Skip to content

Latest commit

 

History

History

detection

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DGMN2 for Object Detection

This folder contains the implementation of DGMN2 for object detection.

Here, we take MMDetection as an example, applying DGMN2 to RetinaNet and Mask R-CNN.

Results

COCO validation set

Method Backbone Lr schd box AP mask AP Config Download
RetinaNet DGMN2-Tiny 1x 39.7 - config model
RetinaNet DGMN2-Small 1x 42.5 - config model
RetinaNet DGMN2-Medium 1x 43.7 - config model
RetinaNet DGMN2-Large 1x 44.7 - config model
Mask R-CNN DGMN2-Tiny 1x 40.1 37.2 config model
Mask R-CNN DGMN2-Small 1x 43.4 39.7 config model
Mask R-CNN DGMN2-Medium 1x 44.4 40.2 config model
Mask R-CNN DGMN2-Large 1x 46.2 41.6 config model

Getting Started

Clone the repository locally:

git clone https://github.com/fudan-zvg/DGMN2

Installation

a. Install MMDetection following the official instructions. Here we use MMDetection 2.12.0.

b. Install PyTorch Image Models. Here we use PyTorch Image Models 0.4.5.

pip install timm==0.4.5

c. Build the extension.

cd dcn
python setup.py build_ext --inplace

Data preparation

First, prepare COCO dataset according to the guidelines in MMDetection.

Then, download the weights pretrained on ImageNet, and put them in a folder pretrained/.

Training

To train DGMN2-Tiny + RetinaNet on COCO train2017 on a single node with 8 GPUs for 12 epochs run:

dist_train.sh configs/retinanet_dgmn2_tiny_fpn_8x2_1x_coco.py 8

Evaluation

To evaluate DGMN2-Tiny + RetinaNet on COCO val2017 on a single node with 8 GPUs run:

dist_test.sh configs/retinanet_dgmn2_tiny_fpn_8x2_1x_coco.py /path/to/checkpoint_file 8 --eval bbox