forked from PyPSA/PyPSA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
build_model.py
89 lines (71 loc) · 2.63 KB
/
build_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
## Demonstrate PyPSA unit commitment with a one-bus two-generator example
#
#
#To enable unit commitment on a generator, set its attribute committable = True.
#
#
#Available as a Jupyter notebook at http://www.pypsa.org/examples/unit-commitment.ipynb.
import pypsa
from pypsa.opf import network_lopf_build_model as build_model
import argparse
import logging
import random
import copy
random.seed( 55)
parser = argparse.ArgumentParser()
parser.add_argument(
'-v', '--verbose',
help="Be verbose",
action="store_const", dest="loglevel", const=logging.INFO,
)
parser.add_argument(
'-d', '--debug',
help="Print lots of debugging statements",
action="store_const", dest="loglevel", const=logging.DEBUG,
default=logging.WARNING,
)
args = parser.parse_args()
logging.basicConfig( level=args.loglevel)
### Minimum part load demonstration
#
#In final hour load goes below part-load limit of coal gen (30%), forcing gas to commit.
for test_i in range(1):
snapshots = range( 1, 101)
p_set = [ p*20 for p in snapshots]
nu = pypsa.Network()
nu.set_snapshots(snapshots)
n_gen = 100
generator_p_nom = [ i for i in range( n_gen)]
generator_marginal_cost = [ 1000 - i for i in range( n_gen)]
p_min_pu = .3
for gen_i, gen in enumerate( generator_p_nom):
nu.add("Bus","bus" + str(gen_i))
nu.add("Load","load" + str(gen_i),bus= "bus" + str(gen_i),
p_set= generator_p_nom[gen_i] / 2. )#[4000,6000,5000,800])
nu.add( "Generator",
"gas_" + str(gen_i),
bus = "bus" + str(gen_i),
committable = True,
p_min_pu = p_min_pu,
marginal_cost = generator_marginal_cost[gen_i],
p_nom = generator_p_nom[gen_i],)
if gen_i > 0:
nu.add("Line",
"{} - {} line".format( gen_i - 1, gen_i),
bus0= "bus" + str(gen_i - 1),
bus1= "bus" + str(gen_i),
x=0.1,
r=0.01)
random_gen_to_connect = random.randint( 0, n_gen - 1)
nu.add("Line",
"{} - {} line".format( gen_i, random_gen_to_connect),
bus0= "bus" + str(random_gen_to_connect),
bus1= "bus" + str(gen_i),
x = .2,
r = .08)
formulations = ["kirchhoff", "angles", "cycles"] #"ptdf"
for formulation in formulations:
nu_copy = copy.deepcopy(nu)
build_model( nu, nu.snapshots, formulation = formulation)
# build_model( nu, nu.snapshots, formulation = "angles")
# nu.lopf( nu.snapshots, formulation = "kirchhoff")