdmG9mFWufblbeY9lTaFxdA2No+toLF1D4+gaGkfXqcixNJlMFdaXM+X9bGC1Whk7diy7du2ifv36DBgwgPPnz7N27Vo2btzIRx99RN++fUvc3nvvvcfcuXMxmUz07t0bgK1bt/L0009z9OjRAnNzyH2jd9SoUZw/f55WrVoxePBgIiMj+frrrwkLC2PJkiUFShT9+OOPfPfdd7Ro0YJ27dpRt25dEhMT2bt3L/v27eOHH35g4cKFBfYIk6KZG7XC4GUiJ/0ymYmxmBo0c3dIIiIiIm7jkmR/ebKvmi9sNVTe1enFbXZbXFt528vblv2+wlbCO7vHmVWrVpGVlUXnzp1p2bJlkdc6ExoaysCBA/npp5/YvHlzmZL9RqORNm3aXPH9pZWenk50dDQtWrQo8s2Ksrqc2J7UxJMEelmp265dufXjThU1ltWdxtE1NI6uo7F0DY2ja2gcXaeix7Im7PH0ySefsGvXLjp16sTChQvx8/MDcufazz33HM8//zzr1q1zHC9KeHg4c+fOpU6dOixevNjxBsKJEycYPXo0c+bMoV+/fnTu3DnffZMnT+b8+fOMHj2aadOmYTAYsNlsTJs2jcWLFzNlyhQWLFiQ7557772XJ598kgYNGuQ7Hh8fz4MPPsjevXtZtGgR48aNK8vw1DgGTyPmJleTceogGTGHlewXERGRGs2lyf7ExES2bt3KyZMnHSV1WrduTe/evZ2+yloS9o10z5075/S8/bi/v3+xyfYmTZoU2Vbec3k38G3cuLHjddui7rG3X5jly5cDRa/qL06LFi0ASEhIuOI2AAwGQ6FlicqTj49Pufab07QNqeGQ8/sZt3y+ilTeY1lTaBxdQ+PoOhpL19A4uobG0XUqaiwrUwmT8ng2yMrKYtGiRQBMnTo1X0L/1ltvZeXKlWzatImlS5dy//33F9ve/PnzAZgwYUK+UkOtW7dm/Pjx/Otf/2L+/Pl8+OGHjnOHDh1ix44d+Pv7M3nyZMeYGwwGJk+ezI8//siWLVs4cuQIbdu2ddxn3w/sfwUHB/PII4/w4osvsn37diX7r4B3s3aOZH+dLkPcHY6IiIiI27gk2W+1Wnn77bdZsmQJWVkFS6d4eXkxevRonn/++VK/Vtzuj9XZhw4dcno+IiICKHzynFfLli0xm80kJSURFxeXL6EPuRvxJicn4+3tnW/lfbt27Vi3bh0HDx502q49tqJiOHLkCEeOHMFsNjN8+PBiYy3MxYsXgaL3HajJTEEtALAmnMJmy8Fg8HBvQCIiIiI1THk+G+zdu5fk5GSaNm1Kp06dCpwfPnw4mzZtYv369cUm+y0WC9u2bQNwWpt/+PDh/Otf/2LLli1YrVZHrBs2bABg4MCBBUrumM1mBg4cyLJly1i3bl2+ZH9R7LX63V2CqaryDvmjbv/pCDdHIiIiIuJeZc6E5uTk8Oijj/LVV1+RmZlJvXr16NatG8OGDaNbt27Uq1ePzMxMvvzySx577DFsNlup2u/SpQv+/v7ExsZy4MCBAudXr14NwKBBg4pty2w206tXLwDWrFlTaFt9+vTJN9G2bxwWFhaGxWLJd4/FYiEsLAyAwYMHF9q3fWPeQYMGUadOnWJjdcZqtbJx40YAOnbseEVtVHfG+o0xeBqxZWaQleT8TQwRERERKR/l/Wxg33OqsE1427dvD+DYaLcoUVFRWCwWAgICCiwCgty3e/39/cnIyCAqKqpADIXNx+2xlSQGgKSkJEfJn/79+5foHsnPu8nVYPAg61IiWRfPuzscEREREbcpc7J/6dKlbN26FT8/P1577TU2bdrEF198wbvvvssXX3zB5s2bef3116lTpw5bt25l2bJlpWrfy8uLMWPGADB9+nRSUlIc51atWsWmTZsICAhg5MiRjuP79+9n6NChDB06tEB7Dz/8MADz5s3jxIkTjuMnTpxg3rx5+a6x69ChA9dffz3JycnMmDHD8VBis9mYMWMGycnJ9OnTp9CVO9nZ2fz3v/8Fii/hs337djZs2EBOTk6+4+fPn+epp57i3LlzNGzYkJtuuqnIdmoqg4cnxgYhAFgSot0bjIiIiEgNU97PBnFxcQA0bNjQ6Xn78eTkZFJTU4ts68yZM0W2lfecvd+8vw8ODi7yHnv7/2vfvn289NJLvPDCCzz00EMMGDCAQ4cOcffdd3PPPfcUGXNls3Z3LKvDk0i3FHyDoyJ5mHwwN2wFQHrMYbfGIiIiIuJOZS7js3LlSgwGAx988AE33HBDgfOenp6MHDmSxo0b8+CDD7JixYp8ifmSGDduHDt27GDXrl0MGTKE7t27k5iYSHh4OEajkbfffjtfvc709PR8q2/y6tatG+PHj2fevHmMGDHCsdJ/27ZtWCwWHnvssQIbcAHMmDGDUaNGsXjxYnbv3k1oaCiRkZGcOHGCoKAgXnvttULj37JlC4mJiTRo0IA+ffoU+VkjIyN54403aNCgAe3bt6d27dqcO3eOiIgI0tLSqFevHrNnz8bb27skQ1cjmYObYz13Amt8NLQt+DMpIiIiIuWjvJ8N0tLSgMJLWubdF8G+T8CVtpW3vbxfHNjvK2wPBmf35HX69GnHXl52Y8aMYeLEiXh6ehYaS0nYbDZHfBXhpx2niElII2H+bibf35W6fu4rQ+TZ+Co4e5yUk/vxbNXNbXFcifT09Hy/ypXTWLqGxtF1NJauoXF0DY2j61T0WNpsthLvzVXmZH9kZCRNmzZ1OpnP64YbbqBZs2Ylfp01L5PJxIIFC/j0009ZuXIlYWFh+Pr6MmjQIB5//PFCX+MtzLPPPkvbtm1ZtGgRO3fuBHJf+b3//vud1uuE3M13V6xYwaxZs9i4cSNr166lfv36jB49mqeeeqrITcbsk/nbbrut2Al8jx49GDVqFAcPHuTgwYNcunQJk8lEixYt6N+/P2PGjKFevXql+rw1jSm4BQDW+FPuDURERESkhqmIZ4Oq7o477uCOO+4gMzOTuLg41qxZw7x589i4cSPz58+nefPmV9x2Zmamo8xQRRja2Y+vNmYQfS6Fl+Zs5b4BgQT4uWRbuFIz5tTCD0g5uZ+4ChwDV4qOjnZ3CNWGxtI1NI6uo7F0DY2ja2gcXacix7KkezuVeSaWnp5OSEhIia6tW7cu8fFXVkfdZDIxYcIEJkyYUOy1PXv2LPbBYfjw4aXeKDcwMJDp06eX6h6AmTNnMnPmzBJd2759e1599dVS9yF/+nOT3mi3xiEiIiJS05T3s4F91Xxhq6jyrmovalV/SdrK217etuz3FbaC3tk9zhiNRpo3b86ECRNo1KgRL7zwAtOmTeOzzz4r8r7i2mzTps0V319aLdLTMRsNfP1LMr9ftPB52AUm39+F5g1rV1gMdjktmpKw7zs8U38ntEVTPHwqPoYrlZ6eTnR0NC1atCjyTRMpnsbSNTSOrqOxdA2No2toHF2nosfy+PHjJb62zMn+Bg0acPLkSTIyMoosLZOens7JkycJDAwsa5ciRTIF5a6Gyrp4nuyMVDy9i37QEhERERHXKO9nA/tGuufOnXN63n7c39+/2GR7kyZNimwr77m8G/g2btyYiIiIQr+osN9jb78khg8fzpQpU9i+fTtpaWmFlggqjsFguOJ7r1RgHSOvPdKDt778jeizl5i+IJwpD/WkY+sKfu7z9SUpsCmZibEYEqPxDe1Zsf27gI+PT4X//VVXGkvX0Di6jsbSNTSOrqFxdJ2KGsuSlvABF2zQ27NnT9LT05kxY0aR173xxhukp6dz/fXXl7VLkSJ5+vjhVSf34cIaH+3eYERERERqkPJ+NmjXrh0Ahw4dcno+IiICgNDQ0GLbatmyJWazmaSkpHwb8NrFxcWRnJyMt7c3LVu2LBDDwYMHnbZrj60kMdgZjUZq166NzWYjKSmpxPdVFvXqePPG431o37IeqRlZvPLxdrYfOFvhcXg3aw9AhjbpFRERkRqqzMn+hx9+GC8vL7799lvuuOMOli5dyv79+zl79iz79+9n6dKl3H777Xz77bcYjUbGjh3rirhFiuSo269SPiIiIiIVpryfDbp06YK/vz+xsbEcOHCgwPnVq1cDMGjQoGLbMpvN9OrVC4A1a9YU2lafPn3y1UgdMGAAAGFhYVgslnz3WCwWwsLCABg8eHBJPhKQ+2r277//jq+vLw0aNCjxfZWJn4+RV8f3omeHhmRm5fDm57v4aUfF7qHlHZL7RUzGaSX7RUREpGYqc7K/devWvPXWW5hMJiIjI5kyZQqjRo1i4MCBjBo1iilTpnD06FFMJhNvvfUWrVu3dkXcIkVy1O3Xyn4RERGRClPezwZeXl6MGTMGgOnTp5OSkuI4t2rVKjZt2kRAQAAjR450HN+/fz9Dhw5l6NChBdp7+OGHAZg3bx4nTpxwHD9x4gTz5s3Ld41dhw4duP7660lOTmbGjBnYbDYAbDYbM2bMIDk5mT59+tC2bVvHPWlpaSxatChfvHaRkZFMmjQJgNtvv73Em69VRmajJy/f352beoSQY4PZ3/7KknWRjjEqbz4huSv7LedOkmMtfC8GERERkeqqzDX7IbfGZNu2bZk/fz6bN28mMTHRcS4wMJAbb7yRhx56iFatWrmiO5Fi2Vf2W+IrdjWRiIiISE1X3s8G48aNY8eOHezatYshQ4bQvXt3EhMTCQ8Px2g08vbbb+Pn5+e4Pj09naioKKdtdevWjfHjxzNv3jxGjBjhWOm/bds2LBYLjz32GJ07dy5w34wZMxg1ahSLFy9m9+7dhIaGEhkZyYkTJwgKCuK1117Ld31WVhavv/46//rXv2jfvj2NGzcmKyuLM2fOEBERgc1mo0ePHrzwwgtXNCaViaenB0/ecx3+tc18u/4YX645QvIlC+Pu7ISHR8nrzV4JrzqBeNVtQNbF82TEHsW31bXl2p+IiIhIZeOSZD9Aq1atHLU5U1JSSE1NpVatWvkm2nfddReXLl1i3bp1rupWxCnzH8n+zPOnseVkY/DwdG9AIiIiIjVIeT4bmEwmFixYwKeffsrKlSsJCwvD19eXQYMG8fjjj9OhQ4dStffss8/Stm1bFi1axM6dOwFo3749999/P8OGDXN6T5MmTVixYgWzZs1i48aNrF27lvr16zN69Gieeuop6tevn+96X19fXn75ZXbt2sXRo0c5evQomZmZ+Pv7069fP2699VZuvfVWPDzK/OJ1pWAwGBgzvD3+tc18suIgq7ZGcTHVyjN/7YzRq3zn5d7N2pFy8TwZMRFK9ouIiEiN47Jkf15+fn75JvJ2cXFxXLx4sTy6FMnHKyAYg8kbmzWDzN/jMDVo5u6QRERERGqk8ng2MJlMTJgwgQkTJhR7bc+ePYmMjCzymuHDhzN8+PBSxRAYGMj06dNLdK2XlxcPPPAADzzwQKn6qOpu79safz8z7329l19+PcPlVCsvP9AdX29jufXp3awdKQc3a5NeERERqZGqx9IRkf9hMHhgatAc0Ca9IiIiIiLu0q9zU14Zez3eJk9+PXaef3y0leTLluJvvELe9rr9Z45hy84st35EREREKiMl+6XaMgXnJvst2qRXRERERMRtOocG8fqjvalTy8Tx2Iu8MPsXzv2eWi59Ges3wcO3DrYsK5azJ8ulDxEREZHKSsl+qbbMQS0AsGqTXhERERERt7o6JIC3n+xLUIAPZxNTeWHWL0TFub7Eq8FgwLtZOwCV8hEREZEaR8l+qbZMf2zSqzI+IiIiIiLu16SBH28/2ZcWjeqQdNnCSx9u4eCJRJf340j2n45wedsiIiIilZmS/VJtmYJCAAPZKUlkp2pjaBERERERd6tf14c3Hu9Dh1b1ScvI4pWPt7P9wFmX9uFjT/bHHsFmy3Fp2yIiIiKVmZL9Um15mHzwCggGwKLV/SIiIiIilYKfj5Hpj9xAzw4NyczK4c3Pd/HTjmiXtW9q2BKDyZucjFSsCadd1q6IiIhIZedV2htmz559xZ1lZGRc8b1StVkzs0nJyK7wfs3BLchKOoc1/hS+La+t8P5FREREqjM9G8iVMhs9efn+7sxZup+fd55i9re/kXzZwj2Dr8ZgMJSpbYOHJ95NQkmP+o2MmMOY/yjvKSIiIlLdXVGy/0onXzabrcwTN6maZn13kL2RCUxv0IxrrvatsH5NQS1IPbJDdftFREREyoGeDaQsPD09eOLua/GvbeabdUf58scjJF+2MO7OTnh4lO1nw7tZO0eyv263YS6KWERERKRyK3Wyv3v37uURh1RztX2NZGXDwtWRvHNVwwp7sHNs0hsfXSH9iYiIiNQkejaQsjIYDNw3rB3+fmY++f4Aq7ZGkZxi4dm/dcHo5XnF7XqHtAcg4/RhfbEkIiIiNUapk/1ffPFFecQh1dxfBrRi869xHIu5yKa9sdzYtVmF9GsKbg6ANfEMtuxMDJ7GCulXREREpCbQs4G4ym19W1HXz8R7X+9ly29xXE6zMvmBHvh6X9n83dy4DXh4kZ1ygazkeIwBDV0csYiIiEjlow16pULUq+NN3/a1AVj4QwQZlqwK6derTgM8vGtBThbWxDMV0qeIiIiIiJRev85NeWXs9XibPPntWCL/+GgryZctV9SWh9GMuXFrADJOR7gyTBEREZFKS8l+qTA3tK1NA39vfr+YwdINxyukT4PBgCnoj9X98VEV0qeIiIiIiFyZzqFBzHisN3VqmTgee5EXZv/Cud9Tr6gt72btAMiIOezKEEVEREQqLSX7pcIYvQz8/earAVi24RgJSWkV0q8pqAWguv0iIiIiIlXBVc0CePvJvgTV8+VsYiovzPqFqLiLpW7Hp9kfdfuV7BcREZEaQsl+qVA9OwTRoVV9rFk5fL6qYl6ntdfttyScqpD+RERERESkbJo08OPtJ/rQolEdki5beOnDLRw4kViqNszN2gIGMi+cJetyUvkEKiIiIlKJKNkvFcpgMDDujo4YDLD51zNERP1e7n2ag1sCuSv7bTZbufcnIiIiIiJlV7+uD2883ocOreqTlpHF1I+3s/1AXInv9/SuhSm4BQBnv3yF9FMHyylSERERkcpByX6pcK2b+nNTj9zV9p+sOEBOTvkm4I0NmoHBg5z0y2RfvlCufYmIiIiIiOv4+RiZ/sgNXN+xIZlZObz5+W5+2hFd4vvrD3kIz1r+ZF6I4+yXU0n474dkp10uv4BFRERE3EjJfnGLvw9ri4/Zi+OxFwkLjynXvjy8TBjrNwbAmhBdrn2JiIiIiIhrmY2evDSmO0N6NifHBrO//Y0layNL9NauT0h7mk74gDpdbgYMpOwPI2beU1zev1Fv/YqIiEi1o2S/uEVAbW9G35S7We+i1RGkZWSWa3/213ct8arbLyIiIiJS1Xh6evDE3dcyanDuM8SXPx5h3vKSvSXs6V2LwGGP0Pj+1zE2CCEn7RLn/zuLs/+ZTuaFkpcFEhEREanslOwXt7mtbysa1a9F0mUL34UdK9e+zEEtAK3sFxERERGpqgwGA38f1o5H7uyEwQA/bI3iX1+Gk5mVXaL7vZuG0nTsv6g34F4MXiYyog8Q+/GzJG35Dlt2+S4+EhEREakISvaL2xi9PHno9g4ArNh0gnO/p5ZbX/aV/db46HLrQ0REREREyt9tfVvx/L3d8PI0sOW3OKbP31HiN4UNnl7497qLpo+8h0+ra7FlZ5K06Wti508iI+ZwOUcuIiIiUr6U7Be36tmhIddeFUhmVg6frTpUbv2Y/ljZn3nhLDmZlnLrR0REREREyl/fzk2Y+vD1+Jg9+e1YIv/4aCvJl0s+zzcGNKTh6H8SdMfTeNaqS2ZiLHGLpnD+h4/ITtcGviIiIlI1KdkvbmUwGHj4jk54GGDb/rMcOJFYLv14+vnj4VsHbDlYz5fvhsAiIiIiIlL+rrs6iNcf7U1dPxPHYy/ywuxfSvW2sMFgwK9jX5qOf5/a1w0G4PKv64idN5GUg79oA18RERGpcpTsF7dr0agON9/QAoBPVhwguwSbbJWWwWDArFI+IiIiIiLVylXNAnj7ib4E1fPlbGIqL8z6hai4i6Vqw9OnNg1ueZRG9/0fxsCmZKdeJOH7mZxb/H9kJp0rp8hFREREXE/JfqkU7r25LbV8jETFXWLdrlPl0odJm/SKiIiIiFQ7jRv48fYTfWjRqA5Jly289OGWK3pj2CekPU0f/jcB/f+KwdNI+snfiP34GZK3LcOWnVUOkYuIiIi4lpL9UinU9TPz1yGhAHyx5jCp6SXbYKs0TMHNAa3sFxERERGpburX9eGNx/vQoVV90jKymPrxdrYfiCt1OwZPIwF9/kLTR97Fu0UnbFlWLmz4itgFz5MRG1kOkYuIiIi4jpL9Umnc0rslTRr4cTHFyuK1rp9I/7my/5Tqb4qIiIiIVDN+PkZefeQGbujUiMysHN78fDc/7Yi+oraM9RrT6G9TaXD7k3j41iHz/GniPv8H59fMIzuj5PsCiIiIiFQkJful0vDy9ODhOzoCsGrLSeLOp7i0fVNgE/DwIseSRtbF8y5tW0RERERE3M9k9OTFMd25+frm5Nhg9re/sWh1BIejLhB3PoWU9MwSL/wxGAzU7nQjzcZ/gN81AwEbl/f+TOzcp0iJ2KoFRCIiIlLpeLk7AJG8urULpmvbIPYcSWDBykP8c2xPl7Vt8DRiCmyKNSEaa3w0Rv8gl7UtIiIiIiKVg6eHgcf/ci3+tc0sWXuUb9cf49v1xxznvTwN1Kllok4tM3X9TNStZaaOn4m6fmbq1jJR549f6/qZqVPLRG1fP4Jue5za1/QncfU8Mi/EkbD8XXz2byRw6Dg9V4iIiEilUWWS/Varlc8++4yVK1cSExODr68v3bp149FHH6VDhw6lbm/16tV88cUXREbmlosJDQ1lzJgxDBs2rNB7EhMTmT17Nhs3biQxMZHAwEBuvPFGnnzySerXr1/g+mXLlvHyyy8X2l7Lli358ccfnZ5LSUlh7ty5/PTTT5w7d466detyww038NRTT9GsWbNSftqqZeztHfn16AZ2RZxjX2QCnUNdN3k2BbdwJPtrhfZwWbsiIiIiIlJ5GAwG/j60HQ3r+fLj9lMkp1i4lGoh3ZJNVraNC5csXLhkKVFbHgao/ceXAwG1RtKzzj7aX95O+om9nProKS5fPRyPjkOoW8c398uCWiY8PfUSvYiIiFS8KpHst1qtjB07ll27dlG/fn0GDBjA+fPnWbt2LRs3buSjjz6ib9++JW7vvffeY+7cuZhMJnr37g3A1q1befrppzl69CgTJ04scM+ZM2cYNWoU58+fp1WrVgwePJjIyEi+/vprwsLCWLJkCY0aNXLaX9u2bWnXrl2B4w0aNHB6/aVLl/jrX//K8ePHadKkCYMGDeL06dOsXLmSsLAwvvzyS6ftVRfNgmtzS++WrPzlJPNXHuSDZ2902WTZFNwcDoAlIdol7YmIiIiISOU1uEdzBvdo7vizJTObSylWLqZaHL9eTLFy6Y9fL6ZYuJSa++vFVCup6Znk2Pjj3P+3d+fxUVb3/sA/z+wzmUkmCyEbkAUSSAibLIqArC7Uqi21YK2471uvXuv92QW0Vlu9t95bW5QKSrGtdJEqUhCBECxrQNZACBCSkIXsmWQy+/L8/pglM2QhIZOVz/v1ymtmnuXMmUNITr7fs9hRBuAEUhEricb3ww5gjLwaEWc+R3n+1/iD6QZcdMUA8OwfEKENmD3gnSXQ3uwBucTdT61DREREQ82gCPZ/8MEHyMvLQ3Z2NtatWwetVgsA2Lx5M1588UW89NJL2LFjh/94Zw4fPoz3338f4eHh2LBhA9LS0gAARUVFWLZsGVatWoU5c+Zg8uTJQfe98sorqK2txbJly7By5UoIggBRFLFy5Ups2LABP/3pT7F27dp233PhwoV49tlnu/x5f/WrX+H8+fOYN28efvvb30KhUAAAVq9ejd/85jf4z//8T2zatAlSqbTLZQ4299ycgV3flONilRFf7i/Bt2alhqRcpW+T3uqSkJRHRERERESDh1IuxbBINYZFqrt0vdPl9gf/A5MDTSYbiowT0Fh7GBMMu5Aka8R/hG/BHlsGNpsno8UCtFgcqKjt2ma+aoUEM8a7sXhmGsYmR0IQhJ58TCIiIrpGDfhgv9PpxPr16wEAK1asCAro33777di0aRN2796NTz/9FPfff/8Vy1uzZg0A4IknnvAH+gEgLS0Njz/+ON5++22sWbMGv//97/3nTp06hQMHDkCv1+OVV17xd7wEQcArr7yCL7/8Env27MGZM2cwduzYHn3e+vp6fPbZZ5DJZHjttdf8gX4AeOyxx7B582acPXsWu3btwsKFC3v0XgOZVqPAvbeOxfsbT+DP285gzpQk6DSKK994BYrhyQAAp6EabpsZEqWmx2USEREREdHQJJNKEBWuQlS4qoMrJsFluhv1O/+IlpO7MUdViJuiayBc/wMYY7LRbHK0zh7wzhYInD3QbLLD5RZhsbuRe6QSuUcqkRSrxaLpozB/6gjodco+/bxEREQ0uA34YP+RI0dgMBiQlJSE7OzsNucXL16M3bt3Y+fOnVcM9ttsNuzbtw8A2l2bf/HixXj77bexZ88e2O12f6B9165dAID58+dDqQzubCmVSsyfPx8bN27Ejh07ehzs//rrr+FyuTBjxgzExgavVS8IAm655RacPXsWO3fuHNLBfgC49fpR2LqvGKVVRnzyVSEeu6vtv393STXhkOqi4DI2wF5zEaoRPfv3IiIiIiKia5s0LAKxdzwHXfZc1G5dDWdjFcSdv8ewMVMx7pZHIItI6PBeURRR29CMf+edQnG9HAdOVaO8pgUfbT6F9VtOY3pWHBZNH4kpGbHcB4CIiIiuaMD3FgoKCgCgw014MzMzAcC/0W5niouLYbPZEBkZiYSEth2uhIQE6PV6WK1WFBcXt6nD+PHj2y3XV7eO6nDq1Cm89dZb+NnPfobf/OY32LVrF1wuV7vXXunzXum9hhKpVIJH7vS0+b/2FqOs2hiSchXepXxsXMqHiIiIiIhCRJ0yAUmPvQP9jd8DJDKYzx1G2eofwXDwC4ju9v/+EwQBWrUcybFKPPXdLKxfcQueuXsi0kfq4XKL2H/yEl5bexAP/3I7Pt5agKr6ri0LRERERNemAT+yv7KyEgAQFxfX7nnfcYPBAJPJhLCwsA7Lqqio6LQs3zmDwYDKykpkZGQE1WH48OGd1sFX/uV27drlnx3gk5ycjP/7v/9rMxOgq5+3o/caaialx2JGVhwOnqrCmk35ePXRG3pcpnJ4MixFR2DnJr1ERERERBRCEpkCUXPvgTZrFmq3vA9b+Rk07FiHlvyvMWzxE1DGp3V6v0Ylxy3XJ+OW65NReqkZX+WVYtfhctQ3WfG3HWfxtx1nMWF0DBbNGIUbsuOhlA/dfdyIiIio+wZ8sN9sNgMA1Or2N1DSaFrXXL9SsP9KZQWWZzK1jpjw3Rf4Xle6BwCGDRuGZ555BvPnz8eIESPgdDpRUFCAd955BydPnsQDDzyAzz77LCiwf7Xv1V2iKPrfqy9YLJagx+64Z1EqDp+pxpEzNdh7rBST04f1qC6iPh4AYL10oU/bIFR60pbUiu0YGmzH0GFbhgbbMTTYjqHT120piiI39iQaABTDRiBh+S9gPJaDhpz1sFddQMVH/4XwaYsRNWcZJMorbxA8Kj4cj96ZjQe+lYkD+VXYfrAUx87V4sT5Opw4X4cwtRxzpyRh0fSRSEvS9/6HIiIiogFvwAf7B7PZs2dj9uzZQcduvPFGzJgxA8uXL8c333yD1atXY8WKFX1eN4fD4V8yqC+VlJRc1X0z0sOwr6AFH3yej6cWD4dUcvV/xEpaHIgAYK+9iILTpwBhwK9m1a6rbUsKxnYMDbZj6LAtQ4PtGBpsx9Dpy7b07TtFRP1LECQIn7wQmjFTPaP7T/0bzXmbYTpzADG3PIKw9GldKkcuk2L2pETMnpSImgYzdh66iO2HLqK20YJ/7S3Gv/YWIzUxAjdPH4mbpiRBq+HPACIiomvVgA/2+0aydzQaKnBkdmej+rtSVmB5gWX57utoFHh793RGJpPh0UcfxTfffIPdu3e3W8dQvVdH5HI5Ro8e3aMyusNisaCkpATJycmdzqzoyKgUB/L/dy/qmx0obQrDt2aOuuq6iG43qg+sg+C0Y0x8FGSR8VddVn/oaVuSB9sxNNiOocO2DA22Y2iwHUOnr9vy/Pnzvf4eRNQ9Mq0esXf9CNrsm1D35R/gNNSg+u+/giZjBmJufhiQdf1nQ2yUBvfcMhbfX5SB4+dqsf1gKQ7kV+FCRRPe/+dJfPjFKcyckIBFM0ZifGoMJD0YJEVERESDz4AP9vs20q2qqmr3vO+4Xq+/YgA8MTGx07ICzwVu4JuQkIDTp0+jurq603t85XdFcnIyAKCmpiboeFc/b3feqz2CIHS4VFBvUqvVV/W+Gg2wfHEmfvf34/g0txg3X5+KCK3yquuhHDYStkvnIWmuhiax83UzB6qrbUsKxnYMDbZj6LAtQ4PtGBpsx9Dpq7bkEj5EA5cmbTKSHvtfGPb8HYYDm2AuPIiy4hPQzvweoOze33dSiYApGbGYkhGLphYbdh8px1cHS1FaZUTukXLkHilHXLQGC6ePxMJpIxEdwcQtERHRtWDAr18ybtw4AMCpU6faPX/69GkA8G+m25mUlBQolUo0Njb6N8INVFlZCYPBAJVKhZSUlDZ1yM/Pb7dcX926Ugef5uZmAG3X5r/S572a9xoqFk4fhZSEcJgsDvx525kelaUYngwAsFeX9LxiREREREREXSCRKxE174dIevhtKBMzINotMOZ+DN2BP8JadASi29XtMiO0StwxJw3v/uc8/M/zc3DL9aOgVspQVW/Gn7aewUO/+AqvrjmA/Scr4XS5e+FTERER0UAx4IP9U6ZMgV6vR3l5OU6ePNnm/JYtWwAACxYsuGJZSqUSM2fOBABs3bq1w7JmzZoVtNbpvHnzAAA5OTmw2WxB99hsNuTk5AAAFi5c2JWPBAD48ssvAQDjx48POj5nzhxIpVJ88803bUb9i6KIbdu2Aeja5x1qpBIBj96VDQDYtr8ExZVNV12WItazDBCD/URERERE1NcUsaOQcP/riLn1MQhKDWRNl2DY9A4u/v4pNP77b3A213e7TEEQkD4yEs/cPQnrV9yCHy2bjMyUKLhF4HBBNd5YdwgPvvYVPvziFMqqjb3wqYiIiKi/Dfhgv0wmw/LlywEAr776KlpaWvznNm/ejN27dyMyMhJLlizxHz9x4gRuvfVW3HrrrW3Ke+SRRwAAq1evRlFRkf94UVERVq9eHXSNT1ZWFq6//noYDAa88cYbEEURgCf4/sYbb8BgMGDWrFkYO3as/x6LxYK1a9eisbExqCy3240///nP+OMf/wgAuO+++4LOR0dH46677oLT6cTPf/5z2O12/7kPPvgAZ8+eRVpamj8Bca3JTovBzAnxcIvAms/z/f8W3eUb2W+rKQ1h7YiIiIiIiLpGECQIv+4WxCz/NazJMyCotHA116Hx67/i4u+eQNXffwVz0VGIYvdH46uUMiyYNhK/fmY23nt5PpbMGw29TglDiw3/zD2Pp97KwY/f/Td25JXCYnP2wqcjIiKi/jDg1+wHgEcffRQHDhxAXl4ebr75ZkybNg11dXU4fPgw5HI53nrrLWi1Wv/1FosFxcXF7ZY1depUPP7441i9ejW+853v+Ef679u3DzabDU899RQmT57c5r433ngDS5cuxYYNG3Do0CFkZGSgsLAQRUVFiI2Nxeuvvx50vcPhwFtvvYX//d//xfjx4xEfHw+z2YzCwkJUVlZCEAQ8++yz7Qbt/+u//gvHjx/Hrl27cOutt2LixIkoLS3FqVOnEBYWhv/5n/+BVCrtSZMOag/enoVDp6tx4nwdDuRX4Ybs7m+wq/SO7Hc118FlMUKq1oW6mkRERERERFck1ephGbsAo779OMSyE2g+8hWsF0/DfPYQzGcPQRYRC93khdBNnA+ZNrLb5SfF6vDA7Vn44W3jcLigGl8dLMU3BdUoKGlAQUkD/vDZScyelIRFM0YiY2Qk9/4gIiIaxAZFsF+hUGDt2rX48MMPsWnTJuTk5ECj0WDBggV4+umnkZWV1a3yXnjhBYwdOxbr16/HwYMHAQCZmZm4//77cdttt7V7T2JiIj777DO8++67yM3Nxfbt2xEdHY1ly5bhueeeQ3R0dND1KpUKTz75JI4fP46SkhKcPn0abrcbw4YNw+233457770XU6ZMafe9wsPD8de//hXvvfcetm3bhu3btyMiIgLf/va38dxzz2HkyJHd+rxDTVx0GO66KQ1/33kOH31xClPHxUIu617yQ6IKgywiFs6mGthrSqEeNf7KNxEREREREfUSQSZHWNZsaLNmw15Xjuaj29FyYhecTTVozP0LGr/+K8LSp0M3ZRHUydkQhO5N1JdJJbh+fDyuHx+P+iYLcg6XYfvBi7hUb8JXB0vx1cFSjIzTYdH0UZh3XRIitMpe+qRERETUWwZFsB/wBPyfeOIJPPHEE1e8dsaMGSgsLOz0msWLF2Px4sXdqkNMTAxeffXVLl2rUCjwox/9qFvlB9JqtXjppZfw0ksvXXUZQ9ndC9Kx85CnY7rp6wtYMn9Mt8tQDB/lCfZXlzDYT0REREREA4YiJgkxix5E1NwfwFSwH81Hv4KtvBCmM/thOrMfssg4hE9eBN2EeZCGRXS7/OgINe5ekI7vzR+D/Av1+OpgKfYdr8TFKiPWbsrHH/91CjOy4rFoxkhMSo+FVMLR/kRERIPBoAn2EwVSK2VYvjgT/7vhKP664yzmTxuBSJ2qW2UoYpNhPnsINm7SS0REREREA5BEroRuwlzoJsyFvaYUzUe+gjH/azgbq9CQ8zEadn+CsIwZCJ9yC1QjM7u9BI8gCMhOi0F2Wgwe/84EfH20HNsPluJ8eRP2nqjE3hOViNGrsXDaSCycPhLD9Gq43G44XSJcbhEulxtOlxsu72uny+1/dPteu1qPu1xuOP33iXD7yvIfF1vLDyir8zJFON1uuFxuOBwuOB0WjDx3GrFROkSFKxEVrvJ/hWuVTFwQEdGQxmA/DVrzrhuBf+0txrkyAz7eUoDnlrbda6EzSu8mvXYG+4mIiIiIaIBTxI5CzK2PImr+fWg5vQfGI9thu3QeptN7YTq9F/LoROgmL4Juwtyr2pNMq5Zj8cwULJ6ZggsVTdh+sBS5R8pRZ7Bgw/ZCbNje+ez5geRsRUW7xyUSAZE6JSLDVYj2JgAivY/RESpE6pSIilAhIkwJCZMCREQ0CDHYT4OWRCLg0Tuz8ePf/Rs7Dl3Et25MQVqSvsv3K3zB/royiC4nBCn/OxARERER0cAmUagQPmkhwicthK3qApqPbEfLqa/hqK9Aw451aNz1Z4RlzkT45JuhTMq4qg13UxMj8Ph3J+DBb2dh/8lL2J5XiuPn6tqvjwBIpRLIpAIkEs+jNOBRKhUgk3oepRLfuYDjEsHzXOK75vJ7gsuUSITL7veUIZMKcDodOF9cBlVYFIwWFxqarf6vphYb3G4R9U1W1DdZcb6Tzy+VCNDrgmcFREWoEKnzJAU8SQIlkwJERDTgMLpJg9q4lCjMmZyIr49W4IPP8/HmUzd2uTMr08dCUKgh2i1w1FdCEXttb3xMRERERESDizIuFcMWP47oBcvRcurfaD7yFezVxWg5uRstJ3dDPmwkwicvgjb7JkhVYd0uXyGX4qYpSbhpShJaLA64XG5PYN8boJdKJAMq2G02mxEpa8S4cWnQaDRB51wuNwwtNtQ3WdHoTQDUN1vR2GxrkxRwBSQFOiMNmCngSwgEJQh8yweFKQZUOxER0dDFYD8Neg98KwsH8qtw6kI99p6oxKyJiV26TxAkUMSOgq38DGw1JQz2ExERERHRoCRRqhE+5WboJi+CrfI8jEe/QsupPXDUXkT9V2vRkPMxwjJnIXzKIigTxlzVaH+tWt4LNe87UqkE0RFqREeoO73O6XKjyZsUaGj2JAaCkgJNVjQYW5MCdU1W1HUxKeCbHZAwTIuxoyKRMSryivUhIiLqDgb7adAbFqnGknmj8clXhfjoi1OYlhkHpVzapXuVw5NhKz/jWbd//JzerSgREREREVEvEgQBqsQxUCWOQdTCB9Bycjeaj26Ho/YiWk7koOVEDhTDUzyj/cfPgUTJQPPlZN1IChiMrbMCfEmBhiYrGo22LicFhkWqMXZUlD/4n5qoh1wm6a2PNySIoohagwVGkx0pCRGcNUFEFIDBfhoSvjtvNLYfLEVNowWf7T6PpQszunSfInYUAMBeU9KLtSMiIiIiIupbUlUYIqYtRvjU22CrKETzka9gOr0P9upi1H35B9TnrIc2a7Znbf/41P6u7qAjk0oQo1cjRt+9pEB9kxUll5pRWNqA0kvNqG20oLaxAv8+5tlUWC6TYHSSHhmjIj1JgORre/S/0+VGeU0LLlQ0obiyCRcqPF8tFgcAIEavxrzrkjDvuhEYMbz7G1MTEQ01DPbTkKBSyHD/7Vn4nz9/g3/sPIeF00Z2qUPk36S3urSXa0hERERERNT3BEGAKmksVElj4Vr0oGe0/5FtcNRXwnh0O4xHt0MZnwbdlJuhzZwFiULV31UeUjpLCpitDpwrM+BMaQMKSxtxpqQRRrMdBSUNKChpAFAEwBPQDgz+pyVGQC7r2mz2wcRsdaC4srk1sF/ZhNJLRjhd7jbXSiUC5DIJ6gwW/H3nOfx95zmkj9Rj/nUjMHtyEsLDFP3wCYiI+h+D/TRk3DQ5Ef/acwFnShuxfksB/uOeKVe8RzFsJAABLpMBzhYDZFp9r9eTiIiIiHrGbrfjo48+wqZNm1BWVgaNRoOpU6fiySefRFZWVrfL27JlCz7++GMUFhYCADIyMrB8+XLcdtttHd5TV1eH3/3ud8jNzUVdXR1iYmIwd+5cPPvss4iOjm5zfX5+PnJzc7F3716cP3/es5FoZCSmTJmCBx54AFOmXLnvStRTUrUOEdNvR/i0b8F68TSaj34FU8EB2C4Vwfav91C/44/QjZ8D3eRFUHoHRlHv0ajkmDhmGCaOGQbAszzNpToTzpQ24ExpIwpLGlFyqQl1BgvqDBbsPV4JwJNASEuK8Af/M0ZGYVjk4Bn9L4oiGpqtKKpoQnGFJ6hfXNGMS/Wmdq9XK2VITYxASkI40hIjkJIQgZFxOogikHe6CjmHy/DNmRqcvWjA2YsGrNmUj6njhmP+1JGYOm44l0UiomsKg/00ZAiCgEfvysaL//c1cg6X4Vs3piB9ZGSn90gUKsij4uFoqIS9pgQy7aS+qSwRERERXRW73Y6HH34YeXl5iI6Oxrx581BbW4vt27cjNzcX7733HmbPnt3l8t555x28//77UCgUuPHGGwEAe/fuxY9+9COcPXsWzz//fJt7KioqsHTpUtTW1iI1NRULFy5EYWEhPvnkE+Tk5OCvf/0r4uPj/dc7nU4sWbIEAKDT6TBx4kTodDqcP38e27Ztw/bt2/HKK6/gvvvu62HrEHWNIAhQj8qCelQWXIuaYDyxC81Ht8PZWIXmb75E8zdfQpmYgfApixA2biYkcmV/V/maIAgCEoZpkTBMi/lTRwIALDYnzntH/58pacSZ0gY0m+woLG1EYWkjPv/ac290hCoo+J+WFAFFF/ey600ulxvltS3eoH6zP7jfbLK3e31MhAqpiXqkJIYjNSECqYkRiI3UdLgu/6yJiZg1MREGow27j5Yj53AZLlQ04UB+FQ7kV0GnUWDO5ETMnzoCY0bor2pzaiKiwYTBfhpS0kdGYv7UEcg5XIY/fHYSbz87+4q/zBXDR3mC/dUl0KRO6puKEhEREdFV+eCDD5CXl4fs7GysW7cOWq0WALB582a8+OKLeOmll7Bjxw7/8c4cPnwY77//PsLDw7FhwwakpaUBAIqKirBs2TKsWrUKc+bMweTJk4Pue+WVV1BbW4tly5Zh5cqVEAQBoihi5cqV2LBhA376059i7dq1QfeMHz8ejz/+OObNmwe5XO4//sknn2DlypV48803MXPmTH8diPqKNCwC+hvuQsT1d8BSchLGI9thOpsHW0UhaisKUb/9I2iz5yJ8ys1QxCT1d3WvOWqlDNmjY5A9OgaAZ1R8Vb3ZG/xvQOHFRhRXNqO+yYq9Jyqx90TA6P/ECGQkR2LsyChkJEdimF7dq8Fui82Jkspmz0h97/r6pZeaYXe2XYZHIhEwIlaLlMQIT1A/IQLJCeGI0F5dYkmvU+LOOWm4c04aSi41I+dwGXK/KUOj0YZ/7S3Gv/YWIylWi/lTR2DulBGDaiYEEVF3MNhPQ87yxeOw70QlCksbsftIOeZeN6LT6xWxyTAV7Ie9huv2ExEREQ1kTqcT69evBwCsWLEiKKB/++23Y9OmTdi9ezc+/fRT3H///Vcsb82aNQCAJ554IijInpaWhscffxxvv/021qxZg9///vf+c6dOncKBAweg1+vxyiuv+ANngiDglVdewZdffok9e/bgzJkzGDt2LABAJpPh008/bbcO99xzD3bs2IE9e/Zg69ateOaZZ7rZKkShIQgSaFImQpMyEc6WRhiP74Lx6HY4m2rQfOhfaD70L0jD9JDHJEERkwR5dCLkMYlQRCdBqoviiOk+IggC4mPCEB8Thnnev3WtNifOlRs8wX/viH9Diw2FFxtReLERm3ABABAVrvKP/B+bHInRSfqrGv0viiIajbagTXOLK5tQWWeCKLa9Xq2UIjk+wrsUTwRSE8MxMi4cyl6aeZAcH46Hvp2F+xePw/Fzdcg5XIb9+ZdQXtOC9VsK8PHWAkwYHYP5U0fghuwEqJUMjRHR0MGfaDTkREeo8b0FY/CnrWew7l+ncf34eKg6+eXt26TXVl3SNxUkIiIioqty5MgRGAwGJCUlITs7u835xYsXY/fu3di5c+cVg/02mw379u0DgHbX5l+8eDHefvtt7NmzB3a7HQqFZ7PHXbt2AQDmz58PpTJ4BKpSqcT8+fOxceNG7Nixwx/sv5KMjAzs2bMHNTU1XbqeqLfJtJGIvPG70M+8C5YLx9F85CuYzx2Gy2SAy2SAtTQ/6HpBqYHCH/xPhDw6CfKYJMgjh0OQ9P9SMkOdSilDdloMstNaR/9XN5j9wf8zpQ24UNmMhmYr9p24hH0nLgEAZFIBqYkRyBgVhbHeDYAvH/HucouorG0JCOp7NtA1tNjarUtUuMq/vn5qoifAHxcV1uEyPL1JKpVgythYTBkbC7PVgb3HK5HzTRnyi+px/Fwdjp+rw3ufnsDMCQmYf90IjB8dA2k/1JOIKJQY7Kch6a6bRuOrgxdR02DGp7vO495bO/5Dy7fxlKO+AqLTAUEm7/BaIiIiIuo/BQUFANDhJryZmZkA4N9otzPFxcWw2WyIjIxEQkJCm/MJCQnQ6/UwGAwoLi5GRkZGUB3Gjx/fbrlZWVnYuHFjl+rgc/HiRQBATExMl+8h6guCIIEmbTI0aZPhtplhr6uAo74c9rpyOOoq4KivgKOxCqLNDFvlOdgqzwUXIJVBHhXvTwAoYpIgj0mEPDqR+wD0IkEQEBcdhrjoMP9Md6vdiaLyJpwpafBvAGww2vyb2n7xb8+9UeFKpCVGwO0w4U9f5+FidQvsDleb95AIQGKs1jNSP6F11L5eNzD/XTUqORbNGIVFM0ahqt6E3COe9f0v1ZmQc7gMOYfLEBOhwrypIzDvuhEYMVzX31UmIroqDPbTkKSUS/HQ7Vn41fpD2LjrHBbNGInYSE2710p10ZCotHBbW2CvK4MyLrWPa0tEREREXVFZ6VmLOi4urt3zvuMGgwEmkwlhYWEdllVRUdFpWb5zBoMBlZWV/mC/rw7Dhw/vtA6+8q+kuLgYubm5AIAFCxZ06R6i/iBRaqBKHANV4pig46LTAUfjJU8ioK4cjvoKTzKgvgKi0w5HbRkctWVtypNFDPMmABKDlgaSasL76iNdU1QKGbJSo5GVGg3AM/q/ptHiD/4XljbiQkUTGpptaGgOnmWkVEiRHO8dqe8N7I+M00GlGJwhpbjoMCxblIGlC9NRWNqInYfL8O9jFahrsuLvO8/h7zvPYcwIPRZMHYHZk5MQHqbo7yoTEXXZ4PzJTNQFMyfEIys1Gqcu1OOPm0/jpfumtnudIAhQDB8Fa+kp2KtLGOwnIiIiGqDMZjMAQK1uf2NFjaZ1cMeVgv1XKiuwPJPJ1Oa+wPe60j0dsdvtePnll+FwOHD77bd3OGOhq0RR9NevL1gslqBHujpDoh3DYiAJi4Fy1ET4xnWLohuu5nq4GirhbKyEs74SzgbPl2htgbOpFs6mWlguHA0qSlDrIItKaPMl0UVBECSdVmNItGUf0qmAaWOjMG1sFADA7nDhQmUzTl2ow6Xqeowfk4D0kdGIi9a0WYbH7bTD7LT3R7VDamSsCg8uHoN7F6XiSGEddh+rxLFz9ThXZsC5MgM+2JSPKekxmDMpAVPSYyCTdf49eDl+T4YG2zE02I6h09dtKYpil/fGYbCfhixBEPDonePxH/+7G18fq8C3ZqUgMyW63WsVscmwlp6CraYUnKxHRERERH1hxYoVOH78OJKTk7FixYoel+dwOPzLDPWlkpKSPn/PoWjotqMCUCcDSclAkueIYDdB2lIPiake0pY6SE31kLTUQWpthmgxwlFRCEdF8FJYolQOV1g0XGHRcGuj4QqLgUsbDbcmCrhsX4Ch25Z9IzMOyIyLAGBCU50JTXX9XaO+ESEF7rhOhflZccgvMeNYsRlVjQ4cKqjFoYJaqBUSjB+lxsSUMCRGy7u1KTW/J0OD7RgabMfQ6cu29O0fdSUM9tOQlpakx6Lpo/DVwVJ88NlJ/M/zN7W7MZBv3X57dXEf15CIiIiIuso3ar6jUVSBo9o7G9XflbICywssy3dfRyPo27unPW+//TY2btyIuLg4fPjhhwgP7/nSJXK5HKNHj+5xOV1lsVhQUlKC5OTkTmdIUOfYjq3cDitcDVVwNlT4ZwE4GyrhMlRDcDkga66CrLkq+CZBAqk+FrKoBCA8FrWKWIyYPOuab8ue4PckMG2y5/FilRFfH7+EPccvodFox6FzJhw6Z0JCTBjmTIrH7EnxiIlQdVgO2zI02I6hwXYMnb5uy/Pnz3f5Wgb7acj74W1j8e9jFThf3oScw2VYOH1km2sU/mB/abemxhARERFR3/FtpFtVVdXued9xvV5/xWB7YmJip2UFngvcwDchIQGnT59GdXV1p/f4ym/P+++/jzVr1iAqKgoffvhhp9d2hyAIHS4v1JvUanW/vO9Qw3YEAA0QEQWkZAYdFV1OOAzVcNSVezcJ9uwPYK8vh2i3wtVYBVej5/9eOABrzQnoFi6HInZUP3yGoYPfk8DYVA3Gpg7Hw3dOxPGztcg5XIb9+ZdQWWfChh3n8ded55GdFoP5U0dg5oQEqJXth9nYlqHBdgwNtmPo9FVbdidOyWA/DXmROhWWLUrHR5tPY/2W05g5IR4alTzoGkXMCEAihdvaApexHrLwmH6qLRERERF1ZNy4cQCAU6dOtXv+9OnTAODfTLczKSkpUCqVaGxsRGVlZVBAH/BsxGswGKBSqZCSkhJUhx07diA/P7/dcn1166gOH3/8Md555x3odDqsXbsWaWlpV6wr0bVOkMqgiE6EIjoRYQH/tURRhMvY4N8Q2HSxAJbC/bAVH0P5B8ehzZ6DyDlLIde3v6E2UVdJJQKmjI3FlLGxMFsd2Hu8EjnflCG/qB4nztfhxPk6vLfxBGZmx2P+1BHIHj0M0nZWFSAi6m3d21mEaJD69uxUxEeHodFowz9yzrU5L8jkkEd7RlQZj++C6HL2dRWJiIiI6AqmTJkCvV6P8vJynDx5ss35LVu2AAAWLFhwxbKUSiVmzpwJANi6dWuHZc2aNStojdR58+YBAHJycmCz2YLusdlsyMnJAQAsXLiwTZn//Oc/8ctf/hIajQZ/+MMfkJmZ2eYaIuo6QRAgC4+GJnUiIqYthv62J9E86zGo0mcAENFycjfK3nsOddvWwtli6O/q0hChUcmxaMYovPnULKz5ySL88NaxSIgJg83uwq5vyvGz1fvxyOtf4Y//Oo2L1S2wO90QRbG/q01E1wiO7KdrglwmxUN3ZOGXH+Xhs91FuHnGKMRFB0/tVo0YC0ftRTR+vQHG4zuhv+E70E2cD0Em76BUIiIiIupLMpkMy5cvx29/+1u8+uqrWLduHbRaLQBg8+bN2L17NyIjI7FkyRL/PSdOnMCPf/xjAMCXX34ZVN4jjzyCXbt2YfXq1Zg7d65/lH1RURFWr17tvyZQVlYWrr/+ehw4cABvvPEGVq5cCUEQIIoi3njjDRgMBsyaNQtjx44Nuu+rr77CT37yEygUCqxatQpTpkwJbeMQEQDAHRYN/beegfTG76Ih9y+wFB9H8+EtMB7PQcSMb0N//R2QKLl8BYXG8CgNli7KwPcXpqOwtBE5h8vw9bEK1DVZ8Y+cc/7BhsLfK6FSyKBWSqFSyKBSyqD2fqkU0tbn7bxWK3zPpd7rZVCrZFDIJFyCmIjaYLCfrhkzsuIwcUwMjp+rw0ebT+H/3T896Hz0wgcgj4xD04FNcDbVou7LP6Bxzz+gv+FO6CYvgkSu7KeaExEREZHPo48+igMHDiAvLw8333wzpk2bhrq6Ohw+fBhyuRxvvfWWPwEAeDZQKy4ubresqVOn4vHHH8fq1avxne98xz/Sf9++fbDZbHjqqacwefLkNve98cYbWLp0KTZs2IBDhw4hIyMDhYWFKCoqQmxsLF5//fWg6+vr6/HCCy/A5XIhOTkZn3/+OT7//PM25aampuKxxx7rSfMQkZcyYTTif/BzWIpPoGHXn2G7dB6GPX9H8zdfQn/jEoRfdwskMsWVCyLqAkEQMDY5CmOTo/DIneNx6HQ1cg6X4ZvCarhcIkQRsNicsNicAGxXLK8rJAK8yQFf4kDqf63xJQ6U0oBkQWuyISiZoJQhJkIFqZSLfxANBQz20zVDEAQ8cmc2nv+fXdh34hJOFtUhO611bX6JXAn99Xci/LpbYTy2E4b9/4TL2ID67R/BsG8jImbcgfApt0Ci5I7lRERERP1FoVBg7dq1+PDDD7Fp0ybk5ORAo9FgwYIFePrpp5GVldWt8l544QWMHTsW69evx8GDBwEAmZmZuP/++3Hbbbe1e09iYiI+++wzvPvuu8jNzcX27dsRHR2NZcuW4bnnnkN0dHTQ9RaLBQ6HA4Bn1kBRUVG75U6fPp3BfqIQU6dMQEJyNkyFB9CY+xc46ivRsGMdmvM2I3LOUmizb4IgkfZ3NWkIUciluHFiAm6cmICWFhNO5J9GcspoQCqH1ebyB/2tdiesNifMNiesNhesdmfrOZsLFu/5wNcWmxM2uwsA4BYBs9UJs7XnyxArFVKkJkRgzAg9Ro/QY8wIPRJitJBw3wGiQYfBfrqmJMeH45YbkrF1Xwk++Owk3vmPuW02zZHIlYiYthjhkxfBeGIXDPv+CWdTDRpyPoZh/z8RMe12hE9bDKkqrP03ISIiIqJepVAo8MQTT+CJJ5644rUzZsxAYWFhp9csXrwYixcv7lYdYmJi8Oqrr3bp2qSkpCvWgYh6jyAI0I69AWHp02E8sQuNX/8VzuY61G7+PQwHPkfU3B9Akz6dS6JQyEkkApRyCfQ6JTSa0Cwf5XKLsNmdsNoDEgc272urszVJYHfCYm29ztrea5sTJosngVBQ0oCCkgb/+6iVMoxO0gclAIZHafj/hGiAY7Cfrjn33jIWXx+tQHFlM3bkleKW65PbvU6QyRE+5WboJs5Hy6l/w7B3IxwNlWj8egMMBzchYuptiJh+O6Sa8L79AERERERERNRtgkSK8EkLoc2ajeZvvvT8jVdXjup/vAVlYjqi5v0Q6lHdmx1E1NekEgEalRwaVWj2F3S7RVTUtuBcmQHnyw04X2ZAUUUTLDYnThbV4WRRnf9anUaO0Umtwf8xIyIRHaFiAoBoAGGwn645EVol7rk5A2s+z8fHWwswa2IiwtQd/5IUpDLoJsyDdvwcmAr2o3HvP+CoLYNh76doyvsXwq+7GREz7oBMG9mHn4KIiIiIiIiuhm8JV92khWg68Dma8jbDVnEWl/70c6hTJyNq3g+gjEvt72oS9QmJRMCI4TqMGK7D/KkjAAAulxsXq404X2bAuXIDzpUZUFLZBKPZgaNna3H0bK3/fr1O6Z8B4JsFEKlT9dfHIbrmMdhP16Rv3ZiCrftKUFHbgg3bC/HwHeOveI8gkUKbNQthmTNhLjyExj1/h726GE0HNqH58JfQTVoI/Q13QhYec8WyiIiIiIiIqH9JVWGImvsDhE+9DYY9/0Dz0e2wXDiKigtHEZZ5I6JuugfyqPj+riZRn5NKJUhJiEBKQgQWzRgFAHA4XSi9ZMS5skb/LIDSKiMMRhsOF1TjcEG1//6YCJV39H8kRo/QY3SSHuFh3BCbqC8w2E/XJJlUgkfuHI9X1xzA5j0XcNsNyUgYpu3SvYIgQdjYGdBkTIel6Aga9/wDtoqzaD68Bc1HvoJu4jzoZ34Hcv3wXv4URERERERE1FMybSRibn0UETO+jcbdG9By6t8wnd4L05kD0E1agMhZ34dMx5ncdG2Ty6SewP0IPXzb11vtTpRUNvuD/+fKGlFe04K6JivqmqpwIL/Kf39ctCZoD4DRSfqQLUVERK0Y7Kdr1tRxw3Hd2Fh8c6YGazedws8entGt+wVBgGb0dVCnTYG15CQa9/wD1ounYDy6HcZjO6HNngP9zO9CEZ3YS5+AiIiIiIiIQkUeGYfYu36EiOvvREPuX2ApOgLjka/QciIXEdNvR8QNd0GqCuvvahINGCqFDGOTozA2Ocp/zGx14EJFkycB4F0G6FKdCVX1ZlTVm7HneKX/2sRh2qDlf1ITIqBSMlRJ1BP8H0TXtIfvGI9jZ3ch73QVjhbWYHJGbLfLEAQB6pQJUKdMgOXiaRj2/gOWC8fRciIXLSd2IyxzJiJv/B4UsSN74RMQERERERFRKCnjUhC/7CewXDyFhpw/w1ZRCMO+jWg+8hX0M7+D8Km3QSJX9nc1iQYkjUqO8WkxGJ/WusRxi9nuHflv8D/WNlpQUduCitoW5B4pBwBIBGBkXHjQJsApCeH99VGIBiUG++maNmK4Dt+6MQWb/n0Bazbl47cvzIVUKrnq8tQjM6Ee+XNYK87BsPdTmM8d8kz/PL0XmowZiLxxCZTxaSH8BERERERERNQb1COzkHD/L2E+dxgNuX+Go7YMDTkfoynvX4ic833oJs6HIJH2dzWJBjytRoFJ6bGYlN46wNJgtLUmAMo8SwA1Gm0oudSMkkvN2HHoIgBAJhUwYrgWKqkTsQWnEK5VQaOUQaOSQa2S+59rVHLPMaXnS6OSQy67+vgO0WDFYD9d8+65OQO7vinHxSojvtxfgm/NSu1xmarEMYj7/n/BVlUMw95PYTpzAObCgzAXHoQ6bQoiZ30PqqSMENSeiIiIiIiIeosgCAhLnwbN6Cloyf83Gr/eAGdTLeq2vI+mA5sQOfcehI29AYIg9HdViQYVvU6JqeOGY+q41v0O65ssQcv/nLtogNFsR3GlEQBQUGbp1nvIZRJPIkAph1ol8z/3JQU8CYPWY5df60saqBRS/h+nQYPBfrrmaTUK3HvrWLy/8QT+vO0MlAop4mO0SBgWBr1W2aMf6Mq4FAxf8p+w15bBsG8jWk7tgaXoCCxFR6BOzoZ+1vegGpnFXxpEREREREQDmCCRQjdhLrSZN6L5yDY07v0UjoZK1Gz8Hyji0hA1/15oUib2dzWJBrXoCDWiI9S4fnw8AEAURdQ0WnC6qBpnzl9ERGQMnG4BZqsTZqsDZqsTFpsTZpsTFu9rs80Jm90FAHA43WhqsaOpxd6jekkEeGYMeGcPaLxJALX3uS9hEKaWQ6uWQ6eRQ6tRQKeRQ6dRQKuRQy7jLCDqGwz2EwG49fpR2LqvGKVVRvzfX4/5j6uVMiQMC0NCjBYJMWH+5/ExYQgPU3Q5SK8YNgKxdz6PyNnfh2HfRhhP7oal5CQsJSehGjEO+huXQJ06iUF/IiIiIiKiAUyQyREx/XboJi5A08EvYDj4OexVRaj6y2tQJ2cjct4PoUoY3d/VJBoSBEHA8CgNdKrhCJc0YNy4FGg0mive53K5PUkAqy8R4ITZ5k0GWJ2wBD33Jg5813mfm62eBIJbBNwiYLI6YbI6r/qzKBVS6NS+JIAnAaDTKKBVy/3P2zuuVsoYK6JuYbCfCIBUKsGKR27AxtxzKK9pQWWdCbWNZlhsThSVN6GovKnNPWFquScB4J0F4EkGeJICWo2i3feRR8Vj2O1PQz/7bjTt/xzNx3bAWlaAqg2vQxk/GvpZ34NmzFT+ICciIiIiIhrAJEo1Iud8H+HX3YLGfRvR/M2XngFdH72MsLE3IHLuPVBEJ/Z3NYmuSVKpBFqNosPYTFeJogibw+VNFrTOJghMGPiSCiarA2aLE0aLHS1mO4xmB1rMDpgsdrhFwGZ3wWZ3oa7J2r3PIhGCkgBh3pkDOu/n02nk3sSAIuh4mFoOqYSxpWvRoAn22+12fPTRR9i0aRPKysqg0WgwdepUPPnkk8jKyup2eVu2bMHHH3+MwsJCAEBGRgaWL1+O2267rcN76urq8Lvf/Q65ubmoq6tDTEwM5s6di2effRbR0dFtrs/Pz0dubi727t2L8+fPw2w2IzIyElOmTMEDDzyAKVOmtPs+9913H/Ly8jqsx4svvojHHnusm5+YrmRYpBqPf2eC/7XD6UJVvRmVtZ7gf2Wdyf+8zmCByeLAuTLPZjKX02kUbRIAvqSARiWHPCIWMbc+Cv2NS9B04HM0H/kKtkvnUf33X0EROwr6Wd9D2NjrIQjcTIaIiIiIiGigkoZFIGbRg4iY9i00/vuvaDmxG6Yz+2EqPAjdxPmInP19yMLbxguIaOATBAEqhQwqhQyRV1mG2y3CbHN6EwCeJIDJ7IDR4nndYnb4H1ssvud2NJsccLrccLlFGFpsMLTYuv3eYSpZa0JAo4BaIYHd2oIjF88hQqf2b2wcFrDBse8xTC2HTMqY1GA0KIL9drsdDz/8MPLy8hAdHY158+ahtrYW27dvR25uLt577z3Mnj27y+W98847eP/996FQKHDjjTcCAPbu3Ysf/ehHOHv2LJ5//vk291RUVGDp0qWora1FamoqFi5ciMLCQnzyySfIycnBX//6V8THx/uvdzqdWLJkCQBAp9Nh4sSJ0Ol0OH/+PLZt24bt27fjlVdewX333ddhPW+55ZZ2pyelp6d3+bPS1ZPLpBgxXIcRw3VtzlntzuBEgPfxUl0LGpptMJrtKCy1o7C0sc29eq0S8QFLAiXE3oyEJQsRVrwL5mPbYK8pRc3G/4E8Jgn6md+FNmsWBAnXdiMiIiIiIhqo5PpYxH77Wehn3ImG3X+B+ewhGI/tQEv+1wifehv0M78Dqbrt35ZENLRJJIJn5L1ajrjosC7f55tVcHkSwDNjwO491v5xs3e5Id/SQ9UNwWV/c97UpTooZBJo1HLPHgXqDpICV3itUsgg4QyDPjUogv0ffPAB8vLykJ2djXXr1kGr1QIANm/ejBdffBEvvfQSduzY4T/emcOHD+P9999HeHg4NmzYgLS0NABAUVERli1bhlWrVmHOnDmYPHly0H2vvPIKamtrsWzZMqxcuRKCIEAURaxcuRIbNmzAT3/6U6xduzbonvHjx+Pxxx/HvHnzIJfL/cc/+eQTrFy5Em+++SZmzpzpr8PlfvzjHyMpKalbbUV9Q6WQITk+HMnx4W3OWWxOXKozobKuBZW1rY+X6kz+bKyhxYaCkst+2iICCeF3Y2HYOWQ7jgF15ajd9FvU7toA/Y3fReSkuRCk8jbvR0RERERERAODInYk4u7+L1jLz6Ah50+wlhWg6cDnMB7djogb7kLEtG9BolB1u1xRFAG3E6LTAbfDDtFlh+h0eL/s3i8HxKBzdrid9rbXtHkdfJ3bYUe4yw1D8WjYE0ZDMTwZiuEpkGn1oW8wImpX4KyCGL26W/c6XW6YLI7gmQMWBxoMJpSUXUKYTg+7E/7lhyy+ZYi8exZYvRsc251u2I02GIzdn1XQ+jngTxb4Njb2JwX8iQTfBsee8+FhCqQmRkClGBRh6wFnwLea0+nE+vXrAQArVqwICujffvvt2LRpE3bv3o1PP/0U999//xXLW7NmDQDgiSeeCAqyp6Wl4fHHH8fbb7+NNWvW4Pe//73/3KlTp3DgwAHo9Xq88sor/vXUBUHAK6+8gi+//BJ79uzBmTNnMHbsWACATCbDp59+2m4d7rnnHuzYsQN79uzB1q1b8cwzz3SzVWggUytlSE2MQGpiRJtzZqujNQEQMCOgstYEo9mOymYB65vToRKSMUtZiHmq09Aaa2D48n2UbP0TTodNR0PsdbDazDhbV4LIcA3CVJ4d330/FLVqz2uFnLMBiIiIiIiI+oMqaSzi7/sFLEVH0bDrz7DXlKAx9y9oPrQFYRkzILpdQcF20eUN4jsdnmB94HNvEB8Q+6z+UgDWwjpYCw+0HgvTQzE8BYrho6AcngLF8GTIo+I5E51ogJFJJYjQKhGhVQYdN5vNKNCbMG5cRqcbHfs2ODZZW/cpCEwG+B5NFu9mxhbvBsiW4OtcbhHiVW5uLJMKGJ2kx/i0GGSlRiMzJQoaFQfAdsWAD/YfOXIEBoMBSUlJyM7ObnN+8eLF2L17N3bu3HnFYL/NZsO+ffsAoN21+RcvXoy3334be/bsgd1uh0Lh2chj165dAID58+dDqQz+j6JUKjF//nxs3LgRO3bs8Af7ryQjIwN79uxBTU1Nl66noUGjkmP0CD1Gj9C3Odditl+WAEjFn2qvx4imbzBLehJ6SQtmmnPQdGE/LjhiUXMhHOdc4ah161DrCodJVAJonRolk0q8gX/vGmzeJIA/OeBdgy3omNqTYdWq5ZxqRURERERE1AOCIEAzegrUaZNgOrUXDbs/gdNQjeYj23petkwBQSa/7DHguVQOiVzhfy7Iveek3ke5wv9cEnSvHDaXiNJzZxCvEiE2VsBeXQxH/SW4TAZYLhyF5cLRoHooYkdBMTwFyuHJUMSlQDFs5FXNXiCigSEUGxyLogi70w2zxdF+osC70XFQMsGbPKhttKCh2YozpY04U9qIf+Scg0QAUhIjMD7VE/zPSo1GeFjPNmAeqgZ8sL+goAAAOtyENzMzEwD8G+12pri4GDabDZGRkUhISGhzPiEhAXq9HgaDAcXFxcjIyAiqw/jx49stNysrCxs3buxSHXwuXrwIAIiJienwmk8//RQGgwEAkJiYiLlz52L06NFdfg8aXLQaBdJHKpA+MnjbF1FcgKamFtQc/ArI34IIqwGTlaVt7rdAgTp3OKodnuB/rVuHGks4ak3hqBC7/wNQIgDqyxMDbZIGsoDkgTdZ4D2mVsogl0n8M2GIiIiIiIiuRYIggXb8bISNux4t+f+Go7HqsuC8HBKZ0v+8TeA+4LlEpgCksl79O0s0m+E0OKAdN84/+tdtt8JeexH2qmLYqktgry6GvfYiRIcNtspzsFWeg7H1E0MeHd+aAPDOApBpr3aLUyIabARBgFIuhVIuRWR495J/oiiiusGM/KJ6nLrg+bpUb0JReROKypvw+ddFAIBRcTpkpUZ7EgBp0Yjq5vsMVQM+2F9ZWQkAiIuLa/e877jBYIDJZEJYWMebXVRUVHRalu+cwWBAZWWlP9jvq8Pw4cM7rYOv/CspLi5Gbm4uAGDBggUdXrdq1aqg1//93/+Nu+66CytXroRK1bNvYFEUYTabe1RGd1gslqBH6h6FQoqk2bdBnLkIxnNHUHfhNPRSJ2CshdNQDbexHmrYMUJShxHKujb3uxRa2NUxMCuiYJRFokmiR4MYgRqXFka7xJtN9Xy1WB1wuUS4RcBk8UzLulqCACjkUijlEijlUs9zxWWv5VIovK+V3vOBrxVyifeYFKqA1777FTLJVc1A4PdkaLAdQ4dtGRpsx9BgO4ZOX7elKIpMtBMRDVCCVA7dxPn9XY2rIlGooEpMhyox3X9MdLvgaKyC3Rv8t1V5Hl0mAxz1lXDUV8J0eq//es8yQMlQDE/mMkBE1CFBEBAXHYa46DAsnD4SAFDfZPEH//Mv1KOs2ojSKs/Xln0lAICEmDBP8D/NkwCIjep4qaKhbMAH+30BabW6/c0oAteYulKw/0plBZZnMrXuTO27r6P1rNq7pyN2ux0vv/wyHA4Hbr/99nZnLEydOhVLlizBlClTEBsbi+rqauzevRu//e1v8c9//hN2ux2/+c1vrvhenXE4HP4ZC32ppKSkz99z6NEBKTNQHXjI5YDE3AipqQEScwOkpkbPo7kBEpsJUnsL1PYWqFGC6MtKcyt1cIVFwh0dBVdYFFyaSNhVUTDJwmF1SmB1uGGzi7A63LDa3bA6RO+jG7bLXlvtImwON+xOz1qSogjY7C7Y7C4AV580uBKZFJBLJZDLBM+XtP1Hhe8a32uZgJMlp6FSCN4EhAQquQClQgKFTICEwZIu4//t0GFbhgbbMTTYjqHTl23pW4qSiIioNwkSKRTRiVBEJwKZN/qPO1savQmAEtiqi2GvLoGjvtK7DNAxWC4cay3DvwxQcussgNiRkCi6tyEpEQ1t0RFq3DQlCTdNSQIANLXY/KP+8y/Uo7iyybMkdp0J2/M8q6kMi1T7R/6PT4tGQkzYNTEoZsAH+4eaFStW4Pjx40hOTsaKFSvaveb5558Pej1q1CgsX74cM2bMwJIlS/Cvf/0LDzzwACZMmHDV9ZDL5X26JJDFYkFJSQmSk5M7TbbQlXW3Ld02C1yGajgNVXA1VnkeDdVwNlZBtLZAYjNCYjMCDReD7osWBEh10ZBGxkOmHw5pbBxkkXGQRsZBGh7T6egLl8vtCfo7XLA5XP7nVrvLeyzwnAt2u9v/PPC171qbw5MwCHztcLr97+d0eXabt9ivvl0vJwiASiGDRiWDRimDWiX17hwvg1rZejzodTvnZFJJ6Co1APH/duiwLUOD7RgabMfQ6eu2PH/+fK+/BxERUWdk2kjItJHQpE32H/MvAxSQALDXlHa8DFBUvHcWQOtSQFKt/poI1BHRlUVolZg5IQEzJ3iWaW+xOFBQ7A3+F9XjXLkBtY0W5H5TjtxvygEAep0SWanRyE6NRlZaDEYO1w3JvSoHfLDfN2q+o6nPgUvRdDaqvytlBZYXWJbvvo6WvWnvnva8/fbb2LhxI+Li4vDhhx8iPDy80+svl5GRgfnz52Pbtm34+uuvexTsFwSh0523e4tare6X9x2KutyWGg0QGQ0gs80pl8UIR8MlOBoqvY+tX6LdAldzHVzNdbCXngy+USKFXD8c8qh4yKLiofA+yqPiIQuPgSBIoAvNx+yQ2y22JgzsLljtTv/z9h6tdmfQMZPZhtoGA6RyNax2d9BGMU6XZ8d4i80Ji82J+h7UUyGTQOPd90Ct8jxqVJ49DjS+52oZ1MqAzZS9x33JA7lMCplUGNAdW/7fDh22ZWiwHUOD7Rg6fdWWA/l3BRERXbs6Xgao2rP+f0ASwNXS6P0btRKmgn3+66VhEUEJAGV8GuRRbfdjJKJrj1Ytx7TMOEzL9Cy1brE5UVjagPwiz8j/sxcbYTDasPd4JfYe9yzXrtPIkZniWfYnKzUaqQkRkA6BAZsDPtjv20i3qqqq3fO+43q9/orB9sTExE7LCjwXuIFvQkICTp8+jerq6k7v8ZXfnvfffx9r1qxBVFQUPvzww06v7UxycjIAoKam5qruJwokVesgTdQFdbgAz3q/LlOTPwngbLwEe30lnI2X4Giogui0+ztflxNkCsgih0MWHgOZLhpSXZRnZIfvuS4KEo0OgtCzH6ASiQCVUgaV8up+jJnNZhQUFGBcwKZTQMCO8b4d4S2OtjvGe3eI95y7bPd473Or3QUAsDvdsBttMBhtPfq8ggDIZZ49ChRyiee571HmeZTLJZ7z/uetjwqZBDKZxL/PQdD9l10rl0kgD7xWLoVcenV7IxAREREREbXHswxQAhTRCZctA2SAvaa9ZYCaYLlwHJYLx/3XKuPToJu4ANqsWZCoOo8JEdG1Q62UYVJ6LCalxwIA7A4XzpUZkF9Uh/wL9ThT0gCj2YGDp6pw8FSV/55xKVEYn+oJ/o8ZEQm5bPAF/wd8sH/cuHEAgFOnTrV7/vTp0wDg30y3MykpKVAqlWhsbERlZWVQQB/wbMRrMBigUqmQkpISVIcdO3YgPz+/3XJ9deuoDh9//DHeeecd6HQ6rF27FmlpaVesa0eampoAdL7vAFFPCYIAmVYPmVYP9cjgGQGi6IbL2BAwCyBgVkBjtScRUFsGR21Zx28gkUGmi4RU6wn++5IA/kfvcYmi73dSD9oxvgfTE1wuN8w2Z2uSwHJZwiAwQWDxPFpsbZMLbs/2BxBFzy8nu8MF9NN+mTKpxJ8YkMk8iQWZVIDLaUPUQTO0GqV/GSPPozxoWSO1SgaNUu599LxWyqUchUpERERERH6ev0UnQZM6yX/M7bDBXnMxYBZACWyXivxf9TvWIWzcTOgmLYBqxDj+jUFEQRRyKbK8Qfyl8CwFXVRu8K/5f/pCPUxWJ46cqcGRM54B1gqZBGOTo/yb/qaPjIRKMeBD6QM/2D9lyhTo9XqUl5fj5MmTyM7ODjq/ZcsWAMCCBQuuWJZSqcTMmTOxa9cubN26FQ8//HC7Zc2aNStoY7N58+bh3XffRU5ODmw2G5RKpf+czWZDTk4OAGDhwoVt3vOf//wnfvnLX0Kj0eAPf/gDMjPbLqXSVXa7Hbm5uQCA8ePHX3U5RD0hCBLPqP3wGKiTg/8/im4XnE21ntkAxnq4jA1wGhvhMtbDaWyAq6URLlMT4HbC2VQLZ1MtOhvvLlFqghMB2rYJAalW3+n+Af1FKpVAp1FAp7n6TRJ9swwcTjccDpdnloB3vwK70wWHwx303O70XOO71v942TWOwHL81/hee5773ksUW+vjdLnhdLlhhrNNXSvqG67qM0oEQH15UuCyREFrcqDz6+QyCTv1RERERERDkESuhCpxDFSJY/zHXKYmGPO/hvHYDjjqytFyMhctJ3Mhj0qAbtICaLPnQqbV91eVBw3R7QIE/i1F1xaZVIKMUVHIGBWF784bA5dbROmlZuRfqPNv/NvUYseJ83U4cb7Oe4+AMSMikZUajfQROsgDAyYDyIAP9stkMixfvhy//e1v8eqrr2LdunXQarUAgM2bN2P37t2IjIzEkiVL/PecOHECP/7xjwEAX375ZVB5jzzyCHbt2oXVq1dj7ty5/lH2RUVFWL16tf+aQFlZWbj++utx4MABvPHGG1i5ciUEQYAoinjjjTdgMBgwa9YsjB07Nui+r776Cj/5yU+gUCiwatUqTJky5Yqfd//+/bBarbjpppsgkbROFamtrcXPfvYzVFVVIS4uDosWLepqExL1GUEihTwyDvLIuA6vEV1OuFoa4TQ2wNnS4E0ItH0UHVa4bWa4bWY46so7e1NIwyLaTwj4H6MhUWoGXeclcJYB1PI+f39RFOHy7o3gTwS4AhILDjeMJjOKLpQiJjYeLlECs9Wzz4HZO1PBbHXC4jtmc8BidcLs3QtBFAG3CJgsnpkPPSWTClB7kwKtyQDPo1rpmUUgl7cuW6SQX76sUfAxz2vPskaB10slA3v/BCIiIiKia4E0LAL6Gd9GxPTbYas4C+OxnWg5vReOhko05HyMhty/QDNmKsInLoA6bdKAHCTWXxxNNTAX5sF0Ng/WiwWQ6qKgTp4ATeoEqJMnQBoW0d9VJOpTUomA1MQIpCZG4I7ZaRBFEeU1Lci/UI9TRfXIv1CH+iYrCkoaUFDiGex4y5QI9GBMd68Z8MF+AHj00Udx4MAB5OXl4eabb8a0adNQV1eHw4cPQy6X46233vInAADPBrzFxcXtljV16lQ8/vjjWL16Nb7zne9g5syZAIB9+/bBZrPhqaeewuTJk9vc98Ybb2Dp0qXYsGEDDh06hIyMDBQWFqKoqAixsbF4/fXXg66vr6/HCy+8AJfLheTkZHz++ef4/PPP25SbmpqKxx57zP+6sLAQb775JoYNG4bMzEzodDpUVVXh9OnTMJvNiIqKwu9+9zuoVH2/vAlRKAhSGWQRwyCLGNbpdW6bOSj475kZcFlioKUREN2eGQMtjcCloo7fV6YISgKIqnAoTXZYpc2QxMR79hTQRkKQDoofi31CEATIpAJknWxQYzarIbfXYNy4+G5tPOl2i7A5XG2SAp5EQGtSoL3kgdnmSyA4vJsoe/ZHcLpEGM0OGM09Txx0RiLAmwS4LGHgTczIZRL/oy9hoPDug+BPOPjPeRINSrkUbpcDl2ptUOuN0Ee4oVLIoFJIoVTIIOV+CURERERE7RIEAaqkDKiSMhC96EG0FOyF8dhO2CrOwlx4EObCg5DqoqCbMB+6SfMh1w/v7yr3OVEUYa8phflsHkyFebBXB8fMXM11aDmRg5YTnpUrFLHJUKdMgDplAlQjMyGRK9srlmjIEgQBI4brMGK4DrfdkAxRFFHdYPZu+FuHsupmxEdd/UoOvWlQRLUUCgXWrl2LDz/8EJs2bUJOTg40Gg0WLFiAp59+GllZWd0q74UXXsDYsWOxfv16HDx4EACQmZmJ+++/H7fddlu79yQmJuKzzz7Du+++i9zcXGzfvh3R0dFYtmwZnnvuOURHRwddb7FY4HB4Ak5FRUUoKmo/CDl9+vSgYP/06dOxdOlS5OfnIz8/H83NzVAoFEhOTsZNN92E5cuXIyoqqlufl2gwkig1UCg1QExSh9eIbhdcpuaAJEA9nMZGbyKg3ruEUAPc1haITjucjVVwNrZu0K0BYDizAwb/EQHSsAhvUiA6eHZAeLT/mETZ9aA2tU8iEfwj7nvK5RZhtXWcFDB7kwKeGQlu/94HDqcbtsDljAKWSvIvgxSwFJKPWwSsdpd/E+aQ217b5pBCJoFSIYNKKfUnAFQKqT8h0JoYkHo2rg46FvBa6blGrZBByUQCEREREQ0xEqUa4ZMWInzSQthrL8J4bCeMJ3fDZWyAYe8/YNj7D6iTs6GbtACajBmQyAZmsC4URLcL1vJCf4DfaahuPSlIoBoxDmEZ06FOmwxnUy0sxcdhKT7p2RehpgT2mhI0HdwESGVQJWVAnTwB6pSJUMancpYEXXMEQUBcdBjiosOwcPpImM1mFBQU9He12jUogv2AJ+D/xBNP4IknnrjitTNmzEBhYWGn1yxevBiLFy/uVh1iYmLw6quvdunapKSkK9ahPZmZmXjttde6fR/RtUiQSCHTRUKmi4QyvuONr90Om3fpoNZ9BKyN1TBUliJMcEI0G+A0NgJuJ1wmA1wmA+xVFzp+X4UasoAlggIffYkBaVgEBGHw7do+GEklAsLUcoSp5QB6Z/Nyt1uEwxW8d4Lnq3U/BFvg3gnecw6nCzbfPggOXyLBe31QwsEFq80Jo8kCN6SwOzzJBN8SgHanG3anHUZz6D/b5YkET5LAkwy4PJGgVspakwf+pILvedvEA5c7IiIiIqL+ohg2EtGLHkTUvB/CdDYPxuM7YblwApaSk7CUnIREpYU2ew50ExdAOTy5v6sbEm6nHZbiE54les4dgtvc7D8nyBRQp0xEWMZ0aEZfF7RUjyI60b8hssvU5Gmj4hOwFB+Hs7kO1tJTsJaeQuPuTyBRhUE1ajw03pH/ssh49vuJBpBBE+wnIrpaErkSksv2EjCbzagoKMDIceOg0Wggim64zUY4m+sDkgINAc89j26bGaLdAkd9BRz1FZ28qRRSbWSbGQKy8Gj/zAGpLmpIjyQZSiQSAUqJd/+EXuIbGTDO/z3p2aDZanPCZnfBYvc8Wu1OWO0u2GytzwMfbXYXrLbW523u8z72RSLBF/xvTRQEJxQ8CYbgZEJg8iBwFoJKIYNa6ZmNIJcxkUZEREREXSPI5NBm3ght5o1wNNXAeHwXjMdz4GquQ/OhLWg+tAXK+NGeTX2zZg26mdwuqwnm89/AXJgHc9FRiA6r/5xEFQbNmKkIS58OdeokSBRXXhJaGhYBbdYsaLNmQRRFOBsveRIIxSdgLTkJt9XkXx4JAGQRw7yj/idAnZzN9f6J+hmD/UREAATvRr/SsAgo41M7vM5ttwTsG1APZ7Nv+aCAvQRMBsDtgqu5Dq7mOtg6eV+JWheQDIj2JwECEwMSlZYjJa5BQRs0h5goevZMsHmXI7JelhCw2i5LHvjO2S67tp2Egy1geaPeWu5IKhHanVmgVEghlwJWcwv2ni+AVqPyX6MMXOrospkLSoWnnVVKGRQyCf+/EREREQ1R8ohYRM1ZishZ34Ol+ASMx3bCdPYQbJfOw3bpPOp3rEPYuJkIn7QQyqSMAdsvdDbXw3T2EMxn82ApzQfcrX1uqS4aYRnTEZY+HaqRmT3al04QBMijEiCPSkD4dbdCdLtgu3TBs+RPyQlYywrhbKqF8fhOGI/vBAAohqdAnZINdcpEqEaM43r/RH2MwX4iom6QKNRQRCcC0YkdXiO6XXC1GIJmBQQnCDzHRacdbosRdosRqCntsDxBKodUGwmpLhIybSSk2ijIdJGeYwHPmRSgrhIEwT+6PtTjbnybL/tnFthakwMWW+vMgvYSC22SB97rLd4ZCU6XZzqCyy3CZHHAZOlkM+biq5uqIBHg389A5UsCBMwu8CUMgl/LApIKbfdUCDzW2YbXRERERNQ3BIkUmrTJ0KRNhsvUBOPJ3TAe3wlHXTlaTuxCy4ldkEcnQDdpIXTZcwfEaHV7XTlMhXkwn82DrfJc0Dn5sBEIS/cE+BXxab32d6EgkUKVOAaqxDGInPU9uO1WWMsK/Ev+2GtKPWv+Vxej6YBvvf+xUKdMhDplApRxKVzvn6iXMdhPRBRigkQKWXg0ZOHRHV4jiiLcVlNAMiBg6SBvMsDZ0gC3uRmiywFnUw2cTTWdzhIITgpEeZcR8iQEAp9LVGFMClCvCeXmy5dzON3ByYJ2kgPNLWaUVVQhQh8NlygEL2Hkn83QmkjwHfdtwuwWAYvNBYutdzZglkmFy5IDwRsoX55Y8F3jW8JIddnMhMB9FJhIICIiIuo+aVgE9NffgYgZ34atohDNR3fCVLAXjvpKNOxcj4Zdf4ZmzFSET1oIderEPgtWi6IbtsrzMBUehPlsHhz1lQFnBSiT0j0B/ozpkEcl9EmdLidRqPxJEwBwthhgLT0J8wVP8N9lrIe1NB/W0nw05v4ZEpUW6uTxnmV/UidCph/Ov02JQozBfiKifiAIAqRqLaRqLRSxIzu8TnQ64DQ1wmVs9G4y3OB5bGmEq8Wz2bCrpRFui7F7SQFv4F92WXIg8DmTAjTQyGUSyGUKaDtZRtWz94EJ48alQaPp+nqrLpfbOyOhdVZC0NJGAfsd2NpZ4ujy6y/fJ8Ht3SPB6RLhvNKshKt0eSIhcHmj4CSBDGpfokHZTtJBIYXodqDZ7EKLxQG5wg2ZVODPAyIiIhrSBEGAKmksVElj4b75QbSc3gvjsZ2wVZ7zr1Ev1UVDN3EedBMXQK6PDXkdRJcDlpJ8mM7mwXz2EFwtja0npTKok7MRlj4dmvRpkGkjQ/7+PSXT6qHNmg1t1myIoghHwyXPkj/FJ2ApzYfb2gLTmQMwnTnguT4i1rPWv2+9f014P38CosGPwX4iogFMkMkhj4iFPKLzjqTbaYerxeBNBDS0Jge8z33JAbelxZMUMNTAabhCUkCm8C4V1DorwJcckGo9SQG3VAX/Tq9Eg5hUKoFGKoFGJQ952aIowulye5ctartHQuf7JbReE7gkUmDyweXNJPRKIuGzSwC8m1TLpf7Ege+5Ui7zL2vUel4WcD5geSN58J4J/mu81zOhQERERAOFRKlB+ORFCJ+8CPaaUjQf24mW/N1wGeth2PMPGPZ8CnVKNnSTFiIsfToE2dX3Id02C8xFRzwB/vNHINpal6MUFGpoRk9BWMYMaNImD6rNgwVBgCI6AYroBERMvc273n+Rf8kfa/lZOJtqYDy2A8ZjOwAIUMSleAP/E6AaMZbr/RNdBQb7iYiGAIlMAYk+9oqjS1qTAq2zAgKf+5IDbmsLRKcdTkM1nIbqTpMCeokUNXsjIAuLgFSjg0QTDqk6HFKNDlJNuPe1DlJNBCQaHaRqXY82iSIabARBgFwmhVwmhS7Ef59dKZFw+ZJFgYkEi+9aW9ukg8XmhNXu9Ofy3G4RFpsTFpsztB8ggC+h0F5yQNEmeRCcUGjvUSFv55hMComECQUiIiLqOkXsKMTc/BCi5v8Q5rOHYDy2wxuw9nxJ1Fpox9+E8EkLO521HcjZYoD53CGYCvNgKTkBuFr7WNIwPTTe5XnUo8b3KJEwkHjW+0+HKjHdu96/BdaLBf7Nfu01F2GvugB71QU07f8MglQO1YixUKdMgBCfwUFmRF3EaAsR0TWky0kBhw0ukyFoVoBnCSFD0HO3tQWC2wV3SwPsLQ1dr4dS40kCeBMBEk1Ea3JA7Xn0fHnOSZQajvglakdvJRI8yyEVYEx6BiQyJWx2p3/PA/9XwB4I/nOO1iWPWs+7YA867wy61u2dmdAXCQUA3iSApO3shE6SBN09x6QCERHR0CORKaDNvBHazBvhMFTDeDwHxuM5cBkb0HzoX2g+9C8oE8ZAN2kBtJmzIFGqg+53NFbBVHgQpsI82MoLAbQGr+VR8dBkzEBYxgwoE0ZDEIb+XkwS76wFzegpAABnSyMsJSf9y/64jA2e1yUnAQARCg2aKqZBHHcD1CkTOOqfqAMM9hMRURsSuRIS/XDI9cM7vc7UbMDZ498gNXE45KIDLnMTXGYj3OZmuCxGuMzNlz03AhDhtpnhtpnhbKzqYoWk3qSANxGgDm993s5riVrHzh9RCMikEmjUcmjVvTeizOF0exMD7ScUApMDvuSB73p/IsERnIC4/JhvA2YAsDs8540I/b4JgXzBf41SirnjNRg3rlffjoiIiPqQXD8cUTfdg8jZ34flwjE0H9sJ87nDsFWeg63yHOq3r0PYuJmQJU+E6lwe6g6th7O+PKgMZfxob4B/OuTRidf84CaZNhK68XOgGz/Hs95/fUXrDIrSk5DYzbDk74YlfzcEmQLq1Ime/QtGXwdpWER/V59owGCwn4iIrpogU8Ct0UMel9qlzVBFtwtuqxkucxPc3gSAy+xNBFh8z5vgNhvh8r4W7RbA7fLMNDAZuhyeE+Qqz8wA75JCElUYJKowSFVhkCjD/K8lAa+lqjBIVBoI0qExVZZoMPBsvCzp1YSCyy36Zxe0lxywOXwJBXfA88uvCZ6h0N65dpMKZqCinl1uIiKioUiQSKEZfR00o6+Ds8WAlpO5MB7fCUd9JVpO5AAncqAG4AQAiRTqUVnQpM9AWPo0yMKj+7fyA5ggCFDEJEERk4SIaYthMjbj/L6vMNxZB9uFo3A118F89hDMZw8BggSqpAxo0qchLH0a5FEJ/V19on7FvzyIiKjPCBKpd7keXZfvcTvt3uB/QCLA3OxNEHifW4xwe2cVuMxGwO2E6LDC2WQFmmq7X0+50psA0ECi0nqTAGGe5YdUYZCotN5zYZC2SRxoIEik3X5PIuo9UokAtVIGtbJ3u76BSQXf7AOzxQpj/cVefV8iIiLqfzKtHvob7kLE9XfCVn4Gzcd2wFKSD4s6GsMmz4M+8wZI1dr+ruagJEhlcMakIHzcYqgXPw57dTFM3mC/vboY1rICWMsK0LBzPeQxSQhLnwZN+vRrZkkkokAM9hMR0YAmkSkgCY/u8sgXURQh2sxBSwe5LM1wW02eWQXWFrhtJv9rz2MLXDYzRJvZU4bDBpfDBlc39iEIJCjUATMFAmcSBCQP/IkDT/LAJUoApw0iN54iGrTaSyqYzTIUNFzb0/KJiIiuJYIgQDViHFQjxvn3QRo5bhyk6hBusHQNEwQByrhUKONSETVnKRxNNTCfPQzz2TxYLp6Go64chrpyGPb907PZ8ZipCEufDlVKNiQyRX9Xn6jXMdhPRERDiiAIELxBdHlkXLfuFd0uuG0WTzLAYvInBVxWU5tjbqsJbps3eeBNHIgOq6ccuwUuuwWu5rpuvX8kgOqdktYlh9SByw9pIVFrvbMKwiBt57kgV17za30SEREREdG1Qx4Ri4hpixExbTFcVhMs54/AdDYP5qKjcJkMMB7bAeOxHRDkquB1/rsx25xoMGGwn4iIyEuQSCFVaz3Ta/Xdv190OT2bD1tb4PLNGghMDni/XO0ds5oAlwMQ3XBbjHBbjF3fwNhHIoNU7ZstoOsgKeCZSRD4XKLWcpQLERERERENalJVGLTjZ0M7fjZEpwOW0nyYzx6C6dwhuIwNMBcehLnwoGed/xHjWtf57+YgMaKBjMF+IiKiEBGkMkg14ZBqwtHdrUbNZjMK8k8gPXkElIILLkuLf4kht9Xk2ZfAlxjwP/edawHcLsDthMvUBJepqft1lyk8wX+11jOLICARIPXvU+BdfkiphkSugqBUQ6LwfAkKJdfDJCIiIiKiAUGQyaFJmwxN2mRE3/oo7JeKPOv8n8uDveYirBdPwXrxFBp2rIN82MjWdf7jU/l3DQ1qDPYTERENFFI5pNpIKDTdW89TFEWIDqs/8O+2tsBtMcFl9SYFvIkDz5JDvnPe51YzILohOu1wtdjhammE4yqrLyhUAcF/3/PgpIBEoYagVEEiV0GiVHv2N/B9KVX+11ySiIiIiIiIQkEQBCgTRkOZMBpRc++Bw1DtGfF/Ng/WiwVw1F6EofYiDHs/hVQbBU26Z51/9ajxEGTdHcZF1L8Y7CciIhrkBEHwB8ll4THdulcU3RBtFk/w3+LdrNjaEpwgCJxlYLPAbfd9WSHarYDo9pRlt8Jlt8KFxlB8qtaEgVLlTSD4kgJqCHJVu8cdogBZQzUctRo4IqIgUWg8SQQpO+lERERERATI9cMRMf12REy/HS6LEebz38B89hDMRcfgammA8chXMB75CoJCDU3aJGjSp0OTNsWz3CvRAMdgPxER0TVMECT+DY2vap8CUYTotMNts0C0tyYCRJv1sqSA97nNGnSd22aF6PA8uu0WT/IAIgCxdaPjlu7VSQegPg+oD/ycUrlnhoFS400MaCBRqCBRai47rvaf98xI0AQf43JFRERERERDhlStgy57LnTZc+F22mEtOelZ7ufsIbhMBpgK9sNUsB+QSKEameld7mca5BGx/V11onYx2E9ERERXTRAECHIlJHIlripbcBlRdEN02IKC//4Egt3inVlgbX3te+497rSaYGtphhwuiHYLRKfdU67LAdHsgNvc3MMaCt4kgCo4ceBbkigwQeA970kmBCcOBIUKglQGQSLtcZsREREREVHPSWQKaEZfB83o6yDe9hhslef9G/w6astgLTkJa8lJ1H/1IRSxyd4NfqdDEZfSp0uQim4XRJcTcDkh+r8cAc9954KP2SwmyC9dgj1cCnlsAmTaKAhShoaHGv6LEhER0YAhCBL/sjxAZLfvN5vNKCgowLhx46DRaCC6Xd4EgdmTEPAtQ2Qz+4/7ZyXYAo9bIHrP+Y57lisSIdrMcNnMcBkbQvCBJRBkcs/MA6nM/xxSmeeYzPsY+FwmhyDxXet5xOXXSAOuDXruK1sW8L7BZYMzF4iIiIjoGicIEqgS06FKTEfUvHvhaLjkHfGfB2t5Iew1JbDXlMCw5++QhscgbMxUKOJSAW8gPjAAj3YC8u0F40WXo8MAfuBx3zKqV0MLoOH4Z/D8JSNAqtVDFh4DqS4KsvAYyMKjIdNFe46FRzEhMAjxX4uIiIiGLEEihVSt7fH6msHLFZlbEwN2qz9B4D8emDjwzzpoTRyIDmtAwZ6ZDKLD1sNPGkoCIJUhQpCiZo8aUu+GyRKFyrNxcsBziVx12WulZ68FudKzr8JlrwWF0pNU4ObLRERERDSIyKPiob/+DuivvwMuczPM5w7DdPYQLMXH4WquQ/M3X/Zf5STewTwBX/4BPv6BQDK4IYGppQkqlw2ulkbA7YSrpdHzvEOXJwQ8iYChlhBwO2xwm5vhshjhMhvhtjTDZTbCZTH6j7u951wWI0SnA/KxNwPjxvV31dsY3P8SRERERH0glMsViW4XRIfdM1LH6YDodnoeXb5HzxecgaN5HK3X+J8HjPQJfB1QhugMHBXUWgYCy3M64NknwV9DwOWABA64W6xwh2TD5QCC5LLEgCcJ0G7iQK6CROFNFHR0TqYI+JJ7HplMICIiIqJeItWEQzdxPnQT58PtsMFSchLms4fgNNYHz671BuFx2Wv/7NzLXvuvl8paZ95efkwiD7hH5imji31fs9mM6oICjBg3Dmq1Ci5TM1zGejib6+BsrofTWA9Xs/e1sR7O5oZBmRDobuDebW72L//aHYLd1Au17zkG+4mIiIj6kCCRQlCqAaj7uyp+otvVmiRwOmFuaUbR2TNIHZkEhRQQ7Ta4HTaIDivcdu+j93Vn5zyvbXA7rIDL6Xsz/+bL6KX+sSCVQ5ArWh8DkgGSwORAO9dIfAmDyxMIMgUk7ZbJJAMRERHRtUoiVyJszFSEjZna31XpFkGQQKbVQ6bVQxmf1u41ougOfUJAFw1peHSXEwJ9FbgHAEhkkGp0kKh1kGp0kKrDIdHoIFXrINWEe46rdZBowuGQqtBYXn1179PLGOwnIiIiusYJEikEhRSACgAgkyrh1tZBPjwFao0mJO8hul2eDZfbSQR4EgbW9l97EwjtX2uD6LRDdNiD1i71z47oY+0lGSBTQpY0HcDAm+JLRERERNSRHicE/McuSwhcOt/RO0Kq1UOq0cFlNfdZ4F7qPS4o1F0evOM2mwEw2E9ERERE1yhBIoWgCoNEFdYr5fuXR3J6vtxOh/+5LyEgeo+5A487HZ59E1wOiA7ffbbWc/5HG0SnA26HPehcV5IMcmV0r3xmIiIiIqL+1GsJgUDtBe59z0MQuB9qGOwnIiIiokHPvzySsu+WRxJFEXC7/MF/t9MWlFQQnXZYrVZcaHZfuTDqFrvdjo8++gibNm1CWVkZNBoNpk6diieffBJZWVndLm/Lli34+OOPUVhYCADIyMjA8uXLcdttt3V4T11dHX73u98hNzcXdXV1iImJwdy5c/Hss88iOrptgufSpUvYtWsXTp48ifz8fJw/fx5utxtvvvkmvvvd73a7zkRERESDQXcTAi6LERKVloH7q8RgPxERERHRVRAEwbNZmlQGKAFpO9eIZjNQUNDndRvK7HY7Hn74YeTl5SE6Ohrz5s1DbW0ttm/fjtzcXLz33nuYPXt2l8t755138P7770OhUODGG28EAOzduxc/+tGPcPbsWTz//PNt7qmoqMDSpUtRW1uL1NRULFy4EIWFhfjkk0+Qk5ODv/71r4iPjw+6Z9u2bXjzzTd79uGJiIiIhqDAhAD1DIP9REREREQ0aHzwwQfIy8tDdnY21q1bB61WCwDYvHkzXnzxRbz00kvYsWOH/3hnDh8+jPfffx/h4eHYsGED0tI8o82KioqwbNkyrFq1CnPmzMHkyZOD7nvllVdQW1uLZcuWYeXKlRAEAaIoYuXKldiwYQN++tOfYu3atUH3JCUlYfny5Rg/fjzGjx+Pd999F1u3bg1RqxARERERAZL+rgAREREREVFXOJ1OrF+/HgCwYsWKoID+7bffjptuugmNjY349NNPu1TemjVrAABPPPGEP9APAGlpaXj88ceDrvE5deoUDhw4AL1ej1deecU/rVwQBLzyyivQ6/XYs2cPzpw5E3TfwoUL8ZOf/AR33nkn0tLSOB2diIiIiEKOwX4iIiIiIhoUjhw5AoPBgKSkJGRnZ7c5v3jxYgDAzp07r1iWzWbDvn37AKDdtfl9Ze3Zswd2u91/fNeuXQCA+fPnQ6lUBt2jVCoxf/58AMCOHTu68pGIiIiIiEKGwX4iIiIiIhoUCrz7H3S0CW9mZiYA+Dfa7UxxcTFsNhsiIyORkJDQ5nxCQgL0ej2sViuKi4vb1GH8+PHtluurW1fqQEREREQUSgz2ExERERHRoFBZWQkAiIuLa/e877jBYIDJZOq0rIqKik7LCjzne9/A58OHD+/0Hl/5RERERER9hRv0EhERERHRoGA2mwEAarW63fMajcb/3GQyISws7KrLCiwvMHHguy/wva50T18RRdFfv75gsViCHunqsB1Dh20ZGmzH0GFbhgbbMTTYjqHT120pimKX93tisJ+IiIiIiGgIcDgc/mWG+lJJSUmfv+dQxHYMHbZlaLAdQ4dtGRpsx9BgO4ZOX7alQqHo0nUM9hMRERER0aDgGzXf0SiqwFHtnY3q70pZgeUFluW7r6MR9O3d01fkcjlGjx7dZ+9nsVhQUlKC5OTkTmdIUOfYjqHDtgwNtmPosC1Dg+0YGmzH0Onrtjx//nyXr2Wwn4iIiIiIBgXfRrpVVVXtnvcd1+v1Vwy2JyYmdlpW4LnADXwTEhJw+vRpVFdXd3qPr/y+JAhCh8sL9Sa1Wt0v7zvUsB1Dh20ZGmzH0GFbhgbbMTTYjqHTV23Z1SV8AG7QS0REREREg8S4ceMAAKdOnWr3/OnTpwEAGRkZVywrJSUFSqUSjY2NQRvw+lRWVsJgMEClUiElJaVNHfLz89st11e3rtSBiIiIiCiUOLL/GuRwOCCKIk6ePNln7ymKIgDPtJPuZKOoLbZlaLAdQ4PtGDpsy9BgO4YG2zF0+rot7Xb7kP43mzJlCvR6PcrLy3Hy5ElkZ2cHnd+yZQsAYMGCBVcsS6lUYubMmdi1axe2bt2Khx9+uN2yZs2aFbRG6rx58/Duu+8iJycHNpsNSqXSf85msyEnJwcAsHDhwqv7kFeJffzBi+0YOmzL0GA7hg7bMjTYjqHBdgydgdzH58j+a5AgCH3+n1oQBCgUCv4wCQG2ZWiwHUOD7Rg6bMvQYDuGBtsxdPq6Lfujn9eXZDIZli9fDgB49dVX0dLS4j+3efNm7N69G5GRkViyZIn/+IkTJ3Drrbfi1ltvbVPeI488AgBYvXo1ioqK/MeLioqwevXqoGt8srKycP3118NgMOCNN97w/7EniiLeeOMNGAwGzJo1C2PHjg3Rp+4a9vEHL7Zj6LAtQ4PtGDpsy9BgO4YG2zF0BnIfXxB9vVMiIiIiIqIBzm634+GHH0ZeXh6io6Mxbdo01NXV4fDhw5DL5Vi1ahXmzJnjv/7gwYP+BEFhYWGb8n7zm99g9erV/pH+ALBv3z7YbDY89dRTeP7559vcU1FRgaVLl6K2thZpaWnIyMhAYWEhioqKEBsbi7/97W+Ij48PuqempgbPPPOM/3VpaSkMBgNGjBiBqKgoAMCwYcPw+9//vueNRERERETXJAb7iYiIiIhoULHb7fjwww+xadMmlJWVQaPR4LrrrsPTTz+NrKysoGuvFOwHPEv2rF+/3n8+IyMD999/P2677bYO61BXV4d3330Xubm5qK+vR3R0NObOnYvnnnsO0dHRba4vLy+/4vJCiYmJ/mWAiIiIiIi6i8F+IiIiIiIiIiIiIqJBjmv2ExERERERERERERENcgz2ExERERERERERERENcgz2ExERERERERERERENcgz2ExERERERERERERENcgz2ExERERERERERERENcgz2ExERERERERERERENcgz2ExERERERERERERENcgz2ExERERERERERERENcgz2ExERERERERERERENcgz2ExERERERERERERENcrL+rgANbXa7HR999BE2bdqEsrIyaDQaTJ06FU8++SSysrL6u3oDnsPhwMGDB5Gbm4uDBw+irKwMLpcLcXFxmDVrFh555BEkJib2dzUHJVEUcf/99+PgwYMAgC1btiAtLa2fazW4GI1GfPjhh9ixYwfKy8sBAMOHD8d1112H5557DsOHD+/nGg58Fy5cwAcffICDBw+ipqYGMpkMI0eOxM0334wHH3wQYWFh/V3FAePUqVPYt28fTp48ifz8fFRUVAAAdu7ciaSkpA7vu3jxIt59913s378fTU1NiIuLwy233IInn3zymmzf7rZjXV0dcnNzsXv3bpw8eRJ1dXVQKBQYM2YMvv3tb2PZsmWQya697uTVfj8GunDhAu666y7YbDZMnDgRf/vb33qzykQhxT5+z7CP33vYx+859vF7jn38rmMfPzTYxw+NodLHF0RRFPv8XemaYLfb8fDDDyMvLw/R0dGYNm0aamtr8c0330Aul+O9997D7Nmz+7uaA9q+ffvw4IMPAgDi4+P9fzydOHECNTU10Gq1WLNmDSZPntyf1RyUNmzYgBUrVkAQBIiiyD8Euun8+fN48MEHUVNTg1GjRmHs2LFwOBy4ePEizp8/jz//+c+YOnVqf1dzQDt8+DAefvhhWK1WJCcnIyMjAxaLBUeOHEFLSwvS0tLwySefICIior+rOiA89dRT2LlzZ5vjnXW8Tp06hfvuuw8mkwlZWVkYOXIkTpw4gYqKCqSnp+Mvf/kLdDpdb1d9QOluO/7nf/4nvvjiC0ilUmRmZmLEiBGoq6vDsWPHYLfbMW3aNHzwwQdQq9V9Uf0B42q+HwO53W784Ac/wLFjxyCKIoP9NKiwj99z7OP3Hvbxe4Z9/J5jH7972McPDfbxQ2Oo9PGvvTQN9ZkPPvgAeXl5yM7Oxrp166DVagEAmzdvxosvvoiXXnoJO3bs8B+ntgRBwC233IIHH3wwqLNvs9mwcuVKbNy4ES+++CK2bdsGuVzejzUdXKqqqvD2229j9uzZuHDhgj9bS13T3NyMhx56CAaDAf/93/+Nb3/720HnL168yP/XXbBy5UpYrVY89dRTeO655yAIAgDAYDDgoYcewqlTp7BmzRq8+OKL/VzTgWHSpElIT0/H+PHjkZ2dje9+97uoq6vr8HqXy4UXXngBJpMJL774Ih577DEAniDVc889h127duHtt9/Ga6+91lcfYUDobjvq9Xo8//zzuPvuuzFs2DD/8eLiYjz00EM4dOgQ3n//ffzHf/xHX1R/wOhuO17uT3/6E44ePYply5Zhw4YNvVhTotBjH7/n2MfvHezj9wz7+KHBPn73sI8fGuzjh8aQ6eOLRL3A4XCI06dPF9PT08UTJ060Of/oo4+K6enp4rp16/qhdkODxWIRr7vuOjE9PV08ePBgf1dnUHn00UfFSZMmieXl5eK8efPE9PR08fz58/1drUHjl7/8pZieni5+9NFH/V2VQauhoUFMT08Xs7KyRJvN1ub8F198Iaanp4v33XdfP9RucJg5c6aYnp4ulpWVtXt+27ZtYnp6unj77beLbrc76Fx1dbWYmZkpZmZmig0NDX1R3QHrSu3YGd/36bx583qhZoNLd9rx4sWL4qRJk8THHntMPHDggJieni7efffdfVBLop5jH7/3sY9/9djH7xn28XuOffyeYx8/NNjHD43B2sfnBr3UK44cOQKDwYCkpCRkZ2e3Ob948WIAaHd6DHWNSqVCcnIyAKCmpqZ/KzOIfPbZZ9i9ezeef/55roV6FWw2GzZu3Ai1Wo2lS5f2d3UGra6O0ouMjOzlmgxdu3btAgDccsst/hFVPrGxsbjuuuvgdDqxe/fu/qjekDB27FgA/B3UXT/72c8AeEb+EQ027OP3Pvbxrw77+D3DPn5osI/f+9jH733s41+dgdTHZ7CfekVBQQEAdLhBV2ZmJgCgsLCwz+o01LhcLv/U1JiYmH6uzeBQV1eHN998E9nZ2Vi+fHl/V2dQys/Ph9FoRGZmJtRqNfbv34+33noLP//5z/GHP/wBFy5c6O8qDgparRaTJ0+Gw+HAe++9BzFg+xyDwYAPP/wQAHD33Xf3VxUHPd/vofHjx7d73vf76cyZM31Wp6GmtLQUAIKm/lLn/v73v2P//v144YUXEB8f39/VIeo29vF7H/v43cc+fs+xjx8a7OP3Pvbxex/7+N030Pr4XLOfekVlZSUAIC4urt3zvuMGgwEmk+ma3C29pz7//HM0NDQgKioKU6ZM6e/qDAqvvfYaWlpa8Prrr0MiYa7zapw/fx4AEB0djeeeew7btm0LOv/OO+/giSeewPPPP98f1RtUfvnLX+KRRx7BqlWrsGXLFmRkZMBqteKbb76BWq3GW2+9hVmzZvV3NQetK/0eGj58eNB11H3r1q0DACxYsKB/KzJIVFdX49e//jUmTpyIe++9t7+rQ3RV2Mfvfezjdx/7+D3HPn7osI/fu9jH733s43fPQOzjM9hPvcJsNgNAhzt3azQa/3P+IdB95eXl+PWvfw0A+I//+A8oFIp+rtHAt23bNmzbtg2PPfaYf1oadV9TUxOA1umTL730Er797W9DKpVi69ateOutt7Bq1SokJCRwxMoVpKWl4ZNPPsHzzz+PY8eOoaSkxH9u5syZGD16dP9Vbgi40u8h3+8dk8nUZ3UaStavX4+8vDzo9Xo8/vjj/V2dQWHFihWwWq34xS9+wWAUDVrs4/cu9vG7j3380GAfP3TYx+9d7OP3Lvbxu28g9vEHRi2IqMtaWlrw1FNPwWAw4NZbb8X3v//9/q7SgGcwGPDaa69h1KhReOaZZ/q7OoOa2+0GADgcDjzxxBN45JFHMHz4cMTExOC+++7DCy+8AABYtWpVf1ZzUDhw4ADuuOMOGI1GrFmzBocOHcLXX3+N1157Dfv378c999yDPXv29Hc1idrYu3cvfv3rX0MikeDNN9/kFN8u+OKLL7Br1y48/PDDyMjI6O/qENEAxD5+97GPHzrs44cO+/g0WLGP330DtY/PYD/1Ct+oHovF0u55XzYWAEf8dIPNZsOTTz6JwsJC3HDDDXj77bf7u0qDwptvvom6ujq8+uqrUCqV/V2dQS1wxF57o3p8f5hWVlairKysz+o12BgMBjz//POw2+344IMPMHv2bISHh2P48OFYunQpXnvtNdhsNqxYsQIul6u/qzsoXen3kG+0D38Hdc+JEyfwzDPPwOl04rXXXsP8+fP7u0oDXkNDA375y18iOTkZTz31VH9Xh6hH2MfvHezjXx328UOHffzQYB+/97GP3zvYx+++gdzH5zI+1CsSEhIAAFVVVe2e9x3X6/X8IdxFDocDzz77LPLy8jBp0iSsWrWKU3u7aOfOnVAqlVi1alWb0Si1tbUAgJdffhlqtRr33nsvbr311v6o5qCQmJgIAFAoFP71EAOFhYUhKioKDQ0NqK2txYgRI/q6ioNCbm4uDAYDbrjhBn+bBrr55pshl8tRXl6OsrIyJCcn930lB7mEhAQ0NTWhqqqq3Wn91dXV/uuoa86ePYtHH30UZrMZL7/8Mqfxd9GRI0fQ2NgIjUaDRx55JOhcc3MzAM9ayffddx8A4P3332ffiAYs9vFDj338q8c+fuiwjx8a7OP3PvbxQ499/KszkPv4DPZTrxg3bhwA4NSpU+2eP336NAAMqGkuA5nb7cZLL72E3bt3Y+zYsfjDH/4QNPqCrsxmsyEvL6/D8ydPngTATWiuJDMzEwBgt9vbXYvX5XLBaDQCAL9HO+HrhOp0unbPy2QyaDQaNDU1+ddQpe4ZN24cCgoKkJ+fj7lz57Y57/v9xPV9u6a0tBQPPfQQDAYDnn76aTz00EP9XaVBp6KiAhUVFe2eM5lM/t9RHOlHAxn7+KHFPn7PsY8fGuzjhwb7+L2PffzQYh+/5wZiH5/BfuoVU6ZMgV6vR3l5OU6ePIns7Oyg81u2bAHATldXiKKIn/70p9i6dStSUlLw4YcfIiIior+rNagcPny4w3Pz589HRUUFtmzZgrS0tD6s1eAUHx+PrKwsnDp1CgcPHmwzve/w4cNwOBxQq9VITU3tp1oOfL71D0+dOgWn0wmZLPjXcUlJif8PgPZGBdGVzZs3Dxs3bsS2bdvw9NNPQxAE/7mamhp88803kMlkmDNnTj/WcnC4dOkSHnjgAdTW1uKBBx7Ac889199VGlQWLlyIwsLCds8dPHgQy5cvx8SJE/G3v/2tj2tG1H3s44cO+/g9xz5+6LCPHxrs4/c+9vFDh338nhnIfXyu2U+9QiaTYfny5QCAV199FS0tLf5zmzdvxu7duxEZGYklS5b0VxUHjV/96lf49NNPkZSUhD/+8Y+Ijo7u7yrRNe6xxx4DALz11lsoLy/3H6+ursYvf/lLAMD3vvc9TkHvxJw5c6BSqVBRUYH//u//htPp9J9raGjAT3/6UwDA9OnTERMT01/VHNTmz5+P5ORknD17Fh988IH/uN1ux89//nM4nU4sWbIEUVFR/VjLga+hoQEPPvggKisrsXTpUvy///f/+rtKRNSP2McPHfbxaaBhH7/n2Mfvfezjhwb7+EObIIqi2N+VoKHJbrfj4YcfRl5eHqKjozFt2jTU1dXh8OHDkMvlWLVqFbOtV7Bjxw48/fTTAIAZM2Z0uO7cwoULsXDhwr6s2pDBUT9XZ+XKlfjkk0+g0WgwZcoUSCQSHD16FEajEZMmTcK6deugVqv7u5oD2t///nf8/Oc/h9vtRkJCAjIzM2G1WnH8+HEYjUbExMTgT3/6E1JSUvq7qgNCbm5u0Hq8p0+fhsPhwLhx4/x/dN50003+n5kAkJ+fj/vuuw9msxlZWVkYNWoUjh8/joqKCqSnp+Mvf/lLh9Osh6rutuPTTz+NHTt2QKFQYPHixUGjpwL9+Mc/vqb+qLqa78f29PeoH6KrwT5+z7GP3/vYx7867OP3HPv43cM+fmiwjx8aQ6WPz2V8qNcoFAqsXbsWH374ITZt2oScnBxoNBosWLAATz/9NLKysvq7igOeb1MPwPPDoiOJiYn8Q4D61MqVK3Hdddfhz3/+M44ePQqn04nk5GTcfvvtuP/++6FUKvu7igPe3XffjfT0dPzxj3/EkSNHsHv3bkilUiQlJeHuu+/GI488wlF+ARoaGnD8+PE2xwsKCvzPL59WPn78eHz22Wd49913sX//fpw9exZxcXF45JFH8NRTT12Tm0d2tx19v4fsdjs+++yzDst95plnrqk/BK7m+5FoqGAfv+fYx6eBin38nmMfv3vYxw8N9vFDY6j08Tmyn4iIiIiIiIiIiIhokOOa/UREREREREREREREgxyD/UREREREREREREREgxyD/UREREREREREREREgxyD/UREREREREREREREgxyD/UREREREREREREREgxyD/UREREREREREREREgxyD/UREREREREREREREgxyD/UREREREREREREREgxyD/URERFepvLwcGRkZyMjI6O+qEBERERFRCLCPT0SDmay/K0BEREPbfffdh7y8vC5dW1hY2Mu1ISIiIiKinmIfn4hoYGKwn4iI+kR8fDzi4+P7uxpERERERBQi7OMTEQ0sDPYTEVGfWLJkCZ599tn+rgYREREREYUI+/hERAML1+wnIiIiIiIiIiIiIhrkOLKfiIgGnPLycixYsACAZ43PnJwcfPTRRzhz5gycTifGjBmDH/7wh7jjM85BawAABvdJREFUjjs6LKOoqAhr1qzBwYMHUVNTA7VajYyMDNx555347ne/C6lU2u59TqcTX3zxBTZv3ozTp0/DaDQiMjISo0aNwvz583H33XdDp9O1e+/hw4fxhz/8AcePH4fFYsGoUaOwdOlS3HvvvRAEoecNQ0REREQ0SLGPT0TU+xjsJyKiAe3jjz/G66+/Dr1ej5EjR6KqqgrHjx/H8ePHceLECfz0pz9tc8+WLVvw4x//GA6HAxqNBunp6WhqasKhQ4dw6NAhbN26FatWrYJKpQq6r6GhAU899RSOHj0KABg2bBjGjh2LhoYGHDlyBIcOHUJWVhZmzJjR5j03btyIn/zkJwgPD0dSUhIqKytx9uxZ/OIXv0BFRQVefvnl3mkgIiIiIqJBhn18IqLewWV8iIhoQPv1r3+Np556Cnv37sWnn36KPXv2YOXKlZBIJPj444+xdevWoOuLiorwX//1X3A4HLj77ruxd+9ebNy4ETt37sRHH30EnU6HvXv34q233gq6TxRFPP/88zh69Cji4+Oxbt067NmzB//4xz+Qk5ODgwcPYsWKFYiJiWm3nitWrMDLL7+Mffv24dNPP8X+/fvxwgsvAAA++ugjXLx4sXcaiIiIiIhokGEfn4iodzDYT0REfeJ3v/sdMjIyOvx66qmn2r1v+vTpeP755yGTeSajCYKAe+65B9/73vcAAKtWrQq6fu3atbDZbEhPT8cvfvELaDQa/7mZM2f6R9/87W9/Q01Njf/crl27kJeXB4VCgbVr1+KGG24IKlen0+EHP/gB0tLS2q3nHXfcgQceeCBo6vDjjz+O9PR0iKKI3NzcLrYUEREREdHgwD5+bhdbioiobzDYT0REfSI+Ph5Tpkzp8Gv06NHt3nf//fd3evzs2bO4dOmS//jXX38NAFi+fHm7a2jeddddiI6OhsPhwL59+/zHv/rqKwDAzTff3GFnvzP33ntvu8cnT54MABz1Q0RERERDDvv47OMT0cDCNfuJiKhPLFmyBM8++2y37xszZky7x1NSUiCTyeB0OlFUVIT4+HgYjUbU1tYCANLT09u9Ty6XIzU1FfX19bhw4YL/+NmzZwG0dty7Kzk5ud3j0dHRAACTyXRV5RIRERERDVTs47OPT0QDC0f2ExHRgNbR+plSqRR6vR5Aayc7sLPd0X2AZ1Ouy69vaWkB4JnKezUCpxIHkkg8v2pFUbyqcomIiIiIhhr28YmIegeD/URENKDV1dW1e9zlcsFgMAAAwsLCgh47uw+Af2RQ4PVarRYAYDQae1RfIiIiIiLqHPv4RES9g8F+IiIa0M6dO9fu8eLiYjidTgDwr7+p0+n8I3p8U3Yv53Q6/VN7U1NT/cczMjIAAEePHg1NxYmIiIiIqF3s4xMR9Q4G+4mIaEBbv359p8fT09MRHx/vP37TTTf5z7c3rfbzzz9HfX095HI5brzxRv/xW265BYBnE6/AdT6JiIiIiCi02McnIuodDPYTEdGAdvDgQfzud7/zj/ARRRF/+9vf8I9//AMA8OSTTwZd/9BDD0GpVOLs2bP4+c9/DrPZ7D+3f/9+/PrXvwYALF261D9CCADmzp2L66+/Hna7HY888ggOHjwYVG5LSws++eQTFBUV9crnJCIiIiK6VrCPT0TUO2T9XQEiIro2fPrpp9i3b1+n1/zsZz9DZmZm0LGXX34Zr7/+Oj7++GOMGDECVVVV/vU4f/CDH2Dx4sVB16elpeFXv/oVfvzjH+Nvf/sbNm/ejNTUVDQ1NaGsrAwAcOONN+Kll15q8/7vvPMOnnzySRw7dgzLly/HsGHDEB8fj/r6elRVVcHlcmH9+vX+KcVERERERNcy9vGJiAYWBvuJiKhPXLp0CZcuXer0mvY2zrrvvvuQkJCAdevWoaCgAE6nExMmTMC9996Lu+66q91yFi9ejPT0dKxduxYHDhxAYWEhVCoVpk6dirvuugvf/e53IZVK29wXFRWFP/3pT/jss8/wxRdfoLCwEAUFBYiKisJ1112HBQsWICsr66o+PxERERHRUMM+PhHRwCKI7S12RkRE1I/Ky8uxYMECAEBhYWE/14aIiIiIiHqKfXwiot7HNfuJiIiIiIiIiIiIiAY5BvuJiIiIiIiIiIiIiAY5BvuJiIiIiIiIiIiIiAY5BvuJiIiIiIiIiIiIiAY5btBLRERERERERERERDTIcWQ/EREREREREREREdEgx2A/EREREREREREREdEgx2A/EREREREREREREdEgx2A/EREREREREREREdEgx2A/EREREREREREREdEgx2A/EREREREREREREdEgx2A/EREREREREREREdEgx2A/EREREREREREREdEgx2A/EREREREREREREdEg9/8BxY/5mYAxFHcAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Activation: SoftPlus, optimizer: adam_optimizer, batchnorm: true\n", + "Activation: SoftPlus, optimizer: adam_optimizer, batchnorm: false\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABe0AAAGgCAYAAAA3q0zLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxU9f7H8dcMywCigiIq4K7gbuKa4m5u5U2zrlZX894Wbd8366r1K9tuq2VaWaa31LpqmWnmbmouaOWOimgCoqCMC8uwze8PmgliEWRgBng/Hw8f6jnn+z2f80XqMx++5/s1WK1WKyIiIiIiIiIiIiIi4nRGZwcgIiIiIiIiIiIiIiK5VLQXEREREREREREREXERKtqLiIiIiIiIiIiIiLgIFe1FRERERERERERERFyEivYiIiIiIiIiIiIiIi5CRXsRERERERERERERERehor2IiIiIiIiIiIiIiItQ0V5ERERERERERERExEWoaC8iIiIiIiIiIiIi4iJUtBcRkSpl/PjxhIWFsXTpUmeHIiIiIiJS6SxdupSwsDDGjx9f4FxZcu2BAwcSFhbGjh07HBFmiYWFhREWFkZsbGyF3ldEpCzcnR2AiIhUXmFhYVfV7pVXXuGmm25ycDQiIiIiIlXLs88+y9KlS+nUqRNfffVVidr8/e9/57fffuOWW27hpZdeKucInSc2NpZly5ZRs2ZNJk6c6OxwREQcSkV7ERG5auHh4YUe37NnDwBNmzalTp06Bc7XrVu33GJq2LAhzZo1o2bNmuV2DxERERGRinDTTTexdOlSfvvtN6Kjo2nRokWx10dHR/Pbb78BMGbMGIfH40q5dlxcHO+//z7BwcHFFu2bNWsGgIeHRwVFJiJSdirai4jIVVu4cGGhx20z8CdNmlThM+pff/31Cr2fiIiIiEh56datG02aNOHkyZMsW7aMJ554otjrlyxZAkCLFi3o3Lmzw+OpjLn2Dz/84OwQRERKTWvai4iIiIiIiIi4KNskmG+//Zbs7Owir8vOzmb58uX52oiISOWkor2IiFSovBtQHT9+nKeffpq+ffvSrl07nnnmGft1kZGRvPbaa9x8881ERETQvn17evXqxT333MP69euL7L+ozbF27NhBWFgYAwcOBGDdunWMHz+erl27cs0113DLLbfw/fffl89Di4iIiIhcpdGjR+Pm5sbZs2fZsmVLkddt3ryZxMRE3N3dGTVqFAkJCXz++efceeedDB48mI4dOxIeHs5NN93ErFmzuHz5cqljudJGtDt27OBf//oXXbt2pXPnzowZM4b//e9/xfaZkpLCt99+y2OPPcbw4cPp0qULHTt2ZMiQIUyfPp1Tp04VGseECROA3GVybJvN2n7l3ez2ShvRbt68mcmTJ9OrVy/at29P7969ue+++/j555+LfEZ9rhCR8qblcURExCl+/fVXPvzwQ7Kzs2nZsiW1a9fGYDDYz99///2YzWb8/PyoV68egYGBnD59mk2bNrFp0ybuueceHn/88au69/vvv8/MmTMJCAigcePGnDp1ir179/LYY4+RnJzMP/7xD0c9poiIiIhImdSvX5/evXuzefNmli5dSr9+/Qq9zlZI79u3LwEBAbz22mt8+umneHl5ERAQQGhoKGazmcOHD3PgwAG+//57vvzyS2rXru2QOL/++mv+/e9/Y7VaqVmzJs2bN+fMmTM899xzHDlypMh2O3fu5KmnnsLd3Z26devSpEkT0tLSiI+PZ+HChaxYsYJPP/2Ujh072tvYnuXIkSN4enrSvn37fH2WdM39l19+mfnz5wO5+261bt2a2NhY1q1bx7p167j33nt55JFHimyvzxUiUl5UtBcREad49913GT58ONOmTaNWrVoApKen288/8cQT9OzZk0aNGuVrt23bNp544gk++ugjBg0axDXXXFOq+549e5aPP/6Y//znP4wcORKArKwsXn75Zb788kvefPNNRo0aha+vb9keUERERETEQcaMGcPmzZtZv349Fy5cKFBoP3/+PBs2bLBfC7nF+wEDBtClSxfc3Nzs154+fZoXX3yR9evX8+abb/Liiy+WOb7o6GheeOEFrFYr48eP56mnnsLT0xOr1cpXX33FCy+8kG+CTl5NmjThvffeIyIigho1atiPX758mblz5zJr1iyeeeYZvv/+e3sf//73v9mxYwcTJkygXr16Re61VZxly5Yxf/583Nzc+Pe//83YsWMxGo1kZ2czf/58XnvtNT788ENat27NsGHDCrTX5woRKU9aHkdERJyiWbNmvPbaa/aCPYCXl5f9z7fcckuBgj1Ar169ePTRR4HcRLu0MjMzmTRpkj2xBnB3d+eZZ56hTp06pKam5nudVkRERETE2QYOHIi/vz8ZGRmsWLGiwPnvvvuOzMxMAgIC6N+/PwDXXnst3bt3z1ewB2jYsCFvvfUWHh4efPfdd8Wuk19Sc+fOJTMzk7Zt2/L888/j6ekJgMFgYOzYsYwZM4asrKxC2zZv3pyhQ4fmK9gD+Pr68vDDDxMeHk50dDR79+4tc5x5zZo1C4CxY8dy6623YjTmlsjc3Nz45z//af+88MEHHxTaXp8rRKQ8aaa9iIg4xahRo3B3L/5/Q8eOHeOHH34gKioKs9lsT/Rt628eOnToqu592223FThmMplo27YtW7Zs4ffff7+qfkVEREREyoOnpycjR45k/vz5LF26lNtvvz3fedvSOH/729/y5diXL19m5cqV/PLLL5w9e5a0tDSsViuQW1BPTU3lxIkTtGjRokzxbd68GaDI5WDuuOMOvvrqqyLbZ2dns2HDBn7++WdOnTpFSkoKOTk5AJw8eRKAgwcP0qlTpzLFaRMdHW3P+f/5z38Wes2dd97J8uXLOXLkCPHx8QQFBRW4Rp8rRKS8qGgvIiJO0apVq2LP/+c//+GTTz6xf6gojNlsLvV9/f398fPzK/Rc3bp1gdzNsEREREREXMmYMWOYP38++/fv5+jRo/Z8+uDBgxw+fNh+jc2uXbt4+OGHOXfuXLH9Xk1OndelS5dITEwEis7xmzVrhru7e6Gz7c+ePcukSZM4ePBgucaZV0xMDJD7pm/jxo0LvaZly5a4ubmRnZ3N8ePHCxTt9blCRMqTlscRERGn8Pb2LvLc999/z8cff4zBYOCBBx7g22+/Zffu3Rw6dIioqCjmzZsHUOQrtsXx8fEp8pztldjiflAgIiIiIuIMrVu3pl27dsCfM+vz/rlTp060bNkSyJ1h/9BDD3Hu3DmuvfZaPvvsM7Zt28b+/fuJiooiKiqKhg0bAleXU+eVtzBtK1b/lZubW5EF7meffZaDBw/SqFEj3nrrLTZs2MC+ffvscd54440OibOwmIuKF3KXuvH39893fV76XCEi5Ukz7UVExOXYPnhMnDiRBx98sMB5R86yERERERGpLMaMGcOBAwdYvnw5jz/+ODk5OXz33Xf2czabNm3i/PnzNGzYkNmzZ+fbOwpyi8kXLlxwSEx516I/d+4cwcHBBa7Jzs4uNIdPTExky5YtAHz44YeFztQvj9zfFnNxbyFkZWWRnJyc73oRkYqimfYiIuJyYmNjAejWrVuh53/77beKDEdERERExCXccMMNmEwmkpKS2Lx5M+vXr8dsNuPt7c31119vv86WT3fo0KFAwR7gyJEjpKamOiSmmjVrUq9ePSB3T6rCxMTEFDpT3hann59foQX7rKws9u/fX2ifBoPhakOmefPmAKSnpxe57vyxY8fsm/SWdc1/EZHSUtFeRERcjm3pHNvamHmdP3+eZcuWVXRIIiIiIiJOV7t2bQYPHgzAsmXL7G+oDhkyBF9fX/t1tkJ9Yfk0wNy5cx0aV58+fQD473//W+j5+fPnF3rclvdfvnyZtLS0Aue/+eabImfD256xsHZX0rx5c5o0aQLAZ599Vug1tuOhoaH2pYRERCqKivYiIuJybDPs58yZY98kCuDUqVNMmjTpqhJzEREREZGqwLYMzoYNG+xLy+RdGgf+zKd/+eUXFi9ebD+ekZHBO++8w3fffYeHh4fDYvrXv/6Fh4cHBw4c4JVXXiEjIwPIXYbn66+/5n//+x/u7gVXaG7ZsiX+/v5kZWXx4osvYrFY7Od++OEHXnrpJUwmU6H3bNy4MQaDgfPnz9s34i2Ne++9F4DFixezaNEi+/rzOTk5fP7553z77bcA3H///aXuW0SkrLSmvYiIuJy77rqLVatWERcXxw033EDTpk0xGo0cO3YMX19fnn76aV588UVnhykiIiIiUuGuvfZagoKCiI+PB3KL1927d893Tdu2bbnxxhv59ttvmTp1Ku+//z6BgYGcPHmSS5cu8cgjj/D1118TFxfnkJhatWrF888/z/Tp05k3bx5Lly6lSZMmnDlzhrNnz3LHHXewdu3aAvdzd3fniSee4LnnnmPp0qWsWbOGxo0bk5SUxJkzZ4iIiKBOnTosX768wD39/Pzo378/GzZs4Oabb6ZVq1b2tw2mTJlCmzZtio159OjRHDx4kPnz5zNt2jRmzpxJw4YNiYuL4/z58wBMnjyZYcOGOWSMRERKQzPtRUTE5dSvX5/FixczcuRIatWqZf9wMWrUKJYtW0bLli2dHaKIiIiIiFMYjUZGjx5t//vo0aMLXd/9lVde4YknnqBZs2YkJydz6tQp2rZtywcffGCfZe5I48aN47PPPqNXr15kZ2cTHR1NYGAgL730ElOmTCmy3c0338wHH3xA586dyczMJCYmBn9/f5566inmzJmDm5tbkW1fe+01/vGPf9CgQQOOHj3Kzp072blzJxcvXixRzM899xwfffQRAwYMICcnh0OHDmEwGBg0aBDz5s3j0UcfLfU4iIg4gsFqe/9HREREREREREREREScSjPtRURERERERERERERchIr2IiIiIiIiIiIiIiIuQkV7EREREREREREREREXoaK9iIiIiIiIiIiIiIiLUNFeRERERERERERERMRFqGgvIiIiIiIiIiIiIuIi3J0dgJTNL7/8gtVqxcPDw9mhiIiIiIgDZWZmYjAY6Ny5s7NDkQqmHF9ERESkaippjq+Z9pWc1WrFarVW6P0yMjIq9J5VlcbSMTSOjqFxdByNpWNoHB1HY+kYzhjHis7zxHUox6+8NJaOoXF0DI2j42gsHUPj6BgaR8dx5RxfM+0rOdvsmw4dOlTI/VJTUzl06BAtW7bEx8enQu5ZVWksHUPj6BgaR8fRWDqGxtFxNJaO4Yxx3LdvX4XcR1yPcvzKS2PpGBpHx9A4Oo7G0jE0jo6hcXQcV87xNdNeRERERERERERERMRFqGgvIiIiIiIiIiIiIuIiVLQXEREREREREREREXERKtqLiIiIiIiIiIiIiLgIFe1FRERERERERERERFyEivYiIiIiIiIiIiIiIi5CRXsRERERERERERERERehor2IiIiIiIiIiIiIiItwd3YAIiIiUrTMzEyys7OdHUaFs1gs9t+NRs0xKAuNpWOUdRzd3Nzw8PBwdFgiIiJSCSnHV15aFhpHx3HlHF9FexERERd08eJFkpKS7ElEdZOTk4O7uzvx8fFKRMtIY+kYjhhHk8lEQEAAtWrVcnB0IiIiUhkox1de6ggaR8dx5RxfRXsREREXc/HiReLi4vD19SUgIAAPDw8MBoOzw6pQ2dnZWCwWTCYTbm5uzg6nUtNYOkZZxtFqtZKZmcmFCxeIi4sDUOFeRESkmlGOr7zUUTSOjuPKOb6K9lIqGQnR1Nj9FVkNJoFPc2eHIyJSJSUlJeHr60tISEi1S+RtbK8Le3l5KREtI42lY5R1HL29valZsyaxsbEkJSWpaC8uxXJiLzX2fEt2yH3g4+PscEREqiTl+MpLHUXj6DiunOPrHQopFcux3XgmHiP11x+dHYqISJWUmZmJxWKhdu3a1TaZF6mqDAYDtWvXxmKxkJmZ6exwROwsMb/iefYIlzZ96exQRESqJOX4IlVXeeX4KtpLqbgHNAIg4/QxJ0ciIlI12X7Srw0rRaom2/d2ddx8TlyXd4cBWIH0ozuxnD7u7HBERKoc5fgiVVt55Pgq2kupeDRsCUBW4u/kZFbPjVNERCqCZuCIVE363hZX5BHQiIyg9gCc3/iFk6MREam6lAeIVE3l8b2tor2UilutAHJMNSAnG8vpaGeHIyIiIiIiDpDesg8Y3Ug7/itpJ/c7OxwRERGRak1FeykVg8FAll8IAJa4I06ORkREREREHCHHxx+fDv0BOL/hC6xWq3MDEhEREanGVLSXUsvyCwYgPTbKyZGIiIiIiIij1Og+CoO7J5a4I6QejXR2OCIiIiLVlor2Umq2or0l7ohm4IiISIUaOHAgYWFhhIWFsXfv3kKviY2NJSwsjN69e5drLDt27CAsLIxnnnmmXO9THpYuXUpYWBgzZ850digi4kLcfP2o3f16AM5v/BJrjjZMFhGR8qX83jGU31c9KtpLqWXXaghGN7JTzGRdOOvscEREpJp65513nB1ChZk5cyZhYWEsXbrU2aGISBVXu+cojF41yEz8ncsHtjg7HBERqUaU34v8SUV7KT03dzwCmwBgidW69iIiUvG8vLzYunUru3btcnYoIiJVipu3L7V7jgIgefMirNmZzg1IRESqBeX3IvmpaC9XxaNhKwDSYw87ORIREamObr/9dqB6zcYREakotbuNwK2GH1nms1z8ZZ2zwxERkWpA+b1Ifiray1XxaNgSgPQ4zbQXEZGKN3r0aJo2bUpkZCQ//fRTqdoePHiQRx55hIiICNq3b09ERASPPvoohw4duup4zp8/z9SpU+nTpw8dOnRg6NChzJ49m4yMjALXnjhxgvfff59x48bZY+jVqxf33nsvkZEFN34cOHAg77//PgDPPvusfc3Pwl6nPXnyJFOnTuW6666jY8eOdO/enTFjxjBr1izMZnOhsZ85c4Znn32W3r1706FDB4YPH878+fMLvXb8+PGEhYURGxvLpk2buO222+jcuTPh4eHceeed7Nu3r8gx2r59O5MnT6Znz560b9+e/v37M2XKFE6dOlXgWtu6pePHjyclJYU33niD6667jvbt23PfffcB8MwzzxAWFsaOHTvYuXMnEydOpEuXLnTr1o377ruPEydOAJCTk8Onn37K9ddfT8eOHenTpw9vvPFGoV8bEcll9PTCL+IWAMxbviYnI93JEYmISFWn/F75vfL7/FS0l6vi+UfRPuPMCSXxIiJS4YxGIw888AAA7777bonbrVq1ir///e+sWrWK+vXrM3ToUAIDA1m5ciW33HILP/74Y6ljMZvN3HLLLaxevZrOnTvTu3dvzp49y9tvv819991Hdnb+jRwXL17MzJkzuXTpEm3atGHw4MEEBQWxfv16JkyYwPfff5/v+qFDh9K6dWsAwsPDGT16tP1X48aN7detXbuWv/3tbyxevBir1cqAAQMIDw8nLS2NTz75hCNHCv6gPT4+njFjxvDzzz/TrVs3wsPDOXXqFC+//DIffPBBkc+8ePFiJk2aRE5ODv3796dhw4Zs2bKF8ePHEx0dXeD6efPmcccdd7Bx40aaN2/OkCFD8PHxYcmSJYwaNYo9e/YUep/09HTGjx/PokWLaNGiBQMHDiQgICDfNevWrWPixImkpKTQt29fAgICWLduHf/4xz84f/48jzzyCO+99x7BwcH07t2b9PR0PvnkE6ZNm1bk84kI1Oo8CHe/QLJTzFzYtdLZ4YiISBWn/F75vY3y+z9YpVLbu3evde/evRV2v5SUFGtkZKT18uXL1hPv3GWNfukma+qJ/RV2/6rENpYpKSnODqVS0zg6hsbRcco6lmlpadaDBw9a09LSirwmJyfHmpaeWSl+5eTkXNU4ZGVlWS9fvmzNysrKd3zAgAHW0NBQ67Fjx6zZ2dnWG264wRoaGmpds2aN/ZpTp05ZQ0NDrb169crXNiEhwXrNNddYQ0NDrcuWLct37quvvrKGhoZaO3fubD1z5kyJYty+fbs1NDTUGhoaar399tutly5dsp87ffq09brrrrOGhoZaP//883ztdu/ebT158mSB/n777TdreHi4tVu3btbU1NR859577z1raGiodcmSJYXG8vvvv1s7depkDQsLs/73v//NN+5ZWVnWnTt3WmNjY+3HlixZYo996tSp1szMTPu5yMhIa+vWra3XXHNNgX/H//jHP6yhoaHW9u3bW7dt22Y/npOTY506dao1NDTU+swzz+Rrs3//fmubNm2s7du3t27ZsiVfm3feeccaGhpq7du3rzU9Pd1+zvY1DA0NtY4ePdp67ty5As/89NNPW0NDQ61hYWHWVatW2Y9nZ2dbH3vsMWtoaKj1+uuvtw4dOtSakJBgPx8XF2ft3r27NSwszHrq1KlCx7MwRf2bLK2SfI/bVHSeJ67DWTn+X7/nL+7daI1+6SZrzH/GW7NSLxXRWvJSTuUYGkfH0Dg6jnL88svxld8rv7ep6PzeanXtHN/d2T80kMrJYDDgFRJKyuHtWOKi8G7SztkhiYhUC1arlaff38KhE+edHUqJtGlah9ceiMBgMDi8b6PRyEMPPcQDDzzAu+++y6BBg4q9z9dff01qair9+/dn1KhR+c7dcsstrFq1iq1bt/L1119z//33lzgOg8HAtGnT8PX1tR9r0KABjz/+OA899BDz589nwoQJ9nPh4eGF9tOxY0f+8Y9/MHv2bHbs2EH//v1LHMNnn31GWloaY8eOta8Hmlfbtm3x8vIqcDwoKIgpU6bg7v5nStilSxf69OnDpk2b2L9/P927dy/Qbvz48Vx77bX2vxsMBh5++GEWLVrEjh078l373//+l+zsbMaNG0fv3r3ztXnwwQf54YcfOH78OKtWrSrwdQGYOnUqderUKfLZr7/+eoYNG2b/u9Fo5K677mLFihUcPXqUuXPnUr9+/XzPPHLkSBYsWMCuXbsICQkpsm+R6s63XQTmn78hM/F3Lmz/hjoD/uHskEREqiTl+LmU3/9J+b3yey2PI1fNFBwGQHqs1rUXERHnuO6662jXrh1Hjhxh5cril2/YtWsXAH/7298KPT969Oh815VU69atadWqVYHjQ4YMwdvbm1OnTnHmzJl859LT0/nxxx956623+Pe//80zzzzDM888Y0+Ibes1ltTWrVsBuPnmm0vVrkePHphMpgLHmzdvDsDZs2cLbdevX78Cx+rUqYOfn1+BNsWNu9Fo5MYbb8x3XV4BAQFcc801xT5Dnz59ChyzvVbs4eGR78OHTdOmTYGin09EchmMbtTpfxsAF3Z+T9alZCdHJCIiVZ3y+1zK7/Orjvm9ZtrLVfMKCQUgPS4Kq9VaLrMoRUQkP4PBwGsPRGDJyL7yxS7A5OlW7v9/eOSRR7j77ruZOXNmvhkZf2VLrIuaedGoUaN815VUcHBwoccNBgMNGzbk+PHjJCQk2GeD7N69m0ceeaTYhPLy5culiuH06dPAn8lqSTVs2LDQ4zVq1AAocjOnoKCgItv9dUOssox7UffJK+8sm7xxQO6HAjc3twLnfXx8gKKfT0T+5NOqK6bgMCxxUZi3/o+AYXc7OyQRkSpHOX5+yu+V3xcWB1Sv/F5Fe7lqng2ag9GdnNSLZJnP4OHfwNkhiYhUCwaDAS+T/hdu07dvX7p06cLu3bv55ptv6NGjh7NDKlJqaioPPvgg586dY9KkSVx//fUEBwfj4+OD0Whk8eLFTJ06FavVWiHxGI1X99JlRf2gvrBXfv+quGe42ucTkT8ZDAbqDLid0/+dysVf1lC7x0jl/SIi5UA5/p+U31895fdVR/V5UnE4o7snpgbNAEiPjXJyNCIiUp09/PDDAHzwwQdkZWUVeo1txkZsbGyh523HC5vZUZz4+PhCj1utVvsMGVufkZGRnDt3jqFDh/LYY48RFhaGr6+vPfk8efJkqe5tY5tRU9rXbitCeY27iFQc7ybt8G5+DeRkk7x5sbPDERGRakD5vfL76k5FeykTU0juuvaWOK1rLyIiztOjRw969epFXFwcX3/9daHXdOvWDYDly5cXen7ZsmX5riupQ4cOER0dXeD42rVrSUtLIyQkhAYNcmelXrhwAcD+97wyMjL48ccfC72Hh4cHANnZhb8ybdsAaunSpaWKvSIUN+45OTl8++23+a4TEddUp3/uJniX9/9ExtmrK0CIiIiUlPJ75ffVnYr2UiZewX+sa6+Z9iIi4mSPPPIIAF988UWh52+55RZ8fHzYuHGjPZG0WbJkCVu2bMHHx4dbbrmlVPe1Wq1Mnz493zqVZ86c4T//+Q8A48ePtx+3bQC1evXqfGteZmRk8H//93+cOnWq0HsEBgYCFPrhAWDixIl4eXmxePFiFi1aVOD124MHD5KQkFCq53KU22+/HaPRyNdff83PP/9sP261Wpk1axbR0dHUr1+f4cOHOyU+ESkZU8Pm1GhzLWDl/MYvnR2OiIhUA8rvld9XZ1osS8rE64+Z9hlnT5KTkY7R88prU4mIiJSHTp06MWDAADZs2FDo+fr16zNjxgyefPJJnnrqKRYsWECTJk04ceIE+/fvx8PDg9dee82eQJfUgAEDOHLkCIMHD6Z79+5kZmayfft2UlNT6d27d76kvl27dvTr149NmzYxbNgwunfvjslkYs+ePVy6dInx48ezYMGCAveIiIjAy8uLzz//nKNHj1K/fn0MBgNjxowhPDycxo0b88Ybb/DEE08wbdo05s6dS7t27UhPTycmJoYTJ04wb968IjfVKk/t27fn6aef5pVXXuGf//wnXbt2pX79+vYZTL6+vrzzzjuYTKYKj01ESse/362kHN5B6tFI0mMP4xXS2tkhiYhIFab8Xvl9daaZ9lIm7rUCcKtZB6w5WE4fc3Y4IiJSzT388MPFbqI0fPhwFi9ezLBhwzh9+jQ//PADCQkJDB8+nK+++oohQ4aU+p5+fn589dVXDBw4kD179vDTTz8RGBjIww8/zOzZs3Fzc8t3/fvvv8/DDz9MgwYN2LZtG7t27aJLly4sWbKEtm3bFnqPwMBAZs+eTZcuXfjll19YunQp//vf//KtcTlkyBCWLVvGmDFjyMrKYu3atfzyyy/4+Phw9913ExoaWupnc5SJEycyb948+vXrx9GjR1m9ejUpKSncdNNNLFu2jPDwcKfFJiIl51k3mJodBwBwfsOXFbapnoiIVF/K75XfV1cGqzKtSm3fvn0AdOjQoULul5qayqFDh2jTpg0+Pj4AnFnyH1IO/4x//9vx731ThcRRFRQ2llJ6GkfH0Dg6TlnH0jZzolmzZnh5Vd+3l7Kzs0lPT8fLy6tAUiylo7F0DEeNY2m+xys6zxPX4Qo5flGyLiZxatYDWLMzaTDueXxadK6QGCsL5VSOoXF0DI2j4yjHdwzlpY6hcXQcV87xNdNeyswUkvuTPUuc1rUXEREREanK3GsFUKvLUADOb/wSqzXHyRGJiIiIVD0q2kuZeQXnrmufHndEr8iKiIiIiFRxfr1uwuDpTUbCcVIOb3d2OCIiIiJVjor2UmamBs3BzZ2c1ItkJTtn52oREREREakYbjVq49fjbwAkb1yINSfbyRGJiIiIVC0q2kuZGdw9cgv3QLqWyBERERERqfJq9xiJ0acWmefjufTbBmeHIyIiIlKlqGgvDuEV/Me69rFHnByJiIiIiIiUN6PJG79eNwGQ/NNX5GRlODkiERERkapDRXtxCFNIayB3XXsREREREan6anUZilutALIvnePi7h+cHY6IiIhIlaGivTiEbaZ9xtmT5GSkOTkaEREREREpb0Z3T/z73AKAeetSciypTo5IREREpGpQ0V4cwr1WXdxqBYA1B0v8MWeHIyIiIiIiFaBmxwF41A0iJ+0S5h3fOTscERERkSpBRXtxGNtsey2RIyIiIiJSPRiMbvj3uw2ACzuWk51ywckRiYiIiFR+KtqLw3iFhAFgiY1yciQiIiIiIlJRarTuiWeDFlgz0jFvW+rscEREREQqPRXtxWFMtpn28UexWq1OjkZERERERCqCwWCgzoA/Ztvv/oGsC4lOjkhERESkclPRXhzG1KAZBjcPclIvkpV82tnhiIiIiIhIBfFu1gmvJu0gO4vkn75ydjgiIiIilZqK9uIwBjcPPBs2ByBdS+SIiIiIiFQbubPt/wHApb0byUiKdXJEIiIiIpWXivbiUF7Buevap8dqM1oREXGcqKgowsLCCA8PJzs7u9Br/vnPfxIWFsbAgQOL7GfkyJGEhYWxdu1aAJYuXUpYWBgzZ84sVTyxsbGEhYUxfvz4UrUrzvjx4wkLCyM2tvIVugYOHEhYWJizwxAnysjIYM6cOVx//fV07NiRnj178sADD3DgwIGr6m/lypXceuuthIeHEx4ezq233sqqVauKbZOUlMT06dPp378/7du3p3///kyfPp1z584Vev3+/ft5//33ufXWW+nWrRvt2rUjIiKChx56iD179hR5H9v3alG/Pvroo6t65qrAKzgUn1bdwJpD8qZFzg5HRERcmPJ716b83vlUtBeHMoXkrmtvidNMexERcZzQ0FD8/PxISUnh4MGDBc5nZmby66+/AhAXF0dCQkKBa8xmM0ePHsVgMNClS5di7zdz5kzCwsJYurRqbqh4pQ8/IqWRkZHBnXfeyVtvvUVycjIDBgygefPmrFmzhrFjx/LTTz+Vqr+3336bRx99lP3799O9e3e6d+/O/v37eeSRR3j33XcLbRMXF8eoUaNYuHAh3t7eDB48GG9vbxYuXMjo0aM5fTr/0o1ZWVmMGTOGmTNncvToUTp27Mh1112Hn58fq1ev5vbbb2fBggXFxjl06FBGjx5d4FdoaGipnreqqdP/NsBAyuGfsZyOdnY4IiLiopTfO5by+6rH3dkBSNVim2mfkXiKHEsaRpO3kyMSEZGqwJaIr1u3jsjISDp06JDv/IEDB0hNTaVNmzYcOnSInTt38re//S3fNZGRkVitVkJDQ/H39wfguuuuo1OnTva/i0jpffzxx+zcuZMOHTowb948fH19AVixYgWPP/44Tz75JGvXrrUfL05kZCSzZ8+mVq1aLFq0iBYtWgAQHR3NuHHjmDVrFn379qVz58752k2ZMoXExETGjRvH9OnTMRgMWK1Wpk+fzqJFi3j++eeZO3duvjbt27dn0qRJDBgwAA8PD/vxhQsXMn36dF555RV69eplj+GvnnrqKUJCQko1VtWBZ2BjfNv34fL+zZzf+AUNb53q7JBERMQFKb8XKZ5m2otDudesg3utALDmYIk/6uxwRESkCunevTsAu3btKnDOduyee+4BchP4v7Id69atm/1YzZo1adGiBXXq1HF4vCLVQVZWFvPnzwdg2rRp+QrzN9xwA/369SM5OZklS5aUqL9PPvkEgMmTJ+crlrdo0YJJkyblu8bmwIEDbN++HT8/P6ZMmYLBYAByiwFTpkzBz8+PLVu2cPjwYXsbd3d3lixZwpAhQ/IV7AFuvfVWIiIiyM7OvuKSPFI4/75jwehO2vHfSDu539nhiIiIi1J+L1I0Fe3F4Uwhf6xrH6d17UVExHG6du0KwO7du7FarfnORUZG4uHhwaBBg2jSpEmhiX9hSX1ha14OHDiQ999/H4Bnn30231rVhb1Om5GRwXvvvcd1111H+/bt6du3Ly+99BKXL1++6mdduXIlf//73+ncuTNdu3Zl8uTJhb42nJOTY5/NPHToUDp37sw111zDyJEjmTlzJqmpqfmutz0v5L5mnPfZ/vo6bXZ2NkuWLGHChAl0796dDh06MHDgQB544AE2btxYZOzffPMNN910E506daJ79+48+OCDnDx5ssB1O3bsICwsjGeeeYZLly7x0ksv0a9fP9q3b8+gQYN47733yMrKKvQely5d4p133rGvnx4eHs64ceP4+uuvycnJKXD9M888Q1hYGDt27GDbtm3861//onv37oSFhXHo0KF8a5imp6fz5ptvMmjQIDp06MDQoUPtRWmAI0eO8OCDD9KzZ086derEbbfdZn91uzras2cPZrOZkJCQAjPkAEaMGAHAunXrrtiXxWJh27ZtAAwfPrzIvrZs2UJGRob9+IYNG4Dc712TyZSvjclksv/btq11WxK275OzZ8+WuI38ycO/AbU6Dwbg/IYvCvw3W0REBJTfK7//kzPz+6NHj/Lwww+7XH6v5XHE4byCQ0k5uJX0WK1rLyIijtOmTRt8fX0xm80cO3aMVq1aAbmJ7Z49e+jQoQMmk4kuXbqwdOlSzp8/b59hk5KSwqFDh4D8SX1hhg4dyrZt2zh8+DDh4eE0adLEfq5x48b5rs3MzOTOO+/k4MGDdOvWjZYtW7Jnzx4WLFjAsWPH+Oyzz+yzfkvq888/Z/78+VxzzTUMGDCAo0ePsmHDBrZu3cpHH33Etddea782LS2Nxx9/nNq1a9O8eXPatGlDSkqKfYPNDRs25FuXu3HjxowePZply5bh4+PD0KFD7efyvkKcnp7Ovffey7Zt2/D09CQ8PJy6dety+vRptm7dyoULF+jfv3+B2N966y3mzp1Lly5d6N+/P/v37+fHH39kz549fPfdd4XOeLp48SJjx44lOTmZrl27kp6eTmRkJB988AEJCQnMmDEj3/WJiYmMHz+emJgYAgICGDBgAGlpaezYsYPnn3+eLVu28M477xQ67t9//z1fffUVrVu3pk+fPpw+fTrfdZmZmUycOJHjx4/TvXt3mjVrRmRkJC+//DKXLl2ic+fO3HfffYSEhHDttddy8uRJdu/ezcSJE1myZEmRy6hUZbbvq3bt2hV6vm3btkDuZnNXEhMTg8Viwd/fn6CgoALng4KC8PPzw2w2ExMTY/+Aaouhffv2hfbbrl07li5dWqIYbH7//XcAAgICirxmyZIlmM1mAIKDg+nfvz8tW7Ys8T2qOr+Im7m0dwOWuCOkHtlFjbDuzg5JRERcjPJ75ffgvPw+JSWF7t27c+eddxIcHOxy+b2K9uJwpj/WtbfEH8FqtZb6P2YiIiKFcXNzIzw8nM2bN7Nr1y57Uh8VFcXFixftM3W6du3K0qVL2bVrlz1p/eWXX8jKyqJ58+bFFuEAnn76aWbOnMnhw4e55ZZbuOmmm4q89pdffqFjx46sXbvWnhQnJiYyduxYfv75Z3bt2mV/7bek/vvf//Lee+/lS7g/+ugj3nzzTZ566inWrFmDl5cXAB4eHrz//vv069cPT09P+/Xp6em88MILLF26lAULFjB+/Hj72HTt2pVly5bh7+/Pq6++WmgMM2bMYNu2bbRr144PPviAhg0b2s9dvnyZffv2Fdpu8eLFLFmyhNatWwO5s5QeeughNmzYwJdffskDDzxQoM26desYMGAAS5Yswds7dy+cmJgYxowZw9KlS+1Fcpvp06cTExPDgAEDePvtt+1tTp06xYQJE/jhhx/44osv+Mc//lFofK+88kqBr2lsbCyQ+/W0ra1as2ZNAA4fPszNN9/MJ598Qu3atXnggQe466677G1fe+01Pv30Uz755BNeeeWVQselKouPjwegQYMGhZ63HTebzaSkpFCjRo0i+4qLiyu2L9s5s9lMfHy8vWhvi6F+/frFxmDr/0piYmLss80GDRpU5HWzZs3K9/f//Oc/jBo1iunTp9u/R6szd19/ane7HvO2pZzf9CU+rbpgMLo5OywREXEhyu+V34Pz8vuPPvqIr776ismTJ3P33Xfj5pabp7hKfq+ivTicqUFTDO6e5KRdJvN8PJ51g50dkohIlWK1WrFmWpwdRokYPEwO/eFtt27d2Lx5M5GRkdx2223An+td2pL6Ll262I/bEmPbNVeahVNaBoOBl19+Od8slnr16nHbbbfxxhtvsHPnzlIn9UOGDMmX0APcfffdfPfddxw5coQffviBUaNGAeDp6cl1111XoA8vLy+mTp3K8uXLWbNmjT2pL4mzZ8+yZMkS+weGvAk9gK+vb77ZQHk99NBD9oTeFt99993Hhg0b2LFjR6FJvY+PDy+//LI9OQdo1qwZN954I19++SW7du2yJ/WxsbGsW7cOT09PXnjhhXxtGjVqxGOPPcYTTzzBvHnzCk3qIyIiiv2QZjQa+b//+z97Qg/QunVr+vbty7p162jZsiX//Oc/87WZNGkSn376KTt27Ciy36rM9op23q9FXj4+PvY/X6lof6W+8vaXkpJSoF3ee12pTVEyMjJ4+umnyczM5IYbbij0DYKuXbsyZswYwsPDCQwM5MyZM2zatIn33nuPZcuWkZGRwVtvvXXFe12J1Wot8Ap8eUlLS8v3u6N4dhqCYfcPZCae4vyedXi3jXBo/66ovMayutE4OobG0XHKOpYWi4WcnByys7PJzs4u9JrqkOPblsCxWq32cejatau9aD927FgAe17VuXNnsrOzueaaawDYuXMngwcPtv8ZcnP/vGNqW0rFNt5XOv7X8waDgf/7v/+jVq1a9uvq1KnDuHHjePPNN9m+fbv980ZJn/e6665j8ODB+e77r3/9y57fr1q1yr7Jrpubm31Zm7zXe3h48Nxzz7F8+XJ+/PFHxo8fn28c/zqueSUmJtrz+3fffZfAwMB813l7e9O9e/cCfQE8+OCDtGrVyn7Ozc2NyZMn2/P7e++9t8AY+vj48OKLL+Lp6Wlv17hxY/72t7+xcOFCduzYYf+MERcXZ8/vp06dmq9NUFAQjzzyCE899RTz5s3j1ltvLRBfREQEN954Y4HntsViNBqZPn06Pj4+9mtatWpFnz59WL9+PaGhoQXG8q677rLn90V9v/5VdnY2OTk5pKWlFbqcT14lneCsor04nMHNA88GzbHEHsYSG6WivYiIA1mtVuLnP4elkixBZgppTdCElxxWuLcV3fNuRBUZGYnRaCQ8PByApk2bEhAQUOCavO0dJSgoiNDQ0ALHmzdvDlzdetgjR44scMxgMDBy5EjefPNNIiMj7UV7m+joaH766SdOnTpFamqqPYn18PDgxIkTpbr/zp07ycrKom/fvoUuUVKcfv36FTh2pbFo3749devWLVG7yMhIrFYr3bt3L3RW9fXXX89zzz3HqVOnSEhIKDBj2/YhryhBQUGFvgJre4W6V69eBc75+fnh5+entc+riGnTpvHbb7/RtGlTpk2bVug1Dz/8cL6/N2nShAkTJtCjRw/GjBnD999/z8SJE+nYsWOZYsnMzLS/9l9RSvvfi5IwNemOz5GNnN+8mItWP6gms+3LYyyrI42jY2gcHacsY+nu7o7FUnhR3mq1kvzVS2SePnrV/Vckj6BW+N/y/FXn+HnHwbYnTmRkJOnp6UBuPmo0Gmnbti3p6ek0aNCAunXrsmvXrnzXAFxzzTX2Y5D7/0+ArKysfMdta6lnZmbmO/7XmBo0aECjRo0KXGObRHL69OlC2xfGVrwdOnRooW2GDRvGkSNH2LFjB0OGDMl37vjx4/z888/ExsaSlpZmz+/d3d3t68n/9d+T1Wot9D5bt24lKyuL3r17U6dOnRLFb7tfjx49Clxv+4xw5syZfOdsew61adOGGjVqFGjXqFEjIPctSdu5n3/+GavVSpcuXahdu3aBNrY9i06dOsXJkyftnwFsxfS+ffsW+/Vs2LAhwcHBBa4JDs6tVfbs2TPf9ZA7AcqW35f0a22xWMjKyuL48eMluj7vWxRFUdFeyoVXSCiW2MOkxx2hZqeBV24gIiKlUH2XHWvfvj3e3t6cOXOGU6dO0ahRIyIjIwkNDc03O7pLly6sWbOGS5cuYTKZ2Lt3L0CpZ71fyV9nodvYZhPn3SyzpPK+KlrY8YSEBPuxrKwspk6dypIlS0p9n6LYlhpp2rRpqdsWVuT39fUF/vwA9VelGUNbYbyoMTIajQQFBRETE8OZM2cKFO2v9EOIopZlsc3UDgwMLDJW29rm1Y1tbIqaeZh3pnhxs+xL0lfe/vL2ZWtX1Kz0wtoU5o033mDp0qU0aNCATz/9lFq1ahV7/V/ZNnxbvXo1mzdvLnPR3sPDo8LWyE9LS+PEiRM0bdq02Dcdroa1ZXMSY3+BVDONM09T45qCbwdVJeU5ltWJxtExNI6OU9axtFgsxMfHYzKZCl1CzWq1YnQzOiLUCmE0GvHy8ip10d5qtWKxWDCZ/pypHx4ejre3N2fPniUxMZFGjRrx66+/0qpVK+rVq2dv26VLF9auXUtmZiYmk4kDBw4AuZMq8o6ph4cHkFvcznvc3d3dfr6wr4FtM/ugoKBCz9verM3JySnxMnhGY+7XtGnTpoW2sU0MSUxMtJ/Pyspi+vTphW6QW1jMeb8GBoOh0PskJSUBuZNiShq7rd+mTZvan8PG1kdmZma+/myF6ODg4ELvU7t2bSD/GCYnJwO5M/GLis2W35vNZvuY2ZayKaqd7evZoEGDQs/bPjvaivd/HUsfHx/MZnOpljx0d3encePG9nsX5dixYyXrr8R3FikFr+AwLgCWuMoxE1REpLIwGAwETXipyr86WxQPDw+uueYa+3qSGRkZnDt3juHDh+e7rmvXrqxevZrdu3fj6+tLRkYGjRs3LnLN66v11wS2on3++ecsWbKEli1b8vjjj9O+fXv8/f3tH1YiIiJITEyssHiuZjwqcgyvlHRfKRZnf71dke0HIXl/mJSX7bifn98Vi+a2D01F9ZX3XN4fwAQFBXHw4EHOnDlTbBtb/4WZPXs2n3zyCXXq1OHTTz8t9tri2H7Y5Yg3LwwGQ5FL/pQXb2/vcrinD9l9/07SDx+TunM5dbsOxehZ9df8L5+xrH40jo6hcXScqx1Lo9GI0WjEzc3NXmz8q6AJL1f5HN82O9pgMNjHwc3NzZ7f79mzh+zsbHt+n3esunXrxo8//sivv/6aL7//66QMW75mG+8rHf/r+aK+RrbzeWO/EtsYlabPefPmsXTp0hLl93+NpajYbHFcTey2+xZ1TWFjfKXnzfs1KM245u3XFp+Pj0+Zvp5F3T/v164k3NzcMBqNeHt7X/EzR0m/d1S0l3Jh24w24+wpciypGE1KEEREHMVgMGCoBgWPonTr1s1etLfN3v7rupJ517W3zfS2rXnv6uLi4vKtC29j20wp7w8eVq9eDcDbb79dYJme1NRU+6ya0rB98HHFV+ltM91tY/FXOTk5nD59Gih6U1JxrDZt2gDYZ7v91cGDBwHsm8YWp1mzZphMJpKTk4mPjy/wITw+Pt4+46lZs2b5Yli7di379+8vtF9bbEXFsGDBAt5++21q1qzJ3LlzC10iqaQuXLgAFL8uf3VU85pBmLcvJ8t8hgu7VuLfu+i9JUREqqvqnOMrv1d+r/y+IE0XknLhXtMf99r1ACvp8ZVjTTYREakc8q5r/9dNaG1at25NjRo1iIyMtK9nX5qlcWwzSkq68ZAjrVixotDj33//PZB/XX5bgbCwJWZWrFhhX4vyrzw8POzrev5Vjx49cHd35+eff7YnyK6ia9euGAwGduzYUeis6lWrVpGenk6jRo2KXOpGHCs8PBw/Pz9iY2PZt29fgfMrV64EYNCgQVfsy2Qy2fcNWLVqVZF9RURE5FsHdMCAAQCsX7++wNquFouF9evXA4XvabBs2TJefvllfHx8+Oijj2jbtu0V4yxKRkYGGzduBHKX8pI/Gdw88O83DoALPy8jO+2SkyMSERFXovxe+b3y+4JUtJdyYwrO/YmgJfaIkyMREZGqpFOnTnh6evL777+zefNmGjduXGCtcTc3Nzp37syBAwfYs2cPULpNaG39RUdHOy7wElq9ejVr167Nd2zu3LkcPnyYevXqMXToUPtx22zjBQsW5Lt+3759vPnmm0XeIzAwkHPnztk/FORVr149xowZQ2ZmJg888ECB5DklJYWff/651M/lCCEhIQwcOJDMzEymTZuWb2Oo2NhY+zNPnDjRKfFVR+7u7kyYMAGAF154gcuXL9vPrVixgk2bNuHv78+YMWPsx/fu3cuwYcMYNmxYgf7uuusuAObMmZPv+y86Opo5c+bku8amXbt29OzZE7PZzIwZM+wfZq1WKzNmzMBsNhMREVFghtuPP/7Ic889h6enJ7NmzbJvZl2cn3/+mQ0bNtg3lrNJTEzkoYcesm+AfN11VXvd9qvh2y4Cz8DG5FhSMf/8jbPDERERF6L8Xvm98vuCKs3yOBkZGXz22WcsX76cU6dO4ePjQ9euXbn33ntp165dqftbuXIlCxYsICoqd831sLAwJkyYUGBN3LySkpJ4//332bhxI0lJSQQEBNC/f38efPBB6tatW2S7nJwc/ve///Htt99y7NgxUlNTCQgIoH379txxxx2V5nWe0vIKCSPl4FbSta69iIg4kMlkomPHjkRGRnLhwoUiZ/B27dqVLVu2kJmZSVBQUJGblxYmIiICLy8vPv/8c44ePUr9+vUxGAyMGTOmRIW9srjtttu4//776dy5M8HBwRw9epSoqCg8PT157bXX8i27cc8997BlyxbeffddVq9eTYsWLTh79iy7d+9mxIgR/PLLL8TFxRW4x6BBg5g/fz6jR4+mc+fOeHl54e/vzxNPPAHAs88+S0xMDDt37mTw4MF06dKFunXrcvr0aQ4dOkT79u259tpry3UcivLCCy9w/PhxNmzYwODBg+natStpaWls376d9PR0hg0bxm233eaU2Kqru+++m+3bt7Nz506GDBlCt27dSEpKIjIyEg8PD15//XX7a+yQu5lfTExMoX117dqVSZMmMWfOHEaPHm2feb9t2zYsFgv33XcfnTt3LtBuxowZjB07lkWLFrFr1y7CwsKIiooiOjqawMBAXnrppXzXnzt3jscee4zs7GyaNm3Kt99+y7ffflug3+bNm3PPPffY/x4VFcUrr7xCvXr1aNu2LTVr1iQhIYGDBw+SmppKnTp1eP/990u1aVl1YTAY8e93G2e+fpWLu1ZSu9sNuNf0d3ZYIiLiApTfK79Xfl9QpSjaZ2RkcOedd7Jz507q1q3LgAEDSExMZM2aNWzcuJEPP/yQPn36lLi/t99+m9mzZ+Pp6Unv3r0B2Lp1K4888ghHjhzh4YcfLtAmLi6OsWPHkpiYSPPmzRk8eDBRUVEsXLiQ9evXs3jx4kJfXbl8+TKTJk0iMjISf39/OnfujMlkIj4+ng0bNtCmTZsqW7S3rWtviTuK1ZqDwaAXO0RExDG6detmfy32r+td2uT9/2tp/18bGBjI7Nmz+eCDD/jll19ITU3FarXSpUuXck/qJ06cyDXXXMO8efNYt24dbm5u9OvXj4ceeqjAkhvh4eEsXryYt99+mwMHDnDy5EkaN27M008/zYQJEwpdDgTgscceA2DdunX88MMPZGVlERwcbE/qvb29+eyzz+yTDvbu3UtmZib16tWjT58+3HzzzeU6BsWpV68eX3/9NZ988gk//vgj69atw93dndatW3PzzTczZswYbRhbwTw9PZk7dy6ffvopy5cvZ/369fj4+DBo0CDuv//+Uk+weeyxx2jdujXz589nx44dALRt25Y77rijyAk2wcHBfPPNN8ycOZONGzeyZs0a6taty7hx43jooYcKTLBJS0uzr5kbHR1d5Ky77t275yvad+/enbFjx7J//37279/PxYsX8fT0pGnTpvTr148JEyZQp06dUj1vdeLTqium4DAscVGYt3xNwPB7rtxIRESqBeX3uZTfK7+3MViLWgzJhXzwwQe89957dOjQgXnz5tln6qxYsYLHH38cf39/1q5dm28GT1EiIyO5/fbbqVWrFosWLbJvNBUdHc24ceO4ePEiixYtKjCD54477mD79u2MGzeO6dOnYzAYsFqtTJ8+nUWLFhEREcHcuXML3G/SpEls3LiRf/3rXzz66KP51t80m80kJyfn20irtGxrh3bo0OGq+yiN1NRUDh06RJs2ba64Y7o1O5MT/5mANSuDkEnv4hlQ8p+AVgelGUspmsbRMTSOjlPWsUxPTycmJoZmzZpV65ma2dnZpKen4+XlhZubm7PDqdQ0lo7hqHEszfd4Red54jpcOccvq7STBzj936lgdKPR5Pfw8K9a69Mqp3IMjaNjaBwdRzm+YygvdQyNo+O4co7v8j+myMrKYv78+QBMmzYtX2H+hhtuoF+/fiQnJ7NkyZIS9ffJJ58AMHnyZHvBHqBFixZMmjQp3zU2Bw4cYPv27fj5+TFlyhQMBgOQu7P3lClT8PPzY8uWLRw+fDhfu7Vr17Jx40YGDRrE008/na9gD+Dn51emgr2rM7h5YGqYO8aWOK1rLyIiIiJS3Xk3aYd3886Qk03y5sXODkdERETEJbl80X7Pnj2YzWZCQkIK/QnEiBEjgNzXP67EYrGwbds2gEJfrbX1tWXLFjIyMuzHN2zYAMDAgQMxmUz52phMJgYOHAhQYFOJhQsXAtVzswQbU0juEjnpsVrXXkREREREoM6A3HVpL+//iYyzJ50cjYiIiIjrcfmi/aFDhwCKXAuzbdu2APYNZYsTExODxWLB39+foKCgAueDgoLw8/Ozv9Lw1xj+us6UjS22vDFkZWURGRmJm5sb11xzDdHR0bz//vtMnTqVt99+m507d14x3qrAKzgUgHTNtBcREREREcDUoDk12vQCrJzf+KWzwxERERFxOS6/EW18fDwADRoUvtah7bjZbCYlJYUaNWoU2Zdtd+Wi+rKdM5vNxMfHExYWli+G+vXrFxtD3t2bT506RXp6OgEBASxYsIA333yT7Oxs+/nZs2fTv39/3nrrrWJjruxsm9FmJp4iJz0Fo1fVfVYRERERESkZ/363knJ4O6lHI0k/dRivRq2dHZKIiIiIy3D5on1qaiqQu8txYfJuAHKlov2V+srbX0pKSoF2RW02UlibCxcuALk/THj99dcZNWoUkyZNol69ekRGRjJt2jQ2btzI9OnTeeONN4qMpySsVqs9xvKWlpaW7/crMnriVqse2RcTuRCzH1MTbaRmU+qxlEJpHB1D4+g4ZR1Li8VCTk4O2dnZ+X7YW91YrVb779V5HBxBY+kYjhrH7OxscnJySEtLIycn54r3tO2lJFLVeNYNomangVz6dS3nN35Bw3+8qH/vIiIiIn9w+aJ9ZWX7EJaVlUX37t157bXX7OcGDBhAQEAAt9xyC9999x0PPvggjRs3vup7ZWZm2pfwqSgnTpwo8bU+NQIxXUwkfu/PpKfqn9xflWYspWgaR8fQODpOWcbS3d0di8XiuGAqMY2D42gsHaOs42ixWMjKyuL48eMlut7T07NM9xNxZf59/s7lfZtI//0gacd/xadFZ2eHJCIiIuISXL6CapvFXtSMxbwzzK+0zMyV+srbX96+bO2Kms1eXBuAv//97wXadOjQgXbt2rF//3527txZpqK9h4cHLVu2vOr2pZGWlsaJEydo2rRpsW8s5JViieXS6QPUzrpAszZtyjnCyuNqxlIK0jg6hsbRcco6lhaLhfj4eEwmE15eXuUQYeVgtVqxWCyYTCbNvCwjjaVjOHIc3d3dady4MSaTqdjrjh07Vqb7iLg691p1qdV1GBd2fMf5DV/g3bwTBoPLb7smIiIiUu5cvmhv2zA2ISGh0PO2435+flcs2gcHBxfbV95zeTeqDQoK4uDBg5w5c6bYNrb+//rnkJCQQtuFhISwf/9+kpKSio37SgwGQ5FL95QXb2/vEt/TrVl7Lm2ArNPH8Pb2UiL+F6UZSymaxtExNI6Oc7VjaTQa7b/c3NzKIbLKwbb8iMFgqNbj4AgaS8dw1Djavr+9vb2v+IM5/ZBFqgO/Xjdx8Ze1ZJyJIeXQz/i27e3skEREyo1tuT0RqVrK43vb5aunbf6YmX3gwIFCzx88eBDAvmlscZo1a4bJZCI5Odm+uWxe8fHxmM1mvLy8aNasWYEY9u/fX2i/ttjyxlCzZk377Hnb+vZ/ZTabgaLXyq8qPAObYHD3JMeSSmZS3JUbiIhUY0Zj7v+atfa4SNVk+962fa+LVHduPrXw6/k3AJI3LcKao///iUjVoxxfpGorjxzf5T8thIeH4+fnR2xsLPv27StwfuXKlQAMGjToin2ZTCZ69eoFwKpVq4rsKyIiIt/6oQMGDABg/fr1BdYxtVgsrF+/HoDBgwfnO2eLafv27QXudfHiRfsPHNq1a3fF2Cszg5s7pqDc5XvS46KcHI2IiGvz8PDAzc1NmwKLVFFpaWm4ubnh4eHh7FBEXEbt7iMx+tQi83w8l37b4OxwREQcTjm+SNVWHjm+yxft3d3dmTBhAgAvvPACly9ftp9bsWIFmzZtwt/fnzFjxtiP7927l2HDhjFs2LAC/d11110AzJkzh+joaPvx6Oho5syZk+8am3bt2tGzZ0/MZjMzZsywv/JgtVqZMWMGZrOZiIgIWrduna/dHXfcgZeXF19++WW+wn1GRgYvvPACFy9epHXr1oSHh1/V2FQmpuBQACyxR5wciYiIa7MteXbhwgXNxBGpYrKzs7lw4QI+Pj5a+kYkD6PJG//euZ/nkn9aTE6mNs4WkapFOb5I1VVeOb7Lr2kPcPfdd7N9+3Z27tzJkCFD6NatG0lJSURGRuLh4cHrr7+Or6+v/fq0tDRiYmIK7atr165MmjSJOXPmMHr0aPvM+23btmGxWLjvvvvo3LlzgXYzZsxg7NixLFq0iF27dhEWFkZUVBTR0dEEBgby0ksvFWjTsGFDXn75ZZ566in++c9/0qlTJwICAti3bx8JCQkEBATw1ltvVYsPbV7BYVxAM+1FREoiMDCQEydOcPLkSerUqVMtNxDNzs62v92mddjLRmPpGGUZR9smtufPnycnJ4fAwMDyCFGkUqsZPgTzju/IvpjExd2r7UvmiIhUFcrxlZc6isbRcVw5x68URXtPT0/mzp3Lp59+yvLly1m/fj0+Pj4MGjSI+++/v9TLyzz22GO0bt2a+fPns2PHDgDatm3LHXfcwfDhwwttExwczDfffMPMmTPZuHEja9asoW7duowbN46HHnqIunXrFtruhhtuoFGjRsyZM4c9e/awf/9+AgMDuf3225k0aRL169cv3WBUUl4huev9ZybFkp2egptX8ZsGi4hUZ56enoSEhJCUlMTp06edHY5T5OTkkJWVhbu7u9b+LiONpWM4Yhxr1KhBgwYN8i3DKCK5jO6e+Pf5O0nfz8K8bSm1Og/GaKrae3+JSPWiHF95qaNoHB3HlXP8SlG0h9z/uE2ePJnJkydf8doePXoQFVX8jO4RI0YwYsSIUsUQEBDACy+8UKo2AJ06dWLWrFmlbleVuNWojbtffbLMZ7DEHcGnRcG3GURE5E8+Pj40btyYrKwssrKynB1OhUtLS+P48eM0btwYb29vZ4dTqWksHaOs4+ju7o67e6VJvUWcombH/lzY/i2Z5+Iwb19OnX7jnB2SiIhDKcdXXuoIGkfHceUcX58cpMJ4hYRx2XyGdBXtRURKrLoW+nJycoDcTeS9vLycHE3lprF0DI2jSPkzGN3w73crZ5f+hws7v6N21+G41ajt7LBERBxOOb7yqbLQODqOK4+l3qGQCmPfjFbr2ouIiIiISCFqtO6JZ4MWWDPSSd621NnhiIiIiDiFivZSYbyCc9e1t8QdxWrNcXI0IiIiIiLiagwGA3UG3A7Axd0/kHUh0ckRiYiIiFQ8Fe2lwnjWb4LBw0SOJZXMpFhnhyMiIiIiIi7Iu1lHvJq0h+wskn/6ytnhiIiIiFQ4Fe2lwhiMbpgatgQgPfaIk6MRERERERFXlHe2/aW9G8nQhB8RERGpZlS0lwrlFaJ17UVEREREpHhewaH4hHYDaw7JmxY6OxwRERGRCqWivVQo0x/r2qfHaaa9iIiIiIgUrU6/2wADKYe3Y4k/5uxwRERERCqMivZSobyCc2faZybFkp122cnRiIiIiIiIq/IMbIxvh74AnN/4pZOjEREREak4KtpLhXKrURt3/wYAWOKPOjkaERERERFxZf59x4LRnbSY30g7sc/Z4YiIiIhUCBXtpcLZZtunx2pdexERERERKZqHX31qhV8HwPkNX2C1Wp0ckYiIiEj5U9FeKpxXSO669hatay8iIiIiIlfg1/tmDB4mLPFHOfP1q5zf8AWXfltP+qlDZF1OViFfREREqhx3Zwcg1Y99M9r4o1itORgM+tmRiIiIiIgUzt3Xj9o9RmLe8j9Sj0aSejQy33mDpxce/g3xqNPgj99zf7n7N8Cthh8Gg8FJkYuIiIhcHRXtpcJ5BjbG4OGF1ZJKZmIsnoGNnR2SiIiIiIi4MP8+f8crpDUZSbFkJSeQef40mcmnybqQhDUjnYwzMWSciSnQTgV9ERERqYxUtJcKZzC6YQpqSfrJ/aTHRaloLyIiIiIixTIY3fBp0RmfFp3zHbdmZZJpPkPmH4V8e0H//GmyLqqgLyIiIpWTivbiFF7BoblF+9gj1Op8nbPDERERERGRSsjg7oFnQAieASEFzjm6oO/u3wCPOg1V0BcREZFyp6K9OIXJvhltlJMjERERERGRqsgZBX2rwbMiHk1ERESqOBXtxSm8gkMByDwXR3baJdy8azo5IhERERERqS7Ks6DvUy+M7Eb1wcenIh5FREREqiAV7cUp3Hxq4VGnIZnnT2OJO4pPy3BnhyQiIiIiIlLmgr4p7jeSPnuSzJ434nftjRg9vZ3wFCIiIlKZqWgvTmMKDiPz/GnS46JUtBcREREREZd3pYL+heP7ObtmHu7mWMxbvubSL2vw73crNTsNwGB0c0LEIiIiUhkZnR2AVF+2JXIssVrXXkRERETEWXYdOsvn6xI5m5zm7FAqNYO7B54hYVzqMR6/Gx7C3b8B2SlmklZ+SOwnT5Aa/YuzQxQREZFKQkV7cRrbZrTp8Uex5mQ7ORoRERERkeppX/R5Ys5YWLLxuLNDqRoMBrxadaPRpHeoM3giRi9fMhN/J2HRS5xe+H9knP3d2RGKiIiIi1PRXpzGs14jDJ5euRs5JZ5ydjgiIiIiItVSRKcGAGzdm8CFyxYnR1N1GNw88Osxkkb3vU/t7jeA0Z20478S+8njJH7/IVmXk50dooiIiLgoFe3FaQxGN0xBrQCwxB1xcjQiIiIiItVTq5DaBNXxIDMrhx+2n3B2OFWOm3dN6l73TxpNfpcara8Faw6Xfl3LqVkPkPzT1+RkpDs7RBEREXExKtqLU9nWtU+P07r2IiIiIiLOYDAY6BHmC8DKrSfIys5xckRVk4d/A+qPeYKgCS9jCmqFNTOd5M2LOPXhg1z6bb2WDBURERE7Fe3FqbyCc9e1t8Rqpr2IiIiIiLO0a+xDbV9Pzl9M5+e9p50dTpXm1ag1QRNfIXD0Y7jXDiT78nkSV3xA3KdPkxaz19nhiYiIiAtQ0V6cyvTHTPvM8/Fkp15ycjQiIiIiItWTu5uB67qFAPDdFm1IW94MBgO+bXsTMvld6gyagNHkQ8aZGE5/+QIJi2dozy8REZFqTkV7cSo3n5p41AkCtK69iIiIiIgzXdctBHc3A4dOnOfoKW2SWhGM7p749byRRvd9QK1uI8DoRuqx3cR+/BiJq+aQddns7BBFRETECVS0F6czhWhdexERERERZ/OraSLimmAAvvtJs+0rkptPLQKG3EnIPe/gE9Yjd7PaPT9y6sMHSN66hJxMi7NDFBERkQqkor04nW1d+3TNtBcRERERcaqREc0B+OnXOJIvpjs5murHs24QDW5+iobjX8TUsAXWjDSSN37JqdkPcWnfRqxWbRIsIiJSHahoL05nW9feEn8Ua062k6MREREREam+Qhv7E9bEn6xsKz9sP+nscKot78btCPrnqwTe+AjutQLIvphE4vKZxH36DGknDzg7PBERESlnKtqL03nWa4TB0xtrRro2XBIRERERcTLbbPtV22LIzNLMbmcxGIz4tu9DyOT3qDPgdgye3mQkRHP6v1NJ+OpVMs7FOTtEERERKSfuzg5AxGB0wyuoJWkn9mGJjcJUv6mzQxIRERGRUsjIyOCzzz5j+fLlnDp1Ch8fH7p27cq9995Lu3btSt3fypUrWbBgAVFRuXsehYWFMWHCBIYPH15km6SkJN5//302btxIUlISAQEB9O/fnwcffJC6desWuH7//v1s3LiRrVu3cuzYMVJTU/H39yc8PJyJEycSHh5e5L0uX77M7NmzWb16NQkJCdSuXZtrr72Whx56iEaNGpX6eV1Nr45B1PluP+cvWti6N57+4SHODqlaM3qY8Ot1EzU7DSL5p6+4uOdHUo/uIvXYbmqFD8G/z99xq1Hb2WGKiIiIA2mmvbgEk9a1FxEREamUMjIyuPPOO3nrrbdITk5mwIABNG/enDVr1jB27Fh++umnUvX39ttv8+ijj7J//366d+9O9+7d2b9/P4888gjvvvtuoW3i4uIYNWoUCxcuxNvbm8GDB+Pt7c3ChQsZPXo0p0+fznd9VlYWY8aMYebMmRw9epSOHTty3XXX4efnx+rVq7n99ttZsGBBofe6ePEiY8eO5eOPPyY7O5tBgwYRGBjI8uXLGTVqFIcOHSrV87oiD3cjI3o1A+C7n6KdHI3YuNWoTcCwuwm55218WnUFaw4Xd//A7x8+gPnnb8jJynB2iCIiIuIgmmkvLsEr5I917eOinByJiIiIiJTGxx9/zM6dO+nQoQPz5s3D19cXgBUrVvD444/z5JNPsnbtWvvx4kRGRjJ79mxq1arFokWLaNGiBQDR0dGMGzeOWbNm0bdvXzp37pyv3ZQpU0hMTGTcuHFMnz4dg8GA1Wpl+vTpLFq0iOeff565c+fma9O+fXsmTZrEgAED8PDwsB9fuHAh06dP55VXXqFXr172GGxeffVVjh07xoABA3jvvffw9PQEYM6cObz11ls88cQTLF++HDc3t9IPpgsZ2rMpi9Yc4cjvZqJOniesSR1nhyR/8AwIocHfnyXtxD7Orf2cjDMxnF+/gIu7f6DOgNup0TYCg8Hg7DBFRESkDDTTXlyCbTPazPOnyU696ORoRERERKQksrKymD9/PgDTpk3LV5i/4YYb6NevH8nJySxZsqRE/X3yyScATJ48OV+xvEWLFkyaNCnfNTYHDhxg+/bt+Pn5MWXKFHux0mAwMGXKFPz8/NiyZQuHDx+2t3F3d2fJkiUMGTIkX8Ee4NZbbyUiIoLs7GxWrVqV79y5c+f45ptvcHd358UXX7QX7AHuueceQkNDOXbsGBs2bCjR87oyv5om+nYOBuC7n2KcHI0UxrtpB4LvfJ16Ix/ErWYdsi4kcvabd4if9yzppyr/Gx8iIiLVmYr24hLcvGviUTf3Q4GWyBERERGpHPbs2YPZbCYkJIQOHToUOD9ixAgA1q1bd8W+LBYL27ZtAyh07XpbX1u2bCEj489lQGwF8oEDB2IymfK1MZlMDBw4EIC1a9eW5JGA3DX0Ac6ePZvv+ObNm8nOzqZLly4EBgbmO2cwGBg6dChQsuetDGwb0m75LY5zF9KcHI0UxmAwUrNjfxrd+z7+/W7F4OmFJf4o8fOfJ+F/r5N5Pt7ZIYqIiMhVUNFeXIZtXXtLrJbIEREREakMbOu3F7XZbNu2bQHsG8oWJyYmBovFgr+/P0FBQQXOBwUF4efnR3p6OjExf878tsXQvn37Qvu1xVaSGGx+//13AAICAvIdv9LzXs29XFnLRn60aVqH7BwrP/x80tnhSDGMHib8I26m0b3vU7PzdWAwkhq1g1NzHiHpx0/JTr3k7BBFRESkFLSmvbgMr5BQLu9dr5n2IiIiIpVEfHzuLN4GDRoUet523Gw2k5KSQo0aNYrsKy4urti+bOfMZjPx8fH22fC2GOrXr19sDLb+ryQmJoaNGzcCMGjQoHznSvq8Jb1XcaxWK6mpqWXupyTS0tLy/Z7X0B4hHDpxnlXbYrihVwge7pr3VZzixrJCGE3U6D8Bz/YDufTTQjJO7OXiru+5tHcDvj1uxKfTdRjcPa7cj5M5fRyrCI2j42gsHUPj6BgaR8dxxlhardYS7T2jor24DC/bTPv4Y1hzsjEYK/fmXSIiIiJVna2o7O3tXeh5Hx8f+5+vVLS/Ul95+0tJSSnQLu+9rtSmKBkZGTz99NNkZmZyww03FJhR78h7XUlmZqZ9Zn9FOXHiRIFjNQ1Wavm4cSElg/+t3sM1zYv+GsqfChvLCtf6BtwD2uEdtQ73S2e5tHkh5l2rSAvtT2aDNlAJNqt1iXGsAjSOjqOxdAyNo2NoHB2noscy775IRVHRXlyGR70QDCYfrJZUMs7+jqlBM2eHJCIiIiLVyLRp0/jtt99o2rQp06ZNc2osHh4etGzZskLulZaWxokTJ2jatGmhPzQZkeTNorXH2Pt7FuNGtC7R7LDq6kpjWfHaYO09jLSDP3F52/8gxYzvb9/gnvAbvt1GYmrZBYPB9d6ecL1xrJw0jo6jsXQMjaNjaBwdxxljeezYsRJdp6K9uAyDwYhXUCvSYn7DEhelor2IiIiIi7PNLC/qleK8y7sUN8u+JH3l7S9vX7Z2RS0lU1ibwrzxxhssXbqUBg0a8Omnn1KrVq0iYyzrvUrCYDAUOaO/vHh7exd6zxv6tGTJxuMcj7/E72cttGlWp0LjqoyKGktnqdF9OHWuGcCF7csxb/+GrDMxmFe8h0fdYPyuHYVv+74Y3FyvPOBq41hZaRwdR2PpGBpHx9A4Ok5FjmVJJz+43o/UpVozBYcCaF17ERERkUrAtmFsQkJCoedtx/38/K5YyA4ODi62r7zn8m5Ua/vzmTNnim1j678ws2fP5pNPPqFOnTp8+umnRV5b0uct7l6VUW1fE/3DQwD4bstxJ0cjV8vo6YV/37/T+P4P8es9BqPJh8xzcSSu+IDfZ93PhV3fk5OR7uwwRUREBBXtxcV4heSua58eG+XkSERERETkStq0aQPAgQMHCj1/8OBBAPumscVp1qwZJpOJ5ORk+4avecXHx2M2m/Hy8qJZsz/fyLTFsH///kL7tcVWVAwLFizg7bffpmbNmsydO5cWLVoUGeOVnvdK96rMRvZpDsDWvfEkmbXxXWXmVqM2dfrfRuMH51Bn4HjcaviRfTGJcz9+yu8f3EvyT1+TnXbZ2WGKiIhUayrai0sxBbUCICs5geyUC06ORkRERESKEx4ejp+fH7Gxsezbt6/A+ZUrVwIwaNCgK/ZlMpno1asXAKtWrSqyr4iIiHybdw0YMACA9evXY7FY8rWxWCysX78egMGDBxfoc9myZbz88sv4+Pjw0Ucf0bZt22Jj7Nu3L25ubuzevZuzZ8/mO2e1Wlm9ejVQsuetbJoF1aZ9i7rk5FhZuS3G2eGIAxhNPvhdO4pGD3xIwPBJuPvVJyf1IsmbF/H7+5M4t+5zsi6dd3aYIiIi1ZKK9uJS3Lx98QjIffVWS+SIiIiIuDZ3d3cmTJgAwAsvvMDly3/Ozl2xYgWbNm3C39+fMWPG2I/v3buXYcOGMWzYsAL93XXXXQDMmTOH6Oho+/Ho6GjmzJmT7xqbdu3a0bNnT8xmMzNmzMBqtQK5RfQZM2ZgNpuJiIigdevW+dr9+OOPPPfcc3h6ejJr1izCw8Ov+Lx169Zl1KhRZGVlMXXqVDIyMuznPv74Y44cOUKLFi3sP0ioakZG5M62/+Hnk1gys50cjTiK0d2TWuFDaHTvTAJHPYJnYBOsGelc2L6c3z+4l8TvPyTz/GlnhykiIlKtuN5OM1LteQWHkpkUiyUuihqh3ZwdjoiIiIgU4+6772b79u3s3LmTIUOG0K1bN5KSkoiMjMTDw4PXX38dX19f+/VpaWnExBQ+U7tr165MmjSJOXPmMHr0aPvM+23btmGxWLjvvvvo3LlzgXYzZsxg7NixLFq0iF27dhEWFkZUVBTR0dEEBgby0ksv5bv+3LlzPPbYY2RnZ9O0aVO+/fZbvv322wL9Nm/enHvuuSffsWeeeYbffvuNDRs2MGzYMDp16sTJkyc5cOAANWrU4M0338TNza3U41gZ9GjXgHr+3iQmp/HTL7EM7t7E2SGJAxmMbvi260ONthGkRe/BvG0Z6acOcenXtVz6bT012lyL37WjMTVoduXOREREpExUtBeXYwoO49Jv60mP1Ux7EREREVfn6enJ3Llz+fTTT1m+fDnr16/Hx8eHQYMGcf/999OuXbtS9ffYY4/RunVr5s+fz44dOwBo27Ytd9xxB8OHDy+0TXBwMN988w0zZ85k48aNrFmzhrp16zJu3Dgeeugh6tatm+/6tLQ0MjMzgdxZ/Hln9efVvXv3AkX7WrVqsXjxYj788ENWr17NmjVrqF27NiNHjuShhx6icePGpXreysTNzcj1vZox7/uDfPdTDIO6NcZgMDg7LHEwg8GAT8su+LTsQvqpQyRvXUpa9B5SDm4l5eBWvJt3xq/3aLwatdXXX0REpJyoaC8uxyskFADL6WNYc7IxGKvmTCURERGRqsLT05PJkyczefLkK17bo0cPoqKiir1mxIgRjBgxolQxBAQE8MILL5To2pCQkCvGUBxfX1+efPJJnnzyyavuo7Ia0rMJX/4YxfH4CxyMOU+75nWv3EgqLa9GbWg47jksZ05g/nkZKQe3kXb8F9KO/4IpJAy/a0fj06qrivciIiIOpjXtxeV4BIRgNPlgzbSQceaks8MREREREZE/1PTxZECX3D2olv9U+BsKUvWY6jel/qhHaXTvTGp2HgJu7lhiozjz9avEfvwYl/ZvxpqjfQ5EREQcRUV7cTkGgxFTcCsA0uOufgaUiIiIiIg4nm1D2u37TnM2OdXJ0UhF8vBvQL0Rk2h8/2xqXzsKg6c3mYm/k/jtu5ya9QAXIn8gJ9Pi7DBFREQqPRXtxSWZgsMAsMRpXXsREREREVfSpGEtOrYMIMcKK7cWvqmwVG3uNf2pO3A8jR+YjX+/WzH61CLrwlnOrf6YUx/ch3nbUnLSU5wdpoiISKWlor24JK/g3HXt02M1015ERERExNWM7JM72/7HHSdJz8hycjTiLG7evvhH3EzjB2ZTd8iduNcKIDvFzPkNX3Dy/cmc3/AFWZfNzg5TRESk0in3ov2FCxc4cuQIGRkZ5X0rqUJMfxTts8xnyE654ORoRERERKou5etyNbq1bUD9Oj5cSs1k0544Z4cjTmb0MFG72wga3fcB9UY+iEdACFZLKuZtSzn1wb0k/fAxmeazzg5TRESk0ihz0f7gwYO8++67bNmyJd/x9PR0HnvsMXr27MmNN95Inz59+OGHH8p6O6km3Lxq4BGQu8GVZtuLiIiIXD3l61Ie3IwGbohoBsB3P0VjtVqdHJG4AoObOzU79ifknrepf/NTmIJaYc3K4OLuHzg1637OfvsuGWd/d3aYIiIiLq/MRfv//e9/zJ49u0CS9u6777Jy5UqsVitWq5ULFy7wxBNPcOSI1iiXkvH6Y117bUYrIiIicvWUr0t5Gdy9CSZPN04mXGJfdJKzwxEXYjAYqRHWg6CJr9Dw9ul4N+sE1hwu799M7MePkvDVK5qcJSIiUowyF+0jIyMxmUz07t3bfiwjI4Ovv/4ad3d35syZw65duxg/fjxZWVnMnz+/rLeUasIUkrtEjjajFREREbl6ytelvPh6ezCwayMAvvvpuJOjEVdkMBjwbtqBhrdNJfhfr1Oj9bWAgdSjkcR/PoX4BVNJjf5Fb2qIiIj8RZmL9klJSdSvXx+j8c+ufv31Vy5fvszAgQPp168fNWvW5PHHH8fb25tdu3aV9ZZSTdhm2lvij2HN1uZWIiIiIldD+bqUpxt65y6Rs/NAAgnnUpwcjbgyU8MW1B/zBCGT36Vmp4FgdCf99wMkLHqJuLlPcvngVqw52c4OU0RExCWUuWh/8eJFateune/YL7/8gsFgoE+fPvZjXl5eNG7cmISEhLLeUqoJj4BgjF41sGZlkHH2pLPDEREREamUlK9LeWrcoBbXhNYjxwort51wdjhSCXjWDabeDffT+P5Z1O5+AwYPExlnYji77C1i5zzMxV/WYs3KdHaYIiIiTlXmor2Xlxfnz5/PdywyMhKA8PDwfMc9PDzyzfApjYyMDObMmcP1119Px44d6dmzJw888AAHDhy4qv5WrlzJrbfeSnh4OOHh4dx6662sWrWq2DZJSUlMnz6d/v370759e/r378/06dM5d+5cie87c+ZMwsLCCAsLY+HChVcVe3VhMBgxBbUCtBmtiIiIyNWqqHxdqq+/9WkOwI87TpJu0RuyUjLutepS97p/0viBOfj1+TtGL18yz58maeWHJH76ON5R60nZ8wOX9m0i9dge0uOPkWk+Q44lTcvpiIhIlede1g6aN2/Ovn37OHr0KK1ateL8+fPs2LEDf39/WrRoke/aM2fOUKdOnVLfIyMjgzvvvJOdO3dSt25dBgwYQGJiImvWrGHjxo18+OGH+WYJXcnbb7/N7Nmz8fT0tK/tuXXrVh555BGOHDnCww8/XKBNXFwcY8eOJTExkebNmzN48GCioqJYuHAh69evZ/HixTRs2LDY+0ZFRTFnzhwMBoOSjBLyCgkj7fivuevadxvh7HBEREREKp2KyNeleuvSuj4N69bg9LkUNuw+xfBezZwdklQibj41qdN3LH49/8bFX9ZyYcdysi+dxytmO5ditnOp0EbuuHnXws3HF6N3Ldx8auLmXQujT03cfGph9K6Jm/cff/7jnMHDhMFgqOjHExERuSplLtoPHz6cvXv3cvfddzNs2DC2bt1KZmYmI0bkL7DGx8eTmJhIr169Sn2Pjz/+mJ07d9KhQwfmzZuHr68vACtWrODxxx/nySefZO3atfbjxYmMjGT27NnUqlWLRYsW2T+oREdHM27cOGbNmkXfvn3p3LlzvnZTpkwhMTGRcePGMX36dHvhffr06SxatIjnn3+euXPnFnnf7OxspkyZgp+fHx07dmTdunWlHofqyPTHuvbpcZppLyIiInI1KiJfl+rNaDRwQ0QzPv52P99tOc6wa5uqOCqlZvT0xq/HSGp3Gcb5X9Zz5vBu/Lw9MGSkkp16iey0S+SkXsSalQHZWWRfPk/25fNX7vgPBndPjN6+fxT7a2L0qYWb95+/u/nU/PMHAH8U/o0epnJ8YhERkaKVuWh/++23s379enbt2sW8efMAaNasGffff3++61auXAlAjx49StV/VlYW8+fPB2DatGn5CvM33HADy5cvZ9OmTSxZsoQ77rjjiv198sknAEyePDnfzKIWLVowadIk3njjDT755BM++OAD+7kDBw6wfft2/Pz8mDJlij0BNRgMTJkyhR9++IEtW7Zw+PBhWrduXeh9P/30U/bv38+7777Lxo0bSzUG1ZlXcCvAQJb5LFmXzbj7+jk7JBEREZFKpbzzdRGAQd0a898fDnHqzGV+O5rINaGBzg5JKimDuwfe7fqQZgygaZs2+Pj45Dufk2khJ/XiH4X8i+SkXcr9c6rtzxf/KPDnns9OvQjZWVizMsi+dJ7sS6Us9NuL+n/O2s8t9tfEMyAErybt9UMqERFxuDIX7T09Pfn8889Zv349x48fJzg4mMGDB2My5f+JtLu7OxMmTGDo0KGl6n/Pnj2YzWZCQkLo0KFDgfMjRoxg06ZNrFu37opFe4vFwrZt24DcGUeF9fXGG2+wZcsWMjIy8PT0BGDDhg0ADBw4sMBzmUwmBg4cyNKlS1m7dm2hRfuYmBhmzpzJoEGDGDZsmIr2pWA0+eBRrxGZib9jiYvCPUwfIkVERERKo7zzdRGAGt4eDOramBVbY/jupxgV7aXcGD1MGGvXw712vRJdb7VasWamk52aO1M/O+3PWfv2wr9tJn/aH8dSL0HOH4X+i0lkX0wqsv9a4UOpO/RODEY3Rz2iiIhI2Yv2AEajkcGDBxd7zcSJE6+q70OHDgHQrl27Qs+3bdsWyF0v/kpiYmKwWCz4+/sTFBRU4HxQUBB+fn6YzWZiYmIICwvLF0P79u0L7bddu3YsXbq00BisVivPP/88Hh4eTJs27YoxSkFewaFkJv5OetwRaqhoLyIiIlJq5Zmvi9jc0Kc5K7bGsOtQAqeTUmgYUMPZIYlgMBgweHpj9PQGv5L9MMlqtWLNSMudtZ96KXcG/x8FfXvh/7KZ1KORXNyzmqyLSQSOfgyjp1c5P42IiFQXDinal6f4+HgAGjRoUOh523Gz2UxKSgo1ahSdGMbFxRXbl+2c2WwmPj7eXrS3xVC/fv1iY7D1n9cXX3xBZGQkU6dOLbK9FM8rJIxLv67FEqt17UVEREREXFVwPV+6tA5k9+GzrNh6nLtvLPimtEhlYDAYMJh8ct/89i+6fpByeDtnv32X1GO7iV8wlQZjn8Xd178CIxURkaqqzEX78+fPExUVRYMGDWjWrFm+c4sWLeLLL7/kzJkzdOzYkWeffZbmzZuXqv/U1FQAvL29Cz2fd327KxXtr9RX3v5SUlIKtPvrWnrFtYHcIv6bb75J586due2224q8Z1lZrVZ7jOUtLS0t3+8VwVq3MQDpp6NJuXQRg5vL/6ypRJwxllWRxtExNI6Oo7F0DI2j42gsHcMpOZDV6pB1kss7XxfJa2Sf5uw+fJa1O3/n9qGt8fHycHZIIuWmRuueNPT1J+HrV8lIiCZ+3rM0GPc8ngEhzg5NREQquTJXP+fPn8+cOXN45ZVX8n0IWLx4MS+88AJWqxWAn376iUOHDvHdd9/h7189fvI8depUMjMzeemll8p1Y5rMzEz7Ej4V5cSJExV3M6uV2h5eGDPTObprM9m1G1bcvStAhY5lFaZxdAyNo+NoLB1D4+g4GkvHqOhxtO2xVBbK16UidQ4NJLheDeISU9gQeYrrI/RDIKnavELCCL5jBqcXvURWcgLxn0+h/i1P49248CV+RURESqLMRfvt27fj5ubGddddl+/4nDlzAPjXv/5FeHg48+bNY/fu3cybN49HH320xP3bZrEXNasp7wzz4mbZl6SvvP3l7cvWrqjZ7IW1WbJkCVu2bOH++++nZcuWxcZVVh4eHuV+D5u0tDROnDhB06ZNi31jwdHOR4WScWIvwaYsarRpU2H3LU/OGsuqRuPoGBpHx9FYOobG0XE0lo7hjHE8duyYQ/op73xdJC+j0cANEc2Zs2wf322JYXivZhiN5TeBScQVeNRpSPDEV0j46lUscVGc/vJFAkc+gG+7Ps4OTUREKqkyF+3j4+OpV69evoL14cOHiY+Pp0uXLjz11FMAdOrUiQEDBrBp06ZSfQiwbRibkJBQ6HnbcT8/vysW7YODg4vtK++5vBvVBgUFcfDgQc6cOVNsG1v/AOvWrQNg69at7Nq1K9/1x48fB2DevHmsXLmS8PDwMn0wMhgMRS7dU168vb0r9J6Wxm3JOLGXnMSYCn/W8lbRY1lVaRwdQ+PoOBpLx9A4Oo7G0jEqchwd9aZmeefrIn81sGsjFqw6RFziZX49kkh465Jt/ilSmbn51KLh7dNIXP5e7lr337xD1oUkal87qlzfvBcRkarJWNYOzGYz9erVy3ds9+7dAAwcONB+rF69ejRu3Jjff/+9VP23+WNW9YEDBwo9f/DgQQD7prHFadasGSaTieTkZPvmsnnFx8djNpvx8vLK9+qwLYb9+/cX2q8ttsJi+PXXX9m5c2e+X0lJSUDu69U7d+7k6NGjV4y9ujOFhAJgiT3i5EhEREREKpfyztdF/srHy4PB3XP3pVr+U7SToxGpOEYPE4E3PU7tHiMBOL/hvySt+ghrTraTIxMRkcqmzEV7o9FYYAPWPXv2YDAY6NKlS77jNWvWJDMzs1T9h4eH4+fnR2xsLPv27StwfuXKlQAMGjToin2ZTCZ69eoFwKpVq4rsKyIiIt/6oQMGDABg/fr1WCyWfG0sFgvr168HYPDgwfbjs2bNIioqqtBfo0ePBmD69OlERUUxa9asK8Ze3XkFtQIMZF04S9alZGeHIyIiIlJplHe+LlKY63s3w2CA3YfPEpd42dnhiFQYg8FI3cETqTvkX4CBS7/8SMJXr5KToQ3hRUSk5MpctA8ODubkyZOYzWYgd1PUrVu34uXlRfv27fNdm5ycXOpNrdzd3ZkwYQIAL7zwApcv/5nwrVixgk2bNuHv78+YMWPsx/fu3cuwYcMYNmxYgf7uuusuIHcNz+joP2d9REdH29f1tF1j065dO3r27InZbGbGjBn2zbqsViszZszAbDYTERFB69atS/VsUnJGkw+egY0AsMRFOTkaERERkcqjvPN1kcIEBfjStU19AFZsOe7kaEQqXu1u11P/5icxuHuSFr2H+AVTNQFNRERKrMxr2kdERBAdHc3jjz/O7bffzurVqzGbzQwZMgR39z+7v3TpEqdOnaJjx46lvsfdd9/N9u3b2blzJ0OGDKFbt24kJSURGRmJh4cHr7/+Or6+vvbr09LSiImJKbSvrl27MmnSJObMmcPo0aPtM++3bduGxWLhvvvuo3PnzgXazZgxg7Fjx7Jo0SJ27dpFWFgYUVFRREdHExgYyEsvvVTq55LSMQWHkXH2d9LjoqjRuqezwxERERGpFCoiXxcpzMiI5uw6eIZ1u35n/PA2+Hh5ODskkQpVI6wHDf/xAglfvUJGwnHi5z1Dg3HP41mvkbNDExERF1fmmfZ33303AQEBbN26lfvvv59vv/0Wk8nE/fffn++69evXY7VaC7yCWxKenp7MnTuXRx99FD8/P9avX8+xY8cYNGgQixcvpm/fvqXq77HHHuPtt9+mbdu27Nixgx07dtC2bVveeecdHn744ULbBAcH88033zBu3DhSUlJYs2YNKSkpjBs3jm+++YaGDRuW+rmkdLyCc9e1T9e69iIiIiIlVhH5ukhhrgmtR6P6vqRZslm7S3slSPXkFRxK8MRX8KjTkKyLScR/PoW0k4XvlyciImJT5pn2AQEBLFmyhE8++YSYmBiCgoK44447aNGiRb7rdu/eTevWre3rw5eWp6cnkydPZvLkyVe8tkePHkRFFb+EyogRIxgxYkSpYggICOCFF14oVZvCvPrqq7z66qtl7qe6MYXkbvSbcToaa3YmBjfN1BERERG5korK10X+ymAwMDKiObOW7GXFlhhu6N0co9Hg7LBEKpyHfwOC7phBwtevYomN4vSX/0fgyAfwbd/H2aGJiIiLKnPRHqB+/fo899xzxV7z4osvOuJWUo151AnC6O1LTtplLAkn8Apu5eyQRERERCoF5eviLAO6NOLz7w9yOimF3YfP0K1tA2eHJOIUbj61aHjbNBKXzyTl8M+c/fYdMi8k4tdrNAaDfpglIiL5lXl5HJGKYjAYMAXlLpGjzWhFRERERFyfl8md63o0AeC7n7QhrVRvRg8TgTc9Ru2efwMgeeMXJK2cjTUn28mRiYiIq3HITHubpKQktm7dyvHjx0lJSaFGjRq0aNGC3r17U7duXUfeSqopr5Aw0qL3kB53hNrODkZERESkklG+Ls5wfe9mfLs5ml+OJHLqzCUa1a/p7JBEnMZgMFJ30B2416rHuTWfcenXtWRdOkf90Y9jNHk7OzwREXERDinaZ2Rk8Prrr7N48WKysrIK3sTdnXHjxvHkk0/i6enpiFtKNWXbjNYSq5n2IiIiIiWlfF2cqUHdGnRv24AdBxJYseU4947p5OyQRJyudrcRuNeux9llb5EW/QvxC/5Ng7FTcK9Zx9mhiYiICyjz8jg5OTnce++9fPHFF2RmZlKnTh26du3K8OHD6dq1K3Xq1CEzM5P//ve/3HfffVitVkfELdWUKagVGIxkXUwi69J5Z4cjIiIi4vKUr4sr+Fvf5gCsjzzF5bRMJ0cj4hpqhHaj4T9exK1GbTLOxBA371kyEn93dlgiIuICyjzTfsmSJWzdupWaNWvy9NNPM2rUKNzd/+w2Ozubb775htdff52tW7eydOlSxowZU9bbSjVlNHnjWa8RGWdPkh4XhW/ra50dkoiIiIhLU74urqBDiwCaNKjJyYRLrN15klH9Wjo7JBGX4BXciqA7ZpCw+GUyz8UT//lz1L/5KbybdnB2aCIi4kRlnmm/fPlyDAYD7733HjfffHO+DwAAbm5ujBkzhnfeeQer1co333xT1ltKNWcKDgPAEnvEyZGIiIiIuD7l6+IKDAYDI/vkzrZfsSWG7By90SFi4+HfgKAJM/Bq1IYcSyqnF77EpX2bnB2WiIg4UZmL9lFRUYSEhHDttcXPeL722mtp1KgRUVFai1zKxiskd1379Dj9WxIRERG5EuXr4ir6hYfg6+3BmfOpRB5McHY4Ii7FzacmDW6bSo02vSAni8Tl75G85X9askxEpJoqc9E+LS2N2rVrl+ja2rVrk56eXtZbSjXnFZI70z7j9HGs2VoPU0RERKQ4ytfFVXh5ujO0ZxMAvtty3MnRiLgeo7sngaMfpXbPGwFI3rSQpJWzsWYX3EBcRESqtjIX7evVq8fx48evmNynpaVx/PhxAgICynpLqebc/Rti9KmFNTsTS0KMs8MRERERcWnK18WVjOjdDKMBfjuaxMmEi84OR8TlGAxG6g6aQN2hd4PByKVf15Lw1SvkWNKcHZqIiFSgMhfte/ToQVpaGjNmzCj2uldeeYW0tDR69uxZ1ltKNWcwGPAKagWAJU7r2ouIiIgUR/m6uJJAfx96dmgIwHc/aba9SFFqdx1G/ZufwuBhIu34r8Qv+DdZl847OywREakgZS7a33XXXbi7u/P1119z4403smTJEvbu3cvp06fZu3cvS5Ys4W9/+xtff/01Hh4e3HnnnY6IW6o50x9L5KTHas1VERERkeIoXxdXMzIid0PaDbtjuZSa4eRoRFxXjdBuBP3jRdxq1CbjTAxx854l4+zvzg5LREQqgHtZO2jRogWvvfYazz77LFFRUTz//PMFrrFarZhMJl599VVatGhR1luK4BVs24xWM+1FREREiqN8XVxNu+Z1aRZUi5j4i6zZcZKbBrRydkgiLssU1JKgia+QsOhlMs/FETf/ORqMeRLvZh2dHZqIiJSjMs+0BxgxYgTLli3jpptuom7dulitVvuvunXrcvPNN7Ns2TKGDx/uiNuJYApqCQYj2ReTyLp4ztnhiIiIiLg05eviSgwGg322/YqtMWRn5zg5IhHX5uFXn6A7XsarcVusllROL3qJS3s3OjssEREpR2WeaW/TvHlz+zqZly9fJiUlhRo1auDr62u/5qabbuLixYusXbvWUbeVChYdd4HFP53jzjqXCWvm47Q4jJ7eeAY2IeNMDOlxR/Ctda3TYhERERGpDJSviyvpFx7CvO8Pkpicxs6DCVzbIcjZIYm4NDfvmjS8dSpnv5tJysGtJH43k6wLZ/GLuAWDweDs8ERExMEcMtP+r3x9falfv36+DwAA8fHxxMXFlcctpYL8dvQch06l8ebC30izZDk1FtsSOZY4rWsvIiIiUhrK18XZPD3cGNqzCQDLtSGtSIkY3D0IHPUIta8dBUDy5sUkfT8La7ZzP5uLiIjjlUvRXqquId0bUcvHjdPnUvn4m31OjcUU8se69rFa115EREREpLIZ0asZRqOB/dHniIm/4OxwRCoFg8FI3YHjCRh2DxiMXPptPQlfzSDHkurs0ERExIFUtJdS8fXx4KZr62AwwJqdv7PlN+fNxPIKDgPAkhCNNSvTaXGIiIiIVHcZGRnMmTOH66+/no4dO9KzZ08eeOABDhw4cFX9rVy5kltvvZXw8HDCw8O59dZbWbVqVbFtkpKSmD59Ov3796d9+/b079+f6dOnc+5c4fsfnT59mi+//JJnn32WkSNH0qZNG8LCwli6dGmx9xk/fjxhYWFF/vroo4+u6pmrowA/b3p1aAjAd5ptL1IqtboMpf4tT2PwMJF2/Dfi5z+v/d5ERKoQh61pL9VH0/omRvVpxrLNMbz/9W+ENvYn0L/i17d392+A0acWOakXsZyJsS+XIyIiIiIVJyMjgzvvvJOdO3dSt25dBgwYQGJiImvWrGHjxo18+OGH9OnTp8T9vf3228yePRtPT0969+4NwNatW3nkkUc4cuQIDz/8cIE2cXFxjB07lsTERJo3b87gwYOJiopi4cKFrF+/nsWLF9OwYcN8bVavXs0rr7xy1c89dOhQfHwK5sChocpJS2Nkn+Zs+S2eTXtiueP6ttT2NTk7JJFKo0arrgT940USvnqFjLMniZv3LA3HPYdnYBNnhyYiImWkor1clZsHNufAiWSO/G7mrS/38PK9vXEzVuzmNwaDAa/gUFKPRpIeG6WivYiIiIgTfPzxx+zcuZMOHTowb948+zr5K1as4PHHH+fJJ59k7dq1BdbPL0xkZCSzZ8+mVq1aLFq0iBYtWgAQHR3NuHHjmDVrFn379qVz58752k2ZMoXExETGjRvH9OnTMRgMWK1Wpk+fzqJFi3j++eeZO3duvjYhISFMmDCB9u3b0759e2bOnHnF2fx5PfXUU4SEhJT4eilcm6Z1aBlSm2OxF/hxx0luGaScXqQ0TEEtCZr4CgmLXyYzKZa4+c9Tf8wT+DTr5OzQRESkDLQ8jlwVdzcjT9zeFW+TGweOn+N/652zrrzJtkSONqMVERERqXBZWVnMnz8fgGnTpuUrzN9www3069eP5ORklixZUqL+PvnkEwAmT55sL9gDtGjRgkmTJuW7xubAgQNs374dPz8/pkyZgsGQO5HEYDAwZcoU/Pz82LJlC4cPH87XbvDgwTz33HPceOONtGjRwt5OKpbBYGBkn+YArNwaQ1Z2jpMjEql8PPwCCZrwMl6N22G1pJKw6GUu/bbe2WGJiEgZqGgvV61hQA0m39QRgC9XR3H45PkKj8HLvhmtivYiIiIiFW3Pnj2YzWZCQkLo0KFDgfMjRowAYN26dVfsy2KxsG3bNgCGDx9eZF9btmwhIyPDfnzDhg0ADBw4EJMp/9IqJpOJgQMHArB27dqSPJI4QZ9rgvHzNZF0IZ3t+087OxyRSsnN25eGt/4b33Z9ICebxBUfcPnnpWC1Ojs0ERG5CqVeHuf999+/6pulp6dfdVtxTQO6NGL34bNs/iWO//x3N+893h8fL48Ku7+pYUswGMm+dJ6si0m41wqosHuLiIiIuKKKzNcPHToEQLt27Qo937ZtWwCioq48wSImJgaLxYK/vz9BQUEFzgcFBeHn54fZbCYmJoawsLB8MbRv377Qftu1a8fSpUtLFENpLFmyBLPZDEBwcDD9+/enZcuWDr1HdeHh7sbQa5uweM0RvvvpOBGdgp0dkkilZHD3oN6ND+Feux7mbUu5vH0ZPsEdyWnZDArZg0NERFzXVRXtr/bVUavVqtdOqxiDwcB9Yzpx+GQyZ86nMnvpXh67rUuF3d/o6YVnYBMyzsSQHhuFb1sV7UVERKR6q8h8PT4+HoAGDRoUet523Gw2k5KSQo0aNYrsKy4urti+bOfMZjPx8fH2or0thvr16xcbg61/R5k1a1a+v//nP/9h1KhRTJ8+HS8vL4feqzoYfm1T/rfuKAdjznMs1kzLED9nhyRSKRkMRuoMuB332vVI+uFjTHF7SfzoIdI79KNWl6HapFZEpJIoddG+W7du5RGHVGI1vD144rYuPPPBT2zYHUt4WCD9uzSqsPt7hYTlFu3jjuDbtneF3VdERETEFVVkvp6amgqAt7d3oed98szsvFLR/kp95e0vJSWlQDufImaRFtamLLp27cqYMWMIDw8nMDCQM2fOsGnTJt577z2WLVtGRkYGb731VpnvY7Va7c9W3tLS0vL97gzeHtCzfX227k3gm41Hue+mwt/ecHWuMJZVgcax7NxbR+Bj9OLSxgW4pZzn4p7VXNyzGo+gUHw6DcKrZTcM7hX3lnxlp3+TjqFxdAyNo+M4YyxLOkmm1EX7BQsWXFVAUrW1aVaHcdeF8eWPUcxaspfWTevQoG7RH8ocyRQcCrt/wKJ17UVERESUr5ezhx9+ON/fmzRpwoQJE+jRowdjxozh+++/Z+LEiXTs2LFM98nMzLQv/VNRTpw4UaH3+6s2DbLZuhe2/BZPt2ZWfL3cnBpPWTh7LKsKjWNZ1YCISbifP4np9z14nD1CZvwRLsQfIdnzcyzBncho1JkcHz9nB1pp6N+kY2gcHUPj6DgVPZaenp5XvKbURXuRovx9cCi/HEnk0InzvPnFbl69PwI3t/Lf69grJPfVaEtCDDlZGRjdr/wPX0RERETKzjaLvajZSXlnihc3y74kfeXtL29ftnZFzUovrE15CAsLY+DAgaxevZrNmzeXuWjv4eFRYWvkp6WlceLECZo2bVrsmw7lrQ2w8eAOjsVe5PcLPozp3NxpsVwtVxnLyk7j6Bi2cQzp0h/viOFkX04mbf9GUvdtgMvJeMf8jHfMdkzNOuHTaRCeTTpiMJb/Z/jKSP8mHUPj6BgaR8dxxlgeO3asRNepaC8O4+Zm5Inbu/DQmxs4fDKZRWuOcPuw1uV+X3e/+hh9apGTepGMhON4hZT/PUVEREQE+4axCQkJhZ63Hffz87ti0Tw4OLjYvvKey7tRbVBQEAcPHuTMmTPFtrH1X56aNm0KwNmzZ8vcl8FgKHLJn/Li7e1d4ff8qxv7tuTNL/ewdlcstw5ti3sFTAIqD64wllWBxtEx7OPo40PNgbdj7T+O1CORXNyzmrSY37DE/Iol5lfcawdSK3wINTsNxK1GbWeH7ZL0b9IxNI6OoXF0nIocy5LuH1U5MyBxWYF1fLjv5k4AfLU2igPHz5X7PQ0GA17BubPt02OPlPv9RERERCRXmzZtADhw4ECh5w8ePAhg3zS2OM2aNcNkMpGcnGzfXDav+Ph4zGYzXl5eNGvWrEAM+/fvL7RfW2wliaGsLly4ABS/Lr8Ur3enYPxrmjh/0cK2vQX/HYhI2RmMbtRo3YOGt00lZPJMane/AaOXL1kXznJ+w385OfMezn77Lumxh7Farc4OV0SkWlLRXhyub+cQBnVrRI4V/vPFbi6nZpT7Pb1CQgGwxGldexEREZGKEh4ejp+fH7Gxsezbt6/A+ZUrVwIwaNCgK/ZlMpno1asXAKtWrSqyr4iIiHzrgA4YMACA9evXY7FY8rWxWCysX78egMGDB5fkka5aRkYGGzduBKB9+/bleq+qzMPdyPBrmwLw3U/HnRuMSDXgWTeIutf9k8YPfUS9G+7H1LAlZGdxef9m4j9/jrhPHufinh/JydCGlyIiFUlFeykX94zqQMO6NUgyp/HB/34r95/Om/LMtNdMABEREZGK4e7uzoQJEwB44YUXuHz5sv3cihUr2LRpE/7+/owZM8Z+fO/evQwbNoxhw4YV6O+uu+4CYM6cOURHR9uPR0dHM2fOnHzX2LRr146ePXtiNpuZMWOGPRe0Wq3MmDEDs9lMREQErVuXfQnFn3/+mQ0bNpCTk5PveGJiIg899BAJCQk0aNCA6667rsz3qs6G9WqKu5uBwyeTOfJ7srPDEakWjB4manYaSPD/s3fn4VFVB//Av3f2mWyTTPYEkhBIQkJAdkFAtipSta4Fq0ItLogKrdb2/fn6VrQurbb6vqIICmJxQ1uoImURCEFZwyJLWBISAtnIMkkmy+zb749JJhmywySTwPfzPPPM5N655545RnLme8895zd/Rcwjf0XAiOkQJDJYKi5Cu2UlLv7fY9Bu/QiWykJfV5WI6LrAOe2pR6gUUvz+odH4w7Ifsed4KUanFGLmuLgeO588KhEQRLA3VMNep4UkKKzHzkVEREREzR577DEcOHAAWVlZuOWWWzB27FhotVocPnwYUqkUb775Jvz9/d3vNxqNKCgoaLOsMWPG4IknnsDKlStx9913u0fe79u3D2azGYsWLcLIkSNbHff6669jzpw5WLduHQ4dOoTk5GTk5OQgPz8f4eHhePXVV1sdU1FRgaefftr988WLFwEAy5cvx7p16wAAYWFheP/9993vycnJwRtvvIGwsDCkpqYiICAAZWVlOH36NAwGA0JCQvDee+9BoVBcQUtSk+AABSbfEINdR4rx3Z7zeO5Xo31dJaLrijx6MMKiByNkxnw0nMxE3ZFtsFaXou7IVtQd2QrFwFQEjroVfinjIYilvq4uEdE1iaE99ZikgcF4cFYK1m4+g5X/PonUBA2iw/w7P/AKiGQKyCLiYSk7D1NJLvwZ2hMRERH1CplMhtWrV+Pjjz/Gxo0bkZGRAZVKhRkzZuCpp55CWlpat8p79tlnkZKSgrVr1+LgwYMAgNTUVMyfPx+33XZbm8fExMTgm2++wbJly5CZmYnt27dDo9Fg7ty5WLx4MTQaTatjLBYLjh8/3mp7UVERioqK3OW2NG7cOMyZMwfZ2dnIzs5GXV0dZDIZ4uPjcfPNN2PevHkICQnp1ueltt0+aRB2HSnGnmMl+M3taQgO5IUQot4mVvojaNztCBz7c5gunETd0W3Q52TBVHgapsLTEPsFIWDEDASM+hmkQeG+ri4R0TWFoT31qHumDcGx3EqcyNPirc+P4M2nJ0Mq6ZlZmRSxya7QvjgH/qk39cg5iIiIiKg1mUyGhQsXYuHChZ2+d/z48cjJ6XgdotmzZ2P27NndqkNoaChefvnlLr8/Nja203pcLjU1Fa+88kq3jqErkzQwGClxwTh7sQZb91/AA7de/fRGRHRlBEGAMmE4lAnDYaurQt2xHaj/aQfsDdXQ7dsA3f5voBo8CoGjZ0E5aAQEgTMxExFdLf5LSj1KLBLwuwdGwV8pRV6RDp9vPdNj51I0zmtvLsntsXMQEREREVHvuGPyIADA5v0XYLU5Onk3EfUGSaAGIVPmYODTHyD83t9DGZ8OOB0wnDuMsnWvomj509Dt/wZ2Q52vq0pE1K8xtKceF6pW4plf3gAA2JCZh+PnKnvkPPLYJACAuawADpulR85BRERERES9Y+LwaIQEKqCrN2Pv8RJfV4eIWhDEEvinTEDUg0sRu/BdBI67HSK5CjZdOaozPkXhu4+jYuO7MBXnuBcIJyKirmNoT71i4vBo3HpjHJxO4O0vjqJO7/1QXRIUDrGfGnDYYLl03uvlExERERFR75GIRZh9UzwAYOOP5xn8EfVRMk0MQn/2CAYuWYXQny+CLDIRTrsVDSd3o/QfL6Bk9fOoO/o9HBajr6tKRNRvMLSnXvPoncMQG+6P6joTln39k9c73YIgQB7jGm1vKune/KRERERERNT3zLoxHlKJCOeKdMgprPF1dYioAyKpHIE3zEDsgjcR/chf4T98GgSJDJbyAmi3rMTFdx+HdtsqWCqLfF1VIqI+j6E99RqFXILfPzgaErGAA9ll2HrgovfPEeua195UzNCeiIiIiKi/C/KXY8rIGADAdz/yblqi/kIRPRjhdzyNgYs/RMjM+ZCGRMFpNqDu8BYUf/hblH76JzSc3gun3errqhIR9UkM7alXJcaqMf/nqQCAVd9mo7DMu4vTNI20N5fk8vZZIiIiIqJrwB2TXAvS7j1eiqpaTq9B1J+IlQFQj78TsQvfReQDf4IqeTwgiGAqPIWKf7+NwmULUZ35JWx1Wl9XlYioT2FoT73uzsmJGJkUBovVjr99fgRWm91rZcujEgGRGPaGGtjqembBWyIiIiIi6j2JsWqkDdLA7nDi758fZXBP1A8JggiqQSMQed8fMPDpFVBPuh9iPzXseh10e/+FwveeRNm/3oTxwkkOwCMiAkN78gGRSMDvHhiFIH8ZCkrr8I//nPFe2VI55BHxAABzca7XyiUiIiIiIt95aFYKZFIxTuZr8czfdmHfiVJfV4mIrpAkUIOQm+di4DMrEX7P76GISwOcDhhyDuLS50tR/OFvUXdkKxxmXqAjousXQ3vyieBABZbMGQkA+PaHfBw5W+61suUxrnnta378Crp9G2DRFvNKPRERERFRPzYsMRT/+7ubkRgbhHqDFW/84xDe/eonGM02X1eNiK6QIJbAf+gERD/0CmIffweBo26FIFXAqi2GdutHuPjuY9BuWw1LVYmvq0pE1OsY2pPPjE2NxO03JQAA/vfLn1BTb/JKuX7J4wBBBGtVKap3fY7ilUtQ9MHTqNrxDxgLT8Hp8N50PERERERE1DsGRATgrWem4L7pQyAIwPasQix5OxO5hTW+rhoRXSVZ2ECE3vY44hZ/CM0tCyANiYbTYkTd4c0oXrEYl754BfqcLH6fJ6LrhsTXFaDr26/vSMPJfC0ultXj3a+O4U8LxkMQhKsqUxmfjoFPr4Dh3GHozx2C8cJJ2GrKUHtwI2oPboRIGQDV4NHwSxoL5aAREMmUXvo0RERERETUk6QSEeb/PBWjUsLx9hdHcUmrx/PLfsQDtyTj/ulDIBZzXBpRfyZS+CFo7GwEjpkFY8FJ1B3ZAsO5IzAWHIex4DgkQWEIHHUrAm6YAbEq0NfVJSLqMQztyafkUjGef2gMfve/u3H4TDk27SnAHZMHXXW5kkANAkffisDRt8JhNsJQcAyG3EMw5B2Bw1iPhpOZaDiZCUEshSI+HX5JY6EaMgaSgJCrPjcREREREfWs9MRQLHtuKj5YfwI/HCvB51vP4ujZCjz7q1GI1Pj5unpEdJWaFq5VDRoBq64CdUe3of7YTthqK1G96zPU/PAV/NJuQtDo2yCPHuzr6hIReR1De/K5uKhALLgjDSv+fRJrNp3CsEQNEqKDvFa+SK6Ef8oE+KdMgNNhh6noLAznDkGfewi2mjIY84/CmH8U2LIS8qjBUCWNhV/SWEjDBl71qH8iIiIiIuoZ/ioZfv/QaIxJjcCKDSdw5kI1Fv89EwvvGY5po2PZlye6RkjV4dBMfxjBk38J/em9qD28FZayfDScyETDiUzIo4cgcMxt8B86EYJE6uvqEhF5BUN76hNm35SAIzkVOHS6HG99dgTv/O5myKVir59HEImhjEuDMi4NITPmw6othj73EAy5WTCXnoP5Uh7Ml/JQs/tLSNThUA1xBfiKAUMhiPm/CxERERFRXyIIAqaNHoDUBA3+/vkRnLlQjXe+PIrDZ8qx6N7h8FfJfF1FIvISkVSOgBHT4T98Gsyl51B3eAsazuyDufQcKjeeQ9WOTxB4w0wEjr4VksBQX1eXiOiqMIWkPkEQBCyZMxLP/G0Xisrr8fHGbDx574geP6csbABkYQMQfNM9sDXUwHDuMAy5jfPg6ypQd+g/qDv0H4gU/lANHgXVkDFQJY6ESK7q0boREREREVHXRYSo8Maim/CvjHP44vsc/HisBGcuVOPZB0YhfTDDO6JriSAIUMQkQRGTBM3MX6Pu2A7UHdkGe30VdPs2QLf/G6iSxiJozG1QxA3jXTdE1C8xtKc+I8hfjt8+MAovfbgfm/ddwOiUCIxLi+y180v8gxE48mcIHPkzOCwmGAuOu0bh5x2Bw1CHhuwf0JD9AyCSQBmfBtWQcfBLGgtJoKbX6khERERERG0Ti0WY87NkjEwOx98+P4JLWj3+e8Ve3DN1MB6cNRRSCRepJbrWiP2CEHzTvVBPuAuG3EOoPbwFpovZMOQchCHnIKShsQgcfRsC0m+GSK70dXWJiLqMoT31KaOSw3HXzYn4Znc+/nfdT1j2+6nQBPX+H1aRTAG/5PHwSx4Pp8MOc0lu4zQ6h2CtLoXx/HEYzx9H1baPIIsc1LiQ7VjIIuJ5FZ+IiIiIyIeSBgbj/56dilXfZuP7gxexflcejp2rxHO/Go0BEQG+rh4R9QBBJIZfyo3wS7kRlspC1B3ZhvoTmbBqi1G17SNU7/oMAcOnInD0LMhCY31dXSKiTjG0pz5n3uyhOJGnxfmSWvzvlz/h5ccnQCTyXRAuiMRQDBgKxYCh0MyYB0tVCQy5roVszcU5sJSdh6XsPGp++AqSwFCoksZClTQWyoGpEMRcBIeIiIiIqLcp5RI888sbMGZoOJZ9fQz5xbX47Tu78eidaZg1gQNtiK5lsrCBCJ31GEKm/gr1J3ej7sgWWKtKUXd4C+oOb4EyYTgCR98G1ZDREETeX0uPiMgbGNpTnyOViPH7B0fjt+/sxrFzlfhmdz7umTbY19Vyk2liIJsQA/WEu2DX18KQdwT63CwYzx+HrU7r7ggIchVUiSPhlzQWysRRECv8fF11IiIiIqLryoT0aCQNDMb/rvsJx3IrsXz9CRw+U4FnfnkD1AFyX1ePiHqQSOGHoLGzETjmNhgvnEDd4S0wnDsCY8EJGAtOQBIYisDRtyJgxAyI/YJ8XV0iIg8M7alPGhARgMfvGob3/nkcn245jeFDQjE4Vu3rarUi9gtCwIjpCBgxHQ6rGcaCE67FbM8dhl2vg/70XuhP7wVEYigHpkKVNA6qpDGQBoX7uupERERERNcFTZASLz82Ad/tOY9PNp1G1ukyPPO3XVgydyTGDI3wdfWIqIcJggBVwgioEkbAWluB+qPfo+6nHbDVaVG963PU/PA1/FJvQuCY26CI7jsDBono+sbQnvqsW8bH4cjZCuw/eQl/++ww/vd3U6GQ991fWZFUDr+ksfBLGgun0wFzaR4MuVnQ5x6CVVsM44WTMF44iarvV0MWHg9pwg2Q2JWwN0TBqVTyFl0iIiIioh4iEgn4xZREDB8cir9/fgQXy+rx8qoD+PlNCXjkjjTIpZwig+h6IA0KR8i0h6Ce/EvoT+9F3eEtMF/KR8PJTDSczIQ8eggCx8yC39CJEElkvq4uEV3H+m4CStc9QRDwzC9vQG5hDUoq9fjo22w888sbfF2tLhEEERQxSVDEJCFk2kOwVpdCf+4wDLmHYCo6C0vFBVgqLiAAQOXhL1Gl9IcsdACkYQMgCx0AWdgAyMIG8hY9IiIiIiIvSogOwtu/vRn/+M9pbPzxPP6ztwAn8rT4/YOjMSiGfW+i64VIIkPA8GkIGD4NppJzqDuyBQ2n98Jceg6VG8+hasc/EHjDTASOugWSoDBfV5eIrkMM7alPC1DJ8NyvRuO/V+zF9wcvYlRyOG4aEe3ranWbNCQa6vF3Qj3+TtgN9TDkHUF9Thb0xecgNtbAYWyAqegMTEVnPI4TqQJdAX6oK8SXhrkCfbEywEefhIiIiIiof5NJxXjsrnSMTonA/647iqLyejz3f7vx8G2puOvmRIhEvAOW6HqiiBkCRcwQaGbMR92xnag7ug32Oi10+zZAt/8bqJLGQj5sGuDkvw1E1HsY2lOflz44FPdNH4J/7jyHZf88hqSBwQgLVvq6WldMrApAwPCpEA8eh0tnziBlSCIkhhpYtEWwVhbCUlkES2URbLoKOAx1MF08BdPFU55l+KkhCx8IqXtUvivYF3GxWyIiIiKiLhmVEo5lv5+G9/55DAeyy7Bm0ykcOVuO3z0wCqHq/vt9g4iujNgvCME33QP1hF/AkHsYtUe2wHThJAw5B2HIOYggmR90F9JhGzQCyvh0SIIjOc0tEfUYhvbUL/zq1hQcy63EuSId3v7yCF5deBPE18gIGEEigzwyAfLIBI/tDosJVm0xLNoid5Bv1RbBVlsJu14HY4EOxoITHseIAzTuEF/aODpfFhYLkYxfOoiIiIiILhfkL8cLvx6H7w8W4qNvT+JEnhbP/G0Xnr7/hn55hy8RXT1BJIZfynj4pYyHpbIIdUe2ov5EJkQWPUw5B2DKOQDA9f1bGZ8OZVwaFPHDIA0K93HNieha0m9Ce4vFgjVr1mDjxo0oKiqCSqXCmDFj8OSTTyItLa3b5W3evBmffvopcnJyAADJycmYN28ebrvttnaP0Wq1eO+995CZmQmtVovQ0FBMnToVzzzzDDQaTav3Z2dnIzMzE3v37kVeXh4MBgOCg4MxatQo/PrXv8aoUaO6Xe/rlUQswu8fGo3fvp2J7PwqrM84h1/OTPJ1tXqUSKaAPHow5JetXu8wG91BvtUd6BfCXl8Ne30VjPVVMJ4/5nGMJCjMFeKHD3TPmS8NjYVIKu/FT0RERERE1PcIgoBbb4zDsEQN/vb5EeQV6fCXtYcwY+wAPH5XOlQKqa+rSEQ+IgsbgNBZj0E58ZfIO7gTkSID7KU5MBXnwl5f5V7AFgAk6ggo44ZBGZ8ORdwwSAKCfVl1Iurn+kVob7FYsGDBAmRlZUGj0WDatGmorKzE9u3bkZmZiQ8++ACTJ0/ucnnvvPMOVqxYAZlMhptuugkAsHfvXvz2t79Fbm4ulixZ0uqYkpISzJkzB5WVlRg0aBBmzpyJnJwcfPnll8jIyMBXX32FqKgo9/ttNhvuvfdeAEBAQABGjBiBgIAA5OXlYdu2bdi+fTteeOEFPPzww1fZOteP6FB/PHH3cPzvup/w+bazGDEkFMlxIb6uVq8TyZXuRW5bspv0LUL85ql27HodbLWVsNVWwph/tMURAiTq8MbR+M2L4EpDYyCSyHr3QxERERER+VhMmD/eemYyvvw+B//amYudh4pw6nwVnvvVaKTEX3/fO4iomSCRwhYSh4ChQ6FSqeCwmmEqPgvThWwYL2bDXJoHm64c9bpy1B/fCQCQamKgjBsGRfwwKAemQezHxa6JqOv6RWj/0UcfISsrC+np6fjkk0/g7+8PANi0aROee+45PP/889ixY4d7e0cOHz6MFStWIDAwEOvWrUNiYiIAID8/H3PnzsXy5csxZcoUjBw50uO4F154AZWVlZg7dy6WLl0KQRDgdDqxdOlSrFu3Di+++CJWr17tccywYcPwxBNPYNq0aZBKm0dnfPnll1i6dCneeOMNTJw40V0H6tz0MQNw9GwFfjhWgr99fgT/9+xUjnxpJFb4QRybAkVsisd2u7G+McR3jchvGqXvMNTBpiuHTVcOw7lDzQcIIkiDI90hviy8MdQPiYYg7hf/ZBARERERXRGJWISHbxuKUcnhePuLIyirMuCP7+/BnJlJmDMzCWKxyNdVJKI+QCSVQ5UwAqqEEQBcd8Sbik7DeDEbxgvZsJQVwFpVAmtVCeqObgMAyMIHQhGX7gry49Ig5pp0RNSBPp/A2Ww2rF27FgDw0ksveQTzt99+OzZu3Ijdu3dj/fr1mD9/fqflrVq1CgCwcOFCj7A8MTERTzzxBN566y2sWrUK77//vnvfqVOncODAAajVarzwwgvuhUYEQcALL7yArVu3Ys+ePTh79ixSUlyBqUQiwfr169uswwMPPIAdO3Zgz5492LJlC55++ulutsr1SxAEPHnfCJy9WI2yKgNWbDiBZ3812tfV6tPEygAoB6ZCOTDVY7tdX+sK8SuLGhfBdT07jA2wVpfCWl0KQ87BFgVJINPEuEbmhw+EtPFZEhjGxXeIiIiI6JqSNkiDd5+bhhUbTiDzaDG+/D4HP+VU4LkHRyNSw6CNiDyJ5EqoBo+GarArn7AbG2AqPOUO8a2VhbBUuB51h/4DQIAschCU8WlQxqVDMWAoRHKuRUdEzfp8aH/06FHodDrExsYiPT291f7Zs2dj9+7d2LlzZ6ehvdlsxr59+wCgzbnrZ8+ejbfeegt79uyBxWKBTOaaImTXrl0AgOnTp0Mu95wDXC6XY/r06diwYQN27NjhDu07k5ycjD179qCioqJL76dm/kopnntwNP7f+3uw60gxRqVEYOqoWF9Xq98R+wVB6ZcOZXzz/1dOpxP2Bh0s2sLGkfnNc+Y7LUZYKi7CUnERONVcjiBTuqfYkYXHNY7MHwixKtAHn4qIiIiIyDv8Gr93jBkagQ/WH8fZizVY/PddePyu4ZgxdgAHrhBRu8RKf/glj4df8ngArkFzxsJTMF44CdPFbFirSmEpy4elLB+1BzYCggjy6CHuRW0VsSlcg47oOtfnQ/szZ84AQLuLzaamukYPNy0o25GCggKYzWYEBwcjOjq61f7o6Gio1WrodDoUFBQgOTnZow7Dhg1rs9y0tDRs2LChS3VoUlhYCAAIDQ3t8jHULDVBg7k/S8YX3+fgg/XHkRIXzBEvXiAIAiQBwa4Fcxpv8wNcYb6trhKWisLmEQKVhbBoS+C0GGEuyYG5xPP3X+yndgf4rlH5cZCFxkIkU/T2xyIiIiIiumI3j4rF0PgQvP3lUZw6X4X/++onHD5TjqfuH4EAFdeCIqLOif2C4D90IvyHTgQA2OqrYbyY3Tgn/knYdBXN36v3bQDEEihiklyj8OPToIhOgiDh1MBE15M+H9qXlpYCACIjI9vc37Rdp9NBr9fDz6/94LakpKTDspr26XQ6lJaWukP7pjpERER0WIem8jtTUFCAzMxMAMCMGTO6dAy19suZSfgptxJnLlTj758fwV+emsQ5JnuIIAiQBoVDGhQODBnj3u6022CtLnWNxq+46AryKwph05XDrtfBWKCDseBEy5IgCY5wjcoPax6VLw2J4nz5RERERNRnhYeo8NqTN2HDrnP4fOtZ7D1RirMXq/G7B0ZhxJAwX1ePiPoZSUAIAoZNQcCwKQAAq64CpovZjdPpnIS9vhqmwtMwFZ4GfgQEiQyKASlQxA2DMj4d8qhECCKxjz8FEfWkPp+SGQwGAIBS2fbcXiqVyv26s9C+s7JalqfX61sd1/JcnR3THovFgj/+8Y+wWq24/fbb272DoDucTqe7jj3NaDR6PPvaontS8Yf3D+DsxRp8uvkUfjmj/yzq29fa8or5hULkFwpF/Eg0jaF3WEywVZfApi2GTVsEW1UxbNpiOAy1sNWUwVZTBkNui8VvxRJIgqMgCR0AiSYWktABkIbGQhSg6fS242umHX2M7eg9bEvvYDt6D9vSO3zRjk6nk9NvEPUhYpGA+2ck4YakMPz98yMoqdTjf1buw103D8bDt6VAKmGARkRXRqoOh1Q9HQEjprvudK+5BOMFV4hvupjtml6n4ASMBSdQA0CQKaAYkApl/DAo49Ihi4hjiE90jenzof215qWXXsLx48cRHx+Pl156yStlWq1W9xQ+veXChQu9er6OzB4diPX7qrFh93kESuoRF96/5n3rS23pdeJwICIciHAtxiNY9BDXV7oeDc3Pgt3iCve1RR6HO8Uy2APCYPcPa3wOhz0gDE5Z6wto13Q79iK2o/ewLb2D7eg9bEvv6O12bFpjiYj6jiEDgvG/v5uK1d+dwtb9F/DvzDwcz63E7x8aDU0AQzMiujqCIEAaEg1pSDQCR90Cp9MJq7aoRYh/Cg5TA4z5R2HMPwoAECn8oBiYCtXg0fAfOhEiBacPJurv+nxo3zSKvb1RTS1HmHc0yr4rZbUsr2VZTce1N5q9rWPa8tZbb2HDhg2IjIzExx9/jMBA7yzUKZVKMXjwYK+U1Rmj0YgLFy4gPj6+wzsWetPQoYDWmI3dP13Cd4fq8eZTafBT9v253vpiW/qC0+mEvU7bOBq/eVS+rboUgt0Cia4EEp3n1FMiVZBrVH5oLJyBESg3C4hNHQ1VoNo3H+IawN9H72Fbegfb0XvYlt7hi3bMy8vrlfMQUfcp5BI8dd8IjE4Jx7Kvj+F8aS1++3YmHpqVhAEBTl9Xj4iuIYIgQBbmmlo2aOxsOJ0OWMovwnjxpGtO/MLTcJj0MOQegiH3EKq+/xh+QycgYMR0KAamQhA4jTBRf9TnQ/umBWPLysra3N+0Xa1Wdxqax8TEdFhWy30tF6qNjo7G6dOnUV5e3uExTeW3ZcWKFVi1ahVCQkLw8ccfd/je7hIEod2pe3qKUqns9XN2ZNF9I5FbWIdLVXp8/J9c/OHhMf3mdvK+1pY+4ecHRMV5bHLPl9+06G3js01XDoehFpbCWlgKswEAgQDq9v8DhuAIV2cmvHHh26b58nmbYJfx99F72JbewXb0Hrald/RmO/aXvgzR9ezGYVFIHhiM/133E47mVODjTWcxKFKOxRF6JPLfXCLqAYIggjwyAfLIBGD8nXA67DBfOg/jhRNoyP4BVm0xGk7uRsPJ3ZCoIxAwYjoChk+DJFDj66oTUTf0+dB+6NChAIBTp061uf/06dMA4F40tiMJCQmQy+WoqalBaWmpRzAPuBac1el0UCgUSEhI8KjDjh07kJ2d3Wa5TXVrrw6ffvop3nnnHQQEBGD16tVITOw/8673FyqFFL9/aDT+sOxH7DleitEpRZg5bqCvq0VXQRBL3KMJWnJYjLBUFsNSeRGWyiKYLhXAVF4AkcXQYr78rBblSCENjXUvetsU5osDQhiGEBEREdFVCw5U4KVHb8R/9hZgzaZTOF9mxvPvHcD9M5Jw3/TBnOueiHqUIBJDETMEipghUE+8B+bSc6g/thMNp/fCpitHze4vUbN7HZSDbkDADdPhN2QsBEnfn52A6HrX50P7UaNGQa1Wo7i4GCdPnkR6errH/s2bNwMAZsyY0WlZcrkcEydOxK5du7BlyxYsWLCgzbImTZrkMX/otGnTsGzZMmRkZMBsNkMub54z3Ww2IyMjAwAwc+bMVuf897//jddeew0qlQoffvghUlNTu/jJqbuSBgbjwVkpWLv5DFb++wSSBqoxMNI7UxBR3yGSKd0dEsA1PdWZM2eQFBcNSYMWloqLzaPzK4vgtJpgKS+ApbzAsxyFP2RhA9whflOoz7n/iIiIiKi7RCIBd0wehLSEQLz75WHkl5nxxbaz2H20CE/eOwIjhoT5uopEdB0QBAGKmCQoYpKg+dkj0J89gPrjGTAVnoLx/E8wnv8JIqU//IdNQcCIGZBHxPu6ykTUjj4f2kskEsybNw/vvvsuXn75ZXzyySfw9/cHAGzatAm7d+9GcHAw7r33XvcxJ06cwB/+8AcAwNatWz3Ke/TRR7Fr1y6sXLkSU6dOdY96z8/Px8qVK93vaSktLQ033ngjDhw4gNdffx1Lly6FIAhwOp14/fXXodPpMGnSJKSkpHgc9/333+O///u/IZPJsHz5cowaNcq7jUOt3DNtCH7KqcTJfC2WvJ2Jn42Pwy9nJCFUzTl8r3ViVRCUoVFQxjdf2HM6HbDpKlpMsXMRlspCWKtK4TA1wFR0BqYiz0WcxYGhHiG+LDwOMk0MRyIQERERUaciQ1R4aFoodPYQrN2Si5JKPV5csQ9TR8diwR3DoA6Qd14IEZEXiGQKBAyfioDhU2GtvoT6E7tQf2IX7PXVqDu0GXWHNkMWOQgBI6bDP20yxEp/X1fZpxwWE0xFZ2AsOAG7sR4Bw6c1rgnAO/TJN/p8aA8Ajz32GA4cOICsrCzccsstGDt2LLRaLQ4fPgypVIo333zTHeQDroXCCgoK2ixrzJgxeOKJJ7By5UrcfffdmDhxIgBg3759MJvNWLRoEUaOHNnquNdffx1z5szBunXrcOjQISQnJyMnJwf5+fkIDw/Hq6++6vH+qqoqPPvss7Db7YiPj8e3336Lb7/9tlW5gwYNwuOPP341zUMtiEUCfv/QaLz9xREcP6fFln0XsP1gIWbdGIf7ZgyBJojh/fVEEESQBkdCGhwJv+Rx7u1OmxWWqhJ3iO96LoK9Tgt7nRbGOi2M+UebCxKJIQ2Jah6V3xjqS9ThXNSHiIiIiDwIgoCJ6ZGYMHwAPttyBv/ZV4DMI8U4dLocv/55Km4ZHweRiCEQEfUeaUgUQqb+CsFT5sBYcAL1x3dCn3MIlrLzqCo7j+od/4AqeRwCRsyAMiH9uvie61oLIB/GghMwFpyAqTgHcNjc+xtO7II8JhnqiXdDNWT0ddEm1Lf0i9BeJpNh9erV+Pjjj7Fx40ZkZGRApVJhxowZeOqpp5CWltat8p599lmkpKRg7dq1OHjwIAAgNTUV8+fPx2233dbmMTExMfjmm2+wbNkyZGZmYvv27dBoNJg7dy4WL14MjcZzQQ+j0Qir1QrANYo/Pz+/zXLHjRvH0N7LQgIVeHXhTTiZr8XnW8/i1PkqbNpbgG0HL+K2CfG4d/oQhAQqfF1N8iFBIoU8Ir7VrYB2kx7WphDfPcVOIRwmPazaYli1xdBjb3M5UoVrip3LFr8V+wX18iciIiIior7GTynFE/cMx7QxA/D+v47jfEkt3v/Xcew8VIhF941AQjT7jETUuwSRGKrEkVAljoTdUIeGUz+i/thOWCouQn96L/Sn90ISGAr/4dMQMGI6pOpwX1fZa5xOJ6zVpc0h/cVsOMwGj/dIAkOhTBgBiERoOJEJc0kOyv/5F0jDBkI98W74p94EQcR1Sqh39IvQHnAF9wsXLsTChQs7fe/48eORk5PT4Xtmz56N2bNnd6sOoaGhePnll7v03tjY2E7rQD0rPTEUbyy6CSfytPhi21mcLqjGxh/PY+v+C5h9UwLumTYYwQEM76mZWOEH8YChUAwY6t7mdDphr69uHpVfWegK9LWu+fLNpedgLj3nWY6fGrKwAZC658uPgyw0FiIZf9+IiIiIrjdJA4Px9pIp+M/eAny29QzOXqzBb9/ZjV9MScQDtyRDKe83X8uJ6BoiVgUiaOzPEThmNixl51F/PAMNp36ErU4L3Z5/Qrfnn1DGpyNgxAyoksdBJO1/03vZGmpgvHDSHdTb66s89osUflDEDYMqYTiUCSMgCY50T4cTPGUOarM2oe7INlgrC1H57f+hZveXUN/4C/iPmA6RRNbWKYm8hr0DuqYJgoARQ8IwfHAojuVW4ottZ3H2Yg2+2Z2Pzfsu4PbG8D7Iv//98aHeIQgCJIEaSAI1UA1uXpfC6bDDWn2pxRQ7rkDfVlMOu14Ho14H44WTHmVJgsIg1cRAqomBTBMDaajrtdhPzXnyiIiIiK5hYrEId05JxE0jovHhNyex78Ql/DszDz8eK8HCu9MxfliUr6tIRNcpQRAgj0qEPCoRITPmwZCbhfrjGa6g+8JJGC+chEiugn/aZASMmA5ZVGKf/f7qMBthKjwNwwVXSG+tLPR8g1gCxYChUMYPhzJhOOSRCe2OnJf4B0Mz/WGoJ96DusNbUHvoP7DpKqDd+hFqfvwngsbfgcBRt0AkV/XCJ6PrEUN7ui4IgoCRyeG4ISkMR3Mq8MW2s8gt1GFDZh427yvA7ZMG4e6pgxHoxyul1DWCSAxZaCxkobEAbnJvd1hMsFQWuUflWxtDfbu+FrbaSthqK2E8f8yjLJHCzzPMbwr01REQxPxnmoiIiOhaoQlS4v/NH4dDp8uw4t8nUVFtwKtrsjA+LRKP352O8GCGP0TkOyKpHP5pk+GfNhlWXQUaTmSi/kQGbLWVqDu6DXVHt0EWPhABI2a4Fq/18dSwTrsN5tK8xgsMJ2AqyQUc9hbvECCLTIAyYTiU8cOhGJDS7TsGxAo/BE+6D0Hj70D9sZ3QHfgW9jotqjM+hW7fBgSOnoWgsT/3eVvQtYdpEF1XBEHA6JQIjEoOx+Ez5fhi21nkFdfiXxnn8J+953HH5ETcdXMiAlQM7+nKiGQKKGKGQBEzxGO73VAHa1UJLNoSWKtcD0tVCWy6CjhMephLcmEuyb2sMLFrIV1NDGShMZBqYhuD/WiIFH69+KmIiIiIyJvGpkYifXAovtqei39n5uHgqTIcP1eJX92agjsmD4JEzAUPici3pOpwBE/5JdST74PpQjbqj2dAf/YALBWFqNq+BlU7P4Vf0hgEjJgO5aAbemWud6fTCau2yD3djbHwFJwWk8d7JOoIV0ifMBzKuGEQqwK9cm6RVI6gsbMROOpnaMj+Ebr938BaVQLd3vWoPfgdAm6YCfWNd0ISFOaV8xExtKfrkiAIGJsaiTFDI5B1qgxfbMvB+dJafL0jF5v2nMedkxPxi5sT4a+U+rqqdI0QqwIhVgV6zJcPAA6bBbbqMliqimHVNof51qoSOK1md8BvuCzPF/sHt5pmR6aJgThQw1XtiYio11ksFqxZswYbN25EUVERVCoVxowZgyeffBJpaWndLm/z5s349NNP3WtEJScnY968ebjtttvaPUar1eK9995DZmYmtFotQkNDMXXqVDzzzDPQaDSt3n/p0iXs2rULJ0+eRHZ2NvLy8uBwOPDGG2/gnnvu6bB+DQ0NWLFiBbZt24aysjIEBQVhwoQJWLx4MQYMGNDtz0vXJ4VMgvk/T8XU0bFY/q/jOF1QjY+/O4WMw0V46v4RSIkL8XUViYggCCJ3CG43NkB/eg/qj2fAfCkf+rMHoD97AGL/EAQMn4qAEdMgDYn26vltdVWN0/Q0zkvfUOOxX6QMgDI+vXE0fTqkwZFePf/lBLEUASOmw3/4VBhysqDbtwHmS/moO7wZdUe3wX/YZKgn3N14Vz7RlWNoT9c1QRAwflgUxqVF4kD2JXyxLQcXLtVh3fYcfPdjPn5x82DcOXkQ/BjeUw8RSWSQhQ+ELHygx3an0+FaALflyHxtMaxVJbA31LgfpovZHscJUgWkmmiPaXZkmhhIQqK4UA4REfUIi8WCBQsWICsrCxqNBtOmTUNlZSW2b9+OzMxMfPDBB5g8eXKXy3vnnXewYsUKyGQy3HSTawq6vXv34re//S1yc3OxZMmSVseUlJRgzpw5qKysxKBBgzBz5kzk5OTgyy+/REZGBr766itERXnOGb5t2za88cYb3f68dXV1eOCBB5CXl4eYmBjMmDEDhYWF2LhxIzIyMvDZZ59h6NChnRdE1CguMhBvLJqEnYcKsWbTKVy4VIc/LPsRt94Yj/mzh8KfdwETUR8hVvojcPQsBI6eBXP5BdSf2IWGk7thb6iGbt8G6PZtgGLAUASMmA6/oRMhkim6fQ6HSQ9j4Wn3lDdWbbHHfkEig2Jg87z0soh4nwxcEwQR/FJuhCp5PIwXTkC3798wXTiJhhOZaDixG6rkcVBPvAeK6MG9Xje6NjC0J4IrvJ+QHo3xaVHYf/ISvvj+LArL6vHFtrPY+EM+7pqaiDsmDYJKwfCeeocgiCAJDIUkMBQYNMJjn8Okh6Wq1GOaHWtVCazVl+C0mmApOw9L2fnLS4REHd441U5siyl3Yrx2uyAREV2fPvroI2RlZSE9PR2ffPIJ/P39AQCbNm3Cc889h+effx47duxwb+/I4cOHsWLFCgQGBmLdunVITEwEAOTn52Pu3LlYvnw5pkyZgpEjR3oc98ILL6CyshJz587F0qVLIQgCnE4nli5dinXr1uHFF1/E6tWrPY6JjY3FvHnzMGzYMAwbNgzLli3Dli1bOq3jX/7yF+Tl5WHatGl49913IZO5AtWVK1fi7bffxu9//3ts3LgRYnHPTxNA1w6RSMDPxsdhXFok1mw6hZ2HirB1/wUcOHkJC+5Mw82jYvvswo9EdH2SR8RD/rNHoJn2EPR5h1F/bCeM54/DVHQGpqIz0H6/Gv6pkxAwYjrkMUnt/hvmtFthKsltnPLmJMyl5wCno/kNggjyqET3aHp5bHKfGpAmCAJUCSOgShgBU0kudPv+DUNuFgw5B2HIOQhlwnBXeB83jP+OU7cwtCdqQSQScNOIaExIj8Le46X4cvtZFJU34LMtZ/Ht7nzcPXUwbp80CEo5/9ch3xEp/NqcN99pt8GqK281zY5VWwyH2QCbrhw2XTmM+Uc9y1MGQBwcBZVIBYOlFOKENMjCBnIRXCIi6pTNZsPatWsBAC+99JJHMH/77