-
Notifications
You must be signed in to change notification settings - Fork 3
/
engine_finetune.py
231 lines (188 loc) · 8.62 KB
/
engine_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# DeiT: https://github.com/facebookresearch/deit
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
# --------------------------------------------------------
import math
import sys
from typing import Iterable, Optional
import numpy as np
from sklearn.metrics import f1_score, roc_auc_score, accuracy_score, average_precision_score
import torch
from timm.data import Mixup
from timm.utils import accuracy
import util.misc as misc
import util.lr_sched as lr_sched
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
mixup_fn: Optional[Mixup] = None, log_writer=None,
args=None):
model.train(True)
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 200 # print log every 20 steps
accum_iter = args.accum_iter
optimizer.zero_grad()
if log_writer is not None:
print(f" ")
print('log_dir: {}'.format(log_writer.log_dir))
for data_iter_step, (samples, targets) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
# we use a per iteration (instead of per epoch) lr scheduler
if data_iter_step % accum_iter == 0:
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args)
samples = samples.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
with torch.cuda.amp.autocast():
outputs = model(samples)
loss = criterion(outputs, targets)
loss_value = loss.item()
# handle nan loss
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
loss /= accum_iter
loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=False,
update_grad=(data_iter_step + 1) % accum_iter == 0)
# update model parameters
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
torch.cuda.synchronize()
metric_logger.update(loss=loss_value)
min_lr = 10.
max_lr = 0.
for group in optimizer.param_groups:
min_lr = min(min_lr, group["lr"])
max_lr = max(max_lr, group["lr"])
metric_logger.update(lr=max_lr)
# log into tensorboard
loss_value_reduce = misc.all_reduce_mean(loss_value)
if log_writer is not None and (data_iter_step + 1) % accum_iter == 0:
""" We use epoch_100x as the x-axis in tensorboard.
This calibrates different curves when batch size changes.
"""
epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 100)
log_writer.add_scalar('loss', loss_value_reduce, epoch_1000x)
log_writer.add_scalar('lr', max_lr, epoch_1000x)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(data_loader, model, device):
criterion = torch.nn.CrossEntropyLoss()
metric_logger = misc.MetricLogger(delimiter=" ")
header = 'Test:'
# switch to evaluation mode
model.eval()
for batch in metric_logger.log_every(data_loader, 10, header):
images = batch[0]
target = batch[-1]
images = images.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
# compute output
with torch.cuda.amp.autocast():
output = model(images)
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
batch_size = images.shape[0]
metric_logger.update(loss=loss.item())
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
.format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss))
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def AU_evaluate(data_loader, model, device):
criterion = torch.nn.BCEWithLogitsLoss()
metric_logger = misc.MetricLogger(delimiter=" ")
header = 'Test:'
model.eval() # switch to evaluation mode
all_preds = []
all_targets = []
for batch in metric_logger.log_every(data_loader, 200, header):
images = batch[0]
target = batch[-1]
images = images.to(device, non_blocking=True)
target = target.to(device, non_blocking=True) # 2D tensor (batch, 12)
# compute loss
with torch.cuda.amp.autocast():
output = model(images) # 2D tensor (batch, 12)
loss = criterion(output, target)
metric_logger.update(loss=loss.item())
# for f1 computation
sigmoid = torch.nn.Sigmoid()
probs = sigmoid(output)
all_preds.append(probs.detach().cpu().numpy())
all_targets.append(target.detach().cpu().numpy())
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print('* loss {losses.global_avg:.3f}'.format(losses=metric_logger.loss))
y_probs = np.concatenate([arr for arr in all_preds], axis=0)
y_true = np.concatenate([arr for arr in all_targets], axis=0)
# AP = []
# for cls in range(y_true.shape[1]):
# AP.append(average_precision_score(y_true[:, cls], y_probs[:, cls]))
# # print(f"AP for each category: {AP}")
# mAP = np.mean(AP)
# each AU uses a different threshold
# f1_score_ls = []
# for i in range(1, 100):
# threshold = i * 0.01
# y_pred = np.zeros(y_probs.shape)
# y_pred[np.where(y_probs >= threshold)] = 1
#
# # Compute F1 score for each class
# f1_scores = []
# for class_idx in range(y_true.shape[1]):
# f1_scores.append(f1_score(y_true[:, class_idx], y_pred[:, class_idx]))
# f1_score_ls.append(f1_scores)
#
# # compute accuracy
# roc_auc = roc_auc_score(y_true, y_pred, average='micro')
# accuracy = accuracy_score(y_true, y_pred)
#
# f1_score_arr = np.array(f1_score_ls)
# avg_best_f1 = np.max(f1_score_arr, axis=0)
# print(f"f1_mean: {avg_best_f1.mean()}, best_f1_scores: {avg_best_f1}")
# F1 score at 0.5
threshold = 0.5
y_pred = np.zeros(y_probs.shape)
y_pred[np.where(y_probs >= threshold)] = 1
f1_scores = []
for class_idx in range(y_true.shape[1]): # Compute F1 score for each class
f1_scores.append(f1_score(y_true[:, class_idx], y_pred[:, class_idx]))
f1_score_arr = np.array(f1_scores)
print(f"f1_mean: {f1_score_arr.mean()} with threshold 0.5, f1_scores: {f1_score_arr}")
# F1 score under different thresholds
f1_score_ls = []
for i in range(1, 100):
threshold = i * 0.01
y_pred = np.zeros(y_probs.shape)
y_pred[np.where(y_probs >= threshold)] = 1
f1_scores = []
for class_idx in range(y_true.shape[1]): # Compute F1 score for each class
f1_scores.append(f1_score(y_true[:, class_idx], y_pred[:, class_idx]))
f1_score_ls.append(f1_scores)
f1_score_arr = np.array(f1_score_ls)
max_f1_row_index = np.argmax(np.mean(f1_score_arr, axis=1))
max_mean_row = f1_score_arr[max_f1_row_index]
print(f"f1_mean: {max_mean_row.mean()} with threshold {(max_f1_row_index+1)/100}, best_f1_scores: {max_mean_row}")
# AUC
auc_scores = []
for i in range(y_true.shape[1]): # Calculate AUC for each class
auc = roc_auc_score(y_true[:, i], y_probs[:, i])
auc_scores.append(auc)
mean_auc = np.mean(auc_scores)
print(f"AUC_mean: {mean_auc}, each AUC: {auc_scores}")
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}, max_mean_row.mean(), mean_auc