-
Notifications
You must be signed in to change notification settings - Fork 57
/
Solution.py
42 lines (37 loc) · 1.25 KB
/
Solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
'''
Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
'''
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
### method 1: can track start and end position
# if not nums:
# return 0
# start, end, max_sum, st = 0, 0, nums[0], 0
# sum_sofar = nums[0]
# for i, num in enumerate(nums):
# if i == 0:
# continue
# if sum_sofar < 0:
# sum_sofar = 0
# st = i
# sum_sofar += num
# if sum_sofar > max_sum:
# max_sum = sum_sofar
# start = st
# end = i
# return max_sum
### method 2
max_sum = None
sum_sofar = 0
for n in nums:
sum_sofar += n
if max_sum is None or max_sum < sum_sofar:
max_sum = sum_sofar
sum_sofar = max(0, sum_sofar)
return max_sum