forked from btcrabb/SlideSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
slideseg.py
557 lines (446 loc) · 18.5 KB
/
slideseg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
# ******************************************************************************
#
# Author: Brendan Crabb <[email protected]>
# Created August 1, 2017
#
# ******************************************************************************
"""
MIT License
Copyright (c) 2017 Brendan Crabb
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
# Import necessary packages
from PIL import Image
from collections import defaultdict
from openslide import OpenSlide
import xml.etree.ElementTree as ET
import numpy as np
import tqdm
import cv2
import os
def load_parameters(parameters):
"""
Loads parameters from text file
:param parameters: the name of the parameters file
:return: parameters for slideseg
"""
params = {}
file = open(parameters, "r")
for line in file:
option = line.partition(":")[0]
value = line.partition(":")[2]
value = value.partition("#")[0].strip()
params[option] = value
return params
def makemask(annotation_key, size, xml_path):
"""
Reads xml file and makes annotation mask for entire slide image
:param annotation_key: name of the annotation key file
:param size: size of the whole slide image
:param xml_path: path to the xml file
:return: annotation mask
:return: dictionary of annotation keys and color codes
"""
# Import xml file and get root
tree = ET.parse(xml_path)
root = tree.getroot()
# Generate annotation array and key dictionary
mat = np.zeros((size[1], size[0]), dtype='uint8')
annotations = defaultdict(list)
contours = []
# Find data in xml file
if not os.path.isfile(annotation_key):
print("Could not find {0}, generating new file...".format(annotation_key))
generatekey('{0}'.format(annotation_key), os.path.split(xml_path)[0])
print('{0} generated.'.format(annotation_key))
color_codes = loadkeys(annotation_key)
for reg in root.iter('Region'):
key = reg.get('Text').upper()
if key in color_codes:
color_code = color_codes[key][0]
else:
addkeys(annotation_key, key)
color_codes = loadkeys(annotation_key)
color_code = color_codes[key][0]
points = []
for child in reg.iter('Vertices'):
for vert in child.iter('Vertex'):
x = int(round(float(vert.get('X'))))
y = int(round(float(vert.get('Y'))))
points.append((x, y))
cnt = np.array(points).reshape((-1, 1, 2)).astype(np.int32)
cv2.fillPoly(mat, [cnt], color_code)
contours.append(cnt)
# annotations and colors
if key not in annotations:
annotations['{0}'.format(key)].append(color_code)
print('annotations loaded successfully')
return mat, annotations
def writekeys(filename, annotations):
"""
Writes each annotation key to the output text file
:param filename: filename of image chip
:param annotations: dictionary of annotation keys
:return: updated text file
"""
dest = 'output/textfiles/'
path = os.path.dirname(dest)
if not os.path.exists(path):
os.makedirs(path)
name = '{0}_{1}'.format(os.path.splitext(filename)[0], 'Details')
file = open("{0}{1}.txt".format(dest, name), "w+")
for key, value in annotations.iteritems():
keyline = "Key: {0}".format(key)
file.write(keyline)
file.write(("Mask_Color: {0}\n".format(value).rjust(50 - len(keyline))))
file.close()
def writeimagelist(filename, image_dictionary):
"""
Writes list of images containing each annotation key
:param filename: the name of the slide image
:param image_dictionary: dictionary of images with each key
:return text
"""
dest = 'output/textfiles/'
name = '{0}_{1}'.format(os.path.splitext(filename)[0], 'Details')
file = open("{0}{1}.txt".format(dest, name), "a")
for key, value in image_dictionary.iteritems():
keyline = "\nKey: {0}\n".format(key)
file.write(keyline)
for name in value:
file.write(" {0}\n".format(name))
file.close()
def loadkeys(annotation_key):
"""
Opens annotation_key file and loads keys and color codes
:param: annotation_key: the filename of the annotation key
:return: color codes
"""
color_codes = defaultdict(list)
file = open(annotation_key, "r")
# Load keys and color codes from Annotation_Key.txt
for line in file:
color_value = int(line[-5:-2])
annotation = line[5:]
annotation = annotation.partition("Mask_")[0].rstrip()
color_codes[annotation].append(color_value)
return color_codes
def addkeys(annotation_key, key):
"""
Adds new key and color_code to annotation key
:param annotation_key: the filename of the annotation key
:param key: The annotation to be added
:return: updated annotation key file
"""
color_codes = loadkeys(annotation_key)
min_color = min(color_codes.items(), key = lambda x: x[1])[1]
new_color = int(min_color[0]) - 1
color_codes[key.upper()].append(new_color)
writeannotations(annotation_key, color_codes)
def writeannotations(annotation_key, annotations):
"""
Writes annotation keys and color codes to annotation key text file
:param annotation_key: filename of annotation key
:param annotations: Dictionary of annotation keys and color codes
:return: .txt file with annotation keys
"""
file = open(annotation_key, "w+")
for key, value in sorted(annotations.iteritems()):
keyline = "Key: {0}".format(key)
file.write(keyline)
file.write(("Mask_Color: {0}\n".format(value).rjust(65 - len(keyline))))
file.close()
def generatekey(annotation_key, path):
"""
Generates annotation_key from folder of xml files
:param annotation_key: the name of the annotation key file
:param path: Directory containing xml files
:return: annotation_key file
"""
color = 256
annotations = defaultdict(list)
for filename in os.listdir(path):
# Import xml file and get root
tree = ET.parse('{0}/{1}'.format(path, filename))
root = tree.getroot()
# Find data in xml file
for reg in root.iter('Region'):
key = reg.get('Text').upper()
if key in annotations:
continue
else:
color -= 1
color_code = color
if key not in annotations:
annotations['{0}'.format(key)].append(color_code)
# print annotations to text file
writeannotations(annotation_key, annotations)
def ensuredirectory(dest):
"""
Ensures the existence of a directory
:param dest: Directory to ensure.