bdj48aN2L17N9avX4/58+d3Wt6qVasAAAsXLnQH9gCQmJiIJ554Am+99RZWrVqF999/373v1KlTOHDgANRqNV544QX3F2JBEPDCCy9g69at2LNnD86ePYuUlBT3cTNnzsTMmTPdP3fli3RVVRW++eYbSCQSvPLKK+7AHgAef/xxbNq0Cbm5udi1a5dH2URdFeQvx2/njsKMsQPxwfrjKCpvwN+/OIodhwrx5L0jEBPW+cUvIqLeJEik8E+ZAP+UCbDVVaH+ZCbqj2fAVlOG+mM7UH9sB6SaGASMmA7x4HGA0wlrZSF0Za6g3lR4Gk6r2aNMaUh08+KxcWkQK/vHv32KmCRE3v9HWCoLodv/DRqyf3TPvy+PHgL1xLuhShrLKW2pS5jIELVBJBIweWQMJo6Ixo/HSrDu+7MoqdRj7eYz+GZ3Pu6dNhizJyZAwfCe+hBBLIGscW77lpxOJ+z6Wlgb5813h/lVJbDVVsJhrIfDWA85gLriY6iD65ZDWeQgKGKGQB7tekiCwjgygIiIPBw9ehQ6nQ6xsbFIT09vtX/27NnYvXs3du7c2WlobzabsW/fPgBoc+762bNn46233sKePXtgsVjcgfmuXbsAANOnT4dcLvc4Ri6XY/r06diwYQN27NjhEdpfiR9++AF2ux3jx49HeHi4xz5BEHDrrbciNzcXO3fuZGhPVyU9MRT/9+w0/DszD19tz8Hxc1o8/dYu3D9jCO6bPgQyKe/kIKK+RxKoQfBN90I98R6Yik67Fq89sx/WqhJUZ3wK7PocQRI5qqxGj+PEfkHu6W6U8en9fjFXWdhAhN+5GMFT5qL2wLeuNQBKz6H8X29CGhoL9YS74Z82iQPlqEP87SDqgFgkYOqoWEweEY3dP5Vg3fYcXNLqsWbTafw7Mx/3Th+MWRPioZDxfyXquwRBgMRfDYm/Gsq4YR77HBYTrNWX0HDpPMrOHkOQrQ628vNwmA0wF5+Fufis+71ivyB3gO96DIZY4dfbH4eIiPqQM2fOAEC7i82mpqYCgHtB2Y4UFBTAbDYjODgY0dGtF7GLjo6GWq2GTqdDQUEBkpOTPeowbNiwVsc01W3Dhg1dqkNnOvu8Tdu9cS4iqUSEX85MwpSRMfhgwwkcPVuBL7/Pwe6jxXjy3uG4ISm880KIiHxAEAQoB6ZBOTANjlsWoOH0PldwXZIDkdXompc+Ls09ml4WHndNDhCTqsMROusxqCfdj7pD/0Htka2waotR+d0y1PywDkE3/gIBI6ZDJJV3Xhhdd5g0EnWBWCzC9DEDcPPIGOw6UoyvduSgrMqA1RtPYcOuPNw3fQhunRAPOUe8UD8jkikgj0yAPTACJocaCUOHQqlUwFpVCnPpOZhL82AqOQdLxQXY9bUwnDsMw7nD7uOlmhh3iK+IGQJZ+EAIYq79QER0vSgtLQUAREZGtrm/abtOp4Ner4efX/sXe0tKSjosq2mfTqdDaWmpO7RvqkNERESHdWgq/2p09fN641xETSI1flj66I3Ye6IUH31zEqVaPf5n5X7cPDIWC+5MQ3Bg9xd6JCLqLSK5CoEjZyJw5EzUleTj/JlsDBk/DX4B18/aahJ/NUKmPQj1hLtQe2Qb6g5tgq22ElXbVkG3558IHHs7gkbfChEHxVELDO2JukEsFmHmuIGYOjoWGYeL8NWOXFRUG/DRt9lYv+sc7p+RhFvGx/F2VerXBEEEWWgsZKGxCBg+DQDgsJphKb8Ac+k5mEpyYS7Ng01X7p5mp+FkputYsRSyyEGQxwyBonE0vkQdcU2OmiAiIsBgMAAAlEplm/tVKpX7dWehfWdltSxPr9e3Oq7luTo75kr15rmcTqf7fD3NaDR6PNOV68m2HDUkGH9/ZgK+2pmPbQeLsPunYhw6U4Zf/WwwZoyJhUh07fS3+DvpHWxH72FbeodVoYY9OBYmixVCL/2N61sEyEfOQmj6dBiyd0N/ZDPsdVrUZH4O3b4NUI2YAdXIWRD7BXVYSl/9fXTabbDXaWGvq4S9thL2hhqI/dSQaKIhCYmBSNX3LtT4oi2dTmeXMhKG9kRXQCIW4ZbxcZg2egB2HirEVztyodUZsfLfJ7E+4xzun5mEn40bCKmE4T1dG0RSORSxyVDEJqOp+2DX17pG4pe6QnxzaR4cpgaYS3JgLslBXdOxqkB3gN80Kr+/LCRERETkK1ar1T0dT2+5cOFCr57vWtaTbXnjIGBAUDg2ZdXgUo0Vq747iy37zuOOcWpEBss6L6Af4e+kd7AdvYdt6R1sRwDyWODGBZBdOg1FwX6IG7TQH9qEhiNbYY4dDnP8jXCo1B0W0evt6HRAMDVAbNRBZNRBZNBBZKyFyKiD2KiDYKpHR1G0Q6qE3T8UDj8N7P6h7odTHgD4eKBfb7dl09pMHWFoT3QVpBIRZk2Ix4yxA7A9qxBf78iFttaED9afwL8yzuGXM5IwY+xASCVcGZyuPWK/IKiGjIZqyGgArqvF1upLMDeF+CXnYC6/AIehDoa8IzDkHXEfKw2Jap4bPyYJ8og4TqtDRNQPNY0sb290UsuR4h2Nsu9KWS3La1lW03HtjUpv65gr1ZvnkkqlGDx48FWX0xVGoxEXLlxAfHx8h3c6UOd6qy2HApg+0YltWUX4akceSqos+HBbJW67cQB+OT0RCnn//qrP30nvYDt6D9vSO9iObUgbBqfzPpjP/wR91kZYy85DUXgUiqJjUKRMgN+Y2yENjfU4pKfa0el0wmGsc42Sbxot3/S6Tgt7nRZw2DssQ5DIIA4KgzgwDCL/YDgaamCrLoW9thIiqxGimiKgpsjzGJkCkuBoiBtH5EtCoiHRxEAcGAZB1LN5mi9+J/Py8rr0vv79l5yoj5BKxJg9MQEzxw7E9wcv4p87c1FZY8T7/zqOf2acw5yZSZg+ZgAkYob3dO0SBAEyTTRkmmgEpE8FADhsFve0OuaSczCVnoOtpgzW6kuuBXCzf3AdLJZAHpHQOK1OkmtaneBITqtDRNTHNS0YW1ZW1ub+pu1qtbrTIDsmJqbDslrua7lQbXR0NE6fPo3y8vIOj2kq/2p09fN641yCILQ7DU9PUSqVvX7Oa1VvteW901MwdXQcPvo2G3uPl+I/+wpx8FQFHr97OG4c1v/7Uvyd9A62o/ewLb2D7diaX/pkBA+bBNPFbOj2bYCx4ARMZ/bCdGYvVEljoZ54DxQxSR7HXEk7OswGWHUVruludRWwNb2urYBNVwmn1dRxASIxJEFhkKrDIQkKh0Qd4XqtDodUHQGRKrDNvz0OqxnWqlJYtcWwaIth0Ra5ptutvgSnxQRr+XlYy897HCOIpZBqoiFtnL5XGjoAstAYSEOivD7orzd/J7v6t5mhPZEXyaRi3D5pEH42Pg7b9l/APzPOoaLagGVfH8M/d+ZizsxkTBsdCzHDe7pOiCQyKGKSXJ2Lsa5tdkO9a2780nONi92eg8PY4H5dh82uY5UB7il1FE3T6qgCfPhpiIjockOHDgUAnDp1qs39p0+fBgD3orEdSUhIgFwuR01NDUpLSz2CecC1CKxOp4NCoUBCQoJHHXbs2IHs7Ow2y22qW1fq0JnOPq83z0XUVZogJf5r3lgcPlOOFRtOoLzagNc/ycK41Eg8cXc6wkMYjBER9QeCIEAZnw5lfDpMpXnQ7dsAQ04WDLmHYMg9BEXcMKgn3gNnRPt34jlsFthqK5vD+MZg3qqrgK22HA5jQ2e1gDggGFJ1BCSNwbwrlHeF8+KAEAii7k8FLZLKIY9MgDwywWO7026DtabMFeJrS9zP1qoSOG0WWCouwlJxER6rBQkiSEMiXSG+JgbSsAGQaWIhDY2BSCrvdt36Kob2RD1ALhXjzimJuOXGOGzdfwH/yjiHsioD/u+rn/D1zlzM/VkyxqWE+LqaRD4hVgVANXgUVINHAXDdgmerKWsO8UvOwVxeAIexHsb8n2DM/8l9rCQ4ErLwOMg00ZBqYlyPkGjOkU9E5COjRo2CWq1GcXExTp48ifT0dI/9mze7LsTOmDGj07LkcjkmTpyIXbt2YcuWLViwYEGbZU2aNMljHtBp06Zh2bJlyMjIgNlshlze/GXNbDYjIyMDADBz5swr+5AtTJkyBWKxGEeOHEFFRQXCw8Pd+5xOJ7Zt2waga5+XyNvGDI3Ae89Pw9c7cvHvzDxknS7D8bxK/OqWZNw5JZF3/RIR9SOK6MGIvO8PsGiLodv/DRqyf4DpYjbKLmZDEpEAWfgwGByVMBlqmkN5XQXsDdWdli1SBrhHx0vUEZAGtXwdBkHSe1PXCmIJZI0j6VtyOuyw1VbCoi12j85venZajK5R+1Wl8JywUHDdBeAemd/8LFZc/dSFvY2hPVEPUsgkuOvmwZh1Yzw27yvA+l15uKTV450vjyJKo8IN8TIEhxswiLeF0XVMEARIQ6IgDYlCwLApAACnzQpzxUWYS3LdI/Ct1ZdgqymDraYMl88kLPYLgjSkOciXaWIg1URDog6/olEARETUNRKJBPPmzcO7776Ll19+GZ988gn8/V0XUjdt2oTdu3cjODgY9957r/uYEydO4A9/+AMAYOvWrR7lPfroo9i1axdWrlyJqVOnIjExEQCQn5+PlStXut/TUlpaGm688UYcOHAAr7/+OpYuXQpBEOB0OvH6669Dp9Nh0qRJSElJuerPq9FocNddd2H9+vX405/+hHfffdd9AeGjjz5Cbm4uEhMTMW3atKs+F9GVUMgkmDc7FVNHxWL5+hM4db4Kazadxq4jxVh07wgMTeDAISKi/kQWGovwO55GyJQ50B3ciPqfdsBWXgC/8gLUnWz7GEGqaJyupnnaGklQiyls5H1/PQFBJIY0OBLS4EhgyBj3dqfTCXt9NSxVrcN8h6EOttoK2GorYMw/6lGe2D+4OcTXxEIW5np2Cn13bT2G9kS9QCGX4J5pQ3DbxARs2nMe/87Mw6UqAy5VGbDlyF5EhfphdEo4RqdEYFiiBgoZ/9ek65sgkUIRPRiK6Obb/uzGepgvnYe1qhjWqlJYqly3zNnrq2HX18Kur4Wp6IxnQWKJ6w+9O8h3hflSTUy/vNJORNQXPfbYYzhw4ACysrJwyy23YOzYsdBqtTh8+DCkUinefPNNd5APuBb8KigoaLOsMWPG4IknnsDKlStx9913Y+LEiQCAffv2wWw2Y9GiRRg5cmSr415//XXMmTMH69atw6FDh5CcnIycnBzk5+cjPDwcr776aqtjKioq8PTTT7t/vnjxIgBg+fLlWLduHQAgLCwM77//vsdx//Vf/4Xjx49j165dmDVrFkaMGIGLFy/i1KlT8PPzw9///neIxbxgTL41MDIQbyy6CTsPFeLj707jwqU6/OG9H3HrjXGY//NUBKhknRdCRER9hiQoDKG3LEDwTfdBu/9b1J4+AFVwGOSaKPf0NU1T2bQ3r/y1QBAESAI1kARqgIQRHvvshro2R+bb66tgb6iBvaEGpgueVzoEhT/k8TcCjVMg9iVMBol6kVIuwf0zkvDzmxLwnz15+OHIRRRpLbik1WPTngJs2lMAmUSEYYmhrhB/aASiQ/2u2X9sibpDrAyAatAIYJDnH2aH2QhrdXOI73qUuha0sVlgbfxj3Xp0vtojxG+ackcSFMbR+URE3SCTybB69Wp8/PHH2LhxIzIyMqBSqTBjxgw89dRTSEtL61Z5zz77LFJSUrB27VocPHgQAJCamor58+fjtttua/OYmJgYfPPNN1i2bBkyMzOxfft2aDQazJ07F4sXL4ZGo2l1jMViwfHjx1ttLyoqQlFRkbvcywUGBuKrr77CBx98gG3btmH79u0ICgrCHXfcgcWLF2PgwIHd+rxEPUUQBMwcF4exqZH4x39OY3tWIbYduIgD2Zcwf3Yqpo8ZwLW2iIj6GbFfEAIm3ofi4DTEDh3KBX1bEKsCoRyYCuXAVI/tDrMBFm0JrNoiV25Q6Xq21ZTDaWqApLrQRzXuGEN7Ih9QKaT4+cQ4DAo2IC5hCM6V6HHkbDmOnK2AVmfE0ZwKHM2pwEffZiMiROUO8IcnhkIh5/+2RC2J5ErIoxIhj0r02O50OmCr1bqDfEtTmF9V4rrKrtfBrtfBVOi5mKAglkISEtVi3vxoSENcob6Io/OJiNokk8mwcOFCLFy4sNP3jh8/Hjk5OR2+Z/bs2Zg9e3a36hAaGoqXX365y++PjY3ttB7t8ff3x/PPP4/nn3/+io4n6k1B/nIsnjMS08cMwPL1J1BUXo93vz6GDZl5eGjWUExIj4JIxEFCRER0bRLJVVDEDIEiZojHdofVjIayQpy71Pk6AL7A9I/Ix1QKCSakR2FCehScTieKyutx5GwFjpwtx6nzVSivNmDzvgvYvO8CJGIRhg3SYPRQ11Q6seH+HIVP1A5BEEHaOI8fEj2nUnCYDbA0BvhNI/MtVSWwVV+C026FtbIQ1srWV9vFfmpIQ2NcIX6oaxFcaWgMJIGhHJ1PREREfdqwxFD837NT8d2P5/GvjFwUVzTgL2sPITE2CA/NGorRKeH8bkFERNcNkVQOiSYGqKjzdVXaxNCeqA8RBAEDIwMxMDIQd08dDKPZhpN5WhxuHIVfUW3AsXOVOHauEqs3nkJ4sBKjUiIwOiUcwweHQqXouwtoEPUlIrmq1Zz5QPMK9a7pdUpdt9BVl8CqLXGPzLfrdTBdbD06X6qJgjQkBggKh8zggCVIAnl0AkTKAH4BJiIioj5BKhHhnmmDceuNcfhmdz6+/SEP+cW1eHnVAaQmhGDe7FSkDWo9nRQRERH1Lob2RH2YUi7BuLRIjEuLhNPpRHFFA46crcDRs+XIPl+Fihojtu6/gK37L0AiFpCaoHEvaDswkkEhUXd5rFCPUR77HCa9a3R+Y4jvnke/cXS+paIQlgrX6Hw/ANUnv0M1XBcIpCFRkARHQhocBWlIFKQhrtfX8gJBRERE1Hf5KaV4cFYKbp+UgH9lnMN/9hbgdEE1/uv9PRiVEo6HZw3F4AFqX1eTiIjousXQnqifEAQBAyICMCAiAHfdnAiT2YaT+Vr3VDplVQacyNPiRJ4WazadRmiQwj0K/4akMI7CJ7pKIoVfm/PgNY/Od82bbyy7iLrSAsgt9XA0VMNhNsB8KR/mS/mty5SrIAluDvGlIZGuUJ+BPhEREfWCIH85Ftw5DL+YkoivduRi+8GLOHq2AkfPVuCm4dF4cFYKBkQE+LqaRERE1x2G9kT9lEIuwdjUSIxNjQQAlFY2uKfRyc7TQltrwvcHL+L7gxchFgkYmhCCUcnhGDM0AvFRDAOJvKXl6HzV4NGQGQwoPXMGA4YOhUIqhq2mHNaaS7BWX4K1psz1qL4Ee53WNbd+WT4sZa0DfUGucpUbEtXi2TViX+wXxP+HiYiIyGtC1Uo8dd8I3DN1ML74/ix2Hy3G3hOl2H+yFFNHD8ADtyQjUuPn62oSERFdNxjaE10josP8cWeYP+6cnAiz1Y7splH4Z8pRqtUjO78K2flVWLv5DEICFRidEo5RKeG4ISkc/kqOwifqCSKpHLLwgZCFD2y1z2E1w6Yrh7W6rDHUdz3bqi/BVlcFp9kAS9l5WMrOtzpWkClbB/ohUZAERzHQJyIioisWFeqH5341GvdNG4LPtp7BgewyZBwuwg8/FePWG+Pxy5lJCAlU+LqaRERE1zyG9kTXILlUjNEpERidEgHclY5LWj2Oni3H4bMVOJGnRXWdCduzCrE9qxAikYCUuGCMTonAqJRwDIoOgkjEwI+op4mkcsjCBkIW1kagb7O4Rug3jc6vvgRbjeu1rVYLp8UIS3kBLOUFrY5tDvRbzqHfNEJfzUCfiIiIOhUXFYj/fmQ8cgtr8OmWMziWW4n/7C3A9qxC3DEpAfdMG4JAP5mvq0lERHTNYmhPdB2ICvXDzycNws8nDYLFasep81XuufCLKxpwuqAapwuq8emWM1AHyDEqORyjU8IxMjkcASp2xol6m0gigyxsAGRhA1rtc9gssOkqGgP9S42BfmOw32mgr3AF+cGRkARHQBIYBklQKKRBYZAEhkKk4G3vRERE1CxpYDD+/MREnMirxKebz+DsxRqs35WHLfsv4O6pg3Hn5EFcO4uIiKgHMLQnus7IpGKMTHYF8o/+YhjKqw042jgX/vFzldDVm5FxuAgZh4sgEoCEmCAMjlW7H3FRAZBKxL7+GETXLZFEBlloLGShsa32OW1WWHXNI/RtLUfq12nhtJjaDfSBxnn0g0JdYX5gKCRBrlDfFe6HQeyvhiDi//9ERETXm+GDw/DmM6E4fKYcn245g4LSOny+9Sy++/E87p+RhNkT4yGTso9ARETkLQztia5zESEq3DYxAbdNTIDVZsfpgmr3KPzCsnrkF9civ7gW23ARACARC4iLCsTgWDUSY9UYHBuE+KhABvlEfYAgkXYe6LtH5VfAVlsJW60WtjotHMZ61zz6FYWwVBS2cwIRJIGa5kDfHew3vQ6FSKbs4U9JREREviAIAsamRmJ0SgT2Hi/FZ1vPoFSrx+qN2fhmdx7m/iwZM8cNhEQs8nVViYiI+j2G9kTkJpWIMWJIGEYMCcNv7khDZY0RuYU1OFdUg/ziWuQV69BgtLqDfLQI8gdGBjaOxg9CYqwa8VGBHG1D1Id0FOgDgMNigq1O6wryPZ4bX9dXAQ57Y9BfCRSdabMckdK/xUj9y8L9wDCI/YMgCPwyT0RE1F+JRAImj4zBxOFRyDhchC++z4FWZ8T7/zqODbvy8KtZKZhyQwzXySIiIroKDO2JqF1hwUqEBStx04hoAIDT6UR5tcEd4OcV65BfrEO9wYrzJbU4X1KL7w+6jhWLBMRFBiIxNgiDB7im1mGQT9R3iWSKDkN9p8MOe4OudbDf9LpOC4dJD4exARZjQ7tT8EAkcY3Wd0+90xzoN/0sksp78JMSERGRN4jFIvxsfBymjo7Flv0X8M8d53CpSo+/f34E/9qZi4duG4rxaZEQBIb3RERE3cXQnoi6TBAERGr8EKnx8wjyK2qM7gA/r0iHvOJa1BssOF9ai/Oltdie5ZpqQywSMDAywHNqneggyBnkE/V5gkjcODWOBohNbvM9DrOhcbqdysuem0brVwMOG2y6cth05e2eS6QKhMhfAz9IUVsaC3PjfPpiP3Xzs18Qw30iIqI+QCoR487JifjZuDhs2nMe63fl4WJZPV5bk4WkgWrMuy0VI5LCfF1NIiKifoWhPRFdFUEQEBGiQkSICjcNbw7yKxuDfFeY7xqZX6e3oKC0DgWlde4gXyQSMDAioHlqnQFqJDDIJ+qXRHIVZOEDIQsf2OZ+p8MOe301bHVaWGsvD/Zdo/adFhMchjo4DHWQATBW5MLYwflcIX4wxH5B7tcSj4A/GGK/QC6gS0RE1MOUcgnun5GE2ybEY0NmHjb+eB65hTq8uHIfhg8OxcOzhyIlLsTX1SQiIuoXGNoTkdcJgoDwEBXCQ1SY2DLI1xldo/EbQ/z8Yh1qGyy4cKkOFy7VYcch1/FNQX5ibFBjmK9GfHQgFDL+k0XUnwkisXvhWsWAoa32O53OxtH6ldBXFKMk7zTCA1UQmfWw62tgb9DBrtfB3qCD026Fw2yAw2yAtaq0szNDpApoDPODW43al7QI+EVKf97GT0REdBX8VTLMm52KOyYPwr92nsPmfRdwIk+L59/9EeNSI/HQbSlIiA7ydTWJiIj6NCZgRNQrBEFAeLAK4cEqTEhvDvK1OlPz1DqNo/J1DWZ3kL/zUBEAV5A/INy/cVod1yMhJtCXH4mIvEwQBIgVfhAr/GAPCIfFokTA0KFQqVQe73M6nXCaDbA1BviuIL8Gdr0OthbBvl2vg11fCzgdcBjqYDHUASjsuBIiCcR+Qc2j9VtOyeMf7LFdkCkY8BMREbUjOECBx+5Kxy9uTsS673Ow83ARsk6X4dCZMky+IQYP3pqC6DB/X1eTiIioT2JoT0Q+IwiCe7HbCelRAFxhXFWtqdXUOrp6My6W1eNiWT0yDjcG+QIQHeaHYJUTyZfyERcdjOhQP0SH+sFfJfPlRyOiHiQIAgSFH2QKP0AT0+F7nQ47HMYG2BpqYNfXthqxb3MH/rVwGOsBhw32+irY66s6r4dU7hqpH6iBOCAEkgANJAEhEAdqGl9rIPZXc2oeIiK6roUHq7B4zkjcO30Ivth6Fj8cK8EPP5Vgz/FSzBw7EHN/loywYKWvq0lERNSnMLQnoj5FEASEqpUIVStx47DmIL+6zuRe5LZpZH5NvRnFFXoUAzh54bxHOQEqKaJC/RAd6o+oUL/G136ICvVHoB8DfaLrhSASu+a79+v8Nnyn3Qq7vg72hhrPUfwtXtsaR/Q7LSY4reZOF9WFIOog2Hf9LA4I4aK6RER0zYsJ88fzD4/BvdOH4LOtZ3DodDm+P3gRGYeLMPumeNw/PQnqAP49JCIiAhjaE1E/IAgCNEFKaIKUGN8Y5ANAVa0Rp/MrcCT7PBwSf1TUmHFJq0d1nQn1BivqC3XILdS1Ks9fKW0R5LtC/egwP0Rp/BDoJ+N0F0TXKUEshSRQA0mgBp1FBg6LyT0tj62+Grb6KtjrqmCrr4Ktvtr1uqEGcNhhb6iGvaG6w/JESn93gO8epR/Y4nVACEQKP/77RERE/d6gmCD8acGNOHuhGms3n8HJfC02/nAe3x+4iDunJOLuqYMh8nUliYiIfIyhPRH1W5ogJUanhEHl1GJoi3mvTWYbLlXpcUmrR6m26bkBl7R6VNWa0GC04lyRDueKdK3K9FNIEBXmj2iNH6LCGkfna/wRHcZAn4iaiWQKiGSRkAZHtvsep9PhmpKnvhq2xkDf3hjwu4P9+io4rWY4jA2wGBuAiovtlidI5c3BfuNIfXFAyxH7Goj9gyAIjDqIiKjvS4kPwWtPTsTxc5VYu/kMzhXp8PWOXPxnbwHunBSHhGCHr6tIRETkMwztieiao5BLkBAdhITo1tNhmCw2lFUZcEnbgNJKfXO4X9kAba0JepPNNQ1PG4G+SiFxT7HTPN2Oa7R+kD8DfSLyJAgiSPyDIfEPhjwqsc33OJ1OOMyGFqP0q9oM+R3GBjitZlirS2GtLm3/pCIxJP7BrjA/0BXqO+X+kNXUwSSuBwKDIZKrIFKoXM9yFQQJ//0iIiLfEAQBNySFY8SQMBzILsNnW8+gsKweX27Pg0gAInbqEBMegOgwV587OtQP0WH+CFUrIRbxbxcREV27GNoT0XVFIZMgPioQ8VGBrfaZrXaUVeldYX6L0fmXqvTQ6owwmGyNc+rXtjpWKZe0CvKbflYHyBmIEVGbBEGAWOEHscIPsvCB7b7PYTU3Bvgtp+Kp9gj57Xod4LDDVqeFrU4Lc0nz8X4AdNntFC6StAjx/TwCffej5f5W2xj8ExHR1REEARPSozAuLRI//lSMz7aeQXm1EZeqDLhUZQDOeL5fIhYhKlTVYqpLV6AfE+aPkEAFRAz0iYion2NoT0TUSC4VIy4yEHGRbQf65VXN0+20DPUrdUYYzTacL6nF+ZK2An0xIjV+CFUrEda4yG7Tc6jaNVe/VMLpLIiofSKpHKKQKEhDotp9j9Nhh71B1zxivzHYN+sqUF9VAZVUDFhNcJgNcJgNcJqNAJyAwwaHoQ4OQ91VVFDSSdjf8oIAg38iImqbWCRg6ugBGJMcgqyj2fAPiUFVvQ2llQ0t+t8G2OwOFJU3oKi8oVUZMqm4xUCa5kA/OswfwRxMQ0RE/QRDeyKiLpBLxRgYGYiBbQT6Fqsd5dUG9xeJUq0elyr1KK3So7LGAKPZjoLSOhSUth2ICQKg9pe7Q/yWgX6YWomwYCXUAQreAkxEHRJEYvdCui0ZDAZcOnMGA1qs/QG45tx3mo3uEN9hNsBhanqtb2Nbi33ubd4L/gWxFCKFH0RKf4gUfhAr/Fu8DoBI6XfZa3+IFP4QK/0giKVXfF4iIup7RCIBQX4SDB0U4vG3CwDsDicqawyNfW5X37u0cbrL8moDLFY7Llyqw4VLrf8mKeViRGn83WtXRYf6u6fe4XSXRETUlzC0JyK6SjKpGAMiAjAgIqDVPqvNjrIqA8qrDajUGaFt8Wj62WpzoKbejJp6c5uL4wKuUUchQQqEBnmG+i1Dfn7RIKLuEAQRBIUrCL9STqcDToup7cDf1FbI337w77RbYdfrXNP8dPezSOXuAL8pzL/857Zf+0EQia/48xMRUe8TiwREavwQqfEDksM99tnsDlTUGFBa2TiYptIV5pdqmwfTnC+txfnS1nfH+ikkiGoale8O810j9ANUst76eERERAAY2hMR9SippP1AH3AtQlnbYPEI8T1C/VojqmpNjSOKjKisMV4+pWeLc4kQGtQY5Ae3DvVD1Ur4KSQM9onIawRBBKFxehu0vhGpS5qCf7upAQ6jHg5TAxwmPezGhk5fO0x6AE44rWbYrWbY66u6/xnkKogVjSG+0r/d11ZIAJv9yj4kERH1ColY1LhgrT+ACI99TYNp3HfHVjbfJavVGaE32ZBXpENeG4NoAlRS1/z5Hgvi+iFK4wc/pZT9ayIi8jqG9kREPiQIAtQBcqgD5Bg8QN3me+wOJ3T1Jo9Qv7LGM+TXNZhhtTlwqcq1cG57lHKxK8AP8gz0A5Qi6GqtiNFbIJcrIBZzjn0i6h0ewX9Q9451Oh2uEfumBjiMDbCb9O28bg75HcZ62E16OC1GVxlmA2xmA1Bb2en5AoKigPQRV/IxiYjIxzoaTGO22lHmEeY3v66uM6HeYEVOYQ1yCmvaKFeE4AA5ggMUUAfIERKoQHCAHOrG55b7ZFLe3UVERF3D0J6IqI8TiwRoglwL1iKu7fdYbQ5U1baeekerM7l/rjdYYDTb2120CwDwn3IArtuD/VUyBKikjc8y+KukCGjapmy5T+reL5XwiwgR9R5BEEGs9IdY6Q8Ed+9Yp93mGrnfItx3/dz0ujH4b3xtMzbAqE7omQ9CREQ+JZeKERcViLio1reNmcw2XKrSe0650/jcNHCmosaIihpjp+fxU0rdIX5wYONzgBzBgXKom14HKBDoJ4OI61kREV3XGNoTEV0DpBJR89ye7TBZbKiqNaGyxtAY5JvcIX9FtR6VOgPMVicAQG+yQW+yoby6e/VQyMStgvwAlQz+yqafm8L+pu2un+UyMW8rJqJeJYglEPsFQezXteH9BoMBlWfam6CMiIiuVQq5BAnRQUiIbv33wmy1Q1dvRk29CTV1ns/u7fVm1NSZYbM7oDdaoTdaUVzRzgCaRiKRALW/DMGBCnewr24j7FcHyKFScDF2IqJrEUN7IqLrhEImQUyYP2LC/FvtMxgMOHPmDJKSkuEQpGgwWlFvsKDB4Hpu+fry53qDFXqjBQ4nYLLYYbK4LgR0h0QsanPkvscIf6XrtZ9SCpVCApXC9SyXMvAnIiIiot4nl4oREaJCRIiqw/c5nU7ojVZXgF9vQnWdGbqWQX+92R3y1zZY4HA4UV1nRnWdGUDrRXNbUsjE7ul3PAN9BVRyoKbKgog6E6fAJCLqZxjaExGRm1gsQoBKjiB/ebeOczicMJhtaGgM+OsNVtdrvQX1xrbD/qZnu8MJm93R+CXG3P06iwSPEF+lkMLP/fry7RKolFKo5BL4KaVQNj6r5BJ+iSEiIiKiHiEIAvwb7zpta079lmx2B2obzI0j9E3uoF9XZ3a/doX8JhjNdpgs9k7XtcK2CogEIMhfjpAg1+h9TeNzSJACmkDXCP6QQAXU/nL2i4mI+gCG9kREdNVEIgH+Sin8ldIOp+i5nNPphNFs8wzyjS1Cf/dz82u9yQajyQqD2Qan07VQb73BinqD9ao+g1wmhp9CAqVcCj+lBCq5FKoWz34KaauLACqF53aFjHP6ExEREdGVk4hFzetZdcJotrmn5PGcjsf1XF1rQGWNHnqzEw6Hs8UgmfZH7zeF+8GBCoQEeob7IQGu0J/hPhFRz2NoT0REPiMIQmP4LUV4J7cVX87hcMJkscFgskFvssLY+Gww2WAwWaE32mAwN//s3m6ywWB0hf4GoxUWmwMAYLbYYbbYAXR/tH8TkQAo5RJIxU6oM2rh7yeDn8I1pY+/smlqHyn8la4R/n5KqXt/0z4xFx0jIiIioi5QyiVQyv0RHdp6+kugeQrM5OQUWB1iVNeZWjzMqK4zoabOhKo6E6prTdA1mD3C/fMl7Yf7ggCoGe4TEfUYhvZERNQviUTNgX8oOh+J1B6rzQGDyQqj2Qa90TPcNzaF/I2hf8uLApc/O5yAw+laxBcAdPr6K6pP05Q9/o1z9zcF+v6XhfuuiwCtw38JvxQRERERUQsikYBgfwWCAxVI7OB9docTdQ3mDsP9plH8Vxruux+Xh/sBCg5eIZ+y2x3Q1ppQVqVHg8EKf5UUgX4y90Mq4V3V1LsY2hMR0XVNKhEhyL/78/i35HQ6YbLYYTBZUVVTj9M5eQiPjIXNIYLe5LoY4PEweT43GG2wWO0AXLc5G822bi/m28Q1zU9TkN8i1HdfCJC65/FXKiSNI7Qkrp8bH3IZF/clIiIiut6IRQKCA68k3G9+faXhvkQsICxYhYhgFcJDVAgPUSIixK/xZyWCAxQQMdSnq9RgsKCsyoCyaj3KqgworzagrEqP8ioDKmoMsDuc7R6rlEvcAX5AizDf9ZB7/qxyvYcDquhqMLQnIiK6SoIguANvpdSJ+io5hg4JhUrV9Sl/mkb8u0L8lqG+zTPov/x1489Gsyv0b5rmp7rOdMWfRyQACrkEClnjZ1J4hvpND4X8stBfcfl+sesigJQXAYiIiIiuFd0K9/VmVNe2HrVffVm4b7M7cUmrxyVt2wvqSsQihAcrERHiCvUjQlQID1YhQuMK+tUBcvY3CVabA5U6gzuQL6/Se4T0emPH66BJxCJEhCgR6CdHg9GKer0FdQYLHA6ne3BVebWhy/XxU0jcgX7roL914O+vkvGOE3JjaE9ERNQHXO2If7vdAUPjFD9Nob+hxUj+y8N+g8kGo9na2Pm0w2i2wWRxLe7rcKJx2h+bVz6bSCRAKRO7LwC4Q31Z88+XXxQQCQ5UlBlhl1cjMMAEmUQMmVQEmVTs8ZqjV4iIiIj6JrFIQHCAa677DsN9uwNVdSZUVLuC1opqA8prDKioNqK8xgCtzgib3YFSrR6l7YT6MonINVK/KdAPUblH6YeHqKD2Z6h/LXA6najTW9wj5MuqGkfKN/6s1RnRwWB5AIA6QI7IEBUiNX6I0KgQGdL8HBLUepomh8MJg8mKOr2ljYe5ze0NRgucjVOn6k02XKpq+/f2coIA+Cul7jA/QNV20C+TOFFZa0VgpR4KhR1OpxNOAHACzsZ2cjpx2XbXtqZ2dG9va1/LbS1ed1aWw9m0vXm/RCKCVOz67iaViCCVNL4WiyCViiCTNG/n/6OeGNoTERFdA8RiEQJUMgSoZFdchsPhhNlqd48iMZoany0tXl/+MDXuv/wYsw0mi91dblOHFe3fFd223VUd7haJBMilIkglYsikYvdruVTs6gRKG19LRJBLxe7OYtP+pm2yxs7j5RcFXA9R47bm17w9m4iIiMg7xGIRwoNdI+eHtZHuN8017g71axpHUTe+rtIZYbE5UFLZgJLKhjbPIZOKERGidJ0nRIXIxmA/vDHoD/STMTDsIyxWOypqGkfLV+lR1iKgL6/Wu+8wbo9MIkKExg+RGlcw3zKgjwhWQSHvXhQqEgnwV7lGwUeHde0Yu8MJvdHabqhf30bo32C0wukE6g1W1BusKKnsStBf3q3P0tdJxCL39y2JRARZY5gvbfy+5gr3Xd/nmr6zSSTNwb+s8b3Slsc2vk/a4uKATOL6LiiViOCwWeB0dnKlx0f6TWhvsViwZs0abNy4EUVFRVCpVBgzZgyefPJJpKWldbu8zZs349NPP0VOTg4AIDk5GfPmzcNtt93W7jFarRbvvfceMjMzodVqERoaiqlTp+KZZ56BRqPx6rmIiIh6m0jUPM2PNzgcTpgs7QT9ZhuMFnu7FwMaDGbU1ukhlshgtTthsdphsTlgsdphtTk8zuG6U6Djzru3uTuUjaP9pWIRJBIBErHI/ZBKml+33OexXSy4R5+43tfy+BblNW6XdlaexFWmVCyCSCTwyycRERH1e2KxyD2CPr2N/Ta7A1qd8bJR+gZU1BhRXqVHVZ0JFqsdReUNKCpvO9RXyMQeIX7LqXfCQ1QQo2+Gev2R0+mErt6Mi+Um97Q1LUfLV9eZ0FmGqglSuIL4xkA+ssWI+eA+MFWSWCS4R8V3ld3uQL3BFfQ3Pbc3ur+2wYy6BjNEYhFEggBAgCCg8SFAgOu1eztcGzxeN75HgGuj6+fmcloe29SeHu9vUZaojXLcn8vhgMXqgNXm+h5nsTlgtTlgbfx+15LN7oDN7oAB3rnju6tuGKRCamqvnrJL+kVob7FYsGDBAmRlZUGj0WDatGmorKzE9u3bkZmZiQ8++ACTJ0/ucnnvvPMOVqxYAZlMhptuugkAsHfvXvz2t79Fbm4ulixZ0uqYkpISzJkzB5WVlRg0aBBmzpyJnJwcfPnll8jIyMBXX32FqKgor5yLiIjoWiASCVApXIvfdpfBYMCZM2cwdOjQVmsDOBxOWO2uAN/1aHxta/G6abvN9drc2FE0W+2wNr7H3HgBwNz4/qbXVmvjNlvza6vNDpu9+duDu0PppSmEeoIgwH1hAHBCIauAVCqBVCx4XgiQeF5okHpcPGhxUaHFxQWp5LILDE37Gy8aSFq+v4PjJGJeWCAiIqKrIxGLGoNbvzb3W22uUL8p0HeH+40j9avrTDBZ7Cgsq0dhWX2bZShkYiikQOBOHfyUMo9pHVUt13W6bI0n1eVrPskk/faOzZYDcgztDLzx2N7Ge/RGS+MaBiUdnkspFyMixHO0fNPo+fBgFWRScS996t4jFougDpBDHdD5dKkdfVfqT5xOJ2x2J6yN3+OstpbhvmubrfG1O/C32hu/C7Z4b+M2a2MZTe+3thj0ZbXZPS4YNJVhszvgr+ibv0/9IrT/6KOPkJWVhfT0dHzyySfw9/cHAGzatAnPPfccnn/+eezYscO9vSOHDx/GihUrEBgYiHXr1iEx0XXvVX5+PubOnYvly5djypQpGDlypMdxL7zwAiorKzF37lwsXboUgiDA6XRi6dKlWLduHV588UWsXr3aK+ciIiKi9olEAuQi17Q3vclud7hH+7e8IGC3O2GzO2C1uzqVTYG+zea6uND8s6PF+5we260tjmna3tXybHYHrI3HteR0orGD6vrZaLYAsPRqm3VFy7sKWt62Km1xS2vTnJeuiwrtvKfVtsb3Si/7uZPjeBGBiIjo2iKViBAV6oeo0PZCfTsqa4ytp95xh/pmmCx2mCyATt/2SP2uEgTXBQBXiC+FUtF6bafOLwRI3a+lkvbXd3I6nbDaHO2G6m0G7x7brB7va5r60hsEAQhTK1uPlm/8mdMVXR8EQYBUIkAqEUGl8E0dmi6A9EV9PrS32WxYu3YtAOCll17yCOZvv/12bNy4Ebt378b69esxf/78TstbtWoVAGDhwoXuEB0AEhMT8cQTT+Ctt97CqlWr8P7777v3nTp1CgcOHIBarcYLL7zQ4rYQAS+88AK2bt2KPXv24OzZs0hJSbmqcxEREVHfJBaLoBSLvDZ9kLc5nU7YHc5WFwfqG/TIOZeHuLgESKQyWG2XXShounBw2XFWu73NiwtWj4sFTRcPPC9ctHxPy/dZ7Y5Wtzu73gMAdgBWH7ScJ4lYaDPQF4sEJEeJMHSor2tIRERE3iSViBEd5o/osLYHglqsdhReqsapM+cQET0ATojbHFVuMHfws9kGh8O1OGfz1I7mq667pLFv2hT+O51O13kb62bvbFXWK9A0pebldxG4LypcdqGh5fsEpx0VlwoxfnQaAgM6H3hLdD3rm986Wzh69Ch0Oh1iY2ORnt569rLZs2dj9+7d2LlzZ6ehvdlsxr59+wCgzfnkZ8+ejbfeegt79uyBxWKBTOaae2rXrl0AgOnTp0Mu97xNRS6XY/r06diwYQN27NjhDu2v9FxEREREV0IQBPfUNC35yZ2oqZAiPiqgT9w+a3c43dMNuS8wtLgV1ur+ufnWVffPtsve2+7PjduajrU6YLW3/Z6W0x4BaLwA0fY6CSZT96d6IiIiov5NJhUjOtQPtaFyDE3UXFF/yul0wmJzwGCytjt1TKuR7y2D/5Yj5M02WKyuforN7kC9wYJ6Q8d3U8pl4uYR/Z2G7dJWwXvLUf+yq7gz0WAwwNYgadVfJaLW+nxo33SLQnuLzaY2rhTQtMhrRwoKCmA2mxEcHIzo6OhW+6Ojo6FWq6HT6VBQUIDk5GSPOgwbNqzNctPS0rBhwwaPOlzpuYiIiIiuZWKRALGs73RBHQ5niwsHjQ+73T0nZtPPDXojbA1lvq4uERER9UOCIEAudU3vGBxw9eXZ7Q4YLfbmiwCNwb5IEFqF7Qq5BOJ+Oo8+0fWs73xjakdpaSkAIDIyss39Tdt1Oh30ej38/NqeowxwLSbbUVlN+3Q6HUpLS91BelMdIiIiOqxDU/lXcy4iIiIi6j0ikQCZSNzpgmau+S4re6lWRERERO0Ti0XwV4rgr+RdgETXqj4f2hsMBgCAUqlsc3/L25I6C+07K6tleXq9vtVx7d0C1dEx3T3XlXA6ne7z9TSj0ejxTFeObekdbEfvYDt6D9vSO9iO3sO29A5ftKPT6ew3i7BZLBasWbMGGzduRFFREVQqFcaMGYMnn3yy3TtmO7J582Z8+umn7jtZk5OTMW/evDannWyi1Wrx3nvvITMzE1qtFqGhoZg6dSqeeeYZaDQar51r+vTpHoN1Lvf222/j5z//eVc+JhERERFRm/p8aE+ds1qtvb7S8YULF3r1fNcytqV3sB29g+3oPWxL72A7eg/b0jt6ux37w7pHFosFCxYsQFZWFjQaDaZNm4bKykps374dmZmZ+OCDDzB58uQul/fOO+9gxYoVkMlkuOmmmwAAe/fuxW9/+1vk5uZiyZIlrY4pKSnBnDlzUFlZiUGDBmHmzJnIycnBl19+iYyMDHz11VeIioryyrma3H333W1uj42N7fJnJSIiIiJqS58P7ZtGo7c3qqnlCPOORtl3payW5bUsq+m49kazd3RMd891JaRSKQYPHnxVZXSV0WjEhQsXEB8f3+FdBNQ5tqV3sB29g+3oPWxL72A7eg/b0jt80Y55eXm9cp6r9dFHHyErKwvp6en45JNP4O/vDwDYtGkTnnvuOTz//PPYsWOHe3tHDh8+jBUrViAwMBDr1q1DYmIiACA/Px9z587F8uXLMWXKFIwcOdLjuBdeeAGVlZWYO3culi5dCkEQ4HQ6sXTpUqxbtw4vvvgiVq9e7ZVzNfnLX/7S7bYiIiIiIuqKPh/aNy3iWlbW9sJfTdvVanWn4XdMTEyHZbXc13Lx2OjoaJw+fRrl5eUdHtNU/tWc60oIgnBFq5dfDaVS2evnvFaxLb2D7egdbEfvYVt6B9vRe9iW3tGb7dgfpsax2WxYu3YtAOCll17yCOZvv/12bNy4Ebt378b69esxf/78TstbtWoVAGDhwoXuEB0AEhMT8cQTT+Ctt97CqlWr8P7777v3nTp1CgcOHIBarcYLL7zgbjdBEPDCCy9g69at2LNnD86ePYuUlJSrOhcRERERUW8Q+boCnRk6dCgAV2e8LadPnwaALi3kmpCQALlcjpqaGvfisi2VlpZCp9NBoVAgISGhVR2ys7PbLLepbi3rcKXnIiIiIiLqL44ePQqdTofY2Fikp6e32j979mwAwM6dOzsty2w2Y9++fQDQ5nzyTWXt2bMHFovFvX3Xrl0AXHPNy+Vyj2PkcjmmT58OANixY8dVn4uIiIiIqDf0+dB+1KhRUKvVKC4uxsmTJ1vt37x5MwBgxowZnZYll8sxceJEAMCWLVvaLWvSpEke84dOmzYNAJCRkQGz2exxjNlsRkZGBgBg5syZV30uIiIiIqL+omldpfYWm01NTQUA9yKvHSkoKIDZbEZwcHCbd6JGR0dDrVbDZDKhoKCgVR2GDRvWZrlNdWtZhys9V0urV6/Gn/70J/z5z3/G2rVrUVxc3OlnJCIiIiLqij4f2kskEsybNw8A8PLLL6OhocG9b9OmTdi9ezeCg4Nx7733urefOHECs2bNwqxZs1qV9+ijjwIAVq5cifz8fPf2/Px8rFy50uM9TdLS0nDjjTdCp9Ph9ddfh9PpBAA4nU68/vrr0Ol0mDRpksfttld6LiIiIiKi/qLpjtLIyMg29zdt1+l00Ov1HZZVUlLSYVkt97W8k7XpdURERIfHNJV/Nedq6c0338RXX32Fzz77DK+99hpuueUWvPnmm3A4HO2WSURERETUFX1+TnsAeOyxx3DgwAFkZWXhlltuwdixY6HVanH48GFIpVK8+eabHvNnGo3GdkfEjBkzBk888QRWrlyJu+++2z0aft++fTCbzVi0aFGbi029/vrrmDNnDtatW4dDhw4hOTkZOTk5yM/PR3h4OF599VWvnYuIiIiIqD8wGAwA0O7ivC3n/9fr9R2uQdVZWS3La3kBoOm49tYa6OiY7p4LcN2FO27cOAwbNgwajQYlJSXYsmULPvzwQ6xevRpisRjPPfdcu+V2ldPpdNezpxmNRo9nunJsS+9gO3oH29F72JbewXb0Draj9/iiLZ1OZ5fWruoXob1MJsPq1avx8ccfY+PGjcjIyIBKpcKMGTPw1FNPtXs7bnueffZZpKSkYO3atTh48CAA16278+fPb3NOS8C1sOw333yDZcuWITMzE9u3b4dGo8HcuXOxePFiaDQar52LiIiIiIj6pv/5n//x+DkxMRFPP/00hg8fjsceewxr1qzBQw891O7I/66yWq3uqX96y4ULF3r1fNcytqV3sB29g+3oPWxL72A7egfb0Xt6uy27MlV6vwjtAdeHWbhwIRYuXNjpe8ePH9/pvJmzZ892LzDVVaGhoXj55Ze7dcyVnouIiIiIqK9rGo3e3uikliPFOxpl35WyWpbXsqym49obld7RMd09V0emTJmCtLQ0nDp1Cvv27cPdd9/dpePaI5VKMXjw4Ksqo6uMRiMuXLiA+Pj4Du8+oM6xLb2D7egdbEfvYVt6B9vRO9iO3uOLtszLy+vS+/pNaE9ts1qtcDqdbS7S2xOa5vPPy8vr0q0c1D62pXewHb2D7eg9bEvvYDt6D9vSO3zRjhaLpc//N2taxLWsrKzN/U3b1Wp1p+F3TExMh2W13Ndy8djo6GicPn0a5eXlHR7TVP7VnKszCQkJOHXqFCoqKrp8TFua+vgt18XqSU2/3yUlJX3+d66vY1t6B9vRO9iO3sO29A62o3ewHb3HF21ptVq7dK4+vxAtdUwQhF79H1QQBMhkMv6j4AVsS+9gO3oH29F72JbewXb0Hrald/iiHXu7n3clhg4dCgA4depUm/tPnz4NAEhOTu60rISEBMjlctTU1LS5+GtpaSl0Oh0UCgUSEhJa1SE7O7vNcpvq1rIOV3quztTW1gLoeK78rmAfv/9iW3oH29E72I7ew7b0Drajd7Advacv9/E50r6f40K2REREROQro0aNglqtRnFxMU6ePIn09HSP/Zs3bwYAzJgxo9Oy5HI5Jk6ciF27dmHLli1YsGBBm2VNmjTJYx7QadOmYdmyZcjIyIDZbIZcLnfvM5vNyMjIAADMnDnzqs/VkaqqKhw+fBgAMGzYsC4d0x728YmIiIiubxxpT0REREREV0QikWDevHkAgJdffhkNDQ3ufZs2bcLu3bsRHByMe++91739xIkTmDVrFmbNmtWqvEcffRQAsHLlSo+pYfLz87Fy5UqP9zRJS0vDjTfeCJ1Oh9dff919m7PT6cTrr78OnU6HSZMmISUl5arP9f333yMrK6tVvS9evIinnnoKRqMRw4YNY+hORERERFdFcDb1aomIiIiIiLrJYrFgwYIFyMrKgkajwdixY6HVanH48GFIpVIsX74cU6ZMcb//4MGD7qA/JyenVXlvv/02Vq5c6R4NDwD79u2D2WzGokWLsGTJklbHlJSUYM6cOaisrERiYiKSk5ORk5OD/Px8hIeH4+uvv0ZUVNRVn+u1117D2rVrERMTg+TkZKhUKhQXF+PUqVOwWq0YMGAA1qxZgwEDBlx5gxIRERHRdY+hPRERERERXRWLxYKPP/4YGzduRFFREVQqFUaPHo2nnnoKaWlpHu/tLLQHXNPTrF271r0/OTkZ8+fPx2233dZuHbRaLZYtW4bMzExUVVVBo9Fg6tSpWLx4MTQaTbvHdedcBw4cwLfffovs7GxUVFSgoaEBSqUSiYmJmDlzJh544AH4+/t33FhERERERJ1gaE9ERERERERERERE1EdwTnsiIiIiIiIiIiIioj6CoT0RERERERERERERUR/B0J6IiIiIiIiIiIiIqI9gaE9ERERERERERERE1EcwtCciIiIiIiIiIiIi6iMY2hMRERERERERERER9REM7YmIiIiIiIiIiIiI+giG9kREREREREREREREfYTE1xWg/sFisWDNmjXYuHEjioqKoFKpMGbMGDz55JNIS0vzdfX6BavVioMHDyIzMxMHDx5EUVER7HY7IiMjMWnSJDz66KOIiYnxdTX7HafTifnz5+PgwYMAgM2bNyMxMdHHtepf6uvr8fHHH2PHjh0oLi4GAERERGD06NFYvHgxIiIifFzDvu/8+fP46KOPcPDgQVRUVEAikWDgwIG45ZZb8Mgjj8DPz8/XVewzTp06hX379uHkyZPIzs5GSUkJAGDnzp2IjY1t97jCwkIsW7YM+/fvR21tLSIjI3HrrbfiySefvC7bt7vtqNVqkZmZid27d+PkyZPQarWQyWQYMmQI7rjjDsydOxcSyfXZLbzS38mWzp8/j7vuugtmsxkjRozA119/3ZNVJvIa9vGvHvv4PYN9/KvHPv7VYx+/69jH9w728b3jWunfC06n09nrZ6V+xWKxYMGCBcjKyoJGo8HYsWNRWVmJI0eOQCqV4oMPPsDkyZN9Xc0+b9++fXjkkUcAAFFRUe4vQidOnEBFRQX8/f2xatUqjBw50pfV7HfWrVuHl156CYIgwOl0skPfTXl5eXjkkUdQUVGBuLg4pKSkwGq1orCwEHl5efj8888xZswYX1ezTzt8+DAWLFgAk8mE+Ph4JCcnw2g04ujRo2hoaEBiYiK+/PJLBAUF+bqqfcKiRYuwc+fOVts76kCdOnUKDz/8MPR6PdLS0jBw4ECcOHECJSUlSEpKwhdffIGAgICernqf0t12/P3vf4/vvvsOYrEYqampGDBgALRaLY4dOwaLxYKxY8fio48+glKp7I3q9ylX8jvZksPhwK9+9SscO3YMTqeToT31G+zjewf7+D2Dffyrwz7+1WMfv3vYx/cO9vG941rp319/l1uo2z766CNkZWUhPT0dn3zyCfz9/QEAmzZtwnPPPYfnn38eO3bscG+ntgmCgFtvvRWPPPKIR6fdbDZj6dKl2LBhA5577jls27YNUqnUhzXtP8rKyvDWW29h8uTJOH/+vPvqKXVNXV0dfvOb30Cn0+Fvf/sb7rjjDo/9hYWF/P+6C5YuXQqTyYRFixZh8eLFEAQBAKDT6fCb3/wGp06dwqpVq/Dcc8/5uKZ9ww033ICkpCQMGzYM6enpuOeee6DVatt9v91ux7PPPgu9Xo/nnnsOjz/+OABX2LR48WLs2rULb731Fl555ZXe+gh9QnfbUa1WY8mSJbj//vsRFhbm3l5QUIDf/OY3OHToEFasWIHf/e53vVH9PqW7bXm5zz77DD/99BPmzp2LdevW9WBNibyLfXzvYB/f+9jHvzrs43sH+/jdwz6+d7CP7x3XTP/eSdQBq9XqHDdunDMpKcl54sSJVvsfe+wxZ1JSkvOTTz7xQe2uHUaj0Tl69GhnUlKS8+DBg76uTr/x2GOPOW+44QZncXGxc9q0ac6kpCRnXl6er6vVb7z22mvOpKQk55o1a3xdlX6rurramZSU5ExLS3OazeZW+7/77jtnUlKS8+GHH/ZB7fqHiRMnOpOSkpxFRUVt7t+2bZszKSnJefvttzsdDofHvvLycmdqaqozNTXVWV1d3RvV7bM6a8eONP2eTps2rQdq1v90py0LCwudN9xwg/Pxxx93HjhwwJmUlOS8//77e6GWRFeHffzewT7+lWEf/+qwj3/12Me/euzjewf7+N7RX/v3XIiWOnT06FHodDrExsYiPT291f7Zs2cDQJu3nVDXKRQKxMfHAwAqKip8W5l+4ptvvsHu3buxZMkSzhN6BcxmMzZs2AClUok5c+b4ujr9VldHzAUHB/dwTa5du3btAgDceuut7hFOTcLDwzF69GjYbDbs3r3bF9W7JqSkpADg358r8T//8z8AXKPxiPoT9vF7B/v43cc+/tVhH9872Mfveezj9zz28a9MX+rfM7SnDp05cwYA2l2IKjU1FQCQk5PTa3W6Ftntdvdtn6GhoT6uTd+n1WrxxhtvID09HfPmzfN1dfql7Oxs1NfXIzU1FUqlEvv378ebb76JP/3pT/jwww9x/vx5X1exX/D398fIkSNhtVrxwQcfwNlimRidToePP/4YAHD//ff7qor9XtPfoWHDhrW5v+nv09mzZ3utTteaixcvAoDHLbXUuX/+85/Yv38/nn32WURFRfm6OkTdwj5+72Afv3vYx7967ON7B/v4PY99/J7HPn739bX+Pee0pw6VlpYCACIjI9vc37Rdp9NBr9dfl6t7e8O3336L6upqhISEYNSoUb6uTp/3yiuvoKGhAa+++ipEIl57vBJ5eXkAAI1Gg8WLF2Pbtm0e+9955x0sXLgQS5Ys8UX1+pXXXnsNjz76KJYvX47NmzcjOTkZJpMJR44cgVKpxJtvvolJkyb5upr9Vmd/hyIiIjzeR933ySefAABmzJjh24r0I+Xl5fjrX/+KESNG4MEHH/R1dYi6jX383sE+fvewj3/12Mf3Hvbxexb7+D2Pffzu6Yv9e4b21CGDwQAA7a40rVKp3K/Zob8yxcXF+Otf/woA+N3vfgeZTObjGvVt27Ztw7Zt2/D444+7b/ei7qutrQXQfFvi888/jzvuuANisRhbtmzBm2++ieXLlyM6OpojSDqRmJiIL7/8EkuWLMGxY8dw4cIF976JEydi8ODBvqvcNaCzv0NNf3f0en2v1elasnbtWmRlZUGtVuOJJ57wdXX6jZdeegkmkwl//vOfGSxRv8Q+fs9jH7972Mf3DvbxvYd9/J7FPn7PYh+/+/pi/75v1ILoOtXQ0IBFixZBp9Nh1qxZ+OUvf+nrKvVpOp0Or7zyCuLi4vD000/7ujr9msPhAABYrVYsXLgQjz76KCIiIhAaGoqHH34Yzz77LABg+fLlvqxmv3DgwAHceeedqK+vx6pVq3Do0CH88MMPeOWVV7B//3488MAD2LNnj6+rSdTK3r178de//hUikQhvvPEGb53tou+++w67du3CggULkJyc7OvqEFEfxD5+97CP7z3s43sP+/jUX7GP3319tX/P0J461DTKxmg0trm/6eooAI7A6Saz2Ywnn3wSOTk5mDBhAt566y1fV6nPe+ONN6DVavHyyy9DLpf7ujr9WssRdG2Nsmn6cllaWoqioqJeq1d/o9PpsGTJElgsFnz00UeYPHkyAgMDERERgTlz5uCVV16B2WzGSy+9BLvd7uvq9kud/R1qGn3Dv0Hdc+LECTz99NOw2Wx45ZVXMH36dF9XqV+orq7Ga6+9hvj4eCxatMjX1SG6Yuzj9xz28buPfXzvYR/fO9jH73ns4/cM9vG7ry/37zk9DnUoOjoaAFBWVtbm/qbtarWa/5h2g9VqxTPPPIOsrCzccMMNWL58OW+Z7YKdO3dCLpdj+fLlrUaHVFZWAgD++Mc/QqlU4sEHH8SsWbN8Uc1+ISYmBgAgk8nc8wW25Ofnh5CQEFRXV6OyshIDBgzo7Sr2C5mZmdDpdJgwYYK7TVu65ZZbIJVKUVxcjKKiIsTHx/d+Jfu56Oho1NbWoqysrM3b5cvLy93vo67Jzc3FY489BoPBgD/+8Y+8Pb4bjh49ipqaGqhUKjz66KMe++rq6gC45hN++OGHAQArVqxg/4j6JPbxewb7+FeGfXzvYR/fO9jH73ns43sf+/hXpi/37xnaU4eGDh0KADh16lSb+0+fPg0Afer2kb7O4XDg+eefx+7du5GSkoIPP/zQY0QEdcxsNiMrK6vd/SdPngTAxVY6k5qaCgCwWCxtzlVrt9tRX18PAPz97EBTZzIg/ax3bAAADGFJREFUIKDN/RKJBCqVCrW1te45Rql7hg4dijNnziA7OxtTp05ttb/p7xPnv+2aixcv4je/+Q10Oh2eeuop/OY3v/F1lfqlkpISlJSUtLlPr9e7/05x9B31Vezjex/7+FeHfXzvYB/fO9jH73ns43sX+/hXry/27xnaU4dGjRoFtVqN4uJinDx5Eunp6R77N2/eDICdp65yOp148cUXsWXLFiQkJODjjz9GUFCQr6vVbxw+fLjdfdOnT0dJSQk2b96MxMTEXqxV/xQVFYW0tDScOnUKBw8ebHXb3OHDh2G1WqFUKjFo0CAf1bLva5of8NSpU7DZbJBIPP+sXrhwwd2Rb2uUDnVu2rRp2LBhA7Zt24annnoKgiC491VUVODIkSOQSCSYMmWKD2vZP1y6dAm//vWvUVlZiV//+tdYvHixr6vU78ycORM5OTlt7jt48CDmzZuHESNG4Ouvv+7lmhF1D/v43sU+/tVhH9972Mf3Dvbxex77+N7DPv7V6cv9e85pTx2SSCSYN28eAODll19GQ0ODe9+mTZuwe/duBAcH49577/VVFfuVv/zlL1i/fj1iY2Pxj3/8AxqNxtdVouvY448/DgB48803UVxc7N5eXl6O1157DQBw33338bbuDkyZMgUKhQIlJSX429/+BpvN5t5XXV2NF198EQAwbtw4hIaG+qqa/dr06dMRHx+P3NxcfPTRR+7tFosFf/rTn2Cz2XDvvfciJCTEh7Xs+6qrq/HII4+gtLQUc+bMwf/7f//P11UiIh9iH9+72MenvoR9/KvHPn7PYx/fO9jHv7YJTqfT6etKUN9msViwYMECZGVlQaPRYOzYsdBqtTh8+DCkUimWL1/Oq59dsGPHDjz11FMAgPHjx7c7N9vMmTMxc+bM3qzaNYGjcK7M0qVL8eWXX0KlUmHUqFEQiUT46aefUF9fjxtuuAGffPIJlEqlr6vZp/3zn//En/70JzgcDkRHRyM1NRUmkwnHjx9HfX09QkND8dlnnyEhIcHXVe0TMjMzPearPX36NKxWK4YOHer+8njzzTe7/70EgOzsbDz88MMwGAxIS0tDXFwcjh8/jpKSEiQlJeGLL75o9/bla1V32/Gpp57Cjh07IJPJMHv2bI/RTC394Q9/uO6+HF3J72RbfD0Sh6i72Mf3Dvbxexb7+FeGffyrxz5+97CP7x3s43vHtdK/5/Q41CmZTIbVq1fj448/xsaNG5GRkQGVSoUZM2bgqaeeQlpamq+r2C80LWABuP7Hb09MTAw79NRrli5ditGjR+Pzzz/HTz/9BJvNhvj4eNx+++2YP38+5HK5r6vY591///1ISkrCP/7xDxw9ehS7d++GWCxGbGws7r//fjz66KMccddCdXU1jh8/3mr7mTNn3K8vv1172LBh+Oabb7Bs2TLs378fubm5iIyMxKOPPopFixZdl4skdrcdm/4GWSwWfPPNN+2W+/TTT19XHXrgyn4nia4F7ON7B/v41Bexj3/12MfvHvbxvYN9fO+4Vvr3HGlPRERERERERERERNRHcE57IiIiIiIiIiIiIqI+gqE9EREREREREREREVEfwdCeiIiIiIiIiIiIiKiPYGhPRERERERERERERNRHMLQnIiIiIiIiIiIiIuojGNoTEREREREREREREfURDO2JiIiIiIiIiIiIiPoIhvZERERERERERERERH0EQ3siIrruFRcXIzk5GcnJyb6uChEREREReQH7+ETUn0l8XQEiIuofHn74YWRlZXXpvTk5OT1cGyIiIiIiulrs4xMR9U0M7YmIqFuioqIQFRXl62oQEREREZGXsI9PRNS3MLQnIqJuuffee/HMM8/4uhpEREREROQl7OMTEfUtnNOeiIiIiIiIiIiIiKiP4Eh7IiLqMcXFxZgxYwYA1xyYGRkZWLNmDc6ePQubzYYhQ4bgoYcewp133tluGfn5+Vi1ahUOHjyIiooKKJVKJCcn4xe/+AXuueceiMXiNo+z2Wz47rvvsGnTJpw+fRr19fUIDg5GXFwcpk+fjvvvvx8BAQFtHnv48GF8+OGHOH78OIxGI+Li4jBnzhw8+OCDEATh6huGiIiIiKifYh+fiKjnMbQnIqJe8emnn+LVV1+FWq3GwIEDUVZWhuPHj+P48eM4ceIEXnzxxVbHbN68GX/4wx9gtVqhUqmQlJSE2tpaHDp0CIcOHcKWLVuwfPlyKBQKj+Oqq6uxaNEi/PTTTwCAsLAwpKSkoLq6GkePHsWhQ4eQlpaG8ePHtzrnhg0b8N///d8IDAxEbGwsSktLkZubiz//+c8oKSnBH//4x55pICIiIiKifoZ9fCKinsHpcYiIqFf89a9/xaJFi7B3716sX78ee/bswdKlSyESifDpp59iy5YtHu/Pz8/Hf/3Xf8FqteL+++/H3r17sWHDBuzcuRNr1qxBQEAA9u7dizfffNPjOKfTiSVLluCnn35CVFQUPvnkE+zZswf/+te/kJGRgYMHD+Kll15CaGhom/V86aWX8Mc//hH79u3D+vXrsX//fjz77LMAgDVr1qCwsLBnGoiIiIiIqJ9hH5+IqGcwtCciom557733kJyc3O5j0aJFbR43btw4LFmyBBKJ6yYvQRDwwAMP4L777gMALF++3OP9q1evhtlsRlJSEv785z9DpVK5902cONE9Gubrr79GRUWFe9+uXbuQlZUFmUyG1atXY8KECR7lBgQE4Fe/+hUSExPbrOedd96JX//61x635D7xxBNISkqC0+lEZmZmF1uKiIiIiKh/YB8/s4stRUTUOxjaExFRt0RFRWHUqFHtPgYPHtzmcfPnz+9we25uLi5duuTe/sMPPwAA5s2b1+Yck3fddRc0Gg2sViv27dvn3v79998DAG655ZZ2O+0defDBB9vcPvL/t3fHrFFsYRiA32sSFFSQiMUKgq64goIgWggpFFIIqYIWgqKF2KSwVCutLLSysRUkEYSgoOhvUFNpFzYSLRQS0AUl0UI27C3CHRNdA4lunKvP0yx8c87sbLUfL+ec2b8/SazCAQDgj6PH1+MD5eJMewCW5fjx4zl//vyy5+3atattfceOHenu7k6z2czk5GQqlUpmZmby7t27JEmtVms7r6enJ9VqNY1GI69evSrqExMTSb424Mu1ffv2tvXNmzcnST59+rSi+wIAQFnp8fX4QLlYaQ/AqvjR+ZJdXV3ZtGlTkq/N8sKm+UfzkvmXT307fnZ2Nsn8FtmVWLhFd6E1a+b/Mlut1oruCwAAfxo9PkBnCO0BWBXv379vW5+bm8uHDx+SJOvXr1/0udS8JMVKnYXjN2zYkCSZmZn5qecFAACWpscH6AyhPQCr4uXLl23rr1+/TrPZTJLifMqNGzcWK2z+2wr7rWazWWyZrVarRX337t1JkufPn/+aBwcAANrS4wN0htAegFUxPDy8ZL1Wq6VSqRT1w4cPF9fbbVd9+PBhGo1Genp60tfXV9SPHj2aZP5lVQvPwQQAAH4tPT5AZwjtAVgVY2NjuXnzZrHiptVqZXR0NPfu3UuSDA0NLRp/9uzZrF27NhMTE7ly5Uo+f/5cXHv69GmuX7+eJDlx4kSxYidJjhw5kkOHDuXLly85d+5cxsbGFt13dnY2d+/ezeTkZEd+JwAA/C30+ACd0f27HwCA/5f79+/nyZMnS465fPly9uzZs6h26dKlXL16NSMjI9m2bVump6eL8ypPnjyZgYGBReN37tyZa9eu5eLFixkdHc3jx49TrVbz8ePHvHnzJknS19eXCxcufPf9N27cyNDQUF68eJEzZ85ky5YtqVQqaTQamZ6eztzcXIaHh4utugAA8DfT4wOUi9AegGWZmprK1NTUkmPavSDq9OnT2bp1a27fvp3x8fE0m83s27cvp06dyuDgYNv7DAwMpFar5datW3n27Fnq9XrWrVuXgwcPZnBwMMeOHUtXV9d383p7e3Pnzp08ePAgjx49Sr1ez/j4eHp7e3PgwIH09/dn7969K/r9AADwp9HjA5TLP612h4gBwC/w9u3b9Pf3J0nq9fpvfhoAAOBn6fEBOs+Z9gAAAAAAUBJCewAAAAAAKAmhPQAAAAAAlITQHgAAAAAASsKLaAEAAAAAoCSstAcAAAAAgJIQ2gMAAAAAQEkI7QEAAAAAoCSE9gAAAAAAUBJCewAAAAAAKAmhPQAAAAAAlITQHgAAAAAASkJoDwAAAAAAJSG0BwAAAACAkvgXnYzmG8JkitQAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zHwlNmhXEogG" + }, + "source": [ + "Write your personal opinion on the activation functions, think about computation times too. Does `BatchNormalization` help?" + ] + }, + { + "cell_type": "markdown", + "source": [ + "Таким образом, ответ на вопрос, полезно ли применение батчнорма, зависит от используемой функции активации и оптимизатора. Каких-то особых отличий типа скачков, \"гладкости\" функции потерь, явных признаков переобучения я выделить не могу. Разве что на двух моделях (ReLU и LeakyReLU с оптимизатором adam) лосс под конец обучения начал немного возрастать. Возможно, стоило добавить ещё эпох для проверки, действительно ли модель начинает переобучаться. С использованием оптимизатора Adam удаётся достичь меньшего значения лосса, чем с использованием sgd_momentum." + ], + "metadata": { + "id": "BbwMAOEtEogG" + } + }, + { + "cell_type": "markdown", + "source": [ + "**Замечание.