forked from dgtgrade/HumanLearning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
1d.py
52 lines (33 loc) · 909 Bytes
/
1d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#!/usr/bin/python
import matplotlib.pyplot as plt
# trainings (x, y) pairs
trainings = [[1,2],[3,6],[7,14],[2,4],[4,8]]
trainings_X = [row[0] for row in trainings]
trainings_Y = [row[1] for row in trainings]
import random
import time
# 가정: y = ax + b
MAX = 10000
best_a = -MAX
best_b = -MAX
err_min = MAX^3
count = 0
while True:
a = random.uniform(-MAX,MAX)
b = random.uniform(-MAX,MAX)
err = 0
count = count + 1
# 오차
for i, t_x in enumerate(trainings_X):
y = a * t_x + b # 가정값
t_y = trainings_Y[i] # 실제값
err += abs(y - t_y) # 오차값
if err < err_min:
err_min = err
best_a = a
best_b = b
if count % 10000 == 0 :
print ("###count=", count)
print ("a=",a,"b=",b,"err=",err)
print (" ", "best_a=",best_a,"best_b=",best_b,"err_min=",err_min)
# time.sleep(0.01)