:return: new directory if it did not previously exist.
"""
if not os.path.exists(dest):
os.makedirs(dest)
def attachtags(path, keys):
"""
Attaches image tags to metadata of chips and masks
:param path: file to attach tags to.
:param keys: keys to attach as tags
:return: JPG with metadata tags
"""
if os.path.splitext(path)[1] == ".png":
pass
else:
import pexif
metadata = pexif.JpegFile.fromFile(path)
str = ' '.join(keys)
metadata.exif.primary.ImageDescription = str
output = open(path, "wb")
metadata.writeFd(output)
output.close()
def savechip(chip, path, quality, keys):
"""
Saves the image chip
:param chip: the slide image chip to save
:param path: the full path to the chip
:param quality: the output quality
:param keys: keys associated with the chip
:return:
"""
# Ensure directories
directory, filename = os.path.split(path)
ensuredirectory(directory)
format, suffix = formatcheck(os.path.splitext(filename)[1].strip('.'))
if suffix == 'jpg':
# Save image chip
chip.save(path, quality = quality)
# Attach image tags
attachtags(path, keys)
else:
# Save image chip
chip.save(path)
# Attach image tags
attachtags(path, keys)
def savemask(mask, path, keys):
"""
Saves the image masks
:param mask: the image mask to save
:param path: the complete path for the mask
:param keys: keys associated with the chip
:return:
"""
# Ensure directories
directory, filename = os.path.split(path)
ensuredirectory(directory)
format, suffix = formatcheck(os.path.splitext(filename)[1].strip('.'))
if suffix == 'jpg':
# Save the image mask
cv2.imwrite(path, mask, [cv2.IMWRITE_JPEG_QUALITY, 100])
# Attach image tags
attachtags(path, keys)
else:
# Save the image mask
cv2.imwrite(path, mask)
# Attach image tags
attachtags(path, keys)
def checksave(save_all, pix_list, save_ratio, save_count_annotated, save_count_blank):
"""
Checks whether or not an image chip should be saved
:param save_all: (bool) saves all chips if true
:param pix_list: list of pixel values in image mask
:param save_ratio: ratio of annotated chips to unannotated chips
:param save_count_annotated: total annotated chips saved
:param save_count_blank: total blank chips saved
:return: bool
"""
if save_all is True:
save = True
elif save_count_annotated / float(save_count_blank) > save_ratio:
save = True
elif len(filter(lambda x: x > 0, pix_list)) > 0:
save = True
else:
save = False
return save
def formatcheck(format):
"""
Assures correct format parameter was defined correctly
:param format: the output format parameter
:return: format
:return: suffix
"""
if format.lower() == 'jpg':
_suffix = format
format = 'JPEG'
elif format.lower() == 'jpeg':
format = format.upper()
_suffix = 'jpg'
else:
format = format.upper()
_suffix = format.lower()
return format, _suffix
def openwholeslide(path):
"""
Opens a whole slide image
:param path: Slide image path.
:return: slide image, levels, and dimensions
"""
_directory, _filename = os.path.split(path)
print('loading {0}'.format(_filename))
# Open Slide Image
osr = OpenSlide(path)
# Get Image Levels and Level Dimensions
levels = osr.level_count
dims = osr.level_dimensions
print('{0} loaded successfully'.format(_filename))
return osr, levels, dims
def curatemask(mask, scale_width, scale_height, chip_size):
"""
Resize and pad annotation mask if necessary
:param mask: an image mask
:param scale_width: scaling for higher magnification levels
:param scale_height: scaling for higher magnification levels
:return: curated annotation mask
"""
# Resize and pad annotation mask if necessary
mask = cv2.resize(mask, None, fx=float(1) / scale_width, fy=float(1) / scale_height,
interpolation=cv2.INTER_CUBIC)
mask_width, mask_height = mask.shape
if mask_height < chip_size or mask_width < chip_size:
mask = np.pad(mask, ((0, chip_size - mask_width),
(0, chip_size - mask_height)), 'constant')
if mask_height > chip_size or mask_width > chip_size:
mask = mask[:chip_size, :chip_size]
return mask
def getchips(levels, dims, chip_size, overlap, mask, annotations, filename, suffix, save_all, save_ratio):
"""
Finds chip locations that should be loaded and saved
:param levels: levels in whole slide image
:param dims: dimension of whole slide image
:param chip_size: the size of the image chips
:param overlap: overlap between image chips (stride)
:param mask: annotation mask for slide image
:param annotations: dictionary of annotations in image
:param filename: slide image filename
:param suffix: output format for saving.