** Также можно было построить графики скора на валидации, но я задумался об этом лишь под конец обучения моделей, когда прошло уже ~1.5 часа. В целом, скор на последней эпохе обучения достаточно информативен." + ], + "metadata": { + "id": "5UVLjEviPjXS" + } + }, + { + "cell_type": "markdown", + "source": [ + "Итак, исходя из всего вышесказанного, итоговый на инференсе будем считать на модели с наибольшим скором на валидации." + ], + "metadata": { + "id": "psdmSwkVOyyb" + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kuHgydyyEogG" + }, + "source": [ + "**Finally**, use all your knowledge to build a super cool model on this dataset. Use **dropout** to prevent overfitting, play with **learning rate decay**. You can use **data augmentation** such as rotations, translations to boost your score. Use your knowledge and imagination to train a model. Don't forget to call `training()` and `evaluate()` methods to set desired behaviour of `BatchNormalization` and `Dropout` layers." + ] + }, + { + "cell_type": "markdown", + "source": [ + "Скор на валидации и так достаточно хорош, поэтому дополнительные оптимизации сильно его не увеличат. На выбранной модели для инференсаа признаков переобучения не замечено, поэтому бороться с ним я так же не вижу смысла." + ], + "metadata": { + "id": "cf1zXEESEogG" + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fDXG6RZDEogG" + }, + "source": [ + "Print here your accuracy on test set. It should be around 90%." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "rkDj44a3EogH" + }, + "outputs": [], + "source": [ + "net = models['SoftPlus']['adam_optimizer']['No batchnorm']['model']\n", + "net.evaluate()\n", + "res = net.forward(X_test)" + ] + }, + { + "cell_type": "code", + "source": [ + "score = np.sum(np.argmax(res, axis=1) == np.argmax(y_test, axis=1)) / len(res)\n", + "print(f\"Inference score: {score}\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GMdhMNcwtEun", + "outputId": "27a9aa6e-8f4e-4d8b-d895-fccb8d00d42a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Inference score: 0.9814\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "На тесте также выбили высокий скор." + ], + "metadata": { + "id": "0_OcL4q1QyrD" + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "imfvSgsMEogH" + }, + "source": [ + "### Comparing with PyTorch implementation\n", + "The last (and maybe the easiest step after compared to the previous tasks: build a network with the same architecture as above now with PyTorch.\n", + "\n", + "You can refer to the `week0_09` or `Lab3_part2` notebooks for hints.\n", + "\n", + "__Good Luck!__" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "22y87X9-EogH" + }, + "outputs": [], + "source": [ + "import torch\n", + "from torch import nn\n", + "import torch.nn.functional as F" + ] + }, + { + "cell_type": "code", + "source": [ + "class NN(nn.Module):\n", + " def __init__(self):\n", + " super().__init__()\n", + "\n", + " self.model = nn.Sequential(\n", + " nn.Linear(784, 1024),\n", + " nn.Softplus(),\n", + " nn.Linear(1024, 10)\n", + " )\n", + "\n", + " def forward(self, x):\n", + " x = x.flatten(start_dim=1)\n", + " outputs = self.model(x)\n", + "\n", + " return F.log_softmax(outputs)" + ], + "metadata": { + "id": "-yAo-I4tvwBj" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "def get_accuracy_score(model, data_loader):\n", + " model.eval()\n", + "\n", + " correct = 0\n", + " processed_size = 0\n", + " with torch.no_grad():\n", + " for x_batch, y_batch in data_loader:\n", + " y_pred = model.forward(x_batch)\n", + " preds = np.argmax(y_pred, axis=1)\n", + " correct += torch.sum(preds == y_batch)\n", + " processed_size += len(x_batch)\n", + "\n", + " return correct / processed_size" + ], + "metadata": { + "id": "4kzgn4YsRpmc" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "def fit_epoch(model, optimizer, train_loader, criterion):\n", + " model.train()\n", + "\n", + " running_loss = 0.0\n", + " processed_size = 0\n", + "\n", + " for X, y in train_loader:\n", + " optimizer.zero_grad()\n", + " preds = model(X)\n", + " loss = criterion(preds, y)\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + " running_loss += loss.item()\n", + " processed_size += len(X)\n", + "\n", + " return running_loss / processed_size" + ], + "metadata": { + "id": "H1ytVX0O4tVp" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "def eval_epoch(model, val_loader, criterion):\n", + " model.eval()\n", + "\n", + " running_loss = 0.0\n", + " processed_size = 0\n", + "\n", + " with torch.no_grad():\n", + " for X, y in val_loader:\n", + " preds = model(X)\n", + " loss = criterion(preds, y, reduction='sum')\n", + "\n", + " running_loss += loss.item()\n", + " processed_size += len(X)\n", + "\n", + " return running_loss / processed_size" + ], + "metadata": { + "id": "zv_LkvtO4xBx" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "def train(model, optimizer, train_loader, val_loader, criterion, epochs):\n", + " loss_history = []\n", + " score_history = []\n", + "\n", + " with tqdm(total=epochs) as pbar:\n", + " for epoch in range(epochs):\n", + " train_loss = fit_epoch(model, optimizer, train_loader, criterion)\n", + " val_loss = eval_epoch(model, val_loader, criterion)\n", + " loss_history.append((train_loss, val_loss))\n", + " print(f\"Train loss: {train_loss}, val loss: {val_loss}\")\n", + "\n", + " train_score = get_accuracy_score(model, train_loader)\n", + " val_score = get_accuracy_score(model, val_loader)\n", + " score_history.append((train_score, val_score))\n", + " print(f\"Train score: {train_score}, val score: {val_score}\")\n", + "\n", + " pbar.update(1)\n", + "\n", + " return loss_history, score_history" + ], + "metadata": { + "id": "hIqxGUwo4Zkt" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "from torch.utils.data import DataLoader" + ], + "metadata": { + "id": "I1faHotX5l5v" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "device = 'cuda:0' if torch.cuda.is_available() else 'cpu'" + ], + "metadata": { + "id": "EB5hupQa8eKS" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "def to_device(data, device):\n", + " \"\"\"Move tensor(s) to chosen device\"\"\"\n", + " if isinstance(data, (list,tuple)):\n", + " return [to_device(x, device) for x in data]\n", + " return data.to(device, non_blocking=True)\n", + "\n", + "class DeviceDataLoader():\n", + " \"\"\"Wrap a dataloader to move data to a device\"\"\"\n", + " def __init__(self, dl, device):\n", + " self.dl = dl\n", + " self.device = device\n", + "\n", + " def __iter__(self):\n", + " \"\"\"Yield a batch of data after moving it to device\"\"\"\n", + " for b in self.dl:\n", + " yield to_device(b, self.device)\n", + "\n", + " def __len__(self):\n", + " \"\"\"Number of batches\"\"\"\n", + " return len(self.dl)" + ], + "metadata": { + "id": "pl29kGrM84cz" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "X_train, y_train, X_val, y_val, X_test, y_test = mnist.load_dataset()" + ], + "metadata": { + "id": "LYQ8vNt06Nhv" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "train_loader = DataLoader(tuple(zip(X_train, y_train)), batch_size=batch_size, shuffle=True)\n", + "val_loader = DataLoader(tuple(zip(X_val, y_val)), batch_size=batch_size, shuffle=False)\n", + "test_loader = DataLoader(tuple(zip(X_test, y_test)), batch_size=batch_size, shuffle=False)" + ], + "metadata": { + "id": "x0ltwMxX5nLb" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "train_loader = DeviceDataLoader(train_loader, device)\n", + "val_loader = DeviceDataLoader(val_loader, device)\n", + "test_loader = DeviceDataLoader(test_loader, device)" + ], + "metadata": { + "id": "-9R9sbRX9AsH" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "net = NN()\n", + "opt = torch.optim.Adam(net.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08)\n", + "loss_f = F.cross_entropy\n", + "\n", + "loss_hist, score_hist = train(net, opt, train_loader, val_loader, loss_f, 15)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "je1IssWE6AXe", + "outputId": "dd79b107-8e91-4b7b-d6d7-6d86dc92ae22" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 0%| | 0/15 [00:00:15: UserWarning: Implicit dimension choice for log_softmax has been deprecated. Change the call to include dim=X as an argument.\n", + " return F.log_softmax(outputs)\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train loss: 0.0033853262957930564, val loss: 0.2418186942279339\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 7%|▋ | 1/15 [00:13<03:10, 13.64s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9244599938392639, val score: 0.9311000108718872\n", + "Train loss: 0.0018101830400526523, val loss: 0.17855881526470185\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 13%|█▎ | 2/15 [00:24<02:38, 12.16s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9473999738693237, val score: 0.95169997215271\n", + "Train loss: 0.0012892031217366458, val loss: 0.15103202840089797\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 20%|██ | 3/15 [00:35<02:16, 11.40s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9575999975204468, val score: 0.9569000005722046\n", + "Train loss: 0.0009643150469660759, val loss: 0.11593804572820664\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 27%|██▋ | 4/15 [00:45<02:01, 11.02s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9702799916267395, val score: 0.9675999879837036\n", + "Train loss: 0.0007606355849280954, val loss: 0.09919398554712534\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 33%|███▎ | 5/15 [00:56<01:50, 11.05s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9772599935531616, val score: 0.9704999923706055\n", + "Train loss: 0.0005875917446985841, val loss: 0.10020028367415071\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 40%|████ | 6/15 [01:08<01:40, 11.14s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9792799949645996, val score: 0.9710999727249146\n", + "Train loss: 0.00048645196408033374, val loss: 0.08737256088666617\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 47%|████▋ | 7/15 [01:18<01:26, 10.82s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9846600294113159, val score: 0.9743000268936157\n", + "Train loss: 0.0004036889308411628, val loss: 0.08748887246642262\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 53%|█████▎ | 8/15 [01:28<01:14, 10.66s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9866399765014648, val score: 0.9732000231742859\n", + "Train loss: 0.0003280645340867341, val loss: 0.08246804858893156\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 60%|██████ | 9/15 [01:40<01:05, 10.91s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9898399710655212, val score: 0.9753000140190125\n", + "Train loss: 0.000270643047131598, val loss: 0.07994524174723774\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 67%|██████▋ | 10/15 [01:51<00:54, 10.96s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9920200109481812, val score: 0.9775999784469604\n", + "Train loss: 0.00022077499792911112, val loss: 0.08352680691331625\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 73%|███████▎ | 11/15 [02:01<00:43, 10.90s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.992900013923645, val score: 0.9753000140190125\n", + "Train loss: 0.00018898901086999103, val loss: 0.08188371533397586\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 80%|████████ | 12/15 [02:12<00:32, 10.87s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9938600063323975, val score: 0.9769999980926514\n", + "Train loss: 0.00014825202238280327, val loss: 0.08043195064340253\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 87%|████████▋ | 13/15 [02:24<00:22, 11.00s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9952999949455261, val score: 0.9776999950408936\n", + "Train loss: 0.00011472035631304607, val loss: 0.08034935497236438\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\r 93%|█████████▎| 14/15 [02:35<00:11, 11.17s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.997160017490387, val score: 0.9789000153541565\n", + "Train loss: 0.00010022144235204905, val loss: 0.07846681640818715\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 15/15 [02:47<00:00, 11.15s/it]" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train score: 0.9970800280570984, val score: 0.9790999889373779\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "def handle_history(loss_history, score_history):\n", + " sns.set(style=\"whitegrid\", font_scale=1.4)\n", + "\n", + " fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(18, 4))\n", + "\n", + " tr_loss = np.array(loss_history)[:, 0]\n", + " val_loss = np.array(loss_history)[:, 1]\n", + "\n", + " tr_score = np.array(score_history)[:, 0]\n", + " val_score = np.array(score_history)[:, 1]\n", + "\n", + " ax[0].plot(tr_loss, label='train')\n", + " ax[0].plot(val_loss, label='val')\n", + " ax[0].set_ylabel('Loss')\n", + " ax[0].set_xlabel('Epoch')\n", + " ax[0].legend()\n", + " ax[0].set_yscale('log')\n", + "\n", + "\n", + " ax[1].plot(tr_score, label='train')\n", + " ax[1].plot(val_score, label='val')\n", + " ax[1].set_ylabel('Score')\n", + " ax[1].set_xlabel('Epoch')\n", + " ax[1].legend()\n", + "\n", + " plt.show()" + ], + "metadata": { + "id": "08B03XNfTRXv" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "handle_history(loss_hist, score_hist)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 411 + }, + "id": "5z0_xhw-dg8D", + "outputId": "7aad0e06-c9e0-426a-a6f0-2adbb53da2c2" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABeMAAAGKCAYAAACPVVooAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADKxklEQVR4nOzdeXxU9b3/8deZLZPJvkBCEraEHSOgIKJFirjXFau1ti51q1Zv7b3W9npra21ta721v9tWa92ptlariFK0WgXBCiogyhrClkD2fc8ks53fH5MMhIQlZJIh4f18PPKYmfP9nnO+50uA5D3f+RzDNE0TERERERERERERERHpN5ZID0BEREREREREREREZKhTGC8iIiIiIiIiIiIi0s8UxouIiIiIiIiIiIiI9DOF8SIiIiIiIiIiIiIi/UxhvIiIiIiIiIiIiIhIP1MYLyIiIiIiIiIiIiLSzxTGi4iIiIiIiIiIiIj0M4XxIiIiIiIiIiIiIiL9TGG8iIiIiIiIiIiIiEg/s0V6ACIiIiIicmLbunUra9asYfPmzWzZsoWSkhIAli9fTlZW1jEdc82aNTzzzDNs2bIFj8dDdnY2V199NV/72tcwDKPHfZqbm/nTn/7Eu+++S3l5OQkJCcyZM4fvfve7jBw58pivT0REREQEwDBN04z0IERERERE5MT1ne98h+XLl3fbfqxh/Msvv8xPf/pTLBYLp59+OjExMaxevZqWlhYuv/xyfv3rX3fbp7Gxka9//evs2rWLzMxMTj75ZPbt28fWrVuJjY3lL3/5C5MnTz6m6xMRERERAa2MFxERERGRCJs+fToTJkzgpJNOIjc3l4ULF1JdXX1MxyoqKuKhhx7CZrPx/PPPM2vWLAAqKiq49tpreeONN5g7dy4XX3xxl/0efvhhdu3axfz58/n973+Pw+EA4Mknn+S3v/0t3//+91m6dClWq7VvFysiIiIiJyyF8cehzz//HNM0sdvtkR6KiIiIiISR1+vFMAxmzJgR6aEcV2677bawHevPf/4zXq+Xb3zjG6EgHiAtLY3vf//7fO973+OZZ57pEsbX1NTwxhtvYLPZ+NnPfhYK4jvHtmzZMnbs2MEHH3zAOeecc0zj0s/4IiIiIkNTb37G1w1cj0OmaTLQ1YNM08Tj8Qz4eYcazWP4aC7DQ/MYPprL8NA8hofmMXwGei4j8XPeiWbFihUAXHjhhd3aFixYQFRUFHl5eZSWloa2f/jhh/j9fk499VSGDx/eZR/DMDj//PMBeiylc7T0M/7gpXkMH81leGgew0PzGD6ay/DQPIZHJOaxNz/naWX8cahztUxubu6AnbO1tZW8vDzGjRuHy+UasPMONZrH8NFchofmMXw0l+GheQwPzWP4DPRcbt68ud/PcSJramoK3fx1ypQp3dodDgfjxo1j69atbN++nYyMDADy8vIAmDp1ao/H7dyen59/zGPTz/iDl+YxfDSX4aF5DA/NY/hoLsND8xgekZjH3vyMrzBeRERERESGhM4gPj4+npiYmB77pKens3Xr1i4r4zufp6enH3KfA49/rEzTpLW1tU/H6A23293lUY6N5jF8NJfhoXkMD81j+Gguw0PzGB6RmEfTNDEM46j6KowXEREREZEhoTPojo6OPmSfzhVSLS0t3fY71OqpnvY5Fl6vN7QKfyAVFhYO+DmHIs1j+Gguw0PzGB6ax/DRXIaH5jE8BnoeD7zn0OEojBcRERERERkAdrudcePGDdj53G43hYWFjBkz5rBvUMjhaR7DR3MZHprH8NA8ho/mMjw0j+ERiXnctWvXUfdVGC8iIiIiIkNC5wr2w30suXMV/IFlbDr3O1QJmZ72ORaGYUSkBmx0dLRqz4aB5jF8NJfhoXkMD81j+Gguw0PzGB4DOY9HW6IGwNKP4xARERERERkwmZmZADQ2Nh6ypEx5eTlA6OatBz7vbDvUPp3HFxERERE5FgrjRURERERkSIiLiwsF5tu2bevW7vF4Qh8jnjRpUmj75MmTAdi6dWuPx+3cPnHixLCOV0REREROLArjRURERERkyDj77LMB+Oc//9mtbfny5bS3tzN58uQuK+PPOussrFYrn332GZWVlV32MU2Td999F4AFCxb048hFREREZKhTGC8iIiIiIoNKRUUFF1xwARdccAEVFRVd2q6//nrsdjt///vfWbduXZd9fvOb3wBwyy23dNknJSWFyy+/HJ/Px09+8hM8Hk+o7emnn2bHjh3k5OQwf/78frwqERERERnqdANXERERERGJqJUrV/LHP/4x9LqhoQGAu+66C4fDAcC8efO48847AfB6vRQUFISeH2jUqFHcf//9/PSnP+WGG25gzpw5uFwu1qxZQ3NzM5dddhkXX3xxtzH893//Nxs3buSDDz7gggsuYNq0aezdu5etW7cSExPDo48+itVq7ZfrPxKv14vf7+/1fu3t7aFHi0XrsI7VQMyj1WrFbrf3y7FFRETk+KEwXkREREREIqq2tpaNGzd2256Xlxd6np2dfdTHu+aaaxg1ahRPP/00GzduxOv1kp2dzdVXX80111zT4z7x8fG88sorPPHEE7z77ru89957JCQkcMkll/Dd736XUaNG9f7C+qixsZHq6upQGNxbgUAAm81GaWmpwvg+GKh5jIqKIjU1lfj4+H47h4iIiESWwngREREREYmohQsXsnDhwqPun5WVRX5+/mH7nHHGGZxxxhm9GkdsbCz33nsv9957b6/26w+NjY2UlJQQGxtLamoqdrsdwzB6dQy/3097eztRUVERW9U/FPT3PJqmidfrpaGhgZKSEgAF8iIiIkOUwngBoGXDu8Rs+4TmplOwTjgVR/pYDIt+YBcRERERiYTq6mpiY2PJysrqdQjfqbO0jdPpVBjfBwMxj9HR0cTFxVFcXEx1dbXCeBEROS74AyblNS0UljWyr6yRwvJGqurcGAYYhoGl42cUi8XAMMBiGF3aDn7e2c/gwP4GhmX/vqFtBx3vUG3BY+7f5vN5aapvYvRYLy5XhCewBwrjBYC2/I9xVO2muWoXzav/jsUZS/SYk4geczLRY3OxJY045l8CRERERETk6Hm9Xtrb20lNTdXP4CcQwzBISEigpKQEr9erGvIiIjJgTNOktrGNwrJG9pY1sbe8kb3ljRSVN+HxBSI9vGMyYkQZC89OiPQwulEYLwAkXvaf7P3wTZLaa/AU5xFoa6Zl+ye0bP8EAFt8KtFjTyZ67Mk4R+dii02M7IBFRERERIaozpXYCmNPPJ1/5n6/X3/+IiLSL5rdXvaWBcP24GMTe8saaXZ7e+zvsFsZlRbL6BHxjE6PZ0RqDBbDIGCamKaJaYJpEnodMOnYbhII0H2bCRyw7eC24GPHcQMHtNPRFjAPOF/X/oGO0m8tTQ2cPjVtQOf1aCmMFwCsrgTaR88iafJkop1RtJfuwl24GXfBJtqK8/E1VtO0cQVNG1cA4Bg+qmPV/Mk4R03B4oiO8BWIiIiIiAwtWhV/4tGfuYiIhIvH66eoomOVe1kTheXBUjPVDW099rcYkDFsf+g+ZkQco9PjSUuJwWoZPP8/tba2kpeXR2JcVKSH0iOF8dKNYbHizJqIM2siSV/6KgFPG21FebgLN+Eu2IynogBP5T48lftoWLsMLFacmRNC4XxUxjgMq761RERERERERERE+lNnXfe9ZcGV7oUd4XtZdXNwFXoPUhOjGZ0ex5gR8YxKj2fMiHiyhsfisOseM/1NiakckcXhxJUzA1fODAD8LQ24927BXbAJd8EmfA2VtBXl0VaUR92/X8FwOIkeNTVY1mbMydiHjdQKDxERERERERERkWPUWdd9b1lTsLb7UdR1j422M3pEMGwfnR7H6I7wPTZapdAiRWG89Jo1JoHYKWcSO+VMALx15cFgvnAT7sItBNxNtO76jNZdn3X0T+wI5nOJHnsytvjUSA5fRERERERERETkuNVZ131feWNH8H6Euu42C6PS40Kr3EenxzN6RBzJ8U4tkD3OKIyXPrMnpWNPSif+lPMwzQCeisJQON+2Lw9/Sz3NWz6kecuHwf7JGaFV887RU7FGx0b4CkRERERERA7tgQce4B//+AcvvPACs2fPjvRwRERkCPD6/FTUtlJe00p5TQvFFQ3kF1RTt+xDahrbe9zHYsCI1Nhg4N6x2n3MiMFX1/1EpjBewsowLESlZxOVnk3inMsxfV7aSvJDJW3ay3bjrS3FW1tK42fvQEf/6LEd9eazJmKxOSJ9GSIiIiIicpyaOHEimZmZrFixItJDEREROSTTNGlq9VJe09LxFQzdyzqe1zS4MQ9R0x0gNcEZuplqZ/A+Mi1Odd0HOYXx0q8Mm53o0ScRPfok+PK1+NtaaNu7BXfhZtwFm/DWlNBetov2sl3Ur3kdw+bAOXJS6GawjrQxGBb9IyMiIiIiIpFz11138e1vf5usrKxID0VERI4jfn+Aqnp3l7C9vKaVspoWKmpaaGnzHXZ/p8NKekoMackuUhMc4G3ktGnjmDBmuOq6D1EK42VAWZ0xxEycTczE4Ec7fY01HbXmg+G8v7kutIqeD8ASHRsM8zvCeVtSumpdiYiIiIjIgBo2bBhOpxOrVQuFRERONK1t3gOC9gPD9lYq61rxBw6zvB1Ijo8iPSXmgC8XI1JiSEtxkRgbFcq5WltbycvLY9LoJFwK4ocshfESUbb4FOJOnk/cyfMxTRNvdXEwnC/YhHvvVgLuZlq2f0LL9k8AsMYl40jNwp6cgT15ROjLljAcw6pvZxERERGRoer111/nvvvuA6CkpISJEyeG2jrL1vz3f/83S5Ys4YUXXsDv9/PMM8+wZcsWGhoaeOONN5g8eTLbtm3jrbfe4pNPPqGsrIzGxkaSk5OZNWsWt912W5fjdjpUzfjrrruOtWvXsnz5cnbv3s2TTz5JXl4ehmEwY8YMvve975Gbm9v/kyMiIscsEDCpbWzrMWwvq2mhscVz2P3tNgtpya5Q0J6eEhMK29OSXTgdyqtkP303yHHDMAwcw0biGDaShFlfwQz4aS/dtf9msMU78DfV4m6qDa6cP5DFij1xOLakEdhTMrAnjcCe0hHUx6diGJbIXJSIiIiIiITFqFGjuOKKK1iyZAkul4vzzz8/1JaUlNSl71tvvcXf//53Jk2axNy5cykrKwutPPzTn/7E+++/z4QJEzj55JNxOBwUFBSwbNky3n//fZ555hlmzZrVq7G98sorPP3000yfPp0vf/nL7Nixg48++ojPPvuMxYsXk5OT0/cJEBGRY+Zu91FV19qtbnt5TQsVta14fYHD7h8f4wgF7CMOCN3TU2JIjndi0c1T5SgpjJfjlmGx4syaiDNrIklzryLgacNTUYC3tqzjJrBloS/T5wk9d+/e0PU4Nge2pLT9q+k7g/qkDKyxiSp7IyIiIiKDimmatHv8R+znD/hp8/jB4sNqOfxH6PtTlMMalp+5Z86cycyZM1myZAlJSUk8/PDDh+z7yiuv8Ktf/YqFCxd2a/v617/O/fffz/Dhw7tsX7FiBd/97nf5yU9+wttvv92rMS9atIjnn3+eOXPmAME/o5/+9Ke8/PLLPPPMM/zqV7866mOJiMiRmaZJa5uP+uZ26ps6v9qoO/B18/7HI/2/abUYDE9y9Ri2p6e4cDlVNkbCQ2G8DBoWhxPnyMk4R07ust00A/ib6g4I6A8I6usqgkF9VRHeqqJuxzQczo5wvmM1ffL+51ZX3EBdmoiIiIjIUTFNkx8+9hF5hbWRHspRmzwmmV/f9aUBXQTzpS99qccgHggF5gc7++yzOf/881m2bBm7du1i/PjxR32+6667rstxDcPg7rvv5uWXX+bTTz/t3eBFRE5QpmnS7PYeEK63U9fc1mO4Xt/UfsTV7AdzOW2hEjL7w/bg47DEaKxWVVWQ/qcwXgY9w7Bgi0/BFp9C9Jiu9RjNgB9fQ9UBq+j3B/W+hirMjtX2noqCbse1RMd2DeoPCOwtUdEDdXkiIiIiItJL55xzzmHbm5qa+OCDD9i+fTuNjY34fD4Adu7cCUBhYWGvwvh58+Z125acnExiYiKVlZW9GLmIyNASCJg0tXoOCNf3r2I/OFxvaG7H5+/dJ7mio2wkxkWRGBsVfIyLIumA54mxztDz6CjFoBJ5+i6UIc2wWLEnpWNPSoecGV3aTJ8Xb31Fl3I3nWG9v6mGgLuZdvdO2kt3djuuNSax4+axGV0eTWf8QF2aiIiIiJyADMPg13d96ejL1LS143RGYbVYB2B0PQtXmZreyMjIOGTbe++9x//8z//Q2Nh4yD7Nzc1hOV9MTAz19fW9OpaIyPGuzeOjsdlDQ0s7Dc0eqmqb2Lmnic/27qC5zd81YG/xEAj0LmCPibYfJlzvfB4M2aPskfv/TeRYKIyXE5Zhs+NIzcKRmtWtLeBtPyikDwb1vroy/C0N+Fvq8bfU01aUd/BRiXfGU797It4xU3FmTcKRPhYjgr/8iIiIiMjQYhgGzqNY3ef3GxDw4XTYsFpPrJ9HnU5nj9vLysq45557CAQC/OAHP2D+/Pmkp6cTHR2NYRj89re/5cknn8Q0excc6T5UIjJYmaaJu91HY4uHhuZgeN7YHAzZGzq2NbZ4qG9uD25v8RzmDeGGQ54nzuUIBusHrWJP7LaK3YHddmL9nyUnFoXxIj2w2KOIShtDVNqYbm2BtpaOevRleGs6H0vx1pURaGvB2tZA2861tO1cC4BhdxKVOb7jZrSTcGZOwOKMGeArEhERERGRlStX0t7ezk033cTNN9/crX3v3r0RGJWISPiYpklLm++AQD1Y/qXzeWPzQaF7i6fXtdcBbFYLCbEOEmKiiI22YvrbGJWRyrCk2G5Be0JsFDbVYxcBFMaL9JrFGUNUxjiiMsZ12W6aJi01FezesIYRDg/+8t20l+QTaGuhrXAzbYWbO3oaOIaPwpk1iaiRk3BmTcKWMEyraUREREREjoLdbg/VeO+thobgqs309PRubbW1taxZs6ZPYxMRCbfOmuvdVq53rlo/oFxMY0twFXtv664DOOzWjnDdQXxsMEiPj3GQEBtFQsdjfEf4nhDrIDrKFsoxWltbycvLY/LkibhcrnBPgciQojBeJEwMw8DiiseXMprYyZNxuVyYZgBvdTFtRdtpK86nrXg7vrpyPJV78VTuhQ3vAmCNTcY5clLwK2sSjrQxKm0jIiIiItKD4cOHU1FRQUNDAwkJCb3aNzs7G4A33niDK6+8ktjYWCBYI/5IdeRFRPqb3x9gX0UTu4rq2Vlcz86iegpLG/H5e79yPTrKFlq5fmCIHt/xmHBQ2H405c9EpO/0N02kHxmGBcewUTiGjSL+lPMA8DXX0Va8nfaOgL69fA/+5lpa8tbQkhdciaPSNiIiIiIiPVuwYAEvvPACV1xxBTNmzMDpdJKUlMT3v//9I+47f/58Jk2axLZt2zjnnHOYOXMmpmmyfv16rFYrCxcu5PXXXx+AqxCRE50/YFJa1czOonp2FtWxq6iePaWNeLw912OPibbvX6HeGaIfGK4fFLo7dGNTkeOSwniRAWaLTSJ20hxiJ80BgjeLbS/dRVvxdtqKth9daZuRk7DFq7SNiIiIiJx4/uu//guA5cuX88477+Dz+cjMzDyqMN5ut/PXv/6VP/zhD3zwwQesWrWKpKQkFixYwN13383f//73/h6+iJyATNOkrKYluOK942tPST3u9u7Bu8tpY1xWIuNHJjJuZCI5mYkMS4pWzXWRIUJhfB/t3buXZ599ls8//5xdu3Yxc+ZMXnzxxUgPSwYRiz2K6NFTiR49FSBY2qaqOBjOdwT0vvqK7qVt4pKDq+ZV2kZERERETiDR0dH86Ec/4kc/+lG3tocffpiHH374sPvHxsZy3333cd9993Vr+4//+A/+4z/+o9v2Bx98kF//+tdYrV1/3j7S734rVqw4bLuIDD2maVJV5w6WmdlXx67ienYVN9Di9nbrG+WwkpOZwPiRSYwbGQzgR6TEYLFo4Z3IUKUwvo927tzJqlWrmDZt2jHfREjkQIZhwTF8FI7hB5S2aaqjreSg0jZNRyhtkzURS5RunCIiIiIiIiLSX2oa3PtXvBfXs6uonsYWT7d+dpuF7IyE0Ir3cSMTyRoeh1XBu8gJRWF8H5199tmcc845AHz3u9+lrq4uwiOSocgWd4jSNkV5wfrzJTsOUdpmdGjlfNTIiSptIyIiIiIiInKM6pva2dVxY9VdRfXsKq6jtrG9Wz+rxWBMRnxwxXtHyZlR6XEqNSMiCuP7ymLRP6Qy8I6+tE0hnspCGj97B+ha2saROhJbUjq2+BSVtxERERERERE5QHOrJxS87yyqZ1dxPVV17m79LAaMSo/fv+I9K5ExI+J1A1UR6dGgCeO3bt3KmjVr2Lx5M1u2bKGkpAQI3rQnKyvrkPt5PB6ef/55li5dSlFRES6Xi5kzZ3LHHXcwderUgRq+SL861tI2AFhs2BOHYUtMx56Uhi0pDXtiOvakdGxJaVjsURG6KhEREREREZH+19rmZXdxQyh031VUT1lNS7d+hgGZw2JDwfv4rCTGZsbjdAyaeE1EImzQ/Gvx+OOPs3z58l7t4/F4uPnmm1m7di0pKSnMnz+fqqoq3nvvPVauXMkTTzzB3Llz+2nEIpHVc2mbnbQVBcvaeOvK8NZXgt+Ht7YMb20Z3d/jB2tsUjCYT0zrCOuDQb09MQ2LK15lb0RERERERGRQaWhuZ83GUj7aUEv1v9ZQVtOCaXbvNyIlpkuN95zMBFxO+8APWESGjEETxk+fPp0JEyZw0kknkZuby8KFC6murj7sPk8//TRr164lNzeXRYsWERsbC8CyZcu45557uPfee3n//fdD2wGampqorKw84nhycnL6dkEiAyxY2uYkokefFNpmBvz4m2rx1pXjravAVx987HweaGvB31yHv7kOivK6HdNwRHcE9cODAX3Hanp7Ujq2+FSVvxEREREREZGIM02TfeVNrN1WzrptFWzfW9stfB+WFB0M3jtqvOdkJRLnckRmwCIyZA2aMP62227rVX+fz8cLL7wAwAMPPNAlcL/44otZunQpq1atYvHixdxwww2htnfeeYf777//iMfPz8/v1XhEjkeGxYotYRi2hGFEj8nt1u53NwWD+bpyvHXl+OorOsL6cvxNNZgeN56KAjwVBd0P3nHszlX0wRX1aaFV9haHcwCuUERERERERE5EXp+fzbtrWLetnLXbKqisbe3SPiY9jpEpcOYp45iak0ZinEq0ikj/GzRhfG9t2LCB+vp6srKyyM3tHjJedNFFrFq1iuXLl3cJ46+66iquuuqqgRyqyHHLGh2HNToOMsZ1awv4PPjqK4MhfV053voKfB1Bva++EtPvxdfR1mP5m5jE/QF94v4V9fakdCyu+P6/uIOYpglmAEwTTBPTDIReh9oCgY7nnX0DGA4nFmesyvWIiIiIiIhEWH1TO+vzKliXV87n+ZW42/2hNrvNwrTxwzhtShqzpqTjcpjk5eUxeUIqLpeCeBEZGEM2jM/LC5bUONRNWqdMmQIcvyvcTdOktbX1yB3DxO12d3mUY3PCzaMrGcOVjD1zCgdWzTPNAIHmOnz1lfgbKvA3VOGvr8DXUIm/vhKzvQV/Sz3+lnrai7d3O6xhd2LEpxLnh6rPHVgMoyMc7xqE7w/Ge9oWCD0eHLT3uI0eCgQeJcPuxBqXgiU+BWtcKtb4FKxxKVjjU7HGp2KJSYxYyZ4T7nuyH2kuw0PzGB6ax/AZ6Lk0TVNv4IqIiISJaZrsLW9i7dZy1m4rZ8e+ui7lZ5Liopg1JZ3TpqQxbfwwnFH7Y7CBzFxERDoN2TC+tLQUgPT09B7bO7fX19fT0tJCTEzMMZ3H7XazatUqACoqKmhubuadd94BYN68eURHRx/Tcb1eb+gNhYFUWFg44OccijSPB7CmQXIaJO+vVW943Vha67G01mFtrcfirgs9N9oawduGWVOMDfB3fB0vTADDAAwwDIyAH9Pbhq+2BGpLet7HMAhExROIjicQnUDA2fmYENqGtX9vAqTvyfDRXIaH5jE8NI/hM5Bz6XCo/qyIiMix8vr8bN5V01H/vZzKuq5vqOdkJXDalHRmTUkjJzMRi0VvgovI8WPIhvGd73AeKgx3uVyh530J42tqarj77ru7bOt8vXz5crKyso7puHa7nXHjupcG6S9ut5vCwkLGjBlzzG8giOYxHEyfB39jNa2VxVSWlTA8LQ1HlBMMS3AlYejLctA2SzAc79jOAX27b+vcz3LQ6/3HDe7XtU9o28HjbarB31iNv7Fm//OmagKNNfibazECfqxtDVjbGqCuqMfrNqLjDlpV37nKPhVrXApGdNwxraTU92T4aC7DQ/MYHprH8Bnoudy1a1e/n0NERGSoqWtqY/22CtblVfB5fiVtnv1Lthw2C9MmDAsF8CkJ+tlIRI5fQzaMHyhZWVn9UurGMIwubxgMlOjo6Iicd6jRPPaFC+ITsSVnUGLmET958nE+l8HxkpnTY6sZ8ONvrsfXWIWvoQpfQzW+hiq8DVX4GoPPTY8b092Ez92Er7KHm+EChj0KW3wqtoRUbPHDOm68mxp8jB+GLS4Zw3rof9L1PRk+msvw0DyGh+YxfAZqLlWiRkRE5MhM06SwrJG1W8tZt62CHUVdy88kxzuZNSWN06amc/K4VJwOxVsiMjgM2X+tOn+ZOlT9zwNrgx3rqngRkSMxLFZs8SnY4lMga1K3dtM0CbS1hIJ5X0NVt+De31KP6W3HW1OCt6bnUjgYFqxxydjiU7F3BvXxw/A747E21OCtcNLudNLlJ1gOqpTfpe0wNfTNg9vMHp8evME8zPENw4Jhd2KJisbiiMaIisaw2hVaiYiIiIicIDxeP5t2VXeUn6mgur5rnjNuZCKnTU5j1tR0cjIT9LuCiAxKQzaMz8jIAKC8vLzH9s7tiYmJCuNFJGIMw8AaHYs1OpaotDE99gn4PPgbazqC+urgqvoDVtb7GqvB7+solVPd7aa48UDNx/1/LWFnsWJxRGNxODGiorE4XFiinMGw3hEM7UPhvSM61GaJcnW0H/g6KliuSEREREREjht1jW2sy6tg7dZyvthZRfuB5WfsVmZMGMasKWnMnKzyMyIyNAzZMH7y5MkAbN26tcf2bdu2ATBx4sQBG5OIyLGw2BxYkkdgTx7RY7tpBvA3Nxywon5/WO+pq8DTVI/NfsAq8wNWkHRZS9JlZclBq0yMQ7w4xGoU41DH6ta9Y4MZIOBpI9DuxvS2BbcF/ATamgm0Nfd4jt4yOsP5jhDf6PLciSXKtT/8PyDo73z0+cFoD44nYLNg2OwYFmtYxjbYmKaJ6fdiej2Y3nZMXzuBzufedgK+A557PZi+9mBfXzue1haia2tprPwcd1THmyRWG4bFGpxPixXDagUj+BjcZsGw2IJtnf2sB/Q/4PHAtp7aQ/t13itCRETkIJ9++inXX389V1xxBQ8//HCkhyMypJimyZ6ShlAAv7Oovkt7SoIzVPv95PHDiLKfmD9vi8jQNWTD+FNOOYXExESKi4vZvHkzubm5XdrffvttABYsWBCJ4YmIhI1hWLDFJWGLS4LMCV3aWltbycvLY/JxX3t/PzPgD4a47W4CHncwoPd0PD/wdbs7GOB73ATaWzE7nx/UBzMQPK6nDb+nDT91xzy2RKDygwM2GBYMqy0YzFvtoedYO17bbB3bD3h+UN/Odqy2nvuH9unav7OdA9utttD8mV4PgY5AvDMMD3jbMTuC8m7PO8L0wAHBeddjeLr0O2wpoyNwAq37jnn38Dk4yD/gTYDgNkvw0Tjo9UHPg28WWLu+7mGfg/t1aTMObLN0ffPA6L6/x+PFWleMp8yOxek8zEUe/MaacbjWHt5g6+ENi0O9qXaoc3S+2WK1gcW2/02Wju9ZvTEiIiIytLV7/WzaWcXabRWs21ZOTUNbl/bxIxM5bWo6syanka3yMyIyxA3ZMN5ms3H99dfz+9//ngcffJBFixYRGxsLwLJly1i1ahVJSUlceeWVER6piIgcyLBYMaJcWKL6/uaBaZrBwNnTRqC9NRTWm+1tBDytXQL9/QH/gW8AHLBfuxvT7+0aO5qB4PF9nj6PddAyLMFPFtgcGPYoDLsDiy0q9NywObDYO19H4TcNqmtqSE1Owma1YPr9EPAH30QI7H9OwI/p72Fbx/bgcx8EAofcN/S64w2Zbjrb6ctbC5ETD9R+GulRhInVhtER1NMR3Idedz7vfHOi43Won9UafN0l9LeG3gToDP0P1eY1LRCwR3oGREREhgx/wKSsupmte2pYu7WCL3ZW4fHuLz8T5bAyffwwTpuazszJaSTHH25hgYjI0DJowviVK1fyxz/+MfS6oaEBgLvuuguHwwHAvHnzuPPOO0N9br31Vj755BPWrl3Leeedx6xZs6iurmb9+vXY7XYeeeSRUEAvIiJDj2EYGPYosEdhjUno07FaW1vJ27aNSRMnEB1lx/T5gqVa/F5MnxfT78P0eSHg63jt7blP6Pn+fTr74j+gz4H799Tf74OO5z2y2oIheEdIbrE7MGydAXnUAQG544AgPeqAfTr26wzWQ6G6o2s/a+9+lGhtbaU4L4+4Afy0hmkGQqF9zyG/DzMQ6N5m+rvu19kn4O/hTYAAmF3bDu578DG67tPz8bttN4OvAz4fnvY2HA7HAavHDnpL4TA3VO6YmCN07+ktit6fwwz49r854vf1/OaI3xf8/j7Et3N/c46bC1Nzj9xRREREumht87K3rIk9pQ0UdHwVljV1Cd8BUhOjmTUljdOmpHPyuFQcKj8jIieoQRPG19bWsnHjxm7b8/LyQs+zs7O7tDkcDp599lmee+45li5dyooVK3C5XCxYsIA777yTqVOn9vu4RURkCDEMDKsNiyMaHJEeTJBpmh1vAATDTMNqCwbmJ2g9+54E69Jbev3GwfFsMJag6mSaAfAHg/muQb03+IbDAW2dAX7wdUdbIPi6W9sBr0PPA74Djuc/6HWwn9+ExmHjIj0tInIU8vPzufTSSxkzZgzvvvtuj322bt3KwoULGT9+PMuWLaOhoYF//OMfrFy5kj179lBVVUVUVBTjx4/nqquuYuHChQN8FSKDk2maVNW7KSxt3B+8lzRSVtPSY3+H3UpOZgKnThrOaVPTGTMiXuVnREQYRGH8woULj+kHJYfDwe23387tt9/eD6MSERGJLMMwQjXqRQYDw7BAx02Qjwetra1UHLC4Q0SOXxMnTmTSpEls376dTZs2cfLJJ3fr8+abbwJw6aWXArBhwwZ+/vOfM2LECEaPHs306dOprq7m888/Z8OGDWzevJkHHnhgQK9D5Hjn9fnZV97UsdK9seOrgWZ3zx9hS453kp2ZwNiMeMZmBB9HpMZitSh8FxE52KAJ40VERERERKTjnije9iP2C/g7bopuIXgPhggx7FFhWxF72WWXsX37dt58881uYbzf7+ett97CYrFw2WWXAZCTk8Pf/vY3TjnllC59q6qquPXWW3nppZe47LLLmD59eljGJzLYNDS3U1DawJ6SRgrKGigsbaSoogl/oHu5OqvFYGRaXJfQfWxGAgmxUREYuYjI4KQwXkREREREZJAwTZPSF35Ee3F+pIdy1KKyJpFx/UNhCeQvueQSfvOb3/DWW2/x3//939jt+z9l89FHH1FdXc2cOXNIS0sDYNSoUYwaNarbcYYNG8a9997LTTfdxLvvvqswXoY8f8CktKq5a5mZ0kZqG9t67B8bbQ8G7pnxjB0RDN5Hpcdht6kUoohIXyiMFxERERERGVRO3NIPw4YNY86cOXz00Uf8+9//5uyzzw61LV26FIDLL7+8yz6mabJu3TrWr19PZWUl7e3tmKZJS0uw1nVhYeFADV9kQLS2eSks219e5lA3Ve00IjWGsRnxZGckMDYjgTEZ8QxLjFaNdxGRfqAwXkREREREZJAwDIOM6x86qjI1fr+f9vZ2oqKisA6RMjUQLFXz0Ucf8eabb4bC+ObmZt5//31cLhfnnXdeqG9VVRV33nknGzduPOTxmpubwzY2kYFkmiaVda0UlDRQUNbInpJgmZnD3VR17Ih4xnSUl8nOSGD0iDhczuPjPi4iIicChfEiIiIiIiKDiGEYGA7nEfuZfj9GACwOJ5YIhvHhdu655+Jyufjggw9oamoiLi6Of/3rX7S1tXHppZficrlCfe+//342btzI2WefzS233EJOTg5xcXFYrVYKCgq44IILInglIr3X2ubljQ8LWLOxkurXy2lp8/XYTzdVFRE5PimMFxERERERkUEjOjqa888/nyVLlvDOO+9w1VVX8eabbwJdS9S0trby4YcfkpKSwmOPPdbt0wH79u0byGGL9Elrm5dlHxXwxqpdNLV6Q9t1U1URkcFFYbyIiIiIiIgMKpdddhlLlixh6dKlnHXWWaxdu5a0tDTmzJkT6tPU1EQgEGD48OE9lunprDEvcjxrbfPy1uoClqzcH8JnpLqYMdbB3JkTmTBmmG6qKiIyiCiMFxERERERkUFl9uzZpKens27dOv70pz8RCAS4+OKLsVgsoT6pqanEx8ezY8cOPv30U2bPnh1qW7x4MW+99VYkhi5yVNztPt5aXcDrH+yiqdUDQOawGK45dyIzJyaTn7+dsRnxCuJFRAYZhfEiIiIiIiIyqFgsFi655BKefvppXnrpJaBriRoAq9XKt7/9bf73f/+XG2+8kVmzZjFs2DB27NjBjh07uO2223jqqaciMHqRQ2tr9/H2mgIWf7CLxpZgCD8iNRjCz5uRidVqobW1NcKjFBGRY6UwXkRERERERAadyy67jKeffhqAKVOmMGHChG59brnlFjIyMnjuuefYsmULFouFyZMn89RTT5GTk6MwXo4bbR4fb68u5PWVO2lo7gjhU2K45rwJzJuRhdVqOcIRRERkMFAYLyIiIiIiIoPO+PHjyc/PP2K/iy66iIsuuqjHtp72nz179lEdVyQc2jw+3vm4kMUrdlHf3A5AeoqLr50zkfmnKoQXERlqFMaLiIiIiIiIiAygdq+fdz4u5LUVO6lvCobwackuvnbOBObPHIlNIbyIyJCkMF5EREREREREZAC0e/282xHC13WE8MM7QvizFcKLiAx5CuNFRERERERERPqRx+vn3U/28tqKHdQ2BkP4YUnRHSH8KOw2hfAiIicChfEiIiIiIiIiIv3A6/Pzr0/28uqKndQ0tAHBEP7qBRNYMEshvIjIiUZhvIiIiIiIiIhIGHl9ft5bu49X399BdUcIn5rg5OpzJnDOaaOw26wRHqGIiESCwngREREREYk4j8fD888/z9KlSykqKsLlcjFz5kzuuOMOpk6d2qtjNTc388wzz/Duu+9SXFxMdHQ0U6dO5cYbb2TevHmH3G/Tpk0899xzfPbZZ9TW1hIVFUVOTg5f+cpXuPbaa3E4HH29TBEZ4ry+AO+v3cvfl++kut4NQEqCk6sWTOC82QrhRUROdArjRUREREQkojweDzfffDNr164lJSWF+fPnU1VVxXvvvcfKlSt54oknmDt37lEdq6amhm984xsUFBSQlJTEmWeeSXNzM+vXr2fNmjV8//vf59Zbb+2239tvv80999xDIBBg4sSJnHrqqTQ2NrJu3To2bdrEe++9x6JFi7Db7eG+/EMyTXPAziXHB/2ZD15eX4Dl6/bx9+U7qKoLhvDJ8U6uWjCe82aPxmFXCC8iIgrjRUREREQkwp5++mnWrl1Lbm4uixYtIjY2FoBly5Zxzz33cO+99/L++++Hth/OT37yEwoKCpgzZw5/+MMfiIuLA2Dbtm3cfPPNPProo8yZM4eTTjoptI/H4+HBBx8kEAjw0EMPcdVVV4XaysrKuPbaa1m/fj2LFy/mmmuuCfPVd2exBGtI+/3+fj+XHF86/8w7vwfk+OfzB1i+roi/v59PZSiEj+KrZ0/g/NMVwouISFf6H15ERERERCLG5/PxwgsvAPDAAw90Cdwvvvhi5s2bR11dHYsXLz7iscrLy3n//fexWq38/Oc/DwXxAFOmTOHOO+/ENE2eeuqpLvvt2LGD+vp6MjMzuwTxACNGjAgF8Bs3bjzm6+wNu92O1WrF7XYPyPnk+OF2u7FarQP6CQw5Nj5/gH99updvP7ycx179gso6N0lxUdx62Uk89T/ncsncbAXxIiLSjVbGi4iIiIhIxGzYsIH6+nqysrLIzc3t1n7RRRexatUqli9fzg033HDYY23ZsgWArKwsRo4c2a19zpw5AHz44Yd4PJ5QDfijrQWflJR0VP36yjAMXC4XDQ0NJCcnY7Uq0DsR+P1+GhoacLlcGIYR6eHIIfj9AT74rIhX3t9BeU0rAIlxUVw5fzwXnjGGKAXwIiJyGArjRUREREQkYvLy8gAOeZPWKVOmAJCfn3/EY3WuJE9ISOixPTExMdSvsLCQCRMmADB27FgyMzMpKSnh1Vdf7Vam5uWXX8Zms3HFFVcc3UWFwfDhwyksLGTv3r0kJycTFRXV64DW7/fT3t4OoEC/D/p7Hk3TpL29ndraWgKBAMOHDw/7OaTv/P4AKzcU88p7OyiraQEgMTaKK88exwVzxuB0KF4REZEj0/8WIiIiIiISMaWlpQCkp6f32N65vb6+npaWFmJiYg55rOTkZABKSkp6bC8uLg49LykpCYXxdrudRx55hO985zvcf//9vPjii2RnZ4du4Jqens6TTz7J+PHje3+BBzBNk9bW1qPun5qaSl1d3SGv52jO5/f7sVqtWmndBwM1j06nk9TUVHw+Hz6fr9/OE0mdb5gNphJMfn+AjzaV8/rKPZTXBscdH2Pn0i+N4dzTRuJ0WAn4PLT6PAM2psE4j8cjzWP4aC7DQ/MYHpGYR9M0j/pnBIXxIiIiIiISMZ3hdHR0dI/tLpcr9PxIYfy0adNwOp3U1NSwYsUKzj777C7tr7zySpdjHWjmzJn89a9/5a677iI/Pz+0Et9isTBz5swey970ltfrDX0SYCAN1WB3oPX3PLa1tVFfX9+v5zheFBYWRnoIRxQImGze28qqLU3UNgX/7F1RFs6cHMesCTE4bG4Kdu+I6BgHwzwOBprH8NFchofmMTwGeh6PtuyhwngRERERERkSYmNjue6663j66ae57777+PGPf8yXvvQlWlpaeOWVV3j99dex2+14vV4sFkuXfd966y3uu+8+pkyZwi9+8QsmTZpEQ0MDb731Fn/4wx9Yvnw5f/7zn5k8efIxj89utzNu3Li+XuZR6yzHM2bMmEO+2SFHpnkMn8Ewl4GAyZrN5SxeuYfS6uCbhXEuO5ecOZrzZ4/EGRX5GGUwzONgoHkMH81leGgewyMS87hr166j7hv5/0VEREREROSE1bny/VAfJT6wrMvhVsV3uvvuu6murmbJkiXcc889Xdq++c1vsnHjRjZv3kx8fHxoe2FhIT/84Q9JTEzkmWeeITY2FgiG+7fddhsAjz76KL/4xS/4y1/+0rsLPEDnjVkHWnR0dETOO9RoHsPneJlL0zSpqndTUNLAntJG9pTUs7OonpqGNiAYwl/x5XF85cyxuJz2CI+2u+NlHgc7zWP4aC7DQ/PYlWmaYAYwA37w+zEDPky/HwL+4LaO18HnfqytLVibKnE6Jw3YPPamjJ3CeBERERERiZiMjAwAysvLe2zv3J6YmHhUYbzdbufhhx/mG9/4BitXrqSyspKkpCTmz5/PjBkzmDt3LkCX+u9vvfUWXq+XefPmhYL4A1188cU8+uijfPbZZ3g8nqP+GLKIHD/8/gDFlc3sKW1gT0nwq6C0gaZWb7e+sdHBEP7iLx2fIbyIyEAKeNz4Gms6vqoJtDZg+n2h8NvsCMjpCMT3b+/ah4Bvf3uo70H7+X0HHSO4X2/FA+4Yg5hZF4R/QvpIYbyIiIiIiERMZ9mXrVu39ti+bds2ACZOnNir4+bm5pKbm9tlW3FxMZWVlWRnZ5OWlhbaXlFRAUBcXFyPx+pcRR8IBGhsbCQ1NbVXYxGRgeVu91FY2rg/eC9tYG9ZI15foFtfq8VgZFoc2ZkJwa+MBMaPTDwuytGIiPS3gLcdX2MN/sZqfI3V+Jpqg4+N1fibggF8oK3lyAeKBIsNw2IBqw3DYsWwWMFqAwzasWIfNirSI+yR/ncREREREZGIOeWUU0hMTKS4uJjNmzd3C9DffvttABYsWNDncy1atAiAa665psv2YcOGAbBp06Ye99u4cSMQLKmTlJTU53GISPjUNbZ1W+1eWt2CaXbvGx1lY2xGfCh0H5uZwOj0OOw268APXESknwV8HvyNNfiaajoC9prg647nvqZqAu7mozqWJcqFNT4FW1wq1thEjI4AvEsQbrEesN2K0RmWW2wYHa+xWjGMzvZgfzr2P/B4wWN17BN6vv8cGJZDloZpbW0lLy+PrOFjwjib4aMwXkREREREIsZms3H99dfz+9//ngcffJBFixaFSsUsW7aMVatWkZSUxJVXXhnaZ9OmTfzgBz8A4J133ulyvJKSEhwORyhgh+CK9hdeeIG//OUvTJo0iWuvvbbLPueeey6PP/44n332GYsWLeKGG24I/YJXXFzML37xCwDOP/98rFaFdiKREAiYlNW0hAL33SUNFJQ0UNfU3mP/5Hhnl9XuYzPjSU+OwWI5+rq+IiLHK9PvDa1i9zfuX83uOyB8D7Q2HtWxDIcTW3wqtrgUbPEpWONTscWndLwOPrdEqYZ9uCiMFxERERGRiLr11lv55JNPWLt2Leeddx6zZs2iurqa9evXY7fbeeSRR7rUcne73RQUFPR4rE8//ZT777+fKVOmkJGRgWmabNq0ifLycsaNG8dTTz2F3d61BvSkSZO44447+OMf/8ivfvUr/va3vzFx4kTq6+vZuHEjbW1tjBkzhnvvvbdf50FEgjxeP3vLG9lTErypakFpIwWlDbR5/N36GgZkDoslOyMYvI/tCN8T46IiMHIRkb4z/T58DVWhGu3B8jE1B5STqcHfUn9UxzJsjlCg3rmy3RafcsC2VCxRrl7dgFT6RmG8iIiIiIhElMPh4Nlnn+W5555j6dKlrFixApfLxYIFC7jzzjuZOnXqUR9r6tSpXHjhhXzxxRfs3LkTq9XKmDFjuP7667nuuusOefPVu+++m1NOOYWXXnqJzZs3s3z5chwOB2PHjuWcc87hxhtv7PHmriLSN02tnm6r3YsqmwkEuteZcdgsjMmIZ2xGAjkdwfuY9HjVd5chKeBx0162B0/VPuwJw4nKHI/VFR/pYUkvmH4vgbZW/G3NBNpaCLibCbS34He3EOjc1tYSave1NpHQWEPFuy30WGvrIIbVHgzYO8P1Livbg68t0bEK2o8z+h9LREREREQizuFwcPvtt3P77bcfse/s2bPJz8/vsW3ixIk8+uijxzSGuXPnMnfu3GPaV0SOrLaxjbwiN1vKdlNU2cqe0gaq6tw99o1zOcjJPHC1ezyZw2KxWi0DPGqR/mcG/HirS2gr3UF7yU7aS3fiqSoCs+tNh22JaURljseZMZ6ozAlEpY3FsNkPcVTpK9M0MX2eYIje1tIRpHeG6M1dg/aOR/8Bz01vz2W0Dif0L5zFhi0uORS0W7uUjekoHeOKV9A+CCmMFxEREREREZF+0+bx8dK7+byxalfHYs+aLu3pKa4uq91zMhNIjncqZJIhy9dc1xG676CtZCftZbsxPd3fmLLGpeAYPhpffQXemhJ89RX46ito2fpRsIPFRlT6WKIyxodCeltSuv7uHMQ0TQKtjfiaag8KzXteoX5gH/y+Pp/fEuXC4ozB4ozteIzB2u11LF7Dxt6KanJyTyU2NR3D0JuPQ5HCeBERERERERHpF5t3V/OHv39BWXULAGmJdiaNHcaE0cnBG6tmJBATrZW9MnQFvO14yvcEQ/eOle++xupu/Qy7k6iMHKIyxuPMmEBU5nhsccmhdn9bC+2lu2gv3Ul7yQ7aSncSaG0Mvi7dCeuD/SzRcURljAsdIypjHNbouIG63IgyA358DVV4q0vw1BTjrS7GU1OCt7qEQFvzsR/YsHQJzS3RMViigmG6NbojVI9yYYmO3d+no78lyoVhObqbv7e2tuJvy8Mak6ggfghTGC8iIiIiIiIiYdXa5mXRW9v455pCAFISnNxyySSiA9VMnjwZl8sV2QGK9APTDOCtKQ2F5e0lO/FU7u1WbgYM7MNGhsrNODPHY0/NOmxoa3XG4Mqehit7Wse5THz1FbSX7uwI+nfiKS8g4G7Cvftz3Ls/D+1rTx4RXD0fKm8zGsM6eN8EC3jb8daW4a0pwVMdDN29NSV4a8swfZ5D7GVgjUkIBeaWqBis0QeE5l1C9Nguq9cNhz6pI+GjMF5EREREREREwuaz7RU89upGquuDZTfOP30037p4KobpJS+v+4pgkcHK39LQEbrv6FihvotAe2u3ftbYpOCK98yOQHzEOCxR0X06t2EY2JPSsSelEzs1eL8T0++lvWLvAePZGQytO76at3wY3Ndqx5GefUD9+fHYEoYfd4Gz3910QOBeEnruq68Eer7BqWG1Y0/JwJ6ahSMlC3tqJvaUTOwpGVhsPd/EXWQgKYwXERERERERkT5ravXwzJtbWLG+CAjWgv+Pq6dz8rhhALS2eiM5PJE+Cfg8eMoLOlaiB8PuYCjclWFzEDUip6NETHDVuzUuZUCCbsNqx5kxDmfGuNA2v7uJ9tJdwTGX7KS9bCcBdzPtJfm0l+TT2NHP4orff2PYjI7yNs6Yfh+zaZr4m2pCK9w7y8p4a4rxtzQccj+LMxZ7amYocO98tCUMO+qyMCKRoDBeRERERERERPpk9aZS/vT6Juqb2jEMuHRuDt+8YBLOKMUOMviYpom3tixU4729dCftFXshcPDNPA3sqZkdq96DIbZj+KjjKgy2RsfhypmBK2cG0FHepq4sVNqmvWQn7RWFBFobad31Ga27Pgvta0/J3L96PmNC8Nqsx/Z32vR78dZVBAP3jrIyno7V7qa37dDjj0/FkZJ5QOCehT0lE2tMwnG3kl/kaOh/RRERERERERE5JnVNbTz5+mZWbyoFYGRaLN+9egaTxiQfYU+R44e/tanLivf20l093vDTGpNwQO318ThHjMMyAKvHw8kwDOzJGdiTM4jLnQd0rPqvKOxS695XXxGsw15TQvOmlcF9O1f9d15/xnis8aldjh9od3esbi/eX2KmphhvXQUE/D0PymINltxJzeoI3rNCAbzF0bdyPiLHG4XxIiIiIiIiItIrpmnywWfFPPPmZppavVgtBl89ezxfO3cCdtvxsypY5GCB9lbaKwpo2ZePa8cXVH3yLP76im79DJsDR/rYLqVbbAnDhuRqbIvNgTNzAs7MCSR0bNtfD39nqP58oL2VtqI82oryQvtaYxKxpY0ltqGOyo8aCDTXHfI8hsMZCtvtKftLy9iT0o95xb3IYKPvdBERERERERE5alV1bh5/7Qs+2x6sl52dmcDdX5tBdmbCEfYUGVh+d1Owznv5HtrL9+Ap34O3tizUHgV0rtW2J2d0qfPuGD76hA6IrTEJxIyfScz4mQCYZgBvTWmotE1b6U48lXvxt9Tj3/M5diAQ2jcxdONUR2oW9pQsHKmZA1Y7X+R4duL+qyIiIiIiIiIiRy0QMHn30708/4+tuNt92G0Wvn7eRK748jhsVkukhycnOH9LQ5fQvb18T483WAWwxadiHTaaeiOGjNzZxI89CWt07ACPeHAxDAuO1CwcqVnEnTwfgIC3HU95AU378iivrmPk1FOIyxynuRQ5DIXxIiIiIiIiInJYpdXNPPb3jWzeXQ3A5DHJ/MfV0xmZFhfhkcmJyNdU2yV0by/bg7+ppse+tsQ0otKziRqRjSM9m6i0sVhjEmhtbaU8L4+oMZOxRrsG+AqGBos9CufISQRSRuHJy8ORMUFzKXIECuNFREREREREpEf+gMnSD3fzl3e24/H6iXJYuf6iyXzlzGysFpWbGEiBdjfugo00bv+U2IoSGoqzaEschi02GWtcMra4ZKyxyVhj4jEsQ6Nuv2ma+BuraS/b02XVu7+lvofeBvaUEcHAvePLkTZWq7RF5LiiMF5EREREREREutlb3sgfXvmC/H3BGzJOG5/KXVdNJz0lJsIjO3F46ytp3bme1l3rce/dCn4fAHbAXb0bd087GRassYkHhfRJwce45NB2izPmuKrfbZomvvqK/SveOwL4gLupe2fDgj01k6j0HKLSx4ZWvFuiogd+4CIivaAwXkRERERERERCfP4Ar63YySvv5ePzm7icNm665CTOmz3quApvhyIz4Ke9dCetO9fTsvMzvFX7urTbktJxjJ1OVbuFtIRojLYm/E11+Jtr8TXV4m9pADOAv6kWf1MtlB3iRIBhcxwU0idhjUvBFpeENTY5tN1ijwr/dZoBvLVleA5a8R5ob+3e2WLFMWzU/tB9RA6O4aP7ZVwiIv1NYbyIiIiIiIiIALCrqJ7fvfI5hWWNAJw2JZ3vfPVkUhK04ri/BNpbad2zMbgCfvcGAq2N+xsNC86Rk3CNn4lr/EzsyRm43W5K8vKInTwZl6trfW4z4Mff0hAM5ptqQyG978DAvrmWgLsZ0+fBV1+Br77isOOzRLm6lMHpttI+LhlrTCKGteeIyQz48VaXdITuu/GUF9BeUYDpaeve2WojavhoHB0r3qPSs3EMH41hs/d6XkVEjkcK40VEREREREROcB6vn7/9K5/XV+4iEDCJczn49hW5nDUjU6vh+4G3rpzWXZ/RunM97r3bIOALtVmcMUTnzCBm3Eyic6ZjjT76m+QaFiu2joD8cAI+T0dYX9cR1gdDen9TXei5r6kW09tOoL2VQHsr3uriw50Za0xCl5Aew8BTUYinohDT5+m+h82BI21sMHQfkYMjPRtHatYhQ30RkaFA/8KJiIiIiIiInMC2FdTw+1e+oKSqGYC50zO57fJcEuNUBiRczICf9pIdtOxcT+vO9d2CbXtyRsfq91NxZk3q90DaYnNgSUrHnpR+6DGbJmZ7K77mOvwHBPb7w/u60CMBP/6Wevwt9XgqCrody3BE7y8z07Hi3Z6SOWRuNCsicrQUxouIiIiIiIicgNztPl54extvrS7ANCE5Poo7rpzG6SeNiPTQhoRAWwute77oKD/zedcbkRoWnKMmBwP4cTNxpGREbqCHYBgGhjMGhzMGUrMO2c80AwRam/A11QRX1nessDf9HhzDx+BIz8aenI5hWAZw9CIixyeF8SIiIiIiIiInmC92VPKHVzdSWRu8Yea5p43ipkumEutyRHhkg5u3rrzj5qvradu3DQL+UJvFGYsrZwau8TOJzp6ONTo2giMNH8OwBEvUxCTAoRfai4gICuNFREREREREThjNbi/PLd3Ce2v3ATA8KZq7rprOjInDIzyywckM+Gkrzg+uft+5Hm9NSZd2e0omrvGn4ho/M1h+RmVZREROaArjRURERERERE4An24p44+LN1Hb2IZhwFfOHMv1F00hOkrRQG/421pw7/48eAPW3RsIuJv3N1qsOEdNwTXuVGLGz8SerJI/IiKyn/7HFRERERERERnCGprbeWrJZj78IrhqO3NYDP9x9QymZqdEeGSDh7e2tOPmq5/RVpTXtfxMdCyunFP2l59xxkRwpCIicjxTGC8iIiIiIiIyBJmmyYefl/DUG5tpbPFgsRhcMS+Hr58/iSi7yqUcjhnw01a0PVh+Ztd6vDWlXdrtqVm4xs8kZvxMojInqPyMiIgcFYXxIiIiIiIiIkNMTYObP762ibXbygEYMyKeu782g3EjEyM7sOOAGfATaHcTaG8l0N6K6XETaGsl4GnF726hrTgP9+7PCbS17N/JYiV61BRc42fiGj8Te5LuVCoiIr2nMF5ERERERERkiDBNk399uo/n/7GFljYfNqvB186dyJXzx2O3WSI9vD4xzQCmpy0Uoge/3Id53hIM2jueBx/dmN62ozqfJToO17hTgzdgHTsNi8rPiIhIHymMFxERERERERkCymtaePzVjXyxswqACaMS+e7VMxg9Ij7CIwsKtDVjaa7GU7YLDLPHlemhxx5CdtPjDut4DJsDS1Q0ligXhsPV8TwaR2oWrnEzicocr/IzIiISVgrjRURERERERAaxQMBk2eo9vPB2Hu0ePw6bhW9eOJlLz8rBajEiNy5vO21Febj3bMRdsBFP5V4SgNq+Hthiw+J0YXEEg/TgV9fnwXC9+/Yufaz2MFyliIjI0VMYLyIiIiIiIjKIPf3mZpZ9VADASTkp/MfV08lIjR3wcZhmAE9FIe6CTbgLNtK2Lw/T7+3SJ2B3YouOxeaM6ViRHt0RrB8clh8iYHe6MKx2DCNybzKIiIgcK4XxIiIiIiIiIoPUW6sLQkH8bZfn8pUzx2IZwNXwvsYa3AUbaS3YiLtgE4HWxi7t1rgUXNnTiB47DdLGkb+3hMmTJ+NyuQZsjCIiIscLhfF99M9//pM333yTrVu30tzczNixY7npppu4+OKLIz00ERERERERGcI25Ffy1BubAbj+oslcMje7388Z8Lhp27utI3zfiLe6uEu7YXcSPXoq0R0BvD0lM7SKvbW1FSjp9zGKiIgcrxTG99GiRYvIysrivvvuIykpiQ8//JB77rmHuro6rrvuukgPT0RERERERIagfeWN/PqFdQQCJmfPHMlXzx7fL+cxA37aywtwF2zEvWcjbcX5EPDt72BYiBqRQ/TYk4nOnoYzc4JqsYuIiByCwvg+euKJJ0hOTg69njNnDpWVlTz//PMK40VERERERCTsGprb+dmzn9La5mNqdgp3XTUtrDXUvQ2VuPdswl3wBe7CzQTczV3abQnDQyvfo8echDU6LmznFhERGcoUxvfRgUF8p8mTJ/Puu+9GYDQiIiIiIiIylHl9fn65aC0Vta2kp7i474ZZ2G3WPh0z0N6Ku3BLcPV7wSa8taVd2o0oF9GjTyJ67DRc2dOwJaXrBqoiIiLHYNCE8Vu3bmXNmjVs3ryZLVu2UFISrDO3fPlysrKyDrmfx+Ph+eefZ+nSpRQVFeFyuZg5cyZ33HEHU6dO7ZexfvHFF4wdO7Zfji0iIiIiIiInJtM0eezVjWwrqCXGaeMnN59OQmxU748T8NNeuit449U9G2kv2QFmYH8Hw0JU5nhcY6cTnX0yURnjMSx9C/xFRERkEIXxjz/+OMuXL+/VPh6Ph5tvvpm1a9eSkpLC/Pnzqaqq4r333mPlypU88cQTzJ07N6zj/Pjjj3n//ff55S9/GdbjioiIiIiIyInttRU7WbG+CIvF4AfXz2Jk2tGXh/HWlePes5HWgo20FW4m0N7apd2ePCJYdmbsyUSPPgmLMybcwxcRETnhDZowfvr06UyYMIGTTjqJ3NxcFi5cSHV19WH3efrpp1m7di25ubksWrSI2NhYAJYtW8Y999zDvffey/vvvx/aDtDU1ERlZeURx5OTk9NtW3FxMffccw8LFixg4cKFvbxCERERERERkZ6t3lTKC2/nAfDtK3I5ZeLww/b3u5tx790cqv3uq+/6e67FGUv0mNxQ7Xd74uGPJyIiIn03aML42267rVf9fT4fL7zwAgAPPPBAl8D94osvZunSpaxatYrFixdzww03hNreeecd7r///iMePz8/v8vr+vp6br31VjIyMvjNb37Tq7GKiIiIiAwG1dXVlJWV0dbWxqxZsyI9HJETxq6ien770gYALpmbzUVndC+Lavp9tJXsCNZ937OR9rLdXUvPWKw4syZ2rH6fRtSIbJWeERERGWCDJozvrQ0bNlBfX09WVha5ubnd2i+66CJWrVrF8uXLu4TxV111FVdddVWvzuV2u7n99tvxer08+eSTREdH93n8IiIiIiLHi6VLl/LUU0+xe/duAAzDYNu2baH2Rx55hC1btvC///u/pKWlRWqYIkNSTYObnz/3KR6vn1MnDefmS7rf+6x5+8dUv/UEgbaWLtvtqVlEjz0Z19jpOEdPweLQ76oiIiKRNGTD+Ly84Mf3DnWT1ilTpgDdV7j3ls/n4+6776awsJCXX36ZlJSUPh2vk2matLa2HrljmLjd7i6Pcmw0j+GjuQwPzWP4aC7DQ/MYHprH8BnouTRNE8MwBuRc4fLQQw/x17/+FdM0sdlsGIaBz+fr0mfChAk899xzLF++nGuvvTZCIxUZetraffzs2U+pbWxjVHocP7huJlarpUuf5rw1VC75f2AGsLjiiR6Tiyt7OtFjp2GLD8/vpyIiIhIeQzaMLy0tBSA9Pb3H9s7t9fX1tLS0EBNzbDenefDBB1m1ahU/+tGPqK+v54svvgi1TZkyBYfDcUzH9Xq9oTcUBlJhYeGAn3Mo0jyGj+YyPDSP4aO5DA/NY3hoHsNnIOfyWH8+jITly5fzl7/8hZSUFB588EG+/OUvc/311/P555936Td//nwMw2DlypUK40XCJBAwefSlz9hT0kBCrIMf3zQbl9Pepc+BQXzsyV9m2Fe+o9IzIiIix7EhG8Z3rio/VMkYl8sVet6XMH716tUA/OIXv+jWtnz5crKyso7puHa7nXHjxh3TvsfC7XZTWFjImDFjVGanDzSP4aO5DA/NY/hoLsND8xgemsfwGei53LVrV7+fI5xeeuklDMPgkUce4cwzzzxkv4SEBEaMGNHnT52KyH4vvL2NT7aUY7Na+NGNs0lP6fo7q4J4ERGRwWfIhvEDZcWKFf1yXMMwurxhMFCio6Mjct6hRvMYPprL8NA8ho/mMjw0j+GheQyfgZrLwVaiZsuWLaSkpBw2iO+UmpoakU92igxF76/dx+IPgm/e3f216Uwem9ylXUG8iIjI4GQ5cpfBqfOXqUPV/zywHvuxrooXERERERnKWlpaGD58+FH19fl8WK0KA0X6asvuah5/7QsAvnbuBL586sgu7c15HyuIFxERGaSGbBifkZEBQHl5eY/tndsTExMVxouIiIiI9CA5OZmSkpIj9vP7/RQWFpKWljYAoxIZukqrm/nlorX4/CZfmpbBtedN6tIeDOJ/GwzicxXEi4iIDDb9HsY3NDSwY8cOPB5Pf5+qi8mTJwOwdevWHtu3bdsGwMSJEwdsTCIiIiIig8n06dNpbGxk1apVh+33j3/8g9bWVmbOnDlAIxMZeppbPfzsmU9pavUyfmQi3/v6KVgs+0tbdQviL1YQLyIiMtj0OYzftm0bv/vd7/joo4+6bG9ra+O//uu/OP3007nsssuYO3cu77zzTl9Pd9ROOeUUEhMTKS4uZvPmzd3a3377bQAWLFgwYGMSERERERlMrr32WkzT5Kc//WloMcvBPv74Y37xi19gGAZf//rXB3iEIkODzx/g1y+sp6SqmdQEJ/ffNJso+/6gXUG8iIjI0NDnMP61117jT3/6E6Zpdtn+u9/9jrfffhvTNDFNk4aGBr7//e+zY8eOvp7yqNhsNq6//noAHnzwQZqbm0Nty5YtY9WqVSQlJXHllVcOyHhERERERAab008/nW9+85uUlZVx9dVXc80117B3714A7rvvPhYuXMhNN91EU1MTN998MyeddFKERywy+JimyZNLNvPFziqcDis/vvl0kuOdoXYF8SIiIkOHra8HWL9+PVFRUZx55pmhbR6Ph1dffRWbzcbjjz/OKaecwu9//3tefPFFXnjhBR566KFen2flypX88Y9/DL1uaGgA4K677sLhcAAwb9487rzzzlCfW2+9lU8++YS1a9dy3nnnMWvWLKqrq1m/fj12u51HHnmE2NjYY710EREREZEh7/777yctLY0nnniCL774IrR9yZIlADidTu644w6+/e1vR2iEIoPbP/69h3c+LsQw4PvfOJXszIRQW/N2BfEiIiJDSZ/D+OrqatLS0rBY9i+y/+KLL2hubua8885j3rx5ANxzzz289tprrFu37pjOU1tby8aNG7ttz8vLCz3Pzs7u0uZwOHj22Wd57rnnWLp0KStWrMDlcrFgwQLuvPNOpk6dekxjERERERE5kdx666187WtfY9WqVWzfvp3GxkZcLhcTJkxg/vz5JCcnR3qIIoPS+rwKnl26BYBvXTyV2SeNCLU1b/+Yytc7g/h5CuJFRESGgD6H8Y2NjWRlZXXZ9vnnn2MYBnPnzg1tczqdjBo1isLCwmM6z8KFC1m4cGGv93M4HNx+++3cfvvtx3ReEREREZET1WOPPYZhGNx6663Ex8dzySWXcMkll0R6WCJDQmFZI4+8uJ6ACefNHs3l83JCbd2D+DsVxIuIiAwBfa4Z73Q6qa2t7bJt/fr1QPAmqgey2+1dVtCLiIiIiMjx649//CPLli0LlYUUkfCoa2rj589+grvdR25OKrcvPBnDMAAF8SIiIkNZn5Px7OxsSkpK2LlzJxAsJ/Ppp5+SlJRETk5Ol74VFRX6CKuIiIiIyCCRnJxMTExMpIchMqR4vH5+8fxaKuvcZKTGcN+Ns7Dbgr+aK4gXEREZ2vocxl944YWYpsmtt97Kww8/zA033IDX6+Wiiy7q0q+0tJSqqipGjx7d11OKiIiIiMgAOOWUUygoKMDj8UR6KCJDgmma/O6Vz8nfW0dstJ2f3HI6ca7gJ0+CN2v9fwriRUREhrA+h/Hf+MY3mDVrFuXl5SxatIidO3cyZswY7rzzzi793n77bQBmz57d11OKiIiIiMgAuOWWW2hvb+d3v/tdpIciMiS8/N4OPvy8BKvF4L9vmEXmsFjggCA+4Cf2pLMUxIuIiAxRfb6Bq8Ph4M9//jMrVqxgz549ZGZmcs455xAVFdX1RDYb119/Peeff35fTykiIiIiIgMgNTWVe+65h0cffZQdO3Zw5ZVXMn78eKKjow+5T0ZGxgCOUGTw+PDzYl56dzsAd1w5jWnjhwE9BPGX3KUgXkREZIjqcxgPYLFYOOeccw7b58YbbwzHqUREREREZIAsWLAg9Pyjjz7io48+Omx/wzDYtm1bfw9LZNDJ31vL/738OQCXz8vh/NOD5Vtbtn+iIF5EROQEEpYwXkREREREhh7TNPu1v8iJoLKulYeeX4vXF2DWlDRuvHgqEAziK5b8VkG8iIjICaTPYXxtbS35+fmkp6czduzYLm0vv/wyL730EhUVFZx88sncd999ZGdn9/WUIiIiIiIyALZv3x7pIYgMaq1tXn7+7KfUN7UzZkQ83//GqVgthoJ4ERGRE1Sfb+D6wgsvcNNNN7Fx48Yu21955RUefPBBduzYQUNDA//+97+5/vrrqaur6+spRURERERERI5r/oDJb/76GYVljSTGRfHjm2fjctoVxIuIiJzA+hzGf/LJJ1itVs4999wu25988kkAbrrpJh577DFmzpxJTU0NixYt6uspRURERERERI5ri5ZtZd22Chw2C/d/6zSGJ7kUxIuIiJzg+lymprS0lGHDhhETExPatn37dkpLSzn11FP5wQ9+AMC0adOYP38+q1at4j//8z/7eloRERERERlA1dXVrF69mj179tDS0kJMTAw5OTmceeaZpKSk9Pn4Ho+H559/nqVLl1JUVITL5WLmzJnccccdTJ06tVfHam5u5plnnuHdd9+luLiY6Ohopk6dyo033si8efMOu29lZSXPPvssK1eupLy8HLvdzogRI5g1axb33HNPl997RA7lnY8LeWPVbgC+9/VTmDg6mZbtnyqIFxEROcH1OYyvr69n0qRJXbZ99tlnAJx99tmhbcOGDWPUqFHs27evr6cUEREREZEB4vF4eOSRR3jllVfw+Xzd2m02G9dccw333nsvDofjmM9x8803s3btWlJSUpg/fz5VVVW89957rFy5kieeeIK5c+ce1bFqamr4xje+QUFBAUlJSZx55pk0Nzezfv161qxZw/e//31uvfXWHvddu3Yt3/nOd2hqamLChAmcffbZtLS0UFBQwF//+lduu+02hfFyRBt3VPGn1zcBcO35k5g7PbMjiH9UQbyIiMgJrs9hvMVioaWlpcu2DRs2YBgGp556apftcXFxFBUV9fWUIiIiIiIyAAKBAHfccQdr1qzBNE1SUlLIzs5m2LBhVFVVsWfPHmpqavjLX/5CQUEBTz/9NIZh9Po8Tz/9NGvXriU3N5dFixYRGxsLwLJly7jnnnu49957ef/990PbD+cnP/kJBQUFzJkzhz/84Q/ExcUBsG3bNm6++WYeffRR5syZw0knndRlv6KiIr797W9jt9t5/vnnOeOMM7q0b9++nYSEhF5fm5xYiiub+NUL6/AHTM6akck1507oGsRPnasgXkRE5ATW55rxmZmZ7N27l/r6egC8Xi+rV6/G6XR2+wG3rq6OpKSkvp5SREREREQGwOLFi1m9ejWxsbE89NBDrFq1ihdffJHf/va3vPjii3z44Yf84he/ID4+ntWrV/P666/3+hw+n48XXngBgAceeKBL4H7xxRczb9486urqWLx48RGPVV5ezvvvv4/VauXnP/95KIgHmDJlCnfeeSemafLUU0912/fhhx+mtbWVX/7yl92CeIBJkyYRHR3d6+uTE0dji4efPfspLW4vk0YncffXZtCav7ZrEH/pfyiIFxEROYH1OYz/0pe+hM/n45577mHFihXcf//91NfXM3fuXGy2/Qvvm5qaKCoqYsSIEX09pYiIiIiIDIClS5diGAa///3v+epXv9rl53sAq9XKlVdeyf/93/9hmiZvvPFGr8+xYcMG6uvrycrKIjc3t1v7RRddBMDy5cuPeKwtW7YAkJWVxciRI7u1z5kzB4APP/wQj8cT2l5RUcEHH3xAZmYm55xzTq+vQcTrC/Dwn9dRVt3C8KRo/udbp+HdvV5BvIiIiHTR5zI1t956K2+99RarV68OfXw1KiqKO++8s0u/FStWYJpmt9I1IiIiIiJyfMrPzycrKysUYh/KnDlzGDlyJPn5+b0+R15eHsAhb9I6ZcqU0FiOxO12AxyynExiYmKoX2FhIRMmTADg008/xe/3c+qppxIIBFixYgXr1q2jvb2dMWPGcP7552tRkRySaZo8sXgjm3dXEx1l4yc3n46jdKOCeBEREemmz2F8amoqixcv5plnnqGgoICMjAxuuOEGcnJyuvT77LPPmDRpEvPnz+/rKUVEREREZAC43W5GjRp1VH0TEhKoqKjo9TlKS0sBSE9P77G9c3t9fT0tLS2HvYFqcnIyACUlJT22FxcXh56XlJSEwvhdu3YBEBMTw3XXXcf69eu77Pfoo4/yox/9iGuuueZoLumQTNOktbW1T8fojc43Jzof5dgcaR7/8VEh763dh2HA3VefRFzVF1S89RgE/DgnzSHmnFtwt7UP5JCPW/qeDA/NY3hoHsNHcxkemsfwiMQ8mqZ51PdN6nMYD5CWlsaPfvSjw/b52c9+Fo5TiYiIiIjIABk2bBh79uyhra0Np9N5yH5ut5s9e/aQmpra63N0htOHqsfucrlCz48Uxk+bNg2n00lNTQ0rVqzg7LPP7tL+yiuvdDlWp877X7322mvY7XYeeughFixYQFtbG6+99hpPPPEEP/3pTxk5ciRnnnlmr6+xk9frDX0SYCAVFhYO+DmHop7mcXuxm5c/rAHg/BkJxJWupu6LJRhmgPYRU6kbNY+yY/jEyFCn78nw0DyGh+YxfDSX4aF5DI+BnkeHw3FU/cISxouIiIiIyNAze/Zs3njjDX75y18ednHNr371K9xuNxdccMEAjq672NhYrrvuOp5++mnuu+8+fvzjH/OlL32JlpYWXnnlFV5//XXsdjterxeLZf/ts0zTBIJh+c9//nOuuOKKUNt3v/tdGhsbefHFF/njH//YpzDebrczbty4Y7/AXuosxzNmzBjdfLYPDjWPhWVNLHl1LQDnzsrimsktNLz9BpgBnJPmkHb+t1Wa5iD6ngwPzWN4aB7DR3MZHprH8IjEPHZ+yvJohDWMr66uZvXq1ezZsye0aiUnJ4czzzyTlJSUcJ5KRERERET62S233MKyZct49dVX2bhxI9dffz3jx49n2LBhVFVVsXPnTv785z+zc+dO7HY7N998c6/P0bny/VAfJT6wrMvhVsV3uvvuu6murmbJkiXcc889Xdq++c1vsnHjRjZv3kx8fHy3MURFRXHZZZd1O+bXvvY1XnzxRb744gs8Hs9Rr3w6mGEYXVb6D5To6OiInHeoOXAeaxvb+N+/fkG7N8D08cO4cZqX6jceU434o6TvyfDQPIaH5jF8NJfhoXkMj4Gcx6MtUQNhCuM9Hg+PPPIIr7zyCj6fr/tJbDauueYa7r333mP+wVVERERERAZWTk4Ov/71r7nvvvvIz8/n/vvv79bHNE2ioqJ4+OGHu9036mhkZGQAUF5e3mN75/bExMSjCuPtdjsPP/ww3/jGN1i5ciWVlZUkJSUxf/58ZsyYwdy5cwEYP358aJ/MzEwARowY0WXFfKesrCwAfD4fdXV1pKWl9eIKZahp8/h46LlPqW5oI2t4LN8706D6jd9CwE/M1C8piBcREZFD6nMYHwgEuOOOO1izZg2maZKSkkJ2dnZotcyePXuoqanhL3/5CwUFBTz99NO9erdAREREREQi56KLLmLSpEk888wzfPjhh1RXV4faUlNT+fKXv8xNN91Ednb2MR1/8uTJAGzdurXH9m3btgEwceLEXh03NzeX3NzcLtuKi4uprKwkOzu7S6A+ZcoUABoaGno8VmdNeTi61fkydAUCJv/3t8/ZWVRPnMvBjxbYaVj2/0JB/PBLv6sgXkRERA6pz2H84sWLWb16NXFxcfzwhz/k8ssvx2bbf1i/388bb7zBI488wurVq3n99de58sor+3paEREREREZINnZ2fzyl78EoLm5OVSSMjY2ts/HPuWUU0hMTKS4uJjNmzd3C9DffvttABYsWNDncy1atAiAa665psv2GTNmkJycTG1tLfn5+d2C/48//hiA0aNHh+WaZfB66d3trN5Uis1q8ONz7Hjee0xBvIiIiBy17p/B7KWlS5diGAa///3v+epXv9oliAewWq1ceeWV/N///R+mafLGG2/09ZQiIiIiIhIhsbGxpKWlhS2UttlsXH/99QA8+OCDNDc3h9qWLVvGqlWrSEpK6rKgZ9OmTVxwwQU93jC2pKSEqqqqLtsCgQCLFi3iL3/5C5MmTeLaa6/t0m61WrnlllsAeOCBB6irqwu17d69m9/97ncA3faTE8u/vyjjlfd3AHDvWVai1jylIF5ERER6pc8r4/Pz88nKymLOnDmH7TdnzhxGjhxJfn5+X08pIiIiIiIDwOv1UlVVRXR0NElJSYfsV1dXh9vtZvjw4d0W5xyNW2+9lU8++YS1a9dy3nnnMWvWLKqrq1m/fj12u51HHnmkS/jvdrspKCjo8Viffvop999/P1OmTCEjIwPTNNm0aRPl5eWMGzeOp556Crvd3m2/G2+8kXXr1vHBBx9wwQUXMH36dNra2vjiiy9oa2vjnHPOCb1pICeefVXtvLAiWErptlO8pG9+SUG8iIiI9FqfV8a73W4SEhKOqm9CQgJtbW19PaWIiIiIiAyAxYsXs2DBAl5//fXD9nv99ddZsGDBMX8K1uFw8Oyzz/Kf//mfJCYmsmLFCnbt2sWCBQt45ZVXOOuss476WFOnTuXCCy+krq6OVatWsXr1alJSUvjBD37AkiVLDnnzVavVyh//+Ed+/OMfk5mZyaeffsrGjRsZP348P/3pT/nDH/7Q481dZeirrHPz8oc1+PwmV+Y0MXXfqxDwETPlTAXxIiIi0it9Xhk/bNgw9uzZQ1tbG06n85D93G43e/bsITU1ta+nlH5Q29hGWa2HyZEeiIiIiIgcN9577z0Mw+CKK644bL/LL7+c3/zmN7z77rt89atfPaZzORwObr/9dm6//fYj9p09e/YhP3E7ceJEHn300WMag8Vi4Zvf/Cbf/OY3j2l/GXrKqlv42XPraW0PcPbwKs5q+FdwRfyUMxl+2d0K4kVERKRX+ry0Y/bs2bjd7tANnQ7lV7/6FW63m9NPP72vp5R+8L8vbeTJdyr5xaLP2F1cH+nhiIiIiMhxYM+ePQwbNozk5OTD9ktJSWH48OHs3r17gEYm0v/2lTfy34//m6r6NubEl3BZQEG8iIiI9E2fw/hbbrkFm83Gq6++ymWXXcbixYvZtGkTZWVlbNq0icWLF3PppZfy6quvYrfbufnmm8Mxbgmzs6aNwGKBTbtr+c//W8VvX/qMytrWSA9LRERERCKourr6kGVdDjZ8+HBqamr6eUQiA2N3cT33/XE1TY0tXJa6m6/ZP1AQLyIiIn3W5zI1OTk5/PrXv+a+++4jPz+f+++/v1sf0zSJiori4YcfJicnp6+nlH5w4ZxRJNgaWF8AqzeX88FnxXy0sZSLv5TN1QvGE+tyRHqIIiIiIjLAXC4X1dXVR9W3pqaGqKiofh6RSP/bXljLL57+kFPZxrnJecQEgouUnBNPVxAvIiIifRKWOxBddNFFLFmyhIULF5KSkoJpmqGvlJQUvvrVr7JkyRIuvPDCcJxO+klSrI3vXp3Lb793FiePS8XrC7Bk5S5u/eX7LFm5C4/XH+khioiIiMgAmjBhAmVlZeTl5R22X15eHqWlpVp4I4Pe5rwiVjz3BPc6/87lrs+IoRVLXAotU84n4YI7FMSLiIhIn/R5ZXyn7OzsUN345uZmWlpaiImJITY2NtRn4cKFNDY28v7774frtNIPxo9M4qHbz+Cz7ZUsWraVveVNPPePrSz7aA/XXTiZs2ZkYbEYkR6miIiIiPSzc889l3Xr1nHffffx/PPPk5SU1K1PfX099913H4ZhcP7550dglCJ953c3sf3tv2Pkvc8FUR4ArIlpJJ15JdacWdTs2IlhCctaNhERETmBhS2MP1BsbGyXEL5TaWkpDQ0N/XFKCTPDMJg5OY0ZE4fzwfp9vPjP7VTWuXn0pQ0sWbWbmy6eyrQJwyI9TBERERHpR1/72tf429/+Rn5+Pl/5yle4+uqrmTFjBnFxcTQ1NbFhwwZee+01ampqyM7O5utf/3qkhyzSK/6WBuo/XUrd2n8S7W8HAxqsKYy94FoSTp6LYbHS2qp7aYmIiEh49EsYL0OH1WJwzmmj+dL0TP7x7z28unwne0oauP/JNZwyaTg3fmUKYzMSIj1MEREREekHUVFRPPXUU3z7299mz549PPnkk936mKbJuHHjeOKJJ1QzXgYNX1Mt9Z+8SdOGf2H6PFiAYl8SRelf5uqbr8Fu06/KIiIiEn76CUOOitNh46oFEzhv9mheeX8Hb68uYMP2Sj7Pr+TsmSP5xvmTGZYUHelhioiIiEiYjRw5kiVLlvD3v/+df/3rX+zYsSNUknLixImcf/75XHXVVTgcjkgPVeSIvA2VNKx5g8aNy8HvA2CvL4V33SeTPm0O//G1U7CqJKeIiIj0E4Xx0isJsVHcdnkuF39pLC++ncdHG0tZvq6If39ewqVn5fDVs8cTE22P9DBFREREJIyioqK47rrruO666yI9FJFj4q0to37N6zRtXgUBPwAt8WP4c/E48n0juPjMbG69PFf3xhIREZF+pTBejklGaiw/vH4Wl++t5fll29i6p4bXVuzk3U/2cs25E7jwjDHYbdZID1NERERE+sGmTZv44osv8Hq9jBkzhrlz52plvByXPFVF1K95neatH4EZAMA5JpcNUbN58uPgjVqvnD+OG74yBcNQEC8iIiL9S2G89MnE0cn86jtnsm5bBYve2kpRRTNPv7mFpf/eww0XTeHMaRlaXSIiIiIySJSVlfHmm28SHx/Ptdde263d7Xbzn//5n6xatarL9szMTB577DEmTZo0UEMVOaz28gLqVy+mZfsngAmAa9ypJJyxkFc2+ln8wS4AvnnBJK4+Z4KCeBERERkQCuOlzwzD4LSp6Zw6aTjvr9vHX9/ZTkVtK4/8ZT3jVyXyrYunkjsuNdLDFBEREZEjWLFiBb/73e+48cYbe2z/2c9+xsqVKwGwWCwkJydTU1NDcXEx3/72t/nnP/+Jy+UauAGLHKStZCf1q1+jdef60DbXxNkknflV7GljeXLJJt5eUwjAzZeexOXzciI0UhERETkR9TqMf+yxx475ZG1tbce8rxz/rFYL558+hnkzsnjjw928/sFOdhbV8z9PrGbm5DRuvHgKo9PjIz1MERERETmE9euDAeZFF13UrW3v3r288cYbGIbBueeeyy9/+UtiY2PZs2cPd955J4WFhbz66qvccMMNAz1sEdqK8qj76FXcezZ2bDGImXIGSWd+FcfwUfj9AX73yuesWF+EYcB3rpzGBXPGRHLIIiIicgI6pjD+WD/CZ5qmPv53AnBG2bjm3Imcf/poXv5XPu98spf1eRVs2F7Bglmj+MYFk0hJiI70MEVERETkILt27SI6Oprc3Nxube+++y6maZKYmBgK4gGys7P5n//5H2699VZWrlypMF4GjGmatBVupu6j12jbtzW40bAQmzuPxDOuwJGSCYDXF+DRlz5j9cZSLBaD710zg/mnjozgyEVERORE1eswftasWf0xDhmCkuKc3HHlNC6Zm80Lb+fx8eYy3lu7j1Wfl3D5vByunD8Ol9Me6WGKiIiISIeamhpGjx7dY9v69esxDIMvf/nLoSC+09y5c0lISGDnzp0DMUw5wZmmiXv3Buo+eo32kh3BjRYbcdPmk3jGFdgT00J9PV4/D7+wjnXbKrBZDX5w3Uzm5GZEaOQiIiJyout1GP/iiy/2xzhkCMsaHsf/3HgaeQW1PL9sK3mFtfz9/R2883EhXz9vIuefPga7zRLpYYqIiIic8BobGxkxYkSPbdu2bQNg9uzZPbanp6dTUFDQb2MTMc0ArfnrqFv9Gp7yPQAYNgdx088hcc7l2OJTuvR3t/t46LlP2bSrGofNwv986zROnZTW06FFREREBoRu4CoDZvLYZH5915f4ZEs5f35rKyVVLTy5ZDNL/72HGy6awhknj1AZIxEREZEIio6OprKystv28vJyqqurMQyDKVOm9LivzWbDNM3+HqKcgMyAn5a8j6lbvRhv1T4ADLuT+FPPI2H2pdhik7rt0+L28uAzn5BXWEt0lJUf33w6uTmpAz10ERERkS4UxsuAMgyDObkjmDUljfc+3ctL7+ZTVt3Cwy+sY+KoJL51yVSmZqcc+UAiIiIiEnZjx45l8+bNbN26lalTp4a2r1q1CoCYmBgmTJjQ474VFRUkJiYOxDDlBGH6fTRv/Tf1q1/HW1sKgBHlImHmhSScdjFWV3yP+zU0t/PA0x+zu7iBmGg7D956OhNHJw/k0EVERER6pDBeIsJmtXDhGWOZd0oWb6zazesrd5G/r47/fvwjZk9N54avTGFkWlykhykiIiJyQpk7dy6bNm3i5z//OY8//jgpKSns27ePp556CsMwmD9/fo+fZKyoqKC6ulr3l5KwMH1emjZ9QP2aJfgagp/UsETHkjDrYuJnXYTVGXPIfWsb2/jxk2vYV95EQqyDn3/7DMZmJAzU0EVEREQOS2G8RJTLaefa8ydxwZwx/O1f+fzr0718urWcdXkVnDd7NF8/byLJ8c5ID1NERETkhPDNb36Tv/71r2zcuJF58+aRmJhITU0NpmlitVr51re+1eN+7777LgCnnXbaQA5XhpiAt52mL5ZT//Eb+JtqALDGJJAw+1LiTzkfS1T0YfevrGvl/j+toay6heR4Jw/dfoYW+IiIiMhxRWG8HBeS453c+dVpXDo3mz+/tY1Pt5bzzseFfPBZEVfMG8cVX87B5bRHepgiIiIiQ1pSUhJ/+tOfuOuuu6iurqa6uhoAq9XKfffd12O9eNM0efnllzEMgzPOOGOghyxDQMDjpnHDv2j4ZCn+lnoArLHJJM65jLgZ52KxRx3xGKVVzdz/5Bqq6twMT3bxi9vPID3l0CvoRURERCJBYbwcV0amxXH/TbPZuqeG5/+xlfx9dbz8Xj7vfFLItedN5NzZo7FZLZEepoiIiMiQNX36dP71r3+xatUqioqKiImJ4ayzzmLkyJE99q+vr+cb3/gGADNmzBjIocoQ0Lz1I6rffYaAuwkAW8IwEudcQdy0szFsR7cYZ295Iz/+0xrqmtrJHBbDQ7efSWri4VfRi4iIiESCwng5Lk3NTuF/vzuXNZvK+PPb2yirbuGPizexZNVu5k7PZNaUNMaPTMJq6V6zVERERET6xuVyceGFFx5V36SkpFAYL9IbvqY6qpY9junzYEtKJ+nMK4k96SwM69H/mrqruJ6fPPkxTa0exoyI52ffnkNSnMpcioiIyPFJYbwctwzD4MxpGZw2NZ13Pynkb//Kp6y6hb+/v4O/v7+DhFgHp05K47Qp6cyYOExlbEREREREBpH6Na9j+jxEZYwn44ZfYFisvdo/r6CWnz7zMa1tPsaPTOTB2+YQ53L002hFRERE+k5hvBz37DYLF38pm7NnjuSTLeWsz6tgw/YKGpo9rFhfxIr1RVgtBlOzU5g1JZ3TpqSRMSw20sMWEREREZFD8DVU0fj5vwBI/vK1vQ7iN+6s4qHnPqXN42dqdgo/uXm2FueIiIjIcU9hvAwaLqeds2eO5OyZI/H5A+QV1LIur4J128oprmxm065qNu2q5tmlW8gcFsOsKenMmpLGlLEpqjMvIiIiInIcqfv3q+D34Rx9EtFjT+7Vvuu2lfOrP6/D6wswY8Iw/udbp+F06FdbEREROf7pJxYZlGxWC7njUskdl8pNl0yltLqZ9dsqWLetgi17qimpaqFk1W7eWLUbl9PGjInDOW1KGqdOSiMhNirSwxcREREROWF5a0tp2vQBEFwV3xsfbSzhN3/5DH/AZPbUdH54/Uzstt6tqhcRERGJFIXxMiRkpMZy6VmxXHpWDq1tXj7fUcW6bcGSNg3NHlZvLGX1xlIMAyaOSgqtmh8zIh7D0E1gRUREREQGSu2Hr4AZwDXuVJxZE496v+Xr9vH7Vz4nYMJZMzL5z6+fok/AioiIyKCiMF6GHJfTzpknZ3DmyRkEAia7iutZu62cddsq2FPSwPa9dWzfW8eL/8wjNcEZCuZPHj+MKLtW1YiIiIiI9BdP5V5atq4GIGne1496v7dWF/Cn1zcBcO5po7jzqulYLVpUIyIiIoOLwngZ0iwWgwmjkpgwKolvXjCZ6no36/OC5Wy+2FlFdUMb//y4kH9+XIjDbmXa+NRgOD85jdTE6EgPX0RERERkSKld9TJgEjN5DlHpY49qn9c/2MXzy7YCcMncbG659CQsCuJFRERkEFIYLyeU1MRoLpgzhgvmjKHd62fzrmrWbStnXV4FVXVu1nXUnQcYmxEfWjU/fmSSVt6IiIiIiPRBW+kuWnesBcNC0lnXHLG/aZr87V/5/O1f+QBctWA81104WWUmRUREZNBSGC8nrCi7lZmT05g5OY3bTZO95U3BYH5bBfl7aykobaSgtJG/v7+DhFgHp05K47Qp6cyYOAyX0x7p4YuIiIiIDCp1q14CIPaks3CkZh22r2maPPePrbyxajcA1104mavPmdDvYxQRERHpTwrjRQDDMBgzIp4xI+K5asEEGprb2ZBfybptFWzYHrwJ7Ir1RaxYX4TVYjA1O4VZU9I5bUoaGcNiIz18EREREZHjmnvfVtx7NoLFStLcqw7bNxAw+dPrm/jnx4UA3HrZSVx6Vs4AjFJERESkfymMF+lBQmwU808dyfxTR+LzB8grqA3dBLakqplNu6rZtKuaZ5duIXNYTKiczZg01ZkXERERETmQaZrUrfwbAHHTF2BPSj9kX78/wO9e+ZwPPivGMOCuq6Zz3uzRAzVUERERkX6lMF7kCGxWC7njUskdl8rNl55EaVUz6/IqWL+tgi17qimpaqFk1W7eWLWb6CgbY4fbOaO5mJlTMshIjVFNSxERERE5obn3fEFbUR6GzUHSmV89ZD+vL8Bv/rqeNZvKsFgM/uvrpzDvlMOXsxEREREZTBTG99E777zDokWLKCgooLW1lYyMDC677DJuueUWHA5HpIcn/SBjWCyXDYvlsrNyaG3z8vmOKtZtK2d9XrCczbYiH9uK8nhmaR4pCU5yc4JB/snjUklLdimcFxEREZEThmma1Hasio8/9Xxs8Sk99mv3+nn4z+tYn1eBzWrhh9fP5PSTRgzkUEVERET6ncL4Pqqvr2f27NncfPPNxMXFsWnTJh577DGqq6v5yU9+EunhST9zOe2ceXIGZ56cQSBgsnlnOe+tyaOy2crOokZqGtpYuaGYlRuKARiWFE1uTjCYzx2XyvAkV4SvQERERESk/7Tmr8VTvhvD7iRxzhU99nG3+3jouU/ZtKsah93Kj751GqdMHD7AIxURERHpfwrj++iaa67p8vr000+npaWFv/71r/z4xz/WKugTiMViMH5kAr6TE5g8eTJWexTbC2vZ3FFffse+Oqrq3KEbwQKkp7i6hPMpCao5LyIiIiJDgxnwU/thcFV8wmlfwRqT0K1Ps9vLg09/zPa9dURH2XjgltOZmt3z6nkRERGRwU5hfD9ITEzE6/VGehgSYVF2K9PGD2Pa+GEAtLX72NYRzm/eVc3O4nrKa1opr9nHe2v3AZCRGhMqaZObk0pSvDOSlyAiIiIicsyat63GW1WExRlDwumX9djn1y+sY/veOmKj7Tx42xwmjEoa4FGKiIiIDJxBE8Zv3bqVNWvWsHnzZrZs2UJJSQkAy5cvJyvr0Df18Xg8PP/88yxdupSioiJcLhczZ87kjjvuYOrUqWEbn9/vx+PxsHXrVl588UW+/vWva1W8dOGMsnHKxOGhj9y2tnnZVtCxcn53NXuK6ymtbqG0uoV3P9kLwMi02I6V88M4KSeFhNioSF6CiIiIiMhRMf0+6j58BYCE0y/D6ozp1ievoJYvdlRhsxr88jtnMjaj+8p5ERERkaFk0ITxjz/+OMuXL+/VPh6Ph5tvvpm1a9eSkpLC/Pnzqaqq4r333mPlypU88cQTzJ07Nyzjmz59Oh6PB4DLL7+cH/zgB2E5rgxdLqedmZPTmDk5DQh+RHfbnho2daycLyhroKiimaKKZt5eUwjAmBHx5I5LJTcnhZNyUolz6SbBIiIiInL8adr0Ab66cqwxCSTMuqjHPos/2AnA/FNHKogXERGRE8KgCeOnT5/OhAkTOOmkk8jNzWXhwoVUV1cfdp+nn36atWvXkpuby6JFi4iNjQVg2bJl3HPPPdx77728//77oe0ATU1NVFZWHnE8OTk5XV6//PLLuN1uNm/ezOOPP87PfvYzfvrTn/b+QuWEFRtt57Sp6Zw2NR2AplYPW3ZXh8L5veVNFJY1UljWyD/+vQfDgLEjEkJlbaZmpxATbY/wVYiIiIjIiS7g81D371cBSDxjIRZH9/si7Stv5NOt5RgGXPHlcQM9RBEREZGIGDRh/G233dar/j6fjxdeeAGABx54oEvgfvHFF7N06VJWrVrF4sWLueGGG0Jt77zzDvfff/8Rj5+fn9/ldWfJm5kzZ5KUlMQPf/hDbrrpJkaNGtWrcYt0inM5mJObwZzcDAAamtvZsruGTbuq2Ly7mqKKZvaUNrCntIE3P9yNxYDsrEROzgneDHbK2GRcToXzIiIiIjKwmj