-
Notifications
You must be signed in to change notification settings - Fork 57
/
Solution.py
65 lines (50 loc) · 2.2 KB
/
Solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
"""
You are given an integer array heights representing the heights of buildings, some bricks, and some ladders.
You start your journey from building 0 and move to the next building by possibly using bricks or ladders.
While moving from building i to building i+1 (0-indexed),
If the current building's height is greater than or equal to the next building's height, you do not need a ladder or bricks.
If the current building's height is less than the next building's height, you can either use one ladder or (h[i+1] - h[i]) bricks.
Return the furthest building index (0-indexed) you can reach if you use the given ladders and bricks optimally.
Example 1:
Input: heights = [4,2,7,6,9,14,12], bricks = 5, ladders = 1
Output: 4
Explanation: Starting at building 0, you can follow these steps:
- Go to building 1 without using ladders nor bricks since 4 >= 2.
- Go to building 2 using 5 bricks. You must use either bricks or ladders because 2 < 7.
- Go to building 3 without using ladders nor bricks since 7 >= 6.
- Go to building 4 using your only ladder. You must use either bricks or ladders because 6 < 9.
It is impossible to go beyond building 4 because you do not have any more bricks or ladders.
Example 2:
Input: heights = [4,12,2,7,3,18,20,3,19], bricks = 10, ladders = 2
Output: 7
Example 3:
Input: heights = [14,3,19,3], bricks = 17, ladders = 0
Output: 3
Constraints:
1 <= heights.length <= 105
1 <= heights[i] <= 106
0 <= bricks <= 109
0 <= ladders <= heights.length
"""
class Solution:
def furthestBuilding(self, heights: List[int], bricks: int, ladders: int) -> int:
for_ladder = []
sb = 0
for i, h in enumerate(heights):
if i == 0:
continue
if h > heights[i - 1]:
diff = h - heights[i - 1]
if len(for_ladder) < ladders:
heapq.heappush(for_ladder, diff)
elif for_ladder and for_ladder[0] < diff:
heapq.heappush(for_ladder, diff)
diff = heapq.heappop(for_ladder)
sb += diff
else:
sb += diff
if sb > bricks:
return i - 1
return len(heights) - 1