-
Notifications
You must be signed in to change notification settings - Fork 1
/
MRP_quad_3x3_all_with_bdy.m
92 lines (83 loc) · 2.35 KB
/
MRP_quad_3x3_all_with_bdy.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
% MRP_quad_3x3_all_with_bdy: Construct all minimum rigidifying link
% patterns for 3x3 quad kirigami, assuming all boundary links are included
%
% Reference:
% S. Chen, G. P. T. Choi, L. Mahadevan,
% ``Deterministic and stochastic control of kirigami topology.''
% Proceedings of the National Academy of Sciences, 117(9), 4511-4517, 2020.
%%
L = 3;
nquad = L^2; %Number of quads
nlink = ceil((3*L^2-3)/2);% theoretical lower bound for number of links
% inner links
Linkpairs=[
4*1-1, 4*2;
4*1-1, 4*4-2;
4*2, 4*5-3;
4*2-1, 4*3;
4*2-1, 4*5-2;
4*3, 4*6-3;
4*4-2, 4*5-3;
4*5-2, 4*6-3;
4*4-1, 4*7-2;
4*4-1, 4*5;
4*5, 4*8-3;
4*5-1, 4*8-2;
4*5-1, 4*6;
4*6, 4*9-3;
4*7-2, 4*8-3;
4*8-2, 4*9-3;
];
combinations = combnk(1:length(Linkpairs),nlink - 2*(L+L-2));
DoF = zeros(length(combinations),1);
tic;
for k = 1:length(combinations)
mat=zeros(nquad*5+nlink*2,nquad*4);
linkpairs = Linkpairs(combinations(k,:),:);
%% Edge length constraints
% 4 quad boundary constraints, and 1 no shear constraints (Direction fixed
% for now, from bottom left to top right)
for i=1:nquad
mat(i*5-4,i*8-7)=-1;
mat(i*5-4,i*8-5)=1;
mat(i*5-3,i*8-7)=1;
mat(i*5-3,i*8-3)=-1;
mat(i*5-3,i*8-6)=1;
mat(i*5-3,i*8-2)=-1;
mat(i*5-2,i*8-6)=1;
mat(i*5-2,i*8-0)=-1;
mat(i*5-1,i*8-4)=1;
mat(i*5-1,i*8-2)=-1;
mat(i*5-0,i*8-3)=1;
mat(i*5-0,i*8-1)=-1;
end
%% Boundary links
rown=nquad*5+1;
for i=1:L-1
[mat,rown]=constrain(mat,rown,4*i-2,4*(i+1)-3);
end
for i=L*L-L+1:L*L-1
[mat,rown]=constrain(mat,rown,4*i-1,4*(i+1));
end
for i=1:L:L*L-L
[mat,rown]=constrain(mat,rown,4*i,4*(i+L)-3);
end
for i=L:L:L*L-L
[mat,rown]=constrain(mat,rown,4*i-1,4*(i+L)-2);
end
for t=1:size(linkpairs,1)
[mat,rown]=constrain(mat,rown,linkpairs(t,1),linkpairs(t,2));
end
DoF(k) = nquad*8-rank(mat);
end
toc;
solution = find(DoF == 3);
disp(['# MRPs assuming all boundary links = ',num2str(length(solution))])
%%
function [mat, rown] = constrain(mat,rown,i,j)
mat(rown,i*2-1)=1;
mat(rown,j*2-1)=-1;
mat(rown+1,i*2)=1;
mat(rown+1,j*2)=-1;
rown = rown+2;
end