diff --git a/BSB_lan/BSB_lan/BSB_lan.ino b/BSB_lan/BSB_lan/BSB_lan.ino index 1871380f7..5c807d063 100644 --- a/BSB_lan/BSB_lan/BSB_lan.ino +++ b/BSB_lan/BSB_lan/BSB_lan.ino @@ -17,8 +17,11 @@ * 0.8 - 05.03.2015 * 0.9 - 09.03.2015 * 0.10 - 15.03.2015 + * 0.11 - 07.04.2015 * * Changelog: + * version 0.11 + * - fixed parameter decoding for ELCO Thision heating system * version 0.10 * - added more parameters for ELCO Thision heating system * version 0.9 @@ -48,6 +51,8 @@ * */ +//#define TEMP_SENSORS + #include #include "BSBSoftwareSerial.h" #include "bsb.h" @@ -57,6 +62,11 @@ #include #include +#ifdef TEMP_SENSORS +#include "OneWire.h" +#include +#endif + //#define THISION // if set to 1, all messages on the bus are printed to the serial interface @@ -93,6 +103,19 @@ BSB bus(68,69); byte led0 = 3, led1 = 4 ; // Pins 3+4 for Relais +#ifdef TEMP_SENSORS + +#define TEMPERATURE_PRECISION 9 + +#define ONE_WIRE_BUS 31 +// Setup a oneWire instance to communicate with any OneWire devices +OneWire oneWire(ONE_WIRE_BUS); +// Pass our oneWire reference to Dallas Temperature. +DallasTemperature sensors(&oneWire); + +int numSensors; +#endif + /****************************************************/ /* DEFINITIONS and TYPEDEFS */ /****************************************************/ @@ -165,11 +188,13 @@ typedef enum{ /* Parameter types */ typedef enum{ VT_TEMP, // 3 Byte - 1 enable / value/64 + VT_TEMP_WORD, // 3 Byte - 1 enable / value VT_TEMP_SHORT, // 2 Byte - 1 enable / value VT_TEMP_SHORT5, // 2 Byte - 1 enable / value/2 VT_FP1, // 3 Byte - 1 enable / value/10 VT_FP02, // 3 Byte - 1 enable / value/50 VT_UINT, // 3 Byte - 1 enable / value + VT_UINT5, // 3 Byte - 1 enable / value * 5 VT_ERRORCODE, // 3 Byte - 1 enable / value VT_ONOFF, // 2 Byte - 1 enable / 0=Aus 1=An (auch 0xff=An) VT_YESNO, // 2 Byte - 1 enable / 0=Nein 1=Ja (auch 0xff=Ja) @@ -2321,11 +2346,21 @@ PROGMEM const cmd_t cmdtbl[]={ {CMD_UNKNOWN, CAT_KESSEL, VT_UNKNOWN, 2208, STR2208, 0, NULL}, // Durchladung Pufferspeicher {0x0d3d092c, CAT_KESSEL, VT_TEMP, 2210, STR2210, 0, NULL}, // [°C ] - Kessel - Sollwert Minimum {0x0d3d092b, CAT_KESSEL, VT_TEMP, 2212, STR2212, 0, NULL}, // [°C ] - Kessel - Sollwert maximum +#ifdef THISION +// command with same command id as line 2270 {0x0D3D08EB, CAT_KESSEL, VT_TEMP, 2214, STR2214, 0, NULL}, // TODO Thision 2214 Sollwert Handbetrieb [°C] +#else +{CMD_UNKNOWN, CAT_KESSEL, VT_TEMP, 2214, STR2214, 0, NULL}, // TODO Thision 2214 Sollwert Handbetrieb [°C] +#endif {CMD_UNKNOWN, CAT_KESSEL, VT_UNKNOWN, 2220, STR2220, 0, NULL}, // Freigabeintegral Stufe 2 {CMD_UNKNOWN, CAT_KESSEL, VT_UNKNOWN, 2221, STR2221, 0, NULL}, // Rückstellintegral Stufe 2 +#ifdef THISION +// command not present for THISIOn +{CMD_UNKNOWN, CAT_KESSEL, VT_TEMP, 2270, STR2270, 0, NULL}, // [°C ] - Kessel - Rücklaufsollwert Minimum +#else {0x0d3d08eb, CAT_KESSEL, VT_TEMP, 2270, STR2270, 0, NULL}, // [°C ] - Kessel - Rücklaufsollwert Minimum +#endif {CMD_UNKNOWN, CAT_KESSEL, VT_UNKNOWN, 2291, STR2291, 0, NULL}, // Steuerung Bypasspumpe {CMD_UNKNOWN, CAT_KESSEL, VT_UNKNOWN, 2330, STR2330, 0, NULL}, // Leistung Nenn {CMD_UNKNOWN, CAT_KESSEL, VT_UNKNOWN, 2331, STR2331, 0, NULL}, // Leistung Grundstufe @@ -2446,7 +2481,9 @@ PROGMEM const cmd_t cmdtbl[]={ {CMD_UNKNOWN, CAT_FESTSTOFFKESSEL, VT_UNKNOWN, 4133, STR4133, 0, NULL}, // [°C ] - Feststoffkessel (nur wenn aktiviert) - Vergleichstempertatur {CMD_UNKNOWN, CAT_FESTSTOFFKESSEL, VT_UNKNOWN, 4140, STR4140, 0, NULL}, // Pumpennachlaufzeit {CMD_UNKNOWN, CAT_FESTSTOFFKESSEL, VT_UNKNOWN, 4141, STR4141, 0, NULL}, // [°C ] - Feststoffkessel (nur wenn aktiviert) - Übertemperaturableitung - +/* +4170 Anlagenfrostschutz Kesselpumpe An/Aus +*/ // Pufferspeicher {CMD_UNKNOWN, CAT_PUFFERSPEICHER, VT_UNKNOWN, 4708, STR4708, 0, NULL}, // Zwangsladungsollwert Kühlen {CMD_UNKNOWN, CAT_PUFFERSPEICHER, VT_UNKNOWN, 4709, STR4709, 0, NULL}, // Zwangsladungsoll Heizen Min @@ -2477,7 +2514,7 @@ PROGMEM const cmd_t cmdtbl[]={ {0x253D07C1, CAT_TWSPEICHER, VT_TEMP, 5021, STR5021, 0, NULL}, // [°C ] - Trinkwasser-Speicher - Umladeüberhöhung {0x253D087B, CAT_TWSPEICHER, VT_ENUM, 5022, STR5022, sizeof(ENUM5022), ENUM5022}, // [0] - Trinkwasser-Speicher - Ladeart {CMD_UNKNOWN, CAT_TWSPEICHER, VT_UNKNOWN, 5050, STR5050, 0, NULL}, // Ladetemperatur Maximum -{CMD_UNKNOWN, CAT_TWSPEICHER, VT_UNKNOWN, 5055, STR5055, 0, NULL}, // Rückkühltemperatur +{0x253D08BD, CAT_TWSPEICHER, VT_TEMP, 5055, STR5055, 0, NULL}, // Rückkühltemperatur {0x313D0713, CAT_TWSPEICHER, VT_ONOFF, 5056, STR5056, 0, NULL}, // [0] - Trinkwasser-Speicher - Rückkühlung Kessel/HK {0x313D0714, CAT_TWSPEICHER, VT_ENUM, 5057, STR5057, sizeof(ENUM5057), ENUM5057}, // [0] - Trinkwasser-Speicher - Rückkühlung Kollektor {0x253D0728, CAT_TWSPEICHER, VT_ENUM, 5060, STR5060, sizeof(ENUM5060), ENUM5060}, // [0] - Trinkwasser-Speicher - Elektroeinsatz Betriebsart @@ -2547,7 +2584,11 @@ PROGMEM const cmd_t cmdtbl[]={ {0x053D07CA, CAT_KONFIG, VT_ENUM, 5932, STR5932, sizeof(ENUM5932), ENUM5932}, // [-] - Konfiguration - Fühlereingang BX 3 {0x053D07CB, CAT_KONFIG, VT_ENUM, 5933, STR5933, sizeof(ENUM5933), ENUM5933}, // [-] - Konfiguration - Fühlereingang BX 4 {CMD_UNKNOWN, CAT_KONFIG, VT_UNKNOWN, 5934, STR5934, 0, NULL}, // Fühlereingang BX5 +#ifdef THISION +{0x053D3052, CAT_KONFIG, VT_ENUM, 5950, STR5950, sizeof(ENUM5950), ENUM5950}, // [-] - Konfiguration - Funktion Eingang H1 +#else {0x053D0807, CAT_KONFIG, VT_ENUM, 5950, STR5950, sizeof(ENUM5950), ENUM5950}, // [-] - Konfiguration - Funktion Eingang H1 +#endif {0x053D0808, CAT_KONFIG, VT_ENUM, 5951, STR5951, sizeof(ENUM5951), ENUM5951}, // [0] - Konfiguration - Wirksinn Kontakt H1 {0x293D0656, CAT_KONFIG, VT_TEMP, 5952, STR5952, 0, NULL}, // [°C ] - Konfiguration - Minimaler Vorlaufsollwert H1 {CMD_UNKNOWN, CAT_KONFIG, VT_UNKNOWN, 5953, STR5953, 0, NULL}, // Spannungswert 1 H1 @@ -2740,15 +2781,23 @@ SW Diagnosecode {CMD_UNKNOWN, CAT_FEHLER, VT_ERRORCODE, 6845, STR6845, 0, NULL}, // TODO Thision 6845 SW Diagnosecode 5 // Wartung/Sonderbetrieb -{0x053D0075, CAT_WARTUNG, VT_UNKNOWN, 7001, STR7001, 0, NULL}, // TODO Thision 7001 Meldung [?] +// 7001: 0x053D0075??? 2 byte VT_ENUM aber enum nicht verfügbar +{0x053D0090, CAT_WARTUNG, VT_BYTE, 7001, STR7001, 0, NULL}, // TODO Thision 7001 Meldung [?] {0x2D3D2FDA, CAT_WARTUNG, VT_ONOFF, 7007, STR7007, 0, NULL}, // TODO Thision 7007 Anzeige Meldungen [Ein/Aus] {0x2D3D2FD9, CAT_WARTUNG, VT_ONOFF, 7010, STR7010, 0, NULL}, // TODO Thision 7010 Quittierung Meldung [Ein/Aus] {0x253D2FDD, CAT_WARTUNG, VT_DAYS_WORD, 7011, STR7011, 0, NULL}, // TODO Thision 7011 Repetitionszeit Meldung [Tage] {0x2D3D2FDA, CAT_WARTUNG, VT_YESNO, 7012, STR7012, 0, NULL}, // TODO Thision 7012 Reset Meldungen 1-6 [Ja/Nein] {0x053d03f1, CAT_WARTUNG, VT_HOURS_WORD, 7040, STR7040, 0, NULL}, // [h ] - Wartung/Service - Brennerstunden Intervall {0x053d03f3, CAT_WARTUNG, VT_HOURS_WORD, 7041, STR7041, 0, NULL}, // [h ] - Wartung/Service - Brennerstunden seit Wartung +// 2D 3D 2F D6 +#ifdef THISION +{0x2D3D2FD6, CAT_WARTUNG, VT_UINT, 7042, STR7042, 0, NULL}, // [0] - Wartung/Service - Brennerstarts Intervall +{0x253D2FDF, CAT_WARTUNG, VT_UINT5, 7043, STR7043, 0, NULL}, // [0] - Wartung/Service - Brennerstarts seit Wartung +#else {0x053D0C69, CAT_WARTUNG, VT_UINT, 7042, STR7042, 0, NULL}, // [0] - Wartung/Service - Brennerstarts Intervall {0x053D05E0, CAT_WARTUNG, VT_UINT, 7043, STR7043, 0, NULL}, // [0] - Wartung/Service - Brennerstarts seit Wartung +#endif + {0x053d05e1, CAT_WARTUNG, VT_MONTHS, 7044, STR7044, 0, NULL}, // [Monate ] - Wartung/Service - Wartungsintervall {0x053d05e2, CAT_WARTUNG, VT_MONTHS, 7045, STR7045, 0, NULL}, // [Monate ] - Wartung/Service - Zeit seit Wartung {0x2D3D300C, CAT_WARTUNG, VT_BYTE, 7051, STR7051, 0, NULL}, // TODO Thision 7051 Meldung Ion Strom [?] @@ -2902,7 +2951,7 @@ SW Diagnosecode {0x053D051C, CAT_DIAG_ERZEUGER, VT_TEMP, 8318, STR8318, 0, NULL}, // [°C ] - Diagnose Erzeuger - Abgastemperatur Maximum {0x113D305D, CAT_DIAG_ERZEUGER, VT_PERCENT, 8324, STR8324, 0, NULL}, // TODO Thision Diagnose Erzeuger - Gebläsedrehzahl {0x113D305F, CAT_DIAG_ERZEUGER, VT_PERCENT, 8326, STR8326, 0, NULL}, // TODO Thision Brennermodulation -{0x113D3063, CAT_DIAG_ERZEUGER, VT_PRESSURE, 8327, STR8327, 0, NULL}, // TODO Thision Wasserdruck +{0x113D3063, CAT_DIAG_ERZEUGER, VT_PRESSURE_WORD, 8327, STR8327, 0, NULL}, // TODO Thision Wasserdruck {0x093D3034, CAT_DIAG_ERZEUGER, VT_BYTE, 8328, STR8328, 0, NULL}, // TODO Thision Betriebsanzeige FA [?] TODO Thision {0x153D2FF0, CAT_DIAG_ERZEUGER, VT_CURRENT, 8329, STR8329, 0, NULL}, // TODO Thision Ionisationsstrom [uA?] TODO Thision {0x0D3D093B, CAT_DIAG_ERZEUGER, VT_HOURS, 8330, STR8330, 0, NULL}, // [h ] - Diagnose Erzeuger - Betriebstunden 1.Stufe @@ -3032,7 +3081,7 @@ SW Diagnosecode {0x313d074b, CAT_DIAG_VERBRAUCHER, VT_TEMP, 8831, STR8831, 0, NULL}, // [°C ] - Diagnose Verbraucher - Trinkwassersollwert {0x313d0530, CAT_DIAG_VERBRAUCHER, VT_TEMP, 8832, STR8832, 0, NULL}, // [°C ] - Diagnose Verbraucher - Trinkwassertemperatur 2 {0x253D077D, CAT_DIAG_VERBRAUCHER, VT_TEMP, 8835, STR8835, 0, NULL}, // [°C ] - Diagnose Verbraucher - TWW Zirkulationstemperatur -{CMD_UNKNOWN, CAT_DIAG_VERBRAUCHER, VT_UNKNOWN, 8836, STR8836, 0, NULL}, // TWW Ladetemperatur +{0x253D0B33, CAT_DIAG_VERBRAUCHER, VT_TEMP, 8836, STR8836, 0, NULL}, // TWW Ladetemperatur {CMD_UNKNOWN, CAT_DIAG_VERBRAUCHER, VT_UNKNOWN, 8840, STR8840, 0, NULL}, // Betr’stunden TWW-Pumpe {CMD_UNKNOWN, CAT_DIAG_VERBRAUCHER, VT_UNKNOWN, 8841, STR8841, 0, NULL}, // Startzähler TWW-Pumpe {CMD_UNKNOWN, CAT_DIAG_VERBRAUCHER, VT_UNKNOWN, 8842, STR8842, 0, NULL}, // Betr’stunden Elektro TWW @@ -3080,17 +3129,17 @@ SW Diagnosecode // Feuerungsautomat {0x2d3d3037, CAT_FEUERUNGSAUTOMAT, VT_UNKNOWN, 9500, STR9500, 0, NULL}, // Vorlüftzeit -{0x213d3038, CAT_FEUERUNGSAUTOMAT, VT_PERCENT, 9502, STR9502, 0, NULL}, // Gebl'ansteuerung Vorlüftung [%] +{0x213d3038, CAT_FEUERUNGSAUTOMAT, VT_PERCENT_WORD, 9502, STR9502, 0, NULL}, // Gebl'ansteuerung Vorlüftung [%] {0x213d300f, CAT_FEUERUNGSAUTOMAT, VT_SPEED, 9504, STR9504, 0, NULL}, // Solldrehzahl Vorlüftung [rpm] -{0x0d3d3048, CAT_FEUERUNGSAUTOMAT, VT_PERCENT, 9510, STR9510, 0, NULL}, // Gebl'ansteuerung Zündung [%] +{0x0d3d3048, CAT_FEUERUNGSAUTOMAT, VT_PERCENT_WORD, 9510, STR9510, 0, NULL}, // Gebl'ansteuerung Zündung [%] {0x0d3d2fc9, CAT_FEUERUNGSAUTOMAT, VT_SPEED, 9512, STR9512, 0, NULL}, // Solldrehzahl Zündung [rpm] -{0x0d3d3049, CAT_FEUERUNGSAUTOMAT, VT_PERCENT, 9520, STR9520, 0, NULL}, // Gebl'ansteuerung Betrieb. Min [%] -{0x0d3d304a, CAT_FEUERUNGSAUTOMAT, VT_PERCENT, 9522, STR9522, 0, NULL}, // Gebl'ansteuerung Betrieb. Max [%] +{0x0d3d3049, CAT_FEUERUNGSAUTOMAT, VT_PERCENT_WORD, 9520, STR9520, 0, NULL}, // Gebl'ansteuerung Betrieb. Min [%] +{0x0d3d304a, CAT_FEUERUNGSAUTOMAT, VT_PERCENT_WORD, 9522, STR9522, 0, NULL}, // Gebl'ansteuerung Betrieb. Max [%] {0x0d3d2fca, CAT_FEUERUNGSAUTOMAT, VT_SPEED, 9524, STR9524, 0, NULL}, // Solldrehzahl Betrieb Min [rpm] {0x0d3d2fcb, CAT_FEUERUNGSAUTOMAT, VT_SPEED, 9527, STR9527, 0, NULL}, // Solldrehzahl Betrieb Max [rpm] {0x2d3d304c, CAT_FEUERUNGSAUTOMAT, VT_UNKNOWN, 9540, STR9540, 0, NULL}, // Nachlüftzeit -{0x0D3D304D, CAT_FEUERUNGSAUTOMAT, VT_PERCENT, 9550, STR9550, 0, NULL}, // TODO Thision 9550 Gebl'ansteuerung Stillstand [%] -{0x253d2fe8, CAT_FEUERUNGSAUTOMAT, VT_PERCENT, 9560, STR9560, 0, NULL}, // Gebl'ansteuerung Durchlad [%] +{0x0D3D304D, CAT_FEUERUNGSAUTOMAT, VT_PERCENT_WORD, 9550, STR9550, 0, NULL}, // TODO Thision 9550 Gebl'ansteuerung Stillstand [%] +{0x253d2fe8, CAT_FEUERUNGSAUTOMAT, VT_PERCENT_WORD, 9560, STR9560, 0, NULL}, // Gebl'ansteuerung Durchlad [%] {0x253d2fe9, CAT_FEUERUNGSAUTOMAT, VT_SPEED, 9563, STR9563, 0, NULL}, // Solldrehzahl Durchladung [rpm] /*** virtuelle Zeilen ***/ @@ -3145,6 +3194,14 @@ void setup() { // start the Ethernet connection and the server: Ethernet.begin(mac, ip); server.begin(); + +#ifdef TEMP_SENSORS + // check ds18b20 sensors + sensors.begin(); + numSensors=sensors.getDeviceCount(); + Serial.print("numSensors: "); + Serial.println(numSensors); +#endif } int findLine(uint16_t line, uint16_t start_idx, uint32_t *cmd){ @@ -3620,7 +3677,7 @@ void loop() { urlString = urlString.substring(urlString.indexOf('/'), urlString.indexOf(' ', urlString.indexOf('/'))); Serial.println(urlString); urlString.toCharArray(cLineBuffer, MaxArrayElement); - + // IPWE START if (urlString == "/ipwe.cgi") { Ipwe(); @@ -3669,6 +3726,12 @@ void loop() { webPrintSite(); break; } +#ifdef TEMP_SENSORS + if (!strcmp(p,"/temp")) { + ds18b20(); + break; + } +#endif // answer to unknown requests if(!isdigit(p[1]) && strchr("KSIREVM",p[1])==NULL){ webPrintHeader(); @@ -3987,13 +4050,13 @@ void printBYTE(byte *msg,byte data_len,const char *postfix){ } } -void printWORD(byte *msg,byte data_len,const char *postfix){ +void printWORD(byte *msg,byte data_len, long multiplier, const char *postfix){ long lval; char *p=outBuf+outBufLen; if(data_len == 3){ if(msg[9]==0){ - lval=(long(msg[10])<<8)+long(msg[11]); + lval=(long(msg[10])<<8)+long(msg[11]) * multiplier; outBufLen+=sprintf(outBuf+outBufLen,"%ld",lval); } else { outBufLen+=sprintf(outBuf+outBufLen,"---"); @@ -4102,7 +4165,7 @@ void printFIXPOINT_BYTE(byte *msg,byte data_len,double divider,int precision,con if(data_len == 2){ if(msg[9]==0){ - dval=double(msg[10]) / divider; + dval=double((signed char)msg[10]) / divider; _printFIXPOINT(dval,precision,postfix); } else { outBufLen+=sprintf(outBuf+outBufLen,"---"); @@ -4370,7 +4433,7 @@ char *printTelegram(byte* msg) { prinTimeProg(msg,data_len); break; case VT_SECONDS_WORD: //u16 s - printWORD(msg,data_len,"s"); + printWORD(msg,data_len,1,"s"); break; case VT_SECONDS_SHORT: //u8 s printBYTE(msg,data_len,"s"); @@ -4379,7 +4442,7 @@ char *printTelegram(byte* msg) { printBYTE(msg,data_len,"min"); break; case VT_MINUTES_WORD: //u16 min - printWORD(msg,data_len,"min"); + printWORD(msg,data_len,1,"min"); break; case VT_MINUTES: // u32 min printDWORD(msg,data_len,60,"min"); @@ -4388,7 +4451,7 @@ char *printTelegram(byte* msg) { printBYTE(msg,data_len,"h"); break; case VT_HOURS_WORD: // u16 h - printWORD(msg,data_len,"h"); + printWORD(msg,data_len,1,"h"); break; case VT_HOURS: // u32 h printDWORD(msg,data_len,3600,"h"); @@ -4399,6 +4462,9 @@ char *printTelegram(byte* msg) { case VT_TEMP: // s16 / 64.0 - Wert als Temperatur interpretiert (RAW / 64) printFIXPOINT(msg,data_len,64.0,1,gradC); break; + case VT_TEMP_WORD: // s16 - Wert als Temperatur interpretiert (RAW ) + printFIXPOINT(msg,data_len,1.0,1,gradC); + break; case VT_TEMP_SHORT: // s8 printFIXPOINT_BYTE(msg,data_len,1.0,0,gradC); break; @@ -4424,7 +4490,7 @@ char *printTelegram(byte* msg) { printFIXPOINT(msg,data_len,16.0,2,""); break; case VT_GRADIENT: // u16 - printWORD(msg,data_len,"min/K"); + printWORD(msg,data_len,1,"min/K"); break; case VT_SPEED: // u16 printFIXPOINT(msg,data_len,0.02,0,"uA"); @@ -4451,7 +4517,7 @@ char *printTelegram(byte* msg) { printBYTE(msg,data_len,"Tage"); break; case VT_DAYS_WORD: // u16 Tage - printWORD(msg,data_len,"Tage"); + printWORD(msg,data_len,1,"Tage"); break; case VT_MONTHS: // u8 Monate printBYTE(msg,data_len,"Monate"); @@ -4542,7 +4608,10 @@ char *printTelegram(byte* msg) { } break; case VT_UINT: // s16 - printWORD(msg,data_len,NULL); + printWORD(msg,data_len,1,NULL); + break; + case VT_UINT5: // s16 * 5 + printWORD(msg,data_len,5,NULL); break; case VT_VOLTAGE: // u16 - 0.0 -> 00 00 (decoding unklar, da nur 0V gesehen) //printFIXPOINT_BYTE(msg,data_len,10.0,1,"Volt"); @@ -4690,3 +4759,29 @@ void Heating(char* status) { client.print(status); set(700,status,true); // Zusätzlich (bzw. ggf. alternativ) noch Wechsel zwischen Automatik- und Frostschutzmodus } + +#ifdef TEMP_SENSORS + +void ds18b20(void) { + int i; + webPrintHeader(); + Serial.println("start requestTemperatures"); + sensors.requestTemperatures(); // Send the command to get temperatures + Serial.println("end requestTemperatures"); + Serial.println("start getTempCByIndex"); + outBufclear(); + for(i=0;i"); + } + client.println(outBuf); + webPrintFooter(); +} +#endif diff --git a/BSB_lan/libraries/DallasTemperature/DallasTemperature.cpp b/BSB_lan/libraries/DallasTemperature/DallasTemperature.cpp new file mode 100644 index 000000000..14097014d --- /dev/null +++ b/BSB_lan/libraries/DallasTemperature/DallasTemperature.cpp @@ -0,0 +1,738 @@ +// This library is free software; you can redistribute it and/or +// modify it under the terms of the GNU Lesser General Public +// License as published by the Free Software Foundation; either +// version 2.1 of the License, or (at your option) any later version. + +// Version 3.7.2 modified on Dec 6, 2011 to support Arduino 1.0 +// See Includes... +// Modified by Jordan Hochenbaum + +#include "DallasTemperature.h" + +#if ARDUINO >= 100 + #include "Arduino.h" +#else +extern "C" { + #include "WConstants.h" +} +#endif + +DallasTemperature::DallasTemperature(OneWire* _oneWire) + #if REQUIRESALARMS + : _AlarmHandler(&defaultAlarmHandler) + #endif +{ + _wire = _oneWire; + devices = 0; + parasite = false; + bitResolution = 9; + waitForConversion = true; + checkForConversion = true; +} + +// initialise the bus +void DallasTemperature::begin(void) +{ + DeviceAddress deviceAddress; + + _wire->reset_search(); + devices = 0; // Reset the number of devices when we enumerate wire devices + + while (_wire->search(deviceAddress)) + { + if (validAddress(deviceAddress)) + { + if (!parasite && readPowerSupply(deviceAddress)) parasite = true; + + ScratchPad scratchPad; + + readScratchPad(deviceAddress, scratchPad); + + bitResolution = max(bitResolution, getResolution(deviceAddress)); + + devices++; + } + } +} + +// returns the number of devices found on the bus +uint8_t DallasTemperature::getDeviceCount(void) +{ + return devices; +} + +// returns true if address is valid +bool DallasTemperature::validAddress(uint8_t* deviceAddress) +{ + return (_wire->crc8(deviceAddress, 7) == deviceAddress[7]); +} + +// finds an address at a given index on the bus +// returns true if the device was found +bool DallasTemperature::getAddress(uint8_t* deviceAddress, uint8_t index) +{ + uint8_t depth = 0; + + _wire->reset_search(); + + while (depth <= index && _wire->search(deviceAddress)) + { + if (depth == index && validAddress(deviceAddress)) return true; + depth++; + } + + return false; +} + +// attempt to determine if the device at the given address is connected to the bus +bool DallasTemperature::isConnected(uint8_t* deviceAddress) +{ + ScratchPad scratchPad; + return isConnected(deviceAddress, scratchPad); +} + +// attempt to determine if the device at the given address is connected to the bus +// also allows for updating the read scratchpad +bool DallasTemperature::isConnected(uint8_t* deviceAddress, uint8_t* scratchPad) +{ + readScratchPad(deviceAddress, scratchPad); + return (_wire->crc8(scratchPad, 8) == scratchPad[SCRATCHPAD_CRC]); +} + +// read device's scratch pad +void DallasTemperature::readScratchPad(uint8_t* deviceAddress, uint8_t* scratchPad) +{ + // send the command + _wire->reset(); + _wire->select(deviceAddress); + _wire->write(READSCRATCH); + + // TODO => collect all comments & use simple loop + // byte 0: temperature LSB + // byte 1: temperature MSB + // byte 2: high alarm temp + // byte 3: low alarm temp + // byte 4: DS18S20: store for crc + // DS18B20 & DS1822: configuration register + // byte 5: internal use & crc + // byte 6: DS18S20: COUNT_REMAIN + // DS18B20 & DS1822: store for crc + // byte 7: DS18S20: COUNT_PER_C + // DS18B20 & DS1822: store for crc + // byte 8: SCRATCHPAD_CRC + // + // for(int i=0; i<9; i++) + // { + // scratchPad[i] = _wire->read(); + // } + + + // read the response + + // byte 0: temperature LSB + scratchPad[TEMP_LSB] = _wire->read(); + + // byte 1: temperature MSB + scratchPad[TEMP_MSB] = _wire->read(); + + // byte 2: high alarm temp + scratchPad[HIGH_ALARM_TEMP] = _wire->read(); + + // byte 3: low alarm temp + scratchPad[LOW_ALARM_TEMP] = _wire->read(); + + // byte 4: + // DS18S20: store for crc + // DS18B20 & DS1822: configuration register + scratchPad[CONFIGURATION] = _wire->read(); + + // byte 5: + // internal use & crc + scratchPad[INTERNAL_BYTE] = _wire->read(); + + // byte 6: + // DS18S20: COUNT_REMAIN + // DS18B20 & DS1822: store for crc + scratchPad[COUNT_REMAIN] = _wire->read(); + + // byte 7: + // DS18S20: COUNT_PER_C + // DS18B20 & DS1822: store for crc + scratchPad[COUNT_PER_C] = _wire->read(); + + // byte 8: + // SCTRACHPAD_CRC + scratchPad[SCRATCHPAD_CRC] = _wire->read(); + + _wire->reset(); +} + +// writes device's scratch pad +void DallasTemperature::writeScratchPad(uint8_t* deviceAddress, const uint8_t* scratchPad) +{ + _wire->reset(); + _wire->select(deviceAddress); + _wire->write(WRITESCRATCH); + _wire->write(scratchPad[HIGH_ALARM_TEMP]); // high alarm temp + _wire->write(scratchPad[LOW_ALARM_TEMP]); // low alarm temp + // DS18S20 does not use the configuration register + if (deviceAddress[0] != DS18S20MODEL) _wire->write(scratchPad[CONFIGURATION]); // configuration + _wire->reset(); + // save the newly written values to eeprom + _wire->write(COPYSCRATCH, parasite); + if (parasite) delay(10); // 10ms delay + _wire->reset(); +} + +// reads the device's power requirements +bool DallasTemperature::readPowerSupply(uint8_t* deviceAddress) +{ + bool ret = false; + _wire->reset(); + _wire->select(deviceAddress); + _wire->write(READPOWERSUPPLY); + if (_wire->read_bit() == 0) ret = true; + _wire->reset(); + return ret; +} + + +// set resolution of all devices to 9, 10, 11, or 12 bits +// if new resolution is out of range, it is constrained. +void DallasTemperature::setResolution(uint8_t newResolution) +{ + bitResolution = constrain(newResolution, 9, 12); + DeviceAddress deviceAddress; + for (int i=0; ireset(); + _wire->skip(); + _wire->write(STARTCONVO, parasite); + + // ASYNC mode? + if (!waitForConversion) return; + blockTillConversionComplete(&bitResolution, 0); + + return; +} + +// sends command for one device to perform a temperature by address +// returns FALSE if device is disconnected +// returns TRUE otherwise +bool DallasTemperature::requestTemperaturesByAddress(uint8_t* deviceAddress) +{ + + _wire->reset(); + _wire->select(deviceAddress); + _wire->write(STARTCONVO, parasite); + + // check device + ScratchPad scratchPad; + if (!isConnected(deviceAddress, scratchPad)) return false; + + + // ASYNC mode? + if (!waitForConversion) return true; + uint8_t bitResolution = getResolution(deviceAddress); + blockTillConversionComplete(&bitResolution, deviceAddress); + + return true; +} + + +void DallasTemperature::blockTillConversionComplete(uint8_t* bitResolution, uint8_t* deviceAddress) +{ + if(deviceAddress != 0 && checkForConversion && !parasite) + { + // Continue to check if the IC has responded with a temperature + // NB: Could cause issues with multiple devices (one device may respond faster) + unsigned long start = millis(); + while(!isConversionAvailable(0) && ((millis() - start) < 750)); + } + + // Wait a fix number of cycles till conversion is complete (based on IC datasheet) + switch (*bitResolution) + { + case 9: + delay(94); + break; + case 10: + delay(188); + break; + case 11: + delay(375); + break; + case 12: + default: + delay(750); + break; + } + +} + +// sends command for one device to perform a temp conversion by index +bool DallasTemperature::requestTemperaturesByIndex(uint8_t deviceIndex) +{ + DeviceAddress deviceAddress; + getAddress(deviceAddress, deviceIndex); + return requestTemperaturesByAddress(deviceAddress); +} + +// Fetch temperature for device index +float DallasTemperature::getTempCByIndex(uint8_t deviceIndex) +{ + DeviceAddress deviceAddress; + getAddress(deviceAddress, deviceIndex); + return getTempC((uint8_t*)deviceAddress); +} + +// Fetch temperature for device index +float DallasTemperature::getTempFByIndex(uint8_t deviceIndex) +{ + return toFahrenheit(getTempCByIndex(deviceIndex)); +} + +// reads scratchpad and returns the temperature in degrees C +float DallasTemperature::calculateTemperature(uint8_t* deviceAddress, uint8_t* scratchPad) +{ + int16_t rawTemperature = (((int16_t)scratchPad[TEMP_MSB]) << 8) | scratchPad[TEMP_LSB]; + + switch (deviceAddress[0]) + { + case DS18B20MODEL: + case DS1822MODEL: + switch (scratchPad[CONFIGURATION]) + { + case TEMP_12_BIT: + return (float)rawTemperature * 0.0625; + break; + case TEMP_11_BIT: + return (float)(rawTemperature >> 1) * 0.125; + break; + case TEMP_10_BIT: + return (float)(rawTemperature >> 2) * 0.25; + break; + case TEMP_9_BIT: + return (float)(rawTemperature >> 3) * 0.5; + break; + } + break; + case DS18S20MODEL: + /* + + Resolutions greater than 9 bits can be calculated using the data from + the temperature, COUNT REMAIN and COUNT PER �C registers in the + scratchpad. Note that the COUNT PER �C register is hard-wired to 16 + (10h). After reading the scratchpad, the TEMP_READ value is obtained + by truncating the 0.5�C bit (bit 0) from the temperature data. The + extended resolution temperature can then be calculated using the + following equation: + + COUNT_PER_C - COUNT_REMAIN + TEMPERATURE = TEMP_READ - 0.25 + -------------------------- + COUNT_PER_C + */ + + // Good spot. Thanks Nic Johns for your contribution + return (float)(rawTemperature >> 1) - 0.25 +((float)(scratchPad[COUNT_PER_C] - scratchPad[COUNT_REMAIN]) / (float)scratchPad[COUNT_PER_C] ); + break; + } +} + +// returns temperature in degrees C or DEVICE_DISCONNECTED if the +// device's scratch pad cannot be read successfully. +// the numeric value of DEVICE_DISCONNECTED is defined in +// DallasTemperature.h. It is a large negative number outside the +// operating range of the device +float DallasTemperature::getTempC(uint8_t* deviceAddress) +{ + // TODO: Multiple devices (up to 64) on the same bus may take + // some time to negotiate a response + // What happens in case of collision? + + ScratchPad scratchPad; + if (isConnected(deviceAddress, scratchPad)) return calculateTemperature(deviceAddress, scratchPad); + return DEVICE_DISCONNECTED; +} + +// returns temperature in degrees F +// TODO: - when getTempC returns DEVICE_DISCONNECTED +// -127 gets converted to -196.6 F +float DallasTemperature::getTempF(uint8_t* deviceAddress) +{ + return toFahrenheit(getTempC(deviceAddress)); +} + +// returns true if the bus requires parasite power +bool DallasTemperature::isParasitePowerMode(void) +{ + return parasite; +} + +#if REQUIRESALARMS + +/* + +ALARMS: + +TH and TL Register Format + +BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 + S 2^6 2^5 2^4 2^3 2^2 2^1 2^0 + +Only bits 11 through 4 of the temperature register are used +in the TH and TL comparison since TH and TL are 8-bit +registers. If the measured temperature is lower than or equal +to TL or higher than or equal to TH, an alarm condition exists +and an alarm flag is set inside the DS18B20. This flag is +updated after every temperature measurement; therefore, if the +alarm condition goes away, the flag will be turned off after +the next temperature conversion. + +*/ + +// sets the high alarm temperature for a device in degrees celsius +// accepts a float, but the alarm resolution will ignore anything +// after a decimal point. valid range is -55C - 125C +void