5/D39TDda4ZOJOOa/HPq+v3AXA7KnpjEyLG8jhiYiIiETMoAnje2vDhg3U19eTlZVFbm5ut/aLLrqIVatWsXz58i5h/FVXXcVVV13Vp3NPmTIFgOLiYoXxEjYJsVGcOS2DM6cFw/m6xjY2H7ByvrS6hV1F9ewqquf1lbuwWAzGj0wktzOcH5OMM2rI/pUXERERkeNAwNNG/erFACR96Sostu5lFavq3KzaUAzAlWePH9DxiYiIiETSkE3m8vLyAA55k9bOwPzgFe7hsGHDBoDD3lj2SEzTpLW1NVxDOiK3293lUY7NQM5jlA1mTkxm5sRkYAK1jW1sLahja0Et2/bUUVHnJn9vHfl763htxU6sVoNxmQlMHZvE1OxkxmUl4HRY+32cx0rfk+GheQwfzWV4aB7DQ/MYPgM9l6ZpYhjGgJxLJBIa17+Nv6UBW2IacdPO7rHPmx/uxuc3OSknhUmjkwd4hCIiIiKRM2TD+NLSUgDS09N7bO/cXl9fT0tLCzExMcd0nptvvpkzzjiDcePGYbVa2bBhA88//zwXXXRRn1bFe73e0BsKA6mwsHDAzzkURWoeUx0wb6KFeRNTqG/xUVjRTkFFO4UV7TS0+snfV0/+vnpeX1WAYcCweBsZKQ4yUxxkJDtIS7Rjsx5fAYG+J8ND8xg+msvw0DyGh+YxfAZyLh0O3YBdhiZ/Wwv1H78JQNJZV2NYu/+62dTq4d1PCgG4cr5WxYuIiMiJZciG8Z2ryqOju98sCMDlcoWe9yWMz83NZcmSJZSUlGC1Whk5ciT/9V//xTXXXHNMx+tkt9sZN27gbmTkdrspLCxkzJgxh5wzObLjbR7ndDyapkllnZutBXVsK6hjW2EdNQ1tVDb4qGzw8cWe4N8Xm9VgdHocOZnx5GQmkJMZT+awGCyWgQ/oj7e5HKw0j+GjuQwPzWN4aB7DZ6DncteuXf1+DpFIafh0KYG2ZuypWcROndtjn7dXF9Dm8TNmRDynTho+wCMUERERiawhG8YPlO9973t873vfC/txDcPo8obBQImOjo7IeYea43Eex8bEMDYrlYs7fi+qbWxjV1E9O/bVsbOonp1FdTS1etld0sjukkYgWMczOspKdmYi40cmMmFkEuNHJZKW7Bqwj9gfj3M5GGkew0dzGR6ax/DQPIbPQM2lStTIUOVvaaBh7TIAkuZdg2HpXg6xzeNj6b/3AMFa8fr7ICIiIieaIRvGd/4ydaj6nwfWYz/WVfEig1lyvJPTpqZz2tRgySbTNKmobWXnvnp2FAUD+t3F9bjb/WzdU8PWPTWhfeNcDsaPTNz/NSqJ5HhnpC5FRERERCKs/uM3MD1tONKziZl4eo99lq/dR2OLh+HJLuZOyxjgEYqIiIhE3pAN4zMygj/clZeX99jeuT0xMVFhvAjBlXrpKTGkp8Qwd0YmAP6ASXFlEzv3BVfO7yyqp6C0kaZWDxvyK9mQXxnaPyXB2RHOJ4VC+liXauKKiIiIDHW+ploaP3sHgOR5X+9xxbvfH+D1VbsBuGJeDlarZUDHKCIiInI8GLJh/OTJkwHYunVrj+3btm0DYOLEiQM2JpHBxmoxGJ0ez+j0eM45LXhDYq/PT2FZY7C0TUdIX1TRRE1DGzUN5XyyZf8bYCNSY7oE9DmZCTijhuw/OyIiIiInpPrVizF9HqKyJhKdM6PHPv/eWEplbSvxMY7Qz5UiIiIiJ5ohm4qdcsopJCYmUlxczObNm8nNze3S/vbbbwOwYMGCSAxPZNCy26wd4XoSnBHc5m73sbu4vqP2fDCgL69ppay6hbLqFj78vAQAiwGj0uMPKHGTxOgR8dhtWhklIiIiMhh56ytp/Px9AJK/fG2Pq+JN0+T1D3YCcMncbJyOIftrqIiIiMhhDdmfgmw2G9dffz2///3vefDBB1m0aBGxsbEALFu2jFWrVpGUlMSVV14Z4ZGKDH7RUTZOyknlpJzU0LbGFg+7ivaXt9lZVEdtYzuFZY0UljXy3tp9ANhtFsZmxHcpb5M5PC5SlyIiIiIivVD3779DwEf02JOJHn1Sj3025FdSUNr4/9u78/io6nv/46+ZySSZyb4vhCQQSAIxZRGkqIiAF71et4Jcbb3gvqLyu1q1tta1PlTsvX3c217sFRdqbbXegoq40LK6sARE2XfISlYm+56Z+f0xZCAlAUJmMlnez8cjj8RzvufM53wF8pnPfM/nEOhv4l8uGdbLEYqIiIj0Hf2mGL9u3ToWLVrk/u/q6moAHnzwQfz9XX2pp06dyvz5891j7r77bjZt2kROTg4zZ85k4sSJVFRUsHXrVsxmMwsXLnQX6EXEs0KD/BmfGcv4zFj3tuPVjRzIP7VAX0V9YysH8qs4kF/lHmcJMDEsIZQIaxt1lDEmPYHwkAAfXIWIiIiIdKWlopC6nesBiJj6ky7HLV1zCIArf5hKiJ4pJCIiIoNYvynG22w2tm/fftr2vXv3un8ePnx4h33+/v68+eabvPXWWyxfvpw1a9ZgtVqZMWMG8+fPJysry+txi8hJUWEWJmdbmJydALhuWS4+Xn+i97yrSH+4qJrGZjt7cisB+GbPdmA7CdFBZKZEMCo1kszUSJLjQzEZT78NWkRERER6R+WXfwGnA+vIiQQOGdnpmP15NnYersBkNHD9ZWm9HKGIiIhI39JvivGzZs1i1qxZ3T7O39+f++67j/vuu88LUYlITxgMBhKjg0mMDmbq+CQA7HYHBWV17DpUypadeZTVQGF5vbv//NpvCwFXa5yM5AgyUyMZlRpJekoEwRazLy9HREREZNBoLs2lfu8GwEDE1Ju7HLd0rWtV/NTxScREWHopOhEREZG+qd8U40VkcDCZjKQmhBIb5keCtYZRo0bhwI/9+ZXszbWxL9fGgfxKGpvb+P5gOd8fLAfAYIChcSGulfMpkWSmRjAkJrjTh4iJiIiISM9Urn8PgKDRFxMQl9rpmILSWjbtKgZg9rQRvRWaiIiISJ+lYryI9HnBVn8uzIzjwsw4AOwOJ/klNezNtbE318b+3EqKj9eTX1JLfkktKzflARBi9SczNYLMFNfq+ZFDwwkM0D97IiIiIj3RVHSAhoNbwWAk4rKbuhz34bpDOJ0wKSue5PjQXoxQREREpG9SVUpE+h2T0cCwxDCGJYZx9cXDAKisbWJfbiX7cm3sy7NxsKCK2oYWtuwpZcueUgCMRgPDE0NPrJx3FehjIixaPS8iIiLSDZXr/gxAcPbl+EcN6XTM8epG1n5bAMDsaZ33kxcREREZbFSMF5EBISIkkMnZCe6Hw7a2OThSVMW+vJPtbY5XN3GosJpDhdWs+OYoAJGhAe7CfGZqJGlDwjD7mXx5KSIiIiJ9VmPuThpzd4LRj4gpc7oc9/GXR2izOxk9LJJRwyJ7MUIRERGRvkvFeBEZkMx+RjJSIslIieT6y9IAKK9sZF+ujb15ruL8kaJqbDXNbNhRzIYdxe7jRiSFk5kaSWZKBKNSI4kIDfTlpYiIiAwKLS0tvP322yxfvpyCggKsVisTJkzg/vvvJysrq1vnqqur44033mDlypUUFhZisVjIysritttuY+rUqed0jubmZm644QaOHDkCwI4dOwgICOj2dQ0kTqcT2zpXr/jQcVdgDo/tdFxdQwtfbHQtfLhxulbFi4iIiLRTMV5EBo2YCAsxEUOYMs51O3VTSxuHCqpcfedPrKCvqW9x96JvFxdpPfFg2AgyUyNJTQjFZDL66jJEREQGnJaWFu68805ycnKIiopi2rRplJeX8/e//51169bx2muvMWXKlHM61/Hjx7nllls4evQoERERXHLJJdTV1bF161Y2bNjAT3/6U+6+++6znud3v/sdR48e7emlDSiNh7bRXLQfg58/4Zfc2OW4zzbk0thsJyU+hAmj4noxQhEREZG+TcX4Aaa1tRW73d7t45qbm93fjUYVGc9Xb8yjyWTCbDZ75dyDTaC/HxekRXNBWjTgWu1VXFHPvjwbe0/0n88rqaHU1kCprYF12wpPHGciPdlVmB85NJzkuBDiooIwGdV7XkRE5HwsXryYnJwcsrOzWbJkCcHBwQCsWLGCRx99lMcee4xVq1a5t5/J008/zdGjR5k8eTK//e1vCQkJAWDPnj3ceeed/Md//AeTJ0/mggsu6PIcu3fv5q233uKmm27i/fff98xF9nNOpwPb+hOr4if8M34hEZ2Oa26188lXrrsJZk0bqWfziIiIiJxCxfgBoqamhoqKCncxuLscDgd+fn4cO3ZMxfge6K15DAgIIDo6mtDQUK+9xmBkMBhIjAkmMSaY6ROSAahvbOVAvqswvzfXxv78Shqa2thxqIIdhyrcx5r9jCTFBjM0LoTkuBDX9/gQEqKCtIpeRETkDNra2njnnXcAeOaZZzoU3K+55hqWL1/O+vXrWbp0KbfeeusZz1VSUsKqVaswmUy88MIL7kI8wOjRo5k/fz4vvPACr7/+Ov/93//d6TlaW1v5+c9/TmRkJD/96U9VjD+hft9mWkqPYvC3ED75R12OW7Mln6q6ZmIiLFw2rvOHu4qIiIgMVirGDwA1NTUUFRURHBxMdHQ0ZrO52ytQ7HY7zc3NBAQEYDLp4ZXny9vz6HQ6aW1tpbq6mqKiIgAV5L0syGJmXEYs4zJcPVHtDieFpbWuh8Lm2Th6rIbC0lpa2hwcPVbD0WM1HY73MxkYEnOiSB8feqJQH0xCdDBmPxXpRUREtm3bRlVVFUlJSWRnZ5+2/+qrr2b9+vWsXr36rMX4Xbt2AZCUlMTQoUNP2z958mQAvvzyS1paWvD39z9tzOuvv86+ffv4n//5nw7F/MHM6bBT+aXrQ4mwi67BZO18Xux2B8vWHQLghqlp+GlBgoiIiEgHKsYPABUVFQQHB5OUlHTet4G2t7YJDAxUMb4HemMeLRYLISEhFBYWUlFRoWJ8LzMZDaQkhJKSEMpVk1MBV4G+zNZAQWkt+aW1Hb43t9jJK6klr6QWth/rcJ7EmCCS40JPrqaPD2FITBBmP/0dFBGRwWPv3r0AXT6kdfTo0QDs37//rOdqbGwEICwsrNP94eHh7nG5ubmkp6d32H/o0CFee+01Zs6cyRVXXHFO8Q8Gdbu+orWiEGNgMOGTru1y3IYdxZQcbyDE6s/Mi1J6MUIRERGR/kHF+H6utbWV5uZmoqOj1Y9xEDEYDISFhVFUVERra6t6yPuYyWggITqIhOggLsqKd293OJyUVzW6ivMl7UX6GgpKa2lstlNQWkdBaV2HcxmNBhKigkiOd7W6GRoXQkp8CENigvE3q0gvIiIDz7Fjrg+r4+PjO93fvr2qqor6+nqCgoK6PFdkZCSA+w7Cf1RYWOj+uaioqEMx3m638/Of/5zAwECeeuqp7l3EOXI6nTQ0NHjl3J1p/3Ci/fv5cNrbsK13rYq3TvgXmhwG6OQanE4nH6x2fWBy5aQkHPYWGhpazvt1+xJPzKO4aC49Q/PoGZpHz9Fceobm0TN8MY9Op/Oc67Iqxvdz7SuxVYwdfNr/n9vtdv3/76OMRgNxkVbiIq1MGBXn3u50OqmoanKvoM8vcRXoC0prqW9qo6i8jqLyOjbuLD55LgPERQV16Ec/NC6EpNhgAv31T7mIiPRf7cVpi8XS6X6r1er++WzF+DFjxhAYGMjx48dZs2YN06dP77D/L3/5S4dzneoPf/gD27dv57nnniMuLg5vaG1tdd8J0Jtyc3PP+1j//G0E1ZTj8A+iIHAodBH/oeImcotrMZsMDI9s9Ml1eltP5lE60lx6hubRMzSPnqO59AzNo2f09jx21v6wM6rgDBBaFT/46P95/2UwGIiJsBATYWF8Zqx7u9PpxFbT5F5J7255U1JLXWMrxRX1FFfUs3l3ySnngtgIK8nxJx8c2/5lCdA/8SIiMrgEBwczd+5cFi9ezJNPPskvf/lLLr30Uurr6/nLX/7CsmXLMJvNtLa2YjSe7Geel5fHf/3Xf3HhhRdy0003eS0+s9nMiBEjvHb+f9Tejic1NbXLDzvOxNnWQvlXr+EAwi6eRWL2mC7H/nXTtwBcMTGJC8dmnm/IfVJP51FO0lx6hubRMzSPnqO59AzNo2f4Yh4PHTp0zmNVqRER6SMMBgNRYRaiwiyMTe9YpK+qbT6tH31+SS019S2U2hootTWwZU9ph/PFRlhIjLZiMTVT0lBE2tAokuJCCLboTgoREek72le+d3Ur8altXc60Kr7dggULqKio4MMPP+TRRx/tsO/f/u3f2L59Ozt37nQ/d8fpdPLUU0/hcDh44YUXvLrgwWAwdFjp31ssFst5vW7V5tU46isxhUYTPelfMPh1nkMcLKhk1xEbJqOBG2dk+uQae8P5zqOcTnPpGZpHz9A8eo7m0jM0j57Rm/PYnfxRxXgRkT7OYDAQERpIRGggY0bGdNhXXXeySF9wYjV9fmktVbXNlFU2UlbpKmxs3LfHfUxkaCBD44LdD45NOvE9LDigV69LREQEIDExEYCSkpJO97dvDw8PP6divNls5uWXX+aWW25h3bp1lJWVERERwbRp0xg3bhxTpkwBYOTIkQDU1taSk5NDaGgozz77bJfnveOOOzAajSxYsIAJEyZ05xL7JUdLI1UblgEQcemcLgvxAEvXuFaDXTZuCLGRKh6IiIiIdEXFeBGRfiwsOIDs4ACy06I7bK+pb6GgtJbDBcfZsa+ARrs/RRUNHK9uwlbj+tp+sKLDMaFB/qe0uQl2t72JDA1UWyQREfGaUaNGAbB79+5O9+/Z4/pAOSMjo1vnzc7OJjs7u8O2wsJCysrKGD58+Gl94WtqasjJyenyfFu3bgVcD5IdDKpzPsXRUINfRDwhP7i8y3FF5XVs2Ol6CO/saSN7KToRERGR/knFeBEPe+aZZ/jkk0945513mDRpkq/DkUEqNMifrOFRDIu3MCS4llGjRmG1WqlvbKWw7MRK+tI696r6ssoGaupb2H3kOLuPHO9wLmugn6tAH3vy4bFJscHERlgxGlWkFxGRnhk/fjzh4eEUFhayc+fO0wron332GQAzZszo8WstWbIEgJtvvtm9LTQ0lP3793d5TPuHADt27CAgYHDcRWZvrKN608cARF52MwZT128bP1x3CKcTJoyKIyUhtLdCFBEREemXVIyXAS0jI4MhQ4awZs0aX4ci0icEWcxkpESSkRLZYXtTSxtFZXWuIv2J7/kltRQfr6ehqY39eZXsz6vscEyAv4mk2GB3kb69UB8facVkMiIiInIu/Pz8mDdvHv/93//Nc889x5IlSwgODgZgxYoVrF+/noiICGbPnu0+ZseOHTz++OMAfPHFFx3OV1RUhL+/PzExJ1u7ORwO3nnnHd59910yMzP5yU9+0gtX1n9Vb/oYR3MD5phkgrIu6XKcraaJ1VsKALhxulbFi4iIiJyNivEiHvbggw9y7733kpSU5OtQRM5ZoL8faUnhpCWFd9je2ubgWEWduyd9e6G+sKyO5hY7hwurOVxY3eEYP5ORITFBp7S8cfWkT4wJwuxn6sWrEhGR/uLuu+9m06ZN5OTkMHPmTCZOnEhFRQVbt27FbDazcOFCd4EeXA97PXr0aKfn2rx5M0899RSjR48mMTERp9PJjh07KCkpYcSIEbz++uuYzXqYeVfs9dVUb3HdjRA59WYMhq4/YF/+5WHa7A5GpUaSNTyqt0IUERER6bdUjBfxsJiYGAIDAzGZVHSU/s/sZyQlPpSU+FAYc3K73e6g1NZw8uGx7V8nivR5JbXkldR2OJfRaCAhytqhSD80ztXyJtBfv45ERAYzf39/3nzzTd566y2WL1/OmjVrsFqtzJgxg/nz55OVlXXO58rKyuKf//mf+f777zl48CAmk4nU1FTmzZvH3Llz8ff39+KV9H9VG5bhbG0iIGEE1vSLuhxX39jK5xtzAZg9bUQvRSciIiLSv6n6IQPSsmXLePLJJwHXrcqnPvCrvW3Nz372Mz788EPeeecd7HY7b7zxBrt27aK6upqPPvqIUaNGsWfPHj799FM2bdpEcXExNTU1REZGMnHiRO65555OHyTWVc/4uXPnkpOTw+rVqzl8+DD/+7//y969ezEYDIwbN47/9//+32k9UkX6KpPJSGJMMIkxwfzwggT3dofDSUVV4+lF+tJa6pvaKCqvp6i8nk27StzHGAwQG2ElNSGU1MRQhiWEMSwxlLioIEzqSS8iMmj4+/tz3333cd9995117KRJk7rs856RkcF//Md/eCyuM/WTH2jaao5T8+1KACIu//EZH+D++cZcGpraGBoXwsTR8b0VooiIiEi/pmK8DEjJycn86Ec/4sMPP8RqtXLllVe690VERHQY++mnn/LBBx+QmZnJlClTKC4udr/x+P3vf8+qVatIT0/nBz/4Af7+/hw9epQVK1awatUq3njjDSZOnNit2P7yl7+wePFixo4dy+WXX86BAwf4+uuv+fbbb1m6dClpaWk9nwARHzEaDcRGWomNtDJhVJx7u9PpxFbTROEpD40tOPEg2eq6FkptDZTaGti8+2SRPsDfREp8CMMSw1yF+oRQUhPDCLaotYCIiIg3VH79V5z2VgKHjsIybEyX41pa7Xz85WHAtSpeD3QXEREROTcqxg8CTqeT5hb7GcfYHXaaWuxgbMNkdPZSZKcL8DedcQXOuZowYQITJkzgww8/JCIigpdffrnLsX/5y1946aWXmDVr1mn7fvzjH/PUU08RGxvbYfuaNWt4+OGHefrpp/nss8+6FfOSJUt4++23mTx5MuD6//Pss8/y/vvv88Ybb/DSSy+d87lE+guDwUBUmIWoMAtj0mM67Kuuaya/tJbcYzXkFtdw9Fg1eSW1NLfYOZBfxYH8qg7jYyIsDEsIIzXRVaAflhhKQnSwVtGLiIj0QGtlCbXbVwMQcflPzpjfrtlaQFVtM9FhgVw2Ts9JEhERETlXKsYPcE6nkyd+9zV7c22+DuWcjEqN5JUHL/VIQf5cXXrppZ0W4gF3wfwfTZ8+nSuvvJIVK1Zw6NAhRo4cec6vN3fu3A7nNRgMLFiwgPfff5/Nmzd3L3iRASAsOIDs4ACy06Ld2+wOJ8UVdeQW15B7rIajx2rILa6mrLKR8hNfOXtOrqL39zOSnBDKsFNa3aQmhhJiVV9gERGRc1H51QfgsGMZPhZL8ugux9kdTpatOwTADZePwOzX9QNeRURERKQjFeNl0LviiivOuL+2tpa1a9eyb98+ampqaGtrA+DgwYMA5ObmdqsYP3Xq1NO2RUZGEh4eTllZWTciFxm4TEYDSbEhJMWGcOmYIe7tdY2t5BXXkHusmqMnCvW5JTU0t9g5VFDFoYKqDueJDgskNdHVg961ij6MxOggTCYVDkRERNq1lBdQt/NLACKn/viMYzftLKa4op5gi5mZk1J6IzwRERGRAUPF+AHOYDDwyoOXnlubmqZmAgMDMBlNvRTd6TzVpqY7EhMTu9z397//nZ///OfU1NR0Oaaurs4jrxcUFERVVVW3ziUy2ARbzGQNjyJreJR7m8PhpOR4vbs4f/RYNbnFNZTaGqiobqKiuomte0vd481+RpLjQ/6h1U0YoUFaRS8iIoNT5Zd/AZxYMyYRkDiiy3FOp5O/rjkAwL9cOgxLgN5OioiIiHSHsqdBwGAwEHiWRNluN4CjjUB/P0wm3xXjfSEwMLDT7cXFxTz66KM4HA4ef/xxpk2bRnx8PBaLBYPBwH/+53/yv//7vzid3eux39sfNogMdEajgcSYYBJjgrnkByc/7GpoanW1uSk+0ebmWDV5JTU0Nts5XFjN4cLqDueJDA080eIm1L2afkhMMH5aRS8iIgNYc8kR6vdtBAxETr35jGN3HKzgUGE1/mYT1146vHcCFBERERlAVIwX6cK6detobm7mjjvu4M477zxtf15eng+iEpFzZQ00M3pYFKOHdVxFX2prILe42rWK/sRq+uLj9dhqmrDVNLFt38l2UX4mI8lxIaQmhjIk2oKzqYnYxCb3h3IiIiL9nW3dewAEXzAF/5jkM47961pXm8aZFyUTFhzg9dhEREREBhoV42VAM5vN7h7v3VVd7Vo1Gx8ff9o+m83Ghg0behSbiPQ+o9FAQnQQCdFBTM7uuIo+v6SWo8Un2twcc62ob2xu48ixao4cO7mK/t11XxEU6MfQuBCS40NJjg8hOS6E5PgQIkMDVaQXEZF+o6lwH42Ht4HBSMSUfz3j2EMFVXx/oByj0cANl3fdykZEREREuqZivAxosbGxlJaWUl1dTVhYWLeOHT7cdevtRx99xOzZswkODgZcPeLP1kdeRPoXa6CZzNRIMlMj3duczvZV9K7C/KF8G4cLbdjq7NQ3tbEvr5J9eZUdzhNsMZ8o0ru+UuJcxfrwkAAV6UVEpE9xOp3Y1v0ZgJAx0zFHJpxx/NITq+KnjBlCXKTV6/GJiIiIDEQqxsuANmPGDN555x1+9KMfMW7cOAIDA4mIiOCnP/3pWY+dNm0amZmZ7NmzhyuuuIIJEybgdDrZunUrJpOJWbNmsWzZsl64ChHxBYPBQHxUEPFRQfzwggQaGhrYu3cvI0ZmUFnvIL+khvySWvJLa8kvqaG4op66xlb25trYm2vrcK4Qq/8pBfqTK+p1i7+IiPhKY+4OmvJ2g8mPiEtvPOPY4op6Nuw4BsDs6VoVLyIiInK+VIyXAe2RRx4BYPXq1XzxxRe0tbUxZMiQcyrGm81m/vSnP/Hb3/6WtWvXsn79eiIiIpgxYwYLFizggw8+8Hb4ItIHmf2MpCYEk5oQ2mF7S6udovI68kpqOxTqS47XU9vQwu4jx9l95HiHY8KC/Uk+sXr+ZLubUEKD/HvzkkREZJBxOp1UnugVHzp+Jn5hMWcc/+G6QziccGFmLMMSu3e3qYiIiIicpGK8DGgWi4Vf/OIX/OIXvzht38svv8zLL798xuODg4N58sknefLJJ0/b99BDD/HQQw+dtv25557jlVdewWQyddj+xz/+8YyvtWbNmjPuF5G+zd9sYlhi2GlFiuZWO4Wl7SvoT3yV1lBqa6C6roWddRXsPFzR4ZjwkAB3H/rk+FCS40JIiQ8h2KoivYiI9FzDwa00HzuIwRxA+MWzzzi2sqaJVVvyAZg9fWRvhCciIiIyYKkYLyIi4kUBZhNpSeGkJYV32N7U0kZhaR35pa5V9HknVtKX2Rqoqm2mqraZHYc6FukjQwP+YSW96+cgi7kXr0hERPozp9NB5XrXqviwiVfjFxx+xvGffH2E1jYHGSkRXDA8qhciFBERERm4VIwXERHxgUB/P0YMDWfE0PAO2xub2yhoX0V/oh99fmkt5ZWN2GqasdWU8/3B8g7HRIUFulvcpCaEkJIQytC4EAL99WteREQ6qt+7kZayPAwBVsJ+eP0ZxzY0tfLZN0cBmD1tpB5GLiIiItJDepcuIiLSh1gC/EhPjiA9OaLD9oam1n8o0rsK9RXVTRw/8fXdgZNFeqMBEqKDSE0IIyUhlNQTX3GRVoxGFVNERAYjp8NO5fr3AQifdC0mS8gZx3+xMZf6pjaSYoOZlBXfGyGKiIiIDGgqxouIiPQD1kAzGSmRZKREdthe3+gq0ued6EWfV1xDbnEN1XUtFJXXU1Rezzc7jrnHB/qbSIkPJTUx1P09NSGUEPWjFxEZ8Op2rqfVdgyjJYSwi64549jWNjsff3kYgNnTRuiDXBEREREPUDFeRESkHwuymMlMjSQztWORvrK2idxjNeSV1HD0xPf8klqaWuzsz69kf35lh/FRYYGkJIQyLCHUvZI+KTYEs5+xNy9HRES8xNnWSuVXHwAQfvGPMAZYzzh+7beF2GqaiQoLZOr4ob0RooiIiMiAp2K8iIjIABQREkhERiDjMmLd2+x2B8cq6sktPrmC/mhxDWW2Bnerm237ytzjTUYDSbHBHdrcpCaEER0eqL7BIiL9TM33q2mrLscUHEHohVedcazd4WTZ2oMAXH9Zmj6YFREREfEQFeNFREQGCZPJyNC4EIbGhTBl7BD39oamVvKKa8ktqSH3WDV5JbXkHqumvqmNvBJXC5wvvytyjw+ymElNCCUlPoTUxDBS40NJSQjBGmj2xWWJiMhZOFubqfrmrwCEX3IjRnPAGcdv3lVMUXk9QRYzV/4wpTdCFBERERkUVIwXEREZ5KyBZkYNi2TUsJOtbpxOJxVVTeQWV5N7YhV9XnENhWV11De2svvIcXYfOd7hPLGR1g5tblITQkmMDsJk0opKERFfati+CntdJX5hMYSOm3HGsU6nk6UnVsX/yyXD9EGriIiIiAepGC8iIiKnMRgMxERYiImwMHF0vHt7a5udwrI6d3H+6Invx6ubKLM1UGZrYPPuEvd4s59rNX57cT4hMoCG+jYcDqcvLktEZPBpa6ZuywoAIqb8KwbTmYvruw4f50B+Ff5+Rq69dHhvRCgiIiIyaKgYLyIiIufM7GdiWGIYwxLDOmyvbWhxraA/8bDY9u9NLXaOFFVzpKi643k+LSMu0kp8VBDxUVYSooKIjw4iISqI2EgrAWZTb16WiMiAFZibg7OpDnNUIsHZU886/q9rXKviZ1yUTHjImdvZiIiIiEj3qBgvIiIiPRZi9Sc7LZrstGj3NofDSamtoUObmyNFVZTaGmhtc1BYVkdhWV2n54sKC+xYqI8KIiE6iLhIK6FB/nqArIjIOXA01RGYmwNAxGU3YzCe+YPOI0XVbNtfhtEAsy4f0RshioiIiAwqKsaLiIiIVxiNBhKiXUX0ydkJADQ0NLBr9x5iE4dRVW+n5HgDJcfrKT5eT0lFA8XH62lsbuN4dRPHq5tO60sPYA30cxXnTxTr3T9HBxEdFqge9SIiJ9Rv+RRDWzN+MckEjZp81vHtveIvHTOE+Kggb4cnIiIiMuioGC8iIiK9ymQ0EBthIXWI9bR9TqeTmvqWEwX6BkrbC/XHGyiuqMdW00RDU1unrW/c5460dijUt6+qj4+0Ehig1EdEBo/GPV8BEDx5NgbDmT+oLDlez9ffFwEwa5pWxYuIiIh4g96RioiISJ9hMBgICw4gLDiAjJTI0/Y3t9opbS/OH6+n5JRCfamtgTa7g+KKeoor6js9f3hIwOmF+qgg4qOthAcHqP2NiAwoQRddS1lhPnHDx5117IfrDuFwwviMWNKSwr0fnIiIiMggpGK8SA9s3ryZefPm8aMf/YiXX37Z1+GIiAx4AWYTyfGhJMeHnrbP7nBiq2462fbm1KJ9RT11ja1U1TZTVdvM3lzbaccH+pvcfeqHxoUwcmgE6cnhRIVZeuPSREQ8LmjclTQF7j3rB41Vtc2syskHYPZ0rYoXERER8RYV40VERGRAMBkNxERYiImwkD0i+rT9dQ0tHVbUt6+mLz5eT0VVI00tdvfDZjftKnEfFxUWSHpyxImvcEYkhWMNNPfmpYmIeNUnXx+hpc3ByKHhHR7ELSIiIiKepWK8iIiIDArBVn9GWP0ZMTT8tH2tbXZKbQ3uB8oePVbDgfxK8ktqOF7dxMadxWzcWQyAwQBJsSFknCjOj0yOIDUhFD89OFZE+qGGplY+/eYoADdOH6l2XSIiIiJepGK8iIiIDHpmPxNJsSEkxYZ02N7U3MahwioO5FdxoKCSg/mVlFU2UlBaS0FpLau2uNo6+PsZSUsKZ2RyOOlDI8hIiSAu0qqiloj0eX/bnEd9YytDYoKYdEGCr8MRERERGdBUjJcBaf/+/Vx33XWkpqaycuXKTsfs3r2bWbNmMXLkSFasWEF1dTWffPIJ69at48iRI5SXlxMQEMDIkSOZM2cOs2bN6uWrEBERXwsM8OOCtGguOKVtQ2VNEwcLqjiQX+n6KqiivrGVvbm2Dr3oQ6z+pCeHu1vcjBwaTlhwgC8uQ0SkU61tDj5afxiAH10+EpNRHyCKiIiIeJOK8TIgZWRkkJmZyb59+9ixYwc/+MEPThvz8ccfA3DdddcBsG3bNl544QUSEhJISUlh7NixVFRU8N1337Ft2zZ27tzJM88806vXISIifU9EaCAXZcVzUVY8AA6Hk+Lj9SeL8/mVHCmqobahhW/3lfHtvjL3sfFRVtKHRpCeEkH60AiGJ4URYDb56lJEZJBbv62A49VNRIYGMH1Ckq/DERERERnwVIwfBJxOJ87W5jOOcdjtOFubcRjBYPJdUcBgDvDYLf3XX389+/bt4+OPPz6tGG+32/n0008xGo1cf/31AKSlpfHee+8xfvz4DmPLy8u5++67+fOf/8z111/P2LFjPRKfiIgMDEajgSExwQyJCWbahUMBVw/69r7zrq8qisrrTvSkb+DL74sA10NnUxNDXQX6E/3nk2JDtDpVRLzO4XCydO0hAK6/LA2znz4YFBEREfE2FeMHOKfTybF3fkFz4X5fh3JOApIySZz3K48U5K+99lp+/etf8+mnn/Kzn/0Ms9ns3vf1119TUVHB5MmTiYuLAyA5OZnk5OTTzhMTE8Njjz3GHXfcwcqVK1WMFxGRszL7mdztadrVNbZyML/yRO/5KvbnV1JV28zhwmoOF1bz+UbXOEuAHyOHhjNyaDgZKa5zRIVZfHQlIjJQ5ewpobCsjqBAP66anOrrcEREREQGBRXjB4XBubouJiaGyZMn8/XXX/PVV18xffp0977ly5cDcMMNN3Q4xul0smXLFrZu3UpZWRnNzc04nU7q6+sByM3N7a3wRURkgAm2mBmXEcu4jFjA9TunvKqRg/kn+s8XVHKooIrG5jZ2HKpgx6EK97GRoYEd+s8PiVLveRE5f06nk7+uOQjAP188DGug+SxHiIiIiIgnqBg/wBkMBhLn/eqsbWrsdjvNzc0EBARgGiBtasDVqubrr7/m448/dhfj6+rqWLVqFVarlZkzZ7rHlpeXM3/+fLZv397l+erq6jwWm4iIDG4Gg4HYCCuxEVYuGZMIgN3uoKCsrkP/+bySWmw1TWzaVcKmXSUnjoXoUD8u2O/ggrRYMlNc7W2Mam8jIudg95Hj7M+rxOxn5Lopw30djoiIiMigoWL8IGAwGDD4B55xjNNux+AAo38gRh8W4z3tn/7pn7Baraxdu5ba2lpCQkL429/+RlNTE9dddx1Wq9U99qmnnmL79u1Mnz6du+66i7S0NEJCQjCZTBw9epSrrrrKh1ciIiKDgclkJDUhlNSEUGZOSgGgqbmNw0XVJwv0BVWU2Roor25j7bfHWPvtMQCCLGYyUiLITIlkVKprBb1Wu4pIZ9p7xc+YmExE6JnfJ4iIiIiI56gYLwOaxWLhyiuv5MMPP+SLL75gzpw5fPzxx0DHFjUNDQ18+eWXREVF8bvf/e60uwPy8/N7M2wRERG3wAA/soZHkTU8yr2tuKyKNRt30egM4fCxWg4WVFHf2Mq2fWVs21cGuFbPp8SHkpESwajUSDJTI0mMDvLoHWgi0v8cPVbN1r2lGA3wo8vTfB2OiIiIyKCiYrwMeNdffz0ffvghy5cv57LLLiMnJ4e4uDgmT57sHlNbW4vD4SA2NrbTNj3tPeZFRET6grBgfzKTLIwaNRKr1Uqb3UHusRr25dnYl1vJ3jwbZbYGcotryC2uYeWmPABCrP5kprpWz2emRjByaASWAKWDIoPJshOr4i/+QSKJ0cE+jkZERERkcNG7LxnwJk2aRHx8PFu2bOH3v/89DoeDa665BqPR6B4THR1NaGgoBw4cYPPmzUyaNMm9b+nSpXz66ae+CF1EROSc+JmMjBgazoih4VxzqWtbZU0T+/Js7M2tZF+ujUOFVdQ2tLBlTylb9pQCYDQaSE0IJfOU1fNxkVatnhcZoEptDXz5fREAs6eP9HE0IiIiIoOPivEeVFpaylVXXUVDQwPbtm0jKCjI1yEJYDQaufbaa1m8eDF//vOfgY4tagBMJhP33nsvr776KrfddhsTJ04kJiaGAwcOcODAAe655x5ef/11H0QvIiJyfiJCA5mcncjkbNfDYVvbHBwpqmJfnqs4vy/XRkV1E0eKqjlSVM1nG3IBCA8O6NDaZsTQcALMA+d5MiKD2UfrD+FwOBk7MoYRSeG+DkdERERk0FEx3oMWLlyI1WqloaHB16HIP7j++utZvHgxAKNHjyY9Pf20MXfddReJiYm89dZb7Nq1C6PRyKhRo3j99ddJS0tTMV5ERPo1s5+RjJRIMlIiuf4yV5/oiqrGE6vnbezPreRwURVVdc1s3l3C5t0lAJiMBoYPCSMzNZLMlAgyUyOJCbdo9bxIP1Nd18zfNrueg3SjVsWLiIiI+ISK8R6yZcsWvvrqK+69914WLlzo63DkH4wcOZL9+/efddzVV1/N1Vdf3em+zo6fNGnSOZ1XRESkL4oOt3Bp+BAuHTMEgJZWO4cKq9iXW3mi/7yNytpmDhZUcbCgik++ch0XGRpIZuqJ1fMpkaQlhWH20+p5kb5sxddHaWm1MyIpjB+MjPZ1OCIiIiKDkorxHmC323nhhRd44IEHCA0N9XU4IiIiIufF32xi9LAoRg+LAsDpdFJW2ehua7Mvz8aRYzXYaprYsKOYDTuKgRM965PaV8+7Hg4bFWbx5aWIyCmamtv49JsjgKtXvO5sEREREfGNflOM3717Nxs2bGDnzp3s2rWLoiLXg4dWr15NUlJSl8e1tLTw9ttvs3z5cgoKCrBarUyYMIH777+frKwsj8T2/vvv09LSwi233MInn3zikXOKiIiI+JrBYCAu0kpcpJWp4135VlNzGwcLq9iXa2N/XiV7c23U1Le4etHnVQKHAYiJsJCeHEF8pJXYSCsx4RZiIlzfgyxmH16VyOCz+tsiahtaSYgOcj9HQkRERER6X78pxv/P//wPq1ev7tYxLS0t3HnnneTk5BAVFcW0adMoLy/n73//O+vWreO1115jypQpPYqrsrKS//qv/+LVV1/FbNYbSxERERnYAgP8yE6LJjvN1ebC6XRSfLy+Q2ubvOIayisbKa9s7PQc1kA/YiOsRIdbiImwuAv1sREWYsKtRIYGYDIZe/OyRAYsu8PJpxtcveJnXT4Ck1Gr4kVERER8pd8U48eOHUt6ejoXXHAB2dnZzJo1i4qKijMes3jxYnJycsjOzmbJkiUEBwcDsGLFCh599FEee+wxVq1a5d4OUFtbS1lZ2VnjSUtzPfjsN7/5DWPGjGHq1Kk9uDoRERGR/slgMJAYHUxidDDTJwwFoKGplYMFVRwpqqasssFVmK9yFedrG1poaGojt7iG3OKaTs9pNBqICgskJtxCbIS1Q8E+5kQB3xqoRRAi52JnbgPHq5sIDwlw/x0VEREREd/oN8X4e+65p1vj29raeOeddwB45plnOhTcr7nmGpYvX8769etZunQpt956q3vfF198wVNPPXXW8+/fv5+DBw+ybNky3n33XWpqXG8mGxtdK8Dq6uowmUwEBgZ2K24RERGR/s4aaGbMyBjGjIw5bV9Tc5u7MF9e5SrUl1U2uLdVVDVidzjdK+v3HLV1+hpBFrO7MN+xaO/6HhEaqBXAMug5HE6+2VsLwHVThuNv1oOWRURERHyp3xTju2vbtm1UVVWRlJREdnb2afuvvvpq1q9fz+rVqzsU4+fMmcOcOXPO6TXy8vJobW3lpptuOm3fZZddxo033siLL754/hchIiIiMsAEBvgxNC6EoXEhne63O5xU1Ta5i/HtBfvyqkb3Kvu6xlbqT3x1tbreZDQQFW7pomDvWmVvCRiwqbAIAN8dqKC8ug1LgB9XXzzM1+GIiIiIDHoD9h3I3r17Abp8SOvo0aMB1wr38zV+/Hj36vt2X331FYsXL+b1119n6NDzvw3U6XTS0NBw1nHNzc04HA7sdjt2u71Hr9f+vSfnGex6cx7tdjsOh4PGxkYcDodXX8sX2u8yaf8u50fz6DmaS8/QPHrGQJ9HixmSYwNJjg0EIk7b39jcxvHqJiqqmyivauJ4levniupGKqqaOF7TjN3hpMzWQJmt63wqyOJHbHgg0y+wkJraO3PpdDoxGLRiX3rH8q9zAfiniUl6cLKIiIhIHzBgi/HHjh0DID4+vtP97durqqqor68nKCio268RGRnJpEmTOmwrKioCYMKECed1znatra3uDxTOxmQyeezNeHNzs0fOM9j1xjw2NjbS2trKkSNHvP5avpSbm+vrEAYEzaPnaC49Q/PoGYN9HgOApGDXF0kmIBgIxuFwUttkp7r+xFdD2yk/26mub6Op1Ul9YxtHG+s4GmNkaC/Opb+/f6+9lgxutppm/P0MXH1xsq9DEREREREGcDG+fVW5xWLpdL/VanX/fL7FeG8ym82MGDHirOOcTif5+fnY7fYe9ad3Op00NzcTEBCg1Vo90JvzWFdXR0BAAMnJyQPy/1ljYyO5ubmkpqZ2+fdYzk7z6DmaS8/QPHqG5rHnGpraqKhuoqq6HkPL8V6by0OHDnn9NUTaPXfXBPYfOEhESICvQxERERERBnAx3ldmzZrFrFmzenweg8HQ4QODMwkJCaG2tpbo6GhMpvN7KFN7SxWDwXDe55Dem0e73U5tbS0hISF97oMkT7NYLOf8d0G6pnn0HM2lZ2gePUPzeP6sVoiODKWhoYG9e229NpcD8QN06bsiQwMJD9JbPhEREZG+YsBmZu1vprpq33JqP/b+XsyMjY0lNzeXvLw8IiMjz2tVtt1ud7dWUTH+/Hl7HttX3ttsNhwOB7GxsR5/DREREREREREREfG8AVuMT0xMBKCkpKTT/e3bw8PD+30x3t/fn6SkJCoqKiguLj6vczgcDtra2vDz88NoNHo4wsGjt+YxKCiI+Ph49ZwVERERERERERHpJwZsMX7UqFEA7N69u9P9e/bsASAjI6PXYvImq9VKcnIybW1ttLW1dfv4xsZGjhw5QnJysnrP9kBvzKOfnx9+fgP2r66IiIiIiIiIiMiANGAreuPHjyc8PJzCwkJ27txJdnZ2h/2fffYZADNmzPBFeF5zvoVah8MBQEBAQI8eBDvYaR5FRERERERERESkMwO2H4mfnx/z5s0D4LnnnqOurs69b8WKFaxfv56IiAhmz57tqxBFREREREREREREZJDoNyvj161bx6JFi9z/XV1dDcCDDz7o7ps9depU5s+f7x5z9913s2nTJnJycpg5cyYTJ06koqKCrVu3YjabWbhwIcHBwb17ISIiIiIiIiIiIiIy6PSbYrzNZmP79u2nbd+7d6/75+HDh3fY5+/vz5tvvslbb73F8uXLWbNmDVarlRkzZjB//nyysrK8HreIiIiIiIiIiIiISL8pxs+aNYtZs2Z1+zh/f3/uu+8+7rvvPi9EJSIiIiIiIiIiIiJydgO2Z7yIiIiIiIiIiIiISF+hYryIiIiIiIiIiIiIiJcZnE6n09dBSEfbtm3D6XS6H0zbG5xOJ62trZjNZgwGQ6+97kCjefQczaVnaB49R3PpGZpHz9A8ek5vz2VLSwsGg4Hx48d7/bWkb1GO339pHj1Hc+kZmkfP0Dx6jubSMzSPnuGLeexOjt9vesYPJr74C2cwGHr1jcFApXn0HM2lZ2gePUdz6RmaR8/QPHpOb8+lwWDQm6tBSjl+/6V59BzNpWdoHj1D8+g5mkvP0Dx6hi/msTs5vlbGi4iIiIiIiIiIiIh4mXrGi4iIiIiIiIiIiIh4mYrxIiIiIiIiIiIiIiJepmK8iIiIiIiIiIiIiIiXqRgvIiIiIiIiIiIiIuJlKsaLiIiIiIiIiIiIiHiZivEiIiIiIiIiIiIiIl6mYryIiIiIiIiIiIiIiJepGC8iIiIiIiIiIiIi4mUqxouIiIiIiIiIiIiIeJmK8SIiIiIiIiIiIiIiXqZivIiIiIiIiIiIiIiIl6kYLyIiIiIiIiIiIiLiZX6+DkB8q6Wlhbfffpvly5dTUFCA1WplwoQJ3H///WRlZfk6vD6vtbWVzZs3s27dOjZv3kxBQQF2u534+HguvfRS7rrrLoYMGeLrMPslp9PJrbfeyubNmwH47LPPSEtL83FU/UttbS1vvfUWq1atorCwEIC4uDguvPBCHn74YeLi4nwcYd935MgRFi9ezObNmykrK8PPz4/k5GRmzpzJ7bffTlBQkK9D7DN2797Nhg0b2LlzJ7t27aKoqAiA1atXk5SU1OVx+fn5/Pa3v2Xjxo1UV1cTHx/PlVdeyf333z8o57e781hRUcG6detYv349O3fupKKiAn9/f0aOHMm1117LzTffjJ/f4Ev3zvfP46mOHDnCDTfcQHNzM2PGjOGDDz7wZsgiHqUcv2eU43uPcvyeU47fc8rxz51yfM9Qju8ZAyXHNzidTmevv6r0CS0tLdx5553k5OQQFRXFxIkTKS8v59tvv8VsNvPaa68xZcoUX4fZp23YsIHbb78dgISEBPebmx07dlBWVkZwcDBvvPEG48aN82WY/dL777/PM888g8FgwOl0KlHvpkOHDnH77bdTVlZGSkoKmZmZtLa2kp+fz6FDh/jTn/7EhAkTfB1mn7Z161buvPNOmpqaSE1NJSMjg8bGRrZt20ZdXR1paWm89957hIWF+TrUPuGBBx5g9erVp20/U2K0e/du5s6dS319PVlZWSQnJ7Njxw6KiopIT0/nz3/+MyEhId4OvU/p7jz+9Kc/5ZNPPsFkMjF69GiGDh1KRUUF33//PS0tLUycOJHFixdjsVh6I/w+43z+PJ7K4XDwk5/8hO+//x6n06livPQryvF7Tjm+9yjH7xnl+D2nHL97lON7hnJ8zxgoOf7g+xhF3BYvXkxOTg7Z2dksWbKE4OBgAFasWMGjjz7KY489xqpVq9zb5XQGg4Err7yS22+/vUMy3tzczLPPPsuyZct49NFHWblyJWaz2YeR9i8lJSW8+uqrTJkyhSNHjrg/7ZRzU1NTwx133EFVVRW//vWvufbaazvsz8/P19/rc/Dss8/S1NTEAw88wMMPP4zBYACgqqqKO+64g927d/PGG2/w6KOP+jjSvmHs2LGkp6dzwQUXkJ2dzaxZs6ioqOhyvN1u55FHHqG+vp5HH32Ue+65B3AVkR5++GHWrl3Lq6++yvPPP99bl9AndHcew8PDWbBgAXPmzCEmJsa9/ejRo9xxxx1s2bKF3//+9/z7v/97b4TfZ3R3Hv/Ru+++y3fffcfNN9/M+++/78VIRTxPOX7PKcf3DuX4PaMc3zOU43ePcnzPUI7vGQMmx3fKoNTa2uq86KKLnOnp6c4dO3actv/uu+92pqenO5csWeKD6AaGxsZG54UXXuhMT093bt682dfh9Ct33323c+zYsc7CwkLntGnTnOnp6c5Dhw75Oqx+48UXX3Smp6c73377bV+H0m/ZbDZnenq6Mysry9nc3Hza/k8++cSZnp7unDt3rg+i6x8uvvhiZ3p6urOgoKDT/StXrnSmp6c7r7nmGqfD4eiwr7S01Dl69Gjn6NGjnTabrTfC7bPONo9n0v7ndNq0aV6IrH/pzjzm5+c7x44d67znnnucmzZtcqanpzvnzJnTC1GK9JxyfO9Tjn/+lOP3jHL8nlOO33PK8T1DOb5n9NccXw9wHaS2bdtGVVUVSUlJZGdnn7b/6quvBuj09g85N4GBgaSmpgJQVlbm22D6kY8++oj169ezYMEC9eI8D83NzSxbtgyLxcJNN93k63D6rXNd5RYREeHlSAautWvXAnDllVe6VyS1i42N5cILL6StrY3169f7IrwBITMzE9DvoO765S9/CbhWzon0N8rxvU85/vlRjt8zyvE9Qzm+9ynH9z7l+OenL+X4KsYPUnv37gXo8gFOo0ePBmD//v29FtNAY7fb3bdeRkdH+zia/qGiooKXXnqJ7Oxs5s2b5+tw+qVdu3ZRW1vL6NGjsVgsbNy4kYULF/L000/z+uuvc+TIEV+H2C8EBwczbtw4Wltbee2113Ce8niVqqoq3nrrLQDmzJnjqxD7vfbfQxdccEGn+9t/P+3bt6/XYhpo8vLyADrc2ipn9n//939s3LiRRx55hISEBF+HI9JtyvG9Tzl+9ynH7znl+J6hHN/7lON7n3L87utrOb56xg9Sx44dAyA+Pr7T/e3bq6qqqK+vH5RPu+6pjz/+GJvNRmRkJOPHj/d1OP3C888/T11dHb/61a8wGvVZ4fk4dOgQAFFRUTz88MOsXLmyw/7f/OY33HfffSxYsMAX4fUrL774InfddReLFi3is88+IyMjg6amJr799lssFgsLFy7k0ksv9XWY/dbZfg/FxcV1GCfdt2TJEgBmzJjh20D6idLSUl555RXGjBnDLbfc4utwRM6LcnzvU47ffcrxe045vucox/cu5fjepxy/e/pijq9i/CDV0NAA0OWTl61Wq/tnJerdV1hYyCuvvALAv//7v+Pv7+/jiPq+lStXsnLlSu655x73bVfSfdXV1cDJ2wMfe+wxrr32WkwmE59//jkLFy5k0aJFJCYmasXHWaSlpfHee++xYMECvv/+e3Jzc937Lr74YkaMGOG74AaAs/0eav+9U19f32sxDSTvvPMOOTk5hIeHc++99/o6nH7hmWeeoampiRdeeEHFIum3lON7l3L87lOO7xnK8T1HOb53Kcf3LuX43dcXc/y+EYXIAFJXV8cDDzxAVVUVV111Ff/6r//q65D6vKqqKp5//nlSUlJ48MEHfR1Ov+ZwOABobW3lvvvu46677iIuLo7o6Gjmzp3LI488AsCiRYt8GWa/sGnTJq677jpqa2t544032LJlC19++SXPP/88Gzdu5Mc//jFff/21r8MUOc0333zDK6+8gtFo5KWXXtItrOfgk08+Ye3atdx5551kZGT4OhwR6YOU43efcnzPUY7vOcrxpb9Sjt99fTXHVzF+kGpfFdPY2Njp/vZPMwGtmOmG5uZm7r//fvbv38/kyZN59dVXfR1Sv/DSSy9RUVHBc889R0BAgK/D6ddOXfHW2aqY9jeOx44do6CgoNfi6m+qqqpYsGABLS0tLF68mClTphAaGkpcXBw33XQTzz//PM3NzTzzzDPY7XZfh9svne33UPtqGf0O6p4dO3bw4IMP0tbWxvPPP8/06dN9HVKfZ7PZePHFF0lNTeWBBx7wdTgiPaIc3zuU458f5fieoxzfM5Tje59yfO9Qjt99fTnHV5uaQSoxMRGAkpKSTve3bw8PD9c/kueotbWVhx56iJycHMaOHcuiRYt06+o5Wr16NQEBASxatOi01Rzl5eUAPPHEE1gsFm655RauuuoqX4TZLwwZMgQAf39/dz++UwUFBREZGYnNZqO8vJyhQ4f2doj9wrp166iqqmLy5MnuOT3VzJkzMZvNFBYWUlBQQGpqau8H2c8lJiZSXV1NSUlJp7etl5aWusfJuTlw4AB33303DQ0NPPHEE7pN/Rxt27aNyspKrFYrd911V4d9NTU1gKtX79y5cwH4/e9/r9xI+izl+J6nHP/8Kcf3HOX4nqEc3/uU43uecvzz05dzfBXjB6lRo0YBsHv37k7379mzB6BP3cbRlzkcDh577DHWr19PZmYmr7/+eofVC3J2zc3N5OTkdLl/586dgB5ScjajR48GoKWlpdNesHa7ndraWgD9GT2D9iQxJCSk0/1+fn5YrVaqq6vdPTyle0aNGsXevXvZtWsXl19++Wn7238/qb/sucnLy+OOO+6gqqqK+fPnc8cdd/g6pH6nqKiIoqKiTvfV19e7f0dppZz0ZcrxPUs5fs8px/cM5fieoRzf+5Tje5Zy/J7rizm+ivGD1Pjx4wkPD6ewsJCdO3eSnZ3dYf9nn30GKCk6F06nk6eeeorPP/+cYcOG8dZbbxEWFubrsPqVrVu3drlv+vTpFBUV8dlnn5GWltaLUfVPCQkJZGVlsXv3bjZv3nza7Wtbt26ltbUVi8XC8OHDfRRl39fef2/37t20tbXh59fx12Vubq47Qe9sVY2c3bRp01i2bBkrV65k/vz5GAwG976ysjK+/fZb/Pz8uOyyy3wYZf9QXFzMbbfdRnl5ObfddhsPP/ywr0PqV6644gr279/f6b7Nmzczb948xowZwwcffNDLkYl0n3J8z1GO33PK8T1HOb5nKMf3PuX4nqMcv2f6co6vnvGDlJ+fH/PmzQPgueeeo66uzr1vxYoVrF+/noiICGbPnu2rEPuNl19+maVLl5KUlMQf/vAHoqKifB2SDHL33HMPAAsXLqSwsNC9vbS0lBdffBGAG2+8UbdYn8Fll11GYGAgRUVF/PrXv6atrc29z2az8dRTTwFw0UUXER0d7asw+7Xp06eTmprKgQMHWLx4sXt7S0sLTz/9NG1tbcyePZvIyEgfRtn32Ww2br/9do4dO8ZNN93Ek08+6euQRMSHlON7jnJ86WuU4/eccnzvU47vGcrxBzaD0+l0+joI8Y2WlhbuvPNOcnJyiIqKYuLEiVRUVLB161bMZjOLFi3Sp5VnsWrVKubPnw/ApEmTuux7dsUVV3DFFVf0ZmgDhlbNnJ9nn32W9957D6vVyvjx4zEajXz33XfU1tYyduxYlixZgsVi8XWYfdr//d//8fTTT+NwOEhMTGT06NE0NTWxfft2amtriY6O5t1332XYsGG+DrVPWLduXYd+sHv27KG1tZVRo0a53xROnTrV/W8mwK5du5g7dy4NDQ1kZWWRkpLC9u3bKSoqIj09nT//+c9d3kY8UHV3HufPn8+qVavw9/fn6quv7rD66FSPP/74oHrTcz5/Hjvj61UzIudDOX7PKcf3PuX450c5fs8px+8e5fieoRzfMwZKjq82NYOYv78/b775Jm+99RbLly9nzZo1WK1WZsyYwfz588nKyvJ1iH1e+0MfwPWXuStDhgxRoi696tlnn+XCCy/kT3/6E9999x1tbW2kpqZyzTXXcOuttxIQEODrEPu8OXPmkJ6ezh/+8Ae2bdvG+vXrMZlMJCUlMWfOHO666y6tkjuFzWZj+/btp23fu3ev++d/vG36ggsu4KOPPuK3v/0tGzdu5MCBA8THx3PXXXfxwAMPDMqHC3Z3Htt/D7W0tPDRRx91ed4HH3xwUCXq5/PnUWSgUI7fc8rxpa9Sjt9zyvG7Rzm+ZyjH94yBkuNrZbyIiIiIiIiIiIiIiJepZ7yIiIiIiIiIiIiIiJepGC8iIiIiIiIiIiIi4mUqxouIiIiIiIiIiIiIeJmK8SIiIiIiIiIiIiIiXqZivIiIiIiIiIiIiIiIl6kYLyIiIiIiIiIiIiLiZSrGi4iIiIiIiIiIiIh4mYrxIiIiIiIiIiIiIiJepmK8iIiIiIiIiIiIiIiXqRgvIiIDVmFhIRkZGWRkZPg6FBERERER8QDl+CLSn/n5OgAREfGtuXPnkpOTc05j9+/f7+VoRERERESkp5Tji4j0TSrGi4gIAAkJCSQkJPg6DBERERER8RDl+CIifYuK8SIiAsDs2bN56KGHfB2GiIiIiIh4iHJ8EZG+RT3jRURERERERERERES8TCvjRUSk2woLC5kxYwbg6jG5Zs0a3n77bfbt20dbWxsjR47k3/7t37juuuu6PMfhw4d544032Lx5M2VlZVgsFjIyMrj++uuZNWsWJpOp0+Pa2tr45JNPWLFiBXv27KG2tpaIiAhSUlKYPn06c+bMISQkpNNjt27dyuuvv8727dtpbGwkJSWFm266iVtuuQWDwdDziRERERER6aeU44uIeJ+K8SIi0iN//OMf+dWvfkV4eDjJycmUlJSwfft2tm/fzo4dO3jqqadOO+azzz7j8ccfp7W1FavVSnp6OtXV1WzZsoUtW7bw+eefs2jRIgIDAzscZ7PZeOCBB/juu+8AiImJITMzE5vNxrZt29iyZQtZWVlMmjTptNdctmwZv/jFLwgNDSUpKYljx45x4MABXnjhBYqKinjiiSe8M0EiIiIiIv2McnwREe9QmxoREemRV155hQceeIBvvvmGpUuX8vXXX/Pss89iNBr54x//yOeff95h/OHDh/nZz35Ga2src+bM4ZtvvmHZsmWsXr2at99+m5CQEL755hsWLlzY4Tin08mCBQv47rvvSEhIYMmSJXz99df89a9/Zc2aNWzevJlnnnmG6OjoTuN85plneOKJJ9iwYQNLly5l48aNPPLIIwC8/fbb5Ofne2eCRERERET6GeX4IiLeoWK8iIgA8Lvf/Y6MjIwuvx544IFOj7voootYsGABfn6um60MBgM//vGPufHGGwFYtGhRh/Fvvvkmzc3NpKen88ILL2C1Wt37Lr74YvfqlQ8++ICysjL3vrVr15KTk4O/vz9vvvkmkydP7nDekJAQfvKTn5CWltZpnNdddx233XZbh1tj7733XtLT03E6naxbt+4cZ0pEREREpH9Qjr/uHGdKRKR3qBgvIiIAJCQkMH78+C6/RowY0elxt9566xm3HzhwgOLiYvf2L7/8EoB58+Z12sPxhhtuICoqitbWVjZs2ODe/re//Q2AmTNndpmMn8ktt9zS6fZx48YBaNWMiIiIiAw4yvGV44tI36Ke8SIiAsDs2bN56KGHun3cyJEjO90+bNgw/Pz8aGtr4/DhwyQkJFBbW0t5eTkA6enpnR5nNpsZPnw4x48f58iRI+7tBw4cAE4m1t2Vmpra6faoqCgA6uvrz+u8IiIiIiJ9lXJ85fgi0rdoZbyIiPRIV/0bTSYT4eHhwMkk+NRkuKvjwPXQpn8cX1dXB7huVT0fp94qeyqj0fWr0Ol0ntd5RUREREQGGuX4IiLeoWK8iIj0SEVFRafb7XY7VVVVAAQFBXX4fqbjAPfKmlPHBwcHA1BbW9ujeEVERERE5MyU44uIeIeK8SIi0iMHDx7sdPvRo0dpa2sDcPd/DAkJca+Iab8l9R+1tbW5b10dPny4e3tGRgYA3333nWcCFxERERGRTinHFxHxDhXjRUSkR955550zbk9PTychIcG9ferUqe79nd02+vHHH3P8+HHMZjOXXHKJe/uVV14JuB7ydGqfSRERERER8Szl+CIi3qFivIiI9MjmzZv53e9+514h43Q6+eCDD/jrX/8KwP33399h/B133EFAQAAHDhzg6aefpqGhwb1v48aNvPLKKwDcdNNN7hU2AJdffjk//OEPaWlp4a677mLz5s0dzltXV8d7773H4cOHvXKdIiIiIiKDhXJ8ERHv8PN1ACIi0jcsXbqUDRs2nHHML3/5S0aPHt1h2xNPPMGvfvUr/vjHPzJ06FBKSkrc/SB/8pOfcPXVV3cYn5aWxssvv8zjjz/OBx98wIoVKxg+fDjV1dUUFBQAcMkll/DYY4+d9vq/+c1vuP/++/n++++ZN28eMTExJCQkcPz4cUpKSrDb7bzzzjvuW2ZFRERERAYz5fgiIn2LivEiIgJAcXExxcXFZxzT2YOV5s6dS2JiIkuWLGHv3r20tbXxgx/8gFtuuYUbbrih0/NcffXVpKen8+abb7Jp0yb2799PYGAgEyZM4IYbbmDWrFmYTKbTjouMjOTdd9/lo48+4pNPPmH//v3s3buXyMhILrzwQmbMmEFWVtZ5Xb+IiIiIyECjHF9EpG8xODtr5iUiInIGhYWFzJgxA4D9+/f7OBoREREREekp5fgiIt6nnvEiIiIiIiIiIiIiIl6mYryIiIiIiIiIiIiIiJepGC8iIiIiIiIiIiIi4mUqxouIiIiIiIiIiIiIeJke4CoiIiIiIiIiIiIi4mVaGS8iIiIiIiIiIiIi4mUqxouIiIiIiIiIiIiIeJmK8SIiIiIiIiIiIiIiXqZivIiIiIiIiIiIiIiIl6kYLyIiIiIiIiIiIiLiZSrGi4iIiIiIiIiIiIh4mYrxIiIiIiIiIiIiIiJepmK8iIiIiIiIiIiIiIiX/X832M5IjgTyuAAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "score = get_accuracy_score(net, test_loader)\n", + "print(f\"Inference score: {score}\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "6szfBWZpdjNA", + "outputId": "fca50fcc-48f9-4a2e-887c-e0e39ceb12cf" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + ":15: UserWarning: Implicit dimension choice for log_softmax has been deprecated. Change the call to include dim=X as an argument.\n", + " return F.log_softmax(outputs)\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Inference score: 0.9779999852180481\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Результат чуть хуже, чем с использованием нашей собственной реализации. Нельзя было ожидать тот же скор, поскольку, очевидно, реализация функций в pytorch может отличаться от нашей в некоторых тонкостях." + ], + "metadata": { + "id": "weoMYiCsdyQi" + } + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + }, + "colab": { + "provenance": [] + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file