:param save_all: whether or not to save every image chip (bool)
:param save_ratio: ratio of annotated to unannotated chips (float)
:return: chip_dict. Dictionary of chip names, level, col, row, and scale
:return: image_dict. Dictionary of annotations and chips with those annotations
"""
# Image dictionary of keys and save variables
image_dict = defaultdict(list)
chip_dict = defaultdict(list)
_save_count_blank = 1
_save_count_annotated = 1
for i in range(1):
width, height = dims[i]
scale_factor_width = float(dims[0][0]) / width
scale_factor_height = float(dims[0][1]) / height
print('Scanning slide level {0} of {1}'.format(i + 1, levels))
# Generate the image chip coordinates and save information
for col in tqdm.tqdm(range(0, width, chip_size - overlap)):
for row in range(0, height, chip_size - overlap):
img_mask = mask[int(row * scale_factor_height):int((row + chip_size) * scale_factor_height),
int(col * scale_factor_width):int((col + chip_size) * scale_factor_width)]
pix_list = np.unique(img_mask)
# Check whether or not to save the region
save = checksave(save_all, pix_list, save_ratio, _save_count_annotated, _save_count_blank)
# Save image and assign keys.
if save is True:
chip_name = '{0}_{1}_{2}_{3}.{4}'.format(filename.rstrip('.svs'), i, row, col, suffix)
keys = []
# Make sure annotation key contains value
for key, value in annotations.iteritems():
for pixel in pix_list:
if int(pixel) == int(value[0]):
keys.append(key)
image_dict[key].append(chip_name)
if len(keys) == 0:
_save_count_blank += 1
keys.append('NONE')
else:
_save_count_annotated += 1
chip_dict[chip_name] = [keys]
chip_dict[chip_name].append(i)
chip_dict[chip_name].append(col)
chip_dict[chip_name].append(row)
chip_dict[chip_name].append(scale_factor_width)
chip_dict[chip_name].append(scale_factor_height)
return chip_dict, image_dict
def run(parameters, filename):
"""
Runs SlideSeg: Generates image chips from a whole slide image.
:param parameters: specified in Parameters.txt file
:param filename: filename of whole slide image
:return: image chips and masks.
"""
# Define variables
_slide_path = parameters["slide_path"]
_xml_path = parameters["xml_path"]
_output_dir = parameters["output_dir"]
_format = parameters["format"]
_quality = int(parameters["quality"])
_chip_size = int(parameters["size"])
_overlap = int(parameters["overlap"])
_key = parameters["key"]
_save_all = parameters["save_all"]
_save_ratio = parameters["save_ratio"]
# Open slide
_osr, _levels, _dims = openwholeslide('{0}{1}'.format(_slide_path, filename))
_size = (int(_dims[0][0]), int(_dims[0][1]))
# Annotation Mask
xml_file = filename.rstrip(".svs")
xml_file = xml_file + ".xml"
print('loading annotation data from {0}/{1}'.format(_xml_path, xml_file))
_mask, _annotations = makemask(_key, _size, '{0}{1}'.format(_xml_path, xml_file))
# Define output directory
output_directory_chip = '{0}image_chips/'.format(_output_dir)
output_directory_mask = '{0}image_mask/'.format(_output_dir)
# Output formatting check
_format, _suffix = formatcheck(_format)
# Find chip data/locations to be saved
chip_dictionary, image_dict = getchips(_levels, _dims, _chip_size, _overlap,
_mask, _annotations, filename, _suffix, _save_all, _save_ratio)
# Save chips and masks
print('Saving chips... {0} total chips'.format(len(chip_dictionary)))
for filename, value in tqdm.tqdm(chip_dictionary.iteritems()):
keys = value[0]
i = value[1]
col = value[2]
row = value[3]
scale_factor_width = value[4]
scale_factor_height = value[5]
# load chip region from slide image
img = _osr.read_region([int(col * scale_factor_width), int(row * scale_factor_height)], i,
[_chip_size, _chip_size]).convert('RGB')
# load image mask and curate
img_mask = _mask[int(row * scale_factor_height):int((row + _chip_size) * scale_factor_height),
int(col * scale_factor_width):int((col + _chip_size) * scale_factor_width)]
img_mask = curatemask(img_mask, scale_factor_width, scale_factor_height, _chip_size)
# save the image chip and image mask
_path_chip = output_directory_chip + filename
_path_mask = output_directory_mask + filename
savechip(img, _path_chip, _quality, keys)
savemask(img_mask, _path_mask, keys)
# Make text output of Annotation Data
print('Updating txt file details...')
writekeys(xml_file, _annotations)
writeimagelist(xml_file, image_dict)
print('txt file details updated')