DallasTemperature::setHighAlarmTemp(uint8_t* deviceAddress, char celsius) +{ + // make sure the alarm temperature is within the device's range + if (celsius > 125) celsius = 125; + else if (celsius < -55) celsius = -55; + + ScratchPad scratchPad; + if (isConnected(deviceAddress, scratchPad)) + { + scratchPad[HIGH_ALARM_TEMP] = (uint8_t)celsius; + writeScratchPad(deviceAddress, scratchPad); + } +} + +// sets the low alarm temperature for a device in degreed celsius +// accepts a float, but the alarm resolution will ignore anything +// after a decimal point. valid range is -55C - 125C +void DallasTemperature::setLowAlarmTemp(uint8_t* deviceAddress, char celsius) +{ + // make sure the alarm temperature is within the device's range + if (celsius > 125) celsius = 125; + else if (celsius < -55) celsius = -55; + + ScratchPad scratchPad; + if (isConnected(deviceAddress, scratchPad)) + { + scratchPad[LOW_ALARM_TEMP] = (uint8_t)celsius; + writeScratchPad(deviceAddress, scratchPad); + } +} + +// returns a char with the current high alarm temperature or +// DEVICE_DISCONNECTED for an address +char DallasTemperature::getHighAlarmTemp(uint8_t* deviceAddress) +{ + ScratchPad scratchPad; + if (isConnected(deviceAddress, scratchPad)) return (char)scratchPad[HIGH_ALARM_TEMP]; + return DEVICE_DISCONNECTED; +} + +// returns a char with the current low alarm temperature or +// DEVICE_DISCONNECTED for an address +char DallasTemperature::getLowAlarmTemp(uint8_t* deviceAddress) +{ + ScratchPad scratchPad; + if (isConnected(deviceAddress, scratchPad)) return (char)scratchPad[LOW_ALARM_TEMP]; + return DEVICE_DISCONNECTED; +} + +// resets internal variables used for the alarm search +void DallasTemperature::resetAlarmSearch() +{ + alarmSearchJunction = -1; + alarmSearchExhausted = 0; + for(uint8_t i = 0; i < 7; i++) + alarmSearchAddress[i] = 0; +} + +// This is a modified version of the OneWire::search method. +// +// Also added the OneWire search fix documented here: +// http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295 +// +// Perform an alarm search. If this function returns a '1' then it has +// enumerated the next device and you may retrieve the ROM from the +// OneWire::address variable. If there are no devices, no further +// devices, or something horrible happens in the middle of the +// enumeration then a 0 is returned. If a new device is found then +// its address is copied to newAddr. Use +// DallasTemperature::resetAlarmSearch() to start over. +bool DallasTemperature::alarmSearch(uint8_t* newAddr) +{ + uint8_t i; + char lastJunction = -1; + uint8_t done = 1; + + if (alarmSearchExhausted) return false; + if (!_wire->reset()) return false; + + // send the alarm search command + _wire->write(0xEC, 0); + + for(i = 0; i < 64; i++) + { + uint8_t a = _wire->read_bit( ); + uint8_t nota = _wire->read_bit( ); + uint8_t ibyte = i / 8; + uint8_t ibit = 1 << (i & 7); + + // I don't think this should happen, this means nothing responded, but maybe if + // something vanishes during the search it will come up. + if (a && nota) return false; + + if (!a && !nota) + { + if (i == alarmSearchJunction) + { + // this is our time to decide differently, we went zero last time, go one. + a = 1; + alarmSearchJunction = lastJunction; + } + else if (i < alarmSearchJunction) + { + // take whatever we took last time, look in address + if (alarmSearchAddress[ibyte] & ibit) a = 1; + else + { + // Only 0s count as pending junctions, we've already exhasuted the 0 side of 1s + a = 0; + done = 0; + lastJunction = i; + } + } + else + { + // we are blazing new tree, take the 0 + a = 0; + alarmSearchJunction = i; + done = 0; + } + // OneWire search fix + // See: http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295 + } + + if (a) alarmSearchAddress[ibyte] |= ibit; + else alarmSearchAddress[ibyte] &= ~ibit; + + _wire->write_bit(a); + } + + if (done) alarmSearchExhausted = 1; + for (i = 0; i < 8; i++) newAddr[i] = alarmSearchAddress[i]; + return true; +} + +// returns true if device address has an alarm condition +// TODO: can this be done with only TEMP_MSB REGISTER (faster) +// if ((char) scratchPad[TEMP_MSB] <= (char) scratchPad[LOW_ALARM_TEMP]) return true; +// if ((char) scratchPad[TEMP_MSB] >= (char) scratchPad[HIGH_ALARM_TEMP]) return true; +bool DallasTemperature::hasAlarm(uint8_t* deviceAddress) +{ + ScratchPad scratchPad; + if (isConnected(deviceAddress, scratchPad)) + { + float temp = calculateTemperature(deviceAddress, scratchPad); + + // check low alarm + if ((char)temp <= (char)scratchPad[LOW_ALARM_TEMP]) return true; + + // check high alarm + if ((char)temp >= (char)scratchPad[HIGH_ALARM_TEMP]) return true; + } + + // no alarm + return false; +} + +// returns true if any device is reporting an alarm condition on the bus +bool DallasTemperature::hasAlarm(void) +{ + DeviceAddress deviceAddress; + resetAlarmSearch(); + return alarmSearch(deviceAddress); +} + +// runs the alarm handler for all devices returned by alarmSearch() +void DallasTemperature::processAlarms(void) +{ + resetAlarmSearch(); + DeviceAddress alarmAddr; + + while (alarmSearch(alarmAddr)) + { + if (validAddress(alarmAddr)) + _AlarmHandler(alarmAddr); + } +} + +// sets the alarm handler +void DallasTemperature::setAlarmHandler(AlarmHandler *handler) +{ + _AlarmHandler = handler; +} + +// The default alarm handler +void DallasTemperature::defaultAlarmHandler(uint8_t* deviceAddress) +{ +} + +#endif + +// Convert float celsius to fahrenheit +float DallasTemperature::toFahrenheit(float celsius) +{ + return (celsius * 1.8) + 32; +} + +// Convert float fahrenheit to celsius +float DallasTemperature::toCelsius(float fahrenheit) +{ + return (fahrenheit - 32) / 1.8; +} + +#if REQUIRESNEW + +// MnetCS - Allocates memory for DallasTemperature. Allows us to instance a new object +void* DallasTemperature::operator new(unsigned int size) // Implicit NSS obj size +{ + void * p; // void pointer + p = malloc(size); // Allocate memory + memset((DallasTemperature*)p,0,size); // Initalise memory + + //!!! CANT EXPLICITLY CALL CONSTRUCTOR - workaround by using an init() methodR - workaround by using an init() method + return (DallasTemperature*) p; // Cast blank region to NSS pointer +} + +// MnetCS 2009 - Unallocates the memory used by this instance +void DallasTemperature::operator delete(void* p) +{ + DallasTemperature* pNss = (DallasTemperature*) p; // Cast to NSS pointer + pNss->~DallasTemperature(); // Destruct the object + + free(p); // Free the memory +} + +#endif diff --git a/BSB_lan/libraries/DallasTemperature/DallasTemperature.h b/BSB_lan/libraries/DallasTemperature/DallasTemperature.h new file mode 100644 index 000000000..ff8262ffa --- /dev/null +++ b/BSB_lan/libraries/DallasTemperature/DallasTemperature.h @@ -0,0 +1,242 @@ +#ifndef DallasTemperature_h +#define DallasTemperature_h + +#define DALLASTEMPLIBVERSION "3.7.2" + +// This library is free software; you can redistribute it and/or +// modify it under the terms of the GNU Lesser General Public +// License as published by the Free Software Foundation; either +// version 2.1 of the License, or (at your option) any later version. + +// set to true to include code for new and delete operators +#ifndef REQUIRESNEW +#define REQUIRESNEW false +#endif + +// set to true to include code implementing alarm search functions +#ifndef REQUIRESALARMS +#define REQUIRESALARMS true +#endif + +#include +#include + +// Model IDs +#define DS18S20MODEL 0x10 +#define DS18B20MODEL 0x28 +#define DS1822MODEL 0x22 + +// OneWire commands +#define STARTCONVO 0x44 // Tells device to take a temperature reading and put it on the scratchpad +#define COPYSCRATCH 0x48 // Copy EEPROM +#define READSCRATCH 0xBE // Read EEPROM +#define WRITESCRATCH 0x4E // Write to EEPROM +#define RECALLSCRATCH 0xB8 // Reload from last known +#define READPOWERSUPPLY 0xB4 // Determine if device needs parasite power +#define ALARMSEARCH 0xEC // Query bus for devices with an alarm condition + +// Scratchpad locations +#define TEMP_LSB 0 +#define TEMP_MSB 1 +#define HIGH_ALARM_TEMP 2 +#define LOW_ALARM_TEMP 3 +#define CONFIGURATION 4 +#define INTERNAL_BYTE 5 +#define COUNT_REMAIN 6 +#define COUNT_PER_C 7 +#define SCRATCHPAD_CRC 8 + +// Device resolution +#define TEMP_9_BIT 0x1F // 9 bit +#define TEMP_10_BIT 0x3F // 10 bit +#define TEMP_11_BIT 0x5F // 11 bit +#define TEMP_12_BIT 0x7F // 12 bit + +// Error Codes +#define DEVICE_DISCONNECTED -127 + +typedef uint8_t DeviceAddress[8]; + +class DallasTemperature +{ + public: + + DallasTemperature(OneWire*); + + // initalise bus + void begin(void); + + // returns the number of devices found on the bus + uint8_t getDeviceCount(void); + + // Is a conversion complete on the wire? + bool isConversionComplete(void); + + // returns true if address is valid + bool validAddress(uint8_t*); + + // finds an address at a given index on the bus + bool getAddress(uint8_t*, const uint8_t); + + // attempt to determine if the device at the given address is connected to the bus + bool isConnected(uint8_t*); + + // attempt to determine if the device at the given address is connected to the bus + // also allows for updating the read scratchpad + bool isConnected(uint8_t*, uint8_t*); + + // read device's scratchpad + void readScratchPad(uint8_t*, uint8_t*); + + // write device's scratchpad + void writeScratchPad(uint8_t*, const uint8_t*); + + // read device's power requirements + bool readPowerSupply(uint8_t*); + + // get global resolution + uint8_t getResolution(); + + // set global resolution to 9, 10, 11, or 12 bits + void setResolution(uint8_t); + + // returns the device resolution, 9-12 + uint8_t getResolution(uint8_t*); + + // set resolution of a device to 9, 10, 11, or 12 bits + bool setResolution(uint8_t*, uint8_t); + + // sets/gets the waitForConversion flag + void setWaitForConversion(bool); + bool getWaitForConversion(void); + + // sets/gets the checkForConversion flag + void setCheckForConversion(bool); + bool getCheckForConversion(void); + + // sends command for all devices on the bus to perform a temperature conversion + void requestTemperatures(void); + + // sends command for one device to perform a temperature conversion by address + bool requestTemperaturesByAddress(uint8_t*); + + // sends command for one device to perform a temperature conversion by index + bool requestTemperaturesByIndex(uint8_t); + + // returns temperature in degrees C + float getTempC(uint8_t*); + + // returns temperature in degrees F + float getTempF(uint8_t*); + + // Get temperature for device index (slow) + float getTempCByIndex(uint8_t); + + // Get temperature for device index (slow) + float getTempFByIndex(uint8_t); + + // returns true if the bus requires parasite power + bool isParasitePowerMode(void); + + bool isConversionAvailable(uint8_t*); + + #if REQUIRESALARMS + + typedef void AlarmHandler(uint8_t*); + + // sets the high alarm temperature for a device + // accepts a char. valid range is -55C - 125C + void setHighAlarmTemp(uint8_t*, const char); + + // sets the low alarm temperature for a device + // accepts a char. valid range is -55C - 125C + void setLowAlarmTemp(uint8_t*, const char); + + // returns a signed char with the current high alarm temperature for a device + // in the range -55C - 125C + char getHighAlarmTemp(uint8_t*); + + // returns a signed char with the current low alarm temperature for a device + // in the range -55C - 125C + char getLowAlarmTemp(uint8_t*); + + // resets internal variables used for the alarm search + void resetAlarmSearch(void); + + // search the wire for devices with active alarms + bool alarmSearch(uint8_t*); + + // returns true if ia specific device has an alarm + bool hasAlarm(uint8_t*); + + // returns true if any device is reporting an alarm on the bus + bool hasAlarm(void); + + // runs the alarm handler for all devices returned by alarmSearch() + void processAlarms(void); + + // sets the alarm handler + void setAlarmHandler(AlarmHandler *); + + // The default alarm handler + static void defaultAlarmHandler(uint8_t*); + + #endif + + // convert from celcius to farenheit + static float toFahrenheit(const float); + + // convert from farenheit to celsius + static float toCelsius(const float); + + #if REQUIRESNEW + + // initalize memory area + void* operator new (unsigned int); + + // delete memory reference + void operator delete(void*); + + #endif + + private: + typedef uint8_t ScratchPad[9]; + + // parasite power on or off + bool parasite; + + // used to determine the delay amount needed to allow for the + // temperature conversion to take place + uint8_t bitResolution; + + // used to requestTemperature with or without delay + bool waitForConversion; + + // used to requestTemperature to dynamically check if a conversion is complete + bool checkForConversion; + + // count of devices on the bus + uint8_t devices; + + // Take a pointer to one wire instance + OneWire* _wire; + + // reads scratchpad and returns the temperature in degrees C + float calculateTemperature(uint8_t*, uint8_t*); + + void blockTillConversionComplete(uint8_t*,uint8_t*); + + #if REQUIRESALARMS + + // required for alarmSearch + uint8_t alarmSearchAddress[8]; + char alarmSearchJunction; + uint8_t alarmSearchExhausted; + + // the alarm handler function pointer + AlarmHandler *_AlarmHandler; + + #endif + +}; +#endif diff --git a/BSB_lan/libraries/DallasTemperature/README.TXT b/BSB_lan/libraries/DallasTemperature/README.TXT new file mode 100644 index 000000000..764bdd73f --- /dev/null +++ b/BSB_lan/libraries/DallasTemperature/README.TXT @@ -0,0 +1,53 @@ +Arduino Library for Dallas Temperature ICs +========================================== + +Usage +----- + +This library supports the following devices: + DS18B20 + DS18S20 - Please note there appears to be an issue with this series. + DS1822 + +You will need a pull-up resistor of about 5 KOhm between the 1-Wire data line +and your 5V power. If you are using the DS18B20, ground pins 1 and 3. The +centre pin is the data line '1-wire'. + +We have included a "REQUIRESNEW" and "REQUIRESALARMS" definition. If you +want to slim down the code feel free to use either of these by including +#define REQUIRESNEW or #define REQUIRESALARMS a the top of DallasTemperature.h + +Credits +------- + +The OneWire code has been derived from +http://www.arduino.cc/playground/Learning/OneWire. +Miles Burton originally developed this library. +Tim Newsome added support for multiple sensors on +the same bus. +Guil Barros [gfbarros@bappos.com] added getTempByAddress (v3.5) +Rob Tillaart [rob.tillaart@gmail.com] added async modus (v3.7.0) + + +Website +------- + +You can find the latest version of the library at +http://milesburton.com/index.php?title=Dallas_Temperature_Control_Library + +License +------- + +This library is free software; you can redistribute it and/or +modify it under the terms of the GNU Lesser General Public +License as published by the Free Software Foundation; either +version 2.1 of the License, or (at your option) any later version. + +This library is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +Lesser General Public License for more details. + +You should have received a copy of the GNU Lesser General Public +License along with this library; if not, write to the Free Software +Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA diff --git a/BSB_lan/libraries/DallasTemperature/change.txt b/BSB_lan/libraries/DallasTemperature/change.txt new file mode 100644 index 000000000..42564ca1a --- /dev/null +++ b/BSB_lan/libraries/DallasTemperature/change.txt @@ -0,0 +1,85 @@ + +This file contains the change history of the Dallas Temperature Control Library. + +VERSION 3.7.2 BETA +=================== +DATE: 6 DEC 2011 + +- Jordan Hochenbaum [jhochenbaum@gmail.com] updated library for compatibility with Arduino 1.0. + +VERSION 3.7.0 BETA +=================== +DATE: 11 JAN 2011 + +- Rob Tillaart [rob.tillaart@gmail.com] added async modus (v3.7.0) + The library is backwards compatible with version 3.6.0 + + MAJOR: async modus + ------------------ +- Added - private bool waitForConversion. +This boolean is default set to true in the Constructor to keep the library backwards compatible. If this flag is true calls to requestTemperatures(), requestTemperaturesByAddress() et al, will be blocking with the appropiate time specified (in datasheet) for the resolution used. If the flag is set to false, requestTemperatures() et al, will return immediately after the conversion command is send over the 1-wire interface. The programmer is responsible to wait long enough before reading the temperature values. This enables the application to do other things while waiting for a new reading, like calculations, update LCD, read/write other IO lines etc. See examples. + +- Added - void setWaitForConversion(bool); +To set the flag to true or false, depending on the modus needed. + +- Added - bool getWaitForConversion(void); +To get the current value of the flag. + +- Changed - void requestTemperatures(void); +Added a test (false == waitForConversion) to return immediately after the conversion command instead of waiting until the conversion is ready. + +- Changed - bool requestTemperaturesByAddress(uint8_t*); +Added a test (false == waitForConversion) to return immediately after the conversion command instead of waiting until the conversion is ready. + + + MINOR version number + -------------------- +- Added - #define DALLASTEMPLIBVERSION "3.7.0" +To indicate the version number in .h file + + + MINOR internal var bitResolution + ---------------------------- +- Changed - private int conversionDelay - is renamed to - private int bitResolution +As this variable holds the resolution. The delay for the conversion is derived from it. + +- Changed - uint8_t getResolution(uint8_t* deviceAddress); +If the device is not connected, it returns 0, otherwise it returns the resolution of the device. + +- Changed - bool setResolution(uint8_t* deviceAddress, uint8_t newResolution); +If the device is not connected, it returns FALSE (fail), otherwise it returns TRUE (succes). + +- Added - uint8_t getResolution(); +Returns bitResolution. + +- Added - void setResolution(uint8_t newResolution) +Sets the internal variable bitResolution, and all devices to this value + + + MINOR check connected state + ---------------------------- +- Changed - bool requestTemperaturesByIndex(deviceIndex) +Changed return type from void to bool. The function returns false if the device identified with [deviceIndex] is not found on the bus and true otherwise. + +- Changed - bool requestTemperaturesByAddress(deviceAddress) +Changed return type from void to bool. The function returns false if the device identified with [deviceAddress] is not found on the bus and true otherwise. +Added code to handle the DS18S20 which has a 9 bit resolution separately. +Changed code so the blocking delay matches the bitResolution set in the device with deviceAddress. + +- Changed - bool requestTemperaturesByIndex(uint8_t deviceIndex) +Changed return type from void to bool. The function returns false if the device identified with [deviceIndex] is not found on the bus and true otherwise. + + + +VERSION 3.6.0 +============== +DATE: 2010-10-10 + +- no detailed change history known except: + +- The OneWire code has been derived from +http://www.arduino.cc/playground/Learning/OneWire. +- Miles Burton originally developed this library. +- Tim Newsome added support for multiple sensors on +the same bus. +- Guil Barros [gfbarros@bappos.com] added getTempByAddress (v3.5) diff --git a/BSB_lan/libraries/DallasTemperature/examples/Alarm/Alarm.pde b/BSB_lan/libraries/DallasTemperature/examples/Alarm/Alarm.pde new file mode 100644 index 000000000..d9c6e6cad --- /dev/null +++ b/BSB_lan/libraries/DallasTemperature/examples/Alarm/Alarm.pde @@ -0,0 +1,162 @@ +#include +#include + +// Data wire is plugged into port 2 on the Arduino +#define ONE_WIRE_BUS 2 + +// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs) +OneWire oneWire(ONE_WIRE_BUS); + +// Pass our oneWire reference to Dallas Temperature. +DallasTemperature sensors(&oneWire); + +// arrays to hold device addresses +DeviceAddress insideThermometer, outsideThermometer; + +void setup(void) +{ + // start serial port + Serial.begin(9600); + Serial.println("Dallas Temperature IC Control Library Demo"); + + // Start up the library + sensors.begin(); + + // locate devices on the bus + Serial.print("Found "); + Serial.print(sensors.getDeviceCount(), DEC); + Serial.println(" devices."); + + // search for devices on the bus and assign based on an index. + if (!sensors.getAddress(insideThermometer, 0)) Serial.println("Unable to find address for Device 0"); + if (!sensors.getAddress(outsideThermometer, 1)) Serial.println("Unable to find address for Device 1"); + + // show the addresses we found on the bus + Serial.print("Device 0 Address: "); + printAddress(insideThermometer); + Serial.println(); + + Serial.print("Device 0 Alarms: "); + printAlarms(insideThermometer); + Serial.println(); + + Serial.print("Device 1 Address: "); + printAddress(outsideThermometer); + Serial.println(); + + Serial.print("Device 1 Alarms: "); + printAlarms(outsideThermometer); + Serial.println(); + + Serial.println("Setting alarm temps..."); + + // alarm when temp is higher than 30C + sensors.setHighAlarmTemp(insideThermometer, 30); + + // alarm when temp is lower than -10C + sensors.setLowAlarmTemp(insideThermometer, -10); + + // alarm when temp is higher than 31C + sensors.setHighAlarmTemp(outsideThermometer, 31); + + // alarn when temp is lower than 27C + sensors.setLowAlarmTemp(outsideThermometer, 27); + + Serial.print("New Device 0 Alarms: "); + printAlarms(insideThermometer); + Serial.println(); + + Serial.print("New Device 1 Alarms: "); + printAlarms(outsideThermometer); + Serial.println(); +} + +// function to print a device address +void printAddress(DeviceAddress deviceAddress) +{ + for (uint8_t i = 0; i < 8; i++) + { + if (deviceAddress[i] < 16) Serial.print("0"); + Serial.print(deviceAddress[i], HEX); + } +} + +// function to print the temperature for a device +void printTemperature(DeviceAddress deviceAddress) +{ + float tempC = sensors.getTempC(deviceAddress); + Serial.print("Temp C: "); + Serial.print(tempC); + Serial.print(" Temp F: "); + Serial.print(DallasTemperature::toFahrenheit(tempC)); +} + +void printAlarms(uint8_t deviceAddress[]) +{ + char temp; + temp = sensors.getHighAlarmTemp(deviceAddress); + Serial.print("High Alarm: "); + Serial.print(temp, DEC); + Serial.print("C/"); + Serial.print(DallasTemperature::toFahrenheit(temp)); + Serial.print("F | Low Alarm: "); + temp = sensors.getLowAlarmTemp(deviceAddress); + Serial.print(temp, DEC); + Serial.print("C/"); + Serial.print(DallasTemperature::toFahrenheit(temp)); + Serial.print("F"); +} + +// main function to print information about a device +void printData(DeviceAddress deviceAddress) +{ + Serial.print("Device Address: "); + printAddress(deviceAddress); + Serial.print(" "); + printTemperature(deviceAddress); + Serial.println(); +} + +void checkAlarm(DeviceAddress deviceAddress) +{ + if (sensors.hasAlarm(deviceAddress)) + { + Serial.print("ALARM: "); + printData(deviceAddress); + } +} + +void loop(void) +{ + // call sensors.requestTemperatures() to issue a global temperature + // request to all devices on the bus + Serial.print("Requesting temperatures..."); + sensors.requestTemperatures(); + Serial.println("DONE"); + + // Method 1: + // check each address individually for an alarm condition + checkAlarm(insideThermometer); + checkAlarm(outsideThermometer); +/* + // Alternate method: + // Search the bus and iterate through addresses of devices with alarms + + // space for the alarm device's address + DeviceAddress alarmAddr; + + Serial.println("Searching for alarms..."); + + // resetAlarmSearch() must be called before calling alarmSearch() + sensors.resetAlarmSearch(); + + // alarmSearch() returns 0 when there are no devices with alarms + while (sensors.alarmSearch(alarmAddr)) + { + Serial.print("ALARM: "); + printData(alarmAddr); + } +*/ + +} + diff --git a/BSB_lan/libraries/DallasTemperature/examples/AlarmHandler/AlarmHandler.pde b/BSB_lan/libraries/DallasTemperature/examples/AlarmHandler/AlarmHandler.pde new file mode 100644 index 000000000..4b72962da --- /dev/null +++ b/BSB_lan/libraries/DallasTemperature/examples/AlarmHandler/AlarmHandler.pde @@ -0,0 +1,144 @@ +#include +#include + +// Data wire is plugged into port 2 on the Arduino +#define ONE_WIRE_BUS 2 + +// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs) +OneWire oneWire(ONE_WIRE_BUS); + +// Pass our oneWire reference to Dallas Temperature. +DallasTemperature sensors(&oneWire); + +// arrays to hold device addresses +DeviceAddress insideThermometer, outsideThermometer; + +// function that will be called when an alarm condition exists during DallasTemperatures::processAlarms(); +void newAlarmHandler(uint8_t* deviceAddress) +{ + Serial.println("Alarm Handler Start"); + printAlarmInfo(deviceAddress); + printTemp(deviceAddress); + Serial.println(); + Serial.println("Alarm Handler Finish"); +} + +void printCurrentTemp(DeviceAddress deviceAddress) +{ + printAddress(deviceAddress); + printTemp(deviceAddress); + Serial.println(); +} + +void printAddress(DeviceAddress deviceAddress) +{ + Serial.print("Address: "); + for (uint8_t i = 0; i < 8; i++) + { + if (deviceAddress[i] < 16) Serial.print("0"); + Serial.print(deviceAddress[i], HEX); + } + Serial.print(" "); +} + +void printTemp(DeviceAddress deviceAddress) +{ + float tempC = sensors.getTempC(deviceAddress); + if (tempC != DEVICE_DISCONNECTED) + { + Serial.print("Current Temp C: "); + Serial.print(tempC); + } + else Serial.print("DEVICE DISCONNECTED"); + Serial.print(" "); +} + +void printAlarmInfo(DeviceAddress deviceAddress) +{ + char temp; + printAddress(deviceAddress); + temp = sensors.getHighAlarmTemp(deviceAddress); + Serial.print("High Alarm: "); + Serial.print(temp, DEC); + Serial.print("C"); + Serial.print(" Low Alarm: "); + temp = sensors.getLowAlarmTemp(deviceAddress); + Serial.print(temp, DEC); + Serial.print("C"); + Serial.print(" "); +} + +void setup(void) +{ + // start serial port + Serial.begin(9600); + Serial.println("Dallas Temperature IC Control Library Demo"); + + // Start up the library + sensors.begin(); + + // locate devices on the bus + Serial.print("Found "); + Serial.print(sensors.getDeviceCount(), DEC); + Serial.println(" devices."); + + // search for devices on the bus and assign based on an index + if (!sensors.getAddress(insideThermometer, 0)) Serial.println("Unable to find address for Device 0"); + if (!sensors.getAddress(outsideThermometer, 1)) Serial.println("Unable to find address for Device 1"); + + Serial.print("Device insideThermometer "); + printAlarmInfo(insideThermometer); + Serial.println(); + + Serial.print("Device outsideThermometer "); + printAlarmInfo(outsideThermometer); + Serial.println(); + + // set alarm ranges + Serial.println("Setting alarm temps..."); + sensors.setHighAlarmTemp(insideThermometer, 26); + sensors.setLowAlarmTemp(insideThermometer, 22); + sensors.setHighAlarmTemp(outsideThermometer, 25); + sensors.setLowAlarmTemp(outsideThermometer, 21); + + Serial.print("New insideThermometer "); + printAlarmInfo(insideThermometer); + Serial.println(); + + Serial.print("New outsideThermometer "); + printAlarmInfo(outsideThermometer); + Serial.println(); + + // attach alarm handler + sensors.setAlarmHandler(&newAlarmHandler); + +} + +void loop(void) +{ + // ask the devices to measure the temperature + sensors.requestTemperatures(); + + // if an alarm condition exists as a result of the most recent + // requestTemperatures() request, it exists until the next time + // requestTemperatures() is called AND there isn't an alarm condition + // on the device + if (sensors.hasAlarm()) + { + Serial.println("Oh noes! There is at least one alarm on the bus."); + } + + // call alarm handler function defined by sensors.setAlarmHandler + // for each device reporting an alarm + sensors.processAlarms(); + + if (!sensors.hasAlarm()) + { + // just print out the current temperature + printCurrentTemp(insideThermometer); + printCurrentTemp(outsideThermometer); + } + + delay(1000); +} + diff --git a/BSB_lan/libraries/DallasTemperature/examples/Multiple/Multiple.pde b/BSB_lan/libraries/DallasTemperature/examples/Multiple/Multiple.pde new file mode 100644 index 000000000..37e7ba6d8 --- /dev/null +++ b/BSB_lan/libraries/DallasTemperature/examples/Multiple/Multiple.pde @@ -0,0 +1,140 @@ +#include +#include + +// Data wire is plugged into port 2 on the Arduino +#define ONE_WIRE_BUS 2 +#define TEMPERATURE_PRECISION 9 + +// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs) +OneWire oneWire(ONE_WIRE_BUS); + +// Pass our oneWire reference to Dallas Temperature. +DallasTemperature sensors(&oneWire); + +// arrays to hold device addresses +DeviceAddress insideThermometer, outsideThermometer; + +void setup(void) +{ + // start serial port + Serial.begin(9600); + Serial.println("Dallas Temperature IC Control Library Demo"); + + // Start up the library + sensors.begin(); + + // locate devices on the bus + Serial.print("Locating devices..."); + Serial.print("Found "); + Serial.print(sensors.getDeviceCount(), DEC); + Serial.println(" devices."); + + // report parasite power requirements + Serial.print("Parasite power is: "); + if (sensors.isParasitePowerMode()) Serial.println("ON"); + else Serial.println("OFF"); + + // assign address manually. the addresses below will beed to be changed + // to valid device addresses on your bus. device address can be retrieved + // by using either oneWire.search(deviceAddress) or individually via + // sensors.getAddress(deviceAddress, index) + //insideThermometer = { 0x28, 0x1D, 0x39, 0x31, 0x2, 0x0, 0x0, 0xF0 }; + //outsideThermometer = { 0x28, 0x3F, 0x1C, 0x31, 0x2, 0x0, 0x0, 0x2 }; + + // search for devices on the bus and assign based on an index. ideally, + // you would do this to initially discover addresses on the bus and then + // use those addresses and manually assign them (see above) once you know + // the devices on your bus (and assuming they don't change). + // + // method 1: by index + if (!sensors.getAddress(insideThermometer, 0)) Serial.println("Unable to find address for Device 0"); + if (!sensors.getAddress(outsideThermometer, 1)) Serial.println("Unable to find address for Device 1"); + + // method 2: search() + // search() looks for the next device. Returns 1 if a new address has been + // returned. A zero might mean that the bus is shorted, there are no devices, + // or you have already retrieved all of them. It might be a good idea to + // check the CRC to make sure you didn't get garbage. The order is + // deterministic. You will always get the same devices in the same order + // + // Must be called before search() + //oneWire.reset_search(); + // assigns the first address found to insideThermometer + //if (!oneWire.search(insideThermometer)) Serial.println("Unable to find address for insideThermometer"); + // assigns the seconds address found to outsideThermometer + //if (!oneWire.search(outsideThermometer)) Serial.println("Unable to find address for outsideThermometer"); + + // show the addresses we found on the bus + Serial.print("Device 0 Address: "); + printAddress(insideThermometer); + Serial.println(); + + Serial.print("Device 1 Address: "); + printAddress(outsideThermometer); + Serial.println(); + + // set the resolution to 9 bit + sensors.setResolution(insideThermometer, TEMPERATURE_PRECISION); + sensors.setResolution(outsideThermometer, TEMPERATURE_PRECISION); + + Serial.print("Device 0 Resolution: "); + Serial.print(sensors.getResolution(insideThermometer), DEC); + Serial.println(); + + Serial.print("Device 1 Resolution: "); + Serial.print(sensors.getResolution(outsideThermometer), DEC); + Serial.println(); +} + +// function to print a device address +void printAddress(DeviceAddress deviceAddress) +{ + for (uint8_t i = 0; i < 8; i++) + { + // zero pad the address if necessary + if (deviceAddress[i] < 16) Serial.print("0"); + Serial.print(deviceAddress[i], HEX); + } +} + +// function to print the temperature for a device +void printTemperature(DeviceAddress deviceAddress) +{ + float tempC = sensors.getTempC(deviceAddress); + Serial.print("Temp C: "); + Serial.print(tempC); + Serial.print(" Temp F: "); + Serial.print(DallasTemperature::toFahrenheit(tempC)); +} + +// function to print a device's resolution +void printResolution(DeviceAddress deviceAddress) +{ + Serial.print("Resolution: "); + Serial.print(sensors.getResolution(deviceAddress)); + Serial.println(); +} + +// main function to print information about a device +void printData(DeviceAddress deviceAddress) +{ + Serial.print("Device Address: "); + printAddress(deviceAddress); + Serial.print(" "); + printTemperature(deviceAddress); + Serial.println(); +} + +void loop(void) +{ + // call sensors.requestTemperatures() to issue a global temperature + // request to all devices on the bus + Serial.print("Requesting temperatures..."); + sensors.requestTemperatures(); + Serial.println("DONE"); + + // print the device information + printData(insideThermometer); + printData(outsideThermometer); +} + diff --git a/BSB_lan/libraries/DallasTemperature/examples/Simple/Simple.pde b/BSB_lan/libraries/DallasTemperature/examples/Simple/Simple.pde new file mode 100644 index 000000000..5b2954d54 --- /dev/null +++ b/BSB_lan/libraries/DallasTemperature/examples/Simple/Simple.pde @@ -0,0 +1,33 @@ +#include +#include + +// Data wire is plugged into port 2 on the Arduino +#define ONE_WIRE_BUS 2 + +// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs) +OneWire oneWire(ONE_WIRE_BUS); + +// Pass our oneWire reference to Dallas Temperature. +DallasTemperature sensors(&oneWire); + +void setup(void) +{ + // start serial port + Serial.begin(9600); + Serial.println("Dallas Temperature IC Control Library Demo"); + + // Start up the library + sensors.begin(); +} + +void loop(void) +{ + // call sensors.requestTemperatures() to issue a global temperature + // request to all devices on the bus + Serial.print("Requesting temperatures..."); + sensors.requestTemperatures(); // Send the command to get temperatures + Serial.println("DONE"); + + Serial.print("Temperature for the device 1 (index 0) is: "); + Serial.println(sensors.getTempCByIndex(0)); +} diff --git a/BSB_lan/libraries/DallasTemperature/examples/Single/Single.pde b/BSB_lan/libraries/DallasTemperature/examples/Single/Single.pde new file mode 100644 index 000000000..7336859f8 --- /dev/null +++ b/BSB_lan/libraries/DallasTemperature/examples/Single/Single.pde @@ -0,0 +1,109 @@ +#include +#include + +// Data wire is plugged into port 2 on the Arduino +#define ONE_WIRE_BUS 2 + +// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs) +OneWire oneWire(ONE_WIRE_BUS); + +// Pass our oneWire reference to Dallas Temperature. +DallasTemperature sensors(&oneWire); + +// arrays to hold device address +DeviceAddress insideThermometer; + +void setup(void) +{ + // start serial port + Serial.begin(9600); + Serial.println("Dallas Temperature IC Control Library Demo"); + + // locate devices on the bus + Serial.print("Locating devices..."); + sensors.begin(); + Serial.print("Found "); + Serial.print(sensors.getDeviceCount(), DEC); + Serial.println(" devices."); + + // report parasite power requirements + Serial.print("Parasite power is: "); + if (sensors.isParasitePowerMode()) Serial.println("ON"); + else Serial.println("OFF"); + + // assign address manually. the addresses below will beed to be changed + // to valid device addresses on your bus. device address can be retrieved + // by using either oneWire.search(deviceAddress) or individually via + // sensors.getAddress(deviceAddress, index) + //insideThermometer = { 0x28, 0x1D, 0x39, 0x31, 0x2, 0x0, 0x0, 0xF0 }; + + // Method 1: + // search for devices on the bus and assign based on an index. ideally, + // you would do this to initially discover addresses on the bus and then + // use those addresses and manually assign them (see above) once you know + // the devices on your bus (and assuming they don't change). + if (!sensors.getAddress(insideThermometer, 0)) Serial.println("Unable to find address for Device 0"); + + // method 2: search() + // search() looks for the next device. Returns 1 if a new address has been + // returned. A zero might mean that the bus is shorted, there are no devices, + // or you have already retrieved all of them. It might be a good idea to + // check the CRC to make sure you didn't get garbage. The order is + // deterministic. You will always get the same devices in the same order + // + // Must be called before search() + //oneWire.reset_search(); + // assigns the first address found to insideThermometer + //if (!oneWire.search(insideThermometer)) Serial.println("Unable to find address for insideThermometer"); + + // show the addresses we found on the bus + Serial.print("Device 0 Address: "); + printAddress(insideThermometer); + Serial.println(); + + // set the resolution to 9 bit (Each Dallas/Maxim device is capable of several different resolutions) + sensors.setResolution(insideThermometer, 9); + + Serial.print("Device 0 Resolution: "); + Serial.print(sensors.getResolution(insideThermometer), DEC); + Serial.println(); +} + +// function to print the temperature for a device +void printTemperature(DeviceAddress deviceAddress) +{ + // method 1 - slower + //Serial.print("Temp C: "); + //Serial.print(sensors.getTempC(deviceAddress)); + //Serial.print(" Temp F: "); + //Serial.print(sensors.getTempF(deviceAddress)); // Makes a second call to getTempC and then converts to Fahrenheit + + // method 2 - faster + float tempC = sensors.getTempC(deviceAddress); + Serial.print("Temp C: "); + Serial.print(tempC); + Serial.print(" Temp F: "); + Serial.println(DallasTemperature::toFahrenheit(tempC)); // Converts tempC to Fahrenheit +} + +void loop(void) +{ + // call sensors.requestTemperatures() to issue a global temperature + // request to all devices on the bus + Serial.print("Requesting temperatures..."); + sensors.requestTemperatures(); // Send the command to get temperatures + Serial.println("DONE"); + + // It responds almost immediately. Let's print out the data + printTemperature(insideThermometer); // Use a simple function to print out the data +} + +// function to print a device address +void printAddress(DeviceAddress deviceAddress) +{ + for (uint8_t i = 0; i < 8; i++) + { + if (deviceAddress[i] < 16) Serial.print("0"); + Serial.print(deviceAddress[i], HEX); + } +} diff --git a/BSB_lan/libraries/DallasTemperature/examples/Tester/Tester.pde b/BSB_lan/libraries/DallasTemperature/examples/Tester/Tester.pde new file mode 100644 index 000000000..33ca9ba8b --- /dev/null +++ b/BSB_lan/libraries/DallasTemperature/examples/Tester/Tester.pde @@ -0,0 +1,124 @@ +#include +#include + +// Data wire is plugged into port 2 on the Arduino +#define ONE_WIRE_BUS 2 +#define TEMPERATURE_PRECISION 9 + +// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs) +OneWire oneWire(ONE_WIRE_BUS); + +// Pass our oneWire reference to Dallas Temperature. +DallasTemperature sensors(&oneWire); + +int numberOfDevices; // Number of temperature devices found + +DeviceAddress tempDeviceAddress; // We'll use this variable to store a found device address + +void setup(void) +{ + // start serial port + Serial.begin(9600); + Serial.println("Dallas Temperature IC Control Library Demo"); + + // Start up the library + sensors.begin(); + + // Grab a count of devices on the wire + numberOfDevices = sensors.getDeviceCount(); + + // locate devices on the bus + Serial.print("Locating devices..."); + + Serial.print("Found "); + Serial.print(numberOfDevices, DEC); + Serial.println(" devices."); + + // report parasite power requirements + Serial.print("Parasite power is: "); + if (sensors.isParasitePowerMode()) Serial.println("ON"); + else Serial.println("OFF"); + + // Loop through each device, print out address + for(int i=0;i +#include + +// Data wire is plugged into port 2 on the Arduino +#define ONE_WIRE_BUS 2 + +// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs) +OneWire oneWire(ONE_WIRE_BUS); + +// Pass our oneWire reference to Dallas Temperature. +DallasTemperature sensors(&oneWire); + +void setup(void) +{ + // start serial port + Serial.begin(115200); + Serial.println("Dallas Temperature Control Library - Async Demo"); + Serial.println("\nDemo shows the difference in length of the call\n\n"); + + // Start up the library + sensors.begin(); +} + +void loop(void) +{ + // Request temperature conversion (traditional) + Serial.println("Before blocking requestForConversion"); + unsigned long start = millis(); + + sensors.requestTemperatures(); + + unsigned long stop = millis(); + Serial.println("After blocking requestForConversion"); + Serial.print("Time used: "); + Serial.println(stop - start); + + // get temperature + Serial.print("Temperature: "); + Serial.println(sensors.getTempCByIndex(0)); + Serial.println("\n"); + + // Request temperature conversion - non-blocking / async + Serial.println("Before NON-blocking/async requestForConversion"); + start = millis(); + sensors.setWaitForConversion(false); // makes it async + sensors.requestTemperatures(); + sensors.setWaitForConversion(true); + stop = millis(); + Serial.println("After NON-blocking/async requestForConversion"); + Serial.print("Time used: "); + Serial.println(stop - start); + + + // 9 bit resolution by default + // Note the programmer is responsible for the right delay + // we could do something usefull here instead of the delay + int resolution = 9; + delay(750/ (1 << (12-resolution))); + + // get temperature + Serial.print("Temperature: "); + Serial.println(sensors.getTempCByIndex(0)); + Serial.println("\n\n\n\n"); + + delay(5000); +} diff --git a/BSB_lan/libraries/DallasTemperature/examples/WaitForConversion2/WaitForConversion2.pde b/BSB_lan/libraries/DallasTemperature/examples/WaitForConversion2/WaitForConversion2.pde new file mode 100644 index 000000000..43223300f --- /dev/null +++ b/BSB_lan/libraries/DallasTemperature/examples/WaitForConversion2/WaitForConversion2.pde @@ -0,0 +1,80 @@ +// +// Sample of using Async reading of Dallas Temperature Sensors +// +#include +#include + +// Data wire is plugged into port 2 on the Arduino +#define ONE_WIRE_BUS 2 + +// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs) +OneWire oneWire(ONE_WIRE_BUS); + +// Pass our oneWire reference to Dallas Temperature. +DallasTemperature sensors(&oneWire); + +DeviceAddress tempDeviceAddress; + +int resolution = 12; +unsigned long lastTempRequest = 0; +int delayInMillis = 0; +float temperature = 0.0; +int idle = 0; +// +// SETUP +// +void setup(void) +{ + Serial.begin(115200); + Serial.println("Dallas Temperature Control Library - Async Demo"); + Serial.print("Library Version: "); + Serial.println(DALLASTEMPLIBVERSION); + Serial.println("\n"); + + sensors.begin(); + sensors.getAddress(tempDeviceAddress, 0); + sensors.setResolution(tempDeviceAddress, resolution); + + sensors.setWaitForConversion(false); + sensors.requestTemperatures(); + delayInMillis = 750 / (1 << (12 - resolution)); + lastTempRequest = millis(); + + pinMode(13, OUTPUT); +} + +void loop(void) +{ + + if (millis() - lastTempRequest >= delayInMillis) // waited long enough?? + { + digitalWrite(13, LOW); + Serial.print(" Temperature: "); + temperature = sensors.getTempCByIndex(0); + Serial.println(temperature, resolution - 8); + Serial.print(" Resolution: "); + Serial.println(resolution); + Serial.print("Idle counter: "); + Serial.println(idle); + Serial.println(); + + idle = 0; + + // immediately after fetching the temperature we request a new sample + // in the async modus + // for the demo we let the resolution change to show differences + resolution++; + if (resolution > 12) resolution = 9; + + sensors.setResolution(tempDeviceAddress, resolution); + sensors.requestTemperatures(); + delayInMillis = 750 / (1 << (12 - resolution)); + lastTempRequest = millis(); + } + + digitalWrite(13, HIGH); + // we can do usefull things here + // for the demo we just count the idle time in millis + delay(1); + idle++; +} diff --git a/BSB_lan/libraries/DallasTemperature/keywords.txt b/BSB_lan/libraries/DallasTemperature/keywords.txt new file mode 100644 index 000000000..0212d4436 --- /dev/null +++ b/BSB_lan/libraries/DallasTemperature/keywords.txt @@ -0,0 +1,54 @@ +####################################### +# Syntax Coloring Map For Ultrasound +####################################### + +####################################### +# Datatypes (KEYWORD1) +####################################### +DallasTemperature KEYWORD1 +OneWire KEYWORD1 +AlarmHandler KEYWORD1 +DeviceAddress KEYWORD1 + +####################################### +# Methods and Functions (KEYWORD2) +####################################### + +setResolution KEYWORD2 +getResolution KEYWORD2 +getTempC KEYWORD2 +toFahrenheit KEYWORD2 +getTempF KEYWORD2 +getTempCByIndex KEYWORD2 +getTempFByIndex KEYWORD2 +setWaitForConversion KEYWORD2 +getWaitForConversion KEYWORD2 +requestTemperatures KEYWORD2 +requestTemperaturesByAddress KEYWORD2 +requestTemperaturesByIndex KEYWORD2 +isParasitePowerMode KEYWORD2 +begin KEYWORD2 +getDeviceCount KEYWORD2 +getAddress KEYWORD2 +validAddress KEYWORD2 +isConnected KEYWORD2 +readScratchPad KEYWORD2 +writeScratchPad KEYWORD2 +readPowerSupply KEYWORD2 +setHighAlarmTemp KEYWORD2 +setLowAlarmTemp KEYWORD2 +getHighAlarmTemp KEYWORD2 +getLowAlarmTemp KEYWORD2 +resetAlarmSearch KEYWORD2 +alarmSearch KEYWORD2 +hasAlarm KEYWORD2 +toCelsius KEYWORD2 +processAlarmss KEYWORD2 +setAlarmHandlers KEYWORD2 +defaultAlarmHandler KEYWORD2 +calculateTemperature KEYWORD2 + +####################################### +# Constants (LITERAL1) +####################################### + diff --git a/BSB_lan/libraries/OneWire/OneWire.cpp b/BSB_lan/libraries/OneWire/OneWire.cpp new file mode 100644 index 000000000..631813f8e --- /dev/null +++ b/BSB_lan/libraries/OneWire/OneWire.cpp @@ -0,0 +1,557 @@ +/* +Copyright (c) 2007, Jim Studt (original old version - many contributors since) + +The latest version of this library may be found at: + http://www.pjrc.com/teensy/td_libs_OneWire.html + +OneWire has been maintained by Paul Stoffregen (paul@pjrc.com) since +January 2010. At the time, it was in need of many bug fixes, but had +been abandoned the original author (Jim Studt). None of the known +contributors were interested in maintaining OneWire. Paul typically +works on OneWire every 6 to 12 months. Patches usually wait that +long. If anyone is interested in more actively maintaining OneWire, +please contact Paul. + +Version 2.2: + Teensy 3.0 compatibility, Paul Stoffregen, paul@pjrc.com + Arduino Due compatibility, http://arduino.cc/forum/index.php?topic=141030 + Fix DS18B20 example negative temperature + Fix DS18B20 example's low res modes, Ken Butcher + Improve reset timing, Mark Tillotson + Add const qualifiers, Bertrik Sikken + Add initial value input to crc16, Bertrik Sikken + Add target_search() function, Scott Roberts + +Version 2.1: + Arduino 1.0 compatibility, Paul Stoffregen + Improve temperature example, Paul Stoffregen + DS250x_PROM example, Guillermo Lovato + PIC32 (chipKit) compatibility, Jason Dangel, dangel.jason AT gmail.com + Improvements from Glenn Trewitt: + - crc16() now works + - check_crc16() does all of calculation/checking work. + - Added read_bytes() and write_bytes(), to reduce tedious loops. + - Added ds2408 example. + Delete very old, out-of-date readme file (info is here) + +Version 2.0: Modifications by Paul Stoffregen, January 2010: +http://www.pjrc.com/teensy/td_libs_OneWire.html + Search fix from Robin James + http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27 + Use direct optimized I/O in all cases + Disable interrupts during timing critical sections + (this solves many random communication errors) + Disable interrupts during read-modify-write I/O + Reduce RAM consumption by eliminating unnecessary + variables and trimming many to 8 bits + Optimize both crc8 - table version moved to flash + +Modified to work with larger numbers of devices - avoids loop. +Tested in Arduino 11 alpha with 12 sensors. +26 Sept 2008 -- Robin James +http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27 + +Updated to work with arduino-0008 and to include skip() as of +2007/07/06. --RJL20 + +Modified to calculate the 8-bit CRC directly, avoiding the need for +the 256-byte lookup table to be loaded in RAM. Tested in arduino-0010 +-- Tom Pollard, Jan 23, 2008 + +Jim Studt's original library was modified by Josh Larios. + +Tom Pollard, pollard@alum.mit.edu, contributed around May 20, 2008 + +Permission is hereby granted, free of charge, to any person obtaining +a copy of this software and associated documentation files (the +"Software"), to deal in the Software without restriction, including +without limitation the rights to use, copy, modify, merge, publish, +distribute, sublicense, and/or sell copies of the Software, and to +permit persons to whom the Software is furnished to do so, subject to +the following conditions: + +The above copyright notice and this permission notice shall be +included in all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE +LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION +OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION +WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +Much of the code was inspired by Derek Yerger's code, though I don't +think much of that remains. In any event that was.. + (copyleft) 2006 by Derek Yerger - Free to distribute freely. + +The CRC code was excerpted and inspired by the Dallas Semiconductor +sample code bearing this copyright. +//--------------------------------------------------------------------------- +// Copyright (C) 2000 Dallas Semiconductor Corporation, All Rights Reserved. +// +// Permission is hereby granted, free of charge, to any person obtaining a +// copy of this software and associated documentation files (the "Software"), +// to deal in the Software without restriction, including without limitation +// the rights to use, copy, modify, merge, publish, distribute, sublicense, +// and/or sell copies of the Software, and to permit persons to whom the +// Software is furnished to do so, subject to the following conditions: +// +// The above copyright notice and this permission notice shall be included +// in all copies or substantial portions of the Software. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS +// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. +// IN NO EVENT SHALL DALLAS SEMICONDUCTOR BE LIABLE FOR ANY CLAIM, DAMAGES +// OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, +// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR +// OTHER DEALINGS IN THE SOFTWARE. +// +// Except as contained in this notice, the name of Dallas Semiconductor +// shall not be used except as stated in the Dallas Semiconductor +// Branding Policy. +//-------------------------------------------------------------------------- +*/ + +#include "OneWire.h" + + +OneWire::OneWire(uint8_t pin) +{ + pinMode(pin, INPUT); + bitmask = PIN_TO_BITMASK(pin); + baseReg = PIN_TO_BASEREG(pin); +#if ONEWIRE_SEARCH + reset_search(); +#endif +} + + +// Perform the onewire reset function. We will wait up to 250uS for +// the bus to come high, if it doesn't then it is broken or shorted +// and we return a 0; +// +// Returns 1 if a device asserted a presence pulse, 0 otherwise. +// +uint8_t OneWire::reset(void) +{ + IO_REG_TYPE mask = bitmask; + volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg; + uint8_t r; + uint8_t retries = 125; + + noInterrupts(); + DIRECT_MODE_INPUT(reg, mask); + interrupts(); + // wait until the wire is high... just in case + do { + if (--retries == 0) return 0; + delayMicroseconds(2); + } while ( !DIRECT_READ(reg, mask)); + + noInterrupts(); + DIRECT_WRITE_LOW(reg, mask); + DIRECT_MODE_OUTPUT(reg, mask); // drive output low + interrupts(); + delayMicroseconds(480); + noInterrupts(); + DIRECT_MODE_INPUT(reg, mask); // allow it to float + delayMicroseconds(70); + r = !DIRECT_READ(reg, mask); + interrupts(); + delayMicroseconds(410); + return r; +} + +// +// Write a bit. Port and bit is used to cut lookup time and provide +// more certain timing. +// +void OneWire::write_bit(uint8_t v) +{ + IO_REG_TYPE mask=bitmask; + volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg; + + if (v & 1) { + noInterrupts(); + DIRECT_WRITE_LOW(reg, mask); + DIRECT_MODE_OUTPUT(reg, mask); // drive output low + delayMicroseconds(10); + DIRECT_WRITE_HIGH(reg, mask); // drive output high + interrupts(); + delayMicroseconds(55); + } else { + noInterrupts(); + DIRECT_WRITE_LOW(reg, mask); + DIRECT_MODE_OUTPUT(reg, mask); // drive output low + delayMicroseconds(65); + DIRECT_WRITE_HIGH(reg, mask); // drive output high + interrupts(); + delayMicroseconds(5); + } +} + +// +// Read a bit. Port and bit is used to cut lookup time and provide +// more certain timing. +// +uint8_t OneWire::read_bit(void) +{ + IO_REG_TYPE mask=bitmask; + volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg; + uint8_t r; + + noInterrupts(); + DIRECT_MODE_OUTPUT(reg, mask); + DIRECT_WRITE_LOW(reg, mask); + delayMicroseconds(3); + DIRECT_MODE_INPUT(reg, mask); // let pin float, pull up will raise + delayMicroseconds(10); + r = DIRECT_READ(reg, mask); + interrupts(); + delayMicroseconds(53); + return r; +} + +// +// Write a byte. The writing code uses the active drivers to raise the +// pin high, if you need power after the write (e.g. DS18S20 in +// parasite power mode) then set 'power' to 1, otherwise the pin will +// go tri-state at the end of the write to avoid heating in a short or +// other mishap. +// +void OneWire::write(uint8_t v, uint8_t power /* = 0 */) { + uint8_t bitMask; + + for (bitMask = 0x01; bitMask; bitMask <<= 1) { + OneWire::write_bit( (bitMask & v)?1:0); + } + if ( !power) { + noInterrupts(); + DIRECT_MODE_INPUT(baseReg, bitmask); + DIRECT_WRITE_LOW(baseReg, bitmask); + interrupts(); + } +} + +void OneWire::write_bytes(const uint8_t *buf, uint16_t count, bool power /* = 0 */) { + for (uint16_t i = 0 ; i < count ; i++) + write(buf[i]); + if (!power) { + noInterrupts(); + DIRECT_MODE_INPUT(baseReg, bitmask); + DIRECT_WRITE_LOW(baseReg, bitmask); + interrupts(); + } +} + +// +// Read a byte +// +uint8_t OneWire::read() { + uint8_t bitMask; + uint8_t r = 0; + + for (bitMask = 0x01; bitMask; bitMask <<= 1) { + if ( OneWire::read_bit()) r |= bitMask; + } + return r; +} + +void OneWire::read_bytes(uint8_t *buf, uint16_t count) { + for (uint16_t i = 0 ; i < count ; i++) + buf[i] = read(); +} + +// +// Do a ROM select +// +void OneWire::select(const uint8_t rom[8]) +{ + uint8_t i; + + write(0x55); // Choose ROM + + for (i = 0; i < 8; i++) write(rom[i]); +} + +// +// Do a ROM skip +// +void OneWire::skip() +{ + write(0xCC); // Skip ROM +} + +void OneWire::depower() +{ + noInterrupts(); + DIRECT_MODE_INPUT(baseReg, bitmask); + interrupts(); +} + +#if ONEWIRE_SEARCH + +// +// You need to use this function to start a search again from the beginning. +// You do not need to do it for the first search, though you could. +// +void OneWire::reset_search() +{ + // reset the search state + LastDiscrepancy = 0; + LastDeviceFlag = FALSE; + LastFamilyDiscrepancy = 0; + for(int i = 7; ; i--) { + ROM_NO[i] = 0; + if ( i == 0) break; + } +} + +// Setup the search to find the device type 'family_code' on the next call +// to search(*newAddr) if it is present. +// +void OneWire::target_search(uint8_t family_code) +{ + // set the search state to find SearchFamily type devices + ROM_NO[0] = family_code; + for (uint8_t i = 1; i < 8; i++) + ROM_NO[i] = 0; + LastDiscrepancy = 64; + LastFamilyDiscrepancy = 0; + LastDeviceFlag = FALSE; +} + +// +// Perform a search. If this function returns a '1' then it has +// enumerated the next device and you may retrieve the ROM from the +// OneWire::address variable. If there are no devices, no further +// devices, or something horrible happens in the middle of the +// enumeration then a 0 is returned. If a new device is found then +// its address is copied to newAddr. Use OneWire::reset_search() to +// start over. +// +// --- Replaced by the one from the Dallas Semiconductor web site --- +//-------------------------------------------------------------------------- +// Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing +// search state. +// Return TRUE : device found, ROM number in ROM_NO buffer +// FALSE : device not found, end of search +// +uint8_t OneWire::search(uint8_t *newAddr) +{ + uint8_t id_bit_number; + uint8_t last_zero, rom_byte_number, search_result; + uint8_t id_bit, cmp_id_bit; + + unsigned char rom_byte_mask, search_direction; + + // initialize for search + id_bit_number = 1; + last_zero = 0; + rom_byte_number = 0; + rom_byte_mask = 1; + search_result = 0; + + // if the last call was not the last one + if (!LastDeviceFlag) + { + // 1-Wire reset + if (!reset()) + { + // reset the search + LastDiscrepancy = 0; + LastDeviceFlag = FALSE; + LastFamilyDiscrepancy = 0; + return FALSE; + } + + // issue the search command + write(0xF0); + + // loop to do the search + do + { + // read a bit and its complement + id_bit = read_bit(); + cmp_id_bit = read_bit(); + + // check for no devices on 1-wire + if ((id_bit == 1) && (cmp_id_bit == 1)) + break; + else + { + // all devices coupled have 0 or 1 + if (id_bit != cmp_id_bit) + search_direction = id_bit; // bit write value for search + else + { + // if this discrepancy if before the Last Discrepancy + // on a previous next then pick the same as last time + if (id_bit_number < LastDiscrepancy) + search_direction = ((ROM_NO[rom_byte_number] & rom_byte_mask) > 0); + else + // if equal to last pick 1, if not then pick 0 + search_direction = (id_bit_number == LastDiscrepancy); + + // if 0 was picked then record its position in LastZero + if (search_direction == 0) + { + last_zero = id_bit_number; + + // check for Last discrepancy in family + if (last_zero < 9) + LastFamilyDiscrepancy = last_zero; + } + } + + // set or clear the bit in the ROM byte rom_byte_number + // with mask rom_byte_mask + if (search_direction == 1) + ROM_NO[rom_byte_number] |= rom_byte_mask; + else + ROM_NO[rom_byte_number] &= ~rom_byte_mask; + + // serial number search direction write bit + write_bit(search_direction); + + // increment the byte counter id_bit_number + // and shift the mask rom_byte_mask + id_bit_number++; + rom_byte_mask <<= 1; + + // if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask + if (rom_byte_mask == 0) + { + rom_byte_number++; + rom_byte_mask = 1; + } + } + } + while(rom_byte_number < 8); // loop until through all ROM bytes 0-7 + + // if the search was successful then + if (!(id_bit_number < 65)) + { + // search successful so set LastDiscrepancy,LastDeviceFlag,search_result + LastDiscrepancy = last_zero; + + // check for last device + if (LastDiscrepancy == 0) + LastDeviceFlag = TRUE; + + search_result = TRUE; + } + } + + // if no device found then reset counters so next 'search' will be like a first + if (!search_result || !ROM_NO[0]) + { + LastDiscrepancy = 0; + LastDeviceFlag = FALSE; + LastFamilyDiscrepancy = 0; + search_result = FALSE; + } + for (int i = 0; i < 8; i++) newAddr[i] = ROM_NO[i]; + return search_result; + } + +#endif + +#if ONEWIRE_CRC +// The 1-Wire CRC scheme is described in Maxim Application Note 27: +// "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products" +// + +#if ONEWIRE_CRC8_TABLE +// This table comes from Dallas sample code where it is freely reusable, +// though Copyright (C) 2000 Dallas Semiconductor Corporation +static const uint8_t PROGMEM dscrc_table[] = { + 0, 94,188,226, 97, 63,221,131,194,156,126, 32,163,253, 31, 65, + 157,195, 33,127,252,162, 64, 30, 95, 1,227,189, 62, 96,130,220, + 35,125,159,193, 66, 28,254,160,225,191, 93, 3,128,222, 60, 98, + 190,224, 2, 92,223,129, 99, 61,124, 34,192,158, 29, 67,161,255, + 70, 24,250,164, 39,121,155,197,132,218, 56,102,229,187, 89, 7, + 219,133,103, 57,186,228, 6, 88, 25, 71,165,251,120, 38,196,154, + 101, 59,217,135, 4, 90,184,230,167,249, 27, 69,198,152,122, 36, + 248,166, 68, 26,153,199, 37,123, 58,100,134,216, 91, 5,231,185, + 140,210, 48,110,237,179, 81, 15, 78, 16,242,172, 47,113,147,205, + 17, 79,173,243,112, 46,204,146,211,141,111, 49,178,236, 14, 80, + 175,241, 19, 77,206,144,114, 44,109, 51,209,143, 12, 82,176,238, + 50,108,142,208, 83, 13,239,177,240,174, 76, 18,145,207, 45,115, + 202,148,118, 40,171,245, 23, 73, 8, 86,180,234,105, 55,213,139, + 87, 9,235,181, 54,104,138,212,149,203, 41,119,244,170, 72, 22, + 233,183, 85, 11,136,214, 52,106, 43,117,151,201, 74, 20,246,168, + 116, 42,200,150, 21, 75,169,247,182,232, 10, 84,215,137,107, 53}; + +// +// Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM +// and the registers. (note: this might better be done without to +// table, it would probably be smaller and certainly fast enough +// compared to all those delayMicrosecond() calls. But I got +// confused, so I use this table from the examples.) +// +uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len) +{ + uint8_t crc = 0; + + while (len--) { + crc = pgm_read_byte(dscrc_table + (crc ^ *addr++)); + } + return crc; +} +#else +// +// Compute a Dallas Semiconductor 8 bit CRC directly. +// this is much slower, but much smaller, than the lookup table. +// +uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len) +{ + uint8_t crc = 0; + + while (len--) { + uint8_t inbyte = *addr++; + for (uint8_t i = 8; i; i--) { + uint8_t mix = (crc ^ inbyte) & 0x01; + crc >>= 1; + if (mix) crc ^= 0x8C; + inbyte >>= 1; + } + } + return crc; +} +#endif + +#if ONEWIRE_CRC16 +bool OneWire::check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc) +{ + crc = ~crc16(input, len, crc); + return (crc & 0xFF) == inverted_crc[0] && (crc >> 8) == inverted_crc[1]; +} + +uint16_t OneWire::crc16(const uint8_t* input, uint16_t len, uint16_t crc) +{ + static const uint8_t oddparity[16] = + { 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 }; + + for (uint16_t i = 0 ; i < len ; i++) { + // Even though we're just copying a byte from the input, + // we'll be doing 16-bit computation with it. + uint16_t cdata = input[i]; + cdata = (cdata ^ crc) & 0xff; + crc >>= 8; + + if (oddparity[cdata & 0x0F] ^ oddparity[cdata >> 4]) + crc ^= 0xC001; + + cdata <<= 6; + crc ^= cdata; + cdata <<= 1; + crc ^= cdata; + } + return crc; +} +#endif + +#endif diff --git a/BSB_lan/libraries/OneWire/OneWire.h b/BSB_lan/libraries/OneWire/OneWire.h new file mode 100644 index 000000000..916c52907 --- /dev/null +++ b/BSB_lan/libraries/OneWire/OneWire.h @@ -0,0 +1,229 @@ +#ifndef OneWire_h +#define OneWire_h + +#include + +#if ARDUINO >= 100 +#include "Arduino.h" // for delayMicroseconds, digitalPinToBitMask, etc +#else +#include "WProgram.h" // for delayMicroseconds +#include "pins_arduino.h" // for digitalPinToBitMask, etc +#endif + +// You can exclude certain features from OneWire. In theory, this +// might save some space. In practice, the compiler automatically +// removes unused code (technically, the linker, using -fdata-sections +// and -ffunction-sections when compiling, and Wl,--gc-sections +// when linking), so most of these will not result in any code size +// reduction. Well, unless you try to use the missing features +// and redesign your program to not need them! ONEWIRE_CRC8_TABLE +// is the exception, because it selects a fast but large algorithm +// or a small but slow algorithm. + +// you can exclude onewire_search by defining that to 0 +#ifndef ONEWIRE_SEARCH +#define ONEWIRE_SEARCH 1 +#endif + +// You can exclude CRC checks altogether by defining this to 0 +#ifndef ONEWIRE_CRC +#define ONEWIRE_CRC 1 +#endif + +// Select the table-lookup method of computing the 8-bit CRC +// by setting this to 1. The lookup table enlarges code size by +// about 250 bytes. It does NOT consume RAM (but did in very +// old versions of OneWire). If you disable this, a slower +// but very compact algorithm is used. +#ifndef ONEWIRE_CRC8_TABLE +#define ONEWIRE_CRC8_TABLE 1 +#endif + +// You can allow 16-bit CRC checks by defining this to 1 +// (Note that ONEWIRE_CRC must also be 1.) +#ifndef ONEWIRE_CRC16 +#define ONEWIRE_CRC16 1 +#endif + +#define FALSE 0 +#define TRUE 1 + +// Platform specific I/O definitions + +#if defined(__AVR__) +#define PIN_TO_BASEREG(pin) (portInputRegister(digitalPinToPort(pin))) +#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin)) +#define IO_REG_TYPE uint8_t +#define IO_REG_ASM asm("r30") +#define DIRECT_READ(base, mask) (((*(base)) & (mask)) ? 1 : 0) +#define DIRECT_MODE_INPUT(base, mask) ((*((base)+1)) &= ~(mask)) +#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+1)) |= (mask)) +#define DIRECT_WRITE_LOW(base, mask) ((*((base)+2)) &= ~(mask)) +#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+2)) |= (mask)) + +#elif defined(__MK20DX128__) +#define PIN_TO_BASEREG(pin) (portOutputRegister(pin)) +#define PIN_TO_BITMASK(pin) (1) +#define IO_REG_TYPE uint8_t +#define IO_REG_ASM +#define DIRECT_READ(base, mask) (*((base)+512)) +#define DIRECT_MODE_INPUT(base, mask) (*((base)+640) = 0) +#define DIRECT_MODE_OUTPUT(base, mask) (*((base)+640) = 1) +#define DIRECT_WRITE_LOW(base, mask) (*((base)+256) = 1) +#define DIRECT_WRITE_HIGH(base, mask) (*((base)+128) = 1) + +#elif defined(__SAM3X8E__) +// Arduino 1.5.1 may have a bug in delayMicroseconds() on Arduino Due. +// http://arduino.cc/forum/index.php/topic,141030.msg1076268.html#msg1076268 +// If you have trouble with OneWire on Arduino Due, please check the +// status of delayMicroseconds() before reporting a bug in OneWire! +#define PIN_TO_BASEREG(pin) (&(digitalPinToPort(pin)->PIO_PER)) +#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin)) +#define IO_REG_TYPE uint32_t +#define IO_REG_ASM +#define DIRECT_READ(base, mask) (((*((base)+15)) & (mask)) ? 1 : 0) +#define DIRECT_MODE_INPUT(base, mask) ((*((base)+5)) = (mask)) +#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+4)) = (mask)) +#define DIRECT_WRITE_LOW(base, mask) ((*((base)+13)) = (mask)) +#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+12)) = (mask)) +#ifndef PROGMEM +#define PROGMEM +#endif +#ifndef pgm_read_byte +#define pgm_read_byte(addr) (*(const uint8_t *)(addr)) +#endif + +#elif defined(__PIC32MX__) +#define PIN_TO_BASEREG(pin) (portModeRegister(digitalPinToPort(pin))) +#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin)) +#define IO_REG_TYPE uint32_t +#define IO_REG_ASM +#define DIRECT_READ(base, mask) (((*(base+4)) & (mask)) ? 1 : 0) //PORTX + 0x10 +#define DIRECT_MODE_INPUT(base, mask) ((*(base+2)) = (mask)) //TRISXSET + 0x08 +#define DIRECT_MODE_OUTPUT(base, mask) ((*(base+1)) = (mask)) //TRISXCLR + 0x04 +#define DIRECT_WRITE_LOW(base, mask) ((*(base+8+1)) = (mask)) //LATXCLR + 0x24 +#define DIRECT_WRITE_HIGH(base, mask) ((*(base+8+2)) = (mask)) //LATXSET + 0x28 + +#else +#error "Please define I/O register types here" +#endif + + +class OneWire +{ + private: + IO_REG_TYPE bitmask; + volatile IO_REG_TYPE *baseReg; + +#if ONEWIRE_SEARCH + // global search state + unsigned char ROM_NO[8]; + uint8_t LastDiscrepancy; + uint8_t LastFamilyDiscrepancy; + uint8_t LastDeviceFlag; +#endif + + public: + OneWire( uint8_t pin); + + // Perform a 1-Wire reset cycle. Returns 1 if a device responds + // with a presence pulse. Returns 0 if there is no device or the + // bus is shorted or otherwise held low for more than 250uS + uint8_t reset(void); + + // Issue a 1-Wire rom select command, you do the reset first. + void select(const uint8_t rom[8]); + + // Issue a 1-Wire rom skip command, to address all on bus. + void skip(void); + + // Write a byte. If 'power' is one then the wire is held high at + // the end for parasitically powered devices. You are responsible + // for eventually depowering it by calling depower() or doing + // another read or write. + void write(uint8_t v, uint8_t power = 0); + + void write_bytes(const uint8_t *buf, uint16_t count, bool power = 0); + + // Read a byte. + uint8_t read(void); + + void read_bytes(uint8_t *buf, uint16_t count); + + // Write a bit. The bus is always left powered at the end, see + // note in write() about that. + void write_bit(uint8_t v); + + // Read a bit. + uint8_t read_bit(void); + + // Stop forcing power onto the bus. You only need to do this if + // you used the 'power' flag to write() or used a write_bit() call + // and aren't about to do another read or write. You would rather + // not leave this powered if you don't have to, just in case + // someone shorts your bus. + void depower(void); + +#if ONEWIRE_SEARCH + // Clear the search state so that if will start from the beginning again. + void reset_search(); + + // Setup the search to find the device type 'family_code' on the next call + // to search(*newAddr) if it is present. + void target_search(uint8_t family_code); + + // Look for the next device. Returns 1 if a new address has been + // returned. A zero might mean that the bus is shorted, there are + // no devices, or you have already retrieved all of them. It + // might be a good idea to check the CRC to make sure you didn't + // get garbage. The order is deterministic. You will always get + // the same devices in the same order. + uint8_t search(uint8_t *newAddr); +#endif + +#if ONEWIRE_CRC + // Compute a Dallas Semiconductor 8 bit CRC, these are used in the + // ROM and scratchpad registers. + static uint8_t crc8(const uint8_t *addr, uint8_t len); + +#if ONEWIRE_CRC16 + // Compute the 1-Wire CRC16 and compare it against the received CRC. + // Example usage (reading a DS2408): + // // Put everything in a buffer so we can compute the CRC easily. + // uint8_t buf[13]; + // buf[0] = 0xF0; // Read PIO Registers + // buf[1] = 0x88; // LSB address + // buf[2] = 0x00; // MSB address + // WriteBytes(net, buf, 3); // Write 3 cmd bytes + // ReadBytes(net, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16 + // if (!CheckCRC16(buf, 11, &buf[11])) { + // // Handle error. + // } + // + // @param input - Array of bytes to checksum. + // @param len - How many bytes to use. + // @param inverted_crc - The two CRC16 bytes in the received data. + // This should just point into the received data, + // *not* at a 16-bit integer. + // @param crc - The crc starting value (optional) + // @return True, iff the CRC matches. + static bool check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc = 0); + + // Compute a Dallas Semiconductor 16 bit CRC. This is required to check + // the integrity of data received from many 1-Wire devices. Note that the + // CRC computed here is *not* what you'll get from the 1-Wire network, + // for two reasons: + // 1) The CRC is transmitted bitwise inverted. + // 2) Depending on the endian-ness of your processor, the binary + // representation of the two-byte return value may have a different + // byte order than the two bytes you get from 1-Wire. + // @param input - Array of bytes to checksum. + // @param len - How many bytes to use. + // @param crc - The crc starting value (optional) + // @return The CRC16, as defined by Dallas Semiconductor. + static uint16_t crc16(const uint8_t* input, uint16_t len, uint16_t crc = 0); +#endif +#endif +}; + +#endif diff --git a/BSB_lan/libraries/OneWire/examples/DS18x20_Temperature/DS18x20_Temperature.pde b/BSB_lan/libraries/OneWire/examples/DS18x20_Temperature/DS18x20_Temperature.pde new file mode 100644 index 000000000..68ca19432 --- /dev/null +++ b/BSB_lan/libraries/OneWire/examples/DS18x20_Temperature/DS18x20_Temperature.pde @@ -0,0 +1,112 @@ +#include + +// OneWire DS18S20, DS18B20, DS1822 Temperature Example +// +// http://www.pjrc.com/teensy/td_libs_OneWire.html +// +// The DallasTemperature library can do all this work for you! +// http://milesburton.com/Dallas_Temperature_Control_Library + +OneWire ds(10); // on pin 10 (a 4.7K resistor is necessary) + +void setup(void) { + Serial.begin(9600); +} + +void loop(void) { + byte i; + byte present = 0; + byte type_s; + byte data[12]; + byte addr[8]; + float celsius, fahrenheit; + + if ( !ds.search(addr)) { + Serial.println("No more addresses."); + Serial.println(); + ds.reset_search(); + delay(250); + return; + } + + Serial.print("ROM ="); + for( i = 0; i < 8; i++) { + Serial.write(' '); + Serial.print(addr[i], HEX); + } + + if (OneWire::crc8(addr, 7) != addr[7]) { + Serial.println("CRC is not valid!"); + return; + } + Serial.println(); + + // the first ROM byte indicates which chip + switch (addr[0]) { + case 0x10: + Serial.println(" Chip = DS18S20"); // or old DS1820 + type_s = 1; + break; + case 0x28: + Serial.println(" Chip = DS18B20"); + type_s = 0; + break; + case 0x22: + Serial.println(" Chip = DS1822"); + type_s = 0; + break; + default: + Serial.println("Device is not a DS18x20 family device."); + return; + } + + ds.reset(); + ds.select(addr); + ds.write(0x44, 1); // start conversion, with parasite power on at the end + + delay(1000); // maybe 750ms is enough, maybe not + // we might do a ds.depower() here, but the reset will take care of it. + + present = ds.reset(); + ds.select(addr); + ds.write(0xBE); // Read Scratchpad + + Serial.print(" Data = "); + Serial.print(present, HEX); + Serial.print(" "); + for ( i = 0; i < 9; i++) { // we need 9 bytes + data[i] = ds.read(); + Serial.print(data[i], HEX); + Serial.print(" "); + } + Serial.print(" CRC="); + Serial.print(OneWire::crc8(data, 8), HEX); + Serial.println(); + + // Convert the data to actual temperature + // because the result is a 16 bit signed integer, it should + // be stored to an "int16_t" type, which is always 16 bits + // even when compiled on a 32 bit processor. + int16_t raw = (data[1] << 8) | data[0]; + if (type_s) { + raw = raw << 3; // 9 bit resolution default + if (data[7] == 0x10) { + // "count remain" gives full 12 bit resolution + raw = (raw & 0xFFF0) + 12 - data[6]; + } + } else { + byte cfg = (data[4] & 0x60); + // at lower res, the low bits are undefined, so let's zero them + if (cfg == 0x00) raw = raw & ~7; // 9 bit resolution, 93.75 ms + else if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms + else if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms + //// default is 12 bit resolution, 750 ms conversion time + } + celsius = (float)raw / 16.0; + fahrenheit = celsius * 1.8 + 32.0; + Serial.print(" Temperature = "); + Serial.print(celsius); + Serial.print(" Celsius, "); + Serial.print(fahrenheit); + Serial.println(" Fahrenheit"); +} diff --git a/BSB_lan/libraries/OneWire/examples/DS2408_Switch/DS2408_Switch.pde b/BSB_lan/libraries/OneWire/examples/DS2408_Switch/DS2408_Switch.pde new file mode 100644 index 000000000..d171f9ba0 --- /dev/null +++ b/BSB_lan/libraries/OneWire/examples/DS2408_Switch/DS2408_Switch.pde @@ -0,0 +1,77 @@ +#include + +/* + * DS2408 8-Channel Addressable Switch + * + * Writte by Glenn Trewitt, glenn at trewitt dot org + * + * Some notes about the DS2408: + * - Unlike most input/output ports, the DS2408 doesn't have mode bits to + * set whether the pins are input or output. If you issue a read command, + * they're inputs. If you write to them, they're outputs. + * - For reading from a switch, you should use 10K pull-up resisters. + */ + +void PrintBytes(uint8_t* addr, uint8_t count, bool newline=0) { + for (uint8_t i = 0; i < count; i++) { + Serial.print(addr[i]>>4, HEX); + Serial.print(addr[i]&0x0f, HEX); + } + if (newline) + Serial.println(); +} + +void ReadAndReport(OneWire* net, uint8_t* addr) { + Serial.print(" Reading DS2408 "); + PrintBytes(addr, 8); + Serial.println(); + + uint8_t buf[13]; // Put everything in the buffer so we can compute CRC easily. + buf[0] = 0xF0; // Read PIO Registers + buf[1] = 0x88; // LSB address + buf[2] = 0x00; // MSB address + net->write_bytes(buf, 3); + net->read_bytes(buf+3, 10); // 3 cmd bytes, 6 data bytes, 2 0xFF, 2 CRC16 + net->reset(); + + if (!OneWire::check_crc16(buf, 11, &buf[11])) { + Serial.print("CRC failure in DS2408 at "); + PrintBytes(addr, 8, true); + return; + } + Serial.print(" DS2408 data = "); + // First 3 bytes contain command, register address. + Serial.println(buf[3], BIN); +} + +OneWire net(10); // on pin 10 + +void setup(void) { + Serial.begin(9600); +} + +void loop(void) { + byte i; + byte present = 0; + byte addr[8]; + + if (!net.search(addr)) { + Serial.print("No more addresses.\n"); + net.reset_search(); + delay(1000); + return; + } + + if (OneWire::crc8(addr, 7) != addr[7]) { + Serial.print("CRC is not valid!\n"); + return; + } + + if (addr[0] != 0x29) { + PrintBytes(addr, 8); + Serial.print(" is not a DS2408.\n"); + return; + } + + ReadAndReport(&net, addr); +} diff --git a/BSB_lan/libraries/OneWire/examples/DS250x_PROM/DS250x_PROM.pde b/BSB_lan/libraries/OneWire/examples/DS250x_PROM/DS250x_PROM.pde new file mode 100644 index 000000000..baa51c8f3 --- /dev/null +++ b/BSB_lan/libraries/OneWire/examples/DS250x_PROM/DS250x_PROM.pde @@ -0,0 +1,90 @@ +/* +DS250x add-only programmable memory reader w/SKIP ROM. + + The DS250x is a 512/1024bit add-only PROM(you can add data but cannot change the old one) that's used mainly for device identification purposes + like serial number, mfgr data, unique identifiers, etc. It uses the Maxim 1-wire bus. + + This sketch will use the SKIP ROM function that skips the 1-Wire search phase since we only have one device connected in the bus on digital pin 6. + If more than one device is connected to the bus, it will fail. + Sketch will not verify if device connected is from the DS250x family since the skip rom function effectively skips the family-id byte readout. + thus it is possible to run this sketch with any Maxim OneWire device in which case the command CRC will most likely fail. + Sketch will only read the first page of memory(32bits) starting from the lower address(0000h), if more than 1 device is present, then use the sketch with search functions. + Remember to put a 4.7K pullup resistor between pin 6 and +Vcc + + To change the range or ammount of data to read, simply change the data array size, LSB/MSB addresses and for loop iterations + + This example code is in the public domain and is provided AS-IS. + + Built with Arduino 0022 and PJRC OneWire 2.0 library http://www.pjrc.com/teensy/td_libs_OneWire.html + + created by Guillermo Lovato + march/2011 + + */ + +#include +OneWire ds(6); // OneWire bus on digital pin 6 +void setup() { + Serial.begin (9600); +} + +void loop() { + byte i; // This is for the for loops + boolean present; // device present var + byte data[32]; // container for the data from device + byte leemem[3] = { // array with the commands to initiate a read, DS250x devices expect 3 bytes to start a read: command,LSB&MSB adresses + 0xF0 , 0x00 , 0x00 }; // 0xF0 is the Read Data command, followed by 00h 00h as starting address(the beginning, 0000h) + byte ccrc; // Variable to store the command CRC + byte ccrc_calc; + + present = ds.reset(); // OneWire bus reset, always needed to start operation on the bus, returns a 1/TRUE if there's a device present. + ds.skip(); // Skip ROM search + + if (present == TRUE){ // We only try to read the data if there's a device present + Serial.println("DS250x device present"); + ds.write(leemem[0],1); // Read data command, leave ghost power on + ds.write(leemem[1],1); // LSB starting address, leave ghost power on + ds.write(leemem[2],1); // MSB starting address, leave ghost power on + + ccrc = ds.read(); // DS250x generates a CRC for the command we sent, we assign a read slot and store it's value + ccrc_calc = OneWire::crc8(leemem, 3); // We calculate the CRC of the commands we sent using the library function and store it + + if ( ccrc_calc != ccrc) { // Then we compare it to the value the ds250x calculated, if it fails, we print debug messages and abort + Serial.println("Invalid command CRC!"); + Serial.print("Calculated CRC:"); + Serial.println(ccrc_calc,HEX); // HEX makes it easier to observe and compare + Serial.print("DS250x readback CRC:"); + Serial.println(ccrc,HEX); + return; // Since CRC failed, we abort the rest of the loop and start over + } + Serial.println("Data is: "); // For the printout of the data + for ( i = 0; i < 32; i++) { // Now it's time to read the PROM data itself, each page is 32 bytes so we need 32 read commands + data[i] = ds.read(); // we store each read byte to a different position in the data array + Serial.print(data[i]); // printout in ASCII + Serial.print(" "); // blank space + } + Serial.println(); + delay(5000); // Delay so we don't saturate the serial output + } + else { // Nothing is connected in the bus + Serial.println("Nothing connected"); + delay(3000); + } +} + + + + + + + + + + + + + + + + + diff --git a/BSB_lan/libraries/OneWire/keywords.txt b/BSB_lan/libraries/OneWire/keywords.txt new file mode 100644 index 000000000..bee5d90b2 --- /dev/null +++ b/BSB_lan/libraries/OneWire/keywords.txt @@ -0,0 +1,38 @@ +####################################### +# Syntax Coloring Map For OneWire +####################################### + +####################################### +# Datatypes (KEYWORD1) +####################################### + +OneWire KEYWORD1 + +####################################### +# Methods and Functions (KEYWORD2) +####################################### + +reset KEYWORD2 +write_bit KEYWORD2 +read_bit KEYWORD2 +write KEYWORD2 +write_bytes KEYWORD2 +read KEYWORD2 +read_bytes KEYWORD2 +select KEYWORD2 +skip KEYWORD2 +depower KEYWORD2 +reset_search KEYWORD2 +search KEYWORD2 +crc8 KEYWORD2 +crc16 KEYWORD2 +check_crc16 KEYWORD2 + +####################################### +# Instances (KEYWORD2) +####################################### + + +####################################### +# Constants (LITERAL1) +